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Dans l’énigme du discours scientifique, ce que [l’archéologie] met en jeu,  

ce n’est pas son droit à être une science, c’est le fait qu’il existe. 

 

Michel Foucault. L’archéologie du savoir, p. 251. 
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 One of these delightful examples of analytical epistemology is the so-called preface paradox. 

Supposedly, you cannot sincerely write a piece of work, and then add in a preface that you are sure 

that there will be some mistakes in it. This would come down to asserting all the following statements 

simultaneously (with pi all the claims made in the work): p1, p2, … pn, ~(p1 & p2 & … pn). Seeing this 

as paradoxical involves the assumption of a strong form of closure in the author’s writing and beliefs, 

though. The closure that characterizes at least this thesis is not of that kind. It is imposed plainly and 

simply by the fact that I had to stop writing at a prefixed date. I have been writing new parts, 

reworking old bits, moving around fragments up till the very last day. All this has been aimed at 

attaining some kind of overall coherence for the thoughts expressed here. But tomorrow’s closure 

would have been slightly different, I am sure. So rather than using this preface to express the trivial 

belief in my own fallibility, I will introduce some of the constraints that made possible the partial 

closure attained.  

 

��� I started out three and a half year ago with a project that was entitled “Towards an integrated 

model for the relation theory-experiment in physics.” There is no integrated model in this thesis. 

During the first year of working on that project I read Shapin & Schaffer’s Leviathan and the airpump 

and Peter Dear’s Discipline and experience and I was lost. The seventeenth century it would be.  

��" Nevertheless, the same kinds of problems that exercised me from the beginning are dealt with 

here. Chapter 1, which doesn’t pretend to be a proper introduction, provides some kind of rational 

reconstruction of my own parcours. It starts from problems having to do with underdetermination, 

holism and theory-testing, and it ends with Galileo. 

��! Some of the other chapters make an inverse movement. They start with narrating aspects of 

Galileo’s science of motion, and they end with analyses that maybe could provide elements for an 

integrated model. But there is no integrated model. There is also no clear-cut separation between the 

narrative and the analytic. My thinking about Galileo, and my thinking about philosophy of science 

developed together. It is not yet the time to severe them; if it ever is. 

��% Chapter 1, which doesn’t pretend to be a proper introduction, does sketch a historiographical 

perspective. It’s the kind of perspective that I think is most sensible and fruitful. I stand by it. But I 

don’t defend it against other kinds of approaches. I even don’t really speak about other kind of 

approaches. In my head, I have written chapters comparing my analyses with those of Alexandre 

Koyré and Edmund Husserl. I would comment on their links with Ernst Cassirer’s work. I would try to 

assess the backgrounds for the great interest in Galileo in between the two world wars, in the works of 

people like Burtt and Heidegger. These chapters have not been written. 
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��+ I start this thesis with an extended discussion of Newton. But I don’t want to trace the influence 

of Galileo on Newton. When the first chapter is done, there is only one other place where his name 

recurs. I start with Newton to introduce the neo-Kantian perspective that I find so attractive. This 

perspective determines how I understand the Foucauldian idea of “archaeology,” and in particular how 

this might apply to Galileo. However, the resulting picture of Galileo’s science of motion should be 

relevant for understanding Newton’s mathematical principles of natural philosophy. But that is more a 

promissory note than a substantiated claim. 

��) The studies on Galileo that make up the rest of the thesis could have been presented without this 

historiographical framework. It would have taken some time to rephrase a few of the issues, but it 

would have been perfectly possible. It would have made them less rewarding to write, though. 

��*�I do believe in the fruitfulness of the category of the scientific revolution. But every generation of 

philosophers and historians have the task to rethink this category. Whether a scientific revolution 

happened depends on us, not on “history.” However, this thesis is not a narrative about the scientific 

revolution; not even about the scientific revolution as I would conceive of it. It stays too close to 

Galileo, and it stays too close to his theory of motion.  

��0 This is not a thesis about Galileo. It is a thesis about Galileo’s science of motion. I am fascinated 

by science. I want to understand what it takes to develop a mathematical representation of nature. It is 

the imaginative leap from lived experience to disciplined formula that haunts my writing.  

��/� This is not a thesis about Galileo’s science. I am completely silent on his astronomical work. 

This is a serious lacuna, which I can only acknowledge. But I believe that there are also good reasons 

to focus on the independent development of his science of motion. It might be driven much more by 

its own research questions and problems than some scholars have wanted to make us believe. There is 

still a more serious blind spot. The specific mathematical problems that confronted Galileo in 

developing his science are almost completely neglected. They were serious and determined the kind of 

science that he finally presented. I take some consolation from the fact that other authors have 

accorded these issues the attention they deserve and continue to do so.  

���� Finally, this thesis is not under 150 pages. The road to hell is definitely paved with good 

intentions. 

�
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 Any casual perusal of twentieth century writings in philosophy of science reveals the recurring 

presence of Newton’s science of mechanics in introducing diverging views on the nature of (physical) 

science. Whether Henri Poincaré, Ernst Cassirer, or Karl Popper want to illustrate their views on the 

nature of physical hypotheses; whether Patrick Suppes, Joseph Sneed, or Bas van Fraassen want to 

show how a model-theoretic view applies to physical theories; whether Pierre Duhem, Norwood 

Russell Hanson, or Clark Glymour want to show the niceties of theory testing; all of them have 

recourse to Newton’s theory as one of their prime examples. (The list could be extended ad libitum.) 

 This situation implies the potentially crucial role of detailed studies in the actual contents and 

functioning of Newton’s paradigmatic theory. Some extremely interesting work has indeed been done 

over the last decades in the seemingly rather narrow field of Newton studies – which for reasons of 

professional specialization probably escaped the attention of many philosophers of science. But 

anyone seriously interested in questions involving conventionalism, underdetermination, and related 

epistemological issues can learn some highly relevant lessons from studying the recent Cambridge 

Companion to Newton, which brings together much of the outcome of decennia of high-quality work 

by both philosophers and historians of science. 

 I want to take some of the central lessons that can be learned from this work as my starting 

point in the present thesis. In this chapter I will start by giving a quick sketch of what I take to be these 

lessons, and by pointing out the resulting possibility of opening up a rather new way of questioning the 

history of seventeenth century mechanics. This will take us on a quick ride from Newton’s Principia, 

over Kant’s Kritik der reinen Vernunft to Michel Foucault’s L’archéologie du savoir, that will set the 

issues that lie behind the studies undertaken in all subsequent chapters. 

 One warning before entering on this ride: I call this a rather new way of questioning, but I do 

perfectly realize that many of these questions have already been posed under different guises. Even the 

overall perspective, which might lay some claim to originality, is in all probability a small variation 

on many old themes. But as philosophy is all about asking the right questions, I do believe there is 

value in reformulating old questions in slightly different ways: this might lead us to see connections 

we didn’t see before, to perceive new angles on well-worn subjects that actually can make a difference. 
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 Newton’s Principia consists of four different parts: an introductory section containing eight 

definitions, the famous scholium on absolute space and time, and the axioms or laws of motion; and 

three books, respectively entitled twice “The motion of bodies” (for books 1 and 2), and “The system 

of the world” (book 3). Together they embody a powerful and coherent research program for linking 

mathematical representations with real world structures, which was dubbed “the Newtonian style” by 

Bernard Cohen.1 A crucial passage where Newton himself expresses clearly what he is up to in his 

Principia occurs in a scholium to section 11 of the first book: 

 
Mathematics requires an investigation of those quantities of forces and their proportions that 

follow from any conditions that may be supposed. Then, coming down to physics, these 

proportions must be compared with the phenomena, so that it may be found out which conditions 

[or laws] of forces apply to each kind of attracting bodies. And then, finally, it will be possible to 

argue more securely concerning the physical species, physical causes, and physical properties of 

these forces.2 

 
The first two books investigate forces treated abstractly. They contain purely mathematical exercises 

in determining the implications of the laws of motion under different conditions (such as systems of 1, 

2, or more bodies, with centripetal forces that vary inversely with distance, with the square of distance, 

etc. – the second book makes similar exercises for different kinds of proposed forces of resistance). 

The goal of these exercises is to investigate all sorts of systematic relations that hold in these different 

kinds of situations, and that enable us to characterize forces by the characteristics of these 

configurations. This is of course made possible by the nature of Newton’s laws of motion, which 

function as the means to read off the direction and strength of forces from characteristics of bodies’ 

motions. Remember the basic logical situation expressed by the first two laws taken conjointly: any 

non-inertial motion implies the presence of force along a well-defined direction and with a strength 

measured by the deviation. As stressed especially by George Smith and William Harper, these 

mathematical models function as theoretical measurement instruments which allow the determination 

of parameters that characterize forces from parameters that characterize motion.3 

 In a second stage, “coming down to physics”, these models are put to use in the third book to 

measure the characteristics of the forces that can be found in our solar system. To this end Newton 

                                                 
1 Cohen 1980. 
2 Principia, pp. 588-589. 
3 E.g. Smith 2002a; Harper 2002a. 
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starts by enumerating a number of “phenomena”, such as Kepler’s laws. These empirically established 

regularities are then probed by the mathematical models from the first book. The ensuing deduction of 

the universal law of gravitation is much more subtle than it is often made out to be; I will here focus 

on the two most significant aspects of the argument that are highlighted in the magnificent 

reconstructions by Howard Stein, Michael Friedman, George Smith and William Harper: the essential 

use of successive approximations, and the crucial role played by Newton’s philosophical rules.4 Taken 

together these reasoning strategies – because that is what they come down to – are supposed to lead to 

what Newton calls “a more secure” way of arguing about the forces of nature. But before commenting 

on these, we must first see how the mathematical models are put to use.5 

 In a first step Newton starts from some astronomical regularities (his phenomena) and assumes 

that the reference frame in which they are described (e.g. for the characteristics of the motion of the 

Jovian moons a frame with Jupiter at rest) is approximately an absolute frame of reference. This is of 

course a crucial assumption, because otherwise he would not be able to compare the dependencies 

expressed by these astronomical regularities with the mathematical dependencies described in his 

mathematical models from the first book. Remember that these express the consequences for different 

force configurations that flow from the laws of motion; i.e. it is assumed that all unperturbed motion is 

necessarily inertial and that we can use all deviations from this motion as a criterion to infer the 

presence of a force with properties measured by the deviation. Given this assumption, Newton can use 

these astronomical regularities to ascertain first (on the basis of Kepler’s area law) that they are caused 

by centripetal forces, the strength of which can also be measured (on the basis of Kepler’s harmonic 

laws). It turns out that each observed astronomical orbit6 is governed by an inverse square force [Props. 

1 to 3]. Newton then introduces his famous “moon test”: the acceleration thus found for the moon in 

its orbit around the earth7 is compared with the acceleration due to gravity as measured by pendula (as 

was done by Huygens). It is found out that both values agree within rather severe limits. On this basis 

Newton then concludes that the force deflecting the moon in its orbit is the same as what gives earthly 

bodies their weight: it is a force of gravity [Prop. 4]. The same kind of conclusion is then extended 

first to all other satellite systems for which an inverse square was deduced, and then further to the 

planets that are not orbited [Prop. 5]. If we now also assume that the same regularities would continue 

to hold if there would have been other satellites at other distances from the orbited astronomical object 

                                                 
4 Stein 1970, 1991; Friedman 1992 (chapter 3); Smith 2001, 2002a,b; Harper 2002a,b. 
5 See Stein 1991 for a keen analysis of the structure of the argument leading up to the law of universal gravitation; Harper 

2002a and Ducheyne 2006 are useful overviews of the different steps in the argument. 
6 This only holds for the planets orbiting the sun, not if we describe them as orbiting the earth. This is not prejudicing the 

question whether the solar system is heliocentric or Ptolemaic; it is merely a mathematical consequence of the fact Kepler’s 

laws hold true from the former perspective, but not from the latter. 
7 To be precise, this mathematical argument for the acceleration of the moon is not based on a harmonic law (which does not 

hold for the moon), but on the motion of the moon’s apogee. 
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[Scholium to Prop. 4], then we can conclude, in Howard Stein’s terminology, that all these 

astronomical objects give rise to an acceleration field – i.e. any body that would be placed at some 

determinate distance from this central object would undergo the same (gravitational) acceleration (a 

generalization of Galileo’s observation on free fall) [Prop. 6].  

 In a second step, Newton combines all the different acceleration fields that have been 

established in the first step. This implies that we are no longer dealing only with e.g. the acceleration 

of the earth towards the sun, but also and simultaneously with the acceleration of the sun towards the 

earth. Yet if we now take account of the third law of motion (equality of action and reaction) it 

immediately follows that the respective forces exerted on each other by two astronomical bodies are in 

the same proportion as their masses [Prop. 7]. As a result, the universal law of gravitation is deduced 

from the phenomena. At this point we are also in a position to ascertain the masses of the different 

objects in our solar system. This allows us to determine the centre of gravity of the system, which is 

found to be close to the sun’s position [Prop. 8]. 

 Now it is time to bring in some of the subtleties of the foregoing derivation.  

 First, it must be noticed that Kepler’s laws of planetary motion are only known to be 

approximately true to start with. So how secure an inductive basis is this? Answer: Newton has been 

careful enough to prove that the mathematical relations that he has established on their basis also hold 

approximately if the astronomical regularities are only approximately true! That is, the theoretical 

measurements executed through his mathematical models are still reliable. But there is more. Newton 

turns this apparent inexactness into an evidentiary use that strengthens the derivation of an exact 

inverse square law from approximately holding regularities even further.8 Consider: once we have 

found out the law that would hold exactly if there were no other perturbing forces, we can interpret all 

deviations from the motion that would follow from this law alone as due to such perturbing forces. But 

having established the force laws that hold in the whole solar system, Newton is in a position to check 

whether the deviations are indeed systematic, i.e. due to the gravitational interaction with (in the first 

approximation) a third body. In George Smith’s terminology: by assuming the validity of the exact law, 

we can turn deviations from the primary phenomena into second order phenomena, which in their turn 

can be embedded in the theoretical framework. This possibly introduces new deviations of the 

theoretically deduced second order phenomena from the “empirically established” second order 

phenomena. (Empirically goes within quotation marks because they are of course established on the 

basis of the deviations from the theoretical expectations.) And so on. If this is possible, that is, if the 

deviations indeed turn out to be systematic, then we have strong grounds to assume that the exact law 

from which we started this process of successive approximations holds true. (If these deviations would 

have been mere artefacts stemming from our using the wrong force law to start with, it would have 

                                                 
8 See especially Smith 2001, 2002a, 2002b. 
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been very improbable that they could have actually been turned into second order phenomena – they 

would not have been true disturbances.) 

 Secondly, both in the first and second step leading up to the law of universal gravitation, 

Newton makes some far-reaching extrapolations. What has not yet been mentioned about these is that 

Newton backs them up by his rules for natural philosophy. 9  These express the following 

methodological maxims: that we must try to posit as few different causes as possible [Rules 1 and 2], 

that “those qualities of bodies that cannot be intended and remitted [i.e., qualities that cannot be 

increased and diminished] and that belong to all bodies on which experiments can be made should be 

taken as qualities of all bodies universally” [Rule 3], and that we must not overrule “propositions 

gathered from evidence by induction” by mere contrary hypotheses, but only by new measurements 

[Rule 4].10 William Harper has been arguing forcefully that we should not read these rules as mere 

appeals to an ideal of simplicity.11 They also and primarily serve to impose rather severe constraints 

on the constructed causal models for the phenomena that help to generate further evidence. By 

demanding that the cause of the acceleration of the moon should be ascribed to the same cause as the 

fall of bodies near the earth, we can compare different measurements of this unified cause, which now 

must yield resilient data. The most striking instance of this is  the second and most controversial step 

of Newton’s argument for universal gravitation (most controversial at least for his contemporaries 

such as Huygens)12, where he applies his third law of motion to combine the different acceleration 

fields to derive one universal force law. It is only through this move that we compare the masses of the 

different astronomical objects, which must now also be found to agree with the measurements of the 

relative inertial masses as measured by orbital phenomena. Newton’s appeals to making “general by 

induction” propositions that are gathered from evidence reveal what Harper calls an “ideal of 

empirical success”. This ideal requires that one tries to impose as much constraints as possible to 

strengthen the evidential basis for the system of the world.  

 A more secure way of reasoning, indeed!13 

 Along the way, and surely not as an accidental by-product, Newton has also solved the 

controversial question about the true constitution of our solar system:14 Copernican or Ptolemaic? The 

centre of gravity of the system almost coincides with the position of the sun, hence it is heliocentric. 

                                                 
9 These were only explicitly introduced under this name in the second edition of the Principia, although the first two rules 

were already stated in the first edition. 
10 Principia, pp. 794-796. 
11 Harper 2002a,b. 
12 The presence of a material ether that would be responsible for the transmittance of force would make it highly unlikely that 

momentum would be conserved as demanded by the third law. 
13 It remains to be mentioned that Newton does not stop at the point he has derived his law of gravitation, but immediately 

pushes it to explain a host of other previously unexplainable phenomena, such as e.g. the tides and the precession of the 

equinoxes 
14 Cf. especially Stein 1970, 1991; see also Friedman 1992 (chapter 3); and DiSalle 2002c. 
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Even more important from a strictly conceptual point of view is that this also gives us a good and 

empirically justified approximation to a true and absolute frame of reference. Remember that the first 

step of the argument for universal gravitation required that we had to assume that every local frame of 

reference used to describe the astronomical phenomena sufficiently approximates an absolute frame to 

use the mathematical models of the first book – mathematical models that strictly speaking presuppose 

absolute space and time. In this way, Newton is achieving something extraordinary: rather than 

starting out from absolute space and time, and then describing true motions and absolute accelerations, 

he starts from the observed (and thus relative) motions and accelerations and then infers which 

reference frame comes closest to defining truly absolute space.15 Because he succeeds, he can then 

conclude that the phenomena that he started from were indeed close enough to the true motions and 

accelerations. But in doing this, he is ultimately reinterpreting their status: we measured the times with 

any reliable clocks that were at our disposal, but as a result of the incorporation of the phenomena in 

the theoretical framework, we must now conclude that these clocks indeed do not deviate too much 

from absolute inertial clocks and can be taken to measure true time (i.e. they are not merely reliable 

but also valid). 

 What can it mean to say that this procedure gives us an “empirically justified approximation to 

a true and absolute frame of reference”? How could we ever be able to justify this if we have no direct 

empirical access to absolute space and time? Well, simply: the laws of motion implicitly define what it 

means for a frame to be absolute, and the deductions from the third book establish that these 

conditions apparently hold for the frame defined by the centre of gravity of our solar system.  

 To state it this bluntly is of course to invite doubts. What about all the criticisms that have 

already been levelled against conventionalist philosophy of science? I would like to argue, on the basis 

of the foregoing description of the Newtonian style, that they are partly well-taken, and partly 

misdirected – at least when it comes to understanding Newtonian mechanics.16 But before doing that, 

let us first take a small detour and introduce some elements of Kantian philosophy. 

 

� ������ ��	��
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 One philosopher who had an unusual sharp insight in the Newtonian style was Immanuel Kant, 

or so Michael Friedman has argued very convincingly.17 Kant had of course already ventured into 

                                                 
15 Newton apparently neglects the fact that his theory allows for an infinite class of what we would call “inertial” frames of 

reference, all moving with uniform speed with respect to each other. This possibility does not invalidate his procedure, but it 

importantly relativizes the claim that the sun is a stationary point in our universe. 
16 How far these lessons would extend to other sciences is a debatable point. I will point out some more general lessons that I 

think could be learned, but in general one should be cautious with transferring methodological insights from one specific 

science, which are unavoidably partly determined by its particular domain, to science in general (whatever that might be). 
17 Friedman 1992; see also Friedman 2003. 
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cosmology before entering upon the project of his critical philosophy, but this insight shows especially 

in his critical philosophy which after all was an attempt to reconcile metaphysics with the lessons to be 

learned from Newton’s exact science. Friedman has shown in particular that we cannot adequately 

understand Kant’s views on time as respectively a form of intuition and a formal intuition (i.e. as an 

object of intuition and not merely as its empty form) without taking into account the function of 

Newton’s first law of motion as first picking out an unequivocal determination of time (an inertial 

motion allows us to derive the temporal metric from the spatial metric – which can be represented 

intuitively).18 Now, this of course implies that we cannot think of the law of inertia as stating an 

empirical fact about already well-defined true motions. Such motions would have to be motions in 

absolute space and time, and the latter are sharply rejected as possible objects of experience by Kant – 

it simply makes no sense to speak of such an “infinite, self-subsistent nonentity”19 as absolute space. It 

is the other way round: the law of inertia defines what it takes to be true motion. Yet if it is only such 

true motion that allows us to represent pure time, we must be able to apply it to empirical intuition to 

actually achieve objective time determinations. And as Friedman has argued in a revealing analysis, 

based on sometimes rather subtle indications, this is where Kant’s deep insight in the Newtonian style 

shows.20 

 To be applicable the law of inertia requires that we are able to single out a privileged frame of 

reference. And this is what Newton has shown to be possible. Starting from purely relative motions, he 

constructs, through his deduction of the empirical law of gravitation, a reference frame that is 

(approximately) “inertial”. Kant can even claim that this construction exemplifies his Postulates of 

Empirical Thought: 21  we start with phenomena that are merely possible motions (because only 

determined relatively) from which we then derive inverse square laws, hence claiming that they are 

actual motions (because otherwise the derivation of the inverse square law would make no sense), and 

in a last stage we finally determine the centre of mass of the solar system thus proving that the 

necessary condition for these motions to be truly actual is satisfied. In such a frame of reference the 

laws of motion cannot be false, exactly because they make possible the construction of the frame of 

reference in the first place. That is why they are called constitutive principles. (We cannot “test” their 

truth without supposing this very truth that is in question – the laws are explicitly stated to hold true 

only for motion with respect to absolute space and time; therefore they are what would make empirical 

tests possible in the first place.) Remember the function that was played by the models from the first 

book of the Principia. They give examples of how to recognize natural motion and, as a result, 

                                                 
18 I won’t delve into the magnificent intricacies of Kant’s transcendental philosophy, but let me point out that this possibility 

of a formal intuition of time is really crucial.  
19 Critique, A39/B56. 
20 Cf. especially chapters 3 and 4 of Friedman 1992. In this subsection, I will merely be condensing Friedman’s magisterial 

treatment to the points that are of primary interest for my further discussions. 
21 Critique, A218-219/B265-266. 
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absolute space and time.22 Hence, if we succeed in finding instances of them in the empirical world, 

then we have empirically determined circumstances in which they necessarily hold true. In Kantian 

terminology: we have transformed appearances (Erscheinungen) in objective experience 

(Erfahrung).23 The Newtonian style can thus be summed up in the following well-known Kantian 

slogan: 

 
 The understanding does not draw its (a priori) laws from nature, but prescribes them to it.24 

 
As we saw in our description of the Newtonian style, we don’t simply recognize experience in the 

appearances without further ado. Prescribing laws to nature takes quite some work, both 

mathematically and empirically. Most importantly, it depends completely on the contingent nature of 

the appearances we started with. It could very well have turned out that it was not possible to construct 

an “inertial” frame on the basis of astronomical phenomena. That is, given the fact that we succeeded 

in constructing a suitable frame of reference, the laws of motion are necessarily true – but it is not 

necessary that we succeed. In that case they would simply have no objective reality. 

 This complication is reflected in Kant’s philosophy in the crucial distinction between 

mathematical and dynamical principles of pure understanding (a fact apparently often neglected). The 

former are constitutive with respect to intuition (all possible figures that we can generate in our 

intuition satisfy Euclidean geometry), but the latter are only constitutive with respect to experience 

and regulative with respect to intuition. If we forget this fact, we are easily misled in transferring 

Kant’s pronouncements on the status of geometrical space to the absolute space of Newtonian physics. 

Yet the former is only one element in the construction of the latter. That Newton’s laws of motion are 

regulative with respect to intuition expresses the fact that they state rules to seek out those elements 

presented to us in empirical intuition that enable us to constitute objective experience.  

 The centre of gravity frame of the solar system is of course only an approximation to a truly 

inertial frame of reference. Kant, being a true cosmologist, immediately goes on to state that not even 

the centre of mass of the Milky Way galaxy would define the truly privileged frame of reference: only 

the common centre of gravity of all matter would suffice to that end.25 Now as the determination of 

this frame of reference must stay beyond our reach, we can only construct ever better approximations 

– absolute space itself must remain an idea of reason. This idea of reason expresses the ideal situation 

in which all the laws of nature would hold exactly true, and consequently points towards nature (in its 

                                                 
22 Cf. also Newton’s thought experiments on rotating bodies, often interpreted as attempts to prove the existence of absolute 

space and time; it has been argued convincingly by Howard Stein that the most sensible way to read what Newton is doing 

with them is “making something visible” (Stein 1970, p. 279), i.e. some of the consequences of his definition of true motion 

which allow one to recognize true rotations. 
23 “Experience is possible only through the representation of a necessary connection of perceptions.” Critique, B 218. 
24 Prolegomena, p. 72. 
25 Cf. Friedman 1992, p. 143. 
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formal meaning) “as the totality of rules, under which all appearances must stand, if they are to be 

thought in an experience as connected”.26 This idea of reason is what drives the program of successive 

approximations that we have seen to constitute such a prominent aspect of the Newtonian style. 
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 Kant’s idea that the laws of motion are constitutive a priori principles makes good sense of the 

characteristics of Newton’s way of proceeding in the Principia. Yet it need not be recalled that 

Kantian philosophy generally fell in some kind of disrepute as the consequence of the development 

first of non-Euclidean geometries and then of Einstein’s theories of relativity. It seems undeniable that 

as the constitutive principles no longer can be held to be unique, their origin cannot simply lie in the 

constitution of the human understanding. But this implies that the question of their justification needs 

to be reopened, as it seems that their presence in any system of knowledge must go back to some kind 

of choice. 

 There have of course been numerous attempts to reinterpret the Kantian principles in the light 

of the development of mathematics and natural science since his days, and with the use of formal 

instruments that became available as a result of the development of modern logical systems. Yet I 

think that none of these have brought us a better understanding when it comes to making sense of the 

Newtonian style and the role played therein by the laws of motion. It is of course completely beyond 

the reach of this thesis to argue for this claim in detail. Still, in this and the next subsection I want to 

give a short sketch of some of the reasons for holding this view and of some of its consequences, as 

this positively guides the historiographical perspective that I will try to develop in sections 1.2 and 

1.3.27 

 The question concerning the justification for Newton’s laws of motion has often been seen as 

a touchstone for philosophical interpretations of science exactly because of their elusive character. As 

already indicated in the previous subsection, it seems impossible to test their validity in any direct way. 

To test the law of inertia one first needs to be able to pick out an appropriate frame of reference. 

Clocks are calibrated by how well they measure inertial time, not the other way round. (We know the 

earth is not good enough a time-keeper because we know that momentum is lost, and that its angular 
                                                 
26 Prolegomena § 36. This is contrasted with “nature in its material meaning, namely according to intuition, as the totality of 

appearances”. 
27 Let me just point towards the increased interest in Neo-Kantian philosophy of science that seems to have arisen in the last 

decade of the twentieth century as a circumstantial indicator that such a position at least has been gaining credibility for some 

time. There is accordingly a growing literature which contains more detailed arguments. Especially interesting are the 

assessments of the logical positivist’s heritage in the twentieth century, interpreted from the angle of their particular ways of 

interpreting the Kantian idea of constitutive principles. See especially Richardson 1998; Friedman 1999, 2000; DiSalle 

2002a,b. See also Friedman 2001, Richardson 2002 for more general programmatic statements. Cassirer 1953 [1910] remains 

an inspiring historical predecessor of this recent movement, and still contains many valuable discussions. 
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speed is thus not exactly constant; as Newton himself reminds us: “It is possible that there is no 

uniform motion by which time may have an exact measure.” 28  Yet this does not render time 

inaccessible to us, exactly because we can start from the laws of motion – which even allow us to 

estimate the momentum that is lost due to tidal friction etc.) A similar conundrum holds for the 

concepts entering in the second and third laws. Consider the simple question: how would one measure 

the forces if not by the accelerations that they cause? (The apparent obvious idea of using a balance to 

measure forces is of no avail. Coming to see the fruitfulness of distinguishing between weight and 

mass is exactly one of the main insights that is encapsulated in Newton’s laws.) Any possible test of 

the laws presupposes a model in which they are already supposed to hold true. 

 The most obvious answer to this problem is to claim that these laws are empirically tested 

through the role they play in the total system of physical laws of which they are part. The laws of 

motion may not be testable in isolation, but they are tested through e.g. the law of universal gravitation. 

Although the initial plausibility of this view is hard to deny, it does not really do justice to the precise 

role that these laws actually play. This can be nicely brought out by considering Pierre Duhem’s views 

on the matter. While Duhem forcefully advocated the view that the laws of motion are being tested 

through the complex system of which they are a part, a consideration of his argument based on the 

foregoing description of the Newtonian style will show why we might want to resist such an 

interpretation. 

 Duhem famously argued that logic is not adequate to the task of scientific methodology. When 

an empirical test falsifies a theoretical prediction, it actually falsifies an elaborate conjunction of 

theoretical claims, but logic itself gives no indications at all about which claim to blame. Duhem 

concluded that we never test a single theoretical claim and, as a result, that the situation of the 

Newtonian laws of motion is not so special. Now, it is of course one thing to notice that logic gives no 

indications on how to distribute blame, but it is another thing to conclude that, as a result, there are no 

more fine-grained distinctions to be made that come into play during theory testing. The main upshot 

of Duhem’s discussion has generally been taken that we can always save a theoretical claim in the face 

of contradictory evidence by blaming auxiliary hypotheses – but what does it mean to “save” a theory? 

At face value, that it can be squared with the evidence; but this only raises the further question: where 

does this evidence come from?  

 As we have seen in our discussion of the Newtonian style, evidence for the truth of the 

universal law of gravitation is generated by comparing the models of the first book with the empirical 

phenomena. Now, as Duhem reminded us, any empirical deviation from the theoretically predicted 

orbits can always be ascribed to a number of factors: the falsity of this empirical law, the presence of 

as yet unidentified systematic disturbances, observational errors. Let us focus on the first two 

                                                 
28 Principia, p. 410. 
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options.29 As explained, Newton’s evidentiary strategy (as analyzed by George Smith) consists in first 

holding on to the truth of the law in ideal circumstances, and then attempting to turn deviations in 

second order phenomena. This provides a first direction in which to overcome Duhem’s challenge: 

from the perspective of ongoing research there is a clear epistemic advantage in first trying to find out 

if the deviations cannot be ascribed to systematic disturbances. This is not so much a good strategy 

because it allows one to “save” the theory, but rather because it allows one to generate further 

evidence. Duhem famously claimed that a theory only serves as a classification of empirical 

phenomena, but he apparently forgot that many of these phenomena exist only by the grace of theories. 

So even if saving the phenomena is the only goal of theories, it does not necessarily follow that any 

way of saving the phenomena is as good as another.30 This doesn’t imply that the law of gravitation is 

not being put to test, as there is no guarantee that this program of turning deviations into disturbances, 

and thus in higher order phenomena, will succeed – many constraints have to be satisfied for this to 

work out.  

 Duhem was of course perfectly aware of the fact that physical investigations are often 

structured around such programs of looking for successive approximations, but he ascribed this fact to 

nothing but the desire not to overthrow an already established framework.31 Now, this is of course 

quaint to claim in the case of Newton, who was for the first time building such a framework. Most 

importantly, it also misses the important epistemic role played by this kind of research program. 

 This is not all, however, as we have up to now been talking mainly about the law of 

gravitation. Let us now take a step back and inquire further into this possibility of generating evidence. 

Both the first and higher order phenomena can only become evidence for any kind of claim (whether 

this is the law of universal gravitation or any other force law) because of the prior existence of the 

mathematical models of the first book of the Principia. But as we have seen, these models are 

explicitly based on the presumed validity of the laws of motion – without them no kinematic 

phenomena could ever serve as evidence for claims about the forces generating them. There would 

simply be no way that empirically determined parameters could be interpreted as measuring 

theoretical parameters.  

                                                 
29  The third option is of course always a possible source of error, to which Duhem rightly drew attention. Duhem’s 

discussions bring many important factors to the fore, which indeed show that there always is a leeway in the interpretation of 

empirical tests, and I would not like to underrate the importance of this simple point. All I want to question is the general 

methodological lesson that Duhem tried to draw from this point. 
30 A side remark: this is also the reason why Bas van Fraassen’s (1980) brand of empiricism, constructive empiricism, has 

proven so invincible over the past two decennia. His careful statement of his position exactly allows for this forward-looking 

dimension of scientific methodology, often thought to be only comprehensible from a realist perspective, without 

surrendering the claim that saving the phenomena is the only true epistemic goal of theories. The crux of course lies in the 

fact that this forward looking dimension in the end is also directed towards saving “the” phenomena, albeit towards a much 

more fine-grained plethora of phenomena. 
31 Duhem p. 211. 
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 Let us return for a moment to the deviations that were turned into disturbances by Newton’s 

evidential reasoning in the third book of the Principia. It is important to realize that when he (or for 

that matter, any other cosmologist coming after him) was confronted with deviations from the 

predicted phenomena, he did not simply inquire into whatever causes might lie behind this deviation, 

but that he asked what further forces were responsible. That is, the criterion for deciding whether the 

deviations can be turned into physically meaningful disturbances is to ask whether they can be fitted 

into the framework defined by the three laws of motion (which need not always imply that they can be 

explicitly described within this framework – although the latter fact would seriously diminish their 

evidentiary value). 

 We are getting to the heart of the matter. It would be wrong-headed to claim that Newton’s 

laws of motion are being put to the test through the gathering of empirical evidence for or against the 

law of universal gravitation because such a picture neglects the fact that this gathering is only made 

possible by these laws. Consider what would happen if no evidence had been generated for the law of 

universal gravitation, nor for any other force law capable of explaining the astronomical phenomena: 

would that imply that the laws of motion stand falsified?  

 No – it would imply that these phenomena cannot be given a “mechanical” explanation (in the 

sense that the term takes with Newton); either because they are the result of too complex an interplay 

of diverse forces that could not be isolated by any (mathematical and observational) means at our 

disposal, or because they are simply no mechanical phenomena. To decide between these two options 

would be no easy matter, especially as we cannot try to experimentally isolate some of these complex 

forces. (Newton was lucky enough to have found nature isolating the effects of the forces sufficiently 

in the case of our solar system).  

 To put it in Kantian terms: the laws of motion would have no objective reality, but this is 

something else than claiming that they stand falsified. They are impotent rather than false. 

 Something like the foregoing scenario is exactly the fate that befell the second book of the 

Principia where Newton tried his hand at developing a mechanical theory of resistance forces in a 

medium.32 The phenomena proved to be intractable, but the laws of motion were not at all put into 

doubt because of that. It only required much more experimental and theoretical work (that is still 

going on) before this complex phenomenon could be more adequately modelled mechanically. (This 

modelling is obviously much messier than the neat case of the planetary motions. The latter case 

actually presents some kind of ideal type for mechanical explanation and evidence generation. The 

case of resistance forces would rather be grist to the mill of the Cartwright school of philosophers of 

science that stresses the insufficiency of theoretical principles in modelling almost any real-life 

empirical phenomenon.33 I agree, but this does not invalidate any of the points made here. All of the 

                                                 
32 See especially Smith 2001. 
33 Cartwright 1999; Morgan & Morisson 1999. 
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physical cases studied by the Cartwright-ites still presuppose the validity of an abstract and theoretical 

frame such as the one constituted by Newton’s laws of motion, exactly as happened with all 

subsequent attempts to model resistance in a medium. This is for good reason, for in all of these cases 

it would make no sense to measure forces in their absence.) 

 Taking these insights together we can see a multi-layered picture of the logic behind theory-

testing and of the peculiar role played therein by laws such as Newton’s laws of motion. These 

constitutive principles first make it possible to interpret the data with an eye to finding evidence for 

any possible empirical force law. In the course of this process it is often a good research strategy to 

hold any such serious candidate for a force law temporarily fixed, to try to isolate further empirical 

factors. In this way these empirical laws can temporarily play a role similar to the constitutive 

principles, i.e. they allow for the generation of evidence. Yet, I think it is important to distinguish 

between both cases. In the one case we define the domain of research, in the other case we are only 

trying to find means to get on with the research. To put it slightly more metaphorically: the 

constitutive principles first open up a space of possibilities, whereas working on the presupposition 

that an empirical law holds true comes down to (temporarily) carving out a subset of these possibilities. 

The notion of presupposition doesn’t seem to be strong enough to capture the function of constitutive 

principles (although the latter of course act as a kind of presuppositions.)34 

 To dispel any lingering suspicions: the essential difference between these constitutive 

principles and empirical laws lies in the function they play within scientific research, not in their 

un/revisability. That is, they are necessary presuppositions, but it is not necessary that they are the 

presuppositions. Both constitutive principles and empirical laws such as the law of gravitation can be 

subject to revisions, but the effect will be profoundly different. (Remember all the talk about scientific 

revolutions.) But this is a distinction that a holist is in no position of making. When Quine, e.g., is 

commenting on the difference between core and periphery in his famous image of the network of 

belief, we can find him stating that the difference is solely constituted by “the relative likelihood, in 

practice, of our choosing one statement rather than another for revision in the event of recalcitrant 

                                                 
34 Further confirmation for this kind of picture can be found in the works of the structuralist school in philosophy of science. 

While they explicitly present their work as descriptive in nature, i.e. they use the set-theoretic apparatus to give a description 

of the structure of scientific theories, the resulting multi-layered picture comes very close to the picture sketched here in 

many respects. I won’t spell this out in detail, but invite the reader to take a look at some of the reconstructions presented in 

Balzer et al. 1987. Particularly worth mentioning is their stress on the fact that a theory doesn’t have one big application, but 

that application is piece-meal extended through the construction of the appropriate models instantiating special force laws. 

Yet these models of different local applications are “tied up” through imposing constraints that single out admissible 

combinations of what they call potential models. One example would be that the mass of the moon should have the same 

value within different models. (Remember that it was seen that the imposition of constraints was one of the main features of 

the Newtonian style.)  
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experience.”35 Yet he can provide no grounds for this general practice, let alone that he can make 

room for finer distinctions than those in terms of revisability. 

 But what about decisions to revise the constitutive principles of a theory? Can we do any more 

than merely state that they are conventions; that we define natural motion to have such-and-such 

characteristics for no other reason than that otherwise we could not get our research off the ground; 

and that in the presence of enduringly recalcitrant phenomena we just have to make another, more 

convenient choice? 

 In trying to answer this question, it is useful to go back for a moment to the father of modern 

conventionalism, Henri Poincaré. As has become clear from the careful reconstructions by Michael 

Friedman and Robert DiSalle, his position differed significantly from the conventionalism that was 

later propagated by logical empiricists such as Schlick (but which they still ascribed to him).36 

Essential to Poincaré’s position was his picture of the hierarchy of sciences.37 Arithmetic was on top of 

this hierarchy, and its basic principles were synthetic a priori in the exact Kantian sense (because 

based on iteration, which cannot be proved empirically but only grounded in our inner intuition of 

time). Next came first the theory of mathematical magnitude (the system of real numbers), and then 

geometry, which both were partly determinable a priori, partly based on convention. Depending on the 

conventional choice for one of the possible geometries of space, one could then pick out the most 

convenient physical principles. These in turn finally allow us to formulate empirical physical laws (e.g. 

particular force laws) that are directly confronted with nature. Now what is most interesting about this 

picture is that the conventional choices are embedded within a larger framework of constitutive 

principles.  

 Consider the crucial case of geometry. Poincaré developed a subtle group-theoretic argument, 

based on the prior work of Helmholtz, to show that given an established set of empirical judgements 

on what are properly spatial structures, this set can be shown to have a specific group-theoretical 

structure that delineates the possible geometries of space, which according to Poincaré’s argument 

must have a constant curvature. But as has been stressed by DiSalle, this implies that the conventional 

choice merely picks out one of the options which already have a well-determined physical content. 

That is, the convention is not responsible for the specific interpretation of what it means to be spatial; 

it merely fixes the leeway that exists within this interpretation. (That they have physical content does 

not imply that they are empirical claims; that would be to forget their constitutive character. They are 

not empirical claims because they first give meaning to the idea that space would have a geometrical 

character – “we would not recognize as spatial displacements any changes that did not conform to that 

structure”.38) 

                                                 
35 Quine 1951, p. 40. Similar statements can be easily found in Duhem’s writings.. 
36 Friedman 1999 (chapter 4); DiSalle 2002a. 
37 Cf. especially Poincaré 1968 [1902]. 
38 DiSalle 2002a, p. 180. 
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 It is of course well-known that the development of the general theory of relativity invalidated 

Poincaré’s argument.39 But I think we can follow DiSalle in drawing a general lesson from his attempt. 

The major difference between Poincaré’s conventionalism and that of the logical positivists is that the 

former is much more restricted, and still infuses any theory with a specific physical content, whereas 

for the logical positivists it is precisely the physical content that becomes the conventional part.40 

From the former perspective it does make a difference which are the constitutive principles of a theory. 

And this seems exactly right for the case of the Newtonian theory. The three laws of motion do seem 

to express something about motion and force, even if they cannot be subject to any kind of 

straightforward tests. It is not a merely conventional decision to claim that natural motion has certain 

characteristics. The constitutive principles seem to be intricately interwoven with their domain of 

application in a way that pure conventions are not.  

 It is no accident that we can find this view expressed in the writings of Poincaré himself, when 

he states: 

 
La loi de l’accélération, la règle de la composition des forces ne sont-elles donc que des 

conventions arbitraires? Conventions, oui; arbitraires, non; elles le seraient si on perdait de vue les 

expériences qui ont conduit les fondateurs de la science à les adopter, et qui, si imparfaites qu’elles 

soient, suffisent pour les justifier. Il est bon que, de temps en temps, on ramène notre attention sur 

l’origine expérimentale de ces conventions.41 

   
This is exactly what I will try to do in the next subsection. I will try to unravel some of the empirical 

grounds that led Newton to adopt his tree laws of motion as the axiomatic basis for his theory (as 

constitutive principles, to put it in a language unknown to him). This will then set the stage for 

introducing the central set of questions that lies at the basis of the present thesis. 
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 My presentation of Newton’s laws of motion as constitutive principles incapable of direct 

empirical verification might be met with justified doubts, as Newton himself stated in a scholium 

immediately following the introduction of his laws: “The principles I have set forth are accepted by 

mathematicians and confirmed by experiments of many kinds.”42 If we keep in mind the concluding 

remarks from the previous subsection, however, it is clear in what direction I think we should interpret 

this statement. When we take a closer look at these “experiments of many kinds”, it becomes clear that 

                                                 
39 But see the attempts of Herman Weyl to resuscitate the argument for the case of variable curvature by restricting it to local 

displacements. For an interesting assessment of Poincaré’s argument in face of general relativity, see DiSalle 2002a. 
40 DiSalle 2002a, p. 175. 
41 Poincaré 1968 [1902], p. 128. 
42 Principia, p. 424. 
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they do not so much give a direct empirical proof of the laws of motion but that they rather show that 

these laws indeed represent something basic about “our” understanding of the adduced phenomena. 

(The importance of the quotation marks will become clear as we go along.) 

 The “experimental confirmation” of the first two laws is extremely laconic, especially in the 

first two editions, where it is simply stated that “by means of the first two laws and the first two 

corollaries Galileo found that the descent of heavy bodies is in the squared ratio of the time and that 

the motion of projectiles occurs in a parabola, as experiment confirms, except insofar as these motions 

are somewhat retarded by the resistance of the air.”43 The third edition expands a little bit on this by 

explaining how the uniform force of gravitation causes these phenomena by the second law and the 

composition of inertial and accelerated motion.  But of course, notwithstanding Newton’s claim, we 

must not forget that a direct confirmation would only be possible on the supposition that we have 

independent means to measure force other than by acceleration. Newton’s explicit definition 

(“impressed force is the action exerted on a body to change its state either of resting or of moving 

uniformly straight forward”44) is obviously of no help. As already explained in the previous section, it 

seems that there is simply no way to check whether the conditions stated in the laws of motion hold 

independently from these laws themselves. 

