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The first practical application of a radioisotope was made by George de Hevesy in 1911.  At the time de 

Hevesy was a young Hungarian student working in Manchester with naturally radioactive materials. 

 Not having much money he lived in modest accommodation and took his meals with his landlady.  He 

began to suspect that some of the meals that appeared regularly might be made from leftovers from the 

preceding days or even weeks, but he could never be sure.  To try and confirm his suspicions de Hevesy put 

a small amount of radioactive material into the remains of a meal.  Several days later when the same dish 

was served again he used a simple radiation detection instrument - a gold leaf electroscope - to check if the 

food was radioactive.  It was, and de Hevesy's suspicions were confirmed. 
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 3 

THESIS OUTLINE 
 

Neuroimaging has provided the means to elucidate healthy physiological 

processes in human beings along with the causes and consequences of 

neurological and psychiatric disorders. The use of suitable radiopharmaceuticals 

assists clinicians in the diagnosis and care of patients with brain disorders. The 

human brain consists of millions of inter-communicating neurons. Mental 

processes are driven by the complex interplay of neurotransmitter systems and 

their disruption underlies many diseases of the central nervous system. A 

prerequisite of efficient drug treatment of diseases of the central nervous system 

is that sufficient amounts of the drug enter the brain. An important factor 

determining this bioavailability is the capability to accumulate in the brain. Active 

transport by P-glycoprotein (P-gp) from the brain back into the bloodstream has 

a major impact on drug resistance to psychotropic drugs.  

 

In this thesis we aimed to develop radiotracers for targets of the dopamine and 

norepinephrine system that causes neurotransmitter inactivation being the 

norepinephrine transporter, the dopamine transporter and monoamine oxidase. 

By the discovery that one of the designed radiotracers is modulated by P-gp, the 

focus of this thesis was redirected towards imaging of P-gp function and 

expression.  

 

Chapter 1 gives a short overview of the medical imaging techniques and 

describes the requirements of a valuable radiopharmaceutical for SPECT or PET 

imaging.  

Chapter 2 discusses the blood-brain barrier and the transport of compounds 

across this barrier. One of the most important transport mechanisms limiting 

brain uptake of drugs, P-gp, is detailed in this chapter.  
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The dopamine and norepinephrine system and more specifically the dopamine 

transporter, the norepinephrine transporter and monoamine oxidase, are 

discussed in Chapter 3.  

In Chapter 4 the general material and methods are described.  

The lack of a valuable radiotracer for the norepinephrine transporter, leads us to 

the development of an iodinated reboxetine analogue, [123I]-(S,S)-IPBM, to 

visualize this transporter. Chapter 5 reports the synthesis, radiosynthesis and 

preliminary evaluation of [123I]-(S,S)-IPBM.  

In Chapter 6 the radiolabelling as well as the in vivo characterization of two [11C]-

labelled pyrrole-2-carboxamide derivatives, [11C]-RS 2315 and [11C]-RS 2360, are 

described. In vitro, RS 2315 and RS 2360 were both potent inhibitors of 

monoamine oxidase-A. The search for new ligands for MAO-A with optimal  

kinetic properties is justified by the lack of an ideal ligand and the observation 

that fluctuations in MAO-A functionality are associated with human diseases and 

tobacco addiction.  

The synthesis along with the radiolabelling and in vivo evaluation of [123I]-FMIP as 

a selective radiotracer for the dopamine transporter is reported in Chapter 7. 

FMIP has nanomolar affinity for the dopamine transporter and better selectivity 

over the other monoamine transporters compared to the already existing ligands 

for dopamine transporter imaging with SPECT.  

The contribution of P-gp to the low brain uptake of [123I]-FMIP along with its 

potential as P-gp imaging agent are investigated in Chapter 8. To date, no 

iodinated SPECT ligands for P-gp imaging have been published.  

Finally, Chapter 9 describes the radiolabelling of an in vitro characterized 

substrate (MC80) of the P-gp pump with 11C and the evaluation of this tracer in 

vivo for its potential to image P-gp function or expression.  
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Chapter 1 
 

General Introduction 
 

1.1. Medical imaging 

 

1.1.1. HISTORICAL BACKGROUND 

 

The first known method for medical imaging made use of X-rays and has been 

discovered in 1895 by Wilhelm Röntgen. Nowadays there exist different imaging 

techniques that can be divided into two categories: structural and functional 

imaging.  

Structural imaging is primarily aimed at anatomical localisation of pathological 

processes. Besides X-rays, computed tomography (CT) and magnetic resonance 

imaging (MRI) are the most important ones. Due to their short wavelength, X-

rays penetrate through most tissues depending on the density of the tissue. The 

detection of X-rays on a photographic plate, providing an image that is in 

accordance with the density of the tissues. This makes them especially useful in 

the detection of pathology of the skeletal system. To a lesser extent, they are also 

used for identifying some disease processes in soft tissue. Imaging alternatives for 

soft tissues are CT and MRI. CT has been developed in 1967 and is still the gold 

standard in the diagnosis of a large number of different disease entities. CT also 

uses X-rays but here, the X-ray source rotates around the patient, resulting in a 

high quality three dimensional image (resolution of 1 mm). MRI has been 

discovered a few years later than CT and is not only used for structural but also 

for functional imaging. MRI technology is based on nuclear magnetic resonance 

(NMR). The advantaged of MRI is that it provides high contrast images between 

http://en.wikipedia.org/wiki/Bone�
http://en.wikipedia.org/wiki/Soft_tissue�
http://en.wikipedia.org/wiki/Gold_standard_%28test%29�
http://en.wikipedia.org/wiki/Gold_standard_%28test%29�
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the different types of soft tissues within the body without exposing subjects to 

ionizing radiation.  

Functional imaging is, rather than anatomical imaging, focussed on physiological 

processes like metabolism, blood flow, receptor binding, etc. The pivotal 

functional imaging techniques, Positron Emission Tomography (PET) and Single 

Photon Emission Computed Tomography (SPECT), belong to the domain of 

nuclear medicine. Widespread clinical use of nuclear medicine began in the early 

1950’s. Unlike the use of X-rays and CT where radiation is passed through the 

body, nuclear imaging modalities detect the radiation emitted by the human body 

after administration of radiopharmaceuticals. This provides very accurate images 

of the area of the body being investigated. Depending on the radiopharmaceutical 

used, information about certain biological changes or processes is gathered, 

leading to knowledge or diagnosis of diseases (For review see Guy, 1996; 

Wolbarst and Hendee, 2006). 

 

1.1.2. PET 

 

PET is a non-invasive imaging method used to study physiological, biochemical 

and pharmacological processes in the human body. PET utilizes positron (β+) 

emitting isotopes. Positrons are particles with an equal mass as electrons, but with 

a positive charge. The positron travels a short distance in tissue until it interacts 

with an electron, in a process called annihilation. The total mass of positron and 

electron is converted into electromagnetic energy, producing two photons of 511 

keV emitted under an angle of 180°C (Wong and Brasic, 2001; Lewellen, 2008). A 

PET scanner contains a set of detectors arranged in a ring surrounding the object 

to be imaged (Figure 1.1). The pair of photons produced from a single 

annihilation will be detected almost simultaneously on opposing pairs of 

scintillation detectors as a coincidence event. The rings of scintillation detectors 

register thousand of coincidence events emitted from the subject and convert 

them into an electrical signal that can be registered. The acquired emission data 
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are then converted into a tomographic image via computerised reconstruction 

algorithms. Theoretically, PET has a resolution of 2 - 4 mm (Wong and Brasic, 

2001; Lewellen, 2008; Ganguly et al., 2009).  

 

 
Figure 1.1 Principle of PET camera 

 

Radionuclides commonly used in PET are 18F (T1/2 ≈ 110 min), 11C (T1/2 ≈ 20.4 

min), and 15O (T1/2 ≈ 2 min). The stable counterparts of 11C and 15O are the 

building blocks of all living matter which makes it possible to incorporate them 

into the molecules of interest without changing their pharmacological or 

physiological properties. On the other hand, the presence of an on-site cyclotron 

is required to produce the radionuclides with relative short half-lives, immediately 

prior to use (Wong and Brasic, 2001).  

 

1.1.3. SPECT 

 

The origin of SPECT can be found in the groundbreaking experiments on 

emission tomography performed approximately 50 years ago (Kuhl and Edwards, 

1963). SPECT is used to gain information on physiological parameters or certain 

biological processes based on the in vivo distribution of the radioactivity, 
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measured by external mapping of the location and density of the emitted 

photons.  

SPECT cameras detect single photons and consist of a collimator, one or more 

scintillation crystals and photomultiplier tubes (Figure 1.2). The properties of 

these three parts determine the sensitivity and spatial resolution of the SPECT 

camera. The use of a collimator restricts the flow of photons to only those that 

reach the detector in a ninety degree angle, allowing localisation of the 

radionuclide. Thereafter, the scintillation crystal absorbs the energy from the 

photons and converts it to visible light which can be detected by the 

photomultiplier tubes. A sodium iodide crystal, doped with thallium (NaI(Tl)) is 

commonly used as the scintillator in SPECT imaging. Subsequently, the 

photomultiplier tubes convert these light photons into an electrical charge which 

is then amplified to a detectable level. Three dimensional tomographic images in 

the coronal, horizontal and sagittal planes are reconstructed by computer 

software programs from the data collected (Ruth, 2009). 

 
Figure 1.2 Schematic view of a SPECT camera 

 

Two- and triple-head rotating cameras have been developed resulting in 

improved sensitivity and higher spatial resolution. Workable resolution is about 6 
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mm, which is low compared to PET cameras. Because a PET camera only detects 

the coincidence events, there is no need for a collimator, improving the sensitivity 

and resolution of the PET camera. 

The ideal radionuclide for SPECT imaging possesses a relative short half-life and 

emits photons in high abundance and with sufficient energy to penetrate the body 

without undesirable scatter or attenuation. 99mTc (T1/2 ≈ 6 h, 140.5 keV) is the 

best and least expensive radionuclide but its metallic characteristics make it 

difficult to work with. Another commonly used isotope is 123I (T1/2 ≈ 13.2 h, 159 

keV). SPECT radionuclides are not commonly found in nature which makes it 

difficult to incorporate them into biological active molecules without changing 

the physiological properties of the molecule (Kung, 1991).  

 

1.1.4. SMALL ANIMAL IMAGING 

 

Small animal imaging requires, due to the size of the subjects involved, higher 

spatial resolution than most clinical systems can provide. This has led to the 

development of µSPECT and µPET (Peremans et al., 2005). To achieve a higher 

spatial resolution, scanners must use higher-resolution detectors and obtain finer 

spatial sampling while maintaining the sensitivity as high as possible (Sossi and 

Ruth, 2004; Rowland et al., 2008). 

Preclinical µSPECT mainly use pinhole collimation achieving spatial resolution of 

0.5 to 2 mm. The major limitation of pinhole µSPECT is the reduced field of 

view and subsequently the reduced sensitivity. By setting up additional pinholes 

and focusing them on different regions, it is possible to increase the field of view, 

improve the sensitivity, and obtain high spatial resolution when using sufficiently 

small pinhole diameters (Beekman et al., 2005; Rowland et al., 2008; Vanhove et 

al., 2008).  

Enhancement of preclinical PET is mainly focussed on improved photon 

detection material. Compared to the commonly used detection material NaI(Tl), 

Lutetium Orthosilicate has a high density and high light yield. This allows 
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reduction in the size of individual crystals and thus leads to higher spatial 

resolutions while maintaining the same sensitivity (Ruth, 2009). As well as the 

hardware improvement, development of software that provides more accurate 

data quantification and image reconstruction contributes to the successful 

application of preclinical PET and SPECT (Sossi and Ruth, 2004; Rowland et al., 

2008).  

 

1.2. Neuroimaging 

 

The human brain is a complex organ, consisting of millions of inter-

communicating neurons. Due to the complexity of the central nervous system 

(CNS) our knowledge about CNS disorders is still limited. The understanding of 

biochemical abnormalities relating to disease and disease processes is pivotal to 

the future development of effective diagnosis, treatment and management of 

neurological and psychiatric illness. Since the development of suitable 

radioligands in the late 1970’s, the use of non-invasive imaging modalities (PET 

and SPECT) is a valuable tool for in vivo brain mapping and drug development in 

the future (Wong and Brasic, 2001; Gee, 2003).  

 

1.2.1. RADIOPHARMACEUTICALS 

 

Radiopharmaceuticals can be divided into two categories being: diagnostic and 

therapeutic radiopharmaceuticals. For the preparation of radiopharmaceuticals, a 

radionuclide is coupled to a drug with a certain target in the human body. In this 

thesis, only radiopharmaceuticals for brain imaging will be discussed. The 

development of new and improved radiopharmaceuticals is a research field that is 

actively explored. To obtain a new, valuable radiopharmaceutical, some critical 

points have to be considered during the radiotracer development (Kung, 1991). 

First, a possible interesting radiotracer must be selected out of the thousand 

molecules designed by chemists; preferentially, a molecule with high in vitro 
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affinity (Kd in nanomolar range) and selectivity (at least more than 10) for its 

target. Subsequently, radiolabelling opportunities that do not alter the affinity and 

selectivity are required. Lipophilicity is another important parameter since it 

determines the ability of the molecule to cross the blood-brain barrier (BBB). The 

lipophilicity is often expressed by the log D7.4, which is the logarithm of the 

partition coefficient between n-octanol and water at physiological pH. An ideal 

log D7.4 should be between 1.5 and 3 (Waterhouse, 2003). A molecule that is too 

hydrophilic (log D7.4 < 1.5) will not pass the BBB by passive diffusion. Elevated 

values of log D7.4 on the other hand, result in high nonspecific binding. The 

ability of the molecule to penetrate the BBB is not only determined by the 

partition coefficient. The molecular weight has to be lower than 650 g/mol, the 

molecule may not be charged and binding to plasma proteins must be reversible. 

The presence of multispecific xenobiotics transporters at the BBB can cause 

efflux of the molecule out of the brain. Consequently, a lower brain uptake than 

expected from its lipophilicity is observed. P-glycoprotein is an example of such a 

transporter (For review see Stöcklin, 1992; Elsinga, 2002).    

When preparing radiopharmaceuticals, the chemical, radiochemical and 

radionuclidic purity are of great importance. This implies that the tracer solution 

has to be free of unlabelled and labelled impurities and undesirable radionuclides. 

Further is the specific activity, expressed as the amount of radioactive molecules 

over the total mass of those molecules present in the tracer solution, also of 

critical importance. Specific activity is usually formulated as GBq/µmol or 

Ci/µmol. As most radiotracers for brain imaging are injected intravenously, 

special requirements including pH, isotonicity, sterility and apyrogenicity are 

necessary.  

When all the mentioned requirements are fulfilled, the radiopharmaceutical can 

be evaluated in vivo. It is important that the administrated radiotracer is highly 

distributed to the organ of interest resulting in a high target to non-target ratio. 

The radiotracer must interact with the system in a known and reproducible 

fashion. Rapid metabolism of the radiopharmaceutical is undesirable when the 
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specific binding of the radiopharmaceutical to its target must be detected. 

Radiolabelled metabolites can bind to other molecules or take part in unknown 

biochemical processes and result in nonspecific accumulation of radioactivity. 

The presence of radiometabolites in plasma that cannot cross the BBB does not 

disturb the signal to noise ratio (Elsinga, 2002; Stöcklin, 1992).  

 

1.2.2. NEUROIMAGING WITH PET AND SPECT 

 

The ability of SPECT and PET to image specific biomolecules in the living brain 

provides a unique tool for clinical researchers. Given this, it is not surprising that 

over the last decade a large number of radiotracers have been developed to image 

and quantify the various neurotransmitter systems. As mentioned before, 

development of a suitable radioligand is fraught with problems and there are 

many compounds reported in the development phase that never reached the end 

point of in vivo use in man.  

Some radiopharmaceuticals successful in clinical SPECT studies are [99mTc]ECD 

(tracer for cerebral blood flow), [123I]IBZM (dopamine D2 receptor tracer), 

[123I]ADAM (serotonin transporter tracer) and the dopamine transporter tracer 

[123I]FP-CIT (for review see Camargo, 2001; Zipursky et al., 2007; Sharma and 

Ebadi, 2008). 

The most important clinically used PET brain tracers are [18F]DOPA, 

[11C]raclopride (dopamine D2 receptor tracer), [11C]DASB (serotonin transporter 

tracer), and the serotonin 5-HT1A receptor tracer [11C]WAY100635 (For Review 

see Fowler et al., 2003; Shiue and Welch, 2004; Zipursky et al., 2007).  
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Chapter 2 
 

Blood-brain barrier transport 
 

2.1. The blood-brain barrier 

 

2.1.1. GENERAL 

 

The brain is a very delicate organ and homeostasis in the neural 

microenvironment is essential for the perfect functioning of the brain. Therefore, 

the brain must be protected against metabolic fluctuations in blood composition. 

However, at the same time contact with blood must be maintained for nutrient 

supply and waste disposal. This complex task is accomplished by the blood-brain 

barrier (BBB) (Aigner et al., 1997). The existence of such a barrier between blood 

and brain was first demonstrated by Ehrlich (1885). At the end of the 1960’s, the 

tight junctions and the fine structural localization of the BBB were discovered 

(Reese and Karnovsky 1967; Brightman and Reese 1969).  

The BBB is not the only barrier that limits drug transport to the brain 

parenchyma. There are two more barriers described: 1) blood-cerebrospinal-fluid 

barrier (presented by the choroid plexus epithelium in the ventricles) and 2) the 

ependyma (epithelial layer of cells covering the brain tissue in the ventricles and 

limiting the transport of compounds from the cerebrospinal-fluid to the brain 

tissue). Based on total blood flow and its wide vascular bed, the BBB is 

functionally the most important global influx barrier. The human BBB has a total 

blood vessel length of approximately 600 km with an estimated surface of 20 m2 

(Pardridge 2002; de Boer and Gaillard 2007). 
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Figure 2.1 Schematic brain capillary (Löscher, 2007) 

 

Brain capillary endothelial cells, pericytes, astrocytes and neuronal cells (Figure 

2.1) compose the BBB (Rubin and Staddon 1999; Ballabh et al., 2004; de Boer 

and Gaillard 2007). Brain capillary endothelial cells are distinguished from 

peripheral endothelial cells. Their specific characteristics such as tight junctions 

prevent paracellular transport of compounds from blood to the brain. 

Furthermore, low vesicular transport, high metabolic activity and lack of 

fenestrations prevent transcellular transport of xenobiotics to the brain. These 

specific features are induced and maintained by the astrocytes as well as by the 

neuronal endings. This barrier is very efficient and makes the brain practically 

inaccessible for lipid-insoluble compounds and large molecules. As a 

consequence, the therapeutic value of many promising drugs is diminished and 

cerebral diseases proved to be most refractory to therapeutic interventions. Given 

the prevalence of brain diseases, this is a considerable problem (Oldendorf 1977; 

Brightman 1977; Aigner 1997; Bodor and Buchwald 1999). 

 

2.1.2. INFLUX IN THE BRAIN 

 

Invasive drug delivery and drug delivery based on BBB transport are the two 

strategies used to bring molecules into the brain. The invasive strategy is rarely 

applied and will therefore not be discussed in this thesis (For review see 

Pardridge 1997; 2002; 2007). The non-invasive strategy can be divided into two 
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main drug transport possibilities across the BBB: passive diffusion and active 

transport systems.  

 

Passive diffusion of substances through the BBB depends on molecular weight, 

lipophilicity and intermolecular forces (Levin 1980; Pardridge 1998; Bodor and 

Buchwald 1999; Habgood et al., 2000). There is a molecular weight threshold of 

approximately 650 g/mol with respect to drug penetration through the BBB. The 

more lipid-soluble a drug, the more easily it will move from the polar 

environment of the blood across the nonpolar BBB. Lipophilicity can be 

measured by the partition coefficient between octanol and water. The 

intermolecular forces are determined by the functional groups of the molecule. 

Measurement of the surface activity, which takes into account the hydrogen 

binding capabilities and the hydrophobic properties, can predict the ability of 

substances to passively diffuse through the BBB (Pardridge 1998).  

 

Active transport systems can be divided into absorptive-, carrier- or receptor-

mediated transport. Absorptive-mediated transcytosis is initiated by the binding 

of cationic substances to negative charges on the plasma membrane. This process 

does not involve specific plasma membrane receptors. Upon binding of the 

cationic compound to the plasma membrane, endocytosis occurs (de Boer et al., 

2003). The carrier-mediated transport is used for blood-to-brain transport of 

nutrients and vitamins. At least eight different nutrient transport systems have 

been identified, with each transporting a group of nutrients of the same chemical 

structure. A tool for enhancing BBB transport of drugs is to modify the drugs 

structurally to mimic the endogenous nutrients (For review see Pardridge 2002; 

2007). Receptor-mediated transport enables larger endogenous molecules, such as 

peptides, proteins and genes to specifically enter the brain. Conjugation of 

exogenous molecules such as recombinant proteins and antisense agents to brain 

transport vectors makes it possible to deliver them to the brain. The brain 

transport vector is comprised of endogenous peptides or peptidomimetic 
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monoclonal antibodies that undergo receptor-mediated transport (For Review see 

Pardridge 1999; 2002; 2007; de Boer and Gaillard 2007). 

 

2.1.3. EFFLUX OUT OF THE BRAIN 

 

To maintain homeostasis of the brain, the BBB combines restricted entering of 

endogenous and exogenous compounds to the brain with specialized transport 

mechanisms for efflux of these compounds out of the brain. These multispecific 

xenobiotic transporters are conventionally grouped into families based on 

molecular and functional similarities. Several different drug transporter families 

have been identified, including the organic anion transporter, multidrug 

resistance-associated protein, multidrug resistance protein, organic anion 

transporting polypeptide, organic cation transporter, concentrative nucleoside 

transporter and equilibrative nucleoside transporter subfamilies (Zhang et al., 

2004; Huai-Yun et al., 1998; Bauer et al., 2005; Kim, 2005). The first described 

drug efflux transporter was P-glycoprotein (P-gp), followed by several members 

of the multidrug resistance-associated protein family and more recently breast 

cancer related protein (For review see Taylor 2002; de Boer 2003; Bauer et al., 

2005; Löscher and Potschka 2005; Dallas et al., 2006). To date, P-gp is the best 

known and most important drug efflux pump. 

 

2.2. P-glycoprotein 

 

2.2.1. HISTORICAL BACKGROUND 

 

The ATP-binding cassette (ABC) family of transport proteins represents one of 

the largest families of proteins in living organisms. Its members have been found 

in each kind of organism examined so far. These transporters mediate drug 

absorption, distribution and excretion and therefore play a central role in cellular 

physiology (Ayrton and Morgan 2001). It is difficult to characterize a 
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physiological system in dept without identifying a role for an ABC transporter. 

Over the last 15 years, there has been a significant increase in the molecular 

characterization of transport proteins in animals and man. There are seven 

known distinct subfamilies of ABC transporters, designated A - G. P-gp, the 

most important transporter, belongs to the ABCB subfamily (For review see 

Klein et al., 1999; Dean et al., 2001; Schinkel and Jonker 2003; Sun et al., 2003). 

P-gp is the most extensively studied mammalian ABC transporter and is often 

regarded as the prototype for understanding the biochemical mechanisms. In 

1976, Juliano and Ling identified this efflux pump. Because the glycoprotein they 

found appeared to be unique to mutant cells that displayed altered drug 

permeability, they named it permeability-glycoprotein (P-glycoprotein or P-gp). 

The discovery of P-gp was groundbreaking because it explained multidrug 

resistance, a frequently observed phenomenon in tumours (Juliano and Ling, 

1976). In 1989, two independent research groups found expression of P-gp at the 

human BBB (Cordon-Cardo et al., 1989; Thiebaut et al., 1989). P-gp is highly 

expressed at the luminal membrane of endothelial cells which is a perfect 

localization to protect the brain from xenobiotics (Biegel et al., 1995; Beaulieu et 

al., 1997). Therefore, P-gp is generally recognized to be the most important 

element of the selective, active BBB for efflux of xenobiotics and has been the 

main focus of BBB research over the last decade.  

 

2.2.2. EXPRESSION, STRUCTURE AND FUNCTION 

 

In humans, P-gp is encoded by two genes, MDR1 and MDR2. Only the MDR1 

gene, located on chromosome 7q21, is responsible for the multidrug resistance. 

The closely related MDR2 gene, also called MDR3, is involved in intrahepatic 

cholestasis (Klein et al., 1999). In contrast to humans, mice have three genes 

encoding P-gp: mdr1a (also called mdr3), mdr1b (also called mdr1) and mdr2. As 

in humans, the mdr2 gene does not contribute to multidrug resistance. The tissue 

distribution of mdr1a and mdr1b differ from each other, but together these 
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proteins cover the same areas as the single MDR1 P-gp in humans. This suggests 

that mouse mdr1a and mdr1b together fulfil the same physiological role(s) as 

MDR1 in human (Croop et al., 1989; Chen et al., 1986; van der Bliek et al., 1988; 

Hsu et al., 1989; Gros et al., 1986; Devault and Gros 1990).  

 

Glycosylation sites

TMD

 
Figure 2.2 Predicted Secondary structure of P-gp (Schinkel et al., 1999) 

TMB = transmembrane domain; NBD = nucleotide binding domain 

 

The MDR1 gene product (Figure 2.2) is a 170 kDa transmembrane protein that 

consists of 1280 amino acids. It is organized as a single polypeptide consisting of 

two similar halves; a carboxy and an amino halve (Dey et al., 1997). Each part 

consists of a transmembrane domain containing six helices and an intracellular 

ATP-binding site also known as nucleotide binding domain (NBD). Intracellular 

and extracellular loops connect the transmembrane segments with the first 

extracellular loop being highly N-glycosylated. The NBD contains three 

conserved domains among the ABC transporters: walker A and B domains and a 

signature motif (C). The NBD binds and hydrolyzes ATP which provides the 

energy for active drug export that can occur against a large concentration 

gradient. Binding of substrates occur at the transmembrane domains (Gottesman 

et al., 1996; Sauna and Ambudkar, 2001; Higgins and Linton 2004; For review see 

Endicott and Ling 1989; Gottesman and Pastan, 1993; Bosch and Croop 1998; 

Gottesman and Ambudkar 2001; Ambudkar et al., 2005). 
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Table 2.1 mRNA expression of P-gp (adapted from Croop et al., 1989; Schinkel 

et al., 1999) 

Tissue MDR1 (human) mdr1a (mouse) 3 mdr1b (mouse) 1 

Stomach  + - + 
Intestines + + + + + + + 
Liver + + + + + 
Adrenal gland + + + + + + + + + + + + 
Ovary + + ++ 
Testis + + - 
Kidney + + + + + + 
Uterus + (+) + 
Pregnant uterus + + (+) + + + + 
Brain + + + - 
Skeletal muscle + + + 
Heart Data not available + + 
Lung + + + + 
Spleen + + + 
The relative expression is indicated by +, and very low or undetectable levels with - 

 

Apart from expression in the BBB, drug-transporting P-gp pumps are expressed 

in a range of other tissues (Table 2.1). The most prominent sites are the 

endometrium of the pregnant uterus, the apical surface of mucosal cells in the 

small and large intestines, the biliary canalicular membrane of hepatocytes and the 

luminal membrane of proximal tubular epithelial cells in the kidney. High levels 

are also located in the adrenal glands of mice and humans. This tissue distribution 

suggests that P-gp plays a role in excreting toxic xenobiotics and metabolites into 

intestinal lumen, bile and urine, respectively (Figure 2.3). In addition, moderate 

levels were found in a range of other tissues (Thiebaut et al., 1987; Croop et al., 

1988; Cordon-Cardo et al., 1989). 
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Figure 2.3 Schematic drawing of the organ distribution of P-gp in the mouse 

(modified from Schinkel, 1997) 

 

2.2.3. PHYSIOLOGICAL ROLE OF P-GP 

 

Firm evidence for the purpose of P-gp came from studies in which mdr1 genes 

were inactivated by insertional mutagenesis (For review see Borst and Ambudkar, 

1996; Ambudkar et al., 1999; Schinkel, 1999). The physiological function of P-gp 

at the BBB is to protect the brain from potentially harmful substances by 

exporting these substances out of the brain. Intestinal P-gp is an important factor 

in limiting the entry of substrate drugs from the intestinal lumen to the 

bloodstream. Therefore it can have a major negative effect on the oral 

bioavailability of drugs. Intestinal P-gp can further contribute to the direct 

excretion of drugs from the bloodstream into the intestinal lumen. The bile 

canalicular P-gp contributes to the hepatobiliary excretion of drugs. Together 

these effects can result in a markedly slower elimination of drugs from the 

bloodstream and in a clear shift from primarily fecal to primarily urinary excretion 

of some drugs. Expression of P-gp in the placenta suggests a role for P-gp in 

protecting the foetus from toxic xenobiotics. Because of its localization in 

steroid-secreting glands, P-gp might be involved in secretion of steroids, or in 

protecting the plasma membranes of steroid-secreting cells from the toxic effects 
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of high steroid concentration (Schinkel 1997; Ambudkar et al., 1999; Schinkel 

1999; Tanigawara 2000). Taking together, the physiological function of P-gp is 

the protection of the cells and organism against toxic compounds.  

 

Since the finding that resistance to anticancer drugs in human cancers is due to 

the expression of the P-gp transporter (Chen et al., 1986) it has become clear that 

P-gp also has a major impact on drug resistance to psychotropic drugs like anti-

epileptics (Löscher and Potschka, 2001; Luna-Tortós et al., 2008), anti-HIV drugs 

(Kim et al., 1998; Huisman et al., 2000), antidepressants and others (Schinkel et 

al., 1996; Wang et al 2003; Linnet and Ejsing, 2008; Schinkel and Jonker 2003).  

 

The degree of expression and the functionality of the MDR1 gene product can 

directly affect the distribution, absorption and elimination of P-gp substrates. 

Consequently, variations in the expression levels and activity of P-gp have a 

major impact on the therapeutic efficacy of many drugs. This implicates that 

absorption of drugs is variable among individuals (Kim et al., 2001; Ambudkar et 

al., 2003; Ebinger et al., 2006; Brinkmann et al., 2001). Currently, more than 100 

mutations in the human P-gp gene have been identified (Maeda et al., 2008). 

Some of these polymorphisms are directly related to human diseases such as 

epilepsy (Löscher 2007; Kwan and Brodie 2005; Siddiqui et al., 2003), Parkinson 

disease (Kortekaas et al., 2005), Alzheimer disease (Lam et al., 2001; Vogelgesang 

et al., 2002) and others (Turgut el al., 2008; Langford et al., 2004; Löscher and 

Potschka 2005). 

 

2.3. Modulation of P-gp 

 

2.3.1. SUBSTRATES 

 

P-gp recognizes and transports a structurally, chemically and pharmacologically 

diverse range of compounds with molecular weights between 200 Da and 1900 
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Da. Drugs that are found to be substrate for P-gp include anthracyclines 

(daunorubicin), vinca alkaloids (vincristine), calcium channel blockers (verapamil), 

anti-emetics (domperidone), the immunosuppressivum Cyclosporin A (CsA) and 

so on (Table 2.2) (Bauer et al., 2005; Linnet and Ejsing, 2007).  

 

Table 2.2 Examples of drugs transported by P-gp 

Cardiovascular medication Cytotoxic agents 
Verapamil Doxorubicin 
Diltiazem Daunorubicin 
Digoxin Paclitaxel 
Carvedilol Opioids 
Lovastatin Morphine-6-glucuronide 
Anti-emetics Phentanyl 
Domperidone Loperamide 
Ondansetron Antibiotics 
HIV protease inhibitors Erythromycin 
AZT Rifampicin 
Ritonavir Others 
Saquinavir Dexamethason (glucocorticoid) 
Immunosuppressive drugs Doxorubicin (antineoplastic) 
Cyclosporin A Midazolam (benzodiazepine) 
Tacrolimus Ivermectin (antihelmintic) 
 

The mechanism by which P-gp recognizes this wide range of substrates is less 

clear at the moment (Schinkel et al., 1996; Tanigawara, 2000; Bart et al., 2000; 

Linnet and Ejsing, 2008). Given the potential of P-gp to affect bioavailability and 

tissue distribution, particularly CNS drug distribution, it would be very useful to 

understand the structural features that make a compound a substrate or inhibitor 

of P-gp. However, specific structure-activity models of a P-gp pharmacophore 

have proven to be difficult to develop. A general pharmacophore with two or 

three electron donor groups in a fixed spatial separation has been suggested by 

Seelig et al. (1998). It has also been proposed that a planar aromatic domain and 

the presence of a basic nitrogen atom are features of substrates but drugs lacking 

these features could also be transported (Sun et al., 2003). The only common 
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denominator for all P-gp substrates is their amphipatic nature (Schinkel et al., 

2003). Partitioning into the lipid membrane is the rate-limiting step for the 

interaction of a substrate with P-gp. Dissociation of the P-gp-substrate complex 

is determined by the number and strength of the hydrogen bonds formed 

between the substrate and the transporter. If two substrates are applied 

simultaneously to P-gp, the compound with the highest potential to form 

hydrogen bonds, generally act as an inhibitor (Seelig et al., 2000).  

 

2.3.2. INHIBITORS 

 

In view of the potential contribution of P-gp to the drug resistance observed 

during chemotherapy in a number of clinical tumors, there is a widespread 

interest in the use of so-called P-gp reversal or modulating agents. Co-

administration of such blockers with conventional chemotherapy in cancer 

patients might reverse the P-gp-mediated multidrug resistance of the tumor, and 

thus enhance the response to therapy. Another therapeutic implication of these 

reversal agents is the enhancement of brain uptake of some drugs. This is 

favourable for therapy when the intended pharmacological target is positioned 

behind the BBB. Keeping in mind the protective role of P-gp at the BBB, P-gp 

modulators should be used carefully.  

Because of the potentially important therapeutic implications of reversal agents, 

several P-gp blockers with high efficacy and low toxicity have been developed. 

Reversal agents are as diverse in structure as the previously identified transported 

drugs. In fact, many compounds initially identified as reversal agents turned out 

to be themselves transported by P-gp, which suggests that they inhibit transport 

of other compounds in a competitive manner (Schinkel 1997; Huisman et al., 

2000; Varma et al., 2003). 

Based on the specificity and affinity, P-gp inhibitors are classified into three 

generations. First-generation inhibitors are pharmacological actives, which are in 

clinical use for other indications but have shown to inhibit P-gp. These include 
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verapamil, CsA, reserpine and tamoxifen. The use of these compounds is limited 

by their side effects when administrated with a dose that is required to inhibit P-

gp. Valspodar, biricodar and GF120918 are examples of second-generation 

modulators. They are analogues of the first-generation compounds but lack the 

pharmacological activity of the original molecule and possess usually a higher P-

gp affinity. Despite their better pharmacological profile, these agents display lack 

of absolute selectivity thereby limiting their clinical use. Most of them are often 

inhibitors of other ABC transporters or cytochrome P4503A. Third-generation 

inhibitors are the most potent, highly selective P-gp modulators, having only little 

influence on cytochrome P4503A drug metabolism and showing only little 

interaction with chemotherapeutic agents. Members of this class are zosuquidar, 

tariquidar, laniquidar and ONT-093 (Tan et al., 2000; Varma et al., 2003; Fricker 

and Miller 2004; Nobili et al., 2006). 

 

2.3.3. IMAGING OF P-GP 

 

Non-invasive imaging of P-gp functionality or expression with PET or SPECT 

could have several applications. PET or SPECT could be applied to evaluate the 

efficacy of candidate modulators that have passed initial in vitro screening assays. 

It might also allow selection of the proper modulator and dosing schedule for the 

individual patient. Information on the dynamic transport of P-gp will avoid 

unnecessary treatment with modulators in those patients who will not benefit. 

Another interesting application could be the monitoring of P-gp functionality in 

psychiatric and neurological disorders which could implicate the efflux pump as a 

possible cause in these diseases. So far, several radioligands for PET and SPECT 

have been proposed among which [11C]verapamil, [11C]N-desmethyl-loperamide 

(Lazarova et al., 2008), [11C]loperamide (Zoghbi et al., 2007), [11C]colchicine 

(Levchenko et al., 2000), [11C]carvedilol (Elsinga et al., 2005) and [18F]MPPF 

(Lacan et al., 2008; Passchier et al., 2000) for PET and [99mTc]sestamibi and 

[99mTc]tetrofosmin (Ballinger et al., 1996) for SPECT (For review see Elsinga et 
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al., 2004; Elsinga et al., 2005; Vaidyanathan and Zalutsky, 2004) (Figure 2.4). Two 

of them, [11C]verapamil and [99mTc]sestamibi, have been used in clinical trials and 

will be discussed briefly.  

