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doctoraat kan afleveren met toch een aantal mooie resultaten heb ik dan ook voor een heel groot
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Chapter 1

General introduction

1.1 Study genomics to explain life

Biological scientists are intrigued by life. They want to understand the things that make life

possible. They want to learn about the mechanisms that enable living organisms to reproduce

and maintain themselves, but also how they behave, how they become diseased and can be

cured again. Much of the information they are looking for can be found in the genome. This

is the entirety of hereditary, and by extension, biological information possessed by any living

organism. Hence, it comes as no surprise that genomics, which is the branch of molecular

biology that studies genomes, has become a very important and widely researched scientific

discipline. Broadly, the genetic information contained in an organism’s cell or tissue acts at

three different levels. These levels correspond with the three main macromolecules that are

considered essential for all known forms of life, i.e. (1) deoxyribonucleic acid (DNA), (2)

ribonucleic acid (RNA), and (3) proteins. The central dogma of molecular biology, first put

forward by Francis Crick (Crick, 1958, 1970), describes the transfer of the genome’s sequential

information between these macromolecules (see Figure 1.1). For eukaryotic organisms, which

are higher organisms such as humans that possess a nucleus in their cells, the general transfers

consist of (1) DNA replication, (2) transcription of DNA to RNA, and (3) translation of RNA

to proteins. Transcription is also known as DNA expression or gene expression and takes place

inside the cell nucleus, while translation occurs outside of the nucleus in the cell cytoplasm.

Genomics research can be divided into several subdisciplines according to these three different

1



2 Chapter 1. General introduction

Figure 1.1: Central dogma of molecular biology (adapted from www.exploringnature.org)

levels of genetic information. At the level of DNA, one is mainly concerned with elucidating

the sequence of the four nucleotides adenine (A), cytosine (C), thymine (T) and guanine (G).

These are the building blocks of the DNA molecules giving rise to their primary structure. This

task is called DNA sequencing. If detecting sequence variation with respect to some reference

sequence or between alleles within an individual is of interest, one also often speaks about

genotyping. This branch of genomics is referred to in this dissertation as DNA genomics. In

literature, however, the term genomics is often used in a narrow sense as well when only ge-

nomics at the DNA level is involved, as opposed to the RNA and protein level. DNA genomics

not only considers the elucidation of the sequence itself. A popular area of research that stud-

ies epigenetic modifications of the DNA is called epigenomics. These DNA modifications do

not influence the primary DNA sequence itself, but still play a role in the regulation of gene

expression. Main topics in epigenomics are the study of DNA methylation and histone modifi-

cation. The subdisciplines of genomics at the second and third level of the genome’s sequential

information are transcriptomics, at the level of RNA, and proteomics, at the level of proteins.

Both the transcriptome, which is the entire set of RNA transcripts or expressed DNA products,

www.exploringnature.org
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and the proteome, which is the entire set of expressed proteins, are very dynamic. Within an or-

ganism, they can vary considerably between cells, tissues, developmental stages, points in time

or environmental conditions. This is in contrast to the DNA genome, which is a more static

phenomenon.

1.2 High-throughput genomics

A number of major technological advances in the last 15 years have led to a tremendous revo-

lution in genomics research and the emergence of the high-throughput genomics era. The two

most widespread and influential inventions are DNA microarrays and high-throughput DNA se-

quencing. The latter is also frequently called next-generation sequencing (NGS). While DNA

microarrays are already commonly used from the end of the previous century, the first use of

the NGS technology dates back to around 2005. Both new technologies enable the simulta-

neous interrogation of an increasing amount of cellular products such as genes or transcripts.

They primarily play a role at the level of DNA (DNA genomics - epigenomics) and RNA (tran-

scriptomics). At the level of proteins the most important technology is high-throughput mass

spectrometry. However, proteomics is not discussed further here.

DNA microarrays and NGS are the two technologies for which statistical methods are devel-

oped in this dissertation. Roughly speaking, the common applications of both technologies in

genomics research are rather similar. The most obvious exception to this statement is high-

throughput DNA sequencing, which is always conducted with NGS technologies, while this

can not be addressed with DNA microarrays. Table 1.1 gives an overview of the most common

uses for these two technologies.

1.3 Statistical challenges in high-throughput genomics

High-throughput genomics technologies provide the opportunity for biological and biomedi-

cal research to make more rapid advancements than was possible before. However, drawing

meaningful information from the massive amount of data that are produced often presents a

huge bottleneck. When extracting knowledge from high-throughput genomics data, statistical

methods are needed in order to quantify the uncertainties inherent to the various sources of vari-
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ability contained in the data. Statistical challenges are encountered in every single step of the

data-analytic process, often called pipeline.

Table 1.1: Overview of the most common uses of DNA microarrays and NGS platforms in genomics

research.

Analysis type DNA microarrays NGS platforms

DNA sequence high-throughput DNA

sequencing

DNA sequence variation: single nu-

cleotide polymorphism (SNP). A SNP is

a variation in the DNA sequence of one

nucleotide by another nucleotide.

SNP arrays for the de-

tection of SNPs

SNP calling after high-

throughput DNA se-

quencing

DNA sequence variation: copy number

variation (CNV). A CNV is a form of

structural variation where relatively large

regions in the genome (10000 to sev-

eral millions of nucleotides) are deleted

or duplicated with respect to a reference

genome.

comparative genomic

hybridization of CNVs,

SNP arrays

CNV-seq

transcription messenger RNA

(mRNA) analysis or

gene expression profil-

ing using microarrays

RNA-seq

protein-DNA interaction by means of

chromatin immunoprecipitation (ChIP)

ChIP-on-chip ChIP-seq

DNA methylation Multiple array-based

approaches, e.g.

array-based bisulphite

methylation profiling

Multiple sequencing-

based approaches, e.g.

bisulphite sequencing
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At the upstream part of the pipeline, close to the technology, statistical methods generally focus

on preprocessing the raw measurements. These are meant to act as a proxy for the real quantity

of interest, but usually contain a great deal of noise. A typical example is measured light

intensity which is a proxy for RNA concentration in gene expression microarrays. Furthermore,

there is often also undesired variability at play when experiments are repeated. Hence, low-

level statistical methods are needed to efficiently remove all this obscuring variability while

retaining as much useful biological information in the data as possible. As a consequence of

being situated upstream in the pipeline, these methods are typically more platform-specific, as

they depend on the distinctive nature of the raw data generated by the different high-throughput

platforms. In contrast, the statistical methods at the downstream end of the pipeline, which make

use of these preprocessed data, are often largely driven by the specific application. Therefore,

they are usually less platform-dependent.

As there exist a plethora of possible applications in genomics, the spectrum of statistical meth-

ods is very diverse. Nevertheless, many of the challenges are recurrent, because they are related

to typical properties of genomic data. In each of the applications discussed in this dissertation

we have to deal with one or more of these challenges. A first typical problem is the high-

dimensionality of the data statistical models have to cope with. High-throughput genomics

technologies are developing at a tremendous speed. While genomics platforms continuously

become cheaper, the size of the associated data sets only increases. This poses the challenge of

developing statistical methods that are sufficiently fast and computationally efficient in order to

deal with these large data sets.

The high-dimensional data sets are often combined with small sample sizes, e.g. microarrays

that measure the expression of thousands of genes for a small number of patients. Furthermore,

genomic data are also regularly characterized by special structures that have to be taken into

account, e.g. local dependencies between the expression of different exons of the same gene.

Traditional multivariate models therefore appear to be inappropriate in many cases. Another

recurring concern is that statistical inference of some hypothesized biological statement, e.g.

the mean expression of a gene is not differentially expressed between two treatment groups, is

formulated for many genomic features simultaneously. This may pose specific multiple testing

problems.

The different steps in the analysis pipeline of high-throughput genomic data are commonly
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conducted consecutively. The raw data are first preprocessed and then used as input in the

downstream analysis method. In many cases, the errors generated by the preprocessing model

are not taken into account later on in the analysis. An essential merit of statistical models is

their ability to quantify the uncertainties associated with their fit to the data. This quantification

often contains valuable information that may be used in further analysis steps to achieve more

accurate results, see e.g. Liu et al. (2006); Rattray et al. (2006) for examples in a microarray

context. In the ideal situation this is accomplished by integrating preprocessing and downstream

analysis tasks in a unified model that would simultaneously account for all sources of random

variation, e.g. Wu and Irizarry (2007). Because this is not always feasible in practice, a more

modular approach is often taken. In any case, allowing proper uncertainty quantification when

developing statistical methods for high-throughput genomics is an important challenge.

1.4 General objectives and outline of the thesis

In this dissertation we focus on different applications for two important technologies in high-

throughput genomics: DNA microarrays and NGS sequencing. Although some of the chal-

lenges we face may be rather application-specific, there are some general objectives that are

envisaged throughout the whole thesis. A shared objective is that the proposed methods should

allow the use of as much raw information as possible. In this way we try to reduce prior prepro-

cessing of raw data to a large extent. Moreover, we also aim to design methods that allow proper

error propagation through the whole data analysis pipeline. It is furthermore of paramount im-

portance to develop fast and computationally efficient algorithms to accompany the proposed

statistical methods. Finally, researchers in genomics and biomedical sciences can only bene-

fit from novel statistical applications in their fields to the full extent if they are provided with a

user-friendly software implementation. A new statistical method can only be properly valorized

if it is widely available and easily applied by the scientific community.

The dissertation consists of two parts that focus on applications for the two different tech-

nologies. In Part I a statistical methodology is proposed for transcriptome analysis with tiling

microarrays, designed to detect regions of RNA expression along the genome. Part II discusses

two statistical problems for DNA sequence analysis with the Roche/454 system, which is one of

the major NGS platforms. The first problem is situated at the upstream end of the data analysis
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pipeline. It concerns the correct elucidation of the DNA sequence, referred to as base-calling,

based on the light intensity data measured by the Roche/454 sequencer. The second problem is

a downstream application for the same platform. It is related to the detection of DNA sequence

variation in homopolymeric regions. For both parts the particular data-generating technology is

explained in an introductory chapter. These separate introductions present data sets that moti-

vate the research and they thoroughly describe the background and problem setting. Finally, an

overview of the specific objectives and a detailed outline for the respective parts finishes these

chapters.

A large part of the contents of this dissertation has been published in the scientific literature.

The method described in Chapter 3 has been published in Statistical Applications in Genetics

and Molecular Biology (Clement et al., 2012). My contribution to this article was mainly on the

simulation study, the data analysis of the case study, and the comparison with existing methods.

The contents of Chapters 4 and 5 are published in BMC Bioinformatics (De Beuf et al., 2012b).

For this article I developed the method, implemented it as a software package, conducted the

case studies and statistical analyses and wrote the manuscript. The base-calling method for

454 data (Chapter 8) was also published in BMC Bioinformatics (De Beuf et al., 2012a). I con-

tributed to the development and implementation of the statistical method, conducted all analyses

and wrote the manuscript. A manuscript about the variant detection method, which is the topic

of Chapter 9, is currently in preparation. I contributed to the development and implementation

of this method, conducted the case study and empirically evaluated the method’s performance

in a simulation study.
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Chapter 2

Introduction to Part I: Statistical methods

for transcriptome analysis with tiling

array data

This chapter gives an introduction to the first part of this dissertation, in which we present and

discuss a statistical method for transcriptome analysis with tiling microarray data. Section 2.1

briefly introduces the microarray and tiling array technologies. The data set that initialized and

motivated the research is presented in Section 2.2, while Section 2.3 describes popular methods

in tiling array data analysis. Section 2.4 introduces the reader to wavelets and wavelet-based

scatterplot smoothing. We will build upon these concepts in the development of the proposed

methods. Finally, the objectives and outline for this part of the dissertation are given in Section

2.5.

2.1 Tiling array technology

In this section, we first describe the classical microarray technology. Next, we focus more

specifically on tiling arrays.

Microarrays (Fodor et al., 1991; Schena et al., 1998) allow for the quantitative measurement of

thousands of biochemical reactions in parallel. The most common uses of microarrays are the

detection of genomic mutations, the elucidation of DNA-protein interactions, and the analysis

13
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of RNA levels or gene expression in the cell. Within microarrays for expression profiling the

main types are spotted microarrays and oligonucleotide arrays. We will focus on the latter kind.

Detailed information on spotted microarrays is provided in e.g. Eisen and Brown (1999).

The most widespread oligonucleotide microarray platform is the GeneChip R© from Affymetrix.

Oligonucleotide probes, matching specific locations in the DNA sequence, are synthesized and

linked to a particular position on the chip (see Figure 2.1 (A)) using a photolithographic pro-

cedure (e.g. Pease et al., 1994). In a microarray experiment, RNA is first extracted from an or-

ganism’s tissue or cell. It is then reverse transcribed into double-stranded complementary DNA

(cDNA). Next, fluorescently labeled cRNA is produced from cDNA and fragmented. This bio-

logical sample is then hybridized to the probes on the chip (see Figure 2.1 (B)). In this process

a chemical interaction by means of hydrogen bonds is established between complementary nu-

cleotides (A with T and G with C). Finally, the amount of hybridized cRNA (see Figure 2.1 (C))

is measured by imaging the chip in a scanner and recording the amount of excited fluorescence

signal for each spatial probe location.

Probes on the GeneChip R© are 25 nucleotides in length (see Figure 2.1 (A)) and appear in pairs,

also called 25-mer pairs. Each perfect match (PM) probe is perfectly complementary to a par-

ticular sequence of the genome of interest, while the corresponding mismatch (MM) probe is

identical to the PM probe, except for the middle (13th) nucleotide. MM probes were designed

for the quantification of non-specific binding, but are currently omitted from the array. Typi-

cally, a collection of 11 to 20 probes interrogate the same gene. This is referred to as a probeset.

There are usually between 11000 and 42000 genes analyzed by a single chip (Lipshutz et al.,

1999). Since the probes on the chip have to be designed in advance, it is imperative that the

DNA sequence of the studied organism is known. Furthermore, probes of classical oligonu-

cleotide microarrays only match to genes that are already annotated. These genes have a known

begin and end position along the genome and biological information is often available about

them.

In the last decade the genomes of many organisms have been entirely sequenced. Until recently,

the traditional view was that only genes encoded for proteins or structural RNAs, and that

besides the regulatory promoters upstream these genes, the rest of the genome was considered

junk DNA or dark matter (Mockler and Ecker, 2005; Johnson et al., 2005). Multiple studies (e.g.

Saha et al., 2002; Sémon and Duret, 2004), however, indicated that a much larger proportion
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Figure 2.1: Principle of GeneChip R© microarray. (A) Synthesis of the array; (B) Hybridization; (C)

Excitation. Adapted from www.affymetrix.com.

of the genome has the potential to be actively transcribed than was expected based on current

annotation. Their evidence was based on more traditional methods like cDNA sequencing (Saha

et al., 2002) or a special type of serial analysis of gene expression (SAGE) (Sémon and Duret,

2004). However, a more detailed description of the complete set of RNA transcripts, referred to

as the transcriptome, was needed to enhance the knowledge of an organism’s functioning and

the regulation of its transcriptional networks.

Genome-wide oligonucleotide-based tiling arrays are an extension of classical microarrays in

the sense that they interrogate the whole genome including exonic, intronic and intergenic re-

gions. The probes map to genomic regions - or form tiles - that either overlap, lay end-to-end,

or are spaced at a more or less equal distance along the genomic coordinate (see Figure 2.2).

The average number of nucleotides between the centers of two neighboring probes is called the

resolution of the tiling (Royce et al., 2005). This organization of probes allows for a (largely)

www.affymetrix.com
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unbiased quantification of transcriptional activity (e.g. Bertone et al., 2004), as tiling arrays are

designed without prior consultation of existing gene annotation.

so on. For tiling arrays to reach widespread acceptance,
these differences must be identified and resolved. Towards
this end, we provide an initial perspective on the tiling
microarray experiment from the analytic point of view. In
so doing, we provide an introduction to the characteristics
of data generated by tiling microarrays, introduce some
challenging questions, and give initial views on the
analysis of these relatively new types of microarray
experiments.

Distribution of signal intensities
For tilingmicroarrays, a probe representing some genomic
sequence is the unit of investigation, and an intensity

measurement after hybridization to labeled target is its
recorded datum. In theory, this measurement correlates
with the number of target nucleic acid molecules that
hybridized to that probe during the experiment.

Tiling microarrays built using Affymetrix technology
contain a paired ‘mismatch’ probe for each genomic tile
probe (http://www.affymetrix.com/). (For convenience, the
genomic tile probe that perfectlymatches genomic sequence
is typically denoted PMand themismatch probe is similarly
denoted MM.) The MM probe is intended to provide a
measurement of nonspecific nucleic acid binding to the PM
probeandthusthequantityPM–MMtypically servesas the
intensity measurement for Affymetrix tiling arrays.
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Figure 2.2: Tiling array design and probe organization (Royce et al., 2005). Each individual probe in

the tiling is indicated by a different color and overbar (upper panel). Tiling designs can be overlapping,

end-to-end or spaced (lower panel).

2.2 The E2F study

The statistical methods for transcriptome analysis that are discussed in this part of the disserta-

tion are motivated by a tiling array study on the reference plant Arabidopsis thaliana. The study

was conducted at the Flemish Institute of Biotechnology (VIB), Department of Plant Systems

Biology, Ghent, Belgium. The study fits in the scope of a larger project that aims at increasing

the knowledge of the role of E2F transcription factors in the regulation of the plant cell cycle
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and plant growth (Naouar et al., 2009). E2Fs are conserved regulators of S phase-specific genes

(Blais and Dynlacht, 2007). The genome of the reference plant Arabidopsis thaliana encodes

three E2Fs, i.e. E2Fa, E2Fb and E2Fc, which are active in association with the dimerization

partners DPa or DPb (De Veylder et al., 2007). A complete understanding of the role of the

different E2F isoforms requires the comprehensive identification of their target genes. Within

this context, Columbia seed (Col-0) plants were used that are ectopically overproducing the

heterodimer E2Fa-DPa (Naouar et al., 2009). We will refer to these plants as the E2F plants and

to this study as the E2F study.

Expression profiling was performed with Affymetrix GeneChip R© Arabidopsis Tiling 1.0R ar-

rays. A single array contains over 3.2 million PM and MM 25-mer probe pairs that are tiled

across the complete non-repetitive Arabidopsis thaliana genome. The array has a tiling resolu-

tion of 35 nucleotides. Hence, the entire genome is tiled with non-overlapping probes with an

average gap-width of 10 nucleotides (Naouar et al., 2009). In the study expression data from

three biological replicates of both wild type (WT) and E2F plants are used. The wild type refers

to the typical form of Arabidopsis thaliana as it occurs in nature. The replicates correspond to

the target preparation protocol number 3 (TPP3) in Naouar et al. (2009). The aim of the study

was to quantify, compare and evaluate the expression of WT and E2F plants. We will call this

transcript discovery. Furthermore, also the detection of expression changes between WT and

E2F plants was of interest. We will refer to this as differential expression.

The upper panel of Figure 2.3 shows the raw log2-transformed intensities from the E2F and WT

plant hybridizations as a function of the genomic location for a particular region on chromo-

some 1. The location of the region can be read from the central horizontal axis on the figure.

The numbers on the axis indicate the nucleotide positions along the genome. One point on the

plot corresponds to the intensity measured by a specific probe mapping to that genomic location.

The biological replicates are indicated by a different symbol. In theory, the measured intensity

for a certain probe is proportional to the amount of cRNA target that hybridized to this particular

probe. This represents specific binding. In practice, however, the raw data look very noisy, and

it is hard to discern the signal of interest, reflecting the true RNA expression, from the obscuring

variation (see top panel of Figure 2.3). The latter variation is of no biological interest. It can

be introduced by differences in experimental conditions during the sample preparation or the

manufacturing and processing of the arrays (Irizarry et al., 2003). Other contributing sources
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Figure 2.3: Along-chromosome plot of raw (upper panel) and preprocessed (lower panel) log2-

transformed tiling array intensities of WT (black) and E2F (red) plants for a particular region of chromo-

some 1, denoted by the horizontal axis. The light blue boxes on the forward (+) and reverse (-) strands

indicate the position of annotated genes for this region. The preprocessing involved background correc-

tion and normalization steps as proposed in the RMA procedure (Irizarry et al., 2003). The 3 different

replicates for WT and E2F are indicated by ◦, + and M. The intensities are measured probe by probe.
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include optical or background noise, non-specific binding (with non-complementary molecules)

and differences in probe affinity. Due to this complexity of the raw signal composition, some

degree of preprocessing is required. For tiling array data this typically involves (1) background

correction to account for optical noise and non-specific binding, and (2) normalization to make

expression data from different arrays comparable. To this end, we apply the first two steps of

the widely used robust multi-array average (RMA) procedure for GeneChip R© arrays (Irizarry

et al., 2003) on our tiling array data sets. Background correction is conducted by modeling the

raw probe-level intensities as a sum of normally distributed background noise and exponen-

tially distributed signal (Irizarry et al., 2003). Quantile normalization (Bolstad et al., 2003) is

then applied on the background-corrected signals to force the distribution of probe intensities

in all arrays to be identical. The preprocessed log2-transformed probe-level intensities for the

same genomic region on chromosome 1 are presented in the lower panel of Figure 2.3. After

proper background correction and normalization, transcriptionally active and differentially ex-

pressed regions become more clearly visible. However, probe-to-probe fluctuations within the

same transcriptional units are still apparent. Moreover, the sudden jumps in the measured inten-

sities, which are associated with differences in transcriptional activity among exonic regions,

and, between exonic, intronic and intergenic regions, make the data very heterogeneous. Well-

designed modeling techniques will be needed to cope with these irregularities and expression

signal variability in an appropriate way. The second region in the lower panel of Figure 2.3,

showing a clear increase in measured intensities, seems to be differentially expressed between

WT and E2F plants and does not overlap with previous annotation. This is seen on Figure 2.3

by the lack of a light blue box matching to this genomic region. Nonetheless, we would like to

detect these non-annotated regions equally well. Therefore, it is essential to develop methods

that do not rely on existing annotation.

2.3 Tiling array data analysis

This section describes some popular methods for analyzing tiling array data from expression

studies. While the methods of Kampa et al. (2004) and Huber et al. (2006) focus on transcript

discovery within a single biological condition, the RMA method (Irizarry et al., 2003) combined

with an empirical Bayes moderated t-test (Smyth, 2004; McCarthy and Smyth, 2009) is widely

used when differential expression between two biological conditions is concerned.
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2.3.1 Pseudomedian approach for transcript discovery

The approach of Kampa et al. (2004) is based on a summarized expression level of the cen-

ter probe in a sliding window. Let BW denote the bandwidth of the window, defined as the

number of nucleotides from one side of the window to the middle probe. Hence, the window

has a predefined size, which is given by (2 × BW ) + 1. For each center probe the pseudome-

dian or Hodges-Lehmann estimator (e.g. Hollander and Wolfe, 1999) is calculated based on the

neighboring-probe intensities within the window. More specifically, suppose probe k is posi-

tioned at genomic coordinate Pk. The pseudomedian expression level for this probe, denoted

by Ek, is then given by the median of all Nk(Nk + 1)/2 pairwise averages (Zl + Zm)/2, where

Zl and Zm are the intensity values at genomic coordinates Pl and Pm, respectively, where Pl

and Pm are all genomic coordinates lying within [Pk − BW,Pk + BW ], l ≤ m, and with

Nk the number of probes located within this interval [Pk − BW,Pk + BW ]. The reason for

using the pseudomedian is to improve robustness against false-positives due to differences in

probe-specific effects and non-specific cross-hybridization events (Kampa et al., 2004). In the

initial study the difference between the background-corrected PM and MM intensities was used

as intensity values, i.e. Zk = PMk − MMk. If the tiling arrays in the experiment do not

possess MM probes, as is common for the recent arrays, properly preprocessed PM values may

be used instead, e.g. after background-correction and array-to-array normalization by means

of the RMA procedure (Irizarry et al., 2003), discussed in Section 2.2. Each probe for which

the corresponding pseudomedian expression level exceeds a certain threshold value is called

positive. In a postprocessing step adjacent positive probes are merged to form transcriptionally

active regions (TARs). This involves two additional tuning parameters, (a) maxgap, which is

the maximum gap between positive probes to be in the same TAR, and (b) minrun, which is the

minimum length of adjacent positive probes to form a TAR. Kampa et al. (2004) determined

the tuning parameter settings based on spiked-in quantitative bacterial RNA transcripts.

Figure 2.4 shows the pseudomedian intensities for the example region of the E2F data (first

biological replicate of E2F plants) at bandwidths 50, 150 and 500. The calculation of the

pseudomedian within a sliding window has a smoothing effect on the intensity signal in function

of the genomic position. The smoothness increases with increasing bandwidth, but is constant

over the whole genomic region for a fixed bandwidth. This may lead to problems when looking

for transcript regions. If the bandwidth is small, the boundaries of the transcript regions can
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Figure 2.4: Pseudomedian intensities E of the first biological replicate of E2F plants for a genomic

region on chromosome 1. The pseudomedian intensities are calculated for a sliding window with band-

widths (BW) 50, 150 and 500.

be determined accurately, but the large variability of the intensities may lead to many false

positives. In the case of large bandwidths, the smooth signal may lead to biased estimates of

the transcript boundaries, depending on the level of the signal above background (Hastie et al.,

2001). This latter problem is clearly illustrated in Huber et al. (2006).

2.3.2 Structural change model for transcript discovery

Huber et al. (2006) recognized the problems arising from sliding window-based approaches in

transcript discovery. To obtain less biased estimates of the transcript boundaries, they proposed

D D 

DOO--D 
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an alternative method based on a model that fits a piecewise constant expression profile along

genomic coordinates. It is known in literature as the structural change model (SCM). The model

is motivated by the fact that probe intensities show sudden changes at the boundaries of TARs,

while the intensity level remains at a fairly constant level within each TAR. The model can be

written as

zki = µs + εki for ts ≤ k < ts+1, (2.1)

where zki denotes the intensity from the k-th probe (k = 1, . . . , n) in the i-th array and t2, . . . , tS

are the segment boundaries, with t1 = 1, tS+1 = n + 1, and S the total number of segments.

Further, µs denotes the mean intensity level of segment s and εki is a Gaussian error term. The

model is fitted by minimizing the sum of squared residuals. The number of segments S is a

tuning parameter, which is chosen by a penalized likelihood approach based on the Bayesian

Information Criterion (for details, see Huber et al., 2006). Typically, the zki used to fit the SCM

are preprocessed intensity values. Huber et al. (2006) proposed to preprocess the raw intensities

by means of a DNA reference normalization. To this end, hybridization intensities from an

experiment using genomic DNA have to be available. Details of this normalization method

are provided in Huber et al. (2006). In case no such experiment has been conducted, other

preprocessing methods may be applied as well, e.g. the background correction and quantile

normalization steps in the RMA procedure (Irizarry et al., 2003).

Fitting the SCM results in the segmentation of the transcriptional profile along the genome.

Subsequently, a certain segment is called a TAR if the mean intensity of the probes in the

segment is above a certain threshold value. The choice of this threshold value is based on the

distribution of the mean intensity levels for the segments that do not overlap with any annotated

feature (David et al., 2006). This is typically a two-component mixture distribution of which the

leftmost component is more or less a normal distribution. The fit to this normal component is

considered as the null distribution of mean intensities for the segments that are not transcribed.

Hence, a p-value can be assigned to each segment, based on the observed mean intensities.

Following David et al. (2006), the threshold value is then selected after controlling the false

discovery rate (FDR) at 0.1% by the Benjamini-Yekutieli procedure (Benjamini and Yekutieli,

2001).

The relatively simple approach of Huber et al. (2006) has been successfully applied to yeast

tiling array data (David et al., 2006). As indicated in Zeller et al. (2008), however, the segmen-
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tation problem is considerably more challenging for the genomes of higher eukaryotes that are

capable of (alternative) splicing and whose genes typically contain much shorter exon segments

interrupted by potentially very long intron sequences.

2.3.3 RMA combined with moderated t-test for differential expression

The RMA algorithm (Irizarry et al., 2003) is originally designed for the normalization and

summarization of probe-level data in classical microarray studies. RMA involves three steps:

(a) background correction, (b) quantile normalization and (c) summarization using the median

polish algorithm. When applying RMA in tiling array data analysis one first has to construct

probesets from individual probes. The existing annotation is used for this purpose. RMA results

in a summarized intensity value for each probeset on each array. This summarized value is

further used as input for the proper differential expression analysis. Differential expression is

assessed using an extension of the empirical Bayes moderated t-statistic introduced in Smyth

(2004). Such a moderated t-test is conducted for each probeset separately. In principle, it differs

from an ordinary two-sample t-test by incorporating prior information on how the estimated

model parameters vary across genes in the test statistic (see Smyth (2004) for full details).

McCarthy and Smyth (2009) have proposed an extension of this moderated t-testing procedure.

This extension allows for testing whether the true differential expression is greater than a given

threshold value. In this way reliable p-values can be obtained for finding genomic regions with

differential expression that is also biologically meaningful (McCarthy and Smyth, 2009). The

FDR is controlled at a predefined level by using the Benjamini-Hochberg method (Benjamini

and Hochberg, 1995).

2.4 Scatterplot smoothing and wavelets

2.4.1 Introduction

Since tiling probes are positioned along the genome with a more or less equal resolution and

regardless of existing annotation, the probe intensity data can be thought of as realizations of an

underlying expression function along the genomic coordinate. These observed intensities are
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usually subject to observational error, which we want to remove. In such a situation smoothing

methods are needed to extract the true function from the observed data. In this section we will

focus on smoothing methods in the single-curve setting, e.g. for along-genome expression data

from only one tiling array. This is commonly referred to as scatterplot smoothing, because

one is interested in highlighting the underlying trend in a scatterplot (Ruppert et al., 2003).

The problem of scatterplot smoothing essentially corresponds to the standard nonparametric

regression problem (e.g. Abramovich et al., 1998; Ruppert et al., 2003)

yi = g(ti) + εi, i = 1, . . . , T, (2.2)

where ti = i/T . The error terms εi are assumed to be normally distributed random variables

with zero mean and variance σ2. The aim is to estimate some unknown smooth function g from

the noisy data (ti, yi) without assuming any particular parametric form.

Several smoothing methods have been described in the literature. A popular class of methods

performs the function estimation by means of local weights. Well-known examples include

kernel smoothing (e.g. Wand and Jones, 1995) and local polynomial smoothing (e.g. Fan and

Gijbels, 1996). Sliding window-based approaches such as the calculation of the pseudomedian

in Kampa et al. (2004) can also be thought of as belonging to this class of methods.

Another class consists of smoothing methods based on basis function estimators. Following

the definition in Ramsay and Silverman (2005), a basis function system is a set of known

functions that have the property that many functions can be approximated arbitrarily well by

taking a weighted sum or linear combination of a sufficiently large number of these functions.

A frequently used basis system for non-periodic data is the spline basis system. The degree

of smoothness can be controlled to some extent by the number of basis functions being used.

However, it is often preferred to include many basis functions and to impose a penalty on the

roughness of the function. This is done for instance in cubic spline smoothing (e.g. Gu, 2002).

These smoothing methods are suitable to model a large spectrum of functions. However, one

of their major limitations is that they work with global bandwidths or penalties. Therefore,

the amount of smoothing is forced to remain the same over the entire support of the function.

Furthermore, they are not very suitable for large data sets as spline smoothers with many knots

quickly become computationally complex. Consequently, they are not the best choice to model

large spatially heterogeneous data with many local features such as the tiling array data of the

E2F study. To circumvent these difficulties the use of wavelet basis functions is proposed.
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2.4.2 A primer on wavelets

Wavelets are families of orthonormal basis functions that can be used to represent functions

in an efficient way. A multitude of different wavelet bases exist. An overview can be found

in Ogden (1997) and Vidakovic (1999). The oldest and most simple one is the Haar wavelet

(Haar, 1910). The Haar mother wavelet is a mathematical discontinuous function defined by

ψ(t) =


1 if 0 ≤ t < 0.5

−1 if 0.5 ≤ t < 1

0 otherwise

, (2.3)

while the Haar father wavelet or scaling function is given by

φ(t) =

 1 if 0 ≤ t < 1

0 otherwise
. (2.4)

A graphical representation of the Haar mother wavelet is given in Figure 2.5.

0 0.5 1

−1

1

Figure 2.5: Haar mother wavelet

We can construct a wavelet basis by choosing a suitable mother (ψ) and father (φ) wavelet
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function and considering all dilations and translations

ψj,k(t) = 2j/2ψ(2jt− k), (2.5)

φj,k(t) = 2j/2φ(2jt− k), (2.6)

for integers j and k.

The mother wavelet is chosen to ensure that an orthonormal set can be formed (e.g. Nason,

2005), i.e.

∫ ∞
−∞

ψj,k(t)ψj′,k′(t)dt = δj,j′δk,k′ , (2.7)

where δm,n = 1 if m = n and δm,n = 0 if m 6= n.

Typically, the mother wavelet and all derived basis functions have a compact support and the

wavelet expansion provides a location and scale decomposition of the underlying function. The

Haar mother wavelets for some choices of j and k are shown in Figure 2.6.

0.0 0.2 0.4 0.6 0.8 1.0

−
4

−
2

0
2

4

j=0,k=0
j=3,k=2
j=4,k=11

Figure 2.6: Haar mother wavelet for some choices of scale j and location k

In essence, the wavelet decomposition allows a function g to be represented using a wavelet

expansion by (e.g. Nason, 2005)

g(t) =
∑
k∈Z

Cj0,kφj0,k(t) +
∞∑
j=j0

∑
k∈Z

Dj,kψj,k(t), (2.8)
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where Dj,k are wavelet or detail coefficients, Cj,k are scaling coefficients, and j0 is the coarsest

scale considered in the decomposition. The wavelet and scaling coefficients are given by

Dj,k =

∫ ∞
−∞

f(t)ψj,k(t)dt (2.9)

Cj,k =

∫ ∞
−∞

f(t)φj0,k(t)dt. (2.10)

The first term in Equation (2.8), containing the father wavelet, is the smooth part of the function

associated with an average of the function over the support defined by j0. The second term,

involving the mother wavelets, on the other hand, is related with the detail of the function at

different scales and locations. The detail of a function can be losely defined as the degree of

difference between neighboring function values (Nason, 2005).

Suppose we have an observed data vector y = (y1, y2, ..., yT )T , arisen from the underlying

function values g = (g1, g2, ..., gT ), where yi = y(ti) and gi = g(ti). It is assumed that the

data points are equally spaced and the number of data points T is a power of two, i.e. T = 2J ,

for some integer J ≥ 0. The vector g can be decomposed by means of the discrete wavelet

transform (DWT), given by

d = gW T , (2.11)

where W is a T × T orthogonal DWT matrix. The vector d contains the discrete scaling

coefficient c0,0 and T−1 discrete wavelet coefficients {dj,k} : j = 0, . . . , J−1, k = 0, . . . , 2j−

1. These coefficients are analogous to the coefficients in Equation (2.8), with c0,0 ≈ C0,0/
√
T

and dj,k ≈ Dj,k/
√
T (e.g. Barber et al., 2002). The factor

√
T arises from the difference

between continuous and discrete orthogonality conditions (Abramovich et al., 1998). Similar

to (2.11), the DWT of the observed data vector y gives rise to a vector of empirical discrete

scaling and wavelet coefficients d∗ by d∗ = yW T . Because of the orthogonality of W , the

DWT of ε = (ε1, ε2, ..., εT ) from Equation (2.2), denoted by ε∗, also consists of T normal

random variables with zero mean and variance σ2. This leads to the nonparametric regression

model in the wavelet space

d∗ = d+ ε∗. (2.12)
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To illustrate the idea of the DWT, let us consider an example sequence of observed values

y = (3, 3, 8, 6, 2, 7, 7, 5). In this example, we have T = 8, hence J = 3. For the Haar wavelet

with 3 levels the matrixW is defined as (e.g. Nason, 2005)

W =



√
2/4

√
2/4

√
2/4

√
2/4

√
2/4

√
2/4

√
2/4

√
2/4

1/
√

2 −1/
√

2 0 0 0 0 0 0

0 0 1/
√

2 −1/
√

2 0 0 0 0

0 0 0 0 1/
√

2 −1/
√

2 0 0

0 0 0 0 0 0 1/
√

2 −1/
√

2

1/2 1/2 −1/2 −1/2 0 0 0 0

0 0 0 0 1/2 1/2 −1/2 −1/2
√

2/4
√

2/4
√

2/4
√

2/4 −
√

2/4 −
√

2/4 −
√

2/4 −
√

2/4



.

A very efficient pyramid-based algorithm for conducting this projection from the data space

onto the wavelet space has been proposed in Mallat (1989). We illustrate the idea behind this

algorithm on y in the example.