 I would suggest that a better way to look at the matter is to say that Newton accepts the 

empirical phenomena so judiciously selected by Galileo (accelerations are as times squared, and 

projectiles follow parabolic paths) because they allow him to introduce a coherent measure of force. 

He reinterprets these empirical facts by uncovering the possibility of introducing constitutive 

principles which allow him to connect the phenomena to a mathematical dynamical framework.45 Now, 

that something is a coherent measure is of course not a matter of simple intuition, nor a purely 

mathematical fact. It also requires that this measure squares with the ways in which mathematicians 

already understood some of the characteristics of motion and the forces of nature. 

                                                 
43 Prinicipia, p. 424. 
44 Principia, p. 405. 
45 A fascinating story is to be told, and no doubt many aspects of it have already been told, about how Newton gradually 

came to see the possibility of this reinterpretation during the years 1684 (the De motu manuscript) up till 1687 (the 

publication of the Principia) (cf. e.g. chapter 1 of De Gandt 1995; and chapters 7 and 8 of Westfall 1971). He started out 

without the second law, but he did decide to measure the first instance of the effect of a centripetal force by a generalized 

version of Galileo’s empirical law (this is hypothesis 4 in De motu). (Why do I call it an empirical law, if the times squared 

relation – which is all that is used by Newton – is actually a purely kinematical consequence of uniform acceleration? 

Because the fact that the force of weight, assumed to be constant, gives rise to a uniform acceleration, is an empirical claim 

for Galileo.) By detaching it from its limited context and seeing under what circumstances it can be applied as a general 

measure, Newton is actually transforming it into a constitutive principle. (Compare this with the way in which the empirically 

established result that the speed of light is invariant is reinterpreted by Einstein to become a constitutive principle; cf. DiSalle 

2002a,b, which provides a main inspiration for this way of putting the problem.) If I were able to reconstruct this process in 

more detail (which I am not for the moment) then the status of Galileo’s law as a confirmation of the second law of motion 

would become still much clearer. I submit that it would turn out to strengthen the interpretation I am offering in this section. 
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 This shows itself clearly in the fact that the parabolic path of projectiles can only be taken as 

“confirming”, or suggesting, the laws of motion if we presuppose the possibility of a dissection into 

simultaneously acting components, and it is well-known that exactly this was denied in sixteenth 

century Aristotelian philosophy. Newton, however, sees the possibility of this decomposition as a 

direct consequence of the validity of his laws of motion. We can thus see how his laws are meant to 

express some of the essential presuppositions of the new anti-Aristotelian ways of explaining natural 

phenomena. He can then adduce these phenomena as a confirmation of this fact. Notice that Newton is 

especially keen on stressing that his principles are “accepted by mathematicians”.46 

 Now, this decomposition will only be physically meaningful if it has an intelligible structure; 

that is, if we can assign an independent physical interpretation to the simultaneously acting 

components. So the coherence of Newton’s proposed measure of force also rests on the fact that it can 

do justice to a prior grasp of the proposed domain of his theory. This is obviously true for the first law 

(which after all was stated by Descartes and others, and could be ascribed to Galileo 47 ). What 

Galileo’s phenomena then show is that we can indeed assign a force that is responsible for the change 

in motion of bodies. We can “assign a force” because the force of gravitation (the weight of a body) is 

an incontestable instance of a force of nature, and because we know how to shield off (or at least 

account for) other forces, such as friction. This becomes clear in Newton’s discussions where he pays 

careful attention to ensure that one can practically establish the conditions in which the laws of motion 

do show themselves most clearly (in these cases actually the third law, to which I shall pay more 

attention in a moment – all that matters for the moment is that these techniques are always directed 

towards isolating the inertial component of motion): by correcting the results of experiments for the 

resistance of air through an extra set of control experiments, by placing the bodies on flat water which 

is as polished a surface as we can find, …48 Both this identification of the force of gravitation and the 

techniques for isolating the inertial component of motion were clearly part of the common practice of 

most of the seventeenth century natural philosophers. They did not yet measure forces by the 

proportion of acceleration to mass, but they were explicitly engaged (or it was at least plausible for 

Newton to assume that they were) in attempts to trace any change in motion to independently 

ascertainable or accountable forces. (Ascertainable: like the force of gravitaton; accountable: like the 

force of friction which we know how to account for in adding up – or subtracting – all that enters into 

the complete empirical phenomenon.) It was moreover already implicit in many of these attempts that 

the deviation from an inertial path then provides some kind of measure for the force exerted (as in 

                                                 
46 Cf. also Gabbey 1980, p. 285: “[in the second law,] the vis impressa is given a directional specification which is tailor-

made for direct application in the composition and resolution of forces, and therefore in the task of explaining directional 

changes in the motion of bodies in terms of the forces acting on them.”  
47 Cf. chapter 6, section 6.1.5, and chapter 8, section 8.3.3. 
48 This care on Newton’s part is stressed by Ludwig 1992. 
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Galileo’s Dialogo discussion of the extruding power of the rotation of the earth, as well as in some of 

Huygens’ work).49 

 The empirical examples introduced as confirmation of the third law at first sight look more 

convincing as straightforward tests of this law than did the references to the Galilean phenomena. 

Newton quotes the work of Wren, Wallis, and Huygens on the impact of two bodies, and offers further 

empirical proof by considering the impact of two bodies both suspended from a thread. But, again, we 

are of course not empirically proving that action equals reaction, because action and reaction are 

defined as … that which is conserved in impact. Alan Gabbey has offered a convincing reconstruction 

of Newton’s path to his Principia definitions of inherent and impressed force as the outcome of a 

critique of Descartes’ notions of force.50 It is in the course of this development that Newton in all 

probability realized that something like what eventually became his third law would allow him to 

introduce a coherent measure for the different forces involved in impact phenomena. This insight is 

reflected in an extremely revealing passage from Newton’s own comment on his definition of 

“inherent force of matter”, or “force of inertia”:  

 
A body exerts this force only during a change of its state, caused by another force impressed on it, 

and this exercise of force is, depending on the viewpoint, both resistance and impetus: resistance 

insofar as the body, in order to maintain its state, strives against the impressed force, and impetus 

insofar as the same body, yielding only with difficulty to the force of a resisting obstacle, 

endeavors to change the state of that obstacle.51  

 
What is a change in inertial motion for one body in a collision is an impressed force for the other. That 

is, the second and third laws are both intrinsically related with what Newton calls the force of inertia; 

in the Opticks he even speaks about the force of inertia as “a passive Principle by which Bodies persist 

in their Motion or Rest, receive Motion in proportion to the Force impressing it, and resist as much as 

they are resisted.”52 The three laws taken together express this one passive principle, which is an 

essential quality of all bodies. Newton introduced his third law to ensure that the measure of force 

remains invariant under the different perspectives from which collision phenomena can be considered. 

By imposing this law as an axiom he can consider all interactions as involving equilibrium between 

impressed and inherent (resisting) forces – by definition. In other words: Newton “discovered” the 

action-reaction law in analyzing collision phenomena because he was actively trying to construct a set 

                                                 
49 Cf. Herivel 1965, p. 40, for an early use of this principle by Newton; see also De Gandt 1995, pp. 11, 17, who recounts 

how Newton’s earliest attempts to treat planetary motion as the result of centripetal forces in the manuscript De motu also 

used this measure implicitly, without introducing an explicit axiom justifying this use (cf. ibid., p. 19ff). 
50 Gabbey 1980a. 
51 Principia, p. 404 (my emphases). 
52 Opticks, p. 397. 
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of concepts which would be conserved. It is of course a contingent matter of fact that this was possible 

– this is the restricted empirical import of the law. 

 It is only this search for the “passive Principle” that brings into focus the intimate relationship 

between a body’s inertia and the phenomenon of impact. What is important for our discussion here is 

that such was already the direction in which earlier writers were trying to analyze the phenomenon. 

Descartes did so explicitly, and as mentioned probably provided the starting point for Newton’s 

analysis of the problem. Huygens tackled the problem from another perspective: he did not explicitly 

analyze the forces involved, but instead cleverly exploited the Galilean relativity of motion to establish 

the impact rules.53 But again, this implies that the clue to understanding the phenomenon was sought 

in its relation to inertial motion, as Huygens’ device actually consists in imposing the constraint that 

the common centre of gravity of the two colliding bodies remains invariant in its inertial state. What 

Newton’s analysis then adds is a dynamical understanding of this property, which again becomes a 

consequence of his laws of motion. 

 We have seen in the previous sections how the laws of motion, as constitutive principles, first 

made it possible to generate evidence for theoretical claims concerning the forces of nature. It was also 

claimed that, although not directly testable, they are not fruitfully thought of as nothing but mere 

conventions. Another way to think of this situation is by recalling the often contested Kantian idea that 

there can (and must) be synthetic a priori principles.54 The present discussion is aimed at making 

plausible that we can lay bare part of the grounds for this synthetic nature of the Newtonian laws of 

nature. Rather than searching these in the constitution of the human mind, they are to be sought in 

human practices. 

 Embedded in the practice of seventeenth century natural philosophers and mathematicians was 

a particular way of selecting and analyzing appearances. Their apparently successful mathematical 

description of some natural phenomena (essentially limited to fall, projection, and percussion) was 

certainly not based on any kind of direct observation, but rather achieved by an actively directed 

search process. (Cf. the care that needs to be taken to correct for the effects of air friction before one 

can see the pure phenomenon.) Now, it is clear that this search process is regulated by the idea that 

“inertial motion” (or what could be interpreted as such with hindsight) is somehow the natural motion 

of a free particle, and that the only facts that stand in need of explanation are deviations from this 

motion.55 This is the core of the prior cognitive grasp of the domain of mechanics that I referred to 

earlier in this section. Of course, the laws of motion do more than reflect this grasp; they add a further 

level of intelligibility to these phenomena by providing precise relationships between force, 

acceleration, and the new concept of mass. (Consider the phenomenon of free fall: why would all 

                                                 
53 For Huygens, see chapter 4 of Westfall 1971; Gabbey 1980b; and, for a slightly different interpretation, Vilain 1993. 
54 This is of course what the logical positivists denied, and why they were so taken by the idea of conventions: all a priori 

elements of a theory are supposed to be purely analytic. 
55 As we will see in the rest of this thesis, this involves a crucial redefinition of what it takes for a motion to be “natural.” 
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bodies fall with the same acceleration when their weights can differ greatly?) But this does imply that 

they are still grounded in these carefully selected phenomena. (Compare with what was said a moment 

ago about the restricted empirical import of the third law of motion.)56 

 To put it in Kantian terms: the examples adduced by Newton serve to make plausible that the 

laws of motion, as constitutive principles, have objective reality (find application in the empirical 

world; can be used to transform appearances in experience). 

 The mathematical models from the first book in the Principia allowed Newton to discern 

relevant facts about the structure of the astronomical phenomena because they exploit a prior 

understanding, which has already been shaped by close interaction with forces of nature and their 

effects on the motion of bodies. It makes sense to try to isolate a “pure” phenomenon solely due to one 

force acting on a freely moving particle, exactly because it has already been proven that this is 

possible in principle provided one is dealing with the right kind of phenomena. And the laws of 

motion are a good instrument to effect this isolation, because they provide these earlier efforts with a 

completely intelligible structure. They show with hindsight why these earlier attempts at a 

mathematical description of natural phenomena could be partially successful. The Principia is then a 

persistent and successful attempt to transpose these conditions of (partial) success to the new domain 

of astronomical phenomena, following the methodological maxim expressed in Newton’s third rule of 

philosophizing: “those qualities of bodies that cannot be intended and remitted [i.e., qualities that 

cannot be increased and diminished] and that belong to all bodies on which experiments can be made 

should be taken as qualities on all bodies universally.”57 

 (To put it this way of course involves a gross oversimplification from a historical perspective. 

Newton first explicitly formulated his laws in the attempt to treat astronomical phenomena; i.e. in 

trying to deal with centripetal force laws, and in extending this treatment to a more complex system 

such as our solar system. But he formulated these laws because he was aware that such treatment was 

only possible under a specific set of conditions. And in trying to assess as precisely as possible which 

could be these conditions, he could not but exploit the prior understanding of earthly phenomena of 

motion as was present in the work of his predecessors and in his own youthful work.) 

 One important complication arises, however, in trying to extend mechanical explanations to 

the sphere of astronomical phenomena. It was claimed that the empirical examples could be seen as 

making plausible that the laws of motion have objective reality. Yet we can ensure this objectivity 

only if we are in a position to ascertain whether any acceleration is indeed due to a force; that is, if we 

can distinguish true motion from merely relative motion so as to exclude that we would be dealing 

with (in modern parlance) pseudo-forces. This becomes especially relevant when trying to deal with 

                                                 
56 I.e.: “Newton “discovered” the action-reaction law in analyzing collision phenomena because he was actively trying to 

construct a set of concepts which would be conserved. It is of course a contingent matter of fact that this was possible – this 

is the restricted empirical import of the law.” 
57 Principia, p. 795. 
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astronomical phenomena where it is notoriously difficult to decide which objects are undergoing a 

truly rotational motion, a fact which of course exercised all seventeenth century natural philosophers 

up to and including Newton (not to mention the church men). 

 At this point we are confronted with Newton’s true genius. By introducing the third law 

among the constitutive principles of his theory, he actually offers a criterion to distinguish free 

particles. If every action has a necessary reaction-counterpart, then we know that a particle is acted 

upon by checking whether another particle is suffering an equal but opposite reaction. (How do we 

know that a body’s weight is a force? Because we measure it through a reaction force.) And taken 

together, Newton’s three laws give us a conceptual basis for recognizing dynamically closed systems 

in nature. (A closed system being a system of particles not acted upon by forces originating from 

outside the system.) This comes out most clearly in the fourth corollary to these laws: “The common 

centre of gravity of two or more bodies does not change its state whether of motion or of rest as a 

result of the actions of the bodies upon one another; and therefore the common centre of gravity of all 

bodies acting upon one another (excluding external actions and impediments) either is at rest or moves 

uniformly straight forward.”58 That is, there is always an appropriate reference system with respect to 

which to describe the motions of the bodies: the one associated with their common centre of gravity. 

As we saw in section 1.1.1, this insight contains the crux of Newton’s ingenious unravelling of the true 

constitution of our solar system. 

 The third law was primarily grounded in collision phenomena, whereas the application to the 

solar system of course involves attractive centripetal forces.59 In citing evidence for this broader 

validity of his law, Newton introduces a thought experiment which implies that a violation of the third 

law for attracting bodies would result in a violation of the first law, a thought experiment which he can 

moreover back up by an experiment involving a lodestone and iron attracting each other while placed 

on water: the fact that they remain in equilibrium once they touch is taken to show that they “sustain 

their mutual endeavors toward each other”60; if one of their endeavors had prevailed, they would have 

formed one body that would have gone off “indefinitely with a motion that is always accelerated, 

which is absurd and contrary to the first law of motion”.61 We again see how the three laws are 

intimately related and taken together express the essential passivity of all matter. The third law is what 

always allows one to see an inertial system in the midst of dynamical interactions, and with respect to 

                                                 
58 Principia, p. 421 (my emphases). 
59 As already noticed in section 1.1.1, this application involves the potentially contentious claim that the third law holds for 

the gravitational force between any pair of satellite and central body (hence excluding mediating mechanisms such as 

provided by an aether). See Stein 1991; Harper 2002b for much more detailed discussions. 
60 Principia, p. 428. 
61 Ibid. 
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this system there is essentially equilibrium (not static equilibrium, but equilibrium between impressed 

and inertial forces)62.  

 But, as was already stressed by Kant, this equilibrium must remain an idea of reason. (It 

expresses the ideal situation in which all the laws of nature would hold exactly true, and consequently 

points towards nature (in its formal meaning) “as the totality of rules, under which all appearances 

must stand, if they are to be thought in an experience as connected”.63) 

 The three laws as principles that are constitutive with respect to experience give one the 

guidelines along which to try to achieve this idea of reason, whatever the forces of nature turn out to 

be. And at the end of his discussion of the empirical confirmation of his laws of motion, Newton gives 

away the background to this idea of reason. At that place he gives a crash course in mechanics in its 

traditional meaning, the theory of machines, claiming that this shows the “wide range and the certainty 

of the third law of motion”.64 Now, this involves a bit of a stretch on Newton’s part, as the action-

reaction principle as it was illustrated through collision involving two bodies, whereas the working of 

machines is always dependent on three bodies, with the third body, the machine itself, acting as the 

reacting force for the “force” and the “resistance”, which strictly speaking don’t make up an action-

reaction pair. But of course, Newton is not so much interested in the fine-grained details of the 

example, as that he is eager to draw a central lesson: “if the action of an agent is reckoned by its force 

and velocity jointly, and if, similarly, the reaction of a resistant is reckoned jointly by the velocities of 

its individual parts and the forces of resistance arising from their friction, cohesion, weight, and 

acceleration, the action and reaction will always be equal to each other in all examples of using 

devices or machines.”65 

 All earlier treatments of the mechanical machines were grounded in the conservation of a 

theoretical quantity of moment in situations of equilibrium. (An agent can sustain a resistance if their 

respective moments are equal.) 66  Newton’s important advance is that he can extend this to all 

situations: notice the presence of “acceleration” among the factors entering into the force of the 

resistant. Driving the whole Newtonian research program is the insight in the passivity of all matter, 

which allows him to search for equilibrium even in dynamical situations. But this search is grounded 

in an idea of nature as an essentially closed system. Exactly because he can let go off the idea of 

picturable mechanisms, Newton is capable of achieving a picture of nature as a giant machine, which 

is nothing more than a device for redistributing a theoretical quantity amongst its parts. 

Notwithstanding his introduction of forces of attraction not mediated by particular mechanisms, 

                                                 
62 See especially Westfall 1971, p. 470. 
63 Prolegomena § 36.  
64 Principia, p. 430. 
65 Ibid. 
66  Much more on this follows in chapter 5, where I will discuss Guidobaldo’s and Galileo’s conceptualization of the 

mechanical machines. 
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Newton could have been able to claim that he was the true heir of the attempts at mechanical 

explanations of the phenomena of nature. His intervention consists in having seen (with hindsight) 

what was truly essential to these attempts. 

 Now, does this long analysis of Newton’s introduction to his Principia answer the query about 

the justification for the laws of motion? It is clear that it doesn’t. It only pushes back the question one 

level back. 

 It is plausible to conclude on basis of the foregoing that Newton could make a strong point in 

claiming that we would not recognize as caused by forces any phenomena of motion that did not 

conform to his three laws. That is, we could interpret his achievement as being a transcendental 

deduction, more or less along the lines of Poincaré’s establishment of the possible geometries of space. 

But for whom would this transcendental deduction have binding force? Only for someone already 

engaged in the kind of practice that Newton takes as his starting point. That is, we must put the “we” 

between quotation marks.  
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 The main tenet of a broadly understood neo-Kantian philosophy is that we can perfectly make 

sense of the constitutive role of certain principles within a system of knowledge without having to 

claim that they are fixed and absolutely universal. This is expressed in the catchphrase of the “relative 

a priori.” Yet while this may open up prospects for retaining attractive features of the Kantian project 

without having to founder on its all too absolutist longings, such an undertaking is not without its own 

problems. As should have already become clear from the foregoing discussions, the fact that the 

constitutive principles are revisable does not (and cannot) imply that the dynamics behind their 

revisability answers to the same logic as that of general empirical claims; but the alternative is not 

directly clear – to put it with the title of Michael Friedman’s Kant lectures: what is the “dynamics of 

reason”?67 It is moreover clear that this relative character threatens to compromise one of the main 

tenets of the Kantian philosophy: the fact that the constitutive principles were taken to be defining for 

human understanding provided a strong foothold for grounding the rationality of objective knowledge. 

 Section 1.1.4 contained a kind of an applied example of this general philosophical problem. 

How can we understand the Newtonian constitutive principles in their historicity without abandoning 

their transcendental role? We must be careful not to misconstrue the import of this “historicity”. It is 

clear that for Kant the Newtonian laws also had a history; i.e. they were first discovered at a certain 

point in time, by Isaac Newton, Lucasian professor of mathematics at Cambridge. But the important 

                                                 
67 Friedman 2001. 
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thing is that for him they had no other possible history, aside from the fact that someone else could 

have discovered them at some other place and some other time. That is, this history is the history of 

recovering something that could not have been otherwise – its discovery is in a sense self-explanatory 

given the constitution of the human understanding. But if we really want to take serious the idea of the 

relative a priori, it can never be a simple question of equating historical origins with transcendental 

ones: a relativized Kantian perspective directs us towards the latter. How can (mathematical) 

principles at a certain point of time assume transcendental force; i.e. how can something become 

constitutive? 

 The provisional answer that I suggested was to anchor these principles in a practice of 

searching for (and tentatively giving of) mathematical and mechanical explanations. The main 

advantage is that this allows us to introduce a truly historical perspective. Whereas constitutive 

principles somehow seem to withdraw themselves from history, human practices are through and 

through historical. What happens through the introduction of constitutive principles is that a certain 

perspective on this practice becomes codified and thus opens up the possibility of “starting” a more or 

less a-historical tradition. (Once one is working within the framework defined by the Newtonian 

principles, historical time drops out. It is immaterial whether results were achieved in the seventeenth, 

eighteenth or twenty-first century; what counts is their place within this ideal tradition. This implies 

that the start immediately looses its character as an origin.)68 I am of course exaggerating. That’s why I 

spoke of “more or less”. There are continually historical punctures within this ideal tradition. Consider 

the important problem of continuum mechanics: Newton’s laws as formulated in the Principia seem 

primarily suited for point particles; but arguably, the majority of interesting empirical problems seem 

to demand a continuum perspective.69 The historical consideration of this kind of problems forced 

scientists to try to develop tools to bridge this gap – tools which were missing in the a-historical ideal 

world where everything was already well-defined, although not yet formulated. This is after all one of 

these points were the constitutive principles are subject to revision; in this case, admittedly, of an 

apparently primarily technical nature. (Although one would be well-advised not to underestimate the 

conceptual consequences of this revision.) But what’s important is that after an initial period of 

uncertainty and tentative proposals, the tradition reasserts itself as ideal and a-historical; a process 

which typically implies the recuperation of the prior tradition within the new perspective. 

                                                 
68 This specific a-temporality of ideal physical theories has been stressed at numerous places by Gaston Bachelard. Cf. “le 

rationalisme est une philosophie qui continue; il n’est jamais vraiment une philosophie qui commence.”  Bachelard 2004 

[1949], p. 54 (cf. also pp. 122-123). Earlier in the same book he had already introduced the concept of a rational memory: 

“Cette mémoire de la raison, mémoire des idées coordonnées, obéit à de tout autres lois psychologiques que la mémoire 

empirique. Les idées mis en ordre, les idées réordonnées et coordonnées dans le temps logique, déterminent une véritable 

émergence de la mémoire.” Ibid., p. 2. 
69 Cf. especially Truesdell 1968; see also Wilson 2000 for an intuitive introduction to some of the problems that arise within 

this context. 
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 Yet it is clear, as already indicated, that in itself this does not solve the problem of the 

transcendental origin, but rather pushes it one level back: wherein was this practice grounded? And 

this is no trivial question. The practice of explaining phenomena and the empirical principles involved 

therein was already guided by a specific (if still controversial and often hesitant) way of proceeding. 

Newton was in a position to claim that this was due to an implicit use of his laws of motion, but this is 

of course an instance of how a historical practice is turned into an a-historical tradition. The question 

that we must ask ourselves, as critical investigators of the historical relative character of constitutive 

principles, is the following: to solve which kind of problems were these principles already “implicitly” 

used? How did one distinguish potential solutions from misguided ones – why could one think that 

something like inertial motion was part of the solution? How was the prior grasp of physical problems 

grounded before experience (in the Kantian sense) became organized by a set of tightly knit 

constitutive principles? In short: what made it possible to formulate these Newtonian conditions of 

possibility? 

 If we want to understand the normative force that accrues to Newton’s laws in their function 

as constitutive principles, we must uncover the logic behind this prior grasp. We must try to lay bare 

part of the process through which a set of empirical problems became more definite and took on a 

character which would allow for their solutions to become exemplars for Newton’s own undertaking. 

We must excavate the intelligence that is deposited in these ways of proceeding. We must attempt an 

archaeology of seventeenth century writings on what could become classical mechanics. 
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 Late in his career, Edmund Husserl started thinking about his philosophical project as one of 

archaeology:70 his phenomenological investigations were directed at revealing the genuine grounds of 

the norms that govern our knowledge. Michel Foucault, who made the expression of “archaeology of 

knowledge” famous, used it to refer to a project that he conceived to be in explicit opposition with 

Husserl’s phenomenology.71 However, the goal of the project remained exactly the same (which of 

course also explains the need that Foucault felt to antagonize against the phenomenologists). The 

grounds that Foucault thought to uncover were explicitly historical in nature, and could in no way be 

ascribed to the activity of a constituent (transcendental) subject. In what follows, I will give a quick 

sketch of what I take to be the broad outlines of the project of archaeology of knowledge. This is 

                                                 
70 See footnote 6 on page 111 of Hyder 2003. 
71 Passages that must be read as implicit attacks on phenomenology and especially the late philosophy of Husserl abound in 

Foucault’s Archéologie du savoir. See also Hyder 2003 on this opposition. 
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explicitly inspired by Foucault’s writings, but I am not interested in faithful exegesis here; I am 

interested in its potential fruitfulness as a historiographical tool to deal with philosophical problems.72 

 Foucault has been read in many different ways, and has been claimed for many different 

causes. Whatever the ambiguities in his writings and the development in his thinking, I think that a 

strong case can be made to interpret his program as a subject-less neo-Kantianism. (This is true both 

with respect to the epistemological side and, maybe somewhat more surprising, the political side. I 

will only focus on the first aspect.) This is a reading that Foucault himself began to stress in the early 

eighties. To illustrate this, I have chosen the following clear quote, from a piece on Foucault that 

Foucault himself wrote for an encyclopaedia, under the pseudonym of Maurice Florence: 

 
Si Foucault s’inscrit bien dans la tradition philosophique, c’est dans la tradition critique qui est 

celle de Kant et l’on pourrait nommer son entreprise Histoire critique de la pensée. … Si par 

pensée on entend l’acte qui pose, dans leur diverses relations possibles, un sujet et un objet, une 

histoire critique de la pensée serait une analyse des conditions dans lesquelles sont formées ou 

modifiées certaines relations de sujet à objet, dans la mesure où celles-ci sont constitutives d’un 

savoir possible. Il ne s’agit pas de définir les conditions formelles d’un rapport à l’objet : il ne 

s’agit pas non plus de dégager les conditions empiriques qui ont pu à un moment donné permettre 

au sujet en général de prendre connaissance d’un objet déjà donné dans le réel. La question est de 

déterminer ce que doit être le sujet, à quelle condition il est soumis, quel statut il doit avoir, quelle 

position il doit occuper dans le réel ou dans l’imaginaire, pour devenir sujet légitime de tel ou tel 

type de connaissance ; bref, il s’agit de déterminer son mode de « subjectivation » ; car celui-ci 

n’est évidemment pas le même selon que la connaissance dont il s’agit a la forme de l’exégèse 

d’un texte sacré, d’une observation d’histoire naturelle ou de l’analyse du comportement d’un 

malade mental. Mais la question est aussi et en même temps de déterminer à quelles conditions 

quelque chose peut devenir un objet pour une connaissance possible, comment elle a pu être 

problématisée comme objet à connaître, à quelle procédure de découpage elle a pu être soumise, la 

part d’elle-même qui est considérée comme pertinente. Il s’agit donc de déterminer son mode 

d’objectivation, qui lui non plus n’est pas le même selon le type de savoir dont il s’agit.73 

 
So let us start with a particularly interesting and convincing way of understanding Kant’s critical 

philosophy, as e.g. expounded masterfully by Henry Allison.74 On this reading, the main goal of this 

philosophy is a reconfiguration of our epistemic norms. Its true originality doesn’t lie in any 

                                                 
72 There exists of course an extensive secondary literature on Foucault; let me just mention two general introductory works 

which consider Foucault’s work from perspectives that explicitly connect it with more analytically oriented philosophy of 

science: Dreyfus and Rabinow 1983, and Gutting 1989. (Hacking 1982 is an appealing brief discussion of some broadly 

conceived Foucauldian insights, which places these squarely within the traditional concerns of more traditional analytic 

philosophy.) 
73 Florence 1984, p. 942 (my emphases). Also Foucault 2001b, pp. 345-346. 
74 Allison 2004. 
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substantive thesis, but (in Allison’s terminology) in the metaphilosophical standpoint that it propagates. 

Critical philosophy doesn’t primarily ask what to believe, but what to take as norm for judging our 

knowledge. Kant’s Copernican Revolution is a metaphor for leaving a “theocentric” for an 

“anthropocentric” model of knowledge (again in Allison’s terminology). A God’s eye view of things, 

where someone has an immediate grasp of objects, isn’t a sensible norm to use in analyzing our 

knowledge. We should rather start from the necessary presence of “epistemic conditions”, i.e. those 

conditions without which our representations could not possibly relate to objects. The task of critical 

philosophy is to analyze these conditions; i.e. to ask: how can something become an object for our 

knowledge? It is not that things transcending the conditions of human cognition cannot exist, but that 

they cannot possibly count as objects for us. To put it metaphorically: whereas a theocentric model 

conceives of objects as given to our knowledge, on an anthropocentric model objects are taken as 

given. What is given to us is cognized only on taking it in. (It is important that it is in no way denied 

that all empirical knowledge requires that something is given; it is only that the givenness refers to the 

objects not yet taken under any empirical description – this is the infamous thing in itself; i.e. the 

things considered apart from all epistemic conditions and, as a result, non-representable.) 

 For Kant these epistemic conditions were intimately and necessarily related with the human 

mind. His critical analysis starts from a fixed subjective point that carries the possibility of 

objectivation in itself. Husserl blamed Kant for taking a much too abstract view on what this 

subjective point consisted in, and wanted to start his own critical investigations from “lived 

experience”. Foucault blames both Husserl and Kant that they assume that there is something like a 

fixed point.75 His project is still critical in that it investigates the possibility of a relation between 

subject and object, but he wants to start his analyses from this relation, without the assumption of a 

fixed point – the question becomes how both objectivity and subjectivity are co-constituted.76 It is the 

relation itself that is constitutive for a possible knowledge. The indefinite particle is no accident: the 

grounds of this relation are sought in particular historical configurations, and with changing 

configurations we can find the possibility of different knowledges. (Admittedly, this sounds awkward 

in English – “savoir” stands for something wider than the limited use of knowledge in English, which 

comes closer to Foucault’s use of “connaisance.” Maybe it helps to keep in mind the verbal use in 

expressions like “savoir lire” or “savoir conduire une voiture”: knowing as being able to enact a 

                                                 
75 It is a matter of debate whether this is an accurate characterization of the position of the late Husserl, who explicitly 

engages with the historical character of constitution, but that need not bother us here. 
76 Ernst Cassirer’s Philosophie der symbolischen Formen similarly tries to investigate how objectivity and subjectivity 

become co-constituted through a mutual and historical process (Cassirer 1922-1927). The important difference is that he does 

assume one regulative principle of reason that drives human history; his history is Hegelian through and through (see 

especially the introduction to the first book of the PSF) and in this respect sharply different from Foucault’s. (Heidegger, in 

his Frage nach dem Ding (1967 [1935-1936]), also suggestively argues that the Kantian project can only be properly 

understood if one starts from this relation itself, rather than from the categories as presented in the Kritik.) 
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particular way of interacting with things and situations. I would suggest that we understand “savoir” as 

somehow midway between propositional knowledge and know-how, and I will try to avoid too 

awkward formulations by using circumlocutions as realm or body of knowledge). 

 These historical configurations have received many names, both in Foucault’s and other 

authors’ hands, partly depending on the chosen level of analysis: discursive formation, episteme, 

regime of truth, style of reasoning (Hacking)… The common insight behind these different 

denominations is that a statement only becomes a candidate to function in a body of knowledge in 

relation to other statements, methodological principles, associated subject functions (“who is speaking 

here?”), and non-discursive technologies and practices. Depending on the particular historical 

configuration in which a statement emerges, it will make a completely different, possibly nonsensical, 

claim. (Consider the statement “this table consists of innumerable atoms and vast empty space” when 

uttered by a Greek philosopher around the 3rd century BC, a condensed matter physicist in 2006, an 

inhabitant of the Amazon forest who has never met a Westerner, a surrealist poet, a computer that is 

programmed to produce random sound-bits, or a British philosopher around 1920.) It is only this set of 

relations that first makes it possible for meaning and reference of these statements to emerge, for 

subjectivity and objectivity to constitute itself.  

 The archaeologist tries to get a grip on these configurations by paying attention to what 

statements do, to the role they play within the context in which they are put forward. (To use an 

example from Foucault: the statement that species evolve functions completely different before and 

after Darwin; this difference, however, is not simply due to the fact that the meaning of the words used 

has changed, but rather that the whole configuration of relations in which this statement can play a role 

has been reorganized.77) They can play several roles because they establish a relation with the possible 

objects to which they can refer, because they invoke particular subject-functions, because they 

simultaneously refer to a number of other statements, because they have a specific materiality (written, 

drawn in a diagram, spoken in front of a classroom, …). As said, this complex of functions is made 

possible because a statement always appears as part of a larger “field of utilization,” which is 

simultaneously a “field of stabilization”. (The identity of a statement as this statement depends on its 

place in such a wider field.) The task that confronts an archaeologist is to try to excavate the way this 

stabilizing function is exerted: what kind of objects are deemed possible, how are these differentiated 

in simultaneously discursive and non-discursive practices – what are their conditions of appearance as 

objects; who is speaking from what kind of position using which means – how are the possibilities of 

subjectivation inscribed in discursive and non-discursive practices; in what kinds of relations must 

concepts stand among each other; … ? 

 Naming this set of relations that tie statements to their context of functioning a “configuration” 

is a circumspect way of calling attention to the systematic aspect of this set while attempting not to 

                                                 
77 Foucault 1969, p. 136. 
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push this systematicity beyond the limits of plausibility (which Foucault at some points gives the 

impression when writing his methodological reflections in L’archéologie du savoir). Both aspects are 

vital. Without any degree of systematicity the use of statements would lack the stability that makes it 

possible for knowledge to constitute itself. But this systematicity must always remain a historical 

stability; i.e. it can not be frozen in absolute structural or discursive “laws”. The particular 

configurations that can be found at certain points of time are the outcome of local and contingent (but 

analyzable) power plays, and accordingly need extra-discursive relations to stay in place. (The 

analysis of these power plays is the subject of what Foucault called genealogy, which must be 

understood as a level of analysis that is complementary to archaeology. I want to focus here on the 

archaeological level.) 

 These configurations not only make possible the appearance of some statements but 

simultaneously and necessarily exclude many others. Any such configuration restricts what can be 

claimed. It is clear why we can understand Foucault’s project as critical philosophy: it still is an 

attempt to trace the conditions under which something can become an object for knowledge. These 

complex configurations are a form of epistemic conditions that make it possible for representations to 

relate to objects, but the locus of these conditions has been shifted from a constituting subject to a 

historical environment – with subjectivity now as one of its elements rather than as its organizing 

principle. (Remember all the talk about the death of man. But keep in mind that we need not take this 

to extremes: it implies that particular forms of subjectivity – in particular the subject as constituting 

authority – have outrun their course; they are no longer able to function in stable configurations. There 

are particular ways in which we simply can no longer think about what it is to be a subject. This is not 

claiming that subjectivity itself has gone out of the door. Subjectivity remains grounded as something 

that is given, and as such constrains all possible relations in which it can enter, exactly as objectivity 

already was for Kant. Maybe we should speak about the human in itself – as the human not yet 

engaged in any discursive or any other relations; empirically unreal but transcendentally necessary.) It 

is not only in an ironic mode that Foucault frequently uses the phrase of the historical a priori to 

describe the object of his analyses. 

 A prime application of this kind of archaeological analysis is directed towards the possibility 

of the formation of scientific disciplines (in Foucault’s case: the human sciences). A discipline is (a 

part of) a configuration that is characterized by a set of statements that are aimed at saying the truth – 

statements that are “within the truth” (“dans le vrai”78). It is only within this realm that one can then 

differentiate between true and false statements (the false statements are “disciplined errors” 79  – 

compare e.g. with what happens in the seventeenth century with the famous number of angels that fit 

on the point of a needle: they don’t even function in false statements, they are relegated the realm of 

                                                 
78 Foucault 1971, p. 36. 
79 Ibid., p. 37. 
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senseless statements, to the “teratology” of knowledge). It is the task of epistemological analysis to 

determine what sets apart the true statements from the false ones. But it is the task of archaeological 

analysis to determine how such a thing as epistemology can exist at all. Another way for stating this is 

as follows: epistemology questions science, archaeology savoir.80 It is only on the groundwork of a 

partly constituted knowledge and know-how that science can emerge. We first have to find out how 

objects are carved out, how concepts are discursively related, before we can see how they are used to 

state truths. There first has to be a basis on which to recognize what and how scientists want to know – 

what it takes to be a scientific object and a scientist.  

 An archaeology of knowledge tries to uncover what is taken to be significant, interesting, self-

evident at particular times in history. It tries to locate the basic structures of intelligibility that reside 

within historical configurations. Needless to stress that this intelligibility (a term not used by Foucault) 

is not rooted in a purely subjective ground, that it rather also includes what it can mean to be to be a 

particular kind of subject (e.g. an empirical scientist). At one point Foucault refers to these structures 

as the brute being of order.81 The term most often used by him, however, is that of a positivity; an 

obvious and partly ironical bow to the basic positivistic insight that all knowledge must be referred 

back to something more basic, but in all probability primarily a way of consciously turning 

Bachelard’s psychoanalysis of the scientific spirit on its head. (Bachelard tried to purge scientific 

thinking from its impeding unconscious structures; Foucault stresses that there are always unconscious 

structures which play an enabling, positive role.) In these structures of intelligibility, in these 

positivities, is the specific normativity grounded which will be proper to the scientific disciplines that 

are first grafted on particular historical configurations. 

 (If I were to summarize the philosophy behind archaeology, I would say it is positivism with a 

functionally organized basic layer – an organization which relates the different relata that first make 

factuality possible – a fundamental level which exactly because of its organized form is subject to 

historical transformation. Facts are facts: a strict positivism seems to be exempt from historical 

changes. But, the archaeologist wants to suggest, maybe some facts can only become facts if they are 

situated in the right kind of configuration.) 

 Transformations in these basic structures open up the possibility of forming new scientific 

disciplines or bring along drastic changes in existing scientific disciplines. These are obviously the 

moments where archaeology finds its own natural anchorage. These are the moments on which much 

becomes visible to the analyst’s eye. New stabilizations can take place quickly but always involve a 

violent moment of restructuration. There is not one general story to be told about how such 

transformations take place. Sometimes it is the introduction of a new kind of object that starts such 

                                                 
80 This juxtaposition of course depends on how one chooses to use the term “epistemology.” In Foucault’s case the opposition 

must be understood as primarily directed towards the work of people like Bachelard. I have no objection to understanding 

archaeology as a kind of historical epistemology – although it still would have to be a special kind. 
81 Foucault 1966, p. 12. 
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transformation. Sometimes it is rather new concepts that in their particular way of combination open 

up a new realm of statements and knowledge. Sometimes it is the definition of a new legitimate 

perspective for the knowing subject that is determining. And sometimes it is all these factors (and 

others) together. Only a local and detailed investigation will tell. 

 

� �������%�	�����	���������	�

 

 Again, I am not going to enter in detailed exegetical exercises. But I think it is worthwhile to 

draw some parallels with the work of Thomas Kuhn, especially as this work is explicitly directed 

towards the physical, and often mathematical, sciences, which also constitutes my domain of 

questioning. It is moreover notable that, from a certain point in his career, Kuhn himself began 

referring to his position as Kantianism with moveable categories.82  

 It is notoriously difficult to extract one coherent philosophical position from Kuhn’s Structure 

of scientific revolutions, but it is of course up to our own judgement to see which is the most attractive 

position that we can find in that fascinating little book. I think the most promising candidate has been 

presented e.g. by Joseph Rouse. This is a reading in which Kuhn is primarily interested in science as a 

practice.83 Rather than interpreting the Kuhnian talk about paradigms as primarily directed towards 

theoretical commitments, comprehensive worldviews, core beliefs etc., and the ensuing problems 

surrounding incommensurability as involving untranslatability of theoretical and empirical claims, one 

can also stress that 

 
…accepting a paradigm is more like acquiring and using a set of skills than it is like understanding 

and believing a statement. 

Among the skills that might constitute the grasp of a paradigm are the appropriate application of 

concepts to specific situations; the deployment of mathematical tools (not just solving equations, 

but choosing the right ones, applying them correctly to the situation at hand, knowing their 

limitations and the ways those limitations can be circumvented, etc.); the use of instrumentation 

and experimental techniques and procedures; and the recognition of significant opportunities to 

extend these skills in illuminating ways to new situations.84 

 

                                                 
82 Kuhn 2000, pp. 104, 264.  It is an ironic twist of history that Kuhn also began to recognize that Carnap’s attempts had been 

directed towards a similar project (although not from a historical perspective, of course), whereas he had took these to be one 

of his main targets at the time of the Structure. For more on this relation, see e.g. Reisch 1991; Earman 1993; Irzik and 

Grunber 1995. Hoyningen-Huene 1995 is a useful and laudable attempt to give a full-scale overview of Kuhn’s writings, 

placing them in an overall Neo-Kantian framework, which, however, is not very deeply engaged with. 
83 Rouse 2003; see also Rouse 1987. 
84 Rouse 2003, pp. 107-108. 
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This way of reading Kuhn will be considerably less focused on questions concerning rationality and 

semantics than has been common. “Living in a new world”, one of these contentious Kuhnian 

metaphors, also takes on quite another sense: this is rather a matter of doing and behaving than a 

matter of believing and thinking. Again Rouse: “If proponents of different paradigms do not fully 

communicate, it is not so much that they cannot correctly construe one another’s sentences or follow 

one another’s arguments. The problem is more that they cannot grasp the point of what the others are 

doing or recognize the force of their arguments.”85 That is, the real roots of incommensurability often 

lie at the level of savoir rather than at that of science.  

 Here I just want to stress the one Kuhnian insight which I really take to be central, and 

probably also the most original of Kuhn’s contributions to philosophy of science. In the 1969 

postscript to his Structure Kuhn tried to clear up some of the ambiguities that had surrounded the term 

“paradigm” in that book. (Ambiguities which I don’t think annul any of the ideas that were expressed 

through the use of the concept – which is another thing than claiming that they all stand up to critical 

scrutiny.) To that end, he introduced two new terms to cover the terrain that he had earlier expressed 

through this one term. On the one hand one needs to take account of the central function of exemplars 

within the normal functioning of science. These are “accepted examples of actual scientific practice” 

that serve “implicitly to define the legitimate problems and methods of a research field”.86 On the 

other hand there is a broader aspect to this shared practice, what Kuhn calls the disciplinary matrix. 

This is the organized complex of elements that make up such a practice, centrally including the 

exemplars, but also other elements such as values, shared concepts, apparatuses, … . 

 Now, this central role for exemplars as constitutive for a field’s legitimate problems and 

methods is a brilliant insight. It is through scientists’ enculturation via exemplars that they learn to 

recognize significant similarities and differences. This is something that would be impossible to grasp 

on any account that stresses explicit knowledge and rules, because such a view cannot even make a 

beginning with understanding the open-endedness of all scientific research. These exemplars 

determine what can become an object for a particular scientific knowledge; they determine how 

concepts are to be put to use. That is, exemplars embody crucial features of a science’s underlying 

positivity. As such they provide an essential clue to understanding how the stabilizing function of a 

discipline is exerted in at least the physical sciences. It is primarily on the basis of these structures of 

intelligibility as exemplified in exemplars that scientists can grasp the point of what others are doing. 

