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integratie in de microbiologie.
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Preface

Introduction

In 1989, Tim Berners-Lee proposed a data and information management system that was

the basis for the creation of the World Wide Web we experience today in every day life. In

twenty years time, data sharing has grown explosively. Networking has become integrated in

every corner of our society and databases are among the main pillars it is relying on. When

focusing on biology, online databases of every kind pop up rapidly in many different fields.

Importantly, the main part of current research relies on stored and shared data. This is also true

in the field of bacteriology, where online gene and protein sequence databases are an important

basis for bacterial identification, comparison and analysis. Moreover, this genotypic informa-

tion has also extensively changed bacterial taxonomy, that was originally based on phenotypic

features such as morphology, presence of flagella, pathogenicity, etc. Nevertheless, phenotypic

analysis methods are still routinely used because they are cheap, fast and possibly allow for an

automated high-throughput analysis. It is clear that these advantages allow phenotyic methods

to be used for first-line bacterial identification. However, one of the major drawbacks is that

these methods mostly lack a good identification scheme up-to-date with the standing bacterial

taxonomy. Nonetheless, in view of a polyphasic taxonomy, the description of a bacterial species

asks for phenotypic data to confirm the findings based on genotypic information. It is clear that

the phenotype was, is and will remain an important player in bacterial taxonomy.

In this dissertation, we focus on bacterial whole-cell fatty acid methyl ester (FAME) analy-

sis. This is a phenotypic and chemotaxonomic typing method. Relying on gas chromatography,

FAME analysis allows for an easy, cheap, automated and high-throughput typing of bacteria,

which in combination with a particular identification library results in a rapid identification of

bacterial isolates. Twenty years of bacterial FAME research at the Laboratory of Microbiol-

ogy and the BCCM™/LMG Bacteria Collection (Ghent University, Belgum) has led to a FAME

database that currently consists of more than 71,000 whole-cell FAME profiles. It is clear that

such a large database is a perfect environment for data mining and knowledge discovery. With

this study, we lifted FAME analysis for bacterial identification to a higher level by an intelligent

computational analysis using machine learning techniques.

Bacteriology and, more specifically, bacterial taxonomy is still a rich field to explore for

bioinformaticians and computer scientists. The number of machine learning applications in this

field is still very small and this is especially true with regard to FAME analysis. Where FAME

analysis has already been performed and optimized for almost 50 years, computational FAME
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data analysis is still limited. The main reason lies in the fact that, in contrast to genotypic

data such as gene sequences, phenotypic data are not shared in an easy way to handle. Many

of the data are published in papers, though are not easy to access for electronic data analysis.

Moreover, data resulting from phenotypic analysis methods are also stored in private databases,

making it difficult to perform any extensive computational study. By using the LMG FAME

database as a starting point, we investigated how bacterial FAME-based species identification

could be improved by the use of machine learning techniques and by focusing on three particular

branches of the bacterial tree of life. More specifically, three bacterial genera were of main

interest: Bacillus, Paenibacillus and Pseudomonas. The choice of these three genera was based

on the extensive experience at the Laboratory of Microbiology on these genera and on the

number of profiles available in the FAME database.

In this work, three main research steps have been investigated. As a first step, we analyzed

the FAME data with standard data analysis methods. Hereby, we pursued to gain insight in the

composition and the patterns of the data. With the goal of improving bacterial species identi-

fication by FAME data, it was investigated how the FAME patterns relate to each other at the

species level. Especially in the framework of a machine learning study, data analysis is typi-

cally performed to determine how the data will confine the performance of machine learning

techniques. As a second step, FAME-based bacterial species identification by three machine

learning techniques was investigated. Different data sets, techniques and parameter settings

were considered with the goal of improving species identification. Where bacterial species

identification over multiple genera was already investigated in a very small setting of only a few

species per genus, we focused on bacterial taxonomy and performed machine learning research

in a genus-wide spectrum. In other words, we investigated bacterial species identification by

considering a model for each genus separately. Two identification strategies were investigated

and a comparison of the identification performance was made with the commercial identifica-

tion system MIDI. As a third step, we tried to put the research of the previous topic in view of

the hierarchical framework of bacterial taxonomy. FAME data was combined with 16S rRNA

data and the machine learning approach of binary tree classifiers was analyzed. Where the iden-

tification performance was compared to the machine learning setting of the second topic, this

approach was also considered as a way to put the results of FAME identification in a taxonomic

context. Herefore, a statistical analysis of the results was performed. The work and resulting

models described in this dissertation can easily be generalized and extended towards a larger

bacterial spectrum. Moreover, FAME-based machine learning research even showed promising

for other identification purposes, such as the identification of plant-pathogenic strains. There-

fore, this work may contribute to the field of bacteriology by improving and rapidly updating

the routinely used FAME-based bacterial species identification and by allowing simple imple-

mentation in laboratory information management systems.

A final but distinct research topic relates to the first paragraphs, where we mentioned that

phenotypic data is mainly stored in private databases. As this restricts research possibilities, this

last topic handles the creation of public FAME database, or FAME-bank, for sharing bacterial

FAME profiles. A particular database structure was constructed, together with a user-friendly

web application. This web applicaton is currently in its alpha phase but can easily be extended
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with multiple features. The main purpose of this FAME-bank.net project is to allow for more

extensive FAME research that is only possible by inter-laboratory collaboration. The taxonomic

scope of research will be extended and data set sizes will be able to grow. In this way, we

close the circle and contribute also to the scientific community by extending the data sharing

network. Moreover, with a larger FAME database, microbiologists and bioinformaticians will

be allowed to develop personal and custom identification libraries, to analyze FAME data within

a broader bacterial scope and to extend and generalize the presented machine learning research.

In general, we regard this work as a steppingstone towards a further and better convergence of

the two distinct scientific fields of bacteriology and machine learning.

A road map to this dissertation

A general road map to this disseration is visualized in Figure 1. This figure illustrates how

the four parts of this dissertation are organized and how this dissertation can be read.

In the first part of this dissertation, a general introduction is given on the fields of ma-

chine learning (Chapter 1) and bacteriology (Chapter 2). With this part, the reader becomes

familiar with theory, principles, concepts and definitions needed for a better understanding of

the research performed. Both chapters can be read separately and are not directly referring to

one another. First, the field of machine learning is handled. In this chapter, we discuss the

general principles involved in machine learning research such as learning, generalization, over-

fitting, etc. In the main part of this chapter, we focus on the three machine learning techniques

used in our research. Each technique is put in a historical perspective and topics required for

a good understanding of the technique are discussed. Next, a mathematical representation is

given, together with the major (dis)advantages, though these mostly hold for many machine

learning techniques. Finally, model evaluation is described in terms of the confusion matrix,

performance measures, the ROC curve and statistics. In the second chapter, we deal with bac-

teriology. We first give a general overview on what bacterial taxonomy encompasses. Topics

as taxonomy, species definition and concept, and bacterial identification are briefly explained.

Importantly, to prevent any further misunderstanding, the terms classification and identification

are explained in view of the two introductory chapters. Also, an overview of machine learning

applications in bacteriology is given. In a second section, bacterial FAME analysis is discussed.

The history of bacterial fatty acid analysis is reported and we explain what fatty acids are and

how these are analyzed by the commercial Sherlock MIS system. Finally, fatty acid research

performed at the Laboratory of Microbiology and the resulting in-house database are descri-

bed. In each of the two sections of this chapter, the three genera Bacillus, Paenibacillus and

Pseudomonas are described in the context of the respective sections.

The second part of this dissertation handles the scientific research performed during this

doctoral study. This part comprises three chapters. In Chapter 3, we describe an initial data

analysis. Information is given concerning the construction of the data sets, together with cor-

responding statistics. Next, for each species, average FAME profiles are analyzed. Again, these

are discussed for each genus separately. Also, clustering experiments of the data are described

followed by a TaxonGap analysis of each genus. Finally, a principal components analysis is
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described and discussed. In the following chapter (Chapter 4), we discuss the FAME-based

species classification experiments performed with the three machine learning techniques ar-

tificial neural networks, support vector machines and random forests. First, artificial neural

network experiments for species identification in the genus Bacillus are described. Second, two

strategies are reported and discussed in which the three machine learning techniques are hand-

led for species identification of the three bacterial genera. In this section, the results are also

compared with the performance of the commercial identification system Sherlock MIS and the

identification of three independent third-party data sets is described. In Chapter 5, we discuss

the integration of taxonomic knowledge in the identification models described in the Chapter 4.

For a better understanding of the research described in this chapter, we briefly introduce binary

tree classifiers and bacterial phylogeny. A new approach, phylogenetic learning, is described

and discussed. In the second section of this chapter, we also propose a new method for easy

visualization of the results obtained by phylogenetic learning.

The third part of this dissertation comprises a single chapter (Chapter 6), which describes

the FAME-bank.net project. The construction of a public FAME database is described and the

concept, main motives and advantages are discussed.

The final and fourth part is a general summary of the dissertation. General conclusions are

given and future perspectives are proposed.
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CHAPTER 1
Machine Learning

Intelligence is the ability to adapt to change.

STEPHEN HAWKING

... the story of the sheep dog who was herding

his sheep, and serendipitously invented both

large margin classification and sheep vectors...

ANA MARTÍN LARRAÑAGA

1.1 Introduction

When diving into literature and surfing on the World Wide Web, machine learning is des-

cribed in many formal ways. One of the best descriptions of what machine learning really

encompasses is given by Tom Mitchell in his book ‘Machine Learning’. He states in the open-

ing sentence of the preface to his book that: “The field of machine learning is concerned with

the question of how to construct computer programs that automatically improve with experi-

ence". Moreover, Mitchell states that machine learning is related to concepts and results from

many fields, including statistics, artificial intelligence, philosophy, information theory, biology,

cognitive science, computational complexity and control theory. In the following sections I

summarize the concepts, theories and techniques needed for further understanding the machine

learning background of the scientific research performed. This summary is mainly based on the

excellent books of Mitchell (1997), Duda et al. (2001), Hastie et al. (2001, 2009) and Bishop

(2006), to which I refer for a more detailed reading.

1.1.1 General Definitions and Concepts

Learning corresponds to acquiring new knowledge and, in machine learning terms, starts

from a particular data set S = {(x1,y1), (x2,y2), . . . , (xN ,yN)}, with N the data set size.

Suppose that the N data points or instances comprise D features, also called the independent

variables or predictors. These features can be binary, continuous or categorical. To each data

point corresponds a vector xi ∈ R
D with i = 1, . . . , N , together with an associated output

yi. Machine learning focuses on learning a model or ‘machine’ whose task it is to learn the

mapping xi �→ yi. The machine is actually defined by a set of possible mappings x �→ f (x),

or also f (x, α) with α an adjustable parameter or a vector of such parameters. This machine is
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assumed to be deterministic as for a given input x and a particular choice of α, it will always

give the same output. Setting α to a certain value results in a so-called ‘trained’ machine.

Therefore, the input data set is generally called the training set and the phase of determining

the function f (x) is called the learning or training phase. Once the machine, model, learner or

classifier is trained, it can be used to test the identity of unknown data points, that are comprised

in a so-called test set (Burges, 1998; Bishop, 2006; Hastie et al., 2009).

When the output values yi is known beforehand, it is possible to learn or train the model in a

supervised way. When the output or target variables consist of one or more discrete categories or

classes, the problem setting is called classification. In case of continuous output(s), the setting

is referred to as regression. When the targets of the input data points are not known beforehand,

it is possible to find groups of data points with a certain degree of similarity. This problem

setting is called unsupervised learning or clustering (Bishop, 2006).

The aim in classification and regression problems is to find a good balance between the abil-

ity of predicting the training data correctly, called memorization, and the ability of achieving a

similar performance on a set of unknown data, defined as generalization. The error rate on an

independent test set is a good estimator of the generalization power of the model. The concept

of generalization is very important as in real-world situations, one often has only a small sub-

set of all possible data points at hand. Consequently, it is highly important to generalize over

the pattern information or variability in the present subset (Fausett, 1994; Duda et al., 2001;

Bishop, 2006; Hastie et al., 2009). In other words, generalization is about capturing the under-

lying trends in the data and distinguishing them from noise. Thus, the generalization ability

determines the quality of the learned model. A commonly used method for obtaining a good

generalization power is to use an additional validation set. Especially in data-rich situations,

this is one of the best approaches. Typically, the input data set is randomly divided in a training,

validation and test set. The training set is used to fit the models, the validation set is used for

model selection based on the generalization ability and the test set is used to estimate the per-

formance of the final model. Typically used split ratios are 50%, 25% and 25%, respectively, or

33% for each set (Hastie et al., 2009). In general, this approach is executed ten-fold to hundred-

fold with random sampling of the different data sets. Final model evaluation is subsequently

performed by averaging of the results. In this work, this type of generalization estimation is

further denoted as simple validation. An example of the estimation of the generalization per-

formance is visualized in Figure 1.1. Before training a model, the error on the training and

validation set is typically high. Through learning from the training data, the error lowers. The

minimum error on the validation set corresponds to the best generalization error that the model

is able to achieve and the final model is constructed with the corresponding parameter setting.

For other parameter value settings, the model is unable to fit the training data well due to a

too low number of free parameters or the model has tuned its parameters to the training data

values and becomes too complex. Both situations lead to a bad generalization and, thus, to a

high validation error. This phenomenon is better known as under- and overfitting, respectively

(Duda et al., 2001).

Mitchell (1997) defines overfitting in a very clear way: given a hypothesis space H, hypoth-

esis h ∈ H is said to overfit the training data if there exists some alternative hypothesis h
′ ∈ H
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Figure 1.1: Generalization. Simple illustration of the errors on the training (red) and validation (green)
set for varying parameter settings. In this curve, the error on both data sets decreases until a certain
parameter value, denoted by the dashed line. Beyond this line, the error on the training data further
decreases while the error on the validation set increases. In other words, the model learns the data values
and starts to overfit. The generalization power of the model decreases and is given by the increased
error on the validation set. The final model is constructed by the parameter setting corresponding to the
minimum validation error.

such that h has a smaller error than h
′ over the training examples, but h ′ has a smaller error than

h over the entire distribution of instances. Finding a good balance is particularly difficult when

dealing with small data sets. In this case, the problem of overfitting becomes very severe and

can be solved by cross-validation (Mitchell, 1997).

The principle of cross-validation is illustrated in Figure 1.2. The input data set is split into

k equally sized parts, generally in a random manner. For the kth part, the model is trained

with the k − 1 other parts, while the performance is evaluated with the respective part. This

training-validation process is done for each part and the cross-validation estimation of the error

equals the average of the errors obtained by the different folds. When k is set equal to the data

set size, leave-one-out cross-validation is performed (Bishop, 2006; Hastie et al., 2009). The

choice of a good value for k depends on the bias-variance trade-off (more information below)

and the computational load, that increases with the number of folds. In general, five-fold and

ten-fold cross-validation is recommended for model selection (Breiman and Spector, 1992; Ko-

havi, 1995). In the context of cross-validation it is also important to note that in many real-world

data sets the number of data instances varies per class, which was also the case for the data sets

dealt with in this work. A good approach for dealing with these disproportions is to perform

a stratified cross-validation. Herein, the different folds are so-called stratified so that, based

on the different class labels, they contain approximately the same proportions of data points as

the original data set (Kohavi, 1995). In this work, we first splitted a stratified test set from the

original data set and subsequently used stratified cross-validation for parameter optimization.
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With the stratified test set the performance error of the final classifier was estimated. Often

this latter step is skipped and performance estimation is done by the cross-validation. In this

perspective, Varma and Simon (2006) state that, when dealing with small data sets, the calcu-

lated cross-validation error could be a biased estimate of the true error of the final classifier

trained on all the data and using the optimal classifier parameters. The solution proposed in

their paper is nested cross-validation in which two cross-validation loops are performed. An

outer cross-validation loop for performance estimation and an inner cross-validation loop for

parameter optimization. Ultimately, pooling is done of the different outer folds (or test data),

implying a model performance estimate based on the complete data set.

FOLD 1

FOLD 4

FOLD 2

FOLD 3

Figure 1.2: k-fold cross-validation. The initial data set is split into k equal parts, with k = 4 in this
figure. Each part is once used for validation (green) while the other k−1 parts are used for training (red).
The final model performance equals the average performance over the k folds.

The goal of a learning model is to minimize the error on an independent test set. The

expected squared prediction error of a certain test point x0 can be decomposed in:

Error(x0) = Irreducible error + Bias2 + Variance (1.1)

The first term corresponds to the variance introduced by the new test point and is regarded

as noise. This variance cannot be avoided, no matter how well we estimate, unless it equals

zero. The second term is the squared bias, the amount by which the average of the estimate

differs from the true mean. This bias is also known as statistical bias. It can be estimated by

repeatedly drawing training points from the input data set, by constructing the corresponding

models and by averaging the resulting outcomes. The statistical bias is given by the difference

between the average prediction and the true target. The third term is the variance or the expected

squared deviation of the prediction around its mean. When minimizing the error on the test set,

consequently, the goal is to minimize the statistical bias and variance (Dietterich and Bakiri,

1995; Bishop, 2006; Hastie et al., 2009). This decomposition is better known as the bias-

variance tradeoff. One important factor in model selection is to choose the complexity of the

model by trading bias off with variance, such that the test error is minimized. This tradeoff

is also visualized by the curves in Figure 1.1. The X axis denotes model complexity and the

validation curve represents the test error. If a model is not complex enough, it will underfit and

may result in a large bias, implying a poor generalization. In the other extreme, if the model is

too complex, the training data is fitted too well. Predictions will have a large variance and, thus,
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also show a poor generalization (Hastie et al., 2009).

When talking about model selection, overfitting and model complexity, an important aspect

to touch is regularization. If too many free parameters are used, model complexity will become

too high which leads to overfitting and, conversely, when too few parameters are implemented,

model complexity becomes low, leading to underfitting. In both cases generalization will be

poor. In view of model complexity, a common approach to tackle overfitting is to reformulate

the error minimization problem by adding an additional term for penalizing model complexity:

min
f∈H

[
N∑

i=1

L (yi, f(xi)) + λJ (f)

]
, (1.2)

where L (y, f(x)) is a particular error function. The mean squared error is a popular example.

J (f) is a penalty function that quantifies the complexity of the function f and H is a space

of functions on which J(f) is defined. This concept is defined as regularization. Specifically,

the minimization problem becomes a trade-off between the error function and its complexity.

The parameter λ defines this trade-off and is an additional parameter that needs to be optimized

(Duda et al., 2001; Hastie et al., 2009).

1.1.2 Classification Settings

1.1.2.1 From Two-class to Multi-class

In this work, we were only confronted with supervised classification. This learning type

is very general and can be subdivided in many different settings. The most popular and most

studied setting is two-class or binary classification. In binary classification problems, only two

classes are considered, typically represented by a positive and a negative label. Each data sam-

ple corresponds to one of the two labels. However, in many real-world situations, data sets

comprise multiple classes. In supervised learning, this problem setting is called multi-class

classification, which asks for a different approach. With respect to the learning aspect, the

three popular solutions for solving the multi-class classification problem are learning a single

multi-class classification model, the one-versus-others (also one-versus-rest or one-versus-all)

approach and the one-versus-one approach. In the first setting, one classifier is trained to dis-

tinguish between all classes by solving one optimization problem. Of the different techniques

discussed below, this setting is typically used in artificial neural networks (ANNs) and random

forests (RFs). In the second approach, different binary classification models are learned that

distinghuis each class from all other classes, while in the third approach, different binary classi-

fiers are trained to learn to distinguish between all pairs of classes. This latter setting is typically

used in support vector machines (SVMs). A more detailed discussion about both approaches

is given in Subsection 1.2.2.2. Besides the two-class and multi-class setting, different other

learning types exist, such as

• Multi-label learning: each data sample is associated with a set of labels

• Structured learning: the objective is to learn a more complex structure such as graphs,

trees, sequences, etc.
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• Hierarchical classification: detailed information in the following subsection

• etc.

1.1.2.2 Multi-class Hierarchical Classification

A particular multi-class classification approach is that of classifying the multiple classes

by means of a hierarchical structure or tree. Herein, a classification model is trained on each

node of the tree to distinguish between the subset of data instances corresponding to the un-

derlying classes. At present, machine learning papers describing multi-class classification with

classes structured in a tree topology mainly focus on the area of web-, document-, text- and

ontology-based classification. Many research problems involve multi-furcating tree nodes, and

most papers deal with data instances corresponding to multiple classes structured in this kind

of hierarchical setting. Classification problems related to this issue are better known as multi-

label classification. In machine learning terms, learning by exploiting hierarchical structure

information is called hierarchical classification (Koller and Sahami, 1997; Mccallum et al.,

1998; Dumais and Chen, 2000; Blockeel et al., 2002; Dekel et al., 2004; Kriegel et al., 2004;

Barutcuoglu et al., 2006; Cesa-Bianchi et al., 2006; Rousu et al., 2006; Vens et al., 2008), learn-

ing with taxonomies (Hofmann et al., 2003) and structured label learning (Wu et al., 2005).

Most of these studies do not involve hierarchical classification for single-label multi-class clas-

sification, meaning that each instance is classified at leaf level. Also, the hierarchical topologies

are mostly predefined by a certain ontology or pre-existing class structure.

In view of the optimization problem, hierarchical classification is also proposed by handling

multi-class classification by means of a tree of binary classifiers, also called binary tree classi-

fiers (Lee and Oh, 2003; Cheong et al., 2004; Vural and Dy, 2004; Fei and Liu, 2006; Lu et al.,

2007; Xia et al., 2007). In these studies, a tree architecture is constructed from the considered

data set where tree inference is based on different algorithms for calculating distance measures

or similarities between the considered classes. Ultimately, the resulting tree is used for multi-

class classification by training a binary classifier at each node of the tree. We focused on this

approach of hierarchical single-label multi-class classification. Evaluation of this classification

approach is similar to that of the approaches mentioned in Subsection 1.1.2.1, which is further

denoted as flat multi-class classification. Herein, a test instance is identified along the tree until

classification into one of the leaves of the tree.

To complete the list of approaches, a totally different hierarchical classification method is

the decision directed acyclic graph (DDAG) proposed by Platt et al. (2000). The basis of this

multi-class classification algorithm is the one-versus-one approach where different binary SVM

classifiers are structured in a bifurcating tree structure. The authors state that, compared to

other multi-class SVM algorithms, the DAGSVM algorithm is superior in both training and

evaluation time.

1.1.3 Balanced versus Imbalanced Data Sets

As in many real-world data sets, in this study we were confronted with imbalanced classes.

In other words, the multiple classes of the data set consisted of a different number of data points.
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Training with these type of data sets may become problematic. This class imbalance problem

is addressed in a few overview papers such as Japkowicz and Stephen (2002) and Weiss and

Provost (2003). For more detailed information, I refer to the references in these papers. Various

strategies are proposed for dealing with class imbalances (Japkowicz and Stephen, 2002):

• Over-sampling: oversampling the minor class until it contains as many elements as the

major class. Sampling may be performed at random or by focusing on specific data points

or patterns

• Under-sampling: eliminating elements of the major class. Possible strategies are the same

as for over-sampling

• Cost-modifying: modification of the relative misclassification cost by compensating for

the imbalance ratio of the minor and major class

For these re-sampling techniques, different results are reported. Japkowicz and Stephen

(2002) report that under-sampling is the least effective in many cases, while Weiss and Provost

(2003) report that neither approach outperforms the other nor does any sampling rate consistenly

yields the best results. This can be regarded somewhat dubious, as classes with a massive

amount of data points may contain a lot of redundant information that is irrelevant for the

classification task. But when this is not the case, crucial information is lost, ultimately leading

to a degradation of the classification performance. Note that with oversampling, due to copying

of data, a possible overfitting may occur and that computation time for model construction will

increase (Japkowicz and Stephen, 2002; Weiss and Provost, 2003). Japkowicz and Stephen

(2002) report that for classifiers sensitive to the class imbalance problem, simple re-sampling

techniques can improve performance (e.g. in case of ANNs) but some techniques may suffer

from it (e.g. SVM training with undersampling). It is also clear that imbalanced classes may

cause a performance degradation when analyzed by learning methods that assume balanced

class distributions (Japkowicz and Stephen, 2002).

A totally different approach of handling skewed class distributions is reported by Weiss and

Provost (2003). Instead of modifying the class distribution of the data sets, the authors suggest

to adjust the resulting probability estimates. This work only took decision trees into account

even though the authors believe their conclusions will also hold for other learners. Importantly,

the authors conclude that, if no additional information is provided about the true class distribu-

tion and a class distribution must be chosen without any experimentation, the natural distribu-

tion and a balanced distribution are reasonable default training distributions. In this work, these

approaches were followed. Due to imbalanced data sets with a high number of classes with a

small number of data instances, balanced data sets with under-sampling and imbalanced data

sets were considered for classification.

1.2 Machine Learning Techniques

In this study, we focused on three popular black-box models: artificial neural networks,

random forests and support vector machines. In the following sections, a brief introduction to
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the theory behind the three models is reported. Detailed reading can be done in many machine

learning books.

1.2.1 Artificial Neural Networks

1.2.1.1 Introduction

The idea of artificial neural networks started approximately 70 years ago by a motivation

to understand the brain and to exploit the strengths of biological neural systems. Information

processing by biological neural systems is distributed over many neurons in a parallel fashion.

This ability has been one of the cornerstones in the development of ANNs. The first neural

network was designed in 1943 by McCulloch and Pitts and the first neural learning was imple-

mented by Hebb in 1949. In the 1950s and 1960s, one of the most popular models for artificial

neural networks was developed by Rosenblatt and other researchers: the perceptron. Next to

the Hebb rule and the perceptron, different other learning algorithms were developed such as

the popular Widrow-Hoff learning rule. Besides this rule, Widrow also developed the adaptive

linear neuron (adaline) and its multi-layer extensions. In the preceding decades, a multitude

of artificial neural models were developed such as the Kohonen self-organising maps, Hopfield

nets, the neocognitron and the Boltzmann machine. One very popular learning method is the

backpropagation method which is also applied in this work (Fausett, 1994).

An ANN is a mathematical model, regarded as an artificial information-processing system,

that incorporates the major parts of the biological neuronal model. To understand the idea

behind ANNs, this biological neuron model needs an explaination first (Fausett, 1994; Mitchell,

1997). A biological neuron consists of three main components: dendrites, the soma and the

axon. The structure of a biological neuron is also displayed in Figure 1.3. The many dendrites

of the neuron may receive signals from other neurons. This signal transmission is chemically

regulated over a synaptic gap between neurons. The dendrites are connected with the soma

which receives all incoming signals. When the sum of all signals exceeds a certain threshold,

the cell fires and the soma transmits a signal towards the axon for signal forwarding to other

neurons. Transmission of the signal through the neuron is accomplished by an action potential

resulting from different concentrations of ions on either side of the neuron’s axon sheat (Fausett,

1994).

As a mathematical model of the biological neuron, ANNs consists of the same structural

elements. Information processing occurs at many simple units, called neurons, signals are

transmitted between neurons over connection links, each connection link is associated with

a weight that multiplies the signal and each neuron applies an activation function to the sum of

the weighted input signals to determine an output signal. These elements are, thus, similar to

the soma, the dendrites and axon, and the neuron activation for signal transmission, respectively

(Fausett, 1994; Mitchell, 1997). As an example, a mathematical representation of an artificial

neuron is displayed in Figure 1.4.
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Figure 1.3: Structure of biological neuron and signal transmission. Signals are retrieved by the
multiple dendrites and transported to the soma. If the sum of all signals exceeds a certain threshold, the
signal is further transported to the axon for transmission to the other neurons (McMurry and Castellion,
2002).

Σ

xi1 w1

xi2 w2

xid

wd

x0 = 1

w0

... D∑
d=0

wdxid

f {xi} =

⎧⎨
⎩ 1 , if

D∑
d=0

wdxid ≥ 0

−1 , otherwise.

Figure 1.4: Mathematical representation of the perceptron. The input values of training point xi

correspond to xid, with d = 0, . . . , D and D the number of features. Input value x0 is called the bias
neuron and its value is set to 1. To each input is associated a weight wd. The weighted sum of the
input values is calculated and the resulting sum is converted into a specific output value y as defined by
the bipolar step function. A threshold on the weighted input signal is set equal to zero (adapted from
Mitchell (1997)).

1.2.1.2 The Perceptron: A Basic Unit

The perceptron is one of the most popular neural network types. In fact, the model is a linear

discriminant model for two-class classification (Duda et al., 2001; Bishop, 2006). A perceptron

takes an input data point or vector xi from the training set and calculates a linear combination

of the input values with their corresponding weights

D∑
d=1

wdxid + w0, (1.3)

with the value of the bias neuron x0 set to 1 and D the number of features. This linear combi-

nation is also called the decision boundary, representing a line in R
2 or a hyperplane in higher

dimensions. The weight vector w is perpendicular to any vector lying in the hyperplane and, as

such, defines its orientation. This formulation is also visualized in Figure 1.5. Consequently,

for the two-class situation, the data points are separated in a positive class (region above the
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hyperplane) and a negative class (region below the hyperplane). The weights determine the

contribution of input value xid (d = 1, . . . , D) to the output of the perceptron. Next, a non-

linear transformation is performed to map the weighted input signal to an output value. The

latter method is also better known as activation and the corresponding function is called the ac-

tivation function. The perceptron uses the (bipolar) step function for non-linear transformation

(Fausett, 1994; Bishop, 1995; Mitchell, 1997; Duda et al., 2001; Hastie et al., 2009). Where in

Figure 1.4 a bipolar step function is used for activation, the linear combination can similarly be

evaluated by

f(xi) =

⎧⎪⎨
⎪⎩

1, if
D∑

d=0

wdxid ≥ 0

0, otherwise
(1.4)

w
−w0
‖w‖

f(xi) = 0

Figure 1.5: Linear decision boundary. Linear decision boundary corresponding to f(xi) = 0 or∑D
d=1 wdxid = −w0 in a two-dimensional input space. The weight vector w defines the orientation of

the boundary, while the bias weight w0 defines the position of the boundary in terms of its perpendicular
distance from the origin. The boundary separates the green data points (positive class) from the red data
points (negative class).

From (1.3) and (1.4) follows that the bias weight w0 acts as a threshold in the non-linear

transformation of the netto input signal and determines the location of the decision hyperplane

(Fausett, 1994; Bishop, 1995; Duda et al., 2001). Alternatively, an additional threshold θ can

also be defined on the activation function (Fausett, 1994). Hereby, the width of the hyperplane

can be changed and the boundaries of the hyperplane can be represented as

⎧⎪⎪⎨
⎪⎪⎩

D∑
d=0

wdxid > θ, representing the positive class

D∑
d=0

wdxid <−θ, representing the negative class
(1.5)

A single perceptron can be used to represent all primitive boolean functions (AND, NAND,

OR and NOR). Learning these functions corresponds to making good choices for the different
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weights w. In terms of the hypothesis space H, this implies that all candidate hypotheses

considered correspond to the set of all possible weight vectors. Different learning algorithms

can be used to converge to the correct weights. Initially, one mostly starts with a random

initialization of the weights, drawn from a single uniform distribution. Next, in an iterative

process the different training points are applied to the perceptron. The perceptron learning rule

modifies the weights with a certain value Δd if a certain point is misclassified according to the

following two rules:

wd ←wd + Δwd (d = 1, . . . , D) (1.6)

Δwd = α(yi − f(xi))xd, (1.7)

with yi and f(xi) the target and generated output, and α the learning rate which is a positive

constant. The learning rate is used to moderate the modification degree of the different weights

and is typically set to a small value. As can be seen, weights remain unchanged when a correct

output value is obtained. Ultimately, the training data is repeatedly applied to the perceptron

until correct classification of all training points. The iterative process can be represented as

moving the separating hyperplane wdxid towards the boundary corresponding with correct clas-

sification (Mitchell, 1997). The perceptron convergence theorem states that if an exact solution

exists, thus, when the data is linearly separable, then the perceptron learning algorithm is guar-

anteed to find an exact solution in a finite number of steps (Minsky and Papert, 1969; Fausett,

1994; Duda et al., 2001).

1.2.1.3 Feed-forward Multi-layer Networks with Backpropagation

In this work, feed-forward multi-layer neural networks with backpropagation are used. To

make the algorithm of this technique clear, the first paragraphs of this section briefly explain

the principles and concepts behind this technique.

1.2.1.3.1 Gradient Descent

If the training data is not linearly separable, the delta rule can be applied as an alternative

learning rule. This rule approximates the correct solution of the problem by converging to the

best fit. The basis of this rule is the gradient descent algorithm, which searches the hypothesis

space of possible weight vectors to find the weights best fitting the data points. Herein, gradient

descent searches for a weight vector that minimizes an error function. By starting with an arbi-

trary initial weight vector, this vector is repeatedly modified in small steps in the direction of the

steepest descent of the error function. Therefore, gradient descent is also known as steepest de-

scent. This direction can easily be calculated by taking the derivative of the error function. This

also motivates the choice of a low learning rate value, as too large values lead to larger steps

in the gradient descent with the possibility of not converging to, or even diverging from, the

global minimum of the error function. Note that too small values will lead to a very slow con-

vergence and very long training time. Gradient descent learning has become a basic algorithm

for searching hypothesis spaces and is the main principle behind basic backpropagation (more



18 1.2 MACHINE LEARNING TECHNIQUES

information below). A major risk of this method is the convergence to a local minimum of the

error function, if present. Different alternative strategies have been constructed to overcome

this problem and are discussed in Subsection 1.2.1.3.5 (Bishop, 1995; Mitchell, 1997).

1.2.1.3.2 Activation Functions

To learn functions more complex than boolean functions, different neuron units should be

combined. The perceptron is one of the most popular neuron units for learning in these multi-

unit neural networks (Mitchell, 1997). Moreover, when non-linear functions need to be learned,

multiple layers of neurons have to be considered. The most simple and popular example of a

non-linear function is the XOR function. Learning this function can only be achieved by an

ANN with two neuron layers (Duda et al., 2001). Consequently, a common setting for learn-

ing complex non-linear functions is to train a multi-layer network. An example of this type

of ANN is visualized in Figure 1.6. However, multi-layer networks consisting of linear units

as discussed in Subsection 1.2.1.2 will still only be capable of learning linear functions. An

activation function for a backpropagation ANN should be non-linear, continuous and differ-

entiable (more information below). Therefore, alternative activation functions are introduced

in the single neurons and only these functions are further considered in this study. To keep

the weights and activations bounded, and to keep training time limited, saturated functions are

chosen. Monotone functions can be convenient but are not essential. In most cases, for each

neuron layer the same activation function is used. This function may, however, differ between

layers (Fausett, 1994; Bishop, 1995; Mitchell, 1997; Duda et al., 2001). Different types of func-

tions exist and the sigmoid function is most widely used. Next to the step function, the logistic

sigmoid and hyperbolic tangent sigmoid activation functions with the respective input-output

mapping are defined and visualized in Table 1.1. The presented activation functions may be

customized by modifying their slope. For instance, in case of the sigmoid function, this can

be attained by changing ex to eσx. By choosing for σ a very small value, linear functions can

be approximated. Note that the hyperbolic tangent sigmoid function is equivalent to the hyper-

bolic tangent function tanh(x) = ex−e−x

ex+e−x . It is clear that small inputs and weights will result in

a summed input near the origin of the sigmoid function which, approximates a linear transfor-

mation, while larger values will approximate a step function mapping (Fausett, 1994; Bishop,

1995; Mitchell, 1997). Different other activations exist such as the arctangent function or the

radial basis function, which is used in radial basis function networks (Fausett, 1994).

Because the defined activation functions are differentiable, the derivatives of the error func-

tion with respect to the weight parameters can easily be evaluated and the gradient descent be-

comes a highly suitable learning rule for approximating the objective function (Bishop, 1995;

Mitchell, 1997). Activation functions, such as the sigmoid function, also motivate the use of

random initialization of the network weights. It can be seen that too small or too large weights

will possibly result in too small derivatives of the activation function, leading to too small

weight updates. This will ultimately result in extremely slow training. A common procedure is

to initialize weights to random values in the intervals [-0.5,0.5] or [-1,1].
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Figure 1.6: Architecture of a fully connected multi-layer artificial neural network. The first layer
of the network consists of the input data values xid with d = 1, . . . , D and D the number of features
(the bias not considered). The input data is forwarded over weighted neuron connections to the hidden
neurons hm with m = 1, . . . , M , M the optimal number of hidden neurons and wdm the weights on
the corresponding connections. A weighted input-output mapping is performed at the hidden neurons
and the resulting values are forwarded to the output neurons pk over connections with weights wmk,
with k = 1, . . . , K. K output neurons are considered with K the number of classes in the data set in
case of classification and K = 1 in the case of regression. Again, a weighted input-output mapping is
performed, resulting in the output values ok.

1.2.1.3.3 Feed-forward Multi-layer ANN

In this work, the architecture of a feed-forward multi-layer ANN is chosen. Herein, N

input values are presented to the ANN by weighted connections, with D the number of features

present in the respective data set plus a bias value with an associated weight of 1. A first layer of

neurons deals with these input values according to the perceptron concept as described above.

A non-linear mapping of the input variables is also called a basis function of the model and

the resulting input-output mapping is presented to a second and final layer of K neurons, also

called the output neurons. Also in this case, a bias term is considered and the mapped values are

transformed according to the perceptron concept. Moreover, in this setting a mapping occurs

of a linear combination of the basis functions with the respective weights. At this level, the

non-linear separability problem can be transformed into a linear separability problem. In most

cases, for each neuron layer the same activation function is used. This function may, however,

differ between layers (Fausett, 1994; Mitchell, 1997; Duda et al., 2001; Bishop, 2006). In case

of classification problems, K equals the K classes of the respective data set and K equals1 in

case of regression.

The principle of input values flowing through the network towards the output neurons with-

out any feed-back connections is called feed-forward. An ANN with backtracking or feed-back

connections between the units is known as a recurrent net. Neurons positioned between the

input layer of input values and the layer of output neurons are also called hidden neurons. Im-

portantly, the number of these hidden neurons determines the number of connections in the

network and, as such, the hidden neurons govern the power of the ANN and determine the com-

plexity of the decision boundary. According to the respective learning problem, the number
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Function Mathematical representation Graph

Step a(x) =

{
1 , if y ≥ 0
0 , if y < 0

+1

-1

0
x

y

Bipolar step a(x) =

{
1 , if y ≥ 0

−1 , if y < 0

+1

-1

0
x

y

Logistic sigmoid a(x) = 1
1+e−x

+1

-1

0
x

y

Hyperbolic tangent sigmoid a(x) = 2
1+e−2x − 1

+1

-1

0
x

y

Table 1.1: Overview of commonly used ANN activation functions. The mathematical formula and
representation are given for the step and bipolar (or symmetric) step function, the logistic sigmoid func-
tion and hyperbolic tangent sigmoid function.

of these neurons needs to be optimized for optimal convergence to the global minimum of the

error function. Optimization of the number of hidden neurons is commonly done by calculating

the network error over a series of numbers of hidden neurons and by choosing the number that

minimizes the error. Hereby, the complexity of the network is controlled in order to avoid over-

fitting. Another possibility to control model complexity is weight decay, which is an example

of regularization. This method is not further considered in this study (Fausett, 1994; Bishop,

1995; Duda et al., 2001; Bishop, 2006).

The multi-layer aspect can be regarded two-fold. In terms of nodes, three layers exist: an

input layer of input values, and a hidden and output layer of neurons. In terms of the weighted

connections, two layers exist to connect the nodes of the input layer to the output layer. In this

study, only one hidden layer is implemented, even though multiple hidden layers can be inte-

grated in the ANN. For most learning problems, one hidden layer is sufficient to approximate

any continuous function with arbitrary accuracy, provided sigmoidal activation functions and a

sufficiently large number of hidden neurons. An important consequence of integrating multiple
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hidden layers is a longer training time due to the larger number of connections and weights.

Also, an ANN with multiple hidden layers is more prone to converging to local minima. As

such, an ANN with this architecture is regarded to be a general parametrized multivariate non-

linear functional mapping (Fausett, 1994; Bishop, 1995; Duda et al., 2001).

1.2.1.3.4 Backpropagation

For training in this kind of architecture the backpropagation algorithm is mostly applied.

Backpropagation gained a lot of popularity due to its computational efficiency. This algorithm,

also known as the generalized delta rule, uses the concept of perceptron learning. The back-

propagation algorithm involves three stages: feed-forward of the input values towards the output

neurons over the hidden neurons, backpropagation of the error calculated between target and

output value from output layer to input layer and, third, update of the ANN weights accord-

ing to the backpropagated error (Fausett, 1994; Bishop, 2006). Basic backpropagation employs

gradient descent to find those weights w that minimize the squared error between output and

target values

E (w) =
N∑

i=1

K∑
k=1

(
yik − fk(xi)

)2
(1.8)

over all training points N in the data set and over all output neurons pk with k = 1, . . . , K, with

yik and fk(xi) the target and output values associated with the kth output neuron (Hastie et al.,

2009). As this error function is a differentiable function of the network weights, the derivatives

of the error function can be used to find weight values that minimize the error function. Note

that different alternative error functions may be used for solving learning problems (Fausett,

1994; Bishop, 1995).

This tri-fold basic backpropagation algorithm is iterated multiple times until a certain stop-

ping condition is satisfied. One iteration is called an epoch, which corresponds to one cycle

through the entire set of training data. A variety of stopping conditions can be applied, but stop-

ping is mostly defined by a certain number of epochs or a minimum error between the target and

output values (Fausett, 1994). Alternativaly, also one of the several parameters of the network

can be used. In this work, we mainly focused on the ANN error as stopping criterium, with sim-

ple validation or cross-validation. If the error on the validation set starts to increase, the iterative

backpropagation process is halted. This method is also known as early stopping, which is also

visualized in Figure 1.1, where the X axis corresponds to the number of training epochs. Early

stopping halts training of the ANN at the epoch corresponding with the minmimum validation

error, given by the dashed line (best generalization). Early stopping is used as an alternative

to regularization to control network complexity. By this method, a good generalization can

be achieved and overfitting becomes prevented (Fausett, 1994; Bishop, 1995; Mitchell, 1997;

Bishop, 2006; Hastie et al., 2009).

The principle of backpropagation for learning in a feed-forward multi-layer ANN is descri-

bed in Algorithm 1. This basic algorithm considers a feed-forward multi-layer ANN consisting

of a layer of input values xid, with d = 1, . . . , D, of a particular data point xi; a hidden neuron

layer and an output neuron layer. These layers are fully interconnected by links with weights
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wdm and wmk, m = 1, . . . , M with M the number of hidden neurons, and k = 1, . . . , K with

K the number of output neurons. An input bias x0 and a hidden bias h0 are considered with

weights w0m and w0k, respectively. The hidden and output neurons map their netto weighted

input signal by the activation functions ah and ao, respectively, to the respective values hm and

ok, respectively. Optimization of the network weights in the basic backpropagation algorithm

is performed by gradient descent. In the presented algorithm, the weights are updated after all

training points are presented, which is also called batch updating. More often used is incre-

mental, online or sequential learning in which the weights are updated after the presentation

of each training point. Training by this method but with randomly selection of the data points

is called stochastic learning. Sequential methods are preferred over batch methods because of

a higher computational efficiency and a more easy escape from local minima (Fausett, 1994;

Bishop, 1995; Mitchell, 1997; Duda et al., 2001; Bishop, 2006). Backpropagation also allows

to calculate the Jacobian and the Hessian matrices. The former matrix consists of the deriva-

tives of the outputs with respect to the inputs, thus showing how the output changes with respect

to the input. The Hessian matrix consists of the second derivatives of error function in terms

of the weights. This matrix is used in alternative weight optimization algorithms, and allows

to determine the least significant weights in the network, error intervals to the predictions and

regularization parameters (Bishop, 1995).

1.2.1.3.5 Alternative Training Algorithms

Backpropagation is known to suffer long training times of tens to thousands of epochs due

to slow weight optimization. To decrease training time, numerous alternative optimization al-

gorithms are proposed. weight optimization is based on two main principles: the choice of a

direction on the error function and the choice of a distance to move. In basic gradient descient,

the gradient of the error function determines the direction in which the function increases more

rapidly and, as such, the negative of the gradient defines the direction of the most rapid decrease.

For this algorithm, the second question related to the weight optimization issue is addressed by

the learning rate α (Bishop, 1995; Mitchell, 1997).

The most simple adaptation of the basic backpropagation algorithm regards the choice of

updating the network weights incrementally or in batch (see also Subsection 1.2.1.3.4). Where

gradient descent is used for training towards the negative direction of the error function, too

large or too small learning rate values may possibly result in not converging to the global min-

imum. A too large learning rate may even result in divergent oscillations. As an alternative,

the learning rate can be made variable by gradually decreasing the rate with a higher number

of steps or even allow each weight to have its own learning rate, known as the delta-bar-delta

rule (Fausett, 1994; Bishop, 1995; Mitchell, 1997). Also, each weight update can be made

dependent of the previous weight update by adding a constant μ, called the momentum, with

0 ≤ μ < 1. For the hidden neurons hm, the corresponding weight update with momentum

becomes (analogous for the output neurons):

Δwdm (t + 1) = αδmxid + μΔwdm (t) (1.9)
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Algorithm 1 Basic backpropagation algorithm.
Require: Initialize wdm, w0m, wmk and w0k at small random values
Require: Initialize the learning rate α

1: while Stopping criterium = false do
2: STAGE 1: FEED-FORWARD OF VALUES OF DATA POINTS xi

3: for all hidden neurons hm: m = 1 → M do

4: hm ← ah

(
w0m +

D∑
d=1

xidwdm

)
, with d = 1, . . . , D and D the number of features

5: end for
6: for all output neurons ok: k = 1 → K do

7: ok ← ao

(
w0k +

M∑
m=1

hmwmk

)
8: end for
9: STAGE 2: BACKPROPAGATION OF THE ERROR

10: Calculate the error δ and the corresponding weight and bias weight correction Δw

11: for all output neurons ok: k = 1 → K do

12: δk ← (
yik − fk(xi)

)
a′o

(
w0k +

M∑
m=1

hmwmk

)
, with yik the corresponding target value

13: Δwmk ← αδkhm and Δw0m ← αδm

14: end for
15: for all hidden neurons hm: m = 1 → M do

16: δm ← a′h

(
w0m +

D∑
d=1

xidwdm

)
K∑

k=1

δkwmk

17: Δwdm ← αδmxid and Δw0m ← αδm

18: end for
19: STAGE 3: WEIGHT UPDATES
20: for d = 1 → D do
21: for m = 1 → M do
22: wdm(new) ← wdm(old) + Δwdm

23: end for
24: end for
25: for m = 1 → M do
26: for k = 1 → K do
27: wmk(new) ← wmk(old) + Δwmk

28: end for
29: end for
30: Evaluate stopping criterium
31: end while

Momentum keeps the direction of training in the same direction of the previous direction.

By training with a momentum, the weight updates are larger when training is performed in the

same direction. As a consequence, the likelihood that the algorithm converges to local min-

ima is reduced and the algorithm continues to convergence in regions where the gradient is

unchanging. The momentum can, however, result in a weight change that increases the error

(Fausett, 1994; Mitchell, 1997). Including a momentum generally results in significant perfor-

mance improvement of the gradient descent algorithm, but implies the optimization of an addi-

tional model parameter (Bishop, 1995). Instead of considering a direction on the error function

and choosing how far to move, one could also consider some search direction in weight space

and find the minimum of the error function along that direction. This parameter optimization

method is known as line search. Another popular optimization technique is training with con-
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jugate gradient. In this training algorithm, each gradient is chosen orthogonal to the previous

gradient where the search direction is chosen such that the component of the gradient is parallel

to the previous search direction. So, the new search direction is said to be conjugate to the pre-

vious direction. These methods with their numerous variations, advantages and disadvantages

are not further considered in this study (Bishop, 1995). Nonetheless, Mitchell (1997) states that

even though alternative error minimization methods may lead to improved efficiency in ANN

training and computation, no significant generalization improvement may be attained. The only

likely impact is on the final error, as that different methods may converge to different local

minima.

1.2.1.4 Properties

Even though ANNs are already beyond the state-of-the-art in machine learning, ANNs have

been, and still are, successfully applied in many scientific domains. ANNs have a multitude of

advantages. A short overview is given (Mitchell, 1997; Hastie et al., 2009):

1. Input and output values can be real-valued or binary-valued

2. Backpropagation is basically a simple training algorithm that can efficiently be parallel-

lized

3. The target function may be real-valued, discrete-valued and vector-valued

4. Availability of a multitude of ANN learning algorithms and optimization techniques

5. Robustness to noisy data

6. ANNs can handle many features

7. An ANN has both a long-term and short-term memory where the first corresponds to the

connection weights and the second to signals sent by the neuron

Nonetheless, several disadvantages are inherent to ANN algorithms. Hastie et al. (2009)

state that there is quite an art in training ANNs. You can only agree upon this, as the main

disadvantage of ANNs is their over-parametrized nature. Other disadvantages are (Fausett,

1994; Mitchell, 1997; Duda et al., 2001; Hastie et al., 2009):

1. Most error functions are complex, mostly non-convex (implying multiple local minima)

and are possibly unstable. Therefore, ANNs possibly converge to one of the local min-

ima and not to the global minimum. Mitchell (1997) denotes that more weights, cor-

responding to a higher dimensional space, provide more dimensions that may provide

an ‘escape route’ route for local minima. This problem can be alleviated by changing

the learning rule, altering the learning rate and/or adding a momentum. However, this

leads to the additional disadvantage of the optimization of additional model parameters.

A rough method of just training multiple networks using the same data with different ran-

dom weights could be performed, but is not preferred for efficiency and computational

reasons. This method may lead to different local minima and the network with best per-

formance is finally selected
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2. Depending on the training algorithm and the stopping condition, the iterative backpropa-

gation process in a feed-forward multi-layer ANN may be executed ten to thousand times

leading to a large training time

3. ANNs are quite sensitive to overfitting and can easily achieve a (too) high complexity

4. ANNs cannot handle categorical variables. To solve this problem, dummy features need

to be introduced. Herefore, each categorical variable is represented by binary encoding

in which the number of bits equals the number of categorical variables minus 1

5. Standardization of the input is required. Numerical values of different magnitude will

result in an adjustment of the weights in favor of the largest values and the error will

hardly depend on the small input values. It is best to standardize all inputs to have a zero

mean and a standard deviation of one

6. ANNs cannot handle missing values

7. ANNs do not provide probability estimates

1.2.1.5 Software

ANN implementation, training and testing was done using the Matlab software versions

7.0 (R14) and 7.3 (R2006b) and the Matlab Neural Network toolbox versions 4.0.3 and 5.0.1.

Wrapper code was written in Perl for the automation of data import and conversion, parameter

optimization and statistical analysis of the identification results.

Numerous neural network software packages, toolboxes, wrapper codes, . . . exist and ANNs

are implemented in (almost) every statistical and mathematical software package. A list of all

these implementations would constitute a section on itself. Making a choice of one package,

however, restricts the use of different types of neural networks, training algorithms, activation

functions . . . In the Matlab Neural Network Toolbox, however, a large set of ANN types and

training functions are available.

For training feed-forward multilayer ANNs, the resilient propagation (RPROP) algorithm

was selected for reasons of fast computation time and good accuracy. RPROP is a variant

on the gradient descent algorithm. When dealing with sigmoid activation functions, gradient

descent may become problematic when the gradient has a very small magnitude and cause

small changes in the weights, even if these are far from optimal. The purpose of RPROP is

to eliminate this harmful effect of the magnitude of the partial derivative. As such, the weight

optimization process does not consider the magnitudes of the weight changes, but focuses only

on the signs of the partial derivatives for weight optimization. This leads to a higher efficiency

in computation time and storage.

More specific, RPROP performs batch update gradient descent by integrating for each

weight wdm an additional update term Δdm in the weight update step. These update values

are adapted during the learning process based on the local gradient of the error function E,
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expressed as the partial derivative ∂E
∂wdm

. The learning rule is as follows:

Δ
(t)
dm =

⎧⎪⎨
⎪⎩

μ+ × Δ
(t−1)
dm , if ∂E

∂wdm

(t−1) × ∂E
∂wdm

(t)
> 0

μ− × Δ
(t−1)
dm , if ∂E

∂wdm

(t−1) × ∂E
∂wdm

(t)
< 0

Δ
(t−1)
dm , otherwise,

(1.10)

where 0 < μ− < 1 < μ+. This can be interpreted as follows: each time the sign of the

partial derivative of the corresponding weight wdm changes, the update value Δdm is decreased

by a factor μ−. This indicates that the last update was too large and the algorithm has jumped

over a local minimum. Conversely, if the derivative retains its sign, the update value is slightly

increased to accelerate convergence. Once the individual update value is adapted, the weight

update is as follows:

Δwdm
(t) =

⎧⎪⎨
⎪⎩
−Δ

(t)
dm, if ∂E

∂wdm

(t)
> 0

+Δ
(t)
dm, if ∂E

∂wdm

(t)
< 0

0, otherwise.

(1.11)

One exception is considered: if the partial derivative changes its sign, the previous weight

update is reverted: Δwdm
(t) = −Δwdm

(t−1). To avoid a double punishment of the update value,

no adaptation should be done of the update value in the succeeding step. This can be done by

setting ∂E
∂wdm

(t−1)
= 0 in the learning rule above (Riedmiller and Braun, 1993; Demuth et al.,

2006). Riedmiller and Braun (1993) state that setting the two parameters μ− and μ+ to the

respective values of 0.5 and 1.2 provides very good results independent of the problem setting.

These values are also implemented by the Matlab Neural Network Toolbox (Demuth et al.,

2006). In this study, we chose to set these parameters at their default values.

1.2.2 Support Vector Machines

While kernel theory was introduced in 1964 by Aizerman et al. (1964), only since the early

1990s the group of Vapnik (Computer Learning Research Center, University of London, UK)

has brought it back unto attention by combining this theory with large margin classifiers, leading

to the SVM (Boser et al., 1992; Cortes and Vapnik, 1995). Since the introduction of the SVM,

the use of kernel functions has become one of the hot topics in machine learning research.

Together with the growing popularity of kernels, the number of applications has witnessed a

boost in the last ten years. Especially in the field of engineering and bioinformatics, the number

of publications describing the application of SVMs on particular topics, problems and data sets

has grown extensively.

As with ANNs, a lot of theoretical information is available about support vector machines

and kernel-based learning. In the next subsections, only a short and basic report is given about

SVMs and I refer for a more detailed reading to the books of Vapnik (1995, 1998), Cristianini

and Shawe-Taylor (2000) and Schölkopf and Smola (2002). More references to publications,

books and software can also be found on the website http://www.kernel-machines.org.
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1.2.2.1 Hyperplanes and Support Vectors

In the previous section, a brief introduction was given about linear discriminant analysis

in the perspective of the perceptron and its extension towards multi-layer artificial neural net-

works. As described, training an ANN comes along with searching the hypothesis space for

those weights best fitting the data points and, thus, with the approximation of the decision

boundary between two (or more) classes. However, Vapnik (1995) states that, for the separable

case, the optimal separating hyperplane separates the two classes and maximizes the distance

to the closest point from either class. This concept is also better known as a maximum mar-

gin classifier where the sum of the maximum distance to either class is called the margin. By

this last contraint on the optimization problem, not only a unique solution is provided for the

separating hyperplane problem, but by maximizing the margin between the two classes on the

training data, this also leads to better classification performance on test data (Hastie et al., 2009).

In 1995, Cortes and Vapnik (1995) have introduced the SVM in which the concept of a max-

imum margin classifier is used for detecting those data points lying on the maximum margin

boundary. These data points determine the margin and are, therefore, called the support vectors

of the maximum margin classifier. Consequently, the support vectors allow for determining the

optimal boundary by only taking a small number of training data into account.

Before discussing non-linear separability, let’s first go back to linear discriminant analysis

which is visualized in Figure 1.5. The linear discriminant can be reshaped in terms of a maxi-

mum margin classifier and the resulting plot is shown in Figure 1.7. The left plot represents the

ww

−b
‖w‖

−b
‖w‖

f (x) = 0f (x) = 0

ξ1

ξ2

M

M M

M

(a) Hard margin (b) Soft margin

Figure 1.7: Maximum margin classifier. The linear decision boundary corresponding to f (x) =
w · x + b is visualized in a two-dimensional input space. Parallel to linear decision boundary, the two
optimal boundaries are set as dashed lines and the distance 2M between both is called the margin. Data
points lying on the dashed lines are called the support vectors and are encircled in black. The weight
vector w defines the orientation of the boundary, while the bias weight b defines the position of the
boundary in terms of its perpendicular distance from the origin. The boundary separates the green data
points (positive class) from the red data points (negative class). On the left, a linearly separable problem
is visualized and the margin is denoted as ‘hard margin’. On the right, a non-linear separable problem
is visualized. One point of each class is beyond its boundary and corresponds to slack variable ξ. By
allowing but penalizing misclassifications in this case, the margin is denoted as ‘soft margin’.

linear separability case and the separating boundary or hyperplane is denoted by Eq. (1.3) (note

that b is identical to w0 in ANNs). For points lying on the boundary the equation w · x + b = 0
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is satisfied. As the classes are separable, it is possible to find a function f (x) = w · x + b with

yif (xi) > 0, yi ∈ {−1, +1} the target of xi, i = 1, . . . , N and N the number of data points.

Thus, it is possible to determine the largest margin between the training points of both classes.

As such, the margin is delineated by two hyperplanes parallel to the decision boundary and the

distance between each hyperplane and the decision boundary is set to M . Do not confuse M

with the same notation of the number of hidden neurons in the previous section. For this case,

we are only interested in solutions for which all data points are correctly separated, meaning

that yi(w · xi + b) > 0, ∀i. Hence, it is possible to find the largest margin. The distance M of

the closest point xt to the decision boundary equals

yt(w · xt + b)

‖w‖ (1.12)

As such, in the case of linear separability, all data points will satisfy the inequality yt(w · xt +

b) ≥ M . Note that for any w and b satisfying this inequality, any positive scaling satifies them

too. Hence, we can arbitrarily set ‖w‖ = 1
M

. As an SVM aims to maximize the margin, this

actually corresponds to

min 1
2
‖w‖2, (1.13)

subject to yi(w · xi + b) ≥ 1 (1.14)

This is a convex optimization problem which can be solved by quadratic programming. Herein,

a quadratic function is minimized subject to a set of linear inequality constraints. With a convex

optimization method, a global solution will be found (Burges, 1998; Bishop, 2006; Hastie et al.,

2009).

Before further discussing the optimization problem of SVMs, let us first consider the non-

linear separability case which is represented in the right plot of Figure 1.7. For overlapping class

distributions, the above mentioned formulations need to be relaxed in some sense. Misclassi-

fication may be allowed but with a penalty that increases with the distance from the boundary.

The hard margin is somewhat relaxed and is called ‘soft margin’ in this case. Slack variables

ξi ≥ 0, i = 1, . . . , N are introduced. ξi = 0 for correctly classified data points, ξi = 1 for data

points on the decision boundary, 0 < ξi ≤ 1 corresponds to points in the margin, and misclassi-

fied points correspond to ξi > 1. Regarding softening of the margin, the optimization problem

as presented in Eq. (1.13) can be reformulated as

min 1
2
‖w‖2 + C

N∑
i=1

ξi (1.15)

subject to

⎧⎨
⎩yi(w · xi + b) ≥ 1 − ξi, ∀i

ξi ≥ 0,
(1.16)

where the C > 0 is a user-defined cost parameter controlling the trade-off between the slack

variable penalty and the margin. Note that for the separable case, C corresponds to ∞. Be-

cause misclassified points correspond to ξi > 1,
∑N

i=1 ξi is an upper bound on the number of
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misclassified points. Hence, the parameter C is a regularization parameter controlling the trade-

off between minimizing training errors and controlling model complexity (Cortes and Vapnik,

1995; Bishop, 2006; Hastie et al., 2009).

With the soft margin introduced, we can resume the discussion about the SVM optimization

problem. The minimization can be reformulated as a Lagrangian formulation and Burges (1998)

gives two advantages. First, the constraints in Eq. (1.16) are replaced by constraints on the

Lagrance multipliers, which are easier to handle. Second, the training data will appear as dot

products between vectors. So, the Lagrangian formulation, also the primal, equals

LP =
1

2
‖w‖2 + C

N∑
i=1

ξi −
N∑

i=1

αi [yi (w · xi + b) − (1 − ξi)] −
N∑

i=1

μiξi, (1.17)

where αi ≥ 0 and μi ≥ 0 are the Lagrange multipliers. Finding the optimal solution corre-

sponds to minimizing LP w.r.t. w, b and ξi. Taking the respective derivations and setting these

to zero results in

w =
N∑

i=1

αiyixi, (1.18)

0 =
N∑

i=1

αiyi, (1.19)

αi = C − μi, ∀i. (1.20)

Substituting Eqs. (1.18)-(1.20) into Eq. (1.17) results in the dual representation of the La-

grangian, also the Wolfe dual:

LD =
N∑

i=1

αi − 1

2

N∑
i=1

N∑
j=1

αiαjyiyjxi · xj, (1.21)

which gives a lower bound on the objective function by Eq. (1.13) and is a simpler convex

optimization problem which can be solved with standard software. LD should be maximized

subject to 0 ≤ αi ≤ C and
∑N

i=1 αiyi = 0. However, the solution must satisfy the set of

constraints, also called the Karush-Kuhn-Tucker conditions, that for SVMs correspond to the

linear constraints Eqs. (1.18)-(1.20) and

yi(w · xi − b) − 1 + ξi ≥ 0 (1.22)

ξi ≥ 0 (1.23)

αi ≥ 0 (1.24)

μi ≥ 0 (1.25)

αi(yi(w · xi − b) − 1 + ξi) = 0 (1.26)

μiξi = 0 (1.27)

for i = 1, . . . , N . Notice that, except for the constraints, this dual formulation is identical
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in both the linear and non-linear separability case (Burges, 1998; Bishop, 2006; Hastie et al.,

2009).

From Eq. (1.18), it can been seen that the solution for w is only comprised of non-zero

coefficients αi, that is, for those observations for which the constraints in Eq. (1.22) are exactly

met, due to Eq. (1.26). These data points are called the ‘support vectors’ since αi is only

represented in terms of them alone (Hastie et al., 2009).

The support vector machine described above solves only an optimization for a linear deci-

sion function in the input feature space. However, for many real-world problems, the decision

function is, however, a non-linear function of the data. So, how can the above-mentioned tech-

nique be generalized? Suppose a mapping from the input data x ∈ R
D to another Euclidean

space F such that in this feature space F the data points become linearly separable. We define

the mapping function

φ : R
D �→ F . (1.28)

Thus, this mapping turns each input data point into a point in the space F . In this sense, a

data point is represented by its similarity to all other points in the input space. This idea of

feature mapping is visualized in Figure 1.8 The optimization problem as stated in Eq. (1.21)

φ

(a) Input feature space R
D (b) Feature space F

Figure 1.8: Concept of feature mapping. The function φ maps the non-linear separable input data into
a feature space F that allows linear separability.

can be represented in terms of the feature maps φ. But, how to find a good feature mapping

function? To circumvent this problem, the so-called ‘kernel trick’ can be applied, by which a

kernel function K is defined

K (xi,xj) = φ(xi) · φ(xj) (1.29)

that computes the inner products in the feature space H. In feature space H, the dual becomes

LD =
N∑

i=1

αi − 1

2

N∑
i=1

N∑
j=1

αiαjyiyjK (xi,xj) . (1.30)
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From Eq. (1.18), the decision boundary as presented in Eq. (1.3) can, ultimately, be written as

f(x) = w · φ(x) + b

=
n∑

i=1

αiyiK(x,xi),

which indeed proves to be linear in feature space H. Popular kernel functions are:

Linear kernel: K(xi,xj) = xi · xj

dth degree polynomial kernel: K(xi,xj) = (1 + xi · xj)
d

Radial basis function (RBF) or Gaussian kernel: K(xi,xj) = e−γ‖xi−xj‖2

Neural network: K(xi,xj) = tanh(κ1xi · xj + κ2)

Notice that the tanh kernel corresponds to a particular two-layer sigmoidal ANN. Note also that

the role of the cost parameter C is more clear in feature space F . A large value of C discourages

any positive ξi and leads to an overfitting boundary in the input space. A small value of C will

encourage a small value of ‖w‖ (due to smaller αi values) which causes the boundary to be

smoother (Burges, 1998; Schölkopf and Smola, 2002; Bishop, 2006; Hastie et al., 2009). In this

study, we focused on the linear and the RBF kernel.