On the finest scale the detail coefficients of the Haar wavelets are given by

d∗J−1,k = (y2k−1 − y2k)/
√

2. (2.13)

In order to obtain information at coarser scales we need scaling coefficients, which are scaled

local averages. On the finest scale we have

c∗J−1,k = (y2k−1 + y2k)/
√

2. (2.14)

The next coarsest wavelet coefficient is now obtained by differing the local averages at the finer

level:

d∗J−2,l = (c∗J−1,2l−1 − c∗J−1,2l)/
√

2. (2.15)

Likewise, the coarser-level scaling coefficients are given by

c∗J−2,l = (c∗J−1,2l−1 + c∗J−1,2l)/
√

2. (2.16)

These calculations can be repeated until the coarsest possible level, j = 0, is achieved. This

gives rise to a vector of scaling and wavelet coefficients for the data sequence in the example:

d∗ = (c∗0,1, d
∗
2,1, d

∗
2,2, d

∗
2,3, d

∗
2,4, d

∗
1,1, d

∗
1,2, d

∗
0,1) (2.17)

= (41
√

2/4, 0,
√

2,−5
√

2/2,
√

2,−4,−3/2,−
√

2/4).
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Figure 2.7: Multiresolution analysis of example data with Haar wavelet. Upper left panel: only the

father wavelet is used; Upper right panel: father wavelet and coarsest mother wavelet are used; Lower

left panel: father wavelet and two coarsest mother wavelet are used; Lower right panel: father wavelet

and three mother wavelets are used.

Figure 2.7 shows a multiresolution analysis of these example data using the Haar wavelet basis.

In the upper left panel only the father wavelet is used. This corresponds with the first row ofW .

The reconstructed function is a constant equal to the average of all data points. When both the

father wavelet and the coarsest mother wavelet are used, corresponding with row 1 and row 8 of

W , a curve is obtained which is piecewise constant and allows for a shift between the averages

of the first four and the last four data points. The lower panels give the curves when also the

finer levels j = 1 (left) and j = 2 (right) of wavelet coefficients are taken into account. The

lower right panel shows that the data are exactly reconstructed if the coarsest father wavelet and

the mother wavelets at all levels are used, corresponding with all rows ofW .
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2.4.3 Wavelet shrinkage or thresholding in scatterplot smoothing

In Section 2.4.2 we have illustrated that observed data points along an equally spaced grid

can be perfectly reconstructed by means of a wavelet basis expansion. However, we are more

interested in approximating or estimating the true function underlying these observed data. As

argued in Section 2.4.1, smoothing methods are needed for this. In what follows, we will often

refer to the sequence of observed values (y1, y2, ..., yT ) as the noisy signal, and to the sequence

of estimated values of the underlying function (ĝ1, ĝ2, ..., ĝT ) as the denoised signal.

As explained in Section 2.4.2, a multiresolution analysis corresponds with setting all the wavelet

coefficients of particular wavelet scales to zero. Hence, conducting a multiresolution analysis

is essentially a first way of smoothing the noisy signal by means of wavelets. This smoothing

effect is illustrated on the example region of the E2F data (first biological replicate of E2F

plants). Figure 2.8 shows the results for J = 2, where only the wavelet scales j = 0, 1, 2

contain non-zero wavelet coefficients, until J = 8, where all wavelet scales contain non-zero

wavelet coefficients. It is clear that this procedure leads to a homogeneous smoothing along the

genomic coordinate. The aim, however, is not only to obtain a smooth signal at positions where

RNA expression is absent or more or less constant. At the same time, it is desired to retain

the characteristic features of the underlying function, such as the sudden discontinuities at the

boundaries of transcripts or in genes with many short exons and introns.

Unlike most smoothing methods, wavelets enable to perform such an adaptive regularization

of the noisy signal. One of the properties of the wavelet transform is that it concentrates most

of the signal’s structure in relatively few wavelet coefficients, while distributing white noise

equally over all wavelet coefficients. This is often called the sparseness or heavy-tailedness

property of wavelet coefficients (Figueiredo and Nowak, 2001). Denoising of the signal is thus

possible by thresholding or shrinking the smallest wavelet coefficients. Wavelet shrinkage or

wavelet thresholding typically consist of three steps:

1. Compute the empirical wavelet coefficients d∗ of the noisy signal.

2. Modify the empirical wavelet coefficients according to a certain shrinkage or thresholding

rule. In this way, the true wavelet coefficients d of the underlying function are estimated

by d̂.
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3. Backtransform the modified wavelet coefficients d̂ to obtain the denoised signal in the

original data space ĝ by applying the inverse DWT (IDWT), i.e. ĝ = d̂W .
+
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Figure 2.8: Multiresolution analysis for genomic region of the first biological replicate of E2F plants
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Technically, thresholding means that some wavelet coefficients are effectively set to zero, while

shrinkage involves decreasing their absolute value towards zero, without reaching the value zero

exactly. We examine the effect of four different wavelet thresholding procedures.

Two classical thresholding rules are the hard and soft thresholding of the wavelet coefficients

(Donoho and Johnstone, 1994, 1995). Let λ denote an overall threshold level. The hard thresh-

olding rule is given by

d̂ (hard)
j,k =

 0 if |d∗j,k| ≤ λ

d∗j,k if |d∗j,k| > λ
. (2.18)

In other words, hard thresholding sets all those coefficients to zero that have an absolute value

below some threshold, while leaving the remaining coefficients unchanged. This results in a

discontinuity at the threshold.

The soft thresholding rule, on the other hand, can be written as

d̂ (soft)
j,k =

 0 if |d∗j,k| ≤ λ

sgn(d∗j,k)(|d∗j,k| − λ) if |d∗j,k| > λ
, (2.19)

where sgn(.) is the sign function for which holds that sgn(x) = 1 if x ≥ 0, and sgn(x) = −1

if x < 0. Hence, soft thresholding also replaces coefficients with an absolute value below

the threshold by zero, but it shrinks the remaining coefficients towards zero by substracting

the threshold from the absolute value of the wavelet coefficients. After soft thresholding, the

remaining coefficients therefore form a continuous distribution that is centered around zero.

Both hard and soft thresholding can be applied either with a common threshold for all levels of

the wavelet decomposition or with a more adaptive level-dependent threshold.

Besides these classical thresholding approaches, quite some contributions are available that

consider thresholding within a Bayesian framework (e.g. Abramovich et al., 1998; Vidakovic,

1998; Clyde and George, 2000; Figueiredo and Nowak, 2001). Here, a prior distribution is

imposed on the true wavelet coefficients of the underlying function in order to capture the

sparse nature of the wavelet basis expansion. The thresholded wavelet coefficients are obtained

by taking appropriate quantities from the resulting posterior distribution of the true wavelet

coefficients, given the empirical wavelet coefficients. We examine two examples of Bayesian

thresholding.

Firstly, a mixture prior of a Gaussian and a point mass at zero can be imposed on the wavelet
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coefficients, i.e.

dj,k ∼ πjN(0, τ 2j ) + (1− πj)δ(0), (2.20)

with 0 ≤ πj ≤ 1 the prior probability of having non-zero wavelet coefficients at level j and

δ(0) a point mass at zero. Abramovich et al. (1998) demonstrate that the posterior cumulative

distribution F (dj,k|d∗j,k) is given by

F (dj,k|d∗j,k) =
1

1 + γj,k
Φ

dj,k − d∗j,kτ 2j /(σ2 + τ 2j )

στj/
√

(σ2 + τ 2j )

+
γj,k

1 + γj,k
I(ν ≥ 0), (2.21)

with Φ the standard normal cumulative distribution function, and where the posterior odds ratio

for the component at 0 is

γj,k =
1− πj
πj

√
τ 2j + σ2

σ
exp

{
−

τ 2j d
∗2
j,k

2σ2(τ 2j + σ2)

}
. (2.22)

Abramovich et al. (1998) suggest to use the posterior median to obtain the Bayesian estimate

of the wavelet coefficients. This corresponds to a point estimate of the posterior distribution

under a family of loss functions that is equivalent to the use of L1 norms on the function and its

derivatives. The thresholded coefficient is given by

d̂ (mixture)
j,k = med(dj,k|d∗j,k) = sgn(d∗j,k) max(0, χj,k), (2.23)

where

χj,k =
τ 2j

σ2 + τ 2j
|d∗j,k| −

τjσ√
σ2 + τ 2j

Φ−1
{

1 + min(γj,k, 1)

2

}
. (2.24)

The hyperparameters πj and τ 2j in the mixture prior are further defined as τ 2j = 2−αjC1 and

πj = min(1, 2−βjC2), where C1, C2, α and β are non-negative constants (Abramovich et al.,

1998).

In the fourth wavelet thresholding procedure we consider, the second one within the Bayesian

framework, a normal prior is imposed on the wavelet coefficients combined with a non-infor-

mative Jeffrey’s hyperprior on the variance parameter, as described in Figueiredo and Nowak

(2001), i.e.

dj,k|τ 2j,k ∼ N(0, τ 2j,k)

p(τ 2j,k) ∝
1

τ 2j,k
. (2.25)
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It is shown in Figueiredo and Nowak (2001) that this leads to the following thresholded wavelet

coefficients:

d̂ (normal)
j,k =

(d∗2j,k − 3σ2)+

d∗j,k
. (2.26)

Whereas in the multiresolution analysis thresholding takes place scale by scale, each of the four

thresholding procedures allows the thresholding to work on particular coefficients within each

scale. In this way an adaptive smoothing of the noisy signal can be obtained. The denoised sig-

nal for the genomic region of the E2F data after applying each of these procedures is depicted

in Figure 2.9. In all cases the error standard deviation σ is robustly estimated by the median

absolute deviation (MAD) of the empirical wavelet coefficients at the finest level, divided by

0.6745 (e.g. Donoho and Johnstone, 1995; Abramovich et al., 1998). It is important to note that

the threshold values used to produce Figure 2.9 are not identical for the four procedures. The

hard and soft thresholding procedures make use of the universal threshold λ = σ
√

2 log(T ),

proposed by Donoho and Johnstone (1994), while the threshold values for the Bayesian proce-

dures can be obtained from Equations (2.23) and (2.26) for their respective thresholded wavelet

coefficients.

At first sight, the hard and soft thresholding rules provide a very smooth thresholded signal.

This denoised signal shows not to be very adaptive, however, as the intensity in the regions

where much transcriptional activity is present tends be oversmoothed. The smoothness in these

regions is only marginally smaller than in the non-expressed regions. Soft thresholding appears

to lead to smoother results than hard thresholding. The two Bayesian methods seem to better

capture the characteristic features in transcriptionally active regions compared to the classical

thresholding rules, while still leading to relatively smooth results in non-expressed regions. In

our example, the result for the mixture prior is a little bit smoother than that for the normal

prior. In general, the desired behavior of adaptive smoothness of the thresholded signal is better

obtained by the Bayesian thresholding methods than by classical hard or soft thresholding. In

Chapter 3 we will therefore extend the ideas of thresholding in a Bayesian framework based on

both possible priors to a multiple-curve setting.
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Figure 2.9: Different types of wavelet thresholding for genomic region of the first biological replicate

of E2F plants. The hyperparameter values for the mixture prior are α = 0.5, β = 1, C1 = 10134 and

C2 = 79. For the normal prior track a non-informative Jeffrey’s hyperprior is imposed on the variance

parameter.
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2.4.4 Inference based on posterior distributions of estimated functions

Within the Bayesian framework inference can be conducted by deriving credible intervals for

the estimated function, using its posterior distribution. As indicated in Section 2.4.3, this dis-

tribution is obtained by applying the IDWT to the thresholded wavelet coefficients. Hence, it

involves a linear combination of these coefficients. If a normal prior is imposed on the wavelet

coefficients (Figueiredo and Nowak, 2001), the posterior distribution in the original data space

is a linear combination of normal random variables and is thus easily found. However, in case

one puts a mixture prior on the wavelet coefficients (e.g. Abramovich et al., 1998), a compli-

cated mixture is obtained, which is impractical to evaluate analytically (Barber et al., 2002).

To avoid the need for time-consuming simulations, Barber et al. (2002) proposed to approximate

the posterior distribution with Johnson curves (Johnson, 1949). This collection of distributions

consists of three transformations of the standard normal distribution, i.e. (1) the log normal

case, z = γ + δ log(x− ζ) with ζ < x; (2) the unbounded case, z = γ + δ sinh−1 {(x− ζ)/η},

and (3) the bounded case, z = γ + δ log {(x− η)/(ζ + η − x)}, with ζ < x < ζ + η, in which

z has a standard normal distribution and x is the Johnson variable. The Johnson curves form

a rich family of distributions that provide good approximations of the tails of the distribution.

At each location t there exists precisely one Johnson curve with the same first four cumulants,

say κ1(X), . . . , κ4(X), as the posterior distribution of the smoother. These cumulants also

have a direct interpretation: κ1(X) and κ2(X) are the mean and variance of X , respectively,

κ3(X)/κ
3/2
2 (X) is the skewness and κ4(X)/κ22(X) + 3 is the kurtosis.

An analytical solution for the first four cumulants of the posterior mixture distribution of the

smoother in the data space can be found. The backtransformation from the wavelet space to the

data space is a linear transformation and within the wavelet space the coefficients at each (j, k)

are assumed to be independent. The cumulants of the distribution in the original data space can

therefore be easily acquired by using the following standard properties of cumulants,

κr

(∑
i

φiZi

)
=
∑
i

φriκr(Zi), (2.27)

where the φi represent constants and the Zi are independently distributed random variables.

Once the cumulants are known within the wavelet space, they are readily available in the original

data space by applying modified versions of the IDWT using (2.27). Within the wavelet space

the posterior distribution of the wavelet coefficients is a mixture of a point mass at zero and
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a normal distribution, with density f(x) = (1 − π)δ(0) + πN(µ, ξ2). For such a mixture

distribution analytical expressions for the cumulants can be calculated. The first four cumulants

are given by

κ1 = πµ

κ2 = πξ2 + πµ2 − π2µ2

κ3 = 3πξ2µ− 3π2ξ2µ3 + 2π3µ3

κ4 = 3πξ4 + 6πξ2µ2 − 18π2ξ2µ2 + 12π3ξ2µ2 −

3π2ξ4 + πµ4 − 7π2µ4 + 12π3µ4 − 6π4µ4.

Johnson curves with exactly the same cumulants are now fitted using the method of moments

and they are used as an approximation of the posterior distribution of the smoother with which

inference can be conducted.

2.5 Objectives and outline

In Part I of this dissertation, we aim to develop a statistical method for transcriptome analysis

with tiling arrays. The method should enable the simultaneous detection of genomic regions

which are (1) transcriptionally active in a particular tissue, cell line or experimental condition

and (2) differentially expressed between two such conditions. This feature is not present in

existing methods. Since tiling probes are positioned along the genome with a more or less equal

resolution and regardless of existing annotation, the probe intensity data can be thought of as

realizations of an underlying expression function along the genomic coordinate. Therefore, we

aim to use functional models.

The probe-to-probe fluctuations within the same transcriptional unit indicate that a certain de-

gree of smoothing will be needed to obtain stable estimates of the functional effects. However,

the spiky and discontinuous nature of the data asks for a more adaptive smoothing approach

than is common in most functional data analysis applications. In principle, wavelet-based de-

noising seems suitable for this task. The use of wavelets allows for an efficient regularization of
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the functional effects without losing the ability to model local features. Because of the inherent

high-dimensionality of whole-genome tiling array data, it is also key to develop algorithms for

fitting and inference that are fast and computationally efficient. One way to do this is to develop

methods with closed-form solutions for the model parameter estimators.

Recently, expression studies with tiling arrays have become a common tool for whole-genome

transcriptome analysis. As a consequence, more and more studies have more complex experi-

mental set-ups than the simple one-group or two-group designs. The functional model frame-

work that we envision therefore has to be flexible enough to be directly applicable for more

complex designs. Finally, we also aim at disseminating our method and algorithms in the sci-

entific community by providing a user-friendly software package.

Part I of this dissertation is organized as follows. In Chapter 3, we introduce fast wavelet-based

functional models for transcriptome analysis with tiling arrays. In this chapter, we particularly

focus on the two-group design. Tiling array expression studies with flexible designs are dis-

cussed in Chapter 4, while in Chapter 5 we present waveTiling, a R/Bioconductor software

package for wavelet-based tiling array analysis. Finally, conclusions and future research per-

spectives for this part of the dissertation are given in Chapter 6.



Chapter 3

Fast wavelet-based functional models for

transcriptome analysis with tiling arrays

In this chapter we present a wavelet-based method for transcriptome analysis with tiling arrays.

We will focus on the problem of simultaneously detecting transcriptionally active and differ-

entially expressed regions in the two-group design, without relying on existing annotation. In

Section 3.1, we first introduce a functional model in the genomic space. Next, we use the DWT

to obtain a wavelet-based functional model. The parameter estimation procedure which in-

volves regularization is described in Section 3.2. In Section 3.3 we propose an empirical Bayes

FDR procedure for identifying both expressed and differentially expressed regions. Finally, in

Section 3.4, the wavelet-based method is compared to existing methods in a simulation study

and it is applied to the Arabidopsis thaliana E2F study introduced in Chapter 2.

3.1 Wavelet-based functional models for transcriptome

analysis

3.1.1 Functional model

Let N(µ, σ2) denote a univariate normal distribution with mean µ and variance σ2 and let

MVN(µ,Σ) denote a multivariate normal distribution with mean µ and variance-covariance

matrix Σ. Suppose that N1 and N2 tiling arrays are collected for two distinct experimental

39
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conditions C1 and C2, respectively. Let N = N1 + N2. The expression functions Yi(t),

i = 1, . . . , N , are evaluated on an equally spaced grid, say t = (1, ..., T ), corresponding to

the locations of the probes within the same chromosome. We consider the functional model

Yi(t) = β1(t) +X1,iβ2(t) + Ei(t), (3.1)

with Yi(t) the log2-transformed probe intensity of probe t on array i, X1,i a dummy variable

which is 1 for C1 and −1 for C2, and Ei(t) the zero-mean error term for which it is assumed

that the Ei = [Ei(1), . . . , Ei(T )]T are i.i.d. MVN(0,Σε), where Σε is a T × T covariance

matrix defined on the grid t× t. Hence, the intensities are assumed to be correlated within the

same sample and are assumed to be independent across samples. The functions β1(t) and β2(t)

are referred to as the mean and difference function, respectively. If the design is balanced the

use of the (−1,1) coding allows for an orthogonal estimation of both effect functions. After

fitting the model, the estimated mean function, say β̂1(t), can be used for transcript discovery.

In particular, a segmentation can be performed by assessing in which genomic regions the mean

intensity β1(t) exceeds a certain background level. The (−1,1) dummy coding implies that

the log2 fold change, which is used to detect differential expression between two experimental

conditions, is given by 2 × β2(t) = FC(t). For Model (3.1) it is assumed that the log2 probe-

level intensities are appropriately background-corrected and normalized.

Model (3.1) can be written in matrix form as

Y = XB +E. (3.2)

Here, Y is an N × T matrix whose rows contain the log2-transformed preprocessed intensities

of one array observed on t. X is an N × q design matrix of the covariates. For Model (3.1)

two effect functions are defined, so q = 2. However, all derivations in this chapter also hold for

more complex designs with any arbitrary number of predictors q. These extended models are

discussed in more detail in Chapter 4. Each row of the q×T matrixB contains one of the effect

functions evaluated in t. The rows of E, Ei with i = 1, ..., N , consist of the error processes

evaluated on t, corresponding to each of the N observed tiling arrays.
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3.1.2 Wavelet-based functional model

Since wavelets are scale- and location-dependent, they can be used to estimate functions in a

very localized manner. Therefore, they are well suited to deal with irregular functional data

that are characterized by a high number of local features. Only the coefficients of those basis

functions whose support includes the region of the local feature are affected. Hence, wavelets

can often provide a very economic representation of a function with relatively few non-zero

coefficients. As is clear from Figure 2.7 in Section 2.4.2, a decomposition with Haar wavelets

approximates the underlying function by a piecewise constant (e.g. Bruce and Gao, 1996). This

is a very convenient feature in the analysis of tiling array expression data because the process

of gene transcription can be considered as a piecewise constant function within the genomic

domain. This means that probes that cover the same exonic region should, at least theoretically,

measure the same expression signal. Therefore, the Haar wavelet will be the wavelet basis of

our choice in the methods we describe. We note, however, that the methods are general enough

to be applied with other wavelet bases as well.

Let us now return to the N × T matrix Y from Section 3.1.1 containing the log2 intensities

observed on the probe positions t. The projection of the intensities from the data space onto the

wavelet space can be written as the matrix productD = YW T , whereW is a T×T orthogonal

DWT matrix. Similar to the toy example of Section 2.4.2, the rows of the matrixD contain the

empirical wavelet coefficients for each of the observed curves and they are double-indexed by

the location k = 1, ..., Kj within the wavelet scale j = 0, ..., J . The wavelet transform allows

us to rewrite the model in the wavelet space by post-multiplying both sides of Model (3.2) with

the DWT matrixW T , resulting in

D = XB∗ +E∗. (3.3)

Hence,B∗ = BW T and E∗ = EW T are the matrices whose rows contain the wavelet coeffi-

cients corresponding to the effect functions and the errors, respectively. Because the DWT is a

linear projection, the rows of E∗ are i.i.d. multivariate normal with mean zero and covariance

matrix S∗ = WΣεW
T . Similar to many contributions in wavelet literature, we will assume

that the wavelet coefficients within a given curve are independent across locations k and wavelet

scales j, i.e. S∗ is a diagonal matrix. This assumption, however, does not imply independence
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in the data space unless identical variance components are assumed across all wavelet scales

j and locations k. Johnstone and Silverman (1997), for instance, argue that the variance of

the empirical wavelet coefficients for stationary correlated noise only depends on the scale j

of the wavelet decomposition, but remains constant across locations k within the same scale.

Obviously, the assumptions on the correlation structure are further relaxed when the variance

components are allowed to vary both within and across wavelet scales.

3.2 Parameter estimation and regularization

For the estimation of the parameters in Model (3.3) we adopt the ideas of Bayesian thresholding

that were introduced in Section 2.4.3 in the single-curve setting of scatterplot smoothing. We

examine the use of (1) the mixture prior variant, which we refer to as WavMix, and of (2) the

normal prior variant, which we call WavNorm. The wavelet coefficients within a given curve are

assumed to be independent (cfr. Section 3.1.2). Due to this property, the likelihood functions in

both parameter estimation procedures can be factorized accordingly. This allows to more easily

find closed-form solutions for the parameter estimators and their variances and thus develop fast

algorithms for parameter estimation and subsequent inference.

3.2.1 Fitting procedure I: mixture prior (WavMix)

Let D(j, k) denote the empirical wavelet coefficients at scale j and location k associated with

the background-corrected and quantile-normalized log2-transformed intensities. Further, let

β∗m(j, k), m = 1, ..., q, be the wavelet coefficient of the m-th functional effect. The first fit-

ting procedure exists in an adaptive regularization of the fixed effects functions by imposing a

mixture prior on β∗m(j, k). This approach was also taken in e.g. Abramovich et al. (1998) and

Morris and Carroll (2006). Within the wavelet space, Model (3.1) can be written as

D(j, k)|β∗(j, k) ∼ MVN
(
Xβ∗(j, k), Iσ2

ε

)
, (3.4)

β∗m(j, k) ∼ πm(j)N
(
0, τm(j)σ2

ε

)
+ {1− πm(j)} δ0(β∗m), (3.5)
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with 0 ≤ πm(j) ≤ 1 and δ0(β
∗
m) the density function of a point mass at zero. The prior

probability πm(j) gives the proportion of non-zero wavelet coefficients at level j for the effect

function parameters. Note that the error variance σ2
ε is assumed equal across wavelet scales

j and locations k, which is a common approach in the wavelet literature (e.g. Donoho and

Johnstone, 1995).

Based on biological grounds, the mixture prior formulation allows to incorporate the assumption

that differential expression can only occur for features that are expressed. This implies that

β∗1(j, k) and β∗2(j, k) are both non-zero in differentially expressed regions. Therefore, the prior

distributions on the effect function parameters β∗1(j, k) and β∗2(j, k) may be written as

β∗1(j, k) ∼ {π1(j) + π2(j)}N
(
0, τ1(j)σ

2
ε

)
+

{1− π1(j)− π2(j)} δ0(β∗1), (3.6)

β∗2(j, k) ∼ π2(j) N
(
0, τ2(j)σ

2
ε

)
+ {1− π2(j)} δ0(β∗2). (3.7)

The marginal density of the data after integrating out the functional effects is given by (see also

Appendix A)

f (D(j, k)) = {1− π1(j)− π2(j)} g0 (D(j, k)) +

π1(j)g1 (D(j, k)) + π2(j)g2 (D(j, k)) , (3.8)

with

g0 (D(j, k)) = MVN
(
0, Iσ2

ε

)
, (3.9)

g1 (D(j, k)) = MVN
(
0,V 1(j)σ

2
ε

)
, (3.10)

g2 (D(j, k)) = MVN
(
0,V 2(j)σ

2
ε

)
, (3.11)

and (e.g. Verbeke and Molenberghs, 2000)

V 1(j) = I +XT
1X1τ1(j), (3.12)

V 2(j) = I +XT
1X1τ1(j) +XT

2X2τ2(j). (3.13)
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Let the posterior probabilities of non-zero wavelet coefficients at level j for the effect function

parameters be denoted by

ω1(j, k) =
π1(j)g1 (D(j, k))

f (D(j, k))
, (3.14)

ω2(j, k) =
π2(j)g2 (D(j, k))

f (D(j, k))
. (3.15)

The posterior distributions of β∗1(j, k) and β∗2(j, k), given the observed values of D(j, k), are

then given by

β∗1(j, k)|D(j, k) ∼ {ω1(j, k) + ω2(j, k)}N
(
β̂∗1(j, k), σ2

β̂1
(j)
)

+

{1− ω1(j, k)− ω2(j, k)} δ(0), (3.16)

β∗2(j, k)|D(j, k) ∼ ω2(j, k) N
(
β̂∗2(j, k), σ2

β̂2
(j)
)

+ {1− ω2(j, k)} δ(0). (3.17)

The estimators of the effect functions in Equations (3.16) and (3.17) are the corresponding

posterior means. They have the standard form of classical ridge regression estimators, i.e.

β̂∗1(j, k) =
{
XT

1X1 + 1/τ1(j)
}−1

XT
1D(j, k), (3.18)

β̂∗2(j, k) =
{
XT

2X2 + 1/τ2(j)
}−1

XT
2D(j, k), (3.19)

while their variances have the standard from of the variances of classical ridge regression esti-

mators, i.e.

σ2
β̂1

(j) = σ2
ε

{
XT

1X1 + 1/τ1(j)
}−1

, (3.20)

σ2
β̂2

(j) = σ2
ε

{
XT

2X2 + 1/τ2(j)
}−1

. (3.21)

A derivation of the posterior densities can be found in Appendix A.

For the model to be fully specified, we still have to define the hyperparameters πm(j) and τm(j).

Extending the expressions in Abramovich et al. (1998) to the functional model framework, we

assume the hyperparameters of the prior model to be of the form

τm(j) = cm2−αmj, (3.22)

π1(j) = min
(
1− π2(j), q12−φ1j

)
, (3.23)

π2(j) = min
(
1, q22

−φ2j
)
, (3.24)
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where m = 1, 2 and cm, q1, q2, αm, φ1 and φ2 are non-negative constants. Abramovich et al.

(1998) have shown that 0.5 and 1 are robust choices for αm and φm, respectively. We have

chosen to impose the same degree of shrinkage to all non-zero wavelet coefficients by setting

c1 = c2 = c. The differences in smoothness between the effect functions will thus only be

influenced by their corresponding prior probabilities πm.

When the noise level σε is unknown, it can be robustly estimated by the MAD of the empirical

wavelet coefficients at the finest level, divided by 0.6745 (e.g. Donoho and Johnstone, 1995;

Abramovich et al., 1998). The remaining hyperparameters can be estimated by empirical Bayes

using direct marginal maximum likelihood (MML), based on the marginal density given in (3.8).

The MML estimators are obtained by numerical optimization of the marginal log-likelihood.

3.2.2 Fitting procedure II: normal prior (WavNorm)

The second fitting procedure is described in Clement et al. (2012). The model is defined as

D(j, k)|β∗(j, k) ∼MVN
{
Xβ∗(j, k), Iσ2

ε (j, k)
}
, (3.25)

where j = 0, ..., J and k = 1, ..., Kj .

Regularization can be obtained by imposing a Gaussian prior on the wavelet coefficientsβ∗(j, k):

β∗m(j, k)|τm(j, k) ∼ N
{

0, τm(j, k)σ2
ε (j, k)

}
. (3.26)

The hierarchical model (3.25)-(3.26) is a linear mixed effects model within the wavelet space.

In this model specification the error variances σ2
ε (j, k) as well as the smoothing parameters

τm(j, k) are allowed to vary with scale j and location k. While the model has a Bayesian model

interpretation, a fully Bayesian modeling approach would involve the specification of a prior

distribution on the variance components σ2
ε (j, k) as well. However, Model (3.25)-(3.26) also

accomodates empirical Bayesian methods, i.e. the fully Bayesian analysis chain can be broken

by replacing the unknown smoothing parameters τm(j, k) and variances σ2
ε (j, k) by estimates

and then performing a Bayesian analysis with the previously unknown parameters regarded as

fixed (e.g. Section 16.3 of Ruppert et al., 2003).
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The joint likelihood forD and β∗ within this empirical Bayes setting becomes

p
{
D,β∗|τ ,σ2

ε

}
∝

J∏
j=0

Kj∏
k=1

([
σ2
ε (j, k)

]−N/2
exp

{
− [D(j, k)−Xβ∗(j, k)]T [D(j, k)−Xβ∗(j, k)]

2σ2
ε (j, k)

}
q∏

m=1

[
τm(j, k)σ2

ε (j, k)
]−1/2 exp

[
− β∗2m (j, k)

2τm(j, k)σ2
ε (j, k)

])
, (3.27)

with τ = [τ1(1, 1), ..., τq(J,KJ)]T and σ2
ε = [σ2

ε (1, 1), ..., σ2
ε (J,KJ)]

T .

The marginal likelihood corresponding to Model (3.25)-(3.26) is defined as

p
{
D|τ ,σ2

ε

}
∝

J∏
j=0

Kj∏
k=1

∣∣V (j, k)σ2
ε (j, k)

∣∣−1/2 ×
exp

[
−D

T (j, k)V −1D(j, k)

2σ2
ε (j, k)

]
, (3.28)

with

V (j, k) = I +

q∑
m=1

τm(j, k)XmX
T
m. (3.29)

Following e.g. the appendix of Seber (1984), in the case of an orthogonal design matrixX , the

determinant of V (j, k) simplifies to

|V (j, k)| =
q∏

m=1

(XT
mXmτm(j, k) + 1), (3.30)

and therefore

V −1(j, k) = I −
q∑

m=1

XmX
T
m

XT
mXm + 1/τm(j, k)

. (3.31)

Upon using Equations (3.27) and (3.28), the posterior densities of the effect functions can be

derived. When the variances σ2
ε (j, k) and smoothing parameters τm(j, k) are assumed to be

known, the posterior of β∗(j, k) only involvesD(j, k), σ2
ε (j, k) and τm(j, k). For an orthogonal

design matrixX these posterior densities are given by

p
{
β∗m(j, k)|D(j, k), τm(j, k), σ2

ε (j, k)
}
∼

N

{
XT

mD(j, k)

XT
mXm + 1/τm(j, k)

,
σ2
ε (j, k)

XT
mXm + 1/τm(j, k)

}
. (3.32)
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A derivation of the posterior distribution is given in Appendix B.

In this second fitting procedure a MML approach is taken. MML is commonly used for deriving

empirical Bayes estimators in wavelet-based scatterplot smoothing (e.g. Figueiredo and Nowak,

2001) and is here generalized towards a multiple-curves functional data analysis context. After

replacing |V (j, k)| and V −1(j, k) in Equation (3.28), minus twice the marginal log-likelihood

becomes

− 2× l(D|τ ,σ2
ε) ∝

J∑
j=0

Kj∑
k=1

(
q∑

m=1

{
log
[
XT

mXmτm(j, k) + 1
]}

+N log
[
σ2
ε (j, k)

]
+

1

σ2
ε (j, k)

DT (j, k)

[
I −

q∑
m=1

XmX
T
m

XT
mXm + 1/τm(j, k)

]
D(j, k)

)
. (3.33)

When the variance of the noise σ2
ε (j, k) is known, the MML-estimator of τm(j, k) can be ob-

tained in closed form:

τ̂m(j, k) =

[
DT (j, k)XmX

T
mD(j, k)(

XT
mXm

)2
σ2
ε (j, k)

− 1

XT
mXm

]
+

. (3.34)

A detailed derivation of this result is given in Appendix C.

Similar to Figueiredo and Nowak (2001), we can also impose a Jeffrey’s prior on the smoothing

parameters τm(j, k). For our model, the uninformative Jeffrey’s prior is defined as

p(τ ) ∝ |I(τ )|1/2, (3.35)

where |I(τ )| is the determinant of the expected Fisher information matrix of the marginal model

(e.g. Ibrahim and Laud, 1991). With similar derivations as presented in Appendix C it can be

easily verified that the Jeffrey’s rule prior for τ becomes

p(τ ) ∝
J∏
j=0

Kj∏
k=1

q∏
m=1

(XT
mXmτm(j, k) + 1)−1, (3.36)

and that the use of this additional prior on τ simply alters estimator (3.34) by dividing its first

term by a factor 3:

τ̂m,Jeffrey(j, k) =

[
DT (j, k)XmX

T
mD(j, k)

3
(
XT

mXm

)2
σ2
ε (j, k)

− 1

XT
mXm

]
+

. (3.37)
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This imposes additional shrinkage. Note that in the special case of q = 1, N = 1 and X = 1,

estimator (3.37) reduces to
[
D2(j,k)
3σ2
ε (j,k)

− 1
]
+

, which is equivalent to the result of Figueiredo and

Nowak (2001) for wavelet denoising in a single-curve setting.

In the expression for τ̂m(j, k) the variance σ2
ε (j, k) is assumed to be known. In real applications,

however, it needs to be estimated. Similar to Section 3.2.1, σε can be robustly estimated by the

MAD of the empirical wavelet coefficients at the finest level, divided by 0.6745 (e.g. Donoho

and Johnstone, 1995; Abramovich et al., 1998). Alternatively, the MML can be used for the

estimation of the variances of the noise component at the different wavelet scales j and locations

k. Given the smoothing parameters τ (j, k), the MML-estimator of σ2
ε (j, k) becomes

σ̂2
ε (j, k) =

1

N
DT (j, k)V −1(j, k)D(j, k). (3.38)

It is also possible to assume fixed variances within each wavelet scale. The MML-estimator of

σ2
ε (j) then becomes

σ̂2
ε (j) =

1

NKj

Kj∑
k=1

DT (j, k)V −1(j, k)D(j, k). (3.39)

Detailed derivations can be found in Appendix C. In the full estimation procedure a Gauss-

Seidel algorithm is then used (e.g. Givens and Hoeting, 2005) for the maximization of the

marginal likelihood. In particular, we apply the following iterative algorithm:

1. Choose initial parameter values for σ2(l)

ε (j, k) (l = 0). The MAD-based estimator can be

used for this purpose.

2. Calculate τ (l+1)
m (j, k) by plugging σ2(l)

ε (j, k) into (3.34).

3. Calculate σ2(l+1)

ε (j, k) by using τ (l+1)
m (j, k) in the expression for V (j, k) (3.29) in (3.38)

or (3.39).

4. Increase l with 1 and repeat steps 2-3 until convergence.

Once we have estimated τ̂m(j, k) and σ̂2
ε (j, k), we can plug them into the posterior densities

of the effect functions given by Equation (3.32). The result illustrates that Model (3.25)-(3.26)

performs adaptive regularization of the wavelet coefficients β∗m(j, k) by specifying location-

and scale-dependent regularization parameters τm(j, k). Thresholding takes place whenever

τm(j, k) = 0.
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The empirical Bayes method as described above, however, ignores the extra variability in the

posterior distribution caused by estimating the variance components. The posterior variance of

the effect functions should be calculated from the joint posterior distribution of {τm(j, k), β∗m(j, k)}.

We use the standard identity (e.g. Ruppert et al., 2003)

Var {β∗m(j, k)|D(j, k)} = E [ Var {β∗m(j, k)|D(j, k),θ}] +

Var [ E {β∗m(j, k)|D(j, k),θ}] , (3.40)

with θ = (τ ,σ2) the parameter vector of all parameters that need to be estimated in the em-

pirical Bayes procedure. Note that the first term in (3.40) is well approximated by the posterior

variance of β∗m(j, k) where τm(j, k) and σ2
ε (j, k) are treated as known and fixed at their pos-

terior mode (Kass and Steffey, 1989). The second term thus corrects for the extra variability

in the posterior distribution of β∗m(j, k) that is not accounted for by the approximate posterior

variance. We estimate Var [ E {β∗m(j, k)|D(j, k),θ}] through the following two steps:

1. Use a parametric bootstrap (e.g. Efron and Tibshirani, 1993) to estimate the covariance

matrix of θ: Σ̂θ. First, B bootstrap samples of the data are generated from the wavelet-

based model. Next, the model is fitted for each bootstrap sample resulting in B bootstrap

estimates θ̂
∗
(b), with b = 1, . . . , B. Finally, Σ̂θ is obtained by taking the sample variance

of the B bootstrap estimates.

