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Preface

This thesis presents a study of the Gribov-Zwanziger framework: from propagators to glue-
balls. The chapters 2 and 3 are meant as an introduction and only require a basic knowledge
of quantum field theory. Chapter 2 explains the techniques behind algebraic renormalization,
which shall be widely used throughout this thesis, while chapter 3 tries to give a pedagogic
overview of the Gribov-Zwanziger framework as this is not available yet in the literature. The
subsequent chapters contain own research. First in chapter 4, we shall dig a bit deeper in the
Gribov-Zwanziger framework, by exploring the BRST symmetry and the KO criterium. Next,
in chapter 5 we shall elaborate on the ghost and the gluon propagator in the infrared and
present a refined Gribov-Zwanziger action. Further, we present two chapters on the search
for physical operators within the (refined) Gribov-Zwanziger framework, chapter 6 and 7. A
small chapter 8 is devoted to some values for different glueballs. We end this thesis with the
conclusions, chapter 9.
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Dutch Summary - Nederlandse Samenvatting

We present here a Dutch Summary of this thesis.

Inleiding: QCD, een enorme lappendeken

Quantum Chromodynamica (QCD) is de theorie van de sterke interacties, één van die vier
fundamentele krachten van ons universum. Deze kracht beschrijft de interactie tussen quarks
en gluonen, die fundamentele bouwstenen voorstellen van de gekende materie. Deze kracht
is asymptotisch vrij bij hoge energieën, wat wil zeggen dat quarks en gluon zich als vrije
deeltjes kunnen bewegen. Daarentegen bij lage energieën, wat overeenkomt met onze huidige
wereld, vormen quarks en gluonen steeds gebonden toestanden, die we hadronen noemen. De
best gekende voorbeelden hiervan zijn de protonen en neutronen, maar er bestaat een enorme
verscheidenheid aan andere deeltjes die bijvoorbeeld in deeltjesversnellers kunnen gecreëerd
worden. Quarks en gluonen dragen een soort lading die we kleur noemen, en hadronen zullen
steeds manifestaties voorstellen van kleurloze objecten. Vreemd genoeg werd er nog nooit een
vrije quark of gluon waargenomen. Dit fenomeen noemen we confinement en QCD is de enige
fundamentele kracht met deze unieke eigenschap. Ondanks 40 jaar intensief onderzoek sinds
de formulering van het standaardmodel, blijft het onduidelijk wat de precieze verklaring van
confinement is. Zelf de formulering wat confinement eigenlijk is, staat ter discussie.

Hoe komt dit nu, dat confinement zo een moeilijk te verklaren fenomeen is? De verkla-
ring ligt in het feit dat de standaardtechnieken die heel succesvol gebleken zijn in Quantum
Elektrodynamica (QED), een andere fundamentele kracht, niet toepasbaar zijn in QCD. QED
vertoont namelijk een compleet ander gedrag. Voor lage energieën heeft deze theorie een kop-
pelingsconstante die almaar kleiner wordt, en dus kan je een techniek toepassen, perturbati-
etheorie genoemd, die een reeksontwikkeling in deze kleine parameter toelaat. Daarentegen bij
QCD, is de koppelingsconstante veel te groot om nog perturbatietheorie te kunnen toepassen.
Daarom moeten we onze toevlucht zoeken in niet perturbatieve technieken, die echter niet
zo eenvoudig zijn. Er is ondertussen een enorme variëteit aan technieken ontwikkeld die elk
op hun manier QCD proberen te benaderen. Alle methodes om QCD te beschrijven kan men
beschouwen als een enorm lappendeken, elke methode belicht andere aspecten en heeft zo zijn
eigen voordelen.

Misschien is het interessant te vermelden dat ook zonder quarks, zogenaamde pure QCD,
er ook confinement is. Uiteraard kan dit niet bevestigd worden door experimenten, maar
rooster simulaties tonen aan dat dit inderdaad het geval is. Daarom is het reeds interessant
om QCD zonder quarks te onderzoeken, omdat de sleutel tot de oplossing verborgen ligt in het
gedrag van de gluonen. Daarom zullen we hier dan ook voornamelijk pure QCD onderzoeken.

De Gribov-Zwanziger actie

In deze thesis zullen we een stukje van het lappendeken beschrijven. We zullen hiervoor
starten van de SU(N) Yang-Mills ijktheorie. Deze theorie is een veralgemening van pure
QCD waarvoor je dan N = 3 moet stellen. Als je deze theorie wil neerschrijven in een padin-
tegraal, wordt het snel duidelijk dat je een ijk moet kiezen om een betekenisvolle padintegraal
te kunnen neerschrijven. De ijk vastleggen betekent dat men per serie van ijkequivalente
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velden één veld uitpikt. Dit werd voor het eerst gedaan door Faddeev en Popov in het jaar
1967 [1]. Een heel populaire ijk is de Landau ijk, door zijn eenvoud, en daarom zullen we
in deze thesis dan ook hoofdzakelijk in deze ijk werken. Ondanks het grote succes van de
aanpak van Faddeev en Popov, o.a. door het ontdekken van een resterende symmetrie, de
BRST symmetrie, ontdekte Gribov dat er toch iets niet helemaal klopte, zie zijn beroemde
artikel uit 1978 [2]. Elke normale ijk die men probeert te kiezen heeft namelijk het probleem
dat er nog steeds Gribov kopieën aanwezig zijn. Dit zijn ijkequivalente velden die beide aan
dezelfde ijkvoorwaarde voldoen. Dit wil zeggen dat de ijkfixing van Faddeev en Popov on-
volledig zou zijn. Gribov beschreef in zijn artikel hoe dit gevolgen zou hebben op de gluon en
op de ghost propagator. Door de Gribov kopieën uit te sluiten, vertoont de gluon propagator
een ander gedrag, namelijk in het lage momentum regime wordt deze propagator onderdrukt.
Ook de ghost propagator vertoont een ander gedrag: in het lage momentum gebied wordt
deze propagator versterkt. Gribov zijn aanpak werd later veralgemeend door Zwanziger in
1989 [3]. Hij construeerde een actie die een groot deel van de Gribov kopieën uitsluit, door
de integratie van de gluonen te beperken tot een kleiner gebied, genaamd de Gribov regio: de
Gribov-Zwanziger actie was geboren. Jammer genoeg breekt deze actie de BRST symmetrie,
weliswaar enkel op een “zachte manier”, dwz voor grote energieën herstelt deze symmetrie
zich opnieuw.

Elke theorie moet getest worden. Aangezien propagatoren sterk ijkafhankelijke grootheden
zijn, kon deze enkel via roostersimulaties getest worden. Dit werd dan ook uitvoerig gedaan,
en de Gribov-Zwanziger theorie werd steeds opnieuw bevestigd. De ghost propagator ver-
toonde versterkt gedrag en de gluon propagator was onderdrukt in het infrarood, schond de
positiviteit en was nul bij momentum gelijk aan nul. Al deze voorspellingen werden inderdaad
gedaan door de Gribov-Zwanziger actie.

Dit tot er een nieuw geluid kwam in 2007. Toen werden er in [4] verrassende resultaten
gepubliceerd. De roostersimulaties in deze paper waren uitgevoerd op enorme roosters zo-
dat men meer data in het diep infrarode gebied kon verzamelen: de gluonpropagator leek te
naderen tot een eindige waarde voor nul momentum en de spookpropagator was toch niet
zo versterkt als vooralsnog steeds aangenomen werd. De hele gemeenschap stond voor een
raadsel.

De verfijnde Gribov-Zwanziger actie

De vraag die uiteraard rees was of het nog steeds mogelijk was deze resultaten te verklaren
vanuit de Gribov-Zwanziger theorie. Daarom werd er op zoek gegaan naar andere niet per-
turbatieve effecten die in rekening moeten gebracht worden om dit te verklaren. Door het
dynamisch in rekening brengen van condensaten, dit zijn vacuumverwachtingwaarden van een
locaal samengestelde operator, in de Gribov-Zwanziger theorie, bleek het inderdaad mogelijk
om opnieuw resultaten te vinden in overeenstemming met de roosterdata. Condensaten zijn
typische niet-perturbatieve effecten die reeds lang gekend zijn.

Na het verfijnen van de Gribov-Zwanziger actie, was er nu een nieuwe voorspelling voor de
gluon propagator voorhanden. Deze voorspelling werd dan ook met succes gefit aan de reeds
bestaande roosterdata, en gaf een bevestiging voor de verfijnde Gribov-Zwanziger theorie.
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Glueballs

Tot zover werden er enkel propagatoren onderzocht. Dit zijn sterk ijkafhankelijke grootheden
en dus zou het interessant zijn om te onderzoeken of er we uit de (verfijnde) Gribov-Zwanziger
actie ook voorspellingen voor fysische grootheden kunnen halen. Immers, we hebben nu een
model gevonden dat de propagatoren goed beschrijft, maar als dit model wil overeind blijven,
zou deze ook voorspellingen moeten kunnen doen over fysische deeltjes. Aangezien we nog
steeds werken met pure Yang-Mills theorie, zouden deze deeltjes een kluwen van gluonen
moeten zijn: glueballs. Hiervoor hebben we in een eerste poging de renormalizatie van F 2

µν

onderzocht, daar deze operator standaard geassocieerd wordt met de scalaire glueball. Door
de gecompliceerde vorm van de Gribov-Zwanziger actie, was dit een niet triviale opdracht.
We vonden dat deze operator zich mengt met andere d = 4 operatoren. Daar de Gribov-
Zwanziger actie de BRST symmetrie breekt, heeft dit belangrijke gevolgen voor de correlator.
De correlator

〈
F 2
µν(x)F 2

µν(y)
〉

is op zich geen welgedefinieerde grootheid, net door die menging.
We vonden echter wel dat de volgende grootheid, 〈R(x)R(y)〉, goed gedefinieerd is met R een
renormalizatie groep invariante grootheid gegeven door

R =
β(g2)
g2

F 2
µν − 2γc(g2)E (1)

waarbij E een niet BRST invariante combinatie van velden uit de Gribov-Zwanziger actie is.

Nu we de renormalizatie van F 2
µν achter de rug hebben, kunnen we de correlator 〈R(x)R(y)〉

onderzoeken. Het idee is het volgende: onderstel een operator O. Indien dit een fysische op-
erator is, dan zouden we deze moeten kunnen schrijven in een Källén-Lehmann representatie:

〈O(k)O(−k)〉 =
∫ ∞
τ0

dτ ρ(τ)
1

τ + k2
, (2)

waarbij ρ(τ) > 0. M.a.w., de correlator 〈O(k)O(−k)〉 moet een vertakkingslijn vertonen op
de negatieve1 x-as. Indien echter deze correlator (een) vertakkingslijn(en) vertoont die niet
op de negatieve x-as ligt en/of we vinden een spectrale dichtheid ρ(τ) < 0 op de negatieve
x-as, dan spreken we een niet fysische operator. Nu werd reeds gevonden dat

〈
F 2
µν(x)F 2

µν(y)
〉

reeds een vertakkingslijn vertoont op de imaginaire as, wat erop wijst dat F 2
µν en dus hoogst-

waarschijnlijk ook R geen goede operator is.

Daarom zijn we op zoek gegaan naar een andere operator, die wel fysisch is. Hiervoor hebben
we een nieuw concept ingevoerd: i-particles. Op laagste orde zijn we erin geslaagd met behulp
van de i-particles een operator te vinden die een goede Källén-Lehmann representatie heeft.
Jammer genoeg breekt deze operator de BRST op een harde manier, zodat deze operator er
niet renormalizeerbaar uitziet.

Tot besluit kunnen we stellen dat we enerzijds een renormalizeerbare operator hebben gevon-
den, maar met een slechte Källén-Lehmann representatie en anderzijds een niet renormal-
izeerbare operator, maar met een goede Källén-Lehmann representatie. Hoe we deze twee
kunnen verenigen is voorlopig nog een vraagteken, maar dit wordt momenteel onderzocht.

1Dit omdat we steeds in de Euclidische ruimte werken.
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Indeling van deze thesis

Deze thesis start met een korte situering van het werk in hoofdstuk 1. Daar we in deze
thesis heel vaak gebruik zullen maken van techniek van algebräısche renormalizatie, geven
we hierover eerst een inleiding, zie hoofdstuk 2. Net omdat dit geen standaard techniek
is, gaan we enkel uit van een basiskennis Quantumveldentheorie. Hierna volgt hoofdstuk 3:
hierin geven we een overzicht van de ideeën van Gribov tot de constructie van de Gribov-
Zwanziger actie. Daar in de literatuur dit overzicht ontbreekt, hoopt dit hoofdstuk deze leemte
te vullen. Op het einde van dit hoofdstuk bewijzen we dat deze actie renormalizeerbaar
is met de technieken uitgelegd in hoofdstuk 2. Vanaf dan start het eigenlijke onderzoek.
In hoofdstuk 4 gaan we nog wat dieper in op de Gribov-Zwanziger actie. We leggen de
betekenis uit van de breking van de BRST symmetrie en we tonen aan hoe we deze kunnen
herstellen door het invoeren van nieuwe velden. Ook leggen we een verband tussen de Gribov-
Zwanziger actie en het beroemde Kugo-Ojima theorema. Vervolgens verfijnen we de Gribov-
Zwanziger actie om in overeenstemming te komen met de roosterdata in hoofdstuk 5. De
volgende twee hoofdstukken starten dan de zoektocht naar fysische operatoren. In hoofdstuk
6 onderzoeken we de algebräısche renormalizatie van F 2

µν in de Gribov-Zwanziger actie, terwijl
we in hoofdstuk 7 de i-deeltjes invoeren. In hoofdstuk 8 bespreken we nog enkele resultaten
voor de massa’s van enkele glueballs die berekend werden in het kader van de i-particles. We
eindigen tot slot deze thesis met een besluit en vooruitzichten in hoofdstuk 9.
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1
Introduction

1 The patchwork quilt of QCD

Quantum Chromodynamics (QCD) is the theory which describes the strong interaction, one
of the four fundamental forces in our universe. This force describes the interactions between
quarks and gluons, which are fundamental building blocks of our universe. At very high ener-
gies, QCD is asymptotically free, meaning that quarks and gluons should be detected as free
particles1. However at low energies, i.e our daily world, due to the strong force, quarks and
gluons interact and form bound states called hadrons. A well known example of these bound
states are the proton and the neutron, but a whole zoo of hadrons has been observed in par-
ticle detectors. In fact, the only way to obtain information about the strong force is through
bound states, as no free quark or gluon has even been detected. We call this phenomenon
confinement. Although since the formulation of the standard model (which includes QCD),
40 years of intensive research have past, no good answer has been found to probably one the
most fundamental questions in QCD. Even the formulation of what confinement really is, is
under discussion.

The difficulty for solving confinement lies in the fact that the standard techniques which
have been so successful in QED, are not applicable in QCD. In QED the coupling constant
is small enough2, so one can apply perturbation theory, which amounts to writing down a
series in the coupling constant. As in QCD, the coupling constant increases for decreasing
energies, the coupling constant is too large and perturbation theory alone can never give a
good description of the theory. Therefore, other techniques are required which we call non-
perturbative methods. There exists a wide range of non-perturbative methods, which all try
to approach QCD from one way or another. One should not see these different techniques as
competing, but as patchwork trying to cover all aspects of QCD.

Even if one omits quarks in QCD, one can still call the remaining theory confining. Al-
though there is no real experimental evidence, lattice simulations have shown that gluons
form bound states which we call glueballs and no free gluon shall be detected. Therefore,
it is already interesting to investigate pure QCD without quarks, and try to find out what
happens. One could say that confinement is hidden in the behavior of the gluons.

1E.g. in deep inelastic scattering (DIS) experiments, quarks can be treated as free particles.
2This depends of course on the energy range of interest.
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2 The Yang-Mills theory: definitions and conventions

Now what is QCD? QCD is a gauge theory, as all theories for the fundamental forces. In
fact, QCD is only a special case of the more general SU(N) Yang-Mills theory, but withN = 3.

In order to know what we are talking about, let us already introduce the Yang-Mills the-
ory here, as this theory shall be the main building block of this thesis. We shall try to be
consistent and use the conventions outlined in this section. The derivation of the Yang-Mills
action can be found in any standard textbook on quantum field theory [5].

We start with the compact group SU(N) of N × N unitary matrices U which have de-
terminant one. We can write these matrices as

U = e−igθaXa , (1.1)

whereby Xa represent the generators of the SU(N) group. The index a, b, c, . . . is called the
color index and runs from {1, . . . , N2−1}. These generators obey the following commutation
rule

[Xa, Xb] = ifabcXc , (1.2)

and thus the SU(N) group corresponds to a simple Lie group. We can choose these generators
to be hermitian, X† = X, and normalize them as follows

Tr[XaXb] =
δab
2
. (1.3)

The generators Xa belong to the adjoint representation of the group SU(N), i.e.

UXaU
† = (DA)abXb , (1.4)

with (DA(Xa))bc = −ifabc. Now we can construct a Lagrangian, which is symmetric under
this group.

Firstly, we define the standard SU(N) Yang-Mills action as

SYM =
∫

d4x
1
2

TrFµνFµν , (1.5)

whereby Fµν is the field strength

Fµν = ∂µAν − ∂νAµ − ig[Aµ, Aν ] , (1.6)

and Aµ the gluon fields which belongs to the adjoint representation of the SU(N) symmetry,
i.e.

Aµ = AaµX
a . (1.7)

The field strength can thus also be written as

Fµν = F aµνX
a , (1.8)

2
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whereby

F aµν = ∂µA
a
ν − ∂νAaµ + gfaklA

k
µA

l
ν . (1.9)

Under the SU(N) symmetry, we define Aµ to transform as

A′µ = UAµU
† − i

g
(∂µU)U † , (1.10)

and one can check that this is compatible with the fact the Aµ belongs to the adjoint repre-
sentation. Consequently, from (1.6) we find

F ′µν = UFµνU
† , (1.11)

and therefore the Yang-Mills action is invariant under the SU(N) symmetry. Infinitesimally,
the transformation (1.10) becomes

δAaµ = −Dab
µ θ

b , (1.12)

with Dab
µ the covariant derivative in the adjoint representation

Dab
µ = ∂µδ

ab − gfabcAcµ . (1.13)

Secondly, we can also include the following matter part in the action, when considering full
QCD

Sm =
∫

d4x
(
ψ
i
α(γµ)αβDij

µ ψ
j
β

)
, (1.14)

which contains the matter fields ψi and ψi belonging to the fundamental representation of
the SU(N) group, i.e.

ψ
′
i = Uijψj , (1.15)

or infinitesimally

δψ
′
i = −iθaXa

ijψj . (1.16)

The index i runs from {1, . . . , N}. Every ψi and ψi is in fact a spinor, which is indicated with
the indices {α, β, . . .}. Dij

µ is the covariant derivative in the fundamental representation

Dij
µ = ∂µδ

ij − igAaµ(Xa)ij , (1.17)

and γµ are the Dirac gamma matrices. One can again check that also the matter part is
invariant under the SU(N) symmetry. The matter field ψ represents the quarks of our
model. As is known from the standard model, there is more than one type of quark, which we
call flavors. For each flavor, we would need to add a term like Sm, but keeping the notation
simple, we shall not introduce a flavor index here. The starting point of the Yang-Mills theory
including quarks is thus given by

S = SYM + Sm . (1.18)

Most of the time, we shall however omit the matter part, and work with pure Yang-Mills
theory.
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3 Outline of the thesis

Now that we have introduced the Yang-Mills theory, let us explain the goal of this thesis. In
this thesis, we shall try to cover one square of the patchwork quilt. Most of the time, we shall
omit quarks and work with pure Yang-Mills theory, commonly known as gluodynamics.

For this, we need techniques. In everything which we shall do, we believe that renormal-
izability is of great importance. To prove that a theory is renormalizable, we use a beautiful
technique called algebraic renormalization. This is an extremely powerful tool, which is unfor-
tunately not widely known. Therefore, we have given a general introduction of the formalism,
starting only from basic knowledge of quantum field theory. This is the topic of chapter 2.

In chapter 3, we shall introduce the model which we shall explore in great detail in this
thesis, i.e. the Gribov-Zwanziger (GZ) formalism. As no overview of this model has been pre-
sented so far, we give a detailed description of the origin of the GZ action. For this, we shall
start from the Yang-Mills action, and show that one is obliged to choose a gauge when quan-
tizing the theory. The way to implement a gauge is by following the Faddeev-Popov method
and we shall mainly work in the Landau gauge. However, if one carefully does the derivation,
one sees that the Faddeev-Popov method contains flaws, i.e. the gauge is not fixed uniquely
and Gribov copies arise. However, at the time Faddeev and Popov invented their method,
they were only interested in the perturbative regime, where the flaws can be neglected. But
as we explained, the non-perturbative regime is the interesting regime where confinement sets
in. Gribov was the first to notice that these flaws could have serious consequences on the
ghost and the gluon propagators at low momenta. Subsequently, Zwanziger found a way to
construct an action which implemented the ideas of Gribov: the Gribov-Zwanziger action was
born. With the help of chapter 2, we shall then prove that this action is renormalizable.

Once the Gribov-Zwanziger action is explained, we shall elaborate on several aspects con-
cerning this action. This was done in chapter 4. In particular, we shall show that the GZ
action breaks the BRST symmetry, and we shall further elaborate on this. Another important
point shall be the relation of the GZ action to the Kugo-Ojima confinement criterium.

A theory is only a model until it has been tested. As we are working with pure Yang-
Mills theory, we cannot use experimental data, but we can compare our analytical results
with lattice calculations. Two particular quantities have been tested in great detail. Namely
the ghost and the gluon propagator, as they are believed to play an important role in con-
finement scenarios. Until 2007, the following results were reported: the gluon propagator was
positivity violating and infrared suppressed in 2d, 3d and 4d. At zero momentum, in 2d the
gluon propagator was vanishing [6], in 3d the gluon propagator was not in contradiction with
a vanishing gluon propagator [7], while in 4d, not so much was known. The ghost propagator
was believed to be enhanced. A vanishing gluon propagator and an enhanced ghost propa-
gator exactly agrees with the predictions of the GZ framework, increasing at that time the
success of the model. However, in 2007, the papers [4, 8] appeared, with simulations on huge
lattices. What they found was striking: the gluon propagator did not seem to vanish at zero
momentum and the ghost propagator did not display enhancement. Therefore, it seemed that
something was missing in the GZ framework. Perhaps other non-perturbative effects should
be included? This is the topic of chapter 5. We shall show that within the GZ formalism, we

4
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can still obtain results which are in agreement with the lattice data, by including condensates
into the theory, which we call the Refined GZ (RGZ) action. We shall corroborate this with
some explicit fits with the lattice data.

So far, we only investigated propagators. However, these are highly gauge dependent quanti-
ties. If the (R)GZ action really is the correct theory to describe QCD, we should be able to
the find bound states, i.e. glueballs. This is the topic of chapter 6 and 7. In chapter 6 we shall
investigate the operator F 2

µν , which is commonly believed to be related to the scalar glueball
operator, and we shall show that we can renormalize this operator to all orders within the
(R)GZ framework. We shall even be able to construct a renormalization group invariant.
However, the correlator 〈F 2(x)F 2(y)〉 displays unphysical cuts. Therefore, we shall look in
chapter 7 for operators which have physical properties and could be really related to glueballs.
In chapter 8 we shall discuss some results for the masses of the lowest lying glueballs in the
framework of i-particles. We shall formulate our conclusions and outlook in chapter 9.
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2
Algebraic renormalization

In this chapter we shall provide the reader with an overview of the algebraic framework of
renormalization, as a large part of this thesis is based on this technique. This overview is
mostly based on the book [9], with the focus on the practical implementation of the algebraic
renormalization.

1 The generating functionals

Let us start with a general classical Lagrangian L involving a certain set of fields φi, with i
denoting the kind of field, as well as the spin and internal degrees of freedom, and working
in d-dimensional space-time. The Lagrangian can always be decomposed in a quadratic part
and an interacting part

L(φi(x)) = L0(φ(x)) + Lint(φ(x)) , (2.1)

whereby we can write the quadratic part as

L0(φ(x)) =
1
2
φi(x)Kij(∂)φj(x) . (2.2)

The action is then defined by

S(φi) =
∫

dxL(φi(x)) . (2.3)

Now that we have introduced the action, we can introduce the Feynman path integral∫
[dφ]e

−1
~ S(φi) , (2.4)

whereby we shall work in Euclidean space-time. This object is the basis of quantum field
theory. Expression (2.4) forms the basis for the calculation of Green’s functions in Euclidean
quantum field theory. Green’s functions are vacuum expectation values of the fields,

〈φi1(x1)φi2(x2) . . . φin(xn)〉 ≡
∫

[dφ]φi1(x1)φi2(x2) . . . φin(xn)e
−1
~ S(φi) . (2.5)

These Green’s function are objects of interest in Quantum Field theory, as they can enter the
formula of the cross section corresponding to the scattering processes of particles. The main
question is thus how one can calculate these Green’s functions. Now we shall construct three
different kinds of generating functionals which generate different kinds of Green’s functions
[5, 10–13].

7



CHAPTER 2. ALGEBRAIC RENORMALIZATION

1.1 The generating functional Z(J)

Firstly, we start with the vacuum expectation value of a products of fields as given in equation
(2.5),

〈φi1(x1) . . . φiN (xN )〉 =
∫

[dφ]φi1(x1) . . . φiN (xN )e−
1
~S(φi) . (2.6)

Let us first elaborate on the meaning of these Green’s functions. The Green’s function (2.6) is
called a n-point function. Diagrammatically we can think about n-legs, namely φi1 , . . . , φiN
starting from the space-time points x1, . . . , xN , which have to be connected in some way. How
one can connect these lines, is determined by the action S, and different possibilities are often
possible also with a different number of internal loops. We order the diagrams according to
the number of loops, which shall correspond to a certain order in ~: we call this perturbation
theory. Purely written as in (2.6), also diagrams shall be created which are completely dis-
connected from the space time points xi. These diagrams are called vacuum diagrams, and
by choosing an appropriate normalization factor N , one can show that one can get rid of this
kind of diagrams.

The expectation values (2.6) can be derived from the following generating functional,

Z(J) = N
∫

[dφ]e−
1
~(S(φi)+

∫
dxJi(x)φi(x)) , (2.7)

whereby J i(x) is an external source for field φi. Here we have immediately introduced the
normalization factor N to omit diagrams which contain pure vacuum terms. If we take
N = Z−1(J ≡ 0), one can easy appreciate that no pure vacuum terms will appear in the
diagrams. In what follows, we shall not write explicitly N , always assuming its presence. If
we derive the functional Z(J) with respect to the corresponding sources and set these sources
equal to zero afterwards, we find indeed

δnZ(J)
δJi(x1) . . . δJi(xN )

∣∣∣∣
Ji=0

=
(−1

~

)N ∫
[dφ]φi(x1) . . . φN (xN )e−

1
~S(φi) . (2.8)

In this sense, we can write Z(J) as a series in J :

Z(J) =
∞∑
N=0

(−1/~)N

N !

∫
dx1

∫
dx2 . . .

∫
dxNJ i1(x1) . . . J iN (xN ) 〈φi1(x1) . . . φiN (xN )〉 .

(2.9)

1.2 The generating functional Zc(J) of the connected Green’s functions

So far, connected as well as disconnected diagrams were taken into account. One can therefore
also define the following Green’s function,

〈φi1(x1) . . . φiN (xN )〉c , (2.10)

which only takes into account connected diagrams.
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The generating functional of the connected Green’s functions is related to Z(J) in the follow-
ing way,

Z(J) = e−
1
~Z

c(J) , (2.11)

where again

Zc(J) =
∞∑
N=1

(−1/~)N−1

N !

∫
dx1

∫
dx2 . . .

∫
dxNJ i1(x1) . . . J iN (xN ) 〈φi1(x1) . . . φiN (xN )〉c .

(2.12)
This can be understood as follows. A generic Green’s function can always be described by a
sum of connected Green’s functions,

〈φi1(x1)〉 = 〈φi1(x1)〉c
〈φi1(x1)φi2(x2)〉 = 〈φi1(x1)φi2(x2)〉c + 〈φi1(x1)〉c 〈φi1(x2)〉c

〈φi1(x1)φi2(x2)φi2(x3)〉 = 〈φi1(x1)φi2(x2)φi3(x3)〉c + 〈φi1(x1)〉c 〈φi2(x2)φi3(x3)〉c
+ 〈φi2(x2)〉c 〈φi1(x1)φi3(x3)〉c
+ 〈φi3(x3)〉c 〈φi1(x1)φi2(x2)〉c
+ 〈φi1(x1)〉c 〈φi2(x2)〉c 〈φi3(x3)〉c (2.13)

...

as one can read from the following diagrams

�
=
�

c

�
=
�

c +�c

c

� =�c + 3�c

c
+�c

c

c

... (2.14)

whereby the c stands for the connected diagrams. This expansion can be found back if we
rewrite (2.11):

Z(J) = e−
1
~
∑∞
N=1

(−1/~)N−1

N !

∫
dx1

∫
dx2...

∫
dxNJ

i1 (x1)...JiN (xN )〈φi1 (x1)...φiN (xN )〉
c

= 1 +
(−1

~

)[∫
dx1J

i1(x1) 〈φi1(x1)〉c

+
1
2!

(−1
~

)∫
dx1dx2J

i1(x1)J i2(x2) 〈φi1(x1)φi2(x2)〉c

+
1
3!

(−1
~

)2 ∫
dx1dx2x3J

i1(x1)J i2(x2)J i3(x3) 〈φi1(x1)φi2(x2)φi3(x3)〉c + . . .

]
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+
1
2!

(−1
~

)2
[∫

dx1J
i1(x1) 〈φi1(x1)〉c

∫
dx2J

i2(x2) 〈φi2(x2)〉c

+
−1
~

∫
dx1J

i′1(x1)
〈
φi′1(x1)

〉
c

∫
dx1dx2J

i1(x1)J i2(x2) 〈φi1(x1)φi2(x2)〉c + . . .

]

+
1
3!

(−1
~

)3
[∫

dx1J
i1(x1) 〈φi1(x1)〉c

∫
dx2J

i2(x2) 〈φi2(x2)〉c

×
∫

dx3J
i3(x3) 〈φi3(x3)〉c + . . .

]
. (2.15)

To guide the eye, we explicitly write the expansion (2.9) up to third order

Z(J) = 1 +
−1
~

∫
dx1J

i1(x1) 〈φi1(x1)〉

+
1
2!

(−1
~

)2 ∫
dx1dx2J

i1(x1)J i2(x2) 〈φi1(x1)φi2(x2)〉

+
1
3!

(−1
~

)3 ∫
dx1dx2dx3J

i1(x1)J i2(x2)J i3(x3) 〈φi1(x1)φi2(x2)φi3(x3)〉 .

Comparing equal orders in ~, we indeed nicely recover the relations (2.13).

Let us have a look at the meaning of two point functions. Starting from (2.12), we obtain

δ2Zc(J)
δJj(x)δJk(y)

= 〈φj(x)φk(y)〉c , (2.16)

which represents the exact propagator of the fields φj(x) and φk(y).

1.3 The generating functional Γ of the 1PI Green’s functions

Next, we shall discuss the generating functional Γ[φcl], which is also called the effective ac-
tion. The effective action is of uttermost importance for the concept of algebraic renormaliza-
tion. Not only is Γ[φcl] the generator of the 1PI (one particle irreducible) Green’s functions,
i.e. Green’s functions with amputated external legs, we shall also prove that Γ[φcl] reduces to
the classical action S at lowest order. The effective action is also of paramount importance
as it contains the information regarding the vacuum expectation values of the fields.

Let us define the effective action. First, we need to introduce the quantity φcl
i , called the

“generalized” classical field, by

φcl
i (x) =

δZc(J)
δJi(x)

=
∫

[dφ]φi(x)e−
1
~(S(φi)+

∫
dxJi(x)φi(x))

Z(J)
, (2.17)

which is equal to the vacuum expectation value of φi in the presence of external sources Ji and
therefore depends1 on Ji. The classical field should certainly not be confused with the dummy

1In order to not overload the notation, we did not explicitly write this dependence: φcl
i (x) should be written

as φcl
i (x, J).

10
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integration variable φ, and can be interpreted as the real classical field in the presence of a
source J . With this classical field we can define the effective action as the Legendre transform
of Zc(J),

Γ(φcl) = Zc(J)−
∫

dxJ i(x)φcl
i (x) . (2.18)

The definition is simple, however, one should be careful about its meaning. The effective
action defines a functional of φcl(x) through the implicit dependence of J i on φcl

i .

A feature of the effective action is that the functional derivative w.r.t. φcl becomes nice
and simple:

δΓ(φcl)
δφcl

i (z)
=

∫
dy

δZc(J)
δJ i(y)︸ ︷︷ ︸
=φcl

i (y)

δJ i(y)
δφcl

i (z)
−
∫

dx
δJ i(x)
δφcl

i (z)
φcl
i (x)− Ji(z)

= −Ji(z) . (2.19)

Therefore, if we set the external sources equal to zero, we find that

δΓ(φcl)
δφcl

i (z)

∣∣∣∣
J=0

= 0 , (2.20)

and thus the solutions to this equation provides us the vacuum expectation values of the
fields φi, i.e. 〈φi(x)〉. This is a very valuable relation, the main difficulty relies of course in
the evaluation of Γ(φcl).

Let us now investigate the relation between Γ and the Green’s functions. Firstly, we start
again from relation (2.19). We immediately find that

δ

δJj(x)
δΓ(φcl)
δφcl

i (z)
= −δijδ(z − x) . (2.21)

On the other hand, by implementing the chain rule, we can also write the left hand side of
this equation as

δ

δJj(x)
δΓ(φcl)
δφcl

i (z)
=

∫
dy
δφcl

k (y)
δJj(x)

δ2Γ(φcl)
δφcl

k (y)δφcl
i (z)

. (2.22)

Now inserting the definition (2.17) we obtain

δ

δJj(x)
δΓ(φcl)
δφcl

i (z)
=

∫
dy

δ2Zc(J)
δJj(x)δJk(y)

δ2Γ(φcl)
δφcl

k (y)δφcl
i (z)

. (2.23)

Invoking equation (2.16), we reveal the following interesting relation∫
dy 〈φj(x)φk(y)〉c

δ2Γ(φcl)
δφcl

k (y)δφcl
i (z)

= −δijδ(z − x) , (2.24)

which represents the fact that two infinite dimensional matrices are inverses of each other.
This means that δ2Γ(φcl)

δφcl
i (x)δφcl

j (y)
represents the inverse of the connected two point function or

11



CHAPTER 2. ALGEBRAIC RENORMALIZATION

equivalently the exact propagator of the fields φi(x) and φj(y). This is an important result
as this means that the masses of the particles are encoded in the second derivatives of the
effective action: the roots of the 1PI propagator correspond to the poles of the connected
propagator. Next, we can investigate higher order derivatives of the effective action. Let us
rewrite (2.24) in a different notation,

δ2Zc(J)
δJi(x)δJj(y)

= −
(

δ2Γ(φcl)
δφcl

i (x)δφcl
j (y)

)−1

, (2.25)

and differentiate w.r.t. δ
δJk(z)

δ3Zc(J)
δJi(x)δJj(y)δJk(z)

= − δ

δJk(z)

(
δ2Γ(φcl)

δφcl
i (x)δφcl

j (y)

)−1

. (2.26)

We apply again the chain rule,

δ3Zc(J)
δJi(x)δJj(y)δJk(z)

= −
∫

dv
δφcl

` (v)
δJk(z)

δ

δφcl
` (v)

(
δ2Γ(φcl)

δφcl
i (x)δφcl

j (y)

)−1

, (2.27)

and the standard rule for differentiating the inverse of a matrix, ∂
∂xM

−1(x) = −M−1 ∂M
∂x M

−1,

δ3Zc(J)
δJi(x)δJj(y)δJk(z)

=
∫

dw
δφcl

` (w)
δJk(z)

∫
dudv

(
δ2Γ(φcl)

δφcl
i (x)δφcl

m(u)

)−1(
δ3Γ(φcl)

δφcl
` (w)δφcl

m(u)δφcl
n (v)

)(
δ2Γ(φcl)

δφcl
n (v)δφcl

j (y)

)−1

=
∫

dwdudv 〈φ`(w)φk(z)〉c 〈φi(x)φm(u)〉c 〈φj(y)φn(v)〉c
(

δ3Γ(φcl)
δφcl

` (w)δφcl
m(u)δφcl

n (v)

)
.

(2.28)

This expression can be better understood diagrammatically,

�
x1

x2 x3

=�
x1

x2 x3

(2.29)

whereby the left hand side of this figure represents the 1PI three point Green’s function,
where at each external leg a fully dressed propagator is attached. This operation reconstructs
the connected three point function, as expressed in fact by equation (2.28). We observe that

12
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the connected three point Green’s function is split in different parts: three legs which contain
the full propagators and a remaining part. This remaining part shall be always connected in
the sense that one cannot divide the diagram in two separate pieces just by cutting one line,
i.e. the white blob represents a 1PI diagram. Therefore the underlined part in expression
(2.28) is the 1PI three point Green’s function and the effective action has generated this
Green’s function, i.e.

δ3Γ(φcl)
δφcl

` (v)δφcl
m(u)δφcl

n (v)
= 〈φ`(v)φm(u)φn(v)〉1PI . (2.30)

One can also calculate higher order derivatives of Zc(J). These calculations become more
complicated, though finally result in the simple expression

δnΓ(φcl)
δφcl

i1
(x1)δφcl

i2
(x2) . . . δφcl

in
(xn)

= 〈φi1(x1)φi2(x2) . . . φin(xn)〉1PI . (2.31)

This is a very important result as it shows that the effective action contains the complete
set of physical predictions of a quantum field theory. Indeed, as is well known, 1PI Green’s
functions are related to the S matrix elements, which contain the information of scattering
processes, as established by the LSZ reduction formulas [14].

As a final property, let us show that we can loop expand the effective action with the ze-
roth order equal to the classical action. We start with expression (2.11) of the generating
functional Zc and substitute the expression of Z(J) from (2.7),

e−
1
~Z

c(J) =
∫

[dφ]e−
1
~(S(φi)+

∫
dxJi(x)φi(x)) . (2.32)

The calculation of Zc(J) shall be inspired by the method of the saddle point approximation
of the path integral. For an integral of the type,

I =
∫

dxe−f(x) , (2.33)

whereby we suppose that f(x) is stationary at some point x0, i.e. f ′(x0) = 0, we can Taylor
expand f(x) in the region near x0,

f(x) = f(x0) +
1
2

(x− x0)2f ′′(x0) + . . . , (2.34)

so that the integral I becomes

I ≈ e−f(x0)

∫
dxe−

1
2

(x−x0)2f ′′(x0) . (2.35)

In this way, the integral has become a Gaussian integral which we can evaluate. Let us
therefore try to do the same for the right hand side of (2.32). For this, we need to find a
stationary point for S(φi) +

∫
dxJ i(x)φi(x), which is the classical field equation:

δS(φi)
δφi

∣∣∣∣
φ=φ0

+ Ji = 0 , (2.36)

13



CHAPTER 2. ALGEBRAIC RENORMALIZATION

whereby φ0 is the classical field. At leading order, we just substitute this solution into the
right hand side of (2.32),

e−
1
~Z

c(J) =
∫

[dφ]e−
1
~(S(φi,0)+

∫
dxJi(x)φi,0(x)+O(~)) , (2.37)

and thus

Zc(J) = S(φi,0) +
∫

dxJ i(x)φi,0(x) . (2.38)

Let us now calculate the classical field φcl, see expression (2.17),

φcl
i (x) =

δZc(J)
δJi(x)

= φi,0(x) , (2.39)

so we find that in leading order φcl
i (x) = φi,0(x) and thus

Zc(J) = S(φcl
i ) +

∫
dxJ i(x)φcl

i (x) . (2.40)

After performing the Legendre transformation (2.18) we find,

Γ(φcl) = S(φcl
i ) , (2.41)

which is what we wanted to show. In fact, this is perfectly logical as the only 1PI zero-loop
graphs are the ones corresponding to the classical action. These vertices correspond to a term
in the Lagrangian. Higher order corrections of the effective action, e.g. Γ(n) shall correspond
to n-loop graphs.

2 Composite operators

In an algebraic renormalization analysis, composite operators shall play an important role.
Therefore, we shall elucidate the concept here.

Let us first explain what composite operators are. Classically, it is a local polynomial of
fields and derivatives at the same space time point. One should treat composite operators
as separate objects when investigating the renormalization of a theory, and not just as the
product of fields, as they can induce new infinities. The problem lies in the fact that the limit

lim
x1→x2

〈φi1(x1)φi2(x2)〉 , (2.42)

can become singular. Therefore, if we want to consider a composite operator in our theory,
we introduce them into the classical action coupled to a source:

S(φi, ρk) = S(φi) +
∫

dxρkQk , (2.43)

with Qk the composite operators, and ρk the appropriate sources.
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Now we can generalize the definitions of the generating functionals. Firstly, in order to
construct Green’s function of the type

〈φi1(x1) . . . φiN (xN )Qk1(y1) . . . Qkm(ym)〉

=
∫

[dφ]φi1(x1) . . . φiN (xN )Qk1(y1) . . . Qkm(ym)e−
1
~S(φi) , (2.44)

the expression (2.7) becomes

Z(J, ρ) = N
∫

[dφ]e−
1
~(S(φi)+

∫
dxρkQ

k+
∫

dxJi(x)φi(x)) , (2.45)

so we can generate the Green’s function with the insertion of composite operators,

δn+mZ(J)
δJi1(x1) . . . δJin(xn)δρk1(y1) . . . ρkm(ym)

∣∣∣∣
Ji,ρi=0

= 〈Tφi1(x1) . . . φiN (xN )Qk1(y1) . . . Qkm(ym)〉 . (2.46)

The related Feynman graphs shall now contain new vertices corresponding to the insertion of
the field polynomials Qk. Secondly, we generalize expression (2.12)

Z(J, ρ) = e−
1
~Z

c(J,ρ) , (2.47)

and finally, the effective action becomes

Γ(φcl, ρ) = Zc(J, ρ)−
∫

dxJ i(x)φcl
i (x) , (2.48)

with φcl still defined as in (2.17). Γ(φcl, ρ) is thus the generating functional of 1PI Green’s
functions,

δnΓ(φcl)
δφcl

i1
(x1) . . . δφcl

in
(xn)δρk1(y1) . . . δρkm(ym)

∣∣∣∣∣
ρ=0

= 〈φi1(x1) . . . φin(xn)Qk1(y1) . . . Qkm(ym)〉1PI . (2.49)

We can also formulate the previous generating functionals in a slightly different way. The
following object

δZ(J, ρ)
δρk(y)

∣∣∣∣
ρ=0

:= Qk(y) · Z(J) , (2.50)

is the generating functional of Green’s functions with the insertion of the composite operator
Qk(y). Analogously,

δZc(J, ρ)
δρk(y)

∣∣∣∣
ρ=0

:= Qk(y) · Zc(J) , (2.51)

generates the connected Green’s functions and

δΓ(φcl, ρ)
δρk(y)

∣∣∣∣
ρ=0

:= Qk(y) · Γ(φcl) , (2.52)
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the connected 1PI Green’s function, both with the insertion of the composite operator. As
at the lowest order, Γ(φcl, ρ) is equal to the classical action S(φi, ρk), see expression (2.41),
we can expand expression (2.52),

δΓ(φcl, ρ)
δρk(y)

∣∣∣∣
ρ=0

= Qk(y) +O(~) , (2.53)

whereby Qk(y) is the classical composite operator.

3 The QAP, the key to algebraic renormalization

In this section, we shall explain the procedure of algebraic renormalization which is based
on the quantum action principle (QAP). Basically, algebraic renormalization is based on the
concept of symmetries. The whole idea is that a Lagrangian and its quantum corrections
are completely determined by the underlying symmetry content. From this viewpoint, the
symmetry content of a given quantum field theory model plays a fundamental role, as both the
classical Lagrangian and the corresponding Feynman rules are determined by its symmetries.
One should therefore ask what happens with the classical symmetries at the quantum level,
in order to construct a meaningful consistent perturbation theory at higher orders. This is
the scope of this section.

3.1 The idea of symmetries

The first step in the process of algebraic renormalization is the detection of the symmetries of
the classical action. Let us therefore start with the classical action again, S(φi). This action
has a continuous symmetry if the following infinitesimal variation of the fields

δφi = Pi(φ) , (2.54)

whereby Pi contains an infinitesimal parameter, leaves the action invariant,

δS(φi) = 0 . (2.55)

We assume the functions Pi to be a local polynomial in the fields and their derivatives. All
the symmetries we shall encounter shall belong to a representation of a Lie group G. If Xa

are the generators of the Lie algebra G, they obey the following commutation relation

[Xa, Xb] = ifabcXc , (2.56)

with fabc the structure constants of the Lie group. Next to discrete symmetries, we can distin-
guish between two different kinds of continuous symmetries, linear and non linear symmetries,
which we shall discuss below. Linearly broken symmetries shall be discussed too, as they are
also allowed according to the Quantum Action Principle.

The symmetries can also be divided into local and global symmetries. In the case of a
global symmetry, we can write

Pi(φ) = iεaP ai (φ) , (2.57)

with εa a constant infinitesimal parameter. In the case of a local symmetry, εa becomes
dependent on the space time coordinates.
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3.1.1 Linear symmetry

The symmetry (2.54) is linear if

Pi(φ) = aijφj , (2.58)

with aij quantities independent of the fields. Now consider a Green’s function

〈φi1φi2 . . . φin〉 =
∫

[dφ]φi1(x1)φi2(x2) . . . φin(xn)e−
1
~S(φi) , (2.59)

as the classical action S(φi) is invariant under the symmetry transformation, we easily find
that

δ 〈φi1φi2 . . . φin〉 =
n∑
`=1

〈φi1(x1) . . . φi`−1(x`−1)ai`jφ
j(x`)φi`+1(x`+1) . . . φin(xn)〉 , (2.60)

a sum of elementary Green’s functions.

The invariance of the action can be written in functional form as follows,

WS = 0 , W =
∫

dxPi(φ(x))
δ

δφi(x)
, (2.61)

whereW is called the Ward operator associated to the invariance (2.58). In the case of a global
symmetry, the Ward identities is an integrated identity. However, when dealing with local
symmetries, ε is a function of the space time coordinate x, see equation (2.57). Therefore,
due to the linear independence, the Ward identity shall be a non integrated identity. Non
integrated identities are usually more powerful then integrated identities.

3.1.2 Non-linear symmetry

More generally, we assume a symmetry which is non linear in the fields. As an example, let
us assume a symmetry which is quadratic in the fields,

Pi(φ) = bijkφj(x)φk(x) , (2.62)

We shall encounter this kind of symmetry typically when dealing with the BRST symmetry
of non abelian gauge theories. What we now see is that the variation of a Green’s function
under this symmetry does not result in a sum of elementary Green’s functions,

δ 〈φi1φi2 . . . φin〉 =
n∑
`=1

〈φi1(x1) . . . φi`−1(x`−1)bi`jkφ
j(x`)φk(x`)φi`+1(x`+1) . . . φin(xn)〉 .

(2.63)
What we find is the insertion of the composite operators (2.62) into the Green’s functions. It
is therefore necessary, in the case of non linear symmetries, to explicitly add the corresponding
composite operator (2.62) to the starting action as they will be needed for the renormalization
process. The classical action shall therefore become

Σ = S(φ) + Sext , (2.64)
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with

Sext =
∫

dxρiPi(φ) , (2.65)

whereby ρi is a source coupled to the composite operator, see section 2. Of course, one wishes
to retain the symmetry (2.62) for the new action Σ. We should then check if Sext is left
invariant2. If not, i.e. if δPi(φ) = Qi 6= 0, we need to introduce another source coupled to
Q. In this case, the action becomes larger again

Σ′ = Σ + Sext,2 , (2.66)

with

Sext,2 =
∫

dxRiQi . (2.67)

If δQi is also nonzero, we can continue this process until we find a variation which is zero.
However, it is also possible that this process is infinite. In such cases, to avoid the infinite
number of sources, the best way to proceed in through the introduction of a nilpotent BRST
operator encoding the information of the Lie algebra of the system, see [9].

Now suppose δQi = 0. We can write the symmetry (2.62) in functional form as follows

W(S) =
∫

dx
δS

δρi

δS

δφi
= 0 . (2.68)

This way of writing shall turn out useful later on.

3.1.3 Linearly broken symmetries

Other symmetries which shall play an important role in the process of algebraic renormaliza-
tion are the linearly broken symmetries. Moreover, we can generalize expression (2.61) and
(2.68) to write down the most general Ward identity compatible with the Quantum Action
Principle. Assume we have a classical action S which also depends -besides on the fields φi
and the sources ρi- on a set of parameters3 λi. The most general Ward identity is then given
by,

WS(λi, φi, ρi) = Θ , (2.69)

whereby W and the classical breaking Θ are given by

W = ωi
δ

δλi
+
∫

dx
(
σi

δ

δφi
+ Tijφ

j δ

δφi
+
δS

δρi

δ

δφi

)
,

Θ =
∫

dx (αiφi + βijρiφj) . (2.70)

In the expression ωj are constants, while σi, Tij , αi and βij are quantities independent of
the fields, but they can be functions of partial derivatives. In the case that W is a local non
integrated identity, i.e. W = W(x), the corresponding breaking Θ shall be a non integrated
expression. Notice that in the case of a local Ward identity the global part ωi δ

δλi
cannot

appear.
2We define δρi = 0.
3λi can be e.g. the coupling constant, the masses, . . . .
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3.2 The Quantum Action Principle

After determining the symmetries of the classical action, the main question is what happens
with these symmetries at the quantum level. Here the Quantum Action Principle (QAP)
comes in the game, which was worked out in the early 70’s in [15–19]. The QAP gives
information about the structure of the Ward identities at the quantum level. For the QAP to
be applicable to a certain theory, we always assume that this theory is local, Lorentz invariant
and power-counting renormalizable. In addition, we also assume that the propagators of the
theory have the following behavior in the UV,

lim
k→∞

〈φi(k)φj(−k)〉 ∼ R(k)
k2

, (2.71)

with R(k) a certain polynomial of the momentum and k2 = k2
1 +k2

2 +k2
3 +k2

4 as we are working
in the Euclidean space time.

3.2.1 The QAP for linear symmetries

Let us continue with the Ward identity (2.61). The Quantum Action Principles states that
the classical Ward identity (2.61) becomes at the quantum level4∫

dxPi(x)
δΓ

δφi(x)
= ∆ · Γ , (2.72)

whereby ∆ is an insertion as explained in (2.52). This insertion has certain properties:

• ∆(x) is an integrated local polynomial in the sources and fields and in their partial
derivatives, ∆ =

∫
dx∆(x).

• ∆ has a dimension which is bounded by (d − di + dP ), whereby d is the space-time
dimension, di is the mass dimension of the field φi and dP is the dimension of P .

• ∆ has the same quantum numbers asW ( e.g. charge conjugation, parity, global indices,
etc.)

3.2.2 The QAP for non linear symmetries

In the case of a non linear symmetry (2.68), the QAP states that∫
dx

δΓ
δρai (x)

δΓ
δφi(x)

= ∆a · Γ , (2.73)

with ∆a obeying the similar properties as in the linear case.

3.2.3 The QAP for linearly broken symmetries

Now the most general Ward identity compatible with the QAP is given in (2.69). At the
quantum level, the identity (2.69) becomes

ωaj
δΓ
δλi

+
∫

dx
(
σai

δΓ
δφi

+ T aijφ
j δΓ
δφi

+
δΓ
δρi

δΓ
δφi

)
= Θa + ∆a · Γ . (2.74)

4For a nice review on the QAP, see e.g. [20].
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As we have seen in expression (2.41), the effective action Γ can be expanded in a power series
of ~, recovering at zeroth order the classical action again. Therefore, we loop expand Γ

Γ =
∞∑
n=0

~nΓ(n) , (2.75)

with Γ(0) equal to the classical action S. Let us therefore expand expression (2.74) in series
of ~. At zeroth order we need to recover the classical Ward identity,

ωaj
δS

δλi
+
∫

dx
(
σai
δS

δφi
+ T aijφ

j δS

δφi
+
δS

δρi

δS

δφi

)
= Θa , (2.76)

from which we can see that ∆a can only start from order ~.

3.2.4 An easy example

Let us give an easy example to fix the thoughts. We shall study the quantum extension of
the U(1) global symmetry in a scalar model. We start with the following classical action

S =
∫

d4x
(
∂µϕ∂µϕ+m2ϕϕ+

g

4
(ϕϕ)2

)
, (2.77)

whereby we work in 4 space time dimensions. The fields φi are thus given by the complex
conjugate pair (ϕ,ϕ) and the parameters λi are (m, g), where m stands for the mass and
g is the coupling constant. One easily sees that this classical action is invariant under the
following linear Ward identity

WS = 0 ,

W =
∫

d4x

(
ϕ
δ

δϕ
− ϕ δ

δϕ

)
, (2.78)

expressing in functional form the U(1) global invariance:

δϕ = iαϕ ,
δϕ = −iαϕ , (2.79)

whereby α is constant parameter. In addition, the action is invariant under the following
discrete symmetry κ

ϕ→ ϕ ϕ→ ϕ , (2.80)

while W is odd under this symmetry κ

κW = −W . (2.81)

Now we can apply the QAP, implying that

WΓ = ∆ · Γ . (2.82)

We can prove that WΓ = 0 by a recursive argument. At one loop,

~WΓ(1) = ~∆ +O(~2) . (2.83)
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whereby we have made explicit that ∆ can only start from order ~, see expression (2.76). ∆
is an integrated polynomial, with dimension bounded by four and is odd under the discrete
symmetry (2.80), as described below equation (2.72). We can therefore parameterize ∆ as

∆ =
∫

d4x
[
a1

(
ϕ2 − ϕ2

)
+ a2

(
ϕ3ϕ− ϕ3ϕ

)
+ a3 (∂ϕ∂ϕ− ∂ϕ∂ϕ) + a4

(
ϕ4 − ϕ4

)]
= W

[
a1

(
ϕ2 + ϕ2

)
+ a2

(
ϕ3ϕ+ ϕ3ϕ

)
+ a3 (∂ϕ∂ϕ+ ∂ϕ∂ϕ) + a4

(
ϕ4 + ϕ4

)]
= W

4∑
i=1

ai∆̃i , (2.84)

with ai arbitrary coefficients. Now we can replace Γ(1) by

Γ(1) = Γ(1) −
4∑
i=1

ai∆̃i , (2.85)

so we obtain

~WΓ(1) = O(~2) . (2.86)

We can repeat the procedure order by order. In this way, we have proven the effective action
to obey the Ward identity also at the quantum level.

3.3 Anomaly

There are two different possibilities for the breaking of the Ward identity ∆. Firstly, the
breaking can be trivial as in the example shown previously. In this case, one can always
absorb the breaking by introducing local non invariant counterterms in the effective action
Γ in order to restore the Ward identity at the quantum level. However, a second possibility
is that the breaking is non trivial. In this case, there is no possibility of restoring the Ward
identity by the introduction of local counterterms in the effective action. In this case, we call
the Ward identity anomalous. The symmetry is thus broken by quantum corrections. Proving
that the breaking ∆ is non anomalous shall often rely on solving consistency conditions. Let
us give an example. Suppose the linear Ward identityW in equation (2.61) has a group index
a belonging to a Lie algebra, so we can write

WaS =
∫

dxP ai (φ)
δ

δφi
S = 0 . (2.87)

If the theory is power counting renormalizable, this symmetry becomes at quantum level,

WaΓ = ∆a · Γ = ~∆a +O(~2) . (2.88)

From the commutation relations we find,

[Wa,Wb] = fabcWc . (2.89)

Applying this equation to Γ and using equation (2.88), we find at lowest order,

Wa∆b −Wb∆a = fabc∆c , (2.90)

which is called the Wess-Zumino consistency condition. Therefore we have proven that the
commutations relations between the Ward operators Wa, i.e. expression (2.89), put a restric-
tion on the breaking ∆a.
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3.4 Stability

Let us now suppose that we are dealing with a Ward identity which is not anomalous. This
does not yet mean that our theory is renormalizable. For this, we have to prove the stability
of the action. Let us explain this concept with the help of our easy example, the scalar U(1)
model. We have shown that the theory is non anomalous, therefore at first order, WΓ(1) = 0.
Now, we can split Γ(1) into two independent parts: a finite part and a divergent part,

Γ(1) = Γ(1)
fin + Γ(1)

div , (2.91)

where Γ(1)
div is an integrated local functional of the fields. Due to the linearity of W we have

that

WΓ(1)
div = 0 . (2.92)

The classical action itself shall, when calculating loop diagrams, be responsible for divergences,
while, after the renormalization process, the total effective action is finite, representing the
physical content of the theory. Therefore, we can think of the effective action as follows

Γ = S +
∞∑
n=1

Γ(n) = S +
∞∑
n=1

~nΓ(n)
fin +

∞∑
n=1

~nΓ(n)
div . (2.93)

We now introduce the bare action in order to reabsorb the divergent part of the effective
action by means of a suitable redefinition of the fields and parameters of the action S,

S(ϕi, λi, ρi) +
∞∑
n=1

Γ(n)
div(ϕi, λi, ρi) = S(φi,0, λi,0, ρi,0) , (2.94)

whereby φi,0, λi,0, ρi,0 are given by a suitable redefinition:

λi,0 = (1 + ~a)λi ρi,0 = (1 + ~b)ρi φi,0 = (1 + ~c)φi . (2.95)

Equation (2.94) expresses the stability of the classical action S, meaning that the divergences
occurring at the quantum level can be reabsorbed by the introduction of local counterterms
obtained by redefining the fields and parameters of S(ϕi, λi, ρi). The quantity S(φi,0, λi,0, ρi,0)
is usually called the bare action in the literature. It is easy to see, that if the action is stable
at order ~, one can prove by induction that it is stable at all orders.

3.4.1 An easy example: continuation

Let us now prove the action to be stable for the scalar U(1) model. Γ(1)
div is given by

Γ(1)
div = x1

∫
d4x∂ϕ∂ϕ+ x2

∫
d4xm2ϕϕ+ x3

∫
d4x

g

4
(ϕϕ)2 , (2.96)

with x1, x2 and x3 arbitrary parameters. One can check that they are indeed the only
invariant terms of dimension 4 which fulfil the Ward identity. We now need to prove that∫

d4x
(
∂ϕ0∂ϕ0 +m2

0ϕ0ϕ0 +
g0

4
(ϕ0ϕ0)2

)
=
∫

d4x
(
∂ϕ∂ϕ+m2ϕϕ+

g

4
(ϕϕ)2

)
+ ~Γ(1)

div ,
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which can be done by a redefinition of the fields and parameters

ϕ0 =
(

1 + ~
x1

2

)
ϕ ϕ0 =

(
1 + ~

x1

2

)
ϕ

m2
0 =

(
1 + ~

(x2

2
− x1

))
m2 g0 =

(
1 + ~

(x3

2
− 2x1

))
g . (2.97)

We have thus proven that the U(1) model is renormalizable.

4 Intermezzo: cohomologies

Before tackling the renormalization of the Yang-Mills action, we shall introduce some useful
concepts here.

4.1 Cohomology

Suppose δ is a nilpotent operator, δ2 = 0. The cohomology of δ is given by the solutions of
the equation

δ∆ = 0 , (2.98)

which cannot be written in the form

∆ = δΩ . (2.99)

A quantity ∆ obeying equation (2.98) is called closed, while a quantity of the form (2.99)
is called exact. The cohomology of ∆ is thus identified by quantities which are closed but
not exact. More precisely, a non trivial quantity ∆ is always defined up to the addition of
an arbitrary exact part, i.e. one speaks of cohomology classes. In fact, take now two closed
quantities ∆1 and ∆2. These quantities belong to the same cohomology class if

∆1 −∆2 = δ(. . .) , (2.100)

i.e. when ∆1 and ∆2 differ by an exact part.

In this way one can always write ∆ obeying (2.98) as a sum of a trivial part and a non
trivial part.

∆ = ∆n.triv + δ(. . .)︸ ︷︷ ︸
∆triv

, (2.101)

whereby ∆n.triv does not contain parts that can be written as δ(. . .). In quantum field theory,
these non trivial parts shall be the most interesting parts, as they will be related to the
renormalization of the physical parameters of the theory.

4.2 Doublet theorem

Now there is a very important theorem which shall be very useful later on. Suppose our
theory contains a pair of fields, sources or parameters (ui, vi) which form a doublet:

δui = vi δvi = 0 , (2.102)
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whereby the subscript i is a certain index (e.g. color). We assume ui to be commuting, while
vi is an anticommuting quantity. Then we can prove that ui and vi shall never enter the non
trivial part of the cohomology of δ.

The proof is as follows. We introduce two operators P̂ and Â

P̂ =
∫

dx
(
ui

∂

∂ui
+ vi

∂

∂vi

)
Â =

∫
dx

(
ui

∂

∂vi

)
, (2.103)

Functionally, we write for the nilpotent operator δ

δ = vi
∂

∂ui
, (2.104)

so we obtain

δ Â =
∫

dx
(
vi
∂

∂vi
+ vjui

∂

∂uj

∂

∂vi

)
,

Â δ =
∫

dx
(
ui

∂

∂ui
− uivj

∂

∂vi

∂

∂uj

)
,

and thus
{δ, Â} = P̂ . (2.105)

Analogously we also have

P̂ δ =
∫

dx
(
uivj

∂

∂ui

∂

∂uj
+ vi

∂

∂ui
− vivj

∂

∂vi

∂

∂uj

)
δ P̂ =

∫
dx
(
vj

∂

∂uj
+ vjui

∂

∂uj

∂

∂ui
+ vjvi

∂

∂uj

∂

∂vi

)
,

and thus
[δ , P̂ ] = 0. (2.106)

As P̂ is a counting operator for the total number of ui and vi, we can expand5 ∆, see expression
(2.101), in eigenvectors of P̂ ,

∆ =
∑
n≥0

∆n , (2.107)

whereby P̂∆n = n∆n and n represents the total number of ui and vi in ∆n. Now from the
cohomology condition (2.98) and the commutation relation (2.106), we find that

0 =
∑
n≥0

nδ∆n ⇒
∑
n≥1

nδ∆n = 0 . (2.108)

Looking at expression (2.102), we easily obtain that

δ∆n = 0 ∀n ≥ 1 . (2.109)
5We assume ∆ to be a polynomial in ui and vi.
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Finally, using this property and invoking expression (2.105), we obtain

∆ = ∆0 +
∑
n≥1

1
n
P̂∆n

= ∆0 +
∑
n≥1

1
n
δÂ∆n

= ∆0 + δ(. . .) . (2.110)

In conclusion, as δ2 = 0
δ∆ = δ∆0 , (2.111)

whereby ∆0 is independent of the doublet (ui, vi). The quantities ui and vi shall thus never
enter the non trivial part of the cohomology.

5 The algebraic renormalization of the Yang-Mills action

In this section, we shall explore the details of the algebraic renormalization of the Yang-Mills
action including a matter part, see equation (1.18). We shall show that the gauge fixed action
has a non linear symmetry, called the BRST symmetry, which is therefore a nice example for
applying the QAP. Firstly, we shall search for all the possible Ward identities of the classical
action. Next, we investigate these Ward identities at the quantum level by applying the QAP
and scrutinize the possibility for an anomaly. In the final part, we shall prove that the action
is stable and therefore renormalizable.

5.1 Gauge fixing the Yang-Mills action and looking for all the symmetries

When trying to formulate a path integral for the Yang-Mills action (1.18), it was noticed that
the path integral was ill-defined. Therefore, one needed to include a gauge fixing [21]. We
shall elaborate on this in the next chapter, but here we just accept the following well defined
action,

S = SYM + Sm + Sgf , (2.112)

with Sgf the gauge fixing,

Sgf =
∫

d4x

(
ba∂µA

a
µ + α

(ba)2

2
+ ca∂µD

ab
µ c

b

)
, (2.113)

whereby α is the gauge parameter, ca and ca are anti-commuting fields and b is a bosonic
field. ba is also an auxiliary field (sometimes referred to as the Nakanishi-Lautrup field [22]),
as it has no interaction vertices. Therefore, one can easily integrate out this field by invoking
the equations of motion of the ba field to obtain the following equivalent gauge fixing

Sgf,2 =
∫

d4x

(
− 1

2α

∫
d4x(∂µAµ)2 + ca∂µD

ab
µ c

b

)
, (2.114)

which is perhaps more familiar. However, as we shall see, the form (2.113) is more suitable
for proving the algebraic renormalizability of the Yang-Mills action. In the case that α = 0,
we are in the Landau gauge.
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Let us now have a look at all the symmetries and/or Ward identities of the classical ac-
tion S. Now that we have introduced a gauge fixing, obviously, the SU(N) gauge symmetry
is broken. However, it was found by Becchi, Rouet and Stora [23] and independently by
Tyutin, that this action S still enjoys a remaining symmetry, called the BRST symmetry
[24],

sS = 0 , (2.115)

with

sAaµ = − (Dµc)
a , sca =

1
2
gfabccbcc ,

sca = ba , sba = 0 ,

sψiα = −igca(Xa)ijψjα sψ
i
α = −igψjαc

a(Xa)ji . (2.116)

One can check that s is nilpotent,

s2 = 0 . (2.117)

a property which shall turn out to be very important6. As we explained in section 3.1, we
need to couple a source to each non linear variation of the fields, i.e. to sAaµ, sca, sψiα and

sψ
i
α. Therefore, we add the following auxiliary part to the action,

Σ = SYM + Sm + Sgf + Sext (2.118)

Sext =
∫

d4x
(
Ka
µsA

a
µ + Lasca + Y

i
αsψ

i
α + sψ

i
αY

i
α

)
=

∫
d4x

(
−Ka

µD
ab
µ c

b +
1
2
gLafabccbcc − igY i

αc
a(Xa)ijψjα − igψjαc

a(Xa)jiY i
α

)
,

whereby Ka
µ is a Grassmann source, La is a bosonic source and Y i

α and Y i
α are spinor sources

transforming in the same representation as ψ. The s variation of all these sources is equal
to zero. Notice that due to the nilpotency of the BRST symmetry s, we were able to add
this part in an s exact fashion. We have summarized all the quantum numbers of the fields
in table 2.1 and 2.2. Now that we have introduced this extra part, we summarize the Ward
identities.

• Firstly, the Slavnov-Taylor identity is now given by

S(Σ) =
∫

d4x

(
δΣ
δKa

µ

δΣ
δAaµ

+
δΣ
δLa

δΣ
δca

+ ba
δΣ
δca

+
δΣ

δY
i
α

δΣ
δψiα

− δΣ
δY i

α

δΣ

δψ
i
α

)
= 0 .

(2.119)

• Secondly, if we derive the action Σ w.r.t. ba, we find the gauge condition,

δΣ
δba

= ∂µA
a
µ + αba . (2.120)

Notice that this symmetry is linearly broken. However, this is allowed according to the
QAP as explained in the previous section.

6Notice that without the introduction of the b-fields, the BRST operator would be nilpotent only on-shell,
i.e. using the equation of motion.
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• Thirdly, the action enjoys the antighost equation:(
δ

δca
+ ∂µ

δ

δKa
µ

)
Σ = 0 . (2.121)

• Finally, from the table 2.1 and 2.2 we also notice that the action preserves the ghost
number and the spinor number:

Gn(Σ) =
∫

d4x

(
ca

δ

δca
− ca δ

δca
−Ka

µ

δ

δKa
µ

− 2La
δ

δLa
− Y i

α

δ

δY
i
α

− Y i
α

δ

δY i
α

)
Σ = 0

Sn(Σ) =
∫

d4x

(
Y i
α

δ

δY i
α

− Y i
α

δ

δY
i
α

+ ψiα
δ

δψiα
− ψiα

δ

δψ
i
α

)
Σ = 0 . (2.122)

However, we should notice that the spinor number is not a necessary Ward identity to
prove the renormalizability of the Yang-Mills action. Therefore, we shall not further
discuss this quantum number.

Aaµ ca ca ba ψ
i
α ψiα

dimension 1 0 2 2 3/2 3/2
ghost number 0 1 −1 0 0 0
spinor number 0 0 0 0 −1 1

Table 2.1: Quantum numbers of the fields.

Ka
µ La Y

i
α Y i

α

dimension 3 4 5/2 5/2
ghost number −1 −2 −1 −1
spinor number 0 0 −1 1

Table 2.2: Quantum numbers of the sources.

5.2 The Ward identities at the quantum level

We shall now try to prove that all the Ward identities can be transformed to the quantum
level and that no anomaly is present.

5.2.1 The gauge condition

Let us start with the gauge condition (2.120), we would like to prove that

δΓ
δba

= ∂µA
a
µ + αba . (2.123)

The QAP translates the symmetry to the quantum level:

δΓ
δba

= ∂µA
a
µ + αba + ∆a · Γ . (2.124)
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We know that ∆ can only start from order ~. Let us now assume that it starts at order hn,
with n ≥ 1:

δΓ
δba

= ∂µA
a
µ + αba + ~n∆a +O(hn+1) . (2.125)

From the properties below equation (2.72), we can determine ∆a: ∆a is a local polynomial
of the sources and fields of dimension two with ghost number zero, therefore from the tables
2.1 and 2.2 we can deduce that

∆a(x) = F a(A, c, c)(x) + ωabbb(x) , (2.126)

with F a a local polynomial in the fields A, c and c, and ωab certain constants. No other
combinations are possible, as the dimensionality of the other fields and sources are too high
for constructing a dimension 2 polynomial. Now we also know that[

δ

δba(x)
,

δ

δbb(y)

]
= 0 , (2.127)

so that acting on Γ gives,

[
δ

δba(x)
,

δ

δbb(y)
]Γ = 0

⇒ δ

δba(x)
(∂µAbµ + αbb + ~n∆b)(y)− δ

δbb(y)
(∂µAaµ + αba + ~n∆a)(x) = 0

⇒ δ

δba(x)
∆b(y)− δ

δbb(y)
∆a(x) = 0 , (2.128)

returns us a consistency condition. Filling in the expression for ∆a we immediately obtain
that ωba = ωab. Now we can rewrite (2.128)

δ

δbb(y)
∆a(x) =

δ

δba(x)
(F b(A, c, c) + ωbcbc)(y) , (2.129)

so we obtain after integration

∆a(x) =
δ

δba(x)

∫
d4y

(
F b(A, c, c)bb(y) +

1
2
ωbcbbbc(y)

)
. (2.130)

Just as in equation (2.85), we can redefine the effective action Γ,

Γ = Γ− ~n
∫

d4y

(
F b(A, c, c)bb(y) +

1
2
ωbcbbbc(y)

)
, (2.131)

so that

δΓ
δba

= ∂µA
a
µ + αba +O(hn+1) . (2.132)

We can repeat this argument at each consecutive order, so that we have indeed proven (2.123).
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5.2.2 Antighost equation

Let us now investigate the antighost equation (2.121). We would like to prove that(
δ

δca
+ ∂µ

δ

δKa
µ

)
Γ = 0 , (2.133)

whereby we continue to work with Γ defined in (2.131). We can rewrite this equation into a
more simple form by performing the following transformation{

K̃µ = Kµ + ∂µc ,

c̃ = c ,
(2.134)

so that 
δ

δKµ(x)a = δ
δK̃µ(x)a

,

δ
δc(x)a = δ

δc̃(x)a
− ∂µ δ

δK̃a
µ
.

and thus the antighost equation becomes

δ

δc̃
aΣ = 0 , (2.135)

with Σ now in the new variables (K̃µ, c̃, . . . ). We can now repeat the proof of the gauge
condition in the previous section 5.2.1. Applying the QAP yields7

δΓ
δca

= ∆a · Γ . (2.136)

We assume again that the breaking ∆ starts at order hn, with n ≥ 1,

δΓ
δca

= ~n∆a +O(~n+1) , (2.137)

with ∆ again a local polynomial of the sources and fields of dimension two however with ghost
number +1 and thus given by,

∆a(x) = Ga(A, c, b)(x) + υab(c)cb(x) , (2.138)

whereby υab(c) is has to function of c to combine to ghost number +1. However, we have to
keep in mind that Γ obeys the identity (2.132). Therefore, we know that Ga cannot depend
on b and thus

∆a(x) = Ga(A, c)(x) + υab(c)cb(x) . (2.139)

Here, we have that {
δ

δca(x)
,

δ

δcb(y)

}
= 0 , (2.140)

7We omit the ˜ notation for the rest of the paragraph.
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as we are working with ghost fields here. Multiplying this equation with the effective action
Γ gives

δ

δca(x)
∆b(y) +

δ

δcb(y)
∆a(x) = 0 , (2.141)

and thus υab(c) = −υba(c). We can solve this equation again,

∆a(x) =
δ

δca(x)

∫
d4y

(
cbGb(A, c)(y) +

1
2
υbc(c)cbcc(y)

)
. (2.142)

We can redefine the action analogously as in equation (2.131), so the antighost as well as the
gauge condition hold to order ~n. By induction, we have thus proven that these identities
hold to all orders8.

5.2.3 Ghost number

We can easily prove that the ghost number remains zero at the quantum level. According to
the QAP, the first equation of expression (2.122) becomes

Gn(Γ) = ∆ · Γ , (2.143)

whereby ∆ is an integrated local polynomial of dimension 4 which has the same quantum
numbers as the Ward identity Gn. From equation (2.122), we see that the Ward identity Gn
itself has ghost number zero. Therefore, ∆ also has ghost number zero. Assuming that the
breaking ∆ starts at order ~n, we rewrite

Gn(Γ) = ~n∆ +O(~n+1) . (2.144)

We can parameterize ∆ as

∆ =
∫

d4xa1(∂µca +Ka
µ)∂µca +

∫
d4xa2(∂µca +Ka

µ)Abµc
cfabc + a3

∫
d4xLacbccfabc + S(A) ,

(2.145)
with S(A) given by ∫

d4x (b1A∂∂A+ b2AA∂A+ b3AAAA) . (2.146)

The parameters a1, . . . , b3 are arbitrary and in the last expression, one can contract the
different fields A and partial derivatives with all possible Lorentz contractions and color con-
tractions9. For the derivation of expression (2.145), we have also kept in mind the validity of
the gauge condition and the antighost equation.

Let us now prove that all the coefficients a1, . . . , b3 vanish. We start with a1. If we act
on both sides of the equation (2.144) with the test operator δ

δc(x)
δ

δc(y) and set all sources and
fields equal to zero, we find

δ

δc(x)
δ

δc(y)
Gn(Γ)

∣∣∣∣
fields,sources=0

=
δ

δc(x)
δ

δc(y)
~n∆

∣∣∣∣
fields,sources=0

, (2.147)

8In order not to overload the notation, we call the redefined effective action again Γ.
9Giving rise to more than three terms. For simplicity, we have not written down all possible contractions.
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or thus, with equation (2.122), we obtain

δ2Γ
δc(x)δc(y)

∣∣∣∣
fields,sources=0

+
δ2Γ

δc(y)δc(x)

∣∣∣∣
fields,sources=0

= ~a1∂
2
yδ

4(x− y) . (2.148)

As the l.h.s. of this equation is clearly equal to zero, it follows that a1 is also equal to zero.
In an analogical fashion, one can prove that all other coefficients are zero. As an example,
acting with δ4

δAδAδAδA on equation (2.144) and setting all fields and sources equal to zero,
immediately gives b3 = 0. Therefore, we have proven Γ to have ghost number zero to order
~. We can however prove this order by order, so in summary, we have∫

d4x

(
ca

δ

δca
− ca δ

δca
−Ka

µ

δ

δKa
µ

− 2La
δ

δLa
− Y i

α

δ

δY
i
α

− Y i
α

δ

δY i
α

)
Γ = 0 . (2.149)

5.2.4 The Slavnov-Taylor identity

Finally, we need to show that the Slavnov-Taylor identity can be extended to the quantum
level. From the QAP we learn that

S(Γ) =
∫

d4x

(
δΓ
δKa

µ

δΓ
δAaµ

+
δΓ
δLa

δΓ
δca

+ ba
δΓ
δca

+
δΓ

δY
i
α

δΓ
δψiα

− δΓ
δY i

α

δΓ

δψ
i
α

)
= ∆ · Γ .

(2.150)

Again, let us assume that the breaking ∆ starts at order ~n,

S(Γ) = ~n∆ +O(hn+1) , (2.151)

then we have to show that we are able to restore the Slavnov-Taylor identity by a redefinition
of the effective action Γ.

Firstly, we shall derive a condition for ∆, called the consistency condition. We can exploit
the nilpotency of the Slavnov-Taylor identity. For this we need to introduce the linearized
version of (2.150),

SΓ =
∫

d4x

(
δΓ
δKa

µ

δ

δAaµ
+

δΓ
δAaµ

δ

δKa
µ

+
δΓ
δLa

δ

δca
+
δΓ
δca

δ

δLa
+ ba

δ

δca

+
δΓ

δY
i
α

δ

δψiα
+

δΓ
δψiα

δ

δY
i
α

− δΓ
δY i

α

δ

δψ
i
α

− δ

δψ
i
α

δ

δY i
α

)
. (2.152)

We can now prove that

SΓS(Γ) = 0 . (2.153)

To prove this, we abbreviate the formula (2.150),

S(Γ) =
∫

d4x

(
δΓ
δKi

δΓ
δAi

+ ba
δΓ
δca

)
, (2.154)

31



CHAPTER 2. ALGEBRAIC RENORMALIZATION

whereby Ki symbolizes the ghost fields/sources and Ai symbolizes the bosonic fields/sources.
For the linearized Slavnov-Taylor identity, we write in this notation

SΓ =
∫

d4x

(
δΓ
δKi

δ

δAi
+

δΓ
δAi

δ

δKi
+ ba

δ

δca

)
. (2.155)

Now we unleash SΓ on S(Γ) to find

SΓS(Γ) =
∫

d4x

(
δΓ
δKi

δ

δAi
+

δΓ
δAi

δ

δKi
+ ba

δ

δca

)∫
d4y

(
δΓ
δKj

δΓ
δAj

+ bb
δΓ
δcb

)
=

∫
d4x

∫
d4y

(
δΓ
δKi

δ2Γ
δAiδKj

δΓ
δAj

+
δΓ
δKi

δΓ
δKj

δ2Γ
δAiδAj

+
δΓ
δAi

δ2Γ
δKiδKj

δΓ
δAj

− δΓ
δAi

δΓ
δKj

δ2Γ
δKiδAj

+ ba
δ2Γ

δcaδKj
δΓ
δAj

− ba δΓ
δKj

δ2Γ
δcaδAj

+bb
δΓ
δKi

δ2Γ
δAiδcb

+ bb
δΓ
δAi

δ2Γ
δKiδcb

+ babb
δ2Γ
δcaδcb

)
, (2.156)

whereby the indices i, a and j, b belong to the x resp. y dependent fields/sources. Now it is
easy to see that all terms cancel pairwise or that they are a contraction of a symmetric and an
antisymmetric part. Therefore we have proven (2.153). Notice that Γ plays no particular role
in this proof and that it can be generalized to all functions10 F . Unleashing SΓ on equation
(2.151), we find that

SΓ∆ = 0 +O(~) . (2.157)

We can expand SΓ, the lowest order contribution, which gives

SΣ∆ = 0 . (2.158)

This is called the consistency solution.

Now we have two options. The consistency condition (2.158) can have a trivial solution,
∆ = SΣΛ, or it has a non trivial solution and cannot be written as ∆ = SΣ(. . .). Only in the
first case, we can prove that the Slavnov-Taylor identity holds at the quantum level. Indeed,
if we define

Γ = Γ− ~nΛ , (2.159)

we have that

S(Γ) =
∫

d4x

(
δ(Γ− ~nΛ)

δKi
δ(Γ− ~nΛ)

δAi
+ ba

δ(Γ− ~nΛ)
δca

)
= S(Γ)− ~n SΓ︸︷︷︸

=SΣ+O(~)

Λ +O(~n+1)

= S(Γ)− ~n∆ +O(~n+1)
= O(~n+1) . (2.160)

10This proof here hold only for functions of the fields and sources with even ghost number, however, also for
odd ghost number, this identity holds, but the form of the linearized Slavnov-Taylor identity changes.
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The only thing which we need to check is that Γ does not violate the other Ward identities.
This is the subject of the next paragraphs.

Firstly, we can prove that ∆ obeys the antighost equation (2.121) and does not depend
on the b-field:

δ

δba
∆ = 0

(
δ

δca
+ ∂µ

δ

δKa
µ

)
∆ = 0 . (2.161)

The first relation can be derived from the following expression:

δ

δba(y)
S(Γ)− SΓ

(
δΓ

δba(y)
− ∂y,µAaµ

)
=

(
δ

δca(y)
+ ∂µ

δ

δKa
µ(y)

)
Γ . (2.162)

Indeed, we observe that due to the antighost equation (2.133) and the gauge equation (2.123),
the above expression becomes

δ

δba(y)
S(Γ) = 0 ⇒ δ

δba(y)
∆ = 0 . (2.163)

The proof of the expression (2.162) is straightforward. We compute that

δ

δba(y)

∫
d4x

(
δΓ
δKi

δΓ
δAi

+ bb
δΓ
δcb

)
=
∫

d4x

(
δ2Γ

δKiδba(y)
δΓ
δAi

+
δΓ
δKi

δ2Γ
δba(y)δAi

+ bb
δ2Γ

δba(y)δcb

)
+

δΓ
δca(y)

,

and

SΓ

(
δΓ

δba(y)
− ∂y,µAaµ(y)

)
=
∫

d4x

(
δΓ
δKi

δ2Γ
δAiδba(y)

+
δΓ
δAi

δ2Γ
δKiδba(y)

+ bb
δ2Γ

δba(y)δcb

)
− ∂y,µ

δΓ
δKa

µ(y)
,

and thus the remainder of these two expressions gives exactly the right hand side of (2.162).
Notice again that Γ plays no specific role in this derivation. The second relation of (2.161)
can be derived from(

δ

δca
+ ∂µ

δ

δKa
µ

)
S(F) + SF

(
δ

δca
+ ∂µ

δ

δKa
µ

)
F = 0 , (2.164)

for F a function with even ghost number. Replacing F with Γ returns us the second relation
of (2.161). The expression above can be proven in a similar fashion as (2.162).

Secondly, we can also easily show that ∆ has ghost number one. Unlashing the operator

Gn =
∫

d4x

(
ca

δ

δca
− ca δ

δca
−Ka

µ

δ

δKa
µ

− 2La
δ

δLa
− Y i

α

δ

δY
i
α

− Y i
α

δ

δY i
α

)
, (2.165)

on equation (2.151), we see that

Gn (S[Γ]) = ~nGn(∆) . (2.166)
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As Γ has ghost number zero, and the operation S rises the ghost number with one, ∆ also
has ghost number one.

So far, we have shown that ∆ does not depend on b, obeys the antighost equation and
has ghost number one. If we can prove that the same properties hold for Λ, Γ (see equation
(2.159)) obeys all the Ward identities. For this, we shall work in the transformed fields (K̃µ,
c̃, . . . ) as introduced in equation (2.134). We recall that this transformation changes the
functional derivatives, see expression (2.135) and thus the antighost equation has changed
form, e.g. for ∆

δ

δc̃a
∆(K̃µ, c̃, . . .) = 0 . (2.167)

We now define the following counting operator:

N =
∫
d4x

(
ba

δ

δba
+ c̃

a δ

δc̃
a

)
, (2.168)

which counts the sum of the number of b and c fields. Expanding Λ according to the eigen-
values of this operator yields

Λ =
∑
n≥0

Λn , (2.169)

whereby NΛn = nΛn. Λ0 is thus the part which does not contain any b nor c̃ fields. As ∆
obeys the antighost equation and does not depend on b, unlashing the counting operator on
∆ = SΣΛ gives

0 = NSΣΛ = SΣNΛ =
∑
n≥0

nSΣΛn , (2.170)

whereby we have used the property that N and SΣ commute. This can be checked by writing
SΣ,

SΣ =
∫

d4x

(
− (Dµc)

a δ

δAaµ
+
(
δSYM

δAaµ
− ∂µba − gfbac∂µcbcc − gfbacKb

µc
c

)
δ

δKa
µ

+
1
2
gfabccbcc

δ

δca
+
(
−Dab

µ ∂µc
b −Dab

µ K
b
µ + gfdacL

dcc
) δ

δLa
+ ba

δ

δca
+ . . .

)
. (2.171)

in the new variables11,

SΣ =
∫

d4x

(
− (Dµc)

a δ

δAaµ
+
(
δSYM

δAaµ
− gfbacK̃a

µc
c

)
δ

δK̃a
µ

+
1
2
gfabccbcc

δ

δca
+
(
gfdacL

dcc
) δ

δLa
+ ba

δ

δc̃
a + . . .

)
. (2.172)

One now easily sees that SΣ and N commute. Finally, from (2.170), we find that Λn for n ≥ 1
must be equal to zero and only Λ0 survives. This means that Λ is independent from b and

11The . . . stand for the parts related to the quarks, which are irrelevant here.
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obeys the antighost equation.

In conclusion, if the consistency condition (2.158) has a trivial solution, ∆ = SΣΛ, the
Slavnov-Taylor identity holds to all orders. Otherwise, we can have an anomaly, and the
Slavnov-Taylor identity is broken. In this case, we shall not be able to prove that the action
is renormalizable as the Slavnov-Taylor identity is a crucial identity. But when exactly do
we have an anomaly? Firstly, one can prove [5] that when the spinors ψ are a sum of a left
handed spinor and a right handed spinor, no anomaly is present and the consistency condition
always has a trivial solution. Secondly, in the case our matter field ψ would be a left handed
spinor, i.e.

ψ = ψleft whereby
1
2

(1− γ5)ψleft = ψleft , (2.173)

there is the possibility of an anomaly. This anomaly is called the Adler-Bardeen anomaly.
However, this anomaly depends on the number of flavours, and if chosen correctly, this
anomaly can vanish, and it can be proven to vanish to all orders. Such a construction plays
an important role in the elektroweak theory.

5.3 Stability of the Yang-Mills action

Let us consider the case without anomaly and prove that the Yang-Mills action is stable in
this case. In the previous section, we have determined all the Ward identities which the
effective action obeys, therefore we can characterize the first order counterterm Γ(1)

div and try
to reabsorb this into the action as described in equation (2.94). If this works, we have proven
the action to be stable.

