To my family
Mami, Tati i Bakiju
"Our virtues and our failings are inseparable, like force and matter.
When they separate, man is no more."
Nikola Tesla

Members of the Jury

Prof. Dr. ir. Filip Tack (Chairman)
Prof. Dr. Floris Rutjes
Prof. Dr. ir. Guido Verniest
Prof. Dr. ir. Bruno De Meulenaer
Prof. Dr. ir. Christian Stevens
Prof. Dr. ir. Norbert De Kimpe (Promotor)
Prof. Dr. ir. Matthias D'hooghe (Promotor)

Promoters: Prof. Dr. ir. Norbert De Kimpe
Department of Sustainable Organic Chemistry and Technology
Faculty of Bioscience Engineering, Ghent University

Prof. Dr. ir. Matthias D'hooghe
Department of Sustainable Organic Chemistry and Technology
Faculty of Bioscience Engineering, Ghent University

Dean: Prof. Dr. ir. Guido Van Huylenbroeck
Rector: Prof. Dr. Paul Van Cauwenberge

Sonja Stanković

Study of non-activated 2-(bromomethyl)aziridines and 2-bromomethyl-2-methylaziridines as versatile synthons in heterocyclic chemistry

Thesis submitted in fulfillment of the requirements
for the degree of Doctor (PhD) in Applied Biological Sciences: Chemistry

Dutch translation of the title

Studie van niet-geactiveerde 2-(broommethyl)aziridinen en 2-broommethyl-2-methylaziridinen als veelzijdige bouwstenen in de heterocyclische chemie

Cover illustration:

The triangles stand for aziridine building blocks The squares stand for azetidine building blocks The rings stand for spirocyclic building blocks

ISBN-number: 978-90-5989-566-9

The author and the promoters give the authorization to consult and to copy parts of this work for personal use only. Every other use is subject to the copyright laws. Permission to reproduce any material contained in this work should be obtained from the author.

[^0]
Acknowledgements

Living and studying in Belgium for the last 4 years was the best thing that could ever happen to me. If I remember how I was thinking 5 years ago, it's still hard to believe that I am actually here, having this PhD in my hands. I guess it's always hard to imagine that your life will change so much.

I have experienced all the beauty of living abroad, making so many friends of different nationalities, travelling, being on my own - more independent and self-confident. The fact that it was not always easy to live in a foreign country makes me even more proud of myself for being brave enough to come here, to learn how to fight for myself and to be ready to face new challenges. Feeling like this would never be possible without being supported and loved by many people.

First, I would like to thank my promoter Professor De Kimpe for providing me the opportunity to be a part of a great research group, for guiding my PhD with a great scientific expertise and for criticizing me when it was necessary. He helped me to become stronger and less scared from the unknown. I really hope I have justified the trust he gave me at the beginning.

The second most important person for writing this today is for sure Matthias. He knew how to make me feel better, put the smile on my face whenever I was in a bad mood, and be supportive for everything I did. He guided my research with great knowledge, enthusiasm and energy. With him I had freedom to show my true colours, which sometimes resulted in showing a stubborn and angry side of my personality. ;) I really appreciate the understanding he had for me, I am very glad he was my copromotor and I will never be able to thank him enough for everything he did for me!

I would also like to thank all the people I have spent almost 4 years with. I am happy that there are a lot of them I consider my friends, and I hope it will stay like that in future. Many of them have become an important part of my life in Belgium. Asta is the person I know from the very beginning, the person I really trust and care about and I know she will always stay present in my life (Thank you for your existence! ;)) Off course I cannot forget to thank my group of other "crazy-terrible foreigners" I had so much fun with: Klicia, Vaida, Vida, Liza, Eduardo, Michalis, Marina. I am especially glad that Klicia is in Belgium again and that we are so close friends. Thank you Endre, Visnja, Antonis, Dani, Matteo, Elena, Gustavo, Jonko for sharing nice moments together. Lucia was the first person I met in Belgium and I am glad we went together through many things which would definitely be more difficult without her. Vasilis for your support, humor, crazy dancing nights and beautiful Greek dinners. Bojan for being a good Serbian friend in Belgium. Vivi for being close friend and having great time not only in our office but whenever we see each other. Jan and Wouter are my little "tebrice" (brothers) and our friendship makes my life in Belgium more comfortable and nicer. Thanks to their attention and love I feel less sad that I am far away from my family and friends in Serbia. Tim, my dear master student who showed big enthusiasm in the lab, who helped me to improve my Dutch and who was always ready to listen and support me. Bart for teaching me the salsa moves, the pronunciation of many Dutch words (although I still don't hear the difference between g and h, v and w , ui and oi..) and westvlaamse dialect and being so dear all the time. Ana for nice Serbian talks that make me feel at home. Karel Vervisch for being a great person I always have nice talks and fun with. Koen and Gert for being different, crazy, fun...I always like to be in their company. Filip for all his attention, support and talks. Ann De Blieck for all the crazy Spa parties and fun in the lab. Laurens for his kindness. Thomas for his help and smart advice. Stephanie for being always so supportive and good listener. Pieter Zwanepoel for his readiness to help, to listen and to be a person of trust. Ans for being so emotional and full of understanding. The list is very long but I have to stop somewhere and to thank all my colleagues for a great atmosphere in the lab through all these years.

The biggest and constant support for being and living here comes off course from my family and friends in Serbia, so I will now continue this acknowledgement in Serbian.

Kao što možete da vidite ispred, lista ljudi kojima sam se zahvalila je jako duga ali nikada ne može da se uporedi sa podrškom i ljubavi koju sam dobila od mojih dragih osoba iz Srbije.

Majče želim da ti se zahvalim što si uvek brinula o meni, da ti kažem kako mi je drago što sam tvoja kumica i što si učinila da nikad ne zaboravim da ima ljudi koji će me uvek voleti i koji me nikada neće zaboraviti gde god da sam. Mnogo sam srećna što ćeš uvek biti deo mog života. Neco, Tiki, Jasmina, Lido hvala za svu pažnju, razumevanje i za to što nikada nećemo prestati da budemo prijatelji.

Slavko, najviše želim da ti se zahvalim za ogromu podršku koju si mi pružio pred odlazak u Belgiju. Bez te podrške sigurno ne bih imala dovoljno snage da se borim i da pokažem da mogu da postignem ovoliko. Želim da znaš da si bio i bićeš uvek važan deo mog života gde god da sam. Nikada neću zaboraviti sve što si činio za mene svih ovih godina.

Jecika, ti znaš da si mi kao sestra, znaš koliko te volim i koliko želim da budes srećna. Hvala ti za svu ljubav koju imaš za mene. Znam da ćeš uvek biti deo mog života i da ću ja biti deo tvog. Volela bih da možemo da budemo srećne i bezbrižne kao nekad. Ovaj doktorat završavam sa jednom ogromnom tugom ali i sa ubedjenjem da te nikada neću napustiti i da ćemo uvek biti povezane kao što smo bile i do sada. Volim te mnogo!

Tetkice, tečo, Slaviša i Keko želim da vam kažem da vas mnogo volim i da mi je drago što smo toliko bliski. Naša bliskost, briga, ljubav i razumevanje su mi uvek pružale osećaj samopouzdanja da se borim u stranoj zemlji i da se ne plašim da neću uspeti. Kekice moja draga, ti si uvek bila pored mene i ne možeš da zamisliš koliko sam srećna što smo nas dve bliske kao "dve sekice" (naše mame). Znam da brinemo i volimo jedna drugu toliko da ćemo ceo život biti najbliža porodica.

Mama, tata, Baki vi znate da vas ja volim najviše na svetu celom. Zaista ne znam kako bih u svemu ovom uspela i bila ovo što jesam da nije vas, vaše ljubavi, brige i podrške. Bez obzira što znam koliko vam je teško što nisam više u Srbiji, vi ste imali toliko razumevanja da me podržite u svemu što je mene činilo srećnom. Zbog toga vama posvećujem ovaj doktorat jer da nije vas ništa ne bi imalo smisla. Vi ste moja najveća sreća i ja sam tako ponosna sto imam divne roditelje i najboljeg brata na svetu!

TABLE OF CONTENTS

1 INTRODUCTION AND GOALS 1
2 LITERATURE REVIEW 9
2.1 Introduction 9
2.2 Activation and ring opening of 2-(1-alkenyl)aziridines 10
2.2.1 Aziridinium ion formation through N-alkoxycarbonylation 10
2.2.2 Aziridinium ion formation through N-alkylation 11
2.2.3 Activation and ring opening of 2-(1-alkenyl)aziridines via silylation 11
2.3 Activation and ring opening of 2-arylaziridines 12
2.3.1 Aziridinium ion formation through N-complexation with Lewis acids 12
2.3.2 Aziridinium ion formation through N-carbamoylation or N -acylation 14
2.3.3 Aziridinium ion formation through N-protonation 15
2.3.4 Activation and ring opening of 2-arylaziridines via silylation 17
2.4 Activation and ring opening of 2-acylaziridines 17
2.4.1 Aziridinium ion formation through N-complexation with Lewis acids 17
2.4.2 Aziridinium ion formation through N-acylation or N -alkoxycarbonylation 18
2.4.3 Aziridinium ion formation through N-protonation 19
2.4.4 Aziridinium ion formation through N-alkylation 21
2.5 Activation and ring opening of 2-alkylaziridines 21
2.5.1 Aziridinium ion formation through N-complexation with Lewis acids 22
2.5.2 Aziridinium ion formation through N -acylation or N -carboxylation 26
2.5.3 Aziridinium ion formation through N-protonation 28
2.5.4 Aziridinium ion formation through N-alkylation 31
2.5.5 Activation and ring opening of 2-alkylaziridines via silylation 35
2.6 Theoretical aspects and insights obtained via computational chemistry 36
2.7 Conclusion 40
3 RESULTS AND DISCUSSION 43
3.1 Microwave-assisted regioselective ring opening of non-activated aziridines
by lithium aluminium hydride 43
3.1.1 Ring opening of 2-(bromomethyl)aziridines with LiAlH_{4} 44
3.1.2 Ring opening of 2-(acetoxymethyl)aziridines with LiAlH_{4} 46
3.1.3 Synthesis of 5-methylmorpholin-2-ones from β-amino alcohols 48
3.1.4 Synthesis of enantiopure β-amino alcohols and 5-methylmorpholin-2-ones 49
3.1.5 Ring opening of 2-(methoxymethyl)- and 2-(phenoxymethyl)aziridines with LiAlH_{4} 51
3.2 Systematic study of halide-induced ring opening of 2-substituted aziridinium salts 54
3.2.1 Ring opening of 2-aryloxymethyl-1,1-di(arylmethyl)aziridinium salts by halides 55
3.2.2 Ring opening of stable 1-methylaziridinium triflates by halides 57
3.2.3 Evaluation of halide-induced ring opening of 2-substituted aziridinium saltsby computational methods
3.3 Synthesis of 3-methoxyazetidines via an aziridine to azetidine rearrangement
3.3.1 Evaluation of the synthesis of 3-methoxyazetidines from N -arylmethylidene-
(2,3-dibromo-2-methylpropyl)amines 62
3.3.2 Synthesis and ring expansion of 2-bromomethyl-2-methylaziridines 64
3.3.3 Synthesis of chiral 2-bromomethyl-2-methylaziridines and a 3-methoxyazetidine 66
3.3.4 Ring expansion of 2-bromomethyl-2-methylaziridines to 3-bromo-3-methylazetidines 68
3.3.5 Evaluation of the synthesis of 3-methoxyazetidines by computational methods 70
3.3.6 Ring opening of 2-bromomethyl-2-methylaziridines 73
3.4 Solvent-controlled selective transformation of 2-bromomethyl-2-methylaziridines to functionalized aziridines and azetidines 75
3.4.1 Synthesis of functionalized aziridines and azetidines 76
3.4.2 Evaluation of the reaction mechanisms for the formation of aziridines and azetidines 79
3.4.3 Reactivity of 3-bromo-3-methylazetidines 81
3.5 Synthesis and reactivity of 3-ethylideneazetidines 83
3.5.1 Synthesis of 3-ethylideneazetidines 84
3.5.2 Reactivity study of 3-ethylideneazetidines 86
4 PERSPECTIVES 99
5 EXPERIMENTAL PART 103
5.1 General methods 103
5.2 Synthesis of 2-acetoxymethyl-1-(arylmethyl)aziridines 222 104
5.3 Synthesis of 2-(arylmethylamino)propan-1-ols 224 106
5.4 Synthesis of optically active 2-aminopropan-1-ols 230 107
5.5 Synthesis of 5-methylmorpholin-2-ones 228 108
5.6 Synthesis of chiral 5-methylmorpholin-2-ones 231 109
5.7 Synthesis of 1-methoxypropan-2-amines 235 110
5.8 Synthesis of 1-arylmethyl-2-(aryloxymethyl)aziridines 234 111
5.9 Synthesis of N -(3-aryloxy-2-bromopropyl)amines 239 112
5.10 Synthesis of \mathbf{N}-(2-chloro-3-aryloxypropyl)amines 240 113
5.11 Synthesis of N -(2-iodo-3-aryloxypropyl)amines 241 115
5.12 Synthesis of 2-amino-3-aryloxy-1-fluoropropanes 242 and \mathbf{N}-(2-fluoro- 3-aryloxypropyl)amines 243 117
5.13 Synthesis of 2-bromomethyl-2-methylaziridines 260 120
5.14 Synthesis of optically active 2-bromomethyl-2-methylaziridines 270 and 271 121
5.15 Synthesis of 3-methoxy-3-methylazetidines 258 from 2-bromomethyl- 2-methylaziridines 122
5.16 Synthesis of 3-methoxy-3-methyl-1-[1(S)-phenylethyl]azetidine 272 122
5.17 Synthesis of 3-methoxy-3-methylazetidines 258 starting from imines 266 123
5.18 Synthesis of 2-ethylthiomethyl-2-methylaziridine 267 124
5.19 Synthesis of N -tert-butoxycarbonyl-3-methoxy-3-methylazetidine 273 124
5.20 Synthesis of 3-bromo-3-methylazetidines 261 125
5.21 Synthesis of N-(2-chlorobenzyl)-N-(2,3-dibromo-2-methylpropyl)amine 276 126
5.22 Synthesis of N, N-dibenzyl- N-(2,3-dibromo-2-methylpropyl)amines 275 126
5.23 Synthesis of N -(1-bromo-3-chloro-2-methylprop-2-yl)amines 279 127
5.24 Synthesis of 1-(2-chlorobenzyl)-2-(cyanomethyl)aziridine 282 128
5.25 Synthesis of \mathbf{N}-(2-chlorobenzyl)-2-chloromethyl-2-methylaziridine 281 129
5.26 Synthesis of 3-methyl-3-thiocyanatoazetidines 284 129
5.27 Synthesis of 2-methyl-2-(thiocyanatomethyl)aziridines 285 130
5.28 Synthesis of azetidine-3-carbonitriles 286 131
5.29 Synthesis of 2-cyanomethyl-2-methylaziridines 287 132
5.30 Synthesis of 3-methyl-3-phenoxyazetidines 288 133
5.31 Synthesis of 2-methyl-2-(phenoxymethyl)aziridines 289 134
5.32 Synthesis of 3-acetoxy-3-methylazetidines 290 135
5.33 Synthesis of 2-acetoxymethyl-2-methylaziridines 291 136
5.34 Synthesis of 3-methyl-1-(4-methylbenzyl)-3-azetidinol 296 137
5.35 Synthesis of 3-methyl-1-(4-methylbenzyl)azetidine-3-carboxamide 298
and 3-methyl-1-(4-methylbenzyl)azetidine-3-carboxylic acid 297 137
5.36 Synthesis of ammonium 3-methyl-1-(4-methylbenzyl)azetidine-3-carboxylate 299 138
5.37 Synthesis of 2-bromomethyl-2-ethylaziridines 303 139
5.38 Synthesis of 3-bromo-3-ethylazetidines 305 140
5.39 Synthesis of 1-benzyl-3-ethyl-3-methoxyazetidine 306 141
5.40 Reactivity of 3-bromo-3-ethylazetidine 305 toward KOtBu in tBuOH 141
5.41 Synthesis of 3-ethylideneazetidines 307 142
5.42 Synthesis of 3-ethyl-1-(4-methylbenzyl)azetidine 329 143
5.43 Synthesis of N-benzyl-N-[2-(chloromethyl)but-2-enyl)]-2-alkoxyacetamides 318 143
5.44 Synthesis of 2-benzyloxy-N-[(2-chloromethyl)but-2-enyl)]-N-(4-methylbenzyl) acetamides 318 144
5.45 Synthesis of N-benzyl- N-[(2-chloromethyl)but-2-enyl)]acetamides 323 145
5.46 Synthesis of N, N-dibenzyl- N-[(2-bromomethyl)but-2-enyl)]amines 324 146
5.47 Synthesis of methyl N-benzyl-N-[(2-(chloromethyl)but-2-enyl)]carbamates 326 146
5.48 Synthesis of 3-benzyl-5-ethylidene-1,3-oxazinan-2-ones 327 147
5.49 Synthesis of 1-benzyl-3-bromo-3-(1-bromoethyl)azetidine 332 149
5.50 Synthesis of 1-benzyl-3-chloro-3-(1-chloroethyl)azetidine 333 149
5.51 Synthesis of 3-hydroxy-3-(1-tosyloxyethyl)azetidines 334 150
5.52 Synthesis of 2-methyl-1-oxa-5-aza-spiro[2.3]hexanes 335 151
5.53 Synthesis of 3-(1-azidoethyl)-1-(4-methylbenzyl)azetidin-3-ol 339 151
5.54 Synthesis of 3-(1-hydroxyethyl)azetidin-3-ols 340 152
5.55 Synthesis of 6,6,8-trimethyl-2-aza-5,7-dioxaspiro[3.4]octane 342 153
5.56 Synthesis of 8-methyl-2-(4-methylbenzyl)-2-aza-5,7-dioxaspiro[3.4]octan-6-one 345 154
6 SUMMARY 156
7 SAMENVATTING 163
8 REFERENCES 170

1 Introduction and Goals

Many of biologically important molecules such as drugs and natural products accommodate a heterocyclic moiety in their framework. Within the class of small, nitrogen-containing heterocycles, aziridines and azetidines comprise a remarkable group of strained compounds with diverse synthetic and biological applications.

As powerful alkylating agents, aziridines have an inherent in vivo potency, often based primarily on toxicity rather than specific activity. ${ }^{1}$ There are, however, several classes of aziridine-containing natural products, for example pertaining to the Mitosane 1 and Azinomycin family 2 (Figure 1), with anti-tumor and antibiotic activity. ${ }^{2}$

1
Mitomycins A-C $X=\mathrm{OMe}, \mathrm{NH}_{2} ; Y=\mathrm{H}, \mathrm{Me}$;
$\mathrm{Z}=\mathrm{H}, \mathrm{Me}$

2
Azinomycins A-B
$\mathrm{R}=\mathrm{H}, \mathrm{CHO}$

Figure 1

However, aziridines showed to be much more valuable as versatile synthons to access a window of different synthetically and biologically important molecules. ${ }^{3}$ In terms of synthetic transformation, their utility relates to selective ring-opening reactions. ${ }^{4}$ The transformations of these strain-loaded threemembered rings $(113 \mathrm{~kJ} / \mathrm{mol})^{5}$ allow for regio- and stereoselective installation of a wide range of functional groups in a 1,2-relationship with respect to the nitrogen atom.

Aziridines are also useful intermediates in the synthesis of a whole variety of natural products, such as the Amaryllidaceae alkaloid crinine 3^{6} and 2-benzylisoquinoline alkaloids sendaverine and corgoine 4a and $\mathbf{4 b}^{7}$ (Figure 2).

3
Crinine

4a Sendaverine ($\mathrm{R}=\mathrm{Me}$)
4b Corgoine ($\mathrm{R}=\mathrm{H}$)

Figure 2

Aziridines can be classified as "activated" and "non-activated" depending on the type of the substituent on the ring nitrogen atom. Activated aziridines, bearing an electron-withdrawing group at the nitrogen, can easily be opened without prior activation. On the other hand, non-activated aziridines, containing
an electron-donating group at the nitrogen atom, have to be activated through quaternization prior to nucleophilic ring opening. The chemistry of non-activated aziridines is far less explored as compared to the chemistry of activated aziridines, ${ }^{4,5 a, 8}$ and therefore the main goal of this PhD thesis is to further investigate and expand the synthetic potential of this interesting class of compounds.

Next to aziridines, their higher homologues, i.e. azetidines, also exhibit a wide range of biological activities, ${ }^{9}$ in addition to their peculiar chemical properties associated with the ring strain. ${ }^{10}$ L-Azetidine-2-carboxylic acid 5 (Figure 3), the first azetidine natural product that has been discovered, was isolated from Convallaria majalis (lily of the valley) in $1955 .{ }^{11}$ The research into the role of this molecule has shown it to be important for the inhibition of the proliferation of Escherichia coli, alteration of the structure of collagen, keratin and hemoglobin in human proteins, and teratogenic effects and various malformations in animals. ${ }^{10 \mathrm{~d}}$ Examples of other natural products containing an azetidine ring include mugineic acid 6, 2'-deoxymugineic acid 7 and nicotianamine 8, which are produced in plants to aid in the uptake of iron for chlorophyll biosynthesis. ${ }^{12}$ Penaresidin A and B (9 and 10) have also been the targets of several syntheses, as they have been found to exhibit biological activity in the activation of ATPase in actomycin. ${ }^{13}$ The most recently reported natural product containing the azetidine moiety, calydaphninone 11, was isolated from the leaves and twigs of Daphniphyllum calycillum in 2007. ${ }^{14}$ This molecule, containing a 4-azatricyclo[5.2.2.0]undecane core, represents one of the most complex azetidine-containing natural products known to date.

Figure 3

Among synthetically obtained azetidines, 3-substituted azetidines have been shown to possess a wide range of biological activities. For example, 1-cyclohexyl-3-guanidinoazetidine 12 exhibits antihypertensive activity, ${ }^{15}$ and various 3-carbamoyl-oxy-substituted azetidines 13 have been used in a primary pharmacological screening showing tranquillising activity on the central nervous system of
the tested animals. ${ }^{16}$ Furthermore, azetidine 14 and derivatives have been shown to behave as CNS stimulants devoid of peripheral anticholinergic activity, ${ }^{17}$ and $1,3,3$-trinitroazetidine (TNAZ) 15 is a member of an important class of explosives and propellants ${ }^{18}$ (Figure 4).

Figure 4

In light of the diverse synthetic and biological applications of azetidine-containing compounds, many efforts will be devoted to the synthesis of novel classes of functionalized azetidines and their further transformations in this doctoral study.

In the first part of this PhD thesis, the reactivity and synthetic potential of 2-(bromomethy)aziridines 16 toward ring transformation and ring opening will be investigated. Aziridines 16 have proven to be valuable synthons for the preparation of wide variety of azaheterocyclic compounds and ring-opened amines such as cyclopropanes 17, ${ }^{19}$ morpholines $18,{ }^{20}$ pyrrolizidines $19,{ }^{21}$ 2-iminopyrrolidines $20,{ }^{21} 2$ -imino-1,3-thiazoli(di)nes $\mathbf{2 1}{ }^{22}$ and piperidine derivatives $\mathbf{2 2 ^ { 2 3 }}$ (Scheme 1). In addition, the nucleophilic substitution of bromide in 2-(bromomethyl)aziridines with various heteroatom nucleophiles ${ }^{20,22,24}$ and carbon nucleophiles ${ }^{19,25}$ has provided a convenient access toward a variety of 2 -substituted aziridines 23.

In comparison to the huge number of reports on the ring opening of aziridines by other nucleophiles, their ring opening by hydrides has received very limited interest in the literature despite the synthetic potential of this approach. It should be mentioned that LiAlH_{4} has been mainly used to reduce functional groups in compounds incorporating an aziridine unit without affecting the three-membered ring itself. ${ }^{26}$

Bearing in mind the lack of studies concerning the behavior of non-activated aziridines with respect to LiAlH_{4}, the reactivity of 2-(bromomethyl)aziridines $\mathbf{2 4}(\mathrm{R}=\mathrm{Br})$ and 2-(acetoxymethyl) aziridines $\mathbf{2 4}(\mathrm{R}=$ OAc) toward LiAlH_{4} will be studied in the first part of this PhD thesis. In this way, the reductive cleavage of these substrates $\mathbf{2 4}$ could provide an access toward biologically and synthetically relevant species such as isopropylamines $25(R=H)$ and useful β-amino alcohols $25(R=O H)$ through an unprecedented hydride-induced ring opening of non-activated aziridines (Scheme 2). β-Amino alcohols are applied extensively in organic chemistry as a building blocks in designing natural and biologically active substances, ${ }^{27}$ and their chiral versions are also used in catalytic asymmetric synthesis. ${ }^{28}$ Compounds $25(\mathrm{R}=\mathrm{OH})$ could then be further used as suitable substrates for the preparation of six-membered oxazaheterocycles $\mathbf{2 6}$, known to be formed in the reaction with glyoxal. ${ }^{29}$ In light of the importance of chirality in medicinal chemistry, the synthesis of enantiopure amino alcohols 28 and morpholin-2-ones 29 will be explored starting from the commercially available 2(hydroxymethyl)aziridines $\mathbf{2 7}$ using the same synthetic approach (Scheme 2).

Scheme 2

The ring opening of aziridinium salts by halides constitutes a convenient approach towards β-halo amines, which are generally recognized as useful building blocks in organic chemistry and valuable targets in medicinal chemistry (nitrogen mustards - chemotherapy agents). ${ }^{30}$ The issue of regioselectivity in the ring opening of 2 -substituted non-activated aziridines by halides has been addressed in a few literature reports, ${ }^{31}$ however, up to now no systematic study has been performed in which aziridinium substrates derived from non-activated aziridines are subjected to ring opening by fluoride, chloride, bromide and iodide.
Therefore, in the second part of this work, a systematic study on the ring opening of in situ generated aziridinium salts 30 by halides will be investigated. The ring opening of aziridinium salts 30 can occur at the unsubstituted (path a) or the substituted aziridine carbon atom (path b), leading either to primary halides 31 (path a) or secondary halides 32 (path b). As the selective synthesis of secondary bromides has been reported before upon treatment of aziridinium salts 30 with benzyl bromide, ${ }^{31 \mathrm{c}}$ the scope and underlying factors will be studied thoroughly in this part.

Scheme 3

As mentioned before, the reactivity of 2-(bromomethyl)aziridines 16, prepared by NaBH_{4}-reduction of N-alkylidene-(2,3-dibromopropyl)amines $32\left(\mathrm{R}^{2}=\mathrm{H}\right)$ in methanol under reflux has been the subject of many literature reports from the Department of Sustainable Organic Chemistry and Technology. In a preliminary study, ${ }^{32}$ it has been shown that structurally similar N -alkylidene-(2,3-dibromo-2methylpropyl)amines $33\left(\mathrm{R}^{2}=\mathrm{Me}\right)$ afforded 3-methoxyazetidines 34 under the same reaction
conditions (Scheme 4). In addition, a single example of the synthesis of aziridines 36 starting from 2methylacrolein 35, using bromination, imination and subsequent NaBH_{4}-mediated ring closure of the corresponding imines at room temperature has been provided (Scheme 4). ${ }^{33}$
Therefore, in order to elucidate this unexpected reactivity of imines $33\left(R^{2}=\mathrm{Me}\right)$, and to assess the influence of an additional methyl substituent in substrates $33\left(R^{2}=M e\right)$ on the reaction outcome, the kinetically controlled synthesis of 2-bromomethyl-2-methylaziridines 36 will be investigated in the third part of this PhD thesis. Subsequently, the ring expansion of aziridines 36 to azetidines 37 could be then investigated by heating these species 36 in methanol under reflux. In addition, high-level molecular modeling calculations at the Center for Molecular Modeling (UGent) will be employed for the theoretical elucidation of the reaction mechanism.

Scheme 4

In addition, the reactivity of 2-bromomethyl-2-methylaziridines 36 toward oxygen, sulfur, and carbon nucleophiles in different solvent systems will be investigated. In this way, aziridines 36 could provide an access to novel functionalized aziridines 38 via direct nucleophilic substitution or to azetidines 39 via ring expansion (Scheme 5). Given the peculiar nature of aziridine to azetidine ring expansions, particular attention will be devoted to unravel this unknown chemistry from both, an experimental and theoretical point of view.

The last part of this PhD thesis will be devoted to the synthesis and functionalization of 3ethylideneazetidines 43, obtained from the corresponding 3-bromo-3-ethylazetidines 42 through dehydrobromination, which could be prepared by the ring expansion of 2-bromomethyl-2methylaziridines 41 (Scheme 6). Although the combination of two functionalities, i.e., an azetidine
moiety and an exocyclic double bond, might result in unstable structures, azetidines $\mathbf{4 3}$ might still be considered as valuable substrates for further elaboration.

Scheme 6
In that respect, two aspects of the reactivity of 3-ethylideneazetidines 43 could then be studied separately, i.e., the activation and subsequent ring opening of the azetidine moiety on the one hand, and functionalization of the exocyclic double bond on the other. In this way, azetidines 43 could provide an entry toward novel allylic amines 44, 3-halo-3-(1-haloethyl)azetidines 45 and different spirocyclic building blocks 46 and 47 (Scheme 7).

Scheme 7

2 Literature review

In this chapter, a literature review on the ring opening of non-activated 2-substituted aziridines via intermediate aziridinium salts will be dealt with. Emphasis will be put on the relationship between the observed regioselectivity and inherent structural features such as the nature of the C 2 aziridine substituent and the nature of the electrophile and the nucleophile.

Regioselectivity in the ring opening of non-activated aziridines ${ }^{34}$

2.1 Introduction

The aziridine moiety represents one of the most valuable three-membered ring systems in organic chemistry, ${ }^{3 \mathrm{a}, 4,5 \mathrm{a}, 8,35}$ and the regiocontrolled ring opening of C-substituted aziridines constitutes a powerful approach toward the preparation of a large variety of functionalized nitrogen-containing target compounds. ${ }^{36}$ The ring opening of activated aziridines, i.e. aziridines bearing an electron-withdrawing group at nitrogen, has been studied intensively in that respect, showing the regiochemical pathway to be independent from the structural features of these aziridines as well as from the nature of the participating nucleophiles. ${ }^{4 \mathrm{a}}$ In that respect, the regioselectivity in the ring-opening reactions of 2substituted activated aziridines has been shown to be quite straightforward, mostly involving the nucleophilic attack at the less hindered aziridine carbon atom, ${ }^{37}$ with some exceptional cases comprising the nucleophilic attack at the allylic and benzylic position of the aziridine moiety. ${ }^{38}$

In recent years, non-activated aziridines, which have to be activated prior to ring opening due to the presence of an electron-donating substituent at nitrogen, have also shown considerable attention as valuable intermediates for further synthetic elaboration. Moreover, the reactivity and applications of nonactivated aziridines often appear to be different as compared to activated aziridines and epoxides, providing interesting opportunities for the selective synthesis of a variety of functionalized amines through intermediate aziridinium ions. It should be mentioned that the ring opening of aziridinium ions obtained through cyclization of β-amino alcohols has been covered recently in a comprehensive way. ${ }^{39}$ If non-activated, 2-substituted aziridines 48 are used, the issue of regioselectivity in the ring opening of the corresponding intermediate aziridinium salts 49 becomes important, since two regioisomeric ringopened amines can be obtained. As depicted in Scheme 8, ring opening of aziridinium salts 49 can occur at the unsubstituted (path a) or at the substituted (path b) aziridine carbon atom, leading either to α-branched amines 50 (path a) or to β-branched amines 51 (path b).

Scheme 8

In the following paragraphs, literature reports on the ring opening of non-activated 2-substituted aziridines will be organized at first according to the nature of the substrate, i.e., distinction will be made between the reactivity of 2-(1-alkenyl)-, 2-aryl-, 2-acyl- and 2-alkylaziridines. Within these sections, the information will be subdivided based on the type of electrophile used for the activation of the aziridine moiety, i.e., the use of Lewis acids (N-complexation), carbonyl electrophiles (N-acylation, N-alkoxycarbonylation or related approaches), acids (N-protonation), alkyl halides or alkyl triflates (N alkylation), and silylation reagents (N-silylation).

2.2 Activation and ring opening of 2-(1-alkenyl)aziridines

When the R^{2} substituent in aziridines 48 (Scheme 8) is a 1-alkenyl group, the nucleophilic attack generally occurs at the more substituted carbon atom of the aziridine moiety. Although very few reports on the ring opening of this type of aziridines are available in the literature, all the examples give a straightforward picture regarding their regioselective ring opening, which seems to be independent of the type of nucleophile and electrophile used in these reactions. The observed regioselectivity can be rationalized considering the allylic activation in these compounds (resonance stabilization of the developing carbenium ion at C 2), which has also been described in the ringopening reactions of vinyloxirane and activated vinylaziridine derivatives. ${ }^{40}$

2.2.1 Aziridinium ion formation through N -alkoxycarbonylation

A single report considering the ring opening of 2-(1-alkenyl)aziridines through N -alkoxycarbonylation has been provided by Ha et al., ${ }^{41}$ in which the transformation of 2 -vinylaziridines 52 , prepared from the corresponding aldehydes via a Horner-Wadsworth-Emmons reaction or a Wittig reaction, toward oxazolidin-2-ones 55 has been investigated. The reaction of aziridines 52 with methyl chloroformate was shown to proceed via cyclization of chlorocarbamates 54 (Scheme 9). The identification of intermediates 54 suggested that the reaction comprised a double $\mathrm{S}_{\mathrm{N}} 2$ inversion process. Thus, N methoxycarbonylation provided the activated aziridinium species 53, which underwent a regioselective $\mathrm{C} 2-\mathrm{N}$ bond cleavage by the chloride ion via an $\mathrm{S}_{\mathrm{N}} 2$ process. Subsequently, intramolecular cyclization of the carbamate 54 (implying a second $\mathrm{S}_{\mathrm{N}} 2$ process) furnished oxazolidin-2-ones 55 in good yields with a net retention of configuration at C 2 as defined in aziridines 52 (Scheme 9).

Scheme 9

2.2.2 Aziridinium ion formation through N-alkylation

The ring opening of aziridinium species 57, obtained by N -methylation of the chiral 2-alkenylaziridine 56 using methyl trifluoromethanesulfonate (MeOTf), follows the same route as the N alkoxycarbonylation approach (Scheme 9), giving rise to β-branched ring-opening products 58 via ring opening at C 2 . The reaction showed complete regio- and stereoselectivity toward the synthesis of a variety of optically pure amines 58 (Scheme 10). ${ }^{42}$

2.2.3 Activation and ring opening of 2-(1-alkenyl)aziridines via silylation

Even though the nature of trimethylsilyl reagents is different as compared to other electrophiles used for the activation of the aziridine moiety, ring opening of non-activated 2 -alkenylaziridines has been shown to be successful in the presence of TMSN_{3} (trimethylsilyl azide), resulting in the formation of the corresponding C 2 ring-opening products.
For example, the reaction of 2-(1-alkenyl)aziridines 59 with TMSN_{3} furnished 1-amino-2-azido-3alkenes $\mathbf{6 0}$ after regioselective cleavage of the $\mathrm{C} 2-\mathrm{N}$ bond (Scheme 11). ${ }^{43}$ The latter azides $\mathbf{6 0}$ were subsequently used for the synthesis of 1,2-diaminoalkanes 61 via azide reduction and alkene hydrogenation.

Scheme 11

2.3 Activation and ring opening of 2-arylaziridines

Analysis of a large number of reported examples revealed the more hindered aziridine carbon atom in 2-arylaziridinium salts to be the more favorable place for nucleophilic attack, furnishing the C 2 ringopening products as the single or the major regioisomers. In general, activation of 2-phenylaziridines through complexation of the aziridine moiety with Lewis acids is followed by nucleophilic attack at the more substituted carbon atom (benzylic position). In a single example, the Lewis acid-catalyzed ring opening of 2-(2-pyridyl)aziridines gave either one or two regioisomers depending on the reaction conditions used, while acylation and protonation of 2-arylaziridines furnished only the C2 ring-opening products.

2.3.1 Aziridinium ion formation through N-complexation with Lewis acids

The reaction of 2-phenylaziridines 62 (optically pure or racemic) with different nucleophiles and Lewis acids gave amines 64 regio- and stereospecifically as a result of the nucleophilic attack at the benzylic position of the corresponding aziridinium complexes 63 (Scheme 12). For example, the $\mathrm{ZnCl}_{2}-$ catalyzed and $B\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}$-catalyzed reaction of 1-benzyl-2-phenylaziridine ($62, R=\mathrm{Bn}$) with aliphatic and aromatic thiols afforded 2-benzylamino-1-phenylethyl sulfides ($64, \mathrm{Nu}=\mathrm{SR}$) in good yields (78$89 \%) .{ }^{44,45}$ In that paper, previously reported results were revised, ${ }^{46}$ in which the synthesis of the amines derived from attack at the C3 carbon atom was reported. In addition to the ZnCl_{2}-catalyzed reaction, the same C 2 -regioselectivity has also been observed in $\mathrm{Bi}(\mathrm{OTf})_{3}$ - and $\mathrm{Sc}(\mathrm{OTf})_{3}$-catalyzed reactions of the same aziridine $62(\mathrm{R}=\mathrm{Bn})$ with aliphatic as well as aromatic thiols, providing high yields of only one regioisomer $64 .{ }^{47}$ The reaction of 2 -phenylaziridines $\mathbf{6 2}$ with aromatic amines in the presence of $\mathrm{Sn}(\mathrm{OTf})_{2}$ or $\mathrm{Cu}(\mathrm{OTf})_{2}$ as catalysts again gave the products derived from nucleophilic attack at the benzylic position of the aziridinium intermediates $63 .{ }^{48}$

Scheme 12

As compared to the reactivity of 2-phenyl-substituted aziridines 62, the regioselectivity in the reactions of 2-(2-pyridyl)-substituted aziridine 65 with a variety of different N -, S -, and O -nucleophiles was not always straightforward. ${ }^{49}$ It was shown that the ring opening of aziridine 65 gave the products 66, resulting from nucleophilic attack at the more substituted aziridine carbon, either exclusively or together with the alternative regioisomeric products 67 depending on the type of nucleophile, Lewis acid and solvent used (Scheme 13). The ring opening of 2-(2-pyridyl)aziridine 65 with heteronucleophiles applying optimized experimental conditions, i.e., in an acetonitrile-water mixture as the solvent and in the presence of a catalytic amount of cerium(III) chloride heptahydrate, proved to be a useful route toward a variety of difunctionalized pyridines. For example, using these conditions, the ring opening of aziridine 65 with NaN_{3} was straightforward, giving regioisomer 66 as a single product. Reactions with other nucleophiles such as water, amines and thiols also gave the C 2 ring-opening products 66 as the major regioisomers. On the other hand, higher amounts of regioisomers 67 were reported when LiClO_{4} or $\mathrm{Zn}(\mathrm{OTf})_{2}$ were used to catalyze the ring opening of aziridine 65 . In this way, it was possible to modify the regioselectivity of the ring-opening process by the proper choice of the reagent, Lewis acid and solvent. ${ }^{49}$ Nevertheless, it should be noted that complexation of the Lewis acid with both nitrogen atoms might have a profound influence on the reaction outcome of the abovedescribed ring-opening reactions, making a general conclusion on the regioselectivity regarding the ring opening of 2-(2-pyridyl)aziridine 65 premature.

$$
\begin{gathered}
\text { NuH or } \mathrm{MNu}=\mathrm{H}_{2} \mathrm{O}, \mathrm{NaN}_{3}, \mathrm{BnNH}_{2}, 4-\mathrm{MeOC}_{6} \mathrm{H}_{4} \mathrm{NH}_{2} \\
\mathrm{Bn}_{2} \mathrm{NH}, 2-\text { naphthylSH, } \mathrm{PhSH} \\
\mathrm{BnSH}_{2} \mathrm{nBuSH}, \text { tBuSH } \\
\text { Lewis acid }=\mathrm{CeCl}_{3} \cdot 7 \mathrm{H}_{2} \mathrm{O}, \mathrm{Ce}\left(\mathrm{NH}_{4}\right)_{2}\left(\mathrm{NO}_{3}\right)_{6} \\
\mathrm{AlCl}_{3}, \mathrm{Zn}(\mathrm{OTf})_{2}, \mathrm{LiClO}_{4} \\
\text { solvent }=\mathrm{CH}_{3} \mathrm{CN}-\mathrm{H}_{2} \mathrm{O}(9: 1), \mathrm{EtOH}-\mathrm{H}_{2} \mathrm{O}(1: 1) \\
\mathrm{CH}_{3} \mathrm{CN}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{THF}
\end{gathered}
$$

Scheme 13

2.3.2 Aziridinium ion formation through N-carbamoylation or N-acylation

The reactions of above mentioned chiral 2-(2-pyridyl)-substituted aziridines 65 with an excess of both carbonyldiimidazole (CDI) and reactive alkyl halides, performed with the intention to prepare halogenated products resulting from the ring opening of the aziridine by the halide ion, have been evaluated by the same group..50 In this study, it has been observed that when methyl iodide was used, optically pure non-halogenated oxazolidin-2-one 70 was formed. In order to explain the presence of this compound, the iodide 69, derived from nucleophilic attack at the more substituted carbon atom of acylated aziridinium species 68, was proposed as an intermediate (Scheme 14). At the same time, intramolecular nucleophilic addition of the remote hydroxyl group across the carbonyl moiety in intermediate 68 furnished the oxazolidinone ring. Subsequently, the intermediate (hetero)benzylic iodide 69 has been proposed to be reduced by the excess of iodide affording oxazolidin-2-one 70 . The reducing properties of the iodide ion and of hydrogen iodide in this type of transformations had already been reported in the literature. ${ }^{51}$

Scheme 14

In order to account for the proposed mechanism, the aziridine 65 has been treated separately with either CDI and an excess of allyl bromide in acetonitrile at room temperature, or with two equiv of acetyl chloride, furnishing compounds 71 and 72, respectively (Scheme 15). Both products resulted from the fission of the benzylic $\mathrm{C} 2-\mathrm{N}$ bond by bromide or chloride in the intermediate aziridinium salt. ${ }^{50}$

2.3.3 Aziridinium ion formation through N-protonation

In accordance with the previously described results, the acid-mediated ring opening of 2-arylaziridines has been shown to result in the formation of the corresponding C 2 ring-opening products, either as single isomers or, in exceptional cases, together with small amounts of the C 3 ring-opening products. Thus, when 2-(2-pyridyl)aziridine 65 was protonated with an excess of hydrogen iodide, the amine 74 was obtained (Scheme 16). ${ }^{50}$ The presence of this amine has been explained to be mediated by the formation of the intermediate β-iodoamine 73, resulting from iodide attack at the more substituted carbon atom of aziridine 65, and further reduction by the excess of hydrogen iodide through a halophilic reaction and subsequent protonation to form the amine 74.

Scheme 16

Moreover, after heating a mixture of the same aziridine 65 and p-toluenesulfonic acid ($20 \mathrm{~mol} \%$) in a 9:1 acetonitrile-water system at reflux temperature for 6 h , a mixture of the regioisomeric ring-opening products 66 and 67 (82:18) was obtained, which were separated by column chromatography (Scheme 13). ${ }^{49}$

Similarly, the reaction of 1-benzyl-2-phenylaziridine 62 with aliphatic and aromatic acids in acetonitrile gave the amino esters 76 as the major isomers furnished by nucleophilic attack of the corresponding carboxylates at the benzylic position of aziridinium species 75 (Scheme 17). ${ }^{52}$

Scheme 17

In addition, a mixture of a 2-arylaziridine, p-toluidine and silica gel (activated at $120^{\circ} \mathrm{C}$ under vacuum for 6 h) has been reported to afford the corresponding vicinal diamine as a result of the exclusive attack at the more hindered carbon atom of the aziridine ring, ${ }^{53}$ and hydrogen fluoride has also been described to combine regiospecifically with 2-phenylaziridines to give secondary fluorides in good yields. ${ }^{54}$
In accordance with these results, the synthesis of isochromans 81, resulting from the cyclization of a number of 1 -methylaziridines 77 using several proton sources (TFA, (COOH$)_{2}, \mathrm{HCOOH}, \mathrm{H}_{2} \mathrm{SO}_{4}$) and different solvents (THF, $\mathrm{CH}_{3} \mathrm{CN}, \mathrm{Et}_{2} \mathrm{O}$, dioxane/ $\mathrm{H}_{2} \mathrm{O}$), has been elucidated. ${ }^{55}$ Acetic acid, either as a proton source or as a solvent, at room temperature proved to be superior for the preparation of isochromans 81. Two plausible reaction mechanisms are depicted in Scheme 18. The first approach involves nitrogen protonation and ring opening at the benzylic carbon atom by the remote hydroxyl group (path a), whereas the second pathway involves the intermediacy of an acetate 79 (path b) followed by nucleophilic displacement of acetic acid by the hydroxyl group. In both cases, the nucleophilic attack occurs at the benzylic position of the aziridine ring. Determination of the stereochemistry of the obtained products 81 showed pathway a to be the predominant one. ${ }^{55}$

Scheme 18

Finally, the in situ activation of the aziridine moiety in the transformation of 2-aryl-3(hydroxymethyl)aziridines into 2-amino-3-aryl-3-methoxypropane-1-ols was assigned to hydrogen bridge formation between the aziridine nitrogen and methanol. It has been shown that also in this case
the reaction proceeds through regio- and stereoselective ring opening at the benzylic position of the corresponding aziridine moiety. ${ }^{56}$

2.3.4 Activation and ring opening of 2-arylaziridines via silylation

The same regioselectivity has been observed in the case of ring opening of 2-(2-pyridyl)aziridine 65 by TMSN_{3}, providing the C 2 ring-opening product 66 as the major isomer (Scheme 19). ${ }^{49}$

2.4 Activation and ring opening of 2-acylaziridines

The regioselectivity of the ring opening of 2-acylaziridines appears to be both nucleophile- and electrophile-dependent. However, in most cases the products obtained result from the attack at the more hindered aziridinium carbon atom (i.e., the α-carbon atom with respect to the carbonyl moiety), especially when the nucleophile is an azide, halide or cyanide ion. On the other hand, the reactions of 2-acylaziridines with alcohols gave rise to ring opening at the less hindered aziridine carbon atom.

2.4.1 Aziridinium ion formation through N-complexation with Lewis acids

The ring-opening reactions of 2-(alkoxycarbonyl)aziridines 82 using various alcohols turned out to be regioselective, giving rise to α-amino esters 84 . This reaction proceeded through nucleophilic attack at the less hindered side of the aziridinium moiety in intermediates 83 (Scheme 20). ${ }^{57}$ In addition, the ring-opening reactions of aziridine-2-carboxamide, aziridine-2-carboxylate and 2-acetylaziridines by water and different alcohols, promoted by the presence of $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}$, have been shown to follow the same regioselectivity. ${ }^{58}$

Scheme 20

A nucleophile-dependent regioselectivity has been observed in ring-opening reactions of 2carbamoylaziridine 85 , described by Gotor et al. ${ }^{59}$ Aziridine 85 was heated under reflux in methanol in the presence of a diethyl ether-boron(III) fluoride complex (Scheme 21), leading to a 3:1 mixture of the C2 and C3 ring-opening products, respectively, from which the former, i.e., enantiopure α-amino amide $(S)-86$, was isolated in 61% yield. On the other hand, when aziridine 85 was reacted with sodium azide and aluminium(III) chloride in aqueous ethanol, the formation of a 1:2.5 mixture of azides 88 and 89 was observed (Scheme 21). ${ }^{59}$

Scheme 21

The ring opening of t-butyl N-benzylaziridine-2-carboxylate 90 with a higher order butylcuprate or nBuMgCl in the presence of $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}$ has been studied by Baldwin et al. ${ }^{60}$ However, a mixture of products 91 and 92 in low yields was observed resulting from attack of the organometallic reagent at both C2 and C3 of the corresponding aziridinium intermediate (Scheme 22).

Scheme 22

2.4.2 Aziridinium ion formation through N -acylation or N -alkoxycarbonylation

Various 2-acylaziridines 93 have been subjected to reactions with different acyl chlorides 94 to furnish β-amino- α-chlorocarbonyl compounds 96 in a regioselective and stereospecific way (Scheme 23). ${ }^{61}$ The acyl chlorides were able to both activate the aziridine ring and to provide the nucleophile leading to the ring-opening reactions. The ring nitrogen reacts readily with acyl chlorides toward intermediate aziridinium ions 95, which are highly activated and smoothly react with the incoming chloride nucleophile. All ring-opening reactions were shown to be highly selective in terms of regio- and stereochemistry, implying that the bond between C2 and the ring nitrogen was labile and that the reaction proceeded with complete inversion of the configuration at C2.

Scheme 23

As previously described for 2-vinylaziridines 52 (Scheme 9), the synthesis of oxazolidin-2-ones can also derive from N-methoxycarbonylation of 2-acyl- or 2-(alkoxycarbonyl)aziridines 97. Methoxycarbonylation of the nucleophilic nitrogen of aziridines 97 gave aziridinium ions 98 , which were regioselectively attacked by the resulting chloride anion to give the chlorides 99. Chlorosubstituted intermediates 99 were then converted into oxazolidin-2-ones 100 through an intramolecular $S_{N} 2$ reaction (Scheme 24). The formation of the aziridinium intermediates 98 was also evidenced by the isolation of an intermediate 99 ($\mathrm{R}=\mathrm{OEt}$) when the reaction was performed in toluene instead of acetonitrile. Furthermore, when carbamate $99(R=O E t)$ was heated under reflux in acetonitrile, oxazolidinone $\mathbf{1 0 0}$ was formed in an excellent yield. ${ }^{41}$

Scheme 24

2.4.3 Aziridinium ion formation through N-protonation

The ring-opening reactions of enantiomerically pure 2-acyl- and 2-(alkoxycarbonyl)aziridines 101 and 102 with azide in an aqueous acidic medium ($\mathrm{pH}=4$, adjusted by the addition of sulfuric acid) have been described to proceed efficiently and stereoselectively to give 3-amino-2-azidoketones 103 or 3-amino-2-azidopropionates 104, respectively, in the presence of $10 \mathrm{~mol} \%$ of $\mathrm{AlCl}_{3} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ (Scheme 25). ${ }^{62}$ Bearing in mind the low activity of $\mathrm{AlCl}_{3} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ as a Lewis acid, the presence of sulfuric acid (which was used to adjust pH) is considered to be responsible for the activation of the aziridine moiety through N-protonation.

Scheme 25

To assign the absolute configuration of aziridine 105, this compound has been treated with 20% HClO_{4} to obtain the ring-opened product 107, which was subsequently transformed to the tert-butyl ester of D-serine 108 in quantitative yield (Scheme 26). ${ }^{63}$ In this approach, water attacked the nonsubstituted carbon atom of the intermediate aziridinium ion 106 to furnish β-aminoalcohol 107. However, the C3 regioselectivity in this case could be also attributed to the Lewis acid character of HClO_{4} rather than only protonation of nitrogen in aziridine 105.

Scheme 26

On the other hand, the selective ring opening of aziridine 109 (or its epimeric version) can be explained by an $\mathrm{S}_{\mathrm{N}} 2$ mechanism in which the chloride ion attacks at C 2 with inversion of stereochemistry (Scheme 27). ${ }^{64}$ The regiospecific ring opening by the chloride ion can be further rationalized considering an enhanced electrophilicity at C2 due to intramolecular hydrogen bonding between the carbonyl and the hydroxyl group.

In analogy with the previous example, nucleophilic attack by bromide (from hydrobromic acid) at the more hindered side of the aziridine ring has been shown to occur in the regiospecific ring opening of 2 acylaziridines providing the corresponding bromoesters through N-protonation. ${ }^{65}$

2.4.4 Aziridinium ion formation through N-alkylation

The presence of an ethoxycarbonyl substituent in aziridines 93 contributes to the activation of the bond between C 2 and the ring nitrogen toward approaching nucleophiles. First, the ring is further activated by N-methylation using methyl triflate, followed by ring opening of aziridinium salt 111 by different nucleophiles to yield the ring-opened products 112. The attack was shown to occur regioselectively at the more hindered carbon atom of the aziridine ring (Scheme 28). ${ }^{42}$

Scheme 28

In addition, aziridines 113 have been treated with methyl fluorosulfonate to afford the corresponding aziridinium salts $\mathbf{1 1 4}$ in high yields, ${ }^{66}$ which were characterized by ring-opening reactions using lithium chloride. In accordance with the above-mentioned reactions, the attack occurred at the more hindered side furnishing isomers 115 , while only in one case ($\left.R^{1}=O E t, R^{2}=M e\right)$ the isomer 116 was present as well in 5% (Scheme 29).

Scheme 29

2.5 Activation and ring opening of 2-alkylaziridines

The regioselectivity of the ring opening of 2-alkylaziridines has been the topic of a considerable number of literature reports, giving a better insight into the reactivity of this type of aziridines, which is mostly influenced by the nature of the nucleophile and the type of electrophile used for the activation of the aziridine moiety. It has been observed that protonic acid- and Lewis acid-catalyzed reactions result mainly in the ring opening of the aziridine moiety at the less hindered aziridinium carbon atom. The ring opening with acyl halides, which act at the same time as the activator of the aziridine moiety and the source of the nucleophile, gave mixtures of both regioisomers, with the C 2 ring-opening product as the major component. When phosgene, carbon dioxide or acetic acid were used to activate
the ring, the less substituted carbon atom appeared to be the more favored place for nucleophilic attack. On the other hand, it was shown that ring opening of 2 -alkylaziridines is nucleophile-dependent when the aziridine ring is activated via alkylation. Thus, if bromide, iodide and chloride are used as nucleophiles in benzyl bromide- or methyltriflate-activated reactions, the aziridine moiety was regioselectively opened at the C2 position through thermodynamic control. However, with the fluoride ion as the nucleophile, both regioisomers were formed, with a major amount of the C3 ring-opened product. The reactions with other nucleophiles such as amines, azide or alcohols proceeded mainly through nucleophilic attack at the non-substituted aziridine carbon atom.

2.5.1 Aziridinium ion formation through N -complexation with Lewis acids

The reaction of 2-alkylaziridines 117 with aromatic amines provided 1,2-diamines 118 after nucleophilic attack of the amine at the less substituted aziridine carbon atom (Scheme 30). ${ }^{48} \mathrm{~A}$ peculiar feature of this reaction is the fact that only aromatic amines successfully opened the aziridines. Aliphatic amines, such as diethylamine, n-butylamine, benzylamine and pyrrolidine, failed to react with aziridines 117 at room temperature for one day in the presence of a catalytic amount of copper(II) or tin(II) triflate. It was assumed that a "loose" complex of an aromatic amine and the catalyst coordinated with the aziridine nitrogen and initiated the ring-opening reaction. Aliphatic amines - by virtue of their higher basicity - made stronger complexes to the copper(II) and tin(II) triflate which failed to activate the aziridine. ${ }^{48}$

Scheme 30

The same regioselectivity was observed in the $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}$-mediated ring opening of 2(hydroxymethyl)aziridines 119 and 2-(aminomethyl)aziridines 121 (Scheme 31) by different alcohols, providing an entry toward α-branched amines 120 and 122 through ring opening by methanol or i BuOH at C3. ${ }^{57,59}$

Scheme 31

The ring opening of 2 -butylaziridine 123 with thiol in the presence of a catalytic amount of ZnCl_{2} has been shown to follow the same route as in previous examples furnishing thioether $\mathbf{1 2 4}$ in 95% yield (Scheme 32). ${ }^{46}$

Scheme 32

Besides, the aziridine ring of 1-(2-methoxy-1-phenylethyl)-2-methylaziridine has been opened at the C 3 position with lithium dimethylcuprate in the presence of $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O} .{ }^{67}$

However, Uneyama et al. ${ }^{68}$ have reported the unsuccessful transformation of chiral 2(trifluoromethyl)aziridines 125 toward ring-opened products by using Lewis acids as catalyst and aliphatic amines as nucleophiles (Scheme 33). In this case, the reduced basicity of the aziridine nitrogen atom due to the strong electron-withdrawing effect of the CF_{3} group clearly hampered the formation of aziridinium-like intermediates

Scheme 33

In the next part, the regioselectivity in the ring opening of 2-(1-aminoalkyl)aziridines 126 was described to be dependent on the type of nucleophile used to open the aziridinium moiety. In a
detailed study, Cancellon et al..69 have reported on the ring opening of aziridines 126 by alcohols and carboxylic acids in the presence of $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}$, providing C 2 (129) and C 3 (130) ring-opening products, respectively (Scheme 34). It was suggested that, after coordination of the aziridine nitrogen to the Lewis acid, an intramolecular ring opening at C2 by nucleophilic attack of the dibenzylamino group afforded the aziridinium salts 128 with inversion of configuration. Alcohols $\left(\mathrm{R}^{3} \mathrm{OH}\right)$ induced ring opening of aziridinium salts 128 to afford 2-alkoxy-1,3-diamines 130, with a second inversion of configuration at the C 2 . In the case of t-butylalcohol $\left(\mathrm{R}^{3}=\mathrm{tBu}\right)$ the reaction takes place through $\mathbf{1 2 7}$ due to steric hindrance. In the presence of a carboxylic acid, the prevalence of intermediates $\mathbf{1 2 8}$ may be diminished due to protonation of the dibenzylamino group, reducing its ability to open the aziridine to form 128, which resulted in the nucleophilic attack of carboxylic acid at the less hindered carbon atom of intermediate 127.

Scheme 34

Furthermore, the use of iodide as a nucleophile in the ring-opening reaction of aziridines 131 in the presence of $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}$ gave 4-phenylbut-3-en-1,2-diamines $\mathbf{1 3 5}$ (Scheme 35). It was assumed that the iodide attacks the aziridine ring at C3 affording iodo diamines 133. These intermediates are prone to undergo ring closure to produce azetidinium salts 134, which undergo a spontaneous α-elimination yielding chiral diamines $\mathbf{1 3 5} .{ }^{69}$ However, the possible complexation of both nitrogen atoms in aziridine 131 with the Lewis acid might influence the regiochemical pathway in this reaction.

Scheme 35

The ring opening of 2-(1-aminoalkyl)aziridines 131 by other nucleophiles has also been studied by the same group. For example, the $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}$-mediated ring-opening reactions of aziridines 131 with water has been shown to be completely regio- and stereoselective, involving ring opening at C 2 and retention of configuration at this center. ${ }^{70}$

Furthermore, the reaction of 2-(1-aminoalkyl)aziridines $126\left(\mathrm{R}^{1}=\mathrm{Me}, \mathrm{BnOCH}_{2}\right)$ with one equiv of a thiol also proceeded regio- and stereoselectively, and it was shown that one alkylthio group was incorporated in the final product $136 .{ }^{71}$ When slightly modified reaction conditions (i.e., 3 equiv of thiols, $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}$ and reflux) were applied to aziridines $126\left(\mathrm{R}^{1}=\mathrm{Bn}\right.$, iBu$)$, $(2 S, 3 S)-2,3-$ bis(alkylthio) alkan-1-amines 137 were isolated instead (Scheme 36). ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR analyses of compounds 137 showed the incorporation of two alkylthio groups and the disappearance of signals corresponding to the dibenzylamino group. No other regio- or diastereoisomers were observed in the crude reaction mixtures. It has been demonstrated that the regioselectivity of this reaction is also dependent on the nature of the substituent R^{1}.

Although this particular example falls outside the scope of this review, the participation of the C2 aziridine substituent in ring openings has also been shown in the reaction of epoxyaziridine 138 with primary amines in the presence of lithium perchlorate. The reaction has been carried out with total
chemo- and regioselectivity, affording chiral polyfunctionalized piperidines 141 as the sole products in good yields. ${ }^{72}$ The formation of compounds 141 can be explained by amine-induced ring opening of the oxirane ring at the less hindered position to afford diamino alcohols 139 (Scheme 37). Theoretically, this intermediate could further react through aziridine ring opening by the hydroxyl group or through the amine function, yielding tetrahydrofurans, pyrrolidines, or piperidines. However, trisubstituted piperidines 141 were detected as the sole reaction products. Apparently, the terminal amino group in intermediate 140 participates in an intramolecular nucleophilic attack across the aziridine ring - probably activated by the Lewis acid, although previous reports suggested otherwise ${ }^{69,70}$ - at the less hindered position, affording the piperidine ring system.

Scheme 37

2.5.2 Aziridinium ion formation through N -acylation or N -carboxylation

In comparison with acid- and Lewis acid-catalyzed reactions, the ring opening of 2-alkylaziridines with acyl halides showed to be less straightforward, providing either single C2 ring-opening products or regioisomeric mixtures depending on the type of electrophile for the activation of the aziridine moiety. Treatment of 2-(cyanomethyl)aziridines 142 with an acid chloride in dichloromethane resulted in a mixture of β-chloroamine derivates 144 as the major constituents and regioisomers 145 as the minor products (Scheme 38). ${ }^{73}$ The acid chloride readily reacts with the basic nitrogen lone pair of aziridines 142, affording highly electrophilic aziridinium intermediates 143 which are prone to undergo ring opening by the in situ liberated chloride anion. A distinct preferential attack of chloride at the more hindered aziridine carbon was observed, affording mainly N-(2-chloro-3-cyanopropyl)amides 144 in good yields. The formation of the minor regioisomers 145 is the result of the ring opening of aziridinium salts 143 at the less hindered position.

Scheme 38

Applying the same reasoning, Higashiyama et al. ${ }^{74}$ have explained a new method for the preparation of chiral β-amino alcohols 150 through a regio- and stereocontrolled ring opening of chiral aziridines 146. The high regio- and stereocontrol of this transformation is probably due to the intermediacy of N acylaziridinium salts 147 resulting from the reaction with acetyl chloride (Scheme 39). Subsequently, these N-acylaziridinium salts 147 undergo a ring-opening reaction via an anti-attack of chloride at the C2 position. Next, the resulting N-acyl- β-chloroamines 148 are readily converted into the transient oxazolinium derivatives 149 through internal chloride displacement by the oxygen nucleophile. Finally the oxazolinium derivative 149 is hydrolized to yield β-amino alcohols 150 as the major products.

However, when phosgene, carbon dioxide or carbonyldiimidazole (CDI) were used to activate the ring, the less substituted carbon atom appeared to be the more favored place for nucleophilic attack. Thus, a highly regioselective nucleophilic ring opening of 2-(1-hydroxyalkyl)aziridines 152 in the presence of phosgene has been observed to afford oxazolidinones 154 (Scheme 40). ${ }^{75}$ Phosgene acts as a cyclizing agent of the amino alcohol moiety to form reactive cyclic carbamates 153, which suffer from ring opening by the chloride ion at the less hindered side of the aziridine moiety to form oxazolidinones 154. In the same manner, 2 -(aminomethyl)aziridines have been converted to valuable 4,5disubstituted imidazolin-2-ones by treatment with triphosgene and NaH in THF. ${ }^{76}$

Scheme 40

In a similar way, the same oxazolidinone derivatives have been prepared starting from 2(hydroxymethyl)aziridines and iodotrimethylsilane in the presence of carbonyldiimidazole (CDI). ${ }^{77}$ Finally, in order to explain the conversion of enantiomerically pure 2-methylaziridines 155 into oxazolidinones 158 using CO_{2}, Pinhas and Hancock suggested two possible mechanisms, one of which is shown in Scheme $41 .^{78}$ This approach concerns the reaction of CO_{2} with the aziridine nitrogen atom (N-carboxylation) to give aziridinium ion 156, which then undergoes ring opening by iodide to generate intermediate 157. Spontaneous cyclization of the latter intermediate produces 4methyloxazolidinone 158 as the major regioisomer. In addition, to a minor extent, the aziridinium salt 156 is attacked at the more hindered carbon atom and gives the isomeric 5-methyloxazolidinone as the final product. In light of the known reactivity of non-activated aziridines, however, the addition of aziridine 155 across CO_{2} is highly unlikely. Thus, the other proposed pathway, consisting of the initial ring opening of aziridine 155 by iodide to form the corresponding β-iodoamine, followed by addition of this lithium amide across CO_{2} and subsequent ring closure, seems to be much more plausible. In addition to the proposed routes, the alternative way for the formation of the corresponding products via [2+3] cycloaddition should not be completely excluded.

2.5.3 Aziridinium ion formation through N-protonation

In general, the ring-opening reactions of 2-alkylaziridines 159 in the presence of different acids take place with high regioselectivity, revealing the C3 position of the aziridine ring as the most favorable place for nucleophilic attack (Scheme 42).

Scheme 42

For example, the ring opening of 2-alkylaziridines 162 by acetic acid in dichloromethane has been shown to be a very efficient method for the regioselective formation of β-amino alcohol derivatives 164, indicating that acetate attacks the less sterically hindered C3 position of the intermediate aziridinium salts 163 (Scheme 43). ${ }^{28 a, 79,80,81,82,83,84,85,86,87}$

Scheme 43

In addition, Higashiyama et al. ${ }^{74}$ have performed a number of reactions on the chiral 2-alkylsubstituted aziridines 146 using acetic acid to yield the ring-opening products 165 after C3-N bond cleavage of the aziridine ring. In most cases, these reactions showed excellent regioselectivity, except in the case of a sterically small substituent $(R=M e$, ratio $165 / 166=89 / 11)$ (Scheme 44).

Also, 1-benzyl-2-(trifluoromethyl)aziridine 125 was shown to be a good substrate for acid-promoted ring-opening reactions with different nucleophiles, furnishing β-cleaved products 168 (β-amino halides, alcohols, ethers, sulfide and selenides) in good yields (40-98\%) (Scheme 45). ${ }^{68}$ Therein, it has been observed that sulfuric acid-catalyzed ring opening of aziridine 125 by EtOH and ring-opening reactions of the same aziridine 125 by PhSH , promoted by sulfuric or trifluoromethanesulfonic acid, resulted in higher yields of the corresponding β-aminoethers 168 ($\mathrm{Nu}=\mathrm{OEt}$) or β-aminosulfides 168 ($\mathrm{Nu}=\mathrm{SPh}$), respectively. ${ }^{68}$ In addition, the ring opening of racemic analogues of aziridine 125 with acetic acid
resulted in a slower formation (up to 7 days) of amines $168(\mathrm{Nu}=\mathrm{OAc})$, probably due to the weaker acidity of acetic acid. ${ }^{88}$

Scheme 45

Recently, ring opening of 1-arylmethyl-2-(cyanomethyl)aziridines 142 with HBr has been reported to afford 3-(arylmethyl)amino-4-bromobutyronitriles 170 via regiospecific ring opening at the unsubstituted aziridine carbon atom of the intermediate aziridinum salts 169 (Scheme 46). ${ }^{31 \mathrm{a}}$

Scheme 46

Furthermore, the ring-opening reaction of chiral α, β-diaminonitrile 171 with 4-chlorothiophenol afforded the corresponding α-(N-sulfinylamino)- β-benzylaminonitrile 172 in 82% yield (Scheme 47). ${ }^{89}$

Scheme 47

In the same manner, the treatment of 2-(hydroxymethyl)aziridines with thiophenol has been described to lead to the exclusive formation of the ring-opened β-amino alcohols after attack of the thiolate anion at the less sterically hindered C3 position. ${ }^{90,91}$ The nitrogen atom of an aziridine is a sufficiently stong base to pick up the proton from the thiol, resulting in an aziridinium intermediate which is further attacked by thiophenolate ion. A kinetic study of this ring-opening reaction showed that the reaction rate increases with the acidity of thiols. ${ }^{31 a}$ Following the same regiospecific route, the reaction of enantiomerically pure 2-(hydroxymethyl)aziridines with acetic acid or thiophenols has been used as an efficient protocol for preparing optically active oxazolidinones. ${ }^{75}$

A highly C3 regioselective ring opening has also been observed in the reactions of 2(aminomethyl)aziridines with alcohols in the presence of one equiv of p-toluenesulfonic acid in $\mathrm{CH}_{3} \mathrm{CN} / \mathrm{ROH}(7 / 1) .{ }^{69}$ The same aziridines were also reacted with water in the presence of p toluenesulfonic acid to afford 2,3-diaminoalkan-1-ols in high yields. Depending on the conditions applied, small amounts of the C 2 ring-opening products were isolated in some cases. ${ }^{70}$
In a recent report, ${ }^{24 b}$ 2-(aminomethyl)aziridines 173, prepared via nucleophilic substitution of 2(bromomethyl)aziridines ${ }^{22,25 b}$ with different amines, were subjected to the diethylamine/diethylamine hydrochloride system in acetonitrile using microwave irradiation. In this way, biologically relevant 1,2,3-triaminopropanes 175 were formed after ring opening of intermediate activated species $\mathbf{1 7 4}$ at the unhindered carbon atom of the aziridinium ion (path a, Scheme 48). However, in the case of 2(N, N-diethylaminomethyl)aziridines $173\left(R^{1}=R^{2}=E t\right)$, a mixture of regioisomers (175/177 = 3/2) was obtained. This was explained by an additional rearrangement of aziridinium salts 174 to the corresponding 1,1-diethylaziridinium intermediates 176, which were subsequently attacked by diethylamine at C3 to furnish 1-(arylmethyl)amino-2,3-bis(N, N-diethylamino)propanes 177 (path b, Scheme 48).

Scheme 48

2.5.4 Aziridinium ion formation through N-alkylation

2-(Bromomethyl)-, 2-(aryloxymethyl)-, 2-(alkanoyloxymethyl)-, 2-(cyanomethyl)-, and 2-(2cyanoethyl)aziridines 178 show the same reactivity toward arylmethyl bromides 179 in acetonitrile, giving a regiospecific ring opening of the intermediate aziridinium salts 180 by bromide attack at the more hindered aziridine carbon atom, affording ring-opened products 181 in high purity (Scheme 49). For example, treatment of 1-arylmethyl-2-(cyanomethyl)aziridines $178\left(R^{2}=C N\right)$ with benzyl bromide $179\left(R^{3}=H\right)$ in acetonitrile afforded 4-amino-3-bromobutanenitriles $181,{ }^{31 a, b}$ and 2-(2cyanoethyl)aziridines 178 ($\mathrm{R}^{2}=\mathrm{CH}_{2} \mathrm{CN}$) afforded novel 5-amino-4-bromopentanenenitriles 181 in excellent yields after reflux for $5 \mathrm{~h} .{ }^{19} 4$-Amino-3-bromobutanenitriles $181\left(R^{2}=C N\right)$ could be further transformed into 3,4-diaminobutanenitriles via nucleophilic attack of pyrrolidine at the more hindered carbon atom of the same aziridinium intermediate $180 .{ }^{31 \mathrm{~b}}$ Analogously, treatment of 2-
(aryloxymethyl)aziridines $178\left(\mathrm{R}^{2}=\mathrm{OAr}\right.$) with benzyl bromide in acetonitrile also afforded N-(2-bromo3 -aryloxypropyl)amines 181 as the sole reaction products. ${ }^{92}$

Scheme 49

Aziridine ring opening at the more substituted carbon atom of the aziridine moiety has also been observed in a study on enantiomerically pure 2-(aryloxymethyl)aziridines. ${ }^{31 \mathrm{c}}$ The same observations were deduced in the case of 2 -(bromomethyl) ${ }^{93}$ and 2 -(alkanoyloxymethyl)aziridines, ${ }^{94}$ affording 1 -[di(arylmethyl)amino]-2,3-dibromopropanes and N-(2-bromo-3-alkanoyloxypropyl)amines, respectively, upon treatment with benzyl bromide in acetonitrile.

In accordance with these results, chiral aziridines 146 have been shown to afford β-bromoamines 183 upon treatment with benzyl bromide by C2-N bond cleavage of the aziridinium salts 182. Next, treatment of β-bromoamines 183 with 2% aqueous sulfuric acid at $90^{\circ} \mathrm{C}$ for 4 h gave, through formation of the same intermediates 182, the β-amino alcohols 184 in good yields via ring opening at C2 (Scheme 50). ${ }^{74}$ However, the formation of $\mathbf{1 8 4}$ via a direct bromide displacement in substrates 183 should not be excluded.

When $(2 R)-[(1 R)$-phenylethyl $]$-2-(methoxymethyl)aziridine 186 was treated with methyl trifluoromethanesulfonate $\left(\mathrm{CH}_{3} \mathrm{OTf}\right)$, followed by reaction with different nucleophiles such as $\mathrm{N}_{3}{ }^{-}, \mathrm{AcO}^{-}$, CN^{-}, morpholine, BnNH_{2} and H^{-}, single regioisomers 188 were obtained through ring opening at the less hindered side (C3) (Scheme 51). ${ }^{42}$

Scheme 51

The C3 regioselectivity has been observed in the methylation of the nitrogen atom of 2(trifluoromethyl)aziridine 125 by either $\mathrm{Mel} \cdot \mathrm{AgBF}_{4}$ or $\mathrm{Me}_{3} \mathrm{O}^{+} \cdot \mathrm{BF}_{4}^{-}$to form the intermediate aziridinium salt 189, which is then ring opened by various nucleophiles at the less hindered carbon atom to afford chiral amines 190 (Scheme 52). ${ }^{68}$

Scheme 52

Although N-methylation is useful to induce ring opening, it is less suitable if further synthetic elaboration is required because of the associated difficulty in the deprotection. Therefore, N-allylation and N-tritylation of aziridine $\mathbf{1 2 5}$ have been investigated in the same work. ${ }^{69}$ To prepare practically useful N-protected compounds, allyl iodide was allowed to react with aziridine 125 in the presence of AgBF_{4}. The generated aziridinium salt 191 was then quenched with $n B u \mathrm{NH}_{2}$, resulting in the production of diamine 192 in 48% yield (Scheme 53). Alternatively, the trityl group was introduced using $\mathrm{Ph}_{3} \mathrm{C} \cdot \mathrm{BF}_{4}$ in $\mathrm{CH}_{3} \mathrm{CN}$. The aziridinium salt 193 underwent a Ritter type reaction with $\mathrm{CH}_{3} \mathrm{CN}$, and subsequent cyclization produced imidazoline 195 in 60% yield. In addition, the successful C3regioselective ring opening of racemic variants of aziridine $\mathbf{1 2 5}$ via N-benzylation and subsequent ring opening by iodide has also been reported recently. ${ }^{88}$

In a recent report, intramolecular alkylation of aziridines 196 (or their diastereomeric counterparts), prepared via alkylation of 2 -(2-cyano-2-phenylethyl)aziridines ${ }^{19 a}$ with 1 -bromo-2-chloroethane, was shown to be useful for the preparation of stereodefined piperidines 198 after regiospecific nucleophilic attack by chloride at the less hindered carbon atom of the aziridine moiety in bicyclic aziridinium intermediates 197 (Scheme 54). ${ }^{23}$ Bicyclic aziridinium intermediates have frequently been reported in the literature, although usually they are formed through nucleophilic displacement within other azaheterocyclic ring systems such as 2 -(halomethyl)aziridines, ${ }^{95}$-pyrrolidines ${ }^{96}$ and -piperidines. ${ }^{97}$ These examples fall outside the scope of this review and will thus not be dealt with here.

Scheme 54

Bearing in mind the above-described reports, it can be concluded that regioselectivity in the ring opening of 2-alkylaziridines, activated through alkylation, is dependent on the substrate, nucleophile and alkylating reagent used in these reactions.

2.5.5 Activation and ring opening of 2-alkylaziridines via silylation

It has been reported that 2-alkylaziridines undergo ring opening at the less substituted aziridine carbon atom upon treatment with TMSN_{3}, which has been used for the activation of the aziridine ring and to provide azide as a nitrogen source to attack one of the aziridine carbon atoms. For example, the ring opening of 2-alkylaziridines 199 with TMSN_{3} in MeCN using $5 \mathrm{~mol} \%$ of $\mathrm{Sn}(\mathrm{OTf})_{2}$ has been shown to be very effective and provided high yields of the corresponding azides 200, resulting from azide attack at the less hindered side of the aziridine ring (Scheme 55). ${ }^{98}$

Scheme 55

Similarly, the ring opening of chiral 2-(1-hydroxyalkyl)aziridines 201 has been shown to give β azidoamines 203 through C3-N bond cleavage by the azide nucleophile (Scheme 56). ${ }^{99}$ Furthermore, aziridines 201 can be regioselectively opened with iodide from iodotrimethylsilane (TMSI) to yield β iodoamines through C 3 ring opening. ${ }^{99}$

$\mathrm{R}=\mathrm{Me}, \mathrm{nBu}, \mathrm{tBu}, \mathrm{Ph}, 2-\mathrm{MeOC}_{6} \mathrm{H}_{4}$
4- $\mathrm{ClC}_{6} \mathrm{H}_{4}$, 1-hexynyl, 4- $\mathrm{FC}_{6} \mathrm{H}_{4}$
3- $\mathrm{MeC}_{6} \mathrm{H}_{4}$, 2-thiazolyl, 2-propenyl
Scheme 56

The same behavior of 2-alkylaziridines has also been described in the synthesis of bicyclic triazoles 207, which were obtained when chiral 1-(aziridin-2-yl)propargylic alcohols 204 were reacted with azidotrimethylsilane (Scheme 57). ${ }^{100}$ It has been suggested that the silylation of the aziridine nitrogen atom provided the activated aziridinium species 205, which were then regioselectively opened through fission of the C3-N bond by nucleophilic attack of the in situ liberated azide toward azido alcohols 206. Consequently, an intramolecular 1,3-dipolar cycloaddition efficiently converted azido alkynes 206 to the corresponding bicyclic triazoles 207.

