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2  Introduction 
 

0.1 Introduction 

Gastrointestinal (GI) parasitic nematodes infect livestock worldwide. Their negative effect on 

animal growth and the costs related to anthelmintic treatment are responsible for major 

economic losses in animal production every year. While infection can result in clinical 

disease - i.e. parasitic gastroenteritis (PGE) - most losses can be attributed to subclinical 

infections. For grazing cattle in temperate climates, the most common and most pathogenic 

GI nematode is Ostertagia ostertagi. 

 

0.2 Ostertagia ostertagi 

O. ostertagi is a parasitic cattle nematode belonging to the superfamily of Strongyloidea and 

the family of Strongylidae (de Ley and Blaxter, 2004). The organism has a direct life-cycle 

consisting of a free-living phase on pasture and a parasitic phase in the host (Figure 0.1). 

Ostertagia eggs are passed on in the faeces and the first stage larva (L1) hatches in the faecal 

pat. After a first moult, the second stage larva (L2) emerges. While maintaining its loosely 

fitting cuticle (sheath), the L2 develops into an infectious third stage larva (L3). Under 

optimal conditions of temperature and humidity, development from egg to L3 occurs within 

2 weeks. Infection is realized by the ingestion of grass contaminated with L3s. Ingested L3s 

exsheath in the rumen and penetrate the gastric glands of the abomasum within 6 hours. 

Next, they develop to fourth stage larvae (L4s) and migrate to the abomasal lumen to 

establish themselves as adults. The pre-patent period is approximately 21 days, although 

under certain conditions larvae can become arrested in their development at the early L4 

stage for a period of up to 6 months. 
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Figure 0.1  Scheme showing the life-cycle of O. ostertagi 

       (PetaliaTM & Petsite.com Ltd© - http://petalia.com.au) 

 

 

0.3 Epidemiology 

Nematode infections during spring are largely derived from over-wintered larvae present on 

pasture, but in some cases may partially consist of over-wintered adults or worms maturing 

from inhibited larvae. Infective larvae are ingested by animals that are turned out in the 

beginning of the new grazing season (May-June) (Figure 0.2). After 3 weeks, eggs are shed 

and develop into L3s. At this time of year, egg hatching is rather slow but becomes faster 

toward mid-summer as the temperature rises.  Therefore, the majority of eggs deposited in 

April, May and June will reach the infective stage from mid July onwards, during the so-
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called mid-summer rise. Timing of this rise is variable and weather-dependent (Hilderson et 

al., 1987). Wet summers result in high pasture contamination from mid-July onwards, 

leading to PGE (Anderson et al., 1965). When the summer is dry, larvae will accumulate in 

faecal pats and there will be little to no release. However, these larvae will emerge when 

wet weather returns, resulting in high pasture contamination in autumn. While autumn 

progresses an increasing proportion of ingested L3s will only evolve to the L4 stage and then 

go into arrested development. As a result, calves can harbor thousands of these “early” L4s 

but few developing forms or adults. This can lead to PGE in the following grazing season 

when the inhibited larvae start to mature (Anderson et al., 1965). However, the latter type 

of ostertagiosis rarely occurs. 

 

 

 

 

Figure 0.2  Diagram showing the egg output of cattle (eggs per gram faeces = EPG) versus 
pasture contamination of Ostertagia (L3s/kg grass) throughout the year 
 

 

0.4 Pathogenesis and pathology of ostertagiosis 

Abomasal nematodes are able to induce structural, biochemical, hormonal, nutritional and 

immunological changes in the host. When infective larvae penetrate the gastric glands these 

glands become dilated and enlarged (Figure 0.3a). The growing larvae cause the parasitized 

mucosal glands to become distended and the common cell lining of the abomasum - i.e. 

zymogenic cells, mucous cells and parietal cells - to be replaced by undifferentiated 

egg output 
[eggs/g faeces] 
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epithelium (Figure 0.3b) (Murray and Jennings, 1970). As a result, the pH of the abomasum 

increases and pepsinogen is no longer converted into pepsin (McKellar, 1993). A decrease in 

peptic digestion and bacteriostatic activity can be seen. When emerging from the glands the 

adult parasites disrupt the junctions between the epithelial and the endothelial cells, causing 

an increase in plasma pepsinogen levels and loss of plasma proteins (McKellar, 1993). These 

changes in cell structure and coherence can result in clinical signs like inappetence, diarrhea, 

dull hair coat and weight loss, i.e. ostertagiosis. 

 

           

 

Figure 0.3  (a) Dilated and enlarged gastric glands afer infection with L3s. (b) Transversal 
section of an infected gastric gland containing a developing larva (L). 

 

 

0.5 Economic importance 

GI nematodes are regarded as a major source of production losses in cattle farming 

(Kloosterman et al., 1992; Vercruysse and Claerebout, 2001). Young, first grazing season 

calves are the most susceptible to infection and suffer severe losses in terms of animal 

production as a result of a reduced growth performance and the costs related to 

anthelmintic treatment. Clinical PGE is typically seen in this age class when no appropriate 

preventive measures have been taken and causes a general loss of condition which 

eventually leads to death (Hilderson et al., 1987). However, the development of anthelmintic 

drugs and their strategic use have reduced parasitism to a subclinical phenomenon. 

Substantial reductions in weight gain have been reported in untreated, first grazing season 

calves with subclinical infections (Shaw et al., 1998). Subclinical infections can also be 

associated with decreased levels of milk production in adult cows. Anthelmintic treatment of 

Ostertagia infected cows or heifers increases milk production by an average of 0.35 kg milk 

mucosa 

sub-mucosa 

L 
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per day (Sanchez et al., 2004). Additionally, carcass quality is affected by GI nematodes with 

reduced carcass weight, killing out percentage and related carcass measurements 

(Entrocasso et al., 1986). Since there are approximately 89 million cattle in the EU (Dias et 

al., 2008) and 100 million in the United States (Economic Research Service Service, 2006) it is 

understandable that it is of great economic importance to control Ostertagia infections in 

the best possible way. 

 

0.6 Current control 

At the moment, control of PGE in Europe is almost exclusively based on preventive 

treatment with synthetic chemotherapeutic drugs, i.e. anthelmintics. There are three major 

classes of drugs used to control nematodes in livestock: benzimidazoles (e.g. albendazole 

sulphoxide), nicotinic agonists (e.g. levamisole) and macrocyclic lactones (MLs) (e.g. 

ivermectin). Most frequently used are MLs since they have the highest efficacy, a broad 

spectrum of activity and persistent activity (Vercruysse and Rew, 2002). Animals are treated 

during the early part of the first grazing season to prevent recycling of the infection acquired 

from the over-wintered larvae on pasture. In addition, the recent availability of generic MLs 

and the lack of withdrawal time for milk (eprinomectin and moxidectin pour-on) led to an 

increased use of these anthelmintics in second grazing season animals and adult dairy cows. 

Unfortunately, the intensive use of anthelmintics has its downsides. First, there are the 

financial repercussions for farmers as a result of recurrent treatments. Second, the 

development of natural immunity against GI nematodes can be negatively influenced by 

anthelmintics (Claerebout, 2002). Third, there is an increasing consumer demand for 

“cleaner and greener” agricultural products leaving a minimum amount of drug residues in 

food products and the environment (Joint FAO/WHO Expert Committee on Food Additives, 

2002). Finally, the development of anthelmintic resistance in cattle nematodes might pose a 

problem in the future. Recent reports point out the increasing incidence of resistance to 

benzimidazoles, imidothiazoles and MLs in Argentina (reviewed by Anziani et al., 2004), the 

United Kingdom (reviewed by Coles, 2005) and New Zealand (reviewed by Pomroy, 2006). 

For O. ostertagi, the first suspected cases of ivermectin resistance have been reported in 

New Zealand (Mason and McKay, 2006; Waghorn et al., 2006) and Argentina (Suarez and 

Cristel, 2007). A recently discovered new class of anthelmintics, i.e. the amino-acetonitrile 

derivates, may provide a temporary solution for the current resistance problem (Kaminsky et 

al., 2008). Nevertheless, these results have encouraged researchers to investigate 

alternative control methods for ostertagiosis. 
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0.7 Alternative control 

There are several non-chemical alternative strategies for controlling nematode parasites in 

ruminant livestock. 

One possibility is to optimize grazing management by introducing pasture resting, late turn-

out, mowing, reduction of the livestock density, stock rotation onto clean pasture and 

interchange of grazing between different species e.g. sheep and cattle (reviewed by Waller, 

2006). However, this approach requires a firm understanding of the epidemiology of 

infection and is not adapted to the local availability of grass. 

A second strategy would be to develop cattle lines or breeds with an enhanced disease 

resistance. Examples include resistance of Bos indicus to cattle ticks (Donald, 1994) and 

trypanotolerance of the West African Bos taurus breeds (Murray et al., 1991). Previous 

studies have shown predisposition to heavy O. ostertagi infections to be genetic in origin and 

that genetic variability provides feasible means to control GI parasite infection without 

anthelmintics (Gasbarre et al., 1990; Kloosterman et al., 1992; Sonstegard and Gasbarre, 

2001). Unfortunately, no appropriate marker is available for determining the difference 

between resistant and resilient animals. Also, resistance to GI nematodes is likely to come at 

the expense of high rates of growth, reproduction or milk production. For instance, a 

negative correlation has been described between cow fertility and resistance to worm 

infection (Mackinnon et al., 1990). 

A third proposal focuses on the use of natural compounds. The predaceous microfungi 

Duddingtonia flagrans have been studied for their ability to reduce nematode parasitism. In 

short, these fungi produce high numbers of thick-walled resting spores - i.e. chlamydospores 

- which are shed with the parasite eggs in the fresh faeces where they germinate, grow and 

prey on parasite larvae as a food source hereby reducing pasture contamination (Waller and 

Thamsborg, 2004). The advantages of these fungi are that they survive passage through the 

bovine GI tract and grow rapidly in fresh dung. Although their potential has been 

demonstrated in several trials with sheep (Chandrawathani et al., 2003; Flores-Crespo et al., 

2003; Waller et al., 2004) and cattle (Dimander et al., 2003) practical delivery systems still 

need to be developed. In addition, several plant products have been tested for their anti-

parasitic potential. Good examples are plant tannins (Athanasiadou et al., 2001; Marley et 

al., 2003; Waller and Thamsborg, 2004) and cysteine proteases (Tagboto and Townson, 

2001; Stepek et al., 2004). While the results obtained so far look promising, this area of 

research is still in its infancy. 

A final alternative for controlling parasitic nematode infection would be vaccination, which 

will be described in detail in the next chapter. 
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1.1 Introduction 

Vaccination has been shown to be an effective tool against various infectious agents. 

Outstanding successes have been achieved in the control of bacterial, viral and - to a lesser 

extent - protozoan infections. Furthermore, vaccines are potentially safer, cheaper and more 

efficacious as prophylactics than drugs. 

Unfortunately, only limited progress has been made in designing vaccines against parasitic 

helminths. Successes include highly effective recombinant vaccines against the cestodes 

Taenia ovis in sheep, Taenia saginata in cattle, Taenia solium in pigs and Echinococcus 

granulosus in livestock animals (reviewed by Lightowlers, 2006) and a commercial vaccine 

against the bovine nematode Dictyocaulus viviparus (DictolTM, Fort Dodge). 

Decades of study have shown that vaccine development against parasitic helminths is far 

from straightforward. In contrast with bacteria, viruses and protozoa, helminths are 

multicellular organisms which go through complex developmental changes within their 

mammalian hosts. They can occur in a variety of tissues, though many of them are 

specialized to single tissues like muscle, veins, brain or intestine. Also, these parasites are 

capable of modulating the host immune system, hereby protecting themselves and their 

offspring (Meeusen, 1996; Maizels et al., 2004). Their relatively long life span in the host is 

direct evidence of this capacity. In general, helminth parasites favor strong Th2 responses in 

the host while inducing factors that prevent immunity from eliminating the parasite itself. 

Immunomodulating factors include cytokine homologs, protease inhibitors and nematode-

specific glycan structures. Unfortunately, the exact mechanism of immunomodulation is not 

fully understood yet. 

At the moment, little is known about the immune response that is responsible for protection 

as a result of vaccination. However, the success of a vaccine does depend on its capacity to 

activate the host immune system which can be monitored by the induction of antigen-

specific antibodies.  

The following section will present the progress made in the development of nematode 

vaccines. This overview will be limited to vaccination trials in which successful induction of a 

protective immune response was observed. 
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1.2 Vaccination by targeting the entire parasite 

Initial attempts at creating nematode vaccines were based on using the entire parasite as a 

vaccine, either by infection with inactivated or attenuated parasites or by immunization with 

whole organism extract. 

Nearly 50 years ago, this approach resulted in the commercialization of a vaccine against the 

cattle lungworm Dictyocaulus viviparus which consists of X-irradiated third stage larvae (L3s) 

and resulted in a reduction in worm burden of 90-99% (Jarrett et al., 1958a, 1958b). In 

accordance, this approach was tested in several other host-parasite systems. In sheep, a 

significant reduction in worm burden was demonstrated for the lungworm Dictyocaulus 

filaria (Jovanovic et al., 1965; Sharma et al., 1988). In dogs, vaccination with irradiated larvae 

of the hookworm Ancylostoma caninum resulted in a 90% reduction in worm burden 

(Vinayak et al., 1981). Similarly, golden hamsters immunized with treated Ancylostoma 

ceylanicum larvae demonstrated a 95-99% reduction in worm burden (Menon and Bhopale, 

1985). For the rat parasite Strongyloides ratti, immunizing the host with microwave-

irradiated larvae resulted in a significant reduction in worm burden and worm size as well as 

egg production (Conder and Williams, 1983). In pigs, radiation-attenuated eggs of Ascaris 

suum were capable of inducing an 83-94% reduction in lung worm burden (Tromba, 1978; 

Urban and Tromba, 1982, 1984).  Immunization with irradiated larvae was also successful for 

the sheep parasites Trichostrongylus colubriformis with a 53-98% reduction in faecal egg 

counts (FEC) and a 97% reduction in worm burden (Gregg et al., 1978) and Haemonchus 

contortus with a 98% reduction in FEC and a 97% reduction in worm burden (Jarret et al., 

1959; 1961; Smith and Angus, 1980). However, in the latter case high levels of protection 

could not be induced in younger animals (Urquhart et al., 1966a, 1966b; Smith and Angus, 

1980). Since lambs are most at risk for nematode infection, this vaccine was not 

commercially viable. 

Additionally, somatic extract obtained from the entire parasite has been shown to induce 

protection against several infections. For A. caninum, dogs vaccinated with whole worm 

extract demonstrated a 45-64% reduction in worm burden (Vinayak et al., 1981). Crude 

larval extract from Trichinella spiralis was capable of protecting mice against infection 

(Goven and de Buysscher, 1978) and reducing worm burdens in pigs with 78-88% (Marti et 

al., 1987). Adult crude extract from the pig nematode A. suum was able to protect mice 

against infection, reducing worm burdens with 79-89% (Lukes, 1992). Furthermore, a 

somatic extract fraction of H. contortus containing low molecular weight (MW) antigens 

induced a 99% reduction in FEC and a 97% reduction in worm burden in sheep (Schallig and 

Van Leeuwen, 1997). In calves, vaccination with larval or adult worm homogenates of 
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Oesophagostomum radiatum induced protective immunity, resulting in a 29-100% reduction 

in FEC and a 12-99% reduction in worm burdens (Herlich et al., 1973; Keith and Bremner, 

1973; East et al., 1988, 1989; Gasbarre and Canals, 1989). In contrast, attempts to induce 

protection against Ostertagia ostertagi using irradiated larvae (Anderson et al., 1967; Bürger 

and Pfeiffer, 1969) or larval or somatic extract were unsuccessful (Williams et al., 1974; 

Herlich and Douvres, 1979; Hilderson et al., 1995). 
 
 

 
 

    Parasite 
 

Host 
 

Antigen 
 

Reduction in 
worm burden (%) 

Reduction in 
FEC (%) 

Reference 
 

 
 

    
 

 
    A. caninum dog adult extract 45-64 N.D. 133 

 
 X-irradiated larvae 90 N.D. 133 

A. ceylanicum hamster X-irradiated larvae 95-99 N.D. 79 
A. suum pig adult extract 79-89 N.D. 71 

 
 X-irradiated eggs 83-94 N.D. 123, 127 

D. filaria sheep X-irradiated larvae (significant) N.D. 55, 103 
D. viviparus cow X-irradiated larvae 90-99 N.D. 49, 50 
H. contortus sheep somatic extract 97 99 100 

 
 X-irradiated larvae 97 98 51, 52, 108 

O. radiatum cow adult extract 12-99 29-100 22, 23, 28, 42, 57  
S. ratti rat µ-irradiated larvae (significant) (significant) 16 
T. spiralis mouse larval extract (significant) N.D. 35 

 
pig larval extract 78-88 N.D. 75 

T. colubriformis sheep X-irradiated larvae 97 53-98 36 

 
 

     
Table 1.1  Overview of successful vaccination trials against parasitic nematodes based on 
attenuated parasites or whole worm extract.  

 

 

1.3 Vaccination by targeting specific parasite components 

The limited success of the previously described approach can be attributed to several 

factors. First of all, protective antigens are usually relatively scarce within the complex 

mixture of parasite antigens. Second, immunomodulatory molecules present in parasite 

extracts could suppress or divert a protective immune response (Meeusen, 1996; Maizels et 

al., 2004). Finally, it is not always possible to obtain a commercially stable formulation of 

vaccine material. Therefore, when designing parasite vaccines it is necessary to study 

potential sites of attack at the molecular level. 
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1.3.1 Internal antigens 

In order to target the parasite’s metabolism, a vaccine should be aimed against an internal 

component. In this case, the antigens are specifically expressed within the parasite and 

therefore not recognized by the host during infection. While there is no direct contact 

between the host and this type of antigens, blood feeding parasites will be able to take up 

host immunoglobulins (Igs) induced by vaccination followed by exposure of internal 

antigens. Although this approach has the advantage of subjecting the parasite antigens to 

limited selection pressure, natural infection will not boost the host immune response. 

Hence, multiple immunizations are necessary to maintain protection. 

 

1.3.1.1 Gut antigens 

The first studies aimed at targeting internal parasite antigens were conducted in the blood-

feeding sheep nematode Haemonchus contortus (Munn and Greenwood, 1984). Initially, 

Munn et al. discovered a helical polymeric structure on the gut surface of H. contortus, 

termed contortin. Vaccinating young lambs with this gut structure resulted in protection 

against challenge infection (Munn et al., 1987). 

A second protective protein of H. contortus was an integral membrane glycoprotein of 110 

kilo Dalton (kDa) derived from intestinal microvilli (Smith and Munn, 1990). Sheep 

immunized with this antigen, called H11, showed a reduction in FEC and worm burden of 

90% and 75% respectively (reviewed by Newton and Munn, 1999). In addition, H11 protects 

young lambs (Tavernor et al., 1992) and is effective against anthelmintic-resistant worms 

and in a range of breeds (Newton and Munn, 1999). Furthermore, the development of 

natural acquired immunity is not hampered by vaccination (Smith and Smith, 1993) and 

protection persists for about 23 weeks after vaccination (Andrews et al., 1997). A recent 

field trial with native H11 showed a significant reduction in worm egg counts in vaccinated 

lambs and a greatly diminished pasture contamination, although the protective immunity 

induced by each vaccine lasted only 7 weeks and antigen titers were quite variable between 

different lambs (Lejambre et al., 2008). Unfortunately, recombinant H11 expressed in 

Escherichia coli and baculovirus induced little to no protection in sheep (Knox and Smith, 

2001; Knox et al., 2003). 

A third group of gut surface antigens was isolated from H. contortus extract by affinity 

chromatography using a lectin column i.e. the Haemonchus galactose-containing 

glycoprotein complex (H-gal-GP) (Smith et al., 1994). Vaccinating sheep with this complex 

resulted in a 67-95% reduction in FEC and 61-67% reduction in worm burden (reviewed by 

Newton and Munn, 1999). Recently, the protective capacity of the H-gal-GP fraction has also 
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been demonstrated in the field (Lejambre et al., 2008). H-gal-GP is made up of proteins 

ranging from 31 to 230 kDa (Smith and Smith, 1996) and contains neutral metalloproteases 

(MEPs) (Redmond et al., 1997; Smith et al., 1999), cysteine proteases (Smith et al., 1999) and 

aspartyl proteases (Longbottom et al., 1997; Smith et al., 2003a). Partial protection could be 

obtained when using fractions of H-gal-GP indicating that multiple components are 

responsible for protection (Smith and Smith, 1996). Two pepsin-like aspartyl proteases 

present in H-gal-GP - i.e. HcPEP1 and HcPEP2 - proved to significantly reduce egg counts by 

48% and worm numbers by 36% (Smith et al., 2003a). Moreover, a vaccination trial using a 

combination of four identified MEPs, i.e. MEP1-4, rendered a reduction in FEC of 45% and a 

reduction in worm burden of 50%. MEP3 was found to be the most protective antigen used 

on its own, inducing a 33% reduction in FEC (Smith et al., 2003b). In contrast, E. coli 

recombinants of the trombospondin, galectin, cystatin and MEP components of H-gal-GP 

were not protective (Newton and Meeusen, 2003; Knox et al., 2003; Smith et al., 2003b). 

A fourth type of gut antigens which have proven their protective capacity are the cysteine 

proteases (CPs). These enzymes are located at the surface of H. contortus intestinal cells and 

show homology with mammalian cathepsin B (Skuce et al., 1999). Vaccination with 

membrane extracts enriched for CP activity by thiol sepharose affinity chromatography - i.e. 

thiol sepharose binding proteins (TSBPs) - induced protection in lambs reducing FEC by 47% 

and worm burden by 77% after a single challenge infection (Knox et al., 1999). In a 

subsequent study the CPs of the TSBP fraction were further purified using an affinity column 

coated with recombinant H. contortus cystatin (Redmond and Knox, 2004) and anion 

exchange chromatography (Knox et al., 2005). This purified fraction conferred protection 

comparable to that obtained using the entire TSBP fraction, indicating that CPs are 

responsible for inducing protection. Recently, a mixture of three cathepsin B-like CPs - i.e. 

hmcp1, hmcp4 and hmcp6 - have been recombinantly expressed in E. coli and have been 

shown to moderately protect lambs, reducing FEC by 27% and worm burden by 29% 

(Redmond and Knox, 2006). 

Monoclonal antibodies have been used to identify and purify two other internal H. contortus 

antigens called p46 and p52 (Jasmer et al., 1993). Both proteins are encoded by the same 

GA1 gene and are originally expressed as a polyprotein of 100 kDa, i.e. p100 (Jasmer et al., 

1996). A mixture of these antigens significantly reduced FEC in goats by 50% and worm 

counts by 60% (Jasmer et al., 1993). In addition, the GA1 proteins show similarities with 

three peptides (p45, p49 and p53) which were isolated from the protective H11 fraction 

using ion-exchange chromatography (Smith et al., 1993). Vaccination of lambs with these so-

called P1 antigens rendered a 69% reduction in FEC and a 30% reduction in worm burden. 



Designing vaccines against parasitic nematodes  17 

 

In contrast with the results obtained for the sheep parasite H. contortus, limited progress 

has been made in identifying protective internal antigens of other important parasitic 

nematodes. 

For the canine hookworm Ancylostoma caninum, three protective internal antigens involved 

in blood digestion have been described. Ac-CP2, a cathepsin B-like protease identified in the 

gut and recombinantly expressed in yeast, induced partial protection in dogs, reducing 

fecundity and worm size (Loukas et al., 2004). A baculo recombinant of Ac-APR1, a cathepsin 

D-like aspartic acid protease, rendered an 18% reduction in worm burden in dogs (Hotez et 

al., 2002). A novel glutathione-S-transferase - i.e. Ac-GST1 - was found to be expressed in 

limited amounts in the intestine as well as the hypodermis and muscle tissue. This enzyme is 

believed to have a detoxifying role during hemoglobin digestion. Vaccinating dogs with an 

enzymatically active yeast recombinant of Ac-GST1 resulted in a 32% reduction in FEC and a 

39% reduction in worm burden (Zhan et al., 2005). While this reduction was not significant, 

hamsters injected with this recombinant demonstrated a significant reduction in worm 

burdens of 50-54% after challenge with the human hookworm Necator americanus (Xiao et 

al., 2008). 

When combined, O. ostertagi homologs of H11 (Oo12) and H-gal-GP (Oo-gal-GP) are capable 

of inducing limited protection with a 30-50% reduction in FEC (Smith et al., 2000). In 

addition, these antigens efficiently cross-protected sheep against an H. contortus infection 

with an 81-97% reduction in FEC. This suggests that Ostertagia does not ingest sufficient 

amounts of host Igs compared to blood-feeding nematodes (Smith et al., 2001). 

Correspondingly, Siefker and Richard (2000a) demonstrated that vaccinating calves with an 

intestinal homogenate of the bovine stomach worm Haemonchus placei rendered protection 

against homologous challenge infection significantly reducing the number of female worms. 

