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Puzzling (with) Polygons

One of the most puzzling questions of non-mathematicians to a PhD-student

in geometry is `what exactly are you spending your days with?'. Well, I have

been puzzling. My puzzles were - as most puzzles are - made of ordinary

polygons, put together in a smart way and forming a puzzling object called

a `generalized polygon'.

The oÆcial birth announcement of the generalized polygons was made in

Tits' paper of 1959, `Sur la trialit�e et certains groupes qui s'en d�eduisent'. In

this paper, Tits discovers the simple group 3D4 by classifying certain maps,

called trialities of D4-geometries. The related geometries are what we call

today `generalized hexagons'. In a small appendix to the famous '59-paper,

Tits introduces the notion of a generalized n-gon. Of course, these structures

must have been in his head for some time then, and for example the projective

planes - which are exactly the generalized 3-gons - had already been studied

extensively at that moment. But anyway, from '59 on, the generalized n-

gons come out of the shadow of the groups, and become geometries studied

on their own. Some years later, Tits introduces - again for group-theoretical

reasons - the notion of a `building'. The building bricks of buildings are the

generalized polygons, which stresses again their importance in the study of

incidence geometry.

The original paper of Tits already gives some examples of generalized poly-

gons, arising from `classical objects' such as quadrics and Hermitian varieties

in projective space for example, which translates in nice geometric properties

for these polygons. But one can do better: a free construction process pro-

vides examples of generalized n-gons, for every n. Recently, another method

(using model theory) to construct in�nitely many new examples of n-gons
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has been discovered. So at least there are polygons enough to investigate.

Now what are the problems that one can look at?

From the point of view of discrete mathematics and combinatorics, one can

be interested in �nite examples of generalized polygons, i.e. polygons with a

�nite number of points. A famous theorem of Feit & Higman - proved with

purely algebraic methods - states that such �nite examples only exist for

n 2 f3; 4; 6; 8g. Surprisingly, these values of n turn up at various places in the

theory - and this will also be the case in this thesis. Group-minded people are

perhaps more interested in polygons with a very large automorphism group,

the so-called Moufang polygons. The classi�cation of all Moufang polygons

(which only exist for n 2 f3; 4; 6; 8g...) was announced by Tits in '76, is only

recently completed by Tits & Weiss and is in the process of being published.

This piece of the polygon-research is strongly related with algebraic objects

as root systems and speci�c algebras. Within topology, the polygons are

represented by the topological n-gons. The notion of a compact polygon for

example has been very useful to prove topological counterparts of theorems

about �nite polygons. Last but not least, one can take the geometric point

of view - which will also be the point of view of this thesis.

One thing that can happen when puzzling, is that some pieces disappear.

Some puzzles then become worthless, but not our generalized polygons. In-

deed, missing pieces will be the link between the di�erent chapters of this

work.

In the �rst part of this thesis, we are concentrating on our favourite puzzles,

being the classical generalized hexagons. These hexagons have nice geomet-

ric properties. Now the question is: if we are only given some of the pieces

of one of our favourite puzzles, can we recognize from which one they come?

So in fact we look for pieces of our favourite puzzles (=geometric proper-

ties of the hexagons) that are typical for this puzzle, in this way obtaining

characterizations of classical generalized hexagons. The characterizations we

obtain are mainly based on regularity properties. In the second part, we

leave the hexagons and consider really `general' n-gons. Here we deal with

puzzles missing so many pieces, that it is not clear any more that they ac-

tually arise from generalized polygons. These structures are called `forgetful

polygons', since their de�nition looks like the de�nition of a generalized poly-

gon, where some lines seem to have been forgotten. It remains a question

however whether a `forgetful polygon' is necessary a forgetful generalized

polygon. We investigate this more in detail for the case of the quadrangles

(and so we are back at a small value of n). Next, two puzzles come into play,

and we want to decide, given only partial information about them, whether

they are the same or not. Let us be a bit more precise. A generalized polygon
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can be seen as a graph, which allows us to de�ne a distance function. If two

generalized n-gons are given, and a bijective map between them preserving

a speci�c distance, does this map extend to an isomorphism? The answer to

this question is `yes' in a lot of cases but, concerning counterexamples, again

the small n-values turn up. In an appendix, we concentrate on the following

problem. Suppose we are given some pieces (= some points) of one of our

favourite puzzles (being in this case the �nite dual split Cayley hexagon),

and the following rule of play holds: whenever we have two pieces between

which only one piece is missing (= two collinear points), we are allowed to

plug in this missing piece (= add all the points on the joining line). With

how many pieces do we have to start to end up with the complete puzzle

(= to generate the whole point set)? We investigate this problem for some

small cases with the help of the computer.

So far the rough sketch of the pieces of knowledge added by this thesis to

the big puzzle of the theory of generalized polygons. A more extensive in-

troduction to each problem can be found at the beginning of the relevant

chapters.

One of the most interesting things about mathematical puzzles is that they

are never solved `completely': answering one question, related problems arise.

This is the reason why you will meet the symbol ?4 at various places in

this thesis. Some of these questions only turned up when writing this thesis,

others kept us puzzling for a while, but the pieces we collected were not

enough to complete the whole thing.

At least three aspects distinguished me during these three years of research

from a `normal' puzzler. Indeed, many hobby puzzlers would envy the �nan-

cial support of the FWO, the Fund for Scienti�c Research-Flanders. Also,

puzzling was not at all a lonely business, being surrounded by the interest of

the `geometric part' of the maths department here. The puzzles I considered

had no key included (since there was no key granted after all), but what I

had was much better: a constant help desk, providing me puzzles, puzzle

pieces and prepared to listen to all my puzzling attempts of solving. Thanks

Hendrik.

Last but not least, I want to thank my parents and my sister for both lis-

tening to my puzzling doubts, and remembering me from time to time that

puzzling is a game after all. My mother once taught me that, when making

a puzzle, the corner pieces are the most important ones. Thanks for being

these corners.

Eline Govaert

June 2001



iv



Contents

1 Introductory guide 1

1.1 De�nitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1.1 Incidence geometries . . . . . . . . . . . . . . . . . . . 2

1.1.2 De�nition of a generalized n-gon . . . . . . . . . . . . . 3

1.1.3 A bunch of terminology . . . . . . . . . . . . . . . . . 4

1.2 Restrictions on the parameters . . . . . . . . . . . . . . . . . . 5

1.3 Some words on regularity . . . . . . . . . . . . . . . . . . . . . 6

1.4 Generalized quadrangles . . . . . . . . . . . . . . . . . . . . . 7

1.4.1 De�nition . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.4.2 Classical generalized quadrangles . . . . . . . . . . . . 8

1.4.3 Generalized quadrangles of order s = 2. . . . . . . . . . 8

1.4.4 The construction of Payne . . . . . . . . . . . . . . . . 9

1.5 Classical generalized hexagons and octagons . . . . . . . . . . 9

1.5.1 Generalized hexagons . . . . . . . . . . . . . . . . . . . 9

1.5.2 Generalized octagons . . . . . . . . . . . . . . . . . . . 13

1.6 Groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.7 Ovoidal subspaces . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.8 Characterizations of classical hexagons . . . . . . . . . . . . . 15

1.9 Coordinatization . . . . . . . . . . . . . . . . . . . . . . . . . 18

1.9.1 Labelling of the elements . . . . . . . . . . . . . . . . . 18

1.9.2 Coordinates of classical generalized hexagons . . . . . . 20

1.10 More geometries . . . . . . . . . . . . . . . . . . . . . . . . . . 22

v



vi

2 Characterizations of (dual) classical generalized hexagons 25

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.2 Characterizations of H(q) and T(q3; q), q even . . . . . . . . . 27

2.3 Characterizations of H(q)D and T(q; q3) . . . . . . . . . . . . . 38

2.4 A characterization of Moufang hexagons using ovoidal subspaces 47

2.5 Two characterizations of the Hermitian spread in H(q) . . . . 51

3 Forgetful Polygons 59

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.2 De�nitions and �rst examples . . . . . . . . . . . . . . . . . . 60

3.3 Classi�cation for n odd . . . . . . . . . . . . . . . . . . . . . . 63

3.4 Square forgetful pentagons . . . . . . . . . . . . . . . . . . . . 70

3.5 Classi�cation results for n even . . . . . . . . . . . . . . . . . 78

3.6 Short forgetful quadrangles . . . . . . . . . . . . . . . . . . . . 93

3.6.1 General properties . . . . . . . . . . . . . . . . . . . . 93

3.6.2 Examples of short forgetful quadrangles . . . . . . . . 97

3.6.3 Characterization results . . . . . . . . . . . . . . . . . 99

3.6.4 Short forgetful quadrangles `arising' from generalized

quadrangles. . . . . . . . . . . . . . . . . . . . . . . . . 109

4 Distance-preserving maps 111

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

4.2 Main theorems and some words about the proof . . . . . . . . 112

4.3 Some examples by pictures . . . . . . . . . . . . . . . . . . . . 115

4.4 Proof of the Point-Line Theorem . . . . . . . . . . . . . . . . 118

4.4.1 Case i < n
2
. . . . . . . . . . . . . . . . . . . . . . . . . 118

4.4.2 Case i = n
2
+ 1, i even . . . . . . . . . . . . . . . . . . 119

4.4.3 Case n
2
< i < n� 2 . . . . . . . . . . . . . . . . . . . . 120

4.4.4 Case i = n� 2 . . . . . . . . . . . . . . . . . . . . . . 123

4.4.5 Case i = n� 1 . . . . . . . . . . . . . . . . . . . . . . 133



vii

4.4.6 Case i = n=2 . . . . . . . . . . . . . . . . . . . . . . . 138

4.5 Some exceptions and applications to the Point-Line Theorem . 144

4.6 The exception in the Flag Theorem . . . . . . . . . . . . . . . 152

4.7 Proof of the Flag Theorem . . . . . . . . . . . . . . . . . . . . 156

4.7.1 Case i < n=2 . . . . . . . . . . . . . . . . . . . . . . . 156

4.7.2 Case i = n=2 . . . . . . . . . . . . . . . . . . . . . . . 158

4.7.3 Case n=2 < i < n� 2 . . . . . . . . . . . . . . . . . . . 160

4.7.4 Case i = n� 2 . . . . . . . . . . . . . . . . . . . . . . 163

4.8 Proof of the Special Flag Theorem . . . . . . . . . . . . . . . 186

4.8.1 Case ip � n=2 . . . . . . . . . . . . . . . . . . . . . . . 187

4.8.2 Case n=2 < ip < n� 2 . . . . . . . . . . . . . . . . . . 188

4.8.3 Case ip = n� 2 . . . . . . . . . . . . . . . . . . . . . . 193

A Minimal generating sets in H(q)D 195

A.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195

A.2 14 � m � 15 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196

A.3 m = 14 if q 2 f4; 8; 9; 16g . . . . . . . . . . . . . . . . . . . . . 199

A.4 Comments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205

B Veelhoeken in Veelvoud 207

B.1 Van veelhoek naar veralgemeende veelhoek . . . . . . . . . . . 207

B.2 Ken uw klassiekers . . . . . . . . . . . . . . . . . . . . . . . . 208

B.3 Vergeethoeken . . . . . . . . . . . . . . . . . . . . . . . . . . . 210

B.4 Veelhoeken door een speciale bril . . . . . . . . . . . . . . . . 212

B.5 Strategische verzamelingen in een klassieke zeshoek . . . . . . 213

Bibliography 215

Index of Notations 221



viii



Chapter 1

Introductory guide

The aim of the �rst chapter is to mention some highlights in the history

of generalized polygons, and to introduce the notions that are needed to

understand the pieces of knowledge we will add in the further chapters.

This introduction is based on the monograph `Generalized Polygons' (Van

Maldeghem [57]).

We opt to give three equivalent de�nitions of generalized polygons. The �rst

one uses a lot of n-gons, and therefore explains why the polygons considered

here can really be called `generalized'. As Chapter 4 deals with distance-

preserving maps, we give a de�nition in terms of the distance function. The

third de�nition characterizes the incidence graph in a very compact way. The

next sections contain the inevitable list of notions and properties that starts

every introductory course on generalized polygons. We stress the notion of

regularity, and introduce you to two classes of classical generalized hexagons,

namely the split Cayley and the twisted triality hexagons. Since Chapter 2

concerns characterizations of these hexagons, we give an overview of the

known geometric characterizations of the classical generalized hexagons. Fi-

nally, we explain how one can coordinatize generalized hexagons. Indeed,

coordinatization is the main tool in appendix A. The calculations there are

done by computer, but here we wanted to give the reader the same informa-

tion about coordinatization as we told the computer.
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2 INTRODUCTORY GUIDE

1.1 De�nitions

1.1.1 Incidence geometries

An incidence geometry (or geometry for short) is a triple � = (P;L; I),

where P and L are two disjoint nonempty sets the elements of which are called

points and lines, respectively, and where I � P �L[L�P is a symmetric

relation, called the incidence relation. When a point p is incident with a

line L, we also say that p lies on L or that L goes through p. Points and lines

are called the elements of the geometry. A 
ag is a pair fp; Lg, with p a

point incident with the line L. The set of 
ags of the geometry is denoted

by F . Adjacent 
ags are distinct 
ags which have an element in common.

An anti
ag is a pair fp; Lg where p and L are not incident. The dual of

the geometry � is the geometry �D obtained by interchanging the roles of

points and lines, i.e. �D = (L;P; I). We de�ne the double 2� of � as the

geometry with point set F , line set P[L and natural incidence relation (this

de�nition is in fact the dual of the one given in [57]). A geometry is called

thick if every element is incident with at least three other elements. A thin

element is an element incident with exactly two other elements. If there exist

constants s; t such that every line is incident with exactly s + 1 points, and

every point is incident with exactly t + 1 lines, the pair (s; t) is called the

order of �. If s = t, one says that � has order s. A geometry is said to be

�nite if both P and L are �nite sets. A subgeometry of � is a geometry

�0 = (P 0;L0; I0) with P 0 � P, L0 � L and I
0 the restriction of the relation I

to P 0 � L0 [ L0 �P 0.

A path in � between the elements x and y is a sequence (x = x0; x1; : : : ; xk =

y) of points and lines such that xi�1Ixi, for all i 2 f1; 2; : : : ; kg. If xi�1 6=

xi+1, for all i 2 f1; 2; : : : ; k � 1g, the path is said to be non-stammering.

The number k is called the length of the path. A non-stammering path

of length k is called a k-path. If x = y, we talk about a closed path,

and a non-stammering closed path is called a circuit. An ordinary n-

gon is a closed path (x0; x1; : : : ; x2n = x0) of length 2n > 2 for which all

xi, i 2 f0; 1; : : : ; 2n � 1g are distinct. The distance Æ(x; y) between two

elements x; y of � is the length of a shortest path joining x and y, if such a

path exists. If not, then the distance between x and y is by de�nition 1.

Similarly, one can de�ne a distance function on the set of 
ags.

The incidence graph of a geometry � is the graph with as vertex set V =

P [ L and as edges the 
ags of � (hence adjacency in the incidence graph

coincides with incidence in the geometry). The girth if this graph is the

length of a minimal circuit.
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1.1.2 De�nition of a generalized n-gon

Let n � 1 be a natural number. A weak generalized n-gon is a geometry

� = (P;L; I) such that the following two axioms are satis�ed:

(i) there are no ordinary k-gons in �, with k < n,

(ii) every two elements of P [ L are contained in an ordinary n-gon.

If a weak generalized n-gon � is thick, we call it a generalized n-gon. As

shown in [57] (Lemma 1.3.2), thickness is equivalent with the existence of at

least one ordinary (n+ 1)-gon in �.

A generalized 2-gon (digon) is a rather trivial geometry in which every point

is incident with every line. The generalized 3-gons are exactly the projective

planes. Instead of 4-gons, 5-gons, 6-gons, 8-gons and n-gons, we shall also

speak of quadrangles, pentagons, hexagons, octagons and polygons. A gener-

alized n-gon consists of lots of ordinary n-gons, so-called apartments. This

terminology is inherited from the theory of buildings. Indeed, generalized

polygons are exactly the buildings of rank 2 (i.e. with two types of elements,

namely points and lines), see for instance [57], section 1.3.7. Note that the

dual of a generalized polygon is again a generalized polygon. Also, the dou-

ble of a generalized n-gon is a weak generalized 2n-gon with thin points and

thick lines.

All weak non-thick generalized polygons arise either from ordinary polygons

or from generalized polygons by inserting paths (see Structure Theorem of

Tits, [57], section 1.6). So we will mainly be interested in (thick) generalized

n-gons. In this case, one can prove that the generalized polygon � has an

order (s; t) (s and t are also called the parameters of �). If n is odd, then

necessarily s = t (see [57], Lemma 1.5.3). There exist (thick) generalized

n-gons for every n. Examples are provided by a free construction process

due to Tits [52] (or see [57], section 1.3.13). We will give explicit examples

of generalized quadrangles an hexagons below.

To conclude this section, we give two alternative de�nitions of generalized

n-gons, the �rst in terms of the distance function, the second one using the

incidence graph.

Lemma 1.1.1 ([57], Lemma 1.3.5) A thick geometry � = (P;L; I) is a

generalized n-gon if and only if the following axioms hold for the distance Æ:

(i) If x; y 2 P [ L and Æ(x; y) = k < n, then there is a unique path of

length k joining x to y.
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(ii) For every x 2 P [ L, we have n = maxfÆ(x; y) : y 2 P [ Lg.

Lemma 1.1.2 ([57], Lemma 1.3.6) A geometry � = (P;L; I) is a gener-

alized n-gon if and only if the incidence graph of � is a connected graph of

diameter n and girth 2n, such that each vertex lies on at least three edges.

1.1.3 A bunch of terminology

Let � be a generalized n-gon, n � 3. Two points p and q at distance 2

are called collinear, and we denote by pq the unique line joining p and

q. Dually, two lines L and M at distance 2 are called concurrent, and

the unique point p = L \M incident with both is called the intersection

point of L and M . For two elements x and y at distance 2, we also write

x ? y. Two elements x and y of � lying at maximal distance n are said

to be opposite. If two elements x and y of � lie at distance k < n, the

unique k-path between x and y is denoted by [x; y]. If k is even, x 1 y

denotes the unique element of [x; y] at distance k=2 from both x and y.

The unique element of [x; y] incident with x is called the projection of y

onto x, and denoted by projxy. By de�nition, we put projxx = x. When

it suits us, we consider a path as a set so that we can take intersections of

paths. For instance, if [x; y] = (x = x0; x1; : : : ; xi; xi+1; : : : ; xk = y) and

[x; z] = (x = x0; x1; : : : ; xi; x
0
i+1; x

0
` = z) with no xj equal to any x0j0 , for

some 0 < i � k; l and all j, i < j � k, and all j0, i < j0 � l, then we write

[x; y] \ [x; z] = [x; xi].

For any element x of �, and any integer i � n, we denote by �i(x) the set of

elements of � at distance i from x, and by �6=i(x) the set of elements of � not

at distance i from x. If � is a set of natural numbers, then ��(x) denotes the

set of elements z of � for which Æ(x; z) 2 �. If p is a point, the set �1(p) of

all lines through p is called a line pencil. Dually, if L is a line, the set �1(L)

of all points on L is called a point row. For a point x, the set x? := �2(x)

is called the perp of x. The perp of a set X of points is the set of points

collinear with every element of X. So X? =
T

x2X x?. For a point x of �,

we denote by x?? the set of points not opposite x.

A (weak) sub-n-gon �0 of a generalized n-gon is a subgeometry which is

itself a (weak) generalized n-gon. If every line pencil of �0 coincides with the

corresponding line pencil of �, the subpolygon �0 is called ideal. Dually, if

every point row of �0 coincides with the corresponding point row of �, the

subpolygon �0 is called full.
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Let � = (P;L; I) and �0 = (P 0;L0; I0) be two generalized n-gons. An iso-

morphism or collineation of � onto �0 is a bijection � : P ! P 0, inducing

a bijection of L onto L0 so that incidence and non-incidence is preserved,

i.e. pIL () p�I0L�, for all p 2 P and L 2 L. Lemma 1.3.14 of [57] states

that, if n � 4, any bijection from P onto P 0 preserving collinearity and non-

collinearity, extends to an isomorphism from � to �0. An anti-isomorphism

of � onto �0 is a collineation of � onto the dual �0
D
of �0. An automorphism

(anti-automorphism) of � is an isomorphism (anti-isomorphism) of � onto

itself.

We say that a generalized polygon � = (P;L; I) is embedded in the pro-

jective space PG(d; K ) if distinct points and lines of � are distinct points

and lines of PG(d; K ), with the natural incidence, and the point set of P

generates PG(d; K ).

1.2 Restrictions on the parameters

Theorem 1.2.1 (Feit & Higman [21]) Finite generalized n-gons, n � 3,

exist only for n 2 f3; 4; 6; 8g.

Lemma 1.2.2 ([57], 1.5.5) Let � = (P;L; I) be a �nite (weak) generalized

n-gon of order (s; t), with n 2 f3; 4; 6; 8g. Then we have

jPj =

8>><
>>:

s2 + s+ 1 if n = 3;

(1 + s)(1 + st) if n = 4;

(1 + s)(1 + st+ s2t2) if n = 6;

(1 + s)(1 + st)(1 + s2t2) if n = 8:

Dually,

jLj =

8>><
>>:

s2 + s+ 1 if n = 3;

(1 + t)(1 + st) if n = 4;

(1 + t)(1 + st+ s2t2) if n = 6;

(1 + t)(1 + st)(1 + s2t2) if n = 8:

The following theorem is a combination of results of Feit & Higman [21],

Higman [31] and Haemers & Roos [30].

Theorem 1.2.3 Let � be a �nite generalized n-gon of order (s; t).

� If n = 4, then s � t2 and t � s2.
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� If n = 6, then st is a square; s � t3 and t � s3.

� If n = 8, then 2st is a square, in particular s 6= t; s � t2 and t � s2.

Theorem 1.2.4 (Thas [38],[40],[41],[42]) Let �0 be an ideal weak sub-n-

gon of order (s0; t) of a �nite generalized n-gon � of order (s; t), with s0 6= s.

Then one of the following cases occurs.

� n = 4 and s � s0t and s � t � s0;

� n = 6 and s � s02t and s � t � s0;

� n = 8 and s � s0
2
t.

A �nite generalized hexagon of order (s; t) for which s = t3 or t = s3 is called

an extremal hexagon.

The following two properties are used in Chapter 3. A triad of points in a

generalized quadrangle is a triple of pairwise non-collinear points.

Proposition 1.2.5 (i) (Bose & Shrikhande [6]) Let � be a �nite gen-

eralized quadrangle of order (s; t) with t = s2. Then for every triad

fx; y; zg of points, there are exactly s + 1 points collinear with x; y

and z.

(ii) (Thas [40]) Let � be a �nite generalized quadrangle of order (s; t), and

�0 an ideal subquadrangle of order (s0; t) satisfying s = s0t. Then every

point of � not in �0 lies on a unique line of �0.

1.3 Some words on regularity

Let � be a generalized n-gon, and 2 � i � n
2
. If two elements x and y are

opposite, the set �i(x)\�n�i(y) = x
y

[i]
is called the distance-i-trace of y with

respect to x. For i = 2, it is convenient to call the distance-2-trace x
y

[2]
simply

a trace, and denote it by xy. The element x is distance-i-regular if distinct

distance-i-traces with respect to x have at most 1 element in common (i.e.

the distance i-traces with respect to x behave as lines, since they intersect

in 0,1 or all elements). The element x is regular if it is distance-i-regular,

for all 2 � i � n
2
. A generalized polygon is said to be point-distance-i-

regular respectively line-distance-i-regular if all points respectively all

lines are distance-i-regular. Instead of distance-i-regular, we sometimes use
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i-regular for short (note that no confusion with the notion of 3-regularity

in generalized quadrangles as de�ned in Payne & Thas [34] can occur, since

distance-3-regularity is not de�ned for generalized quadrangles). A regulus

is a distance-n
2
-trace x

y

[n
2
]
, which we also denote by hx; yi. If � is distance-

n
2
-regular, a regulus is determined by two of its elements u; v. In this case,

we denote by R(u; v) the unique regulus containing the elements u and v.

If v and v are points (lines), we also talk about the point regulus (line

regulus) through u and v.

Now let � be a point-distance-2-regular generalized hexagon, and p; q two

opposite points of �. De�ne the following geometry �(p; q). A point x of

� belongs to �(p; q) if x 2 yz or x 2 zy, with y 2 pq, z 2 qp, and y; z

opposite points. The lines of �(p; q) are the lines of � containing at least

two points of �(p; q). Incidence is natural. Then �(p; q) is the unique weak

non-thick ideal subhexagon of � containing p and q (see [57], Lemma 1.9.10).

Also, one proves that the point set of �(p; q) is the union of the point sets of

two projective planes �+(p; q) and ��(p; q). The points of �+(p; q) are the

points of �(p; q) at distance 0 or 4 from p; the lines of �+(p; q) are the traces

xy, where x is a point of ��(p; q), and y is a point of �+(p; q) opposite x.

Similarly for ��(p; q) = �+(q; p).

For later purposes, we mention the following result.

Theorem 1.3.1 (Van Maldeghem [56] A generalized octagon cannot be

point-distance-2-, nor point-distance-3-regular.

1.4 Generalized quadrangles

1.4.1 De�nition

We give an equivalent (more common) de�nition of generalized quadrangles.

A generalized quadrangle is a thick incidence geometry � = (P;L; I) such

that the following axioms are satis�ed:

(i) If p is a point of � not incident with the line L of �, then there exists

a unique point incident with L and collinear with p.

(ii) The geometry � contains at least one anti
ag.

We refer to axiom (i) as `the main axiom' for a generalized quadrangle.
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1.4.2 Classical generalized quadrangles

We mention some examples of classical1 generalized quadrangles, including

all �nite ones.

� Let Q be a non-singular quadric in PG(d; K ), with K a �eld, of Witt

index 2 (i.e. the quadric contains lines but no subspaces of higher di-

mension). The points and lines of the quadric form a (weak) generalized

quadrangle Q(d; K ). In the �nite case (putting K = GF(q)) only the

dimensions d = 3; 4; 5 occur. We then obtain a (weak) generalized

quadrangle of order (q; 1) (sometimes also called a grid), (q; q) and

(q; q2), respectively. All lines of these quadrangles are regular.

� Let H be a non-singular Hermitian variety in PG(d; L ), with L a skew

�eld, of Witt index 2. The points and lines of the Hermitian vari-

ety form a generalized quadrangle H(d; L ). In the �nite case (putting

L = GF(q2)) only the dimensions d = 3; 4 occur. We then obtain a

generalized quadrangle of order (q2; q) and (q2; q3), respectively.

� Let � be a symplectic polarity in PG(3; K ), K a �eld. The points

of PG(3; K ) together with the absolute lines of � de�ne a generalized

quadrangle W(K ), called the symplectic quadrangle. In the �nite case

(putting K = GF(q)) we obtain a quadrangle of order (q; q) (denoted

W(q)).

One has the following isomorphisms between the �nite classical generalized

quadrangles (see Payne & Thas [34]):

� Q(4; q) �= W(q)D

� W(q) �= W(q)D () q is even

� Q(5; q) �= H(3; q2)D.

1.4.3 Generalized quadrangles of order s = 2.

For later purposes, we mention the following results.

� By a result of Cameron [10], a generalized quadrangle of order (2; t) is

necessarily �nite, and hence has t = 2 or t = 4.

1For a motivation of the word `classical' we refer to [57], Chapter 2.
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� There is a unique generalized quadrangle of order 2, namely the sym-

plectic quadrangle W(2). One has the following well-known construc-

tion of this generalized quadrangle. Let S = f1; 2; : : : ; 6g. A duad is

an unordered pair ij of distinct elements of S. A syntheme is a set

fij; kl;mng of three duads for which fi; j; k; l;m; ng = S. Now the

geometry � = (P;L; I) with as points the duads of S, as lines the syn-

themes and symmetrized containment as the incidence relation, is the

unique generalized quadrangle of order 2.

� There is a unique generalized quadrangle of order (2; 4), namely the

quadrangle Q(5; 2).

1.4.4 The construction of Payne

Let � = (P;L; I) be a �nite generalized quadrangle of order q admitting a

regular line L. We de�ne the following geometry �0 = (P 0;L0; I0). The lines

of �0 are the lines of � di�erent from L and not intersecting L. The points

are of two types. Points of type (A) are the points of � not on the line L.

Points of type (B) are the distance-2-traces containing L. Incidence is the

incidence of � if de�ned, and symmetrized containment otherwise. Then the

geometry �0 is a generalized quadrangle of order (q + 1; q � 1).

1.5 Classical generalized hexagons and octagons

1.5.1 Generalized hexagons

The examples of generalized hexagons given below are called `classical', be-

cause they live on classical objects (namely quadrics) in projective space.

They �rst appeared in Tits [49]. We sketch this construction, for proofs we

refer to [57], section 2.4.

Let Q+(7; K ) be the non-singular hyperbolic quadric in PG(7; K ) (with stan-

dard equation X0X1 + X2X3 +X4X5 +X6X7 = 0). This quadric has Witt

index 4, i.e. it contains 3-spaces (called the `generators'), but no subspaces

of higher dimension. The generators can be divided into two families: two

generators belong to the same family if they are disjoint or they intersect

in a line. Any plane of Q+(7; K ) is contained in exactly two generators, one

of each family. Now one can de�ne the following geometry 
(K ). There

are four types of elements. The 0-points are the points of Q(7; K ), the lines
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Figure 1.1: the D4-diagram and a triality

are the lines of Q+(7; K ), the 1-points are the 3-spaces of the �rst family of

generators and the 2-points are the 3-spaces of the second family. Denote by

P(i) the set of i-points. Incidence is containment if de�ned, and a 1-point

and a 2-point are incident in 
(K ) if the corresponding 3-spaces intersect in

a plane of the quadric. The diagram of this geometry 
(K ) is the so-called

D4-diagram (for an introduction to the theory of diagrams, see for instance

Buekenhout [9]). One sees that the 0-,1- and 2-points play the same role

in this geometry. In [57], section 2.4.6, it is explained how one can label

the 1- and the 2-points in the same way as the 0-points, i.e. with an 8-tuple

(x0; x1; : : : ; x7).

A triality of 
(K ) is a map

� : L ! L; P(0)
! P

(1); P(1)
! P

(2); P(2)
! P

(0);

preserving incidence and such that �3 is the identity.

An i-point p is called absolute if pIp�, a line is absolute if it is �xed by �.

Now one shows that if � satis�es a weak additional assumption (basically

saying that there are enough absolute points and lines), the geometry with

as points the absolute i-points for a �xed i, and as lines the absolute lines,

is a generalized hexagon.

Let � be an automorphism of the �eld K of order 1 or 3, and consider the

following map:

�� : P
(i)
! P

(i+1) : (xj)j2J ! (x�j )j2J ; i = 0; 1; 2 mod 3:

Then �� is a triality, and the associated geometry of absolute i-points and

lines is a generalized hexagon of order (jK j; jK (�)j), with K
(�) the sub�eld of K

consisting of those elements of K that are �xed by �. If � = 1, the associated

hexagon is called the split Cayley hexagon H(K ). For K = GF(q), this

hexagon is denoted by H(q). Its order is (q; q). If � 6= 1, the associated
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hexagon is called the twisted triality hexagon T(K ; K (�); �). The dual

of this hexagon is denoted by T(K (�); K ; �). In the �nite case, putting K =

GF(q3), � is necessarily the map x ! xq, 8x 2 GF(q3). The corresponding

hexagon is denote by T(q3; q), and has order (q3; q). Its dual is denoted by

T(q; q3) and has order (q; q3).

Note that Tits [49] classi�es all trialities of the geometry 
(K ) having at least

one absolute point. The only trialities producing thick generalized hexagons

are the ones given above (the original de�nition of Tits of a generalized

hexagon was weaker, such that it included also the geometries of absolute

points and lines of the other trialities).

There are two other types of generalized hexagons that are also said to be

classical, namely the mixed hexagons H(K ; K 0) and the hexagons of type 6D4

(and their duals). These hexagons are closely related to split Cayley hexagons

over a �eld with characteristic 3 and to twisted triality hexagons respectively

(they arise from them by a generalization in the choice of the coordinates,

see [57], 3.5.3 and 3.5.9), but they do not exist in a �nite version however.

In the following, when talking about the �nite classical hexagons, we will

always mean the hexagons H(q) and T(q3; q). Their duals H(q)D and T(q; q3)

are referred to as the �nite dual classical hexagons. We now list some

properties of the classical hexagons.

� The split Cayley hexagon H(K ) is selfdual if and only if K is a perfect

�eld of characteristic 3.

� All points of a split Cayley hexagon H(K ) are regular. All lines are

regular if and only if the �eld K has characteristic 3.

� All points and lines of a mixed hexagon are regular.

� All points of a twisted triality hexagon or a hexagon of type 6D4 are

regular. No line of such a hexagon is distance-2-regular.

Apart from the examples of generalized hexagons given above, other impor-

tant examples are the ones related to the exceptional groups of type E6 and

E8. Also these ones only exist in the in�nite case.

Tits' description of the split Cayley hexagon

All the points of the split Cayley hexagon represented on the quadricQ+(7; K )

lie in fact in a certain hyperplane 
 of PG(7; K ). Conversely, all the points of

Q
+(7; K ) lying in this hyperplane 
 are points of the hexagon. One now ob-

tains the following description of the split Cayley hexagon H(K ). The points
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of the hexagon are all the points of a non-singular parabolic quadric Q(6; K )

in PG(6; K ) with standard equation

X0X4 +X1X5 +X2X6 = X2
3 :

The lines of the hexagon are exactly the lines of Q(6; K ) whose Grassmann

coordinates satisfy the following six linear equations:

p12 = p34 p54 = p32 p20 = p35
p65 = p30 p01 = p36 p46 = p31:

We now list some `translations' of objects existing in the hexagon H(K ) to

this representation on the quadric Q(6; K ).

� Two points in the hexagon are opposite if and only if they are non-

collinear on the quadric (also the twisted triality hexagon has this

property).

� A line of the quadric is either a line or a distance-2-trace of the hexagon.

� The points collinear in the hexagon with a point p are exactly the points

of a �xed plane through p lying on the quadric. (The twisted triality

hexagon has a similar property: the points collinear in the hexagon with

a point p are contained in a plane through p lying on the quadric.)

� A line regulus in the hexagon is also a regulus (one set of generators of

a hyperbolic quadric Q+(3; K )) on the quadric. A point regulus in the

hexagon consists of the points of a plane intersecting the quadric in a

non-singular conic.

� The points and lines of a thin ideal subhexagon �(p; q) (see section 1.3)

all lie in a hyperplane intersecting the quadric Q(6; q) in a non-singular

hyperbolic quadric Q+(5; q). The `planes' �+(p; q) and ��(p; q) are

indeed projective planes lying on the quadric Q(6; q).

The following result is due to Cohen & Tits [11].

Theorem 1.5.1 A �nite generalized hexagon of order (s; t) with s = 2 is

isomorphic to one of the classical hexagons H(2), H(2)D or T(2; 8).
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1.5.2 Generalized octagons

The classical generalized octagons are generally called the Ree-Tits oc-

tagons. In the �nite case, they only exist over �elds GF(q) with q = 22e+1,

and have - up to duality - order (q; q2). There is no elementary description

known of these classical octagons. In [57], section 2.5, a construction starting

from a building of type F4 is given. In Joswig & Van Maldeghem [32], one

can �nd a description with coordinates.

1.6 Groups

Projectivities

For two opposite elements x and y of a generalized n-gon �, the projection

map de�nes a bijection (denoted by [x; y]) from the set �1(x) to the set �1(y).

For elements x0; : : : ; xk with xi opposite xi+1 for 0 � i < k, the composition

[x0;x1] : : : [xk�1;xk] is called a projectivity from x0 to xk. If x0 = xk, then

we obtain a permutation of the set �1(x0). The set of all such permutations

of �1(x0) is a group, called the group of projectivities of x0 and denoted

by �(x0).

Elations and homologies

Let � be a generalized n-gon, and 
 a �xed path of length n�2. A 
-elation

(or elation for short) is a collineation of � �xing all elements incident with

at least one element of 
. Let v; w be two opposite elements of �. A fv; wg-

homology is a collineation �xing every element incident with v or w.

The Moufang property

Let 
 = (v1; v2; : : : ; vn�1) be a �xed (n � 2)-path in a generalized n-gon �.

Let v0 be a �xed element incident with v1, v0 6= v2, and denote by V the set

of all elements incident with v0 di�erent from v1. Let vn be a �xed element

incident with vn�1, vn 6= vn�2, and denote by A the set of all apartments

containing v0; 
 and vn. Then the set of all 
-elations forms a group G

acting semi-regularly on both V and A (see [57], Proposition 4.4.3). If G

acts transitively on the set V (or equivalently on the set A), then the path 


is called a Moufang path. If all (n� 2)-paths are Moufang paths, � is said

to be a Moufang polygon. For a Moufang polygon, the collineation group

generated by all elations is often called the little projective group of �.

A famous result of Tits [51], [53] and Weiss [58] states that Moufang n-

gons exist only for n 2 f3; 4; 6; 8g. All Moufang n-gons are classi�ed, see

Tits & Weiss [54]. In particular, all classical generalized polygons are Mo-

ufang polygons. The Moufang generalized hexagons are exactly the hexagons
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H(K ), T(K ; K (�); �) and their duals, the mixed hexagons, the hexagons of

type 6D4 and the hexagons related to the exceptional groups E6 and E8.

The split Cayley hexagon

For later purposes, we mention that the little projective group of the hexagon

H(K ) is the group G2(K ). It is exactly the group of automorphisms of this

generalized hexagon that are induced by the group PGL(7; K ) of linear trans-

formations of PG(6; K ) (the full automorphism group of H(K ) is isomorphic

to the semi-direct product G2(K ) : Aut(K )). In the �nite case (putting

K = GF(q)), we have

jG2(q)j = q6(q6 � 1)(q2 � 1):

Polygons arising from a BN-pair

Let � be a generalized polygon, and G a group of automorphisms of �.

Suppose that G acts transitively on the ordered apartments of �. Then one

says that � is a Tits polygon with respect to G. Fix an apartment � and

a 
ag F in �. Denote by B the stabilizer in G of the 
ag F and by N the

stabilizer in G of the (unordered) apartment �. Then one says that (B;N)

is a Tits system in G for �. Conversely, from such a Tits system, one can

reconstruct the polygon � (see Tits [50]). A polygon arising in this way is

called a polygon arising from a BN-pair.

Weyl group

Consider an apartment � of a generalized n-gon �. The group of symmetries

of � is the dihedral groupD2n. Let fp; Lg be a 
ag of �, and denote by sp (sL)

the re
ection about p (L). Then D2n can be seen as the Coxeter group with

generators sp and sL, i.e. D2n = hsp; sLjj(spsL)
n = (sLsp)

n = 1; s2p = s2L = 1i.

Using the language of buildings, D2n is the Weyl group of the apartment �.

This allows us to de�ne the Coxeter distance between 
ags of �. Let f1 and

f2 be two 
ags of �, and �0 an apartment containing f1 and f2. Then the

Coxeter distance Æ�(f1; f2) between f1 and f2 is the unique element of D2n

mapping f1 to f2.

1.7 Ovoidal subspaces

An ovoid O of a generalized n-gon �, n even, is a set of mutually opposite

points such that every element of � is at distance at most n=2 from at least

one element of O. A spread of a generalized polygon is the dual of an ovoid.

Let � be a generalized quadrangle. Then equivalently, an ovoid O of � is a

set of points such that each line of � is incident with a unique point of O. A
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regular ovoid of a generalized quadrangle of order (s; t) is an ovoidO having

the property that for any two points o1 and o2 of O, jfo1; o2g
??j = t+1 and

fo1; o2g
?? � O. A geometric hyperplane H of a generalized quadrangle

is a proper subset of the point set such that for an arbitrary line L, either

all the points of L belong to H, or jL \Hj = 1.

Let � be a generalized hexagon. Reformulating the general de�nition, an

ovoid O of � is a set of mutually opposite points such that each point of �

not in O is collinear with a unique point of O. The �nite hexagon T(q3; q)

and its dual T(q; q3) do not admit ovoids (by a counting argument). In

fact, A. O�er recently proved that any �nite generalized hexagon admitting

an ovoid necessarily has order (q; q). An ovoid of a hexagon of order (q; q)

contains q3+1 points. Thas [44] gives the following construction of a spread

of the hexagon H(q), which works for all possible values of q.

Let H(q) be de�ned on the quadric Q = Q(6; q), and let 
 be a hyperplane

of PG(6; q) intersecting Q in a non-singular elliptic quadric Q�(5; q). Then

the lines of H(q) lying in 
 constitute a spread of both the hexagon H(q) and

the quadrangle Q(5; q). This spread is called the Hermitian or classical

spread of the split Cayley hexagon. One has the following characterization

of this spread.

Theorem 1.7.1 (Bloemen, Thas & Van Maldeghem [4], Theorem 9)

If S is a spread of H(q) for which holds that S is the union of q2 line-reguli

through L, for each L 2 S, then S is the Hermitian spread.

For more constructions of ovoids of the classical hexagons, we refer the reader

to Bloemen, Thas & Van Maldeghem [4].

An ovoidal subspace O of a generalized hexagon � is a proper subset of the

point set of � such that each point of � not in O is collinear with a unique

point of O. By Brouns & Van Maldeghem [7], an ovoidal subspace is either

an ovoid, (the point set of) a full subhexagon, or the set of points at distance

1 or 3 from a given line M . Dually, one de�nes a dual ovoidal subspace.

A dual ovoidal subspace is either a spread (type S), (the line set of) an ideal

subhexagon (type H), or the set of lines at distance 1 or 3 from a given point

p (type P).

1.8 Characterizations of classical hexagons

Ronan's characterizations using regularity

Theorem 1.8.1 (Ronan [35]) If � is a point-distance-2-regular generalized

hexagon, then all points and lines are distance-3-regular and � is a Moufang
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hexagon. Conversely, up to duality, all points of any Moufang hexagon are

regular.

Every �nite Moufang hexagon is classical or dual classical. This follows from

a group-theoretical result of Fong & Seitz [22], [23], or alternatively from the

classi�cation of all Moufang polygons of Tits & Weiss [54]. Hence one has

the following:

Theorem 1.8.2 A �nite generalized hexagon is point-distance-2-regular if

and only if it is classical.

Theorem 1.8.3 Ronan [36] A �nite extremal hexagon is classical if and

only if it is distance-3-regular.

Let � be a generalized hexagon, and x a point of �. Let y and z be two points

opposite x and at distance 4 from each other, such that the point y1 z lies

at distance 4 from x. Then the set xy \ xz is called an intersection set.

By de�nition, an intersection set is never empty. (Note that our de�nition of

intersection set is slighty di�erent from the one in Ronan [37].) An intersec-

tion set of H(q) or T(q3; q) contains 1 or q + 1 points. An intersection set of

H(q)D, q not a power of 3, or T(q; q3) contains 2, respectively q2 + 1 points.

Theorem 1.8.4 (Ronan [37]) Let � be a distance-3-regular generalized

hexagon.

(i) If for every intersection set xy \ xz, one has jxy \ xzj = 1 or xy = xz,

then � is point-distance-2-regular and hence a Moufang hexagon.

(ii) If for every intersection set xy \ xz, one has jxy \ xzj > 1, then � is

line-distance-2-regular and hence a Moufang hexagon.

The characterizations above restricted to the �nite case are summarized in

Figure 1.2.

Hyperbolic and imaginary lines

Let � be a generalized n-gon, and x; y two non-collinear points of � at mutual

distance 2j. The distance-j hyperbolic line H(x; y) is the set of points

not opposite all elements not opposite x and y. If x and y are opposite, one

also speaks of an imaginary line, notation I(x; y). In fact, as shown in van

Bon, Cuypers & Van Maldeghem [55], a distance-j hyperbolic line is exactly

the intersection of all distance-j traces containing x and y. A distance-j
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Figure 1.2: The �nite Moufang hexagons

hyperbolic line H(x; y) is called long if the projection of H(x; y) onto any

element L of � at distance n� 1 from all points of H(x; y) is surjective onto

�1(L) whenever it is injective. One proves that a long hyperbolic line H(x; y)

coincides with any distance-j-trace containing any two of its points. For a lot

of results concerning hyperbolic lines in generalized n-gons, we refer to [55].

We now restrict to hexagons.

Theorem 1.8.5 (van Bon, Cuypers & Van Maldeghem [55])

(i) All distance-2 hyperbolic lines of a generalized hexagon � are long if

and only if � is isomorphic to H(K ).

(ii) All imaginary lines of a generalized hexagon � are long if and only if

� is isomorphic to H(K 0), with K
0 a perfect �eld of characteristic 2.

Characterizations using subpolygons

Theorem 1.8.6 (i) (Van Maldeghem [57], Corollary 6.3.7) A gen-

eralized hexagon � is point-distance-2-regular (and hence a Moufang

hexagon) if and only if every ordinary heptagon in � is contained in at

least one ideal split Cayley hexagon.

(ii) (De Smet & Van Maldeghem [20]) A �nite generalized hexagon is

isomorphic to T(q3; q) if and only if every ordinary heptagon is con-

tained in a proper ideal subhexagon.

A characterization using span-regularity

A point p of a generalized hexagon is called span-regular if p is distance-2-

regular, and if for every point x collinear with p, and every two points a and
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b opposite x such that p 2 xa\xb, the condition jxa\xbj � 2 implies xa = xb.

The following characterization weakens the conditions of Theorem 1.8.1 in

the �nite case.

Theorem 1.8.7 (De Smet & Van Maldeghem [20], Brouns & Van

Maldeghem [7]) Let � be a �nite hexagon containing a dual ovoidal subspace

all the points of which are span-regular. If any two opposite points of � are

contained in a thin ideal subhexagon, then � is classical.

A characterization using intersections of traces

Theorem 1.8.8 (Thas [43]) Let � be a �nite generalized hexagon of order

(s; t), s � t. Then � is isomorphic to H(q) if and only if any two distance-2-

traces with respect to the same point meet in at least one point.

For other characterizations, including some algebraic ones, we refer the reader

to [57], Chapter 6.

1.9 Coordinatization

Generalized polygons can be coordinatized in a way similar to the projective

planes. In this thesis, we will only need coordinatization of the classical

generalized hexagons. The aim of this section is to give a rough idea how the

labelling of the elements works (in the case of hexagons), and to show how

one works with these coordinates. For a detailed description of the general

coordinatization theory, we refer the reader to [57], Chapter 3.

1.9.1 Labelling of the elements

Let � be a generalized hexagon of order (s; t), and choose a �xed apartment �,

called the hat-rack of the coordinatization. The elements of � are denoted

as in Figure 1.3. Let R1 and R2 be two sets of cardinality s and t respectively,

both containing a zero element, but no symbol 1. The elements of the hat-

rack are given coordinates as indicated on Figure 1.3 (coordinates of points

will be written in parentheses, those of lines in square brackets). The points

incident with L0, di�erent from x0 or x1 get a label (a), a 2 R1 n f0g in

such a way that there is a bijection between R1 and �1(L0)nfx0g. Similarly,

the points on the line L1 di�erent from x0 get a label (0; b), and the points



1.9 Coordinatization 19

x0 = (1)

L0 = [1]

(a1)

x1 = (0)

L2 = [0; 0]

x3 = (0; 0; 0)L4 = [0; 0; 0; 0](0; 0; 0; 0; 0) = x5

L5 = [0; 0; 0; 0; 0]

(0; 0; 0; 0) = x4

[0; 0; 0] = L3

(0; 0) = x2 L1 = [0]

[0; 0; 0; 0; l2]

(0; 0; 0; a3)

[0; 0; l4]

(0; a5)

y0

Figure 1.3: The hat-rack of the coordinatization

incident with L2 di�erent from x1 are labelled (0; 0; a0) 2. Let y = (a) be a

point on L0 di�erent from x0. Then the projection y0 of y onto L5 gets label

(a; 0; 0; 0; 0). Similarly, the points of L3 di�erent from x4 and the points of L4

di�erent from x3 are labelled (0; 0; 0; a0) and (0; 0; 0; 0; b) respectively. Dually

(now using the set R2) we give coordinates to the lines incident with the

points of �. In this way, all elements incident with an element of the hat-rack

� are already given coordinates. Now let y0 be an arbitrary point opposite

the point x0, and put (y0 = z5;M4; z3;M2; z1; L0) the 5-path between y0 and

L0. Suppose z1 = (a1). Let a3 (a5) be the last coordinate of the projection of

z3 (z5) onto the line L3 (L1), and l2 (l4) the last coordinate of the projection

of M2 (M4) onto the point x4 (x2). Then we label the point zi, i = 3; 5 by

(a1; l2; : : : ; ai) and the line Mi, i = 2; 4 by [a1; : : : ; li] (see Figure 1.3).

In this way, all the points opposite x0, and all the elements of � for which the

projection onto x0 is the line L0 are given coordinates. Dually, all the lines

opposite L0 are labelled, hence also all other elements of �. For example,

consider a point y collinear with x0, not on the line L0. The line x0y has co-

ordinate [k]. The projection of y onto the line L4 has coordinate (0; 0; 0; 0; b),

and y itself gets the label (k; b).

Now each i-tuple, i 2 f0; 1; : : : ; 5g (calling (1) and [1] 0-tuples) consisting

alternately of elements of R1 and R2 corresponds to exactly one element

of P [ L and conversely. Also, if the number of coordinates of two di�erent

2In [57], it is explained how the labelling of the points on L1 and L2 can be related

to the labelling of the points on L0. We do not assume this `normalization' here. This

translates in the fact that we will have to make more choices - compared to [57] - to

determine the coordinates of H(K ) in the next paragraph.
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elements di�ers by at least 2, these elements are not incident; if the number of

coordinates di�ers by 1, the elements are incident if and only the coordinate-

tuple of one of these elements is obtained from the coordinate-tuple of the

other one by deleting the last coordinate. The only incident elements with

the same number of coordinates di�erent from 5 are (1) and [1]. To obtain

a complete description of the incidence in terms of coordinates, we only need

a criterion to decide when two elements with 5 coordinates are incident. This

is given by the operations 	i and �i, i = 1; 2; 3; 4. Let p be a point with

coordinates (a; `; a0; `0; a00) and L a line with coordinates [k; b; k0; b0; k00]. Then

	i(k; a; `; a
0; `0; a00) gives the (n� i)-th coordinate of the projection of the line

[k] onto the point p. Dually, �i(a; k; b; k
0; b0; k00) gives the (n�i)-th coordinate

of the projection of the point (a) onto the line L. Using these operations, it

can be expressed when the point p and the line L are incident (see Chapter 3

of [57]).

1.9.2 Coordinates of classical generalized hexagons

Consider the split Cayley hexagon H(K ). This hexagon lies on the quadric

with equation X0X4+X1X5+X2X6 = X2
3 in PG(6; K ). It is convenient to be

able to go from the 6-dimensional space to the hexagon and back. Therefore,

we choose coordinates in the following way (putting R1 = R2 = K ).

(1; 0; 0; 0; 0; 0; 0) ! (1);

(a; 0; 0; 0; 0; 0; 1) ! (a);

(0; 0; 0; 0; 0; 1; 0) ! (0; 0);

(0; 1; 0; 0; 0; 0; 0) ! (0; 0; 0);

(0; 0; 1; 0; 0; 0; 0) ! (0; 0; 0; 0);

(0; 0; 0; 0; 1; 0; 0) ! (0; 0; 0; 0; 0);

(b; 0; 0; 0; 0; 1; 0) ! (0; b);

(0; 1; 0; 0; 0; 0;�a0) ! (0; 0; a0);

X1 = X2 = X3 = X4 = X5 = 0 ! [1];

X1 = X2 = X3 = X4 = X6 + kX5 = 0 ! [k];

X0 = X2 = X3 = X4 = X5 = 0 ! [0; 0];

X1 = X3 = X4 = X6 = X0 = 0 ! [0; 0; 0];

X0 = X2 = X3 = X5 = X6 = 0 ! [0; 0; 0; 0];

X0 = X1 = X3 = X5 = X6 = 0 ! [0; 0; 0; 0; 0];

X0 + lX1 = X2 = X3 = X4 = X5 = 0 ! [0; l];

X0 � k0X2 = X1 = X3 = X4 = X6 = 0 ! [0; 0; k0]:
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POINTS

Coordinates in H(K ) Coordinates in PG(6; K )

(1) (1; 0; 0; 0; 0; 0; 0)

(a) (a; 0; 0; 0; 0; 0; 1)

(k; b) (b; 0; 0; 0; 0; 1;�k)

(a; l; a0) (�l � aa0; 1; 0;�a; 0; a2;�a0)

(k; b; k0; b0) (k0 + bb0; k; 1; b; 0; b0; b2 � b0k)

(a; l; a0; l0; a00) (�al0 + a0
2
+ a00l + aa0a00;�a00;�a;�a0 + aa00;

1; l + 2aa0 � a2a00;�l0 + a0a00)

LINES

Coordinates in H(K ) Coordinates in PG(6; K )

[1] h(1; 0; 0; 0; 0; 0; 0); (0; 0; 0; 0; 0; 0; 1)i

[k] h(1; 0; 0; 0; 0; 0; 0); (0; 0; 0; 0; 0; 1;�k)i

[a; l] h(a; 0; 0; 0; 0; 0; 1); (�l; 1; 0;�a; 0; a2; 0)i

[k; b; k0] h(b; 0; 0; 0; 0; 1;�k); (k0; k; 1; b; 0; 0; b2)i

[a; l; a0; l0] h(�l � aa0; 1; 0;�a; 0; a2;�a0);

(�al0 + a0
2
; 0;�a;�a0; 1; l + 2aa0;�l0)i

[k; b; k0; b0; k00] h(k0 + bb0; k; 1; b; 0; b0; b2 � b0k);

(b0
2 + k00b;�b; 0;�b0; 1; k00;�kk00 � k0 � 2bb0)i

Table 1.1: Coordinatization of H(K ).

This determines the coordinates of each point and line of H(K ). The complete

`dictionary' for translation between the hexagon and the projective space is

given in Table 1.1 (where hp1; p2i denotes the line through the points p1 and

p2). The operations 	i and �i are the following:

8>><
>>:

	1(k; a; l; a
0; l0; a00) = a3k + l � 3a00a2 + 3aa0;

	2(k; a; l; a
0; l0; a00) = a2k + a0 � 2aa00;

	3(k; a; l; a
0; l0; a00) = a3k2 + l0 � kl � 3a2a00k � 3a0a00 + 3aa00

2
;

	4(k; a; l; a
0; l0; a00) = �ak + a00;

and 8>><
>>:

�1(a; k; b; k
0; b0; k00) = ak + b;

�2(a; k; b; k
0; b0; k00) = a3k2 + k0 + kk00 + 3a2kb+ 3bb0 + 3ab2;

�3(a; k; b; k
0; b0; k00) = a2k + b0 + 2ab;

�4(a; k; b; k
0; b0; k00) = �a3k + k00 � 3ba2 � 3ab0:

A similar table can be given for the coordinatization of the twisted triality

hexagon. We will only need the coordinatization of T(q3; q) once in this
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thesis, and refer to [57], Table 3.4 for the `translations' used. Clearly, to

coordinatize the duals of these hexagons, one only has to replace round and

square brackets in the coordinatization above. Finally we remark that for

a point p of the hexagon H(K ) or T(K ; K (�) ; �), the equations of the plane

of the quadric containing p? can be calculated explicitely, see for instance

Thas & Van Maldeghem [46].

Example

Let � = H(q), q even, q 6= 2, coordinatized as above. Suppose we are given

the points p and p0 with coordinates (a; 0; 0; 0) and (c; 0; d; 0; 0) respectively,

a; c; d 2 GF(q) n f0g. Then

(a; 0; 0; 0) ! (0; a; 1; 0; 0; 0; 0);

(c; 0; d; 0; 0) ! (d2; 0; c; d; 1; 0; 0):

The points not opposite the point p0 in � (which are the points of the quadric

collinear on the quadric with p0) lie in the hyperplane 
 with equation X0 +

d2X4 + cX6 = 0, hence Æ(p; p0) � 4. Since the point (a; 0) (corresponding

to the point (0; 0; 0; 0; 0; 1; a) in PG(6; q)) is collinear with p but opposite p0,

Æ(p; p0) = 4. We now look for the projection L of p0 onto p. The line L has

coordinates [a; 0; 0; 0; x], and every point of L lies at distance � 4 from p0.

An arbitrary point on L di�erent from (a; 0; 0; 0) has hexagon-coordinates

(t; at3+x; at2; a2t3+ax; at) (this is obtained by using the expressions for the

�i to calculate the coordinates of the projection of (t) onto the line L). Now

expressing that such a point is contained in 
 for all t 2 GF(q), we obtain

x = d2

a
.

1.10 More geometries

A strongly regular graph (notation srg(v; k; �; �)) is a graph with v ver-

tices such that

(i) every vertex is adjacent to exactly k vertices;

(ii) for any two adjacent vertices x and y, there are exactly � vertices

adjacent to both x and y;

(iii) for any two non-adjacent vertices x and y, there are exactly � vertices

adjacent to both x and y.

The complement of a strongly regular graph G with parameters (v; k; �; �)

is denoted by GC , and is again a strongly regular graph with parameters

(v; v � k � 1; v � 2k + �� 2; v � 2k + �).
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An association scheme is a pair (X;R) with X a �nite set and R =

(R0; R1; : : : ; Rd) a partition of X �X such that the following conditions are

satis�ed.

(i) R0 = f(x; x)jx 2 Xg

(ii) The relations Ri are symmetric (i.e., (x; y) 2 Ri ) (y; x) 2 Ri).

(iii) There exist integers pijk, called the intersection numbers, having the

following property: for all (x; y) 2 Ri, there exist exactly p
i
jk elements

z 2 X such that (x; z) 2 Rj and (y; z) 2 Rk.

For an association scheme (X;R), the matrices Li with (Li)jk = pijk are

called the intersection matrices. De�ne the matrix � =diag(p000; : : : ; p
0
dd).

Then in Brouwer, Cohen & Neumaier [8], section 2.2, it is shown that the

matrices Li have d + 1 common eigenvectors. We denote these eigenvectors

(normalized such that (ui)0 = 1) with u0; : : : ; ud. Then de�ne vi = �(ui),

fi = jXj=(ui; vi) and qijk =
P

l p
0
ll(ui)l(uj)l(uk)l. The numbers fi are called

the multiplicities of the association scheme, and are necessarily integers

(since they arise as multiplicities of eigenvalues of the adjacency matrices,

see again [8], section 2.2).

Theorem 1.10.1 (Krein conditions [8], Theorem 2.3.2)

qijk � 0, for 0 � i; j; k � d.
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Chapter 2

Characterizations of (dual)

classical generalized hexagons

2.1 Introduction

In the �rst section, we give a characterization of the �nite classical hexagons

de�ned over a �eld of characteristic two. This characterization is based on a

property of these hexagons that was proved in Thas & Van Maldeghem [45],

saying that no point of the hexagon can lie `far away' from all the points of

a point regulus. We formulate this property for an arbitrary �nite polygon

satisfying s � t, obtaining in this way a generalization of an existing charac-

terization of the generalized quadrangleW(q). The obtained characterization

excludes all �nite octagons.

We then start from the following observation. Fix a point regulus R in

a �nite (dual) classical hexagon, and a line L lying at distance 3 from a

point x of R and at distance 5 from all the points of R n fxg. In the case

of the split Cayley hexagon over a �eld of characteristic 2, all the points

of R n fxg project onto the same point of L. By asking the property just

mentioned for lines L in a particular position with respect to the regulus R,

we obtain a characterization of the split Cayley hexagon over a �nite �eld

of even characteristic. In fact, this characterization weakens the condition

25
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of `having long imaginary lines', as de�ned in van Bon, Cuypers & Van

Maldeghem [55]. In the case of the dual classical hexagons, and the classical

hexagons over a �eld of odd characteristic, the projection of the points of

R onto L determines a bijection. We use this to obtain a characterization

of all dual classical hexagons over a �nite �eld of even characteristic, and a

characterization of some extremal hexagons.

In a classical hexagon, all intersection sets containing at least two points,

contain t + 1 points. In a dual classical hexagon however, the size of an

intersection set containing at least two points, is 1 + t=q (with (q; t) the

order of the hexagon). One could now ask whether a generalized hexagon for

which all intersection sets have size 1+ t=q, is necessarily dual classical. This

condition seems to be too loose to characterize these hexagons. Instead, we

consider intersections of traces that are in a slightly more general position

than intersection sets (called `(3,4)-position' later on), also containing 1+t=q

points. In this way, we do obtain a characterization of all �nite dual classical

hexagons.

Payne & Thas [34] de�ne the notion of anti-regular point in a generalized

quadrangle. It is a conjecture that all �nite anti-regular generalized quad-

rangles are isomorphic to the dual of W(q), q odd. We generalize this notion

for hexagons, and prove that all �nite anti-regular generalized hexagons are

isomorphic to the dual of H(q), q not a power of three.

In Ronan [35] the point-distance-2-regular hexagons are characterized as fol-

lows: if a generalized hexagon is 3-regular, and all intersection sets behave as

they should, then the points are 2-regular (see Theorem 1.8.4). We weaken

the conditions of this characterization in two ways. First, we keep the as-

sumption on the intersection sets, but ask the 3-regularity only for a certain

subset of the points (namely for the points of an ovoidal subspace). Secondly,

we start from a 3-regular hexagon, but only ask that all intersection sets with

respect to a point in a certain subset (namely the points on lines of a dual

ovoidal subspace) have the right size. The characterizations of the �rst three

sections of this chapter are contained in Govaert [24] and Govaert & Van

Maldeghem [25] and [26].

In the last section, we turn our attention to the Hermitian spread of the

�nite split Cayley hexagon. This spread arises by intersecting the underlying

quadric Q with a hyperplane intersecting Q in an elliptic quadric Q�(5; q).

Since the points and lines of Q�(5; q) form a generalized quadrangle, we

obtain a generalized quadrangle �S `hidden' inside our hexagon. This quad-

rangle can be described using the spread (for example, the points of the

quadrangle are exactly the points on spread lines). So the geometry �S can
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be de�ned for an arbitrary spread S of the split Cayley hexagon. The fact

that �S is a generalized quadrangle is equivalent with a certain con�guration

of spread lines that is not allowed, and turns out to characterize the Hermi-

tian spread.

For an arbitrary spread, one can consider the group of projectivities induced

by the spread lines, i.e. considering only those projectivities that use spread

lines. For the Hermitian spread, the associated group is a Singer group. We

prove that this group characterizes the Hermitian spread as a spread of H(q).

The results of this section will appear in Govaert & Van Maldeghem [27].

2.2 Characterizations of H(q) and T(q3; q), q

even

Theorem 2.2.1 Let � be a �nite generalized hexagon. Then � is isomorphic

to H(q) or to T(q3; q), both with q even, if and only if ��4(x) \ ��3(L) \

��3(M) is nonempty for any point x and any pair of lines L;M of �.

Proof. Let �rst � be isomorphic to H(q) or to T(q3; q), both with q even, and

L;M two lines of �. Let for any point x of �, Sx = ��4(x)\��3(L)\��3(M).

If Æ(L;M) � 2, then projLx 2 Sx. If Æ(L;M) = 4, then, with N = L1M ,

the point projNx 2 Sx. If �nally L and M are opposite, then it is proved in

Thas & Van Maldeghem [45], Lemma 5.2 that Sx 6= ; for any point x if and

only if q is even.

So from now on we assume that � is a �nite generalized hexagon with the

property that ��4(x) \ ��3(L) \ ��3(M) is nonempty for any point x, and

for any two lines L;M . Let (s; t) be the order of �.

We �rst show that � is distance-3-regular. So let L and M be two opposite

lines, and let x; y; z 2 hL;Mi, x 6= y 6= z 6= x. Let N 2 hx; yi, M 6= N 6= L.

Let z0 = projMz, M
0 = projz0N , z00 = projNz

0 and N 0 = projz00z
0. We project

the points of the regulus hL;Mi onto the line N 0. Since z00 is the image

of at least two points (namely x and y), this projection is not injective.

Because the regulus hL;Mi and the line N 0 both contain s + 1 points, the

projection of hL;Mi onto N 0 cannot be surjective either, so there is a point

w on N 0 which is not the projection of any point of hL;Mi. If N 0 would lie

at distance 5 from every point of hL;Mi, then the point w on N 0 would be

opposite every point of hL;Mi, a contradiction with the assumed property of

�. Hence N 0 is at distance 3 from some point u of hL;Mi. If u 6= z, then we

obtain an ordinary j-gon, j < 6, through the points projMu, z
0 and projN 0u,

a contradiction. Hence u = z, implying that M 0 = zz0. We have shown that
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Figure 2.1: Proof of Theorem 2.2.1 (size of an intersection set is t+ 1).

the line zz0 = projzM is at distance 4 from N . Similarly (by interchanging

the roles of L and M), the line projzL is at distance 4 from N , implying that

z is at distance 3 from N . Hence � is distance-3-regular.

