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Samenvatting

Het gebruik van ferromagnetische materialen is alomtegenwoordig in onze
moderne samenleving. Men vindt ze terug in verschillende toepassingen. In
de informatietechnologie worden ze gebruikt als opslagmedium voor zowel
analoge opslagmedia (bijvoorbeeld cassettebanden) als voor digitale opslag-
media (vb. MRAM). In de laatste jaren wordt als ICT-toepassing ook on-
derzoek gedaan om ferromagnetische materialen te gebruiken voor data-
transmissie. Ferromagnetische materialen zijn tevens van essentieel belang
in elektrische vermogenstoestellen zoals transformatoren en elektrische ma-
chines en in kleinere elektrische actuatoren. In deze toepassingen wordt het
magnetisch materiaal gebruikt als circuit voor de magnetische fluxlijnen.
Ook de mechanische eigenschappen van ferromagnetische materialen wor-
den veelvuldig uitgebuit. De sterkte van ijzergebaseerde materialen wordt
gebruikt in de civiele techniek, in het transport,. . . In alle voornoemde magne-
tische én mechanische toepassingen bepaalt de microstructuur van het mate-
riaal de (macroscopische) magnetische en mechanische eigenschappen.

In het ICT toepassingsgebied hebben numerieke modellen gebaseerd op
de micromagnetische theorie een zeer belangrijke rol gespeeld in de ont-
wikkeling en verbetering van nieuwe magnetische componenten. De hier ge-
bruikte term ’micromagnetische theorie’ is enigszins misleidend aangezien de
theorie de magnetisatieprocessen beschrijft op de nanoschaal. Aangezien de
term echter in de wetenschappelijke literatuur sterk ingeburgerd is zullen
we deze verder in dit doctoraatsproefschrift gebruiken. De kleine, sub-
micrometerafmetingen vergemakkelijken de numerieke beschrijving van de
magnetisatieprocessen in het ICT-toepassingsgebied. In dit doctoraatswerk
echter breiden we het toepassingsgebied van numerieke micromagnetische
berekeningen uit van de klassieke nanometerschaal tot de nieuwe micro-
meterschaal. Op die manier kunnen micromagnetische simulaties een beter
inzicht verschaffen in de magnetische processen die de efficiëntie bepalen
van elektrisch staal, gebruikt in vermogenstoepassingen en actuatoren. Verder
kan een micromagnetische studie van de relaties tussen de microstructuur
van het materiaal enerzijds en de macroscopische magnetische eigenschap-
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pen anderzijds belangrijk zijn in de ontwikkeling van magnetische niet-des-
tructieve evaluatietechnieken voor bijvoorbeeld constructiestaal. Inderdaad,
gedurende het gebruik kan een veranderende microstructuur resulteren in een
eventueel gevaarlijke verandering in de mechanische eigenschappen (breuk).
Omdat nu ook het magnetische gedrag afhangt van de microstructuur zullen
veranderingen in de microstructuur ook veranderingen in de magnetische
eigenschappen veroorzaken. Het opvolgen van de magnetische eigenschap-
pen kan dus een vroege detectie van dreigend gevaar mogelijk maken.

Het eerste deel van deze thesis geeft een overzicht van de micromagnetis-
che theorie. Het magnetostatisch veld krijgt hier speciale aandacht omdat dit
interactieveld een zeer grote invloed heeft op de magnetisatieprocessen in fer-
romagnetische materialen. In macroscopische applicaties is ook het hystere-
sisgedrag van het ferromagnetische materiaal van groot belang. Daarom in-
troduceren we magnetische hysteresis als een natuurlijk gevolg van de ener-
giebeschouwingen in de micromagnetische theorie.

In de micromagnetische theorie beschrijft de Landau-Lifshitz-Gilbert
(LLG) vergelijking de dynamica van de lokale magnetisatie op de nanome-
terruimteschaal en de picosecondetijdsschaal. Om deze theorie toe te passen
op de micrometerruimteschaal moeten dan ook geavanceerde numerieke al-
goritmes toegepast worden. Deze technieken worden in Deel II van dit werk
voorgesteld. Vooreerst is een nieuw stap-in-de-tijdalgoritme gebruikt voor het
oplossen van de LLG vergelijking. Het stap-in-de-tijdschema is gebaseerd op
de analytische oplossing van de LLG vergelijking onder een constant inter-
actieveld. Bijgevolg behoudt deze oplossingsmethode de intrinsieke eigen-
schappen van de LLG vergelijking en maakt ze gebruik van grote stappen
in de tijd mogelijk. Dit minimaliseert het aantal benodigde evaluaties van het
interactieveld en optimaliseert het geheugengebruik. Het ontwikkelde stap-
in-de-tijd schema is uitgebreid gevalideerd door het vergelijken van resultaten
voor gesimuleerde omkeringsprocessen met resultaten bekomen met andere
micromagnetische schema’s ontwikkeld aan andere instituten.

Om de rekentijd nog verder terug te dringen werd de evaluatie van één
enkel interactieveld geoptimaliseerd. Een eindige-differentie-discretisatie is
toegepast om het interactieveld —bestaande uit het Zeeman, het magneto-
statisch, het uitwisselings-, het anisotropie- en het magneto-elastisch veld—
te bepalen doorheen het beschouwde materiaalmonster. Omdat bijna alle
rekentijd besteed wordt aan het evalueren van het magnetostatische veld
zijn twee verschillende algoritmes onderzocht om deze berekeningen te ver-
snellen. Vooreerst zijn schema’s gebaseerd op snelle Fourier transformaties
geïmplementeerd ter bepaling van het magnetostatische veld. Deze schema’s
buiten de convolutiestructuur uit, aanwezig in de uitdrukking voor het mag-
netostatische veld. Ze hebben een zeer grote tijdsefficiëntie, maar behoeven
een aanzienlijke hoeveelheid computergeheugen. Vervolgens is een numeriek
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schema gebaseerd op het snelle multipoolalgoritme bestudeerd. In dit schema
is de magnetostatische kern herschreven in termen van sferische harmonieken
zodat de analytische uitdrukking gesplitst is in een deel afkomstig van de bron
en een deel afkomstig van het observatiepunt. Ondanks de geoptimaliseerde
implementatie is dit schema ongeveer een factor vijf trager vergeleken met
het snelle Fourier transformatie gebaseerde algoritme. Het geheugengebruik
is echter een factor acht voordeliger.

De benodigde rekentijd hangt sterk af van de nauwkeurigheid waarmee
het interactieveld wordt berekend. In het bijzonder versnelt het gebruik van
een grovere ruimtediscretisatie de berekeningen enorm. In de klassieke sub-
micrometer micromagnetische toepassingen is de grootte van de ruimtedis-
cretisatie beperkt door de materiaalafhankelijke uitwisselingslengte. In dit
doctoraatswerk bepalen we het effect van het gebruik van een tot vier-
maal grovere ruimtediscretisatie wanneer macroscopische magnetische eigen-
schappen worden bestudeerd in het nieuwe toepassingsgebied met werk-
stukdimensies groter dan 1μm. In dezelfde context is ook de invloed van de
snellere, maar minder nauwkeurige evaluatie van het magnetostatische veld
bestudeerd. We concluderen dat zowel het gebruik van een grovere discreti-
satie als het gebruik van een minder nauwkeurig evaluatieschema voor het
magnetostatische veld mogelijk zijn als men niet beoogt de kleine ruimtelijke
details van de magnetisatieprocessen te ontleden.

In het derde deel wordt het ontwikkelde numerieke model gebruikt in
drie verschillende toepassingsgebieden. Eerst is een klassiek toepassings-
gebied beschouwd. De invloed van de geometrie en de temperatuur op
omklapprocessen en op de stabiliteit van micromagnetische evenwichtstoe-
standen in magnetische nanostrips is onderzocht. Omklapprocessen worden
hier gedefinieerd als de mechanismen die plaatsvinden bij het evolueren van
één bepaalde magnetische verzadigingstoestand naar een verzadigingstoe-
stand met tegengestelde magnetisatie. De simulaties tonen hoe de geome-
trie van de uiterste randen de relaxatietijd sterk beïnvloedt: een scherpe
tip alsook toegevoegde nucleatieplaatsen versnellen het omklapproces. Ook
een stijgende temperatuur geeft aanleiding tot kortere omklaptijden wegens
de groter wordende thermische fluctuaties in het materiaal. In hetzelfde
klassieke toepassingsgebied zijn de omklapmodes onderzocht in oneindig
lange ferromagnetische draden. We besloten dat, afhankelijk van de dimensies
van de dwarsdoorsnede, het omklapmechanisme evolueert van een preces-
sionele rotatiebeweging gecombineerd met een knikbeweging (<100 nm), over
een mechanisme gedomineerd door verschillende magnetische wervels (tot
500 nm) naar een omklappingsmechanisme bepaald door domeinvorming.

Een tweede toepassingsgebied waarin we het ontwikkelde micro-
magnetische schema gebruiken is de studie van magnetische domeinen in
films met loodrechte uniaxiale anisotropie. Verschillende modellen in de
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domeintheorie beschrijven hier de verwachtte domeinconfiguraties, afhanke-
lijk van de anisotropiesterkte. Deze modellen veronderstellen dat er uni-
form gemagnetiseerde regio’s aanwezig zijn in het ferromagnetische object
dat groter is dan 1μm. Het micromagnetische model is aangewend om de
domeinconfiguraties te simuleren. De vergelijking tussen de simulatieresul-
taten en de domeinconfiguraties voorspeld door de verschillende domeinthe-
oriemodellen toont dat zelfs het meest verfijnde domeintheoriemodel de
effectieve domeinstructuur slechts gedeeltelijk beschrijft. Deze vergelijking
valideert het micromagnetische model op de ruimteschaal groter dan 1μm
en bewijst zijn toegevoegde waarde in dit onderzoeksdomein.

Als laatste onderzoeksdomein, is het micromagnetische schema gebruikt
bij de studie van hysteresiseigenschappen van ferromagnetische materi-
alen. In dit deel is het ontwikkelde micromagnetische hysteresismodel
vergeleken met het klassieke, macroscopische Preisach model. Eerst zijn de
geheugeneigenschappen onderzocht. Dit zijn macroscopische eigenschap-
pen die bij constructie zijn vervat in het Preisach model en experimenteel
waargenomen worden. Omdat het micromagnetische model gebaseerd is op
de fysische interacties aanwezig in het materiaal moeten deze eigenschappen
ook inherent aanwezig zijn in het model. Dit werd aangetoond in verschil-
lende simulaties en valideert dus ook het micromagnetische hysteresismodel.
Ten tweede zijn de energiestromen in het ferromagnetische systeem geanaly-
seerd. De energie die is toegevoegd in, gedissipeerd door en opgeslagen in
het ferromagnetische materiaal is uitgesplitst in zowel het micromagnetische
hysteresismodel als in het macroscopische Preisach model. Een opmerkelijke
overeenkomst tussen beide modellen is bekomen. Meer nog, in het micro-
magnetische hysteresismodel is verder een onderscheid gemaakt tussen de
verschillende mechanismen aangewend om de energie op te slaan in het fer-
romagnetische materiaal. Dit maakte het mogelijk om de herschikking van
de interne energie te bestuderen bij het doorlopen van de hysteresislus. Deze
studie is opnieuw een validatie van het micromagnetische hysteresismodel en
toont zijn vermogen om ons inzicht in ferromagnetische hysteresisprocessen
verder te vergroten.
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In our modern society, ferromagnetic materials are used in many applications.
In information technology, they are used as the storage medium in analogue
storage devices as magnetic tapes and in digital storage devices such as mag-
netic random access memory’s (MRAMs). Furthermore, research is now ongo-
ing to use ferromagnetic materials for data transmission. Ferromagnetic ma-
terials are also indispensable in electrical power devices such as transformers
and electrical machines and in smaller electrical actuators. Here, the ferro-
magnetic material guides the magnetic flux lines. Also the mechanical prop-
erties of ferromagnetic materials are exploited ubiquitously. The strength of
iron based materials is used in construction, transportation, etc. In all these
magnetic and mechanic applications, the microstructure of the material deter-
mines the (macroscopic) magnetic and mechanical properties.

In the information technology application area, numerical models based
on the micromagnetic theory have enabled the development of the magnetic
devices. Here, the small sub-micrometer dimensions of the magnetic samples
facilitated the numerical description. The term ’micromagnetic theory’ can
be somewhat misleading since it describes magnetization processes on the
nanometer scale. We will stick however to this term since it is widely adopted
in literature. In this PhD, we extend the numerical micromagnetic applica-
tion area from the (classical) nanometer scale to the micrometer scale. In this
way, micromagnetic simulations can provide a better insight in the magnetic
processes which determine the efficiency of electrical steels used in power de-
vices and actuators. Furthermore, the micromagnetic study of the relations be-
tween the materials’ microstructure and the corresponding macroscopic mag-
netic properties is important in the development of magnetic non destructive
evaluation techniques for e.g. construction steel. Indeed, during life time, a
changing microstructure can result in a possibly dangerous change in the me-
chanical properties (failure). Since also the magnetic behavior depends on the
microstructure, changes in the microstructure will also imply changing mag-
netic properties. Hence, the monitoring of macroscopic magnetic properties
can enable the early detection of threatening failure.
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In the first part of this thesis, an overview is given of the micromagnetic
theory. Special attention is devoted to the magnetostatic field since this inter-
action field has a very large influence on the magnetization processes in soft
ferromagnetic materials. In the macroscopic applications, also the hysteresis
behavior of the ferromagnetic material is very important. Therefore, we intro-
duce magnetic hysteresis as a natural consequence of the energy considera-
tions made in the micromagnetic theory.

In the micromagnetic theory, the Landau-Lifshitz-Gilbert (LLG) equation
describes the local magnetization dynamics on the nanometer length scale and
the picosecond time scale. To employ the theory on the micrometer length
scale, highly efficient numerical techniques have to be adopted. These tech-
niques are presented in Part II of this thesis. A new time stepping algorithm is
used to time step the LLG equation. The time stepping scheme is based on the
analytical solution of the LLG equation under constant interaction fields. Con-
sequently, this solution method preserves the intrinsic properties of the LLG
equation and enables the use of large time steps. This minimizes the number
of field evaluations and optimizes the memory requirements. The developed
time stepping scheme is extensively validated by comparing simulation re-
sults of reversal processes with other micromagnetic schemes, developed at
other institutions.

To further minimize the execution time, the evaluation of one single field is
optimized. A finite difference discretization is applied to determine the effec-
tive field composed of the Zeeman, magnetostatic, exchange, anisotropy and
magnetoelastic field throughout the considered sample. Since almost all CPU
time goes to the evaluation of the magnetostatic field, two different algorithms
are investigated to accelerate the computations. First, fast Fourier transform
based schemes are used to evaluate the magnetostatic field. These schemes
exploit the convolution structure of the expression for the magnetostatic field.
They have a very high time efficiency but require considerable memory. Sec-
ond, a scheme based on the fast multipole method is studied. In this scheme,
the magnetostatic interaction kernel is rewritten in terms of spherical harmon-
ics to split the analytical expression in a source and receiver part. Despite the
optimized implementation, this scheme is about a factor 5 less time efficient,
but requires also a factor 8 less memory resources compared to the fast Fourier
transform based schemes.

The CPU time strongly depends on the accuracy used to evaluate the in-
teraction field. In particular, the use of a larger discretization size vastly accel-
erates the computations. In the classical sub-micrometer micromagnetic ap-
plications, the spatial discretization is restricted to the material dependent ex-
change length. In this PhD, we determine the effect of employing a four times
coarser discretization size when macroscopic magnetic properties are studied
in the new application area with sample dimensions larger than 1μm. In the
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same context, also the influence of the faster, low accuracy evaluation of the
magnetostatic field is studied. It is concluded that both the use of a coarser
discretization size and the use of a low accuracy evaluation scheme for the
magnetostatic field are possible if one is not interested to resolve the fine scale
details of the magnetization processes.

In the third part, the developed numerical model is applied to three differ-
ent application areas. First, a classical application area is considered. On the
one hand, the influence of geometry and temperature on the magnetic rever-
sal mechanism and stability of the micromagnetic equilibrium state is studied
in nanostrips. The simulations show how the geometry of the outer edges of
the strip has a large influence on the relaxation time: sharp tips and nucleation
pads accelerate the reversal. Also an increasing temperature speeds up the re-
versal process due to the growing thermal fluctuations present in the material.
On the other hand, reversal modes are investigated in infinite ferromagnetic
wires. It is found that, depending on the cross sectional dimensions, the rever-
sal mechanism evolves from a precessional switching movement combined
with a buckling effect for small dimensions (<100 nm) over a reversal mode
dominated by various vortices (up to 500 nm) to a reversal mechanism deter-
mined by domain formation.

A second research area to which we apply the developed micromagnetic
scheme is the study of magnetic domains in platelets with perpendicular uni-
axial anisotropy. Different domain theory models describe the expected do-
main configurations, depending on the anisotropy strength. These models are
based on the assumption that only uniformly magnetized regions exist in fer-
romagnetic samples larger than 1μm. The micromagnetic numerical scheme
is used to simulate the domain configurations. The comparison of the simu-
lation results to the domain configurations predicted by the different domain
theory models reveals that even the most refined domain theory model is only
to a limited extent capable of describing the actual domain configurations. The
comparison validates the micromagnetic model on the length scale larger than
1μm and demonstrates its added value in this research domain.

As a last research area, the micromagnetic scheme is used to study hystere-
sis properties of ferromagnetic materials. Here, the developed micromagnetic
hysteresis model is compared to the classical, macroscopic Preisach model.
First, the memory properties are considered. These are macroscopic hystere-
sis properties that are experimentally observed in all magnetic materials and
described by the Preisach model by construction. Since the micromagnetic
hysteresis model is physics based, it should incorporate the memory prop-
erties inherently. This is proven in different simulations which validates the
micromagnetic hysteresis model. Second, the energy flows in the ferromag-
netic system are studied. The energy added to, dissipated by and stored in the
ferromagnetic material is separated in the micromagnetic hysteresis scheme
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as well as in the macroscopic Preisach model. A remarkable correspondence
is found between the two models. Moreover, in the micromagnetic hysteresis
model, a distinction is made between the different mechanisms to store the
internal energy and it is shown how the internal energy is rearranged when
running through the hysteresis loop. This study again validates the developed
micromagnetic hysteresis model and shows its ability to further increase our
knowledge about the ferromagnetic hysteresis processes.
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Abbreviations

2D two dimensional
2.5D two and a half dimensional
3D three dimensional
BEM boundary element method
CPU central processing unit
FORC first order reversal curve
FFT fast Fourier transform
FFTW fastest Fourier transform of the West
FEM finite element method
FD finite difference
FMM fast multipole method
LLG Landau-Lifshitz-Gilbert
MP multipole
NDE non-destructive evaluation
PDF Preisach distribution function

Material constants

a cubic lattice constant
A stiffness constant
C fourth rank elastic constant tensor
c11, c12, c44 elastic constants in Voigt’s notation
G modulus of rigidity
K1 first order cubical anisotropy constant
K2 second order cubical anisotropy constant
Ku uniaxial anisotropy constant
lexch exchange length
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Ms saturation magnetization
α damping constant
γG gyromagnetic constant
λ100 magnetostriction constant corresponding to the < 100 > direction
λ111 magnetostriction constant corresponding to the < 111 > direction
ν Poisson’s ratio
σ conductivity

Mathematical symbols

· dot product
× cross product
∗ convolution product
∇ gradient
∇· divergence
∇× curl
ı imaginary number: ı =

√−1
f̃ Fourier transform of f
δ(r) spatial Dirac distribution
δa,b Kronecker delta: δa,b = 1 if a = b, otherwise δa,b = 0
r 3D space vector
ri 3D space vector defining the center of discretization cell i
t time
δt microscopic time step
ΔT macroscopic time step
Δ space discretization size
αi, i = 1,2,3 direction cosines of m with respect to the cubical anisotropy axes
< . > macroscopic, average quantity
ei, i = 1,2,3 or x,y,z Cartesian coordinate system
eu,ev,ew coordinate system corresponding to the cubic lattice axes
N total number of discretization cells
Ni, i = x,y,z number of discretization cells in the x, y and z direction
O(.) scaling order

Symbols in micromagnetism and electromagnetism

φG Gibbs free energy density
φa Zeeman (applied field) energy density
φani anisotropy energy density
φexch exchange energy density
φms magnetostatic energy density
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φme magnetoelastic energy density
φth thermal fluctuations energy density
Etot total energy
Ha applied field
Hani anisotropy field
Hexch exchange field
Hms magnetostatic field
Hme magnetoelastic field
Hth thermal field
Heddy eddy current field
He f f effective field
jeddy eddy current
ψms magnetostatic potential
ρms magnetostatic charge density
πms magnetostatic surface charge density
σσσ stress tensor
εεε strain tensor
Bms magnetostatic induction
Ams magnetostatic vector potential
Ems magnetostatic energy
M magnetization field
m normalized magnetization field
μ0 vacuum permeability
N demagnetizing tensor
T temperature
f frequency
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NUMERICAL STUDY OF MAGNETIC PROCESSES:

EXTENDING THE LANDAU-LIFSHITZ-GILBERT

APPROACH FROM NANOSCALE TO MICROSCALE





CHAPTER 1

General introduction

1.1. Ferromagnetic materials and their applications

In our modern society, ferromagnetic materials are used in many applications.
The magnetic properties of the material are exploited from the microscopic up
to the macroscopic scale.

In the macroscopic range, ferromagnetic materials are the basis entities of
electrical machines and transformers. Here ferromagnetic materials are used
as conductors for the magnetic field flux in magnetic circuits in the same
way as e.g. copper is used as a conductor for electrical currents in electrical
circuits. Consequently, the magnetic properties of the ferromagnetic material
have a large impact on the efficiency of electrical machines and transformers.
A large amount of research aims to gain a deeper understanding of the ferro-
magnetic materials in order to develop optimized, high performing materials
which minimize the magnetic losses in the electrical machines and transform-
ers. Here, the question arises which microscopic structure of the material en-
sures the optimal macroscopic magnetic properties for a given application and
what manufacturing techniques should be employed to obtain such a struc-
ture.

In the microscopic range, magnetic materials have since long been used
to store data. In magnetic tapes as videotapes or music tapes, the analogue
output signal (video frame, music, data, etc.) directly relates to the local mag-
netization on the tape. On a smaller scale, magnetic materials are used as the
building stones of magnetic storage devices as MRAMs (Magnetic Random
Access Memory) in computers. Here, a bit of information (0 or 1) corresponds
to a positive or negative magnetization. In the research domain of these mag-
netic storage devices, the main challenge is to make smaller devices and to
develop strategies that ensure shorter reading and writing times. Recently, a
lot of effort is devoted to the development of the so called Racetrack Memory,
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which will store the digits in magnetic nanowires. In all these applications,
there is a need for a better understanding of the magnetization dynamics on
an ever decreasing space and time scale.

Another domain where the magnetic properties of magnetic materials are
exploited are magnetic sensors which pick up variations in the magnetic field
near a test object by a change in their magnetic material properties. Also in
this research domain, there is an ongoing pursuit towards miniaturization.

The magnetic properties of (ferromagnetic) materials are also exploited in
an indirect way. In construction, transportation, utilities, etc. iron based ma-
terials are broadly used. Here, the microstructure of the material is controlled
during the fabrication of the work pieces to obtain materials with specific me-
chanical properties. Since also the magnetic properties of the material depend
on the microstructure, the constant on-line monitoring of the magnetic mate-
rial properties can indicate if the intended microscopic structure is obtained
and thus if the mechanical requirements are met. The relations between the
microscopic structure and the magnetic material properties on the one hand
and between the microscopic structure and the mechanical properties on the
other hand can also be exploited during the life time of the iron based struc-
ture. Indeed, due to cyclic loading, irradiation, etc. the microstructure of the
material can change leading to deteriorating mechanical properties which can
lead to failure. These changes in microstructure result also in changing mag-
netic material properties. Hence since magnetic experiments are rather cheap,
a good knowledge of the distinct relations between microstructure and mag-
netic material properties will not only be valuable in the continuous monitor-
ing of production processes, but will also open the way to large scale magnetic
Non-Destructive Evaluation (NDE).

1.2. Illustrations of the relation microstructure – magnetic properties

1.2.1 Influence of the manufacturing technique

The ferromagnetic cores in electrical machines and transformers typically con-
sist of stacked thin laminations fabricated out of larger electrical steel sheets
to minimize the eddy current losses (see further). The microstructure of the
electrical steel sheets is adjusted to meet the magnetic material requirements
defined during the design process of the electrical machine or transformer.
The fabrication of the laminations out of the sheet however can introduce lo-
cal changes in the materials’ microstructure. This is shown in Fig. 1.1 present-
ing the grain configuration near to the edges of work pieces before and after
punching and laser cutting it out of the steel sheet. It is clear that the punch-
ing technique elongates the grains in a direction perpendicular to the cutting
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Figure 1.1: Influence of different manufacturing techniques on the grain structure.

edge, while the laser cutting technique introduces stresses due to the nonuni-
form heating of the sample.

The variations in the microstructure introduce changes in the magnetic
properties. To demonstrate this, Fig. 1.2 shows the hysteresis loops for ring
cores with an identical shape, fabricated out of the same steel sheet using
different techniques. Here, spark erosion is a chemical technique which in-
troduces only limited changes to the original microstructure. It is clear that
the magnetic properties of the work pieces are substantially affected by the
fabrication technique and thus by the microstructure of the magnetic mate-
rial. This effect should be taken into account during the design of electrical
machines and transformers [2].

1.2.2 Fatigue damage in iron based materials

The cyclic mechanical loading of iron based materials leads to irreversible
changes in the microstructure of the material. Even when the stress ampli-
tudes remain under the yield strength, cyclic loading can deform the material
on a small length scale around inherent lattice imperfections. As the number
of loading cycles increases, the forward and backward movement of disloca-
tions (line imperfections in the iron lattice) results in a change in the dislo-
cation density, the dislocation structure and the accumulation of stresses. In
the end, micro-cracks appear in the zones with accumulated stresses leading
to fatigue fracture of the specimen. This continuous change in the microstruc-
ture of the material also results in a continuous change in the macroscopic
magnetic (hysteresis) properties. To demonstrate this, Fig. 1.3. shows hystere-
sis loops measured at different time points during a fatigue test. The slope of
the hysteresis loop decreases when approaching the failure. This is again an
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Figure 1.2: Experimental magnetic hysteresis loops measured on identical ring cores fabri-
cated out of the same electrical steel sheet using different techniques.

example where a change in the microstructure of the material results at the
one hand in a change in the mechanical properties and on the other hand in a
change of the macroscopic magnetic properties.

The above relation can be exploited to monitor the mechanical properties
of the iron based material during its life time cycle. An NDE technique based
on this effect can reveal fatigue damage at an early stage, before micro-cracks
can be observed. By evaluating the different levels of fatigue damage, using
simple magnetic measurements, it can become possible to predict the expected
life time of the specimen. In this application a thorough understanding of the
relation between the materials’ microstructure and the macroscopic magnetic
properties is required.

1.3. Numerical computation of magnetic processes

In order to obtain a clear understanding of the different relations between the
microstructure of the material and the macroscopic magnetic properties, one
has to rely on sophisticated numerical computations. Indeed, distinguishing
the different relations relying only on experiments is hardly feasible since it
is practically very difficult to prepare samples where only one microscopic
parameter is adjusted to investigate its influence on the magnetic properties.
Therefore we have developed during this PhD work a numerical algorithm
able to compute the magnetic processes based on the micromagnetic theory.

The micromagnetic theory describes the physical interactions in the mag-
netic material on a nanometer length scale and a picosecond time scale. The
theory has been successfully used in the development of the above mentioned
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Figure 1.3: Changes in magnetic hysteresis properties during cyclic loading (from [3])

storage entities and more generally in the research for ultra fast digital mag-
netic components. This is the classical research domain where micromagnetic
computations are used. Various topics are studied: the stability of magnetiza-
tion states, reversal mechanisms between states representing a digital 1 and
a digital 0 in diverse geometries, oscillating magnetic processes, domain wall
displacements in nanowires, etc. Since the dimensions of the investigated en-
tities are relatively small and the time frame which is simulated in most cases
corresponds to the one of the fast magnetization processes, the numerical
problems remain limited. Furthermore, most of these simulations deal with
samples which have an ideal microstructure (no lattice imperfections, bound-
ary effects, etc.) and have well defined material parameters.

The micromagnetic theory is a general physics based theory able to de-
scribe the magnetization processes in any magnetic material. Consequently,
it is also applicable to ferromagnetic materials as electrical steels. Indeed, the
same interactions are present as in the magnetic digital components, only their
strength can vary depending on the microscopic material parameters. How-
ever, the numerical schemes which were successful in the classical micromag-
netic research domain can generally not be adopted to this new research do-
main of micromagnetic numerical simulations in larger ferromagnetic sam-
ples. The main reason for this is twofold. First there is the wide range in
physical length scales: the micromagnetic description itself is situated at the
nanometer length scale, which is also the length scale of material imperfec-
tions as dislocations. The dimensions of the grains present in the material on
the other hand can vary from nanometers to micrometers, while the thickness
of an electrical steel sheet ranges up to 1 mm. Second, there is a wide range
in the considered time scales. The micromagnetic processes take place on a ps
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time scale while the variations in the externally applied fields take place at the
ms time scale. To overcome these wide ranges in the time and length scales
as much as possible, sophisticated numerical techniques are required. These
techniques are developed during this PhD work.

The numerical scheme is applicable in micromagnetic research domains
starting from the classical sub-micrometer sized objects up to a scale of the
order of 10μm, which is the length scale on which magnetic domains deter-
mine the magnetization processes. The efficiency of the numerical scheme is
demonstrated and its applicability is shown in (i) the classical micromagnetic
research domain, (ii) the study of magnetic domains and (iii) the study of hys-
teresis properties of ferromagnetic materials.

1.4. Outline of the thesis

This PhD thesis is divided into three parts. The first part comprises Chapters
2 to 5 and gives an outline of the micromagnetic theory and magnetic hystere-
sis. At the end of this first part, the research challenges are summarized and
the goals of the PhD are put forward. The second part comprises Chapters 6 to
9 and focuses on the developed numerical algorithms used in the micromag-
netic scheme. In third part comprising Chapters 10 to 12, the micromagnetic
scheme is applied on different topics.

In Chapter 2, we give an overview of the micromagnetic theory. From the
minimization of the Gibbs free energy, the micromagnetic equilibrium con-
ditions are deduced. The Landau-Lifshitz-Gilbert equation is introduced to
describe dynamics in the micromagnetic theory. Further, eddy currents and
thermal fluctuations are added to the model. For this chapter, the textbook [4]
written by H. Krönmuller and M. Fähnle served as a guideline. A more de-
tailed description of the micromagnetic theory can be found in this reference
work.

In Chapter 3, the magnetostatic energy term is treated in more detail. Ex-
pressions for the magnetostatic field are deduced from Maxwell’s equation
and from the microscopic view point. It is shown how the magnetostatic en-
ergy is minimized when magnetic domains are introduced. Further, demag-
netizing factors and the influence of the magnetostatic interactions in closed
magnetic circuits are discussed.

In Chapter 4, magnetic hysteresis is outlined. Here we start with the expla-
nation of hysteresis properties in a simple bistable system as also discussed by
G. Bertotti in [5]. The hysteresis properties encountered in this simple system
are then translated to the full micromagnetic problem. In this way, it is shown
that magnetic hysteresis is inherently incorporated in the micromagnetic de-
scription.
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In Chapter 5, we summarize the challenges encountered in the micromag-
netic description of magnetization processes in micromagnetically large sam-
ples. A short overview of the international micromagnetic and hysteresis re-
search is given together with an overview of the research context at the depart-
ment of Electrical Energy, Systems and Automation and at the department of
Information Technology. This clarifies the framework where this PhD work
fits in and from this the research goal is defined.

In Chapter 6, we present the developed numerical (hysteresis) micromag-
netic scheme. The space and time discretization of the micromagnetic expres-
sions is performed. The effectiveness of the micromagnetic scheme is exten-
sively evaluated by comparing simulation results obtained with other micro-
magnetic schemes.

In Chapter 7, we comment on two magnetostatic field evaluation schemes
based on fast Fourier transforms. Their efficiency is compared and the possi-
bility of treating infinite periodic structures is discussed.

In Chapter 8, we introduce the Fast Multipole Method to evaluate the mag-
netostatic field. A thorough description of the applied techniques to speed up
the computations is given. The efficiency of the scheme is compared with the
efficiency of the fast Fourier transform based algorithms of Chapter 7. Also
here the possibility of treating infinite periodic structures is discussed.

In Chapter 9, we comment on the accuracy required for the micromagnetic
computations in the context of (hysteresis) simulations applied on micromag-
netically large samples. In particular, the optimal spatial discretization and the
influence of the low accuracy evaluation of the magnetostatic field is investi-
gated.

In Chapter 10, the developed micromagnetic scheme is applied on some
classical submicrometer sized problems. First, the magnetic stability of nanos-
trips is investigated with respect to the geometry and thermal effects. Second,
the different reversal modes in infinite periodic wires are determined, depend-
ing on the cross sectional dimensions of the wire.

In Chapter 11, the micromagnetic scheme is used to study the magnetic do-
mains in platelets with perpendicular uniaxial anisotropy. The micromagnetic
simulations are compared to the predictions made within the domain theory.

In Chapter 12, hysteresis properties are examined. First, it is shown that the
memory properties are inherently present in the micromagnetic scheme. Sec-
ond, the instantaneously added, stored and dissipated energy is determined
when running through the hysteresis loop and comparison is made with the
energy description in the (macroscopic) Preisach description of the magnetic
hysteresis.

Finally, in Chapter 13, we present the general conclusions and propose sug-
gestions for further research.
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PART I
MICROMAGNETIC THEORY

AND HYSTERESIS





CHAPTER 2

Micromagnetic theory

2.1. Magnetic moments and historical context

In this section we outline the origin of the magnetic properties of iron based
materials. The structure of ferromagnetic materials is discussed and the quan-
tum mechanical origin of the atomistic magnetic moments is briefly described.
Furthermore, the different historical steps in the foundation of the micromag-
netic theory are described, starting from the experiments that observed do-
main structures in ferromagnetic materials.

2.1.1 Origin of the magnetic moment in iron

Ferromagnetic materials are mainly composed of iron atoms. For tempera-
tures below 770◦C these atoms are arranged in a body centered cubic (bcc)
lattice. As shown in Fig. 2.1 a bcc unit cell contains in total 2 whole atoms: 1
central atom and 8 atoms at the corners belonging for 1/8th to the unit cell. The
size of a unit cell, expressed by the lattice constant a, is 0.286nm. The (macro-
scopic) magnetic properties of a ferromagnetic material originates from the
magnetic moments of each distinct atom in the lattice.

In order to explain the presence of the magnetic moment of the iron atom
we have to rely on quantum physics. An atom contains a nucleus and dif-
ferent electrons moving around the nucleus. Here, the nucleus as well as the
electrons have an intrinsic magnetic spin moment, denoted by mn and me re-
spectively. Furthermore, the movement of each electron contributes to a total
orbital spin magnetic moment mL. From the quantum theory, one can deduce
that the nucleus magnetic moment mn as well as the orbital magnetic moment
mL are much smaller than the electron magnetic moments me and that the
electrons have a large probability to move in different regions around the nu-
cleus. These regions, called orbitals, can contain a prescribed number of elec-
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Figure 2.1: Iron atoms placed in bcc lattice

trons and with each orbital a distinct energy state is associated: an electron
moving in the orbital has a certain amount of energy. From statistical physics
it is clear that the orbitals associated with the lowest energy states are filled.
The relativistic quantum mechanical Dirac equation explains that the electron
magnetic spins can only have two possible values: spin up and spin down.
In completely filled orbitals, the electrons appear in couples with spin up and
down, hence completely filled orbitals do not contribute to the total magnetic
moment. In iron the orbital corresponding to the highest energy state that still
contains electrons is the 3d orbital. The orbital can contain 14 electrons, but
has only 8. From the quantum mechanical analysis, on obtains that the lowest
energy state corresponds to a state where the 3d orbital contains 5 electrons
with spin up and 3 electrons with spin down. Hence, from all electrons in the
iron atom, only two contribute to the total magnetic moment of the atom. A
quantum mechanical measure for one single spin magnetic momentum is the
Bohr magneton μBohr = 9.27410−24Am2, hence following the (simplified) rea-
soning above, the amplitude of the total magnetic moment of one iron atom
is |μμμFe| = 2μBohr = 8.610−23Am2. The amplitude of the atomic magnetic mo-
ment can also be expressed as |μμμFe| = MsVatom with Ms = 1.745106 Am−1 the
spontaneous magnetization and Vatom the volume one atom occupies in the
bcc lattice, i.e. a3/2 = 1.17010−29m3 [4]. Starting from this reasoning, the am-
plitude of the atomic magnetic moment is |μμμFe| = 2.2μBohr, which is in fairly
good agreement with the above theory.

In a different, classical, view point the magnetic moment of an (iron) atom
originates from a circular movement of the electrons around the atoms’ nu-
cleus. In that way, an atom is associated with an elementary dipole in which
a negative charge −q circles around a positive charge +q. The moving neg-
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ative charge can now be seen as a current which generates a magnetic field
corresponding to the magnetic field generated by the magnetic moment of the
atom.

2.1.2 Foundation of the micromagnetic theory

Since long it is known that in general a ferromagnetic material is not homoge-
neously magnetized but various magnetization patterns can be present. The
first visualization of magnetic domains was performed by Bitter in 1903, using
the interaction between magnetic iron oxide particles and the magnetic stray
fields exerted by the domains and domain walls [6]. Some years later, Weiss
developed the molecular field theory and introduced the first ideas to explain
the existence of magnetic domains, also called Weiss domains [7]. This hy-
pothesis was confirmed by Barkhausen in 1919 who showed experimentally
that the magnetization processes in ferromagnets take place discontinuously
by so called Barkhausen jumps. In 1931, Sixtus and Tonks showed that these
Barkhausen jumps are due to the discontinuous movement of domain bound-
aries [8].

In this period, the (relativistic) quantum theory was in full development
and insight was gained in the quantum mechanical origin of the magnetic
moments and their interactions. However, it was already understood very
rapidly that this new theory would not be able to explain the magnetization
patterns predicted by Weiss and seen by Bitter. The reason for this is that
the difference between the quantum mechanical length scale and the length
scale of magnetic domains is too large, still nowadays. On the other hand, the
macroscopic theory of electromagnetism developed by Maxwell in the nine-
teenth century [9] was also unsatisfactory to explain the domain structures in
ferromagnetic materials. Indeed, in Maxwell’s equations, the material proper-
ties are described by constitutive laws using macroscopic, volume averaged
quantities as permeability and susceptibility, which disables the description
of the magnetization processes on the microscopic scale.

A new theory was needed to bridge the gap between the quantum me-
chanical description of discrete, microscopic spins on the one hand and the con-
tinuous, macroscopic Maxwell description on the other hand. The aim was to
develop a theory describing the magnetization processes in terms of continu-
ous, microscopic quantities on an intermediate scale. The theory needed to be in
accordance with the underlying quantum mechanics, but should also be able
to explain the experimental foundings as magnetic domain formation. In 1932,
Bitter describes this quest in [10] as follows

”... This indicates that we have to deal, not with an aggregate of dipoles, but
with a vector field. We may expect to derive the laws governing the behavior
of this vector field from general quantum-mechanical principles, but since the
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attempts so far made have not been entirely successful, it may be worth trying
to formulate them independently, with reference to experimental results only."

Eventually, Landau and Lifshitz founded the basis of the micromagnetic
theory in 1935 [11]. They introduced a continuum expression for the quantum
mechanical exchange energy and gave a first interpretation of domain patterns
as the magnetization configuration which minimizes the magnetostatic energy
(see further).

2.2. Micromagnetic energy terms

In the micromagnetic theory, the magnetic moments μμμi of the atoms are ho-
mogenized to a continuum vector field M(r):

M(r) =
N

∑
i=1

μμμi
dV

. (2.1)

Here dV is a volume, large enough to contain a huge number of elementary
magnetic moments μμμi, but small enough to ensure that the vector field varies
smoothly. A good length scale will be derived in Section 2.3.2. Since M(r)
varies only smoothly, the magnetization in the volume dV is considered con-
stant, with an amplitude corresponding to the amplitude of the enclosed mag-
netic moments. This leads to the proposition that the continuum field has a
fixed, material dependent amplitude Ms, but a time and space varying orien-
tation

M(r, t) = Msm(r, t). (2.2)

This is in accordance with the underlying quantum mechanic theory where
each atomistic magnetic moment also has a constant amplitude but a varying
orientation. The vector field M(r, t) is subject to different interactions present
in the ferromagnetic material. With each type of interaction an energy contri-
bution is associated. The micromagnetic theory is based on the minimization
of the magnetic Gibbs free energy present in the magnetic system. Since the
micromagnetic theory is a continuum theory positioned between the quantum
mechanical and the macroscopic, Maxwell description of magnetic materials,
the continuum theoretical expressions for the internal energy terms may be
derived either from the quantum mechanical expressions of magnetic interac-
tions or from symmetry considerations based on experimental knowledge. In
what follows, we will present the different contributing energy terms.
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2.2.1 Exchange energy

This energy contribution has its origin in the mutual interaction between the
spins S belonging to adjacent ions, known as the exchange coupling described
by Heisenberg [12]. A continuum expression will be derived by homogeniza-
tion of the quantum mechanic expression as well as from symmetry consider-
ations.

Homogenization of the quantum mechanical expression

The continuum expression for the energy term can be derived from the ho-
mogenization of the Heisenberg exchange Hamiltonian [12]

Ĥexch = −2∑
i �=j

Jij(rij)Ŝi(ri) · Ŝj(rj), (2.3)

with Jij(rij) the exchange integral between the ions with spins Si and Sj at
positions ri and rj. In principal, the hamiltonian (2.3) consists of the interac-
tions between all ions, but when the variations in spin orientation between
neighboring ions are small, it is sufficient to consider only the interactions J0
between the 6 nearest neighbors of the atom. A translation of the quantum me-
chanical operators in (2.3) to classical quantities implies replacing the spins S

by the magnetization

M = Msm =
gμBohr
Vatom

S, (2.4)

with g the Landé factor (for iron g ≈ 2 as derived above). This results in the
following expression for the exchange energy density around one atom

φexch(ri) = − 2
Vatom

V2
atom M2

s

g2μ2
Bohr

J0
nn

∑
j �=i

mi · mj. (2.5)

The summation runs only over the z nearest neighbors (nn) of the atom (the
self interaction i = j is excluded). If now only small angles φij between neigh-
boring magnetic moments are considered, as depicted in Fig. 2.2, each compo-
nent q = x,y,z of mj(rj) can be expanded in a Taylor series around the corre-
sponding component of mi(ri)

mq,j(rj) = mq,i(ri) + rij · ∇mq,j(rj) +
1
2
(rij · ∇)2mq,j(rj). (2.6)

When the summations over the ν nearest neighbors are elaborated, terms

as rij · ∇mq,j(rj) and cross terms of 1
2 (rij · ∇)2mq,j(rj) as ∑ xijyij

∂2mn,i
∂xij∂yij

cancel
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Si Sj

rij

φij

Figure 2.2: Two adjacent spins and their coordinates

out due to symmetry. This reduces the summation in (2.5) to

nn

∑
j �=i

mi · mj = ν +
1
2

3

∑
q=1

mq,i

[
∂2mq,i

∂x2
ij

nn

∑
j �=i

x2
ij +

∂2mq,i

∂y2
ij

nn

∑
j �=i

y2
ij +

∂2mq,i

∂z2
ij

nn

∑
j �=i

z2
ij

]
. (2.7)

Since in a cubic lattice

nn

∑
j �=i

x2
ij =

nn

∑
j �=i

y2
ij =

nn

∑
j �=i

z2
ij =

1
3

nn

∑
j �=i

r2
ij (2.8)

expression (2.7) reduces to

nn

∑
j �=i

mi · mj = ν +
1
6

nn

∑
j �=i

r2
ijmi · ∇2mi. (2.9)

Using the vector identity

∇2(u · u) = 2
[
(∇u1)2 + (∇u2)2 + (∇u3)2

]
+ 2(u · ∇2u) = 0, (2.10)

φexch can be written as

φexch(ri) = −2
Vatom M2

s

g2μ2
Bohr

J0

[
ν − 1

6

nn

∑
j �=i

r2
ij

3

∑
q=1

(∇mi,q)2

]
. (2.11)

The first term describes the exchange energy of a homogeneously magnetized
material. This constant term can be omitted since the (potential) energy of a
system is always determined apart from a constant. Further, in a cubic lattice
it holds that

nn

∑
j �=i

r2
ij = 6a2, (2.12)
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leading to

φexch(ri) = 2
Vatom M2

s

g2μ2
Bohr

J0a2
3

∑
q=1

(∇mi,q)2. (2.13)

When the exchange stiffness A is introduced to incorporate all the mate-
rial constants, a continuum expression for the quantum mechanical exchange
Hamiltonian (2.3) is derived as

φexch(r) = A
3

∑
q=1

(∇mq(r))2. (2.14)

For iron, J0 and thus A is a positive constant, implying that the exchange en-
ergy in a ferromagnetic material is minimal when the magnetization is paral-
lel.

Derivation from symmetrical considerations

The macroscopic construction of the exchange energy term starts from the ob-
servation that on a small length scale parallel magnetization configurations
are favored. Hence, φexch should be proportional with the variation of the mag-
netization. Expressions as ∇ · m and ∇× m are insufficient since they would
lead to a vanishing exchange energy in the case of zero divergence or zero
curl respectively. An expression ∇m results in a second order tensor while we
aim for a scalar quantity. Hence, it is natural to come to an expression such as
(2.14). Indeed, this is an isotropic scalar expression which, for positive A, in-
creases for larger variations in the magnetization. In this reasoning, the actual
value of A should be derived from measurements.

Minimization of the exchange energy

A virtual ferromagnetic material, only subject to exchange interactions will be
uniformly magnetized. Indeed, for a uniform magnetization ∇mq is zero for
all q = 1 . . . 3 and the exchange energy (2.14) is zero.

2.2.2 Anisotropy energy

The anisotropy energy results from the interactions between the magnetic
moments and the materials’ lattice axes. The quantum mechanical origin of
the magnetocrystalline anisotropy is based on the coupling between spin mo-
ments and the electronic orbital moments (L–S-coupling) at the one hand and
the coupling between the spin moment and the anisotropic crystal field acting
on an atom on the other hand [13]. Here we will limit ourselves to a phe-
nomenological derivation based on symmetry considerations.
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Figure 2.3: a. Energy surface in the case of uniaxial anisotropy with easy magnetization axis
along the z-axis. b. Energy surface in the case of cubic anisotropy with easy magnetization
axes along the x, y and z direction.

Uniaxial anisotropy

In a first class of materials as e.g. copper, it is found that in a monocrystal,
the magnetization tends to align along a certain direction of the material lat-
tice. When the magnetization is oriented along this strong magnetocrystalline
anisotropy axis –in positive or negative sense– the anisotropy energy in the
material is minimized. From these observations, the uniaxial anisotropy en-
ergy density can be expressed by

φani = Ku,0 + Ku,1 sin2(θ) + Ku,2 sin4(θ) + . . . (2.15)

with θ the angle between the magnetization and the anisotropy axis u. The
first term is a constant and can thus be omitted. In general the third term is
negligible compared with the second term. Expressed in terms of the contin-
uum magnetization field m, φani can then be written as (Ku = Ku,1)

φani(r) = Ku{1 − [m(r) · u]2}. (2.16)

The energy surface of this energy term is shown in Fig. 2.3.

Cubical anisotropy

In a second class of materials as e.g. iron and nickel, cubical anisotropy effects
are observed. In the case of iron, it is found that in a monocrystal the ma-
terial saturates preferably along < 100 > lattice directions. Larger fields are
required to saturate the sample along < 110 > directions and < 111 > direc-
tions, see Fig. 2.4.a. The easy magnetization directions < 100 > correspond to
orientations along the edges of the lattice basis cell, while the medium and
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hard magnetization directions (< 110 > and < 111 >) correspond to orienta-
tions along the plane and space diagonals of the lattice basis cell respectively,
as shown in Fig. 2.4.b.

The easy < 100 > directions are orthogonal and can thus be associated
with a coordinate system (u1u2u3). Whenever the angle between the mag-
netization and one of these three axes is zero, the anisotropy energy density
φani should be minimal. Hence it is obvious to describe φani in terms of the
direction cosines

αi(r) = m(r) · ui i = 1 . . . 3. (2.17)

The cubical anisotropy energy should be equal for an angle which is enclosed
with the positive or negative direction of the axis ui, thus φani ∝ α2

i . Further
the wanted expression should stay unchanged due to an interchange of the
indices i. Based on these symmetry consideration, a possible expression is thus

φani(r) = K0(α2
1(r) + α2

2(r) + α2
3(r)). (2.18)

Since α2
1 + α2

2 + α2
3 = 1 this results in a constant energy contribution. Higher

order terms give rise to angle dependencies.

