-

View metadata, citation and similar papers at core.ac.uk brought to you byﬁ CORE

provided by Ghent University Academic Bibliography

i

UNIVERSITEIT
GENT

biblio.ugent.be

The UGent Institutional Repository is the electronic archiving and dissemination platform for all
UGent research publications. Ghent University has implemented a mandate stipulating that all
academic publications of UGent researchers should be deposited and archived in this repository.
Except for items where current copyright restrictions apply, these papers are available in Open
Access.

This item is the archived peer-reviewed author-version of:
Discovering and Using Functions via Content Negotiation
Ben De Meester, Anastasia Dimou, Ruben Verborgh, and Erik Mannens

In: Proceedings of the 15th International Semantic Web Conference: Posters and Demos., 2016.

To refer to or to cite this work, please use the citation to the published version:

De Meester, B., Dimou, A., Verborgh, R., and Mannens, E. (2016). Discovering and Using Functions
via Content Negotiation. Proceedings of the 15th International Semantic Web Conference: Posters
and Demos.

https://core.ac.uk/display/55811671?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Discovering and Using Functions
via Content Negotiation

Ben De Meester, Anastasia Dimou, Ruben Verborgh,
Erik Mannens, and Rik Van de Walle

Ghent University — iMinds — Data Science Lab, Belgium
{firstname.lastname}@ugent.be

Abstract. Data has been made reusable and machine-interpretable by
publishing it as Linked Data. However, Linked Data automatic process-
ing is not fully achieved yet, as manual effort is still needed to integrate
existing tools and libraries within a certain technology stack. To enable
automatic processing, we propose exposing functions and methods as
Linked Data, publishing it in different programming languages, using
content negotiation to cater to different technology stacks, and making
use of common, technology-independent identifiers to make them dis-
coverable. As such, we can enable automatic processing of Linked Data
across formats and technology stacks. By using discovery endpoints, sim-
ilarly as being used to discover vocabularies and ontologies, the publi-
cation of these functions can remain decentralized whilst still be easily
discoverable.

Keywords: Content Negotiation, Function, Linked Data

1 Introduction

By publishing data as Linked Data, we are moving to a Web of integrated,
reusable, and machine-interpretable data. However, to process that data, we need
algorithms. For example, calculating a distance between two points [x1, y1]
and [x2, y2] can be done using the Euclidean distance, which, in JavaScript,
could be calculated as Math.sqrt((x1-x2)*(x1-x2) + (yi-y2)*(y1-y2)).

Libraries and repositories of common functions and methods exist!, but inte-
grating them still requires manual effort to 'glue’ the different libraries together.
Human intervention is needed, as functions are implemented in different tech-
nologies, and the way of executing these functions is not declared semantically,
thus ruling out machine-interpretability.

At the same time, there are many ongoing efforts to integrate processing
instructions and (Linked Data) applications, for example, integrating process-
ing funcions when mapping from non-RDF data to RDF data [2], adding cus-
tom functions in SPARQL queries [5], or creating compositions of hypermedia
APIs [7]. Also, a lot of ongoing work is specifying implementation-independent

! See, e.g., https://www.npmjs.com/package/euclidean-distance

 {firstname.lastname}@ugent.be
https://www.npmjs.com/package/euclidean-distance

2 Ben De Meester et al.

processing instructions using Web services (such as Hydra [4]). However, expos-
ing functions as Web services alone is not sufficient, either because the data to
be transferred over HT'TP is too trivial (e.g., calculating a geographic distance
between two data points), or too large to be easily handled in practice (e.g.,
calculating aggregates over billion-triple local data).

In this paper, we propose publishing functions as Linked Data, and as such,
making them machine-interpretable and discoverable. Similar functions can thus
be defined across technology stacks, without any integration or discovery efforts.
For these functions to be usable within different technology stacks, content ne-
gotiation can be used to publish the same functions in different implementa-
tions [3], either accessed remotely or downloaded to be automatically integrated
in the local technology stack. This way, we make similar methods in different
programming languages available, just as websites are made available in dif-
ferent in different human (natural) languages, or as content is made available
both for humans as for machines. This allows for more automatic composition of
processing instructions, thus building towards the intelligent agents as initially
envisioned when first proposing the Semantic Web.

2 Methodology

The proposed methodology consists of the following parts (Figure 1):

1. provide techonology-independent semantic descriptions of functions,

2. publish these functions, both their semantic description as the specific im-
plementations (not necessarily all at the same place),

3. make the semantic descriptions discoverable and queryable, and

4. provide content negotiation to allow uniform access to different implemen-
tations.

We achieve our proposed approach to semantically describe function using
for instance the Function Ontology [1]. The Function Ontology is a technology-
independent way of describing functions of various complexity, without any as-
sumptions on programming paradigms. It consists of only six base classes and
five relations. It is used to describe a Function that possible solves a certain
Problem, and possibly implements some Algorithms. The Function expects
zero or more Parameters and returns zero or more Outputs. An Execution
executes a certain Function by binding values to the Parameters. The Eu-
clidean distance function could thus be described as follows:

ex:euclidDistanceFn a fno:Function ;
fno:solves ex:EuclideanDistanceProblem ;
fno:expects (ex:dataPointl ex:dataPoint2) ;
fno:returns (xsd:double)

We consider the Function Ontology as it is small and technology/problem-
domain independent, and thus allows for easier reuse.