Scheme 57

Finally, in a report by Wróblewski et al., ${ }^{101}$ the regioselective ring opening of chiral 2 -substituted aziridinephosphonates 208 has been investigated. After optimizing the reaction conditions, 3-azido-1hydroxyphosphonates 211 (or their O-TMS derivatives) were obtained in high yields. Whereas initially N-silylated aziridinium species 210 could be invoked as intermediates, the authors suggested an alternative pathway involving silylation of the hydroxyl group in phosphonates 208 or hydrolysis of trimethylsilyl azide with adventitious water to produce hydrogen azide, which transforms the aziridine ring into intermediate aziridinium ions through N-protonation. Under these conditions, regiospecific ring opening by azide at the C3 position takes place (Scheme 58). ${ }^{101}$

2.6 Theoretical aspects and insights obtained via computational chemistry

In recent years, high-level computational analyses have been deployed successfully to shed more light on the reactivity profile of aziridinium intermediates and to provide a rationale for experimentally observed regio- and stereochemical preferences in their ring opening reactions. ${ }^{31,102}$ In this section, a short overview of recent achievements in that respect are presented.

The nucleophile-dependent regioselectivity in the ring opening of the chiral 1-benzyl-1-($\alpha(R)$ -methylbenzyl)-2(S)-(phenoxymethyl)aziridinium ion (i, Figure 5) has been subjected to several computational studies, to rationalize the observed experimental outcomes. Intramolecular m-п stacking interactions among aromatic substituents were identified and suggested to add stability to these intermediate species. T-stacking interactions were shown to be more favourable than paralleldisplaced conformations (ii and iii, Figure 5). ${ }^{96}$ Another critical aspect in simulations was the effective inclusion of the solvent environment, since nucleophilic substitution reactions are known to be highly influenced by the nature of the solvent. The qualitative picture of the energy landscapes were shown to be significantly dependent on the inclusion of solvent and in the absence of these critical stabilizing effects, experimentally observed regioselectivities could not be reproduced.

ii)

iii)

Figure 5. Intramolecular $\pi-\pi$ stacking in 1-benzyl-1-($\alpha(R)$-methylbenzyl)-2(S)-(phenoxymethyl)aziridinium ion. ii) T-stacking iii) Parallel-displaced

The role of the nucleophile was investigated by considering hydride donors (borohydride and aluminium hydride) as well as halides and their propensities for attacking the unsubstituted (pathway a) versus substituted (pathway b) aziridine carbons (Scheme 59).

Scheme 59

In the case of hydride donors $\left(\mathrm{BH}_{4}{ }^{-}\right.$and $\left.\mathrm{AlH}_{4}{ }^{-}\right)$, the attack at the unhindered ring carbon of the 1-benzyl-1-($\alpha(R)$-methylbenzyl)-2(S)-(phenoxymethyl)aziridinium ion, was shown to be the kinetic route
and incidentally led to the thermodynamically favourable product (Figure 6), ${ }^{96,102 b}$ as observed experimentally.
i)

BH_{4}-TS-a

Figure 6. i) Free energy profile for the hydride-induced ring opening of the 1-benzyl-1-(a(R)-methylbenzyl)-2(S)(phenoxymethyl)aziridinium ion at the unhindered (pathway a) and hindered (pathway b) ring carbons. ii)

Transition state geometry for borohydride attack at unhindered aziridine carbon.
(SCS-MP2/6-31++G(d,p))//B3LYP/6-31++G(d,p) at 298 K and 1 atm)
$\mathrm{BH}_{4}-\mathrm{Ts}-\mathrm{a}, \mathrm{BH}_{4}-\mathrm{Ts}-\mathrm{b}$ - transition states for hydride (from NaBH_{4}) attack via pathways a and b , respectively
$\mathrm{AlH}_{4}-\mathrm{Ts}-\mathrm{a}, \mathrm{AlH}_{4}-\mathrm{Ts}-\mathrm{b}$ - transition states for hydride (from LiAlH_{4}) attack via pathways a and b, respectively

The overall picture for halide-induced ring opening showed that the unhindered route (pathway a) is always kinetically preferred, yet the hindered route leads to the thermodynamic product (Figure 7). However, the eventual outcome depends on the hardness/softness and leaving group ability of the nucleophile (halide). If the nucleophile is a good leaving group (soft nucleophile, bromide), back reaction barriers are sufficiently low to allow equilibration and the thermodynamic product will prevail. If the nucleophile is a poor leaving group (hard nucleophile, fluoride), the back reaction is unlikely and the kinetic route will dictate the reaction outcome.

Figure 7. Free energy profile for the halide-induced ring opening of the 1-methyl-1-($\alpha(R)$-methylbenzyl)-2(R)(methoxymethyl)aziridinium ion at the unhindered (pathway a) and hindered (pathway b) ring carbons.

$$
\text { (MPW1B95/6-31++G(d,p)//B3LYP/6-31++G(d,p) at } 298 \mathrm{~K} \text { and } 1 \mathrm{~atm})
$$

F-Ts-a, F-Ts-b - transition states for fluoride attack via pathways a and b, respectively; F-P-a, F-P-b-products of fluoride attack via pathways a and b, respectively. CI-Ts-a, CI-Ts-b - transition states for chloride attack via pathways a and b , respectively; $\mathrm{Cl}-\mathrm{P}-\mathrm{a}, \mathrm{Cl}-\mathrm{P}-\mathrm{b}-$ products of chloride attack via pathways a and b , respectively. $\mathrm{Br}-$ Ts-a, Br-Ts-b - transition states for bromide attack via pathways a and b , respectively; $\mathrm{Br}-\mathrm{P}-\mathrm{a}, \mathrm{Br}-\mathrm{P}-\mathrm{b}-\mathrm{products}$ of bromide attack via pathways a and b , respectively

For the chloride case, equilibration is slow, and therefore the kinetic product is initially observed during the reaction. However, the final product is dictated by thermodynamic stability. In the case of bromide, equilibration is so rapid that the initial formation of the kinetic product is not observed and the thermodynamic product forms immediately. Theoretical results were in perfect agreement with experimental findings, also pointing to the well-known trend in nucleophile strength and leaving group ability throughout the halide series. Explicit solvation (Figure 8, acetonitrile molecules) was used to stabilize ionic species, as this was proven to significantly influence the energy landscape of $\mathrm{S}_{\mathrm{N}} 2$ reactions. ${ }^{31,96}$
a)

b)

Figure 8. Transition state geometries for bromide attack on the a) unhindered b) hindered carbon atom of the 1-methyl-1-($\alpha(R)$-methylbenzyl)-2(R)-(methoxymethyl)aziridinium ion.
(MPW1B95/6-31++G(d,p)//B3LYP/6-31++G(d,p))

2.7 Conclusion

The ring-opening reactions of non-activated 2 -substituted aziridines 48 have been described in a large number of reports, providing an insight into the regioselectivity depending on the nature of the nucleophile, the type of activation of the aziridine moiety and the nature of the substituents on the aziridine ring. These reactions proceed via formation of intermediate aziridinium ions 49, which are then opened at the more (path a) or/and the less substituted carbon atom (path b) toward amines 50 and 51, respectively (Scheme 8). Based on these data, a general overview is provided in Table 1 as a practical guide. Bearing this in mind, it might be possible to predict a regioselective preference for other so far unexamined ring-opening reactions of non-activated 2 -substituted aziridines as well.

Scheme 8.

Table 1. Regioselectivity in the ring opening of non-activated 2 -substituted aziridines depending on the substrate and the electrophile

\mathbf{R}^{2}	$\mathbf{L A}$	$\mathbf{R C}^{+}=\mathbf{0}$	\mathbf{H}^{+}	\mathbf{R}^{+}	$\mathbf{T M S}^{+}$
$-\mathrm{CH}=\mathrm{CH}_{2}$, $-\mathrm{CH}=\mathrm{CH}-\mathrm{COOEt}$	$\mathrm{C} 2^{\mathrm{b}}$	C 2	$\mathrm{C} 2^{\mathrm{b}}$	C 2	C 2
Aryl	C 2	C 2	C 2	C 2	C 2 b
$\mathrm{COR}, \mathrm{COOR}, \mathrm{CONH}_{2}$	C 3	C 2	C 2	C 2	C 2
alkyl	C 3	C 2 and/or C3	C 3	$\mathrm{C} 3^{\mathrm{a}}$	C 3

[^1]In this PhD thesis, the ring opening of non-activated aziridines (via intermediate aziridinium salts) will be employed as a powerful tool for the transformation of these strained species into a wide range of synthetically and biologically interesting nitrogen-containing scaffolds.

3 Results and Discussion

3.1 Microwave-assisted regioselective ring opening of non-activated aziridines by lithium aluminium hydride ${ }^{103}$

The aziridine moiety represents a valuable three-membered ring system in organic chemistry due to its versatility as a building block for the preparation of a large variety of amines via ring opening and ring expansion. ${ }^{3 \mathrm{a}, 4 \mathrm{a}, \mathrm{b}, 5 \mathrm{5a}, 35, \mathrm{e}, 104,105} \mathrm{In}$ the chapter 'Literature Review', the regioselectivity of the ring opening of 2 -substituted non-activated aziridines was discussed, showing this class of aziridines to be fruitful synthons for further chemical transformation.
In comparison to the huge number of reports on the ring opening of aziridines by other nucleophiles, their ring opening by hydrides has received very limited interest in the literature despite the synthetic potential of this approach. The intermediacy of aziridines in direct, non-regioselective ring-opening reactions by LiAlH_{4} has been proposed in an early paper, in which the reduction of N-(1,1-dichloro-2alkylidene)anilines was investigated, ${ }^{106}$ and has also been deduced indirectly from the experiments of Suzuki. ${ }^{107}$ In addition, in one recent report, ${ }^{108}$ the reduction of 2-methyl-1-phenylaziridine with LiAlH_{4} in THF yielded a mixture of ring-opened amines (derived from hydride attack at both the more and the less hindered aziridine carbon atom in a 1:2 ratio, respectively) yet showed to be slow and not complete after heating under reflux for 20 hours. Furthermore, the contribution of the electronwithdrawing effect of the phenyl group at nitrogen, facilitating ring opening of the aziridine moiety, should not be neglected in this particular case. In addition to the above-mentioned reports, the ring opening of reactive 2 -chloroaziridine intermediates by LiAlH_{4} has also been described. ${ }^{109}$
It should be stressed that several syntheses of aziridines have been reported in the literature based on the reduction of suitable substrates, such as α-halo imines, ${ }^{110}$ vinyl azides, ${ }^{111}$ oximes ${ }^{112}$ and azirines, ${ }^{113}$ by nucleophilic complex hydrides. Recently, the reductive ring opening of highly electrophilic aziridinium salts by hydrides has been reported to afford 2 -aminopropanes through regiospecific ring opening at the unsubstituted position. ${ }^{102}$ However, up to now, LiAlH_{4} has been mainly used to reduce functional groups in compounds incorporating an aziridine unit without affecting the three-membered ring itself, ${ }^{26}$ and the hydride-promoted ring opening of non-activated aziridines has not been described in the literature so far. The lack of studies concerning the reduction of aziridines by LiAlH_{4} is remarkable in view of the large number of papers on the reductive ring opening of their oxygen counterparts, oxiranes.

Therefore, in this section, special attention was devoted to the LiAlH_{4}-promoted ring opening of nonactivated 2 -subtituted aziridines toward biologically and synthetically relevant species.

3.1.1 Ring opening of 2-(bromomethyl)aziridines with LiAlH_{4}

As mentioned in the section 1 "Introduction and goals", 1-arylmethyl-2-(bromomethyl)aziridines 16 have proven to be valuable synthons for the preparation of wide variety of azaheterocyclic compounds and amines derived from their ring opening. ${ }^{24 c, 92,93,114}$ These substrates were prepared by an efficient three-step procedure, comprising the initial imination of benzaldehydes 212a-d with 1 equiv of allylamine in the presence of 1.5 equiv of MgSO_{4} in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ for 1 hour under reflux. Subsequent bromination of imines 213a-d with 1 equiv of Br_{2} in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at room temperature for 1 hour furnished dibromoimines 214a-d in nearly quantitative yields (95-99\%, Scheme 60). Finally, the reductive cyclization of brominated imines 214a-d with 2 molar equiv of NaBH_{4} in MeOH under reflux for 2 hours resulted in the formation of aziridines 16a-d in high yields (89-94\%) and excellent purity. ${ }^{22,25 b, 115}$

Scheme 60

In order to evaluate the unexplored reactivity of 2-(bromomethyl)aziridines 16 toward LiAlH_{4}, aziridines 16a,b were treated with two molar equivalents of LiAlH_{4} in dry $\mathrm{Et}_{2} \mathrm{O}$ under reflux for 2-15 hours. The reaction resulted in complex mixtures, in which signals pertaining to the corresponding allylamines 217, 2-methylaziridines 218 and isopropylamines 219 were detected (based on NMR and LC-MS) (Scheme 61). Changing the reaction conditions, i.e., the temperature and the reaction time, resulted in a different and sometimes unpredictable reaction outcome (Table 2).

Table 2. Treatment of 2-(bromomethyl)aziridines 16a,b with 2 molar equiv LiAlH_{4}

Compound	Reaction conditions	Result
$\mathbf{1 6 a}$	$\mathrm{Et}_{2} \mathrm{O}$, r.t., 15 h	$15-20 \%$ of $\mathbf{2 1 7}+$ side products
$\mathbf{1 6 a}$	$\mathrm{Et}_{2} \mathrm{O}, \Delta, 15 \mathrm{~h}$	$\mathbf{2 1 7}(12 \%) / \mathbf{2 1 8}(48 \%): 1 / 4+$ side products
$\mathbf{1 6 b}$	$\mathrm{Et}_{2} \mathrm{O}, \Delta, 2 \mathrm{~h}$	$\mathbf{2 1 7}(15 \%) / \mathbf{2 1 8}(45 \%): 1 / 3+$ side products
$\mathbf{1 6 b}$	$\mathrm{Et}_{2} \mathrm{O}, \Delta, 2.5 \mathrm{~h}$	$\mathbf{2 1 8}(52 \%) / \mathbf{2 1 9}(30 \%): 1.7 / 1+$ side products

The formation of amines 217 can be explained by a LiAlH_{4}-induced debromination of aziridines 16 via a nucleophilic or a radical reaction, ${ }^{116}$ followed by ring opening of the intermediate aziridinylmethyl anion $\mathbf{2 1 5}$ or aziridinylmethyl radical 216 to give the corresponding amines $\mathbf{2 1 7}$ after aqueous work up (Scheme 61).
After a number of attempts to optimize the reaction conditions, the reaction of aziridines 16a-d with 2 molar equiv of LiAlH_{4} in dry $\mathrm{Et}_{2} \mathrm{O}$ under reflux for 3-6 hours afforded N -arylmethyl- N -isopropylamines 219 as the sole reaction products quite unexpectedly in high yields (80-84\%) (Scheme 62). Again, the suggested mechanistic pathway for this transformation consists of an initial reductive debromination of 2-(bromomethyl)aziridines 16 toward 2-methylaziridines 218 through the action of LiAlH_{4}, either via a nucleophilic or a radical reaction. ${ }^{116}$ Subsequently, reductive ring opening takes place via nucleophilic attack of a hydride ion (from LiAlH_{4}) at the less substituted carbon atom of the aziridine moiety in intermediates 220. Apparently, the reducing agent acts both as the activator of the aziridine ring (through coordination of aluminium with nitrogen) ${ }^{68,108}$ and as the provider of the nucleophile (hydride) which opens up the ring at the less hindered position (Scheme 62). However, the alternative mechanistic pathway comprising an initial hydride attack at the less hindered position of the aziridine moiety of 2-(bromomethyl)aziridines 16 yielding the corresponding ring-opened intermediates, and their subsequent ring closure toward 2-methylaziridines 218, should not be neglected. Although attempts to isolate 2-methylaziridine $\mathbf{2 1 8}^{117}$ by column chromatography on silica gel failed, their intermediacy was acknowledged by ${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR and MS analysis of some of the crude reaction mixtures.

Additionally, in order to confirm the structure of N-arylmethyl- N-isopropylamines 219, an independent synthesis of N-(4-methoxybenzyl)- N-isopropylamine 219d was performed. Condensation of 4methoxybenzaldehyde 212d with 1.05 equiv of iPrNH_{2} in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ in the presence of MgSO_{4} afforded the corresponding imine 221 in 75% yield after six hours under reflux, which was then reduced using two molar equiv of NaBH_{4} in MeOH for two hours under reflux, furnishing N -(4-methoxybenzyl)- N isopropylamine 219d in 96% yield (Scheme 63). The spectral data of amine 219d obtained via both routes were judged to be identical.

Scheme 63
Apart from amines 219, which can of course easily be prepared via other routes, this methodology holds significant synthetic potential for the preparation of a large variety of amines in a convenient way through reductive ring opening of the appropriate aziridine derivatives, which will be the topic of the following paragraphs.

3.1.2 Ring opening of 2-(acetoxymethyl)aziridines with LiAlH_{4}

The utility of this LiAlH_{4}-promoted ring opening of non-activated aziridines was also demonstrated by the synthesis of versatile β-amino alcohols starting from 2-(acetoxymethyl)aziridines.
1-Arylmethyl-2-(acetoxymethyl)aziridines 222 were smoothly prepared upon treatment of 2(bromomethyl)aziridines 16a-d with an excess (1.5 equiv) of sodium acetate in DMSO at $100^{\circ} \mathrm{C}$ for 15 hours (Scheme 64). The reaction provided almost pure acetates 222a-d suitable for further elaboration without prior purification. However, for full characterization, aziridines $\mathbf{2 2 2}$ were purified by column chromatography on silica gel, affording analytically pure samples.

Further treatment of 2-(acetoxymethyl)aziridines 222 with two molar equiv of LiAlH_{4} in $\mathrm{Et}_{2} \mathrm{O}$ and heating for six hours under reflux provided crude mixtures containing mainly aziridinyl alcohols 223, and no traces of ring opened β-amino alcohols 224 were detected. Increasing the reaction time to 2462 hours led to partial formation of β-amino alcohols 224 ($\sim 50 \%)$. It was shown that, in order to obtain β-amino alcohols 224 in reasonable yields, a reflux time of several days (4-5) was required (Table 3).

Table 3. Treatment of 2-(acetoxymethyl)aziridines $\mathbf{2 2 2}$ with 2 molar equiv LiAlH_{4}

Compound	Reaction conditions	Result
222b	$\mathrm{Et}_{2} \mathrm{O}, \Delta, 15 \mathrm{~h}$	70\% of 223b + side products
222a	$\mathrm{Et}_{2} \mathrm{O}, \Delta, 20 \mathrm{~h}$	76\% of 223a + side products
222a	$\mathrm{Et}_{2} \mathrm{O}, \Delta, 1.5 \mathrm{~h}$	15\% of 224a + side products
222c	$\mathrm{Et}_{2} \mathrm{O}, \Delta, 7 \mathrm{~d}$	85\% of 224c + side products
222d	$\mathrm{Et}_{2} \mathrm{O}, \Delta, 4 \mathrm{~d}$	223d + 224d + side products
222d	THF, $\Delta, 6 \mathrm{~d}$	90\% of 224d + side products
222c	$\mathrm{Et}_{2} \mathrm{O}, \Delta, 5 \mathrm{~d}$	85\% of 224c + side products
222b	$\mathrm{Et}_{2} \mathrm{O}, \Delta, 5 \mathrm{~d}$	65\% of 224b + side products

In order to overcome this major drawback, the reaction mixture was subjected to microwave irradiation (CAUTION!). Gratifyingly, after heating aziridines 222 in THF at $130^{\circ} \mathrm{C}$ for two hours ($220 \mathrm{~W}_{\text {max }}$) in the presence of two molar equiv of LiAlH_{4}, only the corresponding β-amino alcohols 224 were formed in high purity without traces of 2-(hydroxymethyl)aziridines 223 (Scheme 64). Thus, the nucleophilic attack of hydride at the less substituted carbon atom of aziridines 223 was confirmed and, as a result, β-amino alcohols 224 were obtained in high yields after purification by column chromatography on silica gel. In this way, 2-aminopropan-1-ols 224 were formed selectively through complete regio- and stereoselective conversion of 2-(hydroxymethyl)aziridines 223. Although several useful routes for the synthesis of β-amino alcohols are available in the literature, ${ }^{28 a, 40 a, 118}$ some of these approaches suffer from (minor) drawbacks such as low regioselectivity, cumbrous substrate synthesis or low substrate stability. The synthesis of β-amino alcohols 224 through microwave-assisted ring opening of aziridines 222 utilizing LiAlH_{4} satisfies the requirements for a generally applicable route, i.e., the use of commercially available starting compounds, complete regio- and stereoselectivity and high energy efficiency. Thus, the presented methodology can be regarded as a complementary approach or a worthy alternative for other known routes. β-Amino alcohols are applied extensively in organic synthesis as a building blocks in designing natural and biologically active substances, ${ }^{27,28 a, 39,119}$ and their chiral versions are also used in catalytic asymmetric synthesis. ${ }^{28}$

Scheme 64

3.1.3 Synthesis of 5-methylmorpholin-2-ones from β-amino alcohols

The reactivity of β-amino alcohols toward the synthesis of the corresponding 1,4-oxazin- 2 -ones upon the condensation with glyoxal was a subject of a number of literature reports. ${ }^{120}$ In the next part, 2-aminopropan-1-ols 224 were also shown to be suitable intermediates for the construction of 5-methylmorpholin-2-ones, ${ }^{29}$ which are known as fruitful substrates for the synthesis of biologically relevant compounds. ${ }^{121}$

Thus, 2-(arylmethylamino)propan-1-ols 224a-d were dissolved in THF and treated with three equiv of glyoxal. After heating these mixtures for 2-3 hours, 5-methylmorpholin-2-ones 228a-d were obtained in good yields (Scheme 65), and column chromatography on silica gel provided analytically pure compounds suitable for full characterization. The mechanism of the formation of morpholin-2-ones 228 could be explained by the initial formation of iminium salt 225, which undergoes an intramolecular nucleophilic addition of the hydroxyl group to the carbonyl group to give the cyclic iminium intermediate 226, which rearranges to the more stable enamine $\mathbf{2 2 7}$ to provide morpholin-2-one 228 as the final product.

Scheme 65

3.1.4 Synthesis of enantiopure β-amino alcohols and 5 -methylmorpholin-2-ones

Given the intermediacy of 2-(hydroxymethyl)aziridines $\mathbf{2 2 3}$ in the conversion of acetates 222 into alcohols 224, efforts were devoted to the evaluation of chiral 2-(hydroxymethyl)aziridines as substrates for a LiAlH_{4}-promoted reductive ring opening. In the literature, only a few studies have been made on ring-opening reactions of non-activated enantiomerically pure 2 (hydroxymethyl)aziridines. ${ }^{79,84,85,118 a, 122}$ For example, the catalytic hydrogenation of 2 (aziridinyl)methanols 229a and 229b in EtOH using $\mathrm{Pd}(\mathrm{OH})_{2}$ has provided β-amino alcohols 230a and 230b in good yields. ${ }^{122}$ Recently, the preparation of chiral β-amino alcohols via regio- and stereocontrolled ring-opening reactions of chiral aziridines has been examined. ${ }^{74}$ This approach comprised the reaction of 2 -alkylaziridines with acetic acid to yield the ring-opening products with excellent regioselectivity, which were then treated with LiAlH_{4} or $\mathrm{Pd}(\mathrm{OH})_{2}$ to provide the corresponding β-amino alcohols. On the other hand, the reaction of the same chiral aziridines with acetyl chloride followed by treatment with water gave isomeric β-amino alcohols through oxazoline intermediates. ${ }^{74}$ In addition, the reaction of the latter chiral aziridines with benzyl bromide followed by the treatment with sulfuric acid gave secondary β-amino alcohols via ring opening at the substituted aziridine carbon atom.
Many β-amino alcohols are biologically active and play very important roles in living organisms. ${ }^{123}$ Therefore, the syntheses of enantiomerically pure amino alcohols are becoming important areas of research. Among those, Ephedra alkaloids (Figure 9) are attractive targets because of their biological and medicinal activities. These compounds have long been used in China to treat bronchial asthma, hay fever, and other allergic reactions, and large quantities are produced in Western countries to relieve mucous membrane congestion. ${ }^{124}$

$\mathrm{R}=\mathrm{CH}_{3}((1 R, 2 S)-(-)$-ephedrine $)$
$\mathrm{R}=\mathrm{H}((1 R, 2 S)-(-)$-norephedrine $)$
$\mathrm{R}=\mathrm{CH}_{3}((1 S, 2 S)-(+)$-pseudoephedrine)
$R=H((1 S, 2 S)-(-)$-norpseudoephedrine)
Figure 9

In this part, the synthesis of enantiopure 2-aminopropan-1-ols by means of LiAlH_{4}-promoted reduction of chiral 2-(hydroxymethyl)aziridines 229a and 229b was successfully examined. After failing to prepare amines 230a and 230b upon treatment with two molar equiv of LiAlH_{4} under reflux for several days in THF and toluene (Table 4), the mixture of aziridines 229 and two molar equiv of LiAlH_{4} in THF was subjected to microwave conditions $\left(160^{\circ} \mathrm{C}, 220 \mathrm{~W}_{\text {max }}\right.$, two hours). Fortunately, full and selective conversion of aziridines 229a and 229b into enantiopure 2-aminopropan-1-ols 230a and 230b as single stereoisomers was obtained (Scheme 66).

Table 4. Treatment of 2-(hydroxymethyl)aziridines $\mathbf{2 2 9}$ with 2 molar equiv LiAlH_{4}

Compound	Reaction conditions	Result
$\mathbf{2 2 9 a}$	$\mathrm{Et}_{2} \mathrm{O}, \Delta, 6 \mathrm{~h}$	no reaction
$\mathbf{2 2 9 a}$	$\mathrm{THF}, \Delta, 10 \mathrm{~d}$	no reaction
$\mathbf{2 2 9 a}$	toluene, $\Delta, 3 \mathrm{~h}$	no reaction
$\mathbf{2 2 9 b}$	$\mathrm{THF}, \Delta, 2 \mathrm{~d}$	no reaction
$\mathbf{2 2 9 b}$	toluene, $\Delta, 5-10 \mathrm{~d}$	complex mixture

Again, the mechanism comprises coordination of aluminium with the aziridine nitrogen atom, enabling $\mathrm{C}(3)-\mathrm{N}$ bond cleavage induced by nucleophilic attack of a hydride ion to furnish the corresponding ring-opened product. The bond cleavage showed to be highly regioselective, since hydride attack only occured at the less hindered position. Furthermore, the ring opening reaction of chiral aziridines 229 proceeded not only with high regioselectivity, as it also furnished the corresponding enantiopure amino alcohols 230a and 230b with full retention of configuration.

The preparation of enantiopure six-membered oxazaheterocycles has received significant attention, for example due to their high potential as chiral substrates. In particular, chiral morpholin-2-ones have been used in the asymmetric synthesis of α-amino acids ${ }^{121 a, b}$ and other natural products. ${ }^{121 c, d, e}$ In the present study, enantiopure 5 -methylmorpholin-2-ones were prepared by condensation of the corresponding chiral amino alcohols with glyoxal. Thus, chiral β-amino alcohols 230a and 230b were treated with three equiv of glyoxal (40\%), affording enantiopure morpholin-2-ones 231a and 231b upon reflux for three hours in THF (Scheme 66). The reaction showed high stereoselectivity since no diastereomers were detected in the crude ${ }^{1} \mathrm{H}$ NMR spectra, which is in accordance with previously reported analogous condensation reactions. ${ }^{29}$

Attempts to convert enantiopure amino alcohols 230 into chiral 2-methylaziridines were not successful. For this purpose, β-amino alcohols 230a and 230b were subjected to Mitsunobu conditions using 1.2 equiv of PPh_{3} and 1.2 equiv of diisopropyl azodicarboxylate (or 1.2 equiv of N-bromosuccinimide) in THF for 18 hours, or were treated with 1.05 equiv of MsCl and 1.1 equiv of $\mathrm{Et}_{3} \mathrm{~N}$ (or 1.05 equiv of TsCl and 0.1 equiv of DMAP) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ for 4 hours, although in all cases only complex mixtures were obtained.

In addition, the efforts to cleave the 1-phenylethyl group at the nitrogen atom in morpholinone 231a by means of hydrogenation using $\mathrm{Pd}(\mathrm{OH})_{2}(5-15 \mathrm{~mol} \%)$ at 5 bar, were not successful, even after prolonged reaction times (3 days) (Table 5, Scheme 67).

Scheme 67

Table 5. Attempts to deprotect nitrogen in morpholinone 231a

Compound	Reaction conditions	Result
231a	$5 \mathrm{~mol} \% \mathrm{Pd}(\mathrm{OH})_{2}$, EtOAc, 4 bar, 1 d	no reaction
231a	$15 \mathrm{~mol} \% \mathrm{Pd}(\mathrm{OH})_{2}$, EtOAc, 5 bar, 3 d	no reaction

3.1.5 Ring opening of 2-(methoxymethyl)- and 2-(phenoxymethyl)aziridines with LiAlH_{4}

In addition to the use of 2-(acetoxymethyl)- and 2-(hydroxymethyl)aziridines, the LiAlH_{4}-promoted ring opening of 2-(methoxymethyl)- and 2-(phenoxymethyl)aziridines 233 and 234 was evaluated applying microwave conditions (Scheme 68).

2-(Methoxymethyl)aziridines 233a,b were prepared through conversion of 2-(bromomethyl)aziridines 16 upon treatment with two equiv of sodium methoxide in methanol (2M) under reflux for 15 hours, ${ }^{125}$ whereas 2-(phenoxymethyl)aziridines 234a-d were obtained by treatment of 2(bromomethyl)aziridines 16 with 2.2 equiv of phenol and 5 equiv of $\mathrm{K}_{2} \mathrm{CO}_{3}$ in a mixture of DMF and acetone ($1 / 1$) under reflux for 10-20 hours. ${ }^{92}$

Scheme 68

Remarkably, treatment of aziridines 233 with two equiv of LiAlH_{4} under microwave conditions resulted in different reaction products depending on the temperature used. Indeed, treatment of aziridine $\mathbf{2 3 3 a}, \mathbf{b}$ for 2 hours at $160^{\circ} \mathrm{C}$ yielded isopropylamines 219 , whereas mainly β-methoxyamines $\mathbf{2 3 5 a , b}$ were obtained after 12 hours at $130{ }^{\circ} \mathrm{C}$ (Scheme 69, Table 6). The formation of isopropylamines 219bd can be explained considering the initial replacement of the methoxy group by means of LiAlH_{4} (via a nucleophilic or radical pathway) furnishing 2 -methylaziridines 218, which subsequently underwent reductive ring opening via nucleophilic attack of a hydride ion (from LiAlH_{4}) at the less substituted carbon atom of the aziridine moiety. Again, spectroscopic evidence for the intermediacy of 2methylaziridines 218 was obtained through careful analysis of the reaction mixtures. Apparently, at $130{ }^{\circ} \mathrm{C}$ nucleophilic aziridine ring opening by hydride took place prior to replacement of the methoxy group, and β-methoxyamines $\mathbf{2 3 5} \mathbf{a}$, \mathbf{b} were obtained as the major components in the reaction mixtures (Scheme 69). The reaction of 2 -(phenoxymethyl)aziridines $\mathbf{2 3 4 b}$,d with two equiv of LiAlH_{4} surprisingly furnished isopropylamines 219 after 6 hours at $160^{\circ} \mathrm{C}$ under microwave irradiation. However, when these aziridines $\mathbf{2 3 4 b}$,d were heated at $130{ }^{\circ} \mathrm{C}$ (or $140{ }^{\circ} \mathrm{C}$) for $10-15$ hours, 2 -methylaziridines 218 were obtained in a mixture together with starting compounds 234b,d. Increasing the temperature to $160{ }^{\circ} \mathrm{C}$ led to the full conversion of aziridines $\mathbf{2 3 4 b}, \mathbf{d}$ into isopropylamines 219 . These observations can be explained considering the better leaving group capacities of the phenoxy substituent as compared to the methoxy group, resulting in a more rapid formation of intermediate 2 -methylaziridines 218. The unexpected behaviour of the phenoxy group as a leaving group is remarkable, as no other reports on the conversion of phenoxyalkanes into the corresponding alkanes using hydride reagents have been reported in the literature. Thus, attempts were made to convert n-decylphenyl ether into n decane using LiAlH_{4} under microwave conditions. However, the reaction showed to be potentially dangerous under microwave irradiation at $160^{\circ} \mathrm{C}$, leading to an explosive reaction outcome. Therefore, this method cannot to be regarded as a general synthetic approach for alkane formation as such.

Scheme 69

Table 6. LiAlH_{4}-promoted ring opening of aziridines 233 and 234 using microwave irradiation

Compound	Reaction conditions	Result
233a	2 equiv $\mathrm{LiAlH}_{4}, \mathrm{THF}, 130^{\circ} \mathrm{C}, 30 \mathrm{~min}$	no reaction
233a	2 equiv $\mathrm{LiAlH}_{4}, \mathrm{THF}, 130^{\circ} \mathrm{C}, 10 \mathrm{~h}$	80% of $\mathbf{2 3 5 a}$
233b	2 equiv $\mathrm{LiAlH}_{4}, \mathrm{THF}, 130^{\circ} \mathrm{C}, 12 \mathrm{~h}$	60% of $\mathbf{2 3 5 b}$
234d	2 equiv $\mathrm{LiAlH}_{4}, \mathrm{THF}, 120^{\circ} \mathrm{C}, 15 \mathrm{~h}$	no reaction
234d	2 equiv $\mathrm{LiAlH}_{4}, \mathrm{THF}, 130^{\circ} \mathrm{C}, 12 \mathrm{~h}$	complex mixture
234b	2 equiv $\mathrm{LiAlH}_{4}, \mathrm{THF}, 120^{\circ} \mathrm{C}, 15 \mathrm{~h}$	no reaction
234b	2 equiv $\mathrm{LiAlH}_{4}, \mathrm{THF}, 140^{\circ} \mathrm{C}, 10 \mathrm{~h}$	complex mixture
234d	2 equiv $\mathrm{LiAlH}_{4}, \mathrm{THF}, 160^{\circ} \mathrm{C}, 6 \mathrm{~h}$	52% of $\mathbf{2 1 9 \mathbf { d }}$
234b	2 equiv $\mathrm{LiAlH}_{4}, \mathrm{THF}, 160^{\circ} \mathrm{C}, 6 \mathrm{~h}$	54% of $\mathbf{2 1 9 \mathbf { c }}$

In conclusion, the microwave-assisted reductive ring opening of 2-substituted non-activated aziridines utilizing LiAlH_{4} proceeded smoothly in a highly regio- and stereoselective way, not requiring the presence of additional Lewis acids. 2-(Acetoxymethyl)aziridines provided β-amino alcohols upon treatment with LiAlH_{4} under microwave irradiation, which were then used to produce synthetically relevant 5-methylmorpholin-2-ones in a straightforward way. Besides, the microwave-assisted conversion of chiral aziridine substrates by means of LiAlH_{4} furnished the corresponding enantiopure β-amino alcohols, which were then exposed to glyoxal to give chiral $5(R)$ - and $5(S)$-morpholin-2-ones. In addition, 2-(methoxymethyl)aziridines provided isopropylamines or β-methoxyamines upon treatment with LiAlH_{4} under microwave irradiation, depending on the temperature applied. Thus, LiAlH_{4} can be regarded as a useful reagent for a new type of reductive aziridine ring opening in a
selective way under microwave conditions, paving the way for a variety of novel applications in organic chemistry.

3.2 Systematic study of halide-induced ring opening of 2-substituted aziridinium salts ${ }^{126}$

The regio-controlled ring opening of C-substituted aziridines constitutes a powerful approach toward the preparation of a large variety of functionalized nitrogen-containing target compounds. In the chapter 'Literature review' the issue of regioselectivity in the ring opening of 2 -substituted aziridinium salts, obtained by N-functionalization of neutral aziridines, by different nucleophiles was thoroughly discussed. Therein, the relationship between the observed regioselectivity and inherent structural features such as the nature of the C2 aziridine substituent and the nature of the electrophile and the nucleophile was disclosed.
The ring opening of aziridinium salts by halides constitutes a convenient approach toward β-halo amines, which are generally recognized as useful building blocks in organic chemistry ${ }^{22,115,127}$ and valuable targets in medicinal chemistry (nitrogen mustards - chemotherapy agents). ${ }^{128}$
As seen in the previous chapter, intermediate aziridinium salts 236 can be ring opened at the unsubstituted (path a) or the substituted aziridine carbon atom (path b), leading either to primary halides $\mathbf{2 3 7}$ (path a) or to secondary halides $\mathbf{2 3 8}$ (path b) (Scheme 70).

Scheme 70

In the literature, a number of reports are available on the synthesis of β-halo amines through ring opening of aziridinium salts by halides. ${ }^{312,39,68,74,129}$ In most cases, 2 -vinyl- and 2 -arylaziridinium salts have been evaluated, in which the regioselectivity is substrate-dictated due to the presence of a pronounced electrophilic centre at the substituted aziridine carbon atom. The use of 2 -alkyl-substituted aziridinium ions has somewhat been neglected in that respect, probably because of the potential influence of different parameters such as the type of nucleophile, substrate and solvent on the reaction outcome. Whereas the issue of regioselectivity has been addressed in a number of literature reports, no systematic study has been performed up to now in which aziridinium substrates are subjected to ring opening by fluoride, chloride, bromide and iodide.

Therefore, in this part, in situ generated 2 -substituted aziridinium salts have been used as electrophiles for ring opening by fluoride, chloride, bromide and iodide in acetonitrile in a systematic way.

3.2.1 Ring opening of 2-aryloxymethyl-1,1-di(arylmethyl)aziridinium salts by halides

In this part, halide-induced ring opening of intermediate 2-aryloxymethyl-1,1-di(arylmethyl)aziridinium salts was contemplated. As reported before, 2-(aryloxymethyl)aziridines 234 can be prepared in high yields and purity upon treatment of the corresponding 2 -(bromomethyl)aziridines $16^{22,115 a, b}$ with two equiv of the appropriate potassium phenolate in a DMF/acetone (1/1) solvent system under reflux for 10-20 hours (Scheme 68). ${ }^{92}$
Treatment of the aziridines 234 with one equiv of benzyl bromide in acetonitrile is known to afford secondary bromides 239 as the sole reaction products in high yields after reflux for five hours (Scheme 11, Table 7). ${ }^{92}$ In order to provide an entry into the corresponding fluorides, chlorides and iodides as well, β-bromo amines 239 were treated with different halide sources. Thus, both novel β chloro amines 240 and β-iodo amines 241 were prepared as the sole reaction products by the use of either 10 equiv of tetraethylammonium chloride or 20 equiv of sodium iodide, respectively, in acetonitrile after reflux for three hours (Scheme 11, Table 7). The formation of the other regioisomers was excluded based on detailed spectroscopic analysis.
The conversion of β-bromo amines 239 into β-chloro amines 240 using 20 equiv of NaCl instead of tetraethylammonium chloride in acetonitrile proceeded very sluggishly, as no conversion occurred after heating under reflux for 4 hours and only partial conversion was observed after reflux for 60 hours. On the other hand, the reaction of β-bromo amines 239 with 10 equiv of tetrabutylammonium iodide in acetonitrile appeared to be less successful as compared to the use of sodium iodide, as only 50% conversion took place after reflux for 7 hours. If 15 equiv of sodium iodide were used instead of 20 equiv, a longer reaction time (5 hours) was required in order to drive the reaction to completion.
When β-bromo amines 239 were treated with two equiv of tetrabutylammonium fluoride in acetonitrile, however, a mixture of regioisomeric fluorides 242 and 243 were obtained after reflux for 15 hours (Scheme 71, Table 7). ${ }^{94}$ In this case, primary fluorides 242 were formed as the major reaction products, besides minor amounts of secondary fluorides 243 (ratio 242/243 5-6/1). In order to test the reaction outcome as a function of reaction time and temperature, prolonged and elevated reaction times were also evaluated. In particular, heating under reflux for 3 days instead of 15 hours did not affect the isomeric distribution (ratio 242/243: 5-6/1), and the same conclusion was drawn after heating under reflux for 25 hours in DMF. These observations point to the fact that the product distribution between primary and secondary fluorides 242 and 243 is not under thermodynamic control.

Scheme 71

Table 7. Synthesis of β-bromo amines 239, β-chloro amines 240, β-iodo amines 241 and β-fluoro amines 242 and 243.

Entry	R^{1}	R^{2}	239 (yield)	240 (yield)	241 (yield)	242 (yield)	243 (yield)	$\begin{gathered} \text { Ratio }^{\text {a }} \\ \text { 242/243 } \end{gathered}$
1	$2-\mathrm{Cl}$	H	239a (71\%)	240a (82\%)	241a (89\%)	242a (54\%)	243a (10\%)	5/1
2	$4-\mathrm{Cl}$	H	239b (86\%)	240b (79\%)	241b (88\%)	242b (42\%)	243b (8\%)	5/1
3	$4-\mathrm{Cl}$	Cl	239c (85\%)	240c (83\%)	241c (82\%)	242c (60\%)	243c (10\%)	6/1
4	$4-\mathrm{OMe}$	H	239d (84\%)	240d (84\%)	241d (79\%)	242d (61\%)	243d (14\%)	6/1

${ }^{\text {a }}$ Ratio determined by ${ }^{1} \mathrm{H}$ NMR analysis

As observed and investigated before, quaternization and subsequent ring opening of 2(aryloxymethyl)aziridines 234 using benzyl bromide produces β-bromo amines 246 through regiospecific ring opening of aziridinium salts 244 at the substituted aziridine carbon atom $(X=B r$, path b, Scheme 72). ${ }^{42,94,102 a}$ Furthermore, in addition to preliminary findings using other types of substrates, ${ }^{94}$ the ring opening of aziridinum intermediates 244 by fluoride afforded a mixture of regioisomers in which primary fluorides 245 are predominant ($X=F$, path a, Scheme 72), pointing to a change in regioselectivity as compared to bromide. In previous theoretical studies, it was
demonstrated that product stabilities seem to dictate the outcome of the reaction through thermodynamic control in the bromide case, whereas difference in barriers for the fluoride case were shown to be mainly due to the difference in interaction energies, pointing to the fact that sterics dictate the outcome. ${ }^{102 a}$
In this study, the formation of β-bromo amines $239, \beta$-chloro amines $240, \beta$-iodo amines 241 and β fluoro amines 242 and 243 proceeds through ring opening of the same intermediate aziridinium salts 244 by different halides (Scheme 72). Apparently, the chloride- ${ }^{130}$ and iodide-promoted ring opening of aziridinium ions 244 is controlled by the same factors as compared to bromide-induced ring opening, involving attack at the substituted position ($X=C l$ and I, path b, Scheme 72). Thus, it can be concluded that chloride-, bromide- and iodide-promoted ring openings of aziridinium ions 244 are under thermodynamic control, eventually leading to the more stable secondary halides 246 as the final reaction products. On the other hand, ring opening by fluoride is kinetically controlled, which can be rationalized considering the poor leaving group capacity of fluoride as compared to the other halides, preventing thermodynamic equilibration.

Scheme 72

3.2.2 Ring opening of stable 1-methylaziridinium triflates by halides

In order to provide an insight into the potential role of the substrate in the above-described ring opening reactions, the synthesis of another type of aziridinium salts has been performed by the group of H.-J. Ha (Hankuk University of Foreign studies, Yongin, Korea). Therein, for example, stable 1methylaziridinium triflates 187 were prepared through N-methylation of chiral 2(methoxymethyl)aziridines 186 upon treatment with 1.1 equiv of methyl trifluoromethanesulfonate in acetonitrile for 10 minutes (Scheme 73), and were then evaluated as electrophiles for halide-induced ring opening reactions.

For this purpose, in the group of H.-J. Ha, different tetrabutylammonium halides have been used as halide sources for the ring opening of aziridinium triflates 187. First, the reaction of 2(methoxymethyl)aziridinium ions 187 with 1.5 equiv of tetrabutylammonium fluoride, chloride, bromide or iodide in acetonitrile at room temperature for one hour afforded the corresponding β-halo amines in good yields. Interestingly, the same conclusions were drawn as described above, involving the selective synthesis of secondary bromide 247a, iodide 247b and chloride 247 c as the sole reaction products, besides a regioisomeric mixture of primary and secondary fluoride 248d and 247d (3/1)
(Scheme 73, Table 8). These observations further consolidate the nucleophile-dependency of ring opening reactions of $1,1,3$-trialkylaziridinium ions by halides, pointing to a chloride-, bromide- and iodide-mediated ring opening under thermodynamic control and a fluoride-induced ring opening under kinetic control.

Scheme 73

Table 8. Ring opening of 1-methylaziridinium triflates 187 by tetrabutylammonium halides. ${ }^{126}$

Entry	Substrate	X	Product	Yield(\%)
1	$\mathbf{1 8 7}$	Br^{-}	$\mathbf{2 4 7 a}$	47%
2	$\mathbf{1 8 7}$	$\mathrm{~F}^{-}$	$\mathbf{2 4 7 b}$	52%
3	$\mathbf{1 8 7}$	Cl^{-}	$\mathbf{2 4 7} \mathbf{c}$	73%
4	$\mathbf{1 8 7}$	$\mathrm{~F}^{-}$	$\mathbf{2 4 8 d}+\mathbf{2 4 7 d}$	$77 \%(3 / 1)$

Interestingly, when aziridinium triflate 187 was treated with 1.5 equiv of NaCl in acetonitrile (20 hours, rt) instead of $\mathrm{Bu}_{4} \mathrm{~N}^{+} \mathrm{Cl}^{-}$, the initial formation of a different reaction product has been observed upon chromatographic analysis (TLC), which slowly underwent conversion into secondary β-chloro amine 247c upon standing at the room temperature (research group of H.-J. Ha). Although purification by column chromatography on silica gel failed, the initially formed reaction product could be identified as 2-amino-3-chloro-1-methoxypropane 248c by ${ }^{1}$ H NMR analysis. Obviously, the latter primary chloride comprises the kinetically controlled reaction product obtained through ring opening of aziridinium ion 187 at the unsubstituted position (route a, Scheme 73), which then rearranges into the more stable secondary chloride via a thermodynamic equilibrium. The same observation was made through careful analysis of the reaction outcome after treatment of aziridinium triflate 187 with 1.5 equiv of $\mathrm{Me}_{4} \mathrm{~N}^{+} \mathrm{Cl}^{-}$. It should be noted that these findings made by the research group of Prof. Ha comprised the first experimental proof for the occurrence of a thermodynamic equilibrium in the halide-induced ring opening of 2-alkyl-substituted aziridinium salts. ${ }^{126}$

From these data, it can be concluded that the ring opening of 2 -alkyl-substituted aziridinium salts 236 by chloride, bromide and iodide proceeds under thermodynamic control, where product stabilities dictate the outcome of the reaction. Thus, the initially formed kinetic primary halides 237 undergo rearrangement into the thermodynamically more stable secondary halides 238 (Scheme 74). Fluoride-
mediated ring opening, however, is under kinetic control, where the reaction outcome is only dictated by steric interactions.

Scheme 74

3.2.3 Evaluation of halide-induced ring opening of 2-substituted aziridinium salts by computational methods

In order to elucidate the factors causing the differences in regioselectivity, a thorough computational analysis on the halide-mediated ring opening of 187 has been performed in the Center for Molecular Modeling of Ghent University (Prof. V. Van Speybroeck and Prof. M. Waroquier). ${ }^{126}$
The potential energy surfaces (PES) for the halide-induced nucleophilic ring opening of 187 through pathways a (unhindered) and b (hindered) (see Scheme 74) for all three halides are illustrated in Figure 10.
The overall picture for halide-induced ring opening shows that the unhindered route (pathway a) is always kinetically preferred, however, the hindered route leads to the thermodynamic product. The eventual outcome depends on the softness and leaving group ability of the nucleophile (halide). If the nucleophile is a good leaving group (soft nucleophile, bromide), back reaction barriers are sufficiently low to allow equilibration and the thermodynamic product will prevail. If the nucleophile is a poor leaving group (hard nucleophile, fluoride), the back reaction is unlikely and the kinetic route will dictate the reaction outcome. ${ }^{126}$ Theoretical results are in perfect agreement with experimental findings, also pointing to the well-known trend in nucleophile strength and leaving group ability throughout the halide series.

Figure 10. Potential Energy Surfaces (PES) for the halide-induced nucleophilic ring opening of 187 via pathways a (unhindered) and b (hindered). (MPW1B95/6-31++G(d,p)/B3LYP/6-31++G(d,p)). Relative energies are given in $\mathrm{kJ} / \mathrm{mol}$.

F-Ts-a, F-Ts-b - transition states for fluoride attack via pathways a and b, respectively; F-P-a, F-P-b-products of fluoride attack via pathways a and b, respectively. CI-Ts-a, Cl-Ts-b - transition states for chloride attack via pathways a and b, respectively; CI-P-a, CI-P-b-products of chloride attack via pathways a and b, respectively. Br -$\mathrm{Ts}-\mathrm{a}, \mathrm{Br}-\mathrm{Ts}-\mathrm{b}$ - transition states for bromide attack via pathways a and b , respectively; $\mathrm{Br}-\mathrm{P}-\mathrm{a}, \mathrm{Br}-\mathrm{P}-\mathrm{b}-\mathrm{products}$ of bromide attack via pathways a and b , respectively

In summary, the ring opening of 2-alkyl-substituted aziridinium salts by fluoride, chloride, bromide and iodide was studied for the first time in a systematic way, pointing to an inherent difference in reactivity between fluoride on the one hand and chloride, bromide and iodide on the other. Both experimental and computational evidence was provided for the fact that product stabilities dictate the reaction outcome through thermodynamic control in the chloride, bromide and iodide case, involving rearrangement of the initially formed primary halides to the more stable secondary halides via a thermodynamic equilibrium. The ring opening of the same aziridinium salts by fluoride, however, was shown to be mediated by steric interactions (kinetic control), as the difference in barriers were mainly due to the difference in interaction energies.

3.3 Synthesis of 3-methoxyazetidines via an aziridine to azetidine rearrangement ${ }^{131}$

Imines carrying halogens in their side chain display a high intrinsic reactivity, and the selective introduction of halogens in imino substrates has led to building blocks with high synthetic potential, as shown amply for the useful class of α-haloimines. ${ }^{110 a, c, f,-i, 132}$ The halogen can be introduced in the aldehyde- (or ketone-) derived part, either before or after imination. ${ }^{110 f i, i 32}$ On the other hand,
examples are known regarding halogenated imines in which the halogen is present in the aminederived part. ${ }^{110 e, 133}$ The latter type of imines is usually accessed through imination of carbonyl compounds by means of halogenated (and thus reactive) amines, or via electrophilic addition of, e.g., bromine, across N-alkenyl imines. As a subclass, N-alkylidene- and N-arylmethylidene-(2,3dibromopropyl)amines comprise useful intermediates for the preparation of azaheterocyclic compounds such as aziridines and azetidines. ${ }^{22,255,92,115,134}$

Next to the diverse utility of aziridines, also their four-membered ring analogues, azetidines, represent an extraordinary class of strained compounds with diverse synthetic and biological applications. In addition to their synthetic relevance, ${ }^{10 a-d, f, g, 135}$ compounds containing an azetidine moiety have been shown to possess a wide range of biological activities. ${ }^{5,9 a, b, 136}$ In particular, 3-alkoxy- and 3aryloxyazetidines (Figure 11) have been described as for example G-protein coupled receptor agonists 249, ${ }^{137}$ inhibitors of stearoyl-coenzyme d-9 desaturase 250 and $251,{ }^{138}$ and antibacterial agents 252. ${ }^{139}$

249

251

250

252

Figure 11

In the previous chapters, the utility of 2-(bromomethyl)aziridines 16 as versatile building blocks to provide an entry into functionalized β-amino alcohols, morpholinones and wide range of functionalized amines was elaborated. The synthesis of these aziridines 16 was performed by the NaBH_{4}-mediated reduction of the corresponding N-alkylidene-(2,3-dibromopropyl)amines $253\left(\mathrm{R}^{1}=\mathrm{Ar}, \mathrm{R}^{2}=\mathrm{H}\right)$ in methanol under reflux (Scheme 75). On the other hand, in a preliminary study at the Department of Sustainable Organic Chemistry and Technology (UGent), it has been shown that structurally similar N -alkylidene-(2,3-dibromo-2-methylpropyl)amines 253 ($\mathrm{R}^{1}=\mathrm{iPr}, \mathrm{CHEt}_{2}, \mathrm{R}^{2}=\mathrm{Me}$) afforded 3methoxyazetidines 254 under the same reaction conditions (Scheme 75).

It is clear that this unexpected reactivity of imines $\mathbf{2 5 3}\left(\mathrm{R}^{1}=\mathrm{iPr}, \mathrm{CHEt}_{2}, \mathrm{R}^{2}=\mathrm{Me}\right)$ to form azetidines 254, raised a lot of questions regarding the mechanism of the latter reaction. For this purpose, in the next part, the kinetically controlled synthesis of 2-bromomethyl-2-methylaziridines, as potential intermediates in this reaction, and their conversion to 3 -methoxyazetidines will be discussed thoroughly.

Scheme 75

3.3.1 Evaluation of the synthesis of 3-methoxyazetidines from N -arylmethylidene-(2,3-dibromo-2-methylpropyl)amines

N-Arylmethylidene-(2,3-dibromo-2-methylpropyl)amines 257a,b were prepared by a procedure comprising condensation of 2,3-dibromo-2-methylpropylamine hydrobromide 256 with different benzaldehydes 212a,b in the presence of 1 molar equiv of triethylamine and magnesium sulfate in dichloromethane after reflux for 1 hour (Scheme 76). The synthesis of 2,3-dibromo-2methylpropylamine hydrobromide 256 commenced with the imination of benzaldehyde using 2methylallylamine hydrochloride 255 in dichloromethane in the presence of triethylamine and magnesium sulfate, followed by bromination of the alkene moiety in the resulting N-(2-methyl-2propenyl)imine in dichloromethane and subsequent treatment with 2 equiv of hydrogen bromide (48% solution in water) in dichloromethane (two-phase system). In this way, the desired 2,3-dibromo-2methylpropylamine $\mathbf{2 5 6}$ was obtained as the corresponding hydrobromide salt in 62% overall yield.

Scheme 76

Despite their reactive nature, imines 257a and 257b were judged to be pure enough to be used in further reactions without prior purification (purity $>95 \%$ based on ${ }^{1} \mathrm{H}$ NMR). As already mentioned, N -alkylidene- and N-arylmethylidene-(2,3-dibromopropyl)amines $253\left(\mathrm{R}^{1}=\mathrm{H}\right.$, Scheme 77) have been
used as intermediates for the straightforward preparation of 2-(bromomethyl)aziridines 16 via reductive 3-exo-tet-cyclization using sodium borohydride in methanol under reflux. ${ }^{22,25 b, 92,115}$ However, when the same methodology was applied to N-arylmethylidene-(2,3-dibromo-2-methylpropyl)amines 257 ($R^{1}=\mathrm{Me}$, Scheme 77) with the intention to prepare 2-bromomethyl-2-methylaziridines as a novel class of substrates, only 3-methoxy-3-methylazetidines 258a,b were obtained instead. Apparently, the presence of an additional methyl group ($\mathrm{R}^{2}=\mathrm{Me}$) in imines 257 has a profound influence on the reaction outcome. In a previous study, treatment of N-alkylidene-(2,2,3-tribromopropyl)amines with NaBH_{4} in methanol has been reported to furnish 3,3-dimethoxyazetidines via double methanolysis, ${ }^{134}$ although in that case the direct formation of azetidines was foreseen, as nucleophilic substitution at the dibrominated carbon atom toward aziridines is unlikely.

Scheme 77

From a mechanistic point of view, different pathways can be considered to explain the observed reactivity (Scheme 78). Reduction of imines 257 in methanol via hydride addition across the imino bond toward amines 259 can either be followed by a 3-exo-tet-cyclization affording 2-bromomethyl-2methylaziridines 260 (pathway a) or a 4-exo-tet-cyclization toward 3-bromoazetidines 261 (pathway b). Subsequently, both types of β-bromo amines (260 and 261) can be transformed into bicyclic aziridinium salts 262 through intramolecular displacement of bromide by the nucleophilic nitrogen atom, which stand in equilibrium with the nonbridged carbenium ions 263. Alternatively, the formation of carbenium species $\mathbf{2 6 3}$ can be the result of spontaneous expulsion of bromide in 3-bromoazetidines 261. Ring opening of intermediates 262 by methanol at the more hindered position or solvolysis of carbenium species 263 by methanol finally affords 3-methoxyazetidines 258.
On the basis of previous findings, ${ }^{140}$ the 3-exo-tet-cyclization of amines 259 toward 2-bromomethyl-2methylaziridines 260 (pathway a) will probably prevail (kinetic effect). The cyclization of 2-bromomethyl-2-methylaziridines 260 to strained intermediates 262 stands in contrast with the wellknown chemistry of 2-(bromomethyl)aziridines bearing no additional substituent at the 2-position, as in this case the intramolecular cyclization and further transformation has never been observed. ${ }^{22,24 c, 25 b, 92,93,114,115,141}$ The spontaneous cyclization of 2-bromomethyl-2-methylaziridines 260 under thermodynamic conditions can be rationalized considering the Thorpe-Ingold effect due to the gem-disubstitution at the aziridine carbon atom, resulting in a more favorable geometric positioning of the nucleophilic nitrogen atom with respect to the halogenated carbon atom. Alternatively, 2-bromomethyl-2-methylaziridines 260 can first be transformed into 3-bromoazetidines 261 via a concerted mechanism, which comprises simultaneous cleavage and formation of a carbon-nitrogen bond along with bromide migration. Furthermore, 3-bromoazetidines 261 can be converted into 3-
methoxyazetidines 258 either via bicyclic aziridinium salts 262 or via carbenium ions 263. The presence and formation of strained intermediates $\mathbf{2 6 2}$ is regarded as reasonable in view of various reports involving this type of intermediates. For example, the formation of a bicyclic aziridinium intermediate has been suggested in the literature based on the stereospecific transformation of 3-tosyloxy- and 3 -haloazetidines after hydrolysis and substitution reactions, and ring contraction to aziridinylmethyl derivatives. ${ }^{142}$ Moreover, it has been established that the substitution of 3chloroazetidines with different nucleophiles occurs via formation of an analogous bicyclic intermediate, which is then regioselectively opened at the C 3 position. ${ }^{101}$ In light of these reports, the ring opening of bicyclic aziridinium salts 262 by methanol is expected to proceed in a regiospecific way at the more hindered carbon atom, furnishing 3 -methoxyazetidines $\mathbf{2 5 8}$. However, the formation of intermediate carbenium species 263 and their subsequent solvolysis by methanol should not be neglected as an alternative pathway toward azetidines 258. It is worth mentioning that the isomerization of 2 (halomethyl)aziridines to 3 -haloazetidines has been observed in the literature in only three cases, ${ }^{143}$ and that isolated examples are known in which ring opening of strained bicyclic intermediates does not occur in a regiospecific way. ${ }^{142 c}$

Scheme 78

3.3.2 Synthesis and ring expansion of 2-bromomethyl-2-methylaziridines

In the next part, a stepwise experimental approach was applied in order to shed more light on the underlying reaction mechanism. At first, a kinetically controlled synthesis of 1-arylmethyl-2-bromomethyl-2-methylaziridines $\mathbf{2 6 0}$ was envisaged starting from α, β-dibromoaldimines 266 (Scheme 79). The synthesis of 2 -bromomethyl-2-methylaziridine 260a, deriving from the corresponding α, β dibromoaldimine has previously been performed, ${ }^{33}$ yet this aziridine 260a was present as a minor component in a mixture with the corresponding β, γ-dibromoamine. Optimization of the reaction conditions was required to furnish aziridines $\mathbf{2 6 0}$ as sole reaction products.

Bromination of 2-methylpropenal $\mathbf{2 6 4}$ using 1.05 equiv of bromine in dichloromethane afforded the corresponding 2,3-dibromopropanal 265 in nearly quantitative yield, which was subsequently
condensed with 1 equiv of different N-alkylamines by means of 0.6 equiv of titanium(IV) chloride and 3 equiv of triethylamine in diethyl ether, ${ }^{140}$ furnishing α, β-dibromoimines 266 in good yields (Scheme 79). The latter imines 266 were reduced by means of 2 molar equiv of sodium borohydride in methanol, resulting in 2-bromomethyl-2-methylaziridines 260 after 36 h at room temperature. Alternatively, imines 266 were reduced toward aziridines 260a-d utilizing two molar equiv of sodium cyanoborohydride in methanol in the presence of 1 equiv of acetic acid, however, without providing better yields. In addition, 2-bromomethyl-2-methylaziridines 260a,b were also obtained through reaction of N -arylmethylidene-(2,3-dibromo-2-methylpropyl)-amines $\mathbf{2 5 7}$ a and $\mathbf{2 5 7 b}$ with 2 molar equiv of NaBH_{4} in methanol after 36 h at room temperature. The formation of 2-bromomethyl-2methylaziridines 260 from both N-(2,3-dibromo-2-methylpropylidene)amines 266 and N -arylmethylidene-(2,3-dibromo-2-methylpropyl)amines 257 is rationalized by the intermediacy of the same amines 259 (Scheme 78) obtained upon reduction of imines 257 and 266 with NaBH_{4}. From these findings, it is clear that aziridines $\mathbf{2 6 0}$ are the kinetic products obtained through NaBH_{4}-mediated reduction of imines 257 and 266 in methanol under reflux (Scheme 79).

Scheme 79

Non-activated 2-bromomethyl-2-methylaziridines 260 represent a novel class of synthons suitable for further elaboration to a variety of nitrogen-containing compounds.
Under thermodynamic conditions, i.e., treatment of aziridines 260a-d with sodium borohydride in methanol under reflux for 48 h , 3-methoxy-3-methylazetidines 258a-d were formed in high yields as the sole reaction products (Scheme 79). This prolonged reaction time appeared to be necessary in order to drive the reaction to completion. Again, it should be remarked that applying the same reaction conditions to 2-(bromomethyl)aziridines 16 without a 2-methyl substituent is known to result in full recovery of the starting material. Heating of aziridines 260a in methanol under reflux for 24 h resulted
in a complex reaction mixture, pointing to the necessity of a basic environment for this aziridine to azetidine rearrangement process. Furthermore, treatment of aziridines $\mathbf{2 6 0 b}$ with 1.5 equiv of NaOMe in $\mathrm{MeOH}(2 \mathrm{M})$ furnished azetidine 258b, although a prolonged reaction time was required (72 instead of 48 h) (Scheme 80).

258a

260a,b

258b (30-80\%)

Scheme 80

In an attempt to investigate the reactivity of 2-bromomethyl-2-methylaziridines toward thiolates, aziridine 260d was treated with 1 equiv of sodium thioethylate (obtained from the reaction of ethanethiol with 1.2 equiv of sodium methoxide (2M), in methanol for 3.5 hours under reflux, affording 2-ethylthiomethyl-2-methylaziridine 267 as the sole product, without traces of the corresponding azetidine (Scheme 81). Apparently, in this case, a direct nucleophilic displacement of bromide by the highly reactive thiolate happens faster than intramolecular expulsion of bromide by the less nucleophilic nitrogen atom.

Scheme 81

3.3.3 Synthesis of chiral 2-bromomethyl-2-methylaziridines and a 3-methoxyazetidine

The above-described synthetic route was also applied for a straightforward synthesis of chiral 2-bromomethyl-2-methylaziridines. For this purpose, N-(2,3-dibromo-2-methylpropylidene)-1(S)phenylethylamine $\mathbf{2 6 9}$ was prepared by imination of 2,3 -dibromopropanal $\mathbf{2 6 5}$ with one equiv of (S)- $\alpha-$ methylbenzylamine 268 in the presence of titanium(IV) choride and triethylamine. Next, imine $\mathbf{6 7}$ was reduced utilizing two molar equiv of sodium borohydride in methanol, resulting in a mixture of two diastereomeric 2-bromomethyl-2-methylaziridines 270 and 271 ($\sim 1 / 1$) after 36 hours at room temperature (Scheme 82). After successful separation by column chromatography on silica gel, chiral
aziridines 270 and 271 were separately subjected to three molar equiv of NaBH_{4} under reflux in methanol for 36 hours. As expected, both reactions provided the same chiral azetidine 272, which can be explained considering the loss of chirality of the azetidine carbon atom due to C_{2}-symmetry (Scheme 82).

Scheme 82

Once again, it should be stressed that only three reports are available in the literature describing the ring expansion of aziridines toward azetidines, ${ }^{143}$ pointing to the peculiar nature of this type of rearrangements (see Scheme below). In these reports, it has been suggested that even some monosubstituted aziridines i.e., 2-(chloromethyl)- and 2-(tosyloxymethyl)aziridines $A\left(R^{1}=H, R^{2}=t B u\right.$, $X=O T s, C l)$ can undergo ring rearrangement to furnish the corresponding azetidines $\mathbf{B}(\mathrm{Y}=\mathrm{OH}, \mathrm{Cl}$, OEt), yet in low yields (4-38\%). ${ }^{143 \mathrm{~b}, \mathrm{c}}$ In another study, which is more consistent with the findings described in this PhD thesis, a facile ring expansion of alkyl 2-(bromomethyl)aziridine-2-carboxylates A ($\left.\mathrm{R}^{1}=\mathrm{COOR}^{3}, \mathrm{X}=\mathrm{Br}\right)$ to different 3-bromoazetidines $\mathbf{C}(45-50 \%)$ has been reported. ${ }^{143 \mathrm{a}}$

Deprotection of nitrogen in azetidine 272 by hydrogenation at $3-5$ bar using $\mathrm{Pd}(\mathrm{OH})_{2}(5-25 \mathrm{~mol} \%)$ in EtOAc resulted only in the recovery of the starting material even after 6 days. However, upon addition of 1 equiv of (Boc$)_{2} \mathrm{O}$, the Boc-protected azetidine $\mathbf{2 7 3}$ (95%) was obtained as the sole product after 3 days at 4 bar (Scheme 83).

272

273 (95\%)

Scheme 83

3.3.4 Ring expansion of 2-bromomethyl-2-methylaziridines to 3-bromo-3-methylazetidines

In order to evaluate the intrinsic reactivity of 2-bromomethyl-2-methylaziridines 260 toward ring expansion, aziridines $\mathbf{2 6 0 a}, \mathbf{b}, \mathbf{d}$ were subjected to heating in acetonitile under reflux for 15 hours, affording 3-bromoazetidines 261a-c in acceptable yields ($70-78 \%$, Scheme 84). It should be mentioned that the formation of 3-bromoazetidines 261 was not always straightforward, since this azetidine was often present in a mixture with the starting aziridine. Attempts to effect full conversion of aziridine 260b in the presence of AgBF_{4} or KBr resulted in more complex reaction outcomes (Table 9). Nevertheless, azetidines $\mathbf{2 6 1}$ were isolated in pure form by column chromatography on silica gel. The unprecedented transformation of aziridines $\mathbf{2 6 0}$ into azetidines $\mathbf{2 6 1}$ as the thermodynamic product further illustrates the relevance of this aziridine to azetidine ring expansion and can be explained by formation of bicyclic aziridinium salt $\mathbf{2 6 2}$ followed by attack of bromide at the more hindered carbon atom. Moreover, when 3-bromoazetidine 261b was treated with NaBH_{4} in methanol under reflux, 3-methoxy-3-methylazetidine 258b was formed via solvolysis of the same bicyclic intermediate 262 through ring opening (Scheme 84). ${ }^{10,142}$ The direct replacement of bromide by methanol in azetidine 261 via an $\mathrm{S}_{\mathrm{N}} 2$ protocol should be neglected as an alternative reaction pathway due to the steric hindrance at the tertiary carbon center, although $\mathrm{S}_{\mathrm{N}} 1$ reaction through solvolysis of a tertiary carbenium ion might involve a plausible alternative.

Table 9. Synthesis of 3-bromo-3-methylazetidines 260b

compound	conditions	result
$\mathbf{2 6 0 b}(R=M e)$	$0.1-1$ equiv $\mathrm{AgBF}_{4}, \Delta, 15 \mathrm{~h}$	complex mixture
260b $(R=\mathrm{Me})$	$0.2-1$ equiv $\mathrm{KBr}, \Delta, 15 \mathrm{~h}$	$\mathbf{2 6 1 b}+$ side products
260b $(R=\mathrm{Me})$	$\Delta, 15 \mathrm{~h}$	$\mathbf{2 6 0 b}+\mathbf{2 6 1 b}$
$\mathbf{2 6 0 b}(R=\mathrm{Me})$	$\Delta, 20 \mathrm{~h}$	complex mixture

It should be mentioned that experiments to prepare 3-bromoazetidine 261b, through $\mathrm{LiAlH}_{4^{-}}$or $\mathrm{NaBH}_{4^{-}}$ mediated reduction of N-(2,3-dibromo-2-methylpropylidene)amine 266b were unsuccessful and provided different reaction products such as 3-bromo-2-methyl-propylamine, 2-bromo-1,1-dimethylethylamine and/or 2-bromomethyl-2-methylaziridine 260b, and no traces of azetidine 261b were present.

In summary, a novel aziridine to azetidine rearrangement protocol was established involving the conversion of 2-bromomethyl-2-methylaziridines $\mathbf{2 6 0}$, obtained via reductive cyclization of halogenated imines 257 or 266, into 3-methoxy-3-methylazetidines 258 through ring opening of bicyclic intermediates 262 by methanol upon treatment with NaBH_{4} in methanol under reflux (Scheme 85). Furthermore, the ring expansion of aziridines $\mathbf{2 6 0}$ in acetonitrile under reflux provided a facile entry to novel 3-bromoazetidines 261, which can be considered as versatile synthons for further derivatization.

Scheme 85

The above-described experimental results were also supported by means of high-level molecular modeling calculations, performed at the Center for Molecular Modeling of Ghent University. In the next part, the most important results and conclusions of this study are highlighted.

3.3.5 Evaluation of the synthesis of 3-methoxyazetidines by computational methods

In Figure 12, free energy profiles and relative energies along the reaction coordinate for the cyclization of N-benzyl- N-(2,3-dibromo-2-methylpropyl)amine $259(R=P h)$ to aziridine 260 (pathway a, Scheme 78), or to azetidine 261 (pathway b, Scheme 78) was depicted. Free energies of activation show that pathway \mathbf{a} is the kinetically preferred route $\left(\Delta G^{\ddagger}=16.2 \mathrm{~kJ} / \mathrm{mol}\right.$ MPW1B95/6-31++G**), which is in accordance with experimental findings. Although the azetidinium ion (denoted as 261-H in Figure 12) is the thermodynamically preferred product, thermodynamic equilibration is not feasible as the aziridinium ion (denoted as $\mathbf{2 6 0} \mathbf{- H}$ in Figure 12) is immediately deprotonated toward the neutral, nonactivated aziridine 260 (which is thus not able to undergo ring opening by bromide at C 2). Therefore, aziridine $\mathbf{2 6 0}$ is the preferred product for the cyclization, as observed experimentally.

Figure 12. Gibbs free energy profiles for the conversion of N-benzyl- N-(2,3-dibromo-2-methylpropyl)amine $259(R=P h)$ via pathways \mathbf{a} and $\mathbf{b}\left(\mathrm{kJ} / \mathrm{mol}, \mathrm{MPW} 1 \mathrm{B95} / 6-31++\mathrm{G}^{* *}\right)$. B3LYP/6-31++G** geometries. Critical distances in \AA.

As previously described in Scheme 78, aziridine $\mathbf{2 6 0}$ is suggested to undergo further cyclization to yield the bicyclic aziridinium ion 262, a bicyclic intermediate that will undergo nucleophilic ring opening to form azetidine 258. However, as mentioned earlier, 2-(bromomethyl)aziridines 16 were not able to undergo ring expansion to form the corresponding azetidines (Scheme 86). The comparison of the cyclization pathways (transition state geometries and relative energies) for the formation of the bicyclic aziridinium ion $\mathbf{2 6 2}$ and $\mathbf{2 7 4}$ explains the preference of aziridine $\mathbf{2 6 0}$ to undergo ring rearrangement as compared to aziridine 16. As mentioned before, this difference can be rationalized considering the Thorpe-Ingold effect due to the gem-disubstitution at the aziridine carbon atom, resulting in a more favorable geometry for nucleophilic attack. ${ }^{144}$

Scheme 86

Replacement of the methyl group at the 2-position of aziridine $\mathbf{2 6 0}$ by a hydrogen atom increases the distance between the nucleophilic nitrogen atom and the halogenated carbon atom in aziridine 16, as shown in Figure 13, which in turn gives rise to a reduced reactivity.

11-trans

8-trans

11-cis

8-cis

Figure 13. Invertomers of 260 and 16

As suggested earlier, bicyclic aziridinium ion 262 can be in equilibrium with its non-bridged carbenium ion counterpart 263 (Scheme 87, Figure 14). The difference in relative stabilities of bicyclic aziridinium ion 262 and cyclic carbenium ion 263 shows that the former, where all atoms have full octet structure is far more stable than the latter.

Figure 14. Gibbs free energy profile for the 58 to 59 equilibration ($\mathrm{kJ} / \mathrm{mol}$, CPCM $(\varepsilon=32.6)$
MPW1B95/6-31++G**).

B3LYP/6-31++G** geometries. Critical distances in \AA. Atomic charges in italic.

Therefore, the reaction is expected to proceed through the bicyclic aziridinium ion 262, and the carbenium species $\mathbf{2 6 3}$ is less likely to be formed or will be short-lived. Next, the computational study also showed that the bicyclic intermediates $\mathbf{2 6 2}$ easily undergoes ring opening to form azetidines $\mathbf{2 5 8}$ and 261.

The transformation of $\mathbf{2 6 2}$ to azetidines $\mathbf{2 6 1}$ is energetically more favorable ($\Delta \Delta \mathrm{G}=38.9 \mathrm{~kJ} / \mathrm{mol}$ MPW1B95/ $6-31 \mathrm{ppG}^{* *}$), since the bromide anion - solvated or not - is a stronger nucleophile than neutral methanol. However, the reaction conditions highly favor the formation of 3-methoxyazetidines 258 since the concentration of methanol is much higher than that of bromide. In the absence of methanol, azetidine 261 should be the observed product, as was experimentally shown (Scheme 84).

Computational analysis of the possible reaction pathways proposed in Scheme $78(\mathrm{R}=\mathrm{Ph})$ has revealed that pathway a is the kinetically preferred route and aziridine $\mathbf{2 6 0}$ is the subsequent product for the cyclization, as observed experimentally. Unlike aziridines 16, which lack an additional substituent at the 2-position, aziridine $\mathbf{2 6 0}$ then undergoes further cyclization to yield the bicyclic aziridinium ion 262, a strained intermediate, which can undergo nucleophile-induced ring opening to form azetidines $\mathbf{2 5 8}$ or 261, depending on the relative abundance of the nucleophilic entity.

3.3.6 Ring opening of 2-bromomethyl-2-methylaziridines

As seen before, ring opening of aziridines provides an efficient and easy approach toward a variety of amines via regio- and stereoselective ring-opening reactions with nucleophiles. Therefore, in order to gain insights into the reactivity of 2-bromomethyl-2-methylaziridines toward ring opening with different halides (bromide and chloride), a number of reactions were performed.

First, treatment of 2-bromomethyl-2-methylaziridines 260b,c with 1 equiv of benzyl bromide in acetonitrile for 1-2.5 days under reflux afforded the corresponding amines 275a,b in high yields (86$89 \%$). The regioselectivity in this reaction was in accordance with the previously observed ring opening of 2 -substituted non-activated aziridines with benzyl bromide through ring opening at the substituted aziridine carbon. ${ }^{31 b, c, 35,92,93,94}$ Furthermore, the reaction of aziridine $\mathbf{2 6 0 c}$ with 1.2 equiv of $\mathrm{HBr}(33 \%$ in HOAc$)$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ for 1 day under reflux furnished the amine 276, again as a consequence of the ring opening of the aziridine moiety at the more substituted carbon atom in aziridinium ions 277 (Scheme 88). This result showed, however, the opposite regioselectivity with respect to the ring opening of 2-(cyanomethyl)aziridines with $\mathrm{HBr} .{ }^{312}$ The preference for the attack of bromide at the more substituted carbon atom of aziridines 260 in both cases (with HBr and benzyl bromide) could be explained considering a more pronounced development of a positive charge in the intermediate aziridinium ions $\mathbf{2 7 7}$ as compared to the corresponding monosubstituted aziridinium ions. This leads to an increased electrophilicity of the more substituted carbon atom of the aziridine moiety, which is then attacked by the approaching nucleophile. In fact, the ring opening of aziridines $\mathbf{2 6 0 b}, \mathrm{c}$ could also occur via a clean $\mathrm{S}_{\mathrm{N}} 1$ mechanism as well through neutralization of a tertiary carbenium ions 278.

Scheme 88

Next, the ring opening of aziridines 260b,c with 2 equiv of $\mathrm{HCl}(3 \mathrm{M})$ in water for 3 hours under reflux resulted in the formation of a single regioisomer. Close inspection of ${ }^{13} \mathrm{C}$ NMR data suggested the formation of amines $\mathbf{2 7 9}$ a,b instead of isomer 283 , which was surprising bearing in mind the opposite regioselectivity in case of ring opening with HBr . In order to confirm the proposed structure, the resulted mixture was subjected to a number of experiments.