 
Figure 2.4 Tracers evaluated for imaging P-gp 

 

[99mTc]sestamibi is a radiopharmaceutical used clinically to study myocardial 

perfusion (Mandalapu et al., 1999). It was demonstrated that [99mTc]sestamibi, a 

substrate for P-gp as well as for multidrug resistance protein 1, is especially useful 

for imaging P-gp expression in tumors rather than brain (Kostakoglu et al., 1996; 

Barbarics et al., 1998 for review see Hendrikse et al., 1999). 

Differences in tissue concentrations of [11C]verapamil was demonstrated between 

mdr1a knock-out mice and wild type mice. The brain uptake of [11C]verapamil is 
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remarkably higher in mdr1a knock-out mice (9.5 fold) as well as after 

pretreatment with CsA (10.6 fold) indicating that [11C]verapamil is effectively 

transported by P-gp at the BBB (Hendrikse et al., 1998). Evaluation of 

[11C]verapamil for in vivo imaging of P-gp functionality in non-human primates 

proved its usefulness as a tool for evaluating P-gp function (Lee et al., 2006). 

Nevertheless, metabolization of [11C]verapamil makes the determination of a 

pharmacokinetic model, and so absolute quantification, more complex (Syvanen 

et al., 2008; Luurtsema et al., 2004). 
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Chapter 3 

 

Catecholamine system in the brain 

 

3.1. Catecholamine pathways in the brain 

 

3.1.1. GENERAL INTRODUCTION 

 

Catecholamines (dopamine, norepinephrine and epinephrine) are 

neurotransmitters named after their chemical structure. They contain a benzene 

ring with two hydroxyl groups (catechol) and a side chain of ethylamine or one of 

its derivatives. All catecholamines are synthesized starting from tyrosine, an 

amino acid synthesized out of phenylalanine or derived from food proteins.  

Tyrosine accumulates in neurons by an active transport mechanism. There, it is 

converted to dihydroxyphenyl-alanine (DOPA) by the enzyme tyrosine 

hydroxylase. L-DOPA is then decarboxylated to dopamine which is stored in 

vesicles in the nerve terminals (Weiner, 1970) where it can be further oxidized to 

norepinephrine using dopamine-β-hydroxylase (Figure 3.1) (Goodall and 

Kirshner, 1958).  

Both neurotransmitters are released in the synaps through a calcium-dependent 

process initiated by nerve impulse activity (Figure 3.1). The released 

neurotransmitters can now interact with dopamine and adrenoreceptors, 

respectively. Termination of the signal occurs by reuptake in the presynaptic 

neuron using the dopamine and norepinephrine transporter or by enzymatic 

degradation of the neurotransmitter using the enzymes monoamine oxidase 

(MAO) and catecholamine-O-methyltransferase (COMT). Reuptake is the main 

mechanism responsible for inactivation (Kanner and Schuldiner, 1987; Schmitz et 

al., 2003). The recycled neurotransmitter can be restored in vesicles by vesicular 
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monoamine transporters or further metabolized by MAO or COMT. 

Extravesicular dopamine is metabolized to dihydroyphenylacetic acid whereas 

extracellular dopamine is degraded to homovanillic acid. 3-Methoxy-4-hydroxyl-

phenethylenglycol is the major metabolite formed by degradation of 

norepinephrine (Maas and Landis, 1968; Peyrin and Dalmaz, 1975; Eisenhofer 

and Fineberg, 1993; Kopin, 1994). 

 

Figure 3.1 Schematic representation of noradrenergic synaptic signalling 

(Klabunde, 2008) 

DA = Dopamine; DD = DOPA decarboxylase; DOPA = dihydroxyphenyl-alanine; 

DBH = dopamine-β-hydroxylase; NE = Norepinephrine; TH = tyrosine hydroxylase;  

Tyr = tyrosine 

 

The transporters responsible for inactivation of dopamine and norepinephrine as 

well as the enzyme MAO, will be further discussed. 

 

3.1.2. NORADRENERGIC SYSTEM IN THE BRAIN 

 

The major noradrenergic nucleus in the brain is the locus coeruleus. The locus 

coeruleus is the main source of the noradrenergic innervation in the 

hippocampus, thalamus, cerebellum as well as most cortical areas (Figure 3.2). 
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The lateral tegmental system, another group of noradrenergic cells, has its cells of 

origin located in discrete regions of the pons and medulla. These norepinephrine-

containing cells innervates the hypothalamus and parts of the amygdale, but has 

also descending projections to the spinal cord (Nicholas et al., 1996; Aston-Jones, 

2002).  

 

Figure 3.2 Noradrenergic pathways in the human brain (CNSforum.com) 

 

Norepinephrine is involved in mood regulation, sleep regulation, memory, 

expression of behaviour and the general degree of alertness and arousal (Aston-

Jones, 2002; Murchison et al., 2004). The actions of norepinephrine are carried 

out via the binding to the adrenoreceptors, a class of G-protein coupled 

receptors. There are two main groups of adrenergic receptors, α and β, which are 

further divided into α1A, α1B, α1D, α2A, α2B, α2C and β1, β2, β3. All receptors are G-

protein coupled receptors and are localized post- or presynaptic (Nicholas et al., 

1996; Docherty, 1998). 

 

3.1.3. DOPAMINERGIC SYSTEM IN THE BRAIN 

 

The dopaminergic neurons are classified into four main pathways (Figure 3.3) 

(For review see Reid, 1977; Moore and Bloom, 1978; Marsden, 2006). The 
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nigrostriatal pathway projects from the substantia nigra to the dorsal striatum. 

This pathway contains about 80 % of all dopaminergic innervations and is 

involved in the regulation of movements (Cousins and Salamone, 1996). The 

dopaminergic neurons involved in the mesolimbic and mesocortical pathways 

both originates in the ventral tegmental area. The mesolimbic pathway projects 

towards limbic areas such as nucleus accumbens and amygdale whereas the 

mesocortical pathway most densely projects to the prefrontal cortex. The 

mesolimbic system plays a role in emotional expression and motivation (Cabib et 

al., 1996). Memory, organization, attention and social behaviour are affected by 

the mesocortical pathway (Floresco and Magyar, 2006). Finally, the 

tuberoinfundibular pathway exists of a group of small neurons, signalling from 

the hypothalamus towards the pituitary gland. In this last pathway, dopamine 

inhibits prolactin release (Andrews and Grattan, 2004). 

 

 

Figure 3.3 Dopaminergic pathways in the human brain (Rang et al., 1999) 

Ac = nucleus accumbens; Am = amygdaloid nucleus; C = cerebellum; Hip = 

hippocampus; Hyp = hypothalamus; P = pituitary gland; Sep = septum; Str = corpus 

striatum; Th = thalamus; N = substantia nigra 

 

The actions of dopamine are mediated by binding to specific membrane 

receptors, which belongs to the family of seven transmembrane domain G-

protein coupled receptors. Two types of dopamine receptors, termed D1 and D2 
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were originally distinguished based on their biochemical and pharmacological 

properties. The D1-like family includes the D1 and D5 receptors while the D2-like 

receptors are further divided into D2, D3 and D4. The most common receptors, D1 

and D2, are involved in regulation of behaviour and are localized in striatum (D1 

and D2), cortical regions (D1 and D2), amygdale (D2), hippocampus (D2) and 

thalamus (D2). Presynaptically localized D2 receptors are involved in the 

regulation of the biosynthesis and the release of dopamine (Jackson and 

Westlind-Danielsson, 1994, Marsden, 2006).  

 

3.2.       Catecholamine transporters 

 

3.2.1. GENERAL INTRODUCTION 

 

Synaptic signalling is primarily terminated by active transport of the 

neurotransmitter in neuronal cells by neurotransmitter transporters. Once inside 

the neuronal cell, neurotransmitters can be further transported into synaptic 

vesicles by vesicular carriers. These processes are responsible for the homeostasis 

of neurotransmitter pools within nerve endings. Both at the plasma and vesicular 

membranes, neurotransmitter influxes are directly coupled to transmembrane ion 

gradients which provide the energy for the retrotransport (Kanner and 

Schuldiner, 1987).  

Neurotransmitter transporters can be classified in superfamilies, families, and 

subfamilies according to their primary structure and site of action. In particular, 

the latter criterion allows the distinction of two superfamilies: the plasma 

membrane transporters and the vesicular membrane transporters. The 

superfamily of plasma membrane transporters can be further divided into two 

families depending on their ionic dependence: the Na+/Cl--dependent 

transporters and the Na+/K+-dependent transporters. Based on their substrate 

preferences, the Na+/Cl--dependent transporters are classified into subfamilies 

among which the amino acid transporters and monoamine transporters (Masson 
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et al., 1999; Zahniser and Doolen, 2001). This thesis focuses on the dopamine 

transporter (DAT) and norepinephrine transporter (NET), both members of the 

monoamine transporter subfamily. The serotonin transporter (SERT) is the third 

transporter belonging to the monoamine transporters.  

 

3.2.2. HISTORICAL BACKGROUND  

 

The presence of an active transport system for the cellular uptake of 

norepinephrine at sympathetic nerve endings was suggested by studies on the 

tissue uptake and retention of [3H]-labelled norepinephrine administrated to 

animals (Whitby et al., 1961; Hertting et al., 1961). Regional differences within the 

brain for the uptake of dopamine and norepinephrine indicated the existence of a 

separate mechanism for the neuronal reuptake of dopamine. Striatal 

synaptosomes showed a much higher affinity for uptake of dopamine than 

norepinephrine, whereas in other brain regions, the difference was less 

pronounced. There were no stereoselective preferences for uptake of D- and L-

isomers of norepinephrine in the striatum, whereas in other regions, the L-isomer 

was the preferred substrate. This observation suggested that norepinephrine 

uptake in the striatum is mediated by DAT whereas in other regions, NET was 

abundant (Snyder and Coyle, 1969; Coyle and Snyder, 1969).  

 

3.2.3. STRUCTURE, FUNCTION AND MECHANISM  

 

Up to date, no X-ray crystallographic or high-resolution structural information is 

available for the topological assignments of the transporters. The identification of 

the cDNAs for the catecholamine transporters has contributed greatly to our 

understanding of the molecular structure and function of these important 

proteins (Amara and Kuhar, 1993).  

The polytopic membrane proteins, DAT and NET show high homology (66 %) 

and share several structural features (Figure 3.4). They are both composed of 12 
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transmembrane domains (TMD), several similarly configured intracellular and 

extracellular loops with phosphorylation and glycosylation sites, and intracellular 

located amino- and carboxy-terminal residue. One large extracellular loop is 

positioned between TMD 3 and TMD 4 and contains a variable number of N-

glycosylation sites (Giros and Caron., 1993). The presence of several intracellular 

sites for phosphorylation, suggests that second messengers may regulate 

transporter function and/or subcellular redistribution. Phosphorylation can occur 

by several enzymes with protein kinase A and C and calcium-modulin kinase II as 

the most important ones. TMD 1, 2 and 4 - 8 show the highest degree of 

sequence identity between DAT and NET. The conservation of sequence in 

these membrane-spanning domains argues for their functional importance in 

transport activity. The carboxy-terminal region, spanning from TMD 9 through 

the carboxy-terminal tail, seems to be responsible for the observed 

stereoselectivity and high affinity for their respective substrates (Giros et al., 

1994; Buck and Amara, 1994 and 1995; Brüss et al., 1995; Hersch et al., 1997; 

Zahniser and Doolen, 2001). 

 

Figure 3.4 Topology of catecholamine transporters (Torres et al., 2003) 
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The observation that extracellular Na+ ions were a necessary requirement for 

substrate uptake provided one of the first insights into the transport mechanism. 

It is now well established that the mechanism by which transporter proteins 

mediate catecholamine uptake involves sequential binding and co-transport of 

Na+ and Cl- ions. The driven force for transporter-mediated catecholamine 

uptake is the ion concentration gradient that is created and maintained by the 

plasma membrane Na+/K+ ATPase. In the case of DAT, two Na+ ions and one 

Cl- ion are transported with the substrate, whereas NET co-transport its substrate 

with one Na+ ion and one Cl- ion (Kanner and Schuldiner, 1987; Torres et al., 

2003). A detailed description of the mechanism and regulation of transport is 

beyond the scope of this thesis but has extensively been discussed and reviewed 

by others (Rudnick and Clark, 1993; Sonders and Amara, 1996; Kavanaugh, 1998; 

Beckman and Quick, 1998; Torres, 2003; Meliaken, 2004; Blakely et al., 2005). 

 

3.2.4. NOREPINEPHRINE TRANSPORTER 

 

3.2.4.1. Structure and localization 

 

Pacholzyk et al. (1991) identified the cDNA encoding for the human NET using 

an expression cloning strategy in COS cells. The NET cDNA was isolated from 

the SK-N-SH human neuroblastoma cell line on the basis of its ability to direct 

the transport of 125I-labelled meta-iodobenzylguanidine, a norepinephrine 

analogue. The sequence of the NET cDNA predicts a protein of 617 amino acids 

weighing approximately 69 kDa. The human NET gene (SLC6A2) is located on 

chromosome 16q12.2, spans about 45 kb and consists of 14 exons (Gelernter et 

al., 1993; Porzgen et al., 1995). NET has 3 glycosylation sites on the second 

extracellular loop and also a few phosphorylation sites (Figure 3.5). A high 

affinity of NET for both dopamine and norepinephrine has been demonstrated 

whereas the affinity for epinephrine and the effectiveness of its transport is much 

lower (Moron et al., 2002; Bönisch and Bruss, 1994). As mentioned before, the 
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highest NET density is found in the locus coeruleus whereas striatum has 

negligible amounts of NET. Peripherally, NET is mainly localized in heart, lungs 

and smooth muscles (Raisman et al., 1982; Ressler and Nemeroff, 1999; Smith et 

al., 2006).  

 

Figure 3.5 Topology of the rat norepinephrine transporter (Brüss et al., 1997) 

Solid dots represent the 26 amino acid residues that are divergent in rat NET but are 

conserved in the human and bovine NETs. 

 

3.2.4.2. NET and human diseases  

 

Depression and anxiety disorders are common recurring disorders with a 

prevalence of 7 - 11 % (Ressler et al., 2007). The estimated annual cost of 

depression in the US alone was approximately 44 billion dollar in 1990 

(Greenberg et al., 1993). More than 40 years of research through experimental 

models and in the clinical setting, have clearly indicated the importance of 

norepinephrine neurotransmission in the pathophysiology and subsequent 

treatment of affective and mood disorders such as major depression (For review 
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see Ressler and Nemeroff, 1999; Brunello et al., 2002). Given the importance of 

NET to noradrenergic transmission it is conceivable that regulation of the level 

of expression of NET gene in noradrenergic neurons may be a natural 

mechanism by which noradrenergic neurotransmission can be adjusted in vivo in 

response to physiological demands placed on this system. Evidence for such a 

mechanism was first provide by Lee et al. (1983), who demonstrated that NET is 

upregulated and downregulated in response to enhanced availability or depletion 

of norepinephrine, respectively. Thus, levels of NET appear to be regulated in 

order to maintain ‘normal’ concentrations of norepinephrine in the noradrenergic 

synaps (Lee et al., 1983). Klimek et al. (1997) demonstrated a reduced NET 

density in the locus coeruleus measured by a lower [3H]nisoxetine binding to 

NET in brain tissues collected post-mortem from subjects diagnosed with major 

depression (Klimek et al., 1997). Variations in the genes encoding for NET could 

be involved in predisposing individuals to psychiatric disorders. Linkage analysis 

for depression and other psychiatric disorders and the genetic variations of the 

NET gene displayed contradictory findings (For review see Hahn and Blakely, 

2007). A few studies demonstrate positive association between the NET gene and 

psychiatric disorders (Urwin et al., 2002; Inoue et al., 2004; Ryu et al., 2004; Sun 

et al., 2008) while others show no association at all (Hadley et al., 1995; Owen et 

al., 1999; Sand et al., 2002; Zill et al., 2002).  

The basis for the treatment of depression is to moderate the levels of 

neurotransmitters. Several classes of drugs have been identified and used as 

antidepressants (for Review see Leonard, 1999). Reboxetine (Figure 3.6) is the 

first potent, selective and specific norepinephrine reuptake inhibitor. Two chiral 

centres are present in reboxetine. However, due to the regio- and stereo-

specificity of the key reactions used for its synthesis, only two diastereomers are 

present in reboxetine; it is a racemic mixture of RR- and SS-2-[α-(2-

ethoxyphenoxy)benzyl]morpholine methanesulphonate (Melloni et al., 1984). 

Extensive research indicated that reboxetine is a clinically active, efficacious and 

well-tolerated antidepressant. Since 1997, reboxetine is on the market with 
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different trade names including Edronax®, Norebox® and Vestra® and so on 

(Dostert et al., 1997; Holm and Spencer, 199; Wong et al., 2000). 

 

 

Figure 3.6 Chemical structures of Reboxetine mesylate and Atomoxetine 

 

Atomoxetine (Figure 3.6), also known as (-)-N-methyl-γ-(2-methylphenoxy) 

benzenepropanamine, is another selective and potent inhibitor of norepinephrine 

reuptake (Wong et al., 1982). It is currently on the market as Strattera® for the 

treatment of attention deficit hyperactivity disorder (ADHD). ADHD is the most 

common neurobehavioural disorder of childhood and affects about 5 - 10 % of 

school-aged children. ADHD is characterized by inattention, hyperactivity and 

impulsivity. Until a few years ago, only stimulants have been approved for the 

treatment for ADHD. Although these agents have shown efficacy, they also have 

some limitations including a 10 - 30 % failure rate, intolerance, abuse liability and 

adverse effects such as insomnia and anxiety. Atomoxetine is the first non 

stimulant indicated for the management of ADHD. Over the last 7 years its 

pharmacokinetics, pharmacodynamics and clinical efficacy has well been 

established (Bymaster et al., 2002; Mattiuz et al., 2003; Corman et al., 2004; Sauer 

et al., 2005). 

               

3.2.4.3. Imaging of  NET 

 

Because of the low density of NET in brain, radioligands should be highly 

selective and specific. Imaging of the NET has lagged behind due to the lack of 
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selective NET radioligands that give a high signal to noise ratio. Some potent 

NET reuptake inhibitors that have been labelled for in vitro or in vivo mapping of 

brain NET are discussed briefly. 

Desipramine, a well-known tricyclic antidepressant, is a highly potent and 

selective inhibitor of NET. Tritium-labelled desipramine has been used for in vitro 

autoradiographic studies of NET in the human brain post mortem (Gross-

Isseroff et al., 1988; Bäckström and Marcusson, 1990). Van Dort et al. (1997) 

reported the radiosynthesis of desipramine and its 2-hydroxy metabolite with 11C 

but the in vivo evaluation was not included. [11C]desipramine has been evaluated in 

vivo by Schou et al. (2005). An almost complete homogenous brain uptake was 

displayed, indicating that [11C]desipramine has a high non-specific binding and is 

subsequently not suitable for imaging NET (Schou et al., 2005).  

Although nisoxetine is very selective for NET in vitro, [11C]nisoxetine exhibits 

very high levels of nonspecific binding in vivo, making it practically unsuitable for 

PET (Haka et al., 1989; Ding et al., 2005). An iodinated analogue of nisoxetine 

with promising in vitro properties has been developed (Chumpradit et al., 1992; 

Kiyono et al., 2003; Kung et al., 2004). Unfortunately, (R)-[125I]2-iodonisoxetine 

also failed the in vivo tests; it displayed high nonspecific binding resulting in a high 

background uptake (Kiyono et al., 2004; Kung et al., 2004).  

Evaluation of [11C]talopram, [11C]talsupram, [11C]oxaprotiline and 

[11C]lortalamine demonstrated lack of selective NET binding in vivo, even though 

their in vitro potentials were promising (McConathy et al., 2004; Ding et al., 2005; 

Schou et al., 2005). 

 

 

Figure 3.7 Structure of NET radioligands 



Catecholamine system in the brain - Chapter 3 

 53 

Recently, 11C and 18F labelled analogues of reboxetine (Figure 3.8) have been 

synthesized and evaluated as PET radioligands in rodents, monkeys and humans. 

In vivo evaluation of (S,S)-[11C]methylreboxetine (MeNER) displayed a regional 

distribution consistent with the known distribution of NET. Blocking studies in 

mice demonstrated the selectivity towards NET. Further evaluation of (S,S)-

[11C]MeNER in nonhuman primates and human brain showed that no 

equilibrium was used during the PET measurement. This together with a 

somewhat noisy final signal at later time points lead to the preparation and 

evaluation of radiofluorinated analogues to extend the PET scanning time (Schou 

et al., 2003; Wilson et al., 2003; Ding et al., 2003; Severance et al., 2007). Its 

[18F]fluoromethyl analogue, (S,S)-[18F]FMeNER, displayed not only significant 

uptake in the NET-rich regions but also showed a high bone uptake due to in vivo 

defluorination. With the intention of reducing the in vivo defluorination, the di-

deuterated analogue, (S,S)-[18F]FMeNER-D2 was developed. PET studies 

indicated that the extent of defluorination was significantly reduced while the 

selectivity and affinity towards NET was retained (Schou et al., 2004; Seneca et 

al., 2005; Lin et al., 2005). These data encourage further PET studies using (S,S)-

[18F]FMeNER-D2 in humans (Schou et al., 2005; Arakawa et al., 2008, Takano et 

al., 2008). 

 

 

Figure 3.8 Structures of (S,S)-reboxetine (A), (S,S)-[11C]MeNER (B) and (S,S)-

[18F]FMeNER-D2 (C) 
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3.2.5. DOPAMINE TRANSPORTER 

 

3.2.5.1. Structure and localization 

 

Human DAT cDNA’s were first isolated using highly homologous rat DNA or 

human NET cDNA sequences. The human DAT gene (SLC6A3) was mapped to 

chromosome 5p15.3. The organization of the entire gene has been reported. It 

spans about 65 kb of the human genome and consists of 15 exons separated by 

14 introns (Giros et al., 1992; Kawari et al., 1997; Bannon et al., 2001). 

Transcription and translation of SLC6A3 results in an 80 kDa large 

transmembrane protein consisting of 620 amino acids (Figure 3.9). 

 

Figure 3.9 Sequence and Topology of the human dopamine transporter (Giros 

and Caron, 1993) 

Cysteines 180 and 189 in the second extracellular loop are disulfide bonded. Asparagine 

residues 181, 188, and 205 in the second extracellular loop are linked with glycosyl 

groups. Methionine residues are indicated as black circles with white letters. 

 

DAT is predominantly present in the brain although it is also found in the 

periphery. In the brain, DAT co-localizes with markers for tyrosine hydroxylase 

and dopamine D2 receptors. Striatum has the highest DAT density whereas 

cerebellum is almost negligible of DAT (Chen and Reith, 2000; Uhl, 2003; Piccini, 
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2003). Peripheral organs expressing DAT are the lungs, the gastro-intestinal 

system (Mitsuma et al., 1998; Mezey et al., 1999) and the pancreas (Mezey et al., 

1996). DAT mediates uptake of dopamine and is an inefficient transporter of 

norepinephrine (Giros et al., 1992). 

 

3.2.5.2. Psychostimulants and DAT 

 

Addiction to psychoactive drugs continues to be one of the most significant 

medical, social, and economic problems facing society. Drug addiction has been 

considered as a brain disorder characterized by compulsive drug-seeking 

behaviour and uncontrollable use of the drug. The major dysfunction and 

dysregulation associated with addictive disorders involves the brain’s natural 

reward system. It has been shown that drugs interact with regions of the brain 

where dopaminergic terminals are abundant, specifically the mesolimbic pathway 

(Koob and Bloom, 1988; Wise, 1996; Koob, 2000; Pierce and Kumaresan, 2006). 

Cocaine and amphetamine, including methamphetamine and 

methylenedioxymethamphetamine (ectasy) are powerful central nervous system 

stimulants which are widely abused (for review see Howell and Kimmel, 2008). 

Currently, no effective pharmacotherapy for psychostimulant abuse has 

demonstrated efficacy for long-term use. Both drugs increase the extracellular 

levels of monoamines. Although cocaine and amphetamines affect all three 

monoamine concentrations, the rewarding, reinforcing and stimulating effects are 

believed to depend primarily on its interaction with DAT (Ritz et al., 1987; Giros 

et al., 1996; Amara and Sonders, 1998; Carboni et al., 2001; Elliott and Beveridge, 

2005).  

Cocaine, a naturally occurring molecule that can be isolated from Erythroxylon 

coca, exerts its action by blocking dopamine reuptake, thereby increasing the 

concentration of dopamine in the synapse, which then causes overstimulation of 

dopamine receptors (Figure 3.10) (Witkin et al., 1991; Kuhar and Boja, 1991; 

Volkow et al., 1997; Geracitano et al., 2006).  
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Figure 3.10 Influence of drugs on the function of DAT (Torres et al., 2003) 

Amph = amphetamine; DA = dopamine; DAT = dopamine transporter; L-DOPA = L- 

dihydroxyphenyl-alanine 

 

Amphetamine is a substrate-type releaser (Figure 3.10) (For review see 

Fleckenstein et al., 2007). It binds to the transporter protein and is subsequently 

transported into the cytoplasma of the nerve terminals. Extracellular transmitter 

concentrations are elevated by a two-pronged mechanism: (1) the amphetamines 

promote efflux of transmitter by a process of transporter-mediated exchange and 

(2) they increase cytoplasmic levels of transmitter by disrupting storage of 

transmitters in vesicles. This latter action increases the pool of neurotransmitters 

available for release by transporter-mediated exchange (Kahlig and Galli, 2003; 

Rothman and Baumann, 2003; Geracitano et al., 2006). It is important to 

emphasize that a number of synthetic stimulants, including amphetamines are 

useful medication in the treatment of ADHD, narcolepsy and obesity. The same 

drug can thus be a therapeutic entity or an abused substance depending upon the 

context in which the drug is administrated. Methamphetamine for example is 

widely abused for its ability to increase wakefulness and physical activity and 

decrease appetite (Rothman and Baumann, 2003). 
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3.2.5.3. Role of DAT in human disorders  

 

Parkinson’s disease (PD), ADHD and schizophrenia each have abnormal 

dopamine function in addition to many other disabling features (Bannon, 2005). 

As mentioned before, ADHD is mainly treated with psychostimulants. These 

psychostimulants, for example methylphenidate (Rilatine®) exhibit their function 

by inhibiting the reuptake of dopamine. Several genetic findings indicated that 

specific alleles of the DAT gene seemed to be associated with ADHD (Cook et 

al., 1995; Gill et al., 1997). The results of different studies on the up- or 

downregulation of DAT in ADHD are inconsistent. Higher DAT density in the 

striatum have been reported (Krause et al., 2000; Cheon et al., 2003) as well as 

DAT decrements (Volkow et al., 2007; Hesse et al., 2009) and unchanged DAT 

density (van Dyck et al., 2002). 

Idiopathic PD is a progressive neurodegenerative disorder which manifests itself 

by bradykinesia in combination with rigidity, tremor and postural instability (Gelb 

et al., 1999). PD affects approximately 0.2 % of the population and the 

prevalence increases with age. To date, PD remains an incurable disease. The 

available treatments are able to offer only symptomatic relief for patients. The 

drugs used to treat PD either boost the levels of dopamine in the brain or mimic 

the effects of dopamine. L-DOPA is the key compound in the treatment of PD, 

acting as a precursor of dopamine (for review see Schapira, 2007; Singh et al., 

2007). The disease is neuropathologically characterized by the presence of Lewy 

bodies and by degeneration of dopamine-containing neurons in the ventral 

mesencephalon with loss of their nerve terminals in the basal ganglia structures, 

especially in the striatum (Stoof et al., 1999; Singh et al., 2007). 

PD diagnosis is based on clinical symptoms and the presence of Lewy bodies 

(Gelb et al., 1999). The clinical symptoms however are manifested when already 

50 – 80 % of the nigrostriatal neurons are lost. Clinical diagnosis fails to identify 

individuals before such a significant loss of dopamine neurons is reached. Lewy 

bodies also occur in patients suffering from other diseases like Alzheimer disease 
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and ataxia telangiectasia. Taken together, clinical diagnostic criteria are not always 

sufficient to make a confident, early diagnosis of PD. PD is also characterized by 

loss of dopamine neurons. Since DAT is exclusively localized on dopamine 

synthesizing neurons, it is a good marker for the integrity of these neurons. Over 

the last decade, radiotracers suitable for DAT imaging have been proposed as 

possible diagnostic tools and for monitoring the treatment of patients with PD 

(Figure 3.11). The high sensitivity and specificity of SPECT and PET 

(semi)quantitative images makes DAT imaging, at present, the best biomarker for 

evaluating dopamine neuron loss, which is responsible for most of the motor 

symptoms in PD patients (Stoof et al., 1999; Poewe and Scherfler, 2003; Shih et 

al., 2006).   

 

Figure 3.11 SPECT axial images in healthy control (right) and Parkinson’s disease 

patient (left) (Seibyl et al., 1998) 

Subjects were injected with 333 MBq (9 mCi) [123I]FP-CIT. Tracer uptake showed a 

marked reduction in Parkinson’s disease patient with greater abnormality in putamen. 

 
3.2.5.4. Imaging of DAT 

 

Several radioligands of different chemical classes have been developed for the 

visualization of DAT (for review see Guilloteau and Chalon, 2005; Volkow et al., 

1996; Elsinga et al., 2006). A limitation of many of these radioligands is their lack 
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of selectivity towards DAT. They mostly have also high affinity for one of the 

other monoamine transporters. 

 

 

Figure 3.12 Structure of cocaine (A), [123I]β-CIT (B), [11C]β-CFT (C) and 

[123I]FP-CIT (D) 

 

The first DAT radioligand developed for PET was [11C]nomifensine. Although it 

has favourable kinetics, [11C]nomifensine is unsuitable as a tracer for DAT  due to 

its high affinity binding at the NET (Aquilonius et al., 1987). The radiolabelling of 

cocaine with [11C] initiated development of many promising labelled cocaine 

derivatives (Figure 3.12). [11C]cocaine itself is not suitable due to high binding to 

SERT and NET in addition to low specific-to-nonspecific binding ratio and its 

very fast kinetics (Fowler et al., 1989; Volkow et al., 1996). The cocaine analogue 

[123I]β-CIT also known as [123I]RTI-55 has high affinity for DAT and a high 

specific-to-nonspecific binding. The major drawbacks of [123I]β-CIT are its low 

selectivity towards DAT and rather slow kinetics. Striatal activity increases for 15 

to 20 hours after bolus injection of the tracer. Consequently, SPECT 

measurements with [123I]β-CIT in the human brain usually requires a delay of 24 

hours between injection and imaging (Boja et al., 1992; Brucke et al., 1993; 

Laruelle et al., 1994). Consequently, PET measurements with [11C]RTI-55 must 

be conducted far from equilibrium (Farde et al., 1994). [11C]β-CFT  better known 

as [11C]WIN 35,428, also does not achieve a maximum value of striatal binding 

within the time constraints of PET experiments (Wong et al., 1993). Because of 

the high affinity of [11C]β-CFT, Laakso et al. (1998) recommended an 18F labelled 

analogue, [18F]β-CFT, enabling prolonged PET-scanning since striatal binding 
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peaked at 225 min p.i. (Laakso et al., 1998). However, from a practical point of 

view, such a long scanning protocol is not desirable for clinical studies. 

Therefore, numerous compounds have been investigated to improve selectivity 

and obtain accurate kinetics. Among those, [11C]PE2I (Halldin et al., 2003; Shetty 

et al., 2007), [18F]FECNT (Goodman et al., 2000; Deterding et al., 2001; Davis et 

al., 2003) and [123I]FP-CIT (Booij et al., 1997 and 1998) showed favourable brain 

kinetics although their selectivity towards DAT is still not optimal. [123I]FP-CIT is 

since 2000 commercially available in Europe by the name DatSCANTM and is 

used for diagnosis of PD (Vlaar et al., 2008; Booij and Kemp, 2008). 

Furthermore, useful [99mTc] labelled tropane analogues have been described such 

as [99mTc]TRODAT-1 (Kung et al., 1996; Hwang et al., 2002) and 

[99mTc]TropaBAT (Cleyhens et al., 2005; Kieffer et al., 2006).  

Although most radioligands for DAT imaging are tropane derivatives ligands, 

GBR 13119 has also proven to be a good lead compound. Several derivatives 

have been prepared and displayed good in vitro properties (Kimura et al., 2003; 

Boos et al., 2006; Rothman et al., 2008). Radiolabelling of these derivatives could 

result in new improved radiotracers for DAT. 

 

3.3.       Monoamine oxidase 

 

3.3.1. GENERAL INTRODUCTION 

 

The enzyme monoamine oxidase (MAO) was discovered 80 years ago in beef 

liver as tyramine oxidase (Hare, 1928). Almost 10 years later, it was established 

that epinephrine, norepinephrine and dopamine were also substrates for this 

enzyme and it was renamed monoamine oxidase. MAO (EC 1.4.3.4.) is a flavin-

containing (Kearney et al., 1971) mitochondrial membrane-bound protein 

(Schnaitman et al., 1967) which catalyzes the oxidative degradation of biogenic 

and xenobiotic amines to their corresponding aldehydes by the production of 

hydrogen peroxide and ammonia (Dostert et al., 1989; Tipton et al., 2004). MAO 
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(For review see Weyler et al., 1990) exists as two isoforms in many tissues of 

humans and other mammals, termed MAO-A and MAO-B. The two isoforms are 

distinguished by their substrate preference and by selective inhibitors, as well as 

by their physical properties (Housley et al., 1976; Schoepp and Azzaro, 1981). In 

general, it has been suggested that in the CNS intraneural MAO protect neurons 

from exogenous amines, terminate the actions of amine neurotransmitters, and 

regulate the contents of intracellular amine stores (Youdim et al., 2006). 

 

3.3.2. EXPRESSION AND STRUCTURE  

 

MAO-A and MAO-B (Figure 3.13) are different gene products with molecular 

weights of about 59.7 and 58.8 kDa respectively and a 70 % degree of homology 

in their amino acid sequence is present. Both genes are located on the X 

chromosome (Xp11.23), each comprising 15 exons with identical intron - extron 

organization (Lan et al., 1989; Bach et al., 1988; Shih, 1991).  

 

Figure 3.13 Crystal structures of human MAO-A (A) and human MAO-B (B) 

(Edmondson et al., 2007) 

The flavin binding domain is labelled in blue, red denotes the substrate binding domain 

and green denotes the membrane binding domain 
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The X-ray crystal structure of human MAO-B was first reported by Binda et al. 

(2002). The subsequent successes in the crystallization and structural elucidation 

of human MAO-A has provided insights into the structure and mechanism of 

both enzymes, allowing a detailed comparison of the active sites of both enzymes 

(De Colibus et al., 2005). Both proteins are predominantly located in the outer 

membrane of mitochondria, to which they are anchored by the C-terminal 

domain (Rebrin et al., 2001). 

 

MAO is present in most mammalian tissues but the two isoforms occur with 

different ratios in different organs of different species (Shih et al., 1999; Inoue et 

al., 1999). In humans, MAO-B predominates in the brain, heart, kidneys and 

spleen, while MAO-A is most abundant in the lungs and duodenum. The highest 

levels of MAO activity were observed in liver and the spleen displayed the lowest 

MAO activity among the tissues investigated (Rodríguez et al., 2001; Saura et al., 

1992; Saura et al., 1996a). There are regional differences in MAO activity in the 

brain. In the human brain, the basal ganglia and hypothalamus show the highest 

levels of activity, whereas low levels of activity are observed in the cerebellum and 

neocortex (Youdim et al., 2006). MAO-A is predominantly found in the locus 

coeruleus and the highest concentration of MAO-B is found in the raphne nuclei. 

(Jahng et al., 1997; Saura et al., 1996b; Willougby et al.,1988). While the human 

brain profoundly express MAO-B, rat brain has higher concentrations of MAO-

A.  