Discovering and Using Functions via Content Negotiation 3

POST /_query

Web service
Accept: application/x-javascript JAVA function
)

_:a
fno:solves s1.example.com

ex:EuclideanDistanceProblem .
= ”

—rz Redirect 303
@ s2.example.com/euclidean.js

K _E_JavaScript function

(3) function euclidean (points) { [..] } sZ.example.com

Fig. 1: General overview of content negotiation over functions. Function descrip-
tions can be published to discovery endpoints (0). When a user queries such an
endpoint (1), the response can redirect (2) to the actual implementation (3).

Just as Linked Open Vocabularies [6] provides for a discovery endpoint to
vocabularies and ontologies, functions can be submitted to similar discovery end-
points (Figure 1 (0))2. No actual implementations are hosted on these endpoints,
but the semantic descriptions can be aggregated, and content negotiation can
be set up to direct the user to the different implementations across servers. For
example, when a user needs a certain functionality in a certain technology, it
can query discovery endpoints for functions that solve a given problem, and are
available in a specific format (in the case of Figure 1 (1), a JavaScript snippet).
The discovery endpoint can then redirect (2) the user to a server hosting the
actual code (3).

3 Discussion

The proposed methodology uses widespread methods to publish and discover
functions, catered to different needs. However, they also inherit the same risks
as there are in the current Web: just as websites are not always accessible in
the language you prefer, functions might not be implemented in the technology
needed. Fortunately, similar workarounds can be used: as best-effort automatic
translation systems can provide for translations of websites to your preferred
language, there exist engines that allow to incorporate code snippets from a
different programming language?.

2 This compares to a technology-independent https://www.haskell.org/hoogle/
(that helps users discover Haskell functions by type signature), but where the se-
mantics of a function is also taken into account.

3 See, e.g. the Nashorn engine to use JavaScript procedures within the Java Virtual
Machine (https://blogs.oracle.com/nashorn/).

https://www.haskell.org/hoogle/
https://blogs.oracle.com/nashorn/

4 Ben De Meester et al.

Furthermore, the proposed methodology allows to transition between remote
web services and local methods. Depending on the execution rate (and data
throughput), a user can decide whether to use the online service, or integrate
the method in the local framework.

Depending on the technology used, the client will need to interpret the se-
mantic description of a function, to know how to actually execute a function. For
Web services, many declarative description formats exist to automatically derive
this (e.g., Hydra [4]). For other technologies, additional descriptions might be
necessary.

4 Conclusion

Functions can be described semantically and technology-independent using the
Function Ontology. By publishing these descriptions alongside their implementa-
tions, we provide a uniform access to similar functions for different technologies,
both accessible remotely and downloadable locally. These implementations can
exist distributed, but are made discoverable using centralized endpoints, similar
as to widely adopted portals such as Linked Open Vocabularies. Whis in turn
allows for machine-interpretable and discoverable libraries of functions.

References

1. De Meester, B., Dimou, A., Verborgh, R., Mannens, E., Van de Walle, R.: An
ontology to semantically declare and describe functions. In: Proceedings of the 13th
ESWC: Satellite Events (2016), to be published

2. Debruyne, C., O’Sullivan, D.: R2ZRML-F: Towards sharing and executing domain
logic in R2RML mappings. In: Workshop on Linked Data on the Web (2016), http:
//events.linkeddata.org/1dow2016/papers/LDOW2016_paper_14.pdf

3. Fielding, R.T., Reschke, J.: Hypertext Transfer Protocol (HTTP/1.1): Semantics
and content — content negotiation. Tech. rep., IETF (June 2014), http://tools.
ietf.org/html/rfc7231#section-3.4, accessed January 26th, 2015

4. Lanthaler, M., Giitl, C.: Hydra: A Vocabulary for Hypermedia-Driven Web APIs.
In: LDOW, WWW (2013)

5. Regalia, B., Janowicz, K., Gao, S.: VOLT: A provenance-producing, transparent
sparql proxy for the on-demand computation of linked data and its application to
spatiotemporally dependent data. In: The Semantic Web. Latest Advances and New
Domains (2016), http://geog.ucsb.edu/~jano/eswc2016.pdf

6. Vandenbussche, P.Y., Atemezing, G.A., Poveda-Villalén, M., Vatant, B.: Linked
open vocabularies (lov): a gateway to reusable semantic vocabularies on the web.
Semantic Web (Preprint), 1-16 (2015), http://www.semantic-web-journal.net/
system/files/swj1178.pdf

7. Verborgh, R., Arndt, D., Van Hoecke, S., De Roo, J., Mels, G., Steiner, T.,
Gabarr6 Vallés, J.: The pragmatic proof: Hypermedia API composition and ex-
ecution. Theory and Practice of Logic Programming (2016), http://arxiv.org/
pdf/1512.07780v1.pdf

http://events.linkeddata.org/ldow2016/papers/LDOW2016_paper_14.pdf
http://events.linkeddata.org/ldow2016/papers/LDOW2016_paper_14.pdf
http://tools.ietf.org/html/rfc7231#section-3.4
http://tools.ietf.org/html/rfc7231#section-3.4
http://geog.ucsb.edu/~jano/eswc2016.pdf
http://www.semantic-web-journal.net/system/files/swj1178.pdf
http://www.semantic-web-journal.net/system/files/swj1178.pdf
http://arxiv.org/pdf/1512.07780v1.pdf
http://arxiv.org/pdf/1512.07780v1.pdf

	Discovering and Using Functionsvia Content Negotiation
	Introduction
	Methodology
	Discussion
	Conclusion

