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Samenvatting

Gëıoniseerde gassen werden voor het eerst gekarakteriseerd door de naam plasma’s door
Nobelprijswinnaar (1932) Irving Langmuir in 1927. De term plasma werd een eeuw eerder
reeds gebruikt in de geneeskunde en verwijst ook daar naar een typisch dynamisch karak-
ter. Net zoals het bloedplasma rode en witte bloedcellen vervoert, worden energetische
elektronen, ionen en onzuiverheden getransporteerd in het elektrisch geleidende gas. Het
taalkundig verwante adjectief “plastisch” benadert misschien nog het meest het verander-
lijk karakter van plasma’s in vorm, volume en ionisatiegraad. De verzamelnaam plastic
heeft trouwens dezelfde origine als plasma, de polymeren in kwestie kunnen tijdens de
productiefase namelijk in haast eender welke vorm gegoten worden.

In de natuur- en scheikunde staat een plasma effectief voor een vierde aggregatietoestand,
naast de traditionele vaste, vloeibare en gas-aggregatietoestanden. Het voornaamste on-
derscheidende kenmerk tussen de verschillende aggregatietoestanden is de sterkte van de
bindingen tussen de samenstellende deeltjes. Het verhitten van een substantie verstoort
het bestaande evenwicht tussen de thermische energie en de bindingen van de deeltjes
en kan leiden tot een overgang naar een andere aggregatietoestand. Zo zal de voldoende
verhitting van een vaste stof leiden tot een vloeibare fase en verdere verhitting op analoge
wijze tot een gasfase. Als de temperatuur nog verder wordt opgevoerd zal een moleculair
gas geleidelijk dissociëren in atomen en vervolgens zullen deze atomen gëıonizeerd wor-
den, de elektronen in de buitenste schil worden uiteindelijk voldoende energetisch zodat
zij kunnen ontsnappen. Nochtans zijn er ook verschillen met de traditionele aggregatie-
toestanden, zo vindt de overgang van bijvoorbeeld de vloeistof- naar de gasfase plaats bij
constante temperatuur en druk en vereist deze overgang energie (latente warmte). Dit in
tegenstelling tot de vorming van een plasma waar geen warmte wordt geabsorbeerd en de
overgang geleidelijk gebeurt met de toename van de temperatuur.

Een plasma is dus een verzameling van energetische ionen en elektronen, die niet langer
aan elkaar gebonden zijn. De term plasma wordt in het algemeen slechts toegekend aan
gëıonizeerde gassen met een voldoende groot aantal geladen deeltjes opdat de deeltjes zich
collectief zouden gedragen. Dit betekent in de praktijk dat de dimensies van het plasma
deze van de Debyelengte vele malen overtreffen.

De plasmatoestand is in feite de standaard in de kosmos, waar meer dan 99% zich in
deze toestand bevindt. Door de aanwezigheid van een atmosfeer op aarde echter vereist
de aanwezigheid van een plasma zodanig hoge temperaturen dat ze eerder uitzonderlijk
in de natuur voorkomen. De natuurlijke fenomenen op aarde die plasma’s creëren zijn
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onder andere bosbranden, vulkaanerupties en bliksem. De bliksemschichten bestaan uit
een lint van luchtmoleculen, waarvan ongeveer 20% gëıonizeerd is. Ook de poollichten zijn
niets anders dan grootschalige elektrische ontladingsprocessen, veroorzaakt door de zonne-
wind, met een typisch wit-groene kleur voornamelijk veroorzaakt door de geëxciteerde
zuurstofatomen. Terwijl op het aardoppervlak plasma’s nog relatief weinig voorkomen,
verandert dit snel als we het aardoppervlak verlaten. Vanaf 80 km hoogte reeds neemt het
aandeel van de geladen deeltjes gestaag toe en op een hoogte van 400 km is het grootste
gedeelte van de aanwezige materie gëıonizeerd. Verlaten we alzo de flinterdunne schil die
onze atmosfeer is, dan bereiken we een universum waarin waarlijk de heerschappij van de
plasma’s heerst, met als meest bekende exponent de zon waarin de warmte gegenereerd
via nucleaire fusie enkel de plasmatoestand toelaat.

Naast het gebruik van plasma’s in TL-lampen en ook steeds meer in plasmatelevisies zijn
plasma’s in onze moderne technologie gemeengoed, zo worden ze onder andere intensief
gebruikt bij de fabricage van chips door middel van het plasma-etsen. Ook tekende de wis-
selwerking tussen technologie en natuurkunde vaak voor een sprong in kennis. Zo leidde de
transistor en de daaruit voortvloeiende studie van radiogolven tot de beschrijving van de
ionosfeer. De ionosfeer vormt een reflecterend schild voor radiogolven van lange golflengte,
de meervoudige weerkaatsingen op de ionosfeer verklaren het zeer grote ontvangstbereik
van deze golven. Verder is een groot deel van het onderzoek gericht op het realizeren van
kernfusie, een concept dat een haast onbeperkte energieproduktie mogelijk zou maken en
bovendien enkel relatief ongevaarlijke afvalprodukten zou opleveren. Dit ambitieuze pro-
jekt vereist dat men het plasma in de fusiereaktor voldoende kan verhitten en daarenboven
moet men het extreem verhitte plasma volledig kunnen opsluiten en afschermen van de
reaktorwanden.

Zoals reeds vermeld, gedragen plasmadeeltjes zich collectief in voldoend grote volumes.
Dit feit brengt ons haast op natuurlijk wijze tot golfbewegingen in plasma’s, daar golven
niets anders zijn dan collectieve bewegingen van deeltjes, zoals bijvoorbeeld de geluids-
golven, die lokale ophopingen van deeltjes laten afwisselen met lokale gebieden van lage
deeltjesdichtheid. Golven zijn inderdaad in ruime mate aanwezig in plasma’s en kunnen
een diagnostisch waardevol instrument zijn voor astrofysische objecten en de beschrij-
ving ervan brengt ons tot de grondlegger van de moderne plasmafysica namelijk Hannes
Alfvén (Nobelprijs 1970). Alfvén’s creativiteit opende een nieuwe wereld, vooral door zijn
theorieën over magnetohydrodynamica (MHD), de studie van de beweging van een elek-
trisch geleidend flüıdum, interagerend met magnetische velden. In MHD-modellen is het
flüıdum een sterk gëıonizeerd gas, bestaande uit haast gelijke aantallen van negatief en
positief geladen deeltjes. Alfvén paste zijn plasmamodellen toe op o.a. geomagnetische
stormen, de aurora, de Van Allen stralingsgordels, zonnevlekken en de evolutie van het
zonnestelsel. Hoewel zeker niet zonder belang, vormde de plasmafysica voorheen een eerder
beperkte tak van de natuurkunde die zich beperkte tot theorieën over gasontladingen. Het
is grotendeels Alfvén’s verdienste dat de plasmafysica heden ten dage zulk een waaier van
toepassingen behelst.

In de productie van wafers van steeds meer geminiaturiseerde chips wordt de aanwezigheid
van minuscule stofdeeltjes in de productieruimtes een cruciaal en groeiend probleem. De
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aanwezigheid van stof zorgt evenzeer voor praktische problemen in de huidige experi-
mentele fusiereaktoren, die haast onvermijdelijk als een vergaarbak voor ongewenste stof-
deeltjes fungeren. Deze technologische problemen onderstrepen het groeiende belang dat
men hecht aan de invloed van stofdeeltjes. Dit besef betreffende het belang van stof, is
voornamelijk in het begin van de twintigste eeuw gegroeid. Daarvoor werd stof namelijk
enkel beschouwd als een ongemak voor telescopische waarnemingen. Het werd toen echter
steeds duidelijker dat stof een belangrijke rol speelt in verschillende fysische processen.
Een mooi voorbeeld van een fenomeen te wijten aan de aanwezigheid van stof is het zo-
diakale licht. Het zodiakale licht is een diffuse lichtvlek die in het schemerdonker af en toe
kan waargenomen worden in het eclipticavlak of tijdens een zonsverduistering en is het
gevolg van de diffractie en reflectie van zonlicht op de stofdeeltjes die zich bevinden in de
buurt van de aardbaan.

Onder de noemer stof wordt doorgaans een indrukwekkend scala van deeltjes gecatalogi-
seerd. De chemische samenstelling van stofdeeltjes kan enorm variëren en is sterk afhanke-
lijk van hun omgeving. Zo zijn stofdeeltjes geassocieerd met meteorieten meestal silicaten,
zijnde mineraalstrukturen gebaseerd op SiO4-viervlakken. Vele stofdeeltjes zijn ijzer- en/of
koolstofhoudend, maar ook makromoleculen, “vuile” ijsdeeltjes en met ijs bedekte deeltjes
worden tot de familie van de stofdeeltjes gerekend. Niet alleen de samenstelling van de
stofdeeltjes is verschillend, zij komen ook in vele maten en vormen voor. De grootte kan
daarbij variëren van de orde van grootte van makromoleculen tot zelfs deze van een rots-
blok. We kunnen zonder overdrijven stellen dat stofdeeltjes alomtegenwoordig zijn, meer
zelfs, het zou quasi-onmogelijk zijn een traject uit te stippelen dat geen stof-bevattende
omgeving passeert.

Zowel de plasmatoestand als stofdeeltjes zijn overvloedig aanwezig in het universum en
het is dus ook vanzelfsprekend dat stofdeeltjes in een plasma-omgeving voorkomen. Zulke
plasma’s die een voldoende hoeveelheid stofpartikels bevatten worden doorgaans stof-
plasma’s genoemd. Ook in ons zonnestelsel komen stofplasma’s royaal voor, bijvoorbeeld
in de heliocentrische stofringen, de ringen rond Jupiter, in de staart en coma van kome-
ten alsook in de zogenaamde lichtende nachtwolken in onze atmosfeer. Exemplarisch
voor toepassingen buiten ons zonnestelsel zijn interstellaire stofwolken. Op aarde zijn de
lichtende nachtwolken misschien wel het meest voor de hand liggende voorbeeld van een
stofplasma. Het zijn ijle wolken met een witte of wit-blauwe kleur die zich op erg grote
hoogte bevinden (in de mesopause op 75 tot 90 km hoogte) en bij erg lage temperaturen
(' −80◦C). Deze lichtende nachtwolken kunnen waargenomen worden in het schemer-
donker en dit gedurende de zomermaanden op breedtegraden van 45◦ tot 70◦, doordat
ze nog verlicht zijn door de zon wanneer deze laatste zich al beneden de horizon van de
waarnemer bevindt.

Stofkorrels zijn doorgaans elektrostatisch geladen waarbij de lading verkregen kan worden
door middel van verschillende processen. De belangrijkste manier van opladen gebeurt
door de zogenaamde primaire absorptie van ladingen. In dit ladingsmodel wordt beschreven
hoe een fractie van de elektronen en ionen, die de stofkorrels continu bombarderen, blijft
“kleven” aan het stofoppervlak. Bovendien is dit ladingsproces veranderlijk in de tijd,
de ladingen van de stofdeeltjes kunnen hoogst variabel zijn. De lading van de stofdeel-
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tjes zorgt ervoor dat de stofdeeltjes elektrostatisch met het plasma alsmede met andere
stofdeeltjes kunnen interageren. Aldus zullen ook de golfverschijnselen mogelijk bëınvloed
worden door de aanwezigheid van het stof. Laten we de ladingsfluctuaties even buiten
beschouwing, dan kunnen we stellen dat de invloed van stof op golven zich voornamelijk
op twee manieren kan laten gevoelen. Enerzijds zal het aantal beschikbare elektronen en
ionen voor golfprocessen niet constant zijn, vermits de stofdeeltjes de elektronen en ionen
kunnen adsorberen. Anderzijds kunnen de stofdeeltjes zelf deelnemen aan de golfbeweging
met dien verstande dat dit fenomeen zich enkel zal voordoen voor voldoend lage frequen-
ties. Inderdaad, vergeleken met ionen zijn de stofdeeltjes werkelijk massief en kunnen ze
enkel voldoend trage frequenties gehoorzamen.

De relatief enorme massa van de aanwezige stofdeeltjes is slechts één van de afwijkende
eigenschappen ten opzichte van de traditionele plasma’s, die enkel elektronen en ionen
bevatten. Het is echter vooral de ongewoon kleine verhouding van lading tot massa van
stofdeeltjes die verantwoordelijk zullen blijken voor nieuwe golfverschijnselen, alsook voor
de aanpassing van reeds bekende golfmodes. Doordat de verhouding van lading tot massa
zodanig drastisch verschilt van deze van de traditionele plasma-ingrediënten zullen de
karakteristieke frequenties van het stof aanzienlijk kleiner zijn. Dit levert een bijzonder
interessant frequentiedomein op, namelijk datgene dat frequenties behelst die groter zijn
dan de karakteristieke frequenties van het stof, maar kleiner dan de karakteristieke ion-
frequenties. In deze tak van ultralage frequenties demonstreren de lichte plasmadeeltjes
nauwelijks inertie en zijn het de logge stofdeeltjes die een golfbeweging kunnen ontplooien.
Ook profileren stofplasma’s zich ook door de verscheidenheid in grootte, samenstelling en
vorm van de stofdeeltjes. Dit maakt dat haast ieder stofdeeltje anders zal reageren ten
opzichte van de grootte en richting van de heersende elektrische en magnetische velden,
wat meteen de complexiteit van stofplasma’s illustreert.

De aanwezigheid van zware stofdeeltjes heeft ook tot gevolg dat de zelf-gravitationele
krachten dikwijls niet verwaarloosd mogen worden in de beschrijving van omvangrijke as-
trofysische stofplasma’s met voldoend hoge stofconcentraties. Reeds voor stofdeeltjes van
een orde van grootte van millimeters zullen de elektrostatische en gravitationele krachten
elkaar ongeveer balanceren en kunnen deze laatste dus onmogelijk genegeerd worden. De
gecombineerde massa van de stofdeeltjes kan zelfs een gravitationele implosie van een
astrofysische stofwolk veroorzaken.

Voor de studie van stofplasma’s is het noodzakelijk enkele begrippen uit de traditionele
electron-ion plasma’s uit te breiden of aan te vullen, zoals verduidelijkt in hoofdstuk 2.
Bovendien zullen ook elementaire noties uit de sondetheorieën die noodzakelijk zijn voor
de ladingsbeschrijving van de stofdeeltjes worden herhaald.

Vervolgens worden in hoofdstuk 3 de basisvergelijkingen voor golven in stofplasma’s gefor-
muleerd, dit zowel in het kader van een kinetisch model als in het kader van een flüıdum
model. Meteen wordt de algemene dispersiewet voor golven afgeleid en dit in het alge-
meen voor schuine voortplanting, deze zal natuurlijk vereenvoudigd kunnen worden in
de specifieke gevallen van parallelle of loodrechte voortplanting. Ook worden de speci-
fieke moeilijkheden voor de verwezenlijking van een bevredigend kinetisch model geduid.
Voor de meeste hoofdstukken zal gebruik worden gemaakt van het meer transparante
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en makkelijker hanteerbaar flüıdum model. Toch zal in de hoofdstukken 8 en 9 worden
teruggegrepen naar een kinetisch model teneinde de fenomenen die teloor gegaan zijn ten
gevolge van de vereenvoudigingen in een flüıdumbeschrijving, te herwinnen.

In hoofdstuk 4 recapituleren we de meest fundamentele, elektrostatische golfmodes in
stofplasma’s. De initiële beschrijving van deze laagfrequente golfmodes door Rao, Shukla
en anderen hebben een ware doorbraak betekend voor het onderzoek in stofplasma’s.
Heden ten dage is de nomenclatuur, gëıntroduceerd door deze pioniers, een standaard
geworden met als voornaamste voorbeeld de “stof-akoestische golf” (dust-acoustic wave),
die voor het eerst beschreven werd door Rao, Shukla en Yu in 1990. Deze thesis bouwt
verder op deze fundamenten, de stof-akoestische golf en de aanpassingen ervan ten gevolge
van zelf-gravitatie zullen merkbaar de rode draad door deze thesis vormen.

Hoofdstuk 5 behandelt het delicate onderwerp van de “Jeans swindle”. De “Jeans swin-
dle” is een creatieve vereenvoudiging ingevoerd door Sir James Jeans om de criteria voor
een zelfgravitationele instabiliteit te bepalen. De vereenvoudiging in kwestie impliceert
een krachtige techniek voor de analyse van zelf-graviterende systemen maar is tegelijk ook
de zwakke plek in het hele betoog. Deze Achilleshiel werd door Jeans’ tegenstanders dan
ook weinig flatterende “Jeans swindle” gedoopt waarvan de letterlijke vertaling “Jeans’
zwendel” ongeveer dezelfde connotatie oproept. Dit heikele punt noopt de meeste on-
derzoekers tot het hinken op twee gedachten. Enerzijds kan men consistent weigeren de
vereenvoudiging toe te passen met alle wiskundige, dikwijls zelfs onoverbrugbare, compli-
caties vandien. Anderzijds kan men ervoor kiezen de “Jeans swindle” toe te passen, zoals
in de grote meerderheid van toepassingen in de literatuur. Deze werkwijze eist echter een
strikte controle a posteriori van de gedane veronderstelling, een vereiste waaraan zelden
gevolg wordt gegeven met het gevolg dat vele resultaten mogelijk gebreken vertonen. Des-
alniettemin betekent dit niet dat deze onderzoeken waardeloos of weinig informatief zouden
zijn. Integendeel, het zal blijken dat een gedegen traditionele studie van zelf-graviterende
systemen waardevolle informatie zal opleveren in verband met typische lengteschalen. Het
is dan ook makkelijk te rechtvaardigen dat in de hierop volgende hoofdstukken de “Jeans
swindle” zal toegepast worden.

Vervolgens wordt in hoofdstuk 6 de koppeling tussen elektrostatische en zelf-gravitationele
effecten bestudeerd. Terzelfdertijd wordt de invloed van de massaverdeling van de stofdeel-
tjes op elektrostatische golven in zelf-graviterende stofplasma’s onder de loupe genomen.
Er wordt onderzocht hoe een discrete massaverdeling de Jeanslengte bëınvloedt, waarbij
de Jeanslengte de typische lengtedimensie is voor dewelke een gravitationele instabiliteit
dreigt. In de analyse van een stofplasma dat meerdere stofcomponenten bevat zal de
al dan niet aanwezigheid van neutrale deeltjes van cruciale invloed blijken te zijn op
de bekomen Jeanslengte. Voor stofplasma’s met exclusief geladen stofdeeltjes zullen de
bekomen Jeanslengtes veel groter zijn dan voor gelijkaardige plasma’s met enkel neutrale
deeltjes, wat betekent dat zulke stofwolken op een veel grotere schaal kunnen stabiel blij-
ven. Evenwel, voor stofplasma’s die naast geladen stofdeeltjes zelfs maar een gering aantal
neutrale stofdeeltjes bevat wordt die stabiliserende invloed totaal teniet gedaan.

In hoofdstuk 7 wordt dan de invloed van de massaverdeling op elektromagnetische modes
getest, eerst voor loodrechte en vervolgens voor schuine voortplanting. Enigszins ver-
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rassend zal blijken dat het instabiliteitscriterium voor schuine voortplanting haast identiek
is aan dat voor parallelle voortplanting, met uitzondering van quasi-loodrechte voortplan-
ting. Bovendien komen we tot de algemene conclusie dat voor de studie van laagfrequente
golven in zelf-graviterende stofplasma’s de invloed van een discrete massaverdeling re-
delijk klein is. Deze gevolgtrekking betekent dat men in verder onderzoek een stofplasma
best kan modelleren door middel van één enkele stofsoort met gemiddelde eigenschappen,
vermits deze vereenvoudiging de realiteit haast evengoed benadert. Ook voor elektromag-
netische golven zal de aanwezigheid van neutrale deeltjes een verwoestende invloed op de
stabiliserende eigenschappen van geladen stofdeeltjes tot gevolg hebben.
Zoals reeds eerder vermeld wordt in hoofdstuk 8 teruggegrepen naar een kinetisch model.
Dit is het meest algemene model, dat toelaat de invloed van de thermische agitatie van de
deeltjes ten volle te bestuderen. Immers, het flüıdummodel is strikt gesproken niet meer
geldig voor fasesnelheden kleiner dan de thermische snelheden van de deeltjes. Als we
de resultaten uit beide beschrijvingen vergelijken, blijkt dat de bekomen voorwaarde voor
stabiliteit erg vergelijkbaar is. Daarentegen zal de aangroeisnelheid van een instabiliteit
erg verschillend zijn in beide beschrijvingen. Dit is te wijten aan de “Landau demping”,
een botsingsloos mechanisme dat de golven verzwakt en enkel kan beschreven worden in
het raam van een kinetisch model. Dit mechanisme zorgt ervoor dat de stof-akoestische
golf in de realiteit nauwelijks zal kunnen geëxciteerd worden in een bepaald bereik van
golflengten, ook al levert een flüıdumbeschrijving geen enkele indicatie hiervan.
Daaropvolgend wordt in hoofdstuk 9 een massaverdeling gëıntroduceerd in de kinetische
beschrijving van zelfgraviterende stofplasma’s. De gebruikte massadistributie is continu en
is gemodelleerd volgens een dalende machtwet, wat een goede benadering van de werke-
lijkheid betekent voor vele astrofysische toepassingen. De mate van koppeling tussen
plasma en gravitationele effecten zal sterk afhankelijk zijn van de parameters van de mas-
sadistributie. De vooropgestelde parameters zullen uiteindelijk bepalen welke stofdeeltjes
de grootste invloed hebben op de zelf-gravitatie, de overvloedig aanwezige maar kleine
stofdeeltjes of de minder frequente maar grotere stofdeeltjes.
Tenslotte wordt in hoofdstuk 10 de invloed van onderlinge botsingen in het stofplasma
onderzocht. In stofplasma’s zijn de meest significante botsingen deze tussen enerzijds de
neutrale stofdeeltjes en anderzijds de geladen stofdeeltjes. In plasma’s die enkele geladen
stofdeeltjes bevatten daarentegen, zullen de meest invloedrijke botsingen deze tussen de
ionen en de geladen stofdeeltjes zijn. Het is dit laatste geval dat nader onderzocht zal wor-
den. In dit hoofdstuk wordt gebruik gemaakt van een semi-analytische methode, namelijk
de poolbaanmethode, die toelaat de invloeden van de ion-stof botsingen te onderzoeken
op de gravitationele stabiliteit met een minimum aan rekenwerk en bovendien grafisch de
invloed van de botsingsfrequentie op de laagfrequente golfmodes weergeeft op een kwali-
tatieve manier.
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Chapter 1

Introduction

Ionized gases were referred to as plasmas for the first time by Nobel Laureate (1932)
Irving Langmuir in 1927, inspired by the observation that certain phenomena displayed
by the heated gases in gas discharge tubes display a similar dynamic behaviour as that of
plasma in blood. Indeed, the energetic electrons, ions and impurities are transported in
the electrically conducting, ionized gases just like the red and white blood cells are carried
through the bloodstream. Au fait, the generic term plastic is of the same origin as the
term plasma and also expresses a variable nature. During the production steps, plastics
can be moulded into virtually any shape, size and color.
Plasmas actually represent the fourth state of matter, thus complementing the solid, liquid
and gaseous state. The addition of sufficient thermal energy to a solid matter disturbs
the existing equilibrium between the thermal mobility of the particles and the strength
of the inter-particle bonds and causes a phase transition towards a liquid state. If the
liquid is heated even more, it will go over to the gaseous state and finally for even higher
temperatures the plasma state is reached, as the electrons in the outer layer of the atoms
become sufficiently energetic to escape. However, the transition towards a plasma state
is not completely analogous with respect to the other phase transitions. For instance, the
transition from liquid to gas occurs at a constant temperature and pressure and requires
energy in the form of latent heat, whereas the formation of a plasma does not absorb
energy and occurs gradually for increasing temperatures.
Generally the term plasmas is preserved for those ionized gases that are composed of
sufficiently large numbers of electrically charged particles in order that these particles can
display a collective behaviour. In effect, this means that the dimensions of a plasma exceed
the Debye length considerably.
Here on Earth, the plasma state is quite unusual and exotic and only occurs in extreme
conditions, like in lightning bolts, fires, volcano eruptions and auroras. But what we see
on Earth is the exception, plasma is the most common state of matter in the universe, in
fact more than 99 % of all observable matter is plasma. As soon as we move away from the
Earth, plasmas immediately become very common. In the upper atmosphere, the radiation
of the Sun, being nothing more than a huge ball of glowing hot hydrogen plasma itself, is
able to dislodge electrons from neutral gas atoms or molecules. This ionization process is
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responsible for the plasma state of the upper layers of the atmosphere, aptly named the
ionosphere. In fact, when we look at the night sky with a telescope, just about everything
we see is a plasma. Also in everyday life plasmas and their applications are more and more
present. Nowadays fluorescent light bulbs and plasma televisions are the most encountered
plasmas, whereas the most common application of plasmas is probably plasma etching in
the manufacturing processes of optical and electronic components. Furthermore, plasma
physics is the key for realizing nuclear fusion, an ambitious project that would provide
mankind with a virtually endless source of energy and this without producing dangerous
or difficultly disposable waste products. The main focus in this branch of plasma physics
aims at being able to heat the plasma sufficiently and to shield the extremely hot plasma
from the reactor walls.

As mentioned before, the particles in plasmas can display a collective behaviour, because
each particle affects many other particles in the plasma. This interdependence automat-
ically leads to the concept of wave motion in plasmas, as waves are nothing else than
collective motions of particles. The foundations of wave theory in plasmas were laid in
1942 by Nobel laureate Hannes Alfvén and his insights extended plasma theory from a
highly specialized branch of physics, mainly limited to the study of gas discharges, to
an interdisciplinary theory with innumerable applications. Especially in astrophysics, the
knowledge of plasma theory is invaluable as the plasma state is predominating in the uni-
verse. The epoch-making research of Alfvén resulted in the development of the so called
magnetohydrodynamic model, which describes the motion of an electrically conducting
fluid interacting with magnetic fields. Alfvén applied the magnetohydrodynamic model
to e.g. the study of geomagnetic storms, the aurora, the Van Allen radiation belts, solar
spots and the evolution of our solar system.

In the beginning of the 20th century it also became clear that dust is omnipresent in
the universe and ever since the notion of its importance has been growing. At first,
there hardly was intrinsic interest for the dust itself, dust just seemed a passive agent
that regrettably obscured the skies and hindered proper photometric observations. But
times have changed, nowadays dust represents a vital ingredient for many models and in
general a major influence on several fields in modern astronomy. A beautiful example of
a phenomenon due to the presence of dust is the zodiacal light. The zodiacal light is a
diffuse band of light that can be observed occasionally in the ecliptic during twilight and
is caused by the diffraction and reflection of sunlight on dust particles within and outside
the orbit of the Earth. The study of dust and its properties also becomes more and more
important in laboratory plasmas, plasma reactors and electronics. In the latter domains,
dust is usually very undesirable and in particular is it posing increasing problems in the
production of electronic components, as miniaturization keeps advancing.

The ubiquitousness of the dust particles brings about that many space plasmas contain
substantial amounts of dust grains. However, there was no crossover in the respective
models of plasmas and dust conglomerations until the 1980’s. Since then, mixtures of
traditional plasma components and dust grains are aptly referred to as dusty plasmas.
The presence of dust grains in plasmas allows for new and exciting phenomena that set
dusty plasmas apart from traditional plasmas, the description of which requires the use
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of a proper dusty plasma model. For instance, a dusty plasma model is called upon in
order to explain the occurrence of spokes and braids in the rings of Jupiter. On Earth,
noctilucent clouds are probably the most obvious example of dusty plasmas. Noctilucent
clouds are tenuous clouds on very high altitudes (in the mesopause at altitudes of 75 to 90
km) and with very low temperatures (' −80◦C). During twilight, they appear as white or
blue-white clouds on latitudes of 45◦ to 70◦, because they are still illuminated by the Sun,
when the latter is already below the horizon of the observer. Other examples of dusty
plasmas in our solar system are the circumsolar dust rings and cometary comae and tails,
whereas interstellar dust clouds usually serve as the prototype for dusty plasma models
applied outside our solar system.
In this thesis, the focus is primarily on waves and instabilities in dusty space plasmas.
The study of waves is very important for various reasons, the most obvious being that
waves can be observed relatively easy and thus reveal information about the events within
the plasma. It will become clear that the study of dusty plasmas extends the existing
zoo of waves as studied in plasmas with only traditional constituents. Instabilities are
concomitant with the study of waves since waves can grow as they propagate, eventuating
in amplitudes so large that they can disrupt the plasma.
The influence of the dust particles can be distinguished in a twofold manner. On the
one hand, dust grains are highly charged and extremely massive, when compared to ions
and electrons, and so introduce new time and lengthscales. This is translated into a
wealth of new wave modes, with very low frequencies in comparison with wave phenomena
in electron-ion plasmas. On the other hand, the peculiarities of dust grains also cause
important additions to the existing range of waves. Whereas the electrons and ions are
monomorphic and have fixed charges, the dust grains display a rich diversity in shape and
size and can have fluctuating charges. The variable charge of a dust grain is influenced
through different charging mechanisms like primary charging (electron/ion capture by the
dust grains) and photoemission (if there is a radiation source), where both mechanisms are
obviously dependent on parameters of the surrounding environment. The fluctuations in
the charges of dust grains influence the local electric fields. Hence, the fluctuating charges
couple with the wave mechanism and increase the complexity of the wave description
tremendously.
Due to the presence of heavy dust particles, self-gravitational interactions cannot be ne-
glected in any model that aims at an accurate description of large, astrophysical dusty
plasmas like giant dust clouds. In such self-gravitational dusty plasmas there is a compe-
tition between electrostatic and self-gravitational forces and the model for such a plasma
can be seen as a bridge between plasma and celestial mechanics.
The combined mass of all the dust particles can even cause a gravitational collapse of a
large dust cloud and the introduction of self-gravitational interactions allows the study
of gravitational stability in dusty plasmas. In this way, the pioneering theories of Sir
James Jeans about gravitational stability can be extended from neutral clouds to clouds
of charged dust particles.
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Outline

In the introductory chapter 2, the nomenclature of traditional plasma physics is general-
ized to the use in dusty plasma physics. Moreover, the most common charging mechanisms
for dust grains are recalled.
In chapter 3, the basic equations for waves in dusty plasmas are formulated, both in a
fluid and in a kinetic description. Consequently the general dispersion law for waves is
derived and interpreted in the specific cases of parallel and perpendicular propagation.
Furthermore, the specific difficulties for realizing a satisfying kinetic model are summa-
rized. In the following chapters, the fluid model will be applied, for the sake of simplicity.
However, in the chapters 8 and 9, the kinetic description is called upon in order to retrieve
the information that is lost due to the simplifications in a hydrodynamic model.
Subsequently, the most relevant electrostatic low-frequency modes in dusty plasmas are
summarized. The initial description of these basic modes was the impetus for the ma-
jority of the present investigations, especially in the case of the dust-acoustic mode, first
described by Rao, Shukla and Yu in 1990. This dust-acoustic wave and the modifications
due to self-gravitation will clearly run through this thesis like a continuous thread.
In chapter 5, the delicate topic of the “Jeans swindle” is introduced and discussed in a
one dimensional model. The Jeans swindle is a simplification procedure, introduced by
Sir James Jeans, for determining the criterion for gravitational stability more easily. This
procedure represents a powerful tool since the stability analysis becomes much simpler, but
on the other hand the Jeans swindle disregards a part of the problem. This double-edged
nature of the Jeans swindle provides two distinct possibilities for approaching the stability
analysis of self-gravitating systems. One can choose to reject the Jeans swindle, which
poses serious, possibly unbridgeable mathematical problems. Conversely, one can invoke
the Jeans swindle, being by and large the preferred approach in the relevant literature.
The latter operating procedure requires however that the conditions for applying justifiably
the Jeans swindle are checked a posteriori, which is often neglected and as a consequence,
some of the results are possibly flawed. Nevertheless, applying the Jeans swindle yields
valuable information, because it provides information about important lengthscales. In
the remainder of the thesis, the mainstream of investigations is followed and the Jeans
swindle is consistently applied.
The influence of self-gravitational effects is obviously intertwined with the mass distribu-
tion of the dust grains and this interdependence is studied in chapter 6. In this chapter,
the influence of discrete mass distributions on the coupling between electrostatic and grav-
itational disturbances is investigated. The study of continuous distributions is relegated
to chapter 9, for this requires a kinetic framework.
Next, in chapter 7 the modifications due to a mass distribution are studied in dusty plasmas
which are pervaded by a magnetic field. First, the gravitational stability is studied in
directions perpendicular to the magnetic field. Later on, the stability analysis is extended
to all directions.
In chapter 8, a kinetic framework is called upon. In a kinetic description, the implications
of the thermal motion of the particles can be fully investigated. Indeed, strictly speaking,
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a fluid model is not valid anymore for phase velocities smaller than the thermal velocities
of the particles. This approach allows for investigating the Landau damping, which is a
collisionless damping mechanism, in self-gravitating dusty plasmas. Later on, in chapter 9,
the Landau damping is investigated in a dusty plasma model that comprises a continuous
mass distribution.
Finally, in chapter 10, the influence of collisions in self-gravitating plasmas is analyzed.
In dusty plasmas, the most significant collisions occur between neutral and charged dust
particles. However, in dusty plasmas with exclusively charged dust, the dominating colli-
sional mechanism describes the dust-ion collisions. The latter case is investigated closely
to show the influence of the dust-ion collision frequency on the low frequency wave modes.



20 Introduction



Chapter 2

Synergy between plasmas and dust

Here on Earth the plasma state is quite unusual and exotic. In effect, the Earth’s atmo-
sphere is inhospitable for low temperature plasmas, so that in nature plasmas only occur
in extreme or artificial conditions like for extremely high temperatures or man-made vac-
uums. Even so, one does not need to go far from the surface of the Earth to encounter
already the dominion of the plasma state, from altitudes above circa 80 km the fraction
of charged particles is steadily increasing and the neutral component is already negligible
above an altitude of 400 km. Outside the safe shell of Earth-like environments, evading
plasmas is well-nigh impossible, indeed, one can justifiably state that the plasma state is
entirely dominating the universe.

Plasmas are generally defined as a fully, or at least significantly, ionized gas with free
electrons and ions. Often plasmas, both in space and in laboratories, contain dust particles
the presence of which influences the plasma characteristics significantly. These mixtures
of dust particles and plasma species are named dusty plasmas and occur frequently in
space. It is not a surprise that many space plasmas contain substantial amounts of dust
particles, after all dust particles are so omnipresent that “dust free” environments hardly
exist. Even industrial clean rooms, used for plasma etching, do not succeed in creating a
perfectly dust free environment.

In this chapter several elementary properties of dust and dusty plasmas are introduced and
discussed. While some of the peculiarities and remarkable properties of dust grains are
portrayed, the analogies and differences between standard electron-ion plasmas and dusty
plasmas will become clear. The emphasis in this introductory chapter predominantly lies
on those properties that exert a prominent influence on wave phenomena in astrophysical
plasmas, therefore some basic concepts of wave theory in plasmas are repeated. Immedi-
ately, these concepts are adapted to the formalism of dusty plasmas. Afterwards, a concise
overview of the major charging mechanisms is given, because the possibility of fluctuating
dust charges is one of the key features of dusty plasmas. Lastly, the role of gravitation, or
more precise self-gravitation in a sizeable dusty plasma is accounted for.

21



22 Synergy between plasmas and dust

2.1 What is dust?

Traditionally, the term dust is anything but discriminative and extends over a vast range
of sizes and compositions. Interplanetary dust and meteorites are often of a silicate nature,
i.e. with a mineral structure based on SiO4 tetrahedra. In space, there are also substantial
amounts of dust grains of a ferriferous (ferruginous) or carbonaceous nature, Carbonaceous
dust can occur in different chemical forms as graphite, amorphous carbon and organic
compounds, for example in organic refractory mantles. Furthermore, macromolecules,
dirty ice particles and ice coated particles are also catalogued as dust particles. These ice
coated particles are often found in molecular clouds, where the dust particles can prove
to be successful nucleation centers for the growth of ices. However, making a rigorous
classification is impracticable as in many occasions the constitution of dust grains will be
an amalgamate of some of the mentioned components and even exhibit a myriad of other
possible compositions.
In comparison with the electrons and ions, dust particles are orders of magnitudes larger
and display a size spectrum as impressive as the gamut of possible compositions, varying
from the just mentioned organic macromolecules and microscopic ice particles to even boul-
ders and rocks. However, in order to grasp a qualitative notion of a certain phenomenon,
often the dust grains are assumed to be typically micron sized.
This century it became clear that dust is ubiquitous in space and dust has been studied
intensively ever since, but in the last decades a renewed impetus was generated thanks to
the yield of data provided by the multiple spacecrafts that visited other planets in our solar
system. Several of these successful space missions within our solar system have provided
us with a profusion of data concerning the composition and size spectra of dust particles
for many solar environments. Unfortunately, detailed data for dust agglomerations outside
our solar system are less available, even scarce. In fact, as yet many issues about dust
are hotly debated and still a matter of intense speculation, despite the imposing record of
remote and in situ observations. Nevertheless, the existing models and assumptions prove
to be reliable and ever improving.