Next we show that all intersection sets containing at least two points, have

size t + 1. Let x; y; L;M and N be as in the previous paragraph and put

a = projLy. Let La be any line through a, ay 6= La 6= L (see Figure 2.1). Let

cN be the projection of x onto N and de�ne cL, cM similarly. Let b be the

projection of cM on La. Then x
y\xb is an intersection set already containing

the points cL and cM . We prove that xy = xb. Let c0N be the projection of b

onto xcN . It suÆces to show that cN = c0N . Suppose by way of contradiction

these points are di�erent. Let y0 be the projection of y onto projc0
N

b. Note

that c0N 6= y0 6= c0N 1 b. Hence the projection y00 of y0 onto L is distinct from

both a and cL. Let d = y0 1 y00. We now project the points of the regulus

hL;Ni onto the line dy0. Since both x and y project onto the point y0, this

projection is not injective, so it cannot be surjective either. If the line dy0

would lie at distance 5 from all points of hL;Ni, this would imply that the

line dy0 contains a point opposite all the points of hL;Ni, a contradiction.

So we may assume that there is a point z 2 hL;Ni lying at distance 3 from

dy0. If projLz 6= y00, then the points z, projLz, y
00, d and projdy0z de�ne

a pentagon, a contradiction. Now clearly, the point z lies on the line y00d,

y00 6= z 6= d. Let M 0 be the line through cM and cM 1 b. The regulus
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hx; bi contains the lines L, M 0 and y0c0N . Since Æ(d; L) = Æ(d; y0c0N) = 3, the

distance-3-regularity implies that also Æ(d;M 0) = 3. Note that Æ(z;M) = 3.

But now the points z, d, projM 0d, cM and projMz de�ne a pentagon, the �nal

contradiction, showing xy = xb. So all intersection sets containing at least

two points, have size t + 1. By Theorem 1.8.4 (i), all points are distance-2-

regular, and by Theorem 1.8.2, � is a �nite Moufang hexagon isomorphic to

H(q) or to T(q3; q). By Thas & Van Maldeghem [45], q is even. 2

In the proof of Theorem 2.2.1, we used the �niteness assumption in the

following way: if one projects the points of a regulus hL;Mi onto a line N at

distance 5 from every point of hL;Mi, then the fact that this projection is

not injective implies that it cannot be surjective either. This becomes exactly

the additional assumption when generalizing Theorem 2.2.1 to the in�nite

case. We now obtain the following:

Theorem 2.2.2 Let � be a generalized hexagon, not necessarily �nite. Sup-

pose that for any point x and any two lines L;M the set ��4(x) \ ��3(L) \

��3(M) is nonempty (a). Suppose moreover that if L;M are opposite, and

N is a line at distance 5 from all elements of the regulus hL;Mi, then the

projection of hL;Mi onto N is injective whenever it is surjective (b). Then

� is a point-distance-2-regular hexagon and hence a Moufang hexagon.

In the in�nite case however, the conditions stated in Theorem 2.2.2 do not

completely characterize the characteristic 2 case. We investigate when the

in�nite split Cayley hexagon � �= H(K ) satis�es conditions (a) and (b) in

Theorem 2.2.2. (For other types of Moufang hexagons, the condition on the

underlying �eld becomes more involved.)

Let L and M be two opposite lines of �, x a point of � and Q = Q(6; K )

the quadric on which � is de�ned. The regulus hL;Mi corresponds with the

points of a conic C (lying in a plane �) on Q, and the set ��4(x) corresponds

with the set of points of Q lying in the tangent hyperplane �x at Q in x.

Let x be a point such that �x and � intersect in a line Rx and put Sx =

��4(x) \ hL;Mi.

� char K = 2. The line Rx is a line through the nucleus of C, hence

Rx intersects C for all choices of x if and only if the �eld K is perfect.

So let K be a perfect �eld of characteristic 2. Then (a) is satis�ed.

Property (b) follows from the fact that all imaginary lines of � �= H(K ),

char K = 2, are long (see Theorem 1.8.5). Indeed, this fact implies that

an imaginary line coincides with a regulus containing two of its points

(see Lemma 2.4 in van Bon, Cuypers & Van Maldeghem [55]). The
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Figure 2.2: An (i; j)-intersection set.

projection of an imaginary line onto a line at distance 5 from all its

points is either constant or injective (see [55], Corollary 2.3), hence (b).

� char K 6= 2. The intersection of Rx with C is nonempty for all choices

of x if and only if the �eld K is quadratically closed. So let K be a

quadratically closed �eld of odd characteristic. Then (a) is satis�ed, but

(b) cannot be satis�ed. Indeed, let x be a point for which Sx contains

two points y and z. Let N be a line through x, projxy 6= N 6= projxz.

Since x is opposite every point of hL;Mi n fy; zg, the line N lies at

distance 5 from every point of hL;Mi. The projection of hL;Mi onto

N is not injective (since both y and z project onto x). If (b) is satis�ed,

then there would be a point x0 on N opposite every point of hL;Mi,

contradicting (a).

We now want to generalize Theorem 2.2.1 to octagons. For this purpose, we

�rst generalize the notion of an intersection set, and result 1.8.4 (i).

Let � be a generalized 2m-gon and 2 � i � j � m. Let x be an element of

�. An (i; j)-intersection set S with respect to x is a set x
y

[i]
\ xz[i], where

y and z are opposite x, where jx
y

[j]
\ xz[j]j � 2 and where jyx[j] \ zx[j]j = 1 if

j < m. Note that, if (s; t) is the order of �, then 2 � jSj � t + 1 if x is a

point, and 2 � jSj � s+ 1 if x is a line.

A (2,2)-intersection set in a generalized hexagon now corresponds more or

less with an intersection set as de�ned in section 1.8. The only di�erence
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is that a (2,2)-intersection set by de�nition already contains two elements.

Using this new terminology, Theorem 1.8.4 (i) becomes:

If for every (2; j)-intersection set xz[2]\x
y

[2]
of a generalized hexagon

�, one has xz[2] = x
y

[2]
, then � is point-distance-2-regular.

Indeed, we show that, if � is a generalized hexagon satisfying the conditions

above, then � is distance-3-regular. Let x; y and z be three di�erent points

of a regulus hL;Mi, and N a line of hx; yi, L 6= N 6= M . Since xy \ xz is

a (2,3)-intersection set, xy = xz, hence Æ(z; projNx) = 4. Interchanging the

roles of x and y, we obtain yx = yz, hence Æ(z; projNy) = 4. So Æ(z;N) = 3,

showing the distance-3-regularity.

The following lemma is a generalization of Theorem 1.8.4 (i).

Lemma 2.2.3 Let � be an arbitrary generalized 2m-gon, m � 2, let x be

a point of �, and let 2 � i � m. Then x is distance-i-regular if and only

x
y

[i]
= xz[i], for every (i; j)-intersection set x

y

[i]
\ xz[i] with respect to x, for all

j, i � j � m.

Proof. Let x be a distance-i-regular point. Then every distance-i-trace in

x is determined by two points. Since an (i; j)-intersection set x
y

[i]
\ xz[i] with

respect to x contains two elements by de�nition, x
y

[i]
= xz[i]. So let now x be a

point of � and suppose that x
y

[i]
= xz[i], for every (i; j)-intersection set x

y

[i]
\xz[i]

with respect to x, for all j, i � j � m. Let y and z be two points opposite x

such that x
y

[i]
\xz[i] contains the distinct points u0 and w0. De�ne the elements

uk and wk, 0 � k � 2m� i, as ukIuk+1 and wkIwk+1, 0 � k < 2m� i, with

u2m�i = w2m�i = y. Similarly, de�ne the elements vk and rk, 0 � k � 2m� i,

as vkIvk+1 and rkIrk+1, 0 � k < 2m � i, with v0 = u0, r0 = w0 and

v2m�i = r2m�i = z. We claim that, in order to prove that x
y

[i]
= xz[i], we may

assume that w2m�2i = r2m�2i. Indeed, suppose that wk = rk, for some k,

0 � k < 2m � 2i. We prove that we can assume wk+1 = rk+1 . Since wk is

opposite u2m�2i�k, one has Æ(rk+1; u2m�2i�k) = 2m � 1, so there is a unique

chain

rk+1Ir
0
k+2I : : : Ir

0
2m�i = y0 = v02m�iIv

0
2m�i�1I : : : Iv

0
2m�2i�k = u2m�2i�k

(y0 is the unique point of this chain opposite x). If i+k � m, then S = x
y

[i]
\x

y0

[i]

is an (i; i+k)-intersection set with respect to x (indeed, the element u2m�2i�k

lies at distance i + k from both y and y0, and the element wk belongs to

x
y

[i+k]
\ x

y0

[i+k]
and lies opposite u2m�2i�k). If i + k > m, then S = x

y

[i]
\ x

y0

[i]
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is an (i; 2m� i� k)- intersection set with respect to x (indeed, the element

wk lies at distance 2m� i� k from both y and y0, and the element u2m�2i�k

belongs to x
y

[2m�i�k]
\ x

y0

[2m�i�k]
and lies opposite wk). Thus in both cases,

x
y

[i]
= x

y0

[i]
. Since we were interested in S = x

y

[i]
\ xz[i], we can as well consider

S 0 = x
y0

[i]
\ xz[i]. So we may indeed assume wk+1 = rk+1. Proceeding like

this we can assume that w2m�2i = r2m�2i. But then S 0 = x
y

[i]
\ xz[i] is an

(i; i)-intersection set with respect to x (since S 0 contains the element u0, and

the element w2m�2i lies at distance i from both y and z and is opposite u0),

hence x
y

[i]
= xz[i]. This shows that x is distance-i-regular. 2

Let � be a generalized 2m-gon and 2 � i � m. Let x be an element of �. A

half (i; i)-intersection set S with respect to x is a set x
y

[i]
\ xz[i], where y

and z are opposite x, and jyx[i] \ z
x
[i]j = 1 if i < m, jyx[i] \ z

x
[i]j � 1 if i = m.

The following lemma is an immediate generalization of Theorem 1.8.4 (ii).

Lemma 2.2.4 Let � be a generalized 2m-gon, and 2 � k � m� 1.

(i) Suppose m is even. If � is line-distance-m-regular, and all half (m +

1� j;m+1� j)-intersection sets with respect to any line X contain at

least two elements, for 2 � j � k, then � is line-distance-k-regular.

(ii) Suppose m is odd. If � is distance-m-regular, and all half (m + 1 �

j;m + 1 � j)-intersection sets with respect to any point x contain at

least two elements, for 2 � j � k, then � is line-distance-k-regular.

Proof. Suppose � is a generalized 2m-gon satisfying the conditions of the

lemma, for a �xed k, 2 � k � m� 1. Let L be a line of � and LM1

[k]
\ LM2

[k]
a

(k; j)-intersection set with respect to L, k � j. We prove that LM1

[k]
= LM2

[k]
.

Let v be an element of LM1

[j]
\LM2

[j]
, and w an element ofM1

L
[j]\M2

L
[j], v and w

opposite. LetX be the element of the path [L;w] at distancem from L. Let p

be a point on L, projLv 6= p 6= projLw. Let [p;M1] = (p = y0; y1; : : : ; y2m�1 =

M1) and [p;M2] = (p = z0; z1; : : : ; z2m�1 = M2). We prove that yi = zi, for

i � k. So suppose by way of contradiction that yr = zr, but yr+1 6= zr+1, for

a number r, 0 � r � k� 1. Denote by Y (Z) the unique element of the path

[p;M1] ([p;M2]) at distance m from L and Y 0 (Z 0) the unique element of the

path [v;M1] ([v;M2]) at distance m from L. Then S = XY
[m�r] \XZ

[m�r] is a

half (m�r�1;m�r�1)-intersection set with respect to X. By assumption,

S contains an element a, projXa 6= projXL. Since projwM1 6= projwM2, also

projXa 6= projXw. Let R1 (R2) be the element of the path [Y; a] ([Z; a])
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at distance m from Y (Z). The regulus hX;Y i contains the elements L,

M1 and R1. Since Æ(Y
0;M1) = Æ(Y 0; L) = m, also Æ(Y 0; R1) = m. Similarly,

Æ(Z 0; R2) = m. But now we obtain a circuit of length at most 4m+2(r�j+1)

(determined by the paths [a;R1], [R1; Y
0], [Y 0; v], [v; Z 0], [Z 0; R2] and [R2; a]),

a contradiction. So LM1

[k]
= LM2

[k]
. By applying (the dual of) Lemma 2.2.3, we

conclude that the line L is k-regular. 2

Theorem 2.2.5 Let � be a �nite generalized octagon of order (s; t) with

s � t � 2 such that ��6(x) \ ��4(y) \ ��4(z) is nonempty for all points

x; y; z of �. Then � is point-distance-3-regular (and hence does not exist).

Proof. Let � be a �nite generalized octagon satisfying the conditions of the

lemma. Note that s > t by Theorem 1.2.3. Let x be any point of �. We

�rst show that x is distance-4-regular. So let y and z be opposite x and

u; v 2 x
y

[4]
\ xz[4], u 6= v. Let L be any line through x and let y0 = projLy,

z0 = projLz. We show that y0 = z0 and projy0y = projz0z. Suppose by way

of contradiction that y0 6= z0. Let r be the unique point collinear with z and

at distance 4 from z0. Suppose that all elements of hx; yi are at distance � 6

from r. If we project all points of the regulus hx; yi which are at distance 6

from r onto r, then, since jhx; yij = t + 1 = j�1(r)j, and since v and u are

projected onto the same element, we see that there is at least one line N

through r which lies at distance 7 from all those points, and hence from

every element of hx; yi. Since t < s, the projection of hx; yi onto N cannot

be surjective, hence there is a point on N opposite every element of hx; yi,

a contradiction. Consequently there is a point w of hx; yi at distance � 4

from r. If projxw 6= xy0, then we obtain an ordinary j-gon, j � 7, through

r; w; x; z0, a contradiction. Hence w is the unique point at distance 2 from

y0 and at distance 4 from y. Now Æ(r; w) � 4 implies that y0 = z0 and

projy0y = projz0z. Interchanging the roles of x and y, we see that also

Æ(z; projwy) = 5, implying that z lies at distance 4 from the point w. This

shows that x is distance-4-regular. In particular, all (3,4)-intersection sets

with respect to x have size t+ 1.

Next we show that all (3; 3)-intersection sets with respect to x have size t+1.

Let again y and z be opposite x such that x
y

[3]
\ xz[3] is a (3,3)-intersection

set. Let L be a line at distance 5 from x and 3 from both y and z and let

M be a line of x
y

[3]
\ xz[3], M opposite L. We prove that x

y

[3]
= xz[3]. Let K

be any line through x and put y0 = projKy and z0 = projKz. Suppose by

way of contradiction that y0 6= z0. Consider the line N at distance 3 from

both z and z0. As before (using t < s), N cannot be at distance 7 from all

elements of hx; yi, hence N is at distance � 5 from some element w 2 hx; yi.
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If projxw 6= xy0, then we obtain an ordinary j-gon, j � 7, containing the

points w, w1x, x, z0 and projNw. So projxw = xy0, which implies y0 = z0.

Put Nz = projz0z and Ny = projy0y. We now show that Ny = Nz.

Suppose by way of contradiction that Ny 6= Nz. Let a be any point incident

with Nz, a 6= z0, and let a0 be the projection of a onto the line projyM (note

that a0 6= y). Let La be the line at distance 3 from both a and a0. As before,

La is not at distance 7 from every element of hx; yi, so there exists a point

w0 2 hx; yi at distance � 5 from La. If w0 6= projMy, then we obtain an

ordinary j-gon, j � 7, containing the points w0, w0
1 y, y, a0, projLaa

0 and

projLaw
0. So w0 = projMy and Æ(w0; La) � 5 implies that a0 = w0

1 y. So

every point of the line Nz di�erent from z0 lies at distance 6 from the point

y1w0, a contradiction. We conclude that Ny = Nz, showing that x
y

[3]
= xz[3].

By Lemma 2.2.3, the point x is distance-3-regular. A point-distance-3-regular

octagon does not exist (see Theorem 1.3.1), hence the result. 2

Combining the characterization of W(q) in Thas [39], with Theorems 2.2.1

and 2.2.5, we obtain the following.

Theorem 2.2.6 Let � be a �nite generalized 2m-gon of order (s; t), with

s � t � 2. Then � is isomorphic to W(q), to H(q0) or to T(q0
3
; q0), with q0

even, if and only if ��2m�2(x)\��m(v)\��m(w) is nonempty for any point

x, and for any pair of elements v; w, with v; w points if m is even, and v; w

lines if m is odd.

Remarks

1. In the case m = 3, the condition s � t in the previous theorem is not

needed.

2. It makes no sense to consider the cases v and w points if m is odd, or

v and w lines if m is even. Indeed, let for example � be a generalized

hexagon, and v; w opposite points in �. Let z 2 vw, and x a point at

distance 3 from vz and 4 from v and z. The point x lies at distance 5

from every line of hv; wi, hence hv; wi \ ��3(x) = ;.

3. Theorem 2.2.6 characterizes the �nite classical hexagons over a �eld of

characteristic 2, but the assumptions kill every �nite octagon, despite

the fact that the Ree-Tits octagons too are de�ned over a �eld of cha-

racteristic 2. This shows once again that the Ree-Tits octagons play a

special role in the theory of �nite generalized polygons.
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?4 Generalize Theorem 2:2:6 to the in�nite case, i.e. �nd a `nice' condition

that forces 2m � 6.

Another attempt to generalize Theorem 2.2.1 to �nite octagons is given in

the following theorem.

Theorem 2.2.7 Let � be a �nite generalized octagon of order (s; t). Suppose

that for any point x and any two lines L;M , the set ��6(x)\��3(L)\��5(M)

is nonempty. Then s > t. If moreover, all (2; 2)-intersection sets with respect

to any line contain s + 1 lines, then � is line-distance-2-regular (and hence

does not exist).

Proof. Let � be a �nite generalized octagon of order (s; t) such that ��6(x)\

��3(L) \ ��5(M) is nonempty, for any point x and any two lines L;M . We

�rst show that t � s. Suppose by way of contradiction that s < t. Let L and

M be two opposite lines, and x; y 2 LM
[3]. Put x0 = projMx and v = x1 x0.

Let N be an arbitrary line concurrent with vx0, not through v or x0, and

r = projNy. Let X be the set of points of LM
[3] at distance 6 from r, and Y

the set of points of LM
[3] at distance 8 from r. Note that X [ Y = LM

[3] and

x; y 2 X. We now project the points of X onto N ; since t > s, at least one

line N 0 through r is not the projection of any point of X, and hence N 0 lies

at distance 7 from all points of LM
[3]. The points of X lie opposite all points of

N 0 nfrg. We now project the points of Y onto the line N 0. Since jY j � s�1,

at least one point w on N 0 lies opposite every point of LM
[3], a contradiction.

This shows that t > s.

Now let L be a line of �. We show that all (2,3)-intersection sets with respect

to L contain s + 1 points. Let LM1

[3]
\ LM2

[3]
be a (2,3)-intersection set with

respect to L. Let r be the point at distance 5 from L and at distance 3

from both M1 and M2, and r0 a point in LM1

[3]
\ LM2

[3]
, r0 opposite r. Let v be

an arbitrary point on L. We show that R1 := projvM1 = projvM2 =: R2.

Suppose by way of contradiction that R1 6= R2. Let r
00 be the point collinear

with r and at distance 3 from L. Let N be the line concurrent with M2 at

distance 4 from R2. If all points of L
M1

[3]
lie at distance 7 from N , then (since

jLM1

[3]
j = jN j and both r00 and r0 project onto the same element of N) there

is a point on N opposite every point of LM1

[3]
, a contradiction. Hence there is

a point x 2 LM1

[3]
at distance � 5 from N . If x is not incident with R1, we

obtain an ordinary j-gon, j � 7, through x, v, projNv and projNx . Hence

xIR1, implying that R1 = R2, so L
M1 = LM2.
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Figure 2.3: A weakening of the condition for long imaginary lines

Completely similar, one shows that all (2; 4)-intersection sets with respect

to L contain s + 1 points. Together with the assumption about the (2,2)-

intersection sets, (the dual of) Lemma 2.2.3 implies that � is line-distance-

2-regular, and hence cannot exist by Theorem 1.3.1. 2

Let x; y be opposite points of the hexagon H(q), q even, and L;M distinct

lines in hx; yi. Then the imaginary line I(x; y) is long and hence coincides

with the point regulus hL;Mi. It immediately follows from the de�nition of

imaginary line that, if R is a line of � at distance 3 from the point x and

at distance 5 from all points of hL;Mi n fxg, then all points of hL;Mi n fxg

project onto the same point of R. We now ask the above property for lines

R in a particular position with respect to the regulus hL;Mi and obtain a

characterization of H(q), q even.

Consider the following property in a �nite generalized hexagon �:

(I) Let L and M be two arbitrary opposite lines, x; y di�erent points of

hL;Mi and x0 = projMx. Let N be an arbitrary line concurrent with

xx0, not through x or x0. Then projNy = projNz, for all z 2 hL;Mi n

fxg.

Theorem 2.2.8 A �nite generalized hexagon � satis�es condition (I) if and

only if � is isomorphic to H(q), q even.
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Proof. Suppose � is a �nite generalized hexagon in which (I) holds. We

�rst show that � is distance-3-regular. So let L and M be two opposite lines,

x; y; z di�erent points of hL;Mi and N 2 hx; yi. We have to prove that

Æ(z;N) = 3. Put p = projLy, p
0 = projMy, x

0 = projNx, y
0 = projNy and

z0 = projxx0z. We show that z0 = x0. Suppose by way of contradiction that

z0 6= x0 and put z00 = projpyz
0. Suppose �rst projz0z 6= projz0z

00. But this

contradicts (I) since the projections of x and z onto the line through z00 and

z01z00 do not coincide, so projz0z = projz0z
00. Note that z01z 6= z01z00 since

otherwise, there would be an ordinary pentagon through the points z00, p,

projLz, z and z1z0. Let u be the projection of z0 onto yp0. But now, noting

that projz0u 6= projz0z, the projections of x and z onto the line through u

and u1z0 do not coincide, again contradicting (I), so x0 = z0. Interchanging

the roles of x and y, we see that y0 = projyy0z. But this creates an ordinary

pentagon containing x0, y0 and z, unless Æ(z;N) = 3.

We next show that an imaginary line coincides with a regulus containing

two of its points. Since � is �nite, this will imply that all imaginary lines

are long, which proves the result in view of Theorem 1.8.5. So let I(x; y)

be an imaginary line, and suppose by way of contradiction that there is

a point z 2 R(x; y) not belonging to I(x; y). This implies there exists a

point a not opposite the points x and y, with Æ(z; a) = 6. If Æ(x; a) = 2

or Æ(y; a) = 2, or if projax = projay, then the 3-regularity implies that

Æ(z; a) = 4, a contradiction. So suppose Æ(x; a) = Æ(y; a) = 4 and projax 6=

projay. Put b = x 1 a and c = projxby. Again by the 3-regularity, the

point z lies at distance 3 from the line through c and c 1 y. Now by (I),

projabz = projaby = a, the �nal contradiction. 2

Consider the following weaker version of condition (I):

(I 0) Let L and M be two arbitrary opposite lines, x; y di�erent points of

hL;Mi and x0 = projMx, y
0 = projLy. Let N be an arbitrary line

concurrent with xx0, not through x or x0 and at distance 4 from yy0.

Then projNy = projNz, for all z 2 hL;Mi n fxg.

Corollary 2.2.9 A �nite generalized hexagon � of order (s; t), t � s, satis-

�es condition (I 0) if and only if � is isomorphic to H(q), q even.

Proof. Suppose � satis�es (I 0), and let L;M; x; x0; y; y0 be as in (I 0). Let

z be a point of hL;Mi, x 6= z 6= y, and put z0 = projLz. Let v be an

arbitrary point on xx0, x 6= v 6= x0 and v0 = projzz0v. If projvyy
0 = projvzz

0,

then condition (I 0) implies that Æ(y; v0 1 v) = 4, which creates a pentagon

containing z0, y0 and v01v, so projvyy
0 6= projvzz

0. This shows that t + 1 =
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j�1(v)j � jhx; yij = s+1, so t = s. Now clearly, every line through v di�erent

from xx0 lies at distance 4 from a line aa0, with aIL and a0 2 hL;Mi. Hence

(I) is satis�ed and the result follows. 2

2.3 Characterizations of H(q)D and T(q; q3)

Consider the following property in a �nite generalized hexagon �.

(C) If a point x is at distance 4 from an element y of the point regulus R,

and if all elements of Rnfyg are opposite x, then all elements of Rnfyg

are at distance 4 from x1y.

Lemma 2.3.1 (i) The dual classical hexagons H(q)D and T(q; q3) satisfy

property (C).

(ii) The classical hexagons H(q) and T(q3; q) satisfy property (C) if and

only if q is odd.

Proof. Let � be a �nite (dual) classical hexagon. Let x be a point of � at

distance 4 from an element y of the point regulus R = hM;Ni, and suppose

x is opposite every element of R n fyg. Put L = projxy. Note that, by the

distance-3-regularity, M and N can be chosen arbitrarily in hy; zi, for any

z 2 R n fyg. In particular, we may choose M at distance � 4 from L. If

Æ(L;M) = 2, then x 1 y is incident with M , hence lies at distance 4 from

every element of R n fyg. So in this case, property (C) is satis�ed. Suppose

now Æ(L;M) = 4. We show that this leads to a contradiction.

Let �rst � be dual classical. Note that the point x1 y does not belong to

M , hence x1y is opposite every element of R n fyg. We project the points

of the regulus R onto the line L. Since jRj = q + 1, and since also x is

opposite every element of R n fyg, there must be some point w incident with

L which is at distance 4 from at least two points z1; z2 2 R n fyg. Now

by the distance-3-regularity we may choose N in such a way that it meets

projz1w (see Figure 2.4). Note that fprojyN; projz1N; projz2Ng � NM , and

fprojyN; projz1Ng � NL. By the line-distance-2-regularity, we must have

Æ(L; projz2N) = 4. But then, we obtain a pentagon containing z21w, z2, w

and the line intersecting both L and projz2N , the �nal contradiction. Hence

(C) is satis�ed.

Let now � be a classical hexagon. Put y0 = projMy and v = projyy0L. We

prove (using coordinates) that the projection � of hM;Ninfyg onto Lnfvg is
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y

x 1 y

MN

L

w

z2

z1

x

Figure 2.4: Proof of Lemma 2.3.1 if � is dual classical.

a bijection if and only if q is odd. Let �rst � �= T(q3; q). Choose coordinates

in the following way: y = (1), yy0 = [1], M = [00], N = [000], v = (b),

b 2 GF(q3) n f0g and L = [b; k], k 2 GF(q). A point p of hM;Ni n fyg

then has coordinates (0; 0; a; 0; 0), a 2 GF(q3). The projection of p onto L

is the intersection of L with the tangent hyperplane �p of Q(7; q
3) at p. We

calculate this intersection in the projective space PG(7; q3) (and therefore,

we use Table 3.4 in [57]). Note that

p = (0; 0; a; 0; 0)$ (aq+q
2

; 0; 0; aq
2

; 1; 0; 0;�aq);

L = [b; k]$ (�k; 1; 0; bq; 0; bq+q
2

; 0;�bq
2

) + t(b; 0; 0; 0; 0; 0; 1; 0);

with t 2 (GF(q3) [ f1g), and

�p $ X0 � aqX3 + aq+q
2

X4 + aq
2

X7 = 0:

The point �p \ L is then the point of L for which

tp =
k + aqbq + aq

2

bq
2

b
:

If � is not bijective, then there exist two points p(0; 0; a; 0; 0) and p0(0; 0; a0; 0; 0)

belonging to R n fyg such that tp=tp0 , or

bq(aq � a0
q
) = bq

2

(a0
q2
� aq

2

):
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Since a 6= a0 this becomes

bq
2�q(a0 � a)q

2�q = �1:

If q is even, then one can choose p and p0 such that (a0� a) = b�1, hence � is

not bijective. Suppose now q is odd. Then �1 has to be a (q2 � q)th power,

implying

dl(q
2�q) = d

q
3
�1

2 (= �1);

with d a generating element of the multiplicative group GF(q3) n f0g. This

implies that

2l(q2 � q) � 0 mod (q3 � 1);

or

2lq � 0 mod (q2 + q + 1):

Since q2 + q + 1 is odd, and not a multiple of q, l is necessarily a multiple of

(q2 + q + 1), or l = l0(q2 + q + 1). This implies

dl(q
2�q) = dl

0(q2+q+1)(q2�q) = dl
0q(q3�1) = 1;

hence �1 = 1, a contradiction, hence � is a bijection.

If � �= H(q), we obtain

tp =
k + 2ab

b
:

Now it is clear that also in this case, � is a bijection if and only if q is odd.

So the line L does not contain a point x opposite every point of R n fyg if

and only if q is odd, showing (ii). 2

Lemma 2.3.2 Let � be a �nite generalized hexagon satisfying property (C).

Then � is distance-3-regular.

Proof. Let x; y; z be three distinct points of a regulus hL;Mi and let N 2

hx; yi, L 6= N 6=M . We have to show that Æ(z;N) = 3. Let v = projNx and

let w = projNy.

Suppose �rst that there exists a line N 0 through v, N 0 6= vx, at distance 5

from every element of hL;Mi n fxg. Consider the projection of hL;Mi onto

N 0. Since v is the image of at least two points of hL;Mi (namely x and

y), this projection is not injective, hence neither surjective. So there is a

point incident with N 0 opposite every element of hL;Mi n fxg. Property (C)

implies now that every point of hL;Mi n fxg is at distance 4 from v. As a
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consequence, every point z0 of hL;Mi n fyg is at distance 5 from every line

N 00 through w, N 00 6= N (indeed, otherwise there arises a circuit of length

Æ(z0; v)+Æ(v;N 00)+Æ(N 00; z0) � 4+3+3). Hence, interchanging the roles of v

and w, we see that Æ(z; v) = Æ(z; w) = 4, which is only possible if Æ(z;N) = 3.

Now suppose that for every line N 0 6= vx through v there exists a point of

hL;Mi n fxg at distance 3 from N 0. By the previous paragraph, we can

also assume that for every line N 00 6= wy through w, there exists a point of

hL;Mi n fyg at distance 3 from N 00. Put z0 = projLz and z
00 = projMz. Note

that at least one of the lines zz0 and zz00 is opposite N , otherwise Æ(z;N) = 3

and we can go home. Suppose Æ(zz00; N) = 6. Similarly, z is opposite at

least one of v; w. Suppose Æ(v; z) = 6. Let r be the projection of v onto zz00

(then z 6= r 6= z00). Put R1 = projvr and R2 = projrv (then R1 6= N). By

assumption, there exists a point y0 2 hL;Minfxg at distance 3 from R1 (and

note that projR1
y0 6= r1v because otherwise the points y0; projMy

0; z00; r and

r1v de�ne a pentagon). We consider the projection of hL;Mi onto the line

R2. Since x and y0 are both mapped onto r1v, this projection is, as above,

not surjective, and hence, again using property (C) as before, r must be at

distance 4 from every element of hL;Mi n fzg, a �nal contradiction as, for

example, Æ(r; x) = 6. This shows the distance-3-regularity. 2

Combining Lemma 2.3.2 and Theorem 1.8.3, we now obtain a characteriza-

tion of some extremal classical hexagons.

Corollary 2.3.3 If � is an extremal hexagon satisfying Property (C), then

it is isomorphic to T(q; q3) or to T(q0
3
; q0), q0 odd.

Lemma 2.3.4 Let � be a �nite generalized hexagon satisfying property (C).

Then the following property holds in �: if a point x is at distance at most 4

from at least three points y1; y2; y3 of a point regulus R, then x is at distance

2 from a unique element of R and at distance 4 from all other elements of R.

Proof. Let �, x, R, y1; y2 and y3 be as in the lemma. Note that � is distance-

3-regular. If one of the points y1; y2; y3 is collinear with x, or if at least two

of these points have the same projection onto x, then the property above

immediately follows from the distance-3-regularity. So suppose now that

Æ(x; yi) = 4, i = 1; 2; 3 and that the projections of the points y1; y2; y3 onto

x are all di�erent. We look for a contradiction. Put N = projxy1. If N is

at distance 3 from an element of R n fy1g then, by the distance-3-regularity,

projxy2 = N , a contradiction with the assumption. So we may assume that

every point of R n fy1g is at distance 5 from N . We then consider the
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projection of R n fy1g onto N . Since jR n fy1gj = jN j � 1 and both y2 and

y3 have the same image, there is some point w incident with N and distinct

from x1 y1 opposite every element of R n fy1g. Property (C) implies that

Æ(y2; x1y1) = 4, a contradiction. 2

If we want to use property (C) to characterize (some) dual classical hexagons,

Lemma 2.3.1 (ii) shows that the condition q even is certainly necessary. It

turns out that this condition is also suÆcient.

Theorem 2.3.5 Let � be a �nite generalized hexagon of order (q; t), q even.

Then � has property (C) if and only if � is isomorphic to H(q)D or to T(q; q3).

Proof. Let � be a �nite generalized hexagon of order (q; t), q even, satisfying

property (C). Let x and y be two opposite points of �, and L an arbitrary

line of �. We claim that there exists a line of the line regulus hx; yi at

distance at most 4 from L. If L lies at distance � 3 from a point of R(x; y),

then the claim follows because of the 3-regularity. So we may assume that

L is at distance 5 from every point of R(x; y). Hence, by Lemma 2.3.4,

no point incident with L is the projection of at least 3 elements of R(x; y).

So every point on L is the projection of 0,1 or 2 points of R(x; y). Since

jR(x; y)j = q + 1 is odd, there is a point v on L which is the projection of

exactly one point z of R(x; y). So v is opposite every point of R(x; y) n fzg.

Property (C) now implies that v 1 z is at distance 4 from every point of

R(x; y) n fzg. By the distance-3-regularity, the projection of any element of

R(x; y) n fzg onto v 1 z is a line of hx; yi lying at distance 4 from L. This

shows the claim. Now the property just shown is exactly the dual of the

condition in Theorem 2.2.1, hence the result follows. 2

?4 The property mentioned in Lemma 2:3:4, together with the 3-regularity,

is equivalent with property (C). But does this property on its own char-

acterize the �nite dual classical hexagons over a �eld of even characte-

ristic ?

Let x be a point of a generalized hexagon �, and y and z two points opposite

x. We say that the points y and z are in (3; 4)-position with respect

to x if there exist points v; w 2 xy \ xz such that projvy = projvz but

projwy 6= projwz (�). So there is a line at distance 3 from x; y and z and a

point at distance 4 from both y; z and collinear with x (see the picture in

Appendix B).



2.3 Characterizations of H(q)D and T(q; q3) 43

Lemma 2.3.6 Let � be a �nite generalized hexagon of order (q; t) isomorphic

to H(q)D, q not divisible by 3, or to T(q; q3). Then jxy \ xzj = 1+ t=q for all

points x, y and z such that y and z are in (3; 4)-position with respect to x.

Proof. Let � be as above and v; w; x; y; z as in (�). Let L = projvy = projvz,

let My = projwy, Mz = projwz and u = v1y. If z and u are collinear, then

xy \ xz is an intersection set, hence jxy \ xzj = 1 + t=q (see section 1.8).

Suppose Æ(u; z) = 4. Let a be the unique point of hL;Mzi at distance 4 from

y. Because of the distance-3-regularity, we have xz = xa. Note that xy \ xa

is an intersection set. Since we are working with the �nite dual classical

hexagons, we have jxa \ xyj = 1 + t=q. This proves the lemma. 2

Theorem 2.3.7 Let � be a �nite generalized hexagon of order (q; t). Then

� is isomorphic to H(q)D, q not divisible by 3, or to T(q; q3) if and only

if jxy \ xzj � 1 + t=q for all points x; y and z such that y and z are in

(3; 4)-position with respect to x.

Proof. Let � be a �nite generalized hexagon of order (q; t) satisfying the

condition above on points in (3,4)-position. Note that this condition implies

that every intersection set contains at most 1 + t=q points. We claim that

each intersection set contains exactly 1 + t=q points. Indeed, let pp
0

\ pp
00

be an intersection set, put r = p0 1 p00 and r0 = r 1 p. Now project the

points of pp
0

n fr0g onto the line p00r. Since every point of p00r di�erent from

r (and there are q of these points) is the projection of at most t=q points of

pp
0

n fr0g, every point of p00r di�erent from r is the projection of exactly t=q

points, hence the claim.

Let x and y be opposite points, and fv; wg � xy. Put u = v1y. Let L be an

arbitrary line through x, wx 6= L 6= vx and p a point on L, p 6= x. If there

is a point z 2 uw n fvg at distance 4 from p, then uw \ up is an intersection

set, implying that p is the projection of exactly t=q points of uw n fvg onto

L. Hence each point on L di�erent from x is the projection of either 0 or t=q

elements of uw n fvg. Since jL n fxgj = q and juw n fvgj = t, each point on L

di�erent from x is the projection of exactly t=q points of uw n fvg.

Now we prove that � is distance-3-regular. Put w0 = y 1 w. Let z be a point

of huv; ww0i di�erent from x or y. Consider the set

S = f(a; b)ja 2 xz n fv; wg; b 2 uw n fvg with Æ(a; b) = 4g:

We count the number of elements in S. Fixing a, we obtain that jSj =

(t � 1) � t
q
by the previous paragraph. Now �x b. The points a then belong
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to (xb \ xz) n fv; wg. If b 6= y, then there at most t
q
� 1 choices for a, since b

and z lie in (3,4)-position with respect to x. Put ` = jxy \ xz n fv; wgj. Now

we obtain

(t� 1) �
t

q
� (t� 1)(

t

q
� 1) + `;

implying ` = t� 1, which means that xy = xz. Also, projry = projrz for all

r 2 xy\xz. Indeed, if not, then the points y and z would lie in (3,4)-position

with respect to x, hence jxy \ xzj � t
q
+ 1 < t + 1. This shows that � is

distance-3-regular. Since every intersection set contains 1 + t=q points, and

hence more than one point, � is line-distance-2-regular by Theorem 1.8.4 (ii).

By Theorem 1.8.2, � is classical. 2

Remark. In the previous theorem, we did not assume that t is divisible by

q, or that q � t.

Let x; y; z be points of a generalized hexagon �. If y and z are opposite x,

then we denote

xfy;zg = fr 2 xy \ xzjprojry 6= projrzg:

Let � be a �nite generalized hexagon of order (q; q). We say that � is anti-

regular if for any three points x; y; z, with y; z lying opposite x, the condition

jxfy;zgj � 2 implies that jxfy;zgj = 3 and xfy;zg = xy \ xz.

We say that � is weak anti-regular if for any three points x; y; z, with

y; z lying opposite x, the condition jxfy;zgj � 2 implies that jxfy;zgj � 3 and

xfy;zg = xy \ xz.

Lemma 2.3.8 The generalized hexagon H(q)D, with q not divisible by 3, is

anti-regular (and hence also weak anti-regular).

Proof. Let � be the hexagon H(q)D, q not a multiple of 3. Let y; z be

points opposite a point x, and v; w 2 xfy;zg. Put Ly = projvy, Lz = projvz,

My = projwy, Mz = projwz, u
0 = w1y and u00 = w1z. We �rst claim that

the pointwise stabilizer of fx; v; w; z;Myg in the automorphism group of �

acts transitively on the set �1(v) n fvx; Lzg. Choose coordinates such that

v = (1), Lz = [1] and the apartment through x; v; w and z is the hat-rack

of the coordinatization. Consider the following homologies hA:

hA : (a; l; a0; l0; a00) ! (A�1a; l; Aa0; Al0; A2a00)

[k; b; k0; b0; k00] ! [Ak;A2b; Ak0; Ab0; k00];

with A 2 GF(q) n f0g (it suÆces to give the action of hA on the elements

opposite (1) and [1], see 4.5.3 in [57]). Then each hA �xes the apart-

ment through x; v; z and w, and every line through the point w (since a line
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through w di�erent from xw orMz has coordinates [0; 0; 0; 0; k
00]). Also, these

homologies hA act transitively on the lines through u00 di�erent from Mz or

u00z (since these lines have coordinates [k; 0; 0; 0; 0]), and hence on the lines

through v di�erent from vx or Lz. This shows the claim.

Now consider the following set

T = fxuLjuL = (projLu
0)1u0; L 2 �1(v) n fvxgg:

Since the intersection of two traces belonging to T is an intersection set, two

traces contained in T only have the points v and w in common. So, if R

is an arbitrary line through x di�erent from xv or xw, the q points uL all

project onto a di�erent point of R, implying that the set T meets xz nfv; wg

in exactly q�1 points. Note that the traces xz and xuLz only have the points

v and w in common, since uLz and z are in (3,4)-position with respect to x.

We claim that the q� 1 traces of T n fxuLzg meet the trace xz in a constant

number of points. Indeed, we look for the image under hA of xz \ xuL ,

L 6= Lz. The homology hA leaves the set xz invariant. The image under

hA of the trace xuL is the trace xr, with r the unique point collinear with

u00 := hA(u
0) (which is a point on My) and at distance 3 from L0 = hA(L).

Hence jxz \ xuLj = jxz \ xrj. Because of the distance-3-regularity, we have

xr = xuL0 , implying jxz \ xuLj = jxz \ xuL0 j. Now by the transitivity of the

homologies hA mentioned in the �rst paragraph, it follows that each trace of

T n fxuLzg meets xz in a constant number (=3) of points. So in particular,

jxy \ xzj = 3.

Now let a be the unique point of xy \ xz di�erent from v and w. If projay =

projaz, then the points y and z are in (3,4)-position with respect to x, im-

plying jxy \ xzj = 2, a contradiction. Hence xfy;zg = xy \ xz, which shows

the lemma. 2

Remark. Lemma 2.3.8 can also easily be proved using coordinates instead

of the more geometric arguments given above.

Theorem 2.3.9 A �nite generalized hexagon � of order (q; q) is weak anti-

regular if and only if it is isomorphic to H(q)D, with q not divisible by 3.

Proof. Let � be a �nite weak anti-regular hexagon of order (q; q). Let y and

z be points in (3,4)-position with respect to a point x; v; w 2 xy \ xz, with

projvy = projvz and projwy 6= projwz. We prove that jxy \ xzj = 2. The

result will then follow from Theorem 2.3.7. Put u = v1y and u0 = w1y.

Suppose �rst that z and u are collinear, and let by way of contradiction
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anti-regular

hL;Mi \ x?? 6= ;

H(q)

extremal and property (C)

(then q odd)

q0 even

H(q0)D

and property (C)

(3; 4)-position
3 6 jq0

(then q even)

T(q3; q)

T(q0; q0
3
)

Figure 2.5: Characterizations obtained in sections 2.2 and 2.3.

r 2 xy \ xz n fv; wg. Clearly, projry 6= projrz. But now, the weak anti-

regularity implies that also projvy 6= projvz, a contradiction.

Suppose now that Æ(u; z) = 4. Let T = fxrjr 2 �2(u
0) \ �4(v) \ �6(x)g. By

the previous paragraph, every two elements of T have exactly the points v; w

in common. By the weak anti-regularity, every set T \xz, with T 2 T nfxyg,

contains at least one element di�erent from v; w. Since this gives rise to at

least q�1 elements of xznfv; wg, there is no room anymore in xz for elements

of xy n fv; wg, implying jxy \ xzj = 2. 2

Remark. We call a �nite generalized 2n-gon � of order (q; q) anti-regular

if for any three points x; y; z, with z; y both opposite x, such that j�2(x) \

�2n�2(y) \ �2n�2(z)j � n � 1 and j�1(w) \ �2n�3(y) \ �2n�3(z)j = 0, for

at least n � 1 elements w of �2(x) \ �2n�2(y) \ �2n�2(z), we have that

j�2(x) \ �2n�2(y) \ �2n�2(z)j = n and j�1(w) \ �2n�3(y) \ �2n�3(z)j = 0,

for all elements w of �2(x) \ �2n�2(y) \ �2n�2(z).

In this way, one can see that the de�nition given earlier for an anti-regular

hexagon generalizes the de�nition of anti-regularity given in Payne & Thas [34].

?4 Proof Theorem 2:3:9 under the weaker assumption that `a certain set'

of points of � is anti-regular.

Some of the characterizations obtained in sections 2.2 and 2.3 are summarized

in Figure 2.5.



2.4 A characterization of Moufang hexagons using ovoidal subspaces 47

2.4 A characterization of Moufang hexagons

using ovoidal subspaces

Recall that for two opposite points x; y in a generalized hexagon, we say that

the pair (x; y) is 3-regular if the set hx; yi is determined by any two of its

lines.

Theorem 2.4.1 Let � be a generalized hexagon in which all intersection

sets xy \ xz either have size 1 or satisfy xy = xz. If � contains an ovoidal

subspace O all the points of which are 3-regular, then � is 3-regular and hence

a Moufang hexagon.

Proof. The condition about the intersection sets is equivalent with the fact

that every two opposite points x and y are contained in a (unique) thin ideal

subhexagon, which we denote by D(x; y) (this follows for instance from Van

Maldeghem [57], Lemma 1.9.10). Let x and y be two opposite points: we

prove that the pair (x; y) is 3-regular. It is suÆcient to �nd a point z at

distance 3 from two lines of hx; yi such that one of the pairs (x; z) or (y; z)

is 3-regular. We may assume that neither x nor y belongs to O.

(a) Suppose there is a point a 2 D(x; y) opposite x and at distance 4 from

y such that the pair (a; x) is 3-regular. Let La be the line through

a1 y at distance 3 from x and let z be an arbitrary point in hLa;Mi,

La 6= M 2 hx; yi, z 6= x. We show that xy = xz. Put u = projLaz,

u0 = projMa, X = proju0a and z0 the point of hLa; Xi collinear with u.

Then xy = xa and xz
0

= xz because we work in the thin subhexagon

D(x; y). Also xa = xz
0

by the 3-regularity, hence xy = xz.

(b) Suppose in addition to (a) there is a point b 2 D(x; y) opposite y and

at distance 4 from x such that the pair (b; y) is 3-regular. Then the pair

(x; y) is 3-regular. Indeed, let Lb be the line through b1x at distance 3

from y. If La 6= Lb, put M = La and N = Lb. If La = Lb, put M = La

and N 2 hx; yi, N 6= La. Applying (a), we see that for an arbitrary

point z 2 hM;Ni, x 6= z 6= y, xy = xz and yx = yz, so z lies at distance

3 from every line of hx; yi, and the pair (x; y) is 3-regular.

Let �rst O be an ovoid not containing x or y. Then D(x; y) contains 0, 1 or

2 points of O. Suppose �rst D(x; y) contains two points a and b of O. Up to

interchanging x and y, one of the following situations occurs:
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� Æ(a; x) = 4 = Æ(b; y) and Æ(a; y) = 6 = Æ(b; x).

It immediately follows from (b) that the pair (x; y) is 3-regular.

� Æ(a; x) = 2, Æ(b; x) = 4 and Æ(b; y) = 6.

Note that b lies at distance 4 from the point a1 y. Let Lb be the line

of hx; yi at distance 3 from b and La the line of hx; yi through a. Then

(a) shows that

(1) yx = yz
0

, for all points z0 2 hLa; Lbi, z
0 6= y.

Consider the point v of yx on Lb. Suppose �rst that the unique point

o of O collinear with v does not lie on vy. Put u = projLao. Note that

u 6= a since o 62 D(x; y). Let �nally z = u1 (projLbu). Then applying

(a), we obtain

(2) zy = zx = zw, for all w 2 hLa; Lbi, w 6= z.

Combining (1) and (2) as in (b), we see that the pair (x; y) is 3-regular.

So we may now assume that o lies on vy. Consider an arbitrary point

p of D(x; y) collinear with v, di�erent from y or v 1 x. Since the line

vp does not contain a point of O, we can apply the previous argument

(noting that D(x; y) = D(x; p)) to obtain that the pair (x; p) is 3-

regular. But now again applying (b) shows that also the pair (x; y) is

3-regular.

� Æ(a; x) = 2 = Æ(b; y).

Let p be a point of D(x; y) collinear with a1y, di�erent from a and y,

and p0 a point of D(x; y) collinear with b1 x, di�erent from b and x.

Then the previous paragraph shows that both (x; p) and (y; p0) are 3-

regular pairs, so applying (b) gives that also the pair (x; y) is 3-regular.

Suppose now D(x; y) contains exactly 1 point a of O. Then we have the

following cases to consider:

� Æ(a; x) = 2.

Let v be a point of xy di�erent from a and put w = v1y, w0 = a1y.

Denote by o the unique point of O collinear with v. If o lies on vw, then

put z = o1 (projaw0o). If o does not lie on vw, then put u = projaw0o

and z = u1 (projvwu). Now D(x; z) contains two points of O, so the

pair (x; z) (and hence the pair (x; y)) is 3-regular.

� Æ(a; x) = 4 and Æ(a; y) = 6.

Let again La be the line of hx; yi at distance 3 from a. By (a), we

already know that
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(3) yx = yz, for all points z, y 6= z 2 hLa;Mi, M 2 hx; yi, M 6= La.

Choose a point v 2 yx, v not on La such that the unique point o 2 O

collinear with v does not lie on the line vy. Let Lv be the line of hx; yi

through v. If o lies on Lv, then put z = o 1 (projLao). From the

previous case, it is then clear that (x; z) is a 3-regular pair. If o does

not lie on Lv, put u = projLao and z = u1projLvu. Then by (a),

(4) zy = zx = zw, for all points w, z 6= w 2 hLv;Mi, M 2 hx; yi,

M 6= Lv.

Combining (3) and (4), we again see that (x; y) is a 3-regular pair.

Suppose �nally D(x; y) does not contain any point of O. Similarly as before,

we can �nd a point z at distance 3 from two lines of hx; yi for which the

hexagon D(x; z) contains a point of O, from which the result follows.

Suppose now O = �1(M)[�3(M), M a line of � at distance 5 from x and y.

Then D(x; y) contains the line M , or D(x; y) intersects O in either 0 points

or 2 collinear points. (Indeed, if D(x; y) contains a point of M , then M is a

line of D(x; y). If D(x; y) contains a point p 2 �3(M), but no point of M ,

then the line L = projpM of D(x; y) contains two points of O. If D(x; y)

would contain a point p0 of O, p0 not on L, then also projLp
0 2 D(x; y), a

contradiction.) As before, the case that D(x; y) contains no point of O can

be reduced to one of the other cases. If D(x; y) contains M , then the pair

(x; y) is 3-regular because of (b). So we only have to consider the case that

D(x; y) contains exactly two collinear points a and b of O. We consider the

following situations:

� Æ(a; x) = 2 = Æ(b; y).

Since M is concurrent with the line ab, we can �nd a point z 2 O at

distance 3 from ab and another line of hx; yi, hence the result follows.

� Æ(a; y) = 6 = Æ(b; x) (hence Æ(a; x) = 4 = Æ(b; y)).

This is clear because of (b).

� Æ(a; x) = 2, Æ(b; x) = 4 and Æ(b; y) = 6.

Note that the line ab is concurrent with M , and that a and b lie at

distance 3 from M . Let La be the line of hx; yi through a and L0 an

arbitrary line of hx; yi di�erent from La. Let u be the projection onto

L0 of the intersection of M and ab. Let �nally z be the unique point of

hLa; L
0i collinear with u. Clearly, D(x; z) contains M , hence the pair

(x; z) is 3-regular, and so is (x; y).
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Suppose �nally that O is a full subhexagon. If D(x; y) contains at least one

point p of O, then it has at least an ordinary hexagon through p in common

with O. From this, it is easily seen that, if D(x; y)\O is nonempty, either x

or y lie in O (and then we are done), or D(x; y) contains points o1; o2 2 O,

Æ(o1; x) = Æ(o2; y) = 4 and Æ(o2; x) = Æ(o1; y) = 6. In the latter case, (x; y) is

3-regular because of (b). Again as before, the case that D(x; y) contains no

point of O can be reduced to the previous one. 2

Let p be a point of a generalized hexagon �. We say that the point p is

intersection-regular, if for every intersection set px \ py, x and y opposite

p, the condition jpx \ pyj > 1 implies px = py. 1 A subset B of the line set of

a generalized hexagon � is called a line blocking set if every line of � not

contained in B intersects at least one line of B.

Theorem 2.4.2 Let � be a distance-3-regular hexagon, and B a line blocking

set in �. Suppose that all the points lying on any line of B are intersection-

regular. Then � is point-distance-2-regular and hence a Moufang hexagon.

Proof. Let � and B be as above, and denote by B the points lying on any

line of B. Let p be an arbitrary point of �, and x; y points opposite p such

that px \ py is an intersection set containing at least two points. We show

that px = py. This will prove the result, in view of Theorem 1.8.4 (i). Put

z = x1y, v = p1z and w 2 px\py, w 6= v. If p 2 B, we are done, so assume

p 62 B. Let o1 be a point of B on the line vp, o2 a point of B on the line wp

and R a line of B containing o1. Then we distinguish the following cases.

(i) o1 6= v

Let L be a line through p, vp 6= L 6= wp. Suppose by way of contradic-

tion that y0 := projLy 6= projLx. Put x
0 = projxzy

0. Let a be the point

of the regulus R(z; w) collinear with o1, and b the point of the regulus

R(y0; z) collinear with o1. Note that Æ(a; projyw) = Æ(a; projxw) = 3

and Æ(b; projx0y
0) = Æ(b; projyy

0) = 3. Also, Æ(a; b) = 4 (indeed, if not,

the points a; b and the distance-4-paths [b; y] and [a; y] would de�ne a

pentagon). Now o1
x0 \ o1

y is an intersection set (containing the points

v and b), hence o1
x0 = o1

y, contradicting a 2 o1
y but Æ(a; x0) = 6.

(ii) o1 = v and R = vz

Let w0 be an arbitrary point of px nfv; wg. Then zw\zw
0

is an intersec-

tion set (containing the points v and x) hence, since z 2 B, zw = zw
0

.

Since y 2 zw, we have Æ(y; w0) = 4, showing px = py.

1Using the terminology of Ronan [37], a point is intersection-regular exactly if all

intersection sets with respect to this point have size 1.



2.5 Two characterizations of the Hermitian spread in H(q) 51

(iii) o1 = v, R 6= vz and o2 6= w.

Put a = x 1 w, b = y 1 w and c = projRa. Since va = vb (indeed,

va \ vb is an intersection set containing the points p and z), Æ(b; c) = 4.

Put x0 = a1 c and y0 = b1 c. Because px \ px
0

is an intersection set

(containing the points v and w), and o2 6= w, case (i) above implies

that px = px
0

. Similarly, py = py
0

. Since also px
0

= py
0

by case (ii), we

obtain px = py.

(iv) o1 = v and o2 = w.

Let L be an arbitrary line through p, vp 6= L 6= wp. Suppose by way

of contradiction that y0 := projLy 6= projLx =: x0. We can assume that

either both x0 and y0 belong to B or, without loss of generality, x0 62 B.

Put x00 = projyzx
0. Now px\px

00

is an intersection set (containing v and

x0) and because of the assumptions, L contains a point of B di�erent

from x0. Hence we can apply (iii) to obtain px = px
00

. Since w 2 px,

this implies Æ(w; x00) = 4, a contradiction.

2

Remark. Let O be a dual ovoidal subspace of a hexagon �. Then O is a

line blocking set, having the property that every line of � not contained in O

intersects exactly one line of O. If � is a �nite generalized hexagon of order

(s; t), then the set O has roughly size st2, and O (the set of points lying on

any line of O) has roughly size s2t2, while the point set of � itself has roughly

size s3t2.

2.5 Two characterizations of the Hermitian

spread in H(q)

Let S be a spread of the generalized hexagon � = H(q), and de�ne the

following geometry �S . The points of �S are the points of � on lines of the

spread. For a point p not on any line of S, we denote by V S
p the set of q + 1

points of �S collinear with p (if there is only one spread S around, we use

the notation Vp for short). Now the lines of �S are the lines of the spread

together with the sets V S
p , p 2 �n�S . Incidence is symmetrized containment.

It is easy to check that �S is a generalized quadrangle of order (q; q2) if and

only if the spread S satis�es the following property:

(3) Let L1, L2 and L3 be three di�erent lines of the spread S, and x1 a

point on L1. Put x2 = projL2x1 and x3 = projL3x2. If Æ(x1; x3) = 4,

then necessarily x11x2 = x11x3 = x21x3.
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Figure 2.6: A forbidden con�guration in H(q).

Property (3) says that a con�guration as in Figure 2.6 (where the bold lines

are spread lines) is forbidden. Note that the lines L1, L2 and L3 in (3)

necessarily belong to the same line regulus.

Theorem 2.5.1 A spread S of the �nite generalized hexagon H(q) is Her-

mitian if and only if the geometry �S is a generalized quadrangle, if and only

if S satis�es property (3).

Proof. If S is the Hermitian spread of H(q), then �S is indeed a generalized

quadrangle (namely the quadrangle Q(5; q)), so assume now we have a spread

S of H(q) satisfying property (3). We prove that for any two lines of S, the

regulus de�ned by these lines is contained in S. The result will then follow

from Theorem 1.7.1.

Let p be a point of � = H(q) not on any line of the spread. We claim that Vp is

in fact a distance-2-trace in �. Let a and a0 be two di�erent points of Vp and

suppose by way of contradiction that the trace de�ned by a and a0 contains

a point b, b 62 Vp. Let L be the line of S through a, and let L0 be an arbitrary

line of � through b, di�erent from bp. Let �nally L00 be the unique spread line

that is concurrent with L0 and put y = projL00a. Note that projay 6= L (since

spread lines are necessarily opposite). Because of the distance-2-regularity,

the trace de�ned by a and b is equal to py, so Æ(y; a0) = 4. If we denote

by N the spread line through a0, then proja0y 6= N . But now we obtain a

con�guration forbidden by (3), by considering the spread lines L, N and L00,

together with the ordinary hexagon through a, p, a0 and y, a contradiction.

This shows our claim.

Let L0 and L1 be two di�erent lines of S, and M 2 R(L0; L1), L0 6=M 6= L1.

We show that M 2 S. Let p and p0 be two di�erent points belonging to the
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point regulus hL0; L1i. By the previous paragraph, we know that Vp = pp
0

and Vp0 = p0
p
. But this implies that both projMp and projMp

0 have to lie on

lines of S. Because spread lines are opposite, this is only possible if M 2 S,

which shows that R(L0; L1) is contained in S.

The theorem is proved. 2

?4 Suppose � is a �nite generalized hexagon of order (q; q) having a spread

S for which the geometry �S is the classical quadrangle Q(5; q). Is �

itself classical ?

For an arbitrary generalized hexagon �, one could ask whether the existence

in � of `a lot of' spreads having property (3) is enough to conclude that �

is classical. We now give a �rst result in this direction.

Let � be a generalized hexagon of order (q; q), and � a set of spreads of �

such that the following conditions hold:

(1) Each element of � has property (3).

(2) For any two points a and b of �, with Æ(a; b) = 4, there exists a spread

S 2 � such that a and b lie on lines of S.

(3) Let S 2 �, and a and b two points of � contained in a set V S
p , with

p = a1 b. For any point p0 at distance 4 from a and opposite b and p,

such that p0 lies at distance 5 from the line of S through a, there exists

a spread S 0 2 � for which p0 lies on a line of S 0 and V S
p = V S0

p .

Proposition 2.5.2 A �nite generalized hexagon of order (q; q) contains a

set of spreads � satisfying (1); (2); (3) if and only if � is isomorphic with

H(q).

Proof. Let � �= H(q). Let � be the set of Hermitian spreads of �. Then

clearly properties (1) and (2) hold. Now let a, b and p0 be as in (3). Then these

three points de�ne a plane intersecting the quadric Q(6; q) in two concurrent

lines. Through such a plane, there always exists a hyperplane intersecting

Q(6; q) in a non-singular elliptic quadric. Hence (3) holds. Now let � be

a �nite generalized hexagon of order (q; q) containing a set of spreads �

satisfying (1), (2) and (3). By condition (2), it suÆces to prove that, for any

spread S of �, each V S
p is a trace determined by two of its points. Fix a set

V S
p , points a, a

0 of V S
p , and a point b on pa0, b di�erent from p and a0. Let p0
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be a point opposite p, at distance 4 from both a and b. Now we claim that p0

does not lie at distance 4 from a point of V S
p n fag. Indeed, suppose by way

of contradiction there is a point a00 2 V S
p nfag at distance 4 from p0. Suppose

�rst p0 lies at distance 5 from the line of S through a. By condition (3), there

exists a spread S 0 2 � such that p0 lies on a line of S 0, and V S
p = V S0

p . But

now the forbidden con�guration occurs in the ordinary hexagon through a,

a00 and p0, the contradiction. Next, consider the case that p0 lies at distance

3 from the line of S through a. We can assume that the line proja00p
0 belongs

to S (indeed, otherwise we obtain a contradiction with the previous case).

Put p1 the projection of a0 onto the line projp0a, and p2 the projection of a0

onto the line projp0a
00. Then as before, the line proja0p1 belongs to S. But

now the point p2 lies at distance 4 from a0, at distance 5 from the line of S

through a0 and opposite a 2 Vp, hence (again by the previous case), p2 lies

opposite every element of Vp n fa
0g, contradicting Æ(p2; a

00) = 4.

This shows the claim. Hence an arbitrary point y opposite p and at distance

4 from both a and a0, will be at distance 4 from every point of Vp, which

shows that Vp is a trace determined by two of its points. 2

Let � be a generalized hexagon admitting a spread S, and let L0 be a line of

S. Consider all projectivities [L0;L1] : : : [Lk; L0] of the line L0 for which the

lines Li, 0 � i � k, belong to S. These projectivities form a group, called

the group of projectivities of L0 with respect to S, denoted by �S(L0).

The groups �S(L), L 2 S are all isomorphic, so we can de�ne �S = �S(L),

for L an arbitrary line of the spread.

Lemma 2.5.3 If S is the Hermitian spread of H(q), then �S is a Singer

group.

Proof. Let S be the Hermitian spread of H(q). Since S is also a spread of

the quadrangle Q(5; q), the result follows from De Bruyn [15] (remembering

that collinearity in Q(5; q) corresponds to non-opposition in H(q), so we are

really talking about the same projectivities). We give an alternative proof

using coordinates in the hexagon � = H(q). Let L0, L1 be two opposite lines

of �, and choose coordinates such that L0 = [1] and L1 = [0; 0; 0; 0; 0]. Let

� be a hyperplane of PG(6; q) containing the lines L0, L1, and intersecting

Q(6; q) in an elliptic quadric determining a Hermitian spread of �. Then

for q odd, � has equation X1 = mX5, with m a non square in GF(q), or

mX1+X3+nX5, with 1�4mn a non square in GF(q), and for q even, � has

equationmX1+X3+nX5, with Tr(mn) = 1. We proceed with the case that �

has equation X1 = mX5 (the other cases are completely similar). A line N of
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S not contained in R(L0; L1) has coordinates [mb
0;�mk00; k0; b0; k00], k0; b0; k00 2

GF(q) (see for instance Bloemen, Thas & Van Maldeghem [4], section 3.1.2).

Now it suÆces to show that the projectivity � = [L0;L1][L1;N ][N ;L0] has

exactly two `imaginary' �xed points independent of the choice of N . Let

p = (x) be a point on L0. Put p1 = projL1p, p2 = projNp1 and p
0 = projL0p2.

Then one easily calculates that the point p0 has coordinate (x0), with x =
Ax0�B

�mBx0+A
, A = k0 �mb0k00 and B = b0

2
�mk00

2
. Hence p = p� if and only if

x2 = 1=m, from which the result follows. 2

Theorem 2.5.4 A spread S of the �nite generalized hexagon H(q) is Her-

mitian if and only if �S is a Singer group.

Proof. Let � = H(q) and Q = Q(6; q) the quadric on which � is de�ned.

Let L0 and L1 be two opposite lines of �. We �rst determine the number

of Hermitian spreads containing the regulus R(L0; L1). Note that R(L0; L1)

de�nes a 3-space L intersecting Q in a hyperbolic quadric Q+(3; q). Let �

be the polarity associated with the quadric Q. Then the plane L� intersects

Q in a nondegenerate conic C which is the point regulus hL0; L1i. Let 
0

be a 5-space containing L and N the line in which 
0 and the plane L�

intersect. Then either N \ C = fp1; p2g (in this case, 
0 intersects Q in

a hyperbolic quadric Q+(5; q) corresponding to the thin ideal subhexagon

�(p1; p2) of �), N \ C = fpg (in this case, 
0 intersects Q in a cone pQ(4; q)

corresponding to the set p?? in �) or N \ C = ; (then 
0 intersects Q in

an elliptic quadric Q�(5; q) determining a Hermitian spread of �). So the

number of Hermitian spreads through R(L0; L1) is equal to the number of

lines of L� not intersecting the conic C, which is (q2 � q)=2.

Next, we show that for two opposite lines L0 and L1 of �, there is a bijective

correspondence between the set of Hermitian spreads containing the regulus

R(L0; L1) and the set of Singer groups in PGL2(q). Put G = G2(q). Let

S1 be a Hermitian spread containing R(L0; L1), and put H1 = �S1 . Let H2

be an arbitrary Singer group acting on L0. Since every two Singer groups

in PGL2(q) are conjugate, there exists an element �0 2 PGL2(q) for which

H�0

1 = H2. Now choose � in GL0 such that �=�1(L0) = �0. Since the

pointwise stabilizer of a line in H(q) acts transitively on the lines opposite

this line (this follows from the Moufang condition, see [57], Lemma 5.2.4

(ii)) we can choose an element � �xing L0 pointwise such that L
��
1 = L1.