 

3.3.3. SUBSTRATES AND INHIBITORS 

 

The two isoforms are distinguished by their substrate preference and by different 

selective inhibitors. As shown in Table 3.1, MAO-A catalyses the oxidation of 

serotonin, epinephrine and norepinephrine preferentially, whereas MAO-B is 

active towards benzylamine and 2-phenethylamine. Dopamine, tryptamine and 

tyramine are oxidized by both isoforms in most species. Irrespective of tissue- 
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and species-based differences in substrate specificity, the two isoenzymes are best 

distinguished based on pharmacological criteria: MAO-A is selectively inhibited 

by low doses clorgyline, whereas MAO-B is blocked by low doses of L-deprenyl. 

Clorgyline as well as L-deprenyl form a covalent bond with the enzyme, 

indicating they are both irreversible inhibitors (Doster et al., 1989; Youdim et al., 

2006). L-deprenyl with the combination of L-DOPA has been widely used in the 

treatment of PD (Birkmayer, 1983).  

 

Table 3.1 Structures of MAO substrates/inhibitors 

 Substrates Inhibitors 

MAO-A 

 

serotonin                 norepinephrine 
 

Clorgyline 

MAO-B  

 

phenylethylamine           benzylamine 

 

L-deprenyl 

MAO-A 

and 

MAO-B 

 

 
dopamine                     tyramine  iproniazid         phenelzine 

 

Since the two isoforms of MAO share 70 % sequence identity, they show similar 

susceptibility to some inhibitors such as iproniazid, phenelzine and 

tranylcypromine (Riederer et al., 2004). Iproniazid, a drug used to treat 

tuberculosis (Ornstein, 1958), was found to produce mood elevation in patients 

and was subsequently discovered to be a MAO inhibitor useful in the treatment 

of depression. An undesirable and sometimes lethal side effect of MAO non-

selective inhibitors was the so-called “cheese reaction”. This refers to the 
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hypertensive crisis in individuals who were taking non selective irreversible MAO 

inhibitors together with food that contain large quantities tyramine. Tyramine is 

normally broken down by MAO in the digestive organs. However when MAO is 

inhibited, tyramine levels are elevated causing dangerous surges in blood pressure 

(Crane, 1956; Anderson et al., 1993).  

 

3.3.4. PHYSIOLOGICAL ROLE IN HEALTH AND DISEASE   

 

MAO regulates concentrations of important neurotransmitters in the brain, as 

well as protects the body by oxidizing xenobiotics and dietary amines in 

peripheral tissues which could act as false neurotransmitters. MAO is involved in 

a wide range of neurological diseases, psychiatric disorders and behavioural traits 

(Shih and Thompson, 1999; Kebir et al., 2009, Bortolato et al., 2008; Meyer et al., 

2006).  

 

MAO-A knock-out mice have elevated brain levels of serotonin, causing a 

distinct behavioural syndrome, including enhanced aggression. This observation 

in MAO-A knock-out mice is in accordance with the abnormal aggression 

reported in males from a Dutch family with a complete MAO-A deficiency due 

to a point deletion in the gene encoding MAO-A (Brunner et al., 1993). Recent 

studies showed that the low MAO-A genotype was associated with antisocial 

behaviour and high self-reported trait aggression with children exposure to 

maltreatment. Alia-Klein et al. (2008) reported that a 15 % reduction in brain 

MAO-A activity is associated with elevated trait aggression.    

 

PD is related with an elevated MAO-B activity in the substantia nigra, causing an 

increased oxidation of dopamine and subsequently higher levels of toxic H2O2. 

This leads to the degradation of dopamine-synthesizing neurons (Shih et al., 

1999).  
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MAO-B converts 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) to the 

toxic metabolite 1-methyl-4-phenylpyridinium (MPP+) which selectively destroys 

nigrostriatal neurons. The neurodegeneration induced by MPTP is similar to the 

neuronal damage in PD and is prevented by the MAO-B inhibitor L-deprenyl. 

Thus, MAO-B is also involved in the pathogenesis of MPTP-induced 

Parkinsonism (Shih et al., 1999). 

 

Several lines of evidence suggest a link between cigarette smoke and MAO 

inhibition. Cigarette smokers have reduced levels of MAO-A and B (Fowler et al., 

1996; Berlin et al., 1995). Likewise, the activities of MAO-A and MAO-B are 

decreased in animals exposed to cigarette smoke. The mechanism underlying this 

reduced MAO activity has not yet been elucidated. Although nicotine is the main 

pharmacologically active compound in tobacco, it is not the cause of the reduced 

MAO activity. Characterization of the compounds in tobacco smoke that inhibit 

MAO activity is still in progress (Lewis et al., 2007). 

MAO may also be involved in alcoholism because lower levels of MAO-B activity 

are present in alcoholics. Furthermore, MAO-A mutations may underlie the 

susceptibility of individuals to alcoholism (shih et al., 1999). 

 
 
3.3.5. IMAGING OF MAO 
 
 
Given the pharmacological role of MAO and their importance in psychiatric and 

neurological diseases as well as in addiction, PET and SPECT are valuable tools 

for the non-invasive in vivo study of these enzymes. Studies in humans are of 

special value because species variability in MAO subtype distribution limits the 

relevance of animal measurements. Only a few compounds have been proposed 

as MAO-radiotracers. The first developed radiotracers for MAO were the 

selective irreversible MAO inhibitors clorgyline and L-deprenyl labelled with 11C 

Since both radiotracers are covalently bound to MAO-A or MAO-B, they 

visualize MAO by the suicide inactivator approach (MacGregor et al., 1985; 
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Fowler et al., 1987; Arnett et al., 1987; Lammertsma et al., 1991). The drawback 

of [11C]clorgyline is that it displays an unexplained species difference. In contrast 

to results in humans clorgyline was not retained in baboon brain (Fowler et al., 

2001). A number of different classes of selective, reversible inhibitors of MAO-A 

and MAO-B have been proposed as MAO-radiotracers. Derivatives of the 

harmine alkaloids have been labelled with 11C and evaluated in the monkey brain 

for the assessment for MAO-A. [11C]harmine (Figure 3.14), [11C]methylharmine, 

[11C]harmaline and [11C]brofarmine were compared and only [11C]harmine and 

[11C]methylharmine had kinetic patterns in monkey brain that are compatible with 

a binding to MAO-A. [11C]harmine however is extremely metabolized in plasma 

making absolute quantification difficult (Bergstrom et al., 1997a and 1997b). 

[11C]befloxatone (Figure 3.14) shows good characteristics for imaging brain 

MAO-A but it is synthesized via a cyclization reaction with [11C]phosgene which 

is toxic and rather rare available (Dolle et al., 2003; Bottlaender et l., 2003).  

 

Figure 3.14 Structure of radiotracers for MAO-A and MAO-B 

 

Examples of MAO-B tracers are [11C]SL25.1188 (Bramoullé et al., 2007), [125I]2-

IBPO (Figure 3.14) (Hirata et al., 2002) and [12 3I]-Ro-43-0463 (Figure 3.14) (Beer 

et al., 1995). For review on MAO imaging see Fowler et al. (2002; 2005). 
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SCOPE AND AIMS 
 

SCOPE 
 

Psychiatric disorders are highly prevalent and have important personal, social and 

economic impacts. An estimated 26.2 % of Americans aged 18 and older suffer 

from a diagnosable mental disorder in a given year. The most common mental 

disorders in adults in the United States are major depression and anxiety 

disorders, both of which affect up to 10 % of the adult population each year 

(Voshol et al., 2003). Psychiatrists face many problems during the assessment and 

differential diagnosis for individuals with mental disorders. Simplify the diagnosis 

from a better understanding of the neurobiological basis of brain disorders would 

increase the diagnostic validity, reliability and precision (Barnhill, 2008). Medical 

imaging technique can map structural and functional changes in the brain and 

thus are unique tools for clinical researchers to elucidate and understand the 

pathophysiology of neuropsychiatric disorders.  

SPECT and PET are non-invasive imaging techniques in which radiotracers are 

used to study biochemical and physiological functions in the living brain. In vivo 

brain mapping with PET or SPECT can be of great importance in drug 

development as well as in the effective diagnosis, treatment and management of 

neurological and psychiatric disorders and substance abuse. Therefore, the 

development of new and more specific and selective radiotracers is of great 

importance in neuroimaging (Gee, 2003). 

 
Monoamine transporters and enzymes that cause degradation of the monoamines 

(for example MAO) are responsible for the homeostasis of neurotransmitter 

pools at the nerve endings and control the duration and intensity of 

neurotransmitter action. The transporters and enzymes are main actors of the 
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neuronal communication, being therefore involved in the physiology and diseases 

of the CNS. Distribution, density, and activity of these transporters and enzymes 

in the brain can be visualized by using specific radioligands and SPECT and PET 

imaging. Further studies of the molecular mechanisms of the various transmitter 

systems can improve our understanding of complex brain functions and can 

provide more insight into the causes and consequences of neurological and 

psychiatric disease interaction (Wong and Brasic, 2001; Guilloteau and Chalon, 

2005). 

 

A prerequisite of efficient drug treatment of CNS disorders is that sufficient 

amounts of the drug enter the brain. Active transport by P-gp has a major impact 

on drug resistance to psychotropic drugs, affects the pharmacokinetics of many 

drugs and can be inhibited by the administration of modulators or competitive 

substrates (Linnet and Ejsing, 2008). Moreover, changes or abnormalities in P-gp 

expression and function are involved in the etiology and pathogenesis of several 

neurological diseases (Rapposelli et al., 2009). PET and SPECT can be applied to 

evaluate the efficacy of candidate P-gp-modulators in vivo and to investigate the 

effect of P-gp on the brain uptake of new psychotropic drugs. In addition, 

visualization of P-gp in the normal brain and during various pathologic conditions 

could be of great value to elucidate the relationship between P-gp 

function/expression and neuronal and neuropsychiatric disorders.  

 

AIMS 
 
As discussed above, an accurate and selective PET or SPECT tracer provides a 

useful clinical tool for the diagnosis and treatment of psychiatric and neurological 

disorders. Therefore, the aim of this thesis was the development of novel 

radiotracers for two distinct brain elements being the monoamine system and the 

P-gp transporter. The first objective was the design of radiotracers for, NET 
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(Chapter 5), MAO (Chapter 6) and DAT (Chapter 7) which are all responsible 

for neurotransmitter inactivation in the monoamine system. By the discovery that 

the radiotracer designed in Chapter 7 is modulated by P-gp, the focus of this 

thesis was redirected towards imaging of the P-gp transporter (Chapter 8 and 9). 

 

Since no valuable SPECT radiotracer for visualization of the norepinephrine 

transporter is available, we will synthesize and subsequently label a reboxetine 

analogue with 123I. The radiotracer will be evaluated in vivo in a biodistribution 

study in mice to determine brain uptake (Chapter 5).  

The objective of Chapter 6 is to label a suitable reversible inhibitor for mapping 

MAO-A in vivo with PET. We will select appropriate candidates from the 

literature. The chosen molecules will be radiolabelled with 11C and evaluated in 

vivo in a biodistribution study in mice. The selectivity of the radiotracers for 

MAO-A will be assessed in a blocking study in mice and imaging studies in rats. 

Stability of the tracers will be determined in vivo in mice.  

In a following part, we will develop a SPECT tracer that is more selective towards 

DAT compared to the existing radiotracers for DAT imaging. FMIP was picked 

out a report by Boos et al. (2006) based on its nanomolar affinity for the 

dopamine transporter and good selectivity over the other monoamine 

transporters. FMIP and the precursor molecule for the 123I labelling will be 

synthesized. The potency of [123I]-FMIP to visualize the dopamine transporter in 

vivo will be investigated in a biodistribution study in mice, a blocking study in 

mice and a regional brain distribution study in rats. Stability of the tracer will be 

assessed in vitro as well as in vivo. These studies are described in Chapter 7. 

All reported radiotracers for the P-gp transporter are aimed to visualize P-gp 

function but not the expression of P-gp and they all have at least one limitation. 

Moreover, no iodinated SPECT tracer has been reported so far. In the last part of 

this thesis, we will label and evaluate a SPECT (Chapter 8) and a PET (Chapter 

9) radiotracer for imaging P-gp function or expression. 
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The potential SPECT tracer, [123I]-FMIP will be evaluated in vivo in a 

biodistribution study in wild-type and P-gp knock-out mice. The influence of 

CsA, a P-gp modulator, on the tissue distribution of the 123I labelled tracer in 

wild-type and P-gp knock-out mice will be determined. The metabolic profile will 

be evaluated in wild-type mice with and without CsA pretreatment as well as in P-

gp knock-out mice. [123I]-FMIP will be further evaluated in a µSPECT study. 

These studies are described in Chapter 8. 

Additionally, we will label an in vitro characterized substrate of the P-gp pump, 

with 11C and evaluate this tracer in vivo in a biodistribution study in wild-type and 

P-gp knock-out mice. The influence of CsA and the unlabeled molecule on the 

biodistribution profile of the radiotracer will be explored. The stability of the 

tracer will be investigated in vivo in wild-type mice with and without CsA 

pretreatment as well as in P-gp knock-out mice (Chapter 9). 
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Chapter 4 

 

Materials and Methods 

 

4.1. General 

 

All solvents and chemicals were purchased from Acros (Geel, Belgium) or Sigma-

Aldrich (Bornem, Belgium) unless otherwise mentioned and were used without 

further purification. HPLC solvents were purchased from Chemlab NV 

(Belgium). Cyclosporin A (Sandimmune®) was obtained from Novartis Pharma 

(250 mg/5 mL, Vilvoorde, Belgium). 

No carrier added (n.c.a.) [123I] sodium iodide (in 0.05 M NaOH) was purchased 

from GE Healthcare (Cygne, The Netherlands). 

Unless otherwise mentioned, the HPLC system used consisted of a Waters 515 

HPLC pump, a Waters 2487 UV detector (Waters, Milford, USA), a Ludlum 

model 2200 scaler ratemeter equipped with a Geiger Müller tube (Ludlum 

Measurements Inc., Sweetwater, USA), and a Shimadzu C-RSA chromatopac data 

analyser. Absorption units full scale were set at 0.0001 and wave length was set at 

254 nm, unless otherwise mentioned. The columns, mobile phases and flow rates 

used are indicated in the chapters.  

Radioactivity was counted with an automated gamma-ray spectrometer equipped 

with five 1x1 inch NaI(Tl) crystals (Cobra Autogamma, Packard Canberra) or  

with a Capintec dose calibrator (CRC-15R, Ramsey, USA). 
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4.2. Animals 

 

All animal studies were conducted following the principles of laboratory animal 

care and the Belgian Law on the protection of animals. The performed 

experiments were approved by the local Ethics Committee of Ghent University.  

All wild type mice (FVB and NMRI) and rats (Sprague-Dawley) were purchased 

from Bioservices or Charles River. The mdr1a (-/-) mice were obtained from 

Taconic (Hudson, USA).  

The mdr1a (-/-) mouse strain was developed in the laboratory of Dr. Alfred 

Schinkel from the Netherlands Cancer Institute. Taconic maintained the colony. 

The mdr1a (-/-) mouse strain was healthy and fertile and did not display clear 

physiological abnormalities or a decreased life span. Mice homozygous for a 

disruption of the mdr1a gene have completely lost all detectable P-gp in brain 

capillaries. Also P-gp density in gut epithelium is dramatically decreased. They 

displayed an increase in mdr1b RNA in liver and kidney, probably to compensate 

for the loss of excretory capacity caused by the mdr1a disruption (Schinkel et al., 

1994; 1997). Since mdr1a (-/-) mice were made on a FVB background, the wild 

type mice used as control group were FVB mice. 

 

4.3. Carbon-11 as radionuclide 

 

4.3.1. GENERAL 

 

Decay of 11C to the stable nuclei 11B occurs for the most part by positron 

emission (99.8 % by β+ emission, 0.19 % by electron capture). The maximum 

kinetic energy of the positron is 0.96 MeV and the mean kinetic energy is 0.385 

MeV. A theoretical specific activity of 3.4 105 GBq/µmol (9.2 103 Ci/µmol) can 

be obtained for 11C. The short half-live of 11C (20.4 min) demands a fast 

production of the precursor molecule as well as the radiotracer itself. The several 
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steps that must be completed to obtain a radiotracer labelled with 11C are 

depicted in Figure 4.1. 

 

Figure 4.1 Major steps in routine preparation of PET radiopharmaceuticals 

 

The development of a rapid labelling synthesis is often highly dependent on the 

availability of suitable labelled precursors. For 11C-chemistry, the most used 

primary precursors are 11CO2 and 11CH4. Regarding secondary precursors, 

[11C]methyl triflate and [11C]methyl iodide are widely used as alkylating agents for 

the introduction of 11C into organic molecules (Stöcklin and Pike, 1993). In this 

dissertation 11CH4 is used as primary precursor for the synthesis of 11CH3I, which 

is used as such. 

 

4.3.2. PRODUCTION OF 11CH4 

 

11CH4 was produced in a Cyclone 18 twin cyclotron (IBA, Ghent, Belgium) via 

the 14N(p,α)11C reaction induced by irradiation of N2 gas containing 5 % H2 with  

a proton beam (18 MeV, 14 µA) for 20 min. 
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4.3.3. SYNTHESIS OF 11CH3I 

 

11CH4 was transferred from the cyclotron target to a home made synthesis 

module housed in a hot cell. 11CH4 was trapped on a loop filled with Porapak N 

(divinylbenzene/vinyl pyrolidone polymer) that was cooled in liquid argon. Once 

all 11CH4 was released from the target, the loop was flushed with helium to 

remove N2/H2 and allowed to warm to room temperature. The 11CH4 was swept 

off the loop with a helium flow and mixed with I2 vapours at 50°C, after which 

the mixture was passed through an oven heated to 600°C to yield 11CH3I. After 

the reaction, the remaining iodine and produced hydrogen iodide were trapped in 

ascarite, while 11CH3I was collected on a Porapak N trap at room temperature. 

The unreacted 11CH4 was further circulated until no more 11CH3I was produced. 

11CH3I was released from the Porapak N trap by heating the trap to 120°C.  

 

4.4. Iodine-123 as radionuclide 

 

4.4.1. GENERAL 

 

Iodine-123 decays by electron capture; mainly (83 %) emitting γ-rays with an 

energy of 159 keV, which makes it a very suitable isotope for diagnostic SPECT 

imaging. 123I has a theoretical maximum specific activity of 8.769 TBq/µmol (237 

Ci/µmol). 

 

4.4.2. NUCLEOPHILIC IODINATION 

 

Several distinct mechanisms are possible for nucleophilic iodination depending 

on the substrate, the leaving group and the reaction conditions. The iodide anion 

serves as the nucleophile. One possible method is the copper-assisted halogen 

exchange. Given the relatively low reactivity of nucleophilic aromatic halogen 

substitution, a copper salt or metal is used as catalyst. For this reaction type, a 



Materials and Methods – Chapter 4 

 91 

wide variety of reaction conditions can be employed. For a detailed review of 

possible reaction methods and mechanisms see Coenen et al. (2006). 

 

4.4.3. ELECTROPHILIC IODINATION 

 

Electrophilic iodination is a process in which formally a positively charged iodine 

(I+) attacks a system with high electron density such as an aromatic ring. As a 

result a covalent carbon-iodine bound is formed with loss of a positively charged 

leaving group. The radioiodide can be oxidized in situ using chloramine T (Figure 

4.2). Under certain conditions, chloramine T can release hypochlorite, which 

oxidises iodide under formation of an iodonium ion. The reaction is terminated 

by adding the antioxidant sodium metabisulfite. 

S

N
-

Cl

H3C

O

O Na
+

 

Figure 4.2 Chloramine T 

 

4.5. Experimental procedures 

 

4.5.1. SPECIFIC ACTIVITY 

 

The specific activity of a tracer can be defined as the amount of radioactivity 

present per mole of product. Specific activity is usually expressed as Ci/µmol or 

GBq/µmol.  

Tracer amount was determined by HPLC. Tracer activity was determined by 

Capintec readings. The mass of tracer was calculated by the use of a calibration 

curve of reference compound. In the case no detectable carrier UV-signal could 
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be obtained, the detection limit for the compound was used for the calculation of 

the minimum specific activity.  

 

4.5.2. LOG D7.4 

 

The log D7.4 value gives an indication about the BBB permeability. The log 

partition coefficient was measured according to the shake flask method (Wilson 

et al., 2001; Waterhouse, 2003). An aliquot (10 – 20 µL) of the tracer (185 - 370 

kBq (5 - 10 µCi) for 123I tracers and 1.9 - 3.7 MBq (50 - 100 µCi) for 11C tracers) 

was added to a test tube containing 3 mL n-octanol and 3 mL phosphate buffered 

saline (PBS) (0.01 M, pH 7.4). The mixture was vigorously shaken by hand for 1 

min, vortexed for 2 min and centrifuged for 3 min at 3000 g. 0.5 mL of both 

phases was taken and placed in separate vials, taking care to avoid cross 

contamination between the phases. The remaining aqueous phase was discarded 

and 2.5 mL fresh PBS (0.01 M, pH 7.4) was added to the test tube. The 

procedure was repeated three more times to give four vials of each phase for 

measuring radioactivity. The partition coefficient was calculated as [radioactivity 

in n-octanol (cpm)/radioactivity in phosphate buffer (cpm)]. 

 

4.5.3. METABOLITE STUDIES 

 

Activity was injected through a tail vein and the mice were sacrificed at different 

time points post injection (p.i.). Blood and whole brain were isolated. Blood was 

collected into a vacutest tube containing 3.6 mg K3EDTA and was centrifuged at 

4000 g for 6 min to separate plasma. 200 µL plasma was mixed with 800 µL 

CH3CN whereas the whole brain was mixed with 1.5 mL CH3CN. Both samples 

were vortexed for 30 sec and centrifuged at 3000 g for 3 min. Pellet and 

supernatant were separated and counted for radioactivity. An aliquot (500 µL) of 

the supernatant obtained from the plasma and brain homogenates was subjected 
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to HPLC analysis. The HPLC eluate was collected in 0.5 min fractions and their 

radioactivity was measured. 

To determine the recovery as well as the stability of the radiotracer during 

workup and analysis, control experiments (n=3) were done using plasma and 

brain spiked with authentic radiotracer (2 MBq (54 µCi) or 37 kBq (1 µCi) for 11C 

and 123I respectively). Sample workup was done as described above. Results are 

expressed as percentages of the total activity ± standard deviation (SD). 
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Chapter 5 
 

 Synthesis and preliminary in vivo evaluation of 

[123I]-(S,S)-IPBM for mapping NET 
 

5.1. Abstract 

 

Aim: Abnormalities in brain NET have been implicated in the pathophysiology of 

various neuropsychiatric diseases and neurodegenerative disorders. A selective 

radioligand for mapping NET could further probe the link between NET and 

these disorders. This study reports the development and preliminary evaluation of 

(S,S)-2-[α-(2-[123I]-iodophenoxy)benzyl]morpholine ([123I]-(S,S)-IPBM). 

Methods: Precursor and reference compounds were synthesized by a 

stereoselective nine-step synthetic procedure. Enantiomeric purity was 

investigated using NMR spectroscopy. [123I]-(S,S)-IPBM was obtained by 

electrophilic iododestannylation followed by reduction. A biodistribution study 

was performed in male NMRI mice. 

Results: The precursor was prepared in an overall chemical yield of 8 % with an 

enantiomeric excess of > 95 %. Radiosynthesis afforded [123I]-(S,S)-IPBM with a 

radiochemical purity of > 98 % and a specific activity of > 148 GBq/µmol. 

Biodistribution studies demonstrated high brain uptake (4.62 ± 0.66  % ID/g at 1 

min p.i.) followed by efficient wash-out (0.55 ± 0.17  % ID/g at 180 min p.i.). 

Conclusion: [123I]-(S,S)-IPBM displayed an excellent brain-blood distribution. Since 

[123I]-(S,S)-IPBM was reported by others at the moment we performed our 

biodistribution studies, we did not conduct any further evaluation. Regarding 

their results, the choice to develop [123I]-(S,S)-IPBM as a radiotracer for NET was 

an excellent suggestion. 
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5.2. Introduction 

 

The norepinephrine transporter (NET), which is located at the pre-synaptic 

terminal of noradrenergic neurons, belongs to the superfamily of the Na+/Cl- 

dependent neurotransmitter transporters (Masson et al., 1999). The principal 

physiological role of NET is to regulate the noradrenergic neurotransmission by 

re-uptake of norepinephrine into the presynaptic neuron. Abnormalities in brain 

NET have been implicated in the pathophysiology of various neuropsychiatric 

diseases and neurodegenerative disorders including mood disorders (Ressler and 

Nemeroff, 1999), ADHD (Biederman and Spencer, 1999), depression (Klimek et 

al., 1997) and Alzheimer’s disease (Tejani-Butt el al., 1993). A selective 

radioligand able to image and quantify NET density with PET or SPECT would 

provide more insight in the role of noradrenergic mechanisms in these disorders. 

At the start of this thesis, no suitable radioligand for SPECT imaging had been 

designed so far, directing our focus to the development of a selective 

radioiodinated NET radioligand. Due to the low density and widespread 

distribution of NET-binding sites in the brain, the design of a suitable NET 

radioligand is very challenging.  

Although nisoxetine is selective for NET in vitro, [11C]nisoxetine exhibits a very 

high level of non-specific binding in vivo (Haka et al., 1989). An iodinated 

analogue of nisoxetine was developed and it displayed superior in vitro properties 

compared to nisoxetine. Just as [11C]nisoxetine, (R)-[125I]2-iodonisoxetine 

displayed high non-specific binding in vivo resulting in a high background uptake 

(Kiyono et al., 2004; Kung et al., 2004). Reboxetine is a more potent and selective 

inhibitor of NET and is on the market as an antidepressant (Edronax®). The 

(S,S) enantiomer of reboxetine is approximately 24 times more potent than the 

(R,R) enantiomer (Benedetti et al., 1995). Replacement of the methoxy moiety of 

nisoxetine by iodine resulted in enhanced in vitro properties. Since reboxetine 

structurally resembles nisoxetine, it was suggested that the same effect would be 

observed when substituting the ethoxy group of reboxetine by iodine. This idea 
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prompted us to the development and preliminary evaluation of [123I]-(S,S)-2-[α-

(2-iodophenoxy)benzyl]morpholine ([123I]-(S,S)-IPBM) (Figure 5.1). 

 

 
Figure 5.1 Chemical structures of Reboxetine and Nisoxetine analogues 

 

5.3. Materials & Methods 

 

5.3.1. ORGANIC SYNTHESIS 

 
1H NMR spectra were recorded on a Varian 300 MHz FT-NMR spectrometer 

(Laboratory for Medicinal chemistry, Ghent University, Belgium). Chemical shifts 

were recorded in ppm (δ) relative to an internal tetramethylsilane (TMS) standard 

in either deuterated DMSO or CDCl3. J (Hz) assignments of 1H resonance 

coupling were done. Mass spectrometry was performed on a Waters Micromass 

ZMD mass spectrometer with an electronspray ionization (ESI) probe. Samples 

were dissolved in MeOH – H2O – HCOOH (50 – 50 – 0.1) and recorded in the 

positive (MH+) mode. 

(2S,3S)-phenylglycidol was purchased from Speedchemical Co. LTD (Shangai, 

China). All other chemicals were obtained from Acros (Geel, Belgium) or Sigma-

Aldrich (Bornem, Belgium). Organic reactions were performed under nitrogen 

atmosphere using anhydrous solvents and were monitored by normal phase thin 

layer chromatography (TLC) by UV detection at 254 nm (TLC, Polygram SIL 
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G/UV254, 200 µm, Machery-Nagel, Germany). Purification of organic 

compounds was achieved with column chromatography on silica gel (70-230 

mesh, 60Å, Sigma-Aldrich, Belgium). Solvent systems are indicated in the text. 

For mixed solvent systems, ratios are given with respect to volumes 

 

5.3.1.1.       Cold reference compound synthesis 

 

(S,S)-IPBM or (2S,3S)-9a was synthesized based on the synthetic procedure 

outlined by Melloni et al. (1985). Since (R,R) and (S,S) enantiomers were 

synthesized in the same manner, only the preparation of the (S,S) enantiomers is 

described  

 

(2S,3R)/(2R,3S)-1,2-dihydroxy-3-(2-bromophenoxy)-3-phenylpropane (1a) 

 

A mixture of 2-iodophenol (6.6 g, 30 mmol), methyltributylammonium chloride 

(0.6 mL) and 0.05 M NaOH (30 mL) was stirred at 70°C for 2 h. (2R,3R)-

phenylglycidol (1.5 g, 10 mmol, dissolved in 50 mL H2O) was added drop-wise 

and the resulting mixture was heated for another 3 h. The reaction mixture was 

cooled to room temperature, added to ice-cold NaOH (1 M, 30 mL) and 

extracted with CH2Cl2 (3 x 50 mL). The organic layer was washed with 1 M 

NaOH (100 mL), water (100 mL) and brine (100 mL) and dried over Na2SO4. 

The solvent was removed under reduced pressure to give viscous oil. The crude 

product was purified by column chromatography (eluent: ethyl acetate/hexane 

30/70) to yield 9.5 mmol of (2R,3S)-1a (95 %). 
1H NMR (DMSO): δ 3.70-3.55 (m, 2H, R-CH2-OH), 3.8 (m, 1H, R2-CH-OH), 

4.65 (t, 1H, J = 5.6, R-CH2-OH), 4.95 (d, 1H, J = 5.6, R2-CH-OH), 5.32 (d, 1H, J 

= 6.2, Ar-O-CH-R), 7.74-6.58 (m, 9H, Ar-H). ESI-MS: calcd MW for C15H15O3I: 

370, found 393 [M + Na+]. 
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(2S,3R)/(2R,3S)-2-hydroxy-3-(2-iodophenoxy)-1-(t-butyldimethylsilyloxy)-

3-phenylpropane (2a) 

 

tert-Butyldimethylsilyl chloride (1.6 g, 10.6 mmol) dissolved in 5 mL DMF was 

added drop-wise to an ice-cold solution of (2R,3S)-1a (3.5 g, 9.5 mmol) and 

imidazole (1.6 g, 23.8 mmol) in DMF (8 mL). After stirring for 80 min at 0°C, the 

reaction mixture was added to a separatory funnel containing 100 mL water and 

100 mL ethyl acetate. After extraction, the organic layer was dried over Na2SO4 

and evaporated to give a crude oil, which was used without further purification. 

 

(2S,3R)/(2R,3S)-3-(2-iodophenoxy)-2-mesyloxy-1-(t-butyldimethylsilyloxy) 

-3-phenylpropane (3a) 

 

A mixture of crude (2R,3S)-2a (9.5 mmol), Et3N (1.95 mL, 14 mmol) and ethyl 

acetate (15 mL) was stirred at 0°C. Methanesulfonyl chloride (0.882 mL, 11.4 

mmol) was dissolved in ethyl acetate (5 mL) and added to the reaction mixture 

over 30 min. Afterwards, the mixture was stirred for an additional 2 h at 0°C. The 

organic layer was washed with water, dried over Na2SO4 and evaporated. The 

resulting crude oil, (2R,3S)-3a, was used without further purification.  

 

(2S,3R)/(2R,3S)-3-(2-iodophenoxy)-2-mesyloxy-3-phenyl-1-propanol (4a) 

 

A solution of crude (2R,3S)-3a (9.5 mmol), THF (30 mL) and 1 M 

tetrabutylammonium fluoride solution in THF (15 mL) was stirred for 30 min at 

room temperature. The reaction was quenched with water (5 mL). The layers 

were separated and the aqueous layer was extracted with CH2Cl2. The combined 

organic extract was washed with brine (2 x 100 mL), dried over Na2SO4, and the 

solvent removed under reduced pressure to afford a crude residue. The residue 

was purified with column chromatography (eluent: 30 % ethyl acetate/hexane) to 

yield 8.7 mmol (92 % over the three steps) (2R,3S)-4a. 
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1H NMR (CDCl3): δ 2.7 (s, 3H, S-CH3), 4.02 (dd, 1H, J = 3.0, 12.6, R-CH2-OH), 

4.23 (dd, 1H, J = 5.4, 12.6, R-CH2-OH), 4.88 (m, 1H, R2-CH-OMs), 5.5 (d, 1H, J 

= 5.7, Ar-O-CH-R), 7.7 - 6.5 (m, 9H, Ar-H). ESI-MS: calcd MW for C16H17O5SI: 

448, found 449 [M + H+]. 

 

(2R,3R)/(2S,3S)-1,2-epoxy-3-(2-iodophenoxy)-3-phenylpropane (5a) 

 

A solution of the mesylate (2R,3S)-4a (3.9 g, 8.7 mmol), toluene (20 mL), 4 M 

NaOH (20 mL) and methyltributylammonium chloride (2.45 mL, 10 µmol) was 

stirred vigorously for 2 h at room temperature. The solution was diluted with 

water (50 mL) and the product was extracted into CH2Cl2 (3 x 50 mL). The 

organic layer was dried over Na2SO4, evaporated under reduced pressure 

followed by purification of the product using column chromatography to afford 

(2S,3S)-5a (5 mmol, 57 %).  
1H NMR (CDCl3): δ 2.81 (m, 2H, R-O-CH2-CH-R), 3.48 (m, 1H, Ar-O-CH-CH-

R), 4.95 (d, 1H, J = 6.0, Ar-O-CH-R), 7.8-6.6 (m, 9H, Ar-H). ESI-MS: calcd MW 

for C15H13O2I: 352, found 353 [M + H+]. 

 

(2R,3R)/(2S,3S)-1-amino-2-hydroxy-3-(2-iodophenoxy)-3-phenylpropane 

(6a) 

 

A solution of (2S,3S)-5a (1.76 g, 5 mmol) in MeOH (35 mL) and 30 % NH4OH 

(20 mL) was stirred overnight. The solution was diluted with saturated NaHCO3 

and extracted with CH2Cl2. After filtering over Na2SO4, CH2Cl2 was removed 

under reduced pressure. Purification with column chromatography (5:95 

MeOH:CH2Cl2) yielded (2S,3S)-6a (3.6 mmol, 72 %).  
1H NMR (DMSO): δ 2.38 (dd, 1H, J = 8.1, 12.6, R- CH2-NH2), 2.58 (dd, 1H, J = 

3.9, 12.9, R-CH2-NH2), 3.88 (m, 1H, R-CH-OH), 5.42 (d, 1H, J = 5.7, Ar-O-CH-

R), 7.8 - 6.61 (m, 9H, Ar-H). ESI-MS: calcd MW for C15H16NO2I: 369, found 370 

[M + H+]. 
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(2R,3R)/(2S,3S)-1-chloroacetylamino-2-hydroxy-3-(2-iodophenoxy)-3-

phenylpropane (7a) 

 

The amine (2S,3S)-6a (1.3 g, 3.6 mmol) was dissolved in CH2Cl2 (16 mL) and 

Et3N (0.626 mL, 4.5 mmol). The solution was kept at -10°C and chloroacetyl 

chloride (0.318 mL, 4 mmol) dissolved in CH2Cl2 (7 mL) was added slowly 

followed by stirring for 1 h. The solution was quenched with water and 

subsequently extracted with ethyl acetate. The combined ethyl acetate portion was 

dried over Na2SO4, and the solvent was removed under reduced pressure to 

afford a crude oil. The crude product was purified by column chromatography 

(eluent 35:65 ethyl acetate:hexane) to give 2.9 mmol (81 %) of (2S,3S)-7a.  
1H NMR (DMSO): δ 2.9 - 3 (ddd, 1H, J = 5.4, 8.4, 13.2, R-NH-CH2-R), 3.25 – 

3.45 (ddd, 1H, J = 3.9, 6.0, 13.5, R-NH-CH2-R), 3.95 (m, 1H, R-CH-OH), 4.03 (s, 

2H, R-CH2-Cl), 5.42 (d, 1H, J = 5.1, Ar-O-CH-R), 7.72-6.60 (m, 9H, Ar-H), 8.12 

(t, 1H, R-NH-R). ESI-MS: calcd MW for C17H17NO3ClI: 445, found 468 [M + 

Na+]. 