For all the Ward identities we have described previously, we can write down the identities for
the first order counterterm Γ(1)

div. The gauge condition and the antighost equation read

δΓ(1)
div

δba
= 0 , (2.174a)(

δ

δca
+ ∂µ

δ

δKa
µ

)
Γ(1)

div = 0 , (2.174b)

and the Slavnov-Taylor identity to first order yields,

SΣΓ(1)
div = 0 . (2.175)

whereby we repeat that

SΣ =
∫

d4x

(
δΣ
δKa

µ

δ

δAaµ
+

δΣ
δAaµ

δ

δKa
µ

+
δΣ
δLa

δ

δca
+
δΣ
δca

δ

δLa
+ ba

δ

δca

+
δΣ

δY
i
α

δ

δψiα
+

δΣ
δψiα

δ

δY
i
α

− δΣ
δY i

α

δ

δψ
i
α

− δΣ

δψ
i
α

δ

δY i
α

)
, (2.176)

with S2
Σ = 0. Beside these identities, we have also shown that Γ(1)

div has ghost number zero as
one can read from (2.149).
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Let us now construct this counterterm, which is the most general local polynomial of di-
mension four obeying the previous constraints. Here we can benefit from the nilpotency of
the Slavnov-Taylor identity. As explained in section 4, we can write the most general form of
Γ(1)

div as a sum of two parts

Γ(1)
div = Σn.triv. + Σtriv. , (2.177)

whereby the trivial part can be written as

Σtriv. = SΣΩ ⇒ SΣΣtriv. = 0 . (2.178)

Let us first try to construct the non trivial part, Σn.triv.. First, we notice that there is one
doublet in the game, (ca, ba). Due to the doublet theorem from section 4, this implies that
these fields cannot enter the non trivial part. After some combinatorial effort, one sees that
also Ka

µ, La and ca can not enter the non trivial part. Also the spinor sources Y i
α and Y i

α are
unable to enter the non trivial part, as it is impossible to construct a term with ghost number
zero including these sources. Only with the spinor fields ψiα and ψiα we can construct a term
with the right quantum numbers and invariant under SΣ:

ψ
i
α(γµ)αβDij

µ ψ
j
β . (2.179)

However, we shall prove later that this term can be written as a variation of SΣ, therefore,
this term is trivial. In conclusion, only the gluon field Aµ shall enter the non trivial part.
One can check that the only combination which is invariant under the BRST symmetry12 is
the Yang-Mills action itself. Therefore,

Σn.triv. = a0
1
4

∫
d4xF 2

µν , (2.180)

whereby a0 is an arbitrary parameter. Secondly, we have to scrutinize the trivial part. For
this part, we need to construct the most general local polynomial Ω of all the fields and
sources of ghost number −1 as SΣ increases the ghost number with 1. With the help of the
tables 2.1 and 2.2 we find

Ω =
∫

d4x
(
a1A

a
µK

a
µ + a2∂µc

aAaµ + a3c
aLa + a4c

aba + a5
g

2
fabccacbcc

+ a6ψ
i
αY

i
α + a7Y

i
αψ

i
α + a8ψ

i
αY

i
α + a9Y

i
αψ

i
α

)
, (2.181)

whereby a1, . . . , a9 are arbitrary parameters. Unleashing SΣ at each term, we find

a1SΣ

∫
d4xAaµK

a
µ = a1

∫
d4x
(
Aaµ

δSYM

δAaµ
+ ba∂µA

a
µ + ca∂µ(gfakbAkµc

b)−Ka
µgfakbA

k
µc
b

− iψiα(γµ)αβgAaµ(Xa)ijψjβ −Dµc
aKa

µ

)
a2SΣ

∫
d4x∂µc

aAaµ = a2

∫
d4x
(
∂µb

aAaµ + ∂µc
aDµc

a
)

12As Σn.triv. contains only gluon fields, the Slavnov-Taylor identity SΣ reduces to the usual BRST.
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a3SΣ

∫
d4xcaLa = a3

∫
d4x
(1

2
fabcc

bccLa − ca∂µDab
µ c

b +Ka
µD

ab
µ c

b − gLafabccbcc

+ igY i
αc
a(Xa)ijψjα + igψjαc

a(Xa)jiY i
α

)
a4SΣ

∫
d4xcaba = −a4

∫
d4x
(
caca

)
= 0

a5SΣ

∫
d4x

g

2
fabccacbcc = a5

g

2
fabc

∫
d4x
(g

2
fadec

dcecbcc − 2cabbcc
)

a6SΣ

∫
d4xψ

i
αY

i
α = a6

∫
d4x
(
−ψiα(γµ)αβDij

µ ψ
j
β

)
a7SΣ

∫
d4xY

i
αψ

i
α ∼ a8SΣ

∫
d4xψ

i
αY

i
α ∼ a9SΣ

∫
d4xY i

αψ
i
α ∼ SΣ

∫
d4xψ

i
αY

i
α .

(2.182)

We have still have to impose the gauge condition and antighost equation. From the gauge
condition (2.174a) and the antighost equation (2.174b) we learn that

a5 = 0 a1 = a2 . (2.183)

We also notice that the terms in a6, a7, a8 and a9 are equal, so we can take them together.
Here we have also proven the term (2.179) to be an SΣ variation and thus belonging to the
trivial part. Taking all previous results together, the trivial term is thus given by

Σtriv. = a1

∫
d4x
(
Aµ

δSYM

δAaµ
+ ∂µc

a∂µc
a +Ka

µ∂µc
a − iψiα(γµ)αβgAaµ(Xa)ijψjβ

)
+a2

∫
d4x
(
−1

2
fabcc

bccLa − ca∂µDab
µ c

b +Ka
µD

ab
µ c

b + igY i
αc
a(Xa)ijψjα

+igψjαc
a(Xa)jiY i

α)
)

+ a3

∫
d4x
(
ψ
i
α(γµ)αβDij

µ ψ
j
β

)
, (2.184)

whereby we have three independent parameters here13.

For the action to be stable, we need show that (see equation (2.94))

Σbare(φi,0, ρi,0, λi,0) = Σ(φi, ρi, λi) + ~Γ(1)
div +O(~2) , (2.185)

with φi = {A, c, c, b, ψ, ψ}, ρi = {K,L, Y, Y }, λi = {g, α} and the bare fields, sources and
parameters defined as

φi,0 = Z
1/2
φi
φi , ρi,0 = Zρiρi , λi,0 = Zλiλi . (2.186)

Let us work out one example and try to determine ZA. To determine this particular constant,
(2.185) is∫

d4x
1
4

(∂µAaν,0 − ∂νAaµ,0)2 = ZA

∫
d4x

1
4

(∂µAaν − ∂νAaµ)2

=
∫

d4x
1
4

(∂µAaν − ∂νAaµ)2− ~
(
a0

∫
d4x

1
4

(∂µAaν − ∂νAaµ)2 + 2a1

∫
d4x

1
4

(∂µAaν − ∂νAaµ)2
)
,

(2.187)
13a2 and a3 are not equal to the ones in expression (2.181), but set again in a logical order.
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and thus

ZA = 1− ~ (a0 + 2a1) ⇒ Z
1/2
A = 1− ~

(a0

2
+ a1

)
. (2.188)

The other renormalization factors can be determined in a similar fashion,

Zg = 1 + ~
(a0

2

)
, ZK = Zc ,

Z
1/2
b = Z

1/2
A , ZL = Z

1/2
A = ZgZ

1/2
A Z1/2

c Z
−1/2
ψ ,

Zα = ZA , ZY = ZY .

Z1/2
c = Z

1/2
c = 1 +

~
2

(a1 + a2) ,

Z
1/2
ψ = Z

1/2

ψ
= 1− ~

(a3

2

)
, (2.189)

As all counterterms can be absorbed, we have proven the action to be renormalizable. Notice
that the coupling constant g is renormalized with the non trivial counterterm, while all the
other (non physical) fields and parameters are renormalized with the trivial counterterm.

5.4 Algebraic renormalization of the YM action in the Landau gauge

We can also prove the Yang-Mills action to be renormalizable when choosing immediately
the Landau gauge, α = 0. The action remains stable under quantum corrections as an extra
identity comes into the game, namely the Ghost-Ward identity,

Ga(SYM + Sgf) = ∆a
cl , (2.190)

with

Ga =
∫

ddx
(
δ

δca
+ gfabccb

δ

δbc

)
, (2.191)

and
∆a

cl = g

∫
d4xfabc

(
Kb
µA

c
µ − Lbcc

)
, (2.192)

a linear breaking. In an analogical fashion as before, one can show that this identity shall
put a constraint on the counterterm, namely

GaΣn.triv. = 0 . (2.193)

Therefore, in the counterterm (2.181), a3 shall be equal to zero. This comes down to setting
a2 = 0 in (2.184) and it is trivial so see that the counterterm can be absorbed with the
renormalization factors equal to expression (2.188)-(2.189) whereby a2 = 0.

For other fixed values of α, α = α∗, the action is not stable as we cannot reabsorb the
divergences. Though, is it necessary to let α to be free, as we did previously. We needed
to introduce the associated Zα-factor, thereby ensuring renormalizability for the general α
case. Consequently, α itself has become a running quantity. Since keeping α = 0 also gives a
renormalizable action, we conclude that α = 0 must be a fixed point of the α renormalization
group equation.
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5.5 Conclusion

We have here shown in detail that the Yang-Mills action is renormalizable when no anomaly
is present. From this example, one can see that algebraic renormalization provides a very
systematic and powerful technique to prove that an action is renormalizable. As the Yang-
Mills action is the basis of the standard model, we have here given a first peek view on how
one could renormalize the standard model. However, this is far more elaborated and beyond
the scope of this small introduction and we refer to the literature for an algebraic proof of
the renormalization of the elektroweak standard model [25].
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3
From Gribov to the Gribov-Zwanziger action

In this chapter we shall give an overview of the literature concerning the Gribov problem.
First, we shall uncover the Gribov problem in detail by reviewing the Faddeev-Popov quan-
tization [1]. Next, we shall treat the Gribov problem semi-classically, as done in [2]. Then,
we shall try to translate the ideas of Gribov into a quantum field theory by formulating the
Gribov-Zwanziger action [3, 26].

1 The Faddeev-Popov quantization

In this section we shall repeat the Faddeev-Popov quantization which solved the quantization
problem of the Yang-Mills action[1, 27, 28]. Although this has now become a standard
textbook item (see [10, 11, 29–31] for some examples), we shall go into the details of the
calculations to point out some subtleties which are rarely mentioned.

1.1 Zero modes

Let us start again with the Yang-Mills action as introduced in section 2 of chapter 2. For this
part, we shall only consider the pure gluonic part, as the quantization problem is related this
sector. We recall that

SYM =
∫

ddx
1
4
F aµνF

a
µν . (3.1)

Naively, we would assume the generating functional Z(J) to be defined by equation (2.7),

Z(J) =
∫

[dA]e−SYM+
∫

dxJaµA
a
µ . (3.2)

Unfortunately, this functional is not well defined. Indeed, taking only the quadratic part of
the action,

Z(J)quadr =
∫

[dA]e−
1
4

∫
dx(∂µAν(x)−∂νAµ(x))2+

∫
dxJaµ(x)Aaµ(x)

=
∫

[dA]e
1
2

∫
dxdyAaν(x)[δabδ(x−y)(∂2δµν−∂µ∂ν)]Abµ(y)+

∫
dxJaµ(x)Aaµ(x) , (3.3)

and performing a Gaussian integration (A.1)

Z(J)quadr = (detA)−1/2

∫
[dA]e−

1
2

∫
dxdyJaν (x)Aµν(x,y)−1Jaµ(y) , (3.4)
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with Aµν(x, y) = δ(x − y)(∂2δµν − ∂µ∂ν), we see that this expression is ill-defined as the
matrix Aµν(x, y) is not invertible. This matrix has vectors with zero eigenvalues, e.g. the
vector Yµ(x) = ∂µχ(x),∫

dyAµν(x, y)Yν(y) =
∫

dy[δ(x− y)(∂2δµν − ∂µ∂ν)]∂νχ(y) = 0 . (3.5)

Therefore, something is wrong with the expression of the generating function (3.2). Notice
that this problem is present for SU(N) Yang-Mills action as well as for QED, i.e. the abelian
version of the Yang-Mills action.

The question is now where do these zero modes come from? Let us consider a gauge trans-
formation (1.10) of Aµ = 0, whereby we take U = exp igXaχa,

A′µ = − i
g

(∂µU)U † = Xa∂µχ
a , (3.6)

or thus Aa′µ = ∂µχ
a. This means that our examples of zero modes Yµ are in fact gauge

transformations of Aµ = 0. As we are integrating over the complete space of all possible
gluon fields Aµ, we are also integrating over gauge equivalent fields. As these give rise to zero
modes, we are taking too many configurations into account.

1.2 A two dimensional example

To fix the thoughts, let us consider a two dimensional example. Consider an action, S(r),
invariant under a rotation in a two-dimensional space,

W =
∫

d~re−S(r) =
∫ 2π

0
dθ
∫ ∞

0
rdre−S(r) . (3.7)

The “gauge orbits” of this example are concentric circles in a plane, see Figure 3.1. All the
points on the same orbit, give rise to the same value of the action S(~r). Therefore to calculate
W , we could also pick from each circle exactly one point, i.e. the representative of the “gauge
orbit”, and multiply with the number of points on the circle (see Figure 3.1). Now how
exactly can we implement this? Mathematically, we know that for each real-valued function,
we have that [32]

δ(f(x)) =
∑
i

δ(x− xi)
|f ′(xi)|

, (3.8)

with xi the solutions of f(x) = 0 and provided that f is a continuously differentiable function
with f ′ nowhere zero. Integrating over x yields∫

dxδ(f(x)) =
∑
i

1
|f ′(xi)|

, (3.9)

or thus we find the following unity

1∑
i

1
|f ′(xi)|

∫
dxδ(f(x)) = 1 . (3.10)
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Applying this formula in our 2 dimensional plane, we can write

1∑
i

1∣∣∣ ∂F(r,φ)
∂φ

∣∣∣∣∣∣
F(r,φ)=0

∫
dφδ(F(r, φ)) = 1 , (3.11)

whereby F represents the line which intersects each orbit. Now assuming that our function
F intersects each orbit only once, we can write∣∣∣∣∂F(r, φ)

∂φ

∣∣∣∣∣∣∣∣
F(r,φ)=0

∫
dφδ(F(r, φ)) = 1 . (3.12)

However, to make to analogy with the Yang-Mills gauge theory in the next section, we rewrite
this,∣∣∣∣∂F(r, θ + φ)

∂φ

∣∣∣∣∣∣∣∣
F(r,θ+φ)=0

∫
dφδ(F(r, θ+φ)) =

∣∣∣∣∂F(~rφ)
∂φ

∣∣∣∣∣∣∣∣
F(~rφ)=0

∫
dφδ(F(~rφ)) = 1 , (3.13)

and thus in this notation φ represents the rotation angle of the vector ~r. This unity shall
allow us to pick on every orbit (a given r) only one representative, where F(~rφ) = 0. Notice
however that for every representative we have to multiply with a Jacobian, i.e. the derivative
of the function F in this point with respect to the symmetry parameter φ. As this Jacobian
shall only depend on the distance r, we denote this measure as follows

∆F (r) =
∣∣∣∣∂F(~rφ)

∂φ

∣∣∣∣∣∣∣∣
F(~rφ)=0

. (3.14)

Now inserting this unity into expression (3.7),

W =
∫

dθ
∫
rdr∆F (r)

∫
dφδ(F(r, θ + φ))eiS(r) , (3.15)

and transforming θ → θ − φ,

W =
∫

dφ
∫

dθ
∫
rdr∆F (r)δ(F(r, θ))eiS(r) , (3.16)

we are able to perform the integration over φ, which gives a factor of 2π.

W = 2π
∫

dθ
∫
rdr∆F (r)δ(F(r, θ))eiS(r) . (3.17)

This factor represents the “volume” of each orbit. We shall see that we obtain something
similar for the Yang-Mills action.

Finally, let us remark that it is of uttermost importance that F intersects each orbit only
once. Else, this derivation is not valid, and one should continue with formula (3.11).
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F(x,y)

Figure 3.1: Gauge orbits of a system with rotational symmetry in a plane and a function F which
picks one representative from each gauge.

1.3 The Yang-Mills action

We can repeat an analogous story for the Yang-Mills action [1, 33, 34], by keeping in mind
the pictorial view of the previous section. Due to the gauge invariance of the Yang-Mills
action, we can also divide the configuration space Aµ(x) into gauge orbits of equivalent
classes. Two points of one equivalency class are always connected by a gauge transformation
U = exp(−igXaθa),

AU = UAµU
† − i

g
(∂µU)U † , (3.18)

see equations (1.10) and (1.1). In analogy with the two dimensional example, we shall there-
fore also try to pick only one representative from each gauge orbit, which shall define a surface
in gauge-field configuration space. As we are now working in a multivariable setting, i.e. infi-
nite dimensional space time coordinate system x, and the N2−1 dimensional color coordinate
system a, b, . . ., the analogue of the unity (3.13) becomes,

∆F
∫

[dU ]δ(F(AU )) = 1 , (3.19)

whereby we have used a shorthand notation,

δ(F(AU )) =
∏
x

∏
a

δ(Fa(AUµ (x))

[dU ] ∼
∏
x

∏
a

dθa(x) . (3.20)

Due to the multivariable system, the Jacobian (3.14) needs to be replaced by the absolute
value of the determinant,

∆F (A) = |detMab(x, y)| with Mab(x, y) =
δFa(AUµ (x))

δθb(y)

∣∣∣∣∣
F(AU )=0

. (3.21)
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This determinant is called the Faddeev-Popov determinant. Just as in the two dimensional
example, this determinant is independent from the gauge parameter θa.

Inserting this unity into the generating function (3.2) gives

Z =
∫

[dU ]
∫

[dA]∆F (A)δ(F(AU ))e−SYM , (3.22)

whereby we omit for a moment the part JA. Analogous to the two dimensional example
(see equation (3.16)), we perform a gauge transformation of the field A → AU

†
, so that AUµ

transforms back to Aµ:

AUµ = UAµU
† − i

g
(∂µU)U † → UAU

†
µ U † − i

g
(∂µU)U † = Aµ . (3.23)

Expression (3.22) becomes

Z =
∫

[dU ]
∫

[dA]∆F (A)δ(F(A))e−SYM , (3.24)

as the action, the measure [dA] and the Faddeev-Popov determinant are invariant under gauge
transformations. Now we have isolated the integration over the gauge group U , so we find

Z = V

∫
[dA]∆F (A)δ(F(A))e−SYM , (3.25)

with V an infinite constant. As explained in section 1.1 of chapter 2, one can always omit con-
stant factors. It is exactly this infinite constant which made the path integral (3.2) ill-defined.

Let us now work out the Faddeev-Popov determinant. This determinant is gauge invari-
ant, and does not depend on θa, therefore we can choose A so that if satisfies the gauge
condition F(A) = 0. In this case, we can set θa = 0,

Mab(x, y) =
δFa(AUµ (x))

δθb(y)

∣∣∣∣∣
θ=0&F(A)=0

. (3.26)

Applying the chain rule yields,

Mab(x, y) =
∫

dz
δFa(Aµ(x))
δAcµ(z)

δAc,Uµ (z)
δθb(y)

∣∣∣∣∣
θ=0&F(A)=0

. (3.27)

First working out expression (3.18) for small θ

AUµ = Aµ − (Dµθ)aXa +O(θ2) , (3.28)

and thus

Mab(x, y) =
∫

dz
δFa(Aµ(x))
δAcµ(z)

(−Dbc
µ δ(y − z))

∣∣∣∣
F(A)=0

. (3.29)
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This is the most general expression one can obtain without actually choosing the gauge
condition, F . Let us now continue to work out the Faddeev-Popov determinant for the linear
covariant gauges. For this, we start from the Lorentz condition, i.e.

Fa(Aµ(x)) = ∂µA
µa(x)−Ba(x) , (3.30)

with Ba(x) an arbitrary scalar field. With this condition, Mab(x, y) becomes,

Mab(x, y) = −∂µDab
µ δ(y − x)

∣∣∣
F(A)=0

. (3.31)

Because in the delta function in expression (3.25), the condition F(A) = 0 is automatically
fulfilled, so we find,

Z =
∫

[dA][det[−∂µDab
µ δ(y − x)]]δ(∂A−B)e−SYM . (3.32)

Still, we cannot calculate with this form. However, luckily, there is a way to lift this deter-
minant into the action. For this, we need to introduce Grasmann variables. As described in
the appendix in expression (A.3), we have that (by setting η = η = 0)

detMab(x, y) =
∫

[dc][dc] exp
∫

dxdyca(x)Mab(x, y)cb(y) , (3.33)

and thus

Z =
∫

[dA][dc][dc]δ(∂A−B) exp
[
−SYM −

∫
dxca(x)∂µDab

µ c
b(x)

]
, (3.34)

and we have been able to convert to determinant into a part in the action.

Finally, we would like to get rid of the dirac delta function. For this, we can perform a
little trick: since gauge-invariant quantities should not be sensitive to changes of auxiliary
conditions, we average over the arbitrary field Ba(x) by multiplying with a Gaussian factor,∫

[dB]δ(∂A−B) exp
(

1
2α

∫
dxB2

)
= exp

(
1

2α

∫
dx(∂µAaµ)2

)
, (3.35)

whereby α corresponds to the width of the Gaussian distribution. Taking all the results
together, we obtain the following gauge fixed action:

S = SYM +
∫

dx
(
ca∂µD

ab
µ c

b − 1
2α

(∂µAaµ)2

)
︸ ︷︷ ︸

Sgf

, (3.36)

which is exactly the action (2.114) where we started from in chapter 2. This gauge is called
the linear covariant gauge. Taking the limit α → 0 returns the Landau gauge. In this case
the width α vanishes and thus the Landau gauge is equivalent to the Lorentz gauge (3.30)
with B = 0. Another widely know gauge is the Feynman gauge whereby α = 1. The Landau
gauge has the advantage of being a fixed point under renormalization, while in the Feynman
gauge, the form of the gluon propagator has the most simple form.

In conclusion, we have obtained the following well defined generating functional:

Z(J) =
∫

[dA][dc][dc] exp
[
−S +

∫
dxJaµA

a
µ

]
, (3.37)

with the action S given in equation (3.36).
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1.3.1 Two important remarks concerning the Faddeev-Popov derivation

We need to make two important remarks.

• First, notice that in fact, we need to take the absolute value of the determinant, see ex-
pression (3.21). In most standard textbooks, this absolute value is immediately omitted,
without mentioning that mathematically, it should be there. Subsequently, in equation
(3.33), we have neglected this absolute value in order to introduce the ghosts. It was
thus implicitly assumed that this determinant is always positive. However, in the next
section, we shall prove that this is not always the case. Only when considering in-
finitesimal fluctuations around Aµ = 0, i.e. in perturbation theory, this determinant is
a positive quantity (see section 2.)

• Secondly, closely related to the first remark, this derivation is done is the assumption
of having a gauge condition which intersects with each orbit only once. We call this an
ideal condition. If this is not the case, one should in fact continue with an analogous
formula as (3.11), namely,

1 +N(A) = ∆F
∫

[dU ]δ(F(AU )) , (3.38)

whereby N(A) is the number of Gribov copies for a given orbit1. Again, in the next
section, we shall show that the condition (3.30) is not ideal by demonstrating that the
orbit can be intersected more than once. In fact, a mistake is made here.

1.3.2 Other gauges

Here we have worked out the Faddeev-Popov quantization for the Linear covariant gauges
which encloses the Landau and Feynman gauge as a special case. However, many other
gauges are possible. We can divide the gauges in several classes. The first class are the co-
variant gauges, which besides the linear covariant gauges also holds e.g. the ’t Hooft gauges
[35] and the background fields gauges [36]. A second class of gauges are the noncovariant
gauges, i.e. gauges which break Lorentz invariance. The most famous example is probably
the Coulomb gauge, whereby Fa = ∇iAai (see e.g. [37] for a derivation). Some other exam-
ples are the axial gauge, the planar gauge, light-cone gauge and the temporal gauge. A nice
overview on the second class can be found in [38]. Finally, there are some other gauges like
the Maximal Abelian gauge [39], which breaks color symmetry, and some more exotic gauges
which break translation invariance. For a nice overview on different gauges, we refer to [40].

For this thesis, we shall mainly work in the Landau gauge.

1.3.3 The BRST symmetry

Now that we have fixed the gauge, the local gauge symmetry is obviously broken. Notice that
on the other hand the global gauge symmetry is still present as one can check by performing
a global gauge transformation on the action (3.36). Fortunately, as discussed in chapter 2,
after fixing the gauge a remaining symmetry is still present, namely the BRST symmetry.

1For each copy, the Faddeev-Popov determinant shall be the same, therefore, the sum in equation (3.11)
can be replaced by 1 +N(A).
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This BRST symmetry is most easily seen when introducing the b-field, as done is equation
(2.113)

S = SYM +
∫

ddx
(
ba∂µA

a
µ + α

(ba)2

2
+ ca∂µD

ab
µ c

b

)
, (3.39)

whereby the nilpotent BRST symmetry s is given by expression (2.116).

This BRST symmetry is of uttermost importance, as it is useful for several properties. Firstly,
as we have already proven, it was the key to the proof of the renormalizability of the Yang-
Mills action. Secondly, the BRST symmetry shall also be the key to the proof that the
Yang-Mills action is unitary. Let us explain what unitarity means. We define the physical
state space Hsubs, which is a subspace of the total Hilbert space, as the set of all physical
states |ψ〉phys. A physical state is defined by the cohomology of the free BRST symmetry2

[41, 42]

s0 |ψ〉phys = 0 and |ψ〉phys 6= s0(. . .) + . . . , (3.40)

with s0 is the free BRST symmetry. Now a theory is unitary if

1. Starting from physical states belonging to Hsubs, after these states have interacted, one
should end up again with physical states ∈ Hsubs.

2. All physical states should have a positive norm.

It will exactly be the BRST symmetry which will allow to prove these properties3. Also
notice that by fixing the gauge, we have introduced extra particles, the ghost particles c and
c. As these particles are scalar and anticommuting, they violate the spin statistics theorem.
If the theory wants to be valid, these ghost particles have to be excluded from the physical
spectrum. This is of course related to issue of unitary and one can show that the ghosts are
indeed excluded from Hsubs by invoking the BRST symmetry.

Finally, let us remark that in some approaches, BRST symmetry is regarded as a first principle
of a gauge fixed Lagrangian [45, 46], rather than instead using Faddeev Popov quantization.

2 The Gribov problem

Let us now explicitly show that in the Landau gauge4, the gauge condition is not ideal.
Gribov demonstrated this first in his famous article [2] in 1977, which has been reworked
pedagogically in [47]. For the gauge condition (3.30), he explained that one can have three
possibilities. A gauge orbit can intersect with the gauge condition only once (L), more than
once (L′) or it can have no intersection (L′′). In [2] Gribov explains that no examples of the
type L′′ are known, however that many examples of the type L′ are possible.

2This means, switch off interactions or set g = 0.
3See [14, 43] for the original proofs, or [44] for a more recent version of the proof.
4From now on, we shall work in the Landau gauge, unless explicitly mentioned.
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2 V.N. Gribov / Quatzlization of non-Abelim gauge theories 

to an additional limitation on the integration range in the functional space of non- 

Abelian fields, which consists in integrating only over the fields for which the 
Faddeev-Popov determinant is positive. This additional limitation is not significant 
for high-frequency oscillations, but substantially reduces the effective oscillation 
amplitudes in the low-frequency region. This in turn results in the fact that the 
“effective” charge interaction does not tend to infinity at finite distances as occurs 
in perturbation theory, but goes to infinity at infinitely large distances between 
charges, if at all. 

2. Non-uniqueness of gauge conditions 

The difficulties in the quantization of gauge fields are caused by the fact that 
the gauge field Lagrangian 

F,, = a,4 - b+ + k4~,1 I (2) 
where A,, are antihermitian matrices, Sp A, = 0, being invariant with respect to the 
transformation 

A, = S+A;S + S+a,S , s+ = s-1 7 (3) 

contains non-physical variables which must be eliminated before quantization. A 
conventional method of relativistic invariant quantization [3 ] is as follows. Let us 

consider a functional integral 

in Euclidean space-time and imagine the functional space A, in the form shown in 

Fig. 1 

Figure 3.2: The three possibilities for a gauge orbit w.r.t. a gauge condition. Original figure from
[2].

Let us quantify this. Take two equivalent fields, Aµ and A′µ which are connected by a gauge
transformation (1.10). If they both satisfy the same gauge condition, e.g. the Landau gauge,
we call Aµ and A′µ Gribov copies. We can work out this condition a bit further,

A′µ = UAµU
† − i

g (∂µU)U † , ∂µAµ = 0 & ∂µA
′
µ = 0 ,

⇓
∂µUAµU

† + UAµ∂µU
† − i

g (∂2
µU)U † − i

g (∂µU)(∂µU †) = 0 . (3.41)

Taking an infinitesimal transformation, U = 1+α, U † = 1−α, with α = αaXa, this expression
can be expanded to first order,

−∂µ(∂µα+ ig[α,Aµ]) = 0 , (3.42)

or from equation (1.13) we see that this is equivalent with

−∂µDµα = 0 . (3.43)

In conclusion, the existence of (infinitesimal) Gribov copies is connected to the existence of
zero eigenvalues of the Faddeev-Popov operator. This is a very important insight as now we
can understand the two remarks made in the previous section.

Firstly, for small Aµ, this equation reduces to −∂2
µα = 0. However, it is obvious that the

eigenvalue equation
−∂2

µψ = εψ , (3.44)

only has positive eigenvalues ε = p2 > 0. This means that also for small values of Aµ we
can expect the eigenvalues ε(A) to be larger than zero. However, for larger Aµ, this cannot
be guaranteed anymore. Therefore, negative eigenvalues can appear (and will appear) and
thus the Faddeev-Popov operator shall also have zero eigenvalues. This means that our gauge
condition is not ideal. Secondly, if the Faddeev-Popov operator has negative eigenvalues,
the determinant of this operator can switch sign and the positivity of this determinant is no
longer ensured. An explicit construction of a zero mode of the Faddeev Popov operator has
been worked out in [47–49].

Finally, let us also mention that in QED no Gribov copies are present. We can show this with
a simple argument. In QED, the gauge transformations are given by

A′µ = Aµ − ∂µχ , (3.45)
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and thus, for the Landau gauge, ∂µAµ = 0, the condition for A′µ to be a gauge copy of Aµ
becomes

∂µA
′
µ = 0 ⇒ ∂2

µχ = 0 , (3.46)

which does not have any solutions besides plane waves. As a plane wave does not vanish at
infinity, they cannot be used for constructing a gauge copy A′µ.

2.1 The Gribov region: a possible solution to the Gribov problem?

2.1.1 Definition of the Gribov region

Now that we have shown that the Faddeev-Popov quantization is incomplete, we need to
improve the gauge fixing. Gribov was the first to propose in 1977 [2] to further restrict to a
region of integration, the so-called Gribov region Ω, which is defined as follows:

Ω ≡ {Aaµ, ∂µAaµ = 0,Mab > 0} , (3.47)

whereby the Faddeev-Popov operator Mab is given by equation (3.31)

Mab(x, y) = −∂µDab
µ δ(x− y) =

(
−∂2

µδ
ab + ∂µfabcA

c
µ

)
δ(x− y) . (3.48)

This is the region of gauge fields obeying the Landau gauge and for which the Faddeev-Popov
operator is positive definite. We recall that a matrix is positive definite if for all vectors ω,∫

dxdyωa(x)Mab(x, y)ωb(y) > 0 . (3.49)

In this way the problem of the absolute value of the determinant would already be solved
(first remark on p.47). The border of this region δΩ is called the first Gribov horizon and at
this border the first eigenvalue of the Faddeev-Popov operator becomes zero. Crossing this
horizon, this eigenvalue becomes negative. This is depicted in Figure 3.3. Consecutively, one
can define the other horizons similarly, as drawn on the picture, where the second (δΩ2), the
third (δΩ3), . . . eigenvalue becomes zero. However, keep in mind that this picture is a very
simplified pictorial view. In reality, the space of gauge fields is much more complicated.

2.1.2 An alternative formulation of the Gribov region

We can also define the Gribov region as the set of relative minima of the following functional5

||AU ||2 = Tr
∫

dxAUµ (x)AUµ (x) =
1
2

∫
dxAaUµ (x)AaUµ (x) , (3.50)

which corresponds to selecting on each gauge orbit the gauge configurations which minimizes
A2. Notice that there can be more than one minimum. It can be seen relatively easy that this
definition agrees with the Gribov region. Assume we have a gluon field Aµ which minimizes the

5The original derivation can be found in [50–52], a more recent version in the appendix of [53].
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Ω

Ω2

Ω3

. . .

δΩ

δΩ2

δΩ3

Figure 3.3: The different regions in the hyperspace ∂A = 0.

functional (3.50). Firstly, in order to have an extremum, varying ||A||2 w.r.t. an infinitesimal
gauge transformation (1.12) must be zero,

δ||A||2 = δ

(
1
2

∫
dxAaµ(x)Aaµ(x)

)
=
∫

dxδAaµ(x)Aaµ(x) = −
∫

dxDab
µ θ

b(x)Aaµ(x)

= −
∫

dx∂µθa(x)Aaµ(x) =
∫

dxθa(x)∂µAaµ(x) = 0 . (3.51)

As this equation must be zero for all θa, we must have that ∂µAaµ(x) = 0. Secondly, this
extremum must be a minimum, therefore, differentiating again,

δ2||A||2 = −
∫

dx∂µθa(x)δAaµ(x) =
∫

dxθa(x)(−∂µDab
µ )θb(x) > 0 ∀ θ . (3.52)

This implies that the operator −∂µDab
µ =Mab must be positive definite, see equation (3.49).

2.1.3 Properties of the Gribov region

How exactly one can implement this restriction, is the topic of the next sections. First, we
shall answer some profound questions and discuss some properties of the Gribov region.

• Firstly, does each orbit of gauge equivalent fields intersect with the Gribov region?
This property is of course of paramount importance as it would not make any sense to
integrate over an incomplete region of gauge fields. A first step towards establishing this
property was made in [2] where is was proved that for every field infinitesimally close to
the horizon δΩ, there exists an gauge copy at the other side of the horizon, infinitesimally
close again. Later, it was then actually proven that every gauge orbit indeed intersects
with the Gribov region [52, 54]. In [54] is was mathematically rigorously proven that
for every gauge orbit, the functional (3.50) achieves its absolute minimum. Moreover,
since every minimum belongs to the Gribov region, every gauge orbit intersects with
the Gribov region.
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• Does Aµ = 0 belong to the Gribov region? This is important as this means that the
perturbative region is also incorporated in the Gribov region. In fact, we can prove
this very easily (see the appendix of [55]). Taking Aµ = 0, the Faddeev-Popov operator
becomes Mab = −∂2δab, which is positive definite.

• We can also prove that the Gribov region is convex [55]. This means that for two gluon
fields A1

µ and A2
µ belonging to the Gribov region, also the gluon field Aµ = αA1

µ + βA2
µ

with α, β ≥ 0 and α+ β = 1, is inside the Gribov region. To demonstrate this, we need
to show thatMab(αA1

µ+βA2
µ) is positive definite. However, from expression (3.48), we

immediately see that

Mab(αA1
µ + βA2

µ) = αMab(A1
µ) + βMab(A2

µ) .

As α, β ≥ 0, this sum of two positive definite matrices is again a positive definite matrix.

• Finally, we can also show rather easily that the Gribov region is bounded in every
direction [55]. Assume we have a gluon field Aµ part of the Gribov region Ω, then we
can show that the gluon field λAµ with λ large enough, shall be located outside of Ω.
Firstly, as the matrix Mab

2 (Aµ) = ∂µfabcA
c
µ is traceless, the sum of all the eigenvalues

of Mab
2 is zero. Therefore, for Aµ 6= 0, there should exist at least one eigenvector6 ω

with negative eigenvalue κ, i.e.∫
dxdyωa(x)Mab

2 (x, y)ωb(y) = κ < 0 . (3.53)

Secondly, asMab
2 (Aµ) is linear in Aµ,Mab

2 (λAµ) = λMab
2 (Aµ) has the same eigenvector

ω with eigenvalue λκ. Therefore,∫
dxdy ωa(x)Mab(λAµ)(x, y)ωb(y) =

∫
dx ωa(x)(−∂2

µ)ωa(x) + λκ , (3.54)

which shall become negative for large enough λ. Consequently, Mab(λAµ) is no longer
positive definite and λAµ is located outside the horizon. Therefore, Ω is bounded in
every direction. Moreover, in [56] it has been proven that the Gribov region is contained
within a certain ellipsoid.

With all these properties, restricting the integration of gluon fields to the Gribov region looks
like a very attractive option to improve the gauge fixing. Unfortunately, the Gribov region
still contains Gribov copies. This was first discussed in [50]. Let us repeat their reasoning.
Assume a gluon field Aµ belonging to the boundary of the Gribov region, then we have that

δ||A||2 = 0 ,

δ2||A||2 6> 0 ⇒ ∃θ,
∫

dxθa(x)Mab(x)θb(x) = 0 . (3.55)

As the Faddeev-Popov determinant has zero modes, this means that it is inconclusive whether
||A||2 is a minimum7. We have to consider the third variation δ3||A||2,

δ3||A||2 = gfabc

∫
dx∂µθa(x)θb(x)Dcd

µ (x)θd(x) , (3.56)

6We assume this eigenvector to have norm 1.
7This is a consequence of the second derivative test as can be found in any textbook on basic mathematics.
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which is, generally speaking, not zero8. Therefore, a gluon field on the boundary of the
Gribov region is not a relative minimum of the functional (3.50) and thus there must exist a
transformation Ũ :

||A||2 > ||AŨ ||2 . (3.57)

Now, suppose we have a function f from X to Y , where X,Y are topological spaces. We say
a function f is continuous at x for some x ∈ X if for any neighborhood V of f(x), there is a
neighborhood U of x such that f(U) ⊆ V . In this view, let us define the following function,
f(A,U) = ||AU ||, which we can consider a continuous function ∀A,U . Moreover, the function
g(A) = f(A, I) − f(A, Ũ) is also a continuous function. Therefore, for certain A located on
the boundary of the Gribov region, we know that g(A) > 0, see equation (3.57). Due to con-
tinuity, we can take a region V around g(A) which is still positive, such that there is a region
U around A for which g(U) ⊆ V . We consider the field (1 − ε)Aµ, with ε > 0 and as small
as needed to lie inside U . From the convexity of the Gribov region, it is easy to understand
that (1 − ε)Aµ ∈ Ω. Therefore, we can conclude that ||[(1 − ε)A]Ũ ||2 < ||(1 − ε)A||2 and we
have that the relative minimum ||(1− ε)A||2 is not the absolute minimum.

Also numerical results have confirmed this, see e.g. [57]. In fact, it is not surprising that
the Gribov region still contains copies. By looking at the functional (3.50), it seems obvious
that on a gauge orbit, the functional (3.50) can have more than one relative minima. Two
relative minima of (3.50) on the same orbit are Gribov copies which both belong to Ω. Also
Gribov was already aware of this possibility [2].

2.2 The fundamental modular region (FMR)

2.2.1 Definition of the FMR

What is then the configuration space free from Gribov copies? It is obvious that from the
functional (3.50) which defines the Gribov region, we can also define a more strict region,
i.e. the set of absolute minima of the functional (3.50). As we take for each gauge orbit, the
absolute minimum, we shall select, on a given orbit, only one gluon field, namely the gauge
configuration closest to the origin. This region is then called the fundamental modular region
Λ. Restricting to this region of integration is also called the minimal Landau gauge9. Λ is
then a proper subset of Ω, Λ ⊂ Ω. Notice that the absolute minimum of the functional (3.50)
can only determine the minimum up to a global gauge transformation. Indeed, as mentioned
on p.47, fixing the gauge does not break the global gauge symmetry and by performing a
global gauge transformation H independent from the space time coordinate x, expression
(3.50) does not change,

||AU ||2H = Tr
∫

dxHAUµ (x)H†HAUµ (x)H† = Tr
∫

dxAUµ (x)AUµ (x) = ||AU ||2 . (3.58)

Therefore, saying that we picked out from a gauge orbit exactly one configuration always
means modulo global gauge transformations.

8One can compare this with x3 which has a saddlepoint at x = 0. The first and second derivative are zero,
while the third derivative is positive.

9Sometimes this is also called the absolute Landau gauge, while the minimal Landau gauge can refer to
taking one arbitrary minimum of the functional (3.50), depending on the author or article.
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In fact, the FMR Λ would be the exact gauge fixing if the global minima of the functional
(3.50) are non-degenerate. However, it is proven that degenerate minima can only occur on
the boundary of the FMR, δΛ [58]. Therefore, if one would integrate over

Z =
∫

Λ
[dA]e−SYM , (3.59)

these degenerate minima do not play any role, as they have zero measure. This agrees with
endpoints of a function which do not play a role when integrating over a function.

2.2.2 Properties of the FMR

Let is discuss again some properties of the FMR, many similar as the Gribov region.

• Firstly, all gauge orbits intersect with the FMR. This is in fact already demonstrated
in the first bullet point on p.51.

• Aµ = 0 belongs to the FMR as 0 is the smallest possible norm.

• Λ is convex [50]. This is a bit more involved to prove than for the case of the Gribov
region Ω. We have to show that if A1

µ, A
2
µ ∈ Λ, also Bµ = tA1

µ+(1−t)A2
µ, with t ∈ [0, 1].

For this we work out the functional (3.50),

||AU ||2 = Tr
∫

dxAUµ (x)AUµ (x)

= Tr
∫

dx
(
UAµU

† − i
g

(∂µU)U †
)(

UAµU
† − i

g
(∂µU)U †

)
.

= ||A||2 − 2
i
g

Tr
∫

dx
(
AµU

†∂µU
)
− 1
g2

Tr
∫

dx
(

(∂µU)U †(∂µU)U †
)
.

As A1
µ and A2

µ both belong to the FMR, we have that

||A1,U ||2 − ||A1||2 ≥ 0 ⇔ −2
i
g

Tr
∫

dx
(
A1
µU
†∂µU

)
− 1
g2

Tr
∫

dx
(

(∂µU)U †(∂µU)U †
)
≥ 0

||A2,U ||2 − ||A2||2 ≥ 0 ⇔ −2
i
g

Tr
∫

dx
(
A2
µU
†∂µU

)
− 1
g2

Tr
∫

dx
(

(∂µU)U †(∂µU)U †
)
≥ 0 .

Or thus, combining these two inequalities,

−2
i
g

Tr
∫

dx
(

(tA1
µ + (1− t)A2

µ)U †∂µU
)
− 1
g2

Tr
∫

dx
(

(∂µU)U †(∂µU)U †
)
≥ 0 ,(3.60)

from which follows

||BU ||2 − ||B||2 ≥ 0 . (3.61)

Therefore, B belongs to the FMR and the FMR is convex.

• Λ is bounded in every direction. This is obvious as Λ ⊂ Ω with Ω bounded in every
direction.

• The border of Λ, δΛ has some points in common with the Gribov horizon [49].
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2.3 Other solutions to the Gribov problem

Firstly, a very important result has been proven by Singer in [59], whereby it was shown that
all Lorentz invariant gauges suffer from Gribov copies. Therefore, a gauge free a Gribov copies
shall thus manifestly break Lorenz invariance, and are therefore very difficult to handle in
calculations. These gauges do exist, e.g. the space like planar gauge [60] which has no Gribov
copies.

Many other attempts have been done, like improving the Faddeev-Popov gauge fixing in
[61] whereby they have managed to lift the absolute value of the Faddeev-Popov determinant
into the action. However, they were not able to take into account the number of copies into
the action, and therefore, as far as we know, no further calculations have been done in their
framework. Also in [62, 63] an attempt to improve the gauge fixing has been done. However,
as far as we know, the meaning of their model remains unclear in the infrared.

In [64], another method is proposed which avoids the Gribov ambiguity. The method is
based on stochastic quantization and is an improved implementation of the method proposed
in [65] where the gauge was not fixed. However, this method is not so convenient to use.

Finally, to be complete, we should also mention that the following paper [66] claimed that the
Faddeev-Popov quantization is correct although Gribov copies are present. Also in [67], an
attempt is done to try to take into account all Gribov copies, by working in a Coulomb-like
gauge. In this way, they have avoided the use of a boundary condition like restricting to the
Gribov region.

2.4 Summary

In conclusion, to be absolutely sure that one has a correct quantization of the Yang-Mills
theory, one should really restrict to the FMR in order to have a completely correct gauge
fixing whereby only one gauge configuration is chosen per orbit. However, no practical im-
plementation of this region has been found so far in the continuum. Some other attempts
of improving gauge fixing are interesting, but not very convenient or too difficult to handle.
However, if we restrict ourself to the Gribov region, it is possible to perform practical calcu-
lations. Gribov has done this semi-classically, and Zwanziger has managed building an action
which automatically restricts to the Gribov region. One can still object as the Gribov region
still contains Gribov copies, but there has been a conjecture by Zwanziger [55, 68], that the
important configurations lie on the common boundary δΛ ∩ δΩ of the Gribov region Ω and
the FMR Λ. Therefore, the extra copies inside the Gribov region would not play a significant
role, and it would be sufficient to restrict to the Gribov region.

2.4.1 Important configurations lie on the common boundary δΛ ∩ δΩ

Let us go a bit more into the details of the statement that the important configurations lie
on the common boundary δΛ ∩ δΩ, as a clear reasoning is not available in literature [69].

We shall start by proving the following statement: If a configuration A satisfies the two
conditions (i) it is an absolute minimum of the minimizing functional ||AU ||2, see equation
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(3.50) and (ii) there exists an x-dependent solution ω, that is with ∂µω 6= 0, to the equation,

Dµ(A)ω = 0 , (3.62)

then configuration A lies on the common boundary ∂Λ ∩ ∂Ω of the Gribov region Ω and the
FMR Λ. Here ω is a common eigenvector of each of the Dµ(A) for µ = 1, . . . , d.

To prove the statement we first observe that the equation,

∂µDµ(A)ω = 0 , (3.63)

follows from (3.62). The existence of an x-dependent solution ω to (3.63) is the defining
condition for configurations A to lie on the Gribov horizon ∂Ω.10 Moreover, by condition (i),
configuration A is an absolute minimum of ||AU || so it satisfies the defining condition of the
fundamental modular region Λ, and we have A ∈ Λ. Furthermore Λ is included in Ω, Λ ⊂ Ω,
and so, since A lies on the boundary of Ω, A ∈ ∂Ω, it necessarily lies on the boundary of Λ,
A ∈ ∂Λ. QED.

Now we give some argument that part of the configurations on this common boundary δΛ∩δΩ,
shall dominate. The argument goes as follows. In the maximal Abelian gauge, it is stated
that Abelian configurations (or more precisely those nearby) dominate the functional integral
[70], and would be responsible for confinement. In SU(2), any Abelian configuration can be
written as11

A′
a
µ(x) = δa3aµ(x) , (3.64)

whereby aµ(x) is an arbitrary function. This configuration possesses the degeneracy property
(3.62). Indeed for ω′a = cδa3, where c is a constant, we have

Dµ(A′)ω′ = ∂µω
′ − ig[A′µ, ω] = 0 . (3.65)

When this configuration is gauge transformed to the absolute minimum, A = A′U on its
gauge orbit, we have A ∈ Λ and Dµ(A)ω = 0, as Dµ(A)ω = 0 is a gauge invariant equation,
which is proven in appendix B1. When the gauge transform of ω′, ω = Uω′U †, is no longer
a constant function, conditions (i) and (ii) are satisfied and the Abelian configuration (3.64)
are equivalent with configurations on the common boundary δΛ ∩ δΩ of the Gribov region Ω
and the FMR Λ.

For completeness, we should stress that certainly not all Abelian configurations shall have an
equivalent configuration on the boundary δΛ∩δΩ. It is always possible that an Abelian config-
uration already lies inside the FMR Λ. Indeed, we may make an Abelian gauge transformation
so the Abelian configuration is transverse, ∂µaµ = 0, and is thus simultaneously in Landau
gauge and maximal Abelian gauge. Each such configuration corresponds to a unique distinct
Abelian field tensor fµν(x) = ∂µaν − ∂νaµ, , with inversion aν = (∂2)−1∂µfµν automatically

10The condition that ω be x-dependent, ∂µω 6= 0, is necessary because the minimal Landau gauge condition
does not fix global gauge transformations U = expω, and global gauge transformations have as infinitesimal
generator x-independent ω, with ∂µω = 0. These satisfy (3.63) for every transverse configuration A (including
those in the interior of Λ), when ω is x-independent, ∂µω = 0, as is easily verified. Indeed when A is transverse,
we have ∂µDµ(A) = Dµ(A)∂µ, and so ∂µDµ(A)ω = Dµ(A)∂µω = 0 for any x-independent ω.

11This can be generalized to other SU(N).
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satisfying ∂νaν = 0, so different transverse Abelian configurations are gauge inequivalent.
Thus the set of gauge inequivalent Abelian configurations consists of unbounded rays λaµ,
where λ > 0 is any positive number. On the other hand the FMR, Λ, in minimal Landau
gauge is bounded in every direction. So some transverse Abelian configurations lie inside
Λ and some lie outside. When the transverse Abelian configurations are gauge transformed
to the absolute minimum (by non-Abelian gauge transformations), those Abelian configura-
tions that were originally inside Λ remain there. (For them ω is x-independent, ∂µω = 0.)
Only those transverse Abelian configurations that were originally outside Λ get mapped onto
∂Λ ∩ ∂Ω by the minimizing non-Abelian gauge transformation.

We also note that the corresponding statements hold in lattice gauge theory, as discussed
in [68].

As a side remark, notice that if we have one gauge field A, satisfying equation (3.62), with
ω different from zero, the whole gauge orbit shall satisfy this equation due to its gauge in-
variance. Such a gauge orbit has a peculiar feature. In one direction, namely the direction
defined by ω, it is degenerated because the infinitesimal gauge transformation,

A′µ = Aµ +Dµ(A)εω = Aµ , (3.66)

with ε infinitesimal, leaves A invariant. Therefore, the gauge orbit through A has one di-
mension less that a generic gauge orbit. We call (3.62) the “degeneracy property”. Since
this property characterizes a gauge orbit it is of geometrical significance, whereas the Gribov
horizon is more an artifact of gauge fixing to the minimal Landau gauge.

3 Semi classical solution of Gribov

3.1 The no-pole condition

Gribov was the first one to try to restrict the region of integration to the Gribov region [2, 47],
which was done in a semi-classical way. He restricted the generating functional to the Gribov
region by introducing a factor V (Ω) in expression (3.34),

Z(J) =
∫

Ω
[dA] exp [−SYM]

=
∫

[dA][dc][dc]V (Ω)δ(∂A) exp
[
−SYM −

∫
dxca(x)∂µDab

µ c
b(x)

]
, (3.67)

whereby we are working in the Landau gauge, δ(∂A). Now the question is how to determine
this factor V (Ω). One can see that there is a close relationship between the ghost sector and
the Faddeev-Popov determinant, which is clear from calculating the exact ghost propagator.
For this, we start from expression (A.3)

I =
∫

[dc][dc] exp
[∫

ddxddy ca(x)Aab(x, y)cb(y) +
∫

ddx (Jac (x)ca(x) + ca(x)Jac (x))
]

= C detA exp−
∫

ddxddy Jac (x)A−1
ab (x, y)Jbc (y) , (3.68)
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whereby in our case:

Aab(x, y) = −∂µDab
µ δ(x− y) . (3.69)

From this we can calculate the ghost propagator,

〈ca(x)cb(y)〉c =
δ

δJ̃bc (y)
δ

δJ̃ac (x)
Z

=
∫

[dA]V (Ω)δ(∂µAaµ) det(−∂µDab
µ )A−1

ab (x, y)e−SYM . (3.70)

Taking the Fourier transform and keeping in mind that we have conservation of momentum

〈ca(p)cb(−p)〉c =
∫

[dA]V (Ω)δ(∂µAaµ) det(−∂µDab
µ )
(∫

d(x− y)eip(x−y)A−1
ab (x, y)

)
e−SYM ,

(3.71)
we can compare this expression with the one loop renormalization improved ghost propagator
starting from the Faddeev-Popov action,

〈ca(p)cb(k)〉c = δ(p+ k)δabG(k2)

G(k2) =
1
k2︸︷︷︸
P1

1(
1− 11g2N

48π2 ln Λ2

k2

) 9
44︸ ︷︷ ︸

P2

. (3.72)

From this expression, we can make some interesting observation. Firstly, for large momen-
tum k2 we are within the Gribov region Ω, as perturbation theory should work there. Indeed,
for large k2, G(k2) ≈ 1/(k2 ln Λ

k2 ), which is the perturbative result. Secondly, we notice this

expression to have two poles: one pole at k2 = 0 and one pole at k2 = Λ2 exp
(
− 1
g2

48π2

11N

)
.

The first pole indicates that for k2 ≈ 0, we are approaching a horizon, see expression (3.72).
As for all k2, P1 is always positive, we stay inside the Gribov region. The second part of the
ghost propagator P2 is not always positive for all k2. For k2 < Λ2 exp

(
− 1
g2

48π2

11N

)
, P2 shall

become complex, indicating that we have left the Gribov region. Therefore, V (Ω) makes it
impossible for a singularity to exist except at k2 = 0.

From these observations, we can construct the no-pole condition. For this, we shall calculate
G(k2, A)ab whereby the gluon field is considered as an external field. This comes down to
calculating det(−∂µDab

µ )A−1(x, y) from expression (3.71), i.e. we shall calculate the following
diagrams:

G(k, A)ab =
ca

k

cb

+
ca

k

Ak
µ

k − p

p

cb

+
ca cb

k k + p′ q

Ak
µ Aℓ

ν−p′ p′ + k − q

Figure 3.4: The ghost propagator with external field to second order.
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In momentum space, these three diagrams are given by12

I1 = δab(2π)dδ(k − q) 1
k2

I2 = g
1
k2

1
p2
fakb ipµAkµ(k − p)

I3 = g2

∫
ddp′

(2π)d
1
k2

1
(p′ + k)2

1
q2
fakc i(p′ + k)µAkµ(−p′)fc`b iqνA`ν(p′ + k − q) . (3.73)

In fact, this is all we can say about these diagrams, unless we take into account that after
determining V (Ω), which shall be a function of the external gluon field, we shall always need
to integrate over A. This means that the gluon lines are connected, rendering the second
diagram to be equal to zero. For the third diagram, the incoming momentum k shall equal
the outcoming momentum q. Formally, we can therefore rewrite the third diagram as

I3 = −g2 δ(k − q)(2π)d

V

1
k4
fakcfc`b

∫
ddp′

(2π)d
kν(p′ + k)µ
(p′ + k)2

Akµ(−p′)A`ν(p′) , (3.74)

whereby we have introduced the infinite volume factor V , to maintain the right dimensionality.
Moreover, we also know that the color indices k = `. In order to calculate the correct prefactor,
we take the sum over the color factors, see formula (A.6)

G(k2, A) =
1

N2 − 1
δabG(k2, A)ab =

1
k2

+
1
V

1
k4

Ng2

N2 − 1

∫
ddq

(2π)d
A`µ(−q)A`ν(q)

(k − q)µqν
(k − q)2

=
1
k2

(1 + σ(k,A)) , (3.75)

whereby

σ(k,A) =
1
V

1
k2

Ng2

N2 − 1

∫
ddq

(2π)d
A`µ(−q)A`ν(q)

(k − q)µkν
(k − q)2

. (3.76)

Now we can rewrite this

G(k2, A) ≈ 1
k2

1
1− σ(k,A)

, (3.77)

as in this way we are considering the inverse, or the 1PI diagram, see expression (2.24). This
inverse contains more information as we are in fact resumming an infinite tower of Feynman-
diagrams. The condition that the Faddeev-Popov operator has no zero modes, reduces to the
requirement that

σ(k,A) < 1 . (3.78)

We can work out this requirement a bit more. As we are working in the Landau gauge,
qµAµ = 0, and thus A`µA

`
ν is transversal,

A`µ(−q)A`ν(q) = ω(A)
(
δµν −

qµqν
q2

)
= ω(A)Pµν , (3.79)

12The Feynman rule for the ghost-ghost gluon vertex is given by ikµfakb with akb resp. from c, A, and c
whereby the outgoing momentum kµ stems from c.
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moreover, multiplying with δµν , we find that ω(A) = 1
d−1A

`
µA

`
µ, with d the number of dimen-

sions. Therefore, we can simplify σ,

σ(k,A) =
1
V

1
d− 1

Ng2

N2 − 1
kµkν
k2

∫
ddq

(2π)d
A`α(−q)A`α(q)

1
(k − q)2

Pµν . (3.80)

As it is possible to prove that σ(k,A) decreases with increasing k2, see appendix B, whereby
we have assumed that A`α(−q)A`α(q) is positive, the condition (3.78) becomes,

σ(0, A) < 1 . (3.81)

Taking the limit k2 → 0 in σ(k,A) yields,

σ(0, A) =
1
V

1
d− 1

Ng2

N2 − 1
lim
k2→0

kµkν
k2

d− 1
d

δµν

∫
ddq

(2π)d
A`α(−q)A`α(q)

1
q2

=
1
V

1
d

Ng2

N2 − 1

∫
ddq

(2π)4
A`α(−q)A`α(q)

1
q2

, (3.82)

whereby we used the fact that
∫

ddqf(q2)qµqν/q2 = 1/d δµν
∫

ddqf(q2).

In summary, the no-pole condition is given by

V (Ω) = θ(1− σ(0, A)) , (3.83)

with σ(0, A) given by expression (3.82), or thus, using the Heaviside function,

V (Ω) =
∫ +i∞+ε

−i∞+ε

dβ
2πiβ

eβ(1−σ(0,A)) , (3.84)

we can insert this into the path integral (3.67).

3.2 The gluon and the ghost propagator

3.2.1 The gluon propagator

Our goal is calculate the gluon propagator in Fourier space〈
Aaµ(k)Abν(p)

〉
, (3.85)

at lowest order including the restricting to the Gribov region. We start from the path integral
(3.67), while introducing appropriate sources for the gluons,

Z(J) = N
∫

dβ
2πiβ

∫
[dA]eβ(1−σ(0,A)) exp−

[
Squadr

YM +
∫

ddx
1

2α
(∂µAµ)2 +

∫
ddxAaµ(x)Jaµ(x)

]
,

with N = Z−1(J = 0). We do not need to take into account the integration over [dc][dc] as
we are only calculating the free gluon propagator, also we only need the free part of SYM.
Translating this in Fourier space, we have that

Squadr
YM +

∫
ddx

1
2α

(∂µAµ)2 +
∫

ddxAaµ(x)Jaµ(x)

=
∫

ddk
(2π)d

(
1
2
Aaµ(k)

(
δµνk

2 +
(

1
α
− 1
)
kµkν

)
Aaν(−k)−Aaµ(k)Jaµ(−k)

)
,
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or thus,〈
Aaµ(k)Abν(p)

〉
=

δ2

δJaµ(−k)δJbν(−p)

∫
dβeβ

2πiβ

∫
[dA]e

−
∫

ddk

(2π)d
1
2
Aaµ(k)Kab

µν(k)Abν(−k)+
∫

ddk

(2π)d
Aaµ(k)Jaµ(−k)

∣∣∣∣
J=0

,

(3.86)

whereby

Kab
µν(k) = δab

(
β

1
V

2
d

Ng2

N2 − 1
δµν

1
k2

+ δµνk
2 +

(
1
α
− 1
)
kµkν

)
, (3.87)

also includes the part stemming from σ(0, A) in expression (3.82). Now invoking the Fourier
transform of (A.1), we find

〈
Aaµ(k)Abν(p)

〉
= δ(k + p)N

∫
dβeβ

2πiβ
(detKab

µν)−1/2(Kab
µν)−1(k) . (3.88)

This determinant has been worked out in appendix B, resulting in

(detKab
µν)−1/2 = exp

[
−d− 1

2
(N2 − 1)V

∫
ddq

(2π)d
ln
(
q2 +

βNg2

N2 − 1
2
dV

1
q2

)]
, (3.89)

and thus〈
Aaµ(k)Abν(p)

〉
=δ(k + p)N

∫
dβ
2πi

ef(β)(Kab
µν)−1(k) ,

f(β) =β − lnβ − d− 1
2

(N2 − 1)V
∫

ddq
(2π)d

ln
(
q2 +

βNg2

N2 − 1
2
dV

1
q2

)
. (3.90)

As we assume (Kab
µν)−1(k) not to be oscillating too much, we apply the method of steepest

descent13 to evaluate the integral over β,〈
Aaµ(k)Abν(p)

〉
= δ(k + p)N ′ef(β0) (Kab

µν)−1(k)
∣∣∣
β=β0

, (3.91)

whereby we have absorbed 2πi into N . β0 is the minimum of f(β), i.e.

f ′(β0) = 0

⇒ 1 =
1
β0

+
d− 1
d

Ng2

∫
ddq

(2π)d
1(

q4 + β0Ng2

N2−1
2
dV

) . (3.92)

We define the Gribov mass,

γ4 =
β0N

N2 − 1
2
dV

g2 , (3.93)

13The infinite parameter to apply the method of steepest descent is 1/~, which is not written anymore.
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which serves as an infrared regulating parameter in the integral. As in fact, V is equal to
infinity, in order to have a finite γ, β0 ∼ V . Therefore, 1/β0 can be neglected and we obtain
the following gap equation,

1 =
d− 1
d

Ng2

∫
ddq

(2π)d
1

(q4 + γ4)
, (3.94)

which shall determine γ4. Now, we only have to calculate the inverse of

(Kab
µν)(k) = δab

(
γ4δµν

1
k2

+ δµνk
2 +

(
1
α
− 1
)
kµkν

)
, (3.95)

whereby we have set β = β0 which yields,

(Kab
µν)(k)−1 = δab

(
k2

k4 + γ4
Pµν(k) + α

k2

αγ4 + k4

kµkµ
k2

)
, (3.96)

as one can check by calculating (Kab
µν)−1(k)(Kbc

νκ)(k) = δacδµκ. For α = 0, the inverse becomes
tranverse and the gluon propagator is given by〈

Aaµ(k)Abν(p)
〉

= δ(k + p)δab
k2

k4 + γ4
Pµν(k) , (3.97)

as N ′ shall cancel ef(β0) due to normalization.

3.2.2 The ghost propagator

Now that we have found the gluon propagator, we can calculate the ghost propagator. In fact,
this comes down to connecting the gluon legs in expression (3.73). We easily find (analogous
as expression (3.80)),

Gab(k2) = δab
1
k2

1
1− σ(k)

,

σ(k) = Ng2kµkν
k2

∫
ddq

(2π)d
q2

q4 + γ4

1
(k − q)2

(
δµν −

qµqν
q2

)
. (3.98)

To calculate 1− σ(k), we rewrite the gap equation (3.94) as

1 =
kµkν
k2

Ng2

∫
ddq

(2π)d
1

(q4 + γ4)

(
δµν −

qµqν
q2

)
, (3.99)

and thus, we have written the unity in a complex way

1− σ(k) =
kµkν
k2

Ng2

∫
ddq

(2π)d
1

(q4 + γ4)

(
δµν −

qµqν
q2

)(
1− q2

(k − q)2

)
=
kµkν
k2

Ng2Rµν(k) .

To investigate the infrared behavior, we expand this integral for small k2, whereby up to order
k2 (

1− q2

(k − q)2

)
= 1− 1

k2

q2 − 2kµqµ
q2 + 1

=
k2

q2
− 2kµqµ

q2
− 4

(
kµqµ
q2

)2

, (3.100)
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and thus we can split Rµν in three parts. The first part is given by

R1
µν(k) = k2

∫
ddq

(2π)d
1

q2 (q4 + γ4)

(
δµν −

qµqν
q2

)
=
d− 1
d

δµνk
2Iγ , (3.101)

whereby Iγ =
∫ ddq

(2π)d
1

q2(q4+γ4)
is a number depending on γ. The second part is zero, at is it

odd in q, and the third part is given by

R3
µν(k) = −4δµνkαkβ

∫
ddq

(2π)d
qαqβ

q4 (q4 + γ4)
+ 4kαkβ

∫
ddq

(2π)d
qαqβqµqν
q6 (q4 + γ4)

. (3.102)

The first term of this expression is given by,

−4δµν
δαβ

d
kαkβ

∫
ddq

(2π)d
1

q2 (q4 + γ4)
= −4

d
δµνk

2Iγ ,

while the second term is given by

4kαkβ(δαβδµν + δαµδβν + δανδβµ)
1

d2 + 2d

∫
ddq

(2π)d
1

q2 (q4 + γ4)

= 4(k2δµν + 2kµkν)
1

d2 + 2d
Iγ .

Therefore,

R3
µν(k) = 4

(
−1
d
δµνk

2 + (k2δµν + 2kµkν)
1

d2 + 2d

)
Iγ . (3.103)

Taking all results together, we obtain,

1− σ(k) = Ng2kµkν
k2

[
d− 1
d

δµνk
2 + 4

(
−1
d
δµνk

2 + (k2δµν + 2kµkν)
1

d2 + 2d

)]
Iγ

= Ng2k2

[
d− 1
d

+ 4
(
−1
d

+
3

d2 + 2d

)]
Iγ

= Ng2k2d
2 − 3d+ 2
d2 + 2d

Iγ , (3.104)

or thus, the ghost propagator is enhanced,

Gab(k2) = δab
1
k4

d2 + 2d
d2 − 3d+ 2

1
Ng2Iγ

. (3.105)

As an example, for d = 4, we find easily that Id=4
γ = 1/(32π2γ2) and thus

Gab(k2)
∣∣∣
d=4

= δab
1
k4

128π2γ2

Ng2
. (3.106)

Also in three dimension we find enhancement of the ghost. In two dimensions, the calculations
are not so straightforward as there is a problem with switching the limit and the integration.
We refer to section 4.2.2 of chapter 5 for more details. The conclusion shall however remain
the same, also in 2 dimensions the ghost propagator is enhanced.
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For a long time, these results for the ghost and gluon propagator were confirmed by lat-
tice calculations and therefore considered important, see [71–75] for some examples and [76]
for a nice recent overview. In fact, looking at the calculations, σ = 1 means that the θ-function
has become a δ-function. This is due to the fact that we could neglect 1/β0 in expression
(3.92) as we are working in an infinite volume V → ∞. In other words, by limiting to the
Gribov region, the ghost propagator has an extra pole, which indicates that the region close
to the boundary has an important effect on the ghost propagator.

4 The Gribov-Zwanziger action

After the publication of Gribov, Zwanziger tried to generalize his results to all orders by
constructing an action which implements the restriction to the Gribov region, we shall call
this action the Gribov-Zwanziger (GZ) action. In this section we shall first analyze a toy
model to demonstrate how the GZ action was obtained [77].

4.1 A toy model

We start with the following simple quadratic action in one dimension

S =
∫

dx
1
2

(∂A(x))2 , (3.107)

whereby we omit color and Lorentz indices. We assume the Gribov region is contained within
the following ellipsoid,

1
2

∫
dk

(2π)
A(k)A(−k)

k2︸ ︷︷ ︸
f(A)

= c . (3.108)

Therefore, to restrict to the Gribov region, we need to consider the following generating
functional

Z =
∫

[dA]θ(c− f(A))e−S , (3.109)

as the θ-function assures that f(A) < c.

Next, if we replace A(k)/
√
k2 by y(k), and we work in a finite volume, f(A) < c can be

written as

1
V

∑
k

yky−k < c , (3.110)

and thus expression (3.108) can be seen as an hypersurface in an infinite dimensional space.
As is known for hyper spheres, the volume gets more and more concentrated on the surface
as the dimension grows. Therefore, we can replace the θ-function with a δ-function and the
generating functional (3.109) becomes

Z =
∫

[dA]δ(c− f(A))e−S . (3.111)
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Let us remark that also Gribov already noticed this, see the end of the previous section.

We use the formula

δ(x− y) =
∫ ∞
−∞

dt
2π

ei(x−y)t , (3.112)

which we Wick rotate in order to get rid of the imaginary numbers, so we find

Z =
∫ i∞+ε

−i∞+ε

dβ
2πi

∫
[dA]e−Seβ(c−f(A))

=
∫ i∞+ε

−i∞+ε
dβe−g(β) , (3.113)

whereby g(β) = − ln
∫

[dA]eβ(c−f(A))e−S . Now we shall perform a saddle point approximation
to integrate over β,

Z ≈ e−g(β0) , (3.114)

whereby β0 is determined by

g′(β0) = 0

c =
∫

[dA]f(A)eβ(c−f(A))e−S∫
[dA]eβ(c−f(A))e−S

c =
∫

[dA]f(A)eV β
∗(−f(A))e−S∫

[dA]eV β∗(−f(A))e−S

c = 〈f(A)〉β∗ , (3.115)

whereby we have set β = V β∗. Therefore, we find the following generating functional

Z =
∫

[dA]e−(V β∗f(A)+S)) , (3.116)

with β∗ determined by (3.115). In fact, the saddle point approximation becomes exact in
the equivalence between microcanonical and canonical ensemble [78]. This can be proven by
showing that f(A) has zero variance. Let us investigate the distribution of f(A),

〈f(A)〉 =
∫

dk
(2π)

1
2k2

∫
[dA]A(k)A(−k)e−

1
2

∫
dk
2π
A(k)

[
k2+ β

k2

]
A(−k)

∣∣∣∣
J=0

=
∫

dk
(2π)

1
2k2

δ2

δJ(k)δJ(−k)

∫
[dA]e−

1
2

∫
dk
2π
A(k)

[
k2+ β

k2

]
A(−k)+

∫
dk

(2π)
A(k)J(−k)

∣∣∣∣
J=0

=
∫

dk
(2π)

1
2k2

δ2

δJ(k)δJ(−k)
e

1
2

∫
dk
2π
J(k)

[
k2+ β

k2

]−1
J(−k)

∣∣∣∣
J=0

=
∫

dk
(2π)

1
2

1
k4 + β

, (3.117)
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whereby we used the Fourier transform of expression (A.1) in the appendix. Also,

〈f2(A)〉 =
1
4

∫
dk

(2π)
dp

(2π)
1
k2

1
p2

δ4

δJ(k)δJ(−k)δJ(p)δJ(−p)

∫
[dA]e

1
2

∫
dk
2π
J(k)

[
k2+ β

k2

]−1
J(−k)

∣∣∣∣
J=0

=
1
2

∫
dk

(2π)
1

k4 + β

1
2

∫
dp

(2π)
1

p4 + β

+
1
2

∫
dk

(2π)
dp

(2π)
1
k2

1
p2

δ(k + p)
V

δ(k + p)
V

[
p2 +

β

p2

]−2

= 〈f(A)〉2 +
1
2
δ(0)
V

∫
dp

(2π)
1

(p4 + β)2
, (3.118)

whereby we have formally written δJ(−k)
δJ(p) = δ(k+p)/V . In the thermodynamic limit, V →∞,

we find that 〈f2(A)〉 = 〈f(A)〉2, thus f(A) has no variance and behaves like a δ-function.

4.2 The non-local Gribov-Zwanziger action

To restrict the region of integration of the Yang-Mills action to the Gribov region, we need
to consider the following path integral,

Z =
∫

[dA]eSYM+Sgfθ(λ(A)) , (3.119)

whereby λ(A) is the lowest eigenvalue of the Faddeev-Popov operator,

Mab =Mab
0 +Mab

1 = −∂2δab + gfabcA
c
µ∂µ , (3.120)

whereby we are working on-shell, ∂µAµ = 0. In this way, the lowest eigenvalue is always
greater than zero. Firstly, we notice that all constant vectors are eigenvectors of the Faddeev-
Popov operator, with zero eigenvalue. As these eigenvalues never become negative, we shall
not consider these vectors and work in the space orthogonal to this space.

4.2.1 Degenerate perturbation theory

In order to find the lowest lying (non-trivial) eigenvalue λ(A), we shall apply degenerate
perturbation theory whereby Mab

0 is the unperturbed operator. For the moment, we work
in a finite box with length L, which shall approach infinity in the infinite volume limit. The
vectors which form a basis of eigenvectors of the operator Mab

0 and span the entire Hilbert
space are called |Ψ(0)

~ns 〉: ~n ∈ Zd/{0}, while s runs over all the colors, s = 1, . . . , N2 − 1. ~n0

represents the lowest momenta, i.e. ~n0 = (0, . . . , 0,±1, 0, . . . , 0). Therefore, |Ψ(0)
~n0s
〉 represent

the vectors belonging to the lowest eigenvalue14 λ
(0)
~n0s

which is given by

λ
(0)
~n0

=
(

2π
L

)2

. (3.121)

Notice that the space spanned by the vectors |Ψ(0)
~n0s
〉 is 2d(N2 − 1) = T dimensional. We call

this space H0

H0 = span(|Ψ(0)
~n0s
〉 , s = 1, . . . , T ) . (3.122)

14The lowest lying eigenvalue is of course zero, belonging to the constant vectors, but we are not considering
these constant vectors anymore.
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The projector onto this space H0 is easily identified as

P0 =
∑
s

|Ψ(0)
~n0s
〉 〈Ψ(0)

~n0s
| , (3.123)

which is of course an operator working in the entire Hilbert space. The other eigenvectors
|Ψ(0)

~ns 〉 have corresponding eigenvalue λ(0)
~ns given by

λ
(0)
~ns =

(
2π
L

)2

||~n||2 . (3.124)

The entire space can be decomposed into H0 +H1 +H2 + . . ., whereby the Hn are defined as
the spaces spanned by the vectors belonging to the same eigenvalue15.

In configuration space, the eigenvectors are given by

〈
x, a

∣∣∣Ψ(0)
~ns

〉
= δas

(
1
L

) d
2

ei 2π
L
~n·~x , (3.125)

which shall lead to 〈
x, a

∣∣∣ Ψ̃(0)
~ks

〉
= δas

(
1

2π

) d
2

ei~k·~x , (3.126)

in the infinite volume limit.

Let us now switch on the perturbation M1. The degenerate eigenvalues shall split up in
different eigenvalues, while the eigenvectors |Ψ(0)

~ns 〉 shall evolve into |Ψ~ns〉. In order to solve
the eigenspace problem, we shall try to find a matrix κ and S, so that

MS = Sκ , (3.127)

whereby S is a matrix whereby the columns are given by the exact vectors |Ψ~n0s〉 and κ is a
diagonal matrix with the diagonal elements given by λ~n0s, with ~n0 = (0, . . . , 0,±1, 0, . . . , 0)
and s = 1, . . . , N2 − 1. By introducing S, we can restrict ourselves to the space of interest,
namely the space of eigenvectors |Ψ~n0s〉 with the lowest lying eigenvalues λ~n0s.

The next step is to determine S and κ. We shall write them as a perturbation series:

S =
∞∑
n=0

Sn κ =
∞∑
n=0

κn . (3.128)

By substituting them into (3.127), and identifying equal orders, we find

M0S0 = S0κ0 , (3.129a)
M0S1 +M1S0 = S1κ0 + S0κ1 , (3.129b)
M0S2 +M1S1 = S2κ0 + S1κ1 + S0κ2 , (3.129c)
M0S3 +M1S2 = S3κ0 + S2κ0 + S1κ2 + S0κ3 , (3.129d)

...
15We can order the eigenvalues by size, Hn belongs to the (n+ 1)th eigenvalue.
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The first equation is the free equation, thus S0 is the matrix whereby the columns are given
by |Ψ(0)

~n0s
〉, and κ0 is the T × T dimensional matrix with diagonal elements λ(0)

~n0
. Notice that

we can write P0 = S0S
†
0.

In order to solve the higher order equations, we shall use the normalization condition, i.e. Sn
for n ≥ 1 does not contain any vectors from the space H0:

P0Sn = 0 ∀n ≥ 1 , (3.130)

which we can also write as
S†0Sn = 0 ∀n ≥ 1 . (3.131)

We now multiply the remaining equations with S†0. Firstly, we find

S†0M0S1 + S†0M1S0 = S†0S0κ1 = κ1 (3.132)

As the columns of S1 contain vectors which live in the orthogonal complement of H0, also the
columns of M0S1 shall live in this space. Therefore, S†0M0S1 = 0 and we find

κ1 = S†0M1S0 . (3.133)

In an analogous fashion, we find for the other equations

κ2 = S†0M1S1 κ3 = S†0M1S2 . . . . (3.134)

To find S1, we start from equation (3.129b),

M0S1 − S1κ0 = S0κ1 −M1S0 . (3.135)

As κ0 = λ
(0)
~n0
IT , with IT the T × T unity matrix, we find upon using equation (3.133)

M0S1 − λ(0)
~n0
S1 = S0κ1 −M1S0 ⇒ S1 =

(
M0 − λ(0)

~n0
I∞
)−1

(P0 − I∞)M1S0 . (3.136)

In an analogous fashion, we can deduce S2 from equation (3.129c),

M0S2 − S2κ0 = −M1S1 + S1κ1 + S0κ2

⇒ (M0 − λ(0)
~n0
I∞)S2 = (P0 − I∞)M1

(
M0 − λ(0)

~n0
I∞
)−1

(P0 − I∞)M1S0

+
(
M0 − λ(0)

~n0
I∞
)−1

(P0 − I∞)M1P0M1S0 , (3.137)

or thus

S2 =
[(
M0 − λ(0)

~n0
I∞
)−1

(P0 − I∞)M1

]2

S0 +
(
M0 − λ(0)

~n0
I∞
)−2

(P0 − I∞)M1P0M1S0 ,

(3.138)
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whereby we made use of equations (3.133), (3.134) and (3.136). With the expressions for S1

and S2, we write

κ0 = λ
(0)
~n0
IT ,

κ1 = S†0M1S0 ,

κ2 = S†0M1

(
M0 − λ(0)

~n0
I∞
)−1

(P0 − I∞)M1S0 ,

κ3 = S†0M1

[(
M0 − λ(0)

~n0
I∞
)−1

(P0 − I∞)M1

]2

S0 ,

+S†0M1

(
M0 − λ(0)

~n0
I∞
)−2

(P0 − I∞)M1P0M1S0 , (3.139)

or as the column s of S0 is given by the vector |Ψ(0)
~n0s
〉, we can write the previous expressions

in terms of its matrix elements,

κ
~n′0u,~n0t
0 = λ

(0)
~n0
δutδ~n0,~n′0

,

κ
~n′0u,~n0t
1 = 〈Ψ(0)

~n′0u
|M1 |Ψ(0)

~n0t
〉 ,

κ
~n′0u,~n0t
2 = −〈Ψ(0)

~n′0u
|M1

(
M0 − λ(0)

~n0
I∞
)−1

(I∞ − P0)M1 |Ψ(0)
~n0t
〉 ,

κ
~n′0u,~n0t
3 = 〈Ψ(0)

~n′0u
|M1

[(
M0 − λ(0)

~n0
I∞
)−1

(I∞ − P0)M1

]2

|Ψ(0)
~n0t
〉

− 〈Ψ(0)
~n′0u
|M1

(
M0 − λ(0)

~n0
I∞
)−2

(I∞ − P0)M1P0M1 |Ψ(0)
~n0t
〉 . (3.140)

4.2.2 The infinite volume limit

We shall now show that in the large volume limit, we can do some simplifications.

We start with the expression of κ2. We can rewrite (I∞ − P0) in terms of a bra-ket no-
tation,

I∞ − P0 =
∑
||~n||>0

N2−1∑
s=1

|Ψ(0)
~ns 〉 〈Ψ

(0)
~ns | −

∑
||~n||=1

N2−1∑
s=1

|Ψ(0)
~n0s
〉 〈Ψ(0)

~n0s
| =

∞∑
||n||>1

N2−1∑
s=1

|Ψ(0)
ns 〉 〈Ψ(0)

ns | .

(3.141)

If we now let the operator
(
M0 − λ(0)

~n0
I∞
)−1

act on this term, we obtain

(
M0 − λ(0)

~n0
I∞
)−1

(I∞ − P0) =
∑
||~n||>1

N2−1∑
s=1

(λ(0)
~n − λ

(0)
~n0

)−1 |Ψ(0)
~ns 〉 〈Ψ

(0)
~ns |

=
∑
||~n||>1

N2−1∑
s=1

(
1(

2π
L

)2 ||~n||2 − (2π
L

)2
)
|Ψ(0)

~ns 〉 〈Ψ
(0)
~ns | . (3.142)

Inserting this in κ
~n′0u,~n0t
2 yields,

κ
~n′0u,~n0t
2 = −

∑
||~n||>1

N2−1∑
s=1

(
1(

2π
L

)2 ||~n||2 − (2π
L

)2
)
〈Ψ(0)

~n′0u
|M1 |Ψ(0)

~ns 〉 〈Ψ
(0)
~ns |M1 |Ψ(0)

~n0t
〉 . (3.143)
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We can work out the matrix elements with the help of equation (3.125)

〈Ψ(0)
~ns |M1 |Ψ(0)

~n0t
〉 = in0,µ

2π
L

1
Ld

∫
ddx e−i 2π

L
~n·~xgfstcA

c
µ(x)ei 2π

L
~n0·~x

〈Ψ(0)
~n′0u
|M1 |Ψ(0)

~ns 〉 = in′0,µ
2π
L

1
Ld

∫
ddx e−i 2π

L
~n′0·~xgfuscA

c
µ(x)ei 2π

L
~n·~x , (3.144)

whereby we made use of partial integration and the Landau gauge condition ∂µAµ = 0 in the
second matrix element. If we take the infinite volume limit, see expression (3.126), we can
write

〈Ψ(0)
~ns |M1 |Ψ(0)

~n0t
〉 = i

2π
L

(
2π
L

)d ∫
ddx

1
(2π)d/2

e−i~k·~xgfstcA
c
µ(x)n0,µ

1
(2π)d/2

ei~0·~x

= i
2π
L

(
2π
L

)d 〈
Ψ̃(0)
~ks

∣∣∣ ~A · ~n0

∣∣∣ Ψ̃(0)
~0t

〉
,

〈Ψ(0)
~n′0u
|M1 |Ψ(0)

~ns 〉 = i
2π
L

(
2π
L

)d 〈
Ψ̃(0)
~0u

∣∣∣ ~A · ~n′0 ∣∣∣ Ψ̃(0)
~ks

〉
, (3.145)

with ( ~Aab)µ = gfabcA
c
µ. We can write κ~n

′
0u,~n0t

2 as

κ
~n′0u,~n0t
2 =

(
2π
L

)2(2π
L

)d ∑
||~n||>1

(
2π
L

)d( 1(
2π
L

)2 ||~n||2 − (2π
L

)2
)
C(~k)~n

′
0u,~n0t , (3.146)

whereby we have parameterized

C(~k)~n
′
0u,~n0t =

N2−1∑
s=1

〈
Ψ̃(0)
~0u

∣∣∣ ~A · ~n′0 ∣∣∣ Ψ̃(0)
~ks

〉〈
Ψ̃(0)
~ks

∣∣∣ ~A · ~n0

∣∣∣ Ψ̃(0)
~0t

〉
. (3.147)

In the infinite volume limit, we can write

κ
~n′0u,~n0t
2 =

(
2π
L

)2(2π
L

)d ∫
||~k||> 2π

L

ddk

(
1

k2 −
(

2π
L

)2
)
C(~k)~n

′
0u,~n0t

=
(

2π
L

)2(2π
L

)d ∫
||~k||> 2π

L

ddk
1
k2

[
+∞∑
n=0

(2π/L)2n

k2n

]
C(~k)~n

′
0u,~n0t . (3.148)

Now we can see that the higher order terms for n ≥ 1 will vanish relatively in the infinite
volume limit when comparing to the term for n = 0. One can check this for all d ≥ 2.
Therefore, we obtain

κ
~n′0u,~n0t
2 =

(
2π
L

)2(2π
L

)d ∫
||~k||> 2π

L

ddk
1
k2
C(~k)~n

′
0u,~n0t

=
(

2π
L

)2(2π
L

)d ∫
||~k||≥ 2π

L

ddk
1
k2
C(~k)~n

′
0u,~n0t , (3.149)

whereby we have included the endpoint ||~k|| = 2π
L in the region of integration, which is a

valid operation. Going back to the original formulation, we thus find a very simple form for
κ
~n′0u,~n0t
2

κ
~n′0u,~n0t
2 = −〈Ψ(0)

~n′0u
|M1M−1

0 M1 |Ψ(0)
~n0t
〉 . (3.150)
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In an analogous fashion, we can simplify κ3 as well, leading to

κ
~n′0u,~n0t
3 = 〈Ψ(0)

~n′0u
|M1M−1

0 M1M−1
0 M1 |Ψ(0)

~n0t
〉 − 〈Ψ(0)

~n′0u
|M1M−2

0 M1P0M1 |Ψ(0)
~n0t
〉 . (3.151)

Moreover, we observe that the second term in the expression of κ3 can be neglected in com-
parison with the first term due to the presence of P0, an argument which can be generalized
to κn. This can be checked by working these term out in a similar fashion, as done in equation
(3.144). In conclusion, in the large volume limit, we obtain the following matrices

κ
~n′0u,~n0t
0 = λ

(0)
~n0
δutδ~n0,~n′0

,

κ
~n′0u,~n0t
1 = 〈Ψ(0)

~n′0u
|M1 |Ψ(0)

~n0t
〉 ,

κ
~n′0u,~n0t
2 = −〈Ψ(0)

~n′0u
|M1M−1

0 M1 |Ψ(0)
~n0t
〉 ,

κ
~n′0u,~n0t
3 = 〈Ψ(0)

~n′0u
|M1M−1

0 M1M−1
0 M1 |Ψ(0)

~n0t
〉 . (3.152)

We notice that

M−1 =
1

1 +M−1
0 M1

M−1
0 =

(
1−M−1

0 M1 +M−1
0 M1M−1

0 M1

)
M−1

0 , (3.153)

or thus
M−1 =M−1

0 −M−1
0 M1M−1

0 +M−1
0 M1M−1

0 M1M−1
0 . (3.154)

Therefore, we can now sum the whole series κn starting from n = 2,

κr =
∑
n≥2

κn = −〈Ψ(0)
~n′0u
|M1M−1M1 |Ψ(0)

~n′0t
〉 . (3.155)

4.2.3 Taking the trace of κ

Next, we replace the condition of all eigenvalues of κ = κ0 + κ1 + κr to be positive with the
weaker condition that the trace of κ has to be positive, we refer to [77] for some remarks on
this. Firstly, the trace of κ0 is given by

Trκ0 =
∑
||~n||=1

N2−1∑
u=1

κ~nu,~nu0 = λ
(0)
~n0
T . (3.156)

Secondly, the trace of κ1 is zero,

Trκ1 =
∑
||~n||=1

N2−1∑
u=1

κ~nu,~nu1 =
∑
||~n||=1

N2−1∑
u=1

〈Ψ(0)
~nu |M1 |Ψ(0)

~nu 〉 = 0 , (3.157)

as Muu
1 = gfuucA

c
µ∂µ = 0. Finally, the trace of κr is given by

Trκr = −
∑
||~n||=1

N2−1∑
u=1

〈Ψ(0)
~nu |M1M−1M1 |Ψ(0)

~nu 〉

= −
∑
||~n||=1

N2−1∑
u,a,b=1

∫
ddx

∫
ddy

〈
Ψ(0)
~nu

∣∣∣M1

∣∣∣x, a〉 〈x, a ∣∣M−1
∣∣ y, b〉 〈y, b ∣∣∣M1

∣∣∣Ψ(0)
~nu

〉
.
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Working out the matrix elements in the infinite volume limit gives:〈
y, b
∣∣∣M1

∣∣∣Ψ(0)
~nu

〉
= gfbucA

c
µ(y)∂µ

(
1

Ld/2
ei 2π

L
~n·~y
)

= i
2π
L
gfbucnµA

c
µ(y)

(
1

Ld/2

)
〈

Ψ(0)
~nu

∣∣∣M1

∣∣∣x, a〉 = i
2π
L
gfuacnµA

c
µ(x)

(
1

Ld/2

)
, (3.158)

and thus16

Trκr =
∫

ddx
∫

ddy
∑
||~n||=1

2π
L
gfuacnµA

c
µ(x)

(
1

Ld/2

)
(M−1)abδ(x− y)

×2π
L
gfbucnνA

c
ν(y)

(
1

Ld/2

)
= 2

(
1
Ld

)(
2π
L

)2 ∫
ddx

∫
ddygfuacAcµ(x)(M−1)ab(x, y)gfbucAcµ(y)

= −2
(

2π
L

)2 1
V

∫
ddx

∫
ddygfba`Aaµ(x)(M−1)`m(x, y)gfbkmAkµ(y) . (3.159)

In conclusion, the following quantity should be positive

Trκ = 2
(

2π
L

)2(
d(N2 − 1)− 1

V

∫
ddx

∫
ddygfba`Aaµ(x)(M−1)`mδ(x− y)gfbkmAkµ(y)

)
> 0 .