2.2 Dusty plasmas

As a matter of course we can turn now to the interplay between dust particles and the
omnipresent ionized gases and so enter the world of dusty plasmas. Prime examples of
dusty plasmas in our solar system are circumsolar dust rings, rings of the Jovian planets,
cometary comae and tails and noctilucent clouds. Outside our solar system, interstellar
dust clouds are among the most obvious astrophysical applications.
Due to various processes, explored more in detail in some of the subsequent sections, dust
grains, immersed in plasmas, can become electrically charged. The charged dust particles
can electrostatically interact with each other as well as with plasma species, thus providing
a new means for dust particles to play a part in wave mechanisms. Evidently, the presence
of charged dust particles results in a more complex description but, in order to be able to
explain certain phenomena, often proves to be necessary.
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2.3 Concepts

Some basic concepts and quantities of plasmas can easily be adapted and/or extended in
order to be of use in the scene of dusty plasmas. In wave theory, one of the most primal
quantities is the Debye length and this characteristic must be adapted for the use in a
dusty plasma theory, because of the changed screening mechanisms. Whereas the electron
screening of the ions is the only screening effect in standard two component plasmas, in
dusty plasmas both the electrons and ions will be screening the charged dust particles and
the combination of these screening effects can be adequately described by a global Debye
length. The response time of the heavy dust particles for local perturbations of the electric
neutrality will naturally be much larger than for the electrons and ions. Therefore, the
plasma frequencies and gyrofrequencies for the dust species will be much smaller than their
respective values for the lighter plasma species and so introduce new timescales in the wave
description of a dusty plasma. These dust plasma frequencies and dust gyrofrequencies
are straightforward generalizations of their counterparts for the ionic species.

2.3.1 Charge neutrality

In the absence of particle sources and external forces, a dusty plasma in equilibrium will
be macroscopically quasi-neutral, which can be translated mathematically into

ne0e = qini0 +
∑

d

qd0nd0, (2.1)

where nα0 is the unperturbed number density per species α, qd0 is the equilibrium dust
charge per dust species and the summation index d runs over all dust species. A premise
for the previous expression is the existence of an equilibrium dust charge, a presupposition
which might be unwarranted. Indeed, dust grain charges are variable and one could think
of a dynamic equilibrium wherein the dust grains never attain an equilibrium charge. We
will revert to this issue later when discussing the different dust grain charging mechanisms.

If we presume the dust to be negatively charged, which by and large applies to astrophysical
plasmas, the condition for charge neutrality becomes

ne +
∑

d

Zdnd = Zini. (2.2)

As, for astrophysical applications, the dust grains often devour most of the electrons,
a dusty plasma frequently displays a large electron depletion and then equation (2.2)
implies ne ¿ ni. This has an interesting repercussion for the comparison of electron and
ion plasma frequencies. Whereas the ion plasma frequency always is much smaller than
the electron plasma frequency in electron-ion plasmas, the magnitude of both plasma
frequencies can become comparable in dusty plasmas. Due to this phenomenon, wave
modes in dusty plasmas may deviate considerably from their analogues in electron-ion
plasmas.



24 Synergy between plasmas and dust

2.3.2 Introduction of new frequency scales

Dust grains can achieve charges much higher than electrons and ions, and dust masses are
even more staggeringly high in comparison with these standard plasma ingredients. This
extremely low charge-to-mass ratio of the dust is translated into the common assumptions,

Zdme ¿ md,

Zdmi ¿ Zimd, (2.3)

with Zα = |qα|/e being the number of unit (electron) charges per species α. Therefore,
characteristic dust frequencies will be considerably lower than the corresponding electron
and ion frequencies. Further on, these characteristic frequencies are defined and there
the notations nα, qα and mα will be used, standing respectively for the density, charge
and mass of species α. Capital letters will be used to denote equilibrium values of the
aforementioned quantities.
Pursuing the analogy with electrons and the ions, a dust plasma frequency can be intro-
duced for every dust species α as

ω2
pα =

Nαq2
α0

ε0mα
, (2.4)

where Nα is the equilibrium density of the respective fluid species. Expression (2.4) is a
trivial generalization of the standard definition for plasma species and here too, the dust
plasma frequency typifies the oscillatory behaviour of a dust particle around its equilibrium
position, when being disturbed electrostatically. For simplicity, we can consider a single
dust species and presume the dust to be negatively charged, as by and large applies to
astrophysical plasmas. If we then presume a state of complete charge neutrality

ZiNi = Ne + NdZd, (2.5)

the dust plasma frequency can be expressed as

ω2
pd =

Ndq
2
d0

ε0md
=

Zdmi

Zimd
ω2

pi −
Zdme

md
ω2

pe, (2.6)

being evidently much smaller than the ion and electron plasma frequencies.
Similarly, per dust species a dust gyrofrequency Ωd can be defined and compared to the
electron and ion gyrofrequencies as follows

|Ωd| = |qd0|B0

md
=

ZdeB0

md
=

Zdmi

Zimd
Ωi, (2.7)

where B0 stands for the static magnetic field. It is clear that the magnitudes of the
gyrofrequencies follow the same ordering per species as for the plasma frequencies, namely
|Ωd| ¿ Ωi ¿ |Ωe|.
These small characteristic frequencies for the dust species launch new very low-frequency
wave modes and thus extend the attainable frequency range in a dusty plasma to extremely
low frequencies, compared to the frequency range covered by possible wave modes in an
electron-ion plasma. Precisely this extremely low frequency regime will be further explored
in detail in this thesis.
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2.3.3 Global Debye length

As mentioned before, the standard definition of Debye lengths can be refined for utilization
in dusty plasmas and becomes, per species

λ2
Dα =

ε0kBTα

Nαq2
α

. (2.8)

We now consider a dusty plasma for which macroscopic charge neutrality applies and where
the dust particle have constant charges and are treated as point charges. Additionally, the
electrons and ions are assumed to be in local thermodynamic equilibrium, so that they
can be considered as being Boltzmann distributed,

ne = Ne exp
(

eφ

kBTe

)
,

ni = Ni exp
(
− eφ

kBTi

)
, (2.9)

where kB is the Boltzmann constant. The charge neutrality is expressed as

eNe = eNi + qdNd (2.10)

and the electrostatic Poisson’s equation

∇2φ = − 1
ε0

∑
α

nαqα, (2.11)

now becomes

ε0∇2φ = ene − eni −
∑

d

qd(r)δ(r− rd)

= eNe exp
(

eφ

kBTe

)
− eNi exp

(
− eφ

kBTi

)
−

∑

d

qd(r)δ(r− rd). (2.12)

In the vicinity of a single, spherical dust particle but with r 6= rd and assuming |eφ| ¿
kBTα, the latter equation yields the Green’s function G(r|rd), being the solution of

∇2G(r|rd) =
qdNd

ε0
+

G(r|rd)
λ2

D

. (2.13)

The definition for the global Debye length λD is in general

1
λ2

D

=
∑

lighter species

1
λ2

Dα

, (2.14)

and reduces here to
1

λ2
D

=
1

λ2
De

+
1

λ2
Di

. (2.15)
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Because of the spherical symmetry and for G(r) = G(r|0), the latter equation can be
rewritten as

1
r2

d

dr

[
r2 dG(r)

dr

]
=

qdNd

ε0
+

G(r)
λ2

D

(2.16)

and becomes with the substitution G′(r) = rG(r)

d2G′(r)
dr2

=
qdNd

ε0
r +

G′(r)
λ2

D

, (2.17)

with solutions

G(r) =
G′(r)

r
=

A

r
exp

(
r

λD

)
+

B

r
exp

(
− r

λD

)
− qdNdλ

2
D

ε0
. (2.18)

The integration constant A is zero because for r →∞, the potential φ must also go to zero,
on the other hand the integration constant B can be determined as being B = qd/4πε0,
because for Ne = 0 = Ni the Coulomb potential for a point charge qd should be recovered.
Thus, we arrive at

G(r|rd) = −qdNdλ
2
D

ε0
+

qd

4πε0|r − rd| exp
(
−|r − rd|

λD

)

=
qd

4πε0

[
1

|r − rd| exp
(
−|r − rd|

λD

)
− f

a

]

φ =
∑

d

qd

4πε0

[
1

|r − rd| exp
(
−|r − rd|

λD

)
− f

a

]
, (2.19)

where a is the grain size, f = 4πaNdλ
2
D the fugacity parameter which will be introduced

and discussed in chapter 4. In expression (2.19) the quantity f/a ∼ Ndλ
2
D is the influence

of “grain packing”.

2.4 Dusty plasmas vs multispecies plasmas

Often dusty plasmas are treated as multispecies plasmas although, strictly speaking, there
are distinct differences between dusty plasmas and multispecies plasmas. Dusty plasmas
set themselves apart from multi-ion descriptions as the dust particles can have fluctuating
charges and display ample variety in shape, size and composition, unheard-of characteris-
tics for mere ionic species. That is why dusty plasmas, in their true denotation, require a
formalism that self-consistently includes the effects of grain charge fluctuations and also
deals with the intrinsic heterogeneity of dust species. Such a blueprint for the descrip-
tion of dusty plasmas is regrettably not yet available, although efforts are currently being
made, so that one is forced to use more naive descriptions.
Despite of its limitations however, a multispecies formalism can be an invaluable tool
that is able to mimic accurately many important features of a dusty plasma and has the
advantage of providing an elegantly structured and manageable framework.
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2.5 Charging of dust grains

The charging of the dust grains in a dusty plasma is a very fundamental aspect in dusty
plasma physics, yet the issue of dust charging provides several difficulties and intricacies.
The description of the charging of a single dust grain, surrounded by plasma, is almost
identical with the main theme of probe theory, developed by Mott-Smith and Langmuir
[1926], at the dawn of plasma theory investigations. Indeed, a dust grain can be considered
as a probe with a probe current I = Ie + Ii due to the fluxes of electrons and ions that
reach or leave the grain, where the positive direction for the current is from the plasma
towards the probe. The probe current will exist as long as there is a difference in potential
between the surrounding unperturbed plasma and the grain surface, both being separated
by a screening layer of the order of a few Debye lengths that is not electrically neutral. Here
it is advantageous to define a characteristic charging time tch, being the time needed for
a neutral grain to reach 90% of its equilibrium value. This parameter may be considered
constant, although the charging process can be highly nonlinear. When the dust grain has
reached its equilibrium potential V0, the grain potential can be recognized as a floating
potential, continuing the analogy with probe theory. This steady state is described by the
charging equation

dQd

dt
=

∑

β

Iβ(V0, . . .) = 0, (2.20)

where the index β stands for all charging mechanisms present and Qd is the equilibrium
charge of the dust grain. The charging equation (2.20) is nonlinear and might exhibit
hysteresis, in the latter case the equilibrium potential will be dependent on the grain
history. Different charging mechanisms account for the fluctuating charges of the dust
particles, yet primary charging usually is the most important mechanism for astrophysical
applications, and generally the only mechanism that is retained in treatments of waves and
instabilities. Therefore, in this section the focus will be chiefly on the primary charging
process.

2.5.1 Capacitance model

For calculating the grain charge, the dust grain can be considered as a spherical capacitator
with concentrical shells formed by the grain and its Debye shield. Since the grain radius
a is usually much smaller than the Debye length, the capacitance C is practically that of
an isolated sphere with radius a, namely

C = 4πε0a, (2.21)

so that the grain charge qd and the equilibrium grain potential Vd0 are related as [Houpis
and Whipple Jr. 1987]

qd = 4πε0aVd0. (2.22)
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2.5.2 Primary charging

A single dust grain in a plasma endures a continuous bombardment of the plasma species,
of which some can get stuck onto the grain surface or end up being captured by the grain,
thereby changing the dust grain charge. This type of grain charging is called primary
charging and in many dusty plasmas the main grain charging mechanism. Indeed, physical
adsorption to the surface requires no activation energy and a particle colliding with the
dust particle is thus likely to give up enough kinetic energy so that it will become bound.
Obviously, the probabilities for catching plasma particles are different for electrons and
ions and depend on the instantaneous grain potential. The primary charging theory starts
from a number of assumptions and simplifications, namely

• The grains are considered to be in a dynamic equilibrium, meaning that in this ideal
situation a single dust grain catches oppositely charged particles almost simultane-
ously so as to keep the grain potential and charge constant.

• Primary charging theory ignores the presence of other charging mechanisms and also
the existence of external magnetic fields.

• The dust grains are identical spheres, perfectly sticky and conducting.

• Plasma particles have Maxwellian velocity distributions at infinity, ideally, far from
the grain considered.

• Currents are orbital motion limited, based on the assumption that some particles of
every energy range can graze the grain surface. Implicitly this assumption excludes
trapped orbits for the plasma particles.

In the absence of equilibrium drifts the primary charging theory yields the following charg-
ing current per species,

Iα = nαqα

∫ |v|=∞

v0

vσαfα(v)d3v, (2.23)

here σα is the charging cross section per species and v0 the smallest particle velocity
required to hit the grain. For an attractive potential (qαV < 0), respectively repulsive
potential (qαV > 0), the latter equation yields

Iα = πa2nαqα

√
8kBTα

πmα

(
1− qαVd

kBTα

)
, (2.24)

Iα = πa2nαqα

√
8kBTα

πmα
exp

[
− qαVd

kBTα

]
, (2.25)

where Vd is the grain potential relative to the plasma potential Vp, the latter being arbi-
trarily set equal to zero for the rest of this section. For a negatively charged grain these
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expressions can be rewritten as,

Ii = πa2nie

√
8kBTi

πmi

(
1− eVd

kBTi

)
, (2.26)

Ie = −πa2nee

√
8kBTe

πme
exp

[
eVd

kBTe

]
, (2.27)

A grain will initially collect more electrons than ions, because the electrons are more
mobile, so building up a negative potential. As a result the electron flux decreases and
the ion flux increases until both fluxes are balanced. The equilibrium grain potential can
then be found from the nonlinear equation

nicsi

(
1− eVd

kBTi

)
= necse exp

[
eVd

kBTe

]
, (2.28)

and the thermal speeds c2
sα = kBTα/mα have been introduced.

2.5.3 Other charging mechanisms

Depending on the parameters of the plasma and the surrounding environment, other
charging mechanisms may be of considerable importance too, of which the most important
are

• Tunnelling
Electrons with energies higher than Emin =

√
KW a, with KW the constant of Whid-

dington are capable to tunnel through the grain. The threshold Emin is usually of
the order of 104eV

√
a{µm} for insulators as well as for conductors. This tunnelling

effect is only of importance for extremely small grains, as the number of electrons
that attain an energy Emin is usually negligible.

• Secondary emission
The impact on a dust grain of plasma particles, if sufficiently energetic, may release
secondary electrons. For space applications, electrons are usually the most energetic
plasma particles and therefore it is mostly electron driven secondary emission that
is taken into account. The yield of secondary electrons then represents a positive
grain current. On the other hand, ion induced secondary electron emission has
been extensively studied in laboratory plasmas (sputtering), due to its use in the
production for semiconductor based devices as integrated circuits and optoelectronic
components. Secondary emission is evidently strongly dependent on the surface
properties and the material of the dust grain. Moreover it has been shown [Chow
et al. 1993] that two grains with the same history but with different sizes can have
charges of the opposite sign. This is the case when besides the primary currents, the
secondary electron and tunnelling currents are taken into account. The effects of
tunnelling and secondary electron current are therefore strongly related to the grain
size distribution.



30 Synergy between plasmas and dust

• Photo-emission
The absorption of photons can release photoelectrons and these then contribute to
a positive grain charging current. The absorption characteristics of electromagnetic
radiation are strongly dependent on the radiation wavelength as well as the grain
size and type [Havnes 1984]. Upon absorption of solar photons, a grain surface with
negative potential will emit a constant photo-electric current

Ip = eπa2Γ, (2.29)

where Γ stands for the number of photo-electrons per square meter, per second
[Horányi 1996],

Γ ' 2.5 · 1014κ

d2
{AU}

1
m2 s

, (2.30)

with d the distance from the Sun and the efficiency factor κ close to unity for
conductors and close to 0.1 for dielectric materials [Whipple Jr. 1981]. On the other
hand, for a positive grain potential, only the most energetic electrons can escape the
grain, without being pulled back to the surface. Positively charged grains contribute
a net current

Ip = eπa2Γ exp
[
− eV

kBTp

]
, (2.31)

with kBTp ' 1 − 3 eV, the average energy of the assumed Maxwellian distribution
of the photo-electrons. The ratio between the photo-electron flux and the electron
flux [Havnes et al. 1990]

Rp/e = η
40 · 109

r2
h{A.U.}Ne{m−3}

√
Te{K}

, (2.32)

determines the importance of the photo-emission.

• Grain destruction and grain growth
Electrostatic tension in a dust grain builds up dramatically if a dust grain acquires
a very high potential. A charged spherical and conducting grain will pulverize if
its tensile strength Ft is exceeded by the electrostatic repulsive force at a surface
potential V0 [Öpik 1956],

Ft 6 ε0
V 2

0

a2
, (2.33)

this expression underestimates the importance of the breaking up process as capri-
cious geometries or surface conditions facilitate the electrostatic disruption of the
grain.

Conversely, coagulation of colliding dust grains can produce larger particles. For
neutral particles, this condensation process can be described via the Smoluchowsky
kinetic equation [Bliokh et al. 1995], which describes the formation of a mass spec-
trum, out of an initially monodisperse plasma, due to the coagulation processes.
Another mechanism that can also be responsible for grain growth is mantle growth,
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due to the continuous adsorption of gas phase atoms and molecules onto the dust
surface. Both mechanisms have a different influence on the size distribution curve,
whereas coagulation modifies the form of the distribution mantle growth primarily
shifts the distribution to larger sizes, for the greater part conserving the functional
form.

• Field-emission
Some micron- and submicron-sized particles composed of silicates, glass or metal
can be mono crystals. These microcrystalline dust particles have extremely high
tensile strengths and are able to support high electric fields. For these particles
the maximum electric field attainable is limited by ion field emission for positively
charged grains and electron field emission for negatively charged grains.

2.5.4 Charging model for grain ensembles

In this section several charging mechanisms were mentioned. However, all of them reasoned
on a single dust grain embedded in a plasma whilst a description in terms of dust grain
ensembles actually is much more appropriate for dusty plasma theory. If we treat a dusty
plasma as a closed system, assumed to be created with the injection of dust particles in a
neutral plasma, the equilibrium dust charge on the dust grains will decrease dramatically
when the dust density increases [Goertz and Ip 1984, Whipple et al. 1985, Havnes et al.
1984, 1987, 1990] as experimentally verified by Xu et al. [1993]. As the dust density
increases, the average distance between grains decreases and the Debye spheres around
the particles become compressed, when the average grain distance has been reduced to
the order of a Debye length. As mentioned before, the grain and its Debye shield act
like a spherical capacitator, having a capacitance inversely proportional to the Debye
length. Consequently, one would expect the dust charges to increase. However, this
potential behaviour of the dust particles comes to nought due to another phenomenon.
As the plasma is thought of as being created with the injection of dust grains into a
neutral plasma, the dust grains will become negatively charged thus creating an electron
depletion in the plasma. Therefore grains cannot achieve higher charges, notwithstanding
their increased capacitance. In fact, in the case of sufficient electron depletion in the
plasma so that λD = d ∼ n

−1/3
d , the aforementioned charging equations for a single dust

particle are no longer valid because a dust particle then can no longer be treated as an
individual test particle [Mendis and Rosenberg 1994].

2.6 Self-gravitation

Self-gravitational forces, or in other words gravitational grain-grain interactions, inevitably
become significant for large clusters of dust particles, hence also for dusty plasmas with
large dimensions, for instance dust clouds or large molecular clouds. Self-gravitational
forces are attractive forces, directed radially towards the center of mass of the cluster and
consequently such a cluster contracts unless the self-gravitational forces are counteracted



32 Synergy between plasmas and dust

by pressure forces from within. The nature of these pressure forces can be manifold, e.g.
radiation pressure, magnetic pressure and thermal pressure may all enter into the stability
analysis. Here, an important distinction has to be made between neutral and charged dust
grains. Whereas neutral dust grains are mainly affected by gravity forces and possibly
also collisional forces, the charged dust grains also interact via the Lorentz forces and are
thus highly susceptible to the electron and ion pressure. Provided the lion’s share of the
dust grains is charged and in the absence of radiation sources and strong magnetic fields,
the electron and ion pressure turn out to be sufficient for stabilizing the plasma against
gravitational collapse, if the plasma does not exceed a certain critical lengthscale. This
critical lengthscale is known as the Jeans length.

2.7 Forces on dust grains

In this introduction, the discussion of the acting forces on dust grains was restricted to
the electromagnetic forces and the gravitational forces. It almost goes without saying that
these are not the only possible forces on a dust particle.

Other possible forces include the drag forces, often introduced into the description through
collisional frequencies between the different species. The most important drag forces in a
dusty plasma are those between charged dust particles and neutral dust particles. If neutral
particles are absent, the dust ion collisions prove to be the major collision mechanism, and
this situation is discussed in chapter 10.

Evidently, near the Sun or in the presence of other radiation sources, the radiation pressure
will be of considerable importance and will have to be included as well. The radiation
pressure can be expressed as p = W/c = ~ω0/c, with W the energy of the wave and ω0

the radiation frequency.

And the list does not end here, thermophoretic forces and the Poynting-Robertson effect
may also be important. The thermophoretic forces are associated with a momentum trans-
fer from the surrounding neutral gas to the dust particle due to a temperature gradient
in the gas. On the other hand, the Poynting-Robertson effect is a braking force due to
reradiation of the absorbed solar energy, ensuing from the Poynting-Robertson effect the
particles loose orbital energy and their orbit radius is decreased. The importance and
influence of the thermophoretic forces and the Poynting-Robertson effect is reviewed in
the books of Shukla and Mamun [2002] and Bliokh et al. [1995] respectively.

2.8 Reviews and books

Over the years, many state of the art reviews and excellent books appeared, providing a
valuable summary for the recent developments in the field of dusty plasmas and lowering
the threshold for people new to this exciting field.

In order of chronology and restricting the list of reviews to those that mostly deal with
space applications, the following eminent reviews are among the most instructive, namely
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Goertz [1989], De Angelis [1992], Mendis and Rosenberg [1994], Horányi [1996], Verheest
[1996] and Shukla [2001].
Recently, several detailed books have rejoiced the dusty plasma community. The first
monograph dealing with dusty plasmas was that of Bliokh et al. [1995], and emphasized
on self-gravitational effects in dusty space plasmas. On the other hand, the recent tech-
nological developments in laboratory applications of dusty plasmas were summarized by
Bouchoule [1999]. Both the monograph of Verheest [2000] and that of Shukla and Mamun
[2002] cover a very wide base and provide excellent companions for dusty plasma re-
searchers. Moreover, the books of Verheest [2000] and Shukla and Mamun [2002] provide
typical parameters of astrophysical plasmas. However, because the data related to dusty
plasmas are scarce and often disputed, estimations for orders of magnitude of relevant
parameters are by and large avoided in this thesis.
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Chapter 3

Basic equations and waves

The very low frequency modes under study in this thesis are mainly wave phenomena the
description of which resembles that of acoustic modes in ordinary plasmas. These sound
waves are intertwined with the thermal effects within a plasma and when taking into
account these thermal effects then, apart from the acoustic wave phenomena, there also
arise kinetic phenomena due to the fact that in a thermal or near thermal distribution,
there are some particles moving at or near the phase velocity. These particles have resonant
interactions with the wave, which can lead to either collisionless wave damping or to
instabilities and wave growth.

In order to study the latter effects, the framework of a kinetic theory is required. Unfor-
tunately in the derivation of dusty plasma kinetic theories, there are specific and as yet
unresolved problems due to e.g. the possible charging and diversity of the dust grains.
The diversity in size and composition of the dust particles undermines certain steps in the
traditional derivation of a kinetic theory and requires for a careful reexamination. Incor-
porating the charging mechanisms within a kinetic framework is not straightforward and
complicates the calculations considerably, for instance some theories [Varma 2000] include
charging mechanisms at the cost of extra phase variables, namely the dust charge and
the dust mass. Despite the weaknesses and unresolved issues in current dusty plasma ki-
netic theories, they represent the most comprehensive and accurate description available.
On the other hand, the fluid approach has the advantages of being mathematically more
manageable and straightforward, but is not accurate at small phase velocities.

In this chapter, the difficulties regarding kinetic theories are sketched, before advancing to
a multifluid model. In this multifluid model, the dispersion law for obliquely propagating
linear waves in magnetized, self-gravitating dusty plasmas is derived. In chapters 8 and
9, we will revert in more detail to a dusty plasma kinetic theory in order to recover some
of the generality that is lost due to the use of a fluid description.

35
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3.1 Kinetic model

3.1.1 Microscopic description

A microscopic theory for a many body system aims at the complete knowledge of the coor-
dinates and velocities of every single particle. However, a complete microscopic description
requires solving a system of coupled differential equations, where the number of equations
may exceed 1023! Clearly such an approach is neither practicable nor desirable, even a
priori impossible as we are ignorant of the exact initial conditions, but the microscopic
study of a plasma provides an excellent starting point for statistical plasma theories.
When switching over to a statistical method, the exact position in phase space of each
particle is not necessary, instead probability functions are introduced. For the introduction
of the probability functions we reason on a system of N0 particles and associate a six
dimensional coordinate system with each particle. As the individual particles of the system
shift in a six-dimensional phase space, the system moves along continuously in a 6N0-
dimensional phase space. The assumption of having a Gibbs ensemble of such systems,
then links each system with a point in the 6N0-dimensional phase space and we can define
a continuous function fN0 so that

fN0(x1,v1,x2,v2, . . . ,xN0 ,vN0 , t) dx1dv1dx2dv2 . . . dxN0dvN0 , (3.1)

represents the probability of retrieving a system in a volume dx1dv1dx2dv2 . . . dxN0dvN0 ,
around the phase space point (x1,v1,x2,v2, . . . ,xN0 ,vN0) at time t. The probability
function satisfies the Liouville equation

∂fN0

∂t
+

N0∑

i=1

vi · ∂fN0

∂xi
+

N0∑

i=1

ai · ∂fN0

∂vi
= 0, (3.2)

as the total probability is a conserved quantity. The probability function basically con-
tains the same information as microscopic distributions with the exception that it is rather
regarded as a continuous function, whereas the microscopic distribution functions are
thought of as discontinuous in actual positions and velocities. Consequently, a complete
description for a many body system, using probability functions is just about as unattain-
able as a microscopic theory, since the distribution functions carry essentially the same
amount of information and complexity. For reducing the complexity, reduced functions
are introduced and as these contain less information they offer a feasible approach. The
description of the reduced probability functions leads to the so called BBGKY hierarchy, a
set of equations named after respectively Bogoliubov, Born, Green, Kirkwood, and Yvon.

3.1.2 BBGKY hierarchy

Another way of describing the function fN0 is the joint probability of locating every particle
i between the coordinates (xi,vi) and (xi+dxi,vi+dvi). On the other hand, the so called
reduced probability functions

fk(x1,v1,x2,v2, . . . ,xk,vk, t) = V k

∫
dxk+1dvk+1 . . . dxN0dvN0FN0 (3.3)
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with V k a normalization factor, denote the probability of finding k particles in an el-
ementary 6-dimensional phase space volume encompassing the coordinates (xi,vi) for
i = 1 . . . k, irrespective of the coordinates of the other N0 − k particles. The reduced
probabilities evidently contain less information than the probability density fN0 and are
thus easier to manipulate. The Liouville equation yields a differential equation for ev-
ery fk so producing a chain of equations, where each equation for fk is coupled to the
next higher equation through an fk+1 term. This chain of equations forms the famous
BBGKY hierarchy, where the acronym conjoins the pioneering authors Bogoliubov [1946],
Born and Green [1949], Kirkwood [1946, 1947] and Yvon [1935], each of which developed
similar theories but often in different contexts.

The underlying assumption for the previous derivations is a symmetry of particle labels
for fN0 i.e. a full interchangeability of all particles, which is clearly an idealization of
astrophysical dusty environments. Obviously, the simplest type of reduced functions are
the one particle distribution functions, they depend only on six coordinates and time and
obey the collisionless Boltzmann equation

∂f1

∂t
+ v · ∂f1

∂x
+ aext · ∂f1

∂v
= 0, (3.4)

where aext stands for the acceleration due to external sources only. The two particle re-
duced distribution functions include interactions between particles and when the particles
are thought of to be completely independent, correlation factors can be neglected, yielding
the famous Vlasov equation [Vlasov 1945]

∂f1

∂t
+ v · ∂f1

∂x
+ (aext + aself) · ∂f1

∂v
= 0, (3.5)

with aself being the mean acceleration due to all particles. The latter equation indicates
that differences between the collisionless Boltzmann equation and the Vlasov equation are
hidden in the precise interpretation of the acceleration terms.

3.1.3 Difficulties in kinetic dusty plasma theory

As mentioned before, the assumption of a full interchangeability of all particles is generally
not justifiable in astrophysical dusty environments, due to the incredible diversity of the
dust and their ability to adsorb the lighter plasma constituents. Indeed the charging, and
possibly also creation/destruction processes, of dust particles poses serious problems in
the derivations of kinetic theories, when applied to dusty plasmas in the true sense of their
meaning. This because the identity of the dust particles can change continuously and, to
make things even more complicated, intimately depends on the surroundings. Moreover,
the considerable size of the dust grains forces a serious reconsideration of the derivations
necessary to obtain the Liouville equation.

The aforementioned difficulties for obtaining a “proper” dusty plasma kinetic theory are
hitherto still unresolved and are for the moment being investigated intensively [Tsytovich
and De Angelis 1999, 2000, 2001, 2002, Varma 2000]. Nowadays, the use of extra phase
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space variables for the dust charge and dust mass seems a viable approach for wave mode
analysis in dusty plasmas [Varma 2000, Verheest et al. 2002].
Despite the open problems, kinetic plasma theories applied to multispecies plasmas can
be a valuable tool for the exploration of waves in dusty plasmas and provide a framework
for studying the effects associated with the thermal motion of particles.

3.1.4 Kinetic dispersion relation for electrostatic waves

Having outlined the principles, but also the restrictions, of extending the use of kinetic
plasma theory to dusty plasmas, we can now turn to the study of low-frequency waves
in dusty plasmas. Because of the very low frequencies, the intricacies arising due to the
charging processes do not necessitate a serious reconsideration. Indeed, as in general the
charging frequencies are situated way out of the window of the considered wave frequencies,
the charges can safely be assumed constant. For simplicity we consider plasma waves in
unmagnetized and collisionless self-gravitating plasmas, where for the moment only one
dust species is included. All particle species α (with α = e, i, d) can be described by a
distribution function fα , which obeys the ordinary Vlasov equation

∂fα

∂t
+ ∇ · (vfα) + ∇v ·

[
fα

{
qα

mα
(E + v ×B)−∇ψ

}]
= 0. (3.6)

Here v is the velocity in phase space and the nabla operator ∇v stands for

∇v ≡
(

∂

∂vx
,

∂

∂vy
,

∂

∂vz

)
. (3.7)

In the absence of a magnetic field, the self-consistent electric field E = −∇φ and gravita-
tional field ψ can be found from the Poisson equations

∇2φ = − 1
ε0

∑
α

qαnα, (3.8)

∇2ψ = 4πG
∑
α

mαnα, (3.9)

where φ is the electric potential, G the gravitational constant and densities are introduced
as

nα =
∫

fαd3v. (3.10)

For the description of plasma waves, all the external fields and average velocities of the
particles are assumed to be zero in the unperturbed (equilibrium) state. Applying the
standard linearization procedure then yields the perturbed distribution functions

fα1 = − k ·∇vfα0

ω − k · v
[

qα

mα
φ + ψ

]
, (3.11)

where values with subscript 0 refer to the zeroth-order state, and first-order terms are
indicated by a subscript 1, the latter are assumed to vary as exp[ik · r− iωt].
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The substitution of the perturbed distribution function (3.11) into the Poisson equations
(3.8) and (3.9) gives two coupled equations with respect to the electric and gravitational
potentials, namely

φεp + ψ
K√
G

= 0,

− φK
√

G + ψεG = 0. (3.12)

These equations involve a plasma dielectric constant εp and its analogue for a self-gravita-
ting neutral medium, here represented by εG

εp = 1 +
1

ε0k2

∑
α

q2
α

mα
Iα, (3.13)

εG = 1− 4πG

k2

∑
α

mαIα, (3.14)

and a coupling factor

K =
√

4πG

ε0

1
k2

∑
α

qαIα, (3.15)

where the abbreviation
Iα =

∫
k ·∇vfα0

ω − k · v d3v. (3.16)

has been used.
The dispersion relation for electrostatic waves in a kinetic model of self-gravitating plasmas
is the eliminant of the system formed by equations (3.12) and simply becomes

ε (ω, k) = εp +
K2

εG
= 0, (3.17)

which clearly indicates the coupling between electrostatic and gravitational disturbances.

3.2 Multifluid model

Whereas the kinetic theory treatment of plasma waves is the most comprehensive descrip-
tion, it is also the most complex. For this reason, a fluid description is usually the preferred
tool for the description of wave modes, as it provides a more wieldable and transparent
model. A fluid description requires the phase velocities under study to be large compared
to the thermal velocities and so disregards the effects on wave propagation/damping caused
by particles travelling at or near the phase velocity of the wave.
The fluid equations encompass the continuity equations, which express the conservation
of number densities per species

∂nα

∂t
+ ∇ · (nαuα) = Sα, (3.18)
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here labeled per species with the index α and with the fluid velocities are denoted by
uα. The sink/source terms Sα on the right hand side of the continuity equation remain
unspecified here and have to be invoked when dealing with dust charging. We continue
with the equations of motion per species

(
∂

∂t
+ uα ·∇

)
uα +

1
nαmα

∇ ·Pα =
qα

mα
(E + uα ×B)−∇ψ + Mα, (3.19)

where E and B denote the electric and magnetic fields, and ψ the gravitational potential.
The equation of state is curtailed to changes of state where the pressure of a species
exclusively depends on its density and is isotropic in nature,

Pα = pα(nα)1. (3.20)

This assumption of barotropic pressures is not a severe restriction and also allows the
traditional isentropic changes of state. For the plasma in its totality, there is conservation
of charge and this can be expressed as

∂

∂t

∑
α

nαqα + ∇ ·
∑
α

nαqαuα = 0. (3.21)

With the help of the continuity equations (3.18), the charge conservation equation can
easily be rewritten as

∑

α=e,i

qαSα +
∑

d

nd

(
∂

∂t
+ ud ·∇

)
qd = 0. (3.22)

Similarly as for the charges, we can write down an equation that expresses the conservation
of mass for the plasma as a whole

∂

∂t

∑
α

nαmα + ∇ ·
∑
α

nαmαuα = 0, (3.23)

or equivalently ∑

α=e,i

mαSα +
∑

d

nd

(
∂

∂t
+ ud ·∇

)
md = 0. (3.24)

In this multifluid formalism the equations of Maxwell are

∇×E +
∂

∂t
B = 0,

c2∇×B =
∂

∂t
E +

1
ε0

∑
α

nαqαuα,

∇ ·E =
1
ε0

∑
α

nαqα,

∇ ·B = 0. (3.25)
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Finally, the gravitational Poisson equation

∇2ψ = 4πG
∑
α

nαmα, (3.26)

allows the calculation of the gravitational potential.