 

(2R,3R)/(2S,3S)-2-[α-(2-iodophenoxy)benzyl]morpholine-5-one (8a) 

 

A solution of (2S,3S)-7a (1.3 g, 2.9 mmol) in t-butanol (4 mL) and CH2Cl2 (9 mL) 

was added drop-wise over 1 h to a solution of potassium t-butoxide (0.52 g, 4.6 

mmol) in t-butanol (12 mL). The mixture was stirred for one more hour, 

neutralized with 10 % HCl and extracted with CH2Cl2. The organic layer was then 

dried over Na2SO4, and evaporated. The crude product was purified by column 

chromatography (eluent 50:50 ethyl acetate:hexane) to yield (2S,3S)-8a (2.3 mmol, 

79 %).  
1H NMR (DMSO): δ 2.78 (dt, 1H, J = 3.9, 12.0, R-NH-CH2-R), 3.25 (t, 1H, J = 

11.7, R-NH-CH2-R), 3.97 (d, 1H, J = 12.3, R-O-CH2-R), 4.05 (d, 1H, J = 12.6, R-

O-CH2-R), 4.15 (ddd, 1H, J = 3.3, 6.0, 10.5, R-CH-CH2-NH-R), 5.61 (d, 1H, J = 
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5.1, Ar-O-CH-R), 7.72 - 6.56 (m, 9H, Ar-H), 7.92 (d, 1H, R-NH-R). ESI-MS: 

calcd MW for C17H16NO3I: 409, found 448 [M + K+]. 

 

(2R,3R)/(2S,3S)-2-[α-(2-iodophenoxy)benzyl]morpholine (9a) 

 
A mixture of (2S,3S)-8a (0.94 g, 2.3 mmol) and BH3 (12 mL of a 1 M solution in 

THF) in THF (30 mL) was stirred for 2 h at room temperature. The mixture was 

added to acetic acid (50 % in water, 20 mL) and THF was evaporated. Potassium 

carbonate was added until a pH of 9 was reached and the resulting solution was 

extracted with CH2Cl2. The combined CH2Cl2 fractions were dried over Na2SO4, 

concentrated under reduced pressure and then purified by column 

chromatography (eluent 15:85 ethyl acetate:hexane) to yield (2S,3S)-9a, also 

termed (S,S)-IPBM (0.7 mmol, 30 %) as a colourless oil.  
1H NMR (CDCl3): δ 2.45 (m, 1H, R-O-CH2-CH2-R), 2.61 (m, 1H, R-O-CH2-

CH2-R), 3.04 (m, 2H, R-O-CH2-R), 3.58 (m, 1H, R-CH-CH2-NH-R), 3.90 (ddd, 

1H, J = 2.1, 5.1, 11.4, R-CH-CH2-NH-R), 4.00 (dd, 1H, J = 3.6, 5.4, R-CH-CH2-

NH-R), 5.17 (d, 1H, J = 5.1, Ar-O-CH-R), 7.43-6.59 (m, 9H, Ar-H). ESI-MS: 

calcd MW for C17H18NO2I: 395, found 396 [M + H+]. 

 

5.3.1.2. Precursor synthesis 

 

(2S,3S)-9b was synthesized in the same manner as (2S,3S)-9a, using 2-

bromophenol as a starting material instead of 2-iodophenol. 

 

(2S,3R)/(2R,3S)-1,2-dihydroxy-3-(2-bromophenoxy)-3-phenyl-propane (1b) 

 

A mixture of 2-bromophenol (3.5 mL, 30 mmol), methyltributylammonium 

chloride (0.6 mL) and 0.05 M NaOH (30 mL) was stirred at 70°C for 2 h. 

(2R,3R)-phenylglycidol (1.5 g, 10 mmol dissolved in 50 mL H2O) was added 

drop-wise and the resulting mixture was heated for another 3 h. The reaction 
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mixture was cooled to room temperature, added to ice-cold NaOH (1 M, 30 mL) 

and extracted with CH2Cl2 (3 x 50 mL). The organic layer was washed with 1 M 

NaOH (100 mL), water (100 mL) and brine (100 mL), dried over Na2SO4, and 

the solvent was removed under reduced pressure to afford a viscous oil. The 

crude product was purified by column chromatography (eluent: ethyl 

acetate/hexane 30/70) to give 9 mmol of (2R,3S)-1b (90 %). 
1H NMR (DMSO): δ 3.70-3.55 (m, 2H, R-CH2-OH), 3.78 (m, 1H, R2-CH-OH), 

4.65 (t, 1H, J = 5.6, R-CH2-OH), 4.94 (d, 1H, J = 5.6, R2-CH-OH), 5.32 (d, 1H, J 

= 6.2, Ar-O-CH-R), 7.56-6.8 (m, 9H, Ar-H). ESI-MS: calcd MW for C15H15O3Br: 

323, found 346 [M + Na+]. 

 

(2S,3R)/(2R,3S)-2-hydroxy-3-(2-bromophenoxy)-1-(t-butyldimethyl-

silyloxy)-3-phenylpropane (2b) 

 

tert-Butyldimethylsilyl chloride (1.6 g, 10.6 mmol) dissolved in 5 mL DMF, was 

added drop-wise to an ice-cold solution of (2R,3S)-1b (2.9 g, 9 mmol) and 

imidazole (1.5 g, 22.1 mmol) in DMF (8 mL). After stirring for 80 min at 0°C, the 

reaction mixture was added to a separatory funnel containing 100 mL water and 

100 mL ethyl acetate. After extraction, the organic layer was dried over Na2SO4 

and evaporated to afford a crude oil, which was used without further purification. 

 

(2S,3R)/(2R,3S)-3-(2-bromophenoxy)-2-mesyloxy-1-(t-butyldimethyl-

silyloxy)-3-phenylpropane (3b) 

 

A mixture of crude (2R,3S)-2b (9 mmol), Et3N (1.9 mL, 13.7 mmol) and ethyl 

acetate (11 mL) was stirred at 0°C. Methanesulfonyl chloride (0.831 mL, 10.7 

mmol) was dissolved in ethyl acetate (5 mL) and added to the reaction mixture 

over 30 min. Afterwards, the mixture was stirred for an additional 2 h at 0°C. The 

organic layer was washed with water, dried over Na2SO4 and evaporated. The 

resulting crude oil, (2R,3S)-3b, was used without further purification.  
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(2S,3R)/(2R,3S)-3-(2-bromophenoxy)-2-mesyloxy-3-phenyl-1-propanol 

(4b) 

 

A solution of crude (2R,3S)-3b (9 mmol), THF (27 mL) and 1 M 

tetrabutylammonium fluoride solution in THF (14.7 mL) was stirred for 30 min 

at room temperature. The reaction was quenched with water (5 mL). The layers 

were separated and the aqueous layer was extracted with CH2Cl2. The combined 

organic extract was washed with brine (2 x 100 mL), dried over Na2SO4, and the 

solvent was removed under reduced pressure to offer a crude residue. The 

residue was purified with column chromatography (eluent: 30 % ethyl 

acetate/hexane) to yield 8 mmol (89 % over the three steps) (2R,3S)-4b. 
1H NMR (CDCl3): δ 2.65 (s, 3H, S-CH3), 4.02 (dd, 1H, J = 3.0, 12.6, R-CH2-OH), 

4.22 (dd, 1H, J = 5.4, 12.6, R-CH2-OH), 4.88  (m, 1H, R2-CH-OMs), 5.50 (d, 1H, 

J = 5.7, Ar-O-CH-R), 7.46 - 6.62 (m, 9H, Ar-H). ESI-MS: calcd MW for 

C16H17O5SBr: 401, found 402 [M + H+]. 

 

(2R,3R)/(2S,3S)-1,2-epoxy-3-(2-bromophenoxy)-3-phenylpropane (5b) 

 

A solution of the mesylate (2R,3S)-4b (3.2 g, 8 mmol), toluene (18.6 mL), 4 M 

NaOH (18.6 mL) and methyltributylammonium chloride (2.26 mL, 9 µmol) was 

stirred vigorously for 2 h at room temperature. The solution was diluted with 

water (50 mL) and the product was extracted into CH2Cl2 (3 x 50 mL). The 

organic layer was dried over Na2SO4, evaporated under reduced pressure 

followed by purification of the product using column chromatography to afford 

(2S,3S)-5b (5.5 mmol, 69 %).  
1H NMR (CDCl3): δ 2.81 (m, 2H, R-O-CH2-CH-R), 3.48 (m, 1H, Ar-O-CH-CH-

R), 4.95 (d, 1H, J = 6, Ar-O-CH-R), 7.46 - 6.62 (m, 9H, Ar-H). ESI-MS: calcd 

MW for C15H13O2Br: 305, found 328 [M + Na+]. 
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(2R,3R)/(2S,3S)-1-amino-2-hydroxy-3-(2-bromophenoxy)-3-phenylpropane 

(6b) 

 

A solution of (2S,3S)-5b (1.7 g, 5.5 mmol) in MeOH (35 mL) and 30 % NH4OH 

(24 mL) was stirred overnight. The solution was diluted with saturated NaHCO3 

and extracted with CH2Cl2. After filtering over Na2SO4, CH2Cl2 was removed 

under reduced pressure. Purification with column chromatography (5:95 

MeOH:CH2Cl2) yielded (2S,3S)-6b (3.7 mmol, 67 %).  
1H NMR (DMSO): δ 2.31 (dd, 1H, J = 8.1, 12.6, R- CH2-NH2), 2.61 (dd, 1H, J = 

3.9, 12.9, R-CH2-NH2), 3.79 (m, 1H, R-CH-OH), 5.05 (bs, 2H, NH2), 5.42 (d, 1H, 

J = 5.7, Ar-O-CH-R), 7.56 - 6.75 (m, 9H, Ar-H). ESI-MS: calcd MW for 

C15H16O2NBr: 322, found 323 [M + H+]. 

 

(2R,3R)/(2S,3S)-1-chloroacetylamino-2-hydroxy-3-(2-bromophenoxy)-3-

phenylpropane (7b) 

 

The amine (2S,3S)-6b (1.2 g, 3.7 mmol) was dissolved in CH2Cl2 (16 mL) and 

Et3N (0.626 mL, 4.5 mmol). The solution was kept at – 10°C and chloroacetyl 

chloride (0.318 mL, 4 mmol) dissolved in CH2Cl2 (7 mL) was added slowly 

followed by stirring for 1 h. The solution was quenched with water and 

subsequently extracted with ethyl acetate. The combined ethyl acetate portion was 

dried over Na2SO4, and the solvent was removed under reduced pressure to 

afford a crude oil. The crude product was purified by column chromatography 

(eluent 35:65 ethyl acetate:hexane) to give 2.7 mmol (73 %) of (2S,3S)-7b.  
1H NMR (DMSO): δ 2.87 – 2.94 (ddd, 1H, J = 5.4, 8.4, 13.2, R-NH-CH2-R), 3.25 

– 3.45 (ddd, 1H, J = 3.9, 6.0, 13.5, R-NH-CH2-R), 3.95 (m, 1H, R-CH-OH), 4.03 

(s, 2H, R-CH2-Cl), 5.42 (d, 1H, J = 5.1, Ar-O-CH-R), 7.56 - 6.74 (m, 9H, Ar-H), 

8.12 (t, 1H, R-NH-R). ESI-MS: calcd MW for C17H17O3NClBr: 398, found 421 

[M + Na+]. 
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(2R,3R)/(2S,3S)-2-[α-(2-bromophenoxy)benzyl]morpholine-5-one (8b) 

 

A solution of (2S,3S)-7b (1.1 g, 2.7 mmol) in t-butanol (3.5 mL) and CH2Cl2 (8.6 

mL) was added drop-wise over 1 h to a solution of potassium t-butoxide (482 mg, 

4.3 mmol) in t-butanol (10.8 mL). The mixture was then stirred for one more 

hour, neutralized with 10 % HCl and extracted with CH2Cl2. The organic layer 

was then dried over Na2SO4, and evaporated. The crude product was purified by 

column chromatography (eluent 50:50 ethyl acetate:hexane) to yield compound 

(2S,3S)-8b (2.1 mmol, 78 %).  
1H NMR (DMSO): δ 2.78 (dt, 1H, J = 3.9, 12.3, R-NH-CH2-R), 3.25 (t, 1H, J = 

11.7, R-NH-CH2-R), 3.97 (d, 1H, J = 12.3, R-O-CH2-R), 4.05 (d, 1H, J = 12.6, R-

O-CH2-R), 4.15 (ddd, 1H, J = 3.3, 6.0, 10.5, R-CH-CH2-NH-R), 5.61 (d, 1H, J = 

5.1, Ar-O-CH-R), 7.54 - 6.74 (m, 9H, Ar-H), 7.92 (d, 1H, R-NH-R). ESI-MS: 

calcd MW for C17H16O3NBr: 362, found 401 [M + K+]. 

 
(2R,3R)/(2S,3S)-2-[α-(2-bromophenoxy)benzyl]morpholine (9b) 

 
A mixture of (2S,3S)-8b (0.76 g, 2.1 mmol) and 1 M BH3 solution in THF (11 

mL) in THF (30 mL) was stirred for 2 h at room temperature. The mixture was 

added to acetic acid (50 % in water, 20 mL) and THF was evaporated. Potassium 

carbonate was added until pH of 9 was reached and the resulting solution was 

extracted with CH2Cl2. The combined CH2Cl2 fractions were dried over Na2SO4, 

concentrated under reduced pressure and then purified by column 

chromatography (eluent 15:85 ethyl acetate:hexane) to give (2S,3S)-9b (0.8 mmol, 

38 %) as a colourless oil.  
1H NMR (CDCl3): δ 2.52 (m, 1H, R-O-CH2-CH2-R), 2.68 (m, 1H, R-O-CH2-

CH2-R), 3.14 (m, 2H, R-O-CH2-R), 3.68 (td, 1H, J = 2.1, 12.6, R-CH-CH2-NH-

R), 3.90 (ddd, 1H, J = 2.1, 5.1, 11.4, R-CH-CH2-NH-R), 4.08 (dd, 1H, J = 3.6, 

5.4, R-CH-CH2-NH-R), 5.25 (d, 1H, J = 5.1, Ar-O-CH-R), 7.52 - 6.68 (m, 9H, 

Ar-H). ESI-MS: calcd MW for C17H18O2NBr: 348, found 349 [M + H+]. 
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(2R,3R)/(2S,3S)-2-[α-(2-trimethylstannanephenoxy)benzyl]morpholine-5-

one (10) 

 

0.06 mmol (2S,3S)-8b (23 mg), hexamethyldistannane (37 µL, 0.18 mmol), and a 

catalytic amount of tetrakis(triphenylphosphine)palladium were dissolved in 5 mL 

toluene. The mixture was shielded from light and refluxed overnight. The 

reaction mixture was filtered and the solvent was evaporated under reduced 

pressure. Purification of the crude product with preparative TLC (eluent 90:10 

ethyl acetate:hexane) afforded (2S,3S)-10 (0.021 mmol, 35 %) as a yellow oil. 
1H NMR (DMSO): δ 0.27 (s, 9H, 3*Sn-CH3) 2.78 (m, 1H, R-NH-CH2-R), 3.25 

(m, 1H, R-NH-CH2-R), 4.18-3.98 (m, 3H, R-CH-O-CH2-R), 5.61 (d, 1H, J = 5.4, 

Ar-O-CH-R), 7.49 - 6.85 (m, 9H, Ar-H). ESI-MS: calcd MW for C20H25O3NSn: 

445, found 446 [M + H+]. 

 

5.3.2. ENANTIOMERIC PURITY 

 

The enantiomeric purity of the precursor was evaluated using a Bruker DRX500 

300 Mhz NMR spectrometer (Department of Organic Chemistry, Ghent 

University, Belgium). Chemical shifts were recorded in ppm (δ) relative to an 

internal TMS standard in CDCl3. To control enantiomeric purity, 1 equivalent 

chiral shift reagents, europium tris[3-(heptafluoropropylhydroxymethylene)-(-)-

camphorate] (Eu(hfc)3) was added to the NMR sample.  

 

5.3.3. RADIOCHEMISTRY 

 

[123I]-(S,S)-IPBM was obtained in two steps. First, an electrophilic 

iododestannylation on the trimethylstannylprecursor (2S,3S)-10 was 

accomplished. In the following step, [123I]-(2S,3S)-8a was reduced to yield [123I]-

(S,S)-IPBM.  
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The precursor (2S,3S)-10 (200 µg, 0.45 µmol) was dissolved in absolute ethanol 

(50 µL). Chloramine-T (1.0 µmol, 15 µL of a 20 mg/ml aqueous solution), n.c.a. 

[123I]NaI (dissolved in 0.05 M NaOH, 5 – 10 µL, 37 - 185 MBq), and glacial acetic 

acid (5 µL) were added. The radiolabelling proceeded for 10 min at room 

temperature. The reaction was quenched by the addition of sodium metabisulfite 

(1.6 µmol, 15 µL of a 20 mg/ml aqueous solution). After the solution was 

evaporated under nitrogen stream, 100 µL THF and 50 µL BH3 (1 M solution in 

THF) were added to the ice-cold reaction vessel. The mixture was allowed to 

react during 40 min at room temperature. HPLC mobile phase was added (100 

µL CH3CN:H2O:HCOOH 55:45:0.1) and the mixture was injected onto a RP C18 

HPLC column (Alltima, 250 mm * 4.6 mm, 5 µm) for purification at a flow rate 

of 1 mL/min. The fraction corresponding to [123I]-(S,S)-IPBM (Tr = 21 min) was 

collected, diluted with sterile water and concentrated on an activated C18 Sep-pak 

cartridge (Alltech Maxi-Clean Prevail C18). [123I]-(S,S)-IPBM was eluted from the 

Sep-pak column with 1 mL EtOH. Finally the EtOH was diluted with 

physiological saline to obtain an injectable solution (< 10 % (v:v) EtOH). 

 

5.3.4. QUALITY CONTROL 

 

The radioanalytical data were obtained by injecting 100 µL test solution on an 

analytical RP-HPLC (Alltima C18, 250 mm x 4.6 mm, 5 µm) using 55:45:0.1 (v:v) - 

CH3CN:H2O:HCOOH as mobile phase at a flow rate of 1 mL/min. 

Radiochemical purity and identity was determined by co-injection of an aliquot of 

[123I]-(S,S)-IPBM with authentic cold reference product.  

A calibration curve between 10 x 10-3 µM and 0.1 x 10-3 µM and subsequently a 

more detailed calibration curve between 0.6 x 10-3 µM and 0.1 x 10-3 µM was 

determined. Log D7.4 was determined according to the method described in 

Chapter 4. 
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5.3.5. BIODISTRIBUTION STUDY 

 

Male NMRI mice of 5 - 7 weeks old, weighing 22 - 26 g were injected in a tail 

vein with 200 µL 8:92 (v:v) - EtOH:physiological saline containing approximately 

185 kBq (5 µCi) [123I]-(S,S)-IPBM. The mice were awake during the injection. At 

various time points p.i. mice (n=3 for each time point) were sacrificed under 

isoflurane anaesthesia and dissected. Blood, urine and organs were removed, 

weighed and counted for radioactivity in a gamma counter. To remove adhering 

blood, all organs were rinsed with water prior to weighing and counting. For 

calculation of the injected dose, five aliquots of the injection solution were 

weighed and counted for activity. Results are decay corrected and expressed as a 

percentage of the injected dose per gram of tissue (% ID/g) ± SD. 
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5.4.       Results & Discussion 

 

5.4.1. ORGANIC SYNTHESIS 

 

 
Figure 5.2 Synthesis of halogenated reboxetine analogues  

a R1=I; b R1=Br Reagents: (i) 2-halogenated phenol, aq. NaOH; (ii) t-butyldimethylsilyl 

chloride, DMF, imidazole; (iii) methanesulfonyl chloride, Et3N, ethyl acetate; (iv) 

tetrabutylammonium chloride, THF; (v) aq. NaOH, toluene; (vi) 30 % NH4OH, MeOH; 

(vii) chloroacetylchloride, Et3N, CH2Cl2; (viii) potassium t-butoxide, t-butanol; (ix) BH3, 

THF 
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The same procedure by which we were able to synthesize (S,S)-IPBM, was also 

applied to synthesize (R,R)-IPBM, (2S,3S)-9b and (2R,3R)-9b (Figure 5.2).  

The key stereogenic centers of (S,S)-IPBM were created by regioselective ring 

opening with 2-iodophenol of the enantiomerically pure starting compound, 

(2R,3R)-phenylglycidol. The resulting diol, (2R,3S)-1a was isolated in a 95 % 

yield. The primary hydroxyl group of (2R,3S)-1a was selectively protected with a 

trimethylsilyl group to give (2R,3S)-2a. Compound (2R,3S)-4a (yield of 92 %) was 

prepared by reaction of the secondary hydroxyl group of 2a with methanesulfonyl 

chloride, followed by removal of the trimethylsilyl group with 

tetrabutylammonium fluoride. Treatment of (2R,3S)-4a with NaOH in toluene 

afforded the epoxide (2S,3S)-5a in 57 % yield. This reaction occurred via an SN2 

mechanism resulting in inversion of configuration at the chiral C2 carbon. 

Consequently the configuration changed from (2R,3S) to (2S,3S). The reaction of 

(2S,3S)-5a with NH4OH in MeOH yielded the amino alcohol (2S,3S)-6a (72 %). 

Compound (2S,3S)-6a was then transformed into the final morpholine in three 

steps. Treatment of (2S,3S)-6a with chloroacetyl chloride to give compound 

(2S,3S)-7a (81 % yield) was followed by cyclization with potassium t-butyl oxide. 

The resulting morpholinone (2S,3S)-8a (79 % yield) was then reduced to give 

(2S,3S)-9a in a 30 % yield by the use of BH3. Several reducing agents were tested 

but most of them tended to dehalogenate the phenyl group as well. (2S,3S)-9a 

was synthesized in an overall chemical yield of 7 % whereas (2S,3S)-9b was 

obtained with a 8 % overall chemical yield. The low general chemical yields are a 

result of the low yield in the final step. Excluding the last step the overall 

chemical yields were 23 % and 21 % for (2S,3S)-9a and (2S,3S)-9b, respectively.  

 

5.4.2. ENANTIOMERIC PURITY 

 

The optical rotation of both (2S,3S)-9b and (2R,3R)-9b was determined: (2S,3S)-

9b  [α]D= -65.6° (c= 1.25, MeOH) and (2R,3R)-9b [α]D= +72.8° (c= 0.95, 

MeOH). The enantiomeric purity was assessed by NMR analysis with and 
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without the addition of chiral shift reagent. Addition of Eu(hfc)3 to the samples 

resulted in a shift of 0.2 ppm of the signal at 5.25. This indicated that the samples 

have an enantiomeric excess of more then 95 %. 

 

5.4.3. RADIOCHEMISTRY 

 

Since radiosynthesis accomplished by an iodine-bromine exchange reaction is 

often difficult to purify, we choose to produce [123I]-(S,S)-IPBM by electrophilic 

substitution. Unfortunately we were not able to replace the bromine of (2S,3S)-

9b by a tributylstannyl group or trimethylstannyl group. Alternatively, [123I]-(S,S)-

IPBM was synthesized in two steps starting from (2S,3S)-10. The tributylstannyl 

precursor (2S,3S)-10 was synthesized in a 35 % yield. Radioiodination of (2S,3S)-

10, yielded [123I]-(2S,3S)-8a which was immediately reduced to give [123I]-(S,S)-

IPBM. The radiochemical yield was approximately 10 %. 

 

 
Figure 5.3 Radiosynthesis of [123I]-(S,S)-IPBM 

a EtOH, chloramine-T, glacial acetic acid, n.c.a. Na123I b THF, BH3 (1 M in THF) 

 

5.4.4. QUALITY CONTROL AND LOG D7.4 

 

Co-injection of the obtained radiotracer and cold reference compound illustrated 

similar retention times for [123I]-(S,S)-IPBM and (S,S)-IPBM, confirming the 

identity of the radiotracer. Radiochemical purity was > 98 %. Since no UV-signal 

was observed for the amount [123I]-(S,S)-IPBM synthesized, the detection limit 

was applied for calculation of the specific activity. Using the described 
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radioanalytical method, the detection limit for [123I]-(S,S)-IPBM was 0.25 x 10-3 

µM. Specific activity appeared to be at least 148 GBq/µmol (4 Ci/µmol). 

An ideal log D7.4 value for brain radiotracers is between 1.5 and 3.5 (Waterhouse, 

2003). The determined log octanol/PBS partition coefficient was found to be 1.9 

± 0.05 %, which is suitable for brain penetration. 

 

5.4.5. BIODISTRIBUTION STUDY 

 

Results of the biodistribution study are shown in Table 5.1. [123I]-(S,S)-IPBM 

displayed an excellent brain uptake (4.62 ± 0.66 % ID/g at 1 min p.i.) followed 

by a good wash-out (0.55 ± 0.17 % ID/g at 180 min p.i.) At each time point, 

brain activity remained higher than radioactivity uptake in blood (Figure 5.4).  

 
Figure 5.4 Blood-brain distribution of [123I]-(S,S)-IPBM in NMRI mice 

Values are expressed as % ID/g ± SD (n=3) 

 

Other organs with high tracer uptake were heart (12.65 ± 2.43 % ID/g at 1 min 

p.i.) and lungs (69.21 ± 8.02 % ID/g at 1 min p.i.). Radioactivity uptake in liver 

increased until 20 min p.i. and then declined. High uptake was seen in small 

(10.53 ± 3.84 % ID/g at 180 min p.i.) and large intestines (14.90 ± 5.53 % ID/g 

at 180 min p.i.), suggesting biliary clearance of [123I]-(S,S)-IPBM. High kidney 

(10.91 ± 1.07 % ID/g at 5 min p.i.) and urine (data not shown) radioactivity 

uptake, show that urinary clearance of [123I]-(S,S)-IPBM also occurred.



 

 

Table 5.1 Tissue uptake of radioactivity in male NMRI mice at various time points following i.v. administration [123I]-(S,S)-IPBM 
Time (min) 

 1 3 5 10 20 40 60 120 180 
Blood 1.33 ± 0.26 0.93 ± 0.34 1.00± 0.04 0.82 ± 0.14 0.53 ± 0.17 0.58 ± 0.06 0.43 ± 0.15 0.34 ± 0.07 0.26 ± 0.08 

Brain 4.62 ± 0.66 4.40 ± 1.30 4.21 ± 0.40 4.17 ± 0.47 2.37 ± 0.23 2.03 ± 0.87 1.57 ± 0.65 0.91 ± 0.26 0.55 ± 0.17 

Heart 12.65 ± 2.53 7.80 ± 3.08 5.61 ± 0.56 4.23 ± 0.82 3.53 ± 1.07 2.01 ± 0.62 1.70 ± 0.38 0.84 ± 0.04 0.66 ± 0.06 

Lungs 69.21 ± 8.02 60.48 ± 16.26 51.80 ± 8.53 42.72 ± 5.45 34.57 ± 21.39 11.65 ± 2.61 10.29 ± 3.75 3.62 ± 1.52 3.29 ± 0.93 

Stomach 2.53 ± 1.21 2.60 ± 0.98 2.50 ± 0.71 2.31 ± 1.11 2.47 ± 1.28 1.63 ± 0.80 1.29 ± 0.46 1.53 ± 0.69 2.53 ± 1.22 

Spleen 1.98 ± 0.90 2.48 ± 0.84 3.32 ± 0.58 3.69 ± 0.88 4.61 ± 1.01 2.71 ± 0.85 2.90 ± 1.84 2.39 ± 2.64 1.50 ± 1.72 

Liver 2.57 ± 1.08 2.96 ± 0.87 3.82 ± 0.20 3.46 ± 1.96 5.85 ± 2.97 3.53 ± 1.52 2.70 ± 0.86 2.30 ± 1.91 2.60 ± 1.42 

Kidneys 10.81 ± 4.23 9.62 ± 3.56 10.91 ± 1.07 9.86 ± 3.17 10.92 ± 2.26 6.06 ± 1.55 4.10 ± 0.99 2.83 ± 0.94 1.88 ± 0.75 

Small intestine 1.57 ± 0.38 1.39 ± 0.45 1.50 ± 0.17 3.81 ± 1.26 10.80 ± 4.17 11.18 ± 2.86 18.74 ± 1.06 6.90 ± 1.26 10.53 ± 3.84 

Large intestine 0.88 ± 0.23 0.80 ± 0.06 0.91 ± 0.08 0.92 ± 0.15 0.74 ± 0.20 0.54 ± 0.18 4.01 ± 3.98 12.54 ± 6.09 14.90 ± 5.53 

Pancreas 2.70 ± 2.64 4.67 ± 1.63 4.99 ± 0.29 3.78 ± 1.06 3.33 ± 1.08 1.58 ± 0.28 1.24 ± 0.09 0.88 ± 0.22 0.39 ± 0.07 

Muscle 1.29 ± 0.45 1.38 ± 0.21 1.93 ± 0.51 1.54 ± 0.04 1.38 ± 0.29 0.80 ± 0.18 0.65 ± 0.08 0.34 ± 0.05 0.27 ± 0.07 

Fat 0.70 ± 0.21 0.89 ± 0.31 1.04 ± 0.32 1.34 ± 0.66 1.43 ± 0.55 0.92 ± 0.41 0.66 ± 0.24 0.80 ± 0.44 0.37 ± 0.14 

Values are expressed as %  ID/g ± SD (n=3)
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5.5. Conclusion 

 

As an effort to develop a potential SPECT imaging agent for brain NET, an 

iodinated reboxetine derivate, [123I]-(S,S)-IPBM, was synthesized. Both the 

precursor and cold reference compound were prepared stereoselectively by a 

nine-step synthetic procedure. NMR analysis with Eu(hfc)3 as chiral shift reagent 

showed an enantiomeric excess of 95 % using the described stereoselective 

procedure. [123I]-(S,S)-IPBM was obtained by radioiodination of (2S,3S)-10, 

followed by reduction with a radiochemical purity of > 98 % and a specific 

activity of at least 148 GBq/µmol (4 Ci/µmol). In vivo evaluation showed a rapid 

and marked accumulation in the brain. The radioactivity in blood was cleared 

rapidly, and the brain to blood ratio, an essential factor for brain imaging, was 

high.   

Unfortunately, at the time we performed our biodistribution study, a report about 

the synthesis and evaluation of the same compound, [123/125I]-(S,S)-IPBM was 

published (Kanegawa et al., 2006). Only a few months later, an article concerning 

an in vivo evaluation of [123I]-(S,S)-IPBM in primates was published (Tamagnan et 

al., 2007). Since [123/125I]-(S,S)-IPBM was described by others, we performed no 

further attempts to increase the radiochemical yield and did not conduct 

additional in vivo studies.  

Kanegawa et al. radiosynthesized [125I]-(S,S)-IPBM by bromine-iodine exchange. 

They reported a yield of 65 % but they gave no information about the obtained 

specific activity and chemical purity. They performed a biodistribution study in 

Sprague-Dawley rats using [125I]-(S,S)-IPBM. The accumulation of radioactivity 

was greater in NET-rich regions, such as the thalamus and cortex, than in the 

striatum, a NET-poor region (Tejani-Butt, 1992). The ratio of radioactivity in 

other brain regions to that in the striatum was highest at 180 min p.i. Ex vivo 

autoradiographic analyses demonstrated the highest level of radioactivity in the 

locus coeruleus and anteroventricular thalamic nucleus, which are known to be 
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rich in NET. The NET-selective agent nisoxetine reduced the accumulation of 

radioactivity in the NET-rich regions to that of the striatum whereas fluoxetine, a 

selective agent for the serotonin transporter, and GBR12909, a DAT-selective 

agent did not affect the accumulation of [125I]-(S,S)-IPBM. Additionally, a SPECT 

study in a marmoset with [123I]-(S,S)-IPBM exhibited a regional localization 

consistent with the known densities of NET and [123I]-(S,S)-IPBM  accumulation 

could be displaced by treatment with nisoxetine (Kanegawa et al., 2005).  

Tamagnan et al. applied the electrophilic substitution method to yield [123I]-(S,S)-

IPBM but no information concerning their radiochemical yield and specific 

activity was added. They performed a dynamic SPECT imaging study in an adult 

female baboon. Regional brain tracer uptake is consistent with the distribution of 

NET in the baboon brain, with the highest uptake in locus coeruleus and 

thalamus, and lowest uptake in cerebellum and striatum. To assess the 

pharmacological specificity, reboxetine was injected which resulted in a reduction 

of radioactivity in all brain regions with the most pronounced reduction in NET-

rich regions. In contrast, displacement with citalopram or methylphenidate did 

not show any displacement of [123I]-(S,S)-IPBM (Tamagnan et al., 2007).   

The lack of data in their study makes it unfeasible to compare the different 

synthetic and radiosynthetic procedures whereas the in vivo data can not be 

compared due to differences in the experimental design.  

 

Regarding the results of Tamagnan et al. (2007) and Kanegawa et al. (2006), we 

can state that the choice to develop [123I]-(S,S)-IPBM as radiotracer for NET was 

an excellent suggestion. 
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Chapter 6 
 

Radiosynthesis and in vivo evaluation of [11C]-

labelled pyrrole-2-carboxamide derivatives for 

MAO-A imaging 
 

6.1. Abstract 

 

Aim: The search for new PET ligands for MAO-A with optimal properties is 

justified by the lack of an ideal ligand and the observation that fluctuations in 

MAO-A functionality are associated with human diseases. This study reports the 

radiolabelling of [11C]-labelled 1H-pyrrole-2-carboxamide derivatives, RS 2315 

and RS 2360, and the characterization of their in vivo properties.  

Methods: The radiolabelling of [11C]-RS 2315 and [11C]-RS 2360 was accomplished 

by methylation of the amide precusors with 11CH3I. Biodistribution, blocking and 

metabolite studies of both tracers were performed in NMRI mice. Finally, a PET 

study in Sprague-Dawley rats was performed for [11C]-RS 2360.  

Results: Both tracers were obtained in a radiochemical yield of approximately 30 

% with radiochemical purity of > 98 %. Biodistribution studies showed high 

brain uptake followed by rapid brain clearance for both radiotracers. In the brain, 

[11C]-RS 2360 was more stable than [11C]-RS 2315. Blocking studies in mice could 

not demonstrate specificity of [11C]-RS 2315 towards MAO-A or B. The blocking 

and imaging study with [11C]-RS 2360 on the other hand indicated specific 

binding at MAO-A at the earliest time points. 

Conclusion: These results indicate that [11C]-RS 2315 is not suitable for mapping 

MAO-A in vivo and that further research is necessary to investigate the potential 

of [11C]-RS 2360 in MAO-A imaging. 
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6.2. Introduction 

 

Because of the ability of MAO to catabolise neurotransmitters, MAO is involved 

in several psychiatric and neurological disorders (Meyer et al., 2006; Heafield and 

Williams, 1992) as well as in behaviour (Shih and Thompson, 1999; Alia-Klein et 

al., 2008; Brunner et al., 1993) and tobacco addiction (Fowler et al., 1996; Berlin 

et al., 1995). A very efficient non-invasive method to study enzymes in vivo is 

visualization with PET. There are only a few PET tracers for MAO-A designed 

and they all have their own drawbacks. The first developed radiotracer, 

[11C]clorgyline, displayed an unexplained species difference (Fowler et al., 2001; 

Bergström et al., 1997). In contrast to results in humans, clorgyline was not 

retained in baboon brain. Another MAO-A tracer, [11C]befloxatone is synthesized 

with [11C]phosgene which is toxic and is rather rare available (Dolle et al., 2003). 

The drawback of [11C]harmine is its extensive metabolism in plasma with only 10 

% intact product at 10 min p.i. (Bergström et al., 1997).  

The search for new ligands with optimal properties is justified by the lack of an 

ideal ligand and the observation that fluctuations in MAO-A functionality are 

associated with human diseases and tobacco addiction.  

A series of new pyrrole derivatives have been synthesized and evaluated for their 

MAO-A and -B inhibitory activity and selectivity (La Regina et al., 2007). Out of 

this new class of MAO inhibitors we selected the most potent inhibitors for 

MAO-A: N-(phenethyl)-N-methyl-1H-pyrrole-2-carboxamide (RS 2315) and (R)-

N-(α-cyclohexylethyl)-N-methyl-1H-pyrrole-2-carboxamide (RS 2360) (Figure 

6.1). Their Ki values are 7 nM and 1.7 nM for MAO-A and 12 nM and 30 nM for 

MAO-B, for RS 2315 and RS 2360, respectively (La Regina et al., 2007).  
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Figure 6.1 Chemical structures of RS 2360 and RS 2315 

 

The present study reports the radiolabelling and purification of 11C labelled RS 

2315 and RS 2360. Their partition coefficient is determined. Specific activity and 

radiochemical purity are reported. [11C]-RS 2315 and [11C]-RS 2360 are both 

evaluated in vivo. First, a biodistribution study in NMRI mice is performed to 

assess their ability to cross the blood-brain barrier. A blocking study is conducted 

to investigate their in vivo selectivity and specificity. Possible metabolism of [11C]-

RS 2315 and [11C]-RS 2360 is verified by analyzing mouse blood and brain 

samples on HPLC. Finally, a PET study in Sprague-Dawley rats is performed for 

the most promising radiotracer.  