φani(r) = K1

[
α2

1(r)α2
2(r) + α2

2(r)α2
3(r) + α2

1(r)α2
3(r)

]
+ K2

[
α2

1(r)α2
2(r)α2

3(r)
]

.
(2.19)

The energy surface corresponding to the second order term is shown in Fig.
2.3.b.

Polycrystalline materials

Polycrystalline ferromagnetic materials contain many grains. In each grain,
a local (u1u2u3) coordinate system which coincides with the easy magneti-
zation directions can be defined. In these materials, the anisotropy energy is
minimized when in each grain the magnetization is aligned with one of the
< 100 > directions. Hence, when only the anisotropy energy is taken into ac-
count, the material is only uniformly magnetized in the grains and changes in
the magnetization appear on the grain boundaries. Similar conclusions can be
drawn for polycrystalline uniaxial materials.

2.2.3 Magnetoelastic energy

Magnetoelastic effects find their origin in the displacement of atoms in the ma-
terial lattice and the resulting deformations of the electron clouds surrounding
the atoms. Macroscopically, it is observed that the dimensions of a ferromag-
netic sample change when a time varying external magnetic field is applied.
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(a) (b)

Figure 2.4: a. Magnetization curves for a single iron crystal for different crystallographic
axes orientations (From [14], original data from [15]). b. Easy, medium and hard magneti-
zation axes in iron.

Conversely, it is also observed that the magnetization configurations change
when a time varying external mechanic stress is applied. Hence it is clear that
the magnetic processes in the material are coupled with the elastic processes,
giving rise to a magnetoelastic energy contribution φme.

Continuum mechanics of solids [16]

In accordance with the homogenization of the distinct magnetic moments to
the continuum vector field m(r, t), the distinct displacements of lattice atoms
are homogenized to a continuum displacement field s(r, t) from which the
strain tensor field εεε(r, t) is derived as

εεε(r, t) =
1
2

[∇s(r, t) + s(r, t)∇] . (2.20)

Here, the divergence operator in the second term acts on the right hand side
of s(r, t) resulting in a symmetrical tensor εεε(r, t) that describes displacements,
without rotations. This first assumption is applicable for ferromagnetic ma-
terials. The continuum stress tensor field σσσ(r, t) is derived from εεε(r, t) by
Hooke’s law

σσσ(r, t) = C · ·εεε(r, t). (2.21)

Here, C is a fourth rank tensor composed of the elastic constants of the given
material and ’··’ is the double inner product. In general C contains 81 tensor
elements. However, the symmetry of the material lattice is reflected in the
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Figure 2.5: Structure of an edge dislocation and it characteristic stress distribution intro-
duced in the lattice.

symmetry properties of the tensor elements, reducing the number of different
non-zero elements considerably.

Strains in ferromagnetic materials

The elastic description of the ferromagnetic material starts with the proper
definition of the total strain tensor εεεtot(r, t). In what follows we will omit the
place and time dependencies (r, t) for clarity. Different contributions can be
distinguished.

εεεtot = εεεext + εεεde f + εεεsp + εεεel (2.22)

The first term εεεext corresponds to the strain due to externally applied
forces, while the second term εεεde f corresponds to the internal strain due to
imperfections in the material lattice. Indeed, imperfections in the lattice are
accompanied by small displacements of the atoms and, according to expres-
sion (2.20), with strains and thus stresses. Since each imperfection has a differ-
ent local atom structure, each imperfection introduces a characteristic strain
and stress distribution in the material. As an example, Fig. 2.5 shows an edge
dislocation and the regions with compression and tension surrounding the
imperfection. Both strain εεεext and εεεde f terms can be determined using purely
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mechanical computations [17].

∇ · σσσext + fext = 0

∇ · σσσde f + fde f = 0 (2.23)

n · σσσext|sur f ace = Fext.

Here, fext denotes the external volume forces, while fde f stands for the inter-
nal volume forces due to the lattice imperfections and Fext corresponds to the
external surface forces.

The magnetostrictive terms εεεsp and εεεel depend on the elastic material prop-
erties as well on the local magnetization. The term εεεsp is related with the spon-
taneous magnetostriction due to spin ordering. In the case of a cubic lattice,
εεεsp is given by

εεεsp =

⎡⎣ 3
2 λ100(α2

1 − 1
3 ) λ111α1α2 λ111α1α3

λ111α1α2
3
2 λ100(α2

2 − 1
3 ) λ111α2α3

λ111α1α3 λ111α2α3
3
2 λ100(α2

3 − 1
3 )

⎤⎦ . (2.24)

Here, λ100 and λ111 are the magnetostriction constants corresponding to the
< 100 > and the < 111 > directions respectively. The spontaneous magne-
tostriction (2.24) is directly depending on the local magnetization in terms of
the direction cosines αi (2.17).

The elastic strain tensor εεεel is closely related with εεεsp. Indeed, the total
strain tensor due to magnetostriction εεεsp + εεεel has to meet the compatibility
requirement

∇× [∇× (εεεsp + εεεel)
]T = 0. (2.25)

This condition describes the fact that the deformations in the material should
be compatible with each other, meaning that no holes may arise in the material
due to non-continuous displacements in adjacent regions. Hence, the magne-
tization field m determines the elastic strain εεεel indirectly since εεεsp + εεεel has
to meet the compatibility condition (2.25).

One should keep in mind that in all expressions, the properties are space
and time dependent. Hence, if one wants to introduce the magnetoelas-
tic interactions in the micromagnetic simulations, changing external stresses
and/or a changing microscopic structure of the material results in a reevalua-
tion of the mechanical problem (2.23), while a changing magnetization results
in a reevaluation of the compatibility condition (2.25).
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Magnetoelastic energy density

The magnetoelastic energy density is given by

φme = −1
2

εεεtot · ·C · ·εεεtot. (2.26)

Introducing the expression (2.22) yields

φme = − 1
2

εεεext · ·C · ·εεεext − 1
2

εεεde f · ·C · ·εεεde f

− 1
2

εεεsp · ·C · ·εεεsp − 1
2

εεεel · ·C · ·εεεel

− εεεext · ·C · ·εεεde f − εεεext · ·C · ·εεεsp − εεεext · ·C · ·εεεel

− εεεde f · ·C · ·εεεsp − εεεde f · ·C · ·εεεel − εεεsp · ·C · ·εεεel

(2.27)

In our perspective, only the energy terms interacting with the magnetiza-
tion field m are of interest. The other describe only purely mechanical energy
contributions in the system. Moreover, based on the compatibility condition
(2.25), it is shown in [4] that the following is valid:

εεεsp · ·εεεel = −εεεel · ·εεεel . (2.28)

Hence, the expression for the magnetoelastic energy density (2.27) reduces to

φme = − 1
2

εεεsp · ·C · ·εεεsp

+
1
2

εεεel · ·C · ·εεεel

− (σσσext + σσσde f ) · ·(εεεsp + εεεel).

(2.29)

The three different terms can be interpreted as follows:

• The first term only depends on the spontaneous magnetostrictive strains.
In the case of ferromagnetic materials this term can be elaborated as

φme,1 =
[

9
4
(c11 − c12)λ2

100 −
9
2

c44λ2
111

]
(α2

1α2
2 + α2

2α2
3 + α2

1α2
3), (2.30)

with c11, c12 and c44 elastic constants in Voigt’s notation [1]. Since this en-
ergy contribution has the same form as (2.19), this term is a magnetostric-
tive contribution to the cubic anisotropy energy density. However, in iron
this contribution is negligible since the coefficient between squared brack-
ets in (2.30) is about thousand times smaller than K1.

• The second term is the self energy density of the elastic magnetostrictive
strains.
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• The third term is the magnetoelastic coupling which takes into account the
influence of the external applied stresses and the stresses due to defects
present in the material.

2.2.4 Zeeman energy

The Zeeman energy density φa results from the interaction between the mag-
netic material and the external applied field Ha. From a quantum mechanical
as well as from a macroscopic (experimental) point of view it is known that
magnetic moments align parallel to an external field. In the continuum ap-
proach, this results in

φa(r) = −μ0Msm(r) · Ha. (2.31)

From this energy term it is clear that a hypothetical ferromagnetic material,
only subject to the Zeeman interaction, aligns uniformly with the applied field
Ha.

2.2.5 Magnetostatic energy

The origin of the magnetostatic energy density φms is found in the magneto-
static field Hms generated by the ferromagnetic body itself. From the quantum
mechanic theory it is known that each magnetic moment generates a magnetic
field. Summing the fields, generated by all the magnetic moments in the fer-
romagnetic sample, results in the magnetostatic field. A macroscopic descrip-
tion of Hms and the resulting energy density φms starts with the static Maxwell
equations. The magnetostatic energy density is given by

φms(r) = −1
2

μ0Msm(r) · Hms(r). (2.32)

This expression is analogous with (2.31) except for the factor 1/2. This can be
understood as follows. Consider two magnetic dipoles mi and mj, generat-

ing magnetostatic fields Hi
ms(r) and H

j
ms(r) respectively. The energy related

with the magnetic dipole mi placed in the magnetostatic field generated by
the magnetic dipole mj is

φi
ms = −μ0Msmi · H

j
ms(ri). (2.33)

Vice versa, the energy related with the magnetic dipole mj placed in the mag-
netostatic field generated by the magnetic dipole mi is

φ
j
ms = −μ0Msmj · Hi

ms(rj). (2.34)
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Both expressions describe the same interaction and thus have an identical
value. Hence, the factor 1/2 makes sure the energy between two dipoles is
only counted once.

The magnetostatic interactions have a very large influence on the magneti-
zation processes in ferromagnetic materials. Therefore, a separate comprehen-
sive outline on this interaction term is given in Chapter 3.

2.3. Minimization of the Gibbs free energy

In the previous section, the different micromagnetic energy terms that con-
tribute to the total Gibbs free energy density φG are derived

φG = φexch + φani + φme + φa + φms. (2.35)

In this section a micromagnetic equilibrium condition will be derived corre-
sponding to a minimal total Gibbs free energy.

2.3.1 Variational description

Since the amplitude of the considered vector field m(r, t) is constant, only the
orientation in each space point can vary in order to minimize φG at a given
time point t. Hence, in the minimization process, the constraint

3

∑
i=1

m2
i (r, t) = 1 ∀r, t (2.36)

has to be met. In what follows the space and time dependency will be omitted
for clarity. This leads to the variational problem

δφG = δ
∫

V

[
φexch + φani + φme + φa + φms + λ

(
3

∑
i=1

m2
i − 1

)]
dr

=
∫

V

(
δφexch + δφani + δφme + δφa + δφms + 2λ

3

∑
i=1

miδmi

)
dr

= 0.

(2.37)

Here, λ is the Langrange parameter and V is the volume of the magnetic ma-
terial. Expression (2.37) leads to a set of coupled differential equations. Now,
the different variations in (2.37) will be considered separately.
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• The variation of φexch yields

∫
V

δφexch dr =
∫

V
δ

(
A

3

∑
i=1

(∇mi)2

)
dr

=
∫

V
2A

3

∑
i=1

(∇mi)δ(∇mi)dr,

(2.38)

with V the volume of the ferromagnetic sample. Now, it holds that

(∇mi)δ(∇mi) = (∇mi)∇δmi

= ∇ · (∇miδmi) −∇2miδmi.
(2.39)

Applying Gauss’ theorem, the first term can be transformed to a surface
integral over the surface of the considered volume V when introduced in
(2.38)

∫
V

δφexch dr = 2A
3

∑
i=1

∫
∂V

∇miδmi · ndS − 2A
3

∑
i=1

∫
V
∇2miδmi dr. (2.40)

• For the variation of φani and φme we restrict ourselves to

∫
V

δφani dr =
3

∑
i=1

∫
V

∂φani
∂mi

δmi dr (2.41)

and ∫
V

δφme dr =
3

∑
i=1

∫
V

∂φme

∂mi
δmi dr. (2.42)

• The variation of φa yields∫
V

δφa dr = −μ0Ms

∫
V

Ha · δmdr

= −μ0Ms

3

∑
i=1

∫
V

Ha,iδmi dr.
(2.43)

• The variation of φms results in∫
V

δφms dr = −1
2

μ0Ms

∫
V

δ(Hms · m)dr

= −1
2

μ0Ms

∫
V
(δHms · m + Hms · δm)dr.

(2.44)
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Indeed, here also Hms depends on m. Due to the reciprocity theorem [5] it
holds that ∫

V
δHms · mdr =

∫
V

Hms · δmdr. (2.45)

Hence, this variation reduces to

∫
V

δφms dr = −μ0Ms

3

∑
i=1

∫
V

Hms,iδmi dr. (2.46)

Inserting the above results in (2.37) yields

δφG =
∫

V

3

∑
i=1

(
−2A∇2mi +

∂φani
∂mi

+
∂φme

∂mi
− μ0MsHa,i

− μ0Ms Hms,i + 2λmi

)
δmi dr

+ 2A
∫

∂V

3

∑
i=1

∇miδmi · ndS.

(2.47)

This variation is zero if the integrand of the volume and surface integrals for
all δmi are separately zero. Hence, in every volume point of the considered
ferromagnetic body the following three conditions should be fulfilled

−2A∇2mi +
∂φani
∂mi

+
∂φme

∂mi
− μ0MsHa,i − μ0Ms Hms,i + 2λmi = 0

(i = 1,2,3)
(2.48)

and for each surface point the following three equilibrium conditions have to
be met

n · ∇mi = 0 (i = 1,2,3). (2.49)

Expression (2.49) represents a Neumann boundary condition for every com-
ponent of the magnetization field. It states that the derivative of the magneti-
zation in the direction of the surface normal n at the boundary vanishes so it
has only a tangential component.

The volume equilibrium condition (2.48) still contains the unknown La-
grange parameter λ. This parameter can be eliminated by first multiplying
expression (2.48) for mi with mj and vice versa and then subtracting the re-
sults. This yields

He f f ,i Msmj − He f f ,j Msmi = 0 (2.50)

with

He f f ,i =
2A

μ0Ms
∇2mi − 1

μ0Ms

∂φani
∂mi

− 1
μ0Ms

∂φme

∂mi
+ Ha,i + Hms,i. (2.51)
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The three volume conditions corresponding to expression (2.50) can be sum-
marized in

M × He f f = 0. (2.52)

These minimum energy conditions are known as Brown’s equations. It turns
out that the minimal Gibbs free energy states are magnetic configurations
where in each point of the material the micromagnetic condition of a vanish-
ing magnetic torque N = μ0M×He f f is met. Here, the effective field He f f (r, t)
is defined as a continuum vector field that varies on the same time and length
scale as m(r, t) and accounts for all micromagnetic interactions in the mate-
rial. From this it is clear that the magnetic equilibrium configurations can be
determined by solving (2.52) and (2.49) together, for every volume point and
for each surface point of the material respectively. This corresponds to solving
a system of coupled equations represented by a rather complicated nonlinear
integrodifferential equation, since Hms and εεεsp, depend both on m by means
of integral expressions. Due to the complexity of the micromagnetic system, a
large number of local minima that meet conditions (2.52) and (2.49) can exist.

2.3.2 Effective field terms

In the previous Section, the effective field He f f (r, t) has arisen from the mi-
cromagnetic theory as the continuum vector field which accounts for all in-
teractions that determine the behavior of the magnetization field m(r, t). The
different micromagnetic interactions have an associated term contributing to
He f f (r, t)

He f f (r, t) = Hexch(r, t) + Hani(r, t) + Hme(r, t) + Ha(t) + Hms(r, t). (2.53)

The external applied field Ha is considered to be uniform in space and is the
only term which is not depending on m(r, t). The magnetostatic field contri-
bution Hms is described in detail in Chapter 3. In what follows we will again
omit the (r, t) dependency.

The exchange field can thus be defined as

Hexch =
2A

μ0Ms
∇2miei. (2.54)

Here, and in what follows, the Einstein summation convention is used: when
indices appear twice, summation is made. The anisotropy field is defined as

Hani = − 1
μ0Ms

∂φani
∂mi

ei. (2.55)
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The magnetoelastic field is defined as

Hme = − 1
μ0Ms

∂φme

∂mi
ei. (2.56)

Micromagnetic length scale

In the introduction of Section 2.2, the magnetic continuum field m(r, t) was
said to be defined on a length scale that is large enough to contain a huge num-
ber of atoms, but small enough to ensure that the vector field varies smoothly.
A characteristic length scale can be derived based on the exchange field (2.54).
Indeed, the exchange interaction strongly disfavors variations on very small
length scales. Hence, variations of the magnetization can only start to occur
on a certain, material dependent length scale denoted by the exchange length,
given by

lexch =

√
2A

μ0M2
s
. (2.57)

In the case of pure iron lexch = 2.8nm [5].

Soft and hard magnetic materials

Another interesting characteristic value is the dimensionless parameter (here
for cubic anisotropy)

κ =
Hani
Ms

=
2K1

μ0M2
s
. (2.58)

This ratio gives a natural measure of the relative strength of anisotropy and
magnetostatic effects. Magnetostatic effects dominate in soft magnetic materi-
als, for which κ << 1. Anisotropy effects dominate in hard magnetic materials,
where κ ≥ 1. For pure iron κ = 0.026 [5].

2.4. Dynamics in micromagnetism

Given a constant external applied field Ha, the geometry and the material pa-
rameters of a given sample, Brown’s equations (2.49) and (2.52) provide us the
complete set of local energy minima. When in equilibrium, the ferromagnetic
system is in a state corresponding to one of these minima. If we now switch
Ha to another value, the energy landscape changes: some energy minima dis-
appear, while other are created. It is clear that the new equilibrium state of
the magnetic system will depend on the magnetization history, i.e. the former
equilibrium state. The Landau-Lifshitz equation not only tells us to which new
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minimum energy point the system evolves, but also which trajectory the sys-
tem follows between the two equilibrium states.

2.4.1 Landau-Lifshitz-Gilbert equation

The description of the temporal behavior of m(r, t) starts in the quantum the-
ory. Let us consider an elementary magnetic moment μμμi that also caries a cor-
responding angular momentum Ji. From quantum mechanics it is known that
the two are directly proportional to each other μμμi = γJi. Since in iron Ji comes
from electron spins, γ equals qe/me, i.e. the charge of the electron divided by
its mass. In a classical description, the rate of change of the angular moment
is given by the torque N exerted on the magnetic moment

∂Ji
∂t

= μ0mi × H (2.59)

which yields
∂mi
∂t

= γGmi × H (2.60)

with γG = μ0γ. Translated to the continuum micromagnetic description (and
omitting the (r, t) dependency) this results in

∂m

∂t
= γGm × He f f . (2.61)

This expression is in accordance with the equations of Brown: when the sys-
tem is in equilibrium, the magnetization does not vary in time. However,
when the system is not in equilibrium, expression (2.61) describes in every
space point a precessional movement of the magnetization field m around the
local effective field He f f and thereby never reaching equilibrium. A second
term has to be added to (2.61) in order to make an evolution of m towards
He f f possible. Gilbert [18] proposed the following expression

∂m

∂t
= γGm × He f f − αGm × ∂m

∂t
, (2.62)

with αG the Gilbert damping constant. From Fig. 2.6 it is clear that the extra
term results in a damped precession movement of the magnetization field m

around He f f .
Landau and Lifshitz proposed another expression which describes the

same phenomenon [11]

∂m

∂t
= γLm ×

(
He f f − αLm × He f f

)
, (2.63)
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m × ∂m
∂t

∂m
∂t m

He f f

Figure 2.6: Damped precessional movement of the magnetization field m(r, t) around
He f f (r, t).

known as the Landau-Lifshitz equation. This expression is equivalent with the
Gilbert equation. This is proven by making the vector product of m with the
left and right hand side of (2.63) and using m × (m × (m × He f f )) = −m ×
He f f

m × ∂m

∂t
= γLm × (m × He f f ) + γLαLm × He f f

=
1

αL

(
γLm × He f f − ∂m

∂t

)
+ γLαLm × He f f

(2.64)

A rearrangement of the different terms results in

∂m

∂t
= γL(1 + α2

L)m × He f f − αLm × ∂m

∂t
(2.65)

This is equivalent with the Gilbert equation (2.62) with

γL =
γG

1 + γ2
Gα2

G
=

γG

1 + α2 (2.66)

γLαL = γG
γGαG

1 + γ2
Gα2

G
= γG

α

1 + α2 . (2.67)
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The gyromagnetic constant γG is equal to −2.21105 mA−1s−1. The value of
α is comprised between 0 and 1. For α = 0 there is no damping, thus only a
precessional movement without energy dissipation. For α = 1 the damping is
large. In what follows we will use α as the parameter to describe the damping,
rather than αG or αL, resulting in the Landau-Lifshitz-Gilbert (LLG) equation

∂m

∂t
=

γG
1 + α2 m × He f f +

αγG
1 + α2 m ×

(
m × He f f

)
. (2.68)

2.4.2 Micromagnetic time scale

From the LLG equation we can estimate on which time scale the continuum
magnetization field m(r, t) varies. If we consider the amplitude of the ef-
fective field He f f of the order of Ms (for iron 1.72106 Am−1) the right hand
side is O(1012s−1). Combined with the fact that |m(r, t)| = 1, we can con-
clude that the orientation of the continuum magnetization field varies on a
sub-picosecond time scale. Hence, the time scale as well as the length scale
on which the micromagnetic theory describes the magnetization processes is
between the time and length scales encountered in quantum mechanics on
the one hand and encountered in macroscopic magnetization processes on the
other hand.

2.4.3 Properties of the LLG equation

The LLG equation incorporates several properties required in the micromag-
netic description

• The LLG equation preserves the amplitude of the magnetization field
m(r, t).
This property is easily proven by scalar multiplying the left and right hand
side with m. This leads to

m·∂m

∂t
=

1
2

∂

∂t
|m|2

= m ·
[

γG
1 + α2 m × He f f +

αγG
1 + α2 m ×

(
m × He f f

)]
= 0.

(2.69)

• The LLG equation guarantees the continuous decrease in energy for con-
stant applied fields Ha.
This property is proven by considering the fact that

He f f = − 1
μ0Ms

∂φG
∂m

. (2.70)
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Hence it holds that
∂φG
∂t

= −μ0MsHe f f · ∂m

∂t
. (2.71)

Thus, introducing the LLG equation in (2.71), the temporal variation of the
total energy Etot =

∫
V φGdr can be written as

∂Etot

∂t
= −μ0Ms

αγG
1 + α2

∫
V

He f f · (m × (m × He f f ))dr

= −μ0Ms
αγG

1 + α2

∫
V
((m · He f f )2 − H2

e f f )dr.
(2.72)

Due to the Cauchy-Schwartz inequality the right hand side of (2.72) is neg-
ative (γG has a negative value and |m| = 1).
From equation (2.72) it is also clear that equilibrium is indeed reached
when m aligns with He f f . Indeed, in that case, the term between brack-
ets becomes zero.

• The LLG equation conserves the Gibbs free energy in the case of zero
damping.
This property was already discussed before and results directly from equa-
tion (2.72).

2.5. Eddy currents

Another time dependent process, present in ferromagnetic materials origi-
nates in Maxwell’s equations. Following Faraday’s law, changes in the mag-
netic field B result in electric fields

∇× E = −∂B

∂t
(2.73)

and thus in electrical currents

jeddy = σE (2.74)

with σ the conductivity of the material. These eddy currents introduce addi-
tional magnetic fields in the ferromagnetic material

∇ · Heddy = 0 (2.75)

∇× Heddy = jeddy. (2.76)
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After taking the curl of expression (2.76) and considering (2.75) and (2.74) one
gets

∇2Heddy = −σ∇× E

= σ
∂B

∂t
.

(2.77)

With B = μ0(M + H) this yields

∇2Heddy = σμ0

(
∂M

∂t
+

∂H

∂t

)
. (2.78)

In a full dynamical description of the magnetization processes in ferromag-
netic materials, the field Heddy has to be added to the effective field (2.53).

The above derivation started from Maxwell’s equations and thus from
macroscopic field quantities. It is interesting to see how to fit this macroscopic
description in the micromagnetic framework. Some observations can be made:
• In the micromagnetic model, the magnetization and field variations occur

on very different time scales. Ranging from the sub-picosecond time scale
on which the LLG dynamics takes place to the slow time scale on which
the applied field varies. This gives rise to eddy currents, running on very
different length scales: the fast microscopic magnetization dynamics in e.g.
domain walls gives rise to local eddy currents around the domain wall (as
e.g. described in the Pry and Bean Model [19]), while the slow macroscopic
magnetization evolution due to changes in the applied field gives rise to
eddy currents running through the whole material.

• The above Maxwell description yields the time derivative of the magnetic
field H. Now, the question arises which magnetic field has to be taken into
account. In a macroscopic view point, the applied field and magnetostatic
field suffice. In the micromagnetic viewpoint however, all field terms con-
tributing to the effective field (2.53) need to be included.

2.6. Thermal fluctuations

Up to now the influence of the temperature is neglected (T=0 K). In reality
thermal fluctuations affect the magnetization processes in the ferromagnetic
material. At zero temperature, the position and orientation of the atoms in the
material lattice are frozen at a certain state. For higher temperatures however,
the atoms start to vibrate around their equilibrium position and orientation.
Consequently, the magnetic moment of the atoms vibrate around their equi-
librium state. From an energetic point of view, the thermal fluctuations add a
small amount of energy to the atoms so they have some extra kinetic energy
to move around the equilibrium position defined by the minimum of their po-
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tential well. The higher the temperature, the more (kinetic) energy is added to
the system.

Following Brown [20] the thermal effects can be introduced in the micro-
magnetic theory by adding a fluctuating field Hth(r, t) to the effective field
(2.53). The thermal field Hth(r, t) is assumed to be a Gaussian random process
with zero mean value in each direction q = x,y,z and to be uncorrelated in
both space and time

〈Hth,q(r, t)〉 = 0, (2.79)

〈Hth,p(r, t)Hth,q(r′, t′)〉 = 2Dδpqδ(r − r′, t − t′). (2.80)

The amplitude of the thermal fluctuations is derived from the fluctuation-
dissipation theorem

D =
αkBT

|γG|μ0MsV
(2.81)

with kB the Boltzmann constant and V the volume of the particle or the dis-
cretization volume in the considered numerical algorithm. Hence, the thermal
field can be expressed as

Hth = ηηη(r, t)

√
2αkBT

|γG|μ0MsΔ3δt
(2.82)

with δt the time span or the time step used in the numerical algorithm and
ηηη(r, t) a stochastic vector whose components are Gaussian random numbers,
uncorrelated in space and time, with zero mean value and dispersion 1.

The influence of Hth on the micromagnetic energy landscape is now ex-
plained with the help of Fig. 2.7, which shows an energy function only de-
pending on one parameter X with two minima A and B. From previous sec-
tions it was clear that for T = 0K a micromagnetic equilibrium state corre-
sponds to a minimum in the total Gibbs free energy, as e.g. equilibrium point
A in Fig. 2.7. Thermal fluctuations add a stochastic energy density

φth(r, t, T) = −μ0Msm(r, t) · Hth(r, t, T) (2.83)

to the Gibbs free energy φG. For T > 0K, the statistical distributed extra ki-
netic energy makes the micromagnetic system fluctuate around the minimum
(potential) Gibbs free energy point. In Fig. 2.7, an additional thermal energy
Eth,1 makes the micromagnetic system fluctuate around the minimum Gibbs
free energy state A. From this, it is obvious that some extra amount of energy
can enable the micromagnetic system to jump across an energy barrier and
initiate the transition to another equilibrium point. In Fig. 2.7, adding thermal
fluctuations with Eth > Eth,2 will enable the system to cross the energy barrier
between the states A and B.
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X

A

B

Eth,1

Eth,2

Figure 2.7: Influence of thermal fluctuations on the micromagnetic equilibrium states.

The amplitude of the thermal fluctuations are Gaussian distributed, thus
there is always a probability that the thermal fluctuations are large enough
to jump across energy barriers. Since Hth ∝

√
T, this probability increases for

larger temperatures. Moreover, even at low or moderate temperatures, the mi-
cromagnetic system will jump across energy barriers if one waits long enough.
Indeed, due to the Gaussian nature of the thermal agitation, at some point in
time the amplitude of Hth will be large enough to cross barriers between dif-
ferent equilibrium points. After very long waiting times the micromagnetic
systems can eventually end up in the global Gibbs free energy minimum. This
process is for instance the reason for the demagnetization of magnetic tapes.

To conclude, it should be stressed that the fluctuations take place self-
consistently, not changing the total energy of the system. The thermal fluctu-
ations only initiate the transition between successive equilibrium states. The
eventual path between the equilibrium states is determined by the LLG equa-
tion. Here, the changes of energy are exclusively due to the dissipation de-
scribed by the LLG equation.



CHAPTER 3

Magnetostatic energy

In Chapter 2 the magnetostatic energy density is introduced shortly as

φms(r) = −1
2

μ0Msm(r) · Hms(r)

= −1
2

μ0M(r) · Hms(r).
(3.1)

Here, this energy term is outlined in more detail.

3.1. Maxwell description of the magnetostatic field

Magnetostatic fields have a very large influence on the magnetization dynam-
ics in ferromagnetic bodies. The fields originate in Maxwell’s equations in the
absence of currents

∇ · Bms(r) = 0

∇× Hms(r) = 0.
(3.2)

These equations can be written in two equivalent forms. One is based on the
magnetostatic induction Bms(r) = μ0(Hms(r) + M(r))

∇ · Bms(r) = 0
1

μ0
∇× Bms(r) = jms(r),

(3.3)

where the magnetization current jms(r) = ∇ × M(r) is introduced (ana-
logue to a static current j(r)). It is natural to chose the vectorial potential
Ams(r), with Bms(r) = ∇× Ams(r) to characterize the problem (3.3). When the
Coulomb gauge ∇ · Ams(r) = 0 is adopted, the vector potential is the solution
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of the vectorial Poisson problem

∇2Ams(r) = −μ0jms(r), (3.4)

which yields

Ams(r) =
μ0

4π

∫
Ω

∇′ × M(r′)
|r − r′| dr′

=
μ0

4π

∫
Ω
∇′ × M(r′)

|r − r′| dr′ − μ0

4π

∫
Ω
∇′
(

1
|r − r′|

)
× M(r′)dr′.

(3.5)

where ∇′ only acts on r′ and Ω denotes total space. Gauss’ theorem enables
us to rewrite the first term in this expression to a surface integral, while for the
second term it holds that ∇′ 1

r−r′ = −∇ 1
r−r′ , which leads to

Ams(r) =
μ0

4π

∮
∂Ω

n × M(r′)
|r − r′| dS +

μ0

4π

∫
Ω
∇ 1
|r − r′| × M(r′)dr′. (3.6)

Since the integrals run over total space and at infinity the magnetization is
zero, the first term is zero. The volume integral in the second term can be
restricted to the volume V of the magnetic material.

Ams(r) =
μ0

4π

∫
V
∇ 1
|r − r′| × M(r′)dr′. (3.7)

Another approach to solve (3.2) is based on the scalar magnetic field Hms

∇ · Hms(r) = ρms(r)
∇× Hms(r) = 0,

(3.8)

where the magnetic charge density ρms(r) = −∇ · M(r) is introduced (ana-
logue to the electrical charge density in the electrostatic counterpart of (3.2)).
In this case, it is natural to chose the scalar potential ψms(r), with Hms(r) =
−∇ψms(r) to characterize the problem (3.8). The scalar potential is now the
solution of the scalar Poisson problem

∇2ψms(r) = −ρms(r), (3.9)

which yields

ψms(r) =
1

4π

∫
Ω

∇′ · M(r′)
|r − r′| dr′

=
1

4π

∫
Ω
∇′ · M(r′)

|r − r′| dr′ − 1
4π

∫
Ω
∇′
(

1
|r − r′|

)
· M(r′)dr′,

(3.10)
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Again, Gauss’ theorem enables us to rewrite the first term in this expression
to a surface integral and ∇′ 1

r−r′ = −∇ 1
r−r′ , which leads to

ψms(r) =
1

4π

∮
∂Ω

M(r′)
|r − r′| · ndS +

1
4π

∫
Ω
∇ 1
|r − r′| · M(r′)dr′. (3.11)

Since the integrals run over total space and at infinity the magnetization is
zero, the first term is zero. Also here, the second integral can be restricted to
the volume V of the magnetic material.

ψms(r) =
1

4π

∫
V
∇ 1
|r − r′| · M(r′)dr′ (3.12)

The general expression for the magnetostatic field Hms originating from
a ferromagnetic volume V is now derived by taking the curl of (3.7) and di-
viding the result by μ0 or by taking the negative divergence of (3.12), which
yields

Hms(r) = − 1
4π

∫
V
∇∇ 1

|r − r′| · M(r′)dr′

= − 1
4π

∫
V

{
M(r′)
|r − r′|3 − 3

[M(r′) · (r − r′)](r − r′)
|(r − r′)|5

}
dr′.

(3.13)

3.2. Microscopic approach

A ferromagnetic material consists of a huge number of atoms with a fixed
magnetic moment. In quantum mechanics, the relativistic Dirac equation de-
scribes the origin of this magnetic moment: the microscopic currents respon-
sible for the field derive from the electronic motion inside atoms and from the
electron spin angular momentum. In a corresponding classic view the mag-
netic moment of an atom can be associated with the movement of a negative
charge −q circling around a positive charge +q with angular frequency ω.
This classical elementary dipole is shown in Fig. 3.1. In what follows we will
derive the magnetic field generated by the magnetic moments of the atoms
inside a magnetic body V.

The magnetic vector potential a(r) generated by k charges qk moving at a
speed vk is given by

a(r) =
μ0

4π ∑
k

qkvk
|r − rk| . (3.14)

Applying this formula to the elementary magnetic dipole of Fig. 3.1 and av-
eraging the result yields the magnetic vector potential of the elementary mag-
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Figure 3.1: Elementary magnetic dipole

netic dipole

ael(r) = − μ0

4π

〈
qΔv

|r − r′ − Δr′|
〉

, (3.15)

where the brackets refer to the averaging process and q > 0. Since Δr′  r− r′,
the denominator can be expanded around r − r′

ael(r) = − μ0

4π

〈
qΔv

|r − r′| − qΔv(Δr′ · ∇)
1

|r − r′|
〉

. (3.16)

Here, the first term is zero since 〈Δv〉 = 0. Taking into account that Δv = ωωω ×
Δr′ yields

ael(r) =
μ0

4π
q〈ωωω × Δr′Δr′ · ∇〉 1

|r − r′|
=

μ0

4π
qωωω × 〈Δr′Δr′〉 · ∇ 1

|r − r′| .
(3.17)

Now is

〈Δr′Δr′〉 =
R2

2

⎡⎣1 0 0
0 1 0
0 0 1

⎤⎦ (3.18)

with R the radius of the circular trajectory of the negative charge in the ele-
mentary dipole of Fig. 3.1. This results in

ael(r) =
μ0

4π
q

R2

2
ωωω ×∇ 1

|r − r′| . (3.19)

The magnetic moment of a current j can also be written as

M =
1
2

∫
Ω

r′ × j(r′)dr′ (3.20)
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where j is confined to Ω. For the case of the elementary dipole, Ω is restricted
to the circle on which the negative charge −q moves and j = −qωωω/2π, this
results in

Mel = −1
2

R.q
ωωω

2π
.2πR = −q

R2

2
ωωω. (3.21)

Introducing this expression in (3.19) gives

ael(r) = − μ0

4π
Mel ×∇ 1

|r − r′| . (3.22)

From this, the magnetic field hel(r) generated by an elementary magnetic
dipole can be written as

hel(r) =
1

μ0
∇× ael(r)

= − 1
4π

∇×
(

Mel ×∇ 1
|r − r′|

)
= − 1

4π
∇∇ 1

|r − r′| · Mel .

(3.23)

This is the field generated by one distinct atom in the ferromagnetic mate-
rial, which can be seen as a point in the considered ferromagnetic material.
Hence, the magnetic field generated by all atoms in the ferromagnetic body is
obtained by adding up all magnetic fields from each distinct atom, i.e. from
each point in the magnetic body, which is performed by an integration over
the volume of the magnetic body

H(r) = − 1
4π

∫
V
∇∇ 1

|r − r′| · M(r′)dr′

= − 1
4π

∫
V

{
M(r′)
|r − r′|3 − 3

[M(r′) · (r − r′)](r − r′)
|(r − r′)|5

}
dr′.

(3.24)

This is exactly the same result as the magnetostatic field Hms obtained from the
macroscopic Maxwell equations. Hence, we can interpret the magnetostatic
field as the field generated by all magnetic dipoles in the considered magnetic
material.

3.3. Uniformly magnetized media

Let us now consider the magnetostatic field generated by a uniformly mag-
netized finite body V. In this case, the volume integrals in the expression for
the magnetic vector potential Ams (3.5) and in the expression for the magnetic
scalar potential ψms (3.10) reduce to surface integrals. Indeed, in the material
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∇ × M(r′) = 0 and ∇ · M(r′) = 0. At the body surfaces at the contrary, the
magnetization undergoes a sudden variation because M = 0 outside the ma-
terial leading to

Ams(r) = − μ0

4π

∫
∂V

n × M(r′)
|r − r′| dS (3.25)

and

ψms(r) =
1

4π

∫
∂V

n · M(r′)
|r − r′| dS (3.26)

The quantity −n × M can now be interpreted as a magnetic surface current

kms(r) = −n × M(r), (3.27)

while the quantity n · M can be interpreted as a magnetic surface charge den-
sity πms

πms(r) = n · M(r). (3.28)

Hence Ams and ψmls are written as

Ams(r) =
μ0

4π

∫
∂V

kms(r′)
|r − r′| dr′ (3.29)

ψms(r) =
1

4π

∫
∂V

πms(r′)
|r − r′| dr′. (3.30)

Now we take a finite cylinder, uniformly magnetized along its axis as in
Fig. (3.2.a). Here, the magnetic surface current (3.27) is zero on the two bases
and constant over the shell of the cylinder. The magnetic charges on the other
hand are zero on the shell and constant (with opposite sign) on the two bases
of the cylinder. Hence (3.29) and (3.30) reduce to

Ams(r) =
μ0

4π

∫
shell

kms

|r − r′| dr′ (3.31)

ψms(r) =
1

4π

∫
top

πms

|r − r′| dr′ − 1
4π

∫
bottom

πms

|r − r′| dr′. (3.32)

From these equations it is clear that in the first approach, the uniformly mag-
netized cylinder is replaced by an equivalent surface magnetization density
kms over the shell of the cylinder, while in the second approach, the uniformly
magnetized cylinder is replaced by equivalent surface charge densities πms on
the bases of the cylinder. This is shown in Fig. 3.2.

The magnetostatic fields can thus also be computed based on the equiva-
lent magnetic currents or the magnetostatic charges. In what follows, we will
always use equivalent magnetic charges to replace uniformly magnetized re-
gions. Figure 3.3 shows the magnetostatic fields induced by the uniformly
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Figure 3.2: Uniformly magnetized cylinder (a), represented by an equivalent surface mag-
netic current density kms =−n×M (b) and by equivalent surface magnetic charge densities
πms = n · M (c).

magnetized iron cylinder of Fig. 3.2 in an axial plane. The field pattern is un-
derstood by considering the charge distributions in Fig. 3.2.c and interpret
them in their electrostatic counterpart: the magnetostatic field lines start at the
positive charges at the top face of the cylinder and arrive at negative charges
at the bottom face of the cylinder. The far field pattern of Hms created by the
cylinder is that of a dipole, while the fields in the cylinder are mainly oriented
in the opposite directions compared to the magnetization M.

In a more general case, a piecewise homogeneously magnetized sample
can be equivalently represented by different magnetic currents and magnetic
charge densities on the surfaces of the discontinuous jumps in the magneti-
zation. The charge density representing the discontinuity surface between a
region with magnetization M1 and M2 is equal to

πms = n1 · M1 + n2 · M2 (3.33)

with n1 and n2 the unit vectors normal to the discontinuity surface pointing
into the region with magnetization M1 and M2 respectively.

3.4. Magnetostatic energy

The magnetostatic energy in total space is given by

Ems =
∫

Ω
φms(r)dr

= −μ0

2

∫
Ω

Hms(r) · M(r)dr
(3.34)
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Figure 3.3: Magnetostatic field induced by the uniformly magnetized iron cylinder of Fig.
3.2 in an axial plane. The field strength is given on a logarithmic scale [Am−1], while the
direction of the field is given by the arrows.

The integral, calculated over total space Ω, can be restricted to the volume
integral over the magnetic body V since only in this volume M(r) �= 0

Ems = −μ0

2

∫
V

Hms(r) · M(r)dr. (3.35)

We can also derive an equivalent identity for the magnetostatic energy by in-
serting M = (1/μ0)Bms − Hms in (3.34)

Ems = −1
2

∫
Ω

Hms(r) · Bms(r)dr +
μ0

2

∫
Ω

H2
ms(r)dr. (3.36)
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Rewriting the first integral by introducing the scalar magnetostatic potential
Hms = −∇ψms, yields

−1
2

∫
Ω

Hms(r) · Bms(r)dr =
1
2

∫
Ω
∇ψms(r) · Bms(r)dr

=
1
2

∫
Ω
∇ · [ψms(r)Bms(r)]dr

− 1
2

∫
Ω

ψms(r)(∇ · Bms(r))dr.

(3.37)

All integrals are calculated over total space Ω. The second integral equals zero
since ∇ · Bms = 0 while the first integral can be rewritten as a surface integral
over a closed surface that is going to infinity. Because the fields ψms and Bms
are zero at infinity, the resulting surface integral is also zero. In that way, the
expression (3.36) for the total magnetostatic energy reduces to

Ems =
μ0

2

∫
Ω

H2
ms(r)dr. (3.38)

This expression shows that the minimum possible magnetostatic energy state
of a magnetic configuration is a state where Ems is zero which corresponds
to a zero magnetostatic field in each point of the material. Considering the
equivalent expression (3.35) this means that in the magnetic material Hms has
a large component opposite to M. Indeed, the integral

∫
Hms(r) · M(r)dr over

the magnetic body is negative.

3.5. Minimization of the magnetostatic energy

Equation (3.38) shows that the magnetostatic energy of a magnetic system is
minimal (i.e. zero) when the system does not generate magnetostatic fields
Hms = 0. This corresponds to a system that does not contain any magnetic
charges. Following Section 3.3 this is the case when at the surface between
two uniformly magnetized regions (magnetizations M1 and M2)

πms = n1 · M1 + n1 · M2 = 0 (3.39)

holds with ni the normal unit vector on the surface pointing in the region i
(i = 1,2). The condition πms = 0 can be met in two ways. First, both terms can
be zero individually, which occurs when Mi is perpendicular to ni leading to
180 degree domain walls as depicted in Fig. 3.4.a. Second, both terms can have
equal amplitude, but an opposite sign

πms = −
√

2
2

M +
√

2
2

M = 0 (3.40)
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Figure 3.4: (a) 180 degree domain wall (b) 90 degree domain wall.

which occurs for 90 degree domain walls as depicted in Fig. 3.4.b.

A uniformly magnetized medium as the cylinder in Fig. 3.2 generates large
magnetostatic fields (see Fig. 3.3). The sample contains a single magnetic do-
main as shown in Fig. 3.5.a. When the same sample comprises two domains,
magnetized in the opposite direction and separated by a 180 degree domain
wall the magnetostatic energy is already reduced to a great extent. In Fig. 3.5.b
the magnetic charges at the top and bottom faces induce smaller fields in the
air surrounding the sample. The magnetostatic energy can further be reduced
to zero by introducing closure domains separated from the other domains by
90 degree domain walls as depicted in Fig. 3.5.c and d. Indeed, in these con-
figurations no magnetic charges appear.

Two considerations should be made when looking at Fig. 3.5. First, discon-
tinuous magnetization jumps are assumed, corresponding to a zero domain
wall thickness. When also other energy terms are also considered, it turns
out that the magnetization changes continuously between magnetic domains,
leading to domain walls of finite width. Since in these domain walls ∇ ·M �= 0
magnetic charges are present in the domain wall. These will contribute to the
magnetostatic energy. However, the total magnetostatic energy will remain
small and thus also magnetic domain configurations containing (closure) do-
mains separated by 180 degree and 90 degree domain walls with finite thick-
ness still are preferred.
Second, the generated magnetostatic fields only depend on the geometry of
the magnetic body, but not on its actual dimensions. Figure 3.5 does not show
a length scale. A magnetic sample, double in size, will generate identical con-
figurations of magnetostatic fields. This results also from scale invariance of
the equation for Hms (3.13). The expressions within the integrandum scale
with 1/r3, while the integration itself introduces a factor proportional to r3.
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(a) (b) (c) (d)

Figure 3.5: Magnetostatic field induced in the air surrounding (a) a uniformly magnetized
sample, (b) a sample containing two magnetic domains separated by 180 degree domain
walls, (c) and (d) a sample containing (closure) domains separated by 90 and 180 degree
domain walls.

The magnetic domains in Fig. 3.5.c and d give rise to an average magneti-
zation which is zero. Let us now consider also the Zeeman energy. When an
external magnetic field Ha is applied, the magnetic configuration in the sam-
ple will change. This is shown in Fig. 3.6 for a central part of a magnetic sheet.
First, the sheet is demagnetized: the net magnetization in the sheet is zero at a
zero applied field. Now an increasing external field Ha is applied. Hence, the
average magnetization will travel along the virgin curve to saturation. Several
intermediate magnetization configurations are shown. Due to the minimiza-
tion of the Zeeman energy, the closure domains oriented in the same direction
of the external magnetic field grow as the external field increases, while the
closure domains oriented in the opposite directions diminish. This results in
a growing net magnetization in the direction of the external field Ha. At each
time point, the magnetostatic energy is kept low by ensuring the continuity
of the flux lines through the sample as shown in Fig. 3.6. However, it is ob-
vious that at the extreme ends of the sheet a growing number of magnetic
charges will appear, leading to growing magnetic fields through the sample
and a growing magnetostatic energy. Hence, to reach saturation large applied
fields are needed to overcome the created magnetostatic fields.

3.6. Demagnetizing factors

From the above sections, it is clear that the magnetostatic fields in a certain
sample strongly depend on the sample shape, but not on its actual dimensions.
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Figure 3.6: From top-left to bottom-right: domain configurations in a central part of a
magnetic sheet subjected to an increasing external magnetic field, depicted by the black
arrow.

Hence, for a uniformly magnetized sample, one can try to describe the relation
between the magnetization and the generated magnetostatic field by some
macroscopic constitutive law, only depending on dimensionless parameters
expressing the ratio between characteristic geometry lengths. From expression
(3.13) it is clear that in general, the magnetostatic field inside a magnetic body
is not constant, even when uniformly magnetized. One can prove that this
is only the case in a uniformly magnetized ellipsoidal body. In that case the
magnetostatic field can be written as

Hms = −N · M, (3.41)

with N the demagnetization tensor. When the xyz axes are chosen along the
principal axes of the ellipsoid, N reduces to a diagonal tensor⎡⎣Hms,x

Hms,y
Hms,z

⎤⎦ = −
⎡⎣Nx 0 0

0 Ny 0
0 0 Nz

⎤⎦⎡⎣Mx
My
Mz

⎤⎦ . (3.42)

The actual values of the so called demagnetizing factors Nx, Ny and Nz depend
on the mutual ratios of the length of the principle axes. The demagnetizing
factors are positive (Hms is always opposite to M) and obey the constraint

Nx + Ny + Nz = 1, (3.43)
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Figure 3.7: Magnetostatic fields in two prolate ellipsoids.

which immediately defines the demagnetizing factors of a sphere to be 1/3
because of symmetry.

For ellipsoids of revolution, two principal axes are of equal length resulting
in identical corresponding demagnetizing factors. When the z-axis is the rota-
tional symmetry axis it holds that Nx = Ny. Analytical expressions in terms of
r, the ratio of the lengths of the symmetry and traverse axes, can now be deter-
mined for Nz and thus also for Nx and Ny using (3.43). For an oblate spheroid
(a disk) one gets

Nz =
1

1 − r2

[
1 − r√

1 − r2
arcsin

(√
1 − r2

)]
r < 1, (3.44)

while for a prolate spheroid (a cigar) one gets

Nz =
1

r2 − 1

[
r√

r2 − 1
ln
(

r +
√

r2 − 1
)
− 1

]
r > 1. (3.45)

These expressions only depend on the ratio r which again demonstrates the
scale invariance of the magnetostatic field. As an example, the magnetostatic
field inside two prolate spheroids, magnetized along the rotational symme-
try axis is shown in Fig. 3.7. Since the samples are uniformly magnetized,
magnetic charges are only initiated at the body surface. Due to the ellipsoidal
shape, the magnetic charges appear in such a configuration that the magneto-
static fields generated in the material are parallel to the magnetization direc-
tion and have a constant amplitude, depending on the ratio r.