2. Plug the results from step 1 into the delta-method formula (e.g. Ruppert et al., 2003):

Var [ E {β∗m(j, k)|D(j, k),θ}] =

{
∂β̂∗m(j, k)

∂θ

∣∣∣∣∣
θ̂

}T

Σ̂θ

{
∂β̂∗m(j, k)

∂θ

∣∣∣∣∣
θ̂

}
. (3.41)

The partial derivatives of β̂∗m(j, k) are available analytically. Since the correction is a relatively

small portion of the corrected posterior variance, it needs not be estimated by the bootstrap with

as great a precision as when a variance is estimated entirely by the bootstrap (Ruppert et al.,

2003).
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3.3 Empirical Bayes inference for tiling array data

In this section an inference procedure for tiling array experiments using an empirical Bayes

FDR procedure is described. The FDR procedure relies on the posterior distributions of the

effect functions from the wavelet-based functional model. In particular, the mean function

β1(t) is used for transcript discovery and the log2 fold change FC(t) = 2× β2(t) for assessing

differential expression. The FDR procedures that are presented here are based on the work of

Newton et al. (2004). However, we avoid the use of computationally intensive Bayesian Markov

chain Monte Carlo (MCMC) methods. This may be seen as an advantage when dealing with a

large number of observations.

3.3.1 Empirical Bayes FDR procedure

In tiling microarray experiments differentially expressed regions across treatments can be iden-

tified by statistical hypothesis testing. However, they are often found to be only weakly related

to the magnitude of the fold change cut-off (e.g. DeRisi et al., 1996; Schena et al., 1996). The

use of thresholds is more intuitive for biological or biomedical researchers, but until recently

it was lacking statistical rigor. McCarthy and Smyth (2009) developed an empirical Bayes

moderated t-statistic for inferring if the fold change is above the threshold, while Morris et al.

(2008) provided a procedure for functional models that flags regions significantly exceeding

a δFC fold change between treatment groups while controlling the expected Bayesian FDR at

the desired level α. Here, we will use a similar approach. At each probe position t, three dif-

ferent differential expression statuses exist, i.e. overexpression, no differential expression and

underexpression.

When there is an overexpression at a particular probe t, the posterior probability is given by

pDE,1(t) = Pr {2× β2(t) > log2(δFC)|Y } . (3.42)

When there is no biologically relevant differential expression at a particular probe t, this poste-

rior probability becomes

pDE,0(t) = Pr {−log2(δFC) ≤ 2× β2(t) ≤ log2(δFC)|Y } . (3.43)

Finally, the posterior probability when there is underexpression at a particular probe t is given
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by

pDE,2(t) = Pr {2× β2(t) < −log2(δFC)|Y } . (3.44)

A probe at a certain position can be classified according to the largest among these three pos-

terior probabilities. The local Bayesian FDR (BFDR) (e.g. Newton et al., 2004; Efron, 2003)

corresponding to over- or underexpression is then calculated by

BFDRDE,r(t) = 1− pDE,r(t), (3.45)

with r = 1, 2. Hence, the BFDR is defined as the posterior probability that the fold change

does not exceed the threshold value, given the observed data. Setting log2(δFC) = 0 will

return all statistically significant results for which the null hypothesis of equal expression can

be rejected. Hence, the method can be used for selecting all probes for which the log2 fold

change is statistically significantly different from zero, as well as for returning results that are

both of statistical and practical significance.

Model (3.1) can also be used for inferring on transcript discovery by using the mean function

β1(t) and a threshold δTD for the background intensity. The local Bayesian FDR becomes

BFDRTD(t) = 1− Pr {β1(t) > δTD|Y } . (3.46)

Quantities (3.45) and (3.46) can be used to identify probes that correspond to significantly (dif-

ferentially) expressed genomic targets, i.e. probes for which BFDR(t) < α. They are calcu-

lated based on the empirical Bayes posterior distributions obtained from the fitting procedures

described in Section 3.2. Morris et al. (2008), on the other hand, would evaluate them using

an MCMC approach. The significant probes can be combined in significantly (differentially)

expressed regions. These are defined as all sets of probes φm that can be constructed by joining

neighboring locations tl for which BFDR(tl) < α. Hence, the φm correspond to consecutive

genomic regions with a BFDR below the significance level α.

When the WavNorm procedure, described in Section 3.2.2, is applied, the marginal posterior

distributions of β1(t) and 2 × β2(t) are easily calculated as a linear combination of univari-

ate normal distributions. These distributions correspond with the posterior distributions of the

β∗m(j, k) in the wavelet space, given by (3.32). However, if the WavMix procedure, described

in Section 3.2.1, is used, the posterior distributions of the effect functions in the data space

are intractable since they involve linear combinations of mixture distributions. We propose to
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approximate these distributions by means of Johnson curves (Johnson, 1949), according to the

procedure explained in Section 2.4.4.

3.4 Results and discussion

The two proposed procedures are first evaluated in a simulation study and compared to popular

methods for transcript discovery and differential expression. Next, the model is applied to the

Arabidopsis thaliana E2F case study.

3.4.1 Simulation study

3.4.1.1 Simulating tiling array expression data

Tiling array data are simulated by adapting the model of Purdom et al. (2008):

yi(t) = log2

[
B(t) + Ii(t)× 2ci(t)+p(t)

]
+ εi(t), (3.47)

with yi(t) the log2-transformed intensity of probe t on array i and where



log2 {B(t)} ∼ N(µB, σ
2
B)

ci(t) ∼ N {µc,i(t), σ2
c}

p(t) ∼ N(0, σ2
p)

εi(t) = ARMA(m,n) + wi(t)

wi(t) ∼ N(0, σ2
w)

. (3.48)

In (3.48) log2 {B(t)} is the log2-transformed background hybridization signal at probe t, ci(t)

denotes the mean effect of an expressed exon on the same array, p(t) accounts for the differ-

ences in probe affinity and εi(t) is the noise component of probe t on chip i, which follows

an autoregressive moving average process ARMA(m,n) with Gaussian white noise wi(t). The

indicator variable Ii(t) is used to add hybridization signal, i.e. Ii(t) = 1 in all exonic regions

that are assumed to be expressed and Ii(t) = 0 for all probes covering intronic or intergenic

regions and exons of genes that are non-expressed in the simulation study. This model features

additive background, multiplicative noise, probe-specific affinities and serial correlation in the
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data domain. We follow the approach of Purdom et al. (2008) for tuning the simulation pa-

rameters by rough estimates of realistic values from real data. An ANOVA model is fitted to

the Arabidopsis thaliana E2F data for this purpose. The model consists of a fixed probe effect

and a fixed group effect, either WT or E2F, nested within probe. The errors of the ANOVA

model are serially correlated and can be modeled by an ARMA(1, 1) process. They are used

for estimating the AR, MA parameters and the variance parameter of the white noise.

The values for µB and σB are determined by characterizing the distribution of background

noise empirically. This is done by applying the method described in David et al. (2006) on

the raw intensities of the E2F experiment. The method works with the intensities for probes

that do not overlap with any annotated features. Figure 3.1 shows the nonparametric density

estimate of these intensities for the E2F data. The distribution is asymmetric with a sharp

peak, corresponding to background probes, and a heavy right tail, corresponding to probes that

are targeting non-annotated transcripts. This distribution is considered as a mixture between a

normal distribution (the peak) and a second distribution which is further left unspecified (the

heavy tail, sometimes called shoulder). The mean parameter, µB, of the normal component of

the mixture is estimated by the mode of the mixture distribution and the standard deviation,

σB, by the MAD of the distribution that is obtained by mirroring the part of the mixture with

values ≤ µB about the axis x = µB. This results in the following estimates: µ̂B = 6.35 and

σ̂B = 0.15. In the simulation study µB and σB are thus set at those values.

The mean chip effect in exonic regions, µc,i(t) = µc(t) + FCi(t), is arbitrary. It is the mean

expression level of the simulated gene in the treatment group corresponding to chip i, with µc(t)

the average expression level for a certain gene over all the arrays and FCi(t) the average log2

fold change in the group of chip i. The expression standard deviation σc is set at 0.2, which

approximately equals the standard deviation of the mean expression levels between exonic re-

gions within each group in the E2F study. The standard deviation of the probe effect p(t) is set

at σp = 1.5, which corresponds to the 75% quantile of the empirical distribution of the standard

deviations of probes that target the same exonic region.

With this model we simulate Arabidopsis thaliana data for the entire first chromosome, which

is interrogated by 741760 probes. In the simulation study 3 replicates of WT plants and 3 repli-

cates of E2F plants are considered. The average hybridization signal for annotated regions is

chosen at random from the set (0, 3, 4, 5, 6, 7, 8, 9, 10, 11) with probabilities (1/15, 1/15, 1/15,
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Figure 3.1: Nonparametric density estimate of intensities in the E2F study that do not overlap with any

annotated features. The normal distribution is fitted to the left component of this mixture distribution.

Based on this fit the values for µB and σB of the background noise distribution are estimated.

1/15, 1/15, 2/15, 2/15, 2/15, 2/15, 2/15), allowing for a realistic distribution of the simulated

data. The lower values were set at lower weights so that the distribution of the simulated data

corresponds better with the empirical distribution of the raw data in annotated regions. Six

different FC levels are used (0.95, 1.5, 2, 3, 4, 5) and each of these are assigned to 100 genes.

The marginal distribution of the simulated and the real data for the annotated regions are dis-

played in Figure 3.2. The distribution of the simulated data corresponds well with the empirical

distribution of the raw data. Figure 3.3 demonstrates that the simulated data also possess a sim-

ilar serial correlation structure as the E2F data. An example of a genomic region with simulated

data is given in Figure 3.4. The top panel shows data from the simulation run, while in the

bottom panel real data from the E2F experiment is displayed for comparison. The plot shows

that the characteristics of the observed data are realistically preserved in the simulated data.
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Figure 3.2: Nonparamteric density estimate of log2-transformed raw probe intensities in annotated re-

gions for E2F data and simulated data

Figure 3.5 provides more insight into the simulation model. In the left panel multiple nonpara-

metric density estimates are displayed for simulated data of one particular exon on chromosome

1: (1) distribution when the exon is not expressed (background + noise): log2 [B(t)] + εi(t),

where Ii(t) = 0; (2) hypothetical distribution of an expressed exon when the probe effect is

negligible (background + signal + noise): log2

[
B(t) + 2ci(t)

]
+εi(t), with Ii(t) = 1, µc,i(t) = 7

and σp = 0; (3) distribution of a simulated expressed exon with probe effect (background + sig-

nal + probe + noise): log2

[
B(t) + 2ci(t)+p(t)

]
+ εi(t), using Ii(t) = 1, µc,i(t) = 7 and σp = 1.5.

For comparison reasons the same values are used for the background B(t), mean exonic signal

ci(t) and noise εi(t). The signal of the expressed exon ci(t) shifts the background distribution

towards higher values and sharpens the distribution. The additional probe effect clearly intro-

duces a huge variability among the probe intensities, which target the same exon. In the lower

panel of Figure 3.5, the distributions of the simulated probe intensities for the same exon on

different arrays are given (Ii(t) = 1, σp = 1.5, µc,i(t) = 7 for WT and µc,i(t) = 9 for E2F). The

difference in mean exon effect ci(t) on each array affects both the shape and the location of the

distribution.
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Figure 3.3: Autocorrelation plots of log2-transformed raw probe intensities for E2F data (left) and sim-

ulated data (right)
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Figure 3.4: Along-chromosome plots of a genomic region with simulated data (upper panel) and real

data from the E2F experiment (lower panel). The intensities for the WT plants are indicated in black,

those for the E2F plants in red.
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lower panel shows the distributions of the simulated probe intensities for the same exon on 6 different
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3.4.1.2 Results simulation study

In the first part of the simulation study the two approaches of the wavelet-based model are

assessed, (1) WavMix: method based on the mixture prior fitting criterion and approximate

empirical Bayes inference using Johnson curves, and (2) WavNorm: method based on the nor-

mal prior fitting criterion and empirical Bayes inference. In both approaches the MAD-based

variance estimator is used. In this study the local BFDR is controlled at the 5% level. Differ-

entially expressed transcripts are assumed to become interesting above a fold change δFC = 2

(or log2 δFC = 1). The threshold for transcript discovery is set at the 90 percentile of log2-

transformed, background-corrected and quantile-normalized simulated intensities of the non-

annotated regions in the genome. In a post-processing step, we only maintain regions consisting

of at least two consecutive probes. The performance for transcript discovery is compared with

two widely used methods: (3) the method of Kampa et al. (2004), and (4) the method of Huber

et al. (2006). For differential expression (5) an RMA combined with moderated t-test (hence-

forth simply referred to as RMA) is used as a benchmark. These methods have been reviewed

in Chapter 2.

In Table 3.1 the methods are compared in terms of positive predictive value (PPV), sensitivity

or true positive rate (TPR) and specificity (SPC). These quantities are defined as

PPV =
number of true positives

number of true positives + number of false positives
(3.49)

TPR =
number of true positives

number of true positives + number of false negatives
(3.50)

SPC =
number of true negatives

number of false positives + number of true negatives
. (3.51)

Note that SPC corresponds with 1− false positive rate (FPR). In Table 3.1 also the computation

time of the different approaches is assessed as measured on a 2× 6 Core Intel R© Xeon R© X7460,

2.66 GHzProcessors GNU/Linux server system with 128 GB RAM. The PPV, TPR and SPC

are calculated on probe-level, except for RMA which acts on gene-level. For comparison we

also tabulate the TPR for the wavelet-based functional models on gene-level: a gene is called

differentially expressed if it contains probes that are flagged as differentially expressed by the

wavelet-based methods.
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Table 3.1: Comparison of the performance of the wavelet-based methods with the Kampa, Huber and

RMA method in terms of positive predictive value (PPV), sensitivity or true positive rate (TPR), speci-

ficity (SPC) and computational time per chromosome. PPV, TPR and SPC are given at probe level

except for RMA for which they are calculated on gene level. For comparison the TPR of the wavelet-

based methods for differential expression are given both on probe level and on gene level. Note that the

RMA method heavily relies on the existing annotation while the other methods are unbiased towards

existing annotation.

Model Biased by Transcript Discovery Differential Expression Time

annotation PPV TPR SPC PPV TPR SPC (s/chr)

probe gene

WavNorm no 99.6 80.0 99.8 99.3 75.0 97.1 100 14

WavMix no 99.8 76.2 99.9 95.8 69.0 90.8 99.9 1049

Kampa no 85.0 82.4 90.5 - - - - 27

Huber no 85.3 76.7 91.5 - - - - 6321

RMA yes - - - 100 - 83.0 100 32

The wavelet-based methods outperform the Kampa method and the Huber method for transcript

discovery. They have very large values for PPV and SPC while maintaining a large TPR. The

WavMix method suffers from a slight loss in TPR compared to the WavNorm method, although

the PPV and SPC is marginally larger at the chosen threshold value. For differential expression,

the wavelet-based methods seem to be more sensitive than RMA, while still controlling well for

false positives. Among the wavelet-based methods the PPV and TPR for WavMix are clearly

smaller than for WavNorm. WavNorm is also very competitive in terms of computation time,

while the numerical optimization of the hyperparameters and the calculation of the Johnson

curves results in a much larger computation time for WavMix.

Receiver Operating Characteristic (ROC) curves for transcript discovery and differential ex-

pression are given in Figure 3.6. The TPR is plotted against the FPR. An optimal test would

detect all true positives without any false positives. The two wavelet-based approaches have a

very similar performance for transcript discovery and clearly outperform the Huber and Kampa
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methods. For differential expression the WavNorm method performs slightly better than the

WavMix method.

Figures 3.7 and 3.8 give the segmentation for transcript discovery and differential expression,

respectively, of the simulated example region shown in Figure 3.4. For clarity of exposition

the genomic region depicted in Figure 3.8 is made a little bit smaller. The top panels display

the simulated background-corrected quantile-normalized data along with the regions that are

truly expressed or differentially expressed. The bottom panels show the model tracks for the

assessed methods. The regions that are discovered by the wavelet-based methods correspond

very well with the underlying exonic structure. The Kampa method also mimics the exonic

structure, while the method of Huber can not distinguish between intronic and exonic regions.

An example of the larger sensitivity of the WavNorm method compared to the WavMix method

can be seen from Figure 3.7. The WavMix method does not discover a transcript for the fourth

gene in the region, while the WavNorm method does. Furthermore, it finds only 2 of the 4 exons

in the fifth transcribed gene, while the WavNorm method discovers 3 transcribed exons. Similar

to what was observed in Figure 2.9 the model track of the differential expression in Figure 3.8

is smoother for the WavMix method than for the WavNorm method, i.e. the wavelet coefficients

are more frequently thresholded when the mixture prior is imposed upon them.

Since the WavNorm approach provides better results than the WavMix method based on the

simulation study and is also clearly faster, we will further focus on the former approach in

what follows. In the second part of the simulation study we look more closely at the perfor-

mance of five different versions of the WavNorm method, as discussed in Section 3.2.2, (1)

WavNorm(MAD): based on the MAD estimator for the standard deviation of the errors, which

is the same WavNorm method as used in the first part of the simulation study, (2) WavNorm(j):

method using variance estimator (3.39), (3) WavNorm(jk): using variance estimator (3.38), (4)

WavNorm(b): WavNorm with bootstrap correction and (5) WavNorm(imp): method using an

improper prior on the random effect variances τm(j, k) and variance estimator (3.39). The same

threshold values for transcript discovery and differential expression as before are used. The

results in terms of PPV, TPR, SPC and computation time are given in Table 3.2. They indicate

that the performances of the WavNorm methods are very comparable. WavNorm(MAD) and

WavNorm(imp) seem to suffer slightly from a decrease in TPR. As expected, WavNorm(b), with

bootstrap correction, is computationally more demanding than the other WavNorm methods.
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bols indicate the results corresponding to Table 3.1

-

____ , ______ _______ ______ 4 _______ ----- ------- -- -- , ------ --

-

-

-

-

I * 
I I I 



62 Chapter 3. Fast wavelet-based functional models

Y
si

m
+

−
W

av
N

or
m

W
av

M
ix

K
am

pa
H

ub
er

●
●

●
●
●●

●●
●

●
●
●●

●

●●
●
●

●●

●

●●
●
●
●
●●

●

●
●
●

●
●●

●

●
●

●
●●

●
●
●

●
●

●
●
●

●
●●●

●

●●

●

●
●●
●

●

●
●
●

●

●

●●
●
●
●
●●

●●●

●

●●●
●

●●

●

●
●●

●

●
●
●

●

●

●

●

●
●
●●
●

●

●

●

●

●●
●

●

●

●
●

●
●

●

●●

●●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●●
●●

●●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●●

●

●

●
●
●

●

●

●

●●●

●

●

●

●

●

●●
●
●●

●●●
●●

●
●
●

●

●

●

●

●

●

●

●

●
●●●●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●●

●

●

●●

●

●

●
●

●

●

●
●
●

●

●●
●●●

●

●

●

●

●

●

●
●
●●●

●

●

●

●

●
●
●

●
●

●

●

●

●

●

●●

●

●

●

●●●

●

●

●

●
●
●

●

●

●

●

●
●

●
●

●

●
●
●●●

●

●

●

●

●●●

●

●

●

●

●

●
●

●
●
●●
●

●

●

●

●
●●

●
●
●

●

●●

●

●

●

●

●

●●

●

●

●
●

●●
●
●●

●

●

●

●

●●

●

●

●

●●
●

●

●

●
●
●

●

●
●

●

●

●

●

●●

●●
●

●
●

●
●
●

●

●
●●

●●

●4
6
8

10
12
14

1195000

1200000

1205000

1210000

5' 3'
3' 5'

4
6
8

10
12
14

4
6
8

10
12

4

6

8

10

−1.8
−1.6
−1.4
−1.2

−1
−0.8
−0.6
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ery. Top panel: background-corrected and quantile-normalized simulated array intensities of WT plants

(black) and E2F plants (red); boxes indicate the annotation of the expressed exons. The 3 different

replicates for WT and E2F are indicated by ◦, + and M. Bottom panels: Model tracks with grey boxes

indicating the discovered expressed transcripts for the four assessed methods.
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Figure 3.8: Along-chromosome plot of a simulated region with model tracks for differential expres-

sion. Top panel: background-corrected and quantile-normalized simulated array intensities of WT plants

(black) and E2F plants (red); boxes indicate the annotation of the differentially expressed exons. The 3

different replicates for WT and E2F are indicated by ◦, + and M. Bottom panels: Model tracks with grey

boxes indicating the discovered differentially expressed transcripts for the two wavelet-based methods.

The five approaches are further compared by means of ROC curves for transcript discovery and

differential expression, presented in Figure 3.9. This figure confirms the similar performances

for transcript discovery. For differential expression WavNorm(MAD) and WavNorm(imp) seem

to provide superior results. In practice, however, they are less sensitive than the other WavNorm

approaches when using a low FDR, e.g. the FDR of 0.05 used in Table 3.2. Based on Table 3.2

we prefer the WavNorm(j) method for the case study.

An example region of the simulated data for differential expression is displayed in Figure 3.10.

The effect of the bootstrap correction on the variance can be seen in the model tracks for the

fold change. The credible intervals in non-differentially expressed regions are much wider. The

correction has a minor effect in regions with signal. Hence, the variance is mainly underes-

timated in regions that are not of interest. This explains why the WavNorm methods without
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Figure 3.10: Along-chromosome plot of a simulated region with model tracks for differential expres-

sion. Top panel: background-corrected and quantile-normalized simulated array intensities of WT plants

(black) and E2F plants (red); boxes indicate the annotation of the differentially expressed exons. The

3 different replicates for WT and E2F are indicated by ◦, + and M. Bottom panels: Model tracks with

grey boxes indicating the discovered differentially expressed transcripts for the five different WavNorm

methods.
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Table 3.2: Comparison of the performance of five different versions of the WavNorm method in terms

of positive predictive value (PPV), sensitivity or true positive rate (TPR), specificity (SPC) and compu-

tational time per chromosome.

Model Transcript Discovery Differential Expression Time

PPV TPR SPC PPV TPR SPC (s/chr)

probe gene

WavNorm(MAD) 99.6 80.0 99.8 99.3 75.0 97.1 100 14

WavNorm(j) 98.9 82.3 99.4 98.8 82.4 98.1 100 34

WavNorm(jk) 99.0 81.8 99.5 99.0 81.0 97.8 100 35

WavNorm(b) 99.0 81.9 99.4 99.5 78.1 97.6 100 1023

WavNorm(imp) 99.2 81.5 99.6 99.9 75.7 96.9 100 34

bootstrap correction in regions of interest combined with the drastic increase in computation

time indicate that the bootstrap correction is not worth the effort in our application. The intro-

duction of the improper prior on the smoothing parameters τm(j, k) clearly imposes additional

regularization. Hence, if more smooth estimates for the fold change are preferred, one can adopt

the WavNorm(imp) method.

3.4.2 Case study: the Arabidopsis thaliana E2F tiling experiment

The tiling data are obtained by hybridizing N1 = 3 arrays for the E2F plants and N2 = 3 for

the WT plants. We remapped the PM probes to the Arabidopsis thaliana genome annotation

TAIR9 (TAIR resources can be found at http://www.arabidopsis.org/) (Swarbreck

et al., 2008). The design matrixX in (3.2) equals

X =

 1 1 1 1 1 1

1 1 1 −1 −1 −1

T

.

For large data sets, the DWT is typically stopped at a certain level J . Similar to Morris et al.

(2008), we perform the DWT down to J = 10. Hence, the father wavelet spans a region of

around 60 kb (or 60000 nucleotides), which is much larger than a typical gene of Arabidopsis

thaliana. Note that the average gene size in Arabidopsis thaliana is about 1.9 kb and large genes

http://www.arabidopsis.org/
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are defined as genes with a length > 3 kb (e.g. Meinke et al., 2003).

Early microarray publications inferred on differential expression by only considering the fold

change, with FC = 2 typically considered a worthwhile cut-off (e.g. DeRisi et al., 1996; Schena

et al., 1996). However, fold change cut-offs do not account for variability nor guarantee repro-

ducibility (McCarthy and Smyth, 2009). Most statistical methods for assessing differential

expression, on the other hand, allow for genes with small fold changes to be considered statis-

tically significant. Hence, they report significant genes that are not biologically relevant. In our

proposed method, FDR procedures for both transcript discovery and the detection of differen-

tial expression can rely on a threshold value that is driven by the biological problem at hand.

This eventually leads to results that are both statistically significant and biologically relevant.

Similar to the early microarray studies, we consider a fold change between the E2F and WT

arrays to be relevant as soon as it exceeds δFC = 2 or log2(δFC) = 1. If one wants to avoid

the use of an arbitrary threshold for the fold change, one can still use log2(δFC) = 0. With this

threshold all regions are recovered that exhibit a log2 fold change that is significantly different

from 0. Similar to most existing methods in tiling array literature for transcript discovery (e.g.

David et al., 2006; Kampa et al., 2004), we can not avoid the use of a threshold for transcript

discovery. This threshold value is obtained by applying the method described in David et al.

(2006).

Following David et al. (2006), we consider the distribution of log2-transformed background-

corrected intensities for probes that do not overlap with any annotated features (see Figure 3.11,

black dashed curve). This distribution is again a mixture between a normal distribution and

some other distribution. If the normal distribution component (solid red line in Figure 3.11)

is assumed to be the null distribution of probes that measure background intensities, then we

can derive the BFDR for the background probes. We select the background threshold δTD that

corresponds to a BFDR of 0.1%. This leads to a threshold for the mean function β1(t) of δTD =

3.7. The biologists involved in this study, however, proposed to set the threshold of the mean

function β1(t) at δTD = 4.5, based on former experiences. This approximately corresponds to

the median of the log2-transformed, background-corrected and quantile-normalized intensities,

as well as to the location of the minimum between the two modes of the distribution of these

intensities in annotated regions (see Figure 3.11). Note that with the latter δTD slightly more

conservative results are obtained. The local BFDR is controlled at 5%. In a postprocessing step,



68 Chapter 3. Fast wavelet-based functional models

2 4 6 8 10 12 14

0.
0

0.
1

0.
2

0.
3

0.
4

Intensity (log2)

D
en

si
ty

non−annotated
estimated background
annotated

µBG δTD δTD,Bio

Figure 3.11: Nonparametric density estimates of the log2-transformed background-corrected and

quantile-normalized intensities for non-annotated (black dashed curve) and annotated probes (blue

dashed curve), and estimated distribution for background probes (solid red line). The red and blue verti-

cal lines represent the threshold for transcript discovery (δTD) derived from the background distribution

and the one proposed by the biologists that participated in the study (δTD,Bio), respectively.

we only maintain regions consisting of at least two consecutive probes.

When applying the WavNorm(j) method, we find 77663 transcribed regions and 3885 differen-

tially expressed regions. Of these discovered TARs and differentially expressed TARs, 15149

and 765 do not overlap with existing annotation, respectively. They can be considered as poten-

tial discoveries that have to be biologically validated. A more detailed overview of the results

for each chromosome is given in Table 3.3.

Figure 3.12 shows the same example genomic region of chromosome 1 as shown in Figure 2.3.

The top panel consists of the log2-transformed background-corrected and quantile-normalized

E2F and WT intensities. In the middle panel the genomic coordinate and the annotation are dis-

I I 

' ' ' ' ' ' 
' ' ' ' ' ' 
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Figure 3.12: Along-chromosome plot of an unannotated region, which seems to be upregulated in E2F

plants. Array intensities of E2F plants (red) and wild type plants (black) are given in the top panel and

the 3 different replicates for WT and E2F are indicated by ◦, + and M. The bottom panels depict the

mean model track β1(t) (M track) and a track for the log2 fold change FC(t) = 2 × β2(t) (FC track).

95% credible intervals are indicated with light blue lines, while discovered transcripts and differentially

expressed regions are indicated by grey boxes on the M and FC track, respectively.
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Table 3.3: Transcript discovery and differential expression for all chromosomes of Arabidopsis thaliana

in the E2F experiment. The non-annotated regions represent those regions among the detected regions

that do not overlap with existing annotation.

Transcript Discovery Differential Expression

Chromosome Detected Non-annotated Detected Non-annotated

1 20420 3664 975 204

2 12050 2801 576 86

3 15105 2958 727 178

4 12017 2382 626 109

5 18071 3344 981 188

1− 5 77663 15149 3885 765

played. The bottom panel shows the posterior means (black lines) of β1(t) and log2-transformed

fold change FC(t) = 2×β2(t) along with 95% credible intervals (light blue lines). Discovered

transcripts and differentially expressed regions are indicated by grey boxes on the mean (M)

and fold change (FC) track, respectively. An annotated gene is transcribed to the same level

in both strains and a novel transcript is discovered, which is upregulated in E2F plants. The

discovered region spans approximately 1500 nucleotides and seems to have an exonic structure.

It is an interesting region for further biological validation.

3.5 Conclusion

In this chapter we have introduced a wavelet-based functional model for transcriptome anal-

ysis with tiling arrays. In contrast to other methods for the analysis of tiling arrays, it can

assess transcript discovery and identify differentially expressed transcripts simultaneously. It

is as powerful in detecting existing as well as novel (differentially) expressed transcripts. The

wavelet-based functional model thus exploits tiling array data to their full potential. Hence, it

can be seen as a valuable tool to assist biological researchers in further unraveling transcrip-

tional networks. In a simulation study we have shown that the proposed method is superior to

competing methods. When the normal prior distribution is imposed on the wavelet coefficients,

the method also performs very good in terms of numerical speed. Finally, its use for finding
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potential targets or biomarkers without being biased by the existing annotation has been demon-

strated on an example data set. While we have focused on the two-group design in this chapter,

possible extensions of the model for more complex designs will be discussed in Chapter 4.
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Appendix A: Fitting procedure I (WavMix) - Derivation of the

posterior density of the functional effects in the wavelet space

In the derivation we will suppress the indices for notational convenience, i.e. D(j, k) = D,

β∗(j, k) = β∗, τm(j) = τm, πm(j) = πm. The joint density f {D,β∗|τm, σ2
ε} according to the

Model (3.4) - (3.5) is given by

f
{
D,β∗|τm, σ2

ε

}
= (1− π1 − π2)MVN

(
Xβ∗, Iσ2

ε

)
δ0(β

∗
1 , β

∗
2)

+π1MVN
(
Xβ∗, Iσ2

ε

)
N(0, τ1σ

2
ε ) δ0(β

∗
2)

+π2MVN
(
Xβ∗, Iσ2

ε

)
N(0, τ1σ

2
ε )N(0, τ2σ

2
ε ).

The marginal density is obtained by integrating out the functional effects from the joint density,

resulting in (e.g. Verbeke and Molenberghs, 2000)

f
{
D|τm, σ2

ε

}
=

∫
β∗1

∫
β∗2

f
{
D,β∗|τm, σ2

ε

}
dβ∗2dβ

∗
1

= (1− π1 − π2)MVN
(
0, Iσ2

ε

)
+π1MVN

(
0, Iσ2

ε +X1X
T
1 τ1σ

2
ε

)
+π2MVN

(
0, Iσ2

ε +X2X
T
2 τ2σ

2
ε

)
.
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The posterior density becomes

f
{
β∗|D, τm, σ2

ε

}
=

f {D,β∗|τm, σ2
ε}

f {D|τm, σ2
ε}

m

f
{
β∗|D, τm, σ2

ε

}
=

(1− π1 − π2)MVN (Xβ∗, Iσ2
ε ) δ0(β

∗
1 , β

∗
2)

f {D|τm, σ2
ε}

+
π1MVN (Xβ∗, Iσ2

ε ) N(0, τ1σ
2
ε ) δ0(β

∗
2)

f {D|τm, σ2
ε}

+
π2MVN (Xβ∗, Iσ2

ε ) N(0, τ1σ
2
ε )N(0, τ2σ

2
ε )

f {D|τm, σ2
ε}

m using Bayes’ rule

f
{
β∗|D, τm, σ2

ε

}
=

(1− π1 − π2)MVN (0, Iσ2
ε ) δ0(β

∗
1 , β

∗
2)

f {D|τm, σ2
ε}

+
π1MVN (0,V 1σ

2
ε ) N(β̂1, σ

2
β1

) δ0(β
∗
2)

f {D|τm, σ2
ε}

+
π2MVN (0,V 2σ

2
ε ) N(β̂1, σ

2
β1

)N(β̂2, σ
2
β2

)

f {D|τm, σ2
ε}

,

with

V 1 = I +XT
1X1τ1,

V 2 = I +XT
1X1τ1 +XT

2X2τ2,

β̂1 =
{
XT

1X1 + 1/τ1
}−1

XT
1D,

β̂2 =
{
XT

2X2 + 1/τ2
}−1

XT
2D,

σ2
β̂1

= σ2
ε

{
XT

1X1 + 1/τ1
}−1

,

σ2
β̂2

= σ2
ε

{
XT

2X2 + 1/τ2
}−1

.

Let the posterior probabilities of non-zero wavelet coefficients at level j for the effect function

parameters be denoted by

ω1 =
π1g1 (D)

f (D)
,

ω2 =
π2g2 (D)

f (D)
.
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with

g1 (D) = MVN
(
0,V 1σ

2
ε

)
,

g2 (D) = MVN
(
0,V 2σ

2
ε

)
.

The posterior density is then given by

f
{
β∗|D, τm, σ2

ε

}
= (1− ω1 − ω2)δ0(β

∗
1 , β

∗
2)

+ω1N(β̂1, σ
2
β̂1

)δ0(β
∗
2) + ω2N(β̂1, σ

2
β̂1

)N(β̂2, σ
2
β̂2

).

We thus find

β∗1 |D, τ1, σ2
ε ∼ {ω1 + ω2}N

(
β̂∗1 , σ

2
β̂1

)
+ {1− ω1 − ω2} δ0(β∗1),

β∗2 |D, τ2, σ2
ε ∼ ω2 N

(
β̂∗2 , σ

2
β̂2

)
+ {1− ω2} δ0(β∗2).

Appendix B: Fitting procedure II (WavNorm) - Derivation of

the posterior distribution of the functional effects in the wavelet

space

Within the wavelet space, the wavelet coefficients Di(j, k) are assumed to be independent.

When the variances σ2
ε (j, k) and smoothing parameters τm(j, k) are assumed to be known, the

posterior of β(j, k) only involves D(j, k), σ2
ε (j, k) and τm(j, k). For notational convenience,

we will suppress the index (j, k).
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p
{
β∗|D, τ , σ2

ε

}
=

p {β∗,D|τ , σ2
ε}

p {D|τ , σ2
ε}

m Equations (3.27) - (3.28)

p
{
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ε

}
∝

{
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ε )
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[
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2σ2
ε

]
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2
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ε
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)
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Appendix C: Fitting procedure II (WavNorm) - Estimation of

the variance components by empirical Bayes

For notational convenience we will suppress the index (j, k) in the derivation. We start from

2× the marginal log-likelihood given in Equation (3.33):

−2× l(D|τ ,σ2
ε) ∝

J∑
j=0

Kj∑
k=1

(
q∑

m=1

{
log
[
XT

mXmτm(j, k) + 1
]}

+N log
[
σ2
ε (j, k)

]
+

1

σ2
ε (j, k)

DT (j, k)

[
I −

q∑
m=1

XmX
T
m

XT
mXm + 1/τm(j, k)

]
D(j, k)

)

The smoothing parameter τm(j, k), given σ2
ε (j, k), can be estimated by solving

∂l(D|τ ,σ2
ε)

∂τm
= 0,

which becomes

XT
mXm

XT
mXmτm + 1

− DTXmX
T
mD[

XT
mXm + 1/τm

]2
τ 2mσε

= 0

(
XT

mXm

)2
τmσ

2
ε +XT

mXmσ
2
ε −DTXmX

T
mD = 0.

Hence,

τm =
DTXmX

T
mD(

XT
mXm

)2
σ2
ε

− 1

XT
mXm

.

By definition τm ∈ [0,∞]. Hence, the MML estimator (after reintroducing the index (j, k))

becomes

τ̂m(j, k) =

[
DT (j, k)XmX

T
mD(j, k)(

XT
mXm

)2
σ2
ε (j, k)

− 1

XT
mXm

]
+

.