When finally arrived at the solution of SVM classification, the SVM can now easily be tested

by determining on which side of the decision boundary a given test point lies and by labelling

it with the corresponding label (Burges, 1998).

1.2.2.2 Towards the Multi-class Setting

In the previous section only two classes are considered while real-world data sets mostly

cover multiple classes. In this section the multi-class SVM classification extension is reported.

A general discussion is given that can also be used for many other classifiers than SVMs. Dis-

cussion is done in this section because, fundamentally, the SVM is a two-class classifier.

Different methods are proposed to solve multi-class classification problems (Bishop, 2006).

Two main approaches are commonly used: a single optimization approach and the ensemble

method (see also Subsection 1.2.3.1.1). In the first approach, a single objective function is

trained for all classes based on maximizing the margin between each class and the other classes.

The optimization problem in this approach is often complex and training is usually (very) slow.

This approach is tackled by different researchers such as Weston and Watkins (1998), Crammer

and Singer (2001), Hsu and Lin (2002) and Guermeur (2007). The second approach of the

ensemble method corresponds to combining different two-class or binary classifiers to build a

multi-class classifier. Two popular methods are

1. one-versus-the-rest (also one-versus-others or one-versus-all): K binary classifiers fk are

trained such that each classifier fk distinguishes class k from the other K − 1 classes,

with k = 1, . . . , K (Rifkin and Klautau, 2004). Considering the set of K estimated

discriminant functions for prediction, this approach would, however, lead to regions of
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the input space that are ambiguously classified. This problem can be resolved by deriving

a global rule from the K classifiers stating that a test point is assigned the label of the

class for which the highest value of the discriminant function is found, or

f(x) = arg max
k

fk(x). (1.31)

2. one-versus-one: K(K−1)
2

different binary classifiers are trained on all possible pairs of

classes (Hastie and Tibshirani, 1998; Fürnkranz, 2002). In this approach, test points are

assigned the label of the class which results in the highest number of votes, also majority

vote. This approach also results in ambiguities in the globally defined decision boundary

and requires significantly more training and prediction time than the one-versus-others

approach (Bishop, 2006). This problem can, however, be solved substantially faster by

combining the K(K−1)
2

binary classifiers in a directed acyclic graph (DDAG) or by de-

composing the multi-class classification task by means of binary tree classifiers (see also

Subsection 1.1.2.2; Platt et al., 2000; Schwenker and Palm, 2001; Lee and Oh, 2003;

Cheong et al., 2004; Fei and Liu, 2006; Xia et al., 2007).

A last approach is that of the construction of sets of binary classifiers by means of error-

correcting output codes (Dietterich and Bakiri, 1995; Allwein et al., 2000; Crammer and Singer,

2002). A nice overview paper about SVM multi-class classification reviewing most of the

above-mentioned papers is that of Hsu and Lin (2002).

1.2.2.3 Properties

SVMs are state-of-the-art in many application domains and witness a boost of number of

applications. When focusing on the data and algorithms, the advantages of SVMs are somewhat

the same as ANNs. Compared to ANNs, SVMs can also handle real- and binary-valued input

data and training can also be parallellized. However, in contrast to ANNs, SVMs have several

distinct advantages (Burges, 1998; Schölkopf and Smola, 2002):

• Complex nonlinear data relations can be expressed linearly in a high dimensional feature

space, which allows for simple geometry and linear algebra

• The kernel trick allows to compute dot products in high dimensional feature spaces using

simple functions defined on pairs of input data

• Due to the convex optimization, SVM training always finds a global solution, in contrast

to the ANN where usually many local minima usually exist

• A cost parameter, kernel function and according parameters have to be chosen and opti-

mized, in contrast to the many ANN parameters that need to be optimized

• The decision boundary can be reconstructed by only a small sample of training points

• SVMs can be regarded as a high performance classifier with an accuracy often higher

than that obtained by ANNs

Also, due to the nature of kernels, very problem-specific kernels can be developed such as

string kernels, text kernels, tree kernels, position-specific kernels,. . . (Vert, 2002; Leslie et al.,
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2004; Shawe-Taylor and Cristianini, 2004), and multiple heterogeneous data sources can be

combined in a straightforward way by combining the kernel functions defined on the different

data types, which is known as data fusion (Lanckriet et al., 2004).

However, disadvantages also exist (Mitchell, 1997; Schölkopf and Smola, 2002; Bishop, 2006;

Hastie et al., 2009):

• Limitations in speed can result from very large data sets that lead to a massive number

of support vectors, which upscales quadratic programming. Different methods have been

proposed to alleviate this problem

• High noise data leads to many support vectors, resulting in the previous disadvantage

• SVMs are fundamentally binary classifiers, implying that the multi-class classification

task comes with an additional computational load

• SVMs are sensitive to overfitting when the parameter values are not properly optimized

• SVMs cannot handle categorical variables. Dummy features resulting from binary encod-

ing may offer a solution here

• Standardization of the input values is necessary. It is best to standardize all inputs to have

a zero mean and a standard deviation of one

• SVMs cannot handle missing values

1.2.2.4 Software

SVM implementation, training and testing is done using LibSVM 2.86 and BSVM 2.06

(Chang and Lin, 2001; Hsu and Lin, 2002). Wrapper code is written in JAVA for automation of

data import and conversion, parameter optimization and statistical analysis of the classification

results. LibSVM is based on the one-versus-others approach while BSVM implements the

single optimization solution as proposed by Crammer and Singer (2001). In this work, the

probability outputs were considered for further statistical analysis.

Numerous SVM software packages, toolboxes, wrapper codes, . . . exist and SVMs are

nowadays implemented in (almost) every statistical and mathematical software package. A

list of all these implementations would also be a section on itself. A nice overview is given on

the websites http://www.kernel-machines.org and http://www.support-vector-machines.org.

1.2.3 Random Forests

One of the techniques that is gaining a lot of popularity is random forests. While theoretical

research has already been performed for many years, the number of RF applications is only

increasing in the last ten years. In the first sections, the basic properties of RFs are discussed,

followed by a description of the RF technique. For a more detailed reading I refer to the papers

and webpage of Breiman (2001, 2002, 2004).
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1.2.3.1 An Ensemble of Trees

1.2.3.1.1 Ensemble Methods

Ensemble methods, also called combining models or committees, are learning algorithms

that construct a set or ensemble of many individual classifiers that are diverse and yet accurate

(Hastie et al., 2001; Bishop, 2006). Or, the individual classifiers make different errors on new

data points with an error rate that is better than random guessing. These classifiers, which are

also called base learners, are combined to classify new data points. Classification decisions are

obtained by taking a weighted or unweighted vote of their predictions. It is well known that

ensembles are often much more accurate than the constituting individual classifiers. Ensemble

methods differ in the way the base learner is learned and combined (Dietterich, 1998, 2000;

Biau et al., 2008). Different explanations are given for the success of voting classifiers and their

improved performance. One major explanation is based on the bias-variance decomposition

(see also Subsection 1.1.1). The whole idea behind averaging over many classifiers is to reduce

the variance term of the prediction error. Reducing the variance will consequently lead to a

lower expected error (Schapire et al., 1998). Dietterich (2000) denotes that it is often possible

to construct very good ensembles because of three fundamental reasons:

1. Statistical. A learning algorithm can be viewed as searching the hypothesis space H to

identify the best hypothesis. The statistical problem arises when the amount of training

data is too small compared to the size of H. Consequently, the learning algorithm finds

many different hypothesis giving the same accuracy. By the construction of an ensemble

of these classifiers, the algorithm can average their votes and reduce the risk of choosing

the wrong classifier.

2. Computational. Many learning algorithms work by performing a local search with the risk

of getting stuck in a local optimum. Examples are ANNs and decision trees. Building

an ensemble by running a local search from many different starting points may provide a

better approximation to the true unknown function f .

3. Representational. In many machine learning applications, the true function f cannot be

represented by any of the hypotheses in H. With a finite training sample, these algorithms

explore only a finite hypothesis set and stop searching when a hypothesis is found that

fits the training data. By weighted sums of hypotheses drawn from H, it may be possible

to expand the space of representable functions.

Ensembles can be constructed by many different methods (Dietterich, 2000). General methods

are

• Training set manipulation: several base classifiers are constructed by a different subset of

the training set. This technique works especially well for unstable learning algorithms,

meaning that small changes in the training data results in major changes of the output. Ex-

amples of unstable learning algorithms are decision trees, neural networks and rule learn-

ing algorithms. Popular training set manipulation methods are bagging, cross-validation

and boosting (Breiman, 1996a; Freund and Schapire, 1996).
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• Feature manipulation

• Output target manipulation: or manipulating of the output values given by the learning

algorithm. One example is the error-correcting output coding of Dietterich and Bakiri

(1995) in which an ensemble of classifiers is constructed in which the l classes are ran-

domly partioned into two subsets. Each classifier predicts one of the two subsets and each

class of the predicted subset receives a vote. The class with the highest number of votes

is selected as the prediction of the ensemble.

• Randomness injection

Randomness can be injected into the classifiers in different ways: initial weights in ANNs

(see also Section 1.2.1), random choise of features, noise on the data, . . . (Dietterich and

Kong, 1995; Raviv et al., 1996)

• Bayesian voting: this ensemble method consists of all the hypotheses in H, each weighted

by its posterior probability (Dietterich, 2000)

1.2.3.1.2 Decision Trees

Decision trees are tree-based methods which partition the feature space into a set of rectan-

gles, which are aligned to the axes in feature space, and then fit a model in each one. Subdivision

of the feature space is achieved by a sequential decision making process that, in the basic al-

gorithm, corresponds to recursive binary partioning. That split leading to the best fit is chosen

as final split. Each split corresponds to one feature, a threshold and the training data associ-

ated with the node to evaluate. An example of a decision tree is visualized in Figure 1.9. A

popular metric used by many decision tree algorithms is information gain or impurity. Specif-

ically, the feature leading to the largest information gain or impurity decrease in the classifica-

tion/regression framework is chosen as final splitting criterium. The tree node splitting process

continues until a stopping rule is applied. Examples of stopping rules are: the evaluation of the

tree performance on an independent test set, the application of a statistical test for expansion or

pruning of the tree, a measure of the tree’s complexity (e.g. as the presence of Q nodes in the

tree), the inclusion of all features along a certain path through the tree, the correspondence of

the training examples associated with the node having the same feature value, . . . In general, a

learned tree can be represented as a set of if-then rules, hereby improving human readability.

When to halt splitting is a critical question in the decision tree method, as too many nodes may

lead to overfitting and too few nodes to a high performance error and bad generalization. There-

fore, the resulting tree can be pruned, which corresponds to collapsing internal nodes. Which

nodes to prune is generally based on an independent validation set. Pruning allows to further

balance the decision tree prediction error against a measure of model complexity (i.e. regular-

ization). Ultimately, the tree classifier becomes more optimized. In their study, Dietterich and

Bakiri (1995), however, reported that pruning does not necessarily improve multi-class classi-

fication performance and that the merit of pruning varies from one domain to another. Both

the stopping rule, regarded as pre-pruning, and pruning allow the decision tree to overcome the

problem of overfitting. For prediction, any test point is put down the tree at the root node and

following a path towards a specific leaf node according to the decision criteria at each node. For
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classification this will result in a class label, for regression in a numerical value (Breiman et al.,

1984; Quinlan, 1993; Mitchell, 1997; Hastie et al., 2001; Bishop, 2006).

x1 > θ1

x2 > θ3

x1 � θ4

x2 � θ2

A B C D E

(a) Input space

A

B

C D

E

θ1 θ4

θ2

θ3

x1

x2

(b) Feature space

Figure 1.9: Decision tree in a setting with five classes A, B, C, D and E and two features x1 and x2.
Four thresholds θr are used as splitting criteria with r = 1, . . . , 4. The decision tree is visualized both in
input space (left figure) and in feature space (right figure) (Bishop, 2006)

Decision trees are conceptually simple yet powerful. As mentioned above, one of the key

advantages is their human interpretability. Other advantages are the ability of handling categor-

ical features and missing values, their robustness to noisy data, etc. (Hastie et al., 2001; Bishop,

2006). Nonetheless, different problems are associated with decision trees. One major problem

is their high variance. Often a small change in the data, even the addition or removal of a sin-

gle data point, can result in a very different series of subsequent splits, leading to significant

subtree structures below each node. Ultimately, the entire tree is altered. The main reason of

the instability of decision trees is the hierarchical nature of the process: the effect of an error in

the top split is propagated down to all splits below it (Dietterich and Kong, 1995; Hastie et al.,

2001; Witten and Frank, 2005). The variance can possibly be reduced by pruning (see also

above), by allowing soft thresholds for node splitting or by voting over an ensemble of decision

trees (Dietterich and Kong, 1995). Next to this, the different splits are aligned with the axes of

the feature space which may lead to suboptimal solutions. Solving this problem would involve

a large number of additional splits (Bishop, 2006). Examples of desicion tree algorithms are

classification and regression trees (CART), ID3, C4.5, C5.0/See5 and ASSISTANT (Quinlan,

1993; Mitchell, 1997; Hastie et al., 2001; Bishop, 2006).

1.2.3.2 Random Forests

The concept of ensembles and decision trees converge in the RF technique, which is descri-

bed in the following paragraphs. First, a short mathematical description is given, followed by

the two main principles behind RFs: bagging and random split prediction. Finally, the algorithm

behind RFs is explained.



CHAPTER 1 MACHINE LEARNING 37

1.2.3.2.1 A General Description

In 2001, Breiman (2001) has proposed a new machine learning technique consisting of an

ensemble of classification and regression trees, better known as random forests. A RF classifier

can be defined as a classifier consisting of a collection of tree-structured classifiers f(x, Θv),

v = 1, 2, . . . , V , with Θv independent and identically distributed (i.i.d.) random vectors, and

where each tree casts a unit vote for the most popular class at input x (Breiman, 2001, 2002).

The accuracy of RFs can be determined by a margin function and by the strength and cor-

relation of the different base classifiers. A short mathematical representation is given for these

three parameters. For a detailed mathematical description of the structure behind RFs, I refer to

the paper of Breiman (2001).

Given an ensemble of classifiers f1(x), f2(x), . . . , fV (x), with the training set D drawn at

random from the distribution of the random vector Y , a margin M is defined by

M(D,Y ) = avgvI(fv(D) = Y ) − max
j �=Y

avgvI(fv(D) = j) (1.32)

where I is the indicator function. Or, the margin measures the extent to which the average

number of votes for the right class exceeds the average vote for any other class. The larger the

margin, the more confidence in the classification. As a result, the generalization error GE is

given by

GE = PD,Y (M(D,Y ) < 0) (1.33)

where the subscripts D,Y indicate the probability over the D,Y space. From the Strong Law

of Large Numbers1 and the tree structure follows that, for an increasing number of trees and for

surely almost all vectors Θv, the generalization error converges to the probability

PD,Y (PΘ(f(D, Θ) = Y ) − max
j �=Y

PΘ(f(D, Θ) = j) < 0) (1.34)

Proof of the convergence is reported in Appendix I of the RFs paper (Breiman, 2001). This

property shows that RFs do not overfit as more trees are added, but produce a bound on the

generalization error. An upper bound of the generalization error can be derived, in terms of two

parameters that are measures of the strength s of the individual classifiers and of the correlation

ρ between them:

GE ≤ ρ̄(1 − s2)/s2, (1.35)

with ρ̄ the mean value of the correlation and s a measure of the margin. Thus, a RF classifier

consisting of low-correlated trees with a high individual strength results in optimal generaliza-

tion and a high accuracy (Breiman, 2001). As stated above, Breiman (2001) shows that the

generalization error of RFs converges to a certain value. Nonetheless, Hastie et al. (2009) im-

portantly remark that the limit of the number trees going to ∞ can, however, overfit the data as

1If a certain chance experiment is repeated an unlimited number of times under exactly the same conditions,
and if the repetitions are independent of each other, then the fraction of times that a given event A occurs will
converge with probability 1 to a number that is equal to the probability that A occurs in a single repetition of the
experiment (Tijms, 2004).
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the average of the fully grown trees can result in too rich a model and can incur unnecessary

variance. This can be addressed to the problem stated above that fully grown decision trees have

a tendency to show large variances. An ensemble of these fully grown trees may, therefore, re-

sult in a classification model that is too complex, with a consequence of unnecessary variance.

The authors state that the trade-off between the number of relevant and noise variables may lead

to an increase of the misclassification error.

1.2.3.2.2 Bagging

When explaining bagging, bootstrapping needs to be touched first. Bootstrapping should

be seen as a large class of methods that resample from the original data set. Therefore, these

methods are also called resampling methods. Bootstrapping is a popular method for assessing

the accuracy of a parameter estimate or a prediction. In 1979, Efron (Department of Statistics,

Stanford University, USA) came up with the bootstrap for i.i.d. observations, which resamples

the data with replacement (Efron and Tibshirani, 1993; Chernick, 2008). A repeated number of

bootstrap samples are selected and form replicate data sets, each consisting of P data points,

drawn at random with replacement from a given data set. As such, the distribution of the

replicate set of bootstrap samples approximates the underlying distribution of the given data

set and assigns to each sample a probability to be selected of 1
P

(Efron and Tibshirani, 1993;

Breiman, 2001; Hastie et al., 2001; Chernick, 2008). Also important to note is that the expected

proportion of values not represented in a particular bootstrap sample equals (1 − (1/P ))V ,

with V the number of bootstrap samples. Considering a large V , this proportion approximates

e−1 ≈ 0.368, meaning that about approximately 36.8% of the data is left out in any bootstrap

sample (Efron and Tibshirani, 1993; Hastie et al., 2001).

In 1996, Breiman (1996a) proposed a new machine learning method called bagging predic-

tors. Bagging or bootstrap aggregation is a method to generate multiple bootstrap replicates of

the original data set in order to construct different versions of a predictor, which are used to

get an aggregated predictor. Bootstrap replicates are generated by uniformly drawing n exam-

ples from the data set with replacement (training data) and the remaining data points are called

‘out-of-bag’ (test data) and are used for predicting the corresponding class by a majority vote.

Breiman suggested the bagged predictor because bagging averages the prediction over the col-

lection of bootstrap replicates or ‘bags’, thereby reducing its variance. However, bagging only

generates diverse classifiers if the learning algorithm is unstable, meaning that small changes

in the training set cause large changes in the learned classifier (Breiman, 1996a; Hastie et al.,

2001). In light of the variance reduction, it is important to note that bagging trades a light in-

crease in bias for a major decrease in variance to yield significant improvement in performance

(Dietterich and Kong, 1995). The prediction and generalization error of bagging is extensively

studied in relation to the out-of-bag estimation and the bias-variance decomposition in different

studies (Breiman, 1996b; Tibshirani, 1996; Wolpert and MacReady, 1999; Bylander, 2002).

Suppose we need to fit a model to our training data D, obtaining the prediction f(x) at input

x. For each bootstrap sample Dv, v = 1, 2, . . . , V , we fit our model, giving prediction fv(x)
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(Hastie et al., 2001). The bagging estimate is defined by

fbag(x) =
1

V

V∑
v=1

fv(x) (1.36)

Bagging is used in RFs for two main reasons (Breiman, 2001):

• The use of bagging enhances accuracy when random features are used

• Bagging can be used to give estimates of the generalization error of the combined ensem-

ble trees as well as estimates for the strength and correlation.

1.2.3.2.3 Random Split Prediction

As an approach to solve the high variance problem related to decision tree algorithms, Diet-

terich and Kong (1995) proposed an alternative approach for the generation of an ensemble

by randomizing the internal decisions made by a base classifier. This method is also known

as randomization and was first introduced in a simple form by Kwok and Carter (1990). In

the case of decision trees, the best node split is randomly selected out of the z best splits. In

their paper, Dietterich and Kong (1995) applied this procedure for the construction of 200 trees

with z = 20 and found that, in their particular case, variance dropped while the bias remained

unchanged. This, in contrast to the bagging procedure as proposed by Breiman (1996a). Diet-

terich (1998) further exploited this randomization approach by applying the technique on 33

UCI repository data sets. Performance evaluation was done by comparing randomization with

bagging and boosting. Interestingly, when introducing classification noise (data examples with

incorrect class labels), Dietterich reported that randomization gives similar results as bagging

for the 33 cases considered. When dealing with noise, it is also easy to understand that bagging

still performs very good as, next to the approximately 36.8% data left-out feature of bagging,

classification noise will lead to large changes in the learned classifier and, thus, to more di-

verse classifiers, in contrast to randomization (Dietterich, 1998). In general, Dietterich and

Kong (1995) concluded that randomization and bagging have resulted in similar performances

with a light slight preference to randomization in low noise settings. With added classification

noise, bagging showed to be the best method. It is also interesting to note that the effect of

randomizing the number split variables does not depend as much on the training set size as does

bagging. With an infinite large training set, randomization will still produce a diverse set of

decision trees, while the effect of bagging on the error rate of the decision tree will be null (with

an infinite sample size the tree algorithm will always grow the same tree) (Dietterich, 1998).

Breiman integrated random split prediction in RFs to improve its accuracy. Hereby, the correla-

tion between the different trees is minimized while maintaining strength. As a result, Breiman

(2001) stated that RFs have an accuracy compared to that of the Adaboost algorithm of Freund

and Schapire (1996).



40 1.2 MACHINE LEARNING TECHNIQUES

1.2.3.2.4 A Look Inside the Forest

As stated above, RFs grow many classification or regression trees. The size of each tree in

the forest is grown based on N training data points randomly sampled from the original data set

and is evaluated by the remaining test data points. No pruning is performed and sampling of the

training data is done by bagging. Each training set is about two-third of the size of the original

data set. Evaluation of the accuracy of the grown tree by the out-of-bag data points results in the

so-called out-of-bag error estimate. Randomly sampling data sets to grow the different trees of

the forest is one aspect of the randomness of RFs, the second aspect is random split selection.

When D features are present in the original data set, z features (z << D) are sequentially

randomly sampled out of D to split each node of the tree. The final split is determined by the

best split based on the z randomly sampled features. Note that z is held constant during the

growth process of the forest. Each tree is maximally extended and no pruning is performed.

Evaluation of the classification accuracy of a RF classifier is based on the V out-of-bag data

sets. Each out-of-bag data point xi (i = 1, . . . , N ) resulting from randomly sampling for the

construction of the vth tree is put down the vth tree to get a classification value, v = 1, . . . , V .

Take J to be the class that got most votes every time case xi was out-of-bag. The proportion

of times that J is not equal to the true class of n averaged over all cases is the out-of-bag error

estimate, which is proved to be unbiased by many tests, given a large number of trees that

have been grown Breiman (2001); Liaw and Wiener (2002). This algorithm is also described in

Algorithm 2.

Algorithm 2 Random forests algorithm for classification

Require: Set the number of classification trees to be grown: T
Require: Set the number of features to split the tree nodes: Z

1: for t = 1 → T do
2: Draw a bootstrap sample from the original data set
3: Grow an unpruned tree
4: for all Tree nodes do
5: 1. Randomly sample Z features
6: 2. Choose the best split
7: end for
8: Predict out-of-bag data using the grown tree
9: end for

10: Aggregate the out-of-bag predictions:
11: for all data points xi in original data set (i = 1, . . . , N ) do
12: for all O : out-of-bag data sets do
13: if xi ∈ O then
14: Determine predicted class label of xi

15: end if
16: end for
17: Final class label of xi determined by majority vote
18: end for
19: Calculation of error rate
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1.2.3.3 Properties and Features

The two main properties of RFs are clearly the calculation of the out-of-bag error estimate

that is an unbiased estimator of the classification error and the fact that RFs have low tendency

to overfit. However, RFs have different other interesting features (Breiman, 2001, 2004; Hastie

et al., 2009):

• Due to bagging together with the randomization effect in data selection and in the number

of split variables, RFs gives excellent accuracy compared to many other algorithms

• RFs runs efficiently on large data sets

• Thousands of features can be handled. It is, however, important to note that this feature

has to be interpreted carefully. Amaratunga et al. (2008) reported that, due to the small

number of informative features in DNA microarray data, the performance of RF classifiers

declines significantly. The main reason for this performance reduction can be assigned to

the many low accuracy base classifiers in the forest. To tackle this problem, the authors

have upgraded the random split prediction procedure of RFs by performing weighted

random sampling of the different features at each node. Herein, less informative features

are less likely to get selected, which increases the percentage of trees containing more

informative features.

• The importance of each feature can be calculated. To estimate the importance of each

variable, RFs looks how much the prediction error increases when the out-of-bag data

for the corresponding variable is permuted while the other variables are left unchanged.

Suppose D features. After each tree is constructed, the values of the dth feature in the

out-of-bag examples are randomly permuted and the out-of-bag data is rerun down the

corresponding tree. This is repeated for d = 1, . . . , D. The majority of out-of-bag class

votes for each data point with the noised dth feature is compared with the true class label

to calculate the misclassification rate. The percentage increase in misclassification rate

is calculated and compared to the out-of-bag rate with all features intact. Next, a raw

importance score and a z-score is calculated. By subtracting the number of votes for the

true class in the out-of-bag data with feature d permuted from the number of votes for

the correct class in the original out-of-bag data, the raw importance score for feature d is

calculated by averaging the resulting difference over all trees in the forest. When divid-

ing the raw importance score by its standard error, a z-score is retrieved. Recently, Strobl

et al. (2008) reported, however, that variable importance is biased towards correlated pre-

dictor variables or features and proposed an alternative permutation strategy for variable

importance evaluation.

• RFs include methods for

– the estimation of missing values (while maintaining accuracy)

– balancing the error in imbalanced data sets. RFs may suffer from the curse of

learning from extremely imbalanced data sets (Chen et al., 2004). Different ap-

proaches exist to tackle the imbalance problem (see Subsection 1.1.3). Together

with Breiman, Chen et al. (2004) proposed two ways to deal with this problem. A

cost-sensitive approach by weighting the different classes with an according value
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was compared with down-sampling of the majority class. They called the respective

methods: weighted Random Forest and balanced Random Forest. The first method

is currently integrated in the RFs software package. This feature is not used in the

present study.

• RFs computes proximities between pairs of cases that can be used in clustering and to

detect outliers. Proximity computation is performed following tree growth. All data, bag

and out-of-bag, are put down the tree. If two different cases are in the same terminal

node, their proximity is increased by one. At the end, the proximities are normalized by

dividing them by the forest size. Hereby, it is possible to show how the different features

relate to the classification. With respect to outlier detection, an outlier in class k can be

seen as a case whose proximities to all other class k cases are small

• RFs can also handle unlabeled data, leading to clustering

• RFs can handle categorical values

• The interpretability of RFs is higher than that of ANNs and SVMs

1.2.3.4 Software

The RFs software version 5.1 is freely available under the GNU General Public License

on the website of Breiman (Breiman, 2004). RFs is written in extended Fortran 77 and can

be executed following compilation by the free g77 compiler. A JAVA package was written for

automation of data import and conversion, parameter optimization and statistical analysis of the

classification results, and for automatic compilation and execution of the custom Fortran code.

RFs is also freely available in the randomForest R Package by Liaw and Wiener (2002)

on the CRAN website (Liaw, 2009) and in the WEKA data mining software (Witten and

Frank, 2005, 2009). Next to this, a parallel extension of the RFs algorithm is also developed

(Topić, 2004). Even though the program is still freely available for download on the website of

Breiman and in different data analysis packages, RFs is exclusively licensed to Salford Systems

for the commercial release of the software. RFs is trademarked as RFTM, RandomForestsTM,

RandomForestTM, Random ForestsTM and Random ForestTM.

1.3 Model Evaluation

Once a classification model has been trained, it should be evaluated for its prediction perfor-

mance. To prevent biased outcomes, this evaluation should be performed with an independent

test set. In many cases, the resulting estimates are continuous and express how well the re-

spective test instance belongs to one of the implemented classes. In RFs, this measure is a

probability estimates, while for ANNs and SVMs this is not the case. LibSVM and BSVM do,

however, allow the calculation of probability estimates for SVMs, and the estimates of ANNs

with a sigmoid activation function on the output neurons can also be regarded as a probability.

A well-known problem in model evaluation is the question of how to analyze this kind of re-

sults. A very straightforward decision-making technique is thresholding where a threshold is

set somewhere in the interval of the possible outcomes. A typical value used is the center of the
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interval, for example 0.5 in the interval [0,1] or 0 in the interval [-1,1] (the latter for example

in the case of an ANN with a tangent sigmoid activation function). However, when recalling to

the section on the class imbalance problem (see also Subsection 1.1.3), it becomes clear that in

case of skewed class distributions this threshold will result in biased conclusions. To illustrate

this phenomenon, suggest a two-class data set including 10% positive data and 90% negative

data. Depending on how well the data points of both classes are separated, a trained classifier

will tend to classify positive examples as negative. Or, the outcomes of the positive examples

will tend to have lower values that are near to the values of the negative examples. Conse-

quently, setting a threshold in the center will result in a large number of false negative results.

An alternative approach is the winner-take-all rule. By this rule, the test instances receive the

class label corresponding to the highest output value. The disadvantage of this technique is,

however, the loss of the output value ratios which can be very informative. Because we were

confronted with data sets with multiple classes and skewed class distributions, it was hard to

set convenient thresholds accounting for the skewness and setting thresholds at the center of the

respective intervals will result in too biased results. For this reason, we further only considered

the winner-take-all rule. In case of ties, one of the labels was chosen for further analysis but all

labels were included in the final test reports.

1.3.1 Confusion Matrix

Constructing a confusion or contingency matrix is a very popular method for model eval-

uation. Construction of this matrix is based on the predicted class labels as set by a certain

threshold or by the winner-take-all rule. First, we will focus on the two-class problem in which

test instances are labelled either positive or negative. Hence, a confusion matrix summarizes

the predictions by a classifier by reporting the number of

• true positives (TP): postive instances that are predicted as positive

• false positives (FP): negative instances that are predicted as positive

• true negatives (TN): negative instances that are predicted as negative

• false negatives (FN): positive instances that are predicted as negative

An example is given in Table 1.2. From this matrix different performance measures can be cal-

Predicted class
positive negative

True
class

positive TP FN
negative FP TN

Table 1.2: Confusion matrix. Two-by-two matrix summarizing the predictions of a two-class classifi-
cation.

culated. A summary of the measures considered and the corresponding mathematical expres-

sions are given in Table 1.3. A more complete overview is given in the cited papers (Fielding

and Bell, 1997; Baldi et al., 2000). Note that when no TP and FP results are obtained, precision
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Measure Formula

Accuracy TP+TN
TP+FP+TN+FN

Sensitivity
True positive rate (TPR)

TP
TP+FN

Specificity TN
FP+TN

Precision TP
TP+FP

F-score 2×sensitivity×precision
sensitivity+precision

False positive rate (FPR) FP
TP+FP = 1 − specificity

Table 1.3: Performance measures. Overview of several performance measures as calculated from a
two-class confusion matrix.

resolves in a value equal to inf. For the F-score, this case together with a denominator of zero

will also resolve in a value of inf. Regarding accuracy, different formulations exist. For exam-

ple, also the fraction TP
TP+FP+TN+FN is known as accuracy. Note that this is also the way of how

RFs calculate the out-of-bag error.

As mentioned before, in this study we were confronted with multi-class data sets. It is

possible to extend the idea of a confusion matrix towards a multi-class setting. With the pre-

dicted labels of a multi-class test set, it is possible to construct a multi-class confusion matrix

where the number of rows and columns correspond to the number of classes in the data set.

On the main diagonal, the number of TP results are given while the non-diagonal cells contain

the number of misclassifications. Each non-diagonal cell represents the number of FN (at row

level) or FP (at column level), respective to the class under consideration. An example is given

in Table 1.4. Different approaches can be used for the analysis of this multi-class confusion

Predicted class
Class 1 . . . Class K

True
class

Class 1 TP . . . FN
...

...
. . .

...
Class K FN . . . TP

Table 1.4: Multi-class confusion matrix. K-by-K matrix summarizing the predictions of a multi-class
classification, with K the number of classes. The cells on the main diagonal represent the number of TP
while the non-diagonal cells correspond to the errors made.

matrix. The accuracy measure can be calculated over the complete data set by the percentage of

TP over the complete test set. The other measures defined in Table 1.3 cannot be calculated over

the complete test set, though, these can be calculated for each class separately. The multi-class

confusion matrix can be decomposed in K two-class confusion matrices in which each class is

considered and is evaluated in a one-versus-others approach against all other classes. For each

of these confusion matrices it is possible to calculate the performance measures as defined in

Table 1.3. A measure of the classifier performance for the multi-class classification problem

can simply be given by the average of a given performance measure over the different classes



CHAPTER 1 MACHINE LEARNING 45

(Hand and Till, 2001; Fawcett, 2006). Note that classes or species resulting in a precision and/or

F-score with a value of inf are not taken into account for this averaging. As in this study each

class was of even importance the use of a weighted average was not further considered.

1.3.2 ROC Curve

In the seventies, receiver operating characteristic (ROC) curves were introduced in signal

detection theory for the analysis of the tradeoff between hit rates and false alarm rates of clas-

sifiers. In later years, ROC analysis found its way in medicine for the evaluation of diagnostic

algorithms. About twenty years ago, ROC analysis was introduced in the machine learning

community for the evaluation and comparison of algorithms as an alternative to the popular ac-

curacy measure (Hanley and McNeil, 1983; Fawcett, 2006). Where decision making becomes

problematic when an arbitrary threshold needs to be set on the continuous outputs of the test

instances, ROC analysis circumvents this problem by providing a two-class classification evalu-

ation measure following a simple algorithm. ROC curves are two-dimensional graphs in which

the TPR is plotted on the Y axis and the FPR is plotted on the X axis. When defining a particu-

lar threshold for analyzing the test set predictions, a point can be drawn in this two-dimensional

ROC space. Several points in ROC space are important to note. The lower left point (0,0) rep-

resents the strategy of never achieving a positive classification, while the opposite is true in the

point (1,1). The point (0,1) represents perfect classification and the diagonal line y = x repre-

sents random guessing. As mentioned before, a point corresponds to a particular threshold set

on the continuous outputs corresponding with the different test instances. A ROC graph is eas-

ily constructed by simply sorting the test instances by their continuous outputs and by moving

a threshold between each pair of output values. As a result, a ROC curve is generated between

the two points (0,0) and (1,1) (Lasko et al., 2005; Fawcett, 2006). As a measure of classifica-

tion performance, the use of the area under the ROC curve (AUC) was proposed by Bradley

(1997). The AUC represents the probability that a classifier will rank a randomly chosen pos-

itive example higher than a randomly chosen negative example. As the underlying probability

distribution is not known, the AUC is calculated on a finite set of data points and is, thus, only

an estimator of the true probability. Interesting, this probability of correct ranking is equivalent

to the estimation by the Wilcoxon-Mann-Whitney test statistic (Bradley, 1997; Hand and Till,

2001). An example of a ROC curve for a two-class classification experiment is visualized in

Figure 1.10 (see also Subsection 4.3.7.2). ROC analysis has some distinct advantages. ROC

curves are insensitive to changes in the class distribution and they allow for easy comparison of

the performance of different classifiers (Provost and Fawcett, 2001; Fawcett, 2006). Note that

ROC curves could also be used for obtaining custom thresholds (Fawcett, 2006).

The preceding paragraph focuses on binary classification and an extension is possible for the

multi-class setting. In general, we want to calculate a volume under the ROC surface instead of

an area under the ROC curve (Flach, 2004; Fieldsend and Everson, 2005). Computationally, this

is quite demanding and, therefore, in this study we extended the approach similar to the analysis

described in the previous section. In a one-versus-others setting, an AUC value was calculated

for the setting in which each class is discriminated from all other classes. Final averaging was
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performed and the resulting AUC value is, thus, an approximation of the true AUC value. The

resulting value shows how the discrimination of each class from all the other classes varies. This

approach is somewhat similar to the method described by Hand and Till (2001), who average

the AUC values over all pair of classes (one-versus-one approach). Another one-versus-all

approach is given by Provost and Domingos (2001), where the multi-class AUC is calculated as

a sum of the different AUC values weighted by the prevalence of the corresponding class in the

data set.

Provost et al. (1998) and Fawcett (2006) describe two methods for averaging ROC curves

from the perspective of cross-validation: vertical averaging and threshold averaging. The latter

method was also handled for easy visualisation of the average ROC curve calculated in the one-

versus-all model evaluation performed in this work. Herein, all points in ROC space defined a

different threshold on the FPR axis. On each individual ROC curve, the data point correspon-

ding with each threshold was determined. If this ROC point was not used for construction of the

corresponding ROC curve, its value was calculated by interpolation. For each FPR threshold,

an average ROC point was calculated over all corresponding ROC points and, ultimately, an

average ROC curve was drawn by combining all average ROC points.
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Figure 1.10: ROC curve. Example of a ROC curve for a two-class classification experiment. On the X

axis, the false positive rate (FPR) is given, while the Y axis represents the true positive rate (TPR). The
area under the curve is an estimation of the classification performance and equals here 0.965.

1.3.3 Wilcoxon Rank-Sum Statistic

The non-parametric Wilcoxon rank-sum test, also known as the Mann-Whitney U test or

the Wilcoxon-Mann-Whitney test was used to test if two independent samples represent two
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different distributions with respect to the rank-ordering of the observations in the two underlying

population distributions. The test statistic is based on the assumptions that

• the observations are randomly selected from the population

• the two samples are independent of one another

• the observations are continuous

• the shapes of the underlying distributions are identical

The Wilcoxon rank-sum test is the nonparametric version of the two-sample t-test which as-

sumes normal distributions of the two populations under the null hypothesis. Under the as-

sumption of the null hypothesis no effect is present in the samples and both distributions are

identical. The alternative hypothesis states that a distinct difference is present in the data, or it

assumes a location shift of one of the distributions (Higging, 2004; Sheskin, 2004).

Assume M observations in the first population and N observations in the second population.

Basically, the Wilcoxon rank-sum test makes the sum R of ranks of the observations of one of

the two populations (arbitrary choice). The Wilcoxon rank-sum test is a two-sample permuta-

tion test based on R. Subsequent to the calculation of R, all possible permutations of the ranks

are considered in which m ranks are assigned to first population and n ranks are assigned to the

second population. For each permutation, the rank sum is calculated for the chosen population.

For an upper-tail test, a p-value is calculated as

pupper-tail =
number of rank sums ≥ observed rank sumR(

M+N
N

) (1.37)

Ties are commonly present in many data sets, meaning that identical observations are

present. If ties were present, rank were averaged and a normal approximation of the p-value

was calculated. Calculation of a normal approximation was also considered in the case of large

sample sizes (Higging, 2004).

The Wilcoxon rank-sum statistic is equivalent to the Mann-Whitney statistic. In the cal-

culation of the latter statistic, all pairs (xi, yj) are considered, with xi an observation of the

first population and i = 1, . . . , M , and with yj observation j of the second population and

j = 1, . . . , N . The upper tail statistic is subsequently defined as the number of pairs for which

xi < yj (Higging, 2004).
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CHAPTER 2
Bacteriology

What is a scientist after all? It is a curious man

looking through a keyhole, the keyhole of

nature, trying to know what’s going on.

JACQUES COUSTEAU

Messieurs, c’est les microbes qui auront le

dernier mot.

LOUIS PASTEUR

2.1 Introduction

This chapter deals with the result of over 3.5 billion years of evolution: the prokaryotic

world we see, feel and experience today. Prokaryotes are detected from altitudes of 77 km in

the atmosphere to depths of 2 km in the subsurface and have colonized soil, water, ice, air and

eukaryotic organisms. The total number of individual prokaryotic cells on earth is estimated in

the order of 5 × 1030 (Whitman, 2009). It is clear, the world of prokaryotes is worth looking at!

The founding father of bacteriology is Antonie van Leeuwenhoek who, in 1676, observed

the first bacteria or ‘animalcules’ as described in his letters to the Royal Society of London. A

first attempt towards a systematic rearrangement of microorganims was done by Otto Müller

at the end of the 18th century. The effective study of bacteria started somewhat later with the

work of Louis Pasteur around 1862. Microbiology witnessed a real boost in the 1950s-1970s

with the rise of the field of bacterial genetics and molecular biology and the following years

were further characterized by molecular phylogenetic studies and numerical analysis. In the

last decade, genomics has become ‘the’ hot-topic in microbiology (Sapp, 2005; Rosselló-Mora

and Amann, 2001; Madigan et al., 2009). This very brief outline of the history of microbiology

is a good starting point for this chapter as all items central in the different historical stages

are touched in this study: systematics, genetics, molecular biology, phylogeny, genomics and

numerical analysis. In order to find a way through all these elements, a short introduction is

given to understand the context of the research performed.
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2.2 A Taxonomic View on the World of the Bacteria

2.2.1 Introduction

The domain of the Bacteria is one of the three domains of life, next to the Eukarya and

the Archaea, which was considered as the third domain of life only since the late 1970s (for-

merly kingdom Archaebacteria) (Woese and Fox, 1977; Madigan et al., 2009). The Bacteria

and the Archaea consist of prokaryotic organisms, while the Eukarya consist of eukaryotic or-

ganisms. The first two domains are typically referred to as ‘microbes’. However, microbial

Eukarya do also exist and are called the protists. The main difference between prokaryotes

and eukaryotes can be deduced from the latin connotation in their names (karyon) which refers

to the presence of a nucleus (eukaryotes). The Archaea were orginally regarded as aberrant

members of the Bacteria because both groups share the same overall prokaryotic cell consitu-

tion (no membrane-bound compartiments and no nucleus). Comparitive ribosomal ribonucleic

acid (rRNA) sequencing, however, revealed a closer genetic relationship between Archaea en

Eukarya, besides a different deoxyribonucleic acid (DNA) packaging. Prokaryotic DNA is typ-

ically present in a single circular chromosome which contains most of the genes of the cell. All

genes necessary for essential cell function, the house-keeping genes, are located on the chromo-

some. A minority of prokaryotes contains two or more chromosomes. Next to the chromosome,

many prokaryotes also contain extrachromosomal circular DNA molecules or plasmids. These

contain typically genes conferring additional properties (e.g. antibiotic resistance) (Madigan

et al., 2009).

2.2.1.1 Towards Bacterial Classification

The study of the diversity of organisms and their relationships is called systematics, which

links together phylogeny and taxonomy. Phylogeny is defined by the evolutionary relation-

ships between organisms as deduced from the genetic information in nucleic acids and pro-

teins. Taxonomy is the science of classification of organisms. Bacterial taxonomy consists

of three interrelated fields: classification, nomenclature and identification. Classification is

the arrangement of organisms into progressively more inclusive groups (taxa) on the basis of

genotypic/phenotypic similarities or relationships. Herein, the genotype covers all genetic in-

formation of an organism coded in its DNA, while the phenotype corresponds to all observable

characteristics of an organism and is regarded as the expression of the genotype. Important

to mention, though, is that no official classification of the Bacteria exists because taxonomy

remains a matter of scientific judgment and general agreement. At present, the best consen-

sus is the most widely accepted and referenced taxonomic outline reported in Bergey’s Manual

of Systematic Bacteriology, published by the Bergey’s Manual Trust (published first in 1923).

Second, nomenclature is the assignment of names to the taxonomic groups according to the in-

ternational rules defined in the Bacteriological Code - The International Code of Nomenclature

of Bacteria (ICNB). A prokaryotic strain is given a genus name and species epithet. Note that

the Bacteriological Code only deals with procedures for nomenclature and does not govern the
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delimination of taxa nor their relations. Third, identification is the practical use of a classifica-

tion scheme to determine the identity of an isolate as a member of an established taxon or as

a member of a previously unidentified species (Lapage et al., 1992; Sneath and Brenner, 1992;

Vandamme et al., 1996; Euzéby, 1997; Brenner et al., 2005b; Madigan et al., 2009). We break

the introduction here and return back to Chapter 1, Subsection 1.1.1 where the terms of classi-

fication and identification are defined in a machine learning perspective. In contrast to bacterial

taxonomy, classification in machine learning terms corresponds to mathematically describing

relationships between existing groups (in microbiology: taxa). Identification has the same con-

notation, that is, using a classification scheme to identify unknown samples (in microbiology:

isolates).

Classification and an adequate description of bacteria require knowledge of their morpho-

logical, biochemical, physiological and genetic characteristics. Thus, taxonomy is a dynamic

concept that changes on the basis of the available data. The formal taxonomic ranks or taxa fol-

lowing domain are: phylum, class, order, family, genus, species and subspecies. In this study,

we focused on the rank of species, which is seen as the basic and most important taxonomic

group in bacterial systematics (Brenner et al., 2005b; Madigan et al., 2009). Before going into

more detail about taxonomy, it is important to first explain some necessary terms, e.g. what are

strains and what is a type?

A bacterial strain is made up of the descendants of a single isolation in pure culture, and

usually originates from a succesion of cultures ultimately derived from an initial single bacterial

colony. Concerning nomenclature, a bacterial strain can be designated in any manner, e.g. by

the name of an individual, by a locality, or by a number. To make it more complex, a culture of

bacteria is a population of bacterial cells in a given place at a given time and a clone is a popu-

lation of bacterial cells derived from a single parent cell. Finally, a taxon is always associated

with its nomenclatural type, referred to as ‘type’. The type is that element of the taxon with

which the name is permanently associated. It is the name bearer and reference example of the

taxon. The nomenclatural type is not necessarily the most typical or representative element of

the taxon. A type strain of a taxon is one of the strains on which the author who first described

a named organism based the description of the organism and which the author, or a subsequent

author, definitely designated as a type. This naming can be extended towards higher taxonomic

units. As such, the type of a genus or subgenus is the type species, that is, the single species or

one of the species included when the name was originally validly published. More information

about these nomenclature rules can be found in the Rules of Nomenclature with Recommenda-

tions of the ICNB (especially rules 15-22) (Lapage et al., 1992; Brenner et al., 2005b; Madigan

et al., 2009).

2.2.1.2 What’s in a name? That which we call a species

A universally accepted concept of the term species does not exist for prokaryotes. By the

term species concept, a framework is meant to understand how and why an observer can sort

organisms into species. That is, what kind of unit do we think the term species embraces and

what characteristics are shared between all members of a species. A lot of discussion and

disagreements exists in this context and several species concepts are proposed. A general dis-



52 2.2 A TAXONOMIC VIEW ON THE WORLD OF THE BACTERIA

cussion on this topic can be found in the papers of Rosselló-Mora and Amann (2001), Cohan

(2002), Gevers et al. (2005) and Doolittle and Papke (2006). As described in Bergey’s Man-

ual of Systematic Bacteriology a bacterial species is defined as ‘a distinct group of strains that

have certain distinguishing features and that generally bear a close resemblance to one another

in the more essential features of organization’. For practical use, a species definition is pro-

posed as a standard for how to assign isolates to a named species or to identify new species.

In 1987, a first pragmatic definition was given by the Ad Hoc Committee on Reconciliation of

Approaches to Bacterial Systematics (Wayne et al., 1987). In their report, the committee states

that ‘the phylogenetic definition of a species generally would include strains with approximately

70% or greater DNA-DNA relatedness and with 5◦C or less ΔTm (melting temperature). Both

values must be considered’. Besides this, the committee stated that phenotypic characteristics

should agree with this definition and would be allowed to override the phylogenetic concept of

species only in a few exceptional cases. In 1994, Stackebrandt and Goebel showed that the 70%

threshold in DNA-DNA hybridization (DDH) usually relates to more than 97% sequence iden-

tity in 16S rRNA gene. Note that the 16S rRNA gene contains conservative to hypervariable

nucleotide regions. Important, the resolution power of 16S rRNA gene sequences is limited

when closely related organisms are inspected, due to a limited amount of variation in the rRNA

gene sequence. As an alternative, distinctions between (very) closely related bacteria can be re-

vealed by using multiple genes whose sequences have diverged more than the 16S rRNA gene.

This technique is known as multi-locus sequence typing (MLST) in which, commonly, six to

eight housekeeping genes (core genes essential for functioning of the cell) from an organism are

analyzed. The resolution of MLST allows for strain differentiation within a species. Because

of progress in methodology (16S rRNA gene analysis, rapid DNA typing methods, MLST and

genome analysis) and new insights in population structure, a new ad hoc committee was formed

in 2002. This ad hoc committee for the re-evaluation of the species definition in bacteriol-

ogy concluded that despite the drawbacks with respect to reproducibility, workability and rigid

application of DDH values for species delineation, the presented system is sound. And, the

current species definition as described by Rosselló-Mora and Amann (2001) can be considered

pragmatic, operational and universally applicable: ‘a species is a category that circumscribes

a (preferably) genomically coherent group of individual isolates/strains sharing a high degree

of similarity in (many) independent features, comparatively tested under highly standardized

conditions’. As a result, a DDH reassociation value of 70% is seen as the ‘gold-standard’ for

species delineation. But, due to practical difficulties with DDH, the exponential growth of

sequence databases and improvement in sequencing technology, the 97% 16S rRNA gene stan-

dard is widely used for species identification. Nonetheless, these methods were considered to be

inadequate for defining a prokaryotic species and incapable of keeping pace with the levels of

diversity that are being discovered in nature. Consequently, it is now accepted among microbial

taxonomists that a prokaryotic species should be classified after the analysis and comparison of

as many parameters as possible, combining phenotypic and genomic markers. This technique

is also known as polyphasic taxonomy (Vandamme et al., 1996; Rosselló-Mora and Amann,

2001; Brenner et al., 2005b; Gevers et al., 2005; Madigan et al., 2009). In this last decade,

computational genomics got into play in bacteriology, leading to a new approach for evaluat-
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ing the current species delineation standards and the species concept. The number of genomes

published online increases almost every day. At 04/08/2009, 874 complete bacterial genomes

were published online and 1845 genomes were in progress (NCBI, 2009a). Pioneers in the

commputational analysis of bacterial genomes are Konstantinidis and co-workers who showed

that the 70% DDH gold standard tightly corresponds to approximately 95% average nucleotide

identity (ANI), which provides a robust representation of the phylogenetic relationships at the

species level. This correspondence was experimentally verified by Goris et al. (2007). They

also showed that, based on highly reliable markers, a genomic evaluation of the MLST method

provides robust phylogeny of organisms sharing 70-95% ANI. This corresponds to closely or

distantly related species of the same genus. Next to ANI, the MLST method has a clear tax-

onomic value (Konstantinidis and Tiedje, 2005a,b; Konstantinidis et al., 2006b,a; Goris et al.,

2007; Konstantinidis and Tiedje, 2007).

Formal validation of taxonomic standing as a new species or genus requires the publication

of a detailed description of the organism’s characteristics and distinguishing traits, together

with the proposed name, sequence accession numbers of one of the public sequence databases

(GenBank, EMBL or DDBJ), and the deposit of the bacterial type strain(s) in at least two

international culture collections in two or more different countries (IJSEM, 2009). Herein, an

international recognised culture collection is regarded as a repository for cultures of microbial

strains which are listed in a catalog and provided upon request. On 22/11/2009, 568 culture

collections in 68 countries were registered (WFCC, 2009). For valid and official acceptance of

the new genus and/or species, description needs to be published in the International Journal of

Systematic and Evolutionary Microbiology (IJSEM). Each month IJSEM publishes an approved

list of novel validated names. Valid publication of a new name or combination is overseen by

the International Committee on Systematics of Prokaryotes (ICSP) in collaboration with the

Judicial Commission, an international body that is responsible for the correct application of the

Bacteriological Code. From the IJSEM website (IJSEM, 2009), a formal description of a new

taxon requires the following information:

1. A list of the strains included in the taxon

2. A statement or tabulation of the characteristics of each strain

3. A list of characteristics considered essential for membership in the taxon

4. A list of characteristics which qualify the taxon for membership in the next higher taxon

5. A list of diagnostic characteristics, i.e. characters which distinguish the taxon from

closely related taxa

6. Designation of the type for that taxon

7. The reactions of the type strain of a new species

8. For all characteristics that vary among strains within the species the specific reaction of

the type strain must be defined

Full description of this information can be found in Appendix 7 of the International Code of

Nomenclature of Bacteria (1990 Revision) (Lapage et al., 1992). Different websites also pro-

vide a list of valid and approved bacterial names such as the List of Prokaryotic Names with

Standing in Nomenclature (LSPN) of Jean Euzéby (Euzéby, 1997), the Bacterial Nomenclature
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Up-to-Date of the German Collection of Microorganisms and Cell Cultures (DSMZ, 2009) and

the NCBI Taxonomy Browser (NCBI, 2009b). On 03/11/2009, 7,995 bacterial species were

validly published, covered by 1,561 validly published genera (Euzéby, 1997). The yearly num-

ber of valid bacterial species descriptions is visualized in Figure 2.1. At present, the number of

prokaryotic species on earth cannot be estimated accurately. Theoretical estimates suggest that

soil and deep sea contain more than 106 species (Whitman, 2009).
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Figure 2.1: Trend in novel valid species descriptions. Number of valid bacterial species descriptions
since 1980. For 2009, the number of validly published species is given as counted on 03/11/2009. Data
captured from Euzéby (1997).

2.2.1.3 The Other Taxonomic Ranks and Subdivisions

The terms species and strain being clarified, let us now have a closer look at the other taxo-

nomic ranks. First, all species are assigned to a genus which can be functionally defined as one

or more species with the same general phenotypic characteristics, and which cluster together on

the basis of 16S rRNA gene sequence data. Although most new genera are designated based on

16S rRNA gene sequence analysis, no formal definition for the rank genus exist. For almost all

genera holds that they can be differentiated phenotypically. Following the binomial Linnaean

nomenclature a bacterial strain is designated a genus and species name. Classification at the

rank of family and higher levels are even less well defined and descriptions of the taxa are much

more general. Mainly, consistency in both the genotype and the phenotype is widely considered

a measure for describing these taxa. Below the rank of species, the lowest formal rank in bac-

terial taxonomy is that of subspecies. At present, also for this rank no definition or guideline is

available. A subspecies is regarded as a subdivision of a species based on phenotypic variations

or genotypic clusters of strains within the species. Besides a genus, species and/or subspecies

name, a strain may also be denoted by an infrasubspecific term. This term is, however, not cov-

ered by the Rules of the ICNB as a formal taxonomic rank. Infrasubspecific ranking is based

on a specific characteristic (e.g. pathogenic properties for a certain host) and different terms

are defined, such as biovar, chemovar, cultivar, forma specialis, morphovar, pathovar, phagovar,

phase, serovar and state (Lapage et al., 1992; Brenner et al., 2005b).
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Let us finally go back to the second highest taxonomic rank, the phylum, that is also not

covered by the Rules of the ICNB. A phylum is regarded to be a major evolutionary group

(Lapage et al., 1992; Madigan et al., 2009). Importantly, the criteria as to what actually con-

stitutes a phylum remain to be defined. Due to this absence of objective criteria, it is unclear

how many phyla actually exist within the Bacteria, how to distinguish between them and how

to discriminate them from their subdivisions (Gupta, 2005; Ludwig and Klenk, 2001). Accord-

ing to the second edition of the Bergey’s Manual of Systematic Bacteriology 24 bacterial phyla

exist (Brenner et al., 2005a). A 16S rRNA gene tree visualizing most phyla is visualized in

Figure 2.2.
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Figure 2.2: The major bacterial phyla. 16S rRNA gene-based phylogenetic parsimony tree showing
the major bacterial phyla. The triangles indicate groups of related organisms, while the angle at the root
of the group roughly indicates the number of sequences available and the edges represent the shortest and
longest branch within the group. All available almost complete homologous sequences from Archaea and
Eukarya were used as outgroup references to root the tree, indicated by the arrow (Ludwig and Klenk,
2001). In this study, we focused on two genera of the red phyla of the Firmicutes and on one genus of
the green phyla of the Proteobacteria.

Besides this internationally accepted taxonomic ranking, different alternative groupings ex-

ist. A widely-used grouping of the Bacteria is that of the Gram-positive and Gram-negative

bacteria. Herein, the distinction results from differences in the cell wall structure and is visu-

alized by the Gram staining method. The cell wall of Gram-positives consists of a thick layer

of about 90% of peptidoglycan, where the cell wall of Gram-negatives is multi-structured with

the presence of an outer membrane, called the lipopolysaccharide (LPS) layer and a thin inner-

membrane. The cell wall of Gram-negatives consists only of about 10% peptidoglycan. Other

commonly used grouping approaches depend on growth conditions such as temperature, pH or

the need for oxygen. In this latter case, one distinguishes between aerobes, microaerophiles,

facultative (an)aerobes and anaerobes (Madigan et al., 2009).
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2.2.2 Bacterial Identification

As stated in the previous subsection, identification of bacteria can only be achieved by

relying on a specific classification scheme. Once this scheme is resolved, analysis of the geno-

type and/or phenotype can start. Remember that genotypic methods are directed towards DNA

or RNA, while phenotypic methods focus on proteins, chemotaxonomic markers and a wide

range of other expressed molecules, metabolic pathways and phenotypic characteristics such

as motility, cell shape, etc. The main disadvantage of phenotypic analysis is that information

embedded in the genome is only partly expressed, as gene expression is directly or indirectly

related to environmental conditions. A lot of techniques exist for analyzing the massive amount

of different molecules and the popularity of a technique depends heavily on its practical use,

time-consumption and cost. Before molecular techniques were available, identification was

solely based on morphology, physiology and growth conditions. From a taxonomic perspec-

tive, variability of a taxon is expressed in different molecules which underscores the use of a

polyphasic approach in the classification and identification of bacteria. Nowadays, genotypic

methods flourish and are commonly preferred over phenotypic techniques. Recall however, that

in their species definition, the Ad Hoc Committee on Reconciliation of Approaches to Bacte-

rial Systematics (Wayne et al., 1987) stated that ‘phenotypic characteristics should agree with

this definition’, meaning that also phenotypic consistency is required in the definition of a new

species (Vandamme et al., 1996; Madigan et al., 2009).

In this study, we focused on the phenotype as analyzed by chemotaxonomic methods. In

contrast to classical phenotypic methods that focus on morphological, physiological and bio-

chemical features, chemotaxonomy is referring to the application of methods for analyzing

various chemical constituents of the cell, mainly lipids, proteins, amino acids and sugars. No-

tice that the measures of these features are regarded as a direct reflection of the expression

of the genetic information. Therefore, it is important that the observed variation in chemical

composition is the result of genetic differences and not due to culture and growth conditions.

For reproducibility and comparitive analysis of the results, highly standardized procedures are

critical (Vandamme et al., 1996; Rosselló-Mora and Amann, 2001). A major part of the cell

that is of high interest to many microbiologists are the bacterial membranes because of the high

variability in their composition. Chemotaxonomy plays a central role in this research and we

focused on the technique of whole-cell fatty acid analysis.

Many analytic methods rely on bacterial growth on certain nutrients. Solutions of these

nutrients, culture media, are used for bacterial growth or cultivation. Most techniques, such as

whole-cell fatty acid analysis, require the isolation of pure cultures, i.e. cultures containing only

a single microorganism. Typically, pure cultures are obtained by enrichment procedures, e.g.

the streak plate. Different types of culture media exist: defined media, complex media, selective

media, solid versus liquid media, etc. (Madigan et al., 2009). For taxonomic purposes, the scope

of culture-dependent analytical methods should be very large and, consequently, requires the

growth of as many bacteria as possible. As highly standardized conditions are required to limit

the variability in the respective features, the usefulness of these methods is restricted towards the

fraction of bacteria that are able to grow on general media. Note that a large group of bacteria is
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simply unculturable. For example, it is estimated that only 0.3% of the bacteria in soil, 0.25% of

the bacteria in sediments and even 0.001-0.1% of the bacteria in seawater are culturable (Amann

et al., 1995). This clearly shows the disadvantage of culture-dependent analytic techniques,

although more emphasis is put on stimulating research towards the improvement of cultivation

methodologies.

2.2.3 A General Focus on the Genus

In the following section, the general characteristics of the three genera considered in this

research are briefly described. These genera have already been studied for decades and, thus, a

massive amount of information is available from the literature. The following descriptions rely

on the genus and species descriptions in Bergey’s Manual of Systematic Bacteriology (Palleroni,

2005; Logan and De Vos, 2009; Priest, 2009) and I refer to this excellent manual for detailed

reading.

2.2.3.1 Bacillus

In the domain of the Bacteria, the genus Bacillus is classified in the domain of Bacteria,

phylum of Firmicutes, class of Bacilli, order of Bacillales, family of Bacillaceae (Brenner et al.,

2005a). The type species is Bacillus subtilis as described by Cohn in 1872. At 21/11/2009,

157 Bacillus species were validly published. The monthly changes in the taxonomy of the

genus since January 2006 are visualized in Figure 2.3. On 21/11/2009, for 10 valid species one

or more complete genome sequences were available online (NCBI, 2009a).
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Figure 2.3: Monthly nomenclatural changes in the bacterial taxonomy of the genus Bacillus as
published by the IJSEM between January 2006 and November 2009. The number of novel described
species is given, together with the number of species renamed within the genus Bacillus as the number of
valid Bacillus species renamed to a new species outside the genus. Information extracted from the List
of Prokaryotic Names with Standing in Nomenclature (Euzéby, 1997).

Bacillus belongs to the Gram-positive bacteria and strains are typically rod-shaped, straight

or slightly curved cells. Aerobe, facultative anaerobes and anaerobes are described and most
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species grow on routine media. Bacillus strains are mostly isolated from soil, but are also

present in water, food and clinical specimens. A main characteristic is the formation of en-

dospores, that turns Bacillus into an important contaminant of food and industrial/medical sites.

Most species have little or no pathogenic potential although a few important exceptions exist.

These all belong to a phenogenetically distinct group. Bacillus anthracis causes the antrax dis-

ease, Bacillus thuringiensis is pathogenic to invertebrates and B. cereus is a food spoiler that

may produce various toxines responsible for food-born diseases. Because of its pathogenicity

towards invertebrates, Bacillus thuringiensis is of main interest in agriculture for the develop-

ment of pesticides and for genetic engineering for the creation of transgenic crops. Bacillus is

one of the model genera in bacteriology (Logan and De Vos, 2009).

The genus Bacillus sensu lato has known a drastic rearrangement in the last decades, giv-

ing rise to several new genera following splitting of one or more Bacillus species. Examples

are Alicyclobacillus (1992), Aneuribacillus (1996), Brevibacillus (1996), Geobacillus (2001),

Gracilibacillus (1999), Marinibacillus (2001), Paenibacillus (1993), Ureibacillus (2001) and

Virgibacillus (1998) (Euzéby, 1997; Berkeley, 2002; Kämpfer, 2002).

Two Bacillus groups, each containing closely related species, are particularly taxonomically

challenging: the Bacillus cereus group and the Bacillus subtilis group. First, the Bacillus cereus

group that consists of B. cereus, B. thuringiensis, B. anthracis, B. mycoides, B. pseudomycoides

and B. weihenstephanensis. This group is discussed because of the relevance of its species dif-

ferentiation, especially concerning the valid species B. cereus, B. anthracis and B. thuringiensis.

The main points of discussion concern the weakness of species discriminations that are based

on phenotypic and pathogenic characteristics (Drobniewski, 1993; Bavykin et al., 2004; Priest

et al., 2004; Rasko et al., 2005; Tourasse et al., 2006; Vilas-Bôas et al., 2007). The second group

is the Bacillus subtilis group that consists of B. subtilis, B. amyloliquefaciens, B. atrophaeus, B.

licheniformis, B. mojavensis, B. sonorensis, B. pumilus and B. vallismortis. This group forms

a very tide phylogenetic cluster on the basis of 16S rRNA gene sequencing, although the gyrB

gene has a higher resolution for species discrimination. Furthermore, the classification achieved

by gyrB gene sequence analysis is in agreement with the results obtained from DDH. In 2006,

five new species were described which show high similarities to the Bacillus subtilis group in

16S rRNA gene sequence while DDH reassociation percentages lower than 70% were found: B.

aerius, B. aerophilus, B. altitudinis, B. stratosphericus and B. tequilensis (Chun and Sook Bae,

2000; Gatson et al., 2006; Hutsebaut et al., 2006; Shivaji et al., 2006; Wang et al., 2007a). These

results were confirmed by a maximum likelihood tree following 16S rRNA gene sequence anal-

ysis based on the validly published taxonomy of May 2008 (Euzéby, 1997). This tree of 147

valid Bacillus species is shown in Figure 2.4 (Chun and Sook Bae, 2000; Gatson et al., 2006;

Hutsebaut et al., 2006; Wang et al., 2007a).