For other uniformly magnetized sample geometries, the magnetostatic
field in the sample can not be given by expression (3.41) since the Hms differs
in the sample from point to point. However, a magnetometric demagnetization
tensor N, only depending on the sample shape can be defined starting from
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the magnetostatic energy per unit volume

φms =
1
V

∫
V

1
2

Hms(r) · M(r)dr

=
1
2

M · N · M.
(3.46)

In that way the magnetometric demagnetization tensor N expresses some
sort of average magnetostatic field. For a rectangular prism, the elements of
N can be computed analytically [21]. When the xyz axes are chosen along the
principal axes of the rectangular prism, N reduces also in this case to a diag-
onal tensor. Let us consider now, analogously to the ellipsoidal geometry, a
rectangular prism with equal axes along the x- and y-direction, i.e. a square
ground plane. The magnetometric demagnetizing factor along the z axis can
then be expressed in terms of the ratio r between the edge length along the
z-axis and the edge length along the x- and y-axis (for r > 0)

πNz =
(

r − 1
r

)
ln

√
r2 + 2 + 1√
r2 + 2 − 1

+
2
r

ln(
√

2 + 1) + r ln

√
r2 + 1 + 1√
r2 + 1 − 1

+ 2arctan
(

1

r
√

r2 + 2

)
+

2(1 − r2)
3r

√
r2 + 2 +

2(1 − r3)
3r

− 23/2

3r
+

2
3

√
r2 + 1

(
2r − 1

r

)
.

(3.47)

It is clear that for a cube all magnetometric demagnetizing factors are 1/3.
Figure 3.8 shows the demagnetizing factors corresponding to the longest di-
mension versus the ratio r for ellipsoids of revolution and the magnetometric
demagnetizing factors for rectangular prisms with square cross sections. For
identical r, the magnetizing factors Nz for the rectangular prisms are always
larger then for the ellipsoids. Even for very elongated prisms, the demagne-
tizing factor is not negligible. Hence, also for very elongated prisms, the influ-
ence of the magnetostatic fields on the magnetic system is still present.

The fact that the magnetostatic field has a large component opposite to the
magnetization has lead to the term demagnetizing factors and in extension, de-
magnetizing field, which is also used to depict the magnetostatic field. Indeed,
when an external field Ha is applied to a magnetic sample in order to saturate
it, the magnetic material itself generates a demagnetizing field with a large
opposite component, diminishing the local influence of the applied field. The
(magnetometric) demagnetizing factors quantify the strength of the demag-
netizing effect. Figure 3.8 shows that the demagnetizing effect along a certain
direction diminishes when the sample gets more elongated in that direction.
This effect is also visible when the hysteresis loops (see Chapter 4) for differ-
ent sample geometries are considered. When the demagnetizing effects along
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Figure 3.8: Demagnetizing factors for ellipsoids of revolution and rectangular prisms with
square cross section versus r, the ratio between the largest and the smallest dimension.

the direction of the external applied field are small (i.e. when the sample is
elongated in the direction of the applied field), a small external field suffices
to saturate the sample. Figure 3.9 shows simulated hysteresis loops of rectan-
gular prisms where the external field is applied parallel to the longest edge of
the prism. For increasing prism heights, smaller fields have to be applied to
saturate the sample.

3.7. Closed magnetic circuits

We have seen that the magnetostatic fields are closely related with the sam-
ple geometry and have a substantial effect on the magnetic behavior. When
magnetic (hysteretic) properties are considered to characterize or study the
magnetic properties of a material, one needs to minimize the magnetostatic
influence. Indeed, when magnetic charges appear, the magnetostatic energy
contribution largely exceeds the energy contributions originating from the in-
teractions between the studied material parameters and the magnetic hystere-
sis behavior. To alleviate this problem, experiments are generally performed
on closed magnetic circuits as ring cores or rectangular frames, see Fig. 3.10.
In these configurations the flux lines are closed in the material resulting in a
charge free magnetic system, giving rise to a minimum magnetostatic energy.
The small length scale on which the micromagnetic theory is applied does not
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Figure 3.9: Hysteresis loops for cuboid samples with identical material parameters, but
different heights expressed by their aspect ratios.

allow us to use macroscopic closed circuits of this type in numerical micro-
magnetic simulations.

A special case of a closed circuit is an infinitely long ferromagnetic wire,
Fig. 3.10.c. In this case the magnetic flux lines close in the material at infinity
avoiding the generation of magnetic charges and thus the presence of long de-
magnetizing effects along the longitudinal direction. This is also expressed by
the demagnetization factors described in Section 3.6. From Fig. 3.8 it is clear
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(a) (b) (c)

Figure 3.10: Magnetic charge free configurations: (a) ring core, (b) rectangular frame, (c)
infinitely long ferromagnetic wire.

that the (magnetometric) demagnetizing factor corresponding to the longitu-
dinal direction decreases to zero for (infinitely) long geometries. The demag-
netizing effects in the cross section however do not disappear. Indeed, since
the constraint (3.43) holds, the demagnetizing factors Dx and Dy correspond-
ing to the cross section directions are non zero. Consequently, in an infinite
wire with square cross section, the magnetometric demagnetizing factors Dx
and Dy are 1/2.

When the aim is to describe the magnetization processes in the bulk of fer-
romagnetic materials, one could argue if it is possible to consider a magnetic
body, infinite in all directions. In that way, the influence of the boundaries
could disappear in all directions together with the demagnetizing effects. Un-
fortunately, this is not possible. As stated by Bertotti [5]:

”The effect of the magnetic charges does not vanish with increasing body size,
and the final result obtained in the limit of infinite size will still depend on the
body shape, that is, on the way the charges are sent to infinity."

This quote should be interpreted as follows. We have seen that the de-
magnetizing factors only depend on the sample shape, but not on its actual
dimensions. In that way the demagnetizing factors of a sphere are 1/3. When
the radius of the sphere is increased, the demagnetizing factors and thus the
demagnetizing effects stay unaltered, even when the radius is infinite. Con-
sider now a prolate ellipsoid. For this geometry, the demagnetizing factors are
different from these from the sphere mentioned before. When now the length
of the main axes is increased, the demagnetizing factors stay unaltered, also
for infinite axes lengths. Hence, the demagnetizing effects in the same infinite
ferromagnetic medium are different depending on the fact if it is obtained
from (in this example) a growing sphere or a growing ellipsoid.
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CHAPTER 4

Magnetic hysteresis

4.1. Introduction

In Chapter 2 we have seen that the evolution of the local magnetization field
m(r, t) is determined by the total Gibbs free energy resulting in a complex en-
ergy landscape with many local minima and saddle points. Due to the interac-
tion with the applied field, the energy landscape changes in time: some local
energy minima vanish while others are created. Here, the LLG equation de-
scribes the evolution of the micromagnetic system in the time varying energy
landscape. This traveling of the micromagnetic system between successive lo-
cal energy states gives rise to hysteresis effects. In this chapter hysteresis is
introduced and some general hysteretic properties are discussed. This is first
done for a simple bistable system with a maximum number of two local min-
ima and then extended to the micromagnetic problem.

4.2. Hysteresis in a bistable system

This section is to a large extent based on chapter 2 of the handbook Hystere-
sis in Magnetism, written by G. Bertotti [5]. It describes a very simple bistable
hysteretic system and gives an intuitive insight in some basic hysteretic prop-
erties. In a next section, we will extend the discussion to the micromagnetic
system and come to an understanding of the micromagnetic origin of macro-
scopic magnetic hysteresis.

4.2.1 Equilibrium states in a bistable system

Let us consider a system whose free energy is given by the expression

f (x) = x4 − 2x2, (4.1)
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Figure 4.1: Free energy of a bistable system under zero input.

where x is some dimensionless state variable. This free energy function is
shown in Fig. 4.1. It has two local minima at x = ±1 and a maximum at x = 0.
Furthermore, an external force field h acts upon the system. Hence the free
energy of the system under nonzero input h will be

g(x,h) = x4 − 2x2 − hx. (4.2)

Let us now look at the states occupied by the system for varying input h.
In general the systems’ equilibrium states are defined by the local minima:
∂g/∂x = 0 together with ∂2g/∂x2 > 0. In Fig. 4.2, the shape of the free energy
g(x,h) is shown for successive values of h. First, for h increasing from −∞,
the system occupies the only present minimum (Fig. 4.2.A). At a certain value
h = −hc a second minimum is created. At h = 0 (Fig. 4.2.B) the two minima
have the same energy and for h > 0 the newly created minimum becomes
also the global minimum. Due to its history however, the system stays in the
original (local) energy minimum. At h = hc (Fig. 4.2.C) the initially occupied
minimum vanishes and becomes an inflection point. At this point the system
evolves towards the lower minimum energy state. The energy difference be-
tween the two states is dissipated as heat. For larger inputs h > hc there is
only one minimum (Fig. 4.2.D). If the external field is now decreased, a sim-
ilar discussion applies: a second minimum is introduced at h = hc, at h = 0
(Fig. 4.2.E) both minima have the same energy and at h = −hc (Fig. 4.2.F) the
system returns to the only local minimum present in the system.
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Figure 4.2: Minimum energy states occupied by the bistable system for varying input h,
(following [5]).

In Fig. 4.3 the equilibrium values of the state variable x for which the sys-
tem is in equilibrium are plotted versus the input parameter h. Due to the
presence of the two minima, the curve is not single valued, but gives rise to
an hysteresis loop. Hysteresis is encountered in a wide range of research areas
where processes are described with some output x that is not a single val-
ued function of the input h. Hysteresis properties are for instance also seen
in economics [22], soil science [23], hydrology [24], granular processes [25],
psychology [26], etc. Although the presented bistable system is very simple,
it can show already a lot of properties present in hysteretic processes. In what
follows we will highlight some which will be important in the micromagnetic
hysteresis description of ferromagnetic materials.

4.2.2 Energy dissipation

First we take a detailed look at the surface of the hysteresis loop 4.3. Therefore,
the curve h(x) for which

∂g
∂x

(x,h) =
∂ f (x)

∂x
− h(x) = 0 (4.3)

or

h(x) =
∂ f (x)

∂x
. (4.4)
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Figure 4.3: Hysteresis loop of the bistable system. The numbers refer to the equilibrium
points of Fig. 4.2, following [5].

is plotted in Fig. 4.4. The branches for which ∂2g/∂x2 = ∂2 f /∂x2 > 0 corre-
spond to the stable equilibrium points of the considered system. Indeed, three
branches exist with ∂g/∂x = 0: two stable branches (full lines) corresponding
to the energy minima and one metastable branch (dashed line) corresponding
to the energy maximum. The dotted lines represent the jump of the system
from the inflection point to the stable energy minimum. The resulting figure
corresponds to the hysteresis loop from Fig. 4.3 with inverse axes.

The surface of the hysteresis loop can now be computed as two times the
shaded area S of Fig. 4.4

S = −
∫ x f

−xc
[h(x) − hc] dx

= −
∫ x f

−xc

[
∂ f
∂x

− hc

]
dx

= −
∫ x f

−xc

[
∂g
∂x

]
h=hc

dx

= g(−xc,hc) − g(−x f ,hc)

(4.5)

This corresponds to the energy difference between the metastable energy state
at the deflection point and the stable energy minimum. Hence, the total sur-
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Figure 4.4: Extremum points in the bistable system, given by expression (4.4), following [5].

face of the hysteresis loop is equal to the energy dissipated by the system
during one cycle of the external applied force.

Energetically, two different processes can be distinguished when running
through the hysteresis loop. In the stable hysteresis branches there is a re-
versible exchange of energy from the input field towards the system. A Δh
increase of the input field makes the minimum state gain a certain amount
of energy Δg. Since the system stays in the same minimum, an identical de-
crease in energy is encountered when the input field is diminished by a same
amount Δh, hence the same branch is covered. On the contrary, when the sys-
tem is at the deflection point of the energy curve, a small increase δh of the
input field results in an irreversible dissipation of energy between the system
and the thermal bath. Since the system has moved to an other minimum, an
identical decrease δh of the input field will not result in the exchange of the
same amount of energy. Hence, different branches are described.

4.2.3 Rate (in)dependence

In the above description no time scale is given on which the input field is
changed: the system is considered to adapt instantaneously to the input field
and occupy an energy minimum at each point in time. In this case, the time
scale on which the input field changes does not play a role. However, in the
bistable system, the time scale, to a certain extent, does play a role.
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On the one hand, the energy difference Δg between the deflection point
and the global energy minimum is dissipated as heat. Hence, some kind of re-
laxation process with a characteristic time scale takes place in the system. This
characteristic time scale depends on the considered system. Hence, the as-
sumption of the instantaneous adaption to new input fields only holds when
the time scale of the relaxation process is much smaller than the time scale on
which the input field changes.

On the other hand, the changes in the input field should be not too slow. In
most physical processes, there are some stochastic fluctuating energy contri-
butions related with the systems temperature, e.g. due to the brownian move-
ment of particles, etc. These fluctuating energy contributions enable to jump
across energy barriers towards the global energy minimum. These stochastic
fluctuations are only very small compared to the effect of the other processes
defining the system. Only when the system stays in the energy states for a
very long time, the probability of jumping across energy barriers towards the
global energy minimum becomes non negligible. Hence for very slow varying
input fields, no hysteresis is expected since the system always relaxes to the
global energy minimum.

To conclude it is clear that over a very large time scale, the hysteretic sys-
tem is rate independent. The shape of the hysteresis loop does not change as
long as the input field varies fast enough to ensure that thermal energy fluctu-
ations cannot influence the system and slow enough to ensure that the system
can always relax to the local minimum.

4.3. Hysteresis in the micromagnetic system

From the energetic description of the simple bistable model it is clear that
hysteresis effects will also be encountered in the micromagnetic system. In-
deed, the micromagnetic system evolves also from one energy minimum to
the other in the total Gibbs free energy landscape. In the micromagnetic model
the input field is the external applied magnetic field Ha and the state vari-
able magnetization field m(r, t). In what follows we will consider only uni-
directional applied fields and the resulting average magnetization along the
same axis ea. This leads to scalar hysteresis loops representing the relation
< M >=< M > ·ea and Ha = Ha · ea.

4.3.1 (Ir)reversibility and branching

Analogous to the bistable model, the average magnetization < M > depends
on the local minima in the Gibbs free energy occupied by the system. How-
ever, due to the complexity of the micromagnetic energy landscape various
local minima exist. The minima in the total Gibbs free energy change due to
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Figure 4.5: Magnetic hysteresis loop, enlarged are the Barkhausen jumps corresponding to
irreversible magnetization processes.

variations of the applied field. When the applied field is varied from large,
positive values to large negative values and vice versa, this results in a hys-
teresis loop, shown in Fig. 4.5.

In the ferromagnetic material, changes in the average magnetization now
result from two different mechanisms. First, there are reversible changes in the
magnetization. Here, the micromagnetic system stays in the same local en-
ergy minimum, but due to the variation of the applied field, the position of
the minimum changes. This gives rise to continuous changes in magnetiza-
tion. In general, close to saturation, the changes in magnetization are mainly
reversible in nature, see Fig. 4.5. When saturated, the material is in the global
energy minimum. When the applied field diminishes, the minimum rises con-
tinuously and vice versa. This gives rise to identical magnetization paths for
increasing and decreasing applied field values as can be seen in Fig. 4.6: the
magnetization curves a − b and b − c almost coincide.

Second, there are irreversible changes in the magnetization. Away from
saturation, the changes in magnetization are dominated by irreversible pro-
cesses. Here, local energy minima occupied by the micromagnetic system van-
ish successively and the system evolves again and again to new local energy
minima, dissipating the energy differences as heat. This gives rise to discontin-
uous changes in the magnetization as shown in the enlarged view in Fig. 4.5.
The jumps in magnetization are known as Barkhausen jumps [27]. In general,
it is difficult to make a strict division between the reversible and irreversible
magnetization processes. Indeed, between the irreversible Barkhausen jumps,
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Figure 4.6: Transition curves illustrating the mainly reversible and mainly irreversible
parts of the magnetic hysteresis loop.

reversible magnetization changes take place, see Fig. 4.5. Since the micromag-
netic system jumps towards different energy minima, the magnetization path
is different for increasing and decreasing applied field values. In Fig. 4.6 the
magnetization curve d − e is different from the curve e − f .

Figure 4.6 shows some key features present in magnetic hysteresis. Due to
the successive irreversible evolution from energy minimum to energy mini-
mum, there is a history dependence in the magnetic system. In general, a new
branch is always created when the external field switches sign: a reversal point
is generated and a new branch emanates, this effect is known as branching.
Hence, the magnetic system contains some memory. Indeed, the branch e − f
is completely determined by the reversal point e, i.e. the magnetization his-
tory, and the present applied field. The memory properties of ferromagnetic
materials are described by Madelung’s rules.

4.3.2 Madelung’s rules

It is clear that a lot of microscopic material parameters influence the Gibbs free
energy and thus the magnetic properties of the material. In spite of the variety
of characteristics among different magnetic materials some general features
are observed in the macroscopic hysteresis behavior. These features have been
described already in 1905 by Madelung [28] and are known as Madelung’s
rules. They describe the memory properties of magnetic materials. Consider-
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Figure 4.7: Transition curves illustrating Madelung’s rules

ing the hysteresis curves in Fig. 4.7, these experimentally established rules can
be stated as follows:

• Branching: the path of any transition (reversal) curve is uniquely deter-
mined by the coordinates of the reversal point, from which the curve em-
anates.

• return-point-memory: if any point 4 of the curve 3-4-1 becomes a new rever-
sal point, then the curve 4-5-3 originating at point 4 returns to the initial
point 3.

• wiping-out property: if the point 5 of the curve 4-5-3 becomes the newest
reversal point and if the transition curve 5-4 extends beyond the point 4,
it will pass along the part 4-1 of curve 3-4-1, as if the previous closed loop
4-5-4 never existed.

Since Madelung’s rules are the only general hysteretic properties observed
in all magnetic materials, any magnetic hysteresis model should be able to
describe them.

4.3.3 Energy dissipation

Based on the same considerations as for the bistable system, the surface of the
magnetic hysteresis loop corresponds to the losses in the ferromagnetic ma-
terial. Figure 4.8 shows experimentally obtained hysteresis loops measured
on the same sample. The frequency of the applied field is varied. It is clear
that the hysteresis loops broaden when the frequency of the applied field in-
creases. Consequently, the losses in the material grow for higher frequencies.
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Figure 4.8: Hysteresis loops measured for different rates of changes of the applied field. In
the experiments, the applied field is controlled in such a way that the resulting magnetiza-
tion is varying sinusoidally with the presented frequencies. Material: M2H, grain oriented
FeSi, measured in the rolling directions.

This growing loss dissipation, is due to the joule losses, which for one cycle
can be calculated as

P
f

=
∫

V

dr

V

∫ 1/ f

0

|jeddy(r, t)|2
σ

dt. (4.6)

Here, j(r, t) is the continuum eddy current field derived from (2.76), f is the
considered frequency and V is the material volume. From Section 2.5 it is clear
that larger frequencies lead to larger eddy currents and thus to increasing
eddy current losses.

Micromagnetic description

From the micromagnetic point of view, the loss dissipation in the ferromag-
netic material is due to the damping term in the LLG equation (2.68). At each
barkhausen jump, the energy difference is dissipated as heat in the damped
precession movement. Hence, in the micromagnetic approach, the dissipated
energy corresponds to the energy difference confined in the effective fields
before and after the barkhausen jump. Here, the effective field includes Heddy
originating from the eddy currents. It is clear that, when a material is consid-
ered with no conductivity (σ = 0), the energy dissipation is only due to the
’static’ effective field terms described in (2.53).
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Macroscopic description

Following the loss separation theory of Bertotti [5], all losses are due to currents
running on different space and time scales in the ferromagnetic material. Ac-
cording to the theory, three different mechanisms contribute to the total losses.

P
f

= C0 + C1 f + C2
√

f . (4.7)

The contributing losses in one cycle are shown for different frequencies in Fig.
4.9 for the same material as in Fig. 4.8. The three loss contributions are

• Hysteresis losses ∝ C0: these losses are due to hysteresis currents result-
ing from the discontinuous variation of the local magnetization during
barkausen jumps. Hence, the spatial scale corresponds to the nanometer
scale describing domain walls and the temporal scale is defined by the
LLG equation, i.e. order picoseconds.

• Classical losses ∝ C1 f : these losses correspond to the eddy currents in a
macroscopic description where the magnetization processes are considered
to be fully homogeneous in space. The currents and thus the length scale
are determined by the geometry of the sample. The time scale corresponds
to the variations of the external applied field.

• Excess losses ∝ C2
√

f : these losses are caused by excess currents originating
in the magnetic domain structure, the dynamics of the domain walls and
their mutual interaction. The spatial and temporal scale are intermediary,
corresponding to the size of the magnetic domains and their evolution.
In macroscopic models, the excess losses are determined on mathematical
grounds.

Discussion

Both theories are in accordance with each other due to the duality between
currents and magnetic fields

j = ∇× H. (4.8)

However, the micromagnetic description is more fundamental since it still de-
scribes losses when the conductivity is zero. The different time and length
scales described in the loss separation theory can be attributed to the different
space and time scales of the various micromagnetic interactions. In the mi-
cromagnetic approach, little or no research is yet performed on the frequency
dependence of the different effective field terms and the associated losses.
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Figure 4.9: Loss separation following the loss separation theory for hysteresis loops measured
on the same material as Fig. 4.8.

4.3.4 Rate (in)dependence

Following the example of the bistable system, we have seen that hysteresis
processes are time independent over a wide time range. This is also the case
for the micromagnetic hysteresis system. To guarantee rate independence, the
external field should vary on a much larger time scale than the relaxation pro-
cesses in the magnetic material. In the micromagnetic context, one relaxation
time scale corresponds to the one on which Barkhausen jumps occur and thus
with the time scale described by the LLG equation. Another relaxation time
scale corresponds to the eddy currents. The system is only in equilibrium
when no currents are present in the material.

From Fig. 4.9 it is clear that the shape of the hysteresis loop is affected by
the frequency of the applied field. For an iron based sample with thickness
smaller than 1mm, a the rate of change of the applied field smaller than 1 Hz,
gives rise to identical hysteresis loops. In this time frame, all eddy currents are
damped out and rate independent hysteresis loops are described. The result-
ing hysteresis loop is also known as the quasi static hysteresis loop.

In the micromagnetic hysteresis system the external field should not vary
too slowly. Indeed, in the micromagnetic description, thermal fluctuations can
make the system jump across energy barriers towards to the global energy
minimum, see Section 2.6. When the applied fields vary on this very slow time
scale, the hysteresis loop narrows and in the limit all hysteresis effects disap-
pear when the system has the time to relax successively to the global energy
minimum. The described time scale depends on temperature. For moderate
temperatures, this can correspond to years.
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Hence we can conclude that a micromagnetic hysteresis system is rate in-
dependent over a very wide time span. To obtain rate independent hysteresis
loops at moderate temperatures, the variation in the external applied field
should be faster than the order of months and slower than the order of sec-
onds.
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CHAPTER 5

Context and aim of the

conducted research

5.1. Challenges in micromagnetic hysteresis simulation

In the previous chapters a general overview is given of the micromagnetic
theory and of magnetic hysteresis. From this outline it is clear that the mi-
cromagnetic description of magnetization processes is a truly multi-physics
problem:

• Solid state physics: The microstructure of the ferromagnetic material needs
to be characterized. Most material parameters are known from literature,
but the actual microstructure and composition of the material depends on
the manufacturing technique. The magnetic properties of the material are
influenced by grain orientation, grain size distribution, dislocation den-
sity, distribution of dislocations, precipitates, microscopic cracks, sample
roughness, etc. These are parameters defining the sample that need to be
determined in the context of solid state physics. Furthermore, most of these
parameters evolve in time, particulary when the material is subjected to
forces. Here, the understanding of the mechanical relaxation processes is
important. The magnetic properties of the material will change under al-
tering mechanical properties of the material.

• Elasticity theory: The structure of the ferromagnetic material is described by
solid state physics. The elasticity theory translates the material structure
in mathematical formula determining the strains and stresses in the fer-
romagnetic material. The diverse length scales of the physical description
ranges also here from the atomistic scale (dislocations, interstitials) over
the intermediate grain scale to the macroscopic scale of the sample. This
makes the computation of the total stress and strain distribution through-
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out the whole sample a challenging problem, in particular when the mi-
crostructure of the material changes in time. The micromagnetic system is
influenced by the local stress and strain due to the magnetoelastic interac-
tion.

• Magnetoelastic theory: In Section 2.2.3 it is explained that the interplay be-
tween the local magnetization and the local stress results in a rather com-
plex evaluation of the stress and strains. The magnetoelastic coupling com-
plicates the above mentioned elastic description of the considered ferro-
magnetic material.

• Electromagnetic theory: The computation of the magnetostatic field Hms and
the eddy current field Heddy in the sample is based on Maxwell’s equations.
Due to the large interaction radius of both phenomena, both evaluations
result into very burdensome computations which, for large sample sizes,
can not be elaborated using the classical techniques. Hence, one has to de-
velop efficient numerical techniques. Moreover, from Chapter 3, it is clear
that the magnetostatic fields have a large influence on the hysteresis phe-
nomena. It should be investigated which boundary conditions can be used
in order to minimize the magnetostatic interactions. The computation of
Heddy is complicated by the large differences in time scales.

• Statistical physics: The thermal fluctuations are statistically distributed.
Hence, their influence on the magnetization processes, in particular on
magnetization switching processes, leads to a stochastical description. Nu-
merically, this results in Monte Carlo simulations.

For most of the above aspects, the large differences in space and time scale
complicate the numerical solution.

5.2. International research context

5.2.1 Micromagnetic modelling

Numerical micromagnetic schemes have been adopted for the design of vari-
ous magnetic applications, leading to a miniaturization of magnetic elements
[29]. A lot of research effort has for instance devoted to the simulation of mag-
netic tapes, see e.g. [30, 31]. Here, one of the aims is to optimize the writing
heads and to minimize the affected zone on the magnetic tape in order to
increase the data density. In this context, the stability of the magnetic informa-
tion is important: how do neighboring magnetized regions affect each other,
what is the thermal stability?
A second topic is magnetic patterned media used in random access memories
(MRAM) and future sensor applications, see e.g. [32, 33]. Also here, miniatur-
ization of the application device is the aim. Some of the research questions are
how external fields affect the magnetization of the different magnetic elements
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and how they interact mutually.
Other topics are magnetization processes in (arrays of) magnetic nanoparti-
cles [34] and nanowires [35], spin torque oscillators [36], spin-valves [37], etc.

A common aspect of all these research topics is the limited size of the con-
sidered material samples, i.e. from the nanometer to micrometer length scale.
Since the micromagnetic length scale is of the same order (see Section 2.3.2),
the difficulties in the numerical algorithms are rather limited. Furthermore,
in most cases the considered material is a monocrystal without any defects.
Hence, inhomogeneities in the material structure do not influence the magne-
tization processes and magnetoelastic interactions are neglected.

Up to now, only very little research is performed incorporating all material
interactions described in Chapter 2 in numerical simulations, probably due to
the interplay of the different described research areas and to the huge com-
putational burden. However, the currently available large computer resources
combined with sophisticated numerical techniques open the opportunity to
start research in this field. There is definitely a need for this research as indi-
cated by Aharoni [38] at the opening of the third International Symposium on
Hysteresis Modeling and Micromagnetics (2001):

At some stage, computations must also address the possible effect of crys-
talline imperfections, by having some subdivisions with, for example, different
anisotropy than the others. Surface roughness alone is most probably sufficient
to account for the nucleation, as in the De Blois experiment. It is, however,
quite likely that crystalline defects, such as dislocations, and impurity atoms,
affect the rest of the magnetization curve, after nucleation. They seem very
likely to have a large effect on the domain wall motion, but at this stage their
role is an open question, that should be investigated.

5.2.2 Hysteresis modelling

Various hysteresis models are developed to describe the macroscopic hystere-
sis properties of ferromagnetic materials. A widely used hysteresis model is
the Preisach model [39]. It is designed to describe the uniaxial hysteresis prop-
erties of magnetic materials, but is also extended to a vectorial description of
hysteresis processes. The Jiles-Atherton model [40] is a physics based model
considering the principles of losses in the material, the movement of the do-
main walls, etc. Both macroscopic hysteresis models are mathematical in na-
ture and are constructed to incorporate the memory properties described in
Section 4.3.2. The material characteristics are included by fitting model pa-
rameters to experimental data. In the energetic model [41], the total Gibbs free
energy is determined on statistical grounds. The model describes hysteresis
properties as branching, closure of minor loops, etc. Some model parameters
need to be fitted.
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In the last few years another type of hysteresis models has emerged. Meso-
scopic hysteresis models describe hysteresis processes on the domain length
scale. These models are based on a simplified interpretation of the differ-
ent micromagnetic energy terms, assuming the magnetization processes are
dominated by domains and domain wall movement. Van den Berg et al. [42]
include the magnetostatic interactions rigorously, resulting in a hysteresis
model that describes Madelung’s rules. Daniel et al. [43] include the magneto-
mechanical behavior in their description, but result into single valued B-H
characteristics.

5.3. Research context at EESA and Intec

At the Department of Electrical Energy, Systems and Automation (EESA) and
more in particular at the Electrical Energy Lab (EELAB) there is a long history
in hysteresis modelling. The properties of the Preisach model have been ex-
tensively studied and used to characterize the magnetic material parameters
of electrical steels [44]. The model is predominantly used in the department
to introduce the hysteresis properties in magnetic flux computations in elec-
trical steels used in transformers and electrical machines incorporating hys-
teresis effects [45, 46]. Furthermore, research is performed related to the de-
termination of magnetic material parameters of ferromagnetic samples and
their dependence on the manufacturing techniques by using inverse numeri-
cal techniques [46]. Also work is performed on magnetostriction modelling in
electrical machines and transformers [47].

EELAB also has a large expertise in the experimental magnetic hysteresis
characterization of ferromagnetic materials. These material parameters deter-
mine the mechanical and the magnetic properties of the material. Hence a
change in the magnetic properties can be related to a change in the mechan-
ical material properties. This research can lead to magnetic non destructive
evaluation techniques in ferromagnetic materials [1]. From the experiments
it is clear that the investigated relations between mechanical and magnetic
material properties is most pronounced at very low frequencies where only
hysteresis losses (see Section 4.3.3) are observed.

In the last two years, also a mesoscopic hysteresis model is developed at
EELAB. This model is based on the reinterpretation of the micromagnetic en-
ergy terms on the length scale of magnetic domains.

At the Department of Information Technology (Intec) and more in partic-
ular the Electromagnetics Group, a large experience is available in the numer-
ical solution of Maxwell’s equations. Here, highly efficient evaluation tech-
niques such as Fast Fourier Transforms (FFTs) and Multilevel Fast Multipole
Algorithms (MLFMA) are used to compute very large electromagnetic scatter-
ing problems using boundary integral equations and volume integral equa-
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tions. With respect to boundary integral techniques, the emphasis is on the
development of efficient preconditioners [48], a broadband MLFMA [49] and
the parallellization of the MLFMA, while volume integral techniques are ap-
plied in imaging techniques based on the solution of inverse scattering prob-
lems [50, 51].

5.4. Research goal

The presented doctoral thesis fits in the framework of the identification and
evaluation of the relations between microstructural material aspects and macroscopic
magnetic material behavior of ferromagnetic materials, based on a numerical micro-
magnetic hysteresis model. Up to now, this identification has mainly been per-
formed based on experimental work. In the experiments however it is very
difficult to alter only one microscopic parameter without influencing others.
Hence it is very hard to distinguish relations between specific microstructural
and macroscopic magnetic parameters. Numerical experiments alleviate this
problem and allow for a systematic and time efficient study to determine the
investigated relations.

5.4.1 Assumptions

As demonstrated above, the development of a numerical micromagnetic hysteresis
scheme is a multiphysics problem which cannot be tackled all at once. There-
fore some assumptions are made:

1. The microscopic structure of the considered material and the resulting
stress and strain fields are considered to be known and is input of the mi-
cromagnetic model.

2. The magnetoelastic interaction is considered in the relaxed approach. In this
approach, the small magnetoelastic energy term (2.30) depending only on
the spontaneous magnetostrictive strains and the second magnetoelastic
energy term in (2.29) corresponding to the self energy density of the elas-
tic magnetostrictive strains are neglected. Furthermore, the elastic strain
tensor εεεel is disregarded. The magnetoelastic energy term density is then
described as

φme = −(σσσext + σσσde f ) · ·εεεsp(m). (5.1)

Hence, in the relaxed approach only the stresses σσσext and σσσde f as present in
the non magnetic material are taken into account. Following the above as-
sumption, these are input of the micromagnetic model. The stresses influ-
ence the magnetization due to the interaction with the spontaneous magne-
tostrain εεεsp(m). The relaxed approach is acceptable for low magnetostric-
tive materials [52] as ferromagnetic materials. From (5.1) it is clear that the
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input stress influences the magnetization. This enables the description of
magnetization processes as the pinning of magnetic domain walls. How-
ever, the influence of the magnetization on the stress and strain in the ma-
terial (and thus on the microstructure) is disregarded. This disables the
description of magnetostrictive effects. Further, it is known that the mag-
netoelastic interaction can result in a changing microstructure [1]. In the
relaxed approach, this effect can also not be described.

3. In the experimental work investigating the relations between the mi-
crostructure and the macroscopic magnetic properties, it is seen that the
relations are most pronounced at very low frequencies, i.e. in time inde-
pendent hysteresis loops. Therefore, the external applied field Ha is as-
sumed to vary quasistatically. In this frequency range the classical and ex-
cess losses, both originating in joule dissipation of eddy currents are negli-
gible.

4. Eddy currents jeddy and the related eddy current fields Heddy are neglected.
The conductivity is assumed to be zero. Since the applied fields are consid-
ered to vary on a low frequency time scale, this corresponds to neglecting
the local eddy currents due to the fast evolution of the local magnetiza-
tion during Barkhausen jumps. This results in an underestimation of the
hysteresis losses in the loss separation theory (Section 4.3.3).

5. A temperature range up to only moderate temperatures is considered.
Hence, thermal fluctuations have only a second order influence on the
magnetization processes. Thermal fluctuations will only be considered as
the trigger mechanism to initiate magnetization processes. Further, when
hysteresis processes are considered, the time scales are considered to be
short, so no dominant thermal relaxation processes take place. Combined
with assumption 4 this results in time independent hysteresis loops.

5.4.2 Conducted research

In this doctoral thesis we present an efficient numerical micromagnetic scheme able
to describe magnetization processes up to the domain length scale under the assump-
tions of Section 5.4.1. The numerical scheme is optimized to describe hystere-
sis processes in micrometer sized magnetic structures, but is also useful for
the description of magnetization processes in more classical micromagnetic
structures as nanoparticles, nanowires, tapes, etc. The evaluation of the long
range interacting magnetostatic field limits the considered sample dimensions
and determines the computational burden. In this work, the number of magne-
tostatic field evaluations is minimized by introducing a highly stable micromagnetic
time stepping scheme. Further, sophisticated numerical techniques are presented, re-
quired to evaluate the magnetostatic field in a highly time and memory efficient way.
Optimal model parameters are put forward that guarantee the best computa-
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tional efficiency. The micromagnetic scheme is validated considering various
magnetization processes in ferromagnetic materials: (i) reversal processes are
described in the the classical micromagnetic, sub-micrometer sized objects, (ii)
domain configurations are studied in micromagnetically large platelets, and
(iii) hysteresis properties are studied.

This work exploits and contributes to the numerical experience, existing at
Intec, and the experience concerning hysteresis modeling and magnetization
processes in ferromagnetic materials, existing at EESA. The presented work
contributes to the development of a full micromagnetic hysteresis scheme
able to distinguish the different relations between the microstructure and the
macroscopic magnetic material properties.
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PART II
NUMERICAL ALGORITHMS





CHAPTER 6

Numerical micromagnetic

scheme

In this chapter we will present the micromagnetic numerical scheme devel-
oped during the PhD to simulate the magnetic behavior in micromagneti-
cally large ferromagnetic samples. It is based on the time stepping of the
Landau-Lifshitz-Gilbert equation (2.68). Here, an appropriate space and time
discretization scheme is indispensable in order to minimize the CPU and
memory requirements and hence guarantee the efficiency of the numerical
scheme. To minimize the computational burden, the time stepping scheme it-
self has to be very stable to enable the use of large time steps. Further the
computation of one time step should be as fast as possible and with a min-
imum use of memory. In what follows, the space discretization is outlined,
an appropriate discretization of the effective field terms is given and efficient
time stepping schemes for the LLG are presented. The resulting micromag-
netic scheme is validated by comparing simulation results with results ob-
tained from other micromagnetic codes. Further, a micromagnetic hysteresis
scheme is presented, able to simulate time independent hysteresis loops.

6.1. Geometry discretization

The computational domain D is a rectangular prism composed of regularly
placed cubic FD cells of identical size Δ × Δ × Δ. This computational domain
D encloses the 3D ferromagnetic sample. The different material parameters
are defined in each FD cell that coincides with the material: the exchange stiff-
ness A, anisotropy constants K1 and K2 (cubic anisotropy) or just Ku (uniaxial
anisotropy), anisotropy axes and the local stress σσσ. FD cells that not coincide
with the ferromagnetic sample have the properties of free space. In this way,
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Figure 6.1: Discretization of the computational domainD. The FD cells have edges of width
Δ.

Table 6.1: Microscopic material constants for pure iron.

quantity value unit
μ0 Ms 2.16 [T]

A 1.510−11 [Jm−3]
K1 0.48105 [Jm−3]
K2 −0.50105 [Jm−3]

λ100 2210−6 []
λ111 −2110−6 []
c11 241 [GPa]
c12 146 [GPa]
c44 112 [GPa]

curved boundaries of the ferromagnetic body are discretized using staircase-
like surfaces. The FD discretization is shown in Fig. 6.1. In total, there are
N = Nx × Ny × Nz discretization cells.

FD cells coinciding with the magnetic material are considered to be uni-
formly magnetized, corresponding to the local magnetization in the center of
the FD cell, i.e. the micromagnetic magnetization field m(r, t) is considered to
be constant throughout the entire cell with a value corresponding to the field
at the center of the FD cell. The material constants for pure iron are given in
Table 6.1. Following the micromagnetic theory, only the orientation of m(r, t)
can vary and the amplitude stays fixed |m(r, t)| = 1. In FD cells outside the
ferromagnetic sample m(r, t) = 0 holds.
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As presented in Part I, the dynamics of the magnetization field m(r, t) are
determined by the effective field He f f through the LLG equation. Therefore,
the CPU time consumption and the memory requirements for the presented
time stepping scheme depends on: (i) the efficient computation of the con-
sidered effective field terms and (ii) the efficiency of the used time stepping
scheme for the LLG equation.

6.2. Evaluation of the effective field terms

In this section we will present discretized expressions for Hexch, Hani, Hme
and Hms. The applied field Ha and thermal fluctuating field Hth are straight-
forward to implement since, at a given time instant, Ha is constant over the
structure and Hth (2.82) is computed using a Gaussian number generator. All
these field terms determine the effective field needed to time step the LLG
equation. We will comment on the time and memory requirements needed to
evaluate the terms. To start, 6N numbers are required to save the three compo-
nents of m and He f f in each FD cell. In principle, 2N in stead of 3N numbers
suffice to store the local magnetization field since |m = 1|, but in this case the
memory savings are minimal compared with the computational overhead.

6.2.1 Discretization of the exchange field

The exchange field

Hexch =
2A

μ0Ms
∇2miei (6.1)

is discretized using standard finite difference formula to approximate the
Lapliacian [53]. Hence Hexch in a general cell (p,q,r) is computed as

H
p,q,r
exch =

2A
μ0Ms

1
Δ2

(
mp−1,q,r

i +mp+1,q,r
i + mp,q−1,r

i + mp,q+1,r
i

+ mp,q,r−1
i + mp,q,r+1

i − 6mp,q,r
i

)
ei.

(6.2)

Special attention should go to the FD cells near the boundaries of the com-
putational domain. At the edges of the sample, the boundary condition (2.49)
has to be met. Therefore, expression (6.2) has to be adjusted. For instance, for
a FD cell at with p = 0 the exchange field is given by

H
p,q,r
exch =

2A
μ0Ms

1
Δ2

(2
3

m1,q,r
i +m0,q−1,r

i + m0,q+1,r
i

+ m0,q,r−1
i + m0,q,r+1

i − 14
3

m0,q,r
i

)
ei.

(6.3)
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and analogous for cell at other edges [54]. The use of higher order approxima-
tion schemes is investigated in [55].

From equation (6.2) it is clear that the evaluation of Hexch scales O(N). In-
deed, for each cell q (q = 1 . . . N) expression (6.2) has to be evaluated. There is
no extra memory required for the evaluation of Hexch. Since the FD descrip-
tion of the exchange field is completely local, the FD discretization is advanta-
geous compared to a finite element method (FEM) description. When a FEM
is adopted, the exchange interaction gives rise to a large system of coupled
equations described by a large stiffness matrices, which needs to be solved.
This problem, characteristic to the FEM description, is partially alleviated by
substituting the large algebraic system derived from the exchange term by a
set of reduced algebraic systems [56].

6.2.2 Discretization of the anisotropy field

In Chapter 2 the anisotropy field was defined as

Hani = − 1
μ0Ms

∂φani
∂mi

ei. (6.4)

In the case of uniaxial anisotropy, the anisotropy energy density φani is deter-
mined by (2.16) and expression (6.4) results in (with u the uniaxial anisotropy
axis)

Hani =
2K1

μ0Ms
(m · u)u, (6.5)

which is straightforward to implement.
In the case of cubical anisotropy, the anisotropy energy density was given

by
φani = K1

(
α2

1α2
2 + α2

2α2
3 + α2

1α2
3

)
+ K2α2

1α2
2α2

3 (6.6)

with αi = m · ui. The cubical anisotropy axes u1 , u2 and u3 are defined with
respect to the general coordinate system e1e2e3 as

u1 = F11e1 + F12e2 + F13e3 (6.7)

u2 = F21e1 + F22e2 + F23e3 (6.8)

u3 = F31e1 + F32e2 + F33e3. (6.9)

The matrix F defining the relation between the lattice axes and the general
coordinate system e1e2e3 can be defined using Euler angles. Applying the
chain rule to (6.4) yields

Hani = − 1
μ0Ms

∂φani
∂αj

∂αj

∂mi
ei. (6.10)
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Here, ∂φani
∂αj

is directly determined by (6.6). To determine
∂αj
∂mi

, m is expressed in
the two different bases

m = α1u1 + α2u2 + α3u3 = m1e1 + m2e2 + m3e3. (6.11)

By combining (6.9) and (6.11) m can be written in terms of αj

m1 = F11α1 + F21α2 + F31α3 (6.12)

m2 = F12α1 + F22α2 + F32α3 (6.13)

m3 = F13α1 + F23α2 + F33α3 (6.14)

or in matrix notation m = FTααα. This results in

∂αj

∂mi
=
[(

FT
)−1

]
ji

. (6.15)

By combining the above expressions, the cubic anisotropy field can be deter-
mined as

[
Hani,x Hani,y Hani,z

]
= − 1

μ0Ms

[
∂φani
∂α1

∂φani
∂α2

∂φani
∂α3

]⎡⎣ FT

⎤⎦−1

. (6.16)

The implementation of this expression is straightforward.
In the numerical scheme, grains are defined as an ensemble of a large num-

ber of FD cells with identical anisotropy axes. Both the evaluation of the uni-
axial and the cubical anisotropy field (6.5) and (6.16) are purely local compu-
tations, meaning that no input from other FD cells is needed to compute Hani
in a given cell. Hence, to compute Hani in N cells, O(N) computations suffice.
Further, no extra memory space is required.

6.2.3 Discretization of the magnetoelastic field

The magnetoelastic field

Hme = − 1
μ0Ms

∂φme

∂mi
ei (6.17)

is evaluated within the relaxed approach. In this approach, the magnetoelastic
energy density φme reduces to

φme = −3
2

λ100

3

∑
i=1

σiiα
2
i −

3
2

λ111 ∑
i �=j

σijαiαj (6.18)
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with σσσ the stress introduced in the material by defects and externally applied
forces. Expression (6.18) is achieved after inserting (2.24) in (5.1). The deriva-
tion of Hme in terms of m is analogous to the derivation made for Hani. This
results in

[
Hme,x Hme,y Hme,z

]
= − 1

μ0Ms

[
∂φme
∂α1

∂φme
∂α2

∂φme
∂α3

]⎡⎣ FT

⎤⎦−1

. (6.19)

The stress field σσσ in (6.18) is determined in each cell at the start of the
algorithm and stays fixed during the simulation. As mentioned, each defect
has its characteristic stress distribution, which can be determined based on
micromechanical considerations [17]. The total stress is determined by adding
all characteristic stresses introduced by the different defects, assuming that the
defects are in an equilibrium state and the defect density is not too large, so no
interaction takes place between the defects. In what follows we will provide
the different expressions for the stress distributions of some defects as valid in
the bcc lattice of iron.

The non-zero components of the stress tensor σσσedge characteristic for an
edge dislocation running through the origin, with dislocation line parallel to the
z-axis and Burgers vector b parallel to the x-axis are given by [57]

σ
edge
11 = −τ0

by(3x2 + y2)
(x2 + y2)2 (6.20)

σ
edge
22 = τ0

by(x2 − y2)
(x2 + y2)2 (6.21)

σ
edge
33 = 2τ0

νy
x2 + y2 (6.22)

σ
edge
12 = σ

edge
21 = τ0

bx(x2 − y2)
(x2 + y2)2 (6.23)

with
τ0 =

G
2π(1 − ν)

(6.24)

Here is b the length of the Burgers vector of the edge dislocation and G and ν

are the modulus of rigidity and Poisson’s ratio respectively. In the monocrystal
the Burgers vector is parallel to a < 111 > direction, while the dislocation line
is parallel to a < 110 > direction [58]. So the stress tensor σσσedge has to be rotated
to the proper lattice axes orientations. An edge dislocation in a simple cubic
lattice is shown in Fig. 6.2.

The non-zero components of the stress tensor σσσscr characteristic for a screw
dislocation running through the origin and with dislocation line parallel to the
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z-axis are given by [57]

σscr
13 = σscr

31 = −Gb
2π

y
x2 + y2 (6.25)

σscr
23 = σscr

32 = −Gb
2π

x
x2 + y2 (6.26)

For a screw dislocation the Burgers vector b is parallel to the dislocation line
and parallel to a < 111 >-direction. So the stress tensor σσσscr should also be ro-
tated to correspond to the description of the lattice axes orientations. A screw
dislocation in a simple cubic lattice is shown in Fig. 6.2.

The components of the strain tensor εεεpd of a point defect are given by [59]

ε
pd
ij = −3

2

a3
(
(1 + β)1/3 − 1)

)
r3

rirj

r2 (6.27)

with ri=1,2,3 = (x,y,z) respectively, r =
√

x2 + y2 + z2 and with a the lattice
constant of iron. The mismatch parameter β is defined as the relative differ-
ence in volume between the distorted volume (V) and undistorted volume
(V0)

V = V0(1 + β). (6.28)

For instance, a foreign atom bigger than a lattice atom is described by a charac-
teristic volume expansion, β > 1 and a vacancy or foreign atom smaller than
a lattice atom is described by a characteristic volume reduction, β < 1. The
stress components σ

pd
ij are calculated from (6.27) using Hooke’s law (2.21).

The resulting stress σσσpd is isotropic, thus independent of lattice directions and
should not be rotated to fit the lattice axes orientation.

From a mechanical point of view, grain boundaries correspond to a mis-
match of neighboring lattice axes. This mismatch is fitted by the introduction
of dislocations. Hence a grain boundary can be interpreted as a plane of dis-
locations. Due to the interplay between the dislocations, the orientation of the
stresses is hard to describe, but the amplitude of the stress will drop as 1/r,
with r the distance to the grain boundary. Hence, the stress generated by a
grain boundary is simulated as a stress tensor with random main stress orien-
tation and an amplitude decreasing as 1/r with respect to the distance to the
grain boundary.

As the computation of the anisotropy field, also the evaluation of Hme is
purely local and thus scales O(N) if N cells are considered. The components
of the stress tensor however need to be stored. This results in an extra 6N
numbers stored in the computer memory since the stress matrix is symmetri-
cal.
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Figure 6.2: Schematic view of an edge dislocation and a screw dislocation in a simple cubic
lattice, from [60].

6.2.4 Discretization of the magnetostatic field

In Chapter 3, the magnetostatic field was defined as

Hms(r) = −Ms

4π

∫
V
∇∇ 1

|r − r′| · m(r′)dr′. (6.29)

The magnetostatic field values have to be obtained in the center ri of each FD
cell i = 1 . . . N. Since the magnetization field in each FD cell is considered to be
constant in each FD cell j, the volume integral in (6.29) can be subdivided in N
integrals over the volumes V of the FD cells (with center rj, j = 1 . . . N). Because
all cells have the same volume V , the magnetostatic field can be discretized as

Hms(ri) = −Ms

4π

N

∑
j=1
j �=i

∫
V

∇ρρρ∇ρρρ
1

|ri − rj + ρρρ| dρρρ · mj. (6.30)

Here, mj is the (constant) magnetization field in FD cell j and ∇ρρρ acts only
on ρρρ. The self contribution to the magnetostatic field (j=i) is left out, accord-
ing to [61]. The self contribution leads to a constant magnetostatic field, anti-
parallel with the magnetization field of the considered FD cell. As such, the
energy contribution to the total energy corresponding to the magnetostatic
self interaction is constant in time and independent of the orientation of the
magnetization field. Hence, this contribution has no role in the minimization
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of the total Gibb’s free energy. This is also clear from the LLG equation. In-
deed, the magnetization dynamics only depend on the torque ∝ m × He f f ,
thus a component of the effective field (anti-)parallel with the local magneti-
zation has no influence on the magnetization dynamics.