This anchors the common ground on which a science can constitute itself in its glorious abstractness 

and ideality.87 

 

                                                 
85 Ibid., p. 113. 
86 Kuhn 1996 [1970/1962], p. 10. 
87 Dreyfus and Rabinow 1983, p. 60, similarly suggest that Kuhnian exemplars might provide for a missing element in 

Foucault’s analyses. 
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 In this thesis I want to investigate the new field of stabilization that emerged in the beginning 

of the seventeenth century and that gave meaning to the idea that phenomena of motion could have a 

mathematical character. This inevitably requires that I make some preliminary choices in the aspects 

and authors to study. I will focus on Galileo’s attempts to construct a mathematical science of motion. 

This seriously restricts my investigations, and it might even be thought that such focus on one author 

goes counter to the archaeological focus on anonymous configurations that manifest themselves in 

individual authors, rather than seeing individual authors as being at the origin of changes in our ways 

of conceiving things. Yet there are also some things to be gained from such a focus – and this need not 

imply that I turn Galileo in a “founder” of a tradition. (However, there are good reasons why he could 

be considered to be so from a certain perspective. Given our present day practices of knowledge, and 

especially the ways we investigate the world in physical disciplines, there is a good claim to be made 

that Galileo is the first single author in which we can recognize elements that are sufficiently familiar 

to us. This is an interesting claim in its own right, but it is not what I am primarily interested in, nor do 

I think that it necessarily makes him a “founder” in any interesting sense.) 

 I am interested in archaeology of early seventeenth century knowledge as a crucial element to 

understand how it became possible that a scientific theory such as Newton’s could be formulated by 

the end of that century. I want to start giving an answer to what Foucault left as an open question: 

“selon quel ordre et quels processus s’accomplit l’émergence d’une region de scientificité dans une 

formation discursive donnée?”88 Once we have put ourselves in this mode of questioning, I think it 

makes good sense to focus on a single author as Galileo. This thesis will accordingly try to excavate 

the historical a priori underlying his mathematical science of motion.  

 To understand the emergence of a new scientific field it is necessary to uncover the way in 

which “nature” functions discursively as a normative instance that regulates the kind of claims that can 

be scientifically made about objects under study – it is a crucial element in what Foucault called “the 

internal epistemic controls that any scientific discipline exerts on itself.”89 Since it is a central element 

within any structure of intelligibility, we cannot assume that “nature” is at work as a fixed point in the 

transformations that we want to investigate. We are on the contrary trying to see how a new 

configuration of relations between different elements opens up a new kind of access to what can then 

become objective reality. It is only the presence of such a basic structure of intelligibility that makes it 

possible to discern things within nature. It is only on this basis that some things can start to function as 

                                                 
88 Ibid., p. 240. 
89 Foucault 2001a, p. 896. 
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evidence for claims about nature. The important challenge is then to see how this transformation can 

take place if it is not through noticing things within nature or by making new claims about nature: in 

which Archimedean point can such transformations find their point of leverage? This challenge of 

course derives its pertinence from the fact that we should be able to answer this question without 

ending up in an untenable idealism. Chapter 5, which deals with this issue, is the pivotal point of the 

present thesis. 

 To understand the changes wrought through the work of someone like Galileo, it is necessary 

to understand the kind of position from which he could start. As will become clear, the link with the 

category of the mixed sciences is crucial. These were the mathematical sciences as applied to physical 

phenomena. On the one hand, the category refers to a discursive practice that was inscribed in the 

sixteenth-century Aristotelian field of knowledge. Philosophers discussed about the possible worth of 

these sciences; its practitioners tried to position their endeavours with respect to these philosophical 

discussions. On the other hand, these practitioners were forging themselves an interesting place in 

society which could be gained independently from these philosophical discourses. They stressed the 

characteristics of their endeavours which could make these particularly well suited to be accorded a 

central and legitimate place. Chapter 2 will introduce a few elements that are directly relevant to these 

issues. 

 There is also another angle from which to approach these mixed sciences. We can try to see 

how its practitioners discursively organize the content of their knowledge within their treatises. In 

chapter 3, I will investigate Guidobaldo del Monte’s mechanical writings to see the kind of coherence 

he was imposing on the science of mechanics. To this end, I will primarily pay attention to the use to 

which he puts some of his central concepts. How does this allow him to mathematically represent facts 

about physical instruments such as a balance? 

 In chapter 4 we will see how this kind of discursive organization provides Galileo with a 

model for his own first attempts at developing a mathematical natural philosophy. However, this 

implies that he breaches the rules of the philosophical discourse concerning the mixed sciences. We 

will see how he does this by exploiting exactly these properties that are singled out in chapter 2 as 

providing the mixed sciences with a legitimate position of their own. This is then a first important 

element in the stabilization of a new field of knowledge. The values embedded in late sixteenth-

century society did allow for a different structuring of this field. 

 At this point, we are confronted with the problem about “nature” mentioned above. Galileo 

claims to be discoursing on natural phenomena, but his way of engaging the objects of his study is to a 

large extent determined by what he had learned from works in the mixed science tradition such as 

Guidobaldo’s. He notices crucial facts about physical bodies by seeing how they behave on an 

instrument such as the balance. If this enterprise is to make sense, it must be because it is stabilizing 

around a new mode of functioning for “nature.” 
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 Peter Machamer introduced the notion of “model of intelligibility” to capture the multiple 

functions the balance plays within Galileo’s science: “Its physical concreteness, mathematical 

describability, and physical manipulability leading to experimental possibilities gave intelligibility and 

structure to the abstract concepts of the mechanical world picture.”90 This notion fits very nicely with 

the kind of archaeological framework that I have described in section 1.2. The balance is an exemplar 

embodying the structure of intelligibility that grounds the discipline in question. The question about 

the stabilization of the new field of knowledge thus can be sharpened to the question: why would a 

mechanical instrument like the balance become a model of intelligibility for a science of nature? If we 

can understand how this could have happened, we can make a start with answering Foucault’s query 

how a “region of scientificity” could arise within a given discursive field. 

 The answer that will be proposed in chapter 5 shows how a number of different elements 

present in the traditional discourses on machines could be put together in a new kind of configuration. 

It is only the simultaneous presence of these elements that could lock the stability of the new field of 

knowledge. Once this stability sediments in something like a model of intelligibility, it starts 

constraining further investigations directly. It is these models that from now on determine how 

phenomena present themselves, what kinds of questions can be asked, which are proper evidential 

considerations; i.e. they are constituting a region of scienctificity. 

 Up to this point, we will have assumed that Galileo retains the internal discursive organization 

of the mixed sciences but places it within a different field of knowledge. However, the latter fact has 

repercussions for this internal organization. As the regulative functioning of nature has been 

restructured, the representational relation linking mathematical structures to concrete physical events 

also takes on a different character. In chapter 6 we will see how this throws light on the important 

question of idealization within Galileo’s science. The principle of inertia, e.g., describes behaviour that 

can impossibly be empirically exemplified, and as a result one could wonder what is the sense in 

accepting its truth. (Guidobaldo would certainly have felt this bewilderment.)  

 I will also introduce a further important element of a model of intelligibility’s mode of 

functioning in chapter 6. The normativity embodied in a balance or a pendulum is not only situated on 

the theoretical level. The way the phenomena under study present themselves also depends crucially 

on the way we bodily engage with e.g. a pendulum. This performative reason, as I will call it, is an 

important epistemic condition that makes possible the mathematical representation of phenomena of 

motion. As a result, at the end of chapter 6, I will be in a position to sketch what I take to be the 

different levels at which Galileo’s models of intelligibility function simultaneously to play their 

particular roles.91 

                                                 
90 Machamer 1998b, p. 71. 
91 Cf. chapter 6, section 6.3.2. This section, taken together with chapter 5, section 5.4, expresses the true analytic core of my 

study of Galileo’s science of motion. 
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 Chapters 7 and 8 form a kind of case study where we can see how this stabilizing function of 

models of intelligibility is being exerted. To this end, I will analyze the development of Galileo’s 

thinking on a specific problem with which he was confronted in his theory of motion. I don’t want to 

burden Galileo with the impossible task of founding a whole new structure of intelligibility (how 

could such structure be shared if it was founded by one individual – it would not be a structure of 

intelligibility but a structure of idiosyncracy); but neither do I want to diminish the important role he 

played in the stabilization of this field. To investigate this role we must follow the attempts that we 

can trace throughout the whole of his writings to formulate a set of problems in a new way. 92 It is here 

that we can witness the transformation and stabilization of a discursive formation at work.  

 Chapter 9, finally, will be devoted to a study of Galileo’s way of discursively stabilizing the 

field in which his sciences are to function. Let me stress that this happens very tentatively. A 

completely stabilized discursive formation is an ideal type: useful for analytical ends, but very 

improbable to be found realized in any historical situation. This situation is similar with that of the 

Kuhnian distinction between normal and revolutionary science. 
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 To counter some of the suspicions that may have arisen (after all, invoking Foucault may 

already have been enough to have this effect): I am not interested at all in questioning the status of 

knowledge as knowledge. What I do want to investigate is under what conditions something can 

become an object for our knowledge. It may very well be (and “of course” I believe this to be the case) 

that we have found out about physical capacities which are as real as one can like, and which for that 

matter have always been real. But this does not automatically imply that the structures of intelligibility 

which first make these into possible objects for our knowledge have been there all along. Whatever 

matters of the fact we may notice about the physical world, these are simply unintelligible from within 

some other historical configurations. Being real does not imply being present. 

 This implies an element of relativity, but I believe this is healthy relativism, far removed from 

sweeping claims, but on the contrary open to local resolution. As repeatedly stated, the kind of 

exercise that I propose in this thesis is to uncover the grounds for the normativity of something like 

Newton’s laws of motion (knowing well that I will only be able to take a first small step). But it may 

very well be that on investigating these grounds, we decide that they indeed involve the kind of basic 

relations between us and the world that we want to uphold as defining good practice. It is not because 

our science is grounded in a particular and partly contingent way of engaging with the world that these 

ways can no longer be taken to be defining for what is to count as objective knowledge. It is up to us 

                                                 
92 This way of phrasing the issue provides a clear link with Jardine’s (2000 [1991]) question-oriented historiographical 

framework, which indeed shows many similarities with what I take to be an archaeology of knowledge. 
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whether we want to continue our epistemic practices or not. Critical philosophy investigates the 

grounds on which something can become problematical; it does not decide whether we can still 

recognize and want to uphold these grounds. (How to make such decisions? That is an interesting and 

difficult philosophical problem, which has not yet received the attention it deserves. See however van 

Fraassen 2002 for an interesting attempt from an analytical philosopher who has gradually come to see 

the importance of this kind of question in his attempts to develop a “new,” voluntarist epistemology.) 

 One of the main reasons why it is tempting to elevate the truths expressed in physical theories 

to a more absolute status is that these theories seem to have achieved a relative high degree of 

autonomy from the particular historical configurations in which they first emerged. (Certainly when 

we compare them with Foucault’s main object of study: the sciences of man.) That is, these sciences 

are, in Foucault’s words, organized by a set of internal epistemological controls.93 The example of 

Newton provides an illuminating example. By codifying some central features of what he took to be 

exemplary achievements, he is able to partially detach these results from their locally situated 

practices. From now on, his laws of motion define what it takes to be within the domain of mechanics. 

The theory itself helps to pick out which problems to treat. It starts actively constraining the practical 

context in which it functions, rather than the other way around. 

 We should not forget Kuhn’s insight, however: even in the presence of a set of constitutive 

principles, there is still an important role for skill in applying the theory. Exemplars embody the 

presuppositions on which the theory operates, but seeing how this fleshes out in any particular context 

remains dependent on the scientists’ abilities to perceive the relevant similarities and to exploit them to 

treat new situations. (This actually depends on a plethora of skills: recognizing that a phenomenon is 

“sufficiently” similar to known phenomena; knowing how to effect necessary calculations, which 

includes seeing which shortcuts in calculation are harmless; knowing how to set up a good and 

relevant experiment, which includes skills in manipulating instruments in the right way; etc.)94 This 

can again nicely be illustrated by Newton himself. It took considerable skill to see that and how 

astronomical phenomena could be understood as mechanical. It is interesting to note e.g. that the 

investigations that led to the Principia really took off at the moment that Newton “saw” that Kepler’s 

area law was intimately bound up with the law of inertia.95 

 The fact that these constitutive principles necessarily remain embedded within a practical 

context which only gives meaning to their application helps to underscore the central point I am trying 

to make here, which is that the ultimate justification of these principles (and of all the further claims 

that they make possible) lies in the practices of which they express some of the basic presuppositions. 

Rather than expressing truths about the ontological structure of reality they formalize something basic 

                                                 
93 Foucault 2001a, p. 896. 
94 See Rouse 1987, especially chapter 4, for an interesting treatment of the different roles of skills in scientific practice. 
95 Cf. e.g. Cohen 1980, p. 250. (“And then, perhaps suddenly, the significance of the area law would have burst upon his 

consciousness.”) 
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about our way of engaging with the world within a certain practice. To repeat: within this way of 

engaging we encounter many facts which constrain our possibilities of engagement and 

simultaneously allow us to formulate true (or false, for that matter) claims about nature. The fact that 

they allow this is already an important part of their justification. An epistemic practice which would 

not enable the generation of constraints on its own internal development would not appear very 

valuable. 

 Of course, everybody is free to hypostatize epistemic conditions into ontological categories. 

But this actually means that one pretends to be able to step outside any way of engaging with the 

world to see its noumenal structure. Falling back on a theocentric model of knowledge may be a 

recurrent feature of Western philosophical activity, but why not try to resist such a soothing (?) move 

which actually teaches us nothing new? 

 I will not enter any further into these debates in the rest of this thesis. (Debates which are of 

course a bit more sophisticated than I have presented them here.) I prefer a detailed investigation in a 

particular way of engaging with the world above abstract philosophical musings concerning its status. 

In the end it is only this kind of detailed, local and historical work that can really teach us something 

about the specific rationality of our practices and the theories that are grounded therein. 
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 Many of the twentieth-century discussions concerning Galileo have been structured around 

the question whether a Platonist metaphysics and/or epistemology lay at the origin of his 

mathematical forays into the traditional field of philosophy of nature. I will not enter into a sustained 

discussion of the different positions that have already been defended on this issue, but I will offer some 

elements of what I take to be the beginning of a defensible answer to this question in the very last 

chapter of this thesis. Of course, this assessment will be based on what will be learned in the next 

chapters. In the present chapter I will sketch part of the historical background against which these 

studies in the next chapters must be read.  

 By introducing some of the late sixteenth century philosophical views on the relation between 

mathematics and the empirical world, I will try to place Galileo’s endeavours to develop a 

mathematical science of nature in their own context. However, rather than attempting to trace 

influences, I hope to uncover the broad outlines of the conceptual space within which philosophers 

reflected on the possibilities of a mathematical science, as well as the picture of Platonism that was at 

work in these reflections. This will later allow us to ascertain part of the dynamics between this 

background and Galileo’s ways of implicitly restructuring this conceptual space through his practice. 

 In a second main section, I will connect these philosophical reflections with the changing 

institutional and social status of mathematical practitioners and practice in the sixteenth century. (But 

let me immediately add the caveat that only in the next chapter I will have a look at these sciences as 

they were practiced, rather than as how they were presented and perceived – which is the limited 

focus of the present chapter.) This is important to properly understand the position from which Galileo 

was working and writing. We will accordingly see in some of the ensuing chapters how the availability 

of this kind of position made possible some of the peculiar features of Galileo’s contributions to the 

stabilization of a new field of knowledge. 
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Aristotle’s views on the relations between the different fields of knowledge are multifaceted 

and present too many subtleties (or internal problems) to be adequately dealt with here.96 Yet one of 

the organizing principles of Aristotle’s views on science required that a science should be homogenous, 

i.e. that its principles deal with the same genus as its objects.97 Both natural philosophy and pure 

mathematics seem to fit this bill easily, but applied mathematics at first sight present a problem, as it 

uses purely mathematical principles but applies them to natural things such as visual rays, sounds, or 

celestial motions. As shown by Richard McKirahan, Aristotle’s own pronouncements on these 

subalternate or mixed sciences are not entirely coherent and sometimes seem to be directed towards 

different distinctions at once.98 It is nevertheless useful to start by introducing some of Aristotle’s own 

ideas. This will be important for understanding the status that the mixed science of mechanics can hold 

in the sixteenth century landscape of knowledge. It will also prepare the ground for the summary of 

some sixteenth-century views on mathematical sciences in the next subsections. And finally, it will 

also be crucial to understand some features of Galileo’s practice, which in crucial respects must be 

situated in the tradition of these mixed sciences, as will become clear in some of the next chapters. 

 The requirement of homogeneity is not necessarily violated when mathematical principles are 

applied to natural objects such as visual rays because they can be applied to these objects qua 

geometrical objects. Visual rays are not identical to geometrical lines, since they have different 

qualitative properties, but in a subordinate science they are treated as if they just had geometrical 

properties. To quote from McKirahan’s neat summary: 

 
Another way of expressing this connexion is to say that the subordinate science takes its subject 

over from the superior science, but adds a further element to it. The optician studies lines in sight, 

the musician, numbers in sound. From the point of view of the manner of treating the subject 

                                                 
96 This is of course reflected in the extensive commentary literature that arose around this topic in the hey-days of scholastic 

philosophy; see e.g. Weisheipl 1959 and Grant 1996 for good introductory treatments (Weisheipl 1965 sketches some of the 

early medieval discussions). The structure of the mixed, middle, subordinate, or subalternate sciences has received a 

considerable amount of attention in the literature. Cf. Machamer 1978; McKirahan 1978; Wallace 1984 (chapter 3); Lennox 

1986; Laird 1987, 1997; Mandosio 1994; Dear 1995 (chapter 2); Gingras 2001; Biener 2004; for some of the aspects most 

relevant to my purposes. (On the terminological side, I will use the terminology of “mixed sciences”, which seems to have 

become in vogue precisely around Galileo’s time, instead of the more typically medieval “middle sciences”, or the more 

literally Aristotelian “subalternate sciences”.) 
97 Most of the following views are to be found in the Posterior Analytics. 
98 McKirahan 1978. 
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matter, this difference is irrelevant – what is added is accidental. It is the modus considerandi that 

determines the structure, organization, and approach used in the proofs of the science.99 

 
This leaves us with some further questions of course. To assess the import of this distinction it is 

particularly important to unpack the “qua”-quantifier. That it is possible to study physical objects qua 

mathematical seems to imply that there is a true description of these objects involving only 

mathematical properties. If this is indeed possible, then it becomes understandable what it would mean 

to give mathematical demonstrations concerning them. More specifically, given that an object has a 

particular mathematical property, it would become possible to give a mathematical explanation of why 

it has this property; an explanation which would involve more general mathematical principles. One 

thus sees arising a double task for any investigation in these mixed sciences: a first has to do with 

establishing that a class of physical objects has a particular property which can be described 

mathematically; a second task then consists in showing that it has this property in virtue of further 

mathematical principles. Hence, the physical part of a mixed science gives one knowledge of the fact 

to be explained (an explanation quia), whereas the mathematical part possibly gives one knowledge of 

the reasoned fact (an explanation propter quid). 

 Is it possible to have true descriptions of physical objects involving only mathematical 

properties? According to at least one modern commentator, Aristotle was of this opinion.100 On this 

interpretation he must have had a genuinely positive attitude towards the possibility and possible 

worth of the mixed sciences. A more traditional interpretation of Aristotle would have it that 

mathematical objects only exist in pure extension (intelligible matter) underlying physical objects, 

which can only be reached through radical abstraction from anything sensible.101 On this view a 

physical sphere is never truly, i.e. mathematically, spherical, since the exactitude of mathematical 

objects is due to the fact that they inhere only in intelligible matter.102 As a result, the prospects for 

mixed sciences would look much grimmer. 

We must moreover not forget that since on the first interpretation the properties of objects that 

are treated in mixed sciences are truly mathematical, the objects would have them in virtue of their 

exemplifying particular mathematical structures, and not in virtue of their nature, i.e. their being the 

kind of things they essentially are. It is clear that even on such a view the mixed sciences would only 

                                                 
99 McKirahan 1978, p. 202. 
100 See Lear 1982 for a reconstruction of Aristotle’s philosophy of mathematics which makes Aristotle come out as holding a 

rather sophisticated and attractive view on these matters. 
101 See Mueller 1979 for a defence of this view; Mueller 1990 charts the attribution of this view to Aristotle by the ancient 

commentators. (In the later publication, Mueller admits that he no longer holds on to this interpretation, leaning instead 

towards the view expounded in Lear 1982.) 
102 “To say that the mathematician studies a man as solid is not to say that he studies a man at all. Rather, it is to say that he 

studies what is quantitative and continuous in three dimensions.” Mueller 1979, p. 102 (my emphasis). For Aristotle’s talk 

about intelligible matter, see Metaphysics VII, 10. 
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be of seriously circumscribed value to Aristotle. As a result, the view generally held among medieval 

commentators seems to have been that the physical nature of the subject matter in the mixed sciences 

anyway changes the demonstrative status of its mathematical proofs of particular facts from propter 

quid to quia.103 (It must be noticed that the medieval commentators often seem to have had a slightly 

different distinction in mind than did Aristotle.104 Yet the difference is not terribly important for our 

purpose.) When one applies mathematical proofs to physical objects, one foregoes the possibility of 

ever attaining any of the object’s properties’ proper and immediate causes.105 The properties studied 

by the mathematician simply never inhere in a physical object in virtue of its nature. All that 

mathematical demonstrations can possibly teach concerning natural objects must remain on the purely 

accidental level. 

It is important to try to disentangle the two related threads of criticism that are being levelled 

against the mathematical sciences. On the one hand there is what I propose to call the problem of 

idealization, on the other hand the problem of abstraction. The first states that physical objects never 

exemplify exact mathematical structures; the second that mathematical properties are necessarily 

accidental (i.e. what one is left with when everything essential is abstracted away).  It seems to me 

that the latter is the more fundamental problem from an Aristotelian point of view.106 The problem of 

idealization apparently derives its strength from its association with the abstractive view on 

mathematical entities. Seen from this perspective, it is primarily an expression of the ontological gap 

between the mathematical and the physical that finds its origin in the fact that the former supposedly 

deals with intelligible and completely abstract matter and the latter with sensible and essentially 

formed matter. As such it boils down to the idea that we should take Aristotle’s talk of mathematics as 

involving an operation of separation quite literarily.107�
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The existence of the category of mixed sciences provided some space, although seriously 

circumscribed, for applied mathematical sciences within an Aristotelian framework. The status one 

ascribes to these sciences clearly depends on one’s views on the nature of mathematical knowledge, 

                                                 
103 See Laird 1987, 1997. Thomas of Aquino seems to have been a notable exception. 
104 Compare McKirahan 1978, p. 203, with Laird 1987, p. 168. 
105 As Laird 1987, p. 151, explains for the case of Grosseteste: “That is to say, when a pure mathematician considers a 

spherical body, he thinks of it as an abstract sphere and demonstrates of it certain purely mathematical properties, such as its 

being the largest isoperimetric figure. But when a physicus considers the same spherical body, he demonstrates that it is 

spherical using natural principles such as the homogeneity of its material.” 
106 Especially if one takes into account the view, defended by Lear, that Aristotle did not believe that idealization posed an 

insurmountable problem. 
107 The main Aristotelian passages where he speaks about this separation are in Metaphysics XIII,3, and Physics II,2. But, as 

already mentioned, see Lear 1982 for a more subtle reading of these passages. 
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and its relation with the empirical world. During the second half of the sixteenth century there arose an 

interesting philosophical debate on the nature of mathematics which is immediately relevant to these 

issues. Although the debate was primarily focused on the status of demonstrations in pure mathematics, 

it can help us to better ascertain the space of possible positions concerning the prospects and place of a 

mathematical science of nature that existed around the turn of the seventeenth century.108 
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In 1547 there appeared a treatise entitled Commentarium de certitudine mathematicarum 

disciplinarum. Its author was the Siennese philosopher Alessandro Piccolomini, who had appended the 

treatise to his equally influential paraphrase of the pseudo-Aristotelian Mechanical questions. The title 

immediately makes clear what was at stake: to ascertain the reasons behind mathematics’ supreme 

certainty. According to a certain tradition this would be due to the nature of mathematical 

demonstrations. These would actually be demonstrationes potissimae, which, following Averroes, 

were held to be the highest type of syllogistic demonstrations, as these give knowledge both of the fact 

that something is the case and of the true, proper and immediate cause of this fact (i.e. they are at the 

same time an explanation quia and propter quid). Yet, as Piccolomini tries to show, one could doubt 

whether mathematics really lives up to that standard. After all, which causes would be given in a 

mathematical demonstration? Certainly no efficient, material or final causes; but, again following 

Averroes, one could believe that mathematicians were dealing with formal causes. Borrowing from 

Proclus, Piccolomini offers some examples from Euclid’s Elements that prove the contrary. If the 

demonstration is to be potissima, the major premise must give an essential definition and the middle 

term must be the proper, unique and immediate cause of the property proved. Euclid fails on both 

scores. 

 There is an alternative way to understand the certainty of mathematics, however. Rather than 

focussing on the type of demonstration, Piccolomini suggests that we should focus on the peculiar 

nature of mathematical objects. In fact, quantity is the most universally shared sensible accident: one 

just abstracts from everything that makes up the particularity of any object until all that one is left with 

is what Piccolomini prefers to call “quantum phantasiatum”, which is nothing but the possibility to 

acquire specific spatial determinations. And this “omnium sensatorum sensatissimum” is something 

which is undeniably shared by all our sense experiences. Since we have abstracted from all 

particularity, this implies moreover that quantity has no intrinsic connection with substantial forms. 

On the contrary: it is pure receptivity for form; i.e. being associated with prime matter, it inheres in all 

                                                 
108 My account of the debates on the Quaestio… leans heavily on the very useful and erudite synthetic work of De Pace 1993. 

The other secondary sources that I consulted are Galluzzi 1973, Rose 1975 (chapter 12); Wallace 1984 (chapter 3); Jardine 

1988; Baldini 1992 (chapter 1); Mancosu 1992, 1996 (chapter 1); Dear 1995 (chapter 2); Feldhay 1998. Extensive quotations 

of most of the authors are given throughout the text and in the footnotes of De Pace 1993. 
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material substances without depending on any particular form. The certainty of mathematics simply 

derives from its total separation from everything natural. But this immediately implies that 

mathematics cannot be of much value in trying to understand the true nature of things. Even if 

mathematical knowledge is being applied to physical objects, as is done in the mixed sciences, this in 

no way restores its scientific character. Indeed, in these sciences one simply concentrates on the non-

essential quantitative characteristics of objects. In fact, Piccolomini explains, while adolescents may 

have very little expertise, they are very well capable of this kind of mathematical abstraction. Natural 

philosophy and metaphysics, on the contrary, require long study, much work, and unremitting 

observations, and are way beyond their ken.109 We are confronted with a telling mirror image of the 

criticism that Galileo, and with him many other seventeenth-century philosophers, will level against 

exactly the kind of philosophy that Piccolomini stands for: that it is too easy to be informative in any 

sense. 
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Piccolomini’s attack on the status of mathematics did not go unnoticed. Among the people 

who took up the challenge was Francesco Barozzi, lecturer of mathematics at the university of Padua – 

the same university that had earlier been attended by Piccolomini, and which would later host Galileo 

among its staff. Barozzi was especially versed in the writings of Proclus, which had provided one of 

the cornerstones of Piccolomini’s arguments. He immediately received the approval of Daniele 

Barbaro, the editor of Vitrivius’ Architecture, who expressed his gratitude for the fact that the opinion 

of Piccolomini was refuted as “nova et non fondata”.110 Contrary to what we are often led to expect, 

mathematics was apparently held in high respect in many sixteenth-century university circles. 

 In his Opusculum, in quo una Oratio, et duae Quaestiones: altera de certitudine, et altera de 

medietate Mathematicarum continentur, published in 1560, Barozzi exploited the fact that Piccolomini 

had blended what seemed to be a basically Aristotelian position with Neo-Platonic elements. 

Notwithstanding his highly critical attitude towards the status of mathematical demonstrations, 

Piccolomini had assumed that mathematics somehow occupied a middle position between philosophy 

and metaphysics, a position which was reflected in the certainty attached to the objects of mathematics. 

                                                 
109 “Quaerens ergo Aristoteles in Ethica cur pueri, prudentes, spapientes, aut naturales fieri non possunt, Mathematici vero 

possunt, statim assignat causam, quia scilicet Mathematicae sunt ab extractione, aliarum vero facultatum principia per 

experientiam assumuntur. Pueri vero non sunt expertes, ad abstrahendum vero maxime sunt idonei. […] Cum igitur 

principalia naturalia, resque ipsae naturales, et etiam Metaphysicae ex effectibus, longa experiential per sensum perceptis, 

cognoscantur, hoc autem longo tempore indigent, maximoque labore, et assidua observationone, nil mirum si pueris aditum 

negant, quipped qui ob aetatem experti non possunt. Res autem mathematicae, cum ex abstractione sint, seipsas penitus, et 

medullitus sensui nostro praebent, seque totas patefaciunt.” Quoted in De Pace 1993, pp. 44-45. (My emphasises.) 
110 De Pace 1993, p. 126, fn. 18. 
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Such a hierarchy of disciplines according to the nature of their entities was however an essentially 

Neo-Platonic element, where this was however commonly interpreted as degrees of perfection. By 

reading medietas in such a Platonist vein, and neglecting Piccolomini’s stress on the disregard of all 

particularity that comes with the all too easy abstraction, Barozzi can proclaim that it is impossible 

that the certainty of the objects would not reflect itself in the certainty of its demonstrations.  

 The Platonist perspective chosen by Barozzi turns Piccolomini’s argument exactly upside 

down. Whereas the latter had argued from the separation of mathematical objects from natural objects 

to the imperfection of mathematics, Barozzi sees in this separation the ground of mathematics’ 

superiority. The more we avoid the corruptibility and imperfections of the empirical world, the closer 

we can approach the true nature of reality. The pursuit of mathematical knowledge is thus a necessary 

step in man’s philosophical ascent towards truth. 

 Barozzi also deals directly with Piccolomini’s attack on the status of mathematical 

demonstrations as not exemplifying potissima demonstrations. He rightly points out that all the latter 

has done is to give some examples from Euclid which seem not to live up to the standard. But this is a 

long way from proving that geometrical demonstrations in general do not live up to the standard. One 

should rather understand these exceptional deviations as being introduced for didactic reasons, to 

avoid complicating the presentation of a series of theorems too much. Barozzi also stresses the fact 

that the scientific character of mathematics can also be seen from its perfectly systematic character. It 

is clear that this character was not really questioned by Piccolomini, but it is important to see that this 

is a theme that would become increasingly associated with the question on the certainty of 

mathematics. As a result, it would start to become possible to detach the discussion on the certainty of 

mathematics from purely ontological questions, although this certainly would have gone counter to the 

way both Piccolomini and Barozzi understood the topic. 
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Pietro Catena was another Paduan professor of mathematics (from 1547 until 1576) who 

entered in the debate on mathematical certainty. In a number of treatises, he argued resolutely for a 

Platonist view on mathematical entities, and tried to develop a view on demonstration which could 

both do justice to such a view, and incorporate Aristotelian elements. Whereas Piccolomino had 

defined mathematical objects as “sensata sensatissimorum,” Catena was clear on the basic 

independence of mathematical objects from everything empirical. If they were solely the result of an 

abstractive operation, they would lack the exactness which is one of their basic characteristics. 

Moreover, it is necessary to conceive of these objects as absolutely universal, again something not to 

be found in any empirical grounds. Alongside these strong objections against Picollomino’s views, 

Catena offered an obvious alternative: pure reason alone is responsible for the existence of 

mathematical objects. As had already been done by Barozzi, Catena invokes the Platonist doctrine of 
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reminiscence as an essential prerequisite to understand the grounds of mathematical knowledge. Yet, 

as stressed by Anna De Pace, his focus is significantly different from Barozzi’s, and his conclusions 

consequently point in another direction. Whereas the latter had interpreted this doctrine in a way that 

precluded possible application of mathematical knowledge to material objects, Catena claims that 

geometry is not only the science of ideal entities, but also a tool to attain knowledge of concrete 

sensible things. Mathematics deals with universals, which are known through a rational thought 

process alone, but particular things can also participate in this universal nature. Mathematical objects 

do not primarily serve as deliverance from an unstable and imperfect empirical world. They rather 

allow us to discern universal properties in empirical things, transforming these into scientific objects.  

The demonstrative procedures of the mixed sciences are thus the same as those of pure 

mathematics. But these are not potissima according to Catena. This does not necessarily affect their 

scientific status, however, but can also be seen as a limitation of Aristotle’s syllogistic model of 

demonstration. In this way, Catena turns Piccolomini’s critique of the status of mathematical 

demonstrations towards his own ends. He argues that already Aristotle had made the distinction 

between on the one hand syllogistic and on the other hand geometrical induction.111 Both are valid 

modes of inference, directed towards different goals, and issuing from different kinds of premises, but 

Catena seems to intimate that geometrical induction has much more heuristic power. Much stress is 

again put on the systematic character of the body of geometrical knowledge. Geometrical 

demonstrations indeed do not necessarily involve “an essential definition” or “the proper, unique and 

immediate cause of the property proved” (as was demanded by Piccolomini), but they do always 

proceed from the better known or more universal to the less known or less universal. The internal 

order of relationships established in a geometrical treatment makes it possible to attain clear and valid 

knowledge of complex properties. But let us not forget that this stress on the rigour of the procedure is 

still accompanied by an explicitly metaphysical view on the essentially intelligible nature of the 

mathematical entities which guarantees the universality, exactness, and applicability of every 

conclusion drawn on their basis. 
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The Jesuit professors at the Collegio Romano followed the debate on mathematical certainty 

with obvious interest. The philosopher Benedetto Pereira unequivocally sided with Piccolomini and 

tried to purge the latter’s position from what he understood to be spurious Neo-Platonic elements so as 

to strengthen this position (and to counter Barozzi’s exploitation of these elements). In his De 

communibus omnium rerum naturalium principiis, first published in 1576, he further develops the 

                                                 
111 “Verbum hoc inducens duas inductiones significat. Alteram Geometricam, reliquam syllogisticam.” Quoted in De Pace 

1993, p. 212, n. 54. 
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view that mathematical properties are only true of prime matter, which he conceptualizes as a kind of 

quasi-substance. Since he thus fully agrees that quantity is completely separated from substance, he 

again draws the conclusion that mathematics can have nothing to do with the explanation of causes, 

and thus cannot be truly scientific. As an example he offers the property of a sphere that it touches a 

plane in one single point, which only holds of the sphere as an abstract and mathematical quantity, but 

which is false for the sphere as a physical extension, since “si subiectum quantitatis […] est substantia 

composita, perspicuum est repugnare quantitati”.112 It is of course not the abstractive nature per se of 

mathematical concepts that is detrimental in the views of this Aristotelian philosopher, but their 

explanatory impotence. As mathematical reasoning ignores all change and the essentially formed 

matter, i.e. everything that has to do with the actual existence of substances, it is solely interested in an 

ordo cognoscendi, to the complete exclusion of the ordo essendi. Pereira further strengthens the 

position that natural philosophy is completely independent of mathematics by resolutely attacking the 

Platonist doctrine of reminiscence: all knowledge acquired by the soul is due to its natural unity with 

the body and senses. Whereas Piccolomino had attributed the certainty of mathematics solely to the 

nature of its object, Pereira agrees with many of his opponents that the nature of its demonstrations is 

to be held primarily responsible. However, the rigour of its procedure remains separated from the 

nature of its premises, and cannot guarantee its scientific character. 

 Pereira was chided by Christopher Clavius, the most eminent mathematician of the Collegio 

Romano, for spoiling his pupils by telling such things as that “mathematical sciences are not sciences, 

do not have demonstrations, abstract from being and the good etc.”113 The vehement reaction of 

Clavius brings another side of the discussion to the fore: the institutional struggle between 

philosophers and mathematicians on the right to treat the natural world.114 It is important to remember 

that Clavius was engaged in a program of educational reform within the Jesuit society, in which he 

tried to push the agenda of mathematics as deserving an elevated status, whereas Pereira can be seen 

as providing arguments that should reinforce the Jesuit’s politics of knowledge, wherein the distinction 

between mathematics and natural philosophy, and the submission of both to theology, played a crucial 

role. Ugo Baldini has forcefully stressed how this architecture of the field of knowledge essentially 

thrived on an Aristotelian ontology, which permeated both questions of regional metaphysics (physica 

particularis) and general methodological issues (where Aristotelian logic was unassailable).115 This 

obviously limited Clavius in the possible options he had in answering the attacks on the value of 

mathematics. The strict division of the fields of knowledge at the same time had given the 

mathematicians a de facto form of relative autonomy, however, as they were supposed to be dealing 

with their own peculiar subject matter. This allows us to understand how Clavius dealt with the 

                                                 
112 Quoted in De Pace 1993, pp. 88-89. 
113 Translation in Clavius 2002, p. 467. 
114 On this issue, see Baldini 1992; Dear 1995 (chapters 2 and 6); Feldhay 1995 (chapter 8), 1998. 
115 Especially in chapter 1 of Baldini 1992. 
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challenge issuing from the Quaestio… without tackling the metaphysical and logical issues head on, a 

strategy that has been analyzed in some detail by both Peter Dear and Rivka Feldhay. Clavius chose to 

present an appeal to the authority of both Aristotle and Plato concerning the philosophical worth of 

mathematics, combined with a stress on both the superior certainty of mathematical demonstrations, 

and its utility in a host of disciplines, including natural philosophy, metaphysics and politics. Maybe 

the most important element in this respect was the fact that the systematic character of mathematical 

treatises, which “alone preserve the way and procedure of a science. For they always proceed from 

particular foreknown principles to the conclusions to be demonstrated, which is the proper duty and 

office of a doctrine or discipline, as Aristotle, Posterior Analytics I, also testifies.”116 Notably absent is 

any discussion of the thorny issue of the causal status of its demonstrations. Dear summarizes the issue 

as follows: 

 
It is important to stress that the issue went beyond the mere making of a few apologetic remarks at 

the beginning of a treatise before proceeding to the real content. The usual, and most effective, 

approach was to carry on as if the mathematical discipline in question were obviously and 

unproblematically a science. The Euclidean theorem form provided a structure already 

conformable to the ideal of scientific demonstration because it had been Aristotle’s own model for 

a science. Its mere employment therefore went a long way towards bestowing upon its subject 

matter the mantle of “science.” The difficulties lay in persuading the subject matter to fit the 

formal structure.117 

 
Again, we notice the tendency to substitute a purely methodological criterion for the metaphysical 

worry initially fuelling the discussion. Yet, it is clear that as a philosopher one could not just shrug of 

this worry, as the suitability of a topic to be treated in a certain way is in the end simultaneously a 

methodological and a metaphysical question. Maybe it is not perspicuous that empirical objects cannot 

be treated mathematically, but the converse does not thereby become established automatically.  
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That the circle of mathematicians around Clavius must have felt this uneasiness is testified by 

the contribution of his pupil Blancanus, who in his 1615 De mathematicarum natura dissertatio 

explicitly takes up the metaphysical and methodological problem.118 He tries to provide for a view of 

mathematical entities that could underwrite the claims to certainty and scientificity on behalf of 

mathematical demonstrations. To this end he especially stresses that mathematical definitions are truly 

                                                 
116 Quoted in Dear 1995, p. 40. 
117 Dear 1995, pp. 41-42. 
118 The Dissertatio has been translated as an appendix in Mancosu 1996, to which I refer in the following as Dissertatio, with 

page numbering as in Mancosu 1996. 
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essential and not just nominal as implied by writers such as Piccolomini and Pereira. (To argue this 

point he makes the distinction between quantity per se, and quantity insofar as it is delimited, i.e. as 

making up particular figures and number. Mathematical definitions are essential with respect to the 

latter perspective on quantity, not with respect to the former, which remains the domain of natural 

philosophy and metaphysics).119 As a result, he can argue that mathematical demonstrations do use 

formal causes. That they moreover also involve material causes follows from his view on quantity as 

delimited intelligible matter. To settle his case most convincingly, Blancanus adds an appendix in 

which he analyzes the forty-eight demonstrations contained in the first book of Euclid’s Elements, 

showing for each of them the kind of causes involved. 

 Because of this metaphysical underpinning, Blancanus can now argue that mathematical 

demonstrations are most perfect and potissima in that they do essentially reflect the ordo essendi of 

(mathematical) things. 120  And because of his distinction between quantity per se and delimited 

quantity, he has made an important move towards a more fine-grained understanding of the 

applicability of mathematics in the empirical world as well. But at the same time he admits that there 

still remains a gap between the intelligible realm of pure mathematics and the messy forms of 

empirical nature. However, from his perspective the important thing is that this does not stain the 

image of mathematics – it is at most an imperfection of nature. 

 
We should know that even if these mathematical entities do not exist in that perfection [of absolute 

exactness], this is merely accidental, for it is well known that both nature and art intend to imitate 

primarily those mathematical figures, although because of the grossness and imperfection of 

sensible matter, which is incapable of receiving perfect figures, they do not achieve their end. … 

Therefore, even though these [perfect mathematical figures] do not exist in the nature of things, 

since in the mind of the Author of Nature, as well as in the human mind, their ideas do exist as the 

exact archetypes of all things, indeed, as exact mathematical entities, the mathematician 

investigates their ideas, which are primarily intended per se, and which are [the] true entities.121  

 
It is not far-fetched to recognize important Platonist elements in passages like these.122 But it is also 

important not to forget that they always remain inscribed in an overall Aristotelian framework, as was 

mandatory for all Jesuit thinkers.123 A little further in his Dissertatio, e.g., Blancanus seems to agree 

that in the end mathematics only deals with accidents. But he also adds the important caveat, “that it is 

better to get to know innumerable, marvellous truths about an accident, than always to be cast from 

one side to the other, by the whirlpool of a thousand of opinions and dissensions, especially 

                                                 
119 Dissertatio, p. 195. 
120 Ibid., p. 184. 
121 Ibid., p. 180. 
122 Cf. Galluzzi 1973. 
123 See again Baldini 1992 (chapter 1). 
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concerning material substance, and hence never to arrive at the cognition of any substance at all.”124 

This admission thus carries a double message: there remains an essential difference between natural 

philosophy and mathematics – but so much the better for mathematics. This is not all, as “in applied 

mathematics the case is different, where it is not bare quantity, but either the heavenly bodies, or 

musical sounds, or the modes of vision and deception, or the powers of machines are studied, with the 

same ends in mind and with the same scope as in other subjects studied by other philosophers.”125 

Having cleared the opposition against the status of mathematical demonstrations, Blancanus feels free 

to ascribe a completely unproblematic status to mixed mathematics, which he claims is perfectly 

capable of giving propter quid demonstrations. We have already seen, however, that he also claimed 

that a gap remained between perfect mathematical entities and natural objects. He is silent on how 

these two views are supposed to sit together, although there are some hints in his text. The idea that 

mathematical entities function as archetypes is further clarified as follows: 

 
For nature in the trunks of trees strives after the figure of the cylinder, in apples and grapes after 

spherical or spheroid figure, in the cornea of the eye after circle, indeed, the eye itself is most 

spherical. The sun and other stars are agreed on all hands to be entirely spherical; the surface of the 

water is globular, and also the earth itself, were it not for the coarseness and diversity of its matter, 

would obviously take on a round shape. … But art even more obviously follows these figures; 

since craftsmen endow almost all their artifices with quadrangular or round figures, or with circles 

or ellipses. Indeed, art itself, not unlike nature which it imitates, is [also] defrauded of its proper 

end by the coarseness of matter.126 

 
Astronomy is immediately exempted from the material corruption, and eminently suitable to be treated 

mathematically. Both earthly natural and artificially created objects are supposedly still amendable to 

such treatment, since they “strive” towards these perfect forms. But the remaining divergences 

constitute the blind spot of Blancanus’ peculiar blend of Aristotelian and Platonist elements. He is 

unable to say anything sensible on their status, and so passes over them in silence. Since he starts from 

an abstractive view on the nature of mathematics, he must countenance a metaphysical gap between 

both realms of reality, without being able to see the divergences as possible challenges that can be 

turned into problems to be solved. At the same time he thus leaves the door open for Pereira’s critique 

to retain its appeal. 