Now �� maps S1 to a Hermitian spread S2 containing R(L0; L1) for which

�S2 = H2. This shows that every Singer group is the group belonging to a

Hermitian spread containing R(L0; L1). Furthermore, this spread is unique,

since there are as many Hermitian spreads through a certain regulus as there

are di�erent Singer groups in PGL2(q) (namely (q2 � q)=2).
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Let now S = fL0; L1; : : : ; Lq3g be a spread of � such that G = �S is a

Singer group. Because of the previous paragraph, we can de�ne SH to be

the unique Hermitian spread containing R(L0; L1) for which G = �SH . Let

A be the set of lines M of the hexagon opposite L0 and L1 such that the

projectivity �M := [L0;M ][M ;L1][L1;L0] belongs to G n feg. Let N be an

arbitrary line of the hexagon opposite L0 and L1. If N 2 R(L0; L1), then

�N = e, so N 62 A. Suppose N 62 R(L0; L1). Let 
 be a 5-space containing

L0, L1 and N . Then, as in the �rst paragraph of the proof, 
 intersects the

quadric Q(6; q) either in an elliptic quadric (case 1), a hyperbolic quadric

(case 3) or in a cone pQ(4; q), with p 2 hL0; L1i (case 2).

(1) Note that all the lines of SH not belonging to R(L0; L1) are contained

in A. In this way, we obtain q3� q elements of A. If N does not belong

to SH , then L0, L1 and N de�ne a Hermitian spread corresponding to a

group G0 6= G (see the second paragraph of the proof), so �N 62 Gnfeg

and N 62 A.

(2) Clearly, N lies at distance 3 from p. Let p0 be the projection of p onto

N . Then p0 is a �xed point of �N . Suppose there is a �xed point w

on N di�erent from p0. Put w0 = projL0w and w1 = projL1w. Because

w is a �xed point, we have Æ(w0; w1) = 4. Put w0 = w0 1 w1. Note

that Æ(w;w0) = 6 since we assumed N 62 R(L0; L1). Because of the

2-regularity, (w0)w = (w0)p. This implies that w lies at distance 4 from

the point of (w0)p on the unique line L of R(L0; L1) not opposite N ,

which is only possible if p0 2 L. In this case every point on N is �xed.

Indeed, let y be an arbitrary point on N , y 6= p0. Put z0 = projL0y and

z the point of hL0; L1i collinear with z0. Let �nally z1 = projL1z and

z2 = projLz. Then fz0; z1; z2g � zp. Since Æ(y; z2) = Æ(y; z0) = 4, also

Æ(y; z1) = 4, showing that y is a �xed point of �N . So if p
0 lies on a line

of R(L0; L1), �N = e; if not, then �N has exactly one �xed point.

(3) Let �0 be the ideal subhexagon of order (1; q) de�ned by the intersection

of 
 and Q, and let p; p0 be the unique two points belonging to hL0; L1i\

�0. Because L0 and N are opposite lines, Æ(p;N) 6= 1. If Æ(p;N) = 3,

then L0; L1 and N are contained in a hyperplane corresponding to case

(2). Hence we may suppose that Æ(p;N) = 5. Put w = projNp and

v = p1w. Note that v is a point of pp
0

not on the lines L0 or L1. If

w lies on a line of R(L0; L1), then w 2 (p0)p and we are back in case

(2), so suppose vw is not a line of R(L0; L1). Put ui = projLip and

u0i = projLip
0, i = 0; 1. Then Æ(w; u00) = Æ(w; u01) = 4, so w is a �xed

point of �N . Also w0 := projNu0 = projNu1, so w0 is a second �xed
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point of �N . Suppose �N has a �xed point f di�erent from w and w0.

Put fi = projLif , i = 0; 1, and f 0 = f0 1 f1 (Æ(f0; f1) = 4 since f is

a �xed point). Note that Æ(f; f 0) = 6. Because of the 2-regularity, we

have (f 0)p = (f 0)f . But this is a contradiction, since the point of (f 0)p

on the line of R(L0; L1) through v lies opposite f . So in this case, �N
has exactly two �xed points.

It follows that A contains exactly q3 � q lines (and these lines all belong to

the spread SH). Also, �N is the identity if and only if N is a line of R(L0; L1)

(N 6= L0; L1) or N is concurrent with a line of R(L0; L1). Hence, since lines

of a spread are mutually opposite, at most q � 1 lines of S n fL0; L1g can

give the identity. Consequently, at least (and hence exactly) q3 � q lines

of S belong to A. Hence the spreads S and SH can only di�er in lines of

the regulus R(L0; L1). But now, applying the same argument to a regulus

R(L0;M), M a line of A, shows that S = SH . 2
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Chapter 3

Forgetful Polygons

3.1 Introduction

For every non-incident point-line pair fp; Lg of an aÆne plane, there is ex-

actly one line through p parallel with L. By replacing exactly one by at

most one, the de�nition of a semi-aÆne plane is obtained. Since parallelism

de�nes an equivalence relation, we can also say that in a semi-aÆne plane,

any two lines are either concurrent or equivalent. Dually, a dual semi-aÆne

plane is an incidence structure (P;L; I), together with an equivalence rela-

tion on the point set P such that every two lines meet, and every two points

are either collinear or equivalent. In Dembowski [18], it is shown that every

�nite dual semi-aÆne plane � arises from a projective plane, in such a way

that the points and lines of � are projective points and lines, and the equiv-

alence classes are (pieces of) lines of the projective plane. In this chapter,

we generalize the notion of a dual semi-aÆne plane to generalized polygons.

The idea is that in the de�nition of generalized polygon, `being collinear' is

replaced by `being collinear or equivalent'. We then ask the usual axioms

about the distance between points and lines, but we do not ask anything

about the distance between a point/line and a class, or between two classes.

So the de�nition of these new structures looks pretty much the same as the

one of a generalized polygon, except for the fact that some lines seem to have

been `forgotten'. This is the reason why we called these structures `forgetful
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polygons'. In a way, the equivalence classes of points can be seen as `the

holes' in the memory of the forgetful polygon.

The main question now reads: does every forgetful polygon arise from a

generalized polygon, by replacing (pieces of) lines by equivalence classes?

Since one can construct in�nite forgetful polygons using free constructions,

we restrict ourselves to the �nite case. For forgetful n-gons with n odd,

the answer to the above question is `yes', implying that there are no �nite

forgetful odd-gons, apart from the dual semi-aÆne planes. The case n even

seems much harder. In this case, a positive answer to the question can be

obtained if the forgetful polygon still remembers that at least one line and

one equivalence class have the same number of points. If this condition

is not satis�ed, we prove that the forgetful polygon has `nice' properties,

for example the equivalence classes of points all have the same size. These

classes can be much shorter than the lines however, and the memory of such

a forgetful polygon seems to be too short to prove that they actually arise

from generalized polygons. This is the reason why they got the name `short

forgetful polygons'.

We next turn our attention to the smallest short forgetful polygons, being

the forgetful quadrangles. Here one can do a little better: if a forgetful quad-

rangle still remembers that there was a class and a line for which the number

of points incident with it di�ers by at most one, then again the memory can

be freshened up and the forgetful quadrangle indeed arises from a generalized

quadrangle. We further investigate the structure of a short forgetful quad-

rangle, which gives rise to interesting objects such as strongly regular graphs.

Furthermore, we give two families of examples of short forgetful quadrangles

for which the classes are really short. Also these examples arise from gener-

alized quadrangles, but not always in the expected way (this is, the classes

are not always lines of the ambient generalized quadrangle). We then give

some characterizations of the known examples of short forgetful quadrangles.

We end this chapter with the following question: is it possible to classify all

the forgetful quadrangles arising from a generalized quadrangle by `forgetting

lines'? At the moment, this question does not seem to be much easier than

the original classi�cation job...

3.2 De�nitions and �rst examples

Let (P;L; I) be an incidence structure, and � an equivalence relation on

the point set P. Denote by C the set of non-trivial equivalence classes of �.

We say that a point x is incident with a class K of C if x belongs to K

(and we also use the notation xIK for this). For two elements x and y of
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P [L[ C, a forgetful path of length j between x and y is a sequence (x =

z0; z1; : : : ; zj�1; zj = y) of di�erent elements of P [ L [ C such that ziIzi+1,

for i = 0; : : : ; j � 1. If j is the length of a shortest forgetful path connecting

x and y, we say that x and y are at distance j (notation Æ(x; y) = j).

Now � = (P;L; I;�) is a forgetful n-gon, n � 3, if the following three

axioms are satis�ed:

(FP1) If x; y 2 P [ L and Æ(x; y) = k < n, then there is a unique forgetful

path of length k joining x to y.

(FP2) For every x 2 P [ L, we have n =maxfÆ(x; y) : y 2 P [ Lg.

(FP3) Every line contains at least three points, every point is incident with

at least three elements of L [ C.

If C = ;, then clearly � is a generalized n-gon. So the generalized polygons

give the �rst examples of forgetful polygons.

Let � = (P;L; I;�) be a forgetful n-gon. The elements of C are called the

classes. So except when mentioned di�erently, when talking about a class,

we always mean a non-trivial class. The cardinality of the biggest class of

C is denoted by g. A point which is only equivalent with itself is called an

isolated point. Let x and y be two elements of P [ L [ C at distance

< n. Then the element projxy is de�ned in the obvious way, and we use the

notation [x; y] for the shortest forgetful path between x and y. The set of

lines through a point p (the set of points incident with a line L) is denoted

by Lp (PL). The order of Lp (PL) is called the degree of p (L) and denoted

by jpj (jLj). In the following, if talking about a `path' in �, we will always

mean a `forgetful path'.

Let � = (P 0;L0; I0) be a �nite generalized n-gon of order (s; t), n 2 f4; 6; 8g.

Then the following construction yields a forgetful n-gon � = (P;L; I;�).

(I) Let D be a set of disjoint lines of �. Put P = P 0 and L = L0 nD. Two

di�erent points of P are said to be equivalent if and only if they both

lie on the same line of D.

If � is a �nite generalized quadrangle, then we also have the following ex-

amples.

(II) Let L be a line of �, X1 a subset of the points of L, 1 � jX1j � s+ 1,

and X2 = �1(L) n X1. Denote by V the set of lines that intersect L
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L

X1 X2

Figure 3.1: A forgetful quadrangle of type (II), and the special case jX1j = 1.

L
r

R

Figure 3.2: A forgetful quadrangle of type (III).

in a point of X1. Then put P = P 0 n X1, L = L0 n (V [ fLg). Two

di�erent points of P are said to be equivalent if and only if they both

lie on the same line of V [ fLg (see Figure 3.1).

(III) Let R and L be two di�erent lines of � through a point r. Let V be

the set of lines concurrent with L, but not through the point r. Then

put P = (P 0n�1(L))[frg, L = L0n(V [fR;Lg). Two di�erent points

of P are said to be equivalent if and only if they both lie on the same

line of V [ fRg (see Figure 3.2).

Note that the above constructions also hold if � is not �nite. However

one can obtain more examples of in�nite forgetful polygons by using free

constructions, which shows that trying to classify forgetful polygons without

the �niteness restriction is impossible.
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3.3 Classi�cation for n odd

Theorem 3.3.1 There does not exist a �nite forgetful generalized n-gon, n

odd and n � 5.

Proof.

Let � = (P;L; I;�) be a �nite forgetful n-gon, n odd and n � 5. The

aim is to show that the geometry (P;L [ C; I) is a �nite generalized n-gon,

hence � does not exist. Therefore it suÆces to prove that, if K and K 0 are

classes, and L an arbitrary line, then Æ(K;L) � n� 1 (this is done in Step 1

and 2) and Æ(K;K 0) � n � 1 (Step 3). In Step 0, we collect some general

observations.

Step 0

Note that for two classes K and K 0, and an arbitrary line L, we certainly

have that Æ(K;L) � n + 1 and Æ(K;K 0) � n + 1. Let K be an arbitrary

class, r 2 K, and N a line for which Æ(N;K) = n� 1 and Æ(N; r) = n. Then

jN j = jrj + 1. Indeed, the map

� : Lr ! PN n fprojNKg

L ! p; with Æ(p; L) = n� 2;

is a bijection. Suppose M is a line at distance n + 1 from K. Since for any

point p of K, the map

� : Lp ! PM

L ! p0; with Æ(p0; L) = n� 2;

is a bijection, jM j = jpj. Similarly, one shows that if z is an isolated point

at distance n from a line N , then jzj = jN j.

Now �x a class K and suppose M is a line at distance n + 1 from K, and

mIM . Let x be a point of K of degree k for which N := projmx is a line

(note that such a point certainly exists). Then from the previous observa-

tions follows that jM j = k, every point of K has degree k and every line at

distance n� 1 from K contains k+1 points. Note also that jM j = k implies

k � 3, because of axiom (FP3). Let A be the element of [x;m] at distance
n+1
2

from x, a = projAx and a0 = projAm. The aim is now to show that the

existence of the line M leads to a contradiction. In Step 1, we treat the case

that, if n � 1 mod 4, then A is not a class of size 2, and if n � 3 mod 4,

then a0 is not a class of size 2. In Step 2, we get rid of the remaining cases.
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Step 1

Suppose �rst that n 6= 5 and that in the case n = 7, jAj � 3, or a is a

class of size at least 3. Let z be a point at distance n�3
2

from A such that

a 6= projAz 6= a0, and N 0 := projzA is a line. Let v be a point at distance
n�1
2

from a0 for which A 6= proja0v 6= proja0m and projva
0 is a line (note that

it is always possible to choose z and v like this because of the assumptions

on the degrees of a, a0 and A). (The picture for n = 9 is given in Figure 3.3.)

We claim that both z and v are isolated points with degree k + 1.

Let z0 be a point on N 0 di�erent from z and from projN 0A. Let x0 be a point

of K di�erent from x. Then Æ(x0; z0) = n � 1. We de�ne the lines L and R

as follows.

� Case n � 1 mod 4. Note that A is a line. Let L be a line at distance n�3
2

from l := x01z0 for which projlx
0 6= projlL 6= projlz

0. Then jLj = k+1

since Æ(L;K) = n � 1. Let R be a line at distance n�3
2

from a, with

projax 6= projaR 6= A. Then jRj = k + 1 since Æ(R;K) = n� 1.

� Case n � 3 mod 4. If n 6= 7, let r be the point of [x0; z0] at distance
n+1
2

from x0, and R a line at distance n�5
2

from r for which projrx
0 6=

projrR 6= projrz
0. If n = 7, let R be a line intersecting a, not through

A or projax. Then in both cases, jRj = k + 1 since Æ(R;K) = n � 1.

Let L be a line at distance n�1
2

from a00 := projax, with proja00x 6=

proja00L 6= a. Then jLj = k + 1 since Æ(L;K) = n� 1.

Suppose z is not isolated, and let z00 be a point in the class Z containing z,

z00 6= z. Since Æ(R;Z) = Æ(M;Z) = n � 1 and Æ(R; z00) = Æ(M; z00) = n, we

obtain jRj = jz00j + 1 = jM j (see Step 0), a contradiction with jRj = k + 1

and jM j = k. Hence z is isolated and jzj = jLj = k + 1. The point z

was arbitrarily chosen on N 0, so every point on N 0 di�erent from projN 0A

is isolated and has degree k + 1. From this also follows that each line T

intersecting K, di�erent from projxm contains k + 1 points (indeed, one can

always �nd a point of N 0 n fprojN 0Ag lying at distance n from T ).

Suppose v is not isolated, and let v0 be a point in the class V containing

v, v0 6= v. Then jM j = jv0j + 1 = jN 0j, a contradiction with jN 0j = k + 1

and jM j = k, hence v is isolated. If n � 1 mod 4, then jvj = jRj = k + 1.

If n � 3 mod 4, then consider a line X through x, projxm 6= X 6= projxv

(note that this is possible since jxj = k � 3). Since Æ(v;X) = n, we obtain

jvj = jXj = k+1. This shows that both z and v are isolated points of degree

k + 1, as claimed.
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Figure 3.3: Proof of Step 1 for n = 9

Let Rz be a line through z, di�erent from N 0. Because Æ(v;Rz) = n, this line

contains k + 1 points, hence Æ(Rz;K) = n� 1. The map

� : Lz n fN
0g ! K n fxg

Rz ! y; with Æ(y;Rz) = n� 2;

is a bijection, from which follows that jKj = jzj = k + 1.

Finally, we consider the pointm. Ifm is isolated, then, with X a line through

x di�erent from projxm, Æ(m;X) = n implies that jmj = jXj = k+1. Every

point of K lies at distance n�1 from m, hence we need k+1 lines through m

lying at distance n�1 from K, a contradiction since there are at most k such

lines (indeed, Æ(M;K) = n+1). If m is not isolated, let m0 be a point of the

class K 0 containing m, m0 6= m. Then Æ(m0; x) = n� 1. Put B = projxm
0. If

B 6= K, then since jBj = k+1, Æ(B;K 0) = n� 1 and Æ(m;B) = n, the point

m has degree k. If B = K, put y = projKm
0. Let Y be any line through

y di�erent from projym
0. Then, since jY j = k + 1, Æ(Y;K 0) = n � 1 and

Æ(m;Y ) = n, the point m again has degree k. Since jKj = k + 1, we need at

least k lines through m lying at distance n� 1 from K, a contradiction since

there are at most k � 1 such lines.

Case n = 5.

Let z be a point on the line A, a 6= z 6= m, and L a line intersecting ax

not through a or x. If a would be equivalent with a point a00, a00 6= a, then

jM j � 1 = ja00j = jLj � 1 (by Step 0), a contradiction with jLj = k + 1

and jM j = k. Hence the point a is isolated. Let N 00 be a line through a,

ax 6= N 00 6= am (such a line exists, since the degree of the isolated point a

is at least 3). Note that jN 00j = k + 1. Similarly as above for the point a,
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we obtain that z is isolated (now using N 00 instead of L). From Æ(z; L) = 5

and jLj = k + 1 follows jzj = k + 1. By considering a line at distance 5 from

both a and z, we conclude that jaj = k + 1. Suppose �rst that m has degree

at least 3. Then let v be a point collinear with m, v not on the lines M or

A. Again by using the same argument as above for the point a, we obtain

that v is isolated and has degree k + 1. From this follows that every line Rz

through z, Rz 6= A, contains k+1 points. Suppose now m has degree 2, and

let r be a point equivalent with m, r 6= m. Then jrj = k since jN 00j = k + 1,

implying that also in this case every line Rz through z, Rz 6= A, contains

k + 1 points. We now proceed similarly as in the case n > 5.

Case n = 7, jAj = 2 and a; a0 are lines.

We show that this case cannot occur. Let Z be the class containing A, and

z 2 Z, z 6= A. Put a00 = projax. Let Y be a line at distance 4 from a00x, and

at distance 5 from both x and a00. Then jY j = k + 1. Let y be a point on a,

a00 6= y 6= A and Y 0 a line at distance 3 from a00, and at distance 4 from a00x

and a. Then jY 0j = k + 1. If y � y0, y0 6= y, then jM j � 1 = jy0j = jY 0j � 1, a

contradiction, hence y is isolated. Since Æ(y; Y ) = 7, jyj = k + 1. Let �nally

x0 be a point of K, x0 6= x. Then Æ(x0; z) = 6. The line projx0z contains k+1

points (because it lies at distance 7 from y), implying that jAj = k � 3. This

is a contradiction with the assumption.

Case n = 7, a a class of size 2.

De�ne z and v as in the general case. We have to give another argument to

conclude that the points z and v are isolated (since the line R de�ned in the

general case cannot be found). Let x0 2 K, x0 6= x. Then Æ(x0;m) = 6. Put

R = projmx
0.

� Suppose �rst R is a line. Then jRj = k + 1. If z � z0, z0 6= z, then

jM j � 1 = jz0j = jRj � 1, a contradiction, hence the point z is isolated.

Also, jzj = jR0j = k + 1, with R0 a line at distance 3 from a00 = projax

for which a 6= proja00R
0 6= a00x.

� Suppose now R is a class and let w be the point of [x0; R] at distance

2 from x0. Using the same argument as for the point z above (with a0

in the role of R), we obtain that w is isolated. Also, jwj = k+ 1 (since

jwj = jAzj). Hence an arbitrary line through a00 = projax, di�erent

from a00x, contains k + 1 points. Again using the same argument as

above, it now follows easily that also in this case the point z is isolated.

By considering a line intersecting a00x not through x or a00, we obtain

jzj = k + 1.

If v � v0, v 6= v0, then jAzj � 1 = jv0j = jM j � 1, a contradiction, hence v is
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isolated. For a line X intersectingM , not through m, holds that jzj = jXj =

jvj, hence jvj = k + 1. The rest of the proof is similar as in the general case.

This �nishes the case n � 1 mod 4 and A not a class of size 2, or n � 3 mod 4,

and a0 not a class of size 2. Note that for n =5 (7), the element A (a0) can

be chosen to be a line, so Step 2 does not concern these cases.

Step 2

n � 1 mod 4, n > 5 and A a class of size 2.

In the following, we will construct a point p0 such that Æ(p0; A) = n, Æ(p0; a) =

n � 1 for which both projp0a and the element of [a; p0] at distance n+1
2

from

a are lines, and such that jp0j = k if p0 is not isolated, and jp0j = k+1 if p0 is

isolated. Step 1 then implies that every line through p0 lies at distance n� 2

from a point of A. Hence jAj � k � 3, a contradiction.

Case n = 9.

Let p0 be a point at distance 5 from the line X = projxm, with x 6= projXp
0 6=

projXm and such that the path [X; p0] only consists of points and lines. If p0

is isolated, then let y be a point at distance 3 from K and 4 from x, and y0

the point of [y; p0] at distance 2 from y. By considering a line R at distance

3 from y0, projy0y 6= projy0R 6= projy0p
0, we see that jp0j = jRj = k + 1.

If p0 is contained in a non-trivial class Z, then let p00 2 Z, p00 6= p0, and

x0 2 K, x0 6= x. Let L be a line at distance 3 from the point z := x0 1 p00,

projzp
00 6= projzL 6= projzx

0. Since jLj = k + 1, p0 has degree k. So we

constructed a point p0 as claimed.

Case n � 1 mod 8, n > 9

Let p be the point of [x; a] at distance
Æ(x;a)

2
� 2 = n�9

4
from x, and p0 a

point at distance 3n�11
4

from p such that projpa 6= projpp
0 6= projpx and such

that the path [p; p0] only consists of points and lines, except possibly for the

element projpp
0. Suppose �rst that p0 is isolated. We show that jp0j = k + 1.

Consider a point y at distance 6 from x such that projxp 6= projxy 6= K. Then

Æ(p0; y) = n � 1. Let 
 be the union of the paths [p0; y] and [y; x]. Let z be

the element of 
 at distance n+3
2

from x, and z0 a point at distance n�9
2

from

z such that projzp
0 6= projzz

0 6= projzy. Then any line through z0 di�erent

from the projection of K onto z0 contains k+1 points (since it lies at distance

n � 1 from K), and lies at distance n from p0, hence jp0j = k + 1. Suppose

now that p0 is contained in a class K 0, and p00 is a point of K 0 di�erent from

p0. We show that jp0j = k. Consider a point y at distance 4 from x such that

projxp 6= projxy 6= K. Then Æ(p00; y) = n� 1. Let c be the point of [y; p00] at

distance n�5
2

from y and let c0 be a point at distance n�9
2

from c such that

projcp
00 6= projcc

0 6= projcy. Then any line Rc0 through c0 di�erent from the

projection of K onto c0 contains k+1 points (because it lies at distance n�1
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from K). Since Æ(Rc0 ; K
0) = n � 1 and Æ(Rc0 ; p

0) = n, Step 0 implies that

jp0j = jRc0 j � 1 = k. Now the point p0 satis�es all the conditions above.

Case n � 5 mod 8, n > 5

Let p be the point of [x; a] at distance n�5
4

from x, and p0 a point at distance
3n�7
4

from p such that projpa 6= projpp
0 6= projpx and such that the path

[p; p0] only consists of points and lines, except possibly for the element projpp
0.

Suppose �rst that p0 is isolated. Let z be the point of [x; p0] at distance n�5
2

from x, and z0 a line at distance n+1
2

from z such that projzx 6= projzz
0 6=

projzp
0. Then jp0j = jz0j = k+ 1. Suppose now that p0 is contained in a class

K 0, and p00 is a point of K 0 di�erent from p0. Let y be a point of K, y 6= x.

Then Æ(p00; y) = n � 1. Consider a line z0 at distance n�3
2

from the point

z = y1p00 for which projzp
00 6= projzz

0 6= projzy. Then jp
0j = jz0j � 1 = k.

n � 3 mod 4, n > 7 and a0 a class of size 2.

Similarly as in the case n � 1 mod 4, we construct a point p0 at distance n

from a0 and at distance n�1 from A, for which both projp0A and the element

of [A; p0] at distance n+3
2

from A are lines, and such that either jp0j = k + 1

if p0 is isolated, or jp0j = k if p0 is not isolated. The result will then follow.

Case n � 3 mod 8

Let p be the point of [x;A] at distance n�3
4

from x, and p0 a point at distance
3n�9
4

from p such that projpA 6= projpp
0 6= projpx and such that the path

[p; p0] only consists of points and lines except possibly for the element projpp
0.

Suppose �rst that p0 is isolated. Let y be a point at distance 4 from x such

that projxA 6= projxy 6= K. Then Æ(p0; y) = n� 1. Let 
 be the union of the

paths [x; y] and [y; p0], and z the point of 
 at distance n+1
2

from x. Let �nally

z0 be a line at distance n�5
2

from z such that projzy 6= projzz
0 6= projzp

0. Then

jp0j = jz0j = k + 1. Suppose now that p0 is contained in a class K 0, and p00 is

a point of K 0 di�erent from p. Consider a point y at distance 2 from x such

that projxp 6= projxy 6= K. Let z be the point of [y; p00] at distance n�3
2

from

y, and z0 a line at distance n�5
2

from z such that projzy 6= projzz
0 6= projzp

00.

Then jp0j = jz0j � 1 = k.

Case n � 7 mod 8, n > 7

Let p be the point on [x;A] at distance n�7
4

from x, and p0 a point at distance
3n�13

4
from p such that projpA 6= projpp

0 6= projpx and such that the path

[p; p0] only consists of points and lines, except possibly for the element projpp
0.

Suppose �rst that p0 is isolated. Let z be the point of [x; p0] at distance n�7
2

from x, and z0 a line at distance n+3
2

from z such that projzx 6= projzz
0 6=

projzp
0. Then jp0j = jz0j = k+ 1. Suppose now that p0 is contained in a class

K 0, and p00 is a point of K 0 di�erent from p0. Let y be a point at distance 3

from K and at distance 4 from x. Then Æ(p00; y) = n� 1. Let z be the point
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of [y; p00] at distance n�3
2

from y, and z0 a line at distance n�5
2

from z such

that projzy 6= projzz
0 6= projzp

00. Then jp0j = jz0j � 1 = k.

Hence we have shown that for any classK and an arbitrary lineM , Æ(M;K) �

n� 1.

Step 3

Suppose there exist two classes K1 and K2 at distance n+1 from each other.

We look for a contradiction. Let x 2 K1 be arbitrary. Since by the results

of Step 1 and 2, any line through x lies at distance n� 1 from K2, the map

� : Lx ! K2

L ! y; with Æ(L; y) = n� 2;

is a bijection, hence jK2j = jxj =: k and all points in K1 have the same

degree k. Fix points x 2 K1 and y 2 K2. Note that Æ(x; y) = n � 1. Let z

be the element of [x; y] at distance n�3
2

from x. If n � 1 mod 4, then we can

assume without loss of generality that z is a line (indeed, if z is a class, then

interchange the roles of K1 and K2). If n = 5, let w be a point on z, di�erent

from x or x1y. If n > 5, let w be a point at distance n�3
2

from z such that

projzx 6= projzw 6= projzy (this is possible because z was assumed not to be

a class) and projwz is a line (this is not possible if n = 7, z has degree 2 and

x1y is a line, see case (1) below). Let �nally W be a line through w, W 6= z

if n = 5, W 6= projwz if n > 5. Then jW j = k + 1, since Æ(K1;W ) = n � 1.

But also Æ(K2;W ) = n � 1 by Step 1 and 2, hence there is a point in K2

which has degree k. By repeating the argument at the beginning of this step,

we obtain that also jK1j = k, and every point of K2 has degree k. Note that

this implies that every line intersecting K1 or K2 contains k + 1 points.

Let the point w be as above. If w is isolated then, by considering a line

intersecting K1, but not through x, we obtain that jwj = k + 1. Since every

line through w lies at distance n� 1 from K2, we need at least k + 1 points

in K2, a contradiction. Suppose now w is contained in a non-trivial class K,

and let w0 be a point of K, w0 6= w. Then jw0j = k. Indeed, jw0j = jRj � 1,

with R an arbitrary line through x di�erent from projxy. But then the map

� : Lw0 ! K1 n fxg

L ! v; with Æ(L; v) = n� 2;

is a bijection, hence jK1j = k + 1, the �nal contradiction since jK1j = k.

(1) n = 7, x1y a line and z non-isolated.

Let L be a line intersecting x1y, Æ(L;K1) = Æ(L;K2) = 6. Then jLj = k+1,

hence every point in K2 n fyg has degree k. By repeating the argument at
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the beginning of this step, we obtain that also jK1j = k, and every point of

K2 has degree k. Let w be a point in the class containing z, w 6= z. Let Y

be a line intersecting K1, Y not through x. Then jwj = jY j � 1 = k. Since

every line through w lies at distance 6 from a point of K2 nfyg, jK2j = k+1,

a contradiction.

This shows that for two classes K1 and K2, Æ(K1;K2) � n � 1. Now the

theorem follows. 2

3.4 Square forgetful pentagons

A semi-plane is an incidence structure (P;L; I) together with an equivalence

relation on the point set and the line set respectively, such that every two

lines (points) are either concurrent (collinear) or equivalent. These structures

were introduced in Dembowski [19] (appendix 7.4). The aim of this section

is to generalize the notion of a semi-plane to n-gons. So in fact, we want to

make the notion of a forgetful polygon selfdual.

Let (P;L; I) be an incidence structure, �P an equivalence relation on the

point set P and �L an equivalence relation on the line set L. Denote by CP ,

CL, the set of non-trivial classes of �P respectively �L. Completely similar as

in section 3 we de�ne square forgetful paths and distances between elements

of P [ L [ CP [ CL, isolated points/lines and the degree of a point/line.

Now � = (P;L; I;�P ;�L) is a square forgetful n-gon, n odd, n � 3, if

the following axioms are satis�ed:

(DFP1) If x; y 2 P [ L and Æ(x; y) = k < n, then there is a unique square

forgetful path of length k joining x to y.

(DFP2) For every x 2 P [ L, we have n =maxfÆ(x; y) : y 2 P [ Lg.

(DFP3) Every line and every point class is incident with at least three points,

every point and every line class is incident with at least three lines.

Note that a square forgetful 3-gon is a semi-plane (but not conversely, since in

the de�nition of semi-plane, nothing is required for the size of the equivalence

classes). The classi�cation of all �nite semi-planes (see Dembowski [19]) is

not completed. In fact, there exists an example of a semi-plane that does not

arise from a projective plane by `forgetting' points and lines, see Baker [2].

We now give some partial results for the classi�cation of �nite square forgetful
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(a) : jLj = k (b) : jLj = k + 1 (c) : jLj = k � 1 (d) : jLj = k

�L

Figure 3.4: possibilities if jpj = k.

pentagons. Moreover, we show that if one adds the assumption that at least

one point class and one line class have `the right size' (this is, one more than

the degree of a non-isolated element), then this structure arises from a �nite

generalized pentagon, and hence cannot exist. The generalization of this

result for n � 7, as well as the full classi�cation of all �nite square forgetful

n-gons seems to be out of reach at this moment.

Let � be a �nite square forgetful pentagon admitting non-isolated points and

lines. Throughout this section, we denote by Kp the point class containing

the non-isolated point p, and by �L the line class containing the non-isolated

line L.

We start with some observations similar to the ones in Step 0 of the proof

of Theorem 3.3.1. Let p be a point at distance 5 from the line L, and put

jpj = k. Then the following cases can occur (see Figure 3.4).

� Æ(Kp; L) = 4.

(a) If there exists a line at distance 3 from p and equivalent with L,

then jLj = jpj = k.

(b) If no such line exists (for example when the line L is isolated), then

jLj = jpj+ 1 = k + 1.

� Æ(Kp; L) = 6 or the point p is isolated.

(c) If there exists a line at distance 3 from p and equivalent with L,

then jLj = jpj � 1 = k � 1.

(d) If no such line exists (for example when the line L is isolated), then

jLj = jpj = k.

These observations will be used throughout, without further reference to

them.
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Lemma 3.4.1 If a point class K and a line class � lie at distance 5 from

each other, then every line of � lies at distance 4 from K, and dually every

point of K lies at distance 4 from �.

Proof. Let K be a point class, K = fr1; r2; : : : ; rt+1g, and � a line class at

distance 5 from K and 4 from r1. Suppose by way of contradiction that �

contains a line L at distance 6 from K. Put k = jr1j. Then jLj = k � 1 and

jzj 2 fk � 1; kg, for z 2 K n fr1g.

Claim 1 All points of K have degree k.

Suppose �rst thatK contains at least two points r2 and r3 of degree k�1. Let

x be a point on L. Without loss of generality, we can assume N := projxr2 is

a line. If r21x would be a line class, then jr1j = jN j = jr3j, a contradiction.

If N would be isolated, then jr1j+ 1 = jN j = jr3j+ 1, again a contradiction.

So the line N is non-isolated, and the line class �N lies at distance 5 from K.

Since jr1j = k, jN j 2 fk; k+1g, and since jr3j = k�1, jN j 2 fk; k�1g. Hence

jN j = k, there exists a line N 0 2 �N at distance 3 from r1, and all lines of �N
lie at distance 5 from r3. Since jr2j = k � 1 and Æ(r2; N) = 3, jN 0j = k � 1.

But since the point r3 has degree k � 1 and does not lie at distance 3 from

a line equivalent with N 0, we obtain jN 0j = k, a contradiction.

Suppose now that K contains a unique point r3 of degree k � 1. Then all

the points of K di�erent from r3 lie at distance 4 from �. Put Ni = proj�ri,

i = 1; : : : ; t + 1, i 6= 3. Note that jNij = k. The lines incident with a point

ri, i 6= 3, are isolated. Indeed, suppose that a line M through r1 is not

isolated, and let M 0 2 �M n fMg. Then jr2j = jM 0j = jr3j, a contradiction.

With a dual argument, one sees that the points incident with the lines Ni are

isolated. Let now R be a line at distance 4 from K and at distance 3 from r3
for which projRr3 is a point. We claim that R is isolated (�). Suppose by way

of contradiction that R0 is a line equivalent with R, R0 6= R. If Æ(R0; K) = 6,

then jr3j � 1 = jR0j 2 fjr2j; jr2j � 1g, a contradiction. So Æ(R0;K) = 4.

Without loss of generality, we can assume that Æ(r2; R
0) = 3. But now we

obtain jr3j = jR0j 2 fjr1j; jr1j + 1g, again a contradiction, which shows the

claim. Note also that jRj = jr1j + 1 = k + 1. Now by (�) and the fact that

every point is incident with at least 3 lines, it is clear that we can always

�nd an isolated line of degree k + 1 at distance 5 from the isolated point

xi := ri1�, i = 1; 2, hence jxij = k+1. From this follows that also the lines

through r1 or r2, and the points on the lines N1 and N2 have degree k + 1.

We now show that the class K contains exactly k + 1 points. Let y be a

point on the line N2 di�erent from x2, and A a line through y, A 6= N2. Then

jAj 2 fjx1j; jx1j � 1g = fk + 1; kg. If Æ(A;K) = 6, then jAj � jr3j = k � 1, a
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contradiction. Hence each line through y lies at distance 4 from K, implying

that jKj � jyj = k + 1. Since also every point of K lies at distance 3 from a

unique line through y, jKj = k + 1.

Consider an arbitrary point p on the line L. Since p lies at distance 4 from

every point ofK, we need at least k+1 elements of L[CP incident with p and

at distance 4 from K. Since the line L lies at distance 6 from K, jpj � k+1

if p is non-isolated, and jpj � k + 2 if p is isolated. If p is isolated, then

jpj = jr1x1j = k+1, a contradiction, so we can assume that p is non-isolated.

Without loss of generality, we can assume that projpr2 6= Kp. Note also

that projr2p 6= K, since L and K lie at distance 6. If Æ(Kp; x2r2) = 4, then

jpj = jx2r2j � 1 = k, which is too small. So Æ(Kp; x2r2) = 6, implying that

jpj = jx2r2j = k+1. Since jKj = k+1 and Æ(L;K) = 6, this implies that the

class Kp lies at distance 4 from K. Then necessarily, the projection of Kp

onto K is the point r3 (indeed, if projKKp = ri, i 6= 3, then any line through

ri di�erent from projrip would contain jpj+1 = k+2 points, a contradiction).

Now let B be the projection of p onto r3, and B0 a line intersecting B in a

point not belonging to K or Kp. Note that by (�), the line B
0 is isolated and

has degree k + 1. Then jpj = jB0j � 1 = k, the �nal contradiction. Hence we

have shown that all points of K have the same degree k. 3

Now it follows that every point of K lies at distance 4 from the class �, and

hence at distance 3 from a line of degree k belonging to �. Put xi = ri1xi
and Ni = proj�ri, i = 1; : : : ; t + 1. As before, the points on the lines Ni are

isolated.

Claim 2 The points xi have degree k + 1.

We claim that jxij 2 fk; k + 1g. Indeed, let A be a line at distance 3 from

r1 such that K 6= projr1A 6= projr1x1 and such that the projection of r1 onto

A is a point. Then jAj 2 fjr2j; jr2j + 1g = fk; k + 1g, from which follows

that jx1j 2 fk; k + 1; k + 2g. If jx1j = k + 2, then jAj = k + 1, there exists a

line A0 equivalent with A at distance 3 from x1 but every line of �A di�erent

from A lies at distance 5 from all points of K. So Æ(K;A0) = 6. But now

jr1j � 1 = jA0j = jr2j, a contradiction. Hence the claim.

Suppose jx1j = k. We look for a contradiction. Let M be an arbitrary line

intersecting x1r1 in a point z di�erent from x1 and r1. Suppose M is not

isolated, and let M 0 be a line equivalent with M , di�erent from M . Then

jM 0j = jx1j � 1 = k� 1. This implies that the line M 0 lies at distance 6 from

K, and (since Æ(r2;M
0) = 5 and jM 0j = jr2j�1) that there is a lineM 00 of �M

at distance 3 from r2. Then jx1j � 1 = jM 00j = jr1j, a contradiction. Hence

the line M is isolated and has degree k + 1 (��). From this easily follows

that every point on one of the lines Ni, di�erent from x1 has degree k + 1.
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We next show that K contains exactly k + 1 points. Let R be a line inter-

secting N1 in a point z0 di�erent from x1. Let y be a point on N1 di�erent

from x1 and not on R. Note that jyj = k + 1. If R is non-isolated, then

jyj � 1 = jR0j = jx1j � 1, with R0 a line belonging to �R n fRg, a contradic-

tion. Hence R is isolated and has degree k + 1, so R lies at distance 4 from

K. It now follows that jKj = jz0j = k + 1.

Let p be an arbitrary point on the line L. As before, jKj = k + 1 implies

that jpj � k + 2 if p is isolated, and jpj � k + 1 if p is non-isolated. If p

would be isolated, then jpj = k + 1 by (��), so p is non-isolated. Again by

(��), jpj 2 fk; k + 1g. Hence jpj = k + 1. This implies that Æ(Kp;K) = 4.

Since the line N1 has degree k, every point of Kp di�erent from p has degree

k. Suppose �rst Æ(Kp; ri) = 3, for some i, i 6= 1. Consider the line A =

rixi. Let y be an arbitrary point on N1 di�erent from x1. If A would be

isolated, then jx1j = jAj = jyj, a contradiction, so A is non-isolated. Then

jAj 2 fjx1j; jx1j � 1g, and jAj 2 fjyj; jyj � 1g, implying jAj = k. But also

jAj 2 fjpj; jpj + 1g, a contradiction. So necessarily Æ(Kp; r1) = 3. Let p0 be

a point of Kp di�erent from p and projKp
r1. The line x1r1 is not isolated

(indeed, otherwise jpj = jx1r1j = jp0j). Now clearly (by comparing with the

degrees of p and p0), jx1r1j = k + 1. This implies that there is a line B

equivalent with x1r1 at distance 3 from p, and no line of �x1r1 lies at distance

3 from p0. Now jBj = jr2j = k, but also jBj = jp0j+1 = k+1, a contradiction.

This shows that jx1j = k + 1. 3

Claim 3 Every point on a line Ni has degree k + 1.

Let y be a point on the line N1, y di�erent from x1. Let R be a line through

the point r1 di�erent from x1r1. If R is isolated, then jyj = jRj = jx2j = k+1.

Suppose R is not isolated. Since j�Rj � 3, there exists a line R0 2 �R at

distance 5 from both y and r1. Hence jR
0j = jr2j and jyj 2 fjR

0j; jR0j+ 1g =

fk; k + 1g. Suppose by way of contradiction that jyj = k. Let z be a point

on N1 di�erent from x1 and y, and A a line through z di�erent from N1.

Since the degrees of x1 and y are di�erent, it is easy to see that the line A

is necessarily isolated, and has degree jx2j = k + 1. From this follows that

every point on one of the lines Ni, i 6= 1 has degree k+1, and that every line

through z lies at distance 4 from K. We now show that jzj = k + 1, which

will imply that the class K contains exactly k + 1 points. If jzj 6= k + 1,

then as before, jzj = k. Consider a line B at distance 3 from y and at

distance 4 from N1 for which the projection of y onto B is a point. Because

the degrees of x1 and z are di�erent, the line B is non-isolated. Choose a

line B0 equivalent with B at distance 5 from x1 and di�erent from B. Then

jyj � 1 = jB0j 2 fjx1j; jx1j � 1g, a contradiction. So jzj = jKj = k + 1.

Completely similar as in the previous claim, one shows that this contradicts
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the degree of a point p on the line L. 3

Claim 4 The class K contains k + 1 points

Let y be a point on the line N1 di�erent from x1. Then jKj � jyj = k + 1.

Suppose by way of contradiction that jKj < k + 1. Then there exists a line

Y through y at distance 6 from K. Since jY j 2 fjx2j; jx2j � 1g and also

jY j 2 fjr1j; jr1j � 1g, we obtain jY j = k. This implies that Y is non-isolated,

all the lines of �Y lie at distance 5 from any point of K, and for every point

z on the line N2, there exists a line Yz equivalent with Y and at distance 3

from z (since z is an isolated point with degree k + 1). Note that Yz 6= x2r2
(indeed, Æ(r2; Yz) = 5), so all these lines Yz are di�erent. Hence we need at

least k (=jN2j) lines in �Y di�erent from Y . Now every line of �Y n fY g lies

at distance 4 from a unique point on L. Hence jLj � k, a contradiction. So

jKj = k + 1. 3

We can now �nish the proof of the lemma. Similarly as in the proof of

Claim 1, the fact jKj = k + 1 implies that the degree of a point p on the

line L is at least k + 1 if p is non-isolated, and at least k + 2 if p is isolated.

Let R be a line concurrent with N1, not through the point x1. Note that

if R is isolated, then jRj = jx2j = k + 1, and if R is non-isolated, then

jR0j = jx1j � 1 = k, for any line R0 of �R n fRg. Suppose p is isolated. If R

is isolated, then jpj = jRj = k+1, a contradiction. If R is non-isolated, then

let R0 be a line of �R di�erent from R at distance 5 from p. This implies

jpj � jR0j+1, a contradiction. So the point p is non-isolated. If R is isolated,

then jpj � jRj = k+1. If R is non-isolated, then jpj � jR0j+1 = k+1, with

R0 a line of �R n fRg at distance 5 from p. So in both cases, jpj = k + 1,

implying that Æ(K;Kp) = 4. Without loss of generality, we can assume

Æ(r1; Kp) = 3. Let M be the line intersecting both K and Kp, and p0 an

arbitrary point of Kp di�erent from p and not on M . Put p00 the point of Kp

on M . Let N be a line intersecting M in a point and at distance 4 from K

and Kp. Note that jp
0j = jN1j = k. The line N is non-isolated since otherwise

jpj+ 1 = jN j = jp0j+ 1, a contradiction. By comparing the degrees of p and

p0, we see that jN j = k + 1, implying that there exists a line N 0 equivalent

with N at distance 3 from p, and that every line of �N lies at distance 5 from

p0. Let N 00 2 �N n fN;N
0g. Then Æ(p;N 00) = Æ(p00; N 00) = 5, but since the

point p0 above was chosen arbitrarily in Kp n fp; p
00g, N 00 also lies at distance

5 from every point of Kp n fp; p
00g. Hence jpj � 1 = jN 00j = jp0j, the �nal

contradiction. Now the lemma is proved. 2

Corollary 3.4.2 Let K be a point class containing a point p with degree k.

(i) If there exists a line class � at distance 5 from K, then jKj = j�j and

every point of K and every line of � have the same degree k.



76 FORGETFUL POLYGONS

(ii) All points in the same point class have the same degree. Dually, all

lines in the same line class have the same degree.

Proof. Observation (i) follows immediately from Lemma 3.4.1. Now let K

be a point class, and fr1; r2; r3g � K. Let L be a line at distance 4 from K

and 3 from r3. If L is isolated, then jr1j+1 = jLj = jr2j+1, hence jr1j = jr2j.

If L is non-isolated, then jr1j = jLj = jr2j by (i). So any two points of K

have the same degree, showing (ii). 2

Proposition 3.4.3 (i) All non-isolated points and lines have the same

degree k.

(ii) An isolated element has degree k or k + 1.

(iii) Any point class or line class has size at most k + 1.

Proof. Let K be an arbitrary point class, and k the degree of the points

of K. Let L be an arbitrary non-isolated line, and L0 2 �L n fLg. If L

intersects K, then jL0j = k, hence by Corollary 3.4.2 (ii) also jLj = k. If L

lies at distance 4 from K, then by Lemma 3.4.1, jLj = k. If �nally L lies at

distance 6 from K, then also �L lies at distance 6 from K, and jLj = jpj = k,

with p an arbitrary point of K. So all non-isolated lines have the same degree

k, which is equal to the degree of the points of K. Dually all non-isolated

points have the same degree k. This shows (i). Now let p be an isolated point

and suppose jpj 62 fk; k + 1g. Let L be a line at distance 5 from p. If L is

non-isolated (and thus has degree k) then p 2 fjLj; jLj+1g, a contradiction.

Hence every line at distance 5 from p is isolated and has degree jpj. Dually,

every point at distance 5 from a line at distance 5 from p is isolated. It is

now easy to deduce that all elements are isolated, so � is not forgetful at all.

Hence (ii). Now let K be an arbitrary point class, and r a point at distance

5 from K. Since each point of K lies at distance 4 from r, jKj is at most the

number of elements of L [ CP incident with r, showing (iii). 2

Theorem 3.4.4 If � contains at least one point class and at least one line

class of size k+1, then � arises from a �nite generalized pentagon, and hence

cannot exist.

Proof. Let K be a point class of size k + 1, and A a line class of size k + 1.

Let p be a point at distance 5 from K. Since p lies at distance 4 from every

point of K, and since p is incident with at most k + 1 elements of L [ CP , p
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Figure 3.5: Proof of Theorem 3.4.4.

is incident with exactly k + 1 elements of L[ CP and every element incident

with p lies at distance 4 from K. This shows that each line and each point

class lies at distance at most 4 from K. Also, every isolated point at distance

5 from K necessarily has degree k + 1. Dual results hold for the line class

A. Now we show that any point class K 0 of size � k lies at distance 3 from

A. By Corollary 3.4.2 (i), Æ(K 0;A) 6= 5. Suppose Æ(K 0;A) = 7. Let L be a

line belonging to A, and p a point of K 0. Then Æ(p; L) = 5. Let R be a line

through p at distance 4 from L. Since every line of A lies at distance 4 from

R, and since R is incident with at most k+1 elements of P [CL, the point p

lies at distance 3 from a line of A, a contradiction. So Æ(K 0;A) = 3, showing

that every class of size � k is intersected by a line of A.

Now suppose by way of contradiction that there exists a point class K with

jKj � k. Let x be the point of K at distance 3 from K, and y the point of

K collinear with x. Put N1 = xy, and let N2 be an arbitrary line through

y di�erent from N1. Let N 0 be a line intersecting N1 in a point di�erent

from x or y. Then N 0 is isolated. Indeed, if not, then jKj = j�N 0 j = jKj by

Corollary 3.4.2 (i), a contradiction. Note that jN 0j = k + 1 (�).

Let r be an arbitrary point on N2 di�erent from y. We claim that every

line L through r di�erent from N2 lies at distance 4 from K. Indeed, if L

is isolated, then jLj = k + 1 (because Æ(L;K) = 4) and hence, noting that

jxj = k, Æ(K;L) = 4. Suppose L is non-isolated. Then j�Lj = jKj = k + 1

(by Corollary 3.4.2 (i)). It then follows as in the �rst paragraph of the proof

that K is intersected by a line of �L. Hence the claim. If r were isolated,

then jrj = k+1 by (�), hence jKj = k+1, a contradiction. So the point r is

non-isolated and has degree k. Since jKj � jrj, we conclude that K contains

exactly k points, and that the classes K and Kr mutually lie at distance
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6. But now the class Kr also contains at most k points (since otherwise

Æ(K;Kr) = 4 by the �rst paragraph of the proof). By symmetry, we now

obtained the following situation. Let N1; : : : ; Nk be the lines through the

point y. Then each point r on one of the lines Ni, r 6= y, belongs to a class

Ki
r of size k, and K

i
r lies at distance 6 from every class K

j
r0 intersecting a line

Nj, i 6= j, with K
j
r0 6= K (see Figure 3.5). Now consider the classes Ki

r of

size k intersecting the line Ni. Note that Ni 62 A, since otherwise any class

intersecting Nj , j 6= i, not through y would have size jAj = k+1. So we need

at least k � 1 lines in A intersecting one of the classes Ki
r (keeping in mind

that every point class of size � k is intersected by a line of A). Note that

these k � 1 lines do not intersect the classes K
j
r0 , for j 6= i, since the classes

Ki
r and K

j
r0 lie at distance 6 from each other. Because jyj � 3, we need at

least 3(k � 1) lines in A, the �nal contradiction.

Hence each point class (and dually also each line class) has size k+1, implying

that the distance between two point classes and between a line and a point

class is at most 4 (and dually for the line classes). Now it immediately follows

that the geometry (P [ CL;L [ CP ; I) is a �nite generalized pentagon, and

hence does not exist. 2

Remarks

� All non-classi�ed semi-planes have the property that the size of any

equivalence class is at most the largest occuring degree. Hence the

analogon of the extra assumption in Theorem 3.4.4 for square forgetful

3-gons would kill all non-classi�ed semi-planes.

� The major problem for generalizing the results above to square forgetful

n-gons with n � 7 is that the proof of Claim 4 in Lemma 3.4.1 does

not go through.

3.5 Classi�cation results for n even

Let for the rest of this section, � be a forgetful n-gon, n even, admitting

non-isolated points.

Lemma 3.5.1 Every line contains the same number l of points, and l � g.

Proof. Let L and L0 be two arbitrary lines. Note that Æ(L;L0) � n by axiom

(FP2). If Æ(L;L0) = n, then the projection map de�nes a bijection between

PL and PL0 (by axiom (FP1)), hence jLj = jL0j. If L and L0 meet in a point
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p, then consider a lineM at distance n�1 from p for which L 6= projpM 6= L0

(such a line exists by axiom (FP3)). Then Æ(L;M) = Æ(L0;M) = n, hence

jLj = jM j = jL0j. If �nally 2 < Æ(L;L0) < n, then let N be a line at distance

n� Æ(L;L0) from L such that projLN 6= projLL
0, for which the path between

L and N only contains points and lines. Then jLj = jN j; and because

Æ(N;L0) = n we also have jN j = jL0j. So all lines contain the same number

of points. Now let G be a class of size g, and L a line at distance n from

G. Since for every point x of G, there is a unique point x0 on L for which

Æ(x; x0) = n� 2, and since all these points are di�erent, we obtain l � g. 2

Lemma 3.5.2 Let K be a class of size at least 3. Then all the points in K

have the same degree, or K is a forgetful quadrangle of type (III).

Proof. Let K be a class of size at least 3, and suppose that there are two

points p1; p2 2 K for which jp1j 6= jp2j. Suppose K
0 is a class di�erent from

K and x a point of K 0. Since every point of K lies at distance < n from any

line through x, Æ(K;K 0) � n+ 2.

Suppose Æ(K;K 0) = n+ 2. Since the map

� : Lx ! Lpi
L ! L0; with Æ(L;L0) = n� 2;

is a bijection, we have jxj = jpij, i = 1; 2, a contradiction.

Suppose Æ(K;K 0) = n, and Æ(p1;K
0) = Æ(p2; K

0) = n + 1. Let y be a point

of K 0 at distance n� 1 from K. Then the map

�0 : Ly n fprojyKg ! Lpi
L ! L0; with Æ(L;L0) = n� 2;

is a bijection, hence jyj = jpij+ 1, i = 1; 2, a contradiction.

Suppose Æ(K;K 0) = n, and Æ(p1;K
0) = Æ(p2;K

0) = n� 1. Let ri = projK0pi,

i = 1; 2, and let p3 2 K n fp1; p2g. If Æ(p3;K
0) = n+1, then jr1j � 1 = jp3j =

jr2j � 1. If Æ(p3;K
0) = n � 1, then jr1j = jp3j = jr2j. Since jp1j = jr2j and

jp2j = jr1j, we obtain a contradiction in both cases.

We conclude that Æ(K;K 0) < n, or Æ(K;K 0) = n but then exactly one of

p1 and p2 lies at distance n � 1 from K 0. Completely similar, one shows

that any isolated point w lies at distance at most n� 1 from K, and that if

Æ(w;K) = n� 1, then either Æ(w; p1) = n� 2 or Æ(w; p2) = n� 2.

Suppose �rst that no point at distance n � 1 from K is isolated. Let p3 2

K n fp1; p2g. Without loss of generality, we can assume jp2j 6= jp3j. Let

K 0 be a class at distance n from K for which Æ(p1;K
0) = n � 1 and put
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r1 = projK0p1. Then Æ(p2;K
0) = n + 1. If Æ(p3;K

0) = n + 1, then jp3j =

jr1j � 1 = jp2j, a contradiction, hence Æ(p3;K
0) = n � 1. Put r3 = projK0p3.

Now jp1j = jr3j = jp2j + 1. Let K 00 be a non-trivial class at distance n from

K for which Æ(p2;K
00) = n � 1, and put r2 = projK00p2. Let �nally r be a

point of K 00 di�erent from r2. If Æ(r;K) = n � 1, then jp2j = jrj = jp1j + 1.

If Æ(r;K) = n + 1, then jp1j = jrj = jp2j � 1. So in both cases, we obtain a

contradiction with jp2j+ 1 = jp1j.

So we may assume that there exists an isolated point w at distance n � 1

from K for which Æ(p1; w) = n� 2. Then jwj = jzj+ 1, for all points z of K

di�erent from p1. Let v be a point at distance n�2 from p2 and n�1 from K

for which projvp2 is a line. Let p3 be an arbitrary point of K di�erent from

p1 and p2. If v would be isolated, then we obtain jp1j + 1 = jvj = jp3j + 1,

hence (since jp2j = jp3j) also jp1j = jp2j, a contradiction. So v is contained

in a class K 0. By the �rst paragraph of the proof, Æ(p1;K
0) = n + 1 and

hence jvj = jp1j + 1. Since the degree of an arbitrary point z of K di�erent

from p1 is jp2j, such a point z lies at distance n � 1 from K 0 (if not, the

degree of z would be jvj � 1 = jp1j). Also, it is now clear that jvj = jp3j,

hence jp3j = jp1j+ 1. Note that any isolated point at distance n� 1 from K

necessarily lies at distance n � 2 from p1. Now let w0 be an arbitrary point

at distance n � 1 from K and at distance n � 2 from p1 such that projw0p1
is a line. We show that w0 is isolated. Suppose by way of contradiction that

w0 is equivalent with a point w00, w00 6= w0. Since w00 does not lie at distance

n�2 from any point of K, we see that jp2j = jw00j = jp1j�1, a contradiction.

Finally, we claim that every point u of K 0 (with K 0 as above) lies at distance

n�2 from a point ofKnfp1g, and juj = jp2j. Suppose by way of contradiction

that the class K 0 contains a point v0 at distance n + 1 from K. Then jv0j =

jp2j�1 = jp1j. SinceK
0 contains at least two points of degree jp2j (namely the

projections of p2 and p3 onto K
0), every isolated point at distance n�1 from

K 0 has to lie at distance n � 2 from v0. Let 
 be a �xed n-path between p1
and v0, and x the element of 
 at distance n=2+1 from v0. If x is not a point

of degree two or a class containing only two points, then consider a point y

at distance n=2�1 from x for which projyp1 is a line and projxp1 6= projxy 6=

projxv
0. The point y is isolated (since Æ(y;K) = n� 1 and Æ(y; p1) = n� 2)

and lies at distance n � 1 from K 0 (if Æ(y;K 0) = n + 1, all the points of K 0

would have equal degree) but at distance n from v0, a contradiction. If x is

a class or a point of degree two, then let R be a line at distance n=2 � 1

from x0 = projxp1 for which projx0p1 6= projx0R 6= projx0v
0. Then the line

R contains at least two isolated points, hence at least one isolated point at

distance n from v0, a contradiction. This shows the claim.

So we obtained the following situation (3): if K 0 is an arbitrary non-trivial
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class at distance n from K, then jK 0j = jKj � 1 and each point of K 0 lies at

distance n� 2 from a unique point of K n fp1g. The degree of a point in K 0

is equal to jzj = jp1j + 1, with z an arbitrary point of K n fp1g. A point w0

at distance n � 1 from K for which projw0K is a line is isolated if and only

if Æ(w0; p1) = n � 2. Moreover, jKj = g = l. Indeed, consider a line L at

distance n from K. Suppose l > jKj. Then L contains a point y which lies

at distance n from all the points of K. This contradicts the observations at

the beginning of the proof. Consequently, l = jKj = g.

Suppose n = 4. We show that � is of type (III). Note that every non-trivial

class di�erent from K lies at distance 4 from K and hence has size g�1. It is

also easy to see that, if two classesK 0 andK 00 lie at distance 4, K 0 6= K 6= K 00,

then every point of K 0 lies at distance 3 from a point of K 00 and conversely.

Indeed, let z 2 K 0, Æ(z;K 00) = 3, and suppose y is a point of K 00 at distance

5 from K 0. Then jyj = jzj � 1, a contradiction with the fact that all points

in K 0 and K 00 have degree jp1j+ 1.

We de�ne the following equivalence relation �C on the classes of size g � 1:

K1 �C K2 , Æ(K1;K2) = 6:

The transitivity of �C is shown as follows: suppose K1 �C K2, K1 �C K3,

but Æ(K2;K3) = 4. Let L be a line intersecting both K2 and K3. Every

point of K1 has to lie at distance 2 from a unique point of L, not belonging

to K2 or K3, hence jLj � jK1j + 2 = g + 1, a contradiction. We associate

a symbol 1i, i = 1; : : : ; s to each equivalence class Ci of �C . Now de�ne

the following geometry � = (P 0;L0; I0). A point of � is either a point of

� or a symbol 1i, i = 1; : : : ; s. A line of � is either a line of �; the set

K (with K the unique class of size g); the set of points of a class of size

g � 1 together with the symbol of its equivalence class, or the set of points

f11; : : : ;1s; p1g. Incidence is the incidence of � if de�ned, or symmetrized

containment otherwise. Then it is easy to see that � is a �nite generalized

quadrangle of order (s; k), by checking the main axiom. We illustrate this for

two cases. First, let p be a point of �, p 62 K, and L a line of � containing

the points of a class K 0 and the symbol 1j, p 62 K 0. Suppose p is not

collinear in � with any point of K 0. If p is not isolated, then it is contained

in a class K 00 of size g� 1 which necessarily lies at distance 6 from K 0, hence

K 0 �C K 00. So p is collinear in � with the point1j. If p is isolated, then p is

collinear in � with p1, see (3). Since no point of K
0 is collinear with p1, and

jK 0j = jpp1j � 1, p has to be collinear in � with a point of K 0. Secondly, let

p be a symbol 1j , and L a line of �. Let K 0 be a class such that K 0 [ f1jg

is a line of �. Suppose K 0 does not intersect L. By projecting the points

of K 0 onto L, we see that there is a unique point y on L not collinear with
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any of the points of K 0. If y would be isolated, then y ? p1 and we obtain

a contradiction by projecting the points of K 0 onto the line yp1, hence y is

contained in a non-trivial class K 00. If jK 00j = g, then y = p1 and the result

follows. If jK 00j = g � 1, then K 0 �C K 00, hence the result. Now clearly, � is

a forgetful quadrangle of type (III).

Suppose n � 6. We look for a contradiction. Let K 0 be a class at distance

n from K (such a class exists by (3)), and z 2 K 0. We construct a line M

for which Æ(M;K) = n � 2, Æ(M;K 0) = n, Æ(M; p1) = n � 3 and such that

there exists a point r 2 K 0 for which Æ(projMp1; r) = n � 2. Fix a line L

through p1 and put z0 = projLz. If n � 2 mod 4, let m be the point of [z; z0]

at distance n=2� 3 from z0 and let M be a line at distance n=2� 2 from m

for which projmp1 6= projmM 6= projmz. (Note that, for n = 6, z0 = m, but

since jz0j � jz00j = jp1j + 1 � 3, with z00 2 K 0 n fzg, the line M exists.) If

n � 0 mod 4, consider the element N of [z; z0] at distance n=2 � 3 from z0.

If N is a line or a class containing at least three points, then let M be a line

at distance n=2� 2 from N such that projNp1 6= projNM 6= projNz. If N is

a class of size 2, then let N 0 be a line at distance n=2� 3 from x = projNz
0

such that projxp1 6= projxN
0 6= projxz. Fix a point z00 2 K 0 n fzg and put

y = projN 0z00. Note that if projyz
00 is a line, then jyj � jzj = jp1j + 1 � 3.

Hence it is possible to choose a lineM through y di�erent from N 0 or projyz
00.

So in each case, we constructed a lineM as claimed. Now all the points onM

di�erent from projMp1 are isolated (see 3). Since jK
0j = jM j�1, there exists

a point a on M which lies at distance n from all the points of K 0. Hence

jaj = jrj = jp2j, the �nal contradiction since a is isolated (which implies

jaj = jp2j+ 1). 2

From now on, we assume that two points belonging to a class of size at least

3, have the same degree.

Lemma 3.5.3 The points of a class K of size 2 have the same degree.

Proof. LetK = fp1; p2g and suppose by way of contradiction that jp1j 6= jp2j.

For an arbitrary class K 0, one shows similarly as in the proof of Lemma 3.5.2

that Æ(K;K 0) � n, that Æ(K;K 0) = n implies that jK 0j = 2 and that the two

points of K 0 have di�erent degrees. Also, any isolated point lies at distance

at most n � 1 from K. We �rst claim that the degrees of p1 and p2 di�er

by one. Let L be a line at distance n from K. Since l � 3, there is at least

one point x on L at distance n from p1 and p2. Since x is not isolated, this

point is contained in a class K 0 of size 2 at distance n from K. Without loss

of generality, we can assume that the point y of K 0 di�erent from x lies at

distance n� 2 from p2. From this follows that jp2j � 1 = jxj = jp1j = jyj � 1,
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hence the claim. From now on, we assume that jp2j = jp1j+ 1.

Now the following observation (}) can easily been shown. If K1 = fq1; q2g

and jq1j 6= jq2j, then (up to interchanging q1 and q2) jq1j = jq2j � 1, and for

any class K2 = fr1; r2g at distance n from K1, we have (up to interchanging

r1 and r2) either Æ(q1; r1) = Æ(q2; r2) = n � 2 with jq1j = jr2j and jq2j = jr1j

or Æ(q2; r2) = n� 2, Æ(q1;K2) = Æ(r1;K1) = n+ 1 and jqij = jrij, i = 1; 2.

First consider the case n = 4. We start by showing that there are no isolated

points. Let L be an arbitrary line not intersecting K, and put ri = projLpi,

i = 1; 2. Let z be a point on L, r1 6= z 6= r2. Then z is not isolated (because

of the observations at the beginning of the proof), hence z is contained in a

class Kz = fz; z0g at distance 4 from K and by (}), jzj = jp1j and jz
0j = jp2j.

If r2 would be isolated, then jp1j + 1 = jr2j = jz0j + 1, a contradiction

since jz0j = jp1j + 1, hence r2 is contained in a class Kr2 = fr2; r
0
2g, and

jr2j = jp2j (indeed, if jr2j = jp1j, then the two points r2 and z of degree

jp1j would be collinear, contradicting (})). If r1 would be isolated, then

jr02j+ 1 = jr1j = jz0j+ 1, again a contradiction. Now it is clear that no point

of � is isolated. Hence every point is contained in a class of size 2, and has

degree jp1j or jp2j. Put h =
jPj

2
. We count the number of pairs (p; L), L a

line of � through the point p, with p a point of degree jpij. Since by (})

every line contains at most 1 point of degree jp1j, we obtain

hjp1j � jLj (i = 1);

h(jp1j+ 1) � 2jLj (i = 2):

Hence jp1j � 1, the �nal contradiction.