From expression (6.30), it is clear that O(N) computations are required to
evaluate Hms in one single FD cell. Hence, the classical computation of Hms in
all N FD cells scales O(N2). Moreover, in a classical Hms evaluation scheme
O(N2) numbers have to be used to store the mutual interactions between the
FD cells.

The comparison of the computational burden and the memory require-
ments needed to evaluate the different effective field terms shows that almost
all computational effort goes to the evaluation of the magnetostatic field. In
Chapter 7, O(N log N) evaluation schemes that exploit the convolution struc-
ture of (6.30) by using Fast Fourier Transforms are presented to evaluate Hms.
Chapter 8 presents an O(N) scheme based on the reformulation of the kernel
1/|r − r′| by adopting the Fast Multipole Method.

6.3. Semi-analytical time stepping schemes for the LLG equation

The availability of an highly efficient time stepping algorithm is indispensable
in the development of a numerical micromagnetic scheme intended to sim-
ulate magnetization processes in (micromagnetically) large objects. The best
time efficiency is achieved when the time stepping scheme enables the use of
large time steps with a minimum of effective field term evaluations.

6.3.1 Introduction

In Chapter 2 it is found that the Landau-Lifshitz-Gilbert equation

∂m

∂t
=

γG

1 + α2 m × He f f +
αγG

1 + α2 m ×
(

m × He f f

)
. (6.31)

describes the temporal evolution of the magnetization field m(r, t). In Section
2.4.3 it is outlined that this equation has three main properties: (i) preserva-
tion of the magnetization field amplitude, (ii) the decrease in total Gibbs free
energy under a constant applied field and (iii) conservation of the Gibbs free
energy in the case of zero damping. An optimal time stepping scheme used to
discretize (6.31) meets these properties, combined with a good stability of the
method, i.e. a good convergence. Different types of time stepping schemes for
the LLG equation are developed [62].

First there are implicit methods as e.g. implicit Euler. Generally, these
methods have a good stability, but do not preserve the magnetization ampli-
tude or the energy when α = 0. Furthermore, the use of implicit time stepping
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schemes require the solution of a large system of coupled non-linear equa-
tions at each time step, leading to very high simulation times. To alleviate this
problem, semi-implicit schemes are constructed as in [63] that circumvent the
solution of the system of coupled equations.

A lot of attention [64, 65, 66, 67] has been paid to geometrical integrators that
naturally preserve the properties of the LLG equation by exploiting symme-
tries, invariant quantities, hamiltonian structures etc. These are for instance
based on Lie-group methods and Cayley transforms. Here, the local magneti-
zation field vector can only vary on the unit sphere. The methods preserve the
magnetization amplitude, but not all of them meet the two other properties.

In [62], a geometrical integration method based on the mid point rule is
presented that incorporates all three properties of the LLG equation and is
unconditionally stable. Being an implicit method, the system of non-linear
equations is solved using a quasi-Newton iterative technique. This limits the
applicability of the method for the large systems we aim at.

Second, there are explicit methods. When applying explicit ’off-the-shelf’
methods as the Euler method, Heun method or Runge Kutta methods, there is
no need to solve the large system of coupled equations, but the properties of
the LLG equation are not incorporated. Applying these methods requires for
instance a renormalization of the m(r, t) every time step.

During the PhD work two explicit time stepping schemes are developed
that meet the three properties of the LLG equation and have a good stabil-
ity. Since no coupled system of non-linear equations has to be solved, the two
methods are very time and memory efficient. The time stepping schemes itself
scale O(N) so their computational cost is limited compared to the evaluation
of the magnetostatic field. Moreover, due to their stability, large time steps can
be taken which limits the number of effective field evaluations. The outstand-
ing properties of the presented time stepping schemes are at the origin of the
excellent efficiency of the developed micromagnetic numerical scheme.

6.3.2 Semi-analytical time stepping schemes

Forward semi-analytical time stepping scheme

In the forward semi-analytical time stepping scheme, the magnetization dy-
namics is evaluated analytically at ti + δt by introducing in each FD cell a
local (u,v,w) coordinate system with the u-axis parallel to He f f (ti). The LLG-
equation (6.31) can be solved analytically in this coordinate system when
He f f (t) is kept constant during the time step

He f f (t) = He f f (ti)eu ti ≤ t ≤ ti + δt. (6.32)
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Figure 6.3: Flow chart of the forward semi-analytical time stepping scheme. Each time
step, one effective field evaluation is needed.

During the time step m evolves from m(ti) = uieu + viev + wiew to m(ti +
δt) = ui+1eu + vi+1ev + wi+1ew with

ui+1 =
eqαδt(1 + ui) − e−qαδt(1 − ui)
eqαδt(1 + ui) + e−qαδt(1 − ui)

vi+1 = 2
vi cos(qδt) − wi sin(qδt)

eqαδt(1 + ui) + e−qαδt(1 − ui)
(6.33)

wi+1 = 2
vi sin(qδt) + wi cos(qδt)

eqαδt(1 + ui) + e−qαδt(1 − ui)

and with q = γG He f f (ti)/(1 + α2). In this forward semi-analytical time step-
ping scheme, the effective field (2.53) has to be evaluated once every time step.
An overview of the scheme is shown in Fig. 6.3. The computations (6.33) itself
scale as O(N) and do not require extra memory space.

predictor-corrector semi-analytical time stepping scheme

The second developed time stepping scheme is a predictor-corrector (p/c)
extension of the first scheme. The predictor part obtains a preliminary esti-
mate m̂(ti + δt) of the magnetization field, calculated with the forward semi-
analytical method. Based on this estimated value m̂(ti + δt) the estimated ef-
fective field Ĥe f f (ti + δt) is computed. In the corrector part, the actual value
m(ti + δt) is obtained by again applying the expressions (6.33), but using an
intermediate effective field He f f (ti + δt/2) instead of He f f (ti) with

He f f (ti + δt/2) =
1
2

[
He f f (ti) + Ĥe f f (ti + δt)

]
. (6.34)
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Figure 6.4: Flow chart of the predictor-corrector time stepping scheme. Each time step, two
effective field evaluations are needed.

Hence, in this p/c semi-analytical time stepping scheme, the effective field
(2.53) has to be evaluated twice every time step. Figure 6.4 shows an overview
of this time stepping scheme. This scheme needs an extra 6N numbers mem-
ory space to store the predictor values of the magnetization field m̂(ti + δt)
and the effective field Ĥe f f (ti + δt).

6.3.3 Performance study

When studying the performance of the developed time stepping schemes, spe-
cial attention is devoted to the time efficiency and the accuracy of the time
stepping schemes. Therefore, the influence of the different model parameters
is studied. Furthermore, the preservation of the properties of the LLG equa-
tion is demonstrated. This study is based on the simulation of the magneti-
zation process between two representative micromagnetic equilibrium states.
The tests are performed on a cubic iron monocrystal divided in 64 × 64 × 64
FD cells. Cells of different sizes are tested. The orientation of the crystallo-
graphic easy axes is defined by the Euler angles φ = 1.0, θ = 0.5 and ψ = 0.25.
The initial configuration is a saturated state in the y-direction. In the test, the
applied field is altered to

Ha = −2.0105 Am−1ex + 1.0105 Am−1ez (6.35)

In this study, we are only interested in the equilibrium state and not in the
details of the dynamics to approach this state. Hence, the equilibrium states
reached in the experiments are compared and not the dynamics itself. The
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correctness of the description of the dynamic magnetization process towards
equilibrium is evaluated in Section 6.4.

In order to evaluate the two proposed semi-analytical time stepping pro-
cedures, comparison is made with three other explicit integration schemes:
the forward Euler scheme, the predictor-corrector Heun scheme and a fourth
order Runge-Kutta integration scheme [68]. These schemes are, just like the
proposed semi-analytical methods, single-step methods: they only use the in-
formation at the beginning of the time step to compute the magnetization field
values at a successive time point. Depending on the integration scheme, the
slope on the magnetization curve dm/dt has to be evaluated several times.
This slope is given by the LLG-equation (6.31), thus for each computation
of the slope dm/dt the effective field has to be evaluated once. In the Euler
scheme the slope and thus He f f has to be evaluated once per time step, while
in Heuns scheme twice. Hence the computational burden in both schemes
is similar with the forward semi-analytical time stepping scheme and the
predictor-corrector semi-analytical time stepping scheme respectively. Fur-
ther, comparison is made with a fourth order Runge-Kutta integration scheme.
This scheme needs four effective field evaluations during each time step and
is seen as a robust reference scheme.

Variation of the time step length δt

In a first series of numerical experiments the convergence properties of the
different schemes are investigated. Therefore, the length of the time steps δt is
varied, while keeping the damping constant and the discretization size fixed:
α = 1.0 and Δ = 8nm. All simulations are compared with the Runge-Kutta
scheme with δt = 510−15 s as a reference. The upper part of Fig. 6.5 shows
that for all time stepping schemes the number of time steps to obtain equilib-
rium is inversely proportional to the used time step δt and is similar for all
schemes. The calculation time however, varies with the number of effective
field evaluations, see second part of Fig. 6.5. Hence, for a given time step δt,
the forward semi-analytical and the forward Euler at the one hand and the p/c
semi-analytical and the Heun scheme on the other hand give rise to similar cal-
culation times. The convergence properties of the schemes differ however. The
first part of Fig. 6.5 shows that the forward Euler and Heun scheme only con-
verge for time steps δt < 3ps, while the forward semi-analytical scheme and
the p/c semi-analytical scheme start to diverge from δt = 4ps and δt = 7ps
respectively.

The last part of Fig. 6.5 shows the precision of the time stepping schemes,
defined as the mean deviation of the magnetization field mi in FD cells i
(i = 1 . . . N) from their corresponding value mi

re f in the reference simulation,
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Figure 6.5: Number of time steps needed to reach equilibrium (top), calculation time
needed to reach equilibrium (middle) and precision (bottom) versus used time step δt,
with discretization size Δ = 8nm and damping constant α = 1.0. "semi-analytical1" is the
forward semi-analytical scheme and "semi-analytical2" is the p/c semi-analytical scheme.
The out-of-place points indicate divergence.
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expressed as the angle between the dipoles

precision = 2arcsin

(
1
N

N

∑
i=1

|mi − mi
re f |

2

)
. (6.36)

For larger δt all time stepping schemes have a deteriorating precision. For
large δt, the forward semi-analytical time stepping scheme has the worst pre-
cision, the p/c semi-analytical scheme on the other hand has a precision better
then the fourth order Runge-Kutta scheme.

In particular, the stability of the p/c scheme is remarkable since it has ex-
cellent convergence properties combined with a very high precision. It has
stability properties similar to the fourth order Runge-Kutta scheme but needs
only half as much effective field evaluations and is thus twice as fast. The
stability of the semi-analytical time stepping schemes results from the higher
order extrapolation of the local magnetization trajectory. Indeed, the use of the
analytical expressions (6.33) guarantee an extrapolation which is better than
a first order (cf. forward Euler scheme) or a second order (cf. Heun scheme)
approximation.

Variation of the discretization size Δ

Based on the expressions (6.33) one can see that smaller time steps will be
required for decreasing discretization size Δ. Indeed, when discretized, Hexch
and thus He f f is proportional to A/Δ2, see (6.2). From (6.33) it is clear that, in
order to have a good description of the precession movement, the quantity qδt
should be smaller than a period 2π. Since

qδt ∝ He f f δt ∝
Aδt
Δ2 , (6.37)

a small discretization size Δ requires the use of a small time step δt.
The discussion in the above section can be repeated for other discretiza-

tion sizes Δ. In each scheme, an optimal time efficiency is obtained when the
time step δt is as large as possible combined with an acceptable precision. As
mentioned before, this optimal length of the time step δt varies with the used
spatial discretization which is shown in the first part of Fig. 6.6: when Δ is
reduced, a smaller time step δt has to be used.

The calculation time, needed to reach equilibrium when using these opti-
mal time steps δt, is shown in the second part of Fig. 6.6. For smaller discretiza-
tion sizes, the time step δt has to be decreased which results in larger simu-
lation times. Both semi-analytical time stepping schemes have a very good
time efficiency, particularly when a larger spatial discretization is used. The
accuracy of the developed time stepping scheme will be investigated in more
detail in the next sections.
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Figure 6.6: Optimal time step δt (top), calculation time (middle) and precision when an
optimal time step is used (bottom) versus discretization size Δ. "semi-analytical1" is the
forward semi-analytical scheme and "semi-analytical2" is the p/c semi-analytical scheme.

One can ask if a discretization size up to Δ = 10nm is physical since this
discretization is larger then the exchange length lexch (here 2.8nm) which is
known to be the lower limit on which magnetization non-uniformities are
possible in soft magnetic materials, see Section 2.3.2. Yet another character-
istic length in magnetic materials is given by the domain wall thickness which
is, in the case of pure iron, about 70nm. Hence, when a discretization size up
to 10nm is used, the thickness of the domain wall corresponds to several FD
cells. In Section 9.2 we will go more into detail on this subject.

Variation of the damping constant α

Large damping constants make the magnetization field relax fast to the local
effective field and have a stabilizing effect on the micromagnetic system. This
makes the use of larger time steps possible. The value of α influences the path
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Figure 6.7: Maximum δt for which converge is reached for varying damping constant α.
"semi-analytical1" is the forward semi-analytical scheme and "semi-analytical2" is the p/c
semi-analytical scheme.

the system traverses towards equilibrium, but not the equilibrium state itself.
Indeed, the damping constant has no influence on the energy landscape, but
due to the faster damping the trajectory to the equilibrium point contains less
oscillations. Hence, in simulations where one is only interested in the equilib-
rium states and not in the transition between the equilibrium states, α can be
chosen to have an optimal time efficiency. Here, a large damping constant is
considered as a numerical damping superimposed on the physical damping.
Figure 6.7 shows the optimal time step δt for the considered time stepping
schemes. It shows that for smaller damping constants α, smaller time steps δt
have to be taken which results in larger simulation times. For α < 1, the p/c
semi-analytical time stepping scheme shows even better convergence than the
fourth order Runge-Kutta scheme. A damping factor α = 1.0 is the most time
efficient.

Porter et al. started from the semi-analytical time stepping scheme to
present a ’precession axis modified’ semi-analytical time stepping scheme [69]
which enables the use of yet larger time steps for a given damping constant
α. In their analysis, they add a scalar multiple of m to the effective field:
H′

e f f = He f f + λm. Since the dynamics of the magnetization field only de-
pends on the torque ∝ m × He f f (see LLG equation) this does not effect the
evolution of the magnetization. With a good choice of λ however, larger time
steps can be taken. This can be understood by inspecting the expressions
(6.33). The addition of λm increases the amplitude of the effective field and
consequently the quantity αqδt, which determines the damping in expression
(6.33). Hence, the addition of λm to the effective field increases the damping
in the micromagnetic system and is thus equivalent with a choice of a larger
damping constant α.
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#

Figure 6.8: The total energy φtot during the evolution towards equilibrium. "semi-
analytical1" denotes the forward semi-analytical time stepping scheme, while "semi-
analytical2" denotes the predictor-corrector semi-analytical scheme.

Preservation of the properties of the LLG equation

• The semi-analytical time stepping schemes preserve the magnetization am-
plitude. Indeed, the expressions (6.33) do not influence the magnetization
amplitude, with notations of (6.33):

u2
i+1 + v2

i+1 + w2
i+1 = 1. (6.38)

• In Fig. 6.8, the total energy φtot is shown during the evolution towards
equilibrium using the two presented time stepping schemes. For the two
schemes, a continuous decrease in the total free energy is shown.

• The Gibbs free energy is conserved in the case of zero damping. Indeed,
with α = 0, the expressions (6.33) reduce to

ui+1 = ui

vi+1 = vi cos(qδt) − wi sin(qδt) (6.39)

wi+1 = vi sin(qδt) + wi cos(qδt).

It is clear that these expressions describe a precessional movement of the
magnetization around the local effective field without damping. Indeed,
the projection of the magnetization field on the local effective field does
not change in time: ui+1 = ui, hence no energy is dissipated.



6.4 Comparison with other micromagnetic schemes 99

Figure 6.9: Geometry of the studied configurations: (a) Precessional switching and (b)
damping switching

6.4. Comparison with other micromagnetic schemes

In a collaboration with the ’Istituto Nazionale di Ricerca Metrologica’ (INRIM,
Turin, Italy) the presented time stepping scheme for the LLG equation is vali-
dated extensively [70, 71] by comparing simulation results obtained with our
FD code, with the Finite Element code designed at INRIM [72,70,71] and with
the NIST/OOMF (National Institute of Standards and Technology / Object
Oriented Micromagnetic Framework) code [73] developed at NIST, US.

In the approach adopted at INRIM, the spatial discretization of the LLG
equation is handled by a finite element method (FEM), employing tetrahe-
dral elements and edge vector shape functions for the description of the mag-
netization field. The time evolution is treated with a FD scheme based on
the midpoint rule [62]. The magnetostatic field is obtained by solving the
Poisson equation with a hybrid finite element/boundary element method
(FEM/BEM) to handle the open boundary problem.

The NIST/OOMF scheme is a 2.5 dimensional FD code. The considered ge-
ometries are thin films, enabling a FD discretization in only two dimensions.
The magnetization field however keeps its full 3D character. The magneto-
static field is computed using fast Fourier transforms.

In the considered simulations, switching processes in various geometries
are studied. Here, the magnetization states in the non-equilibrium points is
of interest so the damping constant α cannot be chosen as a function of time
efficiency (α  1). In this ’classical’ micromagnetic research domain, the dis-
cretization size should also be similar to or smaller than the exchange length
(see Section 9.2).

6.4.1 Comparison of switching processes in thin films

The time stepping procedures are compared by analyzing precessional and
damping switching in square thin films (200nm×200nm×5nm) with uniaxial
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Table 6.2: Time step and discretization size to reach convergence

Analyzed case δt (ps) Δ (nm)
M1 M2 M1 M2

P1 (Ku = 0, lexch ∼ 5nm) 0.09 0.075 2.5 5
P2 (Ku = 0, lexch ∼ 7.5nm) 0.03 0.025 2.5 5.5
P3 (Ku = 0, lexch ∼ 10nm) 0.02 0.02 2.5 7.5
P4 (Ku = 10kJ/m3, lexch ∼ 7.5nm) 0.03 0.025 2.5 5.5
P5 (Ku = 40kJ/m3, lexch ∼ 7.5nm) 0.03 0.025 2.5 5.5
D1 (Ku = 0, lexch ∼ 7.5nm) 0.03 0.025 2.5 5.5

anisotropy. The schemes of the studied configurations are depicted in Fig. 6.9.
The magnetization is initially uniform with an amplitude Ms = 800kA/m. The
damping coefficient α is equal to 0.02, while the (uniaxial) anisotropy constant
Ku and the exchange length lexch are reported in Table 6.2, together with the
time step δt and the discretization size Δ required to reach convergence. In our
FD scheme, the choice of Δ is influenced by the film thickness, since a cubic
cell discretization has to be introduced (Δ = 2.5nm for all the analyzed cases).
On the contrary, in the FEM method developed at INRIM, the 3-D mesh can
be unstructured and its refinement can be varied, depending on the material
exchange length lexch and on the demagnetizing effects. To limit the number
of unknowns only a spatial subdivision is imposed along the film thickness,
thus, for the FEM scheme, the values of Δ reported in Table 6.2 refer to the
discretization in the (x,y)-plane. In the figures and tables, the FD scheme de-
veloped in this PhD work is denoted by M1, while the FEM scheme developed
at INRIM is denoted by M2.

The accuracy of the two methods is verified by comparison with the
NIST/OOMMF code, which provides the reference simulation results. In the
precessional switching cases (P1 to P5), the film is subjected to a 40kA/m ex-
ternal field applied along the y-direction, and an initial magnetization along
the x-axis.

Table 6.2 shows that when stronger exchange phenomena are considered
(i.e. for increasing exchange length), smaller time steps have to be used. A
sufficiently small time step has to be adopted in both our FD scheme and in
the FEM scheme in order to converge with the results of the NIST/OOMF
code as well evidenced in Fig. 6.10, which reports the time evolutions of the
average magnetization components when an exchange length ∼ 5nm (case
P1) and ∼ 7.5nm (case P2) is considered. With an appropriate choice of the
time step and the discretization size Δ, the methods are in excellent agreement
with each other and with the simulation results provided by the NIST/OOMF
code, also in the prediction of the local magnetization during the switching
process, see Fig. 6.11.
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Figure 6.10: Time evolution of the average magnetization components, evidencing the role
of the time step choice for case P1 (top) and case P2 (bottom). The used discretization size
is reported in Table 6.2.

Figure 6.12 reports the time evolution of the average magnetization com-
ponents when an anisotropy constant Ku of 10kJ/m3 and of 40kJ/m3 is
considered. The anisotropy axis is parallel to the x-axis. The presence of
anisotropy effects slows down the switching processes until a limit value of
Ku, over which the magnetization reversal does not take place. In the FEM
scheme, the results are computed with a discretization size in the (x,y)-plane
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Figure 6.11: Spatial distribution of the magnetization field, computed for case P1 at time
instant t = 0.09ns with our FD scheme (a) and the FEM scheme (b).

comparable to the exchange length. This leads to a small discrepancy in com-
parison with the solution obtained with our FD scheme, which is in perfect
agreement with the results of the NIST/OOMMF code. As shown in Table 6.2,
the addition of the anisotropy contribute does not influence the choice of δt
and Δ to reach convergence.

In the damping switching case D1, the magnetization reversal is obtained
by applying a 1000kA/m external field almost antiparallel to the initial mag-
netization state. To start reversal processes, the initial magnetization is as-
sumed to make an angle of 10 degrees with the z-axis. As an example, Fig.
6.13 reports the time evolution of the magnetization components along the
z-direction and in the (x,y)-plane, with an exchange length of ∼ 7.5nm. The
damping switching processes, which are sensibly slower than the precessional
ones, are affected by the oscillating behavior of the magnetization components
along the x and y-axes. Also in this critical case the appropriate choice of δt
and Δ leads to a very satisfactory agreement between the two procedures and
the NIST/OOMF code.

6.4.2 Comparison of magnetization processes in 3D geometries

The NIST/OOMF code is only applicable for 2D geometries, thus comparison
can only be made with the FEM code developed at INRIM. Since the simu-
lation results where in accordance for the considered 2D geometries, also an
agreement in the simulation results for 3D sample geometries is expected. This
is investigated for different geometries and material parameters. Further, the
influence of the material properties and the spatial discretization on the time
step ensuring convergence is studied.
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Figure 6.12: Time evolution of the average magnetization components for case P4 (top)
and case P5 (bottom). The used discretization size is reported in Table 6.2.

In the reference case, the relaxation process for a cube with edges of
20nm, initially saturated along the z-axis (Ms = 1400kA/m) is considered
with A = 35pJ/m and α = 0.02. The uniaxial anisotropy is parallel to the z-
axis with Ku = 500kJ/m3. An external field with amplitude of 1.1 Ms, oriented
along the direction (ex − ez), is applied. Therefore, a reference simulation is
considered describing the relaxation process for a cube with edges of 20nm,
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Figure 6.13: Time evolution of the average magnetization components for case D1. To evi-
dence the oscillating behavior of the magnetization components in the (x,y)-plane, also the
transient evolution of Mx , computed with our FD scheme and the FEM scheme is shown.
The used discretization size is reported in Table 6.2.

initially saturated along the z-axis (Ms = 14000kA/m) with exchange stiffness
A = 35pJ/m and α = 0.02.

The reference simulation is performed using FD cells with edges of 2.5nm
and FEM tetrahedrons with sides of ∼ 2.5nm. In this case the spatial dis-
cretization is not constrained by the exchange length (about 5.3nm), but by
the sample dimensions. Indeed, a sufficient number of FD cells or tetrahe-
drons should be employed to accurately compute the magnetostatic field. As
evidenced in Fig. 6.14, which reports the time evolution of the average mag-
netization components, the agreement between the presented methods is very
good.

To establish the influence of the discretization size Δ on the maximum time
step, simulations with smaller values of Δ are performed. As shown in Table
6.3, in both schemes the decrease of Δ leads to the obligatory use of smaller
time steps δt to avoid numerical instabilities in the time evolution.

The same reversal process for a sample identical to the reference case ex-
cept for the exchange constant (A = 15pJ/m) is computed. The dynamics of
the average magnetization components is shown in Fig. 6.15, evidencing a
good agreement between the two methods. Although the magnetization phe-
nomena are very similar in this case compared with the reference (see Fig.
6.14), a larger time step can be used due to the smaller value of the exchange
constant (see Table 6.3).
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Figure 6.14: Time evolution of the average magnetization components for the reference
case.

Table 6.3: Influence of various parameters on the maximum time step. Larger time steps
lead to instabilities.

Studied δt [fs]
parameter value FD FEM2
Reference — 40 17

Δ 2nm 20 14
Δ 1.25nm 9.0 5.0
A 15pJ/m 100 50
α 0.1 60 20

To analyze the influence of the damping constant on the maximum time
step, α is increased up to 0.1. The time evolution of the average magnetiza-
tion components is shown in Fig. 6.16. Due to the strong damping, the system
evolves to an equilibrium state in about 0.12ns, while in both previous cases
with α = 0.02, the equilibrium state is reached only after about 0.8ns. The sta-
bilizing effect of the large damping constant makes the use of larger time steps
possible, see Table 6.3, and guarantees a perfect agreement between the two
methods.

The sample dimension has a strong influence on the magnetization phe-
nomena. To show this, simulations are performed for a sample with the mate-
rial properties of the reference case, but with dimensions of 60nm. In the 20nm
sized samples described above, the magnetization stays quasi uniform during
the entire reversal process. This is not the case for the 60nm sample. Since
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Figure 6.15: Time evolution of the average magnetization components. Compared with the
reference case, the exchange constant is smaller: A = 15pJ/m.

Figure 6.16: Time evolution of the average magnetization components. Compared to the
reference case, the damping constant is larger: α = 0.1.

non-uniform magnetization states are formed, a sufficiently small discretiza-
tion mesh has to be used. Simulations are performed with our FD scheme
using different discretization sizes Δ. The results converge when diminishing
Δ up to 1.5nm. This small discretization size is needed to properly reconstruct



6.4 Comparison with other micromagnetic schemes 107

Figure 6.17: Time evolution of the average magnetization components for a 60nm cube
with material parameters identical to the reference case. Curves are simulated using the
FEM scheme with different discretization sizes. The curves simulated with the FD scheme
with Δ = 1.5nm are added as a reference.

the local variations of the magnetization. The relaxation process is also sim-
ulated with the FEM scheme diminishing the discretization size. However,
since the use of the FEM/BEM formulation for the magnetostatic field leads
to fully-populated matrices, CPU time and memory requirements restrict the
minimum applicable Δ to 3.3nm. The curves computed with the FEM scheme
tend to converge to the curves simulated with the FD scheme (Δ = 1.5nm),
suggesting the correctness of the approaches. The relaxation of the average
magnetization components is shown in Fig. 6.17. The magnetization states in
the plane y = 0 on time point t = 65ps for the reference case and the 60nm
particle are shown in Fig. 6.18.

Finally, a precessional switching process (α = 0) is described in a spher-
ical sample with a radius of 50nm. Initially, the particle is saturated (Ms =
1400kA/m) along the x-axis, which coincides with the uniaxial anisotropy
axis (Ku = 500kJ/m3). A field with amplitude 400kA/m is applied along the
positive y-axis. The exchange constant is 35pJ/m. Since the magnetization
stays uniform during the reversal process, the dynamical behavior can also be
calculated analytically [5]. The time evolution of the average magnetic com-
ponents is shown in Fig. 6.19. In the FEM simulation tetrahedrons with edges
of ∼ 5nm and a time step of 75fs are used. The resulting curves align perfectly
with the analytical solution. This is not the case for our FD simulation with the
same discretization size. The cubical discretization of the curved boundaries
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Figure 6.18: Magnetization states in the plane y = 0 at time instant t = 65ps for the reference
case with 20nm edges (left) and for the case with 60nm edges (right).

Figure 6.19: Time evolution of the average magnetization components during the preces-
sional switching in a sphere.

introduce some discrepancies. The results gradually improve when smaller
FD cells are used. When a discretization of 2nm is used, the agreement with
the analytical solution is very good (Fig. 6.19). However, the obligatory use of
small FD cells results in a larger problem size and smaller time steps: δt = 10fs
compared with δt = 200fs when Δ = 5nm. In [74] methods are presented to
correct the errors introduced by the cubical discretization of curved bound-
aries.
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6.4.3 Conclusion

When comparing the simulation results for the different magnetization phe-
nomena, one concludes that the correctness of the developed micromagnetic
scheme is guaranteed. In comparison with the FEM scheme, the excellent
stability, the time and memory efficiency of the predictor-corrector semi-
analytical time stepping scheme and of the magnetostatic field evaluation
techniques (described in Chapter 7) are striking. Due to the cubical discretiza-
tion of curved boundaries, the developed FD scheme has however difficulties
handling complex geometrical structures. In this case, the use of smaller dis-
cretization cells is required.

Since the FEM scheme uses a semi-implicit time stepping algorithm, it does
not preserve the magnetization amplitude which limits the time step length.
Further, the FEM/BEM approach leads to a worse time and memory efficiency
due to the LU factorization of the fully populated magnetostatic problem ma-
trix. This makes the FEM scheme only suited for the simulation of small mi-
cromagnetic problems. The method is however able to describe curved bound-
aries.

6.5. Micromagnetic hysteresis scheme

In the former sections we presented an accurate micromagnetic scheme that
enables the simulation of magnetization processes in large structures during
the transition from one equilibrium state to another. When this scheme is used
successively to determine equilibrium states for varying applied fields, one
can come to the simulation of hysteresis loops. To simulate quasi-static hys-
teresis loops, a second time discretization level is introduced on which the
applied field varies. This macroscopic time scale is much larger than the time
scale of the LLG equation guaranteeing the intended rate independent hys-
teresis description (see Section 4.3.4).

6.5.1 Discretization of the applied field

The quasi-static applied magnetic field Ha is discretized on a macroscopic
timescale ΔT of the order of ms and approximated with a piecewise constant
time function. It is assumed that at the moment the applied field Ha jumps
from a constant value to the next one, the material is in static micromagnetic
equilibrium. This assumption is motivated by the different time scales in-
volved. Indeed, the magnetization dynamics described by the LLG-equation
(6.31) is discretized on a microscopic timescale δt of the order of ps. In each
FD cell the evolution of the magnetization field m(r, t) is computed through
time stepping until a new static micromagnetic equilibrium is obtained corre-
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Figure 6.20: Flowchart of the micromagnetic hysteresis scheme.

sponding to the new constant value for the applied field Ha. The numerical
scheme is shown in Fig. 6.20. Starting from an initial magnetization state minit
and applied field Ha,init = Ha(T), the applied field jumps to the next constant
value Ha = Ha(T + ΔT). The corresponding new equilibrium magnetization
is computed by successively integrating the LLG-equation through time step-
ping with steps δt  ΔT: during each time step [ti, ti + δt] the orientation of the
magnetization field m(r, t) in every FD cell is computed until an equilibrium
condition is fulfilled. Starting from this new equilibrium state the applied field
takes a next jump Ha(T + 2ΔT) − Ha(T + ΔT) and a next magnetic equilib-
rium state is computed. This scheme is continued until the applied field Ha
has reached its end value Ha,end.

To check wether equilibrium is reached, the following stopping criterium
is verified for a number of test cells.

|m(ti) − m(ti + δt)|
δt

< ε ps−1 (6.40)

where δt is expressed in ps. A typical value for ε is 0.01. When the criterium
(6.40) is fulfilled for all test cells, equilibrium is reached and the applied field
Ha takes a next jump.

6.5.2 Optimization of the number of applied field jumps

The number of macroscopic time steps in the quasi-static applied field has an
influence on the precision and the time efficiency of the micromagnetic hys-
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Table 6.4: Discretization of the applied field

# ΔT εrms # δt
100 0.0128 6723
200 0.0078 7346
400 0.0049 9174
600 0.0033 8617
800 0.0017 8780

1000 — 9739

teresis scheme. To determine the optimal number of macroscopic time steps
#ΔT (i.e. the optimal number of applied field jumps), the hysteresis loop for
an ellipsoidal grain with semi-axes of 0.288μm, 0.288μm and 0.576μm is sim-
ulated. In the simulations, the number of applied field jumps in the interval
[−5105 A/m, 5105 A/m] is varied. The sample has a cubic anisotropy with
easy axes parallel to the semi-axes and the applied field parallel to the main
axis. In the simulation of the loop shown in Fig. 6.21, Ha is described with
1000 field jumps. The particular form of the loop –narrow in the center and
bulky at the bottom and at the top – is due to a sudden creation of domains in
the grain (top and bottom), these domains deform smoothly according to the
applied field Ha (center). The internal magnetization configurations are e.g.
described in [75]. The root mean square deviation

εrms =
1

#ΔT

√√√√#ΔT

∑
i=1

(
< M(Ti) > − < Mre f (Ti) >

)2
(6.41)

of the other loops (simulated with less time steps ΔT) with respect to this ref-
erence loop is shown in Table 6.4, where also the total number of microscopic
time steps δt is given. One can conclude that a deviation of less than 1 per-
cent is already achieved when 200 macroscopic time steps are used and the
number of microscopic time steps increases only slowly with the number of
macroscopic time steps.

6.6. Conclusion

In this chapter, we have presented the micromagnetic (hysteresis) scheme. We
have found that the time and memory efficiency of the micromagnetic simula-
tions is determined by the efficiency of the time stepping scheme for the LLG
equation on the one hand and by the efficient evaluation of the effective field
terms on the other hand.

Two time and memory efficient semi-analytical time stepping schemes de-
veloped during this PhD have been presented. The semi-analytical time step-
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Figure 6.21: Reference hysteresis loop of an ellipsoidal iron sample with semi-axes of
0.288μm, 0.288μm and 0.576μm. The applied field is parallel to the main axis and is de-
scribed as a staircase function with 1000 field jumps.

ping schemes preserve the properties of the LLG equation inherently. Further,
the use of analytical expressions guarantees a higher order extrapolation of
the local magnetization trajectories enabling the use of very large time steps,
while limiting the number of effective field evaluations. These properties of
the semi-analytical time stepping schemes make them perfectly suited for the
simulation of magnetization processes in micromagnetically large samples.

In a collaboration with INRIM, a comparison is made between simula-
tion results obtained with the presented micromagnetic schemes and simu-
lation results obtained with FEM based code and with the NIST/OOMF code.
This comparison has proven the accuracy of the developed micromagnetic
schemes. Further it is shown how the time stepping of the LLG equation can
result into a micromagnetic hysteresis scheme able to describe time indepen-
dent hysteresis loops.

Concerning the evaluation of the effective field terms it has become clear
that an accelerated computation of the magnetostatic field is indispensable
since the classical evaluation scales O(N2), while the other effective field eval-
uations scale O(N). The algorithms that assure such an accelerated evaluation
of Hms will be presented in the next chapters.



CHAPTER 7

Fast Fourier Transform based

evaluation of the magnetostatic

field

7.1. Introduction

From Chapter 6 it is clear that the effective field has to be evaluated several
thousands of times during one simulation. In Section 6.2.4 we concluded that
for the classical evaluation of the magnetostatic field the computational time
and memory requirements both scale O(N2) while the computation of the
other effective field terms only scales O(N) and requires no extra memory.
In this chapter we will exploit the convolution structure of the discretized ex-
pression for the magnetostatic field in a FD cell with center r = rj (cfr. Section
6.2.4)

Hms(ri) = −Ms

4π

N

∑
j=1
j �=i

∫
V

∇i∇i
1

|ri − rj + ρρρ| dρρρ · mj (7.1)

by using Fast Fourier Transforms (FFTs). This reduces the computational bur-
den to O(N log N) and the memory requirements to O(N). We recall that V
is the volume of a FD cell, mj is the uniform magnetization of the FD cell at
r = rj and that ρρρ is an integration variable.

In micromagnetic computations, FFTs are widely used for the evaluation
of the magnetostatic field, see e.g. [76, 77, 78]. In [79], two FFT based meth-
ods to compute the magnetostatic field in 2D structures are compared. The
constant magnetization method starts from a discretization where a uniform
magnetization field is assumed in each discretization cell. The constant charge
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method [80, 81] starts from a discretization where a uniform magnetic charge
density is assumed in each cell. In [79], the constant magnetization method
which is used in this PhD work (see Section 6.1) is concluded to have superior
convergence properties. Within this method, two approaches are adopted to
compute the magnetostatic field.

In a first approach, a FFT based scheme evaluates the magnetostatic fields
using the direct relation between Hms and the uniform magnetization field in
each discretization cell. This FFT scheme provides results with a high accu-
racy. A second alternative FFT scheme evaluates, the magnetostatic field by
taking the gradient of the scalar magnetic potential ψms which is in turn com-
puted using the relation between ψms and the uniform magnetization in each
discretization cell. This FFT scheme has a lower accuracy, but is faster and
requires less memory. In this chapter, the convolution theory is first outlined
and remarks are given about periodic structures, then the two FFT schemes
are presented and their performance is determined. Finally, the evaluation of
Hms in periodic structures is described.

7.2. Convolution theorem and periodicity

In general electromagnetic problems, convolution structures like (7.1) arise
frequently, where the fields f (r) are expressed as a convolution of a Green’s
function g(r) with the sources s(r). The Green’s function and its dimension-
ality depends on the physical problem and its description. Now consider a
problem where the sources and the field entity are scalar, e.g. the electrostatic
problem where the electric potential is evaluated in terms of N distributed
electrical charges.

f (ri) =
N

∑
j=1

g(ri − rj)s(rj) (7.2)

When the sources are placed on a regular grid, this class of problems can be
computed rapidly by adopting the convolution theorem [82]. The one dimen-
sional convolution theorem states that:

If a signal sj is periodic with period N, so that it is completely determined by the
N values s0 . . . sN−1, then its discrete convolution with a response function of finite
duration N is related to the discrete Fourier transform pair

f j =
N/2

∑
k=−N/2+1

gj−ksk ⇔ f̃ n = g̃ns̃n (7.3)

Here g̃n, (n = 0, . . . , N − 1) is the discrete Fourier transform of the values gj, (j =
0, . . . , N − 1), while s̃n, (n = 0, . . . , N − 1) is the discrete Fourier transform of the
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values sk, (k = 0, . . . , N − 1).

By definition, the discrete Fourier transform of a function f is given by

f̃ k =
N−1

∑
n=0

f ne−ı2πkn/N , (7.4)

while the inverse discrete Fourier transform is given by

f n =
1
N

N−1

∑
k=0

f̃ keı2πkn/N . (7.5)

Here, and in what follows, Fourier transformed quantities are denoted with
a tilde. The definition of the (inverse) Fourier transform and the convolution
theorem are easily extended to three dimensions.

The convolution theorem is based on the periodicity of the signals. In nu-
merical applications, the data is only periodic in one or more directions if pe-
riodic boundary conditions are (partially) adopted. When the sources are not
periodic, the input data has to be zero padded: the same number of zeros
has to be added in the considered direction. By doing so, the input data for
a 3D computational domain Ω, non periodic in any direction and consisting
of Nx × Ny × Nz FD cells has dimensions 2Nx × 2Ny × 2Nz. In that way un-
wanted side effects originating from the cyclic nature of Fourier transforms
are excluded. Hence, the source data is stored in 3D matrices. It has following
entries in the plane z = k, (0 ≤ k < Nz)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

s0,0,k · · · s0,Ny−1,k 0 · · · 0
...

. . .
...

...
. . .

...
sNx−1,0,k · · · sNx−1,Ny−1,k 0 · · · 0

0 · · · 0 0 · · · 0
...

. . .
...

...
. . .

...
0 · · · 0 0 · · · 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (7.6)

The Green’s function elements also have to be adapted to fit the cyclic na-
ture of the convolution theorem. Therefore, the 3D matrix has following en-
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tries in the plane z = k, (0 ≤ k < Nz)⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

g0,0,k · · · g0,Ny−1,k 0 g0,−(Ny−1),k · · · g0,−1,k

...
. . .

...
...

...
. . .

...
gNx−1,0,k · · · gNx−1,Ny−1,k 0 gNx−1,−(Ny−1),k · · · gNx−1,−1,k

0 · · · 0 0 · · · 0
g−(Nx−1),0,k · · · g−(Nx−1),Ny−1,k 0 g−(Nx−1),−(Ny−1),k · · · g−(Nx−1),−1,k

...
. . .

...
...

...
. . .

...
g−1,0,k · · · g−1,Ny−1,k 0 g−1,−(Ny−1),k · · · g−1,−1,k

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (7.7)

When considering periodic boundary conditions in the x, y and z-
direction, the matrices containing the source data are not zero padded and
the matrix representing the Green’s function is restricted to half its range. For
the Green’s function matrix, this results in the following entries in the plane
z = k, (0 ≤ k < Nz)⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

g0,0,k · · · g0,Ny/2−1,k 0 g0,−(Ny/2−1),k · · · g0,−1,k

...
. . .

...
...

...
. . .

...
gNx/2−1,0,k · · · gNx/2−1,Ny/2−1,k 0 gNx/2−1,−(Ny/2−1),k · · · gNx/2−1,−1,k

0 · · · 0 0 · · · 0
g−(Nx/2−1),0,k · · · g−(Nx/2−1),Ny/2−1,k 0 g−(Nx/2−1),−(Ny/2−1),k · · · g−(Nx/2−1),−1,k

...
. . .

...
...

...
. . .

...
g−1,0,k · · · g−1,Ny/2−1,k 0 g−1,−(Ny/2−1),k · · · g−1,−1,k

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (7.8)

When periodic boundary condition are only applied in one or two directions,
a combination of the formulas (7.6) to (7.8) has to be made.

However, special attention should go to the interpretation of these formu-
las. These formulas describe a periodic structure in the sense that FD cells
interact with the closest FD cells (or their images) within the same period.
This is shown in Fig. 7.1 for the case of a structure that is only periodic in the
x-direction. Each FD cell interacts with the FD cells in the Nx/2 − 1 planes
left and right from the considered cell. This can be easily derived from the en-
tries of the matrix (7.8). This description implies that no interaction takes place
with the infinite number of images of the FD cells in all other periods in the
x-direction. Hence, when exploiting the cyclic nature of the FFTs as depicted
here, field entities are computed in each FD cell originating from one period of
the structure (with the considered FD cell central in this period). This means
that an infinite periodic repetition is not described. If one aims to describe also
these periodic images, periodic Green’s functions should be used.
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Figure 7.1: Interaction cells for a structure periodic in the x-direction with period Nx cells.
The gray colored FD cell interacts with the FD cells in Nx/2 − 1 planes left and right from
the cell.

7.3. FFT based evaluation schemes for the magnetostatic field

7.3.1 Direct magnetostatic field evaluation (scheme 1)

In this approach, further referred to as scheme 1, the action of the second ∇ρρρ

operator in (7.1) is first accounted for, yielding

Hms(ri) = −Ms

4π

N

∑
j=1
j �=i

∫
V

∇ρρρ
ri − rj + ρρρ

|ri − rj + ρρρ|3 dρρρ · mj. (7.9)

Applying Gauss’ theorem on this gives

Hms(ri) = −Ms

4π

N

∑
j=1
j �=i

∫
∂V

(ri − rj + ρρρ)
|ri − rj + ρρρ|3 uS dρρρ · mj, (7.10)

with uS the normal unit vector pointing outward of the surface ∂V of the FD
cell. Rewriting (7.10) explicitly as a convolution product yields

Hms(ri) =
N

∑
j=1
j �=i

g(ri − rj) · mj, (7.11)

with g(r) the symmetrical Green’s function tensor

g(r) =

⎡⎣ gxx(r) gxy(r) gxz(r)
gxy(r) gyy(r) gyz(r)
gxz(r) gyz(r) gzz(r)

⎤⎦ (7.12)
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Now, the discrete convolution theorem [82] is applied to the product (7.11):

H̃i,j,k
ms,x = g̃i,j,k

xx m̃i,j,k
x + g̃i,j,k

xy m̃i,j,k
y + g̃i,j,k

xz m̃i,j,k
z ,

H̃i,j,k
ms,y = g̃i,j,k

xy m̃i,j,k
x + g̃i,j,k

yy m̃i,j,k
y + g̃i,j,k

yz m̃i,j,k
z , (7.13)

H̃i,j,k
ms,z = g̃i,j,k

xz m̃i,j,k
x + g̃i,j,k

yz m̃i,j,k
y + g̃i,j,k

zz m̃i,j,k
z .

Following the convolution theorem, one computes the magnetostatic field by:

1. Fourier transforming the magnetization data mx, my and mz after zero
padding in the non-periodic dimensions.

2. performing the point wise products (7.13) of the Fourier transformed
magnetization data with the Fourier transformed Green’s tensor elements
(7.12).

3. inverse Fourier transforming the result of the previous step.

The elements in the Green’s function matrices can be determined by evalu-
ating the integrals in (7.10) using a Gaussian quadrature formula. The explicit
expressions for the Green’s tensor elements are given in Appendix A. When
an adequate high order Gaussian quadrature formula is used to compute the
tensor elements, the magnetostatic fields generated by the uniformly magne-
tized FD cells can be computed up to any wanted accuracy. In this work, a 6
digits accuracy is used since all other computations are single precision. The
accuracy of the scheme is checked by comparison with analytical expressions
provided in [21].

In this context, it should be noted that at sufficiently large distances (e.g.
20 FD cells), the magnetostatic field generated by a FD cell

HFD
ms (r) = −Ms

4π

∫
V

∇∇ 1
|r + ρρρ| dρρρ · mj (7.14)

and the magnetostatic field generated by a magnetic dipole

H
dip
ms (r) = −Ms

4π
∇∇ 1

|r| · mj (7.15)

are identical within the intended accuracy. The use of the expression (7.15)
to describe the magnetostatic interaction between sufficiently distant FD cells
vastly accelerates the evaluation of the Green’s matrix elements.

7.3.2 Potential based magnetostatic field evaluation (scheme 2)

In this approach, further referred to as scheme 2, first the scalar magnetic po-
tential ψms(r) is computed in each FD cell. Afterwards, the magnetostatic field
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is evaluated by taking the negative gradient of the magnetic potential

Hms(r) = −∇ψms(r). (7.16)

Analogous to expression (7.9), the magnetic potential in a point ri is given by

ψms(ri) =
Ms

4π

N

∑
j=1

∫
V

∇ρρρ
1

|ri − rj + ρρρ| dρρρ · mj. (7.17)

Note that for the evaluation of the magnetic potential, the self contribution
has to taken into account to come to accurate results. The correction for the
self contribution is made when the magnetostatic field is derived from ψ. Ap-
plying Gauss theorem on (7.17) gives

ψms(ri) =
Ms

4π

N

∑
j=1

∫
∂V

1
|ri − rj + ρρρ|uS dρρρ · mj, (7.18)

with uS the normal unit vector pointing outward of the surface ∂V of the FD
cell. Rewriting (7.18) explicitly as a convolution product yields

ψms(ri) =
N

∑
j=1

f(ri − rj) · mj, (7.19)

with f(r) the Green’s function vector

f(r) =
[

fx(r) fy(r) fz(r)
]
. (7.20)

Adopting the convolution theorem gives

ψ̃
i,j,k
ms = f̃ i,j,k

x m̃i,j,k
x + f̃ i,j,k

y m̃i,j,k
y + f̃ i,j,k

z m̃i,j,k
z . (7.21)

Hence, one computes the magnetic potential by:

1. Fourier transforming the magnetization data mx, my and mz after zero
padding in non periodic directions.

2. performing the point wise products (7.21) of the Fourier transformed
magnetization data with the Fourier transformed Green’s vector elements
(7.20)

3. inverse Fourier transforming the result of the previous step.

Again, the elements in the Green’s function vector can be determined by
evaluating the integrals in (7.18) using a Gaussian quadrature formula or can
be evaluated analytically in closed form [61]. The explicit expressions for the
Green’s vector elements are given in Appendix A. Also in this case, the mag-
netic potential generated by a dipole can be used to describe the magnetostatic
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interaction between sufficiently distant FD cells to accelerate the evaluation of
the Green’s function elements.

To derive the magnetostatic field Hms(r) in each FD cell (i, j,k) one has to
take minus the gradient of the local magnetic potential ψms(r). This is approx-
imated numerically using the following formula⎡⎢⎣ Hi,j,k

ms,x

Hi,j,k
ms,y

Hi,j,k
ms,z

⎤⎥⎦ =
1

2Δ

⎡⎢⎣ ψ
i−1,j,k
ms − ψ

i+1,j,k
ms

ψ
i,j−1,k
ms − ψ

i,j+1,k
ms

ψ
i,j,k−1
ms − ψ

i,j,k+1
ms

⎤⎥⎦ . (7.22)

The self contribution of each FD cell to the magnetic field in its center has to
be subtracted in the last step of these computations. The numerical evaluation
of the gradient (7.22) introduces discretization errors in the computed values
of the magnetostatic fields. Hence this scheme results in a low accuracy eval-
uation of Hms, compared to the accuracy of scheme 1.