 

                                                 
124 Dissertatio, p. 202. 
125 Ibid., p. 202. (My emphasis.) 
126 Ibid., p. 180. 
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The last sixteenth-century philosopher to whom we now turn occupies a special place, as he 

was a colleague and friend during Galileo’s time as professor of mathematics in Pisa. 127  The 

authorities of Plato and Aristotle had already been invoked in different respects by the authors 

participating in the debate on mathematical certainty, but Jacopo Mazzoni took a comparison of both 

Philosophers as the explicit starting point in his In universam Platonis et Aristotelis philosophiam 

praeludia, sive de comparatione Platonis et Aristotelis, published in 1597. He is not so much 

interested in reconciling both philosophers, but rather in learning something from them (and from their 

differences): he compares them with “skilful hunting hounds which accompany the searcher after truth 

on his traverse of the wide expanse of being.”128  

 Mazzoni accepts the irreducibility of mathematical and physical demonstrations. The latter 

crucially involve the four Aristotelian causes, which are absent in the former. He is willing to admit 

that it can be claimed that mathematics uses formal causes, but only if it is understood that this is not 

in the strict Aristotelian sense, as mathematicians are not dealing with the form of substances. 

Mathematical definitions simply do not state qualitative essences or final ends. In this respect, 

Mazzoni thus seems to side with Piccolomini and Pereira, but at the same time he reprimands Aristotle 

for not having paid enough attention to mathematics. He is clear on the fact that he deems 

mathematical demonstrations to be useful and valid on a number of scores. This judgement is also 

extended to the mixed sciences, which crucially involve mathematical demonstrations rather than the 

Aristotelian causes on which they must remain completely silent, as all mathematically derivable 

conclusions find their origin in the definitions of the employed geometrical figures. The difference 

with pure mathematics is that mixed mathematics is answerable to the conjunction of reason and sense, 

rather than to reason alone. Frederick Purnell concludes:  

 
In consequence, there are, at times, two approaches open to the physical investigator. Within the 

framework of the traditional Aristotelian natural philosopher, he can approach a problem with an 

eye to arriving at an explanation according to the old four-causal scheme. Or, with proper training 

in the mathematical techniques, he can seek to develop a solution based upon mathematically 

definable characteristics.129 

 

                                                 
127 On the relation between Mazzoni and Galileo, see Purnell 1972, which also contains a useful summary of Mazzoni’s 

views on mathematics, as does Galluzzi 1973. But, again, De Pace 1993 (chapter 4) provides the most full-fledged and 

balanced treatment. 
128 Purnell 1972, pp. 275-276. 
129 Purnell 1972, p. 281. 
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Now, as this mathematical approach cannot fall back on revealing the qualitative structure of the world 

as its raison d’être, Mazzoni also offers an alternative “Platonist” metaphysical grounding to its 

procedures, which ultimately leads to the idea that reality can be thought as structured in geometrical 

forms that are the manifestation of the Divine rationality. At the same time he maintains that only 

Aristotle believed in the possibility of a science of the empirical world, which for Plato (and, as we 

saw, Barozzi) was only limited to the world of ideas. The task of revealing these geometrical 

structures underlying the flux of empirical reality is still the domain of the physicus, which again 

involves the task of abstracting away from all ever-present material impediments.130 Yet Mazzoni 

stresses that it will not do to think of matter as defective and playing an entirely negative role, since 

this would contradict its Divine origin (remember that God created the whole world, including its 

matter, ex nihilo). To counter this corrupted view, he develops an interpretation of matter in which it is 

thought of as “susceptaculum perfectionis,”131 which is animated by a natural appetite to receive 

particular forms. And man, as investigator of the world, is capable of retrieving these forms, because 

he was created in God’s likeness and has the archetypes after which the world was formed impressed 

in his mind: to separate the ideal forms from the material impediments, he only has to appeal to these 

God-given ideas within.132 Mazzoni does not leave the door open for Pereira’s critique – God has 

closed it for him. Of course, Blancanus also seems to hint at the same kind of closure, although he is 

less explicit on this point (probably because of the Jesuit context in which he was working, which 

made it less easy to appeal in such overt manner to Platonist ideas).  

 This does not alter the main point I wish to make, however. This kind of closure is bound to 

remain highly controversial, and only seems to further the repression of the impediments themselves. 

They disappear in the fissure that is left between the archetypes and the actual things in the world, and 

remain fundamentally unthinkable in their own right. In a traditional Neo-Platonic vein, Mazzoni 

defines all evil as mere privation, refusing to assign it a positive cause.133 It is in the same movement 

of thought that the impediments are bound to vanish from sight. 

 

                                                 
130 “Ut itaque in ista quaestione inter Platonem et Aristotelem iudicium nostrum interponamus, dicimus meliorem nobis 

videri Aristotelis opinionem, idest res naturales quoad formam adeptam carere fluxu illo perenni […] et proinde remoto 

impedimento sempiternae mutationis eas scientiae subiectum accomodatum esse posse.” Quoted in Galluzzi 1973, p. 70 (my 

emphasis). 
131 De Pace 1993, p. 280. 
132 “veritas inspectio non attingatur ab homine sine lapsu Divinitatis in mentem nostrum.” Quoted in De Pace 1993, p. 305, fn. 

92. 
133 “Ex defectu ergo, et privatione malum oritur.” Quoted in De Pace 1993, p. 294. 
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It should be clear that in the foregoing I have not attempted to give a fully balanced historical 

treatment that could do justice to the often rather subtle positions of the authors involved in the 

Quaestio de certitudine. I have rather been interested in what I take to be revealing structural features 

of the development of these discussions that should allow us to better assess Galileo’s positioning on 

these issues. In the present subsection, I will try to bring some of these features further into the open, 

again without pretending completeness in any respect. 

To begin with, let me suggest that we take Mazzoni’s utterly eclectic position as symptomatic 

for an important characteristic of the Quaestio…. All parties could have recourse to ancient authorities 

and point to passages in Euclid’s Elements that were supposed to confirm their own principal theses, 

and such attribution of their views to these authorities was an important and indispensable element in 

their argumentative strategies. But it makes no sense to try to capture the full complexity of the 

sixteenth century views on these matters under simple common denominators such as Aristotelian or 

Platonist.134 At the same time, we must not be blind to the fact that these authors themselves often had 

recourse to these labels. It was common to refer to Aristotle’s retort that Plato had been too much 

enchanted by mathematics to either express one’s agreement or disagreement, thus placing one’s own 

view in one of both camps. However, it is clear that these authors were creatively working out 

solutions to what they took to be pressing problems (one important constraint on any acceptable 

solution being that it should be able to claim ancient authorities as forerunners). These problems had 

to do with the contentious relationship between mathematics and the empirical world that had come to 

the foreground in the sixteenth century because of the steady rise of the use of mathematics in solving 

empirical question (as we will see in section 2.2). It is no accident that Piccolomini’s opening shot in 

the Quaestio… was appended to his paraphrase of the pseudo-Aristotelian Mechanical questions 

which, as we will see, occupied a prominent place in this “Renaissance of mathematics.”  

The inextricable tangle of methodological and metaphysical questions at first makes it hard to 

decide what to make of these debates on mathematical certainty. There is nevertheless some common 

ground that we saw recurring in otherwise diametrically opposed authors. Most important is the idea 

that mathematical objects are somehow separated from the empirical world – albeit authors as Catena 

and Mazzoni defend that they nevertheless can be reinjected into it. As a result, the debate presupposes 

a picture of nature which contains multiple levels of reality. The most pressing problem then was how 

to either mediate or protect the ontological border between physics and mathematics, and to assign 

them their proper places. These differentiated ontological levels also seemed to carry their own 

methodological requirements. An important evolution in the debates on mathematical certainty is the 

growing tendency to consciously separate both methodologies as fit to their own ends. Instead of 

                                                 
134 See Schmitt 1983 for the generally eclectic character of all Renaissance philosophy. 
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measuring the scientificity of mathematics by an Aristotelian yardstick, one could also stress the rigor 

of mathematical procedures, which moreover sits comfortably with whatever metaphysical 

underpinning – although it is clear that all authors defending mathematics’ value felt obliged to 

provide such underpinning. Piccolomini’s attack, and the discussion following thereupon, brought a 

potentially far-reaching philosophical option into the open: mathematics has nothing to do with the 

Aristotelian causes, but that is not necessarily a problem. 

Of course, philosophers such as Pereira could admit that mathematics has its own 

methodology, while continuing to stress that this constitutes exactly its problem. And as long as one 

operated in an environment that was organized around an Aristotelian “world view”, such as the Jesuit 

society clearly was, this was bound to remain a valid complaint.135 Yet the existence of the category of 

mixed sciences within the Aristotelian logic of science at the same time provided enough justification 

for mathematicians such as Clavius to continue employing their proper methodology, and to try out 

treating as much phenomena on a mathematical basis as they could, whatever the final verdict on its 

demonstrations might turn out to be. The fact that there was no clear consensus made room for 

ignoring the issue to a certain extent. But as already noticed, Blancanus’ explicitly metaphysical and 

methodological justification of mathematics proves that this was only true to a certain extent – at least 

for writers in an academic context. His contribution to the debate is clearly directed at overcoming 

Pereira’s objection: mathematics only appears to have a completely different methodology, but it can 

actually be completely inscribed within the four-cause syllogistic framework. On this view, the only 

real difference between natural philosophy and (mixed) mathematics becomes one of subject matter 

(“with the same ends in mind and with the same scope as in other subjects studied by other 

philosophers” 136 ). That such integration could be partly successful proves the flexibility of the 

Aristotelian philosophy, within which it was consequently possible to recuperate much of the results 

of the new mathematical sciences.137 

There are some important things to be noticed about this incorporation of the mathematical 

sciences within an Aristotelian framework, however. As already argued by Peter Dear, Blancanus’ 

tactic actually depends on a strict surveillance of the boundaries between mathematics and natural 

philosophy.138 It does reclaim some traditional physical questions for mathematical treatment, but it 

does so by being more explicit on the distinctions between delimited quantity and qualitative 

substances (of course, always accompanied with the important suggestion that the former can be 

treated with an incomparably higher degree of certainty). The following statement by Mazzoni could 

have been made by the Jesuit as well: “Cuius dicti ratio est, quia omnes Mathematicae, et etiam mixtae, 

                                                 
135 Cf. Baldini 1997 for a quick sketch of the development of philosophy and science within the Jesuit society during the 

seventeenth century. 
136 Cf. the quote in section 2.1.2.5. 
137 This fact has been much stressed since the 1990’s by writers such as Peter Dear. 
138 Dear 1995, especially chapter 6. 
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ut Astrologia et similes, nullam aliam rei quidditatem agnoscunt, nisi eam, quae ex definitionibus 

figurarum Mathematicarum emergit.”139 That Blancanus goes on to stress that these definitions do 

state the essence of the figures treated, whereas Mazzoni rather stresses the difference with what he 

understands to be strictly Aristotelian formal causes, then shows that different epistemic strategies 

could be grafted onto this setting opposite to each other of mathematical properties and substantial 

qualities. The autonomy of mathematics can be protected by exploiting the existence of the category of 

mixed science within an Aristotelian framework, or it can be used to override the claims of the natural 

philosophers completely by simply claiming its superiority (the direction in which Mazzoni is clearly 

moving – at least when it comes to treating local motion)140. The choice obviously depends on the 

broader context within which one is working. 

I already pointed out that these debates were not held in some kind of academic vacuum, but 

that they were actually fuelled by what these philosophers perceived as a real challenge: the ever more 

present use of mathematics in a host of different applications. In the next section we will see how the 

mathematicians gradually had established their right to speak on empirical matters, claiming a distinct 

form of knowledge for themselves. Significantly, this process was largely independent of explicit 

metaphysical pictures. Hence, I suggest that we can best understand Mazzoni’s and Blancanus’ roles 

as that of important mediators who translate the outcome of this process back into a respectable 

philosophical idiom. They provide a philosophical discourse which can be used to grant philosophical 

legitimacy to the burgeoning mathematical disciplines – a discourse which then can be mobilized in 

both directions indicated. But because this discourse is structured by the basic difference between ideal 

entities and empirical objects, this translation at the same time involves the loss of a relevant feature of 

the mathematician’s knowledge. In chapter 9, we will see how Galileo opts for a differently structured 

discourse in his attempt to legitimize his mathematical sciences of nature. 
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While mathematics’ status as an Aristotelian science was being vigorously debated during the 

sixteenth century, it could already claim to be a respectable discipline in its own right. The humanists’ 

interest in recovering ancient sources of knowledge had not excluded mathematical treatises, and both 

Euclid and Archimedes went trough new and careful editions during the sixteenth century.141 As 

documented by Paul Lawrence Rose, there existed close and important links between leading 

humanists and mathematicians who often shared the same patrons. The writings of an early figure such 
                                                 
139 Quoted in De Pace 1993, p. 271. 
140 Cf. chapter 4, section 4.1.1. 
141 See Rose 1975 for a careful study of the recovery and editorial history of mathematical treatises during the Renaissance. 
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as Regiomontanus already exemplify many of the treats that would become characteristic in the 

carving of a self-image for a certain class of mathematicians. The German mathematician stresses the 

pedigree of his own work in a rich and continuous tradition spanning great men and many nations, and 

he opposes the consensus that holds among mathematicians regarding their conclusions with the 

perpetual disputes that rage among philosophers.142 Both aspects would become recurring themes 

during the sixteenth century, with the former being especially important in establishing the nobility of 

the discipline, whereas the latter seemed to have had an almost therapeutic value that allured to many 

minds, as is testified by Regiomantus giving us “the worthy testimony of Giovanni Bianchini, who 

very recently said, ‘Ten years ago I would have lain helpless, deprived of my life, were it not that the 

sweetness of astronomy maintained my spirit’;”143 or by Baldi’s story of Commandino’s change from 

the profession of medicine to mathematics because he had become disillusioned by the uncertainty of 

medicine after he had lost both his son, wife, and father after sudden illnesses.144 Many sixteenth 

century examples of similar oratories of praise, meant to encourage the study of mathematics, could be 

given, including famous names such as Peter Ramus, John Dee, and Tycho Brahe. 

The landscape of sixteenth-century mathematical practice was of course much diversified, and 

not all mathematicians pursued the same agenda or even shared a set of common skills.145 But unlike a 

large number of these practices that could be simply shrugged aside as dealing with lowly human 

affairs, useful for pragmatic goals at most, such as book-keeping or land surveying, the kind of 

mathematics that was promoted by men as Regiomontanus and Commandino often seemed to meddle 

with topics which were commonly taken to be in the domain of natural philosophy. Such was the case 

with mathematical optics, harmonics, and especially with astronomy. Taking moreover into account 

the respectable contexts (university and court) in which many of the practitioners of these 

mathematical sciences operated (among whose ranks were moreover to be counted men of high social 

status such as Guidobaldo del Monte), their claims to the nobility and certainty of their discipline 

could amount to an implicit attack on the prerogatives of natural philosophy.  

 As we saw, the potentially conflicting interests of mathematicians and philosophers were 

mainly managed by holding on to what was taken to be an Aristotelian division of the different areas 

of knowledge; a division that was already enshrined in the university curriculum and further developed 

in e.g. the educational policy of the Jesuits. Such a division seemed both to secure philosophy’s 

primary status, while it left open a wide enough space of knowledge for the mathematicians through 

the category of the mixed sciences. To many mathematicians this must have been an alluring situation, 

no doubt also because of the inherent flexibility of the boundaries, which proved great enough to 

                                                 
142 Rose 1975, pp. 95-97. See also Swerdlow 1993. 
143 Quoted in Swerdlow 1993, p. 151. 
144 A story recounted in Rose 1975, pp. 187-188. 
145 See Biagioli 1989 for a sketch of the landscape of sixteenth-century mathematical practitioners in Italy, as well as for the 

changes that occurred in that landscape during the century. 
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accommodate conflicting views concerning their precise import (as should be clear from the preceding 

section). Yet we will also see how certain mathematicians were willing to overstep the boundaries that 

were nevertheless clearly imposed, precisely under the aegis of the greater nobility and certainty that 

they ascribed to their own discipline. Galileo of course was one of them. So let us try to ascertain the 

import of this nobility just a bit more in detail for our topic of concern: the science of mechanics.146 
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 Among the most significant consequences of the Renaissance of mathematics were the 

recovery, publication, and close study of an ancient corpus of writings on the science of mechanics (as 

already mentioned in the first chapter primarily meaning the theoretical study of the simple machines 

such as lever and pulley). Both the Mechanical questions, which were generally ascribed to Aristotle 

(but are now no longer believed to be his work), and Archimedes’ Equilibrium of planes and On 

floating bodies were among these writings, and they would prove to be very consequential on a 

different number of scores.147 In the next chapters, I will bring out some of the important conceptual 

breakthroughs they would make possible, but in this section I will be primarily interested in the effect 

of the existence and general availability of these writings on the image of mechanics as a noble 

science.148 To add some flavour to my summary discussion of different aspects of this issue, I will in 

footnotes give some illustrative quotations from the preface to Guidobaldo del Monte’s Mechanicorum 

liber, the most respected treatise on mechanics from the second half of the sixteenth century.149 This at 
                                                 
146 As already announced in the preface, I focus exclusively on Galileo’s science of motion in this thesis. It need not be 

stressed that the developments sketched here were of course much wider and also especially significant in the field of 

astronomy. It is clear that this could not fail to have repercussions on the perception of a field such as mechanics (whose 

practitioners often overlapped, as can e.g. be seen in the case of Clavius and Galileo). As is clear from the pioneering study of 

Westman 1980 there are important similarities with the process through which the “astronomer’s role” became gradually 

redefined through the sixteenth and the beginning of the seventeenth century (especially the place of court culture played 

therein). Yet there are also some significant differences which will transpire from the discussion in the next subsection and 

which have to do with the crucial role of what I will call cognitive control; a role which hopefully will become much clearer 

in the chapters to follow. 
147 For the history of the pseudo-Aristotelian treatise in the Renaissance, see Rose and Drake 1971 and Laird 1986. For 

Archimedes, see Clagett 1978 and Laird 1991. 
148 For the following I am much indebted to Rossi 1962; Keller 1972, 1976; Rose 1975; Westman 1980; Moran 1981; 

Bennett 1986; Laird 1986, 1991; Biagioli 1989; Laird 1991; Vérin 1993; Smith 1994; Cuomo 1997; Long 1998; Henninger-

Voss 2000, 2002. Especially the brilliant work of Hélène Vérin contains a wealth of information and insights on the image 

and practice of the mechanical sciences during the later Middle Ages, the Renaissance, and the early modern times. 
149 The examples will be taken both from Guidobaldo’s own preface to his 1577 treatise, and from Filippo Pigafetta’s 

dedication and preface to the Italian translation that he published in 1581. (All translations are taken from Drake and Drabkin 

1969, to which the notes will directly refer.) For a fascinating analysis of the differences between both texts, see Keller 1976; 

Henninger-Voss 2000. These subtle but undeniable differences are relevant to the overall picture I am attempting to draw 

here, but for reasons of brevity I shall not comment upon them. 
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once introduces Guidobaldo, to whom we shall return frequently in the next chapters (especially 

chapters 3 and 5). 

The fact that Aristotle himself was believed to have devoted a tract to mechanics could not but 

elevate its status. Whereas the name of mechanic was often taken to refer to someone engaged in lowly 

affairs, this most noble predecessor who was moreover “the leader of all philosophers” was enough to 

dispel all doubts regarding the worth of the discipline.150 Many other illustrious forerunners of non-

suspicious stature were usually added, with special attention for Archimedes. The eminently 

theoretical and rational character of the latter’s writings were moreover often stressed, with a clear 

bow to the certainty that accrues to all things mathematical – a most noble thing indeed.151 When 

considered from the perspective of the traditional division of the sciences, mechanics was moreover 

clearly a contemplative rather than an operative science.152 It provides the causes and principles behind 

the successful operations of machines such as the lever and the pulley.153 The introduction of the 

Mechanical questions significantly claims that the mathematical speculations allow us to discover “the 

how” of mechanical problems (whereas “the about what” is known physically).154 Mechanics clearly 

allows mathematicians to gain knowledge of reasoned facts – even in the possible absence of a clear 

view on the status of these reasons, as testified by the debates in the Quaestio de certitudine. Another 

                                                 
150 “And as for certain manipulators of words who deprecate mechanics, let them go and wipe away their shame, if they have 

any, and stop falsely charging [mechanics with] lack of nobility and lack of usefulness. If they still do not wish to do so, let 

us leave them, I say, in their ignorance; and let us rather follow Aristotle, the leader of all philosophers, whose burning love 

for mechanics is sufficiently proved by the acute Questions of Mechanics which he gave to posterity.” (p. 243.) For the 

different associations of the name “mechanic” and “engineer” during the Middle Ages, see Vérin 1993 (chapters 1 and 2). 

For the Greek origins of the term, see the first two chapters in Micheli 1995. 
151 “For if we hold that nobility is related both to the underlying subject matter and to the logical necessity of the arguments 

(as Aristotle on occasion asserts), we shall doubtless consider [mechanics] the noblest of all. It not only crowns and perfects 

geometry (as Pappus attests) but also holds control of the realm of nature.” (p. 241; my emphases.) Notice the stance that 

Guidobaldo is implicitly taking with respect to the issues discussed in the Quaestio de certitudinem. 
152 For the Medieval distinction between contemplative and practical sciences, see e.g. Weisheipl 1965. This distinction of 

course goes back to the Nicomachean ethics of Aristotle. 
153 “Certainly this science is of the highest theoretical value and of subtlest structure, for it deals with that part of philosophy 

which treats of the elements in general, and of the motion and rest of bodies according to their positions; thus we assign the 

cause of their natural movements, and thus by machines we force bodies to leave their natural places, carrying them upward 

and in every direction, contrary to their nature.” (p. 248.) Notice the unproblematic assimilation of mechanics to a “part of 

philosophy.” This passage from Pigafetta’s dedication of his translation is an almost literal rendering of a passage in Pappus’ 

Mathematical Collections (see Pappus 1878, p. 1023), as is the case with much of Pigafetta’s dedication. 
154 Aristotle 1963, pp. 330-331. (Hett, inaccurately, has “the method is demonstrated by mathematics” in his translation; see 

Micheli 1995, p. 24, fn. 13. Micheli quotes the following sixteenth century translations: “porque el como es manifiesto, por 

las mathematicas, y el de que por las naturals” (de Mendoça); “etenim quod ipsum quomodo ad mathematica pertineat: ipsum 

vero circa quod, ad Physica, manifestum est” (de Monantheuil); “Quandoquidem mathematicum id certe est: ad quaenam 

referri possint cognoscere; physicum vero: quidcirca versentur” (Fausto).) This characterization is of course part of the 

positioning of mechanics as a mixed science (cf. section 2.1.1). See also chapters 3 and 5. 
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crucial feature that could be borrowed from the pseudo-Aristotelian Mechanical questions was the 

topos of curiosity. The author stresses that mechanical phenomena are truly remarkable in nature, 

especially the fact that a greater weight can be raised by a lesser. The main thrust of the treatise then is 

to explain rationally how these wondrous phenomena come about, a most philosophical activity, 

indeed.155  

 The mathematical practitioners were not only eager in setting apart their business from that of 

the “mere” mechanics, who only possessed know-how but no knowledge of true principles. They also 

often self-consciously stressed what (together with its higher certainty) separated their knowledge 

form that of the philosophers: its practical utility.156 And even better: its practical utility in issues of 

great concern for those in power.157 Consider: they could control the physical power that can be 

exercised through the use of machines, so useful both in times of war and peace.158 This was especially 

relevant given the new ways of warfare that were the consequence of the introduction of the cannon: 

among other things this changed the design of fortifications, which from now on required substantial 

mathematical skills, 159  and this posed as well many problems in transportation. 160  As a result, 

mathematics and mechanics entered the education of young aristocrats in the sixteenth century.161 This 

promise of practical utility nicely dovetailed with the fact that from the fifteenth century onwards, the 

“practice and representation of rulership came to be closely associated in particular ways with 

technological power and the mechanical arts.”162 It is important to stress that this was a case of both 

practice and representation: the utility of mechanical knowledge could only be so openly advertised 

                                                 
155 Compare the passage from the Metaphysics I, 982b, where Aristotle famously declares that “it is through wonder that men 

now begin and originally began to philosophize”. Tybjerg 2003 shows how this aspect was already exploited to elevate 

mechanics to a status on a par with philosophy by Hero of Alexandria. The cognitive category of wonder will be examined 

more closely in chapter 5. 
156 In this respect they were part of a general humanist movement that was primarily interested in knowledge that could have 

practical pay-off. On the relations between science (as we now conceive of it) and humanism, see Cochrane 1978 and Long 

1988. 
157 Consider especially the opening address of Guidobaldo’s preface where he dedicates his work to Francisco Maria II, the 

duke of Urbino. “There are two qualities, Illustrious Prince, that are usually very effective in adding to men’s power, namely 

utility and nobility.” (p. 241.) 
158 “It not only crowns and perfects geometry (as Pappus attests) but also holds control of the realm of nature. For whatever 

helps manual workers, builders, carriers, farmers, sailors, and many others (in opposition to the laws of nature) – all this is 

the province [imperium] of mechanics.” (p. 241.) 
159 Galileo was one of the many mathematical practitioners who taught fortification to young noblemen as an important 

source of income; Guidobaldo’s only paid job was as overseer of the Tuscan fortresses (for only a few years). Others 

involved in fortification include Albrecht Dürer and Simon Stevin. For more on the topic of fortification and the role of 

mathematical practitioners, see especially chapter 4 of Vérin 1993. 
160 Keller 1976, p. 24. 
161 Biagioli 1989, p. 45. Moran 1981 discusses the cases of some sixteenth century German prince-practitioners. 
162 Long 1997, p. 3. 
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and offered to the powerful because it was at the same time noble knowledge.163 (In this respect, it is 

relevant to note that Archimedes reputation was as much that of an artificer, involved in the 

production of war-machines, as that of an abstract mathematician.164) The mathematicians claimed that 

they were able to take the experiential knowledge embedded in the artisan practices and render it 

universal, certain, and disciplined, thanks to recovery of the ancient science of mechanics. As a result, 

they could occupy an extremely interesting place, as mediators between on the one hand the low world 

of labour and practical exigencies, and on the other hand the high world of more lofty exercises of 

power.165 This mediation involved crucial questions of control wherein the mathematicians’ highly 

disciplined way of reasoning could find a natural and fruitful place. Their promises of their ability to 

calculate many interesting properties of machines (or of the path of cannonshots, as in Tartaglia’s 

Nuova scientia; or of the exposure of city walls to these cannonshots, as in the many treatises on 

fortification) in anticipation of their actual operation at the same time held promises of a greater 

efficiency, and of a greater independence of the particular artisans’ know-how. This was moreover 

accompanied by the prospect of being able to offer novel inventions, again as a result of the 

application of some fundamental mathematical principles.166 It is only now, after that the mathematical 

science of mechanics has been restored to its former nobility, that the prospects for some control over 

                                                 
163Consider Guidobaldo’s addressing the duke of Urbino, to whom his Liber mechanicorum is dedicated, “from boyhood you 

were so inflamed with a passion not only for all studies, but especially for mathematical studies, that you would consider 

your life bitter and unhappy unless you had embraced them. And then, occupied in the study [of mathematics], you passed 

the first part of your life in gaining an understanding of the subject, and often raised your voice, as was worthy of a prince, to 

say that you were especially fond of mathematics for the reason that mathematics in particular can emerge from that domestic 

and private kind of life into the sun and dust as they say. And, indeed, in clear proof of these [public] interests would be the 

ardent desire for military skill that you manifested from early youth.” (p. 246.) 
164 Guidobaldo significantly has a long passage in which he sums up all of Archimedes’ superhuman feats as an artificer, but 

nowhere does he explicitly extol the rational organization of his writings (which he however does in his In duo Archimedis… 

published in 1588, a writing that is aimed at a rather different audience – at different places Guidobaldo e.g. refers to 

Archimedes’ work as providing the “elements of mechanics”, an obvious reference to Euclid; del Monte 1588, pp. 2nd of the 

unnumbered preface, 19, 20, 21). Pigaffeta, whose preface has an even heavier stress on the practical utility of mechanics, 

goes as far as calling Archimedes “the best of all craftsmen [il megliore artefice]” (p. 250). See Laird 1991 for the changing 

images of Archimedes during the Renaissance. 
165 Henninger-Voss 2000 is a most exciting analysis of some of the complexities involved in this mediation, discussing the 

case of Guidobaldo and his translator Pigafetta. See also Smith 1994 (especially chapter 2) for the detailed story of such 

mediation through the figure of Becher, who himself moved from the position of artisan to that of a mathematician 

controlling the endeavours of his former co-workers. 
166 “It should be added that … the author has contented himself at present to teach (and he is the first Latin writer to do so) by 

means of easy and plain demonstrations merely the method of understanding and operating the six mechanical instruments, to 

which all others may be reduced. For these are basic and fundamental, and there may be compounded in various ways 

combinations of two, three, or more; thus the windlass may be combined with the pulley, the screw with the windlass or the 

lever, and so on. This may be done at will by anyone who can proceed with good judgement in various works.” (p. 258, my 

emphases.) 
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material progress are restored.167 The following statement of Guidobaldo, taken from the preface of his 

very influential books on perspective which he published in 1600, nicely sums up many of the features 

that were thought to be characteristic of the mathematical sciences. He tells his brother, the cardinal, to 

whom he dedicates the book that it very befitting for a noble man to study mathematics: 

 
This is above all true of those [mathematical arts] such as mechanics and perspective and other 

pre-eminent operative arts, out of which, as from a copious source so many outstanding works of 

illustrious men have emanated, who have taken their norm and rule for the construction of their 

works from those mentioned arts, and who most willingly admit that the palm that they have 

acquired for themselves for their marvellous inventions, must be rightly ascribed to those same arts 

and once they have accepted the palm that they must wear it. 168 
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From this brief description we can start to understand how the nobility of mechanics could be 

mobilized to overcome/ignore the hesitations that were shown by philosophers in considering any 

form of (applied) mathematics a science. And as this legitimizing move was not predicated on any 

metaphysical grounds, it might start to allow for a complete blurring of the ontological distinctions 

between the different sciences. As it stands, however, this ignores one crucial fact about mechanics 

that was commonly stressed by sixteenth century writers: it was not merely presented as a theoretical 

and mathematical science, but also as the science that dealt with motions and effects outside or even 

against nature.169 This testifies to the fact that more was needed before one could really breach the 

boundaries between this mathematical science and natural philosophy. But something important has 

already happened to these boundaries. The present analysis has indicated how the autonomy of the 

mathematical sciences was implicitly but self-consciously asserted by the mathematicians. Any 

boundaries between their science and natural philosophy thus had to be provided from what could now 

be perceived as the outside – the demarcation of natural vs. unnatural motions being entirely a 

philosophical issue. To put it differently: the applied mathematical sciences are no longer held to be in 

a subservient position but are now perceived to stand besides natural philosophy. This relative 

                                                 
167 “But with the fall of the Roman Empire and the appearance of the barbarians in Italy, Greece, Egypt, and [places] where 

arts and letters had prevailed, nearly all the sciences declined miserably and were lost. Mechanics in particular was for a long 

time neglected.” (pp. 251-252.) See Keller 1972 for the sixteenth century sentiments concerning the prospects of material 

progress that were opened up by the restoration of the mechanical sciences. 
168 “praesertim verò earum, è quibus, veluti uberrimo fonte tot egregia illustrium virorum emanarunt opificia, Mechanicae 

nimirum, ac Perspectivae, praestantioresque operative artes, quae normam, & regulam in suis construendis operibus ab iis 

sumpserunt, eisdemque mirabilium suorum inventorum partam sibi palmam meritò adscribendam, acceptamque ferendam 

libentissimè fatentur.” Guidobaldo 1600, p. 2r. 
169 “And mechanics, since it operates against nature or rather in rivalry with the laws of nature, surely deserves our highest 

admiration.” (p. 241.) Cf. Laird 1986 for a summary of some sixteenth century views on the issue. See also chapter 5. 
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autonomy does imply that an intervention opposite to Piccolomini’s, where one judges natural 

philosophy by the standards of these mathematical sciences, also becomes thinkable.170 A detailed 

story behind one particular instance of this inversion will be told in chapters 4 and 5; in the present 

chapter I am rather interested in the conditions of possibility of this inversion. 

It must be stressed that the promised practical usefulness and effectiveness did not play a 

direct role in cognitively justifying mechanics as a science (taking into account the essential difference 

between on the one hand praxis and techne and on the other hand episteme which seemed to have been 

generally hold on to during the sixteenth century) – but it did play a crucial role in carving out a 

socially and culturally interesting place for mathematical practitioners from which it became possible 

for them to claim such a status.171 It is rather the implication that a discipline based on ancient 

principles and fit for princes could not fail to be a science that is the central element in the process of 

the legitimization of mechanics as a science during the sixteenth century.172 And the stress on both 

principles and Princes was bound together through the central issue of control – control of both the 

knowledge that was up to then primarily embedded in practice, and of its practical effects. This 

specific constellation suggests that mathematicians’ highly disciplined way of reasoning is not merely 

a formalistic property, i.e. solely related to a possibly empty ordo cognoscendi, but that it also has a 

direct pay-off in its systematic relation to experiential knowledge. The specifics of this systematic 

relation will be further analyzed in the remainder of this thesis, starting with the next chapter, where 

we will study Guidobaldo’s mechanical writings in much detail. For now, let me just point out that we 

are confronted with a further displacement of metaphysical considerations from the heart of the picture 

of mathematical science. The stress on the methodological procedures that we already saw present in 

the Quaestio… is not to be limited to reasoning within the realm of intelligible matte or inborn ideas: 

its true significance transpires only when these reasoning procedures are put to real work. As already 

announced, it will take the whole of this thesis to really assess the import of this brief statement. 

                                                 
170  It is probably precisely to pre-empt the possibility of such inversion that Piccolomini appended his discussion on 

mathematical certainty to his paraphrase of the pseudo-Aristotelian Mechanical questions. 
171 There is moreover a further story to be told (some other time – and possibly by someone else) about how this would more 

and more start to take over the role of cognitive legitimization. Consider e.g. the ubiquity of variants on the argument of 

inference to the best explanation in present day philosophy of science. 
172 For those worrying whether this does not place too heavy a focus on social factors: consider what would have happened 

with its claims to be fit for princes if it would have failed completely in achieving any empirical pay-off. But more 

importantly, it is important not to put the carriage before the horse: the apparently clear-cut distinction that we can see 

between external (sociological) and internal (epistemological) factors is the outcome of the kind of process that we are trying 

to describe here (it is part of a modern savoir). It can hardly be expected to have been part of the dynamics of this process 

itself (unless one would be willing to accept some teleological causation). Also keep in mind that we are dealing with the 

legitimization of a certain practice as science; not with the legitimization of some of its particular factual claims – which 

presupposes that the practice from which they issue is already conceived to have some authority in making such claims. 

(Remember also the discussion in section 1.3.2.)  
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 In this way, society provided a place for cognitive legitimization of the applied mathematical 

sciences which would not have been found within a university context. Of course, universities as part 

of society would partly absorb this evolution (as testified by a figures as Catena, Mazzoni, and 

Blancanus), but it could not have arisen there. This insight is also of interest when we try to 

understand the difference that exists between the medieval situation and the one in the sixteenth 

century with respect to the status and success of these sciences. Whereas there already existed a wide 

range of metaphysical options during the Middle Ages (consider figures such as Grosseteste and 

Bacon),173 this noble space from which to practice and systematize these sciences was something new 

with the Renaissance. The image of mathematics met contemporary sixteenth century demands that 

had not existed before (and certainly not on a comparable scale). 

 The imperium of the mathematical science of mechanics had accordingly come to occupy a 

singular region by the end of the sixteenth century.174 On the one hand it was consciously positioned 

above artisanal practices; on the other hand it was thought to be noble enough to occupy a position 

besides natural philosophy. Its practitioners could consequently engage simultaneously in a vertical 

and a horizontal interaction, and could do so exactly because of the distance that separated them from 

both the other spheres of knowledge. As they were not doing natural philosophy (and certainly not in a 

traditional vein), they could try to recuperate the manipulative knowledge embedded in the artisanal 

practices; and as the resultant knowledge was not to be equated with these practices, they could still 

open up a conversation with philosophers. Of course, both interactions were not straightforward and 

involved complex negotiations, which in large part fall outside of the scope of the present thesis.175 

But there is no need to stress that the combination of both dimensions would prove to be explosive. 

 

 

                                                 
173 Cf. Weisheipl 1958, 1965; Grant 1996. 
174 The following is my gloss of the important argument made in Bennett 1986. 
175 I must again refer to some of the previously cited literature (and especially to Biagioli 1993 for the case of Galileo). What 

I will do in the following section is related to the analysis of such negotiations, but significant differently oriented in focus. I 

will not attempt any micro-sociological analysis of how these negotiations were embedded in the larger social and cultural 

context that simultaneously made them possible and constrained them. I will rather limit myself to a description of the kind 

of discourse that Galileo was able to produce as a result of the availability of the kind of position being described here. In the 

language introduced in chapter 1, section 1.2.2, I will attempt an archaeology of Galileo’s science of motion, not a genealogy. 
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 Guidobaldo del Monte was one of the most famous mathematicians of the second half of the 

sixteenth century. He wrote on a number of topics, including perspective and astronomy, but he was 

and is best known for his works on mechanics. Being of a noble family he was a privileged member of 

the ducal court at Urbino, and as an early patron of Galileo he secured the latter’s appointment as 

professor of mathematics at the University of Pisa in 1589. 

 As I will argue in detail in the present chapter, it will not do to portray Guidobaldo as a strict 

Archimedean who tried to “reconcile” his mechanics with Aristotelian notions, as has often been 

suggested. This is to forget how inherently problematic is the idea of someone being strictly 

Archimedean, especially given the abstract character of the latter’s writings. Whatever the story 

behind Guidobaldo’s humanistic interest in restoring the ancient science of mechanics, it required a 

lot of creative and insightful interpretation. Many conceptual choices had to be made which could not 

be read off from the ancient sources, e.g. how to make sense of Archimedes’ proof procedure in his 

proof of the law of the lever. As will become clear, we cannot simply identify different sources for our 

and sixteenth-century writers knowledge of (the history of) mechanics with distinct Archimedean 

(static) and Aristotelian (dynamic) “traditions”. Let me accordingly stress the intrinsic interest that 

the work of Guidobaldo should hold for anyone interested in sixteenth and seventeenth century 

mechanics. Since this work has not received the detailed attention it deserves, however, I hope that the 

present chapter can remedy this situation. 

 The resulting picture of Guidobaldo’s science contains many elements that are directly 

relevant for what I have called an archaeology of Galileo’s science of motion. As will become clear in 

the next chapters, the interplay between empirical and theoretical considerations that characterizes 

Guidobaldo’s exemplary instantiation of the category of mixed sciences will prove to be especially 

relevant. But the specific conceptual structure that underlies his mechanics will also turn out to be 

very interesting when we will discuss Galileo’s effacement of the Aristotelian distinction between the 

natural and the artificial in chapter 5. 
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 Until recently, Guidobaldo del Monte was mainly treated as a transitional figure in the history 

of science. His contributions in reviving the ancient science of mechanics were often praised, whilst 

his inability to see beyond the ancients was much deplored. Whereas Pierre Duhem’s derisory 

description of Guidobaldo’s oeuvre as “sometimes in error, always mediocre”176 found its direct echo 

in the work of the French historians of science Pierre Costabel and René Dugas,177 Anglo-Saxon 

historians of science tended to be slightly more positive in their judgement. Yet both Paul Lawrence 

Rose and Stillman Drake, to name but two of the most prominent ones, did not truly alter Duhem’s 

assessment.178 They admitted that Guidobaldo’s contribution not only restricted the advance of modern 

science, since he was one of the most influential promoters of a mathematical approach to nature and 

most importantly an early supporter of Galileo,179 but they still stressed the many steps he was unable 

to take which “he would otherwise have been quite capable of making”.180 

It is clear that these negative evaluations of Guidobaldo’s mechanical writings are based on a 

particular historiographical position which favours the vantage point of “classical” mechanics as a 

norm to judge earlier approaches. As a result it is not surprising that in more recent literature we find 

important amendments to this picture.181 By focussing more closely on Guidobaldo’s own interests and 

predicament, these writers have stressed the social position from which he was working, the 

philosophical and scientific agendas he was pursuing, and especially the interplay between these 

elements. As a result, we are beginning to have a more nuanced understanding of the reasons why 

Guidobaldo’s mechanics has some of the particular characteristics for which he was so severely 

criticized by earlier writers. 

Much of the (admittedly not very numerous) writings on Guidobaldo’s mechanics have been 

organized around the historiographical categories of scientific traditions or schools. Stillman Drake 

influentially but controversially distinguished two sixteenth-century Italian schools of mechanics: a 

Northern group, “conspicuously interested in practical aspects of mechanics”, and a Central Italian 

group that “concentrated its interest on works of classical antiquity and on the rigorous application of 

mathematics to mechanics”.182 While not questioning the difference in outlook between these groups 

                                                 
176 Duhem 1905, p. 226. 
177 Dugas 1950, p. 99; Costabel 1954, p. 10. 
178 Rose 1975 (chapter 10); Drake 1969. 
179 Rose 1975, p. 233; Drake 1969, p. 48. 
180 Drake 1969, p. 46. 
181 Gamba and Montebelli 1988; Biagioli 1989; Bertoloni Meli 1992; Micheli 1995 (appendice II); Henninger-Voss 2000. 
182 Drake 1969, p. 13. 



 68 
 

of mathematicians, Mario Biagioli has tried to “uncover the more complex social dimensions of the 

interaction of these two “schools” and of their quite different conceptual styles”.183 Enrico Gamba and 

Vico Montebelli take a step further in thoroughly investigating the characteristics and context of the 

Central Italian group, which was actually organized around the duchy of Urbino. They especially 

stress Guidobaldo’s commitment to the empirical character of mechanics, and link this with the 

presence of skilled instrument makers in Urbino.184 Domenico Bertoloni Meli asks us to question the 

existence of a coherent agenda existing within the Urbino “school”, by opposing Commandino against 

Guidobaldo on a number of central issues.185 Gianni Micheli points to the fact that Guidobaldo’s 

humanist interest in recovering an ancient science cannot be analyzed separately from his attempts to 

come to a rational understanding of mechanical phenomena, and vice versa.186 Mary Henninger-Voss, 

finally, has paid detailed attention to the ways in which Guidobaldo himself consciously tried to 

establish a tradition for mechanics, one that at the same time could be based on noble and universal 

principles, and remain valuable in local artisanal contexts.187 

By focussing on the notion of a tradition, most of these writers have primarily paid attention to 

Guidobaldo’s conception of what constitutes the identity of the science of mechanics.188 As such, there 

are almost no recent extended discussions of the conceptual structure of the science for which 

Guidobaldo sought to establish an identity.189 Admittedly, these are two sides of the same coin. But 

taking this metaphor literally, it might be time to turn the coin and take another look at the bottom side. 