The MML-estimator of σ2
ε (j, k), given the smoothing parameters τm(j, k), is obtained by solv-

ing
∂l(D|τ ,σ2

ε)

∂σ2
ε (j, k)

= 0,

which becomes
N

σ2
ε (j, k)

− D
T (j, k)V −1(j, k)D(j, k)

σ4
ε (j, k)

= 0.
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We thus find

σ̂2
ε (j, k) =

DT (j, k)V −1(j, k)D(j, k)

N
.





Chapter 4

Tiling array expression studies with

flexible designs

In the last few years the use of tiling microarrays for whole-genome transcriptome analysis has

become well established. Many studies have shown them to be a convenient tool for explor-

ing and unraveling the complex genome-wide transcriptional landscape of higher organisms, in

which not only protein-coding genes, but also non-coding RNAs play an important role (e.g.

Yamada et al., 2003; Kampa et al., 2004; Schadt et al., 2004; Stolc et al., 2005). The methods

that have been developed for transcriptome analysis with tiling arrays either focus on segmenta-

tion and transcript discovery within a single biological condition (Toyoda and Shinozaki, 2005;

Zeller et al., 2008; Nicolas et al., 2009; Munch et al., 2006), or on the detection of differential

expression between two distinct conditions (Piccolboni, 2008; Otto et al., 2012). The wavelet-

based method discussed in Chapter 3 performs these two tasks simultaneously (see also Clement

et al., 2012). The focus in tiling array studies has recently shifted towards more complex de-

signs, such as studies with more than two conditions (Andriankaja et al., 2012) and studies

with several experimental factors (Okamoto et al., 2010). Furthermore, it is recognized that

expression is a dynamic rather than a static phenomenon. Hence, more and more time-course

experiments are designed to provide insights into the whole-genome transcript regulation of

species during different developmental stages or external periodic changes in the environment

(Hazen et al., 2009; Granovskaia et al., 2010).

To our knowledge, no general methodologies for the analysis of tiling array studies with more

79
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complex designs have yet been proposed in literature. Instead, most tiling array analysis pipelines

in current studies are very specific for the particular design and research question at hand (e.g.

Granovskaia et al., 2010; Hazen et al., 2009; Okamoto et al., 2010; Samanta et al., 2006; Assars-

son et al., 2008). Their approach also often consists of applying methods designed for classical

microarrays that heavily rely on existing annotation when summarizing probes to probesets (e.g.

Naouar et al., 2009; Andriankaja et al., 2012; Okamoto et al., 2010).

The wavelet-based methodology of Chapter 3 was initially developed to simultaneously per-

form transcript discovery and test for differential expression in a two-group design, while re-

maining unbiased by existing annotation. However, the modeling framework is flexible and can

be extended to cope with more complex designs. This is done by adapting the model design

matrix and the probe-wise inference procedure in an appropriate way. The study designs that

we will consider are time-course studies, studies with more than two conditions and multiple-

factor studies. Section 4.1 describes the methodology for wavelet-based trancriptome analysis

for more flexible designs. Firstly, the model extension and associated parameter estimation is

discussed. Secondly, we describe the statistical inference method for the detection of transcrip-

tional effect regions. The flexibility of the method is illustrated on three case studies in Section

4.2.

4.1 Wavelet-based transcriptome analysis in more flexible

designs

4.1.1 Extending the wavelet-based model towards more flexible designs

First we reconsider Model (3.2), which is the functional model in the genomic data space. In

matrix form, with the notation of Chapter 3, it is given by

Y = XB +E. (4.1)

In the model that we introduced for transcript discovery and testing for differential expression

(Chapter 3) the design matrixX has dimensions N × 2 and is constructed as

X =

 1 1

1 −1

 ,
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where the upper row represents the dummy coding for the N1 arrays in the group under condi-

tion 1 and the lower row is the dummy coding for the N2 arrays in the group under condition 2.

The 2 × T effect function matrix B relates to the probe-wise effect functions β1(t) and β2(t)

on the respective rows. Column 1 of X will be used to find regions with a mean expression

level above some threshold, whereas the coding in column 2 allows for assessing differential

expression between the two conditions. Note that the coding in X implies that the two effect

functions are estimated orthogonally if the study design is balanced, i.e. N1 = N2. This can be

seen from

XTX =

 N/2 0

0 N/2

 ,

with N1 = N2 = N
2

, for a balanced design.

As described in Chapter 3, the model in the original data space (4.1) is transformed to the

wavelet space to obtain the wavelet-based model (3.3). This wavelet-based model is fitted

using the WavNorm(j) method, where a normally distributed prior is imposed on the effect

functions in the wavelet space, and where the estimators of the error variances σ2
ε (j) depend on

the wavelet scale j, but not on the location k within the same wavelet scale. It was demonstrated

in Chapter 3 that the estimated smoothing parameters τ̂m(j, k) induce a regularization of the

wavelet coefficients of the effect functions. This regularization leads to a denoised expression

signal in the original data space, retaining the main features.

More flexible designs can be analyzed with the method by adapting the design matrix X in an

appropriate way. Firstly, the parameterization should be tailored for answering the specific re-

search questions. Secondly, it must be compatible with the fast algorithms described in Chapter

3. This second argument comes down to preserving the orthogonality of X . In the remain-

der of this section we first focus on general time-course designs and single-factor designs for

more than 2 groups. Next, specific time-course designs for assessing circadian rhythms in the

transcriptome are considered. Finally, we describe an adaptation for non-orthogonal designs,

typically encountered in multi-factor studies.

4.1.1.1 Time-course designs

In tiling array time-course experiments one is often interested in the detection of pairwise differ-

entially expressed regions between any two time points. In addition, one may aim at detecting
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effects of transcriptional activity in time, e.g. linearly increasing or decreasing transcriptional

expression of certain regions. We deal with these two objectives by modeling orthogonal poly-

nomials of the time points. This approach has also been used in the context of quantitative trait

associated expression studies using traditional microarrays (Qu and Xu, 2006). Other coding

systems for the design matrix X are possible as well. However, orthogonal polynomials are

particularly suited in this setting because the model parameters are directly interpretable as lin-

ear, quadratic or higher-order effects in time. Moreover, the orthogonality enables the use of

the fast algorithms of Chapter 3.

Consider a time-course experiment with whole-genome expression levels measured at q time

points. Let N be the total number of arrays. The numbers of arrays used at each time point

are represented by N1, . . . , Nq, with N1 + . . .+Nq = N . Suppose the experiment is balanced,

i.e. N1 = . . . = Nq, with equidistant time points. The design matrix X in Model (4.1) has

dimension N × q and can be written as

X =


1 ψ1(X1) ψ2(X1) · · · ψq−1(X1)

1 ψ1(X2) ψ2(X2) · · · ψq−1(X2)
...

...
...

...
...

1 ψ1(Xq) ψ2(Xq) · · · ψq−1(Xq)

 , (4.2)

where X1, . . . ,Xq are the N1, . . . , Nq-valued vectors that correspond to the q respective time

points in the experiment. In (4.2) each function ψj(x) is a polynomial of degree j, with j =

0, . . . , q − 1, and is orthogonal to ψk(x) (k = 0, . . . , q − 1) if j 6= k. Note that each 1 in the

first column of X corresponds to ψ0(X i) = 1 (i = 1, . . . , q). The orthogonality of X can be

verified by

XTX =



N 0 0 0 . . . 0

0
∑N

i=1 ψ
2
1(Xi) 0 0 . . . 0

0 0
∑N

i=1 ψ
2
2(Xi) 0 . . . 0

...
...

...
. . .

...
...

0 0 0 . . .
∑N

i=1 ψ
2
q−2(Xi) 0

0 0 0 . . . 0
∑N

i=1 ψ
2
q−1(Xi)


. (4.3)

With this design matrix a q × T matrix B for the q effect functions is associated. The first

row of B corresponds with the overall mean expression level over all time points, while rows

2 until q are associated with a linear, quadratic, cubic, . . . , (q − 1)-th order polynomial effects

between the time points. The fitted expression levels at each time point are obtained by a linear
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combination of the effect functions in accordance with Model (4.1). This allows for a straight-

forward comparison between any two time points. When dealing with non-balanced and non-

equidistance designs, a simple procedure can be applied for obtaining orthogonal polynomials;

see Narula (1979).

When inferring on linear combinations of functions, it is desirable to induce the same degree

of smoothing for each functional effect. This implies the estimation of one general smoothing

parameter τ(j, k), instead of a separate τm(j, k) for each effect function (m = 1, ..., q). To retain

the closed-form solutions needed for the fast algorithms of Chapter 3, however, the diagonal

elements of XTX should be identical. This can be obtained by normalizing each column

vector ofX , resulting in the normalized design matrix, sayX ′. Hence,

X ′TX ′ =



1 0 0 0 . . . 0

0 1 0 0 . . . 0

0 0 1 0 . . . 0
...

...
... . . . ...

...

0 0 0 . . . 1 0

0 0 0 . . . 0 1


= Iq, (4.4)

where Iq is an q × q identity matrix. For this orthonormal design matrix X ′ it can be shown

that the common smoothing parameter is estimated by

τ̂(j, k) =

[
DT (j, k)X ′X ′TD(j, k)

qσ2
ε (j, k)

− 1

]
+

. (4.5)

The derivation of (4.5) is given in Appendix A.

Although design matrix (4.2) is also suitable for non-ordered single-factor studies, alternative

parameterizations can be used, such as the Helmert contrast design matrix. Helmert contrasts

are designed to compare the mean expression at a specific time point with the overall mean over

all preceding time points. The Helmert contrast design matrix is given by
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X =



1 −1 −1 −1 . . . −1 −1

1 1 −1 −1 . . . −1 −1

1 0 2 −1 . . . −1 −1

1 0 0 3 . . . −1 −1
...

...
...

... . . . ...
...

1 0 0 0 . . . q − 2 −1

1 0 0 0 . . . 0 q − 1


. (4.6)

Helmert contrast design matrices also possess the orthogonality property, i.e.

XTX =



N 0 0 0 . . . 0

0
∑2

i=1Ni 0 0 . . . 0

0 0 2
∑3

i=1Ni 0 . . . 0
...

...
... . . . ...

...

0 0 0 . . . (q − 2)
∑q−1

i=1 Ni 0

0 0 0 . . . 0 (q − 1)
∑q

i=1Ni


. (4.7)

Similar to the polynomial parameterization, the Helmert contrast design matrixX still needs to

be normalized if the same degree of smoothing for all functional effects is desired.

4.1.1.2 Designs for circadian rhythms

We now consider the detection of circadian rhythms in the transcriptome of an organism, based

on an equally spaced time-course experiment. It is known that many organisms, e.g. photosyn-

thetic organisms, anticipate changes in the daily environment with an internal oscillator, called

the circadian clock (e.g. Hazen et al., 2009). The periodic expression changes that are governed

by this oscillator are called the circadian rhythms in the transcriptome. An orthogonal basis sys-

tem that is well suited to model circular effects is the Fourier basis system. The design matrix
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is now given by

X =



1 sin(0) cos(0)

1 sin(2π
q

) cos(2π
q

)

1 sin(4π
q

) cos(4π
q

)
...

...
...

1 sin(2π − π
q

) cos(2π − π
q

)


. (4.8)

Again the separate effect functions can be estimated orthogonally, i.e.

XTX =


N 0 0

0 q 0

0 0 q

 . (4.9)

To induce the same degree of smoothing for all effect functions,X can again be normalized as

described previously.

4.1.1.3 Non-orthogonal designs

Design matrices for two- or multiple-factor designs are typically non-orthogonal and are not

compatible with the fast algorithms presented in Chapter 3. This would lead to undesirably

increased computation time for parameter estimation. This problem can be overcome by apply-

ing the Gram-Schmidt process to orthogonalize X and estimating the model parameters using

the orthogonalized design matrix. The Gram-Schmidt orthogonalization comes down to a QR-

decomposition (Golub and Van Loan, 1996) of X into an upper-triangular matrix X tri and

an orthogonal matrix Xorth, which is subsequently used to fit the model in the wavelet space.

Upon estimation, the parameters are first backtransformed to the original data space using the

IDWT. Next, a second backtransformation is needed to obtain the parameter estimates for the

originalX . This is done by premultiplication with (XT
orthX)−1. In the original space the effect

functions are correlated. Their variance-covariance matrix is given by

{
(XT

orthX)−1
}T

Var
[
β̂(t)

] {
(XT

orthX)−1
}
, (4.10)

where β̂(t) is the q-valued column vector (β̂1(t), β̂2(t), . . . , β̂q(t))
T .

Because the Gram-Schmidt process performs a linear transformation of the original predictor

variables, the least squares solution after fitting a linear model based on the original predictors
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and the orthogonalized design matrix are equivalent. For regularization purposes we introduced

a normally distributed prior on the parameters of the effect functions. The resulting shrinkage

estimators are influenced by transforming the design matrix. This is clear from the expression

of the smoothing parameter

τ̂m(j, k) =

[
DT (j, k)Xorth,mX

T
orth,mD(j, k)(

XT
orth,mXorth,m

)2
σ2
ε (j, k)

− 1

XT
orth,mXorth,m

]
+

, (4.11)

which has a non-linear relationship withXorth,m. However, the high-dimensionality of the data

justifies this sacrifice as the available closed-form solutions provide a tremendous decrease in

the computational complexity of the algorithms for parameter estimation.

4.1.2 Statistical inference: detection of transcriptional effect regions

The goal of the statistical inference procedure is the detection of genomic regions that show

changes in their transcriptional activity according to the effect under study, which we call tran-

scriptional effect regions. Depending on the study design and the research objective, either the

parameters themselves or a function of the parameters are used to detect transcriptional effect

regions. Hence, the effect of interest can be represented by G {β(t)}, where G is a linear or

non-linear function of the parameters. If the parameters themselves are used for inference, G is

equal to the identity function.

For each genomic location t, G {β(t)} is compared to a threshold value δ, which can be chosen

by the researcher. The Bayesian FDR procedure described in Chapter 3 is adopted to evaluate

statistical significance. This may be written as

BFDRG(t) = Pr {G {β(t)} < δ|Y } (4.12)

for positive contrasts, e.g. overexpression in differential expression analysis, and as

BFDRG(t) = Pr {G {β(t)} > −δ|Y } (4.13)

for negative contrasts, e.g. underexpression in differential expression analysis.

If G {β(t)} can be written as a linear combination of the effect functions β(t), say Lβ(t),

Equations (4.12) and (4.13) only involve the calculation of the probability of univariate normally

distributed random variables. If G {β(t)} is a non-linear function of the β(t) functions this is

not the case. In that situation BFDRG(t) can be approximated by simulation.
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For general time-course designs one may be interested in detecting genomic regions that show a

linear or quadratic trend. In this situation G {β(t)} is the effect function β(t) that corresponds

with the linear term ψ1(X) or the quadratic term ψ2(X) in (4.2). On the other hand, if interest

lies in the detection of differentially expressed regions between different time points, inference

is performed on each row of LB = ZXB. This is a q(q−1)
2
× T matrix, with Z a q(q−1)

2
× N

contrast matrix corresponding to the q(q−1)
2

pairwise comparisons between two time points.

In circadian rhythm designs the sine and the cosine effect functions are combined to give the

amplitude A(t) of the circadian rhythm per probe position, i.e.

G {β(t)} = A(t) =
√
β2
2(t) + β2

3(t). (4.14)

Based on the size of A(t) circadian effect regions can be detected. Because of the non-linear

dependence of A(t) on the β(t)’s, BFDRG(t) is approximated through simulation. In each

simulation step we sample from the normally distributed estimated parameters of the sine and

cosine effect functions and calculate Asim(t). BFDRG(t) is now estimated by the proportion

of simulations for which Asim(t) < δ.

In the case of non-orthogonal designs in multiple-factor studies, there are several choices of

G {β(t)}, depending on the study objective. The idea remains the same, however.

4.2 Three case studies

In this section the use and flexibility of the extended wavelet-based modeling approach is illus-

trated in three case studies for transcriptome analysis with different experimental set-ups.

4.2.1 Case study 1: Time-course experiment

The first data set consists of a tiling array expression study for identifying the molecular events

associated with early leaf development of the plant species Arabidopsis thaliana (Andriankaja

et al., 2012). This study had two main goals. The researchers wanted to unravel the underlying

mechanisms of the transition from cell division to cell expansion, while they also focused on the

study of the transition from non-photosynthetic to photosynthetic leaves. Trancriptome analysis

for six developmental time points (day 8 to day 13) was conducted with AGRONOMICS1 tiling
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arrays (Rehrauer et al., 2010), with three biological replicates per time point. Primarily, the

detection of differentially expressed regions between any two pairs of developmental time points

was studied. This specific study design, however, also allows for the detection of expression

regions that change linearly over time.

4.2.1.1 Pairwise comparison

Figure 4.1 shows an example of a genomic region on chromosome 1 of Arabidopsis thaliana

found to be differentially expressed between different time points with the wavelet-based method.

The threshold value used here is δFC = 1.2. This choice allows to detect small differences in

mean expression between two days. The expression of gene AT1G04350 clearly increases from

day 8 to day 13. For the most significant contrasts, especially between days 13 and 8, the

detected regions clearly match with the exons of this gene. Between two consecutive days,

however, the difference between the fitted expression functions is not always large enough to

completely mimic this exonic structure, e.g. between day 9 and day 8.

The differentially expressed regions between any two pairs of days, detected by the wavelet-

based analysis, are evaluated against the differentially expressed genes reported by the RMA

method (Irizarry et al., 2003). This is done by comparing the results of a gene set enrichment

analysis (GSEA) based on both methods. GSEA is an analytical method that extracts biological

insight from expression data by focusing on gene sets or groups of genes that share a com-

mon biological function, chromosomal location, or regulation (Subramanian et al., 2005). By

mapping the genomic regions found by the wavelet-based method to the Arabidopsis thaliana

TAIR9 annotation (Swarbreck et al., 2008), a list of genes is created for this method. The

enrichment analysis is conducted with the Plaza tool (Proost et al., 2009). It reveals a strong

overlap in the biological processes for which the genes detected by both methods encode. A

total of 483 enrichments are identified using both gene sets of which 360 common enrichments

are shared. The RMA gene list has 75 specific enrichments, while the wavelet-based gene list

has 48.

The genes for which similar enrichments are found between the two methods depend on the ex-

isting genome annotation. However, with the wavelet-based method also non-annotated differ-

entially expressed regions can be discovered, which is not possible with the RMA method. Se-

lected regions were validated with quantitative real-time reverse transcription polymerase chain
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Figure 4.1: Fitted differential expression effect for the genomic region of gene AT1G04350 on the

forward strand of chromosome 1, between selected pairs of developmental time points varying from

day 8 (D8) to day 13 (D13). The grey rectangles indicate the regions showing a significant differential

expression effect (FDR = 0.05). The three replicates are indicated by ◦, + and M, while the different

days are represented by different colors: black (D8), red (D9), green (D10), blue (D11), cyan (D12) and

magenta (D13).
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reaction (qRT-PCR) by Megan Andriankaja, Department of Plant Systems Biology, Flemish

Institute of Biotechnology. This is a molecular technique that is often used in biological valida-

tion studies to quantify messenger RNA or non-coding RNA in cells or tissues. The regions for

validation are chosen based on the following criteria:

1. Region is not in or near an exon or promoter from an annotated gene.

2. Longer regions containing more differentially expressed probes are preferentially se-

lected.

Table 4.1: Overview of non-annotated regions selected for qRT-PCR validation. Coordinates on the

Arabidopsis thaliana genome are presented in the first four columns. The Contrast column gives the pair

of days for which the comparison is made; WavNorm FC gives the FC estimated by the wavelet-based

model average over the probes along the whole transcript; qRT-PCR indicates whether the differential

expression is confirmed by qRT-PCR, as well as its directionality.

Chromosome Strand Start End Contrast WavNorm FC qRT-PCR

5 forward 1042594 1042866 D13-D8 −2.83 < 0

4 reverse 7642124 7643140 D13-D8 −1.83 no DE

1 forward 2407636 2408052 D10-D9 2.02 > 0

1 forward 17392521 17392937 D10-D9 1.58 > 0

1 reverse 17391545 17391961 D10-D9 0.99 > 0

1 reverse 16115545 16115929 D13-D8 −2.68 < 0

5 forward 1042610 1042866 D10-D9 −0.87 < 0

2 forward 17224523 17224779 D10-D9 −0.87 > 0

1 reverse 29649701 29649956 D13-D8 −1.84 < 0

2 reverse 3326499 3326724 D13-D8 −0.74 < 0

4 forward 10180294 10180518 D10-D9 −0.62 < 0

4 forward 13716555 13716779 D10-D9 −0.60 > 0

Using these criteria 12 regions are selected and qRT-PCR analysis is performed. Note that the

RNA material used for the qRT-PCR analysis is extracted from different plants of the same ex-

periment as the RNA extracted for the tiling array analysis. Of the 12 regions, 11 are confirmed

to contain differentially expressed transcripts during the time-course analysis and 1 region has
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no detectable transcriptional products. Of these 11 regions, 9 regions show fold changes in the

same direction as previously identified from the tiling arrays, while 2 regions show fold changes

in the opposite direction. These 2 regions, however, also have the lowest estimated fold changes

in the wavelet-based analysis. The results are summarized in Table 4.1.

4.2.1.2 Linear and quadratic time effects

In addition to a pairwise comparison analysis, the wavelet-based functional model with the

orthogonal polynomial design matrix is also useful for detecting genes with linear and quadratic

expression patterns over time. In fact, the estimated parameters now give direct interpretations

in terms of the different order time effects, such as linear or quadratic effects. Some example

plots of genes from the forward strand of chromosome 1 with a clear linear effect are shown in

the upper panels of Figure 4.2. These genes overlap with two of the top detected regions with

the largest linear time effect for chromosome 1. The means of the probe-wise linear time effect

parameter estimates in these regions are 1.08 and -1.16, respectively.

The lower panels of Figure 4.2 show two genes with a strong quadratic effect. Note that the fitted

probe-wise log2 intensities at the different time points (orange lines) are clearly closer to the

mean fitted log2 intensities over all the probes in the whole detected region at these time points

(green line) in comparison to the corresponding observed probe-wise log2 intensities. This can

be explained from the fact that in the wavelet domain strength is borrowed from neighboring

probes providing a more reliable estimate for each probe-wise effect.

The upper panel of Figure 4.3 shows an along-chromosome plot with the estimated linear time

effects close to gene AT1G62500. The negative sign of the estimated parameters implies a

decreasing effect over time, which was also seen in the upper right panel of Figure 4.2. More

specifically, the effect at probe t is β̂1(t) × time. The lower panel of Figure 4.3 shows regions

with a significant quadratic time effect overlapping with gene AT1G16410. The quadratic effect

seen in the lower left panel of Figure 4.2 translates into a positive value for β̂2(t).

By constructing a linear combination of the fitted polynomial effect functions β̂m(t) according

to the design matrix X , the fitted log2 intensities at the different time points can be assessed.

Hence, transcript discovery at each time point can be assessed within the same analysis. Fig-

ure 4.4 gives the corresponding along-chromosome plots for the same linearly decreasing gene
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Figure 4.2: Example plot for two genes showing a linearly increasing (upper left) and decreasing (upper

right) mean log2 intensity level and two genes showing a strong quadratic effect over the 6 days in the

time course (lower panels). The dotted black lines represent the mean observed log2 expression for the

probes over the three biological replicates at the different time points. The dotted purple line is the mean

observed log2 expression over all the probes in the region. The orange lines are the probe-wise fitted

log2 expression values when only considering the intercept and the linear time effect in the model (upper

panels) or considering the intercept, the linear and the quadratic time effect in the model (lower panels).

The green line gives the corresponding mean fitted log2 expression values at the different time points

over all the probes in the region.
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Figure 4.3: Fitted linear time effect for the genomic region of gene AT1G62500 (upper panel) and fitted

quadratic time effect for the genomic regions of gene AT1G16410 (lower panel) on the forward strand

of chromosome 1. The three replicates are indicated by ◦, + and M, while the days are represented

by colors: black (D8), red (D9), green (D10), blue (D11), cyan (D12) and magenta (D13). The grey

rectangles indicate the regions showing a significant linear (upper panel) or quadratic (lower panel) time

effect (FDR = 0.05), while the black line corresponds with the estimated linear or quadratic effect

function.
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Figure 4.4: Fitted log2 intensities per time point of the genomic region of gene AT1G62500 on the

forward strand of chromosome 1. The three replicates are indicated by ◦, + and M, while the days are

represented by colors: black (D8), red (D9), green (D10), blue (D11), cyan (D12) and magenta (D13).

The grey rectangles indicate the regions showing a significant mean expression (FDR = 0.05).
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AT1G62500 as depicted in the upper panel of Figure 4.3. The grey rectangles in the plots in-

dicate the discovered regions with mean log2 intensities significantly above a certain threshold,

which was chosen according to the procedure described in Chapter 3. The same decreasing

trend is also obvious from this figure.

4.2.2 Case study 2: Circadian rhythms

The second case study concerns an expression analysis to examine circadian rhythms in Ara-

bidopsis thaliana. The aim of the study was to explore the genome-wide extent of the rhythmic

expression patterns governed by the internal oscillator present in these plants. In this experi-

ment, 12 samples were collected from Arabidopsis thaliana seedlings that were placed under

a 12 h light / 12 h dark cycles regime. Every 4 hours 2 samples were taken and hybridized to

the Affymetrix AtTile 1.0F and 1.0R tiling arrays. The experiment is described in more detail

in Hazen et al. (2009).

Figure 4.5 shows an example of the model fit for gene AT2G46830 with a strong circadian

effect. This gene has been previously described and is known under the name CIRCADIAN

CLOCK ASSOCIATED1 (CCA1). Besides the circadian effects, no other time-dependent effects

are considered in the model. Therefore, the fitted log2 intensities for time points at identical

moments in the 24h day/night cycle coincide. This strong circadian effect is confirmed by

Figure 4.6, which shows the fitted effect close to gene CCA1. This effect corresponds with the

amplitude of the circadian rhythm as estimated by the model, i.e. Â(t) =

√
β̂2
2(t) + β̂2

3(t).

The performance of the wavelet-based method for circadian rhythms is further tested by exam-

ining previously annotated and circadian clock associated genes on the forward strand of the

Arabidopsis thaliana genome (see Gardner et al., 2006; Hazen et al., 2009). The results are

shown in Table 4.2. Except for TIME FOR COFFEE (AT3G22380), a considerable overlap

is found between all these clock-associated genes and the genomic regions for which a circa-

dian effect is detected significantly above the threshold value log2(1.1). They also have a quite

large maximum estimated effect or amplitude size, except TIME FOR COFFEE and ZEITLUPE

(AT5G57360). These latter two genes are the only genes from the list that are not among the

top 20 genes with the strongest estimated circadian effect for the chromosome on which they

are located. The gene TIME FOR COFFEE is known as a clock gene that does not cycle at
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Figure 4.5: Example plot for gene AT2G46830, better known as CIRCADIAN CLOCK ASSOCIATED1,

showing a clear circadian rhythm effect of the mean log2 intensity level over the 48h time course. The

dotted black lines represent the observed log2 expression for the probes at the different time points. The

dotted purple line is the mean observed log2 expression over all the probes in the region. The orange

lines are the probe-wise fitted log2 expression values, while the green line gives the corresponding mean

fitted log2 expression values at the different time points over all the probes in the region.

the transcriptional level (Ding et al., 2007). Hence, it is as expected that the overlap between

detected region and gene annotation is very small, as is the effect size. The gene ZEITLUPE

is reported as having weak rhythms at the transcriptional level (Gardner et al., 2006). This is

confirmed by the small maximum effect size, while still showing a considerable overlap of the

significant region with the existing annotation. Hence, the results of Table 4.2 are in line with

existing literature.



4.2. Three case studies 97

D
at

a
F

R
A

m
pl

itu
de

●

●
●

●

●

●

●●
●●●●

●

●●

●

●●

●
●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●
●
●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

●●

●

●

●●

●

●

●

●

●●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●●

●
●●●●

●●
●
●

●

●
●

●●

●

●

●

●

●

●
●

●

●

●

●●●●

●●

●

●

●

●●

●

●

●●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●
●

●

●
●
●

●

●
●

●

●

●

●
●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●
●
●

●

●●
●

●

●

●
●

●

●
●●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●
●
●

●

●

●

●
●

●

●

●

●

●

●●
●

●●
●
●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●
●
●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●
●

●
●
●

●

●

●

●

●●

●

●
●

●

●
●
●

●●

●

●

●

●

●●

●

●

●●●

●

●
●

●

●

●

●

●

●
●

●
●
●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●●
●

●

●●●
●●

●●

●
●

●

●

●

●
●

●
●

●●

●

●

●

●
●
●

●

●●●

●
●●

●

●

●

●●

●

●

●●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●
●

●●

●

●

●

●
●

●

●

●

●
●

●

●

●

●●

●

●●
●

●

●

●

●
●

●
●
●

●●

●
●●●●

●

●

●
●●●●

●

●

●
●
●

●

●

●●

●●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●
●●

●●

●

●

●

●

●

●

●
●
●

●

●
●
●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●
●
●●

●

●
●

●

●●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●
●

●

●
●●●●

●

●

●

●

●

●

●
●●

●

●

●

●
●
●

●

●

●

●

●

●

●

●●

●

●

●

●●
●

●
●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●
●

●

●

●●●●●

●

●
●

●

●

●

●
●

●

●

●●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●●

●

●

●●●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●
●
●

●

●

●

●

●
●●

●

●

●
●

●

●

●

●
●

●

●
●●

●

●

●

●

●

●
●

●●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●
●
●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●●

●

●
●

●

●
●
●

●

●

●

●

●

●

●

●

●●● ●●

● ●
●●

●

●
●

●●
●

●

●

●

●

●

●
●

●

●●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●●

●

●●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●
●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●
●
●

●

●

●

●●●

●●

●
●
●
●●

●

●

●
●

●●

●

●
4

6

8

10

12

14

19243000

19244000

19245000

19246000

19247000

19248000

19249000

19250000

5' 3'

3' 5'

0

1

2

3

4

AT2G46820 AT2G46830

AT2G46840

Figure 4.6: Fitted circadian effect for the genomic region of gene AT2G46830 on the forward strand of

chromosome 2. On the vertical axis the amplitude of the circadian rhythm Â(t) =
√
β̂22(t) + β̂23(t) is

given. The grey rectangles indicate the regions showing a significant circadian effect (FDR = 0.05).

The two replicates are indicated by ◦ and M, while the samples in the 12 h light / 12 h dark cycles regime

are represented by different colors.

4.2.3 Case study 3: Non-orthogonal two-factor design

The third data set is used to illustrate the analysis of a tiling array experiment with a two-factor

design. The data are taken from a study of the genome-wide analysis of endogenous abscisic

acid (ABA)-mediated transcription in dry and imbibed seeds of Arabidopsis thaliana (Okamoto

et al., 2010). ABA is a phytohormone that is important for the induction and maintenance of

seed dormancy. To understand how endogenous ABA regulates the transcriptome in seeds,

whole-genome expression analyses were conducted in two ABA metabolism mutants, an ABA-

deficient mutant (aba2) and an ABA over-accumulation mutant (cyp707a1a2a3 triple mutant),

and compared to a wild type. This is the first factor in the design. Since endogenous levels of

ABA often change drastically during seed imbibition (Okamoto et al., 2010), these experiments

were done both for dry and for 24-h imbibed seeds. This is the second factor in the design. For
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Table 4.2: Analysis results for 8 circadian clock associated genes and for TIME FOR COFFEE, a clock

gene that does not cycle at the transcriptional level. Overlap indicates the proportion of overlap between

the regions detected by the wavelet-based method and the gene annotation; Max. Eff. gives the maximum

estimated effect or amplitude size for this gene; Top 20 indicates whether the gene is within the top 20

genes with the strongest circadian effect for the chromosome on which the gene is located, as estimated

by the wavelet-based model.

Gene ID Name Overlap Max. Eff. Top 20

AT1G22770 GIGANTEA 0.529 2.28 yes

AT1G68050 FLAVIN-BINDING KELCH DFB PROTEIN1 0.867 2.90 yes

AT2G25930 EARLY FLOWERING3 0.562 1.46 yes

AT2G46790 PSEUDO RESPONSE REGULATOR9 0.473 1.38 yes

AT2G46830 CIRCADIAN CLOCK ASSOCIATED1 0.867 3.89 yes

AT3G22380 TIME FOR COFFEE 0.040 0.06 no

AT3G46640 LUX ARRHYTHMO 0.717 1.69 yes

AT5G57360 ZEITLUPE 0.350 0.41 no

AT5G61380 TIMING OF CAB2 EXPRESSION1 0.797 1.74 yes

each design point, three biological replicates were hybridized using the Affymetrix AtTile 1.0F

and 1.0R tiling arrays, resulting in 18 samples.

For this example, Model (4.1) becomes

Yi(t) = β0(t) + β1(t) imbibed+ β2(t) mutant1 + β3(t) mutant2 + (4.15)

β4(t) imbibed ∗mutant1 + β5(t) imbibed ∗mutant2 + Ei(t),

where imbibed = 1 if the seed was imbibed and imbibed = 0 if the seed was dry, mutant1 = 1

for the aba2-mutant and mutant1 = 0 otherwise, and mutant2 = 1 for the cyp707a1a2a3

triple mutant and mutant2 = 0 otherwise.
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β̂0,gene β̂1,gene β̂2,gene β̂3,gene β̂4,gene β̂5,gene

AT1G69530 4.76 8.70 3.98 −0.82 −4.34 −7.09

AT1G61520 4.27 0.13 0.72 0.13 5.11 −0.44

Table 4.3: Gene-wise mean parameter estimates in the two-factor model for genes AT1G69530 and

AT1G61520.

This model specification implies that the design matrixX used for this model is

X =



1 0 0 0 0 0

1 0 1 0 0 0

1 0 0 1 0 0

1 1 0 0 0 0

1 1 1 0 1 0

1 1 0 1 0 1


.

Column 1 of X corresponds with an overall mean expression level over all samples. The

main imbibition effect is coded in column 2. Note that this corresponds with the imbibition

effect for wild types, which is the reference species. Columns 3 and 4 are associated with the

main ABA mutation effects, whereas columns 5 and 6 allow to examine an interaction effect

between imbibition and ABA mutation statuses. Table 4.3 gives the associated gene-wise mean

parameter estimates for these genes. Figure 4.7 shows two examples of the model fits for the

genes AT1G69530 and AT1G61520 on the forward strand of chromosome 1. The left panel plot

of Figure 4.7 suggests a larger mean expression level of gene AT1G69530 for imbibed seeds

as compared to dry seeds. The estimated increase in mean expression level, however, is larger

for wild types than for ABA-related mutants. The increase in mean expression level between

imbibed seeds compared to dry seeds is estimated as β̂1,gene = 8.70 for wild types, while for

aba2 mutants this increase is estimated as β̂1,gene + β̂4,gene = 4.36 and for cyp707a1a2a3 triple

mutants as β̂1,gene + β̂5,gene = 1.61. In the right panel of Figure 4.7 we see an increased

estimated mean expression level of gene AT1G61520 for aba2 mutants as compared to wild

types and cyp707a1a2a3 triple mutants. In addition, this increase is much stronger for imbibed

seeds.
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Figure 4.7: Interaction plots for genes AT1G69530 and AT1G61520. The black lines represent the

observed log2 expression for the probes at the different combinations of the two factor levels. The dotted

purple line represents the mean observed log2 expression over all the probes in the region. The orange

lines are the probe-wise fitted log2 expression values, while the green line gives the corresponding mean

fitted log2 expression values for all the probes in the region.
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4.3 Conclusion

In this chapter we have described the extension of the wavelet-based functional model for tran-

scriptome analysis towards more complex experimental set-ups. By appropriate adaptations of

the basic model design matrix it becomes possible to easily analyze the transcriptome for single-

factor experiments with more than two biological conditions, to detect linear and quadratic time

effects or a circadian rhythm effect in time-course experiments, and to handle two- or multiple-

factor studies. The use of the model has been illustrated on three case studies on the reference

plant Arabidopsis thaliana. These cases have shown the potential of the method to cope with

a multitude of study designs and associated specific research questions, while still providing

reliable results.
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Appendix A: The common smoothing parameter estimator τ̂ (j, k)

Reconsider the marginal likelihood (3.28) corresponding to the WavNorm model described in

Chapter 3,

p
{
D|τ ,σ2

ε

}
∝

J∏
j=0

Kj∏
k=1

∣∣V (j, k)σ2
ε (j, k)

∣∣−1/2 × exp
[
−D

T (j, k)V −1D(j, k)

2σ2
ε (j, k)

]
.

Suppose that X ′ is an N × q orthonormal design matrix: X ′TX ′ = Iq, and let τ(j, k) =

τ1(j, k) = τ2(j, k) = . . . = τq(j, k) be the common smoothing parameter.