Now consider the case n � 6 (in fact, the argument below also works for

n = 4 except when l = 3). Choose an element x at distance n=2 + 1 from

p1 and at distance n=2 + 2 from K such that x is a line if n � 0 mod 4.

Suppose �rst that, if n = 6, the point x can be chosen such that either

x is isolated (implying jxj � 3) or projxp1 is a class. Let M1 and M2 be

two lines at distance n from K and at distance n=2 � 2 from x such that

projxM1 6= projxM2 (note that such lines exist because of the assumptions

just made). On each of the lines Mi, i = 1; 2, there is at least one point mi

that lies at distance n + 1 from the class K. Because of the �rst paragraph

of the proof, the point mi is contained in a class Ki of size 2, and by (}),

jm1j = jp1j = jm2j (recall that jp1j = jp2j � 1). But since Æ(m1;m2) = n� 2,

this is a contradiction with (}). Suppose now that n = 6 and that we

cannot choose a point x as above. This implies in particular that every point

collinear with p1 and at distance 3 from K is isolated. Then let again x be

a point at distance 5 from K for which Æ(x; p1) = 4, M1 a line through x,
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M1 6= projxK and m1 a point on M1 at distance 6 from both p1 and p2.

Again, the point m1 is not isolated, and the class K1 containing m1 lies at

distance 6 from K. Hence K1 = fm1;m
0
1g and by (}), also jm1j = jm0

1j � 1.

Now the point x1p1 lies at distance 5 fromK1 and 4 fromm1, and has degree

at least 3. Hence we can apply the argument of the general case above (with

K1 in the role of K and x1p1 in the role of x) to obtain a contradiction with

jm1j 6= jm0
1j 2

Lemma 3.5.4 (i) If two classes K and K 0 lie at distance n, then every

point of K lies at distance n� 1 from K 0 and vice versa, hence jKj =

jK 0j.

(ii) All non-isolated points have the same degree k.

Proof. Let K and K 0 be two classes for which the points have degree k and

k0 respectively. Suppose �rst that Æ(K;K 0) = n+2. Let x 2 K and x0 2 K 0.

Then k = jxj = jx0j = k0. Suppose now that Æ(K;K 0) = n. Then there

are points x 2 K and x0 2 K 0 such that Æ(x; x0) = n � 2. If there exist

points y 2 K, y 6= x and y0 2 K 0 such that Æ(y; y0) = n � 2, then jx0j = jyj,

hence k = k0. But if no such points exist, then, for an arbitrary point y 2 K,

y 6= x, and a point y0 2 K 0, y0 6= x0, we have jy0j = jyj = jx0j�1, contradicting

jx0j = jy0j. Hence k = k0. Note that if K would contain a point z at distance

n + 1 from K 0, then k = jzj = jx0j � 1 = k � 1, a contradiction. This shows

(i). Now choose a class K 0 at minimal distance from K (if such a class does

not exist, (ii) is proved). We show that the points in K and the points in

K 0 have the same degree. We can assume Æ(K;K 0) � n � 2. Let X be the

element at distance
Æ(K;K0)

2
from both K and K 0 (note that X cannot be a

class because of the minimality of Æ(K;K 0)). Consider a point x at distance

n� 1�
Æ(K;K0)

2
from X such that projXK

0 6= projXx 6= projXK (such a point

exists since again by the minimality of Æ(K;K 0), X is not a class of size 2 or

a point of degree 2) and such that projxX is not a class. If x is isolated, then

it is easy to see that k = k0 (indeed, then jxj = jzj + 1, for z an arbitrary

point of K or K 0 di�erent from the projection of X onto K or K 0). If x is

contained in a non-trivial class K 00, then K 00 lies at distance n from both K

and K 0, hence the result. Now (ii) easily follows. 2

Lemma 3.5.5 One of the following situations occurs:

(i) There is a unique isolated point of degree k. In this case, � is a gener-

alized quadrangle of type (II), with jX1j = s.
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(ii) Any isolated point has degree k + 1, and lies at distance at most n� 1

from any class.

Proof. Let w be an isolated point. We �rst prove that jwj 2 fk; k + 1g.

For an arbitrary class K, we have Æ(w;K) � n + 1. If there is a class K at

distance n+1 from w, then jwj = k, and if there is a class K at distance n�1

from w, then jwj = k + 1. Now choose a class K at minimal distance from

w. We can assume Æ(w;K) � n� 3. Put v = projKw. Let X be the element

on the shortest path between v and w at distance
Æ(v;w)

2
from w. Then X

is not a class, hence it is possible to choose a point x at distance n �
Æ(v;w)

2

from X such that projXw 6= projXx 6= projXv. If x is isolated, then (since

Æ(x;K) = n� 1), jxj = k or jxj = k + 1. Since opposite isolated points have

the same degree, also jwj 2 fk; k + 1g. If x is not isolated, then, with K 0

the class containing x, Æ(w;K 0) = n � 1, hence also jwj 2 fk; k + 1g. So

we conclude that every isolated point has degree k or k + 1; if it has degree

k + 1, then it cannot lie at distance n+ 1 from any class; if it has degree k,

then it cannot lie at distance n� 1 from any class.

n = 4

Suppose there exists an isolated point w of degree k. We show that all other

isolated points have degree k + 1. Note that all points collinear with w are

isolated. Let K be an arbitrary class, and x; y 2 K. Let L1 and L2 be two

di�erent lines through w and put xi = projLix, yi = projLiy, i = 1; 2. Then

xi and yi are isolated points of degree k+1 (since they lie at distance 3 from

K). If w0 is a second isolated point of degree k, then w0 is collinear with the

points xi and yi, i = 1; 2 (since isolated points at distance n = 4 have the

same degree), hence w = w0. So w is the unique isolated point of degree k.

From this it immediately follows that a point is isolated if and only if it is

collinear with w. Let G be a class of size g. Since every point of a line L

through w, di�erent from w, is collinear with a unique point of G, it follows

that l = g+1. Note that this implies that all classes have size g. Indeed, for

an arbitrary non-trivial class K, every point of L di�erent from w has to be

collinear with a unique point of K and vice versa, hence jKj = g. Now we

de�ne the following equivalence relation �C on the classes of size g:

K1 �C K2 , Æ(K1;K2) = 6:

The transitivity of �C is shown as follows: suppose K1 �C K2, K1 �C K3,

but Æ(K2;K3) = 4. Let L be a line intersecting both K2 and K3. Then

each point of K1 has to be collinear with a unique point of the line L, not

belonging to K2 or K3, hence l � g + 2, a contradiction. We associate a

symbol 1i, i = 1; : : : ; s to each equivalence class Ci of �C . Now de�ne the
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following geometry � = (P 0;L0; I0). A point of � is either a point of � or a

symbol 1i, i = 1; : : : ; s. A line of � is either a line of �, the set of points

of a class of C together with the symbol 1j of its equivalence class, or the

set of points f11; : : : ;1s; wg. Incidence is the incidence of � if de�ned, or

symmetrized containment otherwise. Then it is easy to see that � is a �nite

generalized quadrangle of order (s; k). Hence � is a forgetful quadrangle of

type (II), with jX1j = s.

n � 6

We show that an isolated point of degree k cannot exist. So let by way of

contradiction, w be an isolated point of degree k. Let S be the set of points

x at distance n�2 from w for which projxw is a line. Clearly, S is nonempty

and consists of isolated points. We �rst show that all the points of S have

degree k + 1. Suppose by way of contradiction that S contains a point x

of degree k. Since opposite isolated points have the same degree, it is easy

to see that all the points of S then have the same degree k. We can now

always �nd a point y of S at distance n � 1 from a certain class, which is

a contradiction. Indeed, let K be an arbitrary non-trivial class at minimal

distance from w. If Æ(w;K) = n + 1, let v be a point of K and 
 a �xed

n-path between v and w. If Æ(w;K) < n+ 1, let v = projKw and 
 = [v; w].

Let X be the element of 
 at distance
Æ(v;w)

2
from both v and w. Since X

cannot be a class or a non-isolated point, it is possible to choose a point y

at distance n� 2�
Æ(v;w)

2
from X such that projXw 6= projXy 6= projXv and

projyX is not a class. Now the point y belongs to S and lies at distance n�1

from K, the contradiction. We conclude that all the points of S have degree

k + 1.

Now let x be a point at distance n from w. Then x cannot be isolated.

Indeed, if x is isolated, then jxj = jwj = k, but it is easy to see that there

exists a point y of S opposite x, hence jxj = jyj = k + 1, a contradiction.

Also, the class Kx containing x cannot lie at distance n � 1 from w. Let L

be a line through w. Since Æ(w;Kx) = n + 1, projecting the points of Kx

onto L shows that l � jKxj + 1. Let 
 be a �xed n-path between x and w,

and X the element of 
 at distance n=2 + 1 from x. If n > 6 and X is not

a class of size two, then consider a line M at distance n=2 � 2 from X for

which projXx 6= projXM 6= projXw. Since the points of M , di�erent from

projMw, are contained in S, they all have to lie at distance n � 1 from Kx,

hence jKxj = jM j = l, a contradiction. If n = 6, then the same argument

can be applied except if X is a point of degree 2 for which both projXx and

projXw are lines. In this case, consider a line M at distance 3 from w and

at distance 6 from the class K 0 containing X. Then similarly as above, we

obtain jK 0j = jM j = l, but this is a contradiction since by Lemma 3.5.4(i),
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jK 0j = jKxj � l � 1. Finally, if X is a class containing exactly two points,

we proceed as follows. Let Y be the element of 
 at distance
Æ(w;X)�3

2
from

w and, if Y is not a class of size 2, M a line at distance n �
Æ(w;X)+3

2
from

Y such that projYw 6= projYM 6= projYX. Note that Æ(w;M) = n � 3 and

Æ(M;X) = n. The points ofM di�erent from projMw (and there are at least

2 of them) are contained in S, hence lie at distance n � 2 from a point of

X (di�erent from projXw). This is a contradiction, since jXj = 2. If Y is a

class of size 2, then we repeat the argument above with Y in the role of X.

In this way, we obtain that there are no isolated points of degree k, and the

lemma is proved. 2

From now on, we assume that any isolated point has degree k + 1.

Lemma 3.5.6 If there exists a class X, with 1 < jXj < g, then � is a

forgetful quadrangle of type (II), with X = X2 and 1 < jX1j < s.

Proof.

n = 4

Let X be a class of size < g, and G a class of size g. Note that Æ(X;G) = 6,

because of Lemma 3.5.4(i). By projecting the points of G onto a line L

intersecting X, we see that jLj � g + 1. Suppose there is a second class X 0

with jX 0j < g. If Æ(X;X 0) = 4, then let (X; x;M; x0; X 0) be a 4-path between

X and X 0. Every point of G is collinear with a point of M di�erent from x

or x0, and all these points are isolated (indeed, if projMp, with p 2 G, is not

isolated, then the class K 0 containing projMp would satisfy jGj = jK 0j = jXj

because of Lemma 3.5.4(i)). Hence there are at least g isolated points on M .

Now let L be a line through x di�erent from M , and assume there is a class

K intersecting L, but not containing x. Because of Lemma 3.5.5(ii), every

isolated point of M is collinear with a point of K, di�erent from projKx.

Hence jKj � g + 1, a contradiction. So all the points on L di�erent from

x are isolated (this makes at least g isolated points on L). But since, again

by Lemma 3.5.5(ii), every isolated point of L is collinear with a point of X 0,

jX 0j � g+1, a contradiction. So all points at distance 3 from X are isolated,

and Æ(X;X 0) = 6. Let N be a line intersecting X. Since N contains at least

g isolated points, jX 0j � g, a contradiction. Hence X is the unique class of

size < g, and a point is isolated if and only if it lies at distance 3 from X.

By projecting the points of a class G of size g onto a line L intersecting X,

we see that l = g + 1. As in the proof of Lemma 3.5.5, it is now possible to

de�ne the following equivalence relation on the classes of size g:

K1 �C K2 , Æ(K1;K2) = 6:
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Note that it is possible to �nd two classes of size g at distance 4 (indeed,

consider the points on a line at distance 4 from X), hence �C de�nes at

least two equivalence classes. We associate a symbol 1i, i = 1; : : : ; r to

each equivalence class Ci of �C . Now de�ne the following geometry � =

(P 0;L0; I0). A point of � is either a point of � or a symbol1i, i = 1; : : : ; r. A

line of � is either a line of �, the set of points of a class of size g together with

the symbol 1j of its equivalence class, or the set of points f11; : : : ;1rg [

X. Incidence is the incidence of � if de�ned, or symmetrized containment

otherwise. Then it is easy to see that � is a �nite generalized quadrangle of

order (s; k) with s = r + jXj � 1, hence � is a forgetful quadrangle of type

(II), with 1 < jX1j < s. We check for example the main axiom for a `point'

1i and a line L of �, L not intersecting X. Suppose 1i is not collinear in

� with any point of L. Let K be a class belonging to the equivalence class

of �C with symbol 1i. Then K does not intersect L. Every point x of L is

collinear with a point of K. (Indeed, this is clear if x is isolated. If x belongs

to a non-trivial class K 0, then Æ(K;K 0) = 4, hence x is collinear with a point

of K 0.) Hence jKj � jLj = g + 1, a contradiction.

n = 6

We treat this case separately, because here the reasoning is slightly di�erent

from the general case.

Let by way of contradiction X be a class for which jXj < g. Let G be a class

of size g. Then Æ(X;G) 2 f4; 8g. If Æ(X;G) = 8, then l � g + 1. Indeed,

choose x 2 X and L a line through x. By projecting the points of G onto

the line L, we see that jLj � g + 1.

We next show that, if Æ(X;G) = 4, then l = g. Let (X; x;M; y;G) be the 4-

path between X and G. Consider a line N concurrent with M not through x

or y. Then the points onN di�erent from projMN are isolated (indeed, a class

K intersecting M but not containing projMN would satisfy jXj = jKj = jGj

by Lemma 3.5.4(i)). So N contains at least g � 1 isolated points. Now

let L be a line through y di�erent from M , and suppose there is a class K

intersecting L, di�erent from G. Since Æ(X;K) = 6, jKj = jXj < g. By

Lemma 3.5.5(ii), there is a bijection between the points of K di�erent from

projLy and the points onN di�erent from projMN . This implies that jKj = l,

hence jKj = g = l, a contradiction. So all the points on L are isolated. Now

let y0 be a point of G di�erent from y, and L0 a line through y0. Not all points

on L0 di�erent from y0 can be isolated (since otherwise Lemma 3.5.5(ii) would

imply jXj = jL0j � g), so there is a class K 0 intersecting L0, K 0 6= G. Then

jK 0j = jLj � g, and hence jK 0j = jLj = g.

First, suppose Æ(X;G) = 8 (so l � g + 1 in this case), and let 
 = (x; : : : ; y)

be a �xed 6-path between points x 2 X and y 2 G. Let M be the element
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of 
 at distance 3 from both x and y. Suppose �rst M is a class. If jM j = g,

then Æ(X;M) = 4 implies l = g. If jM j < g, then Æ(M;G) = 4 implies l = g.

Hence we obtain a contradiction in both cases, so M is necessarily a line.

Clearly, the points on M di�erent from the projection of x or y onto M are

isolated. Also the point z = projMx is isolated. Indeed, this point cannot

be contained in a class of size < g (since such a class would lie at distance 6

from G). But z cannot lie in a class of size g either, since such a class would

lie at distance 4 from X, implying l = g. Hence we have at least g isolated

points on M . Now let N be a line through y di�erent from projyM , and

suppose there is a class K intersecting N in a point di�erent from y. Since

there is a bijection between the points of M and the points of K, we obtain

jKj = g + 1, a contradiction. Hence N contains at least g isolated points,

but this implies (using Lemma 3.5.5(ii)) that jXj � g, a contradiction. This

shows that Æ(X;G) 6= 8.

Next, suppose Æ(X;G) = 4 (so l = g in this case). Let again (X; x;M; y;G)

be the 4-path between X and G. Let L00 be a line at distance 3 from y such

that projyL
00 is a line di�erent fromM . Suppose there is a classK intersecting

L00, but not containing the point projL00y. Since Æ(G;K) = 6, jKj = g, but

this contradicts Æ(K;X) = 8 and the previous paragraph. Hence all g � 1

points of L00 di�erent from projL00y are isolated. Consequently jXj = g (again

by Lemma 3.5.5(ii)), a contradiction. We conclude that all classes have size

g. Hence X cannot exist.

n > 6

Let by way of contradiction X be a class for which jXj < g. Let G be a class

of size g. Then Æ(X;G) � n+ 2 and Æ(X;G) 6= n.

We �rst claim that if Æ(X;G) = n+ 2, 
 = (x; : : : ; y) is an arbitrary n-path

between points x 2 X and y 2 G, and M is the element of 
 at distance

n=2 from both x and y, then either n � 2 mod 4 and M is a class of size

two, or n = 8 and there does not exist a line through M di�erent from

projMx and projMy. (�) So assume Æ(X;G) = n + 2, and suppose by way

of contradiction that there is a path 
 = (x; : : : ; y) between points x 2 X

and y 2 G such that the element M (with M as above) is not a class of

size two if n � 2 mod 4, or such that there does exist a line through M

di�erent from projMx and projMy if n = 8. By projecting the points of

G onto the line projxM , we obtain l � g + 1. Let L be a line at distance

n=2 � 3 from M such that projMx 6= projML 6= projMy (L exists because

of the assumptions on M). Then the points on L di�erent from projLM are

isolated (indeed, a class K intersecting L but not containing projLM would

satisfy Æ(X;K) = Æ(G;K) = n, so jXj = jKj = jGj, a contradiction). Now

let N be a line through y di�erent from projyM . Since a class K 0 intersecting
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N , K 0 6= G, would satisfy jK 0j = jLj � g + 1 (using Lemma 3.5.5(ii)),

every point on N is isolated. But (again using Lemma 3.5.5(ii)) this implies

jXj � jN j � 1 � g, a contradiction. This shows the claim.

We next show that Æ(X;G) 6= j, with j � n=2 + 1.

Suppose that Æ(X;G) = 4, and let (X; x; xy; y;G) be a 4-path between X

and G. Let L be a line at distance n � 3 from y such that projyL 6= xy,

and such that the element M of the path [x; L] at distance n=2 from x is

not a class of size 2 if n � 2 mod 4, or such that there can be chosen a

line through M not belonging to [x; L] if n = 8. Let r be a point on L,

r 6= projLy. Then r is isolated. Indeed, suppose by way of contradiction that

r is contained in a class K. Since Æ(G;K) = n, jKj = jGj = g. This implies

that Æ(X;K) = n + 2. But now, by considering the n-path between x 2 X

and r 2 K containing L, we see that K cannot exist because of (�). So the

line L contains at least g � 1 isolated points. By Lemma 3.5.5(ii), there is a

bijection between the points of X n fxg and the points on L di�erent from

projLy, a contradiction with jXj < g.

We proceed by induction on Æ(X;G). Let 4 � k < n=2+ 1 and suppose that

Æ(X;G0) > k, for any class G0 of size g. Then we �rst claim that there does

not exist a classG00 of size g at distance n+2�k fromX such that the element

of the path [X;G00] at distance n=2� k + 1 from G00 is not a class of size 2 if

n � 2 mod 4 (��). Suppose by way of contradiction a class G00 as above does

exist. Let z be a point of G00 not belonging to [X;G00], and L a line at distance

k�3 from z such that projzL 6= G00. All the points on L di�erent from projLz

are isolated. Indeed, if K 0 would be a class intersecting L, projLz 62 K 0, then

jK 0j < g contradicts Æ(K 0; G00) � k and the previous paragraph, but jK 0j = g

contradicts Æ(K 0; X) = n + 2 and (�). So there are at least g � 1 isolated

points on L. By Lemma 3.5.5(ii), there is a bijection between the points of

LnfprojLzg and the points of X nprojXG
00. Hence jXj = g, a contradiction.

This shows (��). Now we show that Æ(X;G00) 6= k+2, k < n=2, for any class

G00 of size g. So suppose by way of contradiction that Æ(X;G00) = k+ 2, and

let y be the element ofG00 at distance k+1 fromX. Let L be a line at distance

n � 1 � k from y, and n � k from G00 such that projyL 6= projyX and such

that the element of the path [G00; L] at distance n=2� k+1 from G00 is not a

class of size 2 if n � 2 mod 4. Then every point r on L di�erent from projLy

is isolated. Indeed, suppose by way of contradiction that r is contained in

a class K. Since Æ(K;G00) = n + 2 � k, (��) implies that jKj = g. But if

jKj = g, then Æ(X;K) = n + 2, which contradicts (�). Hence r is isolated.

Now again by Lemma 3:5:5(ii), there is a bijection between the points of L

and X, implying jXj � g, a contradiction.
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So we obtained the following: if Æ(X;G) = j, then j > n=2 + 1 and the

element of a j-path between X and G at distance j � (n=2 + 1) from G is a

class K of size two. But now, applying this result on the classes G and K

(note that jKj < jGj and Æ(K;G) < n=2 � 1 if j 6= n + 2) leads to the �nal

contradiction. This shows that X cannot exist.

2

We summarize the situation reached so far. If � is a �nite forgetful n-gon, n

even, then � is either a generalized n-gon, a forgetful quadrangle of type (II)

(with 1 < jX1j < s + 1) or type (III), or there exist parameters g; k; d such

that the following axioms are satis�ed:

(S1) Every isolated point is incident with exactly k + 1 lines, every non-

isolated point is incident with exactly k lines (k � 2).

(S2) Every class has the same size g, g > 1.

(S3) Every line contains g + d points, d � 0.

Let now � be a �nite forgetful n-gon, n even, satisfying axioms (S1), (S2)

and (S3). The parameter d is called the de�ciency of �.

Lemma 3.5.7 If d = 0, then � is a forgetful n-gon of type (I).

Proof. Suppose d = 0. De�ne the geometry � = (P;L [ C; I). Then �

is a generalized n-gon. Indeed, we only have to check that a point p and a

class K lie at distance at most n � 1 from each other. Suppose by way of

contradiction that Æ(p;K) = n+1. But then projecting the points of K onto

an arbitrary line L through p shows that jLj � g + 1, a contradiction. 2

Lemma 3.5.8 If n = 4 and d = 1, then � is a forgetful quadrangle of type

(II), with jX1j 2 f1; s+ 1g.

Proof. Suppose d = 1, so l = g + 1. As in Lemma 3.5.6, we de�ne an

equivalence relation �C on the classes (which are all of size g), and associate

a symbol 1i, i = 1; : : : ; r to each equivalence class Ci of �C .

Suppose �rst there are no isolated points. Then de�ne the following geom-

etry � = (P 0;L0; I0). A point of � is either a point of � or a symbol 1i,

i = 1; : : : ; r. A line of � is a line of �, the set of points of a class K together

with the symbol of its equivalence class, or the set of points f11; : : : ;1rg.
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Incidence is the incidence of � if de�ned, or symmetrized containment oth-

erwise. Similarly as in Lemma 3.5.6, one shows that � is a �nite generalized

quadrangle of order (g; k), hence � is a forgetful quadrangle of type (II), with

jX1j = s+ 1.

Suppose now there is an isolated point w. We show that any two classes

of size g lie at distance 6 (hence �C has only one equivalence class). Note

�rst that no line through w only contains isolated points. Indeed, if L0

would be a line through w full of isolated points, then for a class G of size g

(which necessarily lies at distance 3 from w), Lemma 3.5.5(ii) implies that

jGj = jL0j = g + 1, a contradiction. Now let L0; : : : ; Lk be the lines through

w and X0 a class of size g intersecting L0. Since l = g + 1, there is a unique

point xi on Li, i = 1; : : : ; k that is not collinear with any point of X0. Hence

by lemmas 3.5.5(ii) and 3.5.4(i), xi is contained in a class Xi of size g for

which Æ(X0; Xi) = 6. Since �C is an equivalence relation, also Æ(Xj ; Xj0) = 6,

for j; j0 2 f1; : : : ; kg, j 6= j0. Suppose now there exists a class K of size g,

K 6= Xi, i = 0; : : : ; k. Then without loss of generality, we can assume that

K intersects L0 in the point y. Because of the construction of the classes

Xi, the point y lies at distance 3 from every class Xi, i = 0; : : : ; k. Hence

there exists a line Ni through y, i = 0; : : : ; k such that Æ(Ni; Xi) = 2 (note

that all these lines Ni are di�erent because the classes Xi mutually lie at

distance 6). But since y is not isolated, it has degree k, a contradiction. So

�C has a unique equivalence class with associated symbol 1. Now de�ne

the following geometry � = (P 0;L0; I0). A point of � is either a point of � or

the symbol 1. A line of � is either a line of � or the set of points of a class

K together with the symbol 1. Incidence is the incidence of � if de�ned, or

symmetrized containment otherwise. Then it is easy to see that � is a �nite

generalized quadrangle of order (g; k), hence � is a forgetful quadrangle of

type (II), with jX1j = 1. 2

A forgetful n-gon, n even, satisfying (S1), (S2) and (S3) with d � 2 if n = 4

and d � 1 if n � 6, is called a short forgetful n-gon. This name refers

to both the short classes and the short memory of these objects. (Indeed,

their memory seems to be too short to prove that they arise from generalized

polygons.)

We now obtained the following theorem:

Theorem 3.5.9 A �nite forgetful n-gon, n even, is either a generalized n-

gon, a forgetful n-gon of type (I), (II) or (III), or a short forgetful n-gon.



3.6 Short forgetful quadrangles 93

Proposition 3.5.10 Let � be short forgetful polygon.

(i) � contains at least two classes.

(ii) � contains either 0 or at least two isolated points.

Proof. Let � be a short forgetful polygon. Suppose there is a unique non-

trivial class K (K 6= P). Then by Lemma 3.5.5(ii), any line at distance n

from K contains g points, so d = 0, a contradiction. This shows (i). Suppose

now � contains a unique isolated point w. Let K be a class at distance n� 1

from w, L1 the line intersecting K at distance n � 3 from w, and L2 an

arbitrary line through projKw, di�erent from L1. Let S be the set of points

at distance n+1 fromK. Since d 6= 0, S 6= ;. Each line at distance n�2 from

L1 (L2) and at distance n from K contains d points of S. Conversely, every

point of S is on a unique line lying at distance n from K and at distance

n�2 from L1 (L2). Hence, denoting by Ri the set of lines at distance n from

K and n � 2 from Li, i = 1; 2, jSj = djRij. But jR1j � jR2j = 1, since the

point w is incident with k + 1 lines, but every point at distance n � 3 from

L2 is incident with k lines. This is a contradiction, showing (ii) . 2

3.6 Short forgetful quadrangles

3.6.1 General properties

Let � be a �nite short forgetful quadrangle, with parameters (g; k; d). Recall

that an isolated point of � lies at distance 3 from any class, and that, if two

classes K1 and K2 lie at distance 4, then any point of K1 (K2) lies at distance

3 from K2 (K1).

Lemma 3.6.1 Every line of � contains a constant number � of isolated

points.

Proof. Suppose there is a line L of � only containing isolated points. Let K

be any class. Then the map

� : PL ! K

x ! y; with Æ(x; y) = 2;

is a bijection between the points on L and the points of K, so l = g, a

contradiction with l � g + 2. Hence every line intersects at least one class.
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Let K be a �xed class of size g, and L1 (L2) a line intersecting K and

containing �1 (�2) isolated points. Each point of � at distance 5 from K lies

at distance 3 from L1 and L2, and each line at distance 4 from K contains

exactly d points at distance 5 from K. So counting the number of points of

� at distance 5 from K, we obtain

�1kd+ (g + d� �1 � 1)(k � 1)d = �2kd+ (g + d� �2 � 1)(k � 1)d;

hence �1 = �2. Now let K1 (K2) be a class of size g such that every line

intersecting K1 (K2) contains exactly �1 (�2) isolated points. We count the

number of points of �:

jPj = g + gk(g + d� 1) + �1kd+ (g + d� �1 � 1)(k � 1)d

= g + gk(g + d� 1) + �2kd+ (g + d� �2 � 1)(k � 1)d;

implying �1 = �2. This shows the lemma. 2

Lemma 3.6.2 (i) Either � = 0 or � = g � (d� 1)(k � 1).

(ii) If � 6= 0, then jLj = gk(k+1). If � = 0, then jLj = k((d�1)(k�1)+gk).

Proof. Let I be the set of isolated points. If K is a class of size g, then

every isolated point lies at distance 3 from K, hence jIj = gk�. Also, every

line of � intersects K, or lies at distance 3 from a �xed point of K, hence

jLj = gk + k(�k + (g + d� �� 1)(k � 1)):

Counting the number of pairs (i; L), i 2 I, L 2 L, iIL, we obtain:

gk�(k + 1) = (gk + k(�k + (g + d� �� 1)(k � 1))�:

If � 6= 0, this simpli�es to � = g � (d� 1)(k� 1), showing (i). Now by using

this in the expression for jLj above, we obtain (ii). 2

De�ne the following graph G�. The vertices of G� are the classes of �. Two

vertices are adjacent if and only if the corresponding classes lie at distance 6.

Lemma 3.6.3 (i) If � 6= 0, then G� is a

srg((k + 1)(kd+ 1� k); kd; k � 1; d))

and GC
� is a

srg((k+1)(kd+1� k); k2(d� 1); (d� 1)(k2+1)� dk; k(k� 1)(d� 1)):
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(ii) If � = 0, then, with f =
d(d�1)(k�1)

g
, G� is a

srg(1 + k(g + d� 1) + (k � 1)d+ f; (k � 1)d+ f; k � d� 1 + f; f)

and GC
� is a

srg(1 + k(g + d� 1) + (k � 1)d+ f; k(g + d� 1); d� 1 + k(g � 1); kg):

Proof. We determine the parameters of GC
� . The number of classes follows

from jPj = g+gk(g+d�1)+(g+d�1��)(k�1)d+�kd and jIj = gk�, with

I the set of isolated points. Now let K be a �xed class, and r 2 K. A class

K 0 lies at distance 4 from K if and only if K 0 contains a point collinear with

r, hence there are k(g + d � 1 � �) classes lying at distance 4 from K. Let

K 0 be a �xed class, with Æ(K;K 0) = 4, and (K; r;R; r0;K 0) a 4-path between

K and K 0. A class K 00 lies at distance 4 from both K and K 0 if and only if

K 00 intersects R (not in r or r0 of course), or K 00 intersects a line L through

r, L 6= R, in a point v (v 6= r) that lies at distance 3 from K 0. Note that

every isolated point on such a line L necessarily lies at distance 3 from K 0.

Hence there are g + d� 2� �+ (k � 1)(g � 1� �) classes at distance 4 from

K and K 0. Let �nally K be a class at distance 6 from K. A class K 00 lies at

distance 4 from both K and K if and only if there exists a line N through r

such that K 00 intersects N in a point at distance 3 from K. Since any line N

through r contains exactly g � � non-isolated points at distance 3 from K,

we have in total k(g � �) classes at distance 4 from K and K. 2

If � 6= 0, then gjd(d � 1)k is a necessary condition for the existence of �.

Also, the fact that the multiplicities of the eigenvalues of G� are integers,

gives necessary conditions on (g; k; d) for the existence of G�, and hence for

� itself.

?4 Is there is similar structure (a distance-regular graph for example) on

the classes of a short forgetful hexagon without isolated points ?

Let � be a short forgetful quadrangle without isolated points. For a point

x of �, we denote by Kx the class containing x. We de�ne the following

relations R = (R0; R1; R2; R3; R4) on P.

R0 = f(x; x)jx 2 Pg

R1 = f(x; y) 2 P2
jx ? yg

R2 = f(x; y) 2 P2
jÆ(x; y) = 4 and Æ(Kx;Ky) = 4g

R3 = f(x; y) 2 P2
jÆ(x; y) = 4 and Æ(Kx;Ky) = 6g

Lemma 3.6.4 The pair (P;R) is an association scheme.
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Proof.We have to prove that the intersection numbers pijk are de�ned. These

numbers are easily determined using Lemma 3.6.3. (We only mention the

non-zero intersection numbers for which j � k).

p000 = 1; p011 = k(g + d � 1); p022 = g � 1; p033 = k(g � 1)(g + d � 1); p044 =

(k � 1)d(g + d � 1); p101 = 1; p111 = g + d � 2; p113 = (k � 1)(g � 1); p114 =

d(k�1); p123 = g�1; p133 = (g�1)(gk�2k+d); p134 = d(g�1)(k�1); p144 =

d(d� 1)(k� 1); p202 = 1; p213 = k(g+ d� 1); p222 = g� 2; p233 = k(g� 2)(g+

d � 1); p244 = (k � 1)(d2 + dg � d); p303 = 1; p311 = k � 1; p312 = 1; p313 =

(k � 1)(g � 2) + g + d� 2; p314 = d(k � 1); p323 = g � 2; p333 = (g � 2)(gk �

2k+ d) + (g� 1)(k� 1); p334 = d(g� 1)(k� 1); p344 = d(d� 1)(k� 1); p404 =

1; p411 = k; p413 = k(g�1); p414 = k(d�1); p424 = g�1; p433 = k(g�1)2; p434 =

k(d� 1)(g � 1); p444 = g(k � d� 1) + d(d� 1)(k � 1): 2

The intersection matrix L3 of the association scheme (P;R) has �ve distinct

eigenvalues. The corresponding normalized eigenvectors u0; u1; : : : ; u4 are:

u0 = (1; 1; 1; 1; 1)

u1 = (1;
1

k
;
�1

g � 1
;

�1

k(g � 1)
; 0)

u2 = (1;
�1

g + d� 1
; 1;

�1

g + d� 1
;

g

d(g + d� 1)
)

u3 = (1;
�1

g + d� 1
;
�1

g � 1
;

1

(g � 1)(g + d� 1)
; 0)

u4 = (1;
d� 1

k(g + d� 1)
; 1;

d� 1

k(g + d� 1)
;

�g

(k � 1)(g + d� 1)
):

Theorem 3.6.5 If � is a short forgetful quadrangle without isolated points,

then k � (l � 1)2.

Proof. This follows from the Krein condition q332 � 0, with q332 =
P

l p
0
ll(u2)l(u3)

2
l .

2

The multiplicities of the association scheme (X;R) are the following:
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f0 = 1

f1 =
(g + d)(kg + (d� 1)(k � 1))k(g � 1)

g(k + g + d� 1)

f2 =
d(g + d� 1)(kg + (d� 1)(k � 1))

g(d+ k � 1)

f3 =
(g � 1)(g + d)(g + d� 1)(kg + (d� 1)(k � 1))

g(g + d+ k � 1)

f4 =
(g + d)k(k � 1)(g + d� 1)

g(k + d� 1)
:

The fact that these multiplicities are integers, gives additional necessary con-

ditions on (g; k; d) for the existence of �.

3.6.2 Examples of short forgetful quadrangles

Subquadrangle type

Let � be a �nite generalized quadrangle of order (s; t), having an ideal (pos-

sibly thin) subquadrangle �0 of order (s0; t), s0 � 1. Then we de�ne the

following geometry � = (P;L; I;�). The points of � are the points of � not

contained in the subquadrangle �0. The lines of � are the lines of � that

do not intersect �0. Incidence is the incidence of �. Two points of � are

equivalent if and only if they are on a line of �0. So the equivalence classes

correspond to the sets �1(L)n�
0
1(L), with L a line of � that is also a line of

the subquadrangle �0. It is now easy to see that � is a short forgetful quad-

rangle, with parameters g = s�s0, k = t, d = s0+1 and � = s�s0t (the value

of � follows from the proof of Theorem 1.2.5(ii)). Note that in this example,

G� corresponds with the line graph of �0. If a short forgetful quadrangle �

arises from this construction, we say that � is of subquadrangle type.

One has the following examples of this construction in the classical case.
� �0 �(g; k; d)

W(q) dual grid (q � 1; q; 2), � = 0

H(3; q2) dual grid (q2 � 1; q; 2), � = q2 � q

H(3; q2) W(q) (q2 � q; q; q + 1), � = 0

H(4; q2)D H(3; q2)D (q3 � q; q2; q + 1), � = 0

Ovoid type

Let � be a �nite generalized quadrangle of order (s; t), admitting a regular

ovoid O. Then we de�ne the following geometry � = (P;L; I;�). The points
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of � are the points of � not belonging to O. The lines of � are the lines

of �. Two points of � are equivalent if and only if they are contained in

a set fo1; o2g
?, for o1; o2 2 O. Incidence is the incidence of �. Then � is

a forgetful quadrangle with parameters g = k = t + 1, d = s � t � 1 and

� = 0. Indeed, we check that for a non-incident point-line pair (p; L) of �,

there exists a unique point rIL, r collinear or equivalent with p. Note that

there exists a path [p; L] = (p; L0; p0; L) in the generalized quadrangle �. If

p0 2 O, then p0 is not collinear in � with any point of L. Let in this case o be

a point of O collinear with p, o 6= p0. The point r = projLo is then the unique

point on L equivalent with p, since fp; rg � fo; p0g?. If p0 62 O, then p0 is

the unique point on L collinear in � with p. If p would be equivalent with

a point p00IL, the point p0 would be a point of the ovoid O, a contradiction.

This shows that � is a forgetful quadrangle. If a short forgetful quadrangle

� arises from this construction, we say that � is of ovoid type.

Note that a forgetful quadrangle of ovoid type has the following property:

(O) If there is a line intersecting three di�erent (possibly trivial) classes

K, K 0 and K 00, then any line intersecting two of these classes, also

intersects the third one.

The known regular ovoids giving rise to a short forgetful quadrangle (thus

with d � 2) are the following.

� Let � be the (q + 1) � (q + 1)-grid (so a thin generalized quadrangle

of order (q; 1)), q � 4, and O the points on one of the diagonals. Then

the associated short forgetful quadrangle has parameters g = k = 2

and l = q. The graph GC
� is the triangular graph T(q + 1).

� Let � be the generalized quadrangle H(3; q2), and O the points of a

Hermitian curve H lying on H(3; q2). Then the associated short forget-

ful quadrangle has parameters g = k = q + 1 and l = q2. The vertices

of the graph G� correspond to the lines intersecting H in q + 1 points,

and two vertices of G� are adjacent if the corresponding lines intersect

in a point not belonging to H.

Application. The other known examples of regular ovoids all occur in gen-

eralized quadrangles of order (q + 1; q � 1) (see for instance De Bruyn [16]

section 2.6.2). By applying the above construction on a generalized quad-

rangle � of order (q + 1; q � 1) admitting a regular ovoid O, one obtains a

forgetful quadrangle � with g = k = q and d = 1. By Lemma 3.5.8, � then
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arises from a generalized quadrangle �0 by applying construction (II), with

jX1j = s+ 1. Clearly, �0 has order (q; q). Since property (O) holds, the line

L of �0 corresponding to the set X1 has to be regular. One can now easily

see that the quadrangle � arises by applying the construction of Payne on

the generalized quadrangle �0 with L as regular line. The regular ovoid O

corresponds with the points of type (B) (using the notation of section 1.4.4).

So any generalized quadrangle of order (q+1; q�1) having a regular ovoid O,

arises from the construction of Payne. This result can be found in Payne [33],

section 3.

3.6.3 Characterization results

Lemma 3.6.6 Let � be a short forgetful quadrangle with k � g and satisfying

property (O). Then � is of ovoid type.

Proof. Let � be a short forgetful quadrangle satisfying the conditions of

the lemma. We �rst claim that � does not contain isolated points. Indeed,

suppose �rst 0 < � < l � 1 and let w be an isolated point. Let L be a

line through w. Then there are at least two non-trivial classes K and K 0

intersecting L. Since K and K 0 lie at distance 4, there is a line N di�erent

from L intersecting K and K 0, hence, by property (O), N is incident with w.

Now a `triangle' arises, the contradiction. Suppose � � l� 1. Let L be a line

at distance 4 from a non-trivial class K. Note that l � 1 � g + 1. Now by

Lemma 3.5.5, every isolated point of L lies at distance 3 from K, implying

jKj � g + 1, again a contradiction. Hence � = 0.

We now prove that g = k. Let L1 be a line of � and K1; : : : ;Kl the classes

intersecting L1. Then by Lemma 3.5.4(i) there exists a set of lines S =

fL1; : : : ; Lgg such that every line of S intersects K1; : : : ;Kl. Since every line

of � intersects at most one line of S (otherwise a `triangle' would arise), there

are (g+ d)g(k� 1) lines intersecting a line of S. Hence g+(g+ d)g(k� 1) �

jLj = k((d� 1)(k � 1) + gk). Using k 6= 1, this simpli�es to

(g � k)(g + d� 1) � 0;

hence g � k. Since also k � g, we obtain g = k. Note that in particular, this

implies that every line of � intersects exactly one line of S.

De�ne the following equivalence relation on the set of lines of �. Two lines

L1 and L2 of � are equivalent if and only if there exist at least two classes

intersecting both L1 and L2 (the fact that this is an equivalence relation

immediately follows from property (O)). To each equivalence class Ci of
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lines of �, we associate a symbol1i, i = 1; : : : ; r. Then de�ne the following

geometry � = (P;L; I). A point of � is either a point of � or a symbol 1i.

The lines of � are the lines of �. Incidence is the incidence of � if de�ned, and

symmetrized containment otherwise. Then � is a generalized quadrangle of

order (l; k�1). Indeed, we check the main axiom for a non-incident point-line

pair (p; L) of �.

(i) p a point of �.

Either p is collinear in � (and hence in �) with a point p0 of L, or p is

equivalent with a point p0 of L. In the former case, no line through p

can be equivalent with L (otherwise p would be equivalent with a point

of L), so p0 is the unique point of � on L that is collinear in � with p.

In the latter case, let p00 be a point on L, di�erent from p0. The point

p lies at distance 3 from the class K containing p00, hence the line R

through p intersecting K is equivalent with the line L. Now the symbol

1i corresponding to the equivalence class containing R and L is the

unique point of � collinear with p and incident in � with L.

(ii) p =1i.

Let Ci be the equivalence class of lines corresponding to 1i. By the

second paragraph of the proof, every line not belonging to Ci intersects

a unique line of Ci. This implies that the line L is concurrent in �

with a unique line of � through the point 1i.

The points1i form an ovoid O of �. Moreover, O is a regular ovoid. Indeed,

let 1i and 1j be two di�erent equivalence classes of lines. Let L and L0

be two lines of the class 1i. Then by the second paragraph of the proof, L

(L0) meets a unique line M (M 0) of the class 1j in a point r (r0). Note that

M 6=M 0, since otherwise a `triangle' would arise. Suppose that r and r0 are

not equivalent. Let K be the class containing r. Since L � L0, K intersects

the line L0 in a point a, a 6= r, and sinceM �M 0, K intersectsM 0 in a point

b, r 6= b 6= r0. But now a `triangle' arises through the points a, b and r0, a

contradiction. Hence the lines of 1i and 1j meet in the set of points of a

class K. From f1i;1jg
? = K follows easily that the ovoid O is regular.

Now clearly, � is of ovoid type. 2

Theorem 3.6.7 Let � be a short forgetful quadrangle without isolated points,

such that g = k and l � (g � 1)2. Then � is of ovoid type.

Proof. Let � be a short forgetful quadrangle without isolated points, such

that g = k =: q+1, and l = q2+ r, r � 0. We show that � has property (O).
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Suppose �rst g = 2. Let L be a line of �, and Ki = fri; r
0
ig, i = 1; 2; 3, three

di�erent classes intersecting the line L in the point ri. Since g = 2, r01r
0
2, r

0
1r

0
3

and r02r
0
3 are lines. This gives rise to a triangle, unless r

0
1r

0
2r

0
3 is a line. So in

this case, property (O) is satis�ed. From now on, we assume g � 3. Let K

be a �xed class, and put K = fa0; : : : ; aqg. Let L be a �xed line through a0
and C = fK1; : : : ;Kq2+r�1g the set of classes di�erent from K intersecting

L. Note that, since Æ(K;Ki) = 4, i = 1; : : : ; q2 + r � 1, every point of K is

collinear with exactly one point of each class Ki, i = 1; : : : ; q2+r�1. Put bi,

i = 0; : : : ; q the point of K1 collinear with the point ai of K. We claim that

if at least one class of C intersects a line concurrent with K, then at least

q+r�1 classes of C intersect this line. Indeed, consider the class K1 and the

line a1b1. Let V be the set of the q2+r�2 points of K2; : : : ;Kq2+r�1 that are

collinear with b1 (these points exist, since Æ(K1;Ki) = 4, i = 2; : : : ; q2+r�1).

No point of V lies on a line aibi, i = 0; 2; : : : ; q, since these lines already

contain a point that is equivalent with b1 (otherwise a `triangle' would arise).

Hence every point of V either lies on a1b1, or on a line through ai, di�erent

from aibi, with 2 � i � q. Since a line through ai, 2 � i � q, di�erent

from aibi can contain at most one point of V , the line a1b1 contains at least

q2+ r� 2� q(q� 1) = q+ r� 2 points of V . So at least q+ r� 1 classes of C

intersect the line a1b1. This shows the claim. Note also that, if the line a1b1
contains exactly q + r � 2 points of V , then each line through ai, 2 � i � q,

di�erent from aibi, contains exactly one point of V (�).

Suppose �rst that there is a line M concurrent with K that is intersected

by exactly q + r � 1 classes of C. Without loss of generality, we can assume

that M = a1b1. By (�), this means that every line through ai, i = 2; : : : ; q,

intersects at least one, and hence at least q + r � 1 classes of C. So in total,

a point ai, 2 � i � q, lies at distance 3 from at least (q + 1)(q + r � 1)

classes of C. Hence q2 + r� 1 � (q + r� 1)(q + 1), implying that r = 0 and

that every line through ai, 2 � i � q, intersects exactly q � 1 classes of C.

By symmetry, also every line through a1 intersects exactly q � 1 classes of

C. Let, without loss of generality, C 0 = fK1; : : : ;Kq�1g be the set of q � 1

classes of C intersecting the line a1b1. The point b1 has to be collinear with

a point pi 2 Ki, for q � i � q2 � 1 (note that these Ki are the classes of

C nC 0). By (�) each line through ai, 2 � i � q, di�erent from aibi contains a

point collinear with b1 and belonging to a class of C n C 0. Let C1 be the set

of q�1 classes of C intersecting the line a2b2, and C2 the set of q
2� q classes

intersecting a2b2, di�erent from K and not belonging to C1. Since exactly

q � 1 classes intersecting a2b2 di�erent from K also intersect the line a0b0
(namely the classes of C1), every line concurrent with K but not through

a2 is intersected by exactly q � 1 classes of C1 [ C2 (this follows from the
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argument above, applied on C1 [ C2 instead of C). Now since K1 lies at

distance 4 from every class of C2, there is a set V
0 = fv1; : : : ; vq2�qg of q

2� q

points collinear with b1 and belonging to a class of C2. These points cannot

be collinear with ai, i � 2 (since the points collinear with b1 on lines through

ai, i � 2, belong to classes of C, and C \ C2 = ;). So all the points of V 0

are collinear with a0 (and there are at most q such points), or lie on the line

a1b1. So at least q2 � 2q + 1 classes of C1 [ C2 intersect the line a1b1. This

implies q2 � 2q + 1 � q � 1, hence q = 1 (then g = 2, a contradiction) or

q = 2. But if q = 2, then l = 4, hence d = l � g = 1, a contradiction.

We may now assume that if at least one class of C intersects a line concurrent

with K, then at least q+ r classes of C intersect this line. For each point ai,

2 � i � q, let Ai be the number of lines through ai that do not intersect any

class of C. If Ai = 0 for some i, then every line through ai contains at least

q+ r points belonging to one of the q2+ r�1 classes of C. This would imply

that (q+1)(q+r) � q2+r�1, a contradiction. HenceM := min2�i�qAi 6= 0.

We next claim that every line through ai, 2 � i � q, that intersects at least

one class of C, intersects at least (q � 1)(M + 1) + r classes of C. Let V

again be the set of the q2+ r� 2 points of K2; : : : ;Kq2+r�1 that are collinear

with b1. Now the number of points of V that do not lie on the line a1b1 is at

most (q � 1)(q �M), hence there are at least q2 + r � 1� (q � 1)(q �M) =

(q � 1)(M + 1) + r classes of C that intersect the line a1b1. This shows the

claim. Now consider a point aj of K, 2 � j � q, for which Aj = M . Then

there are q + 1�M lines through aj such that each of these lines intersects

at least (q � 1)(M + 1) + r classes of C, hence

(q + 1�M)(qM + q + r �M � 1) � q2 + r � 1;

implying

M �
�r

q � 1
or M � q:

Since 0 < M � q, we have M = q, meaning that if a line concurrent with K

intersects a class of C, it intersects every class of C. This is exactly property

(O), so the conditions of Lemma 3.6.6 are satis�ed, and � is of ovoid type.

2

Corollary 3.6.8 If � is a short forgetful quadrangle without isolated points,

satisfying k = g 6= 2, then l � (g � 1)2.

Proof. Suppose by way of contradiction that � is a short forgetful quadrangle

without isolated points, with k = g =: q + 1 and l = (g � 1)2 + r = q2 + r,
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r � 1. Then because of Theorem 3.6.7, � is of ovoid type, and there exists

a generalized quadrangle of order (l; q), with l > q2, a contradiction since

q 6= 1. 2

Lemma 3.6.9 Let � be a short forgetful quadrangle for which G� is the line

graph of a generalized quadrangle. Then � is of subquadrangle type.

Proof. Let � be a short forgetful quadrangle for which G� is the line graph

of a generalized quadrangle �0 of order (s; t). Then one calculates (using

Lemma 3.6.3) that s = d � 1, t = k and that, if � = 0, g = (k � 1)(d � 1).

Each point of �0 corresponds to a (maximal) clique of size k+1 in the graph

G�, so to k + 1 classes lying at distance 6 from each other. Also, every

two classes at distance 6 from each other are contained in a unique clique of

size k + 1, and every class belongs to exactly d (k + 1)-cliques. We denote

the points of �0 by 1i, i = 1; : : : ; v. Now de�ne the following geometry

� = (P;L; I). The points of � are the points of � and the symbols 1i.

There are two types of lines of �. The lines of type (A) are the lines of �.

A line of type (B) consists of the points of a class K of �, together with the

symbols 11; : : : ;1d of the (k + 1)-cliques containing K. Incidence is the

incidence of � if de�ned, and symmetrized containment otherwise. Then �

is a generalized quadrangle of order (l � 1; k). Indeed, we check the main

axiom for a non-incident point-line pair (p; L) of �.

(i) p a point of �, L type (A). Immediate.

(ii) p a point of �, L type (B). Let K be the class of � such that all its

points are incident with L. If p is isolated, then p is collinear with

a unique point of K, and p is not incident with any line of type (B).

Hence the path [p; L] exists and is unique in �. If p is non-isolated and

is collinear in � with a (necessarily unique) point of K, then the class

K 0 containing p lies at distance 4 from K, hence K 0 is not contained in

any (k + 1)-clique containing K, so [p; L] is unique in �. If �nally p is

non-isolated and lies at distance 5 from K, then the class K 0 containing

p belongs to a unique (k + 1)-clique through K, so p is collinear in �

with exactly one of the symbols 1i on L.

(iii) p =1j, L type (A). There are exactly gk(k + 1) lines intersecting one

of the k + 1 classes of the clique corresponding to 1j . Since this is

equal to the number of lines of �, the path [p; L] exists and is unique

in �.
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Figure 3.6: The complement of the Shrikhande graph.

(iv) p =1j, L type (B). This follows immediately from the fact that �0 is

a generalized quadrangle.

Since �0 is an ideal subquadrangle of �, � is of subquadrangle type. 2

Remark. Let � be a short forgetful quadrangle with parameters (g; k; d)

such that, if � = 0, g = (k � 1)(d � 1). If every two adjacent vertices of

G� are contained in a clique of size k + 1, then G� is the line graph of a

generalized quadrangle (see Brouwer, Cohen & Neumaier [8] Lemma 1.15.1),

hence � is of subquadrangle type by Lemma 3.6.9.

Theorem 3.6.10 Let � be a short forgetful generalized quadrangle with pa-

rameters (g; k; 2).

(i) If � contains isolated points, then � is of subquadrangle type.

(ii) If g = k � 1, then � is of subquadrangle type.

Proof. Let � be a short forgetful quadrangle with d = 2, and suppose that

either � contains isolated points, or the parameters of � satisfy g = k � 1

(which implies that there are no isolated points because of Lemma 3.6.2(i)).

Put l = s + 1, g = s � 1 and k = t. Then in both cases, G� is a srg

((t+ 1)2; 2t; t� 1; 2).
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Suppose �rst t 6= 3. Then G� is the (t + 1) � (t + 1)-grid (or equivalently,

the line graph of a thin generalized quadrangle of order (1; t)) (see Bose [5],

or De Clerck & Van Maldeghem [17], Theorem 4). By Lemma 3.6.9, � is

of subquadrangle type, which proves the theorem in this case. Suppose now

t = 3. Then G� is a srg (16,6,2,2). Any strongly regular graph with these

parameters is either the 4� 4-grid or the Shrikhande graph (see for example

Brouwer, Cohen & Neumaier [8], Theorem 3.12.4). In the former case, the

theorem again follows as before, so assume that G� is the Shrikhande graph.

We show that this leads to a contradiction. For convenience, we work with

the complementary graph GC
� . Label the classes of GC

� with K1; : : : ; K16

as in Figure 3.6. Remember that � is a short forgetful quadrangle with

g = s � 1, l = s + 1, k = 3 and � = s � 3, so every line contains exactly 4

non-isolated points. Also, two vertices are adjacent in GC
� if and only if the

corresponding classes lie at distance 4 from each other. We now make the

following observations.

(a) Every vertex v of GC
� is contained in exactly 3 maximal cliques of size

4 (which only intersect in the vertex v). This implies the following

property for �: if there exists a line of � intersecting the four classes

Ki, Kj, Km and Kn, then there exist exactly g = s�1 lines intersecting

the classes Ki, Kj, Km and Kn.

(b) If p is an isolated point of �, then p lies at distance 3 from every non-

trivial class, so the point p will determine four cliques inGC
� , each of size

4 (corresponding to the four lines through p). Hence p will determine

a partition of the vertices of GC
� into four disjoint maximal cliques.

We will call a line intersecting the four classes Ki, Kj, Km and Kn, an

(i; j;m; n)-line.

Case g = 21.

Put Ki = fai; big. Without loss of generality, we can assume a1 ? a2 ? a6 ?

a5 Because Æ(K2;K5) = 4, the point a2 is collinear with b5. This implies

that b5 ? b1 and a5 ? a1. We can argue similarly for the `squares' A13, A22,

A31 and A33 (labelling the `squares' in �gure 3.6 as the elements of a 3� 3-

matrix). Hence we can choose the notation such that we obtain the lines

a5a6a7a8, a9a10a11a12, a2a6a10a14 and a3a7a11a15. Also, a3 ? a4, a13 ? a14,

a15 ? a16, a4 ? a8, a9 ? a13 and a12 ? a16. Since Æ(K3;K10) = 4, the point

a3 is collinear with b10. This implies that a2 ? a3. But now there is no room

1We advise the patient reader to make a large picture similar to Figure 3.6, but with

the vertices replaced by classes containing two points.
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Figure 3.7: Case g = 4 in the proof of Theorem 3.6.10

any more for the (1,6,11,16)-line through a1 (indeed, a1 ? b6, a1 ? b11, hence

b6 ? b11, a contradiction since Æ(a6; a11) = 4).

Case g = 4.

Note that through every point of K1, there is a line of type (1; 2; 3; 4),

(1; 5; 9; 13) and (1; 6; 11; 16). Put K1 = fx; y; z; vg. For w 2 fx; y; z; vg,

let Lw
H (Lw

V , L
w
D) be the (1,2,3,4)-line ((1,5,9,13)-line, (1,6,11,16)-line respec-

tively) through w, and let bwi be the point of the class Ki that is collinear

with w, for i 2 f2; 3; 4; 5; 9; 13; 6; 11; 16g. The point bx2 has to be collinear

with a point bw5 of K5 and a point bw
0

6 of K6, w;w
0 2 fy; z; vg. Without loss

of generality, we can assume w = y. We �rst show that also w0 = y. Suppose

by way of contradiction that w0 6= y. The line bx2b
w0

6 has to contain a point

r collinear with y. But r I=L
y
H since bx2 � b

y
2, r I=L

y
D since bw

0

6 � b
y
6 and r I=L

y
V

since bx2 ? b
y
5. Since k = 3, there is no room for the point r, a contradiction.

Hence we can assume bx2 ? b
y
6. Note that the projections of z and v on the

line bx2b
y
5 are both isolated, and are incident with the lines L

z
D and Lv

D respec-

tively. Similarly the projections of z and v on the line bx2b
y
6 are both isolated,

and are incident with the lines Lz
V and Lv

V respectively. Now the point bx3
is collinear with a point bw11 of K11 and a point bw13 of K13, w 2 fy; z; vg.

We show that y 6= w. Suppose by way of contradiction that w = y. Then

as before, the projections of z (v) onto the lines bx3b
y
11 and bx3b

y
13 are isolated

and are incident with Lz
V and Lz

D (Lv
V and Lv

D) respectively. The point b
x
4 is

collinear with a point bu9 of K9, and a point bu16 of K16, u 2 fy; z; vg. The

line bx4b
u
9 has to contain an isolated point incident with one of the lines Lz

D or

Lv
D, a contradiction since the four isolated points on these lines are already

collinear with bx2 or b
x
3 . Hence we can assume without loss of generality that
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w = z (so bx3 ? bz11 and bx3 ? bz13) and that bx4 ? bv9 and bx4 ? bv16. (This is the

situation drawn in Figure 3.7. When a point has the label i in this �gure, it

belongs to the class Ki.) Let p and r (p0 and r0) be the two isolated points

on the line Lx
H (L

y
H). Since through both p and r, there is a line intersecting

K5 and K6 (by observation (b)), and since p and r lie at distance 4 from

the points b
y
5 and b

y
6, we can assume that rr0bz5b

v
6 and pp0bv5b

z
6 are lines. But

now one easily shows that there is no room any more for the line through r

intersecting the classes K9 and K11.

Case g 6= 2; 4.

Note that through every point of K1, there is a line of type (1; 2; 3; 4),

(1; 5; 9; 13) and (1; 6; 11; 16). Since g 6= 2, the geometry � contains isolated

points. Let a1 2 K1 and let r be an isolated point on the (1,2,3,4)-line L

through a1. Each line through r contains s � 3 isolated points, which nec-

essarily lie at distance 3 from K1, and hence each line through r di�erent

from L contains exactly 2 non-isolated points at distance 3 from K1. So in

total there are 6 non-isolated points collinear with r, at distance 3 from K1

and not incident with L. These 6 points belong to the classes K5, K6, K9,

K11, K13 and K16 (since according to observation (b), the point r determines

the partition (1; 2; 3; 4); (5; 6; 7; 8), (9; 10; 11; 12), (13; 14; 15; 16)). Hence we

need at least 6 lines concurrent with K1, not through a1 and not of type

(1,2,3,4), implying that g � 4. Now we claim that every line through r

di�erent from L intersects g � 3 lines of type (1; 2; 3; 4) di�erent from L.

Indeed, consider for example the (5,6,7,8)-line R through r. The points b5
and b6 of K5 and K6 on R lie at distance 3 from K1, hence R has to intersect

a (1,5,9,13)-line and a (1,6,11,16)-line concurrent with K1. But R cannot

intersect two (1,5,9,13)-lines concurrent with K1, since this would give rise

to a `triangle'. Similarly R cannot intersect two (1,6,11,16)-lines concurrent

with R. Hence every line concurrent with both R and K1 and not through

b5 or b6 is necessarily a (1,2,3,4)-line. This shows the claim. So each of the

three lines through r di�erent from L intersects g� 3 lines of type (1; 2; 3; 4)

di�erent from L. Since all these lines of type (1,2,3,4) at distance 3 from r

are di�erent, 3(g � 3) � g � 1, implying that g = 4. This case was excluded

before. 2

Application 3.6.11 Let � be a short forgetful quadrangle with k = 2. If �

contains isolated points, then � is of subquadrangle type. If � does not contain

isolated points, then � is of ovoid type. In both cases, the corresponding

generalized quadrangles are uniquely determined.

Proof. Let � be a short forgetful quadrangle with k = 2. Suppose �rst

that � contains isolated points. Since every two adjacent vertices of G�
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are contained in a clique of size k + 1 = 3 (see Lemma 3.6.3(i)), � is of

subquadrangle type by Lemma 3.6.9. Using the notation of section 3.6.2, the

associated generalized quadrangle � has order t = 2. Hence � is isomorphic

with H(3; 4). Suppose now � does not contain isolated points. If g = k =

2, then � is of ovoid type, by Lemma 3.6.6. Again using the notation of

section 3.6.2, we see that the associated generalized quadrangle � is an (l+

1)� (l + 1)-grid. We now show that the case g > 2 leads to a contradiction.

g = 3

Let G be a �xed class of size 3, put G = fr1; r2; r3g, and let Ri and R
0
i be the

two lines through the point ri, i = 1; 2; 3. Let a1 be a point on R1 di�erent

from r1, and L the line through a1 di�erent from R1. Let A be the class

containing a1. Without loss of generality, we can assume that L intersects

the lines R2 and R3 in a point of the classes B and C respectively. Put

A = fa1; a2; a3g, B = fb1; b2; b3g and C = fc1; c2; c3g, with xi ? ri, i = 1; 2; 3

and x 2 fa; b; cg. Note that b1; c1 2 R0
1, a2; c2 2 R0

2 and b3; a3 2 R0
3. Also,

since Æ(A;B) = Æ(A;C) = Æ(B;C) = 4, we obtain b1 ? a2, c1 ? a3 and

c2 ? b3. Let d1 be a point on R1 di�erent from a1 and r1. Then the class

D = fd1; d2; d3g cannot intersect R
0
2. Indeed, if d2 2 R0

2, then d3 2 R0
3 (using

Æ(A;D) = 4), but then Æ(B;D) = 4, so b2 ? d1 or b2 ? d2, a contradiction.

Hence d2 2 R2 and d3 2 R3. Since Æ(B;D) = Æ(C;D) = 4, we have d1Ic2b3,

hence d1 is determined on R1, implying jR1j = 3, a contradiction with l =

g + d � 5.

g = 4

Similarly to the previous case.

g � 5

Let G = fr1; r2; : : : ; rgg be a class and L a line at distance 4 from G. For

i = 1; : : : ; g, put ai = projLri, Ki the class containing ai, Ri = airi and

R0
i the line through ri di�erent from Ri. Clearly, K2 intersects the lines R

0
i,

i 6= 2, K3 intersects the lines R
0
i, i 6= 3, and K4 intersects the lines R

0
i, i 6= 4.

Since K3 and K4 both have a point on R0
1, Æ(K3;K4) = 4. Let a03 be the

point of K3 on the line R0
4, and a

0
4 the point of K4 on the line R0

3. The line L

and the lines R0
i, i 6= 3; 4, intersect both K3 and K4. So we already have g�1

lines intersecting K3 and K4. Since none of these lines contains the points

a03 or a
0
4, a

0
3 and a04 have to be collinear. Put L0 = a03a

0
4. Clearly, the line L

0

intersects R1, say in a point of a class B. Note that B 6= Ki, i = 1; : : : ; g, and

that B does not intersect the line L. Since L0 intersects the lines R2 and Ri,

i = 5; : : : ; g, the class B intersects the lines R0
2, R3, R4 and R

0
i, i = 5; : : : ; g.

Now Æ(B;K2) = 4, since these classes have collinear points on the line R0
5.

This is a contradiction, since the point a2 is not collinear with any point of

B (indeed, the line L through a2 does not intersect R
0
i, i = 1; : : : ; g). 2
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3.6.4 Short forgetful quadrangles `arising' from gener-

alized quadrangles.

We say that a forgetful quadrangle � arises from a generalized quadran-

gle � if the points of � are points of �, the lines of � are (parts of) lines of

�, and each class of � is a subset of the point set of a line of �. Note that all

examples of forgetful quadrangles, except possibly from the short forgetful

quadrangles of ovoid type, arise in this way.

Let � be a �nite generalized quadrangle of order (s; t), andW a set of points

in � satisfying the following conditions.

(W1) There exist constants g and l, g � 2, g+2 � l � s+1, such that every

line of � intersects W in either s + 1, s, s + 1 � g or s + 1 � l points

(these lines are called respectively W -, T -, C-, and F -lines).

(W2) If a point w 2W lies on an F -line L, then every line through w di�erent

from L is a W -line.

(W3) There exists a constant k, 2 � k � t such that any point p not belonging

toW either lies on exactly k F -lines and one C-line, or on exactly (k+1)

F -lines and no C-line (so each point not contained in W lies on exactly

(t� k) T -lines).

Then we construct a short forgetful quadrangle � = (P;L; I;�) in the fol-

lowing way. The points of � are the points of � not belonging to W . The

lines of � are the F -lines. Incidence is the incidence of �. Two points of � are

equivalent if they lie on a C-line. Clearly, � is a short forgetful quadrangle

with parameters (g; k; l � g). Also, every short forgetful quadrangle arising

from a generalized quadrangle can be constructed in this way. We give two

examples of this construction.