2.2.3.2 Paenibacillus

In 1993, Ash et al. proposed the new genus Paenibacillus following 16S rRNA gene se-

quence analysis. The same higher taxonomic ranking is identical to that of Bacillus, except

for the rank of family which is defined as Paenibacillaceae (Brenner et al., 2005a). The type
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Figure 2.4: 16S rRNA gene sequence-based maximum likelihood tree of the genus Bacillus. The
147 species included correspond to the validly published taxonomy of May 2008. One high-quality 16S
rRNA sequence per species is selected from the SILVA database (Pruesse et al., 2007). The phylogenetic
tree is built by the maximum likelihood algorithm as implemented in the RAxML software (based on
1000 bootstraps) and is visualized with the iTol webtool (Stamatakis, 2006; Letunic and Bork, 2007). The
tree branch lengths are ignored because of outlier species that make the use of branch length pointless.
The green group corresponds to the Bacillus subtilis group, while the blue group corresponds to the
Bacillus cereus group. Dotted branches correspond to bootstrap values larger than 75%.
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species is Paenibacillus polymyxa. On 21/11/2009, the genus contained 103 validly published

species. The monthly changes in the taxonomy of the genus since January 2006 are visualized

in Figure 2.5. No genomes of valid Paenibacillus species have been completed and published

so far.
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Figure 2.5: Monthly nomenclatural changes in the bacterial taxonomy of the genus Paenibacillus as
published by the IJSEM between January 2006 and November 2009. The number of novel described
species is given, together with the number of valid Paenibacillus species renamed to a new species outside
the genus. Information extracted from the List of Prokaryotic Names with Standing in Nomenclature
(Euzéby, 1997).

Paenibacillus strains are rod-shaped, Gram-positive and also show endospore formation.

Paenibacilli are facultative anaerobic or strictly aerobic, and most of them grow on nutrient agar

at neutral pH. Some strains are pathogens of insects such as. Pa. larvae and Pa. poppilliae.

The main habitat of Paenibacillus species is also soil. Besides DDH and 16S rRNA sequence

analysis, species discrimination is also achieved by MLST with the housekeeping genes rpoB,

gyrA, gyrB, recA, etc. (Priest, 2009). A maximum likelihood tree of the Paenibacillus genus

based on 16S rRNA gene sequences is visualized in Figure 2.6. This tree is based on the validly

published list of bacterial species of May 2008.

2.2.3.3 Pseudomonas

In the domain of the Bacteria, the taxonomic ranking of the genus Pseudomonas is as fol-

lows: domain of Bacteria, phylum of Proteobacteria, class of Gammaproteobacteria, order of

Pseudomonadales and family of Pseudomonaceae (Brenner et al., 2005a). The type species is

Pseudomonas aeruginosa, originally discovered by Schroeter in 1872. The genus was, however,

proposed by Migula in 1894. On 21/11/2009, it contained 126 validly published Pseudomonas

species. The monthly changes in the taxonomy of the genus since January 2006 are visualized

in Figure 2.7. On 21/11/2009, for 6 valid species one or more complete genome sequences are

available online (NCBI, 2009a).

Pseudomonas members are straight or slightly curved motile rods with merely polar flag-

ella. Pseudomonas strains belong to the Gram-negative bacteria and are respiratory but never
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Figure 2.6: 16S rRNA gene sequence-based maximum likelihood tree of the genus Paenibacillus.
The 101 species included correspond to the validly published taxonomy of May 2008. One high-quality
16S rRNA sequence per species is selected from the SILVA database (Pruesse et al., 2007). The phyloge-
netic tree is built by the maximum likelihood algorithm as implemented in the RAxML software (based
on 1000 bootstraps) and is visualized with the iTol webtool (Stamatakis, 2006; Letunic and Bork, 2007).
Dotted branches correspond to bootstrap values larger than 75%.
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fermentative. Most species fail to grow under acid conditions (pH lower than 4.5) and natu-

ral habitats are water or soil. Different subgroupings can be made based on the phenotype or

pathogenity. In the former case, grouping can be based on the production of pigments that fluo-

rescence under UV radiation (e.g. P. fluorescens). In the latter case, a straight-forward grouping

of pathogenic and non-pathogenic species can be made. Two examples are P. aeruginosa which

is an opportunistic pathogen of humans, while P. syringae is a plant pathogen (Palleroni, 2005,

2008).

Pioneers in the classification of the genus Pseudomonas are Palleroni and co-workers (Uni-

versity of California, Berkeley, USA), who in 1973 described an initial grouping of five discrete

Pseudomonas clusters based on rRNA-DNA hybridization (Palleroni et al., 1973; Palleroni,

1984). Since then, the taxonomy of aerobic Pseudomonads underwent a series of rearrange-

ments based on rRNA gene similarity groups and the genus as described today corresponds

to rRNA group I. This implies that numerous species previously assigned to the genus Pseu-

domonas sensu lato were transferred at the generic or suprageneric ranks, mainly residing in

the α-, β-, and γ Proteobacteria classes. Examples are Acidivorax, Aminobacter, Brevundi-

monas, Burkholderia, Comamonas, Halomonas, Methylobacterium, Ralstonia, Sphingomonas,

Xanthomonas, etc. cited in Kersters et al. (1996) and Palleroni (2005). In 1996, Moore et al.

discriminated two intrageneric clusters in 16S rRNA gene sequences of the Pseudomonas sensu

stricto group (= the present genus Pseudomonas): a P. aeruginosa cluster and a P. fluorescens

cluster, each with different species lineages. Most lineages were also clustered in the FAME

analysis as performed by Vancanneyt et al. (1996). In 2000, Anzai et al. (2000) reevaluated

128 valid and invalid Pseudomonas species based on 16S rRNA sequence data and further

reassigned several species to other genera. The complexity of the taxonomy of the present

genus Pseudomonas is also demonstrated by rpoB gene analysis (Tayeb et al., 2005). How-
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ever, validation of the groupings still needs DDH data and extensive phenotypic analysis before

emendations at the species level can be proposed. Regarding plant pathogenicity, a multitude of

pathovars are described within the species P. syringae. A DDH study regarding the different P.

syringae pathovars showed the existence of nine discrete genomospecies (Gardan et al., 1999).

We followed these genomospecies classifications as if they were formal species. A maximum

likelihood tree of the genus Pseudomonas based on 16S rRNA gene sequences is visualized in

Figure 2.8. This tree is based on the validly published list of bacterial species of May 2008.

2.2.4 Where Machine Learning Meets Bacteriology

The first studies reporting a computational approach to bacterial identification were based

on multi-criteria decision making (Fichefet et al., 1984; Butler et al., 1992). In later years, the

use of machine learning techniques in bacteriology was dominated by the application of artifi-

cial neural networks (ANNs). ANNs were applied on different data types for the identification

of numerous bacterial species and groups. The main research was done by only a small number

of research groups, e.g. Ruggiero and co-workers (University of Genova, Italy) and Goodacre

and co-workers (University of Wales, UK). The first group applied ANNs mainly on marine

and environmental bacteria by using gas chromatographic FAME data (Ruggiero et al., 1993;

Bertone et al., 1996; Giacomini et al., 2000, 2004). This is also the only research group so

far using machine learning techniques on gas chromatographic FAME data for the identifica-

tion of bacteria. However, they focused on the discrimination of species of different genera

and, thus, not on intra-genus species identification. The second group focused more on bacte-

ria of clinical interest by using pyrolysis mass spectral data and Fourier transformed infrared

spectroscopy (FTIR) (Freeman et al., 1994; Goodacre et al., 1996a,b, 1998a,b). Different other

papers were published reporting ANN applications in bacteriology. The main research goal

concerned achieving an improved identification of bacterial species with clinical or food safety

importance. Though different types of data were used, research was mainly directed to the anal-

ysis of spectral data. Examples are pyrolysis mass spectrometry or gas chromatography (Chun

et al., 1993; Donohue and Welsh, 2004; Voisin et al., 2004), FTIR (Quinteiro Rodríguez, 2000;

Udelhoven et al., 2000; Harrington et al., 2001; Mouwen et al., 2006; Rebuffo et al., 2006; Dz-

iuba et al., 2007; Rebuffo-Scheer et al., 2007; Bosch et al., 2008), MALDI and SELDI TOF

(Bright et al., 2002; Lancashire et al., 2005; Schmid et al., 2005; Yang et al., 2009), FAME

MS (Xu et al., 2003), genetic fingerprints (REP-PCR, RAPD, 16S rDNA) (Tuang et al., 1999;

Moschetti et al., 2001; Iversen et al., 2006), protein fingerprints (electrophoresis, SDS-PAGE)

(Yong et al., 2002; Piraino et al., 2006), electronic sensor of volatile metabolites (Dutta et al.,

2004, 2002; Moens et al., 2006) and biochemical test kits (Iversen et al., 2006). In the last

years, the first papers dealing with random forests (RFs) and support vector machines (SVMs)

for bacterial identification were published. The respective RF studies were mainly addressing

MALDI TOF data (Satten et al., 2004; Hettick et al., 2006; Moura et al., 2008; Williamson

et al., 2008) while SVMs were mainly used on mass and Raman spectrometry (Satten et al.,

2004; Rösch et al., 2005; Gaus et al., 2006).
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Figure 2.8: 16S rRNA gene sequence-based maximum likelihood tree of the genus Pseudomonas.
The 117 species included correspond to the validly published taxonomy of May 2008. One high-quality
16S rRNA sequence per species is selected from the SILVA database (Pruesse et al., 2007). The phyloge-
netic tree is built by the maximum likelihood algorithm as implemented in the RAxML software (based
on 1000 bootstraps) and is visualized with the iTol webtool (Stamatakis, 2006; Letunic and Bork, 2007).
Tree branch lengths are ignored because of outlier species, that make the use of branch lengths pointless,
and dotted branches correspond to bootstrap values larger than 75%.
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2.3 Bacterial FAME Analysis

Following the introduction of gas chromatography by James and Martin in 1952, gas chro-

matographic (GC) fatty acid analysis of bacteria started around the year 1960 by investigation

of Bacillus subtilis and a species of the genus Sarcina (Akashi and Saito, 1960; Saito, 1960a,b;

Kaneda, 1963a). The first evidence that GC whole-cell fatty acid analysis could be used for the

classification of bacteria was given by Abel et al. in 1963. Important to mention is that the re-

searchers concluded that the advantages of speed and simplicity make lipid analysis a practical

method for the classification of bacteria. A review paper on fatty acid analysis of bacteria in that

period is due to O’Leary (1962). In 1991, Welch published a review concerning applications of

cellular fatty acid analysis in which he concluded that GC FAME profiling offers considerable

power for microbial identification because characteristic patterns of cellular fatty acids can be

defined to the species level and results are rapidly achieved.

Through the last decades, different improvements for sample preparation and GC analysis

were introduced (Moss et al., 1974, 1980; Moss, 1981; Miller, 1982; Lambert and Moss, 1983;

Welch, 1991; Buyer, 2002a,b, 2003, 2006; MIDI, 2009a). Some of the first researchers sug-

gesting automated GC FAME analysis for bacterial identification were Eerola and Lechtonen

(1988). In 1991, the company Microbial ID Inc. (MIDI, Newark, Delaware, USA) launched

a commercial bacterial identification system based on fatty acid profiling: the Sherlock Micro-

bial Identification System (MIS). At present, Sherlock MIS is the reference system for bacterial

FAME profiling. This system was evaluated for its identification power of different bacterial

species and groups in different research papers (Stead et al., 1992; Steele et al., 1997). As

bacterial FAME analysis became more popular, more and quite diverse bacterial groups were

investigated (Mukwaya and Welch, 1989; Kotilainen et al., 1991; Osterhout et al., 1991; Welch,

1991; Stead et al., 1992; Kämpfer and Kroppenstedt, 1996; Steele et al., 1997; Heyrman et al.,

1999; Song et al., 2000; C̆echová et al., 2004; Pineiro-Vidal et al., 2008) and numerical analysis

of the fatty acid profiles was introduced in later years (O’Donnell et al., 1985; Eerola and Lech-

tonen, 1988; Kämpfer, 1994; Kämpfer and Kroppenstedt, 1996). In the perspective of this work,

it is important to mention that the prediction of bacteria based on FAME data by means of ma-

chine learning techniques was first described in 1993 and was further investigated by the same

research group (Ruggiero et al., 1993; Bertone et al., 1996; Giacomini et al., 2000, 2004). While

the researchers focused on identification at the genus level, they concluded that, as FAME data

yields information at the species level, it would be worthwhile to build a FAME-based bacterial

species identification system.

Interestingly, FAME profiling is also used beyond taxonomy. Keeping the focus on microbi-

ology, the technique is also used for bacterial community typing (Haack et al., 1994; Glucksman

et al., 2000; Quezada et al., 2007), microbial source tracking (Seurinck et al., 2005) and bacte-

rial spore typing (Song et al., 2000).
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2.3.1 Towards FAME Profiling

2.3.1.1 The Nature of Fatty Acids

In whole-cell fatty acid profiling, the main focus is set on the components of any cellular

lipid with a carbon chain length of 9 to 20 atoms. This includes the majority of fatty acids

located in the cell membrane as glycolipids and phospholipids, and the fatty acid constituents

of lipopolysaccharides (in case of Gram-negative bacteria). The primary source of fatty acids

in microbial cells is the cell membrane, with the LPS layer an additional main source in Gram-

negative bacteria. The biosynthesis of fatty acids in bacteria is accomplished by the type II fatty

acid synthetase system which relies on a highly conserved collection of enzymes. Main players

are the molecule coenzyme A which esterifies the fatty acids and the acyl carrier protein (ACP).

Most bacteria synthesize fatty acids with a chain length of 10 to 19 carbon atoms, and the

most prevalent fatty acids are those with 16 to 18 carbon atoms. A usual whole-cell fatty acid

profile constitutes 5 to 15 fatty acids. Branched-chain fatty acids predominate in some Gram

positive bacteria, while short-chain hydroxy acids often characterize the lipopolysaccharides of

the Gram negative bacteria (Sasser, 1990; Welch, 1991; Rock and Jackowski, 2002). Based on

a plasmid and mutagenesis study, it is suggested that the fatty acid composition is highly con-

served genetically and that significant changes take place only over considerable periods of time

(Kunitsky et al., 2006). More than 300 fatty acids and related compounds have already been

found in bacteria. The wealth of information contained in these compounds can be estimated

by considering not only the presence or absence of each acid, but also by using the data in a

quantitative fashion. The theoretical ability to differentiate amongst 2300 different combinations

makes FAME analysis impractical. However, due to the non-random distribution within groups

of bacteria, the huge number of fatty acids increases the power for describing an increasing

number of bacterial taxa (Sasser, 1990). In his review paper, Welch (1991) states that FAME

analysis allows for genus discrimination and characteristic FAME patterns can be found at the

species level. This is underscored by the observation that FAME profiles at the genus level

mostly show qualitative differences (peak presence) while at the species level mostly quanti-

tative differences are found (peak ratios). In this perspective, machine learning is an excellent

option when aiming at an improved bacterial identification. When focusing on lower taxonomic

levels, typing (or subgrouping) depends on the species in question. Those with more complex

profiles are more amenable for typing than those with low fatty acid variability (Welch, 1991;

Kunitsky et al., 2006).

Where fatty acids were initially named to reflect the nature of their source, e.g. sarcinic

acid originates from a Sarcina species (Akashi and Saito, 1960), currently, a nomenclature is

used for naming fatty acids. Fatty acid names are based on the number of carbon atoms, the

type of functional groups and the double-bond locations present in the molecule structure. The

systematic name is simplified by writing a C followed by the number of carbon atoms to the

left of a colon and the number of double bonds on the right. The letter ω indicates the double-

bond position from the hydrocarbon-end of the chain (ω end), while the letters c and t indicate

cis and trans configurations of the hydrogen atoms. The carboxyl-end (COOH) of the chain
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is called the α end. Numbering of branched-chain, cyclopropane-containing and hydroxy fatty

acids typically starts from the carboxyl end of the molecule, but as an alternative can also start

from the α end. Iso- and anteiso-branched fatty acids are methyl-branched fatty acids at the

second and third carbon from the ω-end of the carbon chain. These fatty acids are indicated by

the prefixes iso and anteiso (Welch, 1991; Kämpfer, 2002). Other branched fatty acid structures

also exist. Some examples are given in Figure 2.9

2.3.1.2 Culture and Growth Conditions

The influence of different conditions on the relative composition of the FAME profile is

reported in different papers. The importance of culture and growth conditions was already

pointed out by Abel et al. (1963) who stated that the chemical composition could provide a

basis for classification given that the bacteria are grown under defined conditions. Kaneda

stressed that the relative proportions of the fatty acids can vary depending on physiological

and environmental/culture conditions (Kaneda, 1966a, 1967, 1971, 1977). He also showed

that the profiles vary during the growth phase of bacteria. The effect of varying temperature

and/or growth medium composition on the bacterial fatty acid content is studied by several

researchers (Marr and Ingraham, 1962; Drucker and Veazey, 1977; Rilfors et al., 1978; Chung

et al., 1993; Juneja and Davidson, 1993; Huys et al., 1997). For temperature, it is shown that

the ratios between fatty acids changed with varying temperatures. Also, important to note

is that Huys et al. (1997) recommended a thorough evaluation of the growth medium when

designing a standardized FAME protocol. In general, the composition of the fatty acid profile

varies quantitatively (peak area) according to growth medium, incubation duration, incubation

atmosphere, temperature and chromatographic equipment. Furthermore and importantly, these

factors have little impact on the qualitative fatty acid composition (peak presence) (Welch, 1991;

Kämpfer, 2002). For the purpose of comparing fatty acid profiles from different strains, it is

important that culture media and growth conditions are identical (Kämpfer, 2002). From these

papers, it is clear that identifying bacteria based on FAME data requires standard culture and

growth conditions, both for reproducibility of the FAME profiles as for comparative studies.

In this work, we followed the protocol defined by the commercial Sherlock MIS, which is

extensively described in the next subsection.

2.3.1.3 The Sherlock Microbial Identification System

2.3.1.3.1 Introduction

In 1987, Myron Sasser gained the rights to the fatty acid-based technology and created

MIDI and the Sherlock MIS in 1991. The main fields of interest to MIDI are environmental and

clinical microbiology. In 1998, the U.S. Centers for Disease Control and Prevention recognized

the Sherlock MIS as an official method for aerobic bacterial identification. Sherlock MIS is

the only system cleared by both the U.S. Department of Homeland Security and U.S. Food and

Drug Administration for B. anthracis (anthrax disease) confirmation (MIDI, 2009b,c). In 2007,
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Figure 2.9: Nomenclature of fatty acids (Dawyndt, 2004).
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MIDI Inc. came up with a new sample preparation method which allows identification in only

15 minutes time (MIDI, 2009a).

2.3.1.3.2 The Sherlock MIS Package

The Sherlock MIS consists of a HP 6890A gas chromatograph (GC; Hewlett-Packard Co.,

Avondale, Pennsylvania, USA) equipped with a flame ionization detector, a fused-silica cap-

illary column (25m by 0.2 mm) coated with 5% phenyl methyl silicone (film thickness 0.33

μm; HP Ultra2), automatic sampler and computer. Hydrogen is the carrier gas, nitrogen is the

‘make-up’ gas, and air is used to support the flame. Sherlock MIS uses the Agilent Chemstation

(version 4.02, Hewlett-Packard) software for controlling sampling, analysis and integration of

the chromatographic samples. Typical operating parameters of the system for fatty acid chro-

matography are as follows: injector temperature, 250◦C; detector temperature, 300◦C; and oven

(column) temperature, regulated by a computer-controlled program which increases the temper-

ature from 170 to 300◦C at 5◦Cmin−1 and holds it at 300◦C for 5 min prior to recycling. The

flame ionization detector allows for a large dynamic range and provides good sensitivity. The

electronic signal from the GC detector is passed to the computer where integration of the peaks

is performed. Peak naming and identification library matching is performed by the Sherlock

MIS software. Sherlock MIS has the distinct advantages that it is a sensitive and automated

identification system, allowing high-throughput analysis, and sample preparation and GC anal-

ysis is cheap and rapid. Currently, the cost of FAME analysis by MIDI Inc. is $60-75 per

sample. (Sasser, 1990; Osterhout et al., 1991; Welch, 1991; Vancanneyt et al., 1996; MIDI,

2009b).

2.3.1.3.3 Sample Preparation Protocol

As mentioned before, changing culture and growth conditions can result in drastic changes

of the FAME profile composition. To minimize these effects, standard protocols need to be fol-

lowed accurately in order to achieve the highest stability and reproducibility possible in order

to allow comparative analysis of the FAME profiles. The Sherlock MIS focuses on different

microbial niches for identification of a wide range of bacteria e.g. clinical, environmental,

industrial, veterinary, drinking/waste water, food, etc. Based on these niches, different identifi-

cation libraries were developed for which reference strains were cultured and processed under

controlled conditions. Examples are the TSBA and CLIN libraries for aerobes and clinical aer-

obes, the BHIBLA and MOORE libraries for anaerobes, and the YST, YSTCLN, FUNGI and

ACTIN for the identification of yeasts, fungi and actinomycetes (MIDI, 2005b). Considering

the genera Bacillus, Paenibacillus and Pseudomonas implies the aerobic environmental niche

and the corresponding TSBA50 identification library. For this library, a specific sample prepa-

ration protocol is accurately followed. Most aerobic bacteria grow well on the Trypticase Soy

Broth Agar (TSBA), which consists of 30 gl−1 Trypticase Soy Broth (BBL) supplemented with

15 gl−1 of Bacto Agar (Difco) (Vancanneyt et al., 1996). Sherlock MIS recommends the streak-

ing plate method for culturing of bacteria. Herein, four quadrants with decreasing cell densities

are created on the agar plate. The standard incubation conditions for aerobes 28◦C and 24h. In
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the case of slow-growing organisms, extended incubation may be necessary to obtain quantita-

tive reproducibility and to achieve sufficient cell mass for analysis (MIDI, 2005b). For bacteria

not showing an optimal growth, the conditions may be altered given that this deviation from the

standard protocol is described in detail in a log book or in a database. In most cases, this con-

cerns the afore-mentioned elongated incubation duration or an adapted incubation temperature.

An example of this latter case is the use of a higher temperature e.g. 52◦C for the growth of

thermophiles.

Following growth of the bacteria, fatty acids are extracted for subsequent GC analysis. The

usual preparation of extracts consists of hydrolysis of the whole-cell fatty acids and subsequent

methylation of the fatty acid esters to make them volatile in the gas chromatograph. Extraction

and derivation of the different fatty acids from the bacterial cells is achieved by the method as

described by Miller (1982). Briefly, GC ready extracts are prepared in the following five steps.

Approximately 40 to 50 mg (wet weight) of bacterial cells is harvested from the streaked plate,

and placed into a tube (13 by 100 mm) with a Teflon-lined screw cap. The most stable fatty acid

compositions are obtained from cultures in the late log phase of the growth and this corresponds

typically to organisms present in quadrant three of the plate. Next, cells are saponified by

heating them at 100◦C for 30 min following the addition of 1.0 ml of 15% NaOH (w/v) in 50%

aqueous methanol (v/v). This kills and lyses the bacterial cells, and liberates the fatty acids

from cellular lipid. Subsequently, the hydrolysate is cooled to ambient temperature, 3.25 N of

HCl in 45.8% methanol is added, and the mixture is heated at 80◦C for 10 min (this step is

critical in time and temperature). As a result, the pH of the solution drops below 1.5 and causes

methylation of the fatty acid, required for an increased volatility in a partially polar column.

Next, the methylated fatty acids are quickly cooled down to ambient temperature and extracted

through the addition of 1.25 ml of hexane and methyl tertiary butyl ether (1:1 v/v), after which

the tubes are capped and gently mixed for 10 minutes. This step removes the fatty acid methyl

esters from the acidic aqueous phase and transfers them to an organic phase. Subsequently, the

lower aqueous phase is pipetted out and discarded. Finally, in order to reduce contamination of

the injection port liner, the column and the detector, the sample is washed by adding 1.2% of

dilute NaOH (w/v) to the remaining organic layer. This base washing removes free fatty acids

and residual reagents from the organic extract, which will degrade the column and distort the

peak shape of hydroxy fatty acids in subsequent runs. Approximately two-thirds of the organic

layer containing the fatty acid methyl esters (FAMEs) is then transferred to a septum-capped

sample vial for GC analysis. The entire sample preparation process takes about 1h (Sasser,

1990; Osterhout et al., 1991; Welch, 1991; Dawyndt, 2004; MIDI, 2005b). This procedure is

illustrated and summarized in Figure 2.10. Following GC analysis, the extracted FAMEs are

named using the Sherlock MIS peak naming software.

In this perspective, it is important to mention that this protocol clearly shows the main dis-

advantage of FAME-based bacterial identification. Bacterial strains are required to grow on

plates following specific culture and growth conditions, even though MIDI Inc. states that the

Sherlock MIS libraries were developed by selecting conditions that are most favorable for a

majority of microorganisms. It is clear that this restricts the bacterial scope of the identifica-

tion technique drastically. Nonetheless, in this work, we dealt with bacterial strains that allow
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Figure 2.10: The Sherlock Microbial Identification System workflow (Sasser, 1990).

identification following the described growth and sample preparation protocol.

2.3.1.3.4 Calibration and Peak Naming

Good laboratory practice regarding culture/growth conditions and sample preparation, and

proper GC operation may still lead to an unsuccessful FAME profiling. For instance, defects

or disorders in equipment can still result in distorted profiles. The peak naming methodology

of Sherlock MIS uses the composition of a calibration standard to continually monitor the healt

of the system. The standard is a mixture of the straight-chain saturated fatty acids from 9 to 20

carbons in length (C9:0 to C20:0) and five hydroxy acids. All compounds are added quantitatively

so that the GC performance may be evaluated by the software each time the calibration mix is

analyzed. The hydroxy compounds are especially sensitive to changes in pressure/temperature

relationships, to contamination in the injection port liner and to column degradation. These

can result in poor peak shape (peak tailing) or in a loss of the hydroxy acid peak area. As a

result these compounds function as quality control checks for the system. When a calibration

analysis is completed, the computer checks the results against the peak naming table for a

specific number of peaks and a pattern of retention times and area percent amounts. Deviations

from the expected values result in a failure to calibrate, and a warning message. A calibration

runs twice at the beginning of every batch and is automatically reanalyzed after every 11th

(default) sample injection. Each sample batch also contains a positive control, and a reagent

blank (containing no bacteria) as a negative control. As positive control for the TSBA library,

MIDI Inc. recommends the strain Stenotrophomonas maltophilia LMG 958T because the strain

has a complex fatty acid profile that is diagnostic for problems throughout all stages of sample

preparation. These two quality control samples are analyzed after calibration and before any

other batch samples. The negative control is diagnostic for reagent contaminants (Sasser, 1990;

MIDI, 2005b; Kunitsky et al., 2006; MIDI, 1990).

FAMEs are identified on the basis the so-called equivalent chain length (ECL) units. This

value is a representation of a fatty acid’s retention time which is related to a set of straight-chain

saturated FAMEs (C9:0 to C20:0) present in the calibration mixture. The ECL value is equal to

the number of carbon atoms present in a straight-chain saturated fatty acid, e.g. C11:0 has an
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ECL value of 11.000. So, a second and quantitative function of the calibration standard is to

provide accurate retention times for these straight-chain FAMEs. Based on the ECL values of

the peak naming table entries for all peaks in the calibration mix, a ‘nominal’ retention time for

each peak is calculated. Ultimately, the ECL value of each FAME peak x in each batch sample

can be calculated by linear interpolation of its elution time in relation to the elution times of the

reference FAMEs as given by

ECLx = n +
RTx − RTn

RTn+1 − RTn

, (2.1)

where RTn is the retention time of the straight-chain saturated FAME with n carbon atoms,

preceding x in the calibration mix. RTn+1 is the retention time of the straight-chain saturated

FAME eluting after x in the calibration mix. Sherlock MIS allows detection at 0.010 ECL units,

which ensures a great precision in the resolution of fatty acid isomers (i.e. compounds with the

same formula but with a different molecular structure) (Osterhout et al., 1991; MIDI, 2005b;

Kunitsky et al., 2006; MIDI, 1990).

ECL calculation is followed by a match of the ECL values against the naming windows of a

peak naming table. The Sherlock software compares the ECL of each peak in the batch sample

with the expected ECL of the fatty acids in the peak naming table. Peaks that do not correspond

to ECL values of known fatty acid peaks are left unnamed and are not further considered. In this

perspective, it is important to remark that the accuracy of naming fatty acid peaks by comparing

retention times with those of a known mixture is high but definitive identification can only

be made by mass spectrometry. Practical constraints like column length or limited run time

force acceptance of a less than perfect chromatography. Thus, we are not dealing with an ideal

situation in which all peaks are clearly resolved and no data is lost due to some inability of

the chromatographic separation process. Also, some peaks are not clearly delineated from one

or more neighbour peaks, resulting in overlapping naming windows. The Sherlock approach

defines a so-called summed feature wherever imperfect peak separation occurs. For further

data analysis and comparison, this summed feature is regarded as an entity equivalent to clearly

delineated FAME peaks. Note also that the names of a small number of FAME peaks have

not yet been resolved by mass spectrometry, leading to the peak naming table entry ‘unknown’

followed by the corresponding ECL value. After naming the peaks in an unknown sample,

Sherlock MIS compares the ECL values for the most stable FAMEs to the peak naming table’s

theoretically perfect values and may recalibrate internally if sufficient differences are detected

(Sasser, 1990; Welch, 1991; Dawyndt, 2004; MIDI, 2005b, 1990).

Once the naming process of the different chromatographic peaks is finished, only the named

FAME peaks are further considered. For each batch sample, a composition report is generated

covering several parameters of all peaks named in the chromatogram. For each of these peak,

the retention time, area, area/height, response factor, ECL value, peak name, the relative amount

and some calibration information is listed. When one or more summed feature are present, the

names of the constituting compounds are reported as a comment. Also, the error between the

actual ECLs and the expected ECLs is reported (denoted as ECL deviance), which is a measure

of the system accuracy in naming peaks. The last parameter is the Reference ECL shift which
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reports the drift from the last calibration and is a measure of the chromatographic stability. An

example of this report with the chromatogram is given in Figure 2.11. The area under the peak

reflects the relative amount of the individual fatty acids. The amount of fatty acids is calculated

as a percentage of the total amount. Calculation of this relative percentage is, however, not that

simple. Peaks in the early part of the analysis are more affected by GC oven temperatures and

those later in the analysis are more severely impacted by carrier gas flow rates. The use of an

electronic pressure controller for achieving constant flow minimizes this error. This implies that

the first peaks will somewhat be underestimated, while peaks at the end of the chromatogram are

slightly overestimated. To obtain an objective approximation of the relative fatty acid amount

ar
i of the ith named peak, a weighted percentage is calculated by the formule

ar
i =

ria
a
i∑

j∈N

rjaa
j

, (2.2)

where N represents the set of named peaks of the profile, aa
j is the absolute area of the j th peak

and rj is the weight factor assigned according to the ECL position of the j th peak. In the FAME

profiles report, these weights are denoted as the response factors and their value is derived

from the calibration. As such, the response factor adjustment corrects the area counts for long-

term drift and instrument-to-instrument variation. Note that from Eq. (2.2), it follows that the

sum of the relative fatty acid amounts in a given profile equals 1. Besides these parameters,

the profile report also informs the user about the total area count (denoted as total response)

of peaks eluting at or between C9:0 and C20:0, relating to all extracted fatty acids, the total

area of all named peaks (denoted as total named), the percentage named (denoted as percent

named) and the final total amount of named peak (denoted as total amount). A final remark to

be made is that the fatty extraction procedure may carry over sterols and other non-fatty acid

materials. So, electronic noise may result in transient spikes, which might interfere with the

chromatographical process. Fatty acid peaks are report to have area/height ratios greater than

0.017 and less than 0.070, making it possible to set thresholds at these levels. Electronic noise

spikes typically correspond to area/height ratios less than 0.017 and non-fatty acids peaks (e.g.

sterols) usually correspond to ratios greater than 0.070, allowing rejection of these artifacts

(Sasser, 1990; Welch, 1991; Dawyndt, 2004; MIDI, 2005b, 1990).

In this work, the TSBA50 peak naming table was used which consists of 135 naming win-

dows. By the definition of 7 summed features, these windows cover 117 FAME peaks. The

same number of windows, summed features and FAME peaks is present in the earlier version

of this peak naming table, the TSBA40 peak naming table. An overview of the entries of the

TSBA50 peak naming table is reported in Appendix B.1.

2.3.1.3.5 Identification Library

Once a microbial strain has been cultured, processed and analyzed by the Sherlock MIS, the

fatty acid fingerprint can be matched with a specific identification library. Due to quantitative

and qualitative shifts in the FAME profile by changing growth conditions, only comparisons

between FAME profiles resulting from the same conditions make sense. Therefore, it is impor-
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Volume: DATA2           File: E059054.61A       Samp Ctr: 15                 ID Number: 19147 

Type: Samp                   Bottle: 7                         Method: TSBA50 

Created: 9/5/2005 4:47:56 PM 

Sample ID: BACI-SUBTI(LMG7135T/B407/P37) 

RT Response Ar/Ht RFact ECL Peak Name Percent Comment1 Comment2

1.690 5.042E+8 0.028 ---- 6.992 SOLVENT PEAK ---- < min rt

1.802 10846 0.025 ---- 7.211 ---- < min rt

2.073 420 0.023 ---- 7.738 ---- < min rt

2.129 755 0.022 ---- 7.848 ---- < min rt

2.275 391 0.020 ---- 8.133 ---- < min rt

6.865 1891 0.038 0.986 13.619 14:0 ISO 1.19 ECL deviates  0.000 Reference -0.001

7.386 504 0.045 0.978 13.999 14:0 0.32 ECL deviates -0.001 Reference -0.002

8.347 34537 0.040 0.967 14.623 15:0 ISO 21.37 ECL deviates  0.000 Reference -0.001

8.485 59681 0.040 0.966 14.713 15:0 ANTEISO 36.88 ECL deviates  0.000 Reference -0.001

9.571 1318 0.039 0.958 15.387 16:1 w7c alcohol 0.81 ECL deviates  0.000

9.969 5663 0.041 0.955 15.627 16:0 ISO 3.46 ECL deviates  0.000 Reference -0.001

10.189 3569 0.043 0.954 15.759 16:1 w11c 2.18 ECL deviates  0.002

10.589 5583 0.042 0.952 16.000 16:0 3.40 ECL deviates  0.000 Reference -0.001

11.261 4550 0.045 0.949 16.389 ISO 17:1 w10c 2.76 ECL deviates  0.001

11.416 2149 0.044 0.949 16.479 Sum In Feature 4 1.30 ECL deviates  0.003 17:1 ISO I/ANTEI B  

11.678 23156 0.044 0.948 16.630 17:0 ISO 14.04 ECL deviates  0.000 Reference -0.002

11.838 19488 0.043 0.947 16.722 17:0 ANTEISO 11.81 ECL deviates -0.001 Reference -0.002

14.073 781 0.050 0.942 18.000 18:0 0.47 ECL deviates  0.000 Reference -0.003

---- 2149 --- ---- ---- Summed Feature 4 1.30 17:1 ISO I/ANTEI B  17:1 ANTEISO B/i I  

ECL Deviation: 0.001                             Reference ECL Shift: 0.002      Number Reference Peaks: 9

Total Response: 162871                         Total Named: 162871

Percent Named: 100.00%                       Total Amount: 156304

Matches: 

Library Sim Index Entry Name

TSBA50 5.00 0.873 Bacillus-subtilis 

)73P/704B/T5317GML(ITBUS-ICAB  ]74191[ A16.450950E

Figure 2.11: Sherlock MIS example report. Report of the analysis of the whole-cell FAME compo-
sition of Bacillus subtilis LMG7135T. The report consists of three main parts: the chromatogram with
the different FAME peaks, a report with detailed peak information and an identification report. In this
report, only one entry was given for the identification of Bacillus subtilis LMG7135T.
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tant that identifications are only performed by a library built upon the same culture and growth

condition protocol. In this work, we used the TSBA50 identification library. The Sherlock MIS

identification libraries consist of more than 100.000 analyses of strains obtained from experts

and from culture collections. The cultures were collected from around the world to avoid a

potential geographic bias. However, the scope of the Sherlock MIS libraries is limited due to

MIDI’s inability to obtain adequate numbers of strains. To provide normal species variability,

where possible, 20 or more strains of a species or subspecies were analyzed to make the entry.

When, due to high intra-taxon variability, chromatographic subgroups (so-called GC groups)

were found within a taxon, more strains were obtained to delineate each GC group. Each

group is considered as a separate library entry. Therefore, MIDI Inc. states that its libraries

are carefully developed to take inter-strain and experimental variation into account. In view of

identification by machine learning techniques, this is a quite important remark to make. Due

to variations in the FAME profiles, generalization is critical for an adequate identification. De-

spite MIDI Inc. ensures identification is based on normal species variability and that 20 or more

strains of a species are integrated, however, users are not informed about this critical inter- and

intra-species variability (Sasser, 1990; MIDI, 2005b; Kunitsky et al., 2006). In the combined

Sherlock libraries, there are nearly 2,000 microbial species, including 700 environmental aero-

bic species, 620 anaerobic species and 200 species of yeasts. However, when looking more into

detail to the genera covered in this study, no major update was seen in the libraries. The upgrade

from the TSBA40 (783 entries) to the TSBA50 (888 entries) identification library showed an

increase of 3, 5 and 10 new species in the genera Bacillus, Paenibacillus and Pseudomonas,

respectively, and a removal of 5 Bacillus species and 2 Pseudomonas species (MIDI, 2003,

2005c). The upgrade from the TSBA50 to the TSBA6 identification library showed only an

increase of 3 new Bacillus species and the removal of 1 Pseudomonas species (MIDI, 2005a,c).

As the upgrade of TSBA40 to TSBA6 took 2 years and as the bacterial landscape is monthly

changing (see also Figures 2.3, 2.5 and 2.7), it can be concluded that, from a taxonomic per-

spective, no major changes were implemented for the tree genera. Note also that not all library

entries correspond to one species (GC groups and species groups) and that not all included

species are valid according to the List of Prokaryotic names with Standing in Nomenclature

(LSPN) (Euzéby, 1997). An overview of the entries for the genera Bacillus, Paenibacillus and

Pseudomonas is given in Appendix B.2. Of course, one straightforward solution is to create

personal custom identification libraries. MIDI Inc. allows users to do this by their Sherlock

MIS software by the Library Generation System package. Also here, it is important that the

FAME profiles of all included strains should be generated following the same culturing method

and sample preparation protocol (Kunitsky et al., 2006).

Identification of unknown samples by the Sherlock MIS is based on a so-called Similarity

Index (SI). The SI is a numerical value in the interval [0,1], which expresses how closely the

fatty acid composition of an unknown sample matches with the mean fatty acid composition of

the strains used to create the library entry listed as its match. Thus, the SI is not a probability or

percentage but an expression of the relative distance of the unknown sample from the population

mean. An SI value of 1.0 indicates a perfect match with the taxon associated with the library

entry. The SI assumes that fatty acid distributions for species of microorganisms are normally
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distributed and that the mean of the population characterize the taxon represented by the entry.

As each fatty acid varies from the mean percentage, the SI will decrease proportionally to the

cumulative variance between the composition of the unknown sample and the library entity

(Kunitsky et al., 2006). The SI of a particular fatty acid x compared to the population mean of

the library entry A is given by

SI(x,A) = e−(αd)2 , (2.3)

where α = 3 (corresponding to an SI of 0.600) and d is a particular distance. In calculating a

distance between fatty acid profiles two important facts have to be considered. First, FAMEs

do not necessarily have the same variances, which makes, for instance, the use of the Euclidean

distance unsuitable. As an example, assume that the patterns in a library entry show relative

areas that are densely concentrated around the value tk for fatty acid k, while for fatty acid l

the same patterns are within a much wider interval around the value tl. Then the distance d

between xk and tk is much more significant than the same distance measured between xl and

tl. Euclidean distance does not take into account this possible asymmetry. Another problem

with Euclidean distance and related measures is a bias in the similarity value towards the major

fatty acids, as these will have a larger impact on the global similarity or dissimilarity than the

minor fatty acids. The latter fatty acids may, however, also have a large discriminatory power.

A solution for this problem is to normalize the distance with respect to the variance. Second,

fatty acids are not independent features. Fatty acids are synthesized by a biosynthesis pathway

in which fatty acids are converted to other fatty acids (due to growth and/or a temperature shift,

e.g. C16:0 to C16:1 due to the action of a desaturase). These dependencies can be described by

an m × m covariance matrix which captures the mole-to-mole relationship of the conversion

of one fatty acid to another, with m the number of fatty acids present in the peak naming table.

Finally, a solution accounting for both the variances and the covariances of fatty acids is the

Mahalanobis distance. This distance between the fatty acid profile x of the unknown sample

and the mean fatty acid profile μ of the library entry can be expressed using the standard formula

for multivariate Gaussian (or normal) distance given by

d2(x, μ, Σ) = (x − μ)Σ−1(x − μ)T, (2.4)

where Σ is the respective covariance matrix and Σ−1 its inverse. (x − μ)T is the transposed

column vector of (x − μ). If fatty acids would be independent of each other, the non-diagonal

elements (covariances) of the covariance matrix would be zero and the Mahalanobis distance

would become the normalized Euclidean distance. When the variances of the fatty acids would

also be equal, the Mahalanobis distance would be reduced to the Euclidean distance. One major

problem is related to the calculation of the Mahalanobis distance: the distance only exists if

Σ−1 can be calculated, i.e. if Σ is non-singular (or, the determinant is not zero). To overcome

this problem, Sherlock MIS uses a technique based on an eigenvalue-eigenvector analysis of the

covariance matrix. Herein, a small value is added to the eigenvalues to avoid that some eigen-

values are zero or close to zero. To get the inverted matrix Σ−1, the adjusted eigenvalues are

inverted and rotated by the eigenvector matrix (Sasser, 1990; Osterhout et al., 1991; Dawyndt,

2004).
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MIDI defines three interpretation guidelines when using their Sherlock MIS system. Sam-

ples with an SI of 0.5 or higher and with a separation of 0.1 between the first and the second

match are considered good library comparisons. If the SI is located in the interval [0.3,0.5] and

is well separated from the second match, it may be a good match but an atypical strain. Values

lower than 0.3 suggest that the organism is not a species in the library. Of course, if matches

are reported, these indicate the most closely related entries in the identification library (MIDI,

2005b; Kunitsky et al., 2006). An example of an identification report is given in Figure 2.11.

2.3.1.4 In-house FAME Database

Since 1989, Sherlock MIS has been used for FAME profiling at the Laboratory of Microbiol-

ogy (Ghent University, Belgium) and the BCCM™/LMG Bacteria Collection (Ghent University,

Belgium). Following culturing, sample preparation, GC analysis, peak naming and identifica-

tion, FAME profiles are stored in an Oracle database management system (Oracle Corporation,

Redwood Shores, CA, USA). At present, twenty years of FAME analysis have resulted in more

than 71,000 FAME profiles. The evolution in the number of generated FAME profiles is vi-

sualized in Figure 2.12. However, no internal quality control system is implemented on top

of the database, meaning that not all data are suitable for data analysis. All information of

the Sherlock MIS peak naming tables and identification libraries is also stored in this in-house

database. Where Sherlock MIS is quite restrictive for extensive data analysis, this approach

allows the use of third-party data analysis and data mining software packages and, thus, allow-

ing a broader range of possibilities for FAME data analysis. For computational data analysis,

the software package BioNumerics (Applied Maths, Sint-Martens-Latem, Belgium) is in use for

many years. This software package was chosen because it allows easy connection with database

management systems by the Open Database Connectivity (ODBC) protocol and offers a wide

range of data mining possibilities. Regarding machine learning, the used software version im-

plemented only very basic machine learning techniques (clustering and ANNs). Nonetheless,

for a machine learning approach in computational FAME analysis this software package offered

a good starting point in the selection of FAME profiles and the creation of large data sets.

2.3.2 FAME Analysis of Species in the Genera Bacillus, Paenibacillus and Pseu-
domonas

2.3.2.1 Bacillus

Analysis of the fatty acid content of the members of the genus Bacillus started somewhat

in the same year as Abel et al. (1963) suggested the practice of fatty acid analysis in bacterial

classification. One of the first research papers on fatty acid analysis in the genus Bacillus con-

cerned B. subtilis (Saito, 1960a). Later, one of the main players in the research on the fatty acid

content of Bacillus species was Kaneda (Alberta Research Council, Edmonton, Canada). His

work is mainly described in the series ‘Biosynthesis of Branched-chain Fatty Acids’ (Kaneda,

1963a,b, 1966a,b) and ‘Fatty Acids in the Genus Bacillus’ (Kaneda, 1967, 1968), and in his later

review papers (Kaneda, 1977, 1991). Further research concerned the fatty acid content of an

increasing number of species together with the effect of bacterial growth conditions (Shen et al.,
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Figure 2.12: Trend in whole-cell FAME analysis. Number of whole-cell FAME profiles generated
at the Laboratory of Microbiology and BCCM™/LMG Bacteria Collection (Ghent University, Belgium)
from the start in 1989 to 21/11/2009. The total number of FAME profiles equals 71,267.

1970; Kaneda, 1972; Rilfors et al., 1978). Numerical analysis of fatty acid data was compiled

in a review paper on about 30 Bacillus species (Kämpfer, 1994). In this work, an enormous

heterogeneity in the fatty acid profiles was demonstrated and the genus Bacillus could be sub-

divided in seven FAME clusters with even several fatty acid biotypes within one species. Even

though the genus Bacillus has known substantial changes in its taxonomy (splitting off into new

genera and a huge increase in the number of new species), since the paper of Kämpfer (1994)

no genus-wide study of the fatty acid content of the genus Bacillus has been performed. In the

perspective of the systematics of the genus Bacillus, one of the latest reviews on whole-cell fatty

acid analysis is also given by Kämpfer (2002). Predominant fatty acids in Bacillus are C14:0, iso

and anteiso C15:0 and anteiso C17:0 (Logan and De Vos, 2009). More detailed information about

the fatty content of the different Bacillus species can be found in the references of the papers

mentioned above, in the different papers with species descriptions and in Bergey’s Manual for

Systematic Bacteriology (Logan and De Vos, 2009).

2.3.2.2 Paenibacillus

The genus Paenibacillus was split off from the genus Bacillus (Ash et al., 1993). According

to the description of Paenibacillus gen. nov., fatty acids are primarily long-chain cellular fatty

acids of the straight-chain saturated, anteiso- and iso-branched types with a predominance of

anteiso C15:0 generally comprising around 55% but ranging between 34%-80%. Iso C15:0, iso

C16:0 and C16:0, anteiso C17:0 generally comprise the remainder of the fatty acids (Ash et al.,

1993; Priest, 2009). Heyndrickx et al. (1996) performed a numerical FAME analysis of 11

species of the genus Paenibacillus. Also for this genus, a clustering of FAME profiles resulted in

the distinction of several species groups. The major groups corresponded well with the species

composition of two major amplified ribosomal DNA restriction analysis (ARDRA) clusters. For

more detailed information about the FAME content of the different Paenibacillus species see

also the corresponding species description and to Bergey’s Manual for Systematic Bacteriology

(Priest, 2009).



CHAPTER 2 BACTERIOLOGY 79

2.3.2.3 Pseudomonas

Pseudomonas belongs to the Gram-negative bacteria. This implies that initial research on

the fatty acid in this genus was focused on the corresponding LPS layer. As mentioned be-

fore (see Subsection 2.3.1.1), this LPS layer is responsible for an important discriminatory

fraction of hydroxy fatty acids. It was initially shown for Pseudomonas aeruginosa by sev-

eral researchers that the major fatty acid fraction of the LPS layer was constituded of hydroxy

acids (Fensom and Gray, 1969; Hancock et al., 1970). In the 1970s, main research on the

fatty acid content of the members of the genus Pseudomonas sensu lato (often referred to as

the “Pseudomonads") was performed at the laboratory of Moss (Center for Disease Control,

Atlanta, USA; (Moss et al., 1972; Moss and Samuels, 1974; Dees and Moss, 1975; Moss and

Dees, 1975; Moss, 1975; Moss and Dees, 1976; Dees et al., 1979; Moss, 1981). They found

that FAME patterns were useful for rapidly distinguishing between Pseudomonas species and

species groups, and that repeated FAME analysis resulted in similar patterns. Next to research

on the bacterial fatty acid content itself research was performed on improvements of the analytic

GC method. Of course, other microbiologists performed research on the cellular fatty acid con-

tent of the Pseudomonads. Ikemoto et al. (1978) concluded that the presence of hydroxy acids,

cyclopropane acids and branched-chain acids was characteristic for the groups and species in

the genus. Interestingly, probably as one of the first, these authors used the equivalent chain

length (ECL) for FAME peak detection. The ECL value was determined from the logarithm

of the retention time of saturated straight-chain FAMEs plotted against their carbon number.

A major study of the 3-hydroxy fatty acids was reported by Oyaizu and Komagata (1983). In

the early 1990s, the first evaluations of Sherlock MIS were also performed with Pseudomonas

species (Osterhout et al., 1991; Stead, 1992; Stead et al., 1992), of which the group of Stead

focused on the plant-pathogenic Pseudomonas species. The latter paper can be regarded as one

of the first important review papers as 38 of the, at that time, 86 validly described Pseudomonas

species were analyzed. Six groups of strains were discriminated, mainly based on three types

of hydroxy fatty acids (also core hydroxy fatty acids: 2-hydroxy, 3-hydroxy and iso-branched

3-hydroxy), even though they count for less than 10% of the total peak area. Quantitative dif-

ferencs in non-hydroxy fatty acids allowed differentiating between taxa within those groups

and few qualitative differences were found between the profiles of taxa included in the same

subgroups. Even unique profiles were found for infraspecific taxa (subspecies, biovar, patho-

var) (Stead et al., 1992). Importantly, Stead et al. (1992) also found good correlation between

the fatty acid grouping and grouping based on the results of DNA-DNA and DNA-rRNA hy-

bridization. Four years later, Vancanneyt et al. (1996) performed a taxonomic evaluation of the

Pseudomonads. In this study, 30 Pseudomonas species were included. Again the presence of

hydroxy fatty acids was shown to be a good (taxonomic) marker for delineating species and a

good correlation was found between the major groups resulting from whole-cell FAME analy-

sis and the groupings based on DNA-rRNA hybridization. However, Vancanneyt et al. (1996)

also concluded that from the mean species fatty acid content, species discrimination was not

possible within the different groups. From the last two studies, it could also be concluded that

predominant fatty acids in the genus Pseudomonas are C16:0, C18:1 and derivatives (Stead et al.,
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1992; Vancanneyt et al., 1996). Regarding hydroxy fatty acids, C10:0 3-OH, C12:0 2-OH and

C12:0 3-OH are predominant (Palleroni, 2005). For more detailed information about the FAME

content of the different Pseudomonas species see also the corresponding species descriptions

and to Bergey’s Manual for Systematic Bacteriology (Palleroni, 2005).
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CHAPTER 3
Data Analysis

The beginning of knowledge is the discovery of

something we do not understand

FRANK HERBERT

3.1 Introduction

With an eye on performing a more extensive computational analysis such as machine learn-

ing experiments, it is always good to have a first look at the data at hand. Different questions

can initially be asked. How do the features look like and how do they relate to each other?

It is not only interesting to look within each species but also to analyze how the data differs

between different species. Therefore, as a first step in our computational analysis, we focus on

the extraction of this basic knowledge from the data sets.

We first describe our in-house FAME database and how the different FAME profiles were

selected and exported from this database. Next, the different data sets are discussed. The main

part of this section encompasses the results of our experiments with four basic data analysis

techniques. With the calculation of average FAME profiles, the data is analyzed at species

level. Clustering of the data shows relations between profiles, species and peaks. A TaxonGap

analysis is done to visualize distance between species based on FAME data. And, finally, a

principal component analysis is performed to visualize the data in a lower dimensional space

and to further evaluate the variability in the data.

3.2 Data Selection

The joint in-house FAME database of the Laboratory of Microbiology (Ghent Univer-

sity, Belgium) and the BCCM™/LMG Bacteria Collection currently contains more than 71,000

FAME profiles. From this database, using the BioNumerics (Applied Maths, Sint-Martens-

Latem, Belgium) data analysis software (versions 4.6 and 5.1), FAME data sets were created for

the three genera Bacillus, Paenibacillus and Pseudomonas. In order to start from high-quality

data sets, the sampled data sets needed a subsequent manual inspection. This was mainly nec-

essary due to the presence of FAME profiles of low quality, FAME profiles of non-public LMG

strains and FAME profiles of non-validly described species. A customized selection strategy

was designed, which comprises the following points:
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1. For identification purposes, it is essential to integrate only validly described bacterial

species and to aim at a genus-wide scope. From the list of validly described bacterial

species, all Bacillus, Paenibacillus and Pseudomonas species were selected. In this study,

we used the bacterial Nomenclature Up-to-Date of the German Collection of Microor-

ganisms and Cell Cultures (DSMZ, 2009), which corresponds to the List of Prokaryotic

Names with Standing in Nomenclature (Euzéby, 1997) and the NCBI Taxonomy Browser

(NCBI, 2009b).

2. All FAME profiles corresponding with the selected valid species were selected and ex-

ported from the database using the BioNumerics software package. This selection com-

prises FAME profiles of both public and non-public LMG strains, and research strains.

Research strains are strains that are not deposited in the BCCM™/LMG Bacteria Col-

lection and are denoted in the FAME database by the letter ‘R’, a hyphen and a unique

number.

3. Because of the above-mentioned problems, further fine-tuning of the FAME profile se-

lection was required. The following criteria were imposed:

• Removal of those FAME profiles that were not generated in accordance with the

growth and culture conditions as defined by a certain peak naming table. In this

study, we used the Sherlock MIS TSBA50 peak naming table. The corresponding

conditions are a growth incubation temperature of 28◦C, a growth duration of 24h,

an aerobic growth atmosphere and the TSA growth medium. The BCCM™/LMG

Bacteria Collection defines the TSA growth medium as LMG Medium 185. Nonethe-

less, some species do not grow under these standard conditions. This is mostly due

to a too low temperature and/or short duration. Thus, exceptions were allowed for

some species. A nice example is the moderate thermophile Bacillus thermoamylovo-

rans that has an optimal growth temperature of 50-52◦C (Combet-Blanc et al.,

1995). Only FAME profiles of this species were sampled corresponding with growth

at 52◦C. Other examples are some Paenibacillus species that require a growth dura-

tion of 48h in order to have a sufficient amount of biomass for good GC analysis.

Of course, deviations from the standard conditions need to be explicitly described

and reported, as only unknown FAME profiles grown under the same conditions

will become validly identified. In the database, each FAME profile is also linked to

a description field, reporting additional information regarding the adopted growth

and culture conditions. However, not all FAME profiles are additionally described

by this field. Based on this information, profiles corresponding with aberrant condi-

tions could also be removed. Note that most FAME profiles generated before 2001

are not adequately annotated and are considered to be standard profiles. Based on

the additional description, also in this case, aberrant profiles could be removed.

• Check of consistency in growth and culture conditions for each species separately.

Because of quantitative variations with changing environmental conditions, only one

single value or type of temperature, duration, atmosphere and medium was allowed.

Again, this was a requirement for making valid identification possible.
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• Based on the strain catalog of the BCCM™/LMG Bacteria Collection, only those

profiles corresponding with public LMG strains were retained. This rule was im-

posed by the Bacteria collection for not publishing non-public strain information.

As we were, however, confronted with species for which very little data is available,

a bypass operation was allowed in which non-public LMG strains were enclosed as

research strains.

• A threshold of three FAME profiles per species was set. This in view of learning

with a training, validation and test set. To enable validation of model parameters

and testing of the prediction performance of the final identification model, at least

one profile was included in each subset.

• Logically, empty FAME profiles and profiles comprising only one peak with a 100%

relative peak percentage were removed. These aberrant profiles mainly result from

gas-chromatographic problems or incorrect sample preparation.

• Removal of FAME profiles with less than three FAME peaks. This rule was im-

posed as such a profiles have a high probability of being erroneous. As stated in

Subsection 2.3.1.1, a sound FAME profile consists of 5 to 15 FAME peaks.

• Subspecies were not further considered and, thus, were enclosed within the cor-

responding species. Infrasubspecific annotations were only considered in the genus

Pseudomonas where the subdivision proposed by Gardan et al. (1999) was followed.

• A visual inspection of the profiles was finally required in order to remove outliers.

Outliers are regarded as FAME profiles that are qualitatively and quantitatively dis-

tinct from the majority of FAME profiles of the same species or strains. Logically,

these outliers can only be detected within species and strains corresponding with a

large number of FAME profiles.

It is clear that this procedure corresponds to a lot of manual and tedious work. As an example,

it approximately took 1.5 days for generating the Bacillus data set. Because of this manual

creation and inspection, the presence of minor errors remained possible. This was mainly the

case for profiles generated before 2001. Nonetheless, this whole sampling process can be auto-

mated but will still need a good logging system and ultimate visual inspection for detecting any

sampling errors or FAME profile outliers.

This data selection procedure was mainly executed four times during this work. First, a

Bacillus FAME data set was created according to the validly published taxonomy of November

2006. Second, Bacillus and Pseudomonas data sets were created according to the validly pub-

lished taxonomy of October 2007. These data sets were created for presentation of the machine

learning work at the BioMicroWorld congress in Seville in November 2007. As the identifi-

cation results of this sampling approximated the results of the first and third sampling, these

data sets are not further considered in this work. The third sampling resulted in three FAME

data sets, according to the validly published taxonomy of March 2008. These data sets were

also transformed into other data set types. The three genera were merged into a genera data set.

FAME profiles annotated by genus and species name as well as annotations only by the genus

name were considered. From the Bacillus data set, a small 15 species data set was created.
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And, from the Pseudomonas data sets, two data sets were created regarding plant pathogenesis

(more information below). Fourth, a final update of the third data selection was performed ac-

cording to the validly published taxonomy of May 2008. In this latter case, a full genus-wide

scope was aimed. Due to delays in delivery of the bacterial strains by several culture collections

(world-wide) and different authors, this work is still ongoing. For each of these data sets, sev-

eral hundreds of additional FAME profiles were generated by the Laboratory of Microbiology

so that at least three FAME profiles were available for each species. An overview of some data

set statistics is given in Table 3.1. Tables A.1 and A.2 report the included strains of the 2006 and

2008 data sets, respectively, together with the total number of corresponding FAME profiles.

This dissertation mainly handles research performed by the data sets generated in March 2008

and this is also the case for the data analysis reported in this chapter.

Year Data Set # Species # Strains # Profiles # FAME peaks

2006 Bacillus 82 477 1,077 79
2007 Bacillus 76 502 1,045 87

Pseudomonas 89 566 1,466 97
2008 Bacillus 74 436 961 71

Paenibacillus 44 189 378 46
Pseudomonas 95 667 1,673 94
Genera 213 1,292 3,012 105

Table 3.1: Statistics of the generated data sets. For each data set year, type of data set, and number of
corresponding species, strains, FAME profiles and FAME peaks are reported.

From Table 3.1 some interesting facts can be deduced. For instance, from 2006 to 2008

the number of validly described Bacillus species included in the FAME database decreased

with seven species, as a result from species renamed within the genus or to species of another

genus. This is nicely visualized in Figure 2.3. From 2006 to the end of 2008, ten species were

renamed outside the genus Bacillus and four Bacillus subtilis group species were enclosed in

another species of the group: B. axarquiensis and B. malacitensis were enclosed in the species

B. mojavensis (Wang et al., 2007b), while B. velezensis was re-evaluated as B. amyloliquefa-

ciens (Wang et al., 2008). Besides this, a remarkable decrease in the number of Bacillus strains

is noticed. This is due to the species B. circulans, for which the strains were restricted toward

the so-called B. circulans sensu stricto. As a consequence, 68 of the 72 strains were removed

from the data set. Many questions and a lot of confusion still exist about the taxonomic position

of these strains. It is clear that this species needs a thorough further revision.

In the case of the genus Pseudomonas, a lot of microbial research focuses on the many plant-

pathogenic strains present in the genus. Different species comprise pathogenic strains such as

P. syringae, P. savastanoi and P. marginalis. Especially the species P. syringae is widely studied

because of the large number of plant-pathogenic strains. An important study is performed by

Gardan et al. (1999) who analyzed 48 P. syringae pathovars and 8 related species by DNA-DNA

hybridization. In the according study, nine genomospecies are proposed. A short overview of

these genomospecies is given. Genomospecies 1 corresponds to P. syringae sensu stricto and

includes the P. syringae pathovars syringae, aptata, lapsa, papulans, pisi, atrofaciens, aceris,
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panici, dysoxyli and japonica. Genomospecies 2 includes the P. syringae pathovars phaseoli-

cola, ulmi, mori, lachrymans, sesami, tabaci, morsprunorum, glycinea, ciccaronei, eriobotryae,

mellea, aesculi, hibisci, myricae, photiniae and dendropanacis and Pseudomonas savastanoi,

Pseudomonas ficuserectae, Pseudomonas meliae and Pseudomonas amygdali. This genomo-

species is given the name of P. amygdali, as this is the earliest valid name. Genomospecies 3

includes the P. syringae pathovars tomato, persicae, antirrhini, maculicola, viburni, berberidis,

apii, delphinii, passiflorae, philadelphi, ribicola and primulae. P. syringae pv. tomato serves as

the type strain. Genomospecies 4 includes "Pseudomonas coronafaciens" (not validly described

yet) and P. syringae pathovars porri, garcae, striafaciens, atropurpurea, oryzae and zizaniae

and corresponds to "P. coronafaciens". Genomospecies 5 includes P. syringae pv. tremae and

is named Pseudomonas tremae. Genomospecies 6 includes Pseudomonas viridiflava and the

strains of P. syringae pv. ribicola and P. syringae pv. primulae and is named P. viridiflava.

Genomospecies 7 includes P. syringae pv. tagetis and P. syringae pv. helianthi. P. syringae pv.

tagetis serves as reference. Genomospecies 8 includes P. syringae pv. theae and Pseudomonas

avellanae and thus corresponds to P. avellanae. Genomospecies 9 includes P. syringae pv.

cannabina and corresponds to Pseudomonas cannabina. As DNA-DNA hybridization is the

reference for species delineation, this genomospecies (sub)division is followed in this study.

Hence, for this case of plant-pathogenic Pseudomonas species, two separate FAME data sets

were created: a plant-pathogenic Pseudomonas data set covering 25 species and the complete

Pseudomonas data set with the species labeled as being plant-pathogenic or not. Again, a Pseu-

domonas species was considered to be plant-pathogenic when at least one of its strains is known

as a pathogen of either plants or mushrooms. An overview of the considered plant-pathogenic

species is given in Table 3.2, together with the different host(s) and corresponding references.

These species are also denoted by superscript ‘p’ in Table A.2. Remark that P. fluorescens is

not included in the list of species, while some biovars of this species are pathogenic to plants

(Gardan et al., 2002).

Remark that some species are generically misnamed and are or need to be transferred to

another genus. Examples are P. beteli and P. hibiscicola that are heterotypic synonyms of the

species Stenotrophomonas maltophilia (Van Den Mooter and Swings, 1990), and P. geniculata

that should be transferred to the same genus (Anzai et al., 2000). P. pictorum is a close relative

of the genus Stenotrophomonas. The same problem is true for the species P. cissicola that

should be transferred to the genus Xanthomonas, with P. boreopolis being a close relative (Hu

et al., 1997; Anzai et al., 2000; Palleroni, 2005) A similar anomaly holds for P. flectens that

based on 16S rRNA gene sequence analysis clusters in the family of the Enterobacteriaceae

(Anzai et al., 2000; Palleroni, 2005). In this study, we further denote these species as P. beteli

group, except for P. flectens. However, for most species no valid renaming has been done yet

(Euzéby, 1997).