7.3.3 Performance study

The timing and memory consumption of the different magnetostatic field
evaluation schemes is described here for a non-periodic structure, but can eas-
ily be repeated for (partially) periodic structures. Hence all FFT data have di-
mensions 2Nx × 2Ny × 2Nz, (N = Nx NyNz). It is the intention to develop an
algorithm that allows to compute the magnetostatic fields multiple times for
different magnetic configurations in a fast way. Hence, generic computations
are performed as much as possible during the set up phase of the algorithm
in order to avoid duplication of computations. In that respect, the Green’s
functions matrices are constructed and Fourier transformed only once during
set up. Due to the symmetry properties of the Green’s function elements, the
Fourier transformed Green’s function matrices are real or purely imaginary.

The number of computations for the evaluation of Hms in one time step
is shown in Table 7.1. In both schemes all three zero padded magnetization
matrices are Fourier transformed. Each (inverse) Fourier transform requires
O(N log N) computations. Since FFTs are used in many research areas, very
fast and sophisticated codes have been developed. In our implementation,
routines are used included in the FFTW library [83]. These routines are fur-
ther optimized in the zero padded case. In Appendix B, it is outlined how 1D
FFTs on rows containing only zeros are excluded, leading to much faster (but
still O(N log N)) computation of the FFTs.

In Fourier space, 9 × 4N real × complex multiplications are performed to
evaluate the point wise products (7.13) in the direct computation scheme,
while scheme 2 only needs 3 × 4N real × complex multiplications to evalu-
ate (7.21). The first scheme needs 3 inverse Fourier transforms while the sec-
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Table 7.1: Number of computations for the evaluation of Hms for N FD cells (no periodic-
ity).

scheme 1 scheme 2
forward FFTs 3 3
point wise products 9 × 4N 3 × 4N
inverse FFTs 3 1
gradients 0 N

ond scheme only needs one. Additionally, in the low accuracy Hms evaluation
scheme based on the magnetic potential, the gradient of the magnetic potential
ψ has to be evaluated in every FD cell, which is done in O(N) computations.

The memory requirements for both FFT based evaluation schemes are
shown in Table 7.2. The different contributions are expressed in terms of real
numbers. In both schemes 3N real numbers are used to save the magnetization
data and the resulting magnetostatic field data. One can reduce the memory
requirements to save the magnetization data to 2N instead of 3N by only stor-
ing the azimuth and zenith angles exploiting the fact that the magnetization
amplitude is constant. However, the small memory gains do not justify the
extra CPU time due the numerous evaluations of goniometric functions. In
scheme 1 and scheme 2, the Fourier transformed Green’s function elements
are stored in respectively 6 and 3 matrices containing 4N real numbers. In
scheme 1, 3× 8N real numbers are required to store the 3× 4N complex values
of the Fourier transformed magnetization components. For each Fourier trans-
formed magnetostatic field component H̃ms,q (q = x,y,z) in (7.13), the point
wise products are elaborated first and directly inverse Fourier transformed
to the actual field components Hms,q (q = x,y,z). Hence 8N real numbers are
needed to sequentially store a Fourier transformed magnetostatic field com-
ponent. In scheme 2, the magnetization components Mq (q = x,y,z) are Fourier
transformed, multiplied point wise with the corresponding Green’s function
matrix fq and added to the Fourier transformed magnetic potential ψ̃, one after
the other. In that way only one Fourier transformed magnetic component has
to be known at the time, limiting the required memory for the Fourier trans-
formed magnetization components to 4N complex values. In total the magneto-
static field evaluation scheme based on the magnetic potential requires about
half of the memory compared to the direct evaluation scheme.

Due to the numerical evaluation of the gradient operator (7.22), scheme
2 is expected to have a lower accuracy compared to scheme 1. The accuracy
of the magnetic potential based FFT scheme is determined by comparing the
magnetostatic field values obtained by both schemes for iron monocrystals of
different dimensions in a micromagnetic equilibrium state encountered in the
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Table 7.2: Memory requirements for the evaluation of Hms expressed in real numbers for
N FD cells (no periodicity).

scheme 1 scheme 2
m 3 × N 3 × N
Hms 3 × N 3 × N
g̃/f̃ 6 × 4N 3 × 4N
m̃ 3 × 8N 1 × 8N
H̃ms/ψ̃ 1 × 8N 1 × 8N
total 62N 34N

Table 7.3: Accuracy of scheme 2 for different dimensions.

edge size normalized error
0.32μm 0.0250
0.64μm 0.0124
1.28μm 0.0056
2.56μm 0.0031

simulation of their hysteresis loop. The normalized error, defined as

error =

√√√√∑N
i=1 |HFFT2

ms,i − HFFT1
ms,i |2

∑N
i=1 |HFFT1

ms,i |2 (7.23)

is shown in table 7.3 for different sample dimensions. The fields HFFT1
ms , com-

puted in scheme 1 are considered as a reference. Table 7.3 shows that the error
decreases for larger sample dimensions to less than one percent. This is be-
cause in larger monocrystals the magnetostatic potential is smoother than in
the small monocrystals. This results in a more accurate numerical approxima-
tion of the gradient (7.22). To demonstrate this Fig. 7.2 shows magnetic con-
figurations in different planes of the sample with edges of 1.28μm together
with the magnetostatic field values and the local normalized error in the same
planes. As expected, the largest errors occur near the domain walls where the
variations of the magnetic potential are larger leading to larger errors on the
magnetostatic field values. Furthermore, it should be noted that higher order
approximations for the gradient operator only lead to small improvements in
accuracy.
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Figure 7.2: Locally averaged magnetization (top), amplitude of the magnetostatic field
[Am−1] (middle) and local normalized error on a logarithmic scale (bottom) in planes x =
0.0μm (left) and z = 0.16μm (right) of an iron cubic sample with edges of 1.28μm.

7.4. Description of infinite periodic structures in the FFT scheme

From Chapter 3 it is clear that the geometry of the ferromagnetic sample has
a large influence on the magnetization dynamics and consequently on the
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hysteresis properties. Macroscopically, this is expressed by the demagnetizing
tensor of the sample. As seen in Section 3.6 the demagnetizing factors decrease
for increasing elongating shapes. In the limit for infinitely elongated samples,
the influence of the magnetostatic effects are reduced to zero in the longitudi-
nal direction. In this way, only the demagnetizing effects in the cross section
together with the other micromagnetic interactions determine the magnetiza-
tion process.

In what follows, we will determine the magnetostatic field in one period P
of an infinite ferromagnetic structure, periodic in one or two directions d = 1
or d = 2. Figure 7.3 shows e.g. a geometry, which is periodic in one dimension.
The fields, computed in one FD cell, originate from the uniformly magnetized
FD cells in the period and all their images. Note that this is different from
the standard periodic boundary conditions when FFTs are used without zero
padding, see Fig. 7.1. We recall that it makes no sense to compute magneto-
static interactions in a geometry which is infinite in the three dimensions (see
Section 3.7).

The discretized magnetostatic field Hms in a point r originating from the
infinite periodic structure is given by

Hms(ri) = −Ms

4π

∞

∑
j=1
j �=i

∫
V

∇i∇i
1

|ri − rj + ρρρ| dρρρ · mj. (7.24)

Here, we let ∇ act on ri, which is identical to ∇ acting on ρρρ as in (6.30). Due to
the periodicity, we can restrict ourself to compute the magnetic fields in points
r ∈ P . When P is a cube with edge length L, it holds that all quantities f (r)
are invariant under a translation nL

f (r) = f (r + nL) (7.25)

with n an integer vector with components in the infinite directions. When for
instance periodicity is described in the x- and y-direction n is

n = nxex + nyey nx,ny ∈ Z. (7.26)

The periodicity particularly holds for the magnetization m(rj), which enables
us to write (7.24) as

Hms(ri) = −Ms

4π

N′

∑
j=1

∑
n∈Zd

∫
V

∇i∇i
1

|ri − (rj + nL + ρρρ)| dρρρ · mj. (7.27)

The prime on the first summation indicates that the term i = j does not con-
tribute when n = [0,0,0], further Zd is the domain of integers in the d periodic
directions in which n is defined, see (7.26).
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Figure 7.3: An infinite periodic ferromagnetic structure. The magnetostatic field in one FD
cell originates from FD cells in the considered period and there periodic images.

7.4.1 Direct evaluation of the infinite sum

To compute the infinite sum (7.27), one can choose to only account for a finite
number of periods and neglect the contributions from FD cells in far away
periods. In that way, expression (7.27) is rewritten as

Hms(ri) =
N′

∑
j=1

finite

∑
n∈Zd

g(ri − (rj + nL)) · mj (7.28)

When the Green’s function matrices are adjusted to

g∗(r) =
finite

∑
n∈Zd

g(r − nL) (7.29)

the same approach as in Section 7.3.1 can be followed to evaluate (7.28). More-
over, zero padding is not required in the periodic directions since the input
data is periodic.

This direct summation approach is not very efficient since the series are
only slowly convergent and thus a large number of periods has to be taken
into account in order to well approximate the infinite periodic structure. How-
ever, because the evaluation of the periodic Green’s function matrix is per-
formed in the set up phase of the algorithm, one can follow this approach
when periodicity is described in only one dimension. When periodicity is as-
sumed in two dimensions, we will rely on the Ewald summation technique
to sum the contributions to the magnetostatic field of the periodic images in a
fast and accurate way.
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7.4.2 Ewald summation technique

Ewald summation techniques are developed in the study of layered structures
[84] and in the area of molecular dynamic simulations [85, 86]. Here, often
very large molecules are described in the present of a solvent. The numerical
simulations determine the slowly decaying electrostatic forces between the
thousands of atoms in the molecules. In the simulations, periodic boundary
conditions are employed to minimize the surface effects. In micromagnetism,
the Ewald summation technique has been used by Berkov et al. [87, 88] and
Lebecki et al. [89].

We have seen that the contributions from far away FD cells can be per-
fectly approximated by the fields generated by corresponding dipoles. Hence,
in what follows we will compute the magnetostatic field H

dip
ms generated by

dipoles which are periodically placed in the center of the FD cells

H
dip
ms (ri) = −Ms

4π

N′

∑
j=1

∑
n∈Zd

h
dip
ms (ri − (rj + nL))

= −Ms

4π

N′

∑
j=1

∑
n∈Zd

∇∇ 1
|ri − (rj + nL)| · mj.

(7.30)

To compute the exact magnetostatic field (7.27) the influence of the fields gen-
erated from neighboring FD cells will be corrected later on

Hms(ri) = H
dip
ms (ri) + ∑

j=neighbors

[
hFD

ms (ri − rj) − h
dip
ms (ri − rj)

]
. (7.31)

Reformulation in fast converging series

When the Ewald summation technique is applied, expression (7.30) for H
dip
ms is

evaluated efficiently. Since the kernel 1/|r| decreases only slowly with grow-
ing r, a large number of terms in the sum (7.30) have to be taken into account to
have an accurate result, classically resulting in a highly time inefficient eval-
uation scheme. To alleviate this problem, a diffuse magnetization is added
and substracted in each FD cell oriented in the opposite direction of the lo-
cal (discrete) magnetization dipole, see Fig. 7.4. In every FD cell j, this diffuse
screening magnetization Msmscr

j (r) compensates for the actual magnetization
Msmj, which makes the resulting magnetostatic field decay rapidly to zero
at a prescribed distance. In accordance with the electrostatic Ewald summa-
tion, we choose the screening magnetization to be Gaussian. To compensate
a (normalized) magnetic dipole m0 in the origin, the (normalized) screening
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magnetization mscr
0 is

mscr
0 (r) = −m0

(
β

π

)3/2
e−βr2

(7.32)

The screening magnetization is added to and subtracted from m(r), resulting
in

H
dip
ms (ri) = −Ms

4π

N′

∑
j=1

∑
n∈Zd

∇i∇i
1

|ri − (rj + nL)|

·
[
mj + mscr

j (ri − (rj + nL)) − mscr
j (ri − (rj + nL))

]
.

(7.33)

We can split this expression in two sums, a direct sum Hdir
ms(ri) that is converg-

ing fast in real space and a reciprocal sum leading to Hscr
ms(ri), related with the

screening potentials that is converging fast in Fourier space.

H
dip
ms (ri) = Hdir

ms(ri) + Hscr
ms(ri). (7.34)

Both sums are shown in Fig. 7.4.

Direct sum

Since the mscr
j (r) compensates for mj, the direct sum

Hdir
ms(ri) = −Ms

4π

N′

∑
j=1

∑
n∈Zd

∇i∇i
1

|ri − (rj + nL)|

·
[
mj + mscr

j (ri − (rj + nL))
] (7.35)

converges very fast. Hence, only a small number of terms, i.e. a small number
of periods have to be taken into account in the summation. The exact number
of terms for a given precision depends on how well the magnetization is com-
pensated for. This depends on the width of the Gaussian distribution. For β

in 7.32 very large, the Gaussian distribution evolves towards a delta function
which compensates the magnetization perfectly. For small values of β more
terms have to taken into account. This is shown in Fig. 7.4. The standard FFT
techniques are adopted to compute the direct sum in a fast way.
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=

+

direct sum

reciprocal sum

Ewald sum

Figure 7.4: The slowly converging infinite Ewald sum is reformulated as the sum of two
fast converging series. As a combination of the actual magnetizations and the compen-
sating screening magnetizations, the direct sum converges fast in real space. The sum of
compensating screening magnetizations converges fast in reciprocal, Fourier space.

Reciprocal sum

The reciprocal sum

Hscr
ms(ri) =

Ms

4π

N′

∑
j=1

∑
n∈Zd

∇i∇i
1

|ri − (rj + nL)| · mscr
j (ri − (rj + nL))

=
Ms

4π

N

∑
j=1

∑
n∈Zd

∇i∇i
1

|ri − (rj + nL)| · mscr
j (ri − (rj + nL))

− Hscr
sel f (mi)

(7.36)

is only slowly convergent. In the first expression, the self contribution of the
screening magnetization corresponding to i = j, n = [0,0,0] is omitted, while
in the second expression, this term is included and subtracted afterwards. The
sum is only slowly convergent in real space, but will converge fast in Fourier
space (reciprocal space).

The magnetostatic field originating in the screening magnetizations (7.36)
can also be written in terms of its corresponding potential, Hscr

ms = −∇ψscr
ms .
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Then Hscr
ms is determined by solving the Poisson problem ∇2ψscr

ms = −Ms∇ ·
mscr. Rewritten in Fourier space, these expressions result in

H̃scr
ms(k) = −kψ̃scr

ms (k) (7.37)

and
k2ψ̃scr

ms (k) = −Msk · m̃scr(k). (7.38)

Based on (7.32), the total screening magnetization mscr(r) is defined as

mscr(r) =
N

∑
j=1

∑
n∈Zd

mscr
j
(
r − (rj + nL)

)
= −

N

∑
j=1

∑
n∈Zd

mj

(
β

π

)3/2
e−β|r−(rj+nL)|2

(7.39)

The Fourier transform of this screening magnetization (7.39) is given by

m̃scr(k) = −
∫ N

∑
j=1

∑
n∈Zd

mj

(
β

π

)3/2
e−β|r−(rj+nL)|2 e−ık·r dr

= −
N

∑
j=1

∑
n∈Zd

mje
−ık·rj e−ık·nL

×
(

β

π

)3/2 ∫
e−β|r−(rj+nL)|2 e−ık·[r−(rj+nL)] d

[
r − (rj + nL)

]
= −

N

∑
j=1

∑
n∈Zd

mje
−ık·rj e−ık·nLe−k2/4β.

(7.40)

Due to the periodicity (7.25), it holds that (ννν is an integer vector)

mscr(r + νννL) = −m

(
β

π

)3/2
e−β|r−[rj+(nL−νννL)]|2

= mscr(r),
(7.41)

and analogously in Fourier space. Fourier transforming mscr
j (r + νννL) as out-

lined above yields

Fourier
{

mscr
j (r + νννL)

}
= −

N

∑
j=1

∑
n∈Zd

mje
−ık·rj e−ık·(n+ννν)Le−k2/4β, (7.42)
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Figure 7.5: 1D comb or Shah function X(x) =
∞
∑

n=−∞
δ(x − n).

which should be identical to (7.40). Hence the non zero values of the k vectors
are restricted to

k =
2π

L
I I ∈ Zd. (7.43)

Consequently, whenever k = 2π
L I, I ∈ Zd the sum ∑n∈Zd e−ık·nL reduces to

∑
n∈Zd

1 = ∞. (7.44)

With the use of delta Dirac function δ(x) (infinite when x = 0 and zero when
x �= 0)

∑
n∈Zd

e−ık·nL = ∑
I∈Zd

δ(k − 2π

L
I). (7.45)

An infinite sum of uniformly placed delta functions is per definition the
comb or Shah function

X(x) def= ∑
I∈Zd

δ(x − I). (7.46)

The 1D comb function is shown in Fig. 7.5. Hence, the Fourier transform of
the screening magnetization mscr(r) is

m̃scr(k) = −
N

∑
j=1

mje
−ık·rj e−k2/4βX

(
L

2π
k

)
. (7.47)
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Combining (7.38) and (7.47) yields the screening potential in Fourier space

ψ̃scr
ms (k) = −Ms

k

k2 · m̃scr(k)

= Ms

N

∑
j=1

k

k2 · mje
−ık·rj e−k2/4βX

(
L

2π
k

)
.

(7.48)

Note that we have to assume ψ̃scr
ms (0) = 0. We can do this since the Fourier

contribution at k = 0 corresponds to the zero spatial frequency component
of the screening potential in real space, i.e. the (constant) average of the
potential. In general, a potential is only determined except for a constant:
∇ψ = ∇(ψ′ + Cst), hence we can choose this constant to compensate for the
average of the potential. Inverse Fourier transforming this result provides the
screening potential in real space

ψscr
ms (ri) = Ms

1
L3

∫ N

∑
j=1

k

k2 · mje
ık·(ri−rj)e−k2/4βX

(
L

2π
k

)
dk. (7.49)

Due to the Dirac functions in the 3D comb function, the integral over total
space reduces to a sum over distinct k values

ψscr
ms (ri) = Ms

1
L3 ∑

k �=0

N

∑
j=1

k

k2 · mje
ık·(ri−rj)e−k2/4β. (7.50)

Combining (7.37), (7.38) and (7.47) yields the screening magnetostatic field
in Fourier space

H̃scr
ms(k) = −Ms

kk

k2 · m̃scr(k)

= −Ms

N

∑
j=1

kk

k2 · mje
−ık·rj e−k2/4βX

(
L

2π
k

)
.

(7.51)

Inverse Fourier transforming this result provides the screening magnetostatic
field in real space

Hscr
ms(ri) = −Ms

1
L3 ∑

k �=0

N

∑
j=1

kk

k2 · mje
ık·(ri−rj)e−k2/4β. (7.52)

Due to the e−k2/4β term, both the series (7.50) and (7.52) converge rapidly. The
parameter β determines how many terms one should include in the sum to
reach a given precision. When β is large, more terms have to contribute to
the sum and vice versa. Note that these are conclusions are opposite when
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compared to those for the direct sum. When a small number of terms is suffi-
cient for convergence of the direct sum, a large number of terms is needed to
guarantee the convergence of the reciprocal sum. In [90] it is shown that for
β = π/L both series converge at the same rate.

Self contribution to the reciprocal sum

In the reciprocal sum, a contribution of the screening magnetization to itself is
also included. This self contribution has to be subtracted from the result, see
(7.35). The self contribution is determined by solving the problem

∇2ψscr
sel f (r) = −Ms∇ · mscr

0 (r)

= Ms∇ · m0

(
β

π

)3/2
e−βr2

.
(7.53)

Therefore the auxiliary problem

∇2ψ
′scr
sel f (r) =

1
r

∂2

∂r2

(
rψ

′scr
sel f (r)

)
=
(

β

π

)3/2
e−βr2

(7.54)

is first solved. This differential equation has the solution

ψ
′scr
sel f (r) = − 1

4π

erf(
√

βr)
r

(7.55)

with erf(x) the error function. Now expression (7.53) can be written as

∇2ψscr
sel f (r) = Ms∇ · m0∇2ψ

′scr
sel f (r)

= ∇2Ms∇ · m0ψ
′scr
sel f (r)

(7.56)

which yields

ψscr
sel f (r) = Msm0 · ∇ψ

′scr
sel f (r)

= Ms

(
m0,x

∂

∂x
+ m0,y

∂

∂y
+ m0,z

∂

∂z

)
ψ

′scr
sel f (r) + C,

(7.57)

with C some constant. This constant is chosen zero since it does not affect the
resulting magnetostatic field. The contribution for the x-component is

Msm0,x
∂

∂x

{
− 1

4π

erf(
√

βr)
r

}

=
Msm0,x

4π

erf(
√

βr)
r3/2 x − Msm0,x

√
β

2π3/2
e−βr2

r2 x.

(7.58)
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In the limit for r going to zero this contribution goes to zero. The contributions
of the y and z component are determined in an analogous way, which results
in a zero self contribution generated by the screening magnetization. Hence
expression (7.52) completely determines the reciprocal sum (7.36), which can
also be computed using the standard FFT techniques.

7.5. Conclusion

In this chapter, we have introduced numerical schemes to evaluate the mag-
netostatic interactions based on fast Fourier transforms. The use of FFTs dras-
tically reduces the memory requirements from O(N2) to O(N) and the CPU
time from O(N2) to O(N log N) to compute the magnetostatic field in each
FD cell. The FFT based Hms evaluation schemes differ in the memory require-
ments, the CPU time needed to compute a field distribution and the obtained
accuracy. The high accuracy Hms evaluation scheme computes the fields up to
machine precision, but has the largest memory requirements and CPU time.
The low accuracy Hms evaluation scheme is faster and requires less memory
but results in less accurate results.

In most ’classical’ micromagnetic applications the field computations have
to have a high accuracy since one is interested in the exact magnetization pro-
cesses present on the microscopic time and length scale. For these applications
the high accuracy Hms evaluation scheme should be used. In most of these
’classical’ micromagnetic simulations rather small samples are investigated,
so there is no strong need here to reduce the memory requirements and CPU
time. This need however is strongly present in micromagnetic hysteresis simu-
lations. Hence, from a computational point of view it would be advantageous
to use the low accuracy Hms evaluation scheme. In Chapter 9 we will discuss
the impact of the low accuracy evaluation of Hms in micromagnetic hysteresis
simulations.

Further, numerical procedures are presented to compute the magnetostatic
field in periodic structures. As outlined in Chapter 3, these procedures must
be used if one aims at reducing the demagnetizing effects in a ferromagnetic
sample along one or two dimensions.
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CHAPTER 8

Fast Multipole Method based

evaluation of the magnetostatic

field

8.1. Introduction

FFT schemes as described in the previous chapter have been very popular to
reduce the computational cost for the evaluation of the magnetostatic field to
O(N log N). However, all these FFT schemes have some drawbacks: (i) the
domain under study has to be a rectangular prism. Hence, more complex
geometries have to be embedded in a rectangular domain, adding FD cells
containing no magnetic material, which introduces some overhead; (ii) all FD
cells have to be equal in size and placed on a regular grid excluding the pos-
sibility of adaptive discretization; (iii) FFT based schemes use a large amount
of memory resources largely due to the need of zero padding. On the other
hand, as shown in the previous chapter, FFT based schemes are very fast and
robust so they should be used as a reference to study the performance of other
numerical schemes for the evaluation of the magnetostatic field.

In order to overcome (some of) the drawbacks FFT schemes encounter,
numerical schemes can be adopted describing the generated magnetostatic
fields in terms of multipole expansions. These multipole schemes all go back
to the Fast Multipole Method (FMM) introduced by L. Greengard in [91]. The
fast multipole method is adopted far numerous physical problems: electro-
static problems e.g. [92], fluid dynamics e.g. [93], molecular dynamics e.g. [94],
electromagnetic scattering problems e.g. [95], acoustics e.g. [96], etc. When
static electromagnetic problems are considered –as in the considered micro-
magnetic problem– the FMM scales O(N) and could thus be faster than FFT



136 FMM BASED EVALUATION OF Hms

based Hms evaluation schemes. In the micromagnetic research area the use
of multipole methods is not yet well spread. The Fast Fourier Transform on
Multipole (FFTM) technique [97] has been developed by Ong et al. as a com-
bination of the FMM and FFT method. They have used this scheme to describe
recording techniques e.g. [98]. This method is more flexible then a pure FFT
scheme and has a controllable error bound. However, the performance of the
FFTM scheme has not yet been compared with e.g. a pure FFT scheme. The
method still needs a considerable amount of memory resources, while the au-
thors state in [98] ’However, as the two algorithms scale differently with p, FFTM is
not necessarily more efficient than FMM’, with p referring to the number of mul-
tipole coefficients (see further). Visscher et al. use an FMM algorithm based on
Cartesian expansions, see e.g. [99].

This Chapter presents an FMM scheme based on spherical harmonic ex-
pansions for the evaluation of the magnetostatic field in a ferromagnetic body
developed during the presented PhD. In the next section we will describe
how the FD geometry discretization is handled in the context of the FMM
algorithm. Later it is described how the far and near field computations are
elaborated. The performance of the presented FMM scheme is investigated by
comparing it with the high accuracy FFT scheme presented in the previous
section.

8.2. Geometry description

The three dimensional ferromagnetic body can have all possible shapes. It is
divided into cubical FD cells using a tree structure defining the FMM tree as
described in [91]. The ferromagnetic body is enclosed by a cubic box. This
enclosing box is called the root: the box on level zero of the FMM tree. On a
next level (level one) the root box is divided into 8 smaller cubical boxes with
identical volumes. These are called the children of the root box. Vice versa, the
root box is the parent box of the 8 smaller boxes. This division is performed
recursively until the boxes on the lowest level (level LEV) in the tree have the
desired dimension. In the case of a non-cubic ferromagnetic body, the boxes
that do not contain any magnetic material are neglected. The resulting FD
discretization is analogous with the discretization presented in Chapter 6. In
what follows the body will be considered cubical. This does not affect the ap-
plicability of the scheme to non-cubic ferromagnetic bodies. Other definitions
used to describe the FMM tree:

• Two boxes are said to be neighbors if they are at the same refinement level
and share a boundary point (a box is a neighbor of itself).

• Two boxes are said to be well separated if they are at the same refinement
level and are not neighbors.
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Figure 8.1: Definitions used in the FMM theory. The definitions in the middle figure are
with respect to the gray colored box. The dark colored boxes in the right figure define the
interaction list of the gray colored, central box.

• With each box i an interaction list is associated, consisting of the children of
the neighbors of i’s parent which are well separated from box i.

These definitions are illustrated in Fig. 8.1.
The bookkeeping of the boxes is based on the binary structure of the FMM

tree [100]. At each level L the boxes get an identity number (id) from 0 to
8L − 1. The binary tree structure allows to determine various quantities using
computations that can be implemented at bit-level (using bit shift procedures).
This results into bookkeeping computations which are negligible compared
with other computations: given the id and the level of a box, the parent of the
box, the neighbors of the box and the center coordinates of the box are found
almost instantaneously when the binary structure of the tree is exploited. Vice
versa, the id of the box containing a point with given coordinates at a given
level can be determined also almost instantaneously.

In this implementation of the FMM algorithm, the boxes on the lowest
level LEV are called basis boxes. Each basis box itself is further subdivided in
cubical FD cells. The number of FD cells in a basis box is 8lev: in each dimen-
sion 2lev FD cells. Hence, the total (cubical) geometry contains 8LEV+lev FD
cells. Figure 8.2 shows a geometry described with a tree containing 2 levels
(LEV = 2) and basis boxes containing 2lev (lev = 3) FD cells in each direction.

In the FMM theory a distinction is made between boxes that are far from
each other and boxes that are near to each other. Boxes that are far from each
other interact via their far field which is outlined in Section 8.3. Neighbor-
ing basis boxes interact with each other via near field computations, this is
outlined in Section 8.4. The dimensions of the basis boxes will influence the
time spent on near and far field computations. Depending on the difference
in computation time of the far field computations and the near field com-
putations an optimal tree can be constructed. Indeed, for a geometry with
8tot_lev FD cells different parameters LEV and lev can be combined such that
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Figure 8.2: A tree with LEV = 2 and lev = 3.

LEV + lev = tot_lev, i.e. different sizes of basis boxes can be used. The optimal
size of the basis boxes depends on the computational time. This discussion is
repeated in Section 8.5.

8.3. Far field computations

This section explains the computations of the magnetostatic fields due to FD
cells that are part of well separated basis boxes. It is shown how the magnetic
field is rewritten in terms of expansions in spherical harmonics. The far field
computations are based on the classical FMM theory of L. Greengard [91]. This
classical theory is summarized and extended to magnetic dipole sources. The
used translation operators are accelerated, exploiting symmetries and convo-
lution structures. It is the intention to develop an algorithm that allows to
compute the magnetostatic fields multiple times for different magnetic con-
figurations in a fast way. Hence, generic computations are performed as much
as possible during the set up phase of the algorithm in order to avoid dupli-
cating computations.
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8.3.1 Classical FMM theory

As described in Chapter 3, the magnetostatic field in a point r generated by a
FD cell with volume V′ (r �∈ V′) can be written as

Hms(r) = −Ms

4π

∫
V′

∇∇ 1
|r − r′| · m(r′)dr′

=
Ms

4π
∇
∫
V′

[
∇′ 1

|r − r′|
]
· m(r′)dr′

(8.1)

where the ∇′ operator acts on r′. We repeat that all FD cells are considered
to be uniformly magnetized with a fixed magnetization amplitude Ms and a
varying magnetization orientation given by the unit vector m(r′). The vectors
r and r′ are defined in spherical coordinates as

r′ → (ρ,α, β)
r → (r,θ,φ).

Now the kernel 1/|r − r′| can be rewritten in an expansion of spherical har-
monics, using the spherical harmonic addition theorem for Legendre polyno-
mials Pn(x) [53]. In the case of ρ < r this gives

1
|r − r′| =

∞

∑
n=0

ρn

rn+1 Pn(
r · r′

rr′ )

=
∞

∑
n=0

n

∑
m=−n

ρnY−m
n (α, β)

Ym
n (θ,φ)
rn+1 .

(8.2)

The spherical harmonic Ym
n (θ,φ) is defined as

Ym
n (θ,φ) =

√
(n − |m|)!
(n + |m|)! P|m|

n (cos(θ))eımφ (8.3)

with
Pm

n (x) = (−1)m(1 − x2)m/2 dm

dxm Pn(x). (8.4)

The magnetostatic field (8.1) can now be written in terms of the scalar mag-
netic potential ψ(r) as

Hms(r) =
Ms

4π
∇ψ(r). (8.5)
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When the addition theorem (8.2) is introduced, ψ(r) is given by

ψ(r) =
∫
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(8.6)

This defines the expansion coefficients Om
n (m) of a FD cell with uniform mag-

netization M = Msm. Now analytical expressions will be derived for the ex-
pansion coefficients.

Computation of the expansion coefficients Om
n (m) of a cubical FD cell

Above, the expansion coefficients Om
n (m) of a cubical FD cell with uniform

magnetization m are defined as

Om
n (m) =

∫
V

∇ρnY−m
n (α, β)dV · m. (8.7)

Applying Gauss’ theorem gives

Om
n (m) =

∫
∂V

ρnY−m
n (α, β)udS · m (8.8)

with u the normal unit vector pointing outward of the cell and ∂V the bound-
ary surface of the cell. The explicit computation of the expansion coefficients
is done by determining the contributions from each surface of the cubical FD
cell with edge length of 2Δ and adding them:
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(8.9)
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When ρnY−m
n (α, β) is expressed in Cartesian coordinates

ρnY−m
n (α, β) =

(x2 + y2 + z2)n/2
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(8.10)

and the resulting expressions are simplified exploiting some symmetry prop-
erties. This leads to
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(8.11)

Here and further on, the number of expansion coefficients is truncated to
n < p. The expansion of the magnetic potential (8.6) is valid everywhere except
inside the circumscribing sphere of the box [91].

The multipole (MP) expansions (8.11) are the basis of the FMM theory. The
MP expansion (8.11) of a FD cell determines the magnetostatic field pattern
radiated by a FD cell with a normalized magnetization m. The origin of the
coordinate system in which (8.11) is expressed coincides with the center of
the considered FD cell. In the FMM algorithm, the MP expansions of the FD
cells are now combined to define MP expansions of larger groups on lower
levels. Therefore, the MP expansions of child boxes need to be expressed in
coordinate systems of which the origin coincides with the center of the parent
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(a) (b) (c)

Figure 8.3: Sketch of (a) MP to MP translations, (b) MP to local translations and (c) local to
local translations

box. These translation operations are performed by the MP to MP translations,
shown in Fig. 8.3.a.

To compute the magnetostatic field in a group, the outgoing MP expan-
sions from well separated groups are reformulated: the magnetostatic field
generated by well separated groups, described by their MP expansions is
translated into a local expansion valid in the considered group. This refor-
mulation of a MP expansion of a source group into a local expansion valid
in a receiver group is performed by the MP to local translations. The result-
ing expression for the local expansion is described in a coordinate system of
which the origin coincides with the center of the receiving group. The trans-
lation operations are performed by the MP to local translations, shown in Fig.
8.3.b.

The local expansions valid in each parent box are recursively translated
in to local expansions valid in the boxes of their children. Therefore, the local
expansion of the parent needs to be reformulated in the coordinate system of
which the center coincides with the center of the considered child. The transla-
tion operations are performed by the local to local translations, shown in Fig.
8.3.c.

Once the local expansion is known in the center of a basis box, the mag-
netostatic field in each FD cell of the basis box is computed by the local to
field operator. In what follows, the analytical expressions for these translation
operators are presented. An extended discussion on the translation of MP ex-
pansions and local expansions as well as error bounds can be found in [101].
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MP to MP translation operator

To translate a MP expansion Om
n from the center of a box to a MP expansion

Mk
j at the center of its parent, the following translation operator is used

Mk
j =

j

∑
n=0

min(k+j−n,n)

∑
m=max(k+n−j,−n)

(−1)nı|k|−|m|−|k−m| Am
n Ak−m

j−n

Ak
j

rnY−m
n (θ,φ)Ok−m

j−n .

(8.12)
(r, θ, φ) are the spherical coordinates of the center of the parent, seen in the
coordinate system of the considered box. Am

n is defined as:

Am
n =

(−1)n√
(n − m)!(n + m!)

. (8.13)

For each parent box, 8 MP to MP translations have to be performed as shown
in Fig. 8.3.a.

MP to local translation operator

To translate a MP expansion Om
n from the center of a box to a local expansion

Lk
j at the center of a box at the same level, the following translation operator

is used

Lk
j =

p−1

∑
n=0

n

∑
m=−n

(−1)jı|k−m|−|k|−|m| Am
n Ak

j

Am−k
j+n

Ym−k
j+n (θ,φ)

rj+n+1 Om
n . (8.14)

(r, θ, φ) are the spherical coordinates of the center of the box to where the
MP expansion is translated, seen in the coordinate system of the considered
box. As mentioned before, p is the truncation value of the included expansion
coefficients (j < p and n<p). Figure 8.3.b sketches the MP to local translations.
It is clear that for each box, 63 − 33 = 189 MP to local translations have to be
performed (except for the boxes near the edge of the computation domain).

Local to local translation operator

To translate a local expansion Om
n from the center of a parent box to a local

expansion at the center of a child, the following translation operator is used

Lk
j =

p−1

∑
n=j

k−j+n

∑
m=k−n+j

ı|m|−|m−k|−|k| Am−k
n−j Ak

j

Am
n

rn−jYm−k
n−j (θ,φ)Om

n . (8.15)

(r, θ, φ) are the spherical coordinates of the center of the child box, seen in
the coordinate system of the parent box. For each parent box, 8 local to local
translations have to be performed as shown in Fig. 8.3.c.
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Local to field translation operator

To compute the field in a point (r, θ, φ) in a basis box with local expansion Lm
n at

the center of the basis box, the gradient has to be taken of the scalar potential
ψ(r)

Hms(r) =
Ms

4π
∇ψ(r)

=
Ms

4π

p

∑
n=0

n

∑
m=−n

Lm
n ∇rnYm

n (θ,φ).
(8.16)

After the action of the gradient operator on rnYm
n the expression is rotated

back to Cartesian coordinates, which results in

Hms =
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4π
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⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

(8.17)

where the sums are performed over n (0 ≤ n < p) and m (−n ≤ m ≤ n).

Scaling of the classical FMM translation operators

The expansion coefficients of the spherical harmonics – MP expansions and
local expansions – are stored in a vector storage scheme. Since the number of
expansion coefficients is truncated to n < p, there are p2 expansion coefficients.
In this storage scheme, the computation of the MP coefficients of a FD cell
(8.11) needs 3p2 multiplications. Indeed, the integrals in (8.11) are identical for
every FD cell (all FD cells have equal dimensions), thus they can be computed
in the set up phase of the algorithm and stored in three vectors (Om

n,x, Om
n,y

and Om
n,z). The MP expansion Om

n (m) of a FD cell with uniform normalized
magnetization m = [mx,my,mz] is then determined by a linear combination of
the three vectors Om

n,x, Om
n,y and Om

n,z

Om
n (m) = mxOm

n,x + myOm
n,y + mzOm

n,z. (8.18)

Since the MP and local expansion coefficients are stored in a vector, the action
of the MP to MP, the MP to local and the local to local translation operators as
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given in (8.12), (8.14) and (8.15) can be seen as matrix-vector products which
are performed by p4 multiplications. All translation matrices are computed
and stored in the set up phase of the algorithm.

In that way the MP expansion of a basis box containing 8lev FD cells can
be computed by first computing the 8lev MP expansion in each FD cell and
then translating the 8lev MP expansions to the center of the basis box. This is
performed using 8lev × 3p2 + 8lev × p4 multiplications. When the MP to MP
translation operators (8.12) are denoted by Tq

jk,nm (q = 1, ...,8lev), this scheme
looks like

Mk
j =

8lev

∑
q=1

∑
n

∑
m

Tq
jk,nm

(
mq

xOm
n,x + mq

yOm
n,y + mq

zOm
n,z

)
. (8.19)

This is accelerated by computing the translated MP expansions
∑n ∑m Tq

jk,nmOm
n,i, (q = 1, ...,8lev and i = x,y,z) of the FD cells in the set

up phase and storing these 3 × 8lev translated expansions. In that way, the
resulting MP expansion is computed by making a linear combination of the
translated quantities ∑n ∑m Tq

jk,nmOm
n,i

Mk
j =
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∑
q=1

(
mq

x ∑
n
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m
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jk,nmOm
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y ∑

n
∑
m

Tq
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n,y + mq
z ∑

n
∑
m

Tq
jk,nmOm

n,z

)
.

(8.20)
This scheme needs only 3× 8lev p2 multiplications to determine the MP expan-
sion of a basis box.

Applying the local to field translation operator (8.17) on a local expan-
sion leads to 3p2 multiplications relating the 3 components of the magneto-
static field with the p2 local expansion coefficients, in matrix notation: Hms =
Gm

n (r,θ,φ)Lm
n . The 8lev different local to field translation matrices Gm

n (r,θ,φ)
are computed and stored in the set up phase of the algorithm.

8.3.2 Acceleration of the MP to local translations

In the presented scheme, the computation of the MP expansion of a basis box
and the local to field translations are O(p2) operations, while the MP to MP,
the MP to local and the local to local translations are O(p4) operations. In this
scheme the number of MP to local translations is very large. Indeed, since each
box on each level has an interaction list containing 189 boxes (boundary effects
not taken into account) 189 MP to local translations have to be performed per
box. This is in contrast to the 8 MP to MP translations and 8 local to local
translations performed for each box in the FMM tree. To illustrate this, Table
8.1 shows the exact number of MP to MP, MP to local an local to local transla-
tions in the case of a cubic body discretized using different numbers of levels.
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Table 8.1: Number of translation operators in a cube discretized using different numbers
of levels

# levels N MP to MP MP to local local to local
4 4096 512 56448 512
5 32768 4608 640584 4608
6 262144 37376 6039504 37376
7 2097152 299520 52337672 299520
8 16777216 2396672 435570912 2396672

N is the total number of basis boxes. From this table it is understood that al-
most all execution time in the far field computations goes to the translation of
MP expansions to local expansions. In what follows, our attention will go to
the acceleration of the MP to local translation.

Many accelerated translation schemes are proposed for the MP to local
translation operator. In [101] a scheme is described where all translations are
performed in the z-direction after a local rotation of the MP coefficients. In
this coordinate system the translation operators scale p3. The rotation of the
MP coefficients towards this coordinate system and the back-rotation of the
computed local coefficients scale also as O(p3). These rotations have to be per-
formed on each MP expansion and differs for each direction of the translation.
Another faster MP to local translation scheme, also proposed by L. Greengard
in [101] uses the plane wave expansion instead of the MP expansion to trans-
late the radiation spectrum of a box. Once the plane wave (i.e. exponential)
expansion is known, the translation operator is diagonal, hence the translation
scales as O(p2). The computation of the plane wave expansion from the MP
expansion and the computation of the local expansion from the plane wave ex-
pansion are O(p3) calculations. This conversion from MP expansion to plane
expansion has to be performed on each MP expansion, but can be used for any
translation in any direction. The conversion of the resulting local plane wave
expansion into the local expansion is also an O(p3) calculation. This scheme
is fast, but has some overhead. Especially for small p the gains are minimal.
Other implementations of the MP to local operator are based on the classical
O(p4) formulation but optimally exploit the use of basic linear algebra sub-
program (BLAS) routines [102]. The different schemes are sketched in Fig. 8.4.

FFT-accelerated MP to local translation scheme: theory

Another scheme, proposed by Elliott and Board Jr. [103] uses the fact that the
MP to local translation operator (8.14) can be written as a convolution, see
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Figure 8.4: Sketch of the MP to local translation schemes using the classical matrix-vector
multiplication scheme (top, O(p4)), using rotation based translation operators (top, O(p3))
and using plane wave based translation operators (bottom).

also [94, 104]. This can be seen as follows:

Lk
j =
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∑
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∑
m=−n

(−1)jı|k−m|−|k|−|m| Am
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∑
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n Om
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Equation (8.24) has a convolution structure. Indeed, entities (−1)jı|k|/Ak
−jL

k
−j,

defined by parameters j and k, are computed through a summation of entities
ı−|m|Am

n Om
n , defined by parameters n and m, multiplied by a function that is

only defined by the differences k − m and j − n. Hence, equation (8.24) can be
written as the convolution

ym−n = hm−n � xm
n (8.25)

with
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n
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n (8.26)
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A−m
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Y−m
n

rn+1 (8.27)
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xm
n = ı−|m|Am

n Om
n . (8.28)

Here, the negative values −n in ym
n and the function hm

n give rise to local ex-
pansions and spherical harmonics with negative degrees. Therefore, the enti-
ties ym

n and hm
n are extended to negative values as follows

ym−n = ym
n (8.29)

hm−n = hm
n . (8.30)

The negative degrees −n affect the alignment of the corresponding matrices x
and h in coefficient space. For p = 3 the matrix h is

h =
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⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (8.31)

The matrix has values up to degree 2(p − 1) since these also occur in the MP
to local translation operator (8.14). This so called double height kernel [102]
gives rise to matrices with dimensions 2(2p − 1) × 2(2p − 1). For p = 3 the
matrices x and y in (8.25) are
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⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
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0 x−1
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⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (8.32)

These matrices need no further zero padding to avoid disturbing side ef-
fects originating in the cyclic nature of the Fourier transformation. More-
over, the matrix dimensions can still be reduced by removing the pth to
(2p − 1)th column containing only zeros. In (8.31) and (8.32) the fourth, fifth
and sixth column can be removed: in general this leads to matrix dimensions
of (3p − 2) × 2(2p − 1).
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FFT accelerated MP to local scheme: stability issues

The discussion above seems to appear complete, but the implementation of it
leads to numerical instabilities due to the Am

n factors, the ρn term in the MP
expansions (8.7) and the r−(n+1) term in the functions hm

n (8.27), which may
cause the coefficients to vary by many orders of magnitude. This results in
inaccurate evaluations of the Fourier transforms. To alleviate this problem,
the coefficients need to be scaled for a unit box before the FFT method can be
applied. To translate the MP expansion of a box with edges 2Δ the elements
ym

n (8.26), hm
n (8.27) and xm

n (8.28) have to be redefined as

ym
n =

(−1)nı|m|

Am
n

(2Δ)n+1Lm
n (8.33)

hm
n =

ı|m|

A−m
n

(
2Δ
r

)n+1
Y−m

n (8.34)

xm
n =

ı−|m|Am
n

(2Δ)n Om
n . (8.35)

For single precision computations, this solves the problem only for p < 7. For
larger p values, the quantities Am

n vary too much in magnitude. In the com-
putation of the magnetostatic field considered here, values of p < 7 turn out
to be sufficient, see further. When a higher accuracy is required, more expan-
sion coefficients are needed. For these higher p-values the FFT scheme is still
applicable, but a block decomposition of the matrices y, h and x has to be
made [103,94, 104] leading to a slower algorithm.

Scaling of the FFT accelerated MP to local scheme

The paragraphs above explain how the MP to local translation is accelerated
with fast Fourier transforms. In the set up phase of the algorithm the transfer
matrices h are computed, Fourier transformed and stored. These matrices are
identical on every level because of the rescaling to transfer matrices of unit
boxes. They only differ depending on the (rescaled) vector r which defines the
translation. In total 316 different transfer matrices exist.

Once the aggregation step of the FMM algorithm is performed (i.e. the
MP expansions are translated from the lowest level up to the highest level)
the MP expansion in every box on every level are known. Before starting the
disaggregation step, for each MP expansion the corresponding Fourier trans-
formed matrix x̃ is computed (the tilde indicates Fourier transformed quanti-
ties) and stored. These computations consist of two phases. First the MP ex-
pansion values Mm

n are multiplied with i−|m|Am
n (2Δ)−n and stored at the cor-

responding place in the matrix x. These are O(p2) computations. The values
i−|m|Am

n (2Δ)−n differ for every level and are computed in the set up phase of
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the algorithm. Second, the matrix x is Fourier transformed. This is performed
using FFTW [83] which results in an O(p2 log p) algorithm. Since the MP ex-
pansion coefficients are not needed any more when the x̃ is known, both enti-
ties can be stored in the same memory space, reducing memory requirements.

Once the Fourier transformed matrices x̃ are computed and stored for ev-
ery box on every level, the disaggregation step starts. During the disaggrega-
tion step, the MP expansions of the boxes in the interaction list (189, consid-
ering no side effects) are translated towards the considered box. This is per-
formed by adding the point wise multiplications of the matrices x̃ of the source
boxes with the corresponding Fourier transformed transfer functions h̃. When
no side effects are considered 189 translations consisting of (3p − 2)2(2p − 1)
multiplications have to be performed. Hence, the translations itself require
O(p2) operations. Once all point wise products are performed and added ỹ is
known.

In the next step ỹ is Fourier transformed back to real space, which is an
O(p2 log p) computation. The resulting local expansion values are extracted
from the matrix y, divided by the quantity (−1)nı|m|(2Δ)n+1/Am

n and stored.
These computations scale as O(p2). The values (−1)nı|m|(2Δ)n+1/Am

n differ
for every level and are computed in the set up phase of the algorithm.

The total FFT accelerated scheme is shown in Fig. 8.5. This scheme is much
faster since the fast execution of the 189 point wise products exceeds the over-
head in the scheme (rescaling, copies, Fourier transformations). An analog
scheme can be elaborated to perform the MP to MP and the local to local
translations, however, the time gain for these translations is not guaranteed
for small p since only 8 translations occur for each box instead of 189. It is not
possible to perform the aggregation and disaggregation completely in Fourier
space, for a further discussion see [103].

8.3.3 Exploiting symmetries

The translation operations can still be accelerated when symmetry properties
of the spherical harmonics are exploited. The MP and local expansion coeffi-
cients satisfy the following symmetries:

M−m
n = Mm

n (8.36)

L−m
n = Lm

n . (8.37)

The redundant negative orders −m can be omitted and only the positive or-
ders 0 ≤ m < p have to be stored. This reduces the memory needed to store
a MP expansion and a local expansion from p2 numbers to p(p + 1)/2 num-
bers. In what follows we will comment on the time and memory gains that are
obtained when these symmetries are incorporated.
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Figure 8.5: Sketch of the MP to local translation schemes using the classical matrix-vector
multiplication scheme (top), using FFT accelerated translation operators (bottom).

Acceleration of the MP to MP and the local to local translation

Since only the positive orders of the expansion coefficients are stored, the ex-
pansions of the source (the child in the case of a MP to MP translation and
the parent in case of a local to local translation) have to be extended with
the negative orders before the actual translation. Second, the translated ex-
pansions (only these with positive order m) can be determined by performing
a matrix vector product of roughly half the size (the matrix has dimensions
p(p + 1)/2 × p2). Compared with the classical translation scheme outlined in
(8.3.1), this scheme is roughly twice as fast. However, since the number of MP
to MP translations and local to local translations is small compared with the
number of MP to local translations, the total time gain is negligible. The most
important gain here is the memory reduction obtained for the storage of the
MP and local expansions and the translation matrices.