I will hence try to focus on the actual conceptualizations used by Guidobaldo, and only at the end of 

my analysis will I refer to his own pronouncements on the nature of mechanics. My primary aim will 

be to look at the use to which central concepts, such as centre of gravity, are put within the confines of 

Guidobaldo’s texts. That is, I am in the first place interested in the coherence that Guidobaldo tried to 

forge for the domain of mechanics by arguing for a host of relations between different concepts that 

were somehow connected with the traditional ways of conceiving mechanical phenomena. 
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To my mind, there is no doubt that the utility of this kind of exercise in conceptual analysis is 

partly determined by the position occupied by Guidobaldo as an almost contemporary and at some 

                                                 
183 Biagioli 1989, p. 57. 
184 Gamba and Montebelli 1988. 
185 Bertoloni Meli 1992. 
186 Micheli 1995. 
187 Henninger-Voss 2000. 
188 A useful summary of the landscape of sixteenth-century positions on this issue is provided in Laird 1986. 
189 Gamba and Montebelli 1988, part II, provides an exception but as the concept of centre of gravity is not further analyzed 

there, the author misses an essential part of the fine-structure of Guidobaldo’s conceptualization of mechanical phenomena. 
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point paragon of Galileo. Let me therefore first clarify how the present chapter is situated with respect 

to the kind of work pioneered by Duhem, which was also focused on conceptual issues. Its prime aim 

is to investigate Guidobaldo’s science as much as possible on its own terms. I will e.g. not posit the 

existence of a dynamic and a static tradition in mechanics, presumably deriving from Aristotle and 

Archimedes respectively, as is often done following the lead of Duhem. 190  I will rather try to 

investigate how Guidobaldo himself interpreted and recuperated the writings of his predecessors. After 

all, it was only through the work of people like Guidobaldo that such a distinction gradually took a 

meaningful shape, and in any case it will turn out that it makes no good sense to read Guidobaldo’s 

own writings through such a filter.191 Yet, in an important sense the work of people like Duhem is still 

the starting point for my own analysis. Their criticisms did single out some of the most peculiar 

aspects of Guidobaldo’s mechanics. As such they provide some kind of hermeneutic benchmarks from 

which we can start to reconstitute some of the coherence of Guidobaldo’s own conceptualizations of 

mechanical phenomena.192 

 It is clear that a complete treatment cannot avoid shifting to and fro between the level of 

conceptual analysis and a broader analysis of the philosophical and social implications of 

Guidobaldo’s “scientific project”. Yet by anchoring my analysis as much as possible in a thorough 

analysis of Guidobaldo’s use of certain central concepts, I hope to lay part of the groundwork for a 

richer understanding of this scientific project than can be attained by focussing primarily on social and 

philosophical factors. This need not be taken as a sceptical remark towards the previously cited 

literature. On the contrary, I consider most of the insights reached there as completely compatible with 

my own analysis.193 Let me just indicate in what respect I hope to add something substantially to them.  

 The most central issue surrounding Guidobaldo’s scientific project is the relation between on 

the one hand his adherence to the principles and canons of Archimedean science, and on the other 

hand his attempts to integrate this within an Aristotelian framework. It is reasonably clear that such a 

project cannot be understood without taking into account how this was part of Guidobaldo’s attempts 
                                                 
190 Cf. especially Clagettv 1959, pp. 3-23. 
191 See especially chapters 7 and 8 for the way in which such a distinction gradually became thematized in Galileo’s writings. 

For some further historiographical reflections on the gradual process through which the distinction between statics and 

dynamics took its present-day shape, see Gabbey 1993.  
192 This is especially true with regard to Duhem’s and Costabel’s treatments of the status of the centre of gravity (Duhem 

1906, chapters 15, 16; Costabel 1954). Their criticisms clearly pinpoint in what sense Guidobaldo’s understanding of this 

notion must differ essentially from a modern understanding. However, this need not be taken as a sign of Guidobaldo’s 

incoherence (as they frequently suggest). It can also be taken as a warning post that if we want to understand the coherence of 

his science on his own terms, we certainly will have to make sense of these differences. 
193 It is after all the goal of archaeological analyses to see how these different elements taken together allow a knowledge to 

function in the way it does. As explained in chapter 1, section 1.3.1, the present chapter is aimed at understanding some 

aspects of the internal discursive organization of the mixed sciences by seeing how its concepts are put to use. This is 

intended to complement the analyses in chapter 2, which are more in line with the secondary literature on Guidobaldo cited in 

the text. 
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at forging an interesting socio-professional identity for the practitioners of the “noble science” of 

mechanics, and it is undeniable that this limits possible choices to be made in developing such a 

science.194 However, we need not suppose the interaction to have been one-sided. It is highly plausible 

to assume that particular conceptual aspects of (Guidobaldo’s interpretation of) both Archimedes’ 

writings on equilibrium, and the Aristotelian treatise on mechanics helped to shape the particular form 

this attempted synthesis took. It is the latter suggestion that provides the motivation behind the present 

chapter. 

 When I will discuss the traditional Aristotelian distinction between the artificial and the 

natural as applied to mechanical instruments in chapter 5, we will see how Guidobaldo’s 

conceptualization of mechanical phenomena nicely fits in this broader philosophical framework. The 

local discursive organization of his science reflects some crucial elements from the wider discursive 

context in which it found its place. Yet we will also see how it at the same time contained the crucial 

elements that would allow someone as Galileo to dissolve this distinction. It occupies a truly pivotal 

position in this momentous transformation in our understanding of the relation between human agency 

and objective reality. This only further justifies our paying very close attention to the conceptual fine-

structure of Guidobaldo’s mechanics. 

 One further element of great interest is the kind of interplay between theoretical and empirical 

considerations that is characteristic of Guidobaldo’s mechanical writings. I think it is time to clear up 

some serious miscomprehensions concerning Guidobaldo that have been often repeated, especially in 

the literature on Galileo. Noretta Koertge, e.g., states in a very influential article on Galileo’s use of 

idealization that Guidobaldo’s work exemplified a “pedantic empiricist program” that counselled “to 

give up looking for simple ideal laws and try instead to describe actual states of affairs, warts, and 

accidents and all, in hideous, complicated detail”, but that Galileo “was too good a physicist” to adopt 

it.195 William Wallace even goes as far as stating that Guidobaldo “had examined Archimedes’ proof 

of the balance theorem and had rejected it for its lack of rigor.”196 It would certainly have outraged 

Guidobaldo, an admirer of the work of his Greek Master, that someone could ascribe such a position 

to him. Both Koertge and Wallace are apparently misled by Guidobaldo’s discussion of the 

complications that arise because of the fact that the lines of descent of weights hanging from a balance 

are not parallel but actually converge in the centre of the earth. We will see that Guidobaldo’s actual 

considered position on this matter is much more subtle that anyone has seen up till now. It is only 

when we are thus freed from ascribing a position to him that he never held that we can properly see 

how Guidobaldo understood problems that have to do with idealization in developing a mathematical 

science of mechanics.  

 
                                                 
194 Cf. the description in chapter 2, section 2.2.2. 
195 Koertge 1977, p. 393. 
196 Wallace 1984, p. 241. 
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 Guidobaldo’s essential contribution to the so-called Archimedean revival of the sixteenth 

century is beyond doubt. His 1577 Mechanicorum liber, which was quickly translated into Italian, 

incorporated central Archimedean concepts, and in 1588 he published a full-blown paraphrase of and 

commentary on Archimedes’ Equilibrium of planes.197 In this section, I will be primarily interested in 

Guidobaldo’s understanding and analysis of Archimedes’ treatise, as it is especially expressed in the 

latter work.198 

 It is useful to start by reminding ourselves that the extant writings on mechanics of 

Archimedes provide all interpreters with some serious puzzles, whether these interpreters live in the 

twenty-first century or in the sixteenth.199 Most conspicuous is the complete absence of any explicit 

definition of the notion of centre of gravity, which nevertheless is the most central conceptual element 

of the Equilibrium of planes. Guidobaldo also comments on this in his introduction to his paraphrase 

of Archimedes.200 Interestingly enough, his way to deal with this absence parallels the solution of most 

modern commentators. He has recourse to the definition given by Pappus in the eighth book of his 

Mathematical collections. 201  Of course, Pappus wrote centuries after Archimedes, but as Pappus 

himself indicates that he is following Archimedes in exposing the principles of mechanics, 202 

Guidobaldo could feel secure in claiming that “Pappus does not depart even a nail’s breadth from the 

principles of Archimedes.”203 In a similar vein, most modern writers assume that Pappus had access to 

lost treatises of Archimedes (Pappus himself quotes at least one such treatise in his Collections), which 

formed the basis for his definition.204 

However, prefacing Archimedes’ treatise with Pappus’ definition of centre of gravity is not 

without consequences. This definition reads as follows: 

 

                                                 
197 del Monte 1577; 1581; 1588. English translation of the first two books, when available, will be given from Drake and 

Drabkin 1969. 
198 I am not aware of any other detailed study of Guidobaldo’s “paraphrasis”. The only partial exception is Micheli 1995, 

which has many references to Guidobaldo’s understanding of specific aspects of Archimedes’ treatise dispersed throughout 

the book.  
199 For a sample of the modern literature on Archimedes, see Dijksterhuis 1987; Drachmann 1963; Knorr 1982. 
200 “Cùm itaquè supponat, nos exquisitam habere notitiam centri gravitatis.” del Monte 1588, p. 8.  
201 Pappus 1878. 
202 “Haec igitur doctrinae centrobaricae summa esse videtur, cuius elementa ediscas, si Archimedis de aequilibriis libros et 

Heronis mechanica adieris…” Pappus 1878, p. 1035. 
203 del Monte 1577, unnumbered preface. (Transl. from Drake and Drabkin 1969, p. 244.) 
204 Pappus 1878, p. 1069; cf. Dijksterhuis 1987, Drachmann 1963, and Knorr 1982. 
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The centre of gravity of any body is a certain point within it, from which, if it is imagined to be 

suspended and carried, it remains stable and maintains the position which it had at the beginning, 

and is not set to rotation by that motion.205 

 
This definition brings to attention a set of physical properties which are notable for their absence from 

the Equilibrium of planes. It is indeed surprising how devoid this treatise is of all physical 

interpretations of its main concepts. Nowhere does Archimedes speak about suspending weights, and 

even the term “weight” (�����) is soon after the introductory postulates dropped for the more neutral 

“magnitude” (���	
��). This is not all, Pappus immediately after giving his definition goes on to 

explain how we should understand this notion and introduces considerations connecting weight with a 

tendency for motion towards the centre of the world. Again, Archimedes nowhere gives a hint of any 

such connection in his treatise. There are even no direct indications of the direction in which the 

weights or magnitudes are understood to move.  

 The overall tendency of Archimedes’ treatise is thus characterized by a conscious attempt at 

reaching a level of abstraction as high as possible. Seen from this perspective, the famous law of the 

lever, stated in propositions 6 and 7, seems to be not so much about physical balancing, but about 

relating geometrical magnitudes to centres of gravity. And the goal of this exercise becomes clear if 

we consider the next propositions, which introduce properties of the centres of gravity of 

parallelograms and triangles. These in turn provide the means for squaring a parabola as is done in the 

second book of the Equilibrium of planes. (After having determined the centre of gravity of these 

figures, the area of other magnitudes, such as a parabolic segment, can be determined by balancing 

these figures with the other magnitudes and analyzing the conditions for equilibrium, exploiting the 

fact that the centre of gravity of the triangle is already known.)206 The exercise in which Archimedes 

seems to have been engaged was not so much a mathematization of physics, but a physicalization of 

mathematics.  

Guidobaldo at several points comments on the abstract character of Archimedes’ presentation, 

but he always seems confident to offer a physical interpretation himself. He states e.g. that 

Archimedes chose to speak about magnitudes because this is a common name for both plane figures 

and solids.207 Instead of interpreting this terminology as a sign of Archimedes’ desire to avoid physical 

connotations, Guidobaldo turns it into a means of highlighting these. Indeed, he stresses that the first 

eight propositions, which form the nucleus of Archimedes’ mechanics, are valid both for plane figures 

and solids (he even goes as far having the accompanying figures in his paraphrase alternatively depict 

                                                 
205 del Monte 1588, pp. 8-9. (Transl. from Drake and Drabkin 1969, p. 259). 
206 This is explained in great detail in Archimedes’ Method, to which Guidobaldo obviously had no access. 
207 “etenim in his semper loquitur vel de gravibus simpliciter, veluti in primis tribus theorematibus; vel de magnitudinibus, ut 

in reliquis quinque quod quidem nomen tam planis, quàm solidis quibuscunque est comune, ut etiam ij, qui parùm in 

Mathematicis versati sunt, satis norunt.” del Monte 1588, p. 20. 
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suspended planes and solids).208 And it is quite clear that he was rather embarrassed by the apparent 

restriction of the treatise to plane figures, as is testified by his convoluted discussion of the problem as 

to how we can understand a plane figure, which has no gravity, to have a centre of gravity. His most 

convincing answer seems to lie in the fact that a solid which has weight, and can be equilibrated by 

suspension, can be thought to have its point of suspension in its upper plane, whence we can also 

imagine this plane to be suspended in equilibrium as well.209 Equilibrium of plane figures is hence 

made dependent on equilibrium of solids. It is clear that the adoption of Pappus’ definition strongly 

favoured – maybe even necessitated – such a view. 

 If Archimedes wanted his physicalization of mathematics to succeed, he somehow had to 

introduce physical elements in his proofs. And indeed, in the proof of the law of the lever we find him 

implicitly equating “balancing” with being placed around the common centre of gravity. This is a 

point which Guidobaldo seizes upon to highlight the central role played by the (physical) definition of 

centre of gravity. In a long introductory section to the proof of proposition 6 (the commensurable case 

for the law of the lever), he tries to offer an explication of Archimedes’ method of proof. Now, this 

method crucially involves the replacement of a weight (magnitude) on a balance (line) by smaller 

equal weights (magnitudes), which together weigh as much (have the same magnitude) and are 

suspended (placed) in such a way that their centre of gravity coincides with the centre of gravity of the 

original weight (magnitude). It is clear that Archimedes assumes that such replacement does not alter 

the action of the weights on the balance. (Notice how hard it is not to state Archimedes’ procedure in 

physical terms.) Which of course elicited Mach’s criticism that “the entire deduction contains the 

proposition to be demonstrated, by assumption if not explicitly.”210  

 Mach’s criticism actually consists of two parts: firstly, Archimedes cannot prove that 

equilibrium is not disturbed if we replace a magnitude by another one with the same weight and centre 

of gravity, but of different shape; secondly, the actual form of the dependence of the action of the 

magnitude on its position and weight can only be the linear combination (weight) x (distance), given 

the actual replacements effected by Archimedes. The second criticism seems rather inappropriate. One 

can’t help but wonder what’s wrong with a proof that makes explicit the formal conditions underlying 

a procedure that is deemed valid on other grounds. The first criticism is implicitly but extensively 

taken up by Guidobaldo in his explication of the proof method; i.e. he sets out to prove that such a 

replacement indeed does not disturb equilibrium, and he explicitly states that it is inadmissible to base 

this proof on the law of the lever.211 His proof proceeds in three steps, which I will now analyze in 

                                                 
208 del Monte 1588, pp. 19-21. 
209 del Monte 1588, 14-16. 
210 Mach 1960, p. 20. 
211 “At verò quoniam demonstrationes ibi allatae indigent, quae Archimedes in sequenti sexta propositione demonstravit, 

idcirco demonstrationes illae huic loco non sunt oportunae.” del Monte 1588, p. 59. (Guidobaldo is referring to 

demonstrations of some propositions in his Liber mechanicorum.) 
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some detail, as they forcefully reveal how Guidobaldo dealt with the incompletely interpreted formal 

framework given by Archimedes’ treatise by exploiting the physical nature of Pappus’ definition. 

(Incompletely interpreted because the notion of centre of gravity remains undefined, and because 

many other mathematical elements receive no direct physical interpretation.) 
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 The proof procedure under investigation involves the replacement of one weight, say E, by 

two smaller weights, say B and C, which together weigh as much as E and which are placed in such a 

way that their centre of gravity coincides with the centre of gravity of E (see figure 3.1). It has to be 

shown that both configurations are completely equivalent with respect to equilibrium with a further 

weight, say A.212  

 First, Guidobaldo asks us to imagine that the weights B and C are suspended below the line 

connecting A and C. They are connected by a line which in their common centre of gravity is 

suspended from the line AC. Now, since they are suspended from their centre of gravity it follows 

from the definition of centre of gravity that they will be at rest. As the body composed of the two 

weights remains at rest, this implies that they are sustained in their centre of gravity by a power which 

equals their combined weight. Obviously the same power would also sustain the weight E if it was 

suspended from its centre of gravity at the same place. As a result, both the combined weight and the 

single weight gravitate with their total weight in their centre of gravity.213  

 Next, Guidobaldo places the weights back in the line AC.  If we now consider on this line the 

point D which is the centre of gravity of the weights A and E, then it obviously will also be the centre 

of gravity of the weights A and B and C. Hence the combined weight and the single weight are 

completely equivalent with respect to equilibrium with the weight A.  

 Apparently not completely satisfied, Guidobaldo moves on to a further consideration. This 

time he wants to compare the weights B and C when placed in the line AC with the same weights when 

placed at equal distances around their centre of gravity, but at an angle to the line AC (such that the 

new places, say F and G, or H and K, still lie at a straight line going through the centre of gravity – see 

figure 3.2). Now, since the body composed of both weights when placed in FG or HK still has the 

same centre of gravity, which remains stationary, it does gravitate in the same place as it did when 

placed on the line AC.  Again the same conclusion follows with respect to the body’s capacities for 

equilibrating the weight A. 

 The crux of the whole line of argument lies in the fact that the complete weight of any body 

can be considered to be concentrated in its centre of gravity. And this replacement is justified through 
                                                 
212 del Monte 1588, pp. 55-58. 
213 “Quocumque enim modo eadem gravia sese habent, eodem semper modo in eius gravitatis centro gravitant.” del Monte 

1588, p. 56. 
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the definition of centre of gravity due to Pappus. The first and the third step merit some further 

comments. Peculiar about the first step is the fact that Guidobaldo makes the detour through 

suspending the weights below the line in which they are actually placed. The reason is that he wants to 

argue for the equivalence of the two configurations via the equality of the sustaining power, which 

apparently can be most easily conceptualized if the weights are suspended from above (probably due 

to the fact that gravity is a natural tendency for motion downwards). This argument is actually the 

continuation of a line of thought which was already introduced earlier in Guidobaldo’s paraphrase, in 

the preface immediately after the definition of centre of gravity and in the scholium to proposition 

four.214 That we have to sustain a body in its centre of gravity if we want to completely stop its natural 

motion actually betrays a deeper-lying fact about the constitution of the physical world. In an 

Aristotelian cosmos the natural tendency for downward motion of heavy bodies is due to their striving 

to be at rest in the centre of the universe. Yet, the definition of centre of gravity teaches us that such a 

body will only be truly at rest if its centre of gravity coincides with the centre of the universe.215 But 

this implies that we can be more specific about this striving of a body: it is the centre of gravity which 

truly wants to unite itself with the centre of the universe. Which brings us back to the earlier line of 

argument: if we want to halt a body’s natural motion, we have to arrest its centre of gravity, which is 

the seat of the body’s gravitational action.216  

 Even at this place, Guidobaldo is not simply taking over pre-given scholastic metaphysical 

ideas, introduced to fill in the gap in Archimedes proof procedure. As he is in the first place interested 

in making sense of this procedure, it turns out that the actual procedure used also shapes the way we 

have to understand these metaphysical foundations which are accordingly being transformed by their 

incorporation within this Archimedean context. He is truly trying to forge a synthesis and not merely 

adding up Aristotelian and Archimedean elements. This becomes clear in a passage in which 

Guidobaldo raises the worry whether two bodies merely connected by a line can be considered to be 

                                                 
214 del Monte 1588, pp. 9-11; 43-44. 
215 Note that this involves a subtle shift of reasoning on Guidobaldo’s part. To make this point, he turns to Commandino’s 

definition of centre of gravity, which Guidobaldo always present as completely equivalent to Pappus’ definition (he calls it a 

“descriptionem” of the notion, rather than a definition, presumably implying that Commandino gives a further explanation of 

how we should understand the actual definition, which is due to Pappus). Commandino’s definition, however, nowhere 

mentions suspension, but only states that the parts of the body on all sides of its centre of gravity will have equal moment 

(“Centrum gravitatis uniuscuisque solidae figurae est punctum illud intra positum, circa quod undique partes aequalium 

momentorum consistent” del Monte 1588, p. 9). Pappus’ definition, with its emphasis on suspension is rather ill-suited to 

establish this cosmological connection, since it seems improper to think of the role of the centre of the universe as a point of 

suspension. 
216 “Quare dum asseritur, grave quodcumque naturali propensione sedem in mundi centro appetere, nil aliud significantur, 

quàm quòd eiusmodi grave proprium centrum gravitatis cum centro universi coaptere expetit, ut optimè quiescere valeat. … 

Ex iis omnibus, quae hactenus de centro gravitatis dicta sunt, perspicuum est, unumquodque grave in eius centro gravitates 

propriè gravitare… Praeterea quando aliquod pondus ab aliqua potentia in centro gravitatis sustinetur; tunc pondus statim 

manet, totaquè ipsius ponderis gravitas sensu percipitur.” del Monte 1588, p. 10. 
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natural constituents of the physical universe. It turns out to be a sufficient answer that Archimedes 

considers them as such.217 If we can ascribe a centre of gravity to any combination of physical bodies, 

then we can consider them to be appropriately unified. This comes down to: the capacity to be held in 

equilibrium is what constitutes a body’s unity.  

We have thus gained a richer understanding of the metaphysical foundations underlying the 

validity of Archimedes procedure, i.e. the reason why it is appropriate to consider the complete weight 

of any body to be concentrated in its centre of gravity. A further aspect of this procedure can be 

brought to light by considering the third step of Guidobaldo’s overall argument. This third step 

crucially involves the fact that Pappus’ definition of centre of gravity implies that a body suspended in 

its centre of gravity will always be in what we now call indifferent equilibrium (i.e. no matter what the 

orientation with respect to that point, the body will remain in equilibrium). It is clear that this has to be 

supposed for the de facto replacement of any body by its centre of gravity to make sense. If this would 

not be true, then the position in which a body is held would not be indifferent. To stress the relevance 

of this fact for an appropriate answer to Mach’s criticism: if this were not the case, then the form of a 

body would indeed matter (as made visually clear by the accompanying figure 3.2). 

 The preceding paragraphs should suffice to show the crucial role played by Pappus’ definition 

in interpreting Archimedes’ treatise. It is seen to provide a natural link with an Aristotelian 

cosmological framework, exactly through the way it functions in making sense of Archimedes’ proof 

procedures. Yet the essentially physical nature of Pappus’ definition brings one important weakness 

for any theory that is built around it: it is hard to give any straightforward existence proof. That is, it is 

hard to see why it would be necessary at all that a point with these properties actually exists within any 

physical body. But we have seen that Guidobaldo’s interpretation of Archimedes’ procedure crucially 

turns around the existence of a point in which a body can be held in indifferent equilibrium. As the 

existence of such a point can apparently only be assumed, Guidobaldo’s proof seems to be left 

hanging in the air, suspended from a centre of gravity which might well be non-existent. 
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 The discussion of Guidobaldo’s paraphrase of Archimedes’ Equilibrium of planes made 

abundantly clear that the latter treatise contains important lacunae from a physical point of view. 

Guidobaldo had recourse to Pappus’ definition of centre of gravity to fill in quite a few of these, but 

                                                 
217 “Quoniam scilicet recta linea AB eas [magnitudines AB] coniungit ; ideo Archimedes considerat unam tantùm esse 

magnitudinem… Neque magis una est magnitudo quadrilaterum, pentagonum, cubus, & huiusmodi aliae, quam sit magnitudo, 

quae componitur ex magnitudinibus AB unà cum linea AB . quòd si est una tantùm magnitudo, ergo unum habet centrum 

gravitatis.” del Monte, p. 43. 
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there is another important ancient source from which we can find substantial traces in Guidobaldo’s 

mechanics. The pseudo-Aristotelian Mechanical problems were widely disseminated and discussed 

throughout the sixteenth century and it is not surprising that Guidobaldo paid considerable attention to 

them.218 In the present section, I will trace some of the general conceptual features of the treatise 

which found their way into Guidobaldo’s mechanics. In the next section, I will take up pseudo-

Aristotle’s and Guidobaldo’s treatment of the stability of a balance. 

 As with the Equilibrium of planes, any interpretation of the Mechanical problems faces 

considerable puzzles. In a sense these go even deeper for the latter work, as Archimedes’ work was 

seen to be rather easily completed by the addition of a definition of centre of gravity. The Mechanical 

problems, rather than giving the impression of being merely incomplete, present some obscure 

passages, which moreover form the core of its explanatory framework. Rather than trying to unravel 

their precise meaning, I will be primarily interested in presenting features of Guidobaldo’s mechanics 

which can be seen as bestowing such a meaning, although in many respects it would seem unlikely 

that this was the meaning intended by the Greek author. 219 

 The central organizing principle of the Mechanical problems is the reduction of the 

mechanical properties of the lever (and balance) to the mathematical properties of a circle. And these 

latter properties are thought to be of a special nature since “the circle is made up of … opposites, for to 

begin with it is composed both of the moving and of the stationary”.220 A circle is generated through 

the motion of a line which is fixed in one point (the centre), and of which the endpoint traces the 

circumference. This motion moreover is of a special nature, since it is actually the result of the 

simultaneous performance of two movements: one natural and one unnatural. This is thought to 

explain “why that part of the radius of a circle which is farthest from the centre moves quicker than the 

smaller radius which is close to the centre, and is moved by the same force”.221 The natural motion of 

the radius is somehow identified with the movement resulting from a tangentially applied force which 

is both moving the smaller and the greater radius, and which is thus identical for both.222 The unnatural 

                                                 
218 Rose and Drake 1971. 
219 Micheli 1995, especially chapter 3, is a recent and erudite study aimed at a more precise understanding of the Mechanical 

problems, which moreover pays much attention to Renaissance commentaries on the work. 
220 Aristotle 1963, p. 333. I will use this twentieth century translation, without paying attention to the sixteenth century 

translations and paraphrases as I don’t think that any of the points that I want to make here about the work depend on the 

differences that exist between these translations. See Micheli 1995, chapter 3, for discussions of some of these differences. 
221 Aristotle 1963, p. 337. 
222 I think it is clear from pseudo-Aristotle’s own explanation that this force is not to be identified in general with the action 

of a weight, but with a tangentially applied force generating the motion of the radius and hence the “nature” of the circle. All 

this is part of a general investigation of the properties of a circle, not of the behaviour of weights. Only at the end of his 

explanation, when actually answering the first problem, does pseudo-Aristotle identify the equal force on both a large and a 

small radius with the weight in a balance. It is of course a conspicuous aspect of a balance that its arms are placed 
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motion is different for both, however, since it results from the influence exerted by the centre on both 

endpoints, and this influence is different as both points are situated at a different distance from the 

centre. (How to understand this “influence” is one of the obscurities I referred to in introducing the 

pseudo-Aristotelian treatise. At the end of this section we will see how Guidobaldo tries to 

conceptualize it.) And “because the extremity of the less is nearer the fixed point than the extremity of 

the greater, being attracted towards the centre in the opposite direction, the extremity of the lesser 

radius moves more slowly”.223 Having seen why a smaller radius must move more slowly, we can 

exploit this understanding in explaining some mechanical problems, such as “why is it that small 

forces can move great weights by means of a lever”. 224  The explanation crucially involves the 

identification of the relevant elements in the lever with the structural properties of a circle:  

 
[T]here are three elements in the lever, the fulcrum, that is the cord or centre, and the two weights, 

the one which causes the movement, and the one that is moved… Now the greater the distance 

from the fulcrum, the more easily it will move. The reason has been given before that the point 

further from the centre describes the greater circle…225  

 
A lesser weight can consequently move a greater weight because it suffers less interference from the 

centre in making its motion. It is important to keep in mind that the Greek author does not directly 

identify the greater speed with the cause of the compensation for the lesser weight, but starts from a 

deeper lying explanation of this greater speed. 

It was noted in the previous section that Guidobaldo at several points provided Archimedes’ 

abstract treatise with appropriate physical interpretations. One of the missing physical elements in this 

treatise is a fulcrum as the fixed point around which a lever and balance can turn. In his scholium to 

the first Archimedean postulate Guidobaldo immediately posits such a point and goes on to identify it 

directly with the Aristotelian “centre”: “that point, moreover, that Archimedes admits, and from where 

the distances from which the weights are hung are measured, … Aristotle calls centre”.226 That this 

was by no means a gratuitous identification for Guidobaldo is testified by his Mechanicorum liber. 

There we find him having recourse to the general Aristotelian explanatory structure, including the 

crucial role of the centre, when he engages in a polemic with Tartaglia and other proponents of 

Jordanus’ views on positional gravity (this polemic will be further analyzed in the next section).  

 

                                                                                                                                                         
horizontally, and that the action of the weight is thus indeed working tangentially. The general properties of a circle can thus 

be recuperated to explain the behaviour of a balance near equilibrium (and this is all the author is interested in at this point). 
223 Aristotle 1963, pp. 341-3. 
224 Aristotle 1963, p. 353. 
225 Aristotle 1963, p. 353. 
226 “Punctum autem illud, quod Archimedes accipit, unde sumuntur distantiae, ex quibus gravia suspenduntur, …, Aristoteles 

centrum appellat.” del Monte 1588, p. 24. 
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Jordanus, and following him Tartaglia, had posited that a body that is constrained by a rigid 

bar to move on a circle will move more swiftly as its position is closer to the horizontal diameter, and 

Guidobaldo reproaches them for having failed to uncover the true cause of this fact. This is shown by 

him to consist in the different influence the stationary centre of the moving bar exerts on the weight 

according to the latter’s position. Imagine the weight as it rests on the bar while this stands 

perpendicular on the horizon: as it will weigh down on the bar, and hence on the centre which cannot 

move, the bar will have to resist the body’s tendency for downward motion and push back against it. 

The result is that the body will be deprived completely of its tendency to descend. Now imagine the 

weight as it is attached to the bar which is held in a position somewhere in between the horizontal and 

the perpendicular: it will still weigh down on the bar, but the resistance offered by the bar will not be 

complete, as the direction of the body’s tendency for motion and the direction in which the bar can 

push back against the body no longer coincide. Finally, when we imagine the weight attached to bar as 

the latter is perpendicular to the direction of the body’s tendency to motion, the body will retain its 

complete tendency for motion.  

It is striking how close Guidobaldo in his explanation approaches a modern understanding of 

the effects of constraint on the motion of bodies, when we identify the push back of the arm with a 

constraining force in the sense of classical mechanics and the resulting tangential force with the 

tendency for motion of the partly stustained weight. (Such assimilation would of course require a 

sophisticated understanding of the composition of forces which we cannot easily ascribe to 

Guidobaldo.) 227  At the same time it is striking how close Guidobaldo stays to the Aristotelian 

                                                 
227 Yet it must be noted that it is not by accident that Guidobaldo most probably found the inspiration for his explanation in 

the Mechanical problems, where the parallelogram rule for the composition of motion is expounded and moreover lies at the 

centre of the explanatory structure. An important difference remains: Guidobaldo would have to consider the tangential 

force/motion as the resultant of the perpendicular free force (i.e. the weight) and the constraining force, which is normal to 

the circumference, whereas the Greek author considers the circumference itself as the result of the composition of motions 

which result from a force directed towards the centre and a tangentially applied force.  

One reason why one may suppose that Guidobaldo never consciously analyzed the details of such decomposition is that it 

would almost directly have led him to the correct solution of the inclined plane problem. The main reason why he probably 

did not take this route, and instead adopted Pappus’ treatment of the inclined plane, is that he conceived an inclined plane as a 

wedge upon which a body is forced to move. As Guidobaldo himself did not include Pappus’ proof in his own treatise (it was 

only added in Pigafetta’s translation), as his references to Pappus’ treatment are rather sloppy (the balance involved in 

Pappus’ proof has e.g. its fulcrum in the point of contact between the body and the inclined plane, whereas the lever to which 

Guidobaldo wants to assimilate the wedge has its fulcrum in the tip of the wedge), and as he only uses the qualitative result 

that more force is needed as the plane is more oblique (conform with his belief that no exact proportions could be given for 

problems involving motion – see infra, section 3.6.2), I think we can safely assume that he did not pay much detailed 

attention to the conceptualization of the inclined plane problem. The references to Pappus rather seem to be added to justify 

his inclusion of the wedge and the screw in his mechanical treatise. Accordingly, I will not further treat the inclined plane in 
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explanatory framework, where the resulting speed of motion is also identified with the resultant of the 

combination of the natural motion of a body with the influence exerted by the stationary centre. Such 

assimilation becomes even more striking when we find Guidobaldo extending his explanation to the 

effect of the length of the rigid arm on the swiftness of the motion. Yet this extension at the same time 

shows the limits of this assimilation. Guidobaldo has crucially transformed the Aristotelian 

explanation by adding a different (almost “modern”, we could be tempted to say) understanding of the 

interaction between weight and centre, based on an action-reaction pair. While this opens up a 

potentially forceful and coherent understanding of the variations of the dynamic effects of a 

constrained weight, it is impotent to explain the effect of the length of a lever arm, which was the 

prime objective of the Aristotelian explanation. If Guidobaldo wants to explain the latter case without 

straightforwardly reversing (which he nevertheless might give the impression of doing) to the 

Jordanian idea that it is the straightness of the virtual motion that explains the difference in apparent 

weight – an idea which he had earlier criticised as not truly demonstrative – then he can only effect 

this by an implicit reversal to the vague Aristotelian “influence” of the centre on the weight. It is thus 

the general Aristotelian explanatory structure of stationary centre constraining/influencing the moving 

weight which keeps together Guidobaldo’s own attempts at causal analysis. 

 By introducing the Aristotelian “centre” as a fulcrum in Archimedes’ treatise, Guidobaldo also 

incorporates the explanatory structure going with it. As a result he provides the abstract treatise with a 

further physical and causal interpretation. It is thus not surprising that he goes as far as claiming that 

Archimedes most probably received some of his postulates from the Aristotelian treatise.228 Given the 

fact that Guidobaldo had also seized upon Pappus’ definition of centre of gravity as a genuine 

Archimedean element, this need not be “a curious theory of the history of mechanics”229, as both this 

definition and the Aristotelian explanatory structure make a lot out of the physical suspension of 

bodies in a central point. It is moreover precisely the duality of both centres, the centre of gravity and 

the fulcrum, which provides Guidobaldo with his most powerful explanatory strategy in his 

Mechanicorum liber (as will be seen in the next section). The same can be said about Archimedes’ 

Equilibrium of planes, which first assumes that a body will prevail over another one if it is farther 

from the “centre” than the other one, and then goes on to show what is the general condition for 

equilibrium by demanding that the “centre” coincides with the centre of gravity of both bodies taken 

together. Finally, Guidobaldo could have found convincing historical confirmation for his claim in 

                                                                                                                                                         
the present chapter. This need not detract from the fact that revealing questions can be posed about Guidobaldo’s decision to 

refer to it in his treatise, but these fall outside the limited perspective I have adopted here. (In chapter 6, section 6.1 I will 

come back to Pappus’ treatment when discussing Galileo’s solution of the problem, and his criticism of Pappus.) 
228  “Supponit autem Archimedes hoc postulatum respiciens fortasse ad ea, quae Aristoteles in principio quaestionum 

mechanicarum ostendit, ubi colligit Aristoteles idem pondus celeriùs ferri, quò magis à centro distat…” del Monte 1588, p. 

26. 
229 Drake 1969, p. 15 
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Pappus’ reference to a lost treatise of Archimedes in which is ascribed to Archimedes exactly the 

proposition that greater circles overcome smaller ones.230 
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 Up to now we have encountered two different respects in which Guidobaldo incorporated the 

Archimedean Equilibrium of planes within a broader Aristotelian framework. On the one hand, the 

physical definition of centre of gravity allowed him to integrate the Archimedean treatment of 

equilibrium within the general cosmological constitution of the universe. On the other hand, the 

Aristotelian treatment of the cause of disequilibrium allowed him to supply part of the missing 

physical structure in the Archimedean treatise. In a convoluted discussion in his Mechanicorum liber 

we can find both strands coming together.  

 The Mechanicorum liber opens with Pappus’ definition of centre of gravity, accompanied by 

the corresponding definition due to Commandino, followed by a few obvious axioms about weight as 

a magnitude, and three suppositions, which read as follows:231 

 
 1. Every body has but a single centre of gravity. 

 2. The centre of gravity of any body is always in the same place with respect to that body. 

 3. A heavy body descends according to its centre of gravity. 

 
The first section of the treatise concerns the stability of the balance. The first propositions introduce 

propositions concerning the stability of an equal arm balance with equal weights as it is sustained 

respectively above, under, and in its centre of gravity. All proofs combine a straightforward 

application of the Archimedean determination of the centre of gravity with the supposition that a body 

descends according to its centre of gravity (and the implicit acknowledgement that the fulcrum is a 

fixed point which must remain stationary). If the balance is sustained from above and removed from 

the horizontal position, the centre of gravity will be raised, and if the balance is released the centre will 

be able to descend until the balance is again in horizontal position (see figure 3.3.). The two other 

cases can be treated in a completely similar way (the centre of gravity will be respectively lowered – 

and will be able to keep on descending – and remain stationary). As a result, we have respectively 

stable, unstable and indifferent equilibrium.  

                                                 
230 “demonstratum est enim in Archimedis libro �	�� ���� sive de stateris et in Philonis Heronisque mechanicis, a maioribus 

circulis superari minores circulos, si circa idem centrum conversio eorum fiat.” Pappus 1878, p. 1069. 
231 del Monte 1577, p. 1v;  1581, p. 259. 
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Immediately after the proof of indifferent equilibrium, Guidobaldo enters into a sustained 

polemic discussion of Jordanus and other writers who want to base mechanics on the notion of 

positional gravity. This discussion has given rise to quite some miscomprehensions concerning 

Guidobaldo’s own views, as it can be very misleading to consider only parts of this polemic without 

keeping an eye on the overall argument. In what follows, I will accordingly first try to summarize the 

different steps in Guidobaldo’s argument, especially paying attention to the often criticized focus on 

the non-parallelness of the lines of descend of weights suspended on a balance.  

The occasion which triggers the discussion is the existence of indifferent equilibrium, which 

was denied by Jordanus, Tartaglia and others (although they did not use that name for the state they 

assumed to be impossible).232 According to these authors, a balance would never be in indifferent 

equilibrium since the weight on a depressed arm is always “positionally lighter” (as they called it) than 

the weight on the other arm. Hence a balance with equal weights, suspended in its centre, always 

returns to a horizontal position.  

In a first step, Guidobaldo reiterates his proof of proposition four, which states the case of 

indifferent equilibrium, but with a slightly different emphasis. Instead of giving a direct proof, he 

reduces the claim that an equal arm balance sustained in its centre would have stable equilibrium to 

absurdity, by showing that this would imply that the centre of gravity of a given body would not be 

unique, contrary to the first postulate. 

 Next, Guidobaldo shows a mathematical error in Tartaglia’s and Jordanus’ argument 

concerning the supposedly smallest ratio of angles. This argument was explicitly designed to save a 

theory based on the notion of positional gravity from some strange consequences, but it could also be 

used to undercut Guidobaldo’s argument. Its main point consists in showing that, although the weight 

on the elevated arm is positionally heavier than the weight on the depressed arm, the difference in 

heaviness is always infinitesimally small and consequently can not be offset by adding a small weight 

to the positionally lighter weight. The relevance of this argument for Guidobaldo’s argumentation lies 

in the fact that this could be used to argue that although the one weight would be positionally heavier 

than the other, the centre of gravity of both weights would not change and as a result still be unique. 

The resulting theory would of course have a strange notion of centre of gravity, but Guidobaldo is 

clearly determined not to leave any room for his adversaries. 

 Not only is the argument concerning the ratio of angles wrong on its own terms, it also 

assumes that the lines of descent of the weights at both ends of the balance are parallel, contrary to 

what Tartaglia states at other places. Guidobaldo thus introduces the convergence of the lines of 

descent towards the centre of the world into the argument to tackle Tartaglia on his own ground. He 

immediately deduces that as a consequence of this convergence the weight on the depressed arm 

                                                 
232 I will not give references to the places where the relevant passages in Tartaglia, Cardano, and Jordanus can be found, since 

these are already noted in the translation of Guidobaldo’s treatise in Drake and Drabkin 1969. 
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should always be positionally heavier, and that even stable equilibrium is inconsistent with the theory 

of positional gravity. (See figure 3.4.) 

 As a next step, Guidobaldo summarizes the arguments on which grounds the theory of 

positional heaviness would destroy the possibility of indifferent equilibrium. Firstly, it is assumed that 

the closer a weight is to the horizontal position, the heavier it will be. This in turn is due to the fact that 

it will be moving more swiftly because it is farther from the perpendicular erected on the centre of the 

balance. Secondly, this difference in positional gravity can also be deduced from the different degrees 

of straightness of the arcs at different places along the circle described by the balance arm.233 

 Guidobaldo agrees that a weight will move swifter if it is closer to the horizontal position, but 

he also claims that the theory of positional gravity fails to deliver the true reason for this fact. This is 

proved by showing that the true cause involves an explanation wholly absent in the writings of 

Tartaglia and Jordanus. This explanation is the one which was summarized in the previous section. It 

is followed by a long passage in which this explanation is applied to different configurations of the 

position of the centre of the weight’s arm of suspension with respect to the centre of the world. The 

conclusion is that the position where a body would have the greatest “free” weight changes with this 

relative position (as the position where the line of descent and the arm of the balance are perpendicular 

changes – see figure 3.5). This digression does not directly touch on the arguments concerning 

positional weight. At this point Guidobaldo seems rather to be assessing the possible effect of the 

convergence of the lines of descent on his own theory. 

 The explanation grounded in the different curvatures of the arc is first attacked by showing 

again that it is incompatible with the convergence of the lines of descend. However, this time 

Guidobaldo seems to agree that this might be taken as mere hairsplitting since this convergence must 

remain imperceptible. Thus, he goes on to offer a further foundational critique of the notion of 

positional gravity. Firstly, he argues that the notion is incoherent, since a weight might be assigned 

different positional gravities depending on the way one considers its position. This is due to the fact 

that the curvature of an arc depends on the length of the segment one considers.234 Secondly, the 

theory contains a crucial ambiguity which renders it unable to correctly assess the stability of a 

balance. The arguments concerning the impossibility of indifferent equilibrium were all based on a 

misapprehension of the way the two weights on the ends of the balance should be considered. The 

potential descent of the one was compared with the potential descent of the other, whereas it should 

have been compared with the latter’s potential ascent since the two weights are always moving on the 

opposite arms of a balance – i.e. these authors overlooked the essential consequence of the conjunction 

of weights on a balance. 

 
                                                 
233 A third argument described by Guidobaldo does not truly involve the notion of positional gravity. 
234 The cogency of this critique was denied by Duhem, who stresses that according to Jordanus the positional gravity has to 

be calculated for an arc smaller than any assigned value. (Duhem 1905, p. 215.) 
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 At this point we are over halfway through the extended discussion appended after the fourth 

proposition. In the part that follows, Guidobaldo leaves behind the straightforward criticism of the 

notion of positional gravity, and further expands on the proper way to understand the stability of a 

balance. This involves two crucial explanatory features, which I will take up in turn as it is here that 

we can best assess the kernel of Guidobaldo’s understanding of the right way to conceptualize 

mechanical problems.  

 Firstly, and most conspicuously given the criticisms that were levelled by Duhem and others at 

precisely this point, Guidobaldo reintroduces parallelness for the lines of descent of the weights 

suspended on the opposing arms of a balance. Immediately after having criticized Jordanus and 

Tartaglia for having neglected the effect of the conjunction in assessing stability, Guidobaldo claims 

that as a further effect of this conjunction the lines of descent will become parallel.  

