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...but I am a good Hegelian. If you have a good theory, forget about the reality.
Slavoj Zizek

Je dis toujours la vérité: pas toute, parce que toute la dire, on n’y arrive pas. La dire toute,
c’est impossible, matériellement: les mots y manquent.
Jacques Lacan

‘Mathematically, boy,” he told himself, ‘if nobody else original comes along, they are bound to
run out of arrangements some day. What then?’ What indeed. This sort of arranging and
rearranging was Decadence, but the exhaustion of all possible permutations and combinations
was Death.

Dudley Eigenvalue in V., Thomas Pynchon

En dit noem jij ontoegankelijk?!
Het geheim van het verdwenen mysterie, Gummbah.






Dutch Summary - Nederlandse Samenvatting

We present here a Dutch Summary of this thesis.

Inleiding

Golven die een systeem van de ene toestand in de andere brengen, worden veel gezien in de
natuur. Een klassiek voorbeeld van zo’'n ‘trigger’ golf is de propagatie van een verbrandings-
front. Het vuur (bijvoorbeeld langs droog gras) schakelt het systeem om naar een andere
toestand. Inderdaad, gedurende een zekere tijd zal het niet mogelijk zijn om een nieuwe
verbrandingsgolf te initiéren. Er zijn veel voorbeelden van dergelijke golven van excitatie.
Zo werden ze onder meer geobserveerd in de Belousov-Zhabotinsky reactie; spelen ze een rol
bij de elektrische activiteit gedurende een epileptische aanval; en werden deze (spiraal)golven
ontdekt tijdens de morfogenese van bepaalde types amoeba.

In deze thesis focussen we op een van de meest intrigerende voorbeelden van zulke gol-
ven van excitatie, namelijk elektrische golven van excitatie in het (menselijk) hart. Deze
propagerende elektrische golven initiéren de contractie van het hart, waardoor bloed door het
lichaam wordt gepompt. Indien dergelijke excitatiegolven worden verstoord, dan kunnen er
afwijkingen ontstaan in de timing, volgorde en coordinatie van de contractie van de hartspier.
In dat geval spreken we van hartritmestoornissen. Er zijn veel soorten aritmieén, gaande van
meestal ongevaarlijke hartkloppingen, tot hartritmestoornissen die in enkele minuten dodelijk
kunnen zijn. Hartritmestoornissen zijn dan ook een van de meest voorkomende doodsoorza-
ken. In deze thesis zullen we dergelijke aritmieén onderzoeken door gebruik te maken van
numerieke simulaties van wiskundige modellen. We zullen met name elektrische weefselhetero-
geniteiten bestuderen, en hun effect op het onstaan en de dynamica van hartritmestoornissen.

Het hart als een exciteerbaar medium

Het hart is een holle spier dat door samen te trekken het bloed doorheen het lichaam pompt
in een gesloten, circulatoir systeem. Zowel zoogdieren als vogels hebben een dubbel-geluste
bloedsomloop. Daarom omvat het hart van deze soorten een linker-en een rechterhelft, elk
bestaand uit een ventrikel (kamer) gekoppeld aan een atrium (boezem). Eerst trekken de
beide atria samen, zodat het bloed uit de atria naar de ventrikels wordt gepompt. Vervolgens
trekken de ventrikels samen. Het rechterventrikel pompt zuurstofarm bloed naar de longen;
het linkerventrikel pompt zuurstofrijk bloed, via de aorta, naar de rest van het lichaam. De
samentrekking van individuele hartcellen wordt getriggerd door een elektrisch signaal dat
excitatie of actiepotentiaal wordt genoemd. De actiepotentiaal wordt gevormd door ion-
stromen die door ion-kanalen gelegen in het celmembraan van een hartspiercel lopen, en geeft
vervolgens een signaal aan de hartspiercel om samen te trekken.

In de wand van de rechterboezem bevindt zich een stukje weefsel, de sinusknoop genoemd,
met speciale hartcellen: ze genereren spontaan een actiepotentiaal met een bepaalde frequen-
tie. Normale hartspiercellen bezitten deze eigenschap niet, ze kunnen enkel gestimuleerd
worden door een elektrisch stroompje van een buurcel. Doordat hartspiercellen elektrisch aan
elkaar gekoppeld zijn, geven deze sinusknoopcellen, op het moment dat ze een actiepotentiaal
genereren, een elektrisch stroompje door aan de omliggende hartspiercellen, waardoor zij ook
een actiepotentiaal ontwikkelen. Op die manier ontstaan golven van elektrische activiteit die
zich voortplanten in het hartweefsel. Eerst worden de boezems geéxciteerd, waardoor deze
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samentrekken en het bloed naar de kamers wordt gepompt. Vervolgens plant de excitatiegolf
zich, met een kleine vertraging, voort naar de kamers, waarna deze samentrekken en bloed
naar de longen en de rest van het lichaam wordt gepompt. Bij de meeste hartritmestoor-
nissen is een afwijking in de propagatie van deze excitatiegolf de oorzaak voor de verstoorde
contractie van de hartspier.

Abnormale excitatie van het hart: hartritmestoornissen

Een hartritmestoornis is een situatie waarbij het hart onregelmatig samentrekt. In rust
bedraagt de hartslag van een volwassen persoon zo’n 60-100 slagen per minuut. Als de hart-
slag, in rust, hoger wordt dan 100 slagen per minuut, dan spreken we van tachycardie. Stijgt
de hartslag tot boven de 250 slagen per minuut, dan wordt gespoken van fibrillatie. Tijdens
fibrillatie trekken de atria of de ventrikels niet langer synchroon samen, waardoor de pomp-
werking van het hart wordt verstoord. Bij ventrikelfibrillatie werken de ventrikels niet langer
als een effectieve pomp, met als gevolg dat er bijna geen bloed meer uit de kamers wordt
gepompt. Omdat hierdoor de zuurstofvoorziening van het lichaam stilvalt, is ventriculaire
fibrillatie binnen een paar minuten dodelijk.

Twee mechanismen worden beschouwd als de hoofdoorzaak voor het ontstaan van hart-
ritmestoornissen: ectopische activiteit, gelijkaardig aan de pacemaker activiteit van de sinus-
knoop; en abnormale regimes van activatie. In deze thesis focussen we ons op het tweede
mechanisme. Meer bepaald op deze hartritmestoornissen veroorzaakt door abnormale reen-
trant propagatie van excitatiegolven: een zeer gevaarlijke en veel voorkomende categorie
hartritmestoornissen.

Uit studies in het begin van de vorige eeuw, is het idee naar voren gekomen dat hart-
ritmestoornissen worden gedreven door dergelijke cirkelgeleiding. Ook wel reentry genoemd.
Tijdens reentry draait de excitatiegolf rond in een cirkel, waarbij de kop van het signaal
voortdurend de staart volgt. In twee en drie-dimensionale weefsels kan een excitatiegolf
ronddraaien om een niet-exciteerbaar anatomisch obstakel, en zo een golf vormen in de vorm
van een spiraal. Dit wordt anatomische reentry genoemd. Dergelijke spiralen kunnen echter
ook roteren rond hun eigen kern. In dat geval spreken we van functionele reentry. Spiralen
roteren met een hoge frequentie, en exciteren bij elke omwenteling het medium, wat telkens
voor een contractie van het hartweefsel zorgt. Als een dergelijke spiraalgolf ontstaat in de
ventrikels, dan wordt de excitatie, en dus ook de contractiefrequentie, niet langer bepaald door
de sinusknoop, maar door de spiraalgolf. Dit zorgt voor een verhoogde hartslag: tachycardie.
Bij tachycardie is er dus maar één spiraalgolf aanwezig. Tijdens fibrillatie daarentegen, zijn
er meerdere spiraalgolven tegelijkertijd aanwezig die voortdurend interageren met elkaar en
fragmenteren in nieuwe spiralen. Hierdoor ontstaat een chaotisch excitatiepatroon dat zorgt
voor een asynchrone samentrekking. Tachycardie kan overgaan in fibrillatie als een spiraal
opbreekt in verschillende spiralen. Deze opbreking van een enkele spiraal in verschillende
spiralen kan veroorzaakt worden door dynamische instabiliteiten van het hartweefsel, of door
interactie van de spiraal met weefselheterogeniteiten.

Voor de volledigheid merken we op dat tachycardie en fibrillatie ook kan veroorzaakt wor-
den door focale getriggerde activiteit, in het bijzonder in harten leidend aan cardiomyopathie.
Dit type hartritmestoornissen, dus niet gedreven door reentry, zal niet bestudeerd worden in
deze thesis.
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Deze thesis

In deze thesis bestuderen we het effect van (weefsel)heterogeniteiten op elektrische golven van
excitatie in het menselijk hart. Dit met behulp van een wiskundig model voor de elektrische
excitatie van het hart. In het bijzonder, in een groot deel van deze thesis, bestuderen we het-
erogeniteiten op het vlak van de duur van de actiepotentiaal (APD) in hartweefsel, alsook de
rol ervan op initiatie van spiraalgolven, en de invloed op spiraalgolfdynamica. We onderzoeken
ook het effect van een (dynamische) heterogeniteit, gecreéerd door een tijdelijke blokkade van
golfpropagatie, op zowel vlakke golven, als op spiraalgolfdynamica. De resultaten hiervan
gebruiken we vervolgens om de resultaten uit de vorige hoofdstukken beter te begrijpen. We
introduceren en bespreken ook een prototype van de databank die we ontwikkelden om data
bekomen uit experimenten op menselijke harten, zoals gebruikt in deze thesis, in op te slaan.

In hoofdstuk 2, onderzoeken we het effect van celkoppeling op APD heterogeneniteit in
menselijk hartweefsel. Het is algemeen geweten dat de omvang van heterogeniteit sterk kan
verschillen tussen het weefsel en het eencellige niveau, en het is belangrijk om de relatie te
kennen tussen de twee, bijvoorbeeld om deze soorten heterogeniteiten te modelleren, zoals we
doen in hoofdstuk 3 en 4. We tonen dat het effect van celkoppeling op APD heterogeniteit
wiskundig kan beschreven worden door gebruik te maken van een convolutie met Gaussische
functies. Gebruik makend van deze benadering lossen we zowel het voorwaartse probleem op
(bepalen van weefselheterogeniteit, startend van celheterogeniteit), als het inverse probleem
(bepalen van celeigenschappen, gebaseerd op metingen uitgevoerd op weefsel). De oplossing
van het voorwaarts en inverse probleem wordt geillustreerd aan de hand van verschillende
voorbeelden van 1D en 2D systemen. Het voorwaartse probleem kunnen we oplossen met
een behoorlijk grote nauwkeurigheid. Zelfs voor steile gradiénten in heterogeniteit kunnen
we de maximale waarde van de APD in het gekoppelde systeem voorspellen, welke belangrijk
is om de omvang van de heterogeniteit te karakteriseren. Betreffende het inverse probleem,
is onze oplossing ook veelbelovend. Hoewel, voor steile gradiénten, heeft onze oplossing een
oscillatoire component, waardoor we de maximale amplitude niet met genoeg zekerheid kun-
nen bepalen. Dergelijke oscillatoire component is een gekende eigenschap van oplossingen van
inverse problemen. Maar, we merken op dat we een van de eenvoudigste methoden voor de
oplossing van inverse problemen gebruikten, en dat het inverse probleem, zoals hier gefor-
muleerd, een van meest bestudeerde is in het onderzoeksgebied van de toegepaste wiskunde.
Onze oplossing kan dus zeker nog verbeterd worden. Bijvoorbeeld, andere normen zouden
kunnen gebruikt worden voor Tikhonov regularizatie. Dit zou echter specifiek onderzoek ver-
gen, en de ontwikkeling van speciale software, wat buiten het bestek van deze thesis valt.
De waarde van dit hoofdstuk voor toepassingen, is dat we heterogeniteit op cellulair niveau
relateren aan heterogeniteit op weefsel niveau. We kunnen dus eigenschappen van hartcellen
voorspellen uit metingen uitgevoerd op weefsel en omgekeerd. Merk op dat dit geen triviaal
probleem is, want heterogeniteit op cellulair niveau kan 200 tot 500 % groter zijn dan op
weefselniveau.

In hoofdstuk 3 gebruiken we het TP06 model [139] voor menselijk hartweefsel om APD
heterogeniteiten met kleine afmetingen te modelleren, zoals geobserveerd door Glukhov et
al. [40] tijdens experimenten op wigvormige preparaten uit het menselijk linkerventrikel. Om
een initiéle schatting van de onderliggende eigenschappen van de cellen binnen deze hetero-
geniteiten te maken, gebruiken we de methode ontwikkeld in hoofdstuk 2. We bestuderen
het effect van dit type heterogeniteiten op de initiatie van spiraalgolven, en de dynamica
van spiraalgolven rond deze heterogeniteiten. We vinden dat er spiraalgolven kunnen worden
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gevormd rond deze heterogeneteiten als we het hartweefsel met een voldoende hoge frequen-
tie stimuleren. Deze nieuwe bronnen worden hier niet enkel gevormd door een breuk in het
golffront, zoals klassiek beschreven in [73] [102], maar ook door interactie van deze breuken (in
de excitatiegolf) met andere golven, uiteindelijk leidend tot de formatie van een spiraalgolf
verankerd rond de heterogeniteit. We bestuderen de dynamica van deze verankerde spiraal-
golven, en vinden twee verschillende periodes van excitatie: een voor cellen die zich binnenin
de heterogeniteit bevinden, en een voor deze buiten de heterogeniteit. We tonen ook aan dat
elk van deze periodes hoofdzakelijk bepaald wordt door eigenschappen van het hartweefsel
in de corresponderende regio: verhoging van de refractorische periode resulteert in een ver-
hoging van de periode. Interessant is ook dat bij dergelijke verhoging van de refractorische
periode, de verhoging van de periode niet gradueel is. We vinden dus een bifurcatiepunt. In
het bifurcatiepunt verhoogt de periode plots 1.3 keer.

In vorige modelleerstudies [1, 102} 2], was het belangrijkste effect van weefselheterogeniteit
op spiraalgolfdynamica de drift van de spiraal langs de grens van de heterogeniteit. Hier is het
belangrijkste effect de ankering van de spiraal aan de heterogeniteit. Ook krijgen we in ons
geval een electrocardiogram (ECG) dat gelijkenissen vertoont met ECGs zoals opgenomen
tijdens periodes van torsades de pointes en polymorfische tachycardie. Hoewel, in ons geval
is het een gevolg van de verschillende excitatiefrequenties binnen en buiten de heterogeniteit,
en niet een gevolg van de drift van de excitatiegolf in het weefsel.

Ankering van spiraalgolven aan obstakels werd al intens bestudeerd, zowel in 2D als in
3D [22, 142, [152), 8T, 156, 81, 131]. Maar in al deze studies werden spiralen bestudeerd die
zich verankerden aan niet exciteerbare obstakels. In hoofdstuk 3 tonen we aan dat een
heterogeniteit die exciteerbaar is ook spiralen kan ankeren, en dat deze ankering resulteert in
meer complexe dynamica in vergelijking met ankering rond niet-exciteerbare obstakels, door
de invloed van de heterogeniteit op spiraalgolfrotatie.

Onze resultaten omtrent de dynamica van spiraalgolven rond een heterogeniteit zijn al-
gemeen, en gelden ook voor heterogeniteiten met een verschillende grootte, vorm, en gemo-
delleerd door de aanpassing van verschillende parameters van ons model. Ook bekwamen we
dezelfde resultaten na toevoeging van rotationele anisotropie aan ons medium.

In hoofdstuk 3 beschrijven en verklaren we dus mogelijke golfdynamica rond realistische
heterogeniteiten zoals gemeten in menselijke harten. Dit in termen van formatie van nieuwe
bronnen van hartritmestoornissen in 2D modellen van hartweefsel.

In hoofdstuk 4 vervolgen we ons onderzoek naar het effect van ionische heterogeniteiten
met kleine afmetingen op spiraalgolfdynamica. Opnieuw modelleren we heterogeniteiten met
een omvang en grootte zoals gemeten door Glukhov et al. [40], maar nu zowel in 2D als in een
anatomisch model voor de menselijke ventrikels. We tonen aan dat zulke heterogeniteiten niet
enkel spiralen kunnen ankeren, zoals we leren uit hoofdstuk 3, maar ook spiralen kunnen
aantrekken die op een substantiéle afstand van de heterogeniteit roteren. In het bijzonder, in
2D kunnen deze soort heterogeniteiten spiralen aantrekken, en uiteindelijk ankeren, op een
afstand van 6 cm langs de vezelrichting, 4 cm dwars op de vezels, en rond de 5 cm bij een
hoek van 45 graden met de vezels. In ons anatomisch model is de spiraal altijd verankerd
(of verwijderd), indien de heterogeniteit groot genoeg is. De regio waarin spiralen kunnen
aangetrokken worden door heterogeniteiten is dus aanzienlijk in vergelijking met de typische
grootte van het hart (ongeveer 10 cm hoog). Interessant genoeg is deze aantrekking over
grote afstanden een eigenschap die enkel ionische heterogeniteiten lijken te bezitten: niet
exciteerbare obstakels trekken spiralen niet aan over zo’n grote afstanden. Verder tonen we
aan, in ons anatomisch model van de ventrikels, dat als de heterogeniteit gelokaliseerd is dicht
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bij de basis van het hart, deze niet enkel spiralen kan aantrekken en ankeren, maar ze ook
kan verwijderen. Dit is een interessant resultaat, want het suggereert dat sommige types
heterogeniteit een anti-aritmisch effect hebben.

Het is logisch dat we in onze simulaties vinden dat spiralen aangetrokken worden naar
regio’s met een langere APD. Immers, in vroegere studies werd aangetoond dat spiralen de
neiging hebben om naar de regio met een langere rotatieperiode te driften [116], 102] 138],
welke geassocieerd wordt met een langere APD [I100] [138]. Hoewel, we merken op dat het
aantrekkingsproces, zoals hier geobserveerd, geen continu proces is waarbij de spiraal traag
in de richting van de heterogeniteit beweegt, zoals gerapporteerd in deze vorige publicaties,
maar een stapsgewijs proces waarbij de spiraal naar de heterogeniteit toe wordt geduwd door
een complexe interactie met de heterogeniteit.

In [123] [122] werd eerder al onderzoek gedaan naar de dynamica van spiralen in hartweef-
sel in de aanwezigheid van grote, vierkante ionische heterogeniteiten en niet-exciteerbare ob-
stakels. Afhankelijk van de positie van de heterogeniteit in het weefsel, werden verschillende
regimes geobserveerd. Een van deze regimes was, net zoals in onze studie, de verankering
van de spiraal rond de heterogeniteit. Het zou interessant zijn om na te gaan welke van deze
regimes worden gevonden als heterogeniteiten met een grootte en vorm zoals geobserveerd in
experimentele studies, zouden worden gebruikt. Uit andere studies van dezelfde groep [811 [80],
blijkt ook dat heterogeniteiten die een kortere APD hebben dan het omliggende hartweefsel,
spiralen zouden kunnen ankeren. Hoewel, dit resultaat moet nog verder onderzocht worden
om uitsluitsel te bieden hieromtrent.

Samengevat bestuderen we in hoofdstuk 4 of een bestaande spiraal kan ankeren rond een
heterogeniteit met realistische afmetingen. Dit is een vervolg op het onderzoek beschreven
in hoofdstuk 3, maar nu gefocust op het mogelijke ankeren van spiralen, hierbij gebruik
makend van accurate anatomische modellen. Een nieuw onverwacht resultaat is dat dergelijke
heterogeniteiten spiralen kunnen aantrekken, en dat in sommige gevallen zo’n aantrekking
leidt tot de beéindiging van de hartritmestoornis.

Vervolgens bestuderen we in hoofdstuk 5 dynamische heterogeniteiten in homogeen
hartweefsel gecreéerd door APD-restitutie effecten. We tonen aan dat een regio van tijde-
lijke blok van golfpropagatie kan resulteren in dynamische Wenckebach ‘blocks’ die groeien
in de ruimte. Dit type instabiliteit noemen we een globale alternans instabiliteit (GAI).
Deze GAI heeft belangrijke effecten op spiraalgolfdynamica: het kan leiden tot de formatie
van nieuwe spiralen, of de eliminatie van reeds bestaande spiralen. Restitutie-eigenschappen
van hartweefsel worden al geruime tijd beschouwd als gerelateerd aan geobserveerde insta-
biliteiten, die aan de basis liggen van de initiatie of het opbreken van spiraalgolven. In het
bijzonder, verschillende studies [62), 112} 114} [36] demonstreerden dat een steile helling van de
restitutiecurve kan resulteren in dynamische instabiliteiten, mogelijk leidend tot fibrillatie. In
hoofdstuk 5, laten we zien dat ook substantiéle restitutie-effecten kunnen verwacht worden
op globaal niveau. Dus we tonen aan dat, hoewel een steile restitutiecurve aanleiding geeft
tot dynamische instabiliteiten, het geen noodzakelijke conditie is: ook de globale vorm van
de restitutiecurve speelt een belangrijke rol.

Terugkijkend naar hoofdstuk 3 en 4, kunnen we nu ook begrijpen waarom een initiéle
kleine ionische heterogeniteit zich uitbreidt in de ruimte onder stimulatie met een hoge fre-
quentie: het mogelijke mechanisme achter deze groei, waardoor spiralen kunnen geinitieerd
worden, of aangetrokken, is GAI. Ook kan dit beschreven mechanisme essentieel zijn bij het
opstellen van een algemene theorie voor hartritmestoornissen, bijvoorbeeld om de ritmestoor-
nissen te verklaren die zich voordoen tijdens parasympathische stimulatie van het hart, zoals
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gerapporteerd in [125].

In hoofdstuk 6 ten slotte, introduceren we een prototype van een databank om data in
op te slaan afkomstig van experimenten op menselijke harten. Data zoals gebruikt in de vorige
hoofdstukken om modellen mee te ontwikkelen. Om deze databank op te bouwen gebruikten
we het content management systeem Drupal. Het prototype is gebaseerd op data afkomstig
van de groep van Prof. Efimov. We overlopen de algemene structuur van de databank, en
leggen uit hoe gebruikers data kunnen opladen en downloaden. Dit systeem is nog altijd
in ontwikkeling, hoewel, alle belangrijke componenten van de databank en corresponderende
website zijn reeds getest, en zullen binnenkort met data worden gevuld.

Conclusie

In deze thesis onderzochten we APD heterogeniteit van hartweefsel en het effect ervan op
spiraalgolfdynamica. In het laatste hoofdstuk van deze thesis, bestudeerden we ook (dynami-
sche) heterogeniteiten gecreéerd door APD restitutie-effecten. We bekwamen verschillende
interessante resultaten. In het eerste deel van deze thesis, toonden we aan dat het effect van
celkoppeling op APD heterogeniteit wiskundig kan beschreven worden door gebruik te maken
van Greense functies met een Gaussische kern. Via deze benadering kunnen we eigenschappen
van hartcellen voorspellen uit metingen uitgevoerd op weefsel, en omgekeerd. Dit is een niet-
triviaal probleem, aangezien heterogeniteit op cellulair niveau 200 tot 500 % groter kan zijn
dan op weefselniveau. We denken dat dit een boeiend resultaat is, aangezien dit het probleem
van elektrotonische interacties verbindt met een breed scala aan klassieke problemen in de
fysica, chemie en biologie, waarvoor robuuste methoden bestaan. Dus, hoewel onze methode
geen perfecte oplossing biedt voor het (inverse) probleem, geloven we dat ze veelbelovend is. In
het volgende hoofdstuk modelleerden we kleine ionische heterogeniteiten, zoals geobserveerd
in experimenten, en toonden aan dat deze heterogeniteiten pro-aritmisch kunnen zijn als het
hartweefsel gestimuleerd wordt onder hoge frequentie. Interessant genoeg vonden we dat deze
spiralen ankerden rond deze kleine regio’s van verhoogde APD. Verder vonden we ook dat
deze heterogeniteiten spiralen kunnen aantrekken die roteren op een substantiiele afstand van
de heterogeniteit, zowel in 2D als in een anatomisch model voor de menselijke ventrikels. We
toonden ook aan hoe een tijdelijke blokkade van de golfpropagatie belangrijke effecten kan
hebben op het ruimtelijke excitatiepatroon en spiraalgolfdynamica. In het bijzonder demon-
streerden we dat het resulteert in dynamische Wenckebach ‘blocks’ die zich uitbreiden in de
ruimte, door ons globale alternans instabiliteit genoemd (GAI). We illustreerden dat GAI het
mogelijke mechanisme is dat aan de basis ligt van de groei van de kleine ionische heterogen-
iteiten, leidend tot spiraalgolf initiatie of aantrekking, geobserveerd in vorige hoofdstukken.
Ten slotte introduceerden en bediscussieerden we een prototype van een databank die we
ontwikkelden om data in op te slaan. Data zoals bekomen uit experimenten op menselijke
harten, en die we gebruikten in deze thesis om modellen te bouwen.

xii



Contents

(Word of thanks| iii
[Dutch Summary| vii
1__Introductionl 1
[ The heart as an excitable mediuml| . . .. ... ... ... ... .. ...... 3
1.1 Anatomy and tunction of the heart| . . . . . ... ... ... .. ... 3
1.2 Cellular basis for electrical activation| . . . . . . . .. ... ... ... 4
12 Abnormal excitation ot the heart: cardiac arrhythmias| . . ... .. ... .. D
2.1 Mechanisms of reentrant cardiac arrhythmias|. . . . . . ... ... .. 7
2.2 Mechanisms of atrial and ventricular fibrillationl. . . . . . . . . .. .. 10
13 Modeling in cardiac electrophysiologyl . . . . . .. ... ... .. ... ... 13
13.1 The need for modeling 1n cardiac electrophysiology | . . . . . .. . .. 13
8.2  Model formalisml . . . . .. .. .. o 13
13.3 From phenomological to ionic models|. . . . . . . ... ... ... ... 14
4 [hesis outlinel . . . . . . . . . . . 15
2 APD heterogeneity of cardiac tissue can be evaluated from cell properties
|  using (GGaussian Green’s function approach) 17
[ Introduction|. . . . . . . . . . . . 17
2 Materials and Methodsl. . . . . . . . .. .. oo 18
B Resultd. . . . o o oo e 19
13.1 1D step-wise heterogeneity| . . . . . . . . . . ... ... L. 19
3.2 The forward problem|. . . . . . .. ... ... ... ... ... ... 21
3.3 The inverse problem| . . . . . . .. ... o oo oo 25
4 Discussion| . . . . . ... e e e e 28
[3 Tmitiation and dynamics of a spiral wave around an ionic heterogeneity in
[_a model for human cardiac tissuel 35
[ Introduction|. . . . . . . . . . . . 35
2 Materials and methods| . . . . . . . . .. o oo 36
B _Resultsl. . . . . o o 37
3.1  Baselinemodell ... ... ... ... ... ... . ... . 37
13.2 Periodsl . . . ... 41
13.3 Period increase bifurcationl . . . . . . . . . . .. ... .. ... ... 43
3.4 Modifications of baselinemodell . . . . . .. .. ... ... ... ... . 43
M4 Discussion| . . . . .. ..o e e e 48
|4 Small size ionic heterogeneities in the human heart can attract spiral waves
—1 51
[ Imtroductionl. . . . . . . . . . . . e 51
2 Materials and methodd . . . . . . . . ... oL 52
B Resultd. . . . . o oo 55
13.1 lonic heterogeneities as attractors of spiral waves in 2D cardiac tissue] 55
13.2 lonic heterogeneities as attractors of spiral waves in an anatomical

[ model of the heartl . . . . . . . . . . ... .. 60




CONTENTS

4 Discussion| . . . . .. ..o e e e 65

[> Global alternans instability and its effect on non-linear wave propagation: |
|  dynamical Wenckebach block and self-terminating spiral waves. | 69
I Introductionl. . . . . . . . . . . e e 69
2 Materials and methodd . . . . . . . . ... L oo 71
B Resultd. . . o o o oo e 71
B.1  GADLm 1Dl . .. oo 71

B2  Mechanism ot GAIl . . . . .. ... ... 74

B3  GALm2DI. . . . . o 77

4 Discussionl . . . . . . . e e 80

|6 Setting up a database structure for modeling the human heart | 83
[ Introduction|. . . . . . . . . . . . 83

2 Structure of the databasel . . . . . ... ... .. ... oL 84
B Teatures of the databasel . . . . . . .. ... ... ... .. L. 85
3.1 Upload data). . . . . .. . ... ... 85

3.2 Download data from the websitel . . . . . . ... ... ... ... ... 89

|4 Conclusion and future perspective] . . . . . . . . . . ... ... 92

7 Summarizing discussion | 93
N TP 93

12 Model complexity and limitations|. . . . . . . . . .. ... ... ... ... .. 96

13 Future directions . . . . . . . . . . .. 97
4 Conclusion| . . . . . . . . . e 100

xiv



Introduction

Waves which switch a system from one state to another are often seen in usual life. A classical
example of such a, so-called, trigger wave is the propagation of a combustion front. The fire
(for example along dry grass) switches the system to another state. Indeed, for a certain time
it will not be possible to get a new wave of burning: we will only be able to intitate a new
wave when the grass has been burned out, and new grass has grown. This recovery time of
the system (i.e. the time after which we can initiate another propagating wave) is called the
refractory period (see Fig.[1.1)).

ction
—_—>

Figure 1.1: Wave propagation in an excitable medium. Figure shows a schematic representa-
tion of the main states during wave propagation in an excitable medium: the resting state
(white), excited state (red) and the refractory state (green). The arrow shows direction
of wave propagation.