The scope of the data sets created in this study is, logically, dependent on the number and

type of research projects performed at the Laboratory of Microbiology during the last 20 years,

and of the service demands directed to the BCCM™/LMG Bacteria Collection by companies,

research institutes, etc. Thus, not all bacterial species are of equal importance and interest

in both cases, ultimately resulting in data sets covering species with a different number of
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Species # FAME Host(s) Reference(s)
profiles

P. agarici 8 Mushroom, Agaricus bis-
porus

(Höfte et al., 2007)

P. amygdali 111 Almond, Prunus amygdalus (Höfte et al., 2007)
P. asplenii 13 Bird’s-nest fern, Asplenium

nidus
(Gardan et al., 2002)

P. avellanae 4 Hazelnut, Corylus avellana (Janse et al., 1996)
P. beteli 6 Betel, Piper betle (Van Den Mooter and

Swings, 1990)
P. cannabina 7 Hemp, Cannabis sativa (Gardan et al., 1999)
P. caricapapayae 5 Papaya, Carica papaya (Höfte et al., 2007)
P. cichorii 32 Wide host range (Smith et al., 1988; Höfte

et al., 2007)
P. cissicola 8 Cissus japonica (Hu et al., 1997)
P. coronafaciens 44 Oat, Avena sativa (Gardan et al., 1999)
P. corrugata 22 Tomato, Lycopersicon; also

Chrysanthemum, Geranium,
Medicago, pepper

(Catara et al., 2002; Gardan
et al., 2002; Höfte et al.,
2007)

P. costantinii 6 Mushroom, Agaricus bis-
porus

(Munsch et al., 2002; Höfte
et al., 2007)

P. flavescens 7 Walnut, Juglans regina (Hildebrand et al., 1994)
P. flectens 6 Phaseolus vulgaris (Gardan et al., 2002)
P. fuscovaginae 45 Rice, Oryza sativa; also

Allium, Secalotriticum,
Triticum, grass

(Miyajima et al., 1983)

P. hibiscicola 6 Hibiscus rosa-sinensis (Van Den Mooter and
Swings, 1990)

P. marginalis 63 Pastinaca sativa; also Al-
lium, Cichorium, Medicago,
Phaseolus, Phragmipedium

(Gardan et al., 2002; Höfte
et al., 2007)

P. mediterranea 10 Tomato, Lycopersicon; also
pepper

(Catara et al., 2002; Höfte
et al., 2007)

P. salomonii 10 Garlic, Allium sativum (Gardan et al., 2002)
P. syringae 88 Wide host range (Gardan et al., 2002)
P. syringae

38 Wide host range (Gardan et al., 1999)
genomospecies 3
P. syringae 8 Helianthus annuus, Tagetes (Gardan et al., 1999)
genomospecies 7 erecta
P. tolaasii 53 Mushroom, Agaricus

bisporus; also Agaricus
bitorquis, Allium sativum,
Pleurotus ostreatus, Pleuro-
tus eryngii

(Munsch et al., 2002; Höfte
et al., 2007)

P. tremae 8 Trema orientalis (Gardan et al., 1999, 2002)
P. viridiflava 17 Wide host range (Höfte et al., 2007)

Table 3.2: Overview of the considered plant and mushroom pathogenic Pseudomonas species. For
each species, the number of FAME profiles, the host(s) and corresponding reference(s) are given.
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corresponding FAME profiles. Moreover, not all species have an equal number of strains and

not all strains are of equal importance. This further led to an additional imbalancing of the data

sets. This can clearly be noticed in the respective strain tables A.1 and A.2. The imbalanced

nature of the data sets created in March 2008 is illustrated in Figures 3.1 and 3.2. In view of

data analysis and machine learning research, it is important to keep this imbalanced nature in

mind during statistical analysis. Also important to consider, especially in view of identification

by machine learning models, is the very large number of species together with the very small

number of FAME profiles per species. Depending on the separability of the species by FAME

data, the accuracy of species prediction could be seriously confined.

From these figures, it is immediately clear that the majority of classes only contained a

small number of FAME profiles. For each of the three genera, one can also notice which

species were and still are of main research, service interest and importance to both the Lab-

oratory of Microbiology and the BCCM™/LMG Bacteria Collection. Core examples for the

genus Bacillus are B. cereus (food-poisoning and opportunistic human/animal pathogen) and

B. subtilis group species (type species; food, clinical, veterinary and environmental importance);

for the genus Paenibacillus: Pa. larvae (insect pathogen), Pa. polymyxa (type species; plant

rhizosphere-associated) and Pa. thiaminolyticus (large number of strains); and for the genus

Pseudomonas: P. aeruginosa (type species; opportunistic human and plant pathogen), P. amyg-

dali (plant pathogen), P. fluorescens (food spoilage and plant pathogen), P. marginalis (plant

pathogen), P. putida (common soil species, bioremediation) and P. syringae (plant pathogen).

3.3 Data Analysis and Visualization

In this section, data analysis of the 2008 data sets is described. Different methods were used

and a genus-wide analysis was pursued. From literature, the latest genus-wide studies concern-

ing FAME analysis in the genera Bacillus, Paenibacillus and Pseudomonas date from the study

of Kämpfer (1994), Heyndrickx et al. (1996) and Vancanneyt et al. (1996), respectively (see

also Subsections 2.3.2.1, 2.3.2.2 and 2.3.2.3). It is clear that an updated revision of the genera

was needed, which is described in the following subsections. Analysis focused on the peak

level (average and peak distribution), on the species level (distance calculation and clustering)

and on dimensionality reduction (PCA).

3.3.1 Average FAME Profile

First, it is always intriguing to study how feature values vary over the different classes,

which in this study correspond to bacterial species. Especially in the framework of the present

study, this type of analysis should be preferred over a global analysis of the complete data set,

i.e. without regarding the species labels of the profiles. As the sampled data sets were im-

balanced, this type of data analysis would result in biased conclusions. Thus, average FAME

profiles were calculated for each species and the average peak values of the major fatty acids

and standard deviations are reported in Appendix A.2. For the genera Bacillus and Paenibacil-

lus, only peaks with a prevalence in more than ten species are considered, while in the genus
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Figure 3.1: Number FAME profiles per Bacillus and Paenibacillus species.
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Figure 3.2: Number FAME profiles per Pseudomonas species.
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Pseudomonas the prevalence cut-off is set at twenty species (due to a higher number of included

species and peaks). These average FAME profiles were further analyzed by looking at the peak

averages and standard deviations, and at prevalences over the averaged data set.

71 FAME peaks were found in the Bacillus data set, comprising 74 species. The major fatty

acids of the average profiles are reported in Table A.3. Major fatty acids in the genus Bacillus

were C15:0 anteiso and C15:0 iso. Smaller amounts of C14:0, C14:0 iso, C16:0, C16:0 iso, C16:1 w11c,

C17:0 anteiso, C17:0 iso and iso C17:1 w10c were found. These findings corresponds to the study

of Kämpfer (1994) and the description of Logan and De Vos (2009) (see also 2.3.2.1). The

standard deviations were small to moderate, except for B. azotoformans for which only three

profiles were included, originating from two strains (LMG 9581Tand LMG 15443) and with

two profiles corresponding to the type strain. Distinct differences were seen in the fatty acid

profiles of both strains. The distribution of the peak values of these average FAME profiles

as averaged over all species is visualized in Figure 3.3. It is clear that two C15:0 fatty acids

were predominant with quite large standard deviations. This was also true for the eleven fatty

acids that corresponded to smaller peak values. Thus, a large variability was present in the

major peaks of the data set, being advantageous for qualitative and quantitative discrimination

purposes. A peak prevalence distribution over the average profiles of all species is illustrated in

Figure 3.4. From this plot, it could be concluded that seven peaks were present in each Bacillus

species and could, thus, be regarded as core-Bacillus peaks. A lot of peaks only occurred in one

to ten species, and could be regarded as species- or even strain-specific.

In the genus Paenibacillus 44 species covered 46 FAME peaks. Table A.4 reports the main

average FAME profile of each species. The predominant fatty acid was C15:0 anteiso. Smaller

peak areas were detected for C14:0, C14:0 iso, C15:0 iso, C16:0, C16:0 iso, C16:1 w11c, C17:0 anteiso

and C17:0 iso. This corresponds to the conclusions of Heyndrickx et al. (1996) and the descrip-

tion in Bergeys Manual of Systematic Bacteriology (Priest, 2009). Standard deviations denoted

also quite stable FAME profiles. Differences were seen in the six FAME profiles of Pa. cineris.

These profiles originated from two strains (LMG 18439Tand LMG 21976) showing distinct dif-

ferences in almost all major fatty acids. The distribution of the peak values of these average

profiles as averaged over all species is visualized in Figure 3.5. The standard deviation of the

predominant peak C15:0 anteiso showed that this fatty acid is a quite stable core-Paenibacillus

peak. As a result, species discrimination based on this fatty acid will be confined. Eight fatty

acids corresponded to smaller peak amounts and showed quite large standard deviations, mean-

ing that discrimination is possible in both a qualitative and quantitative manner. Also a peak

prevalence distribution was plotted for the average profiles of all species. Figure 3.6 shows that

eight more core-Paenibacillus peaks were present. Moreover, also in this data set a lot of peaks

had a prevalence of only one species, allowing qualitative discrimination. In between, some

fatty acids ocurred in about half of the species but in small amounts. An example is FAME iso

C17:0 w10c. In this case, quantitative as well as qualitative discrimination becomes possible.

The 95 Pseudomonas species covered 94 FAME peaks. The main average profile of each

species is reported in Table A.5. Predominant fatty acids were C16:0, C18:1 w7c and summed

feature 3. Smaller peak areas were found for the FAMEs C10:0 3OH, C12:0, C12:0 2OH and C12:0

3OH. Note the difference with the two other data sets where hydroxy fatty acids (related to
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the LPS layer of Gram-negatives) are not present as major fatty acids, in contrast to this data

set. These findings correspond to the study of Vancanneyt et al. (1996) and the description

in Bergey’s Manual of Systematic Bacteriology (Palleroni, 2005). As in the Bacillus data set,

standard deviations were also high. Interestingly, distinct average fatty acid profiles were seen

for the species P. beteli, P. boreopolis, P. cissicola, P. flectens, P. geniculata, P. hibiscicola

and P. pictorum. As stated above these species were actually generically misnamed within the

genus Pseudomonas sensu stricto. But, from this FAME study, it was also clear that this group

of species is an outgroup within this genus.

The distribution of the relative peak area values of the average FAME profiles as averaged

over all species is visualized in Figure 3.7. The standard deviations of the major fatty acids were

quite large, allowing again for a quantitative as well as a qualitative discrimination. The majority

of peaks had a very low average, implying the possibility of only a qualitative discrimination.

Nonetheless, from the distribution plot of peak prevalence in the average FAME profiles of all

species (see Figure 3.8), half of the number of peaks was present in more than ten species.

Interestingly, only four fatty acids occurred in all average profiles, though twelve fatty acids

occurred in more than 80 of the 95 species (84%). Thus, this data set with a larger number of

species, strains and profiles related to only a small number of FAME profiles with moderate

to high average peak values. This makes the presence of FAME peaks with small peak area

percentages, or thus qualitative discrimination, more important for prediction purposes, when

compared to the Bacillus and Paenibacillus data sets.

3.3.2 Clustering

Next to the calculation of an average FAME profile for each species present in the data

set, it is also interesting to look at how the data initially group or cluster together. For easy

visualization, a heatmap of the data set was created. Initially, only peaks were clustered. In this

case, the different data set instances were alphabetically ordered by species name. Subsequently,

also clustering was performed at the species level. Clustering was performed with the statistical

software R and the algorithm heatmap.2 function of the gplots package. In calculating distances

between fatty acid profiles, it is important to consider that minor fatty acids can have a large

discriminatory power. Therefore, a good alternative to the commonly used Euclidean distance

and to the Mahalanobis distance, as used by the Sherlock MIS system, is the Canberra metric

that is defined as

dcanb(x, y) =
1

n

n∑
i=1

|xi − yi|
|xi| + |yi| . (3.1)

The Canberra metric calculates the sum of a series of fractions between pairs of data points.

Thus, this metric does not only take into account the distance between two points but also their

distance to the origin (Dawyndt, 2004). This distance is very sensitive to small changes when

the two considered points are close to the origin. In other words, minor fatty acids will have a

larger contribution to the distance, when for instance compared to the Euclidean distance. Note,

however, that the covariances between the fatty acids are not considered in this distance and that
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Figure 3.3: Average of peak percentages in the genus Bacillus
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Figure 3.4: Peak distribution in average species profiles the genus Bacillus
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Figure 3.5: Average of peak percentages in the genus Paenibacillus
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Figure 3.6: Peak distribution in average species profiles the genus Paenibacillus
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Figure 3.7: Average of peak percentages in the genus Pseudomonas
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Figure 3.8: Peak distribution in average species profiles of the genus Pseudomonas
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all FAMEs are regarded as independent features. The two clustered data heatmaps are vi-

sualized for the genera Bacillus, Paenibacillus and Pseudomonas in Figure 3.9– 3.11, respec-

tively. The [0,1]-interval of FAME values is visualized by a green-black-red colour range. Also,

at the left of each heatmap, each species is coded by a different colour. In the peak-clustered

heatmaps, FAME profiles are alphabetically ordered according to their corresponding species

name. A dendrogram is drawn for each hierarchical clustering, using the average distance.

Similar to the findings in the previous section, also from these figures it is immediately clear

that the FAME profiles of the species of the genera Bacillus, Paenibacillus and Pseudomonas

comprised a small number of major fatty acids, while the FAME scope of the different data

sets is pretty large. From the peak-clustered heatmaps, different FAME groups could be dis-

tinguished. Now, when also clustering of the data instances was considered, it became clear

that the FAME profiles of different species showed to be quite similar and that different species

were represented by several FAME groups. These similarities and FAME subgrouping of the

different species clearly makes the identification task based on similarity calculation a hard job,

but an interesting challenge when considering machine learning. In the case of Bacillus, certain

species clearly cluster together and some distinct species clusters could be distinguished. The

same, but better, was also true for the Paenibacillus data set. It could also be noticed that in the

case of Pseudomonas this subgrouping was enormeous, making the prediction task very hard.

Note however, that a different number of species was present in each data set with a differ-

ent number of strains and profiles. However, this is not necessarily a constraint for good data

separation.

3.3.3 TaxonGap

3.3.3.1 A Visualization Tool for Intra- and Inter-Species Variation among Individual

Biomarkers

3.3.3.1.1 Introduction

Selection of optimal biomarkers for the identification of different operational taxonomic

units (OTUs, i.e. leaves of a phylogenetic tree) may be a hard and tedious task. This is es-

pecially the case when phylogenetic trees for multiple biomarkers, typically genes, need to be

compared. When evaluating candidate biomarkers for the identification of different OTUs, one

intuitively is looking for molecular markers that at the same time show the least amount of het-

erogeneity within OTUs and result in a maximal separation between the different OTUs. The

first requirement must guarantee that members of the same OTU have the same (or at least

similar) biomarkers, so that they can easily be grouped together based on those markers. The

second requirement must guarantee that members of different OTUs have sufficiently different

biomarkers, so that an identification based on those markers cannot erroneously suggest as-

signment of the members to the same OTU. TaxonGap was especially designed to produce a

compact graphical representation of the resolution of individual biomarkers within and between

taxonomic units, allowing easy and reliable inspection of the data for evaluation across different

OTUs and different biomarkers.
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Figure 3.9: Heatmap of data with clustering of the genus Bacillus data set. The left figure illustrates
only peak clustering, while the right plot illustrates peak and profile clustering. Clustering is based on the
Canberra metric. Rows correspond to the different FAME profiles, which are alphabetically ordered and
coloured by species name (presented at the left of each heatmap). Columns correspond to the different
FAME peaks. Peak percentages are coloured from green to red with an increasing value, as represented
by the colour key in the top-left corner.
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Figure 3.10: Heatmap of data with clustering of the genus Paenibacillus data set. The left figure
illustrates only peak clustering, while the right plot illustrates peak and profile clustering. Clustering is
based on the Canberra metric. Rows correspond to the different FAME profiles, which are alphabeti-
cally ordered and coloured by species name (represented in the colour bar at the left of each heatmap).
Columns correspond to the different FAME peaks. Peak percentages are coloured from green to red with
an increasing value, as represented by the colour key in the top-left corner.
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Figure 3.11: Heatmap of data with clustering of the genus Pseudomonas data set. The left figure
illustrates only peak clustering, while the right plot illustrates peak and profile clustering. Clustering is
based on the Canberra metric. Rows correspond to the different FAME profiles, which are alphabeti-
cally ordered and coloured by species name (represented in the colour bar at the left of each heatmap).
Columns correspond to the different FAME peaks. Peak percentages are coloured from green to red with
an increasing value, as represented by the colour key in the top-left corner.
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3.3.3.1.2 Algorithm and Graphical Representation

For a given set of OTUs {O1, O2, ..., On}, the s-heterogeneity within taxon Oi is defined by

maxx,y∈Oi,x �=y ds(x, y) . (3.2)

Herein, ds(x, y) represents the distance between the (different) members x and y of the taxon Oi

as measured from the biomarker s. These distances are presented in a separate distance matrix

for each biomarker. Likewise, the s-separability of taxon Oi is defined by

minx∈Oi,y /∈Oi
ds(x, y) . (3.3)

The taxon containing that member y for which a minimum distance is reached in the compu-

tation of the s-separability, is called the closest neighbour of taxon Oi. Note, however, that

the closest neighbour relationship is not necessarily symmetric: the fact that Oj is the closest

neighbour of Oi does not imply that Oi is also the closest neighbour of Oj . TaxonGap calculates

the matrix of s-heterogeneity and s-separability values with the different OTUs as matrix rows

and the different biomarkers as matrix columns. Headers are placed to the left and on top of

the matrix. To improve interpretability of the resulting graphical representation, the OTUs are

presented according to their position in a phylogenetic tree, as an alternative to listing them in

alphabetic order. With the aim to improve visual inspection and interpretation of the data and

to support optimal comparability of the values across the biomarkers, TaxonGap presents the

s-heterogeneity and the s-separability values respectively as light gray and dark gray horizontal

bars for the individual biomarkers. The name of the closest neighbour is attached to the right

side of the dark gray bar. Light gray bars are printed on top of and are made less thick than dark

gray bars. Although not a strict requirement, it is advised that the same OTUs are used for eval-

uation of the different biomarkers. Missing biomarker data for a given OTU leads to holes in

the TaxonGap output matrix. Note also that there is no necessity to use the same OTU members

for evaluating different biomarkers. Importantly, the application of TaxonGap is not restricted

to the comparison of genetic or molecular markers. In fact, TaxonGap accepts pairwise distance

matrices generated from any kind of biomarkers. All biomarkers that enable the calculation of

pairwise distance matrices may be compared using TaxonGap.

The graphical representation produced by TaxonGap offers a number of advantages over

comparing individual phylogenetic trees for the evaluation of different biomarkers in identifica-

tion studies. First of all, a separate row is reserved in the TaxonGap output for heterogeneity and

separability values of different biomarkers for a single taxon, which is not the case when com-

paring phylogenetic trees. Even after a tedious process of swapping branches, it is not always

possible to draw phylogenetic trees in a way that enables clear visual comparison. This is espe-

cially true when phylogenetic trees for multiple genes need to be compared. In addition, Tax-

onGap uses the same scaling for depicting distance values based on individual biomarkers. Few

software tools for drawing phylogenetic trees allow precise control over scaling. Both place-

ment and scaling improve comparability of the heterogeneity and separability for individual

taxa. Secondly, it is important to point out the fact that phylogenetic trees present approxima-
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tions of the underlying distance values instead of using minimum and maximum as aggregation

operators. This is important when comparing s-heterogeneity and s-separability values for all

species of a given biomarker s. To underscore the overall success rate of individual biomarkers

to discriminate between the OTUs, TaxonGap depicts the overall separability (dark gray) per

OTU as a vertical line for each biomarker. This line is omitted when the overall separability is

too small. Finally, the graphical output of TaxonGap remains compact, even for data sets where

the number of OTU members or biomarkers grows large. This is because the software has a

built-in aggregation based on the individual OTUs and biomarkers. TaxonGap thus allows for

a more straightforward evaluation of the discriminatory power of individual biomarkers in an

OTU identification scheme, as opposed to the need of comparing separate trees drawn for each

of the OTUs in the scheme.

3.3.3.1.3 Software and Publication

TaxonGap is implemented as an executable JAVA archive (JAR) with a graphical user inter-

face. The graphical output is formatted as an enhanced postscript (EPS) document. Sequence

alignments, pairwise distance or similarity matrices and phylogenetic trees can be generated us-

ing third-party software packages. To make TaxonGap even more user-friendly, the command

line interface allows to use TaxonGap as a back-end plugin into this graphical software. Tax-

onGap 2.4.1, together with all previous builds, is currently freely available for download at the

KERMIT website http://www.kermit.ugent.be/TaxonGap.

This work is published as an Applications Note in the international peer-reviewed journal

Bioinformatics with reference B. Slabbinck, P. Dawyndt, M. Martens, P. De Vos and B. De Baets

(2008). TaxonGap: a visualisation tool for intra- and inter-species variation among individual

biomarkers. Bioinformatics, 24(6), 866-867.

3.3.3.2 FAME as a Taxonomic Marker

Hence, the intra- and inter-species variation of the three genera was also analyzed by the

TaxonGap software, with FAME considered as biomarker. Using the software package BioN-

umerics (Applied Maths, Sint-Martens-Latem), a clustering was performed of the different

FAME data sets with the Canberra distance metric and the resulting distance matrix was ex-

ported for analysis with the TaxonGap tool. For graphical representation, we did not opt for

a FAME tree but rather chose for integrating the 16S rRNA gene sequence tree, covering all

included species of the respective genus. The main reason is that the 16S rRNA gene allows to

discriminate between most bacterial species and because it is interesting to investigate how the

resolution of FAME analysis for species discrimination relates to the results of 16S rRNA gene

sequence analysis. For sequence analysis, one high-quality 16S rRNA sequence was manually

selected from the SILVA database (Pruesse et al., 2007). From the exported aligned sequences,

a maximum likelihood tree was calculated using 1000 bootstraps by the RAxML software (Sta-

matakis, 2006). As this software package allows distributed computing with the message pass-

ing interface (MPI), tree inference was performed in parallel on an Intel Blade cluster (Intel

Corporation, Santa Clara, CA, USA). The resulting tree, formatted in the Newick Tree Format,
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was adjusted for analysis with the TaxonGap software tool. For input-output scaling and for-

matting between the different software programs, several Perl scripts and JAVA programs were

developed.

A TaxonGap visualization was generated for each data set of the three genera, see Fig-

ures 3.12–3.14, respectively. For the considered genera, it is immediately clear that FAME

is not a good taxonomic biomarker when considering the species rank as OTU. For almost

all species, the intra-species variability (light-gray bars, heterogeneity) was much larger than

the inter-species variability (dark-gray bars, separability), while the opposite is needed for a

good taxonomic biomarker. This result was a clear indication of highly similar species, given

the considered data. The clustering experiment confirmed this result as high similarities were

seen between the FAME profiles of the different species. For many species, it could be seen

that the separability values were quite small. Low separability values were especially seen for

closely related species such as the species of the Bacillus cereus and Bacillus subtilis group.

In these cases, the closest neighbour was almost always another species of the corrsponding

group, except for B. cereus which closest neighbour was B. lentus (possibly due to a misanno-

tation). For the B. cereus group this was expected as the different species are mainly described

by phenotypic and pathogenic traits. In case of Pseudomonas, other examples are the species

with plant-pathogenic strains such as P. syringae, P. amygdali, P. genomospecies 3, P. genomo-

species 7, P. avellanae, etc. for which the closest neighbour was also one of the mentioned

species. The same trend was seen in the P. beteli group of species for which the closest neigh-

bours were also species from this group. Note here, that from 16S rRNA sequence analysis this

group was clearly an outgroup in the tree, assuming that the according species do not relate to

Pseudomonas sensu stricto. From the TaxonGap visualization of the genus Pseudomonas, it

could also be concluded that a lot of Pseudomonas species were very related in their FAME

profiles, as shown by the many low separability values. This could be assigned to the small

number of major fatty acid peaks present in the average FAME profiles and to the majority of

low peak values (see also figures above). This was again confirmed by the clustering analysis.

3.3.4 Principal Component Analysis

When dealing with datasets with an excessive dimensionality, one approach to reduce the

dimensionality is to combine the different features and, as such, project the high-dimensional

data in a lower dimensional space. Principal component analysis (PCA) is such a popular

dimensionality reduction method by which linear combinations are composed from the different

features (Duda et al., 2001). Initially, the linear combination that represents the largest amount

of variability in the data is chosen and called the first principal component (PC). Subsequent

linear combinations are composed that are orthogonal to the previous PCs, repeatedly based on

the combination representing the highest variance. A valuable visualization of the PCA analysis

is achieved by plotting the variance and accumulated variance of the top-x PCs in a so-called

skree plot. From this plot, it is easy to determine how many PCs are needed to cover a certain

percentage of variability in the data. These PCs can subsequently be used for learning with

a smaller number of features or dimensions, resulting in a less complex model. This is not
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Figure 3.12: Intra- and inter-species discrimination by FAME in the genus Bacillus. Visualization
generated by TaxonGap 2.4.1. The axis denotes the percentage of heterogeneity within a species and the
percentage of separability from other species. Dark grey bars denote the minimum separability from the
other species, while the light grey bars denote the maximum species heterogeneity. The arrow indicates
a line corresponding to the minimum separability over all species.
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Figure 3.13: Intra- and inter-species discrimination by FAME in the genus Paenibacillus. Visual-
ization generated by TaxonGap 2.4.1. The axis denotes the percentage of heterogeneity within a species
and of the percentage separability from other species. Dark grey bars denote the minimum separability
from the other species, while the light grey bars denote the maximum species heterogeneity. The arrow
indicates a line corresponding to the minimum separability over all species.
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Generated by TaxonGap 2.4.1

Figure 3.14: Intra- and inter-species discrimination by FAME in the genus Pseudomonas. Visual-
ization generated by TaxonGap 2.4.1. The axis denotes the percentage of heterogeneity within a species
and of the percentage separability from other species. Dark grey bars denote the minimum separability
from the other species, while the light grey bars denote the maximum species heterogeneity. The arrow
indicates a line corresponding to the minimum separability over all species.
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only advantageous for computational reasons but may also be very effective for increasing the

performance of an identification model.

A PCA analysis was performed for the three genus data sets and visualizations were sub-

sequently done by skree plots (see Figure 3.15). It was immediately clear that for the three

genera with only about five PCs approximately 95% of the variability in the FAME data could

be represented. This implied that the different features are highly correlated, which can mainly

be attributed to the fatty acid biosynthesis pathway where fatty acids are typically converted

into other fatty acid molecules and to the activity of certain enzymes (e.g. desaturase enzyme)

(Madigan et al., 2009). Knowledge of highly correlated features is important in view of con-

structing identification models with machine learning techniques as this implies that certain

patterns will be present in the data set and that certain features will become redundant and

non-informative.
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Figure 3.15: Principal component analysis of the three genera Bacillus, Paenibacillus and Pseu-
domonas. Skree plots are given for the data set of each genus, with only the ten first principal compo-
nents.

Following PCA analysis, it is also possible to draw biplots of the different PCs. Biplots were

generated only for the first two components of each data set and are visualized in Figures A.1–

A.3, respectively. The different species are annotated by different colours. To improve the

visibility of the large number of species, the most important species and species distinct in the

plot are additionally annotated by a particular shape or mark.

For the genus Bacillus, the cereus group species are annotated by an ‘×’ mark, while the

subtilis group species are annotated by a circle. The cereus group species could clearly be sepa-

rated from the other species, though species discrimination in the group will be very hard. This

latter remark also holds for the subtilis group species. In the biplot, other distinct species could

be found such as B. galactosidilyticus, B. decolorationis, B. ruris, B. niacini and B. pycnus. In

the biplot of the second and third PC (figures not shown), the subtilis group species became

more separated. And, in the biplot of the first and third PC (figures not shown), the B. cereus

moved into the global data cloud. Interestingly, in this biplot, temperature-related species were

more separated such as B. fumarioli, B. gelatini and B. thermantarcticus (all grown at 52◦C).

Also, B. coagulans and smithii became distant from the data cloud and from these species it is

known that their optimal growth temperature lies in the interval 40-57◦C and 25-60◦C, respec-

tively (Logan and De Vos, 2009). Temperature seems to play a certain role in this biplot.

For the genus Paenibacillus only one data cloud was visible with some distinct species.

Examples are Pa. anaericanus, Pa. stelifer, Pa. ginsengarvi and Pa. humicus. Species with a
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large amount of FAME profiles are annotated by a specific shape, such as Pa. polymyxa (‘×’)

and Pa. larvae (circle). In the biplot of the second and third PC as well as in the biplot of the

first and third PC, the data cloud became more compact (figures not shown).

For the genus Pseudomonas three distinct data clusters could be seen: a cluster with P. aerug-

inosa (red ‘×’), a cluster with the plant-pathogenic species (circles) and a cluster with P. beteli

(‘+’). In this biplot, the data was much more compact than in the corresponding biplot of the

other genera. In the biplot of the first and the third PC (figures not shown), the P. beteli group

species became more separated from the other species, and the same three clusters were ob-

served. Also in the biplot of the second and the third PC (figures not shown), the P. beteli

group was more separated, though the plant-pathogenic cluster and the P. aeruginosa cluster

overlapped.

It was also interesting to see how the three genera were located with respect to each other.

A biplot of the first two PCs is visualized in Figure 3.16. These first two PCs represented about

82% of the variance in the data (figure not shown). From the biplot, it could be concluded that

the three genera showed to be clearly separated from each other. Logically, the genera Bacillus

and Paenibacillus were more closely related with each other than with the genus Pseudomonas.

Nonetheless, some Pseudomonas appear in the Bacillus cluster. A closer look into the data

showed that this could be attributed to the P. beteli group species and P. flectens. This again

supports research, such as the work of Anzai et al. (2000), stating that the corresponding species

should actually not be integrated to the genus Pseudomonas.
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Figure 3.16: Principal component analysis of the genus data set. A biplot is visualized of the first
two principal components.

Finally, we also investigated how FAME data could be used to discriminate between plant-

pathogenic Pseudomonas species, and between this group and non-plant-pathogenic Pseudomonas

species. A biplot of the first two principal components is given for both data sets, see Fig-

ures 3.17 and 3.18. From the first biplot, corresponding to the plant-pathogenic data set, it is
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clear that plant-pathogenic species were hard to distinguish from each other. In this biplot, the

species belonging to the P. beteli group and the species P. flectens are not included. A better

scaling of the other species was obtained without these species. When compared to non-plant-

pathogenic species, the second biplot showed that the plant-pathogenic FAME data clustered in

one data cloud, and the non-plant-pathogenic data clustered into two FAME clouds, with one

cloud clearly overlapping with the plant-pathogenic FAME cloud.
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Figure 3.17: Principal components analysis of the plant-pathogenic Pseudomonas data set. A biplot
is visualized of the first two principal components. The species belonging to the P. beteli group and P.
flectens are not included in the plot.

3.4 Conclusion

In this section, we have discussed a FAME data analysis of the three genera Bacillus, Paeni-

bacillus and Pseudomonas. Notice that in this study, we deal with a very specific problem

setting. In view of classification by machine learning techniques, a lot of classes are present

and these are represented by a small number of data instances or FAME profiles. On average,

a small number of peaks was seen per species, even though a lot more peaks were present in

the complete data set. Core-genus peaks, that occurred in all species of the genus, were present

together with species- and strain-specific peaks. When averaged over all species of the genus,

peak values and their standard deviations showed that species discrimination can be done in a

quantitative and/or qualitative manner. Clustering and TaxonGap analyses showed that, when



108 3.4 CONCLUSION

−70 −60 −50 −40 −30 −20 −10 0 10 20 30
−20

−10

0

10

20

30

40

 

 

Figure 3.18: Principal components analysis of the 2008 Pseudomonas data set with species labeled
as being plant-pathogenic or not. A biplot is visualized of the first two principal components. Red
points correspond to non-plant-pathogenic species, while green points correspond to plant-pathogenic
species.

calculating similarities or distances from the FAME data, a bad discrimination and identifica-

tion will be attained as FAME profiles of several species are closely related. Also, it was clearly

visible that species show different FAME subgroups and that FAME data will mostly allow to

only discriminate between species groups. Moreover, from PCA analysis, it was shown that

FAME peaks are indeed correlated. Therefore, redundant information was present in the data

sets. Furthermore, based on the PCA analysis of the genus data set, the three genera could be

well separated from each other. From the different genus-specific PC biplots, it could be con-

cluded that the Pseudomonas species were more related in FAME data than the Bacillus and

Paenibacillus species. In the latter case, also more distinct species and species groups were

present. The conclusions regarding the Pseudomonas species were supported by the study of

the plant-pathogenic Pseudomonas species, that showed very related FAME patterns between

the different species. With all this knowledge, it could be underscored that identifying bacterial

species by similarity scores will probably not have a large power. Nevertheless, it is worth in-

vestigating how machine learning techniques will be able to generalize over the different species

and if optimal margins/boundaries can be calculated between these species. The high variabil-

ity within the species will be an obstacle in calculating reliable margins or boundaries, but the

peak correlations will allow a learning process and model construction with only a subset of

informative features.



CHAPTER 4
FAME-based Bacterial
Species Classification

Learning without thought is labor lost.

Thought without learning is perilous

CONFUCIUS

Die vier wil èn, moe de rook kun’ verdrag’n

A BRUGES SAYING

4.1 Introduction

The growing list of validly published bacterial species clearly indicates that the bacterial

landscape is continuously evolving. On 03/11/2009, 7,995 bacterial species were validly des-

cribed (Euzéby, 1997). Given this rapid change in taxonomy, back-end identification libraries

of first-line identification methods need constant updates. As gas chromatographic whole-cell

FAME analysis is cheap, easy to handle and automated, it is used by many laboratories as a first-

line identification method for bacterial species. Routine use at the Laboratory of Microbiology

(Ghent University, Belgium) and the BCCM™/LMG Bacteria Collection (Ghent, Belgium) has

led to a joint FAME database, currently containing more than 71,000 bacterial FAME profiles.

This database lends itself to keep track of the most recent changes in taxonomy of those taxa

that are vastly represented in the database and for machine learning purposes. FAME analysis

for bacterial identification relies, however, on the commercial Sherlock Microbial Identifica-

tion System (MIS, MIDI Inc., Newark, Delaware, USA) for which the back-end identification

libraries are only updated every few years and only cover part of all known species. The ac-

curacy of bacterial species identification is therefore highly compromised, making this update

latency a major drawback of the Sherlock MIS system. Even though microbial taxonomy is

changing rapidly, the development of up-to-date identification libraries can be realized by com-

puter systems and back-end databases.

Before 2006, the use of machine learning techniques for the classification of bacterial

species based on FAME profiles was restricted to a very small taxonomic scope. The first

FAME-based classification of bacteria was oriented towards seven genera of several marine

bacteria by means of artificial neural networks. The scope of this research was rather small

as the genera were represented by only 36 strains (Ruggiero et al., 1993). Extension of this
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research was done by classifying 4, 5 and 14 genera of marine and environmental bacteria re-

spectively, covered by 35, 26 and 39 species, and 71, 50 and 45 strains (Bertone et al., 1996;

Giacomini et al., 2000, 2004). In all cases, research was also directed to a restrictive number

of parameters concerning architecture and training of neural networks. Interestingly, however,

the researchers concluded that, as FAME data yields information at the species level, it would

be worthwhile to build a FAME-based bacterial species identification system. Until 2006, no

large-scale FAME-based and genus-wide bacterial species classification and identification was

established on the basis of machine learning techniques.

In the following two sections, we demonstrate the potential of classification and identi-

fication of species within the present genera Bacillus, Paenibacillus and Pseudomonas using

different machine learning techniques. In the first section, only the genus Bacillus is consid-

ered together with artificial neural networks (ANNs). Several data sets were built according

to different experimental setups considering various validation strategies and parameter set-

tings. Comparison of the identification results ultimately led to some promising setups towards

genus-wide Bacillus species identification. In the second section, we explore the realization of

an extented and up-to-date FAME-based bacterial species identification system powered by ma-

chine learning. The genera Bacillus, Paenibacillus and Pseudomonas were considered together

with three machine learning techniques: ANNs, support vector machines (SVMs) and random

forests (RFs). Based on a laboratory information management system and the FAME database,

we analyzed the identification at genus and species level. Analyses were evaluated both from

a computational and a microbiological perspective. Furthermore, the identification results were

subjected to an in-depth comparison with those obtained by the commercial Sherlock MIS.

4.2 Bacillus species classification: an ANN Approach

4.2.1 Methodologies

4.2.1.1 Artificial Neural Networks

In this section, we demonstrate the potential of classification and identification of species

within the genus Bacillus using supervised ANNs. The Bacillus species as validly described

in October 2006 were considered. More information concerning the data set can be found in

Table 3.1. Feed-forward ANNs with backpropagation were trained with the resilient propaga-

tion learning algorithm. The ANN architecture consisted of one hidden layer and two activation

functions were considered: the sigmoid and bipolar sigmoid activation function, further ab-

breviated as ‘s’ and ‘b’. An ANN with activation function f1 on the hidden output neurons

and activation function f2 on the output neurons is further denoted as ‘ANN f1/f2’. Stratified

simple validation (abbreviated as ‘val’) and cross-validation (abbreviated as ‘cv’) were used

for parameter optimization by early stopping. An example is given in Figure 4.1 for the op-

timization of the number of hidden neurons, using the mean squared error as error function.

Following trial-and-error experiments, different optimization intervals were finally chosen. The

interval [10,200] was used for optimizing ANN b/b and ANN s/b models, the interval [10,250]
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for optimizing ANN b/s models and the interval [10,350] for optimizing ANN s/s models. The

number of hidden neurons in the last two intervals is increased due to the sigmoid activation

function, as set on the output neurons, which corresponds to a smaller scope of output values

(see also Subsection 1.2.1.3.2). As we dealt with a multi-class setting, identification of test data

was done with the winner-take-all rule in which each data instance was labelled with the label

of the output neuron corresponding with the highest output value.
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Figure 4.1: An example of optimization of the number of hidden neurons. Optimization was done
by stratified cross-validation. Mean squared error (MSE) values are plotted for different numbers of
hidden neurons (step size of 5). The final number of hidden neurons is pointed by the arrow.

4.2.1.2 Balanced and Imbalanced Data Sets

The sampled Bacillus data set contained FAME profiles with a different number of profiles

for each species. Two possible directions could be considered for data set creation. Hence, the

main research question in this section elucidates whether all data in the data set can be used or

whether an equal number of profiles per species should be sampled. The former case is better

known as data sets with an imbalanced class distribution. When data is highly costly, as in our

case, this type of data set should be preferred. The latter case is better known as under-sampling

the data set to deal with class imbalances. These two types of data sets are further denoted as

imbalanced and balanced data sets. Different types of imbalanced data sets have already been

analyzed, such as highly imbalanced two-class data sets (Japkowicz and Stephen, 2002) and

imbalanced multi-class data sets (Weiss and Provost, 2003). As in a genus-wide identification

scheme bacterial species are regarded equally important, our identification setup differed from

those described.

Balanced data sets were created by randomly sampling three FAME profiles per species.

From each balanced and imbalanced data set, a test set was created by randomly sampling

one-third of the profiles of each species while using the remaining data for training. Cross-

validation was performed with two folds. In the case of simple validation, a validation set

was created by randomly sampling 50% of the training profiles of each species. Ultimately,

these setups resulted in four experiment types. Each experimental setup was repeated ten times,

each time with randomly sampled profiles. According to the four possible activation function

combinations, four ANNs were trained for each experimental setup. This finally resulted in 160

ANN experiments. For high-performance computing these experiments were performed on a



112 4.2 BACILLUS SPECIES CLASSIFICATION: AN ANN APPROACH

Blade cluster (Intel Corporation, Santa Clara, CA, USA). Identification itself could easily be

done on any modern PC.

4.2.1.3 Statistical Significance

For each experiment type, which was repeated ten-fold, the mean AUC and the standard

deviation were calculated. Significant difference in performance was tested by a Wilcoxon

rank-sum test and defined by a p-value below the significance level 0.05. This test was cho-

sen because the normality assumption of the underlying distributions could not be guaranteed.

Consequently, the Wilcoxon rank-sum test was a good alternative to the t-test (see also Sub-

section 1.3.3). All assumptions were met, except for the shapes of the underlying distributions

which were assumed identical.

4.2.2 Results and Discussion

4.2.2.1 ANN Performance

To evaluate ANN-based Bacillus species classification, an initial data set was composed of

1,077 whole-cell FAME profiles, originating from standard growth conditions and covering 82

species represented by a heterogeneity of 477 strains. Different training, validation and test sets

were randomly created, with varying balance type and validation type. An overview of ANN

performance for each experiment type is given in Table 4.1 for the activation combination lead-

ing to the best results. The mean overall AUC of each experiment type is plotted in Figure 4.2

for each activation combination. Note that the AUC was calculated for each class (species)

separately and an average was calculated over these classes (overall AUC), and subsequently,

an average was taken over the different repeats (mean overall AUC). Also, a slighthly differ-

ent approach was used for the calculation of the ROC curve, as described in Subsection 1.3.2.

Instead of using the output score of each profile as a threshold, here 10 thresholds were set in

the interval [0,1] by steps of 0.1. The four highest mean overall AUC values were obtained

for the imbalanced and cross-validated experiment type. The best result was obtained for the

experiment type with the bipolar sigmoid activation function on both neuron types. The cor-

responding mean overall AUC value was 0.914 and the mean TP% over all test profiles was

75.2%.

Experiment type Activation # Training # Validation # Test Mean AUC (stdev)
profiles profiles profiles

bal3val s/b 82 82 82 0.829 (0.041)
bal3cv b/b 164 0 82 0.881 (0.023)
imbal3val s/b 384 362 331 0.882 (0.031)
imbal3cv b/b 746 0 331 0.914 (0.010)

Table 4.1: Overview of the identification results of each experiment type with the activation com-
bination leading to the highest mean AUC. Number of training, validation and test profiles, and the
mean and standard deviation of the area under the ROC curve (AUC) are reported.
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Figure 4.2: Mean overall area under the ROC curve (AUC) and standard deviation of each exper-
iment type for each activation combination.

When looking at the experiments corresponding to the different repeats, the two experiments

with the highest overall AUC values were obtained by the imbalanced and cross-validated ex-

periments with the sigmoid and the bipolar sigmoid function on both neuron types. The overall

AUC values obtained were 0.933 and 0.932, respectively. These experiments resulted in a TP%

over all test profiles of 74.3% and 79.2%, respectively. Important to note is that even though

stratified test sets were used, due to the imbalance effect this metric is somewhat biased to-

wards the major classes. This bias problem was tackled by an alternative evaluation approach

described in the following section. Together with the results in Table 4.1, it can be concluded

that, given the possibility that some species are hard to distinguish from others based on FAME

profiles alone, a quite good classification can be achieved using ANNs.

To analyze significant difference in performance, a Wilcoxon rank-sum test was performed

for each relevant pair of experiment types. Only comparisons were done to analyze the effect

of the balance type and the validation type. This implies that only those experiment types

were compared differing in the respective parameter. An overview of the p-values is given in

Table 4.2.

Several general conclusions can be drawn from Figure 4.2 and Table 4.2:

1. Classification of the species of the imbalanced data sets led to higher AUC values

2. Cross-validation led to better results

3. No winning activation combination was detected

These conclusions are discussed into more detail in the following sections.

4.2.2.2 Effect of Balance Type

To analyze the effect of class balance type, experiment types with equal validation type were

compared. Figure 4.2 shows that imbalanced experiment types led to higher mean AUC values.
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p-value bal3val bal3cv imbal3val imbal3cv

bal3val 0.0007* 0.0002*
bal3cv 0.0002* 0.0003*

imbal3val 0.0002* 0.0013*

imbal3cv 0.0008* 0.0002*

bal3val 0.3256 0.0032*

bal3cv 0.1403 0.001*

imbal3val 0.0002* 0.0172*

imbal3cv 0.0002* 0.0013*

Table 4.2: p-values of the Wilcoxon rank-sum test based on the mean overall AUC of each exper-
iment type for each activation combination. Each activation combination corresponds to a triangle:
b/b (top-left), b/s (top-right), s/s (bottom-left) and s/b (bottom-right). Significantly better identification
performance is indicated by an asterisk (p < 0.05).

Table 4.2 indicates that all eight comparisons of balanced versus imbalanced experiments types

showed a significantly better performance when considering imbalanced data sets. For our

experimental setup, this is extremely important as our data were highly costly. These results

can be explained due to the incorporation of a larger number of profiles and thus integration

of a larger intra-species heterogeneity. Beside this, errors in imbalanced experiments were

averaged over more data points, resulting in a delayed early stopping. This implied longer

training which, together with the larger heterogeneity, led to a better generalization of the data

and a better identification of unknown patterns. From Table 4.1 and Figure 4.2 it can be seen

that the standard deviations in the balanced experiment types were larger than those of the

imbalanced experiment types. This implies that the balanced data sets were inherently linked to

the loss of critical information and that the corresponding classification was highly dependent

on data sampling. Altogether, we can conclude that it is more difficult to distinguish between

FAME profiles of the different species when considering balanced data sets. This led to the final

choice of training on imbalanced data sets.

4.2.2.3 Effect of Validation Type

To analyze the effect of the validation type, experiments with equal balance type were com-

pared. Figure 4.1 and Table 4.2 indicate that stratified cross-validation led to higher mean AUC

values than simple validation. From Table 4.2 it can be concluded that in six out of eight com-

parisons of the experiment types, the experiments validated by stratified cross-validation led to

a significantly better performance. Cross-validation can generally be expected to lead to bet-

ter results, in contrast to simple validation, as the errors during cross-validation are averaged

over the different folds and, thus, have less impact on the stopping of the ANN training. As

a consequence, the final error function during cross-validation increases less quickly. In the

experimental setup, stratified cross-validation should be preferred over simple validation.
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4.2.2.4 Effect of Activation Type

As mentioned above, no clear winning activation combination can be deduced from Fig-

ure 4.2. A Wilcoxon rank-sum test was performed to test significantly different activation com-

binations. Tests were performed for each pair of activation combinations by comparing equal

experiment types. Significant test results were obtained with a p-value below 0.05. The numbers

of significantly different mean AUC values are reported in Table 4.3. No significantly better ac-

tivation combination over all experiment types was found. Consequently, this parameter should

be determined empirically through optimization.

p-value b/b b/s s/s s/b

b/b

b/s 1
4

s/s 2
4

0
4

s/b 2
4

1
4

0
4

Table 4.3: Effect of the activation type. Number of activation combinations for the four experiment
types leading to significantly different AUC values based on the Wilcoxon rank-sum test (p < 0.05)

4.2.2.5 Winner-Take-All

The goal of first-line identification tools, such as gas chromatographic FAME analysis, is

not to achieve an exact identification but rather to narrow down the bacterial spectrum. Hence,

an additional test was done by analyzing, for each test profile, the species labels corresponding

to the output neurons with the five highest output values. In this experimental setup, a TP

was seen as a hit when the correct species label corresponded with one of the five highest

scores (annotated as ’five-best’ in Fig 4.3). The mean TP% was calculated by dividing the

number of TPs by the number of test profiles and averaging it over the ten repeats. Note that

the aforementioned remark about the imbalance effect also holds here. Similarly, this metric

was calculated for all experiment types in the original experimental setup (annotated as ’first’ in

Figure 4.3). Accuracies of each experiment type with each activation combination are plotted

in Figure 4.3. Similar results were obtained for different activation combinations. It is obvious

that for all experiment types the ’five-best’ approach led to better identification results and that

this approach met the goal of rapidly narrowing down the bacterial spectrum.

4.2.2.6 Closely Related Species

A closer look at the identification results leads to the conclusion that some species are better

identified than others. An important issue related to this problem is the distinctness between

species. The genus Bacillus contains two groups of species that are closely related: the Bacillus

cereus group, which contains the species B. anthracis, B. cereus, B. mycoides, B. pseudomy-

coides, B. thuringiensis and B. weihenstephanensis (Euzéby 2007), and the Bacillus subtilis
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Figure 4.3: Mean true positive (TP) percentages for each experiment type and for each activation
combination. Percentages are given for the identification of the correct species name as highest output
score (First), as present in the five highest output scores (Five Best) and as highest output score when
considering the B. cereus and B. subtilis species groups (Group). An experiment type consists of a
balance type (bal/imbal) and a validation type (val/cv).

group, which contained in 2006 the species B. amyloliquefaciens, B. atropheus, B. axarquien-

sis, B. licheniformis, B. malacitensis, B. mojavensis, B. pumilus, B. sonorensis, B. subtilis,

B. tequilensis, B. vallismortis and B. velezensis (Gatson et al., 2006; Hutsebaut et al., 2006).

Note that some rearrangements have taken place in the last years. Updated information can be

found in Subsection 2.2.3.1. Identification tools will hardly be able to distinguish between the

B. cereus-related species. This can be deduced from the highly similar fatty acid profiles of

B. cereus and B. thuringiensis (see also data analysis experiments); from genetic rRNA, gene

and plasmid sequence analysis; from population genetic studies and comparative genomic anal-

ysis; and because these species can only be differentiated based on their morphology, phenotype

and pathogenicity (Drobniewski, 1993; Kämpfer, 1994; Bavykin et al., 2004; Tourasse et al.,

2006). For the B. subtilis group a similar conclusion can be drawn. Fatty acid profiles of B. amy-

loliquefaciens, B. licheniformis and most strains of B. subtilis are highly similar and strains of

B. amyloliquefaciens show fatty acid patterns almost indistinguishable from those of B. subtilis

(Kämpfer, 1994). Nonetheless, two studies showed that B. amyloliquefaciens, B. licheniformis

and B. pumilus species could be discrimated (Vaerewijck et al., 2001; Coorevits et al., 2008).

Based on 16S rRNA analysis, Ash et al. (1991) showed that B. subtilis-related species form

a distinct clade in the phylogenetic Bacillus tree. As a result, one cannot expect that ANNs
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will be able to classify group-related species perfectly. Based on this prior knowledge, a new

evaluation of the experiments was done. When the profile of a species belonging to a species

group was identified by the winner-take-all rule as a member of that group, then the species

was annotated as a TP (annotated as ’Group’ in Figure 4.3). Also in this case, a mean TP%

was calculated and the results are plotted in this figure. Also, this figure clearly shows that

considering species groups improves the mean TP%. This also confirms that FAME profiles

of group-related species are highly similar and that it is difficult to differentiate between these

species based on FAME data. Beside the existence of species groups, it is also possible that

some species that are generally not regarded as belonging to species groups, are closely related

to other species. Therefore, identification methods should take into account that these species

cannot be separated based on their whole-cell fatty acid content. In both cases, analysis of the

resolution of FAME analysis for species discrimination and the integration of this resolution

information into the machine learning models will further enhance the FAME-based species

identification and contribute to the goal of a first-line identification tool. This integration is

discussed into more detail in Chapter 5.

4.2.3 Publication

This section is published in the international peer-reviewed journal Antonie van Leeuwen-

hoek International Journal of General and Molecular Microbiology with reference: B. Slab-

binck, B. De Baets, P. Dawyndt and P. De Vos (2008). Genus-wide Bacillus species identifi-

cation through proper artificial neural network experiments on fatty acid profiles. Antonie van

Leeuwenhoek International Journal of General and Moleculare Microbiology, 94, 187–198.

4.3 Three Genera - Three Techniques

4.3.1 Methodologies

In this section, we study the performance of the three machine learning techniques ANNs,

RFs and SVMs for species prediction within the three genera Bacillus, Paenibacillus and Pseu-

domonas. Only the data sets of March 2008 were considered, together with a genera data set

composed by merging the different genus data sets (see also Table 3.1). Thus, also genus iden-

tification was considered. For ANNs, the same setup was used as defined in Section 4.2.1.

Parameter optimization was done by three-fold cross-validation. For RFs, the number of trees

was first optimized in the intervals [1000, 4000] in steps of 250 and by setting the number

of split variables on its default value, i.e. the root of the number of features. Subsequently,

the number of split variables was optimized by evaluating the default value, twice the default

value and half of the default value. The optimal number of trees was used during this opti-

mization step. The RF technique has the advantage of not overfitting given a large number of

trees and, therefore, optimization of the parameters was performed with the test set and not

by cross-validaton within the training set. Thus, the test set error was used as error criterion.

For SVMs, the multiple one-versus-one optimization as implemented in the LibSVM software
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(further denoted as SVM) and the single optimization as implemented in the BSVM software

(further denoted as BSVM) were used with the linear (abbreviated as ‘lin’) and RBF kernels.

The cost parameter C and the RBF kernel parameter γ were optimized using three-fold stratified

cross-validation grid search. For the RBF kernel, the LibSVM and BSVM package provides a

Python script for optimizing both parameters. Default value ranges of both scripts were used

and are set to [2-5,215] in steps of 22 and [2-15,23] in steps of 22, respectively. For the linear

kernel, the C parameter was optimized over the value range [2-5,215] in steps of 22 in LibSVM

and [2-8,28] in steps of 22 in case of BSVM. A smaller range was chosen for BSVM as com-

putation time of this method was multiple times higher than that of LibSVM. If the maximum

value was reached, the interval range was extended with two steps. The probability outputs as

given by the software programs were used for further statistical analysis. The performance of

each technique was statistically analyzed as described in Section 1.3.

As mentioned above, also a genera data set was created. With this data set, genera iden-

tification was aimed at and a complete species identification over the three genera (see also

following subsection). For genera classification, ten-fold cross-validation was performed, due

to the larger amount of data available per class.

For all techniques, custom JAVA programs were developed for processing of the data, pa-

rameter optimization, learning and testing. Hereby, the pipeline from data set to statistical

analysis of the prediction results was completely automated. Overall, each experiment was

performed ten-fold, each time with randomly sampled training and test sets. Statistical mea-

sures resulting from the analysis were subsequently averaged over the experiments. These ex-

periments were also performed on a high-performance Blade cluster (Intel Corporation, Santa

Clara, CA, USA). Identification was done on any a single PC.

4.3.2 Experimental Design

Two strategies for classification and identification were evaluated which are schematically

represented in Figure 4.4. In the stratified identification strategy, genus and species identifi-

cation were performed by separate identification models. Identification was first performed at

genus level, followed by identification at species level. For genus identification, FAME pro-

files were only annotated by genus name. At species level, a species identification model was

generated based on a genus-specific data set. This data set comprised only FAME profiles of

the species of a particular genus, which were annotated by genus and species name. At species

level, profiles were only identified by the genus identification model corresponding with the

identification label of the profiles retrieved by genus identification. By considering only the

highest score of each profile following genus identification, this restricts the flexibility in iden-

tification. As a more flexible approach, alternative solutions could be considered here such as an

interval of highest output scores or a weighted approach. The second approach was the straight

identification strategy. Herein, one single species identification model was generated based on

the complete data set, in which the FAME profiles were annotated by both genus and species

name. This approach made the classification task quite hard with respect to the closely related

species of the genera Bacillus and Paenibacillus. The genus Pseudomonas is quite distant from
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Figure 4.4: Schematic presentation of the experimental design. 1A/B. Stratified identification strat-
egy. 1A. Genus identification is performed by the genus identification model. This model relies on the
complete FAME data set in which the profiles are annotated by genus name (dark grey box). 1B. For
each genus, a species identification model is built based on the FAME profiles corresponding to that
specific genus. The respective FAME profiles are annotated by species name (light grey boxes). In both
cases, each profile is labelled with the genus or species name associated with the highest output value.
However, species identification is only performed for the genus associated with the highest output value
following genus identification. 2. Straight species identification strategy. The complete data set of
FAME profiles is annotated by genus and species name (dark grey box). Identification is performed by a
single identification model. Each profile is labelled with the genus and species name associated with the
highest output value.

these two other genera, as clearly visualized in the biplot of the first two principal components

(see Figure 3.16), and will not hamper the calculation of margins between Pseudomonas species

and species of the two other genera. Importantly, for evaluation of the global performance of

each individual identification model, all data were considered, even though profiles could be

misidentified by the genus identification model in a stratified identification strategy!

For comparison with Sherlock MIS, the stratified identification strategy was considered. For

each species identification model, the training and test set combination resulting in the highest

AUC value was considered. Ultimately, identification at genus level was achieved by merging

the respective training and test sets and by training and testing a genus identification model

based on the merged data sets. As such, it was possible to identify the same profiles for genus

and species identification and to rule out those profiles incorrectly identified at genus level.

Importantly, the same machine learning technique was considered for the species identification

models as well as for the genus identification model. Even though it is possible that different

machine learning techniques result in better performance on different data sets, we focused on

the same technique for ease of implementation.
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(b) Bacillus
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(c) Paenibacillus
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(d) Pseudomonas
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(e) Straight ID

Figure 4.5: Average ROC. Average ROC plots of the ANN, RF, SVM with RBF and linear (lin) kernel
and BSVM with RBF and linear kernel classification experiments for each genus, the genera classifica-
tion experiment and the straight identification experiment. Each time, the experiment with the highest
AUC was selected. ROC values were calculated for each class separately and vertically averaged over
the classes.
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4.3.3 Results

In the stratified identification setting, genus identification was performed preliminary to

species identification. A detailed report of the accuracy values is given in Table 4.4. A simple

visualization of the individual AUC values calculated for each class (species or genus) is given

in Figure 4.5, which shows the average ROC curves as obtained for each model and each tech-

nique. An average ROC curve is an approximation of the average of the individual ROC curves

of each class. More information can be found in Subsection 1.3.2. As could be expected, and

could be deduced from PCA (see Figure 3.16), the three machine learning techniques resulted

in very high FAME-based genus classification performances. At genus level, among all exper-

iments, the highest Se value of 0.997 and Pr value of 0.994 was attained with the same BSVM

RBF model, with respective standard deviations 0.005 and 0.009. The multi-class confusion

matrix of the best RF model (based on the AUC value) is shown in Table 4.5. The three Bacil-

lus profiles corresponding with an identification as Paenibacillus corresponded to the species

B. coagulans (1 profile) and B. simplex (2 profiles). As both genera are closely related, it is not

surprising that some profiles of either genus were identified as the other. Thus, this is also the

case for the four Paenibacillus profiles that were identified as the genus Bacillus, i.e. Pa. cineris,

Pa. kobensis, Pa. larvae and Pa. macerans. The Pseudomonas profile identified as Bacillus

corresponded to P. flectens, which according to PCA analysis is more related to Bacillus than

to the different Pseudomonas sensu stricto species. Note that P. flectens is not considered as

a Pseudomonas sensu stricto species but, based on 16S rRNA sequence analysis, clusters in

the Enterobacteriaceae group (Anzai et al., 2000). Generally, it can be concluded that almost

perfect genus identification is achieved. Note the remark in the section about the experimental

design, where we stated that misidentified profiles at genus level were still considered for the

evaluation at species level. It can be considered that, due to the very small number of misiden-

tifications at the genus level, the inclusion of these misidentified profiles only have a very small

effect on the global performance.

Predicted genus
Bacillus Paenibacillus Pseudomonas

True
genus

Bacillus 317 3 0
Paenibacillus 4 122 0
Pseudomonas 1 0 556

Table 4.5: Multi-class confusion matrix resulting from genus identification by the best RF experi-
ment. The number of correct predictions are presented on the main diagonal, the other cell values show
the number of incorrect predictions. Row labels correspond to the true genus names, column labels
correspond to the predicted genus names.

At species level and for each genus considered, the identification accuracies were different

for the three machine learning techniques. AUC values for each genus and each classifier were

quite high. As these were calculated in a one-versus-others setting, this means that the obtained

identification scores were quite high but not the highest scores, while the latter scores were used

for the calculation of the metrics sensitivity, precision, F-score and specificity. The specificity
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metric is not shown as, due to the large number of classes, the imbalanced nature of the data

set and the one-versus-others evaluation approach, the number of true negatives outnumbered

the number of false positives, making discrimination between specificity values irrelevant (all

values approximated 100%). Note also, that precision and F-score can result in a value equal

to ∞. The respective species are not considered in the calculation of an average metric value

(see also Section 1.3). The number of metric values per experiment equal to ∞ is not re-

ported in Table 4.4. This number was not very high, except for the SVM experiments. Among

all Bacillus species identification experiments, the highest Se value of 0.885 and Pr value of

0.926 were achieved by a RF model, with respective standard deviations of 0.216 and 0.143.

The overall Bacillus species identification could be considered very high, given the presence

of species groups of closely related species and the many overlapping species data patterns as

seen in the clustering and PCA analysis. As compared to the Bacillus ANN experiments of

the previous section, a small increase was seen in the AUC values. This is due to the different

approach of calculating the AUC. By setting the output score of each profile as a threshold,

a better approximation was obtained in this section. For Paenibacillus species identification,

among all experiments, the highest Se value and Pr value was also achieved by RFs (standard

deviations in brackets): 0.974 (0.092) and 0.981 (0.081), respectively. Paenibacillus species

identification could, thus, be considered very high. Among all Pseudomonas species identifica-

tion experiments, one BSVM RBF model led to the highest Se value of 0.753 (0.310) and the

highest Pr value of 0.887 (0.201) was obtained by a RF model. This result was quite surprising

(positively) given the many overlapping species as concluded from clustering and PCA analy-

sis. Overall, the three machine learning techniques resulted in a very high FAME-based genus

identification performance, given the constraints as shown by the preceding data analysis. In

the case of species identification, the RF and BSVM techniques outperformed the ANN and

SVM technique, where the ANN technique also outperformed the SVM technique. Based on

identification performance and computation time, RFs was clearly the best technique for this

type of classification. From these statistics, it could be concluded that it is possible to achieve a

moderate to good accuracy for FAME-based Bacillus, Paenibacillus and Pseudomonas species

identification by machine learning.

It is also interesting to look at the straight species identification strategy. Table 4.4 shows

classification and identification accuracies of the different methods for the data set covering the

species of all three genera. This strategy concerned a straight species identification in which

genus identification was not considered. Generally, a moderate to good FAME-based species

classification performance was achieved by the three techniques. Among all species identifica-

tion experiments, the highest Se value and Pr value was 0.778 (0.322), obtained by a BSVM

lin experiment, and 0.898 (0.186), obtained by a RF model. Generally, the RF, BSVM and

ANN methods outperformed the SVM technique. From these statistics, it could be concluded

that FAME-based species identification in this identification strategy resulted in a moderate

accuracy.
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4.3.4 Discussion

4.3.4.1 Stratified Identification Strategy

The results obtained indicate that, when considering FAME data, the three machine learning

techniques RFs, ANNs and SVMs resulted in a nearly perfect genus identification. A first ap-

proach towards FAME-based identification of bacterial genera by machine learning was taken

by Bertone et al. (1996) and Giacomini et al. (2000, 2004) who successfully identified a lim-

ited number of marine and environmental bacteria at genus level by ANNs. The researchers

concluded that FAMEs are good biomarkers for bacterial genus identification and that it would

be worthwhile to build a FAME-based bacteria identification system at species level. In a taxo-

nomic context, a first in-depth study on FAME-based species identification by machine learning

techniques was performed for the genus Bacillus as described in Section 4.2. From this study,

we concluded that species identification by FAME data and machine learning techniques is very

promising, taking into account the limited resolution of FAME analysis for species discrimina-

tion. The research as described in this section extended the scope of the previous section by

also evaluating species identification in the genera Paenibacillus and Pseudomonas by three

machine learning techniques: RFs, ANNs and SVMs. These genera were selected because two

genera, Bacillus and Paenibacillus, belong to the same phylum and are closely related. The

third genus, Pseudomonas, was selected to also include a distantly related genus belonging to a

different phylum. From a genus-wide identification perspective, all genera were represented in

the LMG FAME database by a sufficient number of species to cover at least half of the validly

published species (see Table A.2). When considering genus classes only, the three genera Bacil-

lus, Paenibacillus and Pseudomonas could easily be distinguished from each other based on

FAME data. Furthermore, analysis of the multi-class confusion matrices showed that misclas-

sifications of the FAME profiles were mainly due to misclassifications of Bacillus profiles as

Paenibacillus, and conversily (example given in Table 4.5). This result was expected as both ge-

nera are evolutionary more related to each other than to the genus Pseudomonas. Nonetheless,

genus identification was surprisingly good when taking into account that the genera Bacillus

and Paenibacillus were reported are closely related. Even though different bacterial genera can

possibly be hard to distinguish based on FAME data, the strategy of selecting the highest output

value for final identification will fail when extending the taxonomic scope towards dozens of

bacterial genera. Therefore, the development of an alternative scoring and weighing mechanism

will become indispensable for reliable genus and species identification.