 Secondly, Guidobaldo stresses that the different types of stability are governed by the duality 

between centre of suspension and centre of gravity. He further points out the structural similarity 

between his explanation and the one offered by (pseudo-)Aristotle in the Mechanical Problems. The 

latter of course did not involve the notion of centre of gravity, but this notion can now be imputed to 

the Aristotelian author because of this structural similarity. Yet, as Guidobaldo himself notices, 

“Aristotle poses only two questions [stable and unstable equilibrium] and leaves out the third; that is, 

the case in which the centre of the balance is in the balance itself.”235 Hence, it is exactly the most 

crucial case that is missing in the Greek treatise. Guidobaldo is not disturbed by this: “But he left this 

out as a thing well known, as he usually did omit obvious things. Who can doubt that, if the weight is 

sustained at its centre of gravity, it will remain at rest?”236 No-one, of course; that is, no-one who 

accepts the existence of the centre of gravity as defined by Pappus…  

 The structural similarity between Guidobaldo’s and Aristotle’s treatment can only be secured 

via a not very subtle rhetorical strategy. Yet, as was argued in section 3.3, it is no accident that the 

duality between the two centres is stressed through a reference to the Mechanical Problems. What is 

interesting is not so much that Guidobaldo unconvincingly attributes a knowledge of barycentric 

theory to Aristotle, but that he takes over an Aristotelian focus on the physical effects of the stationary 

character of the point around which the weights move, and integrates this within a barycentric theory. 

If the fulcrum is e.g. situated above the centre of gravity, then the geometry of the situation 

immediately shows that the weight on the raised arm of a balance will be more “free” – i.e. less 

sustained – than the opposite weight, and the balance will have to return to a horizontal position (see 

figure 3.6). Guidobaldo’s explanations at this point can be purely geometrical since he has already 

                                                 
235 del Monte 1577, p. 26v. (Transl. from Drake and Drabkin 1969, p. 290.) 
236 del Monte 1577, p. 26v. (Transl. from Drake and Drabkin 1969, p. 290.) 
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analyzed the physics accompanying this geometry. However, as was already indicated, an essential 

part of this geometry is the fact that the lines of descent of both weights are taken to be parallel. How 

can this be squared with Guidobaldo’s recurrent critique of other authors’ neglect of the actual 

convergence of these lines?  

 The reason why Guidobaldo returns to parallel lines of descent is clearly indicated by himself: 

if he did not do this, he would be confronted with the same problem as he had uncovered for the 

proponents of positional gravity. After all, his own analysis of the differences in “free” weight due to 

the relative direction of the line of descent of a weight with respect to the arm from which it is 

suspended, gives the same results as the analyses based on the notion of positional gravity. But he had 

already shown that from the combination of the latter with the fact that the lines of descent converge in 

the centre of the world there follows the undesired result that the weight on the raised arm of a balance 

would have to be positionally lighter than the weight on the depressed arm. All that Guidobaldo offers 

by way of a direct justification for returning to parallel lines is the following:  

 
But if the weights E and D are joined together and we consider them with respect to their 

conjunction, the natural inclination of the weight placed at E will be along the line MEK, because 

the weighing down of the other weight at D has the effect that the weight placed at E must weigh 

down not along the line ES, but along EK.237  

 
The line ES is the line connecting the weight E with the centre of the world S, whereas the line EK is a 

line through E but parallel with the line connecting the centre of gravity of E and D with the centre of 

world (see figure 3.7).  

 There is no further explanation of how this weighing down is to be understood, which is 

especially problematic given the fact that Guidobaldo’s earlier analysis crucially rested on the fact that 

the weight at D already weighs down on the fulcrum which remains stationary. It might thus seem that 

Guidobaldo’s justification must remain completely ad hoc. There is however one further feature about 

it which merits closer attention, and which will bring forth a greater coherence in Guidobaldo’s 

conceptualization of this problem than might be apparent at first sight – and one that is certainly 

greater than acknowledged by Duhem et alteri.  

The lines of descent are not just posited to be parallel to each other, but also to be parallel to 

the line connecting their centre of gravity with the centre of the world. This is immediately relevant, 

because if Guidobaldo has a means to justify this fact, he also has resources which are unavailable to 

the proponents of a theory based on the notion of positional gravity. As a result, he could at the same 

time criticize them for neglecting the convergence of the lines of descent and hold on to parallel lines 

in his own conceptualization. And if we remember Guidobaldo’s understanding of the notion of centre 

                                                 
237 del Monte, p. 20r. (Transl. from Drake and Drabkin 1969, p. 282.) 
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of gravity as it was evinced in his comments on On the equilibrium of planes, it becomes clear that he 

is not just positing an arbitrary stipulation.  

One of the main features of the centre of gravity was that it is connected in a crucial way with 

the cosmological structure of an Aristotelian cosmos. We have seen that it is the centre of gravity 

which truly wants to unite itself with the centre of the universe (a fact which is also expressed in the 

third supposition of the Mechanicorum liber, quoted above). The present argument for the parallelness 

of the lines of descent can be understood as a straightforward extension of this understanding. The 

figure accompanying the text at this point clarifies this further (see again figure 3.7). A balance in a 

raised position is shown, as are the lines of independent descent of the two weights and the line of 

descent of their centre of gravity, all converging in the centre of the world. The balance is also shown 

with its centre of gravity in the centre of the world, its arms parallel to the original position. If we now 

draw lines from the weights in their original position to the same weights in this latter position, we 

have their paths of descent as their centre of gravity descends towards the centre of the world; lines 

which are parallel with each other, and with the line of descent of the centre of gravity.238 
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 Drawing all the lines of this discussion together, we can see that Guidobaldo’s understanding 

of the stability of balances is structured by a three-fold organization. The duality between centre of 

gravity and fulcrum can only play its explanatory role because there also exists an intimate 

relationship between the centre of gravity and the centre of the world, which gives a balance its 

required unity so that the lines of descent of the suspended weights have to be considered parallel. In a 

comment that was introduced by Pigafetta in the Italian translation of the Liber mechanicorum, but 

which was actually due to Guidobaldo,239 we find him stressing this three-fold structure himself: 

 
Now our author is the first to have considered the balance in detail and to have understood its 

nature and its true quality. For he is the first of all to have shown clearly the way of dealing with it 

and teaching about it, by propounding three centres to be considered in its theory: one is the centre 

of the world, another the centre of the balance, and finally the centre of gravity of the balance: for 

in this was a hidden secret of nature. Without these three centres, it is clear that one could not come 

to a perfect knowledge or demonstrate the various properties of the balance…240 

 

                                                 
238 It is true that the present explanation introduces some problems of its own; it is especially hard to understand what 

happens with the bodies’ tendencies to descend at the point when their centre of gravity coincides with the centre of the 

world. This situation reappears in Fermat’s discussion of the geostatic question, and shows its problematic character in that 

context. 
239 See the transcription of a letter of Guidobaldo to Pigafetta in an appendix to Micheli 1995. 
240 del Monte 1581, p. 28r. (Transl. from Drake and Drabkin 1969, p. 294.) 
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Guidobaldo’s conceptualization of mechanical phenomena essentially involves both what he had 

found in Aristotle and his followers, and what he had learned form Archimedes. Its basic conceptual 

element, centre of gravity, is of Archimedean origin, but the way it functions is co-determined by an 

Aristotelian cosmological frame and by the particular Aristotelian understanding of the balance. 

There is one further strand running through Guidobaldo’s discussion that remains to be taken 

up. It was already remarked upon that Pappus’ definition of centre of gravity is of an essentially 

physical nature, and that the notion thus can be given no straightforward existence proof. At the same 

time, we saw Guidobaldo axiomatically holding on to its unique existence in his first criticisms 

directed against Jordanus and Tartaglia (that the difference in positional gravity of weights on opposite 

arms would imply the non-uniqueness of the centre of gravity of a balance), on the basis of his first 

two suppositions, quoted above. This straightforward connection between the possibility of indifferent 

equilibrium and the existence and uniqueness of the centre of gravity brings to light what is really at 

stake for Guidobaldo in his polemic with the proponents of the notion of positional gravity. By 

denying indifferent stability they take away the well-foundedness of the whole concept of centre of 

gravity (hence also Guidobaldo’s confidence in claiming that Archimedes seems to have been of the 

same opinion as him concerning the stability of balances, a topic never mentioned by Archimedes)241.  

If we take a look at the discussion from this perspective, a further significant link with the 

issue of the parallel lines of descent comes to the fore. Precisely because the convergence of the lines 

of descent would imply the impossibility of indifferent equilibrium, it would also threaten 

Guidobaldo’s mechanics in its true core. This connection would again become a central issue in the 

mainly French discussion concerning Jean de Beaugrand’s Geostatice in the 1630’s.242 It could hardly 

have escaped Guidobaldo’s attention, given the extended discussion he gives of the effects of the 

relative position of a weight with respect to the centre of the world on its “free” weight when 

suspended from a balance arm, which would directly imply that the common centre of gravity of 

weights on the opposite arms of a single balance would change with the inclination of the balance.243 

Yet, it is crucial to Guidobaldo’s mechanics that this insight cannot be applied to connected weights, 

because he holds on axiomatically to the unique existence of a body’s centre of gravity. And precisely 

because he holds on to its existence, he has the resources to argue for the parallelness of the lines of 

descent.  

All this might give the impression that we are trapped in a kind of circularity, which only 

highlights the coherence of Guidobaldo’s position, but has nothing to say about its well-foundedness. 

There are two reasons why this is not completely true. Firstly, if there is no way to restore the 

paralleness of the lines of descent, even stable equilibrium will not be possible. Hence, even if one 

                                                 
241 del Monte 1577, p. 5v. (Transl. from Drake and Drabkin 1969, p. 262.) 
242 Cf. Duhem 1906; Costabel 1954; Roux 2004. 
243 This is especially so if we take into account that he had earlier criticized Tartaglia et al. because their arguments 

concerning the differences in positional gravity would imply a change in centre of gravity with the inclination of a balance. 
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does not necessarily want to hold on to indifferent equilibrium, there is still a good reason why one 

would want to be able to argue that the lines should be parallel. But the notion of positional gravity 

provides no clue whatsoever on this score, whereas the notion of centre of gravity does. Of course, one 

could decide to ignore the convergence of the lines of descent because it must remain imperceptible. 

Yet, secondly, Guidobaldo has another argument why his mechanics is truly well-founded. He claims 

to have been able to construct an empirical balance which shows indifferent equilibrium.244 In the end, 

it is thus an empirical proof that secures the existence of the centre of gravity as defined by Pappus, 

and as a result also shows that Archimedes’ proof procedure in his Equilibrium of planes is completely 

legitimate. But the attention for the different types of stability was due to the Aristotelian Mechanical 

problems, which accordingly points the way to the necessary empirical foundations for the abstract 

Archimedean treatise.245 
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 In the foregoing sections we have seen the intricate ways in which Guidobaldo’s conceptual 

structuring of the science of mechanics revolves around the three centres, and consequently has a truly 

Aristotelian-Archimedean character. In the next section, a preliminary attempt will be made to 

reconnect this analysis with some of the issues surrounding Guidobaldo’s broadly conceived 

                                                 
244 del Monte 1581, p. 28r. (Transl. in Drake and Drabkin 1969, p. 295.) 
245 I claimed in section 3.1 (cf. footnote 17 and the accompanying text) that some of the conclusions of Duhem and Costabel 

could be used as a kind of hermeneutic benchmarks, because they allow us to pinpoint in what respects Guidobaldo’s 

conceptualization of mechanics is essentially different from a modern one. Let me quickly summarize these conclusions, and 

leave it to the reader to compare them with the foregoing discussions. Both Duhem and Costabel make a lot out the presumed 

fact that Guidobaldo’s conception of centre of gravity had to be incoherent because it involved both the definition due to 

Pappus, and the one due to Albert of Saxony. The first presumably involves parallel lines of descent (because, as we have 

seen, this is a precondition for indifferent stability), whereas the second essentially involves the centre of the universe (it is 

broadly speaking the idea that in any body there is one point which strives to unite itself with the centre of the universe), and 

hence brings with it convergence of lines of descent. On this ground, they criticize Guidobaldo on two scores: that he does 

not realize this incoherence, and that he cannot possibly overcome it. According to them, this incoherence could only be 

overcome by leaving behind the overtly physical connotations of both definitions, and by introducing a purely geometrical 

definition. Such a definition would allow the centre of gravity (which would become an ill-suited name for the concept) to 

play its truly fruitful role: to be a centre of dynamical equivalence; i.e. one can derive from this geometrical definition that it 

is the point where one can conceive all the mass of a system of bodies to be concentrated and the geometrical resultant of all 

the forces on these bodies to be applied. If we take these forces to be forces of weight, and if these are considered to be 

parallel, then it follows that we can always replace the system of bodies by its centre of gravity. That we have indifferent 

equilibrium if we hold a body in its centre of gravity is merely a physical consequence of this fact, but it is no part of the 

defining characteristics of the concept. 
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“scientific project”. But before coming to these concluding remarks, it is important to assess some 

consequences of this way of conceptualizing mechanical phenomena; consequences that can be judged 

from the other sections in the Mechanicorum liber that follow upon the treatment of the balance. 

 Guidobaldo follows Pappus in reducing the other mechanical instruments to a combination of 

levers. In a letter to Pigafetta, he moreover states that the lever and the balance operate on exactly the 

same principles, the only difference being the mode of operating: a balance has weights on both ends 

whereas to a lever is applied another kind of power at one end.246 But if we have a look at his way of 

determining the exact proportions governing the use of a lever, we immediately find him assimilating 

these applied powers to suspended weights, and as a result effectively transforming a lever into a 

balance. 247  This allows Guidobaldo to apply the conceptual structure that we discerned in the 

foregoing sections to the lever: first he demands that the fulcrum should coincide with the common 

centre of gravity of the weight to be sustained and a weight suspended at the point of application of the 

force, and only afterwards he sets the force to be applied equal to the weight that is thus determined. 

 The most important innovation introduced in the section on the lever is that the fulcrum must 

no longer of necessity lie in between the weight and the applied power/assimilated weight. This will of 

course be of capital importance in reducing a system of pulleys to a system of levers. Guidobaldo 

adduces two equivalent way of proving the exact proportions holding between sustaining power and 

suspended weight for such levers with suspended weight in between the fulcrum and the applied 

power. Both methods crucially replace powers by suspended weights and then exploit the rational 

principles that hold for weights on balance. His second method straightforwardly reverts to the balance 

model by imagining the lever arm to be extended at the other side of the fulcrum where a weight equal 

to the weight to be sustained is suspended at an equal distance from the fulcrum; a weight which in its 

turn can be held in equilibrium by a smaller weight suspended from the point at which the power must 

be applied. His first method is more interesting since it comes close to introducing something akin to 

the notion of static moment.248 It exploits the idea that bodies of the same weight (“pondus”) can have 

different gravity (“gravitas”) depending on their relative position to the fulcrum, by setting the power 

equal to the pondus of a suspended weight that has as much gravitas as the weight to be sustained by 

that power. Yet the way he determines this gravitas is again through a straightforward identification of 

the position of the centre of gravity with the position of the fulcrum. 
                                                 
246 “Riduco le cinque machine alla leva, è vero, ma non però riduco la bilancia alla leva, essendo che esse siano una med.ma 

cosa e fra loro non vi è altra differenza, se non che con la bilancia si considerano li pesi, e con la leva si considerano la forza 

e il peso insieme…” Quoted in Micheli 1995, p. 161. 
247 Drake’s translation in Drake and Drabkin 1969 skips almost all the proofs of the propositions concerning the lever, hence 

actually hiding the transformations that govern Guidobaldo’s understanding of the lever. 
248 Already in proposition five on the balance does Guidobaldo state that suspended weights (‘pondera”) have gravity 

(“gravitate”) in proportion to the distance from the fulcrum. The closeness to our notion of static moment is explicit in 

Commandino’s version of the definition of centre of gravity. It is important, however, to keep in mind that static moment not 

only depends on the length of the lever arm, but also on the direction of the applied force. 
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 Guidobaldo had no other way of understanding the effect of a power than by assimilating it to 

a weight having a natural tendency downward which could be introduced in arguments involving 

centres of gravity. In a corollary to the third proposition on the lever he even claims that all the 

proportions established remain valid if the lever is not held in a horizontal position, since this follows 

from what was said about the balance 249  – obviously referring to the discussions on indifferent 

equilibrium. Immediately afterwards he corrects this statement, yet not as we would expect by 

introducing the effect of the different directions in which a power can be applied, but by analysing the 

effects of different ways in which the weight to be sustained can be attached to the lever. His lack of 

attention to the effect of the direction of the applied power can be partly explained by noticing that it 

plays no role when we are dealing with pulleys, where the powers are always applied vertically.250 

And it is clear, through the sheer weight of exhaustive discussions of different kinds of arrangements, 

that the section on the pulley forms the main goal of the treatise. As the lever seems to be primarily 

introduced to explain the workings of pulleys, explicit discussions of the direction of the applied 

power are not that important. However, contrary to what Duhem claims,251 Guidobaldo did realize that 

this could have significant effects. 

 In a passage on the wheel and axle (see figure 3.8), Guidobaldo discusses the effect of 

applying the power at different places at the wheel. He notices that if we apply the power to handle T, 

which is situated higher than the common axis of wheel and axle, then we get different results for the 

necessary sustaining power, depending on whether we “were to apply a living force to sustain the 

weight …, acting as if it wished to reach the centre of the world, as did the weight applied [there] by 

its own nature” or if “the handle were pressed by the hand”. 252  Guidobaldo again introduces 

considerations on the relative positions of fulcrum and centre of gravity to justify this difference. The 

weight G will balance the weight suspended from the axle when their common centre of gravity, lying 

on the line TB connecting both points of suspension, is situated perpendicularily above the common 

centre C of both wheel and axle, which functions as a fulcrum. An elementary geometrical calculation 

shows that this centre of gravity lies closer to the weight when this is suspended from a position that is 

higher on the wheel; whence a weight must be heavier to sustain the other weight from this position. 

This special case of what we would call a bent lever is as a result reduced to a balance which is 

                                                 
249 del Monte 1577, p. 42r; again a passage not included in Drake’s translation. 
250 Guidobaldo explicitly notices that in his pulley systems “the power will always move the weight as with a lever parallel to 

the horizon”. del Monte 1577, p. 77r. (Transl. from Drake and Drabkin 1969, p. 311.) 
251 Duhem 1905, pp. 219-223. 
252 del Monte 1577, p. 108r. (Transl. from Drake and Drabkin 1969, p. 318.) 
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sustained in a point under its centre of gravity.253 This is a procedure which could be generalized to 

give a treatment of all kinds of bent levers, as long as the power applied can be assimilated to a 

suspended weight. The latter limitation is of course highly important: if the lines of force are no longer 

parallel, the notion of centre of gravity loses all sense for Guidobaldo, and his explanatory scheme 

breaks down.  

Guidobaldo nevertheless also claims that when the power is applied perpendicularly (as 

pressed by a hand) the position on the wheel makes no difference. This seems to betray a more general 

analysis of the effect of directionality of forces, and hence would be a ground to attribute an 

understanding of what we call static moment to Guidobaldo. This attribution could be further 

strengthened by considering the argument that he actually gives for this indifference. He claims that 

this follows from the fact that powers applied perpendicularly at both the points T and F have their 

inclination along the circumference at the same distance from the centre.254 This seems to imply that 

he considers the relevant factor responsible for sustaining the suspended weight to be the component 

of the force working along the line of motion of the lever, combined with the distance from the 

fulcrum. If we further connect this with his analysis of the effect of constraint on the force of weight, 

then a general conception of static moment seems to be completely within Guidobaldo’s reach. 

However, it must be remembered that he wrongly suggested that his analysis of constraint would also 

explain the effect of the length of the lever arm, which clearly undercuts any arguments that would 

ascribe to Guidobaldo an understanding of what we call static moment. And most importantly, we 

cannot ignore the fact that he simply did not take this step – he clearly preferred to ground his analysis 

as much as possible in the concept of centre of gravity. Nowhere else in his writings are there any 

discussions of the effects of the directions of applied forces.255 

Guidobaldo’s insight in the differences between powers applied perpendicularly and weights 

suspended vertically is more nuanced than the simple ignorance ascribed to him by Duhem. Contrary 

to Henninger-Voss’ claim that “Guidobaldo seems to have analyzed all machines from the unstated 

assumption that they always move according to the manner in which they are employed by workers”256, 

                                                 
253 Compare especially with the discussions at del Monte 1577, pp. 29v-30r. (Transl. in Drake and Drabkin 1969, p. 293.) 
254 “tunc eademmet potentia, vel in F, vel in T constituta idem pondus k sustinere poterit; cùm semper in cuiuscunque: 

extremitate scytalae ponatur, ab eodem centro C aequidistans fuerit, ac secundum eandem circumferentiam ab eodem centro 

aequaliter semper distantem perpensionem habeat.” del Monte 1577, p. 109r. 
255 At least, I have not been able to locate other places in Guidobaldo’s writings where he would directly apply the insight 

that it is only the perpendicular component which must be taken account. Proposition five of the section on the lever in the 

Mechanicorum liber is certainly not a case, as is claimed by Montebelli (Gamba and Montebelli 1988, pp. 239-240). One 

only has to notice that Guidobaldo nowhere considers the projection of the arm on which the power is applied to see the 

inappropriateness of the figure that is provided by Montebelli (his figure 14). Guidobaldo in this proposition is not discussing 

the need to project the lines of force on a perpendicular arm, but the place where we should consider the force of the weight 

to be applied to the lever arm (which need not result in a perpendicular projection). 
256 Henninger-Voss 2000, p. 255. 
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which was based exactly on Duhem’s mistaken argument, we must stress that Guidobaldo analyzed 

almost all machines from the stated assumption that they are operated as if they were moved by 

suspended weights. Guidobaldo’s mechanics is essentially a science of weights, which always have 

their natural inclinations, but which can be put to human use through a clever exploitation of the 

properties of centres of gravity. And this exploitation finds place both at the level of the organization 

of rational principles, as in his polemic against Tartaglia and Jordanus, as at the level of bringing these 

principles into operative act.257 
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 The concept of centre of gravity provides Guidobaldo’s mechanics with the necessary 

conceptual stability. Through its multiple guises, it can play different roles simultaneously. It is both 

an essentially physical notion, which at the same time connects mechanics with a general 

cosmological structure and can be found incarnated in all particular mechanical machines, and a 

mathematical notion, which allows the construction of a deductive theory on its basis.258  In this 

concluding section, I will try to bring out some aspects of the part that is played by these roles in 

shaping Guidobaldo’s scientific project. 

There is an oft-repeated judgement that Guidobaldo denounced the ideas of Jordanus out of a 

misplaced homage to ancient authors (and a consequent rejection of medieval writers), and because he 

held on to an idea of absolute mathematical rigor.259 The latter aspect is especially taken to be evinced 

in his insistence on the convergence of the lines of descent. However, we have seen that Guidobaldo 

only insists on this convergence in a specific context, i.e. in his polemic against Tartaglia and Jordanus. 

The belief in the reality of this convergence was something he shared with his opponents, but whereas 

it destroyed the coherence of their arguments, he could evade its undesired consequences. It is thus put 

to a very specific argumentative use, and nowhere does Guidobaldo suggest that all mechanical 

explanations should take account of this fact – quite on the contrary. In an almost paradoxical way 

Guidobaldo introduces this convergence into the discussion to save the possibility of indifferent 

equilibrium (whereas on first sight this fact would seem to destroy this possibility). It is this possibility 

which is truly at stake, and with it the well-foundedness of the notion of centre of gravity. Because 

these authors had argued against indifferent equilibrium, they could in no way possess true science. 

                                                 
257 I borrow the apt expression “bringing into operative act” from Henninger-Voss 2000, p. 247, which, notwithstanding the 

confusion just pointed out in the text, is undoubtedly the best analysis of the hybrid nature of this double exploitation. 
258 Cf. especially del Monte 1588, p. 48, where Guidobaldo stresses the fact that centre of gravity is a mathematical notion, 

defined for mathematical objects, which allows its introduction in the Archimedean proofs of propositions 6 and 7. 
259 Duhem 1905, pp. 209-226; Drake 1969, pp. 44-48; Rose 1975, p. 233. 
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This is what the long polemic discussion is designed to show.260 In the same vein it is not so much the 

notion of positional gravity as such that is criticized (after all Guidobaldo’s analysis of the effect of 

constrainment on the “freedom” of a weight was explicitly designed to give the same results), but its 

organizing power – without the concept of centre of gravity, one is bound to run into insurmountable 

troubles. 

The empirical proof of indifferent equilibrium was seen to occupy a crucial place in securing 

the foundations of Guiodbaldo’s mechanics. At several places Guidobaldo stresses that it is essential 

to him that such empirical foundations had to be provided.261 This focus on the empirical underpinning 

of the principles of his science allows us to see Guidobaldo’s mechanics as an exemplary instantiation 

of the Aristotelian category of the mixed sciences. As we have seen in section 2.1.1, in establishing a 

mixed science one has to be able to show that a set of physical objects have some characteristics in 

virtue of which they are amendable to a mathematical treatment. This treatment then involves giving 

mathematical explanations of why a host of (mathematical) properties hold of these objects. It is 

evidently possible to give a mathematical description of a balance (based on the magnitudes of weight 

and length), and Aristotle and Archimedes have moreover shown how to exploit this mathematical 

description to explain different properties that hold of a balance qua mathematical instrument. This is 

possible because we can start from some communes notiones and suppositiones that characterize the 

mathematical concepts of weight and centre of gravity as holding of any physical balance.262 Based on 

these properties we can then exploit mathematical reasoning to demonstrate a host of remarkable 

properties (e.g. the different kinds of stability, or the precise ratio’s for the multiplication of force in a 

system of pulleys). The foregoing discussions have indeed shown how an empirical balance incarnates 

the essential conceptual features of mechanics in its different kinds of stability; features which only 

have to be expressed symbolically and ordered methodically by the mathematician. (This also helps 

understanding how Guidobaldo could have ascribed barycentric theory to Aristotle on account of no 

more than his treatment of the stability of balances.) 

Apparently opposite to Guidobaldo’s stress on the need of empirical underpinnings, Tartaglia 

had claimed that mechanical phenomena could be considered either “in abstraction from all matter”, or 

through material tests and physical arguments, but that we should not confuse these two modes of 

                                                 
260 It is noteworthy that in Guidobaldo’s own preface to the Mechanicorum liber, which stresses both the utility and the 

nobility of mechanics, he only has a scornful remark for Jordanus’ “disastrous errors”; whereas Pigafetta’s preface, which is 

almost exclusively devoted to the utility of mechanics, has a much more friendly reference to Jordanus, “who wrote of the 

science of mechanics” and “began to resuscitate it somewhat”. (del Monte 1577, unnumbered preface; 1581, unnumbered 

preface; Drake and Drabkin 1969, pp. 246, 252. For an analysis of the differences between the Latin work and its vernacular 

translation, see Henninger-Voss 2000.) Guidobaldo’s gibe occurs in the context of his stressing that he has tried to build up 

his work “from it foundation to its very top” – the most important problem with Jordanus is clearly not that he had made 

some easily correctable errors, or that he had introduced different concepts, but that he threatened these essential foundations. 
261 Cf. e.g. the letter to Contarini cited in Gamba and Montebelli 1988, p. 86. 
262 That any body has a centre of gravity; that it descends according to its centre of gravity; etc. (Cf. section 3.4.1.) 
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consideration. 263  But as Guidobaldo retorts, this actually implies that it becomes completely 

mysterious why this would still be a mathematical science of mechanics; as he famously expresses it: 

“mechanics can no longer be called mechanics when it is abstracted and separated from machines”.264 

To borrow Henninger-Voss’ assessment: Tartaglia’s science seems to be rather a mixed-up than a 

mixed mathematical science.265  
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Tartaglia had made his claim in a very precise context, however, i.e. when commenting on the 

difficulties that everyone is bound to notice when trying to verify theoretically established properties 

in empirical situations.  He concludes that the presence of matter would necessarily hinder the truth of 

propositions proved mathematically in the abstract. Guidobaldo is of course aware of this problem, as 

he warns us (through the intermediary voice of Pigafetta) that:  

 
… in performing this experiment one might not act hastily, for it is an extremely difficult thing … 

to make a balance which is sustained precisely at the centre of its arms and at its precise centre of 

gravity. For this reason it is good to remember that, when anyone tries to perform such an 

experiment and does not succeed, he should not be discouraged, but rather should say that he had 

not been careful enough, and should try repeatedly until the balance is just and equal and is 

sustained precisely at its centre of gravity.266  

 
The symbolic expression and methodological ordering that are the tasks of the mathematician cannot 

be attained through a straightforward inductive process. It is rather because Guidobaldo already has 

the proper rational principles that he is able to teach where we can find their incarnation. The 

important difference with Tartaglia’s pessimistic attitude is thus that Guidobaldo is confident that, 

given the right set of principles, these can always be found to be empirically exemplified.  

It is here that we can also find the background to Guidobaldo’s claim that a moving force is 

always greater than a sustaining force, which implies the impossibility of extending the precise 

proportions established for equilibrium to situations in which the weights are moving.267 It may be 

hard to precisely determine the centre of gravity of a physical balance, but whenever it is suspended in 

it, it will exhibit indifferent equilibrium. Yet, no matter how hard one may try to do away with friction, 

                                                 
263 Tartaglia, Quesiti et inventioni diverse (Venice, 1546), 76-78. (Transl. from Drake and Drabkin 1969, pp. 106-7.) 
264 del Monte 1577, unnumbered preface. (Transl. from Drake and Drabkin 1969, p. 245.) 
265 Henninger-Voss 2002, p. 382. 
266 del Monte 1581, p. 28r. (Transl. from Drake and Drabkin 1969, p. 295.) 
267 That this claim is not due to the fact that he “refused to countenance the use of insensibilia in mechanics, because they 

were not susceptible of precise mathematical definition” (as is claimed by Rose 1975, p. 233) is proven by his discussion of 

the argument concerning smallest angles. 
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it will never be true that the addition of the smallest possible weight sets in motion a balance that was 

in equilibrium. The intimate connection between rational principles and their material incarnation is 

only possible for systems in equilibrium. When a balance (or a pulley etc.) is set in motion, friction 

will always introduce extra factors that are beyond the reach of rational principles. In a letter to 

Giacomo Contarini we find Guidobaldo expanding a little bit on this. Particularly interesting is the fact 

that he stresses that although the addition of such a smallest weight does not set the balance in motion, 

this does not render the balance false.268 This again betrays the role played by the rational principles: 

we know that this aberrant situation must be due to impediments such as friction, because we have the 

rational guarantee that the true cause of equilibrium is equality in weight. An analogue guarantee is 

missing for motion. All that we can absolutely be sure of is that we always need an extra finite force to 

break situations of equilibrium. Yet, this need not have detracted Guidobaldo that much, since his 

precise analysis of the conditions of equilibrium is enough to show all the relevant structural 

characteristics of the machines. 

It is important to note that Guidobaldo in the first place refers to the friction introduced by the 

turning of the machine around a fulcrum; i.e. even if we would accept the possibility of a vacuum, this 

would not fundamentally alter the situation. But thinking away the friction caused by the fulcrum 

would (in Guidobaldo’s eyes) imply that the latter would no longer be a physical point, and as a result 

that we would not be dealing with machines anymore – that we would leave the science of mechanics. 

It is clear from the preceding analyses that it is impossible to abstract from the physical nature of the 

fulcrum in Guidobaldo’s conceptualization of mechanical phenomena (see especially section 3.3.2). 

To sum up: it is not that Guidobaldo does not acknowledge the fact that ideally true 

propositions can be violated through material hindrances, but that only under precise circumstances 

these can count as deviations from true principles; i.e. when these principles already have shown their 

empirical validity. 
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 It is well known that Galileo was not as disturbed by this lack of exact correspondence 

between rational principles of motion and empirical situations, and that he resolutely chose to consider 

situations in which all friction was absent. What sets Guidobaldo apart from Galileo is that he refuses 

                                                 
268 “La materia fa qualche resistenza […] la qual [materia] vuol la parte sua ancor lei, e quanto sono più grandi in materia 

tanto più resiste, sì come si provo tutto il giorno nelle libre che, per picole e guiste che le siano e che habbino pesi da tutte 

due le bande eguali e giusti, non di meno a un di loro se gli potrà metter sopra et aggiunger un peso di tanto poco momento, 

come un minimo pezzolino di carta che la bilancia starà senza andar giù da detta parte, né per questo la bilancia sarà falsa ; 

dove è da considerare che la resistanza che fa la materia lo fa quando si hanno da mover i pesi e non quando se hanno da 

sostenere solamente, perché all’hora l’instrumento non si move né gira; e con queste considerationi la troverà sempre che 

l’esperienza e la demonstrazione andaranno sempre insieme.” (Quoted in Gamba and Montebelli 1988, p. 76.) 
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to go to these truly abstract applications of his concepts. Such difference has nothing do with the fact 

that Guidobaldo would be an adherent to a statical tradition, which eschewed all dynamical notions, 

whereas Galileo would be the first to truly unite this with a dynamical tradition.269 Guidobaldo’s 

analysis of equilibrium always has the following form: why is a balance in equilibrium/in motion – 

because its centre of gravity (the seat of its dynamic tendency) coincides with/differs from the 

fulcrum,270 which through its stationary character exerts an opposing force that completely/only partly 

annihilates the tendency for motion.271 He even goes as far as commenting on the speeds with which a 

balance will move to its position of equilibrium, depending on the relative position of its centre of 

gravity with respect to the fulcrum.272 It is beyond all doubt that Guidobaldo conceived of equilibrium 

as the result of the opposition of a dynamic force by another equally strong force. Both the static and 

the dynamic properties of the centre of gravity are essential to his conceptualizations, as was already 

clear from his comments on the Archimedean proof procedure for the law of the lever. 

 This is also why it is highly misleading to construct the difference between the mixed science 

of mechanics and the natural philosophical theories of motion as a difference between statics and 

dynamics, as is often done. Some dynamical ideas (i.e. about the causes of natural motion) are 

necessarily present in mechanics, as these are part of the physical side of this mixed science, but the 

geometrical ratio’s that Guidobaldo is actually explaining are not at all about natural motion. 

 That Guidobaldo could not have seen a substantial difference between a statical and a 

dynamical tradition is hence no case of anything like a doctrine of “double truth”273, but a consequence 

of the fact that weight functions in the same way in both the contexts of equilibrium and motion, the 

only relevant difference being the presence of extra friction. The works of Aristotle and Archimedes 

were too closely interwoven for him to see different traditions,274 whereas he strongly believed that the 

work of Jordanus was simply mistaken – the problem about Jordanus is not that he worked with 

                                                 
269 But this of course leaves open the question of the grounds on which Galileo nevertheless chose to take the steps that 

Guidobaldo consciously refused to take. I hope to provide a satisfactory answer in chapter 6, section 6.1.3. 
270 The formulation is a little bit too concise: it is not necessary that the centre of gravity coincides with the fulcrum; it is 

enough that it lies on a straight line connecting the fulcrum with the centre of the world – this is of course exactly the 

difference between on the one hand indifferent and on the other hand stable and unstable equilibrium. 
271 The proof of the first proposition in the Mechanicorum liber, which is skipped in Drake’s translation, provides a nice 

illustration of this mode of argumentation.  
272 del Monte 1577, p. 24v. (Transl. from Drake and Drabkin 1969, p. 287.) 
273 Biagioli 1989, p. 65. 
274 I already quoted Drake’s judgement that this was “a curious theory of the history of mechanics”. Knorr 1982, provides 

convincing arguments for the exciting thesis that this might actually be the best history of mechanics available. He shows 

how the medieval so-called dynamical treatments of the balance in all probability derive directly from a lost work of 

Archimedes, pre-dating the Equilibrium of planes and the introduction of the concept of centre of gravity, and he adds the 

suggestion that Archimedes’ interest in this kind of problems might have been triggered by the pseudo-Aristotelian treatment 

(ibid., 100-102). It hence appears that what most historians of science have construed as two entirely different traditions 

actually have a common root in closely related efforts that took place in one and the same context. 



 97 
 

dynamical notions, but that he missed the proper dynamics behind the different kinds of stability of a 

balance. 
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FIGURE 3.1 

Replacing the weight E with two weights B and C, which together weigh as much as E and which are placed in 

such a way that their centre of gravity coincides with the centre of gravity of E, does not alter the conditions of 

equilibrium with a further weight A. (del Monte 1588, p. 55.) 

 

 
FIGURE 3.2 

Placing the weights B and C at places F and G, or K and H, such that E remains their common centre of gravity 

does not alter the conditions of equilibrium with a further weight A. (del Monte 1588, p. 57.)  
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FIGURE 3.3 

When a balance is sustained in a point C above its centre of gravity it will be in stable equilibrium: if it is moved 

from position AB to the position EF, its centre of gravity will be raised from the position D to the position G; its 

centre of gravity will naturally descend back to the position D which is situated lower; hence we have stable 

equilibrium. (del Monte 1577, p. 4r.) 

 

 

FIGURE 3.4 

Since the lines of descent of the bodies at D and E converge in S, the centre of the world, the body at the lower 

position E will always have to be positionally heavier according to the views of Tartaglia and Jordanus since the 

angle SEG is less than SDG. It follows that even stable equilibrium would be impossible on these authors’ own 

assumptions. (del Monte 1577, p. 8r.) 
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FIGURE 3.5 

The position where a body would have the greatest “free” weight changes with the relative position of the 

balance with respect to the centre of the world S as the position where the line of descent and the arm of the 

balance are perpendicular changes (in this example from position O in the upper balance to position T in the 

lower one). (del Monte 1577, p. 12v.) 

 

 

FIGURE 3.6 

If the fulcrum C is situated above the centre of gravity H of the balance, then the geometry of the situation 

immediately shows that the weight E on the raised arm of a balance will be more “free” – i.e. less sustained – 

than the opposite weight F, and the balance will have to return to a horizontal position. (del Monte 1577, p. 23r.) 
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FIGURE 3.7 

A balance with weights D and E is sustained in its centre of gravity C. The point S represents the centre of the 

world. The lines of independent descent are DS and ES, but since the line of descent of the centre of gravity is 

CS the weights are actually constrained to descend according to lines DH and EK, hence restoring parallelness 

for the lines of descent. (del Monte 1577, p. 19v.) 

 

 
FIGURE 3.8 

When we apply a power to handle T, which is situated higher than the common axis of wheel and axle, then we 

get different results for the necessary sustaining power, depending on whether we “were to apply a living force 
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to sustain the weight …, acting as if it wished to reach the centre of the world, as did the weight applied [there] 

by its own nature” or if “the handle were pressed by the hand”. The weight G will balance the weight suspended 

from the axle when their common centre of gravity I, lying on the line TB connecting both points of suspension, 

is situated perpendicularily above the common centre C of both wheel and axle, which functions as a fulcrum. 

An elementary geometrical calculation shows that this centre of gravity lies closer to the weight when this is 

suspended from a position that is higher on the wheel; whence a weight must be heavier to sustain the other 

weight from this position. (del Monte 1577, p. 108r. Transl. from Drake and Drabkin 1969, p. 318.) 
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 At the end of the year 1589 the young Galileo Galilei, aged 25, began lecturing as a professor 

of mathematics at the University of Pisa. During the three years that he held that position, he in all 

probability composed the different versions of his treatise De motu which were found in a folder 

among his manuscript notes that contained his “older notes on motion”.275 In this chapter I will 

analyze these first Galilean attempts to develop a mathematical natural philosophy. Introducing 

mathematical arguments in treating natural motion went counter to all Aristotelian precepts. I will 

accordingly be especially interested in the way Galileo positions his mathematical approach with 

respect to the traditional philosophical discourses on this topic.  

 In a first main section, I will describe how Galileo inserts his mathematically structured 

demonstrations within some of the traditional problems of motion, and how he thus transforms their 

nature. He could only extend the scope of the mathematical disciplines to previously illegitimate 

applications in a dialectic movement against the then current authorative way of treating problems of 

motion. In the second section I will discuss how he follows the structure of the mixed sciences by 

anchoring his mathematical explanations of phenomena of motion in some kind of basic principle that 

connects his mathematical framework with physical situations. We will see how Galileo attempts to 

render some of the characteristics of natural motion intelligible by introducing incontestable 

experiences with the behaviour of bodies on a balance where everybody can “see” the motive power 

of natural bodies at work. This then determines how he selects privileged factors, which complications 

he feels free to disregard, in which kind of mutual relation he places central concepts; in short, it 

determines the grounds that makes something “problematical.” 

 This central role of the balance as a model of intelligibility brings with it the far-reaching 

suggestion that the things in the world themselves show their essential characteristics most clearly in 

our way of interacting with them. The possible grounds behind this idea will be treated in the next 

chapter. In the last section of the present chapter I will try to connect the kind of position that Galileo 

is developing in his De motu with the historical context that was sketched in chapter 2. 

 

                                                 
275 There have been several discussions about the exact order of composition of the fragments contained in the folder. Giusti 

1998 is a recent assessment of the available evidence, which finds agreement with the order that was earlier proposed by 

Fredette 1969 and Drabkin 1960. Depending on the order one follows, different dating for the individual fragments follows, 

but there is a more or less general agreement that they all must be dated between 1586 and 1592. (I will without further 

comment adopt the “standard” chronology, i.e. first the dialogue fragment, then the complete treatise, then the reworking of 

the first book, followed by the abandonment of the treatise. (I would claim that the change in the nature of the pictures 

illustrating the hydrostatic demonstrations – see section 2.1.3 – already provides secure enough a ground for placing the 

treatise version after the dialogue. Cf. also Palmieri 2005.)) 
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 Writing treatises on local motion was clearly en vogue in late sixteenth-century Pisa. The 

philosophers Girolamo Borro and Francesco Buonamico published in respectively 1575 and 1591 De 

motu gravium & levium and De motu libri X quibus generalia naturalis philosophiae principia summo 

studio collecta continentur etc. etc. (comprising over 1000 folios!).276 The topic of course had a long 

history of philosophical discussions.277 Indeed, already in antiquity books 5, 6, and 8 of Aristotle’s 

Physics were referred to as his work “on motion”.278 More surprising might be that a mathematician 

such as Galileo was tackling the very same philosophical problem. Yet we know that his immediate 

predecessor in Pisa, Filipo Fantoni also owned an early manuscript version of Borro’s treatise, thus 

showing a clear interest in the debates.279 Moreover, when we consider Buonamici’s treatise, we find 

him explicitly arguing “against the mathematicians” in some chapters where he treats Archimedean 

hydrostatics.280 The question whether mathematics could be of any direct use in treating questions 

concerning motion was obviously a live one at this time.  