One of the most famous physico-chemical systems in which such propagating waves were
observed is the Belousov-Zhabotinsky (BZ) reaction. This is a reaction in which some organic
reductants are oxidated by bromic acid, catalized by transition-metal ions. Boris Belousov
found that when cerium is used as a catalyst and citric acid as a reductant, the colour of the
reaction oscillated between colourless and yellow. Later, citric acid was replaced by malonic
acid by Anatol Zhabotinsky. At first, the BZ reaction was just an example of oscillatory
dynamics, in which the main demonstration was the periodic change of colour in the glass.
Later, when doing experiments in petri dishes of thin layers of the reaction, waves, vortices
and target patterns (when a train of waves originates from a point) were found. In Fig.
we show the original pictures from the paper about the discovery of spiral waves in the BZ
reaction by Zhabotinsky and Zaikin in 1971. Imporant phenomena first discovered in the BZ
reaction were waves in 3D, vortices in 3D (called scroll waves), and filaments.

Another example of such waves, but of completely different origin, were discovered in 1944
by Aristides Leao when studying electrical activity during epilepsy in rabbit brains [75]. He
used several electrodes to simulatenously record the electrical activity of the brain, and found
that during epilepsy the normal electrical activity is surpressed. But interestingly, he found
that this suppression was spreading from electrode to electrode in a wave-like way. Also the
recovery occured in a wave-like way. In the same way as in the previous example, these waves
can form spiral waves. Waves of spreading depression were later found in different parts of

1



CHAPTER 1. INTRODUCTION

Figure 1.2: Spiral waves in the Belousov-Zhabotinsky reaction. Figure shows initiation of
vortices or spiral waves in the BZ reaction. Taken from the paper by Zhabotinsky and
Zaikin from 1971 [157].

the brain, and turned out to be extremely important, for example for its close association
with migraine.

There are many other examples of non-linear waves and spiral waves of excitation: they
play a role during heterogeneous catalysis [59, [3]; spiral waves of cAMP during morphogenesis
of Dictyostelium discoideum amoebae were found in [38, 129]; and calcium waves in Xenophus
oocytes were described in [76], 27].

In this thesis, we will focus on one of the most intriguing examples of such waves of
excitation, namely electrical waves of excitation in the (human) heart. In the next section,
we will discuss how contration of the heart is initiated by these electrical waves propagating
through cardiac tissue. As in the aforementioned systems, spiral waves were also observed
in the heart [6, 2], 22], and they underlie life-threatening cardiac arrhythmias. This will be
the topic of the second section of this introduction. As in this thesis we use mathematical
models to study cardiac arrhythmias, we discuss briefly the importance of modeling in cardiac
electrophysiology; the model formalism; and the model we will use. At the end, we provide a
short outline of the modeling studies described in this thesis.

2



1. THE HEART AS AN EXCITABLE MEDIUM

1 The heart as an excitable medium

1.1 Anatomy and function of the heart

In 1628 William Harvey was the first to discover that the heart pumps the blood around in a
closed circulatory system [50] D Both mammals and birds have a double-looped circulatory
system. Therefore, the heart of these species comprises a right and a left half, each consisting
of a ventricle connected to an atrium. The right atrium and ventricle function as a pump for
the pulmonary circulation, whereas the left atrium and ventricle function as a pump for the
systemic circulation.

The heartbeat is initiated and controlled by electrical impulses that are generated and
conducted by myocardial cells in the heart. Under normal conditions the excitation wave of the
heart originates in the sino-atrial (SA) node, located in the upper right atrium. The SA node
thus functions as the cardiac pacemaker. The wave of excitation propagates through atrial
myocardial cells to the right atrium, and then to the left atrium, after which they contract
and blood is pumped to the ventricles. We thus see that there should be some delay in cardiac
activation and contraction between the atria and the ventricles. Indeed, the ventricles should
contract after being filled with blood supplied by the atria and hence after atrial contraction.
This delay is regulated by the atrio-ventricular (AV) node. It is the only place where the
atria and ventricles are electrically coupled. The very low conduction velocity in the cells of
the AV node is causing the required delay. From the AV node, the signal is passed to the
AV bundle. This is a rapidly conducting structure made up of special type of cells, namely
Purkinje cells. The AV bundle splits into right and left bundle branches. Eventually the
electrical signal conducted through these bundle branches reach the ventricular myocardium
via the His-Purkinje system, which is a network of rapidly conducting cells that synchronizes
ventricular activation. This causes the ventricles to contract, and blood is pumped into the
arteries.

Atrio-ventricular

Ventricle Purkinje
fibers

Figure 1.3: The human heart. In A we show a schematic central view on a cross section of the
heart, and in B we show the conduction system of the heart. Figure taken from [145].

'His theories about treating migraine are a little more controversial: he recommended trepanation as a
treatment for this [20] - if only he had known the connection between cardiac excitation and severe headache...
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CHAPTER 1. INTRODUCTION

The adaptation of cardiac output to the oxygen demands of the organism is regulated
by the autonomous nervous system. Both heart rate and contraction force are regulated by
this system. Heart rate is regulated by changing the firing frequency of the SA node and the
rate of transmission of the AV node. Contraction force is regulated by adapting intracellular
calcium handling and tissue restitution properties.

1.2 Cellular basis for electrical activation

In the second paragraph of this section, we will focus on the cellular basis of this electrical
signal propagating through the heart. As was clear from the previous paragraph, this electrical
signal, usually called action potential (AP), serves as a trigger for the contraction of the
cardiac muscle cells. Of course to obtain a propagating wave, the cells need to have a way
to communicate to each other. This communication is done by the gap junctions which
electrically couple the cells. These gap junctions are channels composed of two connexons
(or hemichannels) which connect across the intercellular space. Because of these channels,
connecting neighbouring cells, an action potential generated in a particular cell serves as a
current source for adjacent cells, after which this cell also generates an AP and contracts. Due
to the strength of this electrical coupling, the waves of electrical activity can progagate fast
through cardiac tissue, which leads to almost synchronous contraction of the cardiac muscle
cells.

Now we will discuss by which processes this AP can be described. Therefore we first
should take a look to the cell when in its resting state. Because a (cardiac) cell is surrounded
by a lipid membrane which acts as a barrier with different permeability for the various ions,
in its resting state, a (cardiac) cell is in a dynamic equilibrium in which the magnitude of the
chemical force is equal and opposite to the magnitude of the electrical force. This balance
between all ionic fractions results in a resting potential around V,,, & —80 mV', in which we
defined, by convention, the transmembrane potential as the potential inside the cell, with
respect to the extracellular potential:

Vm = ‘/int - Vvext . (11)

For a cardiac cell in its resting state, the dominant ions in the extracellular space are Na™ and
Cl~, while inside the cell KT has the highest concentration. Despite its small concentrations
both inside as outside the cell (although higher outside the cell), also Ca?' is an important
ion for the generation of the AP.

So when does a cardiac cell generate an AP? For this, the cell needs to receive some current
(for instance from an adjacent cell via the gap junctions), which increases the membrane
potential. If the membrane potential reaches a certain threshold, the permeability of the
membrane to Na™ increases, and they flow into the cell via the Na™' channels. This increases
the membrane potential further, which triggers the opening of other channels and a complete
action potential is generated. A typical cardiac AP consist of five phases which we briefly
discuss:

Phase 0: Action potential upstroke. Once the transmembrane potential of the cell
reaches a certain threshold of approximately —65 mV, membrane Na™ channels suddenly
open. Because the concentration of Na™ is significantly larger in the extracellular space
than in the intracellular space, this leads to a rush of ions into the cell. Na™ ions are
positively charged, thus the membrane potential rapidly becomes less negative (also called
depolarization) which results in the upstroke or phase 0 of the AP.

4



2. ABNORMAL EXCITATION OF THE HEART: CARDIAC ARRHYTHMIAS

Phase 1: Rapid repolarization. At a transmembrane potential level of 20 mV the
Na™ channels close and a new current arises. During this phase, the potassium conductance
increases, and via the transient outward current (I,) K ions flow out of the cell, causing
Vin to decrease. A decrease of the transmembrane potential is also called repolarization. The
transient outward current inactivates very rapidly, and its contribution to the other phases is
small.

Phase 2: Action potential plateau. Other voltage-dependent channels are also acti-
vated by an increase in transmembrane voltage, but because they activate at a slower rate,
they contribute to the AP only several milliseconds after the end of the upstroke phase 0. In
a simplified way, the two dominant currents during this phase are the inward calcium cur-
rent and the delayed rectifier potassium outward current. Due to the concentration gradient,
the opening of calcium channels leads to depolarization; opening of potassium channels lead
to repolarization. During the plateau phase, the membrane potential thus depends on the
balance between the inward calcium and the outward potassium current. This balance leads
to a nearly constant membrane potential, which generates a plateau phase between 200 to
300 ms. There are actually several currents which are calcium or potassium dependent, and
which are active in this phase. The most important of them are the L-type calcium current
Icar and the fast (Ix,) and slow (Iks) delayed rectifier potassium current.

Phase 3: Final repolarization. After approximately 200 to 300 ms the calcium chan-
nels inactivate, and only the repolarizing potassium channels remain active. The delayed
rectifier currents close as the cell repolarizes, and the current which dominates during this
phase is the inward rectifier current Ik;.

Phase 4: Diastolic potential. The inward rectifier current remains the dominant
current at rest, and sets the resting potential. In atrial and ventricular myocytes the potential
remains at a constant level until a new stimulus brings the transmembrane potential to
threshold and a new AP is initiated.

In Fig. we show a typical action potential for ventricular cells and denote the different
phases and most important currents active during each phase.

As we already discussed in the first part of this introduction, cardiac tissue has a certain
refractory period (we refer to Fig. during which a new propagated AP can not be initiated.
This refractory period is determined by the slow time course of channel reactivation (complete
recovery of the Nat channels for instance takes up to 100 ms). The refractory period is
divided into two phases. During the first phase, called the absolute refractory period (ARP),
no stimulus, whatever its strength, can initiate a propagated response. Then follows the
relative refractory period (RRP), when only stimuli that exceed the normal threshold can
initiate a propagated response. We also refer to Fig. for a schematic representation.

2 Abnormal excitation of the heart: cardiac arrhythmias

Cardiac arrhythmias are conditions in which a failure occurs in the timing and or coordination
of cardiac contraction. Arrhythmias may arise from abnormalities in the formation of the
excitation wave (abnormal automaticity or triggered activity); alterations in the propagation
of the excitation wave; or a combination of both [61]. Because arrhythmias can be caused and
maintained by these various factors, there are many different forms of rhythm disturbances.
The main focus of this thesis, however, will be on arrhythmias caused by abnormal reentrant
propagation of excitation waves: a category of arrhythmias which is one of the most frequently
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Figure 1.4: Action potential for cardiac cells. Figure shows the action potential for (epicardial)
ventricular cells simulated using the TP06 model [139]. In red we denote the different
phases as described in the text. We also show, schematically, the most important currents
during each phase (In, during phase 0; Iy, during phase 1; Ik, Ixs and I¢,r, during phase
2; Ix; during phase 3 and 4).
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Figure 1.5: Refractory periods. Figure shows the action potential for (epicardial) ventricular
cells simulated using the TP06 model [139]. In red, green and blue we show, resp., the
refractory period, the absolute refractory period and the relative refractory period.

occurring and dangerous. We will briefly introduce and discuss this type of arrhythmias in
the next paragraph.
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2. ABNORMAL EXCITATION OF THE HEART: CARDIAC ARRHYTHMIAS

2.1 Mechanisms of reentrant cardiac arrhythmias

The first known experiments which showed reentry in excitable tissue were conducted in 1906
by Mayer in jellyfish rings and turtle ventricular muscle [83] ﬂ He showed that an excitation
wave could circulate in an isolated ring of muscle for long periods of time. Some years later,
studies by Mines and Garrey [84], [85], [37] in rings of canine ventricular muscle confirmed these
results, which formed the basis for the concept of (anatomical) reentry. This circulation of an
excitation wave in a ring is also known as circus movement reentry. It is the 1D equivalent
of spiral waves in 2D, already briefly discussed in the first section of this introduction. We
give a schematic representation of this type of reentry in Fig. In response to a point

Figure 1.6: Circus movement reentry. Schematic representation of reentry in a ring of excitable
tissue. Arrow shows the direction of propagation.

stimulus in such a ring of excitable tissue, two propagating waves will be produced which
move in opposite directions away from the stimulus site. If, however, one of these waves is
blocked due to, for instance, incomplete recovery of the tissue after the passing of the previous
wave, we end up with only one wave travelling along the circular path. This wave will make
a complete loop in a time t = %, with v the speed of the wave and [ the length of the ring.
If the period ¢ is larger than the refractory period of the tissue, the wave will continue to
move along the circle ‘forever’. Important to note is that such a reentrant pattern will lead
to an increased heartbeat if this period ¢ is smaller than the period of the natural pacemaker
(i.e. the S.A. node).

In the seminal work by Wiener and Rosenblueth from 1946 [I48] this 1D reentry was
extended to two dimensions. They used numerical experiments to postulate that spiral wave
rotation in 2D around an inexcitable obstacle was a necessary condition to initiate and main-
tain arrrhythmias. We refer to Fig. where we show the rotation of a spiral wave around
an inexcitable obstacle for different time frames. Later, in 1948, Selfridge showed, through
a modification of the model by Wiener and Rosenblueth, that spirals don’t necessarily need
an anatomical obstacle around which they rotate [121]. He demonstrated that they can also
rotate around their own spiral core, formed in the center of the spiral due to refractory prop-
erties of the excitable medium. This spiral core is thus a virtual, excitable obstacle around
which the spiral rotates. In Fig. we show such free rotating spiral wave for different time
frames. The period of a (free rotating) spiral wave is two to three times smaller than the

2For a thorough review on the topic of history of reentry we refer to [60].
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time=0 ms time=80 ms time=200 ms

+60 mV
---|n mv
Figure 1.7: Anatomical reentry. Spiral wave reentry around an inexcitable obstacle. Simulated

using the TP06 model for human ventricular tissue [I39]. White line shows size of the
inexcitable obstacle. Total size of the medium is 9 cm by 9 cm.

time=0 ms time=80 ms time=200 ms
+60 mV
...I” mv
Figure 1.8: Functional reentry. Free rotating spiral wave. Simulated using the TP06 model for
human ventricular tissue [I39]. Total size of the medium is 9 cm by 9 cm.

period of the S.A. node El, therefore the spiral wave will take over the role of the natural
pacemaker. Because of this the heart will contract more rapidly. Such an increased heart rate
is called a tachycardia.

In the case of functional reentry, one sees from Fig. [I.§ that a special location is the unique
point where the wave front and the wave back meet. This point is called the spiral tip. It is
also called the phase singularity point (PS) of the spiral wave, because the spiral tip has no
clearly defined phase in the activation cycle.

The trajectory of the PS during spiral wave rotation is also important, because it is one
of the main factors which determine the type of (reentrant) cardiac arrhythmia. The simplest
example of such a trajectory is circular. It is clear that in that case, this trajectory is just
along the circular core of the spiral. The rotation of the spiral is stationary, or in other words:
the period of rotation is constant. However, because the core remains excitable during spiral
wave rotation, changes in, for instance, the excitability of the tissue may lead to shifts in
the trajectory of the wavebreak with activation of the core area, also called meandering. We

3In the case of anatomical reentry, the period of the spiral wave depends on the size of the obstacle.



2. ABNORMAL EXCITATION OF THE HEART: CARDIAC ARRHYTHMIAS

refer to Fig. where we show changes in the trajectory of the spiral tip under increasing
excitability of the tissue. This shift, or drift, of the spiral tip can also be caused due to

kA

| /v | |

| | | | |

0 0.030 0.035 0.040 0.045
Gsi

Figure 1.9: Meandering of the spiral tip. Trajectory of the PS under increasing excitability of
the tissue. Simulations were performed in the Lou-Rudy phase 1 model for ventricular
cells [78]. Figure taken from [138].

heterogeneity of cardiac tissue. Both in experiments as in computer models it was shown
that spatial gradients in either action potential duration (APD) or conduction velocity may
be responsible for drift [116, 29, [102] 22] 138]. These studies showed that the direction of
drift is toward the longer APD and toward the region of slower conduction velocity. We will
come back to this in chapters 3 and 4 of this thesis.

As already noted, the trajectory of the spiral tip is an important factor in determining the
type of cardiac arrhythmia that will occur. A stationary rotation of the spiral is associated
with monomorphic tachycardias. Such rotation leads to a periodic electrocardiogram (ECG).
Non stationary spiral rotation can cause polymorphic tachycardias and torsade de pointes,
leading to complex non periodic ECG’s.

In the previous paragraphs, we have limited our discussion to the 2D case. Although this
approximation may reasonably well represent the thin walls of the atria, the thicker walls
of the ventricles form essentially a 3D structure. Three dimensional vortices (called scroll
waves) in an excitable medium, predicted using simple models such as the FitzHugh-Nagumo
model, were first observed by Arthur Winfree in 1973 in thick layers of the BZ-reaction [151].
A scroll wave can be produced by stacking spiral waves on top of each other to fill the third
dimension. Scroll waves are normally charaterized by their filaments, which is an extension
of the notion of the spiral wave tip into 3D. To obtain a filament, one just needs to connect
the tips of the spiral waves in each of the sections of the scroll wave. A filament is thus the
3D equivalent of a PS. We note that a filament does not need to be a straight line. Albeit,
one substantial constraint is that filaments can only end on the medium boundaries [105]. It
is also possible that the filament forms a closed loop; the corresponding scroll wave is in that
case called a scroll ring.
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2.2 Mechanisms of atrial and ventricular fibrillation

Fibrillation is the rapid, irregular and unsynchronized contraction of muscle fibers. With
regard to the heart we can have both atrial and ventricular fibrillation. As we saw in section
all electrical impulses from the atria to the ventricles pass through the AV node. Because
this AV node has a limited conduction velocity the rate at which impulses reach the ventricles
is reduced. Therefore not all impulses produced during atrial fibrillation (AF) are passed
through the ventricles, which makes AF not a life threatening arrhythmia. On the other hand,
fibrillation in the ventricles (VF) is the leading cause of sudden cardiac death, accounting for
more than 400000 deaths per year in the United States alone [41]. The mechanisms behind
AF and VF are believed to be slightly different, hence we will divide this section into two
parts: first we will give a brief introduction into the processes which are responsible for AF;
then we will talk about VF.

Despite years of research, the mechanisms behind AF are still not completely understood.
Also the treatment of this disease remains suboptimal. Yet, there is some consensus on the
general mechanisms behind AF. Also, the succes rate of several treatments has increased
over the years due to better understanding of this disease. Historically, the multiple wavelet
hypothesis of AF postulated by Moe in 1962 [86] and tested using a computer model in 1964
[87] was a key breakthrough into understanding AF. In these papers, Moe suggested that
multiple propagating wavelets gave rise to the turbulent atrial activity observed during AF.
Experimental proof for this was first given by Allessie in 1985 [7]. However, there is no
conscencus on how these wavelets arise. Although, since the work by Haissaguerre [47], it
is generally accepted that most cases of paroxysmal AF in humans are initiated by ectopic
focal discharges in the pulmonary veins (PV). He showed that isolating these PV can cure a
significant proportion of patients with AF. The precise nature of these foci, however, is still
unknown. These foci could be (micro-)reentrant patterns, triggered (i.e. delayed and early
afterdepolarizations) or the result of abnormal automaticity. On the other hand, in the case
of chronic AF, also evidence for reentrant patterns at other positions in the atrium [120] was
found.

The reentrant patterns observed during AF can be initated by a wavebreak formed by
the interaction of a wave front, of any origin, with an anatomical obstacle or heterogeneously
recovered tissue. In Fig. we show how two counter rotating spirals can be initiated
by interaction of a wave front with a piece of tissue having a longer refractory period. A
mechanism first described by Krinsky in 1966 [73] using a computer model. When such a
spiral wave is formed, these electrical vortices, swirling at high speed, propagate through the
atrium and can interact with other anatomical and/or electrophysiological obstacles, which
causes fragmentation of the spiral wave and new wavelet formation. This process is also called
fibrillatory conduction. The driving source of AF in this case is thus a spiral wave or rotor
(known as the mother rotor), generating wavelets due to its interaction with various obstacles
in its path. In this way we see that the multiple propagated wavelets observed during AF are
not completely unpredictable, but share some deterministic components. Recently, clinical
studies showed that localization and subsequent ablation of these driving rotors of fibrillation
could terminate or slow AF [88, [89]. We will come back to this in chapter 4.

As we already mentioned in the first paragraph of this section, VF is a much more dan-
gerous arrhythmia than AF. For, VF prevents synchronous ventricular contraction, which is
needed for efficient pumping of blood to the body. When no electrical defibrillating shocks
are applied, VF is lethal within minutes. Similar as for AF, rotors play an important role in
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2. ABNORMAL EXCITATION OF THE HEART: CARDIAC ARRHYTHMIAS

A B C
+60 mV
..-|90 mv
Figure 1.10: Reentry caused by interaction of a wave front with heterogenously recov-
ered tissue. A: Stimulation of the tissue at the bottom of the medium results in
propagating waves. Due to the longer refractory period of a rectangular region (ob-
tained by decreasing the conductance of the Ixs channel inside this region with 80%;
white lines), it takes longer for the cells inside this region to recover after passing of
the first wave. B: When the second wave reaches this heterogeneity, these cells with a
longer refractory period have not recovered and we observe wavebreak. C: After some
time the rectangular region becomes excitable again, and the wavebreaks enter the het-

erogeneity resulting in two counter rotating spiral waves. Simulated using the TP06
model for human ventricular tissue [I39]. Total size of the medium is 16 cm by 16 cm.

the generation and maintenance of VF. There are basically two main hypotheses who propose
a mechanism for understanding VF.

The first hypothesis is the spiral breakup hypothesis. The claim of this theory is that VF
occurs due to instability and subsequent breakup of rotor(s) in the ventricles. In Fig. we
already showed how a spiral could be initiated in the ventricles or atria. The spiral breakup
hypothesis postulates that these spiral waves can breakup into a multispiral disordered state,
even in homogeneous tissue. In its original form, the spiral breakup hypothesis stated that
spiral breakup arises if the maximal slope of the APD restitution curve (APD in function
of the diastolic interval (DI)) exceeds one. Because of this, APD alternans (the alternation
of long and short action potentials) occur, leading to spiral breakup [93] [46] 98] [62], [63], [19].
Experimental evidence for this hypothesis came from [72), 114} [36]. Although, it has become
clear that also other factors play an important role in determining if a spiral breaks up or not.
For instance, it was shown both in experiments [36] and in simulation studies [112] that spiral
stability not only depends on whether the slope of the restitution curve exceeds one, but also
on the range of diastolic intervals for which this is the case. Also several other factors have
been shown to influence the stability of a spiral wave H In Fig. we show the breakup of
a spiral wave caused by a steep APD restition curve, simulated using an anatomical model of
the human ventricles.

On the other hand, another school of thought believes that long lasting, stable, rotors
may be the driving force behind VF. In 1995 it was shown by Gray et al. [44], in a combined
simultation and experimental study, that even a single drifting rotor could produce an ECG
that is indistinguishable from VF in the rabbit heart. However, it has been shown in other

4For a more complete overview, we refer to [134] or chapter 5
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A

Figure 1.11: Spiral breakup as a mechanism for VF. In A B and C, the red color indicates
the excitation wave. A: Initial spiral wave. B: Occurence of the first wave break due to
dynamical instabilities. C: Spiral wave fragmentation. Simulations were performed in
an anatomical TP06 model of the human ventricles.

hearts that the spatiotemporal organization during VF is more complex than this. This has
led to propose that fibrillatory conduction, in which reentrant circuits drive VF, is the leading
mechanism causing VF. Evidence for this came from experiments performed in the guinea
pig heart by Samie et al. [I18] and in the rabbit heart by Chen et al. [15] and Wu et al. [153].
Although, despite extensive search, these mother rotors have not been observed in larger
animal hearts (pigs, dogs) with a size comparable to that of the human heart [1T5], [57, 55 64].
However, it has been argued that the hearts of these larger animals do not provide the best
model for the human heart. This because the effective size (i.e. the ratio of the size of the
tissue to the wavelength of reentry) of dogs and pigs differ substantially from that of humans
[97]. Moreover, it was argued that the effective size of the rabbit heart is close to that of
humans, making these hearts a better model for the human heart. Also experimental [90), [82]
and simulation [66] studies have provided evidence that mother rotors can drive VF in the
human heart.

Summarizing, we can conclude that both in the ventricles as in the atria the mechanism
behind fibrillation is not completely understood, although there is general consensus on several
points. One of them is that heterogeneity of cardiac tissue plays a major role both for the
initiation of spiral waves as for the development of tachycardia into fibrillation. This is
important to keep in mind, as the study of (ionic) heterogeneities on spiral and scroll wave
dynamics is one of the main subjects of this thesis. However, we note that, in the ventricles,
we mentioned that tachycardia could also develop into fibrillation in homogeneous tissue due
to spiral breakup. Finally, ventricular tachycardia and fibrillation can also be caused by
focal triggered activity, especially in the heart of patients with cardiomyopathies [17), 107].
These non-reentrant types of ventricular tachycardia and fibrillation will not be studied in
this thesis.
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3. MODELING IN CARDIAC ELECTROPHYSIOLOGY

3 Modeling in cardiac electrophysiology

3.1 The need for modeling in cardiac electrophysiology

From the previous section it should be clear that the use of models in cardiac electrophysiology
has been very helpful to gain insight in the processes which both initiate and maintain cardiac
arrhythmias. For instance, initiation of spiral waves due to interaction of a wave with an
excitable [73] or an inexcitable obstacle [I01] [3] was first described using models of excitable
media. Also the aforementioned multiple wavelet [87] and spiral breakup hypothesis [98] [62,
63, [19] for fibrillation were formulated based on modeling studies.

A main reason why modeling of cardiac excitation is very valuable is that the tools avail-
able for measuring excitation in the heart are still somewhat limited. The major limitation
of the present-day technologies is that they are not able to record the 3D propagation in the
heart with sufficient temporal and spatial resolution to give reliable information about the
mechanisms of the arrhythmias. Of course, the most recent developed methods in this field,
such as optical imaging using voltage-sensitive fluorescent dyes [28] [74] are of great impor-
tance, but they are only able to map electrical activation on the surface of the heart or on
a wedge. Therefore, to gain a better insight into arrhythmias, (whole) heart modeling is of
paramount importance.

Another reason to use models, are practical and ethical limitations to experimental re-
search, which do not apply to modeling studies. In vivo, experimental research on human
heart is limited to noninvasive measurements (ECG, body surface mappings) and low risk
invasive measurements (catheter and multi-electrode mapping) on the heart of people under-
going cardiac surgery. In vitro it is limited to the few explanted hearts available for research.
Recently, however the amount of data available for human hearts has increased exponentially.
The human heart physiology program at Washington University in St. Louis, for instance al-
ready performed in vitro experiments on more than 200 failing and non failing human hearts.
In this thesis we used this new available data to set up new models both in cardiac tissue and
in the whole heart. It is clear that this unique data opens up a large window of possibilities for
modelers. Also, as we mentioned in the previous sections, a lot of research is being performed
on in vivo and in vitro hearts of guinea pigs, rabbits, dogs, pigs,... We already noted that the
rabbit heart is considered as a good model for the human heart. Thus, although one should
be cautious in extending the conclusions of these studies to the human heart, these animal
studies are very valuable.