 

6.3. Materials & Methods 

 

6.3.1. GENERAL 

 

The starting compounds N-(phenethyl)-1H-pyrrole-2-carboxamide (RS 2115) and 

(R)-N-(α-cyclohexylethyl)-1H-pyrrole-2-carboxamide (RS 2226) as well as the 

cold reference compounds RS 2315 and RS 2360 for this study were kindly 

provided by Dipartimento di Chimica e Tecnologie del Farmaco, Sapienza 

University of Rome, Italy (La Regina et al., 2007).  
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6.3.2. RADIOCHEMISTRY 

 

The alkylating reagent [11C]methyl iodide was prepared from [11C]methane by gas-

phase iodination. The production of both 11CH4 and 11CH3I is described in 

Chapter 4. 

 

6.3.2.1.   [ 11C]-RS 2315 

 

A solution of 3 µmol precursor RS 2115 in DMSO/DMF (189 µL/60 µL) and 1 

µL tetrabutylammonium hydroxide (TBAH) was added to a reaction vessel and 

the mixture was cooled in an ice bath. A stream of helium containing the 

alkylating agent 11CH3I was bubbled through the reaction mixture until maximum 

of 11C activity was trapped. The reaction mixture was heated in an oil bath at 

65°C for 10 min and subsequently diluted with 200 µL HPLC eluent and purified 

with semipreparative C18 HPLC (Econosphere, 10 µm, 10 mm x 250 mm; Grace 

Davison Discovery Sciences, Lokeren, Belgium) using a smartline UV detector 

2500 (Knauer, Berlin, Germany) set at 254 nm. Radiodetection occurred by a 

solar-blind P.I.N. photodiode. Elution was carried out at 6 mL/min flow rate 

with 45 % (v/v) CH3CN in 0.02 M sodium acetate buffer (pH 4.5) as mobile 

phase. The fraction containing [11C]-RS 2315 was collected into a vessel with 40 

mL sterile water and loaded on a C18 Sep-pak (Alltech Maxi-clean SPE Prevail 

C18, previously activated with 1 mL EtOH and 5 mL sterile water). After the 

cartridge was washed with 5 mL sterile water, the desired product, [11C]-RS 2315, 

was eluted with 1 mL EtOH. For biodistribution and blocking studies the EtOH 

fraction was diluted with 10 mL physiological saline. For metabolite analysis, 

EtOH was evaporated to dryness and the residue was redissolved in an adequate 

amount of EtOH/physiological saline (8/92 - v/v). 
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6.3.2.2.    [ 11C]-RS 2360 

 

The same procedure as described for [11C]-RS 2315, with minor modifications 

was applied to synthesize [11C]-RS 2360.  

[11C]-RS 2360 was prepared by methylation with 11CH3I of the normethyl 

derivative RS 2226 (3 µmol) in DMF/DMSO (60 µL/188 µL) for 7 min at 70°C 

using 1.5 µL TBAH. Purification was accomplished using 

CH3CN/H2O/HCOOH (50/50/0.1 – v/v/v) as mobile phase at a flow rate of 6 

mL/min. The collected HPLC fraction containing [11C]-RS 2360 (Tr 8.5 min) was 

diluted with 40 mL 0.01 M PBS before loading onto a Sep-pak column (Alltech 

Maxi-clean SPE Prevail C18, previously activated with 1 mL EtOH and 5 mL 

sterile water). After the cartridge was washed with 5 mL sterile water, the desired 

product, [11C]-RS 2360, was eluted with 1 mL EtOH. For biodistribution and 

blocking studies the EtOH fraction was diluted with 10 mL physiological saline. 

For metabolite and imaging studies, EtOH was evaporated to dryness and the 

residue was redissolved in an adequate amount of EtOH/physiological saline 

(8/92 - v/v). 

 

6.3.3. IN VITRO CHARACTERIZATION 

 

Quality control consisted of the determination of radiochemical purity and 

specific activity, calculated by analytical HPLC assay using a Gracesmart C18 

column (5 µm, 4.6 mm x 250 mm; Grace Davison Discovery Sciences, Lokeren, 

Belgium) at a flow rate of 1 mL/min. The eluents were the same as described for 

the purification.  

A calibration curve of unlabelled reference compound (0.02 µM – 1 µM) was 

made and controlled for its accuracy and reproducibility. Specific activities were 

decay corrected back to the end of purification.  
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Co-injection on analytical HPLC of the final end product and cold reference 

compound was performed to confirm the identity of the obtained radiotracer. 

Log D7.4 was determined according to the method described in Chapter 4. 

 

6.3.4. BIODISTRIBUTION STUDIES 

 

The biodistribution of [11C]-RS 2315 and [11C]-RS 2360 was studied in male 

NMRI mice (approximately 25 g and 6 weeks old). Awake mice (n=3 at each time 

point) were injected in a tail vein with approximately 200 µL containing 7.5 – 11 

MBq (0.2 – 0.3 mCi) [11C]-RS 2315 or [11C]-RS 2360. At 1, 10, 30 and 60 min p.i. 

mice were euthanized and dissected. Blood, urine and organs were weighed and 

counted for radioactivity. All organs were rinsed with water prior to weighing and 

counting. For calculation of the injected dose, five aliquots of the injection 

solution were weighed and counted for activity. Results are decay-corrected and 

expressed as % ID/g ± SD. 

 

6.3.5. BLOCKING STUDIES 

 

Blocking studies were carried out with preinjection of 100 µL clorgyline 

hydrochloride (MAO-A inhibitor) or R-(-)-deprenyl hydrochloride (MAO-B 

inhibitor) i.v. both in a dose of 10 mg/kg (Arnett et al., 1987; Fowler et al., 2001; 

Hirata et al., 2002; Jensen et al., 2008). 9 ± 1 MBq (243 ± 27 µCi) 11C tracer (100 

µL) was injected 30 min later via a tail vein. The mice (n=3 at each time point) 

were awake during the injections. The mice were sacrificed and dissected at 1, 10 

and 30 min after 11C tracer injection. Blood, urine and organs were weighed and 

counted for radioactivity. All organs were rinsed with water prior to weighing and 

counting. For calculation of the injected dose, five aliquots of the injection 

solution were weighed and counted for activity. Results are decay-corrected and 

expressed % ID/g ± SD. Statistical analysis was performed using one-sided, 

unpaired student’s t-test. Only p-values < 0.05 are considered significant. 
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6.3.6. METABOLITE ANALYSIS 

 

The in vivo metabolic stability of [11C]-RS 2315 and [11C]-RS 2360 in plasma and 

brain was studied in male NMRI mice. 22 – 37 MBq (0.59 - 1 mCi) of [11C]-RS 

2315 or [11C]-RS 2360 dissolved in 200 µL was injected through a tail vein and 

the mice (n=3 for each time point) were sacrificed at 1, 10 or 30 min p.i. Sample 

workup was done as described in Chapter 4. HPLC analysis was performed using 

the same conditions as used for purification (see 6.3.2.). 

 

6.3.7. IMAGING STUDY 

 

Additional in vivo tests with [11C]-RS 2360 were performed using microPET 

imaging technology. Awake Sprague-Dawley rats (n=4 for each treatment group) 

were injected with physiological saline, clorgyline hydrochloride (10 mg/kg) or 

(R)-(-)-deprenyl hydrochloride (10 mg/kg) 30 min prior to their microPET scan. 

The latter acquisitions are performed using the Gamma Medica Ideas labPET 8, a 

state-of-the-art microPET device existing of 2 × 2 × 10 mm3 LYSO/LGSO 

scintillators in a 8-pixel, quad-APD detector module arrangement. This system is 

capable of delivering 1 mm spatial resolution in rodents at a sensitivity of 4 % 

thereby covering a field-of-view of 10 cm transaxially by 8 cm axially.   

All animals were injected with 35 – 40 MBq (0.95 - 1.08 mCi) [11C]-RS 2360 on 

the camera bed at the start of a dynamic acquisition.  Frames of 4 x 0.5 min, 3 x  

1 min, and 1 x 5 min were accordingly sequentially recorded.  The resulting data 

were reconstructed using 30 iterations of the Maximum Likelihood Expectation 

Maximization algorithm in 160 x 160 x 63 images of 0.5 mm x 0.5 mm x 1.175 

mm voxel size.  An a posteriori three-dimensional Gaussian filter of 2 x 2 x 2 mm 

was applied to all frames. Statistical analysis was performed using one-sided, 

unpaired student’s t-test. Only p-values < 0.05 are considered significant. Images 

were analysed with PMOD whereby volumes of interest (VOIs) were drawn on 

the brain region (Figure 6.2) and the background region (Figure 6.3) of each 
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animal. Since the selection of the background region is critical, we delineated the 

background VOI on the last frame of 5 min acquisition. In this way, noise is 

eliminated and a robust reference value is obtained to normalize brain uptake for 

injected activity in all other frames on an individual animal basis.  We selected the 

background region so that no specific muscle activity was present.   

 
Figure 6.2 Example VOI for the brain region 

 

 
Figure 6.3 Example VOI for the background region 
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6.4. Results & Discussion 

 

6.4.1. RADIOSYNTHESIS 

 

The synthesis of radioligands [11C]-RS 2315 and [11C]-RS 2360 is shown in Figure 

6.4. Their respective amide precursors were labelled with 11CH3I prepared from 
11CH4, in the presence of TBAH as a base through N-[11C]methylation and 

isolated by semipreparative HPLC.  

 

 
Figure 6.4 Radiosynthesis of [11C]-RS 2315 and [11C]-RS 2360 
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6.4.1.1.    [11C]-RS 2315 

 

A typical UV- and radio-chromatogram for a [11C]-RS 2315 synthesis purification 

run is shown in Figure 6.5. 

Time

Ar
bi

tra
ry

 u
ni

t

Collected fractionRS 2115

 
Figure 6.5 UV (blue) and radio-chromatogram (pink) of a typical [11C]-RS 2315 

purification 

 

[11C]-RS 2315 elutes with a retention time of 10 min. Extraction efficiency of the 

Sep-pak column was calculated to be 82 ± 8 % (n=6). Based on the amount 
11CH3I added to the reaction vial, the radiochemical yield was 28 ± 4 % (n=6). 

The total synthesis, from the end of 11CH3I delivery to reaction vessel to delivery 

for in vivo studies was completed in 35 min. 

 

6.4.1.2.    [11C]-RS 2360 

 

The overall synthesis, purification (Figure 6.6) and formulation time to obtain 

[11C]-RS 2360 was 30 min. In a typical experiment, target tracer [11C]-RS 2360 was 

provided in a radiochemical yield of 30 ± 6 % (n=6), decay-corrected to start of 
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the reaction, based on the amount 11CH3I added. Almost all activity was released 

from the Sep-pak column (93 ± 4 % (n=6)). 
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Figure 6.6 UV (blue) and radio-chromatogram (pink) of a typical synthesis 

purification of [11C]-RS 2360 

 

6.4.2. IN VITRO CHRACTERIZATION 

 

6.4.2.1. Quality control, specific activity and stability 

 

The identity of both tracers was confirmed by co-elution with authentic reference 

compound after co-injection on HPLC. Calculation of specific activity resulted in 

a range from 25 – 92 GBq/µmol (0.68 – 2.49 Ci/µmol) for [11C]-RS 2315 (n=6) 

and 41 – 106 GBq/µmol (1.11 – 2.87 Ci/µmol) for [11C]-RS 2360 (n=6). 

Radiochemical purity of the tracer recovered at the end of the experiment was > 

98 % for both radiotracers. [11C]-RS 2315 and [11C]-RS 2360 remained stable 

during the time span of the experiments. 

 

6.4.2.2. Log D7.4 

 

We determined log D7.4 as an indicator for lipophilicity and blood-brain-

permeability. Octanol – buffer partition coefficient measurements gave a log D7.4 
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of 1.65 ± 0.19 for [11C]-RS 2315, slightly higher than the log D7.4 of [11C]-RS 2360 

(1.48 ± 0.04). The higher log D7.4 value of [11C]-RS 2315 is in accordance with 

what we can predict from the replacement of cyclohexane by a benzene ring. 

Both values are suitable for brain penetration (Waterhouse, 2003).  

 

6.4.3. BIODISTRIBUTION STUDIES 

 

Following i.v. injection of [11C]-RS 2315 into NMRI mice, the time course of 

radioactivity was determined in several tissues (Figure 6.7). High initial uptake in 

heart, lungs, pancreas and kidneys (5.52 ± 0.41 % ID/g, 5.96 ± 1.11 % ID/g, 

5.19 ± 1.63 % ID/g and 6.81 ± 3.23 % ID/g, respectively at 1 min p.i.) was 

observed but except for the kidneys (8.34 ± 1.09 % ID/g at 60 min p.i.), the 

studied organs did not show any retention of [11C]-RS 2315. In the liver, the 

activity peaked at 9.09 ± 0.97 % ID/g at 10 min p.i. and decreased over time. The 

activity in intestines had the highest increase between 10 min p.i. (4.36 ± 1.68 % 

ID/g) and 30 min p.i. (10.62 ± 2.81 % ID/g), indicating hepatobiliary clearance. 

Urinary clearance was also observed (data not shown). 

 
Figure 6.7 Tissue distribution of [11C]-RS 2315 in male NMRI mice  

Values are expressed as % ID/g ± SD (n=3) 
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The blood-brain distribution of both [11C]-RS 2315 and [11C]-RS 2360 is shown in 

Figure 6.8. [11C]-RS 2315 entered the brain quickly and was rapidly cleared (from 

4.75 ± 1.62 % ID/g at 1 min p.i. to 0.24 ± 0.07 % ID/g at 60 min p.i.). [11C]-RS 

2360 displayed a rapid and high brain uptake of 7.08 ± 0.95 % ID/g at 1 min p.i., 

indicating a good penetration of the radiotracer into the brain. This high brain 

uptake was followed by an efficient wash-out (0.51 ± 0.06 % ID/g at 30 min p.i.). 

 

 
Figure 6.8 Blood-brain distribution of [11C]-RS 2315 (A) and [11C]-RS 2360 (B) 

in male NMRI mice 

Values are expressed as % ID/g ± SD (n=3) 
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Figure 6.9 summarizes the tissue time-course distribution of [11C]-RS 2360 in 

male NMRI mice. The lungs, heart and pancreas showed high initial uptake 

(respectively, 23.62 ± 4.22 % ID/g, 11.51 ± 0.93 % ID/g and 3.93 ± 1.78 % 

ID/g at 1 min p.i.) followed by a fast wash-out (6.01 ± 2.28 % ID/g, 1.75 ± 0.16 

% ID/g and 1.66 ± 0.37 % ID/g at 30 min p.i.). As for [11C]-RS 2315, the uptake 

in the liver was also increased at 10 min after injection (7.45 ± 0.35 % ID/g) after 

which it decreased (4.24 ± 0.99 % ID/g at 60 min p.i.). Clearance of radioactivity 

occurred by both the hepatobiliary and urinary pathway (data not shown).  

 
Figure 6.9 Tissue distribution of [11C]-RS 2360 in male NMRI mice 

Values are expressed as % ID/g ± SD (n=3) 

 
6.4.4. BLOCKING STUDIES 

 

In vivo selectivity and specificity of both radiotracers was examined by pre-

injection of clorgyline hydrochloride (MAO-A inhibitor) and R-(-)-deprenyl 

hydrochloride (MAO-B inhibitor). Uptake of radioactivity in brain (Figure 6.10) 

and peripheral organs was measured at 1, 10 and 30 min after injection. of the 11C 

tracer. 
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[11C]-RS 2315 brain uptake could not be decreased by administrating clorgyline or 

R-(-)-deprenyl. Surprisingly, a significantly higher brain uptake is observed at 30 

min p.i. both after MAO-A and MAO-B inhibition. The effect on the 

brain/blood ratio however is not significant. A raise in brain uptake also occurred 

at 1 min p.i. but since the blood activity increased as well, the brain/blood ratio 

was not affected. Peripherally, an increased liver uptake is observed at 1 min p.i. 

both after clorgyline (from 3.63 ± 0.56 % ID/g to 7.15 ± 3.02 % ID/g) and after 

R-(-)-deprenyl (from 3.63 ± 0.56 % ID/g to 7.81 ± 0.73 % ID/g) pretreatment. 

At 10 and 30 min p.i., a raise in intestinal activity (from 4.36 ± 1.68 % ID/g to 

7.84 ± 3.21 % ID/g after clorgyline pretreatment and to 5.74 ± 0.73 % ID/g 

after R-(-)-deprenyl pretreatment at 10 min p.i.) is seen, suggesting an enhanced 

hepatobiliary clearance after administration of clorgyline and R-(-)-deprenyl. This 

peripheral redistribution after pretreatment with clorgyline and R-(-)-deprenyl 

could be the reason of the observed higher brain uptake. Another possible 

hypothesis for the higher brain uptake is that clorgyline or R-(-)-deprenyl 

administration caused a shift in metabolism pattern. 

 

 
Figure 6.10 Brain uptake of [11C]-RS 2315 (A) and [11C]-RS 2360 (B) in control 

mice and in mice pretreated with clorgyline or (R)-(-)-deprenyl  

Values are expressed as % ID/g ± SD (n=3), * p < 0.05, student’s t-test 

 

At 1 min p.i., pretreatment with clorgyline resulted in a significant decrease in 

brain uptake of [11C]-RS 2360 (p = 0.02). (R)-(-)-deprenyl administration also 



11C labelled pyrrole-2-carboxamide derivatives for MAO-A imaging – Chapter 6 
 

 138 

lowered brain uptake but this decrease was not significant. This effect is in 

accordance with what we would expect from the in vitro properties (Ki = 1.7 nM 

for MAO-A and Ki = 30 nM for MAO-B). At 10 and 30 min p.i however, no 

effect of clorgyline or R-(-)-deprenyl pre-administration could be observed. In the 

peripheral organs, no clear effect of blocking MAO-A or MAO-B could be 

distinguished (data not shown).  

 

6.4.5. METABOLITE ANALYSIS 

 

Control experiments with spiked plasma and brain revealed extraction efficiencies 

of 96 ± 1 % for plasma and 93 % for brain samples for [11C]-RS 2315 and 93 ± 6 

% for plasma and 85 ± 6 % for brain samples for [11C]-RS 2360, respectively. 

Plasma and brain obtained from mice at 1, 10 and 30 min p.i. were analyzed by 

RP-HPLC to investigate the metabolism pattern of [11C]-RS 2315 and [11C]-RS 

2360 (Table 6.1).  

 

Table 6.1 Metabolic profile of [11C]-RS 2315 and [11C]-RS 2360 in NMRI mice 
  Retention time on RP-HPLC 

Tissue Time 2.5 min 4.5 min 10 min 
Plasma [11C]-RS-2315 1 min   > 96 % 

 10 min 55 ± 5 % 24 ± 5 % 21 ± 2 % 
 30 min 83 ± 1 % 8 % 9 ± 2 % 
     

Brain [11C]-RS-2315 1 min   > 99 % 
 10 min 10 ± 1 % 28 ± 4 % 62 ± 3 % 
 30 min 28 ± 5 % 19 ± 3 % 53 ± 7 % 
     

Plasma [11C]-RS-2360 1 min   > 99 % 
 10 min 64 ± 10 % 8 % 29 ± 10 % 
 30 min 75 ± 5 % 5 ± 1 % 21 ± 5 % 
     

Brain [11C]-RS 2360 1 min   > 99 % 
 10 min 10 ± 3 % 10 ± 1 % 81 ± 4 % 
 30 min 27 ± 4 % 8 % 66 ± 4 % 

Values are expressed as percent of total radioactivity ± SD (n=3) 
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RP-HPLC analysis of mouse plasma showed that [11C]-RS 2315 (Figure 6.11) was 

rapidly metabolized with only 21 ± 2 % parent compound remaining at 10 min 

p.i. All detected metabolites were more polar than the original radiotracer. The 

percentage of radioactivity in mouse brain extracts derived from unmetabolized 

[11C]-RS 2315 was > 99 % at 1 min p.i., 62 ± 3 % at 10 min p.i. and 53 ± 7 % at 

30 min p.i. respectively. 

 

 
Figure 6.11 Metabolite chromatogram of [11C]-RS 2315 at 10 min (A)  

and 30 min (B) p.i. 

Values are the mean of three experiments and are expressed as percent of total activity  
 

The relative percentage of intact [11C]-RS 2360 (Figure 6.12) in plasma as a 

function of time after injection was 29 ± 10 % at 10 min p.i and 21 ± 5 % at 30 

min p.i. HPLC analysis of the brain samples showed that 81 ± 4 % and 66 ± 4 % 

of the radioactivity existed of unchanged [11C]-RS 2360 at 10 and 30 min p.i. 

respectively. At 1 min p.i., no degradation products were found in plasma neither 

in brain. 
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Figure 6.12 Metabolite chromatogram of [11C]-RS 2360 at 10 min (A)  

and 30 min (B) p.i. 

Values are the mean of three experiments and are expressed as percent of total activity  
 

At all time points examined, the extent of metabolism was higher for [11C]-RS 

2315 than for [11C]-RS 2360. It seems quite likely that the hydrophilic degradation 

fragments with the retention time of 2.5 min were methanol, formaldehyde or 

formic acid; which were formed after demethylation of the radiotracer. The 

metabolite at 4.5 min could be the result of the breaking of the amide bond. In 

the case of [11C]-RS 2360, the metabolite could also be caused by hydroxylation 

on the phenyl group.  

 

6.4.6. PET SCANS 

 

The results shown in Figure 6.13 illustrate that for [11C]-RS 2360 an overall 

significant inhibition by clorgyline of 30 % can be concluded when compared to 
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injection of physiological saline (p = 0.006). An inhibition of 16 % by R-(-)-

deprenyl is noticeable, albeit not significant (p = 0.07). These observations 

indicated that [11C]-RS 2360 is more selective towards MAO-A than to MAO-B 

which is in accordance with the in vitro determined Ki values. When we investigate 

the influence of clorgyline pretreatment at each time frame separately, a 

significant inhibition is observed at the first 5 time frames but not at the latter 

three time frames. R-(-)-deprenyl administration caused no significant inhibition 

of brain uptake at any of the separate time frames. These observations are in 

accordance with those of the blocking study. The impossibility to show specificity 

towards MAO-A at the latter time points could be due to the extensive 

metabolism of [11C]-RS 2360.  
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Figure 6.13 Results for the PET imaging experiments  

Values are the mean of four experiments 

 

6.5. Conclusion 

 

The radiosynthesis of both radiotracers was achieved by nucleophilic substitution 

of the desmethyl precursor with 11CH3I in the presence of TBAH. After HPLC 
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purification, the radiochemical yields were 28 ± 4 % and 30 ± 6 % for [11C]-RS 

2315 and [11C]-RS 2360, respectively and radiochemical purity appeared > 98 % 

for both radiotracers. The authenticity of the tracers was determined by co-

elution with the non-radioactive reference compound. Specific activity ranged 

from 25 – 92 GBq/µmol (0.68 – 2.49 Ci/µmol) for [11C]-RS 2315 and 41 – 106 

GBq/µmol (1.11 – 2.87 Ci/µmol) for [11C]-RS 2360. For the duration of the 

experiments, [11C]-RS 2315 as well as [11C]-RS 2360 remained stable. The 

determined log D7.4 of 1.65 ± 0.19 for [11C]-RS 2315 was slightly higher than the 

log D7.4 of [11C]-RS 2360 (1.48 ± 0.04) as expected when comparing the chemical 

structures. Both values are suitable for brain penetration. 

Upon intravenous administration, high initial levels of activity were observed in 

mouse brain indicating an excellent passage through the BBB of both [11C]-RS 

2315 and [11C]-RS 2360. The brain activity diminished very quickly and at 10 min 

p.i. for [11C]-RS 2315 and 30 min p.i. for [11C]-RS 2360 brain activity did no 

longer exceeded blood activity. Metabolism studies revealed that at 1 min p.i. 

almost no degradation occurred neither in plasma or brain. At 10 and 30 min p.i., 

[11C]-RS 2315 and [11C]-RS 2360 were extensively metabolized in plasma and 

remained more stable in brain. At all time points examined, the extent of 

metabolism was greater for [11C]-RS 2315 than for [11C]-RS 2360. The blocking 

study failed to proof specificity of [11C]-RS 2315 at all time points. [11C]-RS 2360 

showed specificity towards MAO-A at 1 min p.i. At 10 and 30 min p.i however, 

no effect of clorgyline pretreatment could be observed. The absence of selectivity 

at the later time points might be explained by the appearance of metabolites in 

the brain. Administration of R-(-)-deprenyl had no significant effect on the brain 

uptake of [11C]-RS 2360. In the imaging study with [11C]-RS 2360, administration 

of R-(-)-deprenyl caused a decreased brain uptake although this effect is not 

significant. Clorgyline pretreatment on the other hand, showed an overall 

significant reduced uptake of [11C]-RS 2360 indicating specific binding at MAO-

A. These observations indicate that [11C]-RS 2360 is more selective towards 
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MAO-A than to MAO-B which is in accordance with the in vitro determined Ki 

values. 

Based on these results, we can conclude that [11C]-RS 2315 is not suitable for 

visualization of MAO-A in vivo. [11C]-RS 2360 on the other hand might have 

potential for mapping MAO-A when PET scan is performed directly after 

injection of the tracer. Further studies are necessary to evaluate the potential role 

of [11C]-RS 2360 in MAO-A imaging in humans. It is possible that the 

metabolism pattern in humans is different from that obtained in rodents. 

Therefore it is useful to compare the metabolism pattern of [11C]-RS 2360 in 

whole rodent blood spiked with [11C]-RS 2360 with the metabolism in whole 

human blood spiked with [11C]-RS 2360 to have an initial notion about the 

difference in metabolism in humans and rodents. A slower metabolism in 

humans could result in improved selectivity at later time points.  
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Chapter 7 
 

Synthesis, radiosynthesis and in vivo evaluation of 

[123I]-FMIP for imaging the dopamine transporter 
 

7.1. Abstract 

 

Aim: 4-(2-(Bis(4-fluorophenyl)methoxy)ethyl)-1-(4-iodobenzyl)piperidine (FMIP) 

has nanomolar affinity for DAT and better selectivity over the other monoamine 

transporters compared to the already existing ligands for DAT imaging with 

SPECT. The aim of this study was to synthesize and evaluate the usefulness of 

[123I]-FMIP as an in vivo tracer for DAT. 

Methods: [123I]-FMIP was synthesized by electrophilic destannylation. 

Biodistribution, blocking and metabolite studies of [123I]-FMIP were performed in 

male NMRI mice whereas a more detailed brain dissection was done in male 

Sprague-Dawley rats.  

Results: The tributylstannyl precursor was synthesized with an overall yield of 

approximately 25 %. The mean radiochemical yield of [123I]-FMIP was 40 ± 10 % 

and after purification, the radiochemical purity appeared to be > 98 %. The 

specific activity of the compound was at least 667 GBq/µmol. Biodistribution 

studies showed brain uptake of 0.96 ± 0.53 % ID/g at 0.5 min p.i. and 0.26 ± 0.02 

% ID/g at 180 min p.i. High blood activity was observed at all time points. 

Blocking studies indicated no selectivity of [123I]-FMIP towards DAT. A 

metabolite study demonstrated that in brain, over 80 % was present as intact [123I]-

FMIP at 60 min p.i. In rats, regional brain distribution of [123I]-FMIP was not in 

agreement with DAT localization demonstrating lack of selectivity towards DAT. 

Conclusion: These results indicate that [123I]-FMIP is not suitable for mapping DAT 

in vivo. 
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7.2. Introduction 

 

It has been demonstrated that DAT neuroimaging is useful in PD diagnosis, 

providing information on the integrity of the dopaminergic neurotransmission 

system in vivo (Poewe and Sherfler, 2003; Dhawan and Eidelberg, 2001; Shih et al., 

2006). Because of the crucial role of DAT in the etiology of PD as well as other 

neurological disorders and addiction, several DAT ligands have been developed for 

in vivo SPECT imaging (Volkow et al., 1996; Elsinga et al., 2006). These ligands all 

share the same problem of being not selective towards SERT. The commercially 

available [123I]-FP-CIT (DaTSCAN, GE Healthcare, Little Chalfont, UK) has a Ki 

value of 3.5 nM for DAT, 0.11 nM for SERT and 63 nM for NET, indicating lack 

of selectivity for DAT (Neumeyer et al., 1991; 1996; Scheffel et al., 1997). Other 

drawbacks of [123I]FP-CIT are the lack of good in vivo kinetics and the formation of 

4 labelled metabolites in plasma (Bergstrom et al., 1996; Emond et al., 1997). 

Another investigated DAT radioligand, [123I]PE2I, has Ki values of 17 nM, 500 nM 

and over 1000 nM, for DAT, SERT and NET respectively so a SERT/DAT 

selectivity of 29 was calculated. Another disadvantage of [123I]PE2I is in vivo 

deiodination of the iodo vinyl group (Guilloteau et al., 1997). These shortcomings 

indicate that there is still a need for selective radioligands for DAT. 

 

A study by Boos et al. (2006) has concentrated on the development of novel 

analogues of 1-(2-(bis(4-fluorophenyl)methoxy)ethyl)-4-(3-phenylpropyl)piperazine 

(GBR 12909). GBR 12909 (Figure 7.1) is a high affinity, selective, long-lasting 

inhibitor of dopamine reuptake and a noncompetitive blocker of DAT in rats (van 

der Zee et al., 1980; Rothman et al., 1991). The newly developed analogues were 

pharmacologically evaluated to identify ligands with varying transporter affinity 

and selectivity. 
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Figure 7.1 Structure of GBR 12909 

 

For the compound investigated in this study, 4-(2-(bis(4-

fluorophenyl)methoxy)ethyl)-1-(4-iodobenzyl)piperidine (FMIP), they reported Ki 

values of 1.9 nM for DAT, 205 nM for SERT and 4110 nM for NET. These values 

indicate that FMIP has good in vitro selectivity over the other monoamine 

transporters (108 for SERT/DAT and 2163 for NET/DAT). Compared to 

[123I]FP CIT and [123I]PE2I, the in vitro properties of FMIP are promising. We 

therefore evaluated the potential of [123I]-FMIP as a suitable tracer for DAT in vivo 

(Figure 7.2).  

 

 
 

Figure 7.2 Structure of [123I]-FMIP 
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In this Chapter we present the synthesis of the precursor and reference molecule. 

The radiosynthesis of [123I]-FMIP, along with its purification, quality control, log 

D7.4, stability and specific activity is reported. [123I]-FMIP is evaluated in vivo in 

NMRI mice. Metabolic assays are performed on blood and brain of NMRI mice. 

The selectivity of [123I]-FMIP towards DAT is investigated by a regional brain 

distribution in Sprague-Dawley rats and a blocking study in NMRI mice.  

 

7.3. Materials & Methods 

 

7.3.1. ORGANIC SYNTHESIS 

 

The starting material, 4-(2-(bis(4-fluorophenyl)methoxy)ethyl)piperidine (1), was 

described and synthesized by Boos et al. (2006). All melting points (m.p.) were 

determined on a Thomas–Hoover melting point apparatus and are uncorrected. 

The 1H NMR spectra were recorded on a Varian XL-300 instrument with DMSO-

d6 as solvent, δ values were recorded in ppm (TMS as internal standard), J (Hz) 

assignments of 1H resonance coupling were done. Electron ionization (EI) mass 

spectra were obtained using a VG-Micro Mass 7070F mass spectrometer. TLC was 

performed on 250 mm Analtech GHLF silica gel plates. Visualization was 

accomplished under UV at 254 nm. Elemental analyses were performed by 

Atlantic Microlabs, Inc. (Norcross, GA).  

 

7.3.1.1. (4-(2-(Bis(4-fluorophenyl)methoxy)ethyl)piperidin-1-yl)(4-hydroxyphenyl)-

methanone (2) 

 

A solution of 4-hydroxybenzoic acid (2.0 g, 14.5 mmol) and N-

hydroxybenzotriazole  (1.9 g, 13.3 mmol) in CH2Cl2 (200 mL) was stirred for 15 

min, prior to the addition of 4-(2-(bis(4-fluorophenyl)methoxy)ethyl)piperidine (1) 

(4.0 g, 12.1 mmol) and 1-ethyl-3-(3'-dimethylaminopropyl)carbodiimide 

hydrochloride (5.1 g, 26.6 mmol). The solution was stirred for 96 h after wich the 
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solvent was removed under reduced pressure. The semi-solid was dissolved in 

ethyl acetate (250 mL) and the organic layer was washed with 1 M HCl (250 mL), 

10 % potassium carbonate (250 mL), and brine (250 mL). The organic layer was 

dried over anhydrous Na2SO4 and the solvent was removed under reduced 

pressure. TLC analysis (9:1 (v:v) – CHCl3:MeOH) identified a small amount of 

unreacted starting material not removed in the acid washing. Flash 

chromatography provided two compounds that co-migrated in the 9:1 (v:v) – 

CHCl3:MeOH solvent system. Both compounds were dried under high vacuum 

and underwent alane reduction without further purification. 

 

7.3.1.2. 4-((4-(2-(Bis(4-fluorophenyl)methoxy)ethyl)piperidin-1-yl)methyl)phenol (3) 

 

To a flame dried flask, lithium aluminiumhydride (1.3 g, 33 mmol) was added and 

cooled to 0°C under argon. THF (10 mL) was added drop-wise while stirring. 

Upon the completion of the addition of THF, sulphuric acid (1.1 g, 17 mmol) in 

THF (10 mL) was added drop-wise. The solution was stirred at 0°C for 45 min. To 

the ice-cold solution was added 2 (3.0 g, 6.6 mmol) in THF (10 mL). The solution 

was stirred for an additional 15 min at 0°C, then allowed to warm to room 

temperature and stirred for 2 h. 10 % NaOH (200 mL) and ethyl acetate (75 mL) 

were added to the solution. The layers were separated and the aqueous layer was 

further extracted with ethyl acetate (2 x 75 mL). The organic extracts were 

combined and washed with H2O (200 mL) and brine (200 mL). The organic layer 

was dried over anhydrous Na2SO4 and the solvent was removed under reduced 

pressure to yield 3 as a solid. TLC analysis identified a small quantity of starting 

material.  The solid was dissolved in ether and 1.1 equivalent of oxalic acid was 

added.  2.6 g (5.9 mmol) of 3 as the oxalate salt was obtained. The yield of the 

reaction was 89 %. 
1H NMR (DMSO-d6, 300 MHz): δ 6.7 - 7.4 (m, 12H, ar); 5.5 (s, 1H, CH-O); 3.8 

(bs, 2H, CH2NH); 3.0-3.4 (m, 4H); 2.5-2.9 (m, 3H); 1.3-1.7 (m, 6H). HRMS (EI) 

calcd for C27H30F2NO2 m/z, 438.2245; found 438.2243. Anal. calcd for 
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C27H29F2NO2.0.5 C2H2O4: C, 69.69; H, 6.27; N, 2.90. Found: C, 69.17; H, 6.21; N, 

2.88. m.p.  198-199.5oC. Rf= 0.53 (9:1-CHCl3:MeOH). 