1. Let � be the unique �nite generalized quadrangle of order (4,2). Let

L1, L2 be two opposite lines of �, and S = fL0
0; : : : ; L

0
4g the �ve lines

concurrent with both L1 and L2. Let W be the set of points lying on

L1 [ L2 [ L0
0 [ : : : [ L0

4. Then every line of � not contained in W

intersects W in 1 or 3 points. Indeed, a line concurrent with L1 or L2

di�erent from L0
i, i = 0; : : : ; 4 intersects W in 1 point. A line opposite

both L1 and L2 and intersecting at least 2 lines of S, intersects exactly

three lines of S, since every triad of lines in � has exactly 3 centers (see

Theorem 1.2.5(i)). From this, it easily follows that every line opposite

both L1 and L2 intersects W in exactly 3 points. Now it is readily
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seen that the set W satis�es properties (W1), (W2) and (W3). The

corresponding short forgetful quadrangle � has k = 2 and does not

contain isolated points, hence is of ovoid type and already classi�ed in

application 3.6.11 (� arises from the 5� 5-grid).

2. Let � be a generalized quadrangle of order (q; q), and �0 a subquadran-

gle of � of order (1; q). Then �n�0 de�nes a short forgetful quadrangle

� of subquadrangle type. Let �1 be a generalized quadrangle of order

(q2; q) containing �, and �2 a generalized quadrangle of order (q2; q3)

containing �1. Then the set W = (�2 n�) [�0 in �2 satis�es condi-

tions (W1), (W2) and (W3): the C-lines are the lines of � intersecting

�0, the F -lines are the lines of � not intersecting �0, the T -lines are

the lines of �2 intersecting � n �0 in a unique point. Note that also

the set W 0 = (�1 n�) [�0 satis�es properties (W1), (W2) and (W3)

(and gives rise to the same forgetful quadrangle as the set W ).

Classifying all short forgetful quadrangles arising from a generalized quad-

rangle boils down to classifying all sets W satisfying the conditions (W1),

(W2) and (W3). The following results can easily be obtained:

� If l = s+ 1 and no T -lines exist, then � is of subquadrangle type.

� If l = s, then k = 2 hence � is classi�ed in 3.6.11.

Classifying all sets W seems to be quite diÆcult. Note that example 2 above

shows that the set W can be `large' compared with the short forgetful quad-

rangle obtained from it. Also, di�erent sets W can give rise to the same

short forgetful quadrangle. So restricting the classi�cation of all short for-

getful quadrangles to the ones arising from a generalized quadrangle does not

seem to make the question easier.

?4 Do the short forgetful quadrangles of ovoid type (or at least the `classical

examples') arise from generalized quadrangles ?



Chapter 4

Distance-preserving maps

4.1 Introduction

Any isomorphism between two generalized n-gons preserves all distances and

conversely, every bijective map between two generalized n-gons preserving

all distances, de�nes an isomorphism. The aim of the present chapter is

to weaken that condition. The inspiration for this problem came from the

the theorem of Beckman and Quarles (see for instance [3]) stating that a

permutation of the point set of a Euclidean real space preserves distance i

between points (for some positive real number i) if and only if it preserves

all distances.

Let us be a bit more precise. In fact, we consider two versions of the problem.

In the �rst version, we look at surjective maps between the point sets of two

generalized n-gons if i is even, and between the point sets and the line sets

of two generalized n-gons if i is odd, preserving distance i. With `preserving

distance i', we mean that two elements are at distance i if and only if their

respective images are at distance i. The question now reads: does this map

extend to an isomorphism? We show that the answer to the question is `yes'

if i is not equal to the maximal distance. In case i is the maximal distance,

a counterexample arises for the split Cayley hexagon. Two natural problems

turn up: do only hexagons give rise to counterexamples - and is the split

111
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Cayley hexagon the only hexagon giving rise to a counterexample? If one

restricts to the �nite case, we prove that counterexamples can only occur for

hexagons of order (s; s). In the in�nite case, if there is enough transitivity

around, the only counterexample-hexagon is the one described for the clas-

sical hexagon. We use the arguments of these proofs in two applications.

First, we determine the intersection of the line sets of two classical general-

ized hexagons living on the same quadric in 6-space. Secondly, we prove the

(well-known) maximality of the group G2(q) in O7(q) in an entirely geometric

way.

In the second version of the problem, we consider maps between the 
ags

of two generalized n-gons, and ask the same question. For this problem,

the answer is `yes' up to one counterexample arising in the smallest gener-

alized quadrangle. A variation on this problem can be obtained by asking

that a certain Coxeter distance between the 
ags is preserved. Here, the

counterexample has to give up and we obtain a `yes' in all cases.

We conclude with some words about the proofs of the main theorems of this

chapter. We are given a map preserving a certain distance i. In fact, this

means that we look at our polygon with a pair of glasses that only allows us

to see whether two elements lie at distance i or not. The aim is to �nd a

property that distinguishes the collinear points among all the other pairs of

points, and that one can see with such a pair of glasses. However, the quote

`Mathematics is as love, the idea is easy but it can become diÆcult' really

applies to this chapter. Indeed, the proofs are quite technical, since they are

for general n. We therefore advise the reader to keep an appropriate n in

mind when going through them (and to make a lot of pictures...). To make

some arguments a bit more explicit, a few speci�c examples are included

before the proofs.

The results of this chapter are contained in Govaert & Van Maldeghem [28]

and [29].

4.2 Main theorems and some words about

the proof

Theorem 4.2.1 (Point-Line Theorem)

� Let � and �0 be two generalized n-gons, n � 4, let i be an even integer

satisfying 1 � i � n � 1, and let � be a surjective map from the point

set of � onto the point set of �0. If for every two points a; b of �, we

have Æ(a; b) = i if and only if Æ(a�; b�) = i, then � extends (in a unique

way) to an isomorphism from � to �0.
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� Let � and �0 be two generalized n-gons, n � 2, let i be an odd integer

satisfying 1 � i � n � 1, and let � be a surjective map from the point

set of � onto the point set of �0, and from the line set of � onto the line

set of �0. If for every point-line pair fa; bg of �, we have Æ(a; b) = i if

and only if Æ(a�; b�) = i, then � de�nes an isomorphism from � to �0.

Theorem 4.2.2 (Flag Theorem) Let � and �0 be two generalizedm-gons,

m � 2, let r be an integer satisfying 1 � r � m, and let � be a surjective map

from the set of 
ags of � onto the set of 
ags of �0. If for every two 
ags

f; g of �, we have Æ(f; g) = r if and only if Æ(f�; g�) = r, then � extends to

an (anti)isomorphism from � to �0, except possibly when � and �0 are both

isomorphic to the unique generalized quadrangle of order (2; 2) and r = 3.

Theorem 4.2.3 (Special Flag Theorem) Let (W;S) be the Coxeter sys-

tem associated with the dihedral group W = D2m of order 2m. Let � and �0

be two generalized m-gons, m � 2, let w be a non-trivial element of W n S,

and let � be a surjective map from the set of 
ags of � onto the set of 
ags of

�0. Denote by Æ� the Coxeter distance between 
ags in both � and �0. If for

every two 
ags f; g of �, we have Æ�(f; g) = w if and only if Æ�(f�; g�) = w,

then � extends to an (anti)isomorphism from � to �0. If moreover, the

length of w is not maximal in W , then � extends to an isomorphism from �

to �0.

If i = 1 in Theorem 4.2.1, then the result is obvious from the de�nition of

isomorphism. The case i = 2 is exactly Lemma 1.3.14 in Van Maldeghem [57].

The case r = 1 in Theorem 4.2.2 can be found in Tits [50], Theorem 3.21,

and the case r = m was proved in Abramenko & Van Maldeghem [1], Corol-

lary 5.2 (in the latter paper, the case r = m is proved for spherical and

twin buildings). Also, Abramenko & Van Maldeghem recently proved the

analogue of Theorem 4.2.3 for buildings.

Point-Line Theorem

We �rst show that the map � from � to �0 is necessarily a bijection. Let a

and b be two points of � for which a� = b�, and suppose � preserves distance

i (note that we can assume i � 3). Since any element of �0 at distance i

from a� is also at distance i from b�, the set of elements of � at distance i

from a coincides with the set of elements at distance i from b. This is easily

seen to be a contradiction. Indeed, let 
 be a �xed minimal path joining a

and b. If Æ(a; b) 6= 2i, let c be an element at distance i from a such that c

belongs to 
 if i � Æ(a; b), or such that the path [a; c] contains 
 if i > Æ(a; b).
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Then Æ(b; c) 6= i. If k = 2i, let m be the element of 
 at distance i from a,

m0 = projma, and c an element incident with m0, m 6= c 6= projm0a. Then

also Æ(a; c) = i but Æ(b; c) 6= i.

Now clearly, it is enough to prove that � preserves collinearity. The result

will then follow from Van Maldeghem [57] Lemma 1.3.14.

This will be done as follows. If � preserves a certain distance i, then we look

for a property P that characterizes distance 2 in terms of distance i and `not

distance i'. So two points a and b of � lie at distance 2 if and only if P (a; b)

is satis�ed. If the same characterization of collinearity holds in the polygon

�0, then we are sure that also the images a� and b� lie at distance 2. Hence

� preserves collinearity, and we are done.

Flag Theorem

Let � and �0 be the doubles of � and �0, respectively. Put n = 2m. Then �

and �0 are generalized n-gons, n � 6, with thin points (corresponding to the


ags of � and �0) and with thick lines (corresponding to the points an lines of

� and �0). Put 2r = i. The map � induces a surjective map (which we may

also denote by �) from the point set of � to the point set of �0 preserving

distance i. As in the previous case, one shows that � is a bijection. So in

section 4.4.6, we in fact prove the following:

If � is a bijection from the point set of � to the point set of �0 such that for

every two points a; b of �, we have Æ(a; b) = i if and only if Æ(a�; b�) = i,

then � preserves collinearity, except possibly when � and �0 are isomorphic

to the unique generalized octagon of order (2; 1) and i = 6.

The result will then follow from Theorem 3.21 in Tits [50].

In this way, we reduced Theorem 4.2.2 to a particular case of Theorem 4.2.1

for weak polygons with thin points and thick lines. We will not gain so much

by doing that, because a separate proof remains necessary. But the intuition

is easier.

Special Flag Theorem

As above, we again consider the doubles �, �0 and the associated map � from

� to �0. Let i0 be the length of the element w of W , and i = 2i0 (note that

i0 6= 1 since w 62 S). If i0 is even, then two 
ags of � lie at Coxeter distance

w if and only if they lie at distance i0, hence in this case, we are back to the

situation of Theorem 4.2.2. Also if i0 = m, it is clear that Theorem 4.2.3

adds nothing new. Suppose i0 is odd, i0 6= m. Then, for two points a and b

lying at distance i in �, either both projab and projba correspond to points

of �, or both projab and projba correspond to lines of �. In the former case,
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Figure 4.1: Example 1

we say that Æ(a; b) = ip, in the latter that Æ(a; b) = iL. So we know that

� preserves either distance ip or distance iL. Without loss of generality, we

assume that � preserves distance ip. So in section 4.7.4, we will in fact prove

the following result:

If � is a bijection from the point set of � to the point set of �0 such that for

every two points a; b of �, we have Æ(a; b) = ip if and only if Æ(a�; b�) = ip,

2 < i < n, i � 2 mod 4 , then � preserves collinearity.

From Theorem 3.21 in Tits [50] then follows that � and �0 are (anti)isomorphic.

But for 2 < i < n, i � 2 mod 4, the fact that distance ip is preserved, con-

tradicts � and �0 being anti-isomorphic. Hence in this case, � and �0 are

necessarily isomorphic.

4.3 Some examples by pictures

Example 1: Point-Line Theorem, n = 9, i = 5

For two points a and b of �, we �rst consider the set of lines Ta;b = �5(a) \

�5(b). Put k = Æ(a; b) and m = a1b. From Figure 4.1, one sees that for any

line L of Ta;b, the paths [a; L] and [b; L] both contain m, except if k = 8.

Now let S be the set of pairs of points (a; b) for which there exists a point c

di�erent from a and b satisfying Ta;b � �5(c). If Æ(a; b) = 2, then clearly such
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a point c cannot exist. If Æ(a; b) 2 f4; 6g, the possibilities for the point c are

indicated in Figure 4.1. Note that these are the only possible positions for

the point c. For example, if Æ(a; b) = 4, it is easy to see that the point c has

to lie at distance 3 from any line through m di�erent from am or bm. Hence

c has to be collinear with m and lies on am or bm. Similarly if Æ(a; b) = 6.

Finally if Æ(a; b) = 8, the point c cannot exist. Indeed, c would have to lie

at distance 5 every line through m di�erent from the projections of a and b

onto m. Since there are at least two such lines (noting that both s and t are

in�nite in this case), c lies at distance 4 from m and either projma = projmc

or projmb = projmc. But now it is easy to see that c cannot lie at distance

5 from the line X (see picture). So the set S contains exactly the pairs of

points at mutual distance 4 or 6.

Next, let S 0 be the set of pairs of points (a; c) for which there exists a point

b satisfying (a; b) 2 S and Ta;b � �5(c) (so in fact, we collect all the pairs

(a; c) and (b; c) indicated in Figure 4.1). Clearly, the set S 0 contains exactly

the pairs of points at mutual distance 2, 4 or 6. Now S 0 nS is exactly the set

of pairs of collinear points. This example corresponds with Case 4.4.3 in the

proof of Theorem 4.2.1.

Example 2: Point-Line Theorem, n = 9, i = 8

Let a and b be two points at distance k 6= 8. We again consider the set

Ta;b = �8(a) \ �8(b). For the cases k = 2; 4, all possible positions of a point

belonging to Ta;b are indicated in Figure 4.2. For k = 6, a subset of Ta;b is

indicated. Now we look for the pairs of points (c; c0), c and c0 distinct from

a and b such that

Tv;v0 � �8(w) [ �8(w
0); whenever fv; v0; w; w0

g = fa; b; c; c0g:

It is easy to see that if k = 2; 4, the possibilities (c1; c
0
1) and (c2; c

0
2) indicated

on the picture indeed satisfy the condition above. In the proof of Theo-

rem 4.2.1, Case 4.4.5, we will show that these are the only possibilities for

the pair (c; c0) if k = 2; 4, and that if k = 6 and a pair (c; c0) with the above

properties exists, the points c and c0 are necessarily as in the picture.

Now for two points a and b at distance 2,4 or 6, we collect all the points

c and c0 as above in a set Ca;b. If k = 2 or 4, it is impossible to �nd a

point x at distance 8 from all the points of Ca;b [ fa; bg. If k = 6, one can

�nd such a point (see for instance the point x on the picture). So we can

characterize `being at distance 2 or 4'. Now if Æ(a; b) = 4, all points of Ca;b

lie at mutual distance 2 or 4, which is not true for Æ(a; b) = 2. Hence we

can distinguish distance 2. This example corresponds with Case 4.4.5 in the

proof of Theorem 4.2.1.
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Figure 4.3: Example 2: the set Ca;b

Example 3: Flag Theorem, n = 24, i = 16

We �rst look for the pairs (a; b), a; b points of �, for which the set Ta;b :=

�i(a) \ �i(b) is empty. By Figure 4.4, it is intuitively clear that this will be

the case if and only if Æ(a; b) 2 f4; 8; 12g. Indeed, if Æ(a; b) = k � 2 mod 4,

one can �nd a point c 2 Ta;b at distance 16� k=2 from a line at distance k=2

from both a and b. If Æ(a; b) = k � 0 mod 4 and c 2 Ta;b, a circuit of length

at most k + 2i (� 48) arises (noting that the paths [a; c] and [b; c] cannot

meet in an element `in the middle' of a and b, since points are thin), hence

k � 16. So we can characterize the set of distances � = f4; 8; 12g.

Next, for two points a and b lying at a distance contained in �, we consider

the set Ra;b = ��(a) \ ��(b). For two points at distance 12, which is the

biggest distance in �, a point of Ra;b will necessarily lie on the path [a; b],

while this is not the case for smaller �-distances (see Figure 4.5). We will

then characterize distance 12 as the �-distance for which jRa;bj is minimal.

Finally, we show that two points a and b are opposite if and only if the

set �12(a) \ �12(b) contains exactly two points c; d, and moreover, �12(c) \

�12(d) = fa; bg. Hence we recovered opposition, and the theorem follows

from Abramenko & Van Maldeghem [1]. This example corresponds with
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k=2 16� k=2a b
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Figure 4.4: Example 3: the set Ta;b

a b

a b

a b

jRa;bj = 2
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Figure 4.5: Example 3: the set Ra;b

cases 4.7.2 and 4.7.3 in the proof of Theorem 4.2.2.

4.4 Proof of the Point-Line Theorem

Throughout, we put Ta;b := �i(a) \ �i(b), for points a; b of �.

4.4.1 Case i <
n
2

Let a and b be two points at distance k, and 
 a �xed k-path joining a and

b. Denote by m the element of 
 at distance k
2
from both a and b.

Claim 1. The set Ta;b is empty if and only if k > 2i.

Proof. Suppose �rst Æ(a; b) > 2i and let by way of contradiction x be an

element of Ta;b. Note that x cannot lie on 
, nor do the paths [a; x] and

[b; x] meet on 
. Hence there arises a circuit of length at most k + 2i < 2n

(determined by 
 and the paths [a; x] and [x; b]), a contradiction. Suppose
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now Æ(a; b) � 2i. Then any element x at distance i � k
2
from m for which

projma 6= projmx 6= projmb belongs to Ta;b (note that such an element exists

because � is thick). 3

Claim 2. Suppose k = 2. Then there does not exist a point c, c 6= a; b at

distance i from every element of Ta;b.

Proof. Suppose c is a point for which Ta;b � �i(c). Let x 2 Ta;b, and put

[a; x] = (a = x0; x1; x2; : : : ; xi = x). Note that necessarily x1 = ab and

x2 6= b. Let y be an element incident with xi�1 di�erent from xi�2 and x.

Then y 2 Ta;b. Since Æ(c; x) = i = Æ(c; y), necessarily Æ(c; xi�1) = i � 1.

Proceeding like this we obtain Æ(c; xj) = j, for all j, hence c 2 fa; bg. 3

Claim 3. Suppose 2 < k � 2i. Then there exists a point c, c 6= a; b at distance

i from every element of Ta;b.

Proof. Let x 2 Ta;b and de�ne v as [a; v] = [a; b] \ [a; x]. Let j = Æ(a; v).

Combining [b; v] and [v; x], we obtain a path of length ` = k+ i�2j between

b and x. If ` > n, then by combining this path with the i-path joining b and

x, a circuit of length at most k+2i� 2j < 2n arises, a contradiction. Hence

` � n, so ` = Æ(b; x) = i. This implies j = k=2, hence every element x of Ta;b
lies at distance i� k

2
from m, with projma 6= projmx 6= projmb. Now clearly,

a point c on the line N := projab di�erent from a and from the projection of

b onto N satis�es Ta;b � �i(c). 3

Let S be the set of pairs of points (a; b) for which Ta;b 6= ;, and such that

there does not exist a point c di�erent from a and b satisfying Ta;b � �i(c).

Then by the claims above, S is the set of pairs of collinear points. This ends

the proof of the case i < n
2
.

4.4.2 Case i =
n
2
+ 1, i even

Since the case n = 6 and i = 4 is considered in 4.4.4, we can assume n > 6.

Let S be the set of pairs of distinct points (a; b) such that Æ(a; b) 6= i and

the set Ta;b contains at least two points at distance i from each other. We

claim that a pair (a; b) belongs to S if and only if Æ(a; b) < i. Suppose �rst

that 0 6= Æ(a; b) = k, k < i and put m = a 1 b. Consider a point c at

distance i � k=2 from m such that projma 6= w := projmc 6= projmb (note

that Æ(c; w) = i � k=2 � 1 > 0). Let v be the element of [c; w] at distance

i=2 from c (such an element exists since i=2 � i� k=2� 1). Consider a point

c0 at distance i=2 from v such that projvm 6= projvc
0 6= projvc. The points c

and c0 are both points of Ta;b and lie at distance i from each other.

Now let Æ(a; b) = k > i and suppose by way of contradiction that c; c0 2 Ta;b
with Æ(c; c0) = i. If projac 6= projac

0, then we have a path of length 2i between
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c and c0 containing a. This implies that Æ(c; c0) � 2n�2i > i, a contradiction.

Suppose now that projac = projac
0. De�ne v as [a; c] \ [a; c0] = [a; v]. If we

put Æ(a; v) = j, then there is a path of length ` = 2i� 2j � n between c and

c0, hence ` = Æ(c; c0). Now ` = i implies j = i=2, hence v = a1 c = a1 c0.

Similarly, b1 c = b1 c0 =: v0. Now there arises a circuit of length at most

2i < 2n (determined by the paths [v; c], [c; v0], [v0; c0] and [c0; v]) unless v = v0.

But this implies there arises a path between a and b of length at most i, the

�nal contradiction. Our claim is proved.

Put � = f2; : : : ; i� 2g. Then (a; b) 2 S if and only if Æ(a; b) 2 �.

We claim that two distinct points a and b are collinear if and only if Æ(a; b) 2 �

and ��(a) � ��(b) [ �i(b). Indeed, if Æ(a; b) = 2 and x is a point at distance

j 2 � from a, then Æ(b; x) 2 fj � 2; j; j + 2g � � [ fig. Now suppose

Æ(a; b) = k, 2 < k < i. Then k = i � j, 0 < j < i � 2. Consider a point

c at distance j + 2 from a such that projac 6= projab. Then Æ(a; c) 2 �, but

Æ(b; c) = i + 2 62 � [ fig. This shows the claim. Hence we can distinguish

distance 2 and so � preserves collinearity of points.

4.4.3 Case n
2
< i < n� 2

Let a and b be points of � at distance k, and m an element at distance k=2

from both a and b. Note that Ta;b is never empty. For the case i = n
2
+1, i even

and k = n, we assume that j�1(m)j � 4 (so s � 3). This can be done, since

this case was in fact already handled without assumptions on the order in the

previous paragraph1. We �rst prove the following claims. For later purposes,

we remark that these claims also hold for the case i 2 fn� 2; n� 1; ng, with

a similar proof2.

Claim 1. Every element y of Ta;b lies at distance i�k=2 fromm with projma 6=

projmy 6= projmb if and only if k < 2(n� i).

Proof. Suppose �rst that 2(n� i) � k. Consider an apartment � through a

and b containing m, and let m0 be the element of � opposite m. Then any

element y at distance i� (n� k
2
) from m0 with projm0a 6= projm0y 6= projm0b

belongs to Ta;b and projay 6= projam (hence y is not as in the claim above).

Now suppose k < 2(n � i) and let y 2 Ta;b. Let j be the length of the path

[a; b] \ [a; y]. Then there is a path of length ` = k � 2j + i between b and

1The reason we want to include this case in the proof for n

2
< i < n � 2 is that in

this way, we can characterize distance 2 by the same property for all i, n

2
< i < n � 2 if

s; t � 3. This will be useful in the proof of Application 4.4.1
2The only di�erence is that in the proof of Claim 2 for the case i = n�1, one considers

the set T 0
[ fx 2 Ta;b j Æ(x;m) = i� k=2 + 2 and proj

m
a 6= proj

m
x 6= proj

m
bg.



4.4 Proof of the Point-Line Theorem 121

y. If ` � n, then ` = i and so necessarily j = k=2. Hence y is an element as

claimed. If ` > n, then Æ(b; y) � 2n� ` > i, a contradiction. 3

Claim 2. Suppose there exists a point c at distance i from every element of

Ta;b. Then c lies at distance k=2 from m, and projma = projmc or projmb =

projmc.

Proof. Suppose c is a point at distance i from every element of Ta;b. Consider

the set

T 0 = fx 2 Ta;b j Æ(x;m) = i� k=2 and projma 6= projmx 6= projmbg:

Then we may assume that T 0 contains at least two elements y and y0 at

distance 2 from each other. Indeed, this is clear if i� k
2
> 1 or if j�1(m)j � 4.

If i = k
2
+ 1, then either i = n+1

2
(then necessarily n odd, hence s; t � 3),

or i = n
2
+ 1 (thus k = n). In the latter case, if j�1(m)j = 3, i is odd by

assumption (thus t = 2), and we can apply the dual reasoning. (This is, we

consider exactly the same arguments as given here, but with a and b lines

instead of points. Note that this is allowed since by the fact that i is odd, �

is also de�ned on the line set - see also the last paragraph of 4.4.3.)

Put w = y1y0. Then Æ(c; w) = i� 1 (noting that i 6= n� 1). Put 
 = [c; w].

We show that 
 contains m. Suppose by way of contradiction that this is

not true. De�ne the element z as [w; c] \ [w;m] = [w; z]. Put 
0 = [z; c]. An

element y00 of T 0 either lying on 
0 (if Æ(c;m) � i � k=2) or such that the

path [y00;m] contains 
0 (otherwise), clearly does not lie at distance i from

c, a contradiction. So the point c has to lie at distance k=2 from m. But if

projma 6= projmc 6= projmb, then similarly we can �nd an element of T 0 not

at distance i from c. The assertion follows. 3

Claim 3. Suppose k = 2 or k � 2(n � i). Then there does not exist a point

c, c 6= a; b at distance i from every element of Ta;b.

Proof. If k = 2, then this follows immediately from Claim 2. So suppose

k � 2(n � i). We �rst show the following property for an element v of the

path [a; projma].

(*) There exists y 2 Ta;b such that [a; y] \ [a;m] = [a; v] if and only if

Æ(a; v) � j := i� n+ k=2.

Indeed, let v be an element of the path [a; projma], put j
0 = Æ(a; v). If there

is an element y 2 Ta;b such that [a; y] \ [a;m] = [a; v], then there arises a

circuit of length at most k + 2i � 2j0, so necessarily, j0 � j. Suppose now

j0 � j. Let � be an apartment through v and b containing m, but not the
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element projva, and let m0 be the element of � at distance n + j0 � k=2

from b for which projbm
0 6= projbm. Let �nally y be an element at distance

i� (n+ j0 � k=2) from m0 such that projm0b 6= projm0y 6= projm0v. Then y is

as in (*).

Now suppose c is a point at distance i from every element of Ta;b. We may

assume that, if Æ(m; c) 6= n, then projma = projmc. If Æ(a; c) 6= n, then

we de�ne the element z as [m; c] \ [m; a] = [m; z]; otherwise we de�ne z

as [projma; c] \ [projma; a] = [projma; z]. Note that by Claim 2, Æ(c; z) =

Æ(a; z) =: `.

Suppose �rst ` > j, and consider an element y of Ta;b such that [a; y]\[a;m] =

[a; v], with Æ(a; v) = j. Then we obtain a path of length d = i+2l�2j between

y and c. Clearly, d 6= i. But if d > n, Æ(y; c) = i implies there arises a circuit

of length at most 2(i+ l� j) < 2n, a contradiction. Similarly, if ` � j, then

an element y 2 Ta;b such that projzc 2 [a; y], does not lie at distance i from

c, the �nal contradiction. 3

Now let S be the set of pairs of points (a; b) for which there exists a point

c, a 6= c 6= b, such that Ta;b � �i(c). Then a pair (a; b) with Æ(a; b) = k

belongs to S if and only if 2 < k < 2(n� i) (note that there are always even

numbers k satisfying these inequalities because i < n�2). Indeed, if k = 2 or

k � 2(n� i), this is Claim 3. If 2 < k < 2(n� i) then by Claim 1 it suÆces to

consider a point c at distance k=2 from m with projmc 2 fprojma; projmbg.

De�ne S 0 = f(a; c) j 9b 2 P such that Ta;b � �i(c)g. Suppose (a; c) 2 S 0, and

b is such that Ta;b � �i(c). Then (a; b) 2 S and by Claim 2, Æ(a; c) � Æ(a; b).

Hence S 0 is exactly the set of pairs of points at distance < 2(n� i) from each

other. Now clearly S 0 n S is precisely the set of all pairs of collinear points.

So we found a property characterizing distance 2 between points, which is

independent of the order of � except for the case i = n
2
+ 1 and i odd.

Consider this case. There, if t � 3, there was no problem, but if t = 2,

the property we found was exactly the dual of the original one, and hence is

valid for all orders of � except for s = 2. Now we still have to distinguish

the cases s = 2 and t = 2 (indeed, it might be possible that the order of � is

(2; t), while the order of �0 is (s0; 2)). This is done as follows. De�ne the set

S 0 as above. If s = 2, t > 2, hence S 0 is exactly the set of pairs of collinear

points. If t = 2, it is easy to see that all the pairs of collinear points are

included in S 0. Now consider the set S 00 of pairs (a; b) of S 0 for which there

exist at least two points x; x0 such that (a; x), (b; x), (a; x0) and (b; x0) belong

to S 0. If s = 2, then S 00 is empty. If t = 2, then s � 3, hence S 00 is nonempty

(considering points a; b; x; x0 on the same line). This distinguishes the cases

s = 2 and t = 2. The theorem is now proved for this case.
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4.4.4 Case i = n� 2

Case n = 6

Let C be the set of pairs of points (a; b), Æ(a; b) 6= 4, such that for every

point y in Ta;b, there exists a point y0 in Ta;b, y
0 6= y and Æ(y; y0) 6= 4, with

the property that �4(y)\Ta;b = �4(y
0)\Ta;b (**). We show that C is the set

of pairs of collinear points.

If a and b are collinear points, a point y of Ta;b lies at distance 3 from ab

and b 6= projaby := x 6= a. Then any point y0 on yx, y0 6= x; y satis�es

�4(y) \ Ta;b = �4(y
0) \ Ta;b, hence (a; b) 2 C.

Suppose now that (a; b) 2 C with Æ(a; b) = 6. We look for a contradiction.

Put M = �3(a) \ �3(b). If x is a point of Ta;b, then either x lies on a line

of M, or x is a point at distance 3 from a line A through a and from a line

B through b, with A opposite B. Let y be a point of Ta;b on a line M of

M, and y0 a point such that (**) is satis�ed. Clearly, y0 cannot be incident

with an element of M. Let A = projay
0 and B = projby

0. If A 6= projay and

B 6= projby, then the point projMy
0 lies at distance 4 from y0 but not from y,

a contradiction. Suppose A = projay. Let M
0 be the line of M concurrent

with B. Then the point projM 0y lies at distance 4 from y but is opposite y0,

a contradiction. Hence (a; b) 62 C.

So we distinguished distance 2 and the theorem follows.

Case n 6= 6

Step 1: the set Sa;b

For two points a and b, we de�ne

Sa;b = fx 2 P j�n�2(x) \ Ta;b = ;g:

Note that by symmetry, x 2 Sa;b implies a 2 Sb;x and b 2 Sa;x. We claim the

following:

(i) If Æ(a; b) = 2 and s � 3, then Sa;b = (�2(a) [ �2(b)) n �1(ab). If

Æ(a; b) = 2 and s = 2, then Sa;b = (�2(a) [ �2(b)) n fa; bg.

(ii) If Æ(a; b) = 4, then fa1bg � Sa;b � fa1bg [ [�2(a1b)\�4(a)\�4(b)].

If t � 3, then Sa;b = fa1bg.
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(iii) If k := Æ(a; b) 62 f2; 4; ng, then every x 2 Sa;b lies at distance k=2 from

a 1 b =: m with projma 6= projmx 6= projmb. If moreover s > 2 and

k � 2 mod 4, or t > 2 and k � 0 mod 4, then Sa;b = ;.

(iv) If Æ(a; b) = n, then let 
 be an arbitrary path of length n joining a and

b, let m be the middle element of 
 and put va = projma, vb = projmb.

Then

Sa;b � (�n=2(m) \ �n=2+1(va) \ �n=2+1(vb))[
(�n=2+1(va) \ �n=2+2(m) \ �n(a))[
(�n=2+1(vb) \ �n=2+2(m) \ �n(b)):

If moreover s > 2 and n � 2 mod 4, or t > 2 and n � 0 mod 4, then

Sa;b � (�n=2+1(va) \ �n=2+2(m) \ �n(a))[
(�n=2+1(vb) \ �n=2+2(m) \ �n(b)):

We prove these claims.

(i) Suppose Æ(a; b) = 2. Since any point y of Ta;b lies at distance n�3 from

the line ab, with projaby 62 fa; bg, it follows that every point collinear

with a or b, not on the line ab, belongs to Sa;b. Also, if s = 2, then

the unique point of ab di�erent from a and b is an element of Sa;b.

Let x be an arbitrary point in Sa;b. Put j = Æ(x; a). If j = s =

2, then there is nothing to prove, so we may assume (j; s) 6= (2; 2).

Suppose �rst there exists a j-path 
 between a and x containing ab,

but not the point b. Let v be the element on 
 at distance j=2 from

a, and consider an element y at distance n� 2� j=2 from v such that

projvy 62 fprojva; projvb; projvxg. Note that such an element v exists

because (j; s) 6= (2; 2). Then y lies at distance n� 2 from a, b and x, a

contradiction. So we can assume that projabx = a. If j = 2, then again,

there is nothing to prove. So we may assume 2 < j < n (the case j = n

is contained in the previous case, or can be obtained from the present

case by interchanging the roles of a and b). Let v be an element at

distance n�j�1 from the line ab such that a 6= projabv 6= b. Note that

v and x are opposite and Æ(a; v) = n�j. Consider an element v0 incident

with v, di�erent from projva, and let v00 be the projection of x onto v0.

Let w be the element of [x; v00] at distance j=2�2 from v00. An element

y at distance j=2� 2 from w such that projwx 6= projwy 6= projwv
00 lies

at distance n� 2 from a, b and x, a contradiction. Claim (i) is proved.
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(ii� iv) We proceed by induction on the distance k between a and b, the case

k = 2 being Claim (i) above. Suppose Æ(a; b) = k > 2 and let m be an

element at distance k=2 from both a and b. Note that, if Æ(a; b) = 4, the

point a1 b indeed belongs to Sa;b (indeed, in this case, every element

of Ta;b either lies at distance n� 4 from a1b or lies opposite a1b in an

apartment containing a; b). Suppose x is an arbitrary element of Sa;b
and put ` = Æ(x;m).

Suppose �rst that, if ` 6= n, projma 6= projmx 6= projmb. Then we have

the following possibilities:

1. Suppose ` < k=2. Then Æ(a; x) < k and we apply the induction

hypothesis on Sa;x. Since b 2 Sa;x 6= ;, Æ(a; x) < n and m 6= a1x,

we have Æ(a; x) 2 f2; 4g. Hence either Æ(a; b) = 4 and x = a1 b

(which is a possibility mentioned in (ii)), or Æ(a; b) = 6 and x lies

on m, or Æ(a; b) = 8 and x = m. But in these last two cases,

the \position" of b contradicts the induction hypothesis applied

on Sa;x.

2. Suppose ` � k=2. Let 
00 be an `-path betweenm and x containing

neither projma nor projmb. Put 
0 = [a;m] [ 
00. Let w be the

element on 
0 at distance (` + k=2)=2 from both x and a. Note

that w belongs to the path 
00. If ` = k=2 (and hence w = m)

and either k � 2 mod 4 and s = 2, or k � 0 mod 4 and t = 2,

then there is nothing to prove. Otherwise, there exists an element

y of � at distance n� 2� (k=2+ `)=2 from w such that projwa 6=

projwy 6= projwx and projwb 6= projwy. Now y lies at distance

n� 2 from a, b and x, a contradiction.

Suppose now x is a point of Sa;b at distance ` from m, 0 < ` < n,

for which projmx = projma. Let [a;m] \ [x;m] = [v;m], and put

i0 = Æ(v; a). (Note that ` and k=2 have the same parity.) We have the

following possibilities:

1. Suppose ` = k=2+2 and i0 < k=2�1 or ` � k=2. Again Æ(a; x) < k

and applying the induction hypothesis on Sa;x, we obtain a con-

tradiction as in Case 1 above.

2. Suppose n > ` > k=2 + 2. Let z be an element at distance

n� ` from m with projma 6= projmx 6= projmb, and Z an element

incident with z and di�erent from projzm. Put h = projZx. Then

Æ(h; x) = n�2 and Æ(m;h) = n�`+2. Let j = n�2�Æ(h;m)�k=2.

Let h0 be the element on the (n � 2)-path between x and h at

distance j=2 from h. An element y at distance j=2 from h0 such
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that projh0x 6= projh0y 6= projh0h lies at distance n � 2 from a, b

and x, a contradiction.

3. Suppose ` = k=2 + 2, i0 = k=2� 1 and k < n� 1. Then Æ(b; x) =

k + 2 and v lies at distance k=2 + 1 from both b and x. Let � be

an apartment containing x, b and v, and let v0 be the element in

� opposite v. Let w = projva, w
0 = projv0w (note that Æ(w; v0) =

n�1 and w0 6= projv0x; projv0b) and d the length of the path [w; a]\

[w;w0]. Note that d � k=2 � 2. For an element y not opposite

w0, let w00
y be the element such that [w;w0] \ [y; w0] = [w00

y ; w
0].

Consider now an element y such that Æ(w00
y ; w

0) = k=2� d� 2 and

Æ(w00
y ; y) = d. Then y lies at distance n � 2 from a, b and x, a

contradiction.

4. If ` = k=2 + 2, i0 = n=2� 1 and k = n, there is nothing to prove.

5. Suppose �nally ` = k=2 + 2, i0 = k=2 � 1 and k = n � 1.

Then Æ(b; x) = n � 1. Let b0 and x0 be the elements of the path

[b; x] at distance (n � 1)=2 � 1 from b and x, respectively. Since

a 2 Sb;x, either Æ(a; b
0) = (n + 1)=2 or Æ(a; x0) = (n + 1)=2 (this

is what we proved up to now for the \position" of a point of

Sb;x). But since we obtain a path between a and b0 (x0) of length

d = (3n � 5)=2 (passing through projma), the triangle inequality

implies Æ(a; b0); Æ(a; x0) � 2n� d > (n+ 1)=2, a contradiction.

This completes the proof of our claims.

Step 2: the sets O and O.

For a point c 2 Sa;b, we de�ne the set

Ca;b;c = fc0 2 Sa;bjSc;c0 \ fa; bg 6= ;g:

Now let O be the set of pairs of points (a; b), Æ(a; b) 6= n � 2 for which

jSa;bj > 1 and jCa;b;cj > 1, 8c 2 Sa;b. We claim that O contains only pairs of

collinear points and pairs of opposite points, and all pairs of collinear points

are included in O.

Suppose �rst s � 3 and t � 3. Then by Step 1, only pairs of collinear points

and pairs of opposite points can satisfy jSa;bj > 1. If a and b are collinear

points then, for a point c 2 Sa;b \ �2(a), every point y collinear with a not

on the lines ab or ac belongs to Ca;b;c (since a 2 Sc;y), hence the claim. Note

that if n is odd, there are no pairs of opposite points. So in this case, O is

the set of pairs of collinear points, which proves the theorem for the case n

odd.
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Let now s = 2 or t = 2 (so n is even).

Suppose �rst Æ(a; b) = 2 and let c be a point of Sa;b. If c is collinear with a,

then any point y0 collinear with a not on the lines ac or ab belongs to Ca;b;c

(since a 2 Sc;y0), hence (a; b) 2 O.

Suppose Æ(a; b) = 4. If (a; b) 2 O, then (because of the condition jSa;bj > 1

and (ii) in Step 1) necessarily t = 2. But for a point c 2 Sa;b di�erent from

a1b, we obtain Ca;b;c = fa1bg, a contradiction.

Suppose �nally Æ(a; b) = k, 4 < k < n�2 and suppose by way of contradiction

that (a; b) belongs to O. Putm = a1b and let x be a �xed point of Sa;b. Note

that by (iii) in Step 1, j�1(m)j = 3. Let x0 be an element of Sa;b di�erent from

x. Because j�1(m)j = 3, we have projmx = projmx
0, so Æ(x; x0) � k � 2 < n.

But now Æ(a; x1x0) = Æ(b; x1x0) � k=2 + 1 > Æ(x; x0)=2, so neither a nor b

belongs to Sx;x0 , the �nal contradiction. Hence the claim.

Let O be the set of pairs of points (a; b) satisfying Æ(a; b) 6= n� 2, (a; b) 62 O

and such that there exists a point c 2 Sa;b for which (a; c) and (b; c) both

belong to O. Then by considering the results of Step 1, one easily obtains

that O contains only pairs (a; b) of points at mutual distance 4 or n, and that

all distance-4-pairs are contained in O (indeed, consider the point c = a1b).

Step 3: the set of pairs of collinear points

Case n = 8 and s = 2

Note that t � 4. For a point c 2 Sa;b, we de�ne the set

Rc := fx 2 Sa;bjx 6= c and a 2 Sx;cg:

Let O0 be the subset of O of pairs of points (a; b) for which there exists a

point c 2 Sa;b with the following property:

(�) every point r for which Rc � �6(r) satis�es (r; a) 2 O.

We claim that O0 is exactly the set of pairs of collinear points. Let �rst

(a; b) 2 O with Æ(a; b) = 2. Let c be a point collinear with a not on the line

ab. Now one easily checks that Rc contains the set of points collinear with a

not on the lines ab or ac. Hence clearly, a point r lying at distance 6 from all

the points of Rc lies at distance 4 from a, so (a; r) 2 O. Let now (a; b) 2 O

with Æ(a; b) = 8, m a point at distance 4 from both a and b, a0 = projma

and b0 = projmb. Then a point c of Sa;b lies at distance 6 from m, 5 from a0

and 8 from a, or at distance 6 from m, 5 from b0 and 8 from b. Suppose �rst

Æ(a0; c) = 5. Suppose c0 is a point of Rc. If Æ(c
0; a0) = 5 then, since s = 2, the
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projections of c and c0 onto a0 coincide. From this, it is easily seen (using the

results of Step 1) that a 62 Sc;c0 . Hence all points of Rc lie at distance 5 from

b0. But now the point y := projb0b lies at distance 6 from all points of Rc

and from a, hence (a; y) 62 O and property (�) is not satis�ed for the point c.

Suppose now Æ(b0; c) = 5. Then as above, one easily sees that a point of Rc

lies at distance 5 from a0. The point y0 := proja0a lies at distance 6 from all

points of Rc, but is collinaer with a, hence (y
0; a) 62 O and property (�) is not

satis�ed for the point c. This shows that (a; b) 62 O0, hence the claim. Next

we distinguish this case from the case s > 2. For s > 2, one can also consider

the set O0 de�ned as above. It is easy to see that all pairs of collinear points

are included in O0. Now let O00 be the subset of O0 consisting of these pairs

(a; b) for which there exist at least two points x; x0 di�erent from a and b such

that (a; x), (a; x0), (b; x) and (b; x0) belong to O0. If s = 2, O00 is empty (since

x and x0 should be two di�erent points collinear with the collinear points a

and b), but if s 6= 2, every pair of collinear points is included in O00. This

distinguishes the cases s = 2 and s > 2. Hence from now on, we can assume

that, if n = 8, then s > 2.

The general case

Let (a; b) be a pair of points of O, and c; c0 points of �. Consider the following

conditions:

(T1) Ta;b � �n�2(c) [ �n�2(c
0)

(T2) (c; y); (c0; y) 62 O, 8y 2 Ta;b,

if n � 12, (c; y); (c0; y) 62 O, 8y 2 Ta;b

(T3) (x; y) 2 O, for any two distinct points x; y 2 fa; b; c; c0g

(T30) (x; y) 2 O, for any two distinct points x; y 2 fa; c; c0g or x; y 2 fb; c; c0g

(T4) Tc;c0 � �n�2(a) [ �n�2(b)

(T5) 9!x1 2 Sa;b : 8x
0 2 Sa;b; jSx1;x0 \ fa; bgj = 1,

(x1; v) 2 O for any point v 2 fa; b; c; c0g,

(x1; y) 62 O, 8y 2 Ta;b,

x1 = Sa;c \ Sa;c0 \ Sb;c \ Sb;c0 \ Sc;c0 .

Let T be the set of conditions T1, T2, T3 and T4. Let T 0 be the set of

conditions T1, T2, T3, T30 and T5.

Claim 1. Let Æ(a; b) = 2. If s � 3, there exist points c; c0 such that conditions

T are satis�ed, but there do not exist points c; c0 for which conditions T 0 hold.

If s = 2 and n > 8, there exist points c; c0 such that conditions T 0 hold.



4.4 Proof of the Point-Line Theorem 129

Proof. Suppose �rst s � 3. Choose c and c0 on the line ab, di�erent from

a and b. Then it is easy to see that the conditions T hold (note that (T2)

is satis�ed because n 6= 6). Clearly, there does not exist a point y in Sa;b
for which both (a; y) and (b; y) belong to O, hence (T5) cannot be satis�ed.

Suppose now s = 2. Let x1 be the unique point on ab, di�erent from a and

b, and c and c0 points on two di�erent lines (di�erent from ab) through the

point x1. Then it is easy to see that the conditions T 0 hold (the condition

(c; y) 62 O, 8y 2 Ta;b does not hold if n = 8, which is the reason we treated

the octagons separately). 3

Claim 2. Let Æ(a; b) = n. If s � 3, there do not exist points c; c0 such that

conditions T are satis�ed, and if moreover n > 8, there do not exist points

c; c0 such that conditions T 0 hold. If s = 2 and n > 8, there do not exist

points c; c0 such that conditions T 0 are satis�ed.

Proof. Suppose by way of contradiction a; b; c and c0 are such that s � 3 and

conditions T hold or n > 8 and conditions T 0 hold. Letm 2 �n=2(a)\�n=2(b),

a0 = projma and b0 = projmb. For an element x at distance j from m,

0 � j � n=2� 3, such that a0 6= projmx 6= b0, de�ne the following set:

Tx = fy 2 Ta;bjÆ(x; y) = n=2� 2� j; projxa 6= projxy 6= projxbg:

Note that Tx is the subset of Ta;b of elements y for which the path [a; y]

contains x. We �rst prove that for any set Tx,

(3) there does not exist a point v 2 fc; c0g such that Tx � �n�2(v).

PutM = �n=2(a)\�n=2(b). Suppose Tm � �n�2(v), for a point v 2 fc; c
0g. It

is easy to see that Æ(v;m) = n=2 and projma = projmv or projmb = projmv.

Without loss of generality, we assume projma = projmv, hence Æ(a; v) �

n � 2. Suppose �rst s � 3 and conditions T hold. But then by condition

(T3), Æ(a; v) � n � 2 implies Æ(a; v) = 2 and v is a point at distance n=2

from m lying on the line L = projam. This implies that for an arbitrary

element m0 of M, m0 6= m, Tm0 \ �n�2(v) = ; (note that Tm \ Tm0 = ;),

so Tm0 � �n�2(v
0), with fv; v0g = fc; c0g. We obtain a contradiction by

considering a third element of M. Suppose now conditions T 0 hold. Note

that n > 8 by assumption. In this case, Æ(a; v) � n � 2 implies Æ(a; v) = 4

(see Condition (T30)). Then since x1 2 Sa;v, x1 is either the point a1 v or

lies on the projection of b onto a1v (and the latter can only occur if t = 2).

In any of these cases, Æ(x1; b) 62 f2; ng, contradicting condition (T5). This

shows (3) for the case j = 0.

Let x be an element at distance j = 1 fromm such that projma 6= x 6= projmb.

Suppose Tx � �n�2(v), with v 2 fc; c0g. Then again it is easy to show that
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Æ(v; x) = Æ(x; a) = n=2 + 1 and projxv = projxa = m. If projma = projmv

or projmb = projmv, then we are back in the previous case, which led to a

contradiction, so suppose projma 6= projmv 6= projmb. Consider the n-path

between a and v that contains m. Then we can �nd a point y of Ta;b on

this path that is collinear with v, in contradiction with condition (T2). This

shows (3) for the case j = 1. Note that thus no element of fc; c0g lies at

distance n=2 from m.

We now proceed the proof of (3) by induction on the distance j between

x and m. Let j > 1. Consider an element x at distance j from m such

that projma 6= projmx 6= projmb. Suppose by way of contradiction that

Tx � �n�2(v), with v 2 fc; c0g. Let x0 = projxm. Then it is again easy

to show that Æ(v; x) = Æ(a; x) = n=2 + j and projxv = x0. Remark that

projx0a 6= projx0v, since otherwise Tx0 � �n�2(v) (since Æ(v; x
0) = n=2+ j � 1

and Æ(x0; w) = n=2�j�1, with w 2 Tx0), in contradiction with the induction

hypothesis. Suppose �rst that if j = 2 we do not have the case t = 2 and

n � 0 mod 4 or s = 2 and n � 2 mod 4. Consider now an element z incident

with the element w = projx0a, but di�erent from projwa, from projwb and

from x0 (such an element exists, because of the restrictions above). But then

we have Æ(v; w0) = n, for every element w0 of Tz, so Tz � �n�2(v
0), with

fc; c0g = fv; v0g, a contradiction with the induction hypothesis.

Let j = 2, t = 2 and n � 0 mod 4 (note that n � 12 since j � n
2
� 3). Let

L = mx and let 
0 be the path of length n + 2 between a and v consisting

of the paths [a; L] and [L; v]. Then the element of 
0 at distance 4 from v is

contained in Ta;b, contradicting (T2).

Let j = 2, s = 2 and n � 2 mod 4. Note that m and x are lines, and we

assumed conditions T 0. The arguments given above for t = 2 and n � 0 mod 4

also work for this case, except when n = 10. We give a general argument. Put

a0 = projma and b0 = projmb. By Claim (iv) of Step 1, there are essentially

two possibilities for x1. First, suppose the point x1 lies at distance n=2 + 2

from m and at distance n=2 + 1 from a0. Then there arises an n-path 
0

between a and x1 sharing the path [a; a0] with 
. Let a00 be the projection

of x1 onto a0. Since a00 is a line at distance n=2 from both a and x1, and

v 2 Sx1;a (by Condition (T5)), either the distance between v and a00 is n=2

(which is not true), or the distance between v and a00 is n=2 + 2, which is

again impossible. Secondly, x1 cannot lie at distance n=2 from m, since this

would contradict condition (T5) (x1 would be collinear with a point of Ta;b).

This completes the proof of (3).

Suppose s � 3.

Consider now a line L at distance j = n=2� 3 from m, such that projma 6=
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projmL 6= projmb. The points on L di�erent from the projection of m onto L

are points of TL. By (3), we know that TL 6� �n�2(v), for v 2 fc; c
0g. Since

s � 3, TL contains at least 3 points, so we may suppose that at least two

points of them are contained in �n�2(v), with v 2 fc; c0g. This implies that

v is at distance n� 3 from L, so at distance n� 4 from a unique point x of

L. If x = projLa, then TL � �n�2(v), a contradiction, so we can assume that

x 6= projLa. Let �rst n 6= 8 or t � 3. Then consider a line L0 incident with

projLa, L
0 6= L, at distance n�3 from both a and b (such a line always exists

because of our assumptions). Now TL0 \ �n�2(v) = ; (because all points of

TL0 lie opposite v), so TL0 is contained in �n�2(v
0), with fv; v0g = fc; c0g,

contradicting (3).

Let now n = 8 and t = 2 (hence we assume conditions T hold). Then

Æ(v0; x) = 6, with fv; v0g = fc; c0g, TL 6� �6(v
0) and Æ(v; v0) 2 f2; 8g. Now for

each potential v0, it is possible to construct a point of Tv;v0 not at distance

n� 2 from a nor from b, a contradiction with condition (T4). For example,

let us do the case Æ(v; v0) = 2 in detail. Since v does not lie at distance 6

from a or b, we obtain Æ(v; a) = Æ(v; b) = 8, hence Æ(a; vv0) = Æ(b; vv0) = 7,

v0 6= projvv0a 6= v and v0 6= projvv0b 6= v. Also projvv0a 6= projvv0b, since

otherwise we would obtain a point of Ta;b not at distance 6 from v nor from

v0. Now let N be the line at distance 3 from b and at distance 4 from vv0.

Then the points of N di�erent from projNv are points of Tv;v0 n �6(b), but

not all these points lie at distance 6 from a, a contradiction.

This ends the proof of Claim 2 for the case s � 3.

Suppose s = 2.

Note that we assume n > 8 and conditions T 0 hold. We keep the same

notation as in the previous paragraph. Now the only possibility (to rule out)

that we have not considered yet (because it does not occur in the previous

case) is the case that c and c0 both lie at distance n� 2 from di�erent points

u and u0 on L, Æ(c; L) = Æ(c0; L) = n � 1 and u and u0 di�erent from the

projection w of a onto L.

Suppose n > 10 (otherwise some of the notations introduced below don't

make sense). Put L0 = projwa and l0 = projL0a. Suppose �rst the unique

point z on L0 at distance n � 2 from c is not l0. Then consider a line K

through z, di�erent from L0 and from projzc. Because c is at distance n from

all the points of K di�erent from z (which are elements of Ta;b) we conclude

that TK � �n�2(c
0), a contradiction to (3). So [c; L0] contains l0. De�ne

the element p as [l0;m] \ [l0; c] = [l0; p]. Suppose p 6= m and let j = Æ(l0; p).

Consider the element z0 on [c; p] at distance j + 3 from p. Note that z0 is a

line at distance n�3 from both a and b. Since c is not at distance n�2 from
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any of the points of Tz0 , we conclude that Tz0 � �n�2(c
0), a contradiction

to (3). If p = m, but a0 6= projmc 6= b0, we obtain a similar contradiction

considering the line z0 at distance n=2 � 3 from m on the path [c;m] (note

that this path does not contain a0 or b0). So the path [c; l0] contains a0 or b0

(hence Æ(c;m) = n=2 + 4). Suppose without loss of generality [c; l0] contains

a0. Consider now the element q de�ned by [m; c] \ [m; a] = [m; q]. Then we

�rst show that q coincides either with a0 (Case 2 below), or with the element

a00 = proja0a (Case 1 below). Indeed, if not, then Æ(a; c) < n, which implies

that Æ(a; c) = 4 (by Condition (T30)) and x1 = a 1 c. Since (b; x1) 2 O,

Æ(b; x1) is then equal to n. Now it is easy to see that there exists an element

of Ta;b for which the projection onto ax1 is di�erent from a and from x1, a

contradiction (such an element would be at distance n � 2 from x1, which

would imply that x1 62 Sa;b). One checks that in the case n = 10, we end up

with the same possibilities.

Case 1 Consider the element m0 2 [a00; c] that is at distance 2 from a00. By

Step 1, a point of Sa;c lies at distance n=2 or n=2+2 from m0. Because

of the conditions, x1 2 Sa;c. We now check the di�erent positions of x1
(using x1 2 Sa;b and Step 1). If x1 lies at distance n=2+1 from a0, then

Æ(x1;m
0) = n=2+4, a contradiction. If x1 lies at distance n=2+1 from

b0, there arises a path of length n=2 + 6 between x1 and m0, which is

again a contradiction, since n > 8. Note that x1 cannot lie at distance

n=2 from m because (x1; y) 62 O for y 2 Ta;b.

Case 2 Suppose �rst x1 lies at distance n=2 + 1 from b0. Note that as in

Case 1, Æ(x1;m) 6= n=2. Let b0 be the projection of x1 onto b
0. Then a

point of Sx1;b lies at distance n=2 or n=2 + 2 from b0. Because of the

conditions, c 2 Sx1;b. But we have a path of length n=2 + 6 between

c and b0 (containing [c; a0]), a contradiction since n 6= 8. So we know

that x1 lies at distance n=2 + 1 from a0. Let a0 = proja0x1. Suppose

the projections of c and x1 onto a
0 are not equal (which only occurs if

n � 2 mod 4, since s = 2). Since c 2 Sx1;a, the distance between c and

a0 is either n=2 or n=2+ 2, a contradiction (Æ(c; a0) = n=2+ 4). So the

projection of c onto a0 is the element a0. Suppose proja0c 6= proja0x1.

Since the distance between c and a0 is n=2+2, and c 2 Sa;x1 , the point

c has to lie at distance n=2 + 1 from either a0 or proja0x1, which is not

true. So proja0c = proja0x1 := h. Note that the projections of c and x1
onto h are certainly di�erent, since we know that the distance between

c and x1 is either n or 2, and the last choice would contradict the fact

that a 2 Sx1;c. Now consider the projection m0 of c onto h. This is an
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element at distance n=2 from both c and x1. Now Æ(b;m0) = n=2 + 4,

which contradicts the fact that b 2 Sc;x1 .

This ends the case s = 2 and the proof of Claim 2. 3

By Claims 1 and 2 above, no pairs (a; b) 2 O satisfy conditions T 0 if n > 8

and s > 2, while if n > 8 and s = 2, all pairs of collinear points belong to

O and satisfy conditions T 0. This distinguishes the cases s = 2 and s > 2.

If s = 2, let O0 be the subset of O of pairs (a; b) for which there exist points

c and c0 such that conditions T 0 hold. If s � 3, let O0 be the subset of O

of pairs (a; b) for which there exist points c and c0 such that conditions T

hold. Now it is clear that O0 is the set of pairs of collinear points. Hence �

preserves collinearity.

4.4.5 Case i = n� 1

We can obviously assume n � 6. If n = 6 and s = t = 2, then an easy

counting argument yields the result, so we exclude this case in the following.

Step 1: the set Oa;b

For two points a and b with Æ(a; b) 6= n � 1, let Oa;b be the set of pairs of

points fc; c0g, c and c0 di�erent from a and from b, for which

Tv;v0 � �n�1(w) [ �n�1(w
0);

whenever fa; b; c; c0g = fv; v0; w; w0g. For a pair fc; c0g 2 Oa;b, we claim the

following:

(i) If Æ(a; b) = 2, then either c and c0 are di�erent points on the line ab

(distinct from a and b), or, without loss of generality, c is a point on ab

and c0 2 �3(ab) with projabc
0 62 fa; b; cg. Moreover, all the pairs fc; c0g

obtained in this way are elements of Oa;b.

(ii) If Æ(a; b) = 4, then either c and c0 are collinear points on the lines am or

bm (where m = a1b) di�erent from m, or c and c0 are points collinear

with m, at distance 4 from both a and b, and at distance 4 from each

other. Again, all the pairs fc; c0g obtained in this way, are elements of

Oa;b.

(iii) Let 4 < Æ(a; b) = k 6= n � 1 and m an element at distance k=2 from

both a and b. Then c and c0 are points at distance k=2 from m, at

distance k from both a and b, and at distance k from each other (but

such pairs fc; c0g do not necessarily belong to Oa;b).
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If Æ(a; b) = 2, then an element x of Ta;b is either opposite the line ab, or lies

at distance n� 3 from a unique point on ab, di�erent from a and from b. If

Æ(a; b) = 4, then an element x of Ta;b either lies at distance n � 1 or n � 3

from m = a 1 b with projma 6= projmx 6= projmb or lies at distance n � 3

from a point x0 on am or bm, x0 62 fa; b;mg with am 6= projx0x 6= bm. It is

now easy to see that the given possibilities for c and c0 in (i) and (ii) indeed

satisfy the claim for Æ(a; b) = 2 and Æ(a; b) = 4, respectively. Note that if

s = 2, only the second possibility of (ii) remains.

Let Æ(a; b) = k 6= n � 1 and let m be a �xed element at distance k=2 from

both a and b. Suppose fc; c0g 2 Oa;b. For an element y with Æ(m; y) = j �

n� k=2� 2 and projma 6= projmy 6= projmb, we de�ne the following set:

Ty = fx 2 Ta;b j Æ(x; y) = (n�1)�j�k=2 and projyx 6= projym if Æ(x; y) 6= ng:

For an element y with Æ(m; y) = n�k=2�1 and projma 6= projmy 6= projmb,

we de�ne Ty as the set of elements at distance 2 from y, not incident with

projym. For an element y with Æ(m; y) = n � k=2 and projma 6= projmy 6=

projmb, we de�ne Ty as the set of elements incident with y, di�erent from

projym. Note that Ty � Ta;b.

First we make the following observation. Let y be an element for which the

set Ty is de�ned, and for which Æ(m; y) � n� k=2� 2. Then there exists an

element v 2 fc; c0g such that Ty � �n�1(v) if and only if Æ(v; y) = Æ(a; y) and

projyv = projya or projyv = projyb.

Now we prove claims (i), (ii) and (iii) above by induction on the distance k

between a and b. Let k � 2. In the sequel, we include the proof for the case

k = 2 in the general case.

Suppose �rst there exists an element v 2 fc; c0g such that Tm � �n�1(v).

Then, by the previous observation, Æ(v;m) = Æ(m; a) = k=2 and we may

assume that projmv = projma. This implies that Æ(a; v) � k � 2, so we can

apply the induction hypothesis on Ta;v. Put fc; c0g = fv; v0g. If k = 2, we

obtain a = v, a contradiction. If k = 4, then v is a point on the line am, v 6=

m, and the only remaining possibility, considering the induction hypothesis

and the condition Ta;v � �n�1(b) [ �n�1(v
0) is that v0 is also a point on am,

di�erent from m. This is indeed a possibility mentioned in (ii). If k > 4, the

position of b contradicts again the fact that Ta;v � �n�1(b)[�n�1(v
0) and the

induction hypothesis. Indeed, the element at distance Æ(a; v)=2 from both

a and v belongs to the path [a; projma] and hence does not lie at distance

Æ(a; v)=2 from b. In this way, we described all the possibilities for the points

c and c0 in case there is a point v 2 fc; c0g for which Tm � �n�1(c). So from
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now on, we assume that there does not exist an element v 2 fc; c0g such that

Tm � �n�1(v).

Let l be any element incident with m, di�erent from the projection of a or

b onto m. Suppose there exists a point v 2 fc; c0g such that Tl � �n�1(v).

Then Æ(v; l) = Æ(l; a) = k=2+1 and we can assume that projlv = projla = m.

Since Tm 6� �n�1(v), we also know that projma 6= projmv =: w 6= projmb.

Put fv; v0g = fc; c0g.

Suppose �rst k = 2. Then v is a point on the line ab. We now show that

the point v0 lies at distance 2 or 4 from v such that projvv
0 = m. Indeed,

suppose projvv
0 6= m or Æ(v; v0) = n. If Æ(v; v0) 6= n, put 
0 = [v; v0]. If

Æ(v; v0) = n, let 
0 be an arbitrary n-path between v and v0 not containing

m. Let x be an element of Ta;b at distance n � 3 from v such that either x

lies on 
0, or [v; x] contains 
0. Then x is an element of Ta;b not at distance

n� 1 from v or v0, a contradiction. So we can assume that Æ(v; v0) < n and

projvv
0 = m. Suppose �rst 4 < Æ(v; v0). Let � be an arbitrary apartment

through v and v0. Then the unique element of � at distance n � 3 from v

and belonging to Ta;b, does not lie at distance n� 1 from v0, a contradiction,

so the distance between v and v0 is 2 or 4. Suppose now Æ(v; v0) = 4 and

projabv
0 = b. Then we obtain a contradiction interchanging the roles of b and

v (noting that Ta;v � �n�2(b) [ �n�2(v
0)). So v0 is a point on ab, or v0 is a

point at distance 3 from ab for which the projection onto ab is di�erent from

a, b or v, as claimed in (i).

Suppose now k 6= 2. Let w0 = projwv. Since the distance between v and any

element of Tw0 is less than or equal to n�3, we have that Tw0 � �n�1(v
0), from

which follows that Æ(v0; w0) = Æ(w0; a) = k=2+2 and projw0v0 = projw0a = w.

Since Tm 6� �n�1(v
0), we either have that v0 is a point at distance k=2 fromm

for which the projection onto m is di�erent from w and projma 6= projmv
0 6=

projmb (as required in (ii) and (iii)), or v0 is a point at distance k=2 + 2

from m for which the projection onto m is w. In the latter case, let z be the

projection of v0 onto w (then Æ(v; z) = Æ(v0; z) = k=2) and consider an element

x at distance n�1�k=2�2 from z such that projzv 6= projzx 6= projzv
0. Then

x is an element of Ta;b at distance n� 3 from both v and v0, a contradiction.

In this way, we described all the possibilities for the points c and c0 in case

there is a point v 2 fc; c0g and an element l as above for which Tl � �n�1(c).

So from now on, we assume that there does not exist an element v 2 fc; c0g

such that Tl � �n�1(v), for any l as above.

We now prove that (under the assumption just made)

(3) if y is an element for which the set Ty is de�ned, with Æ(m; y) > 1, then

there does not exist a point v 2 fc; c0g such that Ty � �n�1(v).
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This is done by induction on the distance j between y and m.

So let by way of contradiction l be an element at distance j from m, j > 1,

for which the set Tl is de�ned and such that there exists an element v 2

fc; c0g with Tl � �n�1(v). Put fv; v0g = fc; c0g. Let �rst j < n � k=2 � 1.

Then Æ(v; l) = Æ(l; a) = k=2 + j and w := projlv = projla but by the

induction hypothesis, u := projwv 6= projwa. Let w0 = projuv. Note that

the distance between w0 and an element of Tw0 is (n� 1)� k=2� (j + 1), so

an element of Tw0 lies at distance at most n � 3 from v. We conclude that

Tw0 � �n�1(v
0), from which follows that Æ(v0; w0) = Æ(a; w0) = k=2 + j + 1

or Æ(v0; w0) = n � 3 (the latter is possible only if j = n � k=2 � 2), and

projw0v0 = projw0a = u. Let projwa = u0. First suppose Æ(v0; w0) 6= n � 3.