3.2 Model formalism

The first models to study the excitable behavior of the heart, were so called cellular automata
(CA) models. These models were the first to study reentry [I148] and fibrillation [87]. In CA
models, cells have a discrete state (resting, excited, refractory), and a set of rules describe
state transitions depending on the current state of the cell and its neighbors. However these
models are not accurate enough to precisely describe properties such as action potential
duration, conduction velocity restitution properties or wave front curvature effects. To study
the excitable behavior in more detail, partial differential equations (PDE) are used.

As we already explained in the excitation process of a cardiac cell is governed by the
flux of ions (predominantly Na®, KT, Ca?* and CI™) through channels in the cell membrane,
which leads to a change in transmembrane potential. This cell membrane can be seen, in

13



CHAPTER 1. INTRODUCTION

electrical terms, as a capacitor, whereby voltage is changed by the ionic currents across the
membrane. This leads to the following equation [65]:

W = _Iion(vmagi)a (12)
where C,, is the membrane capacitance, V,, is the transmembrane voltage and I;o, is the
sum of the ionic transmembrane currents describing the excitable behavior of the cell. In
addition to Eq. there are one or more equations for g; needed to describe the dynamics
of the transmembrane current. Integration of these equations gives us the time course of an
individual cardiac cell.

In we made clear that an excitation wave propagates through cardiac tissue because
the individual cells are coupled via gap junctions. To model this, we need to modify Eq.
in order to incorporate the current flow between electrically coupled cardiac cells. In this
thesis, we will use the following standard monodomain model for cardiac tissue [65] E}

OV 0 ( OV,

Cm 825 - 81‘1 gl 833j

) _Iion(vmvgi) ) (13)

where D;; is a diffusion matrix describing the conductivity of the tissue; ¢,j = 1...n, where
n=11in 1D, 2 in 2D...

3.3 From phenomological to ionic models

For modeling the ionic currents across the membrane Ij,, there are basically two approaches.
One possible approach is to use phenomological two variable FitzHugh-Nagumo type models
[33,34]. In such models, one variable describes the transmembrane current and the other the
recovery processes of the cell. By fitting the parameters of these models, they can reproduce
some important measurable characteristics of cardiac tissue, such as the general shape of
the action potential, action potential duration restitution and the effects of tissue anisotropy
and heterogeneity [70] B, 31l [137]. These models are extensively used, especially due to their
computational efficiency. However, they lack the level of detail to investigate matters such as
the effects of mutations and drugs on ionic currents and action potential shape; they do not
describe intercellular calcium handling. To describe these complex processes, ionic models
are used.

In ionic models, a set of equations is used to describe the dynamic behavior of each
individual ionic current. These equations are based on experimental data of voltage and time
dynamics of these currents using voltage clamp techniques. In 1953 Hodgkin and Huxley were
the first to succesfully apply this approach to describe the nerve action potential of the squid
giant axon [53]. Some years later they received the Nobel Prize in Physiology or Medicine for
this work. Noble extended this work to describe the cardiac action potential [91]. Driven by
the discovery of new ionic currents and properties of intracellular calcium dynamics, different
models of increasing complexity were developed, both for animals as for human cardiac cells.
We mention the Luo-Rudy phase 1 [78] and phase 2 [79] models for guinea pig ventricular
cells, the Noble guinea pig ventricular cell model [92] and the Priebe-Beuckelmann model for
human ventricular cells [I09]. For a more complete overview of different ionic cardiac models

SWe note that such a monodomain model is a reduction of the bidomain model. The monodomain model
assumes that the intra- and extracellular domains have equal anisotropy ratios (i.e. that the conductivity in
the extracellular space is proportional to the intracellular conductivity).
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we refer to [I8]. Recent ionic models for cardiac tissue include around 60-100 variables to
model the details of ionic channel dynamics identified in cardiac cells. One of these models
is the TP06 model for human ventricular cells developed by ten Tusscher et al. [136], [139].
This is the model which we will use in this thesis. It describes the dynamics of the following
currents:

Lion = Ing+Tio+ Iy + Iks+ ICaL +1Ik1 + INasz + INak + IpCa, + IpK
+1cap + INap (1.4)

where Iy, denotes the fast sodium current; I;, the transient outward current, I, the slow
rectifier current; Ixs the slow delayed rectifier current; I,z the L-type calcium current;
Ik the inward rectifier current; Inqc, the sodium/calcium exchanger current; Inyqx the
sodium/potassium pump current; I,c, and I,x the plateau calcium and potassium currents;
Icap and Iy, the background currents.

4 Thesis outline

The main topic of this thesis is the effect of heterogeneities on electrical waves of excitation in
the human heart, studied using mathematical models. In particular, in a major part of this
thesis, we will study action potential duration (APD) heterogeneity of cardiac tissue, and its
role in formation and influence on dynamics of spiral waves.

In chapter 2, we study effects from cell coupling on APD heterogeneity in human cardiac
tissue. It is known that the extent of heterogeneity at tissue and single cell level can differ
substantially, and it is important to know the relation between them, for instance to model
these type of heterogeneities, as we do in chapter 3 and 4. We show that the effect of cell
coupling on APD heterogeneity can be described mathematically using a Gaussian Green’s
function approach. We solve both the forward problem (determining effects of tissue hetero-
geneity from cell heterogeneity) and the inverse problem (determining cell properties from
tissue level measurements). The solution of the forward and inverse problem is illustrated
on several examples of 1D and 2D systems. With the APD distribution in the 2D examples,
based on typical spatial distribution of APD as measured in human heart preparations.

In chapter 3, we numerically model APD heterogeneity of realistic size and value in a
model for human cardiac tissue, and study formation and dynamics of spiral waves around
such heterogeneity. We show that spiral waves can be formed under high frequency pacing
of such a heterogeneous medium, and moreover, we find that the only sustained pattern
obtained, is a single spiral wave anchored around the heterogeneity. Next, we study the effect
of the extent of heterogeneity on the dynamics of such an anchored spiral wave. We find, for
certain heterogeneity size, an abrupt regional increase in the period of excitation occurring
as a bifurcation. We study factors determining spatial distribution of excitation periods of
anchored spiral waves, and discuss consequences of such dynamics for cardiac arrhythmias.

In chapter 4, we study the effect of small size ionic heterogeneities, similar to those
measured experimentally, on dynamics of spiral waves. This study is performed both in 2D
and in an anatomical model of the human ventricles. We show that these heterogeneities
can not only anchor, as we show in chapter 3, but can also attract spirals rotating at a
substantial distance from the heterogeneity. This attraction distance depends on the extent
of the heterogeneities and can be as large as 5-6 cm in realistic conditions. So from this,

15



CHAPTER 1. INTRODUCTION

we can conclude that small size ionic heterogeneities can be preferred localization points for
spirals, and discuss their possible mechanism and value for applications.

In chapter 5, we study dynamical heterogeneities in homogeneous tissue created due to
APD-restitution effects. In particular, we show that a region of initial wave block results
in dynamical Wenckebach ‘blocks’ which grow in space and in some cases can result in the
formation of new spirals, or the removal of existing spirals. We explain why such behavior can
be considered as an ultimate alternans instability or a global alternans instability (GAI). We
start this chapter by studying this instability in 1D, and illustrate the growth of this region,
find the velocity at which this region grows and the dependency on the forcing period. We use
the results obtained in chapter 2 to propose a semi-analytical theory, and demonstrate that
it can describe the observed behavior with a high accuracy. Then we show that in 2D this
region extends itself in a similar way, and that it can result in the creation of new spirals, and
the eventual removal of spirals from the tissue. This result is very important in the light of
the results obtained in chapter 3 and 4, where we found that small size ionic heterogeneities
can create spirals, but only after they had grown in space. In chapter 5 we illustrate that
the possible mechanism of this growth of the heterogeneity is GAI.

Then, in chapter 6, we explain the need for a database where data of experiments on
human hearts, as we used in previous chapters to build our models, can be stored. We've
set up a prototype of such a database using the content management system Drupal, and in
chapter 6 we show how the general structure looks like, and how users can both upload and
download data from the database. We also expand on possible future directions which would
make it possible for such a database to bridge the gap between experimentalist and modelers.

Finally, in chapter 7 we end this thesis with a summarizing discussion in which we discuss
the major findings found in this thesis.
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APD heterogeneity of cardiac tissue can be evaluated
from cell properties using Gaussian Green’s function
approach

Abstract

Action potential duration (APD) heterogeneity of cardiac tissue is one of the most important
factors underlying initiation of deadly cardiac arrhythmias. In many cases such heterogeneity
can be measured at tissue level only, while it originates from differences between the individual
cardiac cells. The extent of heterogeneity at tissue and single cell level can differ substantially
and in many cases it is important to know the relation between them. Here we study effects
from cell coupling on APD heterogeneity in cardiac tissue in numerical simulations using
the ionic TP06 model for human cardiac tissue. We show that the effect of cell coupling
on APD heterogeneity can be described mathematically using a Gaussian Green’s function
approach. This relates the problem of electrotonic interactions to a wide range of classical
problems in physics, chemistry and biology, for which robust methods exist. We show that,
both for determining effects of tissue heterogeneity from cell heterogeneity (forward problem)
as well as for determining cell properties from tissue level measurements (inverse problem),
this approach is promising. We illustrate the solution of the forward and inverse problem on
several examples of 1D and 2D systems.

1 Introduction

Cardiac contraction is initiated by electrical waves of excitation propagating through cardiac
tissue. Abnormal wave propagation may result in cardiac arrhythmias. Sudden cardiac death
due to cardiac arrhythmias is among the most common causes of death in the industrialized
world [I59]. One of the leading causes for the onset of cardiac arrhythmias is the heterogeneity
of cardiac tissue [87, [73] 69].

Wave propagation in the heart is a result of succesive excitation of individual cardiac cells,
which are electrically coupled to each other by gap junctions. Such electrical connectivity of
the cells not only enables wave propagation, but also affects properties of the individual
cells. Fig. 2.1]A, with a maximal APD difference of 40 ms and size at 50% heterogeneity of
5 on 6 mm, shows a typical spatial action potential duration (APD) distribution similar to
these measured in human heart preparations [40]. If we use these measured values as APD
values at cell level, we can fit the parameters of a cell model to reproduce such APD at
a given location. If we then connect these cells into the tissue model, we obtain the APD
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distribution as shown in Fig. [2.1B. We see that the shape and magnitude of the heterogeneity
is substantially changed due to coupling between the cells (Fig. ): the amplitude of the
heterogeneity in Fig. is almost twice as small as the one in Fig. [2.T]A. Alternatively, if one
uses a patch clamp procedure and measures properties of various types of uncoupled cardiac
cells, it is not clear which heterogeneity will be produced by these cells if they are coupled to
tissue. Therefore, the question how to recover real heterogeneity from tissue level experiments
and how heterogeneity at cell level manifests itself at tissue level is very important both for
theoretical and experimental work.

290
71280
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Figure 2.1: Effect of cell coupling on APD distribution simulated in a human cardiac
tissue model. A: APD distribution in cardiac tissue simulated numerically in a human
cardiac tissue model after simultaneous excitation of all cells (this to avoid effects
resulting from wave propagation [I19]). B: APD distribution after input of the measured
data (shown in A) into the tissue model. Comparing A and B thus illustrates the effect
of cell coupling in a human cardiac tissue model. Heterogeneity is created by changing
Gks. Total size of the medium is 25 mmx25mm. Colormap shows APD in ms.

These modulations of APD heterogeneity due to cell-to-cell coupling are called electrotonic
effects. In this chapter we show that such electrotonic effects on APD heterogeneity can be
characterized by a linear approach using Gaussian functions fits. In particular, we show that
APD at tissue level can be found by a convolution of APD distribution at cell level with a
bell-shaped Gaussian function (forward problem). Convolutions involving Gaussian functions
are among the most studied in mathematics, and applied to various physical, chemical and
biological phenomena. Using this formalism, we are able to solve not only the forward problem
(i.e. to find APD at tissue level from known APDs of individual cardiac cells), but also start
developing an approach to solve the inverse problem (namely to find properties of individual
cells from measurements at the tissue level). We illustrate it on several examples.

2 Materials and Methods

Model - In this chapter we consider a monodomain description of cardiac tissue [65] which
has the following form:

OV 0 Vi
m = Di‘ - Iion s 2.1
ot 6:@ < J 8l'j > ( )
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where D;; is a diffusion matrix accounting for anisotropy of cardiac tissue, i, j = 1...n, where
n = 1in 1D, 2 in 2D..., C,, is membrane capacitance, V,, is transmembrane voltage, ¢ is
time and Ii,, is the sum of ionic transmembrane currents describing the excitable behavior of
individual ventricular cells. To represent human ventricular electrophysiological properties,
we used the ionic TP06 model [136],139]. This model provides a detailed description of voltage,
ionic currents, and intracellular ion concentrations for human ventricular cells. A complete list
of all equations can be found in [136, 139]. We used the default parameter settings from [139]
for epicardial cells. All parameter changes made to obtain tissue heterogeneity are detailed
in the text.

Numerical methods - For 1D and 2D computations, the forward Euler method was applied
to integrate Eq.. A space step of Az =0.25 mm and a time step of At =0.02 ms were
used. To integrate the Hodgkin-Huxley-type equations for the gating variables of the various
time-dependent currents (m, h and j for In.; r and s for Ii; z,1 and z,o for Ix,; x, for Ixs; d,
[y f2 and foass for Icar), the Rush and Larsen scheme [117] was used.

Heterogeneity - To study heterogeneity, we change the parameters Gy, Gk and Gcar, from
their default values 0.392 nS/pF, 0.153 nS/pF and 3.98 x 1075 cm/(ms - uF) for epicardial
cells in [I39]. Unless otherwise stated, APD is measured at 80% repolarization level.

Inverse problem - The inverse problem in 1D was solved using Tikhonov’s regularization
method. In 2D, the inverse problem was solved using the Tikhonov image deblurring fast
fourier transform algorithm. To implement this in 1D and 2D we used two Matlab packages
developed by Per Christian Hansen [48, [49].

3 Results

3.1 1D step-wise heterogeneity

To establish a proper description of the heterogeneity, we first considered the simplest type
of heterogeneity: a stepwise heterogeneity in a cable (see Fig. )

We excited all points of the cable simultaneously and calculated the spatial APD distri-
bution. Fig. shows that, due to electrotonic effects, the stepwise heterogeneity becomes
spatially distributed with a characteristic space constant (As) of around 3.5 mm. After trying
several types of sigmoidal functions, we found that an almost perfect fit of spatial APD dis-
tribution can be obtained using the error function, which is the antiderivative of the Gaussian
function. Indeed, if we use for the stepwise heterogeneity in Fig. 2.2]A:

APD(x) = Ay + Agerf <(x —ap— AO)%L,) , (2.2)
with Ag = 0.631 mm, A7 = 308.624ms, Ay = 21.3745ms, A3 = 3.497mm and the location of
the heterogeneity o = 24.875 mm, then the exact solution (red line in Fig. [2.2A) and the fit
(blue line) are almost indistinguishable from each other with a relative error less than 0.4 %.

Note that the parameters A; and As in Eq. are obviously connected to the APD in
the uncoupled system (APDO) from Fig. as Ay = w and Ay = % with
AAPDO = APDOy — APDO0;. The parameter As gives the spatial distribution, and in our
case is 3.497 mm; the parameter Ag indicates some additional shift, which in our case is 0.631
mm.
By varying AAPDO, we studied how the parameters Ay and As of our fit depend on the
degree of heterogeneity. We found that parameter As showed only minimal dependency on
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Figure 2.2: Electrotonic effect for a stepwise heterogeneity in a cable. A: Spatial distribu-
tion of APD in a fiber with stepwise heterogeneity. Computations using TP06 model in
a fiber of 50 mm long. The upper pannel shows action potential shapes in the uncoupled
system. The black line under both action potentials represents a time interval of 300 ms.
The bottom pannel shows APD distribution: black APD in the uncoupled system, red
APD in the coupled system and blue the APD obtained via Eq.(2.2). B: Plot of AAPDO
versus Ag. C: Plot of AAPDO versus Asz. B and C: best linear fit through these points
are shown in red. Gk in the left part of the fiber was 0.392nS/pF. Other degrees of
heterogeneity are obtained by changing Gks. In general, for a heterogeneity of 10 ms it
was necessary to change Gk by 0.073nS/pF.

AAPDO. Indeed, in Fig. we see that by changing AAPDO 13.3 fold, A3 changes just
by 10.8 %. Furthermore, if we put Ag = 0, in Eq., our curve is shifted to the left, and
gives us a maximal error of around 2ms. However, for small values of AAPDO, which will be
the most important for us in the future Ay is small. For example, for AAPDO = 10 ms, Ag
is of the order of 0.15 mm, which is approximately 20 fold less than the characteristic space
constant As. Therefore, we can conclude that with a high degree of accuracy we can assume
that the parameters Az and Ay do not depend on AAPDO.

In Fig. we studied a heterogeneity obtained by changing the Iks current. Besides Ik,
other ionic currents such as Ik, and Ic,, have important influence on APD. To find possible
effect of other ionic currents on the electrotonic interaction we study a stepwise heterogeneity
as in Fig. [2.2A, but with a heterogeneity now obtained by changing G,, respectively Gcar,
(Fig. . We see that the electrotonic effect in our model does not depend on ionic current
used to induce tissue heterogeneity. In particular, in all cases the fit of Eq. works good
and we have As3 = 3 mm, for Gk, induced heterogeneity, and As = 3.5 mm for Gcar, or Giks
induced heterogeneity. Furthermore, we find that the parameter Ag is also small. For Gk,
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Gk: and Ggar, we find for Ay respectively 0.4, 0.5 and 0.2 mm.
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Figure 2.3: Electrotonic interaction for different parameters. In black, red and green, het-
erogeneity was created by changing, respectively, Gks, Gkr and Ggar,. In the left part
of the fiber Gks=0.392 nS/pF; Gk,=0.153 nS/pF and Gcar,=3.98 x 1075 cm/(ms - uF).
For a heterogeneity of 10 ms it was necessary to change Gk, and Gca1, with respectively
0.048 nS/pF and 7.4x107% cm/(ms - uF).

Overall we can conclude that our problem of dependency of APD(z) on AAPDO can thus
with high accuracy be considered as linear. This allows us to formulate an approach for
finding APD(z) not only for a stepwise heterogeneity, but for a heterogeneity of any sharp
APDO(x).

3.2 The forward problem

Thus, as for a linear problem, any heaviside-like heterogeneity will generate an APD distri-
bution given by Eq.(2.2), this yields that the expected APD(z) will be given by:

+oo a
APD(z) = ;/ erf <(x - oz)jg) dAP;)aO()da . (2.3)

—0o0

Integrating by parts yields

APD(z) = — / " APDO()e (%) 4o (2.4)
A3\/7T- —o0

The observed distribution APD(z) can thus be found as a convolution of APDO with a Gaus-

sian function.

Let us extend this formula to n dimensions and to the general anisotropic case, as in
Eq.. First, note that if we consider a 1D system with a constant diffusion coefficient D,
then due to spatial scaling, A3 is proportional to D and based on our simulation we can write
for an arbitary D that A§ = kD, where k ~ 204 ms. Similar considerations for a 2D case with
the fibers directed along the x axis and diffusivities in the x and y directions given by D; and

Dy yield a Gaussian kernel exp <—% — %) Note, as in this case D;; = diag(Dy, Dy),
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ij
of D;;. For an arbitrary fiber orientation, we can proceed to a local coordinate system aligned
with the fibers, in which, as in the previous case, the diffusion tensor will be diagonal. Direct
calculation shows that the general case will simply result in transformation of a diagonal
matrix to a general non-diagonal matrix Di_jl, which is the inverse of the diffusivity matrix
D;; from Eq., but the form of the expression will be unchanged. Thus, in n dimensions,

in presence of anisotropy given by a constant matrix D;; slowly varying in space, formula

([2.4) will be given by

this expression can be rewritten as exp (—(33Z —oy)D; (x5 — og)%), where Digl is the inverse

+o0 N .
APD(7) = —— APDO(@)_ —((@—a) D5 @)es-00)h) g5 (2.5)

(km)3 Joo \/deotDyy (@)

with z = (21,22, ...,2n), @ = (a1, a2, ...,a,). Note that, although this formula is formally
valid only for a matrix D;; which is constant in space, it is reasonable to assume that it will
be also valid for fibers for which the orientation changes slowly in space, as the Gaussian
function in Eq. is exponentially localized in space. Possible extensions of this formula to
a general curved space will be studied in future work.

We first test our method by considering gradients in APD with different steepness ob-
tained by changing Gy (Fig. [2.4), Gk, (Fig. and Gear (Fig. [2.6). We use Eq.(2.4) to
predict APD duration in the coupled system and observe that our method works good for the
heterogeneities induced by Gks and Ggar. For the heterogeneity induced by Gk, (Fig. , we
see some deviations from the predicted values, especially for steep heterogeneities. However,
we see that in all situations our method predicts the maximal value of APD in the coupled
system, which is important for characterization of the extent of heterogeneity. We also did
two simulations for an asymmetric heterogeneity (see Fig. . We see that our method also
works good in that case.

Next, we test our method for a more complex 1D heterogeneous APDO distribution
(Fig. ) Heterogeneity is, in this case, created by changing Gks. We see that Eq.,
with A3 = 3.5 mm gives a good prediction for the observed APD distribution, with a maximal
error of 3ms. To quantify how well our approach predicts the electrotonic effect, we compared
the measured electrotonic effect (||[APD — APDO||2, using the L2 norm) with the predicted
electrotonic effect (|| APD — APDO||2) as Epyq = IAPD=APDOI2 _ 1 oy Fig. , we obtained

|APD—APDO||>
Erwqa = 0.5%.

We have also checked if our method works for the electrotonic effects if APD is measured
at 50% repolarization level (APDsg). As electrotonic effects depend on the level at which
we perform a measurement [I119], we recalculated As for this case, which was found to be
A3 ~ 3mm. We performed the same simulations as those in Fig. for APD5g. We see
(Fig. ) that Eq., gives a good prediction for the observed APDyq distribution, with
a maximal error of 3ms and FEpyq = 0.45%.

We performed the same analysis in 2D for a diffusivity matrix D;;(Z) which changes
slowly in space using Eq.. For this, we supposed that the fibers lay along parabolas
y = B(z — x0)? + yo, with g = 25/2 mm, varying yo and a fixed shape parameter B = 0.04
1/mm. This gives us the local fiber direction

5 4 2B(x — 20)¢
g = Lt 2Bl - 20)g (2.6)
V1+4B2(z — 2)?
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Figure 2.4: Solution of the forward problem for heterogeneity created by changing Gxs.
In A, B and C: in black APDO, in red APD, and in blue the predicted APD via Eq.
with A3 = 3.5 mm and Ay = 0 mm. Parameters of the model in A are: Ggg(z)=0.72
nS/pF if 2 < 9 mm; Gis(z) = 22202 (3 — 9) + 0.72 nS/pF if 9 mm < z < 12.5 mm;
Gis(z) = 272022 (3 —16)+0.72 nS/pF if 12.5 mm < z < 16 mm; Gs(2)=0.72 nS/pF if
16 mm < z. In B: Gks(2)=0.72 nS/pF if z < 7.5 mm; Gks(z) = W(z— 7.5)40.72
nS/pF if 7.5 mm < z < 125 mm ; Gks(z) = 22:%22(z — 17.5) + 0.72 nS/pF if
125 mm < z < 17.5 mm; Ggs(z)=0.72 nS/pF if 17.5 mm < z. In C: Ggs(x)=0.72
nS/pF if < 5 mm; Ggs(z) = 222-272(z — 5) + 0.72 nS/pF if 5 mm < z < 12.5 mm;
Gis(z) = 222022 (3 — 20) + 0.72 nS/pF if 12.5 mm < z < 20 mm; Gks(2)=0.72 nS/pF
if 20 mm < z.

Thus for the diffusivity matrix D;; = (D — Dr)eys ey ; + Droi;, we obtain

Dp—D
Dyz = 1+4BL2(x(};0)2 _|')D'I(1 ) :
Dy —Dr)2B(z—
Dyy = Dy, = 1L+4B,1;(.Z‘—Ji))2xo ) (2.7)

Dy —D7)4B?(x—x0)?
Dy = ! L1+4§)2(x7%);0) +Dr .

with in our case Dy, = 0.128™2%° and Dy = Dy /4. In Fig.[2.10]A we show APDO, in Fig.
measured APD and in Fig. the predicted values APD. Here, we found a maximal error
of 6 ms, and Epyq = 0.6%. We can thus conclude that our forward method for calculating
APD by convoluting APDO0 with a Gaussian function produces accurate results.

The proposed approach can also be used for finding analytical estimates of electrotonic
effects. Let us apply it to estimate dependence of electrotonic effects on the size of hetero-
geneity. For this, consider a block of size d of tissue with a longer APD (Fig. ) and
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Figure 2.5: Solution of the forward problem for heterogeneity created by changing Gx;.
In A, B and C: in black APDO, in red APD, and in blue the predicted APD via Eq.
with A3 = 3.5 mm and Ay = 0 mm. Parameters of the model in A are: Gk, (z)=0.35
nS/pF if x < 9 mm; Gk, (z) = 29232%35(z — 9) 4 0.35 nS/pF if 9 mm < z < 12.5 mm;
Gy () = 93520025 (5, 16) 4-0.35 nS/pF if 12.5 mm < = < 16 mm; Gk, (x)=0.35 nS/pF

if 16 mm < x.sfn B: G (#)=0.35 nS/pF if z < 7.5 mm; G, (v) = 2025935 (5 — 7.5) 4
0.35 nS/pF if 7.5 mm < z < 12.5 mm; Gk (z) = 235008 (3 — 17.5) + 0.35 nS/pF
125 mm < z < 17.5 mm; Gk, (z)=0.35 nS/pF if 17.5 mm < z. In C: Gk,(x)=0.35
nS/pF if x < 5 mm; Gk, (x) = 2222035 (3 — 5) + 0.35 nS/pF 5 mm < z < 12.5 mm;
Gi:(x) = 250025 (z — 20) + 0.35 nS/pF if 12.5 mm < z < 20 mm; Gk, (x) = 0.35

nS/pF if 20 mm < z.

compare maximum of APD in coupled system relative to the maximum in the uncoupled
system. For such step-wise distribution, the APDO integral (2.3)) can be evaluated explicity,
yielding for the maximal value of APD:

APDyax = APDyin + AAPDOerf | —2) | (2.8)
243
or thus
AAPD d
— — . 2.
AapDo ~ ot <2A3> (29)

This curve is plotted in red in Fig. [2.11]B. We also plot the values we obtained via simulations.
We see a good correspondence of numerical and analytical estimates. The correspondence
is perfect for a small and large thickness of the heterogeneity, although in the intermediate
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Figure 2.6: Solution of the forward problem for heterogeneity created by changing Gca,r..

In A, B and C: in black APDO, in red APD, and in blue the predicted APD via Eq.(2.4))
with A3 = 3.5 mm and Ag = 0 mm. Parameters of the model in A are: Ggar,(z)=2.2 X
107° em/(ms - pF) if 2 < 9 mm; GeaL(z) = 7‘1X107;5f52'2><1070( —-9)+22x107°
cm/(ms - pF) if 9 mm < z < 12,5 mm; Geap (z) = 220 =LLA0 (5 16) 422 x 107°
cm/(ms- pF) if 12.5 mm < z < 16 mm; Gear,(r)=2.2 X 10 3 cm/(ms- pF) if 16 mm < z.
In B: Gear(2)=2.2x107° cm/(ms- pF) if # < 7.5 mm; Gaar,(z) = & 1x10—552 2x107° (x—
7.5)+2.2x1075 cm/(ms-pF) if 7.5 mm < z < 12.5 mm; Gear(z) = 2'2X10_5g7‘1xw_5 (x—
17.5) + 2.2 x 107° c¢m/(ms - pF) if 12.5 mm < 2 < 17.5 mm; Gecap(r)=2.2 x 1075
em/(ms - pF) if 17.5 mm < z. In C: Gear(z)=2.2 x 1075 em/(ms - pF) if 2 < 5 mm;
GeaL(z) = 7'1“0_0{52‘2“0_5( —5)+22x107° cm/(ms - uF) if 5 mm < z < 12.5 mm;
GeaL(z) = 22210 ’ —Tx 10 “(z —20) + 2.2 x 107° ecm/(ms - pF) if 12,5 mm < 2 < 20
mm; Gear(z) = 2. 2% 107 em/(ms - pF) if 20 mm < z.

range, we have some deviations.