Acceleration of the MP to local translation

In the MP to local translation operator, the symmetries (8.36) and (8.37) give
also rise to possible memory reduction and faster execution times. Indeed,
half of the data in the Fourier transformed matrices x̃, h̃ and ỹ is conjugated
to the other half. Consequently, in the MP to local translation scheme only
half of the elements have to be taken into account: when the matrices x are
Fourier transformed, only half of the matrix x̃ is stored, i.e. (3p − 2)(2p − 1)
elements. During the actual translation, only these elements have to be taken
into account for the point wise multiplication. When this is done for all 189
boxes in the interaction list, the second half of the matrix ỹ is reconstructed
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Figure 8.6: Sketch of the MP to local translation schemes using the classical matrix-vector
multiplication scheme (top), using FFT accelerated translation operators and exploiting the
symmetries in the Fourier transformed matrices (bottom). This scheme has half the number
of point wise products compared with the scheme of Fig. 8.5.

based on the first half. After inverse Fourier transforming the matrix, the local
expansion is extracted. The MP to local translation scheme is shown in Fig.
8.6.

In this scheme the number of point wise products is halved in comparison
with the scheme outlined in section 8.3.2. Since the MP to local translation is
responsible for almost the total execution time for the far field computations,
this part of the CPU time is roughly halved when this scheme is used. Also
the memory needs are reduced: instead of storing the total number of (3p −
2)2(2p − 1) elements of the matrix x̃ in each box, only half of the elements has
to be stored.

Acceleration of the local to field translation

In section 8.3.1 it was outlined that magnetic field components Hms,i (i = x,y,z)
are computed by the matrix-vector product Hms = Gm

n Lm
n . Since also the ele-

ments of the local to field translation matrix G satisfy the symmetry property

G−m
n,i = Gm

n,i (8.38)
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the number of multiplications for the determination of the magnetic field from
the local expansions is decreased to less then half of the original number of
multiplications:

Hms,i =
p−1

∑
n=0

[
Re(G0

n,i)Re(L0
n,i) + 2

n

∑
m=1

{Re(Gm
n,i)Re(Lm

n,i) − Im(Gm
n,i)Im(Lm

n,i)
}]

.

(8.39)

Hence, the elements with negative order in the transfer matrix do not have to
be computed (set up phase) and stored.

8.4. Near field computations

Up to now all mathematical machinery is provided to calculate the magneto-
static field Hms originating from FD cells in basis boxes that are well separated,
i.e. from FD cells in basis boxes that are not adjacent to the considered basis
box. To compute the total magnetic field in a FD cell also the FD cells in the
adjacent basis boxes (33 − 1 = 26 in number) and the FD cells in the consid-
ered basis box itself have to be taken into account. This so called near field has
to be computed and added to the far field contribution. The expression for the
magnetostatic field Hms(ri) in the center of a FD cell i originating from N FD
cells with uniform normalized magnetization mj, box center in rj j = 1 . . . N
and volume V is given by

Hms(ri) = −MS
4π

N

∑
j=1

∫
V

∇ (ri − rj + ρρρ) · mj

|ri − rj + ρρρ|3 dρρρ. (8.40)

This expression is identical to (8.1). Applying Gauss’ theorem on it gives

Hms(ri) = −MS
4π

N

∑
j=1

∫
∂V

(ri − rj + ρρρ) · mj

|ri − rj + ρρρ|3 uS dρρρ (8.41)

with uS the normal unit vector pointing outward of the surface ∂V of the FD
cell. The integration has to be performed over each cell with identical volume
V. Since a classical computation scales O(N2), the computations have to be
accelerated exploiting the convolution structure of (8.41) as in the FFT scheme
presented in the Chapter 7. The used formula are those of the direct magneto-
static evaluation scheme described in Section 7.3.1. An analogous description
is possible based on the magnetostatic evaluation scheme using the magnetic
potential described in Section 7.3.2. For the computation of the near interac-
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tions, two numerical schemes exploiting the convolution structure of (8.41) are
possible, both based on FFTs.

8.4.1 Near interactions with FFTs: scheme I

In this scheme the vector ri − rj between two FD cells is rewritten with respect
to the centers of their basis boxes

ri − rj = r′i − r′j − Λq. (8.42)

The vector Λq points from the center of the considered basis box to the center
of the qth neighbor (q=1,...,27). This is shown in Fig. 8.7. The total magneto-
static field (8.41) is now written as

Hms(r′i) = −MS
4π

27

∑
q=1

8lev

∑
j=1

∫
∂V

(r′i − r′j − Λq + ρρρ) · m(rj)

|r′i − r′j − Λq + ρρρ|3 uS dS. (8.43)

In this near interaction scheme, the FD cells of each basis box are taken into
account one basis box after another. Written as a convolution product this be-
comes

Hms(r) =
27

∑
q=1

g(r,Λq) � m(r), (8.44)

with g(r,Λq) the Green function which in this case is a symmetrical tensor

g(r,Λq) = −MS
4π

∫
∂V

r − Λq + ρρρ

|r − Λq + ρρρ|3 uS dS. (8.45)

With λ the size of the edges of the basis boxes, Λq is one of the 27 vectors

Λq = Iλex + Jλey + Kλez

⎧⎪⎨⎪⎩
I = −1, 0, 1

J = −1, 0, 1

K = −1, 0, 1

. (8.46)

Expressions (8.41) to (8.45) make clear that the magnetostatic field Hms in
the FD cells of the considered basis box (the one in the middle of Fig. 8.7) is
computed by:

1. Zero padding the magnetization vectors of the basis boxes separately.
2. Fourier transforming the magnetization data of step 1.
3. Performing the point by point products of the Fourier transformed mag-

netization vectors (from step 2) with the proper Green function tensor
g(r,Λq) and adding the 27 results.
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Figure 8.7: Vectors used in the near interaction scheme I.

4. Inverse Fourier transforming the result from step 3 to real space.
5. Selecting the magnetostatic fields from the data obtained in step 4.

The elements of the Green function tensors g(r,Λq) of (8.45) are given in
Appendix A. The Green function tensors are computed and Fourier trans-
formed during the set up phase of the algorithm. The zero padding in the
three dimensions is needed to avoid side effects due to the cyclic nature of
Fourier transforms. Hence, all Fourier transforms have dimensions 2 · 2lev ×
2 · 2lev × 2 · 2lev.

8.4.2 Near interactions with FFTs: scheme II

This scheme uses the expression (8.41) without redefinitions of vectors. Writ-
ten as a convolution product, expression (8.41) looks like

Hms(r) = g(r) � m(r) (8.47)

with
g(r) = −MS

4π

∫
∂V

r + ρρρ

|r + ρρρ|3 uS dS. (8.48)

This is the same expression as the one used in the direct magnetostatic eval-
uation scheme presented in Chapter 7. The elements of the Green function
tensors g(r) of (8.48) are given in Appendix A. In this scheme, the magnetic
data of all the neighboring basis boxes and the considered basis box itself is
translated to the considered basis box in one computation step. Therefore the
magnetic data of all the basis boxes have to be rearranged and zero padded.
Hence the magnetostatic field Hms is computed by

1. Assembling and zero padding the magnetization data.
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2. Fourier transforming the input from step 1.

3. Performing the point wise products of the Fourier transformed vectors
from step 2 with the Green function tensor g(r)

4. Inverse Fourier transforming the result from step 3.

5. Selecting the magnetostatic fields from the considered basis box from the
result of step 4.

Since in each direction 3 basis boxes are considered in this scheme, the di-
mension of the block to be Fourier transformed is 3 · 2lev × 3 · 2lev × 3 · 2lev.
Then, after zero padding, all Fourier transforms should have dimensions
6 · 2lev × 6 · 2lev × 6 · 2lev. However, the zero padding is needed for not ’spoil-
ing’ the Fourier transformed data with side effects due to the cyclic nature of
the Fourier transforms. In this scheme, one is only interested in the data com-
puted for the central basis box and not in the magnetostatic fields computed
for the neighboring boxes. Hence, the data for these neighboring basis boxes
can be spoiled with side effects. Taking this into account, the magnetic data
needs only one third of zero padding (2lev zeros) in each direction, reducing
the dimensions of the Fourier transforms to 4 · 2lev × 4 · 2lev × 4 · 2lev.

8.4.3 Computational complexity

In what follows, the data matrices used in the convolution products will be
denoted by a capital. A tilde denotes the Fourier transformed values of the
matrices. In that way the matrices containing the zero padded values of the
magnetic components of the considered FD cells are denoted by Mx, My and
Mz while the elements of the Green function tensors (8.45) and (8.48) are ma-
trices Gxx, Gxy, Gxz, Gyy, Gyz and Gzz.

The first near interaction scheme is comparable with the MP to local trans-
lation in the far field computations. Indeed, in a preparatory step of the near
field computations, the magnetization data of all basis boxes is Fourier trans-
formed. This consists of two phases: for the three components x, y, z the mag-
netization data is copied into a zero padded matrix, this is an O(n3) oper-
ation (with n = 2lev the number of FD cells in one direction in a basis box).
The three matrices are then Fourier transformed (O((2n)3 log2n) operations)
and stored. Thus with Nbox the number of basis boxes, there are 3Nbox forward
Fourier transforms of dimensions 2 · 2lev × 2 · 2lev × 2 · 2lev. These Fourier trans-
formed magnetization values are used (27 times pro basis box) during the ac-
tual computation of the magnetostatic field.
The first step in the actual computation of the near fields in a basis box consists
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of performing the point wise products.

H̃x,i =
27

∑
q=1

[
G̃q

xx,i M̃
q
x,i + G̃q

xy,i M̃
q
y,i + G̃q

xz,i M̃
q
z,i

]
(8.49)

H̃y,i =
27

∑
q=1

[
G̃q

xy,i M̃
q
x,i + G̃q

yy,i M̃
q
y,i + G̃q

yz,i M̃
q
z,i

]
(8.50)

H̃z,i =
27

∑
q=1

[
G̃q

xz,i M̃
q
x,i + G̃q

yz,i M̃
q
y,i + G̃q

zz,i M̃
q
z,i

]
(8.51)

Since the magnetization data and the Green function values have real values
in real space, half of the data is adjoint to the other half in Fourier space. When
this property is exploited, each translation of Fourier transformed magnetiza-
tion values to the considered basis box takes roughly 9(2n)3/2 multiplica-
tions. For one basis box these computations have to be performed 27 times:
once for each neighboring box and once for the considered box itself. So, in to-
tal their are 27 × 9(2n)3/2 = 972n3 multiplications pro basis box. The results
are added to each other. The resulting Fourier transformed magnetostatic field
values H̃x, H̃y and H̃z are then inverse Fourier transformed (O((2n)3 log2n)
operations) and the magnetostatic field values are extracted out of the result
(O(n3) operations). Thus with Nbox the number of basis boxes, there are also
3Nbox inverse Fourier transforms of dimensions 2 · 2lev × 2 · 2lev × 2 · 2lev.

In the second near interaction scheme the forward Fourier transformations
of the magnetization data are not computed in a preparatory step since the
Fourier transformed magnetizations M̃x, M̃y and M̃z are only used once pro
basis cell (in contrast with scheme I). This also means that this data is not
stored in every basis cell, saving roughly 3 × 8lev+1Nbox complex numbers of
memory. The first step in the computation of the magnetostatic field in a basis
box is the assembly of the 3 zero padded matrices Mx, My and Mz contain-
ing the magnetization data of the 27 basis boxes (O(27 × n3) operations). In a
second step this data is forward Fourier transformed (O((4n)3 log4n) opera-
tions). With Nbox the number of basis boxes, there are 3Nbox forward Fourier
transforms of dimensions 4 · 2lev × 4 · 2lev × 4 · 2lev. Then the Fourier trans-
formed data is multiplied point wise with the Fourier transformed Green ten-
sor elements

H̃x,i = G̃xx,i M̃x,i + G̃xy,i M̃y,i + G̃xz,i M̃z,i (8.52)

H̃y,i = G̃xy,i M̃x,i + G̃yy,i M̃y,i + G̃yz,i M̃z,i (8.53)

H̃z,i = G̃xz,i M̃x,i + G̃yz,i M̃y,i + G̃zz,i M̃z,i. (8.54)

Hence, there are 9(4n)3/2 = 288n3 multiplications pro basis box, which is a
much smaller number then in scheme I. Moreover, since the matrices Gxx,
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Gxy, Gxz, Gyy, Gyz and Gzz containing the Green tensor elements are even,
their Fourier transformed matrices G̃xx, G̃xy, G̃xz, G̃yy, G̃yz and G̃zz have
only strictly real values. This means that the point wise products are not
complex × complex multiplications as in scheme I, but real × complex multi-
plications, which are performed roughly twice as fast.
The resulting Fourier transformed magnetostatic field values H̃x, H̃y and H̃z
are then inverse Fourier transformed (O((4n)3 log4n) operations) and the
field values are extracted out of the result (O(n3) operations). Thus there are
also 3Nbox inverse Fourier transforms of dimensions 4 · 2lev × 4 · 2lev × 4 · 2lev.

Hence, comparing the two schemes, one concludes that scheme II is the
most memory efficient since the Fourier transformed values are not stored
in each basis box. The time efficiency depends on two considerations. First,
the number of FFTs is equal: 3Nbox forward and 3Nbox inverse FFTs in both
schemes, but the dimensions of the Fourier transformed matrices are dif-
ferent. In scheme I the matrix dimensions are half of those in scheme II
(2n × 2n × 2n ↔ 4n × 4n × 4n), resulting in a much faster execution of the FFTs in
the first scheme. Second, in scheme I there are 972n3 complex × complex point
wise products, while in the second scheme there are 288n3 real × complex
point wise products, resulting in a much faster execution of the point wise prod-
uct in the second scheme. Which of the two schemes is the fastest depends thus
partly on how fast the FFTs are executed. In Appendix B it is shown how the
evaluation of the 3D FFTs can be optimized by excluding the 1D FFTs on rows
that contain only zeros. Since in both schemes a large part of the CPU time
goes to the evaluation of FFTs, the application of the optimal implementations
presented in Appendix B are indispensable.

8.4.4 Timing of the two near interaction schemes

After incorporating the optimal FFT schemes, a comparison between the two
near interaction schemes is possible to determine the fastest scheme. Table 8.2
shows the timings of the subroutines and the total timing for the computation
of the near interactions for one basis box. One concludes that the second near
interaction scheme is by far faster than the first near interaction scheme for
all sizes of the basis box. In scheme I almost all computation time goes to the
computation of the point wise products while in the second near interaction
scheme most of the computation time is divided between the assembling of
the magnetization matrices, the forward and inverse Fourier transforms and
the point wise products. Moreover, the second scheme needs much less mem-
ory. Indeed, in scheme I the three Fourier transformed magnetization matri-
ces have to be stored in each basis box, while this is not the case in the sec-
ond scheme. It is obvious that the second scheme is used in the algorithm to
compute the near interactions. However, since the FFT scheme for the near
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Table 8.2: Timing of the two near interaction schemes for one basis box in milliseconds,
(Fw: forward, Inv: inverse). The simulations are performed using one processor of a dual
core AMD Opteron 270 (2 × 2 cores) machine with 8 Gbyte memory.

scheme I scheme II
lev 2 3 4 2 3 4
copy m [ms] 0.002 0.013 0.083 0.028 0.420 2.43
FFT Fw [ms] 0.007 0.083 0.844 0.114 1.100 11.8
products [ms] 0.540 3.680 52.5 0.078 0.745 6.71
FFT Inv [ms] 0.013 0.093 0.790 0.055 0.570 7.55
copy Hms [ms] 0.004 0.001 0.05 0.004 0.011 0.12
Total [ms] 0.566 3.870 54.27 0.279 2.846 28.61

interactions introduces some overhead, the direct classical computation of the
magnetostatic field is faster for basis boxes with lev < 2.

8.5. Performance study

This section discusses the performance of the presented FMM algorithm. To
evaluate the time and memory consumption, comparison is made with the
high accuracy (pure) FFT scheme presented in Chapter 7. Since all computa-
tions – FMM and FFT – are conducted with single precision, this corresponds
to a precision of about 6 digits. In what follows, simulations are conducted on
cubical magnetic bodies to evaluate the performance of the FMM algorithm.
The discretization is done as explained in section 8.2, so all FD cells are equal
in size and placed on a regular grid. As discussed in the introduction, these
conditions are optimal for the use of an FFT scheme. Hence, it can be expected
that the FFT scheme will outperform the FMM scheme with respect to CPU
time. However, the difference in CPU time between both schemes under these
FFT suited conditions should be acceptable. The slower execution time of the
FMM scheme should be compensated with a smaller memory consumption
and more flexible applicability of the FMM scheme. The simulations are per-
formed using one processor of a dual core AMD Opteron 270 (2 × 2 cores)
machine with 8 Gbyte memory.

8.5.1 CPU time and memory consumption

As mentioned above, cubic magnetic bodies will be considered. This geome-
try is discretized using 8tot_lev FD cells. For a geometry with 8tot_lev FD cells
different parameters LEV and lev can be combined, i.e. different sizes of ba-
sis boxes can be used. The optimal size of the basis boxes depends on the total
computation time of the algorithm. Table 8.3 shows the CPU times for the com-
putations of the magnetostatic fields for samples of different sizes. The used
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Table 8.3: Timing of the FMM algorithm for different sample dimensions. Between brackets
is mentioned how the total number of levels is divided between far field and near field
computations (LEV − lev). The last row shows the run time for the FFT scheme.

64 × 64 × 64 128 × 128 × 128 256 × 256 × 256 512 × 512 × 512
(5 − 1) 9.17 s (6 − 1) 78.83 s (7 − 1) 663.1 s
(4 − 2) 2.03 s (5 − 2) 17.66 s (6 − 2) 148.4 s (7 − 2) 20 min 21 s
(3 − 3) 1.57 s (4 − 3) 12.88 s (5 − 3) 104.6 s (6 − 3) 14 min 59 s
(2 − 4) 1.76 s (3 − 4) 14.25 s (4 − 4) 115.2 s (5 − 4) 18 min 16 s

(2 − 5) 17.06 s (3 − 5) 138.3 s
(2 − 6) 152.8 s

FFT 0.264 s FFT 2.22 s FFT 22.3 s

Table 8.4: Memory consumption of the FMM scheme with optimal (LEV − lev) division
and of the FFT scheme.

64 × 64 × 64 128 × 128 × 128 256 × 256 × 256 512 × 512 × 512
FMM 16 MB 64 MB 0.48 GB 3.78 GB
FFT 82 MB 654 MB 5.23 GB 41.9 GB (estimation)

number of MP expansions p is equal to 6, which is the largest possible p-value
avoiding stability problems for the MP to local translation (see section 8.3.2).
Between brackets, the number of levels in the far field computations, LEV,
and the number of levels in the near field computations, lev, is mentioned. In
the last row the CPU times for the FFT algorithm are shown.

For all sample dimensions the FMM simulations with lev = 3 need the
least execution time. This means that in all simulations the optimal size of the
basis boxes is 8 × 8 × 8 FD cells (512 FD cells in total). When compared with
the FFT scheme, the FMM scheme is slower, for 64 × 64 × 64 a factor 5.95,
for 128 × 128 × 128 a factor 5.80 and for 256 × 256 × 256 a factor 4.70. In the
FMM scheme with optimal lev parameter, about 85% of the time goes to near
interaction computations.

The memory consumption of the FMM scheme with optimal (LEV − lev)
ratio and of the FFT scheme is given in Table 8.4 for the different sizes of
the sample from table 8.3. There is a remarkable difference in memory needs
between the two algorithms (roughly a factor 11 for large dimensions). The
sample with dimensions 512× 512× 512 can only be computed with the FMM
scheme since only 8 Gbyte memory is available. The difference in memory
needs is due to the very large matrices in the FFT scheme used for the FFTs
(zero padded magnetization data, zero padded field data and Green tensor
data).
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Figure 8.8: CPU time (T) for the evaluation of the magnetostatic field in a cubic magnetic
body versus the number of FD cells (N) used to discretize the sample. The upper curve:
FMM scheme, the lower curve: FFT scheme.

The scaling of both algorithms is shown in Fig. 8.11 over a large range
of sample dimensions. The CPU time of the FMM scheme depends almost
perfectly linear on the number of FD cells – O(N1.0188) dependence – while
the CPU time of the FFT scheme has a small supralinear dependence on the
number of FD cells – O(N1.0928) dependence. The CPU time spent on a fast
Fourier transform of a matrix depends vastly on the dimensions of the matrix.
FFTW performs best for matrices with dimensions that are products of small
primes

N = 2a3b5c7d11e13 f (8.55)

with e+f = 0 or 1. Other sizes are computed by means of a slow, general pur-
pose algorithm [83]. This explains the jumps in the FFT curve in Fig. 8.8 for
large N values. Indeed, while dimensions grow, the sizes for which the condi-
tion (8.55) is met are more scattered. Hence for larger dimensions, more jumps
are expected, which makes the difference in CPU time between the FMM and
FFT scheme even smaller for these large dimensions.
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Table 8.5: Normalized root-mean-square error of the FMM algorithm for different sam-
ple dimensions. Between brackets is mentioned how the total number of levels is divided
between far field and near field computations (LEV − lev).

64 × 64 × 64 128 × 128 × 128 256 × 256 × 256
(5 − 1) 2.17 e − 3 (6 − 1) 2.35 e − 3 (7 − 1) 2.48 e − 3
(4 − 2) 2.13 e − 3 (5 − 2) 2.30 e − 3 (6 − 2) 2.44 e − 3
(3 − 3) 1.98 e − 3 (4 − 3) 2.22 e − 3 (5 − 3) 2.37 e − 3
(2 − 4) 1.54 e − 3 (3 − 4) 2.01 e − 3 (4 − 4) 2.24 e − 3

(2 − 5) 1.49 e − 3 (3 − 5) 1.96 e − 3
(2 − 6) 1.36 e − 3

8.5.2 Accuracy

The accuracy of the far field computations depends on the order of multi-
poles p used in the computations of the far field. The near field computations
are computed with an accuracy corresponding to machine precision. Because
of the stability problems encountered in the MP to local translations the maxi-
mum number of multipoles p is limited to six (in this implementation), see sec-
tion 8.3.2. Theoretical considerations about the accuracy of the FMM scheme
are given in [101] where error bounds are given. Here, the error on the magne-
tostatic field values computed with the FMM scheme, is given by comparing
the results of the FMM simulations with the results of the FFT simulations.

To make this comparison, magnetic samples in a micromagnetic equilib-
rium state encountered in the simulation of their hysteresis loops are used.
This is done for different sample dimensions. The normalized root-mean-
square error for different LEV/lev parameters and different sample dimen-
sions are shown in table 8.5. The normalized root-mean-square error is defined
as

error =

√√√√ 1
N

N

∑
i=1

|HFMM
ms,i − HFFT

ms,i |2
|HFFT

ms,i |2
(8.56)

From Table 8.5 it is clear that the error slightly increases when the dimen-
sions of the sample increase. Further, the error decreases when the size of the
basis boxes increases. This is when lev is large. This is because for large basis
boxes a relatively large number of interactions is computed using near field
computations which have an accuracy corresponding to the machine preci-
sion.

The magnetic configurations in different planes of the sample with dimen-
sions of 128 × 128 × 128 FD cells are shown in Fig. 8.9 together with the mag-
netostatic field values and the local normalized error in the same planes. The
local normalized error depends on the position in the basis boxes: at the edges
of the basis boxes, the largest errors occur.
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Figure 8.9: Magnetization (up), amplitude of the magnetostatic field (middle) and normal-
ized rms error on a logarithmic scale (bottom) in planes z = 0 (left) and z = 16 (right) of a
sample with dimensions 128 × 128 × 128 FD cells.
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Figure 8.10: Top view of a structure periodic in 2 directions (periodicity in the plane of the
sheet of the paper). Extra levels are introduced to describe an infinite periodic structure.
The black cell is one period of the infinite structure.

8.6. Periodic boundary conditions in the FMM scheme

In the FMM scheme it is possible to describe a periodic structure that approxi-
mates an infinite periodic structure in one or more dimensions. Indeed, when
the aggregation phase of the FMM algorithm is performed up to the root level,
the MP expansion of one period is known. Since the MP expansions of all pe-
riodic images are identical, the influence of all periodic image volumes on the
period under study can be described in series and summed. This can be done
by employing Ewald summation methods [105]. However, a more straightfor-
ward method can be used.

In this FMM implementation distant periodic images are included by intro-
ducing extra tree levels. In Fig. 8.10 the black square represents the considered
volume which is infinitely repeated in the two dimensions of the paper. The
aggregation phase of the FMM algorithm reveals the MP expansion of the root
(level zero). Now, when periodicity is described in one or more directions ex-
tra levels are introduced, for which the aggregation phase is continued: on the
first extra level the children are the root and its periodic images which have
identical MP expansions (the MP expansion of the root, see Fig. 8.10). If the
structure is periodic in only one or two dimensions, empty boxes are consid-
ered in the non-periodic dimension as is shown in Fig. 8.11. This is repeated
for LEVextra levels. For an extra level i, the children in the MP to MP trans-
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Figure 8.11: Front view of the periodic structure of Fig. 8.10. In the non-periodic direction,
empty boxes are added.

lation have always identical MP expansions (computed in the (i − 1)th extra
aggregation step) or have no MP expansion in the non-periodic direction(s).
In this way the MP expansions of clusters of periodic images are computed on
different levels (see Fig. 8.11).

In the disaggregation phase, extra disaggregations are conducted on the
extra introduced levels. On each level of this extra disaggregation phase one
is only interested in the local expansion of the first child (the others are noth-
ing but copies). Once the local expansion in the root box is known the usual
disaggregation phase can continue. However, when the MP expansion of a
neighbor outside the boundaries of the considered volume is needed, one has
to take the identical MP expansion of the image box inside the considered vol-
ume. This results in extra translations MP to local translations compared with
the non-periodic case.

This scheme introduces only a negligible overhead compared with the
non-periodic case since only a small number of extra levels needs to be intro-
duced to well approximate an infinite number of periodic images. The intro-
duction of 5 extra levels describes a periodic structure containing 6144 periods
in each dimension.

8.7. Conclusion

In this chapter, a highly efficient FMM scheme for the evaluation of the magne-
tostatic field is presented. The performance is evaluated by comparing it with
the high accuracy FFT based Hms evaluation scheme of Chapter 7. As in most
numerical algorithms there is a trade off between memory usage and execu-
tion time. Here the memory savings are very large –about a factor 11– while
the execution time is a factor 4 to 5 larger, compared with the FFT scheme. This
trade off becomes better for non-cubical shapes. Indeed, in the FMM scheme
only the magnetic sample is discretized while in the FFT scheme an enclosing
rectangular prism has to be discretized (magnetic body and air). The use of
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the presented FMM scheme can thus be advantageous for large complex ge-
ometries as writing heads etc particulary when storage capacities are limited.

However, for the simulations conducted in this PhD the CPU time is the
bottle neck, far more than memory requirements. Furthermore, the considered
geometries (or periods in a periodic structure) are rectangular prisms, which
makes FFT based schemes advantageous in our application. From this Chap-
ter, we can conclude that for a cuboid geometry the expected cross-over point
between the FFT based O(N log N) computations and the FMM based O(N)
computations is only reached for very large geometries, i.e. very large N. In
this respect, in the rest of this PhD FFT based schemes are used to compute
the magnetostatic field.

The execution time of the FMM scheme could be decreased in a more com-
plex variant of this FMM scheme. Here, the discretization can be made adap-
tive, using FD cells of different size. In this way domains could be discretized
using large FD cells, while small FD cells can still be used to discretize the do-
main walls. When the domain configuration changes in time, the meshing of
the ferromagnetic sample should also change. The discretization should thus
be adaptive in space and time, which makes the implementation not straight
forward. Extending the presented FMM scheme with adaptive discretization
will dramatically improve its performance, but is not performed in this PhD
work.



CHAPTER 9

Influence of low accuracy

computations in the

micromagnetic hysteresis

scheme

9.1. Introduction

When considering hysteresis properties, one is predominantly interested in
magnetization processes in micromagnetically large objects with dimensions
in the order of micrometers and larger. On this length scale the study of mag-
netization processes is typically based on the domain theory [106]. Here, uni-
form magnetization regions are assumed through the complete sample. Since
this assumption is not always valid, micromagnetic simulations should be
able to validate and probably improve the results obtained by the domain
theory. Ideally, the micromagnetic computations should be worked out with
the same spatial and numerical accuracy as used in the ’classical’ micromag-
netic research domains as e.g. magnetic recording etc. However, in micromag-
netic (hysteresis) simulations that describe magnetization processes in much
larger non-ideal ferromagnetic samples as electrical steels, the accuracy which
is aimed at is much lower, particulary because the materials’ microstructure
itself is only known to a certain extent. Indeed, the samples simulated in the
’classical’ micromagnetic research domains differ vastly from these studied in
the hysteresis schemes.
First, the classical samples have a well-known microscopic texture without
any lattice defects. Contrary, the electrical steel samples consist of numerous
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grains of which only a distribution of lattice orientations is known. They con-
tain all kinds of lattice defects: edge and screw dislocations, interstitials, mi-
crocracks, etc. The exact locations of these defects is not known, only a defect
density and statistical spreading can be assumed.
Second, the dimensions of the studied samples differ a lot. The ’classical’ sam-
ples have dimensions in the order of 10 to 100nm, while the electrical steel
samples are much larger, bulk like. The size of the simulated electrical steel
samples is limited by the memory resources available and the CPU time.

Classically, the discretization size is imposed by the exchange length, see
Section 2.3.2. Together with a careful description of the exchange interaction
this guarantees the most accurate simulation of the magnetization processes in
the small magnetic samples under study [55, 107]. In this chapter we will in-
vestigate the influence of a larger discretization size in the micromagnetic hys-
teresis scheme. Here, the use of a discretization size larger than the exchange
length corresponds to a low level homogenization, which results in a less ac-
curate evaluation of the exchange field and of the magnetostatic field. On the
other hand the CPU time and memory requirements will be vastly decreased.

Further we have seen in Chapter 7 that a low accuracy FFT based Hms
evaluation scheme can be used that reduces the CPU time and memory re-
quirements. Here, only the accuracy of the magnetostatic field is affected. In
this chapter, we will also investigate the influence of the low accuracy Hms
evaluation on the simulated hysteresis loop.

9.2. Influence of space discretization size

The use of a small discretization size Δ not only drastically increases the num-
ber of FD cells N for a given sample, it has also a large impact on the micro-
scopic time step δt needed in the time stepping scheme. Indeed, in Section
6.3.3 it was demonstrated that, when smaller FD cells are used, smaller micro-
scopic time steps δt have to be used in the predictor-corrector semi-analytical
time stepping scheme to guarantee convergence between two successive equi-
librium magnetization states. When Δ is decreased with a factor 10, the max-
imum δt for which the system converges decreases by roughly a factor 100.
Hence, the use of small FD cells not only leads to more FD cells, but moreover
the time stepping of the LL-equation in all these FD cells has to be performed
with smaller time steps δt, leading to an increasing number of time steps.

9.2.1 Simulations

For a given sample, the CPU time needed to simulate the hysteresis loop is
dramatically reduced when larger discretization sizes Δ are used. However, in
the classical micromagnetic research areas, the exchange length is seen as the
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Figure 9.1: Hysteresis loops of an iron sample using different discretization sizes Δ.

Table 9.1: Simulation data for the simulated loops of Fig. 9.1

Δ [nm] N δt [ps] #δt CPU time
2.5 8388608 0.5 27036 103h15min
5.0 1048576 1.0 14627 8h33min
10 131072 5.0 1163 7min46 sec

maximum discretization size because on a smaller scale no inhomogeneities
can be present. In the electrical steel samples (iron) the exchange length is
about 2.8nm. To examine if the exchange length is also an upper bound in the
micromagnetic hysteresis model for electrical steels, hysteresis loops are simu-
lated for an iron sample with dimensions of 0.32μm× 1.28μm× 0.32μm using
different discretization sizes. The external field is applied along the longest
edge of the sample. A discretization size of 2.5nm (slightly smaller than the
exchange length), 5.0nm and 10nm is considered. The hysteresis loops are
shown in Fig. 9.1.

The loops are very similar: they have the same slope and enclose a similar
surface, two important aspects of electrical steels for their performance in elec-
tromagnetic devices. Table 9.1 shows the simulation data for the loops of Fig.
9.1. The total number of FD cells used to discretize the sample increases enor-
mously when smaller discretization sizes Δ are taken. As already mentioned,
smaller time steps δt are used when Δ is decreased. When the microscopic time
step δt decreases, the total number of microscopic time steps #δt to simulate
the hysteresis loop increases. The massive differences in CPU time mentioned
in the last column of Table 9.1 are due to a combination of two factors: (i) more
microscopic time steps δt are required when a smaller discretization size Δ is
used and (ii) a single time step δt needs more CPU time when a smaller dis-
cretization size Δ is used. Since the computation time scales as O(N log N),
the CPU time increases rapidly with increasing number of FD cells.
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Figure 9.2: Remanent magnetization pattern for the loops of Fig. 9.1 simulated with dif-
ferent discretization sizes: Δ = 10nm (top), Δ = 5.0nm (middle) and Δ = 2.5nm (bottom).

The hysteresis loops shown in Fig. 9.1 only give information about the
macroscopic magnetization of the ferromagnetic sample. The micromagnetic
hysteresis model also allows us to see if identical magnetization configura-
tions are passed through. Fig. 9.2 shows the microscopic magnetization pat-
tern in a plane parallel to the applied field for the loops of Fig. 9.1 at zero
applied field (remanent magnetization). It is clear that almost identical mag-
netization configurations lead to the loops of Fig. 9.1. The small differences
in the magnetization loops can be neglected. Indeed, since the internal struc-
ture of the sample is not completely known, the uncertainty of the micro-
scopic properties of the sample introduces an uncertainty on its hysteresis
loop. Another example is shown in Fig. 9.3 where a sample with dimensions
0.32μm × 2.56μm × 0.32μm is simulated using different discretization sizes
(Δ = 2.5nm, 7.5nm and 10nm). The loops again enclose similar surfaces and
have the same slope, furthermore they differ significantly from those in Fig.
9.1. When the loops of Fig. 9.1 and Fig. 9.3 are compared identical conclusions
can be drawn about the influence of the sample geometry on the hysteresis
loops, regardless of the used discretization. The simulation times are respec-
tively 404h, 1h30min and 19min.
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Figure 9.3: Hysteresis loops of an iron sample using different discretization sizes Δ.

9.2.2 Conclusion

From the presented simulations it is clear that discretization sizes larger than
the exchange length can be used in the micromagnetic hysteresis scheme.
However, the discretization size should be sufficiently small with respect to
other characteristic length scales in the material such as the thickness of a do-
main wall (about 70nm in Fe) and the dimensions of vortex states (about 35nm
in Fe). Considering this together with the massive differences in CPU time and
memory needs justifies the use of a discretization length up to 10nm. Indeed,
when studying magnetic properties of electrical steels, the small precision im-
provement when a physically justified discretization size of Δ = 2.5nm is used,
cannot justify the huge increase of CPU time compared with the computations
where e.g. Δ = 10nm is used.

9.3. Influence of low accuracy Hms evaluations

In this context, the question also arises to what extent the use of lower ac-
curacy Hms evaluation schemes influences the simulated macroscopic hys-
teresis behavior of micrometer sized ferromagnetic samples. This influence
is investigated in this section for elongated iron samples (μ0Ms = 2.16T)
with dimensions 0.5μm × 0.5μm × 16.0μm, 1.0μm × 1.0μm × 32.0μm and
1.5μm × 1.5μm × 48.0μm are considered, discretized using 10nm sized FD
cells leading to 4106, 32106 and 108106 FD cells respectively. All samples con-
tain 32 grains with cubic anisotropy axes. Here, random stresses are added
to simulate the grain boundaries. The elongated geometry is chosen since it
is expected that the differences in the hysteresis loop shape will be most pro-
nounced in this case. The external field is applied along the longest direction
of the sample. In what follows, the samples will be referred to as sample A,
B and C respectively. The semi-analytical predictor-corrector scheme is used
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to time step the LLG equation. All simulations are performed using a multi-
threaded implementation on an AMD Opteron 2350 machine (4x2 cores) with
32 GB of shared memory.

9.3.1 Simulations

The resulting hysteresis loops, with the magnetostatic field computed using
the high and low accuracy Hms evaluation scheme (referred to as scheme 1
and scheme 2 respectively, see Chapter 7) are shown in Fig. 9.4 to Fig. 9.6.
Due to the elongated shape of the sample, the hysteresis loops take a large
jump at the coercive field. In both Fig. 9.4 and 9.5 the coercive field values
for the loops simulated with the high accuracy Hms evaluation scheme are
larger than the corresponding loop simulated with the lower accuracy Hms
evaluation scheme. This is understood as follows. When saturated at high
(positive) external fields, the samples are in a stable micromagnetic equilib-
rium state. Diminishing the applied field makes the systems evolve from these
stable states to metastable equilibrium states. When the applied field corre-
sponds to the coercive field, domain structures are initiated which enable the
magnetic system to reverse to the opposite magnetization state. The domain
nucleation, needed to initiate such a domain structures, typically originates
at points where small variations occur in the quantities describing the mag-
netic sample. If these variations are absent, large opposite external fields are
required to initiate the reversal process. In the hysteresis loops based on the
lower accuracy Hms evaluation scheme, the numerical noise on the magneto-
static fields account for the small variations that nucleate the domain struc-
ture. In the loops simulated with the high accuracy Hms evaluation scheme,
such variations are absent and a higher opposite applied field is needed to
initiate the magnetization reversal.

The coercive fields for the simulated hysteresis loops of the largest sample
C have identical values and the resulting loops are very similar (see Fig. 9.6).
However, the above reasoning still holds. Here, the micromagnetic equilib-
rium states before the reversal point are more stable and the numerical noise
has only little influence. It is only at the coercive field that in both simulations
domains are initiated leading to the magnetization reversal.

The stability of the successive micromagnetic equilibrium states is also ex-
pressed by the number of time steps needed to time step the LLG equation
(and consequently the CPU time) between successive equilibrium states dur-
ing the simulation of the hysteresis loops. The number of time steps #δt are
given in Table 9.2, together with the CPU time and the memory requirements
for the discussed simulations. For the loops of sample A and sample B, more
time steps are needed when the low accuracy Hms evaluation scheme is used.
Indeed, due to the introduced numerical noise, the micromagnetic systems
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Figure 9.4: Hysteresis loops for a ferromagnetic sample A with dimensions 0.5μm ×
0.5μm × 16.0μm, computed using the high accuracy Hms evaluation scheme (full line) and
the low accuracy Hms evaluation scheme (dashed line).
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Figure 9.5: Hysteresis loops for a ferromagnetic sample B with dimensions 1.0μm ×
1.0μm × 32.0μm, computed using the high accuracy Hms evaluation scheme (full line) and
the low accuracy Hms evaluation scheme (dashed line).

converge more slowly to the successive metastable equilibrium states when
the lower accuracy Hms evaluation scheme is used. This is not the case for the
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Figure 9.6: Hysteresis loops for a ferromagnetic sample C with dimensions 1.5μm ×
1.5μm × 48.0μm, computed using the high accuracy Hms evaluation scheme (full line) and
the low accuracy Hms evaluation scheme (dashed line).

Table 9.2: Simulation data: hysteresis loops with different Hms evaluation schemes.

simulation #δt CPU time Mem
sample A, scheme 1 1461 1h 5min 1.1 GB
sample A, scheme 2 1796 1h 5min 0.65 GB
sample B, scheme 1 4447 24h 22min 8.9 GB
sample B, scheme 2 6378 29h 18min 5.5 GB
sample C, scheme 1 11219 236h 20min 30.0 GB
sample C, scheme 2 11388 212h 31min 18.7 GB

hysteresis simulation of sample C. As outlined above, the successive equilib-
rium states are more stable, enabling the system to converge fast to the next
equilibrium state despite the numerical noise.

From Table 9.2 it is also clear that when the Hms evaluation scheme 2 is
introduced in the micromagnetic hysteresis scheme instead of scheme 1 (i) the
CPU time to compute a time step is reduced with about 15% and (ii) the mem-
ory requirements are reduced with 37%. A possible gain in the total CPU time
depends on the stability of the system in every point of the hysteresis loop.
Furthermore, one can conclude that for growing sample sizes (i) the number
of time steps in the hysteresis simulation grows and (ii) the coercive fields
diminish (see Fig. 9.4 to Fig. 9.6).
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Figure 9.7: Hysteresis loops for the same ferromagnetic sample as in Fig. 9.4 (sample A),
computed using the high accuracy Hms evaluation scheme. Thermal effects are taken into
account for different temperatures.

9.3.2 Influence of thermal fluctuations

Now, comparison is made with the influence of thermal fluctuations on the
hysteresis behavior of the ferromagnetic samples. Therefore a random thermal
fluctuation field is added to the effective field as explained in Section 2.6,

Hth = ηηη(r, t)

√
2αkBT

|γG|μ0MsΔ3δt
(9.1)

with δt the used time step and ηηη(r, t) a stochastic vector whose components
are Gaussian random numbers, uncorrelated in space and time, with zero
mean value and dispersion 1. In the considered simulations, the damping con-
stant α is 0.02, the FD cell size Δ = 10nm and the used time step δt is 2.5ps.
In Section 2.6 we explained that the thermal fluctuations make it possible to
overcome energy barriers in the micromagnetic energy landscape of the con-
sidered ferromagnetic system. The larger the amplitude of the thermal fluc-
tuations, the larger the energy barriers that can be overcome. Figures 9.7 to
9.9 show the simulated hysteresis loops for the ferromagnetic samples consid-
ered above. Here, the high accuracy magnetostatic field evaluation scheme 1
is used. The fluctuating thermal fields correspond to different temperatures
(0K, 210K, 260K, 310K and 360K). It is clear that for T = 0K the thermal fields
are zero and the resulting hysteresis loops correspond to the ones simulated
in Section 9.3.1.
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Figure 9.8: Hysteresis loops for the same ferromagnetic sample as in Fig. 9.5 (sample B),
computed using the high accuracy Hms evaluation scheme. Thermal effects are taken into
account for different temperatures.

−5000 0 5000
−1

−0.5

0

0.5

1

H [A/m]

 <
M

> 
[M

s]

0 K
210 K
260 K
310 K
360 K

Figure 9.9: Hysteresis loops for the same ferromagnetic sample as in Fig. 9.6 (sample C),
computed using the high accuracy Hms evaluation scheme. Thermal effects are taken into
account for different temperatures.

Figures 9.7 and 9.8 show the hysteresis loops corresponding to sample A
and sample B. As expected, higher temperatures result in lower coercive field
values. Indeed, at higher temperatures, the amplitude of the fluctuations rises,
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Table 9.3: Simulation data: hysteresis loops for different temperatures.

simulation #δt CPU time
sample A, 0K 1461 1h 5min
sample A, 210K 1639 1h 12min
sample A, 260K 1825 1h 19min
sample A, 310K 1827 1h 20min
sample A, 360K 2159 1h 34min
sample B, 0K 4447 24h 22min
sample B, 210K 5790 37h 49min
sample B, 260K 5643 36h 52min
sample B, 310K 5753 37h 35min
sample B, 360K 6328 42h 11min
sample C, 0K 11219 236h 20min
sample C, 210K 13220 262h 11min
sample C, 260K 11479 228h 8min
sample C, 310K 12466 246h 44min
sample C, 360K 12487 247h 35min

enabling the system to overcome larger energy barriers, resulting in a possi-
ble domain nucleation in more stable energy states. Hence, the magnetization
reversal can take place at smaller applied fields. The hysteresis loops at dif-
ferent temperatures for sample C with dimensions 1.5μm × 1.5μm × 48.0μm,
shown in Fig. 9.9, are almost identical. Since the successive equilibrium states
are more stable compared to the ones in sample A and B, the thermal fluctua-
tions only have a negligible influence on the hysteresis loop. For applied fields
somewhat smaller than the coercive field, the energy barriers are still too large
to be overcome by the thermal fluctuations and to initiate the magnetization
reversal.

In these simulations, the temperature can also have a large impact on the
number of time steps and thus on the CPU time. This is shown in Table 9.3.
For sample A and B, the number of time steps #δt increases for higher tem-
peratures, while this is much less pronounced for sample C. In sample A and
B, higher temperatures (i.e. rising amplitudes of the fluctuating thermal field)
make the micromagnetic systems converge more slowly to successive equi-
librium points. The larger fluctuations open up a higher number of possible
energy paths between successive (metastable) equilibrium points, resulting in
more time steps and larger CPU times. For the hysteresis simulation of sam-
ple C, the successive equilibrium states are more stable and the energy paths
between the equilibrium states are more confined. Hence the thermal fluctua-
tions do not have a large impact on the total number of time steps.



178 ACCURACY IN THE HYSTERESIS SCHEME

9.3.3 Comparison

Now we can compare the results described in sections 9.3.1 and 9.3.2. In both
simulation series, noise terms of very different origin influence the hysteresis
behavior. For a given magnetic configuration, the numerical noise in section
9.3.1 is constant, while the thermal noise still depends on the used time step
δt and discretization size Δ, see expression (9.1). However, similar conclusions
can be drawn concerning their influence. Indeed, the same mechanisms are at
the origin of the possible variations of the coercive fields. The numerical noise
on the Hms evaluation on the one hand and the thermal fluctuations on the
other hand, can initiate domain nucleation at smaller applied fields compared
to the loops computed with the high accuracy Hms evaluation scheme at T =
0K. The possible reduction of the coercive field depends in both cases on the
stability of the equilibrium states in every point of the hysteresis loop. From
Table 9.2 and Table 9.3 it is also clear that, given a micromagnetic system, the
low accuracy evaluation of Hms or the addition of thermal fluctuations has
the same impact on the number of time steps required for the simulation of
the hysteresis loop. When the system runs through metastable equilibrium
states, more time steps are required in both cases.

When thermal fluctuations are considered in a certain sample, the coercive
field Hc(T) increases monotonically to Hc(T = 0) for decreasing temperatures
and thus decreasing amplitudes of the thermal field Hth. In the same way,
smaller numerical noise levels should lead to increasing coercive fields, con-
verging to Hc(T = 0K) when numerical noise is zero. To examine this, the sim-
ulations of Fig. 9.4 on sample A are redone with the Hms evaluation scheme
2. The discretization however is refined to FD cells with halved dimensions
(Δ = 5nm) leading to a higher accuracy. The hysteresis loop is shown in Fig.
9.10 together with the loops of Fig. 9.4 (Δ = 10nm, Hms evaluated with scheme
1 and 2). From Fig. 9.10 it is clear that, as expected, the hysteresis loop simu-
lated with Hms scheme 2 and Δ = 5nm has an intermediate coercive field, since
the magnetostatic field evaluations in the considered simulation have also an
intermediate precision.

9.3.4 Conclusion

When we interpret these results in the framework of the micromagnetic hys-
teresis modeling we can see that the hysteresis loops in Fig. 9.10 are very sim-
ilar, but not identical. Indeed, on the microscopic level, the space and time
behavior of the magnetization is slightly different. However, it is clear that the
same magnetic processes dominate the hysteresis behavior of the ferromag-
netic sample and identical conclusions concerning the macroscopic magnetic
behavior can be drawn independent of the used Hms evaluation scheme. This
shows that the low accuracy Hms evaluation scheme can be used in micromag-
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Figure 9.10: Hysteresis loops for sample A, computed using the high accuracy Hms evalua-
tion scheme, Hms scheme 2 with discretization size Δ = 10nm and Hms scheme 2 discretiza-
tion size Δ = 5nm.

netic hysteresis simulations. Furthermore, the origin of the small variations in
the hysteresis loops is now clarified: the introduced numerical noise initiates
the domain reversal at smaller coercive fields and larger numerical noise lev-
els give rise to smaller coercive fields. Although the numerical noise is not
Gaussian distributed and is not uncorrelated in space and time, these conclu-
sions are identical to the conclusions drawn from simulations with additional
thermal noise. Indeed, the influence of the thermal fluctuations depends in the
same way on the stability of the successive micromagnetic equilibrium points.
Moreover, the differences in the hysteresis loops simulated with the low accu-
racy Hms evaluation scheme are of the same magnitude as encountered when
thermal fluctuations for moderate temperatures are taken into account.
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PART III
APPLYING THE

MICROMAGNETIC SCHEME





CHAPTER 10

Classical micromagnetic

applications

As mentioned frequently in this PhD thesis, the micromagnetic scheme is
designed and optimized to describe magnetization phenomena in multiple
magnetic domain sized ferromagnetic materials. However, as already demon-
strated by the comparison of simulation results for switching processes in Sec-
tion 6.4, the numerical scheme is also perfectly suited to describe magnetiza-
tion processes in the more classical research domain of submicrometer sized
magnetic samples. In this chapter we will show some other examples where
the developed micromagnetic scheme provides results to better understand
the magnetization processes in small ferromagnetic samples.