Although H. placei and O. ostertagi contain similar epitopes on these intestinal antigens 

(Siefker and Rickard, 1998), no protection was observed against heterologous challenge 

infection with O. ostertagi (Siefker and Rickard, 2000b). Also, a membrane-bound antigen 

fraction isolated from adult worms and enriched for CPs failed to protect calves against an 

Ostertagia infection (Geldhof et al., 2002). 

 

1.3.1.2 Tropomyosins 

Tropomyosins are present in all eukaryotic cells and interact with actine filaments (Perry, 

2001). These antigens play a central role in cell motility and muscle movement (Pittenger et 

al., 1994). A series of experiments in sheep in Australia have demonstrated the protective 

capacity of L3 tropomyosin from Haemonchus contortus and Trichostrongylus colubriformis 
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inducing a 43-51% and 54% reduction in worm burden respectively (Cobon et al., 1989; 

O’Donnel et al., 1989). Furthermore, injecting BALB/c mice with the full-length tropomyosin 

complementary deoxyribonucleic acid (cDNA) of the filarial parasite Onchocerca volvulus 

resulted in a 20% reduction in worm burden (Harrison and Bianco, 2000) and immunization 

with a recombinant fusion protein of the Ov-tropomyosin coupled to maltose-binding 

protein protected mice against Onchocerca lienalis reducing the number of skin microfilariae 

by 48-62% (Taylor et al., 1996). Finally, a recent study has demonstrated the immunogenicity 

of a 41 kDa tropomyosin homolog of the rodent filarial parasite Acanthocheilonema viteae. 

Vaccinating jirds with native tropomyosin, an E. coli recombinant of Av-tropomyosin and 

cDNA resulted in a reduction in worm burdens of 29-64%, 28-35% and 41-43% respectively 

(Hartman et al., 1997, 2006). 
 
 

 
 

    Parasite 
 

Host 
 

Antigen 
 

Reduction in 
worm burden (%) 

Reduction in 
FEC (%) 

Reference 
 

 
 

    
 

 
    A. vitae jird r-Av-tropomyosin 28-35 N.D. 40 

 
 tropomyosin 29-64 N.D. 40 

 
 tropomyosin (cDNA) 41-43 N.D. 40 

A. caninum dog r-Ac-APR1 18 N.D. 46 

 
 r-Ac-CP2 (significant) (significant) 70 

 
 r-Ac-GST1 39 32 143 

H. contortus goat p46 + p52 60 50 53 

 
sheep contortin (significant) N.D. 83 

 
 H11 75 90 3, 65, 85, 111, 120 

 
 H-gal-GP 61-67 67-95 65, 85, 113 

 
 HcPEP1 + HcPEP2 36 48 118 

 
 MEP1-MEP4 50 45 119 

 
 Oo-12 + Oo-gal-GP N.D. 81-97 116 

 
 P1 30 69 112 

 
 r-Hc-hmcp1/4/6 29 27 96 

 
 tropomyosin (L3) 43-51 N.D. 15 

 
 TSBP fraction 43-77 47-54 58, 62 

 
 TSBP fraction (CPs)  33-46 28-56 62, 95 

H. placei cow intestinal extract (significant) (significant) 105 
N. americanus hamster r-Ac-GST1 50-54 N.D. 137 
O. lienalis mouse r-Ov-tropomyosin 48-62 N.D. 121 
O. volvulus mouse tropomyosin (cDNA) 20 N.D. 37 
O. ostertagi cow Oo-12 + Oo-gal-GP N.D. 30-50 116 
T. colubriformis sheep tropomyosin (L3) 54 N.D. 87 

 
 

     
Table 1.2  Overview of successful vaccination trials against parasitic nematodes based on 
internal antigens. 
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1.3.2 External antigens 

External antigens come in direct contact with the host immune system and hereby represent 

a major antigenic and functional challenge to the host. They can be present on the surface of 

the parasite, be released by specialized secretory glands or be by-products of parasite 

digestion. External antigens fulfill an important role during parasitism with regard to tissue 

penetration, digestion of host tissue for nutrition and evasion of the host immune response 

(Tort et al., 1999; Dzik, 2006). 

 

1.3.2.1    Surface antigens 

The surface of parasitic nematodes is an important site of host-parasite interaction, making 

it an interesting target for a vaccine. On the outside the epidermis is covered by a cuticle 

which is a multilayered extracellular matrix mainly consisting of collagens. A lipid-rich 

membrane-like layer called the epicuticle covers the cuticle and is known to undergo 

biophysical changes upon interacting with the host (Proudfoot et al., 1990). Finally, the 

glycocalyx is a carbohydrate-rich surface coat loosely associated with the epicuticle and 

implicated in immune evasion (Maizels et al., 1993). 

The first protective surface antigen to be identified in ruminant parasites was an 

Haemonchus contortus glycoprotein, called Hc-sL3 (Ashman et al., 1995). This antigen is 

specifically expressed by L3s and vaccination reduces FEC in sheep with 52-69% (Jacobs et 

al., 1999). 

Harrison et al. (2003a) described an immunodominant carbohydrate antigen of 

Trichostrongylus colubriformis (Tc35CarLA) to be present on the surface of L3s. This high MW 

complex is highly resistant to digestion with a range of proteases and possibly plays a role in 

protecting larvae during transit through the hostile environment of the host (Harrison et al., 

2003b). It is currently being investigated as a potential vaccine candidate. 

For Ancylostoma caninum, an immunodominant surface antigen (Ac16) was identified in the 

epicuticle and the basal layer of the cuticle of the juvenile and adult stages (Fujiwara et al., 

2007). Dogs vaccinated with an E. coli recombinant of Ac16 showed a 64% reduction in FEC 

and a significant decrease in anemia caused by the parasite. Furthermore, Ac16 homologs of 

Ascaris suum (As14), Brugia malayi (Bm-SXP-1) and Onchocerca volvulus (Ov17 / P36991) 

have been shown to induce protection in model organisms like mice and gerbils (Wang et al., 

1997; Tsuji et al., 2001; Lustigman et al., 2003). 

Prior studies based on the immunization of jirds with irradiated B. malayi larvae have 

demonstrated the immunogenicity of nematode paramyosin located at the parasite surface 

(Li et al., 1991).  Moreover, jirds immunized with an E. coli fusion protein of Bm-paramyosin 
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showed a 43% reduction in worm burden and a significant reduction in worm length (Li et 

al., 1993). Recently, paramyosin was identified as an abundant surface antigen of Trichinella 

spiralis larvae (Yang et al., 2008). BALB/c mice vaccinated with an E. coli recombinant of Ts- 

paramyosin showed a 36% reduction in muscle larvae burden. 

A final group of surface antigens that have been related with protection are cuticular 

globins. These globins are suggested to be involved in oxygen transport from the host 

environment to the parasite’s tissue (Blaxter, 1993). An 18 kDa globin-like antigen from T. 

colubriformis induced 60-84% protection in guinea pigs (Frenkel et al., 1992). In 

correspondence, an Ostertagia globin was purified from O. ostertagi worms by liquid 

chromatography (LC) (de Graaf et al., 1996). This antigen induced significant protection 

against an experimental infection in cattle,  reducing FEC by 52% and worm burden by 28%. 

Unfortunately, no consistent protection was observed in cattle exposed to natural infections 

on pasture due to great variations in FEC and worm burden reductions (Claerebout et al., 

2005). 

 

1.3.2.2    Excretory-secretory antigens 

Initial experiments were focused on testing the protective capacity of whole excretory-

secretory (ES) material of juvenile and adult worms. ES material is a collection of antigens 

which are actively or passively released by the parasite during host infection. These products 

can be obtained by cultivating parasites in vitro. However, the success of this approach was 

limited. Some degree of protection was observed for Haemonchus contortus in sheep 

(Schallig and Van Leeuwen, 1997) and Ostertagia radiatum in calves (Gasbarre and Douvres, 

1987). Vaccination trials in rodents have also confirmed the protective capacity of whole ES 

material of Ascaris suum (Matoff and Tersijski, 1968), Trichostrongylus colubriformis 

(Rothwell and Love, 1974), Nippostrongylus brasiliensis (Poulain et al., 1976) and Trichinella 

spiralis (Robinson et al., 1994). In contrast, ES material from O. ostertagi larvae failed to 

protect calves against infection (Herlich and Douvres, 1979; Hilderson et al., 1995). 

In more recent years, intensive efforts have been made to define the composition of the ES 

material from different parasites (e.g. Britton et al., 1993; Knox, 2000; Yatsuda et al., 2003; 

Vercauteren et al., 2003; Bakker et al., 2004; Matthews et al., 2004; Craig et al., 2006). This 

allowed the selection of single ES proteins with potential protective capacity. 

The first group of ES antigens that have been targeted for vaccination are the activation-

associated secreted proteins (ASPs). Early studies demonstrated the importance of secreted 

larval antigens for inducing a protective immune response against the dog parasite 

Ancylostoma caninum (Otto, 1940). The two most abundantly secreted antigens were 
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identified as ASP1 and ASP2 making them interesting targets for vaccination (Hotez et al., 

1996). As a result, the protective capacity of both native and recombinant nematode ASPs 

has been studied in several vaccination trials against different parasitic helminths. The first 

ASP to be natively evaluated as a vaccine was an H. contortus homolog of Ac-ASP2 called 

Hc24. This 24 kDa antigen was identified in a low MW antigen fraction obtained from ES 

material of adult worms. Four independent vaccination trials in sheep showed a reduction of 

more than 70% in worm burden and more than 60% in mean FEC (Schallig and Van Leeuwen, 

1997; Schallig et al., 1997; Kooyman et al., 2000; Vervelde et al., 2002). A positive correlation 

was detected between vaccine effectiveness and age (Kooyman et al., 2000). Nevertheless, 

this fraction also contained an immunogenic 15 kDa antigen and it remains unclear whether 

Hc24 on its own is capable of inducing protection. Vaccination trials based on different 

vaccine batches of E. coli recombinant Hc24 and 15kDa protein (rec15/24) rendered variable 

levels of protection indicating a problem with reproducibility (Vervelde et al., 2002). 

Interestingly, IgG1 antibody levels against rec15/24 were significantly higher when 

protection was obtained. It is also of note that cross-reactivity between antibodies specific 

for native and recombinant proteins was low and three-month old lambs were not protected 

after immunization. For O. ostertagi, ASP1 and ASP2 were found to be the most abundant 

components of a protective thiol binding excretory-secretory antigen (ES-thiol) fraction 

which induced a 56-60% reduction in FEC (Geldhof et al., 2002, 2003, 2004). In addition, 

vaccination trials against A. caninum have shown that immunizing mice with an E. coli 

recombinant form of A. caninum ASP1 reduced lung worm burdens with 51-79% and 

recombinant homologs of Ancylostoma duodenale and Necator americanus were able to 

induce limited cross-protection (Ghosh et al., 1996; Ghosh and Hotez, 1999; Sen et al., 

2000). In this case, the degree of protection was correlated with the percentage of amino 

acid identity with Ac-ASP1 (Sen et al., 2000). While the recombinantly expressed Ac-ASP2 did 

not elicit protection in mice, an insect cell expressed Ac-ASP2 was able to induce a significant 

reduction in FEC and worm burden in dogs, the parasite’s natural host (Bethony et al., 2005). 

Recently, a yeast recombinant of N. americanus ASP2 has been shown to protect hamsters 

against challenge infection resulting in a 30-46% reduction in worm burdens (Xiao et al., 

2008).  

Parasites release a wide array of enzymes, such as serine, aspartic, metallo- (MEPs) and 

cysteine proteases (CPs). Vaccination trials with ES fractions enriched for CPs have also 

rendered protection against H. contortus in sheep with a 52% reduction in FEC and a 50% 

reduction in worm burden (Bakker et al., 2004) and against O. ostertagi in cattle with a 56-

60% reduction in FEC (Geldhof et al., 2002, 2004). Also, an E. coli recombinant of N. 
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americanus CP2 was capable of reducing worm burden in hamsters with 29% (Xiao et al., 

2008). For A. caninum, an astacin-like MEP secreted by L3s was recombinantly expressed in 

E. coli and used to immunize dogs. The immunization induced a humoral antibody response 

that was associated with the exodus of adult A. caninum hook worms from their normal 

habitat into the small intestine (Hotez et al., 2003).  

Parasites have also been known to secrete a variety of inhibitors capable of inhibiting 

proteases of the host and the parasite itself (Dzik, 2006; Knox, 2007). An adult-specific 

secreted tissue inhibitor of MEPs (Ac-TMP) (Zhan et al., 2002) and a factor Xa serine 

protease inhibitor anticoagulant (Ac-AP) (Capello et al., 1993, 1995) have been identified in 

ES material of adult A. caninum worms. A vaccination trial in dogs using E. coli recombinants 

of Ac-TMP or Ac-AP resulted in a modest reduction in worm burden in the small intestine 

(Hotez et al., 2002). In addition, a migratory shift of hookworms from the small intestine to 

the colon was observed in vaccinated animals. For Ancylostoma ceylanicum, a Kunitz type 

serine protease inhibitor (AceKI1) was identified in adult ES material (Milstone et al., 2000). 

AceKI1 expressed in E. coli successfully inhibited serine proteases, pancreatic elastase, 

neutrophil elastase, chymotrypsin and trypsin. A vaccine study in hamsters revealed partial 

protection against parasite-induced growth delay, although no effect on anemia was 

observed (Chu et al., 2004). 

Several ES antigens have been described to have immunomodulating capabilities and can 

therefore be considered as valuable vaccine candidates. Galectins are a family of lectins that 

are present in vertebrates and invertebrates and are characterized by a specific affinity for β-

galactoside sugar structures (Kasai and Hirabayashi, 1996). Their function is not fully 

understood, although galectins are believed to be important mediators of allergic 

inflammatory responses induced by helminth parasites (Young and Meeusen, 2004). So far, 

two galectins of H. contortus - i.e. Hco-gal-m and Hco-gal-f - have been recombinantly 

expressed and used to vaccinate 9-10 month old goats (Yanming et al., 2007). Animals 

injected with Hco-gal-m/f and Hco-gal-f showed a 41-46% reduction in worm burden and a 

37-48% reduction in FEC. In addition, a preliminary survey of in vitro ES material of 

Teladorsagia circumcincta fourth stage larvae (L4s) revealed the presence of two different 

galectins (Craig et al., 2006). A second example of an ES antigen with immunomodulating 

capacities is calreticulin, which was originally identified as a major Ca2+-binding protein 

present in the endoplasmatic reticulum (Michalak et al., 1992). This well-conserved protein 

has been detected in humans, plants, insects and parasites, and is involved in protein-

protein interactions, metal binding, ribonucleic acid (RNA) binding and autoantibody binding 

(reviewed by Nakhasi et al., 1998). A study of the human hookworm N. americanus showed 
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calreticulin to be an important parasite allergen with an immunomodulatory function 

(Pritchard et al., 1999). A subsequent vaccination trial in mice using an E. coli recombinant of 

Na-calreticulin reduced lung worm burdens with 43-49% (Winter et al., 2005). A third 

example of a protective immunomodulating ES antigen is a neutrophil inhibitory factor (NIF) 

found in A. ceylanicum. This factor was expressed in yeast and used to vaccinate hamsters 

resulting in an 86% reduction in FEC (Ali et al., 2001). 

To conclude, additional ES antigens with unknown function have been shown to induce 

protection against nematode infection. Using size-exclusion chromatography, a protective 

low MW ES fraction was obtained for H. contortus which rendered a 70% reduction in FEC 

and a 60-80% reduction in worm burden (Schallig et al., 1997). For O. ostertagi, a low MW 

fraction called Ostertagia polyprotein allergen (OPA) fraction was obtained from ES material 

of L3s. Vaccinating calves with this fraction resulted in a 60% reduction in FEC (Vercauteren 

et al., 2004). For T. colubriformis, immunization with adult ES antigens of 11, 17 and 30 kDa 

gave up to 50% protection in guinea pigs (Savin et al., 1990; Dopheide et al., 1990, 1991). 

Moreover, an E. coli recombinant of the 17 kDa ES protein induced 8-39% reduction in FEC 

and 40-42% reduction worm burden in neonatal lambs (Emery et al., 1999). A recombinant 

11 kDa ES protein of A. ceylanicum (AceES2) significantly reduced anemia in challenged 

hamsters (Bungiro et al., 2004). Finally, a 16kDa antigen commonly expressed in human and 

pig Ascaris infections was detected in parasite ES material (Tsuji et al., 2003). Vaccinating 

mice with an E. coli recombinant of this As16 protein resulted in a 58% reduction in lung 

worm burden. 
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Parasite 
 

Host 
 

Antigen 
 

Reduction in 
worm burden 

(%) 
Reduction in 

FEC (%) 
Reference 
 

 
 

    
 

 
    A. caninum dog r-Ac16 N.D. 64 26 

 
 r-Ac-AP (significant) N.D. 46 

 
 r-Ac-ASP2 (significant) (significant) 6 

 
 r-Ac-MTP1 N.D. N.D. 47 

 
 r-Ac-TMP (significant) N.D. 46 

 
mouse r-Ac-ASP1 51-79 N.D. 33, 34, 102 

 
 r-Ad-ASP1 28 N.D. 102 

 
 r-Na-ASP1 62 N.D. 102 

A. ceylanicum hamster r-AceES2 (not significant) N.D. 9 

 
 r-Ac-AceKI1 N.D. N.D. 13 

 
 r-NIF (not significant) 86 1 

A. suum mouse adult ES (significant) N.D. 76 

 
 r-As14 64 N.D. 124 

 
 r-As16 58 N.D. 125 

B. malayi jird r-Bm-paramyosin 43 N.D. 67 

 
 SXP-1 (significant) N.D. 134 

H. contortus goat r-Hco-gal-m/f 41-46 37-48 139 

 
sheep adult ES 64 32 100 

 
 Hc24 + 15kDa >70 60-80 64, 100, 101, 132 

 
 Hc-sL3 52-69 N.D. 48 

 
 TSBP fraction 50 52 5 

N. americanus hamster r-Na-ASP2 30-46 N.D. 137 

 
 r-Na-CP2 29 N.D. 137 

 
mouse r-Na-calreticulin 43-49 N.D. 136 

N. brasiliensis rat adult ES (significant) N.D. 91 
O. radiatum cow larval ES 23 N.D. 27 
O. volvulus mouse r-Ov17 (significant) N.D. 70 
O. ostertagi cow ES-thiol 0-18 56-60 29, 31 

 
 globin 28 52 14 

 
 OPA (not significant) 60 131 

T. spiralis mouse adult ES (significant) N.D. 97 

 
 r-Ts-paramyosin 36 N.D. 138 

T. colubriformis guinea pig 11 kDa ES protein (significant) N.D. 20 

 
 17 kDa ES protein (significant) N.D. 19 

 
 18 kDa globin 60-84 N.D. 25 

 
 30 kDa glycoprotein (significant) N.D. 99 

 
 adult ES (significant) N.D. 98 

 
sheep r-17 kDa ES protein 8-39 40-42 24 

 
 

     
Table 1.3  Overview of successful vaccination trials against parasitic nematodes based on 
external antigens. 
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1.4 Strategy for developing anti-nematode vaccines 

Decades of study in the field of anti-nematode vaccines have rendered a collection of 

parasite antigens which are capable of adequately protecting the host organism against 

infection. Interestingly, successful vaccination trials described in this chapter are mainly 

based on native protein fractions. Unfortunately, these native vaccines have several 

important disadvantages when it comes to commercialization. First of all, purifying sufficient 

amounts of nematode proteins is often an expensive and/or time-consuming task. Second, 

antigen preparations can show significant batch differences. Third, it is not always possible 

to obtain a commercially stable formulation of the vaccine. Moreover, while these native 

fractions are enriched for a specific internal or external parasite antigen, they usually remain 

rather crude protein mixtures containing additional unidentified antigens. Hence, it is rather 

difficult to attribute the induced protection solely to a single antigen and as a result the 

exact mechanism of protection remains unknown. 

Hence, vaccine development will depend on obtaining an immunologically active 

recombinant form of the parasite antigen. The advances made in recombinant technology 

have made it relatively easy to produce vaccine candidates in different expressions systems. 

As a result, antigens are no longer isolated and tested in their native form but rather 

selected based on antibody recognition, localization or presumed function, followed by 

injection as a recombinant protein. However, while some recombinant antigens described 

here were able to protect the host against infection, most published vaccination trials were 

unsuccessful (excluded from our overview, reviewed by Geldhof et al., 2007). This could 

either be explained by the fact that these proteins are not genuine protective antigens or 

that the recombinant version of the protective antigen differs too much from its native 

counterpart. These structural differences can include incorrect protein folding and post 

translational modifications such as glycan structures. 

From these results it is clear that a direct recombinant approach is not efficient when 

searching for protective antigens. An extensive study of the original native parasite antigens 

would therefore be more appropriate. However, the main bottleneck in this approach will be 

obtaining sufficient amounts of parasite material. While this is a major problem in the field 

of human parasitology, livestock nematodes are more accessible for large-scale collection. 

Hence, more effort should be put into obtaining highly pure parasite antigens followed by a 

thorough analysis of the vaccine candidate in its native form, hereby taking into account the 

immunogenic importance of protein epitopes, general protein conformation, possibility of 

polymerization and the presence of immunogenic glycan structures. For this reason, the 
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following study will focus on further purifying and characterizing the protective native O. 

ostertagi fraction called ES-thiol (Geldhof et al., 2002, 2004). 
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Objectives 
 

The overall objective of this study was to evaluate the antigens present in the protective ES-

thiol fraction of the parasitic cattle nematode Ostertagia ostertagi as putative vaccine 

candidates. 

 

The four sub-objectives were: 

-to further purify the native ES-thiol fraction to determine which one of the two most 

promising vaccine candidates, i.e. activation-associated secreted proteins (ASPs)  and 

cysteine proteases (CPs) are responsible for the induced protection 

-to assess the importance of protein conformation and glycan structures of the native 

ASPs for inducing protection 

-to screen for new antigens present in the protective ES-thiol fraction 

-to further characterize one of the identified antigens, i.e. the translationally 

controlled tumor protein (TCTP) and evaluate its potential as a vaccine or drug target 
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with subfractions of the protective 
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2.1 Introduction 

Previous vaccination trials have shown that immunizing calves with excretory-secretoy (ES) 

material from adult Ostertagia ostertagi worms affinity purified on a thiol-sepharose column 

(i.e. ES-thiol) results in a 56-60% reduction in cumulative faecal egg counts (FEC) during two 

months after a first infection with third stage larvae (L3s). This reduction was accompanied 

by a significant reduction in worm length (Geldhof et al., 2002, 2004). 

The most abundant proteins in the ES-thiol fraction have been identified as activation-

associated secreted proteins (ASPs) (Geldhof et al., 2003). ASPs belong to a group of 

evolutionary related secreted proteins called the SCP/tpx-1/Ag5/PR-1/Sc7 family and are 

present in different organisms such as plants, mammals and nematodes. The exact function 

of ASPs is still unclear, although it is believed that they play a role in parasite infection and 

transition to parasitism (Hawdon et al., 1996, 1999; Bin et al., 1999, 2003; Moser et al., 

2005). A recent study in O. ostertagi demonstrated some ASP genes to be male enriched 

which might imply a role in reproduction (Visser et al., 2008). ASP molecules have previously 

shown their protective capacity in vaccination trials against Ancylostoma caninum  (Ghosh et 

al., 1996, Ghosh and Hotez, 1999; Sen et al., 2000), Ancylostoma ceylanicum (Goud et al., 

2004; Mendez et al., 2005), Onchocerca volvulus (MacDonald et al., 2005) and Haemonchus 

contortus (Schallig et al., 1997a, 1997b; Vervelde et al., 2002). Two ASP molecules of O. 

ostertagi have been described in ES-thiol, i.e. Oo-ASP1 and Oo-ASP2, with a molecular 

weight (MW) of around 30 kDa (Geldhof et al., 2003). 

Besides the ASPs, ES-thiol contains multiple cysteine proteases (CPs) with cathepsin L-like 

activity (Geldhof et al., 2002). The function of these enzymes is unknown, but they might 

enable the parasite to destroy host tissue for feeding and penetration, and to evade the host 

immune system (Tort et al., 1999; Dzik, 2006). The protective capacity of CPs has already 

been demonstrated against Fasciola hepatica (Wijffels et al., 1994; Dalton et al., 1996) and 

H. contortus (Boisvenue et al., 1992; Knox et al., 1999, 2005; Redmond and Knox, 2004).  

At the moment it is still unclear which of these ES-thiol components are essential for 

rendering protection against an O. ostertagi challenge infection, i.e. the ASPs, the CPs or 

other so far unidentified proteins present in ES-thiol. Therefore, the objective of this chapter 

is to further fractionate ES-thiol in its different components and to determine their 

protective capacity separately. 
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2.2 Materials and methods 

2.2.1 Antigen collection and fractionation 

The protective ES-thiol fraction was purified as described previously (Geldhof et al., 2002, 

2004). A naïve Holstein calf (3-4 months old) was infected with 200,000 Ostertagia L3s. At 

day 21 post-infection, the animal was sacrificed and adult worms were collected from the 

abomasum and maintained in RPMI medium (Gibco) supplemented with gentamycin (0.2 

mg/ml), penicillin (1,000 U/ml), streptomycin (1 mg/ml), L-glutamine (10 mM) and 

amphotericine B (Fungizone, Bristol-Myers Squibb) (5 μg/ml) for 72h at 37°C and 5% CO2. 