 Not only Buonamici, but also Borro took a staunch position against the use of mathematics in 

natural philosophy.281 He had even written a brief work devoted to the “causes of our ignorance” 

among which figured prominently the lack of sufficient experience in natural philosophy. This 

experience was then contrasted with Plato’s use of the mathematical method which was claimed to 

lead one into error (in this context Borro cites the same fragment as Piccolomini, cited in chapter 2, 

section 2.1.2.1, about children being experts in mathematics but not in philosophy).282  

 Borro’s treatise was very recently published at the time of Galileo’s writing. Whereas 

Buonamici’s probably was not yet, Galileo in all probability knew his opinions from his teachings and 
                                                 
276 Borro 1575; Buonamici 1591. I learned the little I know about these voluminous and slightly tedious (no doubt, partly due 

to my unfamiliarity) treatises from the important work of De Pace 1990, and Camerota and Helbing 2000. From the detailed 

investigation by De Pace, it undeniably follows that Borro’s treatise is both the prime source and the prime motivation for 

Galileo’s own De motu, rather than the work of the Jesuit philosophers from the Collegio Romano as was argued by William 

Wallace (especially his 1984). 
277 See Dijksterhuis 1924 for a still enticing overview of the history of the problem; the first two chapters of Clavelin 1968 

are also very perceptive. Grant 1964, 1965a,b, and Murdoch and Sylla 1978 provide good introductions to the Medieval 

treatments. Cohen and Drabkin 1958, pp. 200-224 have collected translations of some of the key passages from different 

ancient authors.  
278 Cf. Murdoch and Sylla 1978, p. 209. 
279 Camerota and Helbing 2000, pp. 331-332, n. 45. (It was first thought that Fantoni was actually the author of this 

manuscript, but this has by now been disproved by closer inspection of the work.) 
280 “contra mathematicos” Buonamici 1591, p. 494. 
281 Cf. Schmitt 1972. 
282 Schmitt 1976, pp. 467-468, which in an appendix also contains a transcription of the manuscript. 
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he might even have held some (public?) discussions with him.283 It is thus a very clear statement of 

intent when Galileo provides his own treatment with the following introduction, through the mouth of 

Domenico, one of the characters of his early version in dialogue form: 

 
It will be very pleasant to hear your way of thinking on these topics and on similar ones which 

depend on them: for I know that on this subject you will either say nothing or bring forth 

something new and very near the truth itself. Now since you have grown accustomed to very 

reliable [certissimis], very clear and also very subtle mathematical demonstrations, as those of the 

divine Ptolemy and the most divine Archimedes, you cannot in any way give your approval to 

cruder arguments: and since these things which I have proposed to you are not very far removed 

from mathematical considerations, it is with eager ears that I expect something beautiful from 

you.284 

 
Although in all probability familiar with the philosophical discussions concerning the possible status 

of mathematical treatments of philosophical issues, Galileo did not enter explicitly into the familiar 

topic of the relative worth of Aristotle’s and Plato’s opinion on the matter. Ten years later, however, 

his friend Jacopo Mazzoni fittingly answered Borro’s attack by arguing that Aristotle had gone wrong 

because of neglect of mathematics precisely in the kind of questions that were also treated in Borro’s 

De motu.285 Even more interestingly, in his own treatment thereof he seems to have been directly 

influenced by Galileo’s treatment in his unpublished De motu. There is a letter from Galileo to 

Mazzoni, written immediately after the publication of the latter’s In universam Platonis et 

Aristotelis… where Galileo expresses his satisfaction that the philosopher had changed his mind and 

had now come to adopt the position which Galileo had defended in their earlier discussions.286 The 

context makes it clear that he is referring to the problem of fall which made up the major part of the 

first book of Galileo’s De motu.287 The dialogue version of that treatise also contains one other explicit 

stab directed at Borro. Immediately after Galileo’s alter ego Alessandro has expounded his anti-

Aristotelian dynamical scheme, his side-kick Domenico exclaims:288 

                                                 
283 Cf. Camerota and Helbing 2000, pp. 358, 362-363. 
284 Opere I, p. 368. (Transl. from Galilei 2000, p. 115.) 
285 “Aristoteles ob non adhibitas oportunis locis mathematicas demonstrationes, maxime recesserit a vera philosophandi 

ratione. … Sed si quis voluerit hanc rem diligentius considerare, forsan, et Platonis defensionem inveniet, videbitque 

Aristotelem in nonnullos errorum scopulos impegisse, quod quibusdam in locis Mathematicas demonstrationes proprio 

consilio valde consentaneas, aut non intellexerit, aut certe non adhibuerit.” Quoted in De Pace 1993, p. 330, fn. 151 
286 “…ha egli a me in particolare arrecata grandissima sodisfazione e consolazione, nel vedere V.S. Eccellentissima, in alcune 

di quelle questioni che ne i primi anni della nostra amicizia disputavamo con tanta giocondità insieme, inclinare in quella 

parte, che da me era stimata vera ed il contrario da lei…” Opere II, p. 197.  
287 See Purnell 1972, pp. 292-293. 
288 That statements such as these are directed towards Borro is clear from the fact that the latter is the only contemporary 

defender of Aristotle who is explicitly named in Galileo’s dialogue, right at the outset where it is stated that “since this too 
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Oh! what a subtle discovery, oh! how beautifully imagined! Let them remain silent, silent, those 

who assert that they can pursue philosophy without a knowledge of divine mathematics. And will 

anyone ever deny that only with it as guide can the true be distinguished from the false, that with 

its aid keenness of mind is stimulated, and that, finally, with it as guide whatever is really known 

among us mortals can be apprehended and understood?289 

 
Galileo’s De motu must undeniably be inscribed in a philosophical context impregnated by the issues 

that were discussed in the Quaestio de certitudine. Yet it does not contain explicit references to this 

debate. Nowhere does Galileo discuss the nature of mathematical definitions, or does he enter in any 

other related metaphysical exercises. So the important question becomes: on which grounds does he 

nevertheless think he is justified in pushing his approach; i.e. in what respect does he present his 

“mathematical” demonstrations as superior? In the next subsection I will introduce some of the 

elements of Galileo’s positioning in this respect, but a full-fledged assessment must be postponed to 

sections 4.2 and 4.3, as we will first have to see some of the differences between his and the traditional 

philosophical demonstrations at work. 
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As we will explain later that all natural motion of translation, whether it be upward or downward, 

is the result of the proper heaviness or lightness of the mobile, we have thought it in accordance 

with reason [rationi consentaneum duximus] to bring forth for every one to see how it should be 

said that a thing is lighter or heavier than another, or equally heavy.290 

 
 Such is the opening sentence of the treatise version of Galileo’s De motu. The contrast with 

the rambling style of the dialogue is great. The treatise follows a clear guiding thread which is 

presented with steady hand. As a result of this disciplined rewriting, Galileo probably became sharply 

aware of the inner logic which he thought should guide such investigations into the characteristics of 

local motion. Halfway his treatise, being forced, once again, to correct some Aristotelian teachings, he 

explains: 

 
The method which we shall observe in this treatise will be that the things that must be said always 

depend on those that have been said; and that (as much as this will be possible) I never presuppose 

as true those that must be made clear. As a matter of fact my masters in mathematics [mathematici 

                                                                                                                                                         
has been treated with thoroughness by many, and most thoroughly by Girolamo Borro”. Opere I, p. 367. (Transl. from Galilei 

2000, p. 114.) 
289 Opere I, p. 401. (Transl. from Galilei 2000, p. 145.) 
290 Opere I, p. 251. (Transl. from Galilei 2000, p. 1.) 
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mei] have taught me this method: but it is not sufficiently observed by certain philosophers, who 

quite often, in teaching the elements of physics, presuppose things that have been reported either in 

the books De Anima, or in the books De Caelo, and even in the Metaphysics; and not only that, but 

even, in teaching logic itself, they constantly mouth words that have been reported in the last books 

of Aristotle; so that, while they teach pupils the first rudiments, they presuppose that these pupils 

know everything, and they hand down their teaching not from things better known, but from things 

purely and simply unknown and unheard of. Now what happens to those who learn this way is that 

they never know anything by its causes, but they only believe as by faith, that is because Aristotle 

has said so.291 

 
The message is clear enough: mathematicians are the true logicians. It is their stringent way of 

reasoning that allows them to come up with certain knowledge. They are always able to clearly 

separate between what is given and what is to be proved, and this is why they cannot accept statements 

solely on authority: they check proofs to see whether they are wanting or not. Galileo’s explicit 

appreciation of the worth of mathematics is primarily tied to its essential aid in overcoming 

equivocations by clearly defining terms and reasoning correctly with them. 

 To fully appreciate the significance of this opposition it is necessary to compare Galileo’s De 

motu somewhat more closely with those of “certain” Pisan philosophers. One of the key issues being 

debated by Borro and Buonamici was the nature of the elements.292 Borro defended a strict Averroist 

position, which was attacked by Buonamici who preferred the Greek commentators. This basic 

opposition structures much of what both authors claim with respect to the free fall of bodies. One of 

the points of contention was the question whether elements do have weight in their own place, which 

was denied by Buonamici but defended by Borro. The latter also claimed that his view was 

corroborated by experience, as he had shown to some interested people by dropping a large piece of 

wood and a small piece of lead which weighed more or less the same from his window.293 The wood 

fell faster. This supposedly confirms the assumption that air has weight in its own region since 

everybody agreed that wood contains mostly air, whereas lead is constituted mainly of earth and water. 

The air in the wood thus still assists its downward motion. And when we let them down in water, the 

piece of wood will weigh less than the lead, again because of their respective elemental constitutions 

                                                 
291 Opere I, p. 285. (Transl. from Galilei 2000, p. 36.) 
292 On these debates, see especially again De Pace 1990, Camerota and Helbing 2000; for some of their medieval sources see 

Grant 1965a. To be judged from a cursory perusal of the significant parts of Borro’s and Buonamici’s treatises, and the 

summary treatments in the two quoted secondary sources, their arguments present quite some puzzles in their own right, 

which I will not even try to raise. I will (of necessity) stay content with introducing some of the broad characteristics of their 

treatment which hopefully allow us to better understand the import of some aspects of Galileo’s presentation of his own 

alternative treatment. 
293 He states that “ex aspectu coniicere licebat” that they were equal in weight and that it was even judged unnecessary to 

weigh them on a balance (“neque enim nos ad lancem illa expendere necessarium esse duximus”)! (Borro 1575, p. 215.) 
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(in water the elemental air in the piece of wood no longer weighs down, but the water in the piece of 

lead still does). In answer, Buonamici stresses that a crucial error lies in the fact that by stating that 

wood contains more gravities (i.e. water, earth, and air) than lead (which only had two, water and 

earth), Averroes and his followers overlooked the fact that the gravity of lead was greater “secundum 

gradum”.294  One might be tempted to see an approach to the concept of specific gravity in this 

reference,295 but it must be stressed that Buonamici stays within an Aristotelian framework. Each 

element has an absolute weight or lightness proper to its constitution. Buonamici only draws attention 

to the fact that the absolute weight proper to e.g. earth is more intense than that of air.296 He also 

significantly pays a lot of effort in arguing against the Archimedean treatment of hydrostatic extrusion 

of a lighter body (extrusion would be a natural candidate to replace the idea of absolute lightness, as 

would indeed happen – albeit still not entirely confidently – in Galileo’s De motu).297  

 Let me now quote the remainder of the paragraph in which Galileo comments on the 

difference between “his mathematicians” and “certain philosophers”: 

 
There are only a few who inquire whether what Aristotle said is true: for it suffices for them that 

they will have the reputation of being more learned, the more passages of Aristotle they have at 

hand. But, leaving this aside, returning to our subject, it must be considered whether air and water 

really have weight in their proper places: for this question can be explained presupposing only the 

things that have been reported.298  

 
It is exactly this question that divided Borro and Buonamici, who both excelled in embellishing their 

arguments with the right references to Aristotelian texts and presented their endeavour as one of 

interpreting Aristotle correctly. Galileo could hardly have chosen a place that would have been better 

suited to introduce the most explicit methodological remark of his whole De motu. 

Let me also quote the opening paragraph of Galileo’s De motu again, but now a somewhat 

longer part of it:  

 
As we will explain later that all natural motion of translation, whether it be upward or downward, 

is the result of the proper heaviness or lightness of the mobile, we have thought it in accordance 

with reason to bring forth for every one to see how it should be said that a thing is lighter or 

heavier than another, or equally heavy. Indeed, it is necessary to determine this: for it often 

happens that things that are lighter are called heavier, and conversely. Thus, at times we say of a 

large piece of wood that it is heavier than a small piece of lead, even though, purely and simply, 

                                                 
294 Buonamici 1591, p. 485. 
295 Camerota and Helbing 2000, pp. 338-339. 
296 See also De Pace 1990, pp. 56-57, n. 167; and Grant 1965a, p. 357. 
297 Camerota and Helbing 2000, pp. 358-363. 
298 Opere I, p. 285. (Transl. from Galilei 2000, p. 36.) 
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lead is heavier than wood; and of a large piece of lead, we say that it is heavier than a small one, 

even though lead is not heavier than lead. For this reason, in order that we may escape pitfalls of 

this kind, those things will have to be said to be equally heavy to one another which, when they are 

equal in size, will also be equal in heaviness.299 

 
It is of course no accident that Galileo chooses the example of a large piece of wood and a small piece 

of lead.300  

 When dealing with the motion of heavy and light bodies it is necessary first to give a clear and 

unequivocal definition of how the terms “heavy” and “light” are to be used. Once this is done, one can 

safely argue concerning their speeds. Thus Galileo will lead his reader to a series of demonstrations, 

always building on what was proved earlier, which results, among other things, in a rebuttal of Borro’s 

claims with respect to the weight of elements in their own place. Along the road, he also shows the 

inadequacy of some of the arguments which were adduced by Aristotle/Borro against a view which 

made lightness a relative property rather than an absolute one. These arguments fall short because they 

equivocate on the meaning of “heavier than”, exactly the kind of pitfalls that Galileo tries to pre-empt 

in the opening paragraph of his treatise! As will become clear, Galileo’s more secure way of reasoning 

is due to the fact that his stipulation is actually grounded in his experience with Archimedean 

hydrostatics. 
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 In the second chapter of the treatise version of De motu Galileo immediately prides himself on 

the fact that he can provide a rationale for the Aristotelian cosmological scheme, whereas other 

authors could only posit it without further rational foundation. This rationale is based on the 

geometrical properties of a sphere. If one body is heavier than another, this means (according to 

Galileo’s stipulation) that an equal volume of it weighs more than the other. If it now were true that 

bodies are heavier when they enclose more particles of matter in the same space, then this would 

imply that the heavier body contains a greater amount of matter in the same space; or equivalently, 

that heavier bodies contain the same amount of matter in smaller spaces. Now consider one of the 

essential properties of a sphere: spaces become narrower as we approach the centre, and larger as we 

recede from the centre. Wouldn’t it then be a rational constitution if the heavy elements should be 

placed near the centre of the cosmos, and the light ones farther away?  

 This explanatory scheme was probably suggested to Galileo by his study of Archimedes’ 

treatise on floating bodies, which always demonstrates its propositions concerning equilibrium – 

whereby the lighter must stay on top of the heavier – on a sphere that represents the surface of a fluid 

                                                 
299 Opere I, p. 251. (Transl. from Galilei 2000, p. 1.) 
300 Cf. already De Pace 1990, p. 56. 
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at rest around the centre of the earth.301 (Figure 4.1 shows a typical illustration from Archimedes’ 

treatise in the popular 1543 edition by Niccolo Tartaglia.) Anna De Pace has shown that this argument 

must have been especially meaningful to him, as Girolamo Borro had argued that the philosophers 

who followed Plato in the denial of absolute lightness could no longer account for the natural order in 

the cosmos.302 At this point Galileo is trying to show that this denial, which follows from his insistence 

on the relative definition of “heavier than”, does not deprive him from explanatory means. On the 

contrary, he seems to suggest, he can do even better on the Aristotelians’ own score.  

 Let us notice, however, that whereas his argument appears to do justice to the Aristotelian 

cosmological scheme, it does this only by assuming a strikingly un-Aristotelian conception of matter 

(which Borro had ascribed to the atomists, the Pythagoreans, and to Plato). Galileo is careful to 

introduce this as only a possibility, for which “ancient philosophers … were perhaps unjustly refuted 

by Aristotle”303. But it is clear that he is rather taken by the fact that by considering the elements in 

this way “we will find a certain suitability, not to say a necessity, in such a distribution of the heavy 

and the light.”304 It is more fruitful to understand Galileo’s intervention as showing how one can 

rethink the Aristotelian cosmos from a fundamentally different perspective, rather than as doing justice 

to it. He retains some of its overall characteristics but fills it out completely anew from the inside by 

replacing qualitatively differentiated elements with homogenously structured matter. 

 Galileo’s stipulation not only allows him to make “better” sense of the Aristotelian 

cosmological scheme, it also allows him to infer the “right” dynamics from it (i.e. bodies heavier than 

a medium move downwards in it, bodies lighter upwards). Herein we see the Archimedean import 

become even more dominant, yet in a first instance we also retain the general pattern that natural 

motions are predetermined by natural places. The natural places are the places of Archimedean 

equilibrium on Galileo’s reinterpretation of the rationality behind the Aristotelian cosmos (the 

“heavier” underneath the “lighter” – always keeping in mind that we have to consider equal volumes). 

Therefore, natural motion will always be motion towards such equilibrium. Extending this idea to 

motion through a medium Galileo can prove that bodies lighter than the medium do not descend 

whereas the heavier do. These proofs, clearly based on Archimedes treatment of the floating of bodies, 

are always structured as follows: (1) suppose that situation X were an equilibrium state; (2) this cannot 

be so, because of the natural disposition, which is Y (the heavier placed underneath the lighter); (3) 

hence we have motion towards state Y. (Figure 4.2 gives an illustration of this explanatory scheme.) 

(The main difference with Archimedes’ demonstrations is that Galileo explicitly interprets them 

                                                 
301 That Galileo had already closely studied Archimedes’ work on hydrostatics by the time of writing his De motu is 

demonstrated by his short tract on the hydrostatic balance, probably written in 1588 (and certainly before starting his work on 

De motu). See chapter 7, section 7.1, for an analysis of this tract and its profound influence on Galileo’s subsequent work. 
302 De Pace 1990, pp. 12-13, 19. 
303 Opere I, pp. 252-253. (Transl. from Galilei 2000, pp. 2-3.) 
304 Opere I, pp. 253. (Transl. from Galilei 2000, p. 3.) 
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dynamically; i.e. he is interested in the motion towards equilibrium, whereas Archimedes rested 

content with showing, through a reduction argument, the equilibrium states.) 

 By demanding (with Archimedes) that we always consider equal volumes, Galileo 

immediately answers one of Borro’s most important criticisms against a position that denies the 

existence of absolutely light elements. If this were an entirely relative matter, Borro had claimed, then 

it would follow that a large amount of fire would be heavier than a small amount of air, and it should 

accordingly be able to descend, whereas we see that fire always rises.305 If we only be careful enough 

to use the terminology of “heavier” and “lighter than” in the appropriate sense, Galileo answers, we 

will see that such absurd results never occur. 

 This explanatory scheme again exposes how Galileo evacuates the contents of Aristotelian 

physics from the inside out; i.e. he retains some of its surface characteristics (natural motion towards 

natural places), but puts them in a radically different kind of internal relation. From an Aristotelian 

perspective the natural order of the cosmos is both explanatory and ontologically prior to the motion of 

any element. Remember Aristotle’s celebrated definition of motion as “the fulfilment of what exists 

potentially, insofar as it exists potentially”306. When elements undergo natural motion they move 

towards a state in which they actualize their proper nature. This state only occurs when they are in 

their respective natural places where all bodies of the same elementary nature form natural unities.307 

All motion necessarily performs an ontological function, which is fixed by the natural order that 

constitutes the cosmos. The natural tendencies that are exhibited by elementary bodies are thus 

ontologically posterior to this cosmological order, and the state of rest is conferred upon bodies, not 

because of statical considerations, but because of the natural unity that comes with their natural 

place.308 

 Galileo reverses this picture. The cosmological structure results from the prior tendency that 

all bodies have for downwards motion. It is only because different kinds of bodies have a different 

density that a stable ordered structure arises. The state of rest is conferred upon bodies because there is 

equilibrium between the tendencies of bodies to move downwards and the medium’s resistance against 

this tendency (a resistance which is due to the fact that the medium also has got a tendency for 

downwards motion). The unity of a truly Aristotelian cosmos depends on its intrinsic structure, which 

ontologically determines the characteristic properties of the different elements. The unity of Galileo’s 

reinterpreted cosmos is due to the homogeneous property of weight that is shared by all kinds of 

                                                 
305 Borro 1575, pp. 38-39. 
306 Physica III.1, 201a. (Transl. from Aristotle 1930.) 
307 See also the analysis of what makes something natural in chapter 5, section 5.1.1. It will be argued there that Aristotle’s 

interpretation of “nature” is primarily devoted to understanding the unity of things as the kind of thing they are. 
308 Cf. Machamer 1978b and Matthen and Hankinson 1993 (esp. pp. 425-430) on these issues. See also Wallace 1978 for a 

typically 16th century Aristotelian position on this matter. 
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bodies and which mathematically determines how these bodies situate themselves relative to each 

other. 
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 When I claimed in the previous subsection that Galileo’s explanatory scheme allows him to 

infer the “right” dynamics, this was restricted to explaining whether bodies move up, down, or remain 

in rest. Yet, not much further in his treatise, Galileo readily extends this to a quantitative measure for 

the speeds of such motion. For, as he claims, “for he who assumes motion, necessarily assumes 

swiftness” and “consequently, swiftness comes from the same thing as does motion”.309 The heavier a 

body, the greater will be the speed of its motion; heaviness now understood relatively to the medium 

in which a body moves. Galileo retains the basic dynamic idea that speed is proportional to weight, but 

he takes account of Archimedes’ celebrated seventh proposition in his treatise on floating bodies, 

which states that a body that is placed in a medium weighs less by an amount that equals the weight of 

an equal volume of the medium. 

 At this point, Galileo starts to actually oppose Aristotelian physics, rather than to reinterpret it. 

He follows a long tradition in ascribing to Aristotle a mathematical law for the speed of fall, which is 

said to be proportional with the weight of the falling body and inversely proportional with the 

resistance of the medium.310 Galileo’s own dynamical scheme, however, implies that the resistance of 

the medium must be measured by its weight which is to be subtracted from the weight of the body. 

That is, as he explains, whereas Aristotle had suggested a geometric ratio (a “quotient”), we should 

actually use an arithmetic ratio (a difference).311 

 Galileo’s arithmetic ratio involves an ambiguity which is not really resolved in De motu, and 

which concerns the status of what we would call “specific weight”, a concept that is never explicitly 

defined by Galileo prior to 1612. All secondary literature nevertheless assumes that Galileo refers to it 

when he talks about subtracting the “weight” of the medium from that of the body, and it is undeniable 

that this is what he actually believed to be the proper measure for the speed of fall. But, as I will argue 

in chapter 7, sections 7.2 and 7.3, the transition from absolute weight to specific weight in De motu is 

not at all unproblematic. (Remember that Galileo’s stipulation only states that we should consider 

equal volumes of bodies when comparing their weight; to speak about something like specific weight 

implies that we consider unit volumes.) In the following, I will temporarily pass over all that is 

involved in this issue, and assume that Galileo indeed is talking about something like our concept of 

specific weight.  

                                                 
309 Opere I, p. 261. (Transl. from Galilei 2000, p. 15.) 
310 See Gregory 2001 for a sympathetic treatment of the kind of questions to which Aristotle’s proportional talk might have 

been actually directed. 
311 Opere I, p. 278. 
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 The most important consequence of this fact is that bodies of the same kind (which have the 

same specific weight) always fall with equal speeds, whatever their absolute weight, contrary to the 

Aristotelian teaching that speed of fall is always proportional with weight. But there are some further 

consequences which show how misguided Aristotle had been, according to Galileo, and which are 

related with the assumption that speed is inversely proportional with the “density” of the medium. This 

inverse proportionality implies a number of paradoxes, such as the impossibility of equilibrium. 

Indeed, when a body is floating e.g. on water, its speed is zero, but according to the Aristotelian ratio 

this implies that the density of water would be infinite, which is absurd. Since Galileo sets force 

proportional to an arithmetic ratio instead of a geometric ratio, he can easily avoid this paradox.  

 We see how Galileo skilfully uses Archimedean hydrostatics to dismantle Aristotelian 

dynamics. But again, he does so by fundamentally reinterpreting the latter from within his own 

“mathematical” perspective. Demanding that the state of rest of a body should also be accountable for 

by a dynamical proportion actually comes down to seeing rest as motion with zero speed. This is a 

vision that is fundamentally foreign to Aristotelian physics where rest and motion are qualitatively 

differentiated notions. Aristotle conceptualizes motion as a process towards rest; rest which is 

conferred upon bodies because they find themselves at their natural place. Galileo on the contrary sees 

rest as infinitely slow motion, which is caused by the interplay between forces of weight that is 

similarly responsible for the speed of a body in motion.312 
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 Galileo illustrates his dynamical scheme with a number of elaborated examples, 

demonstrating all kinds of proportions that hold for the speeds of different kinds of bodies when 

falling through different media. From these exercises it follows that the proportion between the 

weights of bodies of a different kind but of the same volume changes as these bodies are weighed in 

different media. This then brings Galileo to the following claim: “And if they could be weighed in the 

void, in this case surely, where no heaviness of the medium would diminish the heaviness of the 

weights, we would perceive their exact heavinesses.”313 

                                                 
312 In the 1612 controversy on floating bodies, Galileo’s Aristotelian opponents argued that a body’s rest while floating on a 

medium is caused by another factor than is its motion; i.e. shape is a cause secundum quid of its rest, while the elemental 

makeup is the cause per se of motion (cf. Biagioli 1993, pp. 190-191). Galileo tellingly answers that “there is only one, true, 

and proper cause of buoyancy – the one known to me and to others. Distinctions such as per se or per accidens … cannot be 

applied to it. Those distinctions brought only to help those who cannot grasp the true, proper, and immediate cause of the 

philosophical problem they are confronting.” Opere IV, p. 299. (Transl. from Biagioli 1993, p. 192.) Again, he reformulates 

the problem by erasing all qualitative distinctions. 
313 Opere I, p. 276. (Transl. from Galilei 2000, p. 27.) 
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 Here Galileo is again in clear opposition with Aristotle’s physics, where the possibility of 

motion in a void is denied. The basic argument of Galileo is simply to invoke his own dynamical 

scheme. This does not suffer the drawback of Aristotle’s which would imply that motion in a void (a 

medium with density zero) would be impossible since the speed of fall would be infinite. As Galileo’s 

own scheme escapes from this absurdity, he can claim that a “in a void also a mobile will be moved in 

the same way as in a plenum”.314 

 Once more, Galileo is transforming the nature of the problems of motion. The question 

whether motion in a void is possible is indeed one the central problems that any philosophical 

treatment of motion had to deal with; as Galileo himself states: “this problem is one of the things that 

have to do with motion.”315 He deals with it in a way that renders all former treatments unrecognizable, 

however. To illustrate this, let us consider some Aristotelian philosophers who apparently came close 

to giving the same answer, but who conceived the nature of the problem from within a truly 

Aristotelian framework.316 

 Many scholastic philosophers, among whom Thomas of Aquino, already defended the position 

that bodies could fall with finite speeds in a void. The main problem that they had to face goes back to 

Aristotle and has to do with the fundamental role of resistance in his conception of motion. All motion 

requires some resistance which not only guarantees the successiveness and hence continuity of the 

motion, but which also is responsible for the fact that the speed will always remain finite. This 

resistance seems to absent in a void, however. In the early fourteenth century Thomas Bradwardine, 

among others, introduced the concept of “internal resistance” as a solution. Composed bodies can fall 

with a finite speed in a void because they consist of a mixture of heavy and light elements. If this 

mixture mainly contains heavy elements, then the light elements will function as an internal resistance 

against the motion that is determined by the heavy elements. This is only possible because they are 

absolutely light, i.e. they also have this property in a void. (The same is true for composed bodies 

which predominantly contain light elements: the heavy elements now function as internal resistance 

against the upward motion of the body.) 

 While Bradwardine accepts the possibility of motion in a void, his reason for believing so is 

fundamentally different from Galileo’s. This is seen most clearly in the restriction to composed bodies: 

simple elemental bodies cannot fall in a void – they are essential unities and cannot be further 

subdivided in a motive power and a resistive part.317 But the distinction in treating composed and 

                                                 
314 Opere I, p. 282. (Transl. from Galilei 2000, p. 32.) 
315 Ibid. 
316 The following is entirely based on Grant 1965a. 
317 It is true that some Aristotelian philosophers denied this and argued that also elemental bodies can be ascribed an internal 

resistance. This was e.g. the position of Menu, professor at Jesuit Collegio Romano at the end of the sixteenth century, as 

described by William Wallace: “In defence of his use of intrinsic resistance, Menu distinguishes two kinds of resistance, on 

that takes place with action, the other without. The resistance that arises from the quantity of an element as it moves through 
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elemental bodies has lost all sense in Galileo’s explanatory scheme. As noticed by Anna De Pace,318 it 

is accordingly not without reason that Galileo claims that those “forerunners” who had already 

defended the possibility of motion in a void had “arrived at the truth by belief more than via true 

demonstration” 319  – that is, if we understand what is meant by “real proof” along Galilean-

Archimedean rather than along Aristotelian lines. The considerations that made the question 

problematical in the first place have shifted completely. 

 We have already seen in section 4.1.2 how this same Aristotelian explanatory framework still 

informed the controversy between Borro and Buonamici. Immediately after having cleared the 

opposition against the possibility of motion in a void, Galileo accordingly moves on and tackles the 

question whether elements have weight in their own place (yet another classic problem that has to do 

with motion, we could add). It is clear by now how Galileo will unlock this problem, and how he will 

again agree with neither position that can be defended from an Aristotelian perspective.320 A portion of 

water is neither heavy nor light in its own place because it is in a state of Archimedean equilibrium. 

Yet this does not imply that it would have no weight when considered in itself, “purely and simply and 

absolutely, regardless of anything else”.321 

 Let me finally summarize quickly how Galileo deals with two other topical problems for De 

motu treatises: the question of what moves a projectile that is no longer in contact with its mover; and 

the cause of the acceleration that we see in freely falling bodies. In response to the first question 

Galileo seems to opt for the traditional medieval solution which ascribes this to the presence of an 

impressed force. But, as could be expected by now, rather than taking over this solution, he 

fundamentally reinterprets it by incorporating it within his overall Archimedean framework. 

 Galileo concentrates his efforts on explaining what makes a projectile move upwards against 

its own inclination. The impressed force that is responsible for this forced motion is self-expanding 

and thus explains how the natural motion of the projected body will finally prevail. The way in which 

Galileo conceptualizes the interaction between impressed force and intrinsic weight is interesting. A 

body’s “innate and intrinsic heaviness is lost in the same manner as it is also lost when it is placed in 

                                                                                                                                                         
a void is of the latter kind, and for this it is not necessary that the quantity act in any way; rather it suffices that one part of the 

quantity not be able to be in the same place as another part in the same time.” (Wallace 1984, p. 160.) Also in this case we are 

moving within a realm of arguments that is no longer considered explanatory by Galileo. (It seems, by the way, as if Menu 

offers a kinematic argument for the continuity of motion in a void, but tries to let it pass for a dynamic reason for its 

possibility. That is, he offers a resistance that does not act, but that still has an effect. This possibility would accordingly be 

denied by other Jesuit philosophers at the Collegio Romano.) 
318 De Pace 1990, pp. 32-40. 
319 Opere I, p. 284. (Transl. from Galilei 2000, p. 35.) 
320 Some of the subtleties that are relevant in answering this kind of question from an Aristotelian perspective, and which 

have to do with the intricacies of Aristotelian causal explanations, can be found in Wallace 1978, which describes the 

position on this issues of Muzio Vitelleschi, a Jesuit professor at the Collegio Romano at the end of the sixteenth century. 
321 Opere I, p. 289. (Transl. from Galilei 2000, p. 40.) 
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media heavier than itself.”322 We must imagine the projected body as if immersed in an extra medium 

that gradually becomes rarer up till the point that the body falls according to its “innate and intrinsic” 

weight. By incorporating the self-expanding impressed force, which indeed is of medieval origin, in 

his hydrostatical framework, Galileo turns this qualitative notion into a precisely quantifiable and in 

principle objectively determinable concept. 

 Galileo’s explanation of acceleration is directly grafted on this explanatory mechanism. A 

falling body always starts from a situation in which it was held up, either by a hand or by something 

else that prevented it from falling. This implies that a force was impressed on it, exactly opposite to its 

proper weight. Once the source of this force is removed, the body starts falling as the force gradually 

diminishes, which diminishment also explains why the body accelerates. 
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 It has been argued by authors such as Peter Machamer and James Lennox that the tradition of 

mixed science provided Galileo with his prime model in developing a mathematical science of 

motion.323 His recourse to Archimedean explanatory schemes is perfectly in line with this claim. In the 

present section I will assess some of the consequences of this idea for De motu. 

 Let us for a moment go back to Galileo’s proofs of the fact that heavy bodies move down and 

light ones move up (heavy and light of course being understood relatively). In adducing these 

demonstrations Galileo cleverly exploits the fluid character of media (faithfully following 

Archimedes). The body that is immersed in the medium pushes downward (deorsum permit) against 

the part of the medium besides it! This is evident from Galileo’s own pictures (see again figure (4.2)). 

When the body ef is immersed in the medium, the level of the medium is necessarily raised: hence the 

body ef, in pushing downward, raises the part of the medium so (equal in volume to the immersed 

part), which is the part besides the body. In addition, we see how he conceptualizes the situation in 

terms of two bodies which are trying to raise the other, and at the same time resist being raised 

themselves. Both facts are analogous with what happens on a balance, a fact that Galileo brings to the 

fore in a separate chapter. As he announces himself after having given his hydrostatic demonstrations: 

  
But, because all these things that have been conveyed in the two preceding chapters can be made 

clear in a manner still less mathematical and more physical [minus adhuc mathematice, et magis 

physice, declarari possunt], by reducing them to a consideration of the scale pan, I have decided in 

the following chapter to explain the correspondence that these natural mobiles observe with the 

                                                 
322 Opere I, p. 312. (Transl. from Galilei 2000, p. 64.) 
323 Machamer 1978; Lennox 1986; cf. also Biener 2004. 
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weights of an [equal-armed] balance: and the purpose of this is to attain a richer knowledge of the 

things that will be conveyed and more exact knowledge on the part of my readers.324 

 
Galileo’s terminology contains an unmistakeable reference to the mixed science, understood as these 

sciences which are partly mathematical, partly physical. So why does he choose to interpose this 

reference in introducing the balance analogy? This becomes clear if we read further in the chapter “in 

which is explained the correspondence that natural mobiles have with the weights of a balance.”325 To 

see this correspondence we have to represent the naturally moving body by a weight suspended from a 

balance, and an equal volume of the medium through which it is moving by the counterweight. We 

now notice that the body indeed moves up, down, or remains at rest, depending on whether it is lighter, 

heavier, or equally heavy as the medium. After having drawn out this analogy Galileo states: 

 
Having examined these things in the case of the scale pan, returning to natural mobiles, we can put 

forward the following as a general proposition: namely, that the heavier cannot be raised by the 

less heavy. With this presupposed, it is easy to understand why solids that are lighter than water are 

not completely submerged.326 

 
Galileo’s obliquely referred to the mixed sciences in introducing the chapter on the balance analogy 

because it is here that he first explicitly enunciates this general principle which gives his treatise the 

formal structure of a mixed science. 

 We have already seen that in establishing a mixed science one has to be able to show that a set 

of physical objects have some characteristics in virtue of which they are amendable to a mathematical 

treatment; this treatment then involves giving mathematical explanations of why a host of 

(mathematical) properties hold of these objects as characterized in that way.327 We have moreover 

seen how this structure is exemplified by Guidobaldo’s treatment of mechanical phenomena.328 Let me 

quickly repeat the crucial features. It is evidently possible to give a mathematical description of a 

balance (based on the magnitudes of weight and length of the arms), and Aristotle and Archimedes 

have moreover shown how to exploit this mathematical description to explain different properties that 

hold of a balance qua mathematical instrument. This is possible because we can start from some 

communes notiones and suppositiones that characterize the mathematical concepts of weight and 

centre of gravity as holding of any physical balance. Based on these properties we can then exploit 

mathematical reasoning to demonstrate a host of remarkable properties (e.g. the different kinds of 

                                                 
324 Opere I, p. 257. (Transl. from Galilei 2000, p. 9. The translation in Galilei 1960 is rather inaccurate and muddles the 

meaning of this passage.) 
325 Opere I, p. 257. (Transl. from Galilei 2000, p. 10.) 
326 Opere I, p. 258. (Transl. from Galilei 2000, p. 11.) 
327 Chapter 2, section 2.1.1 
328 Chapter 3, section 3.6.1. 
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stability, or the precise ratio’s for the multiplication of force in a system of pulleys). We can effect all 

kinds of geometrical operations on a centre of gravity because it is not only a physical notion but also 

and simultaneously characterizable as a mathematical point situated on a line. 

 This is then the function of the general enunciation just quoted: it shows the physical property 

of all naturally moving bodies that enables them to become incorporated in a mathematical 

explanatory scheme. Weight is a mathematical quantity that stands in all kind of relations to other 

quantities such as volume, but it also is a physical property of any body that constrains these 

mathematical relations in a physically meaningful way that is expressed in the general principle. In the 

completely revised third version of Galileo’s treatise, its structure becomes more transparent. The 

principle is explicitly introduced as an axiom that is necessary for all demonstrations, and it is 

accordingly placed much earlier in the treatise, before any mathematical treatments of the natural 

motion of bodies are given.329 This axiom is now also followed by a lemma in which Galileo proves 

the crucial mathematical proposition (which he had assumed without proof in the first version) that the 

parts of a homogeneous body have weight proportional to volume. It is because of these mathematical 

relations between weight and volume that Galileo’s axiom enables him to demonstrate the basic 

directionality of natural motion. Adding to this the extra postulate that the speeds directly mirror the 

motion, he can mathematically demonstrate the various kinds of ratios that hold for the natural motion 

of bodies. 

 In chapter 2 I quoted the following description of mixed sciences: “The optician studies lines 

in sight, the musician, numbers in sound.”330  We could now add: the geometrical philosopher331 

studies ratios in natural motion. 

 Let us keep in mind that here we have a young man who is fascinated by mathematics, and 

especially by Archimedes’ treatment of hydrostatics and mechanics. He has already shown himself 

adept in manipulating its formal apparatus to solve particular problems, both in his little tract La 

bilancetta and in his treatment of the centre of gravity of solids, which brought him in contact with 

some of the leading mathematicians of his time, such as Guidobaldo del Monte and Clavius, and 

indirectly led to his appointment as professor of mathematics at the university of Pisa.332 And this very 

same young man has been thoroughly exposed to Aristotelian philosophy during his education in 

medicine, and has made himself further familiar with some of its intricacies upon his appointment in 

Pisa.333 He certainly knew which were the traditional disputes on local motion, as illustrated nicely in 

                                                 
329 Opere I, p. 348. 
330 McKirahan 1978, p. 202. Cf. chapter 2, section 2.1.1. 
331 The term “filosofo geometra” is used by Galileo in his Dialogue concerning the two chief world systems (Opere VII, p. 

234).  
332 Cf. chapter 7, section 7.1, for an analysis of La bilancetta and sections 7.2 and 7.3 for its influence on Galileo’s De motu. 
333 In the Assayer of 1624, Galileo looks back at his education in Aristotelian philosophy in the following terms: “At my age, 

these altercations simply make me ill [sento grandissima nausea], though I myself used to plunge into them with delight 
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the memoranda which were found attached to his treatise. Among other things they contain a list of 

problems to be treated, probably written down before Galileo actually started writing his De motu.334 

This list could have easily been compiled by browsing other sixteenth-century De motu treatises. It 

also evidently summarize the questions that Galileo felt he could treat on the basis of Archimedean 

principles. Maybe he had also read Benedetti’s earlier attempts to turn the Archimedean principles into 

principles of natural philosophy,335 but he would have hardly needed such an inspiration. It was clear 

for anyone who cared to see; the possibility lay there “exposed to us so openly and manifestly by 

nature that nothing could be clearer or more open [nobis a natura adeo aperta et manifesta exponuntur, 

ut nihil clarius, nil apertius].”336 
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 Aristotelian physics has often been described as the physics of common sense.337 It is clearly 

not experimental physics, but it is empirical physics through and through. It systematizes what we 

observe around us: that some kind of bodies will always move up out of themselves, whereas other 

kinds will sometimes move up, sometimes move down, and still other kinds will always move down; 

that bodies put in motion will always come to a stop; …338 

 Galileo begs to disagree: 

 
But, heavens!, how, I ask you, are we to believe the chimeras of those people, with which they 

profess to explain the most hidden secrets of nature [naturae abditissima arcana], if in the case of 

things that are, as it were, completely open to the senses they rashly assert the opposite of the 

truth?339 

 
And he begs to disagree, again, when treating the crucial question whether elements have weight in 

their own place. This brings us back to what was said in section 4.1.2, where the Pisan controversy 

concerning this question was first introduced. But now that we have seen the broad outlines of how 

Galileo exploited what he had learned from “his mathematicians,” we are in a better position to assess 

the import of the distinction he drew between their way of proceeding and that of the philosophers. It 
                                                                                                                                                         
during my childhood, when I too was under a schoolmaster [sotto il pedante].” Opere VI, p. 245. (Transl. from Drake and 

O’Malley 1960, p. 198.) 
334 Opere I, pp. 418-419. 
335 Cf. the evidence cited in Purnell 1972, pp. 290-293. 
336 Opere I, p. 274. (Transl. from Galilei 2000, p. 25.) 
337 E.g. Koyré 1966, pp. 17-18. 
338  The philosopher di Grazia, e.g., in the 1612 controversy on floating bodies, reproaches Galileo that he does use 

mathematical reasoning where the evidence of his senses should suffice (“egli nelle cose che son sottoposte al senso, e che 

noi continuamente veggiamo, vuole dimostrarle con matematiche ragioni”). Opere IV, p. 87. 
339 Opere I, p. 385. (Transl. from Galilei 2000, p. 131.) 
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will be remembered that the prime virtue that Galileo ascribed to the mathematical way was its 

methodical character, never assuming as true what must actually be proven, but starting from what is 

already known by every pupil. At several places he expresses the strong opinion that the philosophers, 

because of their unmethodical approach, simply forget to look in the right places. In a passage quite 

similar to the one just quoted it is expressed as follows: 

 
For truth has the property that it does not lie hidden to the extent that many people have believed; 

but its traces shine brightly in different places, and many are the paths by which one approaches it: 

yet it often happens that we do not notice things that are nearer and more clear. And we have a 

manifest example of this at hand: for all the things that have been demonstrated and made clear 

above in a rather laborious way are exposed to us so openly and manifestly by nature that nothing 

could be clearer or more open [nobis a natura adeo aperta et manifesta exponuntur, ut nihil clarius, 

nil apertius].340 

 
By the “laborious ways,” Galileo refers to are the Archimedean-style proofs of the dynamics of solids 

in a fluid medium. Which are the open and manifest ways? First, Galileo asks us to imagine that we 

forcefully submerge a body lighter than water, as well as try to draw a body heavier than water upward. 

It is clear, he states, that in both cases the force that we need to exert will be equal to the force with 

which the body respectively tends to move upward and downward. It is moreover clear that if the body 

would weigh just as much as an equal volume of water no force would be needed. It follows that the 

force needed will be exactly equal to the amount with which the weight of the body differs from the 

weight of the equal volume of water. Then, secondly, Galileo states that “it is possible to observe the 

same thing in the weights of a balance”.341 Again, if we have two weights that balance each other, and 

then add an extra weight to one side, the body on that side will move down “according to the 

heaviness by which it exceeds the other weight.”342 

 In his study of seventeenth-century Jesuit mathematics, Peter Dear has stressed that the basic 

problem that confronted mixed mathematicians was the establishment of the right kind of empirical 

principles. In conformity with the Aristotelian ideal, these premises need to command universal assent 

on account of their evident character. As a result, the mathematicians had to mobilize many literary 

techniques to certify the basic principles of the mixed sciences with the needed credentials.343 This 

also allows us to further understand why Galileo, in the first version of his treatise, stated his general 

principle only after already having given the mathematical proofs. It is only at this point that he 

introduces the analogy with bodies moving on a balance and this is exactly the kind of situation from 

which the principle grounding his “mixed science” derives its evident character – it is “exposed to us 

                                                 
340 Opere I, p. 274. (Transl. from Galilei 2000, p. 25.) 
341 Opere I, p. 275. (Transl. from Galilei 2000, p. 26.) 
342 Ibid. 
343 Dear 1995, esp. chapters 2 and 5. 
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so openly and manifestly by nature that nothing could be clearer or more open.” This analogy allows 

him to direct his readers to look in the right places, where the causes of motion can manifestly show 

themselves. These right places are situations in which everybody can ascertain for himself the force 

with which a body is moving up or down. In interacting with a balance, in trying to draw up a body 

immersed in water, everybody immediately feels the motive forces at work. As Galileo explains in 

1634 when discussing these issues, experience need not be confined to the sense of sight, the senses of 

hearing and touch can also perfectly have it.344 

 Galileo opposes a different kind of observation to the Aristotelian philosophers: one that is 

tutored by mathematical reasoning which imposes specific and precise conditions of observation. A 

disciplined kind of seeing that is well-known to everybody familiar with a balance: only when one has 

been careful enough to prepare it in the right way does it show the weight of the bodies placed on it. 