10.1. Influence of geometry and temperature in nanostrips

10.1.1 Introduction

Recently, there has been a growing interest in magnetic nanostructures, study-
ing how particular magnetic properties can be tailored by properly changing
their structural geometry [108]. Potential applications range from data storage
devices to high-resolution magnetic field sensors. Within this context, the in-
vestigation of the micromagnetic behavior of magnetic nanoparticles is funda-
mental to understand their overall properties. Thus, increasing attention has
been devoted to the computation of magnetization reversal processes, starting
from the space-time integration of the LLG equation [109,110, 111].

This section numerically studies the micromagnetic behavior of permal-
loy nanostrips with variable size and end shape, considering triangular tips
and nucleation pads. The analysis evidences how the scaling factor and the
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Figure 10.1: Studied samples with reference to the geometrical parameters considered in
the analysis. The thickness varies between 5 nm and 209 nm.

local shape anisotropy due to end effects play a fundamental role in the inter-
play of magnetostatic and exchange energies, and consequently on the rever-
sal mechanism. At sub-micrometer length scale, the switching processes are
also affected by magnetization fluctuations induced by thermal agitation. The
introduction of thermal noise enables the selection of the geometrical configu-
rations characterized by a higher thermal stability. This research is elaborated
in collaboration with the Istituto Nazionale di Ricerca Metrologica (INRIM,
Turin, Italy).

10.1.2 Numerical analysis

The attention is focused on a magnetic nanostrip, with variable longitudinal
size L (order of some hundreds of nanometers) and width w. The aim is to
evidence the role of sample dimension, end shape and temperature on the
magnetization reversal mechanism under the action of an external field. The
geometric parameters of the different analyzed configurations are depicted in
Fig. 10.1. The basic strip is rectangular and three scaling factors are considered,
varying length L from 200nm to 800nm and width w from 25 to 100nm. At the
same time, the thickness t is increased from 5nm to 20nm, keeping the sample
aspect ratio fixed. Configurations (b1) and (b2) show symmetric or asymmet-
ric tips at the nanostrip ends, while in configuration (c) nucleation pads are
added to the rectangular strip. In all configurations, the initial magnetization
is uniform in the sample, making an angle β with the x-axis. A constant neg-
ative field Ha is applied along the x-axis. The nanostrip material is permalloy
with Ms = 860kA/m, Ku =0 and A = 13pJ/m3. The damping constant α is
assumed to be equal to 0.02. For each basic rectangular nanostrip considered
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here, modifications of the shape have been analyzed, introducing symmetric
or asymmetric triangular tips or nucleation pads at the ends.

Role of size and end shape

To evidence the effects of nanostrip size and end shape, we have initially ex-
cluded the thermal noise influence by setting the temperature to zero. The
switching dynamics is studied by applying a sufficiently large magnetic field
(Ha = 100kA/m) in the negative x-direction. To facilitate the reversal process,
the initial magnetization, which is assumed uniformly distributed, makes an
angle β of 5 degrees with the x-axis (see Fig. 10.1.a).

First, we focus on rectangular strips, evidencing how the switching mode
is strongly determined by the sample size [111]. When L = 200nm, the rever-
sal starts with the nucleation of two symmetric domain walls at the ends of
the nanostrip, where the magnetostatic field exhibits its highest value. Then
the domain walls propagate along the longitudinal direction with a rotational
motion, which leads to oscillations of the perpendicular components of the
magnetization. When the walls approach the sample center, two vortices nu-
cleate and the peak of exchange energy is reached. This is shown in the top
halve of Fig. 10.2

When L = 800nm the dynamic behavior starts with the formation of two
vortices at the ends which, successively, move towards the nanostrip center,
see bottom halve of Fig. 10.2. The 400nm long strip shows an intermediate be-
havior, with the nucleation of two asymmetric domain walls at the ends that
propagate towards the center, evolving in more complex magnetization pat-
terns with respect to the 200nm long sample. Since the magnetization reversal
is driven by the phenomena occurring at the nanostrip ends, where strong
magnetostatic fields arise, we explore the possibility of accelerating the rever-
sal processes by considering nanostrips with different end geometries. As an
example, Fig. 10.3 evidences the influence of triangular tips (shapes b), report-
ing the relaxation time τ (i.e. the time elapsing until the longitudinal magne-
tization component Mx becomes zero) versus parameter p, which represents
the height of the triangular ends. For low values of p, a slight reduction of τ

can be observed. For a symmetric structure end (shape b1), when the reversal
is driven by vortex nucleation (L = 800nm), the presence of the triangular tips
has a weaker influence. For smaller sample sizes, a further increase of p in-
terferes with the domain wall formation up to a critical value, beyond which
the reversal does not take place. In this case, the local shape anisotropy forces
the magnetization to align antiparallel to the external field, reaching an equi-
librium configuration. On the contrary, when considering a rectangular strip
with the same transversal dimension w and longitudinal dimension equal to
(L + 2p), the reversal occurs also when p reaches the critical value. Finally, Fig.
10.3 evidences how for an asymmetric structure (shape b2), when L = 400nm,
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Figure 10.2: Time evolution of the average magnetization components and specific mag-
netostatic (Ems) and exchange (Eexch) energy terms of the rectangular nanostrips of length
equal to 200nm (top) and 800nm (bottom). The magnetization snapshots at the instant
when Mx = 0 and at the instant of maximum exchange energy are shown. Due to sym-
metry, only one end of the strip or its central portion are reported.
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Figure 10.3: Relaxation time versus geometric parameter p (normalized to L), for shapes
(b1) and (b2). For the first end structure, three different values of L are considered. The
external field Ha has an amplitude of 100kA/m.

the presence of triangular tips facilitates the domain wall creation, leading to
a reduction of τ.

The effect of nucleation pads at the nanostrip ends (shape c) is analyzed
by varying parameter s and fixing wt to 1.8w. Generally, this end shape ad-
vantages the reversal mechanism with a consequent decrease of τ, which can
reach a minimum when properly choosing parameter s, see Fig. 10.4. A strong
dependence on geometrical configuration is found also with large sample
sizes. When L = 800nm, τ reduces to approximately one third when parame-
ter s is equal to ∼ 0.3 L. A further increment of s up to 0.5 L (rectangular strip
with width equal to wt) limits the effect of the geometry.

When L = 400nm, the nucleation pads advantage the creation and propa-
gation of asymmetric domain walls inside the pads. For low values of s (up to
0.1 L), it has been observed that when the wall is going to be expelled from the
pad, there is the nucleation of a vortex and an antivortex at the pad corners,
see Fig. 10.5. For high values of s, this structure does not appear, but the larger
extension of the pad enables the increase of the propagation velocity of the
transverse wall.

The presence of nucleation pads reduces the coercive field. In contrast to
the rectangular strip case, the switching occurs also when the external field
is 50kA/m (bottom Fig. 10.4). In this case, there is a shift of the minimum
of the relaxation time towards lower values of s, while for higher values the
influence of the geometric configuration becomes weak.
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Figure 10.4: Relaxation time versus geometric parameter s, for nanostrip shape (c) with
nucleation pads. The external field Ha has an amplitude of 100kA/m (top) and 50kA/m
(bottom).

Role of temperature

In this subsection, the nanostrip is initially saturated along the x-direction
(β = 0) and a constant external field is applied antiparallel to the magnetiza-
tion. If this field is lower than the coercive one, the system lies in a metastable
equilibrium state, that would not decay by itself if thermal effects are not taken
into account. As outlined in Section 2.6, thermal fluctuations add a stochastic
energy of kinetic nature to the Gibbs free energy. This extra amount of energy
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Figure 10.5: Comparison of magnetization snapshots at time instant t = 0.16ns for shapes
(a) and (c), whit parameter s = 0.1 L and L = 400nm. In the nanostrip with nucleation pads,
the domain wall has already disappeared. Due to symmetry, only on end of the strip is
reported.

can induce the system to jump across energy barriers and initiate the transition
towards another equilibrium state. In this case, the system can evolve even in
the absence of an external field, losing a fraction of its initial magnetization.

The analysis is here performed considering a temperature ranging from
0.04 K up to 340 K and a time interval of 1.5 ns. Depending on the size and
the stability of the geometric configuration, the magnetic sample responds in
a different way to thermal noise addition. When Ha = 0A/m, for the rectan-
gular strip of length equal to 400 nm, the equilibrium state reached after 1.5 ns
is characterized by a strong reduction of the average value of Mx at the tem-
perature increase (see top part of Fig. 10.6). For temperatures up to ∼ 10K,
the sample stays saturated, while at 340K, Mx reduces to ∼ 0.7Ms. When
Ha = 50kA/m, which corresponds to a field lower than the coercive one, the
magnetization reverses starting from a temperature of ∼ 50K. Increasing the
external field up to 100 kA/m, thermal effects accelerate the switching pro-
cess also at very low temperatures. In the considered time window, a further
increment of temperature leads to a detriment of the final average value of
Mx of the same order of the decrease reached in the absence of the external
field. As shown in the bottom part of Fig. 10.6, up to ∼ 50K the relaxation
time τ is characterized by a strong reduction with temperature rise, due to the
more efficient dissipation of the system energy. Successively, the value of τ

stabilizes and then slightly increases, with a corresponding rise of the global
time needed for switching. This is due to the fact that at high temperatures
the presence of thermal fluctuations opposes to the reaching of the opposite
saturation state.

Figure 10.6 evidences also the stability of the geometric configuration ob-
tained with shape b1, when parameter p is equal to 0.1 L and L = 400nm.
For the considered temperature range, when Ha = 0A/m, a magnetization
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Figure 10.6: Top: Role of temperature on the final average value of Mx after 1.5ns (top)
and the reversal time (bottom) for shape (a), when Ha = 0A/m and 100kA/m. For the two
considered shapes L equals 400nm. The dashed line in the top figure is just a guide for the
eye.

decay does not appear. When applying a 100kA/m external field, a tempera-
ture higher than ∼ 20K is required to obtain the magnetization reversal. Once
reached the switching point, the reduction of the average final value of Mx
corresponds to the one obtained with the rectangular strip.

Finally, we have studied how, when including thermal noise, the nanostrip
behavior is strongly dependent on the scaling factor, the decrease of which
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Figure 10.7: Effect of temperature on the time evolution of the average magnetization com-
ponent Mx for two rectangular nanostrips (L = 200nm and L = 400nm) under an external
field of 100kA/m. The curves reported in the figure correspond to temperature values of
3.4K, 13.5K and 340K.

can determine a more reactive response to thermal agitation. As an example,
Fig. 10.7 compares the switching dynamics obtained when L = 200nm and
L = 400nm, for different values of temperature when Ha = 100kA/m. For the
same temperature amplitude of 340 K, the relaxation time is ∼ 2.5 times lower
when L = 200nm.

10.1.3 Conclusion

The influence of scaling factor, end shape and thermal fluctuations has been
investigated in nanostrips with a longitudinal dimension of few a hundreds
of nanometers. Different reversal mechanisms are observed, depending on the
sample size. The analysis has evidenced the fundamental role of end shape on
initial magnetization processes and, consequently, on the relaxation time. It
has been found that the presence of sharp triangular tips at the strip ends can
prevent the magnetization reversal, when considering small samples. On the
contrary, the addition of nucleation pads at the strip ends can accelerate the
switching processes and reduce the coercive field.

Thermal fluctuations have a destabilizing effect on the micromagnetic sys-
tem resulting in equilibrium states that could not be obtained at zero tempera-
ture. The inclusion of thermal noise can induce switching at fields lower than
the coercive one and also in very stable geometric configurations.
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10.2. Thermally initiated reversal modes in infinite periodic wires

10.2.1 Introduction

In Section 3.7 we have seen that the magnetostatic fields are closely related
to the sample geometry and have a substantial effect on the magnetic behav-
ior, which makes it difficult to draw general conclusions about the magnetic
properties of the material independent from the sample geometry. By con-
sidering an infinitely long geometry, the demagnetizing effects are reduced
to zero in the longitudinal direction. In this way, only demagnetizing effects
in the cross section together with the other micromagnetic interactions deter-
mine the magnetization process. In this section we investigate the 3D reversal
mechanisms in infinitely long ferromagnetic wires.

In finite wires, the magnetization reversal initiates at the ends of the geome-
try due to the interaction with the large demagnetizing fields, see e.g. [112]. In
the considered infinite magnetic wires, the magnetization reversal is initiated
by thermal fluctuations in the body of the material. The thermal fluctuations
are considered as small perturbations on the other energy terms. This assures
that the thermal fluctuations only initiate the magnetization reversal, but do
not influence the reversal itself. The reversal mechanisms depending on the
cross sectional dimensions and the iron lattice orientation are studied.

10.2.2 Micromagnetic framework

In the micromagnetic simulations, monocrystal ferromagnetic wires with
square cross section are considered. The Zeeman (i.e. the applied field Ha),
exchange, (cubic) anisotropy and magnetostatic interactions are taken into ac-
count by their corresponding magnetic field, contributing to the effective field

He f f = Ha + Hexch + Hani + Hms. (10.1)

The computations are restricted to a computational domain of N × N × N fi-
nite difference (FD) cells. This computational domain is repeated periodically
along the z-direction, as presented in Section 7.4.

In the considered simulations, the wire is initially uniformly magnetized
in the positive z-direction: M = Msez. Due to the infinite structure of the wire,
this magnetization state does not introduce magnetostatic fields: H

uni f orm
ms =

0. Indeed, no magnetic poles are generated on the surface of the wire or in
the wire itself. Furthermore, in this uniform magnetization state the exchange
field is also zero, H

uni f orm
exch = 0, since

Hexch(r) ∝ ∇2M(r). (10.2)
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The external field is applied along the z-direction and diminished to possibly
large negative values to ensure the magnetization reversal: Ha = Haez. Fur-
thermore, the anisotropy field can have an initial non negative value when
the magnetization does not align with a crystallographic axis of the iron lat-
tice. Hence, when uniformly magnetized, the effective field (10.1) in the wire
is constant throughout the wire

H
uni f orm
e f f = Haez + H

uni f orm
ani . (10.3)

From the LLG equation,

∂M

∂t
=

γG

1 + α2 M × He f f +
αγG

(1 + α2)Ms
M × (M × He f f ) (10.4)

it is clear that changes in magnetization are depending on the torque T(r) =
μ0M(r) × He f f (r). This implies that when H

uni f orm
ani = 0, no torque is exerted

on the local magnetization and the magnetization state will stay unchanged,
whatever the amplitude of the opposite applied external field is.

The switching process can be activated by thermal agitation, leading to
fluctuations of the magnetization around the described equilibrium state, see
Section 2.6. A small thermal field δHth is added to the effective field (10.1)
as a spatially and temporally uncorrelated white noise term. The standard
deviation of the Gaussian distributed thermal fluctuations is taken such that
the thermal field is a small perturbation on the other terms in the effective
field. In this way the torque in a uniformly magnetized wire with H

uni f orm
ani = 0

becomes non zero.
T(r) = μ0M × δHth(r) (10.5)

Following the LLG equation (10.4), this torque can initiate a change in the
magnetization. By keeping δHth small, we guarantee that reversal is only ini-
tiated at metastable energy states which only need a small amount of energy
to destabilize the micromagnetic system. Once the reversal is started, other ef-
fective field terms become much larger then the thermal field, which ensures
that the reversal process itself is not influenced by the thermal fluctuations.
Here, the focus is on the reversal modes. To study the influence of δHth on the
time instant when the initialization of the reversal takes place, Monte Carlo
simulations would be needed [113] implying a huge number of simulations.
This is out of the scope of this work.

10.2.3 Reversal modes

In the considered simulations, the external applied field is decreased in a step-
wise way. For each new value of the applied field the micromagnetic dynamics
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C
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Figure 10.8: Reversal fields for ferromagnetic wires with cross sections L and different
lattice orientations. The different reversal modes are depicted: reversal with (A) domain
formation, (B) vortex formation and (C) precessional switching combined with buckling.

are computed during 1 ps using the predictor-corrector semi analytical time
stepping, see Section 6.3. If no reversal is initiated, the applied field is de-
creased to the next value, if the reversal takes place, the Ha is kept constant
until equilibrium is reached. The damping constant α is taken 0.1 and the
standard deviation of the amplitude of the thermal fields is taken 100 Am−1,
which guarantees δHth is only a perturbation. The material properties of iron
are used: the exchange length is about 2.8nm while the anisotropy constants
K1 and K2 are 0.48105 Jm−3 and −0.50105 Jm−3 respectively. The cross sec-
tional dimensions L × L are varied from L = 10nm to L = 1μm for iron wires
with the easy, medium and hard magnetization axis (< 100 >, < 110 > and
< 111 >) along the infinite z−direction. Figure 10.8 shows the applied fields
for which the z-component of the magnetization passes through zero. These
values should be interpreted qualitatively: the actual reversal points depend
on the time for which the applied field is kept constant and on the standard
deviation of the amplitude of Hth, i.e. on the temperature.

Depending on the cross sectional dimensions and the lattice axes orien-
tation, there is a smooth transition between three different reversal modes
depicted as A, B and C in Fig. 10.8. Representative magnetization configu-
rations in planes perpendicular to the z-direction (left) and planes along the
z-direction (right) are shown in Fig. 10.9 for the three reversal modes.
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Figure 10.9: Representative magnetization patterns perpendicular to (left) and paral-
lel to (right) the z-direction, during the reversal of iron wires with cross sections (A)
800nm × 800nm, (B) 200nm × 200nm and (C) 10nm × 10nm. For the wire with L = 10nm
two successive time instants are considered. The < 110 > direction of the crystallographic
axis is oriented along the z-direction.
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Domain formation

For wires with large cross section (L ≥ 500nm) and with the < 111 > or
< 100 > direction along the z-direction, domains are formed during the re-
versal process as can be seen in Fig. 10.10.A1 for a wire with cross section
L = 800nm. The evolution of the average demagnetizing, anisotropy and ex-
change energy density (φdemag, φani and φexch respectively) are shown in Fig.
10.10 during reversal for the wire with the < 110 > along the z-direction. As
expected, the exchange and demagnetizing energy are zero and the anisotropy
energy is constant until the reversal is initiated. Since domains are formed,
φdemag and φexch stay relatively small during the reversal. Indeed, near the
edges of the wire, the magnetization stays aligned with the surface. Hence
small magnetic charges are only introduced in the domain walls, but not on
the wire edges, reducing the demagnetizing energy. Since in the domains the
magnetization is divergence free the exchange energy is only non-zero in the
domain walls. Furthermore, φani is reduced during the reversal process since
domains are oriented along easy magnetization directions < 100 >. All energy
terms vary in the same order of magnitude and thus all have influence on the
reversal process. Since the energy terms in the wire stay small during the re-
versal process, the reversal can be initiated at moderate fields, see Fig. 10.8.
From Fig. 10.9.A2 it is clear that this domain reversal process is invariant in
the z-direction.

For wires with identical cross sectional dimensions and easy magnetiza-
tion direction < 100 > along the z- direction, also the anisotropy energy is ini-
tially zero and extra energy has to be put into the system to sustain an increase
of φani at the start of the reversal process, i.e. larger applied fields are required
as shown in Fig. 10.8. During the reversal process itself the extra amount of en-
ergy is distributed among all energy terms leading to a reversal with domains
as well as vortices.

Vortex formation

Domains cannot be formed in wires with cross sections L < 500nm because the
characteristic width of a domain wall (about 70nm [5]) is too large compared
to the sample dimensions. For wires with cross sections 100nm < L < 500nm
the reversal process is dominated by vortices. Figure 10.9.B1 and 10.9.B2 show
magnetization configurations for a wire with L = 200nm and < 110 > axes
along the infinite direction while Fig. 10.11 shows the evolution of the energy
density terms during reversal. At a certain applied field, the thermal perturba-
tions initiate different vortices, with axis along the z-direction, in the sample.
Figure 10.11 shows that at the start of the reversal process, the demagnetizing
energy density is very large, while the exchange density is relatively small.
Later in time however, the demagnetizing energy is reduced and the exchange
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Figure 10.10: Average demagnetizing, anisotropy and exchange energy density during the
reversal process of a Fe wire with L = 800nm and < 110 > axis along the z-direction.
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Figure 10.11: Average demagnetizing, anisotropy and exchange energy density during the
reversal process of a Fe wire with L = 200nm and < 110 > axis along the z-direction.

energy is increased. It is clear that the influence of the anisotropy interaction is
negligible. The exchange energy during the reversal is increasing with smaller
cross sectional dimensions. This results in larger applied fields required to sus-
tain the reversal as depicted in Fig. 10.8. As can be seen from Fig. 10.9.B2 this
reversal mode is 3D in nature which shows the necessity of using a 3D model
as presented here.
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Figure 10.12: Average demagnetizing, anisotropy and exchange energy density during the
reversal process of a Fe wire with L = 10nm and < 110 > axis along the z-direction. An
enlarged view of φani is shown in the top right corner.

Precessional switching combined with buckling

In wires with yet smaller cross sections, also the formation of various vortices
is impossible because the characteristic width of a single vortex (up to 35nm)
is too large compared to the sample dimensions. Figures 10.9.C1 to 10.9.C4
show magnetization configurations for a wire with L = 10nm and < 110 >
axes along the z-direction. The reversal process is dominated by a precessional
switching of the magnetization with rotation axis along the z-direction, see
Fig. 10.9.C1, combined with buckling along the z-direction characterized by
the zigzag magnetization pattern in Fig. 10.9.C2. The amplitude of the buck-
ling effect increases during the reversal process until one single vortex with
axis perpendicular to the longitudinal direction is initiated, see 10.9.C4. In Fig.
10.12 the evolution of the average demagnetizing, exchange and anisotropy
energy density is shown. The exchange energy density is very large during
the reversal. Indeed, since the variations in magnetization in Figs. 10.9.C1
to 10.9.C4 take place at a very small length scale, φexch becomes very large,
such that also the demagnetizing interactions (and moreover the anisotropy
interactions) influence this reversal mode only very little. The precessional
movement of the magnetization is the origin of the oscillatory behavior of the
anisotropy energy and –to a lesser degree– of the demagnetizing energy. In-
deed, during the precessional movement, the magnetization aligns alternately
with easy and less easy magnetization directions, while the demagnetizing
fields change according to magnetizations pointing towards a corner or to-
wards an edge of the wire.
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In [89], Lebecki et al. described curling modes outside the buckling mode
limit. These are not encountered in the considered simulations. Due to the
highly inhomogeneous nature (in space, orientation and amplitude) of the
thermal fluctuations, reversal is initiated at certain nucleation points in the
material. These nucleation points evolve in vortices. Hence, vortex formation
is favored over the curling reversal mode.

The same set of simulations is also performed for a wire with circular cross
sectional geometry. For this geometry, similar reversal modes are encountered
when the cross sectional dimensions are varied and similar applied fields are
required to ensure the reversal. This shows that the cross section geometry
has no influence on the reversal mechanism. During the reversal, other mag-
netization patterns are encountered, but they are also dominated by domain
formation, vortex formation and precessional switching combined with buck-
ling.

10.2.4 Conclusion

The presented periodic, 3D description of infinitely long magnetic wires al-
lows the description of magnetic reversal modes for a wide range of cross
sectional dimensions. For this geometry, thermal fluctuations are required
to initiate the magnetization reversal. In wires with large cross sections, the
anisotropy, the demagnetizing and the exchange interaction all have their
influence on the magnetization reversal leading to domain formation. For
smaller cross sections (L < 500nm), vortex formation determines the reversal
and the influence of anisotropy interactions are negligible. In wires with cross
sections L < 100nm, the reversal is performed by a precessional switching pro-
cess combined with buckling. Here, the exchange interaction is dominant. In
general, the amount of energy and thus the amplitude of the opposite applied
fields required to ensure magnetic reversal increases for smaller cross sections.
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CHAPTER 11

Micromagnetic study of

magnetic domains

11.1. Introduction

Due to the large sample dimensions, it has long been unrealistic to apply full
micromagnetic simulations to study the domain configurations in larger fer-
romagnetic materials. Therefore, on a length scale larger than 1μm, magnetic
domain studies typically rely on the domain theory. As the micromagnetic the-
ory is a simplified model based on the homogenization of the interactions
present on the atomic level, the domain theory is a simplified model based
on the interactions described in the micromagnetic theory. In that way, the mi-
cromagnetic theory and the domain theory can be seen as a second and third
level model respectively. In [106], Hubert and Schäfer define the length scale
of the atomic theory smaller than 1nm, the micromagnetic length scale from
1nm to 1μm and the domain theory length scale from 1μm to 1mm.

In the domain theory, micromagnetic equilibrium domain configurations
are studied. In the theory it is assumed that the complete sample is com-
prised of uniform magnetic regions, minimizing the micromagnetic Gibbs free
energy in the studied sample. Fine scale magnetization entities as the struc-
ture of domain walls are not resolved in the model, but are taken into account
by estimating their characteristic energy contribution to the total Gibbs free
energy. The theory is capable of predicting various magnetization configura-
tions, depending on the microscopic material properties. Since the micromag-
netic scheme, developed in this PhD, is capable of simulating magnetic pro-
cesses at a length scale larger than 1μm, it can also be used to study some cases
that were only possible before within the domain theory. This can be benefi-
cial since also non-uniformly magnetized regions can exist in the micromag-
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netic approach. Moreover, fine scale magnetization entities as domain walls
and vortex states (when domains are nucleated) are described much more ac-
curately. In what follows we will concentrate on the micromagnetic study of
magnetic domains in platelets with perpendicular uniaxial anisotropy.

11.2. Geometry description

In the following simulations a platelet with thickness D = 0.8μm is consid-
ered. Figure 11.1 shows the platelet in the used coordinate system. To obtain
equilibrium domain configuration states in the xy-plane, the platelet is taken
infinite in the z-direction, while maintaining a finite dimension L in the x-
direction. In all simulations the thickness D is considerably smaller than the
width L of the platelet. In the infinite direction, a periodic structure is con-
sidered with a period of length 320 nm as described in Section 7.4. Material
parameters corresponding to those of cobalt are considered: saturation mag-
netization μ0Ms = 1.82T and exchange stiffness A = 1.510−11 J/m, while the
uniaxial anisotropy constant Ku is varied. In such samples, under zero applied
field, domains can be expected as presented in Fig. 11.1. Indeed, the domain
configurations are invariant in the infinite direction, while the domains are
oriented along the uniaxial anisotropy axis. No magnetic charges are present
at the outer edges, nor at the surface of the platelet due to the presence of
closure domains. In the sketched closure domains, the magnetization is per-
pendicular to the uniaxial anisotropy axis. This will affect the closure domain
structure as will be discussed later on. All domain configurations which are
presented in the figures of this chapter correspond to cross sections parallel to
the xy-plane.

11.3. Micromagnetic equilibrium states

To simulate magnetic domains using the micromagnetic scheme, one has to
start from a known micromagnetic equilibrium state. In practice, this always
corresponds to a uniform magnetization obtained by saturating the sample in
one direction using a high external field. When the external field is reduced,
the uniform magnetization state becomes unstable and magnetic domains are
formed. In this case, the platelet is initially saturated in the infinite z-direction.
First, the field is reduced to 0.0Am−1. Depending on the material character-
istics, this large applied field jump triggers the domain formation. If this is
not the case, small negative fields are applied to start the domain formation.
Second, the external field is varied to come to the equilibrium domain configu-
ration at the coercive field. In the simulations, a spatial discretization of 10nm
is used which is three times larger than the exchange length (lexch = 3.37nm).
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Figure 11.1: Geometry of the considered platelet. The uniaxial anisotropy axis in perpen-
dicular to the platelet. Domains are formed in the sample as sketched in a plane perpendic-
ular to the z-direction.

As discussed in Section 9.2, this is an appropriate discretization scale since
we are only interested in the domain structure and not in the magnetization
processes on the nanometer length scale.

First a platelet is considered with L = 5.12μm and anisotropy constant
Ku = 200kJ/m3. Figure 11.2 shows the domain configuration in the xy-plane
at the coercive field (< M >= 0). Domains of different sizes, magnetized along
the uniaxial anisotropy axis, are visible together with closure domains on the
top and bottom face of the platelet. In the central part, a concertina pattern as
predicted in [114] is formed, while larger domains are formed near the outer
edges. Similar domain configurations are experimentally observed using Kerr
microscopy [115, 106]. This combination of small domains in the center and
large domains near the outer edges could not be predicted starting from the
domain theory, which already shows the added value of micromagnetic sim-
ulations in the magnetic domain research.

In what follows, we will investigate the magnetization processes starting
from the equilibrium state of Fig. 11.2 when applying increasing fields along
the x, y and z-axis respectively and then decreasing the field back correspond-
ing to a magnetization for which < M >= 0. Here it is ensured that the sample
only goes to a near-saturation state (| < M > | = 0.99Ms) to avoid that the do-
main structure is completely destroyed.
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Figure 11.2: Equilibrium domain configuration obtained after reducing the applied field
from saturation in the z-direction. Top: x-component of the local magnetization, bottom:
y-component of the local magnetization, both in normalized values with respect to Ms.

11.3.1 Magnetization sweep in the x-direction

First an increasing field is applied in the x-direction. Some equilibrium do-
main configurations are shown in Figs. 11.3 and 11.4 for the x− and the
y−component respectively. Two different stages can be distinguished. For
moderate fields, the closure domains oriented in the direction of the external
field grow while the closure domains oriented in the opposite direction shrink
without changing the magnetization in the vertically oriented domains. Once
the domains, oriented in the opposite direction, have completely disappeared,
the closure domains oriented along the external field further increase at the ex-
pense of the vertically oriented domains. This mechanism is combined with a
coherent rotation that changes the magnetization in the body of the vertically
oriented domains towards the direction of the increasing applied field. This
phenomenon starts in the central region of the platelet.

Figure 11.5 shows some equilibrium domain configuration during de-
crease of the external field to < M >= 0 starting from the almost saturated
state in the x−direction obtained above. A concertina pattern is again created.
The domain pattern nucleates at the outer edges of the platelet and grows
towards the middle of the sample. In the central region of the platelet the left-
to-right and right-to-left growing domain structures meet, giving rise to a mis-
match in the domain pattern. Furthermore, the same magnetization processes
as encountered when going to saturation (described above) take place in re-
verse order: first, the closure domains oriented in the direction of the decreas-
ing field shrink combined with a coherent rotation in the vertical domains
towards the y-direction and, second, closure domains oriented in the opposite
direction of the decreasing field emerge and grow at expense of the closure do-
mains oriented along the applied field. It should be noted that, (i) except for
the central mismatch, all domains have about the same width and no bound-
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ary effects take place as originally encountered before the sweep and (ii) the
displacement of 90 degree domain walls together with the coherent rotation
dominate the magnetization processes.
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Figure 11.3: Evolution of the domain structure when going from the equilibrium state
corresponding to Fig. 11.2 to saturation in the x-direction. The colors represent the x-
component of the local magnetization, normalized with respect to Ms. The applied fields
are (from top to bottom): 0.0kAm−1, 100.0kAm−1, 200.0kAm−1 and 250.0kAm−1.

Figure 11.4: Evolution of the domain structure when going from the equilibrium state
corresponding to Fig. 11.2 to saturation in the x-direction. The colors represent the y-
component of the local magnetization, normalized with respect to Ms. The applied fields
are (from top to bottom): 0.0kAm−1, 100.0kAm−1, 200.0kAm−1 and 250.0kAm−1.
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Figure 11.5: Evolution of the domain structure when coming from an almost saturated
state in the x-direction to the magnetization state corresponding to < M >= 0.0. The col-
ors represent the local y-component of the magnetization, normalized with respect to Ms.
The applied fields are (from top to bottom): 390.0kAm−1, 260.0kAm−1, 215.0kAm−1 and
0.0kAm−1.

11.3.2 Magnetization sweep in the y-direction

Some equilibrium domain configurations when going to near-saturation in
the (positive) y-direction are shown in Figs. 11.6 and 11.7. As expected, the
domains oriented in the direction of the applied field grow at the expense of
the domains oriented in the opposite direction, due to the movement of 180
degree domain walls, see Fig. 11.7. It is only at high applied fields that the
magnetization in the closure domains starts rotate towards saturation.

Now the field is again reduced, bringing the domain configuration back to
< M >= 0. This gives rise to the formation of perfectly symmetrical domain
configurations, as shown in Fig. 11.8. For decreasing fields, a growing number
of domains oriented in the opposite direction of the external field are intro-
duced. These domains all have the same width when created and do not grow
continuously. Hence, this is clearly an irreversible magnetization process. At
< M >= 0, the domains oriented in the positive y-direction have different
thicknesses.

Note that (i) the fields required to saturate the sample in the y-direction
are much larger than those required for saturation in the x-direction due to
the larger demagnetizing effects, (ii) the displacement of 180 degree domain
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walls dominate the magnetization processes when going to saturation and (iii)
irreversible magnetization processes dominate the transition to < M >= 0.
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Figure 11.6: Evolution of the domain structure when going from the equilibrium state
corresponding to Fig. 11.2 to saturation in the y-direction. The colors represent the x-
component of the local magnetization, normalized with respect to Ms. The applied fields
are (from top to bottom): 0.0kAm−1, 300.0kAm−1, 600.0kAm−1 and 1000.0kAm−1.

Figure 11.7: Evolution of the domain structure when going from the equilibrium state
corresponding to Fig. 11.2 to saturation in the y-direction. The colors represent the y-
component of the local magnetization, normalized with respect to Ms. The applied fields
are (from top to bottom): 0.0kAm−1, 300.0kAm−1, 600.0kAm−1 and 1000.0kAm−1.
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Figure 11.8: Evolution of the domain structure when coming from an almost saturated
state in the y-direction to the magnetization state corresponding to < M >= 0. The col-
ors represent the local y-component of the magnetization, normalized with respect to Ms.
The applied fields are (from top to bottom): 360.0kAm−1, 300.0kAm−1, 180.0kAm−1 and
0.0kAm−1.

11.3.3 Magnetization sweep in the z-direction

Equilibrium configurations when going to near-saturation in the z-direction
are shown in Figs. 11.9 and 11.10. The magnetization process is completely de-
termined by coherent rotation towards the increasing external applied field.
The inner domains in the concertina pattern maintain their shape, but have
an ever growing magnetization component in the direction of the increasing
field. At high applied fields, the larger domains near the outer edges start to
brake up in smaller domains. Near saturation, all magnetic domains disap-
pear.

Now the external field is again decreased to obtain the magnetization state
< M >= 0, see Fig. 11.11. It is clear that the concertina pattern is now intro-
duced in the complete sample, thus also at the outer edges of the platelet. First
domains start to form in the center of the platelet. Also for decreasing fields,
the magnetization process is completely dominated by the reversible coher-
ent rotation of the magnetization. Throughout the whole sample, the domain
width variation is limited.

To summarize: (i) no domain wall movement takes place, (ii) coherent ro-
tation dominates the magnetization processes and (iii) the concertina pattern
is stabilized when coming back from near saturation.
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Figure 11.9: Evolution of the domain structure when going from the equilibrium state
corresponding to Fig. 11.2 to saturation in the z-direction. The colors represent the z-
component of the local magnetization, normalized with respect to Ms. The applied fields
are (from top to bottom): 0.0kAm−1, 100.0kAm−1, 200.0kAm−1 and 275.0kAm−1.

Figure 11.10: Evolution of the domain structure when going from the equilibrium state
corresponding to Fig. 11.2 to saturation in the z-direction. The colors represent the y-
component of the local magnetization, normalized with respect to Ms. The applied fields
are (from top to bottom): 0.0kAm−1, 100.0kAm−1, 200.0kAm−1 and 275.0kAm−1.
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Figure 11.11: Evolution of the domain structure when coming from an almost saturated
state in the z-direction to the magnetization state corresponding to < M >= 0. The col-
ors represent the local y-component of the magnetization, normalized with respect to Ms.
The applied fields are (from top to bottom): 240.0kAm−1, 180.0kAm−1, 150.0kAm−1 and
0.0kAm−1.

11.4. Domain structure vs. anisotropy strength

The domain structures obtained after the sweep in the z-direction are now in-
vestigated more into detail for a varying uniaxial anisotropy strength Ku. Since
for these domain configurations, the effects of the outer edges are diminished
(see Fig. 11.11), it is possible to compare the simulated domain geometries
with the one predicted by the domain theory in the case of a platelet which is
infinite in both the x- and the z-directions (i.e. with only a finite thickness D).
Within the framework of the domain theory the thickness d of the domains
and the shape of the closure domains can be predicted, both depending on the
anisotropy strength Ku. A summary of the domain theory analysis is given
below. Further, the predictions are verified by micromagnetic simulations.

11.4.1 Domain theory

Following the domain theory, magnetic domains are formed with the magneti-
zation aligned along the easy magnetization direction [4]. Indeed, the domain
structure avoids the formation of magnetic charges and thus minimizes the
magnetostatic energy (see Chapter 3). However, since domains are formed,
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additional energy contributions have to be taken into account. First, in the
considered platelet with out of plane uniaxial anisotropy, the closure domains
are not magnetized along an easy magnetization direction and thus a certain
amount of anisotropy energy is introduced. This energy contribution is pro-
portional with the surface of the closure domains. Second, a certain amount
of domain wall energy is also added to the system. This energy contribution
grows for decreasing domain width (more walls are formed) and thus pre-
vents the formation of arbitrarily small domains. The trade of between the
different energy contributions determines the domain width and the structure
of the closure domains.

Domain theory description of the Landau structure.

The most simple model for the magnetic domains in the considered platelet is
the Landau structure. This domain structure was already sketched in Fig. 11.1
and is also shown in Fig. 11.12 (left). Here the magnetization in the closure
domains is perfectly parallel to the surface of the platelet. Since no magnetic
charges are present in the system, the magnetostatic energy is minimal. The
anisotropy energy in the structure is proportional to the surface of the closure
domains and thus grows for an increasing domain width. In contrary, the total
domain wall energy becomes smaller for larger domains. The equilibrium do-
main width is thus a trade off between the energy in the domain walls and the
energy in the closure domains. The total energy per unit area in the xz-plane
(see Fig. 11.1) is given by

φtot = φdw
D
d

+ φcld. (11.1)

Here, D is the sample thickness, d is the domain thickness, φdw is the domain
wall energy per unit area of the domain wall (i.e. yz-plane) and φcl is the en-
ergy per unit area of the closure domains. The equilibrium domain width is
obtained by minimization of (11.1)

d =

√
φdwD

φcl
(11.2)

Here, it is assumed that the thickness of the platelet is large with respect to
the extension of the closure domains. The 180 degree domain wall energy φdw
can be determined analytically [4], while the energy in the closure domains
φcl depends on the structure of the closure domains.
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Generalized domain theory description of closure domains

As mentioned before, the magnetization in the closure domains of the consid-
ered platelet is not aligned with an easy magnetization axis. Hence, depending
on the anisotropy strength, it can be expected that the magnetization in the clo-
sure domain is not completely parallel to the sample surface. In an improved
domain model, the possibility of a region between the closure domains with
out-of-plane magnetization is considered, see Fig. 11.12 (middle). This intro-
duces a second parameter (the width of this region) to be optimized for. This
region with out-of-plane magnetization leads to smaller closure domains and
thus a smaller anisotropy energy, but also introduces magnetic charges and
thus some magnetostatic energy. In this perspective, a good parameter to de-
scribe the shape of the closure domains is

Q =
2Ku

μ0M2
s
. (11.3)

The enumerator μ0M2
s /2 corresponds to the magnetostatic energy of a

platelet, uniformly magnetized in the out-of-plane direction. Hence, Q is a
measure for the ratio of the anisotropy strength and the strength of the magne-
tostatic interaction. Depending on its value, different domain structures can be
distinguished as shown in Fig. 11.12. For small Ku, the magnetostatic energy
contribution is much larger than the anisotropy energy. In this case, closure
domains are expected with a magnetization parallel to the sample surface,
avoiding magnetic charges. This corresponds to the Landau structure described
above. For larger Q, the magnetization along the easy axis is more favored. It
is expected that the surface of the closure domains decreases, not only due to
a reduction of the domain width as in the Landau structure, but also due to
the formation of out-of-plane magnetization regions between the closure do-
mains, which results in an increase of the magnetostatic energy. This domain
configuration is known as the partial Landau-Kittel structure. For increasing Q,
the anisotropy interaction becomes more dominant and the out-of-plane mag-
netized region in between the closure domains grows. In the limit Q � 1 the
closure domains disappear completely and the so called open Kittel structure is
formed.

Refined domain theory description of closure domains

In the above model, the magnetization in the actual closure domains stays al-
ways parallel to the platelet surface. Hubert [106] refined the structure of the
closure domains by introducing magnetic domains with tilted magnetization.
In this viewpoint, each closure domain is split in two uniformly magnetized
regions with a magnetization direction between the easy axis and the surface
orientation, see Fig. 11.13. For a small anisotropy strength, the closure domain
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Figure 11.12: Domain structures for varying values of Q. Left: Landau structure, middle
partial Landau-Kittel structure, right: open Kittel structure.

Figure 11.13: Closure domains with tilted magnetization angle in the domain model of
Hubert, taken from [106].

is magnetized almost parallel to the surface and no magnetic charges are intro-
duced. For a larger anisotropy strength, the magnetization is tilted more out of
the plane and larger magnetic charges are introduced. Here a third parameter,
the tilting angle is introduced.

Summary on the domain theory approach

It should be noted that the considerations made within the domain theory
are all based on analytical formulae. Starting from the assumption that only
uniformly magnetized regions are present in the sample, the different energy
contributions are determined. The minimization of the total energy with re-
spect to the model parameters yields the equilibrium domain structure. The
complexity of the domain model determines its accuracy. Here, the most sim-
ple model is the Landau structure where only one parameter determines the
domain configuration (the domain width). Considering a second parameter
–the intermediate space between two closure domains– in the domain model
enables to describe the Landau, partial Landau-Kittel and the Kittel structure,
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shown in Fig. 11.12. In the refined model of Hubert, a third parameter (the tilt-
ing angle) is introduced to further improve the domain model, see Fig. 11.13.

11.4.2 Micromagnetic simulations

The domain structure in a platelet is now studied using micromagnetic sim-
ulations. Here, the uniaxial anisotropy strength is varied from Ku = 10kJ/m3

to Ku = 400kJ/m3. As mentioned before, the studied domain structures are
obtained by first going to the < M >= 0 magnetization state starting from sat-
uration in the z-direction and then simulating a magnetization sweep going
to near saturation and back to < M >= 0. In this way, the boundary effects of
the outer edges are minimized as shown in Section 11.3.3. In order to have a
large number of domains in the platelet, the dimension L in the x-direction is
enlarged from L = 10.24μm for large Ku to L = 40.96μm for small Ku.

Domain width versus anisotropy strength

The equilibrium domain configuration in a segment of the platelet is shown in
Figs. 11.14 and 11.15 for Ku = 40kJ/m3, Ku = 200kJ/m3 and Ku = 400kJ/m3.
From Fig. 11.14 it is clear that –as predicted by the domain theory– the surface
of the closure domains decreases for increasing Ku. Consequently, the domain
width decreases as shown in Fig. 11.15. It is clear that, within each platelet
there is some small variation on the domain width.

A plot of the average domain width, together with its variance versus the
anisotropy strength Ku is shown in Fig. 11.16. Generally, the domain width
decreases for increasing Ku. The distinct character of the number of domains
that fits in the cross section of the platelet is still visible although already a
very large dimension L is considered. This proofs the need for considering
more extended platelets when Ku decreases. For illustrative purposes, a curve
d = C1 + C2/

√
Ku is fit.

Closure domain geometry versus anisotropy strength

Closure domains in the platelets with anisotropy constant Ku = 40kJ/m3,
Ku = 200kJ/m3 and Ku = 400kJ/m3 are shown in Figs. 11.17 to 11.19. In gen-
eral, it is clear that none of the closure domains has a completely uniform
magnetization and the closure domains have no localized domain walls as
assumed by the domain theory. The domain configuration obtained in the
platelet with Ku = 40kJ/m3 corresponds to the Landau structure. The closure
domains touch each other and have only a very small out-of-plane component
near the surface, hence about no magnetic charges are introduced. For larger
Ku it becomes more difficult to distinguish separated closure domains. The
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Figure 11.14: Part of the magnetic domain configuration for different uniaxial anisotropy
values. The colors represent the local x-component of the magnetization, normalized with
respect to Ms. Top: Ku = 40kJ/m3, middle: Ku = 200kJ/m3, bottom: Ku = 400kJ/m3.

Figure 11.15: Part of the magnetic domain configuration for different uniaxial anisotropy
values. The colors represent the local y-component of the magnetization, normalized with
respect to Ms. Top: Ku = 40kJ/m3, middle: Ku = 200kJ/m3, bottom: Ku = 400kJ/m3.

magnetization configuration near the surface is characterized by a more con-
tinuous magnetization rotation between two oppositely magnetized domains.
For increasing Ku, the region where the flux lines close becomes smaller. The
magnetization has a growing out-of-plane component, which minimizes the
anisotropy energy, but leads to a larger magnetostatic energy.
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Figure 11.16: Domain width d versus anisotropy strength Ku. For illustrative purposes, a
curve d = C1 + C2/

√
Ku is fit to the data.

It is clear that the partial Landau-Kittel structure is not able to describe the
closure domains of Figs. 11.18 and 11.19: there are no distinct regions with a
magnetization parallel to the sample surface, nor distinct regions with only an
out-of-plane magnetization component in between the closure domains. The
closure domain description with tilted magnetic domains proposed by Hubert
approximates the simulated domain structure in the best way. Although no
uniformly magnetized domains are formed in the closure region, the theory is
able to describe the growing out-of-plane magnetization component.

Problems encountered in the micromagnetic simulations

It is hard to simulate domain structures in the considered platelet with Ku <
10kJ/m3. Not only the sample dimension need to be increased further, but
it also becomes much harder to make the micromagnetic system evolve to-
wards an equilibrium state comprised of magnetic domains. In practice, for
these low values of Ku it becomes impossible to start from saturation in the
infinite z-direction since this is then a stable micromagnetic equilibrium state.
Indeed, since the anisotropy strength is only small, it does not introduce the
torque needed to pull the magnetization away from the saturated state. Fur-
thermore it is difficult to simulate domain structures with Ku > 500kJ/m. In
this case, the magnetostatic interaction has a much smaller strength than the
anisotropy interaction and the sample completely saturates along the perpen-
dicular anisotropy axis without forming magnetic domains. A starting config-
uration different from saturation in the infinite direction is required to sim-
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Figure 11.17: Simulated closure domains in a platelet with perpendicular uniaxial
anisotropy strength Ku = 40kJ/m3.

Figure 11.18: Simulated closure domains in a platelet with perpendicular uniaxial
anisotropy strength Ku = 200kJ/m3.

ulate the open Kittel structure in the proposed finite platelet. However, one
should be careful that the initial magnetization configuration does not favor
one particular domain structure.
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Figure 11.19: Simulated closure domains in a platelet with perpendicular uniaxial
anisotropy strength Ku = 400kJ/m3.

11.5. Conclusions

This chapter has shown that, using the numerical scheme developed during
this PhD, micromagnetic simulations are perfectly capable of describing mag-
netization processes on a length scale larger than 1 μm. The simulation results
obtained in this chapter are a clear validation of the followed micromagnetic
approach at the domain length scale. Indeed, similar domain configurations
as e.g. shown in Figs. 11.3 and 11.4 are observed experimentally and simu-
lated domain configurations for varying anisotropy strength are in agreement
with the predictions made in the domain theory. In particular, the validity of
using a discretization size which is larger than the exchange length is again
demonstrated.

It is shown that, depending on the complexity of the used domain the-
ory model, the domain structure in the platelet with perpendicular uniaxial
anisotropy is more or less accurately described. The Landau model is only ac-
curate for low anisotropy values while the open Landau-Kittel structure only
poorly describes the structure of the closure domains for higher anisotropy
constants. Indeed, the open Landau-Kittel structure assumes a magnetization
parallel to the sample surface in the closure domains, but this is not found in
the micromagnetic simulations. The refined domain model of Hubert allows
closure domains with a uniform magnetization which is tilted with respect to
anisotropy axis and is the best domain theory model to describe the domain
structures over a wide range of anisotropy strengths.
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From the micromagnetic simulations however, it is clear that for larger
Ku no separated closure domains with uniform magnetization can be distin-
guished. In this case, the basic assumption of the domain theory, i.e. the exis-
tence of uniformly magnetized regions is not valid. Here, it is more obvious
to define a closing region where the flux lines close in a continuous way, in
stead of distinct closure domains. The simulations show how micromagnetic
modeling can contribute to a better understanding of magnetization processes
at the domain length scale.
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CHAPTER 12

Micromagnetic study of

hysteresis properties

12.1. Introduction

Macroscopic magnetic phenomena of ferromagnetic samples are predomi-
nantly studied based on their hysteresis properties. In Chapter 4, we have
explained that due to the highly complex micromagnetic energy landscape,
only few general hysteresis properties, valid in any magnetic material exist.
These general properties are expressed by Madelung’s rules, which describe
the memory aspects in ferromagnetic materials (see Section 4.3.2). As the de-
veloped micromagnetic scheme is able to describe the hysteresis phenomena
in ferromagnetic materials (see Section 6.5), the memory properties should in-
trinsically be present. The description of Madelung’s rules is checked in a first
section.