Parasite viability was confirmed after 24h and 48h on the basis of structural integrity and 

motility. Culture supernatants were collected and passed through a 0.22 μm filter followed 

by dialysis against PBS at 4°C and a final concentration step on a Centriprep Ultra-15 

membrane (Millipore; 10,000 MWCO). This material is referred to as ES. Prior to affinity 

chromatography, ES was pre-incubated with a final concentration of 2.5 mM dithiothreitol 

(DTT) for 30 min at 37°C. An activated Thiol-Sepharose 4B column (Sigma) with 5 ml bed 

volume, was equilibrated in 10 mM Tris-HCl, 0.5 M NaCl, pH 7.4. Protein samples (10 

mg/run) were applied to the Thiol-Sepharose 4B column at a flow rate of 5 ml/hour. 

Unbound material was eluted by washing the column with equilibration buffer (10 mM Tris-

HCl, 0.5 M NaCl, pH 7.4) until the OD280 had returned to a steady baseline. Bound material 

was eluted with equilibration buffer containing 50 mM DTT at a flow rate of 0.5 ml/min. The 

peak fractions were pooled. Next, DTT was removed from the eluted proteins by passage 

through a Sephadex G-25 column (GE Healthcare) at 5 ml/min in 10 mM Tris-HCl, pH 7.4. The 

peak fractions were again pooled and protein content was determined using the BCA 

method (Pierce Chemical Co., Rockford, IL, USA). The obtained protein fraction is referred to 

as ES-thiol. 

A Q-Sepharose column (Amersham, 1 ml bed volume) was equilibrated in 10 mM Tris-HCl, 

pH 7.4. ES-thiol was applied to the column (1 ml/min). Unbound proteins were collected and 

bound proteins were eluted by a stepwise increase in NaCl concentration (25-50-75-100-

125-175-250-500-1000 mM). Aliquots of all samples were analyzed on a 10% sodium dodecyl 

sulphate polyacrylamide gel electrophoresis (SDS-PAGE) under denaturing/reducing 

conditions followed by silver staining. The presence of ASPs was demonstrated by running 

the samples on a 10% SDS-PAGE under denaturing/reducing conditions followed by blotting 

onto a polyvinylidene difluoride (PVDF) membrane (Immobilon®, Milipore). The blot was 

blocked for 2h in 10% horse serum (HS) in phosphate buffered saline with 0.05% Tween20 

(PBST), probed overnight with rabbit anti-rASP serum obtained by immunization with an 

Escherichia coli recombinant of Oo-ASP-1 (diluted 1/200 in 5% HS / PBST / Visser et al., 2008) 
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and incubated for 2h with conjugate (goat anti-rabbit horse raddish peroxidase (HRPO), 

Sigma; diluted 1/5,000 in 5% HS / PBST). ASPs were visualized by adding 0.05% 3,3 

diaminobenzidine tetrachloride in phosphate buffered saline (PBS) containing 0.01% H2O2 

(v/v). CPs were monitored by incubating the samples with synthetic carbobenzoxy-

phenylalanyl-arginyl 7-amino-4-methyl coumarin (Z-Phe-Arg-AMC) as was done in a 

previously described cathepsin assay (Geldhof et al., 2000). Finally, the material was pooled 

into 3 different subfractions, i.e. an ASP fraction, a CP fraction and a rest fraction, followed 

by a concentration step on an Amicon Ultra-15 membrane (Millipore; 10,000 MWCO). 

Protein concentrations were determined using the BCA method (Pierce Chemical Co., 

Rockford, IL, USA). Ten µg of ES-thiol and its subfractions was analyzed by Coomassie Blue 

staining under denaturing and reducing conditions. The presence of ASPs was verified using 

the same Western blot as described above. CP activity was detected by gelatin-substrate gel 

under non-reducing conditions at pH 5.0 in the presence of 5 mM DTT. (Geldhof et al., 2000). 

 

2.2.2 Vaccination trial 

A vaccination trial was designed as previously described (Geldhof et al., 2002, 2004). A 

Holstein cross-breed population of 35 female helminth-free calves (8 months of age) was 

randomly divided into 5 groups of 7 animals. All animals were immunized three times 

intramuscularly in the neck with a three-week interval. One group received 100 µg of ES-

thiol per immunization in combination with 750 µg of QuilA adjuvant. One group received 

the same amount of QuilA with Tris-buffer instead of antigen (i. e. the negative control 

group). Three remaining groups were immunized with the ASP, the CP and the rest fraction 

respectively. The quantity of each subfraction injected was equivalent to the respective 

amount received by the group injected with ES-thiol. Serum was taken from each animal 

before the first immunization and one week after the second immunization. The animals 

were challenged with a trickle infection of 25,000 infectious L3s (1,000 L3s/day; 5 

days/week) which started at the day of the third immunization. All calves were euthanized 

three weeks after the last infection. Parasitological parameters - i.e. FEC, worm counts, 

worm lengths, percentage of fourth stage larvae (L4s) - were analyzed as described in 

previous trials (Geldhof et al., 2002, 2004). 

 

2.2.3 Statistical analysis 

Statistical analysis was performed as described previously (Geldhof et al., 2002, 2004). Data 

are shown as geometric means (+range). Indicators of worm fitness (i.e. FEC, worm burden 

and length of adult worms) were expected to be lower in vaccinated animals.  A one-tailed 
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Mann-Whitney U-test for pairwise comparison was used to determine significance between 

group means of vaccinated animals and the adjuvant control. Probability (P) values smaller 

than 0.05 were considered to indicate significant differences. Furthermore, a Kruskal-Wallis 

test was performed to demonstrate significant differences between group means of 

vaccinated animals. Based on the Bonferroni correction, P values smaller than 0.01 were 

considered statistically significant. 

 

2.2.4 Antibody response 

The antibody responses to the different antigen preparations were tested using pooled sera 

from the different groups collected one week after the second immunization. Ten µg of ES-

thiol and its subfractions was separated on a 10% SDS-PAGE under non-denaturing 

conditions and blotted onto a PVDF membrane (Immobilon®, Milipore). The blot was 

blocked overnight in 10% HS (diluted in PBST), probed for 2 h with pooled bovine serum 

(diluted 1/500 in 5% HS / PBST), and incubated for 1h with conjugate (rabbit anti-bovine-

HRPO, Sigma; diluted 1/5,000 in 5% HS / PBST). Recognized proteins were visualized by 

adding 0.05% 3,3’-diaminobenzidine tetrachloride in PBS containing 0.01% H2O2 (v/v). 

 

 

2.3 Results 

2.3.1 Antigen collection and fractionation 

The protein composition of ES-thiol and its three subfractions on a Coomassie-stained gel is 

shown in Figure 2.1. The profile of ES-thiol was identical to previously published results    

(Geldhof et al., 2002, 2004). The ASP fraction (eluted at 0-25-50 mM NaCl) contained only 

one visible band at 30 kDa. Two major protein bands were detected in the CP fraction 

(eluted at 250-500-1000 mM NaCl) at 28 and 45 kDa. The rest fraction (eluted at 100-125-

175 mM NaCl) showed multiple protein bands over the entire length of the gel, including a 

more abundant band at 48 kDa. 

The Western blot analysis with antibodies against ASPs is shown in Figure 2.2. The 30 kDa 

band seen in the ASP fraction was confirmed to be ASPs. No ASP proteins could be detected 

in the CP fraction. Minor recognition was seen in the rest fraction, possibly indicating trace 

amounts of ASP. 
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Figure 2.1  Comparison of the protein profiles of ES-thiol, the activation-associated secreted 
protein fraction (ASP), the cysteine protease fraction (CP) and the rest fraction (rest) on a 
10% SDS-PAGE under denaturing/reducing conditions, visualized by Coomassie Blue staining. 
MWs of standards are presented in kDa. 
 
 
 

 

 

 
Figure 2.2  Detection of ASPs in ES-thiol, the activation-associated secreted protein fraction 
(ASP), the cysteine protease fraction (CP) and the rest fraction (rest) on a 10% SDS-PAGE 
under denaturing/reducing conditions using Western blotting and rabbit anti-rASP 
antibodies. MWs of standards are presented in kDa. 
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Figure 2.3 shows the CP activity in ES-thiol and the different subfractions as detected on a 

gelatine substrate gel before (-) and after (+) addition of L-trans-epoxysuccinyl-leucylamido-

(4-guanidino)-butane (E-64), a CP inhibitor. CP activity present in the ES-thiol fraction was 

highly enriched in the CP fraction. The ASP fraction did not contain any activity, while minor 

activity was seen in the rest fraction. Addition of an E-64 inhibitor completely abolished 

protease activity. 
 

 

 
Figure 2.3  Visualization of cysteine protease activity in ES-thiol, the activation-associated 
secreted protein fraction (ASP), the cysteine protease fraction (CP) and the rest fraction 
(rest) on a non-reducing gelatin substrate gel incubated at pH 5.0 in the presence of 5 mM 
DTT (-) and the effect of adding the CP inhibitor E64 (+). MWs of standards are presented in 
kDa. 
 
 

2.3.2 Vaccination trial 

None of the animals showed adverse reactions to the immunizations and no clinical signs of 

ostertagiosis were observed. FEC during the vaccination trial are shown in Figure 2.4. 

The geometric mean FEC of all vaccinated groups were lower than the control group 

throughout the experiment. The parasitological parameters are summarized in Table 2.1. 

Immunization with ES-thiol gave a statistically significant reduction in cumulative FEC of 62%. 

Groups injected with the ASP, CP and the rest fraction showed a reduction in cumulative FEC 

of 74%, 80% and 70% respectively. The percentage of L4s was lower than 2% in all groups 

and no difference could be seen between the different groups (data not shown). Animals 

immunized with ASPs and CPs respectively contained 47% and 28% fewer adult worms 

compared to the controls, although these reductions were not significant. No reduction in 

worm burden was observed in the ES-thiol group and the rest fraction group. Both female 

and male worms were significantly smaller in all treated groups with the exception of male 
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worms found in ES-thiol injected animals. No significant difference was seen between the 

parasitological parameters of the vaccinated groups. 

 

 

 

 

Figure 2.4  Geometric mean of FEC during the two-month period of the vaccination trial. (a) 
Animals vaccinated with QuilA versus ES-thiol; (b) Groups vaccinated with QuilA versus ASP, 
CP and rest fraction. (EPG = eggs per gram faeces). 
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Group 
 

 
n 

 
Cumul. FEC 

(EPG) 

 
Reduction  

(%) 
 

 
No. of worms 

 
Worm length 

(mm) 

 
QuilA 
 

 
7 

 
2034 

(650-4575) 

 
--- 

 

 
2738 

(550-8900) 

 
F   9.29      
M  7.41 

 
(8.95-9.92) 
(6,97-7,92) 
(6.87-9.11) 
(5.26-7.71) 
(7.65-8.91) 
(6.15-7.57) 
(7.33-9.03) 
(5.87-7.70) 
(7.93-8.58) 
(6.73-7.50) 
 

ES-thiol 7 768 * 
(63-2650) 

62 2891 
(1450-5050) 

F   8.26 *     
M  6.65      

ASP 7 538 ** 
(125-1250) 

74 1446 
(400-5400) 

F   8.22 **    
M  6.91 *     

CP 7 407 ** 
(75-1363) 

80 1797 
(100-4500) 

F   8.14 **     
M  6.78 *     

rest 7 618 ** 
(238-2075) 

70 2536 
(450-6200) 

F   8.24 *    
M  7.03 **     
 

 
Table 2.1  Parasitological parameters of the vaccination trial. Number of animals per group 
(n), Geometric mean cumulative FEC (eggs per gram faeces, EPG), total no. of worms 
(geometric mean + range) and worm lengths (geometric mean of 50 worms per animal + 
range). (F = female worms; M = male worms; significant differences between the control group 
(QuilA) and the treated groups are indicated with * = P < 0.05 and ** = P < 0.01).  

 

 

2.3.3 Antibody response 

Figure 2.5 shows antibody recognition of ES-thiol and its subfractions under non-reducing 

conditions by pooled sera from each group. Animals injected solely with QuilA did not 

recognize any ES-thiol proteins. The ES-thiol group recognized ES-thiol proteins over the 

entire length of the gel with one immunodominant band at 120 kDa. Multiple bands were 

recognized in the subfractions: two bands at 25 and 50 kDa in the ASP fraction, a band at 120 

kDa in the CP and the rest fraction, and an additional 250 kDa band in the CP fraction. 

Animals immunized with the ASP fraction showed one immunodominant band at 50 kDa and 

a minor band at 25 kDa in both the ES-thiol and the ASP fraction. These bands were cut from 

a non-reducing Coomassie-stained gel and both were identified as Oo-ASP1 by mass-

spectrometry (results not shown). No proteins were recognized in the CP and rest fraction.  

Animals injected with the CP fraction and the rest fraction showed a similar pattern. Two 

high MW bands around 120 kDa and 250 kDa were recognized in the CP fraction. The same 

120 kDa band was detected in the rest fraction. Recognition of the 120 kDa band by the rest 

fraction group was stronger compared to the CP group. None of the animals recognized 

proteins from the ASP fraction. 
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Figure 2.5  Detection of serum antibody responses to vaccinations using Western blotting. 
Sera from individual animals were taken 1 week after the second immunization and pooled 
for each group (QuilA, ES-thiol, ASP fraction, CP fraction and rest fraction). Lanes were 
loaded with equivalent amounts of ES-thiol (ES-T), ASP fraction (A), CP fraction (C) and rest 
fraction (R) in order to detect cross-reactivity. MWs of standards are presented in kDa. 

 

 

2.4 Discussion 

Published data on successful vaccination trials against O. ostertagi are still scarce. Smith et 

al. (2000) previously reported a 30-50% reduction in FEC by vaccination with gut membrane 

glycoproteins. More recently, Vercauteren et al. (2004) reported the protective capacity of 

the Ostertagia polyprotein allergen (OPA). Injection with this L3 ES antigen induced a 

reduction in FEC of 60% compared to control animals. Finally, the ES-thiol fraction was 

previously tested in two independent trials, with the main protective effect being a 

reduction in cumulative FEC of 56-60% (Geldhof et al., 2002, 2004). In the present study 

injection with ES-thiol resulted in a 62% reduction in cumulative FEC demonstrating the 

protective capacity of ES-thiol for a third time. Although all animals received a similar dose of 

infective L3s, success of parasite establishment can vary significantly for each individual 

(Gasbarre et al., 2001). Calves can either be innately immune, acquired immune or 

immunologically non-responsive to an Ostertagia infection which would explain the large 

ranges in cumulative FEC values. 

Analysis of the composition of ES-thiol previously indicated the presence of ASPs and CPs 

(Geldhof et al., 2002; Geldhof et al., 2003). Both classes of molecules are well known vaccine 

candidates, which have shown their protective capacity in different host-parasite systems. 
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Animals injected with the ASP fraction showed a 74 % reduction in cumulative FEC. Analysis 

of this fraction on gel and Western blot only demonstrated the presence of ASPs. As far as 

we know, this is the first time native ASPs from any parasite were tested in a vaccine trial in 

such a pure form. The only other native ASP tested as a vaccine candidate was the 24 kDa 

single-domain ASP2 homolog (Hc24) from the sheep parasite Haemonchus contortus 

(Schallig et al., 1997a). Adult sheep injected with this protein fraction showed a 77% 

reduction in mean FEC and a 85% reduction in worm count compared to animals injected 

with only adjuvant. However, it is unclear if the Hc24 protein itself was actually responsible 

for the induced protection, since the protein fraction also contained an immunogenic 15 kDa 

antigen.  

The CP fraction conferred an 80% reduction in cumulative FEC, which is the highest level of 

protection induced against O. ostertagi in cattle published to date. Three different bands of 

CP activity were seen on a gelatine substrate gel, suggesting the presence of at least three 

different CPs. Protection induced by purified native CPs has also been described in 

vaccination trials against H. contortus (Redmond and Knox, 2004; Knox et al., 2005). Sheep 

injected with CPs obtained through anion exchange (MonoQ) or affinity chromatography 

with cystatin (a natural CP inhibitor) showed a reduction of 28-56% in FEC and a reduction of 

33-46% in worm burdens. Integral membrane CPs from O. ostertagi did not induce 

protection (Geldhof et al., 2002), although it is not clear whether these CPs are identical to 

those present in ES-thiol. Furthermore, it is important to note that the CP fraction used in 

this study also contained other proteins. Hence, it can not be concluded that the O. ostertagi 

CPs alone are responsible for protection. Further purification of this protein fraction is 

essential. One possibility would be to affinity purify these proteases according to the method 

described by Redmond and Knox (2004) using the parasite's cystatin as a ligand. 

The rest fraction contained the remaining proteins present in ES-thiol and still remained a 

fairly complex mixture. Except for trace amounts of ASPs and CPs, the other components 

remain unknown. Protection rendered by this fraction could be attributed to ASPs, CPs or 

other so far unknown antigens. Further fractionation combined with a complete proteomic 

analysis will be essential in order to identify these unknown components and to test their 

protective capacities separately. 

Surprisingly, all subfractions induced a similar level of protection with 70-80% reduction in 

cumulative FEC. This might suggest the presence of common protective antigens in the 

different subfractions. Although the subfractions were acquired from the anion exchange 

column under a wide salt gradient, one cannot exclude the possibility that trace amounts of 

some proteins are present in all fractions. Alternatively, multiple protective antigens could 
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be present in the different subfractions. For this reason, serum cross-recognition of the 

different groups was analyzed on Western blot. The animals injected with the ASP fraction 

did not show any cross-reactivity with other subfractions and only recognized the ASPs. This 

observation, combined with the protein profile of the ASP fraction, strongly suggests that 

the ASPs are the protective component of this subfraction. The analysis also indicated the 

presence of two cross-reacting HMW antigens in the CP and the rest fraction. Unfortunately, 

these proteins could not be visualized by Coomassie or silver staining. Hence, they could not 

be isolated for mass spectrometry (MS) analysis and their identity remains unknown. A 

possible explanation might be that these immunogenic antigens are in fact complex 

carbohydrate structures. Surprisingly, other proteins present in the CP and the rest fraction 

were not recognized by vaccinated animals which would suggest limited immunogenicity 

compared to these HMW antigens. 

The results presented in this study strongly suggest that vaccination of calves with native O. 

ostertagi ASPs induces a protective immune response against a homologous challenge 

infection. This will enable us to compare the protective capacity of future recombinant ASPs 

to that of its native form. Recombinant ASP molecules have been evaluated for Ancylostoma 

caninum (Ghosh et al., 1996; Ghosh and Hotez, 1999; Sen et al., 2000), Ancylostoma 

ceylanicum (Goud et al., 2004; Mendez et al., 2005), Onchocerca volvulus (MacDonald et al., 

2005) and H. contortus (Vervelde et al., 2002). These recombinants were produced in 

bacterial systems and the levels of protection varied between 21 and 79 % reduction in 

parasite burden. Although bacterial recombinants of parasite antigens have been used 

previously, expression of cysteine-rich antigens often results in the production of inclusion 

bodies, making it difficult to solubilize the antigen. Another problem might be the incorrect 

folding of the ASPs, disabling the formation of possible immunogenic epitopes and 

preventing proper recognition by the host. Switching to eukaryotic expression systems such 

as yeast, insect or mammalian cells might solve this problem. For example, Ac-ASP1 and Ac-

ASP2 were expressed in Pichia pastoris to render soluble recombinant antigens at high yield 

and low cost (Goud et al., 2004). Besides protein conformation, the glycan structures 

present on the ASPs may also be crucial for protection. Two putative N-glycosylation sites 

have been described in O. ostertagi ASP1 and ASP2 (Geldhof et al., 2003). The glycan 

structures present on these sites might be important for the recognition by the host immune 

system or essential in the correct folding or the dimerization of the ASPs. In this trial, animals 

immunized with the native ASPs recognized two different forms: an immunodominant 

dimeric form at 50 kDa and a monomer at 25 kDa. The dimerization of ASP molecules might 
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result in the creation of additional epitopes, explaining its higher immunogenicity on 

Western blot. 

In conclusion, we have obtained three subfractions of ES-thiol which all induced protection 

against O. ostertagi. Since the native ASPs were obtained in a highly pure form and animals 

injected with this fraction developed a specific immune response against these antigens 

without demonstrating cross-reactivity with antigens from the other subfractions, we will 

further investigate the ASPs for vaccine development. In order to help select an appropriate 

recombinant expression system for future production of Ostertagia ASPs, the next chapter 

will focus on the importance of protein conformation and glycosylations of ASPs with regard 

to their immunogenicity. 
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3.1 Introduction 

In the previous chapter, the ES-thiol fraction was further purified to obtain a subfraction 

highly enriched for activation-associated secreted proteins (ASPs). This fraction conferred a 

74% reduction in faecal egg counts (FEC) when injected intramuscularly in combination with 

the adjuvant QuilA. This level of protection is sufficient to consider commercialization 

(Claerebout et al., 2003). However, the further development of these antigens into a 

commercial vaccine requires their recombinant expression. Recently, the Ostertagia 

ostertagi ASP1 molecule has been recombinantly expressed using a baculovirus system and 

tested in a vaccination trial (Geldhof et al., 2008). However, immunized calves failed to 

recognize the native ASPs and no protection against a challenge infection was obtained. This 

lack of cross-reactivity may be due to structural differences between the recombinant ASP1 

and its native version. 

Sequence analysis of Oo-ASP1 and Oo-ASP2 has revealed the presence of two potential N-

glycosylation sites (Geldhof et al., 2003).  The possible presence of glycan structures on the 

ASPs might have a dramatic effect on the immunogenicity of these molecules. The 

immunomodulatory importance of parasite glycans has already been described in other 

helminths such as Schistosoma mansoni (Okano et al., 2001; Faveeuw et al., 2003; Pearce et 

al., 2004), Trichinella spiralis (Reason et al., 1994), Dictyocaulus viviparus (Haslam et al., 

2000; Kooyman et al., 2007) and Brugia malayi (Tawill et al., 2004). In addition to 

glycosylations, the conformation of specific peptide epitopes can be essential to obtain 

protection against an invading parasite. The importance of the protein backbone for 

inducing protective immunity has already been demonstrated in vaccination trials against 

Haemonchus contortus (Smith and Smith, 1996; Munn et al., 1997) and D. viviparus 

(Kooyman et al., 2007). 

In this chapter, the glycosylations present on the ASP antigens are characterized and the 

contribution of both glycosylations and protein conformation to antibody recognition by 

immunized animals will be evaluated. 

 

3.2 Materials and methods 

3.2.1 Antigen collection 

ES-thiol was collected as described previously (Geldhof et al., 2002). Ten µg was run on a 

denaturing/reducing 10% SDS-PAGE gel. Glycosylations were detected using the pro-Q 

Emerald 300 staining kit according to the manufacturer’s protocol (Molecular Probes). 

Protein bands were made visible by subsequent Coomassie Blue staining. 
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3.2.2 Glycan analysis 

Glycan analysis was done as described by Laroy et al. (2006). In short, N-glycans present on 

the ES-thiol antigens were removed by treatment with a recombinant peptide-N-glycosidase 

F (PNGase F) and fluorescently labelled with 8-amino-1,3,6-pyrenetrisulfonic acid. A 

subsequent linkage analysis was performed using a series of digestions of the labelled 

glycans with highly specific exoglycosidases (α-2,3/6/8-sialidase, β-1,4-galactosidase, β-

hexosaminidase, α-1,2/3/4/6-fucosidase, α-1,3/4-fucosidase, α-1,2-mannosidase and α-

1,2/3/6-mannosidase) followed by electrophoretic analysis on a DNA sequencer to 

determine the number of sugar residues which had been removed. Based on the resulting 

electropherograms the structure of the most abundant N-glycan was determined. 

 

3.2.3 Deglycosylation/Denaturation/Reduction of ES-thiol 

Aliquots of ES-thiol (20 µg/condition) were subjected to deglycosylation under native and 

denaturing/reducing conditions. Denatured and reduced ES-thiol was obtained by heating an 

aliquot at 95°C for 20 min in 0.5% sodium dodecyl sulphate (SDS) and 100 mM dithiothreitol  

(DTT), followed by the addition of 10% Triton X-100 to a final concentration of 1 %. All 

samples were diluted in 10 mM Tris-HCl buffer (pH 7.4) to identical volumes and 1 µl (= 100 

U) of recombinant PNGase F was added. Deglycosylation was performed overnight at 37°C. 

Negative controls were diluted using the same buffers as treated samples and incubated 

without PNGase F. The ES-thiol samples (untreated, native treated with PNGase F and 

denatured and reduced treated with PNGase F) were subsequently separated on a 10% SDS-

PAGE gel. Glycosylations and protein profiles were visualized using the pro-Q Emerald 300 

staining kit (Molecular Probes) and subsequent Coomassie Blue staining. 