Therefore, we can set

Z =
∫

[dA]eSYM+Sgfθ(d(N2 − 1)− h(A)) , (3.160)

whereby

h(A) =
1
V

∫
ddx

∫
ddygfba`Aaµ(x)(M−1)`mδ(x− y)gfbkmAkµ(y) . (3.161)

4.2.4 The non-local GZ action

We can now follow the analysis of the toy model, to lift h(A) into the action. The first step
was to replace the θ-function with a δ-function. The argument here is that at lowest order,
h(A) reduces to

h(A) =
1
V

∫
ddx

∫
ddygfba`Aaµ(x)(δ`m

1
−∂2

δ(x− y))gfbkmAkµ(y)

=
N

V

∫
ddxAaµ(x)

1
∂2
Aaµ(x) =

N

V

∫
ddp

(2π)d
Aaµ(p)

1
p2
Aaµ(−p) , (3.162)

16The summation over the color indices is implicitly assumed.
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which is exactly the toy model bound (3.108) (up to a factor N , which can be removed by
redefinition of h(A)). Therefore, at least at lowest order it is justified to replace θ with δ.
It is assumed that higher order corrections would not affect this statement. The second step
was to write the θ-function as an exponential, by applying equation (3.113),

Z =
∫

[dA]
∫

dγ
2πi

eγ(d(N2−1)−h(A))e−SYM−Sgf

=
∫

dγ
2πi

e−v(γ) , (3.163)

whereby v(γ) = − ln
∫

[dA]eγ(d(N2−1)−h(A))e−SYM−Sgf . The next step is to apply the saddle
point approximation,

Z ≈ e−v(γ0) =
∫

[dA]e−[SYM+Sgf+V γ
∗h(A)−γ∗

∫
ddxd(N2−1)] , (3.164)

whereby γ∗ is determined by

v′(γ0) = 0

d(N2 − 1) =
∫

[dA]h(A)eV γ
∗(−h(A))e−S∫

[dA]eV γ∗(−h(A))e−S

d(N2 − 1) = 〈h(A)〉γ∗ , (3.165)

whereby γ = V γ∗, in order to show explicitly that the action is an extensive quantity. The
final step is to prove that the saddle point approximation becomes exact, which can be done
analogously as in equations (3.117) and (3.118).

In conclusion, the Gribov-Zwanziger path integral becomes

Z =
∫

[dA][dc][dc]e−[SYM+Sgf+
∫

ddxh1(x)−γ4
∫

ddxd(N2−1)] , (3.166)

whereby we have replaced γ∗ with γ4 for further convenience and h1(x) is given by

h1(x) = γ4

∫
ddygfba`Aaµ(x)(M−1)`mδ(x− y)gfbkmAkµ(y) . (3.167)

The parameter γ is fixed by the following gap equation

〈h1(x)〉 = γ4d(N2 − 1) . (3.168)

4.2.5 Remarks

One thing which needs to be pointed out, is what happens at the boundary with the path
integral. At the boundary, one of the eigenvalues λ approaches zero. Because of h1, which
contains the inverse of the Faddeev-Popov determinant, the probability in the path integral
reduces very quickly, roughly speaking, a factor e−

1
λ enters the path integral. On the other

hand, we have argued that only the boundary of the Gribov region gives contributions for
V →∞, by replacing the θ function with a δ function in equation (3.163). This could sound
contradictory. However, we can give an example which demonstrates what is going on. The
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path integral shall be a result of two competing functions. Firstly, we have a factor rN−1

stemming from the integration, whereby N approaches infinity in the thermodynamic limit
and we simple take r to represents the fields, while secondly, a factor e−

1
R−r , with R the size

of the boundary, represents the horizon function. The following function shows us what is
going on in the path integral

lim
N→∞

rN−1e−
1

R−r . (3.169)

In the figures below, one can see how for larger N , this function evolves into a delta function
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Figure 3.5: Evolution of the expression (3.169) for growing N whereby we chose R = 3.

Another element which looks contradictory is the following [79]. In perturbation theory, or
for large momenta, only the small area perturbing around A = 0 is important, while we have
just shown that the configurations get concentrated on the boundary of the Gribov region.
Perhaps this can be explained by noticing that the Gribov parameter γ2 cannot be accessed

in perturbation theory. Indeed, as γ2 ∝ Λ2
QCD ∝ e−

1
g2 , perturbatively, γ = 0.

4.2.6 The correct horizon function

In subsequent articles [26, 58], Zwanziger refined the horizon function (3.167) into the follow-
ing function

Sh = lim
θ→0

∫
ddxh2(x) = lim

θ→0

∫
ddx

∫
ddy

(
Dac
µ (x)γ2(x)

)
(M−1)ab(x, y)

(
Dbc
µ (y)γ2(y)

)
,

(3.170)
whereby γ(z) is defined through

γ2(z) = eiθzγ2 . (3.171)

The limθ→0 operation corresponds to replacing the space time dependent γ2(z) with the con-
stant Gribov parameter γ2. We observe that this horizon function shares a great resemblance
with h1(x) from expression (3.167). It is worth to point out here that the limit, limθ→0,
in expression (3.170) is meant to be taken after an appropriate localization of the horizon
function, a point which we shall outline in detail in what follows.
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In conclusion, the non-local action is given by

Snl = SYM + Sgf + Sh , (3.172)

with SYM the Yang-Mills action and Sgf the gauge fixing and

〈h2(x)〉 = γ4d(N2 − 1) . (3.173)

4.3 The local Gribov-Zwanziger action

In this section, we shall localize the action Snl by introducing some extra fields. Looking
at the following standard formula for Gaussian integration for bosonic fields, see expression
(A.2)

C detA−1 exp
∫

ddxddy Jaϕ(x)(A−1)ab(x, y)Jbϕ(y)

=
∫

[dϕ][dϕ] exp
[∫

ddxddy − ϕa(x)Aab(x, y)ϕb(y) +
∫

ddx (ϕaJaϕ(x) + ϕa(x)Jaϕ(x))
]
,

(3.174)

we observe that we can get rid of the inverse of the Faddeev-Popov operator in h2(x) by
introducing new fields. For every index i, defined by . . .ai = . . .acµ , we can write for h2(x)

exp
(
−
∫

ddxh2(x)
)

=
d(N2+1)∏
i=1

det(−M)
∫

[dϕ][dϕ] exp

(
lim
θ→0

[∫
ddx

∫
ddy

ϕai (x)Mab(x, y)ϕbi(y) +
∫

ddx
(
Da
i (x)γ2(x)

)
ϕai (x) +

(
Da
i (x)γ2(x)

)
ϕai (x)

])
,

whereby we have introduced a pair of complex conjugate bosonic fields
(
ϕacµ , ϕ

ac
µ

)
= (ϕai , ϕ

a
i ).

We can then also lift the determinants det(−M) into the exponential by introducing a pair
of Grassmann fields

(
ωacµ , ω

ac
µ

)
= (ωai , ω

a
i ). Making use of the standard Gaussian formula for

Grassmann variables

C (detA) exp
(
−
∫

ddxddy Jaω(x)(A−1)ab(x, y)Jbω(y)
)

=
∫

[dω][dω] exp
[∫

ddxddy ωa(x)Aabωb(y) +
∫

ddx (Jaω(x)ωa(x) + ωa(x)Jaω(x))
]
,

(3.175)

whereby we set the sources Jaω and Jbω equal to zero, we obtain

exp
(
−
∫

ddxh2(x)
)

=
d(N2+1)∏
i=1

∫
[dω][dω][dϕ][dϕ] exp

[∫
ddx

∫
ddy

(
ϕai (x)Mab(x, y)ϕbi(y)

−ωai (x)Mab(x, y)ωbi (y)
)

+ lim
θ→0

∫
ddx

(
Da
i (x)γ2(x)

)
ϕai (x) +

(
Da
i (x)γ2(x)

)
ϕai (x)

]
.
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The new localized action thus becomes

SGZ = S′0 + S′γ , (3.176)

with
S′0 = SYM + Sgf +

∫
ddx

(
ϕacµ ∂νD

ab
ν ϕ

bc
µ − ωacµ ∂νDab

ν ω
bc
µ

)
, (3.177)

and with

S′γ = − lim
θ→0

∫
ddx

[(
Dac
µ (x)γ2(x)

)
ϕacµ (x) +

(
Dac
µ (x)γ2(x)

)
ϕacµ (x)

]
= lim

θ→0

∫
ddx γ2(x)Dca

µ (ϕacµ (x) + ϕacµ (x))

= γ2

∫
ddx Dca

µ (ϕacµ (x) + ϕacµ (x)) . (3.178)

Notice that, as already remarked, the limit θ → 0, in equation (3.178) has been performed
after localization. As one can see from (3.171), taking this limit is equivalent with setting
γ2(x) equal to the constant γ2. As at the level of the action, total derivatives are always
neglected, S′γ becomes

S′γ = γ2

∫
ddxgfabcAaµ

(
ϕbcµ + ϕbcµ

)
. (3.179)

Notice here that starting from the first horizon function h1(x) given in (3.167) and under-
taking the same procedure, we would end up with exactly the same action S′γ . This can be
understood as we have neglected the total derivatives. Although the local actions derived
from h1(x) and h2(x) are the same, at the nonlocal level they are clearly different. We shall
come back to this subtle point in chapter 4.

Let us now translate the nonlocal horizon condition (3.173) into a local version [26]. The
local action SGZ and the nonlocal action SYM + Sgf + Sh are related as follows,∫

[dA][db][dc][dc]e−(SYM+Sgf+Sh) =
∫

[dA][db][dc][dc][dϕ][dϕ][dω][dω]e−SGZ . (3.180)

Next, we take the partial derivative of both sides with respect to γ2 so we obtain,

−2γ2 〈h〉
γ4

= 〈gfabcAaµ(ϕbcµ + ϕbcµ )〉 , (3.181)

for both horizon functions h1(x) and h2(x). We recall that 〈∂µϕaa〉 = 0 and 〈∂µϕaa〉 = 0,
meaning that both horizon functions h1 and h2 give rise to the same local horizon condition.
Using these expressions and assuming that γ 6= 0, we can rewrite the horizon condition (3.173)

〈gfabcAaµ(ϕbcµ + ϕbcµ )〉+ 2γ2d(N2 − 1) = 0 . (3.182)

By adding the vacuum term ∫
ddx γ4d(N2 − 1) , (3.183)
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to S′γ , we can write the horizon condition as

∂Γ
∂γ2

= 0 , (3.184)

with Γ the quantum action defined as

e−Γ =
∫

[dΦ]e−SGZ , (3.185)

where
∫

[dΦ] stands for the integration over all the fields.

For the Gribov-Zwanziger action to be renormalizable, it necessary to perform a shift over
the field ωai , see [26],

ωai (x)→ ωai (x) +
∫

ddz(M−1)ad(x, z)gfdk`∂µ[Dke
µ c

e(z)ϕ`(z)] , (3.186)

so that the action becomes

SGZ = S0 + Sγ , (3.187)

whereby S′0 has been replaced by S0

S0 = S′0 +
∫

ddx
(
−gfabc∂µωaiDbd

µ c
dϕci

)
, (3.188)

and the vacuum term is now included in Sγ

Sγ = S′γ +
∫

ddx γ4d(N2 − 1) . (3.189)

In section 5 we shall prove the action SGZ to be renormalizable. We would like to stress
that this is far from being trivial, especially since no new parameter is needed to take into
account vacuum divergences, which would lead to a modification of the vacuum term we
introduced by hand in equation (3.183). In addition, the algebraic formalism employed in
the next section also gives a more clean argument why the extra term appearing in equation
(3.188) is necessary, without the need of performing the nonlocal shift (3.186).

4.4 The gluon and the ghost propagator

Now that we have the local Gribov-Zwanziger action at our disposal, we can easily calculate
the gluon and ghost propagator, at lowest order. We shall show that we obtain the same
results as Gribov obtained, see section 3.2.

4.4.1 The gluon propagator

To calculate the tree level gluon propagator, we only need the free part of the Gribov-
Zwanziger action SGZ,

S0
GZ =

∫
ddx
[1

4
(
∂µA

a
ν − ∂νAaµ

)2 +
1

2α
(
∂µA

a
µ

)2 + ϕabµ ∂
2ϕabµ

−γ2g(fabcAaµϕ
bc
µ + fabcAaµϕ

bc
µ ) + . . .

]
, (3.190)
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where the limit α→ 0 is understood in order to recover the Landau gauge. The . . . stands for
the constant term −d(N2 − 1)γ4 and other terms in the ghost- and ω, ω-fields irrelevant for
the calculation of the gluon propagator. Next, we integrate out the ϕ- and ϕ-fields. As we
are only interested in the gluon propagator, we simply use the equations of motion, ∂S

0
GZ

∂ϕbcµ
= 0

and ∂S0
GZ

∂ϕbcµ
= 0, which give

ϕbcµ = ϕbcµ =
1
∂2
γ2gfabcAaµ . (3.191)

We use this result to rewrite S0
GZ,

S0
GZ =

∫
ddx

[
1
4
(
∂µA

a
ν − ∂νAaµ

)2 +
1

2α
(
∂µA

a
µ

)2 + γ4g2fabcAaµ
1
∂2
fdbcAdµ

−2γ4g(fabcAaµ
1
∂2
gfdbcAdµ) + . . .

]
=

∫
ddx

[
1
4
(
∂µA

a
ν − ∂νAaµ

)2 +
1

2α
(
∂µA

a
µ

)2 −Nγ4g2Aaµ
1
∂2
Aaµ + . . .

]
,(3.192)

whereby the last step is explained with the relation (A.6). We continue rewriting S0
GZ so we

can easily read off the gluon propagator

S0
GZ =

∫
ddx

[
1
2
Aaµ∆ab

µνA
b
ν + . . .

]
,

∆ab
µν =

[(
−∂2 − 2g2Nγ4

∂2

)
δµν − ∂µ∂ν

(
1
α
− 1
)]

δab . (3.193)

The gluon propagator can be determined by taking the inverse of ∆ab
µν and converting it to

momentum space. Doing so, we find the following expression〈
Aaµ(p)Abν(k)

〉
= δ(p+ k)(2π)d

p2

p4 + 2g2Nγ4︸ ︷︷ ︸
D(p2)

[
δµν −

pµpν
p2

]
δab ,

(3.194)

which is exactly the same expression as Gribov found, see equation (3.97). We can already
observe that this expression is suppressed in the infrared region, while displaying complex
poles at k2 = ±iγ̂2. This structure does not allow us to attach the usual particle meaning to
the gluon propagator, invalidating the interpretation of gluons as excitations of the physical
spectrum. In other words, gluons cannot be considered as part of the physical spectrum. In
this sense, they are confined by the Gribov horizon, whose presence is encoded in the explicit
dependence the propagator on the Gribov parameter γ.

4.4.2 The ghost propagator

In order to find the ghost propagator, we need to calculate the one-loop corrected ghost
propagator, see figure 3.6
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+

Figure 3.6: The one loop corrected ghost propagator.

In momentum space, the ghost propagator is given by〈
ca(p)cb(k)

〉
= δab(2π)dδ(k − p)G(k2) , (3.195)

whereby

G(k2) =
1
k2

+
1
k2

[
g2 N

N2 − 1

∫
ddq

(2π)4

(k − q)µkν
(k − q)2

q2

q4 + 2g2Nγ4

]
Pµν(q)

1
k2

=
1
k2

(1 + σ(k2)) +O(g4) , (3.196)

with

σ(k2) = Ng2 1
k2

∫
ddq

(2π)d
(k − q)µkν
(k − q)2

q2

q4 + 2g2Nγ4

(
δµν −

qµqν
q2

)
= Ng2kµkν

k2

∫
ddq

(2π)d
1

(k − q)2

q2

q4 + 2g2Nγ4

(
δµν −

qµqν
q2

)
, (3.197)

which is of course similar to expression (3.98). We are again interested in the low momentum
behavior and therefore calculate σ(0),

σ(0) =
Ng2

N2 − 1
kµkν
k2

δµν
d− 1
d

∫
ddq

(2π)d
1
q2

q2

q4 + 2g2Nγ4

=
Ng2

N2 − 1
d− 1
d

∫
ddq

(2π)d
1

q4 + 2g2Nγ4
. (3.198)

Notice that this integral diverges.

To calculate this integral, we shall invoke the gap equation (3.184). Firstly, we calculate
the effective action. The one loop effective action Γ(1)

γ is obtained from the quadratic part of
our action S0

GZ

e−Γ
(1)
γ =

∫
[dΦ]e−S

0
GZ , (3.199)

with

S0
GZ =

∫
ddx

[
1
4
(
∂µA

a
ν − ∂νAaµ

)2 +
1

2α
(
∂µA

a
µ

)2 −Nγ4g2Aaµ
1
∂2
Aaµ − d(N2 − 1)γ4 + . . .

]
.

Notice that this time, we need to maintain the constant term −d(N2 − 1)γ4 as it will enter
the horizon condition. After a straightforward calculation the one loop effective action in d
dimensions yields,

Γ(1)
γ = −d(N2 − 1)γ4 +

(N2 − 1)
2

(d− 1)
∫

ddq

(2π)d
ln
q4 + 2g2Nγ4

q2
. (3.200)
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Now we can apply the gap equation (3.184),

∂Γ(1)
γ

∂γ2
= −2γ2d(N2 − 1) + 2g2N(N2 − 1)γ2(d− 1)

∫
ddq

(2π)d
1

q4 + 2g2Nγ4
= 0 , (3.201)

or thus17

1 = g2N
d− 1
d

∫
ddq

(2π)d
1

q4 + 2g2Nγ4
, (3.202)

which exactly expresses

σ(0) = 1 , (3.203)

see expression (3.198). This means that the ghost propagator is enhanced, just as we expected
from the semi-classical calculation of Gribov. Moreover, this result has been explicitly checked
up to two loops, see [80, 81].

5 Algebraic renormalization of the Gribov-Zwanziger action

We shall now prove that the Gribov-Zwanziger action is renormalizable to all orders by
using algebraic renormalization as explained in chapter 2. In [3], it was first shown that the
Gribov-Zwanziger action was renormalizable. A first algebraic proof was given in [47], and
made complete in [82]. A recent alternative proof can be found in [83].

5.1 The starting action and the BRST

We start with the Gribov-Zwanziger action

SGZ = SYM + Sgf + S0 + Sγ , (3.204)

with

S0 =
∫

ddx
(
ϕai ∂µ

(
Dab
µ ϕ

b
i

)
− ωai ∂µ

(
Dab
µ ω

b
i

)
− gfabc∂µωaiDbd

µ c
dϕci

)
,

Sγ = −γ2g

∫
ddx

(
fabcAaµϕ

bc
µ + fabcAaµϕ

bc
µ +

d

g

(
N2 − 1

)
γ2

)
. (3.205)

We recall that we have simplified the notation of the additional fields
(
ϕacµ , ϕ

ac
µ , ω

ac
µ , ω

ac
µ

)
in

S0 as S0 displays a symmetry with respect to the composite index i = (µ, c). Therefore, we
have set (

ϕacµ , ϕ
ac
µ , ω

ac
µ , ω

ac
µ

)
= (ϕai , ϕ

a
i , ω

a
i , ω

a
i ) . (3.206)

The BRST variations (2.116) can be logically extended for all the fields,

sAaµ = − (Dµc)
a , sca =

1
2
gfabccbcc ,

sca = ba , sba = 0 ,
sϕai = ωai , sωai = 0 ,
sωai = ϕai , sϕai = 0 . (3.207)

17The solution γ = 0 has to be disregarded. This is an artefact of the reformulation of the horizon condition.
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However, due to the γ dependent term, Sγ , one can easily check that Gribov-Zwanziger action
breaks this BRST symmetry softly[3, 84],

sSGZ = s(S0 +Sγ) = s(Sγ) = −gγ2

∫
ddxfabc

(
Aaµω

bc
µ −

(
Dam
µ cm

) (
ϕbcµ + ϕbcµ

))
. (3.208)

In chapter 4, we shall elaborate on the meaning of this BRST breaking.

In order to discuss the renormalizability of SGZ, we should treat the breaking as a composite
operator to be introduced into the action by means of a suitable set of external sources. This
procedure can be done in a BRST invariant way, by embedding SGZ into a larger action,
namely

ΣGZ = SYM + Sgf + S0 + Ss , (3.209)

whereby

Ss = s

∫
ddx

(
−Uaiµ Dab

µ ϕ
b
i − V ai

µ Dab
µ ω

b
i − Uaiµ V ai

µ + T aiµ gfabcD
bd
µ c

dωci

)
=

∫
ddx

(
−Mai

µ D
ab
µ ϕ

b
i − gfabcUaiµ Dbd

µ c
dϕci + Uaiµ D

ab
µ ω

b
i −Nai

µ D
ab
µ ω

b
i − V ai

µ Dab
µ ϕ

b
i

+gfabcV ai
µ Dbd

µ c
dωci −Mai

µ V
ai
µ + Uaiµ N

ai
µ +Raiµ gf

abcDbd
µ c

dωci + T aiµ gfabcD
bd
µ c

dϕci

)
.

(3.210)

We have introduced 3 new doublets (Uaiµ , Mai
µ ), (V ai

µ , Nai
µ ) and (T aiµ , Raiµ ) with the following

BRST transformations, and

sUaiµ = Mai
µ , sMai

µ = 0 ,

sV ai
µ = Nai

µ , sNai
µ = 0 ,

sT aiµ = Raiµ , sRaiµ = 0 . (3.211)

We have therefore restored the broken BRST at the expense of introducing new sources.
However, we do not want to alter our original theory (3.177). Therefore, at the end, we have
to set the sources equal to the following values:

Uaiµ
∣∣
phys

= Nai
µ

∣∣
phys

= T aiµ
∣∣
phys

= 0 ,

Mab
µν

∣∣∣
phys

= V ab
µν

∣∣∣
phys

= − Rabµν
∣∣∣
phys

= γ2δabδµν . (3.212)

We emphasize that only in [82] this doublet (T aiµ , Raiµ ) was introduced, and therefore, the
only correct algebraic renormalization of the Gribov-Zwanziger action can be found there.
Otherwise, the intended physical limit does not exactly reproduce the original action (3.204).
In the original article [26], these two sources were also not introduced. When taking the
physical limit, an extra term was generated, which was then removed by doing a (nonlocal)
shift in the ω field. Here, we have circumvented this unnecessary shift by introducing the
doublet (T aiµ , Raiµ ). Notice that the terms gfabcV ai

µ Dbd
µ c

dωci and Raiµ gf
abcDbd

µ c
dωci cancel in

the physical limit.
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Table 3.1: Quantum numbers of the fields.

Aaµ ca ca ba ϕai ϕai ωai ωai
dimension 1 0 2 2 1 1 1 1

ghost number 0 1 −1 0 0 0 1 −1
Qf -charge 0 0 0 0 1 −1 1 −1

Table 3.2: Quantum numbers of the sources.

Uaiµ Mai
µ Nai

µ V ai
µ Raiµ T aiµ Ka

µ La

2 2 2 2 2 2 3 4
−1 0 1 0 0 -1 −1 −2
−1 −1 1 1 1 1 0 0

5.2 The Ward identities

Following the procedure of algebraic renormalization outlined in the chapter 2, we should
try to find all possible Ward identities. Before doing this, in order to be able to write the
Slavnov-Taylor identity, we first have to couple all nonlinear BRST transformations to a new
source. Looking at (3.207), we see that only Aaµ and ca transform nonlinearly under the BRST
s. Therefore, we add the following term to the action ΣGZ,

Sext =
∫

ddx
(
−Ka

µ (Dµc)
a +

1
2
gLafabccbcc

)
, (3.213)

with Ka
µ and La two new sources which shall be put to zero at the end,

Ka
µ

∣∣
phys

= La|phys = 0 . (3.214)

These sources are invariant under the BRST transformation,

sKa
µ = 0 , sLa = 0 . (3.215)

The new action is therefore given by

Σ′GZ = ΣGZ + Sext . (3.216)

The next step is now to find all the Ward identities obeyed by the action Σ′GZ. We have
enlisted all the identities below:

1. The Slavnov-Taylor identity is given by

S(Σ′GZ) = 0 , (3.217)

with

S(Σ′GZ) =
∫

ddx
(
δΣ′GZ

δKa
µ

δΣ′GZ

δAaµ
+
δΣ′GZ

δLa
δΣ′GZ

δca

+ba
δΣ′GZ

δca
+ ϕai

δΣ′GZ

δωai
+ ωai

δΣ′GZ

δϕai
+Mai

µ

δΣ′GZ

δUaiµ
+Nai

µ

δΣ′GZ

δV ai
µ

+Raiµ
δΣ′GZ

δT aiµ

)
.
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2. The U(f) invariance is given by
UijΣ′GZ = 0 , (3.218)

Uij =
∫

ddx
(
ϕai

δ

δϕaj
− ϕaj

δ

δϕai
+ ωai

δ

δωaj
− ωaj

δ

δωai

−Maj
µ

δ

δMai
µ

− Uajµ
δ

δUaiµ
+Nai

µ

δ

δNaj
µ

+ V ai
µ

δ

δV aj
µ

+Rajµ
δ

δRaiµ
+ T ajµ

δ

δT aiµ

)
.

By means of the diagonal operator Qf = Uii, the i-valued fields and sources turn out
to possess an additional quantum number. One can find all quantum numbers in Table
3.1 and Table 3.2.

3. The Landau gauge condition reads

δΣ′GZ

δba
= ∂µA

a
µ . (3.219)

4. The antighost equation yields

δΣ′GZ

δca
+ ∂µ

δΣ′GZ

δKa
µ

= 0 . (3.220)

5. The linearly broken local constraints yield

δΣ′GZ

δϕai
+ ∂µ

δΣ′GZ

δMai
µ

+ gfdbaT
di
µ

δΣ′GZ

δKbi
µ

= gfabcAbµV
ci
µ ,

δΣ′GZ

δωai
+ ∂µ

δΣ′GZ

δNai
µ

− gfabcωbi
δΣ′GZ

δbc
= gfabcAbµU

ci
µ . (3.221)

6. The exact Rij symmetry reads
RijΣ′GZ = 0 , (3.222)

with

Rij =
∫

ddx

(
ϕai

δ

δωaj
− ωaj

δ

δϕai
+ V ai

µ

δ

δNaj
µ

− Uajµ
δ

δMai
µ

+ T aiµ
δ

δRajµ

)
. (3.223)

7. The integrated Ward identity is given by∫
ddx

(
ca
δΣ′GZ

δωai
+ ωai

δΣ′GZ

δca
+ Uaiµ

δΣ′GZ

δKa
µ

)
= 0 . (3.224)

Here we should add that due to the presence of the sources T aiµ and Raiµ , the Ghost-Ward
identity is broken, see section 5.4 of chapter 2. However, it shall turn out that this is not a
problem for the renormalization procedure being undertaken.
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5.3 The counterterm

The next step in the algebraic renormalization is to translate all these symmetries into con-
straints on the counterterm18 Σc

GZ, which is an integrated polynomial in the fields and sources
of dimension four and with ghost number zero. The classical action Σ′GZ changes under quan-
tum corrections according to

Σ′GZ → Σ′GZ + hΣc
GZ , (3.225)

whereby h is the perturbation parameter. Demanding that the perturbed action (Σ′GZ+hΣc
GZ)

fulfills the same set of Ward identities obeyed by Σ′GZ, see chapter 2, it follows that the
counterterm Σc

GZ is constrained by the following identities.

1. The linearized Slavnov-Taylor identity yields

BΣc
GZ = 0 , (3.226)

with B the nilpotent linearized Slavnov-Taylor operator,

B =
∫

d4x
(δΣ′GZ

δKa
µ

δ

δAaµ
+
δΣ′GZ

δAaµ

δ

δKa
µ

+
δΣ′GZ

δLa
δ

δca
+
δΣ′GZ

δca
δ

δLa
+ ba

δ

δca

+ ϕai
δ

δωai
+ ωai

δ

δϕai
+Mai

µ

δ

δUaiµ
+Nai

µ

δ

δV ai
µ

+Raiµ
δ

δT aiµ

)
, (3.227)

and
B2 = 0 . (3.228)

2. The U(f) invariance reads

UijΣc
GZ = 0 . (3.229)

3. The Landau gauge condition

δΣc
GZ

δba
= 0 . (3.230)

4. The antighost equation

δΣc
GZ

δca
+ ∂µ

δΣc
GZ

δKa
µ

= 0 . (3.231)

5. The linearly broken local constraints yield(
δ

δϕai
+ ∂µ

δ

δMai
µ

+ ∂µ
δ

δMai
µ

+ gfabcT
bi
µ

δ

δKci
µ

)
Σc

GZ = 0 ,(
δ

δωai
+ ∂µ

δ

δNai
µ

− gfabcωbi
δ

δbc

)
Σc

GZ = 0 . (3.232)

18In the previous chapter, this counterterm was denoted by Γ
(1)

,e.g. see expression (2.91).
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6. The exact Rij symmetry reads
RijΣc

GZ = 0 , (3.233)

with Rij given in (3.223).

7. Finally, the integrated Ward identity becomes∫
ddx

(
ca
δΣc

GZ

δωai
+ ωai

δΣc
GZ

δca
+ Uaiµ

δΣc
GZ

δKa
µ

)
= 0 . (3.234)

Now we can write down the most general counterterm Σc
GZ of d = 4, which obeys the linearized

Slavnov-Taylor identity, has ghost number zero, and vanishing Qf number,

Σc
GZ = a0SYM + B

∫
ddx
{
a1K

a
µA

a
µ + a2∂µc

aAaµ + a3 L
aca + a4U

ai
µ ∂µϕ

a
i + a5 V

ai
µ ∂µω

a
i

+a6ω
a
i ∂

2ϕai + a7U
ai
µ V

ai
µ + a8gf

abcUaiµ ϕ
b
iA

c
µ + a9gf

abcV ai
µ ωbiA

c
µ

+a10gf
abcωaiA

c
µ ∂µϕ

b
i + a11gf

abcωai (∂µA
c
µ)ϕbi + b1R

ai
µ U

ai
µ + b2T

ai
µ M

ai
µ

+b3gfabcRaiµ ω
b
iA

c
µ + b4gfabcT

ai
µ ϕ

b
iA

c
µ + b5R

ai
µ ∂µω

a
i + b6T

ai
µ ∂µϕ

a
i

}
, (3.235)

with a0, . . . , a11 arbitrary parameters. Now we can unleash the constraints on the countert-
erm. Firstly, although the ghost Ward identity (2.190) is broken, we know that this is not
so in the standard Yang-Mills case. Therefore, we can already set a3 = 0 as this term is
not allowed in the counterterm of the standard Yang-Mills action, which is a special case of
the action we are studying19. Secondly, due to the Landau gauge condition (3.230) and the
antighost equation (3.231) we find,

a1 = a2 . (3.236)

Next, the linearly broken constraints (5.) give the following relations

a1 = −a8 = −a9 = a10 = a11 = −b3 = b4 ,

a4 = a5 = −a6 = a7 , b1 = b2 = b5 = b6 = 0 . (3.237)

The Rij symmetry does not give any new information, while the integrated Ward identity
relates the two previous strings of parameters:

a1 = −a8 = −a9 = a10 = a11 = −b3 = b4 ≡ a4 = a5 = −a6 = a7 . (3.238)

Taking all this information together, we obtain the following counterterm

Σc = a0SYM + a1

∫
ddx

(
Aaµ

δSYM
δAaµ

+ ∂µc
a∂µc

a +Ka
µ∂µc

a +Mai
µ ∂µϕ

a
i − Uaiµ ∂µωai

+Nai
µ ∂µω

a
i + V ai

µ ∂µϕ
a
i + ∂µϕ

a
i ∂µϕ

a
i + ∂µω

a
i ∂µω

a
i + V ai

µ Mai
µ − Uaiµ Nai

µ − gfabcUaiµ ϕbi∂µcc

− gfabcV ai
µ ωbi∂µc

c − gfabc∂µωaiϕbi∂µcc − gfabcRaiµ ∂µcbωci + gfabcT
ai
µ ∂µc

bϕci

)
. (3.239)

19In particular, since we will always assume the use of a mass independent renormalization scheme, we may
compute a3 with all external mass scales (= sources) equal to zero. Said otherwise, a3 is completely determined
by the dynamics of the original Yang-Mills action, in which case it is known to vanish to all orders (see section
5.4 of chapter 2).
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5.4 The renormalization factors

As a final step, we have to show that the counterterm (3.239) can be reabsorbed by means of
a multiplicative renormalization of the fields and sources. If we try to absorb the counterterm
into the original action, we easily find,

Zg = 1− ha0

2
,

Z
1/2
A = 1 + h

(a0

2
+ a1

)
, (3.240)

and

Z
1/2
c = Z1/2

c = Z
−1/4
A Z−1/2

g = 1− ha1

2
,

Zb = Z−1
A ,

ZK = Z1/2
c ,

ZL = Z
1/2
A . (3.241)

The results (3.240) are already known from the renormalization of the original Yang-Mills
action in the Landau gauge. Further, we also obtain

Z1/2
ϕ = Z

1/2
ϕ = Z−1/2

g Z
−1/4
A = 1− ha1

2
,

Z1/2
ω = Z

−1/2
A ,

Z
1/2
ω = Z−1

g ,

ZM = 1− ha1

2
= Z−1/2

g Z
−1/4
A ,

ZN = Z
−1/2
A ,

ZU = 1 + h
a0

2
= Z−1

g ,

ZV = 1− ha1

2
= Z−1/2

g Z
−1/4
A ,

ZT = 1 + h
a0

2
= Z−1

g ,

ZR = 1− ha1

2
= Z−1/2

g Z
−1/4
A . (3.242)

This concludes the proof of the renormalizability of the action (3.204) which is the physical
limit of Σ′GZ. Notice that in the physical limit (3.212), we have that

Zγ2 = Z−1/2
g Z

−1/4
A . (3.243)

6 Relation between Gribov no-pole condition and the GZ action

To end this chapter, we would like to point out that the equivalence between the no-pole
condition and Zwanziger’s horizon condition has been checked up to third order in the gauge
fields. All the details of the calculation can be found in [85].
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4
Scrutinizing the Gribov-Zwanziger action

In this chapter we shall elaborate on the Gribov-Zwanziger action by discussing a variety of
topics. Firstly, we shall calculate all the propagators of this action and discuss the transver-
sality of the gluon propagator. Secondly, we devote some effort in scrutinizing the BRST
breaking of the GZ action and its consequences. We shall even demonstrate how one can
restore this broken BRST by the introduction of additional fields. Next, we shall briefly
touch the hermiticity of the GZ action and we shall also devote some words on the form of
the horizon function in relation to the renormalizability. Finally, we shall dwell upon the
Kugo-Ojima criterium in relation to the GZ action.

1 The propagators of the GZ action

As it shall be useful later on in this thesis, we shall calculate all the propagators of the GZ
action. In order to make no mistakes with minus signs, we shall perform the calculations with
great care. We start by taking only the quadratic part of the action SRGZ into account

SGZ =
∫

d4x
[1

4
(∂µAaν − ∂νAaµ)2 + ba∂µA

a
µ + ca∂2

µc
a + ϕai ∂

2
µϕ

a
i − ωai ∂2

µω
a
i − γ2gfabcAaµϕ

bc
µ

− γ2gfabcAaµϕ
bc
µ

]
. (4.1)

We see three different parts appear:

SGZ =
∫

d4x
[Aaµ

2
(−∂2δµν + ∂µ∂ν)δabAbν +

1
2
ba∂µA

a
µ −

1
2
∂µb

aAaµ + ϕabµ ∂
2ϕabµ

− γ2gfabcAaµ(ϕbcµ + ϕbcµ )
]

+
∫

d4x
[
ωai (−∂2)ωai

]
+
∫

d4x
[
ca∂2

µc
a
]
. (4.2)

The ωω propagator

The goal is to calculate the propagator〈
ω̃
a
µ(p)ω̃bν(k)

〉
. (4.3)

As we are working in Euclidean space, the path integral is given by

P =
∫

[dΦ]e−SGZ , (4.4)
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with [dΦ] the integration over all the fields. In order to calculate the propagator in momentum
space we can now employ formula (A.3)

I =
∫

[dω][dω] exp
[∫

ddxddy ωµ(x)Aµν(x, y)ων(y) +
∫

ddx (Jµω (x)ωµ(x) + ων(x)Jνω(x))
]

= C detA exp−
∫

ddxddy Jµω (x)A−1
µν (x, y)Jνω(y) , (4.5)

whereby in our case:

A(x, y) = δ(x− y)(∂2)δµν ,

A−1(x, y) = δ(x− y)
1
∂2
δµν . (4.6)

Now going to Fourierspace,

I =
∫

[dω][dω] exp
[∫

ddp
(2π)d

ω̃(−p)(−p2)ω̃(p) +
∫

ddp
(2π)d

(J̃ω(−p)ω̃(p) + ω̃(p)J̃ω(−p))
]

= C detA exp−
∫

ddp
(2π)d

J̃ω(−p) 1
p2
J̃ω(p) , (4.7)

we can calculate the propagator in Fourierspace:

−(2π)8 δ

δJ̃ω(−p)
δ

δJ̃ω(−k)
I

∣∣∣∣∣
J=0

=
〈
ω̃
ab
µ (p)ω̃cdν (k)

〉
= δacδbdδµν

−1
p2
δ(p+ k)(2π)4 . (4.8)

The ghost propagator

Completely analogously, we find〈
c̃
a
(k)c̃b(p)

〉
= δab

1
p2

(2π)4δ(p+ k) . (4.9)

The mixed operators

For the final part, we shall use the following general formula,

I(A, J) =
∫

[dϕ] exp
[
−1

2

∫
ddxddy ϕ(x)A(x, y)ϕ(y) +

∫
ddx ϕ(x)J(x)

]
= C(detA)−1/2 exp

1
2

∫
ddxddy J(x)A−1(x, y)J(y) . (4.10)

However, as we see in the action (4.2) we need to rewrite the complex conjugate Bose fields
ϕ and ϕ in terms of real fields. Therefore, we shall introduce the real fields U and V

ϕabµ =
V ab
µ + iUabµ

2
,

ϕabµ =
V ab
µ − iUabµ

2
. (4.11)
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We can thus rewrite the relevant part of the action as

S′RGZ =
∫

d4x
[Aaµ

2
(−∂2δµν + ∂µ∂ν)δabAbν +

1
2
ba∂µA

a
µ −

1
2
∂µb

aAaµ+

1
4

(
V ab
µ ∂2V ab

µ + Uabµ ∂
2Uabµ

)
− 1

2
γ2gfabcAaµV

bc
µ −

1
2
γ2gfabcAaµV

bc
µ

]
. (4.12)

We rewrite this in matrixform as

exp[−S′RGZ] = exp[−1
2

∫
d4x

[
Aaµ(x) bm(x) V k`

α (x) Uk`α (x)
]︸ ︷︷ ︸

X

×



−∂2Pµνδ
ab −∂µδan −γ2gfaijδµκ 0

∂µδ
bm 0 0 0

−γ2gf bk`δαν 0 1
2∂

2 0
δακδkiδ`j

0 0 0 1
2∂

2

δβλδspδtq


︸ ︷︷ ︸

A



Abν(x)

bn(x)

V ij
κ (x)

Upqλ (x)


] ,

where

Pµν = δµν −
∂µ∂ν
∂2

, Lµν =
∂µ∂ν
∂2

, (4.13)

are the respective transverse and longitudinal projectors. Notice that we have rewritten (4.12)
in a symmetric way. Now we can apply the general formula (4.10), meaning that we have to
find the inverse of A.

−∂2Pµνδ
ab −∂µδan −γ2gfaijδµκ 0

∂νδ
mb 0 0 0

−γ2gf bk`δαν 0 1
2∂

2 0
δακδkiδ`j

0 0 0 1
2∂

2

δβλδspδtq





Ab cν τ Bb o
ν Cb xyν ω Db gh

ν χ

En c
τ Fn o Gn xy

ω Hn gh
χ

Iij cκ τ J ij oκ Kij xy
κ ω Lij ghκ χ

Mpq c
λ τ Npq o

λ Opq xyλ ω P pq ghλ χ


︸ ︷︷ ︸

A−1

=



δacδµτ 0 0 0

0 δmo 0 0

0 0 δkxδ`yδαω 0

0 0 0 δsgδthδβχ


.
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After some calculation we find for A−1(x):

δbc
[

−∂2

∂4+2Ng2γ4Pντ

]
∂ν
∂2 δ

bo f bxyPνω
−2gγ2

∂4+2g2Nγ4 0

∂τδ
nc−1

∂2 δno 2g2Nγ4

∂4 fnxy∂ω
−2gγ2

∂4 0

Pκτf
ijc −2gγ2

∂4+2g2Nγ4 ∂κf
ijo−2gγ2

∂4 f ijrfxyrPκω
4g2γ4

(−∂2)(∂4+2g2Nγ4)
0

+ −2
−∂2 δ

ixδjyδκω

0 0 0 −2
−∂2 δ

pgδqhδλχ


.

For the propagators, we need to go to Fourierspace,∫
[dϕ] exp

[
−1

2

∫
ddx X(x)A(x)XT (x) +

∫
ddp

(2π)d
X̃(−p)J̃(p)

]
= C(detA)−1/2 exp

1
2

∫
ddp

(2π)d
J̃T (−p)A−1(p)J̃(p) , (4.14)

with

J̃T =
[
JA Jb JV JU

]
, (4.15)

and A−1(p) given by

δbc
[

p2

p4+2Ng2γ4Pντ

]
−ipν
p2 δbo f bxyPνω

−2gγ2

p4+2g2Nγ4 0

ipτδnc 1
p2 δno 2g2Nγ4

p4 fnxyipω −2gγ2

p4 0

Pκτf
ijc −2gγ2

p4+2g2Nγ4 ∂κf
ijo−2gγ2

p4 f ijrfxyrPκω
4g2γ4

p2(p4+2g2Nγ4)
0

+−2
p2 δ

ixδjyδκω

0 0 0 −2
p2 δ

pgδqhδλχ


.

We now have all the ingredients to calculate the propagators.

AA-propagator
We have for example,

δ

δJ̃Aaµ(−p)
δ

δJ̃Abν (−k)
I =

1
(2π)8

〈
Ãaµ(p)Ãbν(k)

〉
=

1
(2π)4

δabδ(k + p)
[

p2

p4 + 2Ng2γ4
Pµν

]
,

or equivalently 〈
Ãaµ(p)Ãbν(k)

〉
=

p2

p4 + λ4
Pµνδ

abδ(k + p)(2π)4 , (4.16)
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whereby we have defined

λ4 = 2Ng2γ4 . (4.17)

Ab-propagator
Next,

δ

δJ̃Aaµ(−p)
δ

δJ̃bb(−k)
I =

1
(2π)8

〈
Ãaµ(p)̃bc(k)

〉
= −i

pµ
p2
δab

δ(p+ k)
(2π)4

, (4.18)

or thus 〈
Ãaµ(p)̃bb(k)

〉
= −i

pµ
p2
δabδ(p+ k)(2π)4 . (4.19)

bb-propagator

〈
ba(p)bb(k)

〉
= δab

λ4

p4
δ(p+ k)(2π)4 . (4.20)

The propagators with U and V
In an analogue fashion, we find

〈
Ãaµ(p)Ṽ bc

ν (k)
〉

= fabc
−2gγ2

p4 + λ4
Pµν(p)(2π)4δ(p+ k) ,〈

b̃a(p)Ṽ bc
ν (k)

〉
= fabcipν

−2gγ2

p2(p2
(2π)4δ(p+ k) ,〈

Ṽ ab
µ (p)Ṽ cd

ν (k)
〉

=
(
fabrf cdrPµν

4g2γ4

p2(p4 + 2g2Nγ4)
+
−2
p2
δacδbdδµν

)
(2π)4δ(p+ k) ,〈

Ũabµ (p)Ũ cdν (k)
〉

=
−2
p2
δacδbdδµν(2π)4δ(p+ k) ,〈

Ãaµ(p)Ũ bcν (k)
〉

=
〈
b̃a(p)Ũ bcν (k)

〉
=
〈
Ũabν (p)Ũ cdν (k)

〉
= 0 , (4.21)

which can be rewritten in terms of ϕ and ϕ again,

〈
Ãaµ(p)ϕ̃bcν (k)

〉
=

〈
Ãaµ(p)ϕ̃

bc
ν (k)

〉
= fabc

−gγ2

p4 + λ4
Pµν(p)(2π)4δ(p+ k) ,〈

b̃a(p)ϕ̃bcν (k)
〉

=
〈
b̃a(p)ϕ̃

bc
ν (k)

〉
= fabcipν

−gγ2

p4
(2π)4δ(p+ k) ,〈

ϕ̃abµ (p)ϕ̃
cd
ν (k)

〉
=

(
fabrf cdrPµν

g2γ4

p2(p4 + 2g2Nγ4)
+
−1
p2
δacδbdδµν

)
(2π)4δ(p+ k) ,〈

ϕ̃abµ (p)ϕ̃cdν (k)
〉

=
〈
ϕ̃
ab
µ (p)ϕ̃

cd
ν (k)

〉
= fabrf cdrPµν

g2γ4

p2(p4 + 2g2Nγ4)
(2π)4δ(p+ k) .

(4.22)
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In summary, we have the following large set of propagators in the theory:〈
ω̃
ab
µ (k)ω̃cdν (p)

〉
= δacδbdδµν

−1
p2
δ(p+ k)(2π)4 ,〈

c̃
a
(k)c̃b(p)

〉
= δab

1
p2
δ(p+ k)(2π)4 ,〈

Ãaµ(p)Ãbν(k)
〉

=
p2

p4 + λ4
Pµνδ

abδ(k + p)(2π)4 ,〈
Ãaµ(p)̃bb(k)

〉
= −i

pµ
p2
δabδ(p+ k)(2π)4 ,〈

ba(p)bb(k)
〉

= δab
λ4

p4
δ(p+ k)(2π)4 ,〈

Ãaµ(p)ϕ̃bcν (k)
〉

=
〈
Ãaµ(p)ϕ̃

bc
ν (k)

〉
= fabc

−gγ2

p4 + λ4
Pµν(p)(2π)4δ(p+ k) ,〈

b̃a(p)ϕ̃bcν (k)
〉

=
〈
b̃a(p)ϕ̃

bc
ν (k)

〉
= fabcipν

−gγ2

p4
(2π)4δ(p+ k) ,〈

ϕ̃abµ (p)ϕ̃
cd
ν (k)

〉
=

(
fabrf cdrPµν

g2γ4

p2(p4 + 2g2Nγ4)
+
−1
p2
δacδbdδµν

)
(2π)4δ(p+ k) ,〈

ϕ̃abµ (p)ϕ̃cdν (k)
〉

=
〈
ϕ̃
ab
µ (p)ϕ̃

cd
ν (k)

〉
= fabrf cdrPµν

g2γ4

p2(p4 + 2g2Nγ4)
(2π)4δ(p+ k) .

(4.23)

2 The transversality of the gluon propagator

One might wonder whether the gluon propagator still remains transverse in the presence of
the Gribov horizon. As the gluon propagator is the connected two-point function, we ought
to consider the generator Zc of connected Green functions, which can be constructed from
the quantum effective action Γ by means of a Legendre transformation. Due to the QAP, Γ
obeys the renormalized version of the Ward identity (3.219), or

δΓ
δba

= ∂µA
a
µ . (4.24)

Introducing sources Ia(Jaµ) for the fields ba(Aaµ) and performing the Legendre transformation,
see expression (2.18), the identity (4.24) translates into

Ia = ∂µ
δZc

δJaµ
. (4.25)

Acting with δ
δJbµ

on this expression, and by setting all sources equal to zero, we retrieve

0 = ∂xµ
δ2Zc

δJaµ(x)δJbµ(y)

∣∣∣∣
I,J=0

= ∂xµ 〈Aaµ(x)Abν(y)〉 , (4.26)

which expresses nothing else but the transversality of the gluon propagator.
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3 The soft breaking of the BRST symmetry

3.1 The breaking

We recall here that the Gribov-Zwanziger action (3.204) is not invariant under the BRST
transformation (3.207). Indeed, in equation (3.208) we have found that

∆γ ≡ sS = sSγ = −gγ2

∫
d4xfabc

(
Aaµω

bc
µ −

(
Dam
µ cm

) (
ϕbcµ + ϕbcµ

))
. (4.27)

We see that the presence of the Gribov parameter γ prevents the action from being invariant
under the BRST symmetry. Notice that if γ = 0, we can integrate out the fields ϕ,ϕ, ω, ω
and we left with the original Yang-Mills theory. Therefore, this breaking is clearly due to
the introduction of the horizon into the Yang-Mills action. Nevertheless, this fact does not
prevent the use of the Slavnov-Taylor identity to prove the renormalizability of the theory,
which is very remarkable. Since the breaking ∆γ is soft, i.e. it is of dimension two in the
fields, it can be neglected in the deep ultraviolet, where we recover the usual notion of exact
BRST invariance as well as of BRST cohomology for defining the physical subspace, see p.48.
However, in the nonperturbative infrared region, the breaking term cannot be neglected and
the BRST invariance is lost.

3.2 The BRST breaking as a tool to prove that the Gribov parameter is a
physical parameter

The breaking term (4.27) has an interesting consequence as it allows us to give a simple al-
gebraic proof of the fact that the Gribov parameter γ is a physical parameter of the theory,
and that as such it can enter the explicit expression of gauge invariant correlation functions
like for instance 〈F 2(x)F 2(y)〉 or the vacuum condensate 〈F 2〉.

We shall demonstrate this as follows. Taking the derivative of both sides of equation (4.27)
with respect to γ2 one gets,

s
∂S

∂γ2
=

1
γ2

∆γ = −g
∫

d4xfabc
(
Aaµω

bc
µ −

(
Dam
µ cm

) (
ϕbcµ + ϕbcµ

))
, (4.28)

from which, keeping in mind that the BRST operator s as defined in equation (3.207) is nilpo-
tent, it immediately follows that ∂S

∂γ2 cannot be cast in the form of a BRST exact variation,
namely

∂S

∂γ2
6= s∆̂γ , (4.29)

for some local integrated dimension two quantity ∆̂γ . From this, we can conclude that the
Gribov parameter γ2 is a physical parameter and that it can enter into the expectation values
of gauge invariant quantities. Let us demonstrate this more explicitly by assuming for a
moment the contrary

sSγ = 0 , (4.30)
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instead of inducing the breaking term ∆γ . Since Sγ depends on the auxiliary fields
(
ϕacµ , ϕacµ ,

ωacµ , ωacµ
)

which constitute a set of BRST doublets, it would follow from equation (4.30) that
a local integrated polynomial Ŝγ would exist such that

Sγ = sŜγ . (4.31)

Subsequently, taking the derivative of both sides of expression (4.31) with respect to γ2, one
would obtain

∂Sγ
∂γ2

= s
∂Ŝγ
∂γ2

, (4.32)

a relation implying that γ2 is an unphysical parameter. Indeed, for a gauge invariant quantity
G, we would have that

∂ 〈G〉
∂γ2

=
δ

δγ2

∫
[dφ]G e−SGZ ∼

∫
[dφ]G sŜγe−SGZ ∼

∫
[dφ]s

(
G Ŝγ

)
e−SGZ ∼ 〈s(. . .)〉 = 0

(4.33)
and correlation functions of gauge invariant operators would be completely independent from
γ2. We see thus that the presence of the soft breaking term ∆γ plays an important role,
ensuring that γ2 is a relevant parameter of the theory and that ∂〈G〉

∂γ2 6= 0. The existence of the
breaking ∆γ thus seems to be an important ingredient to introduce a nonperturbative mass
gap in a local and renormalizable way.

3.3 The Maggiore-Schaden construction revisited

The authors of the paper [86] attempted to interpret the BRST breaking as a kind of sponta-
neous symmetry breaking. We shall now re-examine this proposal and conclude that, instead,
the BRST breaking has to be considered as an explicit symmetry breaking, where we shall
present a few arguments which have not been considered in [86]. Although this discussion
might seem to be only of a rather academic interest, there is nevertheless a big difference
between a spontaneously or explicitly broken continuous symmetry, since only in the former
case a Goldstone mode would emerge. For the benefit of the reader, we shall first explain
in detail the approach of [86]. One starts by adding the following BRST exact term to the
Yang-Mills action:

S1 = s

∫
d4x

(
ca∂µA

a
µ + ωacµ ∂νD

ab
ν ϕ

bc
µ

)
, (4.34)

with s, the same nilpotent BRST operator as defined in (3.207). The first term represents the
Landau gauge fixing, while the second term is a BRST exact piece in the fields (ϕ, ω, ϕ, ω).
Of course, from expression (4.34), it follows that s defines a symmetry of the action SYM +S1.
As a consequence, the nilpotent operator s allows us to define two doublets (ϕ, ω) and (ϕ, ω).
This doublet structure implies that we can exclude these fields from the physical subspace,
see p.23, which makes SYM + S1 equivalent to the ordinary Yang Mills gauge theory. Next,
Maggiore and Schaden introduced a set of shifted fields, which -translated to our conventions-
are given by:

ϕabµ = ϕ′abµ + γ2δabxµ ,

ϕabµ = ϕ′abµ + γ2δabxµ ,

ca = c′a + gγ2fabcωbcµ xµ ,

ba = b′a + gγ2fabcϕbcµ xµ . (4.35)
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All fields (ϕ′abµ , ϕ′abµ , c′a, b′a) have vanishing vacuum expectation value (VEV), namely

〈ϕ′abµ 〉 = 〈ϕ′abµ 〉 = 〈c′a〉 = 〈b′a〉 = 0 . (4.36)

Along with these new fields (ϕ′abµ , ϕ′abµ , c′a, b′a), one introduces a modified nilpotent BRST
operator s̃ given by:

s̃ c′a = b′a , s̃b′a = 0 ,

s̃ϕ′abµ = ωabµ , s̃ϕ′abµ = 0 ,

s̃Aaµ = −Dab
µ c

b , s̃ωabµ = 0 , (4.37)

which looks exactly like (3.207). However, we emphasize that by introducing these new fields,
the BRST operator s̃ will give rise to an explicit x-dependence when acting on the field ωabµ :

s̃ωabµ = ϕ′abµ + γ2δabxµ . (4.38)

Furthermore, by taking the vacuum expectation value of both sides of equation (4.38), one
gets

〈s̃ ωabµ 〉 = γ2δabxµ , (4.39)

from which the authors of [86] infer that the BRST operator s̃ suffers from spontaneous sym-
metry breaking. Notice also that (4.39) gives a VEV to a quantity with a free Lorentz index.

With the introduction of the shifted fields, we can rewrite the action S1 as:

S1 = s̃

∫
d4x

(
c′a∂µA

a
µ + ωacµ ∂νD

ab
ν ϕ
′bc
µ + gγ2fabcωbcν xν∂µA

a
µ + γ2ωacµ ∂νD

ab
ν δ

bcxµ

)
. (4.40)

The last two terms can be simplified, leading to

S1 = s̃

∫
d4x

(
c′a∂µA

a
µ + ωacµ ∂νD

ab
ν ϕ
′bc
µ − gγ2ωabµ fabcA

c
µ

)
. (4.41)

If we calculate this action explicitly, we recover the original Gribov-Zwanziger action, without
the constant part 4γ4(N2 − 1). For this reason one adds −γ2s̃

∫
d4x∂µω

aa
µ to the action S1.

Doing so, one finds

S1 =s̃
∫

d4x
(
c′a∂µA

a
µ + ωacµ ∂νD

ab
ν ϕ
′bc
µ − gγ2ωabµ fabcA

c
µ − γ2∂µω

aa
µ

)
=
∫

d4x
[
b′a∂µA

a
µ + c′a∂µ

(
Dab
µ c

b
)]

+
∫

d4x
[
ϕ′acµ ∂νD

ab
ν ϕ
′bc
µ + γ2xµ∂νD

ab
ν ϕ
′ba
µ

+ωacµ ∂ν
(
gfakbDkd

ν c
dϕ′bcµ

)
− ωacµ ∂νDab

ν ω
bc
µ

]
+
∫

d4x
[
−gγ2ϕ′abµ fabcA

c
µ

−gγ2ωabµ fabcD
cd
µ c

d − 4γ4(N2 − 1)
]
. (4.42)

If we naively assume that we can perform a partial integration, we find after dropping the
surface terms,

SYM + S1 = SGZ − gγ2fabc
∫

d4x ωabµ D
cd
µ c

d , (4.43)
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whereby SGZ is given in expression (3.204). The last expression reveals that one has recov-
ered the Gribov-Zwanziger action from an exact s̃-variation with the addition of an extra
term

(
−gγ2fabc

∫
d4x ωabµ D

cd
µ c

d
)
. However, this term is irrelevant as we shall explain now.

Assume that we want to compose an arbitrary Feynman diagram without any external ω leg
and thereby using the action (4.43). The second term from this action can never contribute
to this Feynman diagram as it contains an external ω. Indeed, this leg requires an ω-leg,
which in its turn is always accompanied by an ω leg. Hence, the action (4.43) is equivalent
to the standard Gribov-Zwanziger action (3.204) when we exclude the diagrams containing
external ω legs1.

Although at first sight this construction might seem useful, it turns out that a few points
have been overlooked. Let us investigate this in more detail. Firstly, we point out that
rather delicate assumptions have been made concerning the partial integration. To reveal the
obstacle, we perform once more the partial integration explicitly,∫

d4xγ2xµ∂νD
ab
ν ϕ
′ba
µ = surface term−

∫
d4xγ2δµνD

ab
ν ϕ
′ba
µ . (4.44)

Normally, one drops the surface terms, as the fields vanish at infinity. However in this case, as
xµ does not vanish at infinity, it is not sure if the surface terms ∝ xµ will be zero. One would
have to impose extra conditions on the fields to justify the dropping of the surface terms. On
the other hand, when we do not perform the partial integration to avoid the surface terms, we
are facing an explicit, unwanted x-dependence in the action, resulting in an explicit breaking
of translation invariance.

Another way of looking at the problem consists of performing a partial integration on the
second term of the action (4.41) before applying the BRST variation s̃. Doing so, we find,

S1 = s̃

∫
d4x

(
c′a∂µA

a
µ − ∂νωacµ Dab

ν ϕ
′bc
µ − gγ2ωabµ fabcA

c
µ − γ2∂µω

aa
µ

)
. (4.45)

Subsequently, applying the BRST variation gives,

S1 =
∫

d4x
[
b′a∂µA

a
µ + c′a∂µ

(
Dab
µ c

b
)]

+
∫

d4x
[
−∂νϕ′acµ Dab

ν ϕ
′bc
µ − γ2δµνDab

ν ϕ
′ba
µ

−
(
∂νω

ac
µ

)
gfakbDkd

ν c
dϕ′bcµ +

(
∂νω

ac
µ

)
Dab
ν ω

bc
µ

]
+
∫

d4x
[
−gγ2ϕ′abµ fabcA

c
µ

−gγ2ωabµ fabcD
cd
µ c

d − 4γ4(N2 − 1)
]

= SGZ − gγ2fabc
∫

d4xωabµ D
cd
µ c

d . (4.46)

In this case, we do not encounter the problem of nonvanishing surface terms. To recapitulate,
if we first let the BRST variation act on the action (4.41), and then perform a partial integra-
tion, we find a different result than performing these two operations the other way around.
This difference is exactly given by the surface term from equation (4.44). This discrepancy
arises of course from the explicit x-dependence introduced in the BRST transformation s̃,
giving nontrivial contributions. For example, we introduced a term −γ2s̃

∫
d4x∂µω

aa
µ which

1For our purposes these diagrams are irrelevant, e.g. the vacuum energy, the gluon and ghost propagator,. . . .
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might seem to be zero since we are looking at the integral of a complete derivative (thus
usually taken to be a vanishing surface term), but when the BRST variation is taken first, a
nontrivial integrated piece remains.

Apparently, to find the correct Gribov-Zwanziger action with the Maggiore-Schaden argu-
ment, there is some kind of a “hidden working hypothesis” that (4.45) is the correct action
to start with, and that partial integration is not always allowed2. The fact that there seems
to be a kind of “preferred” action to start with, is just a signal that there is a problem with
the boundary conditions for some of the fields and hence surface terms when integrating.

In addition, a second problem arises. In the Gribov-Zwanziger approach, we recall that
the parameter γ is not free and is determined by the horizon condition (3.184). Obviously,
the solution γ = 0 is excluded, as else, we would be back in the ordinary Yang-Mills theory.
In [87], a solution for γ 6= 0 is found, which gave rise to a positive vacuum energy Evac > 0.
However, according to Maggiore-Schaden argument, at one loop order the stable solution
should be that corresponding to γ = 0 [86], as, if γ = 0, the vacuum energy would be vanish-
ing, i.e. Evac = 0, which is energetically favored over a positive vacuum energy. This delivers
a contradiction with the Gribov-Zwanziger approach, as the restriction to the Gribov region
requires that γ 6= 0, thus giving a positive energy Evac > 0 at one loop.

In conclusion, we believe that interpreting the BRST breaking as a kind of spontaneous
symmetry breaking cannot be supported by calculations as some mathematical details were
overlooked.

4 Restoring the BRST

4.1 Adapting the BRST symmetry s is not possible

A question which arises almost naturally is whether it might be possible to modify the BRST
operator, i.e. s → sm, in such a way that the new operator sm would be still nilpotent,
while defining an exact symmetry of the action, smS = 0. Although we are not going to
give a formal proof, we can present a simple argument discarding such a possibility. We have
already observed that the BRST transformation (3.207) defines an exact symmetry of the
action when γ = 0, which corresponds to the physical situation in which the restriction to
the Gribov region has not been implemented. Hence, it appears that one should search for
possible modifications of the BRST operator which depends on γ, namely

sm = s+ sγ , (4.47)

whereby

sγ = γ-dependent terms , (4.48)

so as to guarantee a smooth limit when γ is set to zero. However, taking into account the fact
that γ has mass dimension one, that all auxiliary fields

(
ϕacµ , ϕ

ac
µ , ω

ac
µ , ω

ac
µ

)
have dimension

2If it would be allowed, one would be able to cross from the second action (4.45) to the first one (4.41), but
as we have just shown, these two starting actions are inequivalent.
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one too, and that the BRST operator s does not alter the dimension of the fields3, it does
not seem possible to introduce extra γ-dependent terms in the BRST transformation of the
fields

(
ϕacµ , ϕ

ac
µ , ω

ac
µ , ω

ac
µ

)
while preserving locality, Lorentz covariance as well as color group

structure.

4.2 Restoring the BRST by the introduction of new fields

However, there is another way to restore the BRST [88]. By introducing new fields, we shall
demonstrate that one can in fact restore the BRST. However, this BRST symmetry shall
turn out not to be nilpotent. The idea is the following. In [89] it was shown that the broken
BRST symmetry s can be rewritten as a non-local symmetry, which is not nilpotent4. By
introducing extra fields, we shall show that it is possible to localize this non-local symmetry.

4.2.1 Constructing the non-local BRST symmetry s′

We shall start from the standard GZ action (3.204), set gγ2 = θ2 and drop the vacuum term
for notational shortness as this vacuum term will not influence any variation of the action,

SGZ = SYM +
∫

ddx
(
ba∂µA

a
µ + ca∂µD

ab
µ c

b
)

+
∫

ddx
(
ϕacµ ∂νD

ab
ν ϕ

bc
µ

−ωacµ ∂νDab
ν ω

bc
µ + θ2fabcAaµ

(
ϕbcµ + ϕbcµ

)
−gfabc∂µωaeν Dbd

µ c
dϕceν

)
. (4.49)

Let us first reconstruct the non-local BRST symmetry as proposed in [89]. Firstly, following
[89], we shall for the moment also drop the underlined term. Dropping this term temporarily
only leads to a breaking in the BRST s which is itself the s-variation of something, thus it is
rather harmless. Later on, we shall take this term into account anyhow by the nature of the
construction itself. For now, we shall thus study the following GZ action,

ŜGZ = SYM +
∫

ddx
(
ba∂µA

a
µ + ca∂µD

ab
µ c

b
)

+

+
∫

ddx
(
ϕacµ ∂νD

ab
ν ϕ

bc
µ − ωacµ ∂νDab

ν ω
bc
µ + θ2fabcAaµ

(
ϕbcµ + ϕbcµ

))
. (4.50)

Applying (2.116) yields

sŜGZ =
∫

ddx
(
θ2ckDka

µ f
abc
(
ϕbcµ + ϕbcµ

)
+ θ2fabcAaµω

bc
µ

+ gfabc(Dbp
ν c

p)
(
∂νϕ

ae
µ ϕ

ce
µ − ∂νωaeµ ωceµ

)︸ ︷︷ ︸
s(gfabc∂µωaeν D

bd
µ c

dϕceν )

)
. (4.51)

3It is understood that the usual canonical dimensions are assigned to the fields Aaµ, ba, ca, c̄a. It is apparent
that the BRST operator s does not alter the dimension of the fields.

4At about the same time, the paper [90] appeared, which showed that one could write a non-local and
nilpotent BRST symmetry for the GZ action, however, this non-local symmetry is not so transparant.
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According to [89], the positivity of the Faddeev-Popov operator inside the Gribov region
allows to rewrite (4.50) as

sŜGZ =
∫

ddx
(
caDab

ν Λbν + θ2fabcAaµω
bc
µ

)
=
∫

ddx
(

(Dma
ν Λaν)[(∂νDν)−1]mc

δ

δcc
ŜGZ − θ2fabcAaµ[(∂νDν)−1]bm

δ

δωmcµ
ŜGZ

)
, (4.52)

with

Λaν = θ2fabc(ϕbcν + ϕbcν )− gf bap
(
∂νϕ

bc
µ ϕ

pc
µ − ∂νωbcµ ωpcµ

)
. (4.53)

From (4.52), we can read off a new, albeit nonlocal, BRST symmetry, s′ŜGZ = 0, generated
by

s′Aaµ = −Dab
µ c

b , s′ca =
1
2
gfabccbcc , s′ca = ba − (Dkc

ν Λcν)[(∂νDν)−1]ka , s′ba = 0 ,

s′ϕacµ = ωacµ , s′ωacµ = 0 , s′ωacµ = ϕacµ + θ2f qpcAqµ[(∂νDν)−1]pa , s′ϕacµ = 0 . (4.54)

One can now see that s′ is not nilpotent, s′2 6= 0, [89].

4.2.2 Localization of the BRST variations

We want to explore the possibility to localize the nonlocal expressions appearing in the BRST
variations (4.54). We have in mind to introduce extra fields into the GZ action, in such a way
that their equation of motions reproduce the nonlocal BRST expressions. As such, we can
hope to establish a (at least on-shell) local version of the BRST symmetry s′. As it shall soon
become clear, our localization procedure starts from the local GZ action itself and, at the end,
we shall naturally come to the non-local BRST just described upon using some equations of
motion5.

We shall treat the breaking proportional to Λaν in two parts and we introduce the notation

Λaν = fabc(ϕbcν + ϕbcν ) , Λ̂aν = −gf bap
(
∂νϕ

bc
µ ϕ

pc
µ − ∂νωbcµ ωpcµ

)
, (4.55)

for the true, resp. fake BRST breaking content of Λaν ≡ θ2Λaν + Λ̂aν . The reason for this is
that it will naturally lead to a modification of the complete GZ action (4.49) rather than of
the reduced version (4.50).

We start with the original BRST s, and introduce the following doublets

sαa = Ωa , sΩa = 0 , sΩa = αa , sαa = 0 ,

sβabµ = Ψab
µ , sΨab

µ = 0 , sΨab
µ = β

ab
µ , sβ

ab
µ = 0 . (4.56)

5The non-local symmetry of [90] seems to fall outside this construction.
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The αa, αa, βabµ and βabµ are commuting, while Ωa, Ωa, Ψab
µ and Ψab

µ are anti-commuting fields.
We also introduce the auxiliary action

Saux = s

∫
d4x

(
αa∂µD

ab
µ Ωb − Ωa

Dab
ν Λbν + βacν ∂µD

ab
µ Ψbc

ν − fabcAaµΨbc
µ

)
=
∫

d4x
(

Ωa∂µD
ab
µ Ωb + αa∂µD

ab
µ α

b + gfabc(∂µαa)(Dbd
µ c

d)Ωc − αaDab
ν Λbν + Ωa

s(Dab
ν Λbν)

+Ψac
ν ∂µD

ab
µ Ψbc

ν + βacν ∂µD
ab
µ β

bc
ν + gfabc(∂µβaeν )(Dbd

µ c
d)Ψce

ν − fabcAaµβ
bc
µ − fabcΨ

bc
µD

ad
µ c

d
)
.

(4.57)

It is clear at sight that the equations of motions for αa and βabµ are closely related to the
θ-dependent part of the nonlocal expressions in the r.h.s. of (4.54).

For the moment, let us just change the GZ action (4.50) by hand and consider

Ŝmod
GZ = ŜGZ + Saux , (4.58)

and define the transformation6 δ by means of

δαa = θ2ca , δca = −θ2αa , δβ
bc
µ = θ2ωbcµ , δωbcµ = θ2βbcµ , δ(rest) = 0 . (4.59)

Then, we find

(s+ δ)(Ŝmod
GZ ) = sŜGZ︸ ︷︷ ︸

∗

+ δŜGZ︸ ︷︷ ︸
∗∗

+ δSaux︸ ︷︷ ︸
∗∗∗

=
∫

ddx
(
θ2caDab

ν Λbν + θ2fabcAaµω
bc
µ + s(gfabc∂µωaeν D

bd
µ c

dϕceν )
)

︸ ︷︷ ︸
∗

+
∫

ddx
(
−θ2αa∂µD

ab
µ c

b − θ2βacµ ∂νD
ab
ν ω

bc
µ

)
︸ ︷︷ ︸

∗∗

+
∫

ddx
(
θ2αa∂µD

ab
µ c

b − θ2caDab
ν Λbν + θ2βacµ ∂νD

ab
ν ω

bc
ν − θ2fabcAaµω

bc
µ

)
︸ ︷︷ ︸

∗∗∗

= (s+ δ)
∫

ddx
(
gfabc∂µω

ae
ν D

bd
µ c

dϕceν

)
− δ

∫
ddx

(
gfabc∂µω

ae
ν D

bd
µ c

dϕceν

)
.

We can rewrite this as

(s+δ)S̃mod
GZ = −δ

∫
ddx

(
gfabc∂µω

ae
ν D

bd
µ c

dϕceν

)
= −θ2

∫
ddx

(
gfabc∂µβ

ae
ν D

bd
µ c

dϕceν

)
, (4.60)

whereby we introduced a modified version of the original GZ action (4.49), given by S̃mod
GZ =

SGZ + Saux. Looking at (4.60), we have found that s + δ “almost” generates a symmetry
of the foregoing action S̃mod

GZ . In order to get an actual symmetry, we rewrite, using partial
integration,

−
∫

ddx
(
gfabc∂µβ

ae
ν D

bd
µ c

dϕceν

)
=

∫
ddxDbd

µ

(
gfabc∂µβ

ae
ν ϕ

ce
ν

)
[(∂νDν)−1]dq

δSmod
GZ

δcq
.

6δ itself will not correspond to a symmetry.
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We can localize the latter term again analogously as before, by extending the auxiliary action
by a novel quartet of fields,

sQa = Ra , sRa = 0 , sR
a = Q

a
, sQ

a = 0 . (4.61)

with R, R anti-commutating fields, while Q and Q are bosonic fields. We introduce a second
auxiliary action

Saux,2 = s

∫
d4x

Qa∂µDab
µ R

b −RdDbd
µ (gfabc∂µβaeν ϕ

ce
ν︸ ︷︷ ︸

κd

)


=

∫
d4x

(
Ra∂µD

ab
µ R

b +Qa∂µD
ab
µ Q

b + gfabc∂µQ
aDbd

µ c
dR

c −Qdκd +R
d
s(κd)

)
,

and extend the δ-transformation (4.59) to

δQ
a = θ2ca , δca = −θ2Qa − θ2αa . (4.62)

In this way we have that

δSGZ = −θ2

∫
d4xQa∂µD

ab
µ c

b , δSaux,2 =
∫

d4x(−θ2cdκd + θ2Qb∂µD
ab
µ c

b) ,(4.63)

which nicely cancels out in combination with (4.60).

In summary, the following action

Smod
GZ = SGZ + Saux + Saux,2

= SYM +
∫

ddx
(
ba∂µA

a
µ + ca∂µD

ab
µ c

b
)

+
∫

ddx
(
ϕacµ ∂νD

ab
ν ϕ

bc
µ − ωacµ ∂νDab

ν ω
bc
µ

+θ2fabcAaµ

(
ϕbcµ + ϕbcµ

)
− gfabc∂µωaeν Dbd

µ c
dϕceν

)
+
∫

ddx
(

Ωa∂µD
ab
µ Ωb

+αa∂µDab
µ α

b + gfabc(∂µαa)(Dbd
µ c

d)Ωc − αaDab
ν Λbν + Ωa

s(Dab
ν Λbν) + Ψac

ν ∂µD
ab
µ Ψbc

ν

+βacν ∂µD
ab
µ β

bc
ν + gfabc(∂µβaeν )(Dbd

µ c
d)Ψce

ν − fabcAaµβ
bc
µ − fabcΨ

bc
µD

ad
µ c

d
)

+
∫

d4x
(
Ra∂µD

ab
µ R

b +Qa∂µD
ab
µ Q

b + gfabc∂µQ
aDbd

µ c
dR

c −Qdκd +R
d
s(κd)

)
,

(4.64)

enjoys the following modified BRST invariance sθ ≡ s+ δ,

sθA
a
µ = − (Dµc)

a , sθc
a =

1
2
gfabccbcc , sθc

a = ba − θ2αa − θ2Qa , sθb
a = 0 ,

sθϕ
ac
µ = ωacµ , sθω

ac
µ = 0 , sθω

ac
µ = ϕacµ + θ2βbcµ , sθϕ

ac
µ = 0 ,

sθα
a = Ωa , sθΩa = 0 , sθΩ

a = αa , sθα
a = θ2ca ,

sθβ
ab
µ = Ψab

µ , sθΨab
µ = 0 , sθΨ

ab
µ = β

ab
µ , sθβ

ab
µ = θ2ωabµ ,

sθQ
a = Ra , sθR

a = 0 , sθR
a = Q

a
, sθQ

a = θ2ca .
(4.65)
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We notice that we did not have to use the equations of motion to identify the sθ-symmetry
of the modified GZ action Smod

GZ . The newly constructed BRST is not nilpotent, s2
θ 6= 0, in

analogy with its nonlocal version written down in (4.54). We have that s4
θ = 0. Upon using

the equations of motion of the new fields, we can derive from (4.65) the on-shell (but nonlocal)
BRST invariance of the original GZ action. Notice that this BRST will be slightly different
from the one constructed in [89], the difference being caused by the fact that we constructed
a BRST invariance of the complete GZ action (4.49) rather than of (4.50).

4.3 A few properties of the modified GZ action

4.3.1 Other symmetries

We shall identify some extra invariances of the modified GZ action Smod
GZ . Firstly, as∫

ddx
(

Ωa δ

δαa
− αa δ

δΩa

)
Smod

GZ =
∫

ddx
(

Ωa
∂Dabαb − αa∂DabΩb + gfabc(∂µΩa)(Dbd

µ c
d)Ωc

)
(4.66)

and by rewriting the r.h.s. of it by means of∫
ddx

(
Ωa
∂Dabαb − αa∂DabΩb

)
=

∫
ddx

(
gfakb∂Akαb

)
=
∫

ddx
(
gfakbαb

δ

δb
k
Smod

GZ

)
,∫

ddx
(
−gfabc(∂µΩa)(Dbd

µ c
d)Ωc

)
=

∫
ddx

(
−1

2
gfabc(Dbd

µ c
d)∂µ(ΩaΩc)

)
=

∫
ddx

(
1
2
gfabcΩaΩc δ

δcb
Smod

GZ

)
, (4.67)

we conclude that

∆1 =
∫

ddx
(

Ωa δ

δαa
− αa δ

δΩa
− 1

2
gfabcΩaΩc δ

δcb
− gfakbΩa

αb
δ

δbk

)
, with ∆2

1 = 0 ,

(4.68)
establishes a (nilpotent) symmetry of Smod

GZ . Similarly, we also find the following symmetries
of the action

∆2 =
∫

ddx
(

Ψbc
ν

δ

δβbcν
− βbcν

δ

δΨbc
ν

− 1
2
gfabcΨae

ν Ψce
ν

δ

δcb
− gfakbΨae

ν β
be
ν

δ

δbk

)
, with ∆2

2 = 0 ,

∆3 =
∫

ddx
(
R
a δ

δQa
−Qa δ

δRa
− 1

2
gfabcR

a
R
c δ

δcb
− gfakbRaQb δ

δbk

)
, with ∆2

3 = 0 .

(4.69)

We can also link some of the original fields with the newly introduced one through the
symmetries

∆4 =
∫

ddx
(

Ωa δ

δca
+ ca

δ

δΩa
− gfakbcaΩb δ

δbk

)
, with ∆2

4 = 0 , (4.70)

and

∆5 =
∫

ddx
(
R
a δ

δca
+ ca

δ

δRa
− gfakbcaRb δ

δbk

)
, with ∆2

5 = 0 . (4.71)
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Clearly, {∆i,∆j} = 0, but {∆i, sθ} 6= 0 generate further symmetries. In addition, there might
be more symmetries not related to this algebra, but we did not attempt to find such here.

We notice that we can rewrite Smod
GZ as

Smod
GZ = SYM +

∫
ddx

(
ba∂µA

a
µ + ca∂µD

ab
µ c

b
)

+
∫

ddx
(
ϕacµ ∂νD

ab
ν ϕ

bc
µ − ωacµ ∂νDab

ν ω
bc
µ

+θ2fabcAaµ

(
ϕbcµ + ϕbcµ

))
+
∫

d4x
(
−gfabc∂µωaeν Dbd

µ c
dϕceν + Ωa∂µD

ab
µ Ωb + αa∂µD

ab
µ α

b

+ gfabc(∂µαa)(Dbd
µ c

d)Ωc + Ψac
ν ∂µD

ab
µ Ψbc

ν + βacν ∂µD
ab
µ β

bc
ν + gfabc(∂µβaeν )(Dbd

µ c
d)Ψce

ν

+Ra∂µDab
µ R

b +Qa∂µD
ab
µ Q

b + gfabc∂µQ
aDbd

µ c
dR

c
)

+ ∆1

∫
d4x

(
ΩaDab

ν Λbν + αas(Dab
ν Λbν)

)
+ ∆2

∫
ddx

(
fabcAaµΨbc

µ − fabcβbcµ Dad
µ c

d
)

+ ∆3

∫
d4x

(
Rdκd +Qds(κd))

)
. (4.72)

Finally, we also observe that the action is left invariant under constant shifts of the fields Ψac
µ ,

ca, ωacµ , βacµ , αa, Ωa, Qa and Ra, expressed through the following identities∫
d4x

δSmod
GZ

δχ
= 0 , χ ∈

{
Ψac
µ , c

a, ωacµ , β
ac
µ , α

a,Ωa, Qa, Ra
}
. (4.73)

4.3.2 Connection between the original Yang-Mills and modified GZ action in
the case of vanishing Gribov mass

An important property of the modified GZ action is to investigate what happens when we set
θ2 = 0. If our Smod

GZ is meaningful, we expect to find back the original Yang-Mills theory in
the Landau gauge (modulo trivial, unity-related, terms in the action). Setting θ2 = 0 yields

Smod
GZ

∣∣∣
θ2=0

= SYM +
∫

ddx
(
ba∂µA

a
µ + ca∂µD

ab
µ c

b
)

+
∫

ddx
(
ϕacµ ∂νD

ab
ν ϕ

bc
µ − ωacµ ∂νDab

ν ω
bc
µ

−gfabc∂µωaeν Dbd
µ c

dϕceν

)
+
∫

ddx
(

Ωa∂µD
ab
µ Ωb + αa∂µD

ab
µ α

b + gfabc(∂µαa)(Dbd
µ c

d)Ωc

+Ψac
ν ∂µD

ab
µ Ψbc

ν + βacν ∂µD
ab
µ β

bc
ν + gfabc(∂µβaeν )(Dbd

µ c
d)Ψce

ν

)
+
∫

d4x
(
Ra∂µD

ab
µ R

b +Qa∂µD
ab
µ Q

b + gfabc∂µQ
aDbd

µ c
dR

c −Qdκd +R
d
s(κd)

)
,

with
κd = Dbd

µ (gfabc∂µβaeν ϕ
ce
ν ) . (4.74)

Considering (ghost neutral) Green functions of the original Faddeev-Popov fields, it is then
easily checked that the underlined terms will never contribute, as there are no propagators
of the desired kind to attach them to the Green functions of interest. This argument is
completely similar to the one given originally in [26] which was related to the presence of the
term gfabc∂µω

ae
ν D

bd
µ c

dϕceν in the GZ action, which can also not couple. The residual terms
are all forming unities, and upon integrating out these, we recover the Yang-Mills action.
Glancing at (4.65), we notice that sθ=0 = s, with s the original BRST, upon generalization to

103



CHAPTER 4. SCRUTINIZING THE GRIBOV-ZWANZIGER ACTION

the new fields which become pairwise BRST s-doublets. In fact, since s is now a symmetry
and seeing that

Smod
GZ

∣∣∣
θ2=0

= SYM +
∫

ddx
(
ba∂µA

a
µ + ca∂µD

ab
µ c

b
)

+ s

∫
ddx (. . .) , (4.75)

we did nothing more than writing down a somewhat more complicated version of the FP
Landau gauge fixing. We shall thence also recover the original Yang-Mills BRST cohomology.
All GZ-related fields, old or new, are then physically trivial as they appear as doublets of a
nilpotent symmetry, see p.23.

4.3.3 Connection between the modified and original GZ action

In this section we wish to verify that Smod
GZ and SGZ are in fact equivalent in the sense that

for any Green function built from the original GZ fields, i.e. with φ ∈
{
Aaµ, ba, ca, ca, ϕabµ ,

ϕabµ , ωabµ , ωabµ
}

, we have the following identification

〈φ(x1) . . . φ(xn)〉mod =
∫

[dΦ]modφ(x1) . . . φ(xn)e−S
mod
GZ = 〈φ(x1) . . . φ(xn)〉GZ . (4.76)

Let us show this in two ways. Firstly, the nonlocal substitutions

Ωa = Ω′a − gf `bq(∂µα`)(Dbd
µ c

d)[∂D−1]qa + s(Dqk
ν Λkν)[(∂D−1)]qa ,

Ψae
ν = Ψ′aeν − gf `bq(∂µβaeν )(Dbd

µ c
d)[∂D−1]qa − f `qe(D`d

ν c
d)[(∂D−1)]qa ,

Ra = R′a − gf `bq(∂µQ`)(Dbd
µ c

d)[∂D−1]qa + s(κq)[(∂D−1)]qa ,

αa = α′a +Dqd
ν Λdν [∂D−1]qa ,

Qa = Q′a + κq[∂D−1]qa , βacν = β′
ac
ν + fdqcAdν [(∂D)−1]qa , (4.77)

which come with a trivial Jacobian, lead to

〈φ(x1) . . . φ(xn)〉mod =
∫

[dΦ]modφ(x1) . . . φ(xn)e−S
′mod
GZ , (4.78)

after dropping the prime-notation again, with the shifted S′mod
GZ given by

S′
mod
GZ = SYM +

∫
ddx

(
ba∂µA

a
µ + ca∂µD

ab
µ c

b
)

+
∫

ddx
(
ϕacµ ∂νD

ab
ν ϕ

bc
µ − ωacµ ∂νDab

ν ω
bc
µ

+θ2fabcAaµ

(
ϕbcµ + ϕbcµ

)
− gfabc∂µωaeν Dbd

µ c
dϕceν

)
+
∫

d4x
(

Ωa∂µD
ab
µ Ωb + αa∂µD

ab
µ α

b

+Ψac
ν ∂µD

ab
µ Ψbc

ν + β
ac
ν ∂µD

ab
µ β

bc
ν +Ra∂µD

ab
µ R

b +Qa∂µD
ab
µ Q

b
)
.

Consequently, we can perform the path integration over the new fields, which are pairwise
unities, to discover that

〈φ(x1) . . . φ(xn)〉mod =
∫

[dΦ]GZφ(x1) . . . φ(xn)e−SGZ = 〈φ(x1) . . . φ(xn)〉GZ . (4.79)

This important formula means that the original GZ correlation functions can be evaluated
with either the original or the modified GZ action. We may thus replace the original GZ
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action with nonlocal BRST with its modified version, enjoying a local version of the BRST.
As a first corollary, we can reestablish that Smod

GZ

∣∣
θ2=0

is equivalent with normal Yang-Mills
gauge theories, as we know that GZ is for θ2 = 0.

Secondly, to avoid the use of nonlocal shifts to prove the important result (4.79), let us
also present an alternative derivation. We reconsider the generic correlation function (4.76)
and consequently recall the following Gaussian integration formula in case of two cc fields
(see equation (A.2)),∫

dσdσe−
∫

d4x (σ ∆ σ+J σ+J σ) ∝ det ∆−1e−J ∆ J , (4.80)

which means that if J = 0 or J = 0, we shall just pick up a determinant upon integration. A
similar formula holds for anti-commuting fields, yielding the inverse power of the determinant.
If we then apply this to (4.76) and adopt the integration order (R,R), (Q,Q), (Ψ,Ψ), (β, β),
(Ω,Ω), (α, α), it is easily seen that everything neatly cancels, including the determinants.
This once again leads to the result (4.79). As a second corollary, we can mention that the
gap formulation of the horizon condition, ∂Γ

∂γ2 = 0, will also remain unchanged.

4.4 Renormalization of the modified GZ action

As a final step, we should try to prove the renormalizability of the modified GZ action (4.64).
However, this would require a lot of calculational efforts and shall be far from straightforward.
Therefore, we consider this as future work.

5 The hermiticity of the GZ action

Let us now shortly comment on the hermiticity of the GZ action. We recall that the action
is given by equation (3.204)

SGZ = S0 + Sγ , (4.81)

with

S0 = SYM + Sgf +
∫

ddx
(
ϕai ∂µ

(
Dab
µ ϕ

b
i

)
− ωai ∂µ

(
Dab
µ ω

b
i

)
− gfabc∂µωaiDbd

µ c
dϕci

)
,

Sγ = −γ2g

∫
ddx

(
fabcAaµϕ

bc
µ + fabcAaµϕ

bc
µ +

d

g

(
N2 − 1

)
γ2

)
. (4.82)

If we define

ϕ† = ϕ , ϕ† = ϕ , ω† = ω , ω† = −ω , (4.83)

we see that the GZ action is almost Hermitian up to the term −gfabc∂µωaiDbd
µ c

dϕci . How-
ever, we recall that this term was introduced for renormalization reasons by the shift (3.186).
Therefore, returning to the action before the shift, the GZ action is Hermitian. Moreover,
for practical purposes, the term −gfabc∂µωaiDbd

µ c
dϕci is almost redundant as it cannot couple

to any Feynman diagram without external c and ω legs. Therefore, we can conclude that in
practice, the GZ action is Hermitian.
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One comment which one can make, is that the kinetic term ϕ∂2ϕ in the GZ action, seems
to have to wrong sign. For a path integral to be well defined, one would naively expect a
minus sign in front of all the kinetic terms. We could rectify this by changing ϕ → −ϕ, but
this would spoil the hermiticity of the GZ action. In addition, we can also argue that this
kinetic term ϕ∂2ϕ is always accompanied by the term −ω∂2ω, forming a unity which can
be integrated out. Also, it is not so clear anymore how to interpret the sign of ϕ∂2ϕ, as in
fact, there is mixing with the gluon field A, for γ2 6= 0 and one should consider the path
integral as a whole. Moreover, as we are not integrating over the entire region of gluon fields,
but only over the gluon fields belonging to the Gribov region, it is very hard to make any
conclusion whether the path integral

∫
[dφ]e−SGZ is well defined, a usual problem in quantum

field theory.