Phenomena that require the possibility of fluctuating grain charges, are dealt by using a
current equation per dust species

dqd

dt
=

∂qd

∂t
+ ud ·∇qd = Ie + Ii, (3.27)

the right hand side of the current equation for a negatively charged dust grain involves
the charging currents towards or away from the dust grain. These charging currents for
the electrons respectively ions are, provided that equilibrium drifts are small compared to
the thermal velocities, and following the OML theory [Allen 1992]

Ie = −πa2ene

√
8kBTe

πme
exp

(
eVd

kBTe

)
,

Ii = πa2eni

√
8kBTi

πmi

(
1− eVd

kBTi

)
, (3.28)

where Vd ≡ qd/4πε0a denotes the dust grain surface potential relative to the plasma
potential.

3.3 Waves in magnetized plasmas

When dealing with magnetized plasmas, a unique direction is present in the description,
namely the direction of the static, magnetic field B0. It is convenient to refresh the existing
nomenclature for waves in magnetized plasmas, here k and E1 will represent respectively
the wave vector and the first order electric field. The angle between the direction of the
static, magnetic field and that of the wave propagation allows two special choices, waves
are called parallel propagating waves if k×B0 = 0 and perpendicularly propagating waves
if k ·B0 = 0.

The direction of the wave electric field relative to the wave vector also marks waves, for
k × E1 = 0 waves are named longitudinal, in contrast with transverse waves for which
k ·E1 = 0.

Finally, the absence of a magnetic field perturbation (B1 = 0), distinguishes the elec-
trostatic waves from those with B1 6= 0, namely the electromagnetic waves. From Fara-
day’s law we learn that longitudinal waves are electrostatic and vice versa. Indeed from
k× E1 = 0 (longitudinal waves) follows ∂B/∂t = 0, hence in a linear description B1 = 0
(electrostatic waves).
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3.4 Space and time scales

The different forces and mechanisms in a dusty plasma act on different space and time
scales. These are summarized here briefly and are compared to each other. Regarding
the spatial scales, the smallest dimension under consideration is the typical dust grain
size a. As Debye shielding is a prime example of plasma collective behaviour, the Debye
length λD sets apart what is termed a “dusty plasma” from a so called “dust in plasma”
environment. Here, we denote the average distance between grains as d and note that
a ¿ λD in virtually every dusty plasma environment. For a ¿ λD < d, the screened
dust grains can be considered as isolated entities or impurities in the plasma and in this
case one speaks of a dust-in-plasma. On the other hand, for a ¿ d < λD the Debye
spheres of the dust grains overlap and so allow a conjoint motion of the dust particles.
Making a leap in orders of magnitude we can now look at the lengthscales involved with
the self-gravitational forces, which work on a much longer range than electrostatic forces.
The relative magnitude of the parameter L, standing for a typical dimension of the total
plasma under consideration and the Jeans length LJ , determines whether the plasma is
stable against gravitational collapse. The plasma is gravitationally unstable if L > LJ

and vice versa the plasma is stable for L < LJ .

There are also different time scales in play [Verheest et al. 2001] in a dusty plasma wave
description. If a dusty plasma is described as a closed system then there are four rele-
vant timescales. The Saha equation supplies the shortest timescale, namely the thermal
relaxation time needed for being able to consider a dynamic equilibrium, regarding the
ionization and recombination processes in the plasma. Tacitly this timescale is mostly
considered zero, as usually the global conservation of charge and mass is supposed. An-
other important timescale quantifies the typical charging time of the dust particles and is
usually defined as

τcharge =
[

1
σd0

dσd0

dt

]−1

, (3.29)

with σd0 the total charge density in the plasma. Naturally, the wave period ω−1 also is an
important timescale. Finally, there is the longest of all timescales, namely the timescale
characterizing the mass loading

τmass =
[

1
ρd0

dρd0

dt

]−1

. (3.30)

In fact it can often safely considered to be infinite, for instance when treating the electrons
and ions as being Boltzmann distributed.

In analytical models, the typical charging time and the wave period are mostly assumed
to differ considerably from each other. If this assumption is not justified, a numerical
treatment is requisite.
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3.5 Linear waves in multispecies plasmas

A sensible choice for a reference frame wherein wave phenomena for arbitrary propagation
angles can be described, is a frame where one of the axes is aligned with either the direction
of the static, external magnetic field or the direction of wave propagation. I choose for
the latter possibility, aligning the z-axis with the direction of wave propagation, ergo
∇ = ez∂/∂z. There is one more degree of freedom for the choice of the reference frame
and this is used to assure that the static magnetic field vector B0 lies in the x, z-plane and
thus B0 = B0(sinϑex + cos ϑez), with ϑ being the angle between the directions of wave
propagation and the external magnetic field.

Using this convention for the reference frame, the basic equations can be simplified, start-
ing with the continuity equations

∂nα

∂t
+

∂

∂z
(nαuαz) = 0, (3.31)

and the equations of motion,

∂uα

∂t
+ uαz

∂uα

∂z
=

qα

mα
(E + uα ×B)− 1

nαmα

∂pα

∂z
ez − ∂ψ

∂z
ez. (3.32)

The barotropic law is isotropic and thus becomes

pα = Pα(nα), (3.33)

while Maxwell’s equations simplify to

ez × ∂E
∂z

+
∂B
∂t

= 0, (3.34)

c2ez × ∂B
∂z

=
∂E
∂t

+
1
ε0

∑
α

nαqαuα, (3.35)

ε0
∂Ez

∂z
=

∑
α

nαqα, (3.36)

∂Bz

∂z
= 0, (3.37)

and finally, the gravitational Poisson equation becomes

∂2ψ

∂z2
= 4πG

∑
α

nαmα. (3.38)

Linearizing and Fourier transforming the equations (3.31)–(3.34) allows us to express the
fluid velocity for each species separately as linear functions of the components of the wave
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electric field and of the self-gravitational potential

uαx =
qα

mαLα

{
iω(ω2 − k2c2

sα − Ω2
α sin2 ϑ)Ex − Ωα(ω2 − k2c2

sα)Ey cosϑ

− iωΩ2
αEz sinϑ cosϑ

}− ωkΩ2
α

Lα
ψ sinϑ cosϑ,

uαy =
qα

mαLα

{
Ωα(ω2 − k2c2

sα)Ex cosϑ + iω(ω2 − k2c2
sα) Ey

(3.39)
− ω2ΩαEz sinϑ

}
+ i

kω2Ωα

Lα
ψ sinϑ,

uαz =
qα

mαLα

{−iωΩ2
αEx sinϑ cosϑ + ω2ΩαEy sinϑ

+ iω(ω2 − Ω2
α cos2 ϑ)Ez

}
+

ωk(ω2 − Ω2
α cos2 ϑ)

Lα
ψ,

where Lα is shorthand for

Lα = ω2(ω2 − Ω2
α)− k2c2

sα(ω2 − Ω2
α cos2 ϑ). (3.40)

Here streaming effects have been omitted and different sound velocities csα have been
defined through mαc2

sα = [dPα/dnα]Nα and it is worth noting that the gyrofrequencies
Ωα = qαB0/mα include the sign of the charges. Substituting the fluid velocities (3.39) in
the linearized forms of equations (3.35) and (3.38) then yields the following set of equations




Dxx Dxy Dxz Dxψ

Dyx Dyy Dyz Dyψ

Dzx Dzy Dzz Dzψ

Dψx Dψy Dψz Dψψ


 ·




Ex

−iEy

ωEz

i(ωk/
√

4πε0G)ψ


 = 0, (3.41)

with the elements of the symmetric dispersion tensor being given by

Dxx = ω2 − c2k2 − ω2
∑
α

ω2
pα(ω2 − k2c2

sα − Ω2
α sin2 ϑ)

ω2(ω2 − Ω2
α)− k2c2

sα(ω2 − Ω2
α cos2 ϑ)

,

Dxy = Dyx = ω
∑
α

ω2
pαΩα(ω2 − k2c2

sα) cos ϑ

ω2(ω2 − Ω2
α)− k2c2

sα(ω2 − Ω2
α cos2 ϑ)

,

Dxz = Dzx = ω
∑
α

ω2
pαΩ2

α sinϑ cosϑ

ω2(ω2 − Ω2
α)− k2c2

sα(ω2 − Ω2
α cos2 ϑ)

,

Dxψ = Dψx = − ω
∑
α

ωpαωJαΩ2
α sinϑ cosϑ

ω2(ω2 − Ω2
α)− k2c2

sα(ω2 − Ω2
α cos2 ϑ)

,

Dyy = ω2 − c2k2 − ω2
∑
α

ω2
pα(ω2 − k2c2

sα)
ω2(ω2 − Ω2

α)− k2c2
sα(ω2 − Ω2

α cos2 ϑ)
,
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Dyz = Dzy = − ω2
∑
α

ω2
pαΩα sinϑ

ω2(ω2 − Ω2
α)− k2c2

sα(ω2 − Ω2
α cos2 ϑ)

,

Dyψ = Dψy = ω2
∑
α

ωpαωJαΩα sinϑ

ω2(ω2 − Ω2
α)− k2c2

sα(ω2 − Ω2
α cos2 ϑ)

, (3.42)

Dzz = 1−
∑
α

ω2
pα(ω2 − Ω2

α cos2 ϑ)
ω2(ω2 − Ω2

α)− k2c2
sα(ω2 − Ω2

α cos2 ϑ)
,

Dzψ = Dψz =
∑
α

ωpαωJα(ω2 − Ω2
α cos2 ϑ)

ω2(ω2 − Ω2
α)− k2c2

sα(ω2 − Ω2
α cos2 ϑ)

,

Dψψ = − 1−
∑
α

ω2
Jα(ω2 − Ω2

α cos2 ϑ)
ω2(ω2 − Ω2

α)− k2c2
sα(ω2 − Ω2

α cos2 ϑ)
,

from which the general dispersion law follows as

det[Dij ] = 0. (3.43)

The different plasma frequencies are defined through ω2
pα = Nαq2

α/ε0mα, and the Jeans
frequencies through ω2

Jα = 4πGNαmα. Capital letters denote equilibrium values. As
ωpαωJα is a convenient way to rewrite Nαqα, up to normalizing constants, a single ωpα

includes the sign of the charge.

3.6 Parallel propagation

At parallel propagation (ϑ = 0◦), there is a decomposition of the dispersion law. Indeed
since Dxz = Dxψ = Dyz = Dyψ = 0, the matrix [Dij ] has a blockdiagonal structure and
its determinant can be written as

det[Dij ] =
∣∣∣∣
Dxx Dxy

Dxy Dyy

∣∣∣∣ ·
∣∣∣∣

Dzz Dzψ

Dzψ Dψψ

∣∣∣∣ = 0. (3.44)

The dispersion law for parallel modes clearly decouples and, since in this case Dxx = Dyy,
yields

Dxx ±Dxy = 0, (3.45)
DzzDψψ −D2

zψ = 0. (3.46)

Equation (3.45) amounts to

ω2 = c2k2 + ω
∑
α

ω2
pα

ω ± Ωα
, (3.47)

as Ex and Ey are out of phase with each other, the electric field vector performs a circular
rotation in time. Thus the latter equation represents the ordinary right and left hand
circularly polarized modes, respectively. These are transverse, electromagnetic modes and
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therefore, within a fluid description, unaffected by the self-gravitational forces, or any
gradient force for that matter.
On the other hand, equation (3.46) yields the longitudinal Langmuir-Jeans modes [Bliokh
et al. 1995]

(
1−

∑
α

ω2
pα

ω2 − k2c2
sα

)(
1 +

∑
α

ω2
Jα

ω2 − k2c2
sα

)
+

(∑
α

ωpαωJα

ω2 − k2c2
sα

)2

= 0. (3.48)

The Langmuir-Jeans modes are longitudinal and therefore have no magnetic field pertur-
bation i.e. these modes are electrostatic. The dispersion law (3.48) will be fully described
in the chapters dealing with electrostatic modes and self-gravitation.

3.7 Perpendicular propagation

On the other hand, at strictly perpendicular propagation (ϑ = 90o), the dispersion law
(3.43) factorizes in the one for the ordinary mode, with dispersion law Dxx = 0 or

ω2 = c2k2 +
∑
α

ω2
pα, (3.49)

the remainder then giving the extraordinary mode [Verheest 2000]. Again, the ordinary
mode is unaffected by self-gravitation or pressure effects. Conversely, the low-frequency
part of the extraordinary mode undergoes notable changes due to self-gravitation [Verheest
et al. 1999].

3.8 Instabilities

Linear plasma waves are nothing else than small perturbations about the equilibrium
state, some of these perturbations however can continuously grow in time, leading to an
unstable configuration [Chandrasekhar 1961]. Instabilities in plasmas are in fact common
phenomena, being imputable to the intrinsic complexity of plasmas. Indeed, plasmas
allow all kinds of possible perturbations, any of which can prove to be unstable. The
mathematical translation of the stability criterion is quite simple, whenever we obtain
a dispersion relation D(ω, k) = 0, the corresponding wave is considered unstable if for
some real wavenumber kcr the frequency ω has a positive imaginary part. That is, if the
dimensions of the system under consideration exceed a minimum length L = 2π/kcr.
Unfortunately there are some pitfalls in a rigorous stability analysis. For instance, stabili-
ties are studied within a linear theory, while there could be nonlinear limiting effects which
are hardly amenable to a theoretical framework. Furthermore, the equilibrium state itself
has to be stable and this is merely a premise in the existing theories of self-gravitating
systems! This inconsistency and its consequences are discussed later.



Chapter 4

Basic modes

The addition of dust species to a plasma does not only modify the existing modes but also
introduces new very low frequency wave modes. The first to recognize the new frequency
scales introduced by the heavy dust particles were Rao et al. [1990], they included the
dynamics of the dust and their investigations ultimately resulted in the prediction of the
dust-acoustic wave. The poignant physics that described the dust dynamics in effect acted
as a catalyst for many other dusty plasma investigations and turned the dust-acoustic mode
into a precursor for a multitude of other low frequency modes. The dust-acoustic mode
has been repeatedly observed, in an astonishing agreement with theoretical predictions
[Barkan et al. 1995].
The very low frequency modes under study in this thesis are mainly wave phenomena
resembling acoustic oscillations, and in this chapter the most relevant electrostatic modes
are recalled. These basic modes delineate the different frequency regimes, wherein the
charged dust particles play a role.
In order to extricate these very basic modes, relatively simple models are employed and
these are inherently restricted to a certain frequency window. In doing so, the main
physical mechanisms are exposed clearly, while keeping the mathematics manageable. In
the following chapters, the initial restrictions on the frequency range are relaxed and then
the coupling between the different wave modes hosted by a dusty plasma will be revealed.
The reason for this strong coupling is manifold, due to the many possible interaction
mechanisms between the particles. The interlacing between the different modes can not
only be induced by the usual collisional and streaming effects between species, but the
charged, heavy dust particles can also communicate by means of charge exchanges and
gravitational interplay.
Firstly, the general dispersion law for electrostatic modes will be repeated, afterwards the
different frequency regimes are separated and catalogued in order of diminishing frequen-
cies. The discussed modes have ultra low frequencies and for these modes the grains gen-
erally charge so rapidly that they have ample time to achieve an equilibrium charge within
a wave period. For this reason the dust charges can be treated as effectively constant,
except for the description of the dust-Coulomb wave, where the dust charge fluctuations
play a crucial and indispensable role.

47
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To set the standards uncomplicatedly, the following descriptions only deal with collisionless
plasmas, which may give imprecise results particularly in case of a strong presence of
neutral dust grains. If collisions are important, the picture has to be refined and this
problem is relegated to chapter 10. Furthermore, the described basic modes are usually
portrayed in a monodisperse dusty plasma and the complications due to mass distributions
will also be tackled further on.

4.1 Linear electrostatic waves

When dealing with linear electrostatic waves, Faraday’s equation reduces to ∇ × E = 0
and consequently the waves are exclusively longitudinal.
We can revert to the general dispersion law (3.48) for electrostatic waves, propagating
parallel to an external magnetic field, namely

(
1−

∑
α

ω2
pα

ω2 − k2c2
sα

)(
1 +

∑
α

ω2
Jα

ω2 − k2c2
sα

)
+

(∑
α

ωpαωJα

ω2 − k2c2
sα

)2

= 0, (4.1)

and this dispersion law illustrates clearly the coupling between the electrostatic and self-
gravitational modes. After all, the first factor arises solely from electric interactions be-
tween particles. On the other hand, for neutral particles only the second factor remains,
representing the dispersion law for waves in a self-gravitating, electrically neutral medium.
Evidently, the last term is the coupling factor that denotes the degree of coupling between
electric and gravitational processes, it disappears in neutral gases.
For simplicity the influence of self-gravitational effects is relegated to a later section, in
effect this simplification boils down to setting a lower limit for the investigated frequencies.
Without self-gravitation the dispersion law (4.1) now reduces to its purely electrostatic
part

∑
α

ω2
pα

ω2 − k2c2
sα

= 1. (4.2)

Only the very low frequencies will allow the heavy dust grains to respond to the electro-
static perturbations, and in this frequency range the presence of the dust grains not only
modifies existing wave modes but even brings about a habitat for wave modes that are
nonexistent in “dust free” plasmas. In order to isolate the different wave mechanisms in
dusty plasmas and situate the different frequency regimes, some of the most basic and
celebrated wave modes are recalled now. The different wave modes are catalogued in a
diminishing order and in doing so the influence of the dust will show to be increasingly
elemental in the wave description.
As the dust particles are too sluggish to follow the highest frequencies, the outcome of their
presence is negligible in that part of the frequency spectrum. For intermediate frequencies
however, the dust particles commence to participate in wave motion, albeit that they act
as it were in a supporting part and merely modify wave modes that occur in ordinary
plasmas too. Finally for the lowest frequencies, corresponding with the characteristic time
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scales of the dust dynamics, the plasma particles desist completely partaking in the wave
motion and only provide pressure. The latter branch of the frequency spectrum wets most
of our appetite for knowledge, as it is here that new wave modes emerge. Moreover, only
this branch can be significantly influenced by self-gravitational effects, as will become clear
later on.

4.2 Langmuir modes

Langmuir waves were among the first discovered plasma waves due to the fact that they
can be studied in a very simple model. Basically, Langmuir waves [Langmuir 1926] are
simple plasma oscillations in which only the electrons take part, with a mechanism closely
connected to the charge screening processes in a plasma. The traditional model treats an
electron-ion plasma, consisting of a fixed background of immobile ions, wherein initially
a one-dimensional local perturbation of the electrons is created. Subsequently, the per-
turbation creates a positive charge density that pulls back the electrons to their original
position. Yet the extremely mobile electrons overshoot their equilibrium position, which
underlines the dynamic character of the electron screening, and the result is an ongoing
harmonic oscillation with the electron plasma frequency ωpe as the oscillation frequency.
Dust particles are a fortiori much heavier than ions and it would be futile to include
them in the description of Langmuir waves. The regime of Langmuir waves is obtained
when assuming all species but electrons to be infinitely massive or, equivalently, supposing
frequencies high enough so that the heavier species cannot participate in the wave motion.
In a dusty plasma with mi,md →∞ (ωpi = 0 = ωpd), equation (4.2) then yields

ω2 = ω2
pe + k2c2

se = ω2
pe(1 + k2λ2

De), (4.3)

where the last term represents a relatively small thermal correction. The ions cannot keep
pace with the high frequency electron oscillations and are therefore hardly influencing the
physics of Langmuir oscillations. The presence of dust particles brings about electron
depletion and therefore the Langmuir waves have a lowered plasma frequency in dusty
plasmas.
If we take the ion motion into account, but still neglect all dust motion as dust particles
are so much heavier than ions, the result can be adapted by formally replacing the electron
mass by the reduced mass (1/me + 1/mi)−1, yielding [Akhiezer et al. 1975]

ω2 = ω2
pe

(
1 +

me

mi

)
+ k2c2

se, (4.4)

which is, as expected, a small correction.

4.3 Dust-ion-acoustic mode

For lower frequencies the ions too are involved in the wave motion whereas the electrons
are displaced simultaneously with the electrostatic and pressure perturbations. Including
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the ion motion, we now encounter the frequency domain of the dust-ion-acoustic waves,
firstly described by Shukla and Silin [1992]. These can only be excited in a strongly
non-isothermal plasma (Ti ¿ Te) and therefore I will suppose the ions to be practically
cold. The cold ion approximation and the quasi-inertialess nature of the electrons in this
frequency range restricts the phase velocities to the range csd, csi ¿ ω/k ¿ cse, which
clearly corresponds to the notion of an electron pressure that coerces the more massive
ions and, to a much lesser extent, the dust grains into a collective motion. The dispersion
law for the dust-ion-acoustic waves is easily derived from (4.2) and reads

ω2

k2
=

λ2
De(ω

2
pi + ω2

pd)

1 + k2λ2
De

. (4.5)

Since in dusty plasmas the ion plasma frequency ωpi is much larger than the dust plasma
frequency ωpd, the latter can be safely neglected in equation (4.5). In the long wavelength
limit k2λ2

De ¿ 1, the dispersion relation (4.5) then simplifies to

ω

k
= cdia = λDeωpi ' kcia

√
Ni

Ne
, (4.6)

wherein the dust-acoustic velocity cdia is defined and c2
ia = kBTe/mi is the usual ion-

acoustic speed. Expression (4.6) implies the virtual immobility of the dust grains in this
phase regime. In other words, the dust grains only influence the wave mode through
electron depletion. However, due to the constraints on the phase velocities, the electron
depletion is not allowed to be extremely small and must satisfy me/mi ¿ Ne/Ni [Whipple
et al. 1985].

4.4 Intricacies of the used fluid model

There is a note of caution that must be emphasize here, in the discussed phase speed
regime the ions can be described hydrodynamically but, strictly speaking, the electrons
cannot! A careful examination of the dynamic behaviour of the electrons requires a kinetic
model and so we start with the Vlasov equation for the electrons

∂fe

∂t
+ v · ∂fe

∂r
− [e (E + v ×B) + me∇ψ] · ∂fe

∂p
= 0.

Since we assume phase velocities ω/k ¿ cse, the Vlasov equation can be considered to be
time independent (∂fe/∂t = 0) and for electrostatic waves becomes

v · ∂fe

∂r
+

(
e
∂φ

∂r
−me

∂ψ

∂r

)
· ∂fe

∂p
= 0.

Possible solutions of the latter equation are

fe = fe

[
− mv2

2kBTe
+

eφ

kBTe
− meψ

kBTe

]
,
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where the right hand side denotes any arbitrary function of the argument residing between
the square brackets. This implies that the Boltzmann distribution is also a solution

fe ∼ exp
[
− mv2

2kBTe
+

eφ

kBTe
− meψ

kBTe

]
,

and so, with the use of

ne =
∫

fed
3v, (4.7)

the following density distribution for the electrons is obtained,

ne = Ne exp
(

eφ

kBTe
− meψ

kBTe

)
.

To summarize, for the electrons, we can assume that they are in equilibrium under the
conditions of low-frequency oscillations and that their density is Boltzmann distributed.
After linearization of the Boltzmann equation, we finally obtain for the electron density

ne =
Ne

kBTe
(eφ−meψ). (4.8)

If we now go back to the derivation of the general dispersion law, we have for the linearized
equation of continuity without streaming

ne =
Nekuez

ω
, (4.9)

while the linearized equation of motion for longitudinal disturbances (Ez = −ikφ) yields

uez =
kω(−eφ + meψ)
me(ω2 − k2c2

se)
. (4.10)

Combining equations (4.9) and (4.10), we obtain

ne =
Nek

2(−eφ + meψ)
me(ω2 − k2c2

se)
=

Ne

kBTe
(eφ−meψ) (4.11)

when inserting ω ¿ kcse and mec
2
se = kBTe. We can now see that the general dispersion

law renders the proper result although, strictly speaking, for the dust-ion-acoustic waves
it is applied outside the validity of the fluid description. This is due to the linearization
procedure and is in fact a more general remark. For future reference we can now incor-
porate quasi-inertialess species (denoted with index α) by letting mα → 0, and carefully
retain the nonzero pressure term mαc2

sα = [dP (nα)/dnα]Nα = kBTα.
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4.5 Dust-acoustic mode

Going to even lower phase velocities so that the phase velocity obeys csd ¿ ω/k ¿ csi, cse,
the wave dynamics are completely governed by the dust inertia. Now both the electrons
and ions supply the necessary pressure and this is the regime of the dust-acoustic wave
as first described by Rao et al. [1990]. As the dust-acoustic wave embodies the dynamic
behaviour of the dust particles, its frequency is inherently extremely low and typically of
the order of a few hertz. Over the years, the existence of the dust acoustic wave has been
strikingly confirmed in several laboratory experiments [Barkan et al. 1995, Pieper and
Goree 1996] and stimulated many researchers, proven by the avalanche of papers dealing
with dust-acoustic waves since their discovery.

Under the aforementioned restrictions the dispersion law (4.2) simplifies in this low fre-
quency regime to

ω2

k2
= c2

sd +
λ2

Dω2
pd

1 + k2λ2
D

= c2
sd +

c2
da

1 + k2λ2
D

, (4.12)

where cda = λDωpd is the dust-acoustic speed. The Debye length is implicated in the
dust-acoustic velocity and the latter can as such be heavily influenced by ion screening
effects.

Dust-acoustic waves occur typically for long wavelengths λ À λD, indeed in this regime
the electrons and ions screen the fluctuations of the dust grain charge so that ultimately
their pressure gradients drive the oscillation. Since the plasma pressures are much larger
than the dust pressures, the dust-acoustic speed cda will be much larger than the dust
sound speed csd, so that in the long wavelength limit (kλD ¿ 1) equation (4.12) simply
reduces to ω = kcda.

4.6 Dust-Coulomb wave

The previously described modes were derived in a framework wherein the dust charges
can be esteemed as constant, because the charging times scales are considered to differ
significantly from the wave period. However, another low frequency mode arises solely
on condition that both dust charge and density perturbations are taken into account.
Indeed, the dust-Coulomb [Rao 1999] wave describes the dust dynamics that are tied up
with the dust charge fluctuations and consequently requires the presence of dust grains
with variable charges.

Because the dust dynamics are investigated, the characteristic time scales are tuned ac-
cordingly and therefore allow the electrons and ions to be treated as being in thermal
equilibrium. The electron and ion density are thus Boltzmann distributed

ne = Ne exp
(

eφ

kBTe

)
, (4.13)

ni = Ni exp
(
− eφ

kBTi

)
, (4.14)
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while the continuity and momentum equations for the dust remain

∂nd

∂t
+

∂

∂z
(ndud) = 0, (4.15)

∂ud

∂t
+ ud

∂ud

∂z
+

qd

md

∂φ

∂z
+

kBTd

ndmd

∂nd

∂z
= 0. (4.16)

The electrostatic potential φ can then be found from Poisson’s equation

∂2φ

∂z2
=

1
ε0

(ene − eni − qdnd) (4.17)

and the current balance equation completes the description,

∂qd

∂t
+ ud

∂qd

∂x
= Ie + Ii. (4.18)

The current balance equation expresses the dust charge fluctuations in terms of the electron
and ion currents

Ie = −πea2ne(φ)
√

8kBTe

πme
exp

(
eVd

kBTe

)
,

Ii = πea2ni(φ)
√

8kBTi

πmi

(
1− eVd

kBTi

)
, (4.19)

that enter or leave the grain. Here Vd = qd/4πε0a is the instantaneous grain surface
potential and a is the grain radius.
Linearizing and Fourier transforming equations (4.13)-(4.18) yields the dispersion relation

ω2

k2
=

c2
da

1 + k2λ2
D + f∆

+ c2
sd, (4.20)

where the fugacity parameter f = 4πaNdλ
2
D has been met in Chapter 2 and ∆ is defined

as
∆ =

ω2

ω1 − iω
. (4.21)

This involves the characteristic grain charging frequencies

ω1 =
a√
2π

[
ωpi

λDi
+

ωpe

λDe
exp

eVd0

κTe

]
,

ω2 =
a√
2π

[
ωpi

λDi

(
1− eVd0

κTi

)
+

ωpe

λDe
exp

eV0

κTe

]
, (4.22)

with Vd0 = Qd/4πε0a the equilibrium grain surface potential.
Let us now look at the interesting limits in the relation between the wave period and the
charging time scales of the dust grains. When the charging time scale is much larger than
the wave period, the dust-Coulomb wave will be absent [Rao 2000]. This result is not
much of a surprise, after all the grains in this regime have a nearly constant charge over
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a wave period and the existence of grain charge fluctuations is a conditio sine qua non for
the existence of the dust-Coulomb wave.

On the other hand, when the wave period is much smaller than the characteristic charging
times, the grains have ample time to attain an average equilibrium charge over one wave
period and consequently charge fluctuations will hardly contribute to wave damping. In
this limit, ω ¿ ω1 so that ∆ ' ω2/ω1 = δ, where the parameter δ can be safely assumed
to be constant over a wide range of dust fugacity. Now it becomes clear that the dust-
Coulomb wave is a wave that resides in dense dusty plasmas, i.e. dusty plasmas with
fδ À 1. Indeed for fδ À 1, the dispersion relation (4.20) reduces to

ω2

k2
=

c2
dc

δ(1 + k2λ2
R)

+ c2
sd, (4.23)

with the dust-Coulomb speed cdc = Qd/
√

4πε0amd and λR = 1/
√

4πNdaδ being a length
scale closely related to the intergrain separation. Contrarily, for tenuous dusty plasmas
i.e. plasmas for which fδ ¿ 1, the dust-acoustic wave is recovered and so we can conclude
that the value of the plasma fugacity parameter dictates whether the dust-acoustic or
dust-Coulomb wave will exist.

4.7 Pure Jeans modes

In the extremely low frequency limit, when plasma effects are unimportant, only the self-
gravitational branch of the dispersion law (4.1) remains, namely

1 +
∑
α

ω2
Jα

ω2 − k2c2
sα

= 0, (4.24)

because gravitational forces are negligible among electrons and ions, the summation index
in equation (4.24) only runs over the dust species. For one dust species the dispersion law
reduces to the archetypal dispersion law for a single neutral self-gravitating species

ω2 = k2c2
sα − ω2

Jα. (4.25)

For an n-component system, the dispersion relation (4.24) has n roots in ω2, of which
at most one can be negative [Fridman and Polyachenko 1984]. The negative root occurs
when

n∑

d=1

ω2
Jd

k2c2
sd

> 1 (4.26)

and corresponds with an aperiodic instability. All the other modes, corresponding with
positive roots, represent coupled acoustic oscillations.
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4.8 Other modes

This overview was not intended to be exhaustive and only the most relevant electrostatic
modes for the this thesis were recalled and situated concisely. Other electrostatic modes
have been described in recent papers, among which the dust-lattice mode and the dust
hybrid modes are among the most investigated.
The dust-lattice mode, obtained by Melandsø [1996], Farokhi et al. [1999] and later ex-
tended by Farokhi et al. [1999], is also a low frequency mode that only can occur in
strongly coupled dusty plasma systems. Dust-lattice waves differ considerably from the
acoustic modes that were previously described and exist in an entirely different frequency
and phase velocity regime. As the name suggests, it presumes an ordered structure of
dust particles and is dealt with using lattice models similar to those applied in solid state
physics. Nowadays, dust lattice modes are closely observed and investigated in micro-
gravity experiments, performed in the International Space Station.
The dust hybrid modes are not further discussed, an overview of the dust hybrid modes
is given by Verheest [2000].
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Chapter 5

Self-gravitation

In astrophysical plasmas which contain a considerable amount of dust, the intergravita-
tional forces between the bulky dust grains can vie successfully with the electric forces
acting upon the grains. A large dust cloud in equilibrium may in fact be destabilized
through the growth of density perturbations, induced by the self-gravitational attraction
forces among the dust particles.
As against in traditional plasmas, the self-gravitational forces are no longer negligible
in dusty plasmas and necessitate a reiteration of the age-old problem of gravitational
stability in astrophysical systems. For instance, this issue already emerged in the 18th
century when Immanuel Kant (1775) and Pierre-Simon de Laplace (1796) posed the first
serious theory of the origin of the solar system i.e. the nebular hypothesis. But most of
the present achievements are greatly indebted to sir James Jeans, who in 1902 formulated
the first instability criterion for self-gravitating systems [Jeans 1929]. Later on, several
authors refined and extended the study of Jeans instabilities e.g. Chandrasekhar [1954],
Nakano [1988], Gehman et al. [1996]. Jeans’ analysis was performed for neutral particles
only, but the foundations remain the same in the context of dusty plasmas [Avinash and
Shukla 1994, Bliokh et al. 1995, Verheest et al. 1997].
Jeans streamlined the analysis radically by presuming the existence of a uniform equilib-
rium state. As a consequence, the problem is reduced to a small perturbations analysis so
that conveniently harmonic waves can be used. The spectral decomposition of the wave
equations produces a simple dispersion law containing a critical wavelength, which stip-
ulates that large systems with dimensions exceeding this critical lengthscale will become
gravitationally unstable. The aforementioned crucial lengthscale was coined the Jeans
length, bearing appropriately the name of the pioneer in the physics of self-gravitating
problems.
It is however necessary to advance circumspectly, when drawing conclusions from the small
perturbation derivations. The premise of a uniform equilibrium state is not necessarily
legitimate in that over larger distances self-gravitation inevitably causes the medium to
become nonuniform. Therefore a self-gravitational system may be considered uniform
only locally. One often assumes that the critical wavelengths are small compared to the
scale lengths over which the system changes so that the perturbation analysis indeed can

57



58 Self-gravitation

be implemented as if the unperturbed configuration satisfies the equilibrium equations,
an assumption often referred to rather curtly as the “Jeans swindle” [Spitzer 1978, Boss
1987, Čadež 1990, Vranješ and Čadež 1990]. If this simplifying hypothesis is not valid, the
obtained instability criterion possibly allows unphysical solutions as the assumed equilib-
rium conditions do not satisfy the basic equations. By necessity, it must always be checked
whether applying the Jeans swindle is justifiable, a requisite which is often being put on
the back burner or even conveniently forgotten!

5.1 Comparison between electrostatic and gravitational
forces

It is instructive to compare the magnitudes of the electrostatic and gravitational forces
acting upon the dust grains. If we restrict the present forces on the dust grain to electro-
static (Fe) and gravitational forces (Fg), we can calculate the relative importance of these
forces between two identical grains,

Fe

Fg
=

q2
d

4πε0r2

(
Gm2

d

r2

)−1

=
1

4πε0G

q2
d

m2
d

=
ω2

pd

ω2
Jd

, (5.1)

here ω2
Jd = 4πGNdmd is the Jeans frequency for the dust species. If the capacitance model

for the grain charge is used [Houpis and Whipple Jr. 1987] and the dust grain is assumed
to be spherical and homogeneous, then the charge and mass of a grain can be expressed
as a function of its size a, namely

q(a) = 4πε0Vd0a ∼ a, (5.2)

m(a) =
4
3
πρ0a

3 ∼ a3, (5.3)

where ρ0 is the mass density of the dust grain. This leads to

Fe

Fg
=

9ε0

4πG

(
Vd0

ρ0a2

)2

, (5.4)

meaning that the electrostatic and gravitational forces are balanced for grains with size

a2 =

√
9ε0

4πG

Vd0

ρ0
. (5.5)

For ice particles, the previous equation renders a size abalance = 0.018
√

Vd0.
The equilibrium size can also be expressed in terms of the mass and density of the dust
grain

ω2
pd = ω2

Jd

⇒ md =
eZd√
4πε0G

⇒ a = 3

√
3md

4πρ0
. (5.6)
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Applied again to ice particles, this gives abalance ' 80 ·Z1/3
d µm. We can conclude that for

singly charged icy grains, the size for which self-gravitation and electric forces counterbal-
ance each other is about 80 µm, for grains which have higher charges this size increases
only with the cubic root of the charge.