Treatment of amine 279b with 1 equiv of TosCl and 3 equiv of $\mathrm{Et}_{3} \mathrm{~N}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ for 2 hours at room temperature gave a complex mixture for further elucidation. Furthermore, the reaction of amine 279b with 2.2 equiv of KCN in DMSO for 5 hours at $60-70^{\circ} \mathrm{C}$ provided a mixture of 2-chloromethyl-2methylaziridine 281 and 2-(cyanomethyl)aziridine 282 (281/282 = 1/3, Scheme 89). The presence of aziridine 282 could be explained either by a direct displacement of chloride by the cyanide ion in aziridine 281, or by a ring closure of the initially formed 4-chloro-3-(2-chlorophenylamino)-3methylbutyronitrile 280 (Scheme 89).

Scheme 89

Finally, amine 279b was subjected to 1.1 equiv of KOtBu in THF for 3 hours under reflux to furnish aziridine 281, confirmed by means of NMR and MS analysis (Scheme 90). Alternatively, aziridine 281 could also be formed by nucleophilic substitution of bromide by chloride in initially formed aziridine $\mathbf{2 6 0 c}$, which could derive from the other regioisomer 283. In order to exclude this possibility, aziridine 260c was treated with 1 equiv of KCI in THF for 3 hours under reflux, furnishing a complex mixture in which no signs of aziridine 281 were detected.

Scheme 90
From the above-described reactions, it can be deduced that the regioselectivity in the ring opening of 2-bromomethyl-2-methylaziridines 63 is not always straightforward and strongly dependent on both the type of activation (protonation or alkylation) and the type of nucleophile (chloride or bromide) used. Although these reactions are not the subject of further elaboration within this PhD thesis, it is clear that the factors governing the regioselectivity in these aziridinium ion ring openings should be inspected in more detail in order to use these transformations in a predictive way.

3.4 Solvent-controlled selective transformation of 2-bromomethyl-2methylaziridines to functionalized aziridines and azetidines ${ }^{145}$

In the course of this thesis, the synthetic relevance of 2-(bromomethyl)aziridines as starting synthons for the preparation of α-branched and β-branched amines, β-amino alcohols and morpholinones was described. Moreover, a high synthetic potential of 2-bromomethyl-2-methylaziridines with respect to their ring expansion to 3 -substituted azetidines was shown, making these substrates valuable for further elaboration. In particular, examples of the ring rearrangement of 2-bromomethyl-2methylaziridines to the corresponding 3-bromo-3-methylazetidines upon heating in acetonitrile were highlighted. The isomerization of 2-(halomethyl)aziridines to 3 -haloazetidines has been observed in the literature in only a few exceptional cases, ${ }^{140,146}$ pointing to the peculiar nature of this type of rearrangement.

The limited number of reports regarding aziridine to azetidine ring expansions ${ }^{143}$ and the mainly unexplored synthetic potential of 2-bromomethyl-2-methylaziridines creates opportunities to access different classes of 3 -functionalized azetidines in an efficient way. As already mentioned, 3 -substituted azetidines represent valuable class of compounds with diverse biological activities. ${ }^{5 a, 9}$

Therefore, in this part, the reactivity of 2-bromomethyl-2-methylaziridines toward different oxygen, sulfur and carbon nucleophiles in different solvent systems will be envisaged.

3.4.1 Synthesis of functionalized aziridines and azetidines

In light of above-described aziridine ring expansion, the intrinsic reactivity of 2-bromomethyl-2methylaziridines 63 to undergo a ring rearrangement was further investigated utilizing a variety of different nucleophiles such as thiocyanate, cyanide, phenoxide and acetate in order to assess the scope of this transformation with respect to carbon and heteroatom nucleophiles.

First, aziridines 260a,b,d were treated with 1 equiv of potassium thiocyanate (KSCN) in acetonitrile at reflux temperature for 2-4 hours, furnishing mixtures of 3-methyl-3-thiocyanatoazetidines 284a-c and 2-methyl-2-(thiocyanatomethyl)aziridines 285a-c, with azetidines 284a-c being the major products (ratio 284/285 = 50-67/50-33, Scheme 91). From these mixtures, azetidines 284a-c were isolated in pure form by preparative TLC chromatography on silica gel. Several experiments were performed to optimize the reaction conditions. Surprisingly, when aziridines $\mathbf{2 6 0 a}, \mathbf{b}, \mathbf{d}$ were treated with 1 equiv of KSCN in DMF at $60-70{ }^{\circ} \mathrm{C}$ for $15-20$ hours aziridines 285a-c were obtained as the sole reaction products, giving rise to a new and straightforward synthetic methodology for the selective preparation of either aziridines in DMF and azetidines in acetonitrile. Aziridines 285a-c were then successfully purified by means of column chromatography on silica gel in order to obtain analytically pure samples. It should be noted that aziridines 285a-c were susceptible to partial decomposition during the chromatographic purification process.

Scheme 91
Bearing in mind the different reactivity profile of aziridines $\mathbf{2 6 0}$ toward KSCN in different solvents (MeCN versus DMF), 2-bromomethyl-2-methylaziridines 260b,d were then treated with other nucleophiles such as cyanide, phenoxide and acetate both in MeCN and DMF as the solvent medium.

After treatment of aziridines 260b,d with 2 equiv of KCN in MeCN for 26 hours at reflux temperature, only 3 -cyano-3-methylazetidines 286a,b were obtained, whereas the same reaction in DMF gave exclusively 2 -cyanomethyl-2-methylaziridines $\mathbf{2 8 7 a , b}$ after 16 hours at $50-60^{\circ} \mathrm{C}$ (Scheme 92). As in the case of thiocyanate $(\mathrm{Nu}=\mathrm{SCN})$, the reaction outcome was shown to be dictated by the solvent used in these reactions, providing an efficient method for the synthesis of new functionalized aziridines and azetidines in a selective way. Azetidines 286a,b and aziridines 287a,b were purified by means of column chromatography on silica gel in order to provide analytically pure samples.

Scheme 92
The reaction of aziridines $\mathbf{2 6 0 b}$,d with 2.2 equiv of phenol and 5 equiv of $\mathrm{K}_{2} \mathrm{CO}_{3}$ in MeCN for 20-24 hours was not so straightforward and gave mixtures of 3 -methyl-3-phenoxyazetidines 288a,b and 2-methyl-2-(phenoxymethyl)aziridines 289a,b, in which azetidines 288a,b were present as the major isomers (ratio 288/289 = 57-67/43-33, Scheme 93). These compounds were separated and isolated by means of column chromatography $\left(\mathrm{SiO}_{2}\right)$. On the other hand, treatment of aziridines $\mathbf{2 6 0 b}, \mathbf{c}$ with 2.2 equiv of phenol and 5 equiv of $\mathrm{K}_{2} \mathrm{CO}_{3}$ in DMF for $14-17$ hours at $50^{\circ} \mathrm{C}$ provided 2-methyl-2(phenoxymethyl)aziridines 289a,b as the major products, and only small amounts ($\sim 10 \%$) of azetidine 288a,b were observed. However, the purification by silica gel column chromatography did not provide completely pure products due to co-elution of an unidentified side product in small quantities (10$15 \%)$.

Scheme 93

Finally, when aziridines 260b,d were subjected to 1.1 equiv of NaOAc in MeCN for 22-24 hours at reflux temperature, 3-acetoxy-3-methylazetidines 290a,b were produced without traces of the corresponding aziridines (Scheme 94). On the other hand, the reaction of the same aziridines 260b,d
with 1.1 equiv of NaOAc in DMF for 16-20 hours resulted in complex mixtures, in which the presence of 2-acetoxymethyl-2-methylaziridines 291a,b (30-40\%) as well as 3-acetoxy-3-methylazetidines 290a,b (10-20\%) was acknowledged by means of ${ }^{1} \mathrm{H}$ NMR analysis. It should be mentioned that the reaction with NaOAc provided a unique case of noteworthy amounts of azetidine formation in DMF as the solvent, while in all other cases (except in the case of a small amount of azetidine 288b) the formation of azetidines using DMF as the solvent was not observed.

Scheme 94

After several attempts to optimize the reaction conditions in different solvents (DMF and DMSO), at different temperatures (r.t. to $100^{\circ} \mathrm{C}$), and by using additional reagents (such as AgBF_{4}), aziridines 291a,b were finally obtained as the major compounds (ratio 290/291 = 20-25/80-75) after treatment of aziridines 260b,d with 1.1 equiv of NaOAc in DMSO at room temperature for $3-5$ days (Scheme 95, Table 10). Higher temperatures ($>30^{\circ} \mathrm{C}$) yielded complete conversion of the starting aziridines 260b,d only after a few hours, however at the expense of the selectivity of this reaction (ratio 290/291 = 40-50/60-50). From these mixtures, aziridines 291a,b could not be isolated in completely pure form by means of column chromatography on silica gel due to co-elution of azetidines 290a,b and small amounts of some side products (10-15\%).

Scheme 95

Table 10. Synthesis of 2-acetoxymethyl-2-methylaziridines 291a,b

compound	conditions	result
260b	1 equiv $\mathrm{AgBF}_{4}, \mathrm{DMF}, 60^{\circ} \mathrm{C}, 3 \mathrm{~h}$	complex mixture
260d	0.1 equiv $\mathrm{AgBF}_{4}, \mathrm{DMSO}$, r.t., 2 days	$\mathbf{2 9 0 b}+\mathbf{2 9 1 b}+$ side products
260d	1 equiv $\mathrm{AgNO}_{3}, \mathrm{DMSO}$, r.t., 31 h	complex mixture
260b	$\mathrm{DMSO}, 50^{\circ} \mathrm{C}, 1 \mathrm{~h}$	$\mathbf{2 9 0 / 2 9 1 = 4 0 / 6 0}$
260d	$\mathrm{DMSO}, 60^{\circ} \mathrm{C}, 2 \mathrm{~h}$	$\mathbf{2 9 0 / 2 9 1 = 5 0 / 5 0}$
260b	DMSO, r.t., 5 d	$\mathbf{2 9 0 / 2 9 1 = 2 0 / 8 0}$
260d	DMSO, r.t., 3 d	$\mathbf{2 9 0 / 2 9 1}=25 / 75$

It should be mentioned that the ratio aziridine/azetidine in all cases was determined by detailed spectroscopic analysis (${ }^{1} \mathrm{H}$ NMR) of the crude reaction mixtures. After purification, the structures of the pure azetidines and aziridines were then confirmed by means of different characterization methods (${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR, IR, MS).

In summary, the selective transformation of aziridines 260 toward either azetidines 292 in acetonitrile or aziridines 293 in dimethylformamide (Scheme 96) provides interesting opportunities for further elaboration to valuable azaheterocycles.

$\mathrm{Nu}=\mathrm{CN}, \mathrm{OAc}, \mathrm{OPh}, \mathrm{SCN}$

Scheme 96

3.4.2 Evaluation of the reaction mechanisms for the formation of aziridines and azetidines

From a mechanistic point of view, different pathways can be considered to explain the synthesis of functionalized aziridines and azetidines starting from 2-bromomethyl-2-methylaziridines 260. An overview of possible reactivity profiles of aziridines 260 in MeCN is presented in Scheme 97. Bearing in mind the previously described intermediacy of bicyclic aziridinium ions in the synthesis of 3-methoxy-3-methylazetidines starting from 2-bromomethyl-2-methylaziridines, the nucleophilic attack at the more hindered carbon atom of the strained intermediates 262 (path b, Scheme 97) is considered to be the most plausible route for the formation of 3 -substituted azetidines 292 in MeCN. This fact is also in accordance with the ring transformation of 2-bromomethyl-2-methylaziridines 260a-c in MeCN at reflux temperature (Scheme 84). It should be noted that in some cases the formation of aziridines (285a-c and 289a,b) was observed as well (33-50\%). The presence of these aziridines in MeCNmediated reactions can be attributed to nucleophilic attack at the less-hindered carbon atom of the
bicyclic aziridinium ions 262 (path a, Scheme 97), taking into account a few isolated literature examples on the ring opening of strained bicyclic intermediates. ${ }^{142 c}$ However, direct nucleophilic displacement of bromide in 2-bromomethyl-2-methylaziridines 260 by the nucleophile (path c, Scheme 97) will most probably prevail as the pathway toward substituted aziridines 293.

Scheme 97

The proposed mechanistic pathways for the selective formation of aziridines 293 in DMF are depicted in Scheme 98. Herein, two different routes can be considered, involving either direct $\mathrm{S}_{\mathrm{N}} 2$ displacement of bromide by the approaching nucleophile (path a, intermediate 294, Scheme 98) or via the formation of primary carbenium ions $295\left(S_{N} 1\right.$ mechanism, path b, Scheme 98), which might be stabilized by the nitrogen lone pair through anchimeric assistance. The formation of aziridines 293 via nucleophilic attack at the less-substituted carbon atom of bicyclic aziridinium intermediates 262 (path a, Scheme 97) in DMF should not be completely neglected, although the fact that aziridines $\mathbf{2 6 0}$ do not rearrange into azetidines 261 upon heating in DMF for several hours suggests that no bicyclic aziridinium species 262 are formed in these reactions.

Scheme 98

In order to shed more light on the remarkable preference for the formation of azetidines in MeCN and aziridines in DMF (Schemes 97 and 98), some computational analyses were performed at the Center of Molecular Modeling of Ghent University. ${ }^{145}$

In this study, a different close-packing (as a measure to indicate how free the nucleophiles are to attack and how willing the nucleophuge is to leave) of the nucleophiles (CN and SCN), the nucleophuge Br^{7} or even the bicyclic aziridinium intermediate $\mathbf{2 6 2}$ by DMF and MeCN was investigated by calculating and comparing their coordination solvation energies (CSE's).

The high-level molecular modeling calculations showed that the stronger coordination and better stabilization of CN^{-}by MeCN as compared to DMF can point to a lower reactivity, hence allowing the formation of azetidine $\mathbf{2 9 2}$ via formation of the bicyclic intermediate 262. Since CN^{-}is less stabilized in DMF, it will be more reactive and hence, nucleophilic substitution of aziridine $\mathbf{2 6 0}$ will lead to aziridine 293. The weaker coordination of SCN^{-}by MeCN , compared to CN^{-}, could explain why both the formation of the bicyclic intermediate $\mathbf{2 6 2}$ and nucleophilic substitution in the aziridine $\mathbf{2 6 0}$ are possible for SCN in MeCN. Finally, the stronger coordination of Br^{-}by MeCN can improve its leaving group capacity and thus help in the formation of the bicyclic intermediate 262.

3.4.3 Reactivity of 3-bromo-3-methylazetidines ${ }^{147}$

As discussed before (section 3.3.4), a peculiar, thermodynamically controlled rearrangement of 2-bromomethyl-2-methylaziridines in acetonitrile provided a general access to novel 3-bromo-3methylazetidines. The broad synthetic potential of 3 -haloazetidines has been demonstrated in the literature in terms of their nucleophilic substitution with different nucleophiles. ${ }^{148}$

However, the reactivity profile of 3-bromo-3-methylazetidines as useful synthons in organic chemistry has not been studied so far. Therefore, a number of reactions were performed in order to assess the propensity of azetidines $\mathbf{2 6 1}$ to undergo nucleophilic substitution at the 3-position to access a window of novel 3 -functionalized azetidines.

Thus, treatment of azetidine 261b with 2.2 equiv of phenol and 5 equiv of $\mathrm{K}_{2} \mathrm{CO}_{3}$ in MeCN for 4 hours under reflux afforded the corresponding 3-aryloxyazetidine 288b in high yield (Scheme 99). In a similar manner, the reaction of azetidine $\mathbf{2 6 1 b}$ with 5 equiv of KOH in $\mathrm{H}_{2} \mathrm{O} / \mathrm{CH}_{2} \mathrm{Cl}_{2}(9 / 1)$ mixture for 10 hours under reflux resulted in the formation of 3-hydroxyazetidine 296. The above-described findings support the suitability of 3 -bromo-3-methylazetidines as substrates for nucleophilic substitutions by oxygen-centered nucleophiles.

Scheme 99

In the literature, it is known that azetidine-3-carbonitriles can be prepared via nucleophilic substitution of 3-mesyloxy- and 3-tosyloxyazetidines. ${ }^{15,142 c, 149}$ In that respect, 3-bromo-3-methylazetidine 261b was also shown to be a good substrate for the synthesis of azetidine-3-carbonitrile 286b upon treatment with 1.5 equiv of KCN in acetonitrile under reflux for 15 hours (Scheme 100). Azetidine 286b was purified by means of column chromatography on silica gel to obtain an analytically pure sample. The hydrolysis of the cyano group in azetidine 286b can provide an access toward cyclic amino acids which can be considered as analogues of azetidine-2-carboxylic acid, a natural molecule isolated from Convallaria majalis (lily of the valley) and endowed with impressive biological activities such as the inhibition of the proliferation of Escherichia coli, alteration of the structure of collagen, keratin and hemoglobin in human proteins, and teratogenic effects and various malformations in animals. ${ }^{10 d}$

Therefore, a number of experiments were performed for the hydrolysis of the cyano group in 1-(4-methylbenzyl)azetidine-3-carbonitrile 286a (Table 11). The reaction of azetidine 286a with 4 equiv of $\mathrm{HCl}(3 \mathrm{M})$ in water for 2 days under reflux resulted in the recovery of the starting product. Heating the mixture under microwave conditions ($150^{\circ} \mathrm{C}, 1 \mathrm{~h}, 150 \mathrm{~W}$) gave a complex mixture, probably as the result of the ring opening of the azetidine moiety. The treatment of azetidine 286a in basic conditions using 5 equiv of $\mathrm{Ba}(\mathrm{OH})_{2}$ in dioxane for 15 hours at $100^{\circ} \mathrm{C}$, or microwave-induced irradiation $\left(150{ }^{\circ} \mathrm{C}\right.$, 1 h), again afforded only the starting material 286a.

Finally, treatment of azetidine 286a with 5 equiv of KOH in $\mathrm{EtOH} / \mathrm{H}_{2} \mathrm{O}(5 / 1)$ under microwave irradiation $\left(150{ }^{\circ} \mathrm{C}, 10 \mathrm{~min}, 150 \mathrm{~W}\right)$ and subsequent neutralization with a solution of hydrochloric acid (1 M) gave a mixture of amino acid 297 and the corresponding amide 298 (297/298 = 3/2, Scheme 100). Prolonging the reaction time in the latter case ($150^{\circ} \mathrm{C}, 20 \mathrm{~min}, 150 \mathrm{~W}$), gave amino acid 297 as the sole product (96%, based on NMR). Both the amide 298 and acid 297 could be isolated by means of a suitable extraction procedure with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$.

Interestingly, two isomeric structures (ratio 3/2) of azetidine 297 were observed upon NMR analysis $\left(\mathrm{CD}_{3} \mathrm{OD}\right)$, which can be attributed to the zwitterionic nature of this compound providing two diastereomeric counterparts. The purification of amino acid 297 on Dowex $\mathrm{H}^{+}\left(\mathrm{NH}_{4} \mathrm{OH}\right)$ afforded ammonium 3-methyl-1-(4-methylbenzyl)azetidine-3-carboxylate 299 as a single isomer in pure form (Scheme 100). These observations further support the synthetic utility of 3-bromo-3-methylazetidines
as substrates for nucleophilic displacements, i.e., toward the synthesis of versatile 3-methylazetidine3 -carbonitriles.

Scheme 100

Table 11. Hydrolysis of the cyano group in azetidine 286a

Conditions $\mathbf{2 8 6 a} \rightarrow \mathbf{2 9 7}$	result
4 equiv $\mathrm{HCl}(3 \mathrm{M}), \mathrm{H}_{2} \mathrm{O}, \Delta, 2$ days	no reaction
4 equiv $\mathrm{HCl}(3 \mathrm{M}), \mathrm{H}_{2} \mathrm{O}, \mathrm{MW}, 1 \mathrm{~h}, 150^{\circ} \mathrm{C}$	complex mixture
5 equiv $\mathrm{Ba}(\mathrm{OH})_{2}$, dioxane $, \mathrm{MW}, 1 \mathrm{~h}, 150^{\circ} \mathrm{C}+$ neutralization	no reaction
5 equiv $\mathrm{KOH}, \mathrm{EtOH} / \mathrm{H}_{2} \mathrm{O}(5 / 1), \mathrm{MW}, 10 \mathrm{~min}, 150^{\circ} \mathrm{C}+$ neutralization	$\mathbf{2 9 7}(55 \%)+\mathbf{2 9 8}(40 \%)$
5 equiv $\mathrm{KOH}, \mathrm{EtOH} / \mathrm{H}_{2} \mathrm{O}(5 / 1), \mathrm{MW}, 20 \mathrm{~min}, 150^{\circ} \mathrm{C}+$ neutralization	$\mathbf{2 9 7}(96 \%)$

In conclusion, 3-bromo-3-methylazetidines $\mathbf{2 6 1}$ were shown to easily undergo nucleophilic substitution with different nucleophiles, providing a convenient method for the preparation of new synthetically and biologically attractive 3 -substituted azetidines such as 3 -aryloxy-, 3 -hydroxy-, 3 -cyanoazetidines.

3.5 Synthesis and reactivity of 3-ethylideneazetidines

Next to the synthetic utility of 3-bromo-3-methylazetidines as building blocks for the preparation of 3functionalized azetidines, this type of azetidines can also be considered as synthons for the preparation of the corresponding 3 -methyleneazetidines as versatile synthetic intermediates. In preliminary research performed at the Department of Sustainable Organic Chemistry and Technology
(UGent), similar substrates, i.e., 1-t-butyl-3-methylene- and 1-t-butyl-3-ethylideneazetidine, were prepared starting from the corresponding 3-bromoazetidines, ${ }^{33}$ although the reactivity of these species has not been explored so far.

3-Alkylideneazetidines are strained cyclic allylamines, and only limited information on the reactivity of this class of compounds is available in the literature. ${ }^{150}$ In most cases, the 3 -alkylideneazetidine moiety was incorporated in the structure of more complex molecules, ${ }^{151}$ and no special attention has been devoted to the chemical nature of this strained system. In addition, the introduction of conformational constraint at the 3-position of azetidine rings is known to increase the potency of human and rat FAAH inhibitors ${ }^{152}$ and showed to be an important structural feature of some drugs. ${ }^{153}$ Two main approaches to produce 3-alkylideneazetidines comprise the Wittig olefination of the corresponding azetidin-3-ones ${ }^{150 \mathrm{~b}, \mathrm{~d}, \mathrm{e}}$ and dehalogenation of different 3-halo-3-(1haloalkyl)azetidines. ${ }^{150 d}$

In this section, a facile and efficient synthesis of novel 3-ethylideneazetidines is reported starting from the corresponding 3-bromo-3-ethylazetidines. Although the combination of two functionalities, i.e., an azetidine moiety and an exocyclic double bond, might result in unstable structures, this type of substrates are considered to be valuable for further elaboration. In this part of this PhD thesis, two aspects of the reactivity of 3 -ethylideneazetidines were separately studied, i.e., the activation and subsequent ring opening of the azetidine moiety on the one hand, and functionalization of the exocyclic double bond on the other.

The synthesis and reactivity of structurally similar 2-alkylideneazetidines (cyclic enamines) has been the subject of previous studies. ${ }^{10 k, 154}$ These azetidines were shown to be good substrates in various cycloaddition reactions ${ }^{154 d}$ and ring rearrangements. ${ }^{154 a, c, 155}$ However, it is expected that 3alkylideneazetidines bearing an less reactive and sterically hindered double bond exhibit a different reactivity profile as compared to 2 -alkylideneazetidines, which display the chemical properties of strained cyclic enamines. Therefore, in addition to the development of an efficient synthesis of 3ethylideneazetidines, the main objective of this study was to elaborate the hitherto unexplored reactivity of these azetidines, which, in spite of their poor intrinsic reactivity, can still be regarded as versatile synthetic intermediates in heterocyclic chemistry.

3.5.1 Synthesis of 3-ethylideneazetidines

Thus, 3-bromo-3-ethylazetidines 305 were selected as potentially eligible substrates for the preparation of novel 3-ethylideneazetidines, and these azetidines 305 were obtained following the procedure reported for the synthesis of 3-bromo-3-methylazetidines 261. In that respect, bromination of 2-ethylpropenal 300 using 1 equiv of bromine in dichloromethane afforded the corresponding 2,3dibromopropanal 301 in nearly quantitative yield, which was subsequently condensed with 1 equiv of different N-(arylmethyl)amines using 0.6 equiv of titanium(IV) chloride and 3 equiv of triethylamine in
diethyl ether, furnishing α, β-dibromoimines $\mathbf{3 0 2 a}, \mathbf{b}$ in good yields (Scheme 101). The latter imines $\mathbf{3 0 2}$ were reduced by means of 2 molar equiv of sodium borohydride in methanol, resulting in 2-bromomethyl-2-ethylaziridines $\mathbf{3 0 3 a}, \mathbf{b}$ as a mixture of invertomers after 1-2 days at room temperature. Subsequently, heating of aziridines 303 in acetonitrile under reflux for 15 hours afforded 3-bromo-3ethylazetidines $\mathbf{3 0 5 a}, \mathbf{b}$ in nearly quantitative yields. In analogy with the synthesis of 3-bromo-3methylazetidines 261, the aziridine 303 to azetidine $\mathbf{3 0 5}$ ring expansion can be explained by intermediacy of bicyclic aziridinium species 304, which were attacked at the more hindered carbon atom to provide azetidines $\mathbf{3 0 5}$. Furthermore, in analogy with the previously reported synthesis of 3-methoxy-3-methylazetidines 258 (Scheme 79), treatment of aziridine 303a with 3 molar equiv of NaBH_{4} in MeOH for 2 days under reflux furnished 3-ethyl-3-methoxyazetidine 306 as the single product through the formation of the same intermediates 304 (Scheme 101).

Scheme 101

The synthesis of 3 -ethylideneazetidines $\mathbf{3 0 7 a , b}$ starting from 3-bromo-3-ethylazetidines $\mathbf{3 0 5}$, however, was not as straightforward as initially anticipated, and several attempts were performed to optimize the reaction conditions. Treatment of azetidine 305a with different bases such as KOtBu, LDA and NaH in tetrahydrofuran at room temperature or under reflux gave no reaction after stirring for one day, resulting in the recovery of the substrate (Table 12).

Table 12. Treatment of 3-bromo-3-ethylazetidines 305a with different bases

Compound	Base	Reaction conditions	Conversion
$\mathbf{3 0 5 a}$	1 equiv KOtBu	THF, r.t., 15 h	No reaction
305a	1 equiv KOtBu	THF, $\Delta, 15 \mathrm{~h}$	No reaction
305a	1 equiv hDA	THF, $\Delta, 15 \mathrm{~h}$	No reaction
305a	1 equiv NaH	THF, $\Delta, 15 \mathrm{~h}$	No reaction
$\mathbf{3 0 5 a}$	5 equiv KOtBu	tBuOH, $\Delta, 20 \mathrm{~h}$	$\mathbf{3 0 8 / 3 0 7 a} / \mathbf{3 0 9}=3.4 / 1.5 / 1$

The reaction of 3-bromo-3-ethylazetidine 305a with 5 equiv of KOtBu in tBuOH (instead of THF) under reflux for 20 hours gave a mixture of 1-benzyl-3-ethylazetidin-3-ol 308, 1-benzyl-3-ethylideneazetidine 307a and 3-(tert-butoxy)-3-ethylazetidine 309 (308/307a/309 = 3.4/1.5/1) (Scheme 102). The presence of azetidines 309 and 308 could be explained by the nucleophilic attack of either tert-butoxide or hydroxide (due to the presence of adventitious water) at the bicyclic aziridinium intermediate 304. Finally, using 1.5 equiv of KOtBu in THF and heating under microwave irradiation for 10 min at $120^{\circ} \mathrm{C}$ selectively provided 3-ethylideneazetidines 307a,b in excellent yields (Scheme 102).

Scheme 102

3.5.2 Reactivity study of 3-ethylideneazetidines

A small number of literature reports reveal the potential of spiro azetidines ${ }^{156}$ to acquire a prominent place within the class of bioactive spiro heterocycles. In particular, the biological activity of spiro azetidines 310 containing a piperidine moiety as blockers of voltage-gated calcium channels has been reported. ${ }^{157}$ Furthermore, adamantane-based spiro azetidines 311 and 312 (Figure 15) have been evaluated as potential anti-influenza A drugs. ${ }^{158}$ In that respect, next to the reactivity of azetidines 307 toward ring opening, the preparation of new classes of spiro azaheterocycles starting from 3ethylideneazetidines 307 will be evaluated in the following section.

310

$311\left(\mathrm{R}=\mathrm{H}, \mathrm{CH}_{3}\right)$

312

Figure 15
As already mentioned, the study of the reactivity of 3-ethylideneazetidines was expected to be a quite challenging task bearing in mind the sterically hindered and poorly reactive double bond. This feature was evidenced by many attempts to directly functionalize the olefinic moiety and to provide an access toward different biologically interesting spiro compounds. For example, the treatment of 3 ethylideneazetidine 307a with 2 equiv of trichloroacetyl chloride, 4 equiv of $\mathrm{Zn}-\mathrm{Cu}$ couple and 2 equiv of 1,2 -dimethoxyethane in $\mathrm{Et}_{2} \mathrm{O}$ under nitrogen atmosphere ${ }^{159}$ resulted in the full recovery of the starting material after 3 days, and no traces of the corresponding cyclobutanone 313 were observed. The reaction with 3-6 equiv of diazomethane in $\mathrm{Et}_{2} \mathrm{O}$ at room temperature for several hours ${ }^{160}$ or the reaction with $1-3$ equiv of tosylazides $\mathbf{3 1 4 a , b}$ in THF at room temperature or under reflux ${ }^{115 b}$ for 5 days gave no conversion of the starting azetidine 307a. Azetidine 307a was also shown to be unreactive toward [N-(p-nitrophenylsulfonyl)imino]phenyliodinane ($\mathrm{Ph}=\mathrm{INNs}$) in the presence of a catalytic amount of $\mathrm{Cu}(\mathrm{OTf})_{2}$ in acetonitrile under reflux for 1 day (Scheme 103, Table 13). ${ }^{161}$

Scheme 103
Table 13. Attempts to functionalize 3-ethylideneazetidine 307a

Compound	Reaction conditions	Conversion
307a	2 equiv $\mathrm{Cl}_{3} \mathrm{CCOCl}, 4$ equiv $\mathrm{Zn}-\mathrm{Cu}$ couple	No reaction
307a	2 equiv 1,2 -dimethoxyethane, $\mathrm{N}_{2}, \mathrm{Et} 2 \mathrm{O}, \Delta, 3 \mathrm{~d}$	
307a	1 equiv $\mathbf{3 1 4 a}, \mathrm{THF}, \mathrm{r} . \mathrm{t}, 5 \mathrm{~d}$	No reaction
307a	1 equiv $\mathbf{3 1 4 a}, \mathrm{THF}, \Delta, 5 \mathrm{~d}$	No reaction
307a	1 equiv $\mathbf{3 1 4 b}, \mathrm{THF}, \Delta, 5 \mathrm{~d}$	No reaction
307a	3 equiv $\mathrm{CH}_{2} \mathrm{~N}_{2}, \mathrm{Et} 2 \mathrm{O}$, r.t., 2 d	No reaction

When azetidine 307a was added to a mixture of 1.3 equiv of benzyloxy- or methoxyacetyl chloride 315 and 3 equiv of $\mathrm{Et}_{3} \mathrm{~N}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and stirred at room temperature for 15 hours in an attempt to effect cycloaddition, the corresponding ring-opened amides 318a,b were formed instead (ratio 318a/318b = $1 / 1$, based on ${ }^{1} \mathrm{H}$ NMR) (Scheme 104). Apparently, the initial attack of the nucleophilic nitrogen to the in situ formed ketene 316 and subsequent ring opening of the azetidine moiety prevailed over the premised cycloaddition reaction due to the presence of a less reactive and sterically hindered double bond in azetidine 307a.

Scheme 104

In order to evaluate a possible nitrone-olefin [3+2]-cycloaddition, N-oxide 320 was synthesized by treatment of diethylamine 319 with 2.2 equiv of $\mathrm{H}_{2} \mathrm{O}_{2}\left(30 \%\right.$ in $\left.\mathrm{H}_{2} \mathrm{O}\right)$ and a catalytic amount (4-5 mol\%) of SeO_{2} in methanol at room temperature for 4 hours. Addition of 2 equiv of this nitrone 320 to a methanolic solution of azetidine 307a and heating under reflux for 2 days, however, did not result in the corresponding spiroisoxazolidines 321 and/or 322 (Scheme 105, Table 14). The failure to perform this reaction showed that azetidines 307 do not exhibit the same reactivity behaviour with respect to $[3+2]$-cycloadditions as their structurally related 3-methylidene- β-lactams. ${ }^{162}$

Scheme 105

In addition, also the Diels-Alder reaction of azetidines $\mathbf{3 0 7 a} \mathbf{a} \mathbf{b}$ with cyclopentadiene or with the highly reactive Danishefsky's diene ((E)-1-methoxy-3-trimethylsilyloxy-1,3-butadiene) resulted in full recovery of the substrate (Table 14).

Table 14. Reactivity of 3-ethylideneazetidine $307 \mathbf{a}, \mathbf{b}$ toward $[2+2]$ - and [3+2]- cycloadditions

Compound	Reaction conditions	Conversion
307a	1 equiv 320, MeOH, r.t., 2d	No reaction
307a	1 equiv 320, $\mathrm{MeOH}, \Delta, 2 \mathrm{~d}$	No reaction
307a	3 equiv cyclopentadiene, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C}$, 5 h	No reaction
307b	3 equiv cyclopentadiene, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, r.t., 5 d	No reaction
307b	3 equiv Danishefsky's diene ((E)-1-methoxy-3-trimethylsilyloxy-1,3-butadiene), $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, r.t., 2 d	No reaction

Furthermore, the electron-poor double bond of azetidine 307 was, as expected, not able to react with soft electrophiles such as benzaldehyde or methyl vinyl ketone. It is clear that the peculiar nature of the alkenyl functionality in 3-ethylideneazetidines represents a limiting factor to functionalize these azetidines through standard types of double bond transformations.

However, in spite of the limited reactivity of 3-ethylideneazetidines 307, many additional efforts were made to prove this class of compounds interesting for further elaboration. For this purpose, the reactivity profile of azetidines 307a,b was assessed from two approaches, i.e., evaluation of the reactivity of the strained azetidine moiety toward ring opening and evaluation of electrophilic additions to the exocyclic double bond.

Bearing in mind the presence of an electron-donating substituent at the azetidine nitrogen atom, these species had to be activated in order to effect ring opening. Acetylation of nitrogen with 1.5 equiv of acetyl chloride in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and subsequent ring opening of the azetidine moiety by the expelled chloride ion afforded a mixture of E and Z ring-opened amines $323 a, b(E / Z=1 / 1)$ after 15 hours under reflux (Scheme 106). In a similar way, the reaction of 307 a with 1 equiv benzyl bromide in acetonitrile gave a mixture of the corresponding unsaturated amines $\mathbf{3 2 4 a}, \mathbf{b}$ after 15 hours under reflux. These reactions
were straightforward and resulted in a complete conversion of the starting material, although inseparable mixtures of amines were obtained.

Scheme 106

Although it was expected that these reactions would give rise to mixtures of geometrical isomers, the presence of different chemical shift in NMR could also be explained by hindered rotation around the amide bond in acetamides 318 and 323 . Therefore, the mixture of amines $323 \mathrm{a}, \mathrm{b}$ was subjected to the hydrogenation reaction with $6 \mathrm{~mol} \%$ of Pd / C at 1 bar for 1.5 days, yet only a complex mixture was obtained, without the presence of the corresponding amine 325 (Scheme 107).

Scheme 107
In addition, the treatment of azetidine $\mathbf{3 0 7 a}, \mathbf{b}$ with 1.5 equiv of methyl chloroformate in acetonitrile for 15 hours under reflux resulted in a mixture of amines 326a,b (Scheme 108). Upon heating of this mixture under microwave irradiation ($140^{\circ} \mathrm{C}, 30 \mathrm{~min}, 150 \mathrm{~W}$) in DMF, a mixture of the corresponding cyclic carbamates $\mathbf{3 2 7 a}$,b was obtained through 6 -exo-tet cyclization. ${ }^{163}$ These cyclic carbamates can be regarded as interesting compounds with a variety of applications, most notably as precursors for 1,3 -amino alcohols, ${ }^{164}$ as chiral auxiliaries, ${ }^{165}$ and as the core substructure in a number of biologically active compounds. ${ }^{166}$ The subsequent hydrogenation of the double bond in $\mathbf{3 2 7 a} \mathbf{a} \mathbf{b}\left(\mathrm{H}_{2}, 1\right.$ bar, 20 min1.5 d) gave a complex mixture in which no traces of 1,3-oxazinan-2-one 328 were detected (Scheme 108).

DMF, MW
$140^{\circ} \mathrm{C}, 30 \mathrm{~min}$
150 W

Scheme 108

It should be mentioned that the hydrogenation of azetidine $\mathbf{3 0 7 b}$ in ethyl acetate in the presence of 6 $\mathrm{mol} \%$ of $\mathrm{Pd} / \mathrm{C}(10 \% \mathrm{wt})$ at 5 bar for 3 days at room temperature afforded 1-benzyl-3-ethylazetidine 329 as the single product (Scheme 109).

Scheme 109

In the second part of this work, the reactivity of the double bond in azetidines 307 toward different electrophilic reagents was investigated. At first, azetidine 307 a was subjected to 1 equiv of Br_{2} in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ for 5 min to 1 hour, yet only complex mixtures were obtained (Table 15). The attempts to prepare halohydrines 330 by treatment of azetidine 307a with 1 equiv of NBS in a water/THF (1/1) solution for 10 min to 2 days proceeded sluggishly and gave mixtures of multiple products, in which halohydrine 330 and 3-hydroxy-3-(hydroxymethyl)azetidine 331 could be detected based on LC-MS and ${ }^{1}$ H NMR analysis (Scheme 110, Table 15). The outcome of this reaction was shown to be hardly controllable and also dependent on the purity of NBS.

Scheme 110

Table 15. Reactions of 3-ethylideneazetidine 307a with Br_{2} and NBS

Compound	Reaction conditions	Conversion
$\mathbf{3 0 7 a}$	1 equiv $\mathrm{Br}_{2}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$, r.t., 1 h	Complex mixture
307 a	1 equiv $\mathrm{Br}_{2}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$, r.t., 10 min	Complex mixture
307a	1 equiv NBS, $\mathrm{H}_{2} \mathrm{O} / \mathrm{THF}(1 / 1)$, r.t., 2 d	No reaction
307 a	1 equiv NBS, $\mathrm{H}_{2} \mathrm{O} / \mathrm{THF}(1 / 1), \Delta, 2 \mathrm{~d}$	Complex mixture

On the other hand, selective access to the functionalized dibrominated azetidine 332 was achieved by the reaction of azetidine 307a with 2 equiv of NBS in CHCl_{3} or $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ under reflux for 15 hours to 1 day. Apparently, the small amount of bromine - released from NBS - was able to react with azetidine 307a to afford 3-bromo-3-(1-bromoethyl)azetidine 332, however, in variable yields dependent on the purity of NBS (Scheme 111).

Scheme 111

After the unsuccessful attempt to prepare halohydrines as precursors of the corresponding spiranic epoxy azetidines, a direct epoxidation of the double bond in azetidine 307a with mCPBA in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ could provide an alternative route toward these strained spirocyclic compounds. For this purpose, two reaction conditions were initially investigated (Table 16). Upon treatment of azetidine 307a with 1 or 2 equiv of $m C P B A$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at room temperature or under reflux, the starting azetidine or complex mixtures were obtained. This can be explained by the propensity of the nucleophilic nitrogen to react with $m C P B A$ to form the corresponding N-oxides, which then underwent further reactions.

Table 16. Reaction of azetidine 307a with mCPBA

Compound	Reaction conditions	Conversion
307a	1 equiv $m C P B A, \mathrm{CH}_{2} \mathrm{Cl}_{2}$, r.t., 1 d	No reaction
307a	1 equiv $m \mathrm{CPBA}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, \Delta, 1 \mathrm{~d}$	Complex mixture

In order to prevent the formation of N -oxides, the azetidine nitrogen atom was protonated by introducing gaseous HCl to the solution of azetidine 307a in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ for 10 min , after which 1 equiv of $m C P B A$ was added. Instead of the expected spirocyclic azetidinyl epoxide, 3-chloro-3-(1chloroethyl)azetidine 333 was obtained instead (Scheme 112), probably as the result of the electrophilic addition of in situ formed $\mathrm{Cl}_{2}{ }^{167}$ to the double bond.

Scheme 112

The vicinally dihalogenated azetidines 332 and 333 were subsequently subjected to nucleophilic substitution reactions with benzylamine and KCN in acetonitrile under reflux or applying microwave irradiation and in the presence of a catalytic amount of silver salts $\left(\mathrm{Ag}_{2} \mathrm{CO}_{3}\right)$ or Nal. Unfortunately, these reactions resulted in the recovery of the starting materials or gave complex mixtures as a result of decomposition (Table 17).

Table 17. Reaction of azetidines 332 and 333

Compound	Reaction conditions	Conversion
$\mathbf{3 3 2}$	1 equiv $\mathrm{BnNH}_{2}, 0.5$ equiv $\mathrm{NaI}, \mathrm{MeCN}, \Delta, 3 \mathrm{~d}$	No reaction
332	1 equiv $\mathrm{BnNH}_{2}, 1$ equiv $\mathrm{Ag}_{2} \mathrm{CO}_{3}, \mathrm{MeCN}, \Delta, 3 \mathrm{~d}$	Complex mixture
333	2 equiv $\mathrm{KCN}, 0.1$ equiv $\mathrm{Ag}_{2} \mathrm{CO}_{3}, \mathrm{MeCN}, \Delta, 15 \mathrm{~h}$	No reaction
333	2 equiv $\mathrm{KCN}, 1$ equiv $\mathrm{Ag}_{2} \mathrm{CO}_{3}, \mathrm{MeCN}, \mathrm{MW}, 150^{\circ} \mathrm{C}, 15 \mathrm{~min}$	Complex mixture

In a final attempt, the azetidine nitrogen atom was protected by addition of 1 equiv of $p \mathrm{TsOH}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. Subsequent addition of 1.5 equiv of m CPBA and heating under reflux for 15 hours afforded very unstable azetidine-3-ols 334a,b. However, immediate treatment of these azetidines 334 with 1 equiv of NaH in THF for 15 hours at room temperature provided the target 1-oxa-5azaspiro[2,3]hexanes 335a,b in very high yields (Scheme 113).

Scheme 113

These novel strained spirocyclic systems showed a considerable stability as they were purified by means of column chromatography on basic $\mathrm{Al}_{2} \mathrm{O}_{3}$ to provide analytically pure samples. As expected, the purification on slightly acidic silica gel column resulted in decomposition. This reaction can be considered as a very useful and efficient synthetic approach toward interesting new aza-spirocyclic building blocks. The synthesis of the spiranic azetidinyl epoxide moiety has received only limited attention in the literature. ${ }^{168}$ These compounds were shown to be very useful intermediates for the preparation of different biologically active molecules. ${ }^{169}$ In general, the synthesis and reactivity of different azaspirocyclic scaffolds represent a challenging task for organic chemists and has lately been the subject of significant interest. ${ }^{168 a, 170}$

Bearing in mind that a number of azaspirocyles containing an azetidine moiety can be considered as structural surrogates of commonly employed saturated heterocycles with beneficial inherent structural features, further efforts were devoted to expand the family of novel spiroazetidine building blocks.

Attempts to perform a cyclopropanation of the double bond in azetidine 307a under Simmons-Smith conditions (4 equiv $\mathrm{Et}_{2} \mathrm{Zn}$, 2 equiv $\mathrm{CH}_{2} \mathrm{I}_{2}$, 2 equiv TFA) ${ }^{171}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ gave complex mixtures (Table 18).

Table 18. Cyclopropanation of azetidines 307a under the Simmons-Smith conditions

Compound	Reaction conditions	Conversion
$\mathbf{3 0 7 a}$	4 equiv $\mathrm{Et}_{2} \mathrm{Zn}, 2$ equiv $\mathrm{CH}_{2} \mathrm{l}_{2}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$, r.t., 3.5 h	Complex mixture
307 a	4 equiv $\mathrm{Et}_{2} \mathrm{Zn}, 2$ equiv $\mathrm{CH}_{2} \mathrm{I}_{2}, 2$ equiv $\mathrm{TFA}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$, r.t., 3.5 h	Complex mixture

In analogy with the epoxidation of azetidine 307a, the direct aziridination of the double bond could provide an access to novel spirocyclic 1,5-diazaspiro[2.3]hexanes 336 (Scheme 114). Treatment of azetidine 307a with 1 equiv of NBS and 1-2 equiv of Chloramine-T, a nitrene precursor, ${ }^{172}$ in acetonitrile under reflux for 1-2 days afforded only small amounts of 3-bromo-3-(1bromoethyl)azetidine 332, and no traces of the corresponding spiro compounds were detected. A complex mixture was also obtained with 0.1 equiv of phenyltrimethylammonium tribromide (PTAB) and 1.1 equiv of Chloramine-T in acetonitrile ${ }^{173}$ at room temperature for 1 day (Table 19).

Scheme 114

Table 19. Attempted aziridination of the double bond in azetidine 307a with Chloramine-T

Compound	Reaction conditions	Conversion
307a	1 equiv NBS, 1 equiv Chloramine-T, MeCN, r.t., 5 h	No reaction
307a	1 equiv NBS, 1 equiv Chloramine-T, MeCN, r.t., 2 d	No reaction
307a	1 equiv NBS, 2 equiv Chloramine-T, MeCN, $\Delta, 2 \mathrm{~d}$	Azetidine $332(32 \%)$
$\mathbf{3 0 7 a}$	0.1 equiv PTAB, 1.1 equiv Chloramine-T, MeCN, r.t., 2 d	Complex mixture

An alternative route to the synthesis of the spiranyl aziridinyl azetidine core structure could comprise the ring opening of epoxides 335b with an appropriate amine (iPrNH_{2}) in the presence of $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}$, followed by subsequent ring closure of the resulting amino alcohols under the Mitsunobu conditions. Although the epoxide ring opening was shown to be successful, the drawback of this procedure for the preparation of 1,5-diazaspiro[2.3]hexane 338 involved a very low stability of thus obtained β-amino alcohol 337, which underwent immediate decomposition (Scheme 115, Table 20).

Scheme 115

Table 20. Attempts to synthesize β-amino alcohol 337 from epoxide 335b

Compound	Reaction conditions	Conversion
$\mathbf{3 3 5 b}$	1 equiv $\mathrm{BnNH}_{2}, 0.1$ equiv $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}, \mathrm{THF}$, r.t., 1 d	Complex mixture
$\mathbf{3 3 5 b}$	3 equiv $\mathrm{iPrNH}_{2}, 1$ equiv $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}, \mathrm{THF}$, r.t., 1 d	No reaction
$\mathbf{3 3 5 b}$	5 equiv $\mathrm{iPrNH}_{2}, 1$ equiv $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}, \mathrm{THF}, \Delta, 1 \mathrm{~d}$	$\mathbf{3 3 7}(70 \%)$
$\mathbf{3 3 5 b}$	1.5 equiv $\mathrm{nPrNH}, 1$ equiv $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}, \mathrm{THF}, \Delta, 1 \mathrm{~d}$	Complex mixture

On the other hand, the ring opening of epoxide 335b with 3 equiv of NaN_{3} and 2 equiv of $\mathrm{NH}_{4} \mathrm{Cl}$ in a acetone/water (8/1) mixture afforded the corresponding azide 339 after 15 hours under reflux (Scheme 116). However, the subsequent ring closure of 339 with 1.2 equiv of $\mathrm{Ph}_{3} \mathrm{P}$ in THF under reflux gave a complex mixture after 17 hours.

Scheme 116

In a final part, dihydroxylation of the double bond in azetidines 307a,b with 1.1 equiv of N -methylmorpholine- N -oxide (NMO) and a catalytic amount of OsO_{4} (5-6 mol\%) in acetone/water (4/1) for 4 hours at room temperature, followed by an aqueous work up, furnished dihydroxyazetidines 340a,b in good yields (Scheme 117). These new azetidines were purified by means of column chromatography on silica gel $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}=9 / 1\right)$ to provide analytically pure samples. Unfortunately, glycol cleavage in azetidine 340a with 1-1.5 equiv of NaIO_{4} in $\mathrm{THF} / \mathrm{H}_{2} \mathrm{O}(3 / 1)$ in order to prepare azetidine-3-one 341 resulted in complex reaction mixtures, and ozonolysis of the double bond in 3-etylideneazetidine 307a did not provide a suitable alternative in that respect (Table 21).

Scheme 117

Table 21. Attempts to synthesize azetidine-3-one 341 from diol 340a or azetidine 307a

Compound	Reaction conditions	Conversion
$\mathbf{3 4 0 a}$	1 equiv $\mathrm{NaIO}_{4}, \mathrm{THF} / \mathrm{H}_{2} \mathrm{O}(3 / 1)$, r.t., 1h	Complex mixture
$\mathbf{3 4 0 a}$	1 equiv $\mathrm{NaIO}_{4}, \mathrm{THF} / \mathrm{H}_{2} \mathrm{O}(3 / 1)$, r.t., 1h	Complex mixture
307a	$\mathrm{O}_{3}, \mathrm{CH}_{2} \mathrm{Cl}_{2},-78{ }^{\circ} \mathrm{C}, 10$ min, then 5 equiv $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{~S}$	Complex mixture
$\mathbf{3 0 7 a}$	$\mathrm{O}_{3}, \mathrm{CH}_{2} \mathrm{Cl}_{2},-78^{\circ} \mathrm{C}, 10$ min, then 5 equiv $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{~S}$	Complex mixture

In order to provide an entry to a different class of azaspirocyclic building blocks, azetidines 340b were treated with 1.1 equiv of $p \mathrm{TsOH}$ and 5 equiv of CuSO_{4} in acetone to successfully afford the corresponding novel 5,7-dioxa-2-azaspiro[3.4]octane 342 after stirring for 1 day under reflux (Scheme 118). This spirocyclic core structure was found to be present in a number of spiro lactames, suitable for the further chemical transformations. ${ }^{174}$

Scheme 118

Furthermore, treatment of azetidines $\mathbf{3 4 0 b}$ with 1 equiv of NaH and 3 equiv of $\mathrm{Et}_{3} \mathrm{~N}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ for 5 min at $0{ }^{\circ} \mathrm{C}$ followed by addition of 1 equiv of oxalyl chloride furnished new 5,7-dioxa-2-azaspiro[3,4]octane-6-one 345 after 15 hours at room temperature (Scheme 119). The formation of these cyclic carbonate could be explained by the initial formation of intermediate 343, which was then rearranged to azetidine 345 after expulsion of carbon monoxide and chloride. ${ }^{175}$

Scheme 119

It can be concluded that, in spite of a significant number of unsuccessful reactions, 3ethylideneazetidines can still be regarded as versatile synthons to access a window of novel ringopened amines, cyclic carbamates, functionalized azetidines and different spirocyclic building blocks.

4 Perspectives

In this PhD thesis, the efficient synthesis of 2-bromomethyl-2-methylaziridines as versatile building blocks was reported starting from 2-methylpropenal. In light of the broad synthetic potential of these synthons, the reactivity study of structurally related 2 -(bromomethyl)aziridines 347 bearing an additional methyl group could provide a fruitful research area.

In analogy with the preparation of 2-bromomethyl-2-methylaziridines, the synthesis of 2-(1-bromoethyl)-2-methylaziridines 347 starting from the corresponding 2-methylbut-2-enal 346 could be performed. The treatment of these aziridines with an appropriate base (KOtBu, LDA..) could provide an access to 2 -vinylaziridines 348, being suitable substrates for further conversions through interception of highly reactive strained intermediates obtained by means of double bond functionalization. Given the increasing number of reports concerning the reactivity of 2vinylaziridines, ${ }^{43,176}$ these substrates are regarded as promising species for further elaboration. In this way, a novel strategy toward the synthesis of other relevant target compounds such as a-branched and β-branched amines 349 and 350 , functionalized azetidines 351 , cyclobutanes 352 , pyrrolidines 353, recognized as potential fungicides, antidepressants and β-blockers, could be devised (Scheme 120).

Scheme 120

As mentioned before, 3-substituted azetidines represent versatile building blocks in heterocyclic chemistry with diverse synthetic and biological properties. Next to a high number of biologically
relevant 3 -functionalized azetidines, ${ }^{148}$ the introduction of an azetidine moiety into the structure of a molecule can also result in an increased biological activity. For example, different 3 -sulfenylazetidine and 3 -aminoazetidine derivatives have been introduced into fluoroquinolone carboxylic acids to afford the corresponding fluoroquinolone antibiotics with improved biological properties. ${ }^{177}$ In addition, the importance of 3 -sulfenylazetidines can be also seen in the development of new carbapenem antibiotics, where the synthesis of 3 -mercapto-1-(1,3-thiazolin-2-yl)azetidine, starting from benzylamine and epichlorohydrin, has been reported. ${ }^{178}$

In order to provide an efficient access to a novel class of 3-sulfenylazetidines 357, deprotection of the benzyl group in 3-bromoazetidines $\mathbf{2 6 1}$ or $\mathbf{3 0 5}$, nucleophilic replacement of bromide in azetidine 354 with different S-centered nucleophiles, and subsequent condensation of azetidines 355 with 2 -methylthio-2-thiazoline 356 could be performed. In this way, 3 -sulfenyl-1-(1,3-thiazolin-2-yl)azetidines 357 could be obtained as analogs of carbapenem antibiotics (Scheme 121)

Scheme 121

Furthermore, 3 -ethylideneazetidines 307 might be suitable synthons for the preparation of the corresponding 3 -vinylazetidines 358 by treatment with strong base (LDA, Schlosser's base). Further functionalization of azetidine 358 could afford 3-(1,2-dibromoethyl)azetidines 359 upon reaction with Br_{2}, 3-(oxiran-2-yl)azetidines $\mathbf{3 6 0}$ in the reaction with m CPBA and azetidine-3-carboxaldehydes $\mathbf{3 6 1}$ via oxidation of the double bond (Scheme 122). These substrates could then be used to access a range of novel synthetically and biologically interesting molecules pertaining to the oxetane, tetrahydrofuran and pyran family.

Scheme 122

5 Experimental part

5.1 General methods

Diethyl ether, tetrahydrofuran and toluene were distilled from sodium or sodium benzophenone ketyl, while dichloromethane was distilled from calcium hydride prior to use. Commercially available solvents and reagents were purchased from Sigma-Aldrich or Acros and used as such without further purification unless stated otherwise.

The purification of reaction mixtures was performed by column chromatography using a glass column filled with silica gel (Fluka, pore size $60 \AA$, 70-230 mesh, particle size 63-200 $\mu \mathrm{m}$). Solvent systems were determined via initial TLC analysis on glass plates, coated with silica gel (Merck, Kieselgel 60F254, precoated $250 \mu \mathrm{~m}$) using UV light or coloring with a potassium permanganate solution as detection methods. Preparative TLC analyses were performed on preparative TLC plates (Analtech, precoated $2000 \mu \mathrm{~m}$). The compounds to be separated are applied as long streaks and after development recovered by scraping the adsorbent layers from the plate in the region of interest and eluting the separated material from the adsorbent using a $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}(9 / 1)$ solvent mixture.

High resolution ${ }^{1} \mathrm{H}$ NMR (300 MHz) and ${ }^{13} \mathrm{C}$ NMR (75 MHz) were recorded on a Jeol Eclipse FT 300 NMR spectrometer at room temperature unless stated otherwise. Peak assignments were made with the aid of DEPT, HSQC and/or 2D-COSY experiments. The compounds were diluted in a deuterated solvent, while tetramethylsilane (TMS) was used as an internal standard.

IR spectra were recorded on a Perkin-Elemer Spectrum BX FT-IR spectrometer. All compounds were analysed in neat form with an ATR (Attenuated Total Reflectance) accessory.

Low resolution mass spectra were recorded via direct injection on an Agilent 1100 series LC-MSD type SL mass spectrometer with Electron Spray lonization Geometry (ESI 70 eV) and using a Mass Selective Detector (quadrupole).

HPLC analyses used for the follow-up of reactions were performed on an Agilent 1200 Series with UV/DAD detector. The column was of the type Eclipse Plus C18 ($4,6 \times 50 \mathrm{~mm}$, particle size $3,5 \mu \mathrm{~m}$) or Phenomenex Kinetex C18 ($4,6 \times 50 \mathrm{~mm}$, particle size $2,6 \mu \mathrm{~m}$). A general method for these analyses uses a gradient-based solvent mixture ($\mathrm{MeCN} / \mathrm{H}_{2} \mathrm{O}$, from 30% to $100 \% \mathrm{MeCN}$), which is suitable for good separation and resolution of all peaks. This HPLC apparatus was coupled with an Agilent 1100 series LC-MSD type VL mass spectrometer with Electron Spray Ionization Geometry (ESI 70 eV) and using a Mass Selective Detector (quadrupole).

Gas chromatography analyses were performed on an Agilent 6890 Series. The column was of the type Alltech EC-5 with a film thickness of $0.25 \mu \mathrm{~m}$ (length 30.0 m , i.d. $250 \mu \mathrm{~m}$) with He as carrier gas. The GC was connected to a FID detector (H_{2} gas).

Melting points of crystalline compounds were measured using a Büchi B-540 apparatus.

Elemental analyses were obtained by means of a Perkin Elmer series II CHNS/O analyzer 2400.

High resolution electro spray (ES) mass spectra were obtained with an Agilent Technologies 6210 Series Time-of-Flight.

Optical rotations were determined using an JASCO P-2000 series polarimeter.

All microwave reactions were performed in a CEM Discover Benchmate with a continuous power output from 0 to 300 Watt and a self-adjusting, single mode MW cavity. The reactions were performed in a 10 mL thick walled Pyrex reaction vessels closed with a 'snap-on' septa cap and equipped with a small stirring bar, or in a 80 mL thick walled Pyrex reaction vessel connected with the locking cover assembly equipped with the thermowell nut. The temperature control uses either a non-contact infrared sensor to measure the temperature on the bottom of the vessel or a Fiber Optic temperature sensor (Model Discover, 314307), which were used in a feedback loop with the on-board computer to regulate the temperature from $25-250{ }^{\circ} \mathrm{C}$ by adjusting the power output (1 Watt increments). The pressure control, IntelliVent ${ }_{\text {тм }}$ Pressure Control System, uses an indirect measurement of the pressure by sensing changes in the external deflection of the septa on the top of the sealed pressure vessel. Stirring is performed by a rotating magnetic plate located below the floor of microwave cavity. Cooling of the vessel after the reaction is performed by a stream of clean air onto the vessel which decreases the temperature of a 2 mL solution from $150^{\circ} \mathrm{C}$ to $40^{\circ} \mathrm{C}$ in less than 120 s . A ramp time of maximum 5 min is used during which the temperature increases from room temperature to the desired one. This temperature is maintained during the course of the reaction for the indicated time.

5.2 Synthesis of 2-acetoxymethyl-1-(arylmethyl)aziridines 222

As a representative example, the synthesis of 2 -acetoxymethyl-1-(4-chlorobenzyl)aziridine 222c is described here. 2-(Bromomethyl)-1-(4-chlorobenzyl)aziridine 16c ($2.60 \mathrm{~g}, 10 \mathrm{mmol}$) was added to a stirred solution of $\mathrm{NaOAc}(1.23 \mathrm{~g}, 1.5$ equiv) in $\mathrm{DMSO}(20 \mathrm{~mL})$ at room temperature, and the mixture was heated at $100^{\circ} \mathrm{C}$ for 15 h . The reaction mixture was poured into water (20 mL) and extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 20 \mathrm{~mL})$. The combined organic extracts were washed with $\mathrm{H}_{2} \mathrm{O}(2 \times 15 \mathrm{~mL})$ and brine (20 $\mathrm{mL})$. Drying $\left(\mathrm{MgSO}_{4}\right)$, filtration of the drying agent and evaporation of the solvent afforded 2-(acetoxymethyl)-1-(4-chlorobenzyl)aziridine 222c (2.16 g, 90\%), which was purified by filtration through silica gel (hexane/ethyl acetate $2: 1$) in order to obtain an analytically pure sample.

2-(Acetoxymethyl)-1-(4-methylbenzyl)aziridine 222b

Light-yellow oil, $R_{f}=0.15$ (hexane/ethyl acetate 2/1), Yield 83%. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.51$ $\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.0 \mathrm{~Hz},\left(H_{\text {cis }} \mathrm{CH}\right) \mathrm{CHN}\right), 1.77\left(1 \mathrm{H}, \mathrm{d}, J=3.3 \mathrm{~Hz},\left(\mathrm{HCH}_{\text {trans }}\right) \mathrm{CHN}\right), 1.81-$
 $1.89(1 \mathrm{H}, \mathrm{m}, \mathrm{NCH}), 1.97\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{CO}\right)$, $2.34\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{Ar}\right), 3.30$ and 3.54 ($2 \mathrm{H}, 2 \mathrm{xd}, J=13.2 \mathrm{~Hz},(\mathrm{HCH}) \mathrm{Ar}$), 3.82 and 4.17 (2H, $2 \times \mathrm{dxd}, J=11.5,7.2,4.4$ $\mathrm{Hz},(\mathrm{HCH}) \mathrm{O})$, , 7.13-7.25 ($4 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{\text {arom }}$). ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) ס 20.7 $\left(\mathrm{CH}_{3} \mathrm{CO}\right), 21.1\left(\mathrm{CH}_{3} \mathrm{Ar}\right), 31.8\left(\mathrm{NCH}_{2} \mathrm{CH}\right), 36.9(\mathrm{NCH}), 64.0\left(\mathrm{NCH}_{2} \mathrm{Ar}\right), 66.6$ $\left(\mathrm{CH}_{2} \mathrm{O}\right), 128.0$ and $129.0\left(4 \times \mathrm{CH}_{\text {arom }}\right), 135.7$ and $136.6\left(2 \times \mathrm{C}_{\text {arom,quat }}\right), 170.9$ (CO). IR (neat, $\left.\mathrm{cm}^{-1}\right): v_{\mathrm{co}}=1737, v_{\max }=2924,1370,1230,1032,802 . \mathrm{MS}(70 \mathrm{eV}): \mathrm{m} / \mathrm{z}(\%): 220\left(\mathrm{M}^{+}+\right.$ 1, 100). Anal. Calcd for $\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{NO}_{2}$: C 71.21, H 7.81, N 6.39. Found: C 71.35, H 8.03, N 6.44.

2-(Acetoxymethyl)-1-(4-chlorobenzyl)aziridine 222c

Light-yellow oil, $R_{\mathrm{f}}=0.12$ (hexane/ethyl acetate 2/1), Yield 90%. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.51$ $\left(1 \mathrm{H}, \mathrm{d}, J=6.6 \mathrm{~Hz},\left(H_{\text {cis }} \mathrm{CH}\right) \mathrm{CHN}\right), 1.79\left(1 \mathrm{H}, \mathrm{d}, J=3.9 \mathrm{~Hz},\left(\mathrm{HCH}_{\text {trans }}\right) \mathrm{CHN}\right), 1.80-1.90(1 \mathrm{H}, \mathrm{m}, \mathrm{NCH})$,
 $1.98\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{CO}\right), 3.26$ and $3.56(2 \mathrm{H}, 2 \times \mathrm{d}, \mathrm{J}=13.8 \mathrm{~Hz},(\mathrm{HCH}) \mathrm{Ar}), 3.79$ and $4.20(2 \mathrm{H}, 2 \times \mathrm{d} \times \mathrm{d}, J=11.6,7.4,4.4 \mathrm{~Hz},(\mathrm{HCH}) \mathrm{O}), 7.24-7.32(4 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{CH}_{\text {arom }}\right) .{ }^{13} \mathrm{C}$ NMR (75 MHz , ref $\left.=\mathrm{CDCl}_{3}\right) \delta 20.9\left(\mathrm{CH}_{3} \mathrm{CO}\right)$, $32.0\left(\mathrm{NCH}_{2} \mathrm{CH}\right)$, $37.2\left(\mathrm{NCHCH}_{2}\right), 63.5\left(\mathrm{NCH}_{2} \mathrm{Ar}\right), 66.6\left(\mathrm{CH}_{2} \mathrm{O}\right), 128.5$ and $129.5\left(4 \times \mathrm{CH}_{\text {arom }}\right)$, 132.9 and $137.4\left(2 \times \mathrm{C}_{\text {arom,quat }}\right), 171.0(\mathrm{CO})$. IR (neat, $\left.\mathrm{cm}^{-1}\right): v_{\mathrm{CO}}=1737, v_{\max }=$ 2986; 2832, 1491, 1370, 1231, 1087, 1033, 806. MS (70 eV): m/z (\%): 240/2 $\left(\mathrm{M}^{+}+1,100\right)$. Anal. Calcd for $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{CINO}_{2}$: C 60.13, H5.89, N 5.84. Found: C $60.28, \mathrm{H} 6.12, \mathrm{~N} 5.79$.

2-(Acetoxymethyl)-1-(4-methoxybenzyl)aziridine 222d

Light-yellow oil, $R_{\mathrm{f}}=0.08$ (hexane/ethyl acetate 2/1), Yield 79%. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.51$
 $\left(1 \mathrm{H}, \mathrm{d}, J=6.6 \mathrm{~Hz},\left(H_{\text {cis }} \mathrm{CH}\right) \mathrm{CHN}\right), 1.77\left(1 \mathrm{H}, \mathrm{d}, J=3.3 \mathrm{~Hz},\left(\mathrm{HCH}_{\text {trans }}\right) \mathrm{CHN}\right)$, 1.79-1.89 ($1 \mathrm{H}, \mathrm{m}, \mathrm{NCH}$), $1.97\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{CO}\right), 3.26$ and $3.52(2 \mathrm{H}, 2 \times \mathrm{d}, \mathrm{J}=$ $13.0 \mathrm{~Hz},(\mathrm{HCH}) \mathrm{Ar}), 3.80\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.86$ and $4.17(2 \mathrm{H}, 2 \mathrm{xd} \mathrm{xd}, J=$ $11.6,7.7,4.7 \mathrm{~Hz},(\mathrm{HCH}) \mathrm{O}), 6.85-6.88$ and $7.25-7.28\left(4 \mathrm{H}, 2 \times \mathrm{m}, \mathrm{CH}_{\text {arom }}\right) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) ठ $20.8\left(\mathrm{CH}_{3} \mathrm{CO}\right), 31.8\left(\mathrm{NCH}_{2} \mathrm{CH}\right), 36.9\left(\mathrm{NCHCH}_{2}\right)$, $55.3\left(\mathrm{OCH}_{3}\right), 63.6\left(\mathrm{NCH}_{2} \mathrm{Ar}\right), 66.6\left(\mathrm{CH}_{2} \mathrm{O}\right), 113.7$ and $129.3\left(4 \times \mathrm{CH}_{\text {arom }}\right)$, 131.0 ($\mathrm{C}_{\text {arom,quat }}$), $158.8\left(\mathrm{C}_{\text {arom }}\right.$ O), $170.9(\mathrm{CO}) . \mathrm{IR}\left(\right.$ neat, $\left.\mathrm{cm}^{-1}\right): v_{\mathrm{CO}}=1736, v_{\max }=2952,2835,1511$, 1234, 1031, 818. MS (70 eV): m/z (\%): $236\left(\mathrm{M}^{+}+1,100\right)$. Anal. Calcd for $\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{NO}_{3}: \mathrm{C} 66.36, \mathrm{H} 7.28$, N 5.95. Found: C 66.45, H 7.57, N 5.81 .

5.3 Synthesis of 2-(arylmethylamino)propan-1-ols 224

As a representative example, the synthesis of $2-\{[(4$-chlorophenyl)methyl]amino\}propan-1-ol 224c is described here. 2-(Acetoxymethyl)-1-(4-chlorobenzyl)aziridine 222c (1.20 g, 5 mmol) was dissolved in dry THF (50 mL), after which $\mathrm{LiAlH}_{4}\left(0.38 \mathrm{~g}, 2\right.$ molar equiv) was added in small portions at $0{ }^{\circ} \mathrm{C}$. The resulting mixture was then placed in 80 mL sealed vessel, provided with appropriate stirrer bar and subjected to microwave conditions $\left(130{ }^{\circ} \mathrm{C}, 220 \mathrm{~W}_{\text {max }}\right.$, two hours). Afterward, the reaction mixture was poured into water $(20 \mathrm{~mL})$ and extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 20 \mathrm{~mL})$. Drying $\left(\mathrm{MgSO}_{4}\right)$, filtration of the drying agent and evaporation of the solvent afforded 2-\{[(4-chlorophenyl)methyl]amino\}propan-1-ol 224c ($0.92 \mathrm{~g}, 92 \%$), which was purified by filtration through a silica gel column (dichloromethane/methanol $9: 1$) in order to obtain an analytically pure sample. CAUTION: strict safety measurements have to be applied for LiAlH_{4}-promoted reactions under microwave irradiation in order to cover the risk of explosion.

2-\{[(4-Methylphenyl)methyl]amino\}propan-1-ol 224b

Light-yellow crystals, $R_{\mathrm{f}}=0.17$ (dichloromethane/methanol 9/1), Yield 75%. $\mathrm{Mp}=71.7-72.2{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$
 NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.07\left(3 \mathrm{H}, \mathrm{d}, J=6.6 \mathrm{~Hz}, \mathrm{CH}_{3} \mathrm{CH}\right), 2.33\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{Ar}\right)$, $2.74(2 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH}, \mathrm{NH}), 2.77-2.88(1 \mathrm{H}, \mathrm{m}, \mathrm{NHCH}), 3.27$ and $3.57(2 \mathrm{H}, 2 \mathrm{xdxd}$, $J=11.0,6.9,3.9 \mathrm{~Hz},(H \mathrm{H}) \mathrm{OH}), 3.68$ and $3.83(2 \mathrm{H}, 2 \times \mathrm{d}, J=12.9 \mathrm{~Hz}$, (HCH)Ar), $7.07-7.25\left(4 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{\text {arom }}\right) .{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 16.7\left(\mathrm{CH}_{3} \mathrm{CH}\right)$, $21.2\left(\mathrm{CH}_{3} \mathrm{Ar}\right), 50.5\left(\mathrm{NCH}_{2} \mathrm{Ar}\right)$, $53.9(\mathrm{CHNH})$, $65.2\left(\mathrm{CH}_{2} \mathrm{OH}\right), 128.4$ and $129.3(4 \mathrm{x}$ $\mathrm{CH}_{\text {arom }}$), 136.0 and $137.1\left(2 \times \mathrm{C}_{\text {arom,quat }}\right)$. IR (neat, $\left.\mathrm{cm}^{-1}\right): v_{\mathrm{NH}, \mathrm{OH}}=3277, v_{\max }=2846,1460,1063,886$, 812. MS (70 eV): m/z (\%): $180\left(\mathrm{M}^{+}+1,100\right)$. Anal. Calcd for $\mathrm{C}_{11} \mathrm{H}_{17} \mathrm{NO}: \mathrm{C} 73.70, \mathrm{H} 9.56, \mathrm{~N} 7.81$. Found: C 73.92, H 9.48, N 9.47.

2-\{[(4-Chlorophenyl)methyl]amino\}propan-1-ol 224c

Light-yellow crystals, $R_{f}=0.19$ (dichloromethane/methanol 9/1), Yield $92 \% . \mathrm{Mp}=64.6-65.6{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) ס $1.06\left(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.6 \mathrm{~Hz}, \mathrm{CH}_{3} \mathrm{CH}\right), 2.31(2 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH}$,
 NH), 2.75-2.85 (1H, m, NHCH), 3.27 and $3.56(2 \mathrm{H}, 2 \mathrm{xdxd}, J=10.8,7.2,3.8$ $\mathrm{Hz},(\mathrm{HCH}) \mathrm{OH})$, 3.68 and $3.83(2 \mathrm{H}, 2 \times \mathrm{d}, \mathrm{J}=13.2 \mathrm{~Hz}$, (HCH)Ar), 7.23-7.33 (4H, $\left.\mathrm{m}, \mathrm{CH}_{\text {arom }}\right) .{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}\right.$, ref $\left.=\mathrm{CDCl}_{3}\right) \delta 17.2\left(\mathrm{CH}_{3} \mathrm{CH}\right), 50.4\left(\mathrm{NCH}_{2} \mathrm{Ar}\right)$, $53.9(\mathrm{CHNH}), 65.6\left(\mathrm{CH}_{2} \mathrm{OH}\right), 128.7$ and $129.5\left(2 \times \mathrm{CH}_{\text {arom }}\right)$, 132.9 and 138.8 (2 $x \mathrm{C}_{\text {arom,quat }}$. IR (neat, cm^{-1}): $v_{\mathrm{NH}, \mathrm{OH}}=3312, v_{\max }=2927,1491,1256,1043,730$. MS (70 eV): $m / z(\%): 200 / 2\left(\mathrm{M}^{+}+1,100\right)$. Anal. Calcd for $\mathrm{C}_{10} \mathrm{H}_{14} \mathrm{CINO}: \mathrm{C} 60.15, \mathrm{H} 7.07, \mathrm{~N} 7.01$. Found: C 60.05, H 7.18, N 7.10.

2-\{[(4-Methoxyphenyl)methyl]amino\}propan-1-ol 224d

Light-yellow crystals, $R_{\mathrm{f}}=0.08$ (dichloromethane/methanol 9/1), Yield $72 \% . \mathrm{Mp}=59.4-60.4{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (300 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 1.02\left(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.2 \mathrm{~Hz}, \mathrm{CH}_{3} \mathrm{CH}\right), 1.95(2 \mathrm{H}, \mathrm{br} \mathrm{s}$,
 $\mathrm{OH}, \mathrm{NH}), 2.72-2.81(1 \mathrm{H}, \mathrm{m}, \mathrm{NHCH}), 3.20$ and $3.52(2 \mathrm{H}, 2 \mathrm{xdxd}, J=10.5$, $6.6,3.9 \mathrm{~Hz},(H \mathrm{H} H) \mathrm{OH}), 3.61$ and $3.74(2 \mathrm{H}, 2 \times \mathrm{d}, J=12.9 \mathrm{~Hz},(\mathrm{HCH}) \mathrm{Ar}), 3.72$ $\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 6.78-6.81$ and 7.15-7.19 $\left(4 \mathrm{H}, 2 \times \mathrm{m}, \mathrm{CH}_{\text {arom }}\right) .{ }^{13} \mathrm{C}$ NMR (75 MHz , ref $\left.=\mathrm{CDCl}_{3}\right) \delta 17.1\left(\mathrm{CH}_{3} \mathrm{CH}\right), 50.6\left(\mathrm{NCH}_{2} \mathrm{Ar}\right), 53.7(\mathrm{CHNH}), 55.4\left(\mathrm{OCH}_{3}\right)$, $65.6\left(\mathrm{CH}_{2} \mathrm{OH}\right), 113.9$ and $129.4\left(2 \times \mathrm{CH}_{\text {arom }}\right)$, $132.4\left(\mathrm{C}_{\text {arom,quat }}\right), 158.8\left(\mathrm{C}_{\text {arom }} \mathrm{O}\right)$. IR (neat, cm^{-1}): $v_{\mathrm{NH}, \text { OH }}=3294, v_{\max }=2834,1511,1245,1034,819 . \mathrm{MS}(70 \mathrm{eV}): m / z(\%): 196\left(\mathrm{M}^{+}+1\right.$, 100). Anal. Calcd for $\mathrm{C}_{11} \mathrm{H}_{17} \mathrm{NO}_{2}$: C 67.66, H 8.78, N 7.17. Found: C 67.76, H 8.91, N 7.14.

5.4 Synthesis of optically active 2-aminopropan-1-ols 230

As a representative example, the synthesis of (S)-[1(R)-phenylethylamino]propan-1-ol 230a is described here. Aziridine alcohol 229a ($0.88 \mathrm{~g}, 5 \mathrm{mmol}$) was diluted in dry THF (50 mL), and LiAlH_{4} $\left(0.38 \mathrm{~g}, 2\right.$ molar equiv) was added in small portions at $0^{\circ} \mathrm{C}$. The resulting mixture was then placed in 80 mL sealed vessel, provided with appropriate stirrer bar and subjected to microwave conditions (160 ${ }^{\circ} \mathrm{C}, 220 \mathrm{~W}_{\text {max }}$, two hours). The resulting reaction mixture was subsequently poured into water (15 mL) and extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 20 \mathrm{~mL})$. Drying $\left(\mathrm{MgSO}_{4}\right)$, filtration of the drying agent and evaporation of the solvent afforded 2(S)-[1(R)-phenylethylamino]propan-1-ol 230a ($0.83 \mathrm{~g}, 93 \%$), which was purified by filtration through silica gel (dichloromethane/methanol $9: 1$) in order to obtain an analytically pure sample.