6 The horizon condition

In this section, we would like to elaborate on the form of the horizon function. We recall
that the non-local horizon function, which is added to the Faddeev-Popov action in order to
restrict to the Gribov region is given by

Sh = lim
θ→0

∫
ddxh(x) = lim

θ→0

∫
ddx

∫
ddy

(
Dac
µ (x)γ2(x)

)
(M−1)ab(x, y)

(
Dbc
µ (y)γ2(y)

)
,

(4.84)
whereby γ(z) was defined as follows

γ2(z) = eiθzγ2 . (4.85)

see equation (3.170). As it shall be useful later, we could also define h′(x),

Sh = γ4 lim
θ→0

∫
ddxh′(x) = γ4 lim

θ→0

∫
ddx

∫
ddy

(
Dac
µ (x)eiθx

)
(M−1)ab(x, y)

(
Dbc
µ (y)eiθy

)
,

(4.86)
where γ is pulled out of the integral.

In [91], it has been argued that there would be another possible horizon function, namely

hK(x) = γ4

∫
ddyg2fakcAkµ(x)(M−1)ab(x, y)f b`cA`µ(y) , (4.87)

In fact, one can understand that certain doubt has arisen on which horizon function is the
correct one, as one can easily see that setting γ(x) in h(x) immediately equal to a constant pa-
rameter, γ(x) ≡ γ, which agrees with switching the limit limθ→0 and the integration signs, we
obtain the horizon function hK(x). One can therefore appreciate that the difference between
h(x) and hK(x) is very subtle. In addition, when localizing the horizon function hK(x), done
in similar way as in section 4.3 of chapter 3, one finds exactly the same local function. This
can be understood as we have neglected the total derivatives. In conclusion, although the
local actions derived from h(x) and hK(x) are the same, at the nonlocal level they are clearly
different, which also follows from [91]. This is important when one is doing manipulations at
the level of the nonlocal action as has been done in [91].
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In this section, we shall therefore shown that there is only one well defined horizon func-
tion, namely h(x) as defined in (4.84). We shall prove this in two different ways. This part is
based on [82].

6.1 The composite operators, part I

We shall provide a strong argument which illustrates that only the horizon function h(x) as
defined in (4.84) possesses a clear meaning at the quantum level. For this, we first need to
demonstrate the following equality〈

f(A)(M−1)ab(x, y)
〉

= −
〈
f(A)ca(x)cb(y)

〉
=

1
Nc

〈
f(A)ωai (x)ωbi(y)

〉
, (4.88)

where f(A) stands for an arbitrary quantity depending on the gauge fields Aaµ, and Nc is the
number of colors. Let us start with〈

f(A)ca(x)cb(y)
〉

=
∫

[dΦ]f(A)ca(x)cb(y)e−SGZ . (4.89)

We can rewrite this expression by adding corresponding sources for the ghost and the gluon
fields,〈

f(A)ca(x)cb(y)
〉

= f

(
δ

δJA

)
δ

δJbc (y)
δ

δJac (x)

∫
[dΦ]e−SGZ+Ssources

∣∣∣∣
sources=0

, (4.90)

with

Ssources =
∫

ddx
{[
Jaωi Jac

] [ωai
ca

]
+
[
ωai ca

] [Jaωi
J
a
c

]
+ JAA

}
, (4.91)

and with the full expression for SGZ given in (3.187). We can perform the integration over
the ghosts c, c, ω, ω as this is just a Gaussian integration. The relevant piece of the action is
given by

SGZ =
∫

ddx
[
ωai ca

] [Mab gfak`∂µ(ϕ`iD
kb
µ )

0 −Mab

]
︸ ︷︷ ︸

Kab

[
ωci
cd

]
+ . . . . (4.92)

Making use of the formula (3.175) gives〈
f(A)ca(x)cb(y)

〉
= f

(
δ

δJA

)
δ

δJbc (y)
δ

δJac (x)

∫
[dΦ] exp

{[
Jaωi Jac

]
(K−1)ab

[
J
b
ωi

J
b
c

]
+ . . .

}∣∣∣∣∣
sources=0

. (4.93)

The matrix (K−1)ab can be computed as

(K−1)ab =
[
(M−1)ab χ

0 −(M−1)ab

]
, (4.94)

whereby χ is some function of the relevant fields. From (4.90), we now see that〈
f(A)ca(x)cb(y)

〉
= −

∫
[dΦ]f(A)(M−1)abe−SGZ , (4.95)
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while〈
f(A)ca(x)cb(y)

〉
= − 1

Nc
f

(
δ

δJA

)
δ

δJbωi(y)
δ

δJaωi(x)∫
[dΦ] exp

{[
Jaωi Jac

]
(K−1)ab

[
J
b
ωi

J
b
c

]
+ . . .

}∣∣∣∣∣
sources=0

= − 1
Nc

〈
f(A)ωai (x)ωbi(y)

〉
, (4.96)

which proves relation (4.88).

6.1.1 The horizon function h(x)

We shall now prove that the expectation value 〈h(x)〉, see equation (4.84), is renormalizable.
We can apply the formula (4.88) to the horizon condition 〈h(x)〉, yielding∫

ddx 〈h(x)〉 = lim
θ→0

∫
ddx

∫
ddy

〈(
Dac
µ (x)γ2(x)

)
(M−1)ab(x, y)

(
Dbc
µ (y)γ2(y)

)〉
=

1
Nc

〈(
Dac
µ (x)γ2(x)

)
ωai (x)ωbi(y)

(
Dbc
µ (y)γ2(y)

)〉
=

1
Nc
γ4

∫
ddx

∫
ddy 〈(Dµωi)a(x)(Dµωi)a(y)〉 . (4.97)

In order to check whether this horizon term h(x) is well defined, the following correlator
〈(Dµωi)a(x)(Dµωi)a(y)〉 including the composite operators (Dµωi)a(x) and (Dµωi)a(y) should
be renormalizable. In fact, this turns out to be the case. We can prove this easily from the
algebraic renormalization of the Gribov-Zwanziger action given in section 5 of chapter 3.
Indeed, one can immediately obtain the correlator 〈(Dµωi)a(x)(Dµωi)a(y)〉 by deriving the
action ΣGZ (3.209) with respect to the sources7 Na

i (x) and Uai (y),∫
[dΦ]

δ

δNa
i (x)

δ

δUai (y)
e−ΣGZ

∣∣∣∣
all sources = 0

=
∫

[dΦ]
[
−gfabc(Dµc)b(x)ϕci (x) + (Dωi)a(x)

]
(Dωi)a(y)e−ΣGZ

=
〈
−gfabc(Dµc)b(x)ϕci (x)(Dωi)a(y)

〉
+ 〈(Dωi)a(x)(Dωi)a(y)〉 . (4.98)

We shall now show that the first correlator in expression (4.98) vanishes,〈
(gfabc(Dµc)bϕci )(x)(Dωi)a(y)

〉
= 0 . (4.99)

In fact, equation (4.99) belongs to a more general class of Green functions which are all zero,
namely

〈Θ(x)Λ(y)〉 = 0 , (4.100)

with Θ(x) a function of fields not containing the field ω, while Λ(y) is a function containing ω.
We can show that all these Green functions are zero by using an elementary diagrammatical

7We recall here that in order to consistently discuss composite operators at the quantum level, they need
to be introduced into the theory by means of suitable sources.
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argument. It is impossible to construct any diagram which has an ω leg starting from a space
time point y which has to be connected in some way to a space time point x, where no ω leg
is present. Indeed, every ω requires an ω leg to propagate, ω in his turn shall always produce
another ω leg in all vertices as can be seen from the action (3.187). Moreover, the field ω
needs again another ω leg to propagate. Therefore, an ω leg is required in the space time
point y to close the diagram. As a consequence, all Green functions of the type of equation
(4.100) are zero.

Hence, we conclude that the Green function 〈(Dωi)a(x)(Dωi)a(y)〉 is multiplicatively renor-
malizable as follows from

〈(Dωi)a(x)(Dωi)a(y)〉0 = Z−1
U Z−1

N 〈(Dωi)a(x)(Dωi)a(y)〉 , (4.101)

whereby

Z−1
U Z−1

N = Z
1/2
A Zg = Z−1

c , (4.102)

see expression (3.242).

6.1.2 The horizon function hK

We shall now prove that the horizon function (4.87) implies a horizon condition which is not
multiplicatively renormalizable. In an analogous fashion as in the previous subsection, we
can write∫

ddx 〈hK(x)〉 = γ4

∫
ddx

∫
ddy

〈
g2fakcAkµ(x)(M−1)ab(x, y)f b`cA`µ(y)

〉
= − 1

Nc
γ4

∫
ddx

∫
ddy

〈
(gfakcAkµω

a
i )(x)(gf b`cA`µω

b
i)(y)

〉
. (4.103)

We can demonstrate that the composite operators gfakcAkµω
a
i and gf b`cA`µω

b
i are not renor-

malizable. This is due to the fact that, at the quantum level, those composite operators will
unavoidably mix with the operators ∂µωai , ∂µωai , which have the same quantum numbers.
For this, we need to consider the operators ∂µωai and gfakbA

k
µω

b
i as separate operators, each

coupled to their own source, instead of Dab
µ ω

b
i being coupled to the single source Uaiµ , and

similarly for ∂µωai and gfakbA
kωbi . In Appendix C, we have given an alternative proof of

the renormalizability of the Gribov-Zwanziger action, where we have coupled the following
sources to the following operators, see equation (C.2),

∂µω
a
i → Uaiµ ,

gfakbAkµω
b
i − gfabcDbd

µ c
dϕci → U ′aiµ ,

∂µω
a
i → −Nai

µ ,

gfakbAkµω
b
i → −N ′aiµ . (4.104)
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In (C.20), we have found that the sources U and U ′ mix, as well as N mixes with N ′. Taking
the inverse of this matrix yields[

U
U ′

]
=

[
Z
−1/2
A a1

0 Z1
g

] [
U0

U ′0

]
,

[
N
N ′

]
=

[
Z−1
g a1

0 Z
1/2
A

] [
N0

N ′0

]
. (4.105)

We recall that insertions of an operator can be obtained by taking derivatives of the generating
functional Zc(U,U ′, N,N ′) w.r.t. to the appropriate source. For example,

(gfakbAkµω
b
i)0 ∼

δZc((U,U ′, N,N ′)
δN ′0

=
δN

δN ′0

δZc(U,U ′, N,N ′)
δN

+
δN ′

δN ′0

δZc(U,U ′, N,N ′)
δN

,

so that

(gfakbAkµω
b
i)0 = a1(∂µωai ) + Z

1/2
A (gfakbAkµω

b
i) . (4.106)

We can do the same for the other operator

(gfakbAkµω
b
i − gfabcDbd

µ c
dϕci )0 = a1(∂µωai ) + Zg(gfakbAkµω

b
i − gfabcDbd

µ c
dϕci ) . (4.107)

Taking the partial derivatives of Σ2
GZ given in equation (C.1) w.r.t. N ′ai (x) and U ′ai (y), we

find ∫
[dΦ]

δ

δN ′ai (x)
δ

δU ′ai (y)
e−ΣGZ

∣∣∣∣
all sources = 0

=
∫

[dΦ]
(
gfakbAkµω

b
i − gfabcDbd

µ c
dϕci

)
(x)(gfa`cA`µω

c
i )(y)e−ΣGZ

=
〈

(gfakbAkµω
b
i )(x)(gfa`cA`µω

c
i )(y)

〉
−
〈

(gfabcDbd
µ c

dϕci )(x)(gfa`cA`µω
c
i )(y)

〉
.

The correlator
〈
(gfabcDbd

µ c
dϕci )(x)(gfakbAkµω

b
i)(y)

〉
also belongs to the class (4.100) and is

therefore equal to zero. However, the remaining Green function〈
(gfakbAkµω

b
i )(x)(gfa`cA`µω

c
i )(y)

〉
is no longer multiplicatively renormalizable. Indeed, due to

the mixing we have found, the bare correlator can be written as follows〈
(gfakbAkµω

b
i )(x)(gfa`cA`µω

c
i )(y)

〉
0

= a1Z
1/2
A

〈
(∂µωai )(x)(gfa`cA`µω

c
i )(y)

〉
+ a1Zg

〈
(gfakbAkµω

b
i )(x)(∂µωai )(y)

〉
+ ZgZ

1/2
A

〈
(gfakbAkµω

b
i )(x)(gfa`cA`µω

c
i )(y)

〉
. (4.108)

This is a strong argument why one should not rely on this horizon function hK . When renor-
malizing this Green function, the “missing” terms stemming from the covariant derivative
re-enter again.

6.2 The composite operators, part II

6.2.1 The horizon function h(x)

Let us now look at the composite operators which are involved in the horizon term h(x) (4.84)
after having performed the necessary localization, see section 4.3 of chapter 3. In particular,
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we are interested in the composite operators appearing in expression (3.178) before setting
γ(x) equal to a constant, namely Dbc

µ ϕ
cb
µ and Dbc

µ ϕ
bc
µ . If the horizon function is well defined,

we expect these composite operators to be renormalizable. We can check this again from the
algebraic renormalization in section 5 of the previous chapter. Firstly, from (3.209) we can
deduce

(Dab
µ ϕ

b
i)0 = Z−1

M (Dab
µ ϕ

b
i) = Z1/2

g Z
1/4
A (Dab

µ ϕ
b
i) . (4.109)

Secondly, we can do something analogous for Dab
µ ϕ

b
i . We see that this operator is a linear

combination of two renormalizable composite operators, namely the composite operator cou-
pled to V ai

µ , i.e. −Dab
µ ϕ

b
i + gfabcD

bd
µ c

dωci and to Raiµ , i.e. −gfabcDbd
µ c

dωci . Luckily, the two
composite operators have the same renormalization constant, as without this property, the
linear combination would not be renormalizable. Therefore,

(Dab
µ ϕ

b
i)0 = −(−Dab

µ ϕ
b
i + gfabcD

bd
µ c

dωci )0 − (−gfabcDbd
µ c

dωci )0 = Z−1
V (Dab

µ ϕ
b
i) ,

whereby Z−1
V = Z

1/2
g Z

1/4
A as can be found in (3.242). In conclusion, both composite operators

Dbc
µ ϕ

cb
µ and Dbc

µ ϕ
bc
µ are renormalizable.

6.2.2 The horizon function hK(x)

When taking the limit θ(x) → 0, we can drop the total derivatives. However, the remaining
composite operators gfakbAkϕbi and gfakbAkϕbi are not multiplicative renormalizable. We can
prove this in an analogous fashion as in the previous paragraph. In Appendix C, we have
considered the operators ∂µϕai and gfakbAkµϕ

b
i as separate operators instead of being coupled

only to one source, and similarly for ∂µϕai and gfakbAkϕbi . To that purpose, in the Appendix
C, we have coupled the following sources to the following operators, see equation (C.2):

∂µϕ
a
i → Mai

µ ,

gfakbAkµϕ
b
i → M ′aiµ ,

∂µϕ
a
i → V ai

µ ,

(gfakbAkµϕ
b
i − gfabcDbd

µ c
dωci ) → V ′aiµ , (4.110)

and we have reworked out the complete algebraic renormalization in this alternative setting.
In (C.20), we have found that the sources M and M ′ mix, and also V mixes with V ′. Taking
the inverse of this matrix yields[

M
M ′

]
=

[
Z
−1/2
g Z

−1/4
A a1

0 Z
1/2
g Z

1/4
A

][
M0

M ′0

]
,

[
V
V ′

]
=

[
Z
−1/2
g Z

−1/4
A a1

0 Z
1/2
g Z

1/4
A

][
V0

V ′0

]
. (4.111)

As in the previous section we have that

(gfakbAkµϕ
b
i)0 = a1(∂µϕai ) + Z−1/2

g Z
−1/4
A (gfakbAkµϕ

b
i) . (4.112)
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We can do the same for the other operator. Only some care has to be taken as the source
V ′aiµ couples to a sum of two operators (gfakbAkµϕ

b
i − gfabcDbd

µ c
dωci ). We therefore have to

subtract the operator coupled to the source Raiµ , namely

(gfakbAkµϕ
b
i)0 = (gfakbAkµϕ

b
i − gfabcDbd

µ c
dωci )0 − (−gfabcDbd

µ c
dωci )0

= a1(∂µϕai ) + Z−1/2
g Z

−1/4
A (gfakbAkµϕ

b
i − gfabcDbd

µ c
dωci )

−Z1/2
g Z

1/4
A (−gfabcDbd

µ c
dωci )

= a1(∂µϕai ) + Z−1/2
g Z

−1/4
A (gfakbAkµϕ

b
i) . (4.113)

We can thus conclude that the operators gfakbAkϕbi and gfakbA
kϕbi are not multiplicatively

renormalizable and that they mix with the operators ∂µϕai and ∂µϕai , respectively. Therefore,
one should keep in mind that the limit θ → 0 has to be taken as the final step, and that it
can only be taken at the local level. Furthermore, the mixing we have found, tells us that
one should always leave the covariant derivative of a field “in one piece”. As a consequence,
much care has to be taken at the nonlocal level when deriving all kinds of results.

7 The GZ action and its relation to the Kugo-Ojima confinement
criterium

7.1 Introduction: the Kugo-Ojima criterium

Some important results concerning a possible origin of confinement, were given in [92, 93]. In
these papers, confinement was related to the enhancement of the ghost propagator.

Let us explain this a bit more in detail. The whole starting point of the analysis by Kugo and
Ojima is a well defined nilpotent (BRST) symmetry QB and a ghost charge. In their analysis,
they present two results. Firstly, they have shown that when having a well defined nilpotent
symmetry, it is possible to show that all unphysical states, see p.47 shall form so-called quar-
tets [92] and decouple from the physical spectrum. In this way, only physical states, which
are closed under the symmetry QB but not exact, survive. In this way they have proven that
the longitudinal and temporal gauge polarization, the ghost and the antighost fields can be
excluded from the physical spectrum. In fact, this idea is very general, and can be applied
when you have a system with a nilpotent symmetry s.

Secondly, for the Faddeev-Popov action, they also showed the following. Using the equa-
tion of motion for the gluon field, the conserved global color current can be written as

Jaµ = ∂µF
a
µν + {QB, Dab

µ c
b} , (4.114)

and thus the charge is given by the integrated zero component of Jaµ , i.e.

Qa =
∫

d3x
(
∂iF

a
0i + {QB, Dab

0 c
b}
)
. (4.115)

Now there are two criteria which need to be satisfied in order to have color confinement.
The first criterium states that the gluon propagator cannot have massless poles, so the first
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term of the previous expression vanishes as it is integral over a total derivative8. The second
criterium is that {QB, Dab

0 c
b} is well defined, which is the case when

u(0) = −1 , (4.116)

with u(p2) defined through the following Green function9,∫
ddxeipx

〈
Dad
µ c

d(x)Dbe
ν c

e(0)
〉

FP
=
((

δµν −
pµpν
p2

)
u(p2)− pµpν

p2

)
δab . (4.117)

〈O〉FP stands for the expectation value taken with the Faddeev-Popov action. If the two
criteria are met, Qa is well defined so we have that Qa |ψ〉phys = 0 and color confinement is
guaranteed.

The second criterium can be connected to the ghost propagator. Indeed, in [93], it was
shown that one can parameterize the ghost propagator, defined as follows〈

ca(−p)cb(p)
〉

= δabG(p2) , (4.118)

in terms of10

G(p2) =
1

p2(1 + u(p2) + w(p2))
. (4.119)

This relation was also discussed in [26, 91, 94–96]. It is usually assumed that11 w(p2) = 0,
so that u = −1 implies an enhanced ghost propagator. Notice that this scenario is exactly
predicted by the GZ framework.

7.2 Important criticisms towards the KO criteria

Although the argument of Kugo and Ojima sounds very attractive, two comments are in
order. First of all, in the KO framework [92, 93], the existence of a globally well-defined
BRST charge is assumed. Thus, the issue of the (non)existence of a nonperturbatively valid
BRST symmetry is not explicitly faced. Secondly, the derivation of the two criteria was done
by employing the usual Faddeev-Popov gauge fixed action. As such, the Gribov problem is
simply not addressed.

Taking these two criticisms into account, the KO cannot really hold for the GZ action, as (1)
the GZ breaks the BRST symmetry, see equation (4.27) and (2) the GZ action does take into
account Gribov copies.

Another point which should be mentioned is that Kugo and Ojima did not impose the
criterium (4.116), but they derived it as a condition to be checked/calculated. Though,
nowadays, in functional formalisms as in [97], the criterion is used as an input. The ghost
enhancement is often imposed as a boundary condition in order to favor the so-called scaling
type solution of the Schwinger-Dyson and/or Functional Renormalization Group equations
[97].

8If the gluon propagator has massless poles, the first term is ill-defined.
9Strictly speaking, the KO analysis is done in Minkowski space. We shall however, as any functional or

lattice approach, consider the corresponding operator in Euclidean space.
10Actually, in [93], another notation v(p2) has been used instead of w(p2), the relation being w(p2) = p2v(p2).
11w(p2) = 0 has been checked up to two loops, see [81].
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7.3 Imposing u(0) = −1 as a boundary condition in the Faddeev-Popov
action

Now let us try the following [98]. What if we impose the constraint u(0) = −1 directly into
the Faddeev-Popov theory, by appropriately modifying the measure one starts from? We shall
see in fact that the resulting action will be exactly the same as the GZ action.

7.3.1 Microcanonical ensemble and equivalence with the canonical Boltzmann
ensemble in the thermodynamic limit

We shall first give an overview of some results from thermodynamics we intend to employ,
see also section 3 of chapter 3.

We consider a discrete system, whose Hamiltonian is H(q, p), with 3N degrees of freedom.
The averages in the microcanonical ensemble are constructed out of

Σ(E) =
∫
H=E

dµ =
∫
dµ δ(E −H) ,

where dµ = d3Nqd3Np represents the classical phase space where E stands for the constant
energy of the system. Averages in the microcanonical ensemble are defined by 〈O〉Micr =∫
H=E dµ O∫
H=E dµ

. In order to establish the equivalence between the microcanonical and the (Boltz-
mann) canonical ensemble we rewrite the quantity Σ(E) in the following form

Σ(E) =
∫

dµ δ(E −H) =
∫

dµ
∫ i∞+ε

−i∞+ε

dβ
2πi

eβ(E−H) =
∫

dβ

2πi
f(β) =

∫
dβ

2πi
e−ω(β) ,

whereby

f(β) =
∫

dµe(β(E−H)) , ω(β) = − ln f(β) . (4.120)

It can be shown that, in the thermodynamic limit, N,V → ∞, with N/V fixed, the saddle
point approximation becomes exact. We refer to [78] for an overview of the proof. So,

Σ(E) =
1

2πi
f(β?) ,with ω′(β?) =

f ′(β?)
f(β?)

= 0 . (4.121)

From equation (4.121) it follows that

E = 〈H〉Boltz =
∫
dµ He−β

?H∫
dµ e−β?H

. (4.122)

This is the gap equation determining the critical parameter β?. Analogously, it can also be

shown that [78] 〈O〉Micr = 〈O〉Boltz =
∫
dµ O e−β

?H∫
dµ e−β?H

for the average of any quantity O(q, p).

7.3.2 Imposing the KO criterion yields the GZ framework

Starting from (4.117) and performing Lorentz and color contractions and taking the p → 0
limit, we can write

(V )−1

∫
ddy

∫
ddx 〈(Dµc)a(x)(Dµc)a(y)〉FP = (N2 − 1)((d− 1)u(0)− 1) , (4.123)
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after passing to Euclidean space, as any functional or lattice approach. V denotes the space-
time volume. Now using the result from equation (4.97) and (4.88) from the previous section,
we can write the previous expression as

− 1
V

1
γ4

lim
θ→0

∫
ddx

∫
ddy

〈(
Dac
µ (x)γ2(x)

)
(M−1)ab(x, y)

(
Dbc
µ (y)γ2(y)

)〉
= (N2 − 1)((d− 1)u(0)− 1) , (4.124)

whereby γ2(x) is defined in (4.85). In order to get rid of the parameter γ, we rewrite (4.124)

− 1
V

lim
θ→0

∫
ddx

∫
ddy

〈(
Dac
µ (x)eiθx

)
(M−1)ab(x, y)

(
Dbc
µ (y)eiθy

)〉
= (N2 − 1)((d− 1)u(0)− 1) , (4.125)

In fact, the l.h.s. of this expression contains the Zwanziger horizon function h′(x), see equation
(4.86), so we can write

−
〈
h′(x)

〉
= (N2 − 1)((d− 1)u(0)− 1) , (4.126)

We observe that the KO condition cannot be realized with the standard Faddeev-Popov
measure dµFP, otherwise we would have

〈h′(x)〉FP = d(N2 − 1)⇔ 〈h(x)〉FP = γ4d(N2 − 1) , (4.127)

which would contradict Zwanziger’s result (3.173). We now implement the KO criterion
u(0) = −1 as a boundary condition, amounting to start from the modified measure

dµFP → dµ′ ≡ dµFP δ

(
V d(N2 − 1)−

∫
ddxh′(x)

)
, (4.128)

which clearly implements u(0) = −1, yielding in fact

〈h′(x)〉 = d(N2 − 1) . (4.129)

We are thus led to consider the partition function∫
dµ ′ =

∫
dµFP δ

(
V d(N2 − 1)−

∫
ddxh′(x)

)
=

∫
dA δ(∂A) detM e−SYM δ

(
V d(N2 − 1)−

∫
ddxh′(x)

)
=

∫
dΦδ

(
V d(N2 − 1)−

∫
ddxh′(x)

)
e−SFP . (4.130)

Expression (4.130) defines a microcanonical ensemble. Since we are working in a continuum
field theory, we are working in the thermodynamic limit, hence we have an equivalence with a
Boltzmann canonical ensemble as outlined in the previous section. Using analogous arguments
as there, we arrive at ∫

dµ ′ =
∫

dµFPeγ
4
∫

ddxh′(x) ≡
∫

dµFP e−SH , (4.131)
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where the mass parameter γ follows from the gap equation

d
(
N2 − 1

)
= 〈h′(x)〉Boltz =

∫
dµFP e−SH h′(x)∫

dµFP e−SH
, (4.132)

which is the analogue of (4.122). We conclude that we can consistently encode the boundary
condition (4.116) at the level of the action, which turns out to be identical to the GZ action,
equation (3.172). Of course, we can localize it into the form (3.204).

7.4 Conclusion

We can thus conclude the following points

• Imposing a boundary condition into a theory can have serious consequences and one
should really impose them from the beginning, to fully grasp all nontrivial aspects of
the boundary. Here we have seen that imposing the boundary condition u(0) = −1 in
the Faddeev-Popov measure with BRST symmetry, leads us to the GZ action without
BRST symmetry. Therefore, imposing a boundary condition can change the symmetry
content of a theory.

• In the GZ formalism, the meaning of the KO criterium becomes unclear. This is due
to the fact that the KO analysis was done in the Faddeev-Popov formalism, and not in
the GZ formalism. Due to the breaking of the BRST symmetry in the GZ action, one
cannot simply redo the KO analysis.

Perhaps another point which indicates that that KO confinement scenario is not the answer
to confinement, is that the lattice data do not support an enhanced ghost anymore. This
shall be the topic of the next chapter.
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5
The Refined Gribov-Zwanziger action

1 Introduction

1.1 The lattice results on the ghost and gluon propagator

During the last 2 decades, there has been an intensive discussion about two particular quan-
tities, i.e. the gluon and the ghost propagator, mainly in the Landau gauge. We recall the
following conventions for these propagators〈

Aaµ(k)Abν(p)
〉

= δabδ(k − p)(2π)dD(p2)
(
δµν −

pµpν
p2

)
,〈

ca(k)cb(p)
〉

= δabδ(k − p)(2π)dG(p2) . (5.1)

For a long time, lattice results in 4, 3 and 2 dimensions have shown an infrared suppressed,
positivity violating gluon propagator which seemed to tend towards zero for zero momentum,
i.e. D(0) = 0, and a ghost propagator which was believed to be enhanced in the infrared
[99, 100], G(k2 ≈ 0) ∼ 1/k2+κ with κ > 0. Besides the Gribov-Zwanziger framework, also
other analytical approaches were in agreement with these results. For instance, several works
based on the Schwinger-Dyson or Exact Renormalization Group equations reported an in-
frared enhanced ghost propagator and an infrared suppressed, vanishing gluon propagator,
obeying a power law behavior characterized by a unique infrared exponent, as stated by a
sum rule discussed in [101–104].

However, in 2007 lattice data in 3d and 4d at larger volumes displayed an infrared sup-
pressed, positivity violating gluon propagator, which is non-vanishing at zero momentum,
i.e. D(0) 6= 0, and a ghost propagator which is no longer enhanced, G(k2 ≈ 0) ∼ 1/k2 [4, 105].
This implied that the previous mentioned analytical approaches were not conclusive. Sur-
prisingly, in 2d, the ghost propagator still displays an enhanced behavior while the gluon
propagator does vanish at the origin [6, 105, 106].

After this paper, [4], an avalanche of papers followed concerning the behavior of the propaga-
tors. In the lattice community, similar results were obtained in [8, 107–110], and see [76] for
a recent overview. The question which obviously arose, is there also a possible way to explain
these results in the Gribov-Zwanziger framework? This is the topic of this chapter, which is
based on the following papers: [84, 111–114].

For completeness, let us mention that also within Schwinger-Dyson methods, solutions of
the ghost and gluon propagator were obtained which were in agreement with the lattice data,
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see [97, 115, 116] and their references within.

1.2 Condensates

How could we explain the behavior of the gluon and the ghost propagator in the Gribov-
Zwanziger framework in 4d and 3d? It seems logical to take into account other nonperturba-
tive effects. A well-known important source of nonperturbative effects in gauge theories are
condensates, viz. vacuum expectation values of certain local operators. Next to the famous
gauge invariant condensate 〈F 2

µν〉, of paramount importance for phenomenological applica-
tions [117], recent years1 have also witnessed an increased interest in the dimension two
condensate 〈A2〉 in the Landau gauge [120, 121], and related to it the issue of 1/Q2 power
corrections [122]. The latter corrections would correspond to an extension of the usual SVZ
sum rule study of physical correlators. Some important early contributions to this field of
research can be found in, for example, [123–131]. These works were based on renormalon
analysis, lattice considerations of the interquark potential and condensates, nonperturbative
short distance physics, . . .. Also at the propagator level such power corrections were identified
in [132]. If we call the minimum of the functional (3.50) A2

min, it is clear that 〈A2
min〉 is a

gauge invariant quantity by construction. This leads very naturally to the introduction of
〈A2〉 in the Landau gauge since we can write [133]

A2
min =

1
2

∫
ddx

[
Aaµ

(
δµν −

∂µ∂ν
∂2

)
Aaν − gfabc

(
∂ν
∂2
∂Aa

)(
1
∂2
∂Ab

)
Acν

]
+O(A4) ,

from which it easily follows that 〈A2
min〉 = 〈A2〉 in the Landau gauge. This condensate then

made its appearance in a variety of works, see e.g. [87, 134–151]. In the works [120, 121],
the relation was explored between this condensate and magnetic degrees of freedom, which
are generally believed to play an important role for confinement. Recently, this was further
investigated by looking at the electric and magnetic components of 〈A2〉 at finite temperature,
hinting towards an interesting connection with the phase diagram [142, 143, 152].

Measurements of 〈A2〉 at T = 0 have been obtained using the lattice gluon propagator and
the Operator Product Expansion (OPE) in [136], based on earlier work [134, 135], giving the
following estimate

〈g2A2〉 = 5.1+0.7
−1.1 GeV2 , (5.2)

at the renormalization scale µ = 10 GeV. 〈A2〉 also appeared as a source of power corrections
in e.g. [150, 151]. An independent estimate using the OPE and the quark propagator in a
quenched lattice simulation gave [149]

〈g2A2〉 = 4.4± 0.4 GeV2 . (5.3)

An ab initio calculation of 〈A2〉 was presented in [137, 140]. It was shown that it is possible to
construct an effective potential for 〈A2〉 which is consistent with the renormalization (group)
[137, 138]. A non-vanishing condensate due to dimensional transmutation was favored as it
lowered the vacuum energy. Using a resummation of Feynman diagrams, more evidence for
〈A2〉 6= 0 was given in [139].

1The d = 2 gluon condensate was already considered in [118, 119].
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1.3 The condensate 〈A2〉 in the GZ action

The extension of the effective potential formalism to the Gribov-Zwanziger case was first
tackled in [87]. In this paper, the presence of the condensate 〈A2〉 was investigated and it
was shown that this condensate does not spoil the renormalizability of the GZ action. The
GZ action with inclusion of the local composite operator AaµA

a
µ is given by

SAGZ = SGZ + SA2 , (5.4)

whereby

SA2 =
∫

ddx
(
τ

2
AaµA

a
µ −

ζ

2
τ2

)
, (5.5)

with τ a new source invariant under the BRST transformation s and ζ a new parameter.
However, it is easily checked that taking into account this condensate does not alter the qual-
itative features of the gluon and the ghost propagator, the former one will vanish at zero
momentum, while the latter one will still be enhanced.

As it will be useful later, let us repeat the algebraic renormalization of the action with the
inclusion of the operator A2. This can be done similarly as in section 5 of chapter 3.

1.3.1 The starting action and the BRST

Again, we shall make SAGZ BRST invariant. We define

ΣAGZ = Σ′GZ + ΣA2 , (5.6)

whereby Σ′GZ is given in expression (3.216) and

ΣA2 =
∫

d4xs

(
η

2
AaµA

a
µ −

ζ

2
τ2

)
=
∫

d4x

[
1
2
τAaµA

a
µ + ηAaµ∂µc

a − 1
2
ζτ2

]
, (5.7)

with η a new source and sη = τ , so that (η, τ) forms a doublet. In the end, we replace all the
sources with their physical values, see expression (3.212) and (3.214), and in addition

η|phys = 0 , (5.8)

so one recovers SAGZ again.

1.3.2 The Ward identities

It is now easily checked that the Ward identities 1-7 on p.82 remain preserved. Obviously,
the Slavnov-Taylor identity receives an extra term,

S(ΣAGZ) = 0 , (5.9)

whereby

S(ΣAGZ) =
∫

ddx
(
δΣAGZ

δKa
µ

δΣAGZ

δAaµ
+
δΣAGZ

δLa
δΣAGZ

δca

+ba
δΣAGZ

δca
+ ϕai

δΣAGZ

δωai
+ ωai

δΣAGZ

δϕai
+Mai

µ

δΣAGZ

δUaiµ
+Nai

µ

δΣAGZ

δV ai
µ

+Raiµ
δΣAGZ

δT aiµ
+ τ

δΣAGZ

δη

)
.
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1.3.3 The counterterm

As all the Ward identities remain the same, it is easy to check that the counterterm is given
by

Σc
AGZ = Σc

GZ +
∫

d4x
(a2

2
τAaµA

a
µ +

a3

2
ζτ2 + (a2 − a1) ηAaµ∂µc

a
)
, (5.10)

whereby Σc
GZ is the counterterm (3.239). This counterterm can be absorbed in the original

action, ΣAGZ leading to the same renormalization factors as in equations (3.240)-(3.242).

In addition Zτ is related to Zg and Z
1/2
A [87]:

Zτ = ZgZ
−1/2
A , (5.11)

and Zζ and Zη are given by

Zζ = 1 + h(−a3 − 2a2 + 4a1 − 2a0) ,

Zη = 1 + h(
a0

2
− 3

2
a1 + a2) . (5.12)

2 Refinement of the GZ action in 4 dimensions

2.1 Taking into account the dynamics of the action

Now with these new lattice data [4, 105], the leap was quickly taken to investigate other
d = 2 condensates. We can provide two reasons for this. Firstly, we can imagine the fields(
ϕacµ , ϕ

ac
µ , ω

ac
µ , ω

ac
µ

)
introduced to localize the horizon function appearing in section 4.3 of chap-

ter 3, to correspond to the nonlocal dynamics of the GZ action. Once these fields are present,
they will quite evidently develop their own dynamics at the quantum level, which might
include further nonperturbative effects, not yet accounted for. These effects can induce im-
portant additional changes in the infrared region. More precisely, looking at the Aϕ-coupling
present at tree level in the action (3.204), one can suspect that a non-trivial effect in the
ϕ-sector might be able to modify the gluon propagator in the desired way. Secondly, notice
that the horizon condition (3.182) is in fact equivalent with giving a particular value to a
dimension 2 Aϕ-condensate, more precisely 〈gfabcAaµ(ϕbcµ + ϕbcµ )〉 = −2d

(
N2 − 1

)
γ2. There-

fore, it seems reasonably fair to consider a possible ϕϕ-condensation. Moreover, we shall show
in section 2.2 that the condensate of interest is already non-vanishing at the perturbative level.

We shall now explore the effects of a dynamical mass generation for the ϕ-fields. This can be
done by introducing the local composite operator ϕϕ into the action SGZ, (expression (3.204)).
It shall turn out to be possible without spoiling the renormalizability of the theory. We shall
add a massive term of the form Jϕaiϕ

a
i , with J a new source. First of all, for renormalization

purposes, we have to add this term in a BRST invariant way. Secondly, in analogy with [87],
we will also need a term ∝ J2, indispensable to kill potential novel divergences ∝ J2 in the
generating functional. Let us also immediately include the local composite operator AaµA

a
µ
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and consider the following extended action:

SRGZ = SGZ + SA2 + Sϕϕ, (5.13)

Sϕϕ =
∫

d4x [s(−Jωaiϕai ) + ρJτ ]

=
∫

d4x [−J (ϕaiϕ
a
i − ωai ωai ) + ρJτ ] , (5.14)

with ρ a new dimensionless quantity and J a new source invariant under the BRST transfor-
mation, sJ = 0. We underline that the final mass operator, ϕϕ− ωω, is BRST invariant.

For the rest of the text, we shall interchange the dimension two source J often with the
mass M2, and the source τ coupled to A2

µ, see expression (5.7), shall be interchanged with
m2.

2.2 The condensate at the perturbative level

To prove that it is useful to include the condensate 〈(ϕϕ− ωω)〉, let us show that already
at the perturbative level, this condensate is non-vanishing. Hence, one is almost obliged to
incorporate the effects related to the operator ϕϕ− ωω. We start from

〈ϕϕ− ωω〉pert = − ∂W (J)
∂J

∣∣∣∣
J=0

, (5.15)

with W (J) the generating functional defined in our case as2

e−W (J) =
∫

[dΨ]e−SRGZ , (5.16)

and with SRGZ the extended Gribov-Zwanziger action given in (5.13). The one loop generating
functional W0(J), can be obtained from the quadratic part of the action, so we find for W0(J)
in 4d,

W0(J) = −4(N2 − 1)
2g2N

λ4 +
3(N2 − 1)

64π2

(
8
3
λ4 +m4

1 ln
m2

1

µ2 +m4
2 ln

m2
2

µ2 − J2 ln
J

µ2

)
. (5.17)

whereby we have worked in the MS scheme, and used the following notational shorthand

m2
1 =

(m2 + J)−
√

(J +m2)2 − 4(m2J + λ4)
2

,

m2
2 =

(m2 + J) +
√

(J +m2)2 − 4(m2J + λ4)
2

, (5.18)

with λ defined in equation (4.17). This calculation is explained in detail in appendix B4. Now
using the explicit expression (5.17), we can obtain the perturbative value of the condensate

2W (J) is commonly used, but is equal to the generator Zc(J) of connected diagrams, see equation (2.11).
However, here only a source connected to the operator ϕϕ − ωω was considered, not to all the fields, and
therefore can only generate a subclass of connected diagram related to the operator.
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(5.15), reading

〈ϕϕ− ωω〉pert =
3(N2 − 1)

64π2

[(
2m2

1 ln
m2

1

µ2 +m2
1

)
∂m2

1

∂J
+
(

2m2
2 ln

m2
2

µ2 +m2
2

)
∂m2

2

∂J

]
=

3(N2 − 1)
64π2

[
m2 ln

4λ4

µ2 +
1
2

(
m4

√
m4 − 4λ4

+
√
m4 − 4λ4

)
ln
m2 +

√
m4 − 4λ4

m2 −
√
m4 − 4λ4

]
, (5.19)

where λ is the nonzero solution of ∂Γ(λ)
∂λ = 0. This condensate is clearly different from zero.

Even for m2 = 0, we obtain

〈ϕϕ− ωω〉pert = −3(N2 − 1)
64π

λ2 , (5.20)

which is always different from zero, ∀λ 6= 0.

2.3 Renormalization of the refined action

Again, the investigation of the Refined GZ action can be done similarly as in section 5 of
chapter 3.

2.3.1 The starting action and the BRST

As Sϕϕ is BRST invariant, the BRST invariant action is given by

ΣRGZ = ΣAGZ + Sϕϕ , (5.21)

whereby ΣAGZ is given in expression (5.6).

2.3.2 The Ward identities

It is now easily checked that the Ward identities 1-6 on p.5.2 remain preserved up to potential
harmless linear breaking terms. Only the integrated Ward identity 7. is broken due to the
introduction of the mass operator ϕϕ − ωω. However, as we are using mass independent
renormalization schemes, the value of the new mass dimension 2 source J cannot influence
the explicit expression of the counterterm Σc of expression (5.10). This is quite logical, as a
mass term can only add its own renormalization factor, it does not affect the renormalization
factors of other quantities, which can be equally well computed with J = 0. This implies that
the counterterm Σc

RGZ corresponding to the action ΣRGZ is now given by

Σc
RGZ = Σc

AGZ + Σc
ϕϕ ,

Σc
ϕϕ =

∫
ddxa4Jτ , (5.22)

with a4 an arbitrary parameter. This counterterm can be absorbed into the original action
ΣRGZ. If we define

J0 = ZJJ , ρ0 = Zρρ , (5.23)

we find

ZJ = Z−1
ϕ = ZgZ

1/2
A , Zρ = 1 + η(a4 −

a0

2
− a2) . (5.24)
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Hence we have proven the renormalizability of our extended action.

As one can notice, symmetries do also not prevent a term κJ2 to occur, with κ a new param-
eter, but we can argue that κ is in fact a redundant parameter, as no divergences in J2 will
occur. A term of this form is independent of the fields, hence it would only be necessary to
get rid of the infinities in the functional energy, which we calculate by integrating the action
over all the fields ∫

[dΦ]e−SRGZ = e−W (J) . (5.25)

Seen from another perspective, we need a counterterm ∝ J2 to remove possible divergences
in the vacuum correlators

〈(
ϕϕ− ωω

)
x

(
ϕϕ− ωω

)
y

〉
for x → y. Such new divergences are

typical when a local composite operator (LCO) of dimension 2 is added to the theory in 4d.
An a priori arbitrary new coupling κ is then needed to reabsorb these divergences. In general,
it can be made a unique function of g2 such that W (J) obeys a standard homogeneous
linear renormalization group equation [87]. This is a good sign, as we do not want new
independent couplings entering our action or results. A nice feature of the LCO under study,
i.e. (ϕϕ − ωω), is that divergences ∝ J2 are in fact absent in the correlators, so there is
even no need for the coupling κ here. The argument goes as follows. The Ward identities
prohibit terms in Jγ2 from occurring. Notice that this is not a trivial point, as naively
we expect it to occur from the dimensional point of view. It is only by making use of the
extended action and its larger symmetry content that we can exclude a term ∝ Jγ2 from the
game. Hence, we can set γ2 = 0 to find the vacuum divergence structure ∝ J2, as we will
employ as usual mass independent renormalization schemes like the MS scheme. Now, there
are two ways to understand that no divergences in J will occur. Firstly, at the level of the
action is easily recognized that the term g (∂νωai ) f

abm (Dνc)
b ϕmi in the action is irrelevant

for the computation of the generating functional as the associated vertices cannot couple to
anything without external ω- and c-legs. Thus forgetting about this term, the (ϕ,ϕ)- and
(ω, ω)-integrations can be done exactly, and they neatly cancel due to the opposite statistics of
both sets of fields. Hence, all J-dependence is in fact lost, and a fortiori no divergences arise.
Secondly, for γ2 = 0, the action Sγ

2=0
RGZ is BRST invariant, sSγ

2=0
RGZ = 0. Consequently, the

vacuum correlators
〈(
ϕϕ− ωω

)
x

(
ϕϕ− ωω

)
y

〉
=
〈
s
[
(ϕω)x

(
ϕϕ− ωω

)
y

]〉
= 0. Therefore,

we have again proven that no divergences in J appear. For γ2 6= 0, the BRST transformation s
no longer generates a symmetry (see section V), hence a non-vanishing result for the correlator〈(
ϕϕ− ωω

)
x

(
ϕϕ− ωω

)
y

〉
or the condensate 〈ϕϕ− ωω〉 is allowed. A non-vanishing VEV

for our new mass operator is thus exactly allowed since the BRST is already broken by the
restriction to the horizon. From the first viewpoint, the (ϕ,ϕ)- and (ω, ω)-integrations will no
longer cancel against each other, giving room for J-dependent contributions in the generating
functional, albeit without generating any new divergences.

2.4 Modifying the effective action in order to stay within the horizon

2.4.1 Extended action

A very important fact is to check if it is still possible to stay within the Gribov region Ω, after
adding this new mass term. This can be investigated with the help of the ghost propagator
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G(k2), which is given by

Gab(k2) = δab
1
k2

(1 + σ(k2)) +O(g4) , (5.26)

with

σ(k2) =
N

N2 − 1
g2

k2

∫
ddq

(2π)4

(k − q)µkν
(k − q)2

〈
AaµA

a
ν

〉
, (5.27)

see expression3 (3.196). We recall that being inside the region Ω, is equivalent to state that

σ(k2) ≤ 1 , (5.28)

see equation (3.81). In this case, the ghost propagator could be rewritten in the following
form,

G(k2) =
1
k2

1
1− σ(k2)

+O(g4) , (5.29)

which represents the fact that we are working at the level of the inverse propagator or equiv-
alently, at the level of the 1PI n-point functions, which are generated by the effective action
Γ. This form is more natural, as we can now impose the gap equation (3.184), which is also
formulated at the level of the effective action. However, in the next section, it shall become
clear that the current action SRGZ does not guarantee us that we are located within the region
Ω as σ(0) ≥ 1. Therefore, we add a second term to the action, Sen, given by

Sen = 2
d(N2 − 1)√

2g2N

∫
ddx ς γ2J , (5.30)

with ς a new parameter. We have introduced the particular prefactor of 2d(N2−1)√
2g2N

for later

convenience. As it is a constant term, is it comparable with the term
(
−
∫

ddx4(N2 − 1)γ4
)

in the original Gribov-Zwanziger formulation (3.204). Therefore, it can be responsible for
allowing us to stay inside the Gribov horizon by enabling σ to be smaller than 1. The explicit
calculation of σ will be done in the next section, but we can already intuitively sketch the
reasoning why σ will be altered. As this new term is independent of the fields, it will only
enter the expression for the vacuum energy. However, due to the gap equation (3.184), it
will also enter in the expression of the ghost propagator (and analogously any other quantity
which contains γ2). Recapitulating, the complete action now reads,

S′RGZ = SRGZ + Sen , (5.31)

with SRGZ given in equation (5.21).

2.4.2 Renormalizability

The renormalizability of S′RGZ can be easily verified. Therefore, we replace Sen with

Σen =
∫

ddxςΘJ , (5.32)

3Of course, in expression (3.196), the gluon propagator is already filled in.
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with Θ a color singlet and BRST invariant source, sΘ = 0. In the end, we give Θ the physical
value of

Θ|phys = 2
d(N2 − 1)√

2g2N
γ2 , (5.33)

to return to the original action S′RGZ. Again, we embed the action S′RGZ into a larger action
Σ′RGZ,

Σ′RGZ = ΣRGZ + Σen , (5.34)

with ΣRGZ given by (5.21). Firstly, as it is easily checked, the term Σen can only give rise to
an additional harmless classical breaking in the Ward identities. Therefore, all the previous
Ward identities will remain valid. Secondly, we have the following additional Ward identity,

δΣ′RGZ

δΘ
= ςJ , (5.35)

which implies that the counterterm is independent from Θ. Taking these two argument
together, we can conclude that the counterterm will be exactly the same as before, given by
(5.22). Therefore,

ς0γ
2
0J0

g0
=

ςγ2J

g
, (5.36)

and consequently, no new renormalization factor is necessary,

Zς = ZgZ
−1
γ2 Z

−1
J . (5.37)

2.4.3 Boundary condition

Introducing a new parameter ς, requires a second gap equation in order to determine this
new parameter. We recall that, in the case in which M2 = 0 or equivalently in the original
Gribov-Zwanziger formulation, we have

σ(k2 ≈ 0) = 1− Ck2 , (5.38)

with C a certain positive constant, which causes the enhancement of the ghost propagator
G(k2) at zero momentum,

G(k2 ≈ 0) ∼ 1
Ck4

. (5.39)

Therefore, we know that at zero momentum, slowly switching off M2, will cause σ(k2 = 0)
going to 1. It is therefore very natural to demand that this transition has to occur smoothly
by imposing the following boundary condition,

∂σ(0)
∂M2

∣∣∣∣
M2=0

= 0 . (5.40)

In summary, we have now two gap equations. Firstly, the gap equation ∂Γ
∂γ2 = 0 fixes γ2 as a

function of M2 and secondly, demanding that ∂σ(0)
∂M2

∣∣∣
M2=0

= 0 will uniquely fix ς. This leaves

us with one free parameter, M2, the fixation of which shall be discussed in section 2.6.
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2.5 The modified gluon and ghost propagator

Now that we have constructed the action S′RGZ, by adding two additional terms Sϕϕ and Sen

to the original Gribov-Zwanziger action, we investigate the gluon and the ghost propagator
in detail.

2.5.1 The gluon propagator

We shall first examine the tree level gluon propagator. This propagator can be calculated in
a completely analogous fashion as in section 4.4 of chapter 3. Here, the free action reads

S′0RGZ =
∫

ddx
[1

4
(
∂µA

a
ν − ∂νAaµ

)2 +
1

2α
(
∂µA

a
µ

)2 + ϕabµ ∂
2ϕabµ

− γ2g(fabcAaµϕ
bc
µ + fabcAaµϕ

bc
µ )−M2ϕabµ ϕ

ab
µ +

m2

2
A2
µ + . . .

]
, (5.41)

where we already integrated out the b field. The equations of motion for the ϕ and ϕ fields
are now given by

ϕbcµ = ϕbcµ =
1

∂2 −M2
γ2gfabcAaµ , (5.42)

and with this result, we can easily read the gluon propagator

S′0RGZ =
∫

d4x

[
1
2
Aaµ∆ab

µνA
b
ν + . . .

]
,

∆ab
µν =

[(
−∂2 +m2 − 2g2Nγ4

∂2 −M2

)
δµν − ∂µ∂ν

(
1
α
− 1
)]

δab . (5.43)

Taking the inverse of ∆ab
µν and converting it to momentum space gives

〈
Aaµ(p)Abν(−p)

〉
=

1

p2 +m2 + 2g2Nγ4

p2+M2

[
δµν −

pµpν
p2

]
δab

=
p2 +M2

p4 + (M2 +m2)p2 + 2g2Nγ4 +M2m2︸ ︷︷ ︸
D(p2)

[
δµν −

pµpν
p2

]
δab . (5.44)

From this expression we can already make two observations:

• D(p2) enjoys infrared suppression.

• D(0) ∝ M2, so the gluon propagator does not vanish at the origin. Even if we set
m2 = 0 we still find a non-vanishing gluon propagator, so we want to stress that this
different result is clearly due to the novel mass term proportional to ϕϕ− ωω.

In section 2.7 we shall uncover a third property, namely that D(p2) displays a positivity
violation. Also this observation is in accordance with the lattice results [153].
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2.5.2 The ghost propagator

The observation that m2 = 0 does not qualitatively alter the gluon propagator, will be re-
peated for the ghost propagator. Henceforth, we set m2 = 0, which also improves the readabil-
ity. However, all calculations could in principle be repeated with the inclusion of the mass m2.

We start with the expression for the ghost propagator. Substituting the expression of the
gluon propagator (5.44) in the expression of σ (5.27)

σ(k2) = Ng2kµkν
k2

∫
ddq

(2π)d
1

(k − q)2

q2 +M2

q4 +M2q2 + λ4

[
δµν −

qµqν
q2

]
. (5.45)

We have also defined

λ4 = 2g2Nγ4 . (5.46)

As we are again interested in the infrared behavior of this propagator, we expand the previous
expression for small k2,

σ(k2 ≈ 0) = Ng2d− 1
d

∫
ddq

(2π)d
1
q2

q2 +M2

q4 +M2q2 + λ4
+O(k2) . (5.47)

For later use, let us rewrite σ(0) as

σ(0) = Ng2d− 1
d

∫
ddq

(2π)d
1

q4 +M2q2 + λ4
+Ng2M2d− 1

d

∫
ddq

(2π)d
1
q2

1
q4 +M2q2 + λ4

.

(5.48)
Notice that the first integral in the right hand side of equation (5.48) diverges while the second
integral is UV finite in 4d.

We continue with the derivation of the gap equations as we would like to write λ2 as a
function of M2, i.e. λ2(M2), in expression (5.48). Firstly, we calculate the horizon condi-
tion (3.184) explicitly starting from the effective action. The one loop effective action Γ(1)

γ is
obtained from the quadratic part of our action S′RGZ

e−Γ
(1)
γ =

∫
[dΦ]e−S

′0
RGZ . (5.49)

This time, the terms −d(N2 − 1)γ4 and 2d(N2−1)√
2g2N

ς γ2M2 have to be maintained, as they will

enter the horizon condition. After a straightforward calculation the one loop effective action
in d dimensions yields,

Γ(1)
γ = −d(N2 − 1)γ4 + 2

d(N2 − 1)√
2g2N

ς γ2M2 +
(N2 − 1)

2
(d− 1)

∫
ddq

(2π)d
ln
q4 +M2q2 + λ4

q2 +M2
.

(5.50)
We rewrite the previous expression,

E(1) =
Γ(1)
γ

N2 − 1
2g2N

d
= −λ4 + 2ςλ2M2 + g2N

d− 1
d

∫
ddq

(2π)d
ln
q4 +M2q2 + λ4

q2 +M2
, (5.51)
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and apply the gap equation (3.184),

∂E(1)

∂λ2
= 2λ2

(
−1 + ς

M2

λ2
+ g2N

d− 1
d

∫
ddq

(2π)d
1

q4 +M2q2 + λ4

)
= 0 . (5.52)

Secondly, we impose the boundary condition (5.40) in order to obtain an explicit value for ς.
Instead of explicitly starting from expression (5.45) to fix ς, there is a much simpler way to find
the corresponding ς. Therefore, we act with ∂

∂M2 on the gap equation (5.52). Subsequently
setting M2 = 0, gives

ς
1

λ2(0)
− d− 1

d
g2N

∫
ddq

(2π)d
1
q2

1
q4 + λ4(0)

= 0 , (5.53)

where we imposed (5.40). Proceeding, we find

−d− 1
d

g2N

∫
ddq

(2π)d
1
q2

1
q4 + λ4(0)

+ ς
1

λ2(0)
= 0

⇒ ς = λ2(0)
3
4
g2N

∫
d4q

(2π)4

1
q2

1
q4 + λ4(0)

⇒ ς =
3g2N

128π
, (5.54)

which determines ς at the current order.

With the help of the latter two gap equations (5.52) and (5.54), we can rephrase the cor-
rection to the self energy of the ghost. Combining equation (5.48) and (5.52) we can write

σ(0) = 1 +M2g2N
d− 1
d

∫
ddq

(2π)d
1
q2

1
q4 +M2q2 + λ4(M2)

− ς M2

λ2(M2)
. (5.55)

From this expression, we can make several observations. Firstly, when M2 = 0, from the
previous expression it immediately follows that

σ(0) = 1 , (5.56)

which gives back the ordinary Gribov-Zwanziger result, see (3.203). Secondly, when M2 6= 0,
we notice that the ghost propagator is no longer enhanced and behaves like 1/k2, which is
in qualitative agreement with the lattice results from [4]. This behavior is clearly due to the
novel mass term M2

∫
d4x (ϕaiϕ

a
i − ωai ωai ). Thirdly, we see that the term in ς is crucial in

order to obtain a σ(0) which is smaller than 1. Omitting this term would result in σ(0) > 1 in
the case that M2 6= 0. However, including this term, we can easily prove that σ ≤ 1. Indeed,
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taking expression (5.55) and replacing ς with the integral in (5.54), we find

σ(0) = 1 +M2g2N
3
4

∫
d4q

(2π)4

1
q2

1
q4 +M2q2 + λ4(M2)

− M2

λ2(M2)
λ2(0)

3
4
g2N

∫
d4q

(2π)4

1
q2

1
q4 + λ4(0)

= 1 +
3
4

M2

λ2(M2)
g2N

∫
d4p

(2π)4

1
p2

1
p4 + M2

λ2(M2)
p2 + 1

−3
4

M2

λ2(M2)
g2N

3
4
g2N

∫
d4p

(2π)4

1
p2

1
p4 + 1

= 1− 3x2

4
g2N

∫
d4p

(2π)4

1
p2

1
(p4 + xp2 + 1)(p4 + 1)

, (5.57)

with x = M2

λ2(M2)
≥ 0, hence σ(0) ≤ 1. At this point, we can really appreciate the role of the

novel vacuum term (5.30). It serves as a stabilizing term for the horizon condition. Indeed,
without the term (5.30), we would end up outside of the Gribov region for some k2 > 0, even
for an infinitesimal4 M2 > 0. In this sense, the action S′RGZ constitutes a refinement of the
original Gribov-Zwanziger action, which is a smooth limiting case of S′RGZ.

For later use, we can evaluate the integral in expression (5.55) as it is finite. The explicit one
loop value for σ(0) yields

σ(0) = 1 +M2 3g2N

64π2

1√
M4 − 4λ4

[
ln
(
M2 +

√
M4 − 4λ4

)
− ln

(
M2 −

√
M4 − 4λ4

)]
−
(

3g2N

128π

)
M2

λ2(M2)
, (5.58)

where we have substituted the value (5.54) for ς.

In summary, we have found a ghost propagator which is no longer enhanced. So far, we
have fixed λ2 in function of M2 and we have found a constant value for ς. However, we have
not yet fixed M2. This will be the task of the next section.

2.6 A dynamical value for M2

Up to this point, we have only introduced the mass M2 by hand, however this value is in
fact a dynamical value. In this thesis, we shall present two methods to find such a value.
Firstly, in the appendix, we explain how to obtain a dynamical value for M2 with the help
of the effective action. However, the calculations become too involved, and therefore, we are
not able to go beyond perturbation theory. Henceforth, in this section we have investigated a
second method, the variational principle, and applied this to the ghost and gluon propagator,
with more success.

Let us explain the variational method which we shall use. Along the lines of [154], we intro-
duce a formal loop counting parameter ` ≡ 1 by replacing the action S with 1

`S. At the same

4Notice that we must take M2 ≥ 0 to avoid unwanted tachyonic instabilities.
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time, we replace all the fields Φ by
√
`Φ. Symbolically,

S(Φ, g)→ 1
`
S(
√
`Φ, g) . (5.59)

It is readily derived that multiplying each field with a factor of
√
` and performing an overall

1/` rescaling is the same as replacing the coupling g with
√
`g, so we can replace (5.59) with

S(Φ, g)→ S(Φ,
√
`g) . (5.60)

In this fashion, the free (quadratic) part of the action is `-invariant, while every interaction
terms contains powers5 of

√
`. The first order in the `-expansion, obtained by setting ` = 0,

then corresponds to the free theory. More generally, the `-expansion is equivalent with the
loop expansion, where it is understood that we put the formal bookkeeping parameter ` = 1
at the end.

The next step is to introduce the variational parameter M2 into the theory. This is done
in a specific way: we add the quadratic mass term SM ≡M2

∫
d4x

[
(ϕϕ− ωω) + 2(N2−1)

g2N
ςλ2
]

to the action, but subtract it again at higher order in `, i.e. we consider the action

S(Φ, g)→ S(Φ,
√
`g) + SM − `kSM , (5.61)

with k > 0. Since ` ≡ 1, we did not change the actual starting action at all.

However, we maintain the strategy of performing an expansion in powers of `. Since the
mass term is split up into 2 parts ∼ (1 − `k)M2, both parts will enter the `-expansion in
a different way. At the end, we must set ` = 1 again. If we could compute an arbitrary
quantity Q exactly, the M2-independence would of course be apparent since the theory is not
altered. However, at any finite order in `, a residual M2-dependence will enter the result for
Q due to the re-expanded powers series in `. Said otherwise, we have partially resummed the
perturbative series for Q by making use of the parameter `. The hope is that some nontrivial
information, encoded by the operator coupled to 1 − `k, will emerge in the final expression
for Q. One query remains: how to handle the M2 which appears in the approximate Q?
Therefore we can rely on the lore of minimal sensitivity [155]: we know that the exact Q
cannot depend on M2, hence it is very natural to demand that also at a finite order ∂Q

∂M2 = 0,
leading to a dynamical optimal value for the yet free parameter M2.

The described method of variationally introducing extra parameters into a quantum field
theory provides us with a powerful tool to study nontrivial dynamical effects in an approxi-
mate fashion, yet the calculational efforts do not exceed those of conventional perturbation
theory.

We still have to choose a value for k. We recall that the constant term, Sen, was intro-
duced in order to stay within the horizon. Therefore, we want to retain this term when we
are applying the variational principle. However, we are working up to first order, meaning
that we shall expand the quantity Q up to first order in ` and subsequently set ` = 1. Hence,
taking k = 1 is not a good option as the constant term would vanish and have no influence.

5We recall that the perturbative expansion is one in powers of g2, and thus in integer powers of `.
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Therefore, a better option is to take e.g. k = 2, to assure the consistency of the variational
setup with the restriction to the Gribov region. In this way, we are simply coupling the
variational parameter M2 directly to the theory.

2.6.1 The ghost propagator

We start from the expression (5.29) of the ghost propagator

G(k2) =
1
k2

1
1− σ(k2)

, (5.62)

and apply the variational principle on the ghost propagator near zero momentum. We have,

σ(k2 ≈ 0) = Ng2d− 1
d

∫
ddq

(2π)d
1
q2

q2 +M2

q4 +M2q2 + λ4
+O(k2) . (5.63)

As explained above, we replace g2 → `g2 and M2 → (1 − `2)M2. Subsequently, we expand
G(k2)k2≈0 in powers of ` corresponding to a re-ordered loop expansion. As we have calculated
the ghost propagator up to one loop, we only need to expand the above expression to the first
power of `,

σ(0) = Ng2`
d− 1
d

∫
ddq

(2π)d
1
q2

q2 +M2

q4 +M2q2 + λ4
. (5.64)

As indicated earlier, setting ` = 1 gives

σ(0) = Ng2d− 1
d

∫
ddq

(2π)d
1
q2

q2 +M2

q4 +M2q2 + λ4
, (5.65)

which is exactly the same as (5.63). This expression not only depends on M2, but also on λ2.
However, we already know that λ2 and M2 are not independent variables, as they are related
through the gap equation (5.52),

−1 + ς
M2

λ2
+ g2N

d− 1
d

∫
ddq

(2π)d
1

q4 +M2q2 + λ4
= 0 . (5.66)

Following the variational principle, we replace M2 with (1− `2)M2 and g2 with `g2, expand
the equation up to order `1, and set ` = 1 in the end. Doing so, we recover again expression
(5.66). At this point, it can be clearly seen that k = 1 in equation (5.61) would cancel the
effect of the constant term ςM2

λ2 , while k = 2 is a better choice6. Evaluating the integral in
expression (5.66), we find

0 = −1 +
Ng2

64π2

(
5
2

+ 3
m2

1√
M4 − 4λ4

ln
m2

1

µ2 − 3
m2

2√
M4 − 4λ4

ln
m2

2

µ2

)
+ ς

M2

λ2
. (5.67)

This integral could be similarly calculated as done in appendix B4. We recall that from the
boundary condition (5.54), we have already determined ς = 3g2N

128π .

We still require an appropriate value for µ. Therefore, we fix µ2 = 3
2

∣∣∣M2 +
√
M4 − 4λ4

∣∣∣
6Actually, every value for k, with k ≥ 2 is allowed.

131



CHAPTER 5. THE REFINED GRIBOV-ZWANZIGER ACTION

which was chosen as in [87]. We have opted for this specific renormalization scale µ2 which
shall result in an acceptably small effective expansion parameter g2N

16π2 . Consequently, from
the following equation,

g2(µ2) =
1

β0 ln µ2

Λ2
MS

, with β0 =
11
3

N

16π2
, (5.68)

we find

g2N

16π2
=

3

11 ln
(

3
2

∣∣∣M2 +
√
M4 − 4λ4

∣∣∣) , (5.69)

in units of ΛMS = 1.

In summary, as σ(0) remained the same after applying the variational principle, we can
take the expression (5.58) for σ(0),

σ(0) = 1 +M2 3g2N

64π2

1√
M4 − 4 (λ2(M2))2

[
ln
(
M2 +

√
M4 − 4 (λ2(M2))2

)

− ln
(
M2 −

√
M4 − 4 (λ2(M2))2

)]
−
(

3g2N

128π

)
M2

λ2(M2)
, (5.70)

where λ2(M2) is determined by the gap equation,

0 = −1 +
Ng2

64π2

(
5
2

+ 3
m2

1√
M4 − 4λ4

ln
m2

1

µ2 − 3
m2

2√
M4 − 4λ4

ln
m2

2

µ2

)
+

3g2N

128π
M2

λ2
. (5.71)

Before continuing the analysis, let us first have a look at the gap equation. The gap equation
solved for λ2 as a function of M2 is depicted in Figure 5.1. We find two emerging branches,
displayed by a continuous and a dashed line. The former solution exists in the interval
[0, 1.53], while the latter one only exists in [1.25,∞[. As the latter branch does not exist
around M2 = 0, we shall not consider this solution because the boundary condition (5.40)
demands a smooth transition for the M2 → 0 limit.
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Λ
2

Figure 5.1: λ2 in function of M2 in units ΛMS = 1.
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We can now have a closer look at the ghost propagator or equivalently σ(0). We have graph-
ically depicted σ(0) in Figure 5.2. Firstly, from the figure, we see that σ(0) is nicely smaller
than 1 for all M2 in the interval [0, 1.53]. This is a remarkable fact as it implies that we
have managed to stay within the horizon. Secondly, we notice that the boundary condition
∂σ(0)
∂M2

∣∣∣
M2=0

= 0 is indeed fulfilled, which is a nice check on our result. We can now apply the

minimal sensitivity approach on the quantity σ(0). From Figure 5.2 we immediately see that
there is no extremum. However, looking at the derivative of σ(0) with respect to M2, we do
find a point of inflection at M2 = 0.37Λ2

MS
. Demanding ∂2σ(0)

(∂M2)2 = 0 is an alternative option
when no extremum is found [155]. Taking this value for M2, we find

σ(0) = 0.93 . (5.72)

The effective coupling is given by

g2N

16π2
= 0.53 , (5.73)

which is smaller than 1.
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M 2

0.80

0.85

0.90

0.95

1.00

ΣH0L

Figure 5.2: σ(0) drawn in function of M2 in units ΛMS = 1.
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Figure 5.3: dσ(0)
dM2 drawn in function of M2 in units ΛMS = 1.

2.6.2 The gluon propagator

In order to apply the variational principle to the gluon propagator, we require its one loop
correction. However, due to the rather complicated form of the propagator, obtaining the
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full exact expression for its one loop correction is not possible. Indeed to appreciate how
cumbersome such an expression could be one has only to examine the M2 = m2 = 0 case,
[156], where all the one loop corrections to the propagators are given explicitly. However,
despite this, it is possible to calculate the one loop gluon propagator directly in the zero
momentum limit without knowledge of the full correction. Details of how to calculate this
one loop correction with Form can be found in [84]7

The following expression was obtained

D(1)(0) =
M2

λ4
− g2N

16π2

M4

λ8

[
M4

λ4

9
16

√
M4 − 4λ4 ln

m2
2

m2
1

+
M6

λ4

(
9
16

ln
λ4

M4

)
− 15

16
M2λ4 1

M4 − 4λ4
+

3
2
λ4 1√

M4 − 4λ4
ln
m2

2

m2
1

+
15
8
λ8 1

(
√
M4 − 4λ4)3

ln
m2

2

m2
1

+M2

(
9
8
− 21

16
ln

λ4

M4

)
− 3

16

√
M4 − 4λ4 ln

m2
2

m2
1

]
, (5.74)

for the one loop correction at zero momentum where all mass variables correspond to renor-
malized ones.

We apply the variational principle to the gluon propagator in a completely similar man-
ner as in the case of the ghost propagator. Therefore, we replace M2 with (1− `2)M2 and g2

with `g2 in the expression (5.74), expand up to order `1, and set ` = 1. Doing so, we find the
original expression (5.74) for the gluon propagator back. Firstly, we try to apply the principle
of minimal sensitivity. Therefore, we have depicted the gluon propagator in Figure 5.4. First,
we notice that D(1)(0) is positive for all M2 ∈ [0, 1.53]. Unfortunately, we do find neither
a minimum nor a point of inflection in this interval. Therefore, we shall take the value of
M2, which was obtained in the study of the ghost propagator (see previous section). Hence,
setting M2 = 0.37Λ2

MS
, gives

D(1)(0) =
0.63
Λ2

MS

=
11.65
GeV2

. (5.75)

Evidently, the effective coupling is still smaller than 1, cfr. (5.73).
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Figure 5.4: The gluon propagator D(1)(0) drawn in function of M2 in units ΛMS = 1.

7Afterwards, it has appeared that not all propagators were included in the calculations. Therefore, the
results obtained here can only be considered in a qualitative nature.
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In summary, the infrared value of the ghost propagator and the zero momentum gluon propa-
gator seem to be reasonable. We find a non-enhanced ghost propagator and a gluon propagator
which is non-zero at zero momentum. Our results for the gluon and ghost propagator are of a
qualitative nature as we are only working in a first order approximation. In order to improve
these numerical results, higher order calculations are recommendable. This is however far
beyond the scope of this thesis.

2.7 The temporal correlator: violation of positivity

With the help of the variational technique, we can also show that the gluon propagator
displays a violation of positivity. If we rewrite the gluon propagator in the Källén-Lehmann
spectral representation,

D(p2) =
∫ +∞

0
dM2

p

ρ(M2
p )

p2 +M2
p

, (5.76)

ρ(M2
p ) should be a positive function in order to interpret the fields in terms of stable particles.

If ρ(M2
p ) < 0 for certain M2

p , D(p2) is positivity violating. As a practical way to uncover this
property, one defines the temporal correlator [99]

C(t) =
∫ +∞

0
dMpρ(M2

p )e−Mpt =
1

2π

∫ +∞

−∞
e−iptD(p2)dp . (5.77)

Consequently, if we can show that C(t) becomes negative for certain t, ρ(M2
p ) cannot be pos-

itive for all M2
p , resulting in a positivity violating gluon propagator. If the gluon propagator

vanishes at zero momentum, D(0) = 0, one can immediately verify from (5.76) that ρ(M2
p )

cannot be a positive quantity. However, having D(0) 6= 0, does not exclude a positivity vio-
lation as we shall soon find out.

We can now apply the variational technique on the temporal correlator. At tree level, this
C(t) is given by

C(t,M2) =
1

2π

∫ +∞

−∞
e−ipt

p2 +M2

p4 +M2p2 + (λ2(M2))2 dp , (5.78)

where λ2(M2) is still determined by the gap equation (5.71). Replacing M2 → (1 − `2)M2

and g2 → `g2 is redundant in this case, as we only have the tree level gluon propagator D(p2)
at our disposal. We shall now implement the minimal sensitivity principle as follows: for each
different value of t, we minimize the temporal correlator with respect to M2. C(t) displays
a minimum at M2

min 6= 0, for t & 6/ΛMS. In Table 5.1, some values for M2
min(t) for different

t are presented. For t . 6, we have taken M2 = 0; it is clearly visible from the table below
that M2

min → 0 for decreasing t.

t 6 7 8 9 10

M2
min 0 0.16 0.35 0.51 0.65

Table 5.1: Some M2
min for different t in units ΛMS = 1.
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The corresponding C(t,M2
min) is depicted in Figure 5.5. Both the x-axis and y-axis are shown

in units fm (1/ΛMS = 0.847 fm), in order to compare our results with [153, 157]. Not only do
we find a positivity violating gluon propagator as C(t) becomes negative, but even the shape
of this function is consistent with the lattice results8 [153, 157]. Moreover, in [153, 157], the
positivity violation starts from t ∼ 1.5 fm, in good agreement with our results. Finally, Figure
5.6 displays the corresponding values of g2N/16π2. We can conclude that the previous results
are reliable for t . 8 as g2N/16π2 is smaller than one.
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Figure 5.5: C(t) (fm) in function of t (fm).
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Figure 5.6: g2N/(16π2) in function of t (fm).

2.8 A remark about the strong coupling constant

A renormalization group invariant definition of an effective strong coupling constant g2
eff can

be written down from the knowledge of the gluon and ghost propagators as

g2
eff(p2) = g2

(
µ2
)
D̃
(
p2, µ2

)
G̃2
(
p2, µ2

)
, (5.79)

see e.g. [101]. D̃ and G̃ stand for the gluon and ghost form factor, defined by

D̃(p2) = p2D(p2) ,
G̃(p2) = p2G(p2) . (5.80)

8[153] included quarks, while [157] considered gluodynamics as we are studying in this thesis.
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The definition (5.79) represents a kind of nonperturbative extension of the nonrenormaliza-
tion of the ghost-gluon vertex. At the perturbative level, this is assured by the identity9

Zg = Z−1
c Z

−1/2
A , see (3.241). Usually, this is assumed to remain valid at the nonperturbative

level. Although this cannot be proven, this hypothesis has been corroborated by lattice stud-
ies like [158, 159].

In recent years, there was accumulating evidence that g2
eff(p2) would reach an infrared fixed

point different from zero: see e.g. [101–103, 160] for a Schwinger-Dyson analysis, [156, 161]
in the ordinary Gribov-Zwanziger approach and [74, 162] for lattice results. These studies
are mostly done in a MOM renormalization scheme, with the exception of [156] where the
MS scheme was employed. The manifestation of this infrared fixed point was motivated in
Schwinger-Dyson studies and the ordinary Gribov-Zwanziger case by means of the power law
behavior of the form factors,

D̃(p2)p2≈0 ∝
(
p2
)2α

,

G̃(p2)p2≈0 ∝
(
p2
)−α

, (5.81)

being expressible in terms of a single exponent α. The Schwinger-Dyson community her-
alded in a variety of studies the value α ≈ 0.595, whereas the Gribov-Zwanziger scenario
gives α = 1. Anyhow, substituting a behavior like (5.81) into the definition (5.79) leads to
g2

eff(p2)p2≈0 ∝ (p2)0, opening the door for a finite value.

However, once again quoting the more recent large volume lattice data of [4, 105, 106, 159],
the power law behavior (5.81) seem to be excluded in favor of

D̃(p2)p2≈0 ∝ p2 ,

G̃(p2)p2≈0 ∝
(
p2
)0

, (5.82)

leading to a vanishing infrared effective strong coupling constant at zero momentum since
g2

eff(p2)p2≈0 ∝ p2. The refined analysis in this paper of the extended Gribov-Zwanziger action,
including an additional dynamical effect, allows us to draw a similar conclusion up to the one
loop level, i.e. an infrared vanishing g2

eff. Certain lattice studies also pointed towards this
particular scenario [163].

2.9 Conclusion in 4d

We can clearly conclude that by taking into account a condensation of the operator (ϕϕ− ωω)
(which is already present perturbatively), it is possible to obtain a gluon propagator which
is non-vanishing at zero momentum and a ghost propagator which is no longer enhanced.
However, our values obtained are not very satisfactory and can only be seen in a qualitative
nature. We shall namely show later that the condensate 〈A2〉 plays an important role, while
in all calculations, we have neglected this condensate as the calculations became too involved.

For completeness, we have also put all the refined propagators in the appendix E.

9This identity is also valid for the Yang-Mills action is the Landau gauge and is independent from the GZ
action.
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3 Refinement of the GZ action in 3 dimensions

3.1 Introduction

We are of course curious to see what happens in 3 dimensions. As described in section 1.1, in 3
dimensions, the lattice data have found the same results, i.e. a non enhanced ghost propagator
and an infrared suppressed gluon propagator which is non-vanishing at zero momentum.
Therefore, we shall again consider the action SRGZ,

SRGZ = SGZ + Sϕϕ,

Sϕϕ =
∫

ddx [s(−Jωaiϕai )] =
∫

ddx [−J (ϕaiϕ
a
i − ωai ωai )] , (5.83)

as given in expression (5.13), whereby we have set m2 immediately equal to zero in this sec-
tion. d is now equal to 3.

Besides the fact that the dimensionality of many quantities change, e.g. dim(g2) = 1 and
dim(γ2) = 3/2, the proof of the renormalization is completely the same as in the previous
section (2.3). Therefore, we shall not repeat this proof in this section.

3.2 The condensate at the perturbative level

We can again show that the local composite operator (LCO) (ϕϕ − ωω) has already a non-
vanishing perturbative expectation value. We recall that

〈ϕϕ− ωω〉pert = − ∂W (J)
∂J

∣∣∣∣
J=0

, (5.84)

with W (J) the generating functional,

e−W (J) =
∫

[dΨ]e−SRGZ , (5.85)

and with SRGZ the extended Gribov-Zwanziger action given in (5.83). The lowest order ex-
pression for W (J) has been calculated in the appendix B4, where we have found in expression
(B.25),

W (0)(J) = −3(N2 − 1)
λ4

2g2N
+
N2 − 1

6π

(
−m3

1 −m3
2 + J3/2

)
. (5.86)

For m2 = 0, m1 and m2 are given by

m2
1 =

J −
√
J2 − 4λ4

2
, m2

2 =
J +
√
J2 − 4λ4

2
. (5.87)

Using this explicit expression, we can easily obtain the perturbative value of the condensate
(5.84), reading

〈ϕϕ− ωω〉pert =
√

2
N2 − 1

8π
λ ≈ 0.056(N2 − 1)λ , (5.88)
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where λ is the nonzero solution of ∂Γ(λ)
∂λ = 0. Since at one loop

Γ(λ) = −d(N2 − 1)
λ4

2Ng2
+
N2 − 1

2
(d− 1)

∫
ddq

(2π)d
ln
(
q4 + λ4

)
(5.89)

= −3(N2 − 1)
λ4

2g2N
+
√

2
6π

(N2 − 1)λ3 , (5.90)

we find that

λ =
√

2
12π

g2N , (5.91)

with

Evac = g6N
3(N2 − 1)
10368π4

> 0 . (5.92)

We notice that the one loop vacuum energy corresponding to the Gribov-Zwanziger action is
positive10.

3.3 Infrared problems in 3d

Notice that in the case of γ2 = 0, the 3d theory will not be well defined. In the absence
of an infrared regulator, the perturbation theory of a super-renormalizable 3d gauge theory
is ill-defined due to severe infrared instabilities [164]. This can be intuitively understood
as the coupling constant g2 carries the dimension of a mass. In the absence of an infrared
regulator, the effective expansion parameter will look like g2/p with p a certain (combination
of) external momentum/-a. For p � g2, very good ultraviolet behavior is apparent, but for
p� g2, infrared problems emerge. The presence of (a) dynamical mass scale(s) m ∝ g2 could
ensure a sensible perturbation series, even for small p, as a natural expansion parameter is
then provided by g2/m. From this perspective, a nonvanishing Gribov mass γ2 could also
serve as infrared cut-off. This feature is also explicitly seen from equation (5.91), from which
an effective dimensionless expansion parameter can be derived as

g2N

(4π)3/2λ
=

3
2
√

2π
≈ 0.6 , (5.93)

a quantity which is at least smaller than 1. The inverse factor (4π)3/2 is the generic loop
integration factor generated in 3d.

3.4 Modifying the effective action in order to stay within the horizon

Similar as in section 2.4, we need to add an extra term to the action in order assure that we
are still inside the horizon. We define the new action again as

S′RGZ = SRGZ + Sen , (5.94)

with

Sen = 2
d(N2 − 1)√

2g2N

∫
ddx ς γ2J . (5.95)

We recall the following boundary condition which assures a smooth limit

∂σ(0)
∂M2

∣∣∣∣
M2=0

= 0 . (5.96)

10The same feature was also observed in the one loop 4d case, see (D.32).
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3.5 The gluon and the ghost propagator

3.5.1 The gluon propagator

The tree level gluon propagator corresponding to the action (5.94) is again given by

D(p2) =
p2 +M2

p4 +M2p2 + λ4
, (5.97)

see expression (5.44) and enjoys the same properties as described in the 4d case on page 126,
namely

• D(p2) is infrared suppressed due to the presence of the mass scales M2 and λ4.

• D(0) = M2

λ4 , i.e. the gluon propagator does not vanish at zero momentum if M2 is
different from zero.

These properties seem to be in qualitative accordance with the lattice data [4, 8, 105]. We
also want to stress that the mass term related to ϕϕ − ωω plays a crucial role in having
D(0) 6= 0, since in the standard Gribov-Zwanziger scenario, the gluon propagator necessarily
goes to zero.

3.5.2 The ghost propagator

In 3d, the one loop corrected ghost propagator can again be written as

G(k2) =
1
k2

1
1− σ(k2)

, (5.98)

where σ(k2) is the following momentum dependent function

σ(k2) = g2N
kµkν
k2

∫
d3q

(2π)3

1
(k − q)2

q2 +M2

q4 +M2q2 + λ4
Pµν(q) . (5.99)

Calculating this integral explicitly, we find

σ(k2) =
Ng2

32k3π

{
1

M2 −
√
M4 − 4λ4

(
1 +

M2

√
M4 − 4λ4

)[√
2k3

√
M2 −

√
M4 − 4λ4

− k√
2

(
M2 −

√
M4 − 4λ4

)3/2

− k4π +
1
2

(
2k2 +M2 −

√
M4 − 4λ4

)2

arctan
√

2k√
M2 −

√
M4 − 4λ4

]

+
1

M2 +
√
M4 − 4λ4

(
1− M2

√
M4 − 4λ4

)[√
2k3

√
M2 +

√
M4 − 4λ4 − k√

2

(
M2 +

√
M4 − 4λ4

)3/2

− k4π +
1
2

(
2k2 +M2 +

√
M4 − 4λ4

)2

arctan
√

2k√
M2 +

√
M4 − 4λ4

]}
. (5.100)

In order to find the behavior of the ghost propagator near zero momentum we take the limit
k2 → 0 in equation (5.99),

σ(0) = g2N
2
3

∫
d3q

(2π)3

1
q2

q2 +M2

q4 +M2q2 + λ4
=

g2N

6π
M2 + λ2

λ2
√
M2 + 2λ2

, (5.101)
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which can of course be obtained by taking the limit k2 → 0 in expression (5.100). Similarly,
one can check that σ → 0 for k2 →∞ and/or M2 →∞.

Before drawing any conclusions, we still need to have a look at the gap equations, which
shall fix λ2 as a function of M2.

The gap equations
We begin with the first gap equation (3.184) in order to express λ as a function of M2. The
effective action at one loop order is given by

Γ(1)
γ = −d(N2−1)γ4+2

d(N2 − 1)√
2g2N

ς γ2M2+
(N2 − 1)

2
(d− 1)

∫
ddq

(2π)d
ln
q4 +M2q2 + 2g2Nγ2

q2 +M2
.

With λ4 = 2g2Nγ4, we rewrite the previous expression,

E(1) =
Γ(1)
γ

N2 − 1
2g2N

d
= −λ4 + 2ςλ2M2 + g2N

d− 1
d

∫
ddq

(2π)d
ln
q4 +M2q2 + λ4

q2 +M2
,

and apply the gap equation (3.184),

0 = −1 + ς
M2

λ2
+ g2N

d− 1
d

∫
ddq

(2π)d
1

q4 +M2q2 + λ4
. (5.102)

In 3 dimensions, the integral in this gap equation is finite, resulting in,

0 = −1 + ς
M2

λ2
+
g2N

6π
1√

M2 + 2λ2
. (5.103)

This expression will fix λ2 as a function of M2, i.e. λ2(M2) once we have found an explicit
value for ς.

This explicit value for ς will be provided by the second gap equation (5.40). From expression
(5.99), one finds

σ(0) = g2N
d− 1
d

∫
ddq

(2π)d
1
q2

q2 +M2

q4 +M2q2 + λ4

= g2N
d− 1
d

∫
ddq

(2π)d
1

q4 +M2q2 + λ4
+M2g2N

d− 1
d

∫
ddq

(2π)d
1
q2

1
q4 +M2q2 + λ4

.

Therefore, we can rewrite the first gap equation (5.102) as

0 = σ(0)− 1−M2d− 1
d

g2N

∫
ddq

(2π)d
1
q2

1
q4 +M2q2 + λ4

+ ς
M2

λ2
. (5.104)

The second gap equation can then subsequently be obtained by acting with ∂
∂M2 on the

previous expression and setting M2 = 0. Doing so, we find

−d− 1
d

g2N

∫
ddq

(2π)d
1
q2

1
q4 + λ4(0)

+ ς
1

λ2(0)
= 0 , (5.105)
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by keeping (5.40) in mind. Setting M2 = 0 in (5.103) yields,

√
2λ2(0) =

g2N

6π
. (5.106)

Proceeding with equation (5.105), we find the following simple solution for ς,

ς =
1

12π
2√
2
g2N

λ(0)
= 1 . (5.107)

In summary, the following expression,

g2N

6π
1√

M2 + 2λ2
= 1− M2

λ2
, (5.108)

fixes λ2(M2).

The ghost propagator at zero momentum
At this point, we have all the information we need to take a closer look at the ghost propagator
at zero momentum. From equation (5.101) and (5.108), we find

σ(0) =
(
M2

λ2
+ 1
)(

1− M2

λ2

)
= 1− M4

λ4
. (5.109)

From this expression we can make several observations. Firstly, when M2 = 0, we find
that σ(0) = 1, which is exactly the result obtained in the original Gribov-Zwanziger action
[2, 26]. Consequently, the ghost propagator (3.4) is enhanced and behaves like 1/k4 in the low
momentum region. Secondly, for any M2 > 0, σ(0) is smaller than 1. By contrast, without
the inclusion of the extra vacuum term, σ(0) would always be bigger than 1, which can be
observed from expression (5.104). Therefore, it is absolutely necessary to include this term.
With σ(0) smaller than 1, the ghost propagator is not enhanced and behaves as 1/k2.