The expressions for V (j, k), |V (j, k)| and V −1(j, k), given in (3.29), (3.30) and (3.31), respec-

tively, now become

V (j, k) = IN + τ(j, k)X ′X ′T

|V (j, k)| = (1 + τ(j, k))q

V −1(j, k) = IN −
X ′X ′T

1 + 1/τ(j, k)
.

The −2× log-likelihood can now be written as

−2× l(D|τ ,σ2
ε) ∝

J∑
j=0

Kj∑
k=1

(
q log [1 + τ(j, k)] +N log

[
σ2
ε (j, k)

]
+

1

σ2
ε (j, k)

DT (j, k)

[
IN −

X ′X ′T

1 + 1/τ(j, k)

]
D(j, k)

)
.

The smoothing parameter τ(j, k), given σ2
ε (j, k), can be estimated as the solution of

∂l(D|τ ,σ2
ε)

∂τ(j, k)
= 0.

Hence,

q

τ(j, k) + 1
− DT (j, k)X ′X ′TD(j, k)

(1 + 1/τ(j, k))2 τ(j, k)2σε(j, k)
= 0

qτ(j, k)σ2
ε (j, k) + qσ2

ε (j, k)−DT (j, k)X ′X ′D(j, k) = 0
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τ(j, k) =
DT (j, k)X ′X ′TD(j, k)

qσ2
ε (j, k)

− 1.

By definition τ(j, k) ∈ [0,∞]. Hence, the MML estimator becomes

τ̂(j, k) =

[
DT (j, k)X ′X ′TD(j, k)

qσ2
ε (j, k)

− 1

]
+

.



Chapter 5

waveTiling: a Bioconductor package for

wavelet-based tiling array transcriptome

analysis

In this chapter we present a user-friendly software implementation of the wavelet-based tran-

scriptome analysis for tiling arrays that was described in Chapters 3 and 4. The software is

provided as a Bioconductor add-on package, called waveTiling. Bioconductor (Gentleman

et al., 2004) is an open source, open development software project to provide tools for the

analysis and comprehension of high-throughput genomic data. It is based primarily on the R

programming language (R Development Core Team, 2012). Currently, waveTiling provides

a standard analysis flow for transcriptome analysis on single-factor experiments with two or

more biological conditions, the detection of linear and quadratic effects and circadian rhythms

in time-course experiments, and the analysis of two-factor experiments. Furthermore, more ex-

perienced users can also specify customized designs.The package also generates along-genome

plots and contains functions to easily extract the detected genes and unannotated regions. Where

possible, waveTiling uses the standard Bioconductor S4-class data structures, making it fully

compatible with existing Bioconductor packages. These S4-classes are an essential part of the

object-oriented programming system in R. A good introduction on this topic can be found in

Gentleman (2008). Figure 5.1 gives a general overview of the waveTiling package. In the

following sections the structure and the main functionalities of the package are explained in

more detail. Section 5.1 provides a description of how to import and preprocess the raw in-

103
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tensity data. In Section 5.2 the implementation of the main fitting and inference functions is

explained. Finally, Section 5.3 shows the main analysis output options of the package. Note

that it is not our intention to provide an exhaustive list of all the package’s functions with their

individual arguments in this chapter. To this end, the package’s manual and help files may

be consulted. Currently, the package is freely available from http://bioconductor.

org/packages/release/bioc/html/waveTiling.html. Throughout the chapter

all steps in the standard analysis flow are illustrated based on the leaf development case study

that was discussed in Section 4.2.1.

5.1 Importing and preprocessing raw intensity data

A typical data analysis of Affymetrix microarrays or tiling arrays starts from the CEL-files

which contain the raw intensities. One CEL-file corresponds to the intensities from one array.

In the waveTiling package the CEL-files are imported with the aid of the oligo package (Car-

valho and Irizarry, 2010). When reading in the CEL-files an array design information file has

to be provided. The design information is needed to map the XY locations of the probes onto

the array to the exact genomic positions of the organism under study, in our case Arabidopsis

thaliana. By using the pdInfoBuilder (Falcon and Carvalho, 2012) package a custom array de-

sign package can be created based on the array design information file. This package is called

pd.atdschip.tiling in our example. Importing the CEL-files with the oligo package results in

a TilingFeatureSet-class object. The TilingFeatureSet-class is specifically designed for repre-

senting tiling array data and in turn extends the ExpressionSet-class which is commonly used

in Bioconductor to store general microarray expression data. Existing instance methods from

oligo and other Bioconductor packages that support this structure are therefore applicable as

well. The TilingFeatureSet-class is extended in waveTiling to the WaveTilingFeatureSet-class,

which is used as input for the wavelet-based transcriptome analysis. Phenotypic data like the

number of different treatment groups, the group names and the number of replicates within in

each group can be added to an object of WaveTilingFeatureSet using the addPheno() function.

This information is used later on in the analysis. Code 5.1 illustrates the import of the data for

our case study.

Before starting the transcriptome analysis, the probes that map to multiple genomic locations are

http://bioconductor.org/packages/release/bioc/html/waveTiling.html
http://bioconductor.org/packages/release/bioc/html/waveTiling.html
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INPUT CEL-file bpmap-file

PRE-
PROCESSING

FIT MODEL

INFERENCE

OUTPUT

TilingFeatureSet-
object

WaveTilingFeatureSet-
object

MapFilterProbe-
objectbackground-corrected and quantile-

normalized WaveTilingFeatureSet-object

WfmFit-object

WfmInf-object

WfmFitCustom-
object

WfmInfCustom-
object

WfmInfMean-
object

WfmInfCompare-
object

WfmInfEffects-
object

WfmFitFactor-
object

WfmFitTime-
object

WfmFitCircadian-
object

along-genome 
plots

transcriptionally 
affected regions

transcriptionally 
affected genes

non-annotated 
transcriptionally 
affected regions

pdInfoBuilder

pd.atdschip.tiling

BSgenome
annotation info

filterOverlap()

addPheno()

bgCorrQn()

preprocessCore affy

wfm.fit()

wfm.inference()

plotWfm() getGenomic
Regions() getSigGenes() getNonAnnotated

Regions()

oligo

GenomeGraphs IRanges GenomicRanges

biomaRt
annotation info

Figure 5.1: Flowchart of the waveTiling package. The main steps in the data analysis flow are indicated

by the grey blocks. External input files are in yellow; external Bioconductor help packages are in green;

waveTiling S4-classes are in orange; the main functions are in purple; the output is in blue.
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> library(pd.atdschip.tiling) # load matrix design package

> library(oligo) # load oligo package

> leafdev <– cel2TilingFeatureSet(dataPath=”/data/tiling/leafdevelopment”,

annotationPackage=”pd.atdschip.tiling”) # read in CEL files

Code 5.1: Importing raw intensity data for the leaf development study

filtered using filterOverlap(). This is needed to reduce cross-hybridization effects. For instance,

probes (PM or MM) corresponding to a particular genomic location (forward or reverse strand)

may have the same sequence as probes (PM or MM) corresponding to a different genomic

location (forward or reverse strand). This filterOverlap() function can also be used if the probes

have to be remapped to another version of the genome sequence as the version used for the

array design. In the case study, the probes on the AGRONOMICS1 array are build based on the

TAIR8 genome sequence and they are remapped onto the more recent TAIR9 genome sequence.

The function needs an argument BSgenomeObject available from loading the appropriate

BSgenome package (Pagès, 2012). The output is an object of class MapFilterProbe. Code 5.2

shows the implementation.

> library(BSgenome.Athaliana.TAIR.TAIR9) # load BSgenome package

> leafdevMapAndFilterTAIR9 <– filterOverlap(leafdev,remap=TRUE,

BSgenomeObject=Athaliana,chrId=1:5,

strand=”both”,MM=FALSE) # filter and remap probes

> leafdevMapAndFilterTAIR9 # show MapFilterProbe−class object

Remapped and filtered probe information

No. of filtered probes: 5894070

Code 5.2: Filtering redundant probes and remapping probes onto recent annotation for the leaf develop-

ment study

After filtering and/or remapping, the expression data are background-corrected and quantile-

normalized by the bgCorrQn() function. This function makes use of bg.adjust() from the affy

package (Gautier et al., 2004) and normalize.quantiles() from the preprocessCore package

(Bolstad, 2012). The bgCorrQn() function also uses a MapFilterProbe-class object as input to

make sure only the filtered probes contribute to the background correction and normalization

steps. This preprocessing step is illustrated in Code 5.3.
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> leafdev <– as(leafdev,”WaveTilingFeatureSet”) # change to WaveTilingFeatureSet

> leafdev <– addPheno(leafdev,noGroups=6,

groupNames=c(”day8”,”day9”,”day10”,”day11”,”day12”,”day13”),

replics=rep(3,6)) # add phenotypic info

> leafdevBQ <– bgCorrQn(leafdev,useMapFilter=leafdevMapAndFilterTAIR9)

# preprocess raw intensities

> leafdevBQ # show WaveTilingFeatureSet−class object

WaveTilingFeatureSet (storageMode: lockedEnvironment)

assayData: 5894070 features, 18 samples

element names: exprs

protocolData

rowNames: caquinof 20091023 S100 v4.CEL caquinof 20091023 S101 v4.CEL

... caquinof 20091023 S117 v4.CEL (18 total)

varLabels: exprs dates

varMetadata: labelDescription channel

phenoData

rowNames: day8.1 day8.2 ... day13.3 (18 total)

varLabels: group replicate

varMetadata: labelDescription

featureData: none

experimentData: use ’experimentData(object)’

Annotation: pd.atdschip.tiling

Code 5.3: Preprocessing raw intensity data for the leaf development study

5.2 Wavelet-based transcriptome analysis

The background-corrected and quantile-normalized WaveTilingFeatureSet-class object is used

as input for the wavelet-based transcriptome analysis. The analysis can be conducted for a

complete chromosome or for a specific genomic region on the chromosome. The wavelet-

based model is fitted to the expression data with the wfm.fit() function, leading to a WfmFit-

class object. Depending on the design of the study a WfmFitFactor (factorial design), WfmFit-

Time (time-course design), WfmFitCircadian (circadian rhythm design) or WfmCustom (custom
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design) subclass is used. A normal prior distribution can be imposed on the wavelet coeffi-

cients associated with the effect functions like in Equation (3.26) with the function argument

prior=”normal” . If one wants to obtain additional smoothing, a Jeffrey’s hyperprior can also

be put on the smoothing parameters by prior=”improper”. For the error variance either the

marginal maximum likelihood estimator (3.39) (var.eps=”margLik”) or the MAD estimator

(var.eps=”mad”) can be used. Part of the code for fitting the model is implemented in C to

speed up computation. Fitting the wavelet-based model in waveTiling for genomic position

22000000 to 24000000 on the forward strand of chromosome 1 in our case study is illustrated

in Code 5.4. The leaf development study is an example of a study with a time-course de-

sign, hence we choose design=”time”. The wavelet decomposition goes down to wavelet level

n.levels=10.

> leafdevFit <– wfm.fit(leafdevBQ,filter.overlap=leafdevMapAndFilterTAIR9,

design=”time”,n.levels=10,chromosome=1,strand=”forward”,

var.eps=”margLik”,prior=”improper”,minPos=22000000,

maxPos=24000000,skiplevels=1,save.obs=”plot”,trace=TRUE)

> leafdevFit

Fitted object from wavelet based functional model − Time Design

Wavelet filter used: haar

Number of wavelet decomposition levels: 10

Number of probes used for estimation: 52224

Genome Info :

Chromosome: 1

Strand: forward

Minimum probe position: 22000000

Maximum probe position: 23988867

Code 5.4: Fitting the wavelet-based model for the leaf development study

In the second step of the transcriptome analysis different inference procedures can be conducted

corresponding to the particular research question. This is done with the wfm.inference() func-

tion. The type of inference procedure depends on the WfmFit-subclass. The results are stored

as a WfmInf -class object. Also for this class there are four subclasses. The WfmInfCompare-

class contains the results of a pairwise comparison between two groups or time points. The
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results of a trancript discovery analysis for each individual group or time point are stored in a

WfmInfMeans-class object. These two types of inference can be obtained from all four Wfm-

Fit-subclasses. The WfmInfEffects-class contains results with linear or quadratic time effects,

obtained from a WfmFitTime-class object, or with circadian rhythm effects, obtained from a

WfmFitCircadian-class object. Finally, custom inference results are stored in a WfmInfCustom-

class object and are obtained from a WfmFitCustom-class object. The type of inference is indi-

cated in the wfm.inference() function by the contrasts argument. In the case study a pairwise

comparison between any combination of recorded days in the leaf development is performed.

Hence, we set contrasts=”compare”. With the delta argument the threshold value to calculate

the empirical Bayesian FDRs is chosen. The inference procedure for pairwise comparisons is

illustrated in Code 5.5.

> delta <– log(1.2,2) # set threshold for differential expression

> leafdevInfCompare <– wfm.inference(leafdevFit,contrasts=”compare”,

delta=c(”median”,delta))

> leafdevInfCompare

Inference object from wavelet based functional model − Pairwise Comparison

Genome Info :

Chromosome: 1

Strand: forward

Minimum probe position: 22000000

Maximum probe position: 23988867

Code 5.5: Pairwise comparison for the leaf development study

5.3 Results output

All transcriptionally affected regions can be extracted from the WfmInf -class objects using the

getGenomicRegions() accessor. They are stored as a list of IRanges-class objects (Pagès

et al., 2012). This class is designed to efficiently represent and handle sequences and ranges

from indices along those sequences. It gives the start and end position and the nucleotide length

of each significant region. For the leaf development case study the list contains 16 of those

IRanges-class elements. The first element always gives the significant regions for transcript
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discovery based on the mean expression over all arrays. Elements 2 to 16 give the differentially

expressed regions for any pair of contrasts between different time points. The order is always

2− 1, 3− 1, 3− 2, 4− 1, . . .. The output for the differentially expressed regions between day 9

(time point 2) and day 8 (time point 1) in the leaf development study is displayed in Code 5.6.

> sigGenomeRegionsCompare <– getGenomicRegions(leafdevInfCompare)

> sigGenomeRegionsCompare[[2]] # time point 2 − time point 1

IRanges of length 23

start end width

[1] 22448608 22448704 97

[2] 22700160 22700256 97

[3] 22804928 22805024 97

... ... ... ...

[22] 23619042 23619138 97

[23] 23953826 23953986 161

Code 5.6: Differentially expressed regions between day 9 and day 8 in leaf development study

The waveTiling package also provides two additional accessor functions: (1) getSigGenes()

to extract significantly affected genes and (2) getNonAnnotatedRegions() to extract signif-

icantly affected non-annotated regions. These accessor functions can be applied if the appro-

priate annotation info containing gene identifiers is available for the organism under study. For

this purpose, we make use of the biomaRt package (Durinck et al., 2005, 2009b). This package

offers a convenient interface to many publicly available biological data repositories. Both func-

tions output a list of GRanges-class objects created by the GenomicRanges package (Aboyoun

et al., 2012). Basically, the GRanges-class is an extension of the IRanges-class that can handle

the additional storage of genomic info accompanying the ranges of sequences. An example of

the use of these functions is shown in Codes 5.7 and 5.8.

A visual representation of the significant regions can be made with the plotWfm() function.

This function needs both the WfmFit- and WfmInf -class objects of the analysis as input as well

as the annotation info obtained with the biomaRt package. The plot function makes use of the

implementations in the GenomeGraphs package (Durinck et al., 2009a). As an example, the

code used to create Figure 4.1 is given in Code 5.9.
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> library(biomaRt)

> library(TxDb.Athaliana.BioMart.plantsmart12) # load annotation package

> sigGenesCompare <– getSigGenes(fit=leafdevFit,inf=leafdevInfCompare,

biomartObj=TxDb.Athaliana.BioMart.plantsmart12)

> sigGenesCompare[[2]]

GRanges with 31 ranges and 6 elementMetadata cols:

seqnames ranges strand | tx id tx name regNo

<Rle> <IRanges> <Rle> | <integer> <character> <integer>

[1] 1 [22447848, 22449526] − | 14091 AT1G60970.1 1

[2] 1 [22699715, 22701169] + | 27751 AT1G61520.3 2

...

[31] 1 [23953233, 23954492] + | 36016 AT1G64500.1 23

percOverGene percOverReg totPercOverGene

<numeric> <numeric> <numeric>

[1] 5.777248 100 5.777248

[2] 6.666667 100 6.666667

...

[31] 12.777778 100 12.777778

Code 5.7: Extracting significant genes in waveTiling package for the leaf development study

> nonAnnoCompare <– getNonAnnotatedRegions(fit=leafdevFit,inf=leafdevInfCompare,

biomartObj=TxDb.Athaliana.BioMart.plantsmart12)

> nonAnnoCompare

GRanges with 834 ranges and 0 elementMetadata cols:

seqnames ranges strand

<Rle> <IRanges> <Rle>

[1] 1 [22001344, 22001440] +

[2] 1 [22004577, 22004801] +

...

[834] 1 [23978594, 23978754] +

Code 5.8: Extracting significant non-annotated regions in waveTiling package for the leaf development

study
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> trs <– transcripts(TxDb.Athaliana.BioMart.plantsmart12)

> sel <– trs[elementMetadata(trs)$tx name %in% ”AT1G04350”,]

> start <– start(ranges(sel))−2500

> end <– end(ranges(sel))+2500

> plotWfm(fit=leafdevFit,inf=leafdevInfCompare,

biomartObj=TxDb.Athaliana.BioMart.plantsmart12,

minPos=start,maxPos=end,two.strand=TRUE,

plotData=TRUE,plotMean=FALSE,tracks=c(1,2,6,10,11))

Code 5.9: Plotting significant regions with waveTiling for the leaf development study

5.4 Conclusion

The wavelet-based methods for transcriptome analysis with tiling arrays described in Chapters

3 and 4 have been implemented as a user-friendly and freely available R/Bioconductor software

package, called waveTiling. The main structure and functionalities of the package have been

shown. Based on a case study of leaf development in Arabidopsis thaliana, the full standard

analysis flow of waveTiling has been illustrated.



Chapter 6

Discussion, conclusions and future

research perspectives for Part I

6.1 Discussion and conclusions

Tiling array technology is a commonly used tool for whole-genome transcriptome analysis.

Unlike classical microarrays, tiling arrays measure transcriptional activity regardless of existing

annotation. This occurs by means of more or less equally spaced probes along the genome.

Tiling array probe intensities can thus be viewed as realizations of an underlying function for

RNA expression. Therefore, a logical choice is to use the functional modeling framework for

tiling array data analysis. Even after applying suitable background-correction and array-wise

normalization procedures, probe-to-probe fluctuations within the same transcriptional units are

still apparent. Hence, modeling the expression signal asks for the use of proper smoothing

techniques in order to control the bias-variance trade-off. The sudden jumps at the boundaries

of these trancriptional units, however, give the data a discontinuous and spatially heterogeneous

nature. For this reason, a wavelet-based denoising approach is taken. The use of wavelets

allows an efficient regularization of the expression signal without losing the ability to model

local features.

The functional model that we have presented can assess transcript discovery and identify dif-

ferentially expressed transcripts simultaneously. This is in contrast to existing methods for the

analysis of tiling arrays. The model is transformed from the genomic space to the wavelet
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space, where the wavelet coefficients of the effect functions undergo thresholding. As a result,

these effect functions are adaptively smoothed when transforming the modified coefficients

back to the genomic domain. To this end, a Bayesian thresholding framework is adopted in

which a normally distributed prior is imposed on the wavelet coefficients of the effect func-

tions. The smoothing and error variance parameters are estimated by a marginal maximum

likelihood approach. Because of the decorrelating property of the wavelet transform, computa-

tionally efficient analytical solutions of the resulting estimators and their posterior distributions

are obtained. An empirical Bayes inference procedure has been proposed, which makes use of

these posterior distributions. Both for transcript discovery and differential expression a probe-

wise local Bayesian FDR is calculated. This result is associated with a predefined threshold

value which enables obtaining transcriptionally affected regions that are statistically significant

as well as biologically relevant.

The wavelet-based method with a normal prior imposed on the parameters (WavNorm) was

compared in a simulation study to an alternative wavelet-based approach using a multiple

shrinkage mixture prior, containing a normal component and a point mass at zero (WavMix).

For transcript discovery, both wavelet-based methods were additionally compared to two pop-

ular methods described in Kampa et al. (2004) and Huber et al. (2006), while for differential

expression also the RMA procedure was included. Tiling array data were simulated based on

an adapted model from Purdom et al. (2008) that features additive background, multiplicative

noise, probe-specific affinities and serial correlation in the genomic domain. The simulation

parameters were tuned by rough estimates of realistic values from real data. For this purpose,

expression data from the Arabidopsis thaliana E2F case study were used. Using our approach,

we have shown that the characteristics of the observed real data could be realistically preserved

in the simulated data.

The simulation results have indicated that the wavelet-based approaches outperform the exist-

ing methods for transcript discovery in terms of positive predictive value and specificity, while

maintaining a high true positive rate. Moreover, the wavelet-based methods are more sensitive

than RMA, while keeping the number of false positives small. Both for transcript discovery and

differential expression, the discovered regions by the wavelet-based methods correspond well

with the underlying exonic structure. The WavNorm-method was found to be very competi-

tive in terms of computation time, while WavMix is computationally less efficient. Moreover,
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WavMix seemed to oversmooth too much for our purposes, resulting in a decreased sensitivity,

especially for differential expression. In a next step, five different versions of the WavNorm

have been compared. The error variance can be allowed to vary with different wavelet scales

only, or with both different wavelet scales and different wavelet locations. Alternatively, the

MAD estimator can be used. It was shown that, in general, this does not have a great impact

on the performance of the method, although the sensitivity decreased slightly when the MAD

estimator was used. A bootstrap correction can be applied to account for the extra variability

in the posterior distribution of the effect functions, induced by estimating the variance com-

ponents. However, the variance is mainly underestimated only in regions with small signal,

if no correction is applied. Therefore, the bootstrap correction was found not to improve per-

formance in the regions that are of interest. Given the enormously increased computation time,

applying a bootstrap correction seems not worthwhile for our purposes. Finally, one might want

to impose an additional Jeffrey’s hyperprior on the smoothing parameters. This does not have a

large influence on the method’s performance. It basically leads to slightly more smooth results,

particularly for differential expression analysis.

By applying the WavNorm method on the Arabidopsis thaliana E2F case study, we have shown

the method’s use for finding potential targets in whole-genome transcription studies. The probe-

wise and functional approach makes the method completely unbiased of existing annotation.

Therefore, it exploits tiling array data to their full potential.

As the focus in tiling array studies has recently shifted towards more complex designs than the

two-group design, we have extended the applicability of the wavelet-based model accordingly.

This basically implies the adaptation of the model design matrix in a way that allows to answer

the specific research questions that involve more complex experimental designs. Moreover, the

orthogonality of the design matrix must be preserved to ensure analytical solutions with fast

computation. We have considered time-course studies, studies with more than two conditions

and multiple-factor studies. In regular time-course studies one can be interested in the detec-

tion of differentially expressed regions between two different time points, or more directly in

significant effects of transcriptional activity over time, such as linear time effects. We have

shown that for both cases the design matrix can be adapted by considering a functional relation-

ship of the designed time points described by orthogonal polynomials. If one wants to detect

circadian rhythms in the transcriptome of an organism, the circular effect can be modeled by
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constructing the design matrix by means of Fourier basis functions. Design matrices for two-

or multiple-factor studies are typically non-orthogonal. However, this problem has been tack-

led by applying a Gram-Schmidt orthogonalization of the design matrix and backtransforming

the results to the original predictor space after estimation. A similar empirical Bayes proce-

dure as for the two-group design has been used for inference. This procedure either occurs on

the parameters themselves or on a function of the parameters, depending on the study design.

The use and flexibility of the extended wavelet-based modeling approach has been illustrated

on three case studies with the reference plant Arabidopsis thaliana. With these examples we

have demonstrated the potential of the method to cope with a multitude of study designs and

associated specific research questions, while still providing reliable results.

We have implemented the wavelet-based methods as a user-friendly R/Bioconductor package,

called waveTiling. The package provides a standard analysis flow for wavelet-based transcrip-

tome analysis on single-factor experiments with two or more biological conditions, the detec-

tion of linear and quadratic effects and circadian rhythms in time-course experiments, and the

analysis of two-factor experiments or customized designs. Furthermore, it generates along-

genome plots and contains functions to easily extract the transcriptionally affected genes and

unannotated regions. Where possible the package uses the standard Bioconductor S4-class data

structures making it fully compatible with existing Bioconductor packages. The package also

contains help functions and a manual in which the package’s functions are explained and illus-

trated.

6.2 Future research perspectives

The wavelet-based functional model presented in the previous chapters has the potential to be

extended or adapted in several different directions. In Section 6.2.1 the integration of prepro-

cessing into the model is discussed. Section 6.2.2 explores the possibilities and challenges of

an unsupervised version of the wavelet-based model involving functional principal components

analysis. In Section 6.2.3 the extension of the model towards other high-throughput genomics

platforms and profiles is considered.
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6.2.1 Integration of preprocessing into the model

In Chapter 2 we have argued that we required a certain degree of preprocessing of the raw

intensity signal, due to its complexity and the presence of substantial obscuring variability.

Conceptually, it could be possible to integrate at least part of the preprocessing of the raw data

into the model itself. This would imply that the uncertainties associated with preprocessing

would be accounted for by the wavelet-based model itself. Consider the basic functional model

for the two-group design in the genomic domain (3.1). Suppose now that one has available

another N0 arrays that are hybridized to a DNA reference, besides the N1 and N2 arrays with

RNA expression intensities for the two experimental conditions. In theory, all features within

each array should exhibit the same intensity on this DNA reference array because the same copy

number of genomic DNA is hybridized throughout the genomic coordinate. In practice, how-

ever, large differences in the measured intensities are observed. Although some of the variation

can be explained by stochastic noise, the major part of the variation is due to differences in

probe affinity (e.g. Wu et al., 2004). The information of the DNA reference hybridizations can

be easily incorporated in the model, which is now given by

Yi(t) = β0(t) +X1,iβ1(t) +X2,iβ2(t) + Ei(t), (6.1)

with i = 1, ..., N , N = N0 +N1 +N2, β0(t) a function that is related to the probe affinities de-

rived from the DNA reference hybridizations, β1(t) the mean function that is used for transcript

discovery, X1,i a dummy variable which is 1 for the C1 and C2 arrays, and 0 for the reference

DNA arrays, β2(t) the difference function, and X2,i a dummy variable which is 1 for C1,−1 for

C2 and 0 for the reference DNA array. By including β0(t) in the model, the mean function β1(t)

gets the interpretation of a log2 fold change with respect to the average intensities of the DNA

reference hybridizations. Hence, DNA reference normalization is done automatically during

the parameter estimation for Model (6.1). For balanced designs of the C1 and C2 arrays the use

of the (−1,1,0) coding for X2,i implies an estimation orthogonality between β2(t) and the other

two functions.

6.2.2 Functional principal components analysis

Suppose that genomic profiles of expression data from different independent samples are avail-

able, and that one is primarily interested in exploring the main sources of variability in this
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data set, without prior knowledge of any possible groups or classes the samples might belong

to. As the data are functional in nature, an obvious approach would be to conduct a functional

principal components analysis (PCA) on the data set.

Consider the following model in the genomic data space:

Y = Z +E, (6.2)

where Y denotes a N × T matrix of mean-centered expression values observed on an equally

spaced grid, t = (1, ..., T ), i.e. the mean expression value over the N samples at each genomic

location t is equal to zero. Further, Z is a N × T matrix of functional effects, which can be

written as a linear transformation of a N × q latent matrix X , i.e. Z = XLT , where L is a

T × q transformation matrix. The N × T matrix E contains the error processes as defined in

Equation (3.2). By applying the DWT the model can be written in the wavelet space:

D = Z∗ +E∗. (6.3)

PCA can be formulated as a maximum likelihood solution to a latent variable model, an in-

terpretation better known as probabilistic PCA (Tipping and Bishop, 1999). Therefore, Model

(6.3) can be applied to perform PCA. The functional effects in the wavelet space, Z∗, can also

be written as a linear transformation of a N × q latent variable matrixX , i.e. Z∗ = XL∗T . For

each individual profileDi (i = 1, . . . , N ) we have

Di = X iL
∗T +E∗i . (6.4)

Similar to the model in Chapter 3, a multivariate normal distribution is assumed for the error

terms E∗i ∼ MVN(0, σ2
ε (j, k)IT ). To obtain sparse results a normally distributed prior is put

on the loadings L∗Tm ∼ MVN(0, c2m(j, k)IT ), m = 1, . . . , q. Furthermore, the score vectors

are also assumed multivariate normally distributed, X i ∼ MVN(0, Iq). Due to the latter as-

sumption the posterior distribution p {X,L∗|D} is not tractable. This problem can be solved

by applying variational Bayes methods to approximate the posterior distribution by a computa-

tionally tractable trial distribution (e.g. Guan and Dy, 2009). This can be done by means of the

iterated conditional modes algorithm (Bishop, 2006). Since this algorithm is computationally

intensive, Nakajima et al. (2010, 2011) have proposed an efficient analytical solution that can

possibly be used here.
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6.2.3 Extensions to other platforms and ’omics profiles

The advent of next-generation sequencing technologies enables researchers to assess genome-

wide profiles of the transcriptome at an unprecedented resolution. Therefore, a logical next

research step is to examine whether the wavelet-based modeling framework designed for tran-

scriptome data from tiling arrays can be adapted to work for transcriptome analysis with RNA-

seq as well. In RNA-seq a count of nucleotide sequence reads acts as a proxy for the underlying

concentration of gene expression products. This would imply the extension of the Gaussian

wavelet-based functional model presented in Chapter 3 towards count regression. Due to bio-

logical variation RNA-seq data is usually overdispersed with respect to the Poisson distribution.

However, this variation could be captured by introducing profile-specific random effect func-

tions for each biological replicate. This functional mixed model can be represented within the

generalized linear mixed model framework, which would allow the model parameters to be esti-

mated by penalized quasi-likelihood. More details about this estimation approach can be found,

for instance, in Ruppert et al. (2003).

Besides transcriptome profiles many other fine-resolution ’omics profiles can be measured on

high-throughput platforms, such as copy number variation, epigenomes and proteomes. It

would be interesting to explore whether the ideas from wavelet-based adaptive regularization

within the functional modeling framework could be ported towards these other profiles, each

with their own specific error structure and challenges.

Taking it it yet another step further, methods for unraveling the interaction between the genome,

transcriptome, epigenome and proteome will bring biomedical research to the next level. As

a result, data integration of multiple high-dimensional profiles has become one of the major

themes in this area. When different profiles are available for the same subject, methods from

functional data analysis can be used for jointly modeling them. Potentially, the combination

of complex dependence structures and regularization can be seamlessly integrated within the

hierarchical mixed model framework. A possible direction would then be to adopt pseudo-

likelihood methods developed for large and complex longitudinal data sets within statistical

genomics.
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Chapter 7

Introduction to Part II: Statistical methods

for 454 high-throughput sequencing data

In this chapter, an introduction to part II of the dissertation is given. This part discusses two

statistical problems in the analysis of 454 DNA sequencing data. As these problems are driven

to a large extent by the specific nature of the 454 data, a good understanding of the sequencing

and data-generating process is very important. Therefore, we start with describing the 454

technology in Section 7.1. Section 7.2 introduces a typical 454 data set used to motivate the

research. Finally, the objectives and outline for this part of the dissertation are given in Section

7.3.

7.1 Roche/454 technology

In the last eight years the advent and emergence of next-generation sequencing (NGS) technolo-

gies have revolutionalized biological and biomedical research. In the past, many efforts have

been made to optimize DNA sequencing by Sanger chemistry (Sanger et al., 1977). However,

this traditional method only allows a limited level of parallellization. Therefore, it still appears

to be too costly and time-consuming for many research aims to be accomplished in practice

(Shendure and Ji, 2008). NGS technologies, on the other hand, do have the ability to produce a

large volume of data quite cheaply by sequencing in parallel. In the last couple of years, mul-

tiple sequencing platforms have become commercially available. One of the prominent players
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and the first NGS technology to reach the market in 2004 is the Roche/454 sequencing platform

(Margulies et al., 2005; Rothberg and Leamon, 2008). This will be the platform of study in

this part of the dissertation. Similar to other NGS technologies, sequencing on the 454 plat-

form consists of three main steps: (1) DNA library or template preparation, (2) amplification

of DNA templates with polymerase chain reaction (PCR), and (3) sequencing-by-synthesis with

the 454-specific pyrosequencing reaction. In the following paragraphs the different steps of the

454 sequencing process are discussed. Additional details can be found in e.g. Mardis (2008);

Shendure and Ji (2008); Metzker (2010); Ledergerber and Dessimoz (2011).

The first step in 454 sequencing is the library or template preparation (see Figure 7.1). DNA is

extracted from the biological sample and is broken into small fragments, also called templates.

Subsequently, the DNA fragments are denatured to make them single-stranded. A collection of

DNA fragments constitutes the library. The fragments in the library are prepared for sequencing

by ligating specific adaptor sequences to both ends of each fragment (panel B of Figure 7.1).

They are bound to beads that have millions of short sequences attached to them, each of which

is complementary to the adaptor sequences on one end of the DNA fragments (panel C of Figure

7.1). The adaptor sequence on the other end of the fragments contains universal primer sites

that allow genomes to be amplified with common PCR primers. This occurs on the surfaces

of the in total hundreds of thousands of beads by means of emulsion PCR (panel D of Figure

7.1). Hereby, the proper circumstances are created to favor the binding of only one single

fragment to each bead, leading to uniform clusters of the same sequence on each bead. This

amplification step is needed to increase the intensity signal that will be eventually produced

during the sequencing process (see below).

Figure 7.1: DNA template preparation and emulsion PCR in 454 sequencing (source: www.454.com).

A. Genomic DNA is fragmented; B. Adaptors are ligated to each end of the denatured fragments; C.

Each template is attached to a single bead; D. The templates are clonally amplified by emulsion PCR.

After amplification, the beads, each of which contains a unique amplified fragment, are loaded

www.454.com
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Figure 7.2: Overview of the 454 sequencing process (source: www.454.com). A. In a predetermined

order a solution of one nucleotide type is mixed with reagents to be added to the PTP; B. The solution

flows over the PTP potentially inducing a pyrosequencing reaction; C. The emitted light is recorded with

a CCD camera.

to a 454 PicoTiterPlate (PTP). This is an array with hundreds of thousands of picoliter-scale

wells. The addition of beads to the PTP occurs in such a way that each well contains a single

bead. This spatial separation enables a major parallellization of the sequencing reactions to be

performed. The actual sequencing is based on the pyrosequencing reaction (Ronaghi, 2001).

For this reaction to take place, much smaller beads of about 1 µm are added to surround the

DNA-containing beads in the PTP (top picture of Figure 7.2). On these small beads the ac-

tive enzymes needed for pyrosequencing are attached. These enzymes are sulphurylase and

luciferase and are used to facilitate light production.

After all the wells are properly filled, the PTP is placed in the sequencer. Subsequently, a solu-

tion of reagents and nucleotides is flowed over the PTP (pictures A and B of Figure 7.2). The

addition of each of the 4 possible nucleotide solutions A, C, G or T occurs in a fixed and prede-

www.454.com
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Figure 7.3: Detailed representation of the pyrosequencing reaction (source: www.454.com). Incorpo-

ration of the added nucleotide initiates a cascade of enzymatic reactions and eventually produces a burst

of light.

termined order. A single addition of a nucleotide solution is called a nucleotide flow, whereas

one round of 4 flows with each of the 4 nucleotides is referred to as a cycle. If the nucleotide

is complementary to the nucleotide at the free end of the DNA template, it is incorporated.

Incorporation of a nucleotide leads to the release of pyrophosphate, which is converted in a

burst of light by the active enzymes attached to the smaller beads and an added luciferin reagent

(see Figure 7.3). The emitted light is then detected with a charge-coupled device (CCD) cam-

era placed at the other end of the wells (picture C of Figure 7.2). If multiple complementary

nucleotides of the same type are available at the free end of the DNA template, multiple nu-

cleotides are incorporated, leading to a larger light intensity signal detected by the CCD. A run

of identical nucleotides is called a homopolymer run. If the nucleotide at the free end of the

DNA template is not complementary to the nucleotide added to the PTP, no incorporation event

takes place and no light is emitted.

The raw images are processed by the 454 software. This eventually results in a flowgram for

each well of the PTP. A flowgram consists of a series of processed signal intensities for succes-

sive flows of the sequencing process. An example of a typical flowgram is given in Figure 7.4.

The signal intensity for a flow is rounded to an integer to give the number of monomers of the

corresponding nucleotide that were incorporated (Brockman et al., 2008). Hence, the order of

www.454.com
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Figure 7.4: Example of a typical 454 flowgram; adapted from Metzker (2010).

the flows and the light intensities recorded for each flow reveals the underlying DNA sequence

in each well. The full process of transforming the measured intensity signals to a sequence of

nucleotides is referred to as base-calling.