 

3.2.4 Tandem MS 

In order to determine which N-glycan was removed under native and denaturing/reducing 

conditions, the major ASP bands were cut from the gel and screened for the presence of 

peptides containing N-glycosylation sites by means of tandem mass spectrometry (MS). The 

gel pieces were washed with 100 µl of acetonitrile for 15 min and dried in a centrifugal 

vacuum concentrator. Seventy-five nanograms of sequencing-grade trypsin (Promega) in 10 

µl of 50 mM NH4HCO3 (pH 8) was added to re-hydrate the protein bands. After 10 min, an 

additional 90 µl of 50 mM NH4HCO3 (pH 8) was added and digestion was carried out for 16 h 

at 37°C. Resulting peptide mixtures were dried, re-dissolved in 20 µl of 0.1% formic acid in 

2/98 (v/v) acetonitrile (Baker)/water (liquid chromatography (LC)-MS grade water, Biosolve) 

and half of it was applied for automated nano-LC-MS/MS analysis on an Ultimate (Dionex, 
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Amsterdam, The Netherlands) in-line connected to an Esquire high capacity ion trap (Bruker 

Daltonics, Bremen, Germany). Peptides were first trapped on a trapping column (PepMap™ 

C18 column, 0.3 mm I.D. x 5 mm, Dionex) and after back-flushing, loaded on a 75 µm I.D. x 

150 mm reverse-phase column (PepMap™ C18, Dionex). Peptides were eluted with a linear 

solvent gradient over 50 min going to 100% of 0.1% formic acid in acetonitrile/water (7/3, 

v/v). Using data-dependent acquisition, multiple charged ions with intensities above 

threshold 300,000 were selected for fragmentation. During MS/MS analysis, a MS/MS 

fragmentation amplitude of 0.7 V and a scan time of 40 ms were used. MS/MS spectra were 

converted to Mascot generic files (mgf) using the Automation Engine software (version 3.2, 

Bruker) and searched using the Mascot database search engine 

(http://www.matrixscience.com) against an O. ostertagi protein sequence database 

downloaded from the NCBInr protein database website (http://www.protein.sdu.dk/ 

gpmaw/GPMAW/Databases/NCBInr/ncbinr.html). Mascot’s parameter settings were as 

follows: enzyme: trypsin; variable modifications: acetyl (N-term), propionamide (C), 

deamidation (NQ), oxidation (M), pyro-glu (N-term Q), peptide mass and fragment mass 

tolerances: ± 0.5 Da, maximum number of missed cleavages: 1 and instrument type: electron 

spray ionization trap. An additional, parallel “no enzyme” search (i.e. without any restriction 

on the protease’s specificity) was also performed. From both searches, only spectra that 

exceeded Mascot’s threshold score (set at the 95% confidence level) and were ranked first 

were considered for identification. 

 

3.2.5 3-D modeling of Oo-ASP1 and Oo-ASP2 

In an attempt to model the three dimensional (3-D) structure of Oo-ASP1 and Oo-ASP2, a 

Basic Local Alignment Search Tool (BLAST) similarity search was conducted against the 

Protein Data Bank (PDB; http://www.wwpdb.org) to find homologous template sequences. 

Alternatively, the overall fold of Oo-ASP1 and Oo-ASP2 was predicted using the 3D-jury 

server (http://meta.bioinfo.pl) (Ginalski et al., 2003). In short, the target sequence was 

threaded through the backbone structures of a collection of template proteins and a 

goodness of fit score was calculated for each sequence-structure alignment.  According to 

the secondary structure profile, 3D-jury external modeling servers searched for structures in 

the PDB resembling most this particular structure prediction. The resulting alignments were 

used to build atomic models in MODELLER (Sali et al., 1995) with the structure of Necator 

americanus ASP2 as a template (Asojo et al., 2005). Although atomic model precision can 

never be reached using the fold recognition modeling methods described here, the full 
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models were used to localize the relative positions of the N-glycosylation sites on Oo-ASP1 

and Oo-ASP2. Molecular graphics were created with YASARA (http://www.yasara.org). 

 

3.2.6 ELISA 

An enzyme-linked immunosorbent assay (ELISA) was set up to investigate antibody 

recognition of native ASPs by vaccinated animals and to determine whether different 

antibody subtypes recognize protein and/or glycan epitopes. Serum was obtained from 

cattle immunized with native ASPs (chapter 2).  Blood from all animals (n=7) was collected 

before the first immunization (= pre-immune) and one week after the second immunization 

(=immune). Pre-immune and immune sera were pooled and stored at -20°C. ES-thiol 

samples (native untreated, denatured/reduced untreated, native treated with PNGase F and 

denatured/reduced treated with PNGase F) were diluted in carbonate coating buffer (0.1 M; 

pH 9.6) and coated in triplicate onto a 96-well plate (Nunc MaxisorpTM): 150 µl sample per 

well (5 µg/ml). Afterwards, the plate was incubated for 2h at 37°C with pooled serum from 

animals injected with native ASPs (200 µl/well; diluted 1/400 in 2% horse serum (HS) / PBST). 

Pre-immune serum was used as a negative control. Antibodies against bovine 

immunoglobulin (Ig) G1 (1/40; monoclonal, AbD Serotec), IgG2 (1/100; monoclonal, AbD 

Serotec), IgM (1/50; polyclonal conjugate, AbD Serotec) and IgA (1/25; polyclonal conjugate, 

AbD Serotec) were administered (200 µl/well; diluted in 2% BSA / PBST) for 2h at 37°C. 

Rabbit-anti-mouse horseradish-peroxidase (1/2,000; polyclonal conjugate, Sigma) was used 

as a conjugate for IgG1 and IgG2. Finally, O-phenylenediamine was added as a substrate (100 

µl/well; 0.1% in citrate buffer, pH 5.0 / 0.01% H2O2) and the optical density (OD) was 

measured at 492 nm. 

 

3.3 Results 

3.3.1 Antigen collection 

Purified ES-thiol was analyzed on a 10% SDS-PAGE. A Coomassie staining yielded one major 

protein band of 33 kDa (previously identified as Oo-ASP1 and Oo-ASP2) and additional minor 

bands between 45 and 92 kDa (Figure 3.1a). This corresponds with the results from previous 

ES-thiol purifications (Geldhof et al., 2002, 2004; chapter 2). An Emerald 300 staining of the 

same gel revealed a highly intense band of 33 kDa, indicating that particularly the ASPs are 

glycosylated (Figure 3.1b). 
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3.3.2 Glycan analysis 

The results of the exoglycosidase array sequencing of the released N-glycans are shown in 

Figure 3.2. Glycan structures are drawn according to the conventions of the Society for 

Glycobiology. The addition of sialidase and α-1,2-mannosidase did not affect the glycan 

profile, which allowed to conclude that no sialylated or high-mannose N-glycans are present. 

In contrast, treatment of the N-glycans with galactosidase, hexosaminidase and fucosidase 

resulted in distinct pattern changes. Careful interpretation of these data revealed several 

glycan structures (see ES-thiol panel). The majority of these glycans are of the 

paucimannosidic and hybrid type. We interpret the fucose residue on all fucosidase-sensitive 

glycan species to be linked to the protein-proximal GlcNAc residue, as degalactosylation and 

removal of outer branch GlcNAc residues is not hampered by the presence of the fucose 

residue. Treatment with α-1,3/4 fucosidase did not remove the residue, whereas treatment 

with α-1,2/3/4/6-fucosidase did. An α-1,2-linkage can not be formally excluded, but the α-

1,6-linkage is the more common one in this position in eukaryotes and the fucosylated 

glycans run at the exact positions as standards with these structures in this method (not 

shown, method was calibrated with a large range of standards in our laboratory). 

Based on these results it was concluded that more than 90% of all glycans were of the 

paucimannosidic type and of the hybrid type with a complex α-1,3-arm and an unprocessed 

α-1,6-arm (Figure 3.3). N-glycans contained an α-1,6-fucose core and differed in build-up at 

the terminal end of the α-1,3-arm (ending in galactose, N-acetyl glucosamine or mannose). A 

few percent of the N-glycans were complex biantennary. 

 

 

Figure 3.1  Analysis of ES-thiol on 10% SDS-PAGE visualized by Coomassie Blue (a) and 
Emerald 300 (b). Molecular weights (MWs) of standards are presented in kDa. 
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Figure 3.2  Exoglycosidase array sequencing of the N-glycans found on the proteins in the ES-
thiol fraction. Spikes represent glycan structures with increasing size (from left to right). First 
panel = electrophoretic profile of malto-oligosaccharide reference standard. Second panel = 
profile of unprocessed N-glycans with schematic representation of different structures. 
Remaining panels = profiles after enzymatic treatment of N-glycans with specific 
exoglycosidases (indicated in panels). Shifts in the profile indicate the presence of sugar 
residues targeted by the respective enzymes. (RFU = relative fluorescence unit). 
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Figure 3.3  Schematic representation of the most common N-glycan found on Ostertagia 

ASP1 and ASP2. 

 

 

3.3.3 Deglycosylation/Denaturation/Reduction of ES-thiol 

Deglycosylation of native and denatured/reduced ES-thiol was monitored on a 10% SDS-

PAGE. PNGase F treatment under native conditions yielded a shift of the 33 kDa band to 29 

kDa (Figure 3.4a, lane 1 vs. lane 2). This shift was confirmed on Emerald staining together 

with a decrease in glycan intensity (Figure 3.4b, lane 1 vs. lane 2). Under denaturing and 

reducing conditions, deglycosylation resulted in a more pronounced shift from 33 kDa to 25 

kDa (Figure 3.4a, lane 1 vs. lane 3) and no glycosylations were detected by Emerald staining 

(Figure 3.4b, lane 1 vs. 3). 

 

 

   

 
Figure 3.4  Analysis of ES-thiol on 10% SDS-PAGE before (lane 1) and after treatment with 
PNGase F  under native (lane 2) and denaturing/reducing conditions (lane 3) visualized by 
Coomassie Blue (a) and Emerald 300 (b). MWs of standards are presented in kDa. 
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3.3.4 Tandem MS 

The 33, 29 and 25 kDa bands (Figure 3.4a) were all identified as Oo-ASP1 and Oo-ASP2. An 

alignment of these ASP molecules is shown in Figure 3.5. No peptides containing a putative 

N-glycosylation site were detected in the spectrum of the 33 kDa band. For ASP1 the peptide 

RDIAGASPLLN*<Dam>*LTGAVQM<Mox>R was identified following trypsin digestion of the 

29 and 25 kDa band, while the peptide EAGFCCPADLN*<Dam>*QTDEAR was only found in 

the digest of the 25 kDa band (N*<Dam>* indicates a deamidated asparagine - i.e. 

conversion to aspartic acid - due to PNGase F treatment). For ASP2 the peptide 

PLPIN*<Dam>*TSLAQNIAR was detected in the digest of the 25 kDa band. A peptide 

containing the second predicted N-glycosylation site was not detected in the 29 or 25 kDa 

band. 

 

 

 
Figure 3.5  Sequence alignment of Ostertagia ASP1 and ASP2. Peptide fragments identified 
by MS overspanning an N-glycosylation site are boxed. N-glycosylation sites are marked with 
an asterix. 
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3.3.5 3-D modeling of Oo-ASP1 and Oo-ASP2 

According to the BLAST search Necator americanus ASP2 (PDB 1U53) was the best ranked 

template structure for Oo-ASP1 and Oo-ASP2. Because sequence identity was less than 30%, 

a pairwise sequence alignment was unreliable for conventional homology modeling (results 

not shown). Similarly, the 3D-jury external modeling servers presented Na-ASP2 to be the 

best structural template for Oo-ASP1 and Oo-ASP2. In contrast, these alignments were based 

on secondary structure conservation, not on pairwise sequence identity. Figure 3.6 shows 

the resulting structural alignment (superposition) of the Oo-ASP1 and Oo-ASP2 models. The 

overall fold was predicted to be a three layered alpha-beta-alpha sandwich. In both models, 

the two glycosylation sites appear on opposite sides of the structure’s largest cavity. One 

glycosylation site seems to be structurally conserved: Asn58 in ASP1 and Asn56 in ASP2. 

Asn30 in ASP1 and Asn99 in ASP2 are located on a similar side of the structure but are not 

structurally conserved. Three putative disulphide bonds were found for ASP1 between 

Cys25-Cys82, Cys95-Cys173 and Cys168-Cys185, and for ASP2 between Cys23-Cys79, Cys92-

Cys170 and Cys165-Cys180. These bonds were structurally conserved between ASP1 and 

ASP2. 

 

 

 
Figure 3.6  3-D modeling of Ostertagia ASP1 and ASP2. Both models are drawn in ribbon 
style representation. Oo-ASP1 is colored in magenta (dark), Oo-ASP2 in cyan (light). Putative 
disulphide bridges (yellow) are indicated by arrows. The N-glycosylated Asn residues are 
drawn in spherical representation. 
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3.3.6 ELISA 

An ELISA was used to investigate antibody recognition by cattle immunized with native ASPs. 

Figure 3.7 shows the mean OD measurements for IgG1, IgG2, IgM and IgA. The removal of N-

glycans by treatment with PNGase F did not yield a reduction in antibody recognition for any 

of the antibodies studied here. In contrast, denaturing and reducing the ASPs leaving the 

glycans intact reduced the OD values for IgG1, IgG2 and IgM with 89%, 84% and 71% 

respectively. OD values for IgA were relatively low and a similar effect could be observed, 

although these values did not differ significantly. 

 
 

   
 

 

   
 

Figure 3.7  Effect of denaturation/reduction and deglycosylation of ES-thiol on recognition 
by IgG1, IgG2, IgM and IgA antibodies of animals immunized with native ASPs. Results are 
given as mean OD ± standard error. (N- = native ES-thiol, untreated; N+ = native ES-thiol, 
treated; DR- = denatured/reduced ES-thiol, untreated; DR+ = denatured/reduced ES-thiol, 
treated). 
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3.4 Discussion 

In this chapter, we have investigated the presence and the nature of glycans present in the 

protective ES-thiol fraction of O. ostertagi. Glycan structures were identified specifically on 

the ASPs, which are the most abundant component of ES-thiol (Geldhof et al., 2003). 

Linkage analysis of the enzymatically removed glycan structures revealed mainly 

paucimannosidic and hybrid-type N-glycans containing an core α-1,6-fucose, a complex α-

1,3-arm and an α-1,6-arm not processed by N-acetylglutaminyltransferase II. Hybrid N-

glycans have already been detected in insects, mammals and the free-living nematode 

Caenorhabditis elegans (Cipollo et al., 2002), but so far not in parasitic helminths. 

Treatment with PNGase F under native conditions resulted in a 4 kDa shift in migration of 

the ASPs, along with a decrease in glycan intensity. This suggests the removal of one N-

glycan which is readily available for the PNGase F enzyme to cut. Under denaturing/reducing 

conditions, an extra shift indicated the removal of a second N-glycan, leaving the ASPs fully 

deglycosylated. These results support the prediction of two N-glycosylation sites for ASP1 

and ASP2 (Geldhof et al., 2003). Potential N-glycosylation sites have also been detected in 

other ASP homologs. Two N-glycosylation sites have been found in the one-domain 

Onchocerca volvulus ASP1 (Tawe et al., 2000) and the two-domain Ancylostoma ceylanicum 

ASP1 (Goud et al., 2004). For the latter, both sites are located in the N-terminal part of the 

sequence, which shows the highest homology with Oo-ASP1 and Oo-ASP2 (Geldhof et al., 

2003). Also, single N-glycosylation sites have been detected in the single-domain 

Ancylostoma caninum ASP2 (Hawdon et al., 1999) and Haemonchus contortus Hc24 antigen 

(Schallig et al., 1997). However, none of the glycan structures present on these vaccine 

candidates have been studied in detail. 

MS analysis of ASP1 demonstrated that the N-glycan on Asn58 was removed under native 

conditions, while the glycan on Asn30 was only removed after denaturing and reducing the 

protein. Removal of the N-glycan on Asn56 of ASP2 could not be confirmed by MS, however 

the N-glycan on Asn99 appeared to be removed under denaturing and reducing conditions. 

Interestingly, these “hidden” N-glycans of ASP1 and ASP2 occupy the same location in the 3-

D model. Since Oo-ASPs are dimeric under native conditions (chapter 2), it is possible that 

the latter glycan structures are located close to the dimerization interface, making them 

initially unavailable for PNGase F to cut. 

Our ELISA results suggest that the glycan structures on the ASPs are not immunogenic on 

their own. However, in order to be absolutely sure that these glycans are not important for 

inducing protection a vaccination trial can be performed using deglycosylated ASPs. Since a 

reduction in antibody recognition was observed for all subtypes after denaturing and 
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reducing the ASPs, the antibodies induced by vaccination with native ASPs seem to be 

directed against specific epitopes present in the protein backbone. A similar observation has 

been made in vaccination trials against Dictyocaulus viviparus where long-lasting protection 

was correlated with an antibody response against protein epitopes (Kooyman et al., 2007). 

On the other hand, immunodominant N-glycans of D. viviparus only induced a short-lived 

immune response. Ostertagia ASP1 and ASP2 contain 13 respectively 14 cysteine residues 

(Geldhof et al., 2003) and three putative intramolecular disulphide bonds were found which 

are likely to have an impact on protein conformation. Furthermore, ASP1 and ASP2 are 

dimeric under non-reducing conditions and only exist as monomers after reduction (chapter 

2) suggesting the remaining cysteine residues are important for dimerization. In 

correspondance, a 3-D structural analysis of the ASP homolog of Necator americanus (Na-

ASP2) showed the presence of a putative binding cavity that might be essential for 

dimerization and Na-ASP2 demonstrated structural and charge similarities with chemokines 

(Asojo et al., 2005). These conformational characteristics are likely to be essential for the 

correct functioning of ASPs. Hence, they could be the key to proper antibody recognition and 

possibly crucial for inducing protection. From our ELISA results it is still unclear whether 

denaturing or reducing on its own is responsible for the drastic reduction in antibody 

recognition. Western blot analysis of non-reduced ASPs on a denatured SDS-PAGE still 

resulted in recognition by vaccinated animals (chapter 2) suggesting disulfide bridges are at 

least to some extent responsible for antibody recognition. 

Numerous parasites confront their host with antigens equipped with exotic and 

immunogenic glycans, often as part of their immune evasion strategy (Hokke and Deelder, 

2001; Nyame et al., 2004). Despite the fact that ASP1 and ASP2 are the most abundant 

antigens released by adult Ostertagia parasites (Geldhof et al., 2003), they seem to lack 

highly immunogenic sugar residues such as the α-1,3-fucose core described by van Die et al. 

(1999). In correspondence, the ELISA results indicated that N-glycan removal coincided with 

only a minor decrease in antibody recognition. The importance or role of the ASPs and their 

glycans for the parasite remains unclear. Interestingly, α-mannosidase-II knockout mice that 

solely express these types of hybrid N-glycans are known to develop an autoimmune disease 

resembling systemic lupus erythematosus (Green et al., 2007). In this case, an increased 

infiltration and activation of macrophages in kidney tissue has been observed causing 

inflammation and tissue damage. However, it is still unclear whether the hybrid glycans 

discovered in Ostertagia have a role in the recruitment of immunocompetent cells in the 

gastrointestinal mucosa during an infection. Furthermore, while the immunogenicity of ASP 

glycans appears to be negligible, they might be important during protein synthesis inside the 
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adult worm. It is possible that the correct folding of ASPs along with the formation of 

essential epitopes depends on the glycosylation process in the Golgi apparatus. 
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4.1 Introduction 

Different screening techniques have been applied when looking for appropriate vaccine 

candidates in excretory-secretory (ES) material of Ostertagia ostertagi. First of all, a 

comprehensive substrate gel analysis has detected stage- and substrate-specific proteases 

including metallo-, serine and aspartyl proteases as well as enzymes with cathepsin L-like 

activity (Geldhof et al., 2000). In addition, antibodies isolated from the abomasal mucus and 

the draining lymph nodes of infected cattle (de Maere et al., 2002) and rabbit antibodies 

directed against parasite ES material (Vercauteren et al., 2003) have been used to screen 

complementary DNA (cDNA) expression libraries of O. ostertagi. This approach led to the 

identification of several interesting ES antigens such as metalloproteases (MEPs), 

vitellogenin, an aspartyl protease inhibitor, a protein disulfide isomerase and an Ostertagia 

polyprotein allergen (OPA). Furthermore, the latter antigen has been demonstrated to 

successfully protect cattle against infection (Vercauteren et al., 2004). While previous 

studies of the ES-thiol fraction have confirmed the presence of activation-associated 

secreted protein 1 (ASP1), ASP2 and several cysteine proteases (CPs) (Geldhof et al., 2002, 

2003), its composition remains largely unknown. 

In chapter 2 vaccinating calves with any of the three subfractions of ES-thiol (i.e. the ASP, CP 

and rest fraction) resulted in significant protection against Ostertagia infection. Since 

animals injected with the CP and rest fraction did not recognize any antigens from the ASP 

fraction, other protective antigens besides ASPs are likely to be present within ES-thiol. In 

order to discover new potential vaccine candidates for O. ostertagi, a tandem mass 

spectrometry (MS) analysis of the subfractions of ES-thiol will be performed in this chapter.  

 

4.2 Materials and methods 

4.2.1 Antigen collection 

The ES-thiol fraction and its subfractions were obtained as described in chapter 2 (section 

2.2.1). Ten µg was run on a 10% SDS-PAGE under denaturing/reducing conditions. Protein 

bands were made visible by subsequent Coomassie Blue staining. 

 

4.2.2 Tandem MS 

A tandem MS analysis was performed on aliquots of the ASP, CP and rest fraction (100 

µl/fraction) and protein bands visualized by Coomassie Blue staining. Samples were analyzed 

as described in chapter 2 (section 2.2.2). The resulting MS spectra were used to screen the 

protein database of O. ostertagi and the expressed sequence tag (EST) database of O. 

ostertagi, Teladorsagia circumcincta and Haemonchus contortus. 
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4.3 Results 

4.3.1 Antigen collection 

The peptide profile of ES-thiol and its three subfractions on a Coomassie-stained gel is 

shown in Figure 4.1. 

 

 

 

 
Figure 4.1  Protein profiles of ES-thiol, the activation-associated secreted protein fraction 
(ASP), the cysteine protease fraction (CP) and the rest fraction (rest) on a 10% SDS-PAGE 
under denaturing/reducing conditions, visualized by Coomassie Blue staining. Excized 
protein bands are boxed. Molecular weights (MWs) of standards are presented in kDa. 
 
 
4.3.1 Tandem MS 

Seven bands were labeled (Figure 4.1) and excised from the gel and analyzed together with 

an aliquot of the ASP, CP and rest fraction. The result of the analysis is summarized in Table 

4.1. Only peptides giving significant database hits have been included. Hits with trypsin were 

discarded.  

 
 
 
 
 
 
 
 
 
 

ES-thiol         ASP            CP   rest 

 98 – 
62 – 
49 – 

 
38 – 

 
28 – 

 
17 – 

 

1 

2 

3 

4 

5 

6 

7 
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      Fraction Acc. no. Identity/Homology Organism No. pept. Band 

      
      ASP CAD23183 ASP1 O. ostertagi 3 1 

 
CAD56659 ASP2 O. ostertagi 3 

 
 

CAO00416 ASP3 O. ostertagi 1 
 

 
CAN84553 AL1 O. ostertagi 2 

 
 

CAD20463 globin-like ES protein F6 O. ostertagi 1 
 

 
CAD20600 putative ES protein O. ostertagi 1 

 
 

CAD20601 putative ES-protein O. ostertagi 1 
 

 
BQ099827 profilin 1 O. ostertagi 1 

 
 

BQ457734 malate dehydrogenase O. ostertagi 1 
 

 
CB037330 ancylostoma-secreted protein like protein T. circumcincta 2 

 
 

BM052082 ancylostoma-secreted protein like protein T. circumcincta 1 
 

 
CB036207 SSP (sperm-specific family class P protein) T. circumcincta 1 

 
 

CB036286 NEX1 annexin T. circumcincta 1 
 

 
BF662710 NEX1 annexin H. contortus 2 

 
 

CB015939 NEX1 annexin H. contortus 2 
 

 
CA956390 vitellogenin H. contortus 1 

 
 

BM138812  major sperm protein H. contortus 1 
 

      CP CAD11605 MEP1 O. ostertagi 1 3 

 
CB038665 hypothetical protein CBG00622 T. circumcincta 2 2 

 
BG734323 C-type lectin T. circumcincta 1 3 + 4 

 
BF059783 translationally-controlled tumor protein H. contortus 1 

 
 

AAM73859 putative serine/threonine protein kinase H. contortus 2 3 

 
AAA29181 D-fructose-6-phosphate 1-phosphotransferase H. contortus 2 3 

 
BM139416 asparagine synthase H. contortus 2 4 

 
CA869788 unknown protein H. contortus 2 4 

      rest CAD23183 ASP1 O. ostertagi 2 7 

 
CAD56659 ASP2 O. ostertagi 1 

 
 

AM747038 ASP3 O. ostertagi 1 7 

 
CAD20737 thioredoxin peroxidase O. ostertagi 3 7 

 
AAC08344 40S ribosomal protein S28 O. ostertagi 1 6 

 
CAD12263 MEP2 O. ostertagi 2 6 

 
CB037817 MEP4 T. circumcincta 1 5 

       
 
Table 4.1  Results of tandem MS analysis of the protective subfractions of ES-thiol. (Acc. no. 
= accession number; No. pept. = number of peptides with significant hits).  
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4.4 Discussion 

In this chapter we have performed an MS analysis of the protective subfractions of ES-thiol. 