We also see that the electrotonic effects are substantially

affected by heterogeneity size. Indeed, we see that if the heterogeneity is 1-2mm, the value of
the heterogeneity measured in tissue experiments will differ from the real heterogeneity 2-5

fold.

3.3 The inverse problem

Because the forward problem can be written in the standard form Eq.(2.4) and Eq.(2.5)),
predict APDO from a given APD.
Standard approaches to solve inverse problems of this type use regularization methods [143].

it can also be used to solve the inverse problem, i.e.
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Figure 2.7: Solution of the forward problem for an asymmetric heterogeneity created
by changing Gks. In A and B: in black APDO, in red APD, and in blue the predicted
APD via Eq. with A3 = 3.5 mm and Ap = 0 mm. Parameters of the model in A
are: Gks(2)=0.72 nS/pF if z < 10.5 mm; Giy(z) = 222072 (2 — 10.5) 4 0.72 nS/pF

if 10.5 mm < z < 13 mm; Ggs(zr) = 272222 (z — 20.5) + 0.72 nS/pF if 13 mm <
x < 20.5 mm; Ggs(z)=0.72 nS/pF if 20.5 mm < z. In B: Ggs(2)=0.72 nS/pF if
z < 10.5 mm; Gg(z) = 22072 (z — 10.5) + 0.72 nS/pF if 10.5 mm < z < 13 mm;

Ggs(z) = %‘_gﬂ(az725.5)+0.72 nS/pF if 13 mm < z < 25.5 mm; Gks(z)=0.72 nS/pF

if 25.5 mm < z.

Here, we will use the most common and well-known form of regularization, namely Tikhonov
regularization [48]. The regularized solution via Tikhonov regularization is given by

xy = min{||Az — b||3 + A?||z||3} . (2.10)

With A the Gaussian kernel, b the APD distribution in the coupled system and z the unknown
APD distribution in the uncoupled system. Thus, Az indicates the solution of the forward
problem. The amount of regularization is controlled by the regularization parameter X\, which
depends on the problem itself. Larger values of A produce increasingly smoother solutions,
while for small A\ values the inverse solution is less stable. We note that properly choosing A is
a common problem of all inverse problems. There is basically only one established approach,
called the Morozov discrepancy principle [143]; however, it does not always produce a suitable
value for A\. In the present work, we manually adapted A until the solution to the inverse
problem appeared as regular. Our criterion for this was: a small oscillatory component.

To solve the inverse problem in 1D via Tikhonov regularization, we used the algorithms
available at [48]. As for the forward problem, we first consider simple gradients in Fig. [2.12]
and Heterogeneities are the same as in Fig. and and thus obtained
by changing, respectively, Gks, Gxr and Gca,. We see that for intermediate and shallow
heterogeneities, we can reconstruct APDO with reasonably high accuracy (Fig. , C;
, C and , C) especially the maximal value of APD0. We see that in all solutions,
there is an oscillatory component present which increases with the increase of steepness of the
gradient. This causes substantial errors for the steepest heterogeneity (Fig. , Fig. A
and Fig. ) We also applied our method for the two asymmetric heterogeneities as in
Fig. In Fig. we see that we can reconstruct APDO in both cases. Again, we observe
an oscillatory component, especially for the steep part of the heterogeneity.

Now we illustrate our method on a more complex APDO distribution. We consider the
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Figure 2.8: Solution of the forward and inverse problem in 1D. A: The solution of the forward
problem in 1D. In black the APD in the uncoupled system, in red APD in the coupled
system and in blue the APD obtained via Eq. with A3 = 3.5 mm and Ay = 0 mm. B:
The solution of the inverse problem in 1D. Black represents APDO and red APD for the
coupled system. APDO, (blue), APDO, (pink) and APDO,. (green) display the predicted
APDO values for regularization parameter A equal to 0.07,0.05 or 0.036.

same APDO distribution as in Fig.[2.8/A. In Fig. [2.8B, we reconstruct the initial APDO distribu-
tion (black), based on the measured APD distribution (Fig. [2.8B, red). Three reconstructions
are shown, for various values of the Tikhonov parameter A\. The maximal absolute errors for
APDO0,, APDO,,, APDO. are respectively 8 ms, 7ms and 6ms. In the same way as for the
forward problem, we can quantify how well our approach reproduces the electrotonic effects
by calculating Fi,, = % — 1 = 4.4%. For APDO;,, APDO0,, we find respectively
8.8% and 10.4%. Thus, we observe that this method works well and that we can recover the
APDO distribution in the uncoupled system.

Fig. illustrates that the method also works good for APD5g. We see that the predicted
APDO (green) is close to the initial APDO distribution. The maximal absolute error is 5 ms and
By = 8.3%, which is close to that for the APD distribution measured at 80% repolarization
level.

To solve the inverse problem in 2D via Tikhonov regularization, we used the algorithms
from [49]. To test our method in 2D, we used the dataset from Fig. [2.1A, and quantified the
real heterogeneity via the solution of the inverse problem. We obtain the solution shown in
Fig. 2.16/A. In Fig. we plot the exact APDO distribution used in our model to obtain
Fig. 2.JJA. In this way, we see that our inverse solution properly recovers the underlying
heterogeneity. As in 1D, we calculate Ei,, = IAPDO=APDI> 1 — 13%. In particular

’ mn [JAPDOpred—APD||2 ’
the most important parameter: the maximal value of APDO0 in the inverse solution is 355
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Figure 2.9: Solution of the forward and inverse problem in 1D with APD measured at
50%. A: The solution of the forward problem in 1D. In black the APD in the uncoupled
system, in red APD in the coupled system and in blue the APD obtained via Eq.
with A3 = 3 mm and Ay = 0 mm. B: The solution of the inverse problem in 1D. Black
represents APDO and red APD for the coupled system. Green shows the predicted APDO
for regularization parameter A equal to 0.036.

ms, while the exact value is 360 ms. The characteristic width at 50% of heterogeneity in the
inverse solution is 2 mm in the vertical and 3 mm in the horizontal direction, while the exact
values are 2 mm and 3.25 mm. However, we also see that, as in 1D, the inverse solution
has a damped oscillatory component in certain directions, with amplitude up to 20 ms. This
component is absent in the original APDO distribution. Note, however, that we applied the
simplest method for solution of the inverse problem here, so it can certainly be improved. For,
the inverse problem given by Eq. is one of the most studied inverse problems in applied
mathematics. Thus it should be possible to suppress the oscillatory component by choosing
a proper formulation, which we intend to do in the future.

4 Discussion

In this chapter we have shown that the electrotonic effects in heterogeneous cardiac tissue
can with good accuracy be treated using a linear Green’s function approach. Interestingly, a
good approximation for the Green’s function is given by a Gaussian kernel. This relates our
problem to one of the most studied classical problems in science and engineering arising from
the diffusion equation, such as mass and heat transfer, image processing, light scattering etc.

We have shown that even the most simple and straightforward approaches for the forward
and inverse problems produce promising results, which opens possibilities for the application
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Figure 2.10: Solution of the forward problem in 2D for a curved space. A: APDO distri-
bution. B: APD distribution after input of APDO0 in a human cardiac tissue model.
C: Predicted APD distribution obtained using formula from main text. Fiber
direction is drawn in white lines.
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Figure 2.11: Analytical estimate of electrotonic effect. A: In black APDO, in red APD. B: In
red Eq.(2.9). The ‘+’s are the values obtained via simulations.
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Figure 2.12: Solution of the inverse problem for heterogeneity created by changing Gxs.
In A, B and C: in black APDO, in red APD, and in green the predicted APDO0 via
Tikhonov regularization. Parameters of the model for A, B and C are the same as in
Fig. Regularization parameter is 0.05.

of this approach to computational studies as well as to experimental research. Regarding
the forward problem, we showed that our method works good, and that, even for steep
gradients, we can predict the maximal value of APD in the coupled system, which is important
for characterization of the extent of heterogeneity. Our solution of the inverse problem is
also promising for non steep gradients. However, for steep gradients we have an additional
oscillatory component outside the heterogeneity which does not allow us to determinate the
maximal amplitude with sufficient degree of certainty. This is a well known feature of the
inverse solutions. The solution may certainly be improved by using, for example, different
norms of Tikhonov regularization etc. This subject requires additional specific investigation
and the development of non-standard software, which is outside the scope of this manuscript.

Application of the approach to computational studies for both forward and inverse prob-
lems is straightforward. To accomplish this, one just needs to determine the parameter As
for the Green’s function, which can easily be done by direct numerical computations similar
to those shown in Fig.

Applying the approach to experimental studies is more difficult and several important
issues still need to be investigated. The most important of them is to determine the space
constant of the Green’s function. The best approach here would be direct measurement of
spatial distribution of repolarization in tissues with known heterogeneity. This heterogeneity
might be static or dynamic (e.g. by local injection of currents into cardiac cells). Also,
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Figure 2.13: Solution of the inverse problem for heterogeneity created by changing Gx;.
In A, B and C: in black APDO, in red APD and in green the predicted APDO via
Tikhonov regularization. Parameters of the model for A, B and C are the same as in
Fig. Regularization parameter is 0.09.

computational [I19] and recent experimental data [144] show that the extent of electrotonic
effects depends on the shape of the action potential. It would thus be interesting to investigate
the possibility to determine the space constant of the Green’s function from measured action
potential shapes.

As in [I19], we studied electrotonic effects by simultaneous stimulation of all cells. In such
an approach, effects arising from wave propagation are absent. However, this stimulation
protocol is difficult to realize in experiments. To account for this shortcoming we compared
several typical APD distributions obtained by this protocol with those resulting from wave
propagation. In Fig. and B we compare the simultaneous stimulation (black line)
and stimulation by wave propagating from the left, respectively right, boundary (red line).
Fig. and B shows the APD profile for the same heterogeneity as shown in Fig. 2]A,
but obtained by wave propagating from the left, respectively right, boundary. In both cases
the changes due to the different stimulation protocol are less than 1% and thus comparable
with errors of the method. This causes the results obtained here to be also valid in the case
where the APD heterogeneity measured from the propagating waves is used.

In this chapter, we used a monodomain description of cardiac tissue, see Eq.. Another
widely used model for cardiac tissue is a bidomain model [52]. Note, however, that in 1D, the
bidomain and monodomain approaches coincide. Therefore, all our 1D results for the forward
and inverse problem will be valid for the bidomain case as well. In 2D, effects on non-equal
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Figure 2.14: Solution of the inverse problem for heterogeneity created by changing Gc,r..
In A, B and C: in black APDO, in red APD and in green the predicted APDO via
Tikhonov regularization. Parameters of the model for A, B and C are the same as in

Fig. Regularization parameter is 0.05.
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Figure 2.15: Solution of the inverse problem for an asymmetric heterogeneity created by

changing Gxs.

In A and B: in black APDO, in red APD and in green the predicted

APDO via Tikhonov regularization. Parameters of the model for A, B and C are the
same as in Fig. Regularization parameter is 0.05.

anisotropy ratio, although essential for defibrillation problems, normally have a small effect on
normal wave propagation [I08]. Therefore, we expect little effect of using bidomain equations
on our approach. However, it would be interesting to study it in the future.
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Figure 2.16: Solution of the inverse problem in 2D. A: The predicted APDO values for a
measured APD distribution given by Fig. 2.IJA. Regularization parameter X is 0.025.
B: The exact solution.
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Figure 2.17: Effect of wave propagation in 1D. A: In black APD distribution obtained via
simultaneous stimulation of all cells. In red the APD distribution obtained by wave
propagating from the left boundary. B: Same as A, but now in red the APD distribution

obtained by wave propagating from the right boundary.

The fact that the error function almost perfectly fits the APD profiles found, indicates
that electrotonic effects are closely related to processes described by the diffusion equation.
It would be interesting to investigate this similarity using analytical approaches applied to

Eq..
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Figure 2.18: Effect of wave propagation in 2D. A: Upper panel: APD distribution obtained
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by wave propagating from the left boundary. Lower panel: APD distribution along the
horizontal line through the center. In black for simultaneous stimulation of all cells
as in Fig. 2.JJA. In red for stimulation from the left boundary. B: Upper panel: APD
distribution obtained by wave propagating from the upper boundary. Lower panel:
APD distribution along the vertical line through the center. In black for simultaneous
stimulation of all cells. In red for stimulation from the upper boundary.



Initiation and dynamics of a spiral wave around an
ionic heterogeneity in a model for human cardiac
tissue

Abstract

In relation to cardiac arrhythmias, heterogeneity of cardiac tissue is one of the most important
factors underlying the onset of spiral waves and determining their type. In this chapter, we
numerically model heterogeneity of realistic size and value and study formation and dynamics
of spiral waves around such heterogeneity. We find that the only sustained pattern obtained,
is a single spiral wave anchored around the heterogeneity. Dynamics of an anchored spiral
wave depend on the extent of heterogeneity, and for certain heterogeneity size, we find abrupt
regional increase in the period of excitation occurring as a bifurcation. We study factors
determining spatial distribution of excitation periods of anchored spiral waves, and discuss
consequences of such dynamics for cardiac arrhythmias and possibilities for experimental tests
of our predictions.

1 Introduction

Contraction of the heart is initiated by the propagation of electrical waves of excitation.
Electrical waves propagating through the heart belong to a large class of nonlinear waves which
are widely studied theoretically in reaction-diffusion systems. One of the most important
phenomena in such systems is the existence of vortices in the form of spiral waves of excitation.
Spiral waves were found in a variety of nonlineair excitable media. In physicochemical systems,
they have been observed in oscillating reactions [I50} [158] and heterogeneous catalysis [59, 3].
Biological examples of such media include spiral waves of cAMP during morphogenesis of
Dictyostelium discoideum amoebae [38],[129], spiral waves of spreading depression in retina and
in cortical tissue [42], calcium waves in Xenophus oocytes [(0, 27] and spiral waves in cardiac
tissue [0, 21, 22]. In the heart, spiral waves underlie life threatening cardiac arrhythmias.

One of the most important scientific questions for applications is to understand the mech-
anisms of initiation of spiral waves, i.e. of cardiac arrhythmias. Another important question
is to find factors underlying their dynamics, as they are directly related to the type of cardiac
arrhythmia [44, 45]. It turns out that heterogeneity of cardiac tissue is important in the
answer to both questions.

It was shown that heterogeneity substantially affects the dynamics of spiral waves. For
example, spiral waves can drift because of heterogeneity [29] (1l 44, 45, [138]. Such drift can
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explain the onset of arrhythmia with periodically varying electrocardiogram (ECG), called
torsades de pointes [I, 2], or an arrhythmia with nonperiodic ECG: a polymorphic ventricular
tachycardia [44] [45].

Regarding the onset of spiral waves, it was shown that wave propagation at heterogeneities
can be temporarily blocked [73], 69], and that such a pattern can evolve into spiral waves.
The process of wave blocks and spiral wave formation in the presence of heterogeneity was
studied in various modeling studies [102} 110} 11T, [4) 67, [66]. These studies showed that in
order to be able to generate a 2D spiral wave, the heterogeneity should have a substantial
size, comparable to the wavelength of the spiral wave [102].

Most of the listed studies were performed using generic models of cardiac tissue and
by using generic types of heterogeneity, as data on real heterogeneities, for example in the
human heart, were not available. Recently, measurements of heterogeneity in the human
heart were performed [40]. Interestingly, in many cases the size of the heterogeneity was
small. The possibility of formation of spirals, and the dynamics of spiral waves around such
heterogeneities was not addressed, even at the generic level.

The aim of this chapter is to study effects of heterogeneity of realistic size and value on
the onset of spiral waves using the TP06 model [I39] for human cardiac cells. We also study
dynamics of spirals waves around such heterogeneities. In particular, we model heterogeneity
similar to that measured by Glukhov in [40]. We apply high frequency forcing and study if
spiral waves can be formed in such situation. We find that formation of spiral waves is possi-
ble. However, in all cases the created spiral wave will be anchored around the heterogeneity.
Further, we study dynamics of such anchored spiral waves and factors determining its dy-
namics by varying the size and value of the heterogeneity. We discuss possible mechanisms
of such dynamics and its importance for applications.

2 Materials and methods

Model - As in previous chapter, we used the ionic TP06 model for human ventricular tissue
[136, 139]. We refer to the materials and methods section of chapter 2 for more details.
Again, we used the default parameter settings from [139)] for epicardial cells. All parameter
changes made to obtain tissue heterogeneity are detailed in the text.

Numerical methods - For 1D and 2D computations, the forward Euler method was applied
to integrate Eq. . A space step of Az = 0.2 mm and a time step of At = 0.02 ms were
used. To integrate the Hodgkin-Huxley-type equations for the gating variables of the various
time-dependent currents (m, h and j for Ix.; r and s for Iio; 2,1 and . for Ix,; zs for Ixs; d,
[y f2 and foass for Icar), the Rush and Larsen scheme [117] was used.

Anisotropy - In most of our simulations, the fibers are directed along the x-axis. In few
simulations we study effect of rotational anisotropy, in that case the diffusion matrix is given
by

D,y = Dy, cos? 0 + Dy sin® 6 |
Dyy =Dy, =0, (3.1)

with 0(y) = 4(62 — 61) + 61. Here d is the distance between epicardium and endocardium,
61 = —60°, 6 = 60°, Dy, = 0.128™% and Dy = Dy /4.
Heterogeneity - To study heterogeneity, we change the ionic conductances Gks, Gk: and Gcar,
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ms,

cells in [I139]. Typical profile of heterogeneity is shown in Fig. Spiral wave dynamics for
homogeneous cardiac tissue is shown in Fig.[3.2JA. We see that it has a circular core and shows
stationary rotation. Fig. shows dynamic APD restitution curve for the homogeneous
tissue (red) and inside the heterogeneous tissue configuration used as a baseline model (black).
We see that inside the heterogeneity the restitution curve has more shallow slope (maximal
slope of 0.9 for the black line compared to 1.1 for the red line).

from their default values 0.392 nS/pF, 0.153 nS/pF and 3.980 x 107> CIEF for epicardial

300 320 340 360
- .

1 1

(-

Figure 3.1: APD distribution in cardiac tissue simulated numerically in TP06 model
[136), 139]. Total size of the medium is 60 mm x 20 mm. Colormap shows APD in ms.
Max. APD=359.5 ms, min. APD=290 ms. Size at 50% heterogeneity is 11.2 mm on 5.6
mm. Which is comparable to heterogeneity measured in the human heart [40]. In black,
we show the size of the heterogeneity.

Pacing protocol - External pacing was performed by applying a current of 15 uA/mm? for 1
ms for cells located in a rectangular region of 60 mm x 1 mm at the bottom of the medium
(e.g. see Fig. [3.3A).

FElectrocardiogram - To calculate the ECG, we used the formula for the potential from [1]:
® = > 0V/0x;0/0xi(%), where Y- denotes the summation over all points of the numerical
grid, i=1,2 is the index for the coordinate axes and R is the distance from a lead to the point
of the heart where 0V /0z; is evaluated.

3 Results

3.1 Baseline model

Fig. shows our baseline tissue configuration. It is qualitatively similar to heterogeneity
of the human ventricular tissue measured in [40]. In particular, the maximal and minimal
values of APD are approximately the same and the size at 50 % heterogeneity in both cases
is around 10 mm x 6 mm. The exact underlying reason of the APD difference in [40] was not
studied. However, as for the case of other APD heterogeneities between cardiac cells studied
experimentally in [127) [128] it can be achieved by changing Ik, and ks conductances. In our
case we did it by setting Gxs = 0.3751 nS/pF, Gk, = 0.1532 nS/pF outside the heterogeneity
and Gks = 0 nS/pF, Gk, = 0.0948 nS/pF inside the heterogeneity. These values were initially
estimated using an approach we developed earlier [25].

In the first series of simulations, we studied behavior of waves around the heterogeneity
at high frequency pacing. We paced the medium from below with increasingly smaller pacing
periods. We started with a pacing period T' = 400 ms. After 10 stimuli, this pacing rate was
decreased with 10 ms, and so on. We observed the following changes in the wave patterns
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Figure 3.2: Spiral wave and restitution curve in human cardiac tissue. A: A spiral wave in
homogeneous epicardial tissue. White lines shows the tip trajectory. Total size of the
medium is 40 mm x 40 mm. B: Dynamic APD restitution curve. In black the restitution
curve for a cell located at the centre of the heterogeneity shown in Fig. In red (grey)
the restitution curve for a cell located outside the heterogeneity.
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Figure 3.3: Wave propagation at pacing rate T' = 380 ms. White line shows size of the het-
erogeneity. Time interval between A and B is 40 ms, between B and C it is 240 ms.

(we also refer to supplemental Movie S1, available via the online version of [24]).

For relatively slow pacing rate (period T' > 290 ms), the effect of heterogeneity on wave-
front is small (Fig. and Fig. [3.3B) and its only influence is longer repolarization time

(Fig. 3.3C).

For pacing periods in the interval T' < 290 ms, we see the formation of two breaks
(Fig.[3.4]A) which penetrate into the heterogeneity from above (Fig. and Fig.[3.4C) as in
classical mechanisms for spiral wave initiation [73, [102]. However, the size of the heterogeneity
is too small, and there is not enough room for the onset of spiral waves via this mechanism. If
the pacing period becomes faster than 270 ms, the wave cannot penetrate the heterogeneity.
So we get a classical Wenckebach 1:2-block at the heterogeneity (see Fig. . Again, no

-80 -60 -40 -20 0 20 mv
I ]
A B C

- - -

Figure 3.4: Wave propagation at pacing rate 7' = 280 ms. A: Formation of two breaks at
pacing rate T'= 280 ms. B and C: The breaks enter the heterogeneity from above. Time
interval between the frames is 20 ms.
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Figure 3.5: Wave propagation for pacing rate T' = 260 ms: the breaks cannot penetrate
the heterogeneity. We get a classical Wenckebach 1:2-block at the heterogeneity. Time
interval between the frames is 40 ms.
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Figure 3.6: Wave propagation at pacing rate T' = 240 ms (A) and T' = 230 (B) and (C).
Time interval between A and B is 480 ms; between B and C 460 ms.

spirals are formed. Thus we conclude that due to small size of the heterogeneity, we do not
observe spiral wave formation at the heterogeneity via a classical mechanism as in [73].

However, if we further increase the frequency of stimulation, we find that the effect of
heterogeneity on waves spreads to the boundary of the medium (Fig. . In particular, at
some stage, stimulation of the medium produces a wave consisting of two disjoint wavebreaks
(Fig. A). Further increase in frequency of stimulation increases the gap between the wave-
breaks (Fig. ). Because the heterogeneity was not centrally located, such increasing gap
eventually results in the disappearance of the left break. Interaction of the right break with
the heterogeneity eventually leads to a clockwise rotating spiral wave (Fig. ). After this,
the picture becomes self-reproducing: a rotating wave interacts with external forcing and
reproduces itself after each next stimulation. If we stop external stimulation at this stage,
we get a single spiral wave rotating around and anchored to the heterogeneity. We note that
the direction of rotation of the spiral wave is not necessarily the same as for Fig. B.7C, see
also section It depends on the interaction of the right break with the heterogeneity, on
the moment of time when we stop external forcing and on the recovery pattern of the tissue
around the heterogeneity .

We performed several simulations following this protocol and we always found, after we

-80 -60 -40 -20 0 20 mv
[ N
C

Figure 3.7: Wave propagation at pacing rate T' = 220 ms. A: Single break formation; B and
C: Formation of a single spiral wave rotating around and anchored to the heterogeneity.
Time interval between A and B is 320 ms; 120 ms between B and C.

39



CHAPTER 3. INITIATION AND DYNAMICS OF A SPIRAL WAVE AROUND AN
IONIC HETEROGENEITY IN A MODEL FOR HUMAN CARDIAC TISSUE

o

ms 20 ms 40 ms

100 ms 120 ms

"
l
f

w N — o
o N o o
S o 1) 3
'3 3 13 o

160 ms _1_8_0 ms

260 ms 280 ms

(4

\

380 ms

w
N
o
3
n

340 ms

"
2 |

400 ms

660 ms 680 ms

o u I
l.b o © I
o o o
3'3‘ 3
2] [} wn

)

Figure 3.8: Rotation of spiral wave anchored around heterogeneity of Fig. Figures
show wave pattern at 20 ms intervals. White line shows size of the heterogeneity.

stopped the stimulation, either disappearance of spiral waves or a single spiral wave rotating
around the heterogeneity. We conclude that at heterogeneities similar to those measured by
Glukhov in [40], a spiral source can be generated and these spiral sources will be anchored
to these heterogeneities. Our next step is to study the dynamics of such anchored excitation
source.

Fig. [3.8| shows typical dynamics for a spiral wave rotating around the heterogeneity. The
first figure (time=0 ms) shows such phase of rotation when the heterogeneity is in the re-
fractory state. The spiral rotates around it as around an inexcitable obstacle (0-200 ms).
However, after some time, the refractory state at the heterogeneity ends and it becomes ex-
citable again. Now the spiral can enter this region (around time=220 ms). Subsequently, the
wave will exit the heterogeneity and will join with the wavefront of the spiral wave (time=260
ms). After this, the process is repeated.
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Figure 3.9: Period of excitation of the medium for spiral wave dynamics shown in Fig.
Figure shows average value of period in each point over 15 excitations. Period inside the
heterogeneity (7%) is approximately 360 ms. Period in the other part of the medium (77})
is around 240 ms.
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Figure 3.10: Period of excitation versus APD. A: T; and T5 versus APD outside the heterogene-
ity: we alter Gks and Gk, outside the heterogeneity. B: 17 and 75 versus the maximal
value of APD inside the heterogeneity: we alter Gks and Gk, inside the heterogeneity.

3.2 Periods

Let us characterize the process of rotation of a spiral wave in these conditions, i.e. for an
anchored spiral wave around a heterogeneity, as in Fig. In Fig. [3.9] we show the period
of excitation in each point of the medium.

We see two distinct values for the period: T5=360 ms at/around the heterogeneity and
T1= 240 ms in other parts of the tissue. We also see that the longer period region mainly
coincides with the heterogeneity. Let us study the factors which determine these two values
of the period.

We first change Gks and Gg, outside the heterogeneity, keeping the same values inside
it. As in the previous case, we generated a spiral wave rotating and anchored around the
heterogeneity and found period of excitation in the medium. Fig. shows the values of
the period inside (73) and outside (77) the heterogeneity vs APD outside the heterogeneity.
We observe a gradual increase of 17 with increase of APD. We also see a slight increase of
the period inside the heterogeneity. This is due to effect of the surrounding tissue on the
heterogeneity properties: value of APD inside heterogeneity slightly increases when APD
outside is increased, because of electronic effects [119].

We also altered Gkg and Gk, inside the heterogeneity, keeping the same values outside.
The results are shown in Fig. and[3.11] We see that the period outside the heterogeneity
(T1) is almost unchanged. The period inside the heterogeneity (T%) is severely affected by
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Figure 3.11: Period of excitation of the medium for spiral wave dynamics anchored
around a heterogeneity with different maximal APD values. The ionic prop-
erties of the cells inside the heterogeneity were changed, resulting in different maximal
APD values. The size of the heterogeneity is kept constant and the same as in Fig. [3.1
Total size of the medium is 60 mm x 20 mm. Outside the heterogeneity we have in all
cases: Gks = 0.3751 nS/pF, Gk, = 0.1532 nS/pF. Parameter values inside the hetero-
geneity were in A: Ggs = 0.1226 nS/pF, Gk, = 0.1532 nS/pF. B: Gks = 0.0981 nS/pF,
Gkr = 0.1532 nS/pF. C: Gks = 0.0736 nS/pF, Gk, = 0.1532 nS/pF. D: Gks = 0.049
nS/pF, Gk, = 0.1532 nS/pF. E: Gks = 0.0421 nS/pF, Gk, = 0.1532 nS/pF. F:
Gks = 0.0368 nS/pF, Gk, = 0.1532 nS/pF. G: Gks = 0.0245 nS/pF, Gk, = 0.1532
nS/pF. H: Gks = 0 nS/pF, Gk, = 0.1149 nS/pF. I: Gks = 0 nS/pF, Gk, = 0.0948
nS/pF. J: Gks = 0 nS/pF, Gk, = 0.0479 nS/pF.
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this change. For a small AAPD (Fig. [3.11]A-D), we do not observe two clear distinct values
of the period. Spatially in this case, we have a large region around the heterogeneity with
slightly increased period. For large heterogeneity, APDy,.x > 340 (Fig. —J ), we have a
typical two-period distribution similar to that of Fig. We also observe a clear bifurcation:
an abrupt change in 75 around APD,,.x =~ 340 (Fig. [3.10B).