 

7.3.1.3. 4-((4-(2-(Bis(4-fluorophenyl)methoxy)ethyl)piperidin-1-yl)methyl)phenyltrifluoro-

methanesulfonate (4) 

 

N-Phenyltriflouromethanesulfonimide (1.4 g, 3.8 mmol), 3 (1.3 g, 3.0 mmol) and 

N,N-diisopropylethylamine (1.0 mL, 6.0 mmol) were combined in CH2Cl2 (20 mL) 

and stirred under argon, overnight. To the solution was added H2O (50 mL) and 

CH2Cl2 (50 mL). The organic layer was separated and subsequently washed with a 

10 % NaHCO3 solution, H2O (50 mL) and brine (50 mL). The organic layer was 

dried over anhydrous Na2SO4 and the solvent was removed under reduced 

pressure. After chromatography on silica gel using 9:1 (v:v) - CHCl3:MeOH as 

solvent system, 4 was obtained as a clear oil 1.5 g (2.6 mmol). The yield of the 

reaction was 87 %. 
1H NMR (DMSO-d6, 300 MHz): δ 7.0 - 7.4 (m, 12H, ar); 5.5 (s, 1H, CH-O); 4.0 (s, 

2H, CH2NH); 3.2-3.4 (m, 4H); 3.1(m, 2H); 1.2-1.7(m, 7H). HRMS (EI) calcd for 

C28H29F2NO4S m/z, 570.1737; found 570.1738. Anal. calcd for C28H28F2NO4S.2 

H2O: C, 55.53; H, 5.32; N, 2.31. Found: C, 55.71; H, 5.27; N, 2.31. 

 

7.3.1.4. 4-(2-(Bis(4-fluorophenyl)methoxy)ethyl)-1-(4-(tributylstannyl)benzyl)piperidine (5) 

 

1.1 g (1.9 mmol) of 4 was dissolved in anhydrous dioxane (15 mL) and to the 

solution was added bis(tributyltin) (1.5 g, 2.5 mmol). Under argon, lithium chloride 

(0.2 g, 5.7 mmol), tetrakis(triphenylphosphine)palladium (0.7 g, 0.06 mmol) and a 

catalytic amount of 2,6-di(tert)-butyl-4-methylphenol were added. The solution was 

heated to reflux and stirred overnight. The reaction was quenched upon the 

addition of ethyl acetate (50 mL) and a 10 % aqueous NaOH solution (50 mL). 

The organic layer was filtered through a pad of celite. The filtrate was washed with 

H2O (50 mL) and brine (50 mL). The organic layer was dried over anhydrous 
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Na2SO4. Chromatography with 7:3 (v:v) - hexane:ethyl acetate as solvent system 

provided 0.46 g (0.6 mmol) of 5 as a chromatographically pure, clear oil. The 

reaction yield was 68 %.  
1H NMR (DMSO-d6, 300 MHz): δ 7.1 - 7.4 (m, 12H, ar); 5.5 (s, 1H, CH-O); 3.3-

3.4 (m, 8H); 0.8-1.5(m, 30H). HRMS (EI) calcd for C39H56F2NOSn m/z, 712.3352; 

found 710.3344. Anal. calcd for C39H55F2NOSn.0.5 H2O: C, 65.09; H, 7.84; N, 

1.95. Found: C, 64.83; H, 7.81; N, 1.95. 

 

7.3.1.5. 4-(2-(Bis(4-fluorophenyl)methoxy)ethyl)-1-(4-iodobenzyl)piperidine (FMIP) 

 

To a solution of 1 (0.5 g, 1.4 mmol) and potassium carbonate (0.6 g, 4.2 mmol) in 

DMF (15 mL) was added a catalytic amount of NaI and 4-iodobenzyl bromide (0.5 

g, 1.5 mmol). The solution was stirred overnight. TLC analysis identified no 

remaining starting material and the solution was poured into H2O (200 mL) and 

extracted with ethyl acetate (3 x 100 mL). The combined extracts were washed 

with H2O (2 x 200 mL) and brine (200 mL). The organic layer was dried over 

anhydrous Na2SO4 and the solvent was removed under reduced pressure. The 

resulting oil was dissolved in EtOH (50 mL) and 1.1 equivalent of oxalic acid in 

EtOH was added. Upon cooling, crystals were formed and an additional 

recrystallization provided 0.4 g (0.7 mmol) of a FMIP oxalate as white solid. The 

reaction proceeded with a yield of 50 %. 

 1H NMR (DMSO-d6, 300 MHz): δ 7.1 - 7.8 (m, 12H, ar); 5.5 (s, 1H, CH-O); 4.0 

(bs, 2H, CH2NH); 3.1-3.5 (m, 4H); 2.5-2.7 (m, 3H); 1.2-1.8 (m, 6H). HRMS (ESI) 

calcd for C27H29IF2NO m/z, 548.1262; found 548.1264. Anal. calcd for 

C27H28IF2NO·C2H2O4: C, 54.64; H, 4.74; N, 2.20. Found: C, 54.37; H, 4.95; N, 

2.18. m.p. 157-158 °C. 
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7.3.2. RADIOCHEMISTRY 

 

[123I]-4-(2-(Bis(4-fluorophenyl)methoxy)ethyl)-1-(4-iodobenzyl)piperidine ([123I]-

FMIP) was prepared by electrophilic radioiododestannylation of 5. Briefly, EtOH 

(50 µL), glacial acetic acid (8 µL), chloramine-T (1.0 µmol, 300 µg in 15 µL 

deionized H2O) and n.c.a. [123I]NaI (37 MBq in 10 µL 0.05 M NaOH) were added 

to a reaction vial containing 5 (200 µg, 0.281 mmol). The mixture was allowed to 

react for 10 min at ambient temperature. The reaction was quenched by adding 

sodium metabisulfite (1.6 µmol, 300 µg in 15 µL deionized H2O). Purification was 

performed by HPLC on a Apollo C18 column (250 mm x 4.6 mm, 5 µm) using 

90:10:0.1 (v:v) - MeOH:H2O:NH4OH as solvent system at a flow rate of 1 

mL/min.  [123I]-FMIP eluted with a retention time of 24-25 min. The collected 

fraction was diluted with sterile water and concentrated on an activated C18 Sep-

pak cartridge (Alltech Maxi-Clean Prevail C18). [123I]-FMIP was eluted from the 

Sep-pak with 1 ml EtOH. Finally the EtOH was diluted with isotonic saline to 

obtain an injectable solution (< 10 % (v:v) EtOH). 

 

7.3.3. IN VITRO CHARACTERIZATION 

 

The radioanalytical data were obtained by injection of 100 µL test solution on a RP 

analytical HPLC (Alltima C18, 250 mm x 4.6 mm, 5 µm) using 91:9:0.1 (v:v) - 

MeOH:H2O:NH4OH as mobile phase at a 1 mL/min flow rate. 

Radiochemical purity and identity were determined by co-injection of an aliquot of 

[123I]-FMIP (after Sep-pak purification) with authentic cold reference product 

(FMIP).  

To test the in vitro stability, [123I]-FMIP was maintained in 0.01 M PBS (pH 7.4) and 

in the injection solution, at room temperature. After 24 h, [123I]-FMIP was 

analyzed by HPLC. 

For calculating specific activity, a calibration curve between 10 x 10-3 µM and 0.1 x 

10-3 µM and subsequently a more detailed calibration curve between 0.5 x 10-3 µM 
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and 0.1 x 10-3 µM was obtained. Log D7.4 was determined according to the method 

described in Chapter 4. 

 

7.3.4. BIODISTRIBUTION STUDY 

 

Male NMRI mice of 4 - 6 weeks old, weighing 22 - 30 g were injected in a tail vein 

with 200 µL 8:92 (v:v) - EtOH:physiological saline containing approximately 185 

kBq (5 µCi) of [123I]-FMIP. The mice were awake during the injection. At various 

time points p.i. mice (n=3 for each time point) were sacrificed under isoflurane 

anaesthesia and dissected. Blood, urine and organs were removed, weighed and 

counted for radioactivity in a gamma counter. To remove adhering blood, all 

organs were rinsed with water prior to weighing and counting. For calculation of 

the injected dose, five aliquots of the injection solution were weighed and counted 

for activity. Results are decay corrected and expressed as % ID/g ± SD. 

 

7.3.5. REGIONAL BRAIN DISTRIBUTION STUDY 

 

Male rats (250 - 300 g, Sprague-Dawley) were injected in a tail vein with 7.4 MBq 

(200 µCi) of [123I]-FMIP dissolved in 300 µL 8:92 (v:v) – EtOH:physiological 

saline. The rats were awake during the injection. At 10, 30, 60, 180 or 360 min, 

animals (n=3 for each time point) were sacrificed by i.v. injection of T61. Blood 

was taken and the brain was removed and dissected. Blood samples and the 

different brain parts were weighed and counted for radioactivity with a gamma 

counter. For calculation of the injected dose, five aliquots of the injection solution 

were weighed and counted for activity. Results are decay corrected and are 

expressed as % ID/g ± SD. 
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7.3.6. BLOCKING STUDY 

 

To determine the specific tissue uptake of the labelled compound, blocking studies 

were performed in male NMRI mice of 4 - 6 weeks old, weighing approximately 25 

g. Prior to tracer injection, mice received a tail vein injection of 150 µl (95:5 – 

physiological saline:EtOH) containing a selective ligand (5 mg/kg) for respectively 

the DAT (GBR 12909), SERT (citalopram) or NET (reboxetine mesylate). The 

control group received a tail vein injection of 150 µl (95:5 – physiological 

saline:EtOH) without ligand. After 20 min, the mice were injected with 

approximately 185 kBq (5 µCi) of [123I]-FMIP dissolved in 100 µl 

EtOH:physiological saline solution (8:92). The mice were awake during the 

injections. The animals (n=3 for each time point) were sacrificed at 2, 5, 60 or 180 

min p.i. All tissues were treated as previously described. For calculation of the 

injected dose, five aliquots of the injection solution were weighed and counted for 

activity. The concentration of radioactivity in tissues is decay-corrected and 

expressed as % ID/g ± SD. Statistical analysis was performed using one-sided, 

unpaired student’s t-test. Only p-values < 0.05 are considered significant. 

 

7.3.7. PLASMA BINDING 

 

Plasma protein binding was determined according to literature procedures 

(Gandelman et al., 1994; Fowler et al., 2007). In brief, a known amount of 

radiotracer (37 kBq (1 µCi)) was added to 500 µL mouse plasma and the mixture 

was incubated for 10 min at room temperature. Three aliquots (30 µL) of spiked 

plasma were counted for radioactivity. The remaining plasma was transferred onto 

a Centrifree device with a nominal molecular weight limit of 30 kDa (Amicon inc, 

Millipore) and centrifuged for 15 min at 4000 g. The top part of the Centrifree 

tube was discarded, and 3 aliquots (30 µL) of the solution remaining in the bottom 

cup (unbound fraction) were counted for radioactivity. The plasma protein binding 
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was determined by calculating the free fraction as the ratio of the counts of filtered 

aliquot to the counts of non-centrifuged aliquot. 

 

7.3.8. METABOLITE ANALYSIS 

 

200 µL 92:8 (v:v) - Isotonic saline:EtOH containing 1.85 - 3.7 MBq (50 – 100 µCi) 

[123I]-FMIP was injected in a tail vein of awake male NMRI mice (5 - 7 weeks old, 

weighing 25 - 30 g). At 10 or 60 min p.i., the mice (n=3 for each time point) were 

sacrificed and blood and brain were taken and treated as described in Chapter 4. 

HPLC analysis was performed using a RP C18 HPLC column (Econosphere C18 

250 mm x 10 mm, 10 µm) attached to a precolumn (Alltima C18 33 mm x 7 mm, 10 

µm) with 91:9:0.1 (v:v) methanol:H2O:NH4OH as solvent system at a flow rate of 

6 mL/min.  

 

7.3.9. BLOOD-BRAIN BARRIER TRANSPORT INHIBITION STUDY 

 

To investigate if the low brain uptake of [123I]-FMIP is due to P-gp interference, a 

biodistribution study with pretreatment of the mice with CsA was performed. A 50 

mg/kg dose and a 30 min time period between CsA and tracer injection has been 

reported to inhibit the efflux action of P-gp pumps in rodent brain (Ishiwata et al., 

2007). Male NMRI mice with a body mass of approximately 25 g (n=3 for each 

time point) were i.v. injected with either 50 mg/kg CsA (test group) or the same 

volume of physiological saline (control group). After 30 min, [123I]-FMIP (185 kBq 

(5 µCi), 150 µL) was injected via a tail vein. The mice were awake during the 

injections. The mice were sacrificed and dissected at 2, 60 or 180 min p.i. of [123I]-

FMIP. Blood and organs were weighed and counted for radioactivity. TO remove 

adhering blood, all organs were rinsed with water prior to weighing and counting. 

For calculation of the injected dose, five aliquots of the injection solution were 

weighed and counted for activity. Results are decay-corrected and expressed as % 
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ID/g ± SD. Statistical analysis was performed using one-sided, unpaired student’s 

t-test. Only p-values < 0.05 are considered significant. 

 

7.3.10. REGIONAL BRAIN DISTRIBUTION AFTER CSA PRETREAMENT 

 

Male rats (250 - 300 g, Sprague-Dawley) were injected in a tail vein with 7.4 MBq 

(200 µCi) of [123I]-FMIP dissolved in 300 µL 8:92 (v:v) – EtOH:physiological 

saline. 30 min prior to tracer injection, a solution of 50 mg/kg CsA (test group) or 

physiological saline (control group) was administered intravenously. At 30, 60, 180 

and 360 min after [123I]-FMIP injection, animals (n=3 for each time point) were 

sacrificed by intravenous injection of T61. Blood was taken and the brain was 

removed and dissected. Blood samples and the different brain parts were weighed 

and counted for radioactivity with a gamma counter. For calculation of the injected 

dose, five aliquots of the injection solution were weighed and counted for activity. 

Radioactivity is decay corrected and results are expressed as % ID/g ± SD. 

Statistical analyses were performed using the one-side unpaired student’s t test. A 

p-value < 0.05 is interpreted as statistically significant. 

 

7.4. Results & Discussion 

 

7.4.1. ORGANIC SYNTHESIS 

 

As mentioned in Chapter 4, iodination can be accomplished by electrophilic as well 

as nucleophilic substitution. Several attempts to produce [123I]-FMIP by 

nucleophilic substitution failed due to the unefficient radiochemical yield. In order 

to radiosynthesize [123I]-FMIP by elctrophilic substitution, the synthesis of the 

tributylstannyl precursor was necessary.  
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7.4.1.1. Precursor synthesis 

 

The precursor molecule was synthesized in four steps as is depicted in Figure 7.3. 

The starting material 1 was prepared by Boos et al. (2006).  

 

 
Figure 7.3 Synthesis of the tributylstannylprecursor 5 

Reagents: (a) 4-hydroxybenzoic acid, N-hydroxybenzotriazole, 1-ethyl-3-(3'-

dimethylaminopropyl)carbodiimide, CH2Cl2; (b) lithiumaluminiumhydride, sulphuric acid, 

THF; (c) N-phenyltriflouromethanesulfonimide, N,N-diisopropylethylamine, CH2Cl2; (d) 

bis(tributyltin), tetrakis(triphenylphosphine)palladium, lithium chloride, dioxane 

 

The most direct route to the tributylstannyl precursor is generally a palladium 

catalyzed stannylation using hexabutyldistannane and tetrakis(triphenylphosphine)-

palladium where a bromine-atom is replaced by a tributylstannyl group. Several 

attempts to synthesize 5 by this route were unsuccessful, requiring another route. 

It was found that the triflate analogue was a suitable substrate for the Stille 

coupling. In this way, the tributylstannyl precursor 5 was synthesized starting from 

1 through the triflate intermediate in an overall yield of 25 %. First, the secondary 

cyclic amine 1 was coupled with 4-hydroxybenzoic acid, resulting in 2 which was 

used without further purification. Reduction of 2 yielded the tertiary amine 3 (89 
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%). The hydroxyl function of 3 was converted into the triflate (87 %), making it a 

better leaving group. Finally, the precursor molecule was obtained by replacing the 

triflate by tributylstannyl using bis(tributylstannane) (68 %). 

 

7.4.1.2. Synthesis of FMIP 

 

Nucleophilic substitution of 1 yielded the cold iodinated product FMIP in a yield 

of 50 % (Figure 7.4). FMIP is required as reference compound in HPLC analysis. 

 

 
Figure 7.4 Synthesis of 4-(2-(bis(4-fluorophenyl)methoxy)ethyl)-1-(4-

iodobenzyl)piperidine 

 

7.4.2. RADIOSYNTHESIS 

 

[123I]-FMIP was obtained in a radiochemical yield of 40 ± 10 % by electrophilic 

iododestannylation of the tributylstannyl precursor 5 (Figure 7.5).  

 

 
Figure 7.5 Radiosynthesis of [123I]-FMIP 
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7.4.3. IN VITRO CHARACTERIZATION 

 

The radiolabelled compound [123I]-FMIP was co-injected with the cold compound.  

Similar retention times were observed for [123I]-FMIP and FMIP, confirming the 

identity of the synthesized product (Figure 7.6). The average radiochemical purity 

of [123I]-FMIP was found to be > 98 %. After 24 h, the radiochemical purity of 

[123I]-FMIP remained higher than 95 % both in PBS buffer and in the injection 

solution.  

 
Figure 7.6 HPLC chromatogram of [123I]-FMIP and FMIP co-injection 

The upper part of the figure shows the UV-chromatogram, the radiochromatogram is 

shown in the lower part. 

 

Since no UV-signal was observed for the amount of [123I]-FMIP synthesized, the 

detection limit was used for calculation of the specific activity. Using the described 
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radioanalytical method, the detection limit for [123I]-FMIP was 1.5 x 10-6 M. 

Specific activity appeared to be at least 667 GBq/µmol (18 Ci/µmol). 

 

An ideal log D7.4 value for brain radiotracers is between 1.5 and 3.5 (Waterhouse, 

2003). The determined log octanol/PBS partition coefficient was found to be 1.42 

± 0.12, which is suitable for brain penetration. 

 

7.4.4. BIODISTRIBUTION STUDY 

 

Results of the biodistribution study are shown in Table 7.1. Radioactivity 

concentrations for [123I]-FMIP in blood and brain of NMRI mice are shown in 

Figure 7.7. Uptake of the tracer in mouse brain was demonstrated with a maximum 

value of 0.96 ± 0.53 % ID/g in brain at 0.5 min p.i. The tracer was rapidly cleared 

out of the blood. At all time points, blood activity remained higher than brain 

activity.  

 
Figure 7.7 Blood-brain distribution of [123I]-FMIP in male NMRI mice  

Values are expressed as % ID/g ± SD (n=3) 

 

Other organs with high tracer uptake were heart (11.14 ± 3.79 % ID/g at 0.5 min 

p.i.) and lungs (43.27 ± 15.46 % ID/g at 0.5 min p.i.). The heart and lungs are the 
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first organs that are passed by the blood flow after intravenous injection of the 

radiotracer in the blood. The radioactivity uptake in these organs is therefore 

probably a reflection of the blood pool radioactivity. Since radioactivity uptake in 

stomach is low (1.33 ± 0.55 % ID/g at 0.5 min p.i.) and does not change between 

the various time points (1.06 ± 0.08 % ID/g at 180 min p.i.), [123I]-FMIP is 

probably not sensitive to dehalogenation in vivo. 

High uptake was seen in liver (11.43 ± 4.53 % ID/g at 20 min p.i.), kidneys (4.91 

± 2.14 %ID/g at 0.5 min p.i.) and urine (data not shown) and uptake in the 

intestines was low, suggesting mainly urinary and no biliary clearance of [123I]-

FMIP during the investigated timeframe. 

 

 

 



 

  

Table 7.1 Tissue uptake of radioactivity in male NMRI mice at various time points following i.v. administration [123I]-FMIP 
Time (min) 

 0.5 1 2 3 5 10 20 40 60 120 180 300 

Blood 11.14 ± 
2.28 8.95 ± 3.97 3.02 ± 0.96 1.73 ± 0.65 1.01± 0.35 0.99 ± 0.45 0.67 ± 0.24 0.50 ± 0.11 0.30 ± 0.11 0.31 ± 0.01 0.37 ± 0.02 0.22 ± 0.05 

Brain 0.96 ± 0.53 0.41± 0.11 0.26± 0.08 0.21 ± 0.07 0.14 ± 0.02 0.23 ±0.07 0.22 ±0.07 0.21 ± 0.04 0.13 ±0.04 0.20 ± 0.06 0.26 ± 0.02 0.16 ± 0.06 

Heart 11.14 ± 
3.79 5.48 ± 1.29 4.91± 0.59 4.54 ± 2.12 3.20 ±1.22 5.01 ±1.36 4.24 ±1.01 2.35 ± 0.72 1.15 ±0.36 0.96 ± 0.23 1.06 ± 0.14 0.71 ± 0.23 

Lungs 43.27 ± 
15.46 20.03 ± 1.3 14.32 ± 1.54 17.51 ± 8.73 11.80 ± 3.42 13.37 ± 6.75 9.12 ±7.17 5.70 ±1.44 3.87 ±1.35 3.66 ± 1.13 3.73 ± 0.51 2.23 ± 1.03 

Stomach 1.33 ± 0.55 0.81± 0.17 0.83 ± 0.25 1.11 ± 0.47 0.50 ± 0.12 0.94 ± 0.29 0.85 ± 0.02 1.65 ± 1.15 0.61 ± 0.28 0.67 ± 0.27 1.06 ± 0.08 0.88 ± 0.52 

Spleen 3.23 ± 1.45 2.42 ± 0.56 3.85 ± 1.78 6.34 ± 3.87 4.23 ± 1.43 6.61 ± 0.69 5.99 ± 1.36 3.84 ± 1.66 1.85 ± 0.82 2.08 ± 0.5 2.46 ± 0.84 1.77 ± 0.74 

Liver 4.91 ± 2.97 3.53 ± 0.86 5.04 ± 1.06 5.17 ± 2.04 3.99 ± 1.17 9.03 ± 1.8 11.43 ± 4.53 10.09 ± 2.76 8.10 ± 4.27 10.30 ± 3.02 14.20 ± 4.35 8.70 ± 4.28 

Kidneys 4.91 ± 2.14 3.67± 0.85 3.61 ± 1.05 3.97 ± 1.91 2.76 ± 0.87 4.65 ± 0.3 4.46 ± 1.04 3.55 ± 1.11 2.53 ± 1.35 2.88 ± 0.79 3.00 ± 0.86 2.09 ± 0.86 

Small 
intestine 0.68 ± 0.28 0.49± 0.06 0.53 ± 0.2 0.65 ± 0.21 0.35 ± 0.06 0.74 ± 0.12 0.71 ± 0.21 0.69 ± 0.03 0.48 ± 0.24 0.80 ± 0.15 1.20 ± 0.13 0.91 ± 0.49 

Large 
intestine 0.37 ± 0.16 0.25± 0.03 0.24 ± 0.07 0.29 ± 0.12 0.16 ± 0.05 0.38 ± 0.11 0.28 ± 0.11 0.31 ± 0.06 0.20 ± 0.09 0.36 ± 0.11 0.63 ± 0.22 0.69 ± 0.28 

Bladder 1.25 ± 0.65 0.73± 0.08 0.64 ± 0.1 0.68 ± 0.28 0.63 ± 0.28 0.82 ± 0.15 0.85 ± 0.04 1.01 ± 0.32 0.95 ± 0.34 1.34 ± 0.73 1.64 ± 0.54 0.93 ± 0.15 

Pancreas 1.54 ± 055 1.05± 0.25 1.08 ± 0.21 1.45 ± 0.96 0.1 ± 0.98 1.54 ± 0.18 1.5 ± 0.33 1.19 ± 0.73 1.05 ± 0.42 1.68 ± 0.28 2.4 ± 0.34 2.54 ± 1.14 

Muscle 0.91 ± 0.28 0.57± 0.13 0.75 ± 0.09 0.84 ± 0.15 0.66 ± 0.19 1.30 ± 0.58 0.88 ± 0.07 0.88 ± 0.21 0.61 ± 0.26 0.65 ± 0.17 0.75 ± 0.03 0.38 ± 0.11 

Fat 0.93 ± 0.15 0.85± 0.62 0.85 ± 0.34 4.27 ± 5.57 0.72 ± 0.43 0.81 ± 0.38 0.76 ± 0.27 1.12 ± 0.77 1.10 ± 0.56 1.25 ± 0.11 2.03 ± 0.34 0.93 ± 0.51 

Values are expressed as % ID/g of tissue ± SD (n=3) 
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7.4.5. REGIONAL BRAIN DISTRIBUTION STUDY 

 

The uptake of radioactivity in various rat brain regions as a function of time 

following intravenous administration of [123I]-FMIP is shown in Table 7.2.  

 

Table 7.2 Tissue uptake of radioactivity in different brain regions in rats at various 

time points following i.v. administration of [123I]-FMIP 

                                Time (min) 
 10 30 60 180 360 

Blood 0.086 ± 0.060 0.089 ± 0.097 0.123 ± 0.084 0.116 ± 0.049 0.087 ± 0.094 

Striatum 0.022 ± 0.016 0.013 ± 0.012 0.036 ± 0.031 0.053 ± 0.038 0.016 ± 0.012 

Cerebellum 0.013 ± 0.007 0.024 ± 0.019 0.042 ± 0.051 0.029 ± 0.025 0.026 ± 0.012 

Frontal cortex 0.013 ± 0.008 0.009 ± 0.011 0.036 ± 0.041 0.027 ± 0.035 0.015 ± 0.011 

Occipital cortex 0.018 ± 0.009 0.027 ± 0.033 0.043 ± 0.063 0.015 ± 0.007 0.018 ± 0.016 

Temporal 
cortex 

0.015 ± 0.008 0.010 ± 0.013 0.017 ± 0.013 0.019 ± 0.012 0.021 ± 0.025 

Parietal cortex 0.015 ± 0.010 0.019 ± 0.024 0.037 ± 0.039 0.026 ± 0.028 0.010 ± 0.007 

Hippocampus 0.015 ± 0.008 0.077 ± 0.065 0.007 ± 0.008 0.049 ± 0.058 0.027 ± 0.018 

Hypothalamus 0.014 ± 0.006 0.023 ± 0.026 0.030 ± 0.020 0.027 ± 0.013 0.010 ± 0.011 

Thalamus 0.003 ± 0.003 0.015 ± 0.013 0.016 ± 0.021 0.026 ± 0.006 0.013 ± 0.012 

Pons & medulla 0.022 ± 0.011 0.023 ± 0.019 0.064 ± 0.050 0.073 ± 0.055 0.038 ± 0.032 

Total brain 0.017 ± 0.010 0.020 ± 0.010 0.042 ± 0.035 0.052 ± 0.036 0.032 ± 0.026 

Values are expressed as % ID/g of tissue ± SD (n=3) 
 

In the brain, DAT is predominantly localized in the striatum. The cerebellum 

seems to receive negligible dopaminergic innervation (Kaufman et al., 1991; Ciliax 

et al., 1995). The regional distribution of [123I]-FMIP in the rat brain was almost 

homogenous, which is not consistent with this current knowledge of DAT 

localization. The uptake in the striatum was not higher compared to the uptake in 

the other brain regions. No difference in radioactivity uptake was observed 

between the striatum (0.053 ± 0.038 % ID/g at 180 min p.i.) and the reference 

region (cerebellum (0.029 ± 0.025 % ID/g at 180 min p.i.)) suggesting that no 

specific binding of [123I]-FMIP to DAT is accomplished.  
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7.4.6. BLOCKING STUDY 

 

The inability to show specific binding in the striatum could be due to the overall 

low brain uptake. This leads to high relative standard errors that could possibly 

influence the outcome of the study. DAT is not only present in the brain but is 

also found in several peripheral organs. Therefore, the specificity for DAT 

peripherally should also be investigated. For these reasons a blocking study with 

selective ligands for the monoamine transporters was performed in mice.  

Results of the blocking study on the blood and brain uptake of [123I]-FMIP are 

shown in Table 7.3. No differences in radioactivity uptake are observed between 

the four treatment regiments at none of the selected time points.  

 

Table 7.3 Tissue uptake of radioactivity of [123I]-FMIP after injection of 

physiological saline (control), GBR 12909 (A), citalopram (B) or reboxetine 

mesylate (C) 

                                         Time (min) 
  2 5 60 180 
Control group Blood 1.35 ± 0.42 0.77 ± 0.32 0.28 ± 0.20 0.54 ± 0.37 

 Brain 0.11 ± 0.04 0.11 ± 0.05 0.08 ± 0.04 0.13 ± 0.08 

      

Test group A Blood 1.30 ± 0.63 0.45 ± 0.03 0.40 ± 0.23 0.21 ± 0.03 

 Brain 0.13 ± 0.03 0.07 ± 0.03 0.11 ± 0.02 0.11 ± 0.04 

      

Test group B Blood 0.90 ± 0.31 0.44 ± 0.20 0.10 ± 0.04 0.12 ± 0.04 

 Brain 0.13 ± 0.07 0.16 ± 0.05 0.09 ± 0.03 0.15 ± 0.09 

      

Test group C Blood 1.55 ± 1.00 0.63 ± 0.37 0.17 ± 0.08 0.11 ± 0.04 

 Brain 0.22 ± 0.14 0.12 ± 0.05 0.11 ± 0.05 0.09 ± 0.05 

Values are expressed as % ID/g of tissue ± SD (n=3) 
 

Outside the central nervous system, localization of DAT is found in the 

gastrointestinal tract, stomach, pancreas (Mezey et al., 1999) and kidneys (Lee, 
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1993). Therefore uptake of [123I]-FMIP in peripheral organs was also measured 

(data not shown) and no influence of pretreatment with GBR 12909, citalopram or 

reboxetine mesylate could be demonstrated. These results suggest that no specific 

binding of [123I]-FMIP to DAT is accomplished.  

 

7.4.7. PLASMA PROTEIN BINDING AND METABOLITE ANALYSIS  

 

Determination of plasma protein binding revealed that 96 ± 2 % of [123I]-FMIP 

was bound to plasma proteins. Control experiments with spiked plasma and brain 

revealed an extraction efficiency of 76 ± 4 % for plasma and 82 ± 7 % for brain 

samples. These extraction efficiencies indicate that the binding of [123I]-FMIP to 

plasma proteins is reversible. HPLC analysis of the spiked samples showed that all 

extracted radioactivity complies with [123I]-FMIP, so no degradation of [123I]-FMIP 

occurred during the extraction procedure.  

 

Metabolite analysis of plasma demonstrated that at 10 min p.i. 70 ± 4 % and at 60 

min p.i. 55 ± 5 % of intact [123I]-FMIP is remaining (Figure 7.8). [123I]-FMIP eluted 

at 18.5 min. Degradation products in plasma were iodide-123 (17 ± 11 % at 10 min 

p.i. and 37 ± 2 % at 60 min p.i.) and a lipophilic compound with a retention time 

of 15.5 min that eluted just before the parent compound (12 ± 7 % at 10 min p.i. 

and 8 ± 6 % at 60 min p.i.). This compound will probably have a structure close to 

the parent compound and is most likely caused by a hydroxylation on a phenyl 

group or defluorination of the phenyl ring. 

In the brain, percentages of intact [123I]-FMIP were 82 ± 11 % at 10 min p.i. and 

83 ± 7 % at 60 min p.i. (Figure 7.8). The detected metabolites were iodide-123 (9 

± 3 % at 10 min p.i. and 13 ± 3 % at 60 min p.i.) and another hydrophilic 

degradation product with a retention time of 5 min (10 ± 8 % at 10 min p.i. and 4 

± 5 % at 60 min p.i.). This metabolite is possibly the result of N-dealkylation. 
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Figure 7.8 Metabolite analysis at 10 min p.i. (above) and 60 min p.i. (below) of 

brain and plasma samples from mice 

Values are the mean of three experiments and are expressed as percent of total activity 
 

These values indicate that the tracer shows a relative good in vivo metabolic profile. 

Radioactivity in brain was mainly (> 80 %) present as intact [123I]-FMIP at the two 

time points. Besides the presence of free iodide, only 1 metabolite was found in 

plasma and another, more hydrophilic one in brain. 
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7.4.8. BLOOD-BRAIN BARRIER TRANSPORT INHIBITION STUDY 

     

P-gp is an efflux pump for a wide range of xenobiotics at the BBB. Hence, P-gp 

can be a severe obstacle for the accumulation of drugs into the brain. The efflux 

action of P-gp pumps can be reduced by so-called modulators of which CsA is an 

example.  

 

Table 7.4 Blood-brain distribution of [123I]-FMIP  
               Control groupa                   Test groupb 
 2 min 60 min 180 min 2 min 60 min 180 min 

Blood 1.35 ± 0.42 0.28 ± 0.20 0.54 ± 0.37 2.7 ± 1.15 0.39 ± 0.29 0.50 ± 0.24 

Brain 0.11 ± 0.04 0.08 ± 0.04 0.13 ± 0.08 0.45 ± 0.14 0.42 ± 0.13 0.70 ± 0.25 

Brain/Blood 0.08 ± 0.01 0.35 ± 0.16 0.33 ± 0.18 0.18 ± 0.06 1.32 ± 0.47 1.48 ± 0.27 

a pretreatment with physiological saline  
b 

Values are expressed as % ID/g ± SD (n=3). Values in bold: p < 0.05 (Student’s t test, 
one-sided, compared with control) 

pretreatment with CsA 

 

Pretreatment of mice with CsA indicated a significantly higher brain uptake 

compared to the control group (p = 0.02 at all time points). Blood values were not 

affected by CsA pretreatment (p = 0.09 at 2 min p.i.; p = 0.32 at 1 h p.i.; p = 0.45 

at 3 h p.i.). CsA treatment increased both the brain uptake (4.2 – 5.1 – 5.2 fold) 

and subsequently the brain-to-blood ratio. These findings are a possible 

explanation for the low brain accumulation of [123I]-FMIP. Further research to 

validate the usefulness of [123I]-FMIP as a SPECT tracer for P-gp pumps in vivo is 

reported in Chapter 8. 

 

7.4.9. REGIONAL BRAIN DISTRIBUTION AFTER CSA 

PRETREATMENT 

 

We wanted to investigate if CsA also raises brain radioactivity in rats and if this 

increased brain uptake is homogenous or limited to DAT rich regions. If the 
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increased brain radioactivity is homogenous, it will be pointed out that [123I]-FMIP 

is not selective towards DAT in vivo.  

CsA administration resulted in a significantly higher brain uptake at 30 min (p = 

0.036), 180 min (p = 0.003) and 360 min (p = 0.014) p.i. compared to control 

group. At 60 min p.i. an increase in brain uptake was also observed although this 

increase was not significant. Blood activity was not affected by pretreatment with 

CsA. Unfortunately, the increased brain radioactivity was homogenous and not 

restricted to DAT rich regions (Figure 7.9). Radioactivity uptake increased in both 

striatum and cerebellum. These findings direct us to conclude that the non-ability 

to prove DAT selectivity in brain was not due to the low brain uptake of [123I]-

FMIP but due to its lack of selectivity towards DAT in brain. 

 
Figure 7.9 Tissue uptake of [123I]-FMIP with CsA or physiological saline 

pretreatment  

Values are expressed as % ID/g ±SD (n=3) 

 

7.5. Conclusion 

 

The preparation and purification of the precursor molecule, as well as the 

reference compound were accomplished with sufficient yields and without any 

significant problems. The radiosynthesis of [123I]-FMIP was achieved by 

electrophilic destannylation. Using a one-pot synthetic procedure, [123I]-FMIP was 
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prepared in a 40 ± 10 % yield and with good specific activity. After purification, 

the radiochemical purity appeared to be higher than 98 %. The authenticity of the 

tracer was determined by co-elution with the nonradioactive reference compound. 

In vitro, [123I]-FMIP remained stable for at least 24 h. The determined log D7.4 was 

1.42 ± 0.12 %, which is suitable for brain penetration. 

Upon intravenous administration, low levels of activity were observed in mouse 

brain indicating low blood-brain penetration of [123I]-FMIP. At none of the 

selected time points, radioactivity concentration in the brain exceeded blood 

activity. A possible reason for the low brain uptake of [123I]-FMIP is the 

contribution of P-gp pumps or other multidrug resistance protein transporters in 

the brain distribution of [123I]-FMIP. A significant increase in brain uptake (4.2 – 

5.2 fold) of [123I]-FMIP was observed after CsA administration compared to the 

control group indicating [123I]-FMIP is transported by the P-gp pumps out of the 

brain. The effect of P-gp modulation on the biodistribution of [123I]-FMIP will be 

further explored and reported in Chapter 8.  In rat brain, the regional distribution 

of DAT was not reflected in the radioactivity distribution. A blocking study also 

failed to proof selectivity of [123I]-FMIP towards DAT. Even more, [123I]-FMIP did 

not display selectivity towards one of the monoamine transporters.  