2(S)-[1(R)-Phenylethylamino]propan-1-ol 230a

Colorless liquid, $R_{f}=0.18$ (dichloromethane/methanol 9/1), Yield 93\%. [$\left.\alpha\right]_{\mathrm{D}}{ }^{28}=+115.6$ ($\mathrm{c}=0.41$, $\left.\mathrm{CDCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.98\left(\mathrm{dxd}, J=6.9,1.4 \mathrm{~Hz}, \mathrm{CH}_{3} \mathrm{CHCH}_{2} \mathrm{OH}\right), 1.36(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.6$
 $\left.\mathrm{Hz}, \mathrm{CH}_{3} \mathrm{CHPh}\right)$, 2.51-2.61 (1H, m, NHCHCH 2 OH$), 2.55(2 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH}, \mathrm{NH}), 3.16-$ $3.23(1 \mathrm{H}, \mathrm{m},(\mathrm{HCH}) \mathrm{OH}), 3.40(1 \mathrm{H}, \mathrm{d} x \mathrm{~d}, J=10.8,4.2 \mathrm{~Hz},(\mathrm{HCH}) \mathrm{OH}), 3.93(1 \mathrm{H}, \mathrm{q}, J$ $\left.=6.6 \mathrm{~Hz}, \mathrm{CH}_{3} \mathrm{CHAr}\right), 7.19-7.34\left(5 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{\text {arom }}\right) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 16.6$ $\left(\mathrm{CH}_{3} \mathrm{CHCH}_{2} \mathrm{OH}\right), 25.2\left(\mathrm{CH}_{3} \mathrm{CHPh}\right), 51.4\left(\mathrm{NHCHCH}_{2} \mathrm{OH}\right), 54.9\left(\mathrm{CH}_{3} \mathrm{CHAr}\right), 66.5$ $\left(\mathrm{CH}_{2} \mathrm{OH}\right)$, 126.6, 127.1 and $128.6\left(5 \times \mathrm{CH}_{\text {arom }}\right)$ and $145.1\left(\mathrm{C}_{\text {arom,quat }}\right)$. IR (neat, $\left.\mathrm{cm}^{-1}\right): v_{\mathrm{NH}, \mathrm{OH}}=3292$, $v_{\max }=2965,1452,1044,762,731,699 . \mathrm{MS}(70 \mathrm{eV}): m / z(\%): 180\left(\mathrm{M}^{+}+1,100\right)$. Anal. Calcd for $\mathrm{C}_{11} \mathrm{H}_{17} \mathrm{NO}: \mathrm{C} 73.70, \mathrm{H} 9.56, \mathrm{~N} 7.81$. Found: C 73.94, H 9.84, N 7.69.

2(R)-[1(R)-Phenylethylethylamino]propan-1-ol 230b

White crystals. $R_{\mathrm{f}}=0.08$ (dichloromethane/methanol 9/1), Yield $85 \% . \mathrm{Mp}=49.5-51.1^{\circ} \mathrm{C},[\alpha]_{\mathrm{D}}{ }^{28}=-2.3$ $\left(\mathrm{c}=0.36, \mathrm{CDCl}_{3}\right) .{ }^{1} \mathrm{H} \mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.98(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.6 \mathrm{~Hz}$, $\mathrm{CH}_{3} \mathrm{CHCH}_{2} \mathrm{OH}$), $1.35\left(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.4 \mathrm{~Hz}, \mathrm{CH}_{3} \mathrm{CHPh}\right), 2.30(2 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH}, \mathrm{NH}), 2.68-$ $2.80\left(1 \mathrm{H}, \mathrm{m}, \mathrm{NHCHCH}_{2} \mathrm{OH}\right), 3.20$ and $3.59(2 \mathrm{H}, 2 \times \mathrm{d} \times \mathrm{d}, J=10.5,6.1,3.8 \mathrm{~Hz}$, $(\mathrm{HCH}) \mathrm{OH}), 3.87\left(1 \mathrm{H}, \mathrm{q}, \mathrm{J}=6.4 \mathrm{~Hz}, \mathrm{CH}_{3} \mathrm{CHAr}\right), 7.22-7.36\left(5 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{\text {arom }}\right) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 18.2\left(\mathrm{CH}_{3} \mathrm{CHCH}_{2} \mathrm{OH}\right.$), $24.1\left(\mathrm{CH}_{3} \mathrm{CHPh}\right)$, $51.6\left(\mathrm{NHCHCH}_{2} \mathrm{OH}\right), 55.4\left(\mathrm{CH}_{3} \mathrm{CHAr}\right)$, $64.9\left(\mathrm{CH}_{2} \mathrm{OH}\right), 126.4,127.1$ and $128.6\left(5 \times \mathrm{CH}_{\text {arom }}\right)$ and $145.9\left(\mathrm{C}_{\text {arom,quat }}\right)$. IR (neat, $\left.\mathrm{cm}^{-1}\right): v_{\mathrm{NH}, \mathrm{OH}}=$ 3292, $v_{\max }=2965,1452,1045,761,700 . \mathrm{MS}(70 \mathrm{eV}): m / z(\%): 180\left(\mathrm{M}^{+}+1,100\right)$. Anal. Calcd for $\mathrm{C}_{11} \mathrm{H}_{17} \mathrm{NO}: \mathrm{C} 73.70, \mathrm{H} 9.56, \mathrm{~N} 7.81$. Found: C 73.78, H 9.72, N 7.82.

5.5 Synthesis of 5-methylmorpholin-2-ones 228

As a representative example, the synthesis of 4-(4-methylphenyl)methyl-5-methylmorpholin-2-one 228b is described here. To a solution of 2-\{[(4-methylphenyl)methyl]amino\}propan-1-ol 224b ($0.72 \mathrm{~g}, 4$ mmol) in THF (30 mL) an aqueous solution of glyoxal ($40 \%, 1.74 \mathrm{~g}, 3$ equiv) was added, and the resulting mixture was heated for 2.5 h under reflux. The reaction mixture was then poured into water $(20 \mathrm{~mL})$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 10 \mathrm{~mL})$. The combined organic layers were dried with anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and evaporated. The crude product was purified by column chromatography on silica gel (petroleum ether/ethyl acetate $7 / 1$) in order to obtain an analytically pure sample ($0.76 \mathrm{~g}, 87 \%$).

4-(4-Methylphenyl)methyl-5-methylmorpholin-2-one 228b

Yellow liquid, $R_{\mathrm{f}}=0.07$ (petroleum ether/ethyl acetate 7/1), Yield 87%. ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$
 $1.17\left(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.1 \mathrm{~Hz}, \mathrm{CH}_{3} \mathrm{CH}\right)$, $2.34\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{Ar}\right), 2.82-2.92\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CHCH}_{3}\right)$, 3.11 and $3.43(2 \mathrm{H}, 2 \times \mathrm{d}, \mathrm{J}=18.2 \mathrm{~Hz},(\mathrm{HCH}) \mathrm{CO}), 3.27$ and $3.88(2 \mathrm{H}, 2 \times \mathrm{d}, 12.9 \mathrm{~Hz}$, (HCH)Ar), 4.09 and 4.34 (2H, $2 \times d x d, J=11.0,7.7,3.6 \mathrm{~Hz},(H C H) O), 7.09-7.19$ $\left(4 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{\text {arom }}\right) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 12.4\left(\mathrm{CH}_{3} \mathrm{CH}\right)$, $21.1\left(\mathrm{CH}_{3} \mathrm{Ar}\right), 51.1$ $\left(\mathrm{CHCH}_{3}\right), 52.5\left(\mathrm{CH}_{2} \mathrm{CO}\right), 57.3\left(\mathrm{NCH}_{2} \mathrm{Ar}\right), 73.7\left(\mathrm{CH}_{2} \mathrm{O}\right), 128.8$ and $129.3\left(4 \times \mathrm{CH}_{\text {arom }}\right)$, 133.6 and $137.3\left(2 \times \mathrm{C}_{\text {arom,quat }}\right)$, $168.2(\mathrm{CO})$. IR (neat, $\left.\mathrm{cm}^{-1}\right): v_{\mathrm{CO}}=1742, v_{\max }=2923$, 1227, 1055, 807. MS (70 eV): m/z (\%): $220\left(\mathrm{M}^{+}+1,100\right)$. Anal. Calcd for $\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{NO}_{2}$: C 71.21, H 7.81, N 6.39. Found: C 71.47, H 8.06, N 6.27.

4-(4-Chlorophenyl)methyl-5-methylmorpholin-2-one 228c

Yellow solid, $R_{\mathrm{f}}=0.05$ (petroleum ether/ethyl acetate $7 / 1$), Yield $83 \% . \mathrm{Mp}=55.5-58.5^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR
 (300 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 1.16\left(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.0 \mathrm{~Hz}, \mathrm{CH}_{3} \mathrm{CH}\right), 2.84-2.93\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CHCH}_{3}\right)$, 3.11 and $3.41(2 \mathrm{H}, 2 \times \mathrm{d}, J=17.6 \mathrm{~Hz}$, (HCH)CO), 3.29 and $3.88(2 \mathrm{H}, 2 \times \mathrm{d}, 13.2$ Hz , (HCH)Ar), 4.09 and 4.35 (2H, $2 \times \mathrm{d} x \mathrm{~d}, J=11.0,7.7,3.6 \mathrm{~Hz},(\mathrm{HCH}) \mathrm{O})$, 7.23$7.35\left(4 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{\text {arom }}\right) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(75 \mathrm{MHz}\right.$, ref $\left.=\mathrm{CDCl}_{3}\right) \delta 12.5\left(\mathrm{CH}_{3} \mathrm{CH}\right), 51.4$ $\left(\mathrm{CHCH}_{3}\right), 52.6\left(\mathrm{CH}_{2} \mathrm{CO}\right), 57.1\left(\mathrm{NCH}_{2} \mathrm{Ar}\right), 73.7\left(\mathrm{CH}_{2} \mathrm{O}\right), 128.8$ and $130.2(4 \mathrm{x}$
$\mathrm{CH}_{\text {arom }}$), 133.4 and 135.6 ($2 \times \mathrm{C}_{\text {arom,quat }}$), $168.0(\mathrm{CO}) . \mathrm{IR}$ (neat, $\left.\mathrm{cm}^{-1}\right): v_{\mathrm{CO}}=1741, v_{\max }=2969,1490$, 1227, 1056, 810. MS (70 eV): m/z (\%): 240/2 ($\mathrm{M}^{+}+1,100$). Anal. Calcd for $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{CINO}_{2}: \mathrm{C} 60.13, \mathrm{H}$ 5.89, N 5.84. Found: C 60.27, H 6.11, N 5.98.

4-(4-Methoxyphenyl)methyl-5-methylmorpholin-2-one 228d

Yellow solid, $R_{\mathrm{f}}=0.05$ (petroleum ether/ethyl acetate $7 / 1$), Yield $74 \% . \mathrm{Mp}=48.3-51.3^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.17\left(3 \mathrm{H}, \mathrm{d}, J=6.6 \mathrm{~Hz}, \mathrm{CH}_{3} \mathrm{CH}\right), 2.82-2.92\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CHCH}_{3}\right)$,
 3.11 and $3.43(2 \mathrm{H}, 2 \times \mathrm{d}, J=17.6 \mathrm{~Hz},(\mathrm{HCH}) \mathrm{CO}), 3.26$ and $3.86(2 \mathrm{H}, 2 \times \mathrm{d}, J=$ $12.6 \mathrm{~Hz},(\mathrm{HCH}) \mathrm{Ar}), 3.81\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{O}\right), 4.09$ and $4.34(2 \mathrm{H}, 2 \times \mathrm{dxd}, J=11.0$, $7.7,3.3 \mathrm{~Hz},(\mathrm{HCH}) \mathrm{O}), 6.84-6.89$ and $7.18-7.25\left(4 \mathrm{H}, 2 \times \mathrm{m}, \mathrm{CH}_{\text {arom }}\right) .{ }^{13} \mathrm{C}$ NMR (75 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 12.4\left(\mathrm{CH}_{3} \mathrm{CH}\right)$, $51.1\left(\mathrm{CHCH}_{3}\right)$, $52.4\left(\mathrm{CH}_{2} \mathrm{CO}\right)$, $55.3\left(\mathrm{OCH}_{3}\right), 57.0$ $\left(\mathrm{NCH}_{2} \mathrm{Ar}\right), 73.7\left(\mathrm{CH}_{2} \mathrm{O}\right), 114.0$ and $130.1\left(4 \times \mathrm{CH}_{\text {arom }}\right), 128.6\left(\mathrm{C}_{\text {arom,quat }}\right), 161.3$ ($\mathrm{C}_{\text {arom }} \mathrm{O}$), $167.9(\mathrm{CO})$. IR (neat, cm^{-1}): $v_{\mathrm{CO}}=1739, v_{\max }=2965,1511,1243,1031,822 . \mathrm{MS}(70 \mathrm{eV}): \mathrm{m} / \mathrm{z}$ (\%): $236\left(\mathrm{M}^{+}+1,100\right)$. Anal. Calcd for $\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{NO}_{3}$: C 66.36, H 7.28, N 5.95. Found: C 66.31, H 7.24, N 5.88

5.6 Synthesis of chiral 5-methylmorpholin-2-ones 231

As a representative example, the synthesis of 5(S)-methyl-4-[1(R)-phenylethyl]morpholin-2-one 231a is described here. To a solution of $2(S)$-[1(R)-phenylethylamino]propan-1-ol 230a ($0.72 \mathrm{~g}, 4 \mathrm{mmol}$) in THF (30 mL) an aqueous solution of glyoxal ($40 \%, 1.74 \mathrm{~g}, 3$ equiv) was added, and the resulting mixture was heated for 3 h under reflux. The reaction mixture was then poured into water (20 mL) and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 10 \mathrm{~mL})$. The combined organic layers were dried with anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and evaporated. The crude product was purified by column chromatography on silica gel (hexane/ethyl acetate $3: 1$) in order to obtain an analytically pure sample ($0.78 \mathrm{~g}, 89 \%$).

5(S)-Methyl-4-[1(R)-phenylethyl]morpholin-2-one 231a

Light-yellow solid, $R_{\mathrm{f}}=0.25$ (hexane/ethyl acetate $3 / 1$), Yield 89%. $\mathrm{Mp}=37.1-40.2^{\circ} \mathrm{C},[\alpha]_{\mathrm{D}}{ }^{28}=+$ 25.0 ($\mathrm{c}=0.44, \mathrm{CDCl}_{3}$). ${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.04(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.6 \mathrm{~Hz}$,
 $\mathrm{CH}_{3} \mathrm{CHCH}_{2}$), $1.35\left(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.8 \mathrm{~Hz}, \mathrm{CH}_{3} \mathrm{CHAr}\right), 2.82-2.91\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CHCH}_{3}\right), 3.38$ and $3.74(2 \mathrm{H}, 2 \times \mathrm{d}, J=17.9 \mathrm{~Hz},(\mathrm{HCH}) \mathrm{CO}), 3.66\left(1 \mathrm{H}, \mathrm{q}, J=6.8 \mathrm{~Hz}, \mathrm{CH}_{3} \mathrm{CHAr}\right), 4.00$ and $4.37(2 \mathrm{H}, 2 \times \mathrm{dxd}, J=11.0,3.3,3.3 \mathrm{~Hz},(\mathrm{HCH}) \mathrm{O}), 7.24-7.34\left(5 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{\text {arom }}\right) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.0\left(\mathrm{CH}_{3} \mathrm{CHCH}_{2}\right)$, $21.0\left(\mathrm{CH}_{3} \mathrm{CHAr}\right), 47.2\left(\mathrm{CH}_{2} \mathrm{CHCH}_{3}\right), 48.3$ $\left(\mathrm{CH}_{2} \mathrm{CO}\right), 60.2\left(\mathrm{ArCHCH}_{3}\right), 74.1\left(\mathrm{CH}_{2} \mathrm{O}\right), 127.3,127.6$ and $128.7\left(5 \times \mathrm{CH}_{\text {arom }}\right), 142.7$ $\left(\mathrm{C}_{\text {arom,quat }}\right)$, $168.6(\mathrm{CO})$. IR (neat, $\left.\mathrm{cm}^{-1}\right): v_{\mathrm{CO}}=1737, v_{\max }=2973,1224,1004,701 . \mathrm{MS}(70 \mathrm{eV}): \mathrm{m} / \mathrm{z}(\%):$ $220\left(\mathrm{M}^{+}+1,100\right)$. Anal. Calcd for $\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{NO}_{2}$: C 71.21, H 7.81, N 6.39. Found: C 71.27, H 7.93, N 6.33

5(R)-Methyl-4-[1(R)-phenylethyl]morpholin-2-one 231b

Light-yellow liquid, $R_{f}=0.18$ (hexane/ethyl acetate 3/1), Yield $86 \% .[\alpha]_{\mathrm{D}}{ }^{28}=+9.6\left(\mathrm{c}=0.37, \mathrm{CDCl}_{3}\right) .{ }^{1} \mathrm{H}$
 NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.16\left(3 \mathrm{H}, \mathrm{d}, J=6.6 \mathrm{~Hz}, \mathrm{CH}_{3} \mathrm{CHCH}_{2}\right), 1.34(3 \mathrm{H}, \mathrm{d}, J=6.6$ $\left.\mathrm{Hz}, \mathrm{CH}_{3} \mathrm{CHAr}\right), 3.11$ and $3.28(2 \mathrm{H}, 2 \times \mathrm{d}, \mathrm{J}=18.2 \mathrm{~Hz},(\mathrm{HCH}) \mathrm{CO}), 3.26-3.36(1 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{CH}_{2} \mathrm{CHCH}_{3}\right), 3.74\left(1 \mathrm{H}, \mathrm{q}, J=6.6 \mathrm{~Hz}, \mathrm{CH}_{3} \mathrm{CHAr}\right), 4.14$ and $4.47(2 \mathrm{H}, 2 \mathrm{xdxd}, J=$ $10.8,5.2,3.6 \mathrm{~Hz}$, (HCH)O), $7.22-7.39\left(5 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{\text {arom }}\right) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $10.6\left(\mathrm{CH}_{3} \mathrm{CHCH}_{2}\right)$, $16.6\left(\mathrm{CH}_{3} \mathrm{CHAr}\right), 47.6\left(\mathrm{CH}_{2} \mathrm{CHCH}_{3}\right), 48.3\left(\mathrm{CH}_{2} \mathrm{CO}\right), \quad 59.1$ $\left(\mathrm{ArCHCH}_{3}\right), 73.9\left(\mathrm{CH}_{2} \mathrm{O}\right), 127.38,127.44$ and $128.6\left(5 \times \mathrm{CH}_{\text {arom }}\right), 142.8\left(\mathrm{C}_{\text {arom,quat }}\right)$, $168.8(\mathrm{CO})$. IR (neat, $\left.\mathrm{cm}^{-1}\right): v_{\mathrm{CO}}=1740, v_{\max }=2972,1206,1050,700 . \mathrm{MS}(70 \mathrm{eV}): \mathrm{m} / \mathrm{z}(\%): 220\left(\mathrm{M}^{+}+\right.$ 1, 100). Anal. Calcd for $\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{NO}_{2}$: C 71.21, H 7.81, N 6.39. Found: C 71.01, H 8.00, N 6.52 .

5.7 Synthesis of 1-methoxypropan-2-amines 235

As a representative example, the synthesis of N-(1-methoxyprop-1-yl)-N-(4-methylbenzyl)amine 235a is described here. 2-(Methoxymethyl)-1-(4-methylbenzyl)aziridine 233a ($0.96 \mathrm{~g}, 5 \mathrm{mmol}$) was dissolved in dry THF (25 mL), after which $\mathrm{LiAlH}_{4}(0.38 \mathrm{~g}$, 2 molar equiv) was added in small portions at $0^{\circ} \mathrm{C}$. The resulting mixture was then placed in 80 mL sealed vessel, provided with appropriate stirrer bar and subjected to microwave conditions ($130^{\circ} \mathrm{C}, 250 \mathrm{~W}_{\text {max }}, 12 \mathrm{~h}$). Afterward, the reaction mixture was poured into water $(20 \mathrm{~mL})$ and extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 20 \mathrm{~mL})$. Drying $\left(\mathrm{MgSO}_{4}\right)$, filtration of the drying agent and evaporation of the solvent afforded N-(1-methoxyprop-1-yl)-N-(4-methylbenzyl)amine 235a ($0.27 \mathrm{~g}, 80 \%$), which was purified by filtration through silica gel column (dichloromethane/methanol 9:1) in order to obtain an analytically pure sample.

N-(1-Methoxyprop-1-yl)-N-(4-methylbenzyl)amine 235a

Light-yellow oil, $R_{\mathrm{f}}=0.23$ (dichloromethane/methanol 9/1), Yield 80%. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $1.06\left(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.1 \mathrm{~Hz}, \mathrm{CH}_{3} \mathrm{CH}\right)$, $2.33\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{Ar}\right)$, $2.08(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH}), 2.89-2.99(1 \mathrm{H}, \mathrm{m}, \mathrm{NHCH})$,
 3.27 and $3.34\left(2 \mathrm{H}, 2 \times \mathrm{d} x \mathrm{~d}, J=9.4,7.7,4.4 \mathrm{~Hz},(\mathrm{HCH}) \mathrm{OCH}_{3}\right), 3.32(3 \mathrm{H}, \mathrm{s}$, OCH_{3}), 3.69 and $3.86(2 \mathrm{H}, 2 \mathrm{x} \mathrm{d}, J=12.9 \mathrm{~Hz},(\mathrm{HCH}) \mathrm{Ar})$, 7.12-7.26 (4H, m, $\left.\mathrm{CH}_{\text {arom }}\right) .{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 16.9\left(\mathrm{CH}_{3} \mathrm{CH}\right), 21.1\left(\mathrm{CH}_{3} \mathrm{Ar}\right), 50.9$ $\left(\mathrm{NCH}_{2} \mathrm{Ar}\right)$, $51.8(\mathrm{CHNH}), 58.9\left(\mathrm{OCH}_{3}\right), 77.1\left(\mathrm{CH}_{2} \mathrm{OCH}_{3}\right)$, 128.2 and $129.1(4 \mathrm{x}$ $\mathrm{CH}_{\text {arom }}$), 136.5 and $137.2\left(2 \times \mathrm{C}_{\text {arom,quat }}\right)$. IR (neat, $\left.\mathrm{cm}^{-1}\right): v_{\mathrm{NH}}=3325, v_{\max }=2923$, 2875, 2826, 1514, 1450, 1373, 1197, 1162, 1106, 805. MS (70 eV): m/z (\%): 194 ($\mathrm{M}^{+}+1,100$). Anal. Calcd for $\mathrm{C}_{12} \mathrm{H}_{19} \mathrm{NO}: \mathrm{C} 74.57, \mathrm{H} 9.91, \mathrm{~N} 7.25$. Found: C 74.68, H 9.48, N 7.47.

N-(4-Methoxylbenzyl)-N-(1-methoxyprop-1-yl)amine 235b

Dark-yellow oil, $R_{\mathrm{f}}=0.21$ (dichloromethane/methanol 9/1), Yield 60%. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $1.07\left(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.1 \mathrm{~Hz}, \mathrm{CH}_{3} \mathrm{CH}\right), 2.24(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH}), 2.89-2.99(1 \mathrm{H}, \mathrm{m}$,
 NHCH), 3.25-3.36 (2H, m, CH COCH_{3}), 3.67 and $3.83(2 \mathrm{H}, 2 \times \mathrm{d}, \mathrm{J}=12.7 \mathrm{~Hz}$, (HCH)Ar), $3.80\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 6.85-6.88\left(4 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{\text {arom }}\right) .{ }^{13} \mathrm{C}$ NMR $(75 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 16.8\left(\mathrm{CH}_{3} \mathrm{CH}\right), 50.7\left(\mathrm{NCH}_{2} \mathrm{Ar}\right), 51.8(\mathrm{CHNH}), 55.3\left(\mathrm{OCH}_{3} \mathrm{Ar}\right), 58.8$ $\left(\mathrm{CH}_{2} \mathrm{OCH}_{3}\right), 77.0\left(\mathrm{CH}_{2} \mathrm{OCH}_{3}\right), 113.8$ and $129.4\left(4 \times \mathrm{CH}_{\text {arom }}\right), 132.4\left(\mathrm{C}_{\text {arom,quat }}\right)$, $158.6\left(\mathrm{C}_{\text {arom }} \mathrm{O}\right)$. IR (neat, $\left.\mathrm{cm}^{-1}\right): v_{\mathrm{NH}}=3324, v_{\max }=2928,2877,2832,1612$, 1511, 1462, 1244, 1105, 1035, 822. MS (70 eV): m/z (\%): $210\left(\mathrm{M}^{+}+1,100\right)$. Anal. Calcd for $\mathrm{C}_{12} \mathrm{H}_{19} \mathrm{NO}_{2}$: C 68.87, H 9.15, N 6.69. Found: C 68.61, H 9.48, N 6.47 .

5.8 Synthesis of 1-arylmethyl-2-(aryloxymethyl)aziridines 234

As a representative example, the synthesis of 1-[(4-methoxyphenyl)methyl]-2(phenoxymethyl)aziridine 234d is described here. 2-Bromomethyl-1-[(4methoxyphenyl)methyl]aziridine $\mathbf{1 6 d}(1.28 \mathrm{~g}, 5 \mathrm{mmol})$ was added to a mixture of phenol ($1.03 \mathrm{~g}, 2.2$ equiv) and $\mathrm{K}_{2} \mathrm{CO}_{3}$ ($3.45 \mathrm{~g}, 5$ equiv) in a solvent mixture containing acetone and DMF ($50 \mathrm{~mL}, 1: 1 \mathrm{v} / \mathrm{v}$), and the resulting mixture was heated at reflux for 15 h . Afterward, the reaction mixture was poured into brine (50 mL) and extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 50 \mathrm{~mL})$. Drying $\left(\mathrm{MgSO}_{4}\right)$, filtration of the drying agent and evaporation of the solvent afforded 1-[(4-methoxyphenyl)methyl]-2-(phenoxymethyl)aziridine 234d, which was purified by column chromatography on silica gel (hexane/ethyl acetate 4/1) to give an analytically pure sample ($1.17 \mathrm{~g}, 87 \%$).

1-[(4-Chlorophenyl)methyl]-2-(phenoxymethyl)aziridine 234b

Yellow liquid, $R_{\mathrm{f}}=0.28$ (hexane/ethyl acetate 4/1), Yield 85%. ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.55(1 \mathrm{H}$, $\left.\mathrm{d}, J=6.6 \mathrm{~Hz},\left(H_{\text {cis }} \mathrm{CH}\right) \mathrm{CHN}\right), 1.85\left(1 \mathrm{H}, \mathrm{d}, J=3.3 \mathrm{~Hz}\right.$, ($\left.\mathrm{HCH}_{\text {trans }}\right) \mathrm{CHN}$), $1.94-$
 $2.03(1 \mathrm{H}, \mathrm{m}, \mathrm{NCH}), 3.43$ and $3.49(2 \mathrm{H}, 2 \times \mathrm{d}, J=13.8 \mathrm{~Hz}, \mathrm{~N}(\mathrm{HCH}) \mathrm{Ar}), 3.89$ and $3.99(2 \mathrm{H}, 2 \times \mathrm{d} \times \mathrm{d}, J=10.3,6.3,5.0 \mathrm{~Hz},(\mathrm{HCH}) \mathrm{O}), 6.86-6.96$ and $7.22-7.33\left(9 \mathrm{H}, 2 \times \mathrm{m}, \mathrm{CH}_{\text {arom }}\right) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) ס 31.8 $\left(\mathrm{NCH}_{2} \mathrm{CH}\right), 38.0(\mathrm{NCH}), 63.5\left(\mathrm{NCH}_{2} \mathrm{Ar}\right), 70.0\left(\mathrm{CH}_{2} \mathrm{O}\right), 114.6,120.9,128.5$, 129.3 and $129.4\left(9 \times\right.$ CH $\left._{\text {arom }}\right), 132.8,137.4$ and $158.6\left(3 \times \mathrm{C}_{\text {arom,quat }}\right)$. IR (neat): $v_{\max }=2921,1599,1491,1240,1086,1034,1015,805,752,691$ cm^{-1}. MS (70 eV): m/z (\%) = 274/6 ($\mathrm{M}^{+}+1,100$). $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{ClNO}(273.76):$ calcd. C 70.20, H 5.89, N 5.12; found C 70.31, H 6.04, N 5.21.

2-[(4-Chlorophenoxy)methyl]-1-[(4-chlorophenyl)methyl]aziridine 234c

Yellow liquid, $R_{\mathrm{f}}=0.10$ (hexane/ethyl acetate $4 / 1$), Yield 82%. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.55(1 \mathrm{H}$, $\left.\mathrm{d}, J=6.6 \mathrm{~Hz},\left(H_{\text {cis }} \mathrm{CH}\right) \mathrm{CHN}\right), 1.84\left(1 \mathrm{H}, \mathrm{d}, J=3.3 \mathrm{~Hz},\left(\mathrm{HCH}_{\text {trans }}\right) \mathrm{CHN}\right), 1.91-1.98(1 \mathrm{H}, \mathrm{m}, \mathrm{NCH}), 3.42$
 and $3.48(2 \mathrm{H}, 2 \mathrm{xd}, J=13.2 \mathrm{~Hz}, \mathrm{~N}(\mathrm{HCH}) \mathrm{Ar}), 3.83$ and $3.99(2 \mathrm{H}, 2 \mathrm{xdx}$ $\mathrm{d}, J=10.4,6.6,4.4 \mathrm{~Hz},(\mathrm{HCH}) \mathrm{O}), 6.77-6.80,7.18-7.21$ and $7.27-7.32$ $\left(8 \mathrm{H}, 3 \times \mathrm{m}, \mathrm{CH}_{\text {arom }}\right) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 31.7\left(\mathrm{NCH}_{2} \mathrm{CH}\right), 37.9$ (NCH), $63.5\left(\mathrm{NCH}_{2} \mathrm{Ar}\right), 70.4\left(\mathrm{CH}_{2} \mathrm{O}\right), 115.9,128.5,129.29,129.34(8 \mathrm{x}$ $\mathrm{CH}_{\text {arom }}$), 125.8, 133.0, 137.3 and $157.3\left(4 \times \mathrm{C}_{\text {arom,quat) }}\right.$. IR (neat): $v_{\max }=$ 2986, 2923, 2830, 1596, 1489, 1284, 1240, 1171, 1089, 1015, 822, $806,668 \mathrm{~cm}^{-1}$. MS (70 eV): $m / z(\%)=308 / 10 / 12\left(\mathrm{M}^{+}+1,100\right)$. $\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{Cl} 2 \mathrm{NO}$ (308.21): calcd. C 62.35, H 4.91, N 4.54; found C 62.42, H 5.23, N 4.45 .

1-[(4-Methoxyphenyl)methyl]-2-(phenoxymethyl)aziridine 234d

Light-yellow crystals, $R_{\mathrm{f}}=0.11$ (hexane/ethyl acetate 4/1), Yield $87 \%{ }^{1} \mathrm{H} \mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$
 $1.52\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.6 \mathrm{~Hz},\left(H_{\mathrm{cis}} \mathrm{CH}\right) \mathrm{CHN}\right), 1.79(1 \mathrm{H}, \mathrm{d}, J=3.3 \mathrm{~Hz}$, $\left.\left(\mathrm{HCH}_{\text {trans }}\right) \mathrm{CHN}\right), 1.86-1.97(1 \mathrm{H}, \mathrm{m}, \mathrm{NCH}), 3.37$ and $3.44(2 \mathrm{H}, 2 \times \mathrm{d}, \mathrm{J}=$ $13.2 \mathrm{~Hz}, \mathrm{~N}(\mathrm{HCH}) \mathrm{Ar}), 3.76\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.91(2 \mathrm{H}, \mathrm{d}, J=5.5 \mathrm{~Hz},(\mathrm{HCH}) \mathrm{O})$, $6.81-6.93$ and $7.19-7.28\left(9 \mathrm{H}, 2 \times \mathrm{m}, \mathrm{CH}_{\text {arom }}\right) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $31.8\left(\mathrm{NCH}_{2} \mathrm{CH}\right), 37.8(\mathrm{NCH}), 55.2\left(\mathrm{OCH}_{3}\right), 63.6\left(\mathrm{NCH}_{2} \mathrm{Ar}\right), 70.1\left(\mathrm{CH}_{2} \mathrm{O}\right)$, 113.8, 114.6, 120.8, 129.3 and $129.4\left(9 \times \mathrm{CH}_{\text {arom }}\right), 130.0\left(\mathrm{C}_{\text {arom,quat }}\right), 158.7$ and $158.8\left(2 \times \mathrm{C}_{\text {arom }}\right.$) . IR (neat): $v_{\max }=2933,2836,1609,1511,1457,1243,1173,1030,1018,809$, $760 \mathrm{~cm}^{-1} . \mathrm{MS}(70 \mathrm{eV}): \mathrm{m} / \mathrm{z}(\%)=270\left(\mathrm{M}^{+}+1,100\right) . \mathrm{C}_{17} \mathrm{H}_{19} \mathrm{NO}_{2}$ (269.34): calcd. C 75.81, H 7.11, N 5.20; found C 75.67, H 7.27, N 5.08.

5.9 Synthesis of N-(3-aryloxy-2-bromopropyl)amines 239

As a representative example the synthesis of N-benzyl- N-(2-bromo-3-phenoxypropyl)- N-(4chlorobenzyl)amine 239b is described here. Benzyl bromide ($1.71 \mathrm{~g}, 1$ equiv) was added to a solution of 1-[(4-chlorophenyl)methyl]-2-(phenoxymethyl)aziridine 234b (2.73 g, 10 mmol) in acetonitrile (50 mL) at room temperature whilst stirring, and the resulting mixture was heated at reflux for 5 h . Afterward, the reaction mixture was poured into water (50 mL) and extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 50 \mathrm{~mL})$. Drying $\left(\mathrm{MgSO}_{4}\right)$, filtration of the drying agent and evaporation of the solvent afforded N -benzyl- N -(2-bromo-3-phenoxypropyl)- N-(4-chlorobenzyl)amine 239b, which was purified by column chromatography on silica gel (hexane/ethyl acetate $1 / 1$) to obtain an analytically pure sample (3.83 g , 86\%).

N-Benzyl- N -(2-bromo-3-phenoxypropyl)-N-(4-chlorobenzyl)amine 239b

Colourless oil, $R_{\mathrm{f}}=0.76$ (hexane/ethyl acetate 1/1), Yield 86%. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 2.91$ and $3.10(2 \mathrm{H}, 2 \mathrm{xdxd}, J=13.8,7.2,5.5 \mathrm{~Hz}, \mathrm{~N}(\mathrm{HCH}) \mathrm{CH}), 3.53-3.71\left(4 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{NCH}_{2} \mathrm{Ar}\right), 4.07-4.23(3 \mathrm{H}$,
 $\mathrm{m}, \mathrm{BrCH}$ and (HCH)O), 6.77-6.80, 6.94-6.99 and 7.22-7.36 (14H, $3 \times \mathrm{m}$, $\mathrm{CH}_{\text {arom }}$). ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 48.9(\mathrm{CHBr}), 57.8\left(\mathrm{NCH}_{2}\right), 58.5$ $\left(\mathrm{NCH}_{2}\right), 59.2\left(\mathrm{NCH}_{2}\right), 70.0\left(\mathrm{CH}_{2} \mathrm{O}\right), 114.6,121.2,127.4,128.4,128.5$, 129.0, 129.5 and $130.3\left(14 \times \mathrm{CH}_{\text {arom }}\right), 132.9,137.3,138.5$ and $158.1(4 \times$ $C_{\text {arom,quat }}$). IR (neat): $v_{\max }=2925,2826,1736,1598,1587,1491,1453$, 1240, 1088, 801, $752,692 \mathrm{~cm}^{-1} . \mathrm{MS}(70 \mathrm{eV}): \mathrm{m} / \mathrm{z}(\%)=364 / 6(100)$, 444/6/8 ($\mathrm{M}^{+}+1,15$). $\mathrm{C}_{23} \mathrm{H}_{23} \mathrm{BrCINO}(444.80)$: calcd. C 62.11, H 5.21, N 3.15; found C 62.29, H 5.41, N 3.04 .

N-Benzyl- N-[2-bromo-3-(4-chlorophenoxy)propyl]-N-(4-chlorobenzyl)amine 239c

Colourless oil, $R_{\mathrm{f}}=0.74$ (hexane/ethyl acetate 1/1), Yield 85%. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 2.90$ and
 3.08 (2H, $2 \times \mathrm{dx}$ d, $J=13.8,7.4,5.8 \mathrm{~Hz}, \mathrm{~N}(H C H) \mathrm{CH}), 3.52-3.72$ (4 H , $\left.\mathrm{m}, 2 \times \mathrm{NCH}_{2} \mathrm{Ar}\right), 4.02-4.14$ ($3 \mathrm{H}, \mathrm{m}, \mathrm{BrCH}$ and (HCH)O), 6.67-6.71 and $7.20-7.38\left(13 \mathrm{H}, 2 \times \mathrm{m}, \mathrm{CH}_{\text {arom }}\right) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 48.5$ (CHBr), $57.7\left(\mathrm{NCH}_{2}\right), 58.6\left(\mathrm{NCH}_{2}\right), 59.4\left(\mathrm{NCH}_{2}\right), 70.2\left(\mathrm{CH}_{2} \mathrm{O}\right), 115.9$, 127.4, 128.45, 128.53, 129.0, 129.4 and 130.3 ($13 \times \mathrm{CH}_{\text {arom }}$), 133.0, 137.3, 138.5, 156.8 and 126.2 ($5 \times \mathrm{C}_{\text {arom,quat }}$). IR (neat): $v_{\max }=2920$, 2826, 1596, 1490, 1453, 1240, 1090, 821, 801, 740, $697 \mathrm{~cm}^{-1} . \mathrm{MS}(70 \mathrm{eV}): \mathrm{m} / \mathrm{z}(\%)=398 / 400 / 402$ $\left(\mathrm{M}^{+}+1,100\right)$. $\mathrm{C}_{23} \mathrm{H}_{22} \mathrm{BrCl}_{2} \mathrm{NO}$ (479.24): calcd. C 57.64, H 4.63, N 2.92; found C 57.79, H 4.95, N 2.81 .

N-Benzyl-N-(2-bromo-3-phenoxypropyl)-N-(4-methoxybenzyl)amine 239d

Colourless oil, $R_{\mathrm{f}}=0.76$ (hexane/ethyl acetate 1/1), Yield 84%. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) ס 2.91 and
 3.08 ($2 \mathrm{H}, 2 \times \mathrm{dx}$ d, $J=13.8,8.3,5.4 \mathrm{~Hz}, \mathrm{~N}(\mathrm{HCH}) \mathrm{CH}$), 3.49-3.74 (4H, $\left.\mathrm{m}, 2 \times \mathrm{NCH}_{2} \mathrm{Ar}\right), 3.77\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 4.01-4.24(3 \mathrm{H}, \mathrm{m}, \mathrm{BrCH}$ and (HCH)O), 6.78-6.83, 6.92-6.97 and 7.15-7.39 (14H, $3 \times \mathrm{m}, \mathrm{CH}_{\text {arom }}$). ${ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 49.3(\mathrm{CHBr}), 55.2\left(\mathrm{NCH}_{2}\right), 57.8\left(\mathrm{NCH}_{2}\right)$, $58.6\left(\mathrm{NCH}_{2}\right), 59.3\left(\mathrm{OCH}_{3}\right), 70.2\left(\mathrm{CH}_{2} \mathrm{O}\right), 113.7,114.7,121.1,127.2$, 128.3, 129.0, 129.4 and 130.2 ($14 \times \mathrm{CH}_{\text {arom }}$), 130.8 and 138.9, $(2 \times$ $\mathrm{C}_{\text {arom,quat }}$) 158.3 and $158.9\left(2 \times \mathrm{C}_{\text {arom }} \mathrm{O}\right.$). IR (neat): $\mathrm{V}_{\text {max }}=2932,2833$, 1599, 1509, 1495, 1453, 1241, 1172, 1034, 813, 752, $691 \mathrm{~cm}^{-1} . \mathrm{MS}(70 \mathrm{eV}): \mathrm{m} / \mathrm{z}(\%)=360$ (100), $440 / 2\left(\mathrm{M}^{+}+1,30\right) . \mathrm{C}_{24} \mathrm{H}_{26} \mathrm{BrNO}_{2}$ (440.38): calcd. C $65.46, \mathrm{H} 5.95, \mathrm{~N} 3.18$; found $\mathrm{C} 65.62, \mathrm{H} 6.13, \mathrm{~N}$ 3.14 .

5.10 Synthesis of \mathbf{N}-(2-chloro-3-aryloxypropyl)amines 240

As a representative example the synthesis of N -benzyl- N -(2-chloro-3-phenoxypropyl)- N -(4methoxybenzyl)amine 240d is described here. Tetraethylammonium chloride ($1.66 \mathrm{~g}, 10$ equiv) was
added to a solution of N-benzyl- N-(2-bromo-3-phenoxypropyl)- N-(4-methoxybenzyl)amine 239d (0.44 $\mathrm{g}, 1 \mathrm{mmol}$) in acetonitrile (20 mL) at room temperature whilst stirring, and the resulting mixture was heated at reflux for 3 h . Afterward, the reaction mixture was poured into water (50 mL) and extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 50 \mathrm{~mL})$. Drying $\left(\mathrm{MgSO}_{4}\right)$, filtration of the drying agent and evaporation of the solvent afforded N -benzyl- N -(2-chloro-3-phenoxypropyl)- N -(4-methoxybenzyl) amine 240d, which was purified by column chromatography on silica gel (hexane/ethyl acetate $1 / 1$) to obtain an analytically pure sample ($0.33 \mathrm{~g}, 84 \%$).

N-Benzyl-N-(2-chlorobenzyl)-N-(2-chloro-3-phenoxypropyl)amine 240a

Colourless oil, $R_{\mathrm{f}}=0.78$ (hexane/ethyl acetate $1 / 1$), Yield $82 \% .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 2.87$ and $3.06(2 \mathrm{H}, 2 \mathrm{xd} \mathrm{xd}, J=13.8,7.2,5.5 \mathrm{~Hz}, \mathrm{~N}(\mathrm{HCH}) \mathrm{CH}), 3.61-3.84(4 \mathrm{H}, \mathrm{m}, 2 \mathrm{x}$
 $\left.\mathrm{NCH}_{2} \mathrm{Ar}\right)$, 3.90-3.96 (1H, m, CICH), 4.10-4.18 (2H, m, (HCH)O), 6.76-6.78, $6.92-6.97,7.13-7.39$ and $7.51-7.54\left(14 \mathrm{H}, 4 \times \mathrm{m}, \mathrm{CH}_{\text {arom }}\right) .{ }^{13} \mathrm{C}$ NMR (75 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 56.5(\mathrm{CHCl}), 57.0\left(\mathrm{NCH}_{2}\right), 57.5\left(\mathrm{NCH}_{2}\right), 59.6\left(\mathrm{NCH}_{2}\right), 69.9$ $\left(\mathrm{CH}_{2} \mathrm{O}\right), 114.6,121.1,126.7,127.3,128.3,128.4,129.1,129.4,129.6$ and $131.0\left(14 \times \mathrm{CH}_{\text {arom }}\right), 134.3,136.4$ and $138.5\left(3 \times \mathrm{C}_{\text {arom,quat }}\right), 158.3\left(\mathrm{C}_{\text {aromO }}\right)$. IR (neat): $v_{\max }=2923,2849,1599,1495,1453,1241,1037,749,690 \mathrm{~cm}^{-1}$.
MS (70 eV): $m / z(\%)=400 / 2 / 4\left(\mathrm{M}^{+}+1,100\right), 364 / 6$ (75). $\mathrm{C}_{23} \mathrm{H}_{23} \mathrm{Cl}_{2} \mathrm{NO}$ (400.35): calcd. C 69.00, H 5.79, N 3.50; found C 69.17, H 5.97, N 3.72.

N-Benzyl-N-(4-chlorobenzyl)-N-(2-chloro-3-phenoxypropyl)amine 240b

Colourless oil, $R_{\mathrm{f}}=0.79$ (hexane/ethyl acetate $1 / 1$), Yield 79%. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 2.81$ and $3.02(2 \mathrm{H}, 2 \mathrm{x} \mathrm{d} \mathrm{x} \mathrm{d} J=13.8,7.2,,6.0 \mathrm{~Hz}, \mathrm{~N}(H C H) \mathrm{CH}), 3.55$ and $3.68(2 \mathrm{H}, 2 \mathrm{x} \mathrm{d}, J=13.5 \mathrm{~Hz}$,
 $\mathrm{N}(\mathrm{HCH}) \mathrm{Ar}), 3.59$ and 3.64 (2H, $2 \times \mathrm{d}, J=13.8 \mathrm{~Hz}, \mathrm{~N}(\mathrm{HCH}) \mathrm{Ar})$, 3.96-4.01 (1H, m, CICH), 4.05-4.18 (2H, m, $\left.\mathrm{CH}_{2} \mathrm{O}\right), 6.76-6.79,6.93-6.98$ and $7.21-7.38\left(14 \mathrm{H}, 3 \times \mathrm{m}, \mathrm{CH}_{\text {arom }}\right) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 57.1$ $(\mathrm{CHCl}), 57.4\left(\mathrm{NCH}_{2}\right), 58.7\left(\mathrm{NCH}_{2}\right), 59.4\left(\mathrm{NCH}_{2}\right), 70.0\left(\mathrm{CH}_{2} \mathrm{O}\right), 114.7$, 121.3, 127.5, 128.5, 128.6, 129.1, 129.6 and 130.4 (14 x CH arom $)$, 133.0, 137.5 and 138.7 ($3 \times \mathrm{C}_{\text {arom,quat }}$), 158.3 ($\mathrm{C}_{\text {arom }}$ O). IR (neat): $v_{\max }=2924$, 2828, 1599, 1588, 1491, 1453, 1241, 1088, 801, 751, $691 \mathrm{~cm}^{-1} . \mathrm{MS}(70$ $\mathrm{eV}): m / z(\%)=400 / 2 / 4\left(\mathrm{M}^{+}+1,100\right), 364 / 6(60) . \mathrm{C}_{23} \mathrm{H}_{23} \mathrm{Cl}_{2} \mathrm{NO}$ (400.35): calcd. C 69.00, H 5.79, N 3.50; found C 68.92, H 5.94, N 3.55

N-Benzyl-N-(4-chlorobenzyl)-N-[2-chloro-3-(4-chlorophenoxy)propyl]amine 240c

Colourless oil, $R_{\mathrm{f}}=0.80$ (hexane/ethyl acetate $1 / 1$), Yield $83 \% .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 2.80$ and $3.00(2 \mathrm{H}, 2 \times \mathrm{d} x \mathrm{~d}, J=13.6,7.4,5.5 \mathrm{~Hz}, \mathrm{~N}(H C H) \mathrm{CH}), 3.51-3.71(4 \mathrm{H}$,
 m, $2 \times \mathrm{NCH}_{2} \mathrm{Ar}$), 3.91-3.96 (1H, m, ClCH), 4.02-4.13 (2H, m, $\mathrm{CH}_{2} \mathrm{O}$), $6.65-6.68$ and $7.18-7.31\left(13 \mathrm{H}, 2 \times \mathrm{m}, \mathrm{CH}_{\text {arom }}\right) .{ }^{13} \mathrm{C} \mathrm{NMR}(75 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 56.7(\mathrm{CHCl}), 57.1\left(\mathrm{NCH}_{2}\right), 58.7\left(\mathrm{NCH}_{2}\right), 59.4\left(\mathrm{NCH}_{2}\right), 70.0$ $\left(\mathrm{CH}_{2} \mathrm{O}\right), 115.8,127.4,128.4,128.5,128.9,129.3$ and $130.2(13 \mathrm{x}$ $\mathrm{CH}_{\text {arom }}$), 126.1, 132.9, 137.3 and $138.5\left(4 \times \mathrm{C}_{\text {arom,quat }}\right), 156.8$ ($\left.\mathrm{C}_{\text {arom }} \mathrm{O}\right)$. IR (neat): $v_{\max }=2925,2828,2359,1596,1490,1453,1285,1241$,

1090, $821,801,740,698 \mathrm{~cm}^{-1} . \mathrm{MS}(70 \mathrm{eV}): \mathrm{m} / \mathrm{z}(\%)=434 / 36 / 38 / 40\left(\mathrm{M}^{+}+1,100\right), 398 / 400(90)$. $\mathrm{C}_{23} \mathrm{H}_{22} \mathrm{Cl}_{3} \mathrm{NO}$ (434.79): calcd. C 63.54, H 5.10, N 3.22; found C 63.78, H 5.41, N 3.38.

N-Benzyl-N-(2-chloro-3-phenoxypropyl)-N-(4-methoxybenzyl)amine 240d

Colourless oil, $R_{\mathrm{f}}=0.75$ (hexane/ethyl acetate 1/1), Yield $84 \% .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 2.80$ and $3.00(2 \mathrm{H}, 2 \times \mathrm{d} x \mathrm{~d}, \mathrm{~J}=13.6,8.0,5.5 \mathrm{~Hz}, \mathrm{~N}(\mathrm{HCH}) \mathrm{CH}), 3.48-3.75\left(4 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{NCH}_{2} \mathrm{Ar}\right), 3.77(3 \mathrm{H}$, s,

 $\left.\mathrm{OCH}_{3}\right), 3.86-3.95(1 \mathrm{H}, \mathrm{m}, \mathrm{CICH}), 4.09-4.17\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{O}\right), 6.78-6.84$, $6.92-6.97$ and $7.21-7.32\left(14 \mathrm{H}, 3 \times \mathrm{m}, \mathrm{CH}_{\text {arom }}\right) .{ }^{13} \mathrm{C} \mathrm{NMR}(75 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 55.2(\mathrm{CHCl}), 57.2\left(\mathrm{NCH}_{2}\right), 58.7\left(\mathrm{NCH}_{2}\right), 59.3\left(\mathrm{NCH}_{2}\right), 70.0$ $\left(\mathrm{CH}_{2} \mathrm{O}\right), 113.7,114.7,121.1,127.2,128.3,129.0,129.4$ and 130.1 (14 $x \mathrm{CH}_{\text {arom }}$), 130.8 and 138.9 ($2 \times \mathrm{C}_{\text {arom,quat }}$), 158.3 and 158.8 (2 x $\mathrm{C}_{\text {arom }}$ O). IR (neat): $v_{\max }=2932,2833,2342,1599,1510,1495,1454$, 1241, 1172, 1035, 813, 752, 741, $691 \mathrm{~cm}^{-1} . \mathrm{MS}(70 \mathrm{eV}): \mathrm{m} / z(\%)=360(100), 396 / 8\left(\mathrm{M}^{+}+1,49\right)$. $\mathrm{C}_{24} \mathrm{H}_{26} \mathrm{CINO}_{2}$ (395.93): calcd. C 72.81, H 6.62, N 3.54; found C 72.94, H 6.82, N 3.40.

5.11 Synthesis of N-(2-iodo-3-aryloxypropyl)amines 241

As a representative example the synthesis of N-benzyl- N-(2-chlorobenzyl)- N-(2-iodo-3phenoxypropyl)amine 241a is described here. Sodium iodide ($3.00 \mathrm{~g}, 20$ equiv) was added to a solution of N -benzyl- N -(2-chlorobenzyl)- N -(2-bromo-3-phenoxypropyl)amine 239a ($0.44 \mathrm{~g}, 1 \mathrm{mmol}$) in acetonitrile $(20 \mathrm{~mL})$ at room temperature whilst stirring, and the resulting mixture was heated at reflux for 3 h . Afterward, the reaction mixture was poured into water $(50 \mathrm{~mL})$ and extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 50$ $\mathrm{mL})$. Drying $\left(\mathrm{MgSO}_{4}\right)$, filtration of the drying agent and evaporation of the solvent afforded N -benzyl- N -(2-chlorobenzyl)- N-(2-iodo-3-phenoxypropyl)amine 241a, which was purified by column chromatography on silica gel (hexane/ethyl acetate $1 / 1$) to obtain an analytically pure sample (0.40 g , 89\%).

N -Benzyl-N-(2-chlorobenzyl)-N-(2-iodo-3-phenoxypropyl)amine 241a

Colourless oil, $R_{\mathrm{f}}=0.76$ (hexane/ethyl acetate 1/1), Yield $89 \% .{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 3.01$ and $3.07(2 \mathrm{H}, 2 \mathrm{x} \mathrm{d} \mathrm{x} \mathrm{d}, J=14.0,8.5,6.9 \mathrm{~Hz}, \mathrm{~N}(H C H) \mathrm{CH}), 3.63$ and $3.70(2 \mathrm{H}, 2 \mathrm{xd}, J=13.2 \mathrm{~Hz}$, $\mathrm{N}(\mathrm{HCH}) \mathrm{Ar})$, 3.74 and $3.81(2 \mathrm{H}, 2 \times \mathrm{d}, J=14.1 \mathrm{~Hz}, \mathrm{~N}(\mathrm{HCH}) \mathrm{Ar})$, 4.05-4.18
 $\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{O}\right), 4.22-4.30(1 \mathrm{H}, \mathrm{m}, \mathrm{ICH}), 6.76-6.79,6.93-6.97,7.12-7.41$ and $7.54-7.57\left(14 \mathrm{H}, 4 \times \mathrm{m}, \mathrm{CH}_{\text {arom }}\right) .{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 28.7(\mathrm{CHI})$, $56.1\left(\mathrm{NCH}_{2}\right), 59.4\left(\mathrm{NCH}_{2}\right), 59.6\left(\mathrm{NCH}_{2}\right), 71.0\left(\mathrm{CH}_{2} \mathrm{O}\right), 114.8,121.1,126.7$, 127.3, 128.3, 128.4, 129.2, 129.4, 129.5 and 131.2 ($14 \times \mathrm{CH}_{\text {arom }}$), 134.2, 136.3 and $138.4\left(3 \times C_{\text {arom,quat }}\right), 158.1\left(\mathrm{C}_{\text {arom }} \mathrm{O}\right)$. IR (neat): $v_{\max }=2921,2849$, $1598,1494,1453,1239,1029,749,690 \mathrm{~cm}^{-1} . \mathrm{MS}(70 \mathrm{eV}): \mathrm{m} / z(\%)=364 / 6$ (100), 492/4 ($\mathrm{M}^{+}+1,5$). $\mathrm{C}_{23} \mathrm{H}_{23} \mathrm{CIINO}$ (491.80): calcd. C 56.17, H 4.71, N 2.85 ; found C 55.96, H 4.83, N 3.01.

N-Benzyl-N-(4-chlorobenzyl)-N-(2-iodo-3-phenoxypropyl)amine 241b

Colourless oil, $R_{\mathrm{f}}=0.77$ (hexane/ethyl acetate $1 / 1$), Yield $88 \% .{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 2.93$ and $3.00(2 \mathrm{H}, 2 \times \mathrm{dxd}, J=13.8,7.7,7.2 \mathrm{~Hz}, \mathrm{~N}(H C H) \mathrm{CH}), 3.54$ and $3.63(2 \mathrm{H}$,
 $2 \times d, J=13.8 \mathrm{~Hz}, \mathrm{~N}(\mathrm{HCH}) \mathrm{Ar})$, 3.59 ($2 \mathrm{H}, \mathrm{d}, J=7.7 \mathrm{~Hz}, \mathrm{~N}(\mathrm{HCH}) \mathrm{Ar})$, $4.08-$ $4.20\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{O}\right), 4.22-4.32$ ($1 \mathrm{H}, \mathrm{m}, \mathrm{ICH}$), 6.77-6.81, 6.94-6.99 and 7.21-7.42 (14H, $\left.3 \times \mathrm{m}, \mathrm{CH}_{\text {arom }}\right) .{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 28.7(\mathrm{CHI})$, $58.3\left(\mathrm{NCH}_{2}\right), 59.0\left(\mathrm{NCH}_{2}\right), 59.3\left(\mathrm{NCH}_{2}\right), 71.1\left(\mathrm{CH}_{2} \mathrm{O}\right), 114.8,121.3$, 127.5, 128.5, 128.6, 129.1, 129.6 and $130.4\left(14 \times \mathrm{CH}_{\text {arom }}\right), 133.0,137.4$ and $138.5\left(3 \times C_{\text {arom,quat }}\right)$, $158.1\left(\mathrm{C}_{\text {arom }}\right)$. IR (neat): $v_{\max }=2924,2803$, 1598, 1587, 1491, 1453, 1239, 1088, 800, 751, $690 \mathrm{~cm}^{-1} . \mathrm{MS}(70 \mathrm{eV}): \mathrm{m} / \mathrm{z}(\%)=364 / 6$ (100), 492/4 $\left(\mathrm{M}^{+}+1,8\right) . \mathrm{C}_{23} \mathrm{H}_{23} \mathrm{CIINO}(491.80)$: calcd. C 56.17, H 4.71, N 2.85; found C 56.19, H 4.88, N 3.04.

N-Benzyl- N-(4-chlorobenzyl)-N-[3-(4-chlorophenoxy)-2-iodopropyl]amine 241c

Colourless oil, $R_{\mathrm{f}}=0.77$ (hexane/ethyl acetate $1 / 1$), Yield $82 \% .{ }^{1} \mathrm{H} \mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 2.92$ and $2.99(2 \mathrm{H}, 2 \times \mathrm{d} \times \mathrm{d}, \mathrm{J}=14.0,8.0,6.9 \mathrm{~Hz}, \mathrm{~N}(\mathrm{HCH}) \mathrm{CH}), 3.52$ and 3.64
 (2H, $2 \times \mathrm{d}, \mathrm{J}=13.5 \mathrm{~Hz}, \mathrm{~N}(\mathrm{HCH}) \mathrm{Ar})$, $3.58\left(2 \mathrm{H}, \mathrm{s}, \mathrm{PhCH}_{2} \mathrm{~N}\right), 4.03-4.14$ $\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{O}\right), 4.18-4.26(1 \mathrm{H}, \mathrm{m}, \mathrm{ICH}), 6.67-6.70$ and $7.18-7.38$ $\left(13 \mathrm{H}, 2 \times \mathrm{m}, \mathrm{CH}_{\text {arom }}\right) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 28.0(\mathrm{CHI}), 58.3$ $\left(\mathrm{NCH}_{2}\right), 59.0\left(\mathrm{NCH}_{2}\right), 59.1\left(\mathrm{NCH}_{2}\right), 71.1\left(\mathrm{CH}_{2} \mathrm{O}\right), 115.9,127.4,128.4$, 128.5, 129.0, 129.3 and $130.3\left(13 \times \mathrm{CH}_{\text {arom }}\right)$, 126.1, 132.9, 137.2 and $138.4\left(4 \times C_{\text {arom,quat }}\right), 156.6\left(\mathrm{C}_{\text {arom }} \mathrm{O}\right)$. IR (neat): $v_{\max }=2924,2804$, 2361, 1596, 1489, 1452, 1238, 1090, 821, 800, 737, $698 \mathrm{~cm}^{-1} . \mathrm{MS}(70 \mathrm{eV}): m / z(\%)=n o[M]+$, 398/400/402 ($\mathrm{M}^{+}-\mathrm{I}, 100$). $\mathrm{C}_{23} \mathrm{H}_{22} \mathrm{Cl}_{2}$ INO (526.24): calcd. C 52.49, H 4.21, N 2.66; found C 52.36, H 4.18, N 2.53.

N-Benzyl-N-(2-iodo-3-phenoxypropyl)-N-(4-methoxybenzyl)amine 241d

Colourless oil, $R_{\mathrm{f}}=0.77$ (hexane/ethyl acetate 1/1), Yield $79 \% .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 2.95$ and $3.01(2 \mathrm{H}, 2 \times \mathrm{d} x \mathrm{~d}, \mathrm{~J}=13.9,8.5,6.6 \mathrm{~Hz}, \mathrm{~N}(\mathrm{HCH}) \mathrm{CH}), 3.48-3.72\left(4 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{NCH}_{2} \mathrm{Ar}\right), 3.76(3 \mathrm{H}$, s,
 $\left.\mathrm{OCH}_{3}\right), 4.01-4.29(3 \mathrm{H}, \mathrm{m}, \mathrm{ICH}$ and $(\mathrm{HCH}) \mathrm{O}), 6.78-6.83,6.92-6.97$ and $7.22-7.35\left(14 \mathrm{H}, 3 \times \mathrm{m}, \mathrm{CH}_{\text {arom }}\right) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 29.1$ (CHI), $55.2\left(\mathrm{OCH}_{3}\right), 58.3\left(\mathrm{NCH}_{2}\right), 58.9\left(\mathrm{NCH}_{2}\right), 59.3\left(\mathrm{NCH}_{2}\right), 71.1\left(\mathrm{CH}_{2} \mathrm{O}\right)$, 113.7, 114.7, 121.1, 127.2, 128.3, 129.0, 129.4 and 130.2 ($14 \times \mathrm{CH}_{\text {arom }}$), 130.7 and $138.8\left(2 \times \mathrm{C}_{\text {arom,quat }}\right), 158.2$ and $158.8\left(2 \times \mathrm{C}_{\text {arom }} \mathrm{O}\right)$. IR (neat): $v_{\max }=2928,2833,1598,1509,1495,1240,1171,1033,812,752,734$, $691 \mathrm{~cm}^{-1} . \mathrm{MS}(70 \mathrm{eV}): \mathrm{m} / \mathrm{z}(\%)=360(100), 488\left(\mathrm{M}^{+}+1,10\right)$. $\mathrm{C}_{24} \mathrm{H}_{26} \mathrm{INO}_{2}$ (487.38): calcd. C 59.14, H 5.38, N 2.87; found C 59.30, H 5.62, N 3.00.

5.12 Synthesis of 2-amino-3-aryloxy-1-fluoropropanes 242 and N -(2-fluoro-3aryloxypropyl)amines 243

As a representative example the synthesis of $2-[N$-benzyl- N-(2-chlorobenzyl)amino]-1-fluoro-3phenoxypropane 242a and N-benzyl- N-(2-chlorobenzyl)- N-(2-fluoro-3-phenoxypropyl)amine 243a is described here. TBAF ($2.61 \mathrm{~g}, 2$ equiv) was added to a solution of N-benzyl- N-(2-chlorobenzyl)- N-(2-bromo-3-phenoxypropyl)amine 239a ($2.22 \mathrm{~g}, 5 \mathrm{mmol}$) in acetonitrile (30 mL) at room temperature whilst stirring, and the resulting mixture was heated at reflux for 15 h . Extraction with $\mathrm{Et}_{2} \mathrm{O}(3 \times 50 \mathrm{~mL})$, drying $\left(\mathrm{MgSO}_{4}\right)$, filtration of the drying agent and evaporation of the solvent afforded a mixture of $2-[\mathrm{N}-$ benzyl- N-(2-chlorobenzyl)amino]-1-fluoro-3-phenoxypropane 242a and N-benzyl- N-(2-chlorobenzyl)-N-(2-fluoro-3-phenoxypropyl)amine 243a in a ratio of $5: 1$. The two isomers were separated by column chromatography (hexane/ethyl acetate 97:3) to furnish compounds 242a (1.04 g, 54\%) and 243a (0.19 $\mathrm{g}, 10 \%$) as analytically pure samples.

2-[N-Benzyl-N-(2-chlorobenzyl)amino]-1-fluoro-3-phenoxypropane 242a

Colourless oil, $R_{\mathrm{f}}=0.17$ (hexane/ethyl acetate $97 / 3$), Yield 54%. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 3.31-$ $3.44(1 \mathrm{H}, \mathrm{m}, \mathrm{NCH}), 3.88$ and $4.01\left(4 \mathrm{H}, 2 \times \mathrm{s}, 2 \times \mathrm{NCH}_{2} \mathrm{Ar}\right), 4.20(2 \mathrm{H}, \mathrm{d}, J=6.1$ $\mathrm{Hz},(\mathrm{HCH}) \mathrm{O}), 4.77(2 \mathrm{H}, \mathrm{d} x \mathrm{~d}, J=47.4,5.5 \mathrm{~Hz},(\mathrm{HCH}) \mathrm{F}), 6.86-6.89,6.91-$ $6.97,7.12-7.38$ and $7.61-7.63\left(14 \mathrm{H}, 4 \times \mathrm{m}, \mathrm{CH}_{\text {arom }}\right) .{ }^{13} \mathrm{C} \mathrm{NMR}(75 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 52.2\left(\mathrm{NCH}_{2} \mathrm{Ar}\right), 55.5\left(\mathrm{NCH}_{2} \mathrm{Ar}\right), 57.2(\mathrm{~d}, J=18.4 \mathrm{~Hz}, \mathrm{CHN}), 65.3(\mathrm{~d}, J$ $=5.8 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{O}$), 82.4 ($\mathrm{d}, \mathrm{J}=170.7 \mathrm{~Hz}, \mathrm{CHF}$), 114.4, 121.0, 126.8, 127.1, 128.1, 128.3, 128.7, 129.4, 129.5 and $130.5\left(14 \times \mathrm{CH}_{\text {arom }}\right), 134.0,137.1$ and $139.6\left(3 \times \mathrm{C}_{\text {arom,quat }}\right), 158.5\left(\mathrm{C}_{\text {arom }} \mathrm{O}\right) .{ }^{19} \mathrm{~F} \mathrm{NMR}\left(\mathrm{CCl}_{3} \mathrm{~F}\right): \delta-227.32(\mathrm{t} \times \mathrm{d}, \mathrm{J}=$ $48.0,23.7 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{~F}$). IR (neat): $v_{\max }=3062,3029,2954,1599,1495,1470,1241,1037,751,734$, $691 \mathrm{~cm}^{-1}$. MS $(70 \mathrm{eV}): m / z(\%)=384 / 6\left(\mathrm{M}^{+}+1,100\right) . \mathrm{C}_{23} \mathrm{H}_{23} \mathrm{CIFNO}$ (383.89): calcd. C 71.96, H 6.04, N 3.65; found C 71.82, H 6.19, N 3.56.

N -Benzyl-N-(2-chlorobenzyl)-N-(2-fluoro-3-phenoxypropyl)amine 243a

Colourless oil, $R_{\mathrm{f}}=0.10$ (hexane/ethyl acetate $97 / 3$), Yield $10 \% .{ }^{1} \mathrm{H} \mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 2.84-$ $2.93(2 \mathrm{H}, \mathrm{m}, \mathrm{N}(\mathrm{HCH}) \mathrm{CHF})$, $3.71\left(2 \mathrm{H}, \mathrm{s}, \mathrm{NCH}_{2} \mathrm{Ar}\right)$, $3.82\left(2 \mathrm{H}, \mathrm{s}, \mathrm{NCH}_{2} \mathrm{Ar}\right)$, 3.92-4.06 (2H, m, (HCH)O$)$,
 4.80-4.87 and 4.96-5.03 (1H, $2 \times \mathrm{m}, \mathrm{CHF}$), 6.78-6.81, 6.92-6.97, 7.15-7.40 and $7.52-7.55\left(14 \mathrm{H}, 4 \times \mathrm{m}, \mathrm{CH}_{\text {arom }}\right) .{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 54.0(\mathrm{~d}, \mathrm{~J}=$ $21.9 \mathrm{~Hz}, \mathrm{NCH}_{2} \mathrm{CHF}$), 56.5 and $59.6\left(2 \times \mathrm{NCH}_{2} \mathrm{Ar}\right), 68.3(\mathrm{~d}, J=23.1 \mathrm{~Hz}$, $\mathrm{CH}_{2} \mathrm{O}$), $90.9(\mathrm{~d}, \mathrm{~J}=174.2 \mathrm{~Hz}, \mathrm{CHF}), 114.6,121.2,126.8,127.4,128.5$, 129.1, 129.5, 129.6, 129.7 and $131.0\left(14 \times \mathrm{CH}_{\text {arom }}\right)$, 134.3, 136.7 and 138.9 ($3 \times \mathrm{C}_{\text {arom,quat }}$), $158.5\left(\mathrm{C}_{\text {arom }} \mathrm{O}\right) .{ }^{19} \mathrm{~F} \mathrm{NMR}\left(\mathrm{CCl}_{3} \mathrm{~F}\right)$: $\delta-188.68$ to $-188.2(\mathrm{~m}$, CHF). IR (neat): $\underline{v}_{\max }=2923,2850,1598,1588,1494,1443,1242,1049$, 1037, 750, $690 \mathrm{~cm}^{-1} . \mathrm{MS}(70 \mathrm{eV}): \mathrm{m} / \mathrm{z}(\%)=384 / 6\left(\mathrm{M}^{+}+1,82\right)$.

2-[N-Benzyl-N-(4-chlorobenzyl)amino]-1-fluoro-3-phenoxypropane 242b

Colourless oil, $R_{f}=0.35$ (hexane/ethyl acetate 96/4), Yield 42%. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 3.28-$ $3.43(1 \mathrm{H}, \mathrm{m}, \mathrm{NCH}), 3.82\left(2 \mathrm{H}, \mathrm{s}, \mathrm{NCH}_{2} \mathrm{Ar}\right), 3.83\left(2 \mathrm{H}, \mathrm{s}, \mathrm{NCH}_{2} \mathrm{Ar}\right), 4.16(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.1 \mathrm{~Hz},(\mathrm{HCH}) \mathrm{O})$, $4.72(2 \mathrm{H}, \mathrm{d} x \mathrm{~d}, J=47.4,5.0 \mathrm{~Hz},(\mathrm{HCH}) \mathrm{F}), 6.85-6.88,6.94-6.99$ and $7.22-$ $7.38\left(14 \mathrm{H}, 3 \times \mathrm{m}, \mathrm{CH}_{\text {arom }}\right) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 54.7\left(\mathrm{NCH}_{2} \mathrm{Ar}\right), 55.3$ ($\mathrm{NCH}_{2} \mathrm{Ar}$), 56.4 (d, $J=18.5 \mathrm{~Hz}, \mathrm{CHN}$), $65.4\left(\mathrm{~d}, J=6.9 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{O}\right), 82.5(\mathrm{~d}, J$ $=172.0 \mathrm{~Hz}, \mathrm{CHF})$, 114.4, 121.0, 127.2, 128.4, 128.5, 128.6, 129.5 and $130.0,\left(14 \times \mathrm{CH}_{\text {arom }}\right)$, 132.7, 138.4 and $139.6\left(3 \times \mathrm{C}_{\text {arom,quat }}\right), 158.4\left(\mathrm{C}_{\text {arom }} \mathrm{O}\right)$. ${ }^{19} \mathrm{~F}$ NMR $\left(\mathrm{CCl}_{3} \mathrm{~F}\right): \delta-227.30\left(\mathrm{t} x \mathrm{~d}, J=47.3,22.3 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{~F}\right.$). IR (neat): $v_{\max }$ = 2928, 2833, 1599, 1588, 1491, 1470, 1241, 1088, 1014, 907, 753, 730, $691 \mathrm{~cm}^{-1} . \mathrm{MS}(70 \mathrm{eV}): m / z(\%)=364 / 6(100), 384 / 6\left(\mathrm{M}^{+}+1,77\right) . \mathrm{C}_{23} \mathrm{H}_{23} \mathrm{CIFNO}$ (383.89): calcd. C 71.96, H 6.04, N 3.65; found C 71.89, H 6.18, N 3.67.

N -Benzyl-N-(4-chlorobenzyl)-N-(2-fluoro-3-phenoxypropyl)amine 243b

Colourless oil, $R_{\mathrm{f}}=0.28$ (hexane/ethyl acetate 96/4), Yield $8 \% .{ }^{1} \mathrm{H} \mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 2.75-$ $2.95(2 \mathrm{H}, \mathrm{m}, \mathrm{N}(\mathrm{HCH}) \mathrm{CHF})$, $3.65\left(2 \mathrm{H}, \mathrm{s}, \mathrm{NCH}_{2} \mathrm{Ar}\right), 3.67\left(2 \mathrm{H}, \mathrm{s}, \mathrm{NCH}_{2} \mathrm{Ar}\right), 3.91-4.06\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{O}\right)$,
 4.80-4.86 and 4.93-5.02 (1H, $2 \times \mathrm{m}, \mathrm{CHF}$), 6.79-6.82, 6.94-6.99 and $7.22-7.38\left(14 \mathrm{H}, 3 \times \mathrm{m}, \mathrm{CH}_{\text {arom }}\right) .{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}\right.$, ref $\left.=\mathrm{CDCl}_{3}\right) \delta 53.7$ (d, $\left.J=21.9 \mathrm{~Hz}, \mathrm{NCH}_{2} \mathrm{CHF}\right), 58.7\left(\mathrm{NCH}_{2} \mathrm{Ar}\right), 59.4\left(\mathrm{NCH}_{2} \mathrm{Ar}\right), 68.2$ ($\mathrm{d}, \mathrm{J}=$ $23.1 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{O}$), 90.9 (d, $J=174.3 \mathrm{~Hz}, \mathrm{CHF}$), 114.6, 121.3, 127.4, 128.5, 128.6, 129.0, 129.6 and 130.3 ($14 \times \mathrm{CH}_{\text {arom }}$), 132.9, 137.7 and $138.9(3 \mathrm{x}$ $\left.\mathrm{C}_{\text {arom,quat }}\right), 158.4\left(\mathrm{C}_{\text {arom }} \mathrm{O}\right) .{ }^{19} \mathrm{~F} \operatorname{NMR}\left(\mathrm{CCl}_{3} \mathrm{~F}\right): \delta-188.58$ to $-188.18(\mathrm{~m}$, CHF). IR (neat): $v_{\max }=2924,2829,1598,1588,1490,1453,1242,1088,1014,801,752,691 \mathrm{~cm}^{-1}$. MS $(70 \mathrm{eV}): m / z(\%)=364 / 6(100), 384 / 6\left(\mathrm{M}^{+}+1,55\right)$.

2-[N-Benzyl-N-(4-chlorobenzyl)amino]-3-(4-chlorophenoxy)-1-fluoropropane 242c

Colourless oil, $R_{\mathrm{f}}=0.33$ (hexane/ethyl acetate $96 / 4$), Yield 60%. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 3.25-$ $3.40(1 \mathrm{H}, \mathrm{m}, \mathrm{NCH}), 3.81\left(2 \mathrm{H}, \mathrm{s}, \mathrm{NCH}_{2} \mathrm{Ar}\right), 3.82\left(2 \mathrm{H}, \mathrm{s}, \mathrm{NCH}_{2} \mathrm{Ar}\right), 4.11(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.0 \mathrm{~Hz},(\mathrm{HCH}) \mathrm{O})$,
 $4.71(2 \mathrm{H}, \mathrm{d} x \mathrm{~d}, J=47.3,4.9 \mathrm{~Hz},(\mathrm{HCH}) \mathrm{F}), 6.75-6.80$ and $7.19-7.37$ ($13 \mathrm{H}, 2 \times \mathrm{m}, \mathrm{CH}_{\text {arom }}$). ${ }^{13} \mathrm{C} \mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 54.7\left(\mathrm{NCH}_{2} \mathrm{Ar}\right), 55.3$ ($\mathrm{NCH}_{2} \mathrm{Ar}$), 56.4 (d, $J=18.5 \mathrm{~Hz}, \mathrm{CHN}$), $66.0\left(\mathrm{~d}, J=7.0 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{O}\right), 82.3$ (d, $J=171.9 \mathrm{~Hz}, \mathrm{CHF}$), 115.7, 127.2, 128.4, 128.5, 128.6, 129.4 and 129.9, ($13 \times \mathrm{CH}_{\text {arom }}$), 125.9, 132.7, 138.3 and 139.4 ($4 \times \mathrm{C}_{\text {arom,quat }}$), 157.0 ($\mathrm{C}_{\text {arom }} \mathrm{O}$). ${ }^{19} \mathrm{~F}$ NMR ($\mathrm{CCl}_{3} \mathrm{~F}$): $\delta-227.31$ ($\left.\mathrm{x} \times \mathrm{d}, J=47.3,22.3 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{~F}\right) . \mathrm{IR}$ (neat): $v_{\max }=2930,2831,1596,1588,1490,1470,1241,1090,1014$, 1006, 821, 737, $698 \mathrm{~cm}^{-1}$. $\mathrm{MS}(70 \mathrm{eV}): m / z(\%)=418 / 20 / 22\left(\mathrm{M}^{+}+1,100\right) . \mathrm{C}_{23} \mathrm{H}_{22} \mathrm{Cl}_{2} \mathrm{FNO}$ (418.34): calcd. C 66.04, H 5.30, N 3.35; found C 66.11, H 5.54, N 3.57.

N-Benzyl- N-(4-chlorobenzyl)-N-[3-(4-chlorophenoxy)-2-fluoropropyl]amine 243c

Colourless oil, $R_{\mathrm{f}}=0.27$ (hexane/ethyl acetate 96/4), Yield 10%. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 2.74-$ $2.96(2 \mathrm{H}, \mathrm{m}, \mathrm{N}(H C H) \mathrm{CHF}), 3.64\left(2 \mathrm{H}, \mathrm{s}, \mathrm{NCH}_{2} \mathrm{Ar}\right), 3.66(2 \mathrm{H}, \mathrm{s}$,
 $\left.\mathrm{NCH}_{2} \mathrm{Ar}\right), 3.90-4.05\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{O}\right), 4.75-4.82$ and $4.91-5.03(1 \mathrm{H}, 2 \mathrm{x}$ m, CHF), 6.69-6.72 and $7.20-7.37$ ($13 \mathrm{H}, 2 \times \mathrm{m}, \mathrm{CH}_{\text {arom }}$). ${ }^{13} \mathrm{C}$ NMR (75 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) 53.4 (d, $\left.\mathrm{J}=21.9 \mathrm{~Hz}, \mathrm{NCH}_{2} \mathrm{CHF}\right), 58.7\left(\mathrm{NCH}_{2} \mathrm{Ar}\right), 59.4$ ($\mathrm{NCH}_{2} \mathrm{Ar}$), 68.5 ($\mathrm{d}, \mathrm{J}=24.2 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{O}$), 90.7 ($\mathrm{d}, \mathrm{J}=175.4 \mathrm{~Hz}, \mathrm{CHF}$), 115.7, 128.4, 128.5, 128.9, 129.3, 129.6 and 130.2, ($13 \times \mathrm{CH}_{\text {arom }}$), 127.3, 132.9, 137.5 and $138.7\left(4 \times \mathrm{C}_{\text {arom,quat }}\right), 156.9$ ($\mathrm{C}_{\text {arom }}$ O). ${ }^{19} \mathrm{~F}$ NMR (CCl ${ }_{3} \mathrm{~F}$): $\delta-188.96$ to -188.73 (m, CHF). IR (neat): $v_{\max }=2925,2828,1594,1488,1452,1240,1090$, $1014,907,822,732,698 \mathrm{~cm}^{-1} . \mathrm{MS}(70 \mathrm{eV}): m / z(\%)=418 / 20 / 22\left(\mathrm{M}^{+}+1,100\right)$.