5.2 Jeans instability and the infamous Jeans swindle

The traditional derivation of the Jeans instability starts from an infinite, homogeneous
self-gravitating system which is in a static equilibrium. Yet this outset is flawed, indeed
when implementing a constant pressure p0, a constant density ρ0 and a mean velocity v0

which is naught, the equation of motion (3.19) predicts that ∇φ0 = 0 but regrettably, this
outcome is only reconcilable with Poisson’s equation ∇2φ0 = 4πGρ0 if the mass density
ρ0 is zero. The Jeans swindle now consists of treating Poisson’s equation to be valid for
the perturbed quantities, while the unperturbed potential is ad hoc discarded. One can
think of configurations where the Jeans swindle is justifiable [Binney and Tremaine 1987],
but in general it may be sensible to look at the use of the Jeans swindle with Argus’ eyes.
Having noted the intrinsic weaknesses of Jeans’ approach, we can now sketch the physical
mechanisms of the Jeans instability when assuming the Jeans swindle to be justifiable.
In a neutral gas cloud, there are two antagonists, namely the gas pressure which tries to
expand the cloud and the gravitational force which aims at a contraction of the cloud.
The gravitational force in a region of radius R and per unit mass is

Fg1 ' −GM

R2
1r = −4

3
πGρ0R 1r, (5.7)

with M = 4πρ0R
3/3 and the counteracting pressure force can be approximated as

Fp1 ' p1

ρ0R
1r =

c2
sn

R
1r, (5.8)

with the speed of sound defined as c2
sn = kBTn/mn. The oppositely directed pressure

forces and gravitational forces will balance each other for regions of radius

Rbalance '
√

3csn√
4πGρ0

=

√
〈v2〉√

4πGρ0
=

√
〈v2〉
ωJ

, (5.9)

when a Maxwellian velocity distribution is assumed and with 〈v2〉 =
√

3csn the average of
the squared velocities and ωJ the Jeans frequency. However for regions with dimensions
larger than Rbalance, the gravitational forces will be on the upper hand and procure a
collapse, the so called Jeans instability.

5.3 Basic state

In order to draw a comparison between the relevant scale lengths and the critical length-
scale, we first study the basic, unperturbed state of a self-gravitational plasma in a rather
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simple configuration [Verheest et al. 2000a]. We consider a massive plasma cloud of uni-
form composition, which can be treated as a perfect gas and which is large enough to
supply significant self-gravitational forces. The plasma cloud is assumed isothermal, a
nonuniform magnetic field B0 is present and the description further includes the possibil-
ity of a nonuniform plasma flow U0 along the field lines.
The basic state for the plasma can be taken stationary because we assume a sufficiently
large electrical conductivity so that Ohmic dissipation and magnetic diffusivity have a
negligible effect on the magnetic field, when considering time scales related to the dynamics
of the perturbations.
We perform a 1-dimensional analysis in a Cartesian geometry where the z-axis is chosen
along the direction of wave propagation and consequently the nabla operator becomes
∇ = ez∂/∂z. On the other hand, the x-axis is chosen along the direction of the magnetic
field and particle flow, which are both oriented perpendicularly to the gradients of physical
quantities i.e. B0 = B0(z)ex and U0 = U0(z)ex. By applying a Cartesian geometry, the
correct nonlocal treatment can be restricted to one dimension only, because even in a
3-dimensional description it is impossible to devise a direction along which the medium
may be assumed strictly uniform.
The plasma beta β = pg0/pm0, defined as the ratio of the thermal pressure and the
magnetic pressure, is assumed to remain constant in each point of the plasma, which is a
realistic assumption in highly conductive plasmas with frozen-in magnetic fields. Because
the gas pressure pg0 = RgT0ρ0 evolves proportional to the magnetic pressure pm0 =
B2

0/(2µ0) both the Alfvén speed VA and the speed of sound cs are constant,

V 2
A =

B2
0

µ0ρ0
= const, (5.10)

c2
s = γRgT0 = const. (5.11)

Here ρ0 represents the plasma mass density in the cloud and Rg = R/M is the gas constant
of the cloud, with R the universal gas constant and where M denotes the mean molar mass
for the cloud. Further, the speed of sound cs involves the ratio of the specific heats γ and
T0 represents the constant temperature. We have seen that the assumption of a constant
β is reflected in a constant Alfvén speed, which implies that the magnetic field is assumed
to be stronger in regions with higher densities and weaker in regions with lower densities.
The equations for the basic state now comprise the perfect gas law

pg0 = Rgρ0T0, (5.12)

the equation of magnetohydrostatic balance

−∇pg0 − ρ0∇ψ0 +
1
µ0

(∇×B0)×B0 = 0, (5.13)

which reduces to (
1 +

1
β

)
dpg0

dz
= −ρ0

dψ0

dz
, (5.14)
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and the gravitational Poisson equation

d2ψ0

dz2
= 4πGρ0, (5.15)

which includes the gravitational constant G and from which the gravitational potential ψ0

can be calculated.
The equations (5.12)-(5.15) yield the following equation for ρ0

d2

dz2
ln ρ0 = − 4πGβγ

(1 + β)c2
s

ρ0, (5.16)

which has the general solution

ρ(z) =
(1 + β)c2

s

2πγGβH2
sech2

(
z + A

H

)
, (5.17)

with A and H constants of integration. If we associate z = 0 to the center of the cloud,
the constant A accordingly becomes zero and the required solution can be written as

ρ0 = ρ00sech2
( z

H

)
, (5.18)

wherein ρ00, the equilibrium density measured in the center of the cloud, corresponds to
the value of the other integration constant H unambiguously through

H2 =
1 + β

2πγ

c2
s

Gβρ00
. (5.19)

It follows that H is a lengthscale which quantifies the typical scale of non-uniformity of
the basic state.
Using (5.18), the Poisson equation becomes

d2ψ0

dz2
= 4πGρ00sech2

( z

H

)

= ω2
Jd0sech

2
( z

H

)
, (5.20)

where we have introduced the definition ω2
Jd0 = 4πGρ00md, which serves as a local equiv-

alent of the Jeans frequency, measured at z = 0. Equation (5.20) can be integrated in
order to obtain

dψ0

dz
= ω2

Jd0H tanh
( z

H

)
, (5.21)

where the integration constant is zero due to equations (5.14), (5.18) and (5.19).
Since our model started from β ∼ ρ0/B2

0 constant, it is evident that

B0 = B00sech
( z

H

)
, (5.22)

where the constant

B00 =
√

2µ0

βγ
c2
sρ00 (5.23)

stands for the magnitude of the magnetic field at the center of the cloud.



62 Self-gravitation

5.4 Linear perturbations

Having obtained the equilibrium values, we move on and perturb the above described
basic state in a 1-dimensional configuration. All the amplitudes of the linearly perturbed
quantities are z-dependent only and are governed by the standard set of MHD equations
together with the gravitational Poisson equation. This linearization procedure leads to
the following set of equations for the perturbed quantities,

∂ρ

∂t
+ ∇ · (ρ0v) + ∇ · (ρU0) = 0, (5.24)

ρ0
∂v
∂t

+ ρ0v ·∇U0 + ρ0U0 ·∇v = −∇p− ρ∇ψ0 − ρ0∇ψ +
1
µ0

(∇×B0)×B

+
1
µ0

(∇×B)×B0, (5.25)

∂B
∂t

= ∇× (v ×B0) + ∇× (U0 ×B), (5.26)

∇2ψ = 4πGρ, (5.27)
∂p

dt
+ U0 ·∇p + v ·∇p0 = c2

s

(
∂ρ

∂t
+ U0 ·∇ρ + v ·∇ρ0

)
, (5.28)

where the last equation expresses the adiabaticity of the perturbations i.e. the entropy
is conserved because energy dissipation is absent and because a magnetohydrodynamical
description implies that the involved macroscopic processes are sufficiently slow.

Fourier transforming the previous set of equations and introducing the total pressure
perturbation function P = p+v2

Aρ0bx and the new variable η = ρ0ξ, with ξ the Lagrangian
displacement in the z-direction (vz = −iωξ) leads to

ρ0vx + η
dU0

dz
= 0, (5.29)

dψ0

dz

dη

dz
+ ω2η =

dP

dz
+ ρ0

dψ

dz
, (5.30)

V 2
ms

dη

dz
= η

[
d ln ρ0

dz

(
V 2

A

2
+

γ − 1
γ

c2
s

)]
− P , (5.31)

d2ψ

dz2
= −4πG

dη

dz
, (5.32)

where the magnetosonic velocity V 2
ms = V 2

A + c2
s is introduced. The last equation can be

integrated and with the boundary condition

dψ

dz

∣∣∣∣
η=0

= 0, (5.33)

the integration yields
dψ

dz
= −4πGη. (5.34)
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From the Poisson equation (5.15), we can also obtain

dψ0

dz
= ω2

Jd0H tanh(
z

H
), (5.35)

and thus, up to an arbitrary constant

ψ0 = ω2
Jd0H

2 ln sech(
z

H
). (5.36)

Finally from equations (5.30) and (5.31), we obtain by eliminating the total pressure
perturbation function P the equation

d2

dZ2
(η coshZ)−

(
N − 2

cosh2 Z

)
η coshZ = 0, (5.37)

where Z = z/H and

N = 1− ω2H2

V 2
ms

. (5.38)

When using (5.18), the previous equation can be written in the variable ξ = η/ρ0 and
becomes

d2

dZ2
[ξsech(Z)]− (N − 2sech2Z

)
ξsech(Z) = 0, (5.39)

5.5 Stability analysis

The analysis will only be performed for positive Z, as the solutions of (5.39) will be either
symmetric or antisymmetric and it follows that a distinct stability analysis for the positive
and negative real parts of the axis is not necessary. Further on in the analysis, it will prove
to be convenient to change the dependent variable so that the first derivative vanishes and
this can be done (Appendix A) by making a substitution ξ(Z) = ζ(Z) cosh(Z). Upon this
substitution equation (5.39) becomes

d2ζ(Z)
dZ2

+
[
1 +

ω2H2

V 2
ms

− 2 tanh2(Z)
]

ζ(Z) = 0, (5.40)

where ζ(Z) evidently has the same roots as ξ(Z), since the cosh-function is nowhere zero.

For frequencies ω > Vms/H, we can now use Sturms theorems (Appendix A) to compare
the solutions of equation (5.40) and the solutions of

d2ζ(Z)
dZ2

+
(

ω2H2

V 2
ms

− 1
)

ζ(Z) = 0. (5.41)

Equation (5.41) has constant coefficients hence its solutions are quickly calculated as

ζ
( z

H

)
= ξ

( z

H

)
sech

( z

H

)
= C1 cos(kz) + C2 sin(kz), (5.42)
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with C1, C2 arbitrary constants and

k2 =
ω2

V 2
ms

− 1
H2

. (5.43)

We can easily deduct from (5.42) that the roots of solutions ζ(Z) are located at a distance

πVms√
ω2H2 − V 2

ms

(5.44)

from each other. Furthermore, it is obvious that

1 +
ω2H2

V 2
ms

− 2 tanh2(Z) >
ω2H2

V 2
ms

− 1. (5.45)

Hence for frequencies ω > Vms/H, Sturm’s comparison theorem predicts that in each
interval of length

πVms√
ω2H2 − V 2

ms

(5.46)

there is at least one root of every non-trivial solution of (5.40). In other words, the distance
between two roots of solutions ζ(Z) cannot be larger than the length of the aforementioned
interval. We can conclude that for frequencies above the cut-off frequency viz. ω > Vms/H,
the solutions for ζ(Z) and thus also the solutions of ξ(Z) display an oscillating behaviour.
For large Z, the solutions of (5.39) will practically coincide with the solutions (5.42) and
thus correspond to a dispersion law

ω2 = k2V 2
ms +

V 2
ms

H2
. (5.47)

Equation (5.39) can also be transformed into its self-adjoint form (see Appendix A)

d

dZ

[
sech2(Z)

dξ

dZ

]
+

ω2H2

V 2
ms

ξ sech2(Z) = 0. (5.48)

Applying the theorem of Sonin-Polya, it follows that the absolute values of the relative ex-
trema of each non-trivial solution ξ(Z) of the differential equation form a non-decreasing
row. Because we have just seen that a non-trivial solution ξ(Z) has an oscillatory be-
haviour, non-trivial solutions either diverge or oscillate between constant envelopes, as
illustrated in figure 5.1 and figure 5.2, respectively.
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Z0

ξ(Z)

Fig 5.1: Divergent solution

0

(Z)ξ

Z

Fig. 5.2: Constant envelopes

Looking at the asymptotic solutions for ξ(Z) at large Z, namely

ξ(Z) = ξ
( z

H

)
= cosh

( z

H

)
[C1 sin(kz) + C2 cos(kz)], (5.49)

where k is given by (5.43), we deduce that all non-trivial solutions ξ(Z) are divergent.
On the other hand, for frequencies 0 6 ω 6 Vms/H, the coefficient of the lowest order
term in equation (5.40), viz.

1 +
ω2H2

V 2
ms

− 2 tanh2(Z), (5.50)

will be negative for sufficiently large arguments Z > Zmax. Now Sturm’s Comparison
theorem implies that there is at most one root for ξ(Z) in the interval [Zmax,∞], meaning
that the behaviour for large Z is non-oscillatory and allows for stable solutions. Indeed,
for 0 < ω < Vms/H the asymptotic behaviour of the solutions on the positive axis now
displays an evanescent character

ξ
( z

H

)
∼ exp

(
−

√
1

H2
− ω2

V 2
ms

z

)
cosh

( z

H

)
. (5.51)

Finally, for a zero frequency and also for the cutoff frequency, the solutions of equation
(5.39) can be calculated explicitly. For these values of the frequency, the solutions η(Z) can
be given in terms of the associated Legendre functions. Accordingly for a zero frequency,
which relates to N = 1, the solution for ξ(Z) becomes

ξ(Z) =
dξ(Z)
dZ

∣∣∣∣
Z=0

· sinh(2Z) + 2Z
4

, (5.52)
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because the displacement at the center of the cloud is zero (ξ(0) = 0). The cutoff frequency
Vms/H corresponds to N = 0 and the solution for ξ(Z) becomes accordingly

ξ(Z) =
dξ(Z)
dZ

∣∣∣∣
Z=0

· sinh(Z). (5.53)

As we had learned from the theorems of Sturm already, these solutions are non-oscillatory,
but for these specific cases the solutions are diverging.
We emphasize that we did not work in a (ω, k) phase space but in a (ω, Z)-space, so that
instabilities occur when real frequencies lead to infinite displacement amplitudes.

5.6 Uniform basic state

In order to pinpoint the susceptibility for errors ensuing from the Jeans swindle, the
standard derivation for the Jeans instability criterium is repeated. The standard approach
makes use of the assumption of a uniform, static fluid so that

dφ0

dz
=

dρ0

dz
=

dB0

dz
=

dU0

dz
= 0. (5.54)

Since the aforementioned gradients vanish, the equations (5.30)-(5.32) simplify to the set

dP

dz
= ω2η − ρ0

dψ

dz
,

V 2
ms

dη

dz
= −P,

d2ψ

dz2
= −4πG

dη

dz
, (5.55)

which yields the acquainted dispersion law

ω2 = k2V 2
ms − 4πGρ0. (5.56)

In situations where one can vindicate the Jeans swindle, this dispersion law reveals that
an instability occurs for wavenumbers smaller than a critical wavenumber kcr. Indeed for
k < kcr = ωJd/Vms, there are two solutions for ω, one of them having a positive imaginary
part. Accordingly, a dust cloud can believed to be subject to a gravitational collapse if
its diameter exceeds 2πVms/ωJd or if the total mass exceeds the Jeans mass MJ , usually
defined as

MJ =
(

2π

kcr

)3

ρ0 =
(

πV 2
ms

G

)3/2 1√
ρ0

.

Applying the Jeans swindle boils down to considering a local, homogeneous region of the
system which is considered to be inhomogeneous only on much larger scales. To check
whether this is true, the obtained Jeans length, here denoted as LJ with

L2
J =

πV 2
ms

Gρ0
, (5.57)
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must be compared with the lengthscale H,

L2
J

H2
= 2π2 2 + βγ

1 + β
> 1, (5.58)

from which we infer that the medium cannot be considered uniform over a Jeans length, a
conclusion contravening regrettably the presupposition of a local, uniform state! However,
we note that the parameters LJ and H are of the same order, which accounts for the
usefulness of an approach that calls upon the Jeans swindle, because the obtained Jeans
length determines to what extent a self-gravitating medium with certain dimensions can
be considered uniform.

5.7 Summary

In this chapter, we have treated a self-gravitating cloud in a one-dimensional model without
invoking the Jeans swindle in order to test the reliability of the classical analysis. On
larger lengthscales, a self-gravitating cloud in magnetohydrostatic equilibrium is inevitably
inhomogeneous and one obtains a typical lengthscale H that characterizes the typical
inhomogeneity lengthscale of the cloud. For perturbations with wavelengths comparable
to this inhomogeneity lengthscale H, the stationary density variations necessarily have to
be included. If the density inhomogeneities are effectively included, linear waves which
would induce a gravitational collapse according to the classical instability criterion, are
actually stable.
For the remaining chapters, this causes us to be in two minds about the treatment of the
Jeans instability treatment. The treatments in our work and generally those in literature
that deal with the Jeans instability mostly presume a uniform basic state and whereas
this simplifying assumption proves to be a powerful mathematical instrument, it possesses
an Achilles heel, being the Jeans swindle. However, a more exact treatment like the one
given in this chapter is not available for multispecies plasmas nor in a more-dimensional
model. Nevertheless, while the fruition of a soundly underpinned theory for the study
of self-gravitating systems is delayed, applying the Jeans swindle for the examination of
self-gravitating systems is often valuable. In case when the acquired instability criterion
must be discarded, the instability analysis is not at all futile but the chief virtue of such an
approach will then rather shift to the determination of the inhomogeneity length scales of a
system. After all, the Jeans length as obtained from the classic Jeans instability criterion
is a reliable measure for the scales of non-uniformity of the considered self-gravitating
medium.
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Chapter 6

Self-gravitation and size
distributions

In astrophysical dusty plasmas the dust grains exhibit an abundance of possible sizes and
masses. Consequently, the inclusion of a size distribution in any dusty plasma model will
deliver more realistic results than a mono-sized dust description and certainly merits a
closer look. The size of a dust grain determines the importance of self-gravitational forces
on the grain. Whereas grains with radii of the order of microns are still mainly influenced
by electric forces, the contribution of self-gravitational forces increases with size and is
even dominant for the heavy grains in the size spectrum. Evidently the self-gravitational
effects are closely interwoven with the distribution spectrum of the dust sizes, therefore the
stability study of self-gravitating plasmas is immediately associated with an investigation
of the influences of size distributions.

In this chapter we investigate the influence of self-gravitation and size distributions on
waves propagating parallel to the external magnetic field. As mentioned before, the modi-
fications due to the inclusion of self-gravitational forces for parallel waves is strictly limited
to the longitudinal modes and consequently only these electrostatic modes are described.
We opted for the clear and simple framework of a fluid theory in order to scout the physical
mechanisms of self-gravitation orderly. Later on, in chapter 8, the fine tuning lost due to
the fluid description is recovered using a kinetic description.

Here, and in all following chapters, issues regarding the validity of the Jeans swindle are
given the go-by, the small perturbation analysis is valuable no matter how, if only for the
information it provides with respect to the inhomogeneity lengths.

The inclusion of multiple dust species into the description is introduced progressively.
We will start with a discrete distribution, dealing only with two dust species. Next,
multiple species are included but with some simplifications, namely on the one hand we
describe a distribution of cold but charged dust species and on the other hand we recall the
distribution of warm but neutral dust species. Afterwards, the more general configuration
consisting of multiple warm and charged dust species is tackled. Finally, as an additional
application we make a full analysis of a model that depicts two counterstreaming dust
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beams. The inclusion of streaming effects engenders the possibility of Jeans-Buneman
instabilities [Meuris et al. 1997, Pillay et al. 2000] and we carefully examine the different
parameter ranges.

6.1 Distribution functions

The size distribution of dust grains is governed by the formation, growth and destruction
processes. These mechanisms are continuously active but are often assumed to be in
a dynamic equilibrium. That is, in the life cycle of an individual grain many events
can continuously be responsible for breaking up or enlarging the grain, but as the size
distribution includes all the present dust grains, the size distribution is some sort of an
average and can be considered as being time-independent. However, the treatment of such
a variety of dust grains, charged or not, is still very incomplete because of the complexities
involved. In the absence of fully self-consistent kinetic theories, we will here adopt a poor
man’s approach and represent charged dust by a limited number of species in a continuous
range.
For some applications however, a continuous model is more realistic than a discrete model.
In that case, it is recommended to use a kinetic framework, because a continuous distribu-
tion inevitably contains singularities. Such a continuous distribution is treated in chapter
8, where a kinetic model is used in order to retrieve the information lost due to the use of
a fluid description.
When dust particles are present in an almost continuous size range, the characterization of
the size spectrum can be dealt with through distribution functions. For many astrophysical
applications, observations justify the use of a power law distribution [Rosenberg 1993] for
charged dust grains in a given range of possible particle sizes. The differential density
distribution is then

n(a)da = Ka−βda with a ∈ [amin, amax], (6.1)

where a is the dust grain radius and amax and amin set the maximum respectively minimum
grain size. Values of β are documented for several environments and I recall primarily those
listed by Meuris [1998]: for the F-ring of Saturn β = 4.6 [Showalter and Cuzzi 1993] and
for the G-ring values of β = 7, β = 6 and smaller were obtained [Gurnett et al. 1983,
Showalter et al. 1992, Meyer-Vernet et al. 1996]. A value of β = 3.5 is often found to
agree with observations [Mathis et al. 1977, Whittet 1992, Weingartner and Draine 2001].
On the other hand, in cometary environments, a value of β = 3.4 is observed [McDonnell
et al. 1987, McDonnell et al. 1992].
But for dusty plasma experiments the dust sizes often follow a normal distribution [Meuris
1998]

n(a)da =
Ntot√

π σ erf(ε/σ)
exp

[
(a− a)2

σ2

]
da, (6.2)

where a is the average radius, ε = (amax − amin)/2 is the center of the size interval and σ
stands for the width of the distribution. It is assumed that ε/σ > 2 so that erf(ε/σ) ' 1.
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Of course, more complicated models are also possible, one can think of several intervals of
size ranges where some have discrete distributions and others a continuous one.

6.2 Dispersion law

For the study of wave mode modifications due to gravitational effects and the study of
gravitational stability, the significant frequencies are those low enough to allow the heavy
dust grains to respond to the perturbations and for these low frequencies the electrons
and ions can be considered as being effectively Boltzmann distributed. Without self-
gravitation, this approach is emblematic of working in the regime of the celebrated dust-
acoustic mode, higher frequencies e.g. the dust-ion acoustic mode are hardly affected by
self-gravitation. Additionally, I suppose that the wavelengths are large enough so that
k2λ2

D ¿ 1, this assumption can be justified a posteriori as the wavelengths will prove to
be of the order of the Jeans lengths. Using the above approximations, the dispersion law
(4.1) simplifies to

(
1

k2λ2
D

−
∑

d

ω2
pd

Ld

) (
1 +

∑

d

ω2
Jd

Ld

)
+

(∑

d

ωpdωJd

Ld

)2

= 0, (6.3)

with Ld = ω2−k2c2
sd and where the summations now are restricted to the dust components.

When streaming effects are included, the dispersion law (6.3) has the same form, but with
Ld = (ω − kUd)2 − k2c2

sd [Bliokh et al. 1995, Bliokh and Yaroshenko 1996, Meuris et al.
1997], all different dust species experience a different, Doppler shifted, frequency. As
mentioned before, the electron and ion contributions are retained only via a global plasma
Debye length λD, defined through

1
λ2

D

=
1

λ2
De

+
1

λ2
Di

=
ω2

pe

c2
se

+
ω2

pi

c2
si

. (6.4)

For later convenience, I note that equation (6.3) can be rewritten as

1 +
∑

d

ω2
Jd − k2λ2

Dω2
pd

Ld
− k2λ2

D

2

∑

d

∑

d′

(ωpdωJd′ − ωpd′ωJd)2

LdLd′
= 0, (6.5)

where in the summations d and d′ have been used as dummy indices. This is a polynomial
with leading terms

ω2N +
∑

d

[
ω2

Jd − k2(λ2
Dω2

pd + c2
sd)

]
ω2N−2 + . . . = 0, (6.6)

where N is the number of dust species. The last term in equation (6.5) clearly represents
the modifications due to the presence of different dust species with distinct character-
istics and can only vanish when all dust particles have the same charge-to-mass ratio
or, equivalently, have the same proportionality between plasma and Jeans frequencies
ωpd/ωJd = ωpd′/ωJd′ .



72 Self-gravitation and size distributions

The dispersion law, written as (6.5), now allows for a systematical approach to study
the influence of size distributions on the gravitational stability of sizeable dusty plasmas.
First, the dispersion law for a monodisperse dusty plasma is recalled.

6.3 Monodisperse dust description

For a single, neutral dust species and without considering streaming, we recover naturally
the classic Jeans instability criterion

ω2 = k2c2
snd − ω2

Jnd, (6.7)

where the index n has been added to emphasize the neutrality of the dust species under
consideration. On the other hand, if we consider a single but charged dust species then
equation (6.5) produces a slight adaption of the dispersion law, which becomes

ω2 = k2(c2
da + c2

sd)− ω2
Jd, (6.8)

setting the critical Jeans length to

k2
cr =

ω2
Jd

c2
da + c2

sd

. (6.9)

The dust-acoustic mode is recovered if, in addition to ignoring the dust thermal speed,
self-gravitational effects are excluded.
We can label equation (6.8) as the archetypal dispersion law for “Jeans” modes in dusty
plasmas with a single charged dust component and will encounter this or similar equations
frequently. Having outlined the description for a monodisperse dusty plasma, we can now
work progressively towards the analysis of a polydisperse dusty plasma and do this by first
considering a dusty plasma consisting of two different, charged dust species.

6.4 Two charged dust species

Note that the complexity of the dispersion law (6.5) rapidly increases with the number
of dust species, as it is a polynomial of degree N in ω2, where N is the number of dust
species considered. Dealing with only two charged dust species, the modifications due to
this most simple configuration of dust mass distributions can be tackled straightforward
and in their full generality. For a plasma with only two charged dust components, the
dispersion law becomes a biquadratic in ω viz.

[
ω2 − k2(c2

sd1 + c2
da1) + ω2

Jd1

] [
ω2 − k2(c2

sd2 + c2
da2) + ω2

Jd2

]

= (ωJd1ωJd2 − k2cda1cda2)2, (6.10)

revealing the manifest coupling between the two Jeans dust modes, each of which would
obey the typical Jeans law (6.8) on its own. In the latter equation a separate dust-acoustic
velocity cdaα = λDωpdα per dust species α is introduced for notational convenience.



6.4 Two charged dust species 73

Both roots (in ω2) of equation (6.10) are real because the discriminant ∆ of the bi-quadratic
equation is always positive,

∆ =
(
ω2

Jd1 − ω2
Jd2 − k2c2

da1 − k2c2
sd1 + k2c2

da2 + k2c2
sd2

)2

+ 4(ωJd1ωJd2 − k2cda1cda2)2 > 0. (6.11)

There is at least one positive root, corresponding to a stable mode. The other root has
the same sign as the constant term in (6.10), which represents the product of both real
roots. For an instability to occur, this product has to be negative, which can always come
about in the event of small enough wavenumbers k < kcr, with the critical wavenumber
kcr being defined as

k2
cr =

ω2
Jd1c

2
sd2 + ω2

Jd2c
2
sd1 + (ωJd1cda2 − ωJd2cda1)2

c2
sd1c

2
da2 + c2

sd2c
2
da1 + c2

sd1c
2
sd2

' (ωJd1cda2 − ωJd2cda1)2

c2
sd1c

2
da2 + c2

sd2c
2
da1

. (6.12)

The approximate form of kcr stems from the safe assumption of the pure plasma pressures
being much larger than the dust pressures, so that for the dust species csdα ¿ cdaα.
Incidentally, the approximate form is not valid in the special case of the two dust species
having the same charge-to-mass ratio. As mentioned before, the latter possibility would
drastically simplify the dispersion law (6.5) to

1 +
∑

d

ω2
Jd − k2λ2

Dω2
pd

ω2 − k2c2
sd

= 0, (6.13)

the discussion of which mimics that of a neutral dust cloud [Bliokh et al. 1995], a config-
uration that will be discussed further on.
If one of the species, e.g. the second, is almost cold (csd2 → 0), then (6.12) reduces to

k2
cr =

ω2
Jd1

c2
sd1

(
1− q1m2

q2m1

)2

. (6.14)

When this cooler species is also the more massive one, then |q1m2/q2m1| À 1 if we follow
the standard, primary charging model [Mendis and Rosenberg 1994, Meuris et al. 1997].
The primary charging model assumes for the charges of the dust grains qα ∝ aα and for
their masses mα ∝ a3

α with aα the size of the corresponding dust grain species, all being
immersed in the same plasma. A further simplification is now possible and leads to

k2
cr =

ω2
Jd1q

2
1m

2
2

c2
sd1q

2
2m

2
1

À ω2
Jd1

c2
sd1

, (6.15)

showing that dusty plasmas containing solely charged dust grains are stable on much larger
lengthscales than comparable dust clouds with only neutral particles. Summarizing, a
rigorous treatment of a dusty plasma with two charged dust species leads to a dispersion
law that exemplarily displays the mode coupling between the two Jeans dust modes.
Moreover, just as for the monodisperse case, the criterion for gravitational instability is
easily recovered, it suffices to set ω2 equal to zero in order to obtain the critical Jeans
wavenumber, a wavenumber that signifies a lower limit for stable wavenumbers.
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6.5 Polydisperse, but cold dust species

Dealing with more than two dust species is not much of an obstacle when dealing with
only cold dust species, the dispersion law (4.1) remains a biquadratic, independently of
the number of dust species [Meuris et al. 1997],

ω4 +

(∑

d

ω2
Jd − k2λ2

D

∑

d

ω2
pd

)
ω2 − k2λ2

D

2

∑

d

∑

d′
(ωpdωJd′ − ωpd′ωJd)2 = 0. (6.16)

or equivalently
(

ω2 − k2λ2
D

∑

d

ω2
pd

)(
ω2 +

∑

d

ω2
Jd

)
+

(∑

d

kλDωpdωJd

)2

= 0, (6.17)

and the discriminant ∆ now becomes

∆ =

(∑

d

ω2
Jd + k2λ2

D

∑

d

ω2
pd

)2

− 4k2λ2
D

(∑

d

ωpdωJd

)2

=

[∑

d

(kλDωpd − ωJd)
2

]
·
[∑

d

(kλDωpd + ωJd)
2

]
> 0. (6.18)

Again, the discriminant is positive but now the product of both (real) roots will be al-
ways negative, independent of the wave number. This results in one positive and one
negative real root, so that the presence of the negative root implies an inevitable gravi-
tational instability. We can conclude that without dust pressure a gravitational collapse
in a polydisperse dusty plasma is certain, as there is an unstable mode at all possible
wavenumbers.

6.6 Multiple neutral dust species

Before dealing with multiple warm, charged dust species, it is useful to consider a poly-
disperse description of neutral dust species. Naturally, electrostatic effects are absent and
the dispersion law reduces to

∑
n

ω2
Jn

ω2 − k2c2
sn

= −1. (6.19)

The stability analysis of this multicomponent system shows that there is at most one ape-
riodic instability that can develop and this instability occurs if [Fridman and Polyachenko
1984]

∑
n

ω2
Jn

k2c2
sn

> 1, (6.20)

obtained by setting ω2 = 0 in (6.19). Besides the instability, all the other collective modes
are combined sound oscillations. This can be well illustrated graphically [Fridman and
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Polyachenko 1984]. If we denote the left hand side of equation (6.19) as f(ω2), the roots
of the dispersion relation (6.19) correspond to the intersecting points of f(ω2) and the
constant function with value −1. The dispersion law can have only one negative real root
and this occurs for configurations where the branch of the dispersion law situated utmost
to the left runs as the red curve (fig 6.1). This situation will occur for parameters which
obey (6.20), as it is the value of f(0) relative to −1 that predicts whether the cloud is stable
or not. The asymptotes of figure 6.1 correspond with the frequency values ω2 = k2c2

si.

1

2ω
0

–1

2)f(ω

0

2
ω22ω2ω

Fig 6.1: multiple neutral species

We can conclude that for a completely neutral description too, the criterion for a Jeans
instability to occur can be obtained by simply setting ω equal to zero in the dispersion
law.

6.7 Multiple warm, charged dust species

Reverting now to warm but charged dust species, I am primarily interested in finding
possible Jeans lengths which give the transition from stable to unstable modes. A thorough
analytical investigation of all wave modes tied up with the full dispersion law would not be
very informative because of the dramatically long expressions, tangling up the underlying
physics of the coupled wave modes. Because of this inherent complexity, it is much more
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clarifying to aim immediately for the critical lengths, keeping clear of a detailed wave mode
analysis. The simpler cases point out that the onset of the gravitational instability occurs
for the value of the wavenumber that renders the constant term zero, in other words the
critical wavenumber k = kcr is reached when ω2 goes through zero. It is then easy to set
a lower limit for the unstable wavenumbers in this polydisperse description, as (6.3) is a
polynomial in ω2 with real coefficients.
In effect, this lower limit can be calculated by putting ω = 0 in the dispersion relation,
the accompanying wavenumber kcr is then the lower limit for the critical Jeans length we
are looking for. Indeed, there will be at least one imaginary root for wavenumbers k < kcr

because the (real) constant term changes sign at kcr. We so obtain the expression for kcr

(
1 +

∑
α

ω2
pα

k2
crc

2
sα

)(
1−

∑
α

ω2
Jα

k2
crc

2
sα

)
+

(∑
α

ωpαωJα

k2
crc

2
sα

)2

= 0, (6.21)

and this can be rewritten as

1 +
∑
α

ω2
pα − ω2

Jα

k2
crc

2
sα

− 1
2

∑
α

∑

β

(ωpαωJβ − ωpβωJα)2

k4
crc

2
sαc2

sβ

= 0. (6.22)

Since
(ωpαωJβ − ωpβωJα)2 =

4πGNαNβ

ε0mαmβ
(qαmβ − qβmα)2, (6.23)

we can simplify (6.22) for all combinations involving electrons or plasma ions on the
one hand and dust grains on the other. We will use the following, as good as evident,
assumptions, Zdme ¿ Zdmi ¿ md, csd ¿ csi, cse and ωJe ¿ ωJi ¿ ωJd. Taking the long
wavelength assumption kcrλD ¿ 1 then gives for the critical Jeans length

k2
cr

(
1 + λ2

D

∑

d

ω2
pd

c2
sd

)
=

∑

d

ω2
Jd

c2
sd

+
λ2

D

2

∑

d

∑

d′

(ωpdωJd′ − ωpd′ωJd)2

c2
sdc

2
sd′

, (6.24)

or when considering csdα ¿ λDωpdα

k2
cr '

∑
d

∑
d′

(ωpdωJd′−ωpd′ωJd)2

c2sdc2
sd′

2
∑

d

ω2
pd

c2sd

. (6.25)

6.8 Influence of neutral dust

Until now, we have treated a description that dealt exclusively with charged or conversely
neutral dust particles. Now we combine charged and neutral dust species and we start
with the most simple case, namely a configuration of only one charged and only one
neutral component. The neutral component represents the non-ionized fraction of the
dust particles in dust clouds where the amount of electrons is not sufficient to charge all
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the grains. The dispersion law (6.10) can easily be adapted to a plasma with one charged
and one neutral dust or gas component, by simply setting the charges to zero on one of
the species. In doing so, the dispersion law is modified and becomes

[
ω2 − k2(c2

scd + c2
da) + ω2

Jcd

] [
ω2 − k2c2

snd + ω2
Jnd

]
= ω2

Jcd ω2
Jnd, (6.26)

indicating the coupling between a Jeans dust mode and a purely acoustic gravitational
mode in the neutral component. The discriminant remains positive, and the critical Jeans
wavenumber follows from (6.12) as

k2
cr =

ω2
Jcd

c2
scd + c2

da

+
ω2

Jnd

c2
snd

, (6.27)

in accordance with the results of Verheest et al. [1999]. We know that the dust-acoustic
velocity squared is a measure of the plasma pressure (due to the electrons and ions)
divided by the charged dust mass density, in the same way that in ordinary plasmas the
ion-acoustic velocity squared expresses the electron pressure over the ion mass density.
Hence, the dust-acoustic velocity is much larger than the dust thermal velocities.
In dusty plasmas where all the dust is charged we find that the critical (Jeans) wavenum-
bers are of the order ωJd/cda, which is much smaller than the critical wavenumbers in
neutral gases, being typically of an order ωJd/csd. It follows that in dusty plasmas with
exclusively charged dust particles larger lengths are stabilized than in neutral dust clouds
with otherwise similar parameters. However, assuming that csnd ∼ cscd ¿ cda, the pres-
ence of even a small fraction of neutral dust and/or gas in a dusty plasma where the bulk
of the dust particles is charged, will immediately reduce the unstable wavelengths to the
order of the Jeans lengths for purely neutral gases at similar densities and temperatures
The same procedure used in order to obtain (6.24) can be applied for a mixture of charged
and neutral dust species

k2
cr

(
1 + λ2

D

∑

d

ω2
pd

c2
sd

)
=

∑
n

ω2
Jn

c2
sn

+
∑

d

ω2
Jd

c2
sd

+
λ2

D

2

∑

d

∑

d′

(ωpdωJd′ − ωpd′ωJd)2

c2
sdc

2
sd′

, (6.28)

where now indices d only run over charged dust species and index n solely over neutral
dust species. For dust distributions the conclusion remains the same as for a monodisperse
dusty plasma, the presence of neutrals immediately inhibits the stabilizing effects of the
charged dust grains in the absence of frictional coupling between both species. Indeed,
at comparable Jeans frequencies, or mass densities really, the fact that csg ∼ csn ¿ cda

implies that the terms concerning the neutral species in (6.28) are prevailing.