3.3 Period increase bifurcation

Bifurcation in the period of excitation obviously results in a change of the wave propagation
pattern. If we consider two successive points where the spiral wave tip enters the hetero-
geneity, we observe the following dynamics before and after the period jump. For smaller
heterogeneity (Fig.[3.11]A), the wave tip makes a rotation of about 380 degrees before enter-
ing the heterogeneity again. To show it in Fig. [3.11]A-D, we marked by black and red arrows
the entry points of the wave into the heterogeneity for two successive rotations (first black,
then red). For larger heterogeneity the rotation is about 390 degrees (Fig.|3.11B). Thus ro-
tation angle increases when we increase heterogeneity. However, at the bifurcation point, it
approaches 400 degrees and then it jumps to about 540 degrees, which results in an abrupt
period increase.

We also found that this bifurcation only occurs in a limited range of size of the hetero-
geneity. Fig. shows results similar as to Fig. [3.10B, but now with different sizes of the
heterogeneity: we increased the size respectively 1.2, 1.5, 1.7 and 2 times. We see that in
Fig. B:12]A, B and C, we have qualitatively the same bifurcation as in Fig. [3.10B. However,
the location of the bifurcation on the APD axis slightly increases with the size of the hetero-
geneity. The amplitude of the jump first also slightly increases (Fig. [3.10B, Fig. [3.12)A, B),
then decreases (Fig. [3.12/C) and finally the bifurcation disappears (Fig. [3.12D).

Note that this bifurcation in period has a substantial effect on overall dynamics of the
system. Fig. shows how it is manifested on the ECG. We see that even tiny changes
in the extent of the heterogeneity results in ECGs of very different type: ECG with gradual
amplitude variation as in Fig. [3.13/A, which is reminiscent of torsades de points (before the
bifurcation point) and ECG with large beat-to-beat variations in amplitude (after the bifur-
cation), see Fig. . We also see substantial shift in the secondary peaks in the Fourier
transforms of ECG before and after the bifurcation, which indicates the recorded change in
Ts.

3.4 Modifications of baseline model

So far, we have studied the process of spiral wave onset and period increase bifurcation for one
particular shape of heterogeneity, anisotropy and parameter set. Here we extend our study
to additional configurations.

In Fig. heterogeneity in APD was created by changing Gks and Gk, conductances.
A similar heterogeneity can be created by changing other parameter values. For instance,
another current which has a substantial effect on APD is Ic,;,. We have checked if our results
also hold for heterogeneity created by changing G,y instead of Gk,. In particular, we studied
a heterogeneity of the same elliptical shape as in our baseline model and used inside the value
Gear, = 6.766 x 1075 Tyt (an increase by a factor 1.7) and Gks = 0 nS/pF. Outside the
heterogeneity, we used the same parameter values as in our baseline model. This results
in a difference between maximal and minimal APD of 62 ms, which is comparable to the
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Figure 3.12: T7 and 73 versus the maximal value of APD inside the heterogeneity for
different sizes of the heterogeneity. In A: the axes of the heterogeneity are 1.2
times larger than in the basic model. B, C, and D: axes are 1.5, 1.7 and 2 times larger.

heterogeneity shown in Fig.

We performed the same simulations as we did for our baseline model. First, we studied
behavior of waves around the heterogeneity at high frequency pacing. The results are shown
in the supplemental Movie S2 (see online version of [24]) and in Fig. (upper panel). In
Fig. [3.14]A, we see the formation of wavebreaks which cannot penetrate the heterogeneity,
as in Fig. Again, if we further increase pacing rate, we observe that the size of the
heterogeneity increases: the effect of heterogeneity spreads to the boundary of the medium
(see Fig.[3.14B). Similar to Fig. [3.7)it results in complex patterns of excitation, and eventually
in the formation of a single clockwise rotating spiral wave anchored to the heterogeneity (see
Fig. and D).

Next, we did the same analysis of the period of excitation for the spiral wave anchored
to the heterogeneity, as for the baseline model. We found similar results: two distinct values
of period for different parts of the tissue (75 ~ 370 ms inside the heterogeneity, 77 ~ 240
ms outside the heterogeneity). We also studied if we have a similar bifurcation as for the
baseline model. For that, we varied Gks inside the heterogeneity, and measured the period
of excitation. The results are shown in Fig. [3.I5]A. We observe a clear bifurcation, similar to
that of Fig. [3.10B.

In the second series of simulations, we changed the shape of the heterogeneity from an
ellipse to a circle which has approximately the same area. We used the same parameter
values inside and outside the heterogeneity as for the baseline model, resulting in the same
difference between maximal and minimal APD as in Fig. We also studied behavior under
high frequency pacing: see supplemental Movie S3 and Fig. (middle panel). Again, we
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Figure 3.13: ECG and corresponding Fourier-transform. A: ECG for the heterogeneity as in
Fig. 3.1ID. B: Fourier-transform of this ECG profile. We see two dominant periods
corresponding to 77 and T5. C and D: ECG and Fourier-transform for heterogeneity as
in Fig. B.IIE. Again, we find the two dominant periods 77 and T5. ECG calculations
are based on the infinite medium potential approximation as described in the materials
and methods section.
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Figure 3.14: Spiral wave initiation under high frequency pacing. Upper panel: heterogeneity
is created by changing Gcar, = 6.766 x 107° mCsIEF and Gks = 0 nS/pF. A: Formation of
wavebreaks (7' = 260 ms). B: Wavebreak dynamics under higher pacing rate (7' = 250
ms). C and D: formation of a single spiral wave rotating around and anchored to the
heterogeneity. Middle panel: simulations for a circular heterogeneity with radius 4.5
mm. Parameter values inside and outside the heterogeneity are the same as for the
baseline model. E: T' = 260 ms, F: T' = 240 ms. G and H: spiral wave anchored to the
heterogeneity. Lower panel: similar simulations for model with rotational anisotropy
(details are in the text). Parameter values inside and outside the heterogeneity are the
same as for the baseline model. I: T = 260 ms, J: T = 240 ms. K and L: spiral wave
anchored to the heterogeneity.

get the formation of a single clockwise rotating anchored spiral, created as a result of similar
processes (compare Fig. [3.14A-D with Fig. [3.14E-H).

We found similar results for period of excitation: two clear distinct values (7% ~ 360
ms and 7} ~ 240 ms) for other parts of the tissue. We also varied Gks and Gk, inside the
heterogeneity (Fig.|3.15B). Again, we observe two regimes indicating the bifurcation.

Finally we studied the possible effect of rotational anisotropy on our results. This because
the measurements of heterogeneity in [40] were performed in a transmural wedge of the left
ventricular free wall. It is known that the direction of the fibers is not constant along a
transmural wedge: the fibers rotate counterclockwise from endocardium to epicardium. At
the endocardium the angle between the fibers and the x — y plane is around —60°; at the
epicardium it is around 60° [I32]. Therefore, we studied if such fiber rotation might have
an effect on our results. We refer to the method section for the diffusivity matrix under
rotational anisotropy. The distance d between epicardium and endocardium was in our case
20 mm. Again, we performed the same simulations as in previous situations. We used the
same elliptical shape of the heterogeneity as in our baseline model, and the same parameter
values inside and outside the heterogeneity, as in Fig.[3.1] This results in a difference between
maximal and minimal APD of 62 ms. We refer to the supplemental Movie S4 and lower panel
of Fig. for the results under high frequency pacing. We observe similar behavior as in
our other situations. However, the direction of the resulting spiral wave is now opposite to
previous simulations.

For the period of excitation we also find two clear distinct values (T3 ~ 360 ms and T} ~
240 ms) for different parts of the tissue. By changing Gks and Gk, inside the heterogeneity,
we find a similar bifurcation pattern as in Fig. [3.10B (see Fig. ).
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and T, versus the maximal value of APD inside the heterogeneity. A:

Simulations in which APD inside the heterogeneity was changed by changing Gks at

Gear, = 6.766 x 107°

cm

el B and C: Same simulations as for the baseline model in

Fig. [3.10B, but now with a circular shape of the heterogeneity, respectively rotational
anisotropy.
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4 Discussion

In this chapter, we study possible effects of small sized heterogeneities, similar to those found
in human cardiac tissue, on initiation of spiral waves and their dynamics. We found that new
spiral waves can be formed even on a small heterogeneity with a size around 1 cm. However,
initiation of these new sources involves not only break formation as in classical mechanisms
[73, [102], but also interaction of wavebreaks with other upcoming waves, which eventually
results in the formation of a single spiral wave anchored around the heterogeneity.

Previous studies, of the TP06 model [I39], show that slopes of the restitution curves, cor-
responding to parameter values used here, do not result in the onset of dynamical instabilities
leading to breakup. We have also performed a simulation in a medium without heterogeneity
and did not observe any dynamical instabilities there.

In our simulations spirals are initiated by the complex interaction between the wavebreaks
and the heterogeneity. In particular, the heterogeneity in our simulations was not located in
the centre of the tissue. This breaks the symmetry of our model. Because of a successive
increase in distance between the generated wavebreaks, one of the wavebreaks eventually
disappears at the boundary, leading to the formation of a spiral wave. Thus, formation of
a single spiral wave here does depend on initial asymmetry, which however is likely to be
present in any realistic setup.

We studied the dynamics of these anchored spiral waves. We found that in such systems
we have two distinct values of the period of excitation: one inside and one outside the het-
erogeneity. We show that each of these periods is mainly determined by properties of cardiac
tissue at the corresponding region: an increase of the refractory period results in an increase of
the period. The ratio of these periods is not given by an integer number. At first glance, this
contradicts the classic view of excitation of heterogeneity by Wenckebach [147], who showed
that at fast pacing rate, block of excitation at the heterogeneity results in an integer ratio
in period of excitation inside and outside of the heterogeneity. Note, however, that in our
case the wave enters the heterogeneity at different places, which results in the existence of
non-integer ratio’s of periods of excitation. A similar effect in 3D was found in [100], where it
was shown that in a 3D heterogeneous medium, the ratio is not given by an integer number.

We found that the increase in period inside the heterogeneity, when we increase the extent
of heterogeneity, is not gradual: we find a bifurcation point. At this bifurcation point, the
period suddenly increases around 1.3 times.

The mechanism of this bifurcation is still under investigation. It is not trivial and involves
interplay of several factors, such as heterogeneity size, heterogeneity value and relation of the
refractory periods and the rotation time of the wave around the heterogeneity. In a very
simplified way, the jump in period can be explained in the following way. The heterogeneity
can be excited when the refractory period inside the heterogeneity ends. However, the re-
fractory period depends on the history of wave propagation through the heterogeneity, as is
schematically shown in Fig. 3.I6A.

If the wave enters the heterogeneity at point X, its front will have successive positions
marked as line 1, 2 and 3. Wave propagation will thus have an effect on the spatial distribution
of the recovery time. Indeed, the refractory period will first end at point X, and then at lines
1, 2 and 3. This is because points at line 1 were excited later than at point X and thus will
recover at a later time. Let us now consider rotation of a wave around such heterogeneity and
assume that the tip of the spiral wave first enters the heterogeneity at point X. It will follow
the boundary of the heterogeneity as shown by a red arrow in Fig. and the wave will
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Figure 3.16: Schematic explanation of mechanism behind the bifurcation. A: Wave propa-
gation through the heterogeneity after it enters it at point X. B: Rotation of a wave tip
around the heterogeneity. The wave follows the boundary of the heterogeneity along
the red arrow. The wave enters the heterogeneity again in the region around point X.
C: Same as B, but now in the case of longer refractory period inside the heterogeneity.
The wave enters the heterogeneity after making an extra half rotation in comparison
to B, because of increased heterogeneity.

be able to enter again when the tissue at the tip location is recovered. For a heterogeneity
with a longer refractory period this will take a longer time. The tip will thus make a rotation
over an increasingly larger angle, as we saw in Fig. which results in a gradual increase
of the period T5. However, if the value of the refractory period at the heterogeneity grows,
the wave, even after coming back to the region around point X, will not be able to enter the
heterogeneity, as the tissue is still not recovered there. In that case, the tip has to travel
further to line 1. However, at line 1 the tissue will recover later than at point X and the wave
will not be able to enter the heterogeneity there as well. The reason for this is, as discussed
above, that the wave tip propagates along the same trajectory as the wave which made the
heterogeneity refractory at the previous excitation. This effect will disappear after making
an additional half rotation (see Fig. [3.16C).

Such simple schematic consideration can explain the onset of bifurcation in Fig. [3.10B,
and even predict that after the bifurcation the tip of the spiral has to make 1.5 rotation
around the heterogeneity before entering it. However, this consideration is, in many aspects,
oversimplified: it does not take into account about many other important effects, for example
the possible difference in velocity of the wave inside the heterogeneity and the wave tip outside
the heterogeneity. It also does not consider the effects of wavefront curvature etc. As a result,
in reality the wave can make a rotation slightly more than 360 degrees (the bifurcation occurs
at a rotation angle of around 400 degrees). Also, the jump is slightly less than 1.5 rotation (in
reality it is 1.44). Finally, such simple consideration cannot explain the disappearance of the
bifurcation for larger sizes of the heterogeneity as shown in Fig. 3.12]D. For a heterogeneity
of larger size, the pattern of rotation of the wave around the heterogeneity changes: instead
of rotating around it, the wave tip periodically propagates through the heterogeneous region
and is not anchored to it anymore, as we saw in Fig. |3.8

We checked that our results on the dynamics of a spiral wave around a heterogeneity are
general, and also hold for heterogeneities of different size, shape and induced by modification
of different parameters of our model. Our results are also valid for tissue with rotational
anisotropy.

Experimental studies which are somewhat similar to situations studied in this chapter
were performed in [13]. In that paper, the authors studied wave dynamics in the presence of
a heterogeneity of 0.8 cm x 0.8 cm in a rabbit heart. After giving several premature stimuli,
they observed that wavebreaks were formed at the place where the heterogeneity was located.
After further pacing, they observed the formation of two counterrotating waves of which
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only one survives resulting in a single spiral wave rotating around the heterogeneity, as in our
study. Unfortunately, the authors did not measure spatial distribution of period of excitation.
However, dynamics look close to what we observed, as the authors saw breakthrough in the
heterogeneity, as well as the rotation of a spiral wave around it.

Compared to other modeling studies [I} 102} 2], the main effects of heterogeneity on spiral
wave dynamics in our study, is its anchoring effect and not drift along the heterogeneity
boundary. We also get a torsades de pointes like ECG and an ECG reminiscent of polymorphic
tachycardia. However, in our case it is a result of a different frequency of excitation of tissue
inside and outside the heterogeneity and not a result of shift of the excitation source in space.

Note that anchoring of spiral waves in 2D and scroll waves in 3D was the subject of
intensive study [22, 142, 152, 81, 156, 131]. However, in all these cases the spiral waves
were anchored around inexcitable regions in 2D or 3D. Here we show that a heterogeneity
which is excitable can also anchor spirals. Compared to anchoring around an inexcitable
obstacle, anchoring here results in more complex dynamics because of a direct influence of
the heterogeneity on wave rotation.

Dynamics of waves in the presence of large non-conducting and ionic heterogeneities was
studied in [124]. It was shown that dynamics of waves, including anchoring, is dependent on
the location of the heterogeneity in the tissue.

Finding the bifurcation described in this chapter in an experimental study might not be
easy, as it requires a gradual change of the extent of heterogeneity, which is difficult to obtain
in experiments at the whole organ level. However, it might be possible to use cell cultures of
neonatal rat ventricular myocytes, such as in [12, [14], where heterogeneities of various form
and size can be created. Further gradual changing of the extent of the heterogeneity can be
achieved by application of drugs changing the refractory period of cardiac tissue.
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Small size ionic heterogeneities in the human heart
can attract spiral waves

Abstract

Spiral waves occurring in the heart underlie the mechanisms of cardiac arrhythmias. Answer-
ing the question whether or not the location of spirals is related to local properties of cardiac
tissue has important practical applications. This is because ablation of spirals has been shown
to be an effective way to fight cardiac arrhythmias. In this study, we investigate, in silico,
the dynamics of spiral waves in 2D and in an anatomical model of human ventricles using
a TNNP model for ventricular cells. We study the effect of small size ionic heterogeneities,
similar to those measured experimentally. It is shown that such heterogeneities can not only
anchor, but can also attract spiral waves rotating at a substantial distance from the hetero-
geneity. This attraction distance depends on the extent of the heterogeneities and can be as
large as 5-6 cm in realistic conditions. We conclude that small size ionic heterogeneities can
be preferred localization points for spirals, and discuss their possible mechanism and value
for applications.

1 Introduction

Sudden cardiac death is the largest cause of mortality in the industrialized world, accounting
for more than 400000 deaths per year in the United States alone [4I]. In most of the cases it
occurs as a result of cardiac arrhythmias. Therefore, it is important to study the mechanism
of initiation of cardiac arrhythmias, factors affecting arrhythmia initiation and dynamics,
and to find new ways to manage them. These phenomena are studied using a wide variety of
methods, including experimental and clinical research as well as computer modeling.

One of the most important mechanisms of arrhythmias are reentrant sources of excitation,
which may form spiral waves. Spiral waves were first predicted in modeling studies [121], and
then discovered experimentally [0, 22]. Recently, they have attracted a lot of attention, as
clinical studies by the group of Narayan showed that identification and ablation of these spirals
can result in termination or slowing of atrial fibrillation (AF) [88,[89]. Similar research is being
done in the ventricles [51]. Thus, factors which determine the formation of spiral waves and
the possible position of spirals in the heart are of great practical interest. Therefore, it is of
paramount importance to know whether the final position of the spiral wave is affected by
specific local properties (substrate) of cardiac tissue.

From a general point of view, prevalence of a spiral at a specific position can be the result
of the formation of a spiral at a given place, or it can be due to some process which brings
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the spiral wave from one location to another, and stabilizes it there. It is well known that a
spiral can be locally stabilized due to anchoring to an inexcitable obstacle [104}, 22} 103, 133],
i.e. process when a spiral wave attaches to the boundary of such an obstacle. Later, it
was shown that spirals can anchor to other types of heterogeneities: ionic heterogeneities
[123, 122], blood vessels [140], pectinate [152] and papillary muscles [68]. And in [13] 155
it was shown that spirals can be anchored to regions of prolonged APD (created through
regional cooling) in the rabbit heart. Due to subsequent collision with the boundaries a spiral
wave could also be eliminated [I55].

In this chapter, we investigate in silico the possibility for anchoring of a spiral wave at
ionic heterogeneities of realistic size and shape, similar to those measured in the ventricles
of the human heart [40]. We show that such small size ionic heterogeneities with prolonged
APD can anchor a spiral wave locally. Moreover, we find that these heterogeneities can also
attract spirals from a substantial distance (up to 5-6 cm), while inexcitable obstacles do not
show this property. We confirm this result both in simple geometries and in an anatomical
model of the human ventricles. In addition, we discuss the mechanism of this attraction and
its potential usage for removing spiral waves from the heart.

2 Materials and methods

Model - As in the previous chapters, we used the ionic TP06 model for human cardiac tissue
[136, 139]. We refer to the materials and methods section of chapter 2 for more details.
Again, we used the default parameter settings from [139)] for epicardial cells. All parameter
changes made to obtain tissue heterogeneity are enlisted in the text.

Numerical methods - The diffusion tensor is given by

Dij = (D1, — Dr)7mi7j + Drdyj (4.1)

with d;; the Kronecker delta and 7; a normalized vector oriented along the fibers.

For 2D computations, the fibers are directed along the x-axis (7 = (1,0)),
Dy, = 0.128 mm?/ms, and Dy = Dy /4.

For 3D whole heart simulations, we used an anatomical model of the human ventricles.
For a more detailed description, we refer to [135]. This model takes anisotropy into account
by reconstructing the fiber direction field described in [54]. We assume that the diffusion
coefficient across the fibers Dr is 4 times less than the diffusion coefficient along the fibers
Dy, which is set to 0.154 mm?/ms.

To solve the differential equations we used a finite difference approach. For 2D simulations,
we used a rectangular mesh of about half a million points, and for 3D simulations one million
points. To approximate the diffusion term, we used a stencil of 5 grid points for 2D and 17
points for 3D. We used an explicit first order Euler method to solve the discretized system,
which for 2D tissue is:

VmAti _ A1$2 S" W Vivirg g — Tion (Vigs- ) (4.2)
i'j!

where the time step is At = 0.02 ms, Az is the space step, and w;f,jj, are the weights correspond-
ing to the diffusion tensor at location 4, j. The space step is 0.2 mm for 2D simulations, and
0.5 mm for 3D simulations. To integrate the Hodgkin-Huxley-type equations for the gating
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variables of the various time-dependent currents (m, h and j for Ix,; r and s for I;,; =1 and
Ty for Ix,; x5 for Ixs; d, f, fo and fcoass for Icar), the Rush and Larsen scheme [117] was used.
Heterogeneity - To study heterogeneity, we changed the parameters Gks and Gx, from their
default values 0.3923 nS/pF and 0.153 nS/pF for epicardial cells in [I39]. For example, to
raise the action potential duration (APD) by 10 ms in single cell, it is necessary to decrease
Gks by 0.073 nS/pF and Gk, by 0.048 nS/pF. The APD is measured at 80% repolarization
level.

For our 2D simulations, we used four tissue configurations as shown in Fig. Fig.
is the same heterogeneity as modeled in the baseline model of [24]. Tt is qualitatively similar
to heterogeneity of the human ventricular tissue measured in [40]. In particular, the maximal
and minimal values of APD are approximately the same and the size at 50 % heterogeneity
(for APD=(minimal APD + maximal APD)/2) in both cases is around 1 cm by 0.6 cm. This
APD distribution is the distribution at tissue level when paced at a frequency of 500 ms,
which matches the APD distribution of the experimental preparations in [40] when paced
at the same frequency. Note that sizes for heterogeneities presented in [40] are the sizes of
regions isolated from the neighbors by a local APD gradient of 15 ms/mm. This algorithm
results in much smaller heterogeneity sizes by choosing the regions which are much closer
to the maximal APD values. In our research we estimate the size at 50 % heterogeneity,
because this, in our view, describes the heterogeneity better than a max APD region. The
exact underlying reason of the APD difference in [40] was not studied. However, as for the
case of other APD heterogeneities between cardiac cells studied experimentally in [127, [128)]
it can be achieved by changing the Ik, and Ixs conductances. In our case we did it by
setting Gk,=0.1532 nS/pF, Gk:=0.3923 nS/pF outside the heterogeneity, and Gk,=0.0948
nS/pF, Gks=0.0 nS/pF inside the heterogeneity. These values were initially estimated using
an approach we developed earlier [25]. In Fig. , C and D we take the same values for Gk,
and Gks outside the heterogeneity as in Fig. [L.TJA, but different values for Gk, and Gks inside
the heterogeneity. This results in heterogeneities with different maximal APD value. Due
to electrotonic effects, the size at 50% heterogeneity remains the same. The latter probably
reflects the fact that in that parameter range, electrotonic coupling is linear with respect to
the amplitude of the heterogeneity.

In Fig. [4.2A, B, C and D, we present the action potential (AP) both in the center of the
heterogeneities (AP;) shown in resp. Fig. 4.1]A, B, C and D, as at a location outside these
heterogeneities (AP,). We see that in our case prolongation of APD inside the heterogeneity
is caused by the prolongation of phase 2 of the action potential which occurs as a result of
the decrease of Gks and Gxk..

To set up the heterogeneity in the whole heart, we used the following method. We first took
an intersection of the ventricles, parallel to the vertical axis (see section (1), demonstrated
in Fig. and C). Next, we set up a region, with the shape of an ellipse in this plane.
We labeled the points inside this ellipse with the number Hy = H(0) = 10 and then let it
diffuse for 300 steps in the isotropic version of our whole heart model, using %—ZI = V2H with
Aa = 0.00008, and Az = 0.5 mm. As a final step, all points for which H(z) > 0.05, we
defined as being part of the heterogeneity. Unless stated otherwise, we use, in all the whole
heart models which contain a heterogeneity, the same initial ellipse as a starting configuration
for our diffusion based algorithm, with a major axis of 6.5 mm and a minor axis of 2.5 mm,
but each time located at a different position in section (1).
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Figure 4.1: A, B, C and D shows the APD distribution in cardiac tissue simulated nu-
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merically in a human cardiac tissue model. The total size of the medium is 4 cm x
4 cm. In black we show the size of the heterogeneity, which is the same for the four tissue
configurations. The colormap shows the APD in ms. In all four cases we set Gk, =0.1532
nS/pF and Gks=0.3923 nS/pF outside the heterogeneity, resulting in a min. APD=286
ms. In A we set Gk,=0.0948 nS/pF, Gks=0.0 nS/pF inside the heterogeneity, which
results in a max. APD=358.5 ms. In B we set Gk,=0.1532 nS/pF and Gks=0.0 nS/pF
inside the heterogeneity, which gives a max. APD=348.2 ms. In C we set Gk,=0.1532
nS/pF and Gks=0.1295 nS/pF inside the heterogeneity, which gives a max. APD=324.5
ms. In D we set Gk,=0.1532 nS /pF and Gks=0.2589 nS/pF inside the heterogeneity,
which gives a max. APD=304.2 ms. In all cases, this results in a size at 50% heterogene-
ity of 1.2 cm by 0.56 cm. This is comparable to heterogeneity measured in the human
heart [40].
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Figure 4.2: AP inside and outside the heterogeneity. Figure shows AP shape at the center of
the heterogeneities (AP;, red lines) and outside the heterogeneities (AP,, black lines) for
the heterogeneities shown in Fig. Parameter values for the subfigures A, B, C and
D correspond to those of Fig. [41]

3 Results

3.1 Ionic heterogeneities as attractors of spiral waves in 2D cardiac tissue

As an initial step, we generate a heterogeneity which has size and value similar to that
reported in experimental work by Glukhov [40]. We study its effect on a spiral wave, which
is originally located at some distance from the heterogeneity (for more details, we refer to
the materials and methods section and to Fig. [4.1)A). Fig. m shows typical dynamics of a
spiral wave in a 2D medium with such a heterogeneity. In particular, we initiate a spiral
rotating in the center of the medium and position the ionic heterogeneity at a distance of 4.1
cm from the center (the distance along the x-axis to the center is the same as the distance
along the y-axis). We then simulate for 10 s, and investigate the influence of the ionic
heterogeneity on spiral wave dynamics (we also refer to supplemental Movie S1, available
via the online version of [26]). At first, the effect of the heterogeneity on the spiral wave
rotation is small. We see that the spiral rotates at its initial position. At the heterogeneity,
we see the formation of two breaks which cannot penetrate into the heterogeneity and we
get a classical Wenckebach 1:2 block (see Fig. from 0 s to 1 s). However, for the next
rotation, the gap between the wavebreaks at the heterogeneity has become large enough, and
we observe formation of a figure-of-eight reentry pattern (time=1.36 s). The waves generated
by it propagate through the heterogeneity and interact with the wave generated during the
following rotation of the original spiral (time=1.4 s). As a result of this interaction, the figure-
of-eight reentry disappears. However, it reappears at the next rotations with the wavebreaks
at larger distance (time=5.3 s) and new reentry patterns now affect spiral wave rotation in a

55



CHAPTER 4. SMALL SIZE IONIC HETEROGENEITIES IN THE HUMAN HEART
CAN ATTRACT SPIRAL WAVES

larger region (time=5.41 s). This effect spreads and newly formed reentrant patterns approach
the center of the spiral (time=5.46 s, time=6.85 s, time=6.94 s). Their interaction with a
spiral tip eventually moves the core of the spiral to another location closer to the heterogeneity
(time=T7 s, time=7.18 s, time=7.24 s). This process is repeated again (time=7.3 s, time=7.42
s, time=7.49 s, time=7.57 s, time=7.79 s) and again (time==8.34, time=8.41 s, time=8.45 s),
and after this complex interaction, the spiral tip touches the heterogeneity and eventually
anchors at it (time==8.62 s).

time=0 s time=0.4 s time=0.56 s time=0.86 s time=1s

+60 mV

time=5.46 s

tme7|4 s 90 mv

Figure 4.3: Ionic heterogeneity attracts a spiral wave. The ionic heterogeneity is taken from
Fig. and is located at a distance of 4.1 cm from the center of the tissue. The white
line shows the size of the heterogeneity. Initially, the spiral rotates at the center of the
tissue (time=0 s). At time=8.62 s, the spiral wave anchors to the heterogeneity. The
subfigures show the intermediate wave patterns. More explanation can be found in the
text. The total size of the medium is 15 cm by 15 cm.
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We performed analogous simulations as described in Fig. where we vary the location
of the heterogeneity. We always start from a spiral wave located at the center of the medium
and investigate if the spiral will anchor around the heterogeneity after 10 s. The results
are shown in Fig. . Here, position (0,0) is located at the center of the medium. We
then move the heterogeneity along the x-axis (i.e. along the fibers), along the y-axis and
along the first bisector. The dots in Fig. show the location of the heterogeneity for a
certain tissue configuration. Black dots indicate an anchored spiral wave after 10 s, while no
anchoring occurred after 10 s for the red dots. We find that if we move the heterogeneity
along the fibers, it can attract spirals rotating within 6 cm or less, while perpendicular to
the fibers this distance decreases to approximately 4 cm. Along the first bisector it is around
5 cm. In all cases the process leading to the attraction and anchoring of the spiral wave at
the heterogeneity is similar to that of Fig. (or supplementary Movie S1). We refer to
supplemental Movies S2 and S3 where we show the process of attraction of a spiral when the
spiral is initially at a distance of 5.3 cm along the fibers and, resp., 3.7 cm across the fibers
from the heterogeneity. In both cases we see that at first wavebreaks are generated at the
heterogeneity. After a few rotations, the distance between these newly formed wavebreaks
increases and we observe the formation of a reentry pattern at the heterogeneity which start
to affect spiral wave rotation. In the same way as in Fig. a complex interaction between
newly generated spirals and the tip of the original spiral wave, shifts the spiral to a position
closer to the heterogeneity. This process is repeated, until the spiral eventually anchors at the
heterogeneity. The process of attraction is thus not a continuous process in which the spiral
slowly drifts towards the heterogeneity, but a stepwise process with a fluctuating component
in which the spiral is shifted due to a complex interaction with newly generated spirals, after
which we normally observe a phase during which the spiral stabilizes for a few rotations. After
that, the process of interaction between the spiral and newly generated spirals is repeated,
until the spiral is anchored to the heterogeneity.