7.2 Motivating data set

To motivate the research we consider data from a sequencing experiment conducted on the ref-

erence K-12 strain MG1655 of the bacterium Escherichia coli. This is a strain of E. coli which

is often constructed in the laboratory for bacteriologic research purposes. DNA from E. coli

was sequenced at the NXTGNT sequencing center, Ghent, Belgium, using shotgun sequencing.

This implies that the DNA was broken into smaller fragments at random locations. The raw

images were processed with the native 454 software, which is the software delivered with the

sequencer, version 2.3. This resulted in a total number of 635979 produced reads.

As already mentioned in Section 7.1, the sequencing process does not allow the individual

nucleotides in the DNA sequence to be read directly. In each flow, however, the number of suc-

cessively incorporated nucleotides or the homopolymer length (HPL) has to be inferred from

the measured light intensity. Each incorrect prediction of the HPL thus results in an insertion

or deletion error. As a consequence, insertions and deletions are much more frequent in 454 se-

quencing than substitution errors, where one nucleotide type is replaced by another. Moreover,

substitution errors are typically caused by a combination of successive insertion and deletion

errors (e.g. Brockman et al., 2008). In the context of 454 sequencing, insertions are also referred
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Figure 7.5: Effect of homopolymer length for a typical 454 sequencing experiment. Upper panel: dis-

tribution of measured raw intensities for different HPLs. Lower panel: Proportion of miscalls made by

the native 454 base-caller for different HPLs in the reference sequence.

to as overcalls, while deletions are often called undercalls.

In general, the increase of intensity signal when more nucleotides are incorporated, attenuates

at larger HPLs. Moreover, the variability of the raw intensities increases by increasing HPL.

This is illustrated on the E. coli data set in the upper panel of Figure 7.5. As a consequence, it

becomes harder to discriminate between subsequent HPLs at larger HPLs, resulting in an infla-

tion of undercalls or overcalls as the HPL increases (e.g. Holt and Jones, 2008). Hence, more

insertions and deletions are present when a DNA sequence contains many long homopolymers

(e.g. Huse et al., 2007; Shendure and Ji, 2008). The lower panel of Figure 7.5 shows the sample

proportion of miscalls in the E. coli data set, made by the 454 base-caller at different HPLs in

the E. coli reference sequence. The base-calling error rate clearly increases by increasing HPL

and becomes quite substantial from HPL 4.
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Figure 7.6: Raw intensities, flowgram values and 454 base-calls versus flow number for a typical read

of the E. coli data set. The colors represent the reference HPLs.

In the first step of the 454 base-calling pipeline the raw signal intensities are first background-

corrected and further preprocessed to flowgram values by correcting for the major error sources.

These include spatial and read-specific effects such as the abundance of long homopolymers in

a read (Margulies et al., 2005; Brockman et al., 2008). They are discussed in more detail in

Chapter 8. This preprocessing eliminates much obscuring noise, but may remove some useful

information as well. The left and middle panels of Figure 7.6 show this preprocessing effect

for a typical well of the PTP in the E. coli data. The right panel of Figure 7.6 displays the 454

base-calls for this well. These base-calls are integer values corresponding to the predicted HPLs

in the DNA sequence.

After base-calling, the 454 software assigns a quality score to each called base. The closer the

flowgram value is to the called HPL, the larger the assigned quality of the base-call. Hence, for

base-calls with a large quality score one is more certain that the base-call is correct. Figure 7.7

shows the distribution of flowgram values corresponding to a base-called HPL of 0, 1, 2 and 3



132 Chapter 7. Introduction to Part II

Flowgram value

F
re

qu
en

cy

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

0e
+

00
2e

+
05

4e
+

05
6e

+
05

454 base−call

0
1
2
3

Figure 7.7: Distribution of flowgram values for base-calls 0 until 3 in the E. coli data

for the E. coli data. Flowgram values in the tails of the respective distributions are associated

with low-quality base-calls.

Quality score calculation in current 454 base-calling is based on a multidimensional binning

algorithm of different so-called noise predictors of the read (Brockman et al., 2008). These

predictors are only based on the read’s flowgram values and HPLs. This means that information

from the preprocessing steps is not considered (Brockman et al., 2008). Therefore, the base-

calling uncertainties inherent to the base-calling model or algorithm are not directly utilized

in the construction of the quality scores. Another concern is that, although 454 quality scores

are well-known, widely used and provide a measure for the quality of the base-call, they lack

additional information on whether there might be an undercall or an overcall. Moreover, they

can not be used to deduce how likely other HPLs are the correct call instead of the chosen

base-call. Nevertheless, this feature is particularly essential in 454 sequencing, because of its

high insertion and deletion error rate. This is illustrated in the example shown in Figure 7.8,

based on the E. coli data. This figure shows the empirical cumulative distribution functions

(eCDFs) of 454 quality scores for sequences with reference HPL 3 in case of an overcall, i.e.

the called HPL is at least 4. As the 454 software provides a quality score for each nucleotide
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Figure 7.8: Empirical cumulative distribution functions of 454 quality scores assigned to nucleotides

associated with called HPL 2, 3 and 4, in case of an overcall and for sequences with reference HPLref 3

in the E. coli data.

of the called HPL, the eCDFs can be separated by position in the homopolymer. Curves for the

quality scores at position 2, 3 and 4 of the called HPL are shown. These eCDFs appear to be

nearly identical. Hence, the quality scores do not give any insight into whether it is more likely

to have an undercall or an overcall, given that a base-calling error was made.

7.3 Objectives and outline

In this second part of the dissertation we focus on problems in 454 sequencing data analysis

that are mainly caused by inaccurate homopolymer calling. In line with the general philosophy

adopted in this dissertation, as much raw information as possible is used and methods are pro-

posed that allow errors to be propagated in further steps of the data analysis pipeline. Firstly,

< 
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it is in our interest to develop an improved base-calling method that tackles the main short-

comings of the native 454 base-caller, as illustrated in Section 7.2. This can be accomplished

by means of a general probabilistic framework that seamlessly integrates the base-calling with

more informative quality score assignment. As the outcome of interest is the HPL, a statistical

model for count data seems a logical choice. The HPL can be modeled as function of several

explanatory variables to correct for the main sources of obscuring variability. A particular chal-

lenge is to model the large number of zeros characteristic for 454 sequencing data. A HPL of 0

occurs each time the added nucleotide flow is not complementary to the interrogated position on

the DNA template. Furthermore, the probabilistic nature of the model should allow to construct

more informative quality scores that directly reflect the base-calling’s uncertainties and provide

information about potential undercall or overcall errors.

Secondly, we also focus on a downstream application of 454 sequencing data. In particular,

we aim at detecting DNA sequence variants in homopolymers. Diploid organisms, like human

beings, have their genetic information organized in pairs of homologous chromosomes. The

nucleotide sequences of specific genomic locations on these two chromosomes are often iden-

tical. In that case these locations are said to be homozygous. However, it frequently occurs

that their sequences are slightly different, in which case they are called heterozygous. An im-

portant task is to detect these sequence variants because they often contribute to an increased

susceptibility for developing diseases, such as cancer (Stratton et al., 2009). More specifically,

we aim at improving the detection of heterozygosity in homopolymeric regions caused by in-

sertions or deletions. To our knowledge, no proper statistical methods have been developed yet

for sequence variant detection in this specific setting. Currently, ad-hoc approaches based on

the integer values of the base-calls are usually taken (e.g. De Leeneer et al., 2011; Coppieters

et al., 2012). In these procedures the uncertainties of the base-calling are not taken into account

in the variant detection pipeline. As Figure 7.7 already indicated, flowgram values provide this

information to a certain extent. Hence, it may be worthwhile to use flowgram values rather

than discrete base-calls to obtain an increased performance for the detection of these sequence

variants.

Part II of this dissertation is organized as follows. In Chapter 8 we present a method for im-

proved base-calling and quality score construction of 454 sequencing data based on a Hurdle

Poisson model. Chapter 9 introduces and discusses a statistical method for the detection of DNA
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sequence variants in 454 data, in which we focus on detection of homozygosity and heterozy-

gosity in homopolymeric DNA regions of diploid organisms. Finally, discussion, conclusions

and future research perspectives for this part of the dissertation are given in Chapter 10.





Chapter 8

Improved base-calling and quality scores

for 454 sequencing based on a Hurdle

Poisson model

In this chapter we present an improved method for base-calling and quality score construction

of 454 sequencing data. The E. coli data set presented in Section 7.2 already provided a flavor

of 454 sequencing data. In Section 8.1 the properties and main error sources of the 454 data are

explored in more detail. Section 8.2 introduces a weighted Hurdle Poisson model for 454 base-

calling and quality score construction. Finally, in Section 8.3, the performance of the method is

assessed and compared to the base-calling of the 454 software, which we refer to as the native

base-caller, and to Pyrobayes, which is another competing method.

8.1 Exploration of 454 sequencing data

Prior to introducing a statistical methodology for improved base-calling, typical 454 sequencing

data as produced by the current base-caller are explored in more depth. The aim is to reveal

some aspects of the nature of these data that may help in developing the method. For this

purpose, we use the data set on E. coli that was presented in Section 7.2.

Figure 8.1 shows nonparametric density estimates of the raw signal intensities in the E. coli

data. The left panel gives the untransformed raw intensities. The distribution of untransformed

137
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Figure 8.1: Nonparametric density estimates of raw signal intensities in the E. coli data. Left: untrans-

formed raw intensities; Middle: log2-transformed raw intensities; Right: log2-transformed raw intensi-

ties separated by reference HPL.

raw intensities is unimodal, but it has a shoulder in its heavy right tail. It represents a mixture

distribution composed of two underlying processes. The left part of the distribution, mainly to

the left of the shoulder, is associated with background intensities. This is the intensity measured

when the added nucleotide is not complementary to the free end of the interrogated DNA tem-

plate and is therefore not incorporated. We refer to this component as the background signal

(HPL = 0). The second component, on the right side of the mixture distribution, consists of raw

intensities corresponding to one or multiple nucleotide incorporation events. This component

is henceforth called the incorporation signal (HPL > 0). In the middle panel of Figure 8.1 the

raw intensities are log2-transformed. The mixture distribution is now bimodal, which makes

the separation between the background and incorporation signal more clear. The right panel of

Figure 8.1 displays the same log2-transformed raw intensities, but now separated according to

the reference HPLs. The measured intensities generally increase by increasing HPL, but the

increase attenuates for larger HPLs (see also Chapter 7). This figure particularly shows that the

separation of the background signal (HPL = 0) and incorporation signal (HPL > 0) distribu-

tions is much better than the separation between the distributions corresponding to one or more

incorporation events (HPL = 1, HPL = 2, HPL = 3,...).

Nonparametric density estimates of the log2-transformed raw intensities for different cycle num-
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Figure 8.2: Nonparametric density estimates of log2-transformed raw signal intensities in the E. coli

data for different cycle numbers and separated by nucleotide type.

bers and nucleotide types are depicted in Figure 8.2. Cycle number 5, for instance, corresponds

with the fifth time that the solutions of T, A, C and G were consecutively added. The bimodal

structure observed in the middle panel of Figure 8.1 appears to be much more pronounced at

smaller cycle numbers, corresponding to the beginning of the sequencing process. As the cycle

number increases, the background and incorporation signal distributions move more and more

towards each other. At the end of the sequencing process the two components of the mixture

distribution can even no longer be distinguished: see, e.g., the lower right panel of Figure 8.2

which shows the densities of log2-transformed raw intensities at cycle number 175.

To a large extent this phenomenon can be explained by the dephasing effect that occurs during

454 sequencing, which is also referred to as loss of synchrony (e.g. Brockman et al., 2008). In

the beginning of the sequencing process all of the millions of identical DNA templates on a cer-

tain bead are in sync and incorporate the same nucleotide at the same position in the fragment

in each flow. Hence, there is a clear separation between background signal, i.e. no nucleotide is



140 Chapter 8. Improved base-calling and quality scores for 454 sequencing

incorporated, and the incorporation signal, i.e. at least one nucleotide is incorporated, in these

first cycles. As the sequencing progresses, more and more templates fall out of sync. This is

known to occur more frequently in the neighborhood of homopolymers and in reads containing

many homopolymers (e.g. Huse et al., 2007). One of the reasons is the presence of insuffi-

cient nucleotides within a flow. This may lead to incomplete synthesis of the complementary

DNA strand within homopolymers, sometimes called incomplete extension. Another source of

dephasing errors is due to insufficient flushing of reagents between flows. This may cause in-

corporation of nucleotides of a different type in a single flow, resulting in a carry forward effect

(Huse et al., 2007).

The shape and location of the densities of log2-transformed raw intensities in Figure 8.2 are very

similar for different nucleotide types. The resemblance is especially large between densities of

nucleotide C and G on the one hand, and between A and T on the other hand. The densities

for nucleotide A are slightly shifted towards larger intensities compared to the densities for

nucleotide T.

We further explore to which extent these dephasing properties affect the raw intensities and

flowgram values in neighboring flows and cycles. These effects are assessed for the nucleotide

C flow, but similar effects are observed for the other nucleotide types. First, the effect of the

reference HPL in the preceding flow of the sequencing process is examined. Usually, the nu-

cleotides are added in a predetermined order: T, A, C, G. Figure 8.3 gives the log2-transformed

raw intensities for flows of nucleotide C corresponding with a reference HPL of 0 (left panel)

or 1 (right panel). They are separated by reference HPL for nucleotide A in the preceding flow.

It appears that the distributions of the log2-transformed raw intensities are nearly identical in

shape and location. Hence, the reference HPL for the nucleotide in the preceding flow does not

influence the intensity in the current flow.

Figure 8.4 again shows the log2-transformed raw intensities for flows of nucleotide C corre-

sponding with different reference HPLs. In this case the density estimates are separated by ref-

erence HPL for nucleotide C in the preceding cycle. Recall that this is equivalent with 4 flows

earlier in the sequencing process. In general, the raw intensity clearly increases by increasing

reference HPL in the preceding cycle. This effect is especially pronounced for reference HPLs

of 0 in the current cycle (upper left panel of Figure 8.4), and gradually decreases by increasing

reference HPL in the current cycle (upper right for reference HPL 1, lower left for reference
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Figure 8.3: Nonparametric density estimates of log2-transformed raw intensities for flows of nucleotide

C corresponding with a reference HPL of 0 (left panel) or 1 (right panel). Different curves are given for

different numbers of HPL for the preceding flow of nucleotide A.

HPL 2 and lower right for reference HPL 3). These findings can be explained by the dephasing

effect. Due to incomplete extension, a proportion of DNA templates on the bead are behind

most templates with respect to their read position. For many of these dephased templates the

incorporation of a homopolymer occurs one cycle later compared to the templates that are still

in sync. Recall that the measured signal in each flow is a consensus of the emitted light of all

templates on the bead. Even if there is no incorporation event on the templates in sync, the av-

erage amount of emitted light is increased by the homopolymer incorporation on the dephased

templates. If there occurs an incorporation event of one or more nucleotides in the current cycle,

the size of this effect decreases. This is because the additional amount of light emitted from the

dephased templates is only small compared to the emitted light from the templates that are in

sync at the homopolymer position.

Nonparametric density estimates of the flowgram values for nucleotide C flows corresponding

with a reference HPL of 2 (left panel) or 3 (right panel) are depicted in Figure 8.5. The result

is quite interesting, because the observed dephasing effect seems to be overcorrected for by the

454 software in the preprocessing from raw intensities to flowgram values. For long homopoly-

mers in the preceding cycle the distribution of flowgram values is not centered around the ideal

values of 2 or 3, but is shifted towards smaller values.

The left panel of Figure 8.6 shows log2-transformed raw intensities for flows of nucleotide C

corresponding with a reference HPL of 0 in both the current and the preceding cycle. The

density estimates are separated by reference HPL for nucleotide C two cycles earlier. The effect

on the distributions of the log2-transformed raw intensities observed in Figure 8.4 is still present,
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Figure 8.4: Nonparametric density estimates of log2-transformed raw intensities for flows of nucleotide

C corresponding with a reference HPL of 0 (upper left panel), 1 (upper right panel), 2 (lower left panel) or

3 (lower right panel). Different curves are given for different numbers of HPL for the flow of nucleotide

C in the preceding cycle.
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Figure 8.5: Nonparametric density estimates of flowgram values for flows of nucleotide C corresponding

with a reference HPL of 2 (left panel) or 3 (right panel). Different curves are given for different numbers

of HPL for the flow of nucleotide C in the preceding cycle.

albeit to a smaller extent. When reference HPLs in the current or previous cycle of more than 0

are considered, the effect becomes negligible (results not shown). The right panel of Figure 8.6

shows log2-transformed raw intensities for flows of nucleotide C corresponding with a reference

HPL of 0, separated by reference HPL for nucleotide C in the following cycle, instead of the

previous. This plot illustrates that the dephasing effect also works in the other direction because
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of the carry forward effect explained previously.
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Figure 8.6: Nonparametric density estimates of log2-transformed raw intensities for flows of nucleotide

C corresponding with a reference HPL of 0. In the left panel different curves are given for different

numbers of HPL for the flow of nucleotide C two cycles earlier in the sequencing process, and given

a reference HPL of 0 for nucleotide C in the preceding cycle. In the right panel the different curves

correspond to different numbers of HPL for the flow of nucleotide C in the following cycle.

8.2 Weighted Hurdle Poisson model for 454 base-calling and

quality scores

In this section a new base-caller is presented that builds upon a weighted Hurdle Poisson model.

We first introduce the model structure. Next, the parameter estimation procedure for this model

is discussed. Finally, it is explained how the fitted model can be used for base-calling and

constructing more informative quality scores as compared to the native 454 base-caller.

8.2.1 Model specification

Let Nbc be the number of nucleotides b that are incorporated in cycle c, with b ∈ B =

{A,C, T,G} and c = 1, . . . , L, where L represents the total number of cycles in the sequenc-

ing experiment. Note again that one cycle consists of 4 flows of nucleotide solutions added to

the sequencer in fixed order (T, A, C, G). The base-calling problem is treated as a classifica-

tion problem, where each possible value for Nbc corresponds to a different class. Based on the

observed input information on the raw intensities and flowgram values, the flows are assigned

to one of these classes. If there are only two possible classes, this is often done by logistic
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regression. Here, we use Poisson regression, because multiple HPLs have to be classified. Fur-

thermore, these models also allow for extrapolation to larger HPLs, in contrast to a multinomial

modeling approach.

It often occurs that during the sequencing process no nucleotide is incorporated in a certain flow.

Hence, many HPLs of 0 are recorded (Nbc = 0). Figure 8.7 shows the marginal distribution of

the reference HPLs in the data set. Apparently, there are not more zeros in the data set than

expected for a Poisson distribution and the data appears to fit well to a Poisson distribution with

estimated mean λ̂ = 0.647.
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Figure 8.7: Histogram with observed proportions of reference HPLs in E. coli data set. The height of

the red vertical lines indicates the estimated probabilities of the reference HPLs according to the Poisson

distribution fitted to the data. The estimated mean is λ̂ = 0.647.

In a regression context, however, the assumption of a Poisson distribution might be too restric-

tive. From a conceptual point of view there is a clear difference between having a nucleotide

incorporation event or not. In the latter case only a background intensity signal is measured,

while in the former case the intensity is a sum of background intensity and intensity of the light

emitted from the pyrosequencing reaction after nucleotide incorporation. This implies the ex-
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istence of two distinct data-generating mechanisms: one for the background signal (HPL = 0)

and one for the incoporation signal (HPL > 0). Hurdle models constitute a class of models

designed to allow for such a distinction (e.g. Ridout et al., 1998). They are mixture models

with a binomial component that distinguishes between zero counts and positive counts, and a

zero-truncated Poisson component which models the positive counts, conditional on having a

non-zero count or having “crossed the hurdle”.

After zero-truncation the Poisson distribution no longer provides a good fit to the data (see

Figure 8.8). The data show considerable underdispersion after truncation, which means that the

variance is smaller than the mean. The sample variance for the E. coli data is 0.456, while the

fitted mean to the Poisson distribution is now λ̂ = 1.346.
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Figure 8.8: Histogram with observed proportions of reference HPLs in E. coli data set after zero-

truncation. The height of the red vertical lines indicates the estimated probabilities of the reference HPLs

according to the Poisson distribution fitted to the zero-truncated data. The estimated mean is λ̂ = 1.346.

To cope with underdispersion a weighted Poisson component is adopted (Ridout and Besbeas,

2004). The following Hurdle Poisson model is considered:
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Pr{Nbc = nbc|xbc,ybc} =

 1− πbc if nbc = 0,

πbc fZTWP(nbc;λbc, θ) if nbc = 1, 2, 3, . . . ,
(8.1)

where xbc and ybc are the vectors of predictor variables for the two components in the mixture

model. These are discussed in more detail further down in the text. Further, fZTWP is the density

of a zero-truncated weighted Poisson distribution, given by

fZTWP(nbc;λbc, θ) =
fWP(nbc;λbc, θ)

1− fWP(0;λbc, θ)
for nbc = 1, 2, 3, . . . , (8.2)

with fWP denoting the density of the weighted Poisson distribution,

fWP(nbc;λbc, θ) =
wnbce

−λbcλnbcbc

Wbcnbc!
. (8.3)

In (8.3), {wnbc} denotes a set of weights, λbc > 0 is a nucleotide- and cycle-specific Poisson

rate parameter, and Wbc is a normalizing constant to ensure that the probabilities sum to one. It

is given by

Wbc =
∞∑

nbc=0

e−λbcλnbcbc wnbc
nbc!

. (8.4)

We use exponential weights similar to those of Ridout and Besbeas (2004),

wnbc = e−θ(λbc−nbc)
2

with θ > 0. (8.5)

In the weighted model formulation an additional dispersion parameter θ is considered. For

θ > 0 the underdispersion in the count data can be modeled properly.

The nucleotide- and cycle-specific parameters πbc in the binomial component and λbc in the

Poisson component are modeled with predictors xbc and ybc, respectively. We allow the pre-

dictor effects to be nonlinearly associated with the HPL by considering generalized additive

models (GAMs) (Hastie and Tibshirani, 1990). In particular,

logit(πbc) = β0,bc +
k∑
j=1

fj(xj,bc), (8.6)

log(λbc) = γ0,bc +
l∑

j=1

gj(yj,bc), (8.7)
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with the fj and gj being smooth functions of the corresponding predictor variables xj,bc and

yj,bc, respectively. Cubic smoothing splines are chosen for this purpose (e.g. Hastie et al., 2001).

The predictor variables in (8.6) and (8.7) can be specified separately, which is one of the main

reasons the hurdle model approach is taken.

As shown in Section 8.1, the distributions of raw intensities for the four nucleotide types are

not exactly the same. For this reason, and also because of computational efficiency, a different

model is fitted for each nucleotide type. The following covariates are used in either or both of

the 2 submodels: (1) intensities in the current flow; (2) cumulative sum of intensities up to the

current flow; and (3) intensities 4 and/or 8 flows before and 4 and/or 8 flows after the current

flow.

Both the flowgram values and the log2-transformed raw intensities are used in the submodels

(8.6) and (8.7). The flowgram values are processed by the default 454 software for obtaining

as much information on the HPL as possible, while reducing obscuring noise to a great extent.

However, some valuable information may have been lost in this process. Moreover, Figure 8.5

has shown that some of the idiosyncrasies of 454 raw intensity data are somewhat overcorrected

when computing the flowgram values. Therefore, also the log2-transformed raw intensities are

used in the model. The cumulative sum of intensities allows for correcting for the cycle-specific

effect displayed in Figure 8.2. Figures 8.4, 8.5 and 8.6, on the other hand, have shown the

need to use the information of intensity values in the preceding and following cycles of the

sequencing process.

8.2.2 Parameter estimation

The parameters of the Hurdle Poisson model are estimated by maximizing the likelihood. Be-

cause of the special two-component structure of the model, the likelihood function can be fac-

torized according to the two components of the mixture. The log-likelihood can be written

as

ln(L) =
∑
nbc=0

ln(1− πbc) +
∑
nbc>0

ln(πbc) +
∑
nbc>0

fZTWP(nbc;λbc, θ). (8.8)

Due to this decomposition the parameters of (8.6) and (8.7) can be estimated orthogonally,
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which means that each part can be maximized separately. The parameters in both parts of

the model are estimated by means of an iteratively reweighted least squares (IRLS) procedure

(e.g. McCullagh and Nelder, 1989). For the binomial component standard software for logistic

regression can be used. For the weighted Poisson component, on the other hand, the expected

Fisher Information matrix E {I} is derived to be used in the IRLS, a procedure referred to as

Fisher’s scoring (e.g. McCullagh and Nelder, 1989). The derivation is given in Appendix A,

resulting in

E {I} =

 (1 + 2θλbc)
2 Var {Nbc} −(1 + 2θλbc) Covar {(Nbc − λbc)2, Nbc}

(1 + 2θλbc) Covar {(Nbc − λbc)2, Nbc} Var {Nbc − λbc}

 .
(8.9)

8.2.3 Base-calling and quality score production

After fitting the model with the parameter estimation procedure described in Section 8.2.2, the

estimated parameters π̂bc, λ̂bc and θ̂ are plugged into Model (8.1) to obtain estimated probabil-

ities for all possible HPLs. Subsequently, base-calling for each flow bc occurs by determining

the HPL nbc for which P̂r{Nbc = nbc|xbc,ybc} is maximal. The base-calling with the weighted

Hurdle Poisson model is referred to as HPCall. The probabilities obtained from HPCall are

very useful because they provide a direct probabilistic interpretation to the base-calling un-

certainties. In this way they give insight into potential undercall or overcall errors. This will

be more thoroughly discussed in Section 8.3.1. Moreover, they can also be used for the con-

struction of quality scores in a similar fashion as the traditional quality scores produced by the

standard 454 software, which are provided in the Phred format (Ewing and Green, 1998). These

quality scores reflect the probability that the called nucleotide is not an overcall. In particular,

the Phred-like quality score of the k-th called nucleotide in a homopolymer stretch (k > 0) is

thus given by: QSk,over = −10 log10(1−
∑∞

nbc=k
P̂r{Nbc = nbc|xbc,ybc}).

Since the model-based base-calling allows to obtain the probabilities for all possible HPLs, we

can also calculate an alternative quality score that reflects the probability that the called base is

not an undercall. This is given by QSk,under = −10 log10(1 −
∑k

nbc=0 P̂r{Nbc = nbc|xbc,ybc}).

Furthermore, using QSk,over and QSk,under, we also propose to calculate a new quality score:
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QSk,HPCall = Idir×min(QSk,under, QSk,over) with Idir = −1 if QSk,under < QSk,over and Idir = 1 if

QSk,under > QSk,over. Hence, the sign of QSk,HPCall indicates whether an undercall or an overcall

is more likely (see also Section 8.3.1).

8.3 Results

In this section the performance of HPCall is compared with the native 454 base-caller and Py-

robayes (Quinlan et al., 2008), using the E. coli data set. Pyrobayes applies Bayes’ rule to obtain

a posterior probability for the HPL, given the distribution of flowgram values. However, no ad-

ditional error sources are taken into account. Just as in HPCall, the called nucleotide sequence

in Pyrobayes is produced by concatenating the most likely number of nucleotides in each con-

secutive flow. Somewhat arbitrarily, if the presence of a nucleotide is above some minimum

probability, one extra nucleotide is called for that flow in order to minimize the undercall error

rate (Quinlan et al., 2008). In the first part of this section the base-calling accuracy of the three

methods is evaluated. This is followed by a discussion on the performance and properties of

the different quality scores. Finally, an overview is given of the different steps in the HPCall

software pipeline.

8.3.1 Base-calling results

8.3.1.1 Prediction accuracy

The estimation of the Hurdle Poisson model parameters is based on the use of a representative

training data set generated from a reference DNA sequencing experiment. For this purpose

the E. coli data set is used. Since variation of this E. coli K-12 strain with respect to the

reference sequence is extremely rare, the data set can be treated as a known-truth data set.

For computational convenience the performance evaluation is conducted on a random subset of

15000 wells of the data set. The HPCall Hurdle Poisson model is fitted using 1000 random wells

out of these 15000. The other 14000 wells are used for evaluation. The percentages and absolute

numbers of base-calling errors for this data set, separated by HPL, are depicted in Figure 8.9.

An overall decrease of base-calling errors with 35% is observed for HPCall as compared to the

native 454 base-caller, while Pyrobayes leads to even larger numbers of base-calling errors. The



150 Chapter 8. Improved base-calling and quality scores for 454 sequencing

smaller number of errors is consistent throughout the whole range of HPLs, with peaks at HPL

4 (55% decrease compared to native 454) and HPL 6 (50% decrease compared to native 454).
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Figure 8.9: Comparison of the percentages (upper panel) and absolute numbers (lower panel) of base-

calling errors by HPL for the three base-calling methods on 14000 reads of the E. coli data set.

The results in Figure 8.9 are based on using information from both raw intensities and flowgram

values. If only flowgram values are used, the prediction accuracy is slightly smaller, but still

larger as compared to the competing base-callers. This is seen from Table 8.1.

The sensitivity of the base-calling accuracies obtained with HPCall is examined by considering

10 different training data sets. Each training data set is selected by randomly sampling 1000

wells from the 15000 wells available in the E. coli data set. The model is fitted on the training

data and the other 14000 wells are used to obtain the prediction accuracies. Figure 8.10 shows

the distributions of the prediction accuracies for the different nucleotide types. The variances are

D D 
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Table 8.1: Prediction accuracy (in percentage correctly called HPLs) for the different base-calling meth-

ods separated by nucleotide type (fg = flowgram value).

correct HPLs (%)

A C G T Overall

HPCall 99.86 99.95 99.94 99.88 99.91

HPCall (only fg) 99.80 99.94 99.94 99.86 99.89

native 454 99.72 99.94 99.93 99.84 99.86

Pyrobayes 99.50 99.85 99.84 99.67 99.72

small which means that the prediction accuracies are very stable across different training data

sets. The standard deviations of the prediction accuracies range from 0.000024 (for nucleotide

C) to 0.000047 (for nucleotide T).
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Figure 8.10: Boxplots of prediction accuracies for HPCall across multiple different training sets, sepa-

rated by nucleotide type.
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8.3.1.2 Read-wise assessment and sequence variant analysis

The base-called reads are mapped to the reference sequence using the specialized alignment pro-

grams ssaha2 (Ning et al., 2001) and subread (http://sourceforge.net/projects/

subread/). In the mapping of the HPCall reads the traditional Phred-like quality scores pro-

duced by HPCall, without sign information, are used. The read-wise error rate of HPCall is

compared to that of the native 454 base-caller. The results are given in Table 8.2. For this data

set mapping percentages of 99.47% (ssaha2) and 99.43% (subread) are obtained. HPCall

appears to lead to more perfect-matching reads than the native 454 base-caller. This evidently

leads to a higher percentage of 454 reads with at least one mismatch to the reference genome as

compared to reads generated by HPCall.

Table 8.2: Percentage of reads with different numbers of mismatches in the mapping between the reads

produced by either HPCall or the native 454 base-caller and the E. coli K-12 reference sequence. For

mapping ssaha2 or subread is used.

Mapping ssaha2 subread

HPCall native 454 HPCall native 454

Number of errors per read (%)

0 66.03 56.37 69.42 60.42

1 22.97 26.78 22.25 26.08

2 6.81 10.20 5.53 8.53

3 2.45 3.79 1.81 3.11

4 0.90 1.54 0.60 1.12

5 0.84 1.32 0.40 0.74

The variant calling program ssahaSNP (Ning et al., 2005) is used to compute the number of

sequence variants, both for SNPs and indels, of the mapped reads. False positive calls are deter-

mined by comparing the base-calls to the E. coli K-12 strain reference genome. A reduction of

the number of sequence variants with 40% is obtained when using HPCall as compared to the

native 454 base-caller. The decrease is observed both for indels and for SNPs (see Table 8.3).

http://sourceforge.net/projects/subread/
http://sourceforge.net/projects/subread/
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Table 8.3: Detected number of sequence variants for the E. coli data set using ssahaSNP for HPCall

and the native 454 base-caller.

SNP calling ssahaSNP

HPCall native 454

Indels 4954 8388

SNPs 528 756

Total sequence variants 5482 9144

8.3.2 Quality scores and base-calling probabilities

HPCall provides conditional probabilities for each HPL in each flow, given all covariates in the

model. These probabilities are thus the most direct way to quantify the base-calling uncertainty.

In addition, they can also be used to compute Phred-like quality scores as generated by the

native 454 base-caller and by Pyrobayes. These Phred scores are designed to have a maximum

value of 40. Therefore, HPCall quality scores larger than 40 are trimmed to 40 too so as to make

the methods more comparable.

The Phred quality scores calculated by the different base-callers are compared to observed qual-

ity scores, which are computed following a procedure that is also applied in Brockman et al.

(2008). Based on the E. coli reference data set all bases with an equal quality score are grouped

together. Subsequently, the proportion of overcalls is computed for each group. An observed

quality score is calculated as QSobserved = −10 log10(observed overcall error rate). Figure 8.11

shows the results of this comparison. Both for HPCall and for the native 454 base-caller the

predicted quality scores seem to reflect the observed quality quite well, and the quality score

assignment seems equally good (upper panel of Figure 8.11). For Pyrobayes the performance

is clearly worse, as predicted high quality scores overestimate the true quality of the base-calls.

We also observe that HPCall generates more high quality scores than the other two base-callers

(lower panel of Figure 8.11). As an illustration, HPCall assigns to 95% of the called bases a

quality score of 30 or more, whereas this cumulative base fraction is only 82% for the native

454 base-caller and 54% for Pyrobayes.

Figure 7.8 in the introductory Chapter 7 illustrated that the native 454 quality scores do not give

any insight on the nature of potential errors, i.e. whether it is more likely that a potential under-
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Figure 8.11: Comparison of quality score assignment. Top: Observed versus predicted quality score.

Bottom: Cumulative proportion of called bases versus the assigned quality score.

call or overcall is made. Figure 8.12 shows the same plot of overcalls for reference sequences

with reference HPL 3 for the HPCall quality scores QSover. This figure clearly indicates that

overcalls are more likely in this situation. This can be seen from the large quality scores as-

sociated with HPL 2 and HPL 3, whereas HPL 4 gives smaller quality scores. This insight is

not provided by the native 454 quality scores. A similar picture is seen for the undercalls of

reference sequences with reference HPL 3, based on QSunder (right panel of Figure 8.13). Such

a plot can not be made for 454 quality scores, since quality scores for HPL 3 and HPL 4 are not

available in case of an undercall (left panel of Figure 8.13). Hence, information with respect to

undercalls is not provided in the native quality scores.
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Figure 8.12: Empirical cumulative distribution functions of HPCall quality scores QSover assigned to

bases associated with HPL 2, 3 and 4 and for sequences with reference HPL 3, in case of an overcall.
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Figure 8.13: Empirical cumulative distribution functions of quality scores for sequences with reference

HPL 3, in case of an undercall. Left: 454 quality scores (only those for HPL 2 are available). Right:

HPCall quality scores QSunder assigned to bases associated with HPL 2, 3 and 4.

sequences with reference HPL 3 in case of an undercall, a correct call and an overcall are dis-

played in Figure 8.14. Clearly, the sign of these quality scores provides additional information
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about whether an undercall or an overcall is more likely. Further down in the text this will be

explored in some more detail.

As mentioned before, the HPCall quality scores are based on estimated probabilities of being the

correct call. Hence, these probabilities are also very useful to assess the base-calling quality.

Their empirical cumulative distribution functions for sequences with reference HPL 3 shows

that undercalls and overcalls are associated with larger base-calling uncertainties than correct

calls (Figure 8.15). Figure 8.16 shows histograms of HPCall estimated probabilities. In case

of a correct call, almost all probabilities at HPL 3 are very close to 1 (upper left panel of

Figure 8.16). On the other hand, the cumulative sum of probabilities below HPL 3 in case of

an undercall and above HPL 3 in case of an overcall are more evenly distributed between 0.5

and 1 (upper right panel of Figure 8.16). In case of a miscall, the estimated probability at the

reference HPL is very often second largest (lower left panel of Figure 8.16). Moreover, the

miscalled maximal probability and the probability at the reference HPL nearly always sum to a

value close to 1 (lower right panel of Figure 8.16).