3.6 A dynamical value for M2

We shall follow section 2.6 in order to obtain a dynamical value for M2 in 3d. Therefore, we
introduce M2 as a variational parameter into the theory by replacing the action SRGZ by

SGZ + (1− `k)M2

∫
ddx

[
− (ϕaiϕ

a
i − ωai ωai ) + 2

d(N2 − 1)√
2g2N

ς γ2

]
, (5.110)

where ` serves as the loop counting parameter, and formally ` = 1 at the end. In this fashion,
it is clear that the original starting action SGZ has not been changed. We have in fact added
the terms in M2, and subtracted them again at k orders higher in the loop expansion. We
shall set k = 2 as we are working up to one loop. Taking k = 1 would destroy the effect of
the vacuum term Sen, which would be inconsistent as explained before.
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3.6.1 The ghost propagator

In order to obtain a dynamical value for the ghost propagator, we start with the expression
(5.99) for σ(k2) and replace g2 with `g2 and M2 with (1− `2)M2, expand up to order ` and
set ` = 1. Doing so, we recover again the same expression (5.99). Following an analogous pro-
cedure for the gap equations, also results in the same expression (5.108). This latter equation
determines λ2(M2), which can be plugged in the expression of σ(k2), thereby making σ(k2)
only a function of M2, next to the momentum dependence.

Firstly, let us investigate σ(k2) at zero momentum, which is the key-point of this paper.
Figure 5.7 displays σ(0) as a function of M2. We observe that σ(0) is indeed smaller than 1
for all M2 > 0 as already shown analytically in the previous section. We also find a smooth
limit of σ(0) for M2 → 0 required by the second gap equation (5.40), as can be seen from
the left figure. According to the principle of minimal sensitivity, we have to search for an
extremum, i.e. ∂σ(0)

∂M2 = 0. Unfortunately, there is no such an extremum present. Nevertheless,

we do find a point of inflection, ∂2σ(0)
(∂M2)2 = 0 at M2 = 0.185

(
g2N
6π

)2
. Taking this value for M2,

we find

σ(0) = 0.94 , (5.111)

which is indeed smaller than one and results in a non-enhanced behavior of the ghost propa-
gator. This value needs to be compared with the lattice value of σ(0) = 0.79, which can be
extracted from the data in [106].
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Figure 5.7: σ(0) in function of M2 in units g2N
6π = 1.

Secondly, let us have a look at this point of inflection, when “turning on” the momentum k2.
As shown in Table 5.2, we observe that M2 will decrease, until it will vanish at k2 ≈ 0.55.
The corresponding σ(k2) is displayed in Figure 5.8. We thus see that we find some kind
of a momentum dependent effective mass M2(k2), which disappears when k grows. This
could have been anticipated, as we naturally expect that the deep ultraviolet sector should be
hardly affected. Let us also notice here that σ(k2) is a decreasing function, as can be explicitly
checked from Figure 5.8. This of course means that we are staying within the horizon for any
value of the momentum.
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Figure 5.8: The optimal σ(k2) in function of k2 in units of g2N
6π = 1.

k2 0 0.05 0.1 0.15 0.2 0.25 0.30 0.35 0.40 0.45 0.50 0.55

M2
min 0.19 0.16 0.14 0.12 0.10 0.08 0.06 0.04 0.03 0.02 0.01 0

Table 5.2: Some M2
min for different k2 in units g2N

6π = 1.

To compare our results with available lattice data, we must make the conversion to physical
units of GeV. In [165] a continuum extrapolated value for the ratio

√
σ/g2 was given for

several gauge groups; in particular,
√
σ/g2 ≈ 0.3351 for SU(2). Further,

√
σ stands for the

square root of the string tension. For this quantity, we used the input value of
√
σ = 0.44

GeV as in [99]. Therefore, for SU(2), we find,

(
g2N

6π

)2

≈ 0.0194GeV2 . (5.112)

In Figure 5.9, we have plotted the lattice as well our analytical result for the ghost dressing
function, k2G(k2), in units of GeV. We used the numerical data of [106, 159], adapted to our
needs. We observe that for sufficiently large k2, the lattice data and our analytical results
converge. In this case, the novel mass M2 becomes zero as advocated earlier, meaning that we
are back in the usual Gribov-Zwanziger scenario. For smaller k2, we found it more instructive
to compare the lattice estimate of σ(k2) with our value as the errors on k2G(k2) = 1

1−σ(k2)

are becoming large when looking at σ(k2) close to 1. Figure 5.10 displays σ(k2) in units of
g2N
6π = 1 up to k2 = 1 ×

(
g2N
6π

)2
= 0.0194 GeV2. We see that both results are in reasonable

agreement, especially if we keep in mind that we have only calculated σ(k2) in a first order
approximation.
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Figure 5.9: The optimal k2G(k2) in function of k2 in units of GeV. The lattice (our analytical) results
are indicated with triangles (dots). The error bars on the lattice data are roughly of the
size of the triangles.
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Figure 5.10: The optimal σ(k2) in function of k2 in units of g2N
6π = 1. The lattice (our analytical)

results are indicated with triangles (dots).

3.6.2 The gluon propagator

In order to apply an analogous procedure for the gluon propagator, we require its one loop
correction. This correction can be found in [112]11,

D(0) =
M2

λ4
+
g2N

4π
M4

λ8

[
M4

λ4

√
M2 + 2λ2 − M5

λ4
− M2

λ2

√
M2 + 2λ2 − 17

12
M2λ2

√
M2 + 2λ2

M4 − 4λ4

+
13
4
λ4

√
M2 + 2λ2

M4 − 4λ4
− 5

3
λ6M2

√
M2 + 2λ2

(M4 − 4λ4)2
+

10
3
λ8

√
M2 + 2λ2

(M4 − 4λ4)2
+

7
4
M − 1

4

√
M2 + 2λ2

]
.

(5.113)

11Afterwards, it has appeared that not all propagators were included in the calculations. Therefore, the
results obtained here can only be considered in a qualitative nature.
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This propagator at zero momentum, D(0) is displayed in Figure 5.11. We immediately see

that there is an extremum at M2 = 0.33
(
g2N
6π

)2
, resulting in

D(0) =
0.24(
g2N
6π

)2 . (5.114)

Doing the conversion to physical units again, we find for SU(2),

D(0) ≈ 12
GeV2 . (5.115)

This value can be compared with the bounds derived from a partially numerical and partially
analytical derivation [105]:

1.2
GeV2 < D(0) <

12
GeV2 . (5.116)

We recall that our value D(0) = 12/GeV2 is a first order approximation and is only of
qualitative nature. Nevertheless, this value is still consistent with the boundaries of the
lattice data set in [105].

2 4 6 8 10
M 2

0.05

0.10

0.15

0.20

DH0L

Figure 5.11: D(0) in units g2N
6π = 1.

3.7 The temporal correlator: violation of positivity

We shall investigate if a gluon propagator of the type (5.44) displays a violation of positivity,
another fact which is reported by the lattice data [99]. We shall again calculate the 1d
Fourier transformation of D(p2), see expression (5.77). In Figure 5.12 the Fourier transforms,
C(t,M2) are shown for different t in units of fm.
To determine M2, we again rely on the variational setup. We observe that for small t, there
is no real extremum. However, for a certain t ∼ 1, an extremum emerges at M2 ∼ 0.
This extremum starts to grow for increasing t, but at the same time, the curve flattens out.
Therefore, starting from t ∼ 2.6, the extremum disappears again. Hence, we have taken12

12M2 ∼ 0.18 is the maximal extremal value, corresponding to t ∼ 2.6.
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M2 = 0 for t < 1, and M2 = 0.18 for t > 2.6. The resulting temporal correlator is displayed
in Figure 5.13(a).

We clearly observe a violation of positivity, which is in agreement with the lattice data (see
Figure4 of [99]). Although this agreement is only at a qualitative level, the shape of C(t) is
very similar.

It would be interesting to have a look at the temporal correlator in the pure Gribov-Zwanziger
case (M2 = 0). Therefore, C(t) is displayed in Figure 5.13(b). We can conclude that this plot
is grosso modo the same as in the refined Gribov-Zwanziger setup.
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Figure 5.12: C(t,M2) for a few values of t in function of M2, in units of fm.
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Figure 5.13: C(t) in terms of t in units of fm in the refined GZ case and in the pure GZ case.
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3.8 Conclusion in 3d

Again, we conclude that by taking into account the condensation of the operator (ϕϕ− ωω),
we have obtain a positivity violating gluon propagator which is non-vanishing at zero mo-
mentum and a ghost propagator which is no longer enhanced.

4 Refinement of the GZ action in 2 dimensions is impossible

4.1 Introduction

Although 2d gauge theories share some similarities with their also confining 3d or 4d coun-
terparts, there are nevertheless some notable differences. Firstly, at the classical level, as
the gauge field Aµ contains only two degrees of freedom in 2d, imposing e.g. the Landau
gauge condition, ∂µAµ = 0, already removes these two degrees of freedom from the phys-
ical spectrum. Therefore, as no physical degrees of freedom remain, confinement seems to
be a rather “trivial” phenomenon, if one sees confinement as the absence of the elementary
gluon degrees of freedom. In contrast, in 3d and 4d, one respectively two degrees of freedom
are maintained, hence confinement seems to be more than “trivial”. Secondly, also at the
quantum level, the 2d situation is different from the 4d case. In 2d, the coupling g acquires
the dimension of a mass and thus the theory becomes highly superrenormalizable. However,
a drawback of the superrenormalizability is the appearance of severe infrared instabilities.
Therefore an infrared regulator, usually put in by hand, is necessary. We emphasize that cau-
tion is anyhow at place when performing calculations in 2d gauge theories as discussed in [166].

Therefore, it might not sound so surprising that the behavior of the ghost and the gluon
propagator at low momentum is different in 2d than in 3d and 4d. Indeed, as we already
mentioned in the introduction of this chapter, the ghost propagator is enhanced in 2d, while
the gluon propagator is zero at zero momentum [6, 105, 106].

By analogy with the 4d and 3d case, we shall also add a mass term of the following form,
M2

∫
d2x

(
ϕabµ ϕ

ab
µ −ωabµ ωabµ

)
, to the localized Gribov-Zwanziger action SGZ in 2d. Though, in

the next sections, we shall demonstrate that including this mass term will give rise to infrared
instabilities. However, purely from the algebraic and dimensional viewpoint, this mass term
cannot be excluded in 2d just as in 3d or 4d. We shall thus start from the refined action

S′RGZ = SGZ + Sϕϕ +
∫

d2x

(
d
N2 − 1
g2N

ςM2λ2

)
,

Sϕϕ =
∫

d2x
[
−M2 (ϕaiϕ

a
i − ωai ωai )

]
. (5.117)

The role of vacuum term proportional to the dimensionless parameter ς is a bit redundant
in the 2d case, as the problems we shall encounter are neither related to nor curable by this
quantity ς, which played a pivotal role in 3d and 4d. For completeness and comparability
with the 3d or 4d case, we have included it nevertheless.
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Subsequently, we compute the one loop quantum effective action Γ as

Γ = −d(N2−1)
λ4

2g2N
+

(N2 − 1)
2

(d− 1)
∫

ddp

(2π)d
ln
[
p2

(
p2 +

λ4

p2 +M2

)]
+d

N2 − 1
g2N

ςM2λ2 .

(5.118)
The gap equation (3.184) is then determined by

2
g2N

=
∫

d2p

(2π)2

1
p4 +M2p2 + λ4

+
2

g2N
ς
M2

λ2
, (5.119)

for d = 2.

4.2 Two reasons why the refined Gribov-Zwanziger action is excluded in
2d

In this section, we shall provide two reasons why it is not possible to add the novel mass
∝ ϕϕ− ωω to the standard Gribov-Zwanziger action. It shall become clear that it is exactly
the fact that we are working in 2d which does signal us that the theory with ϕϕ−ωω coupled
to it is not well defined.

4.2.1 The first reason why ϕϕ− ωω is problematic in 2d

We originally started the study of the dynamical effects associated to the operator ϕϕ− ωω
in 3d and 4d because we found a non-vanishing vacuum expectation value for the operator
ϕϕ− ωω already at the perturbative level, namely 〈ϕϕ− ωω〉 ∝ γ2, see equations (5.20) and
(5.88).

We shall now verify that our original rationale behind the study of ϕϕ−ωω no longer applies
in 2d, showing that this operator cannot be consistently introduced in 2d. It should not
come as a too big surprise that the difficulties related to the operator ϕϕ − ωω rely on the
appearance of infrared instabilities, typical of 2d, which prevents the analogue phenomenon
as in 3d or 4d to occur in 2d.

Let us take a look at the condensate 〈ϕϕ− ωω〉. We define the energy functional as

e−W (J,γ2) =
∫

dΨe−SGZ+
∫

d2xJ(ϕϕ−ωω)+ς′Jλ2
. (5.120)

Here, we suitably rescaled ς into ς ′ for notational convenience, ς ′ = dN
2−1
g2N

ς. We have also
replaced the mass M2 by the more conventional notation for a source, i.e. J .

Nextly, let us consider the perturbative value of the condensate, which is explicitly given
by

〈ϕϕ− ωω〉pert = − ∂W

∂J

∣∣∣∣
J=0

− ς ′λ2 . (5.121)

To calculate this quantity we evaluate the one loop energy functional,

W (J) = −d(N2 − 1)γ4 +
(N2 − 1)

2
(d− 1)

∫
ddp

(2π)d
ln
[
p2

(
p2 +

λ4

p2 + J

)]
− ς ′λ2 . (5.122)
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With the help of dimensional regularization we find the following finite result,

W (J) = − λ4

g2N
(N2−1)−N

2 − 1
16π

[
J ln

4λ4

J2
−
√
J2 − 4λ4 ln

J −
√
J2 − 4λ4

J +
√
J2 − 4λ4

]
−ς ′λ2 . (5.123)

This expression is well-defined when taking the limit J → 0. This corresponds to the pure
Gribov-Zwanziger case, where M2 = J = 0. However, the derivative w.r.t. J is singular for
J = 0. Indeed, we find

∂W (J)
∂J

= −N
2 − 1
16π

[
−J√

J2 − 4λ4
ln
J −
√
J2 − 4λ4

J +
√
J2 − 4λ4

+ ln
4λ4

J2

]
− ς ′λ2 , (5.124)

in which the second term diverges for J → 0. This would imply that

〈ϕϕ− ωω〉 =∞ . (5.125)

This strongly suggests that is it impossible to couple the operator to the theory without even
causing pathologies already in perturbation theory. A way to appreciate that this divergence
is stemming from the infrared region is to derive first expression (5.122) w.r.t. J (assuming
this is allowed) and then set J = 0, in which case

∂W (J)
∂J

∣∣∣∣
J=0

=
N2 − 1

2
(d− 1)

(∫
ddp

(2π)d
p2

p4 + λ4
−
∫

ddp
(2π)d

1
p2

)
− ς ′λ2 . (5.126)

The second term in the previous expression is typically zero in dimensional regularization,
except when d = 2 as it then develops an infrared pole.

Having revealed a first counterargument against the introduction of the mass operatorM2(ϕϕ−
ωω) in 2d, let us give an even stronger objection in the following subsection.

4.2.2 The second (main) reason why ϕϕ − ωω is problematic in 2d: the ghost
propagator

The case M2 6= 0
Let us consider the one loop ghost propagator. Explicitly, the one loop correction to the ghost
self energy reads

σ(k) = g2N
kµkν
k2

∫
d2q

(2π)2

1
(k − q)2

q2 +M2

q4 +M2q2 + λ4

(
δµν −

qµqν
q2

)
. (5.127)

Looking at the integral (5.127), the term ∼ 1
(q−k)2 which could potentially lead to an infrared

singularity upon integration, is partially “protected” by the external momentum k. One
might expect that the infrared divergence will only reveal itself in the limit k → 0.

Bearing this in mind, let us determine σ(k)k2∼0 by performing the ~q-integration in (5.127)
exactly for an arbitrary momentum ~k. We shall invoke polar coordinates. Without loss of
generality, we can put the qx-axis along ~k to write

σ(k) =
g2N

4π2

∫ ∞
0

qdq
q2 +M2

q4 +M2q2 + λ4

∫ 2π

0
dθ

1
k2 + q2 − 2qk cos θ

(1− cos2 θ) , (5.128)
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where we made use of ~k · ~q = kq cos θ. The Poisson-like θ-integral can be easily calculated
using a contour integration,∫ 2π

0
dθ

1− cos2 θ

k2 + q2 − 2qk cos θ
=
{ π

q2 if k2 ≤ q2

π
k2 if q2 ≤ k2 , (5.129)

so we obtain

σ(k) =
g2N

4π

(
1
k2

∫ k

0

q(q2 +M2)
q4 +M2q2 + λ4

dq +
∫ ∞
k

q2 +M2

q(q4 +M2q2 + λ4)
dq
)
. (5.130)

It appears that both integrals are well-behaved in the infrared and ultraviolet for k > 0.

Notice that we did not invoke the gap equation (5.119) yet. This is possible, but neither
necessary nor instructive at this point. In order to have a better understanding of the k → 0
behavior, we can calculate the integrals in (5.130), and extract the small momentum behavior.
Doing so, one finds

σ(k)|k2∼0 ∼ −
g2N

8π
M2

λ4
ln(k2) , (5.131)

in the case that M2 6= 0, which is a well-defined result, in contrast with (5.135).

However, there is still an infrared instability in the theory due to the final ln(k2)-factor
appearing in σ(k) for small k. This is our second main argument why coupling the mass
operator (ϕϕ− ωω) to the theory causes problems:

• The quantum correction to the self energy explodes for small k, completely invalidating
the loop expansion. This problem does not occur in 3d or 4d, since there σ ≤ 1. It
is not difficult to imagine that the infrared ln(k2)-singularity will spread itself through
the theory, making everything ill-defined for small k.

• Moreover, we also encounter a problem of a more fundamental nature. The starting
point of the whole construction was to always stay within the Gribov horizon Ω. This
can be assured by the so called no-pole condition, i.e. σ(k2) ≤ 1 as stated in the original
article by Gribov [2]. Since M2 must be positive13, we clearly see from (5.131) that

σ(k)|k2∼0 � 1 , (5.132)

hence G(k) = 1/k21/(1− σ(k)) is signalling us that we have crossed the horizon.

This confirms again that M2 = 0 is the only viable option, i.e. we cannot go beyond the
standard Gribov-Zwanziger action if we want to avoid the appearance of destructive infrared
issues, which unavoidably force the theory to leave the Gribov region.

Remark. In the previous paragraph, in order to calculate (5.127), we have first deter-
mined the integral in expression (5.127) exactly and then we have taken the limit k2 → 0.
However, one usually [2, 167] first expands the integrand for small k2 and then performs the
loop integration, as this considerably reduces the calculational effort. In the current case, this

13A negative M2 would lead to tachyonic instabilities in the theory, see e.g. the vacuum functional as an
example.
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course of action unfortunately leads to incorrect results. Indeed, doing so, we would reexpress
“1” as

1 = g2N
kµkν
k2

∫
d2q

(2π)2

1
q4 +M2q2 + λ4

(
δµν −

kµkν
k2

)
+ ς

M2

λ2
, (5.133)

an operation which is based on the gap equation (5.119). Subsequently we rewrite 1− σ(k),

1− σ(k) = g2N
kµkν
k2

∫
d2q

(2π)2

1
q4 + λ4

(
1− q2

(k − q)2

)(
δµν −

kµkν
k2

)
+ ς

M2

λ2

+ g2N
kµkν
k2

∫
d2q

(2π)2

1
(k − q)2

M2

q4 +M2q2 + λ4

(
δµν −

qµqν
q2

)
, (5.134)

and then we expand the integrand14 around k2 ∼ 0 to find at lowest order,

(1− σ(k))|k2∼0 =
g2N

2

∫
d2q

(2π)2

M2

q2(q4 +M2q2 + λ4)
+ ς

M2

λ2
+O(k2) . (5.135)

From this expression, we are led to believe that 1 − σ(k), hence σ(k), is ill-defined at small
k2, due to an infrared singularity which makes the integral in the r.h.s. of (5.135) to explode.
However, this is not true, as in this case, the limit and the integration cannot be exchanged.
The only correct way is to first calculate the integral and then take the limit as was done in
the previous paragraph. Further on this section, we shall explicitly explain why expression
(5.135) is wrong by exploring the M2 = 0 case in more detail.

The case M2 = 0
It is instructive to take a closer look at the usual Gribov-Zwanziger scenario. One finds for
M2 = 0 that

σ(k)|k2∼0 ∼
g2N

4π

(
π

4λ2
− k2

4λ4

)
, (5.136)

a result which is indeed free of infrared instabilities. We also point out that ordinary (pertur-
bative) Yang-Mills theory is recovered when λ = 0. It is hence nice to observe that this again
causes troubles in the infrared since the λ → 0 limit diverges. This is just a manifestation
of the fact that 2d gauge theories are infrared sick at the perturbative level, and need some
(dynamical) regularization. Apparently, at least at the level of the ghost propagator at one
loop, the Gribov mass acts a natural regulator in the infrared sector.

We should still use the gap equation in (5.136) to find the correct ghost propagator. The gap
equation (3.184) for M2 = 0 is readily computed as

2
g2N

=
∫

d2p

(2π)2

1
p4 + λ4

=
1

8λ2
. (5.137)

Evoking this gap equation, we find

1− σ(k) = 1− g2N

4π

(
π

4λ2
− k2

4λ4

)
=
g2N

4π
k2

4λ4
=

16k2

πg2N
. (5.138)

14We notice that there will be no terms of odd order in k. This would correspond to an odd power of q,
which will vanish upon integration due to reflection symmetry.
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Henceforth, we obtain

Gab(k)
∣∣∣
k2∼0

= δab
1
k2

1
1− σ(k)

∣∣∣∣
k2∼0

=
πg2N

16k4
. (5.139)

We conclude that the ghost propagator is clearly enhanced and displays the typical behavior
∼ 1/k4 in the deep infrared, in accordance with the usual Gribov-Zwanziger scenario.

Remark. As we already announced earlier in this section, let us have a closer look at
the M2 = 0 case. In a way completely similar to the M2 6= 0 case, we find, around k2 ∼ 0,

(1− σ(k))|k2∼0 = g2N
kµkν
k2

∫
d2q

(2π)2

1
q4 + λ4

(
k2

q2
− 4

(k · q)2

q2

)(
δµν −

kµkν
k2

)
+O(k4) ,

(5.140)
where we have expanded the integrand w.r.t. q before integrating. Exploiting polar coordi-
nates once more, we are now brought to

(1− σ(k))|k2∼0 =
g2N

4π2
k2

∫ +∞

0

qdq
q2

1
q4 + λ4

∫ 2π

0
(1−4 cos2 θ)(1−cos2 θ)dθ+O(k4) . (5.141)

Surprisingly, the θ-integral vanishes, as it can be easily checked. In fact, one can extend this
observation to all orders in k. To do so, we write

q2

(q − k)2
=

q2

q2 + k2 − 2qk cos θ
=

1
1 + k2

q2 − 2kq cos θ
=
∞∑
n=0

(
k

q

)n
Un(cos θ) , (5.142)

where we introduced the Chebyshev polynomials of the second kind, Un(x). It holds that
[168]

Un(cos θ) =
sin((n+ 1)θ)

sin θ
. (5.143)

Subsequently, we can rewrite

1− σ(k) = g2N

∫
d2q

(2π)2

∞∑
n=1

(1− cos2 θ)Un(cos θ)
(
k

q

)n 1
q4 + λ4

, (5.144)

where use has been made of U0(x) = 1. Assuming that the integral and the infinite sum can
be interchanged, we are led to

1− σ(k) =
g2N

4π2

∞∑
n=1

kn
∫ +∞

0

dq
qn−1

1
q4 + λ4

∫ 2π

0
(1− cos2 θ)Un(cos θ)dθ . (5.145)

Since n ≥ 1 and making use of (5.143), for the θ-integration we find∫ 2π

0
(1− cos2 θ)Un(cos θ)dθ =

∫ 2π

0
sin θ sin((n+ 1)θ)dθ

=
∫ 2π

0

cos(nθ)− cos((n+ 2)θ)
2

dθ = 0 . (5.146)
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However, this does not make the integral in (5.145) well defined, as the remaining q-integral
is infrared singular for any occurring value of n! In fact, exactly these infrared divergences
forbid the interchange of integral and of the infinite sum. This is a nice example of the fact
that the integral of a infinite sum can be well defined, whereas the (sum of the) individual
integrals are not.

When we first integrate exactly for any k and then expand in powers of k2, we do recover the
meaningful result (5.138) at k2 ∼ 0.

4.3 Conclusion in 2d

From the previous subsection, we can conclude that it is not possible to “refine” the Gribov-
Zwanziger action in 2d, in contrast with the 3d or 4d case. We are thus back in the usual
Gribov-Zwanziger scenario, which predicts a 1/k4 singularity for the ghost propagator, and a
vanishing gluon propagator at zero momentum, D(0) = 0.

5 Lattice study of the RGZ propagators

5.1 Introduction

In this section, we shall discuss the agreement of the gluon propagator (5.44) in 4d, i.e.

D(p2) =
p2 +M2

p4 + (M2 +m2) p2 + 2g2Nγ4 +M2m2︸ ︷︷ ︸
$

, (5.147)

with the lattice data. We shall base ourselves on [114]. We are curious whether the propaga-
tor (5.147) can reproduce not only qualitatively the gluon propagator, but that it also works
out well at the quantitative level. We shall therefore analyze the lattice gluon propagator in
pure SU(3) Yang-Mills gauge theories in 4d and investigate to what extent the propagator
(5.147) can match the data, by treating the mass scales m2, M2 and γ4 as fitting parameters.
It shall turn out that an important role is played by the presence of the dimension two gluon
condensate 〈A2〉, represented by m2.

The lattice calculations were done by our collaborator O. Oliveira, whereby the data of
Table 5.3 were used. Of the three β values, β = 6.0 was used to perform an extrapolation to
the infinite volume limit, whilst the Berlin-Moscow-Adelaide at β = 5.7 and β = 6.2 was be
used to cross-check the final results. We refer to [114] for the details concerning the lattice
calculations. Let us now glance trough the results.
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β = 5.7 a = 0.1838 fm
L 64 72 80 88 96
aL (fm) 11.8 13.2 14.7 16.2 17.6
# Conf 14 20 25 68 67
β = 6.0 a = 0.1016 fm

L 32 48 64 80
aL (fm) 3.25 4.88 6.50 8.13
# Conf 126 104 120 47
β = 6.2 a = 0.07261 fm
L 48 64
aL (fm) 3.49 4.65
# Conf 88 99

Table 5.3: The lattice setup. For the conversion to physical units we took the lattice spacing measure
from the string tension [169]. The first set of configurations, i.e. those with β = 5.7, were
generated by the Berlin-Moscow-Adelaide group and the results published in [108]. Note
that in their paper, the lattice spacing was taken from r0. The Berlin-Moscow-Adelaide
data was rescaled appropriately to follow our conventions.

5.2 Gluon propagator and evidence for the d = 2 gluon condensate 〈A2〉
In this section, we shall show that m2 is of paramount importance for the fit of the gluon
propagator (5.147). In principle, it is sufficient to consider the condensation of the operator
ϕaiϕ

a
i −ωai ωai to have a gluon propagator that does not vanish at zero momentum. Therefore,

we can test whether the lattice data can be fitted by the gluon propagator (5.147) with
m2 = 0, i.e.

D(p2) =
p2 +M2

p4 +M2p2 + 2g2Nγ4
. (5.148)

Although expressions (5.147) and (5.148) have a very similar structure, the lattice data dis-
tinguishes quite clearly between the two functional forms. Indeed, while (5.147) is able to
reproduce the lattice propagator on a wide range of momentum starting at 0 GeV and going
up to 1 − 1.5 GeV, in the sense that the corresponding fit have χ2/d.o.f. < 2, the fits cor-
responding to (5.148) always have a χ2/d.o.f. larger than three, and should as such be rejected.

To give an example of a fit with m2 6= 0, we have depicted the renormalized gluon prop-
agator computed using the β = 6.0 and 644 lattice and the fits corresponding to (5.147), see
Figure 5.14. Although the fits use only the momentum in [0, pmax], in Figure 5.14 we show the
propagator if one uses (5.147) over the entire momentum region. There is a small difference
between the lattice data and the prediction of (5.147) in the ultraviolet region which is clearly
seen in the gluon dressing function, see Figure 5.15. These small observed differences15 are
expected as (5.147) does not take into account the perturbative logarithmic corrections [114].

In conclusion, the fits to the propagators (5.147) and (5.148) seem to point towards a non-
vanishing gluon condensate 〈A2〉. Later, we shall discuss this in more detail and extract an

15For the highest lattice momenta p = 7.76 GeV, the measured propagator is 0.01205(32) GeV−2, while
(5.147) predicts 0.0172 GeV−2.
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estimate for 〈A2〉.
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Figure 5.14: Gluon propagator and fit to (5.147) using the momentum range [0, pmax]. pmax = 1.243
GeV is the largest fitting range which has a χ2/d.o.f. < 2. The figure includes the
outcome of the fits for the two fitting ranges considered.
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Figure 5.15: The same as in Figure 5.14 but for the gluon dressing function p2D(p2). The dressing
function provides a clear picture of the differences between (5.147) and the lattice data
in the ultraviolet region.

5.3 Measuring the scales in the Refined Gribov-Zwanziger gluon propaga-
tor using the lattice data

Let us now give some estimates for the different mass parameters in (5.147). It is not expected
that (5.147) is able to describe the lattice propagator for the full range of momenta, due to
logarithmic corrections. Therefore, a sliding window analysis was performed, i.e. the prop-
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agator was fitted using momenta in [0, p], with increasing values for p. Then, the χ2/d.o.f.
was used to establish a maximum range of momenta described by (5.147), see Figure 5.16.
For the largest two β values and for the largest lattices, the Refined Gribov-Zwanziger tree
level propagator is able to describe the lattice data well above 1 GeV. In particular, for the
largest volume, being the β = 6.0 and 804 case, the lattice gluon propagator can be fitted by
(5.147) beyond 1.5 GeV.
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Figure 5.16: Fitting the propagator to (5.147): χ2/d.o.f. as a function of the maximum fitting
momenta pmax for each lattice.

In Figure 5.17 the result of fitting (5.147) is reported to the renormalized gluon propagator
computed from the β = 6.0 and 644 lattice data as a function of the fitting range [0, pmax].
Similar plots can be shown for the remaining fits. As Figure 5.17 shows, the estimated values
for M2, M2 +m2 and $4 = 2g2Nγ4 +M2m2 are stable against a change on pmax. For each
simulation, as a set of values, we choose those which correspond to the largest fitting range
with a χ2/d.o.f. ∼ 1. For example, for the β = 6.0 and 644 data, we take pmax = 0.929 GeV
and M2 = 2.589± 0.068 GeV2, M2 +m2 = 0.539± 0.025 GeV2, $4 = 0.2837± 0.0059 for a
χ2/d.o.f. = 1.07. When the χ2/d.o.f. never crosses or becomes to close to 1, such as happens
in the smallest fitting lattice volume, we choose the set of values which minimizes χ2/d.o.f.
for the largest possible fitting range.
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Figure 5.17: Evolution of the fitting parameters with pmax for β = 6.0 and 644 data.
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In Table 5.4 we report the estimates of the different parameters defining the Refined Gribov-
Zwanziger tree level gluon propagator for each lattice simulation. The values are plotted
in Figure 5.18 as a function of the inverse of the lattice length L. The data shows a small
dependence on 1/L, especially for M2+m2, and on the lattice spacing, i.e. on β. Nevertheless,
for β = 6.0, the four volumes can be combined to perform a linear extrapolation to the infinite
volume limit.

L pmax M2 M2 +m2 $4 χ2/d.o.f.

β = 5.7
64 1.255 2.132± 0.052 0.364± 0.020 0.2553± 0.0051 0.99
72 0.814 2.017± 0.097 0.302± 0.028 0.245± 0.011 1.21
80 1.089 2.151± 0.047 0.359± 0.016 0.2604± 0.0049 1.55

β = 6.0
32 1.072 2.82± 0.13 0.652± 0.054 0.2708± 0.0096 1.40
48 0.757 3.07± 0.33 0.71± 0.10 0.312± 0.030 1.46
64 0.929 2.589± 0.068 0.539± 0.025 0.2837± 0.0059 1.07
80 1.103 2.346± 0.043 0.463± 0.019 0.2561± 0.0030 1.03

β = 6.2
48 1.419 2.40± 0.11 0.473± 0.045 0.2677± 0.0095 1.17
64 1.476 2.366± 0.066 0.476± 0.027 0.2721±−0.0057 1.37

Table 5.4: Tree level gluon propagator parameters from fitting the Refined Gribov-Zwanziger prop-
agator (5.147) to the renormalized lattice gluon propagator. The errors reported are
statistical and computed assuming Gaussian error propagation.
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Figure 5.18: Parameters for the tree level gluon propagator of the Refined Gribov-Zwanziger action,
computed fitting the renormalized gluon propagator, as a function of the inverse of the
lattice length L. The observed fluctuations in the β = 5.7 results are explained in [114].

Now let us give the final values. Firstly, M2 is reasonably well described by a linear function
as a function of 1/L. Indeed, the χ2/d.o.f. of the fit is 2.13, giving

M2 = 2.15± 0.13 GeV2 , (5.149)
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which is in good agreement with the value computed from the largest β = 5.7 volume.

Secondly, for M2 +m2, the linear fit gives an infinite volume value of

M2 +m2 = 0.337± 0.047 GeV2 , (5.150)

for a χ2/d.o.f. = 2.04.

Thirdly, for $4, the linear extrapolation has a χ2/d.o.f. larger than 3. Fortunately, it seems
that $4 shows the smallest dependence on 1/L and the lattice spacing, with the largest vol-
umes providing numbers which are compatible, within one standard deviation. Therefore,
given the results reported in Table 5.4 for the largest volumes, one can claim that

$4 = 0.26 GeV4 , (5.151)

which are the reliable digits from the largest two lattices, see the Table 5.4. The linear
extrapolations can be seen in Figure 5.19. We observe that the figures for the β = 5.7 data
and the linearly extrapolated results are pretty close, giving us further confidence in the
extrapolation.
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Figure 5.19: The same as Figure 5.18 but including the linear extrapolations for M2 and M2 +m2,
which are obtained using the β = 6.0 data. The large volume β = 5.7 data serves as a
consistency check, as explained before in the text.

From these three numbers, we can extract

m2 = −1.81± 0.14 GeV2 , (5.152)

and simultaneously
2g2Nγ4 = 4.16± 0.38 GeV4 . (5.153)

Therefore, assuming that (5.147) describes the infrared gluon propagator, we have that

D(0) =
M2

$4
= 8.3± 0.5 GeV−2 . (5.154)
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The zero momentum gluon propagator computed using the extrapolated values for M2 and
$4 is in excellent agreement, within one standard deviation, with the lattice D(0) computed
from lattice QCD for β = 5.7 where D(0) ∼ 7 − 8.5 GeV−2, β = 6.0 and 804 data where
D(0) = 8.93 ± 0.47 GeV−2 and for β = 6.2 and 644 data which has a D(0) = 8.95 ± 0.22
GeV−2.

5.4 Extracting a value for the dimension two gluon condensate 〈g2A2〉
In order to obtain an estimate that can be compared with other values available on the
market, we shall rely on the renormalization group. In particular, we wish to compare with
the values (5.2) and (5.3), being

〈g2A2〉 = 5.1+0.7
−1.1 GeV2 , (5.155)

and
〈g2A2〉 = 4.4± 0.4 GeV2 . (5.156)

For this, we shall need the following correspondence between the tree level gluon mass m2

and the condensate 〈A2〉 [87, 137]

〈g2A2〉 = −ζ0m
2 , ζ0 =

9
13
N2 − 1
N

, (5.157)

Hence, our estimate (5.152) corresponds to a positive gluon condensate, as using (5.157) yields
for N = 3

〈g2A2〉 = 3.35± 0.26 GeV2 . (5.158)

As here, we have renormalized at a scale µ = 3 GeV, while the value (5.155) was obtained at
a renormalization scale µ = 10 GeV, this value needs to be rescaled. For this, we need the
following one loop renormalization group equations,

µ
∂

∂µ
g2 = −2β0g

4 , β0 =
11
3

N

16π2
,

µ
∂

∂µ
m2 = γ0g

2m2 , γ0 = −3
2
N

16π2
. (5.159)

which are valid in any (massless) renormalization scheme16 [87, 137]. We can solve the
differential equation for g2 at one loop to find

g2 =
1

2β0
ln

µ

ΛT
, (5.160)

whereby ΛT is the scale at which the corresponding coupling constant g2 blows up. Therefore,
we have at one loop

µ
∂

∂µ
m2 =

γ0

2β0

1
ln µ

ΛT

m2 , (5.161)

which by introducing the auxiliary variable ξ = ln µ
ΛT

, can be easily integrated to

m2 = m2
0

(
ξ

ξ0

) γ0
2β0

= m2
0

(
ln µ

ΛT

ln µ0

ΛT

)−9/44

. (5.162)

16We recall that the lowest order anomalous dimensions are universal quantities.
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The fundamental scale ΛT of this T -scheme is related to the conventional MS one through
the conversion formula [136]

ΛT = ΛMSe
507/792 . (5.163)

Thus using the estimate ΛMS = 0.224 GeV2 determined in [136] consequently leads to

〈g2A2〉µ=10 GeV = 3.03± 0.24 GeV2 , (5.164)

whereby we have employed (5.157) and 〈g2A2〉 = 3.35 GeV2 at µ0 = 3 GeV2 as input values.
A remarkable result is that our estimate is at least in the same ballpark as the ones of (5.155)
and (5.156), which were obtained in a completely independent way.

5.5 Comparing the lattice estimate of M2 with the analytic obtained value

Finally, although the lattice data seem to support the gluon propagator (5.147), the value
obtained for M2, namely M2 = 2.15 ± 0.13 GeV2, see equation (5.149), does not agree
with the values obtained in section 2.6, i.e. M2 = 0.37Λ2

MS
= 0.08288 GeV2 , whereby we

used ΛMS = 0.224 GeV2 determined in [136]. This latter value was obtained at a different
renormalization scale, but is far too much off to be in the same ballpark as the value obtained
by the lattice (5.149). However, notice that in section 2.6, we did not take into account the
condensate

〈
A2
〉
, as we have always set m2 = 0. Therefore, it is possible that this has a great

influence on the results in section 2.6. In any way, we can conclude that the results of section
2.6 are not very satisfactory and more research should be done on this topic.

6 But there is more

So far, we have refined the GZ action by including a dimension 2 condensate for which the
corresponding operator is BRST invariant, namely ϕaiϕ

a
i − ωai ω

a
i = s(ωaiϕ

a
i ). However, as

we have discussed in great extend in chapter 4, the BRST symmetry is softly broken in the
GZ action. Therefore, one could ask why we have investigated a BRST invariant d = 2
operator. In fact, we could split the operator ϕaiϕ

a
i − ωai ω

a
i into two separate operators,

i.e. coupled to different sources. Moreover, there are other d = 2 operators. In fact, all
possible renormalizable d = 2 operators Oi in the GZ action, which have ghost number zero,
are given by

Oi = {AµAµ, ϕaiϕai , ϕaiϕai , ϕaiϕai , ωai ωai } . (5.165)

We shall only investigate condensates which are fully contracted over the indices, e.g. like
ϕaiϕ

a
i = ϕacµ ϕ

ac
µ , in order to have a lorentz invariant object. However, as one can find in

[170], there are other possibilities to combine the color indices. If one wants to be absolutely
complete, one would have to take into account all possible color contractions. Unfortunately,
taking all possible color contractions into account would be hopelessly complicated and we
hope that we have captured the physics by taking only one color combination. However, in
principle, different color combinations are possible.

As an advantage of the new insight that we can split the operator ϕaiϕ
a
i − ωai ωai , we shall

be able to calculate the effective potential. This was impossible for the RGZ action as ex-
plained in section 2.6. In this way, we shall be able to provide profound indications that the
condensates are indeed present.
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Therefore, the purpose of this section is twofold. (1) We want to show that there are more
condensates than taken in consideration so far. (2) We want to show explicitly that the mini-
mum of the effective potential including the condensates is a non trivial minimum, i.e. in this
minimum the condensates are present.

6.1 A further refining of the Gribov-Zwanziger action

We propose to study the following extended action,

ΣCGZ = Σ′GZ + ΣA2 + Sϕϕ + Sωω + Sϕϕ,ωϕ + Sϕϕ,ωϕ + Svac , (5.166)

whereby Σ′GZ is given by equation (3.216), ΣA2 by (5.7) and

Sϕϕ =
∫

d4xs(Pϕaiϕ
a
i ) =

∫
d4x [Qϕaiϕ

a
i − Pϕai ωai ] ,

Sωω =
∫

d4xs(V ωai ω
a
i ) =

∫
d4x [Wωai ω

a
i − V ϕai ωai ] ,

Sϕϕ,ωϕ =
1
2

∫
d4xs(Gijωaiϕ

a
j ) =

∫
d4x

[
H
ij
ωaiϕ

a
j +

1
2
G
ij
ϕaiϕ

a
j

]
,

Sϕϕ,ωϕ =
1
2

∫
d4xs(H ijϕaiϕ

a
j ) =

∫
d4x

[
1
2
Gijϕaiϕ

a
j −H ijωai ϕ

a
j

]
,

Svac =
∫

d4x
[
κ(GijGij − 2H ijH

ij) + λ(GiiGjj − 2H iiH
jj)
]

−
∫

d4x [α(QQ+QW ) + β(QW +WW ) + χQτ + δWτ ] . (5.167)

We have introduced 4 new doublets of sources, i.e.

sP = Q ,

sV = W ,

sG
ij = 2H ij

,

sH ij = Gij , (5.168)

whereby P , V , H ij and H
ij behave like Grassmann quantities. For consistency, the sources

with double index ij sources are symmetric in these indices. In this light, we use the following
definition for the derivative w.r.t. a symmetric source Λµν :

δΛij
δΛk`

=
1
2

(δikδj` + δi`δjk) . (5.169)

Notice that some sources have double indices, e.g. H ij , while other sources have no indices,
e.g. P . The reason for this is only for the of the algebraic renormalization in order to keep
certain symmetries, and they have no further meaning.

We have also introduced a vacuum term which shall be important for the renormalization
of the vacuum energy. As shown in [137], the dimensionless local composite operator (LCO)
parameters α, β, χ and δ of the quadratic terms in the sources are needed to account for
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the divergences present in the correlation functions like 〈Oi(k)Oj(−k)〉, with Oi one of the
operators given in expression (5.165).

Now we can prove that the action (5.166) is renormalizable to all orders. The proof is very
similar to the proof of the renormalizability of the RGZ action, the only difference is that
algebraically, mixing is allowed between different sources and parameters. We refer to the
appendix F for all the details.

For the rest of the story, we are only interested in a number of condensates. Therefore,
we first set the source W = 0, which is coupled to ωω, as this is not our current interest17

and we also set P = V = η = 0, as we have introduced these only to preserve the BRST.
Secondly, we also set H ij = H

ij = 0 and we set Gij = δijG and G
ij = δijG. The action

(5.166) becomes,

ΣCGZ = SGZ +
∫

d4x

[
Qϕaiϕ

a
i +

1
2
τAaµA

a
µ −

1
2
ζτ2 − αQQ− χQτ

]
+
∫

d4x

[
1
2
Gϕaiϕ

a
i +

1
2
Gϕaiϕ

a
i + %GG

]
, (5.170)

whereby (κd(N2 − 1) + λd2(N2 − 1)2) was replaced by one parameter %.

6.2 A diagrammatical look at the mixing and vacuum divergences

Before starting the calculation of the effective action, we can provide some simplification of
the action with the help of a diagrammatical argument. Firstly, looking at the action (5.170),
we see that a term χQτ is present. This term is responsible for killing the divergences in
the vacuum correlators

〈
A2(x)ϕϕ(y)

〉
for x → y. However, we can prove that there are no

divergences of this kind in diagrams at one loop. Let us start with these one loop diagrams.
There is only one possible type of diagram for

〈
A2(x)ϕϕ(y)

〉
, as can be found in Figure 5.20.

A

A

ϕ

ϕ

x y

Figure 5.20: 1-loop diagram.

The UV behavior of this diagram is finite, as can be extracted from the list of propagators
(4.23). Indeed, for large momenta, the corresponding integral of the diagram (5.20) behaves
like ∼

∫
d4p 1

p4
1
p4 , which is perfectly finite. Therefore, limx→y

〈
A2(x)ϕϕ(y)

〉
is not divergent

at one loop. In the next section, we shall explicitly prove this.

At two loops, it is not possible to present the same argument as there exists a diagram
which can be logarithmic divergent:

17There is no lowest order coupling of ω and ω to the gluon sector.
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A

A

A ϕ

ϕ

ϕ

A ϕ

ϕ

ϕ

x y

Figure 5.21: A possible divergent 2-loop diagram.

as can be checked from the list of propagators (4.23).

Secondly, we can also have a look at the mixing of the operators A2 and ϕϕ. In the algebraic
analysis, see appendix F, we have found that a mixing is possible between the different opera-
tors, see equation (F.26). This means that algebraically, a counterterm in QAµAµ is allowed.
This counterterm is needed to cancel the infinities of the following type of diagrams:

Q

A

A

However, we can prove that there are no infinities at one loop, as the only possible diagram
is given by,

Q

A

A

ϕ

ϕ A

A

which is similar to the diagram in Figure 5.20. We can thus conclude that the mixing can
only start at two loops. Again, we cannot exclude divergences at two loops, due to a similar
diagram as in Figure 5.21.

6.3 The effective action

In this section, we shall try to calculate the effective action. The calculation is quite technical
and shall therefore be split in different steps, although the result is reasonably compact and
can be immediately found in expression (5.225).

The energy functional can be written as

e−W (Q,τ,G,G) =
∫

[dAµ][dc][dc][db][dϕ][dϕ][dω][dω]e−ΣCGZ , (5.171)
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with ΣCGZ given by equation (5.170). We recall that in d = 4 − ε dimensions, we have the
following dimensionalities,

[Aµ] = [ϕ] =
d− 2

2
= 1− ε

2
,

[g] =
4− d

2
=
ε

2
,

[τ ] = [Q] = [G] =
[
G
]

= 2 ,
[ζ] = [α] = [χ] = [%] = d− 4 = −ε . (5.172)

6.3.1 The LCO formalism

In order to calculate the effective action, we shall follow the local composite operator (LCO)
formalism developed in [137, 171]. Let us outline the main idea. We start from a LCO O, in
our case a local dimension two operator within a dimension four theory. As is already done
multiple times, we couple the operator(s) of interest to an appropriate source(s) J , and add
this term JO to the Lagrangian. This gives rise to a functional W (J), which we need to
Legendre transform to find the effective potential, see equation (2.18). However, as already
made clear, novel infinities shall arise, which are proportional to J2. This infinities are due
to the divergences in the correlator limx→y 〈O(x)O(y)〉, as already explained in section 6.2.
Therefore, in general, a term proportional to J2 is always needed in the counterterm, and the
starting action needs a term18 ζJ2. This ζ is called the LCO parameter, and is needed to
absorb the divergences in J2, i.e. δζJ2. The functional W (J) obeys the following homogeneous
RGE (

µ
∂

∂µ
+ β(g2)

∂

∂g2
− γJ(g2)

∫
d4xJ

δ

δJ
+ η(g2, ζ)

∂

∂ζ

)
W (J) = 0 . (5.173)

with η(g2, ζ) the running of ζ,

µ
∂

∂µ
ζ = η(g2, ζ) (5.174)

Notice that it is necessary to include the running of ζ at this point.

Now the question is, how can we determine this seemingly arbitrary parameter ζ? This
is possible by employing the renormalization group equations. We can write

ζ0J
2
0 = µ−ε(ζJ2 + δζJ2) , (5.175)

which is the translation of expression (2.94). As the l.h.s. is independent from µ, we can
derive both sides w.r.t. µ to find:

−ε(ζ + δζ) +
(
µ
∂

∂µ
ζ + µ

∂

∂µ
(δζ)

)
− 2γJ(g2)(ζ + δζ) = 0 , (5.176)

whereby γJ(g2) is the anomalous dimension of J . As we can consider ζ to be a function of
g2, and by evoking the β function,

β(g2) = µ
∂

∂µ
g2 (5.177)

18For an example, see the action (5.170), where we the term − 1
2
ζτ2 − αQQ− χQτ is needed in the starting

action. The sources Q and τ are coupled to the LCO operators O1 = ϕiϕi and O2 = AµAµ. Note that here,
there is also a mixing term χQτ for the divergences in limx→y 〈O1(x)O2(y)〉.
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the equation (5.176) becomes,

β(g2)
∂

∂g2
ζ(g2) = 2γJ(g2)ζ + f(g2) . (5.178)

with f(g2) = εδζ−β(g2) ∂
∂g2 (δζ)+2γG(g2)δζ. The general solution of this differential equation

reads

ζ(g2) = ζp(g2) + α exp

(
2
∫ g2

1

γJ(z)
β(z)

dz

)
, (5.179)

with ζp(g2) a particular solution of (5.178). A possible particular solution is given by

ζp(g2) =
c0

g2
+ c1~ + c2g

2~2 + . . . . (5.180)

whereby we have temporarily introduced the dependence on ~. Notice therefore that the
n-loop result for ζ(p2) will require the (n+ 1) loop results of β(g2), γJ(g2) and f(g2). As we
would like ζ to be multiplicatively renormalizable, we set α = 0. In this case we have that

ζ(g2) + δζ(g2) = ζ0 = Zζζ(g2) . (5.181)

and we loose the independent parameter α. Also, now that ζ is a function of g2, the RGE
(5.173) becomes (

µ
∂

∂µ
+ β(g2)

∂

∂g2
− γJ(g2)

∫
d4xJ

δ

δJ

)
W (J) = 0 , (5.182)

as deriving w.r.t. ζ is now incorporated in deriving w.r.t. g2.

After determining the LCO parameter ζ, the next step is to calculate the effective action
by doing a Legendre transformation. However, it shall be easier to perform a Hubbard-
Stratonovich transformation on W (J), whereby we introduce an auxiliary field σ describing
the composite operator O. In this way, we immediately loose the quadratic term in J2, and
a clear relation with the effective action emerges. How this is done, shall be demonstrated
in this section. We only need to mention that the case we are handling here is a bit more
complicated due to the mixing of the operators O1 = ϕiϕi and O2 = AµAµ. However, the
principles stay the same.

6.3.2 Differential equation for the LCO parameters ζ, α, χ and %

We shall try to determine the four LCO parameters ζ, α, χ and %. We shall first derive a
differential equation for these parameters, in an analogous way as in [137, 143]. As there can
be mixing, we shall define δζ, δω and δχ as follows

−1
2
ζ0τ

2
0 −α0Q

2
0−χ0Q0τ0 = −µ−ε

(
1
2
ζτ2 + αQ2 + χQτ +

1
2
δζτ2 + δαQ2 + δχQτ

)
, (5.183)

while δ% can be defined independently:

%0G0G0 = µ−εZ%ZGZG%GG = µ−ε
(

1 +
δ%

%

)
%GG . (5.184)
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We further define the β function,

µ
∂

∂µ
g2 = β(g2) , (5.185)

and the anomalous dimension of G,

µ
∂

∂µ
lnZG = γG(g2) ⇒ µ

∂

∂µ
G = −γG(g2)G , (5.186)

which is exactly the same as the anomalous dimension of G as ZG = ZG. To define the
anomalous dimensions of Q and τ , we start from equation (F.26):[

Q0

τ0

]
︸ ︷︷ ︸
X0

=
[
ZQQ 0
ZτQ Zττ

]
︸ ︷︷ ︸

Z

[
Q
τ

]
︸︷︷︸
X

, (5.187)

a relation stemming from the algebraic renormalization. With the matrix Z, we can associate
the anomalous dimension matrix Γ:

µ
∂

∂µ
Z = ZΓ , (5.188)

and thus

Γ = Z−1µ
∂

∂µ
Z =

[
Z−1
QQµ

∂
∂µZQQ 0

−ZτQµ ∂
∂µZQQ + Z−1

ττ µ
∂
∂µZτQ Z−1

ττ µ
∂
∂µZττ

]
=
[
γQQ 0
Γ21 γττ

]
. (5.189)

This matrix is then related to the anomalous dimension of the operators:

X0 = ZX ⇒ 0 = µ
∂Z

∂µ
X + Zµ

∂X

∂µ
⇒ µ

∂X

∂µ
= −ΓX , (5.190)

so the anomalous dimensions of the sources Q and τ is given by

µ
∂

∂µ

[
Q
τ

]
=
[
−γQQ 0
−Γ21 −γττ

] [
Q
τ

]
. (5.191)

With these definitions in mind, we can derive a differential equation for δζ, δω, δχ and δ%.
We start with that of δ%. Starting from expression (5.184) and deriving w.r.t. µ, we find

−ε(%+ δ%) +
(
µ
∂

∂µ
%+ µ

∂

∂µ
(δ%)

)
− 2γG(g2)(%+ δ%) = 0 . (5.192)

As we can consider % to be a function of g2, according to the standard LCO formalism, we
can rewrite this equation as

β(g2)
∂

∂g2
%(g2) = ε(%+ δ%)− β(g2)

∂

∂g2
(δ%) + 2γG(g2)(%+ δ%) . (5.193)

As % is finite, we can even further simplify this into

β(g2)
∂

∂g2
%(g2) = 2γG(g2)%+ εδ%− β(g2)

∂

∂g2
(δ%) + 2γG(g2)δ% . (5.194)
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In an analogous fashion, we can find that differential equations for δζ, δω and δχ. If we derive
(5.183) w.r.t. µ, we find the following set of coupled differential equations

β(g2)
∂

∂g2

ζ(g2)
2

=
ε

2
δζ − 1

2
β(g2)

∂

∂g2
(δζ) + γττ (g2)(ζ + δζ) ,

β(g2)
∂

∂g2
α(g2) = εδα− β(g2)

∂

∂g2
(δα) + 2γQQ(g2)(α+ δα) + Γ21(g2)(χ+ δχ) ,

β(g2)
∂

∂g2
χ(g2) = εδχ− β(g2)

∂

∂g2
(δχ) + γQQ(g2)(χ+ δχ) + γττ (g2)(χ+ δχ)

+ Γ21(g2)(ζ + δζ) . (5.195)

6.3.3 Determination of the LCO parameters δζ, δα, δχ and δ%

In order to determine the LCO parameters δζ, δα, δχ and δ% at one loop, we need to cal-
culate the one loop divergence of the energy functional W (Q, τ,G,G). The details of these
calculations can be found in appendix G. From section 6.2, we know that at one loop, δχ
should be zero. This observation shall serve as a check on our computations.

In the appendix, equation (G.16), we have found

δζ = −1
ε

3
16π2

(N2 − 1) ,

δα = −1
ε

1
4π2

(N2 − 1)2 ,

δχ = 0 ,

δ% =
1
ε

1
4π2

(N2 − 1)2 . (5.196)

Already a first check on these results is the value of δζ, which has been already calculated up
to three loops, see [137, 140]. Comparison with these articles learns that the one loop value
indeed coincides. Secondly, we also see that indeed δχ = 0 at one loop, which nicely confirms
our diagrammatical power counting argument.

6.3.4 Solving the differential equations for ζ, α, χ and %

In this section, we shall try to solve the differential equations (5.194) and (5.195), when
possible. For these calculations, it is useful to keep in mind the β function, here given up to
two loops

β(g2) = −εg2 − 2
(
β0g

4 + β1g
6 +O(g8)

)
, (5.197)

with

β0 =
11
3

(
N

16π2

)
, β1 =

34
3

(
N

16π2

)2

, (5.198)

in order to keep track of the orders.

We start with (5.194),

β(g2)
∂

∂g2
%(g2) = 2γG(g2)%+ εδ%− β(g2)

∂

∂g2
(δ%) + 2γG(g2)δ%
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In order to solve this differential equation, we need to parameterize % as follows:

% =
%0

g2
+ %1 + %2g

2 +O(g4) . (5.199)

We also need the explicit value of the anomalous dimension γG. We have from the definition
(5.186) that

γG(g2) = µ
∂

∂µ
lnZG , (5.200)

and thus we need the value of ZG. From the renormalization factors (F.20) and (3.242), we
find that

γG(g2) = −µ ∂

∂µ
lnZϕ = −µ ∂

∂µ
ln(Z−1

g Z
−1/2
A ) . (5.201)

In [172], the factors Zg and ZA have been calculated up to three loops,

ZA = 1 +
13
6

1
ε

Ng2

16π2
+
(−13

8
1
ε2

+
59
16

1
ε

)(
Ng2

16π2

)2

+ . . .

Zg = 1− 11
6

1
ε

Ng2

16π2
+
(

121
24

1
ε2
− 17

6
1
ε

)(
Ng2

16π2

)2

+ . . . . (5.202)

So one can calculate γG(g2) up to three loops if necessary. Here only the first loop shall be
useful for our calculations, i.e.

γG(g2) =
3
4
Ng2

16π2
+ . . . , (5.203)

as δ%, see equation (G.16) is only known up to lowest order. With this information, we
can solve the differential equation (5.199) up to lowest order, by matching the corresponding
orders in g2

% =
24
53

(N2 − 1)2

Ng2
+ %1 + . . . . (5.204)

Unfortunately, we cannot solve the differential equation for %1 as we would require the two
loop value of δ%, which is on our to do list. Therefore, we leave this value as a still to be
determined parameter.

Let us now turn to the set of differential equations (5.195). We can do a similar analysis
as above for the first differential equation, namely

β(g2)
∂

∂g2

ζ(g2)
2

=
ε

2
δζ − 1

2
β(g2)

∂

∂g2
(δζ) + γττ (g2)(ζ + δζ) . (5.205)

We shall again parameterize ζ as follows:

ζ =
ζ0

g2
+ ζ1 + ζ2g

2 +O(g4) . (5.206)

In fact, we can even solve this differential equation to two loops. From [137, 140, 143], we
know that

δζ =
N2 − 1
16π2

[
−3
ε

+
(

35
2

1
ε2
− 139

6
1
ε

)(
g2N

16π2

)

+
(
−665

6
1
ε3

+
6629
36

1
ε2
−
(

71551
432

+
231
16

ζ(3)
)

1
ε

)(
g2N

16π2

)2
]
, (5.207)
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and

Zττ = 1− 35
6

1
ε

(
g2N

16π2

)
+
[

2765
72

1
ε2
− 449

48
1
ε

](
g2N

16π2

)2

+
[
−113365

432
1
ε3

+
41579
576

1
ε2

+
(
−75607

2592
− 3

16
ζ(3)

)
1
ε

](
g2N

16π2

)3

, (5.208)

so that from (5.189)

γττ (g2) =
35
6

(
g2N

16π2

)
+

449
24

(
g2N

16π2

)2

+
(

94363
864

+
9
16
ζ(3)

)(
g2N

16π2

)3

. (5.209)

By solving the differential equation for ζ, we can determine ζ to one loop order. In principle,
we can even go one loop further with the known results. However, as we shall only determine
the effective potential to one loop order, we do not need this next loop result. We find,

ζ =
N2 − 1
16π2

[
9
13

16π2

g2N
+

161
52

]
, (5.210)

see also [143].

The second and third differential equation of (5.195) are coupled. They can be simplified
and decoupled as δχ = 0:

β(g2)
∂

∂g2
α(g2) = 2γQQ(g2)α+ εδα− β(g2)

∂

∂g2
(δα) + 2γQQ(g2)δα+ Γ21(g2)χ ,

β(g2)
∂

∂g2
χ(g2) = γQQ(g2)χ+ γττ (g2)χ+ Γ21(g2)(ζ + δζ) . (5.211)

Fortunately, we know that Γ21 = 0 at lowest order, from the diagrammatical argument in
section 6.2. Therefore, we can set Γ21 = 0 +O(g4). When parameterizing as usual

α =
α0

g2
+ α1 + α2g

2 +O(g4) , χ =
χ0

g2
+ χ1 + χ2g

2 +O(g4) , (5.212)

we find for the solution of the differential equations

α0 = −24(N2 − 1)2

35N
,

χ0 = 0 . (5.213)

6.3.5 Hubbard-Stratonovich transformations

In this section, we shall get rid of the unwanted quadratic source dependence by the intro-
duction of multiple Hubbard-Stratonovich fields. We can then rewrite the relevant part of
the action in terms of finite fields and sources:∫

d4x
[
ZQQZϕ︸ ︷︷ ︸

c

Qϕaiϕ
a
i +

1
2
ZAZττ︸ ︷︷ ︸
b

τAaµA
a
µ +

1
2
ZAZτQ︸ ︷︷ ︸
a

QAaµA
a
µ −

1
2
ZζζZ

2
ττζ︸ ︷︷ ︸

ζ′

µ−ετ2

−Z2
QQZααα︸ ︷︷ ︸

α′

µ−εQQ− ZQQZχχZττχ︸ ︷︷ ︸
χ′

µ−εQτ
]

+
∫

d4x
[
ZGZϕ

1
2
Gϕaiϕ

a
i + ZGZϕ

1
2
Gϕaiϕ

a
i + Z%Z

2
G%GG

]
.
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We shall now perform the following Hubbard-Stratonovich transformations by multiplying
expression (5.171) with the following unities,

1 =
∫

[dσ1]e−
1

4ζ′
∫

ddx
(
σ1
g

+bµε/2A2−2ζ′µ−ε/2τ−χ′µ−ε/2Q
)2

,

1 =
∫

[dσ2]e
− 1

4ζ′[4α′ζ′−χ′2]

∫
ddx

(
σ2
g

+(bχ′−2aζ′)µε/2A2−2cζ′µε/2ϕϕ+(4α′ζ′−χ′2)µ−ε/2Q
)2

,

1 =
∫

[dσ3]e
− 1

4Z%Z
2
G
%

∫
ddx

(
σ3
g

+ 1
2
µε/2ZGZϕϕϕ+ 1

2
µε/2ZGZϕϕϕ+Z2

GZ%%µ
−ε/2G+Z2

GZ%%µ
−ε/2G

)2

,

1 =
∫

[dσ4]e
− 1

4Z%Z
2
G
%

∫
ddx

(
σ4
g

+ i
2
µε/2ZGZϕϕϕ− i

2
µε/2ZGZϕϕϕ−iZ2

GZ%%µ
−ε/2G+iZ2

GZ%%µ
−ε/2G

)2

,

(5.214)

whereby we have introduced four new fields, σ1,σ2, σ3 and σ4. By doing this HS transforma-
tion, we shall remove the quadratic sources and rewrite the functional energy as

e−W (Q,τ,G,G) =
∫

[dAµ][dc][dc][db][dσ1][dσ2][dσ3][dσ4][dϕ][dϕ][dω][dω]

× e
[
−
∫

ddx
(
L(φ,σ1,...,σ4)−µ−ε/2 σ1

g
2ζ′τ+χ′Q

2ζ′ +µ−ε/2
σ2
g

Q
2ζ′+

1
2
µ−ε/2

σ3−iσ4
g

G+ 1
2
σ3+iσ4

g
µ−ε/2G

)]
, (5.215)

with φ = (Aµ, c, c, b, ϕ, ϕ, ω, ω) and∫
ddxL(φ, σ1, . . . , σ4) = SGZ +

∫
ddx

(
1

4ζ ′
σ2

1

g2
+

b

2ζ ′
σ1

g
µε/2A2 +

b2

4ζ ′
µε(AaµA

a
µ)2

+
1

4ζ ′[4α′ζ ′ − χ′2]
σ2

2

g2
+

bχ′ − 2aζ ′

2ζ ′[4α′ζ ′ − χ′2]
µε/2

σ2

g
A2 − c

4α′ζ ′ − χ′2µ
ε/2σ2

g
ϕϕ

+
(bχ′ − 2aζ ′)2

4ζ ′[4α′ζ ′ − χ′2]
µε(AaµA

a
µ)2 +

c2ζ ′

[4α′ζ ′ − χ′2]
µε(ϕaiϕ

a
i )

2 − c(bχ′ − 2aζ ′)
4α′ζ ′ − χ′2 µεAaµA

a
µϕ

b
iϕ

b
i

+
1

4Z%Z2
G%

(
σ2

3

g2
+
σ2

4

g2

)
+ µε/2

Zϕ
4Z%ZG%

σ3

g
(ϕϕ+ ϕϕ) + µε/2

Zϕ
4Z%ZG%

iσ4

g
(ϕϕ− ϕϕ)

+ µε
Z2
ϕ

4Z%%
ϕaiϕ

a
iϕ

b
jϕ

b
j

)
. (5.216)

As the HS transformation does not put everything in the right form, we propose the following
extra transformation

σ1
χ′

2ζ ′
− σ2

2ζ ′
= σ′2 . (5.217)

So (5.215) becomes

e−W (Q,τ,G,G) =
∫

[dAµ][dc][dc][db][dσ1][dσ2][dσ3][dσ4][dϕ][dϕ][dω][dω]

× e

[
−
∫

ddx

(
L(φ,σ1,...,σ4)−µ−ε/2 σ1

g
τ−µ−ε/2 σ

′
2
g
Q+ 1

2
µ−ε/2

σ3−iσ4
g

G+ 1
2
σ3+iσ4

g
µ−ε/2G

)]
, (5.218)
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whereby∫
ddxL(φ, σ1, . . . , σ4) = SGZ +

∫
ddx

(
α′

4α′ζ ′ − χ′2
σ2

1

g2
+

ζ ′

4α′ζ ′ − χ′2
σ2

2

g2
− χ′

4α′ζ ′ − χ′2
σ1σ2

g2

+
2bα′ − aχ′
4α′ζ ′ − χ′2

σ1

g
µε/2A2 − bχ′ − 2aζ ′

[4α′ζ ′ − χ′2]
µε/2

σ2

g
A2 − cχ′

4α′ζ ′ − χ′2µ
ε/2σ1

g
ϕϕ

+
2cζ ′

4α′ζ ′ − χ′2µ
ε/2σ2

g
ϕϕ+

b2

4ζ ′
µε(AaµA

a
µ)2 +

(bχ′ − 2aζ ′)2

4ζ ′[4α′ζ ′ − χ′2]
µε(AaµA

a
µ)2

+
c2ζ ′

[4α′ζ ′ − χ′2]
µε(ϕaiϕ

a
i )

2 − c(bχ′ − 2aζ ′)
4α′ζ ′ − χ′2 µεAaµA

a
µϕ

b
iϕ

b
i +

1
4Z%Z2

G%

(
σ2

3

g2
+
σ2

4

g2

)
+ µε/2

Zϕ
4Z%ZG%

σ3

g
(ϕϕ+ ϕϕ) + µε/2

Zϕ
4Z%ZG%

iσ4

g
(ϕϕ− ϕϕ) + µε

Z2
ϕ

4Z%%
ϕaiϕ

a
iϕ

b
jϕ

b
j

)
. (5.219)

Now acting with δ
δQ

∣∣∣
Q,τ=0

and δ
δτ

∣∣
Q,τ=0

on the equivalent energy functional before and after

the HS transformation gives us the following two relations,

ZQQZϕ 〈ϕaiϕai 〉+
1
2
ZAZτW

〈
AaµA

a
µ

〉
= −µ−ε/2 〈σ2〉

g
,

1
2
ZAZττ

〈
AaµA

a
µ

〉
= −µ−ε/2 〈σ1〉

g
, (5.220)

while acting with δ
δG

∣∣
G,G=0

and δ
δG

∣∣∣
G,G=0

ZGZϕ 〈ϕϕ〉 = µ−ε/2
〈σ3 + iσ4〉

g
,

ZGZϕ 〈ϕϕ〉 = µ−ε/2
〈σ3 − iσ4〉

g
, (5.221)

or equivalently

ZGZϕ
1
2
〈ϕϕ+ ϕϕ〉 = µ−ε/2

〈σ3〉
g

,

ZGZϕ
i
2
〈ϕϕ− ϕϕ〉 = µ−ε/2

〈σ4〉
g

. (5.222)

6.3.6 The effective action

If we put the parameters

m2

2
=

1
4α0ζ0 − 2χ2

0

(2α0gσ1 − χ0gσ2) ,

M2 =
1

2α0ζ0 − χ2
0

(χ0gσ1 − ζ0gσ2) ,

ρ = − 53N
48(N2 − 1)2

(σ3 + iσ4)g ,

ρ† = − 53N
48(N2 − 1)2

(σ3 − iσ4)g , (5.223)
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with α0, ζ0, χ0 given in equations (5.210)-(5.213), then the quadratical part of the Lagrangian
(5.219) is given by∫

ddxL(φ, σ1, . . . , σ4) = Squadr
GZ +

∫
ddx

(
α′

4α′ζ ′ − χ′2
σ2

1

g2
+

ζ ′

4α′ζ ′ − χ′2
σ2

2

g2
− χ′

4α′ζ ′ − χ′2
σ1σ2

g2

+
1

4Z%Z2
G%

(
σ2

3

g2
+
σ2

4

g2

)
+
m2

2
µε/2A2 −M2µε/2ϕϕ+ µε/2

ρ

2
ϕϕ+ µε/2

ρ†

2
ϕϕ

)
. (5.224)

We have left out the higher order terms as we shall only calculate the one loop effective po-
tential.

We have collected all the details in the appendix G, but the final result for the effective
potential is given by

Γ(1) =
(N2 − 1)2

16π2

[
(M2 −

√
ρρ†)2 ln

M2 −
√
ρρ†

µ2 + (M2 +
√
ρρ†)2 ln

M2 +
√
ρρ†

µ2

− 2(M2 + ρρ†)
]

+
3(N2 − 1)

64π2

[
−5

6
(m4 − 2λ4) + y2

1 ln
(−y1)
µ

+ y2
2 ln

(−y2)
µ

+ y2
3 ln

(−y3)
µ

− y2
4 ln

(−y4)
µ
− y2

5 ln
(−y5)
µ

]
− 2(N2 − 1)

λ4

Ng2
+

3
2
λ4

32π2
(N2 − 1)

+
1
2

48(N2 − 1)2

53N

(
1−Ng2 53

24
%1

(N2 − 1)2

)
ρρ†

g2

+
9
13
N2 − 1
N

m4

2g2
− 24

35
(N2 − 1)2

N

M4

g2
− 161

52
N2 − 1
16π2

m4

2
−M4α1 +M2m2χ1 . (5.225)

whereby y1, y2 and y3 are the solutions of the equation y3 + (m2 + 2M2)y2 +
(
λ4 + M4 −

ρρ†+ 2M2m2
)
y+M2λ4 + 1/2(ρ+ ρ†)λ4 +M4m2−m2ρρ† = 0 and y4 and y5 of the equation

y2 + 2M2y +M4 − ρρ† = 0.

6.3.7 Minimizing the effective potential to prove that the condensates are non-
vanishing

To simplify the calculations, let us set ρ = ρ† = 0, which is related to not considering the
condensates 〈ϕϕ〉 and 〈ϕϕ〉. For a moment, we are only considering 〈ϕϕ〉, which also already
has the desired influence on the propagators, see the next section. In this case, the effective
action becomes:

Γ(1) =
(N2 − 1)2

16π2

[
2M4 ln

M2

µ2 − 2M2
]

+
3(N2 − 1)

64π2

[
−5

6
(m4 − 2λ4) +M4 ln

(M2)
µ

+ y2
2 ln

(−y2)
µ

+ y2
3 ln

(−y3)
µ
− 2M4 ln

M2

µ

]
− 2(N2 − 1)

λ4

Ng2
+

3
2
λ4

32π2
(N2 − 1)

+
9
13
N2 − 1
N

m4

2g2
− 24

35
(N2 − 1)2

N

M4

g2
− 161

52
N2 − 1
16π2

m4

2
−M4α1 +M2m2χ1 . (5.226)

whereby y2 and y3 are are given by 1
2

(
−m2 −M2 ±

√
m4 − 2M2m2 +M4 − 4λ4

)
.
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In order to find the minimum, we should derive this action w.r.t. m2 and M2 and put the
equations equal to zero. In addition, we should also impose the horizon condition (3.184).
Therefore, we have the following three conditions,

∂Γ
∂M2

= 0 ,
∂Γ
∂m2

= 0 ,
∂Γ
∂λ4

= 0 , (5.227)

which have to be solved for M2, m2 and λ4. Unfortunately, it is impossible to solve these
equations exactly due to the two unknown parameters α1 and χ1. However, we would like to
know if the condensate 〈ϕϕ〉 is present or not. For this, we need to find uncover if M2 = 0
can be a solution of the above expression. In the appendix G, we shall strongly argue that
this is not the case, and thus that M2 6= 0. Therefore, this is a strong indication that the
condensate 〈ϕϕ〉 is indeed present, thereby suggesting the dynamical transformation of GZ
into a refined GZ.

6.4 The gluon and the ghost propagator

6.4.1 The gluon propagator

The gluon propagator shall still be infrared suppressed and non-zero at zero momentum.
Indeed, starting from the very refined action (5.166), the quadratic action is given by

Squadr =
1
4

(∂µAν − ∂νAµ)2 + b∂µAµ + c∂2c+ ϕ∂2ϕ− ω∂2ω − γ2gfabcAbµ(ϕbcµ + ϕbcµ )

+γ4d(N2 − 1)−M2ϕϕ+
m2

2
AµAµ −

ρ

2
ϕϕ− ρ†

2
ϕϕ , (5.228)

whereby we have replaced the source τ with m2, Q with −M2, Gij with −δijρ and Gij with
−δijρ† and set all other sources equal to zero. From this, we can easily deduce the gluon
propagator

〈
Aaµ(p)Abν(−p)

〉
=
[
δµν −

pµpν
p2

]
δab

2
(
M2 + p2

)2 − 2ρρ†

2M4p2 + 2p6 + 2M2 (2p4 + λ4)− λ4(ρ+ ρ†) + 2m2
(

(M2 + p2)2 − ρρ†
)

+ 2p2(λ4 − ρρ†)︸ ︷︷ ︸
D(p2)

,

(5.229)

with λ4 = 2g2Nγ4. If we assume that ρ = ρ†, we then find the following gluon propagator:

D(p2) =
M2 + p2 + ρ

p4 +M2p2 + p2(ρ+m2) +m2 (M2 + ρ) + λ4
, (5.230)

which has exactly the same form as the refined gluon propagator (5.44). However, for the
moment we cannot say whether ρ = ρ† is the case or not. Notice that ρ, ρ† as well as M2 all
separately make sure that D(0) 6= 0.
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6.4.2 The ghost propagator

The one loop ghost propagator is given by

Gab(k2) = δabG(k2) = δab
(

1
k2

+
1
k2

[
g2 N

N2 − 1

∫
d4q

(2π)4

(k − q)µkν
(k − q)2

〈
AaµA

a
ν

〉] 1
k2

)
+O(g4)

= δab
1
k2

(1 + σ(k2)) +O(g4) , (5.231)

with

σ(k2) =
N

N2 − 1
g2

k2

∫
d4q

(2π)4

(k − q)µkν
(k − q)2

〈
AaµA

a
ν

〉
= Ng2kµkν

k2

∫
ddq

(2π)d
1

(k − q)2

[
δµν −

qµqν
q2

]
× 2

(
M2 + q2

)2 − 2ρρ†

2M4q2 + 2q6 + 2M2 (2q4 + λ4)− λ4(ρ+ ρ†) + 2m2
(

(M2 + q2)2 − ρρ†
)

+ 2q2(λ4 − ρρ†)
.

As we are interested in the infrared behavior of this propagator, we expand the previous
expression for small k2

σ(k2 ≈ 0) = Ng2d− 1
d

∫
ddq

(2π)d
1
q2

× 2
(
M2 + q2

)2 − 2ρρ†

2M4q2 + 2q6 + 2M2 (2q4 + λ4)− λ4(ρ+ ρ†) + 2m2
(

(M2 + q2)2 − ρρ†
)

+ 2q2(λ4 − ρρ†)
+O(k2) . (5.232)

Let us now have a look at the gap equation. For this we can start from the (one-loop) effective
action which can be written as (see the appendix G)

Γ(1)
γ = −d(N2 − 1)γ4 +

(N2 − 1)
2

(d− 1)
∫

ddq

(2π)d
lnA+ . . . ,

with

A =
2M4q2 + 2q6 + 2M2

(
2q4 + λ4

)
− λ4(ρ+ ρ†) + 2m2

((
M2 + q2

)2 − ρρ†)+ 2q2(λ4 − ρρ†)
2 (M2 + q2)2 − 2ρρ†

,

and the . . . indicating parts independent from λ. Setting λ4 = 2g2Nγ4, we rewrite the
previous expression,

E(1) =
Γ(1)
γ

N2 − 1
2g2N

d
= −λ4 + g2N

d− 1
d

∫
ddq

(2π)d
lnA+ . . . .
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The gap equation is given by ∂E(1)

∂λ2 = 0,

1 = g2N
d− 1
d

∫
ddq

(2π)d

2M2 + 2q2 − ρ− ρ†

2M4q2 + 2q6 + 2M2 (2q4 + λ4)− λ4(ρ+ ρ†) + 2m2
(

(M2 + q2)2 − ρρ†
)

+ 2q2(λ4 − ρρ†)
,

(5.233)

where we have excluded the solution λ = 0. With the help of this gap equation, we can
rewrite equation (5.232),

σ(k2 ≈ 0) = 1 +Ng2d− 1
d

∫
ddq

(2π)d

× 2M4/q2 + 2M2 − 2ρρ†/q2 + ρ+ ρ†

2M4q2 + 2q6 + 2M2 (2q4 + λ4)− λ4(ρ+ ρ†) + 2m2
(

(M2 + q2)2 − ρρ†
)

+ 2q2(λ4 − ρρ†)
+O(k2) . (5.234)

The integral in the above expression is finite. We can rewrite the integral as (d = 4)

I = Ng2 3
32π2

∫ ∞
0

dq

q(M4 − (r2 + s2)) + q3(M2 + r)

M4q2 + q6 +M2 (2q4 + λ4)− rλ4 +m2
(

(M2 + q2)2 − (r2 + s2)
)

+ q2(λ4 − (r2 + s2))
,

with I = σ(k2 ≈ 0)− 1, whereby we have parameterized

ρ = r + is , ρ† = r − is . (5.235)

We further write

I =
3Ng2

64π2

∫ ∞
0

dx
(
M4 − (r2 + s2) + x(M2 + r)

)
/
(
x3 + x2(2M2 +m2)

+x(M4 + 2m2M2 + λ4 − (r2 + s2)) + λ4(M2 − r) +m2(M4 − (r2 + s2))
)
. (5.236)

Solution of cubic equation

The next step would be to solve the cubic equation in the numerator of the equation above,

x3 + x2 (2M2 +m2)︸ ︷︷ ︸
a

+x (M4 + 2m2M2 + λ4 − (r2 + s2))︸ ︷︷ ︸
b

+ λ4(M2 − r) +m2(M4 − (r2 + s2))︸ ︷︷ ︸
c

= 0 . (5.237)
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In general, these are given by

x1 =
−1
3

(
a+

3

√
m+

√
n

2
+

3

√
m−√n

2

)
,

x2 =
−1
3

(
a+
−1 + i

√
3

2
3

√
m+

√
n

2
+
−1− i

√
3

2
3

√
m−√n

2

)
,

x3 =
−1
3

(
a+
−1− i

√
3

2
3

√
m+

√
n

2
+
−1 + i

√
3

2
3

√
m−√n

2

)
, (5.238)

with

m = 2
(
m2 −M2

) ((
m2 −M2

)2 − 9
(
r2 + s2

))
− 9

(
m2 −M2 + 3r

)
λ4 ,

n =
[
2
(
m2 −M2

) ((
m2 −M2

)2 − 9
(
r2 + s2

))
− 9

(
m2 −M2 + 3r

)
λ4
]2

−4
[(
m2 −M2

)2 + 3
(
r2 + s2 − λ4

)]3
. (5.239)

Of course, it is possible that two (or three) solutions coincide. This can be checked by
calculating the discriminant

∆ = −4a3c+ a2b2 − 4b3 + 18abc− 27c2 . (5.240)

If ∆ = 0, then the equation has three distinct real roots and at least two are equal.

Case 1: x1 6= x2 6= x3

If x1 6= x2 6= x3, we can rewrite the integral in I,

I = Ng2 3
64π2

[∫ ∞
0

dx
M4 − (r2 + s2) + (M2 + r)x1

(x1 − x2)(x1 − x3)
1

x− x1

+
∫ ∞

0
dx
M4 − (r2 + s2) + (M2 + r)x2

(x2 − x3)(x2 − x1)(x− x2)
+
∫ ∞

0
dx
M4 − (r2 + s2) + (M2 + r)x3

(x3 − x1)(x3 − x1)(x− x3)

]
. (5.241)

These integrals are now easy to solve they all are of the type
∫

dx 1
x = lnx.

I = Ng2 3
64π2

[
M4 − (r2 + s2) + (M2 + r)x1

(x1 − x2)(x1 − x3)︸ ︷︷ ︸
u1

ln(x− x1)|∞0

+
M4 − (r2 + s2) + (M2 + r)x2

(x2 − x3)(x2 − x1)︸ ︷︷ ︸
v1

ln(x− x2)|∞0 +
M4 − (r2 + s2) + (M2 + r)x3

(x3 − x1)(x3 − x1)︸ ︷︷ ︸
w1

ln(x− x3)|∞0

]
.
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One could expect there is a problem at infinity, in contrast with what we have concluded
before. However, as u1 + v1 + w1 = 0, the infinities cancel. We obtain,

I = Ng2 3
64π2

[
M4 − (r2 + s2) + (M2 + r)x1

(x1 − x2)(x1 − x3)
ln(−x1)

+
M4 − (r2 + s2) + (M2 + r)x2

(x2 − x3)(x2 − x1)
ln(−x2) +

M4 − (r2 + s2) + (M2 + r)x3

(x3 − x1)(x3 − x1)
ln(−x3)

]
.

(5.242)

Case 2: x1 = x2 6= x3

In this case, we can rewrite the integral in I as

I = Ng2 3
64π2

[∫ ∞
0

dx
M4 − (r2 + s2) + (M2 + r)x1

(x1 − x3)2︸ ︷︷ ︸
u2

1
x− x1

−
∫ ∞

0
dx

M4 − (r2 + s2) + (M2 + r)x1

(x1 − x3)2︸ ︷︷ ︸
v2

1
x− x3

+
∫ ∞

0
dx

M4 − (r2 + s2) + (M2 + r)x3

x1 − x3︸ ︷︷ ︸
w2

1
(x− x3)2

]
. (5.243)

One can check that u2 + v2 = 0, so we can execute the integrations,

I = Ng2 3
64π2

[
M4 − (r2 + s2) + (M2 + r)x1

(x1 − x3)2
ln(−x1)

− M4 − (r2 + s2) + (M2 + r)x1

(x1 − x3)2
ln(−x3)− M4 − (r2 + s2) + (M2 + r)x3

x1 − x3

1
x2

3

]
. (5.244)

Case 3: x1 = x2 = x3

Finally, in this case we can write

I = Ng2 3
64π2

[
(M2 +r)

∫ ∞
0

dx
1

(x− x1)2
+(M4− (r2 +s2)+(M2 +r)x1)

∫ ∞
0

dx
1

(x− x1)3

]
,

(5.245)
so after integration

I = Ng2 3
64π2

[
−M

2 + r

x1
+
M4 − (r2 + s2) + (M2 + r)x1

2x2
1

]
. (5.246)

Now we can make some conclusions. Looking at the different cases, it looks almost certain
that I 6= 0, as very specific values of the condensates would be needed to take care of this.
Therefore, we have strong indications that the ghost propagator is non-enhanced.
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6.5 Conclusions for the further refining of the action

In this section, we have investigated the possibility that more condensates are present than
investigated so far. This has led us to the calculation of the one loop effective action. Un-
fortunately, due to the existence of two yet unknown higher loop parameters in the one loop
effective action, we are unable to provide an estimate for the different condensates. Neverthe-
less, we have provided strong indications that some condensates are non-zero and shall lower
the effective action.

Besides this, we have also shown that in this further refined framework, the gluon propagator
is non zero at zero momentum, and the ghost propagator is highly likely to be non-enhanced.

A future research goal will be to compute the divergences of the vacuum diagram in Fig-
ure 5.21 and the similar one for the mixing. Once this task will be executed, all information
is available to actually work out the one loop effective potential and to investigate its structure
and the associated formation of the RGZ condensates.
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6
The quest for physical operators, part I

1 Introduction

So far, we have refined the Gribov-Zwanziger action so that the ghost and gluon propagator
are in agreement with the lattice data. We recall that the gluon propagator has complex
poles, as one can see from expression (3.97) and (5.44). This shows us that gluons cannot be
considered as a part of the physical spectrum, which is clearly due to the restriction to the
horizon Ω. In this way, gluons can be seen as confined by the Gribov horizon. The natural
question is then where are the physical particles in the (Refined) GZ action? If the Refined
GZ does come close to the reality, which is quenched QCD here, we should be able to identify
the particle content of quenched QCD, namely glueballs.

Glueballs are entirely composed of gluons, and therefore the gauge field itself is a crucial
ingredient. For standard hadronic particles on the other hand, also matter fields are indis-
pensable. Hence, glueballs have been widely investigated, experimentally, on the lattice and
in various theoretical models [173].

So far, there is no clear experimental evidence for the existence of glueballs. If glueballs
are observable particles, they would strongly mix with other states containing quarks. Due to
this feature, a clear observation of a glueball state turns out to be rather difficult. However,
there are already many indications for the existence of glueballs, and the debate is currently
ongoing. It is worth mentioning here that several experiments are actually running and other
ones are planned to start in the future: PANDA [174] , BES III [175] and GlueX [176] to
name only a few. Glueballs might also play an important role in the quark gluon plasma, a
case that will be studied at e.g. the heavy ion collision experiment ALICE at CERN [177].

As no clear experimental data is yet available, the output of theoretical models ought to
be compared with lattice data. In lattice gauge theories, there is no doubt about the exis-
tence of glueballs, although lattice calculations are still limited as they cannot determine the
decay channels of glueballs. In contrast with possible experimental data, lattice calculations
can however also consider pure gauge theory. A consensus on the lowest lying scalar glueball
mass in the pure gauge gauge theory has already been reached : M0++ ∼ 1.6 GeV2 for SU(3)
[178–183].

Many theoretical models have been investigated and compared with the lattice data. An
extensive recent overview is given in [173]. Historically, the first model to describe glueballs
is called the MIT bag model [184]. In this model, gluons are placed in a bag and confined

181



CHAPTER 6. THE QUEST FOR PHYSICAL OPERATORS, PART I

by a boundary condition and a constant energy density B. This model, however, is rather
phenomenological in nature. Other phenomenological models assume the gluons to have an
effective mass [185, 186], which can be used to compose effective (potential) theories in which
the masses of the different glueballs are calculated [187–190].

A more direct way to deal with glueballs is by identifying suitable gauge invariant operators,
which carry the correct quantum numbers to create/annihilate particular glueball states, and
then calculating the corresponding correlators to get information on the mass. In particular,
this route is followed in the widely used QCD sumrule approach [191, 192]. For example, the
operator relevant for the lightest scalar glueball is F 2(x) ≡ F 2

µν(x), hence the study of the
correlator

〈
F 2(x)F 2(y)

〉
. One takes into account perturbative as well as non-perturbative

contributions, which are associated with condensates and instantons [191, 193]. Also in the
AdS/QCD approach, glueball (correlators) have been investigated based on the assumption
that there is an approximate dual gravity description [194, 195].