2-[N-Benzyl-N-(4-methoxybenzyl)amino]-1-fluoro-3-phenoxypropane 242d

Colourless oil, $R_{\mathrm{f}}=0.13$ (hexane/ethyl acetate $97 / 3$), Yield 61%. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 3.29-$ $3.44(1 \mathrm{H}, \mathrm{m}, \mathrm{NCH}), 3.78\left(5 \mathrm{H}, \mathrm{s}, \mathrm{NCH}_{2} \mathrm{Ar}\right.$ and $\left.\mathrm{OCH}_{3}\right), 3.84\left(2 \mathrm{H}, \mathrm{s}, \mathrm{NCH}_{2} \mathrm{Ar}\right), 4.15(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.6 \mathrm{~Hz}$,
 (HCH)O), 4.71 (2H, d x d, $J=47.6,5.2 \mathrm{~Hz},(\mathrm{HCH}) \mathrm{F}), 6.83-6.87,6.92-$ 6.97 and $7.20-7.39\left(14 \mathrm{H}, 3 \times \mathrm{m}, \mathrm{CH}_{\text {arom }}\right) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $54.7\left(\mathrm{NCH}_{2} \mathrm{Ar}\right), 55.1\left(\mathrm{NCH}_{2} \mathrm{Ar}\right), 55.2\left(\mathrm{OCH}_{3}\right), 56.2(\mathrm{~d}, \mathrm{~J}=18.5 \mathrm{~Hz}, \mathrm{CHN})$, 65.5 ($\mathrm{d}, \mathrm{J}=7.0 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{O}$), 82.6 ($\mathrm{d}, \mathrm{J}=171.9 \mathrm{~Hz}, \mathrm{CHF}$), 113.7, 114.4, 120.9, 127.0, 128.3, 128.6, 129.5 and $129.8\left(14 \times \mathrm{CH}_{\text {arom }}\right), 131.8$ and $140.0\left(2 \times \mathrm{C}_{\text {arom,quat }}\right)$, 158.5 and $158.7\left(2 \times \mathrm{C}_{\text {arom }} \mathrm{O}\right) .{ }^{19} \mathrm{~F} \mathrm{NMR}\left(\mathrm{CCl}_{3} \mathrm{~F}\right)$: δ 227.27 (x d, $J=47.4,23.7 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{~F}$). IR (neat): $v_{\max }=2917,2849,1599,1510,1495,1454,1241$, 1171, 1035, 831, 819, 753, 737, $691 \mathrm{~cm}^{-1} . \mathrm{MS}(70 \mathrm{eV}): \mathrm{m} / \mathrm{z}(\%)=380\left(\mathrm{M}^{+}+1,100\right) . \mathrm{C}_{24} \mathrm{H}_{26} \mathrm{FNO}_{2}$ (379.47): calcd. C 75.96, H 6.91, N 3.69 ; found C 75.77, H 7.03, N 3.51 .

N-Benzyl- N -(2-fluoro-3-phenoxypropyl)-N-(4-methoxybenzyl)amine 243d

Colourless oil, $R_{\mathrm{f}}=0.09$ (hexane/ethyl acetate 97/3), Yield 14%. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) ס $2.73-$ $2.94(2 \mathrm{H}, \mathrm{m}, \mathrm{N}(\mathrm{HCH}) \mathrm{CHF})$, $3.61\left(2 \mathrm{H}, \mathrm{s}, \mathrm{NCH}_{2} \mathrm{Ar}\right), 3.67\left(2 \mathrm{H}, \mathrm{s}, \mathrm{NCH}_{2} \mathrm{Ar}\right), 3.78\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right)$, $3.94-$
 $4.04(2 \mathrm{H}, \mathrm{m},(\mathrm{HCH}) \mathrm{O}), 4.77-4.83$ and $4.93-5.00(1 \mathrm{H}, 2 \times \mathrm{m}, \mathrm{CHF})$, $6.78-6.85,6.93-6.98$ and $7.22-7.36\left(14 \mathrm{H}, 3 \times \mathrm{m}, \mathrm{CH}_{\text {arom }}\right) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 53.6$ (d, $\left.\mathrm{J}=23.1 \mathrm{~Hz}, \mathrm{NCH}_{2} \mathrm{CHF}\right)$, $55.3\left(\mathrm{OCH}_{3}\right)$, $58.8\left(\mathrm{NCH}_{2} \mathrm{Ar}\right), 59.4\left(\mathrm{NCH}_{2} \mathrm{Ar}\right), 68.5\left(\mathrm{~d}, J=23.1 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{O}\right), 91.0(\mathrm{~d}, J$ $=174.2 \mathrm{~Hz}, \mathrm{CHF}$), 113.8, 114.6, 121.1, 127.2, 128.4, 129.0, 129.5 and $130.2\left(14 \times \mathrm{CH}_{\text {arom }}\right), 131.1$ and $139.3\left(2 \times \mathrm{C}_{\text {arom,quat }}\right), 158.5$ and 158.8 ($2 \times \mathrm{C}_{\text {arom }} \mathrm{O}$). ${ }^{19} \mathrm{~F}$ NMR ($\left.\mathrm{CCl}_{3} \mathrm{~F}\right)$: $\delta-188.52$ to -188.05 (m, CHF). IR (neat): $v_{\max }=2951,2834,1599,1510,1495,1453,1243,1172,1035,812,752,742,691 \mathrm{~cm}^{-1} . \mathrm{MS}$ $(70 \mathrm{eV}): m / z(\%)=380\left(\mathrm{M}^{+}+1,100\right)$.

5.13 Synthesis of 2-bromomethyl-2-methylaziridines 260

As a representative example, the synthesis of 2-bromomethyl-1-(4-methoxybenzyl)-2-methylaziridine 260d is described here. N -(2,3-Dibromo-2-methylpropylidene)-4-methoxybenzylamine 266d ${ }^{131}$ (3.49 g , $10 \mathrm{mmol})$ was dissolved in methanol (30 mL), after which $\mathrm{NaBH}_{4}(0.76 \mathrm{~g}$, 2 molar equiv) was added in small portions at $0{ }^{\circ} \mathrm{C}$ and the mixture was stirred for 36 hours at room temperature. The reaction mixture was poured into water (20 mL) and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 20 \mathrm{~mL})$. The combined organic extracts were washed with $\mathrm{H}_{2} \mathrm{O}(2 \times 15 \mathrm{~mL})$ and brine $(20 \mathrm{~mL})$. Drying $\left(\mathrm{MgSO}_{4}\right)$, filtration of the drying agent and evaporation of the solvent afforded 2-bromomethyl-1-(4-methoxybenzyl)-2-methylaziridine 260d ($2.36 \mathrm{~g}, 87 \%$), which was purified by filtration through silica gel (hexane/ethyl acetate $7 / 1$) in order to obtain an analytically pure sample.

2-Bromomethyl-1-(4-methylbenzyl)-2-methylaziridine 260b

Yellow oil, $R_{\mathrm{f}}=0.16$ (hexane/ethyl acetate 9/1), Yield 82%. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.43(3 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{CCH}_{3}\right), 1.50(1 \mathrm{H}, \mathrm{s},(\mathrm{HCH}) \mathrm{CN}), 1.98(1 \mathrm{H}, \mathrm{s},(\mathrm{HCH}) \mathrm{CN}), 2.33\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{Ar}\right), 3.28$ and $3.36(2 \mathrm{H}, 2 \mathrm{x} \mathrm{d}$, $J=9.9 \mathrm{~Hz},(\mathrm{HCH}) \mathrm{Br}), 3.50$ and $3.71(2 \mathrm{H}, 2 \times \mathrm{d}, J=13.7 \mathrm{~Hz}, \mathrm{~N}(\mathrm{HCH}) \mathrm{Ar}), 7.13-7.15$
 and 7.24-7.26 (4H, $\left.2 \times \mathrm{m}, \mathrm{CH}_{\text {arom }}\right) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 13.6\left(\mathrm{CCH}_{3}\right), 21.1$ $\left(\mathrm{CH}_{3} \mathrm{Ar}\right), 40.2\left(\mathrm{CCH}_{3}\right), 41.7\left(\mathrm{CH}_{2} \mathrm{CN}\right), 44.1\left(\mathrm{CH}_{2} \mathrm{Br}\right), 57.1\left(\mathrm{NCH}_{2} \mathrm{Ar}\right), 127.7$ and $129.1\left(4 \times \mathrm{CH}_{\text {arom }}\right)$, $136.5\left(2 \times \mathrm{C}_{\text {arom,quat }}\right)$. IR (neat): $v_{\max }=3024,2962$, 2922, 2851, $1671,1515,1451,1384,1348,1216,1167,1046,798,647 \mathrm{~cm}^{-1} . \mathrm{MS} \mathrm{m} / \mathrm{z}$ (\%) $254 / 6\left(\mathrm{M}^{+}+1,100\right)$.

2-Bromomethyl-1-(2-chlorobenzyl)-2-methylaziridine 260c

Yellow oil, $R_{\mathrm{f}}=0.24$ (hexane/ethyl acetate 9/1), Yield 85%. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.44(3 \mathrm{H}, \mathrm{s}$, Cl $\left.\mathrm{CCH}_{3}\right), 1.58(1 \mathrm{H}, \mathrm{s},(\mathrm{HCH}) \mathrm{CN}), 2.07(1 \mathrm{H}, \mathrm{s},(\mathrm{HCH}) \mathrm{CN}), 3.35$ and $3.40(2 \mathrm{H}, 2 \times \mathrm{d}, \mathrm{J}=$ 10.2 Hz , (HCH)Br), 3.63 and $3.85(2 \mathrm{H}, 2 \times \mathrm{d}, J=15.7 \mathrm{~Hz}, \mathrm{~N}(\mathrm{HCH}) \mathrm{Ar}), 7.20-7.36$ and 7.66-7.69 ($4 \mathrm{H}, 2 \times \mathrm{m}, \mathrm{CH}_{\text {arom }}$). ${ }^{13} \mathrm{C} \mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 13.6\left(\mathrm{CCH}_{3}\right), 40.2\left(\mathrm{CCH}_{3}\right)$, $42.0\left(\mathrm{CH}_{2} \mathrm{CN}\right)$, $43.9\left(\mathrm{CH}_{2} \mathrm{Br}\right)$, $54.3\left(\mathrm{NCH}_{2} \mathrm{Ar}\right)$, 126.9, 128.0, 129.0 and $129.1(4 \mathrm{x}$ $\mathrm{CH}_{\text {arom }}$), $132.8\left(\mathrm{NCH}_{2} \mathrm{C}\right), 137.3$ (CCI). IR (neat) $v_{\max }=3035,2964,1470,1443,1386$, $1348,1218,1171,1037,748,644 \mathrm{~cm}^{-1} . \mathrm{MS} \mathrm{m} / \mathrm{z}(\%) 274 / 6 / 8\left(\mathrm{M}^{+}+1,100\right)$.

2-Bromomethyl-1-(4-methoxybenzyl)-2-methylaziridine 260d

Yellow oil, $R_{\mathrm{f}}=0.10$ (hexane/ethyl acetate 7/1), Yield $87 \% ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.43(3 \mathrm{H}, \mathrm{s}$,
 $\left.\mathrm{CCH}_{3}\right), 1.50(1 \mathrm{H}, \mathrm{s},(\mathrm{HCH}) \mathrm{CN}), 1.97(1 \mathrm{H}, \mathrm{s},(\mathrm{HCH}) \mathrm{CN}), 3.29$ and $3.34(2 \mathrm{H}, 2 \mathrm{x}$ $\mathrm{d}, J=10.2 \mathrm{~Hz},(\mathrm{HCH}) \mathrm{Br}), 3.47$ and $3.69(2 \mathrm{H}, 2 \times \mathrm{d}, J=13.8 \mathrm{~Hz}, \mathrm{~N}(\mathrm{HCH}) \mathrm{Ar})$, $3.80\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 6.86-6.89$ and 7.27-7.29 $\left(4 \mathrm{H}, 2 \times \mathrm{m}, \mathrm{CH}_{\text {arom }}\right) .{ }^{13} \mathrm{C}$ NMR (75 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 13.6\left(\mathrm{CCH}_{3}\right), 40.2\left(\mathrm{CCH}_{3}\right)$, $41.7\left(\mathrm{CH}_{2} \mathrm{CN}\right)$, $44.2\left(\mathrm{CH}_{2} \mathrm{Br}\right)$, 55.3 $\left(\mathrm{OCH}_{3}\right), 56.8\left(\mathrm{NCH}_{2} \mathrm{Ar}\right), 113.8$ and $129.0\left(4 \times \mathrm{CH}_{\text {arom }}\right), 131.7\left(\mathrm{C}_{\text {arom,quat }}\right)$, 158.6 (C aromO); IR (neat) $v_{\max }=3030,2959,2933,2834,1612,1511,1463,1244,1172,1034,819,644 \mathrm{~cm}^{-1}$. MS $m / z(\%) 270 / 2\left(M^{+}+1,100\right)$.

5.14 Synthesis of optically active 2-bromomethyl-2-methylaziridines 270 and

271

N-(2,3-Dibromo-2-methylpropylidene)-1(S)-phenylethylamine 269 ($3.33 \mathrm{~g}, 10 \mathrm{mmol}$) was dissolved in methanol (30 mL), after which $\mathrm{NaBH}_{4}\left(0.76 \mathrm{~g}, 2\right.$ molar equiv) was added in small portions at $0{ }^{\circ} \mathrm{C}$ and the mixture was stirred for 36 hours at room temperature. The reaction mixture was poured into water $(20 \mathrm{~mL})$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 20 \mathrm{~mL})$. The combined organic extracts were washed with $\mathrm{H}_{2} \mathrm{O}$ $(2 \times 15 \mathrm{~mL})$ and brine $(20 \mathrm{~mL})$. Drying $\left(\mathrm{MgSO}_{4}\right)$, filtration of the drying agent and evaporation of the solvent afforded a mixture of 2(R)-2-bromomethyl-1-[1(S)-phenylethyl]-2-methylaziridine and 2(S)-2-bromomethyl-1-[1(S)-phenylethyl]-2-methylaziridine 270 and $271(2.42 \mathrm{~g}, 95 \%)$, which were separated by silica gel column chromatography (petroleum ether/ethyl acetate 9:1) in order to obtain analytically pure samples.

2(R)-2-Bromomethyl-1-[1(S)-phenylethyl]-2-methylaziridine 270 and 2(S)-2-bromomethyl-1-[1(S)-phenylethyl]-2-methylaziridine 271

and

Light yellow oil, $R_{f}=0.28$ (petroleum ether/ethyl acetate $9 / 1$), Yield 45%. $[\alpha]_{\mathrm{D}}{ }^{28}=-48.4$ (c $=0.05$, $\left.\mathrm{CDCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 1.38(1 \mathrm{H}, \mathrm{s},(\mathrm{HCH}) \mathrm{CN}), 1.43\left(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.6 \mathrm{~Hz}, \mathrm{CHCH}_{3}\right), 1.51(3 \mathrm{H}$, $\left.\mathrm{s}, \mathrm{CH}_{3} \mathrm{Ar}\right), 1.79(1 \mathrm{H}, \mathrm{s},(\mathrm{HCH}) \mathrm{CN}), 3.10\left(1 \mathrm{H}, \mathrm{q}, ~ J=6.6 \mathrm{~Hz}, \mathrm{CHCH}_{3}\right), 3.25$ and $3.46(2 \mathrm{H}, 2 \times \mathrm{d}, J=9.9$ $\mathrm{Hz},(\mathrm{HCH}) \mathrm{Br}), 7.25-7.40\left(5 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{\text {arom }}\right) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 13.4\left(\mathrm{CCH}_{3}\right), 24.6\left(\mathrm{CHCH}_{3}\right)$, $40.6\left(\mathrm{CH}_{2} \mathrm{CN}\right), 41.1\left(\mathrm{CCH}_{3}\right), 44.9\left(\mathrm{CH}_{2} \mathrm{Br}\right), 61.6\left(\mathrm{NCH}_{2} \mathrm{Ar}\right), 127.0$ and $128.3\left(5 \times \mathrm{CH}_{\text {arom }}\right), 145.0$ ($\mathrm{C}_{\text {arom,quat }}$). IR (neat) $v_{\max }=3027,2969,2927,2866,1449,1348,1222,1172,755,699,646 \mathrm{~cm}^{-1} . \mathrm{MS}$ m / z (\%) 254/6 ($\mathrm{M}^{+}+1,100$). Anal. Calcd for $\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{BrN}: \mathrm{C}, 56.71$; H, 6.35; N, 5.51. Found: C, 56.35; H, 6.63; N, 5.44.

Light yellow oil, $R_{f}=0.15$ (petroleum ether/ethyl acetate $9 / 1$), Yield 42%. $\left.{ }^{\alpha}\right]_{\mathrm{D}}{ }^{28}=-44.2$ (c $=0.06$, $\left.\mathrm{CDCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 1.21\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CCH}_{3}\right), 1.40\left(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.6 \mathrm{~Hz}, \mathrm{CHCH}_{3}\right), 1.48(1 \mathrm{H}, \mathrm{s}$, $(H C H) C N), 2.00(1 H, ~ s,(H C H) C N), 3.16\left(1 H, q, J=6.6 H z, C H C H_{3}\right), 3.22$ and $3.34(2 H, 2 \times d, J=9.9$ $\left.\mathrm{Hz}, \mathrm{CH}_{2} \mathrm{Br}\right), 7.23-7.39\left(5 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{\text {arom }}\right) ;{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 13.6\left(\mathrm{CCH}_{3}\right), 24.7\left(\mathrm{CHCH}_{3}\right), 40.3$ $\left(\mathrm{CH}_{2} \mathrm{CN}\right), 41.0\left(\mathrm{CCH}_{3}\right), 43.6\left(\mathrm{CH}_{2} \mathrm{Br}\right), 62.8\left(\mathrm{NCH}_{2} \mathrm{Ar}\right), 126.5,126.8$ and $128.3\left(5 \times \mathrm{CH}_{\text {arom }}\right), 145.4$ ($\mathrm{C}_{\text {arom,quat }}$). IR (neat) $v_{\max }=3028,2967,2926,2866,1450,1349,1217,1173,757,699,646 \mathrm{~cm}^{-1} . \mathrm{MS}$ $m / z(\%) 254 / 6\left(\mathrm{M}^{+}+1,100\right)$. Anal. Calcd for $\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{BrN}: \mathrm{C}, 56.71 ; \mathrm{H}, 6.35$; N, 5.51. Found: C, 56.62; H, 6.55; N, 5.46.

5.15 Synthesis of 3-methoxy-3-methylazetidines 258 from 2-bromomethyl-2-

methylaziridines

As a representative example, the synthesis of 1 -(2-chlorobenzyl)-3-methoxy-3-methylazetidine $\mathbf{2 5 8 c}$ is described here. 2-Bromomethyl-1-(2-chlorobenzyl)-2-methylaziridine 260c ($2.76 \mathrm{~g}, 10 \mathrm{mmol}$) was dissolved in methanol (30 mL), after which $\mathrm{NaBH}_{4}(1.13 \mathrm{~g}, 3$ molar equiv) was added in small portions at $0{ }^{\circ} \mathrm{C}$ and the mixture was heated for 48 hours under reflux. The reaction mixture was poured into water (20 mL) and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 20 \mathrm{~mL})$. The combined organic extracts were washed with $\mathrm{H}_{2} \mathrm{O}(2 \times 15 \mathrm{~mL})$ and brine $(20 \mathrm{~mL})$. Drying $\left(\mathrm{MgSO}_{4}\right)$, filtration of the drying agent and evaporation of the solvent afforded 1-(2-chlorobenzyl)-3-methoxy-3-methylazetidine 258c (2.01 g , 89\%), which was purified by filtration through silica gel (ether/hexane 10:1) in order to obtain an analytically pure sample.

1-(2-Chlorobenzyl)-3-methoxy-3-methylazetidine 258c

Yellow oil, $R_{\mathrm{f}}=0.15$ (ether/hexane 10/1); Yield 89%; ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.51\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CCH}_{3}\right)$,
 $3.16\left(2 \mathrm{H}, \mathrm{d}, J=8.3 \mathrm{~Hz}, 2 \times(H \mathrm{CH}) \mathrm{C}_{\text {quat }}\right), 3.31\left(2 \mathrm{H}, \mathrm{d}, J=8.3 \mathrm{~Hz}, 2 \times(\mathrm{HCH}) \mathrm{C}_{\text {quat }}\right), 3.21$ $\left(3 \mathrm{H}, \mathrm{s}, \mathrm{C}\left(\mathrm{CH}_{3}\right) \mathrm{OCH}_{3}\right), 3.79\left(2 \mathrm{H}, \mathrm{s}, \mathrm{NCH}_{2} \mathrm{Ar}\right), 7.14-7.42\left(4 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{\text {arom }}\right) .{ }^{13} \mathrm{C}$ NMR $(75$ MHz , ref $\left.=\mathrm{CDCl}_{3}\right) \delta 21.8\left(\mathrm{CCH}_{3}\right)$, $50.6\left(\mathrm{C}_{\left.\left(\mathrm{CH}_{3}\right) \mathrm{OCH}_{3}\right), 60.2\left(\mathrm{NCH}_{2} \mathrm{Ar}\right), 65.0}\right.$ $\left(\mathrm{CH}_{2} \mathrm{NCH}_{2}\right)$, $73.0\left(\mathrm{C}_{\left.\left(\mathrm{CH}_{3}\right) \mathrm{OCH}_{3}\right), 126.8,127.8,129.3 \text { and } 129.4\left(4 \times \mathrm{CH}_{\text {arom }}\right), 133.5 ~}^{\text {a }}\right.$ and $136.3\left(2 \times C_{\text {arom,quat }}\right)$. IR (neat) $v_{\max }=2968,2930,2827,1469,1443,1371,1359$, 1232, 1067, 1050, 1038, $748 \mathrm{~cm}^{-1}$. MS m/z (\%) 226/8 ($\mathrm{M}^{+}+1,100$).

1-(4-Methoxybenzyl)-3-methoxy-3-methylazetidine 258d

Yellow oil, $R_{\mathrm{f}}=0.17$ (ether/hexane 10/1), Yield 87%; ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.47\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CCH}_{3}\right)$,
 $3.04\left(2 \mathrm{H}, \mathrm{d}, J=7.7 \mathrm{~Hz}, 2 \times(\mathrm{HCH}) \mathrm{C}_{\text {quat }}\right), 3.21\left(2 \mathrm{H}, \mathrm{d}, J=7.7 \mathrm{~Hz}, 2 \times(\mathrm{HCH}) \mathrm{C}_{\text {quat }}\right), 3.18$ $\left(3 \mathrm{H}, \mathrm{s}, \mathrm{C}\left(\mathrm{CH}_{3}\right) \mathrm{OCH}_{3}\right), 3.60\left(2 \mathrm{H}, \mathrm{s}, \mathrm{NCH}_{2} \mathrm{Ar}\right), 3.79\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3} \mathrm{Ar}\right), 6.83-6.86$ and 7.19$7.22\left(4 \mathrm{H}, 2 \times \mathrm{m}, \mathrm{CH}_{\text {arom }}\right) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 21.6\left(\mathrm{CCH}_{3}\right), 50.4\left(\mathrm{C}\left(\mathrm{CH}_{3}\right) \mathrm{OCH}_{3}\right)$, $55.2\left(\mathrm{OCH}_{3} \mathrm{Ar}\right), 63.1\left(\mathrm{NCH}_{2} \mathrm{Ar}\right), 64.5\left(\mathrm{CH}_{2} \mathrm{C}_{\text {quat }} \mathrm{CH}_{2}\right), 72.8\left(\mathrm{C}_{\left.\left(\mathrm{CH}_{3}\right) \mathrm{OCH}_{3}\right), 113.7 \text { and } 129.6}\right.$ $\left(4 \times \mathrm{CH}_{\text {arom }}\right), 130.4$ ($\left.\mathrm{C}_{\text {arom,quat }}\right), 158.7\left(\mathrm{C}_{\text {arom, }}\right.$ O). IR (neat) $v_{\max }=2933,2833,1611,1511$, 1463, 1241, 1173, 1065, 1034, $820 \mathrm{~cm}^{-1} . \mathrm{MS} \mathrm{m} / \mathrm{z}(\%) 222\left(\mathrm{M}^{+}+1,100\right)$.

5.16 Synthesis of 3-methoxy-3-methyl-1-[1(S)-phenylethyl]azetidine 272

The mixture of 2(R)-2-bromomethyl-1-[1(S)-phenylethyl]-2-methylaziridine and 2(S)-2-bromomethyl-1-[1(S)-phenylethyl]-2-methylaziridine 270 and 271 ($2.55 \mathrm{~g}, 10 \mathrm{mmol}$) was dissolved in methanol (30 $\mathrm{mL})$, after which $\mathrm{NaBH}_{4}\left(1.13 \mathrm{~g}, 3\right.$ molar equiv) was added in small portions at $0{ }^{\circ} \mathrm{C}$ and the mixture was heated for 36 hours under reflux. Afterward, the reaction mixture was poured into water (20 mL)
and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 20 \mathrm{~mL})$. The combined organic extracts were washed with $\mathrm{H}_{2} \mathrm{O}(2 \times 15$ $\mathrm{mL})$ and brine $(20 \mathrm{~mL})$. Drying $\left(\mathrm{MgSO}_{4}\right)$, filtration of the drying agent and evaporation of the solvent afforded 3-methoxy-3-methyl-1-[1(S)-phenylethyl]azetidine 272 ($1.97 \mathrm{~g}, 96 \%$), which was purified by filtration through silica gel (ether/hexane 10:1) in order to obtain an analytically pure sample.

3-Methoxy-3-methyl-1-[1(S)-phenylethyl]azetidine 272

Light yellow oil, $R_{f}=0.23$ (ether/hexane 10:1), Yield 96%. [$\left.\alpha\right]_{D}{ }^{28}=-51.6\left(c=0.05, \mathrm{CDCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR s $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.22\left(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.6 \mathrm{~Hz}, \mathrm{CHCH}_{3}\right), 1.46\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CCH}_{3}\right), 2.93$ and $2.99\left(2 \mathrm{H}, 2 \times \mathrm{d}, J=7.5 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{~N}\right), 3.05$ and $3.27\left(2 \mathrm{H}, 2 \times \mathrm{d}, J=7.4 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{~N}\right), 3.18$ $\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.33\left(1 \mathrm{H}, \mathrm{q}, J=6.6 \mathrm{~Hz}, \mathrm{CHCH}_{3}\right), 7.20-7.33\left(5 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{\text {arom }}\right) .{ }^{13} \mathrm{C}$ NMR OMe $\left(75 \mathrm{MHz}\right.$, ref $\left.=\mathrm{CDCl}_{3}\right) \delta 21.6\left(\mathrm{CHCH}_{3}\right), 21.8\left(\mathrm{CCH}_{3}\right), 50.5\left(\mathrm{OCH}_{3}\right), 63.7$ and 63.8 $\left(\mathrm{CH}_{2} \mathrm{NCH}_{2}\right), 68.9\left(\mathrm{CH}\left(\mathrm{CH}_{3}\right) \mathrm{Ph}\right), 71.9\left(\mathrm{C}_{\left.\left(\mathrm{CH}_{3}\right) \mathrm{OCH}_{3}\right), 127.1,127.3 \text { and } 128.4\left(5 \times \mathrm{CH}_{\text {arom }}\right), 143.8 ~}^{\text {(}}\right.$ ($\mathrm{C}_{\text {arom,quat }}$). IR (neat) $v_{\max }=2966,2929,2825,1451,1370,1235,1067,762,700 \mathrm{~cm}^{-1} . \mathrm{MS} \mathrm{m} / \mathrm{z}$ (\%) 206 $\left(\mathrm{M}^{+}+1,100\right)$. Anal. Calcd for $\mathrm{C}_{13} \mathrm{H}_{19} \mathrm{NO}: \mathrm{C}, 76.06 ; \mathrm{H}, 9.33$; $\mathrm{N}, 6.82$. Found: C, 76.15; H, 9.60; $\mathrm{N}, 6.69$.

5.17 Synthesis of 3-methoxy-3-methylazetidines 258 starting from imines 266

As a representative example, the synthesis of N-cyclohexyl-3-methoxy-3-methylazetidine $\mathbf{2 5 8 f}$ is described here. N-Cyclohexyl-(2,3-dibromo-2-methyl-propylidene)amine $\mathbf{2 6 6 f}{ }^{131}$ ($3.08 \mathrm{~g}, 10 \mathrm{mmol}$) was dissolved in methanol (30 mL), after which $\mathrm{NaBH}_{4}(0.95 \mathrm{~g}$, 2.5 molar equiv) was added in small portions at $0^{\circ} \mathrm{C}$ and the mixture was heated for 24 hours under reflux. The reaction mixture was poured into water $(20 \mathrm{~mL})$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 20 \mathrm{~mL})$. The combined organic extracts were washed with $\mathrm{H}_{2} \mathrm{O}(2 \times 15 \mathrm{~mL})$ and brine $(20 \mathrm{~mL})$. Drying $\left(\mathrm{MgSO}_{4}\right)$, filtration of the drying agent and evaporation of the solvent afforded N -cyclohexyl-3-methoxy-3-methylazetidine 258 f ($1.67 \mathrm{~g}, 91 \%$).

N-Isopropyl-3-methoxy-3-methylazetidine 258e

Light yellow oil, Yield $89 \% .{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.90\left(6 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.0 \mathrm{~Hz},\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}\right), 1.42(3 \mathrm{H}$,
 $\left.\mathrm{s}, \mathrm{CCH}_{3}\right), 2.28\left(1 \mathrm{H}\right.$, quintet, $\left.J=6.0 \mathrm{~Hz}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 2.95(2 \mathrm{H}, \mathrm{d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{x}$ $\left.(\mathrm{HCH}) \mathrm{C}_{\text {quat }}\right), 3.15\left(2 \mathrm{H}, \mathrm{d}, J=8.0 \mathrm{~Hz}, 2 \times(\mathrm{HCH}) \mathrm{C}_{\text {quat }}\right), 3.14\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right) .{ }^{13} \mathrm{C}$ NMR (75 MHz , ref $\left.=\mathrm{CDCl}_{3}\right) \delta 19.8\left(\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}\right)$, $21.7\left(\mathrm{CCH}_{3}\right), 50.4\left(\mathrm{OCH}_{3}\right), 59.0\left(\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}\right), 63.5$ $\left(\mathrm{CH}_{2} \mathrm{NCH}_{2}\right), 71.5\left(\mathrm{CCH}_{3}\right)$. IR (neat) $v_{\max }=2972,2930,2824,1453,1368,1337,1240$, $1070 \mathrm{~cm}^{-1}$. MS m/z (\%) $144\left(\mathrm{M}^{+}+1,100\right)$.

N-Cyclohexyl-3-methoxy-3-methylazetidine 258f

Light yellow oil, Yield 91%. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.46\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CCH}_{3}\right)$, 0.88-1.03, 1.10-1.25, 1.59-1.62 and 1.71-1.82 and (10H, $\left.2 \times \mathrm{m},\left(\mathrm{CH}_{2}\right)_{5}\right), 1.92-2.01(1 \mathrm{H}, \mathrm{m}, \mathrm{CH})$, $3.01\left(2 \mathrm{H}, \mathrm{d}, J=8.0 \mathrm{~Hz}, 2 \times(H C H) \mathrm{C}_{\text {quat }}\right), 3.19\left(2 \mathrm{H}, \mathrm{d}, J=8.0 \mathrm{~Hz}, 2 \times(\mathrm{HCH}) \mathrm{C}_{\text {quat }}\right), 3.19$
$\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right) .{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}\right.$, ref $\left.=\mathrm{CDCl}_{3}\right) \delta 21.7\left(\mathrm{CCH}_{3}\right)$, $24.6\left(2 \times \mathrm{CH}_{2}\right), 25.2\left(\mathrm{CH}_{2}\right), 29.9(2 \mathrm{x}$ $\left.\mathrm{CH}_{2}\right), 50.4\left(\mathrm{OCH}_{3}\right), 63.0\left(2 x \mathrm{CH}_{2} \mathrm{~N}\right), 67.4(\mathrm{CH}), 72.3\left(\mathrm{CCH}_{3}\right)$. IR (neat) $v_{\max }=2925,2853,2824,1448$, 1370, 1248, 1227, $1069 \mathrm{~cm}^{-1}$. MS m/z (\%) $184\left(\mathrm{M}^{+}+1,100\right)$.

5.18 Synthesis of 2-ethylthiomethyl-2-methylaziridine 267

To a solution of NaOMe in methanol ($2 \mathrm{M}, 2.22 \mathrm{~mL}, 4,4 \mathrm{mmol}$) ethanethiol (0.23 g , 1 equiv) was added and the resulting mixture was stirred for 40 min at room temperature. After this time 1 equiv of 2-bromomethyl-1-(4-methoxybenzyl)-2-methylaziridine 260d ($1.00 \mathrm{~g}, 0.0037 \mathrm{~mol}$) was added and the mixture was heated for 3.5 hours under reflux. The reaction mixture was poured into water (20 mL) and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 20 \mathrm{~mL})$. The combined organic extracts were washed with $\mathrm{H}_{2} \mathrm{O}(2 \times 15$ $\mathrm{mL})$ and brine $(20 \mathrm{~mL})$. Drying $\left(\mathrm{MgSO}_{4}\right)$, filtration of the drying agent and evaporation of the solvent afforded 2-ethylthiomethyl-2-methylaziridine 267 ($0.99 \mathrm{~g}, 89 \%$).

2-Ethylthiomethyl-2-methylaziridine 267

Yellow oil, Yield 89\%. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.22\left(3 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, \mathrm{CH}_{3} \mathrm{CH}_{2}\right), 1.31(1 \mathrm{H}, \mathrm{s}$,
 $\left.(H C H) \mathrm{C}_{\text {quat }} \mathrm{N}\right), 1.40\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CCH}_{3}\right), 1.87\left(1 \mathrm{H}, \mathrm{s},(\mathrm{HCH}) \mathrm{C}_{\text {quat }} \mathrm{N}\right), 2.51-2.66(4 \mathrm{H}, \mathrm{m}, 2 \mathrm{x}$ $\left.\mathrm{CH}_{2} \mathrm{~S}\right), 3.46$ and $3.67(2 \mathrm{H}, 2 \times \mathrm{d}, \mathrm{J}=13.2 \mathrm{~Hz}, \mathrm{~N}(\mathrm{HCH}) \mathrm{Ar})$, $3.80\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 6.85-$ 6.89 and $7.26-7.29\left(4 \mathrm{H}, 2 \times \mathrm{m}, \mathrm{CH}_{\text {arom }}\right) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(75 \mathrm{MHz}\right.$, ref $\left.=\mathrm{CDCl}_{3}\right) \delta 14.3$ $\left(\mathrm{CCH}_{3}\right), 15.0\left(\mathrm{CH}_{3} \mathrm{CH}_{2}\right), 26.5\left(\mathrm{SCH}_{2} \mathrm{CH}_{3}\right)$, $39.8\left(\mathrm{CCH}_{3}\right), 40.2\left(\mathrm{CH}_{2} \mathrm{C}_{\text {quat }} \mathrm{N}\right)$, 42.9 $\left(\mathrm{CCH}_{2} \mathrm{~S}\right), 55.4\left(\mathrm{OCH}_{3}\right), 56.6\left(\mathrm{NCH}_{2} \mathrm{Ar}\right), 113.9$ and $129.1\left(4 \times \mathrm{CH}_{\text {arom }}\right), 132.3$ $\left(\mathrm{C}_{\text {arom,quat }}\right), 158.6\left(\mathrm{C}_{\text {arom }} \mathrm{O}\right)$. IR (neat) $v_{\max }=2960,2927,1612,1511,1454,1244,1172,1035,820 \mathrm{~cm}^{-1}$. MS $m / z(\%) 252\left(\mathrm{M}^{+}+1,100\right)$.

5.19 Synthesis of N-tert-butoxycarbonyl-3-methoxy-3-methylazetidine 273

3-Methoxy-3-methyl-1-[1(S)-phenylethyl]azetidine 272 ($0.10 \mathrm{~g}, 0.49 \mathrm{mmol}$) was dissolved in EtOAc (15 $\mathrm{mL})$, after which $20 \mathrm{wt} \% \mathrm{Pd}(\mathrm{OH})_{2}(25 \mathrm{~mol} \%, 0.09 \mathrm{~g})$ and $\mathrm{Boc}_{2} \mathrm{O}(0.11 \mathrm{~g}, 1$ equiv) were added in small portions at $0{ }^{\circ} \mathrm{C}$ and the mixture was subjected to hydrogenation for 72 hours (4 bar, H_{2}) at room temperature. The reaction mixture was first filtered through a small sintered funnel and thoroughly washed with ethyl acetate (30 mL). Subsequently, this filtrate was poured into water $(20 \mathrm{~mL})$ and extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 20 \mathrm{~mL})$. The combined organic extracts were washed with $\mathrm{H}_{2} \mathrm{O}(2 \times 15 \mathrm{~mL})$ and brine $(20 \mathrm{~mL})$. Drying $\left(\mathrm{MgSO}_{4}\right)$, filtration of the drying agent and evaporation of the solvent afforded N-butoxycarbonyl-3-methoxy-3-methylazetidine 273 ($0.09 \mathrm{~g}, 95 \%$), which was described based on the crude mixture.

N-tert-Butoxycarbonyl-3-methoxy-3-methylazetidine 273

Light yellow oil, Yield 95\%. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.44\left(9 \mathrm{H}, \mathrm{s},\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}\right), 1.53$ $\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CCH}_{3}\right), 3.23\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.66\left(2 \mathrm{H}, \mathrm{d}, J=9.1 \mathrm{~Hz}, 2 \times(\mathrm{HCH}) \mathrm{C}_{\text {quat }}\right), 3.91(2 \mathrm{H}$, $\left.\mathrm{d}, \mathrm{J}=9.1 \mathrm{~Hz}, 2 \times(\mathrm{HCH}) \mathrm{C}_{\text {quat }}\right) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 28.4\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 27.4$
 $v_{\max }=2977,1809,1395,1370,1114,1065, \mathrm{~cm}^{-1} . \mathrm{MS} \mathrm{m} / \mathrm{z}(\%) 202\left(\mathrm{M}^{+}+1,100\right)$.

5.20 Synthesis of 3-bromo-3-methylazetidines 261

As a representative example, the synthesis of 1-benzyl-3-bromo-3-methylazetidine 261a is described here. 1-Benzyl-2-bromomethyl-2-methylaziridine 260a ($1.20 \mathrm{~g}, 5 \mathrm{mmol}$) was dissolved in acetonitrile (30 mL), and the mixture was heated at reflux temperature for 15 h . The reaction mixture was cooled to room temperature, poured into water $(20 \mathrm{~mL})$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 20 \mathrm{~mL})$. The combined organic extracts were washed with $\mathrm{H}_{2} \mathrm{O}(2 \times 15 \mathrm{~mL})$ and brine $(20 \mathrm{~mL})$. Drying $\left(\mathrm{MgSO}_{4}\right)$, filtration of the drying agent and evaporation of the solvent in vacuo afforded 1-benzyl-3-bromo-3-methylazetidine 261a ($0.86 \mathrm{~g}, 72 \%$), which was purified by silica gel column chromatography (petroleum ether/ethyl acetate $7 / 1$) to obtain an analytically pure sample.

1-Benzyl-3-bromo-3-methylazetidine 261a

Yellow oil, $R_{f}=0.30$ (petroleum ether/ethyl acetate $7 / 1$), Yield 72%, isolated yield 62% (after purification). ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 2.00\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CCH}_{3}\right), 3.52(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=9.1$ $\left.\mathrm{Hz}, 2 \times(\mathrm{HCH}) \mathrm{C}_{\text {quat }}\right), 3.69\left(2 \mathrm{H}, \mathrm{d}, J=9.1 \mathrm{~Hz}, 2 \times(\mathrm{HCH}) \mathrm{C}_{\text {quat }}\right), 3.71\left(2 \mathrm{H}, \mathrm{s}, \mathrm{NCH}_{2} \mathrm{Ar}\right)$, 7.21-7.33 ($\left.5 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{\text {arom }}\right) .{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}\right.$, ref $\left.=\mathrm{CDCl}_{3}\right) \delta 31.6\left(\mathrm{CCH}_{3}\right), 51.9$ $\left(\mathrm{C}\left(\mathrm{CH}_{3}\right) \mathrm{Br}\right), 63.2\left(\mathrm{NCH}_{2} \mathrm{Ar}\right), 70.9\left(\mathrm{CH}_{2} \mathrm{C}_{\text {quat }} \mathrm{CH}_{2}\right), 127.3\left(2 \times \mathrm{CH}_{\text {arom }}\right), 128.5\left(3 \times \mathrm{CH}_{\text {arom }}\right)$, 137.8 ($C_{\text {arom,quat }}$). IR (neat) vmax $=2924,2844,1495,1453,1362,1245,1208,1181,746$, $696 \mathrm{~cm}^{-1} . \mathrm{MS} \mathrm{m} / \mathrm{z}(\%) 240 / 2\left(\mathrm{M}^{+}+1,100\right)$.

3-Bromo-1-(4-methylbenzyl)-3-methylazetidine 261b

Light-yellow oil, $R_{\mathrm{f}}=0.41$ (petroleum ether/ethyl acetate 7/1), Yield 78%. ${ }^{1} \mathrm{H}$ NMR (300 MHz , ref $\left.=\mathrm{CDCl}_{3}\right) \delta 1.99\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CCH}_{3}\right), 2.33\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{Ar}\right), 3.51(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.2 \mathrm{~Hz}, 2 \mathrm{x}$ $\left.(H C H) C_{\text {quat }}\right), 3.69\left(2 \mathrm{H}, \mathrm{d}, J=8.2 \mathrm{~Hz}, 2 \times(\mathrm{HCH}) \mathrm{C}_{\text {quat }}\right), 3.67\left(2 \mathrm{H}, \mathrm{s}, \mathrm{NCH}_{2} \mathrm{Ar}\right), 7.10-7.18(4 \mathrm{H}$, $\left.\mathrm{m}, \mathrm{CH}_{\text {arom }}\right) .{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}\right.$, ref $\left.=\mathrm{CDCl}_{3}\right) \delta 21.2\left(\mathrm{CH}_{3} \mathrm{Ar}\right)$, $31.6\left(\mathrm{CCH}_{3}\right), 52.0\left(\mathrm{C}\left(\mathrm{CH}_{3}\right) \mathrm{Br}\right)$, $63.0\left(\mathrm{NCH}_{2} \mathrm{Ar}\right), 70.8\left(\mathrm{CH}_{2} \mathrm{C}_{\text {quat }} \mathrm{CH}_{2}\right)$, 128.5 and $129.2\left(4 \times \mathrm{CH}_{\text {arom }}\right)$, 134.6 and $136.9(2 \times$ $C_{\text {arom,quat }}$. IR (neat) $v_{\max }=2922,2848,2807,1514,1440,1360,1244,1206,1178,806$, $734 \mathrm{~cm}^{-1}$. MS m/z (\%) 254/6 (M ${ }^{+}+1,100$). Anal. Calcd for $\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{BrN}: \mathrm{C}, 56.71$; H, 6.35; N, 5.51. Found: C, 56.55; H, 6.54; N, 5.37.

3-Bromo-1-(4-methoxybenzyl)-3-methylazetidine 261c

Yellow oil, $R_{\mathrm{f}}=0.22$ (petroleum ether/ethyl acetate 7/1), Yield 70\%, isolated yield 59% (after purification). ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.99\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CCH}_{3}\right), 3.49(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=9.1$ $\left.\mathrm{Hz}, 2 \times(\mathrm{HCH}) \mathrm{C}_{\text {quat }}\right), 3.67\left(2 \mathrm{H}, \mathrm{d}, J=9.1 \mathrm{~Hz}, 2 \times(\mathrm{HCH}) \mathrm{C}_{\text {quat }}\right), 3.64\left(2 \mathrm{H}, \mathrm{s}, \mathrm{NCH}_{2} \mathrm{Ar}\right), 3.79$ $\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 6.83-6.86$ and $7.18-7.20\left(4 \mathrm{H}, 2 \times \mathrm{m}, \mathrm{CH}_{\text {arom }}\right) .{ }^{13} \mathrm{C}$ NMR $(75 \mathrm{MHz}$, ref $=$
 $113.8\left(2 \times \mathrm{CH}_{\text {arom }}\right)$, $129.7\left(2 \times \mathrm{CH}_{\text {arom }}\right)$, 129.1 ($\mathrm{C}_{\text {arom,quat }}$), $158.9\left(\mathrm{C}_{\text {arom }} \mathrm{O}\right)$. IR (neat) $v_{\text {max }}=$ 2930, 2835, 1612, 1511, 1243, 1171, 1034, 819, 738, $696 \mathrm{~cm}^{-1} . \mathrm{MS} \mathrm{m} / \mathrm{z}(\%) 240 / 2\left(\mathrm{M}^{+}+\right.$ 1, 100).

5.21 Synthesis of N -(2-chlorobenzyl)-N-(2,3-dibromo-2-methylpropyl)amine

276

2-Bromomethyl-1-(2-chlorobenzyl)-2-methylaziridine 260c ($2.75 \mathrm{~g}, 10 \mathrm{mmol}$) was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(30 \mathrm{~mL})$, after which $\mathrm{HBr}(33 \%$ in AcOH$)(3.24 \mathrm{~g}, 1.2$ equiv) was added and the mixture was heated for 24 hours under reflux. The reaction mixture was first neutralized with saturated aqueous solution of $\mathrm{NaHCO}_{3}(5 \mathrm{~mL})$ and then poured into water (20 mL) and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 20 \mathrm{~mL})$. The combined organic extracts were washed with $\mathrm{H}_{2} \mathrm{O}(2 \times 15 \mathrm{~mL})$ and brine (20 mL). Drying (MgSO_{4}), filtration of the drying agent and evaporation of the solvent afforded N-(2-chlorobenzyl)- N -(2,3-dibromo-2-methylpropyl)amine 276 ($3.47 \mathrm{~g}, 98 \%$).

N-(2-Chlorobenzyl)-N-(2,3-dibromo-2-methylpropyl)amine 276

Dark-yellow oil, Yield 98\%. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.70(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH}), 1.85\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CCH}_{3}\right), 2.91$
 and $2.96(2 \mathrm{H}, 2 \times \mathrm{d}, J=13.5 \mathrm{~Hz}, \mathrm{~N}(\mathrm{HCH}) \mathrm{CBr}), 3.79(1 \mathrm{H}, \mathrm{d}, J=9.6 \mathrm{~Hz},(H \mathrm{HH}) \mathrm{Br})$, $4.00\left(2 \mathrm{H}, \mathrm{s}, \mathrm{NCH}_{2} \mathrm{Ar}\right), 4.23(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=9.6 \mathrm{~Hz},(\mathrm{HCH}) \mathrm{Br}), 7.18-7.48(4 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{CH}_{\text {arom }}\right) .{ }^{13} \mathrm{C}$ NMR ($\left.75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 28.4\left(\mathrm{CH}_{3}\right), 40.4\left(\mathrm{CH}_{2} \mathrm{Br}\right), 51.2\left(\mathrm{NCH}_{2} \mathrm{Ar}\right)$, $57.4\left(\mathrm{CH}_{2} \mathrm{CBr}\right), 68.3(\mathrm{CBr}), 126.8,128.4,129.5$ and $130.0\left(4 \times \mathrm{CH}_{\text {arom }}\right), 133.7$ and 137.4 ($\mathrm{C}_{\text {arom,quat }}$). IR (neat): $v_{\max }=2839,1443,1050,749 \mathrm{~cm}^{-1} . \mathrm{MS}(70 \mathrm{eV}): \mathrm{m} / \mathrm{z}(\%)=354 / 356 / 358$ (100) $\left(\mathrm{M}^{+}+1,100\right)$.

5.22 Synthesis of N,N-dibenzyl-N-(2,3-dibromo-2-methylpropyl)amines 275

As a representative example the synthesis of N-benzyl- N-(2,3-dibromo-2-methylpropyl)- N-(4-methylbenzyl)amine 275a is described here. Benzyl bromide (1.71 g , 1 equiv) was added to a solution of 2-bromomethyl-2-methyl-1-(4-methylbenzyl)aziridine 260b ($2.54 \mathrm{~g}, 10 \mathrm{mmol}$) in acetonitrile (30 mL) at room temperature whilst stirring, and the resulting mixture was heated at reflux for 1 day. Afterward, the reaction mixture was poured into water $(30 \mathrm{~mL})$ and extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 30 \mathrm{~mL})$. Drying $\left(\mathrm{MgSO}_{4}\right)$, filtration of the drying agent and evaporation of the solvent afforded N -benzyl- N -(2,3-
dibromo-2-methylpropyl)- N-(4-methylbenzyl)amine 275a, which was purified by column chromatography on silica gel (hexane/ethyl acetate $4 / 1$) to obtain an analytically pure sample (3.78 g , 89\%).

N-Benzyl-(2,3-dibromo-2-methylpropyl)-N-(4-methylbenzyl)amine 275a

Yellow oil, $R_{\mathrm{f}}=0.78$ (hexane/ethyl acetate 4/1), Yield 89%. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.74(3 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{CH}_{3} \mathrm{CBr}\right)$, $2.36\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{Ar}\right)$, $3.06-3.18\left(2 \mathrm{H}, \mathrm{m}, \mathrm{NCH}_{2} \mathrm{CBr}\right)$, 3.78 and $3.98(2 \mathrm{H}$, $2 \times \mathrm{d}, \mathrm{J}=10.5 \mathrm{~Hz},(\mathrm{HCH}) \mathrm{Br})$, $3.82\left(2 \mathrm{H}, \mathrm{s}, \mathrm{NCH}_{2} \mathrm{Ar}\right), 3.85\left(2 \mathrm{H}, \mathrm{s}, \mathrm{NCH}_{2} \mathrm{Ar}\right), 7.14-$ $7.35\left(9 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{\text {arom }}\right) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 21.1\left(\mathrm{CH}_{3} \mathrm{Ar}\right), 28.6\left(\mathrm{CH}_{3} \mathrm{CBr}\right)$, $41.8\left(\mathrm{CH}_{2} \mathrm{Br}\right)$, $58.2\left(\mathrm{C}_{\text {arom }} \mathrm{CH}_{2} \mathrm{~N}\right), 58.5\left(\mathrm{C}_{\text {arom }} \mathrm{CH}_{2} \mathrm{~N}\right), 62.2\left(\mathrm{NCH}_{2} \mathrm{CBr}\right), 68.8(\mathrm{CBr})$, 127.1, 128.3, 129.0 and $129.2\left(9 \times \mathrm{CH}_{\text {arom }}\right)$, 135.4, 136.7 and $138.8(3 \mathrm{x}$ $C_{\text {arom,quat }}$). IR (neat): $v_{\max }=2924,1737,1452,1373,1240,1041,801,737,696$ cm^{-1}. MS (70 eV): $\mathrm{m} / \mathrm{z}(\%)=344 / 6(100), 424 / 6 / 8(10)\left(\mathrm{M}^{+}+1,100\right)$.

N-Benzyl-(2-chlorobenzyl)-N-(2,3-dibromo-2-methylpropyl)amine 275b

Yellow oil. $R_{\mathrm{f}}=0.62$ (hexane/ethyl acetate 4/1), Yield 86%. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.70(3 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{CH}_{3} \mathrm{CBr}\right), 3.15$ and $3.22(2 \mathrm{H}, 2 \times \mathrm{d}, J=15.1 \mathrm{~Hz}, \mathrm{~N}(\mathrm{HCH}) \mathrm{CBr}), 3.75$ and $3.90(2 \mathrm{H}$,
 $2 \times \mathrm{d}, J=10.5 \mathrm{~Hz},(\mathrm{HCH}) \mathrm{Br}), 3.87$ and $3.93(2 \mathrm{H}, 2 \times \mathrm{d}, J=14.3 \mathrm{~Hz}$, $\left.\mathrm{C}_{\text {arom }}(\mathrm{HCH}) \mathrm{N}\right), 3.98$ and $4.03\left(2 \mathrm{H}, 2 \times \mathrm{d}, J=15.4 \mathrm{~Hz}, \mathrm{C}_{\text {arom }}(\mathrm{HCH}) \mathrm{N}\right), 7.16-7.35$ and 7.59-7.62 (9H, $2 \times \mathrm{m}, \mathrm{CH}_{\text {arom }}$). ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 28.4\left(\mathrm{CH}_{3} \mathrm{CBr}\right)$, $41.7\left(\mathrm{CH}_{2} \mathrm{Br}\right), 56.3\left(\mathrm{NCH}_{2} \mathrm{Ar}\right), 59.5\left(\mathrm{NCH}_{2} \mathrm{Ar}\right), 62.8\left(\mathrm{NCH}_{2} \mathrm{CBr}\right), 68.5(\mathrm{CBr}), 126.7$, 127.3, 128.2, 128.3, 129.4, 129.5 and $130.7\left(9 \times \mathrm{CH}_{\text {arom }}\right), 134.0,136.6$ and 138.2 ($3 \times \mathrm{C}_{\text {arom,quat) }}$. IR (neat): $v_{\max }=2834,1443,1377,1038,751,698 \mathrm{~cm}^{-1}$. MS $(70$ $\mathrm{eV}): m / z(\%)=364 / 6(100), 444 / 6 / 8(10)\left(\mathrm{M}^{+}+1,100\right)$.

5.23 Synthesis of \mathbf{N}-(1-bromo-3-chloro-2-methylprop-2-yl)amines 279

As representative example the synthesis of N-(1-bromo-3-chloro-2-methylprop-2-yl)- N-(2chlorobenzyl)amine 279b was described here. 2-Bromomethyl-1-(2-chlorobenzyl)-2-methylaziridine 260c ($2.75 \mathrm{~g}, 10 \mathrm{mmol}$) was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(30 \mathrm{~mL})$, after which $\mathrm{HCl}(3 \mathrm{M})(6.7 \mathrm{~mL}$, 2 equiv) was added and the mixture was heated for 6 hours under reflux. The reaction mixture was first neutralized with saturated aqueous solution of $\mathrm{NaHCO}_{3}(5 \mathrm{~mL})$ and then poured into water $(20 \mathrm{~mL})$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 20 \mathrm{~mL})$. The combined organic extracts were washed with $\mathrm{H}_{2} \mathrm{O}(2 \times 15 \mathrm{~mL})$ and brine $(20 \mathrm{~mL})$. Drying $\left(\mathrm{MgSO}_{4}\right)$, filtration of the drying agent and evaporation of the solvent afforded N -(1-bromo-3-chloro-2-methylprop-2-yl)-N-(2-chlorobenzyl)amine 279b (2.99 g, 96\%), which was considered as analytically pure and described without prior purification.

N-(1-Bromo-3-chloro-2-methylprop-2-yl)- N-(4-methylbenzyl)amine 279a

Light yellow oil, Yield 80%. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.30\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CCH}_{3}\right)$, $2.33\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{Ar}\right), 3.62$
 ($2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{Br}$), $3.63\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{Cl}\right), 3.67\left(2 \mathrm{H}, \mathrm{s}, \mathrm{NCH}_{2} \mathrm{Ar}\right), 7.12-7.15$ and 7.22-7.26 $\left(4 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{\text {arom }}\right) .{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}\right.$, ref $\left.=\mathrm{CDCl}_{3}\right) \delta 20.5\left(\mathrm{CCH}_{3}\right), 21.2\left(\mathrm{CH}_{3} \mathrm{Ar}\right), 46.3$ $\left(\mathrm{CH}_{2} \mathrm{~N}\right)$, $48.9\left(\mathrm{CH}_{2} \mathrm{Br}\right.$ and $\left.\mathrm{CH}_{2} \mathrm{Cl}\right)$, $54.4\left(\mathrm{CCH}_{3}\right)$, 127.7, 128.3, 129.2 and $129.3(4 \mathrm{x}$ $\mathrm{CH}_{\text {arom }}$), 132.2 and 137.0 ($\mathrm{C}_{\text {arom,quat) }}$. IR (neat): $v_{\text {max }}=2959,1443,1377,1049,748 \mathrm{~cm}^{-}$ ${ }^{1} . \mathrm{MS}(70 \mathrm{eV}): m / z(\%)=266 / 268 / 270(100), 310 / 312 / 314\left(\mathrm{M}^{+}+1,23\right)$.

N-(1-Bromo-3-chloro-2-methylprop-2-yl)-N-(2-chlorobenzyl)amine 279b

Light yellow oil, Yield 96%. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.34\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CCH}_{3}\right), 1.82(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH}), 3.63$
 and $3.68\left(4 \mathrm{H}, 2 \times \mathrm{d}, \mathrm{J}=11.6 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{Br}\right.$ and $\left.\mathrm{CH}_{2} \mathrm{Cl}\right), 3.84\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{~N}\right), 7.19-7.28$, 7.35-7.38 and 7.45-7.48 ($4 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{\text {arom }}$). ${ }^{13} \mathrm{C}$ NMR (75 MHz , ref $=\mathrm{CDCl}_{3}$) $\delta 20.4$ $\left(\mathrm{CCH}_{3}\right), 43.9\left(\mathrm{CH}_{2} \mathrm{~N}\right), 49.1\left(\mathrm{CH}_{2} \mathrm{Br}\right.$ and $\left.\mathrm{CH}_{2} \mathrm{Cl}\right)$, $57.3\left(\mathrm{CCH}_{3}\right)$, 127.2, 128.6, 129.7 and $130.2\left(4 \times \mathrm{CH}_{\text {arom }}\right)$, 133.7 and 137.6 ($\mathrm{C}_{\text {arom,quat }}$). IR (neat): $v_{\max }=2959,1443,1377$, $1049,748 \mathrm{~cm}^{-1} . \mathrm{MS}(70 \mathrm{eV}): \mathrm{m} / \mathrm{z}(\%)=266 / 268 / 270(100), 310 / 312 / 314\left(\mathrm{M}^{+}+1,23\right)$.

5.24 Synthesis of 1-(2-chlorobenzyl)-2-(cyanomethyl)aziridine 282

N-(1-Bromo-3-chloro-2-methylprop-2-yl)- N-(2-chlorobenzyl)amine 279b ($2.75 \mathrm{~g}, 10 \mathrm{mmol}$) was dissolved in DMSO (20 mL), after which KCN (1.43 g , 2.2 equiv) was added and the mixture was heated for 5 hours at $60-70^{\circ} \mathrm{C}$. The reaction mixture was poured into water (20 mL) and extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 20 \mathrm{ml})$. The combined organic extracts were washed with $\mathrm{H}_{2} \mathrm{O}(2 \times 15 \mathrm{~mL})$ and brine (20 $\mathrm{mL})$. Drying $\left(\mathrm{MgSO}_{4}\right)$, filtration of the drying agent and evaporation of the solvent afforded a mixture 1 -(2-chlorobenzyl)-2-(cyanomethyl)aziridine 282 and 2-(chloromethyl)-2-methylaziridine 281 (282/281 = 3/1). 2-(1-(2-1-(2-Chlorobenzyl)-2-(cyanomethyl)aziridine 282 was described based on the crude mixture.

1-(2-Chlorobenzyl)-2-(cyanomethyl)aziridine 282

Light-yellow oil, Yield 60%. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.42(1 \mathrm{H}, \mathrm{s},(\mathrm{HCH}) \mathrm{CN}), 1.44\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CCH}_{3}\right)$,
 $2.06\left(1 \mathrm{H}, \mathrm{s},\left(\mathrm{HCH} \mathrm{C}_{\text {quat }}\right), 2.51\right.$ and $2.60(2 \mathrm{H}, 2 \times \mathrm{s},(\mathrm{HCH}) \mathrm{CN}), 3.63$ and $3.84(2 \mathrm{H}, 2$ $\left.\mathrm{xd}, J=15.4 \mathrm{~Hz}, \mathrm{NCH}_{2} \mathrm{Ar}\right), 7.18-7.35$ and 7.62-7.65 (4H, m, CH arom). ${ }^{13} \mathrm{C}$ NMR (75 MHz , ref $\left.=\mathrm{CDCl}_{3}\right) \delta 14.8\left(\mathrm{CCH}_{3}\right)$, $29.3\left(\mathrm{C}_{\text {quat }} \mathrm{CH}_{2} \mathrm{CN}\right)$, $36.7\left(\mathrm{CH}_{2} \mathrm{C}_{\text {quat }} \mathrm{N}\right)$, 39.7 $\left(\mathrm{NCH}_{2} \mathrm{C}_{\text {quat }}\right), 53.9\left(\mathrm{NCH}_{2} \mathrm{Ar}\right), 117.6(\mathrm{CN}), 127.1,128.2,129.0$ and $129.2\left(4 \times \mathrm{CH}_{\text {arom }}\right)$, 132.8 and $137.2\left(2 \times C_{\text {arom,quat }}\right.$). IR (neat): $v_{\max }=2916,1469,1443,1350,1048$, $1038,751 \mathrm{~cm}^{-1} . \mathrm{MS}(70 \mathrm{eV}): \mathrm{m} / \mathrm{z}(\%) 221 / 3\left(\mathrm{M}^{+}+1,100\right)$.

5.25 Synthesis of \mathbf{N}-(2-chlorobenzyl)-2-chloromethyl-2-methylaziridine 281

N-(1-Bromo-3-chloro-2-methylprop-2-yl)- N-(2-chlorobenzyl)amine 279b (1.56 g, 5 mmol) was dissolved in dry THF (15 mL), after which KOtBu (0.62 g , 1.1 equiv) was added and the mixture was heated for 3 hours under reflux. The reaction mixture was poured into water (20 mL) and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 20 \mathrm{~mL})$. The combined organic extracts were washed with $\mathrm{H}_{2} \mathrm{O}(2 \times 15 \mathrm{~mL})$ and brine $(20 \mathrm{~mL})$. Drying $\left(\mathrm{MgSO}_{4}\right)$, filtration of the drying agent and evaporation of the solvent afforded N -(2-chlorobenzyl)-2-chloromethyl-2-methylaziridine 281 ($1.06 \mathrm{~g}, 92 \%$).

N-(2-Chlorobenzyl)-2-chloromethyl-2-methylaziridine 281

Yellow oil, Yield 92\%. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.34\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CCH}_{3}\right), 1.41(1 \mathrm{H}, \mathrm{s},(\mathrm{HCH}) \mathrm{CN}), 1.97$
 $(1 \mathrm{H}, \mathrm{s},(\mathrm{HCH}) \mathrm{CN}), 3.37$ and $3.44(2 \mathrm{H}, 2 \mathrm{xd}, J=11.0 \mathrm{~Hz},(\mathrm{HCH}) \mathrm{Cl}), 3.58$ and $3.74(2 \mathrm{H}$, $2 \times \mathrm{d}, J=15.7 \mathrm{~Hz}, \mathrm{~N}(\mathrm{HCH}) \mathrm{Ar})$, 7.09-7.27 and 7.59-7.62 (4H, $\left.2 \times \mathrm{m}, \mathrm{CH}_{\text {arom }}\right) .{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 12.9\left(\mathrm{CCH}_{3}\right), 40.5\left(\mathrm{CCH}_{3}\right), 40.7\left(\mathrm{CH}_{2} \mathrm{CN}\right), 54.1$ and $54.3(\mathrm{CH} 2 \mathrm{Cl}$ and $\left.\mathrm{NCH}_{2} \mathrm{Ar}\right), 127.0,128.0,129.07$ and $129.12\left(4 \times \mathrm{CH}_{\text {arom }}\right), 132.8$ and $137.5(2 \times$ $\left.C_{\text {arom,quat }}\right)$. IR (neat) $v_{\max }=2965,1469,1443,1349,1257,1048,1038,749,698 \mathrm{~cm}^{-1}$. MS $m / z(\%) 230 / 2 / 4\left(\mathrm{M}^{+}+1,100\right)$.

5.26 Synthesis of 3-methyl-3-thiocyanatoazetidines 284

As a representative example, the synthesis of 1-(4-methoxybenzyl)-3-methyl-3-thiocyanatoazetidine $\mathbf{2 8 4} \mathbf{c}$ is described here. 2-Bromomethyl-1-(4-methoxybenzyl)-2-methylaziridine 260d ($1.35 \mathrm{~g}, 5 \mathrm{mmol}$) was dissolved in acetonitrile (30 mL), after which KSCN (0.49 g , 1 equiv) was added and the mixture was heated at reflux temperature for 4 h . The reaction mixture was cooled to room temperature, poured into water $(20 \mathrm{~mL})$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 20 \mathrm{~mL})$. The combined organic extracts were washed with $\mathrm{H}_{2} \mathrm{O}(2 \times 15 \mathrm{~mL})$ and brine $(20 \mathrm{~mL})$. Drying $\left(\mathrm{MgSO}_{4}\right)$, filtration of the drying agent and evaporation of the solvent afforded a mixture of 1-(4-methoxybenzyl)-3-methyl-3-thiocyanatoazetidine 284c and 2-methyl-2-(thiocyanatomethyl)aziridine 285c (284c/285c = ratio 67/33), from which 1-(4-methoxybenzyl)-3-methyl-3-thiocyanatoazetidine 284c (0.94 g , 65%) was isolated in pure form by preparative thin layer chromatography on silica gel (hexane/ethyl acetate/triethylamine $1 / 1 / 0.01$) to obtain an analytically pure sample.

1-Benzyl-3-methyl-3-thiocyanatoazetidine 284a

Yellow oil, $R_{\mathrm{f}}=0.20$ (hexane/ethyl acetate/triethylamine $1 / 1 / 0.01$), Yield 45%, isolated yield 36% (after purification). ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.79\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CCH}_{3}\right), 3.35(2 \mathrm{H}$, $\left.\mathrm{d}, J=8.8 \mathrm{~Hz}, 2 \times(H \mathrm{CH}) \mathrm{C}_{\text {quat }}\right), 3.47\left(2 \mathrm{H}, \mathrm{d}, J=8.8 \mathrm{~Hz}, 2 \times\left(\mathrm{HCH} \mathrm{C}_{\text {quat }}\right), 3.69(2 \mathrm{H}, \mathrm{s}\right.$, $\left.\mathrm{NCH}_{2} \mathrm{Ar}\right), 7.24-7.35\left(5 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{\text {arom }}\right) .{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}\right.$, ref $\left.=\mathrm{CDCl}_{3}\right) \delta 26.4\left(\mathrm{CCH}_{3}\right), 47.5$
$\left(\mathrm{CCH}_{3}\right), 62.5\left(\mathrm{NCH}_{2} \mathrm{Ar}\right), 66.3\left(\mathrm{CH}_{2} \mathrm{C}_{\text {quat }} \mathrm{CH}_{2}\right), 111.5(\mathrm{SCN}), 127.5,128.5$ and $128.6\left(5 \times \mathrm{CH}_{\text {arom }}\right), 137.2$ (C arom,quat). IR (neat) $v_{\mathrm{SCN}}=2151 \mathrm{~cm}^{-1} . \mathrm{MS} \mathrm{m} / \mathrm{z}(\%) 219\left(\mathrm{M}^{+}+1,100\right)$.

3-Methyl-1-(4-methybenzyl)-3-thiocyanatoazetidine 284b

Yellow oil, $R_{f}=0.22$ (hexane/ethyl acetate/triethylamine $1 / 1 / 0.01$), Yield 55%, isolated yield 47% (after purification). ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.78\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CCH}_{3}\right), 2.33\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{Ar}\right), 3.33$ $\left(2 \mathrm{H}, \mathrm{d}, J=8.8 \mathrm{~Hz}, 2 \times(\mathrm{HCH}) \mathrm{C}_{\text {quat }}\right), 3.46\left(2 \mathrm{H}, \mathrm{d}, J=8.8 \mathrm{~Hz}, 2 \times(\mathrm{HCH}) \mathrm{C}_{\text {quat }}\right), 3.64(2 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{NCH}_{2} \mathrm{Ar}\right), 7.11-7.18\left(4 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{\text {arom }}\right) .{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}\right.$, ref $\left.=\mathrm{CDCl}_{3}\right) \delta 21.2\left(\mathrm{CH}_{3} \mathrm{Ar}\right), 26.4$ $\left(\mathrm{CCH}_{3}\right), 47.5\left(\mathrm{CCH}_{3}\right), 62.3\left(\mathrm{NCH}_{2} \mathrm{Ar}\right), 66.2\left(\mathrm{CH}_{2} \mathrm{C}_{\text {quat }} \mathrm{CH}_{2}\right), 111.5(\mathrm{SCN}), 128.5$ and 129.2 $\left(4 \times \mathrm{CH}_{\text {arom }}\right), 134.1$ and $137.1\left(2 \times \mathrm{C}_{\text {arom,quat }}\right) . \mathrm{IR}$ (neat) $v_{\mathrm{SCN}}=2151 \mathrm{~cm}^{-1} . \mathrm{MS} \mathrm{m} / \mathrm{z}(\%) 233$ $\left(\mathrm{M}^{+}+1,100\right)$.

1-(4-Methoxybenzyl)-3-methyl-3-thiocyanatoazetidine 284c

Yellow oil, $R_{\mathrm{f}}=0.18$ (hexane/ethyl acetate/triethylamine $1 / 1 / 0.01$), Yield 65%, isolated yield 52% (after purification). ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.78\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CCH}_{3}\right), 3.32(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=9.4 \mathrm{~Hz}, 2 \mathrm{x}$
 $\left.(H C H) C_{\text {quat }}\right), 3.44\left(2 \mathrm{H}, \mathrm{d}, J=9.4 \mathrm{~Hz}, 2 \times(\mathrm{HCH}) \mathrm{C}_{\text {quat }}\right), 3.62\left(2 \mathrm{H}, \mathrm{s}, \mathrm{NCH}_{2} \mathrm{Ar}\right), 3.80(3 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{OCH}_{3}\right), 6.84-6.87$ and $7.18-7.20\left(4 \mathrm{H}, 2 \times \mathrm{m}, \mathrm{CH}_{\text {arom }}\right) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(75 \mathrm{MHz}\right.$, ref $\left.=\mathrm{CDCl}_{3}\right) \delta$ $26.4\left(\mathrm{CCH}_{3}\right), 47.5\left(\mathrm{CCH}_{3}\right), 55.4\left(\mathrm{OCH}_{3}\right), 61.9\left(\mathrm{NCH}_{2} \mathrm{Ar}\right), 66.1\left(\mathrm{CH}_{2} \mathrm{C}_{\text {quat }} \mathrm{CH}_{2}\right)$, $111.5(\mathrm{SCN})$, $113.9\left(2 \times \mathrm{CH}_{\text {arom }}\right), 129.2\left(\mathrm{C}_{\text {arom,quat }}\right), 129.8\left(2 \times \mathrm{CH}_{\text {arom }}\right), 159.0\left(\mathrm{C}_{\text {arom }} \mathrm{O}\right)$. IR (neat) $v_{\text {scN }}=$ $2151 \mathrm{~cm}^{-1}$. MS m/z (\%) $249\left(\mathrm{M}^{+}+1,100\right)$. HRMS m/z (ESI) calculated for $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{OS}$ $[\mathrm{MH}]^{+}$249.1062, found 249.1059.

5.27 Synthesis of 2-methyl-2-(thiocyanatomethyl)aziridines 285

As a representative example, the synthesis of 2-methyl-1-(4-methylbenzyl)-2(thiocyanatomethyl)aziridine 285b is described here. 2-Bromomethyl-2-methyl-1-(4methylbenzyl)aziridine 260b ($1.27 \mathrm{~g}, 5 \mathrm{mmol}$) was dissolved in DMF (30 mL), after which KSCN (0.49 g, 1 equiv) was added and the mixture was stirred at $60-70^{\circ} \mathrm{C}$ for 15 h . The reaction mixture was cooled to room temperature, poured into water (20 mL) and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 20 \mathrm{~mL})$. The combined organic extracts were washed with $\mathrm{H}_{2} \mathrm{O}(2 \times 15 \mathrm{~mL})$ and brine $(20 \mathrm{~mL})$. Drying $\left(\mathrm{MgSO}_{4}\right)$, filtration of the drying agent and evaporation of the solvent afforded 2-methyl-1-(4-methylbenzyl)-2(thiocyanatomethyl)aziridine 285b (0.91 g, 95\%), which was purified by silica gel column chromatography (hexane/ethyl acetate/triethylamine $1 / 1 / 0.1$) to obtain an analytically pure sample. It should be mentioned that aziridines 285a-c showed to be rather unstable on silica gel column during the purification process.

1-Benzyl-2-methyl-2-(thiocyanatomethyl)aziridine 285a

Light-yellow oil, $R_{\mathrm{f}}=0.43$ (hexane/ethyl acetate/triethylamine 1/1/0.1), Yield 94\%, isolated yield 41\% (after purification). ${ }^{1} \mathrm{H} N \mathrm{NR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.47\left(1 \mathrm{H}\right.$ and $3 \mathrm{H}, \mathrm{s},(\mathrm{HCH}) \mathrm{CCH}_{3}$ and $\left.\mathrm{CH}_{3} \mathrm{C}\right), 2.08(1 \mathrm{H}$,
 $\left.\mathrm{s},(\mathrm{HCH}) \mathrm{CCH}_{3}\right), 3.02(\mathrm{H}, \mathrm{d}, \mathrm{J}=12.9 \mathrm{~Hz},(\mathrm{HCH}) \mathrm{S}), 3.14(\mathrm{H}, \mathrm{d}, J=12.9 \mathrm{~Hz},(\mathrm{HCH}) \mathrm{S})$, $3.53(\mathrm{H}, \mathrm{d}, \mathrm{J}=13.8 \mathrm{~Hz},(H C H) \mathrm{Ar}), 3.78(\mathrm{H}, \mathrm{d}, J=13.8 \mathrm{~Hz},(\mathrm{HCH}) \mathrm{Ar}), 7.26-7.35(5 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{CH}_{\text {arom }}\right) .{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}\right.$, ref $\left.=\mathrm{CDCl}_{3}\right) \delta 14.0\left(\mathrm{CCH}_{3}\right), 38.8\left(\mathrm{CCH}_{3}\right), 40.3$ ($\mathrm{CH}_{2} \mathrm{NCH}_{2} \mathrm{C}_{\text {arom }}$), $45.1\left(\mathrm{CH}_{2} \mathrm{~S}\right), 57.1\left(\mathrm{CH}_{2} \mathrm{C}_{\text {arom }}\right)$, 113.1 (SCN), 127.2, 128.0 and 128.6 (5 $\times \mathrm{CH}_{\text {arom }}$), 139.3 ($\mathrm{C}_{\text {arom,quat }}$). IR (neat) $v_{\mathrm{SCN}}=2152 \mathrm{~cm}^{-1} . \mathrm{MS} \mathrm{m} / \mathrm{z}(\%) 219\left(\mathrm{M}^{+}+1,100\right)$. HRMS m/z (ESI) calculated for $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{~S}[\mathrm{MH}]^{+}$219.0956, found 219.0952 .

2-Methyl-1-(4-methylbenzyl)-2-(thiocyanatomethyl)aziridine 285b

Light-yellow oil, $R_{\mathrm{f}}=0.44$ (hexane/ethyl acetate/triethylamine $1 / 1 / 0.1$), Yield 95%, isolated yield 64% (after purification). ${ }^{1} \mathrm{H} \mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.46\left(1 \mathrm{H}\right.$ and $3 \mathrm{H}, \mathrm{s},(\mathrm{HCH}) \mathrm{CCH}_{3}$ and $\left.\mathrm{CH}_{3} \mathrm{C}\right), 2.05(1 \mathrm{H}$, $\left.\mathrm{s},(\mathrm{HCH}) \mathrm{CCH}_{3}\right), 2.34\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{Ar}\right), 3.02(\mathrm{H}, \mathrm{d}, \mathrm{J}=12.7 \mathrm{~Hz},(\mathrm{HCH}) \mathrm{S}), 3.13(\mathrm{H}, \mathrm{d}, \mathrm{J}=12.7 \mathrm{~Hz}$,
 (HCH)S), $3.49(H, d, J=13.2 \mathrm{~Hz},(H C H) A r), 3.73(H, d, J=13.2 \mathrm{~Hz},(H C H) A r)$, 7.13-7.24 (4H, m, CH arom). ${ }^{13} \mathrm{C}$ NMR (75 MHz , ref $\left.=\mathrm{CDCl}_{3}\right) \delta 14.0\left(\mathrm{CCH}_{3}\right), 21.2\left(\mathrm{CH}_{3} \mathrm{Ar}\right)$, $38.8\left(\mathrm{CCH}_{3}\right), 40.2\left(\mathrm{CH}_{2} \mathrm{NCH}_{2} \mathrm{C}_{\text {arom }}\right), 45.2\left(\mathrm{CH}_{2} \mathrm{~S}\right), 56.8\left(\mathrm{CH}_{2} \mathrm{C}_{\text {arom }}\right), 113.1(\mathrm{SCN}), 127.9$ and $129.2\left(4 \times \mathrm{CH}_{\text {arom }}\right)$, 136.3 and $136.8\left(2 \times \mathrm{C}_{\text {arom,quat }}\right)$. IR (neat) $v_{\text {SCN }}=2151 \mathrm{~cm}^{-1} . \mathrm{MS}$ $\mathrm{m} / \mathrm{z}(\%) 233\left(\mathrm{M}^{+}+1,100\right)$. HRMS m/z (ESI) calculated for $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{~S}[\mathrm{MH}]^{+}$233.1112, found 233.1110 .