Although this approach has allowed us to obtain additional information about the 

composition of ES-thiol, some important remarks need to be made.  

In chapter 2 we have seen that the three subfractions of ES-thiol induced a similar degree of 

protection in a vaccination trial. Western blot analysis also demonstrated cross-reactivity 

between the CP and the rest fraction. These results might indicate the presence of one or 

more common protective antigens. However, this could not be confirmed by MS analysis. 

One reason might be that there is no common antigen present at all and protection is indeed 

induced by different proteins. Another reason could be that one or more common antigens 

are present but can not be detected by MS either because of their limited amount or 

because their peptide sequence is not included in our search database. Although substrate 

gel analysis clearly indicated the presence of CPs in the CP fraction, no CPs were identified in 

our proteomic survey. Since the amount of CPs present in ES-thiol is limited, it is likely that 

MS is not able to detect these peptides. Because CPs could not be detected here, it is 

possible that also other antigens present in ES-thiol were not detected indicating the 

limitations of the MS approach for identifying proteins. 

The ASP fraction which appeared to be highly pure based on Coomassie and Western blot 

analysis in chapter 2 was found to contain additional antigens. Since ASP1 and ASP2 are the 

most immunogenic components of the ASP fraction, it is tempting to attribute protection to 

these components. 

An overview of the different types of antigens identified will be given in the following 

sections. 

 

ASPs and ASP-like proteins 

Two N-type single domain ASPs - i.e. ASP1 and ASP2 (Geldhof et al., 2003) - were detected in 

the ASP fraction. This corresponds with the results from the anti-ASP Western blot obtained 

in chapter 2 (Figure 2.2). In addition, a C-type single domain ASP3 similar to Ancylostoma 

caninum ASP2 and Haemonchus contortus Hc24 (Visser et al., 2008), an Ostertagia specific 

ASP-like protein named AL1 (Saverwyns et al., 2008) and two ASP homologs from 

Teladorsagia circumcincta (cluster TDC00435 and TDC00460) were discovered. 

Peptides from ASP1 and ASP3 were also found in a low MW band of the rest fraction (Figure 

4.1; band 7), which could indicate the presence of degraded ASP molecules. Since these 

peptides were not recognized by immunized animals, it can be assumed that they are not 

capable of inducing protection on their own. This would also correspond with the enzyme-
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linked immunosorbent assay (ELISA) results from chapter 3 where protein conformation was 

found to be essential for correct antibody recognition. 

Although the potential of ASP as a vaccine candidate has been extensively described (section 

1.3.2.2), its specific function remains unclear. While several papers have suggested a key role 

in parasitism (Hawdon et al., 1996, 1999; Bin et al., 1999, 2003; Moser et al., 2005), a recent 

study in O. ostertagi has shown transcription of many ASP genes to be male enriched (Visser 

et al., 2008) suggesting a function in reproduction. The fact that ASP1, ASP2 and several 

other ASP-like molecules were eluted in the same fraction from the anion exchange column 

suggests the presence of similar ionic groups, which could infer structural homology and 

function. 

 

Vitellogenin, major sperm protein and sperm-specific protein 

Additional antigens involved in reproduction were identified in the ASP fraction i.e. 

vitellogenin (cluster HCC00998), a major sperm protein (MSP, cluster HCC02230) and a 

sperm-specific protein family class P protein (SSP, cluster TDC00542). 

Vitellogenin is an abundant component of egg yolk and is highly conserved among 

eukaryotic organisms (Chen et al., 1997). It supplies the growing embryo with amino acids 

and was also detected in a previous immunoscreening of an Ostertagia cDNA database 

indicating its immunogenic character within the host (Vercauteren et al., 2003). 

MSP was originally discovered in Caenorhabditis elegans and makes up 15-20% of the total 

protein content of nematode sperm, while abscent in any other nematode cell type 

(Roberts, 2005). It is responsible for sperm motility (Roberts and Stewart, 2000) and is 

capable of triggering oocyte maturation and ovulation (Yamamoto et al., 2006). In addition, 

MSP was found to be an immunogenic ES antigen of the bovine lungworm Dictyocaulus 

viviparus (Matthews et al., 2004; Höglund et al., 2008). 

The SSP family is also known as the MSP-like family. SSPs are smaller than proteins of the 

MSP family and 17 SSPs have been identified in C. elegans (http://www.wormbase.org). 

Little is known about their function, although a moderate sequence homology and a high 

structural homology with MSPs suggests a similar function (Schormann et al., 2004). 

 

MEPs 

Several MEPs were found to be present in the CP and the rest fraction. Ostertagia MEPs 

show homology with a family of zinc MEPs called astacins (Möhrlen et al., 2003) which have 

been described in several parasitic nematodes such as A. caninum (Zhan et al., 2002; 

Williamson et al., 2006; Feng et al., 2007), Trichinella spiralis (Lun et al., 2003), Strongyloides 
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stercoralis (Gomez Gallego et al., 2005) and Onchocerca volvulus (Borchert et al., 2007). 

Furthermore, an astacin from A. caninum is considered an important vaccine candidate by 

the human hookworm vaccine initiative (Hotez et al., 2003). 

Ostertagia MEP1 and MEP2 have previously been detected in an immunoscreening using 

local antibodies of infected cattle (de Maere et al., 2002). A truncated baculo-expressed 

MEP1 failed to protect calves against challenge infection with O. ostertagi (de Maere et al., 

2005). However, these animals did not recognize the native MET1 protein on Western blot 

indicating the lack of immunogenic epitopes in the recombinant MET1 fragment. 

 

Profilin and annexin 

An Ostertagia homolog of profilin (cluster OOC03037) and annexin (clusters TDC02079 and 

HCC01655) was detected in the ASP fraction. 

Profilins are cytosolic proteins of 12-15 kDa which can be found in all eukaryotic cells 

(Radauer and Breiteneder, 2007). They are capable of binding actin and different regulatory 

proteins with prolin-rich regions and are key players in cell movement, cytokinesis and 

signaling. Several profilins found in flowering plants and pollens are known to be allergenic 

(Radauer and Breiteneder, 2007). Three different isoforms have been described in C. elegans 

(Polet et al., 2006). Furthermore, several parasite profilins have been shown to modulate the 

host immune response and are capable of inducing interleukin 12 production in murine 

dendritic cells. This has been demonstrated for the protozoan organisms Eimeria tenella, 

Plasmodium falciparum, Cryptosporidium parvum and Toxoplasma gondii (Rosenberg et al., 

2005; Yarovinsky et al. 2005) and the trematode Schistosoma japonicum (Zhang et al., 2008). 

Annexins are cytosolic proteins capable of binding phospholipids and the cell membrane, 

and have been proposed to act as membrane-membrane or membrane-cytoskeleton linkers 

(Rescher and Gerke, 2004). While a secretion signal is missing, several annexins have been 

detected extracellularly. These annexins are able to bind to the cell surface and are believed 

to be involved in exocytosis (Creutz, 1992), plasminogen regulation (Kwon et al., 2005), anti-

coagulation (Rand, 2000) and anti-inflammation (Perretti and Gavins, 2003; Parente and 

Solito, 2004). Four annexins with different expression profiles and ligand-binding properties 

have been described in C. elegans (Nishioka et al., 2007). Annexins have also been identified 

as an immunodominant component of the membrane of the intestinal protozoan parasite 

Giardia lamblia (Weiland et al., 2003) and the tegument surface of Schistosoma mansoni 

(Braschi et al., 2006) and Taenia solium metacestodes (Zhang et al., 2007). A recent study 

has shown that T. solium metacestodes actively secrete annexin B1 which is capable of 

inducing apoptosis of eosinophils by binding their extracellular membrane (Yan et al., 2008). 
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In addition, vaccinating pigs with an Escherichia coli recombinant of annexin B1 reduced the 

total number of cysticerci with 85% (Guo et al., 2004).  

 

Proteins with unknown function 

A globin-like ES protein F6 and two putative ES proteins were found to be present in the ASP 

fraction. While the function of these antigens is unknown, their immunogenicity has already 

been demonstrated previously (Vercauteren et al., 2003). In addition, three antigens with 

unknown function were detected in the CP fraction, i.e. a C-type lectin similar to C. elegans 

clec-87, an antigen similar to hypothetical protein CBG00622 from Caenorhabditis briggsae 

and an unknown protein from the EST database of H. contortus (cluster HCC04192). In order 

to evaluate these antigens as vaccine candidates, their full-length sequence should be 

determined followed by a characterization of the proteins they encode. 

 

Cytosolic and metabolic proteins 

Several proteins listed in the table are known to be present and function within the 

eukaryotic cell. These are thioredoxin peroxidase, malate dehydrogenase, serine/threonine 

protein kinase, phosphotransferase, asparagine synthase and ribosomal proteins. Since it is 

unlikely that these antigens are actively secreted by Ostertagia worms and are capable of 

inducing an immune response in the host, they will not be regarded as potential vaccine 

candidates for O. ostertagi. Their presence is probably a result of protein leakage from dying 

worms present in the culture medium during collection of ES material. 

 

Translationally-controlled tumor protein 

The translationally controlled tumor protein (TCTP) was detected in the CP fraction of ES-

thiol (cluster HCC00192). TCTP is a highly conserved eukaryotic protein involved in various 

biological processes (reviewed by Bommer & Thiele, 2004). Interestingly, TCTP is a known 

secretion product of several parasitic organisms such as P. falciparum (MacDonald et al., 

2001), S. mansoni (Rao et al., 2002), Brugia malayi and Wuchereria bancrofti (Gnanasekar et 

al., 2002). Extracellular TCTP is able to promote local infiltration of eosinophils (reviewed by 

Bommer & Thiele, 2004) which is also observed in the abomasal mucosa of animals infected 

with O. ostertagi. 

For these reasons, a detailed study of Ostertagia TCTP will be conducted in the following 

chapter and its potential as a vaccine target will be evaluated. 
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5.1 Introduction 

In chapter 4, an Ostertagia homolog of the translationally controlled tumor protein (TCTP) 

was detected in the protective cysteine protease (CP) fraction of ES-thiol (peptide match 

with Haemonchus contortus cluster HCC00192). TCTP is a highly conserved eukaryotic 

protein which has been described in multiple organisms like protozoa, yeasts, plants and 

mammals (reviewed by Bommer & Thiele, 2004). It was originally discovered 25 years ago as 

an important transcription product of murine sarcoma and erythroleukaemia cells (Yenofsky 

et al., 1982, 1983). Since then, TCTP has been shown to be involved in various biological 

processes such as cell growth, cell cycle progression, cell differentiation, malignant 

transformation and protection of cells against various stress conditions and apoptosis 

(reviewed by Bommer & Thiele, 2004). Studies in parasitic nematodes have suggested that 

intracellular expression of TCTP is linked with heat stress adaptation of Trichinella spiralis 

and Trichinella pseudospiralis (Mak et al., 2001, 2007) and protection of Brugia malayi 

against oxidative stress (Gnanasekar and Ramasway, 2007). Although TCTP lacks a secretion 

signal (reviewed by Bommer & Thiele, 2004), several parasitic organisms such as 

Plasmodium falciparum (MacDonald et al., 2001), Schistosoma mansoni (Rao et al., 2002), B. 

malayi and Wuchereria bancrofti (Gnanasekar et al., 2002) have been found to actively 

secrete TCTP during host infection. In this case, parasite TCTP is able to induce the release of 

histamine from basophils and promote local infiltration of eosinophils (reviewed by Bommer 

& Thiele, 2004). An accumulation of eosinophils has also been described in the abomasal 

mucosa of Ostertagia ostertagi infected cattle and the parasite appears to be directly 

responsible for this effect (reviewed by Claerebout and Vercruysse, 2000). Therefore, the 

aim of this chapter is to further characterize O. ostertagi TCTP and investigate its potential 

role in parasite survival and host-parasite interaction. 

 

 

5.2 Materials and methods 

5.2.1 Full-length sequence of Ostertagia TCTP 

Degenerative forward and reverse TCTP primers were designed based on conserved 

sequences observed between Caenorhabditis elegans (NC_003279), Teladorsagia 

circumcincta (cluster TDC00659) and Haemonchus  contortus (cluster HCC00192) and were 

used to pick up part of the Oo-tctp gene from a complementary DNA (cDNA) library. The full-

length sequence of Oo-tctp was determined by 5’ and 3’ rapid amplication of cDNA ends 

(RACE) using the BD Marathon® cDNA amplification kit (BD Clontech). Following the 

manufacturer’s protocol, the 5’ and 3’ RACE were conducted with the AP1 primer and the 
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degenerative primers Oo-TCTPrev1 (5’-CGRTATTCWATGATKGCSACTTGCCC-3’) and Oo-

TCTPfw1 (5’-CCGGGWGCCAAYCCTTCAGCCG-3’) respectively. The amplified DNA sequences 

were resolved by the dideoxy chain terminator method (Big Dye™ terminator v3.1, Applied 

Biosystems) in a ABI3730xl genetic analyzer (Applied Biosystems) followed by sequence 

analysis in Lasergene (DNASTAR). 

A Basic Local Alignment Search Tool (BLAST) search of the Oo-TCTP sequence was performed 

in the NCBI database (www.ncbi.nlm.nih.gov/BLAST) and the predicted amino acid sequence 

was aligned in Lasergene (DNASTAR) with TCTP homologs demonstrating the highest 

percentage of identity. An additional BLAST search was performed in the NEMBASE3 

expressed sequence tag (EST) database (www.nematodes.org/nembase3). N-glycosylation 

sites were predicted with PROSITE (www.expasy.ch/tools/prosite) and signal peptides were 

identified with SignalP (www.cbs.dtu.dk/services/SignalP).  

 

5.2.2 Recombinant expression and purification 

The full-length Oo-TCTP sequence was cloned into the pGEM®-T-Easy vector (Promega) 

following polymerase chain reaction (PCR) using primers containing the restriction sites 

EcoRI and XhoI (Oo-TCTP-EcoRI 5’-GAATTCATGCTGATCTTCAAGGAC-3’ and Oo-TCTP-XhoI 5’-

CTCGAGAATCTTTTCAAAAATGA TGG-3’). The Oo-TCTP-pGEM®-T-Easy plasmid was purified 

(Qiagen Midi kit) and restricted with EcoRI and XhoI (Promega). The Oo-TCTP insert was gel-

purified and unidirectionally ligated into the pET-21a(+) expression vector (Novagen) at the 

EcoRI/XhoI restriction site. The constructed plasmid was used to transform Escherichia coli 

Bl21-CodonPlus(DE3)-RIL competent cells (Stratagene) according to the manufacturer’s 

protocol. A pre-culture of transformed E. coli cells (4 ml) was transferred to 200 ml 2xYT 

broth and grown in a shaker at 37°C (250 revolutions per minute (rpm)) to an OD of 0.6 (λ = 

600 nm). Recombinant expression was induced by adding isopropyl-beta-D-

thiogalactopyranoside (final concentration = 0.10 mM) followed by 2h incubation at 37°C 

(250 rpm). Cell lysis and protein solubilization were performed according to an established 

protocol (Frangioni and Neel, 1993). 

The bacterial lysate was dialysed overnight at 4°C in T7 Tag binding buffer using a 10,000 

MWCO Slide-A-Lyzer® dialysis cassette (Pierce) and the recombinant Oo-TCTP was purified 

using a T7 Tag purification kit (Novagen) as recommended by the manufacturer. Elution 

steps were pooled, dialyzed in 10 mM Tris-HCl (pH 7.4) and concentrated on a Centriprep 

Ultra-15 membrane (Millipore; 10,000 MWCO). The protein concentration was determined 

using the BCA method (Pierce Chemical Co., Rockford, IL, USA). 
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5.2.3 Production of monospecific antibodies 

A white laboratory rabbit received two subsequent subcutaneous immunizations with 50 

respectively 25 µg recombinant Oo-TCTP with a two week interval in combination with 50 µg 

QuilA adjuvant (Superfos, Taastrup, Denmark). Serum was collected before the first 

immunization (i.e. pre-immune) and 2 weeks after the final immunization (i.e. immune).  

In order to enrich for monospecific antibodies 25 µg of recombinant Oo-TCTP was separated 

on a preparative SDS-PAGE and blotted onto a polyvinylidene difluoride (PVDF) membrane 

(Immobilon®, Milipore). The area around Oo-TCTP was cut out and blocked for 1h in 10% 

horse serum (HS) in PBST and probed overnight at 4°C with immune rabbit serum (1/40 in 

2% HS / PBST). The blot was washed repeatedly (3x 10 min at room temperature) and bound 

antibodies were eluted by 5 min incubation in 5 mM glycine, 0.5 M NaCl, pH 2.5. Eluted 

antibodies (i.e. anti-Oo-TCTP) were neutralized by adding 1M Tris pH 8.5 (100 µl / 5 ml 

elution buffer) and stabilized with HS (final concentration = 5 %). 

 

5.2.4 Stage-specific transcription 

Ribonucleic acid (RNA) was extracted from the different life stages of O. ostertagi and cDNA 

was obtained as described by Van Zeveren et al. (2007). A semi-quantitative PCR was 

performed according to Geldhof et al. (2006) in order to determine the stage-specific 

transcription of Oo-tctp. In short, RNA was extracted from different life stages of O. ostertagi 

(i.e. third stage larvae (L3s), L3s without sheath (L3ex), fourth stage larvae (L4s), adult male 

worms, adult female worms and eggs) using Total RNA Isolation Reagent (ABgene® Ltd) and 

dissolved in 10 µl DEPC treated water. A one-step reverse transcriptase (RT) PCR reaction 

(Invitrogen) was run according to the manufacturer’s protocol using Oo-tctp specific primers 

Oo-TCTPfw2 (5’-GGAATCGACATCGTTCTCAACCAC AAGC-3’) and Oo-TCTPrev2 (5’-

TTAAATCTTTTCAAAAATGATGGCCTC-3’). Each reaction mixture (25 µl) contained 1 µl cDNA, 

1 µM forward/reverse primer, 4 mM dNTPs, 1.5 mM MgCl2 and 0.6 U Taq DNA polymerase 

in 1X PCR buffer (Invitrogen). PCR parameters were 94°C of denaturation for 30 seconds, 

60°C of primer annealing for 30 s and 72°C of primer extension for 30 s (30 cycles). A final 

extension at 72°C was performed for 10 min after which the samples were stored at 4°C. In 

order to account for sample-to-sample variation of the RNA isolates the transcription profile 

of the reference gene ribosomal protein L13a (Oo-rpl-13a; accession number BQ457724; 5’-

AGAACTCAGAGCCGTCGGTA-3’ and 5’-CTGAGCTTC TTGGGGAACAA-3’; Van Zeveren et al., 

2007) was included. The PCR reactions were loaded onto a 2.0% agarose gel and amplified 

PCR products were visualized with ethidium bromide. Photographs were made under a UV 

light using the Quantity One 4.5.1 Chemidoc EQ™ Software System (Bio-Rad, CA, USA). 
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5.2.5 Stage-specific translation 

Extract and excretory-secretory (ES) material from Ostertagia L3s, L4s and adult worms were 

obtained as described previously (Geldhof et al., 2000). Ten  µg extract and ES-material of 

each developmental stage was separated on a 10% SDS-PAGE under denaturing/reducing 

conditions and blotted onto a PVDF membrane (Immobilon®, Milipore). The blot was 

blocked for 2h in 10% HS in PBST, probed overnight with monospecific rabbit anti-Oo-TCTP 

antibodies (section 5.2.3) and incubated for 2h with conjugate (Goat anti-rabbit horse 

raddish peroxidase (HRPO), Sigma; diluted 1/5,000 in 5% HS / PBST). TCTP was visualized by 

adding 0.05% 3,3 diaminobenzidine tetrachloride in PBS containing 0.01% H2O2 (v/v). One µg 

purified recombinant Oo-TCTP was included as a positive control. 

 

5.2.6 Immunolocalization in O. ostertagi 

Adult female Ostertagia worms were embedded in Tissue-Tek (Sakura Finetek Europe B. V.) 

and frozen in liquid nitrogen. A Jung CM3000 cryotome (Leica Instruments GmbH) was used 

to make 10 µm-thick sections. Sections were mounted on 3-aminopropyltriethoxy silane 

(Sigma) and fixated in xylene and isopropanol for 10 min. Slides were successively 

submerged in 94% - 80% - 70% - 50% ethanol followed by heated incubation in Antigen 

Retrieval solution (Biogenex) according to the manufacturer’s protocol. Sections were 

washed in PBS (3 times for 5 min), blocked in 20% goat serum (diluted in PBS) for 30 min at 

room temperature and probed with monospecific rabbit anti-Oo-TCTP antibodies for 2h at 

37°C. Pre-immune rabbit serum was used as a negative control (section 5.2.3). Detection was 

done with Alexa Fluor® 594 goat anti-rabbit immunoglobulin (Ig) G (H + L) (Molecular Probes, 

diluted 1/4,000, 5% goat serum in PBS) by 1h incubation at 37°C. Red fluorescence was 

registered with a Leitz DMRB microscope and a DC-100 camera (Leica Instruments GmbH). 

 

5.2.7 Antibody response of infected cattle 

In order to determine whether Oo-TCTP is secreted during host infection antibody 

recognition by naturally infected cows after their first grazing season was evaluated by 

Western blot analysis. This blot was performed with extract of Ostertagia eggs in which Oo-

TCTP is typically expressed. 

Ostertagia eggs were washed three times in PBS followed by 10 min centrifugation at 3,000 

g (4°C). Eggs were subjected to a freeze-thaw cycle (-70°C) and the pellet was resuspended in 

an equal volume of PBS. While placed on ice, eggs were crushed using a Vibra-Cell™ VC375 

sonicator (Sonics & Materials, Inc.; power = 375 W; frequency = 20 kHz; time = 60 s; pulser = 

ON; duty cycle = 50%; micro-tip limit = 4.5). The lysate was incubated on ice for several 
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minutes followed by an additional sonication step. Finally, precipitate was removed by 

centrifugation for 10 min at 16,000 g (4°C). The supernatans was transferred to a fresh tube 

and protein concentrations were determined using the BCA method (Pierce Chemical Co., 

Rockford, IL, USA). 

Sixty µg Ostertagia egg extract was prepared for two dimensional (2-D) SDS-PAGE with the 

2-D PAGE cleanup kit (GE Healthcare) according to the manufacturer’s instructions. The 

protein pellet was resolved in 125 µl rehydration solution (8 M urea; 2% CHAPS; 2% IPB 

buffer; 0.02% bromophenol blue; 0.28% dithiothreitol (DTT)) and was loaded on an 

Immobiline DryStrip (7 cm, linear pH 3-10, GE Healthcare) by overnight incubation at room 

temperature. Isoelectric focusing was performed on a 2117 Multiphor II electrophoresis 

system (LKB) at 200 V for 1 min and 3500V for 155 min (Imax = 2 mA; Pmax = 5 W; T = 20°C). 

The strip was washed twice for 15 min in SDS equilibration buffer (75 mM Tris-HCl pH 8.8; 6 

M urea; 29.3% glycerol; 2% SDS; 0.02% bromophenol blue) containing 0.1% DTT and 0.25% 

iodoacetamide respectively. The second dimension was carried out on a 12% Tris-Glycine 

SDS-PAGE (10 mA for 15 min and 30 mA for 90 min). The resulting protein profile was 

visualized by Coomassie Blue staining. 

The 2-D SDS-PAGE protocol was repeated, the separated proteins were blotted onto a PVDF 

membrane (Immobilon®, Milipore) and blocked for 2h in 10% HS (diluted in PBST). The blot 

was probed overnight with monospecific anti-Oo-TCTP antibodies (section 5.2.3), and 

incubated for 2h with conjugate (Goat anti-rabbit-HRPO, Sigma; diluted 1/5,000 in 5% HS / 

PBST). The Western blot was repeated with pooled bovine serum obtained from cattle 

before and after their first grazing season (n = 7; pre-immune vs. immune, diluted 1/500 in 

5% HS / PBST) followed by 2h incubation with conjugate (Rabbit anti-bovine-HRPO, Sigma; 

diluted 1/5,000 in 5% HS / PBST). Recognized proteins were visualized by adding 0.05% 3,3’-

diaminobenzidine tetrachloride in PBS containing 0.01% H2O2 (v/v). 