From the assumptions, it follows that projwv
0 6= u0. Depending on whether

the projection of v0 onto w is u or not, the distance between v0 and u0 is

k=2+j+2 or k=2+j. Note that Æ(v; u0) = k=2+j. Now consider an element

x at distance (n � 1) � (k=2 + j) from u0 such that proju0x 6= w, and such

that x either lies on [u0; b], or [u0; x] contains [u0; b]. Then x is an element of

Tv;v0 not contained in �n�1(a)[�n�1(b), a contradiction. If Æ(v
0; w0) = n� 3,

then we similarly obtain a contradiction. So Ty 6� �n�1(v), for any element

y at distance j from m.

Now let j = n�k=2�1. Note that Tl consists of all elements at distance 2 from

l, not incident with l0 = projlm. Then Æ(v; l) = n�1 or Æ(v; l) = n�3, and in

both cases, projlv = projla. If Æ(v; l) = n� 1(= Æ(a; l)), we proceed as in the

previous paragraph and end up with a contradiction. So let Æ(v; l) = n� 3.

Suppose n = k = 6 and s = 2. Then l0 is the unique point on m di�erent

from projma and projmb. Since no line through l0 lies at distance 5 from

v, every line through l0 distinct from m has to lie at distance 5 from v0,

hence Æ(v0; l0) 2 f4; 6g. Now for each of the positions of v and v0, it is

easy to construct a line at distance 5 from exactly two points of fa; b; v; v0g,

contradicting the initial conditions. So we can assume (n; s) 6= (6; 2). First

suppose that projl0v 6= projl0a = w. Now consider an element w0 incident

with w, l0 6= w0 6= projwa and w0 6= projwb (such an element always exists

by the restrictions made above). Then Tw0 � �n�1(v), a contradiction since

Æ(m;w0) = j � 1. So projl0v = w. Let [u;m] = [v;m] \ [w;m] and put

u0 = projuv. Suppose �rst that projma 6= u0 6= projmb and v 6= m (v = m can

occur only if k = 4). Then Tu0 � �n�1(v
0). Indeed, if we put i = Æ(u; l), then

Æ(v; u0) = n � 4 � i and Æ(m;u0) = n � k=2� i. So the distance between u0

and an element of Tu0 is i� 1, and the distance between v and an element of

Tu0 is at most n� 3. So Tu0 is contained in �n�1(v
0), which is a contradiction

since Æ(m;u0) < j (indeed, i � 2). Suppose �nally u0 = projma or v = m.

If k = 2, we end up with a point v lying on ab (namely v = projml). But
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then, if s 6= 2, for an arbitrary point x on m, di�erent from a, b and v, we

have that Tx � �n�1(v), in contradiction with our assumptions. If s = 2,

we end up with a point v0 at distance 3 from m and collinear with a or b,

which contradicts Ta;v � �n�1(b)[�n�1(v
0). If k = 4, we end up with v = m,

but then the position of b contradicts the fact that Ta;v � �n�1(b)[ �n�1(v
0)

and the (general) induction hypothesis. Finally, if k > 4, then Æ(v; a) �

Æ(v; projma) + Æ(a; projma) = k � 4. Now the position of b contradicts again

the fact that Ta;v � �n�1(b)[�n�1(v
0) and the (general) induction hypothesis.

Let �nally j = n � k=2. Note that Tl consists of all elements incident with

l, di�erent from the projection l0 of m onto l. Then Æ(v; l0) = n � 1 or

Æ(v; l0) = n� 3. Note that, in both cases, projl0v 6= projl0a. Indeed, projl0v =

projl0a would imply that Tl0 � �n�1(v), a contradiction with our assumptions.

Suppose �rst Æ(v; l0) = n � 3. Let l00 = projl0v. Since no element incident

with l00 is at distance n�1 from v, we have Tl00 � �n�1(v
0), which implies that

Æ(v0; l0) is either n�3 or n�1 and projl0v
0 6= projl0a. Consider now the element

on [a; l0] at distance 2 from l0. This is an element of Tv;v0 which is at distance

n� 3 from both a and b, a contradiction. Suppose now Æ(v; l0) = n� 1. Let

x be the element on [v; l0] at distance 2 from l0. Since x is the only element

of Tl0 not at distance n � 1 from v, this element x lies at distance n � 1

from v0. But then Æ(v0; l0) is either n� 1 or n� 3. If projl0v
0 = projl0a, then

Tl0 � �n�1(v
0), a contradiction with our assumptions. If projl0v

0 6= projl0a,

then again the element on [a; l0] at distance 2 from l0 is an element of Tv;v0 at

distance n� 3 from both a and b, the �nal contradiction. This proves (3).

So we can now assume Ty 6� �n�1(v) for all v 2 fc; c
0g and for any appropriate

element y. Consider an element l at distance n� k=2 from m such that the

projection of l onto m is di�erent from the projections of a and b onto m.

Let u be the projection of m onto l. Since Tl 6� �n�1(c) and Tl 6� �n�1(c
0),

there is an element x incident with l, di�erent from u, at distance n � 1

from c but not from c0, and an element y incident with l, di�erent from u,

at distance n � 1 from c0 but not from c. So Æ(x; c0) = n � 3 = Æ(y; c) and

projxc
0 6= l 6= projyc. But from this follows that, for an arbitrary element l0

incident with u, l 6= l0 6= projua, we have Tl0 � �n�1(c), a contradiction. This

proves the claims (i), (ii) and (iii).

Step 2: the set Ca;b

For two points a; b, let Ca;b be the set containing a, b, and all points c for

which there exists a point c0 such that fc; c0g 2 Oa;b. Now let S be the set

of pairs of points (a; b), Æ(a; b) 6= n � 1, for which there does not exist an

element at distance n� 1 from all the points of Ca;b. We claim that, if s > 2,

S contains exactly the pairs of points (a; b) for which Æ(a; b) = 2 or Æ(a; b) = 4
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and if s = 2, S = ;.

First assume Æ(a; b) = 2. If s = 2, then clearly (a; b) 62 S, so suppose s > 2.

Let by way of contradiction w be an element at distance n � 1 from all

points of Ca;b. Since all the points of the line ab are contained in Ca;b, w

lies opposite ab. If v is an arbitrary point on ab, di�erent from a and from

b, then the element on [v; w] that is collinear with v, is contained in Ca;b,

but lies at distance n� 3 from w, a contradiction. Suppose now Æ(a; b) = 4.

If s = 2, consider an element w at distance n � 2 from the line am, with

a 6= projamw 6= m. This element lies at distance n � 1 from all points of

Ca;b;c hence (a; b) 62 S. Suppose s > 2. Let by way of contradiction w be an

element at distance n�1 from all points of Ca;b. Then w lies at distance n�1

from all the points collinear with m = a1 b, which is not possible. Finally

suppose 4 < Æ(a; b) = k 6= n � 1. Let a0 be the element on a �xed k-path

joining a and b at distance k=2 � 1 from a, and x an element at distance

(n� 1)� (k=2� 1) from w with proja0a 6= proja0w 6= proja0b. Then w lies at

distance n� 1 from all points of Ca;b. Our claim is proved.

Step 3: the set S 0 of pairs of collinear points

Suppose s > 2. Let S 0 be the subset of S containing all the pairs (a; b) with

the property that there exist points x and x0 belonging to Ca;b such that

(x; x0) 62 S. Then S 0 contains exactly the pairs of collinear points. Indeed, if

Æ(a; b) = 2, we can �nd points x and x0 in Ca;b at distance 6 from each other,

while if Æ(a; b) = 4, then Ca;b � �2(m). If s = 2, then, since both s and t

are in�nite for n odd, n is even and hence t > 2. In this case, we dualize the

arguments given above, i.e. we consider a and b lines instead of points (this

is allowed since i is odd). Now we only have to distinguish between the case

s = 2 and s > 2. By Step 2, if s = 2, the set S is empty while if s 6= 2, S

contains all pairs of collinear points.

This completes the proof of the case i = n� 1.

4.4.6 Case i = n=2

Let a and b be two elements at distance k, k even, and m an element at

distance k=2 from both a and b. Then it is easy to see that, if k 6= n,

an arbitrary element x 2 Ta;b lies at distance n=2 � k=2 from m such that

projma 6= projmc 6= projmb. Now we de�ne the set Sa;b as the set of elements

c, a 6= c 6= b, for which Ta;b � �n=2(c).

Suppose �rst i is odd, and s > 2. Let S be the following set:

S = f(a; b) 2 P2
[ L

2 : jSa;bj � 2 and 9c; d 2 Sa;b : Ta;b 6= Tc;dg:
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Then a pair (a; b) of points or lines belongs to S if and only if 2 < Æ(a; b) < n.

Indeed, suppose to �x the ideas that a and b are points. If 2 6= Æ(a; b) 6= n,

then consider two points c and d on the line L = projab, di�erent from a or

projLb (this is possible since s > 2). If Æ(a; b) = 2, then Sa;b = ;. Let �nally

Æ(a; b) = n. Then a point c for which Ta;b � �n=2(c) is necessarily contained

in any set �n=2(x) \ �n=2(y), with x; y 2 Ta;b. We now show that for points

c; d satisfying Ta;b � Tc;d, necessarily Ta;b = Tc;d (and hence (a; b) 62 S).

Suppose by way of contradiction c and d are such that Ta;b � Tc;d, but

R is an element belonging to Tc;d for which Æ(a;R) 6= n=2. De�ne v as

[projcR; a]\ [projcR; d] = [projcR; v] and put Æ(c; v) = j. Note that j < n=2.

De�ne w as [projav; b] \ [projav; c] = [projav; w] and put Æ(a; w) = j0. Let

R0 be the element of Ta;b on the n-path between a and b containing projav.

Suppose �rst R0 lies on the path [a; w]. Then, joining the paths [d; v] and

[v;R0], one obtains a path of length ` = 3n
2
� 2j between d and R0. Note

that Æ(d;R0) = n=2. If ` � n, this implies that ` = n=2, hence j = n=2, a

contradiction. If ` > n, there arises a circuit of length at most 2n� 2j < 2n,

again a contradiction. So R0 does not belong to the path [a; w], implying

j0 < n=2. Now similarly, one obtains a contradiction with Æ(c; R0) = n=2.

Hence Ta;b = Tc;d for this case. So we obtained that (a; b) 2 S if and only

if Æ(a; b) 2 � = f4; : : : ; n � 2g3. If n = 6, then S is the set of all pairs of

elements of � at distance 4 from each other, which ends the proof in this case

(because of Paragraph 4.4.4). So assume n � 10.

De�ne the following sets S 0 and S 00:

S 0 = f(p; L) 2 P � Lj�n=2(p) � ��(L)g;

S 00 = f(a; b) 2 P2
j9L 2 L : (a; L); (b; L) 2 S 0g:

We claim that (p; L) 2 S 0 if and only if Æ(p; L) � n=2� 4. Suppose Æ(p; L) =

k � n=2 � 4. A line X at distance n=2 from p lies at distance at most

k+n=2 � n� 4 from L. A line L0 concurrent with L lies at distance k+2; k

or k � 2 from p, hence Æ(L0; p) 6= n=2. This shows that �n=2(p) � ��(L). If

Æ(p; L) = n=2 � 2, a line L0 concurrent with L for which projLp 6= projLL
0

lies at distance n=2 from p, but Æ(L;L0) 62 �, hence (p; L) 62 S 0. If �nally

k � n=2, then one can easily �nd a line at distance n=2 from p and opposite

L. This shows the claim. Now it immediately follows that a pair (a; b) 2 S 00

if and only if Æ(a; b) � n�8. Then S 00 n (S\S 00) is the set of pairs of collinear

points, which concludes the proof.

Let now s = 2. The case n = 6 and t = 2 follows from an easy counting, so

we can assume t > 2. Then for two points a and b, Æ(a; b) = 4 if and only

3Alternatively, one can now argue as in Case 4.4.3.
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if jSa;bj = 2. Indeed, if Æ(a; b) = 4, then the points on am and bm, di�erent

from a, b or m, are exactly the elements of Sa;b. If Æ(a; b) = 2, then Sa;b = ;.

If 4 < Æ(a; b) = k < n, then any point x at distance k=2 from m for which

projma = projmx or projmb = projmx belongs to Sa;b. If �nally Æ(a; b) = n,

then the set �n=2(x) \ �n=2(y), with x; y 2 Ta;b contains only one element

di�erent from a and b (since i is odd and s = 2), hence jSa;bj � 1. So we

recovered distance 4 and by Subsections 4.4.3 and 4.4.4, the result follows in

this case.

If i is even and s 6= 2, the proof is similar to the case i odd (the only di�erence

is that for the sets S and S 0, we consider pairs of points). Let �nally i be even

and s = 2. Then one easily shows that for two points a and b, Æ(a; b) = n�2 if

and only if jTa;bj = 1, which again ends the proof (see case Subsection 4.4.4).

Now we still have to distinguish the cases s = 2 and s > 2. Let R be the set

of pairs of points (a; b) for which jSa;bj = 2 and, putting Sa;b = fx; yg, either

jSa;xj 6= 2 or jSa;yj 6= 2. Suppose for two points a and b, jSa;bj = 2. Then

either Æ(a; b) = 4, s = 2 and x; y are the unique points on the lines am and

bm di�erent from a, m and b, or (possibly) Æ(a; b) = n. In the former case,

a is collinear with x or y, hence Sa;x = ; or Sa;y = ;, implying (a; b) 2 R.

In the latter case, putting Sa;b = fx; yg, it is easy to see that Sa;b = Sa;v for

v 2 fx; yg, (since we already showed that Ta;b = Ta;v = Tx;y for v 2 fx; yg),

hence (a; b) 62 R. So if s = 2, then R 6= ;, while if s > 2, R = ;. This

distinguishes these cases and ends the proof. 2

Application 4.4.1 � Let �, �0 be a generalized n-, respectively a gener-

alized m-gon, n 6= m and n;m � 4. Let i be an even integer satisfying

1 � i � n, 1 � i � m. Furthermore, suppose that the orders of � and

�0 do not contain 2. Then there does not exist a surjective map � from

the point set of � onto the point set of �0 preserving 4 distance i.

� Let �, �0 be a generalized n-, respectively a generalized m-gon, n 6= m

and n;m � 4. Let i be an odd integer satisfying 1 � i � n, 1 � i � m.

Furthermore, suppose that the orders of � and �0 do not contain 2.

Then there does not exist a surjective map from the point set of � onto

the point set of �0, and from the line set of � onto the line set of �0

preserving distance i.

Proof. This application follows by combining parts of the proof of The-

orem 4.2.1. As before, one shows that � is bijective. If in the proof of

4`preserving' means as before that for any two points a; b of �, we have Æ(a; b) = i if

and only if Æ(a�; b�) = i
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Theorem 4.2.1 collinearity of points is characterized by the same property

for � and �0, then it follows that � would preserve distance 2. This is a

contradiction with n 6= m. Indeed, without loss of generality, we can assume

n < m. Let � be an ordinary n-gon in �. Then, if � preserves collinearity,

the points of � are mapped onto the points of a (stammering) closed path of

length at most 2n in �0, hence all these points must be sent to �01(R), for some

line R of �0. Since any two points of � are contained in an apartment, this

implies that all the points of � are mapped onto points of R, contradicting

the bijectivity of �.

So we only have to consider the cases where the characterization of dis-

tance 2 is not the same for � and �0 (and this roughly corresponds with the

subsections in the proof of Theorem 4.2.1). Therefore we start with some

observations. Let � be a generalized n-gon, n � 4, for which the order (s; t)

satis�es s; t � 3 and i an integer, 2 � i � n.

(1) There exist points a; b of � for which Ta;b = ; if and only if i < n�1
2
.

(2) There exist points a; b; c for which Ta;b � �i(c) if and only if i < n� 2.

Proof. Suppose �rst i < n � 2 and let a; b be points at distance 4. Then

each element x of Ta;b lies at distance i � 2 from w := a1 b, with projwa 6=

projwx 6= projwb. A point c on the line aw, a 6= c 6= w satis�es Ta;b � �i(c).

Suppose now i � n � 2 and let a; b be two points at distance k. Let w be

a �xed element at distance k=2 from both a and b. Since j�1(w)j � 4, we

can argue as in subsection 4.4.3, Claims 2 and 3 to obtain that a point c as

above cannot exist. 3

De�ne Sa;b = fx 2 P j�i(x) \ Ta;b = ;g:

(3) If i = n � 2, there exist points a; b for which Sa;b 6= ;, if i 2 fn � 1; ng,

Sa;b = ; for any two points a and b.

Proof. The claim for i = n � 2 was shown in Step 1 of Case 4.4.4. Suppose

now i 2 fn � 1; ng. Let a; b be points at distance k, and w an element

at distance k=2 from both a and b. Let, by way of contradiction, c be a

point of Sa;b. Suppose �rst there exists a shortest path between c and w not

containing projwa or projwb. Put j = Æ(c; w). If j = k=2, then any point x of

Ta;b at distance i�
k
2
from w for which projwx 62 fprojwa; projwb; projwcg lies

at distance i from c, a contradiction (note that x exists since both s; t � 3).

If j < k=2, let X be the element of the path [a; c] at distance j=2+ k=4 from

both a and c. Note that X belongs to the path [a; w]. Now for an arbitrary

element x at distance i�(j=2+k=4) from X with projXa 6= projXx 6= projXc

(note that such a point x belongs to Ta;c) there arises a path of length ` =

k + i � 2(j=2 + k=4) between b and x (consisting of the paths [b;X] and
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[X; x]). Since ` � n � 1, we can choose the element x to lie at distance i

from b, a contradiction with c 2 Sa;b. If j > k=2, let X be the element of

the path [c; w] at distance j=2 + k=4 from c. Since j=2 + k=4 � n � 1, it

is possible to �nd a point x at distance i � (j=2 + k=4) from X for which

projXa 6= projXx 6= projXc. Such a point x lies at distance i from a; b

and c, a contradiction. So we can assume that a shortest path between w

and c contains projwa. De�ne the element v as [w; a] \ [w; c] = [w; v]. Let

j = Æ(v; c) and ` = Æ(v; a). Let 
0 be the path between a and c obtained

by joining [a; v] and [v; c], and X the element of 
0 at distance `+j

2
from

both a and c. Let x be an element at distance i � `+j

2
from X such that

projXx 62 fprojXa; projXb; projXcg (note that such a point x belongs to Ta;c).

There arises a path of length � n�1 between b and x (consisting of the paths

[b;X] and [X; x]). Hence we can choose the point x to lie at distance i from

b, the �nal contradiction. 3

(4) If i = n = m� 1, then � cannot exist.

Proof. Suppose i = n = m � 1. Let for two points a; b of � or �0, Oa;b be

the set of pairs of points fc; c0g, c and c0 di�erent from a and b, for which

Tv;v0 � �i(w) [ �i(w
0) whenever fa; b; c; c0g = fv; v0; w; w0g, and Ca;b the set

containing a, b and all points c for which there exists a point c0 such that

fc; c0g 2 Oa;b. Let S
� be the set of pairs of points (a; b) of � with Æ(a; b) 6= i,

for which there does not exist an element at distance i from all the points of

Ca;b. Similarly, we de�ne the set S�0 of pairs of points of �0. In the proof of

Theorem 4.2.1, Case 4.4.5, it was shown that S�0 contains exactly the pairs

of points at mutual distance 2 or 4. We claim that S� contains the set of

pairs of collinear points, and that for two collinear points a and b of �, one

has Ca;b = �1(ab) (and to prove this, similar arguments as in the proof of

Case 4.4.5 are used).

So let a and b be two collinear points of �, i = n and suppose fc; c0g 2 Oa;b.

For an element y at distance 0 � j � n � 2 from m := ab, with projmy 62

fa; bg, de�ne the set Ty = fx 2 Ta;bjÆ(x; y) = n�j�1g. It is easy to see that

there does not exist a point x distinct from a and b such that Tm � �n(x).

Let y be a point incident with m, y 6= a; b and suppose there is an element

v 2 fc; c0g for which Ty � �n(v). Then it is easy to see that v is necessarily

a point on m di�erent from a, b and y. Since such a point v is not opposite

any point of Tv, Tv � �n(v
0), with fv; v0g = fc; c0g. This implies that also

the point v0 is incident with m, and v0 is di�erent from a; b and v. Noting

that every point of Ta;b lies at distance n� 2 from a unique point of m, it is

now easy to see that such a pair fc; c0g indeed belongs to Oa;b. From now on,

we assume that no point of fv; v0g satis�es Ty � �n(v), for a point y incident

with m. We proof by induction on Æ(m; y) that no point of fv; v0g satis�es
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Ty � �n(v), for any element y for which the set Ty is de�ned.

Consider an element y for which the set Ty is de�ned, with Æ(y;m) = j >

1. Suppose there is an element v 2 fc; c0g for which Ty � �n(v). Then

Æ(y; v) = Æ(y; a) and projya = projyv = y0 but, using the induction hy-

pothesis, projy0a 6= projy0v =: y00. Note that Ty00 \ �n(v) = ;, hence

Ty00 � �n(v
0), with fv; v0g = fc; c0g. This implies that Æ(y00; v0) = Æ(y00; a)

and projy00a = projy00v
0 = y0 but projy0a 6= projy0v

0. Now let z be an element

at distance n�Æ(v; y0) (= n�Æ(v0; y0)) from y0 such that either the path [y0; z]

contains the path [y0; a], or z belongs to the path [y0; a]. Then z belongs to

Tv;v0 , but does not lie at distance n from a or b, a contradiction. So we have

now shown that Ty 6� Tv, for any element y and v 2 fc; c0g. Let L be a line at

distance n� 2 from ab such that projabL 62 fa; bg. Since neither c nor c
0 lies

opposite all the points of TL, we can assume that Æ(c; L) = Æ(c0; L) = n � 3

and the projections of c and c0 onto L are di�erent from projLab, and di�er-

ent from each other. Now the element on the path [L; ab] at distance 3 from

L belongs to Tc;c0 but is not opposite a or b, the �nal contradiction. This

shows the claim concerning S�.

Let (a; b) be a pair of points of � belonging to S� for which Æ(a; b) = 2. Then

by the above, for any two distinct points c; c0 belonging to Ca;bnfa; bg, one has

Ta;b � �n(c)[�n(c
0), hence (c; c0) 2 Oa;b. However, no two points in S

�0 have

this propery. Indeed, if (a; b) 2 S� with Æ(a; b) = 2, then consider a point

c on ab, and a point c0 collinear with c not incident with ab; if Æ(a; b) = 4,

consider a point c on the line am (with m = a 1 b) distinct from m, and

a point c0 collinear with m not on the lines am or bm. This shows that �

cannot exist. 3

Now let � and �0 be as above. Without loss of generality, we can assume

n < m. If i � n�1
2

(hence also i � m�1
2
), we can characterize distance 2

with the same property for � and �0 (because of subsection 4.4.1). The case

i � n�1
2

but i < m�1
2

would contradict (1). Indeed, for a pair (a; b) of points of

�0 for which Ta;b = ;, one would obtain, with (a0; b0) = (a�
�1

; b�
�1

), Ta0;b0 6= ;,

contradicting the fact that � preserves the cardinality of Ta;b. Hence we can

assume from now on that i � n�1
2

and i � m�1
2
.

From (2), we deduce that either n�1
2
� i < n � 2 and m�1

2
� i < m � 2 or

i � n� 2 and i � m� 2. The case i = m� 2 and i 2 fn� 1; ng contradicts

(3), so we can assume i = n = m�1 or n�1
2
� i < n�2 and m�1

2
� i < m�2.

The �rst case is exluded by (4), so consider the latter case. If i � n+1
2

and

i � m+1
2
, we can apply the result of Case 4.4.3. So the remaining cases are

i 2 fm�1
2
; m
2
g and either i � n+1

2
or i 2 fn�1

2
; n
2
g.
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� i = m�1
2

In this case jTa;bj = 1 for two points a and b of �0 at distance m � 1

from each other. If i � n+1
2

no points a0; b0 of � for which jTa0;b0 j = 1

can be found. If i = n
2
, then points a0; b0 of � for which jTa;bj = 1 only

exist if s = 2 or t = 2, contradicting the assumption on the order of �.

� i = m
2

Note that this implies i � n+1
2
. Let S� (S�0) be the set of pairs of

points (a; b) of � (�0) for which there exist two elements c; d satisfying

Ta;b � �i(c) \ �i(d) and Ta;b 6= Tc;d. We claim that (a; b) 2 S� (S�0)

if and only if 2 < Æ(a; b) < 2(n � i) (2 < Æ(a; b) < m). If a and b are

points of �0, this was shown in Case 4.4.6. If a and b belong to �, this

follows from Case 4.4.3. Now one can proceed similarly as in the proof

of Case 4.4.3 (de�ning the set S 0) to characterize distance 2 in the same

way for � and �0, from which the result.

This proves the application. 2

?4 Is the same result true if n > m and we do not require that the map �

is surjective ?

4.5 Some exceptions and applications to the

Point-Line Theorem

Counterexample for the case i = n

Let H(K ) be the split Cayley hexagon de�ned on the quadric Q(6; K ). Now

we choose an automorphism � of Q(6; K ) which does not preserve the line

set of H(K ). Such an automorphism � induces a permutation of the points

of H(K ). Because opposition and non-opposition in the hexagon corresponds

with non-collinearity and collinearity respectively on the quadric, � has the

property that Æ(x; y) = 6 if and only if Æ(x�; y�) = 6, for any two points

x; y of H(K ). But clearly, � does not preserve collinearity. Hence we have

produced a counterexample to Theorem 4.2.1 for i = n = 6.

Note that the previous class of counterexamples contains �nite hexagons

(putting K equal to any �nite �eld). We now show that, for the �nite case,

the only counterexamples must be hexagons of order (s; s). If there is enough

transitivity around, then these are the only counterexamples (see below for

a precise statement).
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Theorem 4.5.1 Let � and �0 be two �nite generalized n-gons of order (s; t)

and (s0; t0), respectively, let � be a bijection between the points of � and �0,

and �x an even number i, 2 < i � n. If for every two points x and y of �,

Æ(x; y) = i () Æ(x�; y�) = i, then either � extends to an isomorphism

between � and �0, or else we have n = i = 6 and s = t = s0 = t0.

Proof. By Theorem 4.2.1 we may assume that i = n. First consider the case

n = i = 6. We may assume s 6= t. Then clearly, also s0 6= t0. Let a; b be two

points of �. If Æ(a; b) = 2, then j�6(a) \ �6(b)j = s2t2(s � 1). If Æ(a; b) = 4,

then j�6(a) \ �6(b)j = st(t� s+ st(s� 1)). These two numbers are di�erent

since s 6= t. Hence either two points at distance 4 are always mapped onto

collinear points, or two points at distance 4 are always mapped onto points

at distance 4. In the latter case, the theorem is proved. In the former case,

we obtain by counting the number of points collinear with a �xed point in

� - and this should be equal to the number of points at distance 4 from a �xed

point in �0 - that s(t+ 1) = (t0 + 1)s0
2
t0 and similarly s0(t0 + 1) = (t+ 1)s2t.

Combining these, we obtain the contradiction sts0t0 = 1.

Next consider the case n = i = 8. We �rst prove that (s; t) = (s0; t0). Indeed,

we already have (1 + s)(1 + st)(1 + s2t2) = (1 + s0)(1 + s0t0)(1 + s0
2
t0
2
), and

also, looking at the number of points opposite a given point, s4t3 = s0
4
t0
3
.

Suppose st 6= s0t0. Putting X = st and X 0 = s0t0 in the �rst equation (thus

eliminating t and t0) and then substituting s0 = sX3=X 03 in the equation

obtained, we get, after dividing by X �X 0 the following quadratic equation

in X:

(X 03
�sX 02

�sX 0
�s)X2+(X 04+X 03

�sX 02
�sX 0)X+(X 05+X 04+X 03

�sX 02) = 0:

Note that the expression X 03 � sX 02 � sX 0 � s is always positive for X 0 =

s0t0 � 8 (this can been shown using s � t2 and hence s4 = s04t03

t3
�

s04t03

s3=2
,

implying s � s0
8=11

t0
6=11

). From this follows that the quadratic equation

above has no positive solutions. This proves st = s0t0 and hence (combined

with s4t3 = s04t0
3
) s = s0 and t = t0. Now let a; b be two points of �. If

Æ(a; b) = 2, then `2 := j�8(a) \ �8(b)j = (s � 1)s3t3. If Æ(a; b) = 4, then

`4 := j�8(a) \ �8(b)j = s2t2(st(s � 1) + t � s). These two numbers are

di�erent because s 6= t. Let `6 = j�8(a)\�8(b)j with Æ(a; b) = 6. Notice that

`6 is a constant, independent of a; b. If `6 6= `2, then clearly � must preserve

collinearity. Likewise, if `6 6= `4, then � must preserve distance 4. The result

now follows from Theorem 4.2.1. 2

Theorem 4.5.2 Let � and �0 be two generalized n-gons, n 2 f6; 8g, and

suppose that �0 has an automorphism group acting transitively on the set of
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pairs of points at mutual distance n � 2 (this is in particular satis�ed if �0

is a Moufang n-gon, or if �0 arises from a BN-pair). Suppose there exists

a bijection � from the point set of � to the point set of �0 such that, for

any pair of points a; b of �, we have that a is opposite b if and only if a� is

opposite b�. If � is not an isomorphism, then � �= �0 �= H(K ) and for any

isomorphism � : �! �0, the permutation of the points of � de�ned by ���1

arises as in the counterexample above.

Proof. Let �rst n = 6. Let x and y be two collinear points for which

x0 := x� and y0 := y� lie at distance 4 (these exist since otherwise � is an

isomorphism by Lemma 1.3.14 of [57]). We look for the image of the line

L := xy. Note that a point z, x 6= z 6= y, lies on L if and only if there is

no point of � opposite exactly one point of the set fx; y; zg (see for instance

[1]). Since this property is preserved by �, it is easy to check that a point

z of the line L has to be mapped onto a point of the distance-2 hyperbolic

line H := H(x0; y0). Now we claim that H is a long distance-2 hyperbolic

line. Indeed, let K be a line of �0 at distance 5 from all the points of H,

and suppose that the projection of H onto K is not surjective. This would

imply that there is a point opposite all the points of H, so in particularly

opposite all the points of L�. Applying ��1, we see that there would be a

point opposite all the points of L, a contradiction. Our claim follows. (In

fact, the very same argument shows that L� = H.) So �0 contains a long

hyperbolic line. The transitivity condition on the group of automorphisms

of �0 now easily implies that all distance-2 hyperbolic lines are long. From

Theorem 1.8.5 (i) then follows that �0 �= H(K ), and we may actually put

�0 = H(K ).

Moreover, since the map � preserves distance 6, we obtain a representation of

� on Q(6; K ) with the property that opposition in � coincides with opposition

in Q(6; K ) (the latter viewed as a polar space: opposite points are just non-

collinear points). Now, it is easy to see that, if x is any point of � (whose

point set is identi�ed with the point set of Q(6; K )), then the set �2(x) is

contained in a plane �x of Q(6; K ) (indeed, the space generated by �2(x)

in PG(6; K ) is a singular subspace of Q(6; q)). If a point y of �x would be

at distance 4 from x in �, then y would be at distance � 4 from all points

in �1(x), a contradiction. Hence we can apply Theorem 1.2 of Cuypers &

Steinbach [14] to obtain � �= H(K ). It is clear that, for a given isomorphism

� : � ! H(K ) = �0, the map ���1 can be seen as a permutation of the

point set of Q(6; K ) preserving opposition and collinearity, hence it is an

isomorphism of Q(6; K ). The result follows.

Let now n = 8. Let x and y be two collinear points in � for which x0 = x� and
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y0 = y� lie at distance 4 or 6. Completely similar as above, one shows that the

image of L = xy is the long distance-2 hyperbolic line or the long distance-3

hyperbolic line de�ned by x0 and y0. The transitivity condition now implies

that either all distance-2 hyperbolic lines or all distance-3 hyperbolic lines are

long. This contradicts Theorem 1.3 resp. Theorem 2.6 of van Bon, Cuypers

& Van Maldeghem [55].

The theorem is proved. 2

Remark. The previous theorem means in fact that, for hexagons and oc-

tagons with a fairly big automorphism group, Theorem 4.2.1 remains true

if we rephrase the conclusion as: \ : : : then � and �0 are isomorphic", and

if we do not insist on the fact that � de�nes that isomorphism. Also, we

have only considered the important values n = 6; 8. Using the results of

van Bon, Cuypers & Van Maldeghem [55], we can allow for more (though

all odd) values, such as n = 5; 7; 9. Indeed, for example for n = 9 (under

the same transitivity conditions as in the theorem above) the existence of

� would imply that either all distance-2, distance-3 or distance-4 hyperbolic

lines are long. But each of these values contradicts Theorem 2.6 in [55].

?4 Given two �nite generalized hexagons � and �0 of order (q; q) and a

bijection from the points of � to the points of �0 preserving opposition

but not collinearity. Is � �= �0 ?

Lemma 4.5.3 Let � be a generalized hexagon, and let � be a permutation of

the point set of � preserving the opposition relation. Then the set S of lines

L of � such that �1(L)
� = �1(M), for some line M of �, is a dual ovoidal

subspace in �.

Proof. We have to show that every line of � not in S is concurrent with a

unique line of S. We �rst claim that

(a) if L and L0 are two lines of S at distance 4, then also the line L1L0

belongs to S,

(b) if L and L0 are two concurrent lines of S, then all the lines concurrent

with both L and L0 belong to S.

Indeed, let �rst Æ(L;L0) = 4, with L;L0 2 S. Let M and M 0 be the lines

of � incident with all the images (under �) of L and L0, respectively. All

points of L except for projLL
0 are opposite all points of L0 except for projL0L;
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hence all elements of �1(M)n(projLL
0)� are opposite all elements of �1(M

0)n

(projL0L)
�. Hence M and M 0 must be at distance 4 from each other, and

x := (projLL
0)� must be collinear with x0 := (projL0L)

�. Consequently the

points of the line L 1 L0 are mapped onto the points of the line xx0. This

proves (a). A similar argument shows (b).

Now suppose L is a line of � not belonging to S. We know that, by the

proof of Theorem 4.5.2, the image under � of �1(L) is a certain distance-2

hyperbolic line H(x; y). Put a := x1y. The point a0 := a�
�1

is not opposite

any element of �1(L), hence it is collinear with a unique point b 2 �1(L).

It now easily follows that the line a0b belongs to S. This shows that L is

concurrent with at least one line L0 belonging to S. By (a) and (b), this line

is unique. 2

Application 1. The intersection of the line sets of two generalized hexagons

� �= H(K ) and �0 �= H(K ) on the same quadric Q(6; K ) is a dual ovoidal

subspace in both these hexagons.

Proof. Denote by S the intersection of the line set of the two hexagons �

and �0 living on the same quadric Q(6; q). By a simple change of coordi-

nates, one easily veri�es that for both � and �0, coordinates can be chosen

as in section 1.9.2. Hence there exists an automorphism � of the quadric

Q(6; K ) mapping � to �0. (This also follows directly from Tits' classi�cation

of trialities in [49].) Now � preserves the opposition relation in the hexagons.

Applying Lemma 4.5.3, we obtain that ��1(S) is a dual ovoidal subspace in

�, so S is a dual ovoidal subspace in �0. Applying ��1, we conclude that S

is also a dual ovoidal subspace in �. 2

Remark. A similar result is true for the symplectic quadrangle W(K ) over

some �eld K . But there, the proof is rather easy, because the intersection of

the line sets of two symplectic quadrangles naturally represented in PG(3; K )

boils down (dually using the Klein correspondence) to the intersection of a

non-singular quadric Q(4; K ) in PG(4; K ) with a hyperplane. Hence this

intersection is always a dual geometric hyperplane (of classical type).

?4 Determine the intersection of the set of reguli of two generalized hexagons

� �= H(K ) and �0 �= H(K ) lying on the same quadric Q(6; K ).

The aim of the second application is to prove the maximality of the group

G2(q) in O7(q) in an entirely geometric way. We �rst prove some general

results about dual ovoidal subspaces in the hexagon H(q). Note that, if �

and �0 are two hexagons isomorphic to H(q) such that the line sets of � and �0
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intersect in a dual ovoidal subspace which is a spread S, then S is necessarily

Hermitian. Indeed, if two lines belong to S, then clearly so do all lines of the

regulus de�ned by those two lines on Q(6; q). By Theorem 1.7.1, the spread

S is Hermitian. In the following, we say that a dual ovoidal subspace of H(q)

is of type S0 if it is a Hermitian spread.

Lemma 4.5.4 Let NX be the number of dual ovoidal subspaces of type X in

H(q), then we have 8><
>:

NP = q5 + q4 + q3 + q2 + q + 1;

NH =
q3(q3+1)

2
;

NS0 =
q3(q3�1)

2
:

The automorphism group G2(q) of H(q) acts transitively on the dual ovoidal

subspaces of type P, H and S0 respectively.

Proof. A dual ovoidal subspace of type P (H) is determined by one point (a

pair of opposite points), hence the result follows for these types of subspaces.

In Theorem 2.5.4, it was shown that there are exactly q2�q

2
Hermitian spreads

containing a �xed line regulus. Noting that there are q4(q4+q2+1) line reguli,

and that each Hermitian spread contains
q2(q3+1)

q+1
line reguli, NS0 follows. The

stabilizer in G2(q) of a Hermitian spread S is the group U3(q), hence the

length of the orbit of S is
jG2(q)j

jU3(q)j
, which is equal to NS0 . We conclude that

G2(q) acts transitively on the set of Hermitian spreads. 2

Lemma 4.5.5 Let � = H(q) be de�ned on Q(6; q). Then there are exactly

q + 1 copies of � on Q(6; q) containing a given dual ovoidal subspace of � of

type S0, exactly q containing one of type P, and exactly q � 1 containing one

of type H.

Proof. Let O = �1(p)[�3(p) be a dual ovoidal subspace of type P in �, and

suppose �0 is a copy of H(q) also containing O. Let M be a line at distance 3

from p. Suppose there exists a point x on M at distance 4 from p for which

�1(x) = �01(x). We show that this implies � = �0. Therefore, it suÆces to

prove that � and �0 share at least one apartment, and all lines concurrent

with one of three consecutive concurrent lines L1, L2, L3 of that apartment

(see Van Maldeghem [57], proof of Theorem 6.3.1). Let � be an apartment

of � containing x and p and denote by z the point of � opposite x. Let

p0 be the point of � opposite p, let L be the line of � through z di�erent
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from pz and put y = projLx (everything in the hexagon �). Since y is the

intersection of the line L (which also belongs to the hexagon �0) with the

tangent hyperplane of Q in x, the point y is also the unique point on L at

distance 4 from x in the hexagon �0. Let N be the projection of y onto x

in �. Since N is the unique line through x containing no points opposite y

(opposition seen on the quadric), N is also the projection of y onto x in �0.

Now the point p0 is the unique point on the line N not opposite z. Hence p0y

is a line of �0, so � and �0 share the apartment �. Completely similar, one

shows that if � and �0 share two opposite lines X;X 0, and all lines through a

certain point v of X, then they also share all lines through the unique point

on X 0 not opposite v. Let a be a point on the line projpM , di�erent from

p and p 1 x, and a0 = projp0ya in �. Note that � and �0 share the path

[a; a0] and all lines concurrent with the line through a0 and a1 a0 (because

this line is opposite pz). Hence � and �0 share the lines concurrent with the

line M . We conclude that � = �0. This shows that a hexagon containing O

is completely determined by the choice of a plane x? on Q through the line

M , di�erent from the plane containing p. Hence there are at most q such

hexagons.

Let O be a dual ovoidal subspace of type S0 in � and suppose �0 is a copy of

H(q) also containing O. Let L0 be a �xed line of the spread O and suppose

� and �0 share the lines through a certain point x0 on L0. We show that

� = �0. Let L0; L1; : : : ; Lq be the lines of a regulus contained in O through

L0. Then as in the �rst paragraph of the proof, it follows that on each line

Li, i > 0, there is a point xi not opposite x0 such that �1(xi) = �01(xi) (and

these points xi mutually lie at distance 4 in both � and �0). Now let N be a

line of O opposite every line Li. Because the spread has property (3) (see

section 2.5), the projections of the points xi on the line N are all di�erent.

Hence each line concurrent with N belongs to both � and �0. Since every

line of O n fNg is opposite N , it follows that every line concurrent with a

spread line belongs to both � and �0. We conclude that � = �0. Since there

are q + 1 choices for the plane x0
? through L0, this shows that there are at

most q + 1 hexagons containing O.

Let O be a dual ovoidal subspace of type H in �, and suppose �0 is a copy

of H(q) also containing O. Let � be a �xed apartment contained in O, and

L a line of �. Then there are at least two points x; y on L for which the

planes x? and y? are the same for � and �0. If � and �0 also share a plane

z?, zIL, z 6= x; y (and there are q � 1 choices for such a plane), then � and

�0 coincide. Indeed, if we denote by � the set of planes of Q containing the
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line L, then the map
� : �1(L) ! �

p ! �p;

with �p the plane corresponding to p
? in �, de�nes a projectivity of the line

L. So � is completely determined by the choice of the planes in x; y and

z. Hence the two hexagons share all lines concurrent with any line of �,

implying � = �0. So there are at most q� 1 copies of � containing O in this

case.

In total, we obtain at most N := (q � 1)NP + (q � 2)NH + qNS0 hexagons

on Q, di�erent from � and intersecting � in a dual ovoidal subspace. By

application 1, the number N + 1 has to be equal to
jPGO7(q)j

jG2(q)j
, from which

the result. 2

Application 2. The group G2(q) is maximal in O7(q).

Proof. Recall that O7(q) is the derived group of PSO7(q) and is simple. It

coincides with PSO7(q) if q is even, and has order jPSO7(q)j=2 if q is odd.

Let g be any element of O7(q) not belonging to the automorphism group

G2(q) of H(q). Let G be the group generated by G2(q) and g. We show that

G = O7(q). Clearly it suÆces to show that jGj = jO7(q)j. To that end, we

look at the orbit O of H(q) under G. This orbit contains images of H(q) the

line set of which intersect H(q) in dual ovoidal subspaces. By the transitivity

of G2(q) on the three types of dual ovoidal subspaces of H(q), there are a

constant number of elements of O meeting H(q) in each of the three types

of dual ovoidal subspaces. Hence we may assume that there are exactly k

elements of O whose line set contains a given dual ovoidal subspace of type

P of H(q). Similarly we de�ne the numbers ` and m for type H and type S0,

respectively. Hence in total, we have

N := 1 + k(q5 + q4 + q3 + q2 + q + 1) + `
q3(q3 + 1)

2
+m

q3(q3 � 1)

2

elements in O, with k � q�1, with ` � q�2 and with m � q. We know that

N jG2(q)j (= jGj) divides the order of O7(q), in particular, it divides the order

of PSO7(q), which is q3(q4 � 1)jG2(q)j. Hence N divides q3(q4 � 1). Since

(k; `;m) 6= (0; 0; 0), we see that N > q5. Hence q must divide N , implying q

divides 1 + k. Since 0 � k � q � 1, this means that k = q � 1. Hence

N = q6 + `
q3(q3 + 1)

2
+m

q3(q3 � 1)

2

divides q3(q4 � 1). We may write N = abcd, where a divides q3, where b

divides q2 + 1, where c divides q + 1 and where d divides q � 1. If q is even,
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then a; b; c; d are unique, since every two of the numbers q3, q2+1, q+1 and

q�1 are relatively prime. For q odd, there may be di�erent possibilities, and

we will make advantage of that below.

First suppose that q is even. Then both c and d are odd, and hence one

can divide by 2 modulo c or d. We have 0 � N mod c � 1 + m mod c

and 0 � N mod d � 1 + ` mod d. Hence m � c � 1 and ` � d � 1. Since

ab � q3(q2 + 1), we also have

(q2 + 1)cd� c
q3 � 1

2
� d

q3 + 1

2
� 0:

This implies

d(c(q2 + 1)�
q3 + 1

2
) � c

q3 � 1

2
;

which on its turn implies that c(q2+1)� q3+1

2
� 0. Hence c > q�1

2
. Similarly

d > q�1

2
. Since d divides q � 1, we necessarily have d = q � 1 = `+ 1. Also,

c 2 f
q+1

2
; q + 1g (or c = q

2
= 1, hence m = 2 and N = q3(q4 � 1), so we

are done). If c = q+1

2
, then m 2 f

q�1

2
; qg. But clearly, m = q�1

2
leads to

a contradiction (the N derived from that value does not divide q3(q4 � 1),

because it is bigger than half of that number, and not equal to it). Hence

m = q and therefore c = q+1. We obtainN = q3(q4�1) and so jGj = jO7(q)j.

This completes the case q even.

Now suppose that q is odd. We essentially try to give a similar proof as for q

even, but the arguments need a little more elementary computations. Note

that for q odd, jO7(q)j =
q3(q4�1)

2
jG2(q)j. Hence, we may choose c in such a

way that it divides q+1

2
. We easily compute N � 1+m mod c. Similarly, we

obtain N � 1 + ` mod d=i, where i 2 f1; 2g, depending on the fact whether

d divides q�1

2
(i = 1) or not (i = 2). In any case, estimating cd as for q even,

we obtain d > q�1

2
and c > q�1

2i
. For i = 1, this is a contradiction (because d

cannot exist!). Hence i = 2 and d = q � 1. Consequently ` 2 fq � 2; q�3
2
g.

Also, c 2 f q+1
4
; q+1

2
g and hence m 2 f

q�3

4
; q�1

2
g. Clearly ` = q� 2 leads to an

order of G which is bigger than jO7(q)j. And m = q�3

4
leads to an order of

G that is bigger than half the order of O7(q). Hence (`;m) = ( q�3
2
; q�1

2
) and

this implies that jGj = jO7(q)j. The application is proved. 2

4.6 The exception in the Flag Theorem

Let W(2) be the symplectic quadrangle of order (2; 2). Its automorphism

group is isomorphic to the symmetric group S6, which is isomorphic to the
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W(2) f1; : : : ; 6g PG(1; 9)

point (ij) Baer subline of one orbit under PSL2(9)

line (ij)(kl)(mn) Baer subline of the other orbit under PSL2(9)

incidence containment disjoint sublines

Table 4.1: Representations of W(2)

linear group P�L2(9). It is well known that the duads of a 6-set correspond

to one orbit under PSL2(9) of the set of Baer sublines of PG(1; 9), and that

the synthemes of a 6-set correspond to the other orbit (see [12], page 4).

Since the duads and the synthemes of a 6-set are the points and lines of

W(2), one obtains a representation of W(2) on the projective line PG(1; 9)

(see Table 4.1). We now investigate how one can recognize the 
ags of W(2)

in this representation. In the following, we use the notation [a; b; c; d] for the

Baer subline through the points of PG(1; 9) with aÆne coordinates (a), (b),

(c) and (d). Also, we denote the Baer subline corresponding to the point p

of W(2) with Bp (and refer to this subline as `the point Bp'). Similarly for

the lines of W(2).

Now �x two points of PG(1; 9) for which we choose coordinates (1) and

(0). Assume the Baer subline [1; 0; 1;�1] corresponds with a point of W(2).

Then also the Baer subline [1; 0; i;�i] is a point. The other Baer sublines

containing (1) and (0) (namely [1; 0; 1 + i;�1� i] and [1; 0; 1� i; i� 1])

are lines. So �xing the subline Bp = [1; 0; 1;�1], there are 12 Baer sublines

corresponding to lines and intersecting Bp in exactly two points of PG(1; 9).

The other three Baer sublines corresponding to lines are disjoint from Bp

(these are the sublines BL1 = [i;�i; 1+i; 1�i], BL2 = [1+i; 1�i; i�1;�i�1]

and BL3 = [i � 1;�i � 1; i;�i]). So there are 180 pairs of Baer sublines

(Bp; BL) for which Bp is a point, BL is a line and jBp\BLj = 2, and 45 pairs

of sublines (Bp; BL) for which Bp is a point, BL is a line and Bp and BL (as

subsets of the point set of PG(1; 9)) are disjoint. Since the automorphism

group ofW(2) acts transitively on both the set of 
ags and the set of anti
ags

(and there are respectively 45 and 180 of them), we deduce that a point p

and a line L of W(2) are incident precisely when the Baer sublines Bp and

BL are disjoint. Hence we may identify a 
ag of W(2) with the pair of points

of PG(1; 9) not contained in either of the two disjoint Baer sublines. This

identi�cation is bijective since there are 45 
ags and 45 pairs of points, and

every pair of points occurs by the 2-transitivity of PSL2(9).

Let p; L1; L2; L3 be as above. It is now clear that the 
ags (p; Li) and

(p; Lj) correspond with disjoint pairs whose union forms the Baer subline

Lk, (i; j; k) = (1; 2; 3). Now let (p; L) and (p00; L00) be two 
ags at distance
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4 from each other, and (p; L); (L; p0); (p0; L0); (L0; p00); (p00; L00) a 4-path be-

tween these two 
ags. Choose Bp = [1; 0; 1;�1], BL = [i;�i; 1 + i; 1 � i],

Bp0 = [1;�1; i�1;�i�1] and BL0 = [0; 1; i; 1+i]. The cross-ratio of the pairs

corresponding to the 
ags (p; L) and (p0; L0) is a square in GF(9) n GF(3).

Now Bp00 has to be disjoint from BL0 and intersects BL in two points. Since

the pair of the 
ag (p00; L0) is di�erent from the pair corresponding to the


ag (p; L) (and using the fact that through two points of PG(1; 9), there are

exactly two Baer sublines of point-type), these two pairs necessarily meet in

exactly one point. From the observations above, we deduce that

(1) 
ags at distance 1 correspond to disjoint point pairs whose union forms

a Baer subline (the latter corresponds to the unique element of W(2)

which, together with the intersection of the two 
ags, forms again a


ag distinct from both original 
ags);

(2) 
ags at distance 2 correspond to disjoint point pairs fa; bg and fc; dg

such that the cross-ratio (a; b; c; d) is a square in GF(9) nGF(3);

(3) 
ags at distance 3 correspond to non-disjoint pairs of points;

(4) 
ags at distance 4 correspond to disjoint point pairs fa; bg and fc; dg

such that the cross-ratio (a; b; c; d) is a non-square in GF(9).

It is now clear that an arbitrary permutation of the points of PG(1; 9), which

does not belong to P�L2(9), preserves the set of 
ags ofW(2), even preserves

the distance 3, but does not extend to an (anti)automorphism of W(2). Note

that W(2) does not provide a counterexample to Theorem 4.2.3.

Remark. Our description makes it obvious that the graph on the 
ags of

W(2) where adjacency is being at distance 3, is the strongly regular graph

with parameters (v; k; �; �) = (45; 16; 8; 4) obtained from a 10-set by taking

as vertices the pairs of points and adjacency being non-disjoint.

We give an explicit example of a bijection of the 
ags of W(2) preserving

distance 3, but not preserving distance 1. Let F be a �xed 
ag of W(2)

and G a 
ag at distance 3 from F . Then we de�ne the 
ags GF and G0
F as

follows. Suppose to �x the ideas that F = (p; L) and G = (p0; L0) with L and

L0 concurrent lines (see Figure 4.6). Let m = projLp
0. Let L00 be the unique

line through m, di�erent from L and L0, and x the point on L00 of the trace

containing p and p0. Let x0 be the unique point on L00 di�erent from x and

m. Then we de�ne GF = (x; L00) and G0
F = (x0; L00). Dually if p and p0 are

collinear points. Now we de�ne the following map �F between the 
ags of

W(2).

�F (G) =

�
GF if Æ(F;G) = 3

G if Æ(F;G) 6= 3:
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F

G

�(G)

F

G

�(G)

Figure 4.6: A counterexample to Theorem 4.2.2.

Then it is easy to check that �F preserves distance 3 between the 
ags of

W(2), but not distance 1. (In fact, for a 
ag G not at distance 3 from F , it

suÆces to show that the set TF;G is preserved.) By choosing G0
F instead of

GF , one obtains another map with this property.

Exceptions to the Special Flag Theorem

We explain the restriction r 62 S in Theorem 4.2.3. Suppose � is a generalized

n-gon, n � 3 and S = fsp; sLg. Suppose, to �x the ideas, that n is even and

that two adjacent 
ags lie at Coxeter distance sp if and only they have a point

in common. Now the following relation is easily seen to be an equivalence

relation on the set F of 
ags of �:

F � F 0
() Æ�(F; F 0) = sp; with F; F 0

2 F :

Let p and p0 be two opposite points of �, and denote by Fp (Fp0) the set of


ags containing p (p0). For a 
ag F in Fp, de�ne F
� to be the unique 
ag of

Fp0 at distance n� 1 from F . Similarly, one de�nes the map � on Fp0 . For a


ag F not contained in Fp [Fp0 , we de�ne F
� = F . Now � is a bijection on

the set of 
ags of � preserving Coxeter distance sp, but clearly not sL, hence

� does not extend to an (anti)automorphism of �.
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4.7 Proof of the Flag Theorem

4.7.1 Case i < n=2

Let S be the set of pairs of points (a; b) of � satisfying Æ(a; b) 6= i and

Ta;b = ;. We claim that a pair (a; b) belongs to S if and only if Æ(a; b) > 2i

or Æ(a; b) = k < 2i, with k � 0 mod 4 and 0 6= k 6= i. Indeed, let (a; b) be an

arbitrary pair of points of �. We distinguish the following possibilities.

(i) Æ(a; b) = k > 2i.

Suppose by way of contradiction that c 2 Ta;b. If, for k < n, projac 6=

projab, then there arises a circuit of length at most k + 2i < 2n, a

contradiction. So we can assume that, for k < n, projac = projab and

symmetrically, projbc = projba. But then again, a circuit of length

< 2n arises, unless the paths [a; c] and [b; c] meet on [a; b] (with [a; b]

any n-path between a and b if k = n). Clearly, this contradicts i < k=2,

so Ta;b = ;.

(ii) Æ(a; b) = k < 2i, with k � 0 mod 4 and 0 6= k 6= i.

Note that a 1 b is a point. Suppose by way of contradiction that

c 2 Ta;b. If projac 6= projab, then we obtain a path of length k + i

between b and c (consisting of the paths [b; a] and [a; c]). Since this

cannot be the i-path between b and c, there arises a circuit of length

< 2n, a contradiction. Hence we may assume projac = projab and

projbc = projba. In this case, since there are no circuits of length < 2n,

the paths [a; c] and [b; c] must meet on [a; b], necessarily in a1 b (and

c 6= a1b since i > k=2). This is impossible since a1b is a thin point.

(iii) Æ(a; b) = k < 2i, with k � 2 mod 4 and k 6= i.

Any point c at distance i� k
2
fromM := a1b with projMa 6= projMc 6=

projMb belongs to Ta;b (since M is thick, such a point c can be found).

So (a; b) =2 S.

(iv) The cases Æ(a; b) = 0; i; 2i are trivial.

This shows the claim. We put � = fÆ(a; b) j (a; b) 2 Sg (hence � = fk 2

N j 2i < k � n or k < 2i; k � 0 mod 4 and 0 6= k 6= ig).

Case i � 0 mod 4

Let S 0 be the set of pairs (a; b) of distinct points of � such that i 6= Æ(a; b) =2 �

and �i(a)\��(b) = ;. We claim that S 0 is exactly the set of pairs of collinear
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points of �. Indeed, let (a; b) be an arbitrary pair of distinct points of �,

i 6= Æ(a; b) =2 �. There are three possibilities.

(i) Æ(a; b) = 2.

Every point at distance i from a but not at distance i from b lies at

distance i� 2 � 2 mod 4 from b, which is not a distance belonging to

�. Hence (a; b) 2 S 0.

(ii) Æ(a; b) = k � 2 mod 4, 2 < k < 2i.

Let L be the line of [a; b] at distance k=2� 2 from a, and let c be any

point at distance i � (k=2 � 2) from L such that projLa 6= projLc 6=

projLb. Then Æ(a; c) = i and Æ(b; c) = i+ 4. The latter is a multiple of

4. So, if i 6= 4, then 4 + i < 2i and Æ(b; c) 2 �. If, on the other hand,

i = 4, then necessarily k = 6. In this case, re-choose the point c at

distance 4 from a with projac 6= projab. Then Æ(b; c) = 10 2 �. Hence

in both cases (a; b) =2 S 0.

(iii) Æ(a; b) = 2i.

Let L be the unique line of [a; b] at distance i=2 � 1 from a and let c

be any point at distance i=2 + 1 from L such that projLa 6= projLc 6=

projLb. Then Æ(a; c) = i and Æ(b; c) = 2i+ 2, hence Æ(b; c) 2 �. Conse-

quently c 2 �i(a) \ ��(b), implying (a; b) =2 S 0.

Our claim is proved.

Case i � 2 mod 4

We proceed similarly as above. Now S 0 is the set of pairs (a; b) of distinct

points of � such that i 6= Æ(a; b) =2 � and �i(a)\�6=i(b) � ��(b) and we again

claim that S 0 is exactly the set of pairs of collinear points of �. So let (a; b)

be an arbitrary pair of distinct points of �, i 6= Æ(a; b) =2 �. There are three

possibilities.

(i) Æ(a; b) = 2.

Every point at distance i from a but not at distance i from b lies

at distance i � 2 from b, which is a distance belonging to �. Hence

(a; b) 2 S 0.

(ii) Æ(a; b) = k � 2 mod 4, 2 < k < 2i.

We consider a point c as in 4.7.1(ii). Then Æ(b; c) = i + 4 implies

Æ(b; c) =2 �.
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(iii) Æ(a; b) = 2i.

Let L be the unique line of [a; b] at distance i=2 from a and let c be

any point at distance i=2 from L such that projLa 6= projLc 6= projLb.

Then Æ(a; c) = i and Æ(b; c) = 2i, hence Æ(b; c) =2 �. Consequently c is

in �i(a) \ �6=i(b), but not in ��(b), implying (a; b) =2 S 0.

This shows the claim and completes the proof of Case i < n=2.

4.7.2 Case i = n=2

n = 8 and � has order (2; 1)

Note that also �0 has order (2; 1) by the bijectivity of �.

We �rst distinguish distance 6. Let a and b be two di�erent points of �. If

Æ(a; b) = 2, then a point x belongs to Ta;b if and only if x lies at distance

3 from the line ab, hence jTa;bj = 2. If Æ(a; b) = 6, then Ta;b = fcg, with

c the unique point on the line a 1 b not collinear with a or b. If �nally

Æ(a; b) = 8, the points of Ta;b necessarily lie on one of the 8-paths between

a and b, hence jTa;bj = 2. So Æ(a; b) = 6 if and only if Æ(a; b) 6= i and

jTa;bj = 1. Unfortunately, all straightforward counting arguments do not

lead to a distinction between points at distance 2 or 8. Hence we give a more

sophisticated reasoning.

Let a; b be points of � at distance 2 or 8 from each other. Put Ta;b = fc; dg

and S = fa; b; c; dg. We claim that there is a unique point x such that

(*) �4(x) \ S = ; and �6(x) \ S = ;.

Indeed, if a and b are collinear, then c and d are collinear points such that

the line cd meets the line ab in a point x =2 S. One can easily check that x

is the only point of � that satis�es (*). If Æ(a; b) = 8, then S is contained

in the unique apartment through a and b. Note that � is the double of the

unique generalized quadrangle W(2) of order 2. In W(2) the points a; b; c; d

correspond to 
ags whose union is an apartment � in W(2) (see Figure 4.7).

There is a unique point u (respectively a unique line U) in W(2) opposite

every point (respectively line) of � and u is incident with U . The 
ag fu; Ug

corresponds in � with the unique point x satisfying (*). This proves our

claim.

Now if Æ(a; b) = 8, then there exists a point y of Ta;x at distance 6 from b (see

Figure 4.7, in fact, every point of Ta;x has this property) while if Æ(a; b) = 2,

every point of Ta;x is collinear with b. Hence we can distinguish distance 2

and the theorem follows.
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Figure 4.7: Case i = n=2 and � the double of W(2).

The general case

Here we assume that, if n = 8, then � contains lines with more than 3 points.

Note also that, since i is even, necessarily n � 0 mod 4.

In this case, we show that we can recover opposition. Let a; b be points of �.

We claim that Æ(a; b) = n if and only if

(**) jTa;bj = 2 and, putting Ta;b = fc; dg, Tc;d = fa; bg.

Obviously, if a and b are opposite, then they satisfy (**). So we may assume

that Æ(a; b) =: k < n. We distinguish three cases.

(i) k � 0 mod 4, k 6= n.

We show that Ta;b = ;. Suppose by way of contradiction that c 2 Ta;b.

Assume �rst that projab = projac. Note that the path [a; c] does not

contain [a; b], and since k 6= 2i, the point c does not belong to [a; b].

Hence we can de�ne the line L as [a; b]\ [a; c] = [a; L]. Let j = Æ(a; L).

There is a path of length k + i � 2j between b and c, consisting of

the paths [b; L] and [L; c]. If k + i � 2j � n, then Æ(b; c) = i implies

j = k=2, hence L = a1b, contradicting the fact that L is a line. Hence

k + i� 2j > n. But now Æ(b; c) = i implies there is a circuit of length

at most (k + i� 2j) + i = n+ k � 2j < 2n, a contradiction.

The case projab 6= projac corresponds with j = 0 in the previous argu-

ment.
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(ii) k = n� 2.

Let c be an arbitrary element of Ta;b (Ta;b is easily seen to be nonempty;

this will also follow from our next argument). Similarly as in (i) above,

one shows that [a; b] \ [a; c] \ [b; c] = a 1 b =: L. But then cIL and

projLa 6= c 6= projLb. So if (a; b) satis�es (**), then L contains 4

points c; d; projLa; projLb. But every point on M := projab distinct

from projMb belongs to Tc;d. Similarly for M 0 := projba. Note that

M 6= L and M 0 6= L since n � 2 6= 2. Hence, since also M 0 6= M , we

conclude by thickness of those lines that jTc;dj � 4. So (a; b) does not

satisfy (**).

(iii) k � 2 mod 4 and k 6= n� 2.

Every point c at distance n�k
2

from the line L := a1 b with projLa 6=

projLc 6= projLb belongs to Ta;b. So if jTa;bj = 2, then necessarily
n�k
2

= 3 and both L and projcL are incident with exactly 3 points (note

that n�k
2

= 1 corresponds with case (ii) above). We put Ta;b = fc; dg.

As in (ii) above, jTc;dj � 4 whenever projab 6= projba. Hence we may

assume that a and b are incident with L and that k = 2 and i = 4. But

this is Case 4.7.2.

So we obtained that � preserves opposition. By Abramenko & VanMaldeghem [1],

Corollary 5.2, this completes the proof of Case i = n=2.

4.7.3 Case n=2 < i < n� 2

Let S be the set of pairs of points (a; b) of � such that Ta;b = ;. Put

� = fk 2 N j 0 < k � 2n � 2i � 4 and k � 0 mod 4g. We claim that

(a; b) 2 S if and only if Æ(a; b) 2 �. Indeed, let a; b be points of �. Put

k = Æ(a; b).

(i) 0 < k � 2n� 2i� 4 and k � 0 mod 4.

Similarly as in 4.7.1(ii), one shows that Ta;b = ; in this case.

(ii) k � 2n� 2i� 2 and k � 2 mod 4.

Here, a point c 2 Ta;b can be found similarly as in 4.7.1(iii).

(iii) k � 2n� 2i.

Let c0 be a point opposite b and at distance n�k from a (c0 lies in some

apartment containing a; b). Let X be a line incident with c0, distinct

from projc0a if k 6= n. Clearly, there is a point xIX, x 6= c0, with x

opposite b. Then Æ(c0; x) = 2, and an inductive argument shows that
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there is a point c00 opposite b with Æ(c0; c00) = k � 2n + 2i and with

projc0a 6= projc0c
00 if k 6= n. Note that Æ(a; c00) = 2i � n 6= 0. Let

c 2 �i(b) \ �n�i(c
00) be such that projc00c 6= projc00a (c is the point at

distance i from b lying on the n-path between b and c00 not containing

projc00a). Clearly, c belongs to Ta;b.

This shows our claim.

Case i � 0 mod 4 and i � 2n� 2i� 4

In this case i precisely belongs to �. We claim that two distinct points a and

b are collinear in � if and only if Æ(a; b) =2 � and R := �i(a) \ � 6=i(b) \ ��(b)

is empty. Indeed, let a; b be two arbitrary distinct points of �, Æ(a; b) =2 �.

(i) Æ(a; b) = 2.

This is similar to 4.7.1(i).

(ii) Æ(a; b) � 0 mod 4.

Note that i < k := Æ(a; b) < 2i. Let c 2 �i(a) \ �k�i(b) (choose c

on a k-path between a and b). Then c 2 R because Æ(b; c) = k � i is

distinct from i, it is a multiple of 4 and it is at most 2n � 2i � 4 (for

i � 2n� 2i� 4 < 2n� k � 4).

(iii) 2 6= Æ(a; b) � 2 mod 4.

First let i < k := Æ(a; b) < 2i � 2. Let L 2 �i�1(a) \ �k�i+1(b) and

let cIL with projLa 6= c 6= projLb. Then we show that c 2 R. Indeed,

Æ(b; c) = k � i + 2, so Æ(b; c) = i implies k=2 + 1 = i, a contradiction.

Also, Æ(b; c) � 0 mod 4 and the inequalities i � 2n � 2i � 4 and

k � 2i� 6 imply Æ(b; c) � 2n� 2i� 4. Consequently Æ(b; c) 2 �.