6.9 Streaming instabilities

If we include the streaming between species, there arise possibly stream or Buneman
instabilities in a plasma [Buneman 1958, 1959, Stix 1962, 1992, Verheest 2000]. For dusty
plasmas, the additional species provide several new possibilities for streaming mechanisms.
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The streaming can be between the dust particles and the electrons and/or ions [Ishihara
1998], but also between different dust species [Havnes 1980] or, for cometary dust grains,
between the solar wind and the dust particles [Havnes 1988]. When we incorporate both
streaming effects and different dust species, the general expressions become algebraically
very complicated [Meuris et al. 1997] and often necessitate a numerical model [Pillay et al.
2000].
An interesting case is that of two dust beams, both with equal parameters but streaming
oppositely to each other [Verheest et al. 2000c]. For algebraic reasons of convenience, we
will work in the center-of-mass frame, so that the velocities of the beams are opposite but
equal, namely (±U). Because we aim at typical dust frequencies and wavenumbers, the
electrons and ions can be treated as inertialess. Hence, the electrons and ions follow the
perturbations instantaneously and cannot induce a Doppler shift. It follows that within
the assumption of massless plasma species, the latter are of no influence to the choice of
reference frame.
Accordingly, the dispersion law (6.5) becomes a bi-quadratic in ω2,

ω4 − 2Aω2 + B = 0, (6.29)

with coefficients given by

A = k2(U2 + c2
sd + c2

da)− ω2
Jd,

B = k2(U2 − c2
sd)

[
2ω2

Jd − k2(c2
sd + 2c2

da − U2)
]
. (6.30)

The discriminant of the biquadratic is given by

∆ = A2 −B

= (ω2
Jd − k2c2

da)
2 + 4k2U2

[
k2(c2

sd + c2
da)− ω2

Jd

]
, (6.31)

and is not for all wavenumbers positive.
The roots of the dispersion law (6.29) can be formally written as

ω2 = A±
√

A2 −B. (6.32)

The discriminant ∆ can only vanish for stream velocities U ≥ csd and in that case ∆ = 0
requires wavenumbers

k2
± =

2U2 + c2
da ± 2U

√
U2 − c2

sd

4U2(c2
sd + c2

da) + c4
da

ω2
Jd. (6.33)

Conversely, for stream velocities U < csd, the discriminant ∆ remains strictly positive.
Let us first see what happens in the event of negligible self-gravitational forces. Thus
setting ωJd = 0 in the previous expressions shows that both A and ∆ are positive, inde-
pendent of the wavenumber, whereas B reduces to

B = k4(U2 − c2
sd)(U

2 − c2
sd − 2c2

da). (6.34)



6.9 Streaming instabilities 79

Since both roots are real and their sum is positive, unstable roots (ω2 < 0) can only be
obtained for negative values of the parameter B. This means that there is a general-
ized Buneman instability for dust beams that stream oppositely to each other and with
velocities

c2
sd < U2 < c2

sd + 2c2
da, (6.35)

measured relatively to the center-of-mass frame. For this special case, the magnitude of
the instability window depends mainly on the dust-acoustic velocity.
Having dealt with beams which are unaffected by self-gravitation, we revert to the general
expressions. First we compute for which wavenumbers kA the parameter A becomes zero,

k2
A =

ω2
Jd

U2 + c2
sd + c2

da

, (6.36)

and similarly the wavenumbers for which the parameter B vanishes, namely k = 0 and
k = kB, with the latter given by

k2
B =

2ω2
Jd

c2
sd + 2c2

da − U2
. (6.37)

However, kB only exists for values of U such that U2 < c2
sd + 2c2

da, otherwise B > 0 at all
k > 0. Because c2

sd + 2c2
da − U2 < 2(U2 + c2

sd + c2
da), it follows that kA < kB. In addition,

one can check that ∆ evaluated at k = kA is

∆(kA) = k4
A(c2

sd − U2)(3U2 + c2
sd), (6.38)

which is negative for csd < U , whereas the evaluation of ∆ at k = kB yields

∆(kB) =
1
4
k4

B(3U2 + c2
sd)

2 > 0, (6.39)

provided kB exists.
For the wavenumbers k = k±, we have ∆ = 0 or equivalently B = A2 > 0, corresponding
with a double, real root in ω2.
Having established these crucial wavenumber values, we can start the discussion for dif-
ferent streaming velocities.

Case 1: U < csd

First of all, in the regime where 0 < U < csd, ∆ cannot change sign and is positive for all
k, implying that both roots for ω2 are real. Instability can then occur provided B < 0,
corresponding to wavenumbers k < kB. For wavenumbers k < kB one of the roots (in ω2)
effectively becomes negative, as illustrated by Table 6.1.
Since here U < csd, we see that kB is slightly larger than ωJd/cda, being the critical Jeans
wavenumber in the absence of streaming effects. We conclude that the streaming decreases
the Jeans length and hence renders smaller regions susceptible to a gravitational collapse.
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Table 6.1: Signs of A, B and ∆ when U < csd

k 0 kA kB

A − − 0 + + +
B 0 − − − 0 +
∆ + + + + + +

This is clearly a Jeans instability, because of the small wavenumbers we obtained and what
is more, for U < csd we found no equivalent instability in the discussion for dust beams
void of self-gravitational effects.

Also, the occurrence of 2ω2
Jd and 2c2

da is not really surprising, because at equal beam
strength 2ω2

Jd is square of the total Jeans frequency for the combined plasma, and likewise
2c2

da = 2λ2
Dω2

pd stands for the square of the total dust-acoustic velocity.

Case 2: c2
sd < U2 < c2

sd + 2c2
da

The next velocity regime to consider is when c2
sd < U2 < c2

sd + 2c2
da, corresponding in the

absence of self-gravitation to pure beam instabilities. For convenience, we summarize the
information about the signs of A, B and ∆ for different k values in Table 6.2, which allows
to sift the different wavenumber regimes easily.

For large wavenumbers k 6 k− both roots in ω2 are real and negative, giving each rise to a
growing instability with zero real frequency. One instability will be more of the Buneman
type, whereas the other will be rather connected with the Jeans instability. We note that
the occurrence of instabilities with zero real frequency is a consequence of working in the
center-of-mass frame. Table 6.2 further illustrates that in the range k− < k < k+ both
roots for ω2 will be complex, again there appear two growing instabilities, the latter of
which cannot be attributed separately to a clear-cut Jeans or Buneman type of instability.
For the smaller wavelengths kB < k only the Buneman type instability survives, as the
involved lengthscales are too small for being able to host a Jeans instability. Finally, the
intermediate wavenumber region k+ 6 k < kB is the only wavenumber window for which
the dusty plasma is stable, otherwise either the gravitational or the streaming instabilities
occur, or even both together.

Table 6.2: Signs of A, B and ∆ when c2
sd < U2 < c2

sd + 2c2
da

k 0 k− kA k+ kB

A − − − − 0 + + + + +
B 0 + + + + + + + 0 −
∆ + + 0 − − − 0 + + +
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To summarize, for large wavelengths corresponding to k 6 k+, the self-gravitational forces
cause a Jeans instability. The Jeans instability is correlated with the beam instability and
for some velocity regimes even completely intertwined. Going towards smaller wavelengths,
a frequency window of stable wavenumbers separates the Jeans-like instabilities from a
range k > kB which depicts a pure Buneman instability.

Case 3: c2
sd + 2c2

da < U2

In the last velocity range to be considered, c2
sd + 2c2

da < U2, we see that B > 0 for
all wavenumbers and that kB does not exist. The discussion is fully analogous to the
previous case, with the sole exception that there is no longer a Buneman instability at
large wavenumbers, instead the configuration is stable for all wavenumbers k > k+. The
instabilities obtained in this velocity range have no analogon in the case of dust beams
with absent self-gravitational forces, therefore the driving force for the instability to occur
is coming from the self-gravitation.

The different parameter regimes are grouped together and illustrated in figure 6.2
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+
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+ B

Fig 6.2: Beam instabilities for beams of equal strength

Of course, one can also investigate the special cases where A, B or ∆ exactly vanish,
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or when U = csd and U2 = c2
sd + 2c2

da, but these are too specific and we preferred to
concentrate on more generic results. The extension of these results to Buneman-type
instabilities where two dust beams have different densities, temperatures and/or streaming
velocities leads to a full quartic equation in ω that can only be studied by numerical
methods.



Chapter 7

Electromagnetic modes

Having outlined different electrostatic modes, we now revert to the electromagnetic modes.
The presence of an external magnetic field not only introduces new phenomena but also
causes the coupling mechanisms to become more complicated as a preferred direction is
introduced into the system, so perforce the degree of coupling between different wave
modes also depends on the direction of the wave propagation.

As we look up the very low frequency end of the wave spectrum, the electromagnetic
modes of prime interest are the Alfvénic [Alfvén 1942, 1950] and magnetosonic waves,
both originating from the perturbations of the magnetic stress due to the ion and dust
inertia.

We will start with the description of the wave modes propagating parallel to the magnetic
field. As was noted before, these wave modes are unaffected by self-gravitation thus
causing the parallel wave mode description to be easily adaptable for including multiple
dust species [Verheest 2000].

On the other hand, for perpendicularly and a fortiori for obliquely propagating waves,
the wave mode analysis in self-gravitating plasmas becomes tremendously complicated if
a size distribution is included [Verheest et al. 2000b]. Therefore, we will advance step by
step and so first discuss the simplest size distributions before going over to more generally
formulated problems.

The analysis of perpendicularly propagating waves will be mostly restricted to the mag-
netosonic waves, being a low-frequency transverse wave mode for which the polarization
plane is perpendicular to the external magnetic field. The remaining transverse mode
for perpendicular propagation then is the ordinary wave mode, which is linearly polar-
ized along the direction of the magnetic field and in the context of this thesis much less
interesting because it is unaffected by self-gravitation.

Finally, the low-frequency oblique modes are treated, but mainly for determining the
critical wavenumbers, as a full wave analysis is beyond the reach of an analytical study.

83
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7.1 Parallel propagation

For electromagnetic waves propagating parallel to the magnetic field, we recall the disper-
sion law for the left and righthand circularly polarized modes

ω2 = c2k2 + ω

(∑
p

ω2
pp

ω ± Ωp
+

∑

d

ω2
pd

ω ± Ωd

)
, (7.1)

with the index p denoting the plasma species.
Again, the influence of the dust is mainly noticeable for very low frequencies and the modes
are supposed having a frequency well below the gyrofrequencies of the plasma species, viz.
ω ¿ |Ωe|,Ωi. For these low frequencies we enter the regime of the dust-Alfvén waves
[Shukla 1992] and upon assuming charge neutrality, the dispersion law becomes

ω2

(
1 +

c2

V 2
AR

)
= c2k2 + ω

∑

d

ω2
pd

[
1

ω ± Ωd
∓ 1

Ωd

]
+O

(
ω

Ωp

)3

, (7.2)

where the Alfvén speed VAR is defined over the plasma species only

V 2
AR =

B2
0

µ0
∑

p=e,i Npmp
. (7.3)

The Alfvén speed VAR can safely be assumed to be much smaller than the speed of light
c. Neglecting second order terms and indeed assuming VAR ¿ c, the dispersion law (7.2)
simplifies to

ω2 − k2V 2
AR −

V 2
ARω

c2

∑

d

ω2
pd

[
1

ω ± Ωd
∓ 1

Ωd

]
= 0. (7.4)

The dust grains can be considered immobile in the wave description, corresponding to a
frequency limit |Ωd| ¿ ω. In this frequency regime |Ωd| ¿ ω ¿ Ωi, |Ωe|, the dispersion
law becomes

ω2 ± ω
V 2

AR

c2

∑

d

ω2
pd

Ωd
− k2V 2

AR = 0 (7.5)

For very low frequencies and working in a monodisperse plasma, this dispersion law yields
the dust whistler mode [Verheest and Meuris 1995]

ω = c2k2 |Ωd|
ω2

pd

(7.6)

On the other hand, when formally taking the frequency limit ω ¿ |Ωd|, the dispersion law
yields

ω = ±kVA, (7.7)

where now the Alfvén speed

V 2
A =

B2
0

µ0
∑

α=e,i,d Nαmα
(7.8)

must be computed over all species. In doing so, we recover the Alfvén wave in a description
where it is more appropriate to consider the dust grains as heavy ions.
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7.2 Magnetosonic modes

As we have seen before, for strictly perpendicularly propagating waves, the dispersion
tensor (3.41) decouples into

det[Dij ] = Dxx ·
∣∣∣∣∣∣

Dyy Dyz Dyψ

Dyz Dzz Dzψ

Dzψ Dyψ Dψψ

∣∣∣∣∣∣
= 0, (7.9)

where Dxx = 0 represents the ordinary mode

ω2 = c2k2 +
∑
α

ω2
pα. (7.10)

The remaining part of the dispersion law is the generalized extraordinary mode and this
mode is affected by self-gravitation, as opposed to the ordinary mode. For the low-
frequency magnetosonic modes we consider, the lighter species can be treated as be-
ing quasi-inertialess. As we have seen before, the assumption of quasi-inertialess elec-
trons and ions can be implemented by taking me,mi → 0 but maintaining the quanti-
ties mec

2
se,mic

2
si finite. This approximation delineates the frequency regime to the fre-

quencies ω ¿ Ωe, Ωi and implies that electron and ion Larmor effects can be neglected
(k2c2

se/Ω2
e, k

2c2
si/Ω2

i ¿ 1). The inertia needed to sustain the waves is solely provided by
the dust grains.

Using these assumptions together with charge neutrality in equilibrium and supposing
that VAd ¿ c, we find that for low frequencies the elements of the dispersion tensor (3.41)
may be simplified to [Verheest et al. 1997, 1999]

Dxx = −
∑

d

ω2
pd

ω2 − k2c2
sd − Ω2

d

,

Dxy =
∑

d

ω2
pd(ω

2 − k2c2
sd)

Ωd(ω2 − k2c2
sd − Ω2

d)
= Dyx,

Dxψ =
∑

d

ωpdωJd

ω2 − k2c2
sd − Ω2

d

= Dψx,

Dyy = − c2k2V 2
ms

V 2
Ad

−
∑

d

ω2
pd(ω

2 − k2c2
sd)

ω2 − k2c2
sd − Ω2

d

,

Dyψ = −
∑

d

ωpdωJdΩd

ω2 − k2c2
sd − Ω2

d

= Dψy,

Dψψ = − 1−
∑

d

ω2
Jd

ω2 − k2c2
sd − Ω2

d

−
∑

g

ω2
Jg

ω2 − k2c2
sg

. (7.11)

The subscript g refers to the contributions of the neutral dust grains, whereas the dust-



86 Electromagnetic modes

Alfvén VAd and the magnetosonic velocity Vms are defined respectively as [Rao 1995]

V 2
Ad =

B2
0

µ0
∑

d Ndmd
, (7.12)

V 2
ms =

B2
0/µ0 + Pe + Pi∑

d Ndmd
, (7.13)

where the pressures are specified as Pα = Nαmαc2
sα. The low frequencies we consider are

such that |ω2 − k2c2
sd − Ω2

d| ¿ ω2
pd is satisfied for all dust species.

7.2.1 Average dust dispersion

At first, we consider a simplification of the dispersion law for low-frequency magnetosonic
modes. We represent the charged dust by a single species with some average properties
and suppose the absence of neutral gas. In this monodisperse description, the dispersion
law

det [Dij ] = 0, (7.14)

where the elements Dij are given by (7.11), simply yields [Verheest et al. 1997, 1999]

ω2 = k2(V 2
ms + c2

sd)− ω2
Jd. (7.15)

The dispersion law (7.15) describes the fast magnetosonic wave, whereas the slow magne-
tosonic wave has a zero velocity for perpendicular propagation. It is reasonable to suppose
that the effective dust pressure Pd is negligible compared to the magnetic pressure B2

0/µ0

and to the electron and ion pressures. Naturally this means that the dust pressure Pd

can be assumed to be much smaller than the combined magnetic and plasma pressures
B2

0/µ0 + Pe + Pi or equivalently that csd ¿ Vms, implying that the contribution of the
dust thermal effects in dispersion law (7.15) is negligible. Typical parameters for inter-
stellar dust clouds [Whittet 1992, Evans 1994] support the simplifying assumption that
dust thermal effects can be omitted. Indeed, within the observational uncertainties, it
would seem that Vms ' VAd À csd, so that the magnetic pressure is dominant by orders
of magnitude [Verheest et al. 1999].
However, when neutral dust or gas is also included, these constituents do not feel any
electromagnetic forces, and moreover, they are not directly coupled to the plasma elec-
trons and ions, except through the gravitational Poisson equation. For the neutral gas
components of the mixture we are thus forced to explicitly retain the thermal velocities,
denoted as csg.

7.2.2 Two charged dust species

Introducing the possibility of multiple dust species into the description, increases the
algebraic complexity of the dispersion laws tremendously. Before addressing a more general
dust mass distribution we therefore treat the special case of two charged dust species in
the absence of any neutral gas (ωJg = 0). Although we have seen that in the monodisperse
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case the dust thermal effects can be omitted and we would expect similar conclusions to
hold when multiple dust species are present, we proceed cautiously and initially retain the
dust thermal speeds in the description.

Thus including two charged, dust species the dispersion law (7.14) turns into a biquadratic
in ω, namely [Jacobs et al. 2000]

Aω4 + Bω2 + C = 0, (7.16)

with coefficients
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J,total. (7.17)

In the expressions for the coefficients, we have introduced the total Jeans frequency ωJ,total

through ω2
J,total = ω2

J1+ω2
J2, which involves the total mass density. Further a dimensionless

coefficient

K =
ω2

J1ω
2
J2

ω2
J,total

(
1
Ω1

− 1
Ω2

)2

, (7.18)

has been introduced.

We already stated that the thermal velocities cs1, cs2 are negligible compared to the mag-
netosonic velocity Vms, additionally we assume that the coefficient A is of the order of
Ω2

1Ω
2
2ω

2
J,totalK. The coefficients B and C of the biquadratic (7.17) can be simplified ac-

cordingly and reduce to

B =
[
A− Ω2

1Ω
2
2ω

2
J,total − k2V 2

ms(Ω
2
1ω

2
J1 + Ω2

2ω
2
J2)

]
ω2

J,total,

C = Ω2
1Ω

2
2ω

4
J,total

[
k2V 2

ms(1−K)− ω2
J,total

+ k2V 2
ms

(
k2c2

s1ω
2
J2

Ω2
1ω

2
J,total

+
k2c2

s2ω
2
J1

Ω2
2ω

2
J,total

)]
. (7.19)

Only in coefficient C there remain dust thermal effects and we see that they hardly make
a contribution if

k2c2
s1ω

2
J2

Ω2
1ω

2
J,total

+
k2c2

s2ω
2
J1

Ω2
2ω

2
J,total

¿ 1−K. (7.20)

Again implementing cs1 ¿ Vms and cs2 ¿ Vms gives

k2c2
s1ω

2
J2

Ω2
1ω

2
J,total

+
k2c2

s2ω
2
J1

Ω2
2ω

2
J,total

¿ k2V 2
ms

ω2
J,total

(
ω2

J2

Ω2
1

+
ω2

J1

Ω2
2

)
, (7.21)
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and from the expression for K, viz. (7.18), we estimate that

ω2
J2

Ω2
1

+
ω2

J1

Ω2
2

= O(K). (7.22)

We now ad hoc introduce a critical wavenumber kJ through

k2
J =

ω2
J,total

(1−K)V 2
ms

. (7.23)

and will a posteriori see that this is actually the critical Jeans wavenumber. The expres-
sions (7.22) and (7.23) enable to rewrite

k2c2
s1ω

2
J2

Ω2
1ω

2
J,total

+
k2c2

s2ω
2
J1

Ω2
2ω

2
J,total

¿ O
( K

1−K
)

k2

k2
J

≤ 1−K, (7.24)

as far as the orders of magnitudes are concerned. For most astrophysical plasmas the dust
Jeans frequencies are small compared to the corresponding gyrofrequencies [Verheest et al.
1999], in particular for interstellar dust clouds when average cloud and dust parameters
[Whittet 1992, Evans 1994] are used. Hence, (7.22) indicates that K typically is very small
and we can safely assume K ≤ O(1/3). The wavenumbers we are interested in are k ∼ kJ

and for these wavenumbers expression (7.24) predicts that the dust thermal effects may
be ignored altogether. For wavenumbers k ∼ kJ , the coefficient C reduces to

C = Ω2
1Ω

2
2ω

4
J,total

[
k2V 2

ms(1−K)− ω2
J,total

]
. (7.25)

In that case, the zero-frequency solution of the dispersion law (7.14) needs C = 0, yielding
a wavenumber k = kJ , as already defined in (7.23) and establishing that kJ is indeed
the critical Jeans wavenumber. Apparently, the presence of a second charged dust species
merely introduces a small correcting factor 1−K, which causes kJ to increase and hence
relates to smaller Jeans lengths.
Although it is unlikely that the limit K = 1 represents a realistic situation, it is instructive
to deliberate about the consequences of such a premise. With the hypothesis that K = 1,
expression (7.18) yields the condition

(
1
Ω1

− 1
Ω2

)2

=
1

ω2
J1

+
1

ω2
J2

. (7.26)

At given values of dust parameters like charges and masses, this condition depicts a spe-
cific balance between the dust densities and the strength of the external magnetic field.
However, as pointed out already, in most astrophysical plasmas the gyrofrequencies of the
dust will be much larger than the Jeans frequencies, which reduces the aforementioned
limit to a scarcely applicable exercise.
For determining kJ we have established that leaving out the thermal effects of the charged
dust would be of little consequence and we will accordingly apply this simplification fur-
ther in this section as well in the subsequent general treatment for many charged dust
components. In this manner, the discriminant of the biquadratic dispersion law (7.16)

∆ = B2 − 4AC, (7.27)
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can be proven to be strictly positive. Indeed, omitting the thermal velocities in the
coefficients given by (7.19) yields

∆ = ω4
J,total

{[
A + Ω2

1Ω
2
2ω

2
J,total − k2V 2

ms(Ω
2
1ω

2
J1 + Ω2

2ω
2
J2)

]2

+ 4k2V 2
msΩ

2
1Ω

2
2K

[
A + Ω2

1Ω
2
2ω

2
J,total

]}
> 0. (7.28)

Because of this, the two roots in ω2 will be real and the signs of the roots can be determined
unambiguously from the signs of the coefficients B and C. A positive value for C implies
k > kJ , which in turn gives

B < −Ω2
1Ω

2
2ω

2
J,total − ω2

J1ω
2
J2(Ω1 − Ω2)2 < 0, (7.29)

and we conclude that both roots for ω2 are then positive. On the other hand when
C < 0, which corresponds to k < kJ , there will be one positive and one negative root
for ω2, independent of the sign of B. The situation C < 0 clearly corresponds to the
Jeans unstable case and the transition takes place at k = kJ or C = 0. At the critical
wavenumber kJ , the roots of (7.16) are given by

ω2 = − B

A

∣∣∣∣
k=kJ

, ω2 = 0. (7.30)

The former corresponds to the high frequency root of the dispersion law [Verheest et al.
1999], and in principle it is possible to rewrite (7.16) in the neighbourhood of marginal
stability as

A(ω2 − ω2
HF )(ω2 − ω2

LF ) = 0, (7.31)

where ωHF and ωLF denote the high frequency and low frequency root respectively. A
good approximation for the former roots is

ω2
HF ' − B

A
, ω2

LF ' − C

B
, (7.32)

with the coefficient A given by (7.17), B by (7.19) and finally C by expression (7.25).
A possible extension to more dust than two species would result in boundless algebra, and
we choose instead to aim at a more systematic treatment, developed in the next section.

7.2.3 Several charged dust species

In the previous section we have seen anew that the gravitational instability occurs when
one of the roots (in ω2) of the dispersion law passes through the origin and thus switches
over from positive to negative values. Also for the gravitational instability criterion re-
lated to the electromagnetic modes, the dispersion law will generally yield the critical Jeans
wavenumber kJ when ω2 is set to zero. Moreover, the case of two different dust species
proved that thermal effects can be omitted, emanating from csd ¿ Vms, which expresses
that the thermal agitation is negligible compared to propagation velocity of the magne-
tosonic modes. This allows us to generalize the approach and consider a dusty plasma
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which comprises multiple, charged dust species. Since there is no neutral gas (ωJg = 0)
and we have that for the charged dust all csd ¿ Vms, the dispersion tensor with elements
(7.11) will only contain k in the tensor element Dyy and this through k2V 2

ms. It follows
that (7.14) can be expanded as

F (ω2)k2V 2
ms = G(ω2), (7.33)

where F and G are rather complicated functions of ω2. We have deduced that the critical
wavenumber kJ is just about inextricably connected with a zero value of ω2, so that

F (0)k2
JV 2

ms = G(0). (7.34)

Subsequently we Taylor expand the functions F and G up to first order in ω2, yielding
[
F (0) + ω2F ′(0)

]
k2V 2

ms = G(0) + ω2G′(0), (7.35)

where F ′(0) stands for dF (ω2)/d(ω2) evaluated at ω2 = 0 and likewise for G′(0). In
effect, (7.35) focusses towards the immediate vicinity of marginally stable regions of the
frequency band and will allow both the determination of the critical wavenumber as the
determination of the local dispersion law around marginal stability

Following Jacobs et al. [2000], we introduce for the sake of convenience the notations Sn

as

Sn =
∑

d

ω2
Jd

Ωn
d

(n = 0, 1, 2, 3, 4) , (7.36)

with the summation indices running over all the different dust components and cancelling
common factors, we obtain for the Taylor coefficients

F (0) = S0 − S0S2 + S2
1 ,

F ′(0) = S2 − S2
2 + 2S1S3 − S0S4,

G(0) = S2
0 ,

G′(0) = S0 − S2
1 + 2S0S2. (7.37)

In deriving (7.37) we have used the fact that for each dust species

ωpd =
c ωJdΩd

VAd ωJ,total
, (7.38)

where we have defined the global Jeans frequency over all charged species through

ω2
J,total =

∑

d

ω2
Jd = S0. (7.39)

The previous definitions allow to rewrite F (0) concisely as

F (0) = S0(1−K), (7.40)
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where the parameter K is generalized from (7.18) to the (nonnegative) quantity

K =
1

2ω2
J,total

∑

d

∑

d′
ω2

Jdω
2
Jd′

(
1
Ωd

− 1
Ωd′

)2

. (7.41)

In this expression for K and in subsequent expressions, we use d, d′ and later also d′′ as
dummy indices over the different charged dust species. Additionally, in the derivation of
the full expression for K we have made use of the property

(∑
p

a2
p

)(∑
q

b2
q

)
−

(∑
p

apbp

)2

=
1
2

∑
p

∑
q

(apbq − aqbp)2, (7.42)

which gave us the opportunity to rewrite combinations like S0S2−S2
1 in a more convenient

form. For rewriting S0S2 − S2
1 , we merely have to identify ap = ωJp and bq = ωJq/Ωq in

(7.42). Implementing all the above, the critical Jeans wavenumber is found from (7.34)
afresh as

k2
J =

ω2
J,total

(1−K)V 2
ms

. (7.43)

This critical wavenumber is formally identical to (7.23), but now the generalized expres-
sions for ωJ,total and K have to be inserted. We continue by using (7.34) in order to cast
(7.35) in the form

F (0)2V 2
ms(k

2 − k2
J) = Aω2, (7.44)

with the new quantity A defined as

A = F (0)G′(0)−G(0)F ′(0)
= S2

0 + S3
0S4 − S2

0S2
2 + 3S0S

2
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= ω4
J,total(1 + L). (7.45)

Because L is given by
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)]2

> 0, (7.46)

the parameter A will be a strictly positive quantity. The parameter L will only vanish if
all charged dust species have the same charge-to-mass ratios, or naturally when we restrict
ourselves to one charged dust species. Since A > 0, equation (7.44) shows that ω2 > 0
for wavenumbers k > kJ , and vice versa, wavenumbers k < kJ correspond to the unstable
Jeans modes.
In the neighbourhood of marginal stability, k is close to kJ and with the help of the
intermediate results, the local dispersion law (7.35) can be written as

ω2 =
1−K
1 + L

[
(1−K)k2V 2

ms − ω2
J,total

]
. (7.47)
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Closer inspection of K and L shows that K is of second order in the ratio of typical Jeans
over gyrofrequencies, whereas L is of fourth order in the same quantities. By and large,
data for astrophysical plasmas indicates that the Jeans frequencies are relatively small in
comparison with the gyrofrequencies [Verheest et al. 1999], so that we can as a rule assume
L ¿ K ¿ 1. As a result, the local dispersion law (7.47) can be approximated as

ω2 ' (1−K)
[
(1−K)k2V 2

ms − ω2
J,total

]
. (7.48)

Ergo, provided neutral dust is absent, the inclusion of a size distribution for the dust
eventuates to lower frequencies and a larger critical wavenumber by comparison with a
model that comprises only a single charged dust species. Hence, a polydisperse model of
a dust cloud will exhibit a gravitational instability for smaller dimensions.

However, seeing that K is usually small compared to 1, incorporating a distribution over
different charged dust constituents will not significantly enhance the results obtained by
describing simply all the charged dust through one species with average properties. Treat-
ing all the charged dust as one effective species with average properties evidently com-
prehends great mathematical advantages and this approach can be expected to yield the
same physical insight, except in those cases where K and L are not so small.

On a final note, we point out that it was tacitly assumed that F (0) > 0 when writing
(7.34). Because (7.37) states that G(0) > 0 a negative value for F (0) would imply that
kJ does not exist. According to expression (7.40), F (0) > 0 is equivalent to assuming
K < 1. Suppose conversely we would naively let K → 1, then (7.34) would produce for the
critical wavenumbers kJ →∞ and apparently the system would be inclined to instability
even at arbitrarily small lengthscales. However, presuming K → 1 is at variance with
our simplifying assumption that the dust thermal effects are negligible compared to those
pressures that determine the magnetosonic velocity. As was already evident from the
discussion of a dust cloud with two charged dust components it is therefore not allowed
to let K → 1 unless we would abandon the reduction csd ¿ Vms.

7.2.4 Presence of a neutral component

Whereas the previous sections dealt with purely charged dust species, we now investigate
the influence of the presence of one or more neutral dust or gas species. We could follow
the outline marked by the description of the previous sections, but the obtained dispersion
law would be cumbersome and too disorderly for a proper analysis. Instead of calculating
long dispersion laws that are not physically transparent at all, we reduce our analysis
to determining the critical Jeans wavenumbers, in the same manner as we did for the
electrostatic modes. Accordingly, the critical Jeans numbers can be acquired by putting
ω = 0 in the appropriate dispersion law. In the general case, we evaluate the elements
(7.11) of the dispersion tensor at ω = 0 and find that kJ obeys

k2
J =

1
1−K

[
ω2

J,total

V 2
ms

+
∑

g

ω2
Jg

c2
sg

]
, (7.49)
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where the index g denotes the neutral component and ω2
J,total is summed over the charged

dust species only. This results generalizes the unstable Jeans lengths obtained by Verheest
et al. [1999] and (7.49) show that the effects of the dust mass distribution appear through
the introduction of a relatively small correcting factor (1− K). Because of the wide dis-
parity between the values of the characteristic magnetosonic speed (Vms) and the thermal
speed of the neutral gas csg, we observe once again that if a neutral component is present,
it almost exclusively determines the effective Jeans number and completely nullifies the
possibly stabilizing role of the charged dust.

7.3 Oblique modes

For obliquely propagating waves, we must use the full dispersion law (7.14) as a starting
point. Because all the present wave modes are coupled, the calculation of the polynomial
dispersion law becomes extremely complicated, especially when multiple dust species are
taken into account.

We can simplify the dispersion law by assuming the electrons and ions to be inertialess,
furthermore we assume ω2 ¿ c2k2 and suppose sufficiently long wavelengths k2λ2

D ¿ 1.
With these assumptions, the elements of the dispersion law become
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ω2 tan2 θ
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D
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∑

d
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ω2(ω2 − Ω2
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(7.50)
Dyz = Dzy = − ω2

∑

d

ω2
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ω2(ω2 − Ω2
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−
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2 − Ω2
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,
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Dψψ = − 1−
∑

d

ω2
Jd(ω

2 − Ω2
d cos2 ϑ)

ω2(ω2 − Ω2
d)− k2c2

sd(ω
2 − Ω2

d cos2 ϑ)
.

Clearly, the complexity of the dispersion law det[Dij ] = 0 will increase tremendously with
the number of dust species, therefore we will consider only one effective dust species. The
inclusion of only one dust species and the assumption of inertialess electrons and ions
brings us to the configuration of the so called “classic” dusty plasma. After some tedious
but straightforward algebra, the result is a cubic polynomial in ω2 with real coefficients,

ω6 − [
Ω2

dκ
2
(
(1 + κ2) cos2 ϑ + 1

)
+ ∆

]
ω4

+
[
(Ω2

d + ∆)κ2 + 2∆
]
(Ω2

dκ
2 cos2 ϑ)ω2 − (Ω4

dκ
4 cos4 ϑ)∆ = 0. (7.51)

Here κ = ck/ωpd, and we note that all thermal and self-gravitational effects are consistently
grouped together in ∆, which is defined as

∆ = k2(c2
da + c2

sd)− ω2
Jd. (7.52)

Solving ∆ = 0 corresponds to setting ω2 = 0 and gives the familiar result for the critical
wavelength

k2
cr =

ω2
Jd

c2
da + c2

sd

. (7.53)

The other two roots which are also associated with ∆ = 0 are the solutions of the bi-
quadratic

ω4 − Ω2
dκ

2
cr[(1 + κ2

cr) cos2 θ + 1]ω2 + Ω4
dκ

4
cr cos2 θ = 0, (7.54)

with a positive discriminant

Ω4
dκ

4{[(κ2
cr − 1) cos2 θ + 1]2 + 4κ2

cr cos4 θ} > 0, (7.55)

and where
κcr =

c ωJd

cdaωpd
. (7.56)

It follows that the two remaining roots, which also correspond to ∆ = 0 are real and
positive.
For the analysis of the cubic dispersion law (7.51), we make use of Descartes’ rule of
signs. This rule indicates that the number of positive real roots of a polynomial with
real coefficients, is either equal to the number of sign variations in the coefficients of
the polynomial or else is less than this number by an even integer. We note that in
the determination of the number of sign variations, the terms with a zero coefficient can
be ignored. Furthermore, if one denotes the polynomial with real coefficients as p(x),
Descartes’ rule of signs implies also that the number of negative roots of p(x) = 0 is either
equal to the number of sign variations in the coefficients of p(−x) or else is less than this
number by an even integer.
Hence, for negative ∆, but small in absolute value, Descartes’ rule of signs predicts that
there is one negative, real root, therefore a gravitational instability is certain. For the
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corresponding wavenumbers k < kcr, the negative root for ω2 corresponds to the purely
growing Jeans instability.

On the other hand, for small, positive ∆, we deduce analogously that the polynomial
(7.51) has three positive roots in ω2 and represents a stable configuration. Since both the
self-gravitational effects and the thermal effects of all species (electrons, ions and dust)
only appear in ∆, the analysis for a self-gravitating plasma with positive ∆ is congruent
to a dusty plasma for which ωJd ' 0 applies. Naturally a plasma with negligible self-
gravitational forces will be stable, as in this model there are no physical mechanisms
included which are possibly destabilizing.

We conclude that for positive ∆ there is gravitational stability and the transition towards
instability occurs when ∆ and one of the roots ω2 go simultaneously through zero. These
results are in concordance with those obtained by Mamun et al. [1999] and we note already
that the gyromagnetic effects do not sway the value of the critical wavenumber.