Further we have explained in Chapter 4 that the magnetic losses during
one cycle of the applied field correspond to the surface of the hysteresis loop.
From the hysteresis loop itself it is difficult to draw other energy related con-
clusions. The micromagnetic model however, is based on the Gibbs free en-
ergy present in the ferromagnetic system at every time instant. This allows
us to study in detail the instantaneously added, dissipated and stored en-
ergy. To a certain extent, the same study can be performed in the Preisach
model [39, 5, 116], which is the generally used classical model to describe
rate-independent hysteresis processes. In a second section, we build up the
Preisach distribution function starting from micromagnetic simulations and
compare the instantaneous energy flows in both models.
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Figure 12.1: Evolution of the applied field. In the time stepping procedure the linearly
varying parts are approximated with staircase like functions.

12.2. Memory properties in the micromagnetic hysteresis model

In Section 4.3.2 we introduced Madelung’s rules as (i) the presence of branch-
ing, (ii) the return-point-memory and (iii) the wiping-out-property. Here it is
demonstrated that the micromagnetic hysteresis scheme developed during
the PhD work incorporates these properties. This is not obvious, since in con-
trast to macroscopic hysteresis models as the Preisach model [116], the mem-
ory properties are not build into the micromagnetic model by construction.

12.2.1 Simulation set up

For the evaluation of the magnetic memory behavior simulations are
performed on samples containing two iron grains with dimensions
0.64μm×1.28μm×0.64μm, with the crystal axes of the iron bcc lattice parallel
to the sample edges. Since we are mainly interested in the macroscopic mag-
netic properties and not in the fine scale magnetization processes, the samples
are discretized in FD cells with edges of 10nm, see Section 9.2. In four simula-
tions the samples contain respectively 0, 10, 20 and 40 dislocations (edge and
screw dislocations).

The external field applied along the longest edges of the samples with 0,
10 and 20 dislocations is shown in Fig. 12.1. According to Madelung’s rules,
this profile should introduce minor loops. Indeed, at the time point a a second
order loop will emanate with maximum magnetization at time point b and
closing point at time point f , while a third order loop will emanate at time
point c with maximum magnetization at time point d and closing point at time
point e. The material parameters of iron as presented in Table 6.1 are taken as
input.
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Figure 12.2: Magnetization curve for the sample containing 20 dislocations.

12.2.2 Macroscopic memory properties

In the case of 0, 10 and 20 dislocations the applied field gives rise to narrow
hysteresis curves as e.g. shown in Fig. 12.2 for 20 dislocations. Consequently,
the minor loops are very narrow. An analogous external field profile as in Fig.
12.1 with larger variations is applied on the sample with 40 dislocations. The
magnetization curve is shown in Fig. 12.3. The large stresses introduced in the
material by the large number of dislocations broaden the hysteresis loop. In all
simulations, minor loops are formed as expected: (i) the magnetization paths
for decreasing and increasing applied fields differ thus branching takes place,
(ii) the macroscopic average magnetization in the time points a and f on the
one hand, and c and e on the other hand coincide while their corresponding
maximum magnetization points b and d differ significantly as described by
the return-point-memory property and (iii) once the minor loops are closed the
magnetization further evolves as if the closed loops did not exist at all, as
described by the wiping-out-property. Hence, for the considered field variation
of Fig. 12.1, the micromagnetic hysteresis model describes Madelung’s rules.

12.2.3 Microscopic memory properties

The micromagnetic hysteresis model makes it possible to compare the micro-
scopic magnetization states at the time points depicted in Fig. 12.1. To examine
if also the microscopic magnetization configuration is recovered when minor
loops close, the difference Δ(A ↔ B) between two magnetization states A and
B is defined as the mean angle between the magnetic dipoles in correspond-
ing FD cells of state A and B. Table 12.1 shows the difference in magnetization
states for the four simulated samples at the time points depicted in Figs. 12.1,
12.2 and 12.3. The extreme magnetization points b and d differ substantially in
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Figure 12.3: Magnetization curve for the sample containing 40 dislocations.

Table 12.1: difference in magnetization state [degrees]

0 disl. 10 disl. 20 disl. 40 disl.
Δ(c ↔ d) 20.22 24.18 19.59 21.21
Δ(c ↔ e) 2.94 2.84 2.07 4.78
Δ(a ↔ b) 77.73 76.49 62.83 61.83
Δ(a ↔ f ) 4.33 13.15 12.34 5.93

all cases. At the closing points, only small differences in magnetization pattern
are present.

These small differences are due to small regions of the sample where the
magnetization differs because a domain wall has just moved through the re-
gion or not. This is shown in Figs. 12.4 and 12.5 where the microscopic mag-
netization pattern in the sample is shown in a plane parallel to the applied
field. These figures show the extremum points a, b and f of the second order
loops for the samples with 20 and 40 dislocations. The chaotic magnetization
patterns at the edges and in the middle of the sample are due to the random
stress distribution induced by the grain boundaries. The top (time point a) and
bottom (time point f ) magnetization patterns differ only in small regions: in
Fig. 12.4 the bottom left region in the right grain differs the most, while in Fig.
12.5 only the bottom left region in the left grain differs. Hence, one can con-
clude that in the considered numerical computations not only macroscopically
the same magnetization state is reached, return-point-memory, but from these
simulations one can assume that also microscopically a return-point-memory
is described since similar magnetization states are reached when minor loops
close.
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Figure 12.4: Magnetization pattern in the sample containing 20 dislocations at time point
a (top), b (middle) and f (bottom).
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Figure 12.5: Magnetization pattern in the sample containing 40 dislocations at time point
a (top), b (middle) and f (bottom).
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Figure 12.6: Elementary Preisach dipole with switching fields α and β.

12.3. Energy considerations in the micromagnetic hysteresis model

and the Preisach model

Since the micromagnetic theory is based on the description of the total Gibbs
free energy, the developed micromagnetic hysteresis model is able to give an
insight in the energetic processes present in the ferromagnetic material during
a cycle of the applied field, i.e. when running through the hysteresis loop. In
this section, the micromagnetic energy description is compared to the descrip-
tion based on the classical Preisach model. This comparison not only provides
a validation of the micromagnetic hysteresis model, but also shows how the
developed micromagnetic simulations can be used to obtain a better under-
standing of hysteresis processes. First, a short overview is given on the classi-
cal Preisach model.

12.3.1 Classical Preisach hysteresis model: an overview [1]

In the classical Preisach model, the description of uniaxial rate independent
hysteresis properties is based on an infinite collection of elementary magnetic
dipoles [5,39,116]. The dipoles have an asymmetric rectangular hysteresis loop
with switching fields commonly denoted by α and β (α ≥ β). In this section, all
parameters α refer to the switching field of an elementary Preisach dipole and
not to the micromagnetic damping constant. As shown in Fig. 12.6, the polar-
ity of a given dipole (α, β) depends on the value of the applied field Ha and/or
its history Ha,hist. For Ha > α the polarity η is +1. When Ha is now decreased,
the polarity changes to −1 at Ha = β. The increasing branch of the dipole de-
fines the polarity for increasing Ha values. Here, the polarity switches from
−1 to +1 at Ha = α.
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To describe the hysteretic magnetic behavior of a ferromagnetic sample,
first the reversible and the irreversible part of the magnetization loop is sep-
arated. The irreversible part is then represented by the Preisach distribution
function (PDF) P(α, β), which corresponds to the statistical density of elemen-
tary dipoles (α, β). The magnetization in the Preisach model is now expressed
as an integral over the entire elementary dipole collection

M(Ha) = Mrev(Ha) + Mirr(Ha, Ha,hist) (12.1)

Mirr(Ha) =
1

2μ0

∫ +∞

−∞
dα

∫ α

−∞
η(α, β, Ha, Ha,hist)P(α, β)dβ. (12.2)

The PDF P(α, β) is shown to be dependent on the microstructure of the ferro-
magnetic sample [117, 118]. The PDF characterizes the hysteretic behavior of
a given sample. It can be interpreted as a blueprint of the magnetic hysteretic
properties of a given sample. More details can be found in [44] and [119].

Obtaining the Preisach distribution function P(α, β)

The PDF can be extracted from a number of experimentally or numerically ob-
tained magnetization curves M(Ha) covering the complete range of the major
hysteresis loop. In practice these are first order magnetization loops or first or-
der reversal curves (FORCs). The determination of the PDF encompasses four
steps.

1. The experimental or numerical magnetization curves are smoothed using
splines which approximate the original curves as close as possible. The
splines meet the criterion dM/dHa > 0, required in the next steps.

2. From equations (12.1) and (12.2) it is clear that the PDF covers only the ir-
reversible magnetization behavior. Therefore, the reversible magnetization
processes Mrev(Ha) are extracted by considering the differential perme-
ability at the reversal points. Indeed, at these points, only reversible mag-
netization processes occur and thus the reversible differential permeability
μrev(Ha) can be defined. From this, the single valued magnetization curve
Mrev(Ha) is deduced

Mrev(Ha) =
∫ Ha

0

(
μrev(H)

μ0
− 1

)
dH. (12.3)

Consequently the irreversible magnetization curves are

Mirr(Ha) = M(Ha) − Mrev(Ha). (12.4)
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Figure 12.7: Elementary Preisach dipole with associated energy densities.

3. The set of irreversible magnetization curves Mirr(Ha) is now rearranged
into an Everett map [120]. The Everett function Eev(α, β) is defined as

Eev(α, β) = μ0|Mirr(β) − Mirr(α)| (12.5)

with α an extremal value for the applied field Ha, and no extrema are
evaded from the memory when passing from α to β.

4. Ultimately, the PDF is obtained by differentiating the Everett function

P(α, β) = −∂2Eev(α, β)
∂α∂β

. (12.6)

Energy descriptions in the classical Preisach model

In the classical Preisach model, one can distinguish the instantaneous energy
density that is added, stored and dissipated when running through the hys-
teresis loop by inspecting the elementary Preisach dipole [121]. The follow-
ing energy densities can be associated with the areas shown in Fig. 12.7. Dur-
ing the switching process of the ascending branch, the area (a)+(b)+(c) corre-
sponds to the energy density added by the source. From that, the area (c) and
the area (a)+(b) correspond to the dissipated and the stored energy density
in the system respectively. During the switching process of the descending
branch, the area (a)+(b) corresponds to the stored energy density, while the
areas (a) and (b) correspond to the energy density which is returned to the
source and dissipated by the system respectively.

By extending the considerations made for an elementary dipole to all
dipoles in the PDF that are switching when the applied field is altered, the
irreversibly added energy density φadd,irr, the irreversibly stored energy den-
sity φst,irr and the dissipated energy density φdiss can be distinguished at each
time point of the hysteresis loop. For the ascending branch, an increase ΔHa
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of the applied field leads to

Δφadd,irr =
∫ Ha+ΔHa

Ha
dα

∫ α

Hmin

αP(α, β)dβ (12.7)

Δφst,irr =
∫ Ha+ΔHa

Ha
dα

∫ α

Hmin

α + β

2
P(α, β)dβ (12.8)

Δφdiss =
∫ Ha+ΔHa

Ha
dα

∫ α

Hmin

α − β

2
P(α, β)dβ, (12.9)

with Hmin the last minimum of Ha kept in memory. For the descending branch,
a decrease ΔHa of the applied field leads to

Δφadd,irr =
∫ Ha−ΔHa

Ha
dβ

∫ Hmax

β
βP(α, β)dα (12.10)

Δφst,irr =
∫ Ha−ΔHa

Ha
dβ

∫ Hmax

β

α + β

2
P(α, β)dα (12.11)

Δφdiss =
∫ Ha−ΔHa

Ha
dβ

∫ Hmax

β

β − α

2
P(α, β)dα, (12.12)

with Hmax the last maximum of Ha kept in memory. Note that negative values
for the added energy density correspond to an energy flow from the system
towards the source. Negative values for the stored energy density indicate
that more energy is leaving the system (towards the source or by dissipation)
than that energy is added to the system. By definition, the dissipated energy
is always positive. Further, note that the reversible magnetization processes
only have a contribution to the total added and stored energy density

ΔEadd,rev = ΔEst,rev =
∫ Ha±ΔHa

Ha
H dBrev

=
∫ Ha±ΔHa

Ha
μrev(H)H dH.

(12.13)

Here, the sign in the integral boundaries is determined by which branch is
considered: negative for the descending branch and positive for the ascending
branch.

12.3.2 Micromagnetic simulations and construction of the PDF

In the micromagnetic simulations, a relatively small system is considered with
dimensions 0.32 μm×0.32 μm×5.12 μm. As pointed out in the previous sec-
tion, a large number of magnetization curves that cover the complete range of
the hysteresis loop is required to well reconstruct the PDF. In experiments, one
usually measures first order magnetization loops starting on the virgin curve
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Figure 12.8: Simulated FORCs using the micromagnetic hysteresis scheme.

to reconstruct the PDF. However, in the micromagnetic simulations, it is very
hard to determine the demagnetized state corresponding to Ha = 0.0 A/m at
which the virgin curve emanates, therefore FORCs are considered here.

The material parameters are taken such that the hysteresis loop is smooth
and does not show too large magnetization jumps for varying Ha. In this
way, FORCs can start at relatively equidistant steps in the magnetization.
The sample comprises 16 grains in the elongated direction with random cu-
bical easy axes orientations. The saturation magnetization is 2.16 T, the ex-
change stiffness is small: 0.2510−12 J/m and the anisotropy constants are
K1 = 0.48106 J/m3 and K2 = −0.501056 J/m3. The external field is applied
in the elongated direction of the sample and ranges from 3.0106 A/m to
−3.0106 A/m with steps of ΔHa = 400 A/m. The simulated FORCs are shown
in Fig. 12.8.

First, the FORCs are smoothed using splines and the reversible part is sub-
tracted. The ’irreversible’ curves are shown in Fig. 12.9. Note that the slope at
the start of each FORC is zero. Based on the irreversible FORCs, the Everett
function Eev(α, β) is constructed and the PDF P(α, β) is determined by differ-
entiation. The PDF is shown in Fig. 12.10. Note that the PDF has only non-zero
values in the half plane α > β. Furthermore, the constructed PDF has small ar-
eas with non-physical negative values. These originate in the crossing of the
simulated FORCs in the region close to the coercive field of the limit cycle (see
Fig. 12.8).

To test the accuracy of the extracted PDF, the major hysteresis loop is re-
constructed from the PDF and compared with the original, hysteresis loop ob-
tained from the micromagnetic simulations. Figure 12.11 shows the excellent
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Figure 12.9: Irreversible part of the FORCs, smoothed using splines (top) and reversible
part of the magnetization curves (bottom) corresponding to Fig. 12.8.

agreement between the reconstructed and the original hysteresis loop: the re-
constructed loop is a smoothed version of the simulated hysteresis loop which
shows Barkhausen jumps.
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Figure 12.10: Reconstructed Preisach distribution function, based on the smoothed irre-
versible first order reversal curves of Fig. 12.9.

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
x 105

−1

−0.5

0

0.5

1

H [A/m]

 <
M

> 
[M

s]

M
micromag

M
PDF,tot

M
PDF,irr

Figure 12.11: Simulated hysteresis loop compared with the hysteresis loop reconstructed
from the PDF. For completeness, the irreversible hysteresis loop is also shown.
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Figure 12.12: Dissipated energy density in the micromagnetic hysteresis model: the differ-
ence in Gibbs free energy ΔφG corresponds to the dissipated energy density.

12.3.3 Energy flows in the micromagnetic hysteresis model

In the micromagnetic hysteresis model, the equilibrium magnetization fields
m(r, t) are determined for successive constant values of the applied field Ha,
as explained in Section 6.5. The energy variations during the transition be-
tween two successive equilibrium states is sketched in Fig. 12.12. At a given
time point ti, an external field Ha is applied and a corresponding equilib-
rium magnetization configuration m(ti) is reached, state A. Now, the ap-
plied field takes a jump ΔHa. This increases the energy in the system to a
state B, which is unstable. Consequently, the original magnetization configu-
ration m(ti) evolves towards a new equilibrium magnetization configuration
m(ti + Δt) corresponding to state C. Referring to the quantities in Fig. 12.12,
the energy density φadd which is added to the system corresponds to

Δφadd =μ0Ms(Ha + ΔHa) · [< m(ti + Δt) > − < m(ti) >]
+ μ0(Ha + ΔHa)ΔHa

(12.14)

The dissipated energy density φdiss is the difference between the Gibbs free
energy values at state B and state C, see Fig. 12.12. The conservation of energy
principle then yields the stored energy density as

Δφst = Δφadd − Δφdiss. (12.15)

Note that in the micromagnetic hysteresis model, the different contributions
to the instantaneously dissipated energy density can be distinguished. Indeed,
the differences in the Zeeman, exchange, anisotropy and magnetostatic energy
between state B and state C yield the corresponding dissipated energy densi-
ties.
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Figure 12.13: Instantaneously added energy density when running through the descending
branch of the hysteresis loop shown in Fig. 12.11.

12.3.4 Discussion

In what follows we compare and comment on the energy flows in the ferro-
magnetic system when running through the descending branch. Similar con-
clusions can be drawn when running through the ascending branch. The in-
stantaneously added, dissipated and stored energy densities as determined
in the micromagnetic and the Preisach model are shown in Figs. 12.13, 12.14
and 12.15 respectively. The energy density curves derived from the micro-
magnetic model show a highly irregular behavior. Each spike corresponds to
a Barkhausen jump at which large energy flows occur in the ferromagnetic
system. Since the Preisach model incorporates a high level of smoothing, the
resulting energy density curves are continuous. To facilitate the comparison
between the micromagnetic and the Preisach data, a locally averaged version
of the micromagnetic energy density curves is added to the figures. In all fig-
ures, the coercive field value is indicated with a dash-dotted line. Note that
since the descending branch is considered, all curves in the following figures
should be interpreted from right to left for increasing time (i.e. from positive
to negative applied fields).
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Figure 12.14: Instantaneously dissipated energy density when running through the de-
scending branch of the hysteresis loop shown in Fig. 12.11.
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Figure 12.15: Instantaneously stored energy density when running through the descending
branch of the hysteresis loop shown in Fig. 12.11.
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Figure 12.16: Number of time steps required to reach equilibrium at successive constant
applied field values Ha when running through the descending branch from Ha = 3105 A/m
to Ha = −3105 A/m.

Instantaneously added energy

The instantaneously added energy density in the two models is shown in Fig.
12.13. While returning from positive saturation to Ha = 0.0A/m the added
energy is negative, which indicates that energy is flowing from the material
towards the source. For negative applied fields, the added energy density is
positive, indicating that energy is flowing from the source to the material. The
largest amounts of energy are added at applied field values in the proximity
of the coercive field. The expressions (12.10) and (12.14) used in the Preisach
and micromagnetic description respectively result in coinciding curves.

Instantaneously dissipated energy

The instantaneously dissipated energy density in the two models is shown in
Fig. 12.14. This energy flow corresponds to energy that is dissipated as heat
during the irreversible magnetic processes which occur in the material, i.e.
during the Barkhausen jumps. It represents the energy flow from the mate-
rial towards the thermal bath and is thus per definition always positive. The
curves in Fig. 12.14 have indeed only positive values. In the micromagnetic
context, this is a consequence of the LLG equation which guarantees the con-
tinuous decrease in energy for constant applied fields, see Section 2.4.3. In
the Preisach model, the positive values result from the prerequisite α ≥ β and
P(α, β) ≥ 0.
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Most of the energy is dissipated for applied field values between 0.0 A/m
and -1.0 105 A/m which roughly corresponds to an average magnetization be-
tween ±0.8 Ms, see Fig. 12.11. This shows that most of the magnetic processes
in this part of the hysteresis loop are irreversible in nature, while closer to
saturation reversible processes are dominant. This is in correspondence with
the theory presented in Section 4.3.1, Fig. 4.5. In the micromagnetic model,
the number of time steps required to reach equilibrium at successive constant
applied field values –shown in Fig. 12.16– is related with the ’irreversibil-
ity’ of the magnetic process. Indeed, since large variations in the magnetiza-
tion structure can occur during Barkhausen jumps, the simulation of these
irreversible magnetization processes require a large number of time steps to
come to the new equilibrium points. Only small changes in the magnetiza-
tion structure occur during reversible magnetization processes, which leads
to a small number of time steps required to reach new equilibrium points. In
the Preisach description, all energy is dissipated when running through the
irreversible hysteresis loop shown in Fig. 12.11. It is clear that the descending
branch of the irreversible hysteresis loop has the largest slope in the range
−1.0105 A/m< Ha <0.0 A/m.

Instantaneously stored energy

The instantaneously stored energy density in the two models is shown in Fig.
12.15. The agreement between both descriptions is perfect. When saturated in
the positive direction, a large amount of energy is stored in the system. When
reducing the external field, this energy is released towards the source or dis-
sipated as heat giving rise to negative values for the instantaneously stored
energy density. When the ferromagnetic system reaches the state correspond-
ing to M = 0 and Ha = Hc –further called the demagnetized state– the system
starts to absorb energy when the field is further reduced towards negative
saturation. This leads to positive values for the instantaneously stored energy
density. From these curves, it is clear that at the demagnetized state no en-
ergy is stored in the ferromagnetic system. Starting from this point, any field
variation will result in an increase of the stored energy.

Instantaneous micromagnetic energy rearrangement

In the micromagnetic description of the instantaneously dissipated energy dis-
cussed above the difference in the total Gibbs free energy is considered as
sketched in Fig. 12.12. In the same way one can consider the difference in the
Zeeman energy φa, the magnetostatic energy φms, the anisotropy energy φani
and the exchange energy φexch separately to come to instantaneous flow of the
Zeeman energy , magnetostatic energy, anisotropy energy and exchange en-
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Figure 12.17: Instantaneous changes in energy density for the different micromagnetic
energy terms. From left-top to right-bottom: Zeeman energy density, magnetostatic energy
density, anisotropy energy density and exchange energy density.

ergy respectively. The corresponding instantaneous changes in micromagnetic
energy densities δφa, δφms, δφani and δφexch are shown in Fig. 12.17.

It is clear that, although the total instantaneously dissipated energy is
strictly positive, the instantaneous changes in the separate energy densities
can have negative values. This indicates that energy is rearranged in the sys-
tem while running through the hysteresis loop. In the saturated state, the
Zeeman and the exchange energy are minimal because the sample is uni-
formly magnetized along the applied field, while the magnetostatic and the
anisotropy energy are large. Indeed, large magnetic charges are formed at the
sample edges and the local magnetization in the material is not aligned along
an easy axis. When the applied field is reduced, the system evolves towards
a magnetization state with closed flux lines and with the local magnetization
mainly aligned along a local anisotropy axis. Hence, the magnetostatic and
anisotropy energy gradually decrease, while the Zeeman and the exchange en-
ergy gradually increase. Consequently, the instantaneous magnetostatic and
anisotropy energy flows are positive while the instantaneous Zeeman and in
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the exchange energy flows are negative when the applied field is reduced to
Ha = 0.0 A/m. The opposite internal energy rearrangements take place when
going to saturation.

The Zeeman energy has the largest contribution to the total dissipated
energy. The largest flows of Zeeman energy occur around the coercive field
where the slope of the hysteresis loop is maximal. In this part of the hysteresis
loop large portions of the ferromagnetic material are aligning with the ap-
plied field and the Zeeman energy is vastly reduced. Here, large portions of
Zeeman energy are dissipated as heat or stored as magnetostatic, anisotropy
and/or exchange energy.

The magnetostatic energy flow is positive until the demagnetized mag-
netization state is reached. Hence, magnetostatic energy is converted to heat
and/or other micromagnetic energy contributions. The demagnetized state
contains the minimal magnetostatic energy since all flux lines close in the ma-
terial and only small magnetic charges are present in the domain walls. When
going further to saturation, the net magnetization along the applied field di-
rection grows together with the magnetic charges, leading to an increase of the
magnetostatic energy and thus negative values for the instantaneous change
in magnetostatic energy density δφms.

The instantaneous change of the anisotropy energy density has large con-
tributions over a relatively broad range of the hysteresis loop. Whenever a re-
gion in the magnetic sample is aligning with a local easy axis, the anisotropy
energy decreases leading to positive values for the anisotropy energy flow
(when going to the demagnetized state). Whenever the magnetization in a
region is rotating away from a local easy axis, anisotropy energy is built up
(when going to saturation).

In the considered system, the exchange energy is negligible since the ex-
change stiffness A is very small. This was chosen so in order to have a smooth
hysteresis loop with only small magnetization jumps, which was a prereq-
uisite to have FORCs emanating at relatively equidistant magnetization val-
ues < M >, see Fig. 12.8. Although the exchange energy flows are negligible,
the curve δφexch is still instructive. It is clear that the amplitude of the dis-
sipated exchange energy is proportional to the slope of the hysteresis loop.
The exchange energy is built up until the demagnetized magnetization state
is reached. This demagnetized magnetization state is the most non-uniform
equilibrium domain configuration when running through the hysteresis loop.
Indeed, at this point the exchange energy density is maximal. When going fur-
ther to saturation the sample gradually becomes more uniformly magnetized,
leading to energy flows towards the thermal bath and the other energy terms.
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Figure 12.18: Simulated hysteresis loop compared with the hysteresis loop reconstructed
from the PDF. For completeness, the irreversible hysteresis loop is also shown.

Cumulated energy flows

The cumulated added, dissipated and stored energy densities based on the
Preisach description are shown in Fig. 12.18. The curves based on the micro-
magnetic description are very similar, but are not shown for clarity. At posi-
tive saturation, a maximal amount of energy is stored. This energy is released
when going to the demagnetized state corresponding to the coercive field
leading. Part of the energy is dissipated and part of the energy is sent back
to the source. When going to negative saturation, exactly the same amount of
energy is stored again in the system. This is clear from the cumulated stored
energy density curve: it has a minimum at the coercive field value and is zero
for positive as well as negative saturation. Since a part of the stored energy
is sent to the source, the cumulated added energy density curve has negative
values when going to the demagnetized state. However, from the moment
Ha = 0.0 A/m, energy is running from the source towards the system, which
results in a minimum at Ha = 0.0 A/m. The curve representing the cumulated
dissipated energy density is strictly positive since the instantaneously dissi-
pated energy is always positive. Both the cumulated added and stored en-
ergy density intersect at negative saturation, meaning that the net amount of
energy which is added by the source when running through the hysteresis
branch is all dissipated as heat by the ferromagnetic system.
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The total dissipated energy density when running through the descending
hysteresis branch equals in the Preisach description 125.6 kJ/m3 and in the mi-
cromagnetic description 128.8 kJ/m3. As outlined in Chapter 4, the total dis-
sipated energy density when running through the complete hysteresis loop
corresponds to the surface of the loop. Exploiting the symmetry in the hys-
teresis loop, it is clear that half the energy is dissipated when running through
the descending branch and half of the energy is dissipated when running
through the ascending branch, both corresponding to half the loop surface.
For the simulated hysteresis loop shown in Fig. 12.11 half of the surface equals
126.7 kJ/m3. The values obtained in the micromagnetic and Preisach descrip-
tion differ only by about one percent from this number, showing the perfect
agreement of the Preisach and the micromagnetic description on the one hand
and the macroscopic losses description based on the surface of the hysteresis
loop on the other hand. In the Preisach model, this correspondence is incorpo-
rated theoretically in the model by construction. In the micromagnetic model,
this result is something one expects based on the considerations made on the
simple bistable system, see Section 4.2. However, the perfect agreement for the
complex multi-stable micromagnetic system is striking.

12.4. Conclusions

In this chapter, a micromagnetic study of hysteresis related processes is per-
formed. First, the memory properties in the developed micromagnetic hys-
teresis model were investigated. Since these macroscopic hysteresis prop-
erties are experimentally observed in all ferromagnetic materials, the mi-
cromagnetic hysteresis model should be able to describe them. In the per-
formed simulations, all memory properties were recovered: the branching
property, the return-point-memory and the wiping-out property. Moreover,
the model shows that also microscopically similar magnetization configura-
tions are reached when minor loops close, evidencing that at the microscopic
level a return-point-memory also exists. This was not clear from the macro-
scopic models.

Second, energy flows towards and in the ferromagnetic sample when
running through the hysteresis loop were studied. The Preisach distribution
function was extracted from a set of micromagnetic simulated magnetization
curves (FORCs). This enabled the discussion of the (instantaneously) added,
dissipated and stored energy density in the ferromagnetic system both in the
micromagnetic and in the Preisach model. A perfect agreement of the energy
description in both models was found. Moreover, the micromagnetic hystere-
sis model was able to provide a better insight in the instantaneous energy
rearrangements when running through the hysteresis loop. These energy re-
arrangements can only be described in the micromagnetic model.
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This chapter shows that a large amount of characteristic properties in mag-
netic hysteresis processes as they were described in Chapter 4 are recovered
in the micromagnetic simulations: the memory properties, the distinction be-
tween reversible and irreversible magnetization processes, the determination
of losses, etc. Most of these properties are not built into the micromagnetic hys-
teresis model by construction as is the case for the Preisach model. However,
the fact that they are recovered by the model demonstrates that the micro-
magnetic hysteresis model, developed during this PhD is physically sound,
accurate and valuable. Furthermore, it is shown that it brings an added value
to the better understanding of hysteresis processes.
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CHAPTER 13

General conclusions and

further research

Ferromagnetic materials are used in a wide range of applications. Depend-
ing on the application, the ferromagnetic objects have very different dimen-
sions. Micromagnetic simulations are since long indispensable in the research
on magnetic storage devices, magnetic data transmission, small magnetic sen-
sors, etc. A large variety of micromagnetic numerical schemes have been de-
veloped to simulate the magnetic processes in these sub-micrometer sized fer-
romagnetic samples.

In this PhD, the aim was to extend the length scale on which micromag-
netic simulations can be applied to much larger dimensions. In this way mi-
cromagnetic simulations become useful to study the relations between the mi-
croscopic properties of the material and the macroscopic magnetic behavior. A
better understanding of these relations is required for the design of improved
ferromagnetic materials, which e.g. minimize iron losses. Furthermore, the
knowledge of these relations is important for the development of magnetic
non-destructive evaluation techniques. A systematic study of the influence
of each microstructural parameter is only possible in numerical simulations
since in experiments it is hardly possible to alter just one material parameter
without varying others.

Due to the large sample sizes, the existing micromagnetic schemes were
not applicable in the new micromagnetic research domain of ferromagnetic
materials with sample dimensions larger then 1 μm. During this PhD we de-
veloped a micromagnetic scheme which is able to simulate magnetic processes
in 3D samples with dimensions ranging from 10 nm to about 10μm. This en-
ables the study of magnetic processes using micromagnetic simulations on
length scales where one used to be restricted to the domain theory.
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13.1. General conclusions

13.1.1 Numerical micromagnetic scheme

Most of the numerical micromagnetic schemes are based on the time stepping
of the Landau-Lifshitz-Gilbert (LLG) equation. Every time step, the different
interaction fields have to be computed throughout the material. Hence, the
efficiency of the used numerical scheme strongly depends (i) on the number
of evaluations of the interaction field, which is determined by time step length
ensuring convergence and (ii) on the time and memory efficient evaluation of
one single set of interaction fields.

In this PhD we have proposed two new time stepping schemes which en-
able the use of large time steps –the forward semi-analytical time stepping
scheme and the predictor/corrector semi-analytical time stepping scheme–
both based on an analytical solution of the LLG equation under constant effec-
tive field. The use of these time stepping schemes retains the three basic prop-
erties of the LLG equation: (i) a preservation of the amplitude of the magneti-
zation field, (ii) a continuous decrease of the Gibbs free energy under constant
applied field and (iii) the conservation of the Gibbs free energy in case of zero
damping. Furthermore, due to the use of the analytical expression for the time
evolution of the magnetization field, very large time steps can be taken with
a minimum of field evaluations. This minimizes the required CPU time and
the memory requirements. The accuracy of the time stepping scheme is exten-
sively validated by comparing simulation results of switching processes sup-
plied by our code on the one hand and by code developed at INRIM (Turin,
Italy) and at NIST (Washington, US) on the other hand.

Furthermore, the time and memory efficient evaluation of one single set
of interaction fields is optimized. The evaluation of the magnetostatic inter-
action field Hms is by far the most time consuming. The classical evaluation
of Hms scales O(N2). In this PhD we have accelerated the Hms evaluation to
O(N log N) by using fast Fourier transforms (FFTs). Two FFT based Hms eval-
uation schemes are proposed. One scheme is based on the direct relation be-
tween the magnetization field and the magnetostatic field. This scheme com-
putes the magnetostatic field up to machine precision (given the used space
discretization), but needs a considerable amount of memory resources. The
second Hms evaluation scheme uses the magnetic scalar potential. This scheme
results in a low accuracy evaluation of the magnetostatic field (∼ 1 percent er-
ror bound) but is faster and requires less memory. We have also shown how
the magnetostatic field can be evaluated efficiently in periodic structures us-
ing FFTs.

Next to the use of FFTs, also the use of the fast multipole method (FMM) is
studied to accelerate the magnetostatic field evaluation. This FMM scheme
scales O(N) and can in theory outperform any FFT scheme. The classical
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FMM scheme was accelerated by optimizing the implementation of the differ-
ent translation operators and the near interaction computations. The resulting
FMM implementation has a controllable error bound. Compared to the high
accuracy FFT scheme, the memory savings are very large –about a factor 11–
while the execution time is a factor 4 to 5 higher. This study has shown that
the expected cross-over point where FMM based O(N) computations become
faster than FFT based O(N log N) computations is only reached for very large
sample sizes. The FMM scheme allows an easy description of periodic bound-
ary conditions.

Classically, micromagnetic simulations are used to simulate the space-time
variation of the local magnetization in small ferromagnetic entities: O(10nm)
to O(100nm). Here, an optimal accuracy is aimed at, implying the use of a spa-
tial discretization smaller than the exchange length and a high accuracy eval-
uation of all effective field terms. When the micromagnetic scheme, presented
in this PhD work, is used in this classical micromagnetic research domain, the
small discretization and the high accuracy of the (magnetostatic) interaction
fields are still required. In contrast, it is shown that a coarser space discretiza-
tion (up to 4 times the exchange length) and a low accuracy magnetostatic
field evaluation can be used when the micromagnetic scheme is applied in
the study of magnetization processes in larger material samples, where the
space-time resolution of the magnetization process is less important. This is
e.g. the case when investigating the hysteresis properties of a ferromagnetic
sample or when studying magnetic domain structures. We demonstrated that
the use of a larger space discretization has a massive impact on the CPU time
and the memory requirements while the changes in the macroscopic hystere-
sis properties are very limited. Furthermore, we have shown that the use of
the faster, less memory requiring low accuracy Hms evaluation scheme influ-
ences the macroscopic hysteresis behavior in the same way as when thermal
fluctuations corresponding to moderate temperatures are considered.

13.1.2 Micromagnetic study of magnetic processes

To demonstrate the applicability of the developed micromagnetic scheme in
the intended wide spatial range, we have used the scheme in three different
research domains: (i) the classical micromagnetic research domain, consider-
ing the switching processes in different small ferromagnetic samples, (ii) the
research domain classically covered by the domain theory, describing the do-
main configurations in magnetic materials and (iii) the magnetic hysteresis
research domain, classically covered by macroscopic hysteresis models as the
Preisach model.

In a first classical micromagnetic application, we investigated the influ-
ence of the size, shape and temperature on the reversal and/or relaxation pro-
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cess in nanostrips with longitudinal dimensions of about 100 nm. It was found
that especially the end shape of the strip has a large influence on the reversal
nucleation process and consequently on the relaxation time (defined by the
moment when the average magnetization is zero). Here, sharp triangular end
shapes can prevent the magnetization reversal, while –on the contrary– the
addition of nucleation pads accelerates the reversal process. Thermal fluctua-
tions destabilize the micromagnetic system, resulting in smaller applied fields
which initiate the reversal process and faster relaxation times.
A second classical micromagnetic application investigated in this PhD is the
existence of different reversal mechanisms in infinitely long ferromagnetic
wires with varying cross sectional dimensions, ranging from 10 nm to 1 μm.
We concluded that, depending on the cross sectional dimensions, different
micromagnetic energy terms were dominant, resulting in different reversal
mechanisms. In wires with cross section L < 100 nm, the reversal is performed
by a precessional switching process combined with buckling. In wires with
cross sections 100 nm< L < 500 nm, multiple vertices are formed which en-
able the reversal. In wires with a yet larger cross section, the magnetostatic
and anisotropy interaction becomes more important leading to the formation
of magnetic domains during the switching process. In general, smaller exter-
nal fields have to be applied to initiate the reversal process for increasing cross
sectional dimensions.

The developed micromagnetic scheme is also used to study the magnetic
domain configurations in platelets with perpendicular uniaxial anisotropy.
The evolution of the equilibrium domain configurations when reaching to
near saturation in different directions and then back to < M >= 0 were in-
vestigated. For the obtained equilibrium states at < M >= 0, a comparison
with the domain theory was made. Here, different domain theory models de-
scribe the expected magnetic domains on a theoretical basis, depending on the
strength of the anisotropy constant. It was found that only the refined domain
theory model designed by Hubert to a large extent describes the complexity
of the simulated (closure) domain configurations over the complete studied
range of anisotropy strengths. The micromagnetic simulations revealed that,
for large anisotropy constants, it is more appropriate to define continuous clo-
sure regions instead of distinct closure domains. This study demonstrates the
validity of the developed micromagnetic scheme for sample dimensions larger
than 1μm. It again validates the use of a discretization size larger than the ex-
change length in the appropriate research domains, see conclusions above.
Furthermore, the added value of performing micromagnetic simulations on
the length scale larger than 1μm is proven.

Ultimately, the micromagnetic hysteresis scheme is used to investigate
some hysteresis properties of ferromagnetic materials. Experimentally, the
memory properties described by Madelung’s rules were proven to be general
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hysteresis properties which consequently should be described by any hystere-
sis model. While Madelung’s rules are incorporated by construction in macro-
scopic hysteresis models, this is not the case for the micromagnetic hysteresis
model. Hence, the fact that the developed micromagnetic hysteresis model
describes the memory properties validates the model as a proper hysteresis
model. Moreover, our simulations assume that not only a macroscopic return-
point-memory property exists, but that to a large extent also microscopically
the same magnetization state is obtained (microscopic return-point-memory).
This shows the added value of the micromagnetic hysteresis scheme.
In a second hysteresis research topic, the energy flows in the ferromagnetic
system when running through the hysteresis loop are investigated and com-
pared to the Preisach model description. The instantaneous added, dissipated
and stored energy density was determined at each time point, based on the
micromagnetic hysteresis computations and based on the Preisach distribu-
tion function obtained from the micromagnetic simulations. A striking corre-
spondence was obtained, which again validates the micromagnetic hysteresis
model. Moreover, the micromagnetic simulations were able to reveal the en-
ergy rearrangements in the ferromagnetic material at each time point. Hence,
the micromagnetic hysteresis model contributes to a better understanding of
the hysteretic energy processes. This is important when one aims to minimize
hysteresis losses. The total losses during one cycle of the applied field were in
perfect agreement with the macroscopic theory.

13.2. Suggestions for further research

13.2.1 Suggestions regarding the numerical scheme

Concerning the implementation of the numerical micromagnetic scheme, we
have mainly focused on the efficient evaluation of the magnetostatic field. The
FFT schemes for the evaluation of the magnetostatic field are highly optimized
so modifications of the algorithms itself will only lead to incremental acceler-
ations. However, in the last years, more dedicated, high performing computer
hardware has become affordable. This opens opportunities to further speed
up the simulations or to describe yet larger sample dimensions.

We implemented our algorithms to be executed on multiple cores present
in one single machine, using a multi-threaded code. This corresponds to the
use of multiple processors and one common memory within one computer.
Another option is to run the micromagnetic code on a network of comput-
ers, which all have their own processors and their own memory. In such a
computer configuration, one is not limited by the memory resources avail-
able in one machine. In theory, one can have massive time gains or one can
compute ever larger systems when using an increasing number of computing
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units. However, since the memory is distributed over different machines, the
communication between the machines has to be scheduled in the implemen-
tation using MPI-algorithms. Hence, the efficiency of the algorithm strongly
depends on the implementation.

In the end, one will come to a maximum problem size which can be treated
using purely micromagnetic simulations, given the computer resources and
the time available. In the next few years, this maximum problem size will
probably still be substantially smaller than the samples on which magnetic
measurements are performed. These have a cross sectional surface in the or-
der of 0.5 mm×10 mm. Hence, one will have to revert to a multilevel magnetic
scheme. On the microscopic level of such a scheme, the basic micromagnetic
interactions have to be properly described as discussed in this PhD. Param-
eters which are characteristic for the magnetization processes on the micro-
scopic level should then be extracted and passed through to the macroscopic
level, where the remaining coarse level interactions are taken care of. Further-
more, there should be some coupling from the macroscopic level back to the
microscopic level. One can only succeed in the development of such a multi-
level scheme if one has a thorough understanding of the magnetic processes
present on the microscopic scale.

13.2.2 Suggestions regarding hysteresis simulation

In Section 5.4.1 we stated that the development of a numerical micromagnetic
(hysteresis) scheme is a truly multiphysics problem which cannot be tackled
at once. This forced us to make some assumptions in the research performed
during this PhD. It is clear that each of the assumptions restricts the applica-
bility of the hysteresis scheme. Hence, to broaden the applicability of the de-
veloped micromagnetic scheme and, consequently, to obtain a more complete
insight in the physics of the magnetic processes, all of the assumptions could
be alleviated in further research. In what follows, we give a short overview of
the corresponding opportunities and challenges:

1. In this PhD thesis, we have considered the stress and strain distribution
in the ferromagnetic material as a known input for the magnetoelastic
interactions. Analytical expressions are provided for the stress distribution
around a single edge and a single screw dislocation and around an
inclusion. Further, some assumptions were made about the stress field
introduced by a grain boundary. The evaluation of the actual stress field
introduced in the material by the lattice imperfections is however much
more complicated and requires micromechanic computations. A lot of work
still has to be performed in this research domain.
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2. In this PhD work, we restricted ourselves to the relaxed approach to
describe the magnetoelastic interaction. This approach was only valid
for low magnetostrictive materials. In this approach, the influence of
the local stress field on the magnetization is taken into account, but the
influence of the (changing) magnetization on the stress field and thus on
the microstructure of the material is disregarded. The complete description
of this interplay between the local stress field and the local magnetization
requires the solution of the complete magneto-mechanical problem at each
time step. This results in computations comparable to the evaluation of
the magnetostatic field and enables the description of magnetostrictive effects.

3. Further, we only studied quasi-static hysteresis loops. Hence no eddy cur-
rents were considered. Referring to the loss theory of Bertotti, this means
that classical losses and excess losses are not embedded in the model. In-
corporating the eddy currents in the numerical computations, will improve the
micromagnetic description. The evaluation of the eddy currents has a com-
putational burden comparable to the evaluation of the magnetostatic field
and has to be performed at each time step. Hence, also here, sophisticated
numerical techniques will have to be adopted. When the eddy currents are
introduced in the model one can start making the comparison between the
losses in the loss theory of Bertotti and the losses in the micromagnetic
scheme. This different, micromagnetic approach to obtain the frequency
depending losses in the material will give a better insight in the loss mech-
anisms and the loss theory itself.

Including these suggestions in the micromagnetic (hysteresis) scheme will
also be valuable in the development of magnetic non destructive evaluation
techniques. Indeed, a hysteresis scheme which correctly describes the interac-
tion between the imperfect microstructure of the ferromagnetic material and
the macroscopic magnetization is indispensable in this context. A systematic
study of the influences of each microstructural parameter will be time con-
suming, but will bring many advantages. Furthermore, eddy current simu-
lations independent from the micromagnetic computations are proven to be
valuable for magnetic non destructive evaluation [122].
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APPENDIX A

Green’s function elements in

FFT accelerated schemes

The Green’s tensor elements in the high accuracy FFT based Hms evaluation
scheme used in Section 7.3.1 and in the near interaction scheme II of Section
8.4.2 are obtained by elaborating the surface integrals in (7.10) using Gauss
quadrature formula.
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The Green’s vector elements in the low accuracy FFT based Hms evaluation
scheme used in Section 7.3.2 are obtained by elaborating the surface integrals
in (7.18) using Gauss quadrature formula or can be evaluated using analytical
functions [61].
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The Green’s tensor elements in the FFT accelerated computation of the
near interactions using scheme I described in Section 8.4.1 are obtained by
elaborating the surface integrals in (8.43) using Gauss quadrature formula.
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APPENDIX B

Accelerated computation of

FFTs of zero padded matrices

The standard routine in FFTW [83] can be used for the execution of a 3D real
to complex FFT. This is a very fast routine to Fourier transform matrices with
real elements in 3D. A 3D FFT contains three phases, when transforming a
matrix with dimensions N × N × N these phases are: (i) Fourier transforming
the N2 arrays in z-direction, (ii) Fourier transforming the N2 arrays in the y-
direction and (iii) Fourier transforming the N2 arrays in the x-direction. So in
total their are 3N2 1D FFTs of arrays of dimension N. As a consequence, when
this routine is used to Fourier transform zero padded matrices, 1D FFTs are
performed on arrays containing only zeros, which is useless. Omitting the 1D
FFTs on arrays containing only zeros accelerates the 3D FFT.

In the case of a zero padded matrix as in the FFT schemes of Chapter 7 and
in the near interaction scheme I described in Chapter 8 this is shown in Fig.
B.1. The three different phases of the 3D FFT are shown, assuming a cubic 3D
zero padded input matrix. From Fig. B.1.a it is clear that only a quarter of the z-
arrays contains non-zero values, thus only N2/4 1D FFTs are performed. From
Fig. B.2.b it is clear that after the Fourier transforms on the z-arrays only half of
the y-arrays contains non-zero values, thus only N2/2 1D FFTs are performed.
Fig. B.1.c shows that after the Fourier transforms on the z- and y-arrays all x-
arrays contain non-zero values, thus all N2 1D FFTs have to be performed.
This means that only 7/4N2 1D FFTs instead of 3N2 are performed during the
forward Fourier transforms of the matrices in scheme I. For the inverse Fourier
transforms, this scheme is performed in the opposite direction, starting with
Fig. B.1.c and ending with Fig. B.1.a. Applying this scheme in the case of a
cubical 3D input matrix reduces the time spent on the evaluation of FFTs to
about 58% of the original time.
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Figure B.1: Overview of the data during the different phases of the 3D forward FFT for
a zero padded matrix. The gray areas correspond with arrays in the in-plane direction (a:
z-direction, b: y-direction, c: x-direction) containing non-zero values.
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Figure B.2: Overview of the data during the different phases of the 3D forward FFT for a
zero padded matrix as in near interaction scheme II. The gray areas correspond with arrays
in the in-plane direction (a: z-direction, b: y-direction, c: x-direction) containing non-zero
values.

In the case of a zero padded matrix as in near interaction scheme II de-
scribed in Chapter 8, the three different phases of the forward 3D FFT are
shown in Fig. B.2. From Fig. B.2.a it is clear that only 9/16 of the z-arrays
contain non-zero values, thus only 9/16 N2 1D FFTs are performed. From Fig.
B.2.b it is clear that after the Fourier transforms on the z-arrays three quar-
ters of the y-arrays contain non-zero values, thus only 3/4 N2 1D FFTs are
performed. Fig. B.2.c shows that after the Fourier transforms on the z- and
y-arrays all x-arrays contain non-zero values, thus all N2 1D FFTs have to be
performed. This means that only 37/16 N2 instead of 3N2 1D FFTs are per-
formed during the forward Fourier transforms of the magnetization matrices
in the near interaction scheme II. Applying this scheme on the computations
of the 3D forward FFTs reduces the time spent on the forward FFTs to about
77% of the original time.

For the inverse 3D FFTs in near interaction scheme II described in Chapter
8, one is only interested in the results corresponding with magnetostatic fields
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Figure B.3: Overview of the data during the different phases of the 3D inverse FFT as
used in near interaction scheme II. The gray areas correspond with arrays in the in-plane
direction (a: x-direction, b: y-direction, c: z-direction) containing meaningful values.

in the considered basis box, which is the one in the center of Fig. 8.6 of Chapter
8, moreover, all other data is spoiled by side effects of the Fourier transforms
since the matrices containing the magnetization data where only zero padded
with n zeros in every direction. Hence one can reduce the number of 1D FFTs
to only FFTs on meaningful data, which is data that has influence on the re-
sulting magnetostatic field values of the considered basis box. Fig. B.3 shows
the arrays that contain meaningful data during the different phases of the in-
verse 3D FFT. From Fig. B.3.a it is clear that all the x-arrays contain meaning-
ful data, thus all N2 1D (inverse) FFTs have to be performed. From Fig. B.3.b
it is clear that after the Fourier transforms on the x-arrays, only one quarter
of the y-arrays contains meaningful data, thus only N2/4 1D (inverse) FFTs
are performed. Fig. B.3.c shows that after the Fourier transforms on the x- and
y-arrays only 1/16 of the z-arrays contains meaningful data, thus only N2/16
1D (inverse) FFTs are performed. This means that only 21/16 N2 in stead of
3N2 1D (inverse) FFTs are performed during the inverse Fourier transforms of
the magnetization matrices in scheme II. Applying this scheme on the compu-
tations of the 3D inverse FFTs in near interaction scheme II reduces the time
spent on the inverse FFTs to about 43% of the original time.
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