 

5.2.8 Detection in eggs from different worm species 

In order to determine whether the expression of TCTP in eggs is conserved among 

nematodes and trematodes, protein extract was prepared from isolated eggs of C. elegans, 

O. ostertagi, Teladorsagia circumcincta, Cooperia oncophora, Haemonchus contortus, Ascaris 

suum and Fasciola hepatica. Egg extract was prepared as described in section 5.2.7. Ten µg 

egg extract was separated on a 10% SDS-PAGE under denaturing/reducing conditions 

followed by Coomassie Blue staining and Western blot analysis using monospecific rabbit 

anti-Oo-TCTP antibodies as described in section 5.2.5. 
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5.2.9 Immunolocalization in C. elegans 

Adult wildtype C. elegans worms were subjected to a freeze-crack procedure as described by 

Duerr (2006). Localization of Ce-TCTP was realized using monospecific anti-Oo-TCTP 

antibodies (section 5.2.3) following the protocol described for the Ostertagia sections 

(section 5.2.6). 

 

 

5.3 Results 

5.3.1 Full-length sequence of Ostertagia TCTP 

The full-length Oo-TCTP cDNA sequence consists of 543 base pairs (bp) and the predicted 

protein (181 amino acids) has a molecular weight (MW) of 20.7 kDa and an isoelectric point 

(pI) of 4.56. A BLAST search in the NCBI database demonstrated that Oo-TCTP showed the 

highest similarity with TCTP of Caenorhabditis briggsiae (CAP23314 - 76%), Caenorhabditis 

elegans (CAB02099 - 76%), Brugia malayi (EDP33421 - 76%) and Wuchereria bancrofti 

(AAK71499 - 75%).  In addition, a BLAST search in the NEMBASE3 EST database of the 

Strongylida indicated that the cDNA sequence of Oo-TCTP is similar to Tc-TCTP (cluster 

TDC00659 - 94%) and Hc-TCTP (cluster HCC00192 - 89%). A protein alignment of Oo-TCTP 

with these sequences is shown in Figure 5.1. No N-glycosylation sites or secretion signal 

peptides were predicted to be present. 
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Figure 5.1  Alignment of the (predicted) amino acid sequences of TCTP from different 
nematodes. Database cluster/accession numbers are: Tc-TCTP T. circumcincta (TDC006592), 
Hc-TCTP H. contortus (HCC00192), Cb-TCTP C. briggsiae (CAP23314), Ce-TCTP C. elegans 
(CAB02099), Bm-TCTP B. malayi (EDP33421) and Wb-TCTP W. bancrofti (AAK71499). Amino 
acids matching those of Oo-TCTP are shaded in black. 

 

 

5.3.2 Stage-specific transcription 

The results of the semi-quantative PCR reaction are shown in Figure 5.2.  Transcription of the 

reference gene rpl-13a (160 bp band) was stable throughout the different life stages. Limited 

levels of Oo-tctp transcripts (350 bp band) were detected in L3s both before and after 

exsheathing (lane 1 and 2) and a slight increase in transcription could be seen in L4s (lane 3). 
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In the adult stage Oo-TCTP was abundantly transcribed in female worms and eggs. No 

transcripts could be detected in adult males. 

 

 

 
 
Figure 5.2  Stage-specific transcription pattern of the reference gene Oo-rpl-13a and Oo-tctp 
in O. ostertagi L3s, exsheathed L3s (L3ex), L4s, adult males (m), adult females (f) and eggs. 

 

 

5.3.3 Stage-specific translation 

Figure 5.3 shows the Western blot analysis which confirmed the result of the semi-

quantative PCR. Limited amounts of Oo-TCTP were detected in L3s, L4s and adult males 

while Oo-TCTP was abundantly expressed in eggs. Small amounts of Oo-TCTP could be 

detected in ES material of adult worms. 

 

 
 

 
 
Figure 5.3  Detection of Oo-TCTP in extract and ES material of O. ostertagi L3s, L4s and adult 
male (m) and female worms (f) on a 10% SDS-PAGE under denaturing/reducing conditions 
using Western blotting and rabbit anti-Oo-TCTP antibodies. (r = E. coli recombinant of Oo-
TCTP (positive control)). MWs of standards are presented in kDa. 
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5.3.4 Immunolocalization in O. ostertagi 

Monospecific rabbit antibodies against Oo-TCTP were used to localize TCTP in sections of 

adult female Ostertagia worms (Figure 5.4). The negative control slides which were treated 

with pre-immune rabbit serum did not show any fluorescence. In contrast, sections 

incubated with monospecific antibodies demonstrated the presence of Oo-TCTP in the eggs. 

 

 

 
 

 
 

 
 

 
 

Figure 5.4  Detection of Oo-TCTP in sections of adult female O. ostertagi worms. (a) Negative 
control incubated with pre-immune rabbit serum. (b-d) Sections incubated with 
monospecific rabbit anti-Oo-TCTP. (e = egg; c = cuticle; i = intestine). Bar = 25µm. 
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5.3.5 Antibody response of infected cattle 

Ostertagia egg extract was subjected to 2-D SDS-PAGE analysis followed by Coomassie 

staining (Figure 5.5a). Two abundant spots were detected between pI 6 and 7 with a MW of 

around 20 kDa. Multiple fainter spots were present between pI 4 and pI 9 with molecular 

masses varying from 5 to 60 kDa. Finally, a group of high MW proteins was detected with pI 

ranging from 4 to 6.  Probing the 2-D SDS-PAGE Western blot with monospecific anti-Oo-

TCTP antibodies rendered a spot at 20 kDa with pI 4.5 (Figure 5.5b). No proteins were 

recognized on the blot treated with serum obtained from pre-immune animals (Figure 5.5c). 

Incubation with serum from naturally infected animals resulted in recognition of numerous 

proteins above 40 kDa with pI 3 to 6. No signal was detected in the region of Oo-TCTP 

(Figure 5.5d). 

 

       
 
 
 

             
 
Figure 5.5  2-D SDS-PAGE analysis of O. ostertagi egg extract by (a) Coomassie Blue staining 
and (b) Western blotting using monospecific rabbit anti-Oo-TCTP and serum from (c) pre-
immune vs. (d) immune cattle. MWs of standards are presented in kDa. 
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5.3.6 Detection in eggs from different worm species 

The protein profile of egg extract obtained from different worms is shown in Figure 5.6a. 

Profiles for C. elegans, O. ostertagi, Teladorsagia circumcincta, Cooperia oncophora, 

Haemonchus contortus and Ascaris suum contain several high MW bands between 70 and 

140 kDa which appear to be conserved. In contrast, the peptide profile for the trematode F. 

hepatica is composed of a different array of protein bands. 

Western blot analysis indicated cross-reactivity of anti-Oo-TCTP antibodies with TCTP from 

other worm species and detected its presence in eggs from C. elegans, O. ostertagi, T. 

circumcincta, C. oncophora and H. contortus (Figure 5.6b). No bands were found in egg 

extracts from A. suum and Fasciola hepatica. 

 

 

               
 
Figure 5.6  (a) Comparison of the protein profile of egg extract from C. elegans (Ce), O. 
ostertagi (Oo),  T. circumcincta (Tc), C. oncophora (Co), H. contortus (Hc), A. suum (As) and F. 
hepatica (Fh) on a 10% SDS-PAGE under denaturing/reducing conditions, visualized by 
Coomassie Blue staining. (b) Detection of TCTP in egg extract by Western blotting using 
monospecific rabbit anti-Oo-TCTP. MWs of standards are presented in kDa. (r = E. coli 
recombinant of Oo-TCTP (positive control)). MWs of standards are presented in kDa. 
 

 

5.3.7 Immunolocalization in C. elegans 

Cross-reacting monospecific antibodies against Oo-TCTP were used to localize TCTP in 

freeze-crack preparations of adult hermaphrodite C. elegans worms. The negative control 

slides which were treated with pre-immune rabbit serum did not show any fluorescence 
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(Figure 5.7a). In correspondence with the immunolocalization results in Ostertagia worms, 

fluorescence was specifically detected in the eggs. 

 

 

 
 

 
 

 
 
Figure 5.7  Detection of TCTP in freeze-crack preparations of adult C. elegans worms. (a) 
Negative control incubated with pre-immune rabbit serum. (b-c) Slides incubated with 
monospecific rabbit anti-Oo-TCTP. Bar = 25 µm. 

 

 

5.4 Discussion 

Based on the observations made for other parasite species where TCTP is highly secreted 

and capable of modulating the host immune response, we have studied the potential role of 

Ostertagia TCTP in affecting the immune response of cattle. Although Oo-TCTP was detected 

in ES material and the protective ES-thiol fraction of O. ostertagia, we have not found any 

evidence of active secretion by the parasite. Western blot analysis showed that Oo-TCTP was 

typically expressed in eggs, while only limited amounts were detected in ES material (Figure 

5.3). Because adult Ostertagia worms tend to release their eggs in the RPMI medium during 
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ES collection (unpublished results) Oo-TCTP is likely to be a by-product due to leakage from 

or damage of eggs. Moreover, naturally infected cattle did not appear to develop an 

antibody response against Ostertagia TCTP (Figure 5.2), while multiple studies have 

acknowledged the immunogenicity of parasite TCTP (Walker et al., 2000; Gnanasekar et al., 

2002; Roa et al., 2002). This further suggests that the host does not come into contact with 

TCTP during infection. 

When comparing the amino acid sequences of nematode TCTPs it is obvious that this antigen 

is highly conserved (Figure 5.1). Nevertheless, several amino acids differ between Brugia and 

Wuchereria TCTP and TCTP from other nematodes. These subtle differences might be a 

result of evolutionary adaptation and might explain why some parasite TCTPs are actively 

secreted during host infection while others are not. Furthermore, the immunomodulating 

characteristics of TCTP appear to be typical for parasites that - at one point during their life 

cycle - migrate through the host organism via the bloodstream or other tissues. The benefit 

for the parasite of being able to secrete an antigen that mimics an immunomodulator of the 

host will be more pronounced when released within the host organism as opposed to the 

‘external’ environment of the gastrointestinal tract. This could explain why the secretion of 

TCTP has been optimized in Clade III nematodes (Blaxter et al., 1998). 

The transcription and translation profile of Oo-TCTP indicated limited expression in early 

developmental stages and adult male worms, while expression was upregulated in adult 

female worms, specifically in eggs. Correspondingly, Western blotting and 

immunolocalization in O. ostertagi detected the presence of TCTP in eggs. Previous studies 

have shown that TCTP is able to promote growth and proliferation in Drosophila (Hsu et al., 

2007), Xenopus, murine and human cells (Kubiak et al., 2008). Moreover, an upregulation of 

TCTP has been described in maturing oocytes of mice (Vitale et al., 2007) and in fertilized 

eggs and during early development of cephalochordates, a sister group of the vertebrates 

(Chen et al., 2007). Furthermore, cloning studies involving bovine oocytes have 

demonstrated that TCTP has a beneficial effect on the potential of bovine somatic cell nuclei 

to develop into normal calves (Tani et al., 2007). Hence, it is possible that Oo-TCTP fulfills a 

similar developmental or reproductive function in Ostertagia. Moreover, the results from 

the Western blot demonstrated that TCTP was also present in egg extract of C. elegans, H. 

contortus and T. circumcincta which could suggest a conserved function among the Clade V 

nematodes. 

An interesting technique for studying the importance of Ostertagia TCTP would be RNA 

interference (RNAi). Unfortunately, previous studies in Ostertagia and other parasitic 

helminths have demonstrated the limited efficiency and specificity of this technique making 
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it unreliable to evaluate gene functions (Visser et al., 2006; Geldhof et al., 2007). However, 

the results obtained here show that Ostertagia TCTP displays significant homology with C. 

elegans TCTP both on sequence level and on protein localization. Hence, it is likely that TCTP 

has a similar function in these organisms. The advantages of the C. elegans model for 

studying the function and regulation of nematode genes have already been described 

extensively (reviewed by Britton and Murray, 2006). For these reasons, a comparative study 

of TCTP in C. elegans will be conducted in the next chapter. 
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6.1 Introduction 

In the previous chapter, we have reported that the translationally controlled tumor protein 

(TCTP) of Ostertagia ostertagi is not actively secreted during parasitism and does not appear 

to have a parasite-specific function. In contrast, TCTP was detected in eggs of several Clade V 

parasites and eggs from the model nematode Caenorhabditis elegans. So far, functional 

studies of TCTP have been conducted in human cell lines as well as murine and yeast models 

(reviewed by Bommer and Thiele, 2004; Chen et al., 2007; Hsu et al., 2007; Tani et al., 2007; 

Vitale et al., 2007; Kubiak et al., 2008). However, the biological role of TCTP in nematodes 

remains unknown. Several large-scale RNA interference (RNAi) studies in C. elegans suggest 

that Ce-TCTP (referred to as Ce-TCT-1; accession number NP_492767) is involved in growth 

and reproduction (Fraser et al., 2000; Simmer et al., 2003; Rual et al., 2004; Balklava et al., 

2007; Ceron et al., 2007). 

In this chapter, we will further investigate the function of TCT-1 in C. elegans in order to get 

a better understanding of its importance in Clade V nematodes. In addition, we will evaluate 

the possible role of TCTP in the process of programmed cell death or apoptosis as has been 

described in yeast and mammals (Li et al., 2001; Tuyder et al., 2002; Zhang et al., 2002; 

Graidist et al., 2004; Liu et al., 2005; Yang et al., 2005; Rinnerthaler et al., 2006; Chen et al., 

2007; Susini et al., 2008). 

Previous research focused on apoptosis in C. elegans has shown that 131 out of 1090 

somatic cells as well as 50% of the developing germ cells are destined to undergo apoptosis 

(Sulston and Horvitz, 1977; Sulston et al., 1983; Gumienny et al., 1999). Genetic and 

biochemical studies of these cells have allowed researchers to identify the key players in the 

apoptotic pathway (reviewed by Blum et al., 2008). The core pathway consists of a canonical 

arrangement of three cell death genes - i.e. ced-9, ced-4 and ced-3 - which are under control 

of several pro- and anti-apoptotic proteins (Figure 6.1). 

In short, the Bcl-2 like protein CED-9 is responsible for preventing apoptosis by retaining 

CED-4 (apoptosis protease activating factor-1) in the outer mitochondrial membrane. In the 

classical pathway - typically active in somatic cells - internal and external signals are able to 

induce transcription of the egl-1 gene. When EGL-1 binds to CED-9, it causes a 

conformational change of CED-9 hereby inhibiting the interaction between CED-9 and CED-4. 

This allows for CED-4 to undergo oligomerization and promote activation of the CED-3 

caspase leading to cell death. In addition, apoptosis can be mediated through alternative 

non-canonical pathways which have been observed in germ cells, cephalic companion 

neurons, the tail-spike cell and the linker cell (reviewed by Blum et al., 2008). Although these 
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pathways are not yet fully understood, some of the regulators involved have been identified 

e.g. lin-35/Rb, egl-38, pax-2, dpl-1, pal-1 and ceh-30. 

 

 

 
 
Figure 6.1  Apoptotic pathway in C. elegans. 

 

 

6.2 Materials and methods 

6.2.1 Stage-specific transcription 

A semi-quantitative reverse transcriptase (RT) PCR was performed according to Geldhof et 

al. (2006) in order to determine the stage-specific transcription of Ce-tct-1. In short, RNA was 

extracted from first stage (L1), second stage (L2), third stage (L3) and fourth stage (L4) C. 

elegans larvae and adult worms using Total RNA Isolation Reagent (ABgene® Ltd) and 

dissolved in 10 µl DEPC treated water. A one-step RT-PCR reaction (Invitrogen) was run 

according to the manufacturer’s protocol using 2.5 µl template RNA and Ce-tct-1 specific 

primers (5’-ATGCTGATCTACAAGGATATTTTCAC-3’ and 5’-GCAGTTCATCTCAACGAGCTT-3’) 
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with 33 cycles of amplification (annealing temperature = 57°C). In order to account for 

sample-to-sample variation of the RNA isolates the transcription profile of the reference 

gene beta-tubulin 1 (Ce-tbb-1; accession number NM066966; 5’-AGGCCAACAATGGCAA 

ATAC-3’ and 5’-AGTTCTGCTCCCTCGGTGTA-3’) was included. The PCR reactions were loaded 

onto a 2.0% agarose gel and amplified PCR products were visualized with ethidium bromide. 

 

6.2.2 GFP reporter constructs 

Four different TCT-1 - green fluorescent protein (GFP) constructs were designed using the 

PCR-fusion based approach described by Hobert (2002) (Figure 6.2). A C. elegans fosmid 

clone containing the Ce-tct-1 genomic sequence (WRM067bB09) provided by Professor 

Donald Moerman and Jaryn Perkins (Moerman Laboratory, Vancouver, Canada) served as a 

DNA template. A transcription amplicon was obtained using primers against the 1100 bp 

upstream region of the Ce-tct-1 gene (5’-ACGTTGGATCCAAGCAAATGCAAGAGATTC GTC-3’ 

and 5’-CAAGCAAATGCAAGAGATTCGTC-3’). Three translation amplicons were created 

including an upstream promoter region of 1100 bp (5’-ACGTTGGATCCAAGCAAATGCAAGAGA 

TTCGTC-3’), 544 bp (5’-TTCGCCAAGTTTACGATGATGGAACCC-3’) and 241 bp (5’-CTCCAGCCG 

CCAAGAAGGAAGAGCC) together with the full-length Ce-tct-1 gene and a 21 bp tag (5’-

AGTCGACCTGCAGGCATG CAAGCTGCACTTCTCCTCGATGATGGC-3’) complementary to the 

standard Fire Lab GFP-polylinker region (http://www.addgene.org/Fire_Lab). The GFP 

amplicon was obtained from the Fire Lab vector pPD95.75 using forward primer 5’-

AGCTTGCATGCCTGCAGGTCG-3’ and reverse primer 5’-AAGGGCCCGTACGGCCGACTAGTAGG-

3’. A subsequent nested PCR was performed for fusing the 4 PCR products to the GFP tag 

(Hobert, 2002). The resulting GFP-constructs were gel purified and dissolved in ultra-pure 

water to a final concentration of around 500 ng/µl. 
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Figure 6.2  Schematic representation of GFP reporter constructs. (a) Transcription construct 
containing 1090 bp upstream promoter region. (b) Translation constructs containing the Ce-
tct-1 gene and 1090 bp promoter region, (c) 534 bp promoter region and (d) 225 bp 
promoter region. The location of the GATA DNA motif present in the promoter region is 
indicated. (UTR = untranslated region). 
 

6.2.3 Transgenic animals 

Wild-type (WT) N2 Bristol C. elegans worms were injected with GFP constructs (50 ng/μl 

DNA) as previously described by Mello and Fire (1995). The dominant injection marker rol-6 

(50 ng/μl DNA) was included as a positive control. Injected constructs form large 

extrachromosomal arrays which are passed on to the next generation with 10-90% 

efficiency. Transformed animals were selected based on the dominant rol-6 phenotype and 

stable transmission was examined from the F3 generation by epifluorescence and confocal 

microscopy at 488 nm (Nikon Eclipse TE2000-S). 

 

6.2.4 RNAi setup 

An RNAi experiment was carried out on WT N2 Bristol C. elegans worms according to 

Geldhof et al. (2006). In short, total RNA from adult C. elegans worms was prepared using 
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Trizol and subsequently converted into complementary DNA (cDNA) according to the 

manufacturer’s protocol (Invitrogen). A 240 bp fragment of the Ce-tct-1 gene (F25H2.11) was 

PCR amplified using the specific forward (5’-ATGCTGATCTACAAGGATATT TTCAC-3’) and 

reverse primer (5’-GCAGTT CATCTCAACGAGCTT-3’). The fragment was ligated into the L4440 

RNAi vector (Fire Lab) and double-stranded RNA (dsRNA) was prepared using the T7 Ribomax 

Express RNAi system (Promega). L2 worms were soaked in a mixture of lipofectin and dsRNA 

(1 mg/ml) for 24h (25°C). Control worms were incubated with dsRNA prepared from O. 

ostertagi asp-1 (accession number AJ310812). The larvae were transferred to NGM plates 

seeded with an OP50 Escherichia coli strain and allowed to grow until the adult stage (25°C). 

At this point (t = 0h) knock down of the Ce-tct-1 gene was checked by RNA preparation and 

subsequent semi-quantitative RT-PCR as described in section 6.2.1. 

In order to obtain additional information about the phenotype resulting from TCT-1 knock 

down and gain insight in the position of TCT-1 in the apoptotic pathway, this protocol was 

repeated using three mutant C. elegans strains, i.e. cep-1(gk138) (deficient in the apoptosis 

initializing CEP-1/p53 protein), ced-9(gf)(n1950) (gain-of-function mutation which 

completely blocks CEP-1/p53 dependent germ cell apoptosis) and ced-3(n717) (deficient in 

the apoptosis effector caspase CED-3).  

 

6.2.5 Reproduction 

RNAi-treated young adult WT worms (t = 0h; n = 15) were transferred to a NGM 12-well 

plate. After 16h (25°C) the number of eggs and larvae was counted for each worm (mean ± 

standard error). A non-parametric one-tailed Mann-Whitney U-test for pairwise comparison 

was used to determine whether a significant reduction in brood size could be observed in 

knock down worms (probability (P) < 0.01). This analysis was repeated for the young adults 

of the F1 generation. Additionally, embryogenesis of 3 specimens of the F1 generation was 

monitored using a four dimensional (4-D) Axionplan 2 microscope with Nomarski 

interference (Zeiss) in a time-lapse course. Every 30 seconds, a Z-stack of 30 images was 

recorded with a Hamamatsu Newvicon camera (C2400-07) at a constant temperature of 

20°C. These images were analyzed in the Simi Biocell software (version 4.0, Simi Gmbh, D-

85705 Unterschleissheim, Germany) (Schnabel et al., 1997). The division pattern or cell 

lineage of the early embryonic development until 50-cells was reconstructed. Timing of 

divisions and 3-D positions of all the cells were compared to the embryogenesis of untreated 

WT C. elegans. 
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6.2.6 Morphology 

The morphology of the reproductive tract of RNAi-treated WT, cep-1, ced-9(gf) and ced-3 

adult worms was investigated by propidium iodide (PRI) staining according to the 

manufacturer’s protocol (Molecular Probes; t = 16h). For each group and condition around 

50 worms were fixed in boiling formaldehyde (4%) solution followed by 2h incubation at 

room temperature. Worms were washed twice with 2XSSC buffer (0.30 M sodium chloride; 

0.030 M sodium citrate; pH 7.0) and treated with RNase A (100 µg/ml) for 20 min (37°C). 

Afterwards, worms were washed again with 2XSSC buffer followed by incubation with PRI 

(Molecular Probes; 4 µg/ml) for 3 min. Stained worms were transferred to a glass slide 

treated with poly-L-lysine and investigated by confocal microscopy at 543 nm (Nikon Eclipse 

TE2000-S). 

 

6.2.7 Detection of germ cell apoptosis 

RNAi-treated WT, cep-1, ced-9(gf) and ced-3 adults worms were screened for germ cell 

apoptosis using an acridine orange (AO) staining at different points in time (t = 0h / 5h / 10h 

/ 16h / 24h) according to Lettre et al. (2004). In short, worms were stained for 1h in the dark 

by adding 500 µl M9 buffer with AO (Molecular Probes; 0.020 mg/ml) to seeded NGM plates 

followed by 1h destaining on seeded NGM plates lacking AO. Worms were immobilized on 

agar pads containing sodium azide (15 mM) and the number of apoptotic germ cells present 

in one gonadal arm was determined (n = 10) by confocal microscopy at 488 nm (Nikon 

Eclipse TE2000-S). A non-parametric one-tailed Mann-Whitney U-test for pairwise 

comparison was used to determine whether a significant increase in apoptotic germ cells 

could be observed in knock down worms (P < 0.01). 

 

 

6.3 Results 

6.3.1 Stage-specific transcription 

A semi-quantitative RT-PCR was performed to determine the temporal transcription pattern 

of Ce-tct-1 during development. The results are shown in Figure 6.3. Transcription of the 

control gene Ce-tbb-1 was consistent throughout the different life stages of C. elegans (180 

bp band). No Ce-tct-1 transcripts could be detected in the L1, L2 and L3 stage. Transcription 

of Ce-tct-1 appeared to be initiated in the L4 stage (240 bp band) while the highest level of 

transcription was found in the adult stage. 
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Figure 6.3  Stage-specific transcription pattern of the reference gene Ce-tbb-1 and Ce-tct-1 in 
L1, L2, L3 and L4 C. elegans larvae and adult worms (ad). 

 

 

6.3.2 GFP reporter constructs 

The spatial and temporal expression of TCT-1 was further examined by injecting WT worms 

with different GFP reporter constructs. A transcription construct was used to localize cells 

responsible for TCT-1 production. No fluorescence could be detected in the L1, L2 and L3 

stage (results not shown). In contrast, transgenic worms displayed fluorescence in the L4 and 

adult stage. The intensity of the GFP signal was the highest in adult worms. A representative 

example is shown in Figure 6.4. Expression of TCT-1 was localized in the head and tail region 

of the worm in the vicinity of the gonad bends (Figure 6.4a), more specifically the first two 

cells forming the intestine (behind the terminal bulb of the pharynx) (Figure 6.4b) and the 

two final cells of the intestine (anterior of the anal depressor muscle) (Figure 6.4c). In 

addition, three translation constructs of TCT-1 were used in an attempt to determine its final 

destination after production. All constructs rendered identical results corresponding with 

the expression profile of the transcription construct (results not shown). 
 