 

Although FMIP is selective for DAT in vitro, it did not display the expected 

selective distribution in vivo in brain neither peripheral. A possible reason can be 

the selectivity of FMIP towards other receptors. In vitro, FMIP was only tested for 

its affinity to the monoamine transporters. Sigma receptors are a class of receptors 

distributed uniformly in the brain (Bouchard P and Quirion R, 1997). This 

distribution is in accordance with the observed homogenous brain uptake. A 

blocking study with selective inhibitors for this class of receptors should be 

performed to proof this assumption. Based on these results, one can conclude that 

[123I]-FMIP is not suitable as radioligand for in vivo SPECT visualization of DAT.  
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Chapter 8 
 

In vivo evaluation of [123I]-FMIP for imaging the  

P-glycoprotein transporter 

 
8.1. Abstract 

 

Aim: P-gp is an energy-dependent drug efflux transporter that contributes to the 

efflux of a wide range of xenobiotics at the BBB playing a role in drug-resistance 

or therapy failure. In this study, we evaluated [123I]-FMIP as a novel SPECT 

tracer for imaging of P-gp at the brain in vivo. 

Methods: The tissue distribution and brain uptake as well as the metabolic profile 

of [123I]-FMIP in wild-type and mdr1a (-/-) mice after pretreatment with 

physiological saline or CsA (50 mg/kg) was investigated. The influence of 

increasing doses CsA on brain uptake of [123I]-FMIP was explored. µSPECT 

images of mice brain were obtained for different treatment strategies.  

Results: Modulation of P-gp with CsA as well as mdr1a gene depletion results in a 

significant increase in cerebral uptake of [123I]-FMIP with only a minor effect on 

blood activity. [123I]-FMIP is quite stable in vivo with > 80 % intact [123I]-FMIP in 

brain at 60 min p.i. in the different treatment regiments. A dose-dependent 

sigmoidal increase in brain uptake of [123I]-FMIP with increasing doses of CsA 

was observed. In vivo ROI-based SPECT measurements correlated well with the 

observations of the biodistribution studies.  

Conclusion: These findings indicate that [123I]-FMIP is an effective SPECT tracer 

for imaging P-gp at the BBB.  
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8.2. Introduction 

 

P-gp is an energy-dependent drug efflux transporter that contributes to the efflux 

of a wide range of xenobiotics at the BBB. Hence, P-gp can play a major role in 

drug-resistance or therapy failure (Schinkel et al., 1996; Linnet and Ejsing, 2008). 

Apart from its role in the central nervous system, P-gp is overexpressed in 

tumors and therefore implicated in the resistance to chemotherapeutics and in the 

pathogenesis of cancer (Gottesman and Pastan, 1993; Gottesman et al., 2002). 

Imaging of P-gp function and expression with PET or SPECT could be of great 

importance in drug development and medicine. Non-invasive monitoring of P-gp 

could be applied to elucidate the role of P-gp in several human diseases and to 

evaluate the efficacy of new P-gp modulators. Several PET tracers have already 

been evaluated for P-gp modulation among which [11C]verapamil (Hendrikse et 

al., 1998; Lee et al., 2006) and [11C]N-desmethyl-loperamide (Lazarova et al., 

2008). The only reported SPECT radioligands for P-gp are [99mTc]sestamibi 

(Kostakoglu et al., 1997; Ballinger et at., 1995) and [99mTc]tetrofosmin (Ballinger 

et al., 1996). However, [99mTc]sestamibi and [99mTc]tetrofosmin are not only 

substrates for P-gp but are also involved in efflux mediated by multidrug 

resistance-associated protein and are not suitable for P-gp imaging in the brain 

(Hendrikse et al., 1997; Barbarics et al., 1998; Ballinger et al., 1996). To date, no 

iodinated SPECT ligands for P-gp functionality imaging have been published.  

This study describes the in vivo evaluation of [123I]-FMIP, a possible P-gp tracer. 

[123I]-FMIP was originally designed as a tracer for the dopamine transporter but 

did not display the anticipated in vivo behaviour. Brain uptake was only minor 

which lead to the hypothesis that [123I]-FMIP might be a substrate for the P-gp 

transporter (Chapter 7). Therefore we investigated the influence of P-gp blocking 

with CsA as well as the influence of gene depletion on the biodistribution and 

brain penetration of [123I]-FMIP. A dose-response study is performed to assess 

the impact of increasing CsA dose on the brain uptake of [123I]-FMIP. The 

influence of CsA pretreatment and mdr1a gene depletion on the metabolism of 
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[123I]-FMIP is investigated. Finally, a multipinhole µSPECT study of the brain 

uptake of [123I]-FMIP is performed using the Milabs U-SPECT-II in wild-type 

mice (with and without CsA administration) and in P-gp knock-out mice (mdr1a 

(-/-) mice).  

 

8.3. Materials & Methods 

 

8.3.1. BIODISTRIBUTION STUDIES IN MICE 

 

The biodistribution of [123I]-FMIP was studied in male wild-type (=FVB) mice 

and mdr1a (-/-) mice of 5 – 7 weeks weighing 20 – 25 g. Wild-type mice and 

mdr1a (-/-) mice were divided into two groups. One group received an injection 

of CsA in a 50 mg/kg dose. The second group received the same volume 

physiological saline as control. After 30 min, approximately 185 kBq (5 µCi) [123I]-

FMIP was injected intravenously and mice (n=3 for each group and each time 

point) were sacrificed at 1, 10, 30, 60 or 180 min after [123I]-FMIP injection. 

Organs and tissues were removed and weighed. To remove adhering blood, all 

organs were rinsed with water prior to weighing and counting. For calculation of 

the injected dose, five aliquots of the injection solution were weighed and 

counted for activity. The radioactivity was measured using an automated gamma-

counter. Radioactivity concentrations were decay-corrected and results are 

expressed as % ID/g ± SD. Statistical analysis was performed using a one-sided, 

unpaired student’s t-test. Only p values < 0.05 are considered significant. 

 

8.3.2. DOSE ESCALATION STUDY 

 

Adult male NMRI mice weighing 22 – 28 g were injected in a tail vein with 

increasing amounts of CsA. The dosages used were 10, 20, 25, 30, 40, 50 and 60 

mg/kg. Due to the toxicity of CsA, higher doses CsA are not recommended. Side 

effects that can occur are nephrotoxicity, pancreatitis, liver toxicity, 
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gastrointestinal tract dysfunctions and edemia. These undesired effects of CsA 

were not problematic since CsA was administrated just before the radiotracer and 

the animals were terminated afterwards.  

[123I]-FMIP (185 kBq (5 µCi)) was administrated intravenously 30 min after CsA 

injection. The mice were awake during the injections. The mice (n=3 for each 

dosage) were sacrificed at 40 min p.i. of [123I]-FMIP. Three control animals 

receiving physiological saline were subjected to the same protocol. Blood and 

organs were removed, weighed and counted for radioactivity in an automated 

gamma counter. All organs were rinsed with water prior to weighing and 

counting. For calculation of the injected dose, five aliquots of the injection 

solution were weighed and counted for activity. Decay-corrected results are 

expressed as % ID/g ± SD. 

Using Graphpad, a dose-response curve was fitted by a sigmoidal curve that is 

described by the four parameter logistic equation:  

y = y0 + (ymax -  y0) / (1 + 10 ((log EC50-x)*n)) 

y is the response, x is the logarithm of concentration, EC50 the half-maximum 

effect dose and n the Hill coefficient.  

 

8.3.3. METABOLITE ANALYSIS 

 

The metabolic pattern of [123I]-FMIP and the influence of CsA pretreatment, as 

well as the influence of depletion of the mdr1a gene were investigated. 

Male FVB (wild-type) or mdr1a (-/-) mice (approximately 6 weeks old and 25 g) 

were injected with CsA (50 mg/kg) or physiological saline 30 min prior to the 

administration of 1.85 – 3.7 MBq (50 – 100 µCi) [123I]-FMIP. The mice were 

awake during the injections. At 10 min (n=3) and 60 min (n=3) p.i., the mice were 

sacrificed and blood and brain were removed and processed as described in 

Chapter 4. HPLC analysis was performed on a RP C18 HPLC column (Alltima 

C18 250 mm × 10 mm, 10 µm) using 91:9:0.1 (v:v) MeOH:H2O:NH4OH as 

solvent system at a flow rate of 6 mL/min.  
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8.3.4. U-SPECT SCAN 

 

Mice were divided into three groups (n=3 for each group). The first group, test 

group A, was injected with 50 mg/kg CsA 30 min before tracer injection, whereas 

the control group and test group B received physiological saline instead of CsA. 

In test group A and the control group, wild-type (FVB) mice were used. Test 

group B on the other hand, consisted of mdr1a (-/-) mice.  

Dynamic scanning in 12 frames of 5 minutes was performed at 30 min p.i. of 

[123I]-FMIP using the Milabs U-SPECT-II (Milabs, Utrecht, The Netherlands). 

This µSPECT scanner is equipped with collimators consisting of a tungsten 

cylinder with 5 rings of 15 pinhole apertures of 0.6 mm diameter. All pinholes 

focused on a single volume in the center of the tube. For imaging mice brain, the 

animal bed was translated in 3 dimensions using an XYZ stage into 12 different 

bed positions. This aforementioned combination enabled a multiple-position 

acquisition and dynamic imaging at a time scale of a few minutes. Mice were 

injected with 11.1 MBq (0.3 mCi) [123I]-FMIP and anesthetized throughout the 

µSPECT scan by inhalation of 1.5 % isoflurane. The 20 % photopeak was 

centered at 159 keV and a double 10 % energy window correction at 135 keV and 

190 keV was applied. The data were reconstructed on 0.375 voxels by 3 iterations 

of 16 OSEM subsets. The images were postfiltered by a Gaussian postfilter of 

1.125 mm and color scales were normalized. A cylindrical brain ROI of 25 mm3 

(4 mm diameter and 2 mm height) was drawn on the brain for further analysis. 

Statistical analysis was performed using a one-sided, unpaired student’s t-test. 

Only p-values < 0.05 are considered significant. 
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8.4. Results & Discussion 

 

8.4.1. RADIOCHEMISTRY 

 

[123I]-FMIP was prepared in a 40 ± 10 % radiochemical yield, as previously 

described (Figure 8.1). The specific activity was > 667 GBq/µmol (18 Ci/µmol) 

and radiochemical purity appeared to be higher than 98 % (see Chapter 7). [123I]-

FMIP was formulated in a 8:92 (v:v) - EtOH:physiological saline solution for in 

vivo studies. 

 

 
Figure 8.1 Radiosynthesis of [123I]-FMIP 

 

8.4.2. BIODISTRIBUTION STUDIES 

 

Figure 8.2 shows the tissue distribution of radioactivity uptake after intravenous 

injection of 185 kBq (5 µCi) [123I]-FMIP in wild-type and mdr1a knock-out mice 

with physiological saline or CsA pre-administration.  
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Figure 8.2 Tissue distribution of [123I]-FMIP in wild-type and mdr1a knock-out 

mice with saline or CsA pre-administration 

Values are mean of three experiments, A pretreatment with saline in wild-type mice, B 

pretreatment with CsA in wild-type mice, C pretreatment with saline in mdr1a (-/-) mice, 
D pretreatment with CsA in mdr1a (-/-) mice * P < 0.05 (student’s t test) compared to 

group A ** P < 0.05 (student’s t test) compared to group C  
 
 

8.4.2.1. Biodistribution study in wild-type mice 

 

The brain uptake was low at each time point investigated (0.67 ± 0.15 % ID/g at 

1 min p.i. and 0.41 ± 0.24 % ID/g at 60 min p.i.). Although [123I]-FMIP was 

rapidly cleared out of the blood, blood activity remained higher than brain activity 

at all time points (Figure 8.2). At 60 min p.i., the highest tracer uptake was 

observed in the liver with 36.38 ± 18.12 % ID/g (Figure 8.2). Other peripheral 

organs with high tracer uptake at 60 min p.i. were lungs (9.74 ± 6.01 % ID/g), 

kidneys (7.23 ± 2.46 % ID/g) and spleen (7.34 ± 4.90 % ID/g).  
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8.4.2.2. Influence of CsA pretreatment 

 

Modulation of P-gp with 50 mg/kg CsA resulted in significant changes in 

cerebral uptake of [123I]-FMIP at each time point investigated (Figure 8.3).  

 
Figure 8.3 Brain distribution of [123I]-FMIP in wild-type mice with saline and 

CsA pretreatment  

Values are expressed as % ID/g ± SD (n=3); p-values are calculated using the one-sided 

student’s t test 

 

Brain uptake raised 2.6 – 5.1 fold compared to mice without CsA pretreatment. 

At 10 min p.i. the highest raise was observed (5.09 ± 1.48). Since CsA 

pretreatment had no effect on blood activity, the brain/blood ratio was also 

significantly increased. At 60 and 180 min p.i. a slight decrease in intestinal uptake 

was observed after CsA pretreatment. This is possibly due to a slower excretion 

caused by P-gp modulation. Furthermore, no significant differences could be 

observed at any of the selected time points in the peripheral organs (Figure 8.2). 

 

8.4.2.3. Influence of gene depletion 

 

The influence of genetic disruption of P-gp in mice on brain radioactivity uptake 

is shown in Figure 8.4.  
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Figure 8.4 Brain distribution of [123I]-FMIP in wild-type mice with saline and 

mdr1a (-/-) mice with saline pretreatment (n=3) 

Values are expressed as % ID/g ± SD (n=3); p-values are calculated using the one-sided 

student’s t test 

 

In mdr1a (-/-) mice, [123I]-FMIP content was increased in the brain at all selected 

time points. Brain uptake raised 2.9 – 5.0 fold compared to wild-type mice with 

the highest increase at 30 min p.i. (4.95 ± 0.81). In contrast, no significant 

differences in [123I]-FMIP levels in plasma were measured between the two types 

of mice at the chosen time points. Consequently, brain/blood ratios were 

significant higher in mdr1a (-/-) mice (except at 180 min p.i.). Although liver, 

kidneys and intestines displayed a decreased radioactivity uptake in the mdr1a (-/-

) mice, this decrease was not significant. None of the peripheral organs displayed 

significant changes at any of the selected time points except the pancreas at 60 

min p.i. (Figure 8.2). 

 

8.4.2.4. Influence of CsA pretreatment in mdr1a (-/-) mice 

 

Pretreatment of mdr1a (-/-) mice with CsA had no additional significant effect on 

brain activity except at the earliest time point (Figure 8.5). At 1 min p.i., not only 

brain but also blood uptake was increased resulting in similar brain/blood ratio. 
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Heart and lung uptake was significantly increased, an effect that is probably 

caused by the increased blood pool activity and not P-gp mediated. At 60 and 180 

min p.i. a significant increase in intestinal uptake was observed after CsA 

pretreatment. This effect could be P-gp mediated but could also be the result of a 

shift in excretion after CsA administration. In conclusion, it can be stated that 

CsA administration in mdr1a (-/-) mice did not cause significant changes in the 

brain uptake of [123I]-FMIP (Figure 8.5). 

 
Figure 8.5 Brain distribution of [123I]-FMIP in mdr1a (-/-) with saline and CsA 

pretreatment (n=3) 

Values are expressed as % ID/g ± SD (n=3); p-values are calculated using the one-sided 

student’s t test 

 

8.4.3. DOSE ESCALATION STUDY 

 

The effect of increasing doses CsA on the brain uptake and blood concentration 

of [123I]-FMIP was investigated (Figure 8.6). The experiment showed a sigmoid 

relationship between the concentration of CsA administrated and the uptake of 

[123I]-FMIP in the brain. The EC50 value was 24.48 ± 0.73 mg/kg. With a higher 

dose of CsA, a higher brain uptake was observed with stagnation from 30 mg/kg 

CsA. Between 30 mg/kg (0.61 ± 0.13 % ID/g) and 60 mg/kg (0.56 ± 0.23 % 

ID/g) CsA, there was no significant difference in brain uptake. The effect of CsA 
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administration on brain uptake was significant at each dosage used compared to 

the control group. Only a minor increase in blood activity was observed after 

administration of increasing doses of CsA. Blood uptake of radioactivity without 

CsA pretreatment was 0.29 ± 0.14 % ID/g and increased to 0.51 ± 0.06 % ID/g 

at the highest dose CsA used but the increase was not significant.  

 
Figure 8.6 Effect of various doses CsA on brain uptake and blood activity of 

[123I]-FMIP 

Values are expressed as % ID/g ± SD (n=3) 

 

8.4.4. METABOLITE ANALYSIS 

 

Table 8.1 summarizes the metabolic profile of [123I]-FMIP. Metabolite analysis of 

plasma in wild-type mice demonstrated that at 10 min p.i. 70 ± 6 % and at 60 min 

p.i. 54 ± 8 % of intact [123I]-FMIP is remaining (Figure 8.7). Degradation 

products in plasma were 123I- (13 ± 1 % at 10 min p.i. and 39 ± 4 % at 60 min 

p.i.) and a lipophilic metabolite with a retention time of 9 min that elutes just 

before the parent compound (17 ± 7 % at 10 min p.i. and 8 ± 4 % at 60 min p.i.). 

This compound is believed to have a structure close to the parent compound and 

probably originates from a hydroxylation on a phenyl group or defluorination of 

a phenyl ring. 
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In brain, percentages of intact [123I]-FMIP were 86 ± 2 % at 10 min p.i. and 85 ± 

3 % at 60 min p.i. (Figure 8.7). The detected metabolites were iodide-123 (8 ± 2 

% at 10 min p.i. and 12 ± 4 % at 60 min p.i.) and a hydrophilic degradation 

product with a retention time of 5.5 min (5 ± 1 % at 10 min p.i. and 4 ± 1 % at 

60 min p.i.). This metabolite is possibly the result of N-dealkylation. 

 

 
Figure 8.7 Metabolite chromatogram of [123I]-FMIP in FVB and mdr1a (-/-) 

mice after saline and CsA pretreatment  at 10 min p.i. (A) and 60 min p.i. (B) 

Values are the mean of three experiments and are expressed as percent of total activity 
 

Pretreatment with CsA resulted in less degradation in the brain with 94 ± 3 % 

and 93 ± 5 % intact [123I]-FMIP at 10 min and 60 min p.i., respectively. The 

formation of an extra metabolism product (2 ± 1 % at 10 min p.i. and 1 ± 1 % at 

60 min p.i.) with the same retention time of that found in plasma was observed. 

In plasma, pretreatment with CsA caused an increase in metabolism of [123I]-
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FMIP at 10 min p.i. while at 60 min p.i. the fraction of [123I]-FMIP remained 

unchanged. 

Depletion of the mdr1a gene had no effect on the fraction of radioactivity 

present as [123I]-FMIP in brain. Just as observed with CsA pretreatment, the same 

extra metabolism product was found (3 ± 3 % at 10 min p.i. and 2 ± 0 % at 60 

min p.i.). In plasma, on the other hand, a high increase in the fraction of iodide-

123 was observed. At 60 min p.i., 123I- was the only extracted degradation product.  

 

Table 8.1 Metabolic profile of [123I]-FMIP at 10 min and 60 min p.i. 
                                                          Retention time on RP-HPLC 
 Tissue Time  

(min) 
 3 min 
123I- 

5.5 min 9 min 11 min  
[123I]-FMIP 

Controla  Brain 10  8 ± 2         5 ± 1          86 ± 2 
  60  12 ± 4 4 ± 1  85 ± 3 
       
 Plasma 10  13 ± 1  17 ± 7 70 ± 6 
  60  39 ± 4  8 ± 4         54 ± 8 
       
Test Ab Brain 10  2 ± 2 2 ± 1 2 ± 1 94 ± 3 
  60  3 ± 1 3 ± 3 1 ± 1 93 ± 5 
       
 Plasma 10  17 ± 12  24 ± 19 59 ± 5 
  60  33 ± 12  16 ± 2 51 ± 14 
       
Test Bc Brain 10  5 ± 4 11 ± 8 3 ± 3 81 ± 10 
  60  6 ± 3 6 ± 2 2 ± 0 86 ± 5 
       
 Plasma 10  36 ± 11  3 ± 5 64 ± 12 
  60  61 ± 8   39 ± 8 

Values are expressed as percent of total activity ± SD (n=3) 
a pretreatment with saline in wild-type mice, b pretreatment with CsA (50 mg/kg) in wild-
type mice, c pretreatment with saline in mdr1a (-/-) mice 
 

8.4.5. U-SPECT SCAN 

 

The µSPECT images obtained are shown in Figure 8.8. A low homogenous brain 

uptake was observed after injection of [123I]-FMIP. As seen in Figure 8.8, almost 
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no activity was visible on the µSPECT scan. Radioactivity uptake in brain, 

integrated over the full scan time of 60 min, was considerably higher after CsA 

pretreatment as well as in mdr1a (-/-) mice. In the experiment in which CsA had 

been preadministrated to block P-gp, radioactivity concentration was on average 

3.94 ± 0.84 fold higher compared to the baseline experiment. The ratio of brain 

radioactivity in test group B to that in the control group was about 4.27 ± 1.20 

times increased.  

 
Figure 8.8 µSPECT image of mice brain at 60 min p.i. of [123I]-FMIP 

 ROI’s were drawn around the middle of the brain, a pretreatment with CsA in wild-type 
mice, b pretreatment with saline in wild-type mice, c pretreatment with saline in mdr1a (-/-

) mice 
 

The regional distribution of [123I]-FMIP in mice brain was homogenous in the 

control group as well as in test group A and test group B. The uptake in the 
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striatum was not higher compared to the uptake in the other brain regions, 

confirming the previous finding that no specific binding of [123I]-FMIP to the 

dopamine transporter is accomplished (Chapter 7). 

The correlation of the biodistribution studies with µSPECT measurements are 

represented in table 8.2. ROI’s were obtained at 30 min p.i. and at 60 min p.i. for 

an exact comparison with the values of the biodistribution studies. The increase 

in brain uptake after CsA pretreatment and in mdr1a (-/-) mice is slightly higher 

in biodistribution studies compared to measurements obtained from µSPECT 

imaging (Table 8.2). In addition, the standard deviation is higher in the 

biodistribution studies. The low counts obtained when measuring the brain 

radioactivity in wild-type mice with saline pretreatment are a possible reason for 

these higher standard deviations. Another explanation can be the use of aliquots 

of the injection solution for calculation of the injected dose in the biodistribution 

study. These findings indicate not only the advantage of µSPECT imaging in 

small animal studies but also that in vivo ROI-based SPECT measurements 

correlated with the observations of the biodistribution studies.   

 

Table 8.2 Comparison of brain radioactivity uptake ratios of [123I]-FMIP in the 
biodistribution study and µSPECT imaging 
 Experiment 30 min p.i. 60 min p.i.  
Influence CsAa biodistribution  4.92 ± 1.94 4.17 ± 2.79 
 µSPECT imaging 2.87 ± 0.83 3.04 ± 0.73 

    
Influence gene depletionb biodistribution  4.95 ± 2.03 2.92 ± 1.85 

 µSPECT imaging 2.24 ± 0.35 2.92 ± 0.56 

Values are mean of three experiments ± SD, a brain uptake in wild-type mice pretreated 
with Cs A/brain uptake in wild-type mice pretreated with saline, b brain uptake in wild-
type mice pretreated with saline/brain uptake in mdr1a (-/-) mice pretreated with saline 
 

8.5. Conclusion 

 

P-gp is among other localizations expressed in the BBB where it prevents 

accumulation of certain xenobiotics in the brain by an active transport 
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mechanism. Hence, P-gp can play a significant role in the resistance to CNS 

drugs (Schinkel et al., 1996; Linnet and Ejsing, 2008). P-gp has also been 

associated with several human disorders (Lam et al., 2001; Langford et al., 2004; 

Kwan and Brodie, 2005; Kortekaas e tal., 2005; Turgut et al., 2008). Non-invasive 

monitoring of P-gp could be applied to elucidate the role of P-gp in these human 

diseases and to evaluate the efficacy of new P-gp modulators. Several tracers have 

already been evaluated for P-gp modulation but so far, no iodinated SPECT 

tracer for P-gp has been reported. Iodine-123 has a half-life of 13.2 h allowing a 

prolonged scanning time and consequently a longer follow-up of the radioactivity 

distribution is possible.  

The aim of this study was to evaluate the usefulness of [123I]-FMIP for SPECT 

imaging of the P-gp transporters in brain. The synthesis and radiosynthesis of 

[123I]-FMIP were reported in Chapter 7.  

The biodistribution studies revealed a 2.6 – 5.1 increase in brain uptake after 

blocking P-gp with CsA. The effect on blood activity was negligible indicating 

that the increased brain uptake is the result of a decreased tracer efflux and not 

due to an improved influx to the brain. Additional proof of P-gp involvement 

was obtained in the study with mdr1a (-/-) mice. In this study, we demonstrated a 

raise in brain radioactivity ranging from 2.9 – 5.0. No significant differences in 

other organs containing P-gp, like liver and kidneys, were observed. These 

finding corresponds with those reported in other studies (Hendrikse et al., 1998; 

Luurtsema et al., 2003) and can be explained by the unique barrier of the brain as 

well as the role of liver and kidneys in excretion and metabolism and 

experimental artefacts (bile ducts are not dissected apart from the liver).  

[123I]-FMIP shows a fairly stable in vivo metabolic profile. One labelled metabolite 

(Tr 9.5 min) is probably also a substrate for P-gp as the metabolite only occurs in 

the brain after CsA pretreatment and in mdr1a (-/-) mice. Radioactivity in brain 

was mainly (> 80 %) present as intact [123I]-FMIP at the two time points in the 

three different treatment regiments. 
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A dose escalation study with increasing concentrations CsA revealed a sigmoidal 

dose-response relationship between the dose CsA administrated and the brain 

uptake of [123I]-FMIP. A log EC50 value of 24.48 mg/kg was obtained. This study 

demonstrated that the blockade of [123I]-FMIP efflux by P-gp is saturated and 

complete with a CsA dosage of 30 mg/kg. The dose with maximal tracer uptake 

and the EC50 value are comparable with the values reported for other tracers. 

[11C]Carvedilol for example reached maximum brain uptake at a dosage of 30 

mg/kg (Elsinga et al., 2005). [11C]Verapamil has a EC50 value of 22.76 which is 

comparable with that of [123I]-FMIP (Bart et al., 2003).  

Comparison of biodistribution data with in vivo µSPECT observations shows a 

relative good correlation. With mdr1a (-/-) mice, the biodistribution study 

showed at 60 min p.i. a 2.92 ± 1.85 fold increase in brain uptake of [123I]-FMIP, 

whereas µSPECT measurements revealed an 2.92 ± 0.56 fold increase. In 

biodistribution studies, pretreatment with CsA resulted in 4.17 ± 2.79 higher 

brain uptake which is in agreement with the 3.04 ± 0.73 increase obtained with 

µSPECT imaging. Using µSPECT measurements, the obtained standard errors 

where remarkably lower compared to those of the biodistribution studies. The 

use of a µSPECT device eliminates potential errors due to organ removal, 

weighing and gamma counting in a separate system. Furthermore, the injected 

dose is directly measured in contrast to the biodistribution studies where aliquots 

of the injection solution were employed to calculate the injected dose.   

While the brain was visible as a black cavity when only [123I]-FMIP was 

administrated, CsA administration or the use of mdr1a (-/-) mice improved brain 

uptake of [123I]-FMIP resulting in a better image of the brain. In all treatment 

regiments a homogenous brain distribution was observed, supporting the 

previous finding that [123I]-FMIP is not suitable for mapping the dopamine 

transporter in vivo. 

 

Brain uptake of [123I]-FMIP is very low in wild-type mice with physiological saline 

pre-administration, consistent with the rapid action and high capacity of P-gp. 
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CsA pretreatment as well as mdr1a gene depletion resulted in increase (two- to 

five-fold) of cerebral uptake of [123I]-FMIP in mice. The effect on blood activity 

and radioactivity concentration in other organs was negligible. These findings 

indicate that [123I]-FMIP is a very promising radiotracer to visualize P-gp function 

at the BBB. 
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Chapter 9 
 

 Radiosynthesis and in vivo evaluation of [11C]-

MC80 for P-glycoprotein imaging 

 
9.1. Abstract 

 

Aim: P-gp is an ATP-dependent efflux pump protecting the body against 

xenobiotics. We labelled an in vitro characterized substrate (MC80) of the P-gp 

pump with 11C and evaluated this tracer in vivo for its potential to image P-gp 

function and expression. 

Methods: MC80 was labelled using 11CH3I. Biodistribution studies were performed 

in male FVB or mdr1a (-/-) mice pretreated with physiological saline, CsA (50 

mg/kg) or cold MC80 (15 mg/kg). The metabolic profile of [11C]-MC80 was 

characterized. 

Results: The radiochemical yield was 26 ± 5 % with a total synthesis time of 25 

min. Cerebral uptake was increased in knock-out mice (1.5 – 2 fold) as well as 

after CsA pretreatment (1.3 – 2 fold). Administration of non-radioactive MC80 

caused a reduced uptake in several organs including brain, pancreas and intestine. 

In brain, [11C]-MC80 displayed an excellent metabolic profile (> 90 % intact at 30 

min p.i.). 

Conclusion: [11C]-MC80 is modulated by and shows specific binding to P-gp. Since 

[11C]-MC80 shows specific binding to target organs, this compound may be 

useful for P-gp imaging, especially in the intestines. This compound can also be a 

lead compound for the development of other novel radioligands for measuring 

the expression of P-gp in the brain. 
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9.2. Introduction 

 

P-gp is an ATP-dependent efflux pump that is expressed in several normal tissues 

including liver, kidneys, intestine and brain (Thiebaut et al., 1987; Schinkel and 

Jonker, 2003). The function of this efflux pump is to protect the human body 

against xenobiotics. It prevents accumulation in the brain of a wide range of 

drugs (Schinkel et al., 1996; Linnet and Ejsing, 2008) including anti-epileptics 

(Luna-tortos et al., 2008), anti-HIV drugs (Kim et al., 1998) and antidepressants 

(Szabo et al., 1999). Overexpression of P-gp in tumors is implicated in the 

resistance to chemotherapeutics in some cancers (Gottesmann and Pastan, 1993; 

Gottesman et al., 2002). Besides its role in multidrug resistance, changes or 

abnormalities in P-gp expression and function are involved in the etiology and 

pathogenesis of several neurological diseases (Kwan and Brodie, 2005; Turgut et 

al., 2008; Kortekaas et al., 2005; Langford et al., 2004). A decreased P-gp 

function, for example, diminishes the clearance of amyloid plaques, increasing the 

vulnerability to Alzheimer disease (Lam et al., 2001; Vogelgesang et al., 2002).  

Imaging of P-gp function and expression with PET or SPECT could be of great 

importance in drug development and medicine. Non-invasive monitoring of P-gp 

could be applied to elucidate the role of P-gp in several human diseases and to 

evaluate the efficacy of new P-gp modulators. Several tracers have already been 

evaluated for P-gp modulation among them [11C]verapamil (Hendrikse et al., 

1998; Lee et al., 2006), [11C]N-desmethyl-loperamide (Lazarova et al., 2008; 

Zoghbi et al., 2008) and [99mTc]sestamibi (Kostakoglu et al., 1997; Ballinger et al., 

1995). All these radiotracers have at least one limitation, including significant 

contamination with radiometabolites, difficulty in radiosynthesis or very low 

baseline brain uptake which makes it difficult to see minor changes in P-gp 

expression. Moreover, the reported radiotracers for P-gp are all aimed to visualize 

P-gp function but not the expression and quantification of P-gp.  

In the search for a superior radiotracer to image P-gp function or expression, we 

evaluated [11C]-6,7-dimethoxy-2-(6-methoxy-naphthalen-2-ylmethyl)-1,2,3,4-tetra-
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hydroisoquinoline ([11C]-MC80) for imaging P-gp function and expression. 

Recently, Colabufo et al. (2008) developed several 6,7-dimethoxytetrahydroiso-

quinoline derivatives as novel P-gp modulators. Their P-gp interacting 

mechanism and their potency towards P-gp was evaluated in vitro by combining 

three biological assays: [3H]vinblastine transport inhibition, apparent permeability 

determination and ATP-ase activation. From these assays, MC80 (Figure 9.1) can 

be hypothesized as a transported substrate with an interaction profile similar to 

CsA (Colabufo et al., 2008).  

 

 

Figure 9.1 Chemical structure of MC80 

This study describes the synthesis and purification of [11C]-MC80. The 

development of a HPLC method for quantification is completed. Specific activity, 

radiochemical purity and log D7.4 are reported. We also evaluated [11C]-MC80 in 

vivo in mice. To investigate the P-gp modulation characteristics, [11C]-MC80 is 

appraised in wild-type mice with or without CsA pretreatment in addition to P-gp 

knock-out mice. The metabolic profile of [11C]-MC80 in all three treatment 

groups is determined. Finally, specific binding of [11C]-MC80 is examined by pre-

administration of cold MC80. 

 

9.3. Materials & Methods 

 

9.3.1. GENERAL 

 

The precursor, 6,7-dimethoxy-2-(6-hydroxy-naphthalen-2-yl-methyl)-1,2,3,4-tetra-

hydroisoquinoline (MC90) as well as the cold reference compound, MC80, were 

kindly provided by the University of Bari, Dipartimento Farmaco-Chimico, Italy. 

MC80 was previously reported as compound 7h while MC90 was termed 7g. 
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MC80 was characterized as a transported substrate with an interaction profile 

similar to CsA (Colabufo et al., 2008). 

[11C]N-desmethyl-loperamide has been synthesized and evaluated by another 

PhD student of our lab. Those data are not reported in this thesis but are referred 

to when evaluating [11C]-MC80.  

 

9.3.2. RADIOCHEMISTRY 

 

The alkylating reagent [11C]methyl iodide was prepared from [11C]methane by gas-

phase iodination. The production of both 11CH4 and 11CH3I is described in 

Chapter 4.  

 
Figure 9.2 Radiosynthesis of [11C]-MC80 

 

The radiosynthesis of [11C]-MC80 is shown in Figure 9.2. 11CH3I in carrier helium 

was bubbled into a sealed vial containing 3 µmol MC90 and 7 µL NaH (1 M in 

DMF) in DMF (243 µL). When the radioactivity in the reaction vial reached 

maximum activity levels, the reaction mixture was heated at 30°C for 5 min. 

Afterwards, the crude reaction mixture was diluted with eluent and injected onto 

a semipreparative C18 HPLC column (Econosphere, 10 µm, 10 mm x 250 mm, 

Grace Davison Discovery Sciences, Lokeren, Belgium) that was eluted at 6 

mL/min with (80:20) MeOH:sodium acetate buffer (0.02 M, pH 5.5). The eluate 

was monitored for radioactivity (solar-blind P.I.N. photodiode) and UV 

absorbance (smartline UV detector 2500, Knauer, Berlin, Germany) at 254 nM. 

[11C]-MC80 (Tr = 9.3 min) was collected in 30 mL PBS (pH 7.4, 0.01 M) and 
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loaded on a C18 Sep-pak column (Alltech Maxi-clean SPE Prevail C18, previously 

activated with 1 mL EtOH and 5 mL sterile water). After the cartridge has been 

washed with 5 mL sterile water, the desired product [11C]-MC80 was eluted with 

1 mL EtOH. For biodistribution studies, the EtOH fraction was diluted with 10 

mL physiological saline. For metabolite analysis, EtOH was evaporated to 

dryness and the residue was redissolved in an adequate amount of EtOH/saline 

(8/92 - v/v). 

 

9.3.3. IN VITRO CHARACTERIZATION 

 

Quality control consisted of the determination of radiochemical purity and 

specific activity, calculated by analytical HPLC assay using a Gracesmart C18 

column (5 µm, 4.6 mm x 250 mm, Grace Davison Discovery Sciences, Lokeren, 

Belgium) at a flow rate of 1 mL/min. The mobile phase consisted of a mixture of 

75 % MeOH and 25 % sodium acetate buffer (0.02 M, pH 5.5). 

A calibration curve of unlabelled reference compound (0.02 x 10-3 µM – 1 x 10-3 

µM) was determined and controlled for its accuracy and reproducibility. 

Additionally, the detection limit was determined. Specific activities were decay 

corrected to the end of purification. Log D7.4 was determined according to the 

method described in Chapter 4. 