Next, we study the influence of the degree of heterogeneity on the attraction and anchoring
of a spiral wave. We performed simulations similar to those of Fig. while changing the
APD distribution. This is done according to Fig. [I.I]A-D, and presented resp. in Fig. {.4A-D.
In Fig. —D (and resp. Fig. —D), the degree of heterogeneity is decreased to a AAPD
(= maximal APD - minimal APD) of resp. 72.5 ms (A), 62.2 ms (B), 38.5 ms (C) and 18.2 ms
(D). Note that the spatial size of the heterogeneity is kept constant. We find that the distance
for which the heterogeneity attracts the spiral wave decreases if the degree of heterogeneity
is decreased. Indeed, the distance along the fibers, for which it is possible to attract spirals,
decreases from 6 cm to 4.5 cm, 3 cm and 1.2 cm resp. (see Fig. —D). In all cases the
mechanism of attraction is similar to that described above. Note, that in Fig. [£.4B and C,
there are few points with no anchoring inside the anchoring zone: in B for a distance of 2.9
cm and 3.7 cm, and in C for a distance of 2.9 cm. If, however, we increase the simulation
time, the spirals anchor at these points as well (the extra time needed to achieve anchoring
at these points is 0.24 s, 2.4 s and 3.6 s, correspondingly).

To characterize a metric for the propensity for anchoring we have also studied the time it
takes for a spiral to anchor around a heterogeneity versus the initial distance and positioning of
the spiral wave, and extent of the heterogeneity (Fig. . In Fig. the spiral is positioned
at a certain distance from the heterogeneity along the fibers, in B perpendicular to the fibers
and in C diagonal to the fibers. We present results for the three largest heterogeneities shown
in Fig. (AAPD=72.5 ms in black, AAPD=62.2 ms in red and AAPD=38.5 ms in green).
We see that for most of the cases, if the initial distance of the spiral wave to the heterogeneity
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Figure 4.4: Region of attraction of an ionic heterogeneity. Figures A-D show final state of a
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spiral wave which is initially located at the center of the tissue (position (0,0)). Spirals
attracted and anchored to the heterogeneity after 10 s are represented by black dots, not
anchored states are represented by red dots. The horizontal resp. vertical axis shows the
distance of the heterogeneity to the center along the x-axis resp. y-axis. Figures A-D
present a different degree of heterogeneity, according to Fig. [.IJA-D, with a AAPD of
72.5 ms (A), 62.2 ms (B), 38.5 ms (C) and 18.2 ms (D). Simulations were performed in
a tissue with a total size of 15 cm by 15 ¢m and a duration of 10 s.
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is smaller, it takes less time for the spiral to anchor to the heterogeneity. The figure also
reflects a fluctuating component of the process.
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Figure 4.5: Time needed to anchor versus the initial distance between the spiral wave
and the heterogeneity. In A for a heterogeneity positioned at a given distance along
the fibers, in B perpendicular to the fibers and in C diagonal to the fibers. Black, red and
green dots show the results for the heterogeneity as in Fig. [f.T]A, B, and C respectively.

We also checked if our results are valid if we change the size of the heterogeneity, while
keeping the ionic properties inside and outside the heterogeneity the same. For that we
used the heterogeneity as shown in Fig. 4.1]A (Gk,=0.0948 nS/pF and Gks=0.0 nS/pF) and
performed the same simulations as in Fig. but now for a heterogeneity with a size which
is 50% less resp. 50% more than the original size. We refer to Fig. We find that both
heterogeneities are able to attract spiral waves from a substantial distance. As expected, the
region of attraction of the heterogeneity with a decreased size is smaller than that for an
increased size.
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Figure 4.6: Region of attraction of an ionic heterogeneity for different heterogeneity size.
Representation is the same as in Fig. In A and B the size of the heterogeneity is
decreased resp. increased by 50% compared to that of Fig. while keeping the same
ionic properties inside and outside the heterogeneity. In A this results in a max. APD of
343.3 ms and a size at 50% heterogeneity of 0.48 cm by 1.04 cm. For B this results in a
max. APD of 376.7 ms and a size at 50% heterogeneity of 0.68 cm by 1.4 cm. Min. APD
is not changed: 286 ms. Simulations were performed in a medium with a total size of 15
cm by 15 c¢m for 10 s.

In conclusion, we find that the ionic heterogeneities attract spiral waves from a substantial
distance and that this distance is substantialy affected by the degree of heterogeneity. We
also find that if the heterogeneity is located at a larger distance from the spiral wave, it takes
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longer for the spiral to anchor to the heterogeneity.

Both experimental [22], 104] and modeling studies [123] showed that spirals can anchor
to inexcitable obstacles. Therefore, we compared our results on anchoring of spirals at ionic
heterogeneities with the anchoring at inexcitable obstacles. We generate an inexcitable ob-
stacle with the same size as the ionic heterogeneities shown in Fig. and perform the same
simulation as in Fig. The results are shown in Fig.[4.7]and the supplemental Movie S4: we
find that the effect of the obstacle on spiral wave dynamics is very small. The spiral remains
rotating stationary at the center of the tissue and we do not see any wavebreak formation or
other important effects.

time=1.68 s time=1.7 s time=1.76 s time=1.86 s

+60 mv
- - ()
-90 mv

Figure 4.7: Inexcitable obstacle does not attract the spirals wave. The inexcitable obstacle
is located at a distance of 4.1 cm from the center of the tissue. The white line shows
the size of the obstacle. The effect of the obstacle on spiral wave dynamics is very small.
The total size of the medium is 15 cm by 15 cm. In the text, we further elaborate on
this result.

Next, we perform a similar series of simulations, where we start from a spiral rotating
in the center of the tissue and position an obstacle at similar locations as we did for ionic
heterogeneities (as in Fig. [4.4). We investigate whether the obstacle can attract and anchor
spiral waves. From Fig. [{.8] we see that the inexcitable obstacle can only anchor spirals if
it is located very close to it: along the fibers, the maximal distance for which it is possible
to attract spirals is around 2 cm, while perpendicular to the fiber direction it is around 0.5
cm. We performed the same simulations (not shown) for an inexcitable obstacle with a size
which is two times larger than the size of the obstacle used in Fig. and obtained the same
result: anchoring resp. no anchoring occured for the same locations of this obstacle as for the
original obstacle shown in Fig.

Comparing Fig. with Fig. £.4] we find that ionic heterogeneities, having an APD
difference which is large enough (in our case around 30 ms), can attract spirals rotating
within larger distances than an inexcitable obstacle of the same size: ionic heterogeneities
based on experimentally measured values can attract and anchor spirals rotating within 5-6
cm (see Fig. 4.4/A), while for an inexcitable obstacle of the same size this distance is only
around 1-2 cm.

3.2 Ionic heterogeneities as attractors of spiral waves in an anatomical
model of the heart

We performed similar simulations in an anatomical model of human ventricles. We initiated
a spiral wave in the left ventricle, containing an ionic heterogeneity as in Fig. We refer
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Figure 4.8: Region of attraction of an inexcitable obstacle. Representation is the same as in
Fig. 4] Simulations were performed in a medium with a total size of 15 cm by 15 cm
for 10 s.

to the materials and method section for more details on the heterogeneity. The size, maximal
and minimal APD are again comparable to heterogeneities measured in ventricular tissue in
[40] (see sections shown in Fig. and D) .

360
340
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280

Figure 4.9: An ionic heterogeneity in an anatomical model of the ventricles. The hetero-
geneity is located in the free wall of the left ventricle (purple). Outside the heterogeneity,
we set Gk,=0.1532 nS/pF and Gks=0.3923 nS/pF, resulting in a minimal APD=286 ms;
inside the heterogeneity, we set Gx,=0.0 nS/pF, Gks=0.0 nS/pF, which results in a max-
imal APD=354 ms. The colormaps in C and D show APD distribution in ms for the two
sections (1) and (2), through the middle of the heterogeneity, as illustrated in B. For C,
the size at 50% heterogeneity is 0.85 cm by 1.2 cm, and for D: 1.2 cm by 0.8 cm.

In Fig. we show the evolution of a spiral wave and the corresponding filament, both
in a homogeneous anatomical model (left panel) and in the heterogeneous model of Fig. |4.9
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(right panel). In both cases, we initiated a spiral at the same location, and followed its rotation
for 10 s. In the homogeneous model, we see that the spiral wave remains rotating stationary
at the place where it is initiated. In contrast, the spiral anchors around the heterogeneity in
the heterogeneous model, and continues to rotate around it for the rest of the simulation (we
also refer to the supplemental Movie S5). We see a slight shift of the filament if we compare
the initial and final location (see Fig. versus H) (as the heterogeneity is located close
to the initial location of the spiral, the shift is rather small in this case).

A B E F
C D G H

Figure 4.10: Evolution of a spiral wave in a homogeneous (left panel) and heterogeneous
(right panel) anatomical model of the ventricles. The ionic heterogeneity is
modeled according to Fig. We show the initial position of the wavefront (A, E) and
the corresponding filament (C, G). The position of the wavefront (B, F), resp. filament
(D, H) after 10 s is also shown. In the homogeneous model, the spiral remains rotating

stationary, while for the heterogeneous model, the spiral is attracted and eventually
anchored to the heterogeneity.

Now, we move this heterogeneity to different locations, while keeping its size and magni-
tude constant, in the free wall of the left ventricle and investigate if the heterogeneity attracts
the spiral waves from larger distances. In all cases the spiral has the same initial location as
in Fig. [1.10]

Firstly, in Fig. we show the results for two simulations with a heterogeneity located
close to the apex. In both simulations, we see that the spiral wave is attracted and eventually
anchored to the heterogeneity (see also supplemental Movie S6 and Movie S7 for the results
illustrated in the upper resp. the lower panel). The dynamics of this attraction are similar to
these in 2D cardiac tissue: at first, spiral wave rotation is not affected by the heterogeneity
and we just observe wavebreaks at the heterogeneity; later, the effect of the heterogeneity
on the waves spreads, and the gap between the wavebreaks increases; then the wavebreaks
start to affect spiral wave rotation, and due to complex interaction, its tip moves towards the
location of the heterogeneity, where it eventually anchors.

Secondly, in Fig. [f.12] we show the results for two similar simulations as in Fig. [{.11]
but now with a heterogeneity located close to the base of the ventricles. In the upper panel,
we see the same results as before: after some rotations, the spiral wave is anchored to the
heterogeneity (we refer to supplemental Movie S8). However, in case of the lower panel of
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B C
E F
Figure 4.11: Attraction and anchoring of a spiral wave by an ionic heterogeneity in an
anatomical model of the ventricles. The two models contain a heterogeneity (pur-
ple) of similar size as in Fig. but now located close to the apex. The ionic properties
inside and outside of the heterogeneity are the same as in Fig. [1.9] resulting in a minimal
APD=286 ms and a maximal APD=360 ms and 359 ms for the upper resp. the lower
panel. The colormaps in A and D shows the APD distribution in ms in section (1), (see
Fig. ) We show the position of the wavefront (B, E) and the corresponding filament

(C,F) after 10 s. In both models, the spiral is attracted and eventually anchored to the
heterogeneity.

280
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Fig. after approximately 5 s the spiral disappears.

A

360

B Cc
D E F

280

Figure 4.12: Attraction, anchoring and removal of a spiral wave by an ionic heterogeneity
in an anatomical model of the ventricles. The two models contain a heterogeneity
(purple) of similar size as in Fig. but now located close to the base. The ionic
properties inside and outside of the heterogeneity are the same as in Fig. [1.9] resulting
in a minimal APD=286 ms and a maximal APD=353 ms and 352 ms for the upper
resp. the lower panel. The colormaps in A and D shows the APD distribution in
ms in section (1) (see Fig. [£.9B). We show the position of the wavefront (B) and the
corresponding filament (C) after 10 s; and the result for wavefront (E), resp. filament (F)
after 5.03 s. In the upper panel, the spiral wave is attracted and eventually anchored to
the heterogeneity. In the lower panel, the spiral is attracted, anchored and eventually
removed because of interaction with the heterogeneity and the boundary of the left
ventricle.

We illustrate this process of removal of a spiral wave further in Fig. and in the
supplemental Movie S9. In Fig. we see that, similar to previous simulations, the spiral
is first attracted to the heterogeneity (from 0 s to 4.46 s), then, for one rotation (approximately
from 4.54 s to 4.82 s), the spiral wave is anchored to the heterogeneity. However, subsequently,
the tip of the spiral disappears at the top border of the left ventricle (around 4.82 s) and spiral
wave rotation ends.

Thus we observe that if the heterogeneity is located close to the boundary of the ventricle,
it can not only attract and anchor a spiral wave, but it can also eliminate it.

In the next series of simulations, we checked if our results also hold for heterogeneities of
different sizes. For this, we changed the size of the ellipse used as a starting configuration for
our diffusion based algorithm described in the materials and methods section. In particular
we decreased (see Fig. , resp. increased (see Fig. the size of this ellipse by 50%.
The ionic properties inside and outside the heterogeneity were the same as previously. When
positioned at the same location as the heterogeneity shown in Fig. we obtained a maximal
value of APD of 342 ms resp. 368 ms if we decrease resp. increase the size of the heterogeneity.
Minimal APD is unchanged and is 286 ms.

We have tried the same initial locations of both the spiral and the heterogeneities used
in Fig. and and obtained the following results for smaller and larger hetero-
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Figure 4.13: Removal of a spiral wave due to interaction with an ionic heterogeneity. An
ionic heterogeneity, as in the right panel of Fig. thus located close to the base of
the ventricles, can attract, anchor and eventually remove a spiral wave.

geneities. For the heterogeneity with decreased size at the location as in Fig. we again
observed attraction and anchoring of the spiral wave (results not shown). When we moved this
heterogeneity to the apex, as in Fig. .11 we did not observe anchoring of the spiral around
the heterogeneity after 10 s. However, after we shifted the heterogeneity approximately 9 mm
closer to the initial position of the spiral wave (see Fig. ), we again find that the het-
erogeneity can anchor and attract the spiral after 10 s (see Fig. [4.14D). For heterogeneity
locations close to the base, as in Fig. we found that the heterogeneity attracted and
anchored the spiral (see Fig. ) And if we move the heterogeneity even closer to the base
(see Fig. [4.14C), we observed that the spiral wave, as in Fig. was removed. However,
to remove the spiral in that case we needed a simulation time of 12.8 s, i.e. longer than the
5.03 s needed for that in Fig.

For larger sized heterogeneities, for all locations shown in Fig. and we
observed attraction and anchoring of the spiral wave, similar as for the heterogeneity of
original size. The only difference was that for the location closest to base (see Fig. [4.15C),
the removal of the spiral wave occurred after 13.4 s, compared to 5.03 s in Fig. [4.12]

From these simulations, we can conclude that our results on attraction, anchoring and
removal of spiral waves also hold for heterogeneities of decreased and increased size. As in
2D, we observed that the region of attraction becomes smaller if the size of the heterogeneity
is decreased.

4 Discussion

In this chapter, we study the effect of small size ionic heterogeneities on spiral wave rotation.
These heterogeneities have a size and magnitude similar to these measured by Glukhov in

[40].
We show that in 2D, these type of heterogeneities can attract and eventually anchor a
spiral rotating within 6 cm along the fibers, 4 cm across the fibers and around 5 cm at 45
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Figure 4.14: Attraction, anchoring and removal of a spiral wave by an ionic heterogeneity

of decreased size in an anatomical model of the ventricles (see text for details).
The ionic properties inside and outside the heterogeneity are the same as in Fig. [1.9]
resulting in a minimal APD=286 ms and a maximal APD=342 ms. When positioned at
the same location as the heterogeneity shown in Fig. the size at 50% heterogeneity
is 0.7 cm by 1 cm for section (1) and 1 ¢cm by 0.8 cm for section (2). The colormaps in
A, B and C show the APD distribution in ms in section (1). In D and E we show the
corresponding position of the wavefront after 10 s; and in F after 12.8 s.
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Figure 4.15: Attraction, anchoring and removal of a spiral wave by an ionic heterogeneity
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of increased size in an anatomical model of the ventricles (see text for details).
The ionic properties inside and outside the heterogeneity are the same as in Fig. [1.9]
resulting in a minimal APD=286 ms and a maximal APD=368 ms. When positioned at
the same location as the heterogeneity shown in Fig. the size at 50% heterogeneity
is 0.85 ¢cm by 1.55 cm for section (1) and 1.55 cm by 0.85 cm for section (2). The
colormaps in A, B and C show the APD distribution in ms in section (1). In D and E
we show the corresponding position of the wavefront after 10 s; and in F after 13.4 s.
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degrees. In the whole heart, if the degree of heterogeneity was large enough, it was always
anchored (or eventually removed). Thus, the basin of attraction of these ionic heterogeneities
is very substantial in comparison to the typical size of the human heart, whose height is
around 10 cm. We showed that this attraction over large distances is a property of ionic
heterogeneities alone, i.e. it does not hold for non conducting heterogeneities.

In our anatomical model of the ventricles, we demonstrate that if the heterogeneity is
located close to the base, it can not only attract and anchor a spiral wave, but can also
remove it. This is an interesting result, as it suggests that some types of heterogeneities have
an anti-arrhythmic effect. In [I55] such regions of prologned APD were already created in
an experimental set-up through regional cooling, and they were indeed shown to be able to
remove a spiral wave from the heart. It would be interesting to study this anti-arrhythmic
effect when the heterogeneity is created in the same way as studied here, for example, by
changing the local expression of genes responsible for the conductance of the Ik and Ik,
currents. Of course, this is a very controversial statement and it takes into account only one
effect of heterogeneity: on attraction and anchoring of spiral waves. It does not consider its
role in the formation of new spirals, for example.

The mechanism of attraction of spiral waves to heterogeneities can be attributed to a
generic behavior of spirals in heterogeneous tissue. In [116] [102], [138] it was shown that
spirals tend to drift to the regions of longer period of rotation. Longer period of rotation of a
spiral is normally associated with a longer APD [100, [I38]. Thus it is very natural to expect
that in our simulations the spirals are to be attracted by the heterogeneity, as in our case the
heterogeneity has a longer APD compared to the rest of the tissue.

Studies of the effect of heterogeneities on 2D wave propagation in various models of cardiac
tissue were also performed in a series of publications [123, 122]. In particular, in [123], they
studied dynamics of spiral waves in a low dimensional (Panfilov) model [95] and the ionic
Luo-Rudy I model [78] of cardiac tissue in presence of squared ionic heterogeneities and
inexcitable obstacles of 4 cm by 4 cm, placed at various locations in cardiac tissue. The
observed dynamics include spiral turbulence, a rotating spiral and the quiescent state. They
showed that a fractal-like boundary separates the basins of attraction of these regimes. One
of the regimes observed was anchoring of spirals at the heterogeneity. In the follow-up study
[122], they compared the dynamics of waves around squared inexcitable obstacles and ionic
heterogeneities of 3 cm by 3 cm in four models of cardiac tissue [136, 11}, 95 [78]. In all
models they report various regimes of interaction of spirals with the obstacles. These regimes
depend, in a complex way, on the obstacle location. In some situations they also observed
anchoring of spiral waves. These papers give an excellent overview of possibilities which can
occur in systems which contain an ionic heterogeneity or an inexcitable obstacle. It would be
interesting to study which of these regimes can be realized with heterogeneities and obstacles
of size and shape derived from direct experimental measurements.

Anchoring around 3D inexcitable obstacles was also studied in [142] R1l [131]. A study of
the interaction of a spiral wave with a heterogeneity with a shorter APD in an anatomical
model of the rabbit and pig heart was performed in [80]. It was shown that in that case, a
spiral rotating close to the heterogeneity can anchor around it and that parts of this wave can
enter the region in which this inhomogeneity is present. This is an interesting observation
which shows that even heterogeneities with a shorter APD than the surrounding tissue can
serve as anchoring sites for spirals (see also [122, [81]).

In this chapter we studied the possibility of anchoring of an existing spiral wave to a
heterogeneity. In our previous study [24], we found that similar ionic heterogeneities can be
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pro-arrhythmic and that spirals can be formed at such heterogeneities under high frequency
external pacing. Note, that the final state in [24] was also a spiral rotating around the het-
erogeneity. In view of the results presented in this chaper, we can explain it as a consequence
of attraction of the initiated spiral wave to the heterogeneity.

In our whole heart simulations the heterogeneity was located at different positions with
respect to the endocardial and epicardial surface (compare for instance Fig. with
Fig. ) In all of these cases, we found that the spiral was anchored to the heterogeneity.
Therefore, transmural location of the heterogeneity does not seem to affect the possibility of
attraction of a spiral.

In our 2D simulations, we considered parallel fibers, and did not study the effect of more
complex cases of fiber orientation on anchoring and attraction of a spiral wave by a hetero-
geneity. As anisotropy of cardiac tissue affects spiral wave dynamics, other types of fiber
orientation could lead to more complex regions of attraction than these shown in Fig.

We have studied the behavior of a single stable spiral in the presence of a single hetero-
geneity. It would be interesting to extend this study to the case when several heterogeneities
are present in the heart, or to other regimes of spiral wave dynamics: for example to spiral
breakup [99, 06], when multiple interacting spirals coexist in cardiac tissue.

In this chapter we considered only a stepwise change in Gk, and Gk; in single cell to model
heterogeneities at tissue level. Although the change in APD values is stepwise at single cell
level, it is gradual at tissue level, due to electrotonic effects. In our case the space constant for
such changes is approximately 3-5 mm (we refer to [25] for a detailed discussion). Therefore,
we expect that if instead of stepwise changes, more gradual changes at the single cell level
would be used, it would not change the conclusion, provided these variations are less than
the space constant for electrotonic coupling.

A limitation of this study is that it is based on heterogeneities in the subendocardial
zone of the left ventricle, measured on the surface of a wedge, and the data do not provide
depth information. This means that we don’t have information on the 3D structure of the
heterogeneity, which we nonetheless modeled in an anatomical model of the ventricles. It can
also be that the amount of heterogeneity reported in [40)] is overestimated if used for the whole
heart, due to possible additional electrotonic load in situ. In addition, as the heterogeneity
has some 3D structure, we do not know if the cut surfaces shown in [40] are really cut surfaces
through the center of the heterogeneity. If this is not the case, the real heterogeneities can
have a larger spatial scale. Thus although we extended the research for heterogeneities of
various size and at various locations, this study should be considered as a starting point and
more detailed investigations of the role of heterogeneity of various type, shape and origin on
spiral wave dynamics in the heart are therefore needed.

Another limitation is that this study was conducted in only one model of the human
ventricles. It would be interesting to test if the results obtained here could be confirmed in
other human cell models [43, [94].

Overall we can conclude that ionic heterogeneities of small size can be preferred regions
of localization of spirals. This means that ablation of these heterogeneities can be beneficial
as it may reduce chances of stabilization of spiral waves at the heterogeneity. Alternatively,
artificial creation of such heterogeneities close to the boundary of the heart, e.g. in a basal
region, may attract the spirals to the boundaries and result in their elimination. Of course, this
is a very controversial idea, which requires much more in silico and experimental verification.
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Global alternans instability and its effect on
non-linear wave propagation: dynamical Wenckebach
block and self-terminating spiral waves.

Abstract

The most widely studied dynamical instability in cardiac tissue is the so-called alternans
instability. It occurs if the slope of the APD-restitution curve is steeper than one. The
APD-restitution curve relates the duration of the cardiac pulse (APD) to the time interval
between the pulses, and can easily be measured in an experimental or even clinical setting.
This alternans instability is considered as a possible mechanism for the onset of electrical
turbulence in the heart, leading to sudden cardiac death. It had a paramount influence on
modeling, experimental and clinical studies of cardiac arrhythmias and was a subject of many
high profile publications. From a non-linear dynamics perspective, the alternans instability
is associated with a local flip bifurcation and manifests itself as an alternating growth of
small perturbations. In this chapter we reveal that APD-restitution can result in another
dynamical instability, in which an initial perturbation of large amplitude extends in space.
We coin this type of instability as global alternans instability (GAI). We first show the onset
of this instability numerically in an ionic model for human cardiac cells, and then develop a
basic theoretical framework explaining it semi-analytically. We formulate the conditions for
the onset of this instability and show that unlike the alternans instability, the conditions for
the onset of GAI are determined by the global shape of the APD restitution curve, and do not
necessary require that its local slope is steeper than one. The found instability can explain the
results obtained in previous studies, in which we showed that under high frequency pacing an
initial small scale heterogeneity can extend in space, and in this way can play an important
role in the onset of cardiac arrhythmias, or influence the dynamics of existing spiral waves.
We also report new findings that a GAI can result in the onset of dynamical Wenckebach
block, formation of new sources, or termination of existing sources of arrhythmias.

1 Introduction

The pumping function of the heart is controlled by electrical waves of excitation, which
propagate through the heart and initiate cardiac contraction. Abnormal propagation of these
electrical waves can result in the formation of spiral waves which excite the heart with a high
frequency and cause a cardiac arrhythmia, called tachycardia. In many cases, such spirals
break down into a complex turbulent pattern and excitation of the heart becomes spatially
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asynchronous. Because of this, the effective contraction of the heart is disrupted, which results
in ventricular fibrillation. Sudden cardiac death, due to ventricular fibrillation is one of the
largest causes of death in the industrialized world, accounting for approximately one death in
ten. Therefore the mechanisms behind the initiation of such spirals and the processes which
can remove them from cardiac tissue are of great practical interest.