1-(4-Methoxybenzyl)-2-methyl-2-(thiocyanatomethyl)aziridine 285c

Light-yellow oil, $R_{\mathrm{f}}=0.36$ (hexane/ethyl acetate/triethylamine 1/1/0.1), Yield 90%, isolated yield 37% (after purification). ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.46\left(1 \mathrm{H}\right.$ and $3 \mathrm{H}, \mathrm{s},(\mathrm{HCH}) \mathrm{CCH}_{3}$
 and $\left.\mathrm{CH}_{3} \mathrm{C}\right), 2.04\left(1 \mathrm{H}, \mathrm{s},(\mathrm{HCH}) \mathrm{CCH}_{3}\right), 3.00(\mathrm{H}, \mathrm{d}, J=12.9 \mathrm{~Hz},(\mathrm{HCH}) \mathrm{S}), 3.12(\mathrm{H}, \mathrm{d}$, $J=12.9 \mathrm{~Hz},(\mathrm{HCH}) \mathrm{S}), 3.45(\mathrm{H}, \mathrm{d}, J=13.2 \mathrm{~Hz},(H C H) A r), 3.71(\mathrm{H}, \mathrm{d}, J=13.2 \mathrm{~Hz}$, (HCH)Ar), $3.81\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 6.86-6.89$ and $7.25-7.28\left(4 \mathrm{H}, 2 \times \mathrm{m}, \mathrm{CH}_{\text {arom }}\right) .{ }^{13} \mathrm{C}$ NMR (75 MHz , ref $\left.=\mathrm{CDCl}_{3}\right) \delta 14.0\left(\mathrm{CCH}_{3}\right), 38.8\left(\mathrm{CCH}_{3}\right), 40.2\left(\mathrm{CH}_{2} \mathrm{NCH}_{2} \mathrm{C}_{\text {arom }}\right), 45.2$ $\left(\mathrm{CH}_{2} \mathrm{~S}\right), 55.4\left(\mathrm{OCH}_{3}\right), 56.5\left(\mathrm{CH}_{2} \mathrm{C}_{\text {arom }}\right), 113.1(\mathrm{SCN})$, 114.0 and $129.2\left(4 \times \mathrm{CH}_{\text {arom }}\right), 131.4$ (Carom,quat) , $158.8\left(\mathrm{C}_{\text {arom }} \mathrm{O}\right)$. IR (neat) $v_{\text {SCN }}=2153 \mathrm{~cm}^{-1} . \mathrm{MS} \mathrm{m} / \mathrm{z}(\%) 249\left(\mathrm{M}^{+}+1,100\right)$. HRMS m/z (ESI) calculated for $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{OS}[\mathrm{MH}]^{+} 249,1062$, found 249.1058.

5.28 Synthesis of azetidine-3-carbonitriles 286

As a representative example, the synthesis of 1-(4-methoxybenzyl)-3-methylazetidine-3-carbonitrile 286b is described here. 2-Bromomethyl-1-(4-methoxybenzyl)-2-methylaziridine 260d ($1.35 \mathrm{~g}, 5 \mathrm{mmol}$) was dissolved in acetonitrile (30 mL), after which KCN (0.64 g , 2 equiv) was added in small portions and the mixture was heated at reflux temperature for 26 h . The reaction mixture was cooled to room temperature, poured into water $(20 \mathrm{~mL})$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 20 \mathrm{~mL})$. The combined organic
extracts were washed with $\mathrm{H}_{2} \mathrm{O}(2 \times 15 \mathrm{~mL})$ and brine $(20 \mathrm{~mL})$. Drying $\left(\mathrm{MgSO}_{4}\right)$, filtration of the drying agent and evaporation of the solvent afforded 1-(4-methoxybenzyl)-3-methylazetidine-3-carbonitrile 286b ($0.96 \mathrm{~g}, ~ 95 \%$), which was purified by silica gel column chromatography (dichloromethane/methanol 10/1) to obtain an analytically pure sample.

3-Methyl-1-(4-methyIbenzyl)azetidine-3-carbonitrile 286a

Yellow oil, $R_{\mathrm{f}}=0.28$ (dichloromethane), Yield 96%, isolated yield 88% (after purification). ${ }^{1} \mathrm{H}$ NMR (300
 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.64\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CCH}_{3}\right), 2.33\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{Ar}\right), 3.19(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.9 \mathrm{~Hz}, 2 \mathrm{x}$ $\left.(H C H) C_{\text {quat }}\right), 3.48\left(2 \mathrm{H}, \mathrm{d}, J=6.9 \mathrm{~Hz}, 2 \times(\mathrm{HCH}) \mathrm{C}_{\text {quat }}\right), 3.58\left(2 \mathrm{H}, \mathrm{s}, \mathrm{NCH}_{2} \mathrm{Ar}\right), 7.04-7.24$ $\left(4 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{\text {arom }}\right) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(75 \mathrm{MHz}\right.$, ref $\left.=\mathrm{CDCl}_{3}\right) \delta 21.2\left(\mathrm{CH}_{3} \mathrm{Ar}\right), 22.9\left(\mathrm{CCH}_{3}\right), 27.1$ $\left(\mathrm{CCH}_{3}\right), 62.5\left(\mathrm{NCH}_{2} \mathrm{Ar}\right), 63.4\left(\mathrm{CH}_{2} \mathrm{C}_{\text {quat }} \mathrm{CH}_{2}\right), 123.5(\mathrm{CN}), 128.4$ and $129.2\left(4 \times \mathrm{CH}_{\text {arom }}\right)$, 133.9 and 137.1 ($2 \times \mathrm{C}_{\text {arom,quat }}$). IR (neat) $v_{\mathrm{CN}}=2238 \mathrm{~cm}^{-1} . \mathrm{MS} \mathrm{m} / \mathrm{z}(\%) 201\left(\mathrm{M}^{+}+1,100\right)$. HRMS m/z (ESI) calculated for $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{~N}_{2}[\mathrm{MH}]^{+}$201.1392, found 201.1389.

1-(4-Methoxybenzyl)-3-methylazetidine-3-carbonitrile 286b

Yellow oil, $R_{f}=0.60$ (dichloromethane/methanol 10/1), Yield 95\%, isolated yield 89\% (after purification). ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.64\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CCH}_{3}\right), 3.18(2 \mathrm{H}, \mathrm{d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{x}$ $\left.(H C H) \mathrm{C}_{\text {quat }}\right), 3.48\left(2 \mathrm{H}, \mathrm{d}, J=7.2 \mathrm{~Hz}, 2 \times(\mathrm{HCH}) \mathrm{C}_{\text {quat }}\right), 3.56\left(2 \mathrm{H}, \mathrm{s}, \mathrm{NCH}_{2} \mathrm{Ar}\right), 3.80(3 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{OCH}_{3}\right)$, 6.84-6.87 and 7.16-7.19 (4H, $\left.2 \times \mathrm{m}, \mathrm{CH}_{\text {arom }}\right) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 22.7$ $\left(\mathrm{CCH}_{3}\right), 27.0\left(\mathrm{CCH}_{3}\right), 55.3\left(\mathrm{OCH}_{3}\right)$, $62.1\left(\mathrm{CH}_{2} \mathrm{Ar}\right)$, $63.2\left(\mathrm{CH}_{2} \mathrm{C}_{\text {quat }} \mathrm{CH}_{2}\right), 113.8\left(2 \times \mathrm{CH}_{\text {arom }}\right)$, 123.4 (CN), 128.9 ($\mathrm{C}_{\text {arom,quat }}$), $129.6\left(2 \times \mathrm{CH}_{\text {arom }}\right)$, 158.9 ($\mathrm{C}_{\text {arom }} \mathrm{O}$). IR (neat) $v_{\mathrm{CN}}=2238$ $\mathrm{cm}^{-1} . \mathrm{MS} \mathrm{m} / \mathrm{z}(\%) 217\left(\mathrm{M}^{+}+1,100\right) . \mathrm{HRMS} \mathrm{m} / \mathrm{z}(\mathrm{ESI})$ calculated for $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}[\mathrm{MH}]^{+}$ 217.1341, found 217.1340.

5.29 Synthesis of 2-cyanomethyl-2-methylaziridines 287

As a representative example, the synthesis of 2-cyanomethyl-2-methyl-1-(4-methylbenzyl)aziridine 287a is described here. 2-Bromomethyl-2-methyl-1-(4-methylbenzyl)aziridine $\mathbf{2 6 0 b}$ ($1.27 \mathrm{~g}, 5 \mathrm{mmol}$) was dissolved in DMF (30 mL), after which KCN (0.33 g , 1 equiv) was added and the mixture was stirred at $50-60^{\circ} \mathrm{C}$ for 16 h . The reaction mixture was cooled to room temperature, poured into water $(20 \mathrm{~mL})$ and extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 20 \mathrm{~mL})$. The combined organic extracts were washed with $\mathrm{H}_{2} \mathrm{O}$ $(2 \times 15 \mathrm{~mL})$ and brine (20 mL). Drying $\left(\mathrm{MgSO}_{4}\right)$, filtration of the drying agent and evaporation of the solvent afforded 2-cyanomethyl-2-methyl-1-(4-methylbenzyl)aziridine 287 a ($0.85 \mathrm{~g}, 85 \%$), which was purified by silica gel column chromatography (hexane/ethyl acetate $1 / 1$) to obtain an analytically pure sample. Aziridines 287a,b showed to be rather unstable on silica gel column during the purification process.

2-Cyanomethyl-2-methyl-1-(4-methylbenzyl)aziridine 287a

Yellow oil, $R_{\mathrm{f}}=0.29$ (hexane/ethyl acetate $1 / 1$), Yield 85%, isolated yield 36% (after purification). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.39\left(1 \mathrm{H}, \mathrm{s},(\mathrm{HCH}) \mathrm{CCH}_{3}\right), 1.43\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{C}\right), 1.96\left(1 \mathrm{H}, \mathrm{s},(\mathrm{HCH}) \mathrm{CCH}_{3}\right)$,
 $2.33\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{Ar}\right), 2.40(\mathrm{H}, \mathrm{d}, J=16.8 \mathrm{~Hz},(\mathrm{HCH}) \mathrm{CN}), 2.49(\mathrm{H}, \mathrm{d}, J=16.8 \mathrm{~Hz}$, $(\mathrm{HCH}) \mathrm{CN}), 3.52(\mathrm{H}, \mathrm{d}, J=13.8 \mathrm{~Hz},(H C H) \mathrm{Ar}), 3.69(\mathrm{H}, \mathrm{d}, J=13.8 \mathrm{~Hz},(\mathrm{HCH}) \mathrm{Ar})$, 7.13-7.25 (4H, m, CH arom). ${ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}\right.$, ref $\left.=\mathrm{CDCl}_{3}\right) \delta 14.8\left(\mathrm{CCH}_{3}\right)$, $21.2\left(\mathrm{CH}_{3} \mathrm{Ar}\right)$, $29.4\left(\mathrm{CH}_{2} \mathrm{CN}\right)$, $36.7\left(\mathrm{CCH}_{3}\right)$, $39.4\left(\mathrm{CH}_{2} \mathrm{NCH}_{2} \mathrm{C}_{\text {arom }}\right)$, $56.7\left(\mathrm{CH}_{2} \mathrm{C}_{\text {arom }}\right), 117.8(\mathrm{CN}), 127.7$ and $129.3\left(4 \times \mathrm{CH}_{\text {arom }}\right), 136.4$ and $136.8\left(2 \times \mathrm{C}_{\text {arom,quat }}\right)$. IR (neat) $v_{\mathrm{CN}}=2250 \mathrm{~cm}^{-1} . \mathrm{MS}$ $\mathrm{m} / \mathrm{z}(\%) 201\left(\mathrm{M}^{+}+1,100\right)$. HRMS m/z (ESI) calculated for $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{~N}_{2}[\mathrm{MH}]^{+}$201.1392, found 201.1386.

2-Cyanomethyl-1-(4-methoxybenzyl)-2-methylaziridine 287b

Yellow oil, $R_{\mathrm{f}}=0.21$ (hexane/ethyl acetate $1 / 1$), Yield 89%, isolated yield 42% (after purification). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.39\left(1 \mathrm{H}, \mathrm{s},(\mathrm{HCH}) \mathrm{CCH}_{3}\right), 1.44\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{C}\right), 1.96\left(1 \mathrm{H}, \mathrm{s},(\mathrm{HCH}) \mathrm{CCH}_{3}\right)$,
 $2.41(1 \mathrm{H}, \mathrm{d}, J=17.1 \mathrm{~Hz},(H \mathrm{CH}) \mathrm{CN}), 2.49(1 \mathrm{H}, \mathrm{d}, J=17.1 \mathrm{~Hz},(\mathrm{HCH}) \mathrm{CN}), 3.49(1 \mathrm{H}, \mathrm{d}$, $J=13.5 \mathrm{~Hz},(H C H) A r), 3.68(1 \mathrm{H}, \mathrm{d}, J=13.5 \mathrm{~Hz},(\mathrm{HCH}) \mathrm{Ar}), 3.81\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right)$, $6.86-6.90$ and $7.26-7.28\left(4 \mathrm{H}, 2 \times \mathrm{m}, \mathrm{CH}_{\text {arom }}\right) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(75 \mathrm{MHz}\right.$, ref $\left.=\mathrm{CDCl}_{3}\right) \delta 14.8$ $\left(\mathrm{CCH}_{3}\right), 29.4\left(\mathrm{CH}_{2} \mathrm{CN}\right), 36.7\left(\mathrm{CCH}_{3}\right)$, $39.4\left(\mathrm{CH}_{2} \mathrm{NCH}_{2} \mathrm{C}_{\text {arom }}\right)$, $55.4\left(\mathrm{OCH}_{3}\right), 56.4$ $\left(\mathrm{CH}_{2} \mathrm{C}_{\text {arom }}\right), 114.0\left(2 \times \mathrm{CH}_{\text {arom }}\right), 117.8(\mathrm{CN}), 128.9\left(2 \times \mathrm{CH}_{\text {arom }}\right), 131.5\left(\mathrm{C}_{\text {arom,quat }}\right)$, $158.8\left(\mathrm{C}_{\text {arom }} \mathrm{O}\right)$. IR (neat) $v_{\mathrm{CN}}=2249 \mathrm{~cm}^{-1} . \mathrm{MS} \mathrm{m} / \mathrm{z}(\%) 217\left(\mathrm{M}^{+}+1,100\right)$. HRMS m/z (ESI) calculated for $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}[\mathrm{MH}]^{+}$217.1341, found 217.1344.

5.30 Synthesis of 3-methyl-3-phenoxyazetidines 288

As a representative example, the synthesis of 1-(4-methoxybenzyl)-3-methyl-3-phenoxyazetidine 288b is described here. 2-Bromomethyl-1-(4-methoxybenzyl)-2-methylaziridine 260d (1.35 g, 5 mmol) was added to a mixture of phenol (1.04 g , 2.2 equiv) and $\mathrm{K}_{2} \mathrm{CO}_{3}$ (3.46 g , 5 equiv) dissolved in acetonitrile $(30 \mathrm{~mL})$, and the resulting suspension was heated at reflux temperature for 24 h . The reaction mixture was cooled to room temperature, poured into a NaOH solution ($30 \mathrm{~mL}, 0.5 \mathrm{M}$) and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 20 \mathrm{~mL})$. The combined organic extracts were washed with $\mathrm{H}_{2} \mathrm{O}(2 \times 15 \mathrm{~mL})$ and brine (20 $\mathrm{mL})$. Drying $\left(\mathrm{MgSO}_{4}\right)$, filtration of the drying agent and evaporation of the solvent afforded a mixture of 1-(4-methoxybenzyl)-3-methyl-3-phenoxyazetidine 288b and 1-(4-methoxybenzyl)-2-methyl-2(phenoxymethyl)aziridine 289b (288b/289b = ratio 67/33), from which 1-(4-methoxybenzyl)-3-methyl-3-phenoxyazetidine 288b (0.93 g, 65\%) was isolated in pure form by silica gel column chromatography (petroleum ether/ethyl acetate 4/1).

3-Methyl-1-(4-methylbenzyl)-3-phenoxyazetidine 288a

Yellow oil, $R_{\mathrm{f}}=0.25$ (petroleum ether/ethyl acetate 4/1), Yield, 47\%, isolated yield 37\% (after purification). ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.60\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CCH}_{3}\right), 2.33\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{Ar}\right)$,
 $3.29\left(2 \mathrm{H}, \mathrm{d}, J=8.3 \mathrm{~Hz}, 2 \times(\mathrm{HCH}) \mathrm{C}_{\text {quat }}\right), 3.55\left(2 \mathrm{H}, \mathrm{d}, J=8.3 \mathrm{~Hz}, 2 \times(\mathrm{HCH}) \mathrm{C}_{\text {quat }}\right)$, $3.66\left(2 \mathrm{H}, \mathrm{s}, \mathrm{NCH}_{2} \mathrm{Ar}\right), 6.67-6.70,6.91-6.95$ and $7.11-7.31\left(9 \mathrm{H}, 3 \times \mathrm{m}, \mathrm{CH}_{\text {arom }}\right) .{ }^{13} \mathrm{C}$ NMR (75 MHz , ref $=\mathrm{CDCl}_{3}$) ס $21.2\left(\mathrm{CH}_{3} \mathrm{Ar}\right)$, $22.0\left(\mathrm{CCH}_{3}\right), 63.4\left(\mathrm{NCH}_{2} \mathrm{Ar}\right), 66.3$ $\left(\mathrm{CH}_{2} \mathrm{C}_{\text {quat }} \mathrm{CH}_{2}\right), 73.6\left(\mathrm{CCH}_{3}\right), 116.8,120.9,128.5,129.1$ and $129.5\left(9 \times \mathrm{CH}_{\text {arom }}\right)$, 136.8 and $137.0\left(2 \times \mathrm{C}_{\text {arom,quat }}\right), 155.3$ ($\mathrm{C}_{\text {arom,quat }}$). IR (neat) $v_{\max }=2927,2838,1599$, 1587, 1514, 1494, 1456, 1241, 1223, 1170, 1034, 959, 803, $752,692 \mathrm{~cm}^{-1} . \mathrm{MS} \mathrm{m} / \mathrm{z}$ (\%) $268\left(\mathrm{M}^{+}+1,100\right)$. HRMS $\mathrm{m} / \mathrm{z}(\mathrm{ESI})$ calculated for $\mathrm{C}_{18} \mathrm{H}_{2} \mathrm{NO}[\mathrm{MH}]^{+}$268.1701, found 268.1698.

1-(4-Methoxybenzyl)-3-methyl-3-phenoxyazetidine 288b

Yellow oil, $R_{\mathrm{f}}=0.07$ (petroleum ether/ethyl acetate 4/1), Yield 65%, isolated yield 42% (after purification). ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.67\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CCH}_{3}\right), 3.28\left(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.3 \mathrm{~Hz}, 2 \times(\mathrm{HCH}) \mathrm{C}_{\text {quat }}\right)$,
 $3.53\left(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.3 \mathrm{~Hz}, 2 \times(\mathrm{HCH}) \mathrm{C}_{\text {quat }}\right), 3.63\left(2 \mathrm{H}, \mathrm{s}, \mathrm{NCH}_{2} \mathrm{Ar}\right), 3.79\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right)$, 6.67-6.70, 6.84-6.95 and 7.20-7.26 (9H, $3 \times \mathrm{m}, \mathrm{CH}_{\text {arom }}$). ${ }^{13} \mathrm{C}$ NMR (75 MHz , ref $=$ $\left.\mathrm{CDCl}_{3}\right) \delta 22.0\left(\mathrm{CCH}_{3}\right)$, $55.3\left(\mathrm{OCH}_{3}\right)$, $63.0\left(\mathrm{NCH}_{2} \mathrm{Ar}\right), 66.2\left(\mathrm{CH}_{2} \mathrm{C}_{\text {quat }} \mathrm{CH}_{2}\right)$, 73.6 $\left(\mathrm{CCH}_{3}\right), 113.8,116.8,121.0,129.5$ and $129.8\left(9 \times \mathrm{CH}_{\text {arom }}\right), 130.2\left(\mathrm{C}_{\text {arom,quat }}\right), 155.3$ ($\mathrm{C}_{\text {arom,quat }}$), $158.9\left(\mathrm{C}_{\text {arom }} \mathrm{O}\right)$. IR (neat) $v_{\max }=2932,2834,2364,1611,1586,1511$, 1493, 1242, 1223, 1204, 1171, 1034, 958, 818, 752, $693 \mathrm{~cm}^{-1} . \mathrm{MS} \mathrm{m} / \mathrm{z}(\%) 284\left(\mathrm{M}^{+}\right.$ $+1,100$). HRMS m/z (ESI) calculated for $\mathrm{C}_{18} \mathrm{H}_{21} \mathrm{NO}_{2}[\mathrm{MH}]^{+}$284.1651, found 284.1645.

5.31 Synthesis of 2-methyl-2-(phenoxymethyl)aziridines 289

As a representative example, the synthesis of 1-(4-methoxybenzyl)-2-methyl-2(phenoxymethyl)aziridine 289b is described here. 2-Bromomethyl-1-(4-methoxybenzyl)-2methylaziridine $\mathbf{2 6 0 d}$ ($1.35 \mathrm{~g}, 5 \mathrm{mmol}$) was added to a mixture of phenol ($1.04 \mathrm{~g}, 2.2$ equiv) and $\mathrm{K}_{2} \mathrm{CO}_{3}$ (3.46 g , 5 equiv) in DMF (30 mL), and the resulting suspension was heated at $50^{\circ} \mathrm{C}$ for 14 h . The reaction mixture was cooled to room temperature, poured into a NaOH solution ($30 \mathrm{~mL}, 0.5 \mathrm{M}$) and extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 20 \mathrm{~mL})$. The combined organic extracts were washed with $\mathrm{H}_{2} \mathrm{O}(2 \times 15 \mathrm{~mL})$ and brine $(20 \mathrm{~mL})$. Drying $\left(\mathrm{MgSO}_{4}\right)$, filtration of the drying agent and evaporation of the solvent afforded 1-(4-methoxybenzyl)-2-methyl-2-(phenoxymethyl)aziridine 289 b ($1.27 \mathrm{~g}, 76 \%$), which was purified by silica gel column chromatography (petroleum ether/ethyl acetate 4/1) to obtain an analytically pure sample.

2-Methyl-1-(4-methylbenzyl)-2-(phenoxymethyl)aziridine 289a

Yellow oil, $R_{f}=0.17$ (petroleum ether/ethyl acetate $4 / 1$), Yield 85%, isolated yield 70% (after purification). ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.42\left(1 \mathrm{H}, \mathrm{s},(\mathrm{HCH}) \mathrm{CCH}_{3}\right), 1.44\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{C}\right), 2.00(1 \mathrm{H}, \mathrm{s}$, $\left.(\mathrm{HCH}) \mathrm{CCH}_{3}\right), 2.34\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{Ar}\right), 3.60(1 \mathrm{H}, \mathrm{d}, J=14.0 \mathrm{~Hz},(\mathrm{HCH}) \mathrm{Ar}), 3.73(1 \mathrm{H}, \mathrm{d}, J$
 $=14.0 \mathrm{~Hz},(\mathrm{HCH}) \mathrm{Ar}), 3.75(1 \mathrm{H}, \mathrm{d}, J=9.8 \mathrm{~Hz},(H C H) \mathrm{O}), 3.90(1 \mathrm{H}, \mathrm{d}, J=9.8 \mathrm{~Hz}$, $(\mathrm{HCH}) \mathrm{O}), 6.88-6.96$ and $7.11-7.30\left(9 \mathrm{H}, 2 \times \mathrm{m}, \mathrm{CH}_{\text {arom }}\right) .{ }^{13} \mathrm{C} \mathrm{NMR}(75 \mathrm{MHz}$, ref $=$ $\left.\mathrm{CDCl}_{3}\right) \delta 13.0\left(\mathrm{CCH}_{3}\right)$, $21.2\left(\mathrm{CH}_{3} \mathrm{Ar}\right)$, $38.9\left(\mathrm{CH}_{2} \mathrm{NCH}_{2} \mathrm{C}_{\text {arom }}\right)$, $39.2\left(\mathrm{CCH}_{3}\right)$, 56.3 $\left(\mathrm{CH}_{2} \mathrm{C}_{\text {arom }}\right), 75.8\left(\mathrm{CH}_{2} \mathrm{O}\right), 114.7,120.8,127.7,129.1,129.5\left(9 \times \mathrm{CH}_{\text {arom }}\right), 136.4$ and $137.0\left(2 \times C_{\text {arom,quat }}\right), 159.1\left(\mathrm{C}_{\text {arom }} \mathrm{O}\right)$. IR (neat) $v_{\max }=3030,2922,1599,1586,1495$, $1456,1241,1171,1034,1020,798,752,691 \mathrm{~cm}^{-1} ; \mathrm{MS} \mathrm{m} / \mathrm{z}(\%) 268\left(\mathrm{M}^{+}+1,100\right)$. HRMS m/z (ESI) calculated for $\mathrm{C}_{18} \mathrm{H}_{21} \mathrm{NO}[\mathrm{MH}]^{+}$268.1701, found 268.1689.

1-(4-Methoxybenzyl)-2-methyl-2-(phenoxymethyl)aziridine 289b

Yellow oil, $R_{f}=0.31$ (petroleum ether/ethyl acetate $4 / 1$), Yield 90%, isolated yield 76% (after purification). ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.41\left(1 \mathrm{H}, \mathrm{s},(\mathrm{HCH}) \mathrm{CCH}_{3}\right), 1.45\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{C}\right), 2.00(1 \mathrm{H}, \mathrm{s}$, $\left.(\mathrm{HCH}) \mathrm{CCH}_{3}\right), 3.56(1 \mathrm{H}, \mathrm{d}, J=13.8 \mathrm{~Hz},(H C H) \mathrm{Ar}), 3.71(1 \mathrm{H}, \mathrm{d}, J=13.8 \mathrm{~Hz},(\mathrm{HCH}) \mathrm{Ar}), 3.76(1 \mathrm{H}, \mathrm{d}, J=$
 $9.4 \mathrm{~Hz},(\mathrm{HCH}) \mathrm{O}), 3.81\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.89(1 \mathrm{H}, \mathrm{d}, J=9.4 \mathrm{~Hz},(\mathrm{HCH}) \mathrm{O}), 6.84-6.96$ and $7.24-7.33\left(9 \mathrm{H}, 2 \times \mathrm{m}, \mathrm{CH}_{\text {arom }}\right) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(75 \mathrm{MHz}\right.$, ref $\left.=\mathrm{CDCl}_{3}\right) \delta 13.0\left(\mathrm{CCH}_{3}\right)$, $38.9\left(\mathrm{CH}_{2} \mathrm{NCH}_{2} \mathrm{C}_{\text {arom }}\right)$, $39.2\left(\mathrm{CCH}_{3}\right)$, $55.4\left(\mathrm{OCH}_{3}\right), 56.0\left(\mathrm{CH}_{2} \mathrm{C}_{\text {arom }}\right), 75.9\left(\mathrm{CH}_{2} \mathrm{O}\right)$, 113.9, 114.8, 120.8, 128.9 and $129.5\left(9 \times \mathrm{CH}_{\text {arom }}\right), 132.2\left(\mathrm{C}_{\text {arom,quat }}\right), 158.6$ and 159.1 ($2 \times \mathrm{C}_{\text {arom }}$ O). IR (neat) $v_{\max }=3038,2930,2835,1599,1586,1511,1496$, $1463,1300,1241,1172,1033,819,753,691 \mathrm{~cm}^{-1} . \mathrm{MS} \mathrm{m} / \mathrm{z}(\%) 284\left(\mathrm{M}^{+}+1,100\right)$. HRMS m/z (ESI) calculated for $\mathrm{C}_{18} \mathrm{H}_{21} \mathrm{NO}_{2}[\mathrm{MH}]^{+}$284.1651, found 284.1659.

5.32 Synthesis of 3-acetoxy-3-methylazetidines 290

As a representative example, the synthesis of 3-acetoxy-3-methyl-1-(4-methylbenzyl)azetidine 290a is described here. 2-Bromomethyl-2-methyl-1-(4-methylbenzyl)aziridine 260b ($1.27 \mathrm{~g}, 5 \mathrm{mmol}$) was dissolved in acetonitrile (30 mL), after which $\mathrm{NaOAc}(0.45 \mathrm{~g}, 1.1$ equiv) was added and the mixture was heated at reflux temperature for 24 h . The reaction mixture was cooled to room temperature, poured into water $(20 \mathrm{~mL})$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 20 \mathrm{~mL})$. The combined organic extracts were washed with $\mathrm{H}_{2} \mathrm{O}(2 \times 15 \mathrm{~mL})$ and brine $(20 \mathrm{~mL})$. Drying $\left(\mathrm{MgSO}_{4}\right)$, filtration of the drying agent and evaporation of the solvent afforded 3-acetoxy-3-methyl-1-(4-methylbenzyl)azetidine 290a (1.10 g, 87%), which was purified by silica gel column chromatography (petroleum ether/ethyl acetate 4/1) to obtain an analytically pure sample.

3-Acetoxy-3-methyl-1-(4-methylbenzyl)azetidine 290a

Yellow oil, $R_{\mathrm{f}}=0.11$ (petroleum ether/ethyl acetate $4 / 1$), Yield 95%, isolated yield 87% (after purification). ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.64\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CCH}_{3}\right), 2.01\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{CO}\right)$, $2.32\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{Ar}\right), 3.13\left(2 \mathrm{H}, \mathrm{d}, J=9.1 \mathrm{~Hz}, 2 \times(H \mathrm{CH}) \mathrm{C}_{\text {quat }}\right), 3.46(2 \mathrm{H}, \mathrm{d}, J=9.1 \mathrm{~Hz}$, $\left.2 \times(\mathrm{HCH}) \mathrm{C}_{\text {quat }}\right), 3.61\left(2 \mathrm{H}, \mathrm{s}, \mathrm{NCH}_{2} \mathrm{Ar}\right), 7.09-7.17\left(4 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{\text {arom }}\right) .{ }^{13} \mathrm{C} \mathrm{NMR}(75 \mathrm{MHz}$, ref $\left.=\mathrm{CDCl}_{3}\right) \delta 21.2\left(\mathrm{CH}_{3} \mathrm{Ar}\right)$, $21.6\left(\mathrm{CH}_{3} \mathrm{CO}\right)$, $22.7\left(\mathrm{CCH}_{3}\right)$, $63.3\left(\mathrm{NCH}_{2} \mathrm{Ar}\right), 65.8$ $\left(\mathrm{CH}_{2} \mathrm{C}_{\text {quat }} \mathrm{CH}_{2}\right), 74.3\left(\mathrm{CCH}_{3}\right), 128.5$ and $129.1\left(4 \times \mathrm{CH}_{\text {arom }}\right), 135.0$ and $136.8(2 \mathrm{x}$ $\mathrm{C}_{\text {arom,quat }}$), $169.7(\mathrm{CO})$. IR (neat) $v_{\mathrm{CO}}=1737 \mathrm{~cm}^{-1} . \mathrm{MS} \mathrm{m} / \mathrm{z}(\%) 234\left(\mathrm{M}^{+}+1,100\right)$. HRMS m/z (ESI) calculated for $\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{NO}_{2}[\mathrm{MH}]^{+}$234.1494, found 234.1490.

3-Acetoxy-1-(4-methoxybenzyl)-3-methylazetidine 290b

Yellow oil, $R_{f}=0.06$ (hexane/ethyl acetate 2/1) Yield 92%, isolated yield 84% (after purification). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.64\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CCH}_{3}\right), 2.02\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{CO}\right), 3.12(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=$
 $\left.9.4 \mathrm{~Hz}, 2 \times(\mathrm{HCH}) \mathrm{C}_{\text {quat }}\right), 3.45\left(2 \mathrm{H}, \mathrm{d}, J=9.4 \mathrm{~Hz}, 2 \times(\mathrm{HCH}) \mathrm{C}_{\text {quat }}\right), 3.59(2 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{NCH}_{2} \mathrm{Ar}\right), 3.79\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 6.83-6.86$ and $7.17-7.20\left(4 \mathrm{H}, 2 \times \mathrm{m}, \mathrm{CH}_{\text {arom }}\right) .{ }^{13} \mathrm{C}$ NMR (75 MHz , ref $=\mathrm{CDCl}_{3}$) $\delta 21.6\left(\mathrm{CH}_{3} \mathrm{CO}\right)$, $22.6\left(\mathrm{CCH}_{3}\right), 55.3\left(\mathrm{OCH}_{3}\right), 62.9\left(\mathrm{NCH}_{2} \mathrm{Ar}\right)$, $65.6\left(\mathrm{CH}_{2} \mathrm{C}_{\text {quat }} \mathrm{CH}_{2}\right), 74.2\left(\mathrm{CCH}_{3}\right), 113.8$ and $129.7\left(4 \times \mathrm{CH}_{\text {arom }}\right), 130.0\left(\mathrm{C}_{\text {arom,quat }}\right)$, $158.8\left(\mathrm{C}_{\text {aromO }}\right), 169.8(\mathrm{CO})$. IR (neat) $v_{\mathrm{co}}=1736 \mathrm{~cm}^{-1} . \mathrm{MS} \mathrm{m} / \mathrm{z}(\%) 250\left(\mathrm{M}^{+}+1,100\right)$. HRMS m/z (ESI) calculated for $\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{NO}_{3}[\mathrm{MH}]^{+} 250.1443$, found 250.1444.

5.33 Synthesis of 2-acetoxymethyl-2-methylaziridines 291

As a representative example, the synthesis of 2-acetoxymethyl-2-methyl-1-(4-methylbenzyl)aziridine 291a is described here. 2-Bromomethyl-2-methyl-1-(4-methylbenzyl)aziridine 260b (1.27 g, 5 mmol$)$ was dissolved in DMSO (30 mL), after which $\mathrm{NaOAc}(0.45 \mathrm{~g}, 1.1$ equiv) was added and the mixture was stirred at room temperature for 5 days. The reaction mixture was poured into water (20 mL) and extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 20 \mathrm{~mL})$. The combined organic extracts were washed with $\mathrm{H}_{2} \mathrm{O}(2 \times 15 \mathrm{~mL})$ and brine $(20 \mathrm{~mL})$. Drying $\left(\mathrm{MgSO}_{4}\right)$, filtration of the drying agent and evaporation of the solvent afforded a mixture of 3-acetoxy-3-methyl-1-(4-methylbenzyl)azetidine 290a and 2-acetoxymethyl-2-methyl-1-(4-methylbenzyl)aziridine 291a (290a/291a = ratio 20/80), from which 2-acetoxymethyl-2-methyl-1-(4-methylbenzyl)aziridine 291a could not be isolated in completely pure (purity $<80 \%$) form by silica gel column chromatography (petroleum ether/ethyl acetate 4/1).

2-Acetoxymethyl-2-methyl-1-(4-methylbenzyl)aziridine 291a

Yellow oil, $R_{\mathrm{f}}=0.22$ (petroleum ether/ethyl acetate $\left.4 / 1\right) .{ }^{1} \mathrm{H} \mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $1.31\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{C}\right), 1.35\left(1 \mathrm{H}, \mathrm{s},(\mathrm{HCH}) \mathrm{CCH}_{3}\right), 1.95\left(1 \mathrm{H}, \mathrm{s},(\mathrm{HCH}) \mathrm{CCH}_{3}\right), 2.07(3 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{CH}_{3} \mathrm{CO}\right), 2.33\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{Ar}\right), 3.64\left(2 \mathrm{H}, \mathrm{s}, \mathrm{NCH}_{2} \mathrm{Ar}\right), 3.89(\mathrm{H}, \mathrm{d}, \mathrm{J}=11.3 \mathrm{~Hz},(\mathrm{HCH}) \mathrm{O})$, $4.01(\mathrm{H}, \mathrm{d}, J=11.3 \mathrm{~Hz},(\mathrm{HCH}) \mathrm{O}), 7.12-7.15$ and $7.25-7.27\left(4 \mathrm{H}, 2 \times \mathrm{m}, \mathrm{CH}_{\text {arom }}\right) .{ }^{13} \mathrm{C}$ NMR (75 MHz , ref $\left.=\mathrm{CDCl}_{3}\right) \delta 12.9\left(\mathrm{CH}_{3} \mathrm{CO}\right)$, $21.0\left(\mathrm{CH}_{3} \mathrm{C}\right)$, $21.2\left(\mathrm{CH}_{3} \mathrm{Ar}\right)$, $38.3\left(\mathrm{CCH}_{3}\right)$,
$38.6\left(\mathrm{CH}_{2} \mathrm{NCH}_{2} \mathrm{C}_{\text {arom }}\right), 56.3\left(\mathrm{CH}_{2} \mathrm{C}_{\text {arom }}\right), 71.9\left(\mathrm{CH}_{2} \mathrm{O}\right), 127.6$ and $129.1\left(4 \times \mathrm{CH}_{\text {arom }}\right), 136.4$ and 136.9 (2 $x \mathrm{C}_{\text {arom,quat }}$), $171.1(\mathrm{CO})$. IR (neat) $v_{\mathrm{CO}}=1737 \mathrm{~cm}^{-1} . \mathrm{MS} \mathrm{m} / \mathrm{z}(\%) 234\left(\mathrm{M}^{+}+1,100\right)$.

2-Acetoxymethyl-1-(4-methoxybenzyl)-2-methylaziridine 291b

Yellow oil, $R_{\mathrm{f}}=0.21$ (petroleum ether/ethyl acetate $\left.1 / 1\right) .{ }^{1} \mathrm{H} \mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $1.31\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{C}\right), 1.34\left(1 \mathrm{H}, \mathrm{s},(\mathrm{HCH}) \mathrm{CCH}_{3}\right), 1.94\left(1 \mathrm{H}, \mathrm{s},(\mathrm{HCH}) \mathrm{CCH}_{3}\right), 2.07(3 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{CH}_{3} \mathrm{CO}\right), 3.61\left(2 \mathrm{H}, \mathrm{s}, \mathrm{NCH}_{2} \mathrm{Ar}\right), 3.80\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.88(\mathrm{H}, \mathrm{d}, J=11.3 \mathrm{~Hz}$, $(H C H) \mathrm{O}), 4.00(\mathrm{H}, \mathrm{d}, J=11.3 \mathrm{~Hz},(\mathrm{HCH}) \mathrm{O}), 6.85-6.88$ and $7.26-7.31(4 \mathrm{H}, 2 \times \mathrm{m}$, $\left.\mathrm{CH}_{\text {arom }}\right) .{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}\right.$, ref $\left.=\mathrm{CDCl}_{3}\right) \delta 12.9\left(\mathrm{CH}_{3} \mathrm{CO}\right)$, $21.0\left(\mathrm{CH}_{3} \mathrm{C}\right)$, $38.3\left(\mathrm{CCH}_{3}\right)$, $38.5\left(\mathrm{CH}_{2} \mathrm{NCH}_{2} \mathrm{C}_{\text {arom }}\right)$, $55.4\left(\mathrm{OCH}_{3}\right), 56.0\left(\mathrm{CH}_{2} \mathrm{C}_{\text {arom }}\right), 71.8\left(\mathrm{CH}_{2} \mathrm{O}\right), 113.8$ and 128.8 $\left(4 \times \mathrm{CH}_{\text {arom }}\right), 132.1\left(\mathrm{C}_{\text {arom,quat }}\right), 158.6\left(\mathrm{C}_{\text {arom }} \mathrm{O}\right), 171.1(\mathrm{CO}) . \mathrm{IR}($ neat $) v_{\mathrm{CO}}=1736 \mathrm{~cm}^{-1} . \mathrm{MS} \mathrm{m} / \mathrm{z}(\%) 250$ $\left(\mathrm{M}^{+}+1,100\right)$.

5.34 Synthesis of 3-methyl-1-(4-methylbenzyl)-3-azetidinol 296

3-Bromo-3-methyl-1-(4-methylbenzyl)azetidine 261b (1.27 g, 5 mmol) was added to a two-phase solvent system $\left(\mathrm{H}_{2} \mathrm{O} / \mathrm{CH}_{2} \mathrm{Cl}_{2} 9 / 1,15 \mathrm{~mL}\right)$, after which $\mathrm{KOH}(1.40 \mathrm{~g}, 5$ equiv) was added, and the mixture was stirred for 10 h under reflux. The reaction mixture was poured into water (15 mL) and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 15 \mathrm{~mL})$. The combined organic extracts were washed with $\mathrm{H}_{2} \mathrm{O}(2 \times 15 \mathrm{~mL})$ and brine $(15 \mathrm{~mL})$. Drying $\left(\mathrm{MgSO}_{4}\right)$, filtration of the drying agent and evaporation of the solvent afforded 3-methyl-1-(4-methylbenzyl)-3-azetidinol 296 as white crystals (0.92 g , purity $>95 \%$ based on NMR analysis).

3-Methyl-1-(4-methylbenzyl)-3-azetidinol 296

White crystals, $\mathrm{Mp}=85.3^{\circ} \mathrm{C}$, Yield $96 \% .^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.40\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCCH}_{3}\right)$, $2.25\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{Ar}\right), 2.99\left(2 \mathrm{H}, \mathrm{d}, J=6.9 \mathrm{~Hz}, 2 \times(\mathrm{HCH}) \mathrm{C}_{\text {quat }}\right), 3.20(2 \mathrm{H}, \mathrm{d}, J=6.9 \mathrm{~Hz}, 2 \mathrm{x}$ $\left.(\mathrm{HCH}) \mathrm{C}_{\text {quat }}\right), 3.53\left(2 \mathrm{H}, \mathrm{s}, \mathrm{NCH}_{2} \mathrm{Ar}\right), 7.02-7.10\left(4 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{\text {arom }}\right) .{ }^{13} \mathrm{C} \mathrm{NMR}(75 \mathrm{MHz}$, ref $=$ $\left.\mathrm{CDCl}_{3}\right) \delta 21.2\left(\mathrm{CH}_{3} \mathrm{Ar}\right), 26.1\left(\mathrm{OCCH}_{3}\right), 63.2\left(\mathrm{NCH}_{2} \mathrm{Ar}\right), 68.0\left(\mathrm{CH}_{2} \mathrm{C}_{\text {quat }} \mathrm{CH}_{2}\right), 68.9(\mathrm{COH})$, 128.6 and $128.8\left(4 \times \mathrm{CH}_{\text {arom }}\right), 134.9$ and $136.8\left(2 \times \mathrm{C}_{\text {arom,quat }}\right)$. IR (neat) $v_{\mathrm{OH}}=3359 \mathrm{~cm}^{-1} . \mathrm{MS}$ $(70 \mathrm{eV}) \mathrm{m} / \mathrm{z}(\%) 192\left(\mathrm{M}^{+}+1,100\right)$.

5.35 Synthesis of 3-methyl-1-(4-methylbenzyl)azetidine-3-carboxamide 298 and 3-methyl-1-(4-methylbenzyl)azetidine-3-carboxylic acid 297

1-(4-Methylbenzyl)azetidine-3-carbonitrile 286a (0.20 g , 1 mmol) was dissolved in $\mathrm{EtOH} / \mathrm{H}_{2} \mathrm{O}(5 / 1,5$ mL), after which KOH ($0.28 \mathrm{~g}, 5$ equiv) was added. The mixture was placed in a $6-\mathrm{mL}$ sealed glass
vessel, provided with an appropriate stirring bar and subjected to microwave conditions ($150{ }^{\circ} \mathrm{C}, 10$ $\min , 150 \mathrm{~W}$). The reaction mixture was neutralized with a solution of hydrochloric acid (1 M) to $\mathrm{pH}=7$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 10 \mathrm{~mL})$. The combined organic extracts were washed with $\mathrm{H}_{2} \mathrm{O}(2 \times 15$ $\mathrm{mL})$ and brine (15 mL). Drying $\left(\mathrm{MgSO}_{4}\right)$, filtration of the drying agent and evaporation of the solvent afforded 3-methyl-1-(4-methylbenzyl)azetidine-3-carboxamide 298 as white crystals ($0.09 \mathrm{~g}, 40 \%$). The water fraction was evaporated under high vacuum to provide azetidine-3-carboxylic acid 297 as a mixture of two isomeric structures (ratio $3 / 2$) upon NMR analysis $\left(\mathrm{CD}_{3} \mathrm{OD}\right)(0.12 \mathrm{~g}, 55 \%)$.

3-Methyl-1-(4-methylbenzyl)azetidine-3-carboxamide 298

White solid, Yield $40 \%{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 1.36\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{CCO}\right), 1.85$
 (2H, br s, NH_{2}), $2.33\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{Ar}\right), 3.02\left(2 \mathrm{H}, \mathrm{d}, J=8.0 \mathrm{~Hz}, 2 \times(\mathrm{HCH}) \mathrm{C}_{\text {quat }}\right), 3.53(2 \mathrm{H}$, $\left.\mathrm{d}, J=8.0 \mathrm{~Hz}, 2 \times(\mathrm{HCH}) \mathrm{C}_{\text {quat }}\right), 3.59\left(2 \mathrm{H}, \mathrm{s}, \mathrm{NCH}_{2} \mathrm{Ar}\right), 7.09-7.22(4 \mathrm{H}, \mathrm{m}) .{ }^{13} \mathrm{C}$ NMR (75 MHz , ref $\left.=\mathrm{CD}_{3} \mathrm{OD}\right) \delta 21.2\left(\mathrm{CH}_{3} \mathrm{CCO}\right)$, $21.4\left(\mathrm{CH}_{3} \mathrm{Ar}\right), 40.9\left(\mathrm{CH}_{3} \mathrm{CCO}\right), 62.9\left(\mathrm{NCH}_{2} \mathrm{Ar}\right)$, $64.4\left(\mathrm{CH}_{2} \mathrm{C}_{\text {quat }} \mathrm{CH}_{2}\right), 128.4$ and $129.2\left(4 \times \mathrm{CH}_{\text {arom }}\right), 134.5$ and $137.0\left(2 \times \mathrm{C}_{\text {arom,quat }}\right)$, 178.9 (CO). IR (neat) $v_{\mathrm{CO}}=1655 \mathrm{~cm}^{-1}, v_{\max }=2922,1618,1455,1228,798 . \mathrm{MS}(70$ $\mathrm{eV}) \mathrm{m} / \mathrm{z}(\%) 219\left(\mathrm{M}^{+}+1,100\right)$.

3-Methyl-1-(4-methylbenzyl)azetidine-3-carboxylic acid 297 (described as a mixture of diastereomers)

White crystals, Yield $55 \%{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 1.47$ and $1.53(3 \mathrm{H}, 2 \times \mathrm{s}$, $\mathrm{CH}_{3} \mathrm{CCO}$), $2.25\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{Ar}\right)$, 3.69-3.70 ($1 \mathrm{H}, \mathrm{m}, \mathrm{HCHN}$), 3.85-3.89 ($2 \mathrm{H}, \mathrm{m}, \mathrm{HCHN}$), 4.00-4.4.03 $\left(3 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{~N}\right.$ and HCH N$)$, 4.28-4.31 $\left(3 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right)$, 7.15-7.18 and 7.31$7.33\left(4 \mathrm{H}, 2 \times \mathrm{m}, \mathrm{CH}_{\text {arom }}\right) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(75 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 21.3$ and $21.5\left(\mathrm{CH}_{3} \mathrm{CCO}\right), 22.4$ $\left(\mathrm{CH}_{3} \mathrm{Ar}\right), 39.9$ and $40.9\left(\mathrm{CH}_{3} \mathrm{CCO}\right), 59.2$ and $59.6\left(\mathrm{NCH}_{2} \mathrm{Ar}\right), 61.8$ and 62.5 $\left(\mathrm{CH}_{2} \mathrm{C}_{\text {quat }} \mathrm{CH}_{2}\right), 127.8\left(\mathrm{C}_{\text {arom,quat }}\right), 131.0,131.3,131.4\left(4 \times \mathrm{CH}_{\text {arom }}\right), 141.3\left(\mathrm{C}_{\text {arom,quat }}\right), 175.6$ and 175.8 (CO). IR (neat) $v_{\mathrm{CO}}=1730 \mathrm{~cm}^{-1}, v_{\mathrm{OH}}=3381, v_{\max }=2950,2577,1730,1438,1154 . \mathrm{MS}(70 \mathrm{eV}) \mathrm{m} / \mathrm{z}$ (\%) $220\left(\mathrm{M}^{+}+1,100\right)$.

5.36 Synthesis of ammonium 3-methyl-1-(4-methylbenzyl)azetidine-3carboxylate 299

1-(4-Methylbenzyl)azetidine-3-carbonitrile 286a (0.20 g , 1 mmol) was dissolved in $\mathrm{EtOH} / \mathrm{H}_{2} \mathrm{O}(5 / 1$, 5 mL), after which $\mathrm{KOH}(0.28 \mathrm{~g}, 5$ equiv) was added. The mixture was placed in a 6 mL sealed glass vessel, provided with an appropriate stirring bar and subjected to microwave conditions $\left(150{ }^{\circ} \mathrm{C}, 20\right.$ $\mathrm{min}, 150 \mathrm{~W})$. The reaction mixture was neutralized with a solution of hydrochloric acid ($1 \mathrm{~mL}, 1 \mathrm{M}$) to $\mathrm{pH}=7$ and evaporated under high vacuum to provide a mixture of two isomeric structures (ratio $3 / 2$) upon NMR analysis of azetidine-3-carboxylic acid 297. Purification of amino acid 297 by means of ion-
exchange chromatography on Dowex $\mathrm{H}+(50 \times 8$-100) afforded ammonium 3-methyl-1-(4-methylbenzyl)azetidine-3-carboxylate 299 as a single isomer in pure form ($0.20 \mathrm{~g}, 85 \%$).

Ammonium 3-methyl-1-(4-methylbenzyl)azetidine-3-carboxylate 299

White crystals, $\mathrm{Mp}>350^{\circ} \mathrm{C}$, Yield $85 \% .^{1} \mathrm{H}$ NMR ($\left.300 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 1.41(3 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{CH}_{3} \mathrm{CCO}\right), 2.24\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{Ar}\right), 3.73\left(2 \mathrm{H}, \mathrm{d}, J=10.7 \mathrm{~Hz}, 2 x(\mathrm{HCH}) \mathrm{C}_{\text {quat }}\right), 4.20(2 \mathrm{H}$, $\left.\mathrm{d}, J=10.7 \mathrm{~Hz}, 2 \times(\mathrm{HCH}) \mathrm{C}_{\text {quat }}\right), 4.20\left(2 \mathrm{H}, \mathrm{s}, \mathrm{NCH}_{2} \mathrm{Ar}\right), 7.16-7.27\left(4 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{\text {arom }}\right)$. ${ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 21.3\left(\mathrm{CH}_{3} \mathrm{CCO}\right), 23.3\left(\mathrm{CH}_{3} \mathrm{Ar}\right), 42.3\left(\mathrm{CH}_{3} \mathrm{CCO}\right), 59.4$ $\left(\mathrm{NCH}_{2} \mathrm{Ar}\right), 63.7\left(\mathrm{CH}_{2} \mathrm{C}_{\text {quat }} \mathrm{CH}_{2}\right), 128.6\left(\mathrm{C}_{\text {arom,quat }}\right), 131.0$ and $131.1\left(4 \times \mathrm{CH}_{\text {arom }}\right)$, 141.2 ($\mathrm{C}_{\text {arom,quat }}$), $180.5(\mathrm{CO})$. IR (neat) $v_{\mathrm{CO}}=1603 \mathrm{~cm}^{-1}, v_{\max }=2965,1439,1379$, 1146, 770. MS (70 eV) m/z (\%) $218\left(\mathrm{M}^{+}+1,100\right)$.

5.37 Synthesis of 2-bromomethyl-2-ethylaziridines 303

The synthesis of 2-bromomethyl-2-ethylaziridines 303 was performed according to the synthetic procedure for the preparation of 2-bromomethyl-2-methylaziridines 260 (see Section 5.13). As a representative example, the synthesis of 2-bromomethyl-2-ethyl-1-(4-methylbenzyl)aziridine 303b is described here. N-(2,3-Dibromo-2-ethylpropylidene)-4-methylbenzylamine 302b ($3.47 \mathrm{~g}, 10 \mathrm{mmol}$) was dissolved in methanol (30 mL), after which $\mathrm{NaBH}_{4}(0.76 \mathrm{~g}, 2$ molar equiv) was added in small portions at $0{ }^{\circ} \mathrm{C}$ and the mixture was stirred for 36 hours at room temperature. The reaction mixture was poured into water $(20 \mathrm{~mL})$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 20 \mathrm{~mL})$. The combined organic extracts were washed with $\mathrm{H}_{2} \mathrm{O}(2 \times 15 \mathrm{~mL})$ and brine $(20 \mathrm{~mL})$. Drying $\left(\mathrm{MgSO}_{4}\right)$, filtration of the drying agent and evaporation of the solvent afforded 2-bromomethyl-1-(4-methylbenzyl)-2-ethylaziridine 303b (2.33 $\mathrm{g}, 87 \%$), as a mixture of two invertomers, which was purified by filtration through silica gel (petroleum ether/ethyl acetate 4/1) in order to obtain an analytically pure sample.

1-Benzyl-2-bromomethyl-2-ethylaziridine 303a (described as a mixture of two invertomers, ratio 63/37)

Yellow oil, $R_{\mathrm{f}}=0.56$ (petroleum ether /ethyl acetate 2/1), Yield 85%. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.85$ $\left(3 \mathrm{H}, \mathrm{t}, ~ J=7.4 \mathrm{~Hz},\left(\mathrm{CH}_{3} \mathrm{CH}_{2}\right)_{\text {minor }}\right), 0.97\left(3 \mathrm{H}, \mathrm{t}, J=7.4 \mathrm{~Hz},\left(\mathrm{CH}_{3} \mathrm{CH}_{2}\right)_{\text {major }}\right), 1.40(1 \mathrm{H}, \mathrm{s}$, $\left.\left((\mathrm{HCH}) \mathrm{CCH}_{2} \mathrm{Br}\right)_{\text {minor }}\right), 1.46\left(1 \mathrm{H}, \mathrm{s},\left((\mathrm{HCH}) \mathrm{CCH}_{2} \mathrm{Br}\right)_{\text {major }}\right), 1.67-1.88\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.91$ $\left.\left(1 \mathrm{H}, \mathrm{s},\left((\mathrm{HCH}) \mathrm{CCH}_{2} \mathrm{Br}\right)_{\text {major }}\right), 1.94\left(1 \mathrm{H}, \mathrm{s} \text {, (}(\mathrm{HCH}) \mathrm{CCH}_{2} \mathrm{Br}\right)_{\text {minor }}\right), 3.28$ and $3.36(2 \mathrm{H}, 2 \mathrm{xd}$, J $\left.=10.2 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{Br}\right), 3.45$ and $3.78\left(2 \mathrm{H}, 2 \mathrm{xd}, J=13.8 \mathrm{~Hz},(\mathrm{~N}(\mathrm{HCH}) \mathrm{Ar})_{\text {major }}\right)$, 3.41-3.48, 3.75-3.78 and 4.03-4.07 $\left(2 \mathrm{H}, 3 \times \mathrm{m},\left(\mathrm{NCH}_{2} \mathrm{Ar}\right)_{\text {minor }}\right), 7.16-7.32\left(5 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{\text {arom }}\right) .{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}\right.$, ref $\left.=\mathrm{CDCl}_{3}\right) \delta 9.6\left(\mathrm{CH}_{3} \mathrm{CH}_{2}\right)_{\text {minor }}, 10.9\left(\mathrm{CH}_{3} \mathrm{CH}_{2}\right)_{\text {major }}, 20.0\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 40.9$ $\left(\mathrm{CH}_{2} \mathrm{C}_{\text {quat }} \mathrm{CH}_{2} \mathrm{Br}\right)$, $41.3\left(\mathrm{CH}_{2} \mathrm{Br}\right)$, $43.9\left(\mathrm{CCH}_{2} \mathrm{Br}\right)_{\text {minor }}, 44.3\left(\mathrm{CCH}_{2} \mathrm{Br}\right)_{\text {major }}, 56.5\left(\mathrm{NCH}_{2} \mathrm{Ar}\right)_{\text {minor }}, 56.8$ $\left(\mathrm{NCH}_{2} \mathrm{Ar}\right)_{\text {major }}$, 127.1, 128.0 and $128.5\left(5 \times \mathrm{CH}_{\text {arom }}\right), 139.7$ ($\left.\mathrm{C}_{\text {arom,quat }}\right)$. IR (neat) $v_{\max }=3026$, 2967, 2852, 1495, 1454, 1216, 731, $696 \mathrm{~cm}^{-1} . \mathrm{MS} \mathrm{m} / \mathrm{z}(\%) 254 / 6\left(\mathrm{M}^{+}+1,100\right)$.

2-Bromomethyl-2-ethyl-1-(4-methylbenzyl)aziridine 303b (described as a mixture of two invertomers, ratio 66/34)

Light-yellow oil, $R_{\mathrm{f}}=0.50$ (petroleum ether /ethyl acetate $4 / 1$), Yield 87%. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$
 $0.91\left(3 \mathrm{H}, \mathrm{t}, J=7.4 \mathrm{~Hz},\left(\mathrm{CH}_{3} \mathrm{CH}_{2}\right)_{\text {minor }}\right), 1.04\left(3 \mathrm{H}, \mathrm{t}, J=7.4 \mathrm{~Hz},\left(\mathrm{CH}_{3} \mathrm{CH}_{2}\right)_{\text {major }}\right), 1.44(1 \mathrm{H}$, $\left.\mathrm{s},\left((\mathrm{HCH}) \mathrm{CCH}_{2} \mathrm{Br}\right)_{\text {minor }}\right), 1.49\left(1 \mathrm{H}, \mathrm{s},\left((\mathrm{HCH}) \mathrm{CCH}_{2} \mathrm{Br}\right)_{\text {major }}\right), 1.71-1.90\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right)$, $1.94\left(1 \mathrm{H}, \mathrm{s},\left((\mathrm{HCH}) \mathrm{CCH}_{2} \mathrm{Br}\right)_{\text {major }}\right), 1.97\left(1 \mathrm{H}, \mathrm{s},\left((\mathrm{HCH}) \mathrm{CCH}_{2} \mathrm{Br}\right)_{\text {minor }}\right), 2.33(3 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{CH}_{3} \mathrm{Ar}\right), 3.35$ and $3.40\left(2 \mathrm{H}, 2 \times \mathrm{d}, J=10.5 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{Br}\right), 3.46$ and $3.81(2 \mathrm{H}, 2 \times \mathrm{d}, J=$ $\left.13.8 \mathrm{~Hz},(\mathrm{~N}(\mathrm{HCH}) \mathrm{Ar})_{\text {major }}\right), 3.51$ and $4.06\left(2 \mathrm{H}, 2 \times \mathrm{d}, J=13.8 \mathrm{~Hz},(\mathrm{~N}(\mathrm{HCH}) \mathrm{Ar})_{\text {minor }}\right)$, 7.12-7.15 and 7.24-7.27 ($4 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{\text {arom }}$). ${ }^{13} \mathrm{C} \mathrm{NMR}\left(75 \mathrm{MHz}\right.$, ref $\left.=\mathrm{CDCl}_{3}\right) \delta 9.5\left(\mathrm{CH}_{3} \mathrm{CH}_{2}\right)_{\text {minor }}, 10.9$ $\left(\mathrm{CH}_{3} \mathrm{CH}_{2}\right)_{\text {major }} 20.0\left(\mathrm{CH}_{3} \mathrm{Ar}\right)_{\text {minor }}, 21.2\left(\mathrm{CH}_{3} \mathrm{Ar}\right)_{\text {major }}, 28.7\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right)_{\text {minor }}, 40.9\left(\mathrm{CH}_{2} \mathrm{C}_{\text {quat }} \mathrm{CH}_{2} \mathrm{Br}\right), 41.2$ $\left(\mathrm{CH}_{2} \mathrm{Br}\right), 44.0\left(\mathrm{CCH}_{2} \mathrm{Br}\right)_{\text {minor }}, 44.3\left(\mathrm{CCH}_{2} \mathrm{Br}\right)_{\text {major }}, 56.3\left(\mathrm{NCH}_{2} \mathrm{Ar}\right)_{\text {minor }}, 56.5\left(\mathrm{NCH}_{2} \mathrm{Ar}\right)_{\text {major }}, 128.0$ and $129.1\left(4 \times \mathrm{CH}_{\text {arom }}\right)$, $136.6\left(2 \times \mathrm{C}_{\text {arom,quat }}\right)$. IR (neat) $v_{\max }=3026,2967,2877,1515,1458,143,1216$, $797,647 \mathrm{~cm}^{-1}$. MS m/z (\%) 268/70 (M $\left.{ }^{+}+1,100\right)$.

5.38 Synthesis of 3-bromo-3-ethylazetidines 305

As a representative example, the synthesis of 3-bromo-3-ethyl-1-(4-methylbenzyl)azetidine $\mathbf{3 0 5 b}$ is described here. 2-Bromomethyl-2-ethyl-1-(4-methylbenzyl)aziridine 303b ($2.68 \mathrm{~g}, 10 \mathrm{mmol}$) was dissolved in acetonitrile (30 mL), and the mixture was heated at reflux temperature for 15 h . The reaction mixture was cooled to room temperature, poured into water (20 mL) and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 20 \mathrm{~mL})$. The combined organic extracts were washed with $\mathrm{H}_{2} \mathrm{O}(2 \times 15 \mathrm{~mL})$ and brine (20 $\mathrm{mL})$. Drying $\left(\mathrm{MgSO}_{4}\right)$, filtration of the drying agent and evaporation of the solvent in vacuo afforded 3-bromo-3-ethyl-1-(4-methylbenzyl)azetidine 305b ($2.57 \mathrm{~g}, 96 \%$), which was purified by silica gel column chromatography (petroleum ether/ethyl acetate $4 / 1$) to obtain an analytically pure sample.

1-Benzyl-3-bromo-3-ethylazetidine 305a

Yellow oil, $R_{\mathrm{f}}=0.52$ (hexane/ethyl acetate 4/1), Yield 94%. ${ }^{1} \mathrm{H} \mathrm{NMR}(300 \mathrm{MHz}$, ref $=$
 $\left.\mathrm{CDCl}_{3}\right) \delta 1.03\left(3 \mathrm{H}, \mathrm{t}, J=7.2 \mathrm{~Hz}, \mathrm{CH}_{3} \mathrm{CH}_{2}\right), 2.10\left(2 \mathrm{H}, \mathrm{q}, J=7.2 \mathrm{~Hz}, \mathrm{CH}_{3} \mathrm{CH}_{2}\right), 3.65(2 \mathrm{H}, \mathrm{d}, J$ $\left.=9.9 \mathrm{~Hz}, 2 \times(\mathrm{HCH}) \mathrm{C}_{\text {quat }}\right), 3.74\left(2 \mathrm{H}, \mathrm{d}, J=9.9 \mathrm{~Hz}, 2 \times(\mathrm{HCH}) \mathrm{C}_{\text {quat }}\right), 3.80\left(2 \mathrm{H}, \mathrm{s}, \mathrm{NCH}_{2} \mathrm{Ar}\right)$, 7.28-7.33 (5H, m, CH arom). ${ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}\right.$, ref $\left.=\mathrm{CDCl}_{3}\right) \delta 10.4\left(\mathrm{CH}_{3} \mathrm{CH}_{2}\right), 36.1$ $\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 59.1\left(\mathrm{CCH}_{2} \mathrm{CH}_{3}\right), 63.2\left(\mathrm{NCH}_{2} \mathrm{Ar}\right), 69.2\left(\mathrm{CH}_{2} \mathrm{C}_{\text {quat }} \mathrm{CH}_{2}\right), 127.3$, 128.48 and 128.52 ($5 \times \mathrm{CH}_{\text {arom }}$), $137.7\left(2 \times \mathrm{C}_{\text {arom,quat }}\right.$). IR (neat) $v_{\max }=2966,2935,1454,1174,732,697 \mathrm{~cm}^{-1}$. MS m/z (\%) 254/6 ($\mathrm{M}^{+}+1,100$).

3-Bromo-3-ethyl-1-(4-methylbenzyl)azetidine 305b

Yellow oil, $R_{\mathrm{f}}=0.50$ (petroleum ether/ethyl acetate 4/1), Yield 96\%. ${ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 1.03\left(3 \mathrm{H}, \mathrm{t}, J=7.2 \mathrm{~Hz}, \mathrm{CH}_{3} \mathrm{CH}_{2}\right), 2.10\left(2 \mathrm{H}, \mathrm{q}, J=7.2 \mathrm{~Hz}, \mathrm{CH}_{3} \mathrm{CH}_{2}\right), 2.33(3 \mathrm{H}$, $\left.\mathrm{s}, \mathrm{CH}_{3} \mathrm{Ar}\right), 3.70\left(2 \mathrm{H}, \mathrm{d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{x}(H \mathrm{CH}) \mathrm{C}_{\text {quat }}\right), 3.75(2 \mathrm{H}, \mathrm{d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{x}$ $\left.(\mathrm{HCH}) \mathrm{C}_{\text {quat }}\right), 3.81\left(2 \mathrm{H}, \mathrm{s}, \mathrm{NCH}_{2} \mathrm{Ar}\right), 7.12-7.23\left(4 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{\text {arom }}\right) .{ }^{13} \mathrm{C} \mathrm{NMR}(75 \mathrm{MHz}$, ref $=$ $\left.\mathrm{CDCl}_{3}\right) \delta 10.3\left(\mathrm{CH}_{3} \mathrm{CH}_{2}\right)$, $21.2\left(\mathrm{CH}_{3} \mathrm{Ar}\right)$, $35.9\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right)$, $58.3\left(\mathrm{CCH}_{2} \mathrm{CH}_{3}\right)$, $62.4\left(\mathrm{NCH}_{2} \mathrm{Ar}\right)$,
$68.6\left(\mathrm{CH}_{2} \mathrm{C}_{\text {quat }} \mathrm{CH}_{2}\right), 128.8$ and $129.3\left(4 \times \mathrm{CH}_{\text {arom }}\right)$, 133.0 and $137.6\left(2 \times \mathrm{C}_{\text {arom,quat }}\right)$. IR (neat) $v_{\text {max }}=$ 3417 , 2965, 2934, 1515, 1456, 1174, 809, $731 \mathrm{~cm}^{-1} . \mathrm{MS} \mathrm{m} / \mathrm{z}(\%) 268 / 70\left(\mathrm{M}^{+}+1,100\right)$.

5.39 Synthesis of 1-benzyl-3-ethyl-3-methoxyazetidine 306

1-Benzyl-2-bromomethyl-2-ethylaziridine 303a ($2.54 \mathrm{~g}, 10 \mathrm{mmol}$) was dissolved in methanol (30 mL), after which NaBH_{4} ($1.13 \mathrm{~g}, 3$ molar equiv) was added in small portions at $0{ }^{\circ} \mathrm{C}$ and the mixture was heated for 48 hours under reflux. The reaction mixture was poured into water (20 mL) and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 20 \mathrm{~mL})$. The combined organic extracts were washed with $\mathrm{H}_{2} \mathrm{O}(2 \times 15 \mathrm{~mL})$ and brine $(20 \mathrm{~mL})$. Drying $\left(\mathrm{MgSO}_{4}\right)$, filtration of the drying agent and evaporation of the solvent afforded 1-benzyl-3-ethyl-3-methoxyazetidine 306 ($1.83 \mathrm{~g}, 89 \%$).

1-Benzyl-3-ethyl-3-methoxyazetidine 306

Yellow oil, $R_{\mathrm{f}}=0.39$ (petroleum ether/ethyl acetate 4/1), Yield 89%. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.84$
 $\left(3 \mathrm{H}, \mathrm{t}, J=7.2 \mathrm{~Hz}, \mathrm{CH}_{3} \mathrm{CH}_{2}\right), 1.98\left(2 \mathrm{H}, \mathrm{q}, J=7.2 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 3.17\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.48$ $\left(2 \mathrm{H}, \mathrm{d}, J=10.5 \mathrm{~Hz}, 2 \times(H C H) \mathrm{C}_{\text {quat }}\right), 3.87\left(2 \mathrm{H}, \mathrm{d}, J=10.5 \mathrm{~Hz}, 2 \times(\mathrm{HCH}) \mathrm{C}_{\text {quat }}\right), 4.14(2 \mathrm{H}$, s, $\left.\mathrm{NCH}_{2} \mathrm{Ar}\right), 7.27-7.42\left(5 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{\text {arom }}\right) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(75 \mathrm{MHz}\right.$, ref $\left.=\mathrm{CDCl}_{3}\right) \delta 6.8\left(\mathrm{CH}_{3} \mathrm{CH}_{2}\right)$, $25.6\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 50.3\left(\mathrm{OCH}_{3}\right), 60.7\left(\mathrm{NCH}_{2} \mathrm{Ar}\right), 61.8\left(\mathrm{CH}_{2} \mathrm{C}_{\text {quat }} \mathrm{CH}_{2}\right), 75.2(\mathrm{CO}), 128.4$ ($\mathrm{C}_{\text {arom,quat }}$), 129.2, 129.3 and 129.9 ($5 \times \mathrm{CH}_{\text {arom }}$). IR (neat) $v_{\max }=2966,2935,1456$, 1070, 911, 729, $699 \mathrm{~cm}^{-1} . \mathrm{MS} \mathrm{m} / \mathrm{z}(\%) 206\left(\mathrm{M}^{+}+1,100\right)$.

5.40 Reactivity of 3-bromo-3-ethylazetidine 305 toward KOtBu in tBuOH

In an ice-cooled solution of 1-benzyl-3-bromo-3-ethylazetidine 305 a ($1.27 \mathrm{~g}, 5 \mathrm{mmol}$) in tBuOH (30 mL), KOtBu (2.8 g , 5 equiv) was slowly added and the mixture was heated for 20 hours under reflux. The reaction mixture was cooled to room temperature, filtered, poured into water (20 mL) and extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 20 \mathrm{~mL})$. The combined organic extracts were washed with $\mathrm{H}_{2} \mathrm{O}(2 \times 15 \mathrm{~mL})$ and brine $(20 \mathrm{~mL})$. Drying $\left(\mathrm{MgSO}_{4}\right)$, filtration of the drying agent and evaporation of the solvent in vacuo afforded a mixture of 1-benzyl-3-ethylazetidin-3-ol 308, 1-benzyl-3-ethylideneazetidine 307a and 3-(tert-butoxy)-3-ethylazetidine 309 (308/307a/309 = 3.4/1.5/1). Spectral data of 3-(tert-butoxy)-3ethylazetidine 309 and 1-benzyl-3-ethylazetidin-3-ol 308 were deduced from the crude reaction mixture.

1-Benzyl-3-ethylazetidin-3-ol 308

Light-yellow oil, Yield 60%. ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}\right.$, ref $\left.=\mathrm{CDCl}_{3}\right) \delta 0.94(3 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}$, $\left.\mathrm{CH}_{3} \mathrm{CH}_{2}\right), 1.77\left(2 \mathrm{H}, \mathrm{q}, J=7.4 \mathrm{~Hz}, \mathrm{CH}_{3} \mathrm{CH}_{2}\right), 3.08$ and $3.33(4 \mathrm{H}, 2 \times \mathrm{d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{x}$ $\mathrm{CH}_{2} \mathrm{C}_{\text {quat }} \mathrm{CH}_{2}$), $3.68\left(2 \mathrm{H}, \mathrm{s}, \mathrm{NCH}_{2} \mathrm{Ar}\right), 7.22-7.34\left(5 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{\text {arom }}\right) .{ }^{13} \mathrm{C} \mathrm{NMR}(75 \mathrm{MHz}$, ref $=$ $\left.\mathrm{CDCl}_{3}\right) \delta 7.8\left(\mathrm{CH}_{3} \mathrm{CH}_{2}\right), 31.7\left(\mathrm{CH}_{3} \mathrm{CH}_{2}\right)$, $66.4\left(\mathrm{NCH}_{2} \mathrm{Ar}\right.$ and $\left.\mathrm{CH}_{2} \mathrm{C}_{\text {quat }} \mathrm{CH}_{2}\right), 71.6(\mathrm{CO})$, 127.3, 128.4 and $128.7\left(5 \times \mathrm{CH}_{\text {arom }}\right), 137.8\left(\mathrm{C}_{\text {arom,quat }}\right)$. IR (neat) $v_{\mathrm{OH}}=3322 \mathrm{~cm}^{-1} . \mathrm{MS} \mathrm{m} / \mathrm{z}$ (\%) $192\left(\mathrm{M}^{+}+1,100\right)$.

3-(tert-Butoxy)-3-ethylazetidine 309

Light-yellow oil, Yield 60%. ${ }^{1} \mathrm{H}$ NMR (300 MHz , ref $=\mathrm{CDCl}_{3}$) $\delta 0.99(3 \mathrm{H}, \mathrm{t}, J=7.4 \mathrm{~Hz}$,
 $\left.\mathrm{CH}_{3} \mathrm{CH}_{2}\right), 1.23\left(9 \mathrm{H}, \mathrm{s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 1.98\left(2 \mathrm{H}, \mathrm{q}, J=7.4 \mathrm{~Hz}, \mathrm{CH}_{3} \mathrm{CH}_{2}\right), 2.98$ and $3.40(4 \mathrm{H}, 2 \mathrm{x}$ $\left.\mathrm{d}, J=8.0 \mathrm{~Hz}, 2 \times \mathrm{CH}_{2} \mathrm{C}_{\text {quat }} \mathrm{CH}_{2}\right), 3.68\left(2 \mathrm{H}, \mathrm{s}, \mathrm{NCH}_{2} \mathrm{Ar}\right), 7.22-7.34\left(5 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{\text {arom }}\right) .{ }^{13} \mathrm{C}$ NMR (75 MHz, ref $\left.=\mathrm{CDCl}_{3}\right) \delta 8.1\left(\mathrm{CH}_{3} \mathrm{CH}_{2}\right), 30.1\left(\mathrm{CH}_{3} \mathrm{CH}_{2}\right)$, $30.6\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 66.4$ $\left(\mathrm{CH}_{2} \mathrm{C}_{\text {quat }} \mathrm{CH}_{2}\right)$, $63.5\left(\mathrm{NCH}_{2} \mathrm{Ar}\right)$, $71.6\left(\mathrm{COCH}_{2}\right)$, $71.6\left(\mathrm{COC}\left(\mathrm{CH}_{3}\right)_{3}\right)$, 127.3, 128.4 and 128.7 $\left(5 \times \mathrm{CH}_{\text {arom }}\right), 137.8\left(\mathrm{C}_{\text {arom,quat }}\right)$. IR (neat) $v_{\max }=2962,2934,2828,1453,1362,1184,730$, $697 \mathrm{~cm}^{-1}$. MS m/z (\%) $248\left(\mathrm{M}^{+}+1,100\right)$.

5.41 Synthesis of 3-ethylideneazetidines 307

As a representative example, the synthesis of 3-ethylidene-1-(4-methylbenzyl)azetidine 307b is described here. In an ice-cooled solution of 3-bromo-3-ethyl-1-(4-methylbenzyl)azetidine 305b (1.34 g, 5 mmol) in dry THF (30 mL), KOtBu ($0.84 \mathrm{~g}, 1.5$ equiv) was slowly added and the mixture was subjected to microwave heating (150 W) for 10 min at $120^{\circ} \mathrm{C}$. Afterward, the reaction mixture was cooled to room temperature, filtered and poured into water $(20 \mathrm{~mL})$ and extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 20$ $\mathrm{mL})$. The combined organic extracts were washed with $\mathrm{H}_{2} \mathrm{O}(2 \times 15 \mathrm{~mL})$ and brine $(20 \mathrm{~mL})$. Drying $\left(\mathrm{MgSO}_{4}\right)$, filtration of the drying agent and evaporation of the solvent in vacuo afforded 3-ethylidene-1-(4-methyl-benzyl)azetidine 307b (0.88 g, 94\%), which was purified by silica gel column chromatography (petroleum ether/ethyl acetate $4 / 1$) to obtain an analytically pure sample.