Now suppose k = 2i � 2. This implies, since 2i � n + 2, that k � n,

hence k = n and n = 2i � 2. Let L 2 �i�3(a) \ �n�i+3(b) and let c 2

�3(L) with projLa 6= projLc 6= projLb. Then c 2 �i(a)\� 6=i(b) (because

Æ(b; c) = n� i+6 = (2i�2)� i+6 6= i). Also, Æ(b; c) is a multiple of 4.

If n � 22, then one veri�es that Æ(b; c) = n� i+6 � 2n� 2i� 4, hence

c 2 R. If n < 22, then, since i is a multiple of 4, the only possibility

is (n; k; i) = (14; 14; 8). But then � = f4; 8g and we can distinguish

distance 4 in �; hence also distance 2 by Subsection 4.7.1.

Finally let k := Æ(a; b) < i. Put L = projba. Let c 2 �i�k+1(L) with

projLa 6= projLc 6= projLb. As above, one checks that c 2 R.

This shows our claim.
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Case i � 2 mod 4 and i � 2n� 2i� 4

Here, we claim that two distinct points a; b of � are collinear if and only if

i 6= Æ(a; b) =2 � and �i(a) \ �6=i(b) � ��(b). Indeed, let a; b be two arbitrary

distinct points of �, i 6= Æ(a; b) =2 �. We have the following cases.

(i) Æ(a; b) = 2.

This is similar to 4.7.1(i).

(ii) Æ(a; b) = k � 0 mod 4, k > 2n� 2i� 4.

Note that i < k < 2i. Let c be the point of a �xed k-path between a

and b at distance i from a. Then i 6= Æ(b; c) = k � i � 2 mod 4, hence

Æ(b; c) 62 �.

(iii) 2 6= Æ(a; b) = k � 2 mod 4.

(a) Suppose �rst k > i. Let L be the line of a �xed k-path between a

and b at distance i� 1 from a. If i 6= k=2 + 1, let c be a point incident

with L, projLa 6= c 6= projLb. Then i 6= Æ(b; c) = k � i + 2 =2 �. If

i = k=2 + 1, let L0 be the line concurrent with L and closest to a, and

c a point at distance 3 from L0 for which projL0a 6= projL0c 6= projL0b.

Then Æ(a; c) = i and Æ(b; c) = k � i + 6 � 2 mod 4 (note that i � 6),

hence i 6= Æ(b; c) =2 �.

(b) Suppose now k < i. In this case, a point c at distance i � k + 1

from the line R := projba for which projRa 6= projRc 6= b will do the

job.

This shows the claim.

Case i � 2n� 2i� 2

We claim that two points a; b of � are at distance 2n � 2i � 4 from each

other if and only if Æ(a; b) 2 � and T �
a;b := ��(a) \ ��(b) contains exactly

(2n � 2i � 8)=4 =: ` elements. Indeed, let a; b be two distinct points of �

such that Æ(a; b) 2 �. We distinguish the following cases.

(i) Æ(a; b) = 2n� 2i� 4.

Note that there are exactly ` elements of T �
a;b contained in [a; b] (indeed,

every point x of [a; b] di�erent from a; b for which Æ(a; x) � 0 mod 4

belongs to T �
a;b.) Conversely, we show that every element of T �

a;b is

contained in [a; b]. Suppose c 2 T �
a;b and c not on the path [a; b]. If
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projac 6= projab, we obtain a circuit of length � 3(2n � 2i � 4) < 2n

(indeed, 3i � 2n � 2), a contradiction. So we can assume projac =

projab and projbc = projba. Let in this case, [a; c] \ [a; b] = [a; L] and

r = Æ(a; L). Since c 2 T �
a;b, Æ(a; c) � 0 mod 4. We obtain a path of

length d = Æ(a; b)+Æ(a; c)�2r between b and c (joining the paths [b; L]

and [L; c]). If d > n, Æ(b; c) 62 � since otherwise we obtain a circuit of

length < 2n. If d � n, then Æ(b; c) = d � 2 mod 4, hence Æ(b; c) 62 �.

(ii) Æ(a; b) := k 2 � n f2n� 2i� 4g.

On the path [a; b], we already �nd k=4 � 1 members of T �
a;b. Now let

h 2 � with h > k. Then every point x 2 �h(a) \ �h�k(b) belongs to

T �
a;b. Now for each such h, we �nd at least two such points. Indeed,

consider points x at distance h � k from b for which projba 6= projbx.

The number of choices for h is 2n�2i�4
4

� k
4
= `+ 1� k

4
, hence together

with the points of T �
a;b on [a; b] we obtain at least 2`+1� k=4 elements

of T �
a;b. This number is bigger than `, since ` > k=4� 1.

So we can recover distance 2n� 2i� 4. By the previous cases, this is enough

to recover collinearity. This completes the proof of Case n=2 < i < n� 2.

4.7.4 Case i = n� 2

It is convenient to treat the cases n = 6; 8 separately.

Case n = 6

Here, i = 4, so we only have to distinguish distance 2 from 6. But for

opposite points a; b, the set Ta;b contains points at mutual distance i = 4,

while this is not the case for collinear points a; b. Hence in this case �

preserves collinearity.

Case n = 8

First suppose that � is the double of a quadrangle � of order (2; t) (with

t automatically �nite). Then t = 2; 4 and � is unique. Notice that by the

bijectivity of �, in this case � and �0 have the same order. If t = 2, then

there is nothing to prove (this was the exception). Suppose t = 4. For two

points a; b at distance k, put lk = jTa;bj. Then it is easily veri�ed that l2 = 8

if ab contains 3 points, l2 = 24 if ab contains 5 points, l4 = 8 and l8 = 16.

Hence � preserves opposition and we are done.
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So from now on we may assume that all lines of � have at least 4 points. We

claim that two distinct points a; b of � are collinear if and only if Æ(a; b) 6= 6

and there are no distinct points c; c0 2 �6(b)\�6=6(a) satisfying Ta;b � �6(c)[

�6(c
0). Indeed, if Æ(a; b) = 4, then we take two di�erent points c; c0 (unequal

a) on the unique line through a at distance 5 from b; if Æ(a; b) = 8, then

we take fc; c0g = �2(a) \ �6(b). In these cases one easily checks that Ta;b �

�6(c)[�6(c
0). Now let Æ(a; b) = 2. Suppose by way of contradiction that there

do exist two points c; c0 as above. Let L be an arbitrary but �xed line meeting

the line ab but not through a or b. Then the set of points R = �3(L)n�1(ab)

is contained in Ta;b and hence is a subset of �6(c)[ �6(c
0). Either Æ(a; c) = 4

or Æ(a; c) = 8 (and similarly for c0). First suppose Æ(a; c) = 4. Clearly, for any

line M 6= ab meeting L, there is exactly one point xIM at distance 6 from

c. Hence there are at least 2 points of Ta;b on M and opposite c, implying

that the line M must be at distance 5 from c0. Since there are at least 3

such lines M , we similarly have that Æ(c0; L) = 3, and Æ(c0; ab) = 1 (because

projLc
0 cannot be on a line M , so must be incident with ab), contradicting

Æ(b; c0) = 6.

So we showed that Æ(a; c) = 8 and symmetrically, also Æ(a; c0) = 8. So

Æ(c; L) = Æ(c0; L) = 7, and hence, since Æ(c; ab) = 7, there must be a unique

line Mc 6= ab meeting L having distance 5 to c. Similarly, there is such a

line Mc0 at distance 5 from c0. Now let M 2 �2(L) n fMc;Mc0 ; abg. Since

Æ(c;M) = Æ(c0;M) = 7, at most two points onM are covered by �6(c)[�6(c
0),

a contradiction with the fact that the lineM contains at least 3 points of Ta;b.

This proves our claim. So � preserves collinearity and the theorem follows.

Case n > 8

Suppose �rst that, up to duality, � (or �0) has order (2; t) with t �nite (hence

n 2 f12; 16g), or has order (3; 3) (and then n = 12). Then the same holds

for �0 (or �). We now give a similar counting argument as in 4.7.4. Let �rst

n = 12 and � a hexagon of order (s; t). Then, with as before lk := jTa;bj for

Æ(a; b) = k, a rather easy counting in � shows the following:

l2 = (s� 1)s2t2 if jabj = s+ 1

l2 = (t� 1)s2t2 if jabj = t+ 1

l4 = s2t2

l6 = st(2s(t� 1) + (s� 1)(s+ t)) if jabj = s+ 1

l6 = st(2t(s� 1) + (t� 1)(s+ t)) if jabj = t+ 1

l8 = st(s+ t� 2)2

l12 = (s+ t� 2)((s� 1)(t� 1)2 + (t� 1)(s� 1)2 + 2s(t� 1) + 2t(s� 1)):
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Now (s; t) 2 f(2; 2); (2; 8); (3; 3)g. In any of these cases, one checks that

l12 62 fl2; l4; l6; l8g, hence we can distinguish opposition. Similarly if n = 16

and � has order (2; 4).

So from now on we may assume that � has order (s; t) 6= (3; 3) with s; t � 3,

or fs; tg = f2;1g. We divide the proof in several steps.

Step 1: the set Sa;b

For any three points a; b; c of �, de�ne Ta;b;c := �n�2(a) \ �n�2(b) \ �n�2(c).

Let a; b be two arbitrary points of � not at distance n� 2, then we de�ne

Sa;b = fc 2 �6=(n�2)(a) \ � 6=(n�2)(b) jTa;b;c = ;g:

Note that, by symmetry, c 2 Sa;b implies b 2 Sa;c and a 2 Sb;c.

We will prove the following claims (where w = a1b whenever de�ned).

Claim 1. Æ(a; b) = 2.

If the line ab contains at least 4 points, then Sa;b = �3(ab). Otherwise,

Sa;b = �f1;3;7g(ab) n (fa; bg [ �6(a) [ �6(b)).

Claim 2. Æ(a; b) = 4.

Here, Sa;b = �1(aw) [ �1(bw) [ �4(a) [ �4(b) n (fa; bg [ �4(w)).

Claim 3. 2 6= Æ(a; b) = k � 2 mod 4, k � n� 4.

Here Sa;b � fx 2 ��k=2+2(w) j projwa 6= projwx 6= projwbg. If k = 6,

then no point incident with w belongs to Sa;b. Also, if w contains at

least 4 points, then no point of �k=2(w) belongs to Sa;b.

Claim 4. 4 6= Æ(a; b) = k � 0 mod 4, k � n� 4, n 6= 12.

Put A = projwa and B = projwb. Also, de�ne

S 0a;b = fx 2 �fk=2�1;k=2+1g(A) j projAa 6= projAx 6= wg

[fx 2 �fk=2�1;k=2+1g(B) j projBb 6= projBx 6= wg:

If k 6= 8, then Sa;b � S 0a;b. If k = 8 and if both projab and projba contain

at least 4 points, then fwg � Sa;b � S 0a;b [ fwg. If k = 8 and either

projab or projba contains exactly three points (and suppose without loss

of generality that projba has size 3), then fw; eg � Sa;b � S 0a;b [ fw; eg,

where e is incident with projba and distinct from both b and b1w.

Claim 5. Æ(a; b) = k = 8 and n = 12.

Here, with the notation of Claim 4, we have, if s; t � 3, then w 2

Sa;b � S 0a;b [ (�8(a) \ �8(b)) [ fwg. If fs; tg = f2;1g (and we may
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assume without loss of generality that A0 := projab is incident with

in�nitely many points), then fw; eg � Sa;b � S 0a;b [ (�8(a) \ �8(b)) [

S 00a;b [ fw; eg, where S
00
a;b = fx 2 �11(B) j projBb 6= projBx 6= wg [ fx 2

�7(A
0) j projA0w 6= projA0x 6= ag.

We will prove these claims by induction on Æ(a; b).

Claim 1.

Let c be an arbitrary point of �, a 6= c 6= b. Note that the points of Ta;b
all lie at distance n � 3 from the line ab. First assume that projabc = a.

Put j = Æ(c; a). If j = 2, then Æ(c; x) = n, for all x 2 Ta;b, hence c 2 Sa;b.

Suppose j > 2. Let y be a point at distance n � j � 1 from ab for which

b 6= projaby 6= a. Then Æ(c; y) = n. Let Y be the line incident with y and

di�erent from projya. On the line Y , there is at least one point opposite c

and at distance n � j + 2 from a; b. Proceeding like this, one constructs a

point c0 opposite c with Æ(a; c0) = Æ(b; c0) = n�4. Now let L be a line incident

with c0 and di�erent from projc0a. Then projLc 2 Ta;b;c, hence c =2 Sa;b.

So we may assume projabc =2 fa; bg. Put j + 1 = Æ(c; ab). If j = 0, then

clearly c 2 Sa;b if and only if ab is incident exactly three points. If j = 2,

then clearly c always belongs to Sa;b. Suppose j > 2. Let L 2 �j�1(c)\�2(ab).

If j = 4, then clearly there are points at distance n� 5 from L which belong

to Ta;b;c. If j = 6 and j�1(ab)j = 3, then one veri�es c 2 Sa;b. If j�1(ab)j > 3,

then similarly as in the previous paragraph, we �nd a point x 2 Ta;b;c with

projabx =2 fprojabc; a; bg. Finally if j > 6, then, as before, we �nd a point x

in Ta;b;c with Æ(x; L) = n� 5, and with projLx =2 fprojLc; projLabg.

Claim 2.

Note that all points of Ta;b lie opposite w in an apartment through a and

b. Let c be an arbitrary point of � distinct from a; b and put j = Æ(w; c).

Without loss of generality, we may assume that a minimal path from c to

w contains aw, except if c = w. But in the latter case, clearly c 2 Sa;b.

So from now on c 6= w. If j = 2, then clearly c is opposite every point of

Ta;b, hence c 2 Sa;b. Now suppose j > 2. Let � be an apartment containing

b; c. Suppose �rst j � 0 mod 4 and let M be the line of � at distance

n � 1 � j=2 from both b; c and at distance n + 1 � j=2 from w. If j = 4

and Æ(a; c) = 4, then projMa 2 Ta;b;c. If j = 4 and Æ(a; c) = 2, then c 2 Sa;b
would imply b 2 Sa;c, contradicting Claim 1. So we can assume j � 8.

Note that Æ(a;M) = n + 3 � j=2. We construct a point of Ta;b;c as follows.

Let x0 be a point at distance j=2 � 3 from M for which projMx
0 does not

belong to �. Then a and x0 are opposite. Let X 0 be a line through x0,

X 0 6= projx0M and x = projX0a. Then x 2 Ta;b;c, showing that c 62 Sa;b.

Suppose now j � 2 mod 4. If j 6= n, then we consider an apartment �0
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containing [b; projcw], but not containing c. If j = n, then we consider an

apartment �0 containing [b; L], with L the line of [aw; c] at distance 1 from c,

and containing the projection of b onto L (note that we can assume projLb 6= c

since Æ(b; c) 6= n � 2 for a point c 2 Sa;b). In this way we obtain a path of

length h = 2n � j � 2 mod 4 between b and c (combining the path [c; L]

with the path between b and L contained in �0, but not containing w). We

now argue similarly as before. Let M be the line of �0 at distance n � j=2

from both b and c, and at distance n � j=2 + 2 from w. Suppose j � 10.

Note that Æ(a;M) = n� j=2 + 4. Let x0 be a point at distance j=2� 4 from

M for which projMx
0 does not belong to �0. Then x0 and a are opposite. As

before, the projection of a onto a line X through x0 di�erent from projx0M

belongs to Ta;b;c, showing c 62 Sa;b. Now let j = 6 = Æ(a; c). In this case, the

projection of c onto M belongs to Ta;b;c, hence also c 62 Sa;b. If �nally j = 6

and Æ(a; c) = 4 then c 2 Sa;b. Indeed, let (a; L; p; L
0; c) be the 4-path between

a and c, and x an arbitrary point of Ta;b. Then either projLx 6= p, implying

Æ(x; c) = n, or projLx = p, implying Æ(x; c) � n� 4. This shows Claim 2.

We now proceed by induction on Æ(a; b).

Claim 3.

Let c be any point of �. Suppose projwc = projwa. As before, put Æ(w; c) = j

(note that j is odd since w is a line). If j > k=2 + 2, then we can �nd a

point in Ta;b;c at distance n � 2 � k=2 from w. Indeed, let x be a point at

distance n�j from w for which projwa 6= projwx 6= projwb. Then c and x are

opposite, but Æ(a; x) = Æ(b; x) < n� 2. Put h = n� 2� Æ(a; x). It is easy to

see that one can �nd a point x0 at distance h� 2 from x, projxx
0 6= projxw,

and x0 opposite c. Now the projection of c onto any line X incident with x0

and di�erent from projx0w is a point of Ta;b;c. Hence c 62 Sa;b. If j � k=2+ 2,

then one calculates Æ(a; c) � k=2� 2 + j � 2 < k. Now if c would be in Sa;b,

then b 2 Sa;c. We check that this contradicts the induction hypothesis. So

suppose b 2 Sa;c. It is easy to verify that Æ(a; c) 62 f2; 4g. Hence, for any

element x of Sa;c (so also for b), we have Æ(x; a 1 c) �
Æ(a;c)

2
+ 2 < k

2
+ 2

by the induction hypothesis. Clearly, c cannot lie on the path [w; a]. If the

path [w; c] contains the path [w; a], then we obtain a path of length 3k
4
+ j

2

between b and a1 c, a contradiction. So suppose this is not the case. Put

[w; a] \ [w; c] = [w;L] and r = Æ(w;L). Then we obtain a path of length

k=2+ j� 2r < n between a and c. Since k
4
+ j

2
� r � k

2
� r+1 = Æ(a; L) + 1,

the element a 1 c belongs to [a; b], or is incident with an element of [a; b].

Hence Æ(b; a1c) � k=2 + 2, a contradiction.

Now suppose projwa 6= projwc 6= projwb and j � k=2+4. If j 6= k=2+6, then

similarly as before, we can �nd a point c0 2 Ta;b;c with j[w; c
0] \ [w; c]j = 3.

Suppose j = k=2 + 6. Let w0 be the element of [a; b] at distance k=2 � 2
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from a. Suppose �rst n � 12. Let Z be a line at distance n � k=2 � 7

from w0 for which projw0a 6= projw0Z 6= projw0w. Note that Æ(a; Z) = n � 9

and Æ(c; projZa) = n. Now consider the path 
0 consisting of the union

of the paths [a; Z] and [Z; c] (which has length 2n � 10). Let M be the

line of 
0 at distance n � 5 from both a and c, and M 0 a line intersecting

M , Æ(M 0; a) = Æ(M 0; c) = n � 3. Now the point projM 0b belongs to Ta;b;c;

showing c 62 Sa;b. If n = 10, then necessarily k = 6 and Æ(a; c) = 8 (but in

this case, c 62 Sa;b) or Æ(a; c) = 10. In the latter case, we argue similarly as

above, choosing for 
0 the 10-path between a and c containing projab. The

assertions for k = 6 and j�1(m)j � 4 are easy and left for the reader.

Claim 4-5.

Let c again be an arbitrary point of �. If c = w, then c 2 Sa;b implies

b 2 Sa;c, and by the induction hypothesis this only happens if k = 8 (and in

this case one easily veri�es that indeed w 2 Sa;b). So we may assume that

c 6= w and, without loss of generality, that there is a minimal path from c

to w containing A. Put j = Æ(c; w) and let ` be the distance from w to the

unique element X of [a; w] closest to c.

j < k=2 + 2`

In this case, we can apply the induction hypothesis. Indeed, the condition

above implies that the path between a and c consisting of [a;X] and [X; c]

(which has length k=2 + j � 2`) is a path of length less than k, so we can

apply the induction hypothesis on Sa;c. Suppose �rst the path [w; c] contains

the path [w; a]. Then similarly as in the proof of Claim 3, one shows that

b 2 Sa;c would contradict the induction hypothesis on Sa;c. So we can assume

` < k=2. Suppose now j � k=2. This condition implies that the element

a 1 c belongs to [a; b] (since Æ(a; a 1 c) = k=4 + j=2 � ` � k=2 � `), so

Æ(b; a 1 c) � k=2 + `. Suppose Æ(a; c) 6= 2; 4. Then the fact that b 2 Sa;c
implies Æ(b; a 1 c) � Æ(a; c)=2 + 2 = k=4 + j=2 � ` + 2. This can only be

satis�ed if j � k=2 + 4` � 4, which is again only satis�ed if ` < 2. Hence

` = 1 and necessarily j = k=2, which is one of the cases mentioned in

Claim 4. Clearly, Æ(a; c) 6= 4 unless k = 8 and c = w. If Æ(a; c) = 2, then

Æ(b; ac) = k � 1, which is only possible if (s; t) = (2;1), k = 8, projab is

a line containing exactly three points and c is the unique point on the line

projab at distance 8 from b (this gives the exception mentioned in Claim

4). Suppose now k=2 < j < k=2 + 2` (which implies that a 1 c is either

a line of [X; c] or a point on a line of this path). Note that Æ(a; c) 6= 2; 4.

We obtain a path of length d = k=4 + j=2 + l between b and a 1 c. If

d � n and l > 1, then d > Æ(a; c)=2 + 2, a contradiction. But d � n and

` = 1 implies k=2 < j < k=2 + 2, a contradiction. If �nally d > n, then

Æ(b; a1c) � 2n� d > Æ(a; c)=2 + 2, again a contradiction.
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So we may assume that j � k=2 + 2l. Let L be the line of [w; b] at distance

3 from w, and x a point on L di�erent from the projections of w and b onto

L.

k=2 + 2l � j � n� 4

We use the same method as in the proof of Claim 2. Let y be a point

at distance n � j � 3 from L such that the projection onto L is x, and

Y the line through y di�erent from the projection of x onto y. Note that

Æ(c; Y ) = n � 1. We obtain a path 
0 between b and c (consisting of the

paths [b; Y ] and [Y; c]) of length d = 2n+ k=2� j� 6. Suppose d � 2 mod 4.

Consider the line M of 
0 at distance d=2 from both b and c. Let `0 be the

length of the path between a and projMb consisting of [a; L] and [L; projMb].

Then `0 = n + k=4 � j=2 + 2. If j � k=2 + 4 (which is certainly satis�ed

if ` > 1), then d=2 � n � 5 and `0 � n (and d=2 = n � 5 if and only if

`0 = n). Suppose �rst `0 < n. Then it is possible to �nd a point z at distance

n � 4� d=2 from M with projMa 6= projMz 6= projMb that is opposite a. If

Z is the line through z di�erent from projzb, then there is a unique point

on Z (and thus contained in Tb;c) at distance n � 2 from a, hence c 62 Sa;b.

Suppose now `0 = n (then d=2 = n�5 and j = k=2+4). If we �nd a point z0

on M , projMa 6= z0 6= projMb, that lies opposite a, then the projection of a

onto the line through z0 di�erent from M is a point of Tb;c at distance n� 2

from a, implying c 62 Sa;b. If we cannot �nd such a point z0, then M is a line

containing three points and projMa 6= projMc 6= projMb. A point v on the

line W through projMa, di�erent from M , projW c 6= v 6= projWa, then is an

element of Tb;c at distance n� 2 from a, hence c 62 Sa;b. The case ` = 1 and

j = k=2 + 2 is the second remaining case mentioned in Claim 4. Suppose

d � 0 mod 4. Consider a point on Y di�erent from y or projY c, and the line

Y 0 through this point di�erent from Y . Then joining the paths [b; Y 0] and

[Y 0; c] gives a path 
0 between b and c of length � 2 mod 4. Then we proceed

similarly as in the previous case. We again obtain the possibility ` = 1 and

j = k=2 + 2 mentioned in Claim 4.

j = n� 2

If it is possible to choose the point x on L such that Æ(c; x) = n, we proceed

as in the previous paragraph. If it is not possible to choose x as above, L

contains exactly 3 points, and projLb 6= projLc = x 6= projLa. In this case,

let 
0 be the union of the paths [b; x] and [x; c]. If this gives a path of length

� 0 mod 4, then let y0 be a point at distance 3 from the line L0 = projxc,

x 6= projL0y
0 6= projL0c, and Y

00 the line through y0 di�erent from projy0b. Put


00 the path (of length � 2 mod 4) joining [b; Y 00] and [Y 00; c]. Now proceeding

similarly as before with the path 
0 or 
00, this gives one of the possibilities

mentioned in Claim 5 for the case (s; t) = (2;1).
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j = n

A similar reasoning as before gives the other exceptions mentioned in Claim 5.

The claims are proved.

In order to make future arguments uniform, we rede�ne the set Sa;b for two

points a; b of � in the case n = 12 as follows. Put

eSa;b = Sa;b n fx 2 Sa;b j�10(x) \ Sa;b 6= ;g:

If Æ(a; b) = 2 with jabj =1 or Æ(a; b) = 4, then eSa;b = Sa;b. If Æ(a; b) = 2 with

jabj = 3, then eSa;b = �1(L), with L the unique line concurrent with ab not

through a; b. For the cases n = 6 or n = 8 and fs; tg 6= f2;1g, we content

ourselves with the observation eSa;b � Sa;b. Suppose �nally Æ(a; b) = 8 and

fs; tg = f2;1g. Now with the notation of Claim 5, if x 2 Sa;b\�8(a)\�8(b),

then Æ(x; e) = 10, hence x 62 eSa;b. If x 2 Sa;b \ �7(A
0), Æ(x;w) = 10, hence

x 62 eSa;b. If �nally x 2 Sa;b \ �11(B) then since Æ(x; b) 6= n� 2, Æ(x; e) = 10,

so x 62 eSa;b. We conclude that eSa;b � S 0a;b [ fw; eg. We write Sa;b for eSa;b
from now on.

Step 2: the set Ca;b;c

Let c 2 Sa;b. We keep the same notation as in Step 1. Then we de�ne

Ca;b;c = fc0 2 Sa;b jSc;c0 \ fa; bg 6= ;g.

For Æ(a; b) = k � 2 mod 4 and k =2 f2; n � 2; ng, we will prove that Ca;b;c is

always empty, except possibly in the following cases (with w := a1b):

(1) Æ(c; w) = k=2� 2.

Here, a point c0 2 Ca;b;c lies at distance k=2� 2 from w, with projwc 6=

projwc
0.

(2) Æ(c; w) = k=2 + 2.

Here, a point c0 2 Ca;b;c lies at distance k=2 + 2 from w and either

projwc 6= projwc
0 or projwc = projwc

0 =: z (and let fw;Zg = �1(z))

but projZc 6= projZc
0; if fs; tg = f2;1g and k = 6, then there is an

extra possibility (*) for c0 described below.

Indeed, let Æ(c; w) = j and suppose c0 2 Ca;b;c, Æ(c
0; w) = j0.

Suppose �rst projwc = projwc
0. Then Æ(c; c0) � j + j0 � 4 � k (because

j; j0 � k=2+2 by Claim 3 above). Without loss of generality we may assume

a 2 Sc;c0 . Then, if Æ(c; c
0) =2 f2; 4g,

Æ(a; c1c0) �
Æ(c; c0)

2
+ 2 �

k

2
+ 2:
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Since clearly Æ(a; c1c0) � k=2 + 2 (c1c0 lies on [c; c0]!), this implies j = j0 =

k=2 + 2. Using Claim 2 and 3 above, one checks that Æ(c; c0) 6= 4 (indeed,

the only possibility would be k = 6 and c or c0 a point on a1 b, but this is

excluded by Claim 3). If Æ(c; c0) = 2, then it is easy to see that we necessarily

have fs; tg = f2;1g, k = 6 and

(*) c; c0 are collinear points on a line incident with exactly 3 points and

both c; c0 are at distance 5 from w.

These are some of the possibilities mentioned in (2).

Suppose now projwc 6= projwc
0. Here, Æ(c; c0) = j + j0 � k + 4. We may

again assume a 2 Sc;c0 . Then, if Æ(c; c
0) = 2, we must have k = 6 by Claim 1

above (noting that the line w contains at least 4 points in this case). But this

contradicts c 2 Sa;b and Claim 3. Also, it is easily veri�ed that Æ(c; c0) 6= 4.

Now for Æ(c; c0) =2 f2; 4g, we obtain the following possibilities.

(a) j + j0 � 2 mod 4.

By Claim 3 above, w = c1c0 and j = j0. Since a 2 Sc;c0 and c; c
0 2 Sa;b,

we have k=2�2 � j � k=2+2. The case j = j0 = k=2+2 corresponds to

the remaining part of possibility (2). The case j = j0 = k=2 contradicts

Claim 3 above (noting w contains at least 4 points here). Finally, the

case j = j0 = k=2� 2 corresponds to possibility (1).

(b) j + j0 � 0 mod 4.

Without loss of generality we may assume j > j0. By a 2 Sc;c0 and

Claim 4, c1c0 = projwc and hence j = j0+2. Furthermore, k=2 = (j+

j0)=2� 1. This implies that either j or j0 is equal to k=2, contradicting

c; c0 2 Sa;b and Claim 3.

This proves (1) and (2).

Step 3: the sets D2 and D4 if s; t � 3 for both � and �0

The aim of Step 3 is to construct sets D2 and D4 consisting of all pairs of

points of � at mutual distance 2 and 4, respectively, possibly containing some

pairs of opposite points as well. Therefore, we �rst de�ne the sets D0
2 and

D0
4, as follows.

A pair (a; b) of points of � belongs to D0
2 if

(1) jSa;bj > 1 and Æ(a; b) 6= n� 2;

(2) jCa;b;cj > 1, for all c 2 Sa;b;
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Figure 4.8: Proof of Step 3.

(3) there exists a point c 2 Sa;b such that c itself and all points c0 2 Ca;b;c

satisfy Property P(c) and P(c0) respectively, with

P(z) If y 2 Ca;b;z and x 2 Ty;z, then x is at distance n � 2 from all

points of Ca;b;z [ fag but exactly one;

(4) for all c 2 Sa;b and all c0; c00 2 Ca;b;c we have Sc;c0 \fa; bg = Sc;c00 \fa; bg

and Ca;b;c n fc
0g = Ca;b;c0 n fcg.

A pair (a; b) of points of � belongs to D0
4 if

(10) jSa;bj > 1 and Æ(a; b) 6= n� 2;

(20) there exists a point c 2 Sa;b such that Ca;b;c 6= ; and such that no point

of � is at distance n� 2 from all the points of Ca;b;c.

We show the following assertions.

If Æ(a; b) = 2, then (a; b) 2 D0
2 nD

0
4.

Proof. Clearly, (1) holds. For c 2 Sa;b, one easily sees Ca;b;c = �1(projcab) n

fc; projabcg. Now (2) and (4) are clear, while (20) cannot be satis�ed. Every

point c 2 Sa;b collinear with a (such c exists) satis�es P(c), whence (3). 3

If Æ(a; b) = 4, then (a; b) 2 D0
4 nD

0
2.

Proof. Clearly, (10) holds. Now we put c = a 1 b. Then Ca;b;c = �1(ac) [

�1(bc) n fa; b; cg. So it is clear that (20) is satis�ed, but (4) does not hold.

Indeed, let c0 2 �1(ac) and c
00 2 �1(bc), c

0; c00 62 fa; b; cg. Then Sc;c0 \fa; bg =

fbg and Sc;c00 \ fa; bg = fag. 3

If Æ(a; b) � 2 mod 4 with 2 6= Æ(a; b) < n� 2, then (a; b) =2 D0
2 [D

0
4.

Proof. Put w = a 1 b. Suppose by way of contradiction that (a; b) 2 D0
2.

Let c be a point for which (3) holds and c0; c00 two distinct arbitrary elements
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of Ca;b;c. By Step 2 the paths [w; c0] and [w; c00] have at most 3 elements in

common with [w; c] and Æ(w; c0) = Æ(w; c) = Æ(w; c00). Since, by the last part

of (4), c00 2 Ca;b;c n fc
0g implies c00 2 Ca;b;c0 n fcg, it follows from Step 2 that

also the paths [w; c0] and [w; c00] have at most 3 elements in common. Put

fc; c0; c00g = fc1; c2; c3g. In the following, we construct a point x for which

Æ(a; x) 6= n�2, and such that x lies at distance n�2 from exactly 2 points of

fc1; c2; c3g. Put j = Æ(w; c1). Suppose �rst projwc3 62 fprojwc1; projwc2g. Let

x be a point at distance n� 2� j from w such that the path [w; c3] contains

the path [w; x] or vice versa. Then Æ(a; x) 6= n�2 and �n�2(x)\fc1; c2; c3g =

fc1; c2g. Assume now projwc1 = projwc2 = projwc3. Note that j = k=2 + 2.

Let x be a point at distance n�k=2 from w such that the path [w; x] contains

[w; c3]. Then again Æ(a; x) 6= n � 2 and �n�2(x) \ fc1; c2; c3g = fc1; c2g. So

the point x is as claimed. Now the existence of x contradicts (3). Indeed,

suppose �n�2(x) \ fc1; c2; c3g = fc1; c2g. Then property P(c1) (with y = c2)

is not satis�ed, since x does not lie at distance n � 2 from the two points a

and c3 of Ca;b;c1 . So (a; b) 62 D0
2.

Now suppose by way of contradiction that (a; b) 2 D0
4. Let c 2 Sa;b be as in

(20) and � any apartment through a; b. By Step 2, the points of Ca;b;c all lie

at the same distance from w. Hence a point x of � at distance n�2�Æ(w; c)

from w lies at distance n�2 from all elements of Ca;b;c, contradicting (2
0) 3.

For a pair (a; b) of points of �, we de�ne

Sa;b = fx 2 Sa;b j (a; x); (b; x) 2 D0
2 [D

0
4g:

Now a pair (a; b) of points of � belongs to D2 (respectively D4) if

(100) (a; b) 2 D0
2 ((a; b) 2 D0

4 respectively);

(200) jSa;bj > 1;

(300) for any point x of �, there are at least 2 points of Sa;b not lying at

distance n� 2 from x.

We show the following assertions.

If Æ(a; b) = 2, then (a; b) 2 D2; if Æ(a; b) = 4, then (a; b) 2 D4.

Proof. If Æ(a; b) = 2, then clearly Sa;b = Sa;b; if Æ(a; b) = 4, then (putting

w = a1b) �1(aw)[�1(bw) � Sa;b [fa; bg. Hence (2
00) and (300) are satis�ed.

3

If Æ(a; b) � 0 mod 4 with 4 6= Æ(a; b) < n� 2, then (a; b) =2 D2 [D4.

Proof. If Æ(a; b) > 8, then Claim 4 of Step 1 implies that for any c 2 Sa;b
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either Æ(a; c) � 2 mod 4 or Æ(b; c) � 2 mod 4 (and also, these distances are

not equal to 2,4 or n); hence Sa;b = ; (and (200) is not satis�ed). If Æ(a; b) = 8

and n 6= 12, then similarly Sa;b = fa1bg (and again (200) is not satis�ed). If

Æ(a; b) = 8 and n = 12, then Sa;b � (�8(a) \ �8(b)) [ fa1 bg. But then, if

(200) holds, then (300) cannot be satis�ed by considering the point a1 (a1b).

3

Hence we have shown that D2 consists of all pairs of collinear points of �

and some (or possibly no) pairs of opposite points; likewise D4 consists of all

pairs of points of � at mutual distance 4 and some (or possibly no) pairs of

opposite points.

Step 4: the set 
 of pairs of collinear points if s; t � 3 for both � and �0

We de�ne the set 
 of pairs of points of � as follows. A pair (a; b) belongs

to 
 if it belongs to D2 and if there exists a pair of points (c; c0) 2 D2, with

fa; bg \ fc; c0g = ;, satisfying

(1) whenever fa; b; c; c0g = fv; v0; w; w0g, then Tv;v0 � �n�2(w) [ �n�2(w
0);

(2) for any two distinct points x; y 2 fa; b; c; c0g, we have (x; y) 2 D2;

(3) whenever fa; b; c; c0g = fv; v0; w; w0g, then for all z 2 Tv;v0, we have

(w; z); (w0; z) =2 D2 [D4.

We claim that 
 is precisely the set of pairs of collinear points of �. Indeed,

let (a; b) 2 D2 be arbitrary.

First suppose Æ(a; b) = 2. Then we can choose two distinct points c; c0 on

the line ab (with fa; bg \ fc; c0g = ;). It is easy to check that (c; c0), which

obviously belongs to D2, satis�es (1), (2) and (3) above. We now show for

later purposes that, if (c; c0) 2 D2 satis�es (1), (2) and (3), then both c

and c0 are incident with the line ab. First assume c 2 �2(a). If c is not

incident with the line ab, then Æ(b; c) = 4 and so (b; c) =2 D2. Hence cIab.

If c0 is not incident with ab, then it must be opposite a; b and c, and hence

projabc
0 =2 fa; b; cg. But then the point y collinear with c0 on the path [c0; ab]

belongs to Ta;b and contradicts (3) since (c0; y) 2 D2. So we may assume that

both c; c0 are opposite a; b. But then again the point y collinear with c0 on

the path [c0; ab] contradicts (3) since (c0; y) 2 D2.

Hence we have shown that

(�) if (a; b) 2 
 and Æ(a; b) 6= 2, then for any pair of distinct points c; c0 2

D2 satisfying (1), (2) and (3), we must have Æ(x; y) = n, for any two

distinct points x; y in fa; b; c; c0g.
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Indeed, if two elements of fa; b; c; c0g would be collinear, then we can let them

play the roles of a and b in the previous paragraph and obtain a contradiction

(by remarking that all conditions (1) up to (3) are symmetric in a; b; c; c0).

Now suppose Æ(a; b) = n. We must show (a; b) =2 
. Suppose by way of

contradiction that there exists a pair of points (c; c0) 2 D2, with fa; bg \

fc; c0g = ;, and satisfying conditions (1), (2) and (3). If n � 2 mod 4, we

choose a �xed lineM of � at distance n=2 from both a and b. If n � 0 mod 4,

we choose a �xed line M at distance n=2 + 1 from both a and b (such a line

can be obtained as follows: �x a line A through a and let B be the line

through b opposite A; let a0 be a point on A, a 6= a0 6= projAb, and put

b0 = projBa
0; let then M be the line of [a0; b0] at distance n=2� 1 from both

a0 and b0). In both cases (by possibly interchanging the roles of the two

lines through a, and hence also of those through b), we may assume that

M contains more than four points (this follows from our assumption that at

most one of the parameters s; t is equal to 3). Let Y be a line at distance j

from M , 0 � j � n � 3 � Æ(a;M), with projMb 6= projMY 6= projMa (note

that Æ(a;M) < n� 3 since n > 8). De�ne the following sets TY :

TY := fx 2 P j Æ(x; Y ) = (n�2)�Æ(a;M)�j and projY a 6= projY x 6= projY bg:

Note that TY � Ta;b, hence by (1), TY � �n�2(c) [ �n�2(c
0). We �rst prove,

by induction on j = Æ(Y;M), that TY 6� �n�2(v), v 2 fc; c
0g, for all lines Y

for which the set TY is de�ned.

First let j = 0. Then Y =M . Suppose TM � �n�2(c). Then it is easy to see

that Æ(a;M) = Æ(c;M) and projMa = projMc or projMb = projMc. Assume

projMa = projMc. This implies that Æ(a; c) � n� 2, so (since (a; c) 2 D2 by

(2)), Æ(a; c) = 2, contradicting (�). Hence TM 6� �n�2(v) for any v 2 fc; c
0g.

Now let j = 2. So let N be a line concurrent with M , not through the

projection of a or b onto M . Suppose TN � �n�2(c). Then Æ(c;N) =

Æ(a;N) = Æ(a;M) + 2 and projNc = projNa but projMa 6= projMc 6= projMb

(because otherwise TM � �n�2(c)). Now Æ(a;M) = Æ(c;M). If Æ(a;M) =

n=2, then the point y on [M; c] collinear with c belongs to Ta;b. If Æ(a;M) =

n=2 + 1, then the point y on [M; c] at distance 4 from c belongs to Ta;b.

In both cases, (c; y) 2 D2 [ D4, contradicting (3). Hence TN 6� �n�2(v),

v 2 fc; c0g for all lines N concurrent with M , not through the projection of

a or b onto M .

Now let j � 4 be arbitrary, j � n�3�Æ(a;M) and let Y be a line at distance

j from M with projMb 6= projMY 6= projMa. Suppose TY � �n�2(c). Let

[Y;M ] =: (Y; p; Y 0; p0; Z; : : : ;M) (with possibly Z = M). Then Æ(c; Y ) =

Æ(a; Y ) = Æ(a;M) + j and projpc = projpa = Y 0 but projp0a 6= projp0c
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(otherwise TY 0 � �n�2(c), contradicting the induction hypothesis). Let Y 00

be the line through projY 0c = p00, di�erent from Y 0. Now it is readily checked

that TY 00 \�n�2(c) = ;, so (1) implies TY 00 � �n�2(c
0). Since also Æ(Y 00;M) =

j, we have that Æ(c0; Y 00) = Æ(a; Y 00) = Æ(a;M) + j, projp00c
0 = projp00a = Y 0

but projp0a 6= projp0c
0. Let X be a line concurrent with Z, not through p0 or

the projection of a or b onto Z. Consider a line L at distance n�1�Æ(a;M)�j

from X with projXM 6= projXL (then all the points of L except from projLa

are points of Ta;b). Since Æ(c; L) = Æ(c0; L) = n�1, there is exactly one point

of L at distance n � 2 from c, and the same for c0. This is a contradiction

with (1), since L contains at least 3 points of Ta;b. Hence TY 6� �n�2(v),

v 2 fc; c0g, for all lines Y for which the set TY is de�ned.

Now consider a line K at distance n � 5 � Æ(a;M) from M for which the

set TK is de�ned. Let R, R0 and R00 be three di�erent lines concurrent with

K at distance n � 3� Æ(a;M) from a (such lines exist because s; t � 3 and

since, if K =M , which occurs if n = 10 or n = 12, then M contains at least

three points di�erent from projMa and projMb by assumption). We already

know that TR 6� �n�2(v), v 2 fc; c
0g , so the only remaining possibility for

the points c and c0 is that (since TR contains at least 3 points and necessarily

TR � �n�2(c) [ �n�2(c
0)) up to interchanging c and c0, the point c lies at

distance n � 4 from a point r on R, r not on K, with projrc 6= R. Because

then c is opposite all but one point of TR0 , we must have that the point c0

lies at distance n� 4 from a point r0 on R0, r0 not on K, with projr0c
0 6= R0.

But now at most two points of TR00 will be contained in �n�2(c)[�n�2(c
0), a

contradiction with (1) and the fact that TR00 contains at least 3 points. This

shows that the points c; c0 cannot exist, so (a; b) 62 
.

This shows that � preserves collinearity if both the orders of � and �0 do

not contain a 2, and completes the proof in this case.

Step 5: the sets D2, D
0
2 and D4 if fs; tg = f2;1g for both � and �0

The aim of Step 5 is to construct sets D2, D
0
2 and D4 (for the case fs; tg =

f2;1g) consisting of all pairs of points of � at mutual distance 2 (and the

joining lines have in�nitely many points or exactly three points, forD2 andD
0
2

respectively) and 4, respectively, possibly containing some pairs of opposite

points as well. Therefore, we �rst de�ne the sets E2 and E4, as follows.

A pair (a; b) of points of � belongs to E4 if

(1) jSa;bj > 1 and Æ(a; b) 6= n� 2;

(2) there is a point c 2 Sa;b such that jCa;b;cj =1 and such that no point

x of � satis�es fa; cg [ Ca;b;c � �n�2(x).
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A pair (a; b) of points of � belongs to E2 if

(10) jSa;bj > 1 and Æ(a; b) 6= n� 2;

(20) no point lies at distance n� 2 from all elements of Sa;b;

(30) for every point c 2 Sa;b we have jCa;b;cj = 1, and, putting Ca;b;c = fc0g,

we must have (c; c0) 2 E4.

Note that the sets E2 and E4 are disjoint, because of properties (2) and (30).

We show the following assertions.

If two points a; b are collinear in � and the line ab contains exactly three

points, then (a; b) 2 E4 and (a; b) =2 E2.

Proof. Note that �3(ab) � Sa;b, hence (1) holds. Let e be the unique point

on ab di�erent from a and b, and c a point of �3(ab) collinear with e. Then

�1(ec) � Ca;b;c [ fcg; showing that (2) holds for this point c. So (a; b) 2

E4 n E2. 3

If two points a; b are collinear in � and the line ab contains in�nitely many

points, then (a; b) 2 E2 and (a; b) =2 E4.

Proof. In this case, Sa;b = �3(ab), hence (10) and (20) hold. For any point

c 2 Sa;b, the set Ca;b;c contains exactly one point, namely the unique point

on the line L = projcab di�erent from c and projLa. This shows that (30)

holds, hence (a; b) 2 E2 n E4. 3

If two points a; b are at mutual distance 4 in �, then (a; b) 2 E4 and (a; b) =2

E2.

Proof. Put c = a1 b. Then Ca;b;c contains the set �1(ac) [ �1(bc) n fa; b; cg.

This shows that (2) holds for the point c, hence (a; b) 2 E4 n E2. 3

If Æ(a; b) � 2 mod 4 with 2 6= Æ(a; b) < n� 2, then (a; b) =2 E2 [ E4.

Proof. Suppose by way of contradiction that (a; b) 2 E4, and let c be a

point in Sa;b satisfying (2). But since any element of Ca;b;c lies at distance

Æ(a 1 b; c) from a 1 b, one can easily �nd a point at distance n � 2 from

all points of Ca;b;c [ fa; cg; a contradiction, hence (a; b) 62 E4. Suppose

now (a; b) 2 E2, and let c 2 Sa;b with Ca;b;c = fc0g. Put w := a 1 b. If

Æ(w; c) = k=2 � 2 = Æ(w; c0), then Æ(c; c0) = k � 4 � 2 mod 4. Hence

(c; c0) 2 E4 implies Æ(c; c0) = 2, so k = 6 and c; c0 are incident with m. This

contradicts Claim 3 in Step 1. If Æ(w; c) = k=2 + 2 = Æ(w; c0), then either

Æ(c; c0) = k + 4 � 2 mod 4 or Æ(c; c0) = k � 2 mod 4 (and in both cases, we

obtain a contradiction with (c; c0) 2 E4) or k = 6 and c; c0 are collinear points
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on a line with exactly 3 points (this is the exception mentioned in (*)). But

in the latter case, all points of Sa;b lie at distance k=2+ 2 from a1b, and we

easily �nd a point at distance n � 2 from every point of Sa;b, contradicting

(20). Hence (a; b) 62 E2. 3

Now we de�ne

Sa;b = fx 2 Sa;b j (a; x); (b; x) 2 E2 [ E4g:

Completely similar as in Step 3, one shows that if two points a; b satisfy

4 < Æ(a; b) = k � 0 mod 4, k < n� 2, then jSa;bj 6=1. Also, for two points

a; b with Æ(a; b) 2 f2; 4g, jSa;bj =1.

By de�nition, a pair (a; b) of points of � belongs to D2 if (a; b) 2 E2 and

jSa;bj = 1. Also, a pair (a; b) of points of � belongs to D0
2 if (a; b) 2 E4,

jSa;bj =1 and there are some c; c0 2 Sa;b such that (a; c); (b; c
0) 2 D2. Finally,

D4 consists precisely of those pairs (a; b) of points of E4 n D
0
2 that satisfy

jSa;bj =1. We conclude that D2 consists of all pairs (a; b) of collinear points

with j�1(ab)j = 1, possibly together with some pairs of opposite points;

D0
2 consists of all pairs (a; b) of collinear points with j�1(ab)j = 3, possibly

together with some pairs of opposite points; D4 consists of all pairs (a; b) of

points at mutual distance 4, possibly together with some pairs of opposite

points.

Step 6: the set 
 of pairs of collinear points if fs; tg = f2;1g for both � and �0

Note that n � 0 mod 4 (indeed, remember that (s; t) was the order of the

corresponding n=2-gon �). We �rst pin down the set 
 of pairs (a; b) of

collinear points with j�1(ab)j = 1. Therefore we de�ne Va;b, for two arbi-

trary points a; b of �, as Va;b = �n�2(a) n �n�2(b). Now let 
 be the set of

pairs (a; b) of D2 such that there exist points c; c0; c00 in �, all distinct from a

and from b, with the following properties.

(1) Va;b is the disjoint union of the sets Va;b \ �n�2(c), Va;b \ �n�2(c
0) and

Va;b \ �n�2(c
00);

(2) (a; c0); (a; c00) 2 D0
2; (b; c

0); (b; c00) 2 D4 and (a; c); (b; c) 2 D2;

(3) no point x in �n�2(a) \ �n�2(c) satis�es (b; x) 2 D2 [D0
2; likewise no

point x in �n�2(b) \ �n�2(c) satis�es (a; x) 2 D2 [D
0
2;

(4) a 2 Sb;c0 \ Sb;c00 ;

(5) if fu; v; wg = fc; c0; c00g, then v; w 2 Sa;u \ Sb;u.
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    (I)     (II)
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Figure 4.9: (I) : (a; b) 2 
 (II) : The sets TLj for n = 12.

We now show that 
 is the set of pairs (a; b) of collinear points with j�1(ab)j =

1. Clearly, if Æ(a; b) = 2 and j�1(ab)j =1, then choosing c 2 �1(ab) n fa; bg

arbitrarily, and putting fc0; c00g = �2(a) n �1(ab), we see that (a; b) 2 
 (see

Figure 4.9 (I)).

So there remains to show that no pair of opposite points belongs to 
. By

way of contradiction, let (a; b) be a pair of opposite points of � belonging to


. Let c; c0; c00 be as in (1) up to (5) above.

We claim that Æ(a; x) = n = Æ(b; x), for x 2 fc; c0; c00g. Indeed, by (2), we

already know that Æ(a; c0) and Æ(a; c00) are either 2 or n. Suppose Æ(a; c0) =

2. Then Æ(b; ac0) = n � 1. But b 2 Sa;c0 (which is Condition (4)) implies

Æ(b; ac0) � 7 (by Claim 1 of Step 1), a contradiction. Similarly for (a; c00).

Also, Æ(b; c0) and (b; c00) are either 4 or n. Suppose Æ(b; c0) = 4 and put

w = b1c0. Then Æ(a; bw) = n� 1. Condition (4) states that a 2 Sb;c0 , hence

by Claim 2 of Step 1, Æ(a; bw) � 7, a contradiction. Similarly for (b; c00). By

(2), we also know that Æ(a; c) and Æ(b; c) are either 2 or n. If Æ(a; c) = 2 (and

so Æ(b; c) = n), then the point collinear with b at distance n � 3 from the

line ac lies at distance n� 2 from both a and c, contradicting Condition (3).

Similarly for Æ(b; c). This show the claim.

Form now on until the end of the proof, we assume that n is \large enough"

(the generic case) in certain arguments. When n is too small, then either

the given argument can be skipped or a separate but easier argument can be

given (and we do not do that explicitly).

Let 
 be the path of length n between a and b for which the line of 
 through

b contains exactly three points. Denote by Lj the line of 
 at distance j (j

is odd!) from a and de�ne for n=2� 1 � j � n� 3,

TLj = fx 2 PjÆ(x; Lj) = n� 2� j; projLja 6= projLjxg:

Note that the sets TLj are subsets of Va;b, and that these sets consist of unions

of certain sets �1(L) n fprojLag, with j�1(L)j =1 (see Figure 4.9 (II)).



180 DISTANCE-PRESERVING MAPS

For an element z at distance � n � 2 � j from Lj for which projLja 6=

projLjz 6= projLjb, we de�ne the set

Tz = fx 2 PjÆ(x; z) = n� 2� j � Æ(z; Lj); projza 6= projzxg:

Note that Tz is the subset of TLj containing the points x for which [x; Lj]

contains z.

Let Z be a line for which the set TZ is de�ned. We �rst show by induction

on iZ := n� Æ(a; Z) that

(3) for such a line Z there exist points v; v0 2 fc; c0; c00g such that TZ �

�n�2(v) [ �n�2(v
0). Moreover, for any two points z0; z00 2 �1(Z) n

fprojZa; projZbg, we have that Tz0 � �n�2(v) [ �n�2(v
0), with Tz0 \

�n�2(v) 6= ; 6= Tz0 \ �n�2(v
0), implies Tz00 � �n�2(v) [ �n�2(v

0), with

Tz00 \ �n�2(v) 6= ; 6= Tz00 \ �n�2(v
0).

Suppose �rst iZ = 3. Then Z is a line at distance n� 3 from a containing an

in�nite number of points, and TZ = �1(Z) n fprojZag. Condition (1) implies

that there exists a point x 2 fc; c0; c00g at distance n � 2 from at least two

points of TZ , hence at distance n � 2 from all but at most one point of TZ .

This shows (3) for the line Z.

Now we assume iZ = 5. Then necessarily j�1(Z)j = 3. If Z = Ln�5, then

TZ = TN , with N the unique line concurrent with Z and di�erent from

projZa and projZb, and (3) follows. So suppose Z 6= Ln�5. Let r and r0 be

the two points on Z di�erent from projZa, and let R, R0 be the lines through

r respectively r0 di�erent from Z. Put Z 0 the line through projZa, di�erent

from Z. We claim that

(*) no point v 2 fc; c0; c00g is at distance n � 2 from exactly one point of

�1(R) n fprojRag and from exactly one point of �1(R
0) n fprojR0ag.

Indeed, suppose some v 2 fc; c0; c00g is at distance n�2 from exactly one point

of TR and from exactly one point of TR0 . Since by Condition (1) every point

of Va;b lies at distance n�2 from exactly one point of fc; c0; c00g, there exists a

point v0 2 fc; c0; c00gnfvg such that Æ(v0; R) = n�3 and projRv = projRv
0. But

then projR0v 6= projR0v0 (because Æ(v0; projR0v0) = n � 2 and projR0v 2 Va;b)

and so the unique point of fc; c0; c00g n fv; v0g lies at distance n � 2 from all

but two or three points of R0, which is impossible. Our claim is proved.

If R is not contained in �n�2(v) for a point v 2 fc; c0; c00g, then some point

w 2 fc; c0; c00g is at distance n � 4 from exactly one point of TR, and at
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distance n � 2 from all the other points of TR. But then there is exactly

one point of TR0 at distance n� 2 from w. So the only possibility to satisfy

Condition (1) is that a point w0 2 fc; c0; c00g n fwg is at distance n � 4 from

exactly one point of TR0 (namely projR0w) and at distance n� 2 from all the

other points of this set and at distance n� 2 from projRw. Whence (3).

If TR � �n�2(v) for some v 2 fc; c0; c00g, then Æ(v; r) = n� 4 and projrc = Z.

If projZv = r0, then we consider a line Z 00 concurrent with Z 0, di�erent

from Z and not through projZ0a or projZ0b (this is possible since jZ 0j =1).

But now Æ(v; Z 00) = n � 1 and Æ(v; projZ00Z) = n � 2, so v is at distance

n � 2 from exactly two non-collinear points of TZ00 , contradicting (*). So

projZv = projZa and TZ � �n�2(v).

This shows (3) for the line Z.

Now suppose iZ > 5. Put j = n� iZ = Æ(a; Z). Suppose �rst that j�1(Z)j =

3. If Z = Lj (i.e., if Z belongs to 
), then TLj = TL, with L the unique line

concurrent with Lj and not contained in 
, and with iL = iZ�2. So the result

follows from the induction hypothesis. Hence we may assume that Z does

not belong to 
. Put �1(Z) = fx; x1; x2g with x = projZa, put L = projxa

and let Xi be the line through xi distinct from Z, i = 1; 2. By the induction

hypothesis, there are two cases to consider.

(i) There exists v 2 fc; c0; c00g such that TX1
� �n�2(v). We show that

TX2
� �n�2(v). Indeed, Æ(v; x1) = j + 1 and projx1v = Z. If projZv 6=

x2, then clearly TX2
� �n�2(v). If projZv = x2, then consider an

arbitrary point p at distance n � 4 � j from L for which projLp =2

fx; projLa; projLbg. The point p lies at distance n � 2 from v and a

contradiction to (*) arises in the set Tp (indeed, we �nd exactly two

non-collinear points of Tp lying at distance n� 2 from v).

(ii) Suppose now that we are not in case (i) and there exist v; v0 2 fc; c0; c00g,

v 6= v0, such that TX1
� �n�2(v) [ �n�2(v

0), with TX1
\ �n�2(v) 6= ; 6=

TX1
\ �n�2(v

0). From the proof of the case iZ = 5 now follows that

Æ(v; x1) = Æ(v0; x1) = Æ(a; x1) + 6 = j + 7. (Indeed, let Y be a line

at distance n � 5 from a for which the path [a; Y ] contains the path

[a; Z] and let Y1, Y2 be the two lines concurrent with Y and at distance

n � 3 from a. Then the proof of the case iZ = 5 shows that we can

assume Æ(v; Y1) = n � 3, Æ(v0; Y2) = n � 3, Æ(v; Y ) = Æ(v0; Y ) = n � 1

and, with Y 0 the line concurrent with Y at distance n � 7 from a,

projY 0v = projY 0a = projY 0v0.) If Æ(v; x2) = Æ(v0; x2) = j + 7, then

TX2
� �n�2(v) [ �n�2(v

0) with TX2
\ �n�2(v) 6= ; 6= TX2

\ �n�2(v
0).

Suppose now by way of contradiction that Æ(v; x2) = j + 5. Then we
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consider a point p at distance n � (j + 8) from L such that projLa 6=

projLp 6= x and projLp 6= projLb. Put �1(p) = fprojpa;Rg. Note that

v and p are opposite points of �. Put [R; v] = (R; p0; R0; p00; : : : ; v), and

let r be any point incident with R0, p0 6= r 6= p00. Then considering Tr
and v, we obtain a contradiction to (*).

This shows (3) for the case j�1(Z)j = 3.

Suppose now j�1(Z)j = 1. Suppose �rst Z =2 
. Let x be any point on Z

di�erent from projZa. By the induction hypothesis, there are two cases.

(i) There exists v 2 fc; c0; c00g such that Tx � �n�2(v). Similarly as above,

one shows that in this case Ty � �n�2(v), for all y 2 �1(Z) n fprojZag,

except possibly for one point x� 2 �1(Z) n fprojZag, in which case

Tx� \ �n�2(v) = ;.

(ii) There exists v 2 fc; c0; c00g such that Tx 6= Tx \ �n�2(v) 6= ;. Again

similarly as above, one shows that in this case Ty 6= Ty \ �n�2(v) 6= ;

for all y 2 �1(Z)nfprojZag, except possibly for one point x
� 2 �1(Z)n

fprojZag, in which case Tx� \ �n�2(v) = ;.

Combining (i), (ii) and j�1(Z)j =1 (and using the fact that the three sets

TZ \ �n�2(v), v 2 fc; c
0; c00g are disjoint), we readily deduce (3). If Z 2 
,

then a similar reasoning shows the result.

So we have shown (3) for all appropriate lines Z.

Suppose now that there exists v 2 fc; c0; c00g with TLn�3
� �n�2(v). We look

for a contradiction. Note that Æ(v; Ln�3) = n� 3 and projLn�3
a = projLn�3

v.

De�ne j 2 N as [a; Ln�3] \ [v; Ln�3] = [Lj; Ln�3]. Suppose �rst n=2 < j �

n � 5. Then v lies at distance j from Lj. Consider a point p at distance

n � j � 4 from Lj�2 satisfying projLj�2
a 6= projLj�2

p 6= projLj�2
b. Then p

lies at distance n � 2 from v and at distance n � 6 from a, and we obtain

a contradiction to (*) by considering Tp and v. Suppose now j � n=2 � 1.

Then Æ(a; v) � Æ(a; Lj) + Æ(Lj ; v) � n � 2, the �nal contradiction (since

Æ(a; v) = n, for v 2 fc; c0; c00g).

Hence, since at least one element of fc; c0; c00g must be at distance n � 2

from in�nitely many points of Ln�3, there exists v 2 fc; c0; c00g satisfying

Æ(v; Ln�3) = n � 3 and projLn�3
v =2 
 (remembering v is opposite b). Now

v lies at distance n � 2 from exactly one point of TLn�5
, so there is a v0 2

fc; c0; c00gnfvg such that TLn�5
� �n�2(v)[�n�2(v

0). Hence v0 lies at distance

n � 1 from Ln�5 and projLn�5
v0 =2 
. Note that both v and v0 are opposite
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the point w := projLn�7
b, hence Æ(v; Ln�7) = n � 1 = Æ(v0; Ln�7). Let j be

de�ned as [Ln�7; a]\ [Ln�7; v] = [Ln�7; Lj] and let j0 be de�ned as [Ln�7; a]\

[Ln�7; v
0] = [Ln�7; Lj0] (these are well-de�ned since a =2 [Ln�7; v][ [Ln�7; v

0]).

Then Æ(v; Lj) = j + 6 and Æ(v0; Lj0) = j0 + 6, with projLjv; projLj0v
0 =2 
.

Suppose �rst n=2� 2 < j and, if n � 0 mod 8, j 6= n=2� 1.

(i) If j�1(Lj)j = 3, then, because of the conditions on j, the line Lj�2

has in�nitely many points and the set TLj�2
is de�ned. We proceed

similarly as in (ii) of the proof of (3), case iZ > 5 and j�1(Z)j = 3 (see

above) to obtain a contradiction with (*).

(ii) If j�1(Lj)j =1, then let x = projLjv. Calculating distances, it is easy

to check that Tx \ �n�2(v) = ; and Tx0 \ �n�2(v) 6= ;, for all points

x0 2 �1(Lj) n fx; projLja; projLjbg. This contradicts (3).

We now treat the remaining cases. Note that in the foregoing, we may

interchange the roles of j and j0.

(iii) If n � 0 mod 8 and j � n=2� 1, then j0 � n=2� 1 and j�1(Ln=2�1)j =

3. Note that fj; j0g � fn=2 � 1; n=2 � 3g (since both v and v0 are

opposite a). If j = j0 = n=2 � 1, then TLn=2�1
\ �n�2(v) = ; =

TLn=2�1
\ �n�2(v

0), so TLn=2�1
� �n�2(v

00), with fv; v0; v00g = fc; c0; c00g.

But this implies that Æ(v00; Ln=2�1) = n=2� 1 and projLn=2�1
v00 2 
. So,

calculating distances, we see that either Æ(a; v00) < n or Æ(b; v00) < n, a

contradiction.

Suppose j = n=2� 1 and j0 = n=2� 3, or j = j0 = n=2� 3. Let a0 and

a00 be the two points on the line L3 at distance n� 2 from b. Then at

least one of these two points lies at distance n� 2 from the points v, v0

and b, contradicting Condition (5) (namely v0 2 Sb;v). This concludes

the case n � 0 mod 8.

(iv) If n � 4 mod 8 and j � n=2�3, then again the case j < n=2�3 can not

occur. So j = n=2�3, and by symmetry, also j0 = n=2�3. We proceed

similarly as in the last part of (iii) above to obtain a contradiction with

Condition (5).

This shows that a pair of opposite points never belongs to 
. Hence 


consists precisely of all pairs (a; b) of collinear points with �1(ab) =1.

Finally, we de�ne


 = f(a; b) 2 D0
2j(8z 2 �n�2(b))((a; z) =2 
)g:
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Clearly, if a and b are collinear points with jabj = 3, then (a; b) 2 
. But if

Æ(a; b) = n then, with L the line through a containing in�nitely many points,

the point projLb lies at distance n � 2 from b, and (a; projLb) 2 
. Hence

(a; b) 62 
, and 
 consists precisely of all pairs (a; b) of collinear points with

�1(ab) = 3.

Now 
 := 
 [ 
 is the set of all pairs of collinear points of �. This shows

that � preserves collinearity in case both the orders of � and �0 contain a 2.

Step 7: Distinction between the orders

By the results of the previous steps, we know that the given bijection extends

to an isomorphism between � and �0 if the orders of � and �0 both contain a

2, or if they both do not contain a 2. We now want to exclude the remaining

case. So suppose by way of contradiction that every line of � contains at least

4 points, and that �0 has lines containing exactly 3 points. Note that we can

assume that both � and �0 are in�nite, and n � 0 mod 4. In the case of �0,

the set 
 de�ned in Step 6 is non-empty (since it contains all pairs of collinear

points a; b for which j�01(ab)j =1). We now show that the set 
 (with 
 as

in Step 6) de�ned for the polygon � is empty. Since the size of the set 
 is

preserved by �, this is a contradiction. First, one has to determine the sets

D2, D
0
2 and D4 as de�ned in Step 5 for the polygon �. It is easy to check

that D2 and D0
2 can only contain pairs of points (a; b) for which Æ(a; b) = n.

The set D4 consists of all pairs of points (a; b) for which Æ(a; b) = 4, or for

which Æ(a; b) = 2 such that the line ab is concurrent with a line containing

in�nitely many points, possibly together with some pairs of opposite points.

Now suppose (a; b) 2 
. Then we have Æ(a; b) = n, and there exist points

c; c0; c00 in � such that the conditions (1) up to (5) listed in Step 6 are satis�ed.

Similarly as in Step 6, one proves that Æ(a; v) = Æ(b; v) = n, for v 2 fc; c0; c00g.

Let 
 be a �xed n-path between a and b such that the line of 
 through a

contains in�nitely many points. Let L0 be the line of 
 at distance n
2
� 1

from a. Let Lj be a line at distance j from L0, 0 � j � n
2
� 2, for which

projL0a 6= projL0Lj 6= projL0b. For such a line Lj, we de�ne the set TLj as

follows:

TLj = fx 2 PjÆ(x; Lj) = n� 2� j � Æ(a; Lj); projLja 6= projLjx 6= projLjbg:

The sets TLj are subsets of the set Va;b and consist of unions of sets �1(L) n

fprojLag. Note that by the choice of 
, these sets �1(L) contain in�nitely

many points.