Early research showed that such spiral waves can be formed because of regional hetero-
geneity of the heart. One of the most exciting recent developments is the finding that such
heterogeneity can be the result of dynamical instabilities in cardiac cells. It was shown that
even in simple systems, for example during periodical forcing of a single cardiac cell, we
may obtain either a non-periodic response, or a response with a period different from that
of external forcing. These processes were investigated theoretically [93] 46] and experimen-
tally [L6] and have shown that the onset of such instability in many cases is related to the
slope of the APD restitution curve. The APD restitution curve relates two parameters: the
duration of the cardiac pulse (action potential duration, APD) and the diastolic interval
(DI, the time between the end of the previous and the beginning of the new action poten-
tial). If we assume that this APD is just a function of DI (say Fapp(DI)), then the process
of periodic stimulation of a cardiac cell with a period T can be viewed as a discrete map
APDy = Fapp(DIx) = Fapp(T — APDy), as for a periodic stimulation APDy + DIy = T.
Such a map can loose stability of its equilibrium via a flip bifurcation if dFppp/dDI > 1
[93, 39] . This results in the onset of period two orbits (alternans) or more complex bifurca-
tions, which can even lead to chaotic behavior.

Such dynamical instabilities obtained a lot of attention, because it was found that they
result in the breakdown of a single spiral wave into a complex turbulent pattern of excitation
[99, 62, 112]. These studies situated a lot of experimental studies of the restitution properties
of cardiac tissue and it was finally shown that reduction of the slope of the restitution curve
prevents the onset of ventricular fibrillation [114] [36]. In addition, a lot of new protocols and
definitions of restitution relations were proposed, including dynamical restitution [72] and the
restitution portrait [30]. However, they indicated that the situation is more complex than
originally thought: instability is not only related to the slope of the restitution curve, but also
to other parameters, e.g. dispersion relation of the waves [I54]. Other types of instabilities
were found as well, for example involving Ca-dynamics [126] [146]. Overall, the concept of
dynamical instabilities is one of the most valuable contributions to the study of non-linear
dynamics in cardiology. Currently, several types of instabilities are already tested in large
scale clinical settings as possible predictors of sudden cardiac death [9, [149].

All studies listed above can be considered as studies of local dynamical instabilities. This
means that there are some critical parameter values at which such instabilities occur. At
the beginning, such an instability is usually just a small change, which grows and affects the
global dynamics of the system. Mathematically this means that it is mainly determined by
local properties of the tissue, expressed as derivatives of the functions, for example the slope
of the restitution curve. In this chapter, we focus on similar phenomena, but extended to
extreme values. The most extreme type of disturbance is a situation where properties of the
tissue are changed to such an extent that the wave cannot propagate in a given region. Such
regional blocks of propagation are extremely important, as wave block is the main mechanism
of spiral wave formation and thus of initiation of cardiac arrhythmias. We study the following
process. We consider homogeneous cardiac tissue and temporary block wave propagation at
some region, so wave N cannot enter there. This block is temporal and the next wave (wave
N+1) can enter the region. However, we show that in a broad parameter range the next
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wave (wave N+42) will be blocked again at the region without any external action, just due
to restitution properties of cardiac tissue. Furthermore, we find that this region of initial
block can grow in space and in some cases can result in the formation of new spiral waves,
or removal of exciting spirals. Such behavior can be considered as an ultimate alternans
instability or a global alternans instability (GAI), as it is determined by global restitution
properties of the tissue (difference of APD at two points on the restitution curve, rather than
slope of the restitution curve). In this chapter, we study this instability in detail. In the first
section we study it in 1D and illustrate the growth of the wave-block region, find the velocity
at which this region grows and the dependency on the forcing period. Next, we propose a
semi-analytical theory, and demonstrate that it can describe the observed behavior with a
high accuracy. Then, we show that in 2D this region extends in a similar way, and that it
can result in the creation of new spiral waves or eventual removal of spirals from the tissue.
Finally, we discuss our results and its possible consequences for the onset and dynamics of
cardiac arrhythmias.

2 Materials and methods

Model - As in the previous chapters, we used the ionic TP06 model for human ventricular
tissue [136], 139]. We refer to the materials and methods section of chapter 2 for more details.
Again, we used the default parameter settings from [139] for epicardial cells.

Numerical methods - For 1D and 2D simulations, the forward Euler method was applied to
integrate Eq. . A space step of Az = 0.25 mm was used in 1D, Az = 0.2 mm in 2D, and
a time step of At = 0.02 ms was used. To integrate the Hodgkin-Huxley-type equations for
the gating variables of the various time-dependent currents (m, h and j for In,; r and s for
Lio; 01 and z,9 for Ix,; o for Ixs; d, f, fo and fcass for Ican), the Rush and Larsen scheme
[117] was used.

Anisotropy - In one of our 2D simulations, the fibers are directed along the x-axis. In the
other, we study the effect of rotational anisotropy, in that case the diffusion matrix is given
by

D,o = Dy, cos? 0 + Dy sin® 6 |
Dy =Dy =0, (5.1)
Dyy =Dr,

with 6(y) = 4(02 — 01) + 1. Here d is the distance between epicardium and endocardium (in
our simulations d = 20 or 16 mm), ¢; = —60°, 6, = 60°, Dy, = 0.12 mT“:Z and Dy = Dy /4.
For 1D simulations, Dy, = 0.154“;]0—“;2 was used.

3 Results

3.1 GAIin 1D

In Fig. ﬂ we show the manifestation of what we call a global alternans instability (GAI). We
consider a homogeneous cable of cardiac cells, which we pace at the left border with a period
T = 220 ms, corresponding to APD = 187 ms. We temporary block wave propagation in the
middle of the cable, so wave N cannot excite the cells to the right of this wave block location.
However, this block is temporal, and wave N+1 again excites these cells. Due to restitution
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Figure 5.1: GAI in a cable of cardiac cells. The cable is paced at the left border with a period
T = 220 ms. The wave block region extends in space. Length of the cable is 256 mm.

effects, the duration APDy,1 = 278 ms is substantially longer than the normal value. As a
result, the next wave N+2 is blocked again because cells are not recovered from the action
potential N+1. In addition, if we look at Fig.[5.1] we observe that the point of the wave block
is shifted to the left, in comparison to the previous point of block. In the same way, wave
N+3 will be able to excite the complete cable, and the process is repeated as APDy3 will
be longer again. So we see that in homogeneous tissue, due to initial conditions, we observe

an area of wave block which extends in space in an alternating order. This is what we call a
GAL

In Fig. [5.2] we show the same process but now for T = 290 ms. We observe a similar
growth of the wave block region, although in this case the rate at which it grows is lower than
for T = 220 ms.

Fig. 5.3A shows the dependence of the wave block point on the period of pacing T. The
colored dots show the location of block for each second wave, for a certain T. Interestingly,
as was already clear from Fig. [5.1] and Fig. [5.2] this shift of the wave block location is
approximately constant. Next, we calculate the velocity at which the wave block region
extends in space for different T. This is shown in Fig. [5.3B. We observe a linear dependency
of the velocity on T. Also, we observe that there is a critical T (around 300 ms) for which
this instability disappears. The reason for that is explained in the next section.
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Figure 5.2: GAI in a cable of cardiac cells. The cable is paced at the left border with a period
T = 290 ms. The wave block region extends in space. Length of the cable is 256 mm.
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Figure 5.3: Rate at which the wave block region extends in space. The colored dots in A
show the location of the point of wave block versus time using the protocol as described
in Fig. and for different T. In B, we show the velocity (in mm/ms) at which this
instability extends in space. The velocity increases for shorter T.
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Figure 5.4: Restitution curve. DI versus APD.

3.2 Mechanism of GAI

3.2.1 General consideration

The critical period at which a GAI occurs can be estimated by a simple reasoning via the
restitution curve (see Fig. [5.4)). First, we note that if the cells located to the left of the
point of block are stimulated with a certain period T, the cells inside the region of block
are excited with a period 2xT. Thus, if we neglect electrotonic effects, the APD for cells
located outside this region is given via the restitution curve as APDg, which is a solution
of the implicit equation APD = Fapp(T — APD), while the APD for the other cells is given
by Fapp(2 x T — APDy). Second, we will observe a wave block if the wave arrival time is
smaller than the local refractory period (RP) of the cells. So, to find when a wave block will
occur, and thus a GAI, we have to relate the RP to the APD. For this, we note that in cardiac
tissue APD values are closely related to RP. We find that, in our model, APD measured at
90% is approximately equal to RP, so APD &~ RP. Finally, if we neglect conduction velocity
changes, the arrival time to all points where the wave can reach is just equal to T. Combining
these three remarks, we see that we will only have a GAI for those T for which:

T < FAPD(Q x T — APD()) (52)

This simple formula based on the restitution curve shown in Fig. gives us a critical
T =~ 310 ms, which is close to what we observed in our simulations.

3.2.2 Semi-analytical theory

Next, we show that we can also estimate the rate at which the wave block region grows by
using an analytical-phenomenological approach. For this, lets say wave N was blocked at a
certain location xpoec. Then, as we already noted, for the next wave N+1, APD for z < Tpjock
will be APDlZFAPD(T - APD), while for z > Iblock it will be APDQZFAPD(Q x T — APD)
However, as this is an oversimplification due to electronic effects [141], 25, 119], we will have a
spatially smooth transition from APD1 to APD2 and as shown in [25] it can be approximated
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Az

with A = w, Ay = W and A3 = 7.8 mm. This means that wave N+2 will
propagate in a heterogeneous tissue with heterogeneity given by Eq. and can be blocked
at another location.

Now, we can easily describe the shift of the wave block point as an iterative process. For
this we start from Eq. (see black line in Fig. , B, and C for T=220, 250 and 270 ms
resp.) and try to find the APD distribution of wave N42 and wave N+3 using the restitution
curve (see Fig. . So, using Eq. , we find for the diastolic interval between wave N+-1

and N+2 in each point x:

APDN+1($) = Ay + Agerf ((I — A0)1> , (53)

DIN+2($) =T-— APDN+1(.CIZ) . (54)
From this we get via the restitution curve:
APDyyo(xz) = APD(DInso(z)) - (5.5)

This APDy2(x) gives us the APD distribution for the N+2th wave in the uncoupled system.
To find the APD distribution of the N+4+2th wave in our system with propagating waves,
we again need to take into account electrotonic effects. In [25] we showed that the APD
distribution of the coupled system can be found from a complex underlying APD distribution
of the uncoupled system, using a convolution with a Gaussian Green’s function. In particular:

“+o0o
APDy () = APDya(a)e(T=75) g | (5.6)

—o00
with APDyyo(x) the predicted APD distribution of the N+2th wave in our system (see red
line in Fig. 5.5A, B, and C). Because wave N+42 only excites the points before the point of
block (thus if T> APDy41(z)), the DI preceding wave N+3 is given by:

DIn,3(7) = T — APDyn2(2)

(if T > APDN41(x) , i.e. before point of block) ,

DInss(z) = T x 2 — APDyy1(2)

(if T < APDN41(z) , i.e. after point of block) . (5.7)

We can again use the restitution curve to find
APDN+3($) = APD(DIN+3($)) . (58)

In the same way as in (5.6)), we have

+o0 1
APDnys(z) = APDx s s(a)e(E=75) g (5.9)
—00
with APDy3(z) the desired APD distribution of the N+3th wave (see green line in Fig. ,
B and C). We observe that the APD distribution obtained via our iterative method is very
close to the APD distribution obtained via experiments.
We tested our iterative method for different T, and in Fig. [5.5D we show the velocity at
which the wave block region extends in space for these T, both obtained via our iterative
method (red dots), as observed in experiments (black dots).
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Figure 5.5:
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Semi-analytical theory versus experiments. Figure A, B and C show APD dis-
tribution of subsequent waves in our system, obtained both via our iterative method as
in experiments, for a T equal to 220 ms, 250 ms and 270 ms, respectively. Black, red
and green lines show APD distribution for the N+1th, N4+2th and N+3th wave obtained
via our iterative method. Blue, purple and brown lines show APD distribution for the
N+1th, N+2th and N+4-3th wave obtained via simulations. D shows the velocity at which
the wave block region extends in space, both found via our iterative method (red dots)
and as observed in experiments (black dots).
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3.3 GAIin 2D

In this section we show that similar effects occur in 2D models of cardiac tissue. For this, we
consider a spiral wave in a transmural wedge of the heart (see Fig. . In Fig. m we show
different timeframes, each consisting of two panels: the upper panel shows transmembrane
voltage; the lower panel shows the period of excitation in each point. Similar to our 1D
simulations, we temporary block wave propagation (say wave N) at a certain location in the
tissue (see Fig. time==840 ms, time=940 ms). There we block wave excitation at a point
close to the right boundary of the tissue. As in 1D, this block is temporal, so wave N+1
can excite these cells again (time=1080 ms, upper panel), however the period of excitation
of this region is substantially longer (time=1080 ms, lower panel). As a consequence, the
APD duration in the previously blocked region will be longer, and we see that wave N+42 is
blocked at a certain location (time=1260 ms, 1320 ms). This process is repeated, and we
see that, similar to 1D, the wave block region (which corresponds to the region of period
doubling) is shifted to the left (compare time=1680 ms with time=2300, 8840 ms). So, we
have a persisting heterogeneity which, as was the case in 1D, shifts in space. We also see
that when the block region approaches the core of the spiral it starts affecting its dynamics
(see time=8840 ms). Eventually, interaction of the spiral wave with the wave block region
(time=9220 ms, time=9280 ms) results in annihilation of the spiral from the tissue (time=9420
ms). Note, that the waveblock which we observe here, is what is called Wenckebach block in
electrophysiology [147]. We see that in our case it is dynamic, as the area of the block shifts
in space.

The simulation shown in Fig. [5.6] was performed for homogeneous cardiac tissue. We also
did simulations in a more realistic setup, representing a transmural wedge in which the fibers
rotate counterclockwise from endocardium to epicardium from -60 degrees at the epicardium
to 60 degrees at the endocardium [132]. We refer to the method section for the diffusivity
matrix under rotational anisotropy. So, we consider a similar situation as in Fig. [5.6, but now
in a medium with rotational anisotropy (see Fig. [5.7)).

We follow the same protocol as in Fig. and show results of the simulations in Fig.
We block a wave (at time=800 ms), and again observe that a persisting heterogeneity is
created (time=1060 ms). In the same way as in Fig. this region extends in space (compare
for instance time=1060 ms with time=1920, 5120 ms). However, as the region approaches the
core of the spiral wave, dynamics become more complex than in Fig. 5.6} at time=5180, 5240
ms, we see that a new spiral is formed and we get two counterrotating spiral waves (time=5240,
5380, 5540, 5660 ms). However, after a few rotations these spiral waves eliminate each other,
and we end up with the quiescent state.

We note that we did many similar simulations, in which we varied the position of the
initial spiral (closer, or further away from the boundaries of the medium), and each time we
observed the same pattern: the wave block region approaches the core of the spiral wave, and
eventually the spiral is removed from the tissue.

Finally, we also investigate the effect of a partial wave propagation block, as this may be
considered as a more realistic situation (we refer to Fig. . At time=940 ms, we partially
block wave excitation (time=1020, 1080 ms). When the next wave arrives at the wave block
region, we remove the obstacle, and as in the previous cases a dynamical heterogeneity is
created (time=1200, 1280, 1380 ms). Interaction of this heterogeneity with the next excitation
wave leads to the formation of wavebreaks (time=1480 ms). However, these wavebreaks
propagate around the dynamical heterogeneity and excite the cells inside this region the
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Figure 5.6: GAI in a 2D medium. Spiral wave dynamics after temporal block of excitation at
time=780 ms (shown by timeframes time==840 ms, time=940 ms). Upper panel of each
timeframe shows transmembrane voltage; lower panel shows period of excitation. Size of
the medium is 20x2 cm.
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moment the refractory period ends there (time=1560 ms). As a consequence, the initial
heterogeneity disappears (time=1700, 1800 ms, lower panel). Interestingly, these wavebreaks
create new dynamical heterogeneities (time=1800, 2900 ms) which extend in space (compare
lower panel of time=3060ms and time=3280, 3440 ms), and eventually one of the breaks
disappears, and we end up with two counterrotating spiral waves: the original spiral wave
and a new one (time=3440, 3560, 4220 ms). After some time, interaction of these two spirals
results into the annihilation of the newly formed spiral wave (time=4280, 4420 ms) and
a new dynamical heterogeneity is created (time=4680, 4740 ms). Again, interplay of this
heterogeneity with the spiral leads to the formation of wavebreaks (time=4900, 4980 ms).
This small dynamical heterogeneity extends in space (compare the light blue region in the
lower panel at time=5120 ms with time=5860, 7300 ms) and moves to the core of the spiral
wave. Eventually, interaction of the spiral with this small heterogeneity and boundaries of
the medium results in spiral wave annihilation (time=7400, 7500, 7560, 7720 ms).

We conclude that a GAT is also present in 2D and has a substantial effect on spiral wave
formation, or eventual removal of spirals. From the spatial frequency distribution, we again
see that we have a clear (dynamical) Wenckebach 1:2 block. Interestingly, this block occurs
in homogeneous tissue and extends in space. In case of a partial wave propagation block, the
dynamics are more complex as we have interaction of different wavebreaks. However, also in
that case we observe dynamical heterogeneities which extend in space, reminiscent of GAI,
and eventually remove the spirals.

4 Discussion

In this chapter we show that disturbances of wave propagation, such as temporal block of
propagation, may have important effects on spiral wave dynamics, and can lead, for example,
to spiral wave termination. They can also substantially affect spatial excitation patterns and
result in dynamical Wenckebach blocks for wave propagation.

In our simulations such blocks were created artificially. However, they can also occur in
natural conditions. For example Sharifov et al. [125] showed that parasympathetic excitation
and local release of acetylcholine can result in local temporal blocks of propagation and can
even induce new spiral waves in the heart. Here we show that such processes can be affected
by restitution properties of cardiac cells and can result in the spatial extension of initially
induced block areas, making them more prone to spiral wave formation. Mechanism of this
spatial extension was investigated here in details (see section 3.2). Indeed we showed that
because of restitution properties we obtain a dynamic heterogeneity in cardiac tissue, and
due to electrotonic effects it shifts and extends in space.

Note that although we studied a homogeneous medium, our results are also applicable
for heterogeneous tissue. In that case, we can have an initial block of excitation occurring
at the heterogeneity, for example due to the general mechanism described in [87, [73]. What
is important here is that due to restitution effects such initial areas of block will extend in
space and thus will result in larger heterogeneities which can more likely induce spirals. This
result is very important, as recent experimental studies showed small size heterogeneities in
transmural wedges of the human heart [40, [77]. We studied these type of heterogeneities in
previous publications [24], 26], and we indeed found that they can create spiral waves but
only after they had extended in space. In this chapter, we illustrate that GAI is the possible
mechanism of this spatial extension of the heterogeneity.
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Figure 5.8: GAI in a 2D medium with rotational anisotropy. Spiral wave dynamics after tem-
poral and partial block of excitation at time=940 ms (shown by timeframes time=1020
ms, time=1080 ms). Upper panel of each timeframe shows transmembrane voltage; lower
panel shows period of excitation. Size of the medium is 12x2 cm.
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Restitution properties of cardiac tissue were always considered as an important mechanism
underlying the formation of spiral waves. Multiple studies [62, 112, 114 36] showed that steep
restitution can result in dynamical instabilities, possibly leading to fibrillation. Here, we
show that substantial effects of restitution at the global level can also be expected according
to formula (5.2). Thus, we show that, although steep restitution gives rise to dynamical
instabilities, it is not a necessary condition: the global shape of the restitution curve also
plays an important role. It would be interesting to investigate formula on a patient
specific restitution curve, and study if it is related to the onset of cardiac arrhythmias.
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Setting up a database structure for modeling the
human heart

1 Introduction

In recent years, the amount of data available from human hearts has grown exponentionally.
For example, one of the leading groups in the world on experimental cardiac electrophysiology,
the group of Prof. Efimov from the Department of Biomedical Engineering at Washington
University in St. Louis, already performed experiments on more than 200 human hearts (see
Fig. , both on failing and non failing human hearts (Fig. .

Human Hearts Distribution by Month
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Figure 6.1: Number of human hearts on which the group of Prof. Efimov already performed experi-
ments.

Because of this increasing amount of data, it becomes very useful to collect these data in
one database. This would allow research groups to compare their data to data measured by
other groups; upload data in a standarized way; download data from the database. Because
this database would give a good overview of the data available, it would act as a bridge
between experimental and modeling groups.

Here, we describe the first steps in the development of this platform. We started developing
this database in close collaboration with the group of Prof. Efimov. Together with this group
we decided on the general structure of the database. This structure was created via the
content management system Drupal. We describe the structure of the database in the first
section. In the second section, we describe how data can be added to the database. Starting
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from this structure and data, we created a website where users can search for specific data
and download the sought data, which we highlight in the last section.

Disease Distribution n= 176

1%

19;\ 16%

® 1 Non-Failing
32 Ischemic CMY
3 Nonischemic CMY
® 4 |diopathic CMY
¥ 5 Hypertrophic CMY
6 Restrictive CMY
7 Muscular Dystrophy
8 Unknown

2%

Figure 6.2: Disease distribution of the human hearts on which the group of Prof. Efimov performed
experiments.

2 Structure of the database

Structure Database
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Figure 6.3: A schematic overview of the structure of the database.
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In close collaboration with the group of Prof. Efimov, we’ve set up a structure for the database.
In Fig. [6.3] we show a schematic overview of this structure. As is shown in Fig. [6.3] we
store many different types of data: clinical data; positional information; different types of
experimental preparations; functional data; data obtained from expression and morphology
experiments.

The clinical data which will be stored in the database is listed in Fig. 6.3 These clinical
parameters are fields which can be filled in when a new heart (which is a content type in our
database) is added to the database (see Fig. [6.4).

-
- Dashboard Content Structure Appearance People Modules Configuration

Add content 3 ACT

Comments APD

/ 5
( www.heartaa s
.,\‘ Basic page
= Ccv
dv/dt max
EM
Experiment

Experiment(expression and
morphology)

Experiment(functional)
Heart

x
Histology

Immunohistochemistry/Immunofluo
rescence

Navigation
MRNA

Protein

» Add content

REP

Figure 6.4: We show how to add content to the database using Drupal.

When a heart is added to the database, it is possible to add experiments which were
performed on this heart. As is shown in Fig. [6.3] and Fig. [6.4] two different types of exper-
iments can be added to a heart: functional experiments and experiments on expression and
morphology. The data categories of these two types are listed in Fig. [6.3] Information on
the anatomical chamber where the experimental preparation originated from, and the type of
experimental preparation can be added as data to each experiment. The different anatomical
chambers and the possible experimental preparations for each chamber are listed in Fig. [6.3

For each data category different data types can be uploaded: raw data, processed data,
figures and also data processing methods. This last type should describe the experimental
protocol used to generate the data.

3 Features of the database

3.1 Upload data

In this paragraph, we describe how to upload data to the database using Drupal. We start by
explaining how to upload a new heart and the corresponding clinical data. As already shown
in Fig. a new heart can be added to the database by navigating to the menu ‘Content’,
and then by clicking on ‘Heart’.
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%+« Dashboard Content Structure Appearance  People  Modules  Configuration  Reports  Help

Title *

Age
0 years

Gender *

Male

Female

Figure 6.5: We show how to add clinical data when adding a new heart to the database.

If we do this, we arrive at a form we need to fill out. This form handles all the parameters
listed in Fig. [6.3] in the section ‘Clinical’. In Fig. and Fig. we show how this form
looks like in Drupal.

Dashboard ~ Content  Structure ~ Appearance  People  Modules  Configuration ~ Reports  Help

ECG

Add a new file

Browse... Upload

Files must be less than 50 MB.
Allowed file types: txt doc pdf png.

ECHO

Add a new file

Browse... Upload

Files must be less than 50 MB.
Allowed file types: txt doc pdf png.

Figure 6.6: We show how to add clinical data when adding a new heart to the database.

This clinical data ranges from simple information like ‘Gender’, ‘Age’, an ‘ID’ number
(Fig. , to more complex information like ‘ECG’ and ‘ECHO’ (Fig. . For each of these
clinical parameters, we made it possible to store information in the most self-evident way. For
example, for ‘Age’, we just need to fill in a number, and for ‘ECG’, ‘ECHO’, ‘CT’, ‘MRI’ we
can upload a figure or a text file. Data for parameters like ‘Arrhythmia history’, ‘Medication’
is stored as text. For these parameters there are a lot of possible values (e.g. one type
of arrhythmia can sometimes be described in different ways), but the autocomplete option
makes sure that information for these parameters remains consistent between hearts.

In the last part of the form, it is possible to link experiments performed on the heart we
upload (see Fig. [6.7)). To do this, we need to create an experiment first.
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’.4 Dashboard Content Structure  Appearance People Modules

Experiments(functional)

@ Experimentl

Experiments(expression and morphology)

o Experiment2

Figure 6.7: We illustrate how to link experiments to a particular heart.

This is done in the same way as for the content type ‘Heart’. So, as shown in Fig. we
should navigate to the menu ‘Content’, and then click on ‘Experiment(functional)’” or ‘Exper-
iment(expression and morphology)’, depending on which type of experiment we want to add.
If we do this, we arrive at a form, which we need to fill in. There we can provide information
regarding this experiment. This includes the anatomical chamber where the experimental
preparation originated from; the type of experimental preparation; the data category; de-
scription of data processing methods; links to the different measurements performed in this
experiment. For anatomical chamber, type and data category we just need to tick a box (or
boxes). See Fig. Input of description of data processing methods is done by uploading a
(text) file to the database.

Anatomical chamber Experimental preparation Data category

N/A o N/A o N/A
LA o Appendage o Ablation
oLV © Atrioventricular groove o Beta-adrenergic receptors
o RA « Free wall o Calcium
o RV o His Bundle @ Conduction
Septum o Microelectrode o Ischemia-reperfusion
© Mitochondria o NADH
o Pulmonary arteries o Potassium channels
o Purkinje @ Repolarization

o Right ventricular outflow tract o Respiration
c Sinoatrial node

o Wedge

Figure 6.8: Input of information on anatomical chamber, type of experimental preparation and data
category for a certain experiment is done by ticking a box (or boxes).

In the same way as we did for the content type ‘Heart’, we can link measurements per-
formed in the experiment using this form (for instance, we can add action potential duration
(APD) measurements or activation (ACT) measurements to an experiment: see Fig. .
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Dashboard Content Structure Appearance

List of APD
APD1000_heart5_experimentl

o APD1000_heart8_experimentl
APD250_heart5_experimentl
APD300_heart5_experimentl
APD500_heart5_experimentl
o APD500_heart8_experimentl

APD750_heart5_experimentl

List of ACT
ACT1000_heart5_experimentl

o ACT1000_heart8_experimentl

ACT250_heart5_experimentl

Figure 6.9: We show how to link measurements performed in an experiment to a particular experi-
ment.

To do this, we first need to make content of the type we want to link to the experiment (this
content was already made in the screenshot in Fig. . In this case, this would mean that
we add content of type ‘APD’ and ‘ACT’ to the database. This is done in the same way as it
was done for content of type ‘Heart’ and ‘Experiment (functional)’ or ‘Experiment(expression
and morphology)’ (see Fig. . Again, if we navigate to the menu ‘Content’ and click on
‘APD’ (or ‘ACT’), we arrive at a form we can fill in (see Fig. [6.10).

rd Content Structure Appearance People Modules Configuration Reports

Cycle length
o N/A

© 250 ms
© 300 ms
© 500 ms
© 750 ms
© 1000 ms
© 2000 ms

© 4000 ms

IMAGE
Upload figure which shows APD distrubution.
Add a new file

| Browse... | Upload

Files must be less than 50 MB.
Allowed file types: png gif jpg jpeg.

Figure 6.10: We show how to add a measurement performed on a certain experimental preparation
to the database.

In the case we want to upload data on APD, we can upload information on cycle length;
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figure(s); raw data; processed data. In a similar way, we can add other measurements to an
experiment (and to a certain heart) using Drupal.

3.2 Download data from the website

Next to uploading data to the database, it is also possible to search in the database and
download data from the database. If we go to ‘www.heartdata.ugent.be’, we arrive at the
opening page as shown in Fig. [6.11] There, we see a list of all the hearts uploaded to the
database, info on gender of the heart, and if the heart was a failing or a non-failing heart.
Via the search bars (with autocomplete option), it is possible to filter the data. For instance,
if we fill in ‘Ischemic-cardiomyopathy’ in the search bar ‘Diagnosis’, only the hearts with
ischemic-cardiomyopathy will be listed.