1-Benzyl-3-ethylideneazetidine 307a

Light-yellow oil, $R_{\mathrm{f}}=0.21$ (petroleum ether /ethyl acetate $4 / 1$), Yield $92 \% .^{1} \mathrm{H}$ NMR (300
 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 1.47-1.51 (3H, m, $\left.\mathrm{CH}_{3} \mathrm{CH}=\mathrm{C}\right)$, $3.72\left(2 \mathrm{H}, \mathrm{s}, \mathrm{NCH}_{2} \mathrm{Ar}\right)$, $3.80-3.84(4 \mathrm{H}, \mathrm{m}$, $\mathrm{CH}_{2} \mathrm{C}_{\text {quat }} \mathrm{CH}_{2}$), 5.15-5.25 ($1 \mathrm{H}, \mathrm{m}, \mathrm{CH}=\mathrm{C}$), 7.21-7.34 $\left(5 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{\text {arom }}\right) .{ }^{13} \mathrm{C} \mathrm{NMR}(75 \mathrm{MHz}$, ref $\left.=\mathrm{CDCl}_{3}\right) \delta 13.6\left(\mathrm{CH}_{3} \mathrm{CH}=\mathrm{C}\right), 60.9\left(\mathrm{CH}_{2} \mathrm{C}=\mathrm{CH}\right), 62.3\left(\mathrm{CH}_{2} \mathrm{C}=\mathrm{CH}\right)$, $63.5\left(\mathrm{NCH}_{2} \mathrm{Ar}\right)$, $115.4(\mathrm{CH}=\mathrm{C}), 127.2,128.5$ and $128.6\left(5 \times \mathrm{CH}_{\text {arom }}\right), 131.8$ and $138.1\left(\mathrm{C}_{\text {arom,quat }}\right.$ and $\mathrm{C}_{\text {quat }}$). IR (neat) $v_{\max }=2918,2808,1453,1274,732,697 \mathrm{~cm}^{-1} . \mathrm{MS} \mathrm{m} / z(\%) 174\left(\mathrm{M}^{+}+1\right.$, 100). HRMS m/z (ESI) calculated for $\mathrm{C}_{12} \mathrm{H}_{15} \mathrm{~N}[\mathrm{MH}]^{+}$174.1277, found 174.1277.

3-Ethylidene-1-(4-methylbenzyl)azetidine 307b

Light-yellow oil, $R_{f}=0.22$ (petroleum ether /ethyl acetate 4/1), Yield 94%. ${ }^{1} \mathrm{H}$ NMR (300
 MHz , ref $\left.=\mathrm{CDCl}_{3}\right) \delta 1.46-1.51\left(3 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{3} \mathrm{CH}=\mathrm{C}\right)$, $2.33\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{Ar}\right)$, $3.68(2 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{NCH}_{2} \mathrm{Ar}\right)$, 3.79-3.82 (4H, m, CH2 $\mathrm{C}_{\text {quat }} \mathrm{CH}_{2}$), 5.16-5.24 (1H, m, $\left.\mathrm{CH}=\mathrm{C}\right), 7.11-7.14$ and 7.18$7.21\left(4 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{\text {arom }}\right) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(75 \mathrm{MHz}\right.$, ref $\left.=\mathrm{CDCl}_{3}\right) \delta 13.6\left(\mathrm{CH}_{3} \mathrm{CH}=\mathrm{C}\right)$, $21.2\left(\mathrm{CH}_{3} \mathrm{Ar}\right)$, $60.8\left(\mathrm{CH}_{2} \mathrm{C}=\mathrm{CH}\right), 62.2\left(\mathrm{CH}_{2} \mathrm{C}=\mathrm{CH}\right), 63.5\left(\mathrm{NCH}_{2} \mathrm{Ar}\right), 115.1(\mathrm{CH}=\mathrm{C}), 128.5$ and $129.1(4 \mathrm{x}$ $\mathrm{CH}_{\text {arom }}$), 131.8, 135.7 and $136.7\left(2 \times \mathrm{C}_{\text {arom,quat }}\right.$ and $\left.\mathrm{C}_{\text {quat }}\right)$. IR (neat) $v_{\max }=2917,2805$, $1514,1439,1358,1273,1176,1042,1021,806,780,753 \mathrm{~cm}^{-1} . \mathrm{MS} \mathrm{m} / \mathrm{z}(\%) 188\left(\mathrm{M}^{+}+1\right.$, 100). HRMS m/z (ESI) calculated for $\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{~N}[\mathrm{MH}]^{+} 188.1434$, found 188.1435.

5.42 Synthesis of 3-ethyl-1-(4-methylbenzyl)azetidine 329

3-Ethylidene-1-(4-methylbenzyl)azetidine 307b ($0.2 \mathrm{~g}, 1 \mathrm{mmol}$) was dissolved in ethyl acetate (10 mL), $10 \% \mathrm{Pd} / \mathrm{C}(0.07 \mathrm{~g}, 6 \mathrm{~mol} \%)$ was added in small portions at $0^{\circ} \mathrm{C}$ and the mixture was subjected to hydrogenation for 72 hours (5 bar, H_{2}) at room temperature. The reaction mixture was first then filtered through a small sintered funnel and thoroughly washed with ethyl acetate (20 mL). Subsequently, the filtrate was poured into water $(20 \mathrm{~mL})$ and extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 20 \mathrm{~mL})$. The combined organic extracts were washed with $\mathrm{H}_{2} \mathrm{O}(2 \times 15 \mathrm{~mL})$ and brine $(20 \mathrm{~mL})$. Drying $\left(\mathrm{MgSO}_{4}\right)$, filtration of the drying agent and evaporation of the solvent afforded 3-ethyl-1-(4-methylbenzyl)azetidine 329 ($0.08 \mathrm{~g}, 40 \%$).

3-Ethyl-1-(4-methylbenzyl)azetidine 329

Light-yellow oil, Yield 40%. ${ }^{1} \mathrm{H}$ NMR (300 MHz , ref $=\mathrm{CDCl}_{3}$) $\delta 0.73(3 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}$, $\left.\mathrm{CH}_{3} \mathrm{CH}_{2}\right), 1.44\left(2 \mathrm{H}\right.$, quin, $\left.J=7.4 \mathrm{~Hz}, \mathrm{CHCH}_{2} \mathrm{CH}_{3}\right), 2.24\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{Ar}\right)$, 2.24-2.38 (1H, m, $\left.\mathrm{NCH}_{2} \mathrm{CHCH}_{2}\right)$, 2.64-2.69 and 3.32-3.37 (4H, $\left.2 \times \mathrm{m}, \mathrm{CH}_{2} \mathrm{CHCH}_{2}\right), 3.46\left(2 \mathrm{H}, \mathrm{s}, \mathrm{NCH}_{2} \mathrm{Ar}\right)$, 7.02-7.10 ($4 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{\text {arom }}$). ${ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}\right.$, ref $\left.=\mathrm{CDCl}_{3}\right) \delta 11.6\left(\mathrm{CH}_{3} \mathrm{CH}_{2}\right)$, 21.2 $\left(\mathrm{CH}_{3} \mathrm{Ar}\right)$, $27.5\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right)$, $32.8\left(\mathrm{CHCH}_{2}\right), 60.4\left(\mathrm{CH}_{2} \mathrm{C}_{\text {quat }} \mathrm{CH}_{2}\right), 63.8\left(\mathrm{NCH}_{2} \mathrm{Ar}\right), 128.6$ and $129.1\left(4 \times \mathrm{CH}_{\text {arom }}\right), 135.3$ and $136.6\left(2 \times \mathrm{C}_{\text {arom,quat }}\right)$. IR (neat) $v_{\max }=2954,2929,2808$, 1514, 1459, 1358, 1182, $806 \mathrm{~cm}^{-1}$. MS m/z (\%) $190\left(\mathrm{M}^{+}+1,100\right)$. HRMS m/z (ESI) calculated for $\mathrm{C}_{13} \mathrm{H}_{19} \mathrm{~N}\left[\mathrm{MH}^{+}\right.$190.1590, found 190.1593.

5.43 Synthesis of $\quad \mathrm{N}$-benzyl- N -[2-(chloromethyl)but-2-enyl)]-2-

alkoxyacetamides 318

To an ice-cooled mixture of methoxyacetyl chloride $315(\mathrm{R}=\mathrm{Me})(0.20 \mathrm{~g}, 1.9 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, triethylamine ($0.57 \mathrm{~g}, 3$ equiv) was added and the mixture was stirred for 1 hour at room temperature. Subsequently, 3-ethylideneazetidine 307 a ($0.25 \mathrm{~g}, 1.5 \mathrm{mmol}$) was added and the resulting mixture
was stirred for 15 hours at room temperature. Afterward, the reaction mixture was poured into water $(20 \mathrm{~mL})$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 20 \mathrm{~mL})$. The combined organic extracts were washed with $\mathrm{H}_{2} \mathrm{O}$ $(2 \times 15 \mathrm{~mL})$ and $\mathrm{NaHCO}_{3}(20 \mathrm{~mL})$. Drying $\left(\mathrm{MgSO}_{4}\right)$, filtration of the drying agent and evaporation of the solvent in vacuo afforded a mixture of N-benzyl- N-[2-(chloromethyl)but-2-enyl)]-2alkoxyacetamides 318a and 318b $(R=M e)(Z / E=1 / 1)(0.33 \mathrm{~g}$, overall yield $78 \%)$, which was purified by silica gel column chromatography (petroleum ether/ethyl acetate $1 / 1$) to obtain an analytically pure sample of the mixture of isomers.
N-benzyl- N-[2-(chloromethyl)but-2-enyl)]-2-alkoxyacetamides 318a and 318b ($\mathrm{R}=\mathrm{Me}$) (described from the mixture of two isomers $Z / E=1 / 1$)

and

Yellow oil, $R_{\mathrm{f}}=0.47$ (petroleum ether/ethyl acetate 1/1), Yield 78%. ${ }^{1} \mathrm{H}$ NMR (300 MHz , ref $=\mathrm{CDCl}_{3}$) δ 1.56-1.63 (3H, m, CH $\left.\mathrm{CH}_{3}=\mathrm{C}\right), 3.44$ and $3.49\left(3 \mathrm{H}, 2 \times \mathrm{s}, \mathrm{OCH}_{3}\right), 4.00-4.05\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 4.16-4.21$ $\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 4.30-4.34\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 4.51-4.54\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 5.90-5.94(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}=\mathrm{C})$, 7.17-7.37 $\left(5 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{\text {arom }}\right) .{ }^{13} \mathrm{C}$ NMR (75 MHz , ref $=\mathrm{CDCl}_{3}$) $\delta 13.6\left(\mathrm{CH}_{3} \mathrm{CH}=\mathrm{C}\right)$, $41.5\left(\mathrm{CH}_{2}\right), 41.9\left(\mathrm{CH}_{2}\right), 47.2$ $\left(\mathrm{CH}_{2}\right), 47.4\left(\mathrm{CH}_{2}\right), 48.3\left(\mathrm{CH}_{2}\right), 49.5\left(\mathrm{CH}_{2}\right), 59.4\left(\mathrm{OCH}_{3}\right), 71.5\left(\mathrm{CH}_{2} \mathrm{O}\right), 126.4(\mathrm{CH}=\mathrm{C}), 127.6$, 127.8, 128.2, 128.7, 129.1, 131.4, 131.6, $131.9\left(5 \times \mathrm{CH}_{\text {arom }}\right), 136.4$ and 137.0 ($\mathrm{C}_{\text {arom,quat }}$ and $\mathrm{C}=\mathrm{CH}$), 170.1 (CO). IR (neat) $v_{C O}=1649, v_{\max }=2930,1449,1196,1128,1108,699 \mathrm{~cm}^{-1} . \mathrm{MS} \mathrm{m} / \mathrm{z}(\%) 282 / 4\left(\mathrm{M}^{+}+1\right.$, 100). HRMS m / z (ESI) calculated for $\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{ClNO}_{2}[\mathrm{MH}]^{+} 282.1255$, found 282.1252.

5.44 Synthesis of 2-benzyloxy- N -[(2-chloromethyl)but-2-enyl)]-N-(4methylbenzyl)acetamides 318

To an ice-cooled mixture of benzoxyacetyl chloride $315(\mathrm{R}=\mathrm{Bn})(0.1 \mathrm{~g}, 0.5 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, triethylamine ($0.16 \mathrm{~g}, 3$ equiv) was added and the mixture was stirred for 1 hour at room temperature. Subsequently, 3 -ethylideneazetidine 307a ($0.07 \mathrm{~g}, 0.38 \mathrm{mmol}$) was added and the resulting mixture was stirred for 15 hours at room temperature. Afterward, the reaction mixture was poured into water $(20 \mathrm{~mL})$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 20 \mathrm{~mL})$. The combined organic extracts were washed with $\mathrm{H}_{2} \mathrm{O}$ $(2 \times 15 \mathrm{~mL})$ and $\mathrm{NaHCO}_{3}(20 \mathrm{~mL})$. Drying $\left(\mathrm{MgSO}_{4}\right)$, filtration of the drying agent and evaporation of the solvent in vacuo afforded a mixture of 2-benzyloxy- N-[(2-chloromethyl)but-2-enyl)]- N-(4methylbenzyl)acetamides 318a and $\mathbf{3 1 8 b}(\mathrm{R}=\mathrm{Bn})(Z / E=1 / 1)(0.11 \mathrm{~g}$, overall yield $75 \%)$.

2-Benzyloxy- N-[(2-chloromethyl)but-2-enyl)]- N-(4-methylbenzyl)acetamides 318a and 318b (R = Me) (described from the mixture of two isomers $Z / E=1 / 1$)
 and

Dark-yellow oil, $R_{\mathrm{f}}=0.30$ (petroleum ether/ethyl acetate $4 / 1$), Yield 75%. ${ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz}$, ref $=$ $\left.\mathrm{CDCl}_{3}\right) \delta$ 1.49-1.61 (3H, m, $\left.\mathrm{CH}_{3} \mathrm{CH}=\mathrm{C}\right)$, $2.33\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{Ar}\right)$, 3.96-4.04 (2H, m, $\left.\mathrm{CH}_{2}\right)$, 4.09-4.10 (2H, $\mathrm{m}, \mathrm{CH}_{2}$), 4.15-4.29 (2H, m, CH2), 4.35-4.67 (2H, m, CH2), 5.29 (2H, s, ArCH $\left.\mathrm{CH}_{2} \mathrm{O}\right), 5.85-5.92(1 \mathrm{H}, \mathrm{m}$, $\mathrm{CH}=\mathrm{C})$, 7.07-7.15 and 7.29-7.36 (9H, $2 \times \mathrm{m}, \mathrm{CH}_{\text {arom }}$). ${ }^{13} \mathrm{C} \mathrm{NMR}\left(75 \mathrm{MHz}\right.$, ref $\left.=\mathrm{CDCl}_{3}\right) \delta 13.6$ $\left(\mathrm{CH}_{3} \mathrm{CH}=\mathrm{C}\right), 41.6\left(\mathrm{CH}_{2}\right), 41.8\left(\mathrm{CH}_{2}\right), 53.5\left(\mathrm{CH}_{3} \mathrm{Ar}\right), 67.0\left(\mathrm{CH}_{2}\right), 68.9\left(\mathrm{CH}_{2}\right), 73.4\left(\mathrm{CH}_{2} \mathrm{O}\right), 126.4$ $(C H=C), 128.0,128.2,128.5,128.6\left(9 \times \mathrm{CH}_{\text {arom }}\right), 129.4,129.7,131.7$ and $137.4\left(3 \times \mathrm{C}_{\text {arom,quat }}\right.$ and $C=C H$), 170.2 (CO), 172.4 (CO). IR (neat) $v_{\mathrm{CO}}=1753,1649 \mathrm{~cm}^{-1}, v_{\max }=2925,1454,1205,1118,738$, $698 \mathrm{~cm}^{-1}$. MS m/z (\%) 372/4 (M+1, 100).

5.45 Synthesis of N-benzyl- N-[(2-chloromethyl)but-2-enyl)]acetamides 323

3-Ethylideneazetidine 307a ($0.08 \mathrm{~g}, 0.5 \mathrm{mmol}$) was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$, acetyl chloride (0.06 $\mathrm{g}, 1.5$ equiv) was added and the mixture was stirred for 15 hours under reflux. The reaction mixture was then poured into water $(20 \mathrm{~mL})$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 20 \mathrm{~mL})$. The combined organic extracts were washed with $\mathrm{H}_{2} \mathrm{O}(2 \times 15 \mathrm{~mL})$ and $\mathrm{NaHCO}_{3}(20 \mathrm{~mL})$. Drying $\left(\mathrm{MgSO}_{4}\right)$, filtration of the drying agent and evaporation of the solvent in vacuo afforded a mixture of N-benzyl- N - [(2-chloromethyl)but-2-enyl)]acetamides 323a and 323b ($Z / E=1 / 1$) (0.12 g , overall yield 100%).

N -benzyl- N -[(2-chloromethyl)but-2-enyl)]acetamides 323a and 323b

and

Yellow oil, $R_{\mathrm{f}}=0.18$ (petroleum ether/ethyl acetate 4/1), Yield 100%. ${ }^{1} \mathrm{H}$ NMR (300 MHz , ref $=\mathrm{CDCl}_{3}$) б 1.49-1.53 (3H, m, CH $\left.\mathrm{CH}_{3} \mathrm{CH}=\mathrm{C}\right)$, $2.09\left(3 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{3} \mathrm{CO}\right), 2.24\left(3 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{3} \mathrm{CO}\right), 3.94\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2}\right), 3.97$ $\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2}\right), 4.14\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2}\right), 4.44-4.46\left(2 \mathrm{H}, \mathrm{m} \mathrm{CH}_{2}\right), 5.79-5.88(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}=\mathrm{C}), 7.09-7.33(5 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{CH}_{\text {arom }}\right) \cdot{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}\right.$, ref $\left.=\mathrm{CDCl}_{3}\right) \delta 13.6\left(\mathrm{CH}_{3} \mathrm{CH}=\mathrm{C}\right)$, $21.8\left(\mathrm{CH}_{3} \mathrm{CO}\right)$, $21.9\left(\mathrm{CH}_{3} \mathrm{CO}\right), 41.8$
$\left(\mathrm{CH}_{2}\right), 43.2\left(\mathrm{CH}_{2}\right), 47.1\left(\mathrm{CH}_{2}\right), 47.5\left(\mathrm{CH}_{2}\right), 48.4\left(\mathrm{CH}_{2}\right), 51.3\left(\mathrm{CH}_{2}\right), 126.2(\mathrm{CH}=\mathrm{C}), 127.5,127.7,128.1$, 128.6, 129.1, 131.0, $131.4\left(5 \times \mathrm{CH}_{\text {arom }}\right)$, 131.9, 132.4, 136.7, 137.3 ($\mathrm{C}_{\text {arom,quat }}$ and $\mathrm{C}=\mathrm{CH}$), 171.5 (CO), 171.7 (CO). IR (neat) $v_{\mathrm{CO}}=1645 \mathrm{~cm}^{-1}, v_{\max }=2950,1739,1420,1242,733,699 \mathrm{~cm}^{-1} . \mathrm{MS} \mathrm{m} / \mathrm{z}(\%)$ 252/4 ($\mathrm{M}^{+}+1,40$). HRMS m/z (ESI) calculated for $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{CINO}[\mathrm{MH}]^{+} 252.1150$, found 252.1148.

5.46 Synthesis of N, N-dibenzyl- N-[(2-bromomethyl)but-2-enyl)]amines 324

3-Ethylideneazetidine $\mathbf{3 0 7 a}$ ($0.09 \mathrm{~g}, 0.5 \mathrm{mmol}$) was dissolved in MeCN (10 mL), benzyl bromide (0.09 g, 1 equiv) was added and the mixture was stirred for 15 hours under reflux. The reaction mixture was then poured into water (20 mL) and extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 20 \mathrm{~mL})$. The combined organic extracts were washed with $\mathrm{H}_{2} \mathrm{O}(2 \times 15 \mathrm{~mL})$ and brine $(20 \mathrm{~mL})$. Drying $\left(\mathrm{MgSO}_{4}\right)$, filtration of the drying agent and evaporation of the solvent in vacuo afforded a mixture of N, N-dibenzyl- N-[(2-bromomethyl)but-2enyl)]amines 324a and 324b ($Z / E=36 / 64$ or vice versa) (0.17 g , overall yield 100%).
\mathbf{N}, N-Dibenzyl- N -[(2-bromomethyl)but-2-enyl)]amines 324a and 324b (described as a mixture of 2 isomers, $Z / E=36 / 64$ or vice versa)

Yellow oil. $R_{\mathrm{f}}=0.75$ (petroleum ether/ethyl acetate 4/1), overall yield 100%. ${ }^{1} \mathrm{H} \mathrm{NMR}(300 \mathrm{MHz}$, ref $=$ $\left.\mathrm{CDCl}_{3}\right) \delta$ 1.60-1.62 (3H, m, $\left.\left(\mathrm{CH}_{3} \mathrm{CH}=\mathrm{C}\right)_{\text {major }}\right)$, 1.676-1.681 and 1.700-1.703 $\left(3 \mathrm{H}, \mathrm{m},\left(\mathrm{CH}_{3} \mathrm{CH}=\mathrm{C}\right)_{\text {minor }}\right)$, $3.00\left(1 \mathrm{H}, \mathrm{s},\left(\mathrm{NCH}_{2} \mathrm{C}=\mathrm{CH}\right)_{\text {major }}\right), 3.10\left(1 \mathrm{H}, \mathrm{s},\left(\mathrm{NCH}_{2} \mathrm{C}=\mathrm{CH}\right)_{\text {minor }}\right), 3.43\left(4 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{NCH}_{2} \mathrm{Ar}\right), 4.04(2 \mathrm{H}, \mathrm{s}$, $\left.\left(\mathrm{CH}_{2} \mathrm{Br}\right)_{\text {major }}\right), 4.09\left(2 \mathrm{H}, \mathrm{s},\left(\mathrm{CH}_{2} \mathrm{Br}\right)_{\text {minor }}\right), 5.59-5.66\left(1 \mathrm{H}, \mathrm{m},(\mathrm{CH}=\mathrm{C})_{\text {major }}\right), 5.77-5.84\left(1 \mathrm{H}, \mathrm{m},(\mathrm{CH}=\mathrm{C})_{\text {minor }}\right)$, 7.13-7.33 ($\left.10 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{\text {arom }}\right) .{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}\right.$, ref $\left.=\mathrm{CDCl}_{3}\right)$ ס $13.6\left(\mathrm{CH}_{3} \mathrm{CH}=\mathrm{C}\right)_{\text {major }}$, 13.8 $\left(\mathrm{CH}_{3} \mathrm{CH}=\mathrm{C}\right)_{\text {minor, }} 28.8\left(\mathrm{CH}_{2} \mathrm{Br}\right)_{\text {major }}, 37.9\left(\mathrm{CH}_{2} \mathrm{Br}\right)_{\text {minor }}, 58.3\left(\mathrm{NCH}_{2} \mathrm{C}=\mathrm{CH}\right)_{\text {major }}, 50.2\left(\mathrm{NCH}_{2} \mathrm{C}=\mathrm{CH}\right)_{\text {minor }}$, $58.0\left(2 \times \mathrm{NCH}_{2} \mathrm{Ar}\right)$, $114.6(\mathrm{CH}=\mathrm{C})$, 126.99, 127.04, 128.4, 128.5, 128.9 and 129.1 ($10 \times \mathrm{CH}_{\text {arom }}$), 137.9, 139.5 and $139.4\left(2 \times C_{\text {arom,quat }}\right.$ and $\left.C=C H\right)$. IR (neat) $v_{\max }=3058,2919,2795,1494,1453,735,697$ cm^{-1}. MS m/z (\%) 344/6 ($\mathrm{M}^{+}+1,70$). HRMS m/z (ESI) calculated for $\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{BrN}[\mathrm{MH}]^{+} 344.1014$, found 344.1013.

5.47 Synthesis of methyl N-[(2-(chloromethyl)but-2-enyl)]carbamates 326

As a representative example, the synthesis of N-benzyl- $N-[(2$-(chloromethyl)but-2-enyl)]carbamates 326a and 326b $(\mathrm{R}=\mathrm{H})$ is described here. N-Benzyl-3-ethylideneazetidine 307 a ($0.07 \mathrm{~g}, 0.4 \mathrm{mmol}$) was dissolved in MeCN (10 mL), methyl chloroformate ($0.06 \mathrm{~g}, 1.5$ equiv) was added and the mixture was stirred for 15 hours under reflux. The reaction mixture was then poured into water (20 mL) and
extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 20 \mathrm{~mL})$. The combined organic extracts were washed with $\mathrm{H}_{2} \mathrm{O}(2 \times 15 \mathrm{~mL})$ and $\mathrm{NaHCO}_{3}(20 \mathrm{~mL})$. Drying $\left(\mathrm{MgSO}_{4}\right)$, filtration of the drying agent and evaporation of the solvent in vacuo afforded a mixture of methyl N-benzyl- N-[(2-(chloromethyl)but-2-enyl)]carbamates 326a and 326b $(Z / E=50 / 50)(0.11 \mathrm{~g}$, overall yield $100 \%)$.

Methyl N-benzyl- N-[(2-(chloromethyl)but-2-enyl)]carbamates 326a and 326b ($\mathrm{R}=\mathrm{H}$) (described as a mixture of isomers $Z / E=50 / 50$)
 and

Yellow oil, Yield 100\%. ${ }^{1} \mathrm{H}$ NMR (300 MHz , ref $=\mathrm{CDCl}_{3}$) $\delta 1.52-1.54\left(3 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{3} \mathrm{CH}=\mathrm{C}\right)$, $3.70\left(\mathrm{OCH}_{3}\right)$, $3.96\left(4 \mathrm{H}\right.$, brs, $\mathrm{CH}_{2} \mathrm{Cl}$ and $\left.\mathrm{NCH}_{2} \mathrm{C}=\mathrm{CH}\right), 4.38\left(\mathrm{NCH}_{2} \mathrm{Ar}\right)$, 5.77-5.80 ($1 \mathrm{H}, \mathrm{m}, \mathrm{CH}=\mathrm{C}$), 7.17-7.28 ($5 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{CH}_{\text {arom }}\right) .{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}\right.$, ref $\left.=\mathrm{CDCl}_{3}\right) \delta 14.2\left(\mathrm{CH}_{3} \mathrm{CH}=\mathrm{C}\right), 48.1\left(\mathrm{CH}_{2}\right)$ and $49.7\left(\mathrm{CH}_{2}\right), 52.2\left(\mathrm{OCH}_{3}\right)$, $53.9\left(\mathrm{NCH}_{2} \mathrm{Ar}\right)$, 127.5, 127.8 and $128.6\left(5 \times \mathrm{CH}_{\text {arom }}\right), 130.5(\mathrm{CH}=\mathrm{C}), 132.4$ and $137.5\left(2 \times \mathrm{C}_{\text {arom,quat }}\right)$, 157.5 (CO). IR (neat) $v_{C O}=1698 \mathrm{~cm}^{-1}, v_{\max }=2956,1467,1452,1405,1242,1117,699 \mathrm{~cm}^{-1} . \mathrm{MS} \mathrm{m} / \mathrm{z}$ (\%) 268/70 ($\mathrm{M}^{+}+1,100$).

Methyl N-(4-methylbenzyl)- N -[(2-(chloromethyl)but-2-enyl)]carbamates 326a and 326b (R = Me) (described as a mixture of isomers $Z / E=50 / 50$)

and

Yellow oil, Yield 100%. ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}\right.$, ref $\left.=\mathrm{CDCl}_{3}\right) \delta 1.61-1.63\left(3 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{3} \mathrm{CH}=\mathrm{C}\right)$, $2.34\left(\mathrm{CH}_{3} \mathrm{Ar}\right)$, $3.77\left(\mathrm{OCH}_{3}\right), 4.03\left(4 \mathrm{H}\right.$, brs, $\mathrm{CH}_{2} \mathrm{Cl}$ and $\left.\mathrm{NCH}_{2} \mathrm{C}=\mathrm{CH}\right), 4.41\left(\mathrm{NCH}_{2} \mathrm{Ar}\right), 5.83-5.89(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}=\mathrm{C})$, 7.06$7.21\left(4 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{\text {arom }}\right) . \mathrm{MS} \mathrm{m} / \mathrm{z}(\%) 282\left(\mathrm{M}^{+}+1,100\right)$. HRMS m/z (ESI) calculated for $\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{ClNO}_{2}$ [MH] ${ }^{+}$282.1255, found 282.1256 .

5.48 Synthesis of 5-ethylidene-1,3-oxazinan-2-ones 327

As a representative example, the synthesis of 3-benzyl-5-ethylidene-1,3-oxazinan-2-ones 327a and 327b $(R=H)$ is described here. A mixture of methyl N-benzyl- N-[(2-(chloromethyl)but-2-
enyl)]carbamates 326a and 326b ($0.08 \mathrm{~g}, 0.3 \mathrm{mmol}$) was dissolved in DMF (5 mL) and placed in 80 mL sealed vessel, provided with an appropriate stirrer bar and subjected to microwave conditions (140 ${ }^{\circ} \mathrm{C}$, $150 \mathrm{~W}_{\text {max }}$) for 30 min . The resulting reaction mixture was subsequently poured into water (15 mL) and extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 15 \mathrm{~mL})$. The combined organic extracts were thoroughly washed with $\mathrm{H}_{2} \mathrm{O}(2 \times 15 \mathrm{~mL})$ and brine (15 mL). Drying $\left(\mathrm{MgSO}_{4}\right)$, filtration of the drying agent and evaporation of the solvent afforded a mixture of 3-benzyl-5-ethylidene-1,3-oxazinan-2-ones 327a and 327b ($Z / E=$ $50 / 50$) (0.06 g , overall yield 96%), which was purified by filtration through silica gel (petroleum ether/ethyl acetate $1 / 1$).

3-Benzyl-5-ethylidene-1,3-oxazinan-2-ones 327a and 327b $(\mathrm{R}=\mathrm{H})$ (described as a mixture of isomers $Z / E=50 / 50$)
 and

Yellow oil, $R_{\mathrm{f}}=0.33$ (petroleum ether/ethyl acetate $1 / 1$), Yield 96%. ${ }^{1} \mathrm{H}$ NMR (300 MHz , ref $=\mathrm{CDCl}_{3}$) δ 1.48-1.50 ($3 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{3} \mathrm{CH}=\mathrm{C}$), 1.56-1.58 (3H, m, $\left.\mathrm{CH}_{3} \mathrm{CH}=\mathrm{C}\right), 3.79-3.81\left(2 \mathrm{H}, \mathrm{m}, \mathrm{NCH}_{2} \mathrm{C}=\mathrm{CH}\right), 4.56(2 \mathrm{H}$, $\mathrm{s}, \mathrm{CH}_{2}$), $4.59\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2}\right), 5.05-5.115(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}=\mathrm{C}), 5.57-5.63(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}=\mathrm{C}), 7.27-7.39(5 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{CH}_{\text {arom }}\right) .{ }^{13} \mathrm{C}$ NMR (75 MHz , ref $\left.=\mathrm{CDCl}_{3}\right) \delta 13.3\left(\mathrm{CH}_{3}\right), 18.1\left(\mathrm{CH}_{3}\right), 45.9\left(\mathrm{CH}_{2} \mathrm{~N}\right), 49.4\left(\mathrm{CH}_{2} \mathrm{~N}\right), 52.3$ $\left(\mathrm{CH}_{2} \mathrm{~N}\right), 52.7\left(\mathrm{CH}_{2} \mathrm{~N}\right), 70.7\left(\mathrm{CH}_{2} \mathrm{O}\right), 74.8\left(\mathrm{CH}_{2} \mathrm{O}\right), 111.0(\mathrm{CH}=\mathrm{C}), 123.2(\mathrm{CH}=\mathrm{C}), 127.8,126.2,128.2$ and $128.8\left(5 \times \mathrm{CH}_{\text {arom }}\right.$), 136.5 and 138.3 ($\mathrm{C}_{\text {arom,quat }}$ and $C=\mathrm{CH}$), 155.5 (CO). IR (neat) $v_{\mathrm{cO}}=1689 \mathrm{~cm}^{-1}$, $v_{\max }=2983,1480,1441,1239,1122,704 \mathrm{~cm}^{-1}$. MS $\mathrm{m} / \mathrm{z}(\%) 218\left(\mathrm{M}^{+}+1,100\right)$. HRMS m/z (ESI) calculated for $\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{NO}_{2}[\mathrm{MH}]^{+}$218.1176, found 218.1170.

5-Ethylidene-3-(4-methylbenzyl)-1,3-oxazinan-2-ones 327a and 327b $(R=M e)$ (described as a mixture of isomers $Z / E=50 / 50$)

and

Yellow oil, $R_{\mathrm{f}}=0.42$ (petroleum ether/ethyl acetate 1/1), Yield 85%. ${ }^{1} \mathrm{H}$ NMR (300 MHz , ref $=\mathrm{CDCl}_{3}$) δ 1.46-1.49 ($3 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{3} \mathrm{CH}=\mathrm{C}$), 1.55-1.58 ($3 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{3} \mathrm{CH}=\mathrm{C}$), $2.34\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{Ar}\right), 3.75-3.79(2 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{NCH}_{2} \mathrm{C}=\mathrm{CH}\right), 4.54\left(4 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{CH}_{2}\right), 5.04-5.10(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}=\mathrm{C}), 5.55-5.62(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}=\mathrm{C}), 7.13-7.23$ $\left(4 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{\text {arom }}\right) .{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}\right.$, ref $\left.=\mathrm{CDCl}_{3}\right) \delta 13.3\left(\mathrm{CH}_{3} \mathrm{CH}=\mathrm{C}\right), 18.0\left(\mathrm{CH}_{3} \mathrm{CH}=\mathrm{C}\right)$, $21.2\left(\mathrm{CH}_{3} \mathrm{Ar}\right)$, $29.8\left(\mathrm{CH}_{3} \mathrm{Ar}\right), 45.8\left(\mathrm{CH}_{2} \mathrm{~N}\right), 49.2\left(\mathrm{CH}_{2} \mathrm{~N}\right)$, $52.0\left(\mathrm{CH}_{2} \mathrm{~N}\right)$, $52.4\left(\mathrm{CH}_{2} \mathrm{~N}\right), 70.7\left(\mathrm{CH}_{2} \mathrm{O}\right), 74.8\left(\mathrm{CH}_{2} \mathrm{O}\right), 111.0$ $(\mathrm{CH}=\mathrm{C}), 123.1(\mathrm{CH}=\mathrm{C}), 126.2,128.3,129.5$ and $133.4\left(\left(4 \times \mathrm{CH}_{\text {arom }}\right)_{\text {somer1 }},\left(4 \times \mathrm{CH}_{\text {arom }}\right)_{\text {isomer2 }}\right)$, 133.3, 137.5, 137.6, $138.3\left(\left(2 \times C_{\text {arom,quat }}\right)_{\text {isomer1 }},\left(2 \times \mathrm{C}_{\text {arom,quat }}\right)_{\text {isomer2 }}\right.$, and $\left.(C=C H)_{\text {isomer1 }},(C=C H)_{\text {isomer2 }}\right), 154.4$ (CO), 155.5 (CO). IR (neat) $v_{\mathrm{co}}=1688 \mathrm{~cm}^{-1}, v_{\max }=2920,1478,1440,1238,1121,762 . \mathrm{MS} \mathrm{m} / \mathrm{z}(\%)$ $218\left(\mathrm{M}^{+}+1,100\right)$.

5.49 Synthesis of 1-benzyl-3-bromo-3-(1-bromoethyl)azetidine 332

3-Ethylideneazetidine 307a ($0.13 \mathrm{~g}, 0.7 \mathrm{mmol}$) was dissolved in $\mathrm{CHCl}_{3}(10 \mathrm{~mL})$, $\mathrm{NBS}(0.26 \mathrm{~g}, 2$ equiv) was added and the mixture was stirred for 20 hours under reflux. The reaction mixture was poured into water (15 mL) and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 15 \mathrm{~mL})$. The combined organic extracts were washed with $\mathrm{H}_{2} \mathrm{O}(2 \times 15 \mathrm{~mL})$ and brine $(15 \mathrm{~mL})$. Drying $\left(\mathrm{MgSO}_{4}\right)$, filtration of the drying agent and evaporation of the solvent in vacuo afforded 1-benzyl-3-bromo-3-(1-bromoethyl)azetidine 332 ($0.17 \mathrm{~g}, 70 \%$), which was purified by filtration through silica gel (petroleum ether/ethyl acetate $4 / 1$) in order to obtain an analytically pure sample.

1-Benzyl-3-bromo-3-(1-bromoethyl)azetidine 332

Yellow oil, $R_{\mathrm{f}}=0.55$ (petroleum ether/ethyl acetate 4/1), Yield 70%. ${ }^{1} \mathrm{H} \mathrm{NMR}(300 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 1.66\left(3 \mathrm{H}, \mathrm{d}, J=6.6 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 3.53\left(2 \mathrm{H}, \mathrm{d}, J=7.7 \mathrm{~Hz}, 2 \times(\mathrm{HCH}) \mathrm{C}_{\text {quat }}\right), 3.66$ $\left(2 \mathrm{H}, \mathrm{d}, J=7.7 \mathrm{~Hz}, 2 \times(\mathrm{HCH}) \mathrm{C}_{\text {quat }}\right), 3.67\left(2 \mathrm{H}, \mathrm{s}, \mathrm{NCH}_{2} \mathrm{Ar}\right), 4.42(1 \mathrm{H}, \mathrm{q}, J=7.7 \mathrm{~Hz}$, $\left.\mathrm{CHCH}_{3}\right), 7.18-7.26\left(5 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{\text {arom }}\right) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(75 \mathrm{MHz}\right.$, ref $\left.=\mathrm{CDCl}_{3}\right)$ ठ $22.7\left(\mathrm{CH}_{3}\right), 56.0$ $\left(\mathrm{CHCH}_{3}\right), 61.4(\mathrm{CBr}), 62.7\left(\mathrm{CH}_{2} \mathrm{~N}\right), 66.8\left(\mathrm{CH}_{2} \mathrm{~N}\right), 69.2\left(\mathrm{CH}_{2} \mathrm{~N}\right), 127.5$ and $128.6(5 \times$ $\mathrm{CH}_{\text {arom }}$), 137.2 ($\mathrm{C}_{\text {arom,quat }}$). IR (neat) $v_{\max }=2925,1495,1452,1378,1364,1206,1177$, 1112, 1072, $755,714,697 \mathrm{~cm}^{-1} . \mathrm{MS} \mathrm{m} / \mathrm{z}(\%) 332 / 4 / 6\left(\mathrm{M}^{+}+1,100\right)$. HRMS m/z (ESI) calculated for $\mathrm{C}_{12} \mathrm{H}_{15} \mathrm{Br}_{2} \mathrm{~N}[\mathrm{MH}]^{+} 331.9644$, found 331.9644

5.50 Synthesis of 1-benzyl-3-chloro-3-(1-chloroethyl)azetidine 333

3-Ethylideneazetidine 307 a ($0.11 \mathrm{~g}, 0.6 \mathrm{mmol}$) was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ and gaseous HCl was introduced for 10 min . Subsequently, mCPBA ($0.11 \mathrm{~g}, 1$ equiv) was slowly added and the mixture was stirred for 24 hours under reflux. The reaction mixture was poured into water (15 mL) and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 15 \mathrm{~mL})$. The combined organic extracts were washed with $\mathrm{NaHCO}_{3}(3 \times 15 \mathrm{~mL})$. Drying (MgSO_{4}), filtration of the drying agent and evaporation of the solvent in vacuo afforded 1-benzyl-3-chloro-3-(1-chloroethyl)azetidine 333 ($0.14 \mathrm{~g}, 92 \%$), which was purified by filtration through silica gel (petroleum ether/ethyl acetate 4/1) in order to obtain an analytically pure sample.

1-Benzyl-3-chloro-3-(1-chloroethyl)azetidine 333

Yellow oil, $R_{f}=0.52$ (petroleum ether/ethyl acetate 4/1), Yield 92\%. ${ }^{1} \mathrm{H}$ NMR (300 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 1.55\left(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.6 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 3.47$ and $3.54\left(2 \mathrm{H}, 2 \times \mathrm{d}, J=8.8 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{~N}\right)$, 3.50 and $3.73\left(2 \mathrm{H}, 2 \times \mathrm{d}, J=11.6 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{~N}\right), 3.71\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{~N}\right), 4.54(1 \mathrm{H}, \mathrm{q}, \mathrm{J}=6.6$ $\left.\mathrm{Hz}, \mathrm{CHCH}_{3}\right), 7.24-7.34\left(5 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{\text {arom }}\right) .{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}\right.$, ref $\left.=\mathrm{CDCl}_{3}\right) \delta 19.9\left(\mathrm{CH}_{3}\right)$, $62.4\left(\mathrm{CHCH}_{3}\right), 62.9\left(\mathrm{CH}_{2} \mathrm{~N}\right), 65.8\left(\mathrm{CH}_{2} \mathrm{~N}\right), 66.8(\mathrm{CCl}), 66.9\left(\mathrm{CH}_{2} \mathrm{~N}\right), 127.5$ and $128.6(5 \mathrm{x}$
$\mathrm{CH}_{\text {arom }}$), $137.3\left(\mathrm{C}_{\text {arom,quat }}\right)$. IR (neat) $v_{\max }=2953,2940,2850,1495,1453,1364,1182$, 1074, 721, 697, $674 \mathrm{~cm}^{-1} . \mathrm{MS} \mathrm{m} / \mathrm{z}(\%) 244 / 6\left(\mathrm{M}^{+}+1,100\right)$. HRMS m/z (ESI) calculated for $\mathrm{C}_{12} \mathrm{H}_{15} \mathrm{Cl}_{2} \mathrm{~N}$ [MH] ${ }^{+}$244.0654, found 244.0655.

5.51 Synthesis of 3-hydroxy-3-(1-tosyloxyethyl)azetidines 334

As a representative example the synthesis of 3-hydroxy-1-(4-methylbenzyl)-3-(1tosyloxyethyl)azetidine 334b was described here. 3-Ethylidene-(4-methylbenzyl)azetidine 307b (0.9 g, $0.5 \mathrm{mmol})$ was dissolved in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15 \mathrm{~mL}), \mathrm{pTsOH}(0.91 \mathrm{~g}, 1$ equiv) was added and the mixture was stirred for 10 min at room temperature. Subsequently, m CPBA ($1.25 \mathrm{~g}, 1.5$ equiv) was slowly added and the mixture was stirred for 15 hours under reflux. The reaction mixture was poured into water $(20 \mathrm{~mL})$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 20 \mathrm{~mL})$. The combined organic extracts were washed with aqueous $\mathrm{NaHCO}_{3}(3 \times 20 \mathrm{~mL})$. Drying $\left(\mathrm{MgSO}_{4}\right)$, filtration of the drying agent and evaporation of the solvent in vacuo afforded 3-hydroxy-1-(4-methylbenzyl)-3-(1-tosyloxyethyl)azetidine 334b (1.67 g, 93\%).

1-Benzyl-3-hydroxy-3-(1-tosyloxyethyl)azetidine 334a

Yellow oil, Yield 92\%. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.19\left(3 \mathrm{H}, \mathrm{d}, J=6.0 \mathrm{~Hz}, \mathrm{CH}_{3} \mathrm{CH}\right)$, $2.44\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{Ar}\right), 3.33-3.38$ and $3.43-3.53\left(4 \mathrm{H}, 2 \times \mathrm{m}, 2 \times \mathrm{CH}_{2} \mathrm{~N}\right)$, 3.77-3.79 (2H, m, $\left.\mathrm{CH}_{2} \mathrm{~N}\right), 4.77\left(1 \mathrm{H}, \mathrm{q}, \mathrm{J}=6.3 \mathrm{~Hz}, \mathrm{CHCH}_{3}\right), 7.25-7.36$ and $7.80-7.83\left(9 \mathrm{H}, 2 \times \mathrm{m}, \mathrm{CH}_{\text {arom }}\right)$. ${ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}\right.$, ref $\left.=\mathrm{CDCl}_{3}\right) \delta 14.5\left(\mathrm{CH}_{3} \mathrm{CH}\right)$, $21.4\left(\mathrm{CH}_{3} \mathrm{Ar}\right), 60.9,62.4$ and 62.7 (3 $\left.x \mathrm{CH}_{2} \mathrm{~N}\right), 71.8(\mathrm{COH}), 81.2(\mathrm{CHO}), 127.8,128.0,128.9,129.1$ and $130.1\left(9 \times \mathrm{CH}_{\text {arom }}\right)$, 133.8, 134.9 and $145.3\left(3 \times \mathrm{C}_{\text {arom,quat }}\right)$. $\mathrm{MS} \mathrm{m} / \mathrm{z}(\%) 362\left(\mathrm{M}^{+}+1,100\right)$.

3-Hydroxy-1-(4-methylbenzyl)-3-(1-tosyloxyethyl)azetidine 334b

Yellow oil, Yield 93\%. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.19\left(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.6 \mathrm{~Hz}, \mathrm{CH}_{3} \mathrm{CH}\right)$, 2.33 and $2.44\left(6 \mathrm{H}, 2 \times \mathrm{s}, 2 \times \mathrm{CH}_{3} \mathrm{Ar}\right)$, 3.25-3.31 and 3.38-3.47 (4H, $2 \times \mathrm{m}, 2 \times \mathrm{CH}_{2} \mathrm{~N}$), 3.65-3.74 ($2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{~N}$), $4.75\left(1 \mathrm{H}, \mathrm{q}, \mathrm{J}=6.6 \mathrm{~Hz}, \mathrm{CHCH}_{3}\right), 7.11-7.36$ and $7.80-7.83$ $\left(8 \mathrm{H}, 2 \times \mathrm{m}, \mathrm{CH}_{\text {arom }}\right) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(75 \mathrm{MHz}\right.$, ref $\left.=\mathrm{CDCl}_{3}\right) \delta 14.6\left(\mathrm{CH}_{3} \mathrm{CH}\right)$, $21.2\left(\mathrm{CH}_{3} \mathrm{Ar}\right)$, $61.6\left(\mathrm{CH}_{2} \mathrm{~N}\right), 62.3\left(\mathrm{CH}_{2} \mathrm{~N}\right), 63.1\left(\mathrm{CH}_{2} \mathrm{~N}\right), 71.9(\mathrm{COH}), 81.9(\mathrm{CHO}), 127.9,128.8,129.3$ and $130.1\left(8 \times \mathrm{CH}_{\text {arom }}\right), 132.9,133.9,137.5$ and $145.2\left(4 \times \mathrm{C}_{\text {arom,quat }}\right)$. IR (neat) $v_{\mathrm{OH}}=$ $3295 \mathrm{~cm}^{-1}, v_{\max }=2970,2924,1361,1221,1175,1121,1032,1009,909,814,730,681$ $\mathrm{cm}^{-1} . \mathrm{MS} \mathrm{m} / \mathrm{z}(\%) 376\left(\mathrm{M}^{+}+1,100\right)$.

5.52 Synthesis of 2-methyl-1-oxa-5-aza-spiro[2.3]hexanes 335

As a representative example the synthesis of 5 -benzyl-2-methyl-5-aza-1-oxaspiro[2.3]hexane 335 a is described here. In an ice-cooled solution of 1-benzyl-3-hydroxy-3-(1-tosyloxyethyl)azetidine 307a ($0.19 \mathrm{~g}, 0.5 \mathrm{mmol}$) in dry THF (15 mL), NaH (60% suspension) ($0.02 \mathrm{~g}, 1$ equiv) was slowly added and the mixture was stirred for 15 hours at room temperature. The reaction mixture was poured into water $(20 \mathrm{~mL})$ and extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 20 \mathrm{~mL})$. The combined organic extracts were washed with $\mathrm{H}_{2} \mathrm{O}$ $(2 \times 15 \mathrm{~mL})$ and brine (20 mL). Drying $\left(\mathrm{MgSO}_{4}\right)$, filtration of the drying agent and evaporation of the solvent in vacuo afforded 5-benzyl-2-methyl-5-aza-1-oxaspiro[2.3]hexane 335 a ($0.10 \mathrm{~g}, 95 \%$), which was purified by means of column chromatography on basic aluminium oxide (petroleum ether/ethyl acetate $4 / 1$) in order to obtain an analytically pure sample.

5-Benzyl-2-methyl-5-aza-1-oxaspiro[2.3]hexane 335a

Light-yellow oil, $R_{\mathrm{f}}=0.22$ (petroleum ether/ethyl acetate 4/1), Yield 95%. ${ }^{1} \mathrm{H}$ NMR (300 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.23\left(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=5.5 \mathrm{~Hz}, \mathrm{CH}_{3} \mathrm{CH}\right), 3.07\left(1 \mathrm{H}, \mathrm{q}, J=5.5 \mathrm{~Hz}, \mathrm{CHCH}_{3}\right), 3.35-3.38$ and $3.43-3.46(2 \mathrm{H}, 2 \times \mathrm{m}, 2 \times(\mathrm{HCH}) \mathrm{N}), 3.60-3.66(2 \mathrm{H}, \mathrm{m}, 2 \times(\mathrm{HCH}) \mathrm{N}), 3.76\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{~N}\right)$, 7.23-7.36 (5H, m, CH arom). ${ }^{13} \mathrm{C}$ NMR (75 MHz , ref = CDCl_{3}) $\delta 15.5\left(\mathrm{CH}_{3}\right), 56.2\left(\mathrm{CHCH}_{3}\right)$, $59.5\left(\mathrm{CH}_{2} \mathrm{CO}\right), 60.4(\mathrm{CO}), 61.6\left(\mathrm{CH}_{2} \mathrm{CO}\right), 64.1\left(\mathrm{NCH}_{2} \mathrm{Ar}\right), 127.3$ and $128.6\left(5 \times \mathrm{CH}_{\text {arom }}\right)$, 138.2 (Carom,quat). IR (neat) $v_{\max }=2925,2831,1495,1453,1363,1161,826,725,697 \mathrm{~cm}^{-1}$.

MS m/z (\%) $190\left(\mathrm{M}^{+}+1,100\right)$. HRMS m/z (ESI) calculated for $\mathrm{C}_{12} \mathrm{H}_{15} \mathrm{NO}[\mathrm{MH}]^{+}$190.1232, found 190.1232.

2-Methyl-5-(4-methylbenzyl)-5-aza-1-oxaspiro[2.3]hexane 335b

Light-yellow oil, $R_{\mathrm{f}}=0.22$ (petroleum ether/ethyl acetate 4/1), Yield 96%. ${ }^{1} \mathrm{H}$ NMR (300 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.14\left(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=5.0 \mathrm{~Hz}, \mathrm{CH}_{3} \mathrm{CH}\right), 2.25\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{Ar}\right), 2.98(1 \mathrm{H}, \mathrm{q}, \mathrm{J}=5.0$ $\left.\mathrm{Hz}, \mathrm{CHCH}_{3}\right), 3.25-3.28$ and $3.34-3.37(2 \mathrm{H}, 2 \times \mathrm{m}, 2 \times(\mathrm{HCH}) \mathrm{N})$, $3.50-3.57(2 \mathrm{H}, \mathrm{m}, 2 \mathrm{x}$ $(\mathrm{HCH}) \mathrm{N}), 3.64\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{~N}\right), 7.03-7.13\left(4 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{\text {arom }}\right) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(75 \mathrm{MHz}\right.$, ref $\left.=\mathrm{CDCl}_{3}\right) \delta$ $15.5\left(\mathrm{CH}_{3} \mathrm{CH}\right), 21.2\left(\mathrm{CH}_{3} \mathrm{Ar}\right), 56.2\left(\mathrm{CHCH}_{3}\right), 59.4\left(\mathrm{CH}_{2} \mathrm{CO}\right), 60.3(\mathrm{CO}), 61.5\left(\mathrm{CH}_{2} \mathrm{CO}\right), 63.8$ $\left(\mathrm{NCH}_{2} \mathrm{Ar}\right), 128.6$ and $129.2\left(4 \times \mathrm{CH}_{\text {arom }}\right), 135.0$ and $137.20\left(2 \times \mathrm{C}_{\text {arom,quat }}\right)$. IR (neat) $v_{\text {max }}=$ 2925, 2852, 1515, 1449, 1377, 828, 809, $733 \mathrm{~cm}^{-1} . \mathrm{MS} \mathrm{m} / \mathrm{z}(\%) 204\left(\mathrm{M}^{+}+1,100\right)$. HRMS m / z (ESI) calculated for $\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{NO}[\mathrm{MH}]^{+}$204.1383, found 204.1382.

5.53 Synthesis of 3-(1-azidoethyl)-1-(4-methylbenzyl)azetidin-3-ol 339

In an ice-cooled mixture of 2-methyl-5-(4-methylbenzyl)-5-aza-1-oxaspiro[2.3]hexane 335b (0.06 g , $0.03 \mathrm{mmol})$ in $\mathrm{Me}_{2} \mathrm{CO} / \mathrm{H}_{2} \mathrm{O}(8 / 1,9 \mathrm{~mL}), \mathrm{NaN}_{3}\left(0.06 \mathrm{~g}, 3\right.$ equiv) and $\mathrm{NH}_{4} \mathrm{Cl}(0.03 \mathrm{~g}, 2$ equiv) were added and the mixture was stirred for 15 hours under reflux. The reaction mixture was poured into water (15
$\mathrm{mL})$ and extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 15 \mathrm{~mL})$. The combined organic extracts were washed with $\mathrm{H}_{2} \mathrm{O}(2 \times$ 15 mL) and brine (15 mL). Drying $\left(\mathrm{MgSO}_{4}\right)$, filtration of the drying agent and evaporation of the solvent in vacuo afforded 3-(1-azidoethyl)-1-(4-methylbenzyl)azetidin-3-ol 339 ($0.06 \mathrm{~g}, 80 \%$).

3-(1-Azidoethyl)-1-(4-methylbenzyl)azetidin-3-ol 339

Yellow oil, Yield 80%. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.31$ $\left(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.6 \mathrm{~Hz}, \mathrm{CH}_{3} \mathrm{CH}\right), 2.32\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{Ar}\right), 2.32-2.35\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CHCH}_{3}\right)$, 3.02-3.06 $(2 \mathrm{H}, \mathrm{m}, 2 \times(\mathrm{HCH}) \mathrm{N}), 3.27-3.30$ and 3.39-3.41(2H, $2 \times \mathrm{m}, 2 \times(\mathrm{HCH}) \mathrm{N}), 3.59(2 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{CH}_{2} \mathrm{~N}\right)$, 7.09-7.17 (4H, m, $\mathrm{CH}_{\text {arom }}$). MS m/z (\%) $247\left(\mathrm{M}^{+}+1,100\right)$.

5.54 Synthesis of 3-(1-hydroxyethyl)azetidin-3-ols 340

As a representative example the synthesis of 1-benzyl-3-(1-hydroxyethyl)azetidin-3-ol 340a is described here. In an ice-cooled solution of 3-ethylidene-1-(4-methylbenzyl)azetidine 307a ($0.16 \mathrm{~g}, 0.9$ $\mathrm{mmol})$ in $\mathrm{Me}_{2} \mathrm{CO} / \mathrm{H}_{2} \mathrm{O}(4 / 1,10 \mathrm{~mL})$, N -methylmorpholine- N -oxide ($0.12 \mathrm{~g}, 1.1$ equiv) and $\mathrm{OsO}_{4}(4 \%$ in water) ($5 \mathrm{~mol} \%, 0.58 \mathrm{~g}$) were added and the mixture was stirred for 4 hours at room temperature. Subsequently, an aqueous saturated solution of $\mathrm{Na}_{2} \mathrm{SO}_{3}(7 \mathrm{~mL})$ was added and the mixture was stirred for 10 min . The reaction mixture was filtered and the filtrate was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 15$ $\mathrm{mL})$. The combined organic extracts were washed with $\mathrm{H}_{2} \mathrm{O}(2 \times 15 \mathrm{~mL})$ and brine (15 mL). Drying $\left(\mathrm{MgSO}_{4}\right)$, filtration of the drying agent and evaporation of the solvent in vacuo afforded 1-benzyl-3-(1-hydroxyethyl)azetidin-3-ol 340a ($0.15 \mathrm{~g}, 82 \%$), which was purified by filtration through silica gel (dichloromethane/methanol $=9 / 1$) to obtain an analytically pure sample.

1-Benzyl-3-(1-hydroxyethyl)azetidin-3-ol 340a

Dark yellow oil, $R_{f}=0.18$ (dichloromethane/methanol 9/1), Yield 82%. ${ }^{1} \mathrm{H}$ NMR (300 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.13\left(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=5.0 \mathrm{~Hz}, \mathrm{CH}_{3} \mathrm{CH}\right), 2.99-3.01(2 \mathrm{H}, \mathrm{m}, 2 \times(\mathrm{HCH}) \mathrm{N})$, 3.283.31 and 3.38-3.40 (2H, $2 \times \mathrm{m}, 2 \times(\mathrm{HCH}) \mathrm{N})$, $3.58\left(2 \mathrm{H}, \mathrm{s}, \mathrm{NCH}_{2} \mathrm{Ar}\right), 3.88(1 \mathrm{H}, \mathrm{q}, J=5.0$ $\left.\mathrm{Hz}, \mathrm{CHCH}_{3}\right), 7.18-7.24\left(5 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{\text {arom }}\right) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(75 \mathrm{MHz}\right.$, ref $\left.=\mathrm{CDCl}_{3}\right) \delta 16.8$ $\left(\mathrm{CH}_{3} \mathrm{CH}\right), 63.1\left(\mathrm{CH}_{2} \mathrm{C}_{\text {quat }} \mathrm{CH}_{2}\right), 64.2\left(\mathrm{NCH}_{2} \mathrm{Ar}\right), 71.2(\mathrm{CHOH}), 72.7(\mathrm{COH}), 127.4,128.5$ and $128.7\left(5 \times \mathrm{CH}_{\text {arom }}\right)$, 137.6 ($\mathrm{C}_{\text {arom,quat }}$). IR (neat) $v_{\mathrm{OH}}=3355 \mathrm{~cm}^{-1}, v_{\max }=2963,2930$, 2849, 1453, 1364, 1189, 1082, 1027, 733, $698 \mathrm{~cm}^{-1} . \mathrm{MS} \mathrm{m} / \mathrm{z}(\%) 208\left(\mathrm{M}^{+}+1,100\right)$.

3-(1-Hydroxyethyl)-1-(4-methylbenzyl)azetidin-3-ol 340b

Dark yellow oil, $R_{\mathrm{f}}=0.19$ (dichloromethane/methanol 9/1), Yield 84\%. ${ }^{1} \mathrm{H}$ NMR (300 $\mathrm{MHz}, \mathrm{CDCl} 3) \delta 1.20\left(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.0 \mathrm{~Hz}, \mathrm{CH}_{3} \mathrm{CH}\right)$, $2.33\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{Ar}\right), 3.07-3.11(2 \mathrm{H}, \mathrm{m}$, $2 \times(H C H) N), 3.37-3.40$ and 3.47-3.49 (2H, $2 \times \mathrm{m}, 2 \times(\mathrm{HCH}) \mathrm{N})$, $3.64\left(2 \mathrm{H}, \mathrm{s}, \mathrm{NCH}_{2} \mathrm{Ar}\right)$, $3.96(1 \mathrm{H}, \mathrm{q}, \mathrm{J}=6.0 \mathrm{~Hz}, \mathrm{CHCH} 3), 7.10-7.18\left(4 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{\text {arom }}\right) .{ }^{13} \mathrm{C} \mathrm{NMR}(75 \mathrm{MHz}$, ref $=$ $\left.\mathrm{CDCl}_{3}\right) \delta 16.8\left(\mathrm{CH}_{3} \mathrm{CH}\right)$, $21.2\left(\mathrm{CH}_{3} \mathrm{Ar}\right)$, $62.7\left(\mathrm{CH}_{2} \mathrm{C}_{\text {quat }}\right)$ and $63.0\left(\mathrm{CH}_{2} \mathrm{C}_{\text {quat }}\right)$, 64.0 $\left(\mathrm{NCH}_{2} \mathrm{Ar}\right), 71.1(\mathrm{CHOH}), 72.8(\mathrm{COH}), 128.7$ and $129.2\left(4 \times \mathrm{CH}_{\text {arom }}\right), 134.2$ and $137.1(2$ $\times \mathrm{C}_{\text {arom,quat) }}$. IR (neat) $v_{\text {OH }}=3352 \mathrm{~cm}^{-1}, v_{\max }=2933,2852,1449,1362,1186,1104,731$ $\mathrm{cm}^{-1} \cdot \mathrm{MS} \mathrm{m} / \mathrm{z}(\%) 222\left(\mathrm{M}^{+}+1,100\right)$. HRMS m/z (ESI) calculated for $\mathrm{C}_{13} \mathrm{H}_{19} \mathrm{NO}_{2}[\mathrm{MH}]^{+} 222.1489$, found 222.1492.

5.55 Synthesis of 6,6,8-trimethyl-2-aza-5,7-dioxaspiro[3.4]octane 342

3-(1-Hydroxyethyl)-1-(4-methylbenzyl)azetidin-3-ol 340b ($0.22 \mathrm{~g}, 1 \mathrm{mmol}$) was dissolved in acetone (15 mL), pTsOH ($0.19 \mathrm{~g}, 1.1$ equiv) and CuSO_{4} ($0.80 \mathrm{~g}, 5$ equiv) were added and the mixture was heated for 24 hours under reflux. Afterward, the reaction mixture was poured into water (15 mL) and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 15 \mathrm{~mL})$. The combined organic extracts were washed with $\mathrm{H}_{2} \mathrm{O}(2 \times 15 \mathrm{~mL})$ and brine (15 mL). Drying $\left(\mathrm{MgSO}_{4}\right)$, filtration of the drying agent and evaporation of the solvent in vacuo afforded 6,6,8-trimethyl-2-(4-methylbenzyl)-2-aza-5,7-dioxaspiro[3.4]octane 342b (0.25 g, 96\%) which was purified by filtration through silica gel (dichloromethane/methanol $=9 / 1$) to obtain an analytically pure sample.

1-(4-Methylbenzyl)-6,6,8-Trimethyl-2-aza-5,7-dioxaspiro[3.4]octane 342b

Yellow oil, $R_{f}=0.22$ (dichloromethane/methanol 9/1), Yield 96%. ${ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz}$,
 $\left.\mathrm{CDCl}_{3}\right) \delta{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.24$ and $1.28\left(6 \mathrm{H}, 2 \times \mathrm{s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.35(3 \mathrm{H}, \mathrm{d}, \mathrm{J}$ $\left.=6.6 \mathrm{~Hz}, \mathrm{CH}_{3} \mathrm{CH}\right), 2.25\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{Ar}\right), 2.92(1 \mathrm{H}, \mathrm{d}, J=8.0 \mathrm{~Hz},(H C H) \mathrm{N}), 3.20$ and 3.30 $(2 \mathrm{H}, 2 \times \mathrm{d}, J=7.7 \mathrm{~Hz},(\mathrm{HCH}) \mathrm{N}), 3.47(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.0 \mathrm{~Hz},(\mathrm{HCH}) \mathrm{N}), 3.52\left(2 \mathrm{H}, \mathrm{s}, \mathrm{NCH}_{2} \mathrm{Ar}\right)$, $4.08\left(1 \mathrm{H}, \mathrm{q}, J=6.6 \mathrm{~Hz}, \mathrm{CHCH}_{3}\right), 7.02-7.10\left(4 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{\text {arom }}\right) .{ }^{13} \mathrm{C} \mathrm{NMR}(75 \mathrm{MHz}$, ref $=$ $\left.\mathrm{CDCl}_{3}\right) \delta 16.2\left(\mathrm{CH}_{3} \mathrm{CH}\right)$, $21.2\left(\mathrm{CH}_{3} \mathrm{Ar}\right)$, 26.4 and $28.2\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 61.8\left(\mathrm{CH}_{2} \mathrm{C}_{\text {quat }}\right)$, 63.4 $\left(\mathrm{CH}_{2} \mathrm{C}_{\text {quat }}\right)$, $64.2\left(\mathrm{NCH}_{2} \mathrm{Ar}\right)$, $77.4\left(\mathrm{CHCH}_{3}\right)$, $78.3\left(\mathrm{CH}_{2} \mathrm{CO}\right), 107.9\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 128.4$ and $129.1\left(4 \times \mathrm{CH}_{\text {arom }}\right), 135.2$ and $136.7\left(2 \times \mathrm{C}_{\text {arom,quat }}\right)$ IR (neat) $v_{\max }=2983,2931,2830$, $1378,1370,1224,1171,1099,998,810 \mathrm{~cm}^{-1} . \mathrm{MS} \mathrm{m} / \mathrm{z}(\%) 262\left(\mathrm{M}^{+}+1,100\right)$.

5.56 Synthesis of 8-methyl-2-(4-methylbenzyl)-2-aza-5,7-dioxaspiro[3.4]octan-

6-one 345

In an ice-cooled solution of 3-(1-Hydroxyethyl)-1-(4-methylbenzyl)azetidin-3-ol 340b ($0.22 \mathrm{~g}, 1 \mathrm{mmol}$) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15 \mathrm{~mL}), \mathrm{NaH}(60 \%$ suspension) ($0.04 \mathrm{~g}, 1$ equiv) and triethylamine ($0.30 \mathrm{~g}, 3$ equiv) were added and the mixture was stirred for 5 min at $0^{\circ} \mathrm{C}$. Subsequently, oxalyl chloride $(0.14 \mathrm{~g}, 1$ equiv) was added at $0^{\circ} \mathrm{C}$, and the mixture was stirred for 15 hours at room temperature. The reaction mixture was then poured into water and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 15 \mathrm{~mL})$. The combined organic extracts were washed with $\mathrm{H}_{2} \mathrm{O}(2 \times 15 \mathrm{~mL})$ and brine $(15 \mathrm{~mL})$. Drying $\left(\mathrm{MgSO}_{4}\right)$, filtration of the drying agent and evaporation of the solvent in vacuo afforded 8-methyl-2-(4-methylbenzyl)-2-aza-5,7-dioxaspiro[3.4]octan-6-one 345b ($0.15 \mathrm{~g}, 60 \%$).

8-Methyl-2-(4-methylbenzyl)-2-aza-5,7-dioxaspiro[3.4]octan-6-one 345

Yellow oil, Yield 60%, ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.47$ $\left(3 \mathrm{H}, \mathrm{d}, J=6.6 \mathrm{~Hz}, \mathrm{CH}_{3} \mathrm{CH}\right), 2.27\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{Ar}\right), 3.35(2 \mathrm{H}, \mathrm{d}, J=9.4 \mathrm{~Hz}, 2 \mathrm{x}$ $\left.(H C H) C_{q u a t}\right), 3.52\left(2 H, d, J=9.4 \mathrm{~Hz}, 2 \times(\mathrm{HCH}) \mathrm{C}_{\text {quat }}\right), 3.70\left(2 \mathrm{H}, \mathrm{s}, \mathrm{NCH}_{2} \mathrm{Ar}\right), 4.78(1 \mathrm{H}, \mathrm{q}$, $\left.J=6.6 \mathrm{~Hz}, \mathrm{CHCH}_{3}\right), 7.06-7.12\left(4 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{\text {arom }}\right) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(75 \mathrm{MHz}\right.$, ref $\left.=\mathrm{CDCl}_{3}\right) \delta 16.6$ $\left(\mathrm{CH}_{3} \mathrm{CH}\right)$, $21.2\left(\mathrm{CH}_{3} \mathrm{Ar}\right)$, $58.9\left(\mathrm{CH}_{2} \mathrm{C}_{\text {quat }}\right)$, $62.0\left(\mathrm{CH}_{2} \mathrm{C}_{\text {quat }}\right)$, $63.7\left(\mathrm{NCH}_{2} \mathrm{Ar}\right)$, $77.3\left(\mathrm{CHCH}_{3}\right)$, $79.7(\mathrm{CHCO}), 128.9$ and $129.5\left(4 \times \mathrm{CH}_{\text {arom }}\right), 130.1$ and $137.8\left(2 \times \mathrm{C}_{\text {arom,quat }}\right)$, CO (not detected). IR (neat) $v_{\mathrm{CO}}=1807 \mathrm{~cm}^{-1}, v_{\max }=2923,2853,1643,1182,1081 \mathrm{~cm}^{-1} . \mathrm{MS}$ $\mathrm{m} / \mathrm{z}(\%) 248\left(\mathrm{M}^{+}+1,100\right)$.

6 Summary

Aziridines display an uncommon combination of reactivity, atom economy and synthetic utility related to the ring strain of this class of nitrogen-containing heterocycles. As a consequence, aziridines are frequently deployed as versatile synthetic intermediates for the preparation of a variety of ring-opened and ring-expanded amines via regio- and stereoselective transformations. Azetidines, the higher homologues of aziridines, have acquired a prominent position in organic chemistry as well. Next to their synthetic relevance, compounds containing an azetidine moiety have been shown to possess a wide range of biological activities. For example, 3-alkoxy- and 3-aryloxyazetidines have been described as G-protein coupled receptor agonists, inhibitors of stearoyl-coenzyme d-9 desaturase and antibacterial agents.

Within the class of 2-substituted, non-activated aziridines, 2-(bromomethyl)aziridines are known to be good substrates for ring-opening reactions and nucleophilic substitutions, and these intriguing compounds have found many applications in synthetic chemistry. In particular, these compounds have been used as suitable synthons for the preparation of cyclopropanes, morpholines, pyrrolizidines, pyrrolidines, 2-imino-1,3-thiazoli(di)nes and piperidine derivatives.

Bearing in mind the high synthetic potential of these strained species, 2-(bromomethyl)aziridines were used as valuable synthons towards biologically and synthetically relevant species. In particular, the unexplored behavior of aziridines with regard to complex metal hydrides was addressed in this work.

Thus, in the first part of this PhD thesis, aziridines \mathbf{i} were first transformed to the corresponding 2(acetoxymethyl)aziridines ii, which were then subjected to regioselective ring opening with LiAlH_{4} under microwave irradiation to provide useful β-amino alcohols iii (Scheme 1). β-Amino alcohols are applied extensively in organic chemistry as building blocks in designing natural and biologically active substances, and their chiral versions are also used in catalytic asymmetric synthesis. Subsequently, these compounds iii were used as suitable substrates for the preparation of six-membered oxazaheterocycles iv through the reaction with glyoxal. In light of the importance of chirality in medicinal chemistry, the synthesis of enantiopure amino alcohols vi and morpholin-2-ones vii was also explored starting from the commercially available 2-(hydroxymethyl)aziridines v using the same synthetic approach (i.e., reductive ring opening by LiAlH_{4}).

In comparison with the reactivity of activated aziridines, i.e., aziridines bearing an electron-withdrawing substituent at the nitrogen atom, the reactivity profile of non-activated aziridines has been examined to a far lesser extent in the chemical literature. Non-activated aziridines require activation toward intermediate aziridinium salts for nucleophilic ring-opening reactions, whereas activated aziridines do not. In that respect, the ring opening of aziridinium salts by halides constitutes a convenient approach towards β-halo amines, which are generally recognized as useful building blocks in organic chemistry and valuable targets in medicinal chemistry (nitrogen mustards - chemotherapy agents). Although the issue of regioselectivity in the ring opening of 2 -substituted non-activated aziridines had been addressed in a number of literature reports, no systematic study has been performed in which aziridinium substrates deriving from non-activated aziridines are subjected to ring opening by fluoride, chloride, bromide and iodide.

Therefore, in the second part of this work, the systematic study of the ring opening of in situ generated aziridinium salts viii by halides was investigated. As depicted in Scheme 2, the ring opening of aziridinium salts viii can occur at either the unsubstituted (path a) or substituted aziridine carbon atom (path b), leading either to primary halides \mathbf{x} (path a) or secondary halides ix (path b). The different regioselectivity controlled by the type of nucleophile (halide) used in the ring opening of 2 (aryloxymethyl)aziridinium ion viii was discussed and the results were elucidated by means of molecular modelling calculations performed at the Center for Molecular Modeling of Ghent University (Prof. V. Van Speybroeck and Prof. M. Waroquier).

Both experimental and computational evidence was provided for the fact that product stabilities dictate the reaction outcome through thermodynamic control in the chloride, bromide and iodide case, involving rearrangement of the initially formed primary halides \mathbf{x} to the more stable secondary halides ix via a thermodynamic equilibrium (Scheme 2). The ring opening of the same aziridinium salts by fluoride, however, was shown to be mediated by steric interactions (kinetic control), and primary fluorides \mathbf{x} were formed as major products. In this way, the synthesis of a wide range of novel secondary β-bromo amines, β-chloro amines, β-iodo amines $\mathbf{i x}(X=\mathrm{Br}, \mathrm{Cl}, \mathrm{I})$ and primary β-fluoro amines \mathbf{x} (as major products) was performed.

Scheme 2

The reactivity of 2-(bromomethyl)aziridines i and their synthesis through the NaBH_{4}-reduction of N -alkylidene-(2,3-dibromopropyl)amines xi $\left(R^{2}=H\right)$ in methanol under reflux has been the subject of many literature reports. On the other hand, in a preliminary study at the Department of Sustainable Organic Chemistry and Technology, it has been shown that structurally similar N-alkylidene-(2,3-dibromo-2-methylpropyl)amines $\mathbf{x i}\left(R^{1}=\mathrm{iPr}, \mathrm{CHEt}_{2}, \mathrm{R}^{2}=\mathrm{Me}\right)$ afforded 3-methoxyazetidines xii under the same reaction conditions (Scheme 3), although the factors governing this peculiar reactivity remained unclear.

Scheme 3

In order to elucidate this unexpected reactivity of imines $\mathbf{x i}\left(R^{2}=M e\right)$ and the influence of an additional methyl substituent in these substrates xi on the reaction outcome, the kinetically controlled synthesis of 2-bromomethyl-2-methylaziridines $\mathbf{x v}$, as potential intermediates in this reaction was investigated in the third part of this PhD thesis. For this purpose, 2-bromomethyl-2-methylaziridines $\mathbf{x v}$ were prepared in an efficient way, comprising bromination of 2-methylacrolein viii, imination and subsequent $\mathrm{NaBH}_{4}-$ mediated ring closure of the corresponding imines xiv at room temperature (Scheme 4). This result clearly showed the intermediacy of aziridines $\mathbf{x v}$ in the formation of 3-methoxyazetidines $\mathbf{x i i}$. Furthermore, upon treatment of 2-bromomethyl-2-methylaziridines xv with NaBH_{4} in methanol under reflux, 3-methoxy-3-methylazetidines xii were obtained, showing these species to be the thermodynamic products of the NaBH_{4}-mediated reduction of imines xiv. The theoretical elucidation of the reaction mechanism at the Center for Molecular Modeling (UGent) supported the intermediacy of bicyclic aziridinium ions xvi in this aziridine to azetidine ring rearrangement.

In addition, the propensity of aziridines xv to undergo ring expansion thorough the formation of intermediates xvi was also shown in the formation of 3-bromo-3-methylazetidines xvii obtained upon heating of these aziridines in acetonitrile under reflux (Scheme 4).

Scheme 4

The high synthetic potential of 2-bromomethyl-2-methylaziridines with respect to the ring expansion to 3 -substituted azetidines made these substrates valuable for further elaboration in terms of azetidine synthesis. The limited number of reports regarding aziridine to azetidine ring expansions and the mainly unexplored synthetic potential of 2-bromomethyl-2-methylaziridines opened a new possibility to access a novel class of 3 -functionalized azetidines in an efficient way.
Therefore, in the fourth part of this work, the reactivity of 2-bromomethyl-2-methylaziridines xv toward different oxygen, sulfur and carbon nucleophiles in different solvent systems was envisaged. Surprisingly, it was shown that the choice of the solvent has a profound influence on the reaction outcome. In this way, the selective formation of functionalized aziridines xviii in dimethylformamide (DMF) and 3 -substituted azetidines xix in acetonitrile (MeCN) was enabled (Scheme 5). The formation of aziridines xviii and azetidines xix in different solvents was studied by the high-level molecular modeling calculations at the Center for Molecular Modeling (UGent).

Scheme 5

Bearing in mind the broad synthetic potential of 3-haloazetidines, 3-bromo-3-methylazetidine xvii was used as a suitable synthon to access a window of novel 3 -functionalized azetidines. Treatment of azetidine xvii with phenoxide or hydroxide nucleophiles afforded 3 -phenoxy- and 3 -hydroxyazetidines xx and $\mathbf{x x i}$, respectively (Scheme 6). 3-Bromo-3-methylazetidine xvii was also shown to be a good substrate for the synthesis of azetidine-3-carbonitriles xxii upon treatment with KCN in acetonitrile. The hydrolysis of the cyano group in latter azetidines xxii provided a convenient approach toward cyclic amino acids xxiii, which can be considered as analogue of azetidine-2-carboxylic acid, a natural molecule isolated from Convallaria majalis (lily of the valley) with impressive biological properties (Scheme 6).

In addition, 3-alkyl-3-bromoazetidines can be considered as useful starting synthons for the preparation of the corresponding 3-alkylideneazetidines as versatile synthetic intermediates. 3Alkylideneazetidines are strained cyclic allylamines and only limited information on the reactivity of this class of compounds is present in the literature. In most cases, the 3-alkylideneazetidine moiety was incorporated in the structure of more complex molecules, and no special attention has been devoted to the chemical nature of this strained system. In addition, the incorporation of conformational constraint at the 3-position of azetidine rings is known to increase the potency of human and rat FAAH inhibitors and showed to be an important structural feature of some drugs.

In the last part of this PhD work, a facile and efficient synthesis of 3-ethylideneazetidines xxvii was reported starting from the corresponding 3-bromo-3-ethylazetidines $\mathbf{x x v i}$, obtained via ring expansion of aziridines xxv prepared by a synthetic methodology previously established in this PhD thesis (Scheme 7). Although the combination of two functionalities, i.e., an azetidine moiety and an exocyclic double bond, might result in unstable structures, this type of substrates was considered to be valuable for further study.

Scheme 7

Therefore, two aspects of the reactivity of 3-ethylideneazetidines were separately studied, i.e., the activation and subsequent ring opening of the azetidine moiety on the one hand, and functionalization of the exocyclic double bond on the other. In this way, azetidines xxvii were used as eligible substrates for the synthesis of a range of novel ring-opened amines xxviii, cyclic carbamates xxix,
cyclic carbonates $\mathbf{x x x}, 5,7$-dioxa-2-azaspiro[3.4]octanes $\mathbf{x x x i}, 1$-oxa-5-azaspiro[2,3]hexanes xxxii, 3-halo-3-(1-haloethyl)azetidines xxxiii and 3-(1-hydroxyethyl)-azetidin-3-ols xxxiv (Scheme 8).