 
 

 
 
Figure 6.4  (a) Transgenic worm showing Ce-TCT-1::GFP fusion protein expression. GFP 
expression is observed in the L4 and adult stage. Fluorescence was detected in both ends of 
the worm (indicated by arrows). (b) Close-up of two intestinal cells producing TCT-1 near the 
pharynx (p). (c) Close-up of two intestinal cells producing TCT-1 before the anal sphincter (s). 
Production of TCT-1 occurred in the vicinity of the gonad bend (g). Bar = 60 µm. 
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6.3.3 Effect of RNAi on reproduction 

In order to evaluate the function of Ce-tct-1, RNAi was performed to inhibit TCT-1 

expression. Successful RNAi treatment was confirmed at the transcriptional level by 

subjecting adult worms to a semi-quantitative RT-PCR (Figure 6.5). All worms of the RNAi 

experiment showed consistent transcription of the control gene Ce-tbb-1 (180 bp band). 

Transcription of Ce-tct-1 in worms treated with asp-1 control dsRNA was unaffected, while 

worms treated with tct-1 dsRNA displayed a strong reduction in the number of Ce-tct-1 

transcripts (240 bp band). 

 

 

 

 
 
Figure 6.5  Effect of RNAi treatment on transcription pattern of the reference gene Ce-tbb-1 
and Ce-tct-1 in WT C. elegans worms. (C = negative control group treated with asp-1 dsRNA; 
KD = knock down group treated with tct-1 dsRNA). 

 

The brood size of young WT adult worms after RNAi was quantified in a time interval of 16h. 

The results are summarized in Table 6.1. After 16h, the tct-1 treated worms of the F0 

generation had generated 90% less eggs and 83% less larvae compared to control worms. 

Similarly, the F1 generation of tct-1 treated worms produced 72% less eggs and 94% less 

larvae compared to control F1 worms. Embryonic development of deposited eggs was 

investigated under a 4-D microscope in a time-lapse course. No difference in morphology or 

growth rate was observed between eggs from the control group and the knock down group. 

The eggs hatched at normal time point and produced fertile offspring (results not shown). 
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Group 
 

 
n 

  
F0 generation 
(mean ± s.e.) 

 
Reduction 

(%) 
 

  
F1 generation 
(mean ± s.e.) 

 

 
Reduction 

(%) 
 

 
C 
 

 
15 

 
e 
l 

 
    57   ± 3.5 

    7.1  ± 0.9 

 

 
--- 

 
e 
l 

 
   60   ± 4.8 
   6.2  ± 1.3 
 

 
--- 

 

KD 15 e 
l 

    5.8  ± 1.4 * 
    1.2  ± 0.5 * 

90 
83 

e 
l 

   17   ± 2.5 * 
   0.4  ± 0.2 * 

72 
94 

 

 
Table 6.1  Effect of RNAi treatment on progeny size of WT C. elegans worms (t = 16h). (C = 
negative control group treated with asp-1 dsRNA; KD = knock down group treated with tct-1 
dsRNA; e = number of eggs; l = number of larvae; s.e. = standard error; * = P < 0.01). 

 

 

6.3.4 Effect of RNAi on morphology 

In order to explain the reduced brood size observed in TCT-1 knock down worms, the 

morphology of the reproductive tract was monitored using a PRI staining. PRI is a DNA 

intercalating fluorescent agent which can be used to stain cell nuclei, hereby visualizing 

general worm morphology as well as germ cells, oocytes and spermatheca. The reproductive 

tract of C. elegans consists of two U-shaped gonads ending in a shared uterus (Figure 6.6a). 

In short, germ cells present in the ovaries undergo meiosis while migrating through the 

gonad bend. Germ cells differentiate into oocytes which mature in an assembly-line like 

manner. Mature oocytes are squeezed through the spermatheca and are fertilized. Eggs 

undergo a brief embryonic development, followed by deposition through the vulva around 

the 40-cell stage. An example of a PRI staining of WT worms (t = 16h) is shown in Figure 6.6b 

and 6.5c. While the total number of germ cells present in the distal part of the gonad did not 

appear to be affected by TCT-1 knock down, maturing oocytes in the proximal part showed 

structural differences compared to those of the controls, demonstrating an increased 

amount of cytoplasmic granules and disintegration of the plasma membrane (Figure 6.6b). 

The uterus of control worms contained multiple developing eggs with an increasing number 

of nuclei present in eggs near the vulva. In contrast, the uterus of TCT-1 knock down worms 

was filled with unicellular eggs containing one large ball-shaped nucleus (Figure 6.6c). In 

addition, some worms displayed larval hatching inside the uterus. 
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Figure 6.6  (a) Schematic representation of the reproductive tract of an adult hermaphrodite 
C. elegans worm (Zarkower, 2006). (b) Close-up of gonad bend (b) and uterus (c) of RNAi-
treated WT C. elegans worms after fixation and PRI staining (t = 16h). (C = negative control 
group treated with asp-1 dsRNA; KD = knock down group treated with tct-1 dsRNA). Bar = 20 
µm. 

 

 

6.3.5 Effect of RNAi on germ cell apoptosis 

To investigate whether the observed reduction in fecundity after RNAi is caused by 

apoptosis, an AO staining was performed of RNAi-treated WT worms (t = 0h, 5h, 10h, 16h 

and 24h). After digestion of stained bacteria, AO accumulates in apoptotic corpses of the 

germ cell line. From t = 10h, a significant increase in germ cell apoptosis could be observed in 

worms treated with tct-1 dsRNA compared to control worms (Figure 6.7). The number of 

apoptotic bodies present in the gonads was counted and the results are summarized in Table 

6.2 (p. 114). Worms treated with tct-1 dsRNA showed an average of 3.3 apoptotic bodies per 

gonad vs. 0.4 in control worms. 
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Figure 6.7  Pictures of the gonad bend of RNAi-treated WT C. elegans worms after AO 
staining. Apoptotic germ cells are seen as highly refractile green fluorescent discs (indicated 
by arrows). (C = control group treated with asp-1 dsRNA; KD = knock down group treated 
with tct-1 dsRNA). Bar = 10 µm. 

 

 

6.3.6 Position of TCT-1 in the apoptotic pathway 

In order to further investigate the position of TCT-1 in the apoptotic pathway, RNAi 

treatment was repeated using cep-1, ced-9(gf) and ced-3 mutants. Successful RNAi 

treatment was confirmed at the transcriptional level by subjecting adult worms to a semi-

quantitative RT-PCR (Figure 6.8). Again, all worms showed consistent transcription of the 

control gene Ce-tbb-1 (180 bp band). Transcription of Ce-tct-1 in worms treated with asp-1 

control dsRNA was unaffected, while worms treated with tct-1 dsRNA displayed a clear 

reduction in the number of Ce-tct-1 transcripts (240 bp band). 

 

 

 
 
Figure 6.8  Effect of RNAi treatment on transcription pattern of the reference gene Ce-tbb-1 
and Ce-tct-1 in cep-1, ced-9(gf) and ced-3 mutant C. elegans worms. (C = negative control 
group treated with asp-1 dsRNA; KD = knock down group treated with tct-1 dsRNA). 

 

TCT-1 knock down in cep-1 mutants resulted in a similar phenotype as seen in WT tct-1 

treated worms (results not shown) and a significant increase in apoptosis from 0.0 to 3.4 

(Table 6.2). Tct-1 treated ced-9(gf) and ced-3 mutants displayed normal oocyte maturation 

and egg development (results not shown) and had no apoptopic bodies in the gonad bend 
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(Table 6.2). Representative examples of an AO staining of cep-1, ced-9(gf) and ced-3 gonads 

are shown in Figure 6.9. 

 

 

 
 
Figure 6.9  Pictures of the gonad bend of RNAi-treated cep-1, ced-9(gf) and ced-3 mutant C. 
elegans worms after AO staining. Apoptotic germ cells are seen as highly refractile green 
fluorescent discs (indicated by arrows). (C = control group treated with asp-1 dsRNA; KD = 
knock down group treated with tct-1 dsRNA). Bar = 10 µm. 
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# apoptotic bodies per gonad 

(mean ± s.e.) 
 

 
Group 
 

 
n 

 
WT 

 
cep-1 

 

 
ced-9(gf) 

 
ced-3 

 
C 
 

 
10 

 
  0.4 ± 0.3 

 
  0.0 ± 0.0 

 
   0.0 ± 0.0 

 
   0.0 ± 0.0 

KD 10   3.3 ± 0.7 *   3.1 ± 0.7 *    0.0 ± 0.0 
 

   0.0 ± 0.0 
 

 

Table 6.2  Effect of RNAi treatment on the number of apoptotic bodies detected in the 
gonads after AO staining of WT, cep-1, ced-9(gf) and ced-3 mutant C. elegans worms (t = 
10h). (C = control group treated with asp-1 dsRNA; KD = knock down group treated with tct-1 
dsRNA; s.e. = standard error; * = P < 0.01). 

 

 

6.4 Discussion 

In this chapter, we have demonstrated that C. elegans TCT-1 has a pivotal role in preventing 

germ cell apoptosis during oocyte differentiation and knock down of this gene has a major 

effect on worm reproduction. 

Our RNAi experiment in WT C. elegans worms clearly demonstrated that TCT-1 knock down 

significantly increased apoptosis in germ cells present in the distal part of the gonad bend. 

This effect was maintained when treating worms deficient in the tumor suppressor protein 

p53 (CEP-1) indicating that TCT-1 acts downstream from cep-1. In contrast, germ cell 

apoptosis in ced-9(gf) and ced-3 mutants was unaffected by TCT-1 knock down which 

suggests that TCT-1 operates within the p53-dependent apoptotic pathway between CEP-1 

and CED-9 at the same level as EGL-1 (Figure 6.1). However, it still remains to be elucidated 

how TCT-1 is able to inhibit apoptosis in this step of the pathway. In mammals, TCTP directly 

interacts with anti-apoptopic members of the Bcl-2 family hereby preventing the activation 

of the pro-apoptopic protein Bax located in the mitochondrial membrane (Susini et al., 

2008). The apoptopic pathway in C. elegans does not involve such a Bax-like component, but 

depends on the direct interaction of CED-9 with CED-4 (reviewed by Domingos and Steller, 

2007). Based on the role of TCTP in mammals, it is possible that also in C. elegans TCT-1 

directly or indirectly interacts with CED-9 to stabilize the CED-9/CED-4 complex and prevents 
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uncontrolled germ cell apoptosis. The interaction between the Bcl-2 protein Bcl-xL and the 

mammalian TCTP is realized by the N-terminal BH3 domain in Bcl-xL and an N-terminal 

peptide sequence (amino acid 20-27) in TCTP which is conserved in all higher organisms 

(Yang et al., 2005). However, these sequences are not conserved in either the Ce-TCT-1 or 

CED-9 (results not shown), so if the interaction postulated above occurs in C. elegans, it has 

to be mediated by different protein domains or an additional unknown component. 

Previous large-scale RNAi screenings reported that knock down of TCT-1 resulted in a 

reduction in brood size, sterility and embryonic lethality (Simmer et al., 2003; Rual et al., 

2004; Ceron et al., 2007). These RNAi phenotypes are in line with the results from our study 

in which TCT-1 knock down dramatically affected the organism’s reproductive capabilities 

reducing the number of eggs laid by the F0 and F1 generation with 90% and 72%. 

Furthermore, egg production was unaffected in RNAi-treated ced-3 mutants indicating that 

the abnormal eggs observed in RNAi-treated WT worms and cep-1 mutants are a direct 

result of increased germ cell apoptosis. Increased apoptosis would reduce the number of 

maturing oocytes and is likely to cause a reduction in egg production. In addition, the limited 

number of surviving oocytes would have to mature in the absence of so-called nursing 

oocytes which might explain the arrested development observed in eggs present in the 

uterus. A previous protein-protein interaction study in C. elegans based on the yeast-two-

hybrid system suggested an interaction of TCT-1 with MAT-3 and DNC-2 (Li et al., 2004). 

MAT-3 and DNC-2 play a key role in oogenesis respectively embryogenesis, hence it is 

possible that TCT-1 stabilizes these components during early development. However, since 

TCT-1 knock down in ced-3 mutants did not result in abnormalities in oogenesis or 

embryogenesis it is not likely that this interaction is crucial. 

Several RNAi reports also showed TCT-1 knock down to have a negative effect on growth 

rate (Fraser et al., 2000; Rual et al., 2004; Ceron et al., 2007). However, no effect on growth 

was observed in any strain subjected to RNAi in this study. Moreover, development was 

unaffected in the progeny of RNAi-treated ced-9(gf) and ced-3 mutants suggesting TCT-1 is 

not essential for promoting growth. This result stands in contrast with findings in Drosophila, 

Xenopus and murine and human cells where TCTP was found to have growth promoting 

potential in the first stages of development (reviewed by Bommer and Thiele, 2004; Chen et 

al., 2007; Hsu et al., 2007; Tani et al., 2007; Vitale et al., 2007; Kubiak et al., 2008). From an 

evolutionary point of view, it is possible that the anti-apoptotic function of TCTP is conserved 

among eukaryotes, whereas evolutionary divergence could be responsible for loss of 

function in nematodes or gain of function in insects, amphibians or mammals such as 
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promoting growth, stimulating cell proliferation and inducing the release of histamine and 

certain cytokines (reviewed by Bommer and Thiele, 2004). 

While knock down of Ce-TCT-1 was successful, a limited number of viable eggs were still 

produced by young adult hermaphrodites. These eggs were able to develop into adult 

worms without showing any abnormalities in growth. This might suggest that during 

maturation of the first oocytes transport of dsRNA is not yet fully operational, resulting in 

the presence of sufficient amounts of TCT-1 messenger RNA (mRNA) or protein for 

preventing apoptosis and allowing normal oocyte development. Expulsion of normal eggs 

might be hindered by the accumulation of abnormal eggs in the uterus, which would explain 

the presence of hatched larvae in some RNAi-treated worms. 

GFP reporter constructs demonstrated that TCT-1 is produced by a limited number of 

intestinal cells, i.e. the first two cells after the pharynx and the last two cells before the anal 

sphincter. In correspondence, TCT-1 was previously identified in a mRNA screening targeting 

intestine-expressed C. elegans genes (Pauli et al., 2006). Also, the promoter region of TCT-1 

contains a GATA motif in cis orientation which is typical for intestinal genes. However, the 

two smallest translation constructs used in this study contained promoter regions that 

lacked this GATA motif. Nevertheless, the GFP expression pattern was not affected, which 

indicates the presence of additional promoter elements responsible for TCT-1 transcription 

and translation in these intestinal cells. In addition, a study of the expressed sequence tag 

(EST) database of the parasitic sheep nematode Haemonchus contortus showed that TCTP 

(HCC00192) was one of the most abundantly expressed genes with a substantial amount of 

ESTs (24 out of 59) originating from isolated parasite intestines (Geldhof et al., 2005), 

suggesting a conserved expression pattern in nematodes. 

The fact that TCT-1 fulfills a function in germ cells would require it to be transported from 

the intestine to the bend of the gonad. Interestingly, TCT-1 was produced in both ends of the 

adult worm in the vicinity of the gonad bend. Although TCTP is known to be transported and 

secreted outside the cell, the exact mechanism of transport is unknown. Because TCTP lacks 

a secretion signal in its sequence, a specialized transport system has been suggested 

(Bommer and Thiele, 2004). A genome-wide protein interaction search of C. elegans 

predicted TCT-1 to interact with the protein VHA-8 which is required for receptor-mediated 

endocytosis of yolk protein (Zhong and Sternberg, 2006). In this case, TCT-1 might be 

transported based on a similar mechanism as vitellogenin YP170 which is produced in the 

intestine and transported into developing oocytes (Grant and Hirsh, 1999) (Figure 6.10). 

Moreover, the presence of TCT-1 was detected in C. elegans eggs in chapter 5 using cross-

reacting antibodies against Oo-TCTP (section 5.3.7). Unfortunately, the reporter constructs 
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used in this study failed to demonstrate TCT-1 transport outside the intestinal cells. Since 

TCT-1 is a rather small protein of 20 kDa the presence of a GFP tag of 27 kDa might prevent 

proper binding to a transport receptor, which would explain why no fluorescence was 

detected in developing oocytes and eggs. 

 

 

 
 
 
Figure 6.10  Suggested working mechanism of TCT-1 in C. elegans. 
 

 

In chapter 5 we have demonstrated that Oo-TCTP is not an interesting vaccine candidate 

because it is present in Ostertagia eggs and is not accessible for the host immune system. 

However, Oo-TCTP might be an interesting drug target for interfering with parasite 

reproduction and hereby preventing pasture contamination. In vitro studies in Plasmodium 

have shown that the function of TCTP can be blocked by binding with artemisinin. 

Artemisinin has been successfully used as an anti-malarial drug (reviewed by Woodrow et 

al., 2005) and its anti-schistosomal activity has been reported (reviewed by Utzinger et al., 

2007). Moreover, a Plasmodium strain with an increased expression of TCTP appeared to be 

more resistant to artemisinin treatment (Walker et al., 2000). Dihydroartemisinin, the active 

metabolite of all artemisinin compounds, was also found to bind human TCTP which is 

considered to be a molecular target for many types of cancer (Fujita et al., 2008). Therefore, 

the impact of artesunate - a water-soluble derivative of artemisinin - on C. elegans was 

investigated by soaking L2s and L3s for 24h in varying concentrations (0.1 - 0.5 - 1.0 mg/ml) 

and determining the progeny size after reaching the adult stage. However, no effect was 
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observed (results not shown). This lack of effect might be due to the limited intake of 

artesunate or its insufficient binding capacity with Ce-TCTP. Also, it is not certain whether 

binding to Ce-TCTP has phenotypic repercussions in this nematode. Since this is merely a 

preliminary result, the experimental setup to determine whether TCTP would be an 

appropriate drug target still requires further optimization such as testing several derivatives 

of artemisinin at different concentrations, increasing the soaking time or soaking L4s or adult 

worms. 
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The objective of this doctoral thesis was to identify protective antigens from the ES-thiol 

fraction of Ostertagia ostertagi, to evaluate their function and to determine the presence of 

immunogenic epitopes for further vaccine development. This chapter will discuss some 

interesting findings and future prospects as well as several important limitations we 

encountered in this project. 

 

7.1 Identification of protective antigens 

We have confirmed the protective capacity of ES-thiol in a vaccination trial for a third time 

and have subfractionated this protein mixture hereby separating the two most promising 

classes of vaccine candidates i.e. the activation-associated secreted proteins (ASPs) and the 

cysteine proteases (CPs). All subfractions rendered protection in cattle which indicates that 

they contain common protective antigens or that multiple protective antigens are present in 

ES-thiol. 

 

7.1.1 ASP fraction 

Although anion exchange chromatography rendered us one of the purest native ASP 

fractions that have been described to-date, proteomic analysis still indicated the presence of 

several antigens besides ASP1 and ASP2, such as ASP3, two unknown ASPs, ASP-like protein 

1, a major sperm protein (MSP), a sperm-specific protein  (SSP) and several excretory-

secretory (ES) proteins. Hence, it still remains to be elucidated which of these antigens are 

responsible for inducing protection. Further purification steps based on size and 

hydrophobicity may provide a way to remove the remaining contaminants from ASP1 and 

ASP2 and confirm their protective capacity. Further separating ASP1 from ASP2 using 

standard chromatography methods will be difficult since they have the same size and a 

similar charge.  

 

7.1.2 CP and rest fraction 

Nearly all the CP activity present in ES-thiol was collected in one fraction. Protein profile 

analysis already demonstrated the presence of additional protein bands and this was 

confirmed by mass spectrometry (MS) which detected peptides from other proteins, among 

which the translationally controlled tumor protein (TCTP). Therefore, we are unable to 

attribute the induced protection solely to the CPs. In order to validate the protective 

potential of native CPs this antigen mixture requires further purification. One possible way of 

doing this would be by means of affinity chromatography. Previously, native CPs were 

successfully purified from the protective Haemonchus contortus thiol sepharose binding 
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protein (TSBP) fraction using a sepharose column coated with recombinant Haemonchus 

cystatin, the natural inhibitor of CPs (Redmond and Knox, 2004). The same cystatin was used 

in an attempt to purify the CPs present in Ostertagia ES-thiol, but no binding was observed 

(Geldhof et al., unpublished results). Since cystatins from different nematode species display 

differences in amino acid sequence, it is possible that successful binding of Ostertagia CPs 

will only be realized when coating the column with recombinant Ostertagia cystatin. 

Identifying the exact CPs present in the ES-thiol fraction turned out to be difficult. A previous 

screening of a complementary DNA (cDNA) database of O. ostertagi identified eight different 

CPs, six of which were expressed by adult worms (Geldhof et al., unpublished results). 

Although small amounts of CPs suffice for detection on substrate gels or cathepsin L assays, 

MS analysis failed to detect any CPs. This can most likely be explained by the limited amount 

of CPs present in comparison to other ‘contaminants’ present in the CP fraction. If we are 

able to isolate the CPs as suggested, it may be possible to precipitate them and successfully 

perform tandem MS analysis. 

The rest fraction remains the most complex protein mixture in our project, therefore it is 

tempting to avoid further study and focus our efforts on the ASP and the CP fraction. 

Interestingly, Western blot analysis demonstrated cross-reactivity between the rest fraction 

and the CP fraction. Since no common antigens could be identified in our MS analysis, 

further investigation is needed. Affinity chromatography using a sepharose column coated 

with antibodies from vaccinated animals may enable us to isolate common immunogenic 

antigens followed by identification using MS. 

 

7.2 Anti-fecundity effect of vaccination 

Vaccinating calves with ES-thiol or the subfractions resulted in a significant reduction in 

faecal egg counts (FEC). The same anti-fecundity effect has been observed in vaccination 

trials using a gut membrane protein fraction (Smith et al., 2000) and the Ostertagia 

polyprotein allergen (OPA) fraction (Vercauteren et al., 2004). Since these vaccines are 

obtained from different life-stages of Ostertagia and include worm extract as well as ES 

material, it is unlikely that all antigens are involved in parasite reproduction. In chapter 4, we 

identified several antigens in the ASP fraction that could have a function in reproduction e.g. 

vitellogenin, MSP and SSP. However, no reproduction-related antigens were found in the CP 

or the rest fraction. Therefore, it seems that interference with parasite fecundity is a 

secondary effect of vaccination. It is possible that the protective antigens in current vaccines 

are involved in the basic metabolism of the parasite or its defense against the host 

environment, and that targeting these components results in a general stress situation in 
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which the parasite chooses survival over egg production. Unfortunately, the function of most 

of these antigens is still unknown.  

 

7.3 Functional analysis of antigens 

In addition to isolating appropriate antigens for vaccine development, determining their 

function within the parasite or the host-parasite relationship will give us a better 

understanding of their importance and help us in the selection of parasite targets. However, 

functional analysis of parasite genes in O. ostertagi itself is hampered by several important 

drawbacks. First of all, the parasite can only be studied in its natural host which is less 

practical and implies more expensive and time-consuming protocols. Second, gene silencing 

techniques like RNA interference (RNAi) can not be used reliably in this parasite (Visser et al., 

2006; Geldhof et al., 2007). Finally, attempts to develop an in vitro cell culture system for 

studying the function of O. ostertagi genes have not been successful so far (De Maere et al., 

unpublished results). 

The potential of the free-living nematode Caenorhabditis elegans as a model for functional 

analysis of nematode genes has been described extensively (reviewed by Britton and 

Murray, 2006). Parasitic nematodes and C. elegans display similarities in structure, 

development and reproduction. Comparative studies in C. elegans have characterized 

several conserved nematode genes such as a cathepsin L protease from Haemonchus 

contortus which is essential for embryonic development (Britton and Murray, 2002), the 

glutathione-S-transferase from Onchocerca volvulus which renders increased resistance to 

oxidative stress (Kampkötter et al., 2003) and the metalloprotease nas-37 from H. contortus 

which has a role in the moulting process (Davis et al., 2004). In addition, C. elegans has been 

used for investigating the mechanisms of thiabendazole (Kwa et al., 1995) and avermectin 

resistance in H. contortus (Yates et al., 2003). In chapter 6, TCTP was found to have a 

reproductive function which appeared to be conserved between O. ostertagi and C. elegans. 

Although our results suggest that TCTP is not an appropriate vaccine candidate, it might still 

be an interesting drug target for disabling parasite reproduction. 

Based on our results in chapter 6, C. elegans may prove to be a valid model system for 

determining the function of other ES-thiol antigens as well. However, since there are some 

important differences in basic biology and development between parasitic nematodes and 

the free-living nematode C. elegans, one has to be careful when extrapolating data from C. 

elegans to for example O. ostertagi. Parasite-specific genes are typically the result of a 

selection-based evolution and might therefore lack proper homologs in C. elegans. For 

example, a previous study of ASPs in C. elegans indicated limited homology with Ostertagia 
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ASPs with regard to protein sequence and spatial and temporal expression, hereby 

demonstrating that C. elegans is not an appropriate system for studying the function of 

Ostertagia ASP1 and ASP2 (Visser 2008). Furthermore, although genes can be conserved at 

the DNA or RNA level, it is possible that parasite antigens have acquired different or 

additional functions. 