The merit of having the base-calling probabilities at our disposal is further demonstrated by ex-

amining some examples of indels that are flagged in the sequence variant detection discussed in

Section 8.3.1.2. In the first example an undercall with respect to the reference sequence AAAAA

is called by both HPCall and the native 454 base-caller (see Table 8.4). The native 454 base-

caller assigns a quality score of 22 to the fourth A in the homopolymer sequence. This score

of 22 does not indicate whether it is more likely that the fourth called A is a potential under-

or overcall. Either way, there is no fifth quality score available to provide more information

about a possible fifth A to be called. For HPCall we have the additional information that the

estimated probability that there should be five A’s called is 0.17. This indicates that a miscall

for this flow would almost certainly be an undercall. This is confirmed by the negative sign

of QSHPCall = −8 for this example. The absolute value of QSHPCall at HPL 4 is also clearly

smaller than the 454 quality score at HPL 4. Hence, the HPCall quality score provides a good

indication that this call could be problematic. It is obvious that mapping algorithms that take

this additional information into account will be able to more reliably map the base-called reads

to the reference sequence.

A very similar situation is observed in the case of an overcall (see Table 8.5). A homopolymer

stretch AA is considered in the reference sequence, but is called as AAA by both base-callers.
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Figure 8.14: Empirical cumulative distribution functions of HPCall quality scores QSHPCall for se-

quences with reference HPL 3 assigned to bases associated with HPL 2, 3 and 4, in the case of an

undercall (upper panel), correct call (middle panel) or overcall (lower panel).

D 

D 

D 



158 Chapter 8. Improved base-calling and quality scores for 454 sequencing

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

HPCall Probability

F
(x

)
HPCall probabilities for HPL below 3

Reference HPL=3

under
correct
over

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

HPCall Probability

F
(x

)

HPCall probabilities for HPL at 3

Reference HPL=3

under
correct
over

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

HPCall Probability

F
(x

)

HPCall probabilities for HPL above 3

Reference HPL=3

under
correct
over
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above HPL 3 (right panel). In each panel the empirical cumulative distribution functions are plotted
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Table 8.4: Base-calling probabilities example 1: undercall (qs x = quality score at HPL x)

reference sequence: AAAAA

native 454: AAAA

qs 2 qs 3 qs 4 qs 5 qs 6

QS454 28 22 22 - -

HPCall: AAAA

HPL 2 HPL 3 HPL 4 HPL 5 HPL 6

P̂r{Nnc = nbc|xbc,ybc} <1E-15 7.4E-9 0.83 0.17 6.3E-11

QSHPCall 0 0 -8 1 0

Again, the quality score of 23 given by the native 454 base-caller for the third A does not give an

indication of the probability of having an undercall or an overcall, given that there is a miscall.

HPCall on the other hand does provide this information. Since the estimated probability of HPL

2 is 0.29, an overcall seems much more likely than an undercall. Also here this is confirmed by

the positive sign of QSHPCall = 5.

Table 8.5: Base-calling probabilities example 2: overcall (qs x = quality score at HPL x)

reference sequence: AA

native 454: AAA

qs 1 qs 2 qs 3 qs 4 qs 5

QS454 22 22 23 - -

HPCall: AAA

HPL 1 HPL 2 HPL 3 HPL 4 HPL 5

P̂r{Nnc = nbc|xbc,ybc} 1.7E-10 0.29 0.71 3E-9 <1E-15

QSHPCall 0 -1 5 0 0

Finally, an example is considered of the special situation where no base is called while there is

one in the reference sequence (see Table 8.6). Because the native 454 base-caller only produces
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a quality score for every called base, there is no quality score provided in this situation. Hence,

there is no indication of the uncertainty of not having a call in the current flow. HPCall estimates

the probability of having HPL 0 at 0.75, and of having HPL 1 at 0.25, with an associated

QSHPCall of −6, indicating that it is not unlikely that there should be one base called instead of

none.

Table 8.6: Base-calling probabilities example 3: 0-1 undercall (qs x = quality score at HPL x)

reference sequence: T

native 454: -

qs 0 qs 1 qs 2 qs 3 qs 4

QS454 - - - - -

HPCall: -

HPL 0 HPL 1 HPL 2 HPL 3 HPL 4

P̂r{Nnc = nbc|xbc,ybc} 0.75 0.25 2.9E-8 <1E-15 <1E-15

QSHPCall -6 1 0 0 0

8.3.3 HPCall software pipeline

A preliminary data preparation step is performed in HPCall before running the Hurdle Poisson

base-calling model. In this step several raw data files are merged to create a data set in flow

space that can be used as input for the base-calling method. Both the flowgram values (.sff ) and

the raw intensities measured prior to signal processing (.cwf ) are used. It is also possible to only

include information on the flowgram values if the raw intensities are no longer available. For

calibration or training of the model a reference sequence is first transformed from nucleotide

space to flow space according to the flow order used in 454 sequencing (T, A, C, G). Next, the

flowgram values and raw intensities are mapped onto these reference HPLs in the corresponding

sequencing cycle, together with other relevant information such as added nucleotide type and

cycle number. Furthermore, flowgram values and raw intensities in previous and next flows

and cycles are calculated to be used as covariates in the base-calling model. Based on the

probabilities obtained by the base-calling model four output files are created: (a) a file with the

base-called reads in nucleotide space, (b) a file with the associated Phred-like quality scores, (c)
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Figure 8.17: Overview of the HPCall base-calling pipeline.

a file with new HPCall quality scores QSHPCall and (d) a file with the base-calling probabilities

for each HPL. The pipeline is visualized in Figure 8.17.

The data preparation step is implemented in Perl and stores all required data in a SQL database.

Next, these data are imported in R for the actual base-calling. To fit the model the R pack-

age VGAM (Yee, 2008) is used. For the weighted Poisson component a new family function

was written in VGAM that allows to efficiently conduct the IRLS parameter estimation. The

~ 
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HPCall software and manual are available at https://sourceforge.net/projects/

hpcall/.

8.4 Conclusion

In this chapter, we have presented an alternative method for the base-calling of 454 sequencing

data based on a weighted Hurdle Poisson model. The method is referred to as HPCall. HPCall

uses a probabilistic framework to call the homopolymer lengths in the sequence by modeling

454 noise predictors. Base-calling is assessed based on estimated probabilities for each ho-

mopolymer length, which are easily transformed to useful quality scores. Using a reference

data set of Escherichia coli K-12 strain, we have shown that HPCall produces improved quality

scores that are very informative with respect to the occurence of possible insertion and deletion

errors, while maintaining a base-calling accuracy that is better than the current one.

https://sourceforge.net/projects/hpcall/
https://sourceforge.net/projects/hpcall/
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Appendix A: Derivation of expected Fisher information for

weighted Poisson component

Based on the density of the weighted Poisson distribution the log-likehood for observation nbc

can be written as

log Lbc(λbc, θ;nbc) = nbc log λbc − log nbc!− θ(nbc − λbc)2 − log Wbc. (8.10)

For clarity of exposition, the indices bc are dropped in the expressions that follow. To obtain the

maximum likelihood estimator for λ and θ, the scores are computed. Because of the log-link in

Model (8.7), it is convenient to solve for log λ.

∂ log L
∂ log λ

= n+ 2θ(n− λ)λ− ∂ log W
∂λ

∂λ

∂ log λ
. (8.11)

First an expression for ∂ log W
∂λ

is derived:

∂ log W
∂λ

=
∂
(∑∞

n=0
λne−θ(n−λ)

2

n!

)
∂λ

1

W

=
∞∑
n=0

nλn−1e−θ(n−λ)
2 1

W
+
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n=0

λn2θ(n− λ)e−θ(n−λ)
2 1

W

= E
{
N

λ

}
+ E {2θ(N − λ)}

= (
1

λ
+ 2θ) E {N} − 2θλ. (8.12)

We plug the result of (8.12) into (8.11), resulting in

∂ log L
∂ log λ

= n+ 2θ(n− λ)λ− (
1

λ
+ 2θ) E {N}λ+ 2θλλ

= (1 + 2θλ)n− (1 + 2θλ) E {N}

= (1 + 2θλ)(n− E {N}). (8.13)
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We also need an expression for ∂ log W
∂θ

:

∂ log W
∂θ

=
∂
(∑∞

n=0
λne−θ(n−λ)

2

n!

)
∂θ

= −
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= − E
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}
. (8.14)

Upon using (8.14) and (8.13), we have

∂ log L
∂θ

= −(n− λ)2 + E
{

(N − λ)2
}
, (8.15)

and

∂2 log L
∂ (log λ)2

= 2θλ(n− E {N}) + (1 + 2θλ)
∂(n− E {N})

∂λ

∂λ

∂ log λ
. (8.16)

An expression for ∂(n−E{N})
∂λ

is first derived:
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We plug the result of (8.17) into (8.16), resulting in
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∂2 log L
∂ (log λ)2

= 2θλ(n− E {N})− (1 + 2θλ)(
1

λ
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From this result it follows that
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To obtain an expression for ∂2 log L
∂θ ∂ log λ we start from (8.15),

∂2 log L
∂θ ∂ log λ

= 2(n− λ)λ+ λ
∂ E {(N − λ)2}

∂λ
. (8.21)

To this end
∂ E{(N−λ)2}

∂λ
is first computed:
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We now plug (8.22) into (8.21). This gives

∂2 log L
∂θ ∂ log λ

= 2(n− λ)λ− 2λ E {N − λ}+ (1 + 2θλ) Covar
{
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. (8.23)

The expected value then equals

E
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∂2 log L
∂θ ∂ log λ
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= (1 + 2θλ) Covar
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(N − λ)2, N

}
. (8.24)

Thus, the expected Fisher Information matrix can be written as

E {I} =

 (1 + 2θλ)2 Var {N} −(1 + 2θλ) Covar {(N − λ)2, N}

(1 + 2θλ) Covar {(N − λ)2, N} Var {N − λ}

 . (8.25)





Chapter 9

A statistical method for the detection of

DNA sequence variants from 454

sequencing data

9.1 Introduction

In this chapter we focus on an application of 454 sequencing data that is situated more down-

stream in the data analysis pipeline compared to the base-calling that was discussed in Chapter

8. More specifically, the detection of DNA sequence variants in homopolymers is considered.

Humans are diploid organisms having all their hereditary information organized in 23 pairs of

homologous chromosomes. For each chromosome pair, one chromosome is inherited from the

mother and the other from the father. Hence, each individual typically possesses two copies

of each gene or genetic locus, which is the location of a gene or DNA sequence on the chro-

mosome. One such a copy is referred to as an allele. From the Human Genome Project, which

succeeded in assembling the first human reference genome in 2003, it was clear that all humans,

except identical twins, have a unique DNA sequence (International Human Genome Sequenc-

ing Consortium, 2004). All differences in the DNA sequence account for 0.1% of the human

genome, which corresponds to around 3 million nucleotides. Due to this human genetic varia-

tion, it often occurs that the two alleles of a locus in an individual are not identical, but exhibit

such DNA sequence variants.

169
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Depending on the point of reference, two levels of DNA sequence variation may be distin-

guished. The first level refers to sequence variants between the two alleles of an individual,

which implies heterozygosity. The individual is homozygous for a locus if the DNA sequence

of the two alleles are identical. Secondly, the variation of the alleles with respect to the human

reference sequence may also be considered. In most cases individuals who are heterozygous

for a certain locus will have one allele that is identical to the reference sequence, and one allele

that is different. Homozygosity will often indicate that both identical alleles are also identical

to the reference sequence. However, it may also occur that heterozygous or homozygous alleles

both differ from the reference sequence, though this event is rather rare.

Another categorization of DNA sequence variants can be made based on the type of molecular

variation. Three of the most important classes are single nucleotide polymorphisms (SNPs),

copy number variations (CNVs), and short insertion and deletion variants (indels). While SNPs

contain a variation with just one nucleotide in the DNA sequence substituted by a nucleotide

of another type, CNVs consist of varying numbers of repeated DNA sequences, which amount

from 1kb to several Mb (Redon et al., 2006). The type of variation observed in short indels is

the insertion or deletion of 1 or more nucleotides in the DNA sequence. These different types of

variants lead to phenotypical variability and, together with environmental factors, contribute to

an increased susceptibility to the development of many diseases, such as cancer (Stratton et al.,

2009). An accurate detection of DNA sequence variation is a critical first step in attaining an

improved understanding of the development of these diseases, which may eventually result in

creating appropriate medicine. In this chapter, we are particularly interested in the detection of

heterozygosity in homopolymeric regions, associated with the presence of indels.

For a long time Sanger sequencing has been the most commonly used technology in DNA

sequence variant detection studies. Nowadays, however, next-generation sequencing (NGS)

platforms are more frequently applied. Since they are fast and relatively cheap, the implemen-

tation of these NGS systems for sequence variant detection in a diagnostic setting promises to

play an important role in personalized medicine (Mills et al., 2011). Just like for other NGS

technologies, detection of DNA sequence variants of specific genetic loci with 454 sequencing

requires a customized library preparation. In this case the DNA fragments are collected for the

genomic region of interest using target-specific primers. This type of sequencing is often called

amplicon sequencing and the DNA fragments are referred to as the amplicons.
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To date, no statistical methods have been developed for the analysis of 454 amplicon sequencing

data used in the context of diagnostic testing. Instead, a database-oriented analysis pipeline has

been described to conduct variant calling in this setting (De Schrijver et al., 2010). The method

is based on the determination of nucleotide-level differences between the sequenced read and

the reference sequence. False positives and negatives are subsequently reduced by applying a

collection of filters. These filters may include (De Leeneer et al., 2011; Coppieters et al., 2012):

(1) the read coverage or the number of reads sequenced for a specific amplicon has to be above

a minimum value; (2) the variant needs to be present in at least a minimum percentage of reads;

(3) a high quality score for the base-call associated with the variant is required; (4) variants

in homopolymer stretches above a certain length (e.g. 6) are treated as non-reliable calls and

discarded. Clearly, the use of these ad-hoc filters is rather artificial and does not provide a

trustworthy method for distinguishing between true variants and base-calling errors.

In Chapter 7 we have shown a typical example of the distribution of flowgram values corre-

sponding to a base-call for homopolymer lengths (HPLs) of 0, 1, 2 and 3 (see Figure 7.7).

Flowgram values in the tails of the respective distributions are associated with low-quality base-

calls. From this observation it is clear that a variant calling method for 454 data has the potential

to benefit from using the flowgram values instead of the homopolymer lengths.

This chapter is organized as follows. Section 9.2 introduces the 454 amplicon sequencing data

set that is used in this chapter. The statistical method developed for variant detection from

454 amplicon sequencing data is presented in Section 9.3. The results of the analysis and an

empirical assessment of the method’s performance are described in Section 9.4. Finally, Section

9.5 summarizes some conclusions for this chapter.

9.2 Amplicon sequencing data on BRCA1- and BRCA2-genes

BRCA1 and BRCA2 are two cancer tumor suppressor genes whose proteins have a function in

repairing chromosomal damage and as such help to control normal cell growth. Mutations in

these genes may lead to disfunctional proteins and to an increased risk for developing breast or

ovarian cancer (e.g. Nathanson et al., 2001). Genetic testing by screening for mutations in these

genes is an important prevention tool. To enable the testing of an increasing number of blood

samples within shorter turnaround times, high-throughput screening is required (De Leeneer
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et al., 2011). Also, the prospect of targeted therapeutic agents for tumors diagnosed in BRCA1

or BRCA2 mutation carriers, such as specific polymerase enzyme inhibitors, contribute to the

expectations for genetic testing (Curtin, 2005).

The original data set consists of 454 amplicon sequencing reads of all the coding regions of

the BRCA1 and BRCA2 genes taken from blood samples of 123 individuals, as described in

De Leeneer et al. (2011). For the development of the variant calling method, a subset of these

data, for which the flowgram values are still available, is used. It consists of sequencing data

from 68 amplicons spread over the exons of BRCA1 and (mostly) BRCA2 for 19 subjects. Only

loci with a reference homopolymer length of at least 4 are considered, as these are most chal-

lenging in sequence variant detection. A data example is presented in Table 9.1, which gives

the first four lines for a certain read in the data set. For every unique combination of amplicon

ID and MID, which is an ID tag to indicate the subject, several reads (indicated by sequence ID)

are sequenced. At a specific homopolymer reference position there is a flowgram value and an

associated base-call available for each read. The variant calling method described in Section 9.3

will be applied to the flowgram values over all reads for each unique combination of amplicon,

subject and reference position.

Table 9.1: Example of the data set format. sequence ID: ID tag to indicate a certain read; amplicon ID:

ID tag to indicate the sequenced amplicon of the BRCA gene (6th amplicon of the 5th exon of BRCA2

in this case); MID: ID tag to indicate the subject; ref pos: position of the homopolymer on the reference

sequence; nucl: nucleotide type at this locus; HPLref : homopolymer length of the reference sequence;

fg value: the measured flowgram value corresponding with this locus for this read; 454 bc: the base-call

made by the 454 software for this homopolymer.

sequence ID amplicon ID MID ref pos nucl HPLref fg value 454 bc

F2V03PG01A4ADL BRCA2 05 06 MID11 147 T 5 4.63 5

F2V03PG01A4ADL BRCA2 05 06 MID11 157 T 6 5.78 6

F2V03PG01A4ADL BRCA2 05 06 MID11 163 A 4 3.99 4

F2V03PG01A4ADL BRCA2 05 06 MID11 188 T 4 3.82 4
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9.3 Statistical variant detection method for 454 amplicon se-

quencing

Let yijk be a flowgram value measured for sequence read k (k = 1, . . . , Kij) at homopolymer

locus j (j = 1, . . . , J) of subject (MID) i (i = 1, . . . , I), where I is the total number of subjects

considered in the sequencing experiment, J is the total number of reference homopolymer loci

for the subjects. This is usually identical for all subjects. Further, Kij is the total number of

observed flowgram values for locus j of subject i. This is also referred to as the coverage.

Without loss of generality, and because the estimation and hypothesis testing procedure takes

place independently for each locus j and subject i, we will drop indices i and j in the remain-

der. Since we are considering amplicon resequencing experiments for a diploid organism, we

assume that each flowgram value yk results from a two-component normal mixture density

f(yk;θ) = ψ1f1(yk;µ1, σ
2
1) + (1− ψ1)f2(yk;µ2, σ

2
2), (9.1)

with fl(yk;µl, σ2
l ) = (2πσ2

l )
−1/2exp(− (yk−µl)

2σ2
l

), where l = 1, 2, and θ = (µ1, σ
2
1, ψ1, µ2, σ

2
2)T .

The mixing parameter ψ1 denotes the probability that yk belongs to the first normal density

component; ψ2 = 1−ψ1 is then the probability that yk is taken from the second normal density

component.

If subject i is homozygous for locus j, all yk (k = 1, . . . , Kij) are assumed to belong to a

single-component normal density, i.e. ψ1 is either 0 or 1. On the other hand, in the case of

heterozygosity, we expect ψ1 and ψ2 to be 0.5. In reality, however, the mixing proportions

may deviate from these expected probabilities, e.g. due to preferential PCR amplification in the

library preparation step.

9.3.1 Parameter estimation: EM algorithm

Each flowgram value yk is supposed to result from only one of the two components. Consider

now zk, a realization of the random variable Zk, associated with the flowgram value yk, where

zk =

 1 if yk belongs to f1(yk;µ1, σ
2
1)

0 if yk belongs to f2(yk;µ2, σ
2
2)

. (9.2)
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From Equation (9.1) it follows that Pr {Zk = 1} = ψ1 and Pr {Zk = 0} = 1 − ψ1 = ψ2.

Hence, Zk ∼ Binomial(1, ψ1). In reality, the class labels zk are unknown. Hence, this may be

considered as an incomplete-data problem. In this context, an Expectation-Maximization (EM)

algorithm (Dempster et al., 1977) is often used to obtain maximum likelihood estimates of the

model parameters. A comprehensive overview of EM algorithms and their extensions is given

in McLachlan and Krishnan (1997). These iterative algorithms make use of the completed-data

log-likelihood.

Consider the log-likelihood for the completed data of all observations for subject i at locus j,

x = (y, z)T , with y = (y1, . . . , yKij) and z = (z1, . . . , zKij),

log Lc(θ;x) =
2∑
l=1

Kij∑
k=1

zk log ψl +
2∑
l=1

Kij∑
k=1

zk log fl(yk;µl, σ2
l ). (9.3)

Suppose that the algorithm is at iteration (m+1). In the E-step, the expectation of the completed-

data log-likelihood log Lc, given the current estimate θ(m), is calculated. This requires the

computation of the expected value of Zk given θ(m) and the observed data yk,

E(Zk|yk,θ(m)) = Prθ(m)(Zk|yk) = τ1(yk;θ
(m)). (9.4)

The conditional expectation can be written as a posterior probability, which is easily calculated

by applying Bayes’ rule,

τ1(yk;θ
(m)) =

ψ
(m)
1 f1(yk;µ

(m)
1 , σ2(m)

1 )∑2
l=1 ψ

(m)
l fl(yk;µ

(m)
l , σ2(m)

l )
. (9.5)

In the M-step a maximization takes place of the expected completed-data log-likelihood, given

the current estimate θ(m),

Q(θ;θ(m)) =
2∑
l=1

Kij∑
k=1

τl(yk;θ
(m)) log

{
ψl fl(yk;µl, σ

2
l )
}
. (9.6)

The parameter estimates that maximize Q(θ;θ(m)) are computed by (l = 1, 2)

ψ̂
(m+1)
1 =

1

Kij

Kij∑
k=1

τ̂1(yk;θ
(m)), (9.7)

µ̂
(m+1)
l =

∑Kij
k=1 τ̂l(yk;θ

(m)) yk∑Kij
k=1 τ̂l(yk;θ

(m))
, (9.8)

σ̂2(m+1)

l =

∑Kij
k=1 τ̂l(yk;θ

(m))
(
yk − µ̂(m+1)

l

)2
∑Kij

k=1 τ̂l(yk;θ
(m))

. (9.9)

The resulting θ(m+1) is then again used in the E-step of the next iteration and the E-step and the

M-step are repeated until convergence.
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9.3.2 Detecting zygosity by a Wald-type test

9.3.2.1 Construction of the test statistic

Let µ1 and µ2 be the true mean flowgram values of the two normal densities in the two-

component mixture f(yk;θ). Further, let δ be a positive threshold value. For heterozygous

loci it must hold that µ1 and µ2 differ from each other with a value of at least δ. Heterozygous

loci can now be detected by contructing a Wald-type statistical test with hypotheses given by

H0 : |µ1 − µ2| = δ versus H1 : |µ1 − µ2| > δ, (9.10)

with δ > 0.

The associated test statistic can be written as

T =
|D| − δ
σ̂D

, (9.11)

with D = µ̂1 − µ̂2, and σ̂D =
√
σ̂2
µ̂,11 − 2σ̂µ̂,12 + σ̂2

µ̂,22, which is the estimated standard error

(SE) of (µ̂1 − µ̂2). The derivation of σD is shown below.

SE (µ̂1 − µ̂2) = (Var (µ̂1 − µ̂2))
1/2

=
(
(1 − 1) Var(µ̂) (1 − 1)T

)1/2
=

(1 − 1)

 σ2
µ̂,11 σµ̂,12

σµ̂,12 σ2
µ̂,22

 (1 − 1)T

1/2

(9.12)

=
√
σ2
µ̂,11 − 2σµ̂,12 + σ2

µ̂,22.

We now make use of the well-known property that the asymptotic variance-covariance matrix

of a maximum likelihood estimator (MLE) is given by the inverse of the expected Fisher in-

formation matrix (e.g. McCullagh and Nelder, 1989). It can be estimated consistently by the

inverse of the observed Fisher information matrix for the observed (incomplete) data likelihood

L(µ;y) with respect to µ. This estimator is given by
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I(µ̂;y) = −∂2 log L(µ;y)

∂µ∂µT

∣∣∣∣
µ=µ̂

=

 I11 I12

I21 I22

 , (9.13)

with

I11 =

Kij∑
k=1

τ̂1(yk)

σ̂2
1

−
Kij∑
k=1

τ̂1(yk)τ̂2(yk)(yk − µ̂1)
2

σ̂4
1

,

I22 =

Kij∑
k=1

τ̂2(yk)

σ̂2
2

−
Kij∑
k=1

τ̂1(yk)τ̂2(yk)(yijk − µ̂2)
2

σ̂4
2

,

I12 = I21 =

Kij∑
k=1

τ̂1(yk)τ̂2(yk)
(yk − µ̂1)

σ̂2
1

(yk − µ̂2)

σ̂2
2

.

The result of (9.13) can now be used in (9.12) to obtain the denominator of T .

9.3.2.2 Null distribution and p-value

The expression to calculate the p-value can be derived from the asymptotic null distribution of

T . Consider first the asymptotic distribution of D under the null hypothesis,

D
H0∼

 N(δ, σ2
D) if µ1 > µ2

N(−δ, σ2
D) if µ1 < µ2.

(9.14)

The asymptotic null distribution of T then becomes

T
H0∼


|σDZ+δ|−δ

σD
if µ1 > µ2

|σDZ−δ|−δ
σD

if µ1 < µ2,
(9.15)

where Z denotes a random variable with a standard normal distribution.

If µ1 > µ2, we have

T
H0∼

 Z if σDZ + δ > 0

−Z − 2δ
σD

if σDZ + δ < 0.
(9.16)
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Analogously, if µ1 < µ2

T
H0∼

 Z − 2δ
σD

if σDZ − δ > 0

−Z if σDZ − δ < 0.
(9.17)

Because for a standard normal random variable it holds that Z and−Z are equal in distribution,

Equations (9.16) and (9.17) lead to the same result. The p-value can thus be calculated as

follows.

p = Pr {T > t|H0}

= Pr
{
Z > t|Z > − δ

σD

}
Pr
{
Z > − δ

σD

}

+ Pr
{
−Z − 2

δ

σD
> t|Z < − δ

σD

}
Pr
{
Z < − δ

σD

}
. (9.18)

Further, we use the asymptotic property that the variance of a consistent estimator converges to

0 with growing sample size. Hence, σD vanishes asymptotically and the expression − δ
σD

ap-

proaches−∞. From this result, it becomes clear that Pr
{
Z > − δ

σD

}
≈ 1 and Pr

{
Z < − δ

σD

}
≈

0. The p-value may thus be approximated by

p ≈ Pr
{
Z > t|Z > − δ

σD

}
= 1− Φ(t), (9.19)

with Φ(.) the cumulative distribution function of a standard normal variable.

A p-value smaller than the significance level leads to the rejection of the null hypothesis of a

homozygous locus, in favor of the alternative hypothesis that the data come from a heterozygous

variant locus.

9.3.3 Penalized maximum likelihood estimation

An often encountered problem in the application of the EM algorithm for normal density finite

mixture models is the singularity of the likelihood function (McLachlan and Peel, 2000). Singu-

larities (or degeneracies) can occur in the optimization process if one of the component means
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equals one of the observations in the data set and the variance becomes zero. Consequently, the

likelihood goes to infinity and the MLE can not be defined. A somewhat related problem is the

sensitivity to outliers when using the ordinary EM algorithm. If the data set contains one or a

few outlying observations the algorithm will often tend to cluster these together in one compo-

nent and assign all the other observations to the second component. The estimated variance of

the normal density with the outlying observations will usually be very small. This may lead to

an artificial inflation of test statistic T (9.11), possibly inducing many false positive calls. In

the context of homopolymer variant detection based on 454 sequencing data, outlying flowgram

values for homozygous loci occur because of sequencing errors. We wish to protect the method

from calling these as heterozygous in such a situation.

A Bayesian solution for this degeneracy problem has been proposed which also reduces the

sensitivity to outliers (Ridolfi and Idier, 1999). This is done by imposing an inverse gamma

prior distribution on the variance parameters σ2
1 and σ2

2 . The completed-data log-likelihood

(9.3) can now be adapted to a penalized log-likelihood:

log Lc,P (µ, ψ1;x,σ
2) =

2∑
l=1

Kij∑
k=1

zk
{

log ψl + log fl(yk;µl, σ2
l ) + log g(σ2

l )
}
, (9.20)

with the inverse gamma density given by

g(σ2
l ) =

αβ−1

Γ(β − 1)

1

σ2β
l

exp
{
− α

σ2
l

}
1[0,+∞), (9.21)

and with l = 1, 2, and α and β hyperparameters. The inverse gamma distribution is known

to be conjugate for the variance of a normal distribution. This conjugacy implies substantial

advantages for the computation of the posterior distribution of the model parameters. Explicit

formulas are still retained for estimating the parameters in the M-step of each iteration in the

EM algorithm. Equations (9.7) and (9.8) remain unchanged and Equation (9.9) becomes

σ̂2(m+1)

l =
2α +

∑Kij
k=1 τ̂l(yk;θ

(m))
(
yk − µ̂(m+1)

l

)2
2β +

∑Kij
k=1 τ̂l(yk;θ

(m))
. (9.22)
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9.4 Results

9.4.1 Analysis of the BRCA data set

To illustrate the variant calling method we analyze the BRCA data set. As already explained

in Section 9.2, a separate mixture model is fitted using the flowgram values for each unique

combination of amplicon, subject and reference position of a homopolymer with length of at

least 4. From each fitted mixture the estimated parameters of the two normal components are

used for calculating the test statistic T . A threshold value of δ = 0.5 is used in the analysis.

This value is motivated by the fact that in 454 base-calling flowgram values are only more or

less rounded to provide the base-call. Hence, a difference in mean flowgram value of greater

than 0.5 is likely to be associated with two different homopolymer lengths and thus originates

from a heterozygous variant. The parameters are estimated by penalized maximum likelihood

estimation. The value for both hyperparameters α and β is set at 0.4, the same value as used in

Ridolfi and Idier (1999).

The normality assumption underlying the variant calling method is first checked for some typi-

cal sets of flowgram values from reference loci that are known not to contain sequence variants,

following information provided in De Leeneer et al. (2011). The normal QQ plots shown in

Figure 9.1 reveal no severe deviations from the normal distribution. This is confirmed by the

p-values obtained for the Shapiro-Wilk test of normality (Shapiro and Wilk, 1965), which are

also indicated on the plots of Figure 9.1.

All variant detection tests were conducted at the 5% significance level. This resulted in 4 de-

tected loci containing heterozygous variants. Table 9.2 gives the results and some properties for

these loci.

The interpretation of the analysis results benefits from a graphical presentation. For the 4 het-

erozygous variants the results are presented in Figure 9.2. The shape of the mixture density in

these plots indeed suggests variation in homopolymer length at the specific locus. The bimodal

structure is especially clear in the two upper plots with corresponding p-values of nearly 0.

Figure 9.3 gives two typical examples of loci for which most likely a variant would be called

based on the 454 base-calls only (red bars), but which show a unimodal distribution of flowgram
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Figure 9.1: QQ plots and Shapiro-Wilk p-values for 4 typical sets of flowgram values from reference

loci that do not contain sequence variants

Table 9.2: Overview of the 4 detected heterozygous homopolymer variants in the BRCA data set. The

columns showing the different HPLs correspond with the frequency of base-calls determined by the 454

software for the indicated combination of amplicon ID, MID and reference position.

HPL

amplicon ID MID ref pos Kij p-value 5 6 7 8 9 10 11 12

BRCA2 11 07 MID12 196 342 <10e-5 0 4 195 138 5 0 0 0

BRCA2 11 21 MID14 175 73 <10e-5 28 8 34 3 0 0 0 0

BRCA2 10 02 MID6 114 57 0.01173 4 35 17 1 0 0 0 0

BRCA2 03 MID2 45 22 0.01946 0 0 0 0 7 9 4 2
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Figure 9.2: Graphical representation of the 4 detected heterozygous variants
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Figure 9.3: Two typical examples of called negatives that would have been called positive based on 454

base-calls
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values, and hence are not called by our method. The advantage of using flowgram values is

immediately clear when comparing the upper left plot of Figure 9.2 with the rightmost plot

of Figure 9.3. Whereas the frequencies of the 454 base-calls seem to reflect a variant in both

cases, the distribution of the flowgram values is completely different and seems to be more

appropriate.

The p-values in Table 9.2 are not adjusted for multiple testing. If the FDR is controlled at 5%

using the Benjamini-Hochberg method (Benjamini and Hochberg, 1995), only the two loci with

the lowest p-values are still significant.

9.4.2 Empirical evaluation of the method’s performance

Although the plots shown for the BRCA data suggest that the variant calling method leads to

reasonable results, a proper performance evaluation is needed. One way to validate the results is

to conduct Sanger sequencing to the subject samples and use this as a gold standard. However,

these data are often not available. Alternatively, it is possible to simulate known-truth data

ourselves. Hence, a simulation study is set up to assess the sensitivity or true positive rate

(TPR), as defined in Equation (3.50), and the true negative rate or specificity (SPC), as defined

in Equation (3.51), of the proposed method.

Two typical samples of real flowgram values are taken from the BRCA data set. The loci

associated with these flowgram values are known to contain no sequence variants, following

De Leeneer et al. (2011). The flowgram values of the first sample correspond with a HPL of

7, those of the second with a HPL of 8. The situation of a heterozygous variant (alternative

hypothesis) is simulated by subsampling from the two flowgram value data sets with a certain

mixing probability ψ1, whereas the situation of no variant (null hypothesis) is obtained by sub-

sampling from only one of the two flowgram data sets. In this study, the data set with flowgram

values corresponding with HPL 7 is used. The former sampling situation will allow us to obtain

the sensitivity, while the specificity will be calculated from the latter. When applying this strat-

egy it is of paramount importance to avoid confounding factors to influence the results as much

as possible. Therefore, the two samples are taken from the same subject, and at a reference po-

sition that corresponds to a similar position on the read (position 67 for HPL 7, position 91 for

HPL 8). The latter condition is an attempt to minimize the well-known impact of the position
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of the read on the base-call error rate because of variations in the flowgram value distribution

(e.g. Chapter 8 and Brockman et al., 2008).

The simulations are conducted for scenarios involving the following settings: (A) threshold

values δ between 0.05 and 1.2; (B) mixing probabilities ψ1 of 0.2, 0.3, 0.4, 0.5, 0.6, 0.7 and

0.8; (C) sample sizes or coverages Kij of 20, 50, 100, 150 and 200. For each combination,

1000 simulations are performed. In each run the variant calling method provides a p-value. The

proportion of significant p-values (significance level of 5%) is then used to calculate the TPR

and FPR. Subsequently, the results are combined for the construction of a ROC curve. Each

point on this curve corresponds with a different value for δ.

9.4.2.1 Effect of mixing probability and coverage

Figures 9.4, 9.5 and 9.6 show the ROC curves for the method based on the ordinary MLE (left

panels) and based on the penalized MLE (right panels), for ψ1 = 0.5, ψ1 = 0.6 and ψ1 = 0.2,

respectively.
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Figure 9.4: ROC curve for mixing probability ψ1 = 0.5 based on the ordinary MLE (left panel) and the

penalized MLE (right panel) of the mixture model with HPLs 7 and 8

The ROC curves indicate that the method based on the penalized MLE does a good job in

attaining a large TPR while keeping the FPR very small. The penalized MLE method also

clearly outperforms the method based on the ordinary MLE. The method works best for a mix-

ing probability of 0.5, which is the mixing probability in an ideal sequencing experiment. If



184 Chapter 9. Detection of DNA sequence variants from 454 sequencing data

0.0 0.1 0.2 0.3 0.4 0.5 0.6

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

ROC mixture 7−8, Mixing probability = 0.6

FPR

TP
R

coverage=20
coverage=50
coverage=100
coverage=150
coverage=200

0.0 0.1 0.2 0.3 0.4 0.5 0.6

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

ROC mixture 7−8, Mixing probability = 0.6

FPR

TP
R

coverage=20
coverage=50
coverage=100
coverage=150
coverage=200

Figure 9.5: ROC curve for mixing probability ψ1 = 0.6 based on the ordinary MLE (left panel) and the

penalized MLE (right panel) of the mixture model with HPLs 7 and 8
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Figure 9.6: ROC curve for mixing probability ψ1 = 0.2 based on the ordinary MLE (left panel) and the

penalized MLE (right panel) of the mixture model with HPLs 7 and 8

the difference from this desired value increases, the performance of the method becomes worse.

This is obvious from the ROC curves based on the other mixing probabilities in the simulation

study. Furthermore, the performance of the method improves with increasing coverages. A

coverage of only 20 is clearly insufficient to guarantee trustworthy results, whereas the method

already performs quite well for a coverage of 50, especially for mixing probabilities close to

0.5. Similar plots can be made for mixtures with other HPLs. In all further analyses the results

will be based on the penalized MLE.
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9.4.2.2 Effect of threshold value

A difficulty in the application of the methodology that has not been discussed yet is the choice

of a robust threshold value δ. One may expect that ideally different threshold values should

be applied when testing different HPLs. To examine this, a new series of simulations is set

up. In these simulations we explore the TPR and FPR as a function of threshold value in the

analysis of a series of different HPLs. Just as before, real flowgram values from the BRCA data

set that contain no variants are used for simulation. We have sampled from flowgram values

corresponding to homopolymers of lengths 4, 5, 6, 7 and 8 for the determination of the FPRs,

and from mixtures of flowgram values associated with homopolymers of lengths 4-5, 5-6, 6-7

and 7-8 to calculate the TPRs. In the simulations, we assume a mixing probability of 0.5 and

the sample size or coverage is varied at 20, 50, 100 and 200. The resulting plots are given in

Figure 9.7.