In the light of such correlator studies, it would be interesting to investigate the correlator〈
F 2(x)F 2(y)

〉
within the Gribov-Zwanziger framework. For this, we need to study the renor-

malization of the operator F 2
µν within the GZ action. As we show in this chapter, this is far

from trivial.

2 Ordinary Yang-Mills action with inclusion of the operator F 2
µν

Before investigating the operator F 2 in the GZ framework, let us first, as an exercise, investi-
gate F 2 in the much more simple standard Yang-Mills theory. Here, we shall encounter many
nice features which are useful for the investigation of F 2 in the GZ framework. This section
is based on [196].

2.1 Renormalization of the YM action with inclusion of the operator F 2
µν

2.1.1 Introduction

To study the correlator
〈
F 2(x)F 2(y)

〉
, we need to add the operator F 2

µν to the ordinary
Yang-Mills action by coupling it to a source q(x). Indeed, the action we start from reads,

Σn.r. =
∫

d4x
1
4
F 2
µν︸ ︷︷ ︸

SYM

+
∫

d4x
(
ba∂µA

a
µ + ca∂µD

ab
µ c

b
)

︸ ︷︷ ︸
Sgf

+
∫

d4x
q

4
F 2
µν , (6.1)

whereby Sgf is the Landau gauge fixing part. This action is of course BRST invariant,

sΣn.r. = 0 , (6.2)

whereby the BRST transformations of the fields are given by by equation (2.116), and sq = 0.
We recall that s is nilpotent, s2 = 0. In this fashion, the correlator is given by[

δ

δq(y)
δ

δq(x)
Zc
]
q=0

=
〈
F 2(x)F 2(y)

〉
, (6.3)
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with Zc the generator of connected Green functions. However, it will turn out that the action
(6.1) is not renormalizable. Indeed, as the operator F 2

µν has mass dimension 4, it could mix
with other operators of the same dimension. The question arises which kind of extra operators
we need to consider.

2.1.2 Three classes of operators

In general, we can distinguish between 3 different classes of dimension 4 operators. Firstly, the
class C1 contains all the truly gauge invariant operators. These are the BRST closed but not
exact operators like F 2

µν . These are constructed from the field strength F aµν and the covariant
derivative Dab

µ . Secondly, the class C2 consists of BRST exact operators, e.g. s(ca∂µAaµ).
The third class C3 contains operators which will vanish upon using the equations of motion,
e.g. Aaµ

δS
δAaµ

, with S = SYM + Sgf .

Now, one can intuitively easily understand that these 3 different classes will mix in a certain
way [197, 198]. Firstly, bare operators from the class C2 cannot receive contributions from
gauge invariant operators (C1). Indeed, taking the matrix element of a bare BRST exact
operator from C2 between physical states will give a vanishing result, if there would be a
renormalized gauge invariant contribution from C1 in its expansion, there would be a non-
vanishing contribution, clearly a contradiction. Secondly, as a C3 operator will vanish upon
using the equations of motion, while a C1- and a C2 operator in general do not, a C3 operator
cannot receive corrections from the C1 and/or C2 class.

Thus, the mixing matrix will have an upper triangular form, F0

E0

H0

 =

 ZFF ZFE ZFH
0 ZEE ZEH
0 0 ZHH

 FE
H

 , (6.4)

whereby F , E , H are operators belonging, respectively, to the C1, C2 and C3 class.

We shall however not use these observations, and only rely on a formal algebraic analy-
sis. All constraints on e.g. the mixing matrix should be encoded in the Ward identities.

For further use, let us elaborate a bit more on the equation of motion like terms, using a
scalar field for notational simplicity. A term ∼ δS

δϕ shall give rise to contact terms when
taking expectation values. Using partial path integration, one finds〈

ϕ(x1)ϕ(x2) . . . ϕ(xn+1)
δS

δϕ(y)

〉
=

∫
[dφ]ϕ(x1)ϕ(x2) . . . ϕ(xn+1)

δS

δϕ(y)
e−S

= −
∫

[dΦ]ϕ(x1)ϕ(x2) . . . ϕ(xn+1)
δ

δϕ(y)
e−S

=
∫

[dΦ]
δ

δϕ(y)
[ϕ(x1)ϕ(x2) . . . ϕ(xn+1)] e−S

=
n+1∑
k=1

δ(xk − y) 〈ϕ(x1)ϕ(x2) . . . ϕ(xk−1)ϕ(xk+1) . . . ϕ(xn+1)〉 . (6.5)
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We used the symbolic notation
∫

[dφ] for the integration over all the present fields. Introducing
the Z-factors for the fields ϕ, one also learns that ϕ(y) δS

δϕ(y) does not need any renormalization
factor, and thus that it is finite when introduced into correlators1. Moreover, if xk 6= y,
k = 1, . . . , n, the l.h.s. of (6.5) will vanish as the r.h.s. does. On the other hand, it is easily
recognized from (6.5) that the integrated operator

∫
d4yϕ(y) δS

δϕ(y) is nothing more than a
counting operator when inserted into a correlator, i.e.〈

ϕ(x1)ϕ(x2) . . . ϕ(xn)
∫

d4yϕ(y)
δS

δϕ(y)

〉
= n 〈ϕ(x1)ϕ(x2) . . . ϕ(xn)〉 . (6.6)

2.1.3 The starting action

We can now propose a more complete starting action than (6.1). Besides the gauge invariant
operator F 2

µν belonging to the first class C1, we also introduce the BRST closed operator
s(∂cA) ≡ s(∂µcaAaµ), coupled to a new dimensionless source η. As we want this new source
to only enter the cohomological trivial part of the action, we shall introduce a BRST doublet
(λ, η),

sη = λ , (6.7)

and add the following term to the action (6.1),∫
d4xs(ηca∂µAaµ) =

∫
d4x(λ∂µcaAaµ + η(∂µbaAaµ + ∂µc

aDab
µ c

b)) . (6.8)

The BRST doublet-structure is highly useful in order to construct the most general invariant
counterterm. Hence, the classical starting action is given by

Scl = SYM +
∫

d4x
(
ba∂µA

a
µ + ca∂µD

ab
µ c

b
)

+
∫

d4xq
1
4
F 2
µν︸ ︷︷ ︸
F

+
∫

d4xλ∂µc
aAaµ

+
∫

d4xη
(
∂µb

aAaµ + ∂µc
aDab

µ c
b
)

︸ ︷︷ ︸
E

. (6.9)

Later, we shall also introduce the equation of motion terms from class C3. Notice that in
principle, also s(ca∂µAaµ) is another independent d = 4 BRST exact operator which could
play a role. It shall however turn out that the renormalization analysis closes without this
operator, therefore we decided to immediately discard it.

We can now proceed with the study of this action, using the formalism of algebraic renormal-
ization as explained in chapter 2. As usual, we first introduce Sext,

Sext =
∫

d4x

(
−Ka

µ (Dµc)
a +

1
2
gLafabccbcc

)
, (6.10)

1The implied limit xn+1 → y might seem problematic due to the appearance of a δ(0) in the last term of
the r.h.s. of (6.5). However, δ(0) = 0 in dimensional regularization.
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Now, the enlarged action is given by

Σ = SYM +
∫

d4x
(
ba∂µA

a
µ + ca∂µD

ab
µ c

b
)

+
∫

d4x

(
−Ka

µ (Dµc)
a +

1
2
gLafabccbcc

)
+
∫

d4xq
1
4
F 2
µν +

∫
d4xλ∂µc

aAaµ +
∫

d4xη
(
∂µb

aAaµ + ∂µc
aDab

µ c
b
)
, (6.11)

and it will reduce itself to equation (6.9), once the sources Ka
µ and La are set to zero at the

end. Likewise, also λ can be set to zero at that point.

2.1.4 The Ward identities

A second step in the process of algebraic renormalization is to determine all the Ward identities
obeyed by the action (6.11), which we have summarized here:

• The Slavnov-Taylor identity:

S(Σ) =
∫

d4x

(
δΣ
δKa

µ

δΣ
δAaµ

+
δΣ
δLa

δΣ
δca

+ ba
δΣ
δca

+ λ
δΣ
δη

)
= 0 . (6.12)

• The Landau gauge condition:

δΣ
δba

= ∂µA
a
µ − ∂µ(ηAaµ) . (6.13)

• The modified antighost equation:

δΣ
δca

+ ∂µ
δΣ
δKa

µ

− ∂µ
(
η
δΣ
δKa

µ

)
= ∂µ(λAaµ) . (6.14)

• The ghost Ward identity:∫
d4x

(
δ

δca
+ gfabc

(
cb

δ

δbc

))
Σ = g

∫
d4xfabc

(
Kb
µA

c
µ − Lbcc

)
. (6.15)

The term ∆a
cl, being linear in the quantum fields Aaµ, ca, is a classical breaking.

• The extra integrated Ward identity:∫
d4x

(
δΣ
δλ
− η δΣ

δλ
+ ca

δΣ
δba

)
= 0 . (6.16)

Apart from some small adaptations, the first 5 symmetries are similar to the ones in the
ordinary Yang-Mills action, see p.26. Moreover, we also find an extra Ward identity w.r.t. the
new doublet (λ, η). This last identity will enable us to take into account in a purely algebraic
way the effects related to the composite operators coupled to the sources (λ, η). We underline
here that this is the power of the algebraic formalism: by a well chosen set of sources to
introduce the relevant operators, one can hope to find additional Ward identities which, in
turn, will constrain the theory at the quantum level, including the characterization of the
most general counterterm. As such, a good choice of sources can considerably simplify the
renormalization analysis.
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2.1.5 The counterterm

When we turn to the quantum level, we can use these symmetries to characterize the most
general allowed invariant counterterm Σc. Following the algebraic renormalization procedure,
Σc is an integrated local polynomial in the fields and sources with dimension bounded by
four, and with vanishing ghost number. The previous, nonanomalous, Ward identities imply
the following constraints on Σc:

• The linearized Slavnov-Taylor identity:

BΣΣc = 0 , B2
Σ = 0 , (6.17)

BΣ =
∫

d4x

(
δΣ
δKa

µ

δ

δAaµ
+

δΣ
δAaµ

δ

δKa
µ

+
δΣ
δLa

δ

δca
+
δΣ
δca

δ

δLa
+ ba

δ

δca
+ λ

δ

δη

)
. (6.18)

• The Landau gauge condition:

δΣc

δba
= 0 . (6.19)

• The modified antighost equation:

δΣc

δca
+ ∂µ

δΣc

δKa
µ

− ∂µ
(
η
δΣ
δKa

µ

)
= 0 . (6.20)

• The ghost Ward identity:∫
d4x

(
δ

δca
+ gfabc

(
cb

δ

δbc

))
Σc = 0 . (6.21)

• The extra integrated Ward identity:∫
d4x

(
δΣc

δλ
− η δΣ

c

δλ

)
= 0 . (6.22)

To construct the most general counterterm, Table 6.1, listing the dimension and ghost number
of the various fields and sources, is useful.

Aaµ ca ca ba

dimension 1 0 2 2
ghost number 0 1 −1 0

Ka
µ La q η λ

dimension 3 4 0 0 0
ghost number −1 −2 0 0 1

Table 6.1: Quantum numbers of the fields and sources

There is however one subtlety concerning counterterms quadratic (or higher) in the sources.
Only looking at the dimensionality, the ghost number and the constraints on the counterterm,
it is a priori not forbidden to consider terms of the form (q2 . . .), (η2 . . .), (qη . . .), (q3 . . .),
etc., i.e. terms of quadratic and higher order in the sources. If these terms are allowed,
an infinite tower of counterterms would be generated and it would be impossible to prove
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the renormalizability of the action as new divergences are being generated, which cannot be
absorbed in terms already present in the starting action. However, we can give a simple
argument why we may omit this class of terms. Assume that we would also introduce the
following term of order q2 in the action,

∼
∫

d4xq2
F 2
µν

4
. (6.23)

Subsequently, when calculating the correlator, this term would give rise to an extra contact
term contribution,[

δ

δq(z)
δ

δq(y)

∫
[dφ]e−S

]
q=0

=
〈
F 2(z)

4
F 2(y)

4

〉
︸ ︷︷ ︸

term due to part in q

+ δ(y − z)
〈
F 2(y)

2

〉
︸ ︷︷ ︸
term due to part in q2

. (6.24)

As eventually we are only interested in the correlator for z 6= y, we can thus neglect the
term (6.23). In fact, when looking at the case z = y, we should also couple a source to the
novel composite operator F 4, which is not our current interest. We can repeat this kind of
argument for all other terms of higher order in the sources.

There is one exception to the previous remark: we cannot neglect higher order terms of
the type (Kq . . .) and (Kη . . .) due to the modified antighost equation,

δΣc

δca
+ ∂µ

δΣc

δKa
µ

− ∂µ
(
η
δΣ
δKa

µ

)
= 0 . (6.25)

The second term of this equation differentiates the counterterm w.r.t. the source Ka
µ, while the

first term w.r.t. the field ca. Therefore, for the construction of the counterterm fulfilling all
the constraints, we still need to include terms of order Kq and Kη, as when deriving w.r.t Ka

µ,
these terms will become of first order in the sources, just as the term ∝ δΣc

δca . However, at the
end, after having completely characterized the counterterm, we can ignore this class of terms
again.

We are now ready to construct the counterterm. Firstly, making use of general results on
the cohomology of gauge theories, see chapter 2, the most general integrated polynomial of
dimension 4 in the fields and sources, with vanishing ghost number and which takes into
account the previous remarks on the terms quadratic in the sources, can be written as

Σc = a0

∫
d4x

1
4
F 2
µν + b0

∫
d4x

q

4
F 2
µν + BΣ

∫
d4x

{
a1(Ka

µ + ∂µc
a)Aaµ + a2L

aca + a3b
aca

+ a4gf
abccacbcc

}
+ BΣ

∫
d4x

{
b1q(Ka

µ + ∂µc
a)Aaµ + b2qc

a∂µA
a
µ + b3qb

aca + b4qgf
abccacbcc

}
+ BΣ

∫
d4x

{
c1ηK

a
µA

a
µ + c2η∂µc

aAaµ + c3ηc
a∂µA

a
µ + c4ηb

aca + c5ηgf
abccacbcc

}
+ BΣ

∫
d4x

{
d1λc

aca
}
.
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Secondly, we can simplify this counterterm by imposing all the constraints (6.17)-(6.22). After
a certain amount of algebra, we eventually obtain

Σc = a0

∫
d4x

1
4
F 2
µν + b0

∫
d4x

q

4
F 2
µν + a1

∫
d4x

(
Aaµ

δSYM

δAaµ
+Aaµ

δŜYM

δAaµ
+Ka

µ∂µc
a

+ ∂µc
a∂µc

a − η∂µca∂µca
)

+ b1

∫
d4x q

(
Aaµ

δSYM

δAaµ
+Ka

µ∂µc
a + ∂µc

a∂µc
a

)
, (6.26)

with

ŜYM =
1
4

∫
d4xqF 2

µν . (6.27)

Now that we have constructed the most general counterterm obeying all the Ward identities,
we can neglect, as previously described, the term in Kq. Therefore, the final counterterm
becomes,

Σc = a0

∫
d4x

1
4
F 2
µν + b0

∫
d4x

q

4
F 2
µν + a1

∫
d4x

(
Aaµ

δSYM

δAaµ
+Aaµ

δŜYM

δAaµ
+Ka

µ∂µc
a

+ ∂µc
a∂µc

a − η∂µca∂µca
)

+ b1

∫
d4x q

(
Aaµ

δSYM

δAaµ
+ ∂µc

a∂µc
a

)
. (6.28)

2.1.6 Introducing the equations of motion

We still have to introduce the equations of motion as described in section 2.1.2, as these can
enter the operator F . So far, we have found an action Σ with corresponding counterterm Σc.
Let us perform the linear shift on the gluon field Aaµ,

Aaµ → Aaµ + JAaµ , (6.29)

with J(x) a novel local source. This way of introducing the relevant gluon equation of motion
operator shall turn out to be very efficient, as it allows us to uncover the finiteness of this
kind of operator. Indeed, this shift basically corresponds to a redefinition of the gluon field,
and has to be consistently done in the starting action and counterterm. Performing the shift
in the action gives rise to the following shifted action Σ′,

Σ′ = SYM +
∫

d4x
(
ba∂µA

a
µ + ca∂µD

ab
µ c

b
)

+
∫

d4x

(
−Ka

µ (Dµc)
a +

1
2
gLafabccbcc

)
+
∫

d4xq
1
4
F 2
µν +

∫
d4xλ∂µc

aAaµ +
∫

d4xη
(
∂µb

aAaµ + ∂µc
aDab

µ c
b
)

+
∫

d4xJ Aaµ
δSYM

δAaµ︸ ︷︷ ︸
H

+
∫

d4xJ
{
−∂µbaAaµ + gfakbA

k
µc
b∂µc

a
}
, (6.30)

where we see the relevant gluon equation of motion term, H, emerging. Again, we have
neglected higher order terms in the sources, as the argument (6.24) still holds. Analogously,
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we find a shifted counterterm,

Σ′c = a0

∫
d4x

1
4
F 2
µν + b0

∫
d4x

q

4
F 2
µν + a1

∫
d4x

(
Aaµ

δSYM

δAaµ
+Aaµ

δŜYM

δAaµ
+Ka

µ∂µc
a

+ ∂µc
a∂µc

a − η∂µca∂µca
)

+ b1

∫
d4x q

(
Aaµ

δSYM

δAaµ
+ ∂µc

a∂µc
a

)
+ a0

∫
d4x

(
JAaµ

δSYM

δAaµ

)

+ a1

∫
d4xJ

(
2Aaµ∂µ∂νA

a
ν − 2Aaµ∂

2Aaµ + 9gfabcAaµA
b
ν∂µA

c
ν + 4g2fabcfcdeA

a
µA

b
νA

d
µA

e
ν

)
,

where one can neglect again the higher order terms in the sources.

One could also introduce the other similar equation of motion terms, by introducing lin-
ear shifts for the ba, ca, ca fields. However, the corresponding equation of motion operators
will not mix with F 2

µν and are therefore unnecessary to establish the renormalizability of the
action (6.30).

2.1.7 Stability and the renormalization (mixing) matrix

Finally, it remains to discuss the stability of the classical action, i.e. to check whether Σ′c can
be reabsorbed in the classical action Σ′ by means of a multiplicative renormalization of the
coupling constant g, the fields {φ = A, c, c, b} and the sources {Φ = L,K, q, η, λ, J}, namely

Σ′(g, φ,Φ) + hΣ′c = Σ(g0, φ0,Φ0) +O(h2) , (6.31)

with h the infinitesimal perturbation parameter. The bare fields, sources and parameters are
defined as

Ka
0µ = ZKK

a
µ , Aa0µ = Z

1/2
A Aaµ , g0 = Zgg ,

La0 = ZLL
a , ca0 = Z1/2

c ca ,

q0 = Zqq , ca0 = Z
1/2
c ca ,

η0 = Zηη , ba0 = Z
1/2
b ba ,

J0 = ZJJ ,

λ0 = Zλλ . (6.32)

We also propose the following mixing matrix, q0

η0

J0

 =

 Zqq Zqη ZqJ
Zηq Zηη ZηJ
ZJq ZJη ZJJ

 q
η
J

 , (6.33)

which will represent the mixing of the operators F , E and H. If we try to absorb the
counterterm into the original action, we ultimately find,

Zg = 1− ha0

2
, Z

1/2
A = 1 + h

(a0

2
+ a1

)
, (6.34)

and

Z
1/2
c = Z1/2

c = Z
−1/4
A Z−1/2

g = 1− ha1

2
, Zb = Z−1

A , ZK = Z1/2
c , ZL = Z

1/2
A , (6.35)
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results which are known from the renormalization of the original Yang-Mills action in the
Landau gauge (2.188) and (2.189).

In addition, we also find the following mixing matrix Zqq Zqη ZqJ
Zηq Zηη ZηJ
ZJq ZJη ZJJ

 =

 1 + h(b0 − a0) 0 0
hb1 1 0
hb1 0 1

 , (6.36)

and for completeness, the Z-factor of λ reads,

Zλ = Z−1/2
c Z

−1/2
A , (6.37)

as the counterterm does not contain the source λ.

Once having this mixing matrix at our disposal, we can of course pass to the correspond-
ing bare operators. For this, we shall need the inverse of the mixing matrix (6.36), q

η
J

 =


1
Zqq

0 0

−ZJq
Zqq

1 0

−ZJq
Zqq

0 1


 q0

η0

J0

 . (6.38)

Now we can determine the corresponding mixing matrix for the operators, since insertions
of an operator correspond to derivatives w.r.t. to the appropriate source of the generating
functional Zc(q, η, J). In particular,

F0 =
δZc(q, η, J)

δq0

=
δq

δq0

δZc(q, η, J)
δq

+
δη

δq0

δZc(q, η, J)
δη

+
δJ

δq0

δZc(q, η, J)
δJ

⇒ F0 =
1
Zqq
F − ZJq

Zqq
G − ZJq

Zqq
H , (6.39)

and similarly for G0 and H0. In summary, we find F0

E0

H0

 =

 Z−1
qq −ZJqZ−1

qq −ZJqZ−1
qq

0 1 0
0 0 1

 FE
H

 . (6.40)

From this matrix we can make several interesting observations. Firstly, we see that the
operator 1

4F
2
µν (= F) indeed required the presence of the BRST exact operator E and of the

gluon equation of motion operator H as these operators are “hidden” in the bare operator F .
Secondly, we do retrieve an upper triangular matrix, in agreement with the earlier description
in (6.4). Moreover, we also find that the BRST exact operator E does not mix with H, a
mixing which is in principle allowed, but has a Z-factor equal to 1. This can be nicely
understood: the integrated BRST exact operator is in fact proportional to a sum of two
(integrated) equations of motion terms,∫

d4x(∂µbaAaµ + ∂µc
aDab

µ c
b) = −

∫
d4x(ba∂µAaµ + ca∂µD

ab
µ c

b)

= −
∫

d4x

(
ba
δS

δba
+ ca

δS

δca

)
, (6.41)

and therefore it does not mix with other operators, just like H.
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2.2 The operator mixing matrix to all orders

In this section, we shall demonstrate that we can determine the mixing matrix (6.40) exactly,
i.e. to all orders of perturbation theory. For this purpose, we shall follow the lines of [199],
suitably adapted to the gauge theory under study. We start with the following most general
(n+ 2m+ r)-point function defined as,

Gn+2m+r(x1, . . . , xn, y1, . . . , ym, ŷ1, . . . , ŷm, z1, . . . , zr)
= 〈A(x1) . . . A(xn)c(y1) . . . c(ym)c(ŷ1)c(ŷm)b(z1) . . . b(zr)〉

=
∫

[dφ]A(x1) . . . A(xn)c(y1) . . . c(ym)c(ŷ1)c(ŷm)b(z1) . . . b(zr)e−S ,

(6.42)

with the action S given by

S = SYM + Sgf . (6.43)

We have immediately assumed that there is an equal amount of ghost and antighost fields
present as in any other case, the Green function (6.42) would be zero, due to ghost number
symmetry. Subsequently, from the definition (6.42), we can immediately write down the
connection between the renormalized Green function and the bare Green function,

Gn+2m+r = Z
−n/2
A Z−mc Z

−r/2
b Gn+2m+r

0 . (6.44)

From the previous equation, we shall be able to fix all the matrix elements of expression
(6.40), based on the knowledge that

dGn+2m+r

dg2
, (6.45)

is finite.

We start by applying the chain rule when deriving the right hand side of equation (6.44)
w.r.t. g2. We find,

∂Gn′

∂g2
=

∂g2
0

∂g2

∂Gn′0

∂g2
0

Z
−n/2
A Z−mc Z

−r/2
b +

∂Z
−n/2
A

∂g2
Z−mc Z

−r/2
b Gn′0

+Z−n/2A

∂Z−mc
∂g2

Z
−r/2
b Gn′0 + Z

−n/2
A Z−mc

∂Z
−r/2
b

∂g2
Gn′0 ,

(6.46)

where we have replaced (n+ 2m+ r) with n′ as a shorthand. Next, we have to calculate all
the derivatives w.r.t. g2.

• Calculation of ∂g2
0

∂g2

In dimensional regularization, with d = 4− ε, one can write down

g2
0 = µεZ2

gg
2 . (6.47)
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Hence, if we derive this equation w.r.t. g2,

∂g2
0

∂g2
= µε

∂Z2
g

∂g2
g2 + µεZ2

g = g2
0

(
∂ lnZ2

g

∂g2
+

1
g2

)
. (6.48)

From the previous equation, we still have to determine ∂ lnZ2
g

∂g2 , which can be extracted
from equation (6.47). Deriving this equation w.r.t. µ gives,

µ
∂g2

0

∂µ
= εµεZ2

gg
2 + µε

∂Z2
g

∂g2
µ
∂g2

∂µ
g2 + µεZ2

gµ
∂g2

∂µ
= 0 , (6.49)

were we have applied the chain rule again. We can rewrite this equation making use of
the definition of the β-function

µ
∂g2

∂µ
= −εg2 + β(g2) , (6.50)

where we have immediately extracted the part in ε, and we obtain,

∂ lnZ2
g

∂g2
=

1
g2

(
−εg2

µ∂g
2

∂µ

− 1

)
=

1
g2

( −β(g2)
−εg2 + β(g2)

)
. (6.51)

If we insert this result into expression (6.48), we ultimately find

∂g2
0

∂g2
=

−εg2
0

−εg2 + β(g2)
. (6.52)

• Calculation of ∂Z
−n/2
A
∂g2

The next derivative w.r.t. g2 can be calculated in a similar way. We start by applying
the chain rule,

∂Z
−n/2
A

∂g2
= −nZ

−n/2
A

Z
1/2
A

∂Z
1/2
A

∂g2
= −nZ−n/2A

∂ lnZ1/2
A

∂g2
. (6.53)

Next, we derive ∂ lnZ
1/2
A

∂g2 from the definition of the gluon anomalous dimension,

γA = µ
∂ lnZ1/2

A

∂µ
= µ

∂g2

∂µ

∂ lnZ1/2
A

∂g2
=
(
−εg2 + β(g2)

) ∂ lnZ1/2
A

∂g2
. (6.54)

From expression (6.53) and (6.54), it now follows

∂Z
−n/2
A

∂g2
= −nZ−n/2A

γA
−εg2 + β(g2)

. (6.55)

• Calculation of ∂Z−mc
∂g2

Completely analogously, we find with the help of the anomalous dimension of the ghost
field,

µ
∂Z

1/2
c

∂µ
= γcZ

1/2
c , (6.56)

192



2. ORDINARY YANG-MILLS ACTION WITH INCLUSION OF THE OPERATOR F 2
µν

∂Z−mc
∂g2

= −2mZ−n/2A

γA
−εg2 + β(g2)

. (6.57)

• Calculation of ∂Z
−r/2
b
∂g2

Finally, from

µ
∂Z

1/2
b

∂µ
= γbZ

1/2
c , (6.58)

we deduce

∂Z
−r/2
b

∂g2
= −rZ−n/2A

γA
−εg2 + β(g2)

. (6.59)

Taking all the previous results into account, we can rewrite expression (6.46),

dGn′

dg2
=
Z
−n/2
A Z−mc Z

−r/2
b

−εg2 + β

[
−εg2

0

∂

∂g2
0

− nγA − 2mγc − rγb
]
Gn′0 . (6.60)

The right hand side of (6.60) still contains bare quantities, which we have to rewrite in terms
of renormalized quantities. Notice also that we would like to get rid of the field numbers n,
m and r as the mixing matrix will evidently will be independent of these numbers as they are
arbitrary.

We shall now alter the right hand side of equation (6.60) by calculating ∂
∂g2

0
Gn′0 and by re-

moving the fields numbers. After a little bit of algebra, we obtain,

∂(e−S)
∂g2

0

= −
∫

d4y

(
− 1
g2

0

[
F 2

0 (y)
4

]
+

1
2g2

0

[
A0(y)

δS

δA0(y)

]
− 1

2g2
0

[b0(y)∂A0(y)]

)
e−S .

Consequently, deriving the n′ point Green function Gn′0 w.r.t. g2
0 will result in several insertions

of integrated operators in this Green function,

g2
0

dGn′0

dg0
=
∫

d4y

(
Gn′0

{
F 2

0 (y)
4

}
− 1

2
Gn′0

{
A0(y)

δS

δA0(y)

}
+

1
2
Gn′0

{
b0(y)∂A0(y)

})
, (6.61)

where we have introduced a shorthand notation, e.g.

Gn′0

{
F 2

0 (y)
4

}
=
〈
F 2

0 (y)
4

A(x1) . . . A(xn)c(y1) . . . c(ym)c(ŷ1) . . . c(ŷm)b(z1) . . . b(zr)
〉
. (6.62)

The field numbers can be rewritten by inserting the corresponding counting operator. If we
start by inserting the counting operator for the n gluon fields , we find∫

d4yGn′0

{
A0(y)

δS

δA0(y)

}
= nGn′0 , (6.63)

as derived in equation (6.6). We can derive analogous relations for the other counting opera-
tors, ∫

d4yGn′0

{
c0(y)

δS

δc0(y)

}
= mGn′0 ,

∫
d4yGn′0

{
b0(y)

δS

δb0(y)

}
= rGn′0 . (6.64)
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Taking all these results together, expression (6.60) now becomes,

dGn′

dg2
=
Z
−n/2
A Z−mc Z

−r/2
b

−εg2 + β(g2)

∫
d4y

[
−ε
(
Gn′0 {F0(y)} − 1

2
Gn′0 {H0(y)}+

1
2
Gn′0 {I0(y)}

)
− γA(g2)Gn′0 {H0(y)} − 2γc(g2)Gn′0 {K0(y)} − γb(g2)Gn′0 {I0(y)}

]
.

We have again introduced a notational shorthand for the equation of motion operators, with
I0 = b0

δS
δb0

and K0 = c0
δS
δc0

and with F and H already defined before.

In the last part of the manipulation of the n′-point Green function we reexpress all the op-
erators again in terms of their renormalized counterparts, thereby writing all the divergences
explicitly in terms of ε. Firstly, we can reabsorb the Z-factors into Gn′0 to find,

dGn′

dg2
=

1
−εg2 + β(g2)

∫
d4y

[
−ε
(
Gn′0 {F0(y)} − 1

2
Gn′0 {H0(y)}+

1
2
Gn′0 {I0(y)}

)
− γA(g2)Gn′0 {H0(y)} − 2γc(g2)Gn′0 {K0(y)} − γb(g2)Gn′0 {I0(y)}

]
. (6.65)

Secondly, we parameterize the mixing matrix (6.40), F0

E0

H0

 =

 1 + a
ε − b

ε − b
ε

0 1 0
0 0 1

 FE
H

 . (6.66)

Here we have displayed the fact that the entries associated with a(g2, ε) and b(g2, ε), which
represent a formal power series in g2, must at least have a simple pole in ε. We recall that the
integrated operator E0 is proportional to the sum of the two counting operators

∫
I0 and

∫
K0,

see expression (6.41). Therefore
∫
I0 =

∫
I and

∫
K0 =

∫
K. Inserting all this information

into expression (6.65) yields,

∂Gn′

∂g2
=

1
−εg2 + β(g2)

∫
d4y

[
Gn′
{

(−ε− a)F(y)− bI(y)− bK(y) + bH(y) +
ε

2
H(y)

− ε

2
I(y)− γA(g2)H(y)− 2γc(g2)K(y)− γb(g2)I(y)

}]
, (6.67)

giving us the final result from which we shall be able to fix the matrix elements of expression
(6.40).

As the left hand side of our final expression (6.67) is finite, the right hand side is finite
too2. Therefore, the following coefficients must be finite,

F :
−ε− a

−εg2 + β(g2)
=

1
g2

(1 + a/ε)
1− β(g2)/(εg2)

,

2We consider the finiteness properties in the sense of formal power series in g2.
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I :
−ε/2− b− γb(g2)
−εg2 + β(g2)

=
1

2g2

1 + 2(b+ γb(g2))/ε
1− β(g2)/(εg2)

,

H :
ε/2 + b− γA(g2)
−εg2 + β(g2)

= − 1
2g2

1 + 2(b− γA(g2))/ε
1− β(g2)/(εg2)

,

K :
−b− 2γc(g2)
−εg2 + β(g2)

, (6.68)

seen as a power series in g2. This can only be true if

a(g2, ε) =− β(g2)
g2

, b(g2, ε) =γA(g2)− 1
2
β(g2)
g2

= −γb(g2)− 1
2
β(g2)
g2

= −2γc(g2) .

In fact, this last equation reveals a connection between the anomalous dimension of A and b,
and between the anomalous dimension of A, g and c, namely

γA + γb = 0 , γA + 2γc =
β

2g2
. (6.69)

These relations are well-known to hold in the Landau gauge, since ZAZb = 1 and ZcZ
1/2
A Zg =

1, as derived from the algebraic renormalization analysis, which leads to equations (6.34) and
(6.35).

In summary, we have completely fixed the mixing matrix in term of the elementary renor-
malization group functions, and this to all orders of perturbation theory, F0

E0

H0


︸ ︷︷ ︸

X0

=

 1− β(g2)/g2

ε −2γc(g2)
ε −2γc(g2)

ε
0 1 0
0 0 1


︸ ︷︷ ︸

Z

 FE
H


︸ ︷︷ ︸

X

. (6.70)

In addition, as a check of this result, we have also uncovered two relations, (6.69), between
anomalous dimensions which must hold for consistency. These correspond to (6.34) and
(6.35), which are well-known nonrenormalization theorems in the Landau gauge.

2.3 Constructing a renormalization group invariant

As a last step, we can now look for a renormalization group invariant operator by determining
the anomalous dimension Γ coming from the mixing matrix Z. We define the anomalous
dimension matrix Γ as

µ
∂

∂µ
Z = Z Γ . (6.71)

For the calculation of Γ, we require

µ
∂

∂µ

(
1− β/g2

ε

)
=

1
ε

(−εg2 + β(g2))
∂(β/g2)
∂g2

,

µ
∂

∂µ

2γc
ε

=
1
ε

(−εg2 + β(g2))
(2∂γc)
∂g2

, (6.72)
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so we obtain,

Γ =

 g2 ∂(β/g2)
∂g2 −2g2 ∂γc

∂g2 −2g2 ∂γc
∂g2

0 0 0
0 0 0

 , (6.73)

which is indeed finite, a nice consistency check. This matrix is then related to the anomalous
dimension of the operators:

X0 = ZX ⇒ 0 = µ
∂Z

∂µ
X + Zµ

∂X

∂µ
⇒ µ

∂X

∂µ
= −ΓX . (6.74)

We now have all the ingredients at our disposal to determine a renormalization group invariant
operator. We are looking for a linear combination of F , E and H which does not run,

µ
∂

∂µ
[kF + `G +mH] = 0 , (6.75)

whereby k, ` and m are to be understood as functions of g2. Invoking the chain rule gives

µ
∂k

∂µ
F − kg2∂(β/g2)

∂g2
F + 2kg2 ∂γc

∂g2
E + 2kg2 ∂γc

∂g2
H+ µ

∂`

∂µ
E + µ

∂m

∂µ
H = 0 . (6.76)

This previous equation results in two differential equations,
µ ∂k∂µ − kg2 ∂(β/g2)

∂g2 = 0 ,

µ ∂`∂µ + kg2 ∂γc
∂g2 = 0 ,

` = m,

which can be solved by, {
k(g2) = β(g2)

g2 ,

`(g2) = m(g2) = −2γc(g2) .

In summary, we have determined a renormalization group invariant scalar operator R con-
taining F . Explicitly,

R =
1
4
β(g2)
g2

F 2
µν − 2γc(g2)

(
Aaµ∂µb

a + ∂µc
aDab

µ c
b
)
− 2γc(g2)Aaµ

δS

δAaµ
, (6.77)

without having calculated any loop diagram. Moreover, this invariant is equal to the trace
anomaly Θµ

µ, which is expected as Θµ
µ is also a d = 4 renormalization group invariant [200].

2.4 Conclusion

In conclusion, we have thus found that the operator F 2
µν mixes with other d = 4 operators,

i.e. a BRST invariant operator E = s(∂µcaAaµ) and an equation of motion term H = Aaµ
δSYM
δAaµ

.
We have also construction a renormalization group invariant, R, see equation (6.77). Notice
however, that the second and the third term of the renormalization group invariant (6.77)
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shall drop when calculating correlators. Firstly, the third term is always zero when working
on-shell and secondly, due to the BRST invariance of the Yang-Mills action

〈R(x)R(y)〉 =
〈[

β

g2
F 2 + s(. . .)

]
(x)
[
β

g2
F 2 + s(. . .)

]
(y)
〉

=

〈(
β

g2

)2

F 2(x)F 2(y) + s(. . .)

〉
=
(
β

g2

)2 〈
F 2(x)F 2(y)

〉
, (6.78)

BRST exact terms always drop out. However, we have paved the way for more complicated
actions as the GZ action since this framework is very solid. We shall see that the correlator
is no longer trivial in this case due to the breaking of the BRST.

3 The (Refined) GZ action with the inclusion of the operator F 2
µν

We shall now report an analogous story for the (Refined) GZ action, which is based on [201].
We recall that the GZ action SGZ breaks the BRST, see e.g. section 3 in chapter 4. However,
to be able to repeat the story of the previous section, we need an action which is BRST
invariant. Luckily, we can embed the GZ action, into a “larger” action, which is BRST
invariant, namely ΣGZ in expression (3.209), by introducing 6 new sources, Uaiµ , V ai

µ , Mai
µ ,

Nai
µ , Raiµ and T aiµ with BRST variations given in expression (3.211). Only in the end, we shall

give these sources their physical values (3.212) to return to the original GZ action. It is then
natural that also here we shall encounter mixing of the 4 dimensional operator F 2

µν with other
d = 4 operators.

3.1 Renormalization of the GZ action with inclusion of the operator F 2
µν

3.1.1 The starting action

With the mixing of the 4 dimensional operators in mind, we can propose an enlarged Gribov-
Zwanziger action containing the glueball operator F 2

µν . This action will turn out to be renor-
malizable. For this, we can make two observations. Firstly, the limit, {ϕ,ϕ, ω, ω, U, V,N,
M, T,R} → 0, has to lead to our original Yang-Mills action Scl with the addition of the glue-
ball terms given by equation (6.9). Secondly, setting all the terms related to the glueball term
qF 2 equal to zero, we should recover the Gribov-Zwanziger action ΣGZ in equation (3.209).
Therefore, we propose the following starting action:

Σglue = ΣGZ +
∫

ddx qF aµνF
a
µν +

∫
ddxs

(
η
[
∂µc

aAaµ + ∂ω∂ϕ+ gfakb∂ω
aAkϕb + UaDabϕb

+V aDabωb + UV − T aiµ gfabcDbd
µ c

dωci

])
= ΣGZ +

∫
ddx qF aµνF

a
µν +

∫
ddx
(
λ
[
∂µc

aAaµ + ∂ω∂ϕ+ gfakb∂ω
aAkϕb + UaDabϕb

+V aDabωb + UV − T aiµ gfabcDbd
µ c

dωci

]
+ η
[
∂µb

aAaµ + ∂µc
aDab

µ c
b + ∂ϕ∂ϕ− ∂ω∂ω

+gfakb∂ϕaAkϕb + gfakb∂ω
aDkdcdϕb − gfakb∂ωaAkωb +Mai

µ D
ab
µ ϕ

b
i

+gUaiµ f
abcDab

µ c
bϕci − Uaiµ Dab

µ ω
b
i +Nai

µ D
ab
µ ω

b
i − gV ai

µ fabcDbd
µ c

dωci + V ai
µ Dab

µ ϕ
b
i

+Mai
µ V

ai
µ − Uaiµ Nai

µ −Raiµ gfabcDbd
µ c

dωci − T aiµ gfabcDbd
µ c

dϕci

])
, (6.79)
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whereby λ and η were already introduced in expression (6.7). Now upon taking the limit
{ϕ,ϕ, ω, ω, U, V,N,M, T,R} → 0, we indeed recover the Yang-Mills action3 (6.9) and setting
all sources equal to zero (q, η, λ) → 0, we find back our original Gribov-Zwanziger action,
see equation (3.209). Notice that in principle, we could have taken other possible starting
actions which also enjoy these two correct limits. We could have tried to couple different
sources to the different BRST exact terms instead of employing only one source η. However,
this would not lead to a renormalizable action, while the action (6.79) does turn out to be
renormalizable, as we shall prove.

Again, we shall establish the renormalizability of (6.79) by using the algebraic renormal-
ization formalism, see chapter 2.

The first step is to introduce two auxiliary terms necessary for the process of renormalization.
As always, we add the additional external term Sext,1 to the action,

Sext,1 =
∫

ddx
(
−Ka

µD
ab
µ c

b +
1
2
gLafabccbcc

)
, (6.80)

In addition, we also introduce the following external term,

Sext,2 =
∫

ddxs(XiA
a
µ∂ω

a
i ) =

∫
ddxYiAaµ∂ω

a
i −

∫
ddx

(
XiD

ab
µ c

b∂µω
a
i +XiA

a
µ∂µϕ

a
i

)
,

(6.81)
whereby (Xi, Yi) is a new doublet of sources, i.e. sXi = Yi. This additional term is necessary
in order to have a sufficient powerful set of Ward identities. Without this term, two Ward
identities of the original Gribov-Zwanziger action would be broken which are absolutely in-
dispensable for the proof of the renormalization of the action (see Ward identity 7. and 8. in
the list below). Again, in the end, we shall set

Xi|phys = 0 , Yi|phys = 0 . (6.82)

We shall thus continue the analysis with the following action

Σ = Σglue + Sext,1 + Sext,2 . (6.83)

3.1.2 The Ward identities

The second step is to search for all the Ward identities obeyed by the classical action Σ.
Doing so, we find the following list of identities:

1. The Slavnov-Taylor idenitity:
S(Σ) = 0 , (6.84)

where

S(Σ) =
∫

ddx
( δΣ
δKa

µ

δΣ
δAaµ

+
δΣ
δLa

δΣ
δca

+ ba
δΣ
δca

+ ϕai
δΣ
δωai

+ ωai
δΣ
δϕai

+Mai
µ

δΣ
δUaiµ

+Nai
µ

δΣ
δV ai

µ

+Raiµ
δΣ
δT aiµ

+ λ
δΣ
δη

+ Yi
δΣ
δXi

)
. (6.85)

3The term proportional to the equations of motion will be introduced later.
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2. The U(f) invariance:

UijΣ = 0 , (6.86)

with

Uij =
∫

ddx

(
ϕai

δ

δϕaj
− ϕaj

δ

δϕai
+ ωai

δ

δωaj
− ωaj

δ

δωai
−Maj

µ

δ

δMai
µ

− Uajµ
δ

δUaiµ

+Nai
µ

δ

δNaj
µ

+ V ai
µ

δ

δV aj
µ

+Rajµ
δ

δRaiµ
+ T ajµ

δ

δT aiµ
+ Y i δ

δY j
+Xi δ

δXj

)
. (6.87)

Using Qf = Uii, we can associate an extra quantum number to the i-valued fields and
sources. One can find all quantum numbers in TABLE 6.2 and TABLE 6.3.

3. The Landau gauge condition:

δΣ
δba

= ∂µA
a
µ − ∂µ(ηAaµ) . (6.88)

4. The modified antighost equation :

δΣ
δca

+ ∂µ
δΣ
δKa

µ

− ∂µ
(
η
δΣ
δKa

µ

)
= ∂(λA) . (6.89)

5. Two linearly broken local constraints:

δΣ
δϕai

+ ∂µ
δΣ
δMai

µ

+ gfdbaT
di
µ

δΣ
δKbi

µ

= gfabcAbµV
ci
µ − ηgfabcAbµV ci

µ − ∂µ(XiA
a
µ) ,

δΣ
δωai

+ ∂µ
δΣ
δNai

µ

− gfabcωbi δΣ
δbc

= gfabcAbµU
ci
µ − ηgfabcAbµU ciµ . (6.90)

6. The exact Rij invariance:
RijΣ = 0 , (6.91)

with

Rij =
∫

ddx

(
ϕai

δ

δωaj
− ωaj

δ

δϕai
+ V ai

µ

δ

δNaj
µ

− Uajµ
δ

δMai
µ

+ T aiµ
δ

δRajµ
−Xi δ

δY j

)
.

7. An extra integrated Ward identity:∫
ddx

(
δ

δλ
− η δ

δλ
+ ca

δ

δba
+ Uaiµ

δ

δMai
µ

+ ωai
δ

δϕai
−Xi

δ

δYi

)
Σ = 0 , (6.92)

which expresses in functional form the BRST exactness of the operator coupled to λ.

8. The integrated Ward Identity:∫
ddx

(
ca

δ

δωai
+ ωai

δ

δca
+ Uaiµ

δ

δKa
µ

− ηUaiµ
δ

δKa
µ

− λ δ

δYi

)
Σ = 0 . (6.93)
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9. The X-and Y -Ward identities:∫
ddx

[
(1− η)

δ

δXi
− λ δ

δY i
+ ωai

δ

δca
+ ϕai

δ

δba

]
Σ = 0 ,∫

ddx
[
(1− η)

δ

δY i
+ ωai

δ

δba

]
Σ = 0 . (6.94)

Aaµ ca ca ba ϕai ϕai ωai ωai
dimension 1 0 2 2 1 1 1 1

ghost number 0 1 −1 0 0 0 1 −1
Qf -charge 0 0 0 0 1 −1 1 −1

Table 6.2: Quantum numbers of the fields.

Uaiµ Mai
µ Nai

µ V ai
µ Raiµ T aiµ Ka

µ La q η λ Xi Y i

dimension 2 2 2 2 2 2 3 4 0 0 0 1 1
ghost number −1 0 1 0 0 −1 −1 −2 0 0 1 0 1
Qf -charge −1 −1 1 1 1 1 0 0 0 0 0 1 1

Table 6.3: Quantum numbers of the sources.

Let us stress here that it is of paramount importance to have a good set of Ward identities
to start from. For the construction of the action Σ, one should keep in mind the limits to
the ordinary Gribov-Zwanziger case and to the Yang-Mills action with the inclusion of the
glueball term. It is logical that an identity which plays a crucial role in one of the two limit
cases, should not be broken by the action Σ, as Σ can be seen as an enlargement of the two
limit cases. This is the reason why we have introduced Sext,2. Without the auxiliary sources
Xi and Yi, the extra integrated Ward identity (6.92) and the integrated Ward identity (6.93)
are broken, and without these two identities one cannot prove the renormalizability of the
action in an algebraic way.

3.1.3 The counterterm

Let us now determine the counterterm. From the previous Ward identities, it follows that the
counterterm Σc is constrained by:

1. The linearized Slavnov-Taylor identity:

BΣΣc = 0 , (6.95)

where BΣ is the nilpotent linearized Slavnov-Taylor operator,

BΣ =
∫

ddx
(
δΣ
δKa

µ

δ

δAaµ
+

δΣ
δAaµ

δ

δKa
µ

+
δΣ
δLa

δ

δca
+
δΣ
δca

δ

δLa
+ ba

δ

δca
+ ϕai

δ

δωai
+ ωai

δ

δϕai

+Mai
µ

δ

δUaiµ
+Nai

µ

δ

δV ai
µ

+Raiµ
δ

δT aiµ
+ λ

δ

δη
+ Y i δ

δXi

)
,

and
BΣBΣ = 0 . (6.96)
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2. The U(f) invariance:

UijΣc = 0 . (6.97)

Uij is given in expression (6.87).

3. The Landau gauge condition

δΣc

δba
= 0 . (6.98)

4. The modified antighost equation:

δΣc

δca
+ ∂µ

δΣc

δKa
µ

− ∂µ
(
η
δΣc

δKa
µ

)
= 0 . (6.99)

5. The linearly broken local constraints:

δΣc

δϕai
+ ∂µ

δΣc

δMai
µ

+ gfdbaT
di
µ

δΣ
δKbi

µ

= 0 ,

δΣc

δωai
+ ∂µ

δΣc

δNai
µ

− gfabcωbi δΣ
c

δbc
= 0 . (6.100)

6. The exact Rij symmetry:
RijΣc = 0 . (6.101)

7. The extra integrated Ward identity:∫
ddx

(
δ

δλ
− η δ

δλ
+ ca

δ

δba
+ Uaiµ

δ

δMai
µ

+ ωai
δ

δϕai
−Xi

δ

δYi

)
Σc = 0 . (6.102)

8. The integrated Ward Identity:∫
ddx

(
ca

δ

δωai
+ ωai

δ

δca
+ Uaiµ

δ

δKa
µ

− ηUaiµ
δ

δKa
µ

− λ δ

δYi

)
Σc = 0 . (6.103)

9. The X-and Y -Ward identities:∫
ddx

[
(1− η)

δ

δXi
− λ δ

δY i
+ ωai

δ

δca
+ ϕai

δ

δba

]
Σc = 0 ,∫

ddx
[
(1− η)

δ

δY i
+ ωai

δ

δba

]
Σc = 0 . (6.104)

At this point, we are ready to determine the most general integrated local polynomial Σc in
the fields and external sources of dimension bounded by four and with zero ghost number,
limited by the constraints (6.95)–(6.104). As usual, the counterterm can be parameterized as
follows:

Σc = (BΣ closed but not exact part)︸ ︷︷ ︸
Σc1

+BΣ∆−1︸ ︷︷ ︸
Σc2

, (6.105)
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whereby Σc
1 is a cohomologically non-trivial part while Σc

2 represents the cohomologically
trivial part. ∆−1 is the most general local polynomial with dimension 4 and ghost number
−1. We have proven on p.23 that all fields and sources belonging to a doublet can only enter
the cohomologically trivial part. This is exactly the reason why we have opted to introduce
the source η, which is coupled to the BRST exact term, as part of a doublet. In this way,
the source η can only enter the trivial part, and turns out to be useful to explicitly prove the
upper triangular form of the mixing matrix in equation (6.4). One can now check that the
closed but not exact part is given by

Σc
1 = a0SYM + b0ŜYM , (6.106)

whereby

ŜYM =
∫

ddxq
1
4
F aµνF

a
µν , (6.107)

and the trivial part is given by the following rather lengthy expression:

Σc
2 = BΣ

∫
ddx
{[
a1(Ka

µ + ∂µc
a)Aaµ + a2L

aca + a3U
a
µi∂µϕ

a
i + a4V

a
µi∂µω

a
i + a5ω

a
i ∂

2ϕai

+ a6U
a
µiV

a
µi + a7gf

abcUaµiϕ
b
iA

c
µ + a8gf

abcV a
µiω

b
iA

c
µ + a9gf

abcωaiA
c
µ∂µϕ

b
i

+ a10gf
abcωai (∂µA

c
µ)ϕbi + a11X

iωai ∂A
a
µ + a12X

i∂ωaiA
a
µ + a13X

iϕai c
a + a14gfabcX

iωai ω
b
jω

c
j

+ a′14gfabcX
iωajω

b
iω

c
j + a15X

iωai b
a + a16X

iU iaµ A
a
µ + a17gfabcX

iωaiϕ
b
jϕ

c
j + a′17gfabcX

iωajϕ
b
iϕ

c
j

+ a′′17gfabcX
iωajϕ

b
jϕ

c
i + a18gfabcX

iωai c
bcc + a19X

iXiϕajω
a
j + a′19X

iXjϕai ω
a
j + a20X

iY jωiaω
j
a

+ a21gfabcY
iωai ω

b
jϕ

c
j + a′21gfabcY

iωajω
b
jϕ

c
i + a22Y

iωai c
a + a23R

ai
µ U

ai
µ + a24T

ai
µ M

ai
µ

+ a25gfabcR
ai
µ ω

b
iA

c
µ + a26gfabcT

ai
µ ϕ

b
iA

c
µ + a27R

ai
µ ∂µω

a
i + a28T

ai
µ ∂µϕ

a
i

]
+ q

[
b1(Ka

µ + ∂µc
a)Aaµ + c1c

a∂µA
a
µ + b2L

aca + b3U
a
µi∂µϕ

a
i + c3∂µU

a
µiϕ

a
i + b4V

a
µi∂µω

a
i

+ c4∂µV
a
µiω

a
i + b5ω

a
i ∂

2ϕai + c5∂µω
a
i ∂µϕ

a
i + d5∂

2ωaiϕ
a
i + b6U

a
µiV

a
µi + b7gf

abcUaµiϕ
b
iA

c
µ

+ b8gf
abcV a

µiω
b
iA

c
µ + b9gf

abcωaiA
c
µ∂µϕ

b
i + c9gf

abcωai (∂µA
c
µ)ϕbi + d9gf

abc∂µω
a
iA

c
µϕ

b
i

+ b10X
iωai ∂A

a
µ + c10X

i∂ωaiA
a
µ + d10∂X

iωaiA
a
µ + b11X

iϕai c
a + b12gfabcX

iωai ω
b
jω

c
j

+ b′12gfabcX
iωajω

b
iω

c
j + b13X

iωai b
a + b14X

iU iaµ A
a
µ + b15gfabcX

iωaiϕ
b
jϕ

c
j + b′15gfabcX

iωajϕ
b
iϕ

c
j

+ b′′15gfabcX
iωajϕ

b
jϕ

c
i + b16gfabcX

iωai c
bcc + b17X

iXiϕajω
a
j + b′17X

iXjϕai ω
a
j + b18X

iY jωiaω
j
a

+ b19gfabcY
iωai ω

b
jϕ

c
j + b′19gfabcY

iωajω
b
jϕ

c
i + b20Y

iωai c
a + b21R

ai
µ U

ai
µ + b22T

ai
µ M

ai
µ

+ b23gfabcR
ai
µ ω

b
iA

c
µ + b24gfabcT

ai
µ ϕ

b
iA

c
µ + b25R

ai
µ ∂µω

a
i + c25∂µR

ai
µ ω

a
i + b26T

ai
µ ∂µϕ

a
i

+ c26∂µT
ai
µ ϕ

a
i

]
+ η

[
e1K

a
µA

a
µ + e′1∂µc

aAaµ + f1c
a∂µA

a
µ + e2L

aca + e3U
a
µi∂µϕ

a
i + f3∂µU

a
µiϕ

a
i

+ e4V
a
µi∂µω

a
i + f4∂µV

a
µiω

a
i + e5ω

a
i ∂

2ϕai + f5∂µω
a
i ∂µϕ

a
i + g5∂

2ωaiϕ
a
i + e6U

a
µiV

a
µi

+ e7gf
abcUaµiϕ

b
iA

c
µ + e8gf

abcV a
µiω

b
iA

c
µ + e9gf

abcωaiA
c
µ∂µϕ

b
i + f9gf

abcωai (∂µA
c
µ)ϕbi

+ g9gf
abc∂µω

a
iA

c
µϕ

b
i + e10X

iωai ∂A
a
µ + f10X

i∂ωaiA
a
µ + g10∂X

iωaiA
a
µ + e11X

iϕai c
a

+ e12gfabcX
iωai ω

b
jω

c
j + e′12gfabcX

iωajω
b
iω

c
j + e13X

iωai b
a + e14X

iU iaµ A
a
µ + e15gfabcX

iωaiϕ
j
bϕ

j
c
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+ e′15gfabcX
iωajϕ

b
iϕ

c
j + e′′15gfabcX

iωajϕ
b
jϕ

c
i + e16gfabcX

iωai c
bcc + e17X

iXiϕajω
a
j

+ e′17X
iXjϕai ω

a
j + e18X

iY jωiaω
j
a + e19gfabcY

iωai ω
b
jϕ

c
j + e′19gfabcY

iωajω
b
jϕ

c
i + e20Y

iωai c
a

+ e21R
ai
µ U

ai
µ + e22T

ai
µ M

ai
µ + e23gfabcR

ai
µ ω

b
iA

c
µ + e24gfabcT

ai
µ ϕ

b
iA

c
µ + e25R

ai
µ ∂µω

a
i

+ f25∂µR
ai
µ ω

a
i + e26T

ai
µ ∂µϕ

a
i + f26∂µT

ai
µ ϕ

a
i

]
+ λ

[
h1gfabcX

iϕajωbiω
c
j + h′1gfabcX

iϕaiωbjω
c
j

+ h2X
icaωai + h3ω

a
i ω

b
jϕ

a
iϕ

b
j + (variants of h3) + h4T

a
µi∂µω

a
i + h5T

a
µiU

a
µi + h6gf

abcT aµiω
b
iA

c
µ

]}
.

(6.108)

The coefficients ai, a′i, etc. are a priori free parameters.

Here again we did not include terms of the form (q2 . . .), (η2 . . .), (qη . . .), (q3 . . .), (λq2 . . .)
etc., into the counterterm as also here the argument (6.24) holds. This argument (6.24) can
be repeated for all the terms which are zero in the physical limit. Therefore, this argument is
not only valid for the dimensionless sources q, η and λ, but also for the massive sources Kµ,
Lµ, Xi, Yi. Though, some care needs to be taken, see the example of the modified ghost equa-
tion (6.25). Therefore, we choose to keep all the possible combinations of higher order in the
massive sources in the counterterm (6.108) as there are only a finite number of combinations,
while keeping in mind the higher order combinations of the dimensionless sources. Only af-
ter imposing all the constraints, we can then safely neglect the terms quadratic in the sources.

With the previous remark in mind, we can now impose all the constraints (6.97)-(6.104)
on the counterterm, which is a very cumbersome job. We ultimately find

Σc = a0SYM + b0ŜYM + a1

∫
ddx
(
Aaµ

δSYM
δAaµ

+Aaµ
δŜYM
δAaµ

+ ∂µc
a∂µc

a +Ka
µ∂µc

a +Mai
µ ∂µϕ

ai
µ

− Uaiµ ∂µωaiµ +Nai
µ ∂µω

ai
µ + V ai

µ ∂µϕ
ai
µ + ∂µϕ

ai∂µϕ
ai
µ + ∂µω

ai∂µω
ai
µ + V ai

µ Mai
µ − Uaiµ Nai

µ

− gfabcU iaµ ϕbi∂µcc − gfabcV ia
µ ωbi∂µc

c − gfabc∂µωaϕbi∂µcc − gfabcRaiµ ∂µcbωci − gfabcT aiµ ∂µcbϕci
)

+ b1

∫
ddxq

(
Aaµ

δSYM
δAaµ

+ ∂µc
a∂µc

a +Ka
µ∂µc

a +Mai
µ ∂µϕ

ai
µ − Uaiµ ∂µωaiµ +Nai

µ ∂µω
ai
µ + V ai

µ ∂µϕ
ai
µ

+ ∂µϕ
ai∂µϕ

ai
µ + ∂µω

ai∂µω
ai
µ + V ai

µ Mai
µ − Uaiµ Nai

µ − gfabcU iaµ ϕbi∂µcc − gfabcV ia
µ ωbi∂µc

c

− gfabc∂µωaϕbi∂µcc − gfabcRaiµ ∂µcbωci − gfabcT aiµ ∂µcbϕci
)

+ a1

∫
ddxη

(
∂µc

a∂µc
a +Mai

µ ∂µϕ
ai
µ

− Uaiµ ∂µωaiµ +Nai
µ ∂µω

ai
µ + V ai

µ ∂µϕ
ai
µ + ∂µϕ

ai∂µϕ
ai
µ + ∂µω

ai∂µω
ai
µ + V ai

µ Mai
µ − Uaiµ Nai

µ

− gfabcU iaµ ϕbi∂µcc − gfabcV ia
µ ωbi∂µc

c − gfabc∂µωaϕbi∂µcc − gfabcRaiµ ∂µcbωci − gfabcT aiµ ∂µcbϕci
)

− a1

∫
ddxλ

(
Uaiµ ∂µϕ

ai + V ai
µ ∂µω

ai + ∂µω
ai∂µϕ

ai + Uaiµ V
ai
µ − gfabcT aωb∂µcc

)
− a1

∫
ddx
(
Xi∂µω

ai∂µc
a
)
. (6.109)

Only now, we can discard the term ∼ qKa
µ∂µc

a as it is of quadratic order in the sources. One
could argue that we can also neglect terms of higher order in Uaiµ , Nai

µ and T aiµ . However,
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all these sources belong to a BRST doublet. Moreover, the corresponding partner sources,
Mai
µ , V

ai
µ , Raiµ , acquire a nonzero value in the physical limit, and it would be impossible to

write the BRST exact term in our starting action Σglue (see expression (6.79)) as an s-variation
when neglecting these kind of terms. In summary, the expression

Σc = a0SYM + b0ŜYM + a1

∫
ddx
(
Aaµ

δSYM
δAaµ

+Aaµ
δŜYM
δAaµ

+ ∂µc
a∂µc

a +Ka
µ∂µc

a +Mai
µ ∂µϕ

ai
µ

− Uaiµ ∂µωaiµ +Nai
µ ∂µω

ai
µ + V ai

µ ∂µϕ
ai
µ + ∂µϕ

ai∂µϕ
ai
µ + ∂µω

ai∂µω
ai
µ + V ai

µ Mai
µ − Uaiµ Nai

µ

− gfabcU iaµ ϕbi∂µcc − gfabcV ia
µ ωbi∂µc

c − gfabc∂µωaϕbi∂µcc − gfabcRaiµ ∂µcbωci − gfabcT aiµ ∂µcbϕci
)

+ b1

∫
ddxq

(
Aaµ

δSYM
δAaµ

+ ∂µc
a∂µc

a +Mai
µ ∂µϕ

ai
µ − Uaiµ ∂µωaiµ +Nai

µ ∂µω
ai
µ + V ai

µ ∂µϕ
ai
µ

+ ∂µϕ
ai∂µϕ

ai
µ + ∂µω

ai∂µω
ai
µ + V ai

µ Mai
µ − Uaiµ Nai

µ − gfabcU iaµ ϕbi∂µcc − gfabcV ia
µ ωbi∂µc

c

− gfabc∂µωaϕbi∂µcc − gfabcRaiµ ∂µcbωci − gfabcT aiµ ∂µcbϕci
)

+ a1

∫
ddxη

(
∂µc

a∂µc
a +Mai

µ ∂µϕ
ai
µ

− Uaiµ ∂µωaiµ +Nai
µ ∂µω

ai
µ + V ai

µ ∂µϕ
ai
µ + ∂µϕ

ai∂µϕ
ai
µ + ∂µω

ai∂µω
ai
µ + V ai

µ Mai
µ − Uaiµ Nai

µ

− gfabcU iaµ ϕbi∂µcc − gfabcV ia
µ ωbi∂µc

c − gfabc∂µωaϕbi∂µcc − gfabcRaiµ ∂µcbωci − gfabcT aiµ ∂µcbϕci
)

− a1

∫
ddxλ

(
Uaiµ ∂µϕ

ai + V ai
µ ∂µω

ai + ∂µω
ai∂µϕ

ai + Uaiµ V
ai
µ − gfabcT aωb∂µcc

)
− a1

∫
ddx
(
Xi∂µω

ai∂µc
a
)
. (6.110)

gives the general counterterm compatible with all Ward identities.

We still need to introduce the operators belonging to the class C3, which are related to
the equations of motion, see section 2.1.2. Therefore, we again perform a linear shift on the
gluon field Aaµ in the action Σ

Aaµ → Aaµ + αAaµ , (6.111)

whereby α is a dimensionless new source. As this shift corresponds to a redefinition of the
gluon field it has to be consistently done in the starting action as well as in the counterterm.
Later on, we shall see that introducing the relevant gluon equation of motion operator through
this shift, will allow us to uncover the finiteness of this kind of operator. Performing the shift
in the classical action yields the following shifted action Σ′

Σ′ = SYM +
∫

ddx
(
ba∂µA

a
µ + ca∂µD

ab
µ c

b
)

+
∫

ddx
(
−Ka

µ (Dµc)
a +

1
2
gLafabccbcc

)
+
∫

ddx
(
ϕai ∂νD

ab
ν ϕ

b
i − ωai ∂νDab

ν ω
b
i − g∂νωai fabmDbd

ν c
dϕmi

)
+
∫

ddx
(
−Mai

µ D
ab
µ ϕ

b
i

− gUaiµ fabcDbd
µ c

dϕci + Uaiµ D
ab
µ ω

b
i −Nai

µ D
ab
µ ω

b
i − V ai

µ Dab
µ ϕ

b
i + gV ai

µ fabcDbd
µ c

dωci −Mai
µ V

ai
µ

+ Uaiµ N
ai
µ +Raiµ gf

abcDbd
µ c

dωci + T aiµ gfabcD
bd
µ c

dϕci

)
+
∫

ddxqF aµνF
a
µν +

∫
ddxλ

[
∂µc

aAaµ

+ ∂ω∂ϕ+ gfakb∂ω
aAkϕb + UaDabϕb + V aDabωb + UV − T aiµ gfabcDbd

µ c
dωci

]
204



3. THE (REFINED) GZ ACTION WITH THE INCLUSION OF THE OPERATOR F 2
µν

+
∫

ddxη
[
∂µb

aAaµ + ∂µc
aDab

µ c
b + ∂ϕ∂ϕ− ∂ω∂ω + gfakb∂ϕ

aAkϕb + gfakb∂ω
aDkdcdϕb

− gfakb∂ωaAkωb +Mai
µ (Dµϕi)

a + gUaiµ f
abc (Dµc)

b ϕci − Uaiµ (Dµωi)
a +Nai

µ (Dµωi)
a

− gV ai
µ fabc (Dµc)

b ωci + V ai
µ (Dµϕi)

a +Mai
µ V

ai
µ − Uaiµ Nai

µ −Raiµ gfabcDbd
µ c

dωci

− T aiµ gfabcDbd
µ c

dϕci

]
+
∫

ddx
(
YiA

a
µ∂ω

a
i −XiD

ab
µ c

b∂µω
a
i +XiA

a
µ∂µϕ

a
i

)
+
∫

ddxαAaµ
δSYM
δAaµ

+
∫

ddxα
[
−∂µbaAaµ + gfakbA

k
µc
b∂µc

a
]

+
∫

ddxα
[
−gfakb∂µϕaiAkµϕb

+ gfakb∂µω
a
iA

k
µω

b − g2fabmfbkd∂µω
aϕmAkµc

d
]

+
∫

ddxα
[
−gfakbMa

i A
k
µϕ

b
i + gfakbU

a
i A

k
µω

b
i

− gfakbNa
i A

k
µω

b
i − gfakbV a

i A
k
µϕ

b
i

]
−
∫

ddxα
[
g2fabcfbkdU

a
i ϕ

cAkcd + g2fabcfbkdV
aωcAkcd

+ g2fabcfbkdR
aωcAkcd − g2fabcfbkdT

aϕcAkcd
]
. (6.112)

Notice that we have neglected again higher order terms in the sources ∼ (αη . . .), ∼ (αλ . . .)
and ∼ (αq . . .) as the argument (6.24) is still valid. The corresponding counterterm Σ′c reads:

Σ′c = Σc + a0

∫
ddx
(
αAaµ

δSYM
δAaµ

)
+ a1

∫
ddxα

(
2Aaµ∂µ∂νA

a
ν − 2Aaµ∂

2Aaµ

+9gfabcAaµA
b
ν∂µA

c
ν + 4g2fabcfcdeA

a
µA

b
νA

d
µA

e
ν

)
, (6.113)

whereby Σc is given in expression (6.110) and we have once more dropped higher order terms
in the sources.

The final step in the renormalization procedure is to reabsorb the counterterm Σ′c into the
original action Σ′,

Σ(g, ω, φ,Φ) + hΣc = Σ(g0, ω0, φ0,Φ0) +O(h2) . (6.114)

We set φ = (Aaµ, ca, ca, ba, ϕai , ω
a
i , ϕai , ω

a
i ) and Φ = (Kaµ, La, Mai

µ , Nai
µ , V ai

µ , Uaiµ , λ) and
we define

g0 = Zgg , φ0 = Z
1/2
φ φ , Φ0 = ZΦΦ , (6.115)

while for the other sources we propose the following mixing matrix q0

η0

α0

 =

 Zqq Zqη Zqα
Zηq Zηη Zηα
Zαq Zαη Zαα

 q
η
α

 . (6.116)

If we try to absorb the counterterm into the original action, we obviously find back all the
renormalization factors of the original GZ action, see expression (3.240)- (3.242). In addition,
we also find the following mixing matrix Zqq Zqη Zqα

Zηq Zηη Zηα
Zαq Zαη Zαα

 =

 1 + h(b0 − a0) 0 0
hb1 1 0
hb1 0 1

 , (6.117)
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while for the Z-factor of λ we have

Zλ = Z−1/2
c Z

−1/2
A = Z1/2

g Z
−1/4
A . (6.118)

Both results are remarkable the same as (6.36) and (6.37). So far, we have proven that the
two limit cases are at least correct. Finally, we find the new results

ZY = ZgZ
−1/2
A ,

ZX = Z1/2
g Z

−1/4
A . (6.119)

In summary, the action Σ′ is renormalizable. Moreover, we have only 4 arbitrary parameters,
a0, a1, b0, b1, which is the same number as in the limit case {ϕ,ϕ, ω, ω, U, V,N,M} → 0,
i.e. the Yang-Mills case with the introduction of the glueball operator ∼ F 2

µν , see the previous
section. This is also a remarkable fact.

3.2 Renormalization of the RGZ action with inclusion of the operator F 2
µν

In analogy with chapter 5 we shall add the two dimensional mass term ∼ (ϕaiϕ
a
i − ωai ωai ) to

the action Σglue in equation (6.79),

ΣRglue = Σglue + Σϕϕ + Σen , (6.120)

whereby we recall that

Σϕϕ =
∫

ddx (s(−Jωaiϕai )) =
∫

ddx (−J (ϕaiϕ
a
i − ωai ωai )) ,

Σen =
∫

ddxςΘJ , (6.121)

see equations4 (5.13) and (5.32)-(5.33).

Let us now investigate the renormalizability of action ΣRglue. We can go through the same
steps as in the previous section. Therefore, we again add the two external pieces, Sext,1 and
Sext,2 as defined in equation (6.80) and (6.81), to the action ΣRglue

ΣR = ΣRglue + Sext,1 + Sext,2 . (6.122)

Subsequently, one can easily check that all Ward identities (6.86) - (6.91) and (6.94) remain
unchanged up to potential harmless linear breaking terms. Therefore, the constraints (6.97)
- (6.101) and (6.104) remain valid. Unfortunately, the extra integrated Ward identity (6.92)
and the integrated Ward identity (6.93) are broken due to the introduction of the mass term.
However, the mass term we have added is not a new interaction as it is only quadratic in the
fields. Therefore, it cannot introduce new divergences into the massless theory Σ, and it can
only influence its own renormalization5 as well as potentially vacuum terms, i.e. pure source
terms. Also, next to the Ward identities (6.86) - (6.91) and (6.94), we have a new identity

δΣR

δΘ
= ςJ , (6.123)

4We are not including the condensate 〈A2〉 here.
5We employ massless renormalization schemes.
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which is translated to the following constraint at the level of the counterterm,

δΣc
R

δΘ
= 0 . (6.124)

As a consequence, Σc
R is independent from the source Θ. Therefore, it follows that the form

of the counterterm Σc
R can be written as

Σc
R = Σc + Σc

J , (6.125)

whereby Σc is the counterterm (6.110) of Σ and Σc
J is depending on J . One can now easily

check that Σc
J = κJ2, with κ a new parameter as this is the only possible combination with

the source J , which does not break the constraints (6.95) - (6.101) and (6.104).

κ is in fact a redundant parameter, as no divergences in J2 will occur, as explained on
page 123. Therefore, the counterterm Σc

R is actually equal to Σc. Defining

J0 = ZJJ , (6.126)

we find

ZJ = Z−1
ϕ = ZgZ

1/2
A , (6.127)

and we have proven the renormalizability of the action ΣRglue.

3.3 The operator mixing matrix to all orders

3.3.1 Preliminaries

We can write the final action Σ′ from equation (6.112) in a more condensed form as

Σ′ = ΣGZ + Sext,1 + Sext,2 +
∫

ddx (qF + ηE + αH) +
∫

ddxλN , (6.128)

whereby we have defined the operators

F =
1
4
F aµνF

a
µν ,

E = sN ,

H = Aaµ
ΣGZ

Aaµ
, (6.129)

with

N =
[
∂µc

aAaµ + ∂ω∂ϕ+ gfakb∂ω
aAkϕb + UaDabϕb + V aDabωb + UV − T aiµ gfabcDbd

µ c
dωci

]
.

(6.130)
Let us return to the mixing matrix of the sources q, η and J and pass to the corresponding
operators. We have found in expression (6.117) that q0

η0

J0

 =

 Zqq 0 0
ZJq 1 0
ZJq 0 1

 q
η
J

 . (6.131)
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As this matrix is exactly the same as in the Yang-Mills case (6.36), we can immediately write
down the corresponding mixing matrix for the operators themselves, see expression (6.40), F0

E0

H0

 =

 Z−1
qq −ZJqZ−1

qq −ZJqZ−1
qq

0 1 0
0 0 1

 FE
H

 . (6.132)

We recall that we recover the expected upper triangular form. Also in the GZ case, E has
a Z-factor equal to 1, and we also find that the BRST exact operator E does not mix with
H, although this mixing would in principle be allowed. This can be understood as follows.
The integrated BRST exact operator E is in fact proportional to a sum of four (integrated)
equations of motion terms and two other terms,

∫
d4x
[
∂µb

aAaµ + ∂µc
aDab

µ c
b + ∂ϕ∂ϕ− ∂ω∂ω + gfakb∂ϕ

aAkϕb + gfakb∂ω
aDkdcdϕb

− gfakb∂ωaAkωb +Mai
µ D

ab
µ ϕ

b
i + gUaiµ f

abcDab
µ c

bϕci − Uaiµ Dab
µ ω

b
i +Nai

µ D
ab
µ ω

b
i

− gV ai
µ fabcDbd

µ c
dωci + V ai

µ Dab
µ ϕ

b
i +Mai

µ V
ai
µ − Uaiµ Nai

µ

]
= −

∫
d4x

(
ba
δΣGZ

δba
+ ca

δΣGZ

δca
+ ϕa

δΣGZ

δϕa
+ ωa

δΣGZ

δωa
+Mai

µ

δΣGZ

δMai
µ

+ Uaiµ
δΣGZ

δUaiµ

)
, (6.133)

and therefore, like H, it does not mix with the other operators. Notice that we can rewrite
the integrated BRST operator in two other forms:

(6.133) = −
∫

d4x

(
ba
δΣGZ

δba
+ ca

δΣGZ

δca
+ ϕa

δΣGZ

δϕa
+ ωa

δΣGZ

δωa
+Nai

µ

δΣGZ

δNai
µ

+ V ai
µ

δΣGZ

δV ai
µ

)
,

(6.134)
or

(6.133) = −
∫

d4x

(
ba
δΣGZ

δba
+ ca

δΣGZ

δca
+ ϕa

δΣGZ

δϕa
+ ωa

δΣGZ

δωa
+Mai

µ

δΣGZ

δMai
µ

+Nai
µ

δΣGZ

δNai
µ

)
.

(6.135)
Remark
We can also use the refined action ΣRGZ instead of ΣGZ. We define ΣRGZ as

ΣRGZ = ΣGZ + Σϕϕ + Σen , (6.136)

whereby Σϕϕ and Σen are defined in equation (6.121). Replacing ΣGZ by ΣRGZ does not alter
equation (6.132), but it does slightly modify expression (6.133),

∫
d4xE = −

∫
d4x
(
ba
δΣRGZ

δba
+ ca

δΣRGZ

δca
+ ϕa

δΣRGZ

δϕa
+ ωa

δΣRGZ

δωa
+Mai

µ

δΣRGZ

δMai
µ

+ Uaiµ
δΣRGZ

δUaiµ
− J δΣRGZ

δJ
+ Θ

δΣRGZ

δΘ

)
, (6.137)

and analogously for expression (6.134) and (6.135).
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3.3.2 The physical limit

In the next subsection, we shall work in the physical limit as our final intention is to examine
n-point functions with the (Refined) Gribov-Zwanziger action itself. In the physical limit, E
becomes:

E|phys = ∂µb
aAaµ + ∂µc

aDab
µ c

b + ∂µϕ
a
iD

ab
µ ϕ

b
i − ∂µωaiDab

µ ω
b
i + gfabc∂µω

a
iD

bd
µ c

dϕci

+ γ2gfabcAaµϕ
bc
µ + γ2gfabcAaµϕ

bc
µ + d

(
N2 − 1

)
γ4 . (6.138)

From this point, we can omit the constant term d
(
N2 − 1

)
γ4 as it shall not play a role in the

calculation of the glueball correlator. Later, we shall determine the renormalization group
invariant R(x) which contains F 2

µν(x). As E mixes with F 2
µν(x), this renormalization group

invariant shall also contain this constant term. However, a constant term can never contribute
to the final glueball correlator 〈R(x)R(y)〉 as it can never help to produce connected diagrams
between the two space time points x and y. Therefore, we shall simplify the calculations by
omitting this term already from this point.

In the physical limit H is given by

H|phys = Aaµ
δSGZ

δAaµ
, (6.139)

whereby SGZ is the physical Gribov-Zwanziger action (3.176). Naturally, the mixing matrix
(6.132) stays valid.

3.3.3 The operator mixing matrix to all orders

It this section, we shall determine the mixing matrix (6.132) to all orders. This proof is very
elegant as it does not require to calculate any loop diagrams, and it is purely based on alge-
braic manipulations. We shall extend the proof given in section 2.2, which was based on [199].
Moreover, as a byproduct, the proof shall also reveal some identities between the anomalous
dimensions of the different fields, which can serve as a check on relations as in (3.241) and
(3.242). We shall directly work with the physical action SGZ. In the end, we shall also look
at the Refined Gribov-Zwanziger action, SRGZ.

We start again our analysis with the following generic n-points function

Gn(x1, . . . , xn) = 〈φi(x1) . . . φj(xn)〉 =
∫

[dφ]φi(x1) . . . φj(xn)e−SGZ , (6.140)

whereby φi, i = 1 . . . 8 stands for one of the eight fields (Aaµ, ca, ca, ba, ϕabµ , ωabµ , ϕabµ , ωai ),
i.e φ1 = Aµ, . . ., φ8 = ωabµ . We shall immediately omit the vacuum term γ4(N2 − 1)d in the
action SGZ, as it is relevant only for the calculation of the vacuum energy and not for the
calculation of n-point functions. The total number of fields is given by n,

n =
8∑
i

ni , (6.141)

with ni the number of fields φi present in the n-points function (6.140). We are therefore
considering the path integral for a random combination of fields. Subsequently, from the
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definition (6.140), we can immediately write down the connection between the renormalized
Green function and the bare Green function, which is, in a very condensed notation,

Gn =
8∏
i=1

Z
−ni/2
φi

Gn0 . (6.142)

From the previous equation, we shall be able to fix all the matrix elements of expression
(6.132), based on the knowledge that dGn

dg2 must be finite in a renormalized theory.

We shall therefore calculate this quantity. The first step is to apply the chain rule:

dGn
dg2

=
8∑
j=1

∂Z−nj/2φj

∂g2

∏
i 6=j

Z
−ni/2
φi

Gn0 +
8∏
i=1

Z
−ni/2
φi

[
∂g2

0

∂g2

∂

∂g2
0

+
∂γ2

0

∂g2

∂

∂γ2
0

]
Gn0 . (6.143)

Next, we need to calculate the derivatives w.r.t. g2.

• Firstly, we need to find ∂g2
0/∂g

2. We employ dimensional regularization, with d = 4−ε.
If we derive

g2
0 = µεZ2

gg
2 , (6.144)

w.r.t. µ and g2, combine these two equations and employ the following definition of the
β-funtion6

µ
∂g2

∂µ
= −εg2 + β(g2) , (6.145)

we obtain

∂g2
0

∂g2
=

−εg2
0

−εg2 + β(g2)
. (6.146)

• Secondly, we calculate ∂γ2
0

∂g2 . We start from

γ2
0 = Zγ2γ2 , (6.147)

whereby Zγ2 = ZV = ZM due to the limit (3.212). Deriving this equation w.r.t. g2

yields

∂γ2
0

∂g2
=
∂Zγ2

∂g2
γ2 =

∂ lnZγ2

∂g2
γ2

0 =
1
µ

∂µ

∂g2
µ
∂ lnZγ2

∂µ
γ2

0 =
1

−εg2 + β(g2)
δγ2γ2

0 ,

and we have defined the anomalous dimension of γ2 as

δγ2 = µ
∂ lnZγ2

∂µ
. (6.148)

6We have immediately extracted the part in ε.
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• Finally, we search for ∂Z−nj/2φj
/∂g2. Applying the chain rule gives

∂Z
−nj/2
φj

∂g2
= −nj

Z
−nj/2
φj

Z
1/2

φj

∂Z
1/2

φj

∂g2
= −njZ−nj/2φj

∂ lnZ1/2

φj

∂g2
. (6.149)

Next, we derive
∂ lnZ

1/2

φi

∂g2 from the definition of the anomalous dimension,

γφj = µ
∂ lnZ1/2

φj

∂µ
= µ

∂g2

∂µ

∂ lnZ1/2

φj

∂g2
=
(
−εg2 + β(g2)

) ∂ lnZ1/2

φj

∂g2
. (6.150)

From expression (6.149) and (6.150), it now follows

∂Z
−nj/2
φj

∂g2
= −njZ−nj/2φj

γφj

−εg2 + β(g2)
. (6.151)

Inserting equation (6.146) and (6.151) into expression (6.143), we find:

dGn
dg2

=

∏
i Z
−ni/2
φi

−εg2 + β(g2)

− 8∑
j=1

njγφj − εg2
0

∂

∂g2
0

+ δγ2γ2
0

∂

∂γ2
0

Gn0 . (6.152)

The right hand side still contains bare and therefore divergent quantities. We would like to
rewrite all these quantities in terms of finite quantities so that we can use the finiteness of
the left hand side to make observations on the right hand side. Also, we should rewrite in
some manner the number nj as the mixing matrix (6.132) is obviously independent from these
arbitrary numbers.

Therefore, as a second step, we shall rewrite the right hand side of (6.152) in terms of a
renormalized quantity. Firstly, we calculate ∂

∂g2
0
Gn0 . Using

∂e−SGZ

∂g2
0

= −
∫

d4y

(
− 1
g2

0

(
F 2

0 (y)
4

)
+

1
2g2

0

(
A0(y)

δSGZ

δA0(y)
− b0(y)

δSGZ

δb0(y)

+ω0(y)
δSGZ

δω0(y)
− ω0(y)

δSGZ

δω0(y)

))
e−SGZ ,

we can write,

g2
0

dGn0
dg0

=
∫

d4y

(
Gn0
{
F 2

0 (y)
4

}
− 1

2
Gn0
{
A0(y)

δSGZ

δA0(y)

}
+

1
2
Gn0
{
b0(y)

δSGZ

δb0(y)

}
−1

2
Gn0
{
ω0(y)

δSGZ

δω0(y)

}
+

1
2
Gn0
{
ω0(y)

δSGZ

δω0(y)

})
. (6.153)

We have introduced a shorthand notation for an insertion in the n-points function, e.g.

Gn0
{
F 2

0 (y)
4

}
=

〈
F 2

0 (y)
4

φi(x1) . . . φj(zn)
〉
. (6.154)
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Secondly, we analogously find

γ2
0

∂

∂γ2
0

Gn0 =
∫

d4y
(
Gn0
{
γ2

0g0f
abcAaµ,0ϕ

bc
µ,0 + γ2

0g0f
abcAaµ,0ϕ

bc
µ,0

})
. (6.155)

Thirdly, we rewrite njGn0 by inserting the corresponding counting operator7 into the Green
function,

njGn0 =
∫

d4yGn0
{
φj0(y)

δSGZ

δφj0(y)

}
. (6.156)

Inserting (6.153), (6.155) and (6.156) into our main expression (6.152) results in

dGn
dg2

=
1

−εg2 + β(g2)

∫
ddy

[
−

8∑
j=1

γφjGn
{
φj0(y)

δSGZ

δφj0(y)

}
− εGn

{
F 2

0 (y)
4

}

+
ε

2
Gn
{
A0(y)

δSGZ

δA0(y)

}
− ε

2
Gn
{
b0(y)

δSGZ

δb0(y)

}
+
ε

2
Gn
{
ω0(y)

δSGZ

δω0(y)

}
− ε

2
Gn
{
ω0(y)

δSGZ

δω0(y)

}
+ δγ2Gn

{
γ2

0g0f
abcAaµ,0ϕ

bc
µ,0 + γ2

0g0f
abcAaµ,0ϕ

bc
µ,0

}]
. (6.157)

Notice that we have also absorbed the factor
∏
i Z
−ni/2
φi

into the Green functions, and therefore
we can replace Gn0 again by Gn. Finally, we need to rewrite all the inserted operators in the
n-points function Gn in terms of their renormalized counterparts. For this we return to the
mixing matrix (6.132) and parameterize it as follows F0

E0

H0

 =

 1 + a
ε − b

ε − b
ε

0 1 0
0 0 1

 FE
H

 . (6.158)

Here we have displayed the fact that the entries associated with a(g2, ε) and b(g2, ε), which
represent a formal power series in g2, must at least have a simple pole in ε. Therefore, we
can rewrite

−εF0(y) =
F 2

0 (y)
4

= (−ε− a)F(y) + b E(y)|phys + bA(y)
δSGZ

δA(y)
,

H0|phys = A0(y)
δSGZ

δA0(y)
= A(y)

δSGZ

δA(y)
, (6.159)

whereby we recall that we are working in the physical limit and we have replaced H|phys by
the expression (6.139). Subsequently,

γ2
0g0f

abcAaµ,0ϕ
bc
µ,0 = γ2gfabcAaµϕ

bc
µ ,

γ2
0g0f

abcAaµ,0ϕ
bc
µ,0 = γ2gfabcAaµϕ

bc
µ , (6.160)

as one can check with the Z-factors in (3.242). Finally, all the other operators are equations
of motion terms, which appear in expression (6.133), (6.134) and (6.135) and therefore have

7It is easily checked that
∫

d4yφj0
δ

δφ
j
0

counts the number of φj0 insertions.
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the same Z-factor as the operator E , i.e. Z = 1. Summarizing, expression (6.157) becomes:

dGn
dg2

=
1

−εg2 + β(g2)

∫
ddy

[
(−ε− a)Gn {F}+

(ε
2

+ b− γA
)
Gn
{
A
δSGZ

δA

}
+
(
−ε

2
− γb − b

)
Gn
{
b(y)

δSGZ

δb(y)

}
+ (−γc − b)Gn

{
c(y)

δSGZ

δc(y)

}
− γcGn

{
c(y)

δSGZ

δc(y)

}
+
(
−ε

2
− γω

)
Gn
{
ω(y)

δSGZ

δω(y)

}
+
(ε

2
− γω

)
Gn
{
ω(y)

δSGZ

δω(y)

}
− γϕGn

{
ϕ(y)

δSGZ

δϕ(y)

}
− γϕGn

{
ϕ(y)

δSGZ

δϕ(y)

}
+ bGn

{
∂µϕ

a
iD

ab
µ ϕ

b
i − ∂µωaiDab

µ ω
b
i + gfabc∂µω

a
iD

bd
µ c

dϕci

+γ2gfabcAaµϕ
bc
µ + γ2gfabcAaµϕ

bc
µ

}
+ δγ2Gn

{
γ2gfabcAaµϕ

bc
µ + γ2gfabcAaµϕ

bc
µ

}]
, (6.161)

where we have immediately taken the full expression of E |phys in equation (6.138).