Kämpfer (1994) concluded that fatty acid analysis has a potential for species differentiation

within the genus Bacillus. The application of machine learning techniques for FAME-based

Bacillus species identification supports this hypothesis. The identification results clearly indi-

cated that species of the genus Bacillus could be distinguished and that the application of RFs

resulted in the best identification accuracy. From a taxonomic perspective, some species are

closely related and are consequently assigned to a species group such as the B. subtilis and

B. cereus groups. Integration of this prior knowledge into computational classification mo-

dels confirmed that wrong identifications are mostly due to identifications as species of the
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same group (see Section 4.2). Moreover, species that are more distantly related through evolu-

tion might also show highly similar FAME patterns. When considering this information about

species groups and species distinctness, and the presence of 74 Bacillus classes, the identifica-

tion accuracy achieved by RFs could be considered as very good. By looking more into detail

to the identification of the different Bacillus species, some interesting facts could be seen. A

focus was given to those species with an F-score smaller than 0.667. As expected, species re-

siding in a species group were identified as another member of the group. Examples are the

four B. thuringiensis profiles that were identified as B. cereus (B. cereus group), one profile of

B. sonorensis (two in total) that was identified as B. licheniformis and four of the five profiles

of B. vallismortis that were identified as B. subtilis. The latter two are B. subtilis group ex-

amples. These misidentification were also found to be the closest neighbours in the TaxonGap

experiment (see Figure 3.12). Other examples were described in literature as closely related:

the two B. muralis profiles were identified as B. simplex (Heyrman et al., 2005), one B. vireti

profile that was identified as B. novalis (two in total, same isolation source and confirmed by

TaxonGap) (Heyrman et al., 2004) and one profile of B. clausii identified as B. lentus (Nielsen

et al., 1995). Except for the latter example, the mentioned relationships of all previous exam-

ples were confirmed in the maximum likelihood 16S rRNA gene phylogenetic tree constructed

in this study (see Figure 2.4). No literature description was found for the misidentification of

B. jeotgali as B. subterraneus (1 profile), though both species grouped together in the same

cluster of the maximum likelihood tree and B. subterraneus was also its closest neighbour in

the TaxonGap experiment. Of course, low F-score values may be found due to a large number

of false positives (resulting in a high precision), as found for the species B. decolorationis and

B. subterraneus. No clear relation could be put on some misidentifications, not in literature

nor in the constructed maximum likelihood tree. Examples of these misidentficiations were the

identification of B. azotoformans as B. megaterium*(1/1 profile), B. firmus as B. aquimaris (2/3

profiles), B. fortis as B. aquimaris (1/1 profile), B. gibsonii as B. lentus*(1/2 profiles), B. halma-

palus as B. subterraneus (1/2 profiles), B. lentus as B. pumilus and as B. cereus*(1/4 and 1/4

profiles), and B. pseudalcaliphilus as B. pumilus (1/1 profile). Some relationships were con-

firmed by the TaxonGap experiment and are denoted by an asterisk. Two main possible reasons

for these results are similarities in the FAME profiles or misidentification by a species represent-

ing a large number of FAME profiles. The latter case is a consequence of the class imbalance

problem. Herein, the margins for these species are more confident and minor classes (species

with a small to very small number of FAME profiles) are dominated by these classes. Or, pro-

files of these classes are more likely identified as the major class. Almost all relationships were

also confirmed by the biplots of the PCA analysis described in Subsection 3.3.4.

Similar to the FAME analysis of Kämpfer (1994), Heyndrickx et al. (1996) concluded that

FAME analysis allows genus identification and identification of Paenibacillus species into sev-

eral species groups. As about one-fourth of the species in the genus Paenibacillus has been

validly published since January 2006, no in-depth study of species discrimination by FAME

analysis has previously been performed. Our identification results show that species in the

genus Paenibacillus could be distinguished from each other based on their FAME profiles and

machine learning techniques. When looking at the species with an F-score ≤ 0.667, only one
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species was not correctly identified. The two profiles of Pa. xylanilyticus were identified as

Pa. illinoisensis. This relates to 16S rRNA analysis which showed a close relatedness between

these species (Rivas et al., 2005), which is also nicely shown in the maximum likelihood 16S

rRNA gene phylogenetic tree constructed in this study (see Figure 2.6). This relationship could

also be seen in the data analysis experiments where in the PCA biplots the data of both species

were overlapping and TaxonGap (see Figure 3.13) also confirmed that P. illinoisensis was the

closest neighbour of P. xylanilyticus. Three other species had a lower F-score but these were

mainly due to a large precision, or thus a large number of false positives.

Identification results showed that Pseudomonas species were harder to distinguish than

those of Bacillus and Paenibacillus. This could be expected from preliminary data analysis

and clustering. Fatty acid analysis of pseudomonads has been a matter of discussion for several

decades (Ikemoto et al., 1978; Moss et al., 1972; Moss and Dees, 1976; Moss, 1981; Oyaizu

and Komagata, 1983; Welch, 1991). Two broad studies on this issue were reported by Stead

(1992) and Vancanneyt et al. (1996) showing that analysis of whole-cell fatty acid fingerprints

of pseudomonad strains revealed major groups and subgroups corresponding well to the group-

ings based on DNA-DNA and DNA-rRNA hybridization techniques. The strains of rRNA group

I in the study of Vancanneyt et al. (1996) represented 29 different and validly described Pseu-

domonas species which could be grouped into four major FAME subgroups. Subgrouping of

various phytopathogenic species was also found. The authors demonstrated that whole-cell fatty

acid data show some qualitative and quantitative differences among the various subgroups and

concluded that some species can only be distinguished based on smaller quantitative differences

(Stead, 1992; Vancanneyt et al., 1996). Nonetheless, machine learning techniques clearly take

advantage of these quantitative differences as the RF identification results showed that on aver-

age 67.3% of the species were assigned a correct species label. The above mentioned issues are,

however, not the only reason for a lower identification percentage. As mentioned in the intro-

duction, the taxonomy of the genus Pseudomonas has been under revision for several decades.

In particular, the taxonomic position of various pathovars is still under discussion. In the present

study, we chose to follow the Pseudomonas syringae taxonomy as proposed by Gardan et al.

(1999). Both the limitations of whole-cell FAME analysis for species discrimination and the un-

certainties in the taxonomic position of various Pseudomonas species were most likely the two

main reasons for the lower identification percentage. Nonetheless, RFs maximally exploited the

FAME analysis resolution to distinguish Pseudomonas species on a genus-wide scale. Also for

this genus, species identification was analyzed by setting a threshold on the F-score of 0.667.

16 species were not identified and most misidentifications were species of the P. aeruginosa

group, P. fluorescens group, P. putida group and P. syringae group (Moore et al., 1996; Anzai

et al., 2000). Evidence was found in the tree and/or in literature for the following species (each

time the number of misidentified and total number of profiles are given in brackets): P. abieta-

niphila (P. putida group (1/3) and one as P. vancouverensis; Mohn et al., 1999), P. asplenii as

P. fuscovaginae (2/4) (Vancanneyt et al., 1996; Tvrozová et al., 2006), P. avellanae (P. syringae

group (1/1); Gardan et al., 1999), P. brenneri (P. fluorescens group (3/3); Baïda et al., 2001),

P. citronellosis (P. aeruginosa group (2/2); Lang et al., 2007), P. congelans (P. syringae group

(2/2); Behrendt et al., 2003), P. fluorescens (P. fluorescens group (13/49); Vancanneyt et al.,
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1996; Gardan et al., 1999), P. hibiscicola as P. beteli (1/2) (Van Den Mooter and Swings, 1990),

P. knackmussi (P. aeruginosa group (1/1); Stolz et al., 2007), P. lurida (P. syringae group (1/2);

Behrendt et al., 2007), P. marginalis (P. fluorescens group (8/31); Vancanneyt et al., 1996; Anzai

et al., 2000), P. plecoglossicida (P. putida group (2/2); Nishimori et al., 2000), P. poae (P. flu-

orescens group (1/2); Behrendt et al., 2003), P. putida (P. putida group (9/30); Moore et al.,

1996; Anzai et al., 2000), P. resinivorans (P. aeruginosa group (2/2); Moore et al., 1996; Anzai

et al., 2000), P. rhodesiae (P. fluorescens group (1/2);Coroler et al., 1996), P. straminae as P. ar-

gentinensis (1/3, other was P. mendocina) (Peix et al., 2005), P. tolaasii (P. fluorescens group

(8/17); Vancanneyt et al., 1996; Moore et al., 1996), P. trivialis (P. fluorescens group (2/2);

Behrendt et al., 2003), P. vancouverensis as P. abietaniphila (1/2, other was P. putida) (Mohn

et al., 1999) and P. veronii (P. fluorescens group (2/2); (Elomari et al., 1996)). Only evidence

in literature was found for P. costantinii which was identified as P. putida (1/2 profiles) (Mun-

sch et al., 2002), P. extremorientalis also identified as P. putida (1/2 profiles) (Ivanova et al.,

2002), P. genomospecies 3 en 7 identified as P. syringae group (6/12 and 2/2, not considered

in maximum likelihood tree) (Gardan et al., 1999), P. luteola identified as P. aeruginosa (2/4

profiles) (Anzai et al., 1997) and P. mediterranea as P. antarcticus (2/3 profiles, the other was

P. fluorescens) (Catara et al., 2002; Reddy et al., 2004). No clear support for misidentifications

was found in the maximum likelihood tree and in literature for the species: P. argentinensis as

P. mendocina (1/2 profiles), P. azotoformans as P. marginalis (2/2 profiles), P. brassicacearum

as P. amygdali (1/3 profiles) and P. syringae (1/3 profiles), P. caricapapayae as P. amygdali

(1/1 profile), P. jessenii as P. fluorescens (1/2 profiles) and P. marginalis (1/2 profiles), P. ko-

reensis as P. fluorescens (2/2 profiles), P. lini as P. fluorescens (1/3 profiles), P. monteilii as

P. fluorescens (1/2 profiles), P. psychrotolerans as P. oryzihabitans (1/2 profiles), P. salomonii

as P. meditteranea (2/3 profiles) and P. umsongensis as P. putida (1/2 profiles). Low F-scores

due to a large precision were found in the species: P. abietaniphila, P. argentinensis, P. fluo-

rescens, P. lini, P. marginalis, P. mendocina, P. putida and P. salomonii. For this latter case, the

same arguments hold as mentioned above in the paragraph with the Bacillus results. It is clear

that the large number of misidentifications is related to two effects: the many overlapping data

patterns as found in the data analysis experiments and the large number of profiles with only a

very small number of FAME profiles (see also Figure 3.2).

4.3.4.2 Straight Species Identification Strategy

Instead of considering a layered identification system, it is also possible to build a single

model including all species classes. As the FAME profiles of the three genera could clearly

be distinguished by machine learning techniques, the performance of a straight species iden-

tification model could be considered as a superposition of the three individual genus models.

This is nicely shown by the ultimate identification performance which is close to the average

of the identification performance of the separate models. Results indicate that the identification

accuracy of this approach was confined by the genus Pseudomonas which had the lowest iden-

tification performance (the largest number of species and profiles) but, had also a larger weight

in the calculation of the statistical metrics (averaged over all classes). Besides this, additional
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issues should be taken into account for not choosing this type of identification approach. The

complete data set comprised 213 classes of which some had few data points per class. This led

to a harder classification task with respect to the stratified strategy where genus classification

was performed with three genus classes that comprised many data points per class and, subse-

quently, species classification with 74, 44 and 95 classes per genus model. Moreover, consid-

ering the rapidly evolving taxonomy, retraining of the complete model will become necessary

in order to achieve up-to-date identification. More classes also result in longer training times.

In contrast, in a layered system only those species identification models which correspond to

updated data sets need to be retrained. As such, dropping the genus identification model should

not be an option as a layered system clearly resulted in better identification performance and

better scalability.

4.3.4.3 Comparison of Machine Learning Techniques

Regarding genus identification, making a final choice between the different machine learn-

ing techniques is not possible as the values of all statistical measures are (very) similar. When

looking at computation times, a preference could be given to the BSVM approach with the

RBF kernel which resolves the classification task in less than ten minutes. From all the ma-

chine learning techniques evaluated in this study, the best species identification accuracy was

achieved by RFs, while the one-versus-one SVM approach as implementd in LibSVM resulted

in the worst accuracy. The application of this SVM approach resulted in a very poor identi-

fication performance, which could possibly be due to two main reasons. Besides the choice

of an inappropriate kernel, the many species classes with only few FAME profiles per class

played a crucial role in this classification approach. The main disadvantage of this method

is related to this latter fact as, most possibly, a bad performance was obtained when handling

two classes which contained only few data points per class. It is clear that a reliable and high-

performant classification model cannot be constructed based on a data set with very limited

class sizes, which is the case in our setup as the species classes contained only few FAME

profiles. Nevertheless, a nice advantage of this technique is its rapid computation time. For

example, the Bacillus data set was handled in less than ten minutes. Results comparable to RFs

were achieved by the BSVM approach in which the class boundaries are calculated in one sin-

gle optimization (Crammer and Singer, 2001). The optimization as aimed at by this approach

is, however, quite hard and, when considering the parameter optimization, the computation

time was consequently very long (from several hours for the Bacillus data set to more than one

month for straight species ID). ANNs showed a performance somewhere in between that of the

RF and SVM technique. Training times were, however, longer than those of RFs. Because of

these properties together with the large number of parameters to optimize (activation functions,

number hidden neurons, training algorithms, etc.), this technique was not quite attractive for

classification in the presented setting. Overall, we can conclude that for future expansion of this

research, the random forests technique is most preferable for FAME-based bacterial species

classification and identification.
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4.3.5 Comparison with Sherlock MIS

Routine identification of bacterial species based on FAME analysis is traditionally per-

formed by the commercial system Sherlock MIS (MIDI Inc., USA). Even though Sherlock

MIS is the standard technology for routine FAME-based bacterial identification, the commer-

cially exploited identification system has one main disadvantage when aiming at genus-wide

bacterial species identification. As an example, in March 2008, the TSBA50 library entries

covered only 30 of the 142 validly published Bacillus species (21%), 18 of the 86 validly pub-

lished Paenibacillus species (21%) and 31 of the 112 validly published Pseudomonas species

(26%). An overview is given in Table B.2. By making use of the LMG FAME database and ma-

chine learning techniques, we were able to partially fill this gap and to respond to the dynamic

character of taxonomy by rapidly creating new data sets and training new up-to-date identifi-

cation models. Given the fact that Sherlock MIS is a pioneer in FAME analysis, this system

was a good benchmark to compare the power of both identification systems. However, reliable

benchmarking is only possible by taking only those Bacillus, Paenibacillus and Pseudomonas

species into consideration that were present in both the FAME data sets and the TSBA50 iden-

tification library. In the present study, a FAME profile was identified in a stratified setting.

In other words, identification was performed first at genus level and, subsequently, at species

level by one of the species identification models following successful genus identification. For

example, a Bacillus profile was not further taken into account when identified as Paenibacil-

lus in the genera identification model. For each identification model and from the ten random

RF experiment repeats, the RF experiment resulting in the highest AUC value was chosen and

the corresponding test set was evaluated. Remark that the test set of the RF experiment for

genus identification was not evaluated but that the corresponding RF model was used for genus

identification of the Bacillus, Paenibacillus and Pseudomonas test profiles. The indices of the

experiment repeat with the corresponding parameter settings (number trees and number of split

variables) were for the genera classification model experiment 1 with 1000 trees and 5 vari-

ables, for the Bacillus species classification experiment 2 with 1750 trees and 8 variables, for

the Paenibacillus species classification experiment 2 with 1000 trees and 6 features, and for the

Pseudomonas species classification experiment 5 with 1250 trees and 4 features. Correspon-

ding to the identification type (genus or species), identification was evaluated by considering

only the genus name or species name associated with the highest identification output value.

For Sherlock MIS, this corresponded to the species with the highest SI (similarity index) value.

Two approaches were used for comparing both identifications systems. In the first approach, for

each genus, the number of correct identifications was averaged for each considered species, as

these were possibly represented by a different number of FAME profiles. Next, a global average

and standard deviation was calculated over all species. In a second approach, one test instance

for each considered species was randomly sampled and the percentage of correct identifications

was calculated. This procedure was repeated ten-fold and a final average and standard deviation

was calculated. This second approach was alternatively chosen to also prevent the calculation

of an estimate that could be biased because of an imbalanced test set. In the first approach,

this problem was dealt with by averaging the identification results of the test samples of each
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species.

Identification at genus level was nearly perfect. Three Bacillus profiles were rejected due to

identification as Paenibacillus and one Paenibacillus profile was rejected due to identification as

Bacillus. Figure 4.6 shows a comparison between the Bacillus, Paenibacillus and Pseudomonas

species identification accuracy obtained with the RF technique in the stratified strategy setup

and with the TSBA50 identification library of Sherlock MIS. It is important to underscore again

that model construction was only based on those species present in both the sampled data sets

and in the Sherlock MIS identification library. Both evaluation approaches resulted in a similar

performance for the three genera and a distinct gap was observed between the RF identification

performance and the Sherlock MIS performance for each of the genera. By the first evaluation

approach, the RF method correctly identified on average, with standard deviations in brack-

ets, 78.28% (31.37) of the Bacillus species, 94.49% (10.70) of the Paenibacillus species and

75.65% (28.19) of the Pseudomonas species. This in contrast to the Sherlock MIS which cor-

rectly identified only 55.77% (41.20), 51.22% (43.40) and 27.00% (33.69) of the species of the

respective genera. These averages are visualized in Figure 4.6. Similar values were found by

the second approach, in which the RF technique correctly identified 81.78% (6.17) of the Bacil-

lus species, 96.43% (3.76) of the Paenibacillus species and 74.84% (5.65) of the Pseudomonas

species. This in contrast to Sherlock MIS that correctly identifies 55.67% (6.52), 54.29% (7.68)

and 27.42% (5.10) of the species of the respective genera. The standard deviations distinctly

differ between both approaches, due to a different approach of averaging (over species versus

over test sets, respectively). The standard deviations in the first approach were quite high due

to the fact that species are either very well identified or just not identified and because values

are bounded in the percentage interval [0,100]. In other words, we were confronted with a very

skewed distribution. The averages showed that the number of well identified species was in

favor when compared to the bad identifications. Importantly, these standard deviations should

not be interpreted under the assumption of a normal distribution as the distribution of the results

was quite skewed. One possibility to interprete this skewedness is to calculate the 25% and

75% percentiles of the results. These percentiles are also visualized in Figure 4.6. It is clear

that in the first approach, in which an average identification is calculated over all species, the

RF approach was more consistent in its identification. This in contrast to the Sherlock MIS sys-

tem, which for the species of the genera Bacillus and Paenibacillus either identified a species or

failed to identify the species. For the species of the genus Pseudomonas, Sherlock MIS clearly

fails to attain high identification percentages. In the case of identification by a RF model, the

differences of the 25% percentile with the average are smaller than those between the 75% per-

centile and the average. Though the 25% percentile was high, this implied that an important

number of identifications resulted in a score near zero. A final important remark is that in the

second approach, profiles of minor classes had a higher probability of being reselected than

profiles of major classes.

It is immediately clear that the machine learning approach outperformed the commercial

identification system for species identification for the three bacterial genera considered. The

main reason for the resulting gap can be found in the different approach of identification. Sher-

lock MIS calculated correlation values between unknown FAME profiles and the TSBA50 iden-
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(b) Random subsets

Figure 4.6: Comparison of the identification performance of random forests and Sherlock MIS
in a stratified setting. Blue bars correspond to random forests and red bars with Sherlock MIS. In
the left diagram, evaluation is performed by the test set with averaging of the identification results over
each species and globally over all species. In the right diagram, evaluation is performed by randomly
sampling ten subsets consisting of one profile for each species from the test set and by calculating an
average performance over each subset. In this setting, the performance of each subset is calculated by
the percentage of correct identifications. The bottom and upper bar respectively denote the 25% and 75%
percentile of the identification results.

tification library entries based on the Mahalanobis distance where, in contrast to MIDI, machine

learning techniques took advantage of learning from the data. Based on the knowledge inside

the different data classes, machine learning techniques learnt to distinguish the different classes

from one another. Next, probability values were given to an unknown FAME profile of belong-

ing to each class. It is clear that machine learning really took advantage of learning from the

data in contrast to the naïve Sherlock MIS approach of comparing each FAME profile with each

library entry. Besides this, it is important to remark that Sherlock MIS included significantly

more genera in its identification libraries, making the identification potentially more prone to

wrong identification results. Consequently, comparison with Sherlock MIS will become more

reliable when more genera are implemented in the proposed identification scheme.

4.3.6 Independent Test Sets

In the construction of identification models, the most challenging part of research is the

identification of independent test sets. As in this study the number of FAME profiles and the

number of strains was restricted for each species, other researchers contributed to this study by

sharing private data sets. Important herein, the growth and culture conditions of the considered

bacterial strains needed to be identical to those of the data sets for model construction.

4.3.6.1 Bacillus simplex

A first independent test set was obtained by dr. Johannes Sikorski (DSMZ, Germany) con-

taining 131 bacterial FAME profiles from bacteria isolated from soil samples of the Evolution

Canyons I and II in Israel. 16S rRNA analysis of all profiles showed very high similarites to the

strain Bacillus simplex LMG 21002. For more information we refer to the papers of Sikorski

and Nevo (2005, 2007). FAME profiles resulting from standard growth and culture conditions
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(28◦C, 24h, TSA medium) were identified by the best random forests model in a stratified set-

ting.

The shared FAME profiles were constructed by the TSBA40 peak naming table, which con-

tains one major difference with respect to to the TSBA50 peak naming table: the disposal of

fatty acid C15:0. MIDI considered to treat this straight chain fatty acid as a zero feature in the

TSBA50 peak naming table, in order to avoid artificial variance in the fatty acid profiles that

results in poor similarity index calculations. Note that the chromatographic peak 15:0 is still

identified by the peak naming method TSBA50, but it is no longer taken into account during

calculation of the relative amounts of the fatty acid compounds. This decision is supported

by MIDI following work with coryneforms and related organisms, which often produce un-

known peaks located in the 15:0 naming window and the fact that acid-fast organisms often

produce fragments that also fall within the 15:0 naming window, although they are not related

to this fatty acid compound (Dawyndt, 2004). As the Sikorski FAME profiles are resulting from

the TSBA40 peak naming table and our identification models rely on the peaknaming of the

TSBA50 method, the C15:0 fatty acid was removed from the profiles. For the respective experi-

ment, also the peak C14:0 2OH was not present in the training set. The C15:0 peak corresponded

with only 1% relative peak area and the C14:0 2OH was only present in two profiles with values

of approximately 0.1%. A recalculation of the relative peak areas was performed by equally

distributing the totally removed peak area percentage over the different other peaks. Finally, the

rescaled profiles were identified by the RF model. Results are reported in Table 4.6. A distinct

difference was found between both systems, with a clear advantage for the machine learning

approach. Note that, as compared to just deleting the respective peaks, rescaling of the data had

no effect when only Bacillus species identification was considered, as the resulting performance

with both approaches resulted in a 100% correct identification. Also important to remark is that

the scores for the identification of the genus Paenibacillus were very close to those of the genus

Bacillus. Implementing a more flexible system instead of only considering the highest output

scores would place the identification results in a better context. For example, considering all

identifications within a certain interval from the highest score.

Random forests Sherlock MIS

107/131(81.68%) Bacillus simplex 90/131(68.70%) Bacillus-megaterium-GC subgroup B
16/131 (12.21%) Paenibacillus validus 19/131(14.50%) Paenibacillus-gordonae*

3/131 (2.29%) Paenibacillus pabuli 12/131 (9.16%) Brevibacillus-brevis*

Paenibacillus taiwanensis 5/131 (3.82%) Bacillus-simplex**

2/131 (1.53%) Paenibacillus chitinolyticus 2/131 (1.53%) Bacillus-megaterium-GC subgroup A
1/131 (0.76%) Brevibacillus-centrosporus**

Bacillus-chitinosporus
Sporosarcina-ureae

Table 4.6: Identification of the J. Sikorski independent FAME data set. The identification results
of the best random forests experiment and of Sherlock MIS are given for 131 Bacillus simplex FAME
profiles. The percentage of B. simplex identification is marked in bold.
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4.3.6.2 Milk Data Set

Stratified identification was also performed for 38 FAME profiles originating from different

Pseudomonas strains isolated from milk samples (personal communication with An Coorevits,

Laboratory of Microbiology, Ghent University). Sequence analysis was based on the rpoB gene,

as far as this single gene shows a good resolution for species delineation and resolves into the

correct species name. All profiles were identified as the genus Pseudomonas, while only one

profile was correctly identified at species level (as P. aeruginosa). This again underscores the

difficult identification of Pseudomonas species. However, when considering the Pseudomonas

groups as described by Anzai et al. (2000) and the maximum likelihood 16S rRNA gene tree (see

Figure 2.8), 22 of the 38 profiles (57.90%) corresponded to the correct species group or were a

close relative of the species group. This data set was mainly concerned with P. fluorescens group

species. Sherlock MIS only placed two profiles into the correct group and mainly identified the

profiles as the species P. putida.

4.3.6.3 Double-blind Study

Since several years, a double-blind study has been performed regarding the taxonomic po-

sition of several Pseudomonas species (personal communication with Paul De Vos, Laboratory

of Microbiology, Ghent University). For identification purposes in this study, 40 species were

considered, covered by 75 (synonymous) type strains and deposited as a Pseudomonas species.

One FAME profile per strain was obtained from two independent laboratories. Recalculation of

the peak areas of most profiles was also necessary due to the use of the Sherlock MIS TSBA40

peak naming table (or, presence of fatty acid C15:0) and to the presence of several peaks that

were not covered during the construction of the machine learning model. Identifications were

compared to the species name as deposited in a culture collection. Stratified identification by

the best RF experiment was performed. At genus level, all profiles of both laboratories were

correctly identified as belonging to the genus Pseudomonas. At species level, one laboratory

obtained a correct Pseudomonas species identification percentage of 61%, 69% and 75%, when

considering the highest, the two highest and the three highest output scores (without averaging

of results within and over species). Even though Pseudomonas species identification showed

to be a hard job when applying only FAME data, these results indicated that whole-cell FAME

analysis has a potential for species identification. The results of the second laboratory were

lower: 41%, 60% and 65%. When comparing the RF Pseudomonas species identifications of

both laboratories, a consistent identification was found of 53%, 84% and 95% when focusing

again on the highest, the two highest, and three highest output scores. It can be concluded that

a certain consistency in the independently generated FAME profiles was found. Using Sherlock

MIS, the first laboratory correctly identified approximately 53% of the species, while the second

laboratory identified 43% of the species correctly. In this latter comparison, only the highest SI

value was considered.
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4.3.7 The Plant-pathogenic Pseudomonas Species

In the description of the 2008 data set, we stated that the genus Pseudomonas comprises

different plant-pathogenic strains. Several FAME studies on this topic have already been per-

formed, such as the work of Stead (1992); Stead et al. (1992). Computational analysis of

this plant-pathogenic group, however, remained untouched. Therefore, we investigated how

well machine learning techniques could distinguish between plant-pathogenic species based on

FAME data. In a second experiment, we evaluated how well the FAME data of the group of

plant-pathogenic species could be distinguished from the FAME data of non-plant-pathogenic

species. Herein, a Pseudomonas species was considered plant-pathogenic when at least one of

its strains is known as a plant or mushroom pathogen. All respective species (25) are reported

in Table 3.2 and are denoted in Table A.2 by the superscript ‘p’.

4.3.7.1 The Group of Plant-pathogenic Species

In this experiment, only the machine learning techniques RFs and SVMs were considered.

For SVMs, both the linear and RBF kernel were considered. Optimization of the variables was

done by a gridsearch. For RFs, this corresponded with a forest size interval of [1000,4000] in

steps of 1000 and a split variable interval [1,#features] in steps of 5. For SVMs, the intervals

described in Subsection 4.3.1 were used. Nested cross-validation was performed with pooling

of the test results (Witten and Frank, 2005; Varma and Simon, 2006; Parker et al., 2007) (see

also Subsection 1.1.1). As the minimum number of FAME profiles per class was four, a 4-fold

outer cross-validation was performed. For SVMs, 3-fold inner cross-validation was performed

and, as RFs have a low tendency to overfit, no inner cross-validation was performed for this

technique and optimization was done by the test folds. The results of the Pseudomonas species

identification are reported in Table 4.7. Analysis of the test results in this multi-class setting was

also performed in a one-versus others approach as described in Section 1.3. As mentioned in this

section, the metrics precision and F-score could become undefined due to a zero denominator,

though the number of these undefined metrics was very small.

Technique AUC Se Pr F

RF 0.975 (0.026) 0.631 (0.297) 0.811 (0.152) 0.711 (0.181)
SVM lin 0.962 (0.042) 0.498 (0.384) 0.758 (0.215) 0.663 (0.244)
SVM RBF 0.964 (0.039) 0.475 (0.387) 0.675 (0.268) 0.625 (0.271)

Table 4.7: Results of Pseudomonas species identification by the 2008 Pseudomonas plant-
pathogenic species data set. Two machine learning techniques were evaluated: random forests (RFs)
and support vector machines (SVMs). For support vector machines, the linear kernel (lin) and the RBF
kernel were considered. Nested cross-validation was performed, with no inner cross-validation in the
case of RFs. The AUC, sensitivity (Se), precision (Pr) and F-score (F) were calculated as an average
over all classes in a one-versus-others settings. Standard deviations are also reported.

These results were comparable to those resulting from the machine learning analysis of the

complete 2008 Pseudomonas data set, in the sense that similar metric values were found. Even

though a smaller number of species was investigated, it was not straightforward to distinguish
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the plant-pathogenic Pseudomonas species from one another. These finding are supported by

the principal components analysis described in Subsection 3.3.4 and Figure 3.17. From the cor-

responding biplot of the first two principal components, it can clearly be seen that the FAME

patterns of the different species overlap, making it not easy for machine learning techniques

to find good flexible margins. Some species could, however, clearly be distinguished by the

machine learning experiments. Species with an F-score larger than 0.8 are P. cissicola, P. cor-

rugata, P. flavescens, P. flectens, P. fuscovaginae, P. marginalis, P. tolaasii, P. tremae and P.

viridiflava. Note, however, that it remains to be seen whether this conclusion also hods for

plant-pathogenic species of other genera.

4.3.7.2 Plant-pathogenic Species versus Non-plant-pathogenic Species

In this experiment, only RFs and SVMs were considered in the same setting as described

in the previous subsection. However, because a larger number of data points per class was

available, we chose to perform a 10-fold nested cross-validation. In the case of RFs, no inner

cross-validation was performed for this technique and parameter optimization was done on the

test folds (see also section above). The results of this two-class identification experiment are

reported in Table 4.8. The ROC curve for the RF experiment is visualized in Figure 1.10.

Technique AUC Se Pr F

RF 0.965 0.961 0.907 0.933
SVM lin 0.897 0.935 0.794 0.859
SVM RBF 0.939 0.920 0.902 0.911

Table 4.8: Results of Pseudomonas identification of plant-pathogenic species in the 2008 Pseu-
domonas data set. Two machine learning techiques were evaluated: random forests (RFs) and support
vector machines (SVMs). For support vector machines, the linear (lin) and RBF kernel was considered.
10-fold nested cross-validation was performed without an inner cross-validation in the case of RFs. The
AUC, sensitivity (Se), precision (Pr) and F-score (F) were calculated from the two-class identification
results.

It can immediately be concluded that a high discrimination is possible between plant-

pathogenic and non-plant-pathogenic Pseudomonas species using FAME data. The high met-

ric values were somewhat surprising given the overlapping data clouds visualized by princi-

pal component analysis (see Figure 3.18). It is clear that some relation exists between plant-

pathogenicity and the fatty acid content. When statistically analyzing the probability estimates

output from the RF experiment by a Wilcoxon rank-sum test, a p-value of approximately zero

was obtained, implying statistically different probability estimates at the significance level of

0.05. A possible reason for this good performance could be found in the paper of Stead (1992)

who describes a clustering of a multitude of plant-pathogenic Pseudomonas species by hydroxy

fatty acids. Though, in this study Pseudomonas sensu lato is considered and major discrimina-

tions are discussed with the first major group corresponding to the genus Pseudomonas sensu

stricto. This group consisted of about 35 plant-pathogenic taxa that could mainly be discrim-

inated based on the hydroxy fatty acids C10:0 3-OH and C12:0 3-OH. Subgrouping could also

be achieved by these hydroxy fatty acids, together with the hydroxy fatty acid C12:0 2-OH. For

this group, Stead (1992) concluded that qualitative and quantitative differences in many of these
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fatty acids were found. No comparison was, however, made with non-plant-pathogenic Pseu-

domonas species. Nonetheless, these discriminations can also be assumed to be very valuable

for discrimination between plant-pathogenic and non-plant-pathogenic species. Future study of

this relation should reveal all determining FAME constituents and the corresponding qualitative

and quantitative differences.

4.3.8 Publication

The main part of this section is published in the international peer-reviewed journal of Sys-

tematic and Applied Microbiology with reference: B. Slabbinck, B. De Baets, P. Dawyndt and

P. De Vos (2009). Towards large-scale FAME-based bacterial species identification using ma-

chine learning techniques. Systematic and Applied Microbiology, 32, 163–176.

4.4 Conclusions

Initial research applying ANNs for FAME-based classification and identification of bacterial

genera showed promising results. Bertone et al. (1996) and Giacomini et al. (2004) concluded

that it is worthwhile to build a system for FAME-based identification that discriminates bacteria

at the genus level. It remained, however, to be seen how classification of bacterial FAME

profiles could be used to discriminate between species of a single genus. Kämpfer (1994),

Heyndrickx et al. (1996) and Vancanneyt et al. (1996) proved that fatty acid analysis has a

potential for species differentiation within the genera Bacillus, Paenibacillus and Pseudomonas.

In a first research part, multiple experimental setups were analyzed to verify the possibili-

ties for genus-wide species identification by combining machine learning techniques and FAME

data. Even though FAME analysis is routinely performed in many laboratories, this mass of data

has never been subjected to a machine learning strategy for FAME-based species classification.

Generally seen, good identification results for Bacillus species were obtained. We successfully

proved that bacterial species of a single genus could be distinguished based on their FAME

content using ANNs, which are a good option for the identification of species in the genus

Bacillus. From the experimental setups, we concluded that ANN-based identification improves

with imbalanced data sets validated with stratified cross-validation. It is expected that bacterial

identification will generally improve when more profiles are available for each species due to a

larger intra-species heterogeneity. Furthermore, the combination of activation functions used by

ANNs should be determined empirically. By determining the best activation functions and op-

timizing the number of hidden neurons, a good genus-wide FAME-based species identification

system could be achieved for the genus Bacillus. Proper experimental setups, however, imply

that there are still other setup preconditions to be tested, which could possibly contribute to an

improved classification performance. Some species are very closely related both genotypically

and phenotypically, such as the species within the B. cereus group and the B. subtilis group. In

these cases, species identification should be done as a group identification. Better results were

achieved following this strategy. When considering the use of FAME-based identification as

first-line identification tool, narrowing the bacterial spectrum could also be achieved more effi-
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ciently by analyzing the highest scores given by the identification model. Both cases prove that

integrating the resolution of FAME analysis in the identification system will enhance first-line

species identification. For this part, it could be concluded that the presented results were highly

promising for the classification of Bacillus species.

With the ‘three genera - three techniques’ research, the next step was taken towards a com-

putational genus-wide species identification system based on whole-cell FAME data. FAME-

based genus and species identification was evaluated using the machine learning methods ANNs,

RFs and SVMs. The three machine learning techniques showed a similar and nearly perfect

identification performance at genus level. At species level, experiments and subsequent evalu-

ation demonstrated that RFs is the best technique for species identification for each of the three

genera. Besides this, RFs has also several advantages as opposed to ANNs and SVMs such as

robustness against overfitting, computation time and optimization of a small number of param-

eters. Consequently, it is advised to perform further work on various other genera and species

by the RF technique in a stratified identification strategy. Considering the limited discrimina-

tive power of FAME analysis for species identifications and ongoing discussions regarding the

taxonomic positions of several Bacillus, Paenibacillus and Pseudomonas species, a moderate

to high identification performance was achieved. For the genus Pseudomonas specifically, the

resolution of FAME analysis for species discrimination showed also to be very limited. In this

case, the integration of this prior knowledge in the identification system should be considered.

Comparisons with the identification reports of the commercial Sherlock MIS (MIDI, Inc., USA)

showed that the performance of the presented machine learning approach for the identification

of Bacillus, Paenibacillus and Pseudomonas species was clearly improved, even though Sher-

lock MIS has a lot more genera and species included in its identification libraries.

The plant-pathogenic Pseudomonas species were analyzed in a separate data set. Both RFs

and SVMs resulted in a moderate discrimination between the different species, which could

also be interpreted from principal component analysis. However, when considering a setting of

plant-pathogenic and non-plant-pathogenic Pseudomonas species, a very high discrimination

was achieved. And, a clear relation exists between certain fatty acids and plant pathogenesis.

As bacterial taxonomy is rapidly evolving, flexible solutions are required to achieve up-

to-date first-line bacterial species identification. We presented a machine learning approach to

tackle this problem. Up-to-date and accurate identification are two of the main advantages of

this approach as opposed to the Sherlock MIS. Nonetheless, the current approach has some

drawbacks. According to the List of Prokaryotic names with Standing in Nomenclature as pub-

lished in October 2006 the genus Bacillus comprised 143 validly published species while in

March 2008, Bacillus, Paenibacillus and Pseudomonas comprised 145, 86 and 117 validly pub-

lished species, respectively (Euzéby, 1997). The 2006 data set extracted from the LMG FAME

database contained 82 Bacillus species covering 1,071 FAME profiles, while the 2008 data set

contained 961, 378 and 1,673 standard FAME profiles of 74 Bacillus species, 44 Paenibacillus

species and 95 Pseudomonas species, respectively. Particularly for the Bacillus and the Paeni-

bacillus data set, only half of the validly published species were included for training of the

machine learning techniques. Based on the FAME database alone, we are thus still far away

from a complete genus-wide bacterial species identification. No single computational FAME
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analysis had been performed on this scale yet. Moreover, knowledge about the heterogeneity

of each species is limited by the restricted number of strains and FAME profiles present in our

FAME database. These drawbacks are, however, inherent to the rapidly evolving taxonomy as

well as to research performed at a single institute, which is restricted to specific ecological, clin-

ical and industrial niches. Thus, in general, one institute can be regarded as ‘data-restricted’.

This problem may only be solved by future cooperation between different research institutes

performing bacterial FAME analysis under the same standardized conditions. Even though

cooperation is not straightforward, it should not be a huge obstacle as the proposed approach

would benefit all cooperating parties and would improve bacterial species identification in many

microbiology-related fields. The ultimate solution for this problem lies, however, in building

a public FAME database. Where gene and genome sequence databases are hugely expanding

in number and content, databases of phenotypic data are still far behind. This topic is further

discussed in Chapter 6.

It is clear that identification fully relies on the species library and the resulting data sets.

Training of the data can be compromised when species are renamed or strains are wrongly as-

signed. In a continuously changing field such as microbial taxonomy, these errors are inherent

to the data set. However, with the power of our identification approach and in contrast to the

commercial system, we can rapidly update the back-end library and retrain the classification

model in order to obtain an up-to-date identification scheme. Because the advantages of ma-

chine learning techniques are fast training and the ability to handle large data sets, future work

on FAME-based bacterial species identification by machine learning techniques focusing on

the implementation of more genera and species will, therefore, easily be handled. Nevertheless,

increasing the number of genera and species will make training of new identification models a

harder but challenging computational task, and will lead to more error-prone results. The de-

gree of reduced identification power will not only depend on the number of genera and species

described/included in the new system, but also on the intra- and inter-genus/species variation of

the additional and new taxa. This encompasses a need for more strains and more FAME pro-

files as, without a sufficient number of the latter, the calculation of reliable boundaries between

different classes remains a challenging task. This again takes us back to the above-mentioned

restrictions of one research institute or laboratory. Herein, it is also important to state that the

‘one strain–one taxon’ descriptions do not provide this natural variation and microbiologists

should be discouraged to create such new taxa because of their weak phenotypic discrimina-

tion. Regarding the expansion of the presented identification system towards more genera and

species, two more remarks should be emphasized. First, including more genera and species will

make the comparison with the identifications by the Sherlock MIS more reliable and objective.

Second, the expansion of the identification system is, however, limited as most bacteria do not

grow under the same standardized growth conditions or are even unculturable. Finally, when

further expanding the stratified identification system, future work will also need to integrate

an alternative scoring and/or weighing mechanism to obtain reliable species identification as

this fully relies on the power of genus identification. Summarized, by cooperation and extend-

ing this research in the future, the automated FAME-based identification tool for bacteria will

become most valuable in microbiology and many related fields.



CHAPTER 5
Phylogenetic Learning

As I say it’s a bit dingy at present but it’s

surprising what a lick of paint’ll do isn’t it?

WALLACE AND GROMIT

5.1 Introduction

For the three genera considered in this work, different numerical FAME studies have al-

ready underscored that FAME profiling cannot be used to discriminate all valid species from

each other (Heyndrickx et al., 1996; Kämpfer, 1994; Stead, 1992; Vancanneyt et al., 1996).

With the data analysis performed in Chapter 3, we extended the scope of these studies and

showed that the FAME profiles of the considered bacterial species are indeed highly similar,

making them hard to distinguish. Where FAME-based bacterial species identification is typ-

ically performed by comparing FAME profiles against identification libraries with fixed peak

percentages, we demonstrated in the previous chapter that machine learning techniques are able

to maximally exploit the pattern information in the FAME data. By learning mathematical

functions to delineate the different classes or species, an improved species identification was

achieved.

In bacterial taxonomy, strains are classified at the taxonomic level of species according

to their relatedness in genotypic data. At present, the 70% DNA-DNA hybridization (DDH)

threshold is considered the gold standard for circumscribing the taxonomic rank of species. In-

terestingly, whole-genome sequence analysis revealed a correlation between a DDH value of

70% and a 95% average nucleotide identity (Konstantinidis et al., 2006a; Konstantinidis and

Tiedje, 2007). But, even though DNA reassociation is the gold standard and genome stud-

ies flourish, 16S rRNA gene sequence analysis is still widely preferred for species delineation

for two important reasons: 16S rRNA gene sequence identity greater than 97% may indicate

a specific species and sequencing the 16S gene is much cheaper and faster due to the mas-

sive technological improvements. As a consequence of this explosive trend, the nucleotide

sequence databases of the International Nucleotide Sequence Database Collaboration (INSDC)

have known an exponential growth. Nonetheless, sequence analysis and phylogenetic recon-

struction studies should rely on high quality sequences. With the exponential growth of the

sequence databases, the number of poor quality sequences also grows extensively and sequence

curation becomes indispensable. To circumvent manual curation, the SILVA database project

allows users to retrieve quality controlled and aligned rRNA sequences as stored in the EMBL

sequence database (Pruesse et al., 2007). Since the species resolution of 16S rRNA gene se-

quence analysis is moderately high to high and that of FAME profiling only moderate, this data
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type and the resulting phylogenetic trees can be perfectly used for knowledge integration in

species classification models based on FAME data.

As an alternative to flat multi-class classification as handled in the previous chapter, dif-

ferent tree-based approaches for multi-class classification were suggested in literature. Many

studies handled multi-furcating trees, mostly for multi-label classification. More information

on this topic is given in Subsection 1.1.2.2. Importantly, most of these studies did not involve

hierarchical classification for single-label multi-class classification, meaning that each instance

is classified at leaf level. From another perspective, hierarchical classification has also been

proposed for standard multi-class classification tasks. In this setting, the idea consists of im-

proving multi-class classification methods by constructing a tree of binary classifiers (Lee and

Oh, 2003; Cheong et al., 2004; Fei and Liu, 2006). The tree architecture is inferred from the

considered data based on a particular algorithm that calculates distance measures or similari-

ties between the considered classes. We exploited and studied this approach for FAME-based

species classification.

This chapter focuses on the integration of taxonomic and phylogenetic knowledge into

species classification models, with the goal of evaluating the resolution of FAME data. In the

first section, two different strategies for the integration of taxonomic and phylogenetic know-

ledge were investigated, using Random Forests (RFs) as base classifiers. In the first strategy,

we considered the integration of relationships between species solely based on FAME data.

Herein, a FAME tree was constructed and evaluated for hierarchical multi-class classification.

In the second setting, we considered knowledge integration from the perspective of bacterial

phylogeny. Using 16S rRNA gene sequence analysis, phylogenetic trees were constructed and,

subsequently, used for hierarchical single-label multi-class classification (based on FAME data).

This last strategy is further referred to as ‘phylogenetic learning’, an approach that utilizes two

types of data: 16S data was considered to incorporate phylogenetic knowledge in the form of a

hierarchy or tree and, on each node of this tree, a binary classifiers was constructed by means of

FAME data. No hierarchical single-label multi-class classification on phylogenetic information

in microbial taxonomy has been investigated so far. In the second section, the phylogenetic

learning approach was evaluated as a first step towards a further post-processing. An initial ap-

proach was investigated to put the identification results in a proper context. More specifically,

a highlighting system was evaluated for easy visualization of those species and species groups

that were hard to distinguish from each other based on FAME data.

5.2 From Learning Taxonomies to Phylogenetic Learning

5.2.1 Methodologies

5.2.1.1 Machine Learning

In this chapter, we only focused on the machine learning technique Random Forests (RFs).

In contrast to the study performed in the previous chapter, a different parameter approach was

used. A grid search was performed to optimize the number of trees and the number of split
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variables. All numbers of features were considered for split variable selection and 1000 to 4000

trees in steps of 250 trees were selected for tuning the number of trees. Optimization of the

parameters was performed by the error on the test set.

With our FAME data set, two problems arised: classes were imbalanced, meaning that a

different number of samples was present in each class, and many classes contained only a small

number of samples. To tackle a possible imbalance effect on the classifier performance, the

true error rate could be estimated by stratifying train and test sets (Kohavi, 1995). For the sec-

ond case, classification could also become problematic when two-class classifiers were created

based on small data sets. This could be solved by performing cross-validation for performance

estimation (Witten and Frank, 2005). This in contrast to the experiments in the previous section

(see 4.3.1), where only one separate test set was used for performance estimation. A three-fold

stratified cross-validation was performed for both the hierarchical classification and flat multi-

class classification. To prevent overfitting, the number of folds was set equal to the minimum

number of profiles over all bacterial species, which was three in this study. In this perspec-

tive, the stratification proportion corresponded to one-third. Given the identical nature of the

probability estimates resulting from each RF model, we chose to aggregate all test sets in a

joint test set for performance evaluation. This method is also better known as pooling (Parker

et al., 2007). Finally, for the pooled test set, the same approach was followed for evaluation of

classifier performance, as described in Section 1.3. In view of this cross-validation for perfor-

mance estimation, RF parameter optimization within each fold was done by the corresponding

test fold, similar to the procedure as described in section 4.3.1.

Besides the calculation of global performance measures, the performance at class level be-

tween flat multi-class classification and phylogenetic learning was also compared. The compar-

ison is visualized in a bar diagram. Initially, flat multi-class classification and the corresponding

classification results of each class were considered. A threshold was set on a metric using steps

of 0.01. As metric, sensitivity and F-score were further analyzed. The corresponding thresholds

are plotted along the X axis. For each threshold, those classes were selected corresponding to

sensitivity or F-score values smaller than or equal to the threshold. Secondly, for each thresh-

old and, thus, for each selected set of classes, the corresponding metric values obtained by

phylogenetic learning were evaluated. The number of phylogenetic learning metric values that

were larger than the corresponding metric values resulting from flat multi-class classification

are plotted against the Y axis on the left. Also, this number is expressed as a percentage of the

corresponding class set size. The corresponding percentages are plotted against the Y axis on

the right (an example is given in Figure 5.7).

5.2.1.2 Learning Taxonomies

As our goal is to integrate taxonomic knowledge into the bacterial species classifiers, the

construction of a FAME tree by supervised divisive clustering was first considered. A divi-

sive clustering algorithm builds a top-down cluster hierarchy, also called dendrogram, by each

time splitting a cluster in two and starting from the entire data set. In unsupervised clustering,

distances are calculated between all points in the respective data set. In contrast, supervised
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divisive clustering considers the class labels of the respective data points and calculates only

distances between those data points with differing class labels. Consequently, the final number

of clusters in supervised clustering equals the number of classes present in the original data

set (Duda et al., 2001; Mirkin, 2005). Thus, the construction of a FAME tree by supervised

divisive clustering was considered. Popular hierarchical clustering strategies are single linkage,

complete linkage, average linkage, Ward linkage, etc. In these strategies, multiple metrics can

be applied as distance measure. In this study, the identification performance of the respective

classifiers served as distance metric. This implies not to extract class distances in input space

but rather from output space. Initially, the FAME data set was randomly split in a training and

test set. We chose to use the area under the ROC curve (AUC) as calculated from the test set as

a splitting criterion. In case of ties, the splitting was refined by accounting for the average link-

age of the probability estimates of both classes, as calculated by the Euclidean distance. One

should prefer the classifier corresponding to the largest average distance between the probability

estimates.

To this end, for each level in the considered top-down setting, a RF classifier was built for

all possible two-group combinations of all considered species or classes. For each classifier, the

initial train and test set were used to select these profiles of the species considered in each com-

bination. The profiles present in the training set were used for training the RF classifier, while

the profiles present in the test set were used for performance estimation. Thus, all combinations

correspond to a two-class classification task. For each node or level, this results in 2K−1−1 com-

binations, with K the number of classes considered. Note that, when considering four classes,

the combination of classes 1 and 2 automatically excludes the combination of classes 3 and 4.

The divisive clustering stops when only two-class clusters are retained. To speed up the divisive

clustering and classification process, no grid search and no cross-validation were considered.

Or thus, parameter optimization and performance estimation were done on the sampled test

subset. The forest size range was identical to the interval described above and was optimized

using the default number of split variables (z =
√

D, with D the number of features). Based on

the forest size corresponding to the lowest error rate, parameters were optimized by choosing

the number of split variables equal to D
2

, 2D and
√

D. Ultimately, a rooted tree was constructed

with equal branch lengths and the different nodes were labeled with the corresponding AUC

value. The resulting tree was visualized with the treeing method of the TaxonGap software (see

Section 3.3.3).

As an initial proof-of-concept, 15 Bacillus species were selected from the original data set.

Selection was based on classes with reasonable sample size and classes that are taxonomically

closely related to each other, e.g. species of the Bacillus cereus and Bacillus subtilis groups.

The first selection criterion was chosen to avoid heavily imbalanced data subsets. The follow-

ing species with respective number of data points were selected: Bacillus aquimaris (12), Bacil-

lus atrophaeuss (21), Bacillus cereusc (62), Bacillus coagulans (32), Bacillus drentensis (38),

Bacillus fumarioli (28), Bacillus galactosidilyticus (12), Bacillus licheniformiss (74), Bacil-

lus megaterium (28), Bacillus mycoidesc (11), Bacillus patagoniensis (12), Bacillus pumiluss

(57), Bacillus sporothermodurans (17), Bacillus subtiliss (64) and Bacillus thuringiensisc (12).

Species annotated with superscript ‘c’ belong to the Bacillus cereus group, while species an-
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notated with superscript ‘s’ belong to a species of the Bacillus subtilis group (Euzéby, 1997;

Hansen et al., 2001; Hutsebaut et al., 2006). It was expected that the species of these two groups

cluster together.

To further speed up the clustering process, computations were performed in parallel on an

Intel Blade cluster (Intel Corporation, Santa Clara, CA, USA).

5.2.1.3 Phylogenetic Analysis

5.2.1.3.1 16S rRNA Gene Sequence Trees

Because the resolution of 16S rRNA gene sequence analysis provides moderate to high

species delineation for most bacterial species, this type of data is an ideal source for know-

ledge integration. The SILVA database was used for 16S rRNA gene sequence selection. This

database subjects EMBL 16S rRNA gene sequences to a multiple alignment, different control

procedures and annotates the corresponding sequences with quality scores. In SILVA, quality is

denoted three-fold: pintail quality for sequence anomaly detection, sequence quality and alig-

ment quality (Pruesse et al., 2007). For each type strain of each species present in our data set,

one 16S rRNA gene sequence was selected from version 95 of the SILVA database. If multiple

16S rRNA gene sequences for each type strain were available, selection of the final sequence

was based on best quality and longest sequence length. Remember that the type strain of a

bacterial species is the fixed name bearer of the species and its phylogenetic position is, hence,

determinative in the taxonomic framework. A list of the selected accession numbers can be

found in Appendix C.

Sequence distance calculation was performed by the PHYLogeny Inference Package ver-

sion 3.68 (PHYLIP), using the program Dnadist. The Jukes Cantor evolution model was used

for correcting the nucleotide distances (Felsenstein, 1989, 2004; Stackebrandt and Swiderski,

2002). This DNA sequence evolution model assumes an equal and independent change rate for

each nucleotide. So, substitution of one nucleotide by one of the three other nucleotides occurs

with equal probability. All other parameters were used as default except for sequential input se-

quences. Based on the resulting distance matrix, an NJ and a UPGMA tree were created using

the PHYLIP program Neighbor (Sokal and Michener, 1958; Saitou and Nei, 1987; Dawyndt

et al., 2006). Default parameter settings were used, except for a randomized input order of the

species. Phylogenetic trees were created for the species present in both the 2008 data set and

in the 15 species data set. All trees were visualized using the iTol webtool version 1.5 (Letunic

and Bork, 2007).

5.2.1.3.2 Tree Inference

In Chapter 2, phylogeny is defined as the evolutionary relationships between organisms as

deduced from the genetic information in nucleic acids and proteins. These relationships can

mathematically be modelled and visualized in a graph, called a phylogenetic tree. A phylo-

genetic tree is composed of nodes and branches (or edges), where branches only connect two

adjacent nodes and define the relationships among the nodes in terms of descent and ancestry.
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The terminal or external nodes are called the leaves. In taxonomy, one calls these operational

taxonomic units (OTUs). The most basic tree is the cladogram, which simply show relative

measures of common ancestry. Additive trees associate with each branch a particular branch

length, that represents an amount of evolutionary change. Hence, the distance between two

OTUs equals the sum of the branch lengths connecting them. Ultrametric trees or dendrograms

are additive trees where the tips of the trees are equidistant from the root. With this tree it is

possible to depict evolutionary time. Cladograms and additive trees can either be rooted or un-

rooted. A root is the common ancester of all integrated OTUs and defines the order of descent by

evolutionary time. Hence, unrooted trees only specify evolutionary relationships (but no path).

Unrooted trees can become rooted by different rooting procedures. A root can be defined on a

particular branch but is commonly created by using an particular outgroup that is distant from

all considered OTUs. In this chapter, only rooted trees with bifurcating nodes were considered.

This implies that each interior node is connected to three others and every leaf is connected

to only one other node. Or, from mathematical perspective, a rooted phylogenetic tree can be

regarded as a directed acyclic graph with bifurcating nodes (Li, 1997; Page and Holmes, 1998;

Felsenstein, 2004).

A tree obtained by a certain data set and a certain tree reconstruction method is called an

inferred tree. Many tree inference methods exist which can be distinguished in different ways.

A major example is the principle of tree construction. Herein, the two main types are cluster

methods and search methods. Cluster methods follow a specific cluster algorithm to arrive

at a particular tree. Advantages are easy implementation and fast computation. The result is

typically a single tree. These type of methods, however, are limited in analytical evaluation

and do not allow for evaluation of competing hypotheses. Examples are the unweighted pair-

group method with arithmetic mean (UPGMA) and the neighbour joining (NJ) method. The

second class of methods are search methods in which an optimality criteria is used for choosing

among a set of all possible trees. This criterium assigns a score to each tree as function of

the relationship between the tree and the data. As such, these methods require an explicit

function that relates data and tree and allow to evaluate the quality of any tree. Or, they allow

to compare how well competing hypotheses of evolutionary relationship fit the data. However,

computationally these methods are very expensive and pose the problem of determining a good

optimality criterium. Finding the optimal tree(s), mostly requires heuristic methods. Examples

are the maximum parsimony (MP) and maximum likelihood (ML) methods. Another difference

between the four methods can be made on the basis of how they handle the data. The UPGMA

and NJ methods handle pairwise distance matrices, while MP and ML operate directly on the

data or on functions derived from the data. Therefore, the former methods are also called

distance matrix methods and the latter methods are discrete methods. A major drawback of

distance methods is the loss of information when translating, for instance sequences, into a

pairwise distance matrix (e.g. loss of information concerning individual sites) (Li, 1997; Page

and Holmes, 1998; Felsenstein, 2004). In this chapter, we only focused on clustering methods

for tree inference. The simplest method of tree inference is the UPGMA method, which was

originally developed for the construction of trees that reflect the phenotypic similarities between

OTUs. UPGMA can be used for the construction of phylogenetic trees but one has to bear in
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mind that UPGMA assumes a constant evolution rate in all evolutionary lineages (so-called

molecular clock). The UPGMA method employs a sequential clustering algorithm, in which

relationships are inferred in order of decreasing similarity. Initially, all OTUs are organised in a

star-like tree with one interior node. Repeatedly, the two most similar OTUs (shortest distance

d) are searched, further considered as a composite OTU and the distance matrix is recalculated,

until only two OTUs are left. The branch lengths of the two constituent OTUs of the composite

equals half of the distance d. Distances are recalculated by the formula

d(ij),k =

(
ni

ni + nj

)
dik +

(
nj

ni + nj

)
djk, (5.1)

with OTU(ij) the composite OTU constituted of OTUi and OTUj , d(ij),k the distance between

this composite OTU and OTUk, and n the number of OTUs in a particular composite OTU (for

a single OTU n equals 1). This corresponds to the computation of the arithmetic mean of the

pairwise distances between the constituent OTUs of the two composite OTUs or between the

constituent OTUs of a composite OTU and another OTU (Li, 1997; Page and Holmes, 1998;

Felsenstein, 2004).

In an unrooted bifurcating tree, two OTUs are said to be neighbours if they are connected

through a single internal node. In this perspective, the computionally fast NJ method sequen-

tially searches for those neighbours that may minimize the total length of the tree. In fact, NJ

is a heuristic method that does not assumes a clock but approximates the minimum-evolution

tree, the tree with the smallest sum of all branch lengths. As with UPGMA, this methods also

starts with a star-like tree. The first step is to separate that pair of OTUs from all others that

gives the smallest sum of branch lengths. This procedure is continued until all interior branches

are found (Li, 1997; Page and Holmes, 1998; Felsenstein, 2004). The algorithm is described in

Algorithm 3.

5.2.1.4 Phylogenetic Learning

Based on the 16S rRNA gene phylogenetic trees, a classification scheme was developed

following the hierarchical class structure. As such, a rooted phylogenetic tree can be regarded

as a directed acyclic graph with bifurcating nodes. The main idea is similar to that of binary tree

classifiers (Lee and Oh, 2003; Cheong et al., 2004; Fei and Liu, 2006). However, in contrast to

our study, these authors inferred a tree from the data used for classification, while we considered

phylogenetic information (the 16S rRNA gene) for tree inference and used FAME data solely for

classification. We called this approach ‘phylogenetic learning’. As a simple, naïve approach, at

each node of the 16S rRNA gene phylogenetic tree, a two-class RF classifier was trained, based

on a subset of the FAME data set. Herein, only the subset of profiles belonging to that part

of the tree was considered for training and testing. The two branches of the node defined the

two groups of the binary classification task, and at each node, a positive and negative dummy

class label was created. As binary tree classifiers rely on rooted trees, we only focused on

tree inference by cluster methods as these methods typically result in a single rooted tree. The

UPGMA and NJ method were chosen. Unrooted trees, as commonly resulting from the ML and
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Algorithm 3 Neighbour-joining algorithm.
Require: Distance matrix D of N OTUs

1: while N > 2 do
2: for all OTUi i : 1 → N do
3: ui =

∑N
j:j �=i

dij

(N−2)
4: end for
5: Declare MIN, OTUa and OTUb

6: for all OTUi i : 1 → N − 1 do
7: for all OTUj j : 2 → N do
8: if i == 1 AND j == 2 then
9: MIN = dij − ui − uj

10: OTUa = OTUi

11: OTUb = OTUj

12: else if dij − ui − uj < MIN then
13: MIN = dij − ui − uj

14: OTUa = OTUi

15: OTUb = OTUj

16: end if
17: end for
18: end for
19: Join OTUa and OTUb into composite OTU(ab)

20: Branch length from OTUa to OTUab: va = 1
2Dab + 1

2(ua − ub)
21: Branch length from OTUb to OTUab: vb = 1

2Dab + 1
2(ub − ua)

22: for all other OTUk do
23: D(ab),k = (Dak+Dbk−Dab)

2
24: end for
25: Remove OTUa and OTUb from the distance matrix and replace them by the composite OTU(ab)

26: N = N − 1
27: end while
28: Connect remaining OTUl and OTUk by branch length Dkl

MP methods, could be used but ask for a preceding rooting procedure.

Given the tree hierachy, classifiers constructed on terminal nodes and a certain number of

parent nodes can become biased due to a small training set size. Herein, terminal nodes are

regarded as nodes splitting two leaves. Consequently, splitting data sets in a training and test

set was not a good option. Cross-validation overcame this issue by dealing with the whole

data set. The classification performance could easily be evaluated as the path of each instance

was fixed and each data instance was presented to the classification hierarchy. In the case of

an incorrectly classified instance at a specific node in the tree, propagation along the true path

stopped and the corresponding data instance was further identified along the predicted path.

Therefore, the path and ultimate predicted class of each instance could be determined and a

multi-class confusion matrix could be generated for statistical analysis. The same evaluation

was done as in the previous chapter (see also Section 1.3).

As an interesting feature, this method offered the possibility to investigate where misclas-

sification mostly occurs along the phylogenetic tree. Hence, the misclassification distance for

each class could be estimated by averaging the correct path length of each incorrectly classified

instance. This implied that, for each incorrectly classified instance, the correct path length was

incremented each time the corresponding classifier resulted in identification of the true branch.
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Incrementing continued until the considered instance was incorrectly classified. Note that the

node resulting in misclassification also incremented the path length and that the path length was

also incremented when ultimate identification occurred in the correct leaf. In this latter case,

the correct path length equals the maximal path length. For each class, the average correct path

length was plotted against the maximal path length.

5.2.2 Results and Discussion

Within the framework of bacterial taxonomy, an interesting topic for subsequent machine

learning research is that of knowledge integration. As FAME data does not allow for a global

species discrimination, classification by FAME data should make clear which species are hard

to distinguish from each other. This is easily achieved by learning in a hierarchical scheme. Two

approaches are straightforward: tree inference by FAME data or by data that do allow for an

identification at species level. In this section, we discuss the integration of these two particular

types of knowledge into FAME-based bacterial species classification models.

5.2.2.1 Learning Taxonomies

In the first stage of this research topic, we investigated the possibility of reconstructing a

small part of the hierarchical phylogenetic structure of the genus Bacillus by FAME data and

RFs. This genus was chosen because of the profound expertise on this genus present at the

Laboratory of Microbiology of Ghent University (Belgium). In this experiment, we focused

only on FAME data to integrate taxonomic knowledge. A tree was constructed with a divisive

clustering algorithm, in which the classifier performance of RFs, trained on FAME data, was

used as splitting criterion. In this top-down approach, all possible splits between classes are

initially considered in the root node. Since the data set consisted of a small number of data

instances for the majority of species, we preferred divisive clustering over agglomerative clus-

tering. The latter approach builds a tree in a bottom-up clustering procedure, so that, in our

setting, clustering at leaf level would be based on the results of unreliable classifiers (due to a

small number of class instances for many species). We wanted to avoid this type of instability

in the tree construction phase.