Scheme 8

In this PhD thesis, the high synthetic potential of non-activated 2-(bromomethyl)aziridines and 2-bromomethyl-2-methylaziridines as fruitful synthons in organic chemistry has been illustrated by means of their elaboration toward a vast number of novel synthetically and biologically interesting nitrogen-containing compounds, which provide an entry to novel chemical space and diversity. In that respect, these non-activated aziridines, and especially the less known 2-bromomethyl-2methylaziridines, should be recognized as important building blocks for further elaboration in the future.

7 Samenvatting

Aziridinen verenigen een aantal interessante eigenschappen, zoals reactiviteit, atoomeconomie en synthetische toepasbaarheid te danken aan de ringspanning in deze stikstofbevattende heterocyclische verbindingen. Bijgevolg worden aziridinen vaak aangewend als veelzijdige precursoren in de synthese van ringgeopende en ringgeëxpandeerde structuren, via regio- en stereoselectieve transformaties. Azetidinen, de hogere homologen van aziridinen, hebben ook een prominente plaats in de organische chemie verworven. Naast hun synthetische toepasbaarheid bezitten vele verbindingen met een azetidinering in hun structuur een interessante biologische activiteit. Zo zijn 3-alkoxy- en 3-aryloxyazetidinen gekend als agonisten van G-proteïne-gekoppelde receptoren, inhibitoren van stearoylcoenzyme d-9 desaturase en antibacteriële middelen.

Binnen de klasse van 2-gesubstitueerde, niet-geactiveerde aziridinen staan 2-(broommethyl)aziridinen bekend als goede substraten voor ringopeningsreacties en nucleofiele substituties. Deze interessante verbindingen vonden reeds een groot aantal toepassingen in de synthetische chemie. In het bijzonder werden deze verbindingen in het verleden reeds gebruikt als synthon voor de bereiding van cyclopropanen, morfolinen, pyrrolizidinen, pyrrolidinen, 2-imino-1,3-thiazoli(di)nen en piperidinederivaten.

Omwille van hun groot potentieel werden 2-(broommethyl)aziridinen in dit werk aangewend als waardevolle bouwstenen voor de synthese van biologisch en synthetisch relevante verbindingen. In het bijzonder werd de tot hier toe onbekende reactiviteit van aziridinen ten aanzien van complexe metaalhydriden bestudeerd.

In het eerste deel van het onderzoek werden aziridinen i omgezet tot de overeenkomstige 2-(acetoxymethyl)aziridinen ii, die vervolgens regioselectief werden ringgeopend met LiAlH_{4} bij verhoogde temperatuur onder microgolfbestraling. Deze transformatie gaf aanleiding tot de vorming van interessante β-aminoalcoholen iii (Schema 1); deze klasse van verbindingen kent een breide toepasbaarheid in de organische chemie als synthon in de bereiding van natuurproducten en biologisch actieve stoffen en chirale β-aminoalcoholen worden ook gebruikt in katalytische asymmetrische synthese. Vervolgens werden deze verbindingen iii gebruikt als substraat in de bereiding van zesatooms oxazaheterocyclische verbindingen iv, via reactie met glyoxaal. Gezien het belang van chiraliteit in de medicinale chemie werd de synthese van enantiomeer zuivere aminoalcoholen vi en oxazolinonen vii eveneens onderzocht, uitgaande van commercieel beschikbare 2-(hydroxymethyl)aziridinen \mathbf{v}, via dezelfde syntheseweg (LiAlH_{4}-gemedieerde reductieve ringopening).

In vergelijking met de geactiveerde aziridinen, met een elektronenzuigende substituent op het stikstofatoom, genoot het reactiviteitsprofiel van niet-geactiveerde aziridinen tot op heden veel minder aandacht in de chemische literatuur. Niet-geactiveerde aziridinen moeten worden geactiveerd tot de overeenkomstige aziridiniumzouten alvorens ze nucleofiele ringopening kunnen ondergaan, terwijl bij geactiveerde aziridinen geen activatie tot een aziridiniumzout nodig is. In dat opzicht is de ringopening van aziridiniumzouten door middel van halogeniden een handige methode voor de synthese van β-halogeenaminen. Deze laatste verbindingen worden algemeen erkend als bruikbare bouwstenen in de organische chemie en vormen een waardevolle doelstructur in de medicinale chemie (chemotherapeutica). Hoewel de regioselectiviteit bij ringopening van 2 -gesubstitueerde nietgeactiveerde aziridinen reeds in het verleden behandeld werd, is tot nu toe nog geen systematisch onderzoek uitgevoerd waarbij aziridiniumsubstraten, bereid uit niet-geactiveerde aziridinen, ringopening ondergaan door middel van fluoride, chloride, bromide en jodide.

Daarom werd in het tweede deel van dit werk een systematische studie van de ringopening van in situ bereide aziridiniumzouten xviii door middel van halogeniden uitgewerkt. Zoals weergegeven in Schema 2 kan de ringopening van aziridiniumzouten xviii zowel op het ongesubstitueerd (pad a) of op het gesubstitueerd aziridinekoolstofatoom (pad b) gebeuren, hetgeen respectievelijk in primaire \mathbf{x} en secundaire halogeniden ix resulteert. Het verschil in regioselectiviteit bij de ringopening van 2-(aryloxymethyl)aziridiniumionen xviii, afhankelijk van het type nucleofiel (halide), werd besproken. Deze resultaten zijn onderbouwd met theoretische berekeningen uitgevoerd aan het centrum voor Moleculaire Modellering van de Universiteit Gent (Prof V. Van Speybroeck en Prof. M. Waroquier).

De experimentele en computationele gegevens bevestigden dat de reactie-uitkomst bepaald werd door thermodynamische controle indien chloride, bromide of jodide gebruikt werden als nucleofiel. Daarbij vindt een omzetting van de initieel gevormde primaire halogeniden \mathbf{x} tot de meer stabiele secundaire halogeniden ix plaats (Schema 2). De ringopening van dezelfde aziridiniumzouten door middel van fluoride werd echter gecontroleerd door sterische interacties (kinetische controle), met vorming van primaire fluoriden \mathbf{x} als hoofdproducten. Uit deze studie werden een groot aantal nieuwe
secundaire β-broomaminen, β-chlooraminen, β-joodaminen ix $(X=\mathrm{Br}, \mathrm{CI}, \mathrm{I})$ en primaire β-fluoraminen \mathbf{x} (als belangrijkste producten) bekomen.

Schema 2

De reactiviteit van 2-(broommethyl)aziridinen \mathbf{i}, alsook hun synthese via NaBH_{4}-gemedieerde reductie van N-alkylideen-(2,3-dibroompropyl)aminen $\mathbf{x i}\left(R^{2}=H\right)$ in methanol onder reflux is reeds beschreven in de literatuur. In een preliminaire studie aan de vakgroep Duurzame Organische Chemie en Technologie, bleek echt dat structureel vergelijkbare N -alkylideen-(2,3-dibroom-2-methylpropyl)aminen $\mathbf{x i}\left(R^{2}=\mathrm{Me}\right)$ onder dezelfde reactieomstandigheden 3-methoxyazetidinen $\mathbf{x i i}$ leveren (Schema 3). De reden voor deze onverwachte reactiviteit bleef tot op heden onduidelijk.

Schema 3

Om deze onverwachte reactiviteit van iminen xi ($R^{2}=M e$, en de invloed van een extra methylsubstituent in substraten xi op de reactie-uitkomst te onderzoeken, werd in het derde deel van dit doctoraatsproefschrift de kinetisch gecontroleerde synthese van 2-broommethyl-2-methylaziridinen $\mathbf{x v}$ als potentiële tussenproducten van deze reactie bestudeerd. Hiertoe werden 2-broommethyl-2-methylaziridinen $\mathbf{x v}$ op een efficiënte manier bereid, via bromering van 2-methylacroleine xviii, iminering en daaropvolgende NaBH_{4}-gemedieerde ringsluiting van iminen xiv (Schema 4). Dit resultaat toonde het bestaan van aziridinen xv als intermediairen in de vorming van 3-methoxyazetidinen xii aan. Bovendien werden, na behandeling van 2-broommethyl-2-methylaziridinen $\mathbf{x v}$ met NaBH_{4} in methanol onder reflux, 3-methoxy-3-methylazetidinen xii verkregen. Deze waarneming bevestigt dat producten xii worden gevormd als gevolg van de thermodynamisch gecontroleerde, NaBH_{4}-gemedieerde reductie van iminen xiv. Een theoretische studie van het reactiemechanisme, uitgevoerd aan het centrum voor Moleculaire Modellering (UGent), bevestigde de aanwezigheid van bicyclische aziridiniumionen $\mathbf{x v i}$ in de ringexpansie van aziridinen $\mathbf{x v}$ tot azetidinen xii en xvii.

Bovendien is het ook aangetoond dat aziridinen $\mathbf{x v}$ ringexpansie kunnen ondergaan met vorming van 3-broom-3-methylazetidinen xvii via intermediairen xvi. Deze reactie gaat door bij verhitting van aziridinen $\mathbf{x v}$ onder reflux in acetonitril (Schema 4).

Schema 4

Het aldus aangetoonde potentieel van 2-broommethyl-2-methylaziridinen om ringexpansie tot 3 -gesubstitueerde azetidinen te ondergaan opent nieuwe wegen op het gebied van de azetidinesynthese. Het beperkt aantal publicaties, die de ringexpansie van aziridinen tot azetidinen beschrijven en het (grotendeels) niet-onderzocht synthetische potentieel van 2-broommethyl-2-methylaziridinen, zorgde voor een efficiënte toetreding tot een nieuwe klasse van 3 -gefunctionaliseerde azetidinen.

Bijgevolg werd in het vierde deel van dit werk de reactiviteit van 2-broommethyl-2-methylaziridinen $\mathbf{x v}$ ten opzichte van andere zuurstof-, zwavel- en koolstofnucleofielen in verschillende solventen geëvalueerd. Verrassend genoeg is gebleken dat de keuze van het solvent een grote invloed heeft op de reactie-uitkomst. Zo werd de selectieve vorming van gefunctionaliseerde aziridinen xviii in dimethylformamide (DMF) en 3-gesubstitueerde azetidinen xix in acetonitril (MeCN) gediscussieerd (Schema 5). Een verklaring voor de vorming van aziridinen xviii en azetidinen xix in verschillende solventen werd gezocht met behulp van de theoretische berekeningen, uitgevoerd aan het centrum voor Moleculaire Modellering (UGent).

Gezien het grote synthetische belang van 3 -haloazetidinen werd 3 -broom-3-methylazetidine xvii bestudeerd als een geschikt synthon voor de bereiding van nieuwe 3-gefunctionaliseerde azetidinen. De behandeling van azetidine xvii met fenoxide of hydroxide als nucleofielen leverde respectievelijk

3-fenoxy- en 3-hydroxyazetidinen xx en xxi (Schema 6). 3-Broom-3-methylazetidine xvii bleek ook een goed substraat te zijn voor de synthese van azetidine-3-carbonitrillen xxii na behandeling met KCN in acetonitril. De hydrolyse van de cyaangroep in deze azetidinen xxii bleek een geschikte manier voor de synthese van cyclische aminozuren xxiii, die beschouwd kunnen worden als analogen van azetidine-2-carbonzuur, een natuurproduct met bijzondere biologische eigenschappen geïsoleerd uit Convallaria majalis (lelietje-van-dalen) (Schema 6).

Daarnaast kunnen 3-alkyl-3-bromoazetidinen beschouwd worden als nuttige synthons voor de bereiding van de overeenkomstige 3 -alkylideenazetidinen. 3-Alkylideenazetidinen zijn gespannen cyclische allylaminen met potentieel als veelzijdige synthetische bouwstenen die tot op heden echter weinig bestudeerd zijn in de literatuur. In de meeste gevallen werd de 3-alkylideenazetidine-eenheid opgenomen in meer complexe moleculen, en werd geen speciale aandacht besteed aan de chemische aard van dit gespannen systeem. Bovendien is gebleken dat de introductie van een conformationele beperking op de 3-plaats van azetidineringen FAAH-inhibitie in mens en rat versterkt; dit motief bleek reeds vak ook een belangrijke structurele eigenschap van sommige geneesmiddelen te zijn.

In het laatste deel van dit onderzoek werd een gemakkelijke en efficiënte synthese van 3 -ethylideenazetidinen $\mathbf{x x v i i}$ ontwikkeld uitgaande van de overeenkomstige 3-broom-3-ethylazetidinen xxvi. Deze bereiding verloopt via ringexpansie van aziridinen $\mathbf{x x v}$, die eerder in dit doctoraatsonderzoek werden gesynthetiseerd (Schema 7). Hoewel de combinatie van een azetidinegroep en een exocyclische dubbele binding kan resulteren in instabiele structuren, werd de studie van dit type substraten toch als waardevol beschouwd.

Schema 7
Omwille van voornoemde instabiliteit werden twee aspecten van de reactiviteit van 3 -ethylideenazetidinen afzonderlijk onderzocht: de activering en daaropvolgende ringopening van de azetidinegroep enerzijds, en de functionalisering van de exocyclische dubbele binding anderzijds. Uit deze studie blijkt dat azetidinen xxvii geschikte substraten zijn voor de synthese van een reeks van nieuwe aminen $\mathbf{x x v i i i}$, cyclische carbamaten $\mathbf{x x i x}$, cyclische carbonaten $\mathbf{x x x}$, 5,7-dioxa-2-azaspiro[3.4]octanen xxxi, 1-oxa-5-azaspiro[2,3]hexanen xxxii, $\quad 3$-halogeen-3-(1halogeenethyl)azetidinen xxxiii en 3-(1-hydroxyethyl)-azetidin-3-olen xxxiv (Schema 8).

Schema 8

In dit doctoraatsproefschrift werd het rijke potentieel van niet-geactiveerde 2-(broommethyl)aziridinen en 2-broommethyl-2-methylaziridinen als synthons in de organische chemie geillustreerd, door hun derivatisatie naar een groot aantal nieuwe synthetisch en biologisch interessante stikstofverbindingen te bewerkstelligen. Deze verbindingen dragen bij tot de verdere expansie van de chemische ruimte. Aldus verdienen de niet-geactiveerde aziridinen, en vooral de minder bekende 2-broommethyl-2-methylaziridinen, verdere uitwerking in de toekomst.

8 References

${ }^{1}$ Cussac, C.; Laval, F. Nucleic Acids Res. 1996, 24, 1742.
${ }^{2}$ (a) Remers, W. A. The Chemistry of Antitumor Antibiotics, Wiley-Interscience, 1979, vol. 1, p. 242.
(b) Remers, W. A.; Dorr, R. T. Alkaloids: Chemical and Biological Perspectives, ed. Pelletier, S. W., Wiley, New York, 1988, vol. 6, p. 1. (c) Coleman, R. S.; Kong, J. S.; Richardson, T. E. J. Am. Chem. Soc. 1999, 121, 9088.
${ }^{3}$ (a) Tanner, D. Angew. Chem. Int. Ed. Engl., 1994, 33, 599. (b) Ohno, H. In ‘Aziridines and Epoxides in Organic Synthesis', Yudin, A. K. Ed.; Wiley-VCH, Weinheim, 2006.
${ }^{4}$ (a) Hu, X. E. Tetrahedron 2004, 60, 2701. (b) McCoull, W.; Davis, F. A. Synthesis 2000, 1347.
${ }^{5}$ (a) Sweeney, J. B. Chem. Soc. Rev. 2002, 31, 247. (b) Bach, R. D.; Dmitrenko, O. J. Org. Chem. 2002, 67, 3884.
${ }^{6}$ Whitlock, H. W.; Smith, G. L. J. Am. Chem. Soc. 1967, 89, 3600.
${ }^{7}$ Otomasu, H.; Higashiyama, K.; Honda, T.; Kametani, T. J. Chem. Soc. Perkin Trans. 1 1982, 2399.
${ }^{8}$ (a) Zwanenburg, B.; ten Holte, P. Top. Curr. Chem. 2001, 93. (b) Padwa, A.; Murphree, S. Arkivoc 2006, 6.
${ }^{9}$ (a) Cromwell, N. H.; Phillips, B. Chem. Rev. 1979, 79, 331. (b) Moore, J. A.; Ayers, R. S. Chemistry of Heterocyclic Compounds- Small Ring Heterocycles; Hassner, A., Ed.; Wiley: New York, 1983; Part 2, pp 1-217. (c) Davies, D. E.; Storr, R. C. Comprehensive Heterocyclic Chemistry; Lwowski, W., Ed.; Pergamon: Oxford, 1984; Vol. 7, Part 5, pp 237-284. (d) Singh, G. S.; D’hooghe, M.; De Kimpe, N. Azetidines, Azetines, and Azetes: Monocyclic. In Comprehensive Heterocyclic Chemistry III, a review of the literature 1995-2007; Katritzky, A., Ramsden, C., Scriven, E., Taylor, R., Eds.; Elsevier: Oxford, 2008; Vol. 2, pp 1-110.
${ }^{10}$ (a) Couty, F.; Evano, G. Synlett 2009, 3053. (b) Couty, F. Sci. Synth. 2009, 773. (c) Couty, F.; Durrat, F.; Evano, G. Targets Heterocycl. Syst. 2005, 9, 186. (d) Couty, F.; Evano, G. Org. Prep. Proced. Int. 2006, 38, 427. (e) Bott, T. M.; West, F. G. Heterocycles 2012, 84, 223. (f) Leng, D.-H.; Wang, D.X.; Pan, J.; Huang, Z.-T.; Wang, M.-X. J. Org. Chem. 2009, 74, 6077. (g) Yadav, L. D. S.; Srivastava, V. P.; Patel, R. Tetrahedron Lett. 2008, 49, 5652. (h) Sulmon, P.; De Kimpe, N.; Schamp, N.; Tinant, B.; Declercq, J.-P. Tetrahedron 1988, 44, 3653. (i) Van Driessche, B.; Van Brabandt, W.; D’hooghe, M.; Dejaegher, Y.; De Kimpe, N. Tetrahedron 2006, 62, 6882. (j) Salgado, A.; Dejaegher, Y.; Verniest, G.; Boeykens, M.; Gauthier, C.; Lopin, C.; Abbaspour Tehrani, K.; De Kimpe, N. Tetrahedron 2003, 59, 2231. (k) Abbaspour Tehrani, K.; De Kimpe, N. Curr. Org. Chem. 2009, 13, 854.
${ }^{11}$ Fowden, L. Nature (London) 1955, 176, 347.
${ }^{12}$ (a) Shioiri, T.; Hamada, Y.; Matsuura, F. Tetrahedron 1995, 51, 3939. (b) Miyakoshi, K.; Oshita, J. Kitahara, T. Tetrahedron 2001, 57, 3355. (c) Singh, S.; Crossley, G.; Ghosal, S.; Lefievre, Y.; Pennington, M. W. Tetrahedron Lett. 2005, 46, 1419.
${ }^{13}$ (a) Knapp, S.; Dong, Y. Tetrahedron Lett., 1997, 38, 3813. (b) Beauhaire, J.; Ducrot, P.-H. Synth. Commun. 1998, 28, 2443. (c) Liu, D.-G.; Lin, G.-Q. Tetrahedron Lett. 1999, 40, 337. (d) Ohshita, K.;

Ishiyama, H.; Takahashi, Y.; Ito, J.; Mikami, Y.; Kobayashi, J. Biorg. Med. Chem. 2007, 15, 4910. (e) Raghavan, S.; Krishnaiah, V. J. Org. Chem. 2010, 75, 748.
${ }^{14}$ Di, Y.-T.; He, H.-P.; Wang, Y.-S.; Li, L.-B.; Lu, Y.; Gong, J.-B.; Fang, X.; Kong, N.-C.; Li, S.-L.; Zhu, H.-J.; Hao, X.-J. Org. Lett. 2007, 9, 1355.
${ }^{15}$ Okutani, T.; Kaneko, T.; Madusa, K. Chem. Pharm. Bull. 1974, 22, 1490.
${ }^{16}$ Frehel, D.; Heymes, A.; Maffrand, J.-P.; Eloy, F.; Aubert, D.; Rolland, F. Eur. J. Med. Chem. 1977, 12, 447.
${ }^{17}$ Melloni, P.; Della Torre, A.; Meroni, M.; Ambrosini, A.; Rossi, A. C.; J. Med. Chem. 1979, 22, 183.
${ }^{18}$ (a) Marchand, A. P.; Rajagopal, D.; Bott, S. G. J. Org. Chem. 1994, 59, 1608. (b) Archibald, T. G.; Gilardi, R.; Baum, K.; Clifford, G. J. Org. Chem. 1990, 55, 2920. (c) Hayashi, K.; Kumagai, T.; Nagao, Y. Heterocycles 1999, 53, 447.
${ }^{19}$ (a) Vervisch, K.; D’hooghe, M.; Törnroos, K. W.; De Kimpe, N. Org. Biomol. Chem. 2009, 7, 3271.
(b) D’hooghe, M.; Vervisch, K.; Törnroos, K. W; De Kimpe, N. J. Org. Chem. 2007, 72, 7329.
${ }^{20}$ D’hooghe, M.; Vanlangendonck, T.; Törnroos, K. W.; De Kimpe, N. J. Org. Chem. 2006, 71, 4678.
${ }^{21}$ (a) De Smaele, D.; Bogaert, P.; De Kimpe, N. Tetrahedron Lett. 1998, 39, 9797. (b) D’hooghe, M.; Van Nieuwenhove, A.; Van Brabandt, W.; Rottiers, M.; De Kimpe, N. Tetrahedron 2008, 64, 1064.
${ }^{22}$ D'hooghe, M.; Waterinckx, A.; De Kimpe, N. J. Org. Chem. 2005, 70, 227.
${ }^{23}$ Vervisch, K.; D’hooghe, M.; Törnroos, K. W.; De Kimpe, N. J. Org. Chem. 2010, 75, 7734.
${ }^{24}$ (a) Sheikha, G. A.; La Colla, P.; Loi, A. G. Nucleos. Nucleot. Nucl. 2002, 21, 619. (b) D'hooghe, M.; Kenis, S.; Vervisch, K.; Lategan, C.; Smith, P. J.; Chibale, K.; De Kimpe, N. Eur. J. Med. Chem. 2011, 46, 579. (c) D'hooghe, M.; De Kimpe, N. Chem. Commun. 2007, 1275.
${ }^{25}$ (a) D’hooghe, M.; Mangelinckx, S.; Persyn, E.; Van Brabandt, W.; De Kimpe, N. J. Org. Chem. 2006, 71, 4232. (b) D’hooghe, M.; Rottiers, M.; Jolie, R.; De Kimpe, N. Synlett 2005, 931.
${ }^{26}$ (a) Pierre, J. L.; Handel, H.; Baret, P. Tetrahedron 1974, 30, 3213. (b) Baret, P.; Bourgeois, P. M.; Gey, C.; Pierre, J. L. Tetrahedron 1979, 35, 189. (c) Concellón, J. M.; Suárez, J. R.; García-Granda, S.; Díaz, M. R. Angew. Chem. Int. Ed. 2004, 43, 4333. (d) Yu, L.; Kokai, A.; Yudin, A. K. J. Org. Chem. 2007, 72, 1737.
${ }^{27}$ (a) Bergmeier, S. C. Tetrahedron, 2000, 56, 2561. (b) Karpf, M.; Trussardi, R. J. J. Org. Chem. 2001, 66, 2044. (c) Tucker, T. J.; Lumma, W. C.; Payne, L. S.; Wai, J. M.; De Solms, S. J.; Giuliani, F. A.; Darke, P. L.; Heimbach, J. C.; Zugay, J. A.; Schleif, W. A.; Quinfero, J. C. J. Med. Chem. 1992, 35, 2525.
${ }^{28}$ (a) Jeong, Y.-C.; Huang, Y. D.; Choi, S.; Ahn, K.-H. Tetrahedron: Asymmetry 2005, 16, 3497. (b) Malkov, A. V.; Kabeshov, M. A.; Bella, M.; Kysilka, O.; Malyshev, D.; Pluhackova, K.; Kocovski, P. Org. Lett. 2007, 9, 5473.
${ }^{29}$ Sosa-Rivadeneyra, M.; Quintero, L.; De Parrodi, C. A.; Bernès, S.; Castellanos, E.; Juaristi, E. Arkivoc 2003, 61.
${ }^{30}$ (a) Fang, Y.-Q.; Karisch, R.; Lautens, M. J. Org. Chem. 2007, 72, 1341. (b) Couty, F.; David, O.; Larmanjat, B.; Marrot, J. J. Org. Chem. 2007, 72, 1058. (c) May, B. C. H.; Zorn, J. A.; Witkop, J.; Sherrill, J.; Wallace, A. C.; Legname, G.; Prusiner, S. B.; Cohen, F. E. J. Med. Chem. 2007, 50, 65. (d) D'hooghe, M.; De Kimpe, N. Tetrahedron 2006, 62, 513.
${ }^{31}$ (a) Catak, S.; D'hooghe, M.; Verstraelen, T.; Hemelsoet, K.; Van Nieuwenhove, A.; Ha, H.-J.; Waroquier, M.; De Kimpe, N.; Van Speybroeck, V. J. Org. Chem. 2010, 75, 4530. (b) D’hooghe, M.; Van Speybroeck, V.; Van Nieuwenhove, A.; Waroquier, M.; De Kimpe, N. J. Org. Chem. 2007, 72, 4733. (c) D’hooghe, M.; Van Speybroeck, V.; Waroquier, M.; De Kimpe, N. Chem. Commun. 2006, 1554.
${ }^{32}$ Master thesis of Piet Boagert, Faculty of Bioscience Engineering, Department of Sustainable Organic Chemistry and Technology, UGent, 1994.
${ }^{33} \mathrm{PhD}$ thesis of Kourosch Abbaspour Tehrani, Faculty of Bioscience Engineering, Department of Sustainable Organic Chemistry and Technology, UGent, 1998.
${ }^{34}$ Stanković, S.; D’hooghe, M.; Catak, S.; Eum, H.; Waroquier, M.; Van Speybroeck, V.; De Kimpe, N.; Ha, H.-J. Chem. Soc. Rev. 2012, 41, 643.
${ }^{35}$ (a) Lindström, U. M.; Somfai, P. Synthesis 1998, 109. (b) Osborn, H. M. I.; Sweeney, J. Tetrahedron: Asymmetry 1997, 8, 1693. (c) Watson, I. D. G.; Yu, L.; Yudin, A. K. Acc. Chem. Res. 2006, 39, 194. (d) Tsang, D. S.; Yang, S.; Alphonse, F. A.; Yudin, A. K. Chem. Eur. J. 2008, 14, 886. (e) Singh, G. S.; D'hooghe, M.; De Kimpe, N. Chem. Rev. 2007, 107, 2080.
${ }^{36}$ (a) Helmut, S. J. Prakt. Chem. 1999, 341, 319. (b) Dahanukar, V. H.; Zavialov, L. A. Curr. Opin. Drug Di. De. 2002, 5, 918. (c) Schneider, C. Angew. Chem. Int. Ed. 2009, 48, 2082. (d) De Kimpe, N.; Verhé, R. a-Halogenated imines, in Halides, Pseudo-Halides and Azides: 1983, vol 1 (eds S. Patai and Z. Rappoport), John Wiley \& Sons, Ltd., Chichester, UK.
${ }^{37}$ (a) Bornholdt, J.; Felding, J.; Clausen, R. P.; Kristensen, J. L. Chem. Eur. J. 2010, 16, 12474. (b) Bornholdt, J.; Felding, J.; Kristensen, J. L. J. Org. Chem. 2010, 75, 7454. (c) Ottesen, L. K.; Jaroszewski, J. W.; Franzyk, H. J. Org. Chem. 2010, 75, 4983. (d) Roehn, U.; Becaud, J.; Mu, L.; Srinivasan, A.; Stellfeld, T.; Fitzner, A.; Graham, K.; Dinkelborg, L.; Schubiger, A. P.; Ametamey, S. M. J. Fluorine Chem. 2009, 130, 902. (e) Sureshkumar, D.; Ganesh, V.; Vidyarini, R. S.; Chandrasekaran, S. J. Org. Chem. 2009, 74, 7958.
${ }^{38}$ (a) Ghorai, M. K.; Tiwari, D. P. J. Org. Chem. 2010, 75, 6173. (b) Ghorai, M. K.; Kumar, A.; Tiwari, D. P. J. Org. Chem. 2010, 75, 137.
${ }^{39}$ Métro, T.-X.; Duthion, B.; Gomez Pardo, D.; Cossy, J. Chem. Soc. Rev. 2010, 39, 89.
${ }^{40}$ (a) Olofsson, B.; Somfai, P. J. Org. Chem. 2002, 67, 8574. (b) Olofsson, B.; Khamrai, U.; Somfai, P.
Org. Lett. 2000, 2, 4087. (c) Righi, G.; Ciambrone, S.; Esuperanzi, E.; Montini, F.; Pelagalli, R. J. Heterocycl. Chem. 2010, 47, 564.
${ }^{41}$ Sim, T. B.; Kang, S. H.; Lee, K. S.; Lee, W. K.; Yun, H.; Dong, Y.; Ha. H.-J. J. Org. Chem. 2003, 68, 104.
${ }^{42}$ Kim, Y.; Ha, H.-J.; Yun, S. Y.; Lee, W. K. Chem. Commun. 2008, 4363.
${ }^{43}$ Lee, B. K.; Kim, M. S.; Hahm, H. S.; Kim, D. S.; Lee, W. K.; Ha, H.-J. Tetrahedron 2006, 62, 8393.
${ }^{44}$ Furuta, Y.; Kumamoto, T.; Ishikawa, T. Synlett 2004, 362.
${ }^{45}$ Watson, I. D. G.; Yudin, A. K. J. Org. Chem. 2003, 68, 5160.
${ }^{46}$ Wu, J.; Hou, X.-L.; Dai, L.-X. J. Chem. Soc. Perkin Trans. 1 2001, 1314.
${ }^{47}$ Yadav, J. S.; Reddy, B. V. S.; Baishya, G.; Reddy, P. V.; Harshavardhan, S. J. Synthesis 2004, 1854.
${ }^{48}$ Sekar, G.; Singh, V. K. J. Org. Chem. 1999, 64, 2537.
${ }^{49}$ Savoia, D.; Alvaro, G.; Di Fabio, R.; Gualandi, A. J. Org. Chem. 2007, 72, 3859.
${ }^{50}$ Savoia, D.; Alvaro, G.; Di Fabio, R.; Gualandi, A.; Fiorelli, C. J. Org. Chem. 2006, 71, 9373.
${ }^{51}$ (a) Deno, N. C.; Friedman, N.; Hodge, J. D.; MacKay, F. P.; Saines, G. J. Am. Chem. Soc. 1962, 84, 4713. (b) Konieczny, M.; Harvey, R. G. J. Org. Chem. 1979, 26, 4813. (c) Zoeller, J. R.; Ackerman, C. J. J. Org. Chem. 1990, 55, 1354. (d) Duddek, H.; Rosenbaum, J. Org. Chem. 1991, 56, 1707. (e) Davies, I. W.; Taylor, M.; Hughes, D.; Reider, P. J. Org. Lett. 2000, 2, 3385. (f) Kumar, J. S. D.; Ho, M. M.; Toyokuni, T. Tetrahedron Lett. 2001, 42, 5601. (g) Kamal, A.; Reddy, P. S. M. M.; Reddy, D. R. Tetrahedron Lett. 2002, 43, 6629. (h) Gemal, A. L.; Luche, J. L. Tetrahedron Lett. 1980, 3195.
${ }^{52}$ Kumar, M.; Gandhi, S.; Kalra, S. S.; Singh, V. K. Synth. Commun. 2008, 38, 1527.
${ }^{53}$ Anand, R. V.; Pandey, G.; Singh, V. K. Tetrahedron Lett. 2002, 43, 3975.
${ }^{54}$ Wade, T. J. Org. Chem. 1980, 45, 5328.
${ }^{55}$ Dammacco, M.; Degennaro, L.; Florio, S.; Luisi, R.; Musio, B.; Altomare, A. J. Org. Chem. 2009, 74, 6319.
${ }^{56}$ D'hooghe, M.; Mollet, K.; Dekeukeleire, S.; De Kimpe, N. Org. Biomol. Chem. 2010, 8, 607.
${ }^{57}$ Bodenan, J.; Chanet-Ray, J.; Vessière, R. Synthesis 1992, 288.
${ }^{58}$ Yook, C.-M.; Eum, H.; Ha, H.-J.; Kang, K. Y.; Lee, W. K. Bull. Kor. Chem. Soc. 2011, 32, 2879.
${ }^{59}$ Morán-Ramallal, R.; Liz, R.; Gotor, V. Org. Lett. 2007, 9, 521.
${ }^{60}$ Baldwin, J. E.; Adlington, R. M.; O'Neil, I. A.; Schofield, C.; Spivey, A. C.; Sweeney, J. B. J. Chem. Soc. Chem. Commun. 1989, 1852.
${ }^{61}$ Kim, Y.; Ha, H.-J.; Yun, H.; Lee, B. K.; Lee, W. K. Tetrahedron 2006, 62, 8844.
${ }^{62}$ Kim, Y.; Ha, H.-J.; Han, K.; Ko, S. W.; Yun, H.; Yoon, H. J.; Kim, M. S.; Lee, W. K. Tetrahedron Lett. 2005, 46, 4407.
${ }^{63}$ Alezra, V.; Bonin, M.; Micouin, L.; Policar, C.; Husson, H.-P. Eur. J. Org. Chem. 2001, 2589.
${ }^{64}$ Gnecco, D.; Orea F. L.; Galindo, A.; Enríquez, R. G.; Toscano, R. A.; Reynolds, W. F. Molecules 2000, 5, 998.
${ }^{65}$ Sulser, U.; Widmer, J.; Goeth, H. Helv. Chim. Acta 1977, 60, 1676.
${ }^{66}$ Pierre, J.-L.; Baret, P.; Rivoirard, E.-M. J. Heterocycl. Chem. 1978, 15, 817.
${ }^{67}$ Higashiyama, K.; Matsumura, M.; Shiogama, A.; Yamauchi, T.; Ohmiya, S. Heterocycles 2002, 58, 85.
${ }^{68}$ Katagiri, T.; Takahashi, M.; Fujiwara, Y.; Ihara, H.; Uneyama, K. J. Org. Chem. 1999, 64, 7323.
${ }^{69}$ Concellón, J. M.; Riego, E.; Suarez, J. R. J. Org. Chem. 2003, 68, 9242.
${ }^{70}$ Concellón, J. M.; Riego, E. J. Org. Chem. 2003, 68, 6407.
${ }^{71}$ Concellón, J. M.; Bernad, P. L.; Suarez, J. R.; S. Garcia-Granda, S.; Diaz, M. R. J. Org. Chem. 2005, 70, 9411.
${ }^{72}$ Concellón, J. M.; Riego, E.; Rivero, I. A.; Ochoa, A. J. Org. Chem. 2004, 69, 6244.
${ }^{73}$ D'hooghe, M.; Vervisch, K.; Van Nieuwenhove, A.; De Kimpe, N. Tetrahedron Lett. 2007, 48, 1771.
${ }^{74}$ Higashiyama, K.; Matsumura, M.; Hiroshi, K.; Yamauchi, T. Heterocycles 2009, 78, 471.
${ }^{75}$ Park, C. S.; Kim, M. S.; Sim, T. B.; Pyun, D. K.; Lee, C. H.; Choi, D.; Lee, W. K.; Chang, J.-W.; Ha, H.-J. J. Org. Chem. 2003, 68, 43.
${ }^{76}$ Noh, H.-Y.; Kim, S.-W.; Paek, S. I.; Ha, H.-J.; Yun, H.; Lee, W. K. Tetrahedron 2005, 61, 9281.
${ }^{77}$ Pyun, D. K.; Lee, C. H.; Ha, H.-J.; Park, C. S.; Chang, J.-W.; Lee, W. K. Org. Lett. 2001, 3, 4197.
${ }^{78}$ Hancock M. T.; Pinhas A.R. Tetrahedron Lett. 2003, 44, 5457.
${ }^{79}$ Yun, J. M.; Sim, T. B.; Hahm, H. S.; Lee, W. K.; Ha, H.-J. J. Org. Chem. 2003, 68, 7675.
${ }^{80}$ Kim, K.; Kim, Y.-L.; Sacket, S. J.; Kim, H.-L.; Han, M.; Park, D. S.; Lee, B. K.; Lee, W. K.; Ha, H.-J.; Im, D.-S. J. Pharm. Pharmacol. 2007, 59, 1035.
${ }^{81}$ Yoon, H. J.; Kim, Y.-W.; Lee, B. K.; Lee, W. K.; Kimb, Y.; Ha, H.-J. Chem. Commun. 2007, 79.
${ }^{82}$ Ha, H.-J.; Hong, M. C.; Ko, S. W.; Kim, Y. W.; Lee, W. K.; Park, J. Bioorg. Med. Chem. Lett. 2006, 16, 1880.
${ }^{83}$ Kim, J.-W.; Kim, Y.-W.; Inagaki, Y.; Hwang, Y.; Mitsutake, S.; Ryu, Y.-W.; Lee, W. K.; Ha, H.-J.; Parka, C-S.; Igarashi, Y. Bioorg. Med. Chem. 2005, 13, 3475.
${ }^{84}$ Park, C. S.; Choi, H. G.; Lee, H.; Lee, W. K.; Ha, H.-J. Tetrahedron: Asymmetry 2000, 11, 3283.
${ }^{85}$ Choi, S.-K.; Lee, J.-S.; Kim, J.-H.; Lee, W. K. J. Org. Chem. 1997, 62, 743.
${ }^{86}$ Chang, J.-W.; Ha, H.-J.; Park, C. S.; Kim, M. S.; Lee, W. K. Heterocycles 2002, 57, 1143.
${ }^{87}$ Kim, J. C.; Choi, H. G.; Kim, M. S.; Ha, H.-J.; Lee, W. K. Tetrahedron 2010, 66, 8108.
${ }^{88}$ Kenis, S.; D’hooghe, M.; Verniest, G.; Duc Nguyen, Dang Thi, T. A.; Van Nguyen, T.; De Kimpe, N. Org. Biomol. Chem. 2011, 9, 7217.
${ }^{89}$ Li, B.-F.; Yuan, K.; Zhang, M.-J.; Wu, H.; Dai, L.-X.; Wang, Q. R.; Hou, X.-L. J. Org. Chem. 2003, 68, 6264.
${ }^{90}$ Lee, H. K.; Ima, J. H.; Jung, S. H. Tetrahedron 2007, 63, 3321.
${ }^{91}$ Bae, J. H.; Shin, S.-H.; Park, C. S.; Lee, W. K. Tetrahedron 1999, 55, 10041-10046.
${ }^{92}$ D’hooghe, M.; Waterinckx, A.; Vanlangendonck, T.; De Kimpe, N. Tetrahedron 2006, 62, 2295.
${ }^{93}$ D’hooghe, M.; Van Brabandt, W.; De Kimpe, N. J. Org. Chem. 2004, 69, 2703.
${ }^{94}$ D'hooghe, M.; De Kimpe, N. Synlett 2006, 2089.
${ }^{95}$ (a) Van Brabandt, W.; Van Landeghem, R.; De Kimpe, N. Org. Lett. 2006, 8, 1105. (b) Couty, F.; Durrat, F.; Prim, D. Tetrahedron Lett. 2003, 44, 5209. (c) Outurquin, F.; Pannecoucke, X.; Berthe, B.; Paulmier, C. Eur. J. Org. Chem. 2002, 1007. (d) Durrat, F.; Sanchez, M. V.; Couty, F.; Evano, G.; Marrot, J. Eur. J. Org. Chem. 2008, 3286. (e) Dekeukeleire, S.; D’hooghe, M.; Törnroos, K. W.; De Kimpe, N. J. Org. Chem. 2010, 75, 5934.
${ }^{96}$ (a) Calvez, O.; Chlarom, A.; Langlois, N. Tetrahedron Lett. 1998, 39, 9447. (b) Davies, S. G.; Nicholson, R. L.; Price, P. D.; Roberts, P. M.; Russell, A. J.; Savory, E. D.; Smith, A. D.; Thomson, J. E. Tetrahedron: Asymmetry 2009, 20, 758. (c) Mena, M.; Bonjoch, J.; Gomez, Pardo, D.; Cossy, J. J. Org. Chem. 2006, 71, 5930.
${ }^{97}$ (a) Pauvert, M.; Collet, S.; Guingant, A. Tetrahedron Lett. 2003, 44, 4203. (b) Jean-Gerard, L.; Pauvert, M.; Collet, S.; Guingant, A.; Evain, M. Tetrahedron 2007, 63, 11250. (c) Chong, H.-s.; Ganguly, B.; Broker, G. A.; Rogers, R. D.; Brechbiel, M. W. J. Chem. Soc., Perkin Trans. 2002, 1, 2080.
${ }^{98}$ Chandrasekhar, M.; Sekar, G.; Singh, V. K. Tetrahedron Lett. 2000, 41, 10079.
${ }^{99}$ Shin, S-H.; Han, E. Y.; Park, C. S.; Lee, W. K.; Ha, H.-J. Tetrahedron: Asymmetry 2000, 11, 3293.
${ }^{100}$ Kim, M. S.; Yoon, H. J.; Lee, B. K.; Kwon, J. H.; Lee, W. K.; Kim, Y.; Ha, H.-J. Synlett 2005, 2187.
${ }^{101}$ Wróblewski, A.; Drozd, J. Tetrahedron: Asymmetry 2009, 20, 2240.

102 (a) Catak, S.; D’hooghe, M.; De Kimpe, N.; Waroquier, M.; Van Speybroeck, V. J. Org. Chem. 2010, 75, 885. (b) Yun, S. Y.; Catak, S.; Lee, W. K.; D’hooghe, M.; De Kimpe, N.; Van Speybroeck, V.; Waroquier, M.; Kim, Y.; Ha, H.-J. Chem. Commun. 2009, 2508.
${ }^{103}$ Stanković, S.; D’hooghe, M.; De Kimpe, N. Org. Biomol. Chem. 2010, 8, 4266.
${ }^{104}$ (a) Pearson, W. H.; Lian, B. W.; Bergmeier, S.C. in Comprehensive Heterocyclic chemistry II, ed. Padwa, A. Pergamon press, New York, 1980, vol. 1A, pp. 1. (b) Zwanenburg, B.; ten Holte, I. in Stereoselective Heterocyclic chemistry III, ed. P. Metz, Springer, Berlin, 2001, pp. 93.
${ }^{105}$ Lu, P. Tetrahedron 2010, 66, 2549.
${ }^{106}$ De Kimpe, N.; Verhé, R. De Buyck, L.; Schamp, N. Bull. Soc. Chim. Belg. 1975, 84, 701.
${ }^{107}$ Suzuki, K.; Okano, K.; Nakai, K.; Terao, Y.; Sekiya, M. Synthesis 1983, 723.
${ }^{108}$ Vilhelmsen, M. H.; Ostergaard, L. F.; Nielsen, M. B.; Hammerum, S. Org. Biomol. Chem. 2008, 6, 1773.
${ }^{109}$ (a) De Kimpe, N.; Verhé, R.; De Buyck, L.; Schamp, N. J. Org. Chem. 1981, 46, 2079. (b) De Kimpe, N.; Verhé, R.; De Buyck, L.; Schamp, N. Bull. Soc. Chim. Belg. 1983, 92, 233.
${ }^{110}$ (a) De Kimpe, N.; Verhé, R.; De Buyck, L.; Schamp, N. J. Org. Chem. 1980, 45, 5319. (b) De Kimpe, N.; Verhé, R.; De Buyck, L.; Schamp, N. Recl. Trav. Chim. Pays-Bas 1977, 96, 242. (c) De Kimpe, N.; Schamp, N.; Verhé, R. Synth. Commun. 1975, 5, 403. (d) De Kimpe, N.; Verhé, R.; De Buyck, L.; Schamp, N. Synth. Commun. 1975, 5, 269. (e) De Kimpe, N.; De Smaele, D. Tetrahedron Lett. 1994, 35, 8023. (f) Van, T. N.; De Kimpe, N. Tetrahedron 2000, 56, 7299. (f) De Kimpe, N.; Verhé, R. The Chemistry of α-Haloketones, α-Haloaldehydes and α-Haloimines; Patai, S.; Rappoport Z. Eds.; John Wiley: Chichester, 1988. (g) De Kimpe, N.; Schamp, N. Org. Prep. Proced. Int. 1979, 11, 115. (h) Denolf, B.; Mangelinckx, S.; Törnroos, K.W.; De Kimpe, N. Organic Lett. 2006, 8, 3129. (i) De Kimpe, N.; Sulmon, P.; Verhé, R.; De Buyck, L.; Schamp, N. J. Org. Chem. 1983, 48, 4320.
${ }^{111}$ Hassner, A.; Belinka, Jr. B. A.; Haber, M.; Hunger, P. Tetrahedron Lett. 1981, 22, 1863.
112 (a) Kotera, K.; Matsukawa, Y.; Takahashi, H.; Okada, T.; Kitahonoki, K. Tetrahedron 1968, 24, 6177. (b) Kotera, K.; Okada, T.; Miyazaki, S. Tetrahedron 1968, 24, 5677. (c) Kitahonoki, K.; Takano, Y.; Takahashi, H. Tetrahedron 1968, 24, 4605. (d) Kotera, K.; Miyazaki, S.; Miyazaki, H.; Okada, T.; Kitahonoki, K. Tetrahedron 1968, 24, 3681. (e) Kotera, K.; Motomura, M.; Miyazaki, S.; Okada, T.; Matsukawa, Y. Tetrahedron 1968, 24, 1727.
${ }^{113}$ (a) Palacios, F.; De Retana, A. M. O.; Gil, J. I. Tetrahedron Lett. 2000, 41, 5363. (b) Palacios, F.; Maria, A.; Retana, O. D.; Gil, J. I.; Ezpeleta, J. M. J. Org. Chem. 2000, 3213.
${ }^{114}$ D’hooghe, M.; Van Brabandt, W.; De Kimpe, N. Tetrahedron 2003, 59, 5383.
${ }^{115}$ (a) De Kimpe, N.; Jolie, R.; De Smaele, D. J. Chem. Soc. Chem. Commun. 1994, 1221. (b) De Kimpe, N.; De Smaele, D.; Szakonyi, Z. J. Org. Chem. 1997, 62, 2448.
${ }^{116}$ (a) Welder, C. O.; Ashby, E. C. J. Org. Chem. 1997, 62, 4829. (b) D’hooghe, M.; Dekeukeleire, S.; De Kimpe, N. Org. Biomol. Chem. 2008, 6, 1190.
${ }^{117}$ (a) Pfister, J. R. Synthesis 1984, 969. (b) Boivin, S.; Outurquin, F.; Paulmier, C. Tetrahedron Lett. 2000, 41, 663. (c) Miniejew, C.; Outurquin, F.; Pannecoucke, X. Org. Biomol. Chem. 2004, 2, 1575. (d) Vicario, J. L.; Badia, D.; Carillo, L. Arkivoc 2007, 4, 304.
${ }^{118}$ (a) Hwang, G.-I.; Chung, J.-H.; Lee, W. K. J. Org.Chem. 1996, 61, 6183. (b) Mesropyan, E. G.; Avetisyan, A. A.; Galstyan, A. S. Russ. J. Org. Chem. 2007, 43, 1176.
${ }^{119}$ (a) Inaba, T.; Yamada, Y.; Abe, H.; Sagawa, S.; Cho, H. J. Org. Chem. 2000, 65, 1623. (b) Cristau, H.-J.; Pirat, J.-L.; Drag, M.; Kafarski, P. Tetrahedron Lett. 2000, 41, 9781. (c) Bennet, F.; Patel, N. M.; Girijavallabhan, V. M.; Ganguly, A. K. Synlett 1993, 703. (d) Bell, D.; Davies, M. R.; Finney, F. J. L.; Geen, G. R.; Kincey, P. M.; Mann, I. S. Tetrahedron Lett. 1996, 37, 3895. (e) Gnewuch, C. T.; Sosnovsky, G. Chem. Rev. 1997, 97, 829 (f) Hudlicky, T.; Abbod, K. F.; Entwisle, D. A.; Fan, R.; Maurya, R.; Thorpe, A. J.; Bolonick, J.; Myers, B. Synthesis 1996, 897. (g) Sabitha, G.; Babu, R. S.; Rajkumar, M.; Yadav, J. S. Org. Lett. 2002, 4, 343. (h) Maier, M. E.; Bobe, F.; Niestroj, A. J. Eur. J. Org. Chem. 1999, 1.
${ }^{120}$ (a) Agami, C.; Comesse, S.; Kadouri-Puchot, C. J. Org. Chem. 2002, 67, 2424. (b) Santes, V.; Ortíz, A.; Santillán, R.; Gutiérrez, A.; Farfán, N. Synth. Commun. 1999, 29, 1277.
${ }^{121}$ (a) Chinchilla, R.; Falvello, L. R.; Galindo, N.; Nájera, C. J. Org. Chem. 2000, 65, 3034. (b) Agami, C.; Couty, F.; Puchot- Kaudori, C. Synlett 1998, 449. (c) Jain, P. R.; Williams, R. M. J. Org. Chem. 2002, 67, 6361. (d) Jain, P. R.; Albrecht, B.K.; De Mong, D. E.; Williams, R. M. Org. Lett. 2001, 3, 4287. (e) Agami, C.; Comesse, S.; Kadouri-Puchot, C. J. Org. Chem. 2000, 65, 4435.
${ }^{122}$ Lim, Y.; Lee, W. K. Tetrahedron Lett. 1995, 36, 8431.
${ }^{123}$ (a) Enders, D.; Reinhold, U. Angew. Chem., Int. Ed. Engl. 1995, 34, 1219. (b) Golebiowski, A.;Jurczak, J. Synlett 1993, 241. (c) Kunieda, T.; Ishizuka, T. in Studies in Natural Products Chemistry; Atta-ur- Rahman, Ed.; Elsevier: New York, 1993; Vol. 12, p 411. (d) Ohfune, Y. Acc. Chem. Res. 1992, 25, 360. (e) Yokomatsu, T.; Yuasa, Y.; Shibuya, S. Heterocycles 1992, 33, 1051. (f) Reetz, M. T. Angew. Chem., Int. Ed. Engl. 1991, 30, 1531. (g) Henning, R. Nachr. Chem. Tech. Lab. 1990, 38, 460.
${ }^{24}$ (a) Hwang, S. S.; Gorsline, J.; Louie, J.; Guinta, D. J. Clin. Pharm. 1995, 35, 259. (b) Capwell, R. R. Am. J. Psych. 1995, 152, 647. (c) Poelert, M. A.; Hulshof, L. A.; Kellogg, R. M. Rec. Trav. Chim. Pays-Bas 1994, 113, 355. (d) Brooks, K. E.; Smith, N. B. Ibid 1993, 17, 441. (e) Sieb, J. P.; Engel, A. G. Brain Res. 1993, 623, 167.
${ }^{125}$ (a) D’hooghe, M.; De Kimpe, N. Synlett 2004, 271. (b) D’hooghe, M.; De Kimpe, N. Arkivoc 2008, 6.
${ }^{126}$ D’hooghe, M.; Catak, S.; Stanković, S.; Waroquier, M.; Yongeun, K.; Ha, H.-J.; Van Speybroeck, V.; De Kimpe, N. Eur. J. Org. Chem. 2010, 4920.
${ }^{127}$ D'hooghe, M.; De Kimpe, N. Tetrahedron 2008, 64, 3275.
${ }^{128}$ (a) Whittaker, S. J.; Foss, F. M. Cancer Treat. Rev. 2007, 33, 146. (b) Denny, W. A. Curr. Med. Chem. 2001, 8, 533.
${ }^{129}$ (a) Bassindale, A. R.; Kyle, P. A.; Soobramanien, M. C.; Taylor, P. G. J. Chem. Soc., Perkin Trans. 1 2000, 439. (b) Weber, K.; Kuklinski, S.; Gmeiner, P. Org. Lett. 2000, 2, 647. (c) Crousse, B.; Narizuka, S.; Bonnet-Delpon, D.; Begue, J.-P. Synlett 2001, 679. (d) Testa, L.; Akssira, M.; ZaballosGarcía, E.; Arroyo, P.; Domingo, L. R.; Sepúlveda-Arques, J. Tetrahedron, 2003, 59, 677. (e) Alvernhe, G. M.; Ennakoua, C. M.; Lacombe, S. M.; Laurent, A. J. J. Org. Chem. 1981, 46, 4938. (f) O'Brien, P.; Towers, T. D. J. Org. Chem. 2002, 67, 304. (g) Song, H. A.; Dadwal, M.; Lee, Y.; Mick, E.; Chong, H.-S. Angew. Chem. Int. Ed. 2009, 48, 1328. (h) Kumar, M.; Pandey, S. K.; Gandhi, S.; Singh,
V. K. Tetrahedron Lett. 2009, 50, 363. (i) Chong, H.-S.; Song, H. A.; Dadwal, M.; Sun, X.; Sin, I.; Chen, Y. J. Org. Chem. 2010, 75, 219.
${ }^{130}$ Sivaprakasham, M.; Couty, F.; Evano, G.; Srinivas, B.; Sridhar, R.; Rama Rao, K. Arkivoc 2007, 71.
${ }^{131}$ Stanković, S.; Catak, S.; D'hooghe, M.; Goossens, H.; Abbaspour Tehrani, K.; Bogaert, P.; Waroquier, M.; Van Speybroeck, V.; De Kimpe, N. J. Org. Chem. 2011, 76, 2157.
${ }^{132}$ (a) De Kimpe, N.; Sulmon, P.; Moens, L.; Schamp, N.; Declercq, J. P.; Van Meerssche, M. J. Org. Chem. 1986, 51, 3839. (b) De Kimpe, N.; Sulmon, P.; Brunet, P. J. Org. Chem. 1990, 55, 5777. (c) Mangelinckx, S.; Giubellina, N.; De Kimpe, N. Chem. Rev. 2004, 104, 2353. (d) Giubellina, N.; Aelterman, W.; De Kimpe, N.; Pure Appl. Chem. 2003, 75, 1433. (e) Sulmon, P.; De Kimpe, N.; Schamp, N. Tetrahedron 1989, 45, 3907. (f) Dejaegher, Y.; De Kimpe, N.; J. Org. Chem. 2004, 69, 5974.
${ }^{133}$ (a) Paul, R.; Williams, R. P.; Cohen, E. J. Org. Chem. 1975, 40, 1653. (b) Greenlee, W. J.; Taub, D.; Patchett, A. A. Tetrahedron Lett. 1978, 19, 3999. (c) Tatsumoto, K.; Martell, A. E.; Motekaitis, R. J. J. Am. Chem. Soc. 1981, 103, 6197. (d) Wessjohann, L.; McGaffin, G.; De Meijere, A. Synthesis 1989, 359. (e) Sulmon, P.; De Kimpe, N.; Schamp, N. Tetrahedron 1989, 45, 2937. (f) De Kimpe, N.; Sulmon, P. Synlett 1990, 161. (g) Gaucher, A.; Ollivier, J.; Salaun, J. Synlett 1991, 151. (h) De Kimpe, N.; Sulmon, P.; Stevens, C. Tetrahedron 1991, 47, 4723. (i) Wessjohann, L.; Giller, K.; Zuck, B.; Skatteboel, L.; de Meijere, A. J. Org. Chem. 1993, 58, 6442. (j) Onys'ko, P. P.; Kim, T. V.; Kiseleva, E. I.; Sinitsa, A. D. J. Fluor. Chem. 1994, 69, 213. (k) Gaucher, A.; Dorizon, P.; Ollivier, J.; Salaün, J. Tetrahedron Lett. 1995, 36, 2979. (I) Ryu, I.; Matsu, K.; Minakata, S.; Komatsu, M. J. Am. Chem. Soc. 1998, 120, 5838. (m) Serino, C.; Stehle, N.; Park, Y. S.; Florio, S.; Beak, P. J. Org. Chem. 1999, 64, 1160. (n) Yus, M.; Soler, T.; Foubelo, F. J. Org. Chem. 2001, 66, 6207. (o) Morrell, A.; Antony, S.; Kohlhagen, G.; Pommier, Y.; Cushman, M. Bioorg. Med. Chem. Lett. 2004, 14, 3659.
${ }^{134}$ De Smaele, D.; Dejaegher, Y.; Duvey, G.; De Kimpe, N. Tetrahedron Lett. 2001, 42, 2373.
${ }^{135}$ (a) Mutti, S.; Lavigne, M.; Grondard, L.; Malpart, J.; Rieke-Zapp, J. R.; Crocq, V. PCT Int. Appl. 2006, WO Patent 2006040465; Chem. Abstr. 2006, 144, 412348. (b) Hayashi, K.; Hiki, S.; Kumagai, T.; Nagao, Y. Heterocycles 2002, 56, 433. (c) Hayashi, K.; Sato, C.; Hiki, S.; Kumagai, T.; Tamai, S.; Abe, T.; Nagao, Y. Tetrahedron Lett. 1999, 40, 3761. (d) Bartnik, R.; Marchand, A. P. Synlett 1997, 1029.
${ }^{136}$ De Kimpe, N. Three- and Four-Membered Rings, With All Fused Systems Containing Three- and Four-Membered Rings. In Comprehensive heterocyclic chemistry II; Padwa, A., Ed.; Elsevier: Oxford, 1996; Vol. 1, Chapter 1.21.
${ }^{137}$ Fyfe, M. C. T.; Gattrell, W.; Rasamison, C. M. PCT Int. Appl. 2007, WO 2007116230 Al; Chem. Abstr. 2007, 147, 469218.
${ }^{138}$ Isabel, E.; Oballa, R.; Powell, D.; Robichaud, J. PCT Int. Appl. 2007, WO 2007143823 AI; Chem. Abstr. 2007, 148, 78872.
${ }^{139}$ Josyula, V. P. V. N.; Renslo, A. R. PCT Int. Appl. 2007, WO 2007004049 AI; Chem. Abstr. 2007, 146, 142631.
${ }^{140}$ D’hooghe, M.; De Meulenaer, B.; De Kimpe, N. Synlett 2008, 2437.
${ }^{141}$ (a) Mangelinckx, S.; D’hooghe, M.; Peeters, S.; De Kimpe, N. Synthesis 2009, 1105. (b) D'hooghe, M.; De Kimpe, N. Arkivoc 2007, 365.
${ }^{142}$ (a) Higgins, R. H.; Behlen, F. M.; Eggli, D. F.; Kreymborg, J. H.; Cromwell, N. H. J. Org. Chem. 1972, 37, 524. (b) Higgins, R. H.; Cromwell, N. H. J. Am. Chem. Soc. 1973, 95, 120. (c) Okutani, T.; Masuda, K. Chem. Pharm. Bull. 1974, 22, 1498.
${ }^{43}$ (a) Mangelinckx, S.; Žukauskaitė, A.; Buinauskaitė, V.; Šačkus, A.; De Kimpe, N. Tetrahedron Lett. 2008, 49, 6896. (b) Gaertner, V. R. J. Org. Chem. 1970, 35, 3952. (c) Deyrup, J.; Moyer, C. L. Tetrahedron Lett. 1968, 6179.
${ }^{144}$ (a) Allinger, N.; Zalkow, V. J. Org. Chem. 1960, 25, 701. (b) Parrill, A. L.; Dolata, D. P. THEOCHEM 1996, 370, 187.
${ }^{145}$ Stanković, S.; Goossens, H.; Catak, S.; Tezcan, M.; Waroquier, M.; Van Speybroeck, V.; D’hooghe, M.; De Kimpe, N. J. Org. Chem. 2012, 77, 3181.
${ }^{146}$ Žukauskaitè, A.; Mangelinckx, S.; Buinauskaitè, V.; Šačkus, A.; De Kimpe, N. Amino Acids 2011, 41, 541.
${ }^{147}$ Stanković, S.; D’hooghe, M.; Abbaspour Tehrani, K.; De Kimpe, N. Tetrahedron Lett. 2012, 53, 107.
${ }^{148}$ Van Brabandt, W.; Mangelinckx, S.; D’hooghe, M.; Van Driessche, B.; De Kimpe, N. Curr. Org. Chem. 2009, 13, 829.
${ }^{149}$ Higgins, R. H.; Doomes, N. H.; Cromwell, N. H. J. Heterocycl. Chem. 1971, 8, 1063.
${ }^{150}$ (a) Marehand, A. P.; Ramanaiah, K. C. V.; Bott, S. G.; Gilbert, J. C.; Kirschner, S. Tetrahedron Lett. 1996, 37, 8101. (b) Collier, P. N. Tetrahedron Lett. 2009, 50, 3909. (c) Hanessian, S.; Fu, J.-M.; Chiara, J.-L.; Di Fabio, R. Tetrahedron Lett. 1993, 34, 4157. (d) Marehand, A. P.; Devasagayaraj, A. J. Org. Chem. 1997, 62, 4434. (e) Burtoloso, A. C. B.; Correia, C. R. D. Tetrahedron 2008, 64, 9928.
${ }^{151}$ (a) Hanessian, S.; Fu, J.-M.; Tu, Y. Tetrahedron Lett. 1993, 34, 4153. (b) Emmer G. Tetrahedron 1992, 48, 7165. (c) Liang, Y.; Raju, R.; Le, T.; Taylor, C. D. ; Howell, A. R. Tetrahedron Lett. 2009, 50, 1020.
${ }^{152}$ Wang, J. L.; Bowen, S. J.; Schweitzer, B. A.; Madsen, H. M. ; McDonald, J.; Pelc, M. J.; Tenbrink, R. E.; Beidler, D.; Thorarensen, A. Bioorg. Med. Chem. Lett. 2009, 19, 5970.
${ }^{153}$ (a) Tønder, J. E.; Hansen, J. B.; Begtrup, M.; Pettersson, I.; Rimvall, K.; Christensen, B.; Ehrbar, U.; Olesen, P. H. J. Med. Chem. 1999, 42, 4970. (b) Olesen, P. H. PCT Int. Appl. (1997), WO 9711073 A1 19970327.
${ }^{154}$ (a) Mangelinckx, S.; Boeykens, M.; De Kimpe, N. Synlett 2008, 1394. (b) Lu, H.; Li, C. Org. Lett. 2006, 8, 5365. (c) Sulmon, P.; De Kimpe, N.; Schamp, N. J. Org. Chem. 1988, 53, 4462. (d) De Kimpe, N.; Boeykens, M. J. Org. Chem. 1994, 59, 5189.
${ }^{155}$ Cainelli, G.; Giacomini, D.; Gazzano, M.; Galletti, P.; Quintavalla, A. Tetrahedron Lett. 2003, 44, 6269.
${ }^{156}$ (a) Wuitschik, G.; Rogers-Evans, M.; Buckl, A.; Bernasconi, M.; Märki, M.; Godel, T.; Fischer, H.; Wagner, B.; Parrilla, I.; Schuler, F.; Schneider, J.; Alker, A.; Schweizer, W. B.; Müller, K.; Carreira, E. M. Angew. Chem. Int. Ed. 2008, 47, 4512. (b) Burkhard, J. A.; Carreira, E. M. Org. Lett. 2008, 10, 3525. (c) Burkhard, J. A.; Wagner, B. Fischer, H.; Schuler, F.; Müller, K.; Carreira, E. M. Angew. Chem. Int. Ed. 2010, 49, 3524.
${ }^{157}$ Smith, E. M.; Sorota, S.; Kim, H. M.; McKittrick, B. A.; Nechuta, T. L.; Bennett, C.; Knutson, C.; Burnett, D. A.; Kieselgof, J.; Tan, Z.; Rindgen, D.; Bridal, T.; Zhou, X.; Jia, Y.-P.; Dong, Z.; Mullins, D.; Zhang, X.; Priestley, T.; Correll, C. C.; Tulshian, D.; Czarniecki, M.; Greenlee, W. J. Bioorg. Med. Chem. Lett. 2010, 20, 4602.
${ }^{158}$ Kolocouris, N.; Zoidis, G.; Foscolos, G. B.; Fytas, G.; Prathalingham, S. R.; Kelly, J. M.; Naesens, L.; De Clercq, E. Bioorg. Med. Chem. Lett. 2007, 17, 4358.
${ }^{159}$ De Blieck, A.; Stevens, C. V. Synlett 2011, 1748.
${ }^{160}$ Hassenrueck, K.; Hoechstetter, H.; Martin, H. D.; Steigel, A.; Wingen, H. P. Chem. Ber. 1987, 120, 203.
${ }^{161}$ (a) Ma, L.; Jiao, P.; Zhang, Q.; Xu, J. Tetrahedron: Asymmetry 2005, 15, 3718. (b) Evans, D. A.; Faul, M. M.; Bilodeau, M. T. J. Am. Chem. Soc. 1994, 116, 2742. (c) Li, Z.; Conser, K. R.; Jacobsen, E. J. J. Am. Chem. Soc. 1993, 115, 5326.
${ }^{162}$ Anklam, S.; Liebscher, J. Tetrahedron 1998, 54, 6369.
${ }^{163}$ Ma, S.; Yoon, D. H.; Ha, H.-J.; Lee, W. K. Tetrahedron Lett. 2007, 48, 269.
${ }^{164}$ (a) Fujiwara, M.; Baba, A.; Matsuda, H. J. Heterocycl. Chem. 1989, 26, 1659; (b) Shibata, I.; Nakamura, K.; Baba, A.; Matsuda, H. Bull. Chem. Soc. Jpn. 1989, 62, 853. (c) Baba, A.;. Shibata, I; Fujiwara, M.; Matsuda, H. Tetrahedron Lett. 1985, 26, 5167. (d) Rice, G. T.; White, M. C. J. Am. Chem. Soc. 2009, 131, 11707. (e) Nahra, F.; Liron, F.; Prestat, G.; Mealli, C.; Messaoudi, A.; Poli, G. Chem.—Eur. J. 2009, 15, 11078. (f) Mangelinckx, S.; Nural, Y.; Dondas, H. A.; Denolf, B.; Sillanpää, R.; De Kimpe, N. Tetrahedron 2010, 66, 4115.
${ }^{165}$ Davies, S. G.; Garner, A. C.; Robert, P. M.; Smith, A. D.; Sweet, M. J.; Thomson, J. E. Org. Biomol. Chem. 2006, 4, 2753.
${ }^{166}$ (a) Park, M.; Lee, J. Arch. Pharmacol. Res. 1993, 16, 158. (b) Li, X.; Wang, R.; Wang, Y.; Chen, H.; Li, Z.; Ba, C.; Zhang, J. Tetrahedron 2008, 64, 9911. (c) McElroy, C. R.; Aricò, F.; Benetollo, F.; Tundo, P. Pure Appl. Chem. 2012, 84, 707. (d) Wang, G.; Ella-Menye, J.-R.; Sharma, V. Bioorg. Med. Chem. Lett. 2006, 16, 2177.
${ }^{167}$ Podgoršek, A.; Iskra, J. Molecules 2010, 15, 2857.
${ }^{168}$ (a) Guerot, C.; Tchitchanov, B. H.; Knust, H.; Carreira, E. M. Org. Lett. 2011, 13, 780. (b) Marehand, A. P.; Devasagayaraj, A. Heterocycles 1998, 49, 149.
${ }^{169}$ (a) Lamb, P. PCT Int. Appl., 2008124085, 16 Oct 2008. (b) Lamb, P. PCT Int. Appl., 2008076415, 26 Jun 2008 (c) Aay, N.; Anand, N. K.; Bowles, O. J.; Bussenius, J.; Costanzo, S.; Curtis, J. K.; Dubenko, L.; Joshi, A. A.; Kennedy, A. R.; Kim, A. I.; Koltun, E.; Manalo, J.-C. L.; Peto, C. J.; Rice, K. D.; Tsang, T. H. PCT Int. Appl., 2007044515, 19 Apr 2007 (d) Allen, S.; Celeste, L. L.; Davis, T. G.; Delisle, R. K.; Greschuk, J. M.; Gross, S. D.; Hicken, E. J.; Jackson, L. J.; Lyssikatos, J. P.; Kallan, N. C.; Marmsater, F. P.; Munson, M. C.; Pheneger, J.; Rast, B.; Robinson, J. E.; Schlachter, S. T.; Topalov, G. T.; Wright, A. D.; Zhao, Q. PCT Int. Appl., 2010022076, 25 Feb 2010.
${ }^{170}$ (a) Burkhard, J. A.; Guérot, C.; Knust, H.; Rogers-Evans, M.; Carreira, E. M. Org. Lett. 2010, 12, 1944. (b) Meyers, M. J.; Muizebelt, I.; van Wiltenburg, J.; Brown, D. L.; Thorarensen, A. Org. Lett. 2009, 11, 3523. (c) Burkhard, J. A.; Guérot, C.; Knust, H.; Carreira, E. M. Org. Lett. 2012, 14, 66. (d) Li, D. B.; Rogers-Evans, M.; Carreira, E. M. Org. Lett. 2011, 13, 6134.
${ }^{171}$ Davies, S. G.; Ling, K. B.; Roberts, P. M.; Russell, A. J.; Thomson, J. E. Chem. Comm. 2007, 4029. ${ }^{172}$ Thakur, V. V.; Sudalai, A. Tetrahedron Lett. 2003, 44, 989.
${ }^{173}$ Sureshkumar D.; Maity, S.; Chandrasekaran, S. J. Org. Chem. 2006, 71, 1653.
${ }^{174}$ (a) Alcaide, B.; Almendros, P.; Aragoncillo, C.; Cabrero, G.; Callejo, R.; Ruiz, M. P. Eur. J. Org. Chem. 2008, 4434. (b) Simone, M. I.; Edwards, A. A.; Tranter, G. E.; Fleet, G. W. J. Tetrahedron: Asymmetry 2008, 19, 2887. (c) Chincholkar, P. M.; Kale, A. S.; Gumaste, V. K.; Rakeeb, A.; Deshmukh, A. S. Tetrahedron 2009, 65, 2605. (d) Grochowskit, E.; Gluziliski, P.; Krajewski, J. W.; Pupek, K. J. Mol. Struct. 1992, 269, 141.
${ }^{175}$ (a) Itaya, T.; lida, T.; Natsutani, I.; Ohba, M. Chem. Pharm. Bull. 2002, 50, 83. (b) Itaya, T.; lida, T.; Gomyo, Y.; Natsutani, I.; Ohba, M. Chem. Pharm. Bull. 2002, 50, 346. (c) Itaya, T.; lida, T.; Eguchi, H. Chem. Pharm. Bull. 1993, 41, 408.
${ }^{176}$ (a) Butler, D. C. D.; Inman, G. A.; Alper, H. J. Org. Chem. 2000, 65, 5887. (b) Trost, B. M.; Fandrick, D. R. J. Am. Chem. Soc. 2003, 125, 11836. (c) Trost, B. M.; Fandrick, D. R. Org. Lett. 2005, 7, 823. (d) Ahman, J.; Somfai, P. J. Am. Chem. Soc. 1994, 116, 9781. (e) Lindström, U. M.; Somfai. P. J. Am. Chem. Soc. 1997, 119, 8385. (f) Fantauzzi, S.; Gallo, E.; Caselli, A.; Piangiolino, C.; Ragaini, F.; Re, N.; Cenini, S. Chem. Eur. J. 2009, 15, 1241.

177 Ikee, Y.; Hashimoto, K.; Nakashima, M.; Hayashi, K.; Sano, S.; Shiroc, M.; Nagaoa, Y. Bioorg. Med. Chem. Lett. 2007, 17, 942.
${ }^{178}$ Isoda, T.; Vamamura, I.; Tamai, S.; Kumagai, T.; Nagao, Y. Chem. Pharm. Bull. 2006, 54, 1408.

Curriculum Vitae

Personalia

```
Sonja Stanković 02.11.1983, Kragujevac, Serbia Jovana Petrovića Kovača 5/18 34000 Kragujevac, Serbia sonja.chem@gmail.com
```


Education

2002-2007	University of Kragujevac, Serbia
	Faculty of Science (Chemistry)
	Graduate Research and Development Chemist (master level)
$1998-2002$	The First Kragujevac Gymnasium

Career

2007-2009	University of Kragujevac
Faculty of Science (Chemistry) - doctoral studies	
	Department of Sustainable Organic Chemistry and Technology
	Faculty of Bioscience Engineering
	Subject of the PhD-thesis: "Study of non-activated 2-(bromomethyl)aziridines and 2-bromomethyl-2-methylaziridines as versatile synthons in heterocyclic chemistry" Co-promoter: prof. dr. ir. Norbert De Kimpe

Publications in International Journals with Peer-Review ('A1')

S. Stanković, M. D'hooghe, S. Catak, H. Eum, M. Waroquier, V. Van Speybroeck, N. De Kimpe, H.-J. Ha, "Regioselectivity in the ring opening of non-activated aziridines," Chemical Society Reviews, 41 (2012), 643-665.
S. Stanković, H. Goossens, S. Catak, M. Tezcan, M. Waroquier, V. Van Speybroeck, M. D’hooghe, N. De Kimpe, "Solvent-Controlled Selective Transformation of 2-Bromomethyl-2-methylaziridines to Functionalized Aziridines and Azetidines," Journal of Organic Chemistry, 77 (2012), 3181-3190.
S. Stanković, M. D’hooghe, K. Abbaspour Tehrani, N. De Kimpe, N, "Synthesis of 3-functionalized 3methylazetidines," Tetrahedron Letters, 53 (2012), 107-110.
H. Goossens, K. Vervisch, S. Catak, S. Stanković, M. D'hooghe, F. De Proft, P. Geerlings, N. De Kimpe, M. Waroquier, V. Van Speybroeck, "Reactivity of Activated versus Nonactivated 2(Bromomethyl)aziridines with respect to Sodium Methoxide: A Combined Computational and Experimental Study," Journal of Organic Chemistry, 76 (2011), 8698-8709.
S. Stanković, M. D'hooghe, J. Dewulf, P. Bogaert, R. Jolie, N. De Kimpe, "Synthesis and reactivity of non-activated 2-(chloromethyl)aziridines," Tetrahedron Letters, 52 (2011), 4529-4532.
S. Stanković, S. Catak, M. D’hooghe, H. Goossens, K. Abbaspour Tehrani, P. Bogaert, M. Waroquier, V. Van Speybroeck, N. De Kimpe, "Synthesis of 3-methoxyazetidines via an aziridine to azetidine rearrangement and theoretical rationalization of the reaction mechanism," Journal of Organic Chemistry, 76 (2011), 2157-2167.
M. D'hooghe, S. Catak, S. Stanković, M. Waroquier, K. Yongeun, H.-J. Ha, V. Van Speybroeck, N. De Kimpe, "Systematic study of halide-induced ring opening of 2 -substituted aziridinium salts and theoretical rationalization of the reaction pathways," European Journal of Organic Chemistry, (2010) 4920-4931.
S. Stanković, M. D'hooghe, N. De Kimpe, "Microwave-assisted regioselective ring opening of nonactivated aziridines by lithium aluminium hydride," Organic \& Biomolecular Chemistry, 8 (2010) 42664273.

Conferences and Seminars

- $12^{\text {th }}$ Belgian Organic Synthesis Symposium (BOSS XII), July 11-16, 2010, Namen, Belgium. Poster: S. Stanković, M. D'hooghe, N. De Kimpe, Microwave-assisted regioselective ring opening of nonactivated aziridines by lithium aluminium hydride.
- $14^{\text {th }}$ Sigma Aldrich Organic Synthesis Meeting, December 2-3, 2010, Sol Cress, Spa, Belgium. Poster: S. Stanković, M. D’hooghe, K. Abbaspour Tehrani, N. De Kimpe, Ring expansion of 2-bromomethyl-2-methylaziridines to 3-methoxy-3-methylazetidines.
- $4^{\text {th }}$ International Symposium on Advances in Synthetic and Medicinal Chemistry (ASMC11) August 21-25, 2011, St-Petersburg, Russia. Poster: S. Stanković, M. D'hooghe, S. Catak, H. Goossens, M. Waroquier, V. Van Speybroeck, K. Abbaspour Tehrani, N. De Kimpe, Selective transformation of 2-halomethyl-2-methylaziridines to functionalized aziridines and azetidines.
- $15^{\text {th }}$ Sigma Aldrich Organic Synthesis Meeting, December 1-2, 2011, Sol Cress, Spa, Belgium. Poster: S. Stanković, M. D’hooghe, S. Catak, H. Goossens, M. Waroquier, V. Van Speybroeck, K. Abbaspour Tehrani, N. De Kimpe, Selective transformation of 2-halomethyl-2-methylaziridines to functionalized aziridines and azetidines.
- $11^{\text {th }}$ Chemistry Conference for Young Scientists, March 1-2, Blankenberge, Belgium. Lecture: $\underline{\text { S }}$ Stanković, M. D’hooghe, S. Catak, H. Goossens, M. Waroquier, V. Van Speybroeck, N. De Kimpe, Study of 2-bromomethyl-2-methylaziridines as flexible synthons in heterocyclic chemistry.
- $13^{\text {th }}$ Belgian Organic Synthesis Symposium (BOSS XIII), July 15-20, 2012, Leuven, Belgium. Poster: S. Stanković, M. D’hooghe, S. Catak, H. Goossens, M. Waroquier, V. Van Speybroeck, K. Abbaspour Tehrani, N. De Kimpe, Selective transformation of 2-bromomethyl-2-methylaziridines to functionalized aziridines and azetidines.

[^0]: The author, The promoters,

[^1]: " only halides attack the C2 position
 ${ }^{\text {b }}$ proposed regioselectivity (no experimental data available)