From expression (6.161), we can determine a(g2, ε) and b(g2, ε). As dGn
dg2 is a finite expression,

we know that the right hand side of equation (6.161) must also be finite. Therefore, as all
the Green functions are expressed in terms of finite quantities, we can choose a set of linearly
independent terms and demand that their coefficients are finite:

Gn {F} :
−ε− a

−εg2 + β(g2)
, Gn

{
A
δSGZ

δA

}
:
ε/2 + b− γA(g2)
−εg2 + β(g2)

, (6.162a)

Gn {b∂µAµ} :
− ε

2 − γb − b
−εg2 + β(g2)

, Gn
{
ca∂µD

ab
µ c

b
}

:
−γc − b− γc
−εg2 + β(g2)

, (6.162b)

Gn
{
ϕai ∂µD

ab
µ ϕ

b
i

}
:
−γϕ − γϕ − b
−εg2 + β(g2)

, Gn
{
ωai ∂µD

ab
µ ω

b
i

}
:
−γω − γω − b
−εg2 + β(g2)

, (6.162c)

Gn
{
−γ2gfabcAaµϕ

bc
}

:
−γϕ − δγ2 − b
−εg2 + β(g2)

, Gn
{
−γ2gfabcAaµϕ

bc
}

:
−γϕ − δγ2 − b
−εg2 + β(g2)

, (6.162d)

Gn
{
−gfabc∂νωaiDbd

ν c
dϕci

}
:
−γc − γω − γϕ + ε

2 − b
−εg2 + β(g2)

. (6.162e)

We can rewrite the coefficients of Gn {F} and Gn
{
A δSGZ

δA

}
in (6.162a) as

−ε− a
−εg2 + β(g2)

=
1
g2

(1 + a/ε)
1− β(g2)/(εg2)

,
ε/2 + b− γA(g2)
−εg2 + β(g2)

= − 1
2g2

1 + 2(b− γA(g2))/ε
1− β(g2)/(εg2)

.

(6.163)

Hence, in order to be finite, we must conclude that

a(g2, ε) =− β(g2)
g2

, b(g2, ε) =γA(g2)− 1
2
β(g2)
g2

. (6.164)

Notice that a and b depends on g2, but not on ε. Therefore, the matrix elements of the first
row of the parametrization (6.175) only display a simple pole in ε.
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Moreover, from the other equations we shall obtain relations between the anomalous di-
mensions of the fields and sources. Let us start with the coefficient of Gn {b∂µAµ} in equation
(6.162b), yielding

−ε/2− b− γb(g2)
−εg2 + β(g2)

=
1

2g2

1 + 2(b+ γb(g2))/ε
1− β(g2)/(εg2)

, (6.165)

which means that

b(g2, ε) = −γb(g2)− 1
2
β(g2)
g2

. (6.166)

Inserting the value of b(g2, ε) from expression (6.164) gives the following relation

γA + γb = 0 . (6.167)

This relation is a translation of the relation Z1/2
A Z

1/2
b = 1 found in equation (3.241). Indeed,

deriving both sides w.r.t. µ gives

1

Z
1/2
A Z

1/2
b

µ
∂

∂µ

(
Z

1/2
A Z

1/2
b

)
= γA + γb = 0 . (6.168)

Analogously, for the coefficient of Gn
{
ca∂µD

ab
µ c

b
}

, we find

b(g2, ε) = −γc − γc , (6.169)

yielding

γA + γc + γc =
β

2g2
, (6.170)

which is a translation of Z1/2
c Z

1/2
c Z

1/2
A Zg = 1 as µdZg

dµ = − β
2g2 . Next, the coefficients of

(6.162c) and (6.162e) lead to

γϕ + γϕ + γA =
β

2g2
, γω + γω + γA =

β

2g2
, γc + γω + γϕ + γA =

β

g2
, (6.171)

stemming from

Z1/2
ϕ Z

1/2
ϕ Z

1/2
A Zg = 1 , Z1/2

ω Z
1/2
ω Z

1/2
A Zg = 1 , Z1/2

c Z
1/2
ω Z1/2

ϕ Z
1/2
A Zg = 1 . (6.172)

These relations originate from the relations derived in (3.241) and (3.242). Finally, the
coefficients in equation (6.162d) are finite if

−γϕ − δγ2 = −γϕ − δγ2 = b = γA(g2)− 1
2
β(g2)
g2

, (6.173)

or equivalently

Z
1/2
ϕ Z

1/2
A ZgZγ2 = 1 , Z1/2

ϕ Z
1/2
A ZgZγ2 = 1 , (6.174)
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which is also fulfilled as Zγ2 = ZV = Z
−1/2
g Z

−1/4
A .

In summary, we have determined to all orders the mixing matrix (6.132). For notational
simplicity, we take the value (6.169) for b and we use the equality γc = γc:

Z =

 1− β(g2)
εg2

2γc
ε

2γc
ε

0 1 0
0 0 1

 . (6.175)

We have encountered numerous checks which show the consistency of our results.

Remark
This matrix is also valid for the refined action SRGZ. One can repeat the proof by replacing
SGZ with SRGZ and by adding the following term in M2 = J to the game,

Sϕϕ = −M2

∫
ddx (ϕaiϕ

a
i − ωai ωai ) , (6.176)

see equation (6.121). In the end, expression (6.161) will collect an extra term

dGn
dg2

= (6.161) +
1

−εg2 + β(g2)

∫
ddy

[
δM2Gn

{
M2(ϕϕ− ωω)

}]
, (6.177)

where we have introduced the anomalous dimension of M2,

δM2 = µ
∂ lnZM2

∂µ
. (6.178)

This leads to the following extra coefficients

Gn
{
−M2ϕaiϕ

a
i

}
:
−γϕ − γϕ − δM2

−εg2 + β(g2)
, Gn

{
M2ωai ω

a
i

}
:
−γω − γω − δM2

−εg2 + β(g2)
. (6.179)

so that

γϕ + γϕ + δM2 = 0 , γω + γω + δM2 = 0 , (6.180)

or equivalently

Z
1/2
ϕ Z1/2

ϕ ZM2 = 1 , Z
1/2
ω Z1/2

ω Z
1/2
M2 = 1 , (6.181)

which is correct as ZJ = ZM2 = ZgZ
1/2
A , see equation (6.127). All the other relations stay

valid of course.

3.4 Constructing a renormalization group invariant

As the final step of our analysis, we shall try to determine a renormalization group invariant
operator which contains F ≡ F 2

µν(x)

4 . This is useful as we would want to obtain a renor-
malization group invariant estimate for the glueball mass, i.e. the pole of the corresponding
correlator. This analysis is completely similar to the one presented in section 2.3, due to the
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fact that the mixing matrix Z is exactly the same. Therefore, we can immediately conclude
that (see expression (6.77))

R =
β(g2)
g2
F − 2γc(g2)E − 2γc(g2)H , (6.182)

is a renormalization group invariant scalar operator containing F 2
µν , in the case of the Gribov-

Zwanziger action ΣGZ as well as in the case of the refined action ΣRGZ.

3.5 Conclusion

We have found a renormalization group invariant, the final goal would be that of evaluating
the glueball correlator

〈R(x)R(y)〉phys =
〈(

β(g2)
g2
F(x)− 2γc(g2)E(x)− 2γc(g2)H(x)

)
×(

β(g2)
g2
F(y)− 2γc(g2)E(y)− 2γc(g2)H(y)

)〉
phys

, (6.183)

using the (Refined) Gribov-Zwanziger action.

As usual the equation of motion terms like H will not play a role. Let us demonstrate
this with a simple example,

〈F(x)H(y)〉phys =
〈
F(x)Aaµ(y)

δSRGZ

δAaµ(y)

〉
=
∫

[dΦ]F(x)Aaµ(y)
δSRGZ

δAaµ(y)
e−SRGZ

= −
∫

[dΦ]F(x)Aaµ(y)
δe−SRGZ

δAaµ(y)
=
∫

[dΦ]e−SRGZ
δ
(
Aaµ(y)F(x)

)
δAaµ(y)

= . . . δ(x− y) + δ(0) 〈F(x)〉 , (6.184)

which is zero as x 6= y and δ(0) = 0 in dimensional regularization. Therefore, expression
(6.183) reduces to,

〈R(x)R(y)〉phys =
(
β(g2)
g2

)2

〈F(x)F(y)〉+
(
2γc(g2)

)2 〈E(x)E(y)〉phys

− 2γc(g2)
β(g2)
g2

(
〈F(x)E(y)〉phys + 〈E(x)F(y)〉phys

)
, (6.185)

and only E is of importance. We recall that E is given by

E = ∂µb
aAaµ + ∂µc

aDab
µ c

b + ∂µϕ
a
iD

ab
µ ϕ

b
i − ∂µωaiDab

µ ω
b
i + gfabc∂µω

a
iD

bd
µ c

dϕci

+ γ2gfabcAaµϕ
bc
µ + γ2gfabcAaµϕ

bc
µ + d

(
N2 − 1

)
γ4 . (6.186)

From this point we can compare with the Yang-Mills case, see section 2.4. For the standard
YM action, we have seen that gauge invariant operators F only mix with BRST exact and
equation of motion type terms. While the latter always yield trivial information at the level
of correlators, the BRST exact pieces drop out due to the BRST invariance of the gauge
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invariant operator F and of the vacuum. The situation is quite different here in the (Refined)
GZ framework. Namely, in the physical limit, E is no longer a BRST invariant operator. In
addition, the BRST symmetry of the GZ action is softly broken, see section 3 of chapter 4.
Therefore, when turning to physical states, E will no longer be irrelevant, and will explicitly
influence the value of the correlator. This is not the only observation we can make. R(x) is
not the only renormalization group invariant of dimension 4. Indeed, also the operator E(x)
does not run with the scale, as we directly infer from equations (6.73) and (6.74). We can
therefore imagine to study correlators of linear combinations of the operators F and E , where
the linear combination is chosen in such a way that the emerging pole structure would be real.
We shall elaborate on this in the next chapter, but one can already notice that this is not a
trivial issue in the Gribov-Zwanziger framework, basically due to the fact that the poles of
the gluon propagator itself are already not necessarily real-valued. Finally, we observe that
when the Gribov parameter γ2 is formally set back to zero, we recover the correlators of the
usual kind in Yang-Mills gauge theories, as the BRST symmetry gets restored, as well as the
BRST exactness of the operator E .

4 Intermediate conclusion

Now that we have studied the renormalization of F 2
µν in the GZ action, and shown that this

is far from trivial, we should study the spectral properties of the correlator 〈R(x)R(y)〉. In
practice, we have to investigate whether the correlator 〈R(x)R(y)〉 can be cast in the form
of a Källén-Lehmann representation, i.e. a spectral representation with a positive spectral
function, and whose analytic continuation in the complex Euclidean k2-plane exhibits a cut
along the negative real axis only. Such a spectral representation would thus imply that, when
moving to Minkowski space, the cuts are located along the positive real axis. Moreover,
positivity of the spectral function then guarantees that a meaningful interpretation in terms
of states of a physical spectrum can be attached to those operators. This is precisely what one
would expect from a confining theory. This is a highly nontrivial task, given the complexity
of the Gribov type propagator, see (3.97) as well as of the Gribov-Zwanziger action. In fact,
the correlator

〈
F 2(x)F 2(y)

〉
was already studied in [3] at one loop order. The results found

in [3] can be summarized as follows:

G(k2) =
∫

d4x e−ikx
〈
F 2(x)F 2(0)

〉
= Gphys(k2) +Gunphys(k2) . (6.187)

The unphysical part, Gunphys(k2), displays cuts along the imaginary axes beginning at the
unphysical values k2 = ±4iγ2, whereas the physical part, Gphys(k2), has a cut beginning at
the physical threshold k2 = −2γ2. Moreover, the spectral function of Gphys(k2) turns out to
be positive, so that it possesses a Källén-Lehmann representation [3]. As such, Gphys(k2) is
an acceptable correlation function for physical glueball excitations. What is also interesting
in this expression is that a physical cut has emerged in the correlation function of a gauge
invariant quantity, even if it has been evaluated with a gluon propagator exhibiting only un-
physical complex poles.

In the paper [3] however, the renormalization of F 2
µν was not taken into account. As we

have proven, due to the breaking of the BRST 〈R(x)R(y)〉 6= 〈F(x)F(y)〉. The hope was
therefore that E would cancel the unphysical pole. However, it would seem like a deus ex
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machina if this would really be the case, as there is no residual freedom left in R. Therefore,
in the next chapter, we shall go a deeper into the cut structure of correlator to find out where
exactly the physical cut in expression (6.187) comes from.
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7
The quest for physical operators, part II

1 Introduction

In this chapter, we shall look at correlators from a whole different perspective. In the last
chapter, we started from a gauge invariant quantity, namely F 2

µν , and investigated its renor-
malization, to construct a RGI operator, while in this chapter we shall focus on the spectral
representation of the correlators. If we want obtain a particle interpretation out of an action,
we need to look for operators which correlation functions (1) exhibiting only real cuts and
(2) having positive spectral functions [5]. For the first requirement (1), we need to find an
operator O, so that the corresponding correlator 〈O(k)O(−k)〉 can be cast into the a spectral
representation, i.e.

〈O(k)O(−k)〉 =
∫ ∞
τ0

dτ ρ(τ)
1

τ + k2
, (7.1)

where the quantity τ0 > 0 stands for the threshold. If we now introduce the complex function

F (z) =
∫ ∞
τ0

dτ ρ(τ)
1

τ + z
, (7.2)

then from complex analysis, it follows that F (z) is an analytic function in the cut com-
plex plane, where the interval (−∞,−τ0) has been excluded. Therefore, when moving from
Euclidean to Minkowski space, i.e. k2

Eucl → −k2
Mink, expression (7.2) gives the spectral repre-

sentation1 of a quantity exhibiting a discontinuity along the positive real axis, starting at the
threshold τ0 and extending till +∞. In order to meet the second requirement (2), we need
ρ(τ) to be positive.

To meet both requirements, we shall introduce i-particles: a pair of fields with complex
conjugate masses which emerge in a natural way when dealing with a gluon propagator which
behaves like (3.97). As it will be discussed in details, we shall be able to show that local
composite operators built up with pairs of i-particles display cuts along the negative real axis
in the complex Euclidean k2-plane, while giving rise to positive spectral functions. For the
benefit of the reader, we shall first work in a toy model, before going to the complex GZ
action. This chapter is mainly based on [202]. We emphasize that we shall only work with
the GZ action in this chapter for simplicity, and not with the more complicated RGZ action.

1This is called the Källén-Lehmann represention, see [5].
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2 A scalar field theory toy model

In this section, we shall construct a toy model, before going over to the more complicated
GZ action. The main feature of this toy model, is that it shall also exhibit a Gribov type of
gluon propagator like (3.97), as this is the key ingredient in constructing operators in the GZ
framework which give rise to correlators which have real cuts and positive spectral functions.

2.1 Constructing the toy model

A simple way of constructing a field theory model exhibiting a confining Gribov type propa-
gator is through a scalar field ψ whose Euclidean action is nonlocal, being specified by

S =
∫

ddx
1
2
ψ

(
−∂2 + 2

θ4

−∂2

)
ψ . (7.3)

Indeed, the resulting propagator is of the Gribov type as

〈ψ(k)ψ(p)〉 = (2π)dδ(k + p)
k2

k4 + 2θ4
. (7.4)

The massive parameter θ is introduced by hand and is the analog of the Gribov parameter
γ. Analogous to section 4.3 in chapter 3, we can localize the non-local expression (7.3) by
introducing a pair of bosonic complex conjugate fields (ϕ,ϕ) and a pair of anticommuting
fields (ω, ω), so that

S =
∫

ddx
(

1
2
ψ(−∂2)ψ + ϕ(−∂2)ϕ+ θ2ψ(ϕ− ϕ)− ω(−∂2)ω

)
. (7.5)

Let us have a look at the propagators of the model. If we want to apply equation (A.1), we
need to rewrite the complex conjugate bosonic fields (ϕ,ϕ) in terms of real fields, i.e.

ϕ =
U + iV√

2
, ϕ =

U − iV√
2

, (7.6)

and the action becomes

S =
∫

d4x

(
1
2
ψ(−∂2)ψ +

1
2
V (−∂2)V +

√
2iθ2ψV +

1
2
U(−∂2)U − ω(−∂2)ω

)
. (7.7)

We can rewrite this expression in matrixform,

exp[−S] = exp[−1
2

∫
d4x

[
ψ(x) V (x) U(x)

]  −∂2 iθ2
√

2 0
iθ2
√

2 −∂2 0
0 0 −∂2


︸ ︷︷ ︸

A

ψ(x)
V (x)
U(x)

− ω(−∂2)ω ] .

(7.8)
If we now want to apply formula (A.1), we have to calculate A−1,

A−1 =

 −∂2

∂4+2θ4 − iθ2
√

2
∂4+2θ4 0

− iθ2
√

2
∂4+2θ4

−∂2

∂4+2θ4 0
0 0 1

−∂2 .

 (7.9)
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Now going to Fourierspace, we can find the propagators,

〈ψ(p)ψ(k)〉 = (2π)dδ(p+ k)
p2

p4 + 2θ4
, 〈V (p)V (k)〉 = (2π)dδ(p+ k)

p2

p4 + 2θ4
,

〈V (p)ψ(k)〉 = (2π)dδ(p+ k)
−i
√

2θ2

p4 + 2θ4
, 〈U(p)U(k)〉 = (2π)dδ(p+ k)

1
p2

. (7.10)

Having evaluated the propagators of the fields (ψ,U, V ), we can now check what the propa-
gators in terms of the fields (ϕ,ϕ) are. One finds

〈ψ(p)ψ(k)〉 = (2π)dδ(p+ k)
θ2

p4 + 2θ4
, 〈ψ(p)ϕ(k)〉 = (2π)dδ(p+ k)

−θ2

p4 + 2θ4
,

〈ϕ(p)ϕ(k)〉 = (2π)dδ(p+ k)
p4 + θ4

p2(p4 + 2θ4)
, 〈ϕ(p)ϕ(k)〉 = (2π)dδ(p+ k)

θ4

p2(p4 + 2θ4)
.

(7.11)

2.2 Introducing the i-particles

The i-particles are new variables introduced in such a way that (7.7) can be cast in complete
diagonal form:

ψ =
1√
2

(λ+ η) , V =
1√
2

(λ− η) . (7.12)

Indeed, the action is now diagonal,

S =
∫

ddx
(

1
2
λ(−∂2 + i

√
2θ2)λ+

1
2
η(−∂2 − i

√
2θ2)η +

1
2
U(−∂2)U − ω(−∂2)ω

)
. (7.13)

From this expression one immediately sees that the fields λ and η correspond to the prop-
agation of unphysical modes with complex masses ±i

√
2θ2. These are the i-particles of the

model, namely

〈λ(k)λ(p)〉 = (2π)dδ(p+ k)
1

k2 + i
√

2θ2
, 〈η(k)η(p)〉 = (2π)dδ(p+ k)

1
k2 − i

√
2θ2

. (7.14)

2.3 Proposal for a “good” operator

Let us now try to construct an operator which exhibits real cuts and has a positive spectral
density. The i-particles shall form the basis of these operators. The simplest example which
one can consider at one loop is that of the dimension two composite operator consisting of
one i-particle of the type λ and one i-particle of the type η, namely

O1(x) = λ(x)η(x) , (7.15)

The correlation function 〈O1(k)O1(−k)〉 in d Euclidean dimensions is given by

〈O1(k)O1(−k)〉 =
∫

ddp
(2π)d

1
(k − p)2 − i

√
2θ2

1
p2 + i

√
2θ2

. (7.16)
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By direct inspection of the action (7.13), it follows that the correlation function of three
operators O1(x) vanishes

〈O1(x)O1(y)O1(z)〉 = 0 . (7.17)

Only correlation functions with an even number of operators O1 are nonvanishing. We shall
here evaluate this integral for d = 4 and d = 2, which can be done with the same technique.
For the case d = 3, we refer to [202].

2.3.1 The spectral representation in d = 2

As explained in the introduction, we need to find the spectral function of the two-point
function 〈O1(k)O1(−k)〉. As a first step, we shall employ formula (A.4) from the appendix,
so (7.16) becomes

〈O1(k)O1(−k)〉 =
∫

ddp
(2π)d

∫ 1

0
dx

1[
x(k2 − 2p · k − 2i

√
2θ2) + p2 + i

√
2θ2
]2 . (7.18)

Next, we define q ≡ p− kx,

〈O1(k)O1(−k)〉 =
∫

ddq
(2π)d

∫ 1

0
dx

1[
q2 + (x− x2)k2 − (2x− 1)i

√
2θ2
]2 . (7.19)

Using now the identity (A.5) with n = 2 and ∆2 = (x− x2)k2 − (2x− 1)i
√

2θ2, we obtain

〈O1(k)O1(−k)〉 =
Γ(2− d

2)

(4π)
d
2

∫ 1

0
dx
[
(x− x2)k2 − (2x− 1)i

√
2θ2
] d

2
−2

. (7.20)

We can now consider the special case of d = 2. We have then

〈O1(k)O1(−k)〉 =
1

4π

∫ 1

0
dx

1[
(x− x2)k2 − (2x− 1)i

√
2θ2
] . (7.21)

Our goal is to bring this integral into a form where its analytic structure as a function of the
external momentum k2 becomes manifest. If we change the variable of integration as

u ≡ (2x− 1)
2(x− x2)

, (7.22)

the integral takes the form

〈O1(k)O1(−k)〉 =
1

4π

∫ ∞
−∞

du√
u2 + 1

1
k2 − 2i

√
2θ2u

. (7.23)

We are working in the Euclidean region, that is, k2 is real and positive. The integral is then
well defined in the upper-half complex u-plane, except for a branch cut due to the square
root. This branch cut starts at u = i and extends along the imaginary axis to i∞. We can
then consider a contour of integration2 which is deformed to surround this cut, i.e.

〈O1(k)O1(−k)〉 =
1

4π

[∫ i

+i∞

du√
u2 + 1

1
k2 − 2i

√
2θ2u

+
∫ +i∞

i

du√
u2 + 1

1
k2 − 2i

√
2θ2u

]
.

(7.24)
2Use is made of the fact that the integrand of (7.23) falls off sufficiently fast at complex infinity.
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whereby the integrals are evaluated on respectively the left and right side of the branch cut.
Now replacing u = iy, we find

√
u2 + 1 = i

√
| − y2 + 1| for the first integral and

√
u2 + 1 =

−i
√
| − y2 + 1| for the second integral, and thus

〈O1(k)O1(−k)〉 =
1

2π

∫ ∞
1

dy√
y2 − 1

1
k2 + 2

√
2θ2y

. (7.25)

Observe that this has the exact structure of the Källén-Lehmann representation. More ex-
plicitly, writing τ = 2

√
2θ2y we have

〈O1(k)O1(−k)〉 =
∫ ∞

2
√

2θ2

dτ
ρ(τ)
k2 + τ

, (7.26)

where

ρ(τ) =
1

2π
√
τ2 − 8θ4

, (7.27)

is the spectral function. Interpreting this result as an expression of the physical spectrum of
the theory, we see that it has a threshold at 2

√
2θ2.

Finally, we can also evaluate (7.27) explicitly, resulting in

〈O1(k)O1(−k)〉 =
1

2π
1√

8θ4 − k4
arccos

k2

2
√

2θ2
, (7.28)

a function, which has indeed a branch cut from −∞ until −2
√

2θ2.

-4

-2

0

ReIk2M

-2

0

2

ImIk2M

0.0

0.2

0.4

(a)

-2
0

2
ImIk2M

-4 -2 0

ReIk2M

-0.5

0.0

0.5

(b)

Figure 7.1: Plot of (a) Re
[

1
2π

1√
1−k4 arccos k2

]
and (b) Im

[
1

2π
1√

1−k4 arccos k2
]
.

2.3.2 The spectral representation in d = 4

We can repeat this calculation for d = 4. We define

F (k2) = 〈O1(k)O1(−k)〉 . (7.29)
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We start from (7.20) and act on it with ∂
∂k2 . This regularizes the original integral for F (k2),

which is ultraviolet divergent. After setting d = 4−ε, expanding for small ε and setting ε→ 0
in the end, we find

∂

∂k2
F (k2) = − 1

16π2

∫ 1

0
dx

x(1− x)
x(1− x)k2 + xi− i/2

= − 1
16π2

∫ 1

0
dx

x(1− x)
x(1− x)k2 − xi + i/2

,

(7.30)
where we temporarily switched to units 2

√
2θ2 = 1 for notational convenience. The substitu-

tion s = 2x−1
2x(1−x) , or x = −1+s+

√
1+s2

2s , brings us to

∂

∂k2
F (k2) = − 1

16π2

∫ +∞

−∞
ds

1
k2 − is

d
(
−1+s+

√
1+s2

2s

)
ds

=
1

16π2

∫ +∞

−∞

ids
(k2 − is)2

−1 + s+
√

1 + s2

2s
, (7.31)

where we employed partial integration. There is no problem at s = 0 if k2 > 0, since
lims→0

−1+s+
√

1+s2

2s = 1
2 . Similar remarks apply as in the d = 2 case. There are no poles in

the upper half s-plane for k2 > 0, so we can deform the contour to be located around the cut
for s ∈ [i∞, i]. Setting s = iτ , we compute (7.31) as

∂

∂k2
F (k2) =

1
16π2

[∫ 1

∞

−dτ
(k2 + τ)2

−1 + iτ − i
√
τ2 − 1

2iτ
+
∫ ∞

1

−dτ
(k2 + τ)2

−1 + iτ + i
√
τ2 − 1

2iτ

]

= − 1
16π2

∫ ∞
1

√
τ2 − 1
τ

dτ
(k2 + τ)2

. (7.32)

We can subsequently integrate this expression from 0 to k2, finding

F (k2)− F (0) =
1

16π2

∫ ∞
1

√
τ2 − 1
τ

(
1

τ + k2
− 1
τ

)
dτ , (7.33)

or, by restoring the units,

F (k2)− F (0) =
1

16π2

∫ ∞
2
√

2θ2

√
τ2 − 8θ4

τ

(
1

τ + k2
− 1
τ

)
dτ . (7.34)

From this expression, we notice the importance of the subtraction of F (0) to find a finite
result, otherwise we would find a divergent spectral integral. The spectral density can be
read off from (7.34),

ρ(τ) =
1

16π2

√
τ2 − 8θ4

τ
, (7.35)

which is clearly positive for τ ≥ 2
√

2θ2, thus showing that the correlation function has a well
defined probabilistic interpretation also in d = 4.

Finally, an explicit integration of (7.33) leads to

F (k2)− F (0) =
1

16π2

(
1− π

2k2
+
√

1− k4

k2
arccos(k2)

)
. (7.36)
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In Figure 7.2, we have displayed the (rescaled) real and imaginary part of F (k2). The cut for
z ∈ [−∞,−1] is clearly visible.
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Figure 7.2: Plot of (a) GR(k2) ≡ 16π2Re[F (k2) − F (0)] and (b) GI(k2) ≡ 16π2Im[F (k2) − F (0)]
with F (k2)− F (0) given in (7.36).

Remark The same calculation can be repeated in the case of two particles with real mass µ,
where the spectrum is found to begin at the threshold 4µ2 = (µ + µ)2. In the present case
we have an analogous situation for the i-particles, even though they have complex masses:

2
√

2θ2 =
(√

i
√

2θ2 +
√
−i
√

2θ2
)2

.

2.4 Intermezzo: A closer look at the analytic continuation by means of the
spectral representation

In this section, we shall give a closer look at analytic continuation of functions, and we shall
demonstrate how careful one should be when working with complex functions.

2.4.1 The case of complex masses

Let us again start with the expression (7.16), whereby for simplicity we shall work in d = 2,
and set 2

√
2θ2 = 1

〈O1(k)O1(−k)〉 =
1

4π2

∫
d2p

1
~p2 − i/2

1

~p2 + ~k2 − 2~p · ~k + i/2
. (7.37)

For any real external momentum vector ~k, so that k2 > 0, the integral (7.37) certainly makes
sense.

Now let us recall that in the previous section, we have rewritten (7.37) in terms of (7.21),
namely

〈O1(k)O1(−k)〉 =
1

4π

∫ 1

0

dx
xk2 − x2k2 + ix− i/2

, (7.38)
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as the Feynman trick is certainly valid for k2 > 0. Next, we have further manipulated this
integral, whereby still assuming that k2 > 0. We have found that

〈O1(k)O1(−k)〉 =
1

2π

∫ ∞
1

dτ
τ + k2

1√
τ2 − 1

=
1

2π
arccos(k2)√

1− k4
= F1(k2) , (7.39)

which has branch cut along the negative axis. Here, we have called this result F1(k2)

However, we could also continue with equation (7.38). By rewriting it as

〈O1(k)O1(−k)〉 =
1

4π

∫ 1

0

dx
xk2 − x2k2 + ix− i/2

=
1

4π

∫ 1

0
dx

1√
k4 − 1

(
1

x− x+
− 1
x− x−

)
,

(7.40)
with x± = i+k2∓

√
k4−1

2k2 we can integrate this expression exactly by making use of [203]∫ 1

0

dx
ax+ b

=
1
a

ln
a+ b

b
, (7.41)

valid for any complex number a and b. The ill-definedness of the integral in the l.h.s. of
(7.41) for −ba ∈ [0, 1] corresponds exactly to the branch cut of the ln in the r.h.s. of (7.41).
Applying this formula twice on (7.40) yields

〈O1(k)O1(−k)〉 =
1

4π
1√

k4 − 1

[
ln
(

i
(
k2 +

√
k4 − 1

))
− ln

(
i
(
k2 −

√
k4 − 1

))]
= F2(k2) .

(7.42)
We call this result F2(k2).

Now we have obtained something very peculiar. On the positive k2-axis, one verifies that
F1(k2) = F2(k2), which is necessary for consistency as both derivations we have done, are
surely valid for k2 > 0. However, the situation changes drastically in the complex k2-plane.
For Re(k2) > 0, it stills holds that F1(k2) = F2(k2), but the functions differ for Re(k2) ≤ 0.
Two questions arise:

• How can we explain this difference?

• More importantly, how can be know which function is the correct analytic continuation
of (7.37)?

To answer the first question, this difference can be traced back to the branch cut of F2(k2),
which is given by the complete imaginary axis, while F1(k2) only has a branch cut on a part
negative real axis. Therefore, we can understand that for Re(k2) > 0, F1(k2) has to be equal
to F2(k2). Indeed, two complex functions which are analytic in an open region and equal for
a converging series of points inside this open region, are always equal3. As here, F1 = F2 on
the positive k2 axis, they have to be equal ∀ Re(k2) > 0 as this plane forms an open region.
However, this open region is limited to the right side of the complex plane, due to the branch
cut of F2(k2) smeared out over the entire imaginary axis. Therefore, points on the left side
of the complex plane, i.e. Re(k2) > 0 do not necessarily have to lead to coinciding values of
F1 and F2.

3This is a theorem of complex analysis.
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The second question is a bit more involved to answer. We shall argue that only F1(k2)
obtained via the spectral representation gives a decent analytic continuation of the original
momentum integral (7.37). Let us thus choose an external momentum vector ~k which can be
complex, or

~k = Re(~k) + iIm(~k) ≡ ~kR + i~kI . (7.43)

Let us take start with the most general ~k, namely ~k = (u+iv, u′+iv′). From expression (7.37),
we observe that we have the O(2) rotational symmetry for ~k, as we can always rotate ~kR and
~kI simultaneously. Therefore, we can already choose without loss of generality ~k = (u+iv, u′),
since we can always rotate our ~kR and ~kI simultaneously so that ~kI coincides with the real
axis. The corresponding integral for ~k = (u+ iv, u′) now reads

〈O1(k)O1(−k)〉

=
1

4π2

∫
dpxdpy

1
p2
x + p2

y − i/2
1

p2
x + p2

y + u2 − v2 + 2iuv + u′2 − 2px(u+ iv)− 2pyu′ + i/2
,

but the simple shift py → py + u, brings us to ~k = (u+ iv, 0). Therefore, from the beginning,
we can set ~k = (u+ iv, 0) without loss of generality.

Now that we have restricted ourselves to complex momenta of the type ~k = (u + iv, 0),
which allows to reach any value of

k2 = ~k2 = u2 − v2 + 2iuv . (7.44)

we can rewrite (7.37) as

〈O1(k)O1(−k)〉 =
1

4π2

∫
dpxdpy

1
p2
x + p2

y − i/2

× 1
p2
x + p2

y + u2 − v2 + 2iuv − 2px(u+ iv) + i/2
= F (k2) . (7.45)

whereby we have renamed this expression F (k2). Although we already chose k2 to be the
argument of F (k2), this is not a priori clear when ~k is not real. However, we notice that
the integral in the r.h.s. of (7.37), if it exists at least4, will define an analytic function of
k ≡ u + iv, which can be easily checked by means of the Cauchy-Riemann equations. Since
we still have the O(2) rotational symmetry, as we can rotate ~kR and ~kI simultaneously, which
thereby defines a real rotation of the complex vector ~k = k~ex, it appears that (7.37) must be
a function of ~k2.

To proceed, let us check when the integral (7.45) is well-defined. This is only the case, when
the integrand of (7.45) is free of poles whereby we notice that ~p ∈ R2. Such poles can only
appear when5 the imaginary part in the denominator is equal to zero while simultaneously

4We shall shortly see that such ~k do exist.
5We can exclude here the v = 0 case as this corresponds to the anyhow well-defined case of real external

momentum.
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the real part is equal to zero

px = u+
1
4v
,

p2
x + p2

y + u2 − v2 − 2pxu = 0 . (7.46)

We can combine both equations into

1
16v2

− v2 + p2
y = 0 . (7.47)

Hence, if we take |v| < 1/2, with u arbitrary, the equation (7.47) never can be solved for any
p2
y > 0 and thus the integral (7.45) is will exist as such. It is interesting to notice that this

does not mean that the Feynman trick is applicable for any such vector ~k. Nevertheless, the
integral has a well-defined value. As such, it must coincide with other ways to compute or
define it.

We can now discriminate between F1(k2) and F2(k2) by taking a test value in the left half
complex k2 plane, such that the original integral (7.45) exists. Its value should then coincide
with either F1(k2) or F2(k2).

Firstly, we can immediately motivate that F2(k2) cannot be correct in the whole complex
plane. Looking at (7.44), it is clear that k2 ∈ iR if u = ±v, in which case we have k2 = ±2iv2.
But as we have shown, for |v| < 1/2, the original integral is well-defined, meaning that there
cannot be a cut on the whole imaginary axis, whereas F2(k2) has a cut for any k2 ∈ iR. This
shows that F2(k2) cannot be the analytic continuation of the original momentum integral
(7.37).

Secondly, it is also now clear that that F (k2) coincides with F1(k2) in the region F (k2)
is well defined. In Figure 7.3, the shaded parabolic region corresponds to the values of k2 ∈ C
for which the integral (7.45) is certainly well-defined and analytical. As this is an open region,
and F1(k2) is also analytical in this region, F1(k2) and F (k2) have to coincide.
We have provided a nontrivial verification of the correctness of the analytically continued
function F1(k2). In fact, much more can be learned from our analysis. Let us take expression
(7.44) into reconsideration,

k2 = u2 − v2 + 2iuv . (7.48)

The results obtained do, of course, not mean that there must be a cut for k2 ∈ [−∞,−1/4]
or that there is a “cut region” outside of the displayed parabola. But we have clearly demon-
strated that F1(k2) is a good analytical continuation.

To close this section, we mention that we could also have started with the alternative definition

Ô(k2) =
1

4π2

∫
d2p

1

~p2 + ~k2 − 2~p · ~k − i/2

1
~p2 + i/2

, (7.49)

which corresponds to switching the momenta running in the two legs. For real external mo-
menta ~k, we obviously have O(k2) = Ô(k2), but for complex ~k, we can no longer perform a
translation on the real integration momentum ~p to prove this.
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Figure 7.3: Parabolic region in the complex k2 plane where the original momentum integral O(k2)
exists. There is a small region in the left half plane where F (k2) is well-defined, even
without invoking analytical continuation. A priori, expression (7.45) could only have a
branch cut on the negative axis starting from k2 < −1/4 and on the imaginary axis for
|Im(k2)| ≥ 1/2.

However, again setting ~k = (u + iv, 0), it is easily checked that |v| < 1/2 is sufficient to
also guarantee that Ô(k2) is well-defined, while from Figure 7.4(a), 7.4(b), 7.5(a), 7.5(b), it
is clear that O(k2) = Ô(k2) for u arbitrary, |v| < 1/2. For completeness, we have also shown
F1(k2) in Figure. 7.4(c), 7.5(c), which illustrates that indeed O(k2) = Ô(k2) = F1(k2) over
the parabolic k2-region shown in FIG. 2. To avoid confusion, we point out that we have
plotted O(u, v) ≡ O(k2), with k2 = u2 − v2 + 2iuv, and analogously for the other functions.
Although we focused exclusively on the d = 2 case in this section, similar conclusions can be
drawn for d = 3 or d = 4.

2.4.2 The case of two real masses

In order to corroborate the previous nontrivial conclusions about a relatively simple Feynman
integral with complex masses, we find it instructive to also include a similar analysis of the
probably more familiar case of two real and positive masses, being m1 and m2. This has been
investigated in great detail in e.g. [204], albeit in Minkowski space. The analog of (7.37) is
given by the following correlation function,

O2(k2) =
1

4π2

∫
d2p

1
~p2 +m2

1

1

~p2 + ~k2 − 2~p · ~k +m2
2

. (7.50)

Translating the results of [204] to Euclidean space, it was shown that this function of k2

has a positive spectral density in combination with a branch cut on the negative real k2-axis
starting from −(m1 +m2)2 until −∞.
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Figure 7.4: Re(O), Re(Ô) and Re(F1).

Let us now also investigate the region where this integral actually exists. We can again
restrict ourselves to complex momenta of the type ~k = (u + iv, 0) without loss of generality.
Inserting this in equation (7.50), we obtain,

O2(k2) =
1

4π2

∫
dpxdpy

1
p2
x + p2

y +m2
1

1
p2
x + p2

y + u2 − v2 + 2iuv − 2px(u+ iv) +m2
2

. (7.51)

Let us check when poles can emerge. The first denominator is always positive, however, the
second denominator can have poles when the imaginary part vanishes,

2iuv − 2ipxv = 0⇔ v = 0 or u = px , (7.52)

simultaneously with the real part being equal to zero,

p2
x + p2

y + u2 − v2 + 2pxu+m2
2 = 0 . (7.53)

Inserting the first solution of equation (7.52),i.e. v = 0, in the equation above, we find

(px + u)2 + p2
y = −m2

2 , (7.54)

which can never be fulfilled. The second solution, i.e. u = px, results in

p2
y = v2 −m2

2 . (7.55)

Therefore, no poles shall occur for |v| < m2, while for |v| ≥ m2, the integral (7.50) becomes
ill-defined. This is important as it shows us that also in the well-studied case of two real
masses, the original integral (7.50) is also only well-defined in a certain region of the complex
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Figure 7.5: Im(O), Im(Ô) and Im(F1).

plane, here displayed in Figure 2.4.2. Consequently, one also needs to perform an analytic
continuation outside this region, just as in the case of pure complex masses.

1 2 3 4
Re k2

�2

�1

1

2

Im k2

Figure 7.6: Parabolic region in the complex k2 plane where the momentum integral O2(k2) exists
with m2

2 = 1/2.
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2.5 Higher order: a Two loop example

In this easy toy model, we can also quite easily investigate higher loop diagrams. As there
are no interactions, only one type of diagrams can appear in higher order, namely diagrams
of the water melon type, see Figure 7.7. This shall allow us to construct a rather interesting
iterative procedure valid for an n-loop integral. Unfortunately, this kind of construction is
not applicably to the more complicated GZ action, which does have interactions.

...

...
Figure 7.7: The water melon diagrams.

In order to obtain an example of a two loop correlation function, we consider the local operator

O2(x) = λ(x)η(x)U(x) . (7.56)

For the correlation function 〈O2(k)O2(−k)〉 we find with the help of (7.10) and (7.14),

〈O2(k)O2(−k)〉 =
∫

d4p

(2π)4

d4q

(2π)4

1
q2

1
p2 + i

√
2θ2

1
(k − q − p)2 − i

√
2θ2

, (7.57)

where k2 is the Euclidean external momentum. In order to evaluate it, we rewrite it as

〈O2(k)O2(−k)〉 =
∫

d4q

(2π)4

1
q2

(∫
d4p

(2π)2

1
p2 + i

√
2θ2

1
(k − q − p)2 − i

√
2θ2

)
. (7.58)

Now we can use the results from section 2.3.2, see also expression (7.34), namely6

〈O1(k)O1(−k)〉 =
∫

d4p

(2π)4

1
(k − p)2 − i

√
2θ2

1
p2 + i

√
2θ2

=
∫ ∞

2
√

2θ2

dτ ρ(τ)
1

τ + k2
, (7.59)

with ρ(τ) = 1
16π2

√
τ2−8θ4

τ , so we find for expression (7.58)

〈O2(k)O2(−k)〉 =
∫ ∞
τ0

dτ ρ(τ)
(∫

d4q

(2π)4

1
q2

1
τ + (k − q)2

)
. (7.60)

whereby τ0 = 2
√

2θ2. The q-integral becomes now straightforward. It corresponds to the
one loop integral in which one particle is massless, and the other one has a real and positive
mass τ . Such integrals also have a spectral representation with positive spectral density, as
we have calculated in appendix B5, namely∫

d4p

(2π)4

1
p2

1
(k − p)2 + τ

=
∫ ∞
m2

ds ρ1(s)
1

s+ k2
, (7.61)

6From now on, we shall not bother about potential subtractions to make it well-defined. These can always
be obtained by taking a suitable number of derivatives w.r.t. the external momentum k2.
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with ρ1(s) = 1− τ
s . Applying this formula on (7.60) yields,

〈O2(k)O2(−k)〉 =
∫ ∞
τ0

dτ ρ(τ)
∫ ∞
τ

ds ρ1(s)
1

s+ k2
. (7.62)

This is not yet in the form of a spectral representation. By switching the order of integration,
we can however reexpress the double integral as

〈O2(k)O2(−k)〉 =
∫ ∞
τ0

ds
1

s+ k2

∫ s

τ0

dτρ1(s)ρ(τ)︸ ︷︷ ︸
ρ2(s)

. (7.63)

This means that the spectral density is given by

ρ2(s) =
∫ s

τ0

dτρ(τ)ρ1(s) =
∫ s

2
√

2θ2

dτ
1

16π2

√
τ2 − 8θ4

τ

(
1− τ

s

)
=

1
(16π2)2

(
1
2

√
s2 − 8θ4

+ 2
√

2θ2

(
arctan

[
2
√

2θ2

√
s2 − 8θ4

]
− π

2

)
+

4θ4

s

(
ln
s+
√
s2 − 8θ4

2
√

2θ2

))
. (7.64)

In conclusion, (1) the two loop correlation function (7.57) can also be reexpressed in a spec-
tral form, and moreover (2) the spectral density is positive. Indeed, for s ∈ [τ0,∞], we have
ρ(τ) ≥ 0 due to the positivity of ρ(τ) over the interval [τ0,∞]. We shall thus have that
ρ2(s) ≥ 0 itself if ρ1(s) ≥ 0 for s ∈ [τ0,∞]. The latter turns out to be true, as ρ1(s) is defined
for all τ with τ ≥ τ0, where it is positive. Also one can check this from the explicit expression
in the r.h.s. of (7.64).

With the same techniques, it is also possible to prove this at three loops, and beyond three
loops. However, as this is not applicable to the GZ action, we refer to [202] for the details.

3 The Gribov-Zwanziger action

Let us discuss here how i-particles can arise in the Gribov-Zwanziger action. In what follows,
we shall limit ourselves to evaluate correlation functions of suitable composite operators at
one loop order only.

3.1 Introducing the i-particles

To introduce the i-particles in the Gribov-Zwanziger action, it suffices thus to consider the
quadratic part of the GZ action, see expression (3.204), namely

Squad
GZ =

∫
d4x

(
1
2
Aaµ(−∂2δµν − ∂µ∂ν)Aaν + ϕabµ ∂

2ϕabµ − γ2 g fabcAaµ(ϕbcµ + ϕbcµ ) + ba∂µA
a
µ

)
,

(7.65)

We proceed by decomposing the fields (ϕabµ , ϕ
ab
µ ) in symmetric and anti-symmetric components

in color space,

ϕabµ = ϕ[ab]
µ + ϕ(ab)

µ , ϕ[ab]
µ =

1
2

(
ϕabµ − ϕbaµ

)
, ϕ(ab)

µ =
1
2

(
ϕabµ + ϕbaµ

)
,

ϕabµ = ϕ[ab]
µ + ϕ(ab)

µ , ϕ[ab]
µ =

1
2

(
ϕabµ − ϕbaµ

)
, ϕ(ab)

µ =
1
2

(
ϕabµ + ϕbaµ

)
. (7.66)
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Thus

Squad
GZ =

∫
d4x

(
1
2
Aaµ(−∂2δµν − ∂µ∂ν)Aaν + ϕ[ab]

µ ∂2ϕ[ab]
µ + ϕ(ab)

µ ∂2ϕ(ab)
µ

−γ2 g fabcAaµ(ϕ[bc]
µ + ϕ[bc]

µ ) + ba∂µA
a
µ

)
. (7.67)

A first step towards diagonalization of this expression is achieved by setting

ϕ[ab]
µ =

1√
2

(
U [ab]
µ + iV [ab]

µ

)
,

ϕ[ab]
µ =

1√
2

(
U [ab]
µ − iV [ab]

µ

)
, (7.68)

so that

Squad
GZ =

∫
d4x

(
1
2
Aaµ(−∂2δµν − ∂µ∂ν)Aaν +

1
2
U [ab]
µ ∂2U [ab]

µ −
√

2gγ2fabcAaµV
[bc]
µ + ba∂µA

a
µ

+
1
2
V [ab]
µ ∂2V [ab]

µ + ϕ(ab)
µ ∂2ϕ(ab)

µ

)
. (7.69)

From expression (7.69) one sees that the gauge field Aaµ mixes with the adjoint projection of

U
[ab]
µ , obtained by employing the following decomposition

U [ab]
µ =

1
N
fabpfpmnU [mn]

µ +
(
U [ab]
µ − 1

N
fabpfpmnU [mn]

µ

)
= fabpUpµ + S[ab]

µ , (7.70)

where

Upµ =
1
N
fpmnU [mn]

µ , (7.71)

stands for the adjoint projection of U [ab]
µ in color space, and

S[ab]
µ = U [ab]

µ − 1
N
fabpfpmnU [mn]

µ , (7.72)

denote the remaining independent components of U [ab]
µ which are orthogonal to the tensor

fabc. In fact, making use of

fabcfdbc = Nδad , (7.73)

it is easily checked that

fabcS[ab]
µ = 0 . (7.74)

Therefore, expression (7.69) becomes

Squad
GZ =

∫
d4x

(
1
2
Aaµ(−∂2δµν − ∂µ∂ν)Aaν +

N

2
Uaµ∂

2Uaµ −
√

2gγ2NAaµV
a
µ + ba∂µA

a
µ

)
+
∫

d4x

(
1
2
S[ab]
µ ∂2S[ab]

µ +
1
2
V [ab]
µ ∂2V [ab]

µ + ϕ(ab)
µ ∂2ϕ(ab)

µ

)
. (7.75)
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Finally setting,

Aaµ =
1√
2

(
λaµ + ηaµ

)
, Uaµ =

−i√
2N

(
λaµ − ηaµ

)
, (7.76)

Squad
GZ becomes

Squad
GZ =

∫
d4x

(
1
2
λaµ

(
−∂2 + i

√
2Ngγ2

)
λaµ +

1
2
ηaµ

(
−∂2 − i

√
2Ngγ2

)
ηaµ

)
+
∫

d4x

(
1
2
S[ab]
µ (−∂2)S[ab]

µ +
1
2
V [ab]
µ (−∂2)V [ab]

µ + ϕ(ab)
µ ∂2ϕ(ab)

µ

)
.

+
∫

d4x

(
1
4
(
∂µλ

a
µ

)2 +
1
4
(
∂µη

a
µ

)2 +
1
2
(
∂µλ

a
µ

)
(∂νηaν) +

ba√
2
∂µλ

a
µ +

ba√
2
∂µη

a
µ

)
.

(7.77)

The fields λaµ, η
a
µ shall describe the i-particles of the Gribov-Zwanziger action.

We shall now calculate the (relevant) propagators of this action. Using the fields definitions,
we find

λaµ =
1√
2
Aaµ +

i
2
√
N
fabc

(
ϕbcµ + ϕbcµ

)
,

ηaµ =
1√
2
Aaµ −

i
2
√
N
fabc

(
ϕbcµ + ϕbcµ

)
, (7.78)

so with the propagators of the original GZ action, see expression (4.23), we can calculate

〈λaµλbν〉 =
〈[

1√
2
Aaµ +

i
2
√
N
fak`

(
ϕk`µ − ϕk`µ

)] [ 1√
2
Abν +

i
2
√
N
f bpq

(
ϕpqµ − ϕpqµ

)]〉
=

1
2

〈
AaµA

b
ν

〉
+

i√
2N

f bpq
〈
Aaµϕ

pq
ν

〉
+

i√
2N

fak`
〈
Abνϕ

k`
µ

〉
− 1

2N
fak`f bpq

(〈
ϕk`µ ϕ

pq
ν

〉
−
〈
ϕk`µ ϕ

pq
ν

〉)
= δab

(
1

p2 + iλ2
Pµν +

1
2

1
p2
Lµν

)
, (7.79)

whereby

Pµν(p) = δµν −
pµpν
p2

, Lµν(p) =
pµpν
p2

. (7.80)

In an analogous fashion, we also find

〈ηaµηbν〉 = δab
(

1
p2 − iλ2

Pµν +
1
2

1
p2
Lµν

)
,

〈λaµηbν〉 = −δab 1
2

1
p2
Lµν . (7.81)

Although, the propagators are neither completely color diagonal nor transverse, we shall still
show that we can find good operators using these i-fields.
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3.2 Proposal for a “good” operator

Let us give here two examples of one loop correlation functions of composite operators con-
structed from the i-fields. To this order, one can introduce the i-field strengths defined by

λaµν = ∂µλ
a
ν − ∂νλaµ ,

ηaµν = ∂µη
a
ν − ∂νηaµ . (7.82)

As simplest examples we investigate the following composite operators at leading order:

O
(1)
λη (x) =

(
λaµν(x)ηaµν(x)

)
,

O
(2)
λη (x) = εµνρσ

(
λaµν(x)ηaρσ(x)

)
. (7.83)

After some calculation, see appendix B6, we find:

〈O(1)
λη (k)O(1)

λη (−k)〉 = 4(N2 − 1)
∫

ddp
(2π)d

p2(p− k)2 + (d− 2)(p2 − p k)2

(p2 − iλ2)((p− k)2 + iλ2)
, (7.84)

〈O(2)
λη (k)O(2)

λη (−k)〉 = 32(N2 − 1)
∫

ddp
(2π)d

(k2p2 − (k p)2)
(p2 − iλ2)((p− k)2 + iλ2)

. (7.85)

3.2.1 The spectral representation in d = 2

We shall provide some details concerning the derivation for the case d = 2. Let us begin with
the analysis of

〈O(1)
λη (k)O(1)

λη (−k)〉 = 4(N2 − 1)F (k2) , (7.86)

with

F (k2) =
∫

ddp
(2π)d

p2(p− k)2 + (d− 2)(p2 − p k)2

(p2 + iλ2)((p− k)2 − iλ2)
. (7.87)

We first derive a Feynman parametrization of (7.87). Proceeding in the usual way one finds

F (k2) =
∫ 1

0
dx
∫

ddq
(2π)d

N(q, k, x)
(q2 + ∆2)2

, (7.88)

where we used the substitution q = p− kx, and whereby

∆2 = x(1− x)k2 − (2x− 1)iλ2 . (7.89)

We shall temporarily work in units 2λ2 = 1. We still have to identify the numerator N(q, k, x).
Keeping in mind that terms odd in qµ will vanish upon integration, and that we may replace
qµqν → q2 δµν

d within the q-integral, we are brought to

F (k2) = (d− 1)
∫ 1

0
dx
∫

ddq
(2π)d

x2(1− x)2k4 + 2
d [1− (d+ 2)x(1− x)] k2q2 + q4

(q2 + ∆2)2
, (7.90)

after a bit of algebra. Subsequently, from (A.5) it follows that∫
ddq

(2π)d
q2

(q2 + ∆)n
=

1
(4π)d/2

d

2
Γ(n− d/2− 1)

Γ(n)
(∆2)d/2−n+1 , (7.91)
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and consequently also∫
ddq

(2π)d
q4

(q2 + ∆)n
=

1
(4π)d/2

d(d+ 2)
4

Γ(n− d/2− 2)
Γ(n)

(∆2)d/2−n+2 . (7.92)

To obtain a finite result, we prefer to look at

∂2F (k2)
(∂k2)2

=
1

4π

∫ 1

0
dx
[(

12x4 − 24x3 + 14x2 − 2x
) 1

∆2
+ (8x6 − 24x5 + 25x4

−10x3 + x2)
k2

(∆2)2
+ 2x4(1− x)4 k4

(∆2)3

]
, (7.93)

where we set d = 2. We consequently find

∂2F (k2)
(∂k2)2

=
1

4π

∫ 1

0
dx
[−12x2 + 12x− 2

k2 − is
+ k2 8x2 − 8x+ 1

(k2 − is)2
+ 2k4 x(1− x)

(k2 − is)3

]
,(7.94)

where we reintroduced s = 2x−1
2x(1−x) , hence x = −1+s+

√
1+s2

2s , which gives rise to

∂2F (k2)
(∂k2)2

=
1

4π

∫ +∞

−∞

ds
2(1 + s2 +

√
1 + s2)

[
− 2
s2

(3 + s2 − 3
√

1 + s2)
1

k2 − is

+
k2

s2
(4 + s2 − 4

√
1 + s2)

1
(k2 − is)2

+
k4

1 +
√

1 + s2

1
(k2 − is)3

]
. (7.95)

We first rewrite everything in terms of k2 − is as follows

∂2F (k2)
(∂k2)2

=
1

4π

∫ +∞

−∞

ds
2(1 + s2 +

√
1 + s2)

[
− 2
s2

(3 + s2 − 3
√

1 + s2)
1

k2 − is

+
1
s2

(4 + s2 − 4
√

1 + s2)
k2 − is+ is
(k2 − is)2

+
(k2 − is+ is)2

1 +
√

1 + s2

1
(k2 − is)3

]
=

1
4π

∫ +∞

−∞

ds
2(1 + s2 +

√
1 + s2)

[
− 1
s2

(
3 + s2 − 3

√
1 + s2

) 1
k2 − is

+is
−1 +

√
1 + s2

1 +
√

1 + s2

1
(k2 − is)2

− s2

1 +
√

1 + s2

1
(k2 − is)3

]
. (7.96)

Using two consecutive partial integrations, we can show that∫ +∞

−∞

ds
2(1 + s2 +

√
1 + s2)

[
− 1
s2

(3 + s2 − 3
√

1 + s2)
1

k2 − is

]
= −

∫ +∞

−∞
ds

(
−1 +

√
1 + s2

s2
+ ln

(
1 +

√
1 + s2

)) 1
(k2 − is)3

. (7.97)

Similarly, partial integration leads to∫ +∞

−∞

ds
2(1 + s2 +

√
1 + s2)

[
is
−1 +

√
1 + s2

1 +
√

1 + s2

1
(k2 − is)2

]

=
∫ +∞

−∞
ds
[

2
1 +
√

1 + s2
+ ln

(
1 +

√
1 + s2

)] 1
(k2 − is)3

. (7.98)
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Hence, we can rewrite (7.96) as

∂2F (k2)
(∂k2)2

=
1

4π

∫ +∞

−∞
ds
[

1
2
√

1 + s2

]
1

(k2 − is)3
. (7.99)

after simplification. We observe that there are no poles in the upper half s-plane for k2 > 0,
so we can fold our contour around the cut for s ∈ [i∞, i]. With s = iτ , we can write

∂2F (k2)
(∂k2)2

=
1

4π

∫ 1

+∞
idτ
[

1
−2i
√
τ2 − 1

]
1

(k2 + τ)3
+

1
4π

∫ +∞

1
idτ
[

1
2i
√
τ2 − 1

]
1

(k2 + τ)3

=
1

4π

∫ +∞

1
dτ

1√
τ2 − 1

1
(k2 + τ)3

. (7.100)

We can now return to the original function F (k2). A first integration from 0 to k2 gives

∂F (k2)
∂k2

−
[
∂F (k2)
∂k2

]
k2=0

=
1

4π

∫ +∞

1
dτ

1
−2
√
τ2 − 1

1
(k2 + τ)2

− 1
4π

∫ +∞

1
dτ

1
−2
√
τ2 − 1

1
τ2

,

so that we get,

F (k2)− k2

[
∂F (k2)
∂k2

]
k2=0

− F (0)

=
1

4π

∫ +∞

1
dτ

1
2
√
τ2 − 1

1
k2 + τ

+
k2

4π

∫ +∞

1
dτ

1
2
√
τ2 − 1

1
τ2
− 1

4π

∫ +∞

1
dτ

1
2
√
τ2 − 1

1
τ
.

(7.101)

We thus find
ρ(τ) =

1
8π

1√
τ2 − 1

. (7.102)

We conclude that, upon restoring units, we formally have

〈O(1)
λη (k)O(1)

λη (−k)〉 =
∫ +∞

2λ2

2(N2 − 1)λ4

π
√
τ2 − 4λ4

dτ
τ + k2

. (7.103)

We clearly notice that the spectral density ρ(τ) is positive for τ ≥ 2λ2. The result as written
in (7.103) is indeed only formally correct, since the l.h.s. of (7.103) is divergent, directly seen
upon inspection of its definition (7.88). Nevertheless, the spectral representation (7.103) ap-
pearing in the r.h.s. defines a finite function. The apparent contradiction is easily resolved
by realizing that one should in fact refer to (7.101), which gives the correctly subtracted result.

Let us now turn to the analysis of

〈O(2)
λη (k)O(2)

λη (−k)〉 = 32(N2 − 1)G(k2) , (7.104)

with

G(k2) =
∫

ddp
(2π)d

k2p2 − (kp)2

(p2 + iλ2)((p− k)2 − iλ2)
. (7.105)
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Invoking the Feynman trick this time yields

G(k2) =
∫ 1

0
dx
∫

ddq
(2π)d

M(k, q)
(q2 + ∆2)2

, (7.106)

with

M(k, q) = k2q2

(
1− 1

d

)
. (7.107)

As usual, we shall work in units 2λ2 = 1. By using (7.91), we obtain the finite function

∂2G(k2)
(∂k2)2

=
1

8π

∫ 1

0
dx
[(
x2(1− x)2

) k2

(∆2)2
− (2(1− x)x)

1
∆2

]
. (7.108)

We substitute x = −1+s+
√

1+s2

2s , so we obtain

∂2G(k2)
(∂k2)2

=
1

8π

∫ +∞

−∞

ds
2(1 + s2 +

√
1 + s2)

[
k2

(k2 + is)2
− 2
k2 + is

]
. (7.109)

Rewriting in terms of k2 − is gives

∂2G(k2)
(∂k2)2

=
1

8π

∫ +∞

−∞

ds
2(1 + s2 +

√
1 + s2)

[ −is
(k2 + is)2

− 1
k2 + is

]
. (7.110)

Subsequently, using partial integration gives us the following identity∫ +∞

−∞

ds
2(1 + s2 +

√
1 + s2)

[ −is
(k2 + is)2

]
= −

∫ +∞

−∞
ds
[
ln
(√

s2 + 1 + 1
)] 1

(k2 − is)3
.

Analogically,∫ +∞

−∞

ds
2(1 + s2 +

√
1 + s2)

[ −1
(k2 − is)2

]
=
∫ +∞

−∞
ds
[√

s2 + 1− ln
(√

s2 + 1 + 1
)] 1

(k2 − is)3
.

Therefore, equation (7.110) becomes

∂2G(k2)
(∂k2)2

=
1

8π

∫ +∞

−∞
ds
√

1 + s2

(k2 − is)3
. (7.111)

As before, we can fold our contour around the cut for s ∈ [i∞, i] and by setting s = iτ , we
find

∂2G(k2)
(∂k2)2

=
1

4π

∫ +∞

1
dτ
√
τ2 − 1

(k2 + τ)3
, (7.112)

and thus

∂G(k2)
∂k2

−
[
∂G(k2)
∂k2

]
k2=0

=
1

4π

∫ +∞

1
dτ
√
τ2 − 1
−2

1
(k2 + τ)2

− 1
4π

∫ +∞

1
dτ
√
τ2 − 1
−2

1
τ2

.
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Integrating a second time gives,

G(k2)−G2

[
∂G(k2)
∂k2

]
k2=0

−G(0)

=
1

8π

∫ +∞

1
dτ
√
τ2 − 1

1
k2 + τ

+
k2

8π

∫ +∞

1
dτ
√
τ2 − 1

1
τ2
− 1

8π

∫ +∞

1
dτ
√
τ2 − 1

1
τ
.

The spectral density can be read off,

ρ(τ) =
1

8π

√
τ2 − 1 , (7.113)

whereby ρ(τ) ≥ 0 for τ ≥ 1. We reintroduce the units, and we conclude that

〈O(2)
λη (k)O(2)

λη (−k)〉 =
4(N2 − 1)

π

∫ +∞

2λ2

dτ
√
τ2 − 4λ4

τ + k2
, (7.114)

which is again a formal result due to the divergent nature of both l.h.s. and r.h.s. .

3.2.2 The spectral representation in d = 4

In four dimensions, we can do a similar analysis to obtain [202]〈
O

(1)
λη (k)O(1)

λη (−k)
〉

= 12N
∫ ∞

2γ2

dτ
1

τ + k2

√
τ2 − 4γ4(2γ4 + τ2)

32π2τ
, (7.115)

and 〈
O

(2)
λη (k)O(2)

λη (−k)
〉

= 96N
∫ ∞

2γ2

dτ
1

τ + k2

(
τ2 − 4γ4

)3/2
64π2τ

, (7.116)

which is again a formal result. We see that the spectral densities are positive again, and thus
at least at leading order, the operators O(1)

λη and O
(2)
λη appear to be physical.

4 The relation between F 2 and the operator O
(1)
λη (x)

Now that we have found an operator with a good spectral representation, it is useful to see
how the operator F 2

µν , which we have investigated in great detail in the previous chapter, is
related to this operator. Let us introduce the following definitions

ϕaµν =
1
N
fabc(∂µϕ[bc]

ν − ∂νϕ[bc]
µ ) ,

ϕaµν =
1
N
fabc(∂µϕ[bc]

ν − ∂νϕ[bc]
µ ) , (7.117)

Using the relations (7.78), which expresses the i-fields in terms of the original variables, we
find for the i-fields strengths, see equation (7.82),

λaµν =
1√
2
faµν −

i
√
N

2
(
ϕaµν + ϕaµν

)
,

ηaµν =
1√
2
faµν +

i
√
N

2
(
ϕaµν + ϕaµν

)
, (7.118)
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whereby with faµν we denote only the abelian part of the field strength

faµν = ∂µA
a
ν − ∂νAaµ . (7.119)

Therefore, we can write f2
µν in terms of the i-particles variables,

1
2
f2
µν =

1
2
λaµνη

a
µν︸ ︷︷ ︸

O
(1)
λη

+
1
4
ηaµνη

a
µν +

1
4
λaµνλ

a
µν . (7.120)

From this relation, we can make some interesting observations. In the end of the previous
section, we have mentioned that the correlator

〈
F 2(x)F 2(y)

〉
displays unphysical cuts. From

the previous equation, we can now see that these unphysical cuts are in fact stemming from
the last two terms of equation (7.120), namely 1

4η
a
µνη

a
µν + 1

4λ
a
µνλ

a
µν . We have thus uncovered

at lowest order what the structure of the correlator
〈
F 2(x)F 2(y)

〉
is.

The main question is, if we want to continue with the operator λaµνη
a
µν , whether this op-

erator is renormalizable. For this, we should first try to find the non-abelian generalization of
the operator λaµνη

a
µν . However, already at lowest order, we can see that this operator breaks

many crucial Ward identities of the GZ action which are needed for renormalization. Indeed,
from equation (7.118), we also find that rewriting O(1)

λη (x) in terms of old variables gives

O
(1)
λη (x) = λaµν(x)ηaµν(x) =

1
2
f2
µν −

N

4
(
ϕaµν + ϕaµν

)2
. (7.121)

E.g. due to the second term, this operator already breaks the most important symmetry,
i.e. the BRST symmetry. This breaking is not soft7, i.e. proportional to the mass parameter
γ2, but this is a hard breaking and therefore, impossible to restore. Next to this breaking,
one can also check that other Ward identities are broken, see p.82. It looks therefore highly
unlikely that the operator O(1)

λη is renormalizable.

5 Conclusion

In this chapter, we have pursued the investigation of the analyticity properties of correlation
functions evaluated with a confining propagator of the Gribov type. We started with a sim-
ple toy model to characterize examples of composite operators, whose correlations functions
display cuts only on the negative real axis, while possessing a positive spectral function. For
this, we have introduced i-particles, which seem rather natural objects when dealing with a
Gribov type propagator. We could then do a similar analysis for the more complicated GZ
action and we have found two operators, namely O

(1)
λη and O

(2)
λη which are given in equation

(7.83) and which have the desired analytical properties. Naturally, the next step is to inves-
tigate the renormalization of these good operators O(1) and O(2). Unfortunately, focusing on
the easiest operator O(1), we already see that this operator breaks the BRST symmetry in a
hard way. Therefore, we would have to look for other operators, whose correlations functions
also display cuts on the negative real axis, while possessing a positive spectral function, but
which do not break the BRST symmetry s in a hard way.

7This was the case for the GZ action, see (3.208), and therefore, the breaking does not spoil renormalizability.
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Let us give an example of this kind of operator: if we consider the following operator

Onew = λaµνη
a
µν −

N

2
UaµνU

a
µν +Nωaµνω

a
µν , (7.122)

whereby ωaµν and ωaµν are similarly defined as in equation (7.117)

ωaµν =
1
N
fabc(∂µω[bc]

ν − ∂νω[bc]
µ ) ,

ωaµν =
1
N
fabc(∂µω[bc]

ν − ∂νω[bc]
µ ) , (7.123)

we see that we have an s invariant operator. Indeed, rewriting Onew in the old variables, we
find

Onew =
1
2
f2
µν +Ns(ϕaµνω

a
µν) , (7.124)

which is indeed s invariant. However, the problem with the current operator is that we can
easily see that this operator shall have a negative spectral density. The part in the ghost
sector, ∼ 〈ωaµνωaµν(x)ωaµνω

a
µν(y)〉, will induce a cut along the whole negative axis, with nega-

tive discontinuity, due to the ghost character. The corresponding cut should start at k2 = 0,
as the GZ ghosts are massless. The part ∼

〈
UaµνU

a
µν(x)UaµνU

a
µν(y)

〉
cannot cancel this cut,

as it has only N
2 degrees of freedom, while the ghost sector still has N degrees of freedom.

Therefore, in the GZ action, this operator does not look like a physical operator.

Let us therefore consider the Refined Gribov-Zwanziger action (5.13). So far, we have not
investigated the consequences of adding another massive parameter stemming from the con-
densate 〈(ϕϕ− ωω)〉 into the game. However, many results will change significant when
considering the RGZ. For example, considering the operator Onew again, we expect that the
cut of the fields strength correlator 〈ωaµνωaµν(x)ωaµνω

a
µν(y)〉 shall start at −(M +M)2, with a

negative spectral density of course. However, due to this shift, it becomes possible now that
the branch cut has shifted enough to have an overlap with the branch cut of the correlator
stemming from the λaµνη

a
µν part. This opens new perspectives for further research.

In fact, we can even generalize the form of the operator (7.124). We expect the following
form of operator to have a descent spectral density and to be renormalizable

O = Fµν
2 + s(. . .) + γ2 × (d = 2 operators) , (7.125)

so that in the limit γ → 0, we recover the usual BRST cohomology. The extra terms propor-
tional to γ2 usually do not spoil the renormalizability and are therefore in principle allowed.
The first step would be to investigate the abelian operator. If this operator would turn out
to have good spectral properties, we would at least be able to write down an extension of the
operator to the quantum level. Next, one can try to investigate its renormalization and, if
possible, its higher order spectral properties. This is currently under investigation.
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8
Extracting glueball masses from the i particle

approach

1 The process

As a final part of this thesis, it remains to discuss [205]. In this work, a rough estimate for
the glueball masses was extracted for the scalar (0++), the pseudoscalar (0−+) and a tensorial
glueball (2++), but in the RGZ framework, using numbers from the fit described in section
5.3 of chapter 5. Let us summarize here the followed way. Firstly, the spectral representations
were calculated, not only for the scalar glueball, i.e.

FµνFµν , (8.1)

see also the previous chapter, but also for the pseudoscalar glueball, i.e.

1
2
εµναβFµνFαβ , (8.2)

and the tensorial glueball 2++, i.e.

Θµν = ∂4θµν − ∂2∂µ∂αθαν − ∂2∂ν∂αθαµ + ∂2

(
δµν −

2
3
Pµν

)
∂α∂βθαβ ,

with θµν = FαµFαν −
δµν
4
F 2
αβ , (8.3)

which is symmetric, traceless1 and divergence-free. Normally, one would expect θµν to be the
candidate for the tensorial glueball as it is the energy momentum tensor: it is a rank two
tensor which is symmetric, traceless and divergence-free. However, this is only true within
the normal Yang-Mills action as here in the GZ action, there is a mass scale present. There-
fore, the energy-momentum tensor is not given by θµν , as θµν has a non-vanishing trace now.
Therefore, instead, the authors of [205] have proposed the rank two tensor Θµν , given in the
expression above, which has only 5 remaining degrees of freedom as desired. Moreover, in the
limit γ → 0, this tensor reduces to ∂4θµν , i.e. a derivative of the energy momentum tensor2.
Therefore, Θµν seems like a reasonable extension of the known energy momentum tensor in
Yang-Mills theory θµν .

1We are considering here only the classical level, as at the quantum level, the energy momentum tensor is
no longer traceless.

2Extra derivatives in the operators play no role for the corresponding correlation functions.
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The glueball correlation functions were split in a physical part (the i particles) and an un-
physical part, which was consequently left out.

We recall that the spectral representation is given by

F (k2) =
∫ ∞
τ0

ρ(t)
t+ k2

dt . (8.4)

However, as shown in the previous chapter, see e.g. expression (7.33), one always needs to
subtract the UV divergent parts. In general, this can be done by first deriving F (k2) w.r.t. k2

until ∂rF (k2)
(∂k2)r

is finite, with r a natural number. Next, we integrate back each time from T to
k2 so we obtain a finite spectral density:

F sub(k2) = F (k2)−F (T )−∂F (T )
∂k2

(k2−T )−∂
2F (T )

(∂k2)2

(k2 − T )2

2!
−. . .−∂

r−1F (T )
(∂k2)r−1

(k2 − T )r−1

(r − 1)!

= (−1)r(k2 − T )r
∫ ∞
τ0

ρ(t)
t(t+ T )r︸ ︷︷ ︸

ρ(t)′

dt
t+ k2

. (8.5)

T ≥ 0 indicates the momentum substraction scale, which was always taken equal to zero in
the previous chapter. Here, the scale T is a parameter and the idea is that the physics should
not depend on the substraction scale.

F sub(k2) can be calculated in a similar fashion as in the previous chapter. However, as
we are working in the RGZ framework, it becomes a bit more complicated to calculate the
spectral densities. However, by using the results of [206] it was found that [205]

F sub
0++(k2) = −(k2 − T )3

∫ ∞
τ0

c0++
1

t(t+ T )3

√
t2 − 8θ4 − 4µ2t

×
(

1
2
t2 + 2θ4 − 2tµ2 + 3µ4

)
1

t+ k2
dt ,

F sub
0−+(k2) = −(k2 − T )3

∫ ∞
τ0

c0−+
1

t(t+ T )3

√
t2 − 8θ4 − 4µ2t

×
(

2θ4 + tµ2 − 1
4
t2
)

1
t+ k2

dt ,

F sub
2++(k2) = −(k2 − T )7

∫ ∞
τ0

c2++
1

t(t+ T )7

√
t2 − 8θ4 − 4µ2t ,

×
(

16t2θ8 − 4θ4µ2t3 + 16t4θ4 + 9µ4t4 − 9
2
µ4t5 +

3
2
t6
)

1
t+ k2

dt .

(8.6)

The parameters c are positive constants irrelevant for the calculations, and µ and θ are given
by

µ2 = Re

[
1
2

(
m2 +M2 +

√
m4 − 2M2m2 +M4 − 4λ4

)]
,

√
2θ2 = Im

[
1
2

(
m2 +M2 +

√
m4 − 2M2m2 +M4 − 4λ4

)]
,

(8.7)
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corresponding to the real and imaginary part of the poles of the refined gluon propagator
(5.44).

Secondly, let us have a closer look at the general form of the spectral representation (8.4). In
fact, in is better to set t = 1/s in the spectral density, so we find

F (k2) =
∫ 1/τ0

0

ρ(1/s)
1 + sk2

ds , (8.8)

so we can expand for small k2:

F (k2) =
∞∑
n=0

νn(−1)n(k2)n , (8.9)

with

νn =
∫ 1/τ0

0
snρ(1/s)ds , (8.10)

called the moments. Even more appropriate is to look at the following function

f(z) =
1
z
F (−1/z) =

∫ 1/τ0

0

ρ(1/s)
z − s ds , (8.11)

which can be expanded for large negative z (small positive k2):

f(z) =
∞∑
n=0

νn

(
1
z

)n+1

. (8.12)

This function can be approximated by a Padé approximant. As for large z, the function
behaves like 1/z, we should use the [N − 1, N ] Padé approximant:

f(z) =
PN−1(z)
QN (z)

, (8.13)

whereby PN−1(z) and QN (z) are polynomials in z of order N − 1 respectively N . This Padé
approximation can be completely fixed in terms of the moments νn. Let us take the first two
moments of the Taylor expansion and set it equal to the [0, 1] Padé approximant

f(z) =
ν0

z
+
ν1

z2
+O(z−3) =

a0

b0 + b1z
+O(z−3) , (8.14)

then follows that the [0, 1] Padé approximant is given by

f(z) ≈
−ν2

0
ν1

1− ν0
ν1
z
. (8.15)

One can see that this function displays a pole at

z∗ =
ν1

ν0
⇒ k2 = −ν0

ν1
, (8.16)
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meaning that the mass estimate itself is given by

m =
√
ν0

ν1
. (8.17)

A general property of the Padé approximants is that the QN are othogonal polynomials over
[0, 1/τ0] with weight ρ(1/s), see [207, 208]. As the weight is positive, it follows that the poles3

of QN , namely z∗, will be real, all different and lying in the interval ]0, 1/τ0[. Therefore, the
mass estimate will always be larger then τ0. Let us now look at this result in relation with the
previous chapter. There, we found that a positive spectral density ρ(t) gives a branch cut for
F (k2) on the negative k2 axis starting from −τ to −∞. Here, by doing a Padé approximation,
we replaced in a sense the branch cut with a number of poles, depending on the order of the
polynomial QN . In fact, in the limit N → ∞, the whole branch cut would be covered with
poles starting from the point −τ0.

So far, we have built the reasoning of the Padé approximation on the infinite expression
F (k2) instead of on the subtracted expression F sub(k2). However, the difference between
both expressions shall be a polynomial in k2. Indeed, to find F sub(k2), we derive F (k2) r
times w.r.t. k2. In this way, we kill the moments ν0, . . . , νr−1. After this operation, the ex-
pression ∂rF (k2)

(∂k2)r
is finite, meaning that the infinities are hidden in the first r moments, while

all the succeeding moments are finite. From expression (8.5) it is then clear that the difference
between F sub(k2) for a certain substraction scale T and F (k2) is only a polynomial in k2,
and therefore, the pole structure does not change. We can thus equally work with F sub(k2)
instead of F (k2).

Let us thus rewrite (8.6) in the form (8.11),

f0++(k2) =
∫ 1/τ0

0
c0++

s3

(1 + sT )3

√
1
s2
− 8θ4 − 4µ2

s

(
1

2s2
+ 2θ4 − 2

s
µ2 + 3µ4

)
1

z − sds ,

f0−+(k2) =
∫ 1/τ0

0
c0−+

s3

(1 + sT )3

√
1
s2
− 8θ4 − 4µ2

s

(
2θ4 +

µ2

s
− 1

4s2

)
1

z − sds ,

f2++(k2) =
∫ 1/τ0

0
c2++

s7

(1 + sT )7

√
1
s2
− 8θ4 − 4µ2

s

×
(

16θ8

s2
− 4θ4µ2

s3
+

16θ4

s4
+

9µ4

s4
− 9µ4

2s5
+

3
2s6

)
1

z − sds , (8.18)

whereby we omitted (−1)r(k2 − T )r, as it has no influence on the pole structure.

Now as a third step, we need to determine the moments of the previous expression as described
in (8.12). The question remains, how many moments are necessary for a reliable determina-
tion of the poles. The idea is to restrict to the first two moments as they are related to the
IR region of the glueball operator. Indeed, for the one loop expression of the correlation, we
can always write

F sub(k2)
(−1)r(k2 − T )r

=
∫

dq
r(k, q)
q

, (8.19)

3This is a general property of orthogonal polynomials with positive weight.
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whereby limq→∞ r(k, q) < ∞ as we are working with F sub which is a UV finite expression.
For small incoming momentum k2, we can expand r(k, q),

r(k, q) = r(0, q) + k2∂r(0, q)
∂k2

+ . . . . (8.20)

From this expression we can deduce that certainly the first term r(0, q) will have the most
important contribution at small q2. Also the higher order derivatives of r(0, q) w.r.t. k2,
will dominate for small q2, as deriving w.r.t. k2 can only bring down more powers of q2.
In conclusion, for low incoming momentum k2, only the low momentum information of the
other quantities (propagators, vertices, etc) encoded in r(k, q) will be relevant. Therefore, as
we believe that our gluon propagator is a typical IR valid object, the first two moments of
F sub(k2) will already encode the low momentum information we have on the glueball prop-
agator. Moreover, the first two moments give already a good approximation of the starting
function F sub(k2). We are thus basing ourselves on IR data, which we believe to be trust-
worthy, and that we are then extrapolating to the mass estimates using the Padé approximant.

The reader shall have noticed that the foregoing glueball estimates were obtained using the
tree level glueball correlation functions. One could wonder why tree level information, i.e. ob-
tained in a perturbative way, would provide any basis for an extrapolation to a nontrivial
bound state mass. Without going into details, the main reason behind this is as follows. A
very good approximation to the fully nonperturbative gluon propagator was used, as quasi-
exactly known from the lattice simulations. Evidently, this means that a specific amount of
nontrivial physics input is already present, under the form of this ”exact” gluon propagator.
The positivity violation of it is indeed interpreted as a confinement signal. The fact that the
gluons cannot appear as separated physical observables is hinting towards the formation of
a bound state. Two (or more) of such unphysical gluons have thus been put together in a
composite operator like F 2, and it turns out that already at tree level, a physical signal is
created, under the form of the physical branch cut. It is essentially this branch which is then
used to get at least some, hopefully meaningful, information on the possible pole structure
of the investigated glueball correlation functions. It is a priori by no means trivial that com-
bining two unphysical gluons together would have created a physical branch cut. As already
explained, one can argue that in the deep infrared, there are reasons to believe in the glueball
correlation function, and this is what has been extrapolated using the Padé approximation
theory.

2 The results

Let us show the results of this calculation. The masses are given by expression (8.17) and
depend on the substraction scale T . In the following figure, one can see the result for the
scalar 0++, the pseudoscalar 0−+ and the 2++ glueball masses.

247



CHAPTER 8. EXTRACTING GLUEBALL MASSES FROM THE I PARTICLE
APPROACH
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Figure 8.1: The masses of the 0++, the 0−+ and the 2++ in function of the subtraction scale T .

As a final step, it remain to determine the masses with the least dependence on the scale
T . As one can see from the figure, there are no minima for the masses w.r.t. T . However,
when taking the relative masses, m2++

m0++
and m2++

m0−+
, there are reflection points w.r.t. T given

by T ≈ 0.34 respectively T ≈ 0.35, two values which are very close. Now setting T = 0.34,
the masses become:

m0++ ≈ 1.98 GeV , m0−+ ≈ 2.21 GeV , m2′++ ≈ 2.17 GeV . (8.21)

Comparing this with the lattice values of [173, 180, 209, 210], namely

mlat
0++ ≈ 1.73 GeV , m0−+ ≈ 2.59 GeV , m2′++ ≈ 2.40 GeV , (8.22)

one can see that the values obtained here are within 20% range of the lattice results. It is worth
mentioning that instanton contributions were omitted here. These are known to be relevant
for the scalar and pseudoscalar channel, giving an attractive, resp. repulsive contribution
around 200-300 MeV, see e.g. [173, 211] and references therein.
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9
Conclusion and outlook

The Gribov-Zwanziger action in the Landau gauge can be seen as an improved Faddeev-Popov
action, where the latter approach to gauge fixing suffers from Gribov copies. Indeed, the GZ
action implements a restriction of the region of integration to the so called Gribov region Ω,

Ω ≡ {Aaµ, ∂µAaµ = 0,Mab > 0} , (9.1)

whereby Mab is the Faddeev-Popov operator, see equation (3.48). One can prove that all
gauge orbits intersect with this region, which is of paramount importance for having a good
gauge fixing. Unfortunately, it has been proven that this region is not free of Gribov copies
itself, but it is currently the best tool on the market. In this thesis, we have reviewed the
current status of the Gribov-Zwanziger framework.

The main results of this research can be divided into two parts.

From propagators...

The first part concerns the infrared behavior of the gluon and the ghost propagator. The
latest lattice data have shown that in 3d and 4d in the Landau gauge, the ghost propagator
is not enhanced, in contrast to the general credence. Also, the gluon propagator is infrared
suppressed and non-vanishing at zero momentum. For a long time, it was believed that the
gluon propagator did vanish at zero momentum. Unfortunately, these recent lattice data
are in contrast with the predictions of the Gribov-Zwanziger action. Using this framework,
the gluon propagator does vanish at zero momentum and the ghost propagator is infrared
enhanced and thus something was missing in the GZ action. Therefore, in this thesis, we
have tried to restore the agreement with the recent lattice data by refining the GZ action,
by including d = 2 condensates. Doing so, we have found a gluon propagator which does not
vanish at zero momentum and a ghost propagator which is no longer infrared enhanced. We
have also fitted our form of the gluon propagator with the lattice results, and we have found
a quite remarkable agreement.

In 2d, something peculiar is going on. The lattice data show that the ghost propagator
does display enhancement and the gluon propagator vanishes at zero momentum. We have
shown that in 2d, it is impossible to refine the GZ action due to the typical infrared problems
of 2d gauge theories. Therefore we are lead to the original GZ results, which indeed qualita-
tively agree with the lattice results.

249



CHAPTER 9. CONCLUSION AND OUTLOOK

In conclusion, we have constructed a model which agrees with the lattice data when compar-
ing quantities like propagators. We have obtained satisfying results, but some critical remarks
should be made:

• We have not really succeeded in computing good dynamical values for the condensates
〈A2〉 and 〈ϕϕ− ωω〉. This is due to the difficulties of the calculations when having more
than one mass parameter into the game. However, the effective potential, calculated in
the end of chapter 5 is better suited to discuss these condensates. However, still two
parameters are unknown and need to be calculated before being able to extract a value
for the condensates. Although, we should notice that even this does not allow to include
the full-nonperturbative value of these condensates1.

• As higher loop calculations are very difficult using the GZ action, no one has really
succeeded in obtaining a gluon or a ghost propagator analytically which completely
agrees with the lattice data for a momentum regime 0-1.5 GeV without any input from
the lattice. We can only predict qualitative results, which could then be fitted to the
lattice. This itself is already a non trivial point.

• One can also wonder whether the very deep infrared behavior of the propagators really
matters? One could argue that only the mid-momentum regime 0.1 GeV -0.8 GeV is
important, as this regime agrees with the size of particles, namely 0.8 fm - 6.4 fm. Is has
already been argued that whether the gluon propagator reaches zero/not zero at zero
momentum has absolutely no influence on the properties of the particles [212]. Perhaps
all the commotion around the zero momentum behavior of the propagators is not that
important after all. Nevertheless, a whole confinement story was built in the past on
the IR singularity of the ghost, in which case the zero momentum regime was of utmost
importance.

...to glueballs

So far, we have thus concentrated on the behavior of propagators in the Landau gauge. How-
ever, these are unphysical quantities and at a certain point, one should start looking for the
physical degrees of freedom in pure QCD, i.e. glueballs. For the (R)GZ framework, the start
of this investigation was done in chapters 6, 7 and 8. This comprehends the second part of
the results.

As a first attempt, we have investigated in chapter 6 the renormalization of F 2
µν using the

(R)GZ action, as this operator is usually associated with the scalar glueball. This renormal-
ization was far from trivial, as this operator mixes with other d = 4 operators, namely

E = ∂µb
aAaµ + ∂µc

aDab
µ c

b + ∂µϕ
a
iD

ab
µ ϕ

b
i − ∂µωaiDab

µ ω
b
i + gfabc∂µω

a
iD

bd
µ c

dϕci

+ γ2gfabcAaµϕ
bc
µ + γ2gfabcAaµϕ

bc
µ + d

(
N2 − 1

)
γ4 . (9.2)

Moreover, due to the breaking of the BRST in the GZ action, this mixing has serious conse-
quences2 on the correlator

〈
F 2(x)F 2(y)

〉
. In fact, instead of considering

〈
F 2(x)F 2(y)

〉
, one

1We are still not able to take into account e.g. topological effects,. . . .
2In ordinary Yang-Mills theory, this mixing is irrelevant as the Yang-Mills action is invariant under the

BRST symmetry.
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should really consider the following correlator, 〈R(x)R(y)〉, whereby R is a renormalization
group invariant,

R =
β(g2)
g2
F − 2γc(g2)E . (9.3)

We emphasize that this analysis has been done for the GZ action as well as for the RGZ
action, but the same operator appears for both actions. The problem with this operator, is
that it does not have a proper Källén-Lehmann representation,

〈O(k)O(−k)〉 =
∫ ∞
τ0

dτ ρ(τ)
1

τ + k2
, (9.4)

with ρ(τ) ≥ 0. The correlator
〈
F 2(x)F 2(y)

〉
and most likely also 〈R(x)R(y)〉 has branch cuts

at the imaginary axis. This seems to indicate that something is still missing.