An initial proof-of-concept experiment was performed based on a small data set of 15

species or classes, as selected from the original 2008 data set. Only species corresponding

to a large number of FAME profiles were selected, with a minimum of 11 profiles. About half

of the selected species belong to the two known Bacillus species groups, the Bacillus cereus

and Bacillus subtilis group. Hierarchical divisive clustering was started in the root node, for

which 16383 RF classifiers were trained and evaluated. In subsequent steps of the clustering

algorithm, classifier training became less time-consuming, because the number of trained clas-

sifiers decreases exponentially for the remaining subtrees. When the algorithm was finished, in

total 18589 classifiers had been trained. The computing time to build and evaluate the complete

species hierarchy was 65h 10m 22s.

In this initial experiment, we aimed to evaluate whether a FAME tree constructed with

divisive clustering indeed revealed the relations between the species of the different species
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groups. Figure 5.1 shows the resulting tree, in which no branch lengths are specified and AUC

values of the RF classifiers are given at each internal node. The species representing the Bacillus

cereus group or the Bacillus subtilis group were clearly clustered together under the same parent

nodes. Consequently, one can conclude that FAME data allows to discriminate between groups

of species. Such a result was not expected because of the large number of combinations and

related FAME profiles. However, this experiment clearly showed that RFs took advantage of the

relatedness between species and/or groups of species. Selecting both Bacillus species groups

out of 16383 classifiers showed that machine learning techniques can be employed to distinguish

between different species and species groups based on FAME data. Consequently, building a

FAME tree using classification techniques as treeing method could be a good base for further

knowledge integration. Therefore, we evaluated the tree constructed from the different machine

learning models also as a hierarchical classification scheme. Note that this classification task

followed the main strategy as reported by (Lee and Oh, 2003; Cheong et al., 2004; Fei and

Liu, 2006). Subsequent to the construction of the tree, a RF classifier was retrained at each

node of the tree, so that the different classifier parameters were optimized by the approach

described in Subsection 5.2.1.2. To this end, we considered both 3-fold and 11-fold stratified

cross-validation.

The corresponding results are reported in the upper part of Table 5.1. These results showed

that hierarchical single-label multi-class classification with 3-fold stratified cross-validation per-

formed slightly worse than flat multi-class classification (see bottom part of Table 5.1). Perform-

ing 11-fold stratified cross-validation, however, resulted in a slightly better performance than

flat multi-class classification. In summary, for the 15 species data set, it could be concluded

that hierarchical single-label multi-class classification resulted in a performance comparable to

that obtained with flat multi-class classification. Nonetheless, we were mainly interested in the

classification of the 74 validly published Bacillus species present in our data set. Upscaling

this experiment from 15 classes to 74 was, however, computationally infeasible, because the

number of classifiers to be trained increases exponentially with the number of classes. When

considering these 74 classes in our FAME data set, 273 − 1 classifiers must be trained in the

root node. This could not be realized in a reasonable computing time, even when multiple pro-

cessors are used in parallel. Furthermore, to obtain a good classification performance in the

presented experiment, only species were selected for which a reasonable amount of data was

available. Nonetheless, in the full data set, a lot of classes were present with a small number

of FAME profiles (e.g. three or four profiles) which may result in an unreliable FAME tree.

Even though this experiment with 15 species gave promising results, for the reasons above,

knowledge integration by divisive clustering of FAME profiles was not further considered in

this study.

5.2.2.2 Phylogenetic Learning

An alternative to the construction of a FAME tree is to infer a tree based on data resulting

from a technique with a good resolution for species discrimination. In this perspective, the

best possibilities are DDH, whole-genome sequence analysis and multi-locus sequence analysis
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Figure 5.1: FAME tree. Phylogenetic tree resulting from the divisive clustering of the FAME data of
15 Bacillus species based on classification by Random Forests. Clustering is based on AUC and average
linkage of the probability estimates calculated from identification by Random Forests. At the different
nodes the corresponding AUC value is reported.

(MLSA). However, some problems occur with the corresponding data. DDH values are not

publicly available and only a restricted number of whole-genome sequences is available for

genus-wide studies. Moreover, the construction of multi-gene trees following MLSA leads to

the problem of finding discriminating genes on a genus-wide scale. Moreover, finding such

gene sequences of high quality for every species is not always straightforward. Therefore,

one good other alternative is to focus on 16S rRNA gene sequence analysis. This technique

is widely preferred for species delineation because of improved sequencing technology and

public sequence databases. Nonetheless, the 16S rRNA gene may not allow for a delineation of

every species (Wayne et al., 1987; Stackebrandt and Goebel, 1994; Konstantinidis et al., 2006a;

Konstantinidis and Tiedje, 2007). Currently, 16S rRNA gene analysis is one of the techniques

generally used in microbiology for phylogenetic analysis.

When using this technique as a starting point for knowledge integration, high quality 16S

rRNA gene sequences can be exported from the SILVA database. This database subjects EMBL

16S rRNA gene sequences to different control procedures and annotates the corresponding se-

quences with quality scores (Pruesse et al., 2007). In this way, one 16S rRNA gene sequence
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Classification Results

Sensitivity Precision NaN F-score NaN

HSMC - 15 species
HSMC 0.887 (0.214) 0.945 (0.059) 0 0.895 (0.179) 0
HSMC (11-fold CV) 0.916 (0.130) 0.956 (0.037) 0 0.930 (0.083) 0

PhyLearn - 15 species
PhyLearn - NJ 0.992 (0.007) 0.954 (0.041) 0 0.924 (0.099) 0
PhyLearn - UPGMA 0.860 (0.211) 0.931 (0.064) 0 0.873 (0.153) 0

PhyLearn - 74 species
PhyLearn - NJ 0.741 (0.237) 0.846 (0.181) 1 0.768 (0.181) 1
PhyLearn - UPGMA 0.684 (0.256) 0.860 (0.174) 2 0.741 (0.180) 2

Multi-class
15 species 0.902 (0.170) 0.944 (0.054) 0 0.911 (0.124) 0
74 species 0.851 (0.189) 0.901 (0.121) 0 0.863 (0.145) 0

Table 5.1: Results from the hierarchical single-label multi-class classification, phylogenetic learn-
ing and flat multi-class classification experiments. In this table, the three classification strategies are
abbreviated as ‘HSMC’, ‘PhyLearn’ and ‘Multi-class’, respectively. The results of these three strategies
are reported in the upper, middle and bottom part of the table, respectively. The results of hierarchical
single-label multi-class classification were based on the FAME tree resulting from the divisive clustering
experiment. Only the 15 species data set was considered and 3-fold and 11-fold stratified cross-validation
(CV) was performed. In the case of phylogenetic learning, two 16S rRNA gene trees were used as tem-
plate: neighbour-joining (NJ) and unweighted pair group method with arithmetic mean (UPGMA). For
PhyLearn, both the 15 and the 74 species data set were considered and all PhyLearn experiments were
performed using 3-fold stratified CV. Also the flat multi-class experiments were validated by this CV
strategy. In the three strategies, classification performance was evaluated based on the pooled test set.
Metrics reported are sensitivity, precision and F-score. Based on a multi-class confusion matrix, statis-
tics were calculated in a one-versus-other setting with averaging of the corresponding statistic over the
different classes. Standard deviations are reported between brackets. NaN denotes the number of classes
that have resulted in a value ∞ (only in case of precision and F-score).

was selected for each type strain of each Bacillus species present in the original FAME data set.

Note that the type strain of a bacterial species is the fixed name bearer of the species (according

to the bacterial code (Lapage et al., 1992)) and its phylogenetic position is, hence, determinative

in the taxonomic framework.

Following sequence selection, distance matrices were calculated using the Jukes-Cantor nu-

cleotide evolution model and two phylogenetic trees were accordingly constructed, respectively

with the NJ and the UPGMA method (Sokal and Michener, 1958; Saitou and Nei, 1987; Felsen-

stein, 1989, 2004; Dawyndt et al., 2006). The respective trees are shown in Figures 5.2 and 5.3.

They were used as templates for hierarchical FAME-based species classification by the binary

tree approach. As hierarchical classification relies on a phylogenetic tree, we called this ap-

proach ‘phylogenetic learning’. As the binary tree classifier is based on a rooted tree structure,

we initially chose to select the NJ and UPGMA methods as these basically infer rooted trees.

Two methods were selected, to allow for a comparison of binary tree classifiers based on dif-

ferent trees. In view of tree inference, several other methods exist (e.g. MP and ML). The MP

and ML methods, however, infer unrooted trees and need consequently to be rooted for use in
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Figure 5.2: Bacillus 16S rRNA gene neighbour-joining tree as constructed by PHYLIP 3.68 and
based on sequences selected from the SILVA database. Only the species present in the original 2008
data set are visualized. The tree was visualized using the iTol webtool (Letunic and Bork, 2007). The
Bacillus cereus and Bacillus subtilis groups are coloured in blue and green, respectively.

a binary tree classification. Typically, this rooting is achieved by the inclusion of an outgroup

(Felsenstein, 2004). Now, the constructed RF classifiers were evaluated for distinguishing be-

tween the FAME patterns of the two underlying groups of classes in every node of the tree.

The collection of binary classifiers should be regarded as one classifier wrapping the multiple

hierarchically structured classifiers. Three-fold stratified cross-validation for error estimation

was performed during the training process of each classifier with pooling of the test results of

all folds (Kohavi, 1995; Witten and Frank, 2005), i.e. the predictions on test data were pooled

together in one big set, and the performance measures were calculated on this set. The results

of phylogenetic learning based on the NJ and UPGMA trees are reported in the middle part of

Table 5.1.
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Figure 5.3: Bacillus 16S rRNA gene UPGMA tree as constructed by PHYLIP 3.68 and based on
sequences selected from the SILVA database. Only the species present in the original 2008 data set
are visualized. The tree was visualized using the iTol webtool (Letunic and Bork, 2007). The Bacillus
cereus and Bacillus subtilis groups are coloured in blue and green, respectively.

These results were compared with those obtained from a FAME-based flat multi-class clas-

sification (see bottom part of Table 5.1), where only one multi-class classifier was trained by

the same cross-validation strategy. First of all, phylogenetic learning and flat multi-class classi-

fication were also evaluated for the 15 species data set (as selected in the previous subsection).

For the flat multi-class classification, an AUC value was achieved of 0.992 (0.010). The cor-

responding results are also reported in Table 5.1. Note that the flat multi-class classification

with 3-fold stratified cross-validation in this study differed from the flat multi-class classifica-

tion strategy performed in the previous chapter. In the latter case, 10 repeated experiments were

carried out with averaging of the classifier performance on a randomly sampled test set. Av-

erage AUC, sensitivity and precision were then given by 0.988, 0.847 and 0.908, respectively
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(see Table 4.4). These metric values were approximately identical to the values obtained by

phylogenetic learning. As a result, the cross-validation with pooled metric calculation in a flat

multi-class setting did not improve classification performance, when compared to the random

test set selection.

It is also interesting to see that, even though flat multi-class classification of the 15 species

data set resulted in a very high AUC value of 0.992, higher sensitivity and F-score values were

obtained by phylogenetic learning on this data set (based on the NJ tree). Conversely, phylo-

genetic learning based on a UPGMA tree performed slightly worse than flat multi-class classi-

fication. When the study was scaled up to 74 species, flat multi-class classification performed

better than phylogenetic learning on both trees. For flat multi-class classification, an accord-

ing AUC value of 0.982 (0.042) was achieved. For the NJ and UPGMA trees, the difference

in sensitivity between both techniques and flat multi-class classification was 11% and 16.7%,

respectively, while the difference in F-score was, respectively, 9.5% and 12.2%. The contrast

between the two data sets was, logically, based on the larger number of relations between the

different species and the more complex hierarchical structure of the data. The main reason for

the lower prediction performance of phylogenetic learning could be found in the 16S rRNA

gene phylogenetic trees that defined the multiple learning tasks. These could become quite hard

to solve when classifying the species based on FAME data. Flat multi-class classification is not

confronted with these restrictions at all and allows for more flexible solutions. Moreover, in a

74 species hierarchical learning system, the probability of a misclassification probability along

the identification path in the tree was much larger than the misclassification probability in a 15

species hierarchy. Also, in the 74 species data set, some species were known to be very closely

related to each other, increasing the probability of misclassification in the hierarchy. Despite a

lower classification performance compared to flat multi-class classification, phylogenetic learn-

ing allowed to evaluate the classification scheme at node level. In this way, it was possible to

analyze the resolution of FAME data at different tree levels. Ultimately, the goal of this ap-

proach will be to investigate how a particular pruning strategy could be applied by which those

species will be grouped that are hard to classify by the machine learning method of interest. As

a consequence, it will also become possible to report identification scores for groups of species

that are very related in their FAME content. A first attempt towards this goal is discussed in the

second section of this chapter.

Further investigation could also be done on the improvement of classification performance.

For instance, a variable misclassification cost could be defined along the classification path. As

an example, nodes splitting groups of classes could be evaluated differently than nodes splitting

one species from a group of classes and splitting two leaves. In this latter case, a more severe

misclassification cost could be defined. Another approach could account for the different branch

lengths of the phylogenetic tree.

As the multi-class classification problem was tackled by hierarchically structured binary

classifiers, it was also interesting to look at the individual class statistics. As mentioned in the

Section 1.3, a multi-class confusion matrix was generated by classification of each test data

point and counting the different types of errors that are made. Using the iTol webtool (Letunic

and Bork, 2007), we plotted a bar diagram of sensitivity and F-score values along the tree
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and aligned the corresponding bars with the corresponding leaf or class of the tree. F-scores

corresponding to a value of ∞ (i.e. sensitivity and precision equal to zero) were, however, not

visualized. In this way, rapid inspection was possible to detect those classes that were hard to

identify by the phylogenetic learning model and the flat multi-class classifier.

The results of phylogenetic learning with NJ and UPGMA trees and those of flat multi-

class classification are displayed in Figures 5.4-5.6, respectively. In case of flat multi-class

classification, the metric values are displayed along the 16S rRNA gene NJ tree. Following

decomposition of the multi-class confusion matrix into a two-class confusion matrix for each

class in a one-versus-others strategy, it was possible to compare the prediction performance of

each technique at class level. When comparing the sensitivity values of each species obtained

by phylogenetic learning based on the two considered 16S rRNA gene trees to those obtained

by multi-class classification, only 15% of the species had a higher sensitivity value. 57% and

61% of the species had a lower sensitivity value, for the NJ and the UPGMA tree respectively.

In case of the F-score, 22% and 19% of the species had a higher F-score value, for both trees

respectively, while 69% and 70% of the species had a lower sensitivity value. Nonetheless,

when looking more deeply into the results, those classes that were hard to distinguish from

the other classes in a multi-class classification setting were better identified in the hiearchical

classification setting. This is clearly illustrated by the cumulative plot in Figure 5.7. In this

figure, identification by phylogenetic learning was compared to flat multi-class identification at

class level. Even though phylogenetic learning performed globally worse than flat multi-class

classification, it was clear that, when considering a threshold of 0.5-0.6, phylogenetic learning

had an added value due to better identification of classes that were not well identified by multi-

class classification. For example, all species corresponding with a sensitivity value below 0.5 (in

flat multi-class classification) were better identified by phylogenetic learning based on a NJ tree.

These species were B. azotoformans (0.333 → 1; 3 profiles), B. funiculus (0.4 → 1; 5 profiles),

B. halmapalus (0.5 → 1; 6 profiles), B. jeotgali (0.5 → 1; 6 profiles), B. thuringiensis (0.333

→ 0.5; 12 profiles) and B. vallismortis (0.267 → 0.667; 15 profiles). The increase in sensitivity

is given between brackets, together with the number of FAME profiles. B. funiculus (0.4 →
0.8; 5 profiles), B. thuringiensis (0.333 → 0.417; 12 profiles) and B. vallismortis (0.267 →
0.533; 15 profiles) corresponded with an increase in sensitivity when phylogenetic learning was

based on an UPGMA tree. Here, also only species with a sensitivity below 0.5 were considered.

Note that B. thuringiensis belongs to the B. cereus group and B. vallismortis to the B. subtilis

group. In phylogenetic learning based on the NJ tree, for five other species a higher sensitivity

value was obtained: B. aquimaris, B. firmus, B. lentus, B. megaterium and B. subterraneus.

In phylogenetic learning based on the UPGMA tree, eight species attained a higher sensitivity

value: B. drentensis, B. firmus, B. lentus, B. mycoides, B. novalis, B. pseudalcaliphilus, B.

sporothermodurans and B. vireti. In most cases, only small increases were seen.

As mentioned above, a hierarchical classification structure easily allows to analyze where

misclassifications occurred along the tree. This could be regarded as an evaluation approach

to further analyze the resolution of FAME data for species discrimination. Furthermore, it was

also interesting to calculate an average misclassification path length. Results for phylogenetic

learning based on an NJ tree are visualized in Figure 5.8. Results for phylogenetic learning
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based on a UPGMA tree were similar and are visualized in Figure 5.9. Herein, importantly,

only misclassified test points were considered. It becomes clear from both figures that misclas-

sification mostly occurred at nodes near the correct leaf. This is not very surprising as, based

on FAME data, a lot of species cannot be distinguished from each other. This again shows that

the resolution of FAME analysis is restricted to distantly related species and species groups.

Bacillus thermoamylovorans

Bacillus thermantarcticus

Bacillus coagulans

Bacillus sm
ithii

B
acillus badius

B
acillus shackletonii

B
a
cillu

s sp
o
ro

th
e
rm

o
d
u
ra

n
s

B
a
cillu

s o
le

ro
n
iu

s

B
a
cillu

s ca
rb

o
n
ip

h
ilu

s

B
a
c
illu

s
 h

u
m

i
B

a
c
illu

s
 e

n
d
o
p
h
y
tic

u
s

B
a
c
illu

s
 in

d
ic

u
s

B
a
c
illu

s
 fo

ra
m

in
is

il
a

gt
o

ej
 

s
ull

i
c

a
B

B
a
c
ill

u
s
 s

u
b
te

rr
a
n
e
u
s

B
a
c
ill

u
s
 n

ia
c
in

i

B
a
c
ill

u
s
 d

re
n
te

n
s
is

B
a
ci

llu
s 

b
a
ta

vi
e
n
si

s

B
a
ci

llu
s 

so
li

B
ac

ill
us

 n
ov

al
is

B
ac

ill
us

 v
ire

ti

B
a
c
ill

u
s
 f
u
m

a
ri
o
li

B
a
c
illu

s
 c

irc
u
la

n
s

B
a
c
illu

s
 s

ira
lis

B
a
c
illu

s
 a

z
o
to

fo
rm

a
n
s

Bac
illu

s 
m

ur
al

is

Bacil
lu

s 
sim

ple
x

B
ac

ill
us

 p
sy

ch
ro

sa
cc

ha
ro

ly
tic

us

Bacillu
s fle

xus

Bacillu
s m

egateriu
mBacillu

s cohniiBacillus halmapalus
Bacillus horikoshii

Bacillus funiculus

Bacillus luciferensis

Bacillus pseudomycoides

Bacillus cereus

Bacillus thuringiensis

Bacillus mycoides

Bacillus weihenstephanensis

Bacillus firm
us

B
acillus lentus

B
a
cillu

s ru
ris

B
a
cillu

s g
a
la

cto
sid

ilyticu
s

B
acillus fortis

B
acillus fordii

B
a
c
illu

s
 a

q
u
im

a
ris

i
v

alf
sir

a
m 

s
ulli

c
a

B B
a
c
ill

u
s
 p

u
m

ilu
s

B
a
c
ill

u
s
 l
ic

h
e
n
if
o
rm

is
B

a
c
ill

u
s
 s

o
n
o
re

n
s
is

B
a
ci

llu
s 

a
tr

o
p
h
a
e
u
s

B
a
ci

llu
s 

m
o
ja

ve
n
si

s

B
a
ci

llu
s 

su
b
til

is
B
ac

ill
us

 v
al

lis
m

or
tis

B
ac

ill
us

 a
m

yl
ol

iq
ue

fa
ci
en

s

Bacillu
s psychrotolerans

Bacillu
s psychroduransBacil

lus i
nso

litu
s

Bacil
lu

s 
pyc

nus

B
ac

ill
us

 s
ilv

es
tri

s

Bacillus barbaricus

Bacillus gelatini

Bacillus decolorationis

Bacillus halodurans

Bacillus okuhidensis

Bacillus pseudofirmus

Bacillus alcalophilusBacillus pseudalcaliphilus

Bacillus bogoriensis

Bacillus gibsonii
Bacillus clausii

Bacillus patagoniensis

Bacillus horti

Figure 5.4: Sensitivity and F-score values by phylogenetic learning based on a 16S rRNA gene NJ
tree. For each Bacillus species, the corresponding sensitivity and F-score value of phylogenetic learning
based on a 16S rRNA gene NJ tree is displayed. Sensitivity is denoted by the light blue bars, F-score
by the green bars. The tree is visualized using the iTol webtool (Letunic and Bork, 2007). The Bacillus
cereus and Bacillus subtilis groups are coloured in blue and green, respectively.
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Figure 5.5: Sensitivity and F-score values by phylogenetic learning based on a 16S rRNA gene
UPGMA tree. For each Bacillus species, the corresponding sensitivity and F-score value of phylogenetic
learning based on a 16S rRNA gene UPGMA tree is displayed. Sensitivity is denoted by the light blue
bars, F-score by the green bars. The tree is visualized using the iTol webtool (Letunic and Bork, 2007).
The Bacillus cereus and Bacillus subtilis groups are coloured in blue and green, respectively.
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Figure 5.6: Sensitivity and F-score values for flat multi-class classification. For each Bacillus species,
the corresponding sensitivity and F-score value for flat multi-class classification is displayed along the
16S rRNA gene NJ tree. Sensitivity is denoted by the light blue bars, F-score by the green bars. The tree
is visualized using the iTol webtool (Letunic and Bork, 2007). The Bacillus cereus and Bacillus subtilis
groups are coloured in blue and green, respectively.
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Figure 5.7: Performance comparison at class level. For each class, sensitivity and F-score values
resulting from phylogenetic learning based on a 16S rRNA gene NJ or UPGMA tree were compared to
those obtained by flat multi-class classification. Four plots are given. The X-axis corresponds to thresh-
olds set on the corresponding metric values. Threshold steps of 0.01 were chosen. For each threshold,
flat multi-class classification was evaluated at class level and those classes with metric values smaller
than or equal to the threshold were selected. Classification performance by phylogenetic learning was
analyzed at class level for each set of classes. The Y-axis on the left projects the number of phylogenetic
learning classes that had a higher metric value than those obtained by flat multi-class classification. The
red line expresses this number, relative to the size of the corresponding set (Y-axis on the right).
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Figure 5.8: Average misclassification depth of phylogenetic learning based on a NJ tree. The aver-
age depth of the misclassified test points of each class is visualized for phylogenetic learning based on an
NJ tree. Depth equals the number of nodes along the classification path until misclassification occurs (the
corresponding node also included) and corresponds to the green bars. The maximum or correct depth is
shown by the red bars. Maximum depth equals the number of nodes along the true phylogenetic path
(final leaf included).
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Figure 5.9: Average misclassification depth of phylogenetic learning based on a UPGMA tree. The
average depth of the misclassified test points of each class are visualized for phylogenetic learning based
on a UPGMA tree. Depth equals the number of nodes along the classification path until misclassification
occurs (the corresponding node included) and corresponds to the green bars. The maximum or correct
depth is shown by the red bars. Maximum depth equals the number of nodes along the true phylogenetic
path (the final leaf included).
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5.2.3 Publication

The research described in this section is submitted to the international peer-reviewed journal

of BMC Bioinformatics with reference: B. Slabbinck, W. Waegeman, P. Dawyndt, P. De Vos

and B. De Baets (2009). From learning taxonomies to phylogenetic learning: Integration of 16S

rRNA gene data into FAME-based bacterial classification.

5.3 Putting Bacterial Species Identification into Context

In this section, we evaluate a first approach towards a pruning strategy for the phylogenetic

learning approach and aim at an improved bacterial species identification. More specifically, by

the Wilcoxon rank-sum test and a three colour scheme, a new tool was developed that allows

for easy visualization of those bacterial species that were hard to distinguish from each other.

5.3.1 Statistically Significant Nodes

One of the most straightforward strategies for post-processing of the results obtained by

phylogenetic learning is to highlight those tree nodes of which the underlying species and

groups of species are possibly hard to distinguish from each other. In our case of hierarchically

structured classes, this required the evaluation of the identification performance of the differ-

ent models at the different tree nodes. When dealing with identification performance, though,

evaluation also has to take into account the corresponding data set size for learning the model.

As the data set size has a serious effect on the identification reliability, those nodes correspon-

ding to a small data set size should also become highlighted. In this perspective, a good choice

for statistical testing of the RF probability estimates is the non-parametric Wilcoxon rank-sum

test (see also Subsection 1.3.3). Remember that, at each node, the RF probability estimates are

resulting from the pooled test set (following cross-validation for performance estimation). In

essence, we were confronted with identification scores of two classes, where, ideally, the scores

of the first class equal zero, while those scores of the second class equal one (or conversely).

Thus, this problem involved the detection of a significant difference in the identification scores.

Scaled to our FAME data identification setting, the null hypothesis corresponded to similar

probability estimates which, in other words, corresponded to FAME profiles that were hard to

distinguish. Logically, the alternative hypothesis assumed significantly different probability es-

timates. An upper-tail Wilcoxon rank-sum test was executed, with normal approximation of

the p-values in case of ties and large sample sizes (or number of probability estimates). All

assumptions of the test were met, except for the shapes of the underlying distributions which

were assumed identical. The significance level α was set at the conventional levels 0.05 and

0.01.

In the presented hierarchical setting, multiple hypotheses were tested which are correlated

by the underlying data and the classes they represent. By applying the standard significance

levels, statistical evaluation of all two-class classifications resulted in significantly different

identification scores only. Or, this corresponded to significantly different FAME profiles in
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all clusters. From a biological perspective, this is not a correct conclusion, as we showed in

the previous two chapters that it was often hard to distinguish between the different species

by FAME data. In other words, the significance levels were too weak. In the field of statistics,

testing multiple hypotheses at the same time is called multiple hypothesis testing or the problem

of multiplicity (Shaffer, 1995). This field is a key topic studied in microarray analysis where, for

instance, multiple genes are analyzed for having an effect in a particular disease with respect

to a control group. Each test has a specified type I error probability (i.e. rejecting the null

hypothesis when it is actually true), but when many hypotheses are tested, the probability that

at least some type I errors are committed increases with the number of hypotheses. This may

have serious consequences if the set of conclusions must be evaluated as a whole. Numerous

methods have been proposed for dealing with this problem and one popular method involves

the calculation of adjusted p-values. Computing adjusted p-values can be performed by several

methods that vary in the severity of the correction for multiplicity (Shaffer, 1995; Dudoit et al.,

2002). One of the most popular multiplicity correction methods is the unweighted Bonferroni

correction method. This method redefines the significance levels as α
z
, further denoted as α*,

with z the number of p-values or hypotheses. With regard to the p-values, the rejection rule

pi · z < α is identical to the former rule, with i = 1, . . . , N and N the number of p-values. In

our setting, we had a slightly different setup in that a single observation (FAME data) was used

to distinguish between hierarchically ordered species. Also, no global evaluation of the problem

setting as a whole was pursued. Though, we evaluated the Bonferroni method for adjustment

of the significance levels. Note that the unweighted Bonferroni correction is known to be very

conservative, resulting in overcorrection and leading to a too strict adjustment of the p-values

(Shaffer, 1995). Nonetheless, in this particular work, we pursued to inform microbiologists

about those specific species that are hard to distinguish from each other based on FAME data

by a specific machine learning method. As such, type I errors may be less severe than type II

errors, i.e. falsely accepting significant output probability estimates. The converse conclusion

would result in a serious flaw in decision-making. Because of these reasons, we accepted the

unweighted Bonferroni correction, though, keeping its origin and drawbacks in mind.

In order to highlight significant branches in the phylogenetic tree, the two redefined signifi-

cance levels were used. For classifiers with a p-value larger than 0.05*, the corresponding nodes

and the two splitted branches were highlighted in red, implying similar patterns in the FAME

profiles. p-values situated in the interval [0.01*, 0.05*] resulted in an orange highlighting and

otherwise highlighting was done in green. This latter case implies two groups with significantly

different probability estimates. The adjusted p-values are given at each corresponding node of

the phylogenetic trees (bottom value). This three colour system was chosen to show a degree

of significant difference between the output probability estimates, or thus between the FAME

profiles of the different species.

5.3.2 Visualization and Evaluation

Phylogenetic learning was evaluated as a technique for analyzing the resolution of FAME

analysis for species discrimination within the three genera Bacillus, Paenibacillus and Pseu-
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domonas. The same parameter optimization and classification strategy was followed as in the

previous section. We investigated the extraction of meta-information to improve the report

of a FAME-based identification technique. This knowledge representation started from 16S

rRNA gene NJ and UPGMA phylogenetic trees constructed for the three genera. For all 16S

rRNA trees, the FAME-based species identification performance of the different models, as

constructed on the different nodes, was visualized using the three colour system. Results are

visualized in Figures 5.10-5.15.

When comparing the highlighted branches of the two trees of each genus, it could gen-

erally be concluded that the same branches were highlighted in orange or red, which corre-

sponds to taxa with FAME profiles that were hard to distinguish, or even indistinguishable.

The main highlighting was seen of terminal interior nodes and of branches corresponding to a

leaf branched from a non-terminal interior node. Moreover, highlighting of the latter case was

mostly in orange, while highlighted terminal interior nodes mostly coloured in red. No clear

argument was found for this latter finding, which was influenced by two facts: the separabil-

ity of the FAME profiles of the two groups and the number of profiles in the subtree. Given

the recalculated significance levels, this again showed that FAME analysis performed well to

distinguish a lot of species and most species groups from each other, but became problematic

when two close relatives need to be separated. Another important influence on the results was

posed by the number of profiles in each subtree. Near the leaves, a smaller data subset was

handled, making the generalization over the data harder to achieve. Hence, lower and, thus,

highlighted identification performances were obtained. Note that the same conclusion held for

species branched from large subtrees.

In the case of the genus Bacillus (see Figures 5.10 and 5.11), when focusing on the terminal

interior nodes with non-green highlighted branches, 15 nodes were highlighted in both the NJ

and UPGMA tree. 12 identical nodes could be found, of which 10 had the same highlighting

colour. Finding the same colouring should be expected because closely related species should

cluster together by either tree inference method. When focusing on single highlighted leaves

or species, splitted from non-terminal interior nodes, five UPGMA leaves and eight NJ leaves

were highlighted as non-green. Four of these highlighted leaves occured in both trees, however,

not necessarily in the same phylogenetic structure. In case of the two known species groups

Bacillus cereus group and Bacillus subtilis group unexpected results were, however, obtained.

Especially, based on a RF model, all Bacillus subtilis group species could significantly be distin-

guished from the other member species. When looking at the classification results, statistics also

showed that identification was relatively high. Note also that this group of species corresponded

to a large number of FAME profiles. This confirms evidence from literature stating that some

B. subtilis group species can be differentiated from each other based on FAME, i.e. B. amy-

loliquefaciens, B. licheniformis and B. pumilus (Vaerewijck et al., 2001; Coorevits et al., 2008).

Important to remark here is that this result was not found in the flat multi-class classification

models performed in the current chapter as well as in the previous chapter. For this group, phy-

logenetic learning clearly took advantage of the hierarchical learning setting. When focusing on

the Bacillus cereus group, the Bacillus mycoides and Bacillus weihenstephanensis species, and

the Bacillus cereus and Bacillus thuringiensis species corresponded to non-significant FAME
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Figure 5.10: Statistical evaluation of phylogenetic learning for the genus Bacillus with a 16S rRNA
gene NJ phylogenetic tree. Phylogenetic learning was performed with the 2008 Bacillus data set. The
number of FAME profiles of each species is reported following the species name. For each node, the
number of FAME profiles of the subtree (top value) is given, together with the p-values (bottom value).
A Bonferroni correction was performed for the significance levels 0.05 and 0.01, respectively denoted
as 0.05*and 0.01*. Red colour corresponds to p-values above 0.05*, orange colour to p-values in the
interval [0.01*,0.05*] and green colour to p-values below 0.01*.
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Figure 5.11: Statistical evaluation of phylogenetic learning for the genus Bacillus with a 16S rRNA
gene UPGMA phylogenetic tree. Phylogenetic learning was performed with the 2008 Bacillus data set.
The number of FAME profiles of each species is reported following the species name. For each node, the
number of FAME profiles of the subtree (top value) is given, together with the p-value (bottom value).
A Bonferroni correction was performed for the significance levels 0.05 and 0.01, respectively denoted
as 0.05*and 0.01*. Red colour corresponds to p-values above 0.05*, orange colour to p-values in the
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Figure 5.12: Statistical evaluation of phylogenetic learning for the genus Paenibacillus with a 16S
rRNA gene NJ phylogenetic tree. Phylogenetic learning was performed with the 2008 Paenibacillus
data set. The number of FAME profiles of each species is reported following the species name and
for each node the number of FAME profiles of the subtree (top value) is given, together with the p-
value (bottom value). A Bonferroni correction was performed for the significance levels 0.05 and 0.01,
respectively denoted as 0.05*and 0.01*. Red colour corresponds to p-values above 0.05*, orange colour
to p-values in the interval [0.01*,0.05*] and green colour to p-values below 0.01*.
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Figure 5.13: Statistical evaluation of phylogenetic learning for the genus Paenibacillus with a 16S
rRNA gene UPGMA phylogenetic tree. Phylogenetic learning was performed with the 2008 Paeni-
bacillus data set. The number of FAME profiles of each species is reported following the species name.
For each node, the number of FAME profiles of the subtree (top value) is given, together with the p-
value (bottom value). A Bonferroni correction was performed for the significance levels 0.05 and 0.01,
respectively denoted as 0.05*and 0.01*. Red colour corresponds to p-values above 0.05*, orange colour
to p-values in the interval [0.01*,0.05*] and green colour to p-values below 0.01*.
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Figure 5.14: Statistical evaluation of phylogenetic learning for the genus Pseudomonas with a 16S
rRNA gene NJ phylogenetic tree. Phylogenetic learning was performed with the 2008 Pseudomonas data set.
The number of FAME profiles of each species is reported following the species name. For each node, the number
of FAME profiles of the subtree (top value) is given, together with the p-value (bottom value). A Bonferroni
correction was performed for the significance levels 0.05 and 0.01, respectively denoted as 0.05*and 0.01*. Red
colour corresponds to p-values above 0.05*, orange colour to p-values in the interval [0.01*,0.05*] and green colour
to p-values below 0.01*.
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Figure 5.15: Statistical evaluation of phylogenetic learning for the genus Pseudomonas with a 16S
rRNA gene UPGMA phylogenetic tree. Phylogenetic learning was performed with the 2008 Pseudomonas
data set. The number of FAME profiles of each species is reported following the species name. For each node,
the number of FAME profiles of the subtree (top value) is given, together with the p-value (bottom value). A
Bonferroni correction was performed for the significance levels 0.05 and 0.01, respectively denoted as 0.05*and
0.01*. Red colour corresponds to p-values above 0.05*, orange colour to p-values in the interval [0.01*,0.05*] and
green colour to p-values below 0.01*.
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profiles, except for the latter group in the NJ tree. Nonetheless, except for Bacillus thuringien-

sis relatively good identification statistics were obtained for all group species considered. The

results for the genus Paenibacillus are shown in Figures 5.12 and 5.13. In the UPGMA tree,

seven terminal interior nodes and four branched species were highlighted in red, together with

three terminal interior nodes and four branched species with an orange highlighting. In the NJ

tree, nine terminal interior nodes and one branched species were highlighted in red, together

with two terminal interior nodes and five branched species in orange highlighting. For red high-

lighting, most groups also occurred in an identical phylogenetic structure in both trees, while

for orange highlighting the coloured groups/species differed, mainly due to values around the

defined thresholds. The results for the genus Pseudomonas are shown in Figures 5.14 and 5.15.

In the UPGMA tree, 11 terminal interior nodes and two branched species were highlighted in

red, together with two terminal interior nodes and eight branched species in orange highlighting.

In the NJ tree, 11 terminal interior nodes and three branched species were highlighted in red,

together with three terminal interior nodes and seven branched species in orange highlighting.

Also in this case, most red highlighted groups were found in both trees but orange highlighting

differed, again due to p-values near the threshold. Interestingly, most species of the P. syringae

subcluster showed a non-green highlighting, showing again that it is hard to discriminate be-

tween species of this group based on FAME data. Also in the P. putida subcluster an observable

highlighting occurred as about half of the species in this cluster became highlighted.

In collaboration with microbiologists who routinely perform FAME analysis, visual inspec-

tion of the highlighted trees led to the conclusion that most red and orange highlighted leaves or

species were indeed known as difficult to distinguish. It is clear that the occurence of identical

groups of nodes and leaves in 16S rRNA phylogenetic trees resulting from different treeing me-

thods imply a strong coherence or close relatedness between the corresponding leaves. All this

consistent information proved to be highly convenient for enhancing the identification process

of unlabeled FAME profiles. When generating a FAME profile identification report, the ex-

tracted knowledge could be further used to inform users about species that are moderately hard

(orange colour) or hard (red colour) to distinguish from some other species or a group of species,

or that too few data was at hand for the respective species to attain a reliable identification. This

meta-information approach is an additional step in the direction of improved identification of

bacterial species. By this highlighting system, meta-information combining taxonomic know-

ledge and relatedness in FAME profiles was proposed to enhance FAME-based identification of

bacterial species by machine learning techniques.

5.4 Conclusions

In this chapter, we investigated taxonomic knowledge integration in multi-class classifica-

tion models, using RF as machine learning technique. The 2008 Bacillus data set was consid-

ered which contained 74 species, 71 FAME peaks and 961 standard FAME profiles. In the pre-

vious chapters, we showed that FAME data does not allow to discriminate between all bacterial

species. Supervised machine learning techniques showed to result in a moderate to good iden-

tification performance to distinguish between the FAME profiles of different Bacillus species.
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Nonetheless, the classification models do not integrate any knowledge about the taxonomical re-

lationships between the different species. In this whole concept of species identification, this in-

formation is quite important and can even be determinative in evaluating species discrimination.

Two strategies were followed for knowledge integration concerning the taxonomic relationships

between the different classes or species. First, divisive clustering with classifier performance

as splitting criterion was considered to construct a FAME tree, resembling the hierarchical in-

formation hidden in the FAME profiles of the considered species. Due to combinatorial and

computational issues, this experiment was restricted to the clustering of 15 species. Relatively

good results were obtained as closely related species were retained out of the massive amount

of computed clusters. Future research should look on how to resolve this problem. Also hier-

archical classification for these 15 species was evaluated and a classification performance was

obtained comparable to that obtained with flat multi-class classification. Secondly, we evalu-

ated the approach of knowledge integration based on 16S rRNA gene data. In contrast to FAME

data, the 16S rRNA gene does allow to discriminate the different bacterial species in most cases.

Using quality controlled 16S rRNA gene sequences, phylogenetic trees were constructed for the

type strains of the 74 considered Bacillus species, as validly published in March 2008. The two

treeing algorithms under consideration were the NJ and UPGMA method. These trees were

inferred from distance matrices computed from the aligned 16S rRNA sequences and corrected

for the Jukes-Cantor evolution model. Hierarchically structured binary classifiers were trained

at each node of the two phylogenetic trees to distinguish the FAME profiles corresponding to

the two underlying branches. From a biological perspective, this should be a good starting point

for classification, as it is our goal to distinguish between different bacterial species that are hier-

archically structured in a taxonomy based on evolutionary relationships. When considering 16S

rRNA gene phylogenetic trees as template for classification, a new approach for hierarchical

classification was proposed. Herein, two types of data were combined for hierarchical classifi-

cation: 16S rRNA gene sequences for defining the different classification tasks, and FAME data

for classification of bacterial species as defined by these tasks. Because the 16S rRNA gene was

used for phylogenetic analysis and this gene allows to discriminate most bacterial species, we

call this approach phylogenetic learning. Phylogenetic learning with the NJ and UPGMA trees

for the 74 species showed to be less accurate than flat multi-class classification. Phylogenetic

learning with both trees also resulted in a similar identification performance. When classifier se-

lection is at stake, preference should be given to the classifier with the best global performance

and the lowest computational cost. Consequently, flat multi-class classification should be pre-

ferred over phylogenetic learning. However, as bacteria are structured in a taxonomy based on

genotypic and phenotypic analysis, relevant information about this hierarchy is not used by flat

classification methods. This knowledge was, however, integrated in the phylogenetic learning

method. A clear advantage of this integration was seen when focusing on the incorrectly identi-

fied species in flat multi-class classification, as phylogenetic learning clearly took advantage of

the binary classifier hierarchy to improve identification of these classes.

In summary, good strategies were found for knowledge integration of bacterial species iden-

tification based on FAME data. The next step to take in this taxonomic knowledge integration

study was to develop a system for exploiting and visualizing the performance of the different
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binary classifiers. The Wilcoxon rank-sum statistic was used to detect similar identification

scores for FAME profiles of the two considered species. Two significance levels were cho-

sen to map the resulting p-values to a three-colour highlighting scheme of red-orange-green.

Adjusted significance levels were calculated with the unweighted Bonferroni method, similar

to the multiplicity problem. Given this method and the recalculated levels, different interior

nodes and leaves became highlighted. Red groups were consistently found in both the NJ and

the UPGMA tree. These groups comprise species covering indistinguishable FAME profiles

but also species with a number of FAME profiles too low for enabling a good generalization

and identification. Orange groups were not consistently found, due to p-values near the defined

thresholds. Ideally, this technique could be used as meta-information for further enhancing the

identification report of FAME-based identification. Nonetheless, the method requires a further

refining and evaluation. Ultimately, when using intelligent learning models, microbiologists

will be able to resolve which groups of species are hard to distinguish from each other.
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CHAPTER 6
FAME-bank.net

Sharing knowledge is not about giving people

something, or getting something from them.

That is only valid for information sharing.

Sharing knowledge occurs when people are

genuinely interested in helping one another

develop new capacities for action; it is about

creating learning processes.

PETER SENGE

6.1 Introduction

First-line identification methods are a good option for rapid bacterial typing and narrowing

down the bacterial spectrum. These identification methods do not only allow for identification

at the genus level, but can even result in identification at the species and strain level. In this per-

spective, chemotaxonomic methods such as fatty acid methyl ester (FAME) analysis are often

used because they are cheap, fast, automated and high-throughput. Following the introduction

of gas chromatography by James and Martin in 1952, gas chromatographic (GC) fatty acid

analysis of bacteria started around the first years of the 1960s by investigation of the species

Bacillus subtilis and a species of the genus Sarcina (Akashi and Saito, 1960; Saito, 1960a,b;

Kaneda, 1963a). For about 50 years now, FAME analysis has become one of the routine me-

thods in many institutes for fast bacterial identification. Most laboratories perform bacterial

FAME analysis using the commercial Sherlock Microbial Identification System (MIS) of the

company MIDI Inc. (Newark, Delaware, USA), which, thus, has become the reference when

performing FAME analysis. A serious implication of the routine use of this first-line bacterial

identification method is that the high-throughput analysis has led to huge but private FAME

databases. The joint FAME database of the Laboratory of Microbiology and the BCCM™/LMG

Bacteria Collection (LMG, Ghent University, Belgium) is a clear example. This laboratory

started with whole-cell bacterial FAME analysis around 1989 and the resulting FAME database

currently contains over 71,000 FAME profiles.

Gas chromatographic FAME analysis is a culture-dependent phenotypic method, implying

that the data highly depends on growth and culture conditions. It is shown in literature that these

conditions highly effect the gas chromatographic peak areas in a quantitative manner. A small

effect was seen in peak presence (qualitatively) (Welch, 1991; Kämpfer, 2002). These findings
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had a serious implication on the use of FAME analysis for bacterial identification and, conse-

quently, standard growth and culture conditions are usually adopted, allowing for the compar-

ison of FAME profiles. With their identification system, MIDI Inc. defines different protocols

depending on growth atmosphere, isolation source, clinical impact, etc. As such, when ana-

lyzing the whole-cell fatty acid content of bacteria and setting up FAME databases, it is very

important to maximally annotate the resulting FAME profiles. This is critical and a necessity, as

comparing and sharing FAME profiles and doing numerical and computational FAME analysis

only makes sense when identical growth and culture conditions were used for the generation

of the profiles. Where numerical FAME analysis has been done for many years (O’Donnell

et al., 1985; Eerola and Lechtonen, 1988; Kämpfer, 1994; Heyndrickx et al., 1996; Kämpfer,

1994; Vancanneyt et al., 1996), data mining and machine learning studies of the FAME data

started onlyabout 15 years ago (Ruggiero et al., 1993; Bertone et al., 1996; Giacomini et al.,

2000, 2004), together with the research presented in the previous chapters of this dissertation.

In these studies, intelligent identification models were constructed in which mathematical func-

tions were learned to distinguish between different bacterial genera and/or species. However,

with our research we showed a bottleneck in FAME research for genus-wide bacterial identi-

fication, namely the lack of data due to the private nature of FAME data storage. In order to

perform large-scale studies and to upscale data mining and machine learning research on FAME

data, cooperation between different institutes has become a necessity. A straightforward solu-

tion for this problem lies in the creation of a public FAME database, which is reported in this

chapter.

In view of establishing a public FAME repository, it is important to note that a huge gap ex-

ists between genotypic and phenotypic databases. Due to massive technological improvements,

sequencing has become very cheap and fast, and, as a consequence of this explosive trend and

the simple annotation (i.e. set of all meta-information) of nucleotide sequences, deposits in the

public nucleotide sequence databases of the INSDC (NCBI, EMBL and DDBJ) have known an

exponential growth. The INSDC collaboration already exists for more than 18 years. In con-

trast, phenotypic methods mostly rely on commercial systems and their identification libraries,

with the clear disadvantage of being costly, incomplete and not up-to-date with the current

microbial taxonomy. Examples are biochemical testing (API/ID32, Biomérieux), metabolic

fingerprinting (Biolog Microplates, Biolog and Vitek2, Biomérieux), MALDI-TOF analysis

(MALDI Biotyper, Brucker Daltonics and SARAMIS, Anagnostec), resistance detection (Mi-

croscan, Siemens) and, of course, FAME analysis (Sherlock MIS, MIDI Inc.). Many more other

techniques exist for phenotypic bacterial identification. While these methods are routinely used

in almost every microbiological laboratory, the resulting data are privately stored in databases

or computers, or simply published in print only (e.g. scientific journals and Bergey’s Manual

of Systematic Bacteriology). However, few public databases for sharing these phenotypic data

exist. With the massive (high-throughput) generation of phenotypic data, the importance of

polyphasic taxonomy (Vandamme et al., 1996) and the current bacterial species definition stat-

ing that phenotypic characteristics should agree with the 70% DNA-DNA hybridization thresh-

old for species delineation (Wayne et al., 1987; Rosselló-Mora and Amann, 2001), it remains

unclear why phenotype databases have not been established before. It requires a lot more work
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to maximally annotate the data instances, fingerprints or profiles, but with the technological im-

provements established in the last decade(s), it cannot be a hurdle too high to take. Regarding

FAME analysis, a first initiative in this direction was taken by the Swedish culture collection

CCUG (University of Göteborg), which makes its generated FAME data accessible on their

website, next to genotypic data and other phenotypic data (CCUG, 2009). For gas chromato-

graphic FAME analysis, CCUG follows the method as described by MIDI Inc. (Sasser, 1990).

However, strain cultivation is done by different growth conditions, mainly because CCUG deals

with a lot of fastidious organisms. For fastidious organisms, they use Chocolate agar in a com-

plex formulation at different atmospheric conditions (CO2, microaerophilic or anaerobic), the

optimal temperature and differing growth durations. For non-fastidious organisms, a blood agar

is used aerobically at 37◦C and differing growth durations. Peaknaming is performed using

the Sherlock MIS (Agilent) FAME standard as reference (Molin, 2004, 2008). CCUG provides

their FAME profiles online with for each sample a summary of the retention times, ECL values,

relative percentages and peak names for each detected peak. With each sample, also a strain

number, a taxon name, a date and some remarks are possibly reported. However, no consistency

is found in the manner of annotating the used growth and culturing conditions (personal com-

munication with E. Moore, E. Falsen and K. Molin, CCUG). For identification of their FAME

chromatograms, CCUG uses one single library based on the paper of Eerola and Lechtonen

(1988). This, in contrast to Sherlock MIS. With the creation of FAME-bank, we take a first step

towards a public database for sharing whole-cell bacterial FAME profiles.

6.2 Construction and Content

6.2.1 Database Schema and Implementation

As mentioned in the introduction, comparing, sharing and computionally analyzing FAME

profiles requires identical growth conditions. Therefore, storing FAME profiles requires a care-

ful annotation of the data. Because all our FAME profiles were generated using the Sherlock

MIS system of MIDI Inc., the implemented annotation is based on that information reported

by Sherlock MIS. This concerns the specific growth and culture conditions (growth medium,

growth temperature, growth duration and growth atmosphere), depositor information, the used

peak naming table and, if available, the identification library used. All information is stored

in different tables of an Oracle relational database management system (Oracle Corporation,

Redwood Shores, CA, USA). The FAME-bank schema is illustrated by an entity-relationship

diagram in Figure 6.1. As the Sherlock MIS system is routinely used at the Laboratory of Mi-

crobiology (Ghent University, Belgium), we used this system as a basis for the construction of

the database schema. The main table profiles covers all general information of a single FAME

profile. This comprises strain number, species name, growth conditions, depositor informa-

tion, provenance and additional information. Herein, provenance is implemented for logging

purposes while additional information relates to non-standard profile information. Each FAME-

bank profile is assigned a unique FAME-bank accession number (‘FB’ + eight digits). General

peak information is also included and relates to the FAME profiles generated by Sherlock MIS,
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namely the total peak area, the total named peak area, the percentage of named peaks, the

corrected total named peak area (total amount) and other Sherlock MIS comments related to

the quality of the FAME profile. These fields correspond to the information included in the

Sherlock MIS FAME profile reports. The peaks of each profile are named by a particular peak

naming table and are stored in a different table (profile peaks), together with corresponding

information such as equivalent chain length (ECL), retention time and summed feature infor-

mation. Notice that a peak naming table names a certain set of chromatogram peaks, and, thus,

allows to express the peak areas as relative values. Stated otherwise, the areas of the named

peaks should sum up to 100%. The corresponding peak naming table is saved in the table peak

naming tables and, if available, the entries of the peak naming table are saved in the table peak

names. Notice that, we have chosen to implement a 1–1 relationship between a FAME profile

and a peak naming table. This implies that a FAME profile may be named by different peak

naming tables but the resulting FAME profiles are stored as separate entries in the database. A

FAME profile may also be identified by a particular identification library which reports one or

more identification name and score for each profile. This identification information is saved in

the table profile identification and the corresponding identification library is saved in a separate

table (identification libraries). Furthermore, the name, email address and affiliation of each

depositor are stored. In later stages, a login system based on login name and password will

be installed for managing personal FAME profiles (more information below). Finally, for each

medium, a name, description, owner, provenance and number is saved. These latter two tables

are shared with the architecture of the StrainInfo webportal (Dawyndt, 2009).

6.2.2 Data Sources and Quality Control

At 28/06/2009, 3,149 FAME profiles were stored in the FAME-bank database, each uniquely

described by a FAME-bank accession number. These profiles originate from two distinct sources.

The major source is the private joint FAME database of the Laboratory of Microbiology and the

BCCM™/LMG Bacteria Collection (Ghent University) from which 3,018 FAME profiles were

exported into FAME-bank. Only FAME profiles from type strains are considered. A second

source were 131 FAME profiles resulting from the research of Sikorski and Nevo (2005, 2007).

For the latter profiles, see also Subsection 4.3.6.1. Of course, this is only a first step towards a

valuable public database. Besides the Laboratory of Microbiology (Ghent University, Belgium),

the scope of FAME-bank will also be extended towards other microbiology institutes and lab-

oratories willingly to contribute to this FAME project. In this perspective, a critical issue on

data sharing is quality control. FAME profiles are only valuable and useful if these are fully

annotated with profiling and peak naming information. Consequently, import of FAME profiles

will only be possible if profiles are annotated by growth and culture conditions, i.e. medium,

temperature, duration and temperature, and corresponding to a particular peak naming method.

More information on this topic is discussed below.
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Figure 6.1: Entity-Relation Diagram of the FAME-bank database structure. Rectangular and oval
entities correspond to table names and attributes, respectively. Attributes are connected to tables by
dotted lines. Diamond squares represent relations between the different entities. Full lines represent at
least one relationship between two entries of both entities, while dashed lines correspond to a possible
relationship. The primary key of each table is underlined.

6.2.3 Web Interface

A web interface was developed on top of the FAME-bank database. Implementation of the

application was based on a Java framework with Apache Struts 2 (web application), Spring

(programming technology) and Hibernate (database connection). Hereby, the web interface

allows for optimal visualization and searching of FAME profiles.

6.3 Utility and Discussion

6.3.1 User Interface

The FAME-bank main page allows users to easily search for FAME profiles and view the

current status of FAME-bank. Background information on the FAME-bank project and a contact

address can be found through an additional link. For future development also an upload link

and login possibilities are provided (more information below). Two options are provided for
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searching FAME profiles: a basic profile search and an advanced search tool. By the basic

search, users are allowed to search for profiles based on a strain number, taxonomic name or

accession number. A more advanced query builder allows for advanced searching based on peak

prevalence, growth conditions, profiling and deposit dates, identifications and depositors. In the

current version, users are supported in constructing their personal queries by simple combo-

boxes. By submitting a particular search query, all search results are listed by their FAME-bank

accession number. Additional information is provided by the fields: strain number, species

name, peak naming table, profiling date and deposit date. Alternative sorting is possible through

these fields.

Each search result can be viewed into more detail. All information about each profile is

grouped and can be accessed by a tabbed header. The different tabs cover general information

(overview tab), peak information (profile peaks tab), strain information (according tab), infor-

mation on growth and culture conditions (sample conditions tab) and, if available, identification

of the FAME profile (identification tab). The general information covers the accession num-

ber, deposit and profiling date and the name of the depositor. The profile peaks are visualized

in a table and by two diagrams. In a first figure, the percentage of each peak is plotted in a

bar diagram against its equivalent chain length. The second figure shows the different relative

peak areas in a pie chart. If the original chromatogram is available, this figure will be included

in this tab. Strain information covers the bacterial strain number and its species name. Links

are provided to the StrainInfo.net webportal, in case more information regarding the particular

strain or species is desired (Dawyndt, 2009). This mainly concerns a list of all strain numbers

of a particular species, equivalent strain numbers, strain history and corresponding 16S rRNA

sequences and literature. Growth temperature, duration, atmosphere and medium are reported

in the sample conditions tab. If the FAME profile was identified by an identification system,

the corresponding identification library together with the name and score of each identification

result are reported in a final tab. Screenshots of the different tabs are visualized in Figure 6.2

for FAME profile FB00000647 which relates to the strain Bacillus subtilis LMG 7135T. The

corresponding Sherlock MIS FAME profile report of this strain is shown in Figure 2.11.

6.3.2 Use, Benefits and Future Development

With the presented database and web application, it is currently possible to search and ana-

lyze 3,149 fully annotated FAME profiles. Where the CCUG culture collection (University

of Göteborg, Sweden) has put the FAME data of their strains online, searching online FAME

profiles in a public FAME database was not possible before the launch of FAME-bank. In

the current alpha version of FAME-bank, the web functionality only makes searching specific

FAME profiles possible.

From the conclusions in the previous chapters, it is clear that private FAME databases and

the absence of a public FAME database restricts the size of the generated data sets and, thus, the

scope of the performed FAME research. Therefore, in the beta version of the web application,

additional features will be implemented, allowing for an extended numerical and computational

FAME analysis. This includes similarity searching, numerical taxonomy and identification of
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(a) General overview

(b) Profile peaks

(c) Strain Information

Figure 6.2: FAME profile FB00000647 of Bacillus subtilis LMG 7135T. Screenshots are given for the
different information tabs.
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(d) Sample Conditions

(e) Identification

Figure 6.2 continued.

FAME profiles by the machine learning models presented in this dissertation. In a first step,

downloading FAME profiles will be made possible. Herein, the XML markup language allows

for easy sharing and parsing of the data. We foresee to launch this new version soon. Ultimately,

analysis will become possible from strain level to genus level and higher taxonomic ranks.

Where the first step towards a public FAME database is taken by the Laboratory of Micro-

biology (Ghent University, Belgium), a large qualitative database covering a wide spectrum of

the bacterial landscape can only succesfully be achieved by a community effort. At present, the

number of fully annotated FAME profiles is rather small, but with only a few collaborations this

number can grow extensively. In order to make other microbiologists participate in this FAME-

bank project, an implementation of a FAME profile upload scheme is currently in development.

Sharing data is, however, a critical issue, especially in the context of providing data of high qual-

ity. A good reference point are the INSDC nucleotide databases (INSDC, 2009) that contain

a large number of sequences of low to bad quality. It has become that bad that new databases

are established for providing quality checked nucleotide sequences available from the primary

nucleotide databases. An example is the SILVA database which provides quality checked ri-

bosomal nucleotide sequences (Pruesse et al., 2007). In establishing a FAME database, it is

important to bear this data quality issue in mind. Consequently, as a main quality control, only

fully annotated FAME profiles will be allowed for import in the database. This implies that all

imported FAME profiles need to be provided with growth and culture conditions and a particu-

lar peak naming table. These restrictions are imposed as a comparison of these profiles is only

meaningful when the FAME profiles can be put in their proper context. Moreover, as FAME

peaks are valued by a relative percentage over the total named area, they should sum up to

100%. This property can be used as an additional quality control measure. Globally, it is even

advisable to define a minimum information standard for a gas chromatographic FAME profile

experiment, such as the miminum standards pursued by the MIBBI or Minimum Information
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for Biological and Biomedical Investigations project. This project aims to increase the visibility

of projects developing guidance for the reporting of aspects of biological and biomedical sci-

ence; to encourage collaborative development between such projects and, where appropriate, to

avoid duplication of effort or competition; and to promote the adoption of consensus guidance

on reporting by journals and funders. Different minimal standards are already defined such as

MIAME (Minimum Information About a Microarray Experiment), MIGS (Minimum Informa-

tion about a Genome Sequence), MINSEQE (Minimum Information about a high-throughput

SeQuencing Experiment), etc. (MIBBI, 2009). Currently, different import procedures are writ-

ten and tested that mainly focus on an automated parsing of the text-annotated Sherlock MIS

reports. Herein, it will be possible to import the different FAME profiles in a single step (or

bulk upload). Moreover, as an additional control system, a login system is installed for which

the user needs to register by giving his or her name, email and affiliation. In this way, the (blind)

upload of FAME profiles of low quality is prevented. In the future, this login system will allow

users to manage and analyze personal FAME profiles.

An interesting and popular feature available in many databases is matching data instances

against the present database entries. Also in our case, finding the most similar FAME profiles

in the database would be a valuable feature. In the beta version, a profile matching tool will be

provided. Remark that this similarity calculation requires a totally different approach than, for

instance, nucleotide matching, which is typically achieved by heuristical algorithms. For profile

matching, a large choice of similarity measures can be implemented (e.g. Canberra distance,

Euclidean distance, Mahalanobis distance etc.). Moreover, with the availability of more FAME

profiles and a larger taxonomic scope, it will be possible to extend the research on developing

intelligent FAME-based bacterial species identification models as described in this work. It is

our purpose to make these models available to the community as an alternative FAME-based

identification tool. In view of profile matching and identification, we will thus only allow to

find similar FAME profiles among the different FAME-bank entries by profile matching and by

intelligent computational models. It is, however, very important to mention and underscore that

it is absolutely not our aim to re-identify stored FAME profiles by any commercial identification

library. It is not our goal to fulfil the identification job of any commercial identification system.

The core business of this FAME project is to make phenotypic data freely avaible and, as such,

allow for a more large-scale and extended FAME analysis.

6.4 Conclusions

The number of public phenotypic databases is lagging far behind the number of genotypic

databases. However, phenotypic analysis methods are routinely used in bacteriology and result

in a massive amount of data. Moreover, besides the genotype, the phenotype is a major player

in polyphasic taxonomy. It remains unclear why not even a small subset of these data has yet

been shared online in a public database. With the FAME-bank project, we have started one of

the first public phenotype databases by sharing whole-cell FAME profiles. Until now, FAME

profiles were only privately stored on personal computers, servers or databases, making the

scope of bacterial FAME studies limited. By establishing a public FAME database, searchable
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without any further restrictions, we aimed at a public framework for FAME profile sharing

and a more large-scale numerical and computational FAME analysis. A user friendly web

application makes FAME-bank accessible world-wide. Besides making public FAME profiles

searchable, the initial FAME-bank project seeks extensive further development that will allow

to take FAME analysis studies to a higher level. For instance, by the development of custom

identification libraries in any kind of niche of interest. Without becoming too idealistic, we

attempt to make microbiologists enthousiastic about the open-access concept, especially when

focusing on phenotypic data. With the improvements in (high-throughput) analysis technology

and computer systems established in the last decades, networking becomes more and more

important and critical. In this light, microbiology should not restrict its focus to nucleotide and

protein databases but also reckon with phenotypic data.

6.5 Availability

FAME-bank is publicly and freely accessible by the website http://www.fame-bank.net.

Searching and downloading FAME profiles is without any restriction, uploading of data will

require a user to register for a FAME-bank account.
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CHAPTER 7
General Conclusions

In this chapter, the main conclusions of our research on FAME-based bacterial species iden-

tification are summarized. A brief overview is given of the different experiments, research

strategies and results, together with a critical note on the strengths and weaknesses of the fol-

lowed approaches. Finally, the main contributions to the scientific community are reported.

The main goal in this work was to investigate how the identification of bacterial species,

based on FAME data, could be improved by the application of machine learning techniques.

Machine learning allows for an intelligent computational identification and, given the limited

resolution of FAME analysis for species identification, machine learning can maximally exploit

the information and patterns present in the data. Hereby, machine learning allows for a more

reliable identification than an identification solely based on similarity measures.

In general, the use of machine learning techniques for bacterial identification is still limited

and, thus, an interesting field to exploit and investigate. This is especially true when focusing

on phenotypic data. However, machine learning is still not a very popular field in microbiology.

One reason is that machine learning techniques requires mathematical knowledge and, with

regard to parameter optimization and good performance estimation, these techniques are not

easily implemented and executed. Also, phenotypic data are mostly not publicly available and

accessible to the community, making it hard to perform extended numerical and computational

research. This also holds for FAME data. Research on FAME-based bacterial identification

by machine learning techniques is still very limited. Moreover, an approach for up-to-date

bacterial identification had not been investigated before, making it worthwile to investigate a

FAME-based species identification by machine learning techniques.

7.1 Data Sets

We limited our computational research to the analysis of the three bacterial genera Bacil-

lus, Paenibacillus and Pseudomonas. These genera were chosen for three main reasons. First,

the two genera Bacillus and Paenibacillus are phylogenetically closely related, though distant

to the third genus, Pseudomonas. Second, for each of these genera, a reasonable number of

FAME profiles was present in the joint database of the Laboratory of Microbiology and the

BCCM™/LMG Bacteria Collection (Ghent University). Third, a profound expertise was avail-
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able at the Laboratory of Microbiology. A manual procedure was installed for the creation of

FAME data sets covering as many species of each genus as possible. This procedure was mainly

related to the removal of FAME profiles of bad quality, resulting from non-standard growth and

culture conditions, with a bad peak composition, of outliers and of profiles belonging to non-

valid bacterial species. The resulting data sets were merged in a global genera data set and two

data sets regarding different plant-pathogenic Pseudomonas strains were also constructed. For

the three genus data sets, we initially chose to work with as many profiles as were present in

the FAME database. By aiming at a genus-wide identification, it was necessary to generate

hundreds of additional FAME profiles. A minimum of three FAME profiles per species was

selected for data set creation, even though we kept in mind that the construction of identifica-

tion models relying on such limited data is far from ideal. Results will become more objective

and reliable when more FAME profiles will be included in the data sets. Moreover, extending

research towards more genera will require the generation of a multitude of FAME profiles.