 

7.4 Importance of antigen epitopes 

After purifying and identifying the proper antigen for vaccination, it is important to have a 

good understanding of the immunogenic epitopes that are present and essential for 

activating the host immune response. Two non-immunogenic N-glycan structures were 

discovered on each ASP molecule and protein conformation was found to be crucial for host 

recognition. Our results indicated that ASPs are typically dimeric under native conditions, so 

it is possible that homo- or hetero-dimerization is a prerequisite for proper recognition by 

host antibodies. The immunogenic importance of this dimeric structure could be evaluated 

in the future by denaturing and reducing the ASP fraction prior to vaccination. In addition, 

the enzyme-linked immunosorbent assay (ELISA) experiment used in chapter 3 can easily be 

adjusted to study new antigens for future research. Furthermore, with this test we are able 

to compare antibody recognition of native antigens with their recombinant version. These 

results will give us an idea which expression system is best fit for the production of the 

recombinant vaccine. Potential expression systems are Escherichia coli strains with 

optimized protein folding and the capacity of forming disulphide bonds (e.g. Origami™ and 

Rosetta-gami™ strains, Novagen), a baculovirus system or yeast strains of Pichia pastoris 

with modified glycosylation pathways that deliver soluble nematode antigens equipped with 

native glycan structures (Vervecken et al., 2004; Li et al., 2007). In addition, Murray et al. 

(2007) provided proof of principle that C. elegans can be used to produce nematode vaccine 

candidates. 

Finally, instead of expressing complete worm antigens we can also attempt to design a 

vaccine that mimics the essential immunogenic epitopes. Identification of these so-called 

mimotopes can be achieved using phage-display technology (reviewed by Paschke, 2006). In 

short, a bacteriophage T7 library expressing random peptide sequences on phage coat 

proteins will be allowed to interact with immobilized antibodies from vaccinated animals. 

Phages displaying peptide sequences specifically recognized by these antibodies can 

subsequently be selected by repeated wash and elution steps (i.e. panning rounds) followed 

by sequencing of the selected peptides. This approach has already been applied for 

identifying mimotopes of the bluetongue virus (du Plessis et al., 1994), the infectious bursal 
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disease virus (Wang et al., 2005) and the spirochaete bacteria Leptospira (Tungtrakanpoung 

et al., 2006). The serum from animals injected with the ASP fraction of Ostertagia can be 

used to screen for important ASP epitopes. This approach can also be repeated with serum 

from animals injected with the CP or the rest fraction as well as complete ES-thiol in order to 

define epitopes from the additional (unknown) protective antigens. A peptide-screening 

might also allow us to determine whether a common immunogenic epitope - and therefore a 

common antigen - is present in all subfractions. Once identified, these peptides can easily be 

expressed in E. coli and fused with carrier-proteins for ensuring stability and realizing proper 

epitope presentation to the host immune system. 

 

7.5 Future prospects 

The proteomics approach we applied for identifying new antigens in ES-thiol has previously 

been used for other parasitic nematodes such as Trichinella spiralis (Robinson and Connolly, 

2005; Robinson et al., 2007), Trichinella pseudospiralis (Robinson et al., 2007), Brugia malayi 

(Hewitson et al., 2008), Haemonchus contortus (Yatsuda et al., 2003), Dictyocaulus viviparus 

(Matthews et al., 2004), Teladorsagia circumcincta (Craig et al., 2006) and Trichostrongylus 

colubriformis (Kiel et al., 2007). However, an important bottleneck for O. ostertagi is the 

limited number of sequences that are available. At the moment, the NCBI and the NEMBASE 

database of O. ostertagi only consist of 148 proteins and 6,749 expressed sequence tags 

(ESTs) respectively. In order to increase the potential of our search tool, we have extended 

our database with a theoretical peptide library based on the EST sequences of O. ostertagi 

and the related parasites T. circumcincta and H. contortus. However, caution should be 

taken when interpreting positive peptide hits, especially when identification of EST 

homologs is based on one peptide sequence. In this case, the only way to be sure the 

identified protein is indeed present would be by detecting it in native material e.g. by means 

of antibodies aimed against its recombinant. Completion of the O. ostertagi transcriptome 

along with the transcriptome of other parasitic nematodes will be an important step forward 

in the identification of parasite antigens. 

The use of native O. ostertagi antigens in vaccination trials was a major disadvantage in this 

study. Collecting parasite excretory-secretory (ES) material is an expensive and time-

consuming procedure. Furthermore, due to the limited amount of protein that was available 

chromatography methods needed to be selected with careful consideration and limited 

optimization was possible. Therefore, future work should be focused on delivering active 

recombinant antigens of Ostertagia for further study. 
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Due to the high purity of the native ASP fraction obtained in this project and the specific 

immunogenicity of ASPs in protected animals, further development of an Ostertagia vaccine 

should be initially focused on delivering recombinant ASP1 and ASP2 that ressemble their 

native counterparts in terms of immunogenic epitopes. Once expression has been optimized, 

the produced ASPs can be subjected to a glycosylation and conformation study to confirm 

structural similarity with native ASPs. A subsequent vaccination trial will demonstrate their 

protective capacity. 

The recombinant ASPs would also allow us to investigate the function of parasite ASPs in the 

host. These ASPs can be used to screen for interaction partners e.g. by using sections of the 

bovine abomasum and conducting interaction studies based on affinity chromatography or 

Biacore technology (GE Healthcare). Introducing a concentrated dose of ASPs at the level of 

the mucosa or by means of an air pouch model - as recently described for the hookworm 

Necator americanus (Mendez et al., 2008) - might also give us an indication of the 

immunomodulatory effect of ASPs and help us optimize our vaccination strategy. If 

recombinantly expressed ASP1 and ASP2 fail to protect cattle, we could focus on 

characterizing and expressing other ASPs or other antigens that were found in ES-thiol. 

Finally, if any of these recombinant vaccines induce significant protection, their efficacy 

would still need to be confirmed in multiple field trials before commercialization is possible. 
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Summary 

Infections with parasitic gastrointestinal (GI) nematodes are a major economic constraint on 

livestock production worldwide. For grazing cattle in temperate climates, the most common 

and most pathogenic GI parasite is Ostertagia ostertagi which infects the abomasum. In 

Europe, control is almost exclusively based on the use of anthelmintic drugs. Unfortunately, 

this control strategy has several important disadvantages such as the high treatment costs, 

the interference with natural immunity, the presence of drug residues in consumer products 

and the environment, and the increasing threat of drug-resistant parasites. Therefore, 

alternative control methods are urgently needed. Vaccination is considered to be one of the 

most promising alternatives for combating nematode infections. 

Chapter 1 gives an overview of the progress made in the development of anti-nematode 

vaccines. The major steps in developing a vaccine are (1) the identification and purification 

of protective worm antigens, (2) the large-scale production of these antigens, (3) the 

development of an efficient antigen delivery system for inducing an appropriate type of 

immune response and (4) the evaluation of the efficacy of the vaccine. So far, there is only 

one anti-nematode vaccine that is commercially available, namely the vaccine against the 

bovine lungworm Dictyocaulus viviparus. While decades of studies have revealed some 

interesting vaccine candidates for different parasites, delivering a commercial vaccine 

appears to be anything but straightforward. Native vaccines often are obtained by means of 

expensive and/or time-consuming procedures and their antigens are usually not fully 

characterized and not completely pure. In contrast, production of recombinant vaccines is 

relatively easy and cheap. Unfortunately, the majority of the recombinant antigens tested so 

far failed to induce protection against nematode infections. 

Successful vaccination trials against O. ostertagi in cattle are scarce. At the moment, three 

native protein fractions have been isolated that are able to protect calves, i.e. a pooled gut 

membrane protein fraction containing a 120 kDa integral Ostertagia glycoprotein (Oo-12) 

and the Ostertagia galactose-containing glycoprotein complex (Oo-gal-GP), the Ostertagia 

polyprotein allergen (OPA) fraction and the thiol binding excretory-secretory antigen (ES-

thiol) fraction. Vaccinating calves with the OPA or the ES-thiol fraction results in a 60% 

reduction in cumulative faecal egg counts (FEC) during a period of two months. This level of 

protection is sufficient to consider commercialization. However, the antigens responsible for 

inducing protection remain to be identified. Furthermore, recombinant Ostertagia vaccines 

tested so far - i.e. OPA, activation-associated secreted protein (ASP) 1, metalloprotease 1, a 

small heatshock protein and an aspartyl protease inhibitor - failed to protect cattle against 

infection. 
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The objective of this project was to isolate and characterize the protective antigens that are 

present in ES-thiol and evaluate their potential as vaccine candidate. In chapter 2, ES-thiol 

was further fractionated using Q-Sepharose anion exchange chromatography. The first 

fraction contained the abundantly present ASPs. The second fraction was highly enriched for 

cysteine proteases (CPs). All remaining elutions were pooled together to form the rest 

fraction. Calves (seven/group) were immunized three times intramuscularly with 100 µg of 

ES-thiol or equivalent amounts of the ASP, the CP or the rest fraction in combination with 

QuilA adjuvant. A negative control group only received QuilA. After the final immunization 

the animals were challenged with a trickle infection of 25,000 infectious third stage larvae 

(1,000 L3s/day; 5 days/week). During a two-month period the geometric mean cumulative 

FEC of the ES-thiol group was reduced by 62% compared to the QuilA control group 

(probability (P) < 0.05). Groups injected with the ASP, the CP and the rest fraction 

demonstrated a reduction in cumulative FEC of 74%, 80% and 70%, respectively (P < 0.01). 

Although no significant reductions in worm burdens were observed, adult male and female 

worms were significantly smaller in all vaccinated groups (P < 0.05), except for male worms 

from the ES-thiol group. Western blot analysis demonstrated that animals injected with the 

ASP fraction specifically recognized monomeric and dimeric ASP molecules without showing 

cross-reactivity with the other fractions. These results suggest that ASPs are able to induce 

protection against an Ostertagia infection. Animals injected with the CP and rest fraction 

showed cross-reactivity of several high molecular weight antigens.  

In order to select an appropriate expression system for producing recombinant ASP1 and 

ASP2, we investigated whether glycans and/or structural epitopes present on native ASPs 

are key features in the induction of a protective immune response (chapter 3). We 

discovered that ASPs carry two hybrid N-glycans with a complex α-1,3-arm, an unprocessed 

α-1,6-arm and an α-1,6-fucose core. A theoretical 3-D model of ASP1 and ASP2 suggested 

the presence of a cavity which could be important for binding or dimerization. While 

removal of the glycan structures had little effect on antibody recognition by vaccinated 

animals, denaturing and reducing the proteins dramatically reduced recognition suggesting 

the importance of conformational protein backbone epitopes. 

The protective capacity of the CP and the rest fraction indicates that additional protective 

antigens are present within ES-thiol. Therefore, a proteomic survey was undertaken to 

identify new potential vaccine candidates (chapter 4). A list of antigens was obtained, some 

of which had already proven their protective capacity against other parasites. Furthermore, 

several antigens in this screening appear to have a function in reproduction (e.g. 

vitellogenin, major sperm protein and sperm-specific protein). Since vaccination with ES-
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thiol results in reduced fecundity, it is possible that these antigens play an important role in 

inducing protection. No CPs were picked up by mass spectrometry (MS), although this is 

most likely the result of the limited amount of CPs present in ES-thiol. 

In chapter 5, one of the antigens identified in the proteomic analysis of the CP fraction was 

further studied for its vaccine potential i.e. the translationally controlled tumor protein 

(TCTP). While TCTP is actively secreted during host infection by several parasitic organisms 

such as Schistosoma mansoni, Brugia malayi and Wuchereria bancrofti, we found no 

evidence of active secretion by Ostertagia worms in cattle. Oo-TCTP did not appear to be 

recognized by naturally infected animals and also differed in several amino acids from 

secreted Bm- and Wb-TCTP. Oo-TCTP was found to be present in parasite eggs suggesting a 

function in development or reproduction. In addition, cross-reacting antibodies against Oo-

TCTP detected TCTP in eggs from other Clade V nematodes such as Teladorsagia 

circumcincta, Cooperia oncophora and Haemonchus contortus as well as the nematode 

model organism Caenorhabditis elegans. In contrast, no TCTP could be found in eggs from 

the Clade III nematode Ascaris suum and the trematode Fasciola hepatica. 

Because of the advantages of the C. elegans model for studying the function and regulation 

of nematode genes, a comparative study of TCTP was conducted in chapter 6. TCTP was 

typically expressed in adult hermaphrodite worms, more specifically in the anterior and 

posterior cells of the intestine near the gonad bend. Knocking down TCTP using RNA 

interference (RNAi) resulted in a reduction in egg production in the F0 and F1 generation of 

90% and 72%. Further investigation showed that the uterus of RNAi-treated worms 

contained unicellular eggs with a large nucleus which were incapable of further embryonic 

development. Knocking down TCTP also resulted in an increase in p53-dependent germ cell 

apoptosis which coincided with degradation of developing oocytes. It was hypothesized that 

TCTP is transported from the intestine into the germ cells and developing oocytes where it 

fulfills an anti-apoptotic function. Targeting parasite TCTP may provide an alternative for 

controlling egg production in the host. 

Chapter 7 presents a general discussion and future prospects. In this PhD project the 

protective ES-thiol fraction was subfractionated into an ASP, a CP and a rest fraction which 

all proved to be able to protect calves against infection with O. ostertagi. In addition, MS was 

used as a tool for the identification of protective antigens. Furthermore, an enzyme-linked 

immunosorbent assay (ELISA) experiment allowed the analysis of the importance of protein 

glycosylations and conformation with regard to antibody recognition. This ELISA setup will 

allow us to evaluate the immunogenicity of native antigens and their recombinants before 



Summary  147 

 

initiating a vaccination trial. Further research on defining the immunogenic epitopes present 

on native antigens in combination with modified recombinant expression systems to mimic 

these epitopes will allow a more efficient vaccine design in the future. 
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Samenvatting 

Wereldwijd hebben besmettingen met parasitaire gastro-intestinale nematoden een 

belangrijke economische impact op de veeteelt. Voor grazende runderen in gematigde 

klimaten is de lebmaagnematode Ostertagia ostertagi de meest voorkomende en meest 

pathogene parasiet. In Europa is bestrijding bijna uitsluitend gebaseerd op het gebruik van 

anthelmintica. Deze controlestrategie heeft echter een aantal belangrijke nadelen zoals de 

hoge behandelingskost, de negatieve invloed op de normale immuniteitsopbouw, de 

aanwezigheid van residuen in voedsel en omgeving en de dreigende resistentie tegen deze 

producten. Daarom is er nood aan alternatieve controlestrategieën. Vaccinatie wordt 

beschouwd als een veelbelovend alternatief om besmetting met nematoden te bestrijden. 

Hoofdstuk 1 geeft een overzicht van de vooruitgang die geboekt werd op vlak van anti-

nematodenvaccins. Belangrijk stappen binnen de ontwikkeling van deze vaccins zijn: (1) het 

identificeren en opzuiveren van protectieve wormantigenen, (2) het op grote schaal 

produceren van deze antigenen, (3) het ontwikkelen van een efficiënte toedieningswijze om 

een gepaste immuunrespons te induceren en (4) het evalueren van de doeltreffendheid van 

het vaccin. Tot nu toe is er slechts één anti-nematodenvaccin commercieel beschikbaar, 

namelijk het vaccin tegen de runderlongworm Dictyocaulus viviparus. Hoewel reeds enkele 

interessante vaccinkandidaten werden ontdekt voor verschillende andere parasieten, blijkt 

het ontwikkelen van een commercieel vaccin niet evident. Vaccins bestaande uit natief 

opgezuiverde antigenen worden vaak bekomen door middel van dure en/of tijdrovende 

protocols en de antigenen in kwestie zijn meestal niet compleet gekarakteriseerd en niet 

volledig zuiver. Het aanmaken van recombinante vaccins daarentegen is relatief eenvoudig 

en goedkoop. Niettemin is gebleken dat het merendeel van de geteste recombinante 

antigenen niet in staat is om bescherming tegen nematodenbesmetting te induceren. 

Succesvolle vaccinatieproeven tegen O. ostertagi in runderen zijn zeldzaam. Momenteel zijn 

er drie natieve eiwitfracties beschikbaar die kalveren beschermen tegen infectie, namelijk 

een darmeiwitfractie bestaande uit een Ostertagia glycoproteine van 120 kDa (Oo-12) en het 

Ostertagia galactose bevattend glycoproteïnecomplex (Oo-gal-GP), de Ostertagia poly-

proteïne allergeen (OPA) fractie en de thiol bindende excretie-secretie antigen (ES-thiol) 

fractie. Immunisatie van runderen met de OPA- en de ES-thiolfractie resulteert in een daling 

in cumulatieve ei-uitscheiding van 60% gedurende twee maanden. Deze bescherming is 

voldoende om commercialisatie te overwegen. Niettemin, de antigenen die in deze fracties 

verantwoordelijk zijn voor de bekomen bescherming moeten nog geïdentificeerd worden. 

Naast deze natief opgezuiverde eiwitfracties werden verschillende recombinante Ostertagia 

vaccins getest in kalveren - m.n. OPA, activatie-geassocieerd gesecreteerd proteïne (ASP) 1, 
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metallo-proteïnase 1, een hitteschok eiwit en een aspartyl proteïnase inhibitor - maar deze 

gaven geen bescherming tegen infectie. 

De doelstelling van dit project was de opzuivering en karakterisering van protectieve 

antigenen aanwezig in ES-thiol en de evaluatie van hun mogelijkheden als vaccinkandidaat. 

In hoofdstuk 2 werd ES-thiol verder gefractioneerd door middel van Q-Sepharose 

anionenuitwisselingschromatografie. De eerste fractie bevatte de abundant aanwezige ASPs. 

De tweede fractie was sterk aangerijkt voor cysteïne proteïnasen (CPs). De overige 

elutiestappen werden samengevoegd en vormden de restfractie. Kalveren (zeven/groep) 

werden driemaal intramusculair geïmmuniseerd met 100 µg ES-thiol of equivalente 

hoeveelheden van de  ASP-, CP- of restfractie in combinatie met het adjuvans QuilA. Een 

negatieve controle-groep ontving alleen QuilA. Na de laatste immunisatie werden de dieren 

geïnfecteerd met 25.000 L3 larven (1.000 L3s/dag; 5 dagen/week). Over een periode van 

twee maanden was de gemiddelde cumulatieve ei-uitscheiding van de ES-thiol-groep 62% 

lager dan deze van de QuilA controlegroep (probabiliteit (P) < 0.05). Groepen 

geïmmuniseerd met de ASP-, CP- en restfractie vertoonden een daling in cumulatieve ei-

uitscheiding van respectievelijk 74%, 80% en 70% (P < 0.01). Hoewel er geen significante 

daling in wormbesmetting werd vastgesteld, waren mannelijke en vrouwelijke wormen 

significant kleiner in alle gevaccineerde groepen (P < 0.05) met uitzondering van de 

mannelijke wormen in de ES-thiolgroep. Op Western blot werd aangetoond dat dieren die 

geïmmuniseerd waren met de ASP-fractie monomere en dimere ASP-moleculen herkenden 

zonder kruisreactiviteit te vertonen met de andere eiwitfracties. Deze resultaten suggereren 

dat ASPs in staat zijn om bescherming te induceren tegen een Ostertagia-infectie. Dieren 

geïmmuniseerd met de CP- en restfractie vertoonden kruisreactiviteit van enkele hoog-

moleculaire antigenen. 

Opdat een gepast expressiesysteem zou kunnen geselecteerd worden voor de productie van 

recombinante ASP1 en ASP2, werd nagegaan in welke mate suikerstructuren en/of 

structurele eiwitepitopen van belang zijn bij het induceren van een protectieve 

immuunrespons (hoofdstuk 3). We ontdekten dat ASPs voorzien zijn van twee hybride N-

glycanen met een complexe α-1,3-arm, een eenvoudige α-1,6-arm en een α-1,6-fucose core. 

Een theoretisch 3-D model van ASP1 en ASP2 wees op de aanwezigheid van een ruimtelijke 

holte die van belang kan zijn voor binding of dimerisatie. Terwijl verwijdering van de 

suikerstructuren slechts een beperkt effect had op antilichaamherkenning door 

gevaccineerde dieren, nam deze herkenning sterk af na denaturatie en reductie van de 

eiwitten. Dit suggereert het belang van ruimtelijke eiwitepitopen bij immuunherkenning. 
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Het feit dat de CP- en restfractie eveneens bescherming induceerden bij kalveren wijst op de 

aanwezigheid van bijkomende protectieve antigenen in ES-thiol. Daarom werd een 

eiwitanalyse uitgevoerd om nieuwe potentiële vaccinkandidaten te identificeren (hoofdstuk 

4). Een lijst van antigenen werd bekomen, waarvan enkele reeds hun vaccinpotentieel 

hebben bewezen tegen andere parasieten. Bovendien bleken verschillende antigenen uit 

deze analyse betokken te zijn bij de voortplanting, m.n. vitellogenine, major sperm protein 

en sperm-specific protein. Vermits vaccinatie met ES-thiol resulteert in een afname in eileg, 

is het mogelijk dat deze antigenen een belangrijke rol spelen bij het induceren van 

bescherming. Geen CPs werden opgepikt door middel van massaspectrometrie (MS). Dit is 

waarschijnlijk een gevolg van de beperkte hoeveelheid CPs die aanwezig is in ES-thiol. 

In hoofdstuk 5 werd één van de antigenen die geïdentificeerd werden in de CP-fractie verder 

bestudeerd voor zijn vaccinpotentieel, m.n. het translationeel-gecontroleerd tumor-proteïne 

(TCTP). Hoewel TCTP van Schistosoma mansoni, Brugia malayi en Wuchereria bancrofti actief 

gesecreteerd wordt tijdens infectie van de gastheer, hebben we geen bewijs gevonden van 

actieve secretie van TCTP door Ostertagia-wormen in runderen. Oo-TCTP werd niet herkend 

door natuurlijk geïnfecteerde dieren en verschilde in een aantal aminozuren van Bm- en Wb-

TCTP. Oo-TCTP werd teruggevonden in parasieteieren wat een functie binnen ontwikkeling 

of voortplanting insinueert. Daarnaast werd TCTP gedetecteerd in eieren van andere 

nematoden uit Groep V zoals Teladorsagia circumcincta, Cooperia oncophora en 

Haemonchus contortus evenals het modelorganisme Caenorhabditis elegans. TCTP werd 

echter niet gevonden in de eieren van de nematode Ascaris suum (Groep III) en de 

trematode Fasciola hepatica. 

Omwille van de voordelen van het C. elegans model voor het bestuderen van de functie en 

regulatie van parasietgenen, werd een vergelijkende studie van TCTP uitgevoerd in 

hoofdstuk 6. TCTP kwam tot expressie in volwassen hermafrodiete wormen, meer bepaald 

in de eerste en laatste darmcellen nabij de bocht van de gonaden. Het uitschakelen van TCTP 

door middel van RNA-interferentie (RNAi) resulteerde in een daling in eiproductie in de F0- 

en F1-generatie van respectievelijk 90% en 72%. Uit verder onderzoek bleek dat de uterus 

van RNAi-behandelde wormen ééncellige eieren met een grote kern bevatte die niet meer in 

staat waren om verder te ontwikkelen. Het uitschakelen van TCTP resulteerde eveneens in 

een toename in p53-afhankelijke apoptose in kiemcellen die gepaard ging met een afbraak 

van ontwikkelende oocyten. Er werd voorgesteld dat TCTP getransporteerd wordt van de 

darm naar kiemcellen en ontwikkelende oocyten, waar het een anti-apoptotische functie 

vervult. Parasitair TCTP zou bijgevolg een alternatief doelwit kunnen zijn om 

wormeiproductie in de gastheer tegen te gaan. 
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Hoofdstuk 7 omvat een algemene discussie en toekomstperspectieven. In dit 

doctoraatsproject werd de protectieve ES-thiolfractie gesubfractioneerd in een ASP-, een CP- 

en een restfractie die kalveren beschermden tegen infectie met O. ostertagi. Daarnaast werd 

gebruik gemaakt van MS om protectieve antigenen te identificeren en van een enzyme-

linked immunosorbent assay (ELISA) experiment om het belang van suikerstructuren en 

eiwitconformatie voor antilichaamherkenning te onderzoeken. Deze ELISA zal ons toelaten 

om de immunogeniciteit van andere natieve antigenen en hun recombinant te bestuderen 

alvorens een vaccinatieproef te starten. Verder onderzoek voor het bepalen van 

immunogene epitopen in combinatie met aangepaste recombinante expressiesystemen zal 

een efficiëntere vaccinontwikkeling mogelijk maken in de toekomst. 
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