Since the dust thermal speed is usually much smaller than the dust-acoustic speed, we
obtain

kcrλD ' ωJd

ωpd
, (7.57)

and as we have used the long wavelength assumption it is necessary that ωJd ¿ ωpd in
order to assure that kcrλD ¿ 1. On the other hand, when the magnitudes of the Jeans
and plasma frequencies are comparable, the critical wavelengths are of the order of the
Debye length (kcrλD ' 1). This means that wavenumbers which are allowed in a fluid
description (kλD ¿ 1) are invariably smaller than the critical wavenumber and thus are
automatically located in the unstable band. This could have been expected as ωpd ∼ ωJd

indicates rather heavy dust grains, which naturally go hand in hand with substantial
self-gravitational forces.

When adding more dust species to the dusty plasma model, treating the unabridged
dispersion law would become extremely laborious and the obtained, lengthy polynomial
would be well nigh impossible to unravel. Instead, we choose to cut this Gordian algebraic
knot and to go directly to the desired critical lengths. The simpler cases of parallel and
perpendicular propagation and the discussion of the “classic” dusty plasma given above,
indicate that the onset of the instability comes about at ω2 = 0. Furthermore, the critical
lengths are typically of the form kcr ' ωJ/V , where ωJ stands for a global Jeans frequency
and V for some average thermal or magnetosonic velocity.

A shortcut to procure the Jeans lengths at oblique propagation is to immediately put
ω = 0 in the elements (7.50) of the dispersion tensor. This purposive approach is justifi-
able, except for nearly perpendicularly propagating perturbations (ϑ 6= 90o), which would
necessitate a separate treatment. The nonzero elements of the dispersion tensor are now
very simple expressions and with kcr the desired critical Jeans length they become

Dxx = Dyy = − c2k2
cr,

Dzz = 1 +
∑
α

ω2
pα

k2
crc

2
sα

,
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Dzψ = Dψz = −
∑
α

ωpαωJα

k2
crc

2
sα

, (7.58)

Dψψ = − 1 +
∑
α

ω2
Jα

k2
crc

2
sα

.

Conveniently, the result of the dispersion law
(

1 +
∑
α

ω2
pα

k2
crc

2
sα

)(
1−

∑
α

ω2
Jα

k2
crc

2
sα

)
+

(∑
α

ωpαωJα

k2
crc

2
sα

)2

= 0, (7.59)

is independent of the angle of wave propagation ϑ and could have been obtained just as
well from (3.48) by putting ω = 0, except that the validity is now extended to all angles
of propagation aside from strictly perpendicular propagation. This result brings us to
the conclusion that in the presence of an external magnetic field, tracing the conditions
for gravitational instability in a dust cloud with isotropic pressures can be narrowed to
two main directions, namely the parallel direction and one perpendicular to the magnetic
field. In this description, all perpendicular directions are alike and a representative can
be chosen arbitrarily. For the directions in between, the terms for a gravitational collapse
will be almost identical to those for the direction aligned with the magnetic field. This
means that for ϑ → 90o an abrupt transition will occur to the critical lengths, the latter
of which must be determined from the appropriate treatment of the extraordinary mode
at strictly perpendicular propagation. This discontinuous change in the structure of the
Jeans lengths is a consequence of the fact that the limits ω → 0 and ϑ → 90o are not
freely interchangeable.
Therefore, in the absence of neutral species, a dust cloud with isotropic pressure dis-
turbances can in terms of gravitational stability be characterized by only two crucial
lengthscales, namely

Lcr, 6⊥ ' 2πωJd

cda
,

Lcr,⊥ ' 2πωJd

Vms
, (7.60)

with ωJd, cda and Vms some sort of average over the different dust species. Oppositely,
when neutrals are present, the role of the charged dust particles is completely swamped.
Hence, since the neutrals are not influenced by any magnetic field, there will be no dis-
tinction between directions and only a single crucial lengthscale L ' 2πωJd/csg is called
for.
It follows that (7.59) reduces to the expression (6.9) for one dust species, whereas in case
of a combination of charged and neutral dust the expression (6.27) is recovered.

7.4 Summary

Whereas in the previous chapter we studied the influence of a dust size distribution on the
electrostatic modes, we explored here the modifications due to a size distribution as re-
gards the electromagnetic modes. In the light of the incapacity of the gravitational forces
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to exert influence on the parallel, electromagnetic modes, these are of no importance for
the gravitational stability analysis. Since we primarily aim at self-gravitational phenom-
ena, the impact of dust dispersion on these transverse, electromagnetic wave modes was
therefore only briefly recalled.
On the other hand, at perpendicular propagation, the generalized extraordinary mode
embodies the coupling between the Jeans modes and the magnetosonic modes and will as
such be influenced by dust dispersion. In order to establish a pattern, we started with the
case of two dust species and from this we learned that the dust thermal speeds play a minor
part compared to the magnetosonic velocity. This assessment provided a stepping stone for
more general discrete dust distributions and in leaving out the secondary thermal effects
in a general polydisperse description, a factor (1−K) is introduced into the expression for
the critical Jeans lengths. The parameter K is quite small for astrophysical dusty plasmas,
so that the influence of a dust distribution is rather insignificant as far as the gravitational
stability criterion is concerned. The moral being that in future associated research, efforts
can be drastically saved by modelling only one dust species with some average properties
instead of including the whole spectrum of different dust species.
Finally, we turned to the obliquely propagating waves in order to explore the transition
between the parallel, electrostatic modes and the magnetosonic modes. Whereas the
former pictured the coupling between the Langmuir oscillations and the Jeans modes,
the latter combine the magnetosonic and Jeans modes. However, at intermediate angles
the general dispersion law enshrouds all the involved modes much more thoroughly and
calls for a more purposive approach. A blow-by-blow treatment would indeed stand little
chance for providing meaningful conclusions and instead we choose to head directly for
the critical Jeanslengths.
For the involved ultra low frequencies, the electrons and ions can be safely assumed to
be inertialess. This assumption of inertialess plasma species together with a restriction to
only one dust species corresponds to the “classic” dusty plasma model, which provided a
reliable testcase for a dusty plasma model that includes several charged dust components.
Curiously enough, the outcome is that critical Jeans lengths for oblique modes are exactly
the same as derived from electrostatic parallel modes, except at or close to perpendicu-
lar propagation. For quasi-perpendicular directions, the evolution of the Jeans lengths
associated with the parallel wavemodes towards the critical lengths determined from the
extraordinary mode will occur intermittently, because the limits ω → 0 and ϑ → 90o are
not freely interchangeable.
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Chapter 8

Kinetic analysis

In the previous chapters we have primarily studied the modifications of the dust-acoustic
wave due to self-gravitation. For the sake of convenience, all derivations were based on a
hydrodynamic approach instead of a kinetic one. We now evoke the kinetic model in order
to excavate the information that has been lost due to the inability of the hydrodynamic
model to incorporate the behaviour of the particles which travel at speeds of the order
of the phase velocity. Since it is particularly the particles travelling at or near the phase
velocity of the wave that interact most strongly with the wave, the kinetic treatment
ferrets out the phenomenon of wave damping as a result of energy exchange between the
wave and resonant particles. This collisionless damping mechanism is known as Landau
damping and is well studied in Maxwellian electron-ion plasmas [Krall and Trivelpiece
1973, Akhiezer et al. 1975]. We note that collisionless wave damping can also occur as a
consequence of the interaction between the waves and the fluctuating charges of the dust
[Havnes et al. 1992, Melandsø et al. 1993a,b]. The analysis of charge fluctuation-damping
has been explored also in self-gravitational dusty plasmas with high fugacity by Rao and
Verheest [2000].
Recently, Melandsø et al. [1993a] and Brattli et al. [1997] have already studied the prop-
agation of dust-acoustic modes in dusty plasmas within a kinetic model, but without
including self-gravitational effects. On the other hand, Binney and Tremaine [1987] and
Fridman and Polyachenko [1984] have used both descriptions in application to a neutral
self-gravitating medium and concluded that each model yields the same instability crite-
rion. However, the spectrum of wave oscillations differs in that short-wavelength sound
waves do not continue to exist when going over from a fluid to a kinetic treatment.
Here, we join the facets of both self-gravitation and electrostatic interactions for low fre-
quency modes in dusty plasmas within the formalism of a kinetic theory. We investigate
if the Jeans instability criterion, obtained in a hydrodynamical approach, is modified and
furthermore examine the damping rates of the eigenmodes of dust-acoustic and dust Lang-
muir modes. The aspects of linear Landau damping are firstly explored for a monodisperse
dusty plasma, which will serve as a preamble for the case of polydisperse plasmas, which
will get a chance in the next chapter. The wave frequencies of the dust-acoustic and dust-
Langmuir waves are assumed to differ considerably from the charging frequencies so that
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the dust charges are effectively constant.

8.1 Kinetic model of a dusty self-gravitating plasma

When we neglect collisions and possible sink or source terms, we can make use of the
previously discussed kinetic dispersion law (3.17) for electrostatic waves in self-gravitating
dusty plasmas [Yaroshenko et al. 2001b]

ε (ω, k) = εp +
K2

εG
= 0, (8.1)

with εp a plasma function, which stems only from the electrostatic interactions and is
given by

εp = 1 +
1

ε0k2

∑
α

q2
α

mα
Iα, (8.2)

and where εG is a dispersion function correlated exclusively with the gravitational inter-
actions [Bliokh et al. 1995]

εG = 1− 4πG

k2

∑
α

mαIα. (8.3)

Just as in a fluid description for self-gravitating plasmas, these functions are combined in
the dispersion law through a coupling factor [Bliokh and Yaroshenko 1996]

K =
√

4πG

ε0

1
k2

∑
α

qαIα. (8.4)

In these definitions, Iα is given as

Iα =
∫

k ·∇vfα0

ω − k · v d3v. (8.5)

8.2 Monodisperse description

First, we will treat a monodisperse dusty, self-gravitating plasma with the velocity dis-
tribution of the plasma particles assumed to be Maxwellian, so that for the unperturbed
part of the distribution functions

fα0 =
nα0

(πc2
sα)3/2

exp
(
− v2

c2
sα

)
. (8.6)

In order to be in accordance with the majority of kinetic treatments in the literature,
we redefine the thermal velocities as csα = (2kBTα/mα)1/2. If one describes the three
dimensional velocity phase space within a rectangular coordinate system (vx, vy, vz), where
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the vx-axis is chosen to be aligned with the wave vector k, the integral over all velocities
in (3.16) can be calculated as

Iα =
2nα0k√

πc3
sα

∫ ∞

−∞

vx

kvx − ω
exp

(
− v2

x

c2
sα

)
dvx, (8.7)

if one makes use of ∫ ∞

−∞
exp

(
− v2

c2
sα

)
dv =

√
πcsα, (8.8)

for the calculation of the integrals over vy and vz. If we use again (8.8) and subsequently
substitute vx = csαξ, expression (8.7) can be rewritten as

Iα =
2nα0

c2
sα

[
1 +

ω√
πcsα

∫ ∞

−∞

1
kvx − ω

exp
(
− v2

x

c2
sα

)
dvx

]

=
2nα0

c2
sα

[
1 +

ω√
πkcsα

∫ ∞

−∞

1
ξ − ω

kcsα

exp
(−ξ2

)
dξ

]
(8.9)

where the involved integral is frequently encountered in descriptions treating Landau
damping [Landau 1946, Fried and Conte 1961, Melandsø et al. 1993a].

8.3 Determination of the critical wavenumbers

The discussions within the framework of a fluid description provided ample indications that
the boundary between stable and unstable solutions occurs at ω = 0 and we reasonably
not expect a deviation from this maxim here. Following this prescript ω = 0 reduces the
integral (8.9) to

Iα,cr =
2nα0

c2
sα

. (8.10)

Next, we substitute (8.10) into (8.2)–(8.4) and use (8.1), which yields the following equa-
tion for the critical wavenumber kcr

(
1 +

1
k2

crλ
2
D

)(
1− 1

k2
crλ

2
Jd

)
+

1
k2

crλ
2
Dd

= 0, (8.11)

where we have defined a characteristic Jeans lengths per species, given through λ2
Jα =

kBTα/4πGnα0m
2
α = 2ω2

Jd/c2
sd. With the redefinition of the thermal speeds in this chapter,

the Debye length now reads as λ2
D = 2ω2

pd/c2
sd. The gravitational influences due to ions

or electrons is so insignificant in self-gravitational plasmas that they are never included
in a wave description. Terms proportional to λ−1

Je and λ−1
Ji can thus be neglected, which

is equivalent to the assumptions |qd|/md ¿ |qi|/mi, e/me. As a consequence, the electron
and ion contributions are retained only through the global plasma Debye length λD.
The bi-quadratic equation (8.11) has two real solutions of opposite sign in k2, of which
the positive solution corresponds to the critical wavenumber. The equation is now solved
for two different wavenumber regimes, both of which stand for a characteristic type of
low-frequency waves in dusty self-gravitating plasmas.
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Dust-acoustic regime (k2
crλ

2
D ¿ 1)

As mentioned in the discussion of the dust-acoustic mode, the physical phenomena that
bring about the dust-acoustic wave are long wavelength phenomena (λ À λD) and this
long wavelength approximation yields a critical wavenumber

k2
cr =

ω2
Jd

c2
da

1
1 + λ2

Dd/λ2
D

. (8.12)

If the dust is specified to be cold, the result (8.12) formally reduces to the critical wavenum-
ber kcr for dust-acoustic waves obtained within a fluid description.

Dust Langmuir wave regime (k2
crλ

2
D À 1)

On the other hand, when k2
crλ

2
D À 1, the critical wavenumber kcr is given by

k2
cr =

2(ω2
Jd − ω2

pd)

c2
sd

, (8.13)

an expression which naturally is effective only for warm dust species and requires the
domination of the self-gravitational forces over the electrostatic forces (ωJd > ωpd).

8.4 Growth rates in case of gravitational instability

Now we check if perturbations associated with wavenumbers k < kcr indeed correspond
to a gravitational instability, as was the case for the wave treatment in self-gravitating
plasmas within the framework of a fluid description. For that we substitute ω = iγ into
(8.7), with γ real and positive, since Jeans instabilities are of a purely growing nature.
Using the relation

∫ ∞

0

x2

x2 + b2
exp(−x2)dx =

√
π

2
[
1−√πb exp(b2) erfc(b)

]
, (8.14)

where

erfc(b) = 1− erf(b)

= 1− 2√
π

∫ b

0
exp

(−ξ2
)
dξ, (8.15)

denotes the complementary error function, we find that

Iα =
2nα0

c2
sα

[
1−√πbα exp(b2

α) (1− erf(bα))
]

(8.16)

≡ 2nα0

c2
sα

Fα.
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Here bα = γ/kcsα and Fα is short-hand for the expression between square brackets. The
equations (8.1)–(8.4) thus result in the following expression for the general dispersion law

(
1 +

Fe

k2λ2
De

+
Fi

k2λ2
Di

)(
1− Fd

k2λ2
Jd

)
+

Fd

k2λ2
Dd

= 0, (8.17)

which will be analyzed in the regimes for dust Langmuir and dust-acoustic waves, respec-
tively.

Dust Langmuir waves

The relation (8.17) is plotted in Fig. 8.1 for the dimensionless variables ω2/(ω2
Jd−ω2

pd) and
k2/k2

cr. In order to discern the modifications due to the kinetic description, the dispersion
relation for the fluid model is also plotted. The latter corresponds to

ω2

ω2
Jd − ω2

pd

=
k2

k2
cr

− 1. (8.18)
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Fig 8.1: Unstable branch of the dispersion relation (8.17) for dust
Langmuir waves (k2λ2

D À 1) in a fluid and kinetic description.

As could be anticipated, the perturbations indeed grow for wavenumbers smaller than
kcr, but the growth rates generally are quite different in both plasma models. This result
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conforms to the kinetic analysis of a self-gravitating neutral system [Binney and Tremaine
1987], which becomes clear if one replaces the Jeans frequency of the neutral species by
an effective Jeans frequency, defined as ω2

J,eff = ω2
Jd − ω2

pd.

Dust-acoustic waves

We continue the analysis of the approximate solutions of (8.17), now in the regime of
the dust-acoustic waves (k2

crλ
2
D ¿ 1), when k → kcr − 0. Introducing dimensionless

variables y = ω2/ω2
Jd and x = k2/k2

cr, we can expand the functions Fα

(√
−y/2x

)
for

small arguments, i.e. y/x ¿ 1. Then one can obtain the simplified dispersion relation as

y = −x(1− x)2/π (8.19)

or

ω2 = −k2c2
da

π

(
1 +

λ2
Dd

λ2
D

)[
1− k2

k2
cr

]2

. (8.20)

The difference in growth rate of the dust-acoustic perturbations between the kinetic and
fluid approach is illustrated in Fig. 8.2, for wavenumbers located as k → kcr − 0.
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Jdω2/2ω

2
cr
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Fig 8.2: Dispersion relations analogous to Fig.8.1 but now
in the dust-acoustic regime (k2λ2

D ¿ 1)
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Note that the validity of the curve associated to the kinetic model is limited to the vicinity
of k → kcr − 0 and therefore not plotted for the entire range wavenumber range k < kcr.
We conclude that for the dust Langmuir waves and the dust-acoustic waves there is a
gravitational instability for k < kcr both in a fluid as in a kinetic model. The growth rates
however differ significantly, the perturbations in the fluid description grow much faster
than in the kinetic one.

8.5 Electrostatic waves in self-gravitating plasmas

After having dealt with the unstable wavenumber regions, we now turn to k > kcr and
analyze the concomitant stable modes in a self-gravitating dusty plasma. The denomina-
tor of the integrand in (8.9) represents a complex pole and for rather weak instabilities
(0 ¿ |=(ω)| ¿ <(ω)), we must apply Landau’s prescription for specifying the integration
contour [Landau 1946]. Accordingly, the contour of integration in the complex v plane
bypasses the pole singularity at ω = kv from below and we obtain from (8.9) [Fridman
and Polyachenko 1984, p. 32-33]

Iα =
2nα0

c2
sα

(
1 + i

√
πzαW (zα)

)
, (8.21)

where zα = ω/kcsα is a dimensionless frequency and W is the Kramp function [Faddeeva
and Terentjev 1954, Fridman and Polyachenko 1984]

W (z) = exp(−z2)
[
1 +

2i√
π

∫ z

0
expx2dx

]
. (8.22)

The last term between the square brackets in (8.22) is visibly related to the Error function
for complex arguments and as such this result is a extension of expression (8.16).

In other textbooks, one rather deals with the Plasma Dispersion function (≡ i
√

πW [z])
[Fried and Conte 1961] or a function Z(z) ≡ i

√
πzW (z) [Faddeeva and Terentjev 1954].

The book written by Ishimaru [1973] uses yet another closely related function (≡ W [z/
√

2]).

Implementing the previous expressions, we are able to write the dispersion equation (8.1)
in the form

ε(ω, k) = 1 +
∑

α=e,i,d

1 + i
√

πzαW (zα)
k2λ2

Dα

+


 ∑

α=e,i,d

1 + i
√

πzαW (zα)
k2λDαλJα




2

1−
∑

α=e,i,d

1 + i
√

πzαW (zα)
k2λ2

Jα

= 0. (8.23)

Further on in the analytic analysis the asymptotic expansions of the dispersion function
W (z) are called for, both for small and large arguments and here we list these asymptotic
approximations, according to Faddeeva and Terentjev [1954],
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a) |z| À 1, Re{z} À Im{z}, Im{z} < 0

W (z) =
i√
πz

(
1 +

∞∑

n=1

(2n)!
n! (2z)2n

)
+ exp(−z2)

=
i√
πz

(
1 +

∞∑

n=1

1 · 3 . . . (2n− 1)
(2z2)n

)
+ exp(−z2)

=
i√
πz

(
1 +

1
2z2

+
3

4z4
+ . . .

)
+ exp(−z2). (8.24)

b) |z| ¿ 1

W (z) = 1 +
2iz√

π
+ . . . (8.25)

The wave frequency ω as well as the dispersion relation ε(ω, k) are split in their respective
real and imaginary parts and for this we use the standard notations ω = ω0 + iγ and
ε(ω, k) = εr + iεi. Furthermore, as already mentioned for the calculation of the Landau
contour, we assume that the instabilities are sufficiently weak so that |γ| ¿ |ω0| and
analogously |εi| ¿ |εr|.
We prefer to study the very low wave frequencies for which the dust dynamics are involved
in the wave processes, more specifically we restrict the analysis to those wave frequencies
that obey the inequality kcsd ¿ ω ¿ kcsi, kcse. For a orderly discussion of these low-
frequency waves in self-gravitating plasmas, we define a parameter

∆ =
ω2

Jd

ω2
pd

(
1 +

1
k2λ2

D

)
, (8.26)

which is essentially a measure for the influence of self-gravitation. For the aforementioned
phase velocities ω À kcsd, the dispersion relation (8.23) can be transformed into the form

1 +
1

k2λ2
D

[
1 +

iω
√

π

k(1 + δ)

(
1
csi

+
δ

cse

)(
1 +

ω2
Jd

ω2

)]

− (1−∆)

[
ω2

pd

ω2

(
1 +

3k2c2
sd

2ω2

)
− i
√

π
ω

kcsd

1
k2λ2

Dd

exp
(
− ω2

k2c2
sd

)]
= 0, (8.27)

with the newly introduced parameter

δ =
λ2

Di

λ2
De

=
Ti

Te

ne

ni
(8.28)

measuring the influence of the electron component on the dust modes. For dusty plasmas
where the dust particles are negatively charged due to the adsorption of electrons, the
resulting electron density depletion sees to it that typically δ < 1 or even δ ¿ 1. In
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astrophysical dusty plasmas that are characterized by such extremely small values of δ,
the plasma electrons have been almost completely devoured by the dust grains and allows
for a model consisting only of ions and charged dust grains [Goertz 1989]. On the other
hand, values for δ larger than unity can occur in isothermal plasmas (Te ' Ti) with
positively charged grains.
Because of the inequalities |γ|, kcsd ¿ ω ¿ kcsi, the imaginary part of (8.27) is small
compared to the real part and we can easily Taylor expand the dispersion relation around
γ = 0, which yields a real frequency

ω2
0 =

ω2
pd(1−∆)

1 + 1
k2λ2

D


1 +

3k2λ2
Dd

(
1 + 1

k2λ2
D

)

1−∆


 , (8.29)

and a growth rate

γ = − εi(ω0)

[
∂εr

∂ω

∣∣∣∣
ω=ω0

]−1

= −
√

πω4
0

2k3λ2
Dω2

pd(1−∆)

[
1

csi
+ δ

cse

(1−∆)(1 + δ)
+

(1−∆)β
csd

exp
(
− ω2

0

k2c2
sd

)]
. (8.30)

In the latter expression, the parameter

β =
λ2

D

λ2
Dd

=
2c2

da

c2
sd

(8.31)

has been introduced, so that β typically is quite large. From this, we deduce that the
condition ω À kcsd necessitates

k2λ2
Dd +

1
β
¿ |1−∆|. (8.32)

As a consequence, weakly damped low-frequency modes with frequencies (8.29) can only
exist in the long-wavelength range k2λ2

Dd ¿ |1−∆| and in self-gravitating dusty plasmas
for which 1 ¿ β|1 −∆|. As the self-gravitational influences increase, these requirements
for the low-frequency modes will become harder to fulfill and certainly more stringent than
in the usual dusty plasmas.
Again, we will subdivide the further study of the eigenmodes two-ways, and treat the
limits which either involve much shorter or much larger wavelengths than the plasma
Debye length.

8.6 Analogue of dust-acoustic modes

In the long-wavelength limit k2λ2
D ¿ 1 we encounter the analogue of the classic dust-

acoustic mode in dusty self-gravitating plasmas and will discuss its modifications due to
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self-gravitation. The real frequency (8.29) and damping decrement (8.30) reduce to

ω2
0 ' k2c2

da

[
(1−∆)(1− k2λ2

D) +
3
β

]
, (8.33)

and

γ = −
√

π

8
kcda

{(
ωpd

ωpi
+

ωpd

ωpe
δ3/2

)
(1 + δ)−3/2

+ (1−∆)2β3/2 exp
[
−3 + (1−∆)β

2

]}
, (8.34)

and for these small wavenumbers we can safely redefine the parameter ∆ as ∆ ' ω2
Jd/k2c2

da.
If self-gravitation is negligible, we simply set ∆ = 0 and the expressions (8.33) and (8.34)
lead to the recovery of the dispersion relations obtained earlier in a kinetic approach for
dust-acoustic waves [Melandsø et al. 1993b].
We have seen that in the dust-acoustic regime, the stable modes correspond to k > kcr =
ωJd/cda, so that for these stable modes always ∆ < 1. Having established the precise
form of the real frequency and damping decrement in the dust-acoustic regime, these
expressions are now explored in order to establish the influence of self-gravitation. First of
all, we should note that dust-acoustic waves usually are almost nondispersive in the long-
wavelength regime. Since k2λ2

D ¿ 1, the phase velocity of long-wavelength disturbances
reads as vph = ωpdλD, which indeed reflects the independency of the phase velocity with
respect to the wavelength. In a self-gravitating plasma however, dust-acoustic mode is
slightly modified and no longer nondispersive, as shown by the expression for the phase
velocity

vph ' ωpdλD

√
1− ω2

Jd

k2c2
da

. (8.35)

Clearly, the dispersive part of the phase velocity is solely due to the self-gravitational
effects. Furthermore, a peculiarity of the dust-acoustic wave in a self-gravitating plasma
is its damping (8.34). By and large, the electron depletion in astrophysical plasmas is
quite important, and for convenience we compare the different terms in (8.34) for a case
δ ' 0. Then the global Debye length λD reduces to λDi and (8.34) becomes

γ ' −
√

π

8
kc2

da

csi

{
1 + (1−∆)2β

csi

csd
exp

[
−(1−∆)β

2

]}
. (8.36)

Because usually βcsi À csd, we see that the second term between curly brackets makes
the main contribution to the damping rate and this term is largely controlled by self-
gravitation. Also for other values of δ, the heavy nature of the dust particles will see to
it that the second term in (8.34) dominates. But when dealing with large values of the
parameter β, one has to be more cautious, the exponential term will diminish quickly for
larger β and so will the influence of self-gravitation on the damping rate. Hence, when
studying self-gravitational effects we have to restrict our analysis to those values of β
for which the second term of (8.34) prevails. This is equivalent to stating that inside the
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curly brackets the term β3/2 exp(−β/2) has a much larger part than ωpd/ωpi+ωpdδ
3/2/ωpe.

Moreover, for the dust the Jeans frequency ωJd must be larger than the plasma frequency
ωpd but not all too much as otherwise the self-gravitational effects again become insignif-
icant. Deliberating carefully these considerations indicates that the modifications due to
gravitational influences are significant for parameter values that keep β smaller than 50
[Yaroshenko et al. 2001b].

The typical evolution of the wave decrement of the dust-acoustic wave in such self-
gravitational plasmas is illustrated in Fig. 8.3, where the ratio |γ|/kcda is shown as a
function of ∆ and where the parameter β is fixed to a value β = 20.
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Fig 8.3: Effect of self-gravitation on Landau damping of the dust-acoustic wave for
β = 20

The curve in Fig. 8.3 demonstrates that the damping effect can grow considerably when
the gravitational interactions intensify, especially when ∆ → 1 is realized. We see that
the decrement rate corresponding with the peak practically dwarfs the decrement rate
for a usual dust-acoustic wave in dusty plasmas without self-gravitation, in case of which
∆ = 0. In the near vicinity of ∆ = 1 the damping drops to zero, an observation that is
not at all surprising because this situation is associated with a relation ω2

Jd = k2c2
da or

k = kcr. In other words, ∆ = 1 implies a marginally stable configuration and thus denotes
a turning point for the sign of the damping rate.
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From a physical point of view, the explanation of the rather high damping rate for ∆ → 1
is quite simple. The damping rate of a wave is proportional to the difference in numbers of
slow and fast captured particles, i.e. the particles that are slower respectively faster than
the phase velocity of the wave. Because primarily the particles near the phase velocity
determine the damping rate, this difference in numbers is proportional to the following
expression

Nslow −Nfast ∼ − df0d

dv

∣∣∣∣
v=

ω0
k

, (8.37)

which is a positive quantity since a Maxwellian distribution makes sure that there are
more particles with velocities smaller than the phase velocity than there are with larger
velocities. It follows that for a Maxwellian distribution (8.6), the number N of dust
particles which can effectively interact with the dust-acoustic wave can be expressed as

N ∼ (1−∆)1/2 exp
[
−(1−∆)β

2

]
. (8.38)

When the influence of self-gravitation strengthens and thus ∆ → 1, the number of resonant
dust particles N is forced up too and achieves a maximum at ∆m = 1 − 1/β. When the
parameter ∆ approaches unity, the number of resonant particles thus becomes so large
that the damping rate builds up crucially and surpasses the Landau damping rate for
usual dust-acoustic waves considerably. We remark that ∆ ∼ ∆m implies 1/β ' |1−∆|,
so that the condition (8.32) is not satisfied in the immediate vicinity of ∆m. This means
that the picture of absorption of the dust-acoustic waves is not entirely accurate in the
neighbourhood of ∆m, where this approach rather serves as a rough indication for the
anomalous damping rate due to self-gravitational effects.
The increase of the damping rate due to the self-gravitational interactions can be demon-
strated also from another perspective. This is established by considering the dimensionless
damping rate |γ|/ωJd, obtained from (8.34), as a function of the normalized wavenumbers
k/kcr. Here, the critical Jeans wavenumber is approximately kcr ' ωJd/cda and we focus
on arguments k/kcr > 1 as we are investigating the eigenmodes of the dust-acoustic wave.
The functional relation between |γ|/ωJd and k/kcr is illustrated in Fig. 8.4 for different
values of β, all smaller than 50.
Again we see that the perturbations damp strongly when k → kcr + 0 and we notice
also that larger values of β enfeeble the influence of self-gravitation. The latter points
out that particularly the parameter β is of a major influence on the decrement rate in
the wavenumber region where the damping is at its peak. For large values of β, the
modifications of the usual damping rate for dust-acoustic waves will be rather minor.
Both approaches make abundantly clear that for self-gravitational dusty plasmas in which
the parameter β has a typical value of no more than 50, the existing disturbances, char-
acterized by wavenumbers

k ∼
(

1 +
1
2β

)
ωJd

cda
, (8.39)

are subjected to a strong attenuation because of the self-gravitational effects. In other
words, for given values of the dust plasma and Jeans frequencies, the dust-acoustic waves
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with k ∼ ωJd(1 + 1/2β)/cda can hardly propagate in surroundings where 10 < β < 50
holds.

This detailed study of the kinetic model for dust sound waves in dusty self-gravitating
plasmas pinpoints the deficiencies of the fluid model. Whereas stable wave modes with
small wavelengths λ < 2πcda/ωJd survive unhindered in a fluid approach, the kinetic
analysis shows that they are in fact strongly damped due to collisionless Landau damping,
in particular for wavenumbers k → kcr+0. However, the fluid dispersion equation succeeds
in providing exactly the same critical wavenumber as the much more intricate kinetic
dispersion relation.
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Fig 8.4: Landau damping vs k/kcr for the analogue of the
dust-acoustic wave in self-gravitating plasmas

8.7 Dust Langmuir waves

Finally, we turn back to the dust Langmuir regime, for which we determined the critical
wavenumber in (8.13). In order to meet the imposed requirement (8.32), the wavenumbers
must comply with both k2λ2

D À 1 and k2λ2
Dd ¿ |1 − ∆|. In this regime, the spectrum

reads as

ω2
0 ' ω2

pd

(
1−∆ + 3k2λ2

Dd

)
,

= ω2
pd − ω2

Jd + 3k2c2
sd (8.40)
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where the dimensionless parameter ∆ is now defined as ∆ = ω2
Jd/ω2

pd. For stable wave
modes, we have ∆ < 1 and the corresponding damping decrements are given by

γ ' −
√

π

8
ωpd

k3λ3
D

{(
ωpd

ωpi
+

ωpd

ωpe
δ3/2

)
(1 + δ)−3/2

+ (1−∆)2β3/2 exp

[
−3

2
− (1−∆)ω2

pd

k2c2
sd

]}
. (8.41)

In the determination of the critical wavenumbers, it was already noted that the analogon
of dust Langmuir waves in self-gravitating plasmas takes after the usual Langmuir waves
if one introduces the effective plasma frequency of the dust particles, defined through
ω2

p,eff = ω2
pd − ω2

Jd. Indeed, the equations (8.40) and (8.41) formally reduce to the dis-
persion relations for ion Langmuir waves in electron-ion plasmas [Krall and Trivelpiece
1973, Akhiezer et al. 1975], with the effective plasma frequency being the acting repre-
sentative of the plasma frequency. For the dust Langmuir waves, the parameter ∆ is
independent of the wave number and for self-gravitating dusty plasmas where the plasma
frequency is close to but smaller than the Jeans frequency (∆ → 1), the dust Langmuir
waves also diminish with large damping decrements. The mechanisms responsible for the
strong damping are akin to their counterparts in the dust-acoustic wave description and
conclusions can be borrowed from the previous section, except that the requirements for
β are less stringent because of the different argument in the exponential.

8.8 Conclusions

The use of a kinetic procedure in the stability analysis of low-frequency waves in homoge-
neous self-gravitating plasmas bears out the Jeans instability criterion as obtained from a
hydrodynamical approach. In both models a critical wavenumber is obtained, which sep-
arates the stable and the instable modes. But the more general kinetic approach makes
clear that the fluid model overlooks the strong attenuation of the dust-acoustic modes
for very short wavelengths. The mechanism responsible for complicating the propagation
of these stable modes is the collisionless Landau damping. This mechanism is particu-
larly effective for wavenumbers slightly larger than the critical wavenumber and can only
be studied in a kinetic framework. It is found that the damping of the dust-acoustic
perturbations in self-gravitating plasmas strongly depends on the values of the plasma
parameters, especially on β. For parameter values of 10 < β < 50, the impact of Landau
damping is considerable and accordingly the damping rate is much higher than for the
usual dust-acoustic waves, which is predominantly noticeable for wavenumbers near the
critical values. This means that in such self-gravitating plasmas, there exists a range of
wavenumbers in which dust-acoustic modes can barely be excited. On the other hand, for
larger values, typically β > 50, the damping rates are just about unchanged. Moreover,
the growth rates of the Jeans instability are also quite different, the unstable seeds of
instability grow much faster in a fluid approach than in an approach which is outlined by
kinetic considerations.



Chapter 9

Continuous dust size distributions

In many astrophysical dusty plasmas, the size of the dust components spans a wide, al-
most continuous range. For this reason, we will now generalize the kinetic approach for
dust-acoustic modes to self-gravitating plasmas which comprise a continuous size distri-
bution. The framework of a kinetic analysis is necessary for an accurate description of a
continuous size spectrum, as treating such a spectrum in a hydrodynamical manner in-
evitably poses some fundamental problems [Bliokh et al. 1995, Verheest 2000]. Indeed, a
hydrodynamical treatment of a continuous size spectrum involves integration procedures
which are complicated by the fact that the denominator of the integrand will vanish for
some arguments. In order to deal with the poles of the integrands, a procedure akin
to the procedures encountered in a treatment of Landau damping is required, which is
unavoidably outside the reach of a fluid approach.

Observational data indicate that a realistic dust size distribution can be approximated
quite accurately by means of a decreasing power law [Meuris 1998] and we therefore
focus on such distributions. The precise value of the exponent of the involved power
law is decisive for the relative importance of the larger dust grains in the self-gravitational
mechanisms and it turns out that the larger dust grains come into force only for power laws
that decrease faster than a quartic. Further, the damping effects for analogues of dust-
acoustic modes are investigated, to show whether a power-law distribution of dust-particle
sizes influences the Landau damping in a self-gravitating dusty plasma [Yaroshenko et al.
2001a].

As we have established in the previous chapter, the inclusion of self-gravitation fortifies
the influence of Landau damping in certain parameter ranges. In this way, we generalize
the results for continuous size distributions of Brattli et al. [1997] to self-gravitational
plasmas. In these investigations, we have preferred an analytical approach, which implies
far more flexibility concerning the parameter input than the study of Brattli et al. [1997]
does, but their numerical analysis allowed for the inclusion of charge fluctuations, whereas
we assumed constant dust charges.