7.2 Data Analysis and Machine Learning

Three main research steps were investigated in this work. First, to gain initial insights in

the FAME data, in what manner the FAME profiles of the different species could possibly be

distinguished from each other, or how they were related, we performed a short data analysis.

The second step handled a very straightforward problem in machine learning, namely the genus-

wide classification of bacterial species based on the FAME data. The main purpose here was

to investigate how FAME-based identification could be improved by several machine learning

techniques for the species of different bacterial genera. In a third step, we focused on learning

from FAME data in a taxonomic framework and on how learning could contribute to putting

the identification results in this taxonomic context. For each of these three research topics, the

goals, main achievements and general conclusions are reported.

7.2.1 Data Analysis

The main goal in this work focused on the research question of how to improve a partic-

ular identification problem by the application of machine learning techniques. In Chapter 3,

a preliminary data analysis resulted in knowledge on the data composition, data patterns and

relations between the different classes. Hereby, it was possible to analyze how well machine

learning techniques could perform on the present data. Three particular standard approaches

were investigated: the calculation of average FAME profiles, profile clustering and principal

component analysis. These three analysis methods were performed for the three genus data sets

and the latter method was also applied on the joint genera data set and the plant-pathogenic

Pseudomonas data sets. From the average FAME profiles, it could clearly be concluded that the

spectra contained core-genus, species-specific and strain-specific peaks which over the differ-

ent species within one genus resulted in a broad spectrum of peaks. Average peak values and

standard deviations showed possible species discriminations in a qualitative and/or qualitative

manner. For clustering, we performed a basic peak and/or species clustering of the data, and
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a TaxonGap analysis. Both methods showed close relations between different species of one

genus, possible only allowing for a discrimination of species groups. Also, for one species,

different FAME subgroups were found. Hereby, we further confirmed the results of different

numerical studies on FAME data such as Stead (1992), Kämpfer (1994), Heyndrickx et al.

(1996) and Vancanneyt et al. (1996). These findings also indicated that the calculation of sim-

ilarity measures between FAME profiles will not always result in reliable identification results.

The clustering results revealed a possible further restriction of the power of machine learning

techniques for the classification of bacterial species, where the power was already confined by

pursuing a classification of a large number of classes of which most classes were represented

by a small number of data instances. Principal component analysis clearly showed a correlation

between the many FAMEs. Biologically, this correlation could be related to the biochemical

synthesis of fatty acids. Skree plots showed that the three genera could almost perfectly be sep-

arated from each other. For the species of each genus, the analysis confirmed the findings of the

other data analysis methods, in that a lot of species were related to each other in FAME data,

making it hard to discriminate between them. From biplots of the first principal components,

we could also conclude that the species of the genus Pseudomonas were more related to each

other than the species of the genera Bacillus and Paenibacillus. This genus also corresponded,

however, to a lot more species. Finally, principal component analysis of the plant-pathogenic

data sets also revealed highly related FAME patterns between plant-pathogenic Pseudomonas

species. And, from first sight, the discrimination of plant-pathogenic Pseudomonas species

from non-pathogenic Pseudomonas species seemed not very straightforward. In general, from

these data analysis experiments, we concluded that the power of machine learning research for

genus-wide FAME-based species identification could be confined by data pattern similarities

between numerous species of a single genus. However, the trade-off between the large vari-

ability in the data and the presence of correlated peaks could possibly allow for a more flexible

learning and model construction.

7.2.2 FAME-based Bacterial Species Classification

The data analysis performed in Chapter 3 clearly showed that species identification based

on FAME data is not a straightforward task. Machine learning techniques, though, allow for an

intelligent computational analysis by learning flexible species boundaries between the overlap-

ping FAME data clouds. Hence, a challenging task was to investigate how machine learning

techniques are capable of generalizing over the data of the different species and if the identifi-

cation could be improved by this approach. The techniques artificial neural networks, support

vector machines and random forests were considered for identification of the species of the three

genera. Where species identification was already performed on a limited number of species of

a small but different number of genera, we focused on species identification within one genus.

This setup of genus-wide computational identification in a taxonomic setting was not investi-

gated before. In a first setting, we applied artificial neural networks for the identification of

Bacillus species. The main goal was to investigate different experimental strategies for up-

scaling the machine learning research to different other genera. The performance on balanced
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data sets was compared to that on imbalanced data sets, simple validation was compared to

cross-validation and the combination of two different neural network activation functions were

evaluated. Globally, a good identification performance was obtained for Bacillus species iden-

tification using imbalanced data sets and artificial neural network models validated by stratified

cross-validation. For the considered neural network activation functions, we found that these

functions should be selected from a set of activation functions. As artificial neural networks

are quite parametrized, a lot more setups with different other parameters could be considered.

Herein, different learning algorithms with different parameters and different architectures could

be chosen. It was, however, our aim to investigate how an experimental setup should be installed

in order to achieve a good and reliable species identification. Thus, with these experiments, we

allowed for a promising further investigation of artificial neural network-based identification

of bacterial species in different other genera. However, it is important to remark that due to

a restrictive number of FAME profiles for a large number of species, better and more reliable

results will be obtained by the inclusion of more data per species, which is supported by a better

generalization obtained for each species. Finally, the data analysis experiments in Chapter 3

implied that the resolution of FAME data could possibly confine the performance of machine

learning techniques. This is nicely confirmed in the neural network experiments for Bacillus

species identification by focusing on two groups of closely related species, the B. cereus group

and the B. subtilis group. Misidentified FAME profiles of species of those groups showed to be

mainly identified as a member species of the corresponding group.

With the results of the Bacillus species identification experiments in mind, we took our ma-

chine learning research to a broader spectrum with the evaluation of three machine learning

techniques for species identification within three bacterial genera. For these experiments, two

strategies were investigated: a stratified setup with identification from genus level to species

level and a straight species identification by which species of the three genera are distinguished

using a single model. A better identification performance was achieved with the stratified ap-

proach for all three techniques. For this strategy, we could further conclude that the three

machine learning techniques resulted in a nearly perfect genus identification. At species level,

a moderate to high identification performance was achieved, keeping the limited discriminative

power of FAME analysis in mind as well as ongoing discussions about the taxonomic positions

of different Bacillus, Paenibacillus and Pseudomonas species. Data analysis experiments on

the FAME data of the genus Pseudomonas showed that the resolution of FAME analysis was

very limited. This was clearly observed in the different machine learning experiments that were

confined in their power to discriminate between the different species. Generally, in the differ-

ent classification experiments, random forests proved to be the best technique for identification

within each of the three genera. Random forests is also very promising for upscaling the exper-

iments to a wider bacterial spectrum as it has several advantages as opposed to artificial neural

networks and support vector machines. Namely, random forests are robust against overfitting,

correspond to a short computation time and require the optimization of only a small number of

parameters. Hence, it is preferably to consider random forests in a stratified strategy as the ma-

chine learning technique for future experiments. The identification performance achieved with

machine learning techniques was compared to those obtained by the commercial identification
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system Sherlock MIS (MIDI Inc., USA). Even though the identification libraries of this system

comprise a lot more genera and species, for the species of the three genera considered in both

systems an improved identification was obtained by the machine learning approach. However,

a more reliable comparison will be possible when more genera, species and strains become

investigated. Identification was also evaluated by independent data sets. In the case of the

Bacillus simplex data set and, when compared to the commercial system, identification could

be greatly improved. With the analysis of the genus Pseudomonas, additional experiments were

performed on two plant-pathogenic data sets. plant-pathogenic species could significantly be

distinguished from non-plant-pathogenic species. In the case of a discrimination between the

different plant-pathogenic species only a moderate performance was achieved. The presented

machine learning approach for FAME-based bacterial species identification has several advan-

tages. Machine learning techniques allow to learn from the data by generalizing over the data

within one class or species. This learning is advantageous for non-linear separability problems

like we dealt with in this study. This in contrast to comparing data points by similarity calcu-

lations. Another important advantage of the machine learning approach relates to the monthly

changing bacterial taxonomy that requires identification methods to update their libraries. This

problem is easily met by machine learning techniques by rapidly updating the data sets and by

allowing a rapid retraining of the identification models. Moreover, in a stratified setting not all

genus models need to be retrained when changes occur in a particular genus. However, dis-

advantages also exist. The results will become more reliable when more FAME profiles per

species are included in the data sets. Besides more profiles, a better intra-species heterogeneity

and, thus, generalization will be attained when also more strains are included. In this regard,

it is important to emphasize that the current practice of publishing species with only a single

strain has little discriminatory value. When pursuing a genus-wide species identification, more

validly published species need to be included in the data sets as for Bacillus and Paenibacillus

only half of the validly published species were considered. Increasing the number of strains,

species and genera is, however, not as straightforward as presented due to the inability of many

bacteria to grow under standard conditions or even to be culturable. Besides a genus-wide

identification, we also worked in a taxonomic framework. No knowledge was integrated in the

multi-class identification models regarding taxonomic relationships. Another important remark

concerns the strategy of evaluating model performance based on the winner-take-all rule. By

solely considering the highest output value, the other output scores and their differences are

ignored. Besides this, the value of the highest output score is also ignored. Both sources can

correspond to knowledge of major importance in the evaluation of the model performance. In

the stratified setting, this would also result in a better interpretation of the identification results.

Nevertheless, on the scale of the research performed in this study, no computational FAME

analysis by means of machine learning techniques was performed so far.

7.2.3 Phylogenetic Learning

Globally, the different data analysis experiments and machine learning experiments showed

that it was hard to distinguish most species from each other. This again underscores the fact that
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the resolution of FAME analysis does not allow for a clear species discrimination but is rather

related to the identification of species groups. A clear example was reported in the artificial

neural network experiments on the species of the Bacillus cereus group and Bacillus subtilis

group. A look at the misidentifications of these species showed that the corresponding identi-

fication was mainly due to a species of the same species group. The low performance on the

identification of the different Pseudomonas species could also be attributed to closely related

FAME patterns, as visualized in the data analysis experiments. Hence, in a following research

topic, we investigated how we could integrate taxonomic and phylogenetic information in our

machine learning models in order to further analyze the limited FAME resolution for species

discrimination. As bacteria are hierarchically ordered in a taxonomy, we approached this inte-

gration by learning from these taxonomic relationships. Herein, the genus Bacillus was chosen

as model genus. In the field of machine learning, one method for hierarchical classification

is the approach of binary tree classifiers. A binary tree classifier typically builds a tree from

the data of interest, constructs two-class classifiers on each node of the tree and identifies new

data by putting these along the tree until identification in a particular leaf. We investigated

this approach by the construction of a FAME tree using supervised clustering of the random

forest identification scores. Due to the small sample sizes of several classes, agglomerative

clustering would result in an unreliable initial tree reconstruction at leaf level. Divisive clus-

tering was consequently chosen and analyzed in a small case study using a limited number of

Bacillus species of which some were closely related. Good results were obtained and, with

respect to classification, a performance was obtained similar to that obtained by flat multi-class

classification. When scaled to all present species, this method was, however, infeasible due

to unreasonable computation time. An alternative approach was found in the current species

definition. While DNA-DNA hybridization values are not widely shared, the 16S rRNA gene

sequence correlates with DNA-DNA hybridization and allows delineation of most bacterial

species. Moreover, quality-controlled 16S rRNA sequences are freely available in the SILVA

sequence database. Therefore, we investigated how 16S rRNA gene data could be combined

with our FAME data. We chose to tackle the binary tree approach in view of the 16S rRNA

data and the taxonomic framework. In other words, we inferred phylogenetic 16S rRNA gene

sequence trees and used these trees as templates for binary tree classification. The NJ and UP-

GMA treeing methods were chosen with the Jukes-Cantor evolution model. It is important to

mention that different treeing methods exist, each with their strengths and weaknesses, and a lot

of discussion is going on about which treeing method is best for phylogenetic analysis. With a

focus on binary tree classifiers that use rooted trees, we, therefore, did not consider a single tree

but investigated the NJ and UPGMA methods for inference of rooted trees. In short, 16S rRNA

gene sequences were used for defining the different classification tasks, and the FAME profiles

were used for classification of bacterial species as defined by these tasks. Importantly, this

approach of combining two data types for binary tree classification was not considered before

and we called this approach phylogenetic learning. By the hierarchical identification scheme,

we were able to analyze the identification results along a path of species groups and single

species. For classification purposes, the method showed to be less performant than flat multi-

class classification. However, the latter strategy does not incorporate any relevant phylogenetic
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information and cannot provide detailed information on the resolution of FAME data to dis-

criminate between related species and groups of species. Moreover, the identification of species

incorrectly identified by flat multi-class classification was improved by phylogenetic learning.

The performance of phylogenetic learning for both treeing methods was similar. It is clear that

phylogenetic learning has distinct advantages when compared to flat multi-class classification.

Moreover, statistical analysis of the identification scores at each node of the tree allowed to

develop a system to exploit and visualize the performance of the different binary classifiers.

The Wilcoxon rank-sum test on the random forest identification scores allowed to visualize

the resolution of FAME analysis for species identification in the phylogenetic framework. A

three-colour highlighting scheme was chosen for visualizing branches and nodes corresponding

to p-values, according to two significance levels. Significance levels were adjusted following

the Bonferroni correction, similar to its application in the statistical problem of multiplicity.

Though the Bonferroni correction is considered a very conservative method, we rather allowed

a more conservative penalisation than highlighting distinct FAME profiles as being similar. Ex-

periments were performed for the three genera and identical groups were found in both the NJ

and UPGMA trees. This highlighting information easily lends itself for enhancing the identi-

fication report of our machine learning models. Moreover, this approach could be used on any

type of FAME-based identification method. Briefly summarized, good strategies were found

for knowledge integration into FAME-based bacterial species identification models and these

allow for a more integrated research by combining different data types. Moreover, the presented

approach is easily generalized and extended towards a large bacterial spectrum, given the pres-

ence of high quality 16S rRNA gene sequences. In this study, we only considered the 16S rRNA

gene, but it is clear that different other data could possibly be considered.

7.3 FAME-bank.net

In aiming at a good generalization and striving for a genus-wide identification, machine

learning research was clearly restricted due to a lack of FAME data. More FAME profiles

of more bacterial strains are needed for a better intra-species heterogeneity and more validly

published species and genera are needed to extend the bacterial scope. Though, as with many

phenotypic methods, FAME profiles are stored in private databases and are not shared among

scientists. Analytical, numerical and computational research consequently remains dependent

on research performed at single institutes and is further restricted to specific environmental,

clinical and industrial niches. Generally, the resulting database of a single institute is taxonom-

ically seen restricted, being an obstacle for scientific research. The ultimate solution lies in a

public FAME database. While phenotypic analysis such as FAME analysis knows a long history

and is routinely used in microbiology, it remains a question why the scientific community has

not been sharing phenotypic data. In this work, we took the first step towards a public FAME

database for sharing bacterial FAME profiles. A database architecture was constructed with a

web application on top. All imported profiles were fully annotated with all required information

for enabling a good interpretation of the data. This corresponds to growth and culture condi-

tions, the used peak naming table and, possibly, one or more identification libraries. Deposit
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and general profile information is also shared. Currently, the web application is still in its al-

pha phase and is, therefore, restricted to executing search queries. Nonetheless, once the beta

version is launched, scientists will be able to import and download FAME profiles and perform

computational FAME analysis. To ensure data of a high quality, only fully annotated profiles

will be allowed for import.

With this FAME-bank.net project, we aim for an extended FAME research. However, the

whole project stands with the willingness of the community to share its data. If the taxo-

nomic scope becomes extended and the number of profiles grows, the performed research can

be updated, leading to an extended research and more reliable identification results. Also, sci-

entists will be able to construct custom identification libraries and perform FAME analysis in

an extended bacterial scope. Hence, with this database we hope to allow for an extended and

large-scale numerical and computational FAME analysis. In summary, by cooperation and ex-

tending this research in the future, the automated FAME-based identification tool for bacteria

will become most valuable in microbiology and many related fields.

7.4 Main Contributions to the Community

The main goal of this dissertation was to evaluate how FAME-based bacterial species iden-

tification could be improved by the application of machine learning techniques. We evaluated

three popular machine learning techniques on three different bacterial genera. Different setups

were investigated regarding data set creation, validation, parameter settings and identification

strategies. Moreover, knowledge integration was also investigated with the combination of

FAME data with 16S rRNA gene data. Therefore, this work may contribute to the field of

bacteriology by setting a first machine learning framework for bacterial species identification

that can easily be extended towards a larger taxonomic scope and, eventually, other phenotypic

data. The contribution to the machine learning community is rather small, except for describing

an alternative approach to combine different data types in a single hierarchical classification

model. In the following, the main contributions are briefly summarized:

• Data analysis was performed by different methods on a large number of species and

strains and extended the numerical studies published in the last decade.

• Machine learning techniques improved bacterial species identification for the three ge-

nera. By learning from the data, machine learning techniques generalize over the data

and result in intelligent species boundaries. Compared to similarity scoring, a more reli-

able identification was obtained.

• With the machine learning approach, we could easily tackle the problem of keeping pace

with the monthly changing bacterial taxonomy by the ability of rapidly updating data sets

and by retraining the models.

• With FAME analysis used as a first-line identification method, the machine learning

framework is easily plugged into laboratory information management systems.

• Integration of taxonomic and phylogenetic knowledge in the models was achieved by

combining different data types. Identification results can hierarchically be analyzed, al-
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lowing for a better interpretation of the resolution of FAME analysis for species and

species group discrimination.

• Post-processing of this technique allows to put the resolution of FAME data and bacterial

species identification in a taxonomic context.

• The creation of the FAME-bank.net search portal can be regarded as a steppingstone

towards a public sharing environment of bacterial FAME profiles. By this web portal,

we ultimately aim at a deeper and wider data analysis and machine learning research.

In this way, a further convergence becomes possible between the fields of bacteriology,

computational analysis and machine learning.
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CHAPTER 8
Future Perspectives

8.1 General

The most obvious future task is the extension of the computational research towards more

bacterial genera and species. When aiming at a genus-wide identification strategy, a maximum

number of species need to be integrated. At short term, this implies that many more FAME pro-

files need to be generated. Moreover, to achieve a good intra-species heterogeneity and, thus,

a good model performance, a lot more strains need to be included as well. Regarding the inte-

gration of more bacterial genera, the machine learning task for prediction at genus level could

become challenging, especially in the case of closely related genera, such as Bacillus sensu

lato. A possible strategy here is to further stratify the identification strategy. However, with the

described stratified strategy, the main problem lies in the use of only the highest output identi-

fication score of each FAME profile for directing the identification of each profile from genus

level to species level. When further considering this strategy for FAME-based bacterial species

identification with an extended scope at genus level, this approach could fail and an alternative

scoring or weighing mechanism will become necessary to attain more correct identification re-

sults. A possible solution could consider the identification scores of the FAME profiles for their

identification at both the genus and the species level.

For model evaluation in the multi-class setting, we applied the winner-take-all rule on the

identification outputs to prevent the application of any arbitrary thresholding. The application

of this rule possibly results in the loss of important information, which relates to the value of

the corresponding output but also to the differences between the identification scores. Another

future task should investigate alternative strategies for solving this problem.

Three machine learning methods in basic settings were investigated in this dissertation.

Consequently, some techniques could be evaluated more deeply. This mainly comprises artifi-

cial neural networks and support vector machines. For neural networks, different architectures,

different learning algorithms and different activation functions can be considered. In the case

of support vector machines, different other kernels exist, together with different optimization

techniques. An extended evaluation of these methods is possible. Regarding support vector

machines, an interesting research topic could also be the development of custom kernel func-

tions. Of course, many other machine learning techniques exist that could possible result in a
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promising identification. One example is boosting. Therefore, evaluation of additional tech-

niques could consequently be another future task. The perspectives proposed in this paragraph

are of main interest for machine learning purposes. It remains, however, questionable whether

this research should focus on an endless evaluation of methods and settings.

In regard of plant pathogenicity, it would be interesting to further evaluate the plant pathogen

vs. non-plant pathogen data analysis. Research could focus on the discovery of possible

biomarkers and on the distinction between mushroom and plant pathogenicity. The analysis

of different other genera, which are known to comprise plant-pathogenic species, would also be

a valuable research topic.

Besides a further extension of the scientific research, it would also be highly interesting to

use the developed identification methods for routine bacterial species identification, next to the

commercial system Sherlock MIS. This could be made possible by the development of plugins

for the LIMS system used at the Laboratory of Microbiology and the BCCM™/LMG Bacteria

Collection.

8.2 Data Sets

Not all FAME profiles present in the joint FAME database of the Laboratory of Microbi-

ology and the BCCM™/LMG Bacteria Collection are suitable for computational data analysis.

Some profiles are not resulting from standard protocols, contain less than three or four FAME

peaks, or even contain errors. For appropriate use of the database and, especially, for the se-

lection of high-quality data sets, it is recommended to perform a quality check of the whole

database or to provide additional fields or features to easily visualize the quality of the present

profiles. The presented data selection procedure was a manual, tedious task. Therefore, it is

recommended to develop an automated selection system in the LIMS system of the Laboratory

of Microbiology, in which the proposed quality labels could play a crucial role. Of course, a

final manual inspection will remain necessary.

In view of the expansion of the FAME data sets, it is important to mention that not all

bacterial strains of a particular genus or species grow by standard growth and culture condi-

tions. Protocols are already defined by the commercial Sherlock MIS system (Midi Inc., USA),

though not all bacterial species are included in their backend libraries. When extending research

towards numerous genera and species, agreements on conditions deviating from the standard are

needed for an objective interpretation, analysis, comparison and sharing of the FAME profiles

and the corresponding studies.

8.3 Data Analysis

Principal component analysis showed that about 90 to 95 percent of the variability in each

FAME data set could be described by about five principal components. Together with the fact

that FAME peaks are correlated, this knowledge indicates that certain FAME peaks in the data

sets are redundant. This redundancy could have a serious impact on our classification exper-
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iments. Therefore, one major future task is to evaluate the effect of feature selection on the

performance of the different machine learning techniques. This study was not considered in

this work, though it might have a positive effect on classification.

8.4 Phylogenetic Learning

An initial study was performed on the integration of taxonomic and phylogenetic informa-

tion in species classification models, with the goal of a hierarchical analysis of the resolution

of FAME data for species discrimination. A major future perspective is to extend and explore

the different possibilities and approaches regarding this research. We mainly focused on the

construction of binary tree classifiers built on a phylogenetic tree inferred from 16S rRNA gene

sequences. Because binary tree classifiers start from rooted trees, we only considered NJ and

UPGMA trees. Different other methods exist, although which method to prefer for phylo-

genetic tree inference has already been an item of discussion for many years. Besides the two

considered methods, two other popular methods are the maximum parsimony and the maximum

likelihood methods. These methods, however, infer unrooted trees. In the approach of binary

classifiers, only rooted trees are handled. Consequently, rooting of these unrooted trees should

be performed, most preferably by the integration of an outgroup. A second alternative to the

considered trees are the exploitation of established phylogenies. Examples are the phylogenies

resulting from the All-Species-Living-Tree project or the Taxonomic Outline of Bacteria and

Archaea. The aim of the All-Species-Living-Tree project is to reconstruct a single 16S rRNA

tree harboring all sequenced type strains of the hitherto classified species of Archaea and Bac-

teria (Yarza et al., 2008). The Taxonomic Outline of Bacteria and Archaea is a comprehensive

taxonomy of the type strains of Bacteria and Archaea, based on the 16S rRNA gene phylogeny

(Garrity et al., 2007). Besides this, machine learning research in unrooted trees could also be

a challenging research topic. In the treeing methods, we chose to calculate the distances be-

tween the 16S rRNA sequences by the Jukes-Cantor evolution model. Different other evolution

models exist and could be of possible interest for further research. Examples are the Kimura-

2 model and others. Further research could also focus on other integration approaches than

the binary tree classifier. With the popularity of kernel methods, a possible alternative could

be to model 16S rRNA phylogenetic relationships by kernel functions. Of course, this whole

research could also be oriented towards other data than 16S rRNA gene sequences. In this per-

spective, an interesting identification scheme is multi-locus sequence analysis and, in the long

term, whole-genome sequence analysis. Generally, the concept of phylogenetic learning could

also be considered on other data than FAME data.

The described approach of phylogenetic learning was ultimately developed for the visu-

alization of the FAME resolution in a taxonomical framework. We applied statistics on the

results of the many binary classifiers that were trained on the nodes of the considered phyloge-

netic trees, calculated p-values by statistical testing and applied a highlighting scheme defined

by two significance levels adjusted by a Bonferroni correction, similarly as applied in the sta-

tistical problem of multiplicity. Before extending this research to a wider bacterial scope, this
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approach should initially be further fine-tuned and evaluated, specifically in view of the multi-

plicity problem and the adjustment of p-values and/or significance levels.

The combination of different data types could also yield different possibilities for machine

learning research. In the case of FAME data and 16S rRNA sequence data, one could evaluate

how FAME profiles correlate with 16S rRNA sequences, if FAME profiles could be predicted

given the 16S rRNA sequences (and conversely) and the approach of data fusion. With unrooted

trees, an interesting suggestion for further machine learning research is to investigate classifica-

tion in this phylogenetic framework and how this approach could relate to the research of this

study.

In this topic on phylogenetic learning, we initially focused on the construction of a FAME

tree by supervised clustering of the FAME profiles. This approach could also be promising for

the evaluation and integration of the resolution of FAME analysis for species discrimination.

However, the presented approach was computationally infeasible. Future research could focus

on other methods and optimization techniques to solve this problem.

8.5 FAME-bank.net

A final perspective that needs special attention is data sharing. With FAME-bank, we tried

to establish an environment for researchers to share their FAME data. This could not only lift

the presented research in terms of larger data sets, but could also prove highly useful for the

evaluation of the presented machine learning methods. With this database, an inter-laboratory

comparison and analysis of FAME data will become possible. Actually, with this web portal,

microbiologists can be made enthousiastic on the use of machine learning and computational

analysis for identification purposes. Of course, besides a further development of the FAME-

bank database, collaborations with other laboratories remain also a good option for extending

FAME analysis research and these should also be further encouraged.
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APPENDIX A
Data Sets

A.1 Strain Tables

A.1.1 Data set 2006

Species name Strains (Number of profiles) EC

B. alcalophilus LMG 7120T(4)
B. amyloliquefaciens LMG 9814T(7); LMG 12325 (1); LMG 12329 (1); LMG 12385 (1)
B. aquimaris LMG 23073T(4)
B. arvi LMG 22165T(6); R-16994 (1)
B. atrophaeus LMG 16797T(1); LMG 8198 (9); LMG 8199 (5); LMG 17795 (4);

LMG 17796 (2)
B. axarquiensis LMG 22476T(5)
B. azotoformans LMG 9581T(2); LMG 15443 (1)
B. badius LMG 7122T(4); LMG 12332 (1); LMG 18004 (1); LMG 18005 (1);

LMG 18006 (1)
B. barbaricus LMG 23067 (5)
B. bataviensis LMG 21833T(7); LMG 21832 (1); R-15415 (1); R-15454 (2); R-

16296 (1); R-16308 (1); R-16321 (1); R-16324 (1); R-16325 (2);
R-16336 (1); R-17019 (1)

B. bogoriensis LMG 22234T(8)
B. carboniphilus LMG 18001T(6)
B. cereus LMG 6923T(7); LMG 2098 (1); LMG 6910 (1); LMG 6924 (1); LMG

8221 (9); LMG 8396 (2); LMG 9676 (1); LMG 12235 (1); LMG
12236 (1); LMG 12237 (1); LMG 12334 (1); LMG 12335 (3); LMG
12365 (9); LMG 13569 (4); LMG 14742 (4); LMG 17612 (1); LMG
18241 (2); LMG 18365 (2); LMG 18698 (1); LMG 22728 (1); LMG
22729 (1); LMG 22730 (1); LMG 22731 (1); LMG 22732 (1); LMG
22733 (1); R-20144 (1)

Table A.1: Strain table corresponding to the 2006 Bacillus data set. Strain numbers and correspon-
ding number of included FAME profiles are reported. Also, exceptional growth and culturing conditions
are reported (column ‘EC’).
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Table A.1 continued.

Species name Strains (Number of profiles) EC

B. circulans1 1) LMG 13261T(5); LMG 13271 (1); LMG 16568 (1); LMG 16628
(1); LMG 16629 (2)
2) LMG 6927 (1); LMG 12238 (1); LMG 12343 (2) LMG 13265
(1); LMG 13266 (3); LMG 13267 (2); LMG 13268 (1); LMG 13270
(1); LMG 13272 (1); LMG 13273 (1); LMG 13274 (1); LMG 14421
(1); LMG 14422 (1); LMG 14423 (1); LMG 14424 (1); LMG 14636
(1); LMG 16560 (1); LMG 16561 (1); LMG 16564 (1); LMG 16565
(1); LMG 16567 (1); LMG 16570 (1); LMG 16583 (1); LMG 16585
(1); LMG 16593 (1); LMG 16594 (1); LMG 16595 (2); LMG 16624
(2); LMG 16626 (1); LMG 16627 (1); LMG 16630 (1); LMG 16634
(1); LMG 16635 (1); LMG 16637 (1); LMG 16638 (1); LMG 16640
(1); LMG 16641 (1); LMG 16645 (1); LMG 16646 (1); LMG 16647
(1); LMG 16649 (1); LMG 16650 (1); LMG 16693 (1); LMG 17441
(1); LMG 17442 (1); LMG 17444 (3); LMG 17447 (2); LMG 17449
(1); LMG 17464 (1); LMG 17465 (1); LMG 17469 (1); LMG 17470
(1); LMG 17472 (2); LMG 17473 (2); LMG 17486 (1); LMG 18014
(2); B0949 (1); R-36277 (1); R-36278 (1); R-36279 (1); R-36280 (1);
R-36281 (1); R-36282 (1); R-36283 (1); R-36284 (1)

B. clausii LMG 17945T(6); LMG 18518 (1)
B. coagulans LMG 6326T(11); LMG 12345 (2); LMG 12346 (2); LMG 12398 (2);

LMG 12399 (1); LMG 12400 (2); LMG 12401 (2); LMG 12402 (2);
LMG 17451 (1); LMG 17452 (1); LMG 17453 (1); LMG 17456 (1);
LMG 17457 (1); LMG 17474 (3); LMG 17475 (1); LMG 17476 (1);
LMG 17477 (1); LMG 17478 (1); LMG 7376 (2)

B. cohnii LMG 16678T(8)
B. decolorationis LMG 19507T(4); R-5454 (1)
B. drentensis LMG 21831T(26); LMG 21830 (1); R-15416 (1); R-15427 (1); R-

15445 (1); R-16310 (3); R-16313 (1); R-16328 (2); R-16338 (1);
R-16986 (1)

B. endophyticus LMG 21715T(5)
B. farraginis LMG 22081T(1); R-7343 (1); R-7148 (1)
B. firmus LMG 7125T(5); LMG 12241 (1); LMG 12242 (1); LMG 12243 (1);

LMG 12352 (1); R-15586 (1)
B. flexus LMG 11155T(6)
B. fordii LMG 22142 (3)
B. fortis LMG 22079T(1); LMG 22141 (2); R-7163 (1)
B. fumarioli R-10919 (1); R-13595 (1); R-13623 (1); R-13624 (1); R-13860 (1);

R-13992 (1); R-14704 (1); R-14705 (1); R-14711 (1); R-16404 (1);
R-19905 (1); R-19906 (1); R-19910 (1); R-20285 (1); R-20287 (1);
R-20342 (1); R-20444 (1)

52◦C

B. funiculus LMG 22472T(5)
B. fusiformis LMG 9816T(6); LMG 17347 (2); B0661 (1)
B. galactosidilyticus LMG 17892T(5); LMG 12353 (2); LMG 12396 (3); R-15577 (1);

R-16004 (1)
B. gelatini LMG 21880T(3); R-13476 (2); R-13565 (2); R-13588 (1); R-13635

(1); R-13810 (1); R-13864 (1); R-13975 (2)
52◦C

B. gibsonii LMG 17949T(7)
B. halmapalus LMG 17950T(6)
B. halophilus LMG 17942T(3)
B. horikoshii LMG 17946T(7)
B. horti LMG 18497T(5)
B. humi LMG 22167T(4); R-17036 (1)
B. indicus LMG 22858T(6)
B. insolitus LMG 17757T(3); LMG 17153 (3); B0433 (1)
B. jeotgali LMG 21653T(6)
B. laevolacticus LMG 6923T(9)
B. lentus2 LMG 16798T(9); LMG 12354 (2); LMG 12359 (1); LMG 21649 (6);

LMG 21758 (1); R-36285 (1)



APPENDIX A DATA SETS 205

Table A.1 continued.

Species name Strains (Number of profiles) EC

B. licheniformis LMG12363T(8); LMG 6934 (1); LMG 7558 (5); LMG 7559 (1);
LMG 7560 (4); LMG 7561 (2); LMG 7562 (3); LMG 7626 (1); LMG
7627 (3); LMG 7628 (1); LMG 7629 (1); LMG 7630 (1); LMG 7631
(3); LMG 7632 (2); LMG 7633 (1); LMG 7634 (1); LMG 7635 (1);
LMG 7636 (1); LMG 7637 (2); LMG 12245 (1); LMG 12246 (1);
LMG 12247 (1); LMG 12248 (1); LMG 12360 (1); LMG 12361 (1);
LMG 12362 (1); LMG 17334 (1); LMG 17337 (1); LMG 17339 (1);
LMG 17340 (1); LMG 17649 (1); LMG 17651 (1); LMG 17652 (1);
LMG 17653 (1); LMG 17654 (1); LMG 17655 (1); LMG 17656 (1);
LMG 17657 (1); LMG 17658 (1); LMG 17659 (1); LMG 17660 (1);
LMG 17661 (1); LMG 17662 (1); LMG 17663 (1); LMG 18685 (1);
R-1210 (1); R-6452 (1); R-6646 (1); R-6979 (1); R-7199 (1); R-7478
(1); R-21381 (2); R-21382 (2); R-21383 (2); R-21384 (2); R-21385
(2)

B. luciferensis LMG 18422T(4); LMG 21400 (1); R-11670 (1); R-14109 (1); R-
14110 (1); R-14111 (1)

B. malacitensis LMG 22477T(5)
B. marisflavi LMG 23072T(5)
B. megaterium LMG 7127T(7); LMG 3585 (1); LMG 11162 (1); LMG 12249 (1);

LMG 12250 (1); LMG 12252 (1); LMG 12253 (1); LMG 12254 (1);
LMG 12255 (1); LMG 12408 (1); LMG 12409 (1); LMG 18670 (1);
LMG 18686 (1); LMG 18687 (1); LMG 18688 (1); LMG 18705 (1);
LMG 18710 (1); LMG 18714 (1); LMG 23147 (2)

B. mojavensis LMG 17797T(4); LMG 17798 (4); R-28501 (1); R-28502 (1); R-
28503 (1); R-28504 (1)

B. muralis LMG 20238T(4); R-8204 (1); R-8210 (1); R-8251 (1)
B. mycoides LMG 7128T(7); LMG 12256 (1)
B. neidei LMG 22737 (5)
B. niacini LMG 16677T(5)
B. novalis LMG 21837T(10); LMG 21836 (2); R-15418 (1); R-15446 (2); R-

15450 (2); R-15453 (2); R-16295 (1); R-16297 (1); R-16309 (1);
R-16340 (1); R-16342 (1); R-16345 (2); R-16347 (1)

B. okuhidensis LMG 22468T(3)
B. oleronius LMG 17952T(2); LMG 17882 (1); LMG 17884 (1); LMG 17887 (1)
B. patagoniensis LMG 23070T(4)
B. pseudalcaliphilus LMG 17951T(6)
B. pseudofirmus LMG 17944T(5)
B. pseudomycoides LMG 18993T(6)
B. psychrodurans LMG 23063T(5)
B. psychrosaccharolyticus LMG 9580T(6)
B. psychrotolerans LMG 23062T(6)
B. pumilus LMG 18928T(17); LMG 3455 (3); LMG 8196 (3); LMG 8942 (2);

LMG 10642 (3); LMG 12257 (1); LMG 12258 (2); LMG 12259 (3);
LMG 12372 (1); LMG 12374 (1); LMG 12375 (1); LMG 12376 (4);
LMG 12377 (1); LMG 18517 (9); LMG 18658 (1); LMG 18676 (1);
B0296 (1); R-5334 (1); R-10579 (1); R-36286 (1); R-36308 (2); R-
36309 (3); R-36310 (6); R-36311 (2)

B. pycnus LMG 21634T(5)
B. ruris LMG 22866T(3)
B. shackletonii LMG 18435T(3); R-11667 (1); R-14112 (1); R-14113 (1); R-14114

(1)
B. silvestris LMG 18991T(6)
B. simplex LMG 11160T(8); LMG 12364 (2); LMG 17634 (1); LMG 17636 (1);

LMG 17643 (1); LMG 18473 (2); LMG 18508 (1); LMG 19489 (1);
B0405 (1); R-5269 (1); R-5275 (1); R-5282 (1); R-5307 (1); R-8191
(1); R-8193 (1); R-8202 (1); R-8207 (1); R-8208 (1); R-8214 (1); R-
8215 (4); R-8216 (3); R-8218 (2); R-8220 (1); R-8225 (1); R-8231
(1); R-8234 (1); R-8253 (1); R-8254 (1); R-15936 (1); R-15943 (1)
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Table A.1 continued.

Species name Strains (Number of profiles) EC

B. siralis LMG 22467T(6)
B. smithii LMG 12526T(3); LMG 6327 (2)
B. soli LMG 21838T(5); LMG 21839 (1); R-16301 (1); R-16307 (1)
B. sonorensis LMG 21636T(4)
B. sphaericus LMG 7134T(13); LMG 18663 (1)
B. sporothermodurans LMG 17668T(13); LMG 17895 (1); LMG 17896 (1); LMG 17897

(1); LMG 18460 (1); LMG 18461 (1); LMG 18462 (1); LMG 18463
(1); LMG 18464 (1); LMG 18465 (1); LMG 18466 (1); R-1952 (2)

B. subterraneus LMG 23065 (5)
B. subtilis LMG 12260 (1); LMG 12261 (2); LMG 12262 (1); LMG 12263 (4);

LMG 12264 (1); LMG 12417 (1); LMG 13579 (1); LMG 17723 (1);
LMG 17725 (6); LMG 18271 (4); LMG 2099 (5); LMG 3589 (1);
LMG 3590 (1)

B. subsp. spizizenii LMG 19156T(1); LMG 19155 (1); LMG 19545 (4); LMG 8197 (15)
B. subsp. subtilis LMG 7135T(13); LMG 19154 (1)
B. thermoamylovorans LMG 18084T(8) 52◦C
B. thermantarcticus LMG 23032T(4) 52◦C
B. thuringiensis LMG 7138T(6); LMG 12265 (1); LMG 12266 (1); LMG 12267 (2);

LMG 12268 (1); LMG 12269 (1)
B. vallismortis LMG 18725T(5); LMG 17799 (2); LMG 17800 (4); R-28507 (1);

R-28553 (1)
B. velezensis LMG 22478T(5)
B. vireti LMG 21834T(5);R-15428 (1);R-15441 (1)
B. weihenstephanensis LMG 18989T(6)

1 Bacillus circulans is a very heterogeneous group of strains. The strains reported in point 1 are considered to be
Bacillus circulans. The strains reported in point 2 are assigned to Bacillus circulans but further revision is needed.
2 The strain LMG 21649 is annotated as Bacillus lentus and as Bacillus halodurans by different culture collections
(Dawyndt, 2009).
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A.1.2 Data sets 2008

Species name Strains (Number of profiles) EC

B. alcalophilus LMG 7120T(4)
B. amyloliquefaciens LMG 9814T(7); LMG 12325 (1); LMG 12329 (1); LMG 12385 (1);

LMG 22478 (5)
B. aquimaris R-38158 (4); R-38159 (8)
B. atrophaeus LMG 16797T(1); LMG 8198 (5); LMG 8199 (2); LMG 17795 (4);

LMG 17796 (2); R 38160 (2); R-38161 (1); R-38846 (2); R-38847
(2)

B. azotoformans LMG 9581T(2); LMG 15443 (1)
B. badius LMG 7122T(4); LMG 12332 (1); R-1167 (1); R-1168 (1); R-1202 (1)
B. barbaricus LMG 23067T(5)
B. bataviensis LMG 21833T(7); LMG 21832 (1); R-15415 (1); R-15454 (2); R-

16296 (1); R-16308 (1); R-16321 (1); R-16324 (1); R-16325 (2);
R-16336 (1); R-17019 (1)

B. bogoriensis LMG 22234T(8)
B. carboniphilus LMG 18001T(6)
B. cereus LMG 6923T(7); LMG 6910 (1); LMG 6924 (1); LMG 8221 (11);

LMG 8396 (2); LMG 9005 (4); LMG 9676 (1); LMG 12235 (1);
LMG 12236 (1); LMG 12237 (1); LMG 12334 (1); LMG 12335 (3);
LMG 12365 (9); LMG 14742 (4); LMG 17612 (1); LMG 18241 (2);
LMG 18365 (2); LMG 18698 (1); LMG 22728 (1); LMG 22729 (1);
LMG 22730 (1); LMG 22731 (1); LMG 22732 (1); LMG 22733 (1);
R-2896 (1); R-20144 (1); R-38162 (1)

B. circulans LMG 13261T(7); LMG 16568 (1); LMG 16628 (1); LMG 16629 (2)
B. clausii LMG 17945T(6); LMG 18518 (1)
B. coagulans LMG 6326T(5); LMG 7376 (2); LMG 12345 (2); LMG 12346 (2);

LMG 12398 (2); LMG 12399 (1); LMG 12400 (2); LMG 12401 (2);
LMG 12402 (1); LMG 17451 (1); LMG 17452 (1); LMG 17453 (1);
LMG 17456 (1); LMG 17457 (1); LMG 17474 (3); LMG 17475 (1);
LMG 17476 (1); LMG 17477 (1); LMG 17478 (1); R-38163 (1)

B. cohnii LMG 16678T(8)
B. decolorationis LMG 19507T(4); R-5454 (1)
B. drentensis LMG 21831T(26); LMG 21830 (1); R-15416 (1); R-15427 (1); R-

15445 (1); R-16310 (3); R-16313 (1); R-16328 (2); R-16338 (1);
R-16986 (1)

B. endophyticus LMG 21715T(5)
B. firmus LMG 7125T(6); LMG 12241 (1); LMG 12242 (1); LMG 12243 (1);

LMG 12352 (1); R 15586 (1)
B. flexus LMG 11155T(7)
B. foraminis LMG 23174T(4)
B. fortis LMG 22079T(1)
B. fordii LMG 22142 (3)
B. fortis LMG 22141 (2); R-7163 (1)
B. fumarioli LMG 19448T(2); LMG 17492 (1); LMG 18409 (1); LMG 18418 (1);

R-38164 (1); R 38165 (1); R-38166 (1); R-38167 (1); R-38168 (1);
R-38169 (1); R-38170 (1); R 38171 (1); R-38172 (1); R-38173 (1);
R-38174 (1); R-38175 (1); R-38176 (1); R 38177 (2); R-38178 (1);
R-38179 (1); R-38180 (1); R-38181 (1); R-38182 (1); R 38183 (2);
R-38184 (1)

52◦C

Table A.2: Strain table corresponding to the 2008 Bacillus, Paenibacillus and Pseudomonas data
sets. Strain numbers and corresponding number of included FAME profiles are reported. Also, excep-
tional growth and culturing conditions are reported (column ‘EC’). Regarding the Pseudomonas strains,
the plant-pathogenic strain reallocation by Gardan et al. (1999) is followed and integrated in the table.
For this genus, strains with one or more plant-pathogenic strains are denoted by superscript ‘p’.
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Table A.2 continued.

Species name Strains (Number of profiles) EC

B. funiculus R-38185 (5)
B. galactosidilyticus LMG 17892T(5); LMG 12353 (2); LMG 12396 (3); R-15577 (1);

R-16004 (1)
B. gelatini LMG 21880T(3); R-13476 (2); R-13565 (2); R-13588 (1); R-13635

(1); R-13810 (1); R 13864 (1); R-13975 (2)
52◦C

B. gibsonii LMG 17949T(7)
B. halmapalus LMG 17950T(6)
B. halodurans LMG 7121T(2); LMG 21649 (6)
B. horikoshii LMG 17946T(7)
B. horti LMG 18497T(5)
B. humi LMG 22167T(4); R-17036 (1)
B. indicus LMG 22858T(6)
B. insolitus LMG 17757T(3); LMG 17153 (3); R-38186 (1)
B. jeotgali LMG 21653T(2); R-38187 (2); R-38188 (2)
B. lentus LMG 16798T(9); LMG 12354 (2); LMG 12359 (1); LMG 21758 (1);

R-36285 (1)
B. licheniformis LMG 12363T(6); LMG 6934 (1); LMG 7558 (4); LMG 7559 (1);

LMG 7560 (3); LMG 7561 (2); LMG 7626 (1); LMG 7628 (1); LMG
7629 (1); LMG 7630 (1); LMG 7632 (2); LMG 7633 (1); LMG 7634
(1); LMG 7636 (1); LMG 7637 (2); LMG 12245 (1); LMG 12246 (1);
LMG 12247 (1); LMG 12248 (1); LMG 12360 (1); LMG 12361 (1);
LMG 12362 (1); LMG 17334 (1); LMG 17337 (1); LMG 17339 (1);
LMG 17340 (1); LMG 17649 (1); LMG 17651 (1); LMG 17652 (1);
LMG 17653 (1); LMG 17654 (1); LMG 17655 (1); LMG 17656 (1);
LMG 17657 (1); LMG 17658 (1); LMG 17659 (1); LMG 17661 (1);
LMG 17662 (1); LMG 17663 (1); LMG 18685 (1); R 1210 (1); R-
6452 (1); R-6646 (1); R-6979 (1); R-7199 (1); R-7478 (1); R-15573
(1); R 38189 (1); R-38190 (1); R-38191 (2); R-38192 (1); R-38193
(2); R-38194 (1); R 38195 (2); R-38196 (1); R 38197 (1); R-38848
(1); R-38849 (1)

B. luciferensis LMG 18422T(4); LMG 21400 (1); R-11670 (1); R-14109 (1); R-
14110 (1); R-14111 (1)

B. marisflavi LMG 23072T(5)
B. megaterium LMG 7127T(7); LMG 11162 (1); LMG 12249 (1); LMG 12250 (1);

LMG 12252 (1); LMG 12253 (1); LMG 12254 (1); LMG 12255 (1);
LMG 12408 (1); LMG 12409 (1); LMG 18670 (1); LMG 18686 (1);
LMG 18687 (1); LMG 18688 (1); LMG 18705 (1); LMG 18710 (1);
LMG 18714 (1); LMG 23147 (2); R-1092 (2); R-38198 (1)

B. mojavensis LMG 17797T(4); LMG 22476 (5); LMG 22477 (5); R-28501 (1);
R-28502 (1); R 28503 (1); R-28504 (1); R-38850 (2); R-38851 (2)

B. muralis LMG 20238T(4); R-8204 (1); R-8210 (1); R-8251 (1)
B. mycoides LMG 7128T(7); LMG 12256 (1); R-2892 (1); R-2893 (1); R-2895 (1)
B. niacini LMG 16677T(5)
B. novalis LMG 21837T(10); LMG 21836 (2); R-15418 (1); R-15446 (2); R-

15450 (2); R-15453 (2); R-16295 (1); R-16297 (1); R-16309 (1);
R-16340 (1); R-16342 (1); R-16345 (2); R 16347 (1)

B. okuhidensis LMG 22468T(6)
B. oleronius LMG 17952T(2); LMG 17882 (1); LMG 17884 (1); LMG 17887 (1)
B. patagoniensis LMG 23070T(8); R-38852 (2); R-38864 (2)
B. pseudalcaliphilus LMG 17951T(6)
B. pseudofirmus LMG 17944T(5)
B. pseudomycoides LMG 18993T(6)
B. psychrodurans LMG 23063T(7)
B. psychrosaccharolyticus LMG 9580T(6)
B. psychrotolerans LMG 23062T(7)
B. pumilus LMG 18928T(17); LMG 3455 (3); LMG 8196 (3); LMG 10642 (3);

LMG 12257 (1); LMG 12259 (3); LMG 12372 (1); LMG 12374 (1);
LMG 12375 (1); LMG 12376 (4); LMG 12377 (1); LMG 18517 (9);
LMG 18658 (1); LMG 18676 (1); LMG 21165 (1); R 5334 (1); R-
33429 (1); R-36286 (1); R-38199 (1); R-38200 (1); R-38853 (1); R
38854 (1)
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Table A.2 continued.

Species name Strains (Number of profiles) EC

B. pycnus LMG 21634T(5)
B. ruris LMG 22866T(3); LMG 22867 (1)
B. shackletonii LMG 18435T(3); R-11667 (1); R-14112 (1); R-14113 (1); R-14114

(1)
B. silvestris LMG 18991T(6)
B. simplex LMG 11160T(8); LMG 12364 (2); LMG 17634 (1); LMG 17636 (1);

LMG 17643 (1); LMG 18473 (3); LMG 18508 (1); LMG 19489 (1);
LMG 21002 (3); LMG 22045 (1); LMG 22046 (1); R-5275 (1); R-
5307 (1); R-8191 (1); R-8193 (1); R-8202 (1); R-8207 (1); R-8208
(1); R-8214 (1); R-8215 (4); R-8218 (2); R-8220 (1); R-8225 (1); R-
8231 (1); R 8234 (1); R-8253 (1); R-8254 (1); R-15936 (1); R-15943
(1); R-38201 (1)

B. siralis LMG 22467T(4)
B. smithii LMG 12526T(1); LMG 6327 (2)
B. soli LMG 21838T(5); LMG 21839 (1); R-16301 (1); R-16307 (1)
B. sonorensis LMG 21636T(4); R-28505 (1); R-28506 (1); R-28548 (1); R-28552

(1)
B. sporothermodurans LMG 17668T(6); LMG 17895 (1); LMG 17896 (1); LMG 17897 (1);

LMG 18460 (1); LMG 18461 (1); LMG 18462 (1); LMG 18463 (1);
LMG 18464 (1); LMG 18465 (1); LMG 18466 (1); R-1952 (1)

B. subterraneus R-38855T(5)
B. subtilis LMG 2099 (5); LMG 3589 (1); LMG 3590 (1); LMG 12260 (1);

LMG 12262 (1); LMG 12263 (2); LMG 12264 (1); LMG 12417 (1);
LMG 13579 (1); LMG 17723 (1); R 38203 (2); R-38204 (2); R-38205
(2); R-38856 (1); R-38857 (1); R-38858 (1); R 38859 (1); R-38860
(2); R-38861 (2)

B. subtilis subsp. spizizenii LMG 19156T(1); LMG 8197 (15); LMG 19155 (1); LMG 19545 (4)
B. subtilis subsp. subtilis LMG 7135T(13); LMG 19154 (1)
B. thermantarcticus LMG 23032T(5) 52◦C
B. thermoamylovorans LMG 18084T(7) 52◦C
B. thuringiensis LMG 7138T(6); LMG 12265 (1); LMG 12266 (1); LMG 12267 (2);

LMG 12268 (1); LMG 12269 (1)
B. vallismortis LMG 18725T(7); LMG 17799 (2); R-28507 (1); R-28553 (1); R-

38862 (2); R-38863 (2)
B. vireti LMG 21834T(5); R-15428 (1); R-15441 (1)
B. weihenstephanensis LMG 18989T(6)

Pa. alvei LMG 13253T(3); LMG 13254 (1); LMG 13255 (1); LMG 13256 (1);
LMG 13258 (1); LMG 13260 (1); LMG 16907 (1); LMG 16912 (1);
LMG 16913 (1); LMG 16914 (1); LMG 16915 (1); LMG 17051 (1);
LMG 17052 (1); LMG 17053 (1)

Pa. amylolyticus LMG 21767T(4)
Pa. anaericanus LMG 23658T(2); LMG 23878 (4) 48h
Pa. antarcticus LMG 22078T(3) 48h
Pa. apiarius LMG 17433T(3); LMG 17434 (2)
Pa. azoreducens LMG 21668T(4)
Pa. borealis LMG 21603T(4)
Pa. cellulosilyticus LMG 22232T(9); R-38865 (2); R-38866 (2)
Pa. chibensis LMG 14457T(8); R-38867 (1)
Pa. chitinolyticus LMG 18047T(7)
Pa. cineris LMG 18439T(3); LMG 21976 (3)
Pa. cookii LMG 18419T(4); LMG 18437 (2)
Pa. curdlanolyticus LMG 23061T(5)
Pa. dendritiformis LMG 21716T(6)
Pa. durus LMG 18446T(2); LMG 14658 (5); LMG 14659 (1); LMG 14661 (1)
Pa. elgii LMG 24465T(5) 48h
Pa. favisporus LMG 20987T(3); LMG 20989 (1); R-38868 (2); R-38869 (2)
Pa. fonticola LMG 23577T(5)
Pa. ginsengarvi LMG 23815T(4)
Pa. glucanolyticus LMG 12239T(4); LMG 12240 (1); LMG 12395 (2)
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Table A.2 continued.

Species name Strains (Number of profiles) EC

Pa. humicus LMG 23886T(3)
Pa. illinoisensis LMG 18051T(6)
Pa. jamilae LMG 21667T(3)
Pa. kobensis LMG 18049T(3)
Pa. lactis LMG 21940T(3)
Pa. larvae LMG 9820T(5); LMG 14425 (1); LMG 14426 (1); LMG 14427 (3);

LMG 14428 (4); LMG 15974 (7); LMG 16214 (1); LMG 16215 (1);
LMG 16241 (1); LMG 16242 (1); LMG 16243 (1); LMG 16244 (1);
LMG 16245 (1); LMG 16246 (1); LMG 16247 (2); LMG 16249 (2);
LMG 16250 (2); LMG 16251 (2); LMG 16252 (2)

Pa. lautus LMG 11157T(2); LMG 14015 (2); LMG 14669 (1); R-38870 (1)
Pa. macerans LMG 13281T(4); LMG 6325 (1); LMG 13282 (1); LMG 13283 (1);

LMG 13284 (1); LMG 13285 (1); LMG 13286 (1); LMG 13288 (1);
LMG 18690 (1); LMG 21891 (3)

Pa. macquariensis LMG 6935T(2); LMG 13290 (2); LMG 13291 (1)
Pa. mendelii LMG 23002T(6) 48h
Pa. odorifer LMG 19079T(4)
Pa. pabuli LMG 15970T(3); LMG 12394 (1); LMG 13292 (1); LMG 14016 (1);

LMG 14017 (1); LMG 14671 (1); R-38871 (1); R-38872 (1)
Pa. panacisoli LMG 23405T(6)
Pa. peoriae LMG 14832T(2); LMG 16104 (1); LMG 16108 (1); LMG 16109 (1)
Pa. phyllosphaerae LMG 22192T(6)
Pa. polymyxa LMG 13294T(6); LMG 6320 (1); LMG 6321 (1); LMG 11619 (1);

LMG 11623 (1); LMG 11647 (1); LMG 11649 (2); LMG 11724 (1);
LMG 13295 (1); LMG 13297 (1); LMG 13298 (1); LMG 13301 (1);
LMG 21892 (6); R-2386 (1); R-2472 (1); R-2507 (1); R 38873 (1);
R-38874 (1); R-38875 (1); R-38876 (1); R-38877 (1); R-38878 (1);
R 38879 (1); R-38880 (1); R-38881 (1); R-38882 (1); R-38883 (1);
R-38884 (1); R 38885 (1); R-38886 (1); R-38887 (1); R-38888 (1);
R-38889 (1); R-38890 (1); R 38891 (1); R-38892 (1); R-38893 (1);
R-38894 (1); R-38895 (1); R-38896 (1); R 38897 (1); R-38898 (2);
R-38899 (1)

Pa. rhizosphaerae LMG 21955T(5)
Pa. soli LMG 23604T(3)
Pa. stellifer LMG 22679T(4)
Pa. taiwanensis LMG 23799T(6)
Pa. thiaminolyticus LMG 17412T(7); LMG 16908 (2); LMG 16916 (1); LMG 16917 (1);

LMG 16918 (1); LMG 16919 (1); LMG 16920 (1); LMG 16921 (1);
LMG 16922 (1); LMG 16923 (1); LMG 16924 (1); LMG 16925 (1);
LMG 16926 (1); LMG 17406 (1); LMG 17407 (1); LMG 17409 (1);
LMG 17410 (1)

Pa. validus LMG 11161T(2); LMG 9817 (1); LMG 14018 (1); LMG 14019 (1);
LMG 14020 (1); LMG 14468 (2); LMG 14469 (2); LMG 14470 (1);
LMG 14663 (1); LMG 14664 (1); LMG 14665 (1); LMG 14666 (1);
LMG 14668 (1); LMG 14717 (1)

Pa. wynnii LMG 22176T(2); R-16774 (1); R-16780 (1); R-16781 (1); R-22540
(1)

Pa. xylanilyticus LMG 21957T(6)
P. abietaniphila LMG 20220T(10)
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Table A.2 continued.

Species name Strains (Number of profiles) EC

P. aeruginosa LMG 1242T(18); LMG 1272 (1); LMG 1274 (1); LMG 5031 (1);
LMG 5032 (2); LMG 6395 (11); LMG 8029 (13); LMG 9009 (6);
LMG 10268 (2); LMG 10269 (2); LMG 10270 (1); LMG 10639 (4);
LMG 10643 (1); LMG 12121 (1); LMG 12228 (1); LMG 13757 (1);
LMG 13771 (1); LMG 13802 (1); LMG 13836 (1); LMG 13842 (1);
LMG 13883 (1); LMG 13909 (2); LMG 14071 (1); LMG 14072 (1);
LMG 14073 (1); LMG 14076 (1); LMG 14077 (1); LMG 14078 (1);
LMG 14079 (1); LMG 14080 (1); LMG 14081 (1); LMG 14082 (1);
LMG 14083 (1); LMG 14084 (1); LMG 14085 (1); LMG 14741 (1);
LMG 15153 (4); LMG 18574 (1); LMG 18585 (2); LMG 18591 (1);
LMG 18600 (2); LMG 18616 (1); LMG 18619 (1); LMG 18629 (1);
LMG 21144 (1); LMG 21145 (1); LMG 23160 (2); R-11747 (1);
R-11748 (1); R-14056 (1); R-14057 (1); R-16141 (3); R-16146 (1);
R-16150 (3); R-16159 (2); R-16165 (2); R-16944 (1); R 16960 (1);
R-17312 (1); R-17322 (1); R-17395 (1); R-17420 (1); R-17437 (1);
R 17440 (1); R-17769 (1); R-17773 (1); R-17930 (1); R-17935 (1);
R-17946 (1); R 17951 (1); R-17955 (1); R-38900 (3); R-38901 (2);
R-38902 (1); R-8844 (1)

P. agarici p LMG 2112T(5); LMG 2110 (1); LMG 2113 (1); LMG 2115 (1)
P. alcaligenes LMG 1224T(6); LMG 6353 (1); LMG 6355 (1); R-17306 (1); R-

17774 (1); R-17929 (1); R-38903 (1)
P. alcaliphila LMG 23134T(10)
P. amygdali p LMG 2220 (2); LMG 5694 (2); LMG 5695 (1); LMG 5696 (1)

P. savastanoi pv. glycinae: LMG 5066 (5); LMG 5171 (1)
P. savastanoi pv. phaseolica: LMG 2245 (6)
P. savastanoi pv. savastanoi: LMG 2209 (3); LMG 5011 (1); LMG
5154 (2); LMG 5187 (1); LMG 5385 (1); LMG 5387 (1); LMG 5389
(1); LMG 5487 (1); LMG 6766 (1); LMG 6767 (2); LMG 17565 (1);
LMG 17570 (1); LMG 17571 (1); LMG 17572 (1); LMG 17573 (1);
LMG 17574 (1); LMG 17575 (1); LMG 17576 (1); LMG 17577 (1);
LMG 17578 (1); LMG 17579 (1); LMG 17580 (1); LMG 17581 (1);
LMG 17582 (1); LMG 17583 (1); LMG 17584 (1); LMG 17585 (1);
LMG 17586 (1); LMG 17587 (1); LMG 21151 (1); LMG 21152 (1);
LMG 21153 (1); LMG 21154 (1); LMG 21155 (1); R-4611 (1); R-
4612 (1); R-4614 (1); R-4615 (1); R-4617 (1); R-4618 (1); R-4619
(1); R-4620 (1); R-4621 (1); R-4622 (1); R-4623 (1); R-4624 (1);
R-38904 (1); R 38905 (1); R-38906 (1)
P. syringae pv. ciccaronei: LMG 5541 (3)
P. syringae pv. eriobotryae: LMG 2184 (3); LMG 5654 (1)
P. syringae pv. lachrymans: LMG 5070 (2); LMG 5172 (1); R-38907
(1)
P. syringae pv. mellae: LMG 5072 (2); LMG 5073 (1)
P. syringae pv. mori: LMG 5074 (2); LMG 5562 (1)
P. syringae pv. morsprunorum: LMG 2222 (1); LMG 5075 (5); R-
38908 (1); R 38909 (1)
P. syringae pv. myricae: LMG 5668 (2); LMG 5669 (1)
P. syringae pv. sesami: LMG 2289 (3); LMG 5489 (1)
P. syrinage pv. tabaci: LMG 5192 (1); LMG 5393 (4)
P. syringae pv. ulmi: LMG 5094 (3)

P. anguilliseptica LMG 21629T(6); R-38910 (1); R-38911 (1); R-38912 (1)
P. antarctica LMG 22709T(11); LMG 23832 (3)
P. argentinensis LMG 22563T(5); LMG 22564 (2)
P. asplenii p LMG 2137T(10); R-38913 (1); R-38914 (2)
P. avellanea p P. syringae pv. theae: LMG 5092 (3); LMG 5687 (1)
P. azotoformans LMG 21611T(7)
P. balearica LMG 18376T(6)
P. beteli p LMG 978T(6)
P. borbori LMG 23199T(6)
P. boreopolis LMG 979T(7)
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Table A.2 continued.