D (field_id)
Arrhytmia history (field_arrhytmia_history_heart)
Cause of death (field_cause_of_death_heart)

Diagnosis (field_diagnosis)

Devices (field_devices_heart)
Comorbidities (field_comorbidities)
Medication (field_medication)

Failing / Non failing (field_failing_heart) Gender (field_sex_heart)
- Any - | -Any- - Apply

I I

Heart2 Failing Female
Heard Falling Male
Heart? Falling Male

Hearts Non-Failing Male

Figure 6.11: Opening page of the website ‘www.heartdata.ugent.be’ shows a list of all the hearts
uploaded to the database. Via the search bars it is possible to filter the data.

Next, if we click on a heart (say, for example ‘Heart5’) listed on the opening page, we
arrive at the next layer of our website (see Fig. . There we get a list of all the clinical
parameters we filled in for this heart, as explained in the previous section. Next to that, we
get an overview of all experiments perfomed on this heart. In this case, only one experiment
was performed, namely a functional experiment.
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Heart5

View Edit

Submitted by agdefauw on Wed, 10/02/2013 - 10:52
Age:

20.00years

Gender:

Male

Failing / Non failing:

Non-Failing

Diagnosis:

Non-failing

Cause of death:
Drug overdose

Arrhytmia history:
N/A

Ventricular assist device:

No
Other devices:
N/A

Re-transplant:

No

Experiments(functional):
Experiment(functional)_heart5

Figure 6.12: Overview of all clinical parameters for, and experiments performed on, ‘Heart5’.

Again, if we click on an experiment, we go to the following layer of our database (see
Fig. . In Fig. we see a list of all the measurements performed in this experiment
and also information on anatomical chamber, type of experimental preparation and the data
category. This particular experiment contains several measurements on: action potential
duration (APD), activation (ACT), repolarization time (REP). These measurements are all
listed in the corresponding category, i.e: ‘List of APD’, ‘List of ACT’ and ‘List of REP’.
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Experiment(functional)_heart5

View Edit

Submitted by agdefauw on Thu, 03/20/2014 - 08:37

Anatomical chamber:
LV

Experimental preparation:
Wedge

Data category:
Conduction Repolarization

List of APD:
APD1000_heart5_experimentl
APD250_heart5_experiment1
APD300_heart5_experiment1
APD500_heart5_experiment1
APD750_heart5_experimentl
List of ACT:
ACT1000_heart5_experimentl
ACT250_heart5_experimentl
ACT500_heart5_experiment1
List of REP:
REP1000_heart5_experimentl
REP300_heart5_experimentl

Figure 6.13: Overview of information on anatomical chamber, type of experimental preparation,
data category and measurements performed in this experiment.

Now, we can click on a measurement. This brings us to the lowest layer of our database.
In Fig. we show an example of such a measurement (APD). We see at which cycle
length the measurement of APD was performed. As discussed in the previous section, we
also get a figure and a file with raw data which can both be downloaded by the user. Other
measurements, like ACT, REP or data on expression and morphology can be accessed in a
similar way.

APD500_heart5_experiment1

View | Edit
Submitted by agdefauw on Wed, 10/02/2013 - 11:02
Cycle length:

500 ms

Image:

50
Tine (ms)

Raw data:
) APD500_heart5_experiment].txt

Figure 6.14: We show all the data available for an action potential duration measurement performed
during a certain experiment. We see information on cycle length, a figure and raw data.
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4 Conclusion and future perspective

In the previous sections we explained the general structure of the database, and illustrated
how data can be added to, or downloaded from the database. It should be clear that Drupal
makes it easy for the user to manage the content of the database. We also note that Drupal
allows it for the user to change the structure of the database up to a certain degree, if this
would be necessary. For example, it is easy to add other fields to store ‘Clinical’ data, other
types of ‘Experimental preparation’, ‘Data categories’ etc.

However, we note that the prototype of the database is still under development, and has
several limitations, which would be interesting to overcome in future work. The most obvious
limitation of the prototype is that it does not allow to perform statistics on the data. Allowing
the user to compare the different data stored in the database, in a systematic way, would be
both valuable for modelers as for experimentalists. It would also be useful to make it possible
for the user to upload data in an automated way. For instance data on gene expression tend
to be very extensive, so uploading such data to a database by hand can easily become a time
consuming task for the user. Finally, another future direction would be to link data stored in
the database to models of the human heart. For example, data on spatial expression of genes
coding ion channels, exchangers and pumps could be linked to different parameters of ionic
models of the human heart. It would thus be valuable to also store the different parameter
sets of the models which can fit, or correspond to, a particular experimental measurement.
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Summarizing discussion

1 A review

In this thesis we study the effect of heterogeneities on electrical waves of excitation in the
human heart. In particular, in chapters 2, 3, 4, we study APD heterogeneity of cardiac
tissue and its role in initiation of spiral waves. We also study the dynamics of spiral waves
around these heterogeneities. Then, in chapter 5 we focus on the effect of a dynamical
heterogeneity due to restitution effects on wave propagation and spiral wave dynamics, and
apply it to explain the mechanisms of the effects considered in chapters 3, 4. Chapter 6
is devoted to the collection of data on human heart heterogeneity, as used in this thesis.

In chapter 2, we show that electrotonic effects in heterogeneous cardiac tissue can with
good accuracy be described using a linear Green’s function approach and with a good ap-
proximation the Green’s function is given by a Gaussian. In particular, we show that APD at
tissue level can be found by a convolution of APD distribution at cell level with a bell-shaped
Gaussian function (forward problem). We also use this formalism to develop an approach to
find properties of individual cells from measurements at tissue level (inverse problem). We
can solve the forward problem with a reasonable high accuracy, and even for steep gradients,
we can predict the maximal value of APD in the coupled system, which is important for
characterization of the extent of heterogeneity. Regarding the inverse problem, our solution
is also promising. However, for steep gradients, we have an additional oscillatory component
outside the heterogeneity, because of which we can not determine the maximal amplitude
with sufficient degree of certainty. This oscillatory component is a well known feature of
inverse solutions. However, we note that we applied the simplest method for solution of the
inverse problem and that it is one of the most studied in applied mathematics, so our solution
can certainly be improved. For example, different norms of Tikhonov regularization could be
used. This would require specific investigation and the development of non-standard software,
which is outside the scope of this thesis. The main value of this chapter for applications, is
that we can relate heterogeneity at cellular and tissue levels. We can predict properties of
cardiac cells from tissue measurements or estimate how given heterogeneity of cardiac cells
will manifest itself in tissue. Note that this is a non-trivial problem as heterogeneity at cell
level can be 200 to 500 % more than at tissue level (see e.g. Fig. from chapter 2).

In chapter 3, we use the TP06 model for human cardiac tissue to model small size ionic
heterogeneities, similar to those measured by Glukhov et al. [40] in wedge preparations of the
human left ventricle. For an initial estimate of the underlying properties of the cells inside
these heterogeneities, we use the approach developed in chapter 2. We study the effects of
these type of heterogeneities on the onset of spiral waves and the dynamics of spiral waves
around such heterogeneities. We find that under high frequency forcing, spiral waves can be
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formed. However, these new sources are not only initiated by break formation as in classical
mechanisms [73], [102], but also by interaction of wavebreaks with other upcoming waves,
eventually leading to the formation of a single spiral wave anchored around the heterogeneity.
We study the dynamics of these anchored spiral waves and find that we have two distinct
values of period of excitation: one inside and one outside the heterogeneity. We also show that
each of these periods is mainly determined by properties of cardiac tissue at the corresponding
region: increase of the refractory period results in increase of the period. Interestingly, we
find that, when we increase the extent of heterogeneity, the increase in period is not gradual.
At this bifurcation point, the period suddenly increases around 1.3 times.

In previous modeling studies [I}, 102}, 2], the main effects of heterogeneity on spiral wave
dynamics is drift along the heterogeneity boundary. Here, the main effect is anchoring of
the spiral to the heterogeneity. Also, we get a torsades de pointes like ECG and an ECG
reminiscent of polymorphic tachycardia. However, in our case it is a result of a different
frequency of excitation of tissue inside and outside the heterogeneity and not a result of shift
of the excitation source in space.

Anchoring of spiral waves to obstacles was already studied intensively, both in 2D and 3D
[22, 142, 152}, RTl, 156, 81, [131]. However, in all these cases, spirals were anchored to inexcitable
obstacles. In chapter 3 we show that a heterogeneity which is excitable can also anchor
spirals, and that anchoring results in more complex dynamics compared to anchoring around
inexcitable obstacles, because of a direct influence of the heterogeneity on wave rotation.

We checked that our results on the dynamics of a spiral wave around a heterogeneity are
general, and also hold for heterogeneities of different size, shape and induced by modification
of different parameters of our model. Our results are also valid for tissue with rotational
anisotropy.

Overall, in chapter 3 we explain possible wave dynamics at realistic heterogeneities
measured in the human heart, in terms of formation of new sources of arrhythmias in 2D
models of cardiac tissue.

In chapter 4, we continue our research on the effect of small size ionic heterogeneities on
spiral wave dynamics. Again, we model heterogeneities with a size and magnitude similar to
these measured by Glukhov et al. in [40], but now both in 2D and in an anatomical model
of the human ventricles. We show that such heterogeneities can not only anchor, as we
found in chapter 3, but can also attract spirals rotating at a substantial distance from the
heterogeneity. In particular, in 2D these type of heterogeneities can attract and eventually
anchor a spiral rotating within 6 cm along the fibers, 4 cm across the fibers and around 5 cm
at 45 degrees. In the whole heart, if the degree of heterogeneity is large enough, it is always
anchored (or eventually removed). Thus, the basin of attraction of these ionic heterogeneities
is very substantial in comparison to the typical size of the human heart, whose height is around
10 cm. Interestingly, this attraction over large distances is a property of ionic heterogeneities
alone, i.e. it does not hold for inexcitable obstacles. Also, in our anatomical model of the
ventricles, we demonstrate that if the heterogeneity is located close to the base, it can not
only attract and anchor a spiral wave, but can also remove it. This is an interesting result,
as it suggests that some types of heterogeneities have an anti-arrhythmic effect.

The mechanism of attraction of spiral waves to heterogeneities can be attributed to a
generic behavior of spirals in heterogeneous tissue. In [116, 102, I38] it was shown that
spirals tend to drift to the regions of longer period of rotation. Longer period of rotation
of a spiral is normally associated with a longer APD [100, 138]. Thus it is very natural to
expect that in our simulations the spirals are to be attracted by the heterogeneity, as in our
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case the heterogeneity has a longer APD compared to the rest of the tissue. Remarkably, the
process of attraction observed here is not a continuous process in which the spiral slowly drifts
towards the hetererogeneity, as reported in these previous studies, but a stepwise process in
which the spiral is shifted closer to the heterogeneity due to a complex interaction with the
heterogeneity.

In [123] the authors investigated the dynamics of spiral waves in a low dimensional (Pan-
filov) model [95] and the ionic Luo-Rudy I model [78] of cardiac tissue in presence of large
squared ionic heterogeneities and inexcitable obstacles, placed at various locations in cardiac
tissue. Different dynamics, including spiral turbulence, a rotating spiral and the quiescent
state were reported. It was shown that a fractal-like boundary separates the basins of attrac-
tion of these regimes. One of the regimes observed was anchoring of a spiral wave around
the heterogeneity. In a follow up study [122], they compared the dynamics of waves around
large squared inexcitable obstacles and ionic heterogeneities in four models of cardiac tissue
[136, 1T}, 95 [78]. In all models they report various regimes of interaction of spirals with the
obstacles. These regimes depend, in a complex way, on the obstacle location. In some situ-
ations they also observed anchoring of spirals. It would be interesting to study which of the
reported regimes in [123, [122] are found when heterogeneities and obstacles of size and shape
derived from direct experimental measurements would be used.

In [80] the authors studied the interaction of a spiral wave with a heterogeneity with a
shorter APD in an anatomical model of the rabbit and the pig heart. There it was shown
that a spiral rotating close to the heterogeneity can anchor around it and that parts of this
wave can enter the region in which this inhomogeneity is present. So it seems that even
heterogeneities with a shorter APD than the surrounding tissue can serve as anchoring sites
for spiral waves (see also [122, [R1]).

Overall, in chapter 4 we studied the possibility of anchoring of an existing spiral wave to
heterogeneities of realistic size. This is a continuation of the research performed in chapter 3,
but now focused on the aspect of anchoring of spiral waves and performed using anatomically
accurate models. A new unexpected result here is that such heterogeneity can attract spiral
waves and in some cases such attraction can terminate the arrhythmia.

In chapter 5, we study dynamical heterogeneities in homogeneous cardiac tissue created
due to APD-restitution effects. We show that a region of temporal block of wave propagation
can result in dynamical Wenckebach blocks which grow in space. This type of instability
is called a GAI and can have important effects on spiral wave dynamics: it can lead to
formation of new spirals or spiral termination. Restitution properties of cardiac tissue were
always considered as related to observed instabilities, underlying the formation, or breakup
of spiral waves. In particular, multiple studies [62), 112} 114} 36] showed that steep restitution
can result in dynamical instabilities, possibly leading to fibrillation. In chapter 5, we show
that also substantial effects of restitution at the global level can be expected. Thus we show
that, although steep restitution gives rise to dynamical instabilities, it is not a necessary
condition: also the global shape of the restitution curve plays an important role.

Looking back to chapter 3 and 4, we can now also understand why the initial small size
ionic heterogeneities extend themselves in space under high frequency pacing: the possible
mechanism behind this growth, because of which spirals could be initiated, or attracted, is
GAL In addition, this mechanism may be essential for a general theory of cardiac arrhythmias,
for example those occurring under parasympathetic stimulation of the heart, as reported in
[125].

Then in chapter 6 we introduce our prototype of a database to collect data obtained from
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experiments on human hearts, which we set up using the content management system Drupal.
The prototype is based on data developed by the group of Prof. Efimov. We discuss the general
structure of the database, and how users can both upload and download data obtained from
experiments on human hearts. This system is still under development, however, all the main
components of the database and corresponding website are already tested, and it will be filled
in with data shortly.

2 Model complexity and limitations

In this thesis, we used the TP06 model for human ventricular cells [I139]. In chapter 2, 3 and
5 we used this model to describe human cardiac tissue, and in chapter 4, we combined this
model with an anatomically based model of the human ventricles including fiber direction
anisotropy [54]. The TP06 model is based on (recent) experimental data on most of the
major ionic currents: the fast sodium, L-type calcium, transient outward, rapid and slow
delayed rectifier, and inward rectifier currents, and it includes an extensive description of
intracellular calcium handling. It fits experimentally measured APD restitution properties of
human myocardium, which is a very important property for the occurrence and stability of
reentrant arrhythmias. Also, regarding the anatomical model of the human ventricles, a good
agreement was shown between simulated and clinical data in terms of ECG pattern, ECG
frequency, surface wave patterns and occurrence of epicardial reentry [I35]. These arguments
prove the model used in this thesis to be a valuable model to study cardiac arrhythmias.

However, in recent years, new models for human ventricular cells were developed, based
on more recent experimental data, and describe some ionic currents in more detail. Of
interest, with respect to the results obtained in this thesis, is that Fink et al. [32] modified
the TP06 model to include updated Ik, and Ik; formulations, based on human ventricular
measurements. In comparison to the TP06 model, the rate of repolarization is more accurate
in this model. But, because a Markov formulation is used for Ik,, this model sacrifies runtime
speed. In a major part of this thesis we focused on the effect of changes in the repolarization
currents on spiral initiation and dynamics, so it would be interesting to check if our results
are still valid if such a modified discription of these currents would be used.

Another interesting model, is the model developed by Iyer et al. [58]. This model accu-
rately fits APD restitution properties of human ventricular myocytes, addresses whole-cell Ca
homeostasis carefully and accurately reproduces diverse aspects of ECG. However, the most
relevant ionic currents are formulated with Markovian chains, which make this model much
more complex than the TP06 model, computationally more demanding, and hence less suited
for tissue and whole heart simulations.

We also mention the model developed by Grandi et al. [43] (GB). This model relies on the
framework of a rabbit myocyte model, and models ion channels and transporters on the basis
of recent experimental data from human ventricular myocytes. It reformulates K+ currents,
includes an additional subsarcolemmal compartment and provides a detailed description of
Ca?t handling. It is important to note that in the GB model, the effect of a block of the
Ik, or Iks current is slightly different than in the TP06 model. Also, in [43] the authors show
that when the Ik, current is blocked, the AP is less lengthened in the GB model than in the
TP06 model. Furthermore, in the TP06 model, when the frequency is increased, a greater AP
prolongation is observed upon block of the Iy, current, while in the GB model, a reverse-rate
dependence of Ik, block was found. It should be clear that it would be interesting to examine
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if these differences in the dynamics of these main repolarization currents have an effect on
the results presented in this thesis.

Finally, we mention one of the most recent developed models for human ventricular cells,
namely the ORd (O’Hara-Rudy dynamic) model [94]. The authors combined data obtained
from new measurements for the L-type Ca?* current, K+ currents, and Na*/Ca?* exchange
current from undiseased human ventricle with data from previously published experiments, to
build this model. In comparison to the GB model and the TP06 model, this model includes
an extra current, namely the late Iy, current, and is based on more data for the Ic,;, current.
One of the most important aspects of this model is its close correspondence to experimental
measurements of APD measured at not only 90% repolarization, but also at 50% and 30%, and
this at all physiological relevant pacing rates. Compared to this model, the rate dependence of
APD30 and APD50 of the TP06 model is less accurate [94]. This difference in repolarization
rate between the ORd and the TP06 model is caused by the use of new data for the Ic,r,
INaca, Ix: and Iks current. The altered dynamics of these repolarization currents also affect
early after depolarization (EAD) formation. Indeed, recent studies observed, for example, a
decreased repolarization reserve in the ORd model, making this model more prone to EADs
[160]. The altered dynamics of these currents also have an effect on other phenomenon
related to reentrant arrhythmia [56]. So again, it is evident that it should be checked if these
differences between the models have an effect on our results.

We also note that in this thesis, current flow was modeled using a monodomain description
of cardiac tissue. Another widely used model for cardiac tissue is the bidomain model [108]. In
a monodomain description only the transmembrane currents and potentials are represented,
while in a bidomain model both intracellular and extracellular currents and potentials are
described. For simulations for which an external stimulus is applied, e.g. defibrillation, it
is generally accepted that bidomain models are required. Although, for all our simulations,
which did not include modeling of defibrillation, it was sufficient to use the computationally
much more efficient monodomain modeling approach.

Another limitation to our modeling approach, is that only the cardiac excitation process is
modeled. These waves of excitation initiate contraction, but not only excitation is coupled to
the deformation of the medium; also the deformation of the heart affects cellular excitation
processes. This phenomenon is called ‘mechano-electrical-feedback’ (MEF), and may have
both pro-rhythmic and arrhythmogenic consequences [71]. For example, it has been shown
that mechanical deformation alters the electrical properties of myocytes [I130] and plays an
important role in ventricular arrhythmias [35]. The effect of these feedback mechanisms on
excitation lies outside the scope of this thesis.

3 Future directions

In this thesis, we studied APD heterogeneity of cardiac tissue, its role in initiation of spiral
waves, and the influence of these ionic heterogeneities on the dynamics of spiral waves. Also
heterogeneities created due to APD-restitution effects were studied. We believe that our work
was a large step forward in the understanding of both the effect of electrotonic coupling on
(APD) heterogeneity, spiral wave dynamics around (ionic) heterogeneities and heterogeneities
created due to temporal inexcitability of cardiac tissue. However, our study contains a number
of limitations, which would be interesting to overcome in future work.

We start with the future research directions opened up by the results presented in chapter
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2. First of all, it is evident that it would be interesting to apply the approach presented there,
i.e. evaluate APD heterogeneity of cardiac tissue using a Gaussian Green’s function approach,
to experimental studies. However, in order to extend our computational study to experimental
work, several important issues still need to be investigated. The most important of them is to
determine the space constant of the Green’s function. The best approach here would be direct
measurement of spatial distribution of repolarization in tissues with known heterogeneity.
This heterogeneity might be static or dynamic (e.g. by local injection of currents into cardiac
cells).

Also, computational [I19] and recent experimental data [144] show that the extent of
electrotonic effects depends on the shape of the action potential. It would thus be interesting
to investigate the possibility to determine the space constant of the Green’s function from
measured action potential shapes.

Next, our solution of the inverse problem (find APD at single cell level, starting from
measurements at tissue level) is not perfect for steep gradients of heterogeneity: the solution
contains an oscillatory component, because of which we can not predict the underlying het-
erogeneity with a sufficient degree of certainty. Although, we note that in this thesis we used
the most straightforward approach to solve the inverse problem, so this solution can certainly
be improved if specific research would focus on this problem. Definitely because the inverse
problem presented in chapter 2 is one of the most studied in applied mathematics.

In chapter 3 and 4, we modeled small size ionic heterogeneities, similar to those measured
in human cardiac tissue, and studied dynamics of spirals around these heterogeneities. Again,
it would be interesting to study if results on initiation and anchoring of spiral waves could
be confirmed via experimental studies. In [I3], some experimental evidence for our results
can be found. There, the authors applied several premature stimuli to a sheet of epicardial
tissue of a rabbit heart containing a region with prolonged APD, created through regional
cooling. They observed the formation of wavebreaks, which after further pacing, resulted in a
spiral rotating around the heterogeneity, similar as observed in our simulations. Also in [I55],
anchoring of spirals to regions of prolonged APD, again created through regional cooling, was
observed. Unfortunately neither of these studies provided a spatial distribution of the period
of excitation, as we did in chapter 3. Therefore, it would be interesting to perform similar
experiments with a protocol including the measurement of the period of excitation. In this
way it would be easier to compare the results we obtained here with experimental results.
Also, it would be of interest to check if similar ECG patterns as in our computational study
are found in experiments, when a spiral is anchored around an ionic heterogeneity.

Finding the bifurcation described in chapter 3 in an experimental study might be more
challenging. This would require a gradual change of the extent of heterogeneity, which is
difficult to obtain in experiments. However, it might be possible to use cell cultures of
neonatal rat ventricular myocytes, such as in [12], [14], where heterogeneities of different size
can be created. Gradual change of the extent of the heterogeneity can then be achieved by
the application of drugs which change the refractory period of cardiac tissue.

In chapter 4 we showed that small size ionic heterogeneities can not only anchor spirals,
but can also attract spirals rotating at a substantial distance from the heterogeneity. It is clear
that this property of these type of heterogeneities should be tested in an experimental set-up.
Also, in our anatomical model of the ventricles, we demonstrate that if the heterogeneity
is located close to the base, it can not only attract and anchor a spiral wave, but can also
remove it. It would be interesting to study this attraction, anchoring, and eventual removal of
a spiral, when the heterogeneity is created in the same way as studied here. Such heterogeneity
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3. FUTURE DIRECTIONS

could for example be created by changing the local expression of genes responsible for the
conductance of the Ixs and Ik, currents.

Also, in chapter 4 we investigated the dynamics of a single spiral in the presence of a
single heterogeneity. It would be interesting to investigate what would be the effect of several
heterogeneities on a spiral wave; or the effect of an ionic heterogeneity on other regimes of
spiral wave dynamics, such as spiral breakup.

Another limitation of our results presented in chapter 3 and 4 is that the exact underly-
ing reason of the APD heterogeneity measured in [40] is not known. In our studies we choose
to change the conductance of the Ik, and Ik, currents (and in chapter 3 also of the oy
current). The same APD heterogeneity could also be obtained for other parameter values.
Although we checked that our main results are still valid for different sets of parameters, it
would be interesting to find out the exact parameter set responsible for the observed APD
heterogeneity. A possible way to achieve this, would be to use data on mRNA expression of
genes responsible for the conductances of various channels, such as measured in [§]. Observed
regional differences in mRNA expression could then be translated into our model by changing
the conductances of the various currents in these regions. However, up to now, the regional
differences reported in studies as [8] were not large enough to explain the observed (APD)
heterogeneities at the tissue level. It is also possible that during the translation process from
mRNA to proteins, or because of post-translational changes (e.g. phosphorylation), regional
differences between the cells are created or enhanced. Also the coupling between the cells
could be higher, or lower for different (transmural) locations in the heart, resulting in dif-
ferences at the tissue level. It should thus be clear that a lot of work is still to be done to
understand the exact mechanism causing the reported APD heterogeneity observed in studies
as [40].

Next, the parameter setting used in this thesis to describe cardiac cell behavior corre-
sponds to healthy human myocardium. Also the heterogeneities modeled in chapters 3 and
4, are based on data from non failing human hearts. However, the occurrence of ventricu-
lar tachycardia and fibrillation is stronly coupled to diseases such as myocardial infarction,
cardiomyopathies, and heart failure. It is known that during these diseases extensive fibrosis
formation [23] and gap junction remodeling [106] takes place, thereby increasing cardiac het-
erogeneity. Therefore, it would be interesting to incorporate these type of heterogeneities to
our model, and investigate the possible additional effects on spiral wave dynamics.

Furthermore, apart from islands of increased APD heterogeneity, as studied and modeled
here, there also exist transmural [10], and apex-base gradients [I13]. These gradients will
likely add additional effects which are important for the initiation and dynamics of spiral
waves and organization of fibrillation.

In chapter 5, we showed that substantial effects of restitution at the global level can
be expected according to formula . Thus, in chapter 5 we showed that although steep
restitution gives rise to dynamical instabilities, also the global shape of the restitution curve
plays an important role. So, it would be interesting to investigate formula on a patient
specific restitution curve, and study if it is related to the onset of cardiac arrhythmias. It
would also be interesting to investigate if the observed growth of the wave block region (GAI),
as reported here, can be confirmed in an experimental set-up.

Finally, the prototype of the database, as introduced and discussed in chapter 6, has
several limitations, which would be useful to overcome in future work. The most obvious
limitation of the database is that it does not allow the users to compare the different experi-
mental data stored in the database in a systematic way. It would thus be valuable to make it
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CHAPTER 7. SUMMARIZING DISCUSSION

possible for the user to perform statistics on the stored data. Another clear limitation is that
the prototype does not allow the user to upload data in an automated way, as data on, for
example, gene expression tend to be very extensive. Finally, another future direction would
be to link data stored in the database to models of the human heart. For example, data on
spatial expression of genes coding ion channels, exchangers and pumps could be linked to
different parameters of ionic models of the human heart. It would thus be valuable to also
store the different parameter sets of the models which can fit, or correspond to, a particular
experimental measurement.

4 Conclusion

In this thesis we investigated APD heterogeneity of cardiac tissue and its influence on spiral
wave dynamics. We also studied heterogeneity created by APD-restitution effects. We ob-
tained several interesting results. In the first part of this thesis, we showed that the effect
of cell coupling on APD heterogeneity can be described mathematically using a Gaussian
Green’s function approach. Using this approach, we can predict properties of cardiac cells
from tissue measurements or vice versa. This is a non-trivial problem as heterogeneity at cell
level can be 200 to 500 % more than at tissue level. We believe this is an exciting result, as it
relates the problem of electrotonic interactions to a wide range of classical problems in physics,
chemistry and biology, for which robust methods exist. So, although our method does not give
a perfect solution for the (inverse) problem, we think it is promising. Then in the following
chapter, we modeled small size ionic heterogeneities, similar to those observed in experiments,
and showed that these heterogeneities can be pro-arrhythmic under high frequency external
pacing. Interestingly, we found that spirals can be anchored around these small regions of
increased APD. Next, we also found that these heterogeneities can attract spirals rotating
at a substantial distance from the heterogeneity, both in 2D as in an anatomical model of
the human ventricles. We also showed how a temporal block of wave propagation can have
important effects on spatial excitation patterns and spiral wave dynamics. In particular, we
showed that it results in dynamical Wenckebach blocks, which extend in space, and which we
called global alternans instability or GAI. Interesting, we illustrate that GAI is the possible
mechanism behind the growth of the small size ionic heterogeneities, leading to spiral wave
initiation and attraction, observed in previous chapters. Finally, we introduced and discussed
a prototype of the database we created to store data obtained from experiments, as used in
this thesis.
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