113
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9.1 Dispersion relation for a continuous dust mass spectrum

For the kinetic analysis of the dust-acoustic mode in a self-gravitating plasma containing
multiple dust species, we keep the assumption of inertialess electrons and ions and continue
using the dispersion relation (8.23),

ε(ω, k) ≡ 1 +
∑

α=e,i,d

1 + i
√

πzαW (zα)
k2λ2

Dα

+


 ∑

α=e,i,d

1 + i
√

πzαW (zα)
k2λDαλJα




2

1−
∑

α=e,i,d

1 + i
√

πzαW (zα)
k2λ2

Jα

= 0, (9.1)

but now the summation index runs over every dust species, which are all assumed to be
negatively charged. We recall that the dimensionless arguments are defined per species α
through zα = ω/kcsα and that W (z) denotes the Kramp function [Faddeeva and Terentjev
1954].

In realistic astrophysical applications of dusty plasmas, the dust grains tend to come in all
sizes and the plenitude of possible dust sizes can often be well modelled by a continuous
spectrum that goes as a power law in the interspace between a minimal diameter value
amin and a maximum diameter amax. In general, this power law will be decreasing since
in astrophysical situations the smaller particles are encountered more frequently. Accord-
ingly, we investigate the influence of dust mass distributions through a differential density,
defined as

nd(a)da = N0a
µ−1
0 a−µda (µ > 0), (9.2)

where the total number density N0 is given by the expression

N0 =

amax∫

amin

nd(a)da. (9.3)

In the definition (9.2), we have introduced a characteristic size a0, which is completely
determined by the peculiarities of the power law distribution because of the normalization
procedure (9.3) that defines the equilibrium density N0. The characteristic size a0 is
connected with the boundaries amin and amax of the size interval and also with the exponent
µ of the power law through

aµ−1
0

µ− 1

(
a1−µ

min − a1−µ
max

)
= 1. (9.4)

If the range of sizes is fairly wide, then amin ¿ amax and for exponents µ > 1, the relation
(9.4) can be approximated as (

a0

amin

)µ−1

' µ− 1. (9.5)
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max amin a

dn  (a)

 a

Fig 9.1: Differential density modelled as a decreasing power law

We are led by the standard dusty plasma model and thus assume homogeneous, spherical
dust particles with the charges being congregated on the outer layer, so that the mass and
charge can be expressed as

m(a) =
4
3
πρa3,

q(a) = 4πε0aϕ0, (9.6)

where ρ is the mass density of the grain material and ϕ0 the electric surface potential at
equilibrium. For simplicity, we presume the mass density and surface potential to be equal
and time independent for all dust grains, assumptions both of which can be considered as
a fair approximation in many astrophysical environments.

For power laws that decrease faster than a quadratic, the equation of quasi-neutrality is
given by

qini0 = ene0 +
∫ amax

amin

nd(a)qd(a)da,

' ene0 + N0q1
µ− 1
µ− 2

(µ > 2), (9.7)

where q1 = q(amin) = 4πε0ϕ0amin is the charge of the smallest grains, qi the charge of the
ions, and ne0 and ni0 are the unperturbed electron and ion densities.

For a continuous distribution, such as (9.2), the discrete summation over different grain
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species in (9.1) is replaced by an integral, so that the dispersion law is now of the form


1 +

∑

α=e,i

1 + i
√

πzαW (zα)
k2λ2

Dα

+

amax∫

amin

1 + i
√

πz(a)W [z(a)]
k2λ2

Dd(a)
da


×

×

1−

amax∫

amin

1 + i
√

πz(a)W [z(a)]
k2λ2

Jd(a)
da


 +




amax∫

amin

1 + i
√

πz(a)W [z(a)]
k2λDd(a)λJd(a)

da




2

= 0. (9.8)

Here the generalizations

λ2
Dd(a) =

ε0kBT

q2(a)nd(a)
,

λ2
Jd(a) =

kBT

4πm2(a)nd(a)
, (9.9)

for the analogues of the Debye and Jeans lengths have been introduced, both of which
quantities now display explicitly their size dependence. In these definitions, we have used
the assumption of an equal temperature for all the dust particles (T (a) = T 6= Te, Ti) and
further we introduce extensions of the definitions used in the previous chapter, namely
ze,i = ω/kcse,si, z(a) = ω/kcs(a) and c2

s(a) = 2kBT/m(a). We recall that due to their
relative smallness all terms proportional to λ−1

Ji ∼ mi and a fortiori to λ−1
Je ∼ me were

omitted in the derivation of the dispersion law (9.8), which is now investigated specifically
in the dust-acoustic regime.

9.2 Dust-acoustic modes in self-gravitating plasmas

In the dust-acoustic regime, the requirements for the phase velocity kcs(amin) ¿ ω ¿ kcsi,
cse, result in the conditions ze, zi ¿ 1 and z(amin) À 1. Consequently, we can apply anew
the asymptotic expansions (8.24) for the Kramp function. Inserting these expansions into
the dispersion law (9.8) yields [Yaroshenko et al. 2001a]


1 +

∑

α=e,i

1 + i
√

πω
kcsα

k2λ2
Dα

− Ω2
p

ω2

(
1 +

∆p

ω2

)
+ iωCp


 ·

[
1 +

Ω2
J

ω2

(
1 +

∆J

ω2

)
− iωCJ

]

+

[
Ω2

pJ

ω2

(
1 +

∆pJ

ω2

)
− iωCpJ

]2

= 0, (9.10)

where the notations Ωp, ΩJ and ΩpJ stand for the effective dust plasma, Jeans and hybrid
frequencies, respectively. Inherently, these effective frequencies are size independent and
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are defined as

Ω2
p =

amax∫

amin

q2(a)nd(a)
ε0m(a)

da =

amax∫

amin

ω̃2
p(a)da, (9.11)

Ω2
J =

amax∫

amin

4πGm(a)nd(a)da =

amax∫

amin

ω̃2
J(a)da, (9.12)

Ω2
pJ =

amax∫

amin

ω̃p(a)ω̃J(a)da. (9.13)

The equations (9.11) and (9.12) define the quantities ω̃2
p(a) and ω̃2

J(a), and furthermore
the newly introduced notations ∆p, ∆J and ∆pJ represent the thermal corrections and
are given through

∆p =
3k2

2Ω2
p

amax∫

amin

ω̃2
p(a)c2

s(a)da, (9.14)

∆J =
3k2

2Ω2
J

amax∫

amin

ω̃2
J(a)c2

s(a)da, (9.15)

∆pJ =
3k2

2Ω2
pJ

amax∫

amin

ω̃p(a)ω̃J(a)c2
s(a)da. (9.16)

Finally, the structure of (9.10) has been made more compact by representing the imaginary
parts through the coefficients Cp, CJ and CpJ , standing for

Cp =
√

π

k3

amax∫

amin

exp
[−ω2/k2c2

s(a)
]

cs(a)λ2
Dd(a)

da, (9.17)

CJ =
√

π

k3

amax∫

amin

exp
[−ω2/k2c2

s(a)
]

cs(a)λ2
Jd(a)

da, (9.18)

CpJ =
√

π

k3

amax∫

amin

exp
[−ω2/k2c2

s(a)
]

cs(a)λJd(a)λDd(a)
da. (9.19)

The complexity of the dispersion law (9.10) is tremendous and for this reason Brattli et al.
[1997] have dealt with the kinetic effects of a size distribution on dust-acoustic waves in
a numerical fashion. Their paper covers the possibility of fluctuating dusty charges but
does not include the self-gravitational effects. We choose to continue analytically in order
to determine the damping decrements and wave frequencies of dust acoustic modes for
different size spectra.
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We start with the imaginary part of the dispersion law (9.10), and denote the integrals
(9.17)–(9.19) as

Cν = Q

∫ amax

amin

aν exp
[−ω2/k2c2

s(a)
]
da, (9.20)

with Q being constant. This type of integral can be rewritten with the help of the following
relation [Abramowitz and Stegun 1972]

Cν = Q

amax∫

amin

aν exp(−ba3)da

= − Q

3
b−

ν+1
3 Γ

(
ν + 1

3
, ba3

)∣∣∣∣
amax

amin

, (9.21)

where, because of (9.6), the parameter b = ω2/a3k2c2
s(a) is independent of the dust diam-

eter a and with Γ(p, x) denoting the incomplete Gamma function

Γ(p, x) =

∞∫

x

exp (−t) tp−1dt. (9.22)

Since the dust-acoustic regime corresponds to kcs(a) ¿ ω, the second argument of the in-
complete Gamma function in (9.21) satisfies ba3 = ω2/k2c2

s(a) À 1. Using the asymptotic
expansion of Γ(p, x) for large arguments x [Abramowitz and Stegun 1972], one can obtain

Cν = − Q

3b
aν−2 exp

(−ba3
)∣∣amax

amin

= − ak2c2
s(a)

3ω2
Qaν exp

[
− ω2

k2c2
s(a)

]∣∣∣∣
amax

amin

. (9.23)

In this approximation, the expressions (9.17)–(9.19) can be noted in a simple fashion,
namely as

Cp = ω2
p(a)E(a)

∣∣amax

amin
, (9.24)

CJ = ω2
J(a)E(a)

∣∣amax

amin
, (9.25)

CpJ = ωp(a)ωJ(a)E(a)|amax

amin
, (9.26)

where we have introduced

ω2
p(a) =

N0q
2(a)

ε0m(a)
,

ω2
J(a) = 4πGN0m(a), (9.27)

and where E(a) is shorthand for

E(a) = − 2
√

π

3ω2kcs(a)

(a0

a

)µ−1
exp

(
− ω2

k2c2
s(a)

)
. (9.28)
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Using the notations (9.27) yields for the effective frequencies

Ω2
p = − 1

µ

(a0

a

)µ−1
ω2

p(a)
∣∣∣∣
amax

amin

, (9.29)

Ω2
J = − 1

µ− 4

(a0

a

)µ−1
ω2

J(a)
∣∣∣∣
amax

amin

, (9.30)

Ω2
pJ = − 1

µ− 2

(a0

a

)µ−1
ωp(a)ωJ(a)

∣∣∣∣
amax

amin

, (9.31)

and for the associated thermal corrections

∆p = − 3k2

2Ω2
p

(a0

a

)µ−1 ω2
p(a)c2

s(a)
µ + 3

∣∣∣∣∣
amax

amin

, (9.32)

∆J = − 3k2

2Ω2
p

(a0

a

)µ−1 ω2
J(a)c2

s(a)
µ− 1

∣∣∣∣
amax

amin

, (9.33)

∆pJ = − 3k2

2Ω2
p

(a0

a

)µ−1 ωp(a)ωJ(a)c2
s(a)

µ + 1

∣∣∣∣
amax

amin

. (9.34)

For the further study of the dispersion law (9.1) in the dust-acoustic regime, we make the
usual assumptions |ωr| À |γ| and |εr| À |εi|, wherein the notations concerning the real
and complex parts of ε(ω, k) and ω of the previous chapter remain. Now we describe the
influence of the size distribution on the peculiarities of the dust-acoustic modes in dusty
and self-gravitating plasmas and determine the sway of the precise form of the power law
therein.
In order to provide a benchmark, we firstly consider a dusty plasma without self-gravitation
(ΩJ = 0 = ΩpJ), so that the coefficients ∆J , ∆pJ , CJ and CpJ are equal to zero. In this
case, the dispersion relation of Brattli et al. [1997] for dust-acoustic modes in a plasma
with a dust size distribution is recovered, provided constant dust charges are assumed.
The numerical analysis of Brattli et al. [1997] seems to indicate that the Landau damping
in a dusty plasma with a power-law dust size distribution deviates only slightly from the
Landau damping in a monodisperse dusty plasma wherein the dust particles all have a
size equal to the average particle size of the distribution.
For a size spectrum (9.2) with values µ > 1 and covering a substantial size range of the
dust particles, so that amax À amin, the dispersion relation (9.10) reduces to

1 +
1

k2λ2
D

[
1 +

i
√

πω

k(1 + δ)

(
1
csi

+
δ

cse

)]
− Ω2

p

ω2

(
1 +

3µk2c2
s(amin)

2(µ + 3)ω2

)

+
2i
√

πµΩ2
p

3ωkcs(amin)
exp

(
− ω2

k2c2
s(amin)

)
= 0, (9.35)

where the parameter δ has the same meaning as in the previous chapter, namely δ =
λ2

Di/λ2
De. Note that the obtained dispersion law is insensitive to the upper limit of inte-

gration as long as amax À amin holds, being in accordance with the conclusions of Brattli
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et al. [1997]. For the study of the dust-acoustic mode, we can insert k2λ2
D ¿ 1, which

yields for the frequency and damping rate, respectively

ω2
r =

1
2
k2U2

da(1− k2λ2
D)


1 +

√
1 +

12µ(1 + k2λ2
D)

(µ + 3)β


 , (9.36)

and, for parameter values β À 12µ/(µ + 3),

γ ' −
√

π

8
kUda

{
(1 + δ)−3/2

(
Ωp

ωpi
+

Ωp

ωpe
δ3/2

)

+
2µ

3

√
β exp

[
−β

4

(
1 +

√
1 +

12µ

(µ + 3)β

)]}
. (9.37)

The dust-acoustic velocity Uda = ΩpλD has been introduced and β is now given through

β =
λ2

D

λ2
D1

=
2U2

da

c2
s(amin)

, (9.38)

the definition of which incorporates the new quantity λ2
D1 = c2

s(amin)/2Ω2
p. Because of

the assumptions µ > 1 and amin ¿ amax, the effective plasma frequency becomes

Ω2
p =

(µ− 1)ω2
p(amin)

µ
. (9.39)

We emphasize that a comparison with a monodisperse dusty plasma cannot be made by
substituting µ = 0, since all the previous equations require µ > 1. Instead, we compare
(9.36) and (9.37) to corresponding values in a monodisperse plasma, where all the dust
particle have a size a = amin and the total dust density equals N0. Using the equation
of charge neutrality (9.7), we can easily compute the ratios of the real frequencies and
damping rates for both situations, with and without size distribution respectively. It
turns out that both ratios depend only faintly on the parameter µ and this in a similar
fashion, namely

ωr,poly

ωr,mono
∼ µ− 2√

µ(µ− 1)
∼ γr,poly

γr,mono
, µ > 2. (9.40)

However, the relative damping rate γ/ωr for dust-acoustic modes in dusty plasmas with a
power law dust size distribution is almost independent of µ, akin to the results of Brattli
et al. [1997].
Including now the self-gravitational aspects of dusty plasmas, the general dispersion law
(9.10) will display a stronger dependence on µ, due to the occurrence of the gravitational
(ΩJ , ∆J) and hybrid terms (ΩpJ , ∆pJ). Tacitly, it is assumed that µ differs from the critical
values that would cause one of the denominators in (9.29)–(9.34) to vanish. For these
critical values, one would simply have to establish the appropriate limiting expressions.
For the terms purely associated with the electrostatic plasma interactions, viz. the terms
(9.29) and (9.32), are almost entirely determined by the particles with the minimal size
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amin. On the other hand, the dominant influence on the effective Jeans frequency (9.12)
and the hybrid frequency can originate from either the smallest or largest grains, depending
on the precise magnitude of µ. Since for distributions with a sufficiently wide size range
amin ¿ amax, the effective frequencies (9.29)–(9.31) can be rewritten as

Ω2
p =

µ− 1
µ

ω2
p(amin)

[
1−

(
amin

amax

)µ]
, (9.41)

Ω2
J =

µ− 1
µ− 4

ω2
J(amin)

[
1−

(
amin

amax

)µ−4
]

, (9.42)

Ω2
pJ =

µ− 1
µ− 2

ωp(amin)ωJ(amin)

[
1−

(
amin

amax

)µ−2
]

. (9.43)

It follows that for µ > 4, primarily the smaller sized particles act upon the expressions for
ΩJ and ΩpJ , because of their abundant presence. Vice versa, the upper limit (amax) has the
upper hand in the assessment of the effective Jeans frequency when µ < 4, additionally the
maximal diameter amax also dominates the hybrid term when µ < 2. Bearing in mind the
observational data concerning dust distributions in real dusty plasma objects, especially
the cases µ > 4 and 2 < µ < 4 merit a further investigation.

9.2.1 Power law distributions with µ > 4

For the case µ > 4, we can reevaluate the real part of the general dispersion equation in
the dust-acoustic regime (9.10), which becomes upon neglecting the small thermal terms,

ω4 − ω2
(
k2U2

da − Ω2
J

)− Ck2U2
daΩ

2
J = 0, (9.44)

where the constant C is given through

C =
4

(µ− 2)2
. (9.45)

As the product of the roots of (9.44) for ω2 is negative, there will always be one positive
solution for ω2, corresponding to a stable mode, as well as a purely imaginary mode for
which ω2 < 0.
First, we discuss the case of a self-gravitating plasma wherein the self-gravitational ef-
fects are hardly influencing the propagation of the dust-acoustic mode, corresponding to
k2U2

da À Ω2
J . In this limit, the roots of (9.44) are given by

ω2
1 ' k2U2

da − Ω2
J(1− C) (9.46)

and
ω2

2 ' − CΩ2
J . (9.47)

The first solution represents a generalized dust-acoustic wave, the size distribution of the
dust grains is communicated through a increase of the dust-acoustic phase velocity, because



122 Continuous dust size distributions

the distribution effectively reduces the effective Jeans frequency. Here, the definition of
∆, used in the previous chapter, would relate to a term Ω2

J(1 − C)/k2U2
da, so that the

influence of the size distribution is noticeable through both the factor (1 − C) and the
definitions of Ωp and ΩJ . Reinstating the earlier omitted thermal effects makes clear that
they only act for a slight correction for the dust-acoustic branch (9.46), namely

ω2
1 ' k2U2

da

(
1 +

3µ

(3 + µ)β

)
− Ω2

J(1− C). (9.48)

This particular wave is always damped, and the damping decrement can be easily calcu-
lated in the same fashion as (9.37), yielding

γ = −
√

π

8
kUda

{
(1 + δ)−3/2

(
Ωp

ωpi
+

Ωp

ωpe
δ3/2

)

+
2µ
√

β

3
exp

[
−1

2

(
3µ

µ + 3
+ β

)
+

βΩ2
J(1− C)
2k2U2

da

]}
. (9.49)

Both the real frequency and the expression for the damping decrement are strikingly
similar to what was obtained for the dust-acoustic wave (9.36)–(9.37), but the damping
rate can clearly be considerably influenced by self-gravitation and the size distribution,
especially for power law distributions with a large exponent µ. The exception is dusty
plasmas that are characterized by very large values of β, in case of which the exponential
term in (9.49) hardly contributes to the damping rate and the expression for the damping
rate practically mimics the expression (9.37) for the mono-sized dust case.

Since we are interested in the modifications due to the self-gravitational effects, we restrict
therefore our analysis again to those values of β for which the second term of (9.49)
is estimated to prevail, namely β < 50. In order to examine the influence of the size
distribution on the damping rate of the dust-acoustic mode, we take a closer look at the
self-gravitational terms in (9.49), the relative importance of which is proportional to

Ω2
J(1− C)
k2U2

da

=
ω2

J(amin)µ
k2λ2

Diω
2
p(amin)(µ− 4)

[
1− 4

(µ− 2)2

]
, (9.50)

attaining a maximal value of

Ω2
J(1− C)
k2U2

da

∣∣∣∣
µ=4

=
4ω2

J(amin)
k2λ2

Dω2
p(amin)

, (9.51)

for the limit µ = 4.



9.2 Dust-acoustic modes in self-gravitating plasmas 123

µf(  )

µ

0

1

2

3

4

4 5 6 7 8 9 10 11 12

Fig 9.2: Variation of f(µ) = µ
µ−4

[
1− 4

(µ−2)2

]
for µ > 4.

The figure 9.2 makes clear that for values of µ ∼ 5÷7 the contribution of the gravitational
term is rather enhanced due to the size distribution. For very large values, typically µ > 10,
the influence of self-gravitation on the damping rate will be negligible as the dependence
(9.50) will tend to 1. Moreover for large values of the exponent in the size distribution, the
influence of the distribution on Uda = λDΩp is also small, as can be seen in the expression
(9.41).

The negative root (9.47) gives rise to a weakly unstable mode, the frequency of which is
negative and varies with µ as

ω2
2 = −µ− 1

µ− 4

[
1− 4

(µ− 2)2

]
ω2

J(amin). (9.52)

This new mode arises due to the presence of a size distribution and is thus a dust distri-
bution instability. In this way the results of Meuris et al. [1997] are repeated and equation
(9.44) matches the equation (32) of Meuris et al. [1997], provided one replaces the double
summation in their equation by a double integral. Following the notations of Meuris et al.
[1997], the situation k2U2

da > Ω2
J corresponds to their condition A > B.

Next we consider the opposite case, when k2U2
da ¿ Ω2

J . In this limit, the self-gravitational
effects dominate and the roots of (9.44) are of the form

ω2
1 ' − Ω2

J + k2U2
da(1− C) (9.53)

and
ω2

2 = Ck2U2
da. (9.54)
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The mode ω2
1 < 0 represents a modified Jeans instability, and the presence of a dust size

distribution will only slightly affect the corresponding growth rate. The other solution
ω2

2 > 0 has no analogon in a monodisperse plasma and thus represents a new stable mode,
originating from the size dispersion. This mode is always attenuated, with a decrement

γ = −
√

π

8
kUda

{
(1 + δ)−3/2

(
Ωp

ωpi
+

Ωp

ωpe
δ3/2

)
+

2µ
√

β

3
exp

[
−Cβ

2

]}
. (9.55)

These results corroborate qualitatively with the analysis of dust-acoustic waves in a plasma
with a number of discrete charged and neutral dust species, performed by Meuris et al.
[1997]. However, the results of Meuris et al. [1997] are obtained within a fluid description
and therefore provide no information about the damping effect for the different investigated
modes.

9.2.2 Power law distributions with 2 < µ < 4

Finally, we turn to the dust-acoustic modes in self-gravitating plasmas with the exponent
µ of the size distribution being sufficiently small, namely 2 < µ < 4. In that case, the
gravitational terms in the general dispersion law (9.10) are practically insensitive to the
smaller dust particles, being nearly exclusively determined by the heavier dust particles.
In this limit the dispersion relation (9.44) is still valid but since now the gravitational
terms are nearly exclusively determined by the heavier dust particles, the values of Ω2

J

and C change accordingly to

Ω2
J =

µ− 1
4− µ

ω2
J(amin)

(
amax

amin

)4−µ

, (9.56)

C = 1− µ(4− µ)
(µ− 2)2

(
amin

amax

)4−µ

' 1. (9.57)

It follows that there now is an almost complete factorization of (9.44), viz.

(ω2 − k2U2
da)(ω

2 + Ω2
J) ' 0. (9.58)

We thus conclude that for 2 < µ < 4 the plasma and gravitational disturbances decouple
and can develop almost independently. This is a consequence of the rather mild decline
of the differential density nd(a) so that the larger particles, although smaller in absolute
numbers, can dominate the self-gravitational effects, in contradistinction to the case µ > 4.

9.3 Results

In this chapter we have extended the kinetic analysis of dust-acoustic modes in a self-
gravitating dusty plasma by including a continuous dust size distribution, in order to mimic
astrophysical situations more realistically. Following observational results, we treated a
size distribution that decreases as a power law in a certain range of dust particle sizes.
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Our kinetic analysis recovers the dust distribution instability and a stable mode that solely
exists due to the size distribution of the dust particles, both of which have been described
earlier by Meuris et al. [1997], but within a hydrodynamical approach and in the case
of a discrete dust size spectrum. Not only does the present kinetic approach comprise
the damping and growth rates of the dust-acoustic modes, but it additionally allows for
investigating the precise influence of the shape of the power law distribution.
We found that because of their abundance the effective plasma terms will always be
weighted towards the smallest particles, whereas the effective Jeans and hybrid terms
can be determined by either the smallest or the largest grains, depending on the precise
slope of the power law distribution. For steeply descending power laws, characterized by
an exponent µ > 4, the sheer quantity of the lighter dust particles will mainly determines
the effective Jeans and hybrid terms. In effect, in this case the dust-acoustic modes are
practically insensitive to the upper boundary of the size distribution. For µ > 4, we
retrieve a generalization of the dust-acoustic mode and the Jeans acoustic mode, as well
as the just mentioned dust distribution instability and a stable mode which is nonexistent
in monodisperse plasmas. On the other hand, for 2 < µ < 4, the larger dust grains take
over the main role in the issue of self-gravitation, causing a decoupling between the plasma
and gravitational perturbations.
Moreover, we investigated in both parameter regimes of µ the influence of the dust particles
sizes on the Landau damping, which will be only measurable in self-gravitating dusty
plasmas and for certain parameter values, as was already stated in the previous chapter.
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Chapter 10

Influence of dust-ion collisions

In all the previous chapters, collisional mechanisms were not taken into account. However,
in many astrophysical dusty plasmas, the collisions between particles may not be neglected
in an accurate wave analysis [D’Angelo 1998, Winske and Rosenberg 1998, Shukla et al.
1999, Ivlev et al. 1999, Ostrikov et al. 2000]. The exchange of momentum between species,
caused by the different types of collisions, can be a source of considerable damping for the
low-frequency modes under study and thus merit further investigations.

If neutral dust or gas species are present, the most relevant collisions in dusty plasmas
are those occurring between the charged dust species and the neutral dust species. Since
in the larger part of this thesis we have worked within a model restricted to charged dust
species only, we also now study the influence of collisions in dusty self-gravitating plasmas
without neutrals. In this case, the dominant collision mechanism occurs between the ions
and the (charged) dust species [Shukla and Mamun 2002, p.76], the physics of which were
already inspected by D’Angelo [1998], but in the absence of self-gravitation. One of the
most relevant papers concerning a combination of self-gravitational effects and collisions
in a dusty plasma model is that of Shukla and Verheest [1999], in which self-gravitating
collisional dusty plasmas are studied but wherein the possibly important ion inertia is
neglected.

In our study, the stability of self-gravitating plasmas is examined using elementary prin-
ciples of rootlocus theory, a semi-analytical tool often used in control engineering. This
method produces straightforward criteria for gravitational collapse, while only requiring
a minimal amount of algebra. Moreover, this procedure provides a relatively easy means
for visualizing the qualitative evolution of the real frequencies and damping decrements
of the dust-acoustic and ion-acoustic modes, for increasing values of the dust-ion collision
frequency.

Our treatment shows that collisions between ions and dust grains do not change the criteria
for gravitational collapse at any value of their collision frequency, but diminish the growth
rate of unstable self-gravitating plasmas [Jacobs et al. 2002].

127
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10.1 General formalism

The model we investigate is a collisional dusty plasma consisting of electrons, ions and
charged dust grains where only the dust-ion collisions are retained. We consider electro-
static waves propagating along the z-axis with phase velocities much smaller than the
thermal speeds of the electrons. Furthermore, the wave period is assumed to differ con-
siderably from the dust charge fluctuation time, so that we can treat the dust charges as
effectively constant. Because the phase speed of the waves under consideration is negli-
gible compared to the thermal speeds of the electrons, the electrons are treated as being
Boltzmann distributed, consequently the electron density is given by

ne = ne0 exp
(

eφ

kBTe

)
. (10.1)

On the other hand, since the ions are involved in collision processes, the inertia of the ions
is retained, so that our basic equations further include the continuity equations

∂ni

∂t
+

∂

∂z
(nivi) = 0, (10.2)

∂nd

∂t
+

∂

∂z
(ndvd) = 0, (10.3)

and the equations of motion for the ions and dust particles, respectively,

∂vi

∂t
+ vi

∂vi

∂z
+

qi

mi

∂φ

∂z
+

∂ψ

∂z
+

c2
si

ni

∂ni

∂z
+ νid(vi − vd) = 0, (10.4)

∂vd

∂t
+ vd

∂vd

∂z
+

qd

md

∂φ

∂z
+

∂ψ

∂z
+

c2
sd

nd

∂nd

∂z
+ νdi(vd − vi) = 0. (10.5)

The different definitions for the collision frequencies, viz. νdi and νid, are related to each
other through

νdi =
mini0

mdnd0
νid. (10.6)

As usual, the electric (φ) and gravitational (ψ) potentials can be computed from the
Poisson equations

∂2φ

∂z2
=

1
ε0

(nee− niqi − ndqd), (10.7)

∂2ψ

∂z2
= 4πG(mini + mdnd). (10.8)

For the sake of generality, the gravitational Poisson equation (10.8) also includes the ion
mass density, but in general the term mini will only be of secondary importance.
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10.2 Dispersion relation

We investigate linear waves in dusty plasma, which are presumed to be homogeneous in
both space and time, so that the equations (10.1)-(10.8) can be linearized and Fourier
transformed, yielding the following dispersion relation

[
ω

(
ω + iνid

ω2
Ji

ω2
Jd

)
− k2c2

sd + ω2
Jd −Aω2

pd

] [
ω (ω + iνid)− k2c2

si + ω2
Ji −Aω2

pi

]

=
[
Aωpiωpd − ωJiωJd + iωνid

ωJi

ωJd

]2

. (10.9)

For convenience, the abbreviated notation A is introduced, which stands for

A =
(

1 +
1

k2λ2
De

)−1

, (10.10)

and we note that this parameter depends on the wavelength. Starting from the dispersion
relation (10.9), we can easily recover equation (27) of Meuris et al. [1997] but without
streaming, if we leave out the dust-ion collisions in (10.9), neglect the terms that include
the Jeans frequency of the ions (ωJi) and only incorporate cold dust species. The results
of D’Angelo [1998], valid for dusty plasmas with negligible self-gravitational effects, can
also be retrieved through setting k2λ2

De ¿ 1, Zi = 1, qd = −eZd and ω2
Ji = 0 = ω2

Jd in
(10.9), which then becomes

ω4 − k2[λ2
De(ω

2
pi + ω2

pd) + c2
si]ω

2 + k4λ2
Deω

2
pdc

2
si

+iνdiω

{
ω2 − k2

[
c2
si + λ2

Deω
2
pi

(
1− nd0

ni0
Zd

)]}
= 0, (10.11)

and equals equation (21) of D’Angelo [1998], provided one sets there τL = ∞ and α = 0.
In the latter paper, figures of growth rates for different plasma and dust parameters can
be found.

When substituting ω = iΩ in the dispersion relation (10.9), we obtain a quartic equation
with real coefficients viz.

P (Ω, 0) + νidΩ
[
Ω2 − Λ

]
= 0, (10.12)

where P (Ω, 0) = 0 denotes the collisionless dispersion relation, which is a biquadratic
equation in Ω, namely

P (Ω, 0) =
[
Ω2 + Aω2

pd + k2c2
sd − ω2

Jd

] [
Ω2 + Aω2

pi + k2c2
si − ω2

Ji

]

− [Aωpiωpd − ωJiωJd]
2 . (10.13)

The parameter Λ, occurring in (10.12) can be computed as

Λ = ω2
Jd − k2c2

sd

(
1 +

ni0Ti

nd0Td

)
−Aω2

pd

(
1 +

ni0Zi

nd0Zd

)2

, (10.14)
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provided we implement the obvious relation ωJi ¿ ωJd. Further on, the full dispersion
relation (10.12) is noted as P (Ω, νid) = 0.

For dusty plasmas with very heavy dust particles, so that
(

1 +
ni0Zi

nd0Zd

)
ωpd < ωJd (10.15)

is satisfied, Λ is always positive. On the other hand, for lighter dust species that satisfy
(

1 +
ni0Zi

nd0Zd

)
ωpd > ωJd, (10.16)

the sign of Λ depends on the wavenumber. For negatively charged dust grains, the following
equalities are valid, viz. ni0Zi = ne0 + nd0Zd > nd0Zd and ni0Ti À nd0Td, which leads to

Λ ' ω2
Jd − k2c2

si

(
ni0mi

nd0md

)
−Aω2

pd

(
ni0Zi

nd0Zd

)2

. (10.17)

We now compare the two negative terms of the expression (10.17),

k2c2
si

(
ni0mi

nd0md

)

Aω2
pd

(
ni0Zi

nd0Zd

)2 =
λ2

Di

λ2
De

(1 + k2λ2
De) ¿ 1, (10.18)

and deduce that for the long wavelength perturbations we are investigating, the second
term in (10.17) and also in (10.14) can be neglected. For dusty plasmas that obey the
inequality (10.16), we introduce the wavenumber kΛ as

k2
Λ =

ω2
Jd[(

1 +
ni0Zi

nd0Zd

)2

ω2
pd − ω2

Jd

]
λ2

De

, (10.19)

and we see that Λ is negative for k > kΛ and positive for k < kΛ. As usual we assume
long wavelengths k2λ2

D ' k2λ2
Di ¿ 1, hence it is clear that kΛ < ωJd/cda. Further on, it

will become clear that the dust-ion collisions exert a different influence on wavenumber
regions separated by kΛ.

10.2.1 Collisionless dispersion relation

Before tackling the full dispersion relation, the dispersion relation (10.12) is discussed in
the collisionless limit. First, we compute the discriminant D∗ of this biquadratic equation,

D∗ = [A(ω2
pi − ω2

pd) + k2(c2
si − c2

sd)− (ω2
Ji − ω2

Jd)]
2

+4(Aωpiωpd − ωJiωJd)2 > 0, (10.20)
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which implies that both roots (in Ω2) of equation (10.13) are real. These roots are denoted
as ria and rda, since they actually represent the ion-acoustic and dust-acoustic mode,
respectively, as will become clear momentarily. Indeed, the expressions

ria,da = −1
2

[
A(ω2

pi + ω2
pd) + k2(c2

si + c2
sd)− (ω2

Ji + ω2
Jd)±

√
D∗

]
, (10.21)

with ria corresponding to the +sign and rda to the −sign, make clear that ria À rda, hence
the roots of P (ω, 0) = 0 can be approximated as

ria ' −Aω2
pi − k2c2

si (10.22)

rda ' ω2
Jd − k2(c2

da + c2
sd), (10.23)

proving that ria and rda represent the ion-acoustic and the dust-acoustic branch of the
dispersion relation, respectively.

Whereas ria is always negative, the sign of rda switches at the familiar critical wavenumber

k2
cr =

ω2
Jd

c2
da + c2

sd

' ω2
Jd

c2
da

. (10.24)

In accordance with the earlier results, we conclude that wavenumbers k > kcr yield a
stable solution

Ω2 = −ω2 = rda 6 0, (10.25)

and vice versa the very small wavenumbers k < kcr imply a gravitational instability,
because −ω2 = rda > 0.

We now pay extra attention to a dusty plasma with negligible self-gravitational interac-
tions, and in that special case we obtain

ria · rda = k2[k2c2
sic

2
sd + A(ω2

pic
2
sd + ω2

pdc
2
si)] > 0, (10.26)

meaning that in this case rda 6 0 holds for all wavelengths. An evident result, because
in the absence of both collisions and self-gravitation, there is no mechanism included that
can be responsible for instabilities.