As expected, the simulation results indicate that the TPR drops from 1 to 0 with increasing

threshold value. It seems that the larger the coverage of the sequencing experiment is, the larger

will be the threshold value at which the TPR starts to decrease. From coverage 50 and larger,

however, this increase seems only marginal. At coverage 20 the TPR starts to decrease almost

immediately and for longer homopolymers (HPL 7 and 8) even never reaches the value 1 at

threshold 0. The plots also suggest that the larger the coverage is, the smaller the range of

threshold values is in which the decrease of TPR from 1 to 0 takes place. It also seems that the

TPR starts to decrease at a smaller threshold value when dealing with longer homopolymers.

In general, the FPR decreases by increasing threshold value. For short homopolymers (HPL 4

and 5) the FPR is kept at 0 over the whole range of threshold values, which is not the case for

longer homopolymers. The plots suggest an increasing FPR when the HPL increases. The FPR

also increases by increasing coverage and thus approximates 0 only at larger threshold values.

Based on the plots, a threshold value between 0.5 and 0.7 seems the best choice when dealing

with settings that fall within the range of those in the simulation study. For threshold values

in this range a large TPR is combined with a small FPR. The results imply that it might be

beneficial to slightly increase the threshold for sequencing experiments with large coverages.
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Figure 9.7: TPR and FPR as a function of threshold for different HPLs at coverages 20, 50, 100 and 200
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9.4.2.3 Sensitivity to hyperparameter values α and β

In the penalized maximum likelihood procedure an inverse gamma prior distribution is imposed

on the variance parameters of the two normal components of the mixture. In line with what

was proposed in Ridolfi and Idier (1999), the hyperparameters α and β were set at 0.4 in all

preceding analyses. To evaluate whether this is a reasonable choice, we now examine the sensi-

tivity of the performance of the variant calling method to the hyperparameter values. Figure 9.8

shows the densities of inverse gamma distributed random variables for a selection of different

hyperparameter values.
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Figure 9.8: Inverse gamma densities for a selection of different hyperparameters α and β

A simulation study is conducted using the same flowgram value data as in Section 9.4.2.1.

Figure 9.9 shows the ROC curves for the same selection of hyperparameters as displayed in

Figure 9.8 for coverages 50 (left panel) and 200 (right panel). The threshold values δ are varied

between 0.1 and 1.2. All simulations are run with a mixing probability of 0.5. It is clear that the

curves are almost identical for different hyperparameter choices. This indicates that the analysis

is very robust to different choices for α and β.
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Figure 9.9: ROC curves for a selection of hyperparameters of the inverse gamma prior distribution of the

mixture model with HPLs 7 and 8, for coverages 50 (left panel) and 200 (right panel), and with mixing

probability ψ1 = 0.5

9.5 Conclusion

With the maturing of new high-throughput DNA sequencing technologies, interest has grown

to exploit their tremendous potential to apply them for personalized diagnostics and medicine.

In this chapter we have proposed a statistical method to detect heterozygous sequence variants

in homopolymeric regions of diploid organisms with 454 sequencing data. A two-component

normal mixture model is fitted to the flowgram values at each genomic locus using a penalized

maximum likelihood framework. The difference in component means is subsequently tested

against a specified threshold value. The method is illustrated on an amplicon sequencing data

set interrogating the BRCA genes. Simulation experiments reveal that the method works well in

terms of sensitivity and specificity. The performance is best for mixing probabilities of 0.5 and

a threshold value between 0.5 and 0.7. The method also improves with increasing coverages.



Chapter 10

Discussion, conclusions and future

research perspectives for Part II

10.1 Discussion and conclusions

In this second part of the dissertation we have focused on the analysis of next-generation se-

quencing (NGS) data produced by the 454 platform, which is one of the prominent players

among the NGS technologies. In particular, we have developed a statistical method for two dis-

tinct challenges at different stages in the data-analytic pipeline. To a large extent both problems

are caused by difficulties specifically encountered with 454 sequencing for determining the cor-

rect length of homopolymers in the DNA sequence. At the start of the pipeline the base-calling

of 454 sequencing data has been considered, while more downstream of the data flow we have

developed a method for the detection of homozygosity and heterozygosity in homopolymeric

DNA regions of diploid organisms.

An alternative method for base-calling of 454 sequencing data has been proposed based on a

weighted Hurdle Poisson model. The method is referred to as HPCall. Its probabilistic frame-

work enables a seamless integration of base-calling and quality score assignment, which are

now conducted simultaneously. For a given cycle and nucleotide, the probability for each HPL

is estimated conditional on read-specific covariates, and the call corresponds to the HPL with the

maximum probability. In this way, the height of the maximal probability provides direct infor-

mation about the base-calling uncertainty and can thus be used as a measure for the base-calling

189
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quality. Moreover, in the case of a miscall, the second largest probability indicates whether an

undercall or an overcall is more likely. This information is important for the downstream analy-

sis of sequencing data. However, it is completely lacking when using Phred-like quality scores

produced by current 454 base-callers. The distributions of maximum base-calling probabilities

associated with a miscall are more evenly distributed between 0.5 and 1 than in the case of a

correct call, for which it is very often nearly 1. This suggests that relatively small maximum

probabilities are often associated with miscalls and therefore should raise caution.

Because Phred-like quality scores are commonly used in the downstream analysis steps of NGS

experiments, they are also calculated by HPCall. As a result, they can be used in the same

way as 454 quality scores. They are related to the probability of not having an overcall. These

overcall quality scores appear to compete well with the 454 quality scores, while the Pyrobayes

quality scores perform clearly worse. At the same time HPCall produces considerably more

high-quality scores. Since all possible base-calling probabilities are available, alternative qual-

ity scores can also be calculated based on the probability of not having an undercall. A novel

summarizing quality score, the HPCall quality score, is constructed by quantifying to what ex-

tent the overcall or the undercall quality score has the smallest value at the base-called HPL.

This information is coded by the sign of the quality score (minus for undercall, plus for over-

call). The new quality score now contains explicit information about the direction of a possible

miscall. Quality-aware sequence aligners may use these scores to provide more reliable map-

ping results. We have further illustrated the use of the HPCall base-calling probabilities and

the Phred-like HPCall quality scores for assessing indels in sequence variant detection. In each

sequencing flow, the native 454 base-caller provides a quality score for each called base, e.g.

for a homopolymer of length 3, also 3 quality scores are provided. These quality scores are not

informative to discriminate between potential undercalls or overcalls. Furthermore, in the situa-

tion that 0 bases are called instead of 1, no quality scores are provided by the other base-callers.

Hence, no information is given about the probability that only background signal has been mea-

sured. In contrast, HPCall clearly indicates which type of miscall - undercall or overcall - is to

be expected in these examples, by means of the second largest base-calling probability and the

sign of the HPCall quality score.
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Besides the added value of the base-calling probabilities and improved quality scores, we have

shown that the prediction accuracy of HPCall exceeds that of the native 454 base-caller and

of Pyrobayes. Based on the E. coli data set we have detected a 35% reduction of base-calling

errors as compared to the current 454 base-caller. This reduction is quite stable throughout the

whole HPL range. It is obtained based on a model that uses information from the preprocessed

flowgram values as well as from the earlier-stage raw intensities. If only flowgram values

are used, the reduction of base-calling errors is still present, though smaller. Hence, although

preprocessing raw intensities to flowgram values prior to base-calling to a large extent has the

merit of reducing the spatial as well as the read-specific and background optical noise in the

data, it also seems to remove crucial information for the base-calling task itself. The smaller

number of base-calling errors is also reflected in the smaller number of detected indels and

SNPs after mapping the base-called reads to the E. coli reference sequence. For the calibration

of the base-caller the associated HPLs of a reference sequence are used. A possible way to

implement this is by adding plasmids to the sequencing experiment. The 454 sequencer uses

control reads containing varying HPLs for recalibrating its native base-caller. Hence, these

control reads would be very valuable for this purpose. Up to now, however, the 454 software

does not allow to extract the flowgram values associated with these reads. Finally, we have

found that the accuracy performance of HPCall is stable across different training data sets used

to fit the model.

In Chapter 9, we have described a statistical method for the detection of DNA sequence variants

from 454 sequencing data. The method is designed to detect heterozygous variants at specific

homopolymeric loci of diploid organisms, with applications in a diagnostic setting. The data

variability inherent to the sequencing technology is better captured by using flowgram values

instead of sequence lengths as input data. By introducing this novelty, 454 base-calling un-

certainties are to some extent accounted for in the variant calling. Heterozygous variants are

called by fitting a two-component normal mixture model to the flowgram value data, and test-

ing whether the difference between the two component means exceeds a certain threshold value.

The parameters are estimated using penalized maximum likelihood in an EM algorithm. Penal-

ization is accomplished by imposing an inverse gamma prior density on the variance parameters

of the normal mixture.

We have applied the method on amplicon sequencing data involving BRCA1 and BRCA2 genes.
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Several simulation experiments have been conducted to assess the method’s performance in

terms of sensitivity and specificity. The resulting ROC curves for different scenarios showed

promising results, with a clear benefit of applying penalized over ordinary maximum likeli-

hood estimation. A drawback of the method is its dependence on the choice of a user-defined

threshold value. The simulation results suggested, however, that reasonable threshold values

can easily be chosen for different predefined scenarios, such as the coverage. The method’s

performance was also shown not to be affected by the choice of hyperparameter values of the

inverse gamma prior density.

10.2 Future research perspectives

10.2.1 Extension of methods for other homopolymer-sensitive technolo-

gies

While HPCall was primarily developed for base-calling of 454 data (see Chapter 8), it has

the potential to be adapted to emerging sequencing platforms that rely on flow cycles, for

which base-calling of long homopolymers is critical. The most obvious example is the Ion

TorrentTM Personal Genome Machine (PGMTM) system. This emerging platform uses semi-

conductor technology to transmit an electrical pulse from the direct detection of positively

charged hydrogen ions released during the polymerization of DNA. Similar to the 454 tech-

nology, the microwells on the semiconductor chip are sequentially flooded by one of four

nucleotide types. At a homopolymer position more nucleotides are incorporated resulting

in the release of multiple hydrogen ions and an increase of the recorded electrical signal.

After signal processing flowgram values are produced similar to 454 flowgram values. A

more detailed description of this semiconductor device can be found in Rothberg et al. (2011).

For these platforms, the Hurdle Poisson model framework and base-calling pipeline will re-

main unchanged. Only the explanatory variables used to predict the HPL will be specific for

each platform. For instance, the nucleotide flow order of the Ion PGM sequencer is differ-

ent from the 454 sequencer. We performed a pilot test of HPCall on the PGM sequencer

of Ion Torrent using a PGM 314 E. coli DH10B data set. This data set was retrieved from

http://ioncommunity.lifetechnologies.com/docs/DOC-1848. In the model

http://ioncommunity.lifetechnologies.com/docs/DOC-1848
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the flowgram values are used as explanatory variables. The base-called reads from HPCall and

the standard PGM software are mapped to the E. coli DH10B reference genome using ssaha2.

Figure 10.1 gives the cumulative percentage of reads as a function of number of mismatches

per read for the standard Ion PGM base-caller and for HPCall applied on Ion PGM data. In the

pilot study, HPCall seems a promising alternative for the base-calling of Ion PGM sequencing

data as it results in more base-called reads with a small number of mismatches.
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Figure 10.1: Cumulative percentage of reads as a function of mismatches per read in the mapping

between the reads produced by either HPCall or the standard Ion PGM base-caller and the E. coli DH10B

reference sequence.

Besides HPCall, also the method designed for discovering heterozygosity in homopolymeric

regions (Chapter 9) has the potential to be applicable for Ion PGM data. This method uses

flowgram values which are available in Ion PGM sequencing as well.
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10.2.2 Use of HPCall base-calling probabilities in downstream applica-

tions

In Chapter 8 we have discussed and illustrated the added value of the base-calling probabilities

predicted from the fitted Hurdle Poisson model. Based on the obtained results, it is believed

that taking advantage of this additional information in downstream tasks, like mapping, genome

assembly and sequence variant detection, will lead to more accurate and powerful applications.

In the following, one particular application is discussed that might be interesting for further de-

velopment. A discipline in genomics that has been given increased attention in the last couple

of years is metagenomics, which studies the genetic material from samples taken from natural

habitats. Some applications of metagenomics for which 454 amplicon sequencing is commonly

used include viral population dynamics (Wang et al., 2010) and the characterization of microbial

communities (Huber et al., 2007). It is often of interest to estimate the population diversity of

such natural habitat samples and to cluster sequences into operational taxonomic units (OTUs),

where each OTU has a certain level of sequence difference from other OTUs. However, base-

calling errors in 454 sequencing may lead to noisy reads. This makes it often difficult to dis-

tinguish between true diversity in the sample and noise introduced by the base-calling (Quince

et al., 2011). Earlier studies have found that noise in 454 amplicon sequencing leads to inflated

estimates of the number of OTUs (e.g. Kunin et al., 2010). Therefore, the development of meth-

ods that can effectively remove the noise in the reads is an important challenge in this area of

research.

Arguably the most popular method in this regard was introduced in Quince et al. (2009) and

further developed in Quince et al. (2011). This method removes 454 sequencing noise by re-

constructing the true sequences and frequencies in the sample prior to OTU construction, using

a mixture model. Model-based clustering is applied to the flowgrams, rather than the sequences

themselves. The mixture model is used to describe the likelihood of the observed flowgrams,

where each component of the mixture corresponds to a different sequence. The true sequences

and their frequencies are inferred by maximizing the likelihood using an EM algorithm. In the

model the flowgrams are assumed to be distributed as exponentials about the true sequences

with a characteristic cluster size. More specifically, a measure for the distance between the

observed flowgram and the perfect flowgram, i.e. one generated without noise and correspond-
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ing with the true sequence, is modeled. This distance is based on the probability that a given

flowgram f̄ = (f1, . . . , fM) of length M is generated by a sequence of nucleotides S̄ that maps

to a perfect flowgram Ū = (u1, . . . , uM), where the ui are integers corresponding with the HPL

n. Assuming independence between the consecutive signals, this distance is then defined as

(Quince et al., 2011)

d′(f̄ , Ū) = −log

(
M∏
i=1

Pr(fi|ui = n)

)
/M

=
M∑
i=1

−log (Pr(fi|ui = n)) /M

=
M∑
i=1

d(fi|ui = n)/M. (10.1)

However, from the explorative plots on the raw intensities and flowgram values in Chapter 8,

it is clear that this independence assumption does not hold. The distribution of the flowgrams

depends to a certain extent on other variables such as the position in the read and the number

of homopolymers in preceding and following cycles of the sequencing process. Therefore, it

would be interesting to use the HPCall base-calling probabilities P̂r{n|x,y}, to construct the

distance measure d′(f̄ , Ū). Given that these additional covariates are taken into account, this

will possibly result in a better denoising of the sequencing reads and may lead to more accurate

diversity estimates.

10.2.3 Extension of applicability of DNA sequence variant detection method

The DNA sequence variant detection method described in Chapter 9 currently only focuses on

the detection of sequence variants at loci with HPLs of at least 4. An obvious extension of

the method would be to make it applicable for the detection of variants in the whole amplicon,

from start to end, and thus not only at homopolymeric positions. Hence, besides insertions and

deletions in homopolymers, also substitution variants should be detected. However, this does

not seem to be a big conceptual leap, because substitution variants can be considered as the

insertion of a nucleotide followed by a deletion, or vice versa. The main challenge preceding

the actual sequence variant analysis would be the alignment of the flowgram values correspond-
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ing to the different reads of the same amplicon. Only if the alignment step is done correctly,

can the flow-by-flow sequence variant detection be performed using the proposed methodol-

ogy. Furthermore, the current method only distinguishes heterozygous sequence variants from

homozygous loci. If a certain locus is decided to be homozygous, it is still possible that both

homozygous alleles contain sequence variation with respect to the reference genome. Hence,

an other interesting extension would be to integrate such a test in the existing framework.
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De Veylder, L., Beeckman, T., and Inzé, D. (2007). The ins and outs of the plant cell cycle. Nat

Rev Mol Cell Biol, 8(8):655–665.

Dempster, A., Laird, N., and Rubin, D. (1977). Maximum likelihood from incomplete data via

the EM algorithm. Journal of the Royal Statistical Society: Series B (Statistical Methodol-

ogy), 39(1):1–38.



200 Bibliography

DeRisi, J., Penland, L., Brown, P. O., Bittner, M. L., Meltzer, P. S., Ray, M., Chen, Y., Su, Y. A.,

and Trent, J. M. (1996). Use of a cDNA microarray to analyse gene expression patterns in

human cancer. Nature genetics, 14(4):457–460.

Ding, Z., Millar, A. J., Davis, A. M., and Davis, S. J. (2007). Time for coffee encodes a nuclear

regulator in the Arabidopsis thaliana circadian clock. Plant Cell, 19(5):1522–1536.

Donoho, D. L. and Johnstone, I. M. (1994). Ideal spatial adaptation by wavelet shrinkage.

Biometrika, 81(3):425–455.

Donoho, D. L. and Johnstone, I. M. (1995). Adapting to unknown smoothness via wavelet

shrinkage. Journal of the American Statistical Association, 90(432):1200–1224.

Durinck, S., Bullard, J., Spellman, P., and Dudoit, S. (2009a). Genomegraphs: integrated

genomic data visualization with R. BMC Bioinformatics, 10(1):2.

Durinck, S., Moreau, Y., Kasprzyk, A., Davis, S., De Moor, B., Brazma, A., and Huber, W.

(2005). BiomaRt and Bioconductor: a powerful link between biological databases and mi-

croarray data analysis. Bioinformatics, 21(16):3439–3440.

Durinck, S., Spellman, P., Birney, E., and Huber, W. (2009b). Mapping identifiers for the

integration of genomic datasets with the R/Bioconductor package biomaRt. Nature Protocols,

4(8):1184–91.

Efron, B. (2003). Robbins, empirical Bayes and microarrays. The Annals of Statistics,

31(2):366–378.

Efron, B. and Tibshirani, R. J. (1993). An introduction to the bootstrap. Chapman & Hall, New

York.

Eisen, M. and Brown, P. (1999). DNA arrays for analysis of gene expression. Methods in

Enzymology, 303:179–205.

Ewing, B. and Green, P. (1998). Base-calling of automated sequencer traces using Phred. ii.

Error probabilities. Genome Research, 8(3):186–194.

Falcon, S. and Carvalho, B. (2012). pdInfoBuilder: Platform design information package

builder. R package version 1.20.0.



Bibliography 201

Fan, J. and Gijbels, I. (1996). Local polynomial modelling and its applications. Chapman &

Hall, London.

Figueiredo, M. and Nowak, R. (2001). Wavelet-based image estimation: an empirical Bayes

approach using Jeffrey’s noninformative prior. Image Processing, IEEE Transactions on,

10(9):1322 –1331.

Fodor, S., Read, J., Pirrung, M., Stryer, L., Lu, A., and Solas, D. (1991). Light-directed,

spatially addressable parallel chemical synthesis. Science, 251(4995):767–773.

Gardner, M. J., Hubbard, K. E., Hotta, C. T., Dodd, A. N., and Webb, A. A. R. (2006). How

plants tell the time. Biochem J, 397(1):15–24.

Gautier, L., Cope, L., Bolstad, B. M., and Irizarry, R. A. (2004). affy: Analysis of Affymetrix

GeneChip data at the probe level. Bioinformatics, 20(3):307–315.

Gentleman, R. (2008). R programming for bioinformatics. CRC Press Taylor & Francis Group,

Boca Raton.

Gentleman, R., Carey, V., Bates, D., Bolstad, B., Dettling, M., Dudoit, S., Ellis, B., Gautier, L.,

Ge, Y., Gentry, J., Hornik, K., Hothorn, T., Huber, W., Iacus, S., Irizarry, R., Leisch, F., Li,

C., Maechler, M., Rossini, A., Sawitzki, G., Smith, C., Smyth, G., Tierney, L., Yang, J., and

Zhang, J. (2004). Bioconductor: open software development for computational biology and

bioinformatics. Genome Biology, 5(10):R80.

Givens, G. and Hoeting, J. (2005). Computational statistics. Wiley, Hoboken.

Golub, G. and Van Loan, C. (1996). Matrix computations, 3rd edition. The Johns Hopkins

Univ. Press, Baltimore.

Granovskaia, M., Jensen, L., Ritchie, M., Toedling, J., Ning, Y., Bork, P., Huber, W., and

Steinmetz, L. (2010). High-resolution transcription atlas of the mitotic cell cycle in budding

yeast. Genome Biology, 11(3):R24.

Gu, C. (2002). Smoothing spline ANOVA models. Springer-Verlag, New York.

Guan, Y. and Dy, J. (2009). Sparse probabilistic principal component analysis. Journal of

Machine Learning Research - Proceedings Track, 5:185–192.



202 Bibliography

Haar, A. (1910). Zur theorie der orthogonalen funktionen-systeme. Annals of Mathematics,

69:331–371.

Hastie, T., Tibshirani, R., and Friedman, J. H. (2001). The elements of statistical learning: data

mining, inference, and prediction. Springer-Verlag, New York.

Hastie, T. J. and Tibshirani, R. J. (1990). Generalized additive models. Chapman & Hall,

London.

Hazen, S., Naef, F., Quisel, T., Gendron, J., Chen, H., Ecker, J., Borevitz, J., and Kay, S.

(2009). Exploring the transcriptional landscape of plant circadian rhythms using genome

tiling arrays. Genome Biology, 10(2):R17.

Hollander, M. and Wolfe, D. A. (1999). Nonparametric statistical methods, 2nd edition. Wiley,

New York.

Holt, R. A. and Jones, S. J. (2008). The new paradigm of flow cell sequencing. Genome

Research, 18(6):839–846.

Huber, J. A., Mark Welch, D. B., Morrison, H. G., Huse, S. M., Neal, P. R., Butterfield, D. A.,

and Sogin, M. L. (2007). Microbial population structures in the deep marine biosphere.

Science, 318(5847):97–100.

Huber, W., Toedling, J., and Steinmetz, L. M. (2006). Transcript mapping with high-density

oligonucleotide tiling arrays. Bioinformatics, 22(16):1963–1970.

Huse, S., Huber, J., Morrison, H., Sogin, M., and Welch, D. (2007). Accuracy and quality of

massively parallel DNA pyrosequencing. Genome Biology, 8(7):R143.

Ibrahim, J. G. and Laud, P. W. (1991). On Bayesian analysis of generalized linear models using

Jeffreys’s prior. Journal of the American Statistical Association, 86(416):981–986.

International Human Genome Sequencing Consortium (2004). Finishing the euchromatic se-

quence of the human genome. Nature, 431(7011):931–45.

Irizarry, R. A., Hobbs, B., Collin, F., Beazer-Barclay, Y. D., Antonellis, K. J., Scherf, U., and

Speed, T. P. (2003). Exploration, normalization, and summaries of high density oligonu-

cleotide array probe level data. Biostatistics, 4(2):249–264.



Bibliography 203

Johnson, J. M., Edwards, S., Shoemaker, D., and Schadt, E. E. (2005). Dark matter in the

genome: evidence of widespread transcription detected by microarray tiling experiments.

Trends in Genetics, 21(2):93 – 102.

Johnson, N. (1949). Systems of frequency curves generated by methods of translation.

Biometrika, 36(1):149–176.

Johnstone, I. M. and Silverman, B. W. (1997). Wavelet threshold estimators for data with

correlated noise. Journal of the Royal Statistical Society: Series B (Statistical Methodology),

59(2):319–351.

Kampa, D., Cheng, J., Kapranov, P., Yamanaka, M., Brubaker, S., Cawley, S., Drenkow, J.,

Piccolboni, A., Bekiranov, S., Helt, G., Tammana, H., and Gingeras, T. R. (2004). Novel

RNAs identified from an in-depth analysis of the transcriptome of human chromosomes 21

and 22. Genome Research, 14(3):331–342.

Kass, R. E. and Steffey, D. (1989). Approximate Bayesian inference in conditionally inde-

pendent hierarchical models (parametric empirical Bayes models). Journal of the American

Statistical Association, 84(407):717–726.

Kunin, V., Engelbrektson, A., Ochman, H., and Hugenholtz, P. (2010). Wrinkles in the rare

biosphere: pyrosequencing errors can lead to artificial inflation of diversity estimates. Envi-

ronmental microbiology, 12:118–23.

Ledergerber, C. and Dessimoz, C. (2011). Base-calling for next-generation sequencing plat-

forms. Briefings in Bioinformatics, 12(5):489–497.

Lipshutz, R. J., Fodor, S. P., Gingeras, T. R., and Lockhart, D. J. (1999). High density synthetic

oligonucleotide arrays. Nature Genetics, 21(1):20–24.

Liu, X., Milo, M., Lawrence, N. D., and Rattray, M. (2006). Probe-level measurement error

improves accuracy in detecting differential gene expression. Bioinformatics, 22(17):2107–

2113.

Mallat, S. (1989). A theory for multiresolution signal decomposition: the wavelet representa-

tion. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 11(7):674 –693.



204 Bibliography

Mardis, E. R. (2008). The impact of next-generation sequencing technology on genetics. Trends

in Genetics, 24(3):133–41.

Margulies, M., Egholm, M., Altman, W. E., Attiya, S., Bader, J. S., Bemben, L. A., Berka, J.,

Braverman, M. S., Chen, Y.-J., Chen, Z., Dewell, S. B., Du, L., Fierro, J. M., Gomes, X. V.,

Godwin, B. C., He, W., Helgesen, S., Ho, C. H., Irzyk, G. P., Jando, S. C., Alenquer, M. L. I.,

Jarvie, T. P., Jirage, K. B., Kim, J.-B., Knight, J. R., Lanza, J. R., Leamon, J. H., Lefkowitz,

S. M., Lei, M., Li, J., Lohman, K. L., Lu, H., Makhijani, V. B., McDade, K. E., McKenna,

M. P., Myers, E. W., Nickerson, E., Nobile, J. R., Plant, R., Puc, B. P., Ronan, M. T., Roth,

G. T., Sarkis, G. J., Simons, J. F., Simpson, J. W., Srinivasan, M., Tartaro, K. R., Tomasz,

A., Vogt, K. A., Volkmer, G. A., Wang, S. H., Wang, Y., Weiner, M. P., Yu, P., Begley, R. F.,

and Rothberg, J. M. (2005). Genome sequencing in microfabricated high-density picolitre

reactors. Nature, 437(7057):376–380.

McCarthy, D. J. and Smyth, G. K. (2009). Testing significance relative to a fold-change thresh-

old is a treat. Bioinformatics, 25(6):765–771.

McCullagh, P. and Nelder, J. A. (1989). Generalized linear models, 2nd edition. Chapman &

Hall, London.

McLachlan, G. and Krishnan, T. (1997). The EM algorithm and extensions. Wiley, New York.

McLachlan, G. and Peel, D. (2000). Finite mixture models. Wiley, New York.

Meinke, D. W., Meinke, L. K., Showalter, T. C., Schissel, A. M., Mueller, L. A., and Tzafrir,

I. (2003). A sequence-based map of Arabidopsis genes with mutant phenotypes. Plant

Physiology, 131(2):409–418.

Metzker, M. L. (2010). Sequencing technologies - the next generation. Nature Reviews Genet-

ics, 11(1):31–46.

Mills, R. E., Pittard, W. S., Mullaney, J. M., Farooq, U., Creasy, T. H., Mahurkar, A. A., Ke-

meza, D. M., Strassler, D. S., Ponting, C. P., Webber, C., and Devine, S. E. (2011). Natural

genetic variation caused by small insertions and deletions in the human genome. Genome

Research, 21(6):830–839.

Mockler, T. C. and Ecker, J. R. (2005). Applications of DNA tiling arrays for whole-genome

analysis. Genomics, 85(1):1 – 15.



Bibliography 205

Morris, J. S., Brown, P. J., Herrick, R. C., Baggerly, K. A., and Coombes, K. R. (2008).

Bayesian analysis of mass spectrometry proteomic data using wavelet-based functional mixed

models. Biometrics, 64(2):479–489.

Morris, J. S. and Carroll, R. J. (2006). Wavelet-based functional mixed models. Journal of the

Royal Statistical Society: Series B (Statistical Methodology), 68(2):179–199.

Munch, K., Gardner, P., Arctander, P., and Krogh, A. (2006). A hidden Markov model approach

for determining expression from genomic tiling micro arrays. BMC Bioinformatics, 7(1):239.

Nakajima, S., Sugiyama, M., and Babacan, S. (2011). On Bayesian PCA: Automatic dimen-

sionality selection and analytic solution. In ICML, pages 497–504.

Nakajima, S., Sugiyama, M., and Tomioka, R. (2010). Global analytic solution for variational

Bayesian matrix factorization. In NIPS, pages 1768–1776.

Naouar, N., Vandepoele, K., Lammens, T., Casneuf, T., Zeller, G., Van Hummelen, P., Weigel,

D., Rtsch, G., Inz, D., Kuiper, M., De Veylder, L., and Vuylsteke, M. (2009). Quantitative

RNA expression analysis with Affymetrix tiling 1.0R arrays identifies new E2F target genes.

The Plant Journal, 57(1):184–194.

Narula, S. C. (1979). Orthogonal polynomial regression. International Statistical Review,

47(1):31–36.

Nason, G. (2005). Wavelet methods in statistics with R (use R). Springer-Verlag, New York.

Nathanson, K. N., Wooster, R., and Weber, B. L. (2001). Breast cancer genetics: What we know

and what we need. Nature Medicine, 7(5):552.

Newton, M. A., Noueiry, A., Sarkar, D., and Ahlquist, P. (2004). Detecting differential gene

expression with a semiparametric hierarchical mixture method. Biostatistics, 5(2):155–176.

Nicolas, P., Leduc, A., Robin, S., Rasmussen, S., Jarmer, H., and Bessières, P. (2009). Tran-

scriptional landscape estimation from tiling array data using a model of signal shift and drift.

Bioinformatics, 25(18):2341–2347.

Ning, Z., Caccamo, M., and Mullikin, J. C. (2005). ssahaSNP - a polymorphism detection tool

on a whole genome scale. 2005 IEEE Computational Systems Bioinformatics Conference -

Workshops, 0:251–252.



206 Bibliography

Ning, Z., Cox, A. J., and Mullikin, J. C. (2001). Ssaha: A fast search method for large DNA

databases. Genome Research, 11(10):1725–1729.

Ogden, R. (1997). Essential wavelets for statistical applications and data analysis. Birchäuser,
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Summary

In the last 15 years a number of major technological advances have led to a tremendous rev-

olution in genomics research and the emergence of the high-throughput genomics era. These

new technologies provide the opportunity for biological and biomedical research to make more

rapid advancements than was possible before. However, drawing meaningful information from

the massive amount of data that are produced often presents a huge bottleneck. When extract-

ing knowledge from high-throughput genomic data, statistical methods are needed in order to

quantify the uncertainties inherent to the various sources of variability contained in the data.

In this dissertation we have focused on different applications for two important technologies in

high-throughput genomics: DNA microarrays and next-generation sequencing (NGS).

In Part I of the dissertation a statistical methodology has been proposed for transcriptome anal-

ysis with tiling microarrays, designed to detect regions of RNA expression along the genome.

Tiling arrays measure transcriptional activity regardless of existing annotation and at equally

spaced positions along the genome. Hence, the probe intensities can be viewed as realizations

of an underlying function for RNA expression. To deal with the discontinuous and spatial het-

erogeneous nature of the expression data, we have adopted a wavelet-based functional modeling

approach. The use of wavelets allows an efficient regularization of the expression signal without

losing the ability to model local features.

In Chapter 3 we have focused on the two-group design. The functional model that we have

presented can assess transcript discovery and identify differentially expressed transcripts simul-

taneously. Adaptive smoothing of the effect functions is obtained by considering a Bayesian

thresholding framework in which a normally distributed prior is imposed on the wavelet coeffi-

cients of these effect functions. The smoothing and error variance parameters are estimated by

a marginal maximum likelihood approach. An empirical Bayes inference procedure has been
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proposed, which makes use of the posterior distributions of the estimated effect functions. Both

for transcript discovery and differential expression a probe-wise local Bayesian FDR is calcu-

lated. This result is associated with a predefined threshold value which enables obtaining tran-

scriptionally affected regions that are statistically significant as well as biologically relevant. A

simulation study has indicated that the wavelet-based approach outperforms the existing meth-

ods for transcript discovery and differential expression in terms of positive predictive value and

specificity, while maintaining a high true positive rate. The method’s use for finding potential

targets in whole-genome transcription studies has been demonstrated by means of a case study

on the reference plant Arabidopsis thaliana. The probe-wise and functional approach makes

the method completely unbiased of existing annotation and therefore exploits tiling array data

to their full potential.

The applicability of the wavelet-based model has been extended towards more complex experi-

mental designs in Chapter 4. In particular, we have considered time-course studies, studies with

more than two conditions and multiple-factor studies. The extension basically implies an appro-

priate adaptation of the model design matrix. A key point is to preserve the orthogonality of the

design matrix to ensure analytical solutions with fast computation. In case of non-orthogonal

designs, a Gram-Schmidt orthogonalization of the design matrix is conducted and the results

are backtransformed to the original predictor space after estimation. A similar empirical Bayes

procedure as for the two-group design has been used for inference. This procedure either occurs

on the parameters themselves or on a function of the parameters, depending on the study design.

The use and flexibility of the extended wavelet-based modeling approach has been illustrated

on three case studies with the reference plant Arabidopsis thaliana. With these examples we

have demonstrated the potential of the method to cope with a multitude of study designs and

associated specific research questions, while still providing reliable results.

In Chapter 5 we have discussed the implementation of the wavelet-based methods as a user-

friendly R/Bioconductor package, called waveTiling. The package provides a standard anal-

ysis flow for wavelet-based transcriptome analysis on single-factor experiments with two or

more biological conditions, the detection of linear and quadratic effects and circadian rhythms

in time-course experiments, and the analysis of two-factor experiments or customized designs.

Furthermore, it generates along-genome plots and contains functions to easily extract the tran-

scriptionally affected genes and unannotated regions. Where possible the package uses the
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standard Bioconductor S4-class data structures making it fully compatible with existing Bio-

conductor packages. The package also contains help functions and a manual in which the

package’s functions are explained and illustrated.

In Part II of the dissertation we have focused on the analysis of next-generation sequencing

(NGS) data produced by the 454 platform, which is one of the prominent players among the

NGS technologies. In particular, we have developed a statistical method for two distinct chal-

lenges at different stages in the data-analytic pipeline. To a large extent both problems are

caused by difficulties specifically encountered with 454 sequencing for determining the correct

length of homopolymers in the DNA sequence. At the start of the pipeline the base-calling of

454 sequencing data has been considered, while more downstream of the data flow we have

developed a method for the detection of homozygosity and heterozygosity in homopolymeric

DNA regions of diploid organisms.

In Chapter 8 we have proposed an alternative method for base-calling of 454 sequencing data

based on a weighted Hurdle Poisson model. The method is referred to as HPCall. Its proba-

bilistic framework enables a seamless integration of base-calling and quality score assignment,

which are now conducted simultaneously. For a given cycle and nucleotide, the probability for

each HPL is estimated conditional on read-specific covariates, and the call corresponds to the

HPL with the maximum probability. In this way, the height of the maximal probability pro-

vides direct information about the base-calling uncertainty and can thus be used as a measure

for the base-calling quality. Moreover, in the case of a miscall, the second largest probability

indicates whether an undercall or an overcall is more likely. Furthermore, a novel Phred-like

quality score has been introduced. Unlike the traditional quality scores, these HPCall quality

scores contain explicit information about the direction of a possible miscall. They may be used

by quality-aware sequence aligners to provide more reliable mapping results. Besides the added

value of the base-calling probabilities and improved quality scores, we have also shown that the

prediction accuracy of HPCall exceeds that of current 454 base-callers.

Finally, we have described a statistical method for the detection of DNA sequence variants

from 454 sequencing data (Chapter 9). The method is designed to detect heterozygous variants

at specific homopolymeric loci of diploid organisms, with applications in a diagnostic setting.

The data variability inherent to the sequencing technology is better captured by using flowgram

values instead of sequence lengths as input data. By introducing this novelty, 454 base-calling
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uncertainties are to some extent accounted for in the variant calling. Heterozygous variants

are called by fitting a two-component normal mixture model to the flowgram value data, and

testing whether the difference between the two component means exceeds a certain threshold

value. The parameters are estimated using penalized maximum likelihood in an EM algorithm.

Penalization is accomplished by imposing an inverse gamma prior density on the variance pa-

rameters of the normal mixture. We have applied the method on amplicon sequencing data in-

volving BRCA1 and BRCA2 genes. Simulation experiments indicated that the proposed method

performs well in terms of sensitivity and specificity.
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