Species name Strains (Number of profiles) EC

P. brassicacearum LMG 21623T(10)
P. brenneri LMG 23068T(10)
P. cannabina p LMG 5096T(4); LMG 2150 (1); LMG 5650 (2)
P. caricapapayae p LMG 2152T(2); LMG 2153 (1); LMG 5051 (1); LMG 5375 (1)
P. chloritidismutans LMG 23064T(10) (Should be enclosed in P. stutzeri)
P. chlororaphis subsp. aurantiaca LMG 21630T(6)
P. chlororaphis subsp. aureofaciens LMG 1245T(10); LMG 16909 (1); LMG 5832 (10); R-16169 (2);

R-38915 (2)
P. chlororaphis subsp. chlororaphis LMG 5004T(6); R-16943 (1); R-18031 (1)
P. cichorii p LMG 2162T(3); LMG 1248 (1); LMG 2163 (1); LMG 2164 (1); LMG

2165 (1); LMG 5052 (1); LMG 5055 (1); LMG 24427 (1); LMG
24428 (2); LMG 24429 (1); LMG 24440 (1); R-25254 (1); R-25295
(1); R-25315 (1); R-26431 (1); R-26451 (1); R 27702 (1); R-28087
(1); R-29002 (1); R-29006 (1); R-29260 (1); R-31789 (1); R 36300
(1); R-36301 (1); R-36302 (1); R-36303 (1); R-36801 (1); R-36802
(1); R 36804 (1)

P. cissicola p LMG 21719T(6); LMG 2168 (2)
P. citronellolis LMG 18378T(7)
P. congelans LMG 21466T(6)
“P. coronafaciens” p LMG 13190T(3); LMG 2330 (1); LMG 5030 (3); LMG 5060 (2);

LMG 5081 (5)
P. syringae pv. garcae: LMG 5064 (1); LMG 5065 (1)
P. syringae pv. oryzae: LMG 10912 (5); LMG 10913 (2); LMG
10914 (2); LMG 10915 (4); LMG 10916 (3); LMG 10917 (4); LMG
10918 (2); LMG 10919 (2); LMG 10920 (4)

P. corrugata p LMG 2172T(9); LMG 1276 (3); LMG 2173 (4); LMG 5036 (2); LMG
5037 (1); LMG 5038 (2); R-17963 (1)

P. costantinii p LMG 22119T(6)
P. cremoricolorata R-38951T(4)
P. extremorientalis LMG 19695T(6)
P. flavescens p LMG 18387T(7)
P. flectens p LMG 2187T(2); LMG 2186 (4)
P. fluorescens p LMG 1794T(17); LMG 1244 (5); LMG 1799 (2); LMG 2189 (1);

LMG 5167 (3); LMG 5168 (5); LMG 5822 (3); LMG 5825 (2); LMG
5830 (12); LMG 5831 (1); LMG 5833 (1); LMG 5849 (1); LMG 5916
(2); LMG 5938 (4); LMG 5939 (20); LMG 5940 (2); LMG 6812 (2);
LMG 7207 (2); LMG 7216 (1); LMG 7220 (1); LMG 14561 (1);
LMG 14562 (1); LMG 14563 (1); LMG 14564 (1); LMG 14565 (1);
LMG 14566 (1); LMG 14567 (1); LMG 14568 (1); LMG 14569 (1);
LMG 14570 (1); LMG 14571 (1); LMG 14573 (1); LMG 14574 (1);
LMG 14575 (1); LMG 14576 (1); LMG 14577 (1); LMG 14673 (4);
LMG 14674 (6); LMG 14675 (5); R-16143 (1); R 16177 (1); R-16178
(2); R-16185 (3); R-16930 (1); R-16955 (1); R-16956 (1); R 17303
(1); R-17333 (1); R-17397 (1); R-17400 (1); R-17414 (1); R-17441
(1); R 17797 (1); R-17927 (1); R-17932 (1); R-17956 (1); R-38916
(1); R-38917 (1); R 38918 (1); R-38919 (1); R-38920 (1); R-38921
(1); R-38922 (1); R-38923 (1); R 38924 (1); R-38925 (2)

P. fragi LMG 2191T(12); LMG 5919 (4); LMG 5920 (1); R-35697 (2); R-
35701 (2); R-35703 (2); R-35705 (2); R-35706 (1); R-35706 t2 (1);
R-35709 (2); R-35710 (2); R-35717 (2); R 35719 (2)

P. frederiksbergensis LMG 19851T(6)
P. fulva LMG 11722T(3)
P. fuscovaginae p LMG 2158T(8); LMG 2192 (12); LMG 5097 (7); LMG 5742 (6);

LMG 12424 (1); LMG 12426 (1); LMG 12428 (1); R-1256 (1); R-
1302 (1); R-1341 (1); R-1774 (1); R 1775 (1); R-1776 (1); R-1778
(1); R-1779 (1); R-1789 (1)

P. geniculata LMG 2195T(6)
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Table A.2 continued.

Species name Strains (Number of profiles) EC

P. genomospecies3 p P. syringae pv. antirrhini: LMG 5057 (4); LMG 5377 (1)
P. syringae pv. apii: LMG 2132 (5); LMG 5058 (1)
P. syringae pv. berberidis: LMG 2146 (1); LMG 2147 (2)
P. syringae pv. delphinii: LMG 5003 (1); LMG 5381 (3)
P. syringae pv. maculicola: LMG 5071 (1); LMG 5559 (1)
P. syringae pv. passiflorae: LMG 5185 (2); LMG 5671 (1)
P. syringae pv. persicae: LMG 5184 (2); LMG 5566 (1)
P. syringae pv. primulae: LMG 2252 (2); LMG 5680 (1)
P. syringae pv. ribicola: LMG 2276 (3)
P. syringae pv. tomato: LMG 5093 (3); LMG 5155 (1)
P. syringae pv. viburni: LMG 2351 (2)

P. genomospecies7 p P. syringae pv. helianthi: LMG 5067 (3); LMG 5558 (1)
P. syringae pv. tagetis: LMG 5090 (3); LMG 5684 (1)

P. gessardii LMG 21604T(10)
P. graminis LMG 21661T(11)
P. hibiscicola p LMG 980T(6)
P. indica LMG 23066T(10)
P. jessenii LMG 21605T(6)
P. jinjuensis LMG 21316T(6)
P. kilonensis LMG 21624T(10)
P. knackmussii LMG 23759T(3)
P. koreensis LMG 21318T(6)
P. libanensis LMG 21606T(6)
P. lini LMG 21625T(9); R-16937 (1)
P. lundensis LMG 13517T(6); R-35702 (2); R-35711 (2); R-35721 (2); R-35723

(2); R-35724 (2)
P. lurida LMG 21995T(4); R-38926 (1); R-38927 (1)
P. lutea LMG 21974T(5)
P. luteola LMG 7041T(6); LMG 5946 (2); R-16151 (1); R-16174 (2); R-17793

(1)
P. mandelii LMG 21607T(6)
P. marginalis p LMG 5175 (2); LMG 5850 (1); LMG 6466 (2); LMG 6469 (1); LMG

6481 (1); LMG 6482 (1); LMG 6802 (1); LMG 6804 (5); LMG 6815
(1); LMG 14572 (1); R-16967 (1); R 17331 (1); R-17403 (1); R-
17958 (1)
P. marginalis pv. alfalfae: LMG 2214 (4); LMG 5039 (1); LMG 5040
(8)
P. marginalis pv. marginalis: LMG 2210T(9); LMG 2215T(2); LMG
1243 (2); LMG 2211 (3); LMG 2212 (1); LMG 5170 (1); LMG 5173
(1); LMG 5174 (6); LMG 5176 (1); LMG 5177 (2); LMG 5178 (1);
LMG 5180 (1); LMG 5181 (1); R-38928 (1); R-38929 (1); R-38930
(1); R-38931 (1); R-38932 (1); R-38933 (2); R-38934 (2); R-38935
(1); R 38936 (1); R-38937 (2); R-38938 (1)
P. marginalis pv. pastinacae: LMG 2238 (7); LMG 5042 (3); LMG
5043 (3); LMG 5044 (3)

P. mediterranea p LMG 23075T(10)
P. mendocina LMG 1223T(8); LMG 5941 (3); LMG 6396 (1); R-9506 (1); R-9506

(1); R-16952 (1); R 17393 (1); R-17766 (1); R-17947 (1)
P. migulae LMG 21608T(7); LMG 23195 (4)
P. monteilii LMG 21609T(6)
P. mosselii LMG 21539T(6)
P. mucidolens LMG 2223T(6)
P. nitroreducens LMG 21614T(5); LMG 20221 (6); LMG 21143 (1)
P. oleovorans LMG 2229T(8); R-17305 (1); R-17338 (1); R-17791 (1)
P. oryzihabitans LMG 7040T(6); LMG 5947 (2); LMG 18583 (3); LMG 18596 (1);

LMG 18605 (2); LMG 18628 (1); R-16188 (1); R-17434 (1)
P. palleroniana LMG 23076T(10)
P. peli LMG 23201T(7); R-8840 (1)
P. pertucinogena LMG 1874T(3); LMG 1875 (3)
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Table A.2 continued.

Species name Strains (Number of profiles) EC

P. pictorum LMG 981T(8)
P. plecoglossicida LMG 21750T(6)
P. poae LMG 21465T(6)
P. proteolytica LMG 22710T(11)
P. pseudoalcaligenes LMG 1225T(6); LMG 2854 (3); LMG 5516 (2); LMG 5517 (3); LMG

6036 (2); LMG 6037 (1); R-17968 (1)
P. psychrotolerans LMG 21977T(6)
P. putida LMG 2257T(14); LMG 1246 (3); LMG 2171 (2); LMG 2232 (1);

LMG 2258 (3); LMG 2259 (1); LMG 5834 (1); LMG 5835 (10);
LMG 9070 (2); LMG 14678 (2); LMG 14680 (4); LMG 14681 (2);
LMG 14682 (3); LMG 14683 (1); LMG 16118 (1); LMG 16206 (1);
LMG 16335 (4); LMG 18566 (1); LMG 18615 (1); R-4940 (1); R
4945 (1); R-4946 (1); R-4972 (1); R-4973 (1); R-4974 (1); R-4975
(1); R-4976 (1); R 16190 (2); R-16946 (1); R-16950 (1); R-16962
(2); R-17311 (1); R-17326 (1); R 17423 (1); R-17426 (1); R-17442
(1); R-17760 (1); R-17801 (1); R-17941 (1); R 17954 (1); R-38939
(1); R-38940 (2); R-38941 (2); R-38942 (3); R-38943 (3); R 38944
(1); R-38945 (1)

P. resinovorans LMG 2274T(6)
P. rhizosphaerae LMG 21640T(6)
P. rhodesiae LMG 17764T(2); LMG 17765 (2); LMG 17766 (2)
P. salomonii p LMG 22120T(10)
P. straminea LMG 21615T(7); LMG 11723 (3)
P. stutzeri LMG 11199T(9); LMG 1228 (7); LMG 2243 (2); LMG 2332 (1);

LMG 2839 (2); LMG 5838 (1); LMG 6397 (1); LMG 10652 (1);
LMG 14935 (2); LMG 18520 (1); LMG 18521 (1); LMG 18794 (1);
R-16158 (2); R-16171 (1); R-16175 (1); R-16929 (1); R-16932 (1);
R-16945 (1); R-17321 (1); R-17336 (1); R-17415 (1); R-17416 (1);
R 17765 (1); R-17777 (1); R-17781 (1); R-17960 (1)

P. synxantha LMG 2190T(4); R-38946 (1); R-38947 (1)
P. syringae p R-16948 (1); R-17971 (1)

P. syringae pv. aceris: LMG 2106 (3)
P. syringae pv. aptata: LMG 5059 (3); LMG 5095 (2); LMG 5532
(1)
P. syringae pv. atrofaciens: LMG 5533 (1)
P. syringae pv. dysoxyli: LMG 5062 (2); LMG 5542 (1)
P. syringae pv. japonica: LMG 5068 (2); LMG 5069 (1)
P. syringae pv. lachrymans: (should be enclosed in P. amygdali) LMG
21245 (2); LMG 21246 (2); LMG 21247 (2)
P. syringae pv. lapsa: LMG 2206 (2); LMG 5006 (1)
P. syringae pv. panici: LMG 2367 (4)
P. syringae pv. papulans: LMG 5076 (2); LMG 5077 (1)
P. syringae pv. philadelphia: (should be encloded in P. genomo-
species3) R-38950 (1)
P. syringae pv. pisi: LMG 5009 (1); LMG 5079 (2)
P. syringae pv. porri: (should be enclosed in “P. coronafaciens”) R-
38949 (1)
P. syringae pv. syringae: LMG 1247T(6); LMG 2230 (7); LMG 2231
(6); LMG 5082 (2); LMG 5083 (1); LMG 5086 (1); LMG 5087 (1);
LMG 5189 (1); LMG 5190 (1); LMG 5570 (6); LMG 6108 (1); LMG
12643 (1); LMG 12648 (2)
P. syringae pv. tomato: (should be enclosed in P. genomospecies3)
LMG 21249 (2)
P. syringae pv. zizaniae: (should be enclosed in P. coronafaciens)
R-38948 (1)

P. taetrolens LMG 2336T(6)
P. thermotolerans LMG 21284T(6) 45◦C
P. thivervalensis LMG 21626T(10)
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Table A.2 continued.

Species name Strains (Number of profiles) EC

P. tolaasii p LMG 2342T(5); LMG 2339 (4); LMG 2345 (7); LMG 2346 (2); LMG
2829 (2); LMG 6634 (1); LMG 6635 (1); LMG 6642 (1); LMG 12211
(3); LMG 12212 (4); LMG 12213 (2); LMG 12214 (2); LMG 12215
(2); LMG 12216 (2); LMG 12217 (2); LMG 12218 (2); LMG 12219
(2); LMG 12220 (3); LMG 18141 (2); LMG 18142 (2); LMG 18143
(2)

P. tremae p LMG 22121T(8)
P. trivialis LMG 21464T(6)
P. umsongensis LMG 21317T(6)
P. vancouverensis LMG 20222T(6)
P. veronii LMG 17761T(4); LMG 17762 (1); LMG 23196 (2)
P. viridiflava p LMG 2352T(4); LMG 2353 (2); LMG 5101 (6); LMG 5331 (1); LMG

6480 (1); LMG 12647 (1); R-17407 (1); R-17802 (1)
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A.2 Average FAME Profiles: Major Constituents

The following tables concern only the data sets of March 2008.

Average FAME peaks in the genus Bacillus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . p. 218

Average FAME peaks in the genus Paenibacillus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . p. 220

Average FAME peaks in the genus Pseudomonas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . p. 222
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A.3 PCA Biplots

The following figures show the biplots resulting from principal component analysis of the

three genus data sets. Only biplots are given for the first two principal components.

Biplot of the genus Bacillus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . p. 228

Biplot of the genus Paenibacillus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . p. 229

Biplot of the genus Pseudomonas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . p. 230
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APPENDIX B
The Sherlock MIS

B.1 TSBA50 Peak Naming Table

Peak Name Nominal ECL Summed Feature

9:0 9.000
8:0 3OH 9.392
unknown 9.531 9.531
10:0 ISO 9.604
10:0 10.000
9:0 3OH 10.408
11:0 ISO 10.606
11:0 ANTEISO 10.695
12:0 ALDE ? 10.914 2
unknown 10.928 10.928 2
11:0 11.000
10:0 2OH 11.153
10:0 3OH 11.422
unknown 11.543 11.543
12:0 ISO 11.609
12:0 ANTEISO 11.699
unknown 11.799 11.799
12:1 AT 11-12 11.925
12:0 12.000
11:0 ISO 3OH 12.089
11:0 2OH 12.16
11:0 3OH 12.438
unknown 12.484 12.484
13:0 ISO 12.614
13:0 ANTEISO 12.702
13:1 AT 12-13 12.936
13:0 13.000
12:0 ISO 3OH 13.098
12:0 2OH 13.177
12:1 3OH 13.288
14:1 ISO E 13.384
12:0 3OH 13.454
unknown 13.565 13.565
14:0 ISO 13.619
14:0 ANTEISO 13.707
14:1 w5c 13.901

Table B.1: The FAME peaks named by the Sherlock MIS TSBA50 peak naming table.
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Table B.1 continued.

Peak Name Nominal ECL Summed Feature

unknown 13.957 13.957

14:0 14.000

13:0 ISO 3OH 14.109

13:0 2OH 14.194

unknown 14.263 14.263

ISO 15:1 AT 5 14.389

15:1 ISO F 14.415

15:1 ISO G 14.44

15:1 ISO H/13:0 3OH 14.46 1

13:0 3OH/15:1 i I/H 14.47 1

15:1 ISO I/13:0 3OH 14.478 1

unknown 14.502 14.502

15:1 ANTEISO A 14.527

15:0 ISO 14.623

15:0 ANTEISO 14.713

15:1 w8c 14.793

15:1 w6c 14.856

15:1 w5c 14.903

unknown 14.959 14.959

15:0 15.000

14:0 ISO 3OH 15.119

14:0 2OH 15.203

16:1 w7c alcohol 15.387

16:1 ISO G 15.442

16:1 ISO H 15.461

16:1 ISO I/14:0 3OH 15.48 2

14:0 3OH/16:1 ISO I 15.488 2

16:0 N alcohol 15.55

16:0 ISO 15.627

unknown 15.669 15.669

16:0 ANTEISO 15.718

16:1 w11c 15.757

16:1 w9c 15.774

16:1 w7c/15 iso 2OH 15.822 3

15:0 ISO 2OH/16:1w7c 15.852 3

16:1 w5c 15.909

16:0 16.000

15:0 ISO 3OH 16.134

15:0 2OH 16.219

ISO 17:1 w10c 16.388

ISO 17:1 w9c 16.416

16:0 10 methyl 16.432

ISO 17:1 w5c 16.461

17:1 ISO I/ANTEI B 16.476 4

17:1 ANTEISO B/i I 16.486 4

15:0 3OH 16.503

ANTEISO 17:1 w9c 16.524

17:1 ANTEISO A 16.54

unknown 16.582 16.582

17:0 ISO 16.63



APPENDIX B THE SHERLOCK MIS 233

Table B.1 continued.

Peak Name Nominal ECL Summed Feature

17:0 ANTEISO 16.723

17:1 w9c 16.772

17:1 w8c 16.792

17:1 w7c 16.818

17:1 w6c 16.86

17:0 CYCLO 16.888

17:1 w5c 16.917

17:0 17.000

16:1 2OH 17.048

16:0 ISO 3OH 17.15

16:0 2OH 17.233

17:0 10 methyl 17.409

18:1 ISO H 17.464

16:0 3OH 17.519

18:3 w6c (6,9,12) 17.577

18:0 ISO 17.632

18:2 w6,9c/18:0 ANTE 17.72 5

18:0 ANTE/18:2 w6,9c 17.727 5

18:1 w9c 17.769

18:1 w7c 17.823

18:1 w6c 17.858

18:1 w5c 17.919

18:0 18.000

11 methyl 18:1 w7c 18.081

17:0 ISO 3OH 18.161

17:0 2OH 18.254

TBSA 10Me18:0 18.392

19:1 ISO I 18.473

17:0 3OH 18.536

19:0 ISO 18.634

19:0 ANTEISO 18.731

19:1 w11c/19:1 w9c 18.756 6

19:1 w9c/19:1 w11c 18.768 6

unknown 18.814 18.814

un 18.846/19:1 w6c 18.846 7

19:1 w6c/.846/19cy 18.858 7

19:0 CYCLO w10c/19w6 18.867 7

19:0 CYCLO w8c 18.902

19:0 19.000

18:1 2OH 19.089

18:0 2OH 19.264

19:0 10 methyl 19.368

20:4 w6,9,12,15c 19.395

18:0 3OH 19.55

20:0 ISO 19.635

20:2 w6,9c 19.732

20:1 w9c 19.77

20:1 w7c 19.831

20:0 20.000



234 B.2 TSBA50 IDENTIFICATION LIBRARY

B.2 TSBA50 Identification Library

The following table covers the entries of the TSBA50 identification library of Sherlock MIS

corresponding to the genera Bacillus, Paenibacillus and Pseudomonas.

Entry Valid species?

Bacillus GC group 22 (No 16S match to known species)
Bacillus agaradhaerens

√
Bacillus alcalophilus (some 48h)

√
Bacillus amyloliquefaciens (Bacillus subtilis)

√
Bacillus atrophaeus

√
Bacillus azotoformans

√
Bacillus badius

√
Bacillus cereus GC subgroup A

√
Bacillus cereus GC subgroup B

√
Bacillus circulans

√
Bacillus cirroflagellosus (48h)

√
Bacillus clausii

√
Bacillus coagulans

√
Bacillus cohnii

√
Bacillus ehimensis Paenibacillus ehimensis
Bacillus epiphytus
Bacillus fastidiosus

√
Bacillus filicolonicus
Bacillus firmus

√
Bacillus flexus

√
Bacillus freudenreichii
Bacillus fusiformis Lysinibacillus fusiformis
Bacillus gibsonii

√
Bacillus globisporus Sporosarcina globispora
Bacillus halmapalus (48h)

√
Bacillus halodenitrificans (48h) Virgibacillus halodenitrificans
Bacillus horikoshii (48h)

√
Bacillus insolitus

√
Bacillus laevolacticus Sporolactobacillus laevolacticus
Bacillus lentus

√
Bacillus licheniformis (Bacillus subtilis group)

√
Bacillus macroides

√
Bacillus megaterium GC subgroup A

√
Bacillus megaterium GC subgroup B

√
Bacillus mycoides GC subgroup A (Bacillus cereus group)

√
Bacillus mycoides GC subgroup B (Bacillus cereus group)

√
Bacillus niacini

√
Bacillus oleronius

√
Bacillus psychrosaccharolyticus

√
Bacillus pumilus GC subgroup A

√
Bacillus pumilus GC subgroup B

√
Bacillus racemilactis
Bacillus simplex

√
Bacillus smithii (55◦C)

√

Table B.2: Entries of the Sherlock MIS TSBA50 identification library corresponding to the genus
Bacillus, Paenibacillus and Pseudomonas. Entries validly described as a species according to the tax-
onomy of 03/2008 are marked, otherwise the correct species name is given (only if species was validly
described). Subspecies or infrasubspecific ranks are not considered.
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Table B.2 continued.

Entry Valid species?

Bacillus sphaericus Lysinibacillus sphaericus
Bacillus sphaericus GC subgroup A Lysinibacillus sphaericus
Bacillus sphaericus GC subgroup B Lysinibacillus sphaericus
Bacillus sphaericus GC subgroup C Lysinibacillus sphaericus
Bacillus sphaericus GC subgroup D Lysinibacillus sphaericus
Bacillus sphaericus GC subgroup E Lysinibacillus sphaericus
Bacillus sphaericus GC subgroup F Lysinibacillus sphaericus
Bacillus subtilis

√
Bacillus thuringiensis aizawai

√
Bacillus thuringiensis canadensis

√
Bacillus thuringiensis dendrolimus

√
Bacillus thuringiensis entomocidus

√
Bacillus thuringiensis gallieriae

√
Bacillus thuringiensis israelensis

√
Bacillus thuringiensis kurstakii

√
Bacillus thuringiensis sotto

√
Paenibacillus alginolyticus

Paenibacillus alvei GC subgroup A (Bacillus)
√

Paenibacillus alvei GC subgroup B (Bacillus)
√

Paenibacillus amylolyticus
√

Paenibacillus apiarius (Bacillus apiarius)
√

Paenibacillus azotofixans (Bacillus azotofixans) Paenibacillus durus
Paenibacillus chondroitinus

√
Paenibacillus glucanolyticus (Bacillus)

√
Paenibacillus larvae larvae (72h, Bacillus)

√
Paenibacillus larvae pulvifaciens (48h, Bacillus)

√
Paenibacillus lautus

√
Paenibacillus lentimorbus

√
Paenibacillus macerans (Bacillus)

√
Paenibacillus macquariensis

√
Paenibacillus pabuli (Bacillus)

√
Paenibacillus peoriae (Bacillus)

√
Paenibacillus polymyxa (Bacillus)

√
Paenibacillus popilliae (Bacillus)

√
Paenibacillus thiaminolyticus (Bacillus)

√
Paenibacillus validus (Bacillus gordonae)

√

Pseudomonas aeruginosa
√

Pseudomonas agarici
√

Pseudomonas alcaligenes
√

Pseudomonas amyloderamosa (not a valid name)
Pseudomonas balearica

√
Pseudomonas chlororaphis/aureofaciens/aurantiaca

√
Pseudomonas cichorii/viridiflava

√
Pseudomonas corrugata

√
Pseudomonas flectens

√
Pseudomonas fluorescens biotype A

√
Pseudomonas fluorescens biotype B

√
Pseudomonas fluorescens biotype C/P. mandelii

√
Pseudomonas fluorescens biotype F

√
Pseudomonas fluorescens biotype G/taetrolens

√
Pseudomonas fuscovaginae

√
Pseudomonas huttiensis Herbaspirillum huttiense
Pseudomonas lundensis

√
Pseudomonas mendocina/straminea

√
Pseudomonas mucidolens

√
Pseudomonas oleovorans

√
Pseudomonas pertucinogena

√
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Table B.2 continued.

Entry Valid species?

Pseudomonas pseudoalcaligenes
√

Pseudomonas putida biotype A
√

Pseudomonas putida biotype B
√

Pseudomonas resinovorans
√

Pseudomonas savastanoi fraxinus
√

Pseudomonas savastanoi nerium
√

Pseudomonas savastanoi oleae
√

Pseudomonas stutzeri (P. perfectomarina)
√

Pseudomonas synxantha
√

Pseudomonas syringae atrofaciens
√

Pseudomonas syringae coronafaciens (P. coronafaciens)
√

Pseudomonas syringae glycinea
√

Pseudomonas syringae lachrymans/pisi
√

Pseudomonas syringae maculicola
√

Pseudomonas syringae mori
√

Pseudomonas syringae morsprunorum
√

Pseudomonas syringae phaseolicola
√

Pseudomonas syringae syringae
√

Pseudomonas syringae tabaci
√

Pseudomonas syringae tagetes
√

Pseudomonas syringae tomato
√

Pseudomonas vancouverensis
√

Pseudomonas veronii
√
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16S rRNA Gene Sequences

Species name Strain Number Accession Number

Bacillus alcalophilus DSM 485T X76436
Bacillus amyloliquefaciens NBRC 15535T AB255669
Bacillus aquimaris TF 12T AF483625
Bacillus atrophaeus JCM9070T AB021181
Bacillus azotoformans NBRC 15712T AB363732
Bacillus badius NBRC 15713T AB271748
Bacillus barbaricus DSM 14730T AJ422145
Bacillus bataviensis LMG 21832T AJ542507
Bacillus bogoriensis LMG 22234T AY376312
Bacillus carboniphilus JCM 9731T AB021182
Bacillus cereus CCM 2010T DQ207729
Bacillus circulans ATCC 4513T AY043084
Bacillus clausii DSM 8716T X76440
Bacillus coagulans ATCC 7050T DQ297928
Bacillus cohnii DSM 6307T X76437
Bacillus decolorationis LMG 19507T AJ315075
Bacillus drentensis LMG 21831T AJ542506
Bacillus endophyticus CIP 106778T AF295302
Bacillus firmus IAM 12464T D16268
Bacillus flexus IFO15715T AB021185
Bacillus foraminis LMG 23174T AJ717382
Bacillus fordii LMG 22080T AY443039
Bacillus fortis LMG 22079T AY443038
Bacillus fumarioli LMG 17489T AJ250056
Bacillus funiculus CIP 107128T AB049195
Bacillus galactosidilyticus LMG 17892T AJ535638
Bacillus gelatini LMG 21880T AJ551329
Bacillus gibsonii DSM 8722T X76446
Bacillus halmapalus DSM 8723T X76447

Table C.1: Strain list with according 16S rRNA gene accession numbers. List of the species included
in the 2008 data set with the type strain number and the accession number according to the selected 16S
rRNA gene sequence.
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Table C.1 continued.

Species name Strain Number Accession Number

Bacillus halodurans DSM 497T AJ302709
Bacillus horikoshii DSM 8719T AB043865
Bacillus horti JCM 9943T D87035
Bacillus humi LMG 22167T AJ627210
Bacillus indicus DSM 15820T AJ583158
Bacillus insolitus DSM 5T AM980508
Bacillus jeotgali JCM 10885T AF221061
Bacillus lentus NCIMB 8773T AB021189
Bacillus licheniformis DSM 13T X68416
Bacillus luciferensis LMG 18422T AJ419629
Bacillus marisflavi JCM 11544T AF483624
Bacillus megaterium IAM 13418T D16273
Bacillus mojavensis IFO 15718T AB021191
Bacillus muralis LMG 20238T AJ628748
Bacillus mycoides ATCC 6462T AB021192
Bacillus niacini IFO 15566T AB021194
Bacillus novalis LMG 21837T AJ542512
Bacillus okuhidensis JCM 10945T AB047684
Bacillus oleronius ATCC 700005T AY988598
Bacillus patagoniensis DSM 16117T AY258614
Bacillus pseudalcaliphilus DSM 8725T X76449
Bacillus pseudofirmus DSM 8715T X76439
Bacillus pseudomycoides DSM 12442T AM747226
Bacillus psychrodurans DSM 11713T AJ277984
Bacillus psychrosaccharolyticus ATCC 23296T AB021195
Bacillus psychrotolerans DSM 11706T AJ277983
Bacillus pumilus DSM 27T AY456263
Bacillus pycnus NBRC 101231T AB271739
Bacillus ruris LMG 22866T AJ535639
Bacillus shackletonii LMG 18435T AJ250318
Bacillus silvestris DSM 12223T AJ006086
Bacillus simplex DSM 1321T AJ439078
Bacillus siralis CIP 106295T AF071856
Bacillus smithii DSM 4216T Z26935
Bacillus soli LMG 21838T AJ542513
Bacillus sonorensis BCRC 17416T EF433411
Bacillus sporothermodurans DSMZ 10599T U49078
Bacillus subterraneus DSM 13966T AY672638
Bacillus subtilis subsp. subtilis DSM 10T AJ276351
Bacillus thermantarcticus DSM 9572T AJ493665
Bacillus thermoamylovorans LMG 18084T L27478
Bacillus thuringiensis ATCC 10792T AF290545
Bacillus vallismortis DSM 11031T AB021198
Bacillus vireti LMG 21834T AJ542509
Bacillus weihenstephanensis DSM 11821T AB021199

Paenibacillus alvei DSM 29T AJ320491
Paenibacillus amylolyticus NRRL NRS-290T D85396
Paenibacillus anaericanus DSM 15890T AJ318909
Paenibacillus antarcticus LMG 22078T AJ605292
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Table C.1 continued.

Species name Strain Number Accession Number

Paenibacillus apiarius DSM 5581T AB073201
Paenibacillus azoreducens DSM 13822T AJ272249
Paenibacillus borealis CCUG 43137T AJ011322
Paenibacillus cellulosilyticus LMG 22232T DQ407282
Paenibacillus chibensis JCM 9905T AB073194
Paenibacillus chitinolyticus IFO 15660T AB021183
Paenibacillus cineris LMG 18439T AJ575658
Paenibacillus cookii LMG 18419T AJ250317
Paenibacillus curdlanolyticus DSM 10247T AB073202
Paenibacillus dendritiformis CIP 105967T AY359885
Paenibacillus durus ATCC 35681T AJ251192
Paenibacillus elgii KCTC 10016BPT AY090110
Paenibacillus favisporus LMG 20987T AY208751
Paenibacillus fonticola LMG 23577T DQ453131
Paenibacillus ginsengarvi DSM 18677T AB271057
Paenibacillus glucanolyticus DSM 5162T AB073189
Paenibacillus humicus LMG 23886T AM411528
Paenibacillus illinoisensis JCM 9907T AB073192
Paenibacillus jamilae CECT5266T AJ271157
Paenibacillus kobensis DSM 10249T AB073363
Paenibacillus lactis LMG 21940T AY257868
Paenibacillus larvae subsp. larvae DSM 7030T AY530294
Paenibacillus lautus JCM 9073T AB073188
Paenibacillus macerans IAM 12467T AB073196
Paenibacillus macquariensis DSM 2T AB073193
Paenibacillus mendelii LMG 23002T AF537343
Paenibacillus odorifer LMG 19079T AJ223990
Paenibacillus pabuli NRRL NRS-924T AB045094
Paenibacillus panacisoli LMG 23405T AB245384
Paenibacillus peoriae DSM 8320T AJ320494
Paenibacillus phyllosphaerae LMG 22192T AY598818
Paenibacillus polymyxa DSM 36T AJ320493
Paenibacillus rhizosphaerae LMG 21955T AY751754
Paenibacillus soli LMG 23604T DQ309072
Paenibacillus stellifer DSM 14472T AJ316013
Paenibacillus taiwanensis BCRC 17411T DQ890521
Paenibacillus thiaminolyticus IFO 15656T AB073197
Paenibacillus validus JCM 9077T AB073203
Paenibacillus wynnii LMG 22176T AJ633647
Paenibacillus xylanilyticus LMG 21957T AY427832

Pseudomonas abietaniphila ATCC 700689T AJ011504
Pseudomonas aeruginosa ATCC 10145T AF094713
Pseudomonas agarici LMG 2112T Z76652
Pseudomonas alcaligenes LMG 1224T Z76653
Pseudomonas alcaliphila JCM 10630T AB030583
Pseudomonas amygdali LMG 2123T Z76654
Pseudomonas anguilliseptica NCIMB 1949T X99540
Pseudomonas antarctica DSM 1531T AJ537601
Pseudomonas argentinensis LMG 22563T AY691188
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Table C.1 continued.

Species name Strain Number Accession Number

Pseudomonas asplenii ATCC 23835T AB021397
Pseudomonas avellanea BPIC 714 AJ889838
Pseudomonas azotoformans IAM 1603T D84009
Pseudomonas balearica DSM 6083T U26418
Pseudomonas beteli IAM 12423T AB294553
Pseudomonas borbori LMG 23199T AM114527
Pseudomonas boreopolis ATCC 33662T AB021391
Pseudomonas brassicacearum CFBP 11706T AF100321
Pseudomonas brenneri CIP 106646T AF268968
Pseudomonas cannabina CFBP 2341T AJ492827
Pseudomonas caricapapayae ATCC 33615T D84010
Pseudomonas chloritidismutans AW 1T AY017341
Pseudomonas chlororaphis DSM 6698T AY509898
Pseudomonas cichorii LMG 2162T Z76658
Pseudomonas cissicola ATCC 33616T AB021399
Pseudomonas citronellolis DSM 50332T Z76659
Pseudomonas congelans LMG 21466T AJ492828
“Pseudomonas coronafaciens” LMG 13190T Z76660
Pseudomonas corrugata ATCC 29736T D84012
Pseudomonas costantinii CFBP 5705T AF374472
Pseudomonas cremoricolorata IAM 1541T AB060137
Pseudomonas extremorientalis LMG 19695T AF405328
Pseudomonas flavescens NCPPB 3063T U01916
Pseudomonas flectens ATCC 12775T AB021400
Pseudomonas fluorescens IAM 12022T D84013
Pseudomonas fragi ATCC 4973T AF094733
Pseudomonas frederiksbergensis DSM 13022T AJ249382
Pseudomonas fulva NRIC 0180T AB060136
Pseudomonas fuscovaginae MAFF 301177T AB021381
Pseudomonas geniculata ATCC 19374T AB021404
Pseudomonas genomospecies3 DC3000 AE016853
Pseudomonas genomospecies7 MAFF 302271 AB001449
Pseudomonas gessardii CIP 105469T AF074384
Pseudomonas graminis CIP 105469T Y11150
Pseudomonas hibiscicola ATCC 19867T AB021405
Pseudomonas indica MTCC 3713T AF302795
Pseudomonas jessenii CIP 105274T AF068259
Pseudomonas jinjuensis LMG 21316T AF468448
Pseudomonas kilonensis DSM 13647T AJ292426
Pseudomonas knackmussii LMG 23759T AF039489
Pseudomonas koreensis LMG 21318T AF468452
Pseudomonas libanensis CIP 105460T AF057645
Pseudomonas lini CFBP 5737T AY035996
Pseudomonas lundensis ATCC 49968T AB021395
Pseudomonas lurida DSM 15835T AJ581999
Pseudomonas lutea LMG 21974T AY364537
Pseudomonas luteola IAM 13000T D84002
Pseudomonas mandelii CIP 105273T AF058286
Pseudomonas marginalis LMG 2210T Z76663
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Table C.1 continued.

Species name Strain Number Accession Number

Pseudomonas mediterranea CFBP 5447T AF386080
Pseudomonas mendocina NCIB 10541T D84016
Pseudomonas migulae CIP 105470T AF074383
Pseudomonas monteilii CIP 104883T AF064458
Pseudomonas mosselii CIP 105259T AF072688
Pseudomonas mucidolens IAM 12406T D84017
Pseudomonas nitroreducens IAM 1439T AM088473
Pseudomonas oleovorans IAM 1508T D84018
Pseudomonas oryzihabitans IAM 1568T D84004
Pseudomonas palleroniana CFBP 4389T AY091527
Pseudomonas peli LMG 23201T AM114534
Pseudomonas pertucinogena IFO 14163T EF673695
Pseudomonas pictorum ATCC 23328T AB021392
Pseudomonas plecoglossicida ATCC 700383T AB009457
Pseudomonas poae LMG 21465T AJ492829
Pseudomonas proteolytica DSM 15321T AJ537603
Pseudomonas pseudoalcaligenes LMG 1225T Z76666
Pseudomonas psychrotolerans LMG 21977T AJ575816
Pseudomonas putida IAM 1236T D84020
Pseudomonas resinovorans LMG 2274T Z76668
Pseudomonas rhizosphaerae LMG 21640T AY152673
Pseudomonas rhodesiae CIP 104664T AF064459
Pseudomonas salomonii CFBP 2022T AY091528
Pseudomonas straminea IAM 1598T D84023
Pseudomonas stutzeri ATCC 14405T U26420
Pseudomonas synxantha IAM 12356T D84025
Pseudomonas syringae ATCC 19310T AF094749
Pseudomonas taetrolens IAM 1653T D84027
Pseudomonas thermotolerans LMG 21284T AJ311980
Pseudomonas thivervalensis CFBP 11261T AF100323
Pseudomonas tolaasii LMG 2342T AF255336
Pseudomonas tremae CFBP 6111T AJ492826
Pseudomonas trivialis LMG 21464T AJ492831
Pseudomonas umsongensis LMG 21317T AF468450
Pseudomonas vancouverensis ATCC 700688T AJ011507
Pseudomonas veronii CIP 104663T AF064460
Pseudomonas viridiflava LMG 2352T Z76671
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Summary

The bacterial landscape is a continuously changing medium. Almost every day, a new

bacterial species is described. In view of this evolution, it is critical to keep identification

methods up-to-date with the current bacterial taxonomy. Generally, bacterial identification can

be based on the genotype as well as on the phenotype. In other words, it can rely on the

genetic composition as well as on the observable characteristics. Bacterial species identification

is mainly performed by genotypic analysis, though the generally accepted species definition

states that the phenotype should confirm the findings based on the genotype. It is clear that the

phenotype was, is and will remain a key player in bacterial taxonomy.

Phenotypic methods are routinely used to achieve a fast bacterial identification. Most me-

thods allow to discriminate between bacteria at the genus level and the species level, though also

methods exist that allow for an identification at strain level. Besides the analysis of proteins,

enzymes, metabolism or morphology, gas chromatographic analysis of bacterial fatty acids is a

routinely applied method used in many laboratory and institutes. The main reasons are the low

cost and rapid analysis of each run, and the possibilities for automation and high-throughput

analysis. For gas chromatographic analysis, fatty acids are methylated and esterified (i.e. fatty

acid methyl ester or FAME), which make the fatty acid more volatile. At present, bacterial

FAME analysis is commercially exploited by the company MIDI, Inc. (Newark, Delaware,

USA). Their identification system Sherlock MIS allows bacterial species identification in many

environmental, clinical and industrial niches. However, a major problem with phenotypic me-

thods is that they rely on identification libraries that mostly are not up-to-date with the current

bacterial taxonomy. This is also the case for FAME analysis. Every month, several new and

re-evaluated bacterial species are validly published. This requires a possible update of the iden-

tification libraries every month. Besides this, identification libraries are often constructed for

the identification of important bacterial groups. For the reasons above, phenotypic methods are

typically used as first-line identification methods. When phenotypic analysis is compared to

genotypic analysis, it is also important to mention that different environmental conditions may

influence the phenotype, such as temperature, pH, atmosphere, etc. In order to use FAME data

for identification, for comparative analysis or, simply, for data sharing, it is critical to focus only

on data that is resulting from bacteria grown and cultured under standard growth and culture

conditions. Only under these conditions, stable fatty acid patterns are obtained. In this study,

we focused on the protocol as described by the peak naming table TSBA50 of the Sherlock MIS

system.

In this dissertation, we studied bacterial species identification based on the data available in

the joint FAME database of the Laboratory of Microbiology (Ghent University, Belgium) and
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the BCCM™/LMG Bacteria Collection (Belgium). Since 1989, both groups have performed

bacterial FAME analysis for identification, quality control, comparative studies and numerical

analysis. Twenty years of fatty acid research has resulted in a FAME database that currently

contains more than 71,000 FAME profiles. This database is an ideal source for research on data

mining and knowledge discovery. With this dissertation, we aimed at an improved FAME-based

bacterial species identification by using machine learning techniques. Three techniques were

used: artificial neural networks, support vector machines and random forests. In a supervised

setting, the goal was to distinguish between the different bacterial species. We chose to model

the species of the genera Bacillus, Paenibacillus and Pseudomonas because of the large amount

of data available in the database and the expertise at the Laboratory of Microbiology. Start-

ing from the FAME database, standard FAME profiles were exported for all validly described

species belonging the respective genera. Based on those profiles, different data sets were cre-

ated: three genus data sets, a genera data set and two data sets regarding plant pathogenicity.

In the latter case, the first data set consists of plant-pathogenic and non-plant-pathogenic Pseu-

domonas species, while the second data set only comprises plant-pathogenic Pseudomomas

species.

For the different data sets, a standard data analysis was performed. Similar to several studies

handling numerical analysis of different bacterial genera, we calculated average FAME profiles

and peak distributions. By these analyses, the fatty acid composition was evaluated and core-

genus, species-specific and strain-specific peaks were observed. A second experiment dealt

with peak clustering with and without an additional clustering of the different species. From

this analysis, it was clear that many species had similar FAME profiles. These findings were

supported by a TaxonGap analysis, that clearly indicated that FAME data cannot be used as

a taxonomic marker at species level. Finally, we performed a principal component analysis

from which could be concluded that different fatty acids are correlated. From the biplots of the

first two principal components and for the three genera considered, we observed overlapping

FAME data for a majority of the species. This was especially true for the species of the genus

Pseudomonas.

Following this data analysis, a first machine learning experiment was performed to investi-

gate how well artificial neural networks were able to distinguish between the different Bacillus

species. Different parameter settings were investigated and statistically analyzed. This concerns

the use of imbalanced or balanced data sets, the use of simple validation or cross-validation, and

which neural network activation function should be chosen. Finally, the best Bacillus species

identification was achieved by an imbalanced data set and by validating the models by stratified

cross-validation. Statistical analysis also showed that selection of a good activation function

required an additional optimization step. In a second phase, we expanded our machine learning

research towards three bacterial genera. Two identification strategies were investigated: a strat-

ified approach where profiles were identified from genus level to species level and a straight

identification approach by which all species of the three genera were distinguished from each

other. In the first approach, two types of data sets were used: a genera data set with profiles

annotated by genus name and three genus data sets with profiles annotated by genus and species

name. In a second approach, only one data set was used that comprised all profiles of all species
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of the three genera, consisting of profiles annotated by genus and species name. Three machine

learning techniques were evaluated in both approaches: artificial neural networks, support vec-

tor machines and random forests. A better performance was obtained with random forests in

the stratified approach. A good species identification was obtained for the species of the genus

Paenibacillus, a relatively good identification within the genus Bacillus and a low to moderate

identification within the genus Pseudomonas. All results were discussed with respect to the

findings in the data analysis experiments and to literature. Identification performance was also

compared to the identification reported by the commercial system Sherlock MIS, though only

for the species included in both systems. A clear improvement of the identification was ob-

tained for the considered species. Furthermore, when compared to the commercial system, the

machine learning approach has a distinct advantage. With the monthly changing bacterial tax-

onomy, it is critical that identification systems are kept up-to-date. Machine learning techniques

easily handle this problem by a fast update of the corresponding data sets and a fast retraining

of the respective models. Finally, the machine learning models were also tested on independent

test sets which also resulted in an improved identification.

From the data analysis and the machine learning experiments, it was clear that the resolution

of FAME analysis for bacterial species identification is limited. The models developed in the

previous experiments did, however, not allow to determine the ability of FAME data to distin-

guish between the different bacterial species. Hence, a next step was set in our machine learning

research in which we investigated how taxonomic and phylogenetic knowledge could be inte-

grated in the classification models. A straightforward possibility was to construct a taxonomic

or phylogenetic tree and to use a binary tree classifier to train a model on each node of the tree.

Herein, each model tries to distinguish between the species and/or species groups correspon-

ding to the two branches splitting from the corresponding node. Two strategies were evaluated.

First, we focused on the algorithm of the binary tree classifier in which a tree was inferred from

the respective data, that was subsequently used as a hierarchical classification system. Thus,

in this experiment, we investigated the construction of a FAME tree. By a proof-of-concept

experiment with 15 Bacillus species, a FAME tree was constructed by divisive clustering of

the identification scores obtained by the model. This tree was subsequently used as a binary

tree classifier for classification of the different bacterial species. A good performance was ob-

tained. However, extending this experiment to all 74 Bacillus species was computationally

infeasible. In a second strategy, a phylogenetic tree was inferred from 16S rRNA gene se-

quences. Sequences were selected in the manually controlled sequence database SILVA and the

two methods of neighbour-joining and UPGMA were used for tree inference. The two resulting

phylogenetic trees were subsequently also used as binary tree classifiers. In this setting, two

types of data were used. The phylogenetic tree inferred from the 16S rRNA gene sequences de-

termined the different binary classification tasks which were performed using FAME data. This

classification approach has not been described before. Because this classification was based on

FAME data and the models integrated data describing evolutionary relationships, we called this

method phylogenetic learning. Compared to flat multi-class classification, a lower classification

performance was obtained using this hierarchical framework. However, in this framework it is

possible to analyze, evaluate, exploit and visualize the resolution of FAME data for bacterial
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species discrimination. Herein, a possible post-processing approach was to develop a pruning

method in order to obtain an optimized classification model. Also another important finding

was obtained: species wrongly identified by a flat multi-class classification model were better

identified with phylogenetic learning. Moreover, when looking at misclassified profiles, most

misclassifications occurred in the first parent nodes of the different leaves. With this analysis,

the limited resolution of FAME data became also immediately clear, which supports again the

approach of integrating this resolution in classification models. In an initial experiment on this

topic, the resolution was visualized by statistical analysis of the identification results of the

different binary tree classifiers. The species and species groups that were hard to distinguish

became clearly visualized.

In summary, with the goal of improving bacterial species identification by FAME data, we

constructed different models for a computational identification by machine learning techniques.

Different data analysis experiments were performed to analyze the data and different machine

learning techniques were evaluated for a genus-wide identification of the species of three ge-

nera. Compared to the identifications obtained by the commercial system Sherlock MIS, an

improved performance was obtained for the species included in both systems. Different identi-

fications were performend on independent test sets. By the first machine learning experiments,

different advantages became obvious: fast model construction, improved identification and, im-

portantly, the possibility of keeping the models up-to-date with the current bacterial taxonomy.

This disseration is a good base for further extending the compuational research towards more

bacterial genera. It is, however, important to mention that not all bacteria grow under standard

growth and culture conditions, and that many bacteria are even unculturable. In the former case,

clear agreements should be made for an objective and reliable research.

By a hierarchical classification approach, we investigated the possibility of knowledge inte-

gration into classification models. Two strategies were evaluated and the combination of FAME

data with 16S rRNA gene sequence data was promising. By this method, the resolution of

FAME data can rapidly be evaluated by the integration of data that allows to discriminate the

considered species. This approach was investigated by a statistical analysis of the identification

results of each binary tree classifier. A better optimization of this approach requires, however,

further research.

As a final research topic, we investigated how the restrictions imposed by the in-house

FAME database could be solved. From our research, it was immediately clear that the exper-

iments were restricted by the limited amount of data for each bacterial species. This does not

only correspond to the number of profiles per species, but also to the number of strains per

species and the number of species per genus. Therefore, we launched a public FAME database,

FAME-bank.net, for the online sharing and querying of bacterial FAME profiles. In this way,

we provide a possible solution for further extending the performed research by a larger number

of genera, species, strains and FAME profiles.



Samenvatting

Het bacteriële landschap is een sterk evoluerend medium. Zo wordt quasi iedere dag een

nieuwe bacteriële soort beschreven. Gelet op deze evolutie is het uitermate van belang dat

identificatiemethoden up-to-date gehouden worden met de huidige bacteriële taxonomie. In

het algemeen kan identificatie van bacteriën gebeuren op basis van zowel het genotype als

het fenotype. Of, anders geformuleerd, identificatie kan zowel gericht zijn op de genetische

samenstelling als op alle waarneembare karakteristieken van een bacterie. De klemtoon voor

de identificatie van een bacteriële soort ligt op het genotype, maar de algemeen erkende soort-

definitie stelt heel duidelijk dat het fenotype de genotypische identificatie moet bevestigen. Het

fenotype was, is en blijft dus een zeer belangrijke speler in bacteriële taxonomie.

Fenotypische methoden worden heel vaak routinematig aangewend om tot een snelle identi-

ficatie te komen. De meeste methoden laten toe om bacteriën te onderscheiden tot op het genus-

en soortniveau, al hebben sommige technieken ook de mogelijkheid om tot een identificatie op

stamniveau te komen. Naast het analyseren van bijvoorbeeld enzymen, eiwitten, metabolische

reacties of morfologie, is ook een gaschromatografische analyse van bacteriële vetzuren een wi-

jdverspreide methode die routinematig aangewend wordt in heel veel laboratoria en instituten.

De hoofdredenen hiertoe omvatten de lage kostprijs en de hoge snelheid per analyse, samen met

de mogelijkheid tot automatisering en de daaraan gekoppelde hoge verwerkingscapaciteit. Om

een snelle en eenvoudige gaschromatografische analyse toe te laten, worden alle geëxtraheerde

vetzuren gemethyleerd en veresterd. In hun methylester vorm (in Engels: fatty acid methyl

ester of FAME) zijn vetzuren meer volatiel en dus meer geschikt voor gaschromatografische

analyse. Op dit moment wordt bacteriële FAME-analyse commercieel geëxploiteerd door de

firma MIDI, Inc. (Newark, Delaware, USA) die met hun identificatiesysteem Sherlock MIS

bacteriële soortidentificatie toelaten in een groot aantal niches met een potentieel belang in

het milieu, de klinische praktijk en de industrie. Het grote probleem van fenotypische metho-

den, en dus ook van FAME analyse, is echter dat identificatie aan de hand van deze methoden

vaak gebaseerd is op bibliotheken die niet up-to-date zijn met de huidige bacteriële taxonomie.

Maandelijks worden nieuwe updates gepubliceerd met beschrijvingen van nieuwe soorten als

ook herbeschrijvingen van reeds beschreven soorten. Het vraagt dus veel werk om deze identi-

ficatiebibliotheken gesynchroniseerd te houden met de huidige taxonomie. Daarnaast zijn feno-

typische identificatiebibliotheken er ook vaak op gericht om interessante bacteriële groepen te

identificeren. Om deze redenen wordt fenotypische analyse dan ook vaak aangewend als een

eerstelijns identificatiemethode. Wanneer fenotypische analyse tegenover genotypische analyse

wordt gesteld, dan is het ook zeer belangrijk om aan te geven dat het fenotype (sterk) onderhevig

is aan omgevingsfactoren zoals temperatuur, pH, atmosfeer, etc. Om fenotypische data te kun-
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nen gebruiken voor identificatie, voor vergelijkende studies of, simpelweg, om uit te wisselen,

dan is het strikt noodzakelijk dat de gegevens afkomstig zijn van analyse onder gestandaardis-

eerde condities. Zo is, in het geval van gaschromatografische vetzuuranalyse, het uitermate van

belang dat bacteriële stammen opgegroeid worden onder standaard groei- en cultuurcondities.

Enkel onder deze omstandigheden is het mogelijk om stabiele vetzuurprofielen te bekomen. In

deze studie hebben we gewerkt met de condities zoals beschreven door de Sherlock MIS voor

de TSBA50 piekentabel.

In deze studie richten we ons op FAME analyse voor bacteriële identificatie en, meer spe-

cifiek, op de gezamenlijke FAME databank van het Laboratorium voor Microbiologie (Uni-

versiteit Gent, België) en de BCCM™/LMG Bacterie Collectie (België). Sinds 1989 hebben

beide groepen zich gericht op bacteriële vetzuuranalyse vanuit het oogpunt van identificatie,

kwaliteitscontrole, vergelijkende studies en numerieke analyse. Twintig jaar vetzuuranalyse

heeft uiteindelijk geleid tot een sterke groei van de FAME databank die, op dit moment, meer

dan 71 000 bacteriële vetzuurprofielen bevat. Een databank van deze omvang vormt dan ook een

ideaal startpunt voor een uitgebreide data mining en kennisextractie. In deze thesis werken we

toe naar een verbeterd identificatiesysteem voor bacteriële soorten door gebruik te maken van

intelligente leersystemen of machine learning modellen. Er werd gebruik gemaakt van drie ver-

schillende machine learning modellen: artificiële neurale netwerken, support vector machines

en random forests. In een gesuperviseerde setting willen we de soorten van verschillende ge-

nera van elkaar onderscheiden. Omwille van de beschikbaarheid van grote hoeveelheid data

en uitgebreide expertkennis over de betreffende genera, hebben we gekozen om te werken met

de drie genera Bacillus, Paenibacillus en Pseudomonas. Alle standaard vetzuurprofielen van

geldig beschreven soorten van deze drie genera werden uit de databank geëxporteerd volgens

een manuele procedure. Op basis van deze profielen werden verschillende genus data sets, een

genera data set en twee data sets betreffende plantpathogeniciteit samengesteld. In dit laatste

geval werd zowel een data set ontworpen met niet-plantpathogene Pseudomonas soorten ten

opzichte van plantpathogene Pseudomonas soorten, als een data set met louter plant pathogene

Pseudomonas soorten.

Op basis van de samengestelde data sets, werd een typische data analyse uitgevoerd. Gelijk-

aardig aan reeds uitgevoerde numerieke analyse studies in verschillende genera, werden gemid-

delde vetzuurprofielen berekend. Met deze analyse konden genus-gerelateerde, soort-specifieke

en stam-specifieke pieken onthuld worden en kon de samenstelling van pieken geëvalueerd

worden aan de hand van piekdistributies. Daarnaast werd ook een clustering uitgevoerd van

de pieken met en zonder soortclustering. Uit deze analyse kwam heel duidelijk tot uiting dat

veel soorten gelijkaardige vetzuurprofielen hebben. Dit werd bevestigd aan de hand van een

TaxonGap analyse die duidelijk aangaf dat FAME geen goede taxonomische merker is voor het

soortniveau. Finaal werd nog een principale componenten analyse uitgevoerd die aantoonde

dat de verschillende vetzuren gecorreleerd zijn. Verder maakten de biplots van de eerste twee

principale componenten data duidelijk dat voor elk van de drie genera geldt dat de vetzuurdata

overlapt voor een meerderheid van de soorten. Dit was specifiek heel duidelijk waarneembaar

voor de verschillende Pseudomonas soorten.

Na deze data analyse werd een eerste machine learning experiment opgezet waarbij nage-
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gaan werd hoe goed artificiële neurale netwerken in staat zijn om de verschillende Bacillus

soorten te onderscheiden. Verschillende parameters werden onderzocht en statistisch geanaly-

seerd. Zo werd onderzocht welke strategie gevolgd moest worden i.v.m. het opstellen van de

data set: ongebalanceerd of gebalanceerd. Er werd nagegaan welke validatiestrategie tot de

beste resultaten leidt: het gebruik van een aparte validatieset of cross-validatie. Finaal werd

ook onderzocht welke neurale netwerk activatiefuncties gekozen moesten worden. Uiteindelijk

werd de beste Bacillus soortidentificatie bekomen door gebruik te maken van een ongebal-

anceerde data set en door modellen te valideren met een gestratificeerde cross-validatie. Voor

de keuze van een goede activatiefunctie bleek een bijkomende optimalisatie noodzakelijk. In

een tweede setting werd het machine learning onderzoek opgeschaald naar drie genera. Twee

identificatie strategieën werden onderzocht: een gestratificeerde aanpak waarbij profielen eerst

op genus niveau geïdentificeerd worden en vervolgens op soortniveau, en een gegroepeerde

aanpak waarbij getracht werd alle soorten van de drie genera uit elkaar te houden. In de eerste

aanpak werd gebruik gemaakt van twee type data sets: een genera data set met profielen die

enkel geannoteerd werden via de corresponderende genus naam en drie genus data sets waarbij,

voor elk genus, de profielen van elke soort geannoteerd werden met genus- en soortnaam. In

de tweede aanpak werd slechts één data set gebruikt waarbij alle profielen van alle soorten van

de drie genera ingesloten werden en geannoteerd werden met genus- en soortnaam. De drie

machine learning technieken artificiële neurale netwerken, support vector machines en random

forests werden geëvalueerd in deze twee strategieën. Een betere performantie werd bekomen

aan de hand van de random forests techniek via een gestratificeerde aanpak. Een goede soor-

tidentificatie werd bekomen binnen het genus Paenibacillus, een relatief goede identificatie

binnen het genus Bacillus en een minder goede identificatie binnen het genus Pseudomonas.

Deze bekomen resultaten werden ook getoetst aan de verschillende resultaten en conclusies van

de data analyse experimenten en de literatuur. De performantie van de machine learning mo-

dellen werd vergeleken met de identificatie bekomen met het commercieel identificatiesysteem

Sherlock MIS en voor de soorten aanwezig in beide systemen werd een duidelijk verbeterde

identificatie vastgesteld. In vergelijking met het commercieel systeem is het belangrijk te ver-

melden dat het gebruik van machine learning modellen voor vetzuur-gebaseerde bacteriële soor-

tidentificatie een aantal duidelijke voordelen heeft. Met de maandelijks veranderende bacteriële

taxonomie is het noodzakelijk dat identificatiesystemen up-to-date gehouden worden. Machine

learning modellen lenen zich daar zeer goed toe door een snelle aanpassing van de desbetref-

fende data sets en een snelle hertraining van de corresponderende modellen. Daarnaast werden

de identificatiemodellen ook getest op onafhankelijke test sets en ook hier werd een verbeterde

identificatie bekomen.

Uit de data analyse en de machine learning experimenten bleek duidelijk dat vetzuuranalyse

beperkt is in de mogelijkheid tot classificatie tot op soortniveau. Via de ontwikkelde modellen

kan echter niet nagegaan worden hoe sterk FAME data soorten van elkaar kan onderscheiden.

Om dit verder te analyseren, hebben we een stap verder gezet in het machine learning onder-

zoek waarin getracht werd om taxonomische en phylogenetische kennis in te bouwen in de

classificatiemodellen. Een voor de hand liggende piste hierin is het construeren van een taxono-

mische of fylogenetische boom en gebruik te maken van binary tree classificatiemodellen. Op
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elke node van de boom wordt een binary tree model getraind met als doel de soorten en soort-

groepen corresponderend met de twee onderliggende takken van elkaar te onderscheiden. Twee

strategieën werden geëvalueerd. In een eerste experiment werd gefocust op het algoritme van

de binary tree waarbij aan de hand van de te classificeren data een boom werd opgesteld die ver-

volgens gebruikt werd als classificatiemethode. In dit experiment werd dus nagegaan hoe een

boom geconstrueerd kon gemaakt worden op basis van de FAME data. In een proof-of-concept

experiment op basis van 15 Bacillus soorten werd aan de hand van divisive clustering van de

identificatiescores een vetzuurboom opgesteld. Vervolgens werd deze boom als een binary tree

model aangewend voor hiërarchische classificatie van de verschillende bacteriële soorten. Een

goede performantie werd hierbij bekomen. Echter, uitbreiding van dit clustering experiment

naar de 74 aanwezige soorten was computationeel onhaalbaar. In een tweede strategie werd een

fylogenetische boom opgesteld aan de hand van het 16S rRNA gen. Sequenties werden gese-

lecteerd in de gecureerde sequentiedatabank SILVA en de twee algoritmes neighbour-joining en

UPGMA werden aangewend voor de constructie van twee fylogenetische bomen. Aan de hand

van deze bomen werd het binary tree algoritme opnieuw aangewend als classificatieschema.

Classificatie in deze strategie was dus gebaseerd op twee data types. Via de geconstrueerde

boom bepalen de 16S rRNA sequenties de verschillende binaire classificatietaken die uitgevo-

erd worden aan de hand van de FAME data. Aangezien dergelijke methode voorheen nog

nergens beschreven en toegepast werd, kan deze methode als vernieuwend beschouwd wor-

den. Omwille van het classificeren van bacteriële soorten op basis van FAME data en gebruik

makend van data die evolutionaire verwantschappen beschrijft, hebben we deze techniek ‘fy-

logenetisch leren’ genoemd. Vergeleken met een gewone multi-klasse classificatiesysteem, is

de classificatie bekomen met deze strategie minder goed. Echter, in deze structuur kunnen we

duidelijk het discriminerend vermogen van vetzuurdata analyseren, evalueren, exploiteren en vi-

sualiseren. Zo kan, bijvoorbeeld, via een snoeistrategie een geoptimaliseerde classificatiemodel

bekomen worden dat aangepast is aan het vermogen van de vetzuurdata om bacteriële soorten te

onderscheiden. Verder werd nog een andere belangrijke bevinding bekomen. Soorten die slecht

geclassificeerd werden door een gewoon multi-klasse classificatiesysteem werden hoofdzake-

lijk beter geclassificeerd binnen het onderzochte fylogenetische classificatiesysteem. Daarnaast

werd een analyse uitgevoerd van het misclassificatiepad, wat aantoonde dat misclassificatie

hoofdzakelijk gebeurde in de eerste ouder-nodes boven de soorten. Hieruit werd onmiddellijk

het beperkte vermogen van vetzuurdata om verschillende soorten te onderscheiden opnieuw

duidelijk. Deze bevinding ondersteunt nogmaals de noodzaak om dit vermogen in de clas-

sificatiemodellen te integreren. Finaal werd getracht om het discriminerend vermogen van

vetzuurdata te visualiseren op de geconstrueerde bomen door een statistische analyse van de

identificatieresultaten van de verschillende classificatiemodellen getraind op alle nodes van de

bomen. Met deze analyse werd onmiddellijk duidelijk welke soorten of soortgroepen niet van

elkaar te onderscheiden zijn.

Kort samengevat, met als doel vetzuur-gebaseerde bacteriële soortidentificatie te verbeteren

werden in deze studie verschillende modellen voor een computationele identificatie ontwikkeld

aan de hand van intelligente leertechnieken. Verschillende data analyse experimenten wer-

den uitgevoerd om een beeld te krijgen over de patronen in de data. Vervolgens werden ver-



SAMENVATTING 267

schillende machine learning technieken geëvalueerd voor een genus-wijde identificatie van de

soorten van drie genera en gebruik makend van verschillende identificatiestrategieën. In vergeli-

jking met de identificatie bekomen met het commercieel systeem Sherlock MIS werd een verbe-

terde identificatie bekomen voor soorten ingesloten in beide systemen. Ook identificatie van on-

afhankelijke test sets werd onderzocht. Met de eerste machine learning experimenten kwamen

verschillende voordelen duidelijk naar voren: snelle modelconstructie, verbeterde identificatie

en, belangrijk, de mogelijkheid tot het up-to-date houden met de huidige bacteriële taxonomie

van het ontwikkelde identificatieschema. Een goede basis werd gelegd voor verdere uitbreid-

ing naar meerdere genera. Het is echter belangrijk op te merken dat niet alle bacteriën groeien

onder standaardcondities en dat zelfs bepaalde bacteriën helemaal niet cultiveerbaar zijn. In

het eerste geval zijn duidelijke afspraken noodzakelijk voor een objectief en betrouwbaar on-

derzoek. Via een hiërarchische classificatie werd getracht om het discriminerend vermogen

van vetzuurdata voor bacteriële soorten te integreren in de computationele modellen. Twee

strategieën werden onderzocht en de combinatie van vetzuurdata met 16S rRNA sequenties is

hierbij veelbelovend. Met deze methode is het mogelijk om het discriminerend vermogen van

vetzuurdata snel te evalueren aan de hand van data met een discriminerend vermogen voor de

verschillende bacteriële soorten. Dit werd initieel reeds onderzocht via een statistische ana-

lyse van de identificatieresultaten corresponderend met elke node. Verder onderzoek is echter

aangewezen om een geoptimaliseerd hiërarchisch classificatiesysteem op te zetten.

Als finaal onderzoeksthema werd de mogelijkheid onderzocht om een oplossing te bieden

voor de beperkingen opgelegd door de FAME databank. In het onderzoek werd onmiddellijk

duidelijk dat de machine learning experimenten gelimiteerd waren door de afwezigheid van

een voldoende hoeveelheid data voor elke bacteriële soort. Dit betreft niet enkel het aantal

profielen per soort maar ook het aantal stammen per soort, en het aantal soorten per genus.

Daarom werd deze thesis gefinaliseerd met het oprichten van een publieke vetzuurdatabank

FAME-bank.net voor het online delen en opzoeken van bacteriële vetzuurdata. Op deze manier

werd een verlengstuk gecreëerd dat toelaat om het uitgevoerde onderzoek in de toekomst uit te

breiden naar meerdere bacteriële genera, soorten, stammen en vetzuurprofielen.