 

9.3.4. BIODISTRIBUTION STUDIES 

 

Wild-type mice (FVB strain) or mdr1a knock-out mice of 5 – 7 weeks old 

weighing approximately 25 g were used. Mice (n=3 for each time point of each 

treatment group) were injected in a tail vein with about 150 µL 

EtOH:physiological saline (8:92) containing 4.5 MBq (122 µCi) [11C]-MC80. 

Thirty minutes before administration of [11C]-MC80, the mice were either treated 

with physiological saline or with CsA (50 mg/kg). The mice were awake during 

the injections. At various periods after injection of the radioligand, the animals 
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were sacrificed by cervical dislocation under isoflurane anaesthesia. Blood and 

urine were removed and organs were dissected. Tissues were weighed and 

counted for radioactivity using a gamma counter. To remove adhering blood, all 

organs were rinsed with water prior to weighing and counting. For calculation of 

the injected dose, five aliquots of the injection solution were weighed and 

counted for activity. Results are decay-corrected and expressed as % ID/g ± SD. 

Statistical analysis was performed using one-sided, unpaired student’s t-test. Only 

p-values < 0.05 are considered significant. 

Specific binding of [11C]-MC80 was examined by pretreatment of FVB mice (n=3 

for each time point) with 15 mg/kg non-radioactive MC80. At 30 and 60 min 

after [11C]-MC80 injection, animals were killed and dissected. Tissues were treated 

as described above. Results are decay-corrected and expressed as % ID/g ± SD. 

Statistical analysis was performed using one-sided, unpaired student’s t-test. Only 

p-values < 0.05 are considered significant. 

 

9.3.5. METABOLITE ANALYSIS 

 

200 µL 92:8 (v:v) – physiological saline:EtOH containing approximately 18.5 

MBq (500 µCi) [11C]-MC80 was injected in a tail vein of awake mice (5 - 7 weeks 

old, weighing 25 - 30 g). At 1, 10 and 30 min p.i., the mice were sacrificed and 

blood and brain were taken and treated as described in Chapter 4. HPLC analysis 

was performed using a RP C18 HPLC column (Econosphere C18 250 mm x 10 

mm, 10 µm) attached to a precolumn (Alltima C18 33 mm x 7 mm, 10 µm) with 

80:20 (v:v) MeOH:sodium acetate buffer (0.02 M, pH 5.5) as solvent system at a 

flow rate of 6 mL/min. The same treatment regiments as for the biodistribution 

studies were investigated. 
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9.4. Results & Discussion 

 

9.4.1. RADIOSYNTHESIS 

 

[11C]-MC80 was prepared with an overall decay-corrected yield of 26 ± 5 % 

(n=6). Extraction efficiency of the Sep-pak column was calculated to be 87 ± 3 % 

(n=6). The overall time of preparation was 25 min.  

 

9.4.2. IN VITRO CHARACTERIZATION 

 

9.4.2.1. Quality control, specific activity and stability 

 

The identity of [11C]-MC80 was confirmed by co-elution with MC80 after co-

injection on HPLC. A radiochemical purity of more than 98 % was obtained. 

Specific activity was > 0.3 TBq/µmol (> 8.1 Ci/µmol). The [11C]-MC80 

formulation remained stable during the time span of the study.  

 

9.4.2.2. Log D7.4 

 

The log D7.4 of [11C]-MC80 in octanol was 1.96 ± 0.08. This value is suitable for 

brain penetration (Waterhouse, 2003). 

 

9.4.3. BIODISTRIBUTION STUDIES 

 

9.4.3.1. Biodistribution study in FVB mice 

 

The tissue distribution of [11C]-MC80 in wild-type mice with saline pretreatment 

is depicted in Table 9.1. 

[11C]-MC80 is cleared from plasma via the hepatobiliary system as shown by the 

high liver uptake (8.71 ± 2.44 % ID/g) and the increase in radioactivity uptake 
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over time in small intestine (from 3.89 ± 0.30 % ID/g at 1 min p.i. to 11.78 ± 

3.38 % ID/g at 90 min p.i.) and large intestine (from 1.83 ± 0.72 % ID/g at 1 

min p.i. to 2.18 ± 0.82 % ID/g at 90 min p.i.). [11C]-MC80 also demonstrated 

high initial kidney uptake (11.32 ± 0.95 % ID/g at 1 min p.i.), and subsequently 

urinary clearance was observed (data not shown). Since radioactivity uptake in the 

intestines already occurred at the earliest time point, it is probably not only caused 

by excretion of [11C]-MC80 but is possibly also P-gp mediated.  

 

Table 9.1 Tissue distribution of [11C]-MC80 in wild-type mice 
% ID/g ± SD (n=3) 

 1 min 10 min 30 min 60 min 90 min 
Blood 2.56 ± 0.67 1.12 ± 0.09 0.93 ± 0.09 0.73 ± 0.05 0.85 ± 0.15 
Brain 7.66 ± 1.38 3.73 ± 0.46 2.03 ± 0.20 1.09 ± 0.18 0.90 ± 0.20 
Heart 10.69 ± 2.49 3.19 ± 0.37 2.26 ± 0.24 1.54 ± 0.19 1.27 ± 0.22 
Lungs 31.35±11.60 8.44 ± 0.58 4.24 ± 0.98 2.86 ± 0.56 1.84 ± 0.25 
Stomach 4.60 ± 0.39 6.00 ± 1.39 7.72 ± 6.74 3.37 ± 0.62 4.05 ± 1.68 
Spleen 3.24 ± 0.75 2.84 ± 0.27 2.53 ± 0.38 1.52 ± 1.12 1.47 ± 0.35 
Liver 7.68 ± 0.27 8.71 ± 2.44 6.10 ± 0.20 4.86 ± 0.33 5.71 ± 1.51 

Kidneys 11.32 ± 0.95 5.31 ± 2.08 3.62 ± 0.59 2.46 ± 1.61 3.00 ± 0.80 
Small 
intestine 

3.89 ± 0.30 4.51 ± 0.69 8.03 ± 0.91 11.68 ± 0.13 11.78 ± 3.38 

Large 
intestine 

1.83 ± 0.72 1.58 ± 0.20 1.33 ± 0.07 1.45 ± 0.78 2.18 ± 0.82 

Bladder 4.27 ± 0.63 5.28 ± 2.11 4.45 ± 1.16 4.00 ± 1.77 7.08 ± 1.31 

Pancreas 7.13 ± 1.77 9.99 ± 3.35 10.63 ± 1.68 6.85 ± 0.66 5.12 ± 1.64 
Testes 1.66 ± 0.41 2.23 ± 0.28 2.83 ± 0.36 2.46 ± 0.51 1.91 ± 0.16 

 

[11C]-MC80 displayed good uptake in mouse brain (7.66 ± 1.38 % ID/g at 1 min 

p.i.) followed by efficient wash-out (0.90 ± 0.20 % ID/g at 90 min p.i.). Blood 

activity never exceeded brain uptake. Compared to [11C]verapamil (Hendrikse et 

al., 1998; Lee et al., 2006) and [11C]N-desmethyl-loperamide, [11C]-MC80 

displayed a high baseline brain uptake. This could be an advantage for imaging 

small fluctuations in P-gp expression or function. With a low initial brain uptake, 

it is not possible to image a small increase in P-gp function or a small reduction in 
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P-gp expression. It will be difficult to observe significant reductions in brain 

radioactivity uptake in the very low brain radioactivity levels.  

 

9.4.3.2. Biodistribution study after CsA pretreatment 

 

Pretreatment of animals with CsA caused a significant increase (except at 90 min 

p.i.) of radioactivity uptake in mice brain compared to FVB mice treated with 

physiological saline (Figure 9.3). The calculated p-values are 0.003, 0.007, 0.011, 

0.009 and 0.293 at 1, 10, 30, 60 and 90 min p.i., respectively. Brain uptake raised 

1.3 - 2 fold compared to mice without CsA pretreatment.  

 
Figure 9.3 Blood-brain distribution of [11C]-MC80 in FVB mice with saline or 

CsA pretreatment  

Values are expressed as % ID/g ± SD (n=3); * p < 0.05 with the student’s t-test 

 

Except at 1 min p.i., CsA also increased the uptake of [11C]-MC80-derived 

radioactivity in several peripheral organs including testes (from 2.56 ± 0.51 % 

ID/g to 3.73 ± 0.66 % ID/g at 60 min p.i.), pancreas (from 6.85 ± 0.66 % ID/g 

to 8.19 ± 0.79 % ID/g at 60 min p.i.), spleen (from 1.52 ± 1.12 % ID/g to 2.31 

± 0.15 % ID/g at 60 min p.i.), kidneys (from 2.46 ± 1.61 % ID/g to 4.53 ± 0.28 

% ID/g at 60 min p.i.), and liver (from 4.86 ± 0.33 % ID/g to 8.25 ± 0.99 % 

ID/g at 60 min p.i.) (Figure 9.4). This increase however was not significant at 

every time point. Compared to mice treated with saline, radioactivity uptake in 
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blood (from 2.56 ± 0.67 % ID/g to 4.97 ± 0.26 % ID/g), heart (from 10.69 ± 

2.49 % ID/g to 28.55 ± 1.35 % ID/g) and lungs (from 31.35 ± 11.60 % ID/g to 

71.59 ± 15.79 % ID/g) was already higher at 1 min p.i. and remained higher at 

each time point. These observations suggest a slower distribution of [11C]-MC80 

to the peripheral organs after CsA administration. In contrast, intestinal uptake 

was significantly lower with CsA pretreatment. A possible reason is the reduced 

binding to P-gp caused by CsA modulation. Taken together, CsA administration 

has an effect on tissue uptake of [11C]-MC80 suggesting P-gp plays a role in the 

kinetics of [11C]-MC80. 

 
Figure 9.4 Tissue distribution of [11C]-MC80 in FVB mice with saline (A) or CsA 

(B) pretreatment  

Values are expressed as % ID/g ± SD (n=3); * p < 0.05 with the student’s t-test) 
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9.4.3.3. Biodistribution study in mdr1a (-/-) mice 

 

In mdr1a (-/-) mice, cerebral uptake of [11C]-MC80 (Figure 9.5) was significantly 

increased at 10 min (p = 0.014) and 60 min p.i. (p = 0.001) compared to wild-

type mice. The highest increase in brain uptake was 1.96 ± 0.38 (from 1.09 ± 0.18 

% ID/g to 2.15 ± 0.65 % ID/g) at 60 min p.i. Significant differences in [11C]-

MC80 levels in plasma were measured between the two types of mice at 10 min 

(p = 0.021) and 30 min (p = 0.032) p.i.  

 
Figure 9.5 Blood-brain distribution of [11C]-MC80 in normal FVB mice or 

mdr1a (-/-) mice  

Values are expressed as % ID/g ± SD (n=3); * p < 0.05 with the student’s t-test 

 

At 1 min p.i. most organs displayed a reduced radioactivity uptake. In contrast 

lungs (from 31.35 ± 11.60 % ID/g to 45.85 ± 13.79 % ID/g) and heart (from 

10.69 ± 2.49 % ID/g to 13.06 ± 1.72 % ID/g) showed an increased uptake at 1 

min p.i. As with CsA, these observations suggest also a slower distribution of 

[11C]-MC80 to peripheral organs when using mdr1a (-/-) mice (Figure 9.6). 

Genetic disruption of the mdr1a gene appears to affect retention of the tracer in 

the excretory organs. Radioactivity uptake in the kidney raised from 2.46 ± 1.61 

% ID/g to 4.41 ± 0.63 % ID/g at 60 min p.i., and liver uptake increased from 

4.86 ± 0.33 % ID/g to 8.47 ± 0.57 % ID/g at 60 min p.i. The elevation in testes 
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(significant at 10 min (p = 0.015) and 30 min (p = 0.003) p.i.) uptake is in 

accordance with P-gp distribution. Contrary to the effect seen with CsA 

pretreatment, intestinal uptake did not alter. This can be explained by the fact that 

mdr1b encoded P-gp is also found in the gastrointestinal tract resulting in an 

unchanged intestinal uptake when using mdr1a (-/-) mice.   

 
Figure 9.6 Radioactivity uptake in tissues of [11C]-MC80 in normal FVB mice (A) 

and mdr1a (-/-) mice (B)  

Values are expressed as % ID/g ± SD (n=3); * p < 0.05 with the student’s t-test 

 

9.4.3.4. Biodistribution study after pretreatment with cold compound 

 

The tissue distribution of [11C]-MC80 in wild-type mice with and without cold 

MC80 pretreatment is depicted in Table 9.2. 
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Table 9.2 Tissue distribution of [11C]-MC80 in FVB mice with and without 
administration of non-radioactive MC80 (15 mg/kg) 

% ID/g ± SD (n=3) 
                                Control group                                             Test group                     

 30 min                   60 min                    30 min                 60 min                   
Blood 0.93 ± 0.09 0.73 ± 0.05  0.82 ± 0.06 0.78 ± 0.13 
Brain 2.03 ± 0.20 1.09 ± 0.18  1.64 ± 0.28* 0.89 ± 0.16 
Heart 2.26 ± 0.24 1.54 ± 0.19  1.75 ± 0.25* 1.21 ± 0.16* 
Lungs 4.24 ± 0.98 2.86 ± 0.56  3.08 ± 0.33 1.70 ± 0.11* 
Stomach 7.72 ± 6.74 3.37 ± 0.62  2.21 ± 1.17 2.46 ± 0.71 
Spleen 2.53 ± 0.38 1.52 ± 1.12  1.80 ± 0.70 1.31 ± 0.13 
Liver 6.10 ± 0.20 4.86 ± 0.33  5.39 ± 0.80 5.63 ± 0.26 
Kidneys 3.62 ± 0.59 2.46 ± 1.61  2.99 ± 0.93 2.10 ± 0.31 
Small intestine 8.03 ± 0.91 11.68 ± 0.13  4.77 ± 0.88* 6.54 ± 1.62* 
Large intestine 1.33 ± 0.07 1.45 ± 0.78  0.98 ± 0.02* 0.95 ± 0.10* 
Bladder 4.45 ± 1.16 4.00 ± 1.77  3.86 ± 0.60 4.71 ± 1.34 
Pancreas 10.63 ± 1.68 6.85 ± 0.66  5.15 ± 0.30* 3.53 ± 0.37* 

Testes 2.26 ± 0.24 1.54 ± 0.19  2.15 ± 0.12* 2.10 ± 0.28 
* p < 0.05 using one-sided, unpaired student’s t-test 

 

The brain uptake of [11C]-MC80 was reduced by 20 % after pretreatment of the 

animals with non-radioactive MC80. This reduced uptake was significant at 30 

min p.i. (p = 0.037). In the pancreas, pretreatment caused the most outstanding 

decline in tracer uptake (reduction with 52 % and 49 % at 30 min and 60 min p.i., 

respectively). A significantly decreased uptake of [11C]-MC80 was also noticed in 

the heart (reduction with 22 % and 21 % at 30 min and 60 min p.i.), lungs 

(reduced with 47 % at 60 min p.i.), small intestines (reduction with 41 % and 44 

% at 30 min and 60 min p.i., respectively), large intestines (reduction with 26 % 

and 35 % at 30 min and 60 min p.i., respectively) and testes (reduced with 24 % 

at 30 min p.i.). This study indicates that MC80 act as an inhibitor for the P-gp 

transporter and not as a substrate (an increased brain uptake should be observed 

since MC-80 will compete with [11C]-MC80 for its interaction with P-gp). 

Summarizing, the highest amount of specific binding of [11C]-MC80 occurred in 

the pancreas, lungs and intestine. A lower fraction of specific binding occurred in 

the brain (reduction with 19 % and 18 % at 30 min and 60 min p.i., respectively), 
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testes and heart. This tissue distribution of the specific binding of [11C]-MC80 is 

in accordance with the known expression levels of P-gp (see Chapter 2).  

 

9.4.4. METABOLITE ANALYSIS 

 

The stability of [11C]-MC80 in vivo was studied at 10 min and 30 min p.i. After 

protein elimination, the recovery of radioactivity in the supernatant solutions was 

97 ± 1 % in plasma and 87 ± 7 % in brain. HPLC measurements of plasma and 

brain spiked with [11C]-MC80, displayed one radioactive peak (Tr = 10 min). This 

peak corresponds with [11C]-MC80 as it was found to co-elute with authentic 

MC80.  

 

Table 9.3 Metabolic profile of [11C]-MC80 
                 Retention time on RP-HPLC          

Treatment group Tissue Time 2.5 min 10 min  [11C]-MC80 

Controla Brain 10 min 2 ± 2 % 98 ± 2 % 
  30 min 9 ± 1 % 91 ± 1 % 
     
 Plasma 10 min 37 ± 6 % 63 ± 6 % 
  30 min 42 ± 6 % 58 ± 6 % 
     
CsA pretreatmentb Brain 10 min 1 % 99 % 
  30 min 7 ± 1 % 93 ± 1 % 
     
 Plasma 10 min 35 ± 9 % 65 ± 9 % 
  30 min 78 ± 3 % 22 ± 3 % 
     
mdr1a(-/-) micec Brain 10 min 2 ± 1 % 98 ± 1 % 

  30 min 8 ± 2 % 92 ± 2 % 
     
 Plasma 10 min 23 ± 7 % 77 ± 7 % 
  30 min 40 ± 3 % 60 ± 3 % 

a pretreatment with saline in FVB mice (n=3), b pretreatment with CsA (50 mg/kg) in 
FVB mice (n=3), c pretreatment with saline in mdr1a (-/-) mice (n=3) 
 

The metabolic profile of [11C]-MC80 in the three different treatment regiments is 

summarized in Table 9.3. 
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9.4.4.1. Metabolism study in FVB mice 

 

In brain, [11C]-MC80 remained very stable with over 98 % and 91 % intact 

product at 10 min and 30 min p.i., respectively. The tracer underwent a more 

extensive metabolism in plasma. Plasma metabolite analysis showed 63 ± 6 % 

and 58 ± 6 % intact [11C]-MC80 at 10 and 30 min, respectively. Only one polar 

metabolite was found, that eluted at the void volume of the column. When [11C]-

MC80 is demethylated, it is anticipated that [11C]methyl is removed and 

metabolized to [11C]CH3OH, [11C]CH2O, [11C]CO2H or [11C]CO2. These 

compounds are very polar and are believed to correspond with the radioactive 

peak of the solvent front.  

 

9.4.4.2. Metabolism study after CsA pretreatment 

 

In both tissues, the same radioactive products were found as without CsA 

injection (Table 9.3). Administration of CsA did not affect the metabolic profile 

of [11C]-MC80 in brain. The percentage intact [11C]-MC80 was 99 % and 93 % at 

10 min and 30 min, respectively. Those values are similar to the values found in 

the mice pretreated with saline. Blood metabolite studies indicated that [11C]-

MC80 underwent an elevated metabolism when CsA was given; at 30 min p.i., the 

percentage unchanged [11C]-MC80 was 58 ± 6 % without and 22 ± 3 % with CsA 

pretreatment.  

 

9.4.4.3. Metabolism study in mdr1a (-/-) mice 

 

Similar to the previous reported treatment regiments, two radioactive products 

are detected (Table 9.3). The use of mdr1a (-/-) mice did not affect the amount 

of unchanged [11C]-MC80 present in brain. At 10 min p.i., 98 ± 1 % of parent 

compound remained in the brain and at 30 min p.i. 92 ± 2 %  was still present as 

unchanged [11C]-MC80. The fraction of radioactivity in plasma that represented 
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[11C]-MC80 was 77 ± 7 % at 10 min p.i. and 60 ± 3 % at 30 min p.i. representing 

the same metabolic profile as in FVB mice.  

 

9.5. Conclusion 

 

MC80 was evaluated in vitro using three biological assays. The [3H]vinblastine 

transport inhibition assay defined MC80 as a potent inhibitor of [3H]vinblastine 

transport. The second assay showed that MC80 did not activate ATPase within 

the monolayer. The ratio of drug transport through Caco-2 monolayers in the 

basolateral-apical and apical-basolateral directions was 3.6, indicating that MC80 

is effluxed by P-gp (Colabufo et al., 2008).  

[11C]-MC80 was readily prepared (radiochemical yield of 25 %) for intravenous 

injection by methylation of MC90 with [11C]methyl iodide, itself prepared from 

cyclotron-produced [11C]methane. Purification by RP-HPLC and Sep-pak 

provided [11C]-MC80 in high radiochemical purity (> 98 %) and very high 

specific activity (> 0.3 TBq/µmol).  

Biodistribution studies in wild-type mice demonstrated brain uptake which 

quickly maximized and then washed out. Compared to [11C]N-desmethyl-

loperamide and the clinical used [11C]verapamil (Hendrikse et al., 1998; Lee et al., 

2006), [11C]-MC80 has a high initial brain uptake. CsA administration, as well as 

genetic disruption of the mdr1a gene, resulted in significant changes in tissue 

distribution, confirming that [11C]-MC80 is modulated by P-gp not only in vitro 

but also in vivo. However, the increase in brain radioactivity is not as high as for 

[11C]N-desmethyl-loperamide and [11C]verapamil (Hendrikse et al., 1998; Lee et 

al., 2006). This is probably caused by a difference in pumping efficiency. Blocking 

studies indicated that radioactivity uptake in intestines and pancreas is highly 

specific. In brain, the specific binding is not so apparent indicating non-specific 

binding. Since the blocking study with cold MC80 caused a reduced brain uptake 

of [11C]-MC80 it was hypothesized that [11C]-MC80 is an inhibitor of P-gp. CsA 

pretreatment as well as the genetic disruption of mdr1a on the other hand caused 
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an increased brain uptake, indicating that [11C]-MC80 is a substrate for P-gp. 

Taken together, it was assumed that [11C]-MC80 is a mixed substrate/inhibitor 

for P-gp. 

Summarizing, [11C]-MC80 is modulated by P-gp and shows specific binding to P-

gp. In brain however a high degree of non-specific binding is observed. In 

contrast, intestinal [11C]-MC80 radioactivity uptake is highly specific and sensitive 

towards P-gp indicating [11C]-MC80 has the potential for imaging intestinal P-gp 

function or expression. 

HPLC measurements demonstrated that [11C]-MC80 has an outstanding 

metabolic profile compared to [11C]N-desmethyl-loperamide and [11C]verapamil 

(Hendrikse et al., 1998; Lee et al., 2006). At 30 min p.i. over 90 % of the 

measured radioactivity in brain was related to unchanged [11C]-MC80. Structural 

analogues possessing the same metabolic stability in vivo, but with a higher affinity 

and specificity for P-gp may be extremely useful for imaging of P-gp expression 

at the BBB. 
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SUMMARY 
 

The human brain is a complex organ, consisting of millions of inter-

communicating neurons. Due to the complexity of the brain our knowledge 

about CNS disorders is still limited. SPECT and PET imaging of the living brain 

are unique tools for clinical researchers to elucidate the causes and consequences 

of brain disorders. In vivo brain mapping with PET or SPECT is of great 

importance in drug development as well as in the effective diagnosis, treatment 

and management of neurological and psychiatric illness.  

In this thesis, new SPECT or PET radioligands directed towards two different 

brain systems, were developed and evaluated in vivo.  

Chapter 1 gave a short overview of the medical imaging techniques and 

described the requirements of a valuable radiopharmaceutical for SPECT and 

PET imaging. The first part of Chapter 2 described the blood-brain barrier and 

the transport of compounds across this barrier. One of the most important 

transport mechanisms limiting brain uptake of drugs, P-gp, was detailed in the 

second part of this chapter. After a brief description of the discovery, structure, 

expression and physiological role, the potential modulation agents of P-gp were 

reviewed. The second brain system, the catecholamine system, was addressed in 

Chapter 3. The dopamine and norepinephrine system were discussed briefly, 

followed by a more detailed description of the mechanisms responsible for 

terminating the neurotransmission. After the history, structure and function of 

the catecholamine transporters in general were discussed, the physiological role of 

NET and DAT in health and disease was illustrated. The last part of chapter 3 is 

dedicated to MAO, one of the main enzymes causing degradation of 

catecholamines. In Chapter 4 the general material and methods were described.  

Chapter 5 reported the synthesis, radiosynthesis and preliminary evaluation of 

[123I]-(S,S)-IPBM, an iodinated reboxetine analogue. [123I]-(S,S)-IPBM aimed at 

imaging the norepinephrine transporter. The precursor was prepared in an overall 
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chemical yield of 8 % with an enantiomeric excess of 95 %. Radiosynthesis 

afforded [123I]-(S,S)-IPBM with an excellent radiochemical purity. Biodistribution 

studies demonstrated a high brain uptake of [123I]-(S,S)-IPBM followed by 

efficient wash-out. Since [123I]-(S,S)-IPBM was reported by others at the moment 

we performed our biodistribution studies, we did not conduct additional in vivo 

studies. Regarding their results (Tamagnan et al., 2007; Kanigawara et al., 2006), 

the choice to develop [123I]-(S,S)-IPBM as radiotracer for NET was an excellent 

suggestion. 

In Chapter 6 the radiolabelling as well as the in vivo characterization of two [11C]-

labelled pyrrole-2-carboxamide derivatives, [11C]-RS 2315 and [11C]-RS 2360, were 

described. In vitro, RS 2315 and RS 2360 are potent inhibitors of MAO-A. Both 

tracers were obtained with a good radiochemical yield, excellent radiochemical 

purity and high specific activity. Both radiotracers displayed high brain uptake 

followed by rapid brain clearance. Blocking studies in mice could not 

demonstrate specificity of [11C]-RS 2315 towards MAO-A or B. The blocking 

study with [11C]-RS 2360 on the other hand indicated specific binding at MAO-A 

at the earliest time point. In the imaging study with [11C]-RS 2360, administration 

of clorgyline caused an overall significant reduced brain uptake indicating specific 

binding at MAO-A. These results indicated that [11C]-RS 2315 is not suitable for 

mapping MAO-A in vivo and that further research is necessary to investigate the 

potential of [11C]-RS 2360 in MAO-A imaging.  

The (radio)synthesis and in vivo evaluation of [123I]-FMIP as a selective radiotracer 

for DAT was reported in Chapter 7. FMIP has nanomolar affinity for DAT and 

better selectivity over the other monoamine transporters compared to the already 

existing ligands for DAT imaging with SPECT. The tributylstannyl precursor was 

synthesized using a five-step synthetic procedure. [123I]-FMIP was synthesized 

with a high radiochemical yield and purity. The specific activity of the compound 

was at least 667 GBq/µmol. Biodistribution studies showed low brain uptake and 

high blood activity. Blocking studies indicated no selectivity of [123I]-FMIP 

towards DAT. A metabolite study demonstrated that in brain, over 80 % was 
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present as intact [123I]-FMIP upon 60 min p.i. In rats, regional brain distribution 

of [123I]-FMIP was not in agreement with DAT distribution. These results 

indicated that [123I]-FMIP is not suitable for mapping DAT in vivo.  

The contribution of P-gp to the low brain uptake of [123I]-FMIP along with its 

potential as P-gp imaging agent was investigated in Chapter 8. To date, no 

iodinated SPECT ligands for P-gp imaging have been published. Brain uptake of 

[123I]-FMIP was very low in wild-type mice with saline pretreatment, consistent 

with the rapid action and high capacity of P-gp. Modulation of P-gp with CsA as 

well as mdr1a gene depletion resulted in a significant increase in cerebral uptake 

of [123I]-FMIP with only minor effect on blood activity. A dose-dependent 

sigmoidal increase in brain uptake of [123I]-FMIP with increasing doses of CsA 

was observed. In vivo ROI-based SPECT measurements confirmed the 

observations of the biodistribution studies. These findings indicated that [123I]-

FMIP is a very promising radiotracer to visualize P-gp at the BBB.  

Chapter 9 described the radiolabelling of an in vitro characterized substrate 

(MC80) of the P-gp pump with 11C and the evaluation of this tracer in vivo for its 

potential to image P-gp function and expression. [11C]-MC80 was synthesized 

with high radiochemical purity and high specific activity. Cerebral uptake was 

increased in mdr1a knock-out mice as well as after CsA pretreatment. 

Administration of non-radioactive MC80 caused a reduced uptake in brain, heart, 

lungs, testes, pancreas and intestines. In brain, [11C]-MC80 displayed an excellent 

metabolic profile (> 90 % intact). Since [11C]-MC80 showed specific binding to 

target organs, this compound can be a lead compound for the development of 

novel radioligands for measuring the expression of P-gp in the brain. 
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SAMENVATTING 
 
De menselijke hersenen zijn een complex orgaan die bestaan uit miljoenen 

communicerende neuronen. Door de complexiteit van de hersenen is onze kennis 

over aandoeningen van het central zenuwstelsel nog steeds beperkt. 

Beeldvorming van de hersenen met SPECT en PET zijn unieke hulpmiddelen 

voor klinische onderzoekers om de oorzaken en de gevolgen van 

hersenaandoeningen op te helderen. In vivo beeldvorming van de hersenen met 

PET of SPECT is van groot belang in zowel geneesmiddelenontwikkeling als in 

het stellen van de juiste diagnose, behandeling en controle van neurologische en 

psychiatrische ziektes. In deze thesis werden nieuwe SPECT en PET 

radioliganden gericht naar twee verschillende hersensystemen ontwikkeld en in 

vivo geëvalueerd.  

Hoofdstuk 1 gaf een overzicht van de medische beeldvormingstechnieken en 

beschreef de voorwaarden van een waardevol radiofarmacon voor SPECT en 

PET beeldvorming. Het eerste deel van Hoofdstuk 2 beschreef de bloed-hersen 

barrière en het transport van bestanddelen doorheen deze barrière. Een van de 

belangrijkste transport mechanismen die de hersenopname van geneesmiddelen 

beperkt, P-gp, werd gespecificeerd in het tweede deel van dit hoofdstuk. Na een 

korte beschrijving van de ontdekking, structuur, expressie en fysiologische rol 

werden de mogelijke modulerende agentia van P-gp besproken. Het tweede 

hersensysteem, het catecholamine systeem, werd behandeld in Hoofdstuk 3. Het 

dopamine en norepinephrine systeem werden kort besproken, gevolgd door een 

meer gedetailleerde beschrijving van de mechanismen die verantwoordelijk zijn 

voor het beëindigen van de neurotransmissie. Nadat de geschiedenis, structuur en 

functie van de catecholamine transporters in het algemeen besproken waren, 

werd de fysiologische rol van de norepinephrine transporter en dopamine 

transporter in ziekte en gezondheid toegelicht. Het laatste deel van hoofdstuk 3 

was toegewijd aan monoamine oxidase, één van de belangrijke enzymes die de 
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afbraak van catecholamines veroorzaken. In Hoofdstuk 4 werden de algemene 

materialen en methoden beschreven.  

Hoofdstuk 5 rapporteerde de synthese, radiosynthese en preliminaire evaluatie 

van [123I]-(S,S)-IPBM, een geiodeerd reboxetine analoog. [123I]-(S,S)-IPBM had als 

doel de beeldvorming van de norepinephrine transporter. De precursor werd 

aangemaakt met een chemisch rendement van 8 % met een enantiomere 

overmaat van meer dan 95 %. Radiosynthese leverde [123I]-(S,S)-IPBM op met 

een uitstekende radiochemische zuiverheid. Biodistributie studies toonden een 

hoge hersenopname van [123I]-(S,S)-IPBM gevolgd door een efficiënte klaring. 

Doordat [123I]-(S,S)-IPBM gerapporteerd werd door anderen op het moment dat 

wij onze biodistributies deden, voerden we geen bijkomende in vivo studies uit. 

Hun resultaten in beschouwing nemend (Tamagnan et al., 2007; Kanigawara et 

al., 2006), was de keuze om [123I]-(S,S)-IPBM als radiotracer voor de 

norepinephrine transporter te ontwikkelen een uitstekend voorstel. In 

Hoofdstuk 6 werd zowel de merking met radioactiviteit als de in vivo 

karakterisatie van twee [11C]-gemerkte pyrrool-2-carboxamide derivaten, [11C]-RS 

2315 and [11C]-RS 2360, beschreven. In vitro, zijn RS 2315 en RS 2360 sterke 

inibitoren van MAO-A. Beide tracers werden bekomen met een goed 

radiochemisch rendement, uitstekende radiochemische zuiverheid en hoge 

specifieke activiteit. Beide radiotracers vertoonden hoge hersenopname gevolgd 

door snelle klaring uit de hersenen. Blokkeringstudies in muizen konden geen 

selectiviteit aantonen van [11C]-RS 2315 voor MAO-A of MAO-B. De 

blokkeringstudie met [11C]-RS 2360 toonde specifieke binding aan MAO-A op 

het eerste tijdstip. In de beeldvorming studie met [11C]-RS 2360 veroorzaakte 

toedoening van clorgyline een algemeen significante gedaalde hersenopname wat 

een specifieke binding aan MAO-A indiceerde. Deze resultaten wezen aan dat 

[11C]-RS 2315 niet bruikbaar is voor het in kaart brengen van MAO-A in vivo en 

dat verdere onderzoek nodig is om de mogelijkheid van [11C]-RS 2360 in 

beeldvorming van MAO-A te analyseren. 
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De radiosynthese en in vivo evaluatie van [123I]-FMIP als een selectieve radiotracer 

voor DAT werd gerapporteerd in Hoofdstuk 7. FMIP heeft nanomolaire 

affiniteit voor DAT en een betere selectiviteit vergeleken met de reeds bestaande 

liganden voor DAT beeldvorming met SPECT. De tributyltin precursor werd 

gesynthetiseerd gebruik makend van een vijf-staps synthese. [123I]-FMIP werd 

aangemaakt met hoog radiochemisch rendement en zuiverheid. De specifieke 

activiteit van de component was minstens 667 GBq/µmol. Biodistributie studies 

toonden een lage hersenopname en hoge bloedactiviteit. Blokkeringstudies wezen 

geen selectiviteit van [123I]-FMIP voor DAT aan. Een metabolietanalyse 

demonstreerde dat in de hersenen meer dan 80 % aanwezig was als intact [123I]-

FMIP tot 60 min na injectie. In ratten, bleek de regionale hersendistributie van 

[123I]-FMIP niet in overeenkomst met de DAT verdeling. Deze resultaten 

toonden aan dat [123I]-FMIP niet bruikbaar is voor het in beeld brengen van DAT 

in vivo. 

De deelname van P-gp aan de lage hersenopname van [123I]-FMIP samen met zijn 

potentieel als agens voor beeldvorming van P-gp werd onderzocht in Hoofdstuk 

8. Tot op heden werden nog geen geiodeerde SPECT liganden voor 

beeldvorming van P-gp gepubliceerd. Hersenopname van [123I]-FMIP was zeer 

laag in wildtype muizen voorbehandeld met zoutoplossing, in overeenstemming 

met de snelle actie en hoge capaciteit van P-gp. Zowel modulatie van P-gp met 

CsA als verwijderen van het mdr1a gen resulteerde in een significantie stijging van 

de hersenopname van [123I]-FMIP met slechts een klein effect op de 

bloedactiviteit. Een dosisafhankelijke sigmoidale stijging in hersenopname van 

[123I]-FMIP met stijgende concentraties CsA werd waargenomen. In vivo ROI-

gebaseerde SPECT metingen bevestigden de observatie van de biodistributie 

studies. Deze bevindingen wezen erop dat [123I]-FMIP een veelbelovende 

radiotracer is voor de visualisatie van P-gp ter hoogte van de bloed-hersen 

barrière. 

Hoofdstuk 9 beschreef de radioactieve merking van een in vitro gekarakteriseerd 

substraat (MC80) van de P-gp pomp met 11C en de evaluatie van deze tracer in 
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vivo voor zijn potentieel om P-gp functie en expressie in beeld te brengen. [11C]-

MC80 werd zeer snel gesynthetiseerd met hoge radiochemische zuiverheid en 

hoge specifieke activiteit. De hersenopname werd verhoogd zowel in mdr1a 

knock-out muizen als na voorbehandeling met CsA in gewone muizen. 

Toediening van niet radioactief MC80 veroorzaakte een gereduceerde opname in 

de hersenen, hart, longen, testes, pancreas en darmen. In de hersenen vertoonde 

[11C]-MC80 een uitstekend metabolisch profiel (> 90 % intact). Omdat [11C]-

MC80 specifieke binding vertoont aan de doelorganen kan deze component een 

goede basismolecule zijn voor de ontwikkeling van nieuwe radioliganden voor  

het meten van P-gp expressie in de hersenen.  
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