Therefore, in chapter 7 we have looked for an operator at lowest order, which does have
physical cuts and can be written in a Källén-Lehmann representation with positive spectral
density. For this, we needed to introduce a new concept: i-particles. In fact, this is nothing
more than rewriting the fields of the GZ action into a new notation so the quadratic part of
the GZ action becomes (almost) diagonal. We have found that the lowest order correlator
corresponding to the following operators can be written into a proper spectral representation
with positive spectral density

O
(1)
λη (x) =

(
λaµν(x)ηaµν(x)

)
,

O
(2)
λη (x) = εµνρσ

(
λaµν(x)ηaρσ(x)

)
. (9.5)

whereby the λaµν(x) and ηaµν(x) are given in terms of the original GZ fields in equation (7.78).
Although at lowest order, these operators could be interpreted as being “physical” in a sense,
these operators do not really look renormalizable. Here we emphasize that so far, we only
did the analysis within the GZ framework.

In conclusion, so far, it seems that we have to choose: or we have a renormalizable oper-
ator, or we have an operator with a good spectral density. The question remains how we can
unite both properties.

Finally, in the last chapter, chapter 8, we have demonstrated that estimates for the masses
obtained with the i particles, thereby using the fits from the RGZ propagator with the lattice
data (see 5.3 of chapter 5), are in fact no so far of the lattice data. This gives some good hope
for the RGZ model. However, we still need to explain the discrepancy between the i-particles
and the glueball operators, i.e. how to get rid in a calculable fashion, of the unphysical pieces
in the correlation functions.

Outlook

Let us end by saying that this research is far from finished. At the end of the chapter 7, we
have already given a sneak preview on how we could continue with this research. As we have
only considered the GZ action in chapter 7, the possibility remains that in the RGZ model,
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we can combine both properties of renormalizability and a good spectral representation. Of
course, even if one would succeed in this task, one has not solved confinement. If one would
really want to find a particle, one should be able to do some kind of all order resummation
which would lead to a pole instead of a branch cut. However, this does not seem feasible
for the moment with the current techniques. Therefore, it would already be a nice first step
to find a renormalizable operator which has a Källén-Lehmann representation with positive
spectral density, and continue the research from there on.

Let us also point out that the described attempt was the first trying to convert unphysi-
cal degrees of freedom (gluons and ghosts) to physical degrees of freedom (glueballs), directly
starting from the elementary propagators in the Landau gauge. Evidently, this is not an easy
task, hence the results are of a rather humble nature. Let us however point out that the
kind of difficulties encountered will be common to all approaches, and should not be seen as
disfavouring the GZ formalism focused on in this thesis.

In particular, focusing on the Landau gauge and its propagators, whatever approach one
is using, at the end of the day, the form of the gluon/ghost propagator will, and should be,
very similar to that of the lattice estimate, in particular there will be an infrared suppressed
gluon propagator, with a positivity violation. One could even assume that D(0) = 0. It is
clear that no normal, physical particle corresponds to these gluon degrees of freedom.

We would also like to point out that the BRST symmetry, broken or not, would appear
to be only of a minor help in the discussion of positivity and unitarity in the confined phase.
The physical spectrum should correspond to the classically gauge invariant operators. If the
usual BRST is there, this is a trivial fact. But from our present research, it should be observed
that using the highly nontrivial Landau gauge gluon propagator, which form is clear from the
lattice, would seem to give rise to a rather complicated cut structure of the correlation func-
tions of the gauge invariant composite operators. As a consequence, it will unavoidably be a
hard nut to crack to understand in a qualitative and quantitative fashion how the “strange”
gluon (which is definitely not of a massless nature) will conspire with the massless ghost,
quadratically or worse divergent in the infrared, to give gauge invariant correlation functions
only exhibiting a physical cut and poles. The usual BRST analysis does not seem of much
help here, as the BRST itself is not what is guaranteeing the positivity, not even in the per-
turbative case. It serves as a powerful tool to select a subspace, whereafter the positivity
of the remaining physical degrees of freedom (the transverse gluon polarizations) is indeed
observed, but the latter irrespective of the BRST symmetry transformation itself.

Also other attempts to extract glueball mass estimates suffer from drawbacks. For exam-
ple, using potential models to construct the bound state spectrum, one needs to make crucial
assumptions about the interaction potential. Frequently, confinement is built in using a
linear potential. At other instances, even assumptions about the nature of the gluons (mas-
sive/massless?) need to be made. When using the Bethe-Salpeter equations for bound states,
one has to make assumptions about the invoked kernel, of how to perform resummations, . . ..
Aspects of gauge invariance are also not always transparent. Using the celebrated sum rules,
one also needs to assume the existence of the bound state, and unknown nonperturbative
physics is parametrized under the form of nonvanishing quark and gluon condensates. With
lattice simulations, one can find nice estimates devoid of any gauge fixing ambiguities, but in
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this case, the precise physics behind the glueballs is not always clear. As lattice gauge theory
is also purely Euclidean in nature, not much can be learnt about the analytic structure of the
correlation functions.

All these problems are merely a reflection of the intrinsic difficulty of constructing the bound
state spectrum in a strongly interacting theory with confinement, as is QCD.
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A
Formulae

1 Gaussian integrals

1.1 Gaussian integral for scalar variables

I(A, J) =
∫

[dϕ] exp
[
−1

2

∫
ddxddy ϕ(x)A(x, y)ϕ(y) +

∫
ddx ϕ(x)J(x)

]
= C(detA)−1/2 exp

1
2

∫
ddxddy J(x)A−1(x, y)J(y), (A.1)

with C an infinite constant, which, in practice, can always be omitted.

1.2 Gaussian integral for complex conjugated scalar variables

I(A, J) =
∫

[dϕ][dϕ] exp
[
−
∫

ddxddy ϕ(x)A(x, y)ϕ(y) +
∫

ddx (ϕ(x)Jϕ(x) + ϕ(x)Jϕ(x))
]

= C(detA)−1 exp
∫

ddxddy Jϕ(x)A−1(x, y)Jϕ(y) , (A.2)

again with C an infinite constant.

1.3 Gaussian integral for Grassmann variables

I(A, η, η̄) =
∫

[dθ][dθ̄] exp
[∫

ddxddy θ̄(x)A(x, y)θ(y) +
∫

ddx (η̄(x)θ(x) + θ̄(x)η(x))
]

= C detA exp−
∫

ddxddy η̄(x)A−1(x, y)η(y), (A.3)

again with C an infinite constant.

2 Loop integrals

To combine propagator denominators, we can use the following Feynman trick

1
AB

=
∫ 1

0
dx

1
[xA+ (1− x)B]2

, (A.4)
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which can be safely applied when no poles appear in the right hand side of (A.4). This means
that one is in a dangerous zone when B

B−A is real and 0 < B
B−A < 1.

To evaluate a d dimensional loop integral, one can use∫
ddq

(2π)d
1

[q2 + ∆2]n
=

1

(4π)
d
2

Γ(n− d
2)

Γ(n)
(∆2)

d
2
−n , (A.5)

which is valid for q2 > 0.

The structure constants of the SU(N) group have the following property,

fabcfdbc = Nδad . (A.6)
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B
Some loose ends

1 Dµ(A)ω = 0 is a gauge invariant equation.

To prove that Dµ(A)ω = 0 is a gauge invariant equation, we can write from expression (1.13),

Dµω = ∂µω − igAµω + igωAµ . (B.1)

Now performing a SU(N) transformation, we know that Dµω is in the adjoint representation
by definition,

Dµω = 0→ UDµωU
† = 0 , (B.2)

so working out this equation we find,

UDµωU
† = U∂µΩU † − igUAµU †UωU † + igUωU †UAµU †

= ∂µω
′ − (∂µU)ωU † − Uω(∂µU †)− ig(A′µ +

i
g
∂µUU

†)ω′ + igω′(A′µ +
i
g
∂µUU

†)

= D′µω
′ − ∂µUωU † − Uω∂µU † + ∂µUU

†(UωU †)− (UωU †)∂µUU †

= D′µω
′ , (B.3)

whereby we made use of equation (1.10) and the simple formula

UU † = 1 ⇒ ∂µUU
† + U∂µU

† = 0 . (B.4)

We have thus indeed proven that Dµ(A)ω = 0 is a gauge invariant equation.

2 σ decreases with increasing k2.

We shall prove that the following function

f(k,A) =
kµkν
k2

∫
ddq

(2π)2
f(q2)

1
(k − q)2

Pµν =
∫

d4q

(2π)2
f(q2)

1
(k − q)2

(
1− kµkν

k2

qµqν
q2

)
,

decreases with increasing k2. Let us prove this in 2 dimensions for simplicity. We assume
k = (kx, ky) to be oriented along the x axis. Using polar coordinates, we obtain

f(k,A) =
∫ ∞

0

dq
(2π)2

qf(q2)
∫ 2π

0
dθ

1− cos2 θ

k2 + q2 − kq cos θ

=
∫ ∞

0

dq
(2π)2

qf(q2)
(
θ(q2 − k2)

π

k2
+ θ(k2 − q2)

π

k2

)
, (B.5)
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whereby we have used the result (5.129) from section 4.2.2 in chapter 5. Now deriving f(k,A)
w.r.t. k2 and using the property of the θ function: ∂

∂xθ(x− y) = δ(x− y), we find

∂

∂k2
f(k,A) = −

∫ ∞
0

dq
(2π)2

qf(q2)θ(k2 − q2)
π

k4
= −θ(k)

π

k4

∫ k

0

dq
(2π)2

qf(q2) , (B.6)

and thus f(k,A) is a decreasing function for increasing k2.

3 Determinant of Kµν

We calculate the determinant of

Kab
µν(k) = δab

β 1
V

2
d

Ng2

N2 − 1︸ ︷︷ ︸
λ

δµν
1
k2

+ δµνk
2 +

(
1
α
− 1
)
kµkν

 . (B.7)

We can write (
detKab

µν(k)
)−1/2

= e−
1
2

ln detKab
µν = e−

1
2

Tr lnKab
µν . (B.8)

Therefore, we need to determine

Tr lnKab
µν = (N2 − 1)Tr ln

(
δµκ

(
λ

k2
+ k2

)(
δκν +

1
λ
k2 + k2

(
1
α
− 1
)
kκkν

))

= (N2 − 1)
[
Tr ln

(
δµν

(
λ

k2
+ k2

))
+ Tr ln

(
δµν +

k2

λ+ k4

(
1
α
− 1
)
kµkν

)]
= (N2 − 1)

[
d
∑
k

ln
k4 + λ

k2

+Tr

(
k2

λ+ k4

(
1
α
− 1
)
kµkν +

(
k2

λ+ k4

(
1
α
− 1
))2

kµkκkκkν

)]
, (B.9)

whereby we used ln(1+x) = x− x2

2 + . . .. We can now take the trace of the diagonal elements
of the second term, and again use x− x2

2 + . . . = ln(1 + x). We obtain,

Tr lnKab
µν = (N2 − 1)

[
d
∑
k

ln
k4 + λ

k2
+
∑
k

ln
(

1 +
k2

λ+ k4

(
1
α
− 1
)
k2

)]

= (N2 − 1)

[
d
∑
k

ln
k4 + λ

k2
−
∑
k

ln
k4 + λ

k2
+
∑
k

ln
(
λ

k2
+
k2

α

)]
. (B.10)

By working out the last term, we see that it is proportional to α,∑
k

ln
(
λ

k2
+
k2

α

)
=

∑
k

ln
(
k4

α
+ λ

)
−
∑
k

ln k2

= V

∫
ddk

(2π)d
ln
(
k2

√
α

+ i
√
λ

)
+ V

∫
ddk

(2π)d
ln
(
k2

√
α
− i
√
λ

)
∼ αd/4 , (B.11)
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whereby
∫

dqq ln q2 is zero in dimensional regularization. Therefore, in the limit α → 0,
becomes zero. In conclusion, we find(

detKab
µν(k)

)−1/2
= exp

[
(N2 − 1)

(d− 1)
2

V

∫
ddk

(2π)d
ln
k4 + λ

k2

]
= exp

[
(N2 − 1)

(d− 1)
2

V

∫
ddk

(2π)d
ln
(
k2 +

1
V

2
d

βNg2

N2 − 1
1
k2

)]
. (B.12)

4 Addendum chapter 4: The one loop effective potential

4.1 The 4d case

We explain in detail how we obtained equation (5.17). Starting from1

e−W
(0)(J) =

∫
[dΦ]e−S

0
RGZ , (B.13)

whereby S0
RGZ is the quadratic part of the action SRGZ, we can integrate out over all fields

so we obtain, ∫
[dΦ]e−S

0
RGZ = ed(N2−1)γ4

∫
[dA]e

− 1
2

∫ ddp

(2π)d
Aaµ∆ab

µνA
b
ν , (B.14)

whereby

∆ab
µν =

[(
p2 +m2 +

2g2Nγ4

p2 +M2

)
δµν + pµpν

(
1
α
− 1
)]

δab . (B.15)

Using equation (A.1), we find∫
[dΦ]e−S

0
RGZ = ed(N2−1)γ4

(
det ∆ab

µν

)−1/2
= ed(N2−1)γ4

e−
1
2

Tr ln ∆ab
µν , (B.16)

similar as in equation (B.8). We can now perform the same steps as in (B.8)-(B.12) finding,

1
2

Tr ln ∆ab
µν = (N2 − 1)

(d− 1)
2

Tr ln
(
p2 +m2 +

λ4

p2 +M2

)
.

= (N2 − 1)
(d− 1)

2
Tr
[
ln
[
(p2 +m2)(p2 +M2) + λ4

]
− ln(p2 +M2)

]
,

whereby we have used the notational shorthand (5.46). The second part is a standard integral
[5] and evaluated as:

Tr ln(p2 +M2) =
−Γ(−d/2)

(4π)d/2
1

(M2)−d/2
, (B.17)

with Γ the Euler Gamma-function. Using dimensional regularization, d = 4− ε we obtain,

−N
2 − 1
2

(d− 1)Tr ln(p2 +M2) = −3
N2 − 1
64π2

M4

(
−5

6
− 2
ε

+ ln
M2

µ2

)
. (B.18)

1Notice that W (0)(J) is in fact Zc(J) as defined in equation (2.11).
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We recall that we work in the MS scheme. Next, we try to convert the first part into the
standard form,

N2 − 1
2

(d− 1)Tr ln
(
(p2 +m2)(p2 +M2) + λ4

)
=
N2 − 1

2
(d− 1)Tr ln

(
p2 +m2

1

)
+ Tr ln

(
p2 +m2

2

)
=
N2 − 1

2
(d− 1)

[−Γ(−d/2)
(4π)d/2

1
(m2

1)−d/2
+
−Γ(−d/2)

(4π)d/2
1

(m2
2)−d/2

]
=3

N2 − 1
64π2

(
m4

1

(
−5

6
− 2
ε

+ ln
m2

1

µ2

)
+m4

2

(
−5

6
− 2
ε

+ ln
m2

2

µ2

))
+O(ε) , (B.19)

where m1 and m2 are given by

m2
1 =

(m2 + J)−
√

(J +m2)2 − 4(m2J + λ4)
2

,

m2
2 =

(m2 + J) +
√

(J +m2)2 − 4(m2J + λ4)
2

. (B.20)

We still have to calculate the first term of (B.16). From equation (3.243), we can calculate
that2

γ4
0 = Z2

γ2γ
4 , with Z2

γ2 = 1 +
3
2
g2N

16π2

1
ε
, (B.21)

so we find

−d(N2 − 1)γ4
0 = −4(N2 − 1)γ4 − 4

3
2

(N2 − 1)
g2N

16π2

1
ε
γ4 +

3
2
g2N

16π2
γ4(N2 − 1) .(B.22)

From equation (B.18), (B.19) and (B.22) we see that the infinities cancel out nicely, so that
the functional energy reads,

W (0)(J) = −4(N2 − 1)
2g2N

λ4 +
3(N2 − 1)

64π2

(
8
3
λ4 +m4

1 ln
m2

1

µ2 +m4
2 ln

m2
2

µ2 − J2 ln
J

µ2

)
,

which is exactly expression (5.17).

4.2 The 3d case

The 3d case can be calculated in a similar fashion as the 4d case. As expression (B.16) is still
general for all d, we have that

W (0)(J) = −d(N2 − 1)γ4 +
1
2

Tr ln ∆ab
µν , (B.23)

whereby

1
2

Tr ln ∆ab
µν = (N2 − 1)

(d− 1)
2

Tr
[
ln
[
(p2 +m2)(p2 +M2) + λ4

]
− ln(p2 +M2)

]
= (N2 − 1)

(d− 1)
2

Tr
[
ln
[
p2 +m2

1

]
+ ln

[
p2 +m2

1

]
− ln(p2 +M2)

]
,

2For the explicit loop calculations of the Z-factors, we refer to [172].
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whereby m1 and m2 are given by expression (B.20). By employing the standard formula
(B.17), we find

1
2

Tr ln ∆ab
µν =

N2 − 1
6π

(
−m3

1 −m3
2 + J3/2

)
, (B.24)

and thus

W (0)(J) = −3(N2 − 1)
λ4

2g2N
+
N2 − 1

6π

(
−m3

1 −m3
2 + J3/2

)
. (B.25)

5 Spectral density for one real mass and one vanishing mass

We start from

F (k2) =
∫

ddp
(2π)d

1
(k − p)2 +m2

1
p2
. (B.26)

For k2 > 0, we can employ the Feynman trick and differentiating w.r.t. k2, yields for d = 4

∂F (k2)
∂k2

= − 1
16π2

∫ 1

0
dx

x(1− x)
x(1− x)k2 + xm2

= − 1
16π2

∫ 1

0
dx

1
k2 + m2

1−x
. (B.27)

We perform a transformation of variables, by setting s = m2

1−x ,

∂F (k2)
∂k2

= − m2

16π2

∫ +∞

m2

ds
1
s2

1
k2 + s

= +
1

16π2

∫ +∞

m2

ds
d
ds

(
m2

s

)
1

k2 + s
. (B.28)

After doing a partial integration, we obtain

∂F (k2)
∂k2

=
1

16π2

[
1

k2 + s

m2

s

∣∣∣∣+∞
s=m2

−
∫ +∞

m2

ds
m2

s

d

ds

(
1

k2 + s

)]

=
−1

16π2

[
1

k2 +m2
+
∫ +∞

m2

ds
m2

s

−1
(k2 + s)2

]
=

−1
16π2

∂

∂k2

[
ln(k2 +m2) +

∫ +∞

m2

ds
m2

s

1
k2 + s

]
, (B.29)

so that

F (k2)− F (0) =
1

16π2

[
− ln(k2 +m2) + lnm2 −

∫ +∞

m2

ds
m2

s

1
k2 + s

+
∫ +∞

m2

ds
m2

s

1
s

]
=

1
16π2

[∫ +∞

m2

ds
1

k2 + s
−
∫ +∞

m2

ds
1
s
−
∫ +∞

m2

ds
m2

s

1
k2 + s

+
∫ +∞

m2

ds
m2

s

1
s

]
=

1
16π2

∫ +∞

m2

ds
[

1
k2 + s

− 1
s

](
1− m2

s

)
. (B.30)
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We conclude that the spectral density is given by

ρ1(s) = 1− m2

s
, (B.31)

which is indeed positive for s ≥ m2.

6 Calculating correlators

6.1 The correlator 〈O(1)
λη (x)O

(1)
λη (y)〉

We shall now try to calculate 〈O(1)
λη (k)O(1)

λη (−k)〉. Already at lowest order, this asks for some
algebra. We depart from

〈O(1)
λη (x)O(1)

λη (y)〉 = 〈λaµν(x)ηaµν(x)λbαβ(y)ηbαβ(y)〉 , (B.32)

or

〈O(1)
λη (x)O(1)

λη (y)〉 = 4 〈∂µλaν∂µηaν∂αλbβ∂αηbβ〉 − 4 〈∂µλaν∂µηaν∂αλbβ∂βηbα〉
− 4 〈∂µλaν∂νηaµ∂αλbβ∂αηbβ〉+ 4 〈∂µλaν∂νηaµ∂αλbβ∂βηbα〉 , (B.33)

at lowest order. It is understood that {µ, ν, a} refers to x and {α, β, b} to y. We shall now
pass to Fourier space, in which case we find

〈O(1)
λη (x)O(1)

λη (y)〉 = 4
∫

dkd`dpdqeipyeiqyeikxei`xkµ`µpαqα 〈λaν(k)ηaν(`)λbβ(p)ηbβ(q)〉

− 4
∫

dkd`dpdqeipyeiqyeikxei`xkµ`µpαqβ 〈λaν(k)ηaν(`)λbβ(p)ηbα(q)〉

− 4
∫

dkd`dpdqeipyeiqyeikxei`xkµ`νpαqα 〈λaν(k)ηaµ(`)λbβ(p)ηbβ(q)〉

+ 4
∫

dkd`dpdqeipyeiqyeikxei`xkµ`νpαqβ 〈λaν(k)ηaµ(`)λbβ(p)ηbα(q)〉 ,

so that we can now perform the contractions using Wick’s theorem. We did not write down
any factors of (2π)d. Each time we contract 2 fields, we will pick up a propagator, and we
have appropriately implemented momentum conservation, i.e.

〈λaµ(p)λbν(k) . . .〉 → Dµνδ
abδ(p+ k) , (B.34)

whereby we use the symbols Dµν , D†µν and D′µν for the 〈λµλν〉, 〈ηµην〉 and 〈λµην〉 propagator
Doing so, we can write down for example

〈λaν(k)ηaν(`)λbβ(p)ηbβ(q)〉 = δaaδbbD′νν(k)δ(k + `)D′ββ(p)δ(p+ q)

+ δabδabDνβ(k)δ(k + p)D†νβ(q)δ(`+ q) + δabδabD′νβ(k)δ(k + q)D′νβ(p)δ(`+ p) .
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In each case, we may drop the first term, as this gives rise to a disconnected contribution.
The other terms are given by

〈λaν(k)ηaν(`)λbβ(p)ηbα(q)〉 =δabδabDνβ(k)δ(k + p)D†να(q)δ(`+ q)

+ δabδabD′να(k)δ(k + q)D′νβ(p)δ(`+ p) ,

〈λaν(k)ηaµ(`)λbβ(p)ηbβ(q)〉 =δabδabDνβ(k)δ(k + p)D†µβ(q)δ(`+ q)

+ δabδabD′νβ(k)δ(k + q)D′µβ(p)δ(`+ p) ,

〈λaν(k)ηaµ(`)λbβ(p)ηbα(q)〉 =δabδabDνβ(k)δ(k + p)D†µα(q)δ(`+ q)

+ δabδabD′να(k)δ(k + q)D′µβ(p)δ(`+ p) .

Collecting all the terms, we find

〈O(1)
λη (x)O(1)

λη (y)〉 = 4(N2−1)
∫

dkdqei(k−q)(x−y)
[
kµqµkαqα

(
Dνβ(k)D†νβ(q) +D′νβ(k)D′νβ(q)

)
−2kµqµkαqβ

(
Dνβ(k)D†να(q) +D′νβ(k)D′να(q)

)
+kµqνkαqβ

(
Dνβ(k)D†µα(q) +D′νβ(k)D′µα(q)

)]
,

after some suitable renaming of Lorentz indices and momenta which allowed to recombine
several terms. By the substitution

p = k − q , (B.35)

we can rewrite (B.32) as a Fourier transform

〈O(1)
λη (x)O(1)

λη (y)〉 =
∫

ddp
(2π)d

eip(x−y) 〈O(1)
λη (p)O(1)

λη (−p)〉 , (B.36)

whereby

〈O(1)
λη (p)O(1)

λη (−p)〉 = 4(N2 − 1)
∫

ddk
(2π)d

[
kµ(k − p)µkα(k − p)α

(
Dνβ(k)D†νβ(k − p)

+D′νβ(k)D′νβ(k − p)
)
− 2kµ(k − p)µkα(k − p)β

(
Dνβ(k)D†να(k − p)

+D′νβ(k)D′να(k − p)
)

+ kµ(k − p)νkα(k − p)β
(
Dνβ(k)D†µα(k − p) +D′νβ(k)D′µα(k − p)

)]
.

We can simplify this expression to find

〈O(1)
λη (p)O(1)

λη (−p)〉 = 4(N2−1)
∫

ddk
(2π)d

[
(d− 1)k4 +

(
p2 − 2(d− 1)k · p

)
k2 + (d− 2)(k · p)2

(k2 − iλ2)((p− k)2 + iλ2)

]
.

(B.37)

6.2 The correlator 〈O(2)
λη (x)O

(2)
λη (y)〉

Let us now calculate 〈O(2)
λη (k)O(2)

λη (−k)〉. We depart from

〈O(2)
λη (x)O(2)

λη (y)〉 = εµνρσεαβγδ 〈λaµν(x)ηaρσ(x)λbαβ(y)ηbγδ(y)〉 , (B.38)
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or

〈O(2)
λη (x)O(2)

λη (y)〉 = 4εµνρσεαβγδ
[
〈∂µλaν∂ρηaσ∂αλbβ∂γηbδ〉 − 〈∂µλaν∂ρηaσ∂αλbβ∂δηbγ〉

− 〈∂µλaν∂σηaρ∂αλbβ∂γηbδ〉+ 〈∂µλaν∂σηaρ∂αλbβ∂δηbγ〉
]
, (B.39)

at lowest order. It is understood that {µ, ν, ρ, σ, a} refers to x and {α, β, γ, σ, b} to y. We
shall now pass to Fourier space, in which case we find

〈O(1)
λη (x)O(1)

λη (y)〉 = εµνρσεαβγδ

[
4
∫

dkd`dpdqeipyeiqyeikxei`xkµ`ρpαqγ 〈λaν(k)ηaσ(`)λbβ(p)ηbδ(q)〉

− 4
∫

dkd`dpdqeipyeiqyeikxei`xkµ`ρpαqδ 〈λaν(k)ηaσ(`)λbβ(p)ηbγ(q)〉

− 4
∫

dkd`dpdqeipyeiqyeikxei`xkµ`σpαqγ 〈λaν(k)ηaρ(ρ)λbβ(p)ηbδ(q)〉

+ 4
∫

dkd`dpdqeipyeiqyeikxei`xkµ`σpαqδ 〈λaν(k)ηaρ(`)λbβ(p)ηbγ(q)〉
]
,

so that we can now perform the contractions again,

〈λaν(k)ηaσ(`)λbβ(p)ηbδ(q)〉 =δaa(Dνβ(k)δ(k + p)D†σδ(q)δ(`+ q) +D′νδ(k)δ(k + q)D′σβ(p)δ(`+ p))

〈λaν(k)ηaσ(`)λbβ(p)ηbγ(q)〉 =δaa(Dνβ(k)δ(k + p)D†σγ(q)δ(`+ q) +D′νγ(k)δ(k + q)D′σβ(p)δ(`+ p))

〈λaν(k)ηaρ(ρ)λbβ(p)ηbδ(q)〉 =δaa(Dνβ(k)δ(k + p)D†ρδ(q)δ(`+ q) +D′νδ(k)δ(k + q)D′ρβ(p)δ(`+ p))

〈λaν(k)ηaρ(`)λbβ(p)ηbγ(q)〉 =δaa(Dνβ(k)δ(k + p)D†ργ(q)δ(`+ q) +D′νγ(k)δ(k + q)D′ρβ(p)δ(`+ p)) .

Collecting all the terms, we find

〈O(1)
λη (x)O(1)

λη (y)〉 = 4(N2 − 1)εµνρσεαβγδ

∫
dkdqei(k−q)(x−y)

[
kµqρkαqγDνβ(k)D†σδ(q)

+ kµqρqαkγD
′
νδ(k)D′σβ(q)− kµqρkαqδDνβ(k)D†σγ(q)− kµqρqαkδD′νγ(k)D′σβ(q)

− kµqσkαqγDνβ(k)D†ρδ(q)− kµqσqαkγD′νδ(k)D′ρβ(q) + kµqσkαqδDνβ(k)D†ργ(q)

+ kµqσqαkδD
′
νγ(k)D′ρβ(q)

]
.

By the substitution p = k − q we find

〈O(2)
λη (x)O(2)

λη (y)〉 =
∫

ddp
(2π)d

eip(x−y) 〈O(2)
λη (p)O(1)

λη (−p)〉 , (B.40)
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whereby

〈O(1)
λη (p)O(1)

λη (−p)〉 = 4(N2 − 1)εµνρσεαβγδ

∫
ddk

(2π)d[
kµ(k − p)ρkα(k − p)γDνβ(k)D†σδ(k − p) + kµ(k − p)ρ(k − p)αkγD′νδ(k)D′σβ(k − p)
− kµ(k − p)ρkα(k − p)δDνβ(k)D†σγ(k − p)− kµ(k − p)ρ(k − p)αkδD′νγ(k)D′σβ(k − p)
− kµ(k − p)σkα(k − p)γDνβ(k)D†ρδ(k − p)− kµ(k − p)σ(k − p)αkγD′νδ(k)D′ρβ(k − p)

+ kµ(k − p)σkα(k − p)δDνβ(k)D†ργ(k − p) + kµ(k − p)σ(k − p)αkδD′νγ(k)D′ρβ(k − p)
]

= 16(N2 − 1)εµνρσεαβγδ

∫
ddk

(2π)d
[
kµ(k − p)ρkα(k − p)γDνβ(k)D†σδ(k − p)

+ kµ(k − p)ρ(k − p)αkγD′νδ(k)D′σβ(k − p)
]
.

We can simplify this expression to find

〈O(2)
λη (p)O(2)

λη (−p)〉 = 32(N2 − 1)
∫

ddk
(2π)d

[
k2p2 − (kp)2

(k2 − iλ2)((p− k)2 + iλ2)

]
. (B.41)

265





C
Alternative proof of the renormalizability of the GZ

action

In this appendix, we shall write down an alternative proof of the renormalization of the
Gribov-Zwanziger action, useful for chapter 4. This proof shall be very similar to section 5
of chapter 3.

1 The starting action and the BRST

Looking at expression (3.209), we may also try to also start with another possible BRST
invariant action,

Σ(2)
GZ = SYM + Sgf + S0 + S(2)

s + Sext , (C.1)

whereby we have immediately added Sext still given by (3.213) and with

S(2)
s = s

∫
ddx

(
−Uaiµ ∂µϕai − U ′aiµ gfakbA

k
µϕ

b
i − V ai

µ ∂µω
a
i − V ′aiµ gfakbA

k
µω

b
i − U ′aiµ V ′aiµ

+T aiµ gfabcD
bd
µ c

dωci

)
=

∫
ddx

(
−Mai

µ ∂µϕ
a
i + Uaiµ ∂µω

a
i −M ′aiµ gfakbAkµϕ

b
i − gfabcU ′aiµ Dbd

µ c
dϕci

+U ′aiµ gfakbA
k
µω

b
i −Nai

µ ∂µω
a
i + V ai

µ ∂µϕ
a
i −N ′aiµ gfakbAkµω

bi − gfabcV ′aiµ Dbd
µ c

dωci

+V ′aiµ gfakbA
k
µϕ

b
i +Raiµ gf

abcDbd
µ c

dωci + T aiµ gfabcD
bd
µ c

dϕci

)
, (C.2)

whereby in contrast with section 5 of chapter 3 we have to treated gfakbAkµϕ
bc
ν and gfakbAkµϕ

bc
ν

as the relevant composite operators. We have now introduced 5 doublets, (Uaiµ , Mai
µ ), (U ′aiµ ,

M ′aiµ ), (V ai
µ , Nai

µ ), (V ′aiµ , N ′aiµ ) and (T aiµ , Raiµ ) with the following BRST transformations,

sUaiµ = Mai
µ , sMai

µ = 0 ,

sU ′aiµ = M ′aiµ , sM ′aiµ = 0 ,

sV ai
µ = Nai

µ , sNai
µ = 0 ,

sV ′aiµ = N ′aiµ , sN ′aiµ = 0 ,

sT aiµ = Raiµ , sRaiµ = 0 . (C.3)

In order to go back from S
(2)
s to Ss of equation (3.210), we just need to set U = U ′, V = V ′,

N = N ′ and M = M ′. Eventually, it appears natural to give the primed sources the same
physical value of their corresponding unprimed counterparts, see equation (3.212).
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2 The Ward identities

Just as in section 5 of chapter 3, we enlist all the Ward identities obeyed by Σ(2)
GZ, which of

course look very similar.

1. The Slavnov-Taylor identity is now given by

S(Σ(2)
GZ) = 0 , (C.4)

with

S(Σ(2)
GZ) =

∫
d4x
(δΣ(2)

GZ

δKa
µ

δΣ(2)
GZ

δAaµ
+
δΣ(2)

GZ

δLa
δΣ(2)

GZ

δca
+ ba

δΣ(2)
GZ

δca
+ ϕai

δΣ(2)
GZ

δωai
+ ωai

δΣ(2)
GZ

δϕai

+Raiµ
δΣ(2)

GZ

δT aiµ
+Mai

µ

δΣ(2)
GZ

δUaiµ
+Nai

µ

δΣ(2)
GZ

δV ai
µ

+M ′aiµ
δΣ(2)

GZ

δU ′aiµ
+N ′aiµ

δΣ(2)
GZ

δV ′aiµ

)
.

2. The U(f) invariance is easily adapted

UijΣ
(2)
GZ = 0 , (C.5)

Uij =
∫

ddx
(
ϕai

δ

δϕaj
−ϕaj

δ

δϕai
+ωai

δ

δωaj
−ωaj

δ

δωai
−Maj

µ

δ

δMai
µ

−M ′ajµ
δ

δM ′aiµ
−Uajµ

δ

δUaiµ

−U ′ajµ
δ

δU ′aiµ
+Nai

µ

δ

δNaj
µ

+N ′aiµ
δ

δN ′ajµ
+V ai

µ

δ

δV aj
µ

+V ′aiµ

δ

δV ′ajµ

+Rajµ
δ

δRaiµ
+T ajµ

δ

δT aiµ

)
.

We have again that the i-valued fields and sources turn out to possess an additional
quantum number. All the quantum number are still the same as in Table 3.1 and Table
3.2, whereby we keep in mind that the quantum numbers of the primed sources are
obviously the same as those of the unprimed ones.

3. The Landau gauge condition does not change,

δΣ(2)
GZ

δba
= ∂µA

a
µ . (C.6)

4. The same goes for the antighost equation,

δΣ(2)
GZ

δca
+ ∂µ

δΣ(2)
GZ

δKa
µ

= 0 . (C.7)

5. The linearly broken local constraints now become

δΣ(2)
GZ

δϕai
+ ∂µ

δΣ(2)
GZ

δMai
µ

+ ∂µ
δΣ(2)

GZ

δM ′aiµ
+ gfdbaT

di
µ

δΣ(2)
GZ

δKbi
µ

= gfabcAbµV
′ci
µ ,

δΣ(2)
GZ

δωai
+ ∂µ

δΣ(2)
GZ

δNai
µ

+ ∂µ
δΣ(2)

GZ

δN ′aiµ
− gfabcωbi δΣ

(2)
GZ

δbc
= gfabcAbµU

′ci
µ . (C.8)

We also find some extra linearly broken constraints

δΣ(2)
GZ

δMai
µ

= ∂µϕ
ai ,

δΣ(2)
GZ

δNai
µ

= ∂µω
ai ,

δΣ(2)
GZ

δUaiµ
= ∂µω

ai ,
δΣ(2)

GZ

δV ai
µ

= ∂µϕ
ai . (C.9)

268



3. THE COUNTERTERM

6. The exact Rij symmetry can be adapted to

RijΣ(2)
GZ = 0 , (C.10)

with

Rij =
∫

d4x
(
ϕai

δ

δωaj
−ωaj

δ

δϕai
+V ai

µ

δ

δNai
µ

+V ′aiµ

δ

δN ′ajµ
−Uajµ

δ

δMai
µ

−U ′aiµ
δ

δM ′aiµ
+T aiµ

δ

δRajµ

)
.

7. The integrated Ward identity is now linearly broken as follows∫
d4x

(
ca
δΣ(2)

GZ

δωai
+ ωai

δΣ(2)
GZ

δca
+ U ′aiµ

δΣ(2)
GZ

δKa
µ

)
= Uaiµ ∂µc

a − U ′aiµ ∂µc
a . (C.11)

3 The counterterm

We again translate all the identities into contraints for the counterterm Σ(2)c
GZ

1. The linearized Slavnov-Taylor identity:

B(2)Σ(2)c
GZ = 0 , (C.12)

with B(2) the nilpotent linearized Slavnov-Taylor operator,

B(2) =
∫

d4x
(δΣ(2)

GZ

δKa
µ

δ

δAaµ
+
δΣ(2)

GZ

δAaµ

δ

δKa
µ

+
δΣ(2)

GZ

δLa
δ

δca
+
δΣ(2)

GZ

δca
δ

δLa
+ ba

δ

δca

+ ϕai
δ

δωai
+ ωai

δ

δϕai
+Mai

µ

δ

δUaiµ
+Nai

µ

δ

δV ai
µ

+M ′aiµ
δ

δU ′aiµ
+N ′aiµ

δ

δV ′aiµ

+Raiµ
δ

δT aiµ

)
.

2. The U(f) invariance

UijΣ
(2)c
GZ = 0 . (C.13)

3. The Landau gauge condition

δΣ(2)c
GZ

δba
= 0 . (C.14)

4. The antighost equation

δΣ(2)c
GZ

δca
+ ∂µ

δΣ(2)c
GZ

δKa
µ

= 0 . (C.15)

5. The linearly broken local constraints(
δ

δϕai
+ ∂µ

δ

δMai
µ

+ ∂µ
δ

δM ′aiµ
+ gfabcT

bi
µ

δ

δKci
µ

)
Σ(2)c

GZ = 0 ,(
δ

δωai
+ ∂µ

δ

δNai
µ

+ +∂µ
δ

δN ′aiµ
− gfabcωbi

δ

δbc

)
Σ(2)c

GZ = 0 , (C.16)
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and

δΣ(2)c
GZ

δMai
µ

= 0 ,
δΣ(2)c

GZ

δNai
µ

= 0 ,
δΣ(2)c

GZ

δUaiµ
= 0 ,

δΣ(2)c
GZ

δV ai
µ

= 0 . (C.17)

6. The exact Rij symmetry

RijΣ(2)c
GZ = 0 . (C.18)

7. Finally, the integrated Ward identity becomes∫
d4x

(
ca
δΣ(2)c

GZ

δωai
+ ωai

δΣ(2)c
GZ

δca
+ U ′aiµ

δΣ(2)c
GZ

δKa
µ

)
= 0 . (C.19)

Now we can write down the most general counterterm Σ(2)c
GZ of d = 4, which obeys the

linearized Slavnov-Taylor identity, has ghost number zero, and vanishing Qf number,

Σ(2)c
GZ = a0SYM + B(2)

∫
ddx
{[
a1K

a
µA

a
µ + a2∂µc

aAaµ + a3L
aca + a4U

ai
µ ∂µϕ

a
i + a5V

ai
µ ∂µω

a
i

+ a6 ω
a
i ∂

2ϕai + a7U
ai
µ V

ai
µ + a8gf

abcUaiµ ϕbiA
c
µ + a9gf

abcV ai
µ ωbiA

c
µ + a10gf

abcωaiA
c
µ ∂µϕ

b
i

+ a11 gf
abcωai (∂µA

c
µ)ϕbi + b1R

ai
µ U

ai
µ + b2T

ai
µ M

ai
µ + b3gfabcR

ai
µ ω

b
iA

c
µ + b4gfabcT

ai
µ ϕ

b
iA

c
µ

+ b5R
ai
µ ∂ω

a
i + b6T

ai
µ ∂ϕ

a
i + a′4U

′ai
µ ∂µϕ

a
i + a′5 V

′ai
µ ∂µω

a
i + a′6ω

′a
i ∂

2ϕai + a′7 U
′ai
µ V ′aiµ

+ a′8 gf
abcU ′aiµ ϕbiA

c
µ + a′9 gf

abcV ′aiµ ωbiA
c
µ + a′10 gf

abcωaiA
c
µ ∂µϕ

b
i + a′11 gf

abcωai (∂µA
c
µ)ϕbi

]}
.

Notice that the part in a and b parameters is exactly the same as in section 5 of chapter 3,
see equation (3.235). We shall now impose all the constraints induced by the Ward identities.
We keep in mind that the argument concerning the broken ghost Ward identity still holds.
Also, the 4 constraints (C.17) invoke the counterterm to be independent of the sources U ′,
V ′, M ′ and N ′. Ultimately, we find

Σ(2)c
GZ = a0SYM+a1

∫
ddx

(
Aaµ

δSYM
δAaµ

+∂µca∂µca+Ka
µ∂µc

a+M ′aiµ ∂µϕ
a
i−U ′aiµ ∂µω

a
i +N ′aiµ ∂µω

a
i

+ V ′aiµ ∂µϕ
ai
µ + ∂µϕ

a
i ∂µϕ

a
i + ∂µω

a
i ∂µω

a
i + V ′aiµ M ′aiµ − U ′aiµ N ′aiµ − gfabcU ′iaµ ϕbi∂µc

c

− gfabcV ′iaµ ωbi∂µc
c − gfabc∂µωaϕbi∂µcc − gfabcRaiµ ∂µcbωc + gfabcT

ai
µ ∂µc

bϕc

)
.

Notice the close similarity between this counterterm and the one in expression (3.239).

4 The renormalization factors

The last step is to find all the renormalization factors. Due to the close similarity with the
output of section 5 of chapter 3, many Z factors will be the same. One can indeed check that
equations (3.240) and (3.241) still hold, and also the Z-factors of Z1/2

ϕ , Z1/2
ϕ , Z1/2

ω , Z1/2
ω , ZT
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and ZR do not change. Only the renormalization of the sources U , V , M , N is different as
they mix with respectively U ′, V ′, M ′, N ′. Indeed, we find that[

M0

M ′0

]
=

[
Z

1/2
g Z

1/4
A −a1

0 Z
−1/2
g Z

−1/4
A

] [
M
M ′

]
,

[
U0

U ′0

]
=

[
Z

1/2
A −a1

0 Z−1
g

][
U
U ′

]
,

[
N0

N ′0

]
=

[
Z1
g −a1

0 Z
−1/2
A

][
N
N ′

]
,

[
V0

V ′0

]
=

[
Z

1/2
g Z

1/4
A −a1

0 Z
−1/2
g Z

−1/4
A

] [
V
V ′

]
, (C.20)

which again proves the renormalizability of the Gribov-Zwanziger action. The consequences
of this mixing are explained in section 6 of chapter 4.
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D
The effective action and the gap equations

Let us first explain the idea behind the method before going into detailed calculations. With
m = 0, the tree level propagator (5.44) yields:

D(p2) =
p2 +M2

p4 +M2p2 + 2g2Nγ4
. (D.1)

Expanding the mass M2 as a series in g2, gives

M2 = M2
0 + g2M2

1 + g4M2
2 + . . . . (D.2)

We only need to consider M0, which is of order unity, as we are considering the tree level
propagator. We know that at the end of our calculations we have to set our sources equal to
zero, or J = M2 = 0. If we work at lowest order, this means we have to set M0 = 0 (and
the gluon propagator will not display the desired behavior). However, going one order higher
gives:

M2
0 + g2M2

1 = 0 . (D.3)

The last equation might imply that M2
0 is no longer equal to zero, and consequently, the tree

level gluon propagator will attain the desired form. Let us elaborate further on this aspect.

1 One loop effective potential

To implement the above-mentioned ideas, we shall first calculate the one loop energy func-
tional. We start with the action S′RGZ, whereby setting m = 0 is equivalent with putting
τ = 0. We replace the mass M2 again with the source J . Similar as has been done in the
appendix B4, we obtain

W (0)(J) = −4(N2 − 1)
2g2N

λ4 +
d(N2 − 1)
g2N

ς λ2M2 +
3(N2 − 1)

64π2

(
8
3
λ4 +m4

1 ln
m2

1

µ2

+m4
2 ln

m2
2

µ2 − J2 ln
J

µ2

)
, (D.4)

whereby m1 and m2 are now given by

m2
1 =

J −
√
J2 − 4λ4

2
, m2

2 =
J +
√
J2 − 4λ4

2
. (D.5)
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As we have determined the energy functional W (0)(J), we can now calculate the one loop
effective action via the Legendre transform of W (J). If we define

σ(x) =
δW (J)
δJ(x)

, σcl =
d(N2 − 1)
g2N

ς λ2 , (D.6)

then

σ̂(x) = σ(x)− σcl = −
∫

[dΦ] (ϕϕ− ωω) e−S
′
RGZ∫

[dΦ]e−S
′
RGZ

, (D.7)

represents the expectation value of the local composite operator, − (ϕϕ− ωω). The effective
action is given by

Γ(σ) = W (J)−
∫

d4x J(x)σ(x) , (D.8)

or equivalently, as we prefer to work in the variable σ̂,

Γ(σ̂) = W (J)−
∫

d4x J(x) (σ̂(x) + σcl) . (D.9)

Calculating Γ(σ̂) by explicitly doing the inversion is a rather cumbersome task. In most cases
one can perform a Hubbard-Stratonovich transformation to eliminate the term J (ϕϕ− ωω)
from the action and introduce a new field σ′ which couples linearly to J . This greatly simplifies
the calculation. However, in this case, it seems impossible to do such a transformation as a
required term in J2 is missing. Hence, there is no other option than to actually perform the
inversion. In order to calculate this inversion, we shall limit ourself to constant J and σ̂ as
we are mainly interested in the (space time) independent vacuum expectation value of the
operator − (ϕϕ− ωω) coupled to the source J . This vacuum expectation value is given by

σ̂|J=0 = −
∫

[dΦ] (ϕϕ− ωω) e−S∫
[dΦ]e−SGZ

, (D.10)

where SGZ represents the ordinary Gribov-Zwanziger action (3.204). As we already have
calculated W (J) up to one loop is it straightforward to verify that

σ̂ =
∂

∂J
W0(J)− σcl =

1
2

3(N2 − 1)
64π2

J

(
2 ln

t

4
+
(√

1− t+
1√

1− t

)
ln

1 +
√

1− t
1−
√

1− t

)
, (D.11)

whereby we shortened the notation by putting t = 4λ4/J2. From the previous expression we
find for the condensate

σ̂|J=0 = −3(N2 − 1)
64π

λ , (D.12)

which is obviously exactly the same result as (5.20).

We are now ready to compute the effective action up to one loop along the lines of [213].
The energy functional can be written as a series in the coupling constant g2,

W (J) = W0(J) + g2W1(J) + . . . =
∞∑
i=0

(g2)iWi(J). (D.13)
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As a consequence, looking at the definition (D.6), we can write

σ̂ = σ̂0(J) + g2σ̂1(J) + . . . =
∞∑
i=0

(g2)iσ̂i(J), (D.14)

where σ̂i(J) corresponds to the ith order in g2 (regarding J as of order unity). This is called
the original series. The inverted series is defined as

J = J0(σ̂) + g2J1(σ̂) + . . . =
∞∑
j=0

(g2)jJj(σ̂), (D.15)

with Jj(σ̂) the jth order coefficient. Substituting (D.15) into (D.14) gives,

σ̂ =
∞∑
i=0

(g2)iσ̂i

 ∞∑
j=0

(g2)jJj(σ̂)


= σ̂0(J0(σ̂)) + g2

(
σ̂′0(J0(σ̂)) · J1(σ̂) + σ̂1(J0(σ̂))

)
+ . . . . (D.16)

By regarding σ̂ as of the order unity and by comparing both sides of the last equation, one
finds

σ̂ = σ̂0 (J0(σ̂)) , (D.17)

J1(σ̂) = − σ̂1 (J0(σ̂))
σ̂′0 (J0(σ̂))

. (D.18)

...

For the moment, as we are working at lowest order, we only need equation (D.17). We can
invert this equation, so we find for J0(σ̂):

J0(σ̂) = σ̂−1
0 (σ̂) , (D.19)

meaning that we have to solve

σ̂ ≡ σ̂0(J0, λ) =

1
2

3(N2 − 1)
64π2

J0

(
2 ln

t(λ, J0)
4

+

(√
1− t(λ, J0) +

1√
1− t(λ, J0)

)
ln

1 +
√

1− t(λ, J0)
1−

√
1− t(λ, J0)

)
,

for J0, so we can write

J0 = f(σ̂, λ) . (D.20)

We immediately suspect that this inversion will not give rise to an analytical expression. Once
we have found f(σ̂, λ), we substitute this expression into the effective action,

Γ(σ̂, λ) = W (f(σ̂, λ), λ)− f(σ̂, λ)σ̂ . (D.21)

At this point, as we have found an expression for the one loop effective action, we can
implement two equations to fix σ̂ and λ. Firstly, the minimization condition reads

∂

∂σ̂
Γ(σ̂, λ) = 0 , (D.22)
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and secondly, the horizon condition (3.184) can be translated as

∂

∂λ
Γ(σ̂, λ) = 0 . (D.23)

We start with the first gap equation. Replacing Γ by equation (D.9) leads to

∂

∂σ̂
Γ(σ̂, λ) = 0 ⇒ ∂W

∂J

∂J

∂σ̂
− ∂J

∂σ̂
σ̂ − ∂J

∂σ̂
σcl − J = 0 ⇒ J = 0 ⇒ f(σ̂, λ) = 0 .

(D.24)

Since there are only 2 explicit scales, λ and σ̂, present, the first gap equation can be used
to express e.g. σ̂ in terms of λ. For the sake of a numerical computation, we can therefore
momentarily set λ = 1. From Figure D.1 one can obtain an estimate σ̂′ of f(σ̂′, 1) = 0, with
σ̂′ = 2

364π2 σ̂
N2−1

. Doing so, we find σ̂′ ≈ −6.28, so that

σ̂ ≈ −6.28×
(

3(N2 − 1)
128π2

)
λ , (D.25)

which of course corresponds to the already obtained perturbative solution (D.12).
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Figure D.1: A plot of f(σ̂′, 1) in terms of σ̂′ = 2
364π2 σ̂

N2−1

The second gap equation (D.23) must then consequently also give us back the perturbative
solution. To check this, we first calculate the perturbative result for λ by taking the limit
J → 0 in expression (D.4)

Γ0 = −2(N2 − 1)
g2N

λ4 +
3(N2 − 1)

64π2

(
8
3
λ4 − 2λ4 ln

λ2

µ2

)
. (D.26)

Next, we take the partial derivative with respect to λ which gives,

∂Γ0

∂λ
= 4λ3

(
−2(N2 − 1)

g2N
+

3(N2 − 1)
64π2

(
5
3
− 2 ln

λ2

µ2

))
. (D.27)

The natural choice for the renormalization constant is to set µ = λ to kill the logarithms.
Imposing the gap equation ∂Γ0

∂λ = 0 gives us,

g2N

16π2
=

8
5
. (D.28)
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2. CONCLUSION

We remark that we have neglected the solution γ = 0, as for γ = 0 the Gribov-Zwanziger
reduces to the Faddeev-Popov action see p.93. From

g2(µ2) =
1

β0 ln µ2

Λ2
MS

, with β0 =
11
3

N

16π2
, (D.29)

and expression (D.28) we find an estimate for λ:

λ4 = e44/15 , (D.30)

where we have worked in units ΛMS = 1. This perturbative solution is also in compliance with
[87]. Now, we return to the effective action (D.21). We first take the partial derivative with
respect to λ, afterwards we set N = 3, we explicitly replace g2 by expression (D.29) and we
use the minimizing condition (D.25). Numerically, we find the following value for λ4:

λ4 = 1.41 , (D.31)

as one can read off from Figure D.2. This is exactly the perturbative result (D.30).

1.35 1.40 1.45 1.50 1.55 1.60
Λ

4

-0.02

-0.01

0.01

d G � d Λ

Figure D.2: The horizon function ∂Γ
∂λ for N = 3.

If we calculate the vacuum energy with this value for λ, we find from (D.26),

Evac =
3
64
N2 − 1
π2

e44/15 . (D.32)

We notice that the vacuum energy is positive.

2 Conclusion

We can conclude at this point, that in the framework we have used, we recover only the
perturbative solution. Unfortunately, at lowest order, one finds J0 = 0 as explained in the
beginning of this section, so we were unable to find a dynamical value for M2 at first order.
However, if we would be able to go one order higher, with J0 +g2J1 = 0, we might find J0 6= 0
and consequently the gluon propagator at tree level would attain the desired form (D.1). In
addition, we might even discover a nonperturbative solution. Unfortunately, this is not as
straightforward as at leading order. The main difficulty resides in the evaluation of two loop
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vacuum bubbles for the effective potential with three different mass scales. Whilst the master
integrals are known, [214–216], the main complication is that the propagator of (3.97) with
m2 = 0 needs to be split into standard form but this introduces the masses of (D.5) which are
either complex or negative. In either scenario the master two loop vacuum bubble is known
for distinct positive masses and involves several dilogarithm functions. Therefore in our case
for even the simplest of mass choices the resulting dilogarithms will be complex as well as
being a complicated function of m2

1, m2
2 and λ. Moreover, this is prior to computing the full

effective potential itself by adding all the relevant combinations of master integrals together.
Therefore, it seems to us that whilst such a computation could be completed in principle,
currently the resulting huge expression could not possibly lend itself to a tractable analysis
similar to the relatively simple one we have carried out at one loop.

278



E
Propagators of the Refined GZ action

The propagators of the RGZ action can be calculated in a similar fashion as in section 1 of
chapter 4. We obtain the following propagators〈

ω̃
ab
µ (k)ω̃cdν (p)

〉
= δacδbdδµν

−1
p2 +M2

δ(p+ k)(2π)4 ,〈
c̃
a
(k)c̃b(p)

〉
= δab

1
p2
δ(p+ k)(2π)4 ,〈

Ãaµ(p)Ãbν(k)
〉

=
p2 +M2

p4 +M2p2 + λ4
Pµνδ

abδ(k + p)(2π)4 ,〈
Ãaµ(p)̃bb(k)

〉
= −i

pµ
p2
δabδ(p+ k)(2π)4 ,〈

ba(p)bb(k)
〉

= δab
λ4

p2(p2 +M2)
δ(p+ k)(2π)4 ,〈

Ãaµ(p)ϕ̃bcν (k)
〉

=
〈
Ãaµ(p)ϕ̃

bc
ν (k)

〉
= fabc

−gγ2

p4 +M2p2 + λ4
Pµν(p)(2π)4δ(p+ k) ,〈

b̃a(p)ϕ̃bcν (k)
〉

=
〈
b̃a(p)ϕ̃

bc
ν (k)

〉
= fabcipν

−gγ2

p2(p2 +M2)
(2π)4δ(p+ k) ,〈

ϕ̃abµ (p)ϕ̃
cd
ν (k)

〉
=

(
fabrf cdrPµν

g2γ4

(M2 + p2)(p4 +M2p2 + 2g2Nγ4)

+
−1

p2 +M2
δacδbdδµν

)
(2π)4δ(p+ k) ,〈

ϕ̃abµ (p)ϕ̃cdν (k)
〉

=
〈
ϕ̃
ab
µ (p)ϕ̃

cd
ν (k)

〉
= fabrf cdrPµν

g2γ4

(M2 + p2)(p4 +M2p2 + 2g2Nγ4)
×(2π)4δ(p+ k) , . (E.1)
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F
Renormalization of the further refined action

1 The starting action

Let us repeat the starting action (5.166),

ΣCGZ = Σ′GZ + ΣA2 + Sϕϕ + Sωω + Sϕϕ,ωϕ + Sϕϕ,ωϕ + Svac , (F.1)

whereby Σ′GZ is given by equation (3.216), ΣA2 by (5.7) and

Sϕϕ =
∫

d4xs(Pϕaiϕ
a
i ) =

∫
d4x [Qϕaiϕ

a
i − Pϕai ωai ] ,

Sωω =
∫

d4xs(V ωai ω
a
i ) =

∫
d4x [Wωai ω

a
i − V ϕai ωai ] ,

Sϕϕ,ωϕ =
1
2

∫
d4xs(Gijωaiϕ

a
j ) =

∫
d4x

[
H
ij
ωaiϕ

a
j +

1
2
G
ij
ϕaiϕ

a
j

]
,

Sϕϕ,ωϕ =
1
2

∫
d4xs(H ijϕaiϕ

a
j ) =

∫
d4x

[
1
2
Gijϕaiϕ

a
j −H ijωai ϕ

a
j

]
,

Svac =
∫

d4x
[
κ(GijGij − 2H ijH

ij) + λ(GiiGjj − 2H iiH
jj)
]

−
∫

d4x [α(QQ+QW ) + β(QW +WW ) + χQτ + δWτ ] . (F.2)

2 The Ward identities

With the help of section 5 of chapter 2, we can easily summarize all Ward identities obeyed
by the action ΣCGZ

1. The Slavnov-Taylor identity reads

S(ΣCGZ) = 0 , (F.3)

with

S(ΣCGZ) =
∫

d4x

(
δΣCGZ

δKa
µ

δΣCGZ

δAaµ
+
δΣCGZ

δLa
δΣCGZ

δca
+ ba

δΣCGZ

δca
+ ϕai

δΣCGZ

δωai

+ ωai
δΣCGZ

δϕai
+Mai

µ

δΣCGZ

δUaiµ
+Nai

µ

δΣCGZ

δV ai
µ

+Raiµ
δΣCGZ

δT aiµ
+Q

δΣCGZ

δP

+W
δΣCGZ

δV
+ τ

δΣCGZ

δη
+ 2H ij δΣCGZ

δG
ij

+Gij
δΣCGZ

δH ij

)
.
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2. For the U(f) invariance we now have

UijΣCGZ = 0 , (F.4)

whereby

Uij =
∫

d4x

(
ϕai

δ

δϕaj
− ϕaj

δ

δϕai
+ ωai

δ

δωaj
− ωaj

δ

δωai
−Maj

µ

δ

δMai
µ

− Uajµ
δ

δUaiµ
+Nai

µ

δ

δNaj
µ

+V ai
µ

δ

δV aj
µ

+Rajµ
δ

δRaiµ
+ T ajµ

δ

δT aiµ
+ 2Gki

δ

δG
kj
− 2Gkj

δ

δGki
+ 2Hki δ

δH
kj
− 2Hkj δ

δHki

)
.

By means of the diagonal operator Qf = Uii, the single i-valued fields and sources turn
out to possess an additional quantum number.

3. The Landau gauge condition and the antighost equation are given by

δΣCGZ

δba
= ∂µA

a
µ , (F.5)

δΣCGZ

δca
+ ∂µ

δΣCGZ

δKa
µ

= 0 . (F.6)

4. The linearly broken local constraints yield

δΣCGZ

δϕai
+ ∂µ

δΣCGZ

δMai
µ

+ gfdbaT
di
µ

δΣCGZ

δKbi
µ

= gfabcAbµV
ci
µ + . . . ,

δΣCGZ

δωai
+ ∂µ

δΣCGZ

δNai
µ

− gfabcωbi
δΣCGZ

δbc
= gfabcAbµU

ci
µ + . . . . (F.7)

whereby the . . . are extra linear breaking terms.

5. The exact Rij symmetry is broken

6. The integrated Ward Identity is broken

7. There is also a new identity:

δΣCGZ

δP
=

δΣCGZ

δV
. (F.8)

Aaµ ca ca ba ϕai ϕai ωai ωai Uaiµ Mai
µ Nai

µ V ai
µ

dimension 1 0 2 2 1 1 1 1 2 2 2 2
ghost number 0 1 −1 0 0 0 1 −1 −1 0 1 0
Qf -charge 0 0 0 0 1 −1 1 −1 −1 −1 1 1

Raiµ T aiµ Ka
µ La Q P W V τ η Gij G

ij
H ij H

ij

dimension 2 2 3 4 2 2 2 2 2 2 2 2 2 2
ghost number 0 −1 −1 −2 0 -1 0 -1 0 -1 0 0 -1 1
Qf -charge 1 1 0 0 0 0 0 0 0 0 -2 2 -2 2

Table F.1: Quantum numbers of the fields and sources.
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3 The counterterm

These identities (F.3)-(F.8) can be translated into constraints on the counterterm according
to the QAP. Unfortunately, many identities are broken due to the introduction of these d = 2
operators. However, we are using mass independent renormalization schemes and therefore,
the new massive sources (P , Q, V , W , Gij , Gij , H ij , H ij) cannot influence the counterterm
of the original GZ action (3.239). Therefore, the counterterm is given by

Σc
CGZ = Σc

GZ + Σc
A + Σc

P−H , (F.9)

with Σc
GZ given by equation (3.239), and Σc

A given by

Σc
A =

∫
d4x

(a2

2
τAaµA

a
µ +

a3

2
ζτ2 + (a2 − a1) ηAaµ∂µc

a
)
, (F.10)

as already determined in (5.10). Σc
P ...H is dependent of all the sources (P , Q, V , W , Gij , Gij ,

H ij , H ij), is of dimension 4, ghost number −1 and Qf = 0 and obeys the remaining Ward
identities. Due to the linearly broken constraints we find

∂Σc
P−H
∂ϕ

= 0 ,
∂Σc

P−H
∂ϕ

= 0 ,
∂Σc

P−H
∂ω

= 0 ,
∂Σc

P−H
∂ω

= 0 . (F.11)

Therefore,

Σc
P−H = BΣ

(
b1PA

a
µA

a
µ + b2V A

a
µA

a
µ + b3QP + b4QV + b5WP + b6WV + b7Pτ + b8V τ

+ b9Qη + b10Wη + c1H
ijG

ij + c2H
iiG

jj)
, (F.12)

whereby b1, . . ., c2 are arbitrary constants. By invoking the new identity

δΣc
P−H
δP

=
δΣc

P−H
δV

, (F.13)

we can write

Σc
P−H = b1[(Q+W )AaµA

a
µ + 2(P + V )∂µcaAaµ] + b3QQ+ b4QW + b6WW + b7Qτ + b8Wτ

+ c1(GijGij − 2H ijH
ij) + c2(GiiGjj − 2H iiH

jj) . (F.14)

Let us notice that due to the U(f) constraint, the term in c2 is only present when

GijG
qq + 2HppH

ij = GqqG
ij + 2H ijH

qq
, (F.15)

which is indeed the case due to hermiticity.

4 The renormalization factors

Let us now try to reabsorb this counterterm into the starting action (5.166). We shall split
this analysis into three parts, according to

Σc
A + Σc

P−H = Σc
I + Σc

II + Σc
III , (F.16)
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whereby

Σc
I = c1(GijGij − 2H ijH

ij) + c2(GiiGjj − 2H iiH
jj) ,

Σc
II = b1[(Q+W )AaµA

a
µ + 2(P + V )∂µcaAaµ] +

a2

2
τAaµA

a
µ + (a2 − a1) ηAaµ∂µc

a ,

Σc
III = b3QQ+ b4QW + b6WW + b7Qτ + b8Wτ +

a3

2
ζτ2 , (F.17)

are the three parts which we shall try to absorb separately.

Firstly, we start with the vacuum counterterm connected to the arbitrary parameters c1

and c2. If we redefine c1 and c2, we can write

Σc
I = c1κ(GijGij − 2H ijH

ij) + c2λ(GiiGjj − 2H iiH
jj) , (F.18)

and if we define

H
ij
0 = ZHH

ij
H ij

0 = ZHH
ij G

ij
0 = ZGG

ij
Gij0 = ZGG

ij
κ0 = Zκκ λ0 = Zλλ , (F.19)

we find for the renormalization factors of the new sources and the LCO parameters κ and λ:

ZH = Z
−1/2
ϕ Z

−1/2
ω ,

ZG = Z−1
ϕ ,

ZH = Z−1/2
ϕ Z−1/2

ω ,

ZG = Z−1
ϕ ,

Zκ = (1 + c1)Z−1
G
Z−1
G = (1 + c1)Z−1

H
Z−1
H ,

Zλ = (1 + c2)Z−1
G
Z−1
G = (1 + c2)Z−1

H
Z−1
H , (F.20)

and thus the part Σc
I can absorbed in the starting action.

Secondly, let us focus on Σc
II

Σc
II = b1[(Q+W )AaµA

a
µ + 2(P + V )∂µcaAaµ] +

a2

2
τAaµA

a
µ + (a2 − a1) ηAaµ∂µc

a . (F.21)

We propose the following mixing matrix: Q0

W0

τ0

 =

 ZQQ ZQW ZQτ
ZWQ ZWW ZWτ

ZτQ ZτW Zττ

 Q
W
τ

 . (F.22)

• From
Q0ϕ

a
i,0ϕ

a
i,0 = [ZQQQ+ ZQWW + ZQττ ]Zϕϕaiϕ

a
i = Qϕaiϕ

a
i , (F.23)

we find that ZQQ = Z−1
ϕ , while ZQW = ZQτ = 0.

• From
W0ω

a
i,0ω

a
i,0 = [ZWQQ+ ZWWW + ZWττ ]Zϕωai ω

a
i = Wϕaiϕ

a
i , (F.24)

we find that ZWW = Z−1
ϕ , while ZWQ = ZWτ = 0.
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• Finally, from

1
2
τ0A

a
µ,0A

a
µ,0 =

1
2

[ZτQQ+ ZτWW + Zτττ ]ZAAaµA
a
µ

=
1
2

(1 + a2) τAaµA
a
µ + b1QA

a
µA

a
µ + b1WAaµA

a
µ , (F.25)

we obtain Zττ = Zτ = (1 + a2)Z−1
A , and ZτQ = ZτW = 2b1.

In summary, we find the following matrix Q0

W0

τ0

 =

 Z−1
ϕ 0 0
0 Z−1

ϕ 0
ZτW ZτW Zττ

 Q
W
τ

 . (F.26)

Now that we have the mixing matrix at our disposal, we can pass to the corresponding bare
operators by taking the inverse of this matrix, Q

W
τ

 =

 Zϕ 0 0
0 Zϕ 0

−ZτWZϕ
Zττ

−ZτWZϕ
Zττ

1
Zττ

 Q0

W0

τ0

 . (F.27)

Subsequently, we can derive the corresponding mixing matrix for the operators, since inser-
tions of an operator correspond to derivatives w.r.t. to the appropriate source of the generating
functional Zc(Q,W, τ). In particular,

1
2
A2

0 =
δZc(Q,W, τ)

δτ0

∣∣∣∣
τ0=0

=
δQ

δτ0

δZc(Q,W, τ)
δQ

+
δW

δτ0

δZc(Q,W, τ)
δW

+
δτ

δτ0

δZc(Q,W, τ)
δτ

⇒ A2
0 =

1
Zττ

A2 , (F.28)

and similarly for ϕai,0ϕ
a
i,0 and ωai,0ω

a
i,0. We thus need to take the transpose of the previous

matrix,  ϕai,0ϕ
a
i,0

ωai,0ω
a
i,0

A2
0

 =

 Zϕ 0 −ZτWZϕ
Zττ

0 Zϕ −ZτWZϕ
Zττ

0 0 1
Zττ


 ϕaiϕ

a
i

ωai ω
a
i

A2

 . (F.29)

We can make some observations from this matrix. Firstly, we find that A2
0 does not contain

the operators ϕaiϕ
a
i and ωai ω

a
i . This is already a first check on our results as without these

two latter operators the GZ action including A2 is renormalizable as we have shown already
in section 1.3 of chapter 5. Secondly, we observe that

ϕai,0ϕ
a
i,0 − ωai,0ωai,0 = Zϕ(ϕaiϕ

a
i − ωai ωai ) , (F.30)

meaning that the mixing with A2 disappears again when recombining the two operators in a
certain way. In fact, this is the operator (ϕaiϕ

a
i −ωai ωai ) which we have investigated using the

RGZ action and no mixing with A2 appears for this operator.
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We can do a completely analogous reasoning for the part in ∂µcaAaµ. We first set V +P = X.
We propose (

X0

η0

)
=

(
ZXX ZXη
ZηX Zηη

)(
X
η

)
. (F.31)

• From

−(X0)[ϕai,0ω
a
i,0] = −[ZXXX + ZXηη]Z1/2

ϕ Z1/2
ω ϕai ω

a
i = −X[ϕai ω

a
i ]

we find that ZXX = Z
−1/2
ϕ Z

−1/2
ω , while ZXη = 0.

• Also, from

η0A
a
µ,0∂µc

a
0 = [ZηXX + Zηηη]Z1/2

A Z1/2
c Aaµ∂µc

a = (1 + a2 − a1) ηAaµ∂µc
a + 2b1XAaµ∂µc

a ,

we obtain Zηη = Zη = (1 + a2 − a1)Z−1/2
A Z

−1/2
c , and ZηX = 2b1.

Therefore, we find that(
ϕai,0ω

a
i,0

Aµ,0∂µc0

)
=

(
Z

1/2
A Z

1/2
c −2b1

0 Z−1
η

)(
ϕai ω

a
i

Aµ∂µc

)
. (F.32)

Again, we find Aµ,0∂µc0 does not contain ϕai,0ω
a
i,0, which is necessary as the GZ action with

the inclusion of A2 is renormalizable. We also see that, when setting V = −P , X = 0, the
mixing with A2 disappears again.

Thirdly, the vacuumterm Σc
III has the following form

b3QQ+ b4QW + b6WW + b7Qτ + b8Wτ +
a3

2
ζτ2 , (F.33)

we know that setting Q = −W has to return the vacuumterm from the RGZ action ∼
a4Qτ + a3

2 ζτ
2. Therefore, we may set

b3 − b4 + b6 = 0 . (F.34)

In this case, the vacuumterm reduces to

−c1α(QQ+QW )− c2β(QW +WW )− c3χQτ − c4δWτ +
a3

2
ζτ2 , (F.35)

where we have extracted α, β, χ and δ and some minus signs for convenience. If we allow
mixing between the different parameters,

α0

β0

χ0

δ0

ζ0

 =


Zαα Zαβ Zαχ Zαδ Zαζ
Zβα Zββ Zβχ Zβδ Zβζ
Zχα Zχβ Zχχ Zχδ Zχζ
Zδα Zδβ Zδχ Zδδ Zδζ
Zζα Zζβ Zζχ Zζδ Zζζ




α
β
χ
δ
ζ

 . (F.36)
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when absorbing the counterterm, we find for the mixing matrix


Zαα Zαβ Zαχ Zαδ Zαζ
Zβα Zββ Zβχ Zβδ Zβζ
Zχα Zχβ Zχχ Zχδ Zχζ
Zδα Zδβ Zδχ Zδδ Zδζ
Zζα Zζβ Zζχ Zζδ Zζζ

 =



1+c1
Z2
QQ

0 −ZχχZτW
ZQQ

0 Z2
τWZζζ
2Z2

QQ

0 1+c2
Z2
QQ

0 −ZδδZτW
ZQQ

Z2
τWZζζ
2Z2

QQ

0 0 1+c3
ZQQZττ

0 −ZτWZζζ
ZQQ

0 0 0 1+c4
ZQQZττ

−ZτWZζζ
ZQQ

0 0 0 0 1−a3
Z2
ττ


.

(F.37)
In summary, we have proven the action to be renormalizable.
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G
Details of the calculation of the effective action for

the further refined GZ action

1 Determination of the LCO parameters δζ, δα, δχ and δ%

We shall start from expression (5.170), determine the quadratic part, and integrate out all
the fields. The quadratic action is given by

Σquadr
CGZ =

∫
ddx

[
Aaµδ

ab

(
−δµν∂2 +

(
1− 1

α

)
∂µ∂ν

)
Abν + ϕ∂2ϕ− γ2gfabcA

a
µ(ϕbcµ + ϕbcµ )

]

+
∫

d4x

[
Qϕaiϕ

a
i +

1
2
τAaµA

a
µ −

1
2
ζτ2 − αQQ− χQτ

]
+
∫

d4x

[
1
2
Gϕaiϕ

a
i +

1
2
Gϕaiϕ

a
i + %GG

]
,

whereby we have immediately integrated out the ghost fields, c, c, ω, ω, as they are only ap-
pear trivially. We have also already integrated out the b-field whereby α is formally equal to
zero.

As a first step, we integrate out the ϕ ad ϕ fields. For this, we shall split ϕ, ϕ, G and
G into real components:

ϕai = Uai + iV a
i , ϕai = Uai − iV a

i ,

G = X + iY , G = X − iY , (G.1)

so the part depending on ϕ and ϕ in expression (G.1) becomes∫
ddx

(
Uai ∂

2Uai + V a
i ∂

2V a
i − 2γ2gfabcA

a
µU

bc
µ +QU2 +QV 2 +XU2 −XV 2

−2Y Uai V
a
i + %X2 + %Y 2

)
=

∫
ddx

(
1
2
[
Uabµ V ab

µ

] [2(∂2 +Q+X) −2Y
−2Y 2(∂2 +Q−X)

] [
Uabµ
V ab
µ

]
− 2γ2gfabcA

a
µU

bc
µ

)
.

Therefore, applying Gaussian integration, we find for the integration over ϕ and ϕ∫
[dϕ][dϕ] exp[−Σquadr

CGZ ]

= exp
[

1
2
λ4Akµ

(
∂2 +Q−X

∂4 + 2Q∂2 +Q2 −X2 − Y 2

)
Akµ + . . .

]
(detP abµν)−1/2 , (G.2)
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whereby we recall that λ is defined as λ4 = 2γ4g2N . P is given by

P ab,cdµν = δµνδ
abδcd

[
2(∂2 +Q+X) −2Y

−2Y 2(∂2 +Q−X)

]
, (G.3)

and the . . . stand for the other terms in Σquadr
CGZ , see (G.1), i.e. terms purely in A and the vacuum

terms. The second step is to integrate out the gluon field Aaµ. Combining the expression (G.2)
with the terms purely in A from the quadratic action, we obtain,

∫
[dA]e

[
− 1

2
Aaµδ

ab

(
−δµν∂2+(1− 1

α)∂µ∂ν−λ4

(
∂2+Q−X

∂4+2Q∂2+Q2−X2−Y 2

)
+τδµν

)
Abν

]

=
[
det
(
−δµν∂2 +

(
1− 1

α

)
∂µ∂ν − λ4

(
∂2 +Q−X

∂4 + 2Q∂2 +Q2 −X2 − Y 2

)
+ τδµν

)]−1/2

.

(G.4)

Therefore, the total effective action at one loop is given by

e−W (Q,τ,G,G) = (detP )−1/2
[
det
(
−δµν∂2 +

(
1− 1

α

)
∂µ∂ν

− λ4δµν

(
∂2 +Q−X

∂4 + 2Q∂2 +Q2 −X2 − Y 2

)
+ τδµν

)]−1/2
e[−

∫
d4x[− 1

2
ζτ2−αQQ−χQτ 1

2
+%GG]] .

(G.5)

In order to find δζ, δα, δχ and δ% at one loop, we need to find the first order infinities of the
previous expression. These shall be present in the two determinants which we need to evaluate.

Let us start with the first determinant of P . In general, we can write

(detP abµν)−1/2 = e−
1
2

Tr lnPab,cdµν = e−
1
2
d(N2−1)2Tr lnP . (G.6)

As we are taking the trace, we know that Tr lnP = Tr lnP ′ with P ′ the diagonalization of P .
Therefore, after diagonalization, we find

(detP ab,cdµν )−1/2

= exp
[
−1

2
d(N2 − 1)2Tr

(
ln(−∂2 −Q+

√
X2 + Y 2) + ln(−∂2 −Q−

√
X2 + Y 2)

)]
.

(G.7)

Employing the standard formula, [5]

Tr ln(−∂2 +M2) = −Γ(−d/2)
(4π)d/2

1
(M2)−d/2

, (G.8)

we obtain the following infinity

(detP )−1/2 = exp
[

1
ε

(N2 − 1)2

4π2

[
Q2 +X2 + Y 2

]
+ c1

]
, (G.9)
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whereby c1 is a constant term.

The second determinant requires a bit more effort to calculate. Let us call the corresponding
matrix K. We thus calculate

(detKab
µν)−1/2 = e−

1
2

(N2−1)Tr lnKµν , (G.10)

Therefore, we need to determine

Tr lnKµν = Tr ln
(
δµν

(
−∂2 − λ4

(
∂2 +Q−X

∂4 + 2Q∂2 +Q2 −X2 − Y 2

)
+ τ

))

+ Tr ln

δµν +
1(

−∂2 − λ4
(

∂2+Q−X
∂4+2Q∂2+Q2−X2−Y 2

)
+ τ
) (1− 1

α

)
∂µ∂ν

 . (G.11)

For the first term, we can easily take the trace over the Lorentz indices, while for the second
term, we need to use ln(1 + x) = x − x2

2 + . . ., then take the trace of the diagonal elements
of the second term, and again employ x − x2

2 + . . . = ln(1 + x). After these operations, we
obtain

Tr lnKµν = dTr ln
((
−∂2 − λ4

(
∂2 +Q−X

∂4 + 2Q∂2 +Q2 −X2 − Y 2

)
+ τ

))

+ Tr ln

1 +
1(

−∂2 − λ4
(

∂2+Q−X
∂4+2Q∂2+Q2−X2−Y 2

)
+ τ
) (1− 1

α

)
∂2

 ,

which can be written as

Tr lnKµν = (d− 1)Tr ln
((
−∂2 − λ4

(
∂2 +Q−X

∂4 + 2Q∂2 +Q2 −X2 − Y 2

)
+ τ

))
+ Tr ln

((
−∂2 − λ4

(
∂2 +Q−X

∂4 + 2Q∂2 +Q2 −X2 − Y 2

)
+ τ

)
+
(

1− 1
α

)
∂2

)
.

The first term of this expression can be written as1

(d− 1)
[
Tr ln

(
p6 + (τ − 2Q)p4 +

(
λ4 +Q2 −X2 − Y 2 − 2Qτ

)
p2 −Qλ4 +Xλ4 +Q2τ

−X2τ − Y 2τ
)
− Tr ln

(
p4 − 2Qp2 +Q2 −X2 − Y 2

)]
=(d− 1)

(
Tr ln(p2 − x1) + Tr ln(p2 − x2) + Tr ln(p2 − x3)− Tr ln(p2 − x4)− Tr ln(p2 − x5)

)
,

(G.12)

whereby x1, x2 and x3 are the solutions of the equation x3 + (τ − 2Q)x2 +
(
λ4 + Q2 −

X2 − Y 2 − 2Qτ
)
x − Qλ4 + Xλ4 + Q2τ − X2τ − Y 2τ = 0 and x4 and x5 of the equation

x2 − 2Qx + Q2 − X2 − Y 2 = 0. After determining x1, . . . , x5, we can apply the standard
formula (G.8) again, so we ultimately find for the first term

− 3
16π2

1
ε

(
τ2 − 2λ4

)
+ c2 , (G.13)

1We shall replace −∂2 by p2 from now on and work in momentum space.
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with c2 a constant, which is not our current interest. For the second term of (G.11), we
can perform an analogous analysis, whereby we find that this term is proportional to α
and therefore does not contribute to the determinant. Therefore, the second determinant
ultimately gives:

(detKab
µν)−1/2 = exp

[
(N2 − 1)

3
32π2

1
ε

(
τ2 − 2λ4

)
+ c2

]
. (G.14)

We can now combine both results (G.9) and (G.14) to find

W (Q, τ,G,G) = −(N2 − 1)
4π2

1
ε

(
3
8
τ2 + (N2 − 1)(Q2 +GG)− 3

4
λ4

)
+ c , (G.15)

with c a constant term. Therefore, at one loop we obtain

δζ = −1
ε

3
16π2

(N2 − 1) ,

δα = −1
ε

1
4π2

(N2 − 1)2 ,

δχ = 0 ,

δ% =
1
ε

1
4π2

(N2 − 1)2 . (G.16)

2 Calculation of the effective action

We can now proceed in a very similar fashion as in section 1. We find a few parts for the
effective potential. A first part, Γ(1)

a , is the equivalent of (detP )−1/2 in expression (G.5)

Γ(1)
a = (N2 − 1)2

[
−1
ε

1
4π2

(M4 + ρρ†) +
1

16π2

(
(M2 −

√
ρρ†)2 ln

M2 −
√
ρρ†

µ2

+(M2 +
√
ρρ†)2 ln

M2 +
√
ρρ†

µ2 − 2(M2 + ρρ†)

)]
. (G.17)

The second part, the equivalent of (detK)−1/2 is given by

Γ(1)
b =

3(N2 − 1)
64π2

[
−2
ε

(m4 − 2λ4)− 5
6

(m4 − 2λ4) + y2
1 ln

(−y1)
µ

+ y2
2 ln

(−y2)
µ

+ y2
3 ln

(−y3)
µ

− y2
4 ln

(−y4)
µ
− y2

5 ln
(−y5)
µ

]
, (G.18)

whereby y1, y2 and y3 are the solutions of the equation y3 + (m2 + 2M2)y2 +
(
λ4 + M4 −

ρρ†+ 2M2m2
)
y+M2λ4 + 1/2(ρ+ ρ†)λ4 +M4m2−m2ρρ† = 0 and y4 and y5 of the equation

y2 + 2M2y +M4 − ρρ† = 0.
The third part is the constant term of the GZ action,

Γ(1)
c = −dγ4

0(N2 − 1) . (G.19)
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From equation (3.243), we can calculate that2

γ4
0 = Z2

γ2γ
4 , with Z2

γ2 = 1 +
3
2
g2N

16π2

1
ε
, (G.20)

so we find

Γ(1)
c = −d(N2 − 1)γ4

0 = −4(N2 − 1)γ4 − 4
3
2

(N2 − 1)
g2N

16π2

1
ε
γ4 +

3
2
g2N

16π2
γ4(N2 − 1)

= −2(N2 − 1)
λ4

Ng2
− 6(N2 − 1)

λ4

32π2

1
ε

+
3
2
λ4

32π2
(N2 − 1) . (G.21)

The fourth part requires some calculation. We firstly find

1
4Z%Z2

G%

(
σ2

3

g2
+
σ2

4

g2

)
=

1
2

48(N2 − 1)2

53N

(
1− 53

6
1
ε

Ng2

16π2
−Ng2 53

24
%1

(N2 − 1)2

)
ρρ†

g2
, (G.22)

and secondly

α′

4α′ζ ′ − χ′2
σ2

1

g2
+

ζ ′

4α′ζ ′ − χ′2
σ2

2

g2
− χ′

4α′ζ ′ − χ′2
σ1σ2

g2

=
ζ0m

4

2g2
+
α0M

4

g2
+

1
ε

(
13Nζ0m

4

96π2
+
M4(N2 − 1)2

4π2

)
− ζ1m

4

2
−M4α1 +M2m2χ1 , (G.23)

so that

Γ(1)
d =

1
2

48(N2 − 1)2

53N

(
1− 53

6
1
ε

Ng2

16π2
−Ng2 53

24
%1

(N2 − 1)2

)
ρρ†

g2
+
ζ0m

4

2g2
+
α0M

4

g2

+
1
ε

(
13Nζ0m

4

96π2
+
M4(N2 − 1)2

4π2

)
− ζ1m

4

2
−M4α1 +M2m2χ1 . (G.24)

As a check on our results, we see that all the infinities cancel, so we find

Γ(1) =
(N2 − 1)2

16π2

[
(M2 −

√
ρρ†)2 ln

M2 −
√
ρρ†

µ2 + (M2 +
√
ρρ†)2 ln

M2 +
√
ρρ†

µ2

− 2(M2 + ρρ†)
]

+
3(N2 − 1)

64π2

[
−5

6
(m4 − 2λ4) + y2

1 ln
(−y1)
µ

+ y2
2 ln

(−y2)
µ

+ y2
3 ln

(−y3)
µ

− y2
4 ln

(−y4)
µ
− y2

5 ln
(−y5)
µ

]
− 2(N2 − 1)

λ4

Ng2
+

3
2
λ4

32π2
(N2 − 1)

+
1
2

48(N2 − 1)2

53N

(
1−Ng2 53

24
%1

(N2 − 1)2

)
ρρ†

g2

+
9
13
N2 − 1
N

m4

2g2
− 24

35
(N2 − 1)2

N

M4

g2
− 161

52
N2 − 1
16π2

m4

2
−M4α1 +M2m2χ1 . (G.25)

2For the explicit loop calculations of the Z-factors, we refer to [172].
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FOR THE FURTHER REFINED GZ ACTION

3 The minimum of the effective action

We shall start from expression (5.226) and derive w.r.t. M2, m2 and λ4. As we would like to
know if M2 = 0 can be a minimum of the potential, we further set M2 = 0. We then obtain
the following equations

3
(

ln
(
m2 −

√
m4 − 4λ4

)
− ln

(
m2 +

√
m4 − 4λ4

))
λ4

4π2
√
m4 − 4λ4

+m2χ1 −
8
π2

= 0 ,

1√
m4 − 4λ4

[
11
√
m4 − 4λ4(24 ln 2− 17)m2

+ 39
(
−m4 +

√
m4 − 4λ4m2 + 2λ4

)
ln
(

1
8

(
m2 −

√
m4 − 4λ4

))
+ 39

(
m4 +

√
m4 − 4λ4m2 − 2λ4

)
ln
(

1
8

(
m2 +

√
m4 − 4λ4

))]
= 0 ,

λ2

√
m4 − 4λ4

[
9
(√

m4 − 4λ4 −m2
)

ln
(

1
8

(
m2 −

√
m4 − 4λ4

))
+ 9

(
m2 +

√
m4 − 4λ4

)
× ln

(
1
8

(
m2 +

√
m4 − 4λ4

))
+
√
m4 − 4λ4(−15 + 176 ln 2)

]
= 0 (G.26)

whereby we have chosen to set3 µ = 2ΛMS and N = 3. Now looking at the equation, we
see that the second and third equation can be solved exactly for m2 and λ. There are even
multiple solutions possible. We take the solution which has the lowest value for the effective
action with M2 = 0. However, for this solution to be a solution of the first equation, these
values should be very specific and the chance that they will also satisfy the first equation is
practically non-existent, with a certain value of χ1. Moreover, at a different scale µ, the three
equations will look slightly different. However, χ1 is a number and stays the same. Therefore,
it would be necessary at all different scales that these three equations can be solved exactly
for only two parameters. This is practically impossible, leading to the conclusion that almost
certainly, M2 6= 0. Said otherwise, it is apparent that the GZ theory dynamically converts
itself into a RGZ-like theory. We plan to work this out into future detail in ongoing research.

3We work in units ΛMS = 1.
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[207] F. Ynduráin, Padé Approximants, ch. The moment problem and applications. The
Institute of Physics, London and Bristol.

[208] J. A. Shohat and J. D. Tamarkin, The Problem of Moments. the American
Mathematical Society, 1970.

[209] V. Crede and C. A. Meyer, “The Experimental Status of Glueballs,” Prog. Part. Nucl.
Phys. 63 (2009) 74–116, arXiv:0812.0600 [hep-ex].

[210] S. Narison, “Masses, decays and mixings of gluonia in QCD,” Nucl. Phys. B509
(1998) 312–356, arXiv:hep-ph/9612457.

[211] T. Schafer and E. V. Shuryak, “Glueballs and instantons,” Phys.Rev.Lett. 75 (1995)
1707–1710, arXiv:hep-ph/9410372 [hep-ph].

[212] M. Blank, A. Krassnigg, and A. Maas, “Rho-meson, Bethe-Salpeter equation, and the
far infrared,” Phys.Rev. D83 (2011) 034020, arXiv:1007.3901 [hep-ph].

307



BIBLIOGRAPHY

[213] S. Yokojima, “Effective action of a local composite operator,” Phys. Rev. D51 (1995)
2996–3008.

[214] J. van der Bij and M. J. G. Veltman, “Two Loop Large Higgs Mass Correction to the
rho Parameter,” Nucl. Phys. B231 (1984) 205.

[215] C. Ford, I. Jack, and D. R. T. Jones, “The Standard Model Effective Potential at Two
Loops,” Nucl. Phys. B387 (1992) 373–390, arXiv:hep-ph/0111190.

[216] A. I. Davydychev and J. B. Tausk, “Two loop selfenergy diagrams with different
masses and the momentum expansion,” Nucl. Phys. B397 (1993) 123–142.

308