All the previous allows for a more compact and practical form for the general dispersion
relation (10.12), namely

(Ω2 − ria)(Ω2 − rda) + νidΩ(Ω2 − Λ) = 0, (10.27)

and we note that rda − Λ is always positive because of the following relation,

rda − Λ >
1
2
[
√

D∗ − ω2
Jd −A(ω2

pi − ω2
pd)− k2(c2

si − c2
sd)] > 0. (10.28)
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10.2.2 Small and large collision frequencies

Before tackling the general dispersion relation, it is instructive to determine the solutions
of the dispersion law (10.27) in the limits of very small and very large collision frequencies.
For small collision frequencies νid, we can easily compute the corrections for the collisionless
solutions Ω ' ria and Ω ' rda. Calculated up to first order in νid, the solution for Ω ' ria

becomes

Ω =
√

ria − νid

2
(ria − Λ)
(ria − rda)

' √
ria − νid

2
, (10.29)

because |rda|, |Λ| ¿ |ria|. Performing a similar first order approximation for Ω ' √
rda

yields

Ω =
√

rda − νid

2
(rda − Λ)
(rda − ria)

' √
rda +

νid

2
(rda − Λ)

ria
(10.30)

and we note that the second term on the right hand side of both expression (10.29) and
expression (10.30) is always real, the latter of which because of (10.28).
On the other hand, for very large collision frequencies, we can formally calculate the
corrections for Ω ' 0 and Ω ' √

Λ. For negative Λ, the roots of the equation P (Ω,±∞) = 0
are Ω = 0,±i

√
|Λ| and we start with the determination of the first terms of the series

expansion for Ω ' i
√
|Λ| in the small parameter ν−1

id

Ω = i
√
|Λ|+ (ria + |Λ|)(rda + |Λ|)

2νid|Λ|
' i

√
|Λ|+ ria(rda + |Λ|)

2νid|Λ| . (10.31)

The expressions for positive Λ are obviously very similar and not given here. Finally, for
Ω ' 0 we obtain

Ω ' riarda

νidΛ
. (10.32)

The equations (10.31) and (10.32) are mentioned here because the semi-analytical method,
that is used in the next section, requires the mathematical solution for infinite collision
frequencies. We emphasize that in these equations, the collision frequency is treated as
a purely mathematical parameter. After all, the mathematical solutions for very large
collision frequencies may not be physically meaningful, as in that situation our basic
equations are not valid anymore. However, since the analysis is not compromised by
extending the use of the parameter νid beyond its physical relevance, there is no objection
for calculating the solutions for all values of the collision frequency, provided the results
for very large νid are interpreted carefully and possibly discarded afterwards.
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10.3 Rootlocus method applied on stability analysis

Equation (10.27) is a full quartic equation in Ω and can be written in the form

D(Ω) + νidN(Ω) = 0, (10.33)

where N(Ω) and D(Ω) are polynomials with real coefficients in the complex variable Ω
and are clearly independent of the parameter νid. These are the exact requirements for
being able to draw a so called rootlocus plot [Willems 1970], which shows how the roots
of the dispersion relation (10.27) move in the complex plane as the collision frequency νid

increases.
In rootlocus theory, one mostly uses the form

1 + νid
N(Ω)
D(Ω)

= 0, (10.34)

and accordingly labels the roots of the polynomial N(Ω) as the zeros of the equation,
whereas the roots of the denominator D(Ω) are called the poles. Because here νid is a
positive parameter, the loci of the solutions of the dispersion relation (10.27) will originate
in the poles and terminate in the zeros if one increases νid, starting from zero towards
infinity. In effect, the strengths of this method are primarily revealed in a numerical
analysis, but this approach can be highly advantageous in analytical investigations too.
For relatively simple equations like (10.27), one can easily predict the general form of
the rootlocus plot for fixed values of ria, rda and Λ, but even without actually plotting
the rootlocus, one can already derive some of its properties by just studying the rational
function N(Ω)/D(Ω).
Before continuing, we first mention some of the trivial solutions of the dispersion relation
(10.27), namely (Ω, νid) = (0,∞), (±i

√
|ria|, 0), (±√rda, 0) and (±√Λ,∞). Note that

some of these trivial roots in Ω can be purely imaginary but there are no other purely
imaginary roots for finite, nonzero values of the collision frequency. Indeed, a purely
imaginary solution Ω = ix with x ∈ R0, would require that

(x2 + ria)(x2 + rda)− ixνid(x2 + Λ) = 0. (10.35)

Identifying the real and imaginary parts of this equation results in the following system
of equations {

(x2 + ria)(x2 + rda) = 0,
xνid(x2 + Λ) = 0,

and considering ria 6= 0 and rda 6= Λ, we find that (10.35) can never be satisfied for x ∈ R0

and a finite νid 6= 0. Because |ria| À |rda|, we can also see that the frequency

Ω = −√−ria, (10.36)

with the following value for the collision frequency

νid = 2
ria + rda

ria + Λ
√−ria ' 2

√−ria, (10.37)

is a real and negative solution of the dispersion relation, moreover it is a double root.
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10.3.1 Properties of the rootlocus plots

• Since the coefficients of equation (10.27) are real, the conjugate of every root is a
solution too. This explains one of the general properties of rootlocus plots, namely
that they are symmetrical with respect to the real axis.

• Because ω = iΩ, stable solutions require Ω to have a negative real part and therefore
all roots located in the right half of the complex plane can be recognized as unstable
solutions.

• For the dispersion relation (10.27), the rootlocus plot will cross the imaginary axis
only in poles or zeros because for νid 6= 0 and νid 6= ∞ there are no purely imaginary
roots, as proven before. This will be an important remark for the determination of
the stability of the system.

• We can easily deduct which parts of the real axis correspond to sets of solutions
(Ω, νid) of equation (10.27) and are thus part of the rootlocus plot. To clarify this,
we write the equation (10.33) in the form

1 + νid

∏q
i=1(Ω− zi)∏p
i=1(Ω− pi)

= 0, (10.38)

where pi stand for the poles, zi for the zeros and p and q for the number of poles
and zeros, respectively. Suppose a certain Ω is real and we rewrite (10.38) as

∏p
i=1(Ω− pi)∏q
i=1(Ω− zi)

= −νid < 0. (10.39)

Because the collision frequency is real and positive, we can calculate the complex
phase angles of both sides of the latter equation, which yields

p∑

i=1

arg(Ω− pi)−
q∑

i=1

arg(Ω− zi) = (2l + 1)π. (10.40)

From this expression, we now go over to a geometric interpretation, as illustrated in
Fig. 10.1 and we recall that Ω is chosen to be real. As can be seen in figure 10.1,
an expression arg(Ω − x) corresponds to a phase angle between the real axis and
the line segment that connects x and Ω, where the line segment has a direction that
points towards Ω. Further on, we will reason on the contributions of the poles only,
the interpretation for the zeros is exactly the same. In Fig 10.1 and all the following
plots of this chapter, the crosses will correspond to the poles and the circles to the
zeros.

First, we note that complex conjugate roots do not contribute in (10.40). Indeed, for
the complex conjugate poles S and S in Fig. 10.1, we have arg(Ω−S)+arg(Ω−S) =
α + β = 0 and conclude that the phase angles of complex conjugate poles cancel
each other out. Real roots located to the left of Ω (represented by a pole I in the



10.3 Rootlocus method applied on stability analysis 135

figure) do not contribute either, because the phase angles η = arg(Ω − I) will be
zero. Finally, we deduce that real roots located to the right of Ω correspond to a
phase angle π, as illustrated for the pole R with γ = arg(Ω−R) = π in the figure.

It follows from (10.40) that an interval on the real axis belongs entirely to a rootlocus
plot if the sum of the number of poles, located to the right of this interval, and the
number of zeros, each also located to the right of this interval, is odd.

_

Ω

Im

η
Re

S

I R

γ

β

S

α

Fig 10.1: Geometric interpretation of phase angles

• The asymptotes for the rootlocus plot, being the straight lines that coincide with
the plot for νid →∞ can also be calculated quite easily. It can be proven [Willems
1970] that there are n−m asymptotes. These asymptotes run through the center σ
(located on the real axis)

σ = −
∑p

i=1 pi −
∑q

i=1 zi

p− q
, (10.41)

and have directions

θ =
(2l + 1)π

p− q
, (10.42)

where θ denotes the angle of the asymptotes with the horizontal axis [Willems 1970].
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Equation (10.27) has four poles and three zeros, hence there will be only one asymp-
tote, being the negative real axis.

• Furthermore, expressions for the starting angles in the poles (θs) and the ending
angles in the zeros (θe) can be determined [Willems 1970], namely

θs(pk) =
1
µ

[(2l + 1)π +
q∑

j=1

(zj − pk)−
p∑

i = 1
i 6= k

(pi − pk)], (10.43)

θe(zk) =
1
µ

[(2l + 1)π +
p∑

i=1

(pi − zk)−
q∑

j = 1
j 6= k

(zj − zk)], (10.44)

where µ stands for the multiplicity of the respective pole or zero.

• There is another class of important points needed to determine a rootlocus unam-
biguously, the breakaway points [Willems 1970]. These so called breakaway points
are defined as points on the real axis where two or more branches of the rootlo-
cus depart from or arrive at. We wish to note here that the determination of the
breakaway points will prove to be redundant for obtaining the instability criterion.
However, for determining qualitatively the evolution of the roots for increasing νid,
the following considerations are needed.

We have seen already that for the dispersion relation (10.27) there always is at
least one breakaway point, namely Ω = −

√
|ria|. The other breakaway points bi

of multiplicity µ (µ branches depart and µ branches arrive) are formally calculated
[Willems 1970] as solutions of

[
dj

dΩj

N(Ω)
D(Ω)

]

bi

= 0 ∀j = 1 . . . µ− 1, (10.45)

that of course still obey
D(Ω) + νidN(Ω) = 0. (10.46)

Hence, breakaway points bi of the dispersion relation (10.27) are solutions of the
following cubic polynomial equation in Ω2,

Ω6 +(ria + rda − 3Λ)Ω4 + [Λ(ria + rda)− 3riarda]Ω2 + riardaΛ
' Ω6 + riaΩ4 + ria(Λ− 3rda)Ω2 + riardaΛ
= 0, (10.47)

with corresponding collision frequencies

νid = −b4
i − b2

i (ria + rda) + riarda

bi(b2
i − Λ)

. (10.48)
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Table 10.1: Classification for different wavenumber regions

k . . . kΛ . . . kcr . . .
Λ + 0 − − −
rda + + + 0 −
case C B A

We recover the already familiar negative breakaway point

(b1, νid) ' (−√−ria, 2
√−ria),

the approximation of which was established using the obvious inequalities rda, Λ ¿
ria. This is the only breakaway point for case A if |Λ| < 9|rda|. Other possible
breakaway points are b2 and b3, given through

Ω = b2,3 = −
√

1
2

[
3rda − Λ±

√
(Λ− rda)(Λ− 9rda)

]
,

with corresponding real and positive collision frequencies

νid ' −ria

(rda − b2
2,3)

b2,3(b2
2,3 − Λ)

.

For cases A (if 9|rda| < |Λ|), B and C is b2 indeed a second breakaway point.
Additionally, for the cases A (9|rda| < |Λ|) and C, b3 represents a third breakaway
point.

10.3.2 Classification

We can make a classification for different dusty plasma configurations, depending on the
signs of Λ and rda. For every configuration, the poles±i

√
|ria| are located on the imaginary

axis and the origin is a zero. Furthermore, we note that a situation with positive Λ
and negative rda is impossible within the long wavelength assumption kλD ¿ 1. After
all, negative rda requires k > kcr, where kcr is the critical wavenumber obtained in the
collisionless limit, and thus ωJd/ωpd < kλD ¿ 1. Therefore a positive Λ demands k < kΛ,
but this is impossible since k > kcr > kΛ.

For dusty plasmas where the electromagnetic interactions are dominant i.e.
(

1 +
ni0Zi

nd0Zd

)
ωpd > ωJd (10.49)

there are three regions in wavenumber space, separated by kΛ and kcr, as displayed in
Table 10.1. We repeat that kΛ < kcr, as proven earlier.
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On the other hand, for dusty plasmas where self-gravitational interactions dominate i.e.
(

1 +
ni0Zi

nd0Zd

)
ωpd < ωJd, (10.50)

the analysis is independent of the wavenumber and this configuration always falls in cat-
egory C.

In the following section we will qualitatively describe how the magnitude of the dust-ion
collision frequency affects the real frequencies and damping decrements of the Jeans and
ion-acoustic modes, by plotting the loci of the roots of (10.27) in the possible configura-
tions.

10.3.3 Λ <0, rda < 0

This situation corresponds to dusty plasmas for which self-gravitational interactions do
not prevail, more specifically (1 + ni0Zi/nd0Zd) ωpd > ωJd and for wavenumbers exceeding
the critical wavenumber of the collisionless dispersion relation, namely k > kcr ' ωJd/cda.
The second condition is stronger than the first condition because if ωJd/ωpd < kλD ¿ 1,
the first condition is automatically satisfied. We can conclude that this category is the
category of dusty plasmas with negligible self-gravitational interactions, i.e. dusty plasmas
for which ωJd ¿ ωpd holds.

Now, we will derive in a systematical way some of the properties of the rootlocus plots
for dusty plasmas in this category, a process which hardly requires calculations. For this
category of dusty plasmas, all poles and zeros of equation (10.27) are located on the
imaginary axis and alternate because here |rda| < |Λ| ¿ |ria|, as can be seen in equation
(10.28). Since for any point on the negative real axis, the sum of the number of poles
and zeros located to the left of the negative imaginary axis is odd (p + q = 7), the entire
imaginary axis is part of the rootlocus plot, as illustrated in Fig 10.2. We continue with
the determination of the starting and ending angles and we recall that rootlocus plots
are symmetrical with respect to the real axis, so that we only have to compute these
angles in the upper half of the complex plane. The starting angles θs in the poles and the
ending angles θe in the zeros, can be easily obtained from the expressions (10.43)-(10.44)
as follows. We specify explicitly the origin of each term by means of the underbraces in
order to clarify the procedure

θs(ria) = π +
3π

2︸︷︷︸
0,Λ,Λ

− 3π

2︸︷︷︸
ria,rda,rda

= π,

θs(rda) = π +
π

2︸︷︷︸
0

+
π

2
− π

2︸ ︷︷ ︸
Λ,Λ

− π

2︸︷︷︸
rda

−
(π

2
− π

2

)

︸ ︷︷ ︸
ria,ria

= π,

θe(Λ) = π + π︸︷︷︸
rda,rda

+
π

2
− π

2︸ ︷︷ ︸
ria,ria

− π︸︷︷︸
0,Λ

= π.
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Hence, the rootlocus plot leaves the imaginary axis from the poles ria, rda and their
complex conjugates in a straight angle and directed towards the left half of the complex
plane. Equivalently, the rootlocus plot arrives in the zeros, perpendicular to the imaginary
axis and coming from the left half of the complex plane. These starting/ending angles
sketch the situation for νid ' 0 and νid → ∞, as depicted in Fig. 10.2 below. We note
that the former considerations for the angles can be checked independently, starting from
the equations (10.29)-(10.32).

|1/2|Λ

|1/2
da|r

|1/2
ia|r

ω= -Re(    )ΩIm(    )

ω=Im(    )ΩRe(    )

Fig 10.2: Asymptotical behaviour for νid ' 0 and νid →∞ in case of Λ < 0, rda < 0

As stated earlier, the plot cannot cross the vertical axis except in the poles or zeros,
therefore this configuration is always stable, since the rootlocus plot is entirely located in
the left half of the complex plane. This confirms the results of D’Angelo [1998], albeit in
a more general way.

We emphasize that statements about the stability of the system have been made with a
minimal use of rootlocus theory and without the need of a plot. It is only for a qualitative
determination of the real frequencies and damping decrements that a rootlocus plot has
to be made. Qualitative and quantitative results can be found easily and rapidly for
numerical examples, using existing routines, but analytical expressions can also be dealt
with in a qualitative way, as is shown further on.

For being able to make an accurate rootlocus plot, one needs to determine the afore-
mentioned breakaway points. These breakaway points are easily determined from the
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expressions (10.47) and (10.48), for given values of ria, rda and Λ, i.e. for given values of
the dusty plasma parameters and for a fixed wavenumber. However, even without specify-
ing the value of ria, rda and Λ, some general statements concerning the breakaway points
can be made.

For configurations with |rda| < |Λ| < 9|rda|, a general plot is not provided since the form
of the rootlocus plot can have plural possibilities, depending on the precise magnitude
of the parameters. For determining unambiguously the number of breakaway points and
thus the form of the plot, one would need an additional specification of the magnitudes of
ria, rda and Λ.

On the other hand, for configurations 9|rda| < |Λ|, there are three breakaway points and
the corresponding rootlocus plot is shown in Figure 10.3, wherein only

√
rda,

√
|Λ| and√

ria are labeled, the other poles and zeros are of course symmetrically located with respect
to the origin. In this figure and in the following rootlocus plots, the arrows are directed
towards larger collision frequencies.

ia

=Im(    )

|da

1/2|

1/2

Λ|

|

|r

1/2

ω

|r

Im(    )Ω = -Re(    )

ωRe(    )Ω

Fig 10.3: Rootlocus plot for wavenumbers k > ωJd/cda.

In Figure 10.3, the horizontal axis corresponds to imaginary values of the frequency ω
and the vertical axis to real values of ω and it follows that dust-acoustic and ion-acoustic
modes initially reduce in real frequency and become damped, when “turning on” the
collisional frequency. As the collision frequency increases, the real frequency continues to
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decrease and the modes become more strongly attenuated, until they become damped zero-
frequency modes. Subsequently, the ion-acoustic and dust-acoustic mode remain of zero
frequency and follow a horizontal path in Figure 10.3. It shows that one of the ion-acoustic
modes becomes completely damped, while one of the dust-acoustic modes also vanishes
as it becomes zero. For even larger collision frequencies, the remaining dust-acoustic and
ion-acoustic mode begin to couple and leave the real axis again. We repeat that for the
very high collision frequencies, the results are not physically meaningful anymore.
If one plots discrete points, corresponding to fixed collision frequencies, one can see that
initially (for collision frequencies that are not too large) the modes do not deviate much
from their respective collisionless limits.

10.3.4 Λ <0, rda > 0

This situation also corresponds to dusty plasmas for which self-gravitation is not having
the upper hand, or equivalently

(
1 +

ni0Zi

nd0Zd

)
ωpd > ωJd, (10.51)

but now corresponds to the wavenumber region

kΛ < k < kcr. (10.52)

In this configuration there are two poles (±√rda), located on the real (=horizontal) axis,
whereas the remaining two poles (±i

√
|ria|) are located on the imaginary axis. All the

zeros, namely 0, and ±i
√
|Λ| are also located on the imaginary axis. Applying the familiar

rule for finding the real solutions (in Ω), we find that the intervals [−∞,−√rda] and
[0,
√

rda] of the real axis are entirely part of the rootlocus plot. Obviously, this implies
that this configuration Λ < 0, rda > 0 is always unstable.
The initial and final situations are depicted in Fig 10.4 and are computed as follows. For
obtaining θs(ria), we first calculate explicitly the contribution of the complex conjugate
roots rda and rda, namely

arg(rda − ria) + arg(rda − ria) = π, (10.53)

which can be seen easily in figure 10.4. Hence the starting angle θs(ria) for ria and the
ending angle for Λ become, respectively

θs(ria) = π +
3π

2︸︷︷︸
0,Λ,Λ

− π︸︷︷︸
rda,rda

− π

2︸︷︷︸
ria

= π,

θe(Λ) = π + π︸︷︷︸
rda,rda

− π︸︷︷︸
0,Λ

= π.

We conclude that just like in case A, the loci leave the poles ±i
√
|ria| in the left half of

the complex plane and perpendicularly to the imaginary axis. Furthermore the loci of
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the solutions of (10.27) also arrive perpendicularly with the imaginary axis in the zeros
±i

√
|Λ| and this in the left half of the complex plane.

Re(   )Ω

da
1/2

1/2
| |

r

1/2
|

Λ

|ria

ΩIm(   )

Fig 10.4: Asymptotical behaviour in case of Λ < 0 and rda > 0

Since the branches of the rootlocus plot will not cross the vertical axis, the locus of the
unstable Jeans mode, represented by rda for νid = 0, is already established. As the collision
frequency νid increases, the unstable solution moves over the real axis towards the origin.
Hence, the instability criterion for self-gravitational, collisionless dusty plasmas holds, but
the growth rate of the Jeans instability will diminish as the dust-ion collision frequency
increases.

The rootlocus plot of dusty plasmas in this category contains two breakaway points and
has a qualitative form as shown in Figure 10.5. This figure shows that the damping
decrements of the stable Jeans mode, represented by rda for νid = 0, and the ion-acoustic
modes (related to ria and ria) increase for small collision frequencies, whereas their real
frequency diminishes. Here too, the ion-acoustic branches evolve towards zero-frequency
modes for larger collision frequencies. Moreover, there is also a bifurcation on the real
axis, as the dust-ion collision frequency νid increases, one of the ion-acoustic modes will
become completely damped whereas the other couples with the stable dust-acoustic mode.
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|
1/2

|ria

ΩIm(   )

Ω
1/2
da

Re(   )

r

||
1/2

Λ

Fig 10.5: Rootlocus plot for dusty plasmas with ωpd > ωJd and
corresponding to wavenumbers kΛ < k < kcr.

10.3.5 Λ > 0, rda > 0

There are two different classes of dusty plasmas residing in this final category. On the one
hand, dusty plasmas with relatively light dust species that obey

(
1 +

ni0Zi

nd0Zd

)
ωpd > ωJd, (10.54)

and in a situation
k < kΛ. (10.55)

On the other hand dusty plasmas where self-gravitation predominates i.e.
(

1 +
ni0Zi

nd0Zd

)
ωpd < ωJd. (10.56)

Indeed, for long wavelengths kλD ¿ 1 the inequality k < kcr = ωJd/(ωpdλD) will be always
satisfied for this case. Note that the quantity kΛ is meaningless in the latter situation as
Λ is positive over the entire wavenumber range.
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Both classes have qualitatively similar plots. The zeros are located on the real axis, as
are the poles ±√rda. The poles are always larger (in absolute value) than the zeros since
equation (10.28) demonstrates Λ < |ria|, rda. The real intervals [−∞,−√rda], [−√Λ, 0]
and [

√
Λ,
√

rda] belong to the rootlocus plot, rendering also this configuration unstable.
The asymptotical behaviour is shown in Fig. 10.6, and for this we only need to compute
θs(ria) explicitly,

θs(ria) = π +
π

2︸︷︷︸
0

+ π︸︷︷︸
Λ,Λ

− π︸︷︷︸
rda,rda

− π

2︸︷︷︸
ria

= π, (10.57)

|
1/2

ia|r

ΩIm(   )

ΩRe(   )

1/2
da

1/2Λ r

Fig 10.6: Asymptotical behaviour in case of Λ > 0 and rda > 0

We have already seen that in case C, there will be three breakaway points, which yields a
typical rootlocus plot as given in Fig. 10.7. The growth rate of the unstable Jeans mode
will decrease until it reaches the pole

√
Λ, in this class of dusty plasmas the unstable mode

will not vanish, even for infinitely large collision frequencies. Further, we notice that one
of the ion-acoustic modes will also couple with the stable dust-acoustic mode while the
other is wiped out. In effect, the only difference with the previous case (case B) is the
evolution of the unstable root evolution for very large collision frequencies, the latter of
which are not physically meaningful anyway.
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ia|r

1/2 1/2Λ r
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da

Im(   )

|
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Fig 10.7: Rootlocus plot for dusty plasmas with Λ > 0 and rda > 0

10.4 Summary

The stability of longitudinal disturbances in self-gravitating dusty plasmas has been inves-
tigated previously within a collisionless model. In this chapter, we studied the modifica-
tions of the Jeans instability criterion and low frequency modes in self-gravitating plasmas
due to the inclusion of dust-ion collisions. Moreover, we illustrated qualitatively how the
real frequency and damping decrement of the ion-acoustic and Jeans modes change over
the spectrum of possible collision frequencies, using the semi-analytical rootlocus method.
This method, often used in control engineering, proves to be an enlightening tool for
the stability analysis of our dusty plasma model as it can produce physically meaningful
graphs.

The most important conclusion is that dust-ion collisions reduce the growth rate of the
unstable Jeans dust mode, but can never overturn the gravitational instability. In other
words, the Jeans instability criterion remains unchanged when including dust-ion collisions
in a dusty plasma that contains exclusively charged constituents, although a possible
instability will develop more slowly.

Furthermore, the ion-acoustic modes are also damped and can become damped zero-
frequency modes when the collision frequency exceeds a certain threshold. As the inclusion
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of self-gravitational effects hardly modifies the ion-acoustic modes, the results of Ivlev et al.
[1999] are partly reproduced and in some way generalized for the ion-acoustic branch.



Chapter 11

Conclusions

In this thesis, we focused on low-frequency waves and gravitational instabilities in large,
astrophysical dusty plasmas. The most relevant low-frequency modes in dusty plasmas
were reviewed in the fourth chapter and delineated clearly with respect to the different
frequency regimes.
For the low-frequency perturbations under consideration in this thesis, the heavy dust
grains are set in motion due to the electron and/or ion pressure. Because of the consid-
erable mass of the dust grains, however the dust dynamics are strongly influenced by the
self-gravitational interactions between the dust particles. In order to provide a sense of
proportion, the fifth chapter started with a comparison of the magnitudes of the electro-
static and self-gravitational forces, acting on a single dust grain. Next, the concept of
the infamous “Jeans swindle” was introduced and discussed in a one-dimensional model.
The Jeans swindle provides an easy means of computing the conditions for a gravitational
instability in a large, astrophysical medium. However, using the Jeans swindle in the
derivation of the instability criterion, without giving a proper justification of the assessed
homogeneity lengthscales, would somehow require a leap of faith and thus produce un-
reliable results. In this chapter, we analyzed the gravitational stability of a simplified,
one-dimensional model and traced the weaknesses of the Jeans swindle. A corollary of
this analysis is the proportionality of the Jeans length, obtained from the Jeans instability
criterion, and the lengthscales over which the medium can be considered uniform. Because
both quantities are of the same order of magnitude, deriving the “classic” instability cri-
terion i.e. using the Jeans swindle, always provides valuable results. Indeed, even if the
inspection a posteriori calls for overruling the Jeans swindle, the obtained critical Jeans
length provides a good estimate of the inhomogeneity lengthscales.
In a wave description, the combination of Coulomb and gravitational forces acting on the
dust particles results in the coupling of the different wave modes. This wave coupling
was carefully explored for electrostatic waves in the sixth chapter. The impact of self-
gravitation on the wave modes is interlaced with the distribution of dust sizes (masses), and
the influence of a discrete dust distribution is explored. If the dust grains are exclusively
charged, their presence enhances the gravitational stability of the plasma considerably.
However, if neutral grains are also present, the impact on the critical Jeans lengths is
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sweeping and the stabilizing role of the charged grains comes to nought. Provided neutrals
are absent, the obtained critical Jeans lengths are in general of the form ωJd/V , with ωJd

the Jeans frequency and with V some sort of average of the dust-acoustic velocities of
the involved dust species. Finally, the streaming effects between dust species were also
included, but in a relatively simple configuration, namely that of two oppositely streaming
dust beams with equal parameters. The streaming between species can induce Buneman
instabilities in the plasma. It has been investigated for which wavenumber regions and
streaming velocities a Jeans and/or Buneman instability occurs.

Subsequently, the influence of self-gravitation on low-frequency electromagnetic modes
was studied in chapter seven. For perpendicular propagation, the instability criterion is
of the same form as for the electrostatic modes, but now the critical Jeans lengths are
of the form ωJd/Vms, with Vms the magnetosonic velocity. It is found that the inclusion
of a dust size distribution hardly changes the critical lengthscales for the perpendicular
modes. Therefore, future investigations can be condensed by simplifying the model to a
plasma with a single dust species with average properties because such a simplifications will
hardly affect the accuracy. The study of the obliquely propagating modes starts within a
model that is often referred to as the “classic” dusty plasma, namely a monodisperse model
wherein the electrons and ions are assumed to be quasi-inertialess. For more general dusty
plasmas, the dispersion law for obliquely propagating modes is of such complexity that an
analytical approach would only yield unmanageably long expressions. Instead, we aimed
specifically at the critical Jeans lengths and so curtailed the computations tremendously.
Rather surprising, the outcome is that the critical Jeans lengths are exactly the same
as for parallel propagation, except close to or at perpendicular propagation. Hence, the
conditions for gravitational instability in dusty plasmas with isotropic pressures can be
characterized by two lengthscales only. If neutrals are present, the conclusions already
obtained in the study of the electrostatic modes holds. In this case, the critical lengthscales
decrease to those obtained in neutral dust clouds and are typically of the form ωJd/csd,
with csd a dust thermal speed.

For the sake of simplicity, a hydrodynamic description was used in all the previously
discussed chapters. In the chapters 8 and 9 however, we refined the picture by reverting
to a more general kinetic model. We deduced that within a kinetic model, the conditions
for gravitational instability and the real frequencies of the investigated low-frequency waves
are practically the same as in a fluid model. On the other hand, the growth rates are quite
different in both models. Especially for wavenumbers, slightly larger than the critical
wavenumber, the damping rates of the low-frequency waves can differ considerably in both
descriptions, depending on the precise parameters of the self-gravitating dusty plasma.
This is due to the “Landau damping”, a collisionless damping mechanism, the physics of
which is ignored completely in a fluid approach. We concluded that in self-gravitating
plasmas, a single parameter determines whether the dust-acoustic wave can be excited for
all wavenumbers or only for sufficiently large wavelengths.

The monodisperse kinetic model of chapter 8 was extended in chapter 9 to a kinetic
model that comprises a continuous dust size distribution. For simplicity, the continuous
size distribution was modelled as a decreasing power law, which is a good approximation
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for astrophysical dust clouds. It was found that the precise value of the exponent of
the power law will determine whether the smaller but numerous dust particles dominate
the self-gravitational interactions or if this dominant role is rather played by the larger
particles, which are less abundant. Furthermore, the influence of the shape of the power
law on the Landau damping was investigated.
In the last chapter, we examined the influence of particle collisions on low-frequency modes
in self-gravitating dusty plasmas which are void of neutrals. Because neutrals are assumed
to be absent, the dust-ion collisions represent the major collision mechanism. The incor-
poration of dust-ion collisions does not alter the criterion for gravitational instability.
Nevertheless, the dust-ion collisions perform some sort of stabilizing role since they de-
crease the growth rate of occurring Jeans instabilities. Furthermore, the influence of the
magnitude of the dust-ion collision frequency on the real frequencies and damping decre-
ments of the dust-acoustic and ion-acoustic mode was visualized in a qualitative way. For
this, the rootlocus method has been used. This method provides a swift and easy means
for getting a sense of proportion for the influence of the dust-ion collision frequency on
the dust-acoustic and ion-acoustic modes.
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Appendix A

Theorems of Sturm and
Sonin-Polya

A.1 Theorems of Sturm

Sturm’s separation theorem

If y1(x) and y2(x) are linearly independent solutions of the homogeneous, linear, second
order differential equation

a0(x)
d2y(x)
dx2

+ a1(x)
dy(x)
dx

+ a2(x)y(x) = 0, (A.1)

then in each interval I wherein a0(x) does not become zero there will be a root of y2(x)
between every two successive roots of y1(x) and vice versa. In other words, the roots of
y1(x) and y2(x) will alternate.
Suppose that a and b are two successive roots of y1(x), so y1(a) = 0 = y1(b).

ba

2
y (x)

y (x)
1

x

Fig A.1: Sturm’s separation theorem
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Since y1(x) and y2(x) are linearly independent in I, their Wronskian W (x) differs every-
where from zero in I and thus has a fixed sign in I. We obtain the following expressions
for the Wronskian

W (x) = y1(x)
dy2(x)

dx
− y2(x)

dy1(x)
dx

, (A.2)

W (a) = −y2(a)
dy1(x)

dx

∣∣∣∣
x=a

, (A.3)

W (b) = −y2(b)
dy1(x)

dx

∣∣∣∣
x=b

, (A.4)

and since a and b are successive roots

sign
[

dy1(x)
dx

∣∣∣∣
x=a

]
= −sign

[
dy1(x)

dx

∣∣∣∣
x=b

]
. (A.5)

Since W (a) and W (b) have the same sign (W (x) is nonzero and continuous in I), y2(a)
and y2(b) must have opposite signs, hence y2(x) must have at least one root in [a, b]. By
exchanging the roles of y1(x) and y2(x), it can be proven that between two successive roots
of y2(x), there is at least one root of y1(x).

Sturm’s comparison theorem

Suppose y1(x) is a non-trivial solution of

d2y1(x)
dx2

+ p1(x)y1(x) = 0 (A.6)

and y2(x) a non-trivial solution of

d2y2(x)
dx2

+ p2(x)y2(x) = 0 (A.7)

in an interval I and suppose that p1(x) > p2(x), ∀x ∈ I. Then there is at least one root
of y1(x) between every two roots of y2(x) in I.

Suppose x = a and x = b are successive roots of y2(x) and that y1(x) has no roots in [a, b].
We assume that in [a, b]

y1(x) > 0,

y2(x) > 0. (A.8)

If this is not satisfied for y1(x) or y2(x) we change the sign of the concerned solution (this
does not affect the location of the roots and is allowed for linear differential equations).
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b

2

a

y (x)

1y (x)

x

Fig A.2: Sturm’s comparison theorem

Now

W (a) = y1(a)
dy2(x)

dx

∣∣∣∣
x=a

,

W (b) = y1(b)
dy2(x)

dx

∣∣∣∣
x=b

, (A.9)

and because
dy2(x)

dx

∣∣∣∣
x=a

> 0 and
dy2(x)

dx

∣∣∣∣
x=b

< 0 (A.10)

we conclude
W (a) > 0 and W (b) < 0, (A.11)

Finally, we have in [a, b]

dW (x)
dx

= y1(x)
d2y2(x)

dx2
− y2(x)

d2y1(x)
dx2

= y1(x)y2(x)[p1(x)− p2(x)] > 0, (A.12)

meaning that W (x) is an increasing function and contradicting (A.11). Consequently
y1(x) must have at least one root in [a, b].
This implies that every solution of

d2y(x)
dx2

+ p(x)y(x) = 0, (A.13)

has maximum one root in every interval wherein p(x) < 0. Indeed, suppose the solution
has two roots, namely a and b, then every solution of

d2y(x)
dx2

= 0, (A.14)
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would have at least one root between a and b. Well then, y = cst 6= 0 does not have any
root.

A.2 Theorem of Sonin-Polya

Suppose a second order differential equation is written in its self-adjoint form

d

dx

[
p(x)

dy

dx

]
+ q(x)y = 0. (A.15)

If p(x) > 0 and q(x) 6= 0, with p(x), q(x) continuously differentiable in an interval I and
p(x) · q(x) is non-increasing (non-decreasing) in I, then the absolute values of the relative
extrema of every non-trivial solution of (A.15) form a non-decreasing (non-increasing) row
if x increases.
Indeed, suppose y(x) is a non-trivial solution of equation (A.15) and we define a function

F (x) = [y(x)]2 +
1

p(x)q(x)

[
p(x)

dy(x)
dx

]2

, (A.16)

then differentiation of F (x) leads to

F ′(x) = 2yy′ +
2py′

pq
(py′)′ − (pq)′

(pq)2
(py′)2, (A.17)

when introducing the abbreviation dα(x)/dx = α′ for a function α. Since (py′)′ = −qy we
finally obtain

F ′(x) = −
(

y′

q

)2

(pq)′. (A.18)

Now suppose p · q is non-increasing, then (pq)′ 6 0 and consequently F ′(x) > 0. We can
conclude that F (x) is a non-decreasing function. If we denote the points where y(x) is
extremal as xi with x1 6 x2 6 . . . 6 xn, then y′(xi) = 0 and substitution in (A.16) yields

[y(x1)]
2 6 [y(x2)]

2 6 . . . 6 [y(xn)]2 (A.19)

or
|y(x1)| 6 |y(x2)| 6 . . . 6 |y(xn)| . (A.20)

The proof for non-decreasing pq is completely analogous.
For example, the theorem of Sonin-Polya can be applied to the well-known Bessel equation

x2y′′ + xy′ + (x2 − p2)y = 0. (A.21)

Rewriting the Bessel equation in its self-adjoint form gives

d

dx

[
x

dy

dx

]
+

x2 − p2

x
y = 0. (A.22)

For x > 0 we have p(x) > 0 and p(x)q(x) = x2−p2 is increasing, consequently the absolute
values of the extremal values indeed form a non-increasing row.
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A.3 Rewriting differential equations

In order to rewrite second-order differential equations in a form so that the theorems of
Sturm can be applied, the first derivative must be eliminated. Similarly for the application
of the theorem of Sonin-Polya, the differential equation must be written in its self-adjoint
form. The following sections show how this can be done.

A.3.1 Eliminating the (n− 1)-th derivative

By changing the dependent variable, a differential equation of n-th order

an(x)
dny(x)
dxn

+ an−1(x)
dn−1y(x)
dxn−1

+ . . . + a1(x)
dy(x)
dx

+ a0(x)y(x) = 0 (A.23)

can be converted into a differential equation of order n, but wherein the (n−1)-th derivative
is absent. This can be done by making a substitution

y(x) = u(x)F (x) (A.24)

with

F (x) = exp
[
− 1

n

∫
an−1(x)
an(x)

dx

]
(A.25)

A.3.2 Self-adjoint form

Any second order differential equation can easily be written in its self adjoint form. First,
the differential equation is divided by the coefficient of the highest derivative, so that we
then have

d2y(x)
dx2

+ a1(x)
dy(x)
dx

+ a0(x)y(x) = 0. (A.26)

This can also be rewritten as

d

dx

[
p(x)

dy

dx

]
+ a0(x)p(x)y = 0, (A.27)

if p(x) is the following positive function,

p(x) = exp
[∫

a1(x)dx

]
. (A.28)
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