We prove by induction on j that there does not exist a point v 2 fc; c0; c00g

and a line Lj for which the set TLj is de�ned such that TLj � �n�2(v). This



4.7 Proof of the Flag Theorem 185

is done in three parts. In (A), we handle the case j = 0 or j = 2, in (B) the

case 2 < j � n
2
� 4 and in (C) the case j = n

2
� 2.

(A) Let L2 be a line concurrent with L0, projL0a 6= projL0L2 6= projL0b.

Suppose there exists a point v 2 fc; c0; c00g such that TL2 � �n�2(v). Then it

is easy to see that Æ(v; L0) = Æ(a; L0), implying Æ(a; v) < n, a contradiction.

(B) Suppose there exists a line Lj, 2 < j � n
2
� 4 for which the set TLj

is de�ned, and a point v 2 fc; c0; c00g such that TLj � �n�2(v). Denote

by (L0; a1; L2; : : : ; aj�1; Lj) the j-path between L0 and Lj. Then Æ(a; Lj) =

Æ(v; Lj), projLjv = aj�1 but aj�3 6= projLj�2
v =: z (since otherwise, we obtain

a contradiction with the induction hypothesis). Let Z be the projection of v

onto z (note that Æ(Z;L0) = j). Then it is easily veri�ed that TZ\�n�2(v) =

; hence, with fv; v0; v00g = fc; c0; c00g, TZ � �n�2(v
0)[�n�2(v

00). Since for any

line Z 0 concurrent with Lj�2 and di�erent from Z and Lj�4, TZ0 � �n�2(v),

one also has TZ0 \ (�n�2(v
0) [ �n�2(v

00)) = ;. Let N be a line at distance `,

Æ(a; Z) � ` � n�3, from a for which the path [a;N ] contains the path [a; Z]

(implying that the set TN is de�ned and contained in TZ). We claim that

there does not exist a point v0 2 fc; c0; c00g n fvg for which TN � �n�2(v
0).

This is shown by induction on `. In (B1), we consider the case ` = Æ(a; Z)

and in (B2) the case Æ(a; Z) < ` � n� 3.

(B1) Suppose N = Z and TZ � �n�2(v
0). Then as before, Æ(a; Z) = Æ(v0; Z),

projZv
0 = projZa = z but projLj�2

a 6= projLj�2
v0 =: z0. Now for a line Z 00

concurrent with Lj�2 and not through the points z; z0 or aj�3, the set TZ00

is contained in both �n�2(v) and �n�2(v
0), contradicting condition (1) (note

that such a line Z 00 exists since we are in the case s; t � 3).

(B2) Suppose Æ(a; Z) < ` � n� 3 and TN � �n�2(v
0). Let N 0 be the line of

the path [N; a] concurrent with N , and d the intersection point of N and N 0.

Then Æ(a;N) = Æ(v0; N), projNv
0 = projNa = d but projN 0a 6= projN 0v0 =: d0.

Put B = projd0v
0. It is easy to check that TB \ �n�2(v

0) = ;, implying

TB � �n�2(v
00) (with fv; v0; v00g = fc; c0; c00g). But now we obtain as before

a contradiction with condition (1), by considering the set TB0 for a line B0

concurrent with N 0 not through the points d, d0 or projN 0a. This shows that

there does not exist a point v0 2 fc; c0; c00g n fvg for which TN � �n�2(v
0).

Now letM be a line at distance n�5 from a for which the path [a;M ] contains

the path [a; Z]. Let M1, M2 and M3 be three distinct lines concurrent with

M and at distance n�3 from a. Since TM1
is not contained in one of the sets

�n�2(v
0) or �n�2(v

00), we can assume without loss of generality that v0 lies at

distance n � 3 from the line M1, and that y = projM1
v0 is a point of TM1

.

Then v0 lies at distance n� 2 from exactly one point of TM2
, hence the point

v00 lies at distance n � 3 from the line M2, and y0 = projM2
v00 is contained
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in TM2
. But now the set TM3

cannot be covered by �n�2(v
0) [ �n�2(v

00), the

�nal contradiction. So we have shown that there does not exist a line Lj

with j � n
2
� 4 and a point v 2 fc; c0; c00g such that TLj � �n�2(v).

(C) Suppose j = n
2
�2 and TN � �n�2(v). Hence N lies at distance n�3 from

a. Let M be the line of [a;N ] concurrent with N and put aM the projection

of a onto M . For an arbitrary point xi on M di�erent from aM , we denote

by Mi the line through xi di�erent from M . Without loss of generality, we

choose N = M1. Since projM1
v = x1 and projMv = x2 (with x2 6= aM by

the induction hypothesis), �n�2(v) \ TM2
= ;. Hence there exists a point

v0 2 fc; c0; c00g, v0 6= v lying at distance n�3 from the line M2. Since v covers

every set TMi
, i 6= 2, it is clear that projM2

v0 6= x2. Hence v
0 lies at distance

n� 2 from a unique point z of TM1
, a contradiction.

LetM and the linesMi be de�ned as in the previous paragraph. We now have

the following situation. Since the set TM1
contains in�nitely many points,

there is a point v 2 fc; c0; c00g at distance n � 2 from all but one point of

TM1
. Note that this point v lies at distance n � 2 from exactly one point of

the sets TMi
, i 6= 1. We deduce that the line M contains exactly 4 points,

and that there are points v0, v00 of fc; c0; c00g, with fv; v0; v00g = fc; c0; c00g lying

at distance n � 2 from all but one point of TM2
, TM3

respectively. But now

the projections of v and v0 onto the line M3 have to coincide, so we obtain a

point at distance n�2 from a, b, v and v0, contradicting Condition (5). This

ends the proof of Step 7 and hence the case i = n� 2.

The theorem is now proved. 2

4.8 Proof of the Special Flag Theorem

We �rst introduce some notation. A line in the thin polygon � (�0) cor-

responding with a point in � (�0) will be called a p-line, a line in � (�0)

corresponding with a line in � (�0) will be called an L-line. Two points of

the thin polygon � (�0) at distance k, k 6= n and k � 2 mod 4 are said to be

at distance kp (kL) if both projab and projba are p-lines (L-lines). For the rest

of this section, Æ will always refer to this `extended' distance function. Recall

that we only have to consider the case i � 2 mod 4, 2 < i < n. Furthermore,

put Ta;b := �ip(a) \ �ip(b)
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4.8.1 Case ip � n=2

Let S be the set of pairs of points (a; b) of � satisfying Æ(a; b) 6= ip and

Ta;b = ;. We claim that

(a; b) 2 S ()

8<
:

Æ(a; b) � 2i

Æ(a; b) = k < 2i; k � 0 mod 4

Æ(a; b) = kL < 2i; k � 2 mod 4:

Indeed, let (a; b) be an arbitrary pair of points of �. We distinguish the

following possibilities.

(i) Æ(a; b) > 2i or Æ(a; b) = k < 2i with k � 0 mod 4.

If i 6= n=2 then in Case 4.7.1 (i) and (ii) in the proof of Theorem 4.2.2

it was shown that �i(a) \ �i(b) = ;, hence also Ta;b = ;. If i = n=2,

then it is easy to see that �i(a) \ �i(b) 6= ; if and only if Æ(a; b) = n,

which is case (ii) below.

(ii) Æ(a; b) = 2i.

Suppose �rst i = n=2. In this case, �i(a) \ �i(b) contains exactly

two points x and y, namely lying on one of the two distance-n-paths

between a and b. But since Æ(a; b) � 0 mod 4, the lines projax and

projbx cannot be of the same type. Similarly for y. Hence neither x nor

y is contained in Ta;b. Suppose now i < n=2. Without loss of generality,

we can assume projab is a p-line and projba is an L-line. Suppose by

way of contradiction Ta;b contains a point x. Clearly, x 6= a 1 b and

projab = projax. Put [a;R] = [a; b] \ [a; x] and j = Æ(a;R). Since

projbx 6= projba (indeed, the line projbx is necessarily a p-line), there

arises a circuit of length at most 2(2i� j) < 2n, a contradiction.

(iii) Æ(a; b) = kL < 2i with k � 2 mod 4.

Suppose x 2 Ta;b. Clearly, projab 6= projax and projba 6= projbx. So

there arises a circuit of length at most k+2i < 4i � 2n, the contradic-

tion.

(iv) Æ(a; b) = kp < 2i with k � 2 mod 4.

In this case, any point x at distance i� k=2 from M := a1b for which

projMa 6= projMx 6= projMb belongs to Ta;b.

This shows the claim. Put � = fÆ(a; b) j (a; b) 2 Sg.

Now let S 0 be the set of pairs (a; b) of distinct points of � such that ip 6=

Æ(a; b) 62 � and �ip(a)\�6=ip(b) � ��(b). We claim that (a; b) 2 S 0 if and only
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if Æ(a; b) = 2p. Let (a; b) be an arbitrary pair of distinct points of � satisfying

ip 6= Æ(a; b) 62 �. Hence ip 6= Æ(a; b) = kp, k < 2i. There are two possibilities.

(a) Æ(a; b) = 2p.

Any point x of �ip(a)\�6=ip(b) lies at distance i� 2 � 0 mod 4 from b,

hence Æ(b; x) 2 �.

(b) ip 6= Æ(a; b) = kp, 2 < k < 2i.

Put M := a1b and M 0 the line concurrent with M at distance k=2� 2

from a. Let x be a point at distance i � (k=2 � 2) from M 0 for which

projM 0b 6= projM 0x 6= projM 0b. Then Æ(a; x) = ip and the length of the

path consisting of [b;M 0] and [M 0; x] is i+4 � n, hence Æ(b; x) = i+4.

Since i+ 4 � 2 mod 4 and i+ 4 < 2i, Æ(b; x) 62 �.

This shows the claim.

Let �nally S 00 be the set of pairs (a; b) of distinct points of � with Æ(a; b) 6= ip
and for which there exists a point c such that either Æ(a; c) = 2p and Æ(b; c) =

ip or Æ(a; c) = ip and Æ(b; c) = 2p. Then S 00 is the set of pairs of points at

distance i � 2 from each other. Indeed, let (a; b) 2 S 00 and put k = Æ(a; b).

Clearly, k 2 fi�1; iL; i+2g. Without loss of generality we can assume there

is a point c such that Æ(a; c) = 2p and Æ(b; c) = ip. This is easily seen to be

a contradiction unless k = i� 2.

By Theorem 4.2.2, � preserves collinearity. This ends the case ip < n=2.

4.8.2 Case n=2 < ip < n� 2

Let S be the set of pairs of points (a; b) of � satisfying Æ(a; b) 6= ip and

Ta;b = ;. We claim that

(a; b) 2 S ()

�
Æ(a; b) = k � 2n� 2i; k � 0 mod 4

Æ(a; b) = kL � 2n� 2i� 2; k � 2 mod 4:

Indeed, let (a; b) be an arbitrary pair of points of �. We distinguish the

following possibilities.

(i) Æ(a; b) = kp, k � 2 mod 4.

Any point x at distance i � k=2 from M := a1 b for which projMa 6=

projMx 6= projMb is contained in Ta;b.

(ii) Æ(a; b) = kL, k � 2 mod 4, k � 2n� 2i� 2.

Suppose x 2 Ta;b. Then projab 6= projax and projba 6= projbx. Hence

there arises a circuit of length at most k + 2i < 2n, a contradiction.
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(iii) Æ(a; b) = kL, k � 2 mod 4, k > 2n� 2i� 2.

Let � be an apartment containing a and b, and X the element of �

at distance n � k=2 from both a and b for which projaX and projbX

are p-lines. Any point x at distance i � (n � k=2) from X for which

projXa 6= projXx 6= projXb belongs to Ta;b.

(iv) Æ(a; b) = k, k � 0 mod 4, k � 2n� 2i.

It is easy to see that �i(a) \ �i(b) 6= ; if and only if k = 2n� 2i. But

if k = 2n � 2i, the only points of �i(a) \ �i(b) lie in an apartment

containing a and b and opposite the element a1b. Hence either projax

or projbx is an L-line, showing that Ta;b = ;.

(v) Æ(a; b) = k, k � 0 mod 4, k > 2n� 2i.

Fix a k-path 
 between a and b. Without loss of generality, we can

assume that the element X of 
 incident with a is a p-line. Let x be

a point on X di�erent from a and from the projection of b onto X.

Let � be an apartment containing x and b, and Y the line of � at

distance 2n�k
2

+ 1 from b for which projbY is a p-line. Note that also

Æ(a; Y ) = 2n�k
2

+1 and projaY is a p-line. Now any point y at distance

i� (2n�k
2

+ 1) from Y for which projY a 6= projY y 6= projY b belongs to

Ta;b.

This shows the claim. Put � = fÆ(a; b) j (a; b) 2 Sg.

Case i � 2n+2
3

Let S 0 be the set of distinct points of � such that Æ(a; b) 62 � and �ip(a) \

� 6=ip(b) � ��(b) and symmetrically �ip(b) \ �6=ip(a) � ��(a).

We claim that (a; b) 2 S 0 if and only if Æ(a; b) = 2p. Let (a; b) be an arbitrary

pair of distinct points of � for which Æ(a; b) 62 �. Then the following cases

can occur.

(i) Æ(a; b) = kp, k � 2 mod 4.

Similarly as in Case 4.8.1, (a)-(b), one shows that (a; b) 2 S 0 if and only

if Æ(a; b) = 2p.

(ii) Æ(a; b) = kL, k � 2 mod 4, k � 2n� 2i+ 2.

Let � be an apartment through a and b, and X the line of � at distance
2n�k
2

� 2 from a for which projaX is a p-line. Let x be a point at

distance i � Æ(a;X) from X for which projXa 6= projXx 6= projXb.

Then Æ(b; x) = jp with j = i+ 4. Hence Æ(b; x) 62 �.
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(iii) Æ(a; b) = k, k � 0 mod 4, k � 2n� 2i+ 4.

Fix a k-path 
 between a and b. Without loss of generality, we can

assume that the element of 
 incident with a is a p-line. Consider

a point x at distance ip from b and opposite a. (One can construct

such a point x as follows. Let x0 be a point at distance n � k from

b for which projbx is a p-line. Let X be a line incident with x0 and

di�erent from projx0b if k 6= n, and X the p-line through b if k = n.

Since Æ(a;X) = n� 1, it is possible to choose a point x00IX at distance

n�k+2 from b and opposite a. Proceeding like this, we obtain a point

x as claimed). Now Æ(a; x) 62 �.

This shows the claim. Similarly as in Case 4.8.1 it now follows that � pre-

serves collinearity, which ends the proof.

Case 2n+2
3

< i < 3n
4

Noting that i � 2 mod 4, the condition above implies n � 30. Let S 0 be the

set of distinct points of � such that Æ(a; b) 2 � and �ip(a) \ ��(b) 6= ; or

�ip(b) \ ��(a) 6= ;.

We claim that (a; b) 2 S 0 if and only if Æ(a; b) = k � 0 mod 4, 3i� 2n+ 2 �

k � 2n � 2i (note that this interval is nonempty, since n � 8). Let (a; b)

be an arbitrary pair of distinct points of � for which Æ(a; b) 2 �. Then the

following cases can occur.

(i) Æ(a; b) = kL, k � 2 mod 4, k � 2n� 2i� 2.

Let x be a point at distance ip from a. If i + k � n, then Æ(x; b) =

i+ k 62 � (indeed, k+ i � 2n� 2i implies 3i � 2n� k, but we assumed

3i > 2n+2). If i+ k > n and Æ(b; x) 2 �, we obtain a circuit of length

at most i + k + 2n � 2i < 2n (noting that k < i), a contradiction.

Hence �ip(a) \ ��(b) = ;. Symmetrically, also �ip(b) \ ��(a) = ;. So

(a; b) 62 S 0.

(ii) Æ(a; b) = k, k � 0 mod 4, k � 2n� 2i.

Without loss of generality, we can assume projab is a p-line and R :=

projba is an L-line. As in (i) above, it follows that �ip(b) \ ��(a) = ;.

Note that i > k. Suppose �rst k � 3i � 2n + 2. Let x be a point

at distance i � k + 1 from R for which projRa 6= projRx 6= b. Then

Æ(a; x) = ip and Æ(b; x) = i�k+2 � 0 mod 4. Since i�k+2 � 2n�2i,

Æ(b; x) 2 �, hence (a; b) 2 S 0. Suppose now k < 3i � 2n + 2 and let x

be a point at distance ip from a. Suppose by way of contradiction that
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Æ(b; x) 2 �. If [a; x] contains [a; b], then Æ(b; x) = jp with j = i � k,

hence Æ(b; x) 62 �. Put [a; x] \ [a; b] = [a;R0] and r = Æ(a;R0). Note

that we obtain a path of length k + i� 2r between b and x (consisting

of the paths [b; R0] and [R0; x]). If k + i � 2r � n, then Æ(b; x) 2 �

implies k + i � 2r � 2n � 2i. But k + i � 2r > i � k > 2n � 2i, a

contradiction. If k + i � 2r > n, then we obtain a circuit of length at

most k + i� 2r + 2n� 2i < 2n, a contradiction. So (a; b) 62 S 0.

This shows the claim. Put � = fÆ(a; b) j (a; b) 2 S 0g. Hence � = fk 2

N j k � 0 mod 4 and 3i� 2n+ 2 � k � 2n� 2ig.

Let S 00 be the set of distinct points of � such that Æ(a; b) 2 � and j��(a) \

��(b)j is �nite. De�ne T
�
a;b := ��(a) \ ��(b).

We claim that (a; b) 2 S 00 if and only if Æ(a; b) = k � 0 mod 4, 4n� 5i+2 �

k � 2n� 2i (note that this interval is nonempty, since i � 2n+2
3

). Let (a; b)

be an arbitrary pair of distinct points of � for which Æ(a; b) 2 �. Then we

distinguish the following cases.

(i) Æ(a; b) = k � 4n� 5i� 2

Let x be a point a distance 2n � 2i from a for which the path [a; x]

contains the path [a; b]. Then Æ(b; x) = 2n � 2i � k � 3i � 2n + 2, so

clearly, Æ(b; x) 2 �. Since 2n� 2i� k � 4 and not both the p-lines and

the L-lines are �nite (indeed, n > 16), we obtain that T �
a;b is in�nite.

(ii) Æ(a; b) = k � 4n� 5i+ 2

We show that the points of T �
a;b all belong to the path [a; b], which

implies that this set is �nite. Let x be a point for which Æ(a; x) 2 �.

Suppose �rst projab 6= projax. Then we obtain a path of length k +

Æ(a; x) between b and x. If k+ Æ(a; x) � n, then Æ(b; x) = k+ Æ(a; x) �

(4n� 5i+2)+ (3i� 2n+2) = 2n� 2i+4, showing that Æ(b; x) 62 �. If

k + Æ(a; x) > n, then Æ(b; x) 2 � implies there is a circuit of length at

most k + Æ(a; x) + 2n � 2i � 6n � 6i < 2n, a contradiction. Suppose

now that projab = projax. If the path [a; x] contains the path [a; b],

then Æ(b; x) = Æ(a; x) � k � (2n � 2i) � (4n � 5i + 2) = 3i � 2n � 2,

showing Æ(b; x) 62 �. Now suppose x does not lie on the path [a; b] and

put [a; x] \ [a; b] = [a;R0] and r = Æ(a;R0). If k + Æ(a; x) � 2r � n,

then Æ(b; x) = k + Æ(a; x) � 2r � 2 mod 4, hence Æ(b; x) 62 �. If

k+ Æ(a; x)� 2r > n, then Æ(b; x) 2 � implies there is a circuit of length

at most k + Æ(a; x) � 2r + 2n � 2i � 6n � 6i � 2r < 2n, the �nal

contradiction.

This shows the claim.
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Now put A := maxfjT �
a;bj j (a; b) 2 S 00g. Since for a pair (a; b) 2 S 00, the

points of T �
a;b all lie on [a; b], the number of points in T �

a;b only depends from

the distance between a and b. Note that A 6= 0. We claim that for a pair

(a; b) 2 S 00, jT �
a;bj = A if and only if Æ(a; b) = 2n� 2i. Indeed, let (a; b) be a

pair of points contained in S 00 with Æ(a; b) = k 6= 4n� 5i+2 (this is possible

since 4n� 5i+ 2 6= 2n� 2i) and for which jT �
a;bj 6= 0. We show that jT �

a;bj >

jT �
a;b0 j, with b

0 the point of [a; b] at distance 4 from b. Clearly, we may assume

jT �
a;b0 j 6= 0. Let x be a point of T �

a;b0 . Then x also belongs to T �
a;b because

Æ(x; b) = Æ(x; b0) + 4, Æ(x; b0) 2 � and Æ(x; b0) < 2n � 2i (indeed, Æ(x; b0) =

2n � 2i would imply Æ(a; x) = 0). This shows that jT �
a;bj � jT �

a;b0 j. Let y be

the point of T �
a;b0 at minimal distance from a. Now let y0 be the point of [a; b]

at distance Æ(a; y) from b. Then Æ(b; y0) 2 � and Æ(a; y0) = Æ(b0; y) + 4 2 �.

So y0 2 T �
a;b but y

0 62 T �
a;b0 since Æ(b

0; y0) = Æ(b; y0)� 4 = Æ(a; y) � 4 62 � since

Æ(a; y) was chosen to be minimal in �. We thus showed that jT �
a;bj > jT �

a;b0 j.

Now the claim immediately follows.

We thus recovered distance 2n � 2i. By Theorem 4.2.2, this ends the proof

in this case.

Case 3n
4
� i < n� 2

Note that 4(n � i) � n. If 4(n � i) < n, let S 0 be the set of pairs (a; b) of

distinct points of � such that Æ(a; b) =2 � and j��(a) \ ��(b)j = 1. Let S 00

be the set of pairs of points (a; c) for which there exists a point b such that

(a; b) 2 S 0 and ��(a)\��(b) = fcg. If 4(n� i) = n, let S 0 be the set of pairs

(a; b) of distinct points of � such that Æ(a; b) =2 � and ��(a)\ ��(b) = fc; dg,

with ��(c) \ ��(d) = fa; bg. Let S 00 be the set of pairs of points (a; c) for

which there exists a point b such that (a; b) 2 S 0 and c 2 ��(a) \ ��(b). We

claim that in both cases S 00 is exactly the set of pairs of points at distance

2n� 2i from each other. We have the following possibilities to consider.

(i) Æ(a; b) = kp, k < 2n� 2i.

Every point x at distance 2n�2i�k=2 from the lineM := a1b for which

projMa 6= projMx 6= projMb belongs to ��(a) \ ��(b). Moreover, since

2n� 2i� k=2 � 3, there are at least two collinear points c; d contained

in ��(a) \ ��(b). So for these two points c; d, ��(c) \ ��(d) 6= fa; bg.

We conclude that (a; b) 62 S 0.

(ii) Æ(a; b) = k, k > 4(n� i).

In this case, it is easy to see that ��(a)\��(b) = ; (indeed, if not, then

necessarily 4(n� i) = n, contradicting k > 4(n� i)). So (a; b) 62 S 0.
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(iii) Æ(a; b) = k � 0 mod 4, 2(n� i) < k � 4(n� i).

Suppose �rst k < 4(n � i). Then the point c (d) of [a; b] at distance

2n� 2i from a (b) belongs to ��(a) \ ��(b). If a 2 ��(c) \ ��(d), then

clearly, every point on the line R0 := projab di�erent from projR0b also

belongs to ��(a)\��(b), hence ��(c)\��(d) 6= fa; bg. So if k < 4(n�i),

(a; b) 62 S 0. Now consider the case k = 4(n� i). If 4(n� i) < n, then it

is easy to see that ��(a)\��(b) = fcg, with c = a1b, so (a; b) 2 S 0 and

c lies at distance 2n� 2i from both a and b. If 4(n� i) = n, then it is

easy to see that ��(a)\ ��(b) = fc; dg, with c and d the unique points

on the two n-paths joining a and b. Hence also ��(c) \ ��(d) = fa; bg

(so (a; b) 2 S 0), and both c; d lie at distance 2n� 2i from a; b.

(iv) Æ(a; b) = k � 2 mod 4, 2(n� i) < k < 4(n� i).

Let Ra (Rb) be the line of [a; b] at distance 2n � 2i � 1 from a (b),

and c (d) a point on Ra (Rb) di�erent from both projRa
a and projRa

b

(projRb
a and projRb

b). In this way, we obtain two distinct points c; d of

��(a)\��(b) for which ��(c)\��(d) 6= fa; bg, except if k = 4(n� i)�2

(then Ra = Rb = a 1 b) and a 1 b contains exactly 3 points. In the

latter case, it is easily seen that the unique point c on M := a 1 b

distinct from projMa and projMb is the unique point of ��(a) \ ��(b)

(hence (a; b) 2 S 0), and c lies at distance 2n� 2i from both a and b.

This shows the claim. We thus recovered distance 2n � 2i, and the result

follows by Theorem 4.2.2.

4.8.3 Case ip = n� 2

Note that n � 0 mod 4. Let S be the set of pairs of points (a; b) of �

satisfying Æ(a; b) 6= ip and Ta;b = ;. We claim that (a; b) 2 S if and only if

Æ(a; b) 2 f2L; 4g. Indeed, we distinguish the following cases.

(i) Æ(a; b) = kp, k � 2 mod 4

Any point x at distance i � k=2 from the line M := a 1 b for which

projMa 6= projMx 6= projMb belongs to Ta;b.

(ii) Æ(a; b) = kL, k � 2 mod 4

If k = 2L, then any point x of �i(a) \ �i(b) lies at distance n� 3 from

the line ab, hence x 62 Ta;b. If k � 6, let � be an apartment through a

and b, andM 0 the line of � opposite a1b. Then any point x at distance

n�2� (2n�k
2

) fromM 0 for which projM 0a 6= projM 0x 6= projM 0b belongs

to Ta;b (and such points exist because k � 6).
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(iii) Æ(a; b) = k, k � 0 mod 4

If k = 4, then it is easy to see that any point x of �i(a) \ �i(b) lies

opposite a 1 b in an apartment containing a and b. But then either

projax or projbx is an L-line, hence x 62 Ta;b. If k � 8, then let R be

the p-line through a. Without loss of generality, we can assume that

R = projab if k 6= n. Let a0 be a point on R, a 6= a0 6= projRb. Let �

be an apartment containing b and a0, and R0 the line of � at distance
2n�k+2

2
from b for which projbR

0 is a p-line (note that R0 is indeed

a line since 2n � k + 2 � 2 mod 4). Then any point x at distance

n�2� (2n�k+2
2

) from R0 for which projR0a 6= projR0x 6= projR0b belongs

to Ta;b (and such points exist because k � 8).

This shows the claim. Put � = f2L; 4g. Now it is easy to verify that two

points a and b lie at distance 2L if and only if Æ(a; b) 2 �, and there exist

points c; c0 2 ��(a)\��(b), c 6= c0, for which Æ(c; c0) 62 �. (Indeed, if Æ(a; b) =

2L, one can consider points c; c0 lying on a line M intersecting ab in a point

x di�erent from a or b, c 6= x 6= c0. If Æ(a; b) = 4, then assume that projba is

an L-line. Since n > 6, the only points in ��(a) \ ��(b) lie on projba, hence

lie at distance 2L from each other.) So we can distinguish distance 4. By

Theorem 4.2.2 this ends the proof in this case. 2



Appendix A

Minimal generating sets in

H(q)D

A.1 Introduction

In this chapter, the following question keeps us puzzling: how many points do

you need to generate the whole point set of one of the classical hexagons (in

the sense that two distinct collinear points generate the points on the joining

line)? We tackle this question for the �nite dual split Cayley hexagon, since

in this case, some strong results are available in Thas & Van Maldeghem [48].

Indeed, they show that our hexagon admits an embedding in 13-dimensional

projective space, implying that we will need at least 14 points to generate

the whole point set. They also prove that the point set of this hexagon is

generated by the point sets of three thin full subhexagons lying `close' to

each other. In the �rst section, we show how one can select 15 points to

generate these three subhexagons. Hence 15 points are always enough. If

the underlying �eld is of prime order, then it follows that one can do with

14 points. Now the question becomes: is it possible in the general case to

delete one point of this generating set of 15 points, and still to generate the

whole point set? We let the computer work for us, and obtain that this is

indeed possible for q = 4; 8; 9; 16. Now it is up to us to be smarter and faster

than the computer, and beat it by proving the result for all values of q. But

195
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Figure A.1: A generating set of 9 points for �(R1; R2)

for the moment, it seems that we are losing this competition. So the partial

result reads : 14) (1 + q)(1 + q2 + q4) if q is prime or q 2 f4; 8; 9; 16g...

Throughout this chapter, we put � �= H(q)D. Denote by m the size of a

minimal set of points M of � such that the points of M generate � (in

the sense that two distinct collinear points generate all points on the joining

line).

A.2 14 � m � 15

The generalized hexagon H(q)D admits an embedding in PG(13; q) (for an

explicit description, see Thas & Van Maldeghem [48]). This implies that the

point set of � generates PG(13; q), hence m � 14. For the hexagon H(2)D,

there exists a generating set of 14 points (see Thas & Van Maldeghem [48]

or Cooperstein [13]). So from now on, we assume that q > 2.

In Thas & Van Maldeghem [48], the following useful property is proved.

Theorem A.2.1 Let L1 and L
0
1 be two arbitrary opposite lines of �. Let L2

and L0
2 be two distinct lines of the regulus R(L1; L

0
1) both distinct from L1

and L0
1. Then the union of the point sets of the three thin full subhexagons

�(L1; L
0
1), �(L2; L

0
2) and �(L1; L2) generates the point set of �.

Consider a thin full subhexagon �(R1; R2) of �. Note that �(R1; R2) is the

double of a desarguesian projective plane � �= PG(2; q) (where the lines

of �(R1; R2) correspond with the points and lines of �, and the points of

�(R1; R2) correspond with the 
ags of �). Let x; y; z be three di�erent points

of the regulus hR1; R2i, and de�ne vi = projRi
v, with v 2 fx; y; zg. Let �nally
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w0 be a point on the line xx1 di�erent from x or x1, and w = w0
1projzz2w

0.

Now we consider the subset �0 of the point set of �(R1; R2) generated by the

set N = fx; x1; x2; y; y1; y2; z; wg (see Figure A.1). Denote by �0 the subset

of the plane � corresponding with the set �0. Then �0 is a subplane of �.

Indeed, if p1 and p2 are two points of �0, then these two points correspond

with two lines M1 and M2 of �(R1; R2) that are generated by N . Since M1

and M2 necessarily lie at distance 4, the line M1 1M2 of �(R1; R2) is also

generated, and corresponds with the line p1p2. So the line p1p2 is contained in

�0. Similarly, every two lines of �0 meet. The ordinary octagon in �0 through

the points w0; w; projzz2w; z2; y2; y; y1; x1 corresponds with a quadrangle in �
0,

so �0 is a projective plane isomorphic to PG(2; q0). Now we distinguish two

cases.

� q is prime.

In this case, � = �0, so �(R1; R2) is generated by the 8 points of

N . Note that N is a minimal generating set for �(R1; R2), since there

actually exists an embedding of �(R1; R2) in PG(7; q) (for a description,

see for instance Thas & Van Maldeghem [47]).

� q is not prime.

Choose a point u of the regulus hR1; R2i, di�erent from x; y; z and such

that, with u1 = projR1
u, the cross-ratio (x1; y1; z1; u1) generates the

�eld GF(q). Again as before, the set generated by N [fug corresponds

with a subplane �00 of �, but because of the choice of u, � = �00

(indeed, �00 �= PG(2; q00), but GF(q00) contains a generating element of

the �eld GF(q)). So �(R1; R2) is generated by the 9 points of N [fug.

As in the previous case, this is a generating set of minimal size, because

there exists an embedding of �(R1; R2) in PG(8; q) (for a description,

see again Thas & Van Maldeghem [47]).

Now choose a set M0 of 15 points in � as indicated in Figure A.2, with

(p0; p1; p2; p3) a generating element of the �eld GF(q). Then by the previous

observations, these points generate the thin full subhexagons �(p0p3; r0r3),

�(r0r3; s0s3) and �(s0s3; t0t3). Theorem A.2.1 implies that M0 generates �.

Note that if q is prime, the set M0 n fug still generates �. So we obtained

the following theorem.

Theorem A.2.2 If q is prime, then m = 14. If q is not prime, then 14 �

m � 15.
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Figure A.2: A generating set of 15 points for H(q)D
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A.3 m = 14 if q 2 f4; 8; 9; 16g

Put q = ph, p prime. Let M0 be a generating set as in �gure A.2. We

want to delete one point of M0 to obtain a minimal generating set. More

precisely, we delete the point u. PutM =M0 n fug. Note thatM certainly

generates three subhexagons �0(p0p3; r0r3), �
0(r0r3; s0s3) and �0(s0s3; t0t3) of

order (p; 1). We now investigate whether it is possible to select the points

a; b; c and t0 such that the setM still generates �. Our tools are coordinates

and the computer.

choice of coordinates

Let the apartment through x; y; p0 and r0 be the hat-rack of the coordinati-

zation, with x = (1), xp0 = [1], y = (00000), xr0 = [0]. Without loss of

generality, we can choose xs0 = [1]. Further we choose xt0 = [k], z = (00100),

a0 = (a), b0 = (0b) and c0 = (1c).

idea of the computer program

The �rst idea is of course to give the computer the coordinates of the 14

points we selected, and let it do the generating work. This is, whenever

two collinear points are already in the set of generated points, then all the

points on the joining line are added to this set. If at the end, the program

tells us that (q+1)(q4+ q2+1) distinct points were generated, we are done.

Alternatively, we give the computer the coordinates of the 9 lines in the

set M = fp0x; p3y; p1z; r0r3; s0s3; t0t3; aa
0; bb0; cc0g (note that these lines are

certainly generated by M). The job then becomes: whenever two lines L

and L0 at distance 4 from each other are contained inM, add the line L1L0

to M. If at the end, the set M contains (q + 1)(q4 + q2 + 1) distinct lines,

then the setM of 14 points we started from, is indeed a generating set for �.

We give a method to make the program a bit faster. Denote by �01, �
0
2 and

�03 the three thin subhexagons �0(p0p3; r0r3), �
0(r0r3; s0s3) and �0(s0s3; t0t3).

Then each �0i is contained in a full subhexagon �i of order (q; 1). Dually,

in H(q), these �i correspond to ideal subhexagons lying in a hyperplane 
i
of PG(6; q). Suppose that at a certain moment, a line L is generated for

which the corresponding point of �D lies in a hyperplanes 
j of PG(6; q),

j 2 f1; 2; 3g, and such that L lies at distance 4 from a line L0 contained in

the thin subhexagon �0j. Then in the following step, the line L 1 L0 of �j
will be generated. Now let d0; d1; d2 be the three points on L belonging to

�0j. If projL0L 62 fd0; d1; d2g, and the cross-ratio (d0; d1; d2; projL0L) generates

GF(q), then we know by the previous section that the thin full subhexagon

�j can be generated. This implies that it is possible to generate the whole

point regulus R(x; y), hence the generated set contains the setM0 we started

from, and we are done.
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Figure A.3: numbering of the lines Mi

In the following, we give a generating set obtained by this method for the

cases q = 4; 8; 16; 9 respectively. Put M1 = xp0, M2 = p0p3, M3 = yp3,

M5 = r0r3, M8 = s0s3 and M11 = t0t3. We further label the lines of the three

subhexagons �0(M2;M5) (= �01), �
0(M5;M8) (= �02) and �0(M8;M11) (= �03)

with M1; : : : ;Mk, k = 34 for p = 2 and k = 68 for p = 3. The lines Mi,

i = 1; : : : ; 34 are numbered as in Figure A.3. The subhexagons �i of order

(q; 1) containing �0i correspond with the following hyperplanes 
i of PG(6; q):


1 : X3 = 0


2 : X3 �X5 = 0


3 : kX1 + (1 + k)X3 +X5 = 0:

The computer results are given by the diagrams, where the numbers refer to

the lines Mi, and where, if a line N splits into two lines N1 and N2, this has
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Figure A.4: a minimal generating set for H(4)D

to be read as N = N11N2.

Case H(4)D

Let � be a generating element of GF(4) (satisfying �2 = 1 + �). We choose8>><
>>:

a = �2

b = 1

c = �2

k = �:

M11 = [�; 0; 0] L1 = [1; �2; 1; 0; 1]

M17 = [�2; 0] L2 = [�2; 0; �2; �; 1]

M18 = [0; �; 0; 1; 0] L3 = [�2; �; �2; �]

M24 = [1; 1; 1; 0; 1] L4 = [1; 1; 1; 0; 0]

M25 = [1; 1; 1; 1; 1] L5 = [�; 0; 0; �2; �2]

M29 = [1; �2; 1] L6 = [0; 0; 1; 0; 0]

M31 = [�; �; �2; �2; 1] L7 = [�2; 0; 0; 1]

M32 = [�; �; �2] L8 = [�; �; �2; 0; 1]

The line L8 is contained in �2 and lies at distance 4 from the line M8 of

�02. Also, L8 lies opposite the lines M7 = [1], M9 = [1; 0; 0; 0; 0] and M15 =

[1; 0; 0; 1; 0], which are the lines of �02 intersectingM8. This means that a line

of �2 not contained in �02 will be generated. Since GF(4) contains no sub�eld

di�erent from GF(2), we are done.



202 MINIMAL GENERATING SETS IN H(q)D

L8
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24L1 L2 L3

19 32 19 33 18 34

Figure A.5: a minimal generating set for H(8)D

Case H(8)D

Let � be the generating element of GF(8) (satisfying �3 = 1+�). We choose8>><
>>:

a = �2

b = 1

c = �

k = �:

M17 = [�2; 0] L1 = [�; �; �5; �2; �4]

M18 = [0; �5; 0; 1; 0] L2 = [�4; 0; �; �5; �4]

M19 = [0; �5; 0; 0; 0] L3 = [�4; 0; �; �4; �4]

M24 = [1; 1; 1; 0; 1] L4 = [�3; �; �4; 1; �5]

M32 = [�; �; �5] L5 = [�4; 0; �]

M33 = [1; �; �5; 0; �2] L6 = [�2; 0; �2; �3]

M34 = [1; �; �5; 1; �2] L7 = [�4; 0; �; �3; �2]

L8 = [�2; 1; �4; 1; �4]

The line L8 is contained in �2, lies at distance 4 from the lineM9 = [1; 0; 0; 0; 0]

and lies opposite the lines M6 = [0; 0; 0; 0; 0], M8 = [1; 0; 0] and M28 =

[0; 1; 1; 1; 1]. Similarly as in the previous case, we are done.

Case H(16)D

Let � be the generating element of GF(16) (satisfying �4 = 1 + �). We

choose 8>><
>>:

a = �14

b = �8

c = �8

k = �:
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Figure A.6: a minimal generating set for H(16)D

M18 = [0; �; 0; 1; 0] L1 = [�5; �10; �9; �9; �4]

M20 = [0; �; 0] L2 = [�5; �10; �9; �7; �4]

M21 = [�14; 0; 1; 0] L3 = [�5; �10; �9]

M22 = [�14; 0; 0; 0] L4 = [�5; �10; �9; �12; �13]

M23 = [0; �8; �8] L5 = [1; �8; �14; �7; �14]

M24 = [1; �7; �7; �3; �7] L6 = [0; �; 0; �10; �9]

M29 = [1; �8; �14] L7 = [�2; �8; �7; �6; �6]

M30 = [�7; �4; �10; �12; �] L8 = [0; �8; �8; �10; �5]

M31 = [�7; �4; �10; �11; �] L9 = [�2; �5; �13; �8]

M33 = [1; �8; �14; �; �5] L10 = [�4; �9; �; �11; �9]

L11 = [1; �8; �14; �9; �10]

L12 = [�9; �3; 1; �13; �6]

L13 = [�5; �; �10; �3; �8]

The line L13 is contained in �2 and lies at distance 4 from the line M26 =

[1; �7; �7] of �02 and opposite the lines M7 = [1], M24 = [1; �7; �7; �3; �7] and

M25 = [1; �7; �7; �14; �7] (which are the lines of �02 intersecting M26).

Denote by p0; p1; p2; p3 the projections of respectively M7, M24, M25 and L13

on the line M26. Then these points have coordinates:
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Figure A.7: a minimal generating set for H(9)D

8>><
>>:

p0 = (1; �7)

p1 = (1; �7; �7; �3)

p2 = (1; �7; �7; �14)

p3 = (1; �7; �7; �7):

In PG(6; q), the point pi, i = 0; : : : ; 3, corresponds with the line pri, with

p = (0; 1; 0; 1; 0; 1; �7) and

8>><
>>:

r0 = (1; 0; 0; 0; 0; 0; 1)

r1 = (1; 0; 1; �7; 1; �7; �3)

r2 = (0; 0; 1; �7; 1; �7; �14)

r3 = (�; 0; 1; �7; 1; �7; �7):

The points r0; r1; r2 and r3 are collinear. It is now easy to calculate that

(r0; r1; r2; r3) equals �, hence we are done.

Case H(9)D

Let � be the generating element of GF(9) (satisfying �2 = 1��). We choose

8>><
>>:

a = �

b = �

c = �5

k = �

In this case the subhexagons �0i, i = 1; 2; 3, are of order (3; 1), the union of

their line sets contains 68 lines Mi, i = 1; : : : ; 68. We again choose the lines
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M1; : : : ;M34 as in Figure A.3.

M6 = [0; 0; 0; 0; 0] M30 = [�; �5; �3; �4; �5] L1 = [�; 0; 1; �6]

M7 = [1] M31 = [�; �; �7; 1; �] L2 = [�5; �5; �7; �7; �2]

M17 = [�; 0] M35 = [0; �7; 0; �4; 0] L3 = [�7; �5; �5; �4; 1]

M20 = [0; �7; 0] M36 = [1; �; �3; 1; �] L4 = [1; �3; �7; 0; �6]

M21 = [�; 0; 1; 0] M37 = [�5; 0; 0; 0] L5 = [�3; 1; �7; �6; �2]

M25 = [1; �3; �7; �6; �7] M38 = [1; �3; �7]

M28 = [0; �; �; �6; �5]

The line L5 belongs to the subhexagon �2, and lies at distance 4 from the line

M28 of this �
0
2. The lines of �

0
2 intersecting M28 are the lines M23 = [0; �; �],

M9 = [1; 0; 0; 0; 0], M24 = [1; �7; �3; �; �3] and M39 = M28 1M38 = M28 1

(M7 1 M25) = [1; �3; �7; �7; �7]. Since L5 lies opposite all the lines of �02
intersecting M28, we are done.

A.4 Comments

Our initial aim was to use the computer results to see how one can construct

a generating set for H(q)D, for all values of q. One thing we did was checking

whether for example diagram A.5 also goes through in other �elds of cha-

racteristic 2. So we imitated the calculations of the computer, but now with

general coordinates a; b; c and k. The conclusion was that this `path' only

works for the �eld GF(8). Another attempt was to concentrate on the values

of a; b; c and k instead of on the diagrams, and see similarities between the

results for GF(4) and GF(8). For these �elds, the computer program does

not need much time, so we could really try all possible values of a; b; c and

k. We then tried to see `symmetries' in the good choices, and made a guess

for what a good choice in the �eld GF(16) could be. We seem not to be

very good clairvoyants, since our predictions turned out to be wrong... So

looking at the computer data, no answers, but all the more questions turned

up. For example, sometimes the generated set of lines was not the whole line

set of the hexagon, and not the line set of the three subhexagons over the

prime �eld, but something in between. Moreover, the size of such a set was

often the same for distinct choices of a; b; c and k. We would of course like to

explain these mysteries in a geometric way. But perhaps this puzzle was not

designed for geometers at all, and came into our hands only by accident?
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Appendix B

Veelhoeken in Veelvoud

B.1 Van veelhoek naar veralgemeende veel-

hoek

Veralgemeende veelhoeken zijn meetkundige structuren die werden ingevoerd

door de (van oorsprong Belgische) wiskundige Jacques Tits in 1959, in een ap-

pendix van het artikel `Sur la trialit�e et certains groupes qui s'en d�eduisent'.

Oorspronkelijk stonden de veralgemeende veelhoeken ten dienste van de groe-

pentheorie, maar al gauw begon men zich te interesseren voor deze structuren

op zich. Zoals de naam al laat vermoeden, zijn veralgemeende veelhoeken

opgebouwd uit veel gewone veelhoeken. We geven nu een precieze de�nitie.

Een veralgemeende n-hoek, n � 2, is een meetkunde � bestaande uit een

verzameling punten P, een verzameling rechten L, en een relatie I, de zoge-

naamde `incidentierelatie' die beschrijft wanneer een punt op een rechte ligt

(of een rechte door een punt gaat), zodat aan de volgende axioma's voldaan

is:

(i) in de meetkunde � zijn geen gewone k-hoeken, met k < n te vinden,

(ii) door elke twee punten, twee rechten, of een punt en een rechte is steeds

een gewone n-hoek te vinden,

(iii) er is ergens in de meetkunde een gewone (n+ 1)-hoek te vinden.

Axioma (iii) kan men ook vervangen door het volgende axioma:

(iii)0 Elke rechte bevat minstens 3 punten, en door elk punt gaan minstens

3 rechten.

207



208 VEELHOEKEN IN VEELVOUD

Gebruik makende van deze axioma's kan men aantonen dat elke rechte een-

zelfde aantal (= s+ 1) punten bevat, en dat door een punt eenzelfde aantal

(= t + 1) rechten gaan. We zeggen dan dat � orde (s; t) heeft. Zijn er

slechts een eindig aantal punten en rechten, dan wordt � een eindige veralge-

meende veelhoek genoemd. De veralgemeende 3-hoeken zijn juist de projec-

tieve vlakken, en werden al uitgebreid bestudeerd v�o�or de andere leden van

de veralgemeende veelhoeken-familie het levenslicht zagen.

Er bestaan voorbeelden van veralgemeende n-hoeken voor elk natuurlijk getal

n. Merkwaardig genoeg bestaan eindige veralgemeende n-hoeken enkel voor

n 2 f3; 4; 6; 8g. Voor deze waarden van n zijn er wat we noemen klassieke

voorbeelden, d.w.z. voorbeelden die nauw verwant zijn met favoriete objecten

van meetkundigen, zoals kwadrieken in projectieve ruimtes.

Een belangrijk begrip in een veralgemeende veelhoek is de afstand. Een

pad in een veralgemeende veelhoek bestaat uit een opeenvolging van punten

en rechten die incident zijn. De lengte van een pad wordt gede�nieerd als

het aantal stappen dat je moet zetten om van het begin naar het einde te

wandelen. Een pad (p; L; p0; L0; p00) tussen de punten p en p0 heeft dus lengte

4. Omdat elke twee elementen van een veralgemeende n-hoek bevat zijn in

een gewone n-hoek, is het duidelijk dat, om van een element in een ander

element te geraken, hoogstens n stappen nodig zijn. De afstand tussen twee

elementen is dus hooguit n. Elementen op afstand n worden tegenvoeters

genoemd.

Veralgemeende veelhoeken zijn niet enkel het speelgoed van meetkundigen,

maar duiken ook op in eerder algebra��sch of groep-theoretisch onderzoek. In

deze thesis gaan we echter de meetkundige toer op. De bedoeling is enkele

(los van elkaar staande) problemen te bekijken, en zo `onze veelhoekjes' bij

te dragen aan de grote veelhoek-puzzel.

Hoofdstuk 1 bundelt de gebruikte de�nities en stellingen. Voor een uitgebrei-

dere kennismaking met de theorie van de veralgemeende veelhoeken verwijzen

we naar het standaardwerk Generalized Polygons, Van Maldeghem [57].

B.2 Ken uw klassiekers

Voor de klassieke voorbeelden van veralgemeende veelhoeken vertaalt het ver-

band met meetkundige objecten als kwadrieken zich in `mooie' eigenschappen

van deze veelhoeken. Nog mooier is het als die eigenschappen het klassieke

voorbeeld in kwestie karakteriseren, d.w.z. van zodra een willekeurige ver-

algemeende veelhoek die eigenschap heeft, is hij klassiek. In hoofdstuk 2
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regulus intersectieblok

    

(3,4)-positie

b

L M

spoor

b

c
c

a aa

b

worden een aantal karakteriseringen van klassieke veralgemeende zeshoeken

gegeven. Hierbij zijn de volgende begrippen in een veralgemeende zeshoek

essentieel (zie ook de �guur):

� Neem twee tegenvoetse punten a en b. Op elke rechte door a ligt een

uniek punt op afstand 4 van b. Deze verzameling punten wordt het

spoor ab met basispunt a genoemd. Als alle sporen van een veralge-

meende zeshoek � (dus met willekeurig basispunt) zich gedragen zoals

rechten (d.w.z. twee verschillende sporen snijden in ten hoogste 1 punt),

dan wordt � punt-2-regulier genoemd.

� Neem twee tegenvoetse rechten L en M . De verzameling punten op

afstand 3 van L en M wordt de regulus bepaald door L en M ge-

noemd. Als de reguli van een veralgemeende zeshoek � zich gedragen

zoals rechten (d.w.z. twee verschillende reguli snijden in ten hoogste 1

rechte), dan wordt � 3-regulier genoemd.

Het begrip regulariteit ligt aan de grondslag van heel wat meetkundige karak-

teriseringen van veralgemeende zeshoeken. Een belangrijke karakterisering

is deze van Ronan [35], die zegt dat, van zodra een veralgemeende zeshoek

punt-2-regulier is, de zeshoek noodzakelijk klassiek is.

In een 2-reguliere zeshoek wordt dus een voorwaarde opgelegd op de doorsnede

van elke twee sporen met zelfde basispunt. Een aantal karakteriseringen

pogen die voorwaarde te verzwakken. Een intersectieblok is een doorsnede

van twee sporen ab en ac, maar waarbij de punten b en c zodanig gekozen

zijn dat er een punt bestaat collineair met b en c, en op afstand 4 van het

punt a (zie �guur). Dit begrip werd ingevoerd door Ronan (zie [37]). In

een klassieke zeshoek van de orde (q; t) die niet punt-2-regulier is, bevat zo'n

intersectieblok juist t=q + 1 punten. De vierde tekening in de �guur geeft

aan hoe het begrip intersectieblok iets kan veralgemeend worden: we eisen
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nu dat er een rechte bestaat op afstand 3 van a; b en c. In dit geval zeggen

we dat b en c in (3; 4)-positie liggen ten opzicht van a. Dit geeft de volgende

karakterisering.

Stelling Een eindige veralgemeende zeshoek van de orde (q; t) is duaal klassiek

als en slechts als jab \ acj � t=q + 1, voor elk drietal punten a; b en c zodat b

en c in (3; 4)-positie liggen ten opzichte van a.

We geven nu nog enkele voorbeelden van karakteriseringen uit hoofdstuk 2.

Stelling Zij � een eindige veralgemeende zeshoek. Dan is � isomorf met de

klassieke zeshoek H(q) of T(q3; q), beide met q even, als en slechts als voor

elk punt x, en elke twee tegenvoetse rechten L en M , er steeds een punt in

de regulus bepaald door L en M bestaat dat niet tegenvoets x ligt.

(C) Veronderstel dat een punt a op afstand 4 ligt van juist �e�en punt r van

een regulus R, en tegenvoets alle andere punten van die regulus, dan

liggen alle punten van R n frg op afstand 4 van het unieke punt dat

collineair is met a en r.

Stelling Zij � een eindige veralgemeende zeshoek van de orde (s; s3) of

(s0
3
; s0) die aan voorwaarde (C) voldoet. Dan is � isomorf met �e�en van de

klassieke zeshoeken T(s; s3) of T(s0
3
; s0), met s0 oneven.

Stelling Zij � een eindige veralgemeende zeshoek van de orde (q; t), q even.

Dan voldoet � aan eigenschap (C) als en slechts als � isomorf is met �e�en

van de duaal klassieke zeshoeken H(q)D, q niet deelbaar door 3 of T(q; q3).

B.3 Vergeethoeken

De bedoeling van hoofdstuk 3 is een soort veralgemening van het begrip

veralgemeende veelhoek te de�ni�eren. Daarvoor inspireerden we ons op de

de�nitie van een (duaal) semi-aÆen vlak, een structuur ingevoerd door Dem-

bowski. Bij een aÆen vlak is er voor elk niet-incident punt-rechte paar fp; Lg

juist �e�en rechte door p `parallel' met L. Door `juist �e�en' te vervangen door

`hoogstens �e�en', bekomt men de de�nitie van een semi-aÆen vlak. Aangezien

parallellisme een equivalentierelatie de�nieert, kunnen we ook zeggen dat elke

twee rechten snijdend of parallel zijn. We bekijken nu de duale structuur,

d.w.z. met een equivalentierelatie op de punten in plaats van op de rechten.

In de bekomen structuur zullen dus elke twee rechten snijden, en elke twee

punten collineair of equivalent zijn. Sommige rechten zijn dus `vergeten', en



B.3 Vergeethoeken 211

vervangen door equivalentieklassen van punten (de `gaten' in het geheugen

van de veelhoek).

Om dit te veralgemenen naar n-hoeken starten we met een meetkunde � =

(P;L; I), en een equivalentierelatie op de puntenverzameling. Een gewone

n-vergeethoek is dan een gewone n-hoek in deze meetkunde, maar waarbij

sommige zijden vervangen kunnen zijn door equivalentieklassen van punten.

De meetkunde � wordt een n-vergeethoek genoemd als de volgende axioma's

voldaan zijn:

(i) in de meetkunde � zijn geen gewone k-vergeethoeken, met k < n te

vinden,

(ii) door elke twee punten, twee rechten, of een punt en een rechte is steeds

een gewone n-vergeethoek te vinden,

(iii) elke rechte bevat minstens drie punten, door elk punt gaan minstens

twee rechten, door een punt dat enkel equivalent is met zichzelf gaan

minstens drie rechten.

Duidelijkerwijs voldoet een veralgemeende n-hoek aan bovenstaande axioma's,

door elke equivalentieklasse van grootte 1 te nemen. De eindige duale semi-

aÆene vlakken (dus de 3-vergeethoeken) zijn geclassi�ceerd; ze ontstaan

uit een projectief vlak (dus een veralgemeende 3-hoek) door (stukken van)

rechten te vervangen door equivalentieklassen. Dit brengt ons op idee�en om

n-vergeethoeken te constueren. Zo kunnen we bijvoorbeeld starten met een

veralgemeende n-hoek �, en een verzameling niet-snijdende rechten in �.

Door elk van deze rechten te vervangen door een equivalentieklasse, bekomen

we een n-vergeethoek. Een ander voorbeeld verkrijg je door te starten van

een veralgemeende vierhoek �, en hieruit �e�en punt p weg te laten. Elke

rechte door p wordt een equivalentieklasse, het resultaat is een 4-vergeethoek

waarbij elke equivalentieklasse juist 1 punt minder bevat dan een willekeurige

rechte.

De vraag is nu of elke eindige vergeethoek eigenlijk niets anders is dan een

vergeetachtig geworden veralgemeende veelhoek. In hoofdstuk 3 wordt de

volgende stelling aangetoond:

Stelling Een eindige n-vergeethoek, met n oneven, wordt steeds bekomen uit

een eindige veralgemeende n-hoek, en bestaat dus enkel voor n = 3.

Een vergeethoek wordt kort van geheugen genoemd als er parameters (g; k; d)

bestaan zodat:

� door elk punt juist k rechten en �e�en niet-triviale klasse, of k+1 rechten

en geen niet-triviale klasse gaan,
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� elke niet-triviale klasse juist g punten bevat,

� elke rechte g + d punten bevat, d � 1.

Bij een vergeethoek die kort van geheugen is zijn de rechten dus `langer' dan

de klassen.

Stelling Een eindige n-vergeethoek, met n even, wordt bekomen uit een

eindige veralgemeende n-hoek, of is kort van geheugen.

In hoofdstuk 3 concentreren we ons dan verder op de 4-vergeethoeken die kort

van geheugen zijn. We tonen aan dat, als d = 1, deze ook bekomen kunnen

worden uit een veralgemeende 4-hoek, en geven voorbeelden en karakteris-

eringen van 4-vergeethoeken die werkelijk zeer kort van geheugen zijn. Hierbij

blijft het wel een vraagteken of deze voorbeelden ook bekomen kunnen wor-

den uit een veralgemeende 4-hoek op de gebruikelijke manier, d.w.z. door

het vergeten van rechten.

B.4 Veelhoeken door een speciale bril

Zoals reeds gezegd is in een veralgemeende veelhoek een afstand gede�nieerd.

Als tussen twee veralgemeende veelhoeken een afbeelding bestaat die alle

afstanden bewaart, dan is die afbeelding een isomor�sme. De vraag is nu of

we deze voorwaarde kunnen verzwakken. Veronderstel dus dat tussen twee

veralgemeende n-hoeken een afbeelding bestaat die een bepaalde afstand i

bewaart: is deze afbeelding een isomor�sme? In hoofdstuk 4 tonen we het

volgende aan:

Stelling

� Zij � en �0 twee veralgemeende n-hoeken, n � 4, i een even getal,

2 � i � n�1 en � een surjectieve afbeelding van de puntenverzameling

van � naar de puntenverzameling van �0. Als voor elke twee punten a

en b van �, Æ(a; b) = i als en slechts als Æ(a�; b�) = i, dan is � uit te

breiden tot een isomor�sme tussen � en �0.

� Zij � en �0 twee veralgemeende n-hoeken, n � 2, i een oneven getal,

1 � i � n�1 en � een surjectieve afbeelding van de puntenverzameling

van � naar de puntenverzameling van �0 en van de rechtenverzameling

van � naar de rechtenverzameling van �0. Als voor elk punt-rechte paar

fa; bg van �, Æ(a; b) = i als en slechts als Æ(a�; b�) = i, dan de�nieert

� een isomor�sme tussen � en �0.
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De idee van het bewijs van deze stelling is de volgende. De bedoeling is

aan te tonen dat � collineariteit bewaart (dan volgt het gestelde uit een

reeds bestaande karakterisering van isomor�smen). We kijken nu naar de

gegeven veelhoek met een speciale bril, die ons enkel toelaat te zien of twee

elementen al dan niet op afstand i gelegen zijn. Door deze bril zien � en �0 er

hetzelfde uit, wegens de afbeelding �. Als we nu een manier kunnen vinden

om met deze bril toch collineariteit te ontdekken, dan weten we dus dat �

ook collineariteit bewaart. Het bewijs reduceert zich dus tot het zoeken naar

een eigenschap waarin twee collineaire punten zich onderscheiden van twee

niet-collineaire punten, en die geformuleerd kan worden door enkel gebruik

te maken van `afstand i' en `niet afstand i'.

Voor i = n zal het niet mogelijk zijn de stelling te bewijzen, aangezien er

een tegenvoorbeeld bestaat voor �e�en van de klassieke zeshoeken. We kunnen

natuurlijk hopen dat er niet al te veel tegenvoorbeelden zijn. Zo vragen

we ons in hoofdstuk 4 af of misschien alleen zeshoeken aanleiding geven

tot tegenvoorbeelden. Voor eindige veralgemeende veelhoeken kunnen we

inderdaad bewijzen dat alleen zeshoeken van de orde (q; q) problemen geven.

Een andere vraag is of onder de zeshoeken alleen die �ene klassieke zeshoek

een tegenvoorbeeld is. Hier krijgen we een positief antwoord op voorwaarde

dat de automor�smengroep van de zeshoek in kwestie voldoende groot is.

Een variant op bovenstaande stelling verkrijgen we door te gaan kijken naar

afbeeldingen gede�nieerd op de vlaggenverzameling van een veralgemeende

n-hoek. In dit geval kunnen we bewijzen dat er maar �e�en tegenvoorbeeld is,

namelijk voor de kleinste veralgemeende vierhoek.

B.5 Strategische verzamelingen in een klassieke

zeshoek

In appendix A concentreren we ons op de klassieke zeshoek H(q)D. Veron-

derstel dat een bericht moet doorgegeven worden naar alle punten van deze

zeshoek, en dat, van zodra twee collineaire punten van het bericht op de

hoogte zijn, ook alle punten op de rechte door deze twee punten kunnen

ge��nformeerd worden. Hoeveel startpunten zijn minimaal nodig om op die

manier alle (q + 1)(q4 + q2 + 1) punten op de hoogte te brengen? Zo'n

verzameling startpunten die de hele zeshoek voortbrengen, noemen we een

strategische verzameling. De uitdaging is nu een strategische verzameling met

een minimaal aantal punten te vinden. Een stelling bewezen door Thas &

Van Maldeghem (zie [48]) leert dat zeker een strategische verzameling van
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15 punten bestaat, en dat je altijd minstens 14 punten zal nodig hebben.

Als q een priemgetal is, dan kan het steeds met 14 punten. In appendix A

proberen we nu uit zo'n strategische verzameling van 15 punten, er �e�en te

selecteren, zodat de verzameling zonder dit punt nog steeds strategisch blijft.

Om een idee te hebben van het te bewijzene (14 is mogelijk, of 14 is zeker

niet mogelijk) pakten we de kleinste gevallen aan met de computer. In deze

gevallen bleek er inderdaad een `overbodig' punt te zitten in de verzameling

van 15 punten. Of en hoe dit te veralgemenen is voor een willekeurige waarde

van q, blijft voorlopig een goed bewaard `militair' geheim van deze zeshoek,

dus het gedeeltelijk resultaat dat we bekomen is: 14 ) (q + 1)(q4 + q2 + 1)

als q priem is, of q 2 f4; 8; 9; 16g...
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Index of Notations

�i(x) the set of elements of � at distance i from x

x? the set of points collinear with the point x

x?? the set of points not opposite the point x

x
y

[i]
�i(x) \ �n�i(y), with Æ(x; y) = n

xy x
y

[2]
, with Æ(x; y) = n

hx; yi x
y

[n
2
]
, with Æ(x; y) = n

R(x; y) (in 3-regular hexagon) the regulus containing x and y

a1b the unique element at distance
Æ(a;b)

2
from a and b (if de�ned)

[x; y] the shortest path between x and y (if de�ned)

[x; y] projectivity from �1(x) to �1(y)

H(q) �nite split Cayley hexagon of order q

H(q)D �nite dual split Cayley hexagon of order q

T(q3; q) �nite twisted triality hexagon of order (q3; q)

T(q; q3) �nite dual twisted triality hexagon of order (q; q3)
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Index

(3,4)-position, 42

adjacent 
ags, 2

anti-automorphism, 5

anti-isomorphism, 5

anti-regular

2n-gon, 46

hexagon, 44

anti
ag, 2

apartment, 3

association scheme, 23, 95

automorphism, 5

BN-pair, 14, 146

circuit, 2

collineation, 5

coordinatization, 20

Coxeter distance, 14, 113, 155

de�ciency, 91

distance, 2

distance-i-regular, 6

distance-i-trace, 6

distance-preserving map, 111

double of a geometry, 2

dual geometric hyperplane, 148

dual of a geometry, 2

dual ovoidal subspace, 15, 51, 147

elation, 13

embedding, 5

extremal hexagon, 6, 16, 41

�nite classical hexagons, 11

�nite dual classical hexagons, 11

�nite geometry, 2


ag, 2

forgetful polygon, 61

forgetful quadrangle

arising from generalized quad-

rangle, 109

full subpolygon, 4

G2(K ), 14, 151

generalized n-gon, 3

generating set, 196

geometric hyperplane, 15, 148

geometry, 2

girth, 2

grid, 8

group of projectivities, 13

with respect to spread, 54

H(K ), 10

hat-rack of the coordinatization, 18

Hermitian spread, 15, 51

homology, 13

hyperbolic line, 16, 146

long, 17

ideal subpolygon, 4, 97

imaginary line, 16, 36

incidence geometry, 2

incidence graph, 2

incidence relation, 2

intersection set

(i; j)-intersection set, 30

half (i; i)-intersection set, 32
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in generalized hexagon, 16

intersection-regular, 50

isolated point, 61

isomorphism, 5

k-path, 2

Krein conditions, 23

length of a path, 2

line blocking set, 50

line pencil, 4

line regulus, 7

little projective group, 13

Moufang hexagons, 13

Moufang path, 13

Moufang polygon, 13

opposite elements, 4

order, 2

ordinary n-gon, 2

ovoid

of generalized hexagon, 15

of generalized polygon, 14

of generalized quadrangle, 14

regular ovoid, 15, 97

ovoidal subspace, 15, 47

parameters of a polygon, 3

path, 2

forgetful, 61

perp, 4

point regulus, 7

point row, 4

projection, 4

projectivity, 13

R(u; v), 7

Ree-Tits octagons, 13

regular element, 6

regulus, 7

semi-aÆne plane, 59

semi-plane, 70

short forgetful polygon, 92

of ovoid type, 98

of subquadrangle type, 97

span-regular, 17

split Cayley hexagon, 10

spread

Hermitian, 15

of polygon, 14

square forgetful polygon, 70

strongly regular graph, 22, 94, 154

subgeometry, 2

subpolygon, 4

T(K ; K (�); �), 11

thick geometry, 2

thin element, 2

Tits polygon, 14

Tits system, 14

trace, 6

triad of points, 6

triality, 10

twisted triality hexagon, 11

weak anti-regular, 44

weak generalized n-gon, 3

Weyl group, 14