(Remember Guidobaldo’s warning on the care that needs to be taken before one can see the general 

mathematical principles of a balance incarnated in a concrete balance.)345 But whenever we have taken 

this care, it is evident that it is only the surplus weight that causes motion. Because this emphasis on 

exact conditions, the Archimedean schemes (as illustrated in figures 4.1 and 4.2) can show the causes 

of natural motion. Once having learned to look at nature in this way, it becomes almost impossible not 

to notice the relevant structures.346  

 When Galileo in 1612 for the first time openly enters into a published dispute with 

Aristotelian philosophers, in the Florentine controversy on floating bodies, he repeats many of the 

messages already contained in his De motu. By this time he has become even more conscious about 

what sets apart his way of proceeding from that of the philosophers (he significantly chooses 

Buonamici as the target of his attack on Aristotelian philosophers – although the latter had not been 

involved in the actual events that led up to Galileo’s publication as he had already died a decade 

earlier)347: 

 
Besides, he who alleges heaviness brings forth a cause well known to our senses, because we can 

very easily ascertain whether ebony, for example, or fir, is heavier or less heavy than water; but 

who will make manifest to us whether the element of earth, or that of air, has predominance in 

them? Certainly there is no better experience of this than to see whether they float or go to the 

bottom. So that whoever does not know that such a solid floats unless he [first] knows that air 

predominates in it, does not know that it floats until he sees it float. For he knows it floats when he 

                                                 
344 Opere VII, p. 724. This is a quote from the postils to Rocco, to be discussed in chapter 7, section 7.5. 
345 Cf. chapter 3, section 3.6.2. 
346 The role of this kind of diagrams is a very interesting topic in its own right. I will sadly enough remain almost completely 

silent on it. But see chapter 5, section 5.2, for some striking examples of Galileo’s visual reasoning on geometrical diagrams. 
347 For these circumstances, and Galileo’s choice to take Buonamici as foil, see Biagioli 1993, chapter 3. 
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knows air has predominance, but he does not know that air predominates except when he sees it 

float, and therefore he does not know that it floats except after having seen it float.348 

 
Borro and Buonamici also had crucial recourse to experience in arguing on the question whether 

bodies have weight in their own place. Yet according to Galileo they simply did not know how to look 

correctly at what they saw. They claimed that the behaviour of bodies in fall showed them something 

about the question whether the elemental air in the bodies still weighed down in air or not. But as 

Galileo reproaches them, this actually presupposes that they already now that they are predominantly 

constituted from air – and how do they know that? In De motu Galileo had already ridiculed 

Aristotle’s contention that earth is the heaviest of all substances: notwithstanding the Philosopher’s 

posture that he always starts from what everybody sees, he actually must assume what he pretends to 

see – unless he would have “the eyes of Lynceus”.349 Galileo now further explains that the difference 

with his mathematically disciplined way of looking is that he only assumes facts about heaviness to 

which we have independent access – facts which can be ascertained by anyone. This why he did boast 

that “I never presuppose as true those that must be made clear.”350 

 
� ������ 6������	�
	�����
�	�

 

 In the case of bodies on a balance, no-one doubts that the lighter body is moving up because it 

is lighter – but that it nevertheless still has weight. Everyone readily notices that motion downward 

also happens in the absence of a counterweight, whereas motion up can only happen in its presence; i.e. 

only motion downwards has an internal cause, and thus deserves to be called natural. Some further 

consequences of the relative definition are immediately laid bare through the mediation of the 

balance.351 It is because of the apparent undeniability of this kind of shared experiences that Galileo 

                                                 
348 Opere IV, p. 87. (Transl. from Drake 1981, p. 72.) 
349 Opere I, p. 292. (Transl. from Galilei 2000, p. 43.) 
350 Opere I, p. 285. (Transl. from Galilei 2000, p. 36.) Cf. section 4.1.2. 
351 See especially Opere I, p. 259. It is of course an overstatement to say that this happens “immediately”. As Raymond 

Fredette has driven home on me, we should never forget that De motu as we know it is a large amount of works in progress. 

They show Galileo rethinking the issues over and over again. This is especially clear with regard to the question of the status 

of upwards motion, which is phrased differently in the different versions: in the revised version of the treatise, Galileo is 

much more explicit on calling this forced motion, but at the same time he dropped all references to the balance in arguing for 

this view (Opere I, pp. 361-366). Yet I believe it is highly relevant that he started his rethinking from the balance. This 

teaches us something relevant about the ways in which Galileo, through the act of writing and rewriting, tried to impose 

coherence on his own thoughts; thoughts which might have still been wavering on a lot of issues. The balance thus plays a 

pivotal role in that it provides a fixed point in his thinking, about which he can leverage the problematical terminology he 

inherited from the Aristotelian way of phrasing the problems. Once he has turned over his terms in this manner, the balance 

indeed immediately shows how to understand some of the problems of forced motion.  
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can claim that his mathematical demonstrations are really about the motion of natural bodies – it’s 

after all physical experience that proves the “about-what” (quia) of any mixed science. 

 It is important to be clear on the difference with Aristotelian philosophers, who also invoked 

everyday experiences in arguing for their positions (as we have already seen with Borro and 

Buonamici). It was e.g. common to refer to the experience of a swimmer underwater when treating the 

question whether water weighs in its own place, a reference that recurs in Galileo’s treatment of the 

question.352 But the important difference is that these experiences are invested with a completely 

different kind of evidential role. For the Aristotelian philosophers this role is determined by the way 

these experiences can be integrated within a hierarchically organized structure of knowledge that 

reflects the basic ontological categories. For Galileo they generate evidence through the way that they 

can be understood on the analogy of the balance that structures his mixed science. It is this analogy 

that organizes the relevant similarities that can be noticed in different kinds of empirical situations. 

 We see this reflected in a passage where Galileo reproaches Aristotle that he used a false 

analogy. The analogy is the following: “Just as earth does not go up in the small cupping glasses of 

physicians because it is very heavy [gravissima], so fire will not go down because it is very light 

[levissimus].”353 But, as Galileo retorts, “the ratio [proportio] has no worth: for it is not because earth 

is very heavy, that it does not go up, but because it is not fluid; for neither would wood go up, 

although it is lighter than water, which does go up; but mercury would go up, although it is heavier 

than earth because it is fluid; and thus fire would go down, because it is held to be not solid but 

flowing.”354 Because we cannot comprehend these experiences as analogous with what happens on a 

balance, they cannot tell us anything about the heaviness or lightness of fire. From now on all 

evidential reasoning concerning natural motion is constrained by the balance.355 

 Galileo repeatedly comments that he is ignoring accidental causes which make his theoretical 

ratios unobservable in practice. 356  Here he again follows the same logic. His theoretical model 

distinguishes the essential from the accidental factors. (Remember Guidobaldo’s claim that the fact 
                                                 
352 Opere I, pp. 288-289.  
353 Opere I, p. 292. (Transl. from Galilei 2000, p. 43. The translation in Galileo 1960, inaccurately, has “absolutely heavy”, p. 

59.) 
354 Opere I, pp. 292-293. (Transl. from Galilei 2000, pp. 43-44.) 
355 Another nice example is the analogy used by Galileo and Buonamici to understand the diminishment of an impressed 

force in a body: they both compare it with the way in which heat is gradually lost in a body that no longer is in contact with 

the fire that heated it. (See Koyré 1966, p. 37, for Buonamici.) The relevance of this analogy in an Aristotelian framework 

resides in the way it can throw light on how to understand an impressed force as a quality that interacts with the natural 

quality of gravity; whether it e.g. “is reducible to a disposition of the first species of quality” (Wallace 1984, p. 195). For 

Galileo its relevance is due to the fact that we can see how this would affect the weight of the body in which the force is 

impressed as it would be ascertained on a balance – it is as if the body is immersed in an extra medium (cf. section 4.1.5), but 

this obviously does not take away of the body’s natural weight just as “white-hot iron is deprived of cold; but after the heat 

[is used up], it resumes the same coldness that is its own.” Opere I, p. 311. (Transl. from Galilei 2000, p. 63.) 
356 See e.g. Opere I, pp. 266, 273, 298, 301, 302, 306, 307. 
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that the addition of a smallest weight to one side of a balance in equilibrium does not set the balance in 

motion, does not render the balance false.357 This is then due to what Galileo would have called an 

accidental cause.) Most famously, Galileo claims that the acceleration of freely falling bodies is 

accidental.358 There is clearly no reason for this claim other than the fact that his Archimedean models 

have no room for such a variable effect. Equally interesting is the way in which Galileo resolves the 

fact that acceleration is nevertheless universally present. He claims that he will use a “resolutive 

method” to “track down what we believe to be the true cause of this effect”; a method which proceeds 

as follows: 

 
Since, then, a heavy mobile … in going down is moved more slowly at the beginning, it is 

therefore necessary that it be less heavy at the beginning of its motion than in the middle or at the 

end; for we know with certainty, from the things demonstrated in the first book, that speed and 

slowness follow heaviness and lightness. If, then, it is found out how and why a mobile is less 

heavy at the beginning, the cause for which it goes down more slowly will certainly have been 

found. But the natural and intrinsic heaviness of the mobile is certainly not diminished, since 

neither its size nor its density is diminished: it remains, therefore, that that diminution of heaviness 

is against nature and accidental.359 

 
After this preparatory stage he introduces his explanation involving the self-expanding impressed 

force.360 But what is again revealing is that he explicitly calls this “the true cause of the acceleration of 

motion”361 which is to be opposed to the philosophers who are not looking for “a cause per se of the 

acceleration of motion,” but instead “only bring up an accidental cause.” 362  Also this accidental 

phenomenon can thus be given an essential explanation, because it can be fitted into the general 

explanatory scheme determined by the balance (remember that it was already noticed that the effect of 

Galileo’s impetus was also modelled on the balance) 363 . We can discern multiple layers of 

intelligibility in the phenomenology of falling bodies, instead of an undifferentiated complex of causes 

operating simultaneously that would be intractable. 

 All this implies that the balance has gained a special kind of representative power. This is an 

important aspect of what Peter Machamer has called the function of the balance as a model of 

intelligibility.364 It is due to this representative function that the model allows for the generation of 

                                                 
357 Quoted in chapter 3, section 3.6.2. 
358 Cf. already section 4.1.5 
359 Opere I, p. 318. (Transl. from Galilei 2000, p. 69.) 
360 This explanation was summarized in section 4.1.5. 
361 Opere I, p. 319. (Transl. from Galilei 2000, p. 70.) 
362 Opere I, p. 317. (Transl. from Galilei 2000, p. 68.) 
363 Cf. section 4.1.5. 
364 Machamer 1998. Cf. chapter 1, section 1.3.1. 
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evidence for a mathematically developed theory of natural motion. It can play this function because it 

allowed Galileo to introduce some shared experiences where everybody can incontestably notice the 

motive power of natural bodies at work. And because these experiences provide the physical axioms 

for the mathematical explanations of his mixed science, the latter are constrained in a physically 

intelligible way. They are truly about natural bodies. 

 But this is of course blatant nonsense. If the balance is representative of something, it is 

certainly not of natural motion. Mechanical instruments qua exemplifying mathematical structures 

were generally understood to be intrinsically related to human agency. 365  These mathematical 

structures merely show how we can exploit certain properties of natural objects, they do not show 

what these natural properties are; that is, they are best computational devices. The philosopher studies 

moving bodies qua essentially formed entities, not qua exemplifying mathematical structures – the 

geometrical philosopher is a clear contradictio in terminis. A philosopher worries how bodies are led 

from potency to act, and about the distinction between first act and second act. He tries to see how one 

can coherently conceptualize motive qualities as instruments of substantial forms. Etcetera. In short, 

he tries to understand how the phenomenon of local motion can be integrated within an ontological 

framework that guarantees the essential unity of the natural world.366 

 In claiming to be treating “natural” motion, Galileo is overstepping all boundaries that were 

imposed on a mixed science. A mixed science abstracts from nature, whereas it was abundantly 

shown how Galileo’s science actually reinterprets nature.367 However, “nature” functions discursively 

as a normative instance that regulates the kind of claims that can be scientifically made about objects 

under study. 368  This is exactly how it functions in the Aristotelian explanations, through the 

ontological function of the cosmos. But it is not clear how it plays this role in Galileo’s explanations. 

His way of engaging with the objects of his study seems too much tied to human agency, rather than 

that it would allow the objects themselves to show what makes them the kind of things they are. We 

can see how the balance might function as a model of intelligibility, that is what Galileo shows in his 

De motu, but this does not yet show the grounds on which it could acquire its representative power; i.e. 

why would it function as a model of intelligibility? To answer this question, we will have to 

investigate the way in which “nature” functions normatively within Galileo’s new sciences, which will 

be done in the next chapter. 

 

                                                 
365 This will be argued in closer detail in chapter 5. 
366 For a taste of the kind of problems that worried Jesuit philosophers at the end of the sixteenth century, see the interesting 

chapter 4 of Wallace 1984. (Cf. also Wallace 1978.) 
367 Cf. respectively chapter 2, section 2.1, and supra section 4.1. 
368 Cf. chapter 1, section 1.3.1. 
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 In De motu Galileo’s explicitly expressed appreciation of the worth of mathematics is tied to 

its essential aid in overcoming equivocations by clearly defining terms and reasoning correctly 

concerning them. We have by now uncovered many different aspects of what this aid consists in. The 

most crucial stipulations concerning weight are introduced as if they merely concern correct language 

use.369  The fundamental principles which are at the basis of his mathematical treatment are also 

presented as equally undeniable. They just regiment what every “pupil” knows already or can 

ascertain independently, and are accordingly not at issue. Hence, the real problem is apparently that 

Aristotle and his followers simply do not know how to reason correctly. In De motu we repeatedly find 

statements such as: “one must reason about downward motion in the same manner”370; “concerning 

fire one must reason in the following way…”371; “we are compelled, whether we like it or not to say 

that earth is the heaviest, in comparison with other things, because it stands under all other things.”372 

At this early stage of his career, Galileo stays far from any metaphysical arguments in 

justifying the use of mathematics in natural philosophy. Instead, he exploits the characteristic that had 

become one of its culturally most distinctive traits. Mathematical reasoning not only controls labour 

and craft knowledge, it also controls natural philosophy – at least when the latter wants to treat a 

certain class of subjects. One cannot talk about motion and its ratios, without knowing some 

elementary geometrical truths concerning ratios in general.373 One cannot talk about the effects of a 

body’s weight without knowing about the mathematical science of weights. This kind of posture could 

only have become possible because of the simultaneous development of the evolutions described in 

chapter 2. Philosophers had started to think about the differences between mathematical proofs and 

philosophical demonstrations, and in doing so they almost unanimously stressed the rigor of the 

former. At the same time, mathematicians had started to cultivate the worth of this rigor as something 

of the greatest interest because it could be exploited in controlling knowledge. Galileo’s move in De 

motu is grounded in the conjunction of both these processes.  

                                                 
369  Galileo frequently uses expressions such as: “non est dicendum aequa grave”, “tunc certe … gravius … merito 

asseremus” Opere I, p. 251. 
370 “Pari rationi de motu deorsum est ratiocinandum.” (Transl. from Galilei 2000, p. 25.) 
371 “Sic de igne est ratiocinandum:…”Opere I, p. 292. (Transl. from Galilei 2000, p. 43.) 
372 “…cogimur, velimus nolimus…” Opere I, p. 293. (Transl. from Galilei 2000, p. 44.) 
373 “That Aristotle was little versed in geometry appears in a number of places of his philosophical work … Aristotle was 

ignorant, not only of the profound and more abstruse discoveries of geometry, but even of the most elementary principles of 

this science.” Opere I, p. 302. (Transl. from Galilei 2000, p. 53.) These most elementary principles that Galileo refers to 

concern the definition of ratios. 
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In this respect Galileo had been preceded by Giovanni Battista Benedetti, as the latter had also 

claimed to correct Aristotle’s errors in mathematical reasoning concerning the motion of bodies. 

Benedetti had been connected as mathematician to the courts of Parma and Turin most of his career, 

whereas Galilo, in contrast to Benedetti, was employed at university while writing De motu. It must be 

kept in mind, however, that his position there had been secured through the protection of Guidobaldo 

del Monte, who besides a mathematical scholar was an influential nobleman. Galileo had even never 

graduated at university and had learned his mathematics from the Medici court mathematician Ostilio 

Ricci. It is again mainly through the same Guidobaldo that Galileo could significantly ameliorate his 

position by attaining a professorship of mathematics in Padua in 1592. From early on, Galileo’s self-

identity was thus being shaped through a patronage system that to a large extent was centred on court 

culture.374 His move to the Medici court in 1610, where he significantly assumed the title of both court 

mathematician and philosopher, is only a further step in a parcours that had been prepared a long time 

– a parcours that seems to include the attempt to write a treatise such as his De motu. By putting 

himself in clear opposition to the established Pisan philosophers, Galileo achieves two things 

simultaneously: he associates himself with them through posing as a discussion partner, a philosopher 

among others, as is testified by his treatment of the traditional topoi concerning motion; but he keeps 

his distance, as he is able to pass judgement on the traditional philosophers from a perspective that is 

not theirs – and he can do this because as a mathematician he has a legitimate position to speak from 

as well. 

 However, this legitimate position did not authorize Galileo to discourse on natural motion. 

One only has to consider the outraged reactions of the philosophers in the 1612 dispute on floating 

bodies to see the intransigence with which the inappropriateness of his posture was pointed out.375 

There is one revealing passage where Galileo tries to anticipate these objections in this same dispute: 

 
Here I expect a terrible rebuff from some of the adversaries. I already seem to hear somebody 

shouting in my ears that it is one thing to treat things physically and another to treat them 

mathematically, and that the geometers should remain among their spinning tops without bothering 

with philosophical matters, whose truths are different from mathematical truths – as if truth could 

be more than one.376 

 
He continues by claiming that, as a result, there is nothing contradictory about being both a 

philosopher and a mathematician. In this way he actually effaces the complex metaphysical picture 

that we saw structuring the Quaestio de certitudine mathematicarum, which lies behind the 

                                                 
374 For Galileo’s patronage strategies, see the highly fascinating analyses in Biagioli 1993, which also contains information 

on Galileo’s early career moves and the role therein of Guidobaldo. 
375 Biagioli 1993, chapter 3, provides a nice sampling of some of these reactions and their background. 
376 Opere IV, p. 49. (Transl. from Biagioli 1993, pp. 221-222. My emphases. Drake’s translation in Drake 1970, p. 168, is 

rather inaccurate.) 
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philosophers’ reactions. In chapter 9 we will see how at the end of his career, in his Dialogue 

concerning the two chief world systems, Galileo positions himself with respect to some of the issues 

that surrounded the Quaestio. We will then see what place is left for the related problems of 

idealization and abstraction. But at this early point in his career they are simply put aside as not 

relevant. 

 The theme of the uniqueness of truth was already present in De motu, albeit yet less outspoken 

(as is often the case).377 In one of the memoranda, Galileo claimed: “There will be many who, after 

they have read my writings, will turn their mind, not to consider whether the things I have said are true, 

but only to seek in what way, whether rightly or wrongly, they could undermine my opinions.”378 His 

trespassing in the field of philosophy is conducted under the aegis of the truth; i.e., if there is some 

contradiction between his views and that of the philosophers, one of both parties must be in error, 

rather than that he would be behaving inappropriately.379 According to Galileo, truth has the essential 

property that once noticed it cannot possibly be denied, whatever the prior opinions on the right ways 

of proceeding.380 

 At the end of our long analyses it need not be stressed that Galileo is imposing his criteria for 

what it takes to be a true statement on the philosophers; that he is trying to draw them into his domain 

of truth. And we cannot think otherwise than that he was right to do so; that the way truth functions for 

him is much more sensible (and fruitful) than what the philosophers had on offer (cf. his stress on the 

possibility of independent access to basic facts). But this does not preclude us from further asking 

what it is that grounds his domain of truth. To repeat the question which closed the previous section: 

what is so peculiar about a balance that it has the power to structure the truths that we can notice about 

phenomena of motion? The answer that I will propose in chapter 5 is again closely tied to the issue of 

cognitive control. 

 

                                                 
377 It is not accidental that I have frequently referred to the 1612 dispute in my analysis of De motu. This dispute provided 

Galileo with an occasion to make public many aspects of what he still considered valuable about his earliest attempts at 

developing a mathematical natural philosophy. By this time his thinking had crystallized in many respects, which allowed 

him to express his views still more efficiently and polemically. 
378 Opere I, p. 412. (Transl. from Galilei 2000, p. 156.) 
379 Cf. e.g. the following passage: “This is Aristotle's demonstration: to be sure it would have concluded very much to the 

point and from necessity, if Aristotle had demonstrated the things he took for granted, or, if they had not been demonstrated, 

if they had at least been true; but he has been deceived in this, that these things, which he took for granted as well known 

axioms things which are not only not manifest to the senses, but have never been demonstrated, and are further not 

demonstrable, because they are totally false.” Opere I, pp. 278-279. (Transl. from Galilei 2000, pp. 28-29.) 
380 Cf. the following expressions: “[truth’s] traces shine brightly in various place”; “the force of truth”; “if [the truth] had 

once been found by someone, immediately and without controversy, being what it is by its nature, it would have allowed 

itself to be seen and known by all”; “This objection is surely of great importance; but nevertheless it is not so powerful that it 

can obscure the splendor of the truth.” Opere I, pp. 274, 284, 294, 335. (Transl. from Galilei 2000, pp. 25, 35, 45, 85.) 
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 As Galileo never published or even circulated the manuscript of De motu we can safely 

assume that he was not entirely satisfied with the resulting scheme. The reappearance of many of its 

characteristics in his 1612 Discourse shows that he nevertheless believed that it contained many 

valuable insights. This is further corroborated by the fact that he kept the folder with the manuscripts 

with him while composing the 1638 Discourses and mathematical demonstrations concerning two 

new sciences pertaining to mechanics and local motions.  

 One of the major sources for Galileo’s dissatisfaction must have been that none of the 

theoretical claims were actually corroborated by experience, as he showed himself perfectly aware.381 

At this point, Galileo had a language to speak (geometry), he was forging himself a position to speak 

from (a geometrical philosopher), he had problems to address (the topical problems of motion), but it 

is not clear whether he actually had objects to speak about! With hindsight we can ascribe this to two 

major insights that he still missed at that time, but which he would acquire not long after writing De 

motu: the fact that the acceleration of freely falling bodies follows exact mathematical proportions; 

and the fact that all bodies, regardless their specific kind, fall with equal speeds (at least in a void – but 

it is there that Galileo had already proclaimed that one should search for their true speeds).  

 In chapters 6, 7, and 8, I will sketch parts of Galileo’s search for the objects of his theory, and 

the consequent re-elaboration of the theory. It will be seen how this search process was directed by his 

prior structuring of the phenomena of motion as described here, and further regulated by the notion of 

nature as described in the next chapter. Let me in closing stress how Galileo in his earliest work had 

already shown a high degree of reflexivity concerning the status of the explanations that he offered. 

He was quite clear about what constrained possible answers to the problems he was investigating, and 

he was consciously exploiting his model of intelligibility to select privileged factors and neglect 

accidental circumstances. This methodological awareness, which is in large part due to his familiarity 

with both Aristotelian natural philosophy and the mixed sciences, goes a long way towards explaining 

why it was Galileo rather than someone else who achieved the important breakthroughs that he did. 

                                                 
381 Cf. section 4.2.3. 
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FIGURE 4.1  

A typical diagram from Archimedes’ treatise on floating bodies, taken from Tartaglia’s 1543 Opera Archimedis 

Syracvsani philosophi et mathematici ingeniosissimi, p. 32v; amd is the surface of a fluid at rest, with k the 

centre of the earth; the solid body ezht which weighs the same as an equal volume of the fluid will be completely 

immersed but at rest, for if it wouldn’t be (as illustrated on the figure) than the pressures on fo and op would be 

unequal, which would result in disequilibrium. 

 

 
 
FIGURE 4.2 

Diagram illustrating Galileo’s demonstration “that bodies of the same heaviness as the medium move neither 

upward nor downward”, from the treatise version of De motu (Opere I, p. 255); if the solid body ef would not be 

completely immersed, then, since the volume so of the water that is raised because of the immersion of the solid 

body equals the immersed part f of it, and the weights of so and f as a result are also equal, the solid body ef will 

be trying to move downwards with more pressure than the water so can resist, and we will have motion towards 

the state were there is equilibrium; i.e. the solid body completely immersed. 
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That the Aristotelian distinction between the natural and the artificial underwent profound 

changes at the beginning of the seventeenth century is a commonplace of the history of science and 

philosophy. Among the most significant consequences seem to be the effacement of an ontologically 

differentiated picture of the natural world, which gets replaced by a world ruled by one uniform set of 

laws of nature; and the opening that is thus created for an experimental way of doing science, as 

human interventions are no longer in se opposed to the natural order. As a result it also became 

thinkable to subsume all of physics under the title of mechanics, which up till the middle of the 

seventeenth century mainly referred to the theory of machines. 

 Most discussions of these transformations focus on Francis Bacon and René Descartes, who 

both clearly stated that there exists no difference in principle between artificial and natural things. It 

is clear that both men indeed played crucial roles in the overthrow of the hegemony of Aristotelian 

philosophy, but it must also be noticed that neither of them paid a lot of attention to the science of 

(artificial) machines that was already well established by the end of the sixteenth century.382 But as we 

have seen in the preceding chapter, it is exactly in this well-circumscribed context that the issue about 

the status of the artificial  arises for someone as Galileo, through the question whether an instrument 

such as a balance can provide the principles for natural philosophy. It is clear that this can only be 

answered affirmatively once the place of machines in the “natural” world has become radically 

rethought. 

 In this chapter, I will accordingly analyse two especially significant sixteenth century writings 

on the science of mechanics with an eye to how their authors construe the domain of mechanics. (As 

could have been easily surmised, these writings are respectively Guidobaldo’s and Galileo’s.) It is 

well known that the introduction of mechanical treatises contains a wealth of information on how the 

authors tried to position their knowledge within a broader field of knowledge and practice. 383 

However, the discursive organisation of the content of the treatises itself is as at least as revealing.384 

It is only by paying sufficient attention to the structure these authors impose on their knowledge that 

we can fully ascertain the often subtle ways in which they construe the coherence of the domain of 

their science. So my focus will be on the following question: what do their theories of the working of 

machines betray about the relation between the artificial and the natural?  

                                                 
382 This is not completely true with respect to Descartes who was interested in, and wrote (although really not much) about 

mechanics. But then the fact remains that the kind of experience that he had of this science was exactly shaped by the prior 

intervention of people such as Galileo; which only provides further reason to focus attention on how the latter restructured 

the relation between this science and nature. 
383 Cf. already chapter 2, section 2.2.2. 
384 Cf. chapter 3. 
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 The distinction between the artificial and the natural is one of the central organizing themes of 

the second book of Aritstotle’s Physics. In this book, Aristotle tries to get a grip on what makes us say 

that some things exist naturally by analyzing what these things share with artificial things, and what 

nevertheless sets them apart. He immediately brings up the well known answer that natural things have 

an internal principle of change; or, that “nature is a source or cause of being moved and of being at 

rest in that to which it belongs primarily, in virtue of itself (per se) and not in virtue of a concomitant 

attribute (per accidens).”385 

 If we want to get a grip on Aristotle’s answer, it is important that we try to get some feel for 

the kind of question he was trying to answer.386 Put somewhat bluntly, he is trying to make sense of 

the fact that a tree is essentially that: a tree. Put a little bit more circumspectedly, he is trying to 

analyze what makes for the unity of the individual things in the world; what it is that constitutes this 

unity. And this is where the comparison with artificial things becomes relevant. Being a bed is being 

recognized as being the kind of thing that was produced to that end. Its principle of change is the 

human know-how in producing it, which is also what guides our recognizing it for what it is. Know-

how, or techne, is accordingly the source of being moved and being at rest in artificial things. 

Remember that Aristotle defines motion as “the fulfilment of what exists potentially, insofar as it 

exists potentially”387.  

 Hence, some things are what they are because we know what to do with them. And this know-

how also enables us to give the right kind of shape to some material that is appropriate to that end. 

This is then what constitutes these things’ identity. But other things are what they are, not because of 

what we can do with them, but because of what they do (or don’t) out of themselves. They appear as 

unities because they actualize a set of characteristic properties in matter; and they do so without any 

human intentions intervening. Their identity is given to us in experience, and not imposed by us. And 

that they are true unities is shown by the fact that in actualizing their form they go through changes in 

which they keep their identity throughout. In Aristotle’s words: “We … speak of thing’s nature as 

being exhibited in the process of growth by which its nature is attained”388 – just as in the production 

of a bed all steps are directed to that end; an end which shows itself through the production. 

                                                 
385 Physica II.1, 192b. (Transl. from Aristotle 1930.) 
386 For an exciting, although somewhat idiosyncratic interpretation of book II of Aristotle’s Physics, see Heidegger 1967. See 

also Weisheipl 1982. 
387 Physica III.1, 201a. (Transl. from Aristotle 1930.) 
388 Physica II.1, 193b. (Transl. from Aristotle 1930.) 
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There are things and processes that can be accounted for as the work of man, and there are 

things and processes that have their own form of work. In short: there are artificial things and natural 

things, but there exists a strong analogy between both cases – “If, therefore, artificial products are for 

the sake of an end, so clearly also are natural products. The relation of the later to the earlier terms of 

the series is the same in both.”389 It is in the same sense that Aristotle famously claims that art imitates 

nature. Both are strongly goal-directed: “each step in the series is for the sake of the next.” A thing’s 

unity is always constituted by the interplay between matter’s appropriateness and form’s 

purposefulness. But it is precisely because of this that also artificial things do not stand outside the 

order of physical necessities. 

 
Similarly in all other things which involve production for an end; the product cannot come to be 

without things which have a necessary nature, but it is not due to these (except as its material); it 

comes to be for an end. For instance, why is a saw such as it is? To effect so-and-so and for the 

sake of so-and-so. This end, however, cannot be realized unless the saw is made of iron. It is, 

therefore, necessary for it to be of iron, if we are to have a saw and perform the operation of 

sawing.390 

 
A thing’s ontological identity is thus determined by its end (whether this is artificial or natural), but its 

existence (or what is the same, its proper functioning) is dependent on the presence of appropriate 

material stuff. Both physical investigations and investigations in the workings of artificial things are as 

a result directed towards uncovering the qualitative causal nexus that underlies the teleological 

organization of these things. 

 Such investigations can often be directed towards the same object, but from complementary 

perspectives. A bed can be considered insofar as it is that: a bed, a product of human art. But it can 

also be considered insofar as it is wooden, that is, made of particular natural stuff. Yet, in the latter 

perspective, we are not dealing with the nature of the bed, but with the nature of all things wooden. 

This distinction was of course already signalled in the extra clause in Aristotle’s definition of nature as 

“a source or cause of being moved and of being at rest in that to which it belongs primarily, in virtue 

of itself (per se) and not in virtue of a concomitant attribute (per accidens).” A piece of wood is only 

accidentally a bed, but it is wooden in virtue of its nature. 

 

                                                 
389 Physica II.8, 199a. (Transl. from Aristotle 1930.) 
390 Physica II.9, 200a. (Transl. from Aristotle 1930.) 
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 Somewhere in the third century before Christ someone who was familiar with Aristotelian 

philosophy composed a treatise on mechanical problems.391 It treats many simple devices, such as the 

lever, and offers a theoretical analysis of a host of practical problems. Because it was generally 

ascribed to Aristotle himself, the influence of the treatise on sixteenth century mechanics was 

enormous, especially for its opening paragraph which offers a brief characterization of the science of 

mechanics.  

 
Remarkable things occur in accordance with nature [kata physis], the cause of which is unknown, 

and others occur contrary to nature [para physis], which are produced by skill [techne] for the 

benefit of mankind. For in many cases nature produces effects against our advantage; for nature 

always acts consistently and simply, but our advantage changes in many ways. When, then, we 

have to produce an effect contrary to nature, we are at a loss, because of the difficulty, and require 

skill [techne]. Therefore we call that part of skill which assists such difficulties, a device 

[mechanè]. … Of this kind are those in which the less masters the greater, and things possessing 

little weight move heavy weights, and all similar devices which we term mechanical problems. 

These are not altogether identical with physical problems, nor are they entirely separate from them, 

but they have a share in both mathematical and physical speculations, for the “how” [�� ��] is 

known by mathematics, the “about-what” [�� �	�� �] by the science of nature.392 

 
A few important themes come together in this short paragraph, which would exercise many sixteenth 

century writers.393 Mechanics starts from the consideration of marvels such as fact that light bodies can 

lift heavier ones. These are things that happen “para physis” but according to techne. And the science 

that studies these marvels gives mathematical explanations. I won’t go discuss the mathematical 

character of these explanations here. Let me just remind you that this was of the utmost importance in 

setting apart the Renaissance mechanical treatises from mere handwork and craft knowledge.394 In the 

present section I want to focus on the other three closely related topics: the import of the marvellous 

                                                 
391 Cf. chapter 3, section 3.3.1. See also chapter 2, section 2.2.2. 
392 Aristotle 1966, p. 330-331. I have amended the translation of the last sentence as Hett, inaccurately, has “the method is 

demonstrated by mathematics” in his translation; see Micheli 1995, p. 24, fn. 13. Micheli quotes the following sixteenth 

century translations: “porque el como es manifiesto, por las mathematicas, y el de que por las naturals” (de Mendoça); 

“etenim quod ipsum quomodo ad mathematica pertineat: ipsum vero circa quod, ad Physica, manifestum est” (de 

Monantheuil); “Quandoquidem mathematicum id certe est: ad quaenam referri possint cognoscere; physicum vero: quidcirca 

versentur” (Fausto). 
393 Cf. Micheli 1995 for an erudite treatment of the problems that surround some aspects of this paragraph, and for some 

aspects of its reception in the sixteenth century. See also Rose and Drake 1971; Laird 1986; and Festa and Roux 2001. 
394 Cf. chapter 2, section 2.2. 
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character of mechanical problems, the meaning of the expression “para physis”, and the 

purposefulness of techne. 

 Let me point towards some complexities inherent in this paragraph. On the one hand 

mechanics is claimed to be about effects occurring “para physis”. On the other hand its objects are said 

to be known physically. This double nature is of course completely in line with the Aristotelian 

discussions in the second book of the Physics as we saw in section 5.1.1. A house is built by exploiting 

the physical characteristics of its material, but its properties as a house are not according to nature. 

Most of the Renaissance commentators show themselves perfectly aware of the intricate character of 

this double characterization. They accordingly translate “para physis” most often as “praeter naturam” 

– outside nature, or above nature, rather than simply against nature. “Praeter naturam” was also the 

denomination for a host of other marvels: monsters, comets, prodigies. As a result, mechanical 

phenomena could find a natural place in the fine-grained catalogue of kinds of things between heaven 

and earth, so compellingly described by Loraine Daston and Katherine Park in their book Wonders 

and the order of nature.395 

Let us in this respect have another look at the first sentence of the pseudo-Aristotelian treatise. 

Things that happen according to nature cause wonder when we don’t know their causes, but 

phenomena that are “praeter naturam” cause wonder tout court. Coming to know the causal story 

behind their operation does not remove the wonder. This is also reflected in the explanatory structure 

of the Mechanical problems, which its author summarizes as follows:  

 
Now the original cause of all such phenomena is the circle; and this is natural, for it is in no way 

strange that something remarkable should result form something more remarkable, and the most 

remarkable fact is the combination of opposites with each other. The circle is made up of such 

opposites…396 

 
I will not spell out the details of the full explanatory scheme,397 but let it suffice to point out that this is 

no gratuitous rhetorical talk: the remarkable properties of a lever are indeed referred back to the 

remarkable properties of the circle. We have a displacement of the wonder but not a removal. 

 But there is more to be said about this wonder that inheres in things mechanical, and this is 

again connected with the broader category of “praeter naturam”. Let me first quote Guidobaldo del 

Monte: 

 
For whatever helps manual workers, builders, carriers, farmers, sailors, and many others (in 

opposition to the laws of nature [repugnantibus naturae legibus]) – all this is the province of 

mechanics. And mechanics, since it operates against nature [adversus naturam …] or rather in 

                                                 
395 Daston and Park 1998; cf. also Daston 1998. 
396 Aristotle 1963, pp. 332-333. 
397 See however chapter 3, section 3.3.1 for a (very) short description. 
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rivalry with the laws of nature [vel eiusdem emulate leges exercet], surely deserves our highest 

admiration.398 

 
I will come back to this passage in section 5.1.3. For now, I just want to point out how the fascination 

that went along with the category of “praeter naturam” was often directed towards the human 

ingenuity involved. As is well-known, the Greeks already associated mechanics with mètis, 

cunningness.399 By not taking the straightest road, but instead operating through a detour, man can 

overcome some of his natural deficiencies. As suggested by Guidobaldo, this is why this kind of 

techne must be highly praised. But this also implies that we cannot detach the human purposes from 

the objects of our wonder. It is precisely because they incarnate these purposes that they deserve our 

special theoretical attention. This brings us back full circle to the Aristotelian discussion in the Physics. 

Artificial things have their ends imposed on them by us; take away this intentionality and they become 

utterly unintelligible. A lever is what it is because we use it to lift heavy weights – that’s what 

constitutes its basic unity. 
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 Guidobaldo’s Mechanicorum liber, published in 1577, is maybe the most influential 

Renaissance treatise on mechanics. As I argued in chapter 3, the subtleties of Guidobaldo’s writings 

on mechanics have not always been sufficiently grasped. It was seen how he presented an utterly 

original synthesis between Aristotelian elements, as are found in the Mechanical problems, and the 

Archimedean treatment of the equilibrium of bodies, which centrally involves the notion of centre of 

gravity. By bringing in Aristotelian elements, Guidobaldo was able to provide the highly abstract 

Archimedean scheme with a concrete and sensible interpretation, which moreover enabled him to 

incorporate the resulting theory nicely within a broader Aristotelian framework. 

 But before seeing what this signifies for the issues discussed in the present chapter, let me first 

come back to this earlier quoted passage: 

 
For whatever helps manual workers, builders, carriers, farmers, sailors, and many others (in 

opposition to the laws of nature [repugnantibus naturae legibus]) – all this is the province of 

mechanics. And mechanics, since it operates against nature [adversus naturam …] or rather in 

rivalry with the laws of nature [vel eiusdem emulate leges exercet], surely deserves our highest 

admiration. 

 

                                                 
398 del Monte 1577, unnumbered preface. (Transl. from Drake and Drabkin 1969, p. 241.) 
399 Cf. Micheli 1995, chapter 1; Vérin 1993, chapters 2, 3. As Vérin recounts, part of the suspicions concerning its moral 

character that surrounded mechanics and its practitioners during the Middle Ages was also connected with this association. 
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By inaccurately translating emulate by “in rivalry with”, whereas it can also be rendered as “in 

imitation of,” Stillman Drake has obscured the perfect Aristotelian sense of this passage. Remember 

our discussion of Aristotle’s Physics: both nature and art organize their objects according to a similar 

logic. Just as a bed can be considered from two perspectives, this is also true for all mechanical 

devices. If a heavy body is lifted, it is made to undergo a motion that is contrary to its nature, but this 

feat of art is achieved by cleverly exploiting the natural characteristics of the material out of which the 

machine is constructed. Again, for a saw to perform its function, it is necessary that it is made from a 

material such as iron that has some natural properties of its own, but performing its function as a saw 

in no way is part of iron’s nature. 

 One striking un-Aristotelian element in this passage is the recurrent use of the expression “law 

of nature”. This is not unique to Guidobaldo: other Renaissance writers used the same expression in 

exactly the same context.400 Yet, although this use certainly does not go back to Aristotle, and its 

occurrence does pose some interesting questions of its own, we must also be careful not to read too 

much into it. The fact that mechanical events are said to be in opposition to these laws by someone 

who is very eager to elevate mechanics to the status of a true and noble science signals the distance 

between this use and a later understanding of the expression. As Guidobaldo claims, it certainly 

deserves our highest admiration that we can make objects do things against the laws of (their) nature, 

but this does not throw the least doubt on the validity of the ascription of this nature to them, nor does 

this render these human acts impossible. The notion of laws simply refers to the general order of 

nature, which shows itself in what happens normally, but not invariably – Aristotle’s nature is a nature 

with room for exceptions.401 In contradistinction to modern scientific laws, Guidobaldo’s laws are true 

laws that can be transgressed. 

 Let us now try to see how mechanical devices operate against nature by exploiting natural 

properties. We have already seen in the third chapter how Guidobaldo’s conceptualization of 

mechanical phenomena was essentially structured around the interplay between the three centres. In 

his own words: 

  
Now our author is the first to have considered the balance in detail and to have understood its 

nature and its true quality [intenderla dalla natura e dal vero esser suo]. For he is the first of all to 

have shown clearly the way of dealing with it and teaching about it, by propounding three centres 

to be considered in its theory: one is the centre of the world, another the centre of the balance, and 

finally the centre of gravity of the balance: for in this was a hidden secret of nature. Without these 

                                                 
400 E.g., both Vittore Fausto and Leonico Tomeo use the expression, as can be seen in the quotes in Festa and Roux 2001, p. 

243. 
401 Cf. especially Physics II.5 and II.8, where it is also explicitly stated that “mistakes are possible in the operations of nature” 

199a-b. On this characteristic of Aristotelian nature, and part of its aftermath in the seventeenth century, see Dear 1990. 
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three centres, it is clear that one could not come to a perfect knowledge or demonstrate the various 

properties of the balance…402 

 
To quickly recapitulate the explanatory scheme: why is a light body B able to lift a heavy body A (see 

figure 5.1)? Because their common centre of gravity C lies to the right of the centre of the balance, the 

fulcrum D, and this centre of gravity has a tendency to move towards the centre of the world whereas 

the fulcrum must remain stationary. As a result of the interplay between these three centres, A moves 

down and B moves up. We can conclude, as Guidobaldo himself states at another place, in his 1588 In 

duos libros…, that the weight ascends contrary to its proper nature but still naturally.403 So, what is it 

that art brings about? Nothing more than that it suitably places things with respect to each other, after 

which it just lets nature run its course. 

 Guidobaldo’s conceptualization of mechanical phenomena nicely and exemplary brings out 

how being-a-machine depends on being-composed-of-natural-material. That is, how the human 

intentionality is not so much freely imposed on matter, but cunningly exploits the natural teleological 

constitution of all things natural – how art imitates nature. We see how the different ways of 

considering the same thing, as an artifact and as an object made out of natural constituents, intermesh 

in the case of machines. The abstract notion of a centre of gravity is obviously a crucial element in 

Guidobaldo’s explanatory strategy. It was already analyzed in sufficient detail in chapter 3 how this 

notion was crucially linked with the cosmological constitution of the world for Guidobaldo. It is this 

notion that enabled him to link the “how” of mathematical demonstrations with the “about what” of its 

empirical instantiations.404 It is mainly as a result of this intimate link between the mathematical and 

the physical part of his science that Guidobaldo leaves open no other way of understanding the effect 

of power than by assimilating it to a weight having a natural tendency downward, which can be 

introduced in arguments involving centres of gravity. All machines must be reduced to situations 

where human or animal power is conceptually replaceable by freely hanging weights. Being a machine 

depends on having parts with well determined centres of gravity – all other conceptualizations would 

threaten its place as an artifact in the physical world.405 

  

                                                 
402 del Monte 1581, p. 28r. (Transl. from Drake and Drabkin 1969, p. 294.) 
403 “pondus A contra propriam naturam naturaliter ascendet” del Monte 1588, p. 3. 
404 See especially chapter 3, sections 3.2.2, 3.4.2, and 3.6.1. 
405 This explains why Guidobaldo, notwithstanding the fact that he showed himself capable of understanding the effect of the 

directionality of an applied power, chose not to incorporate this explicitly into the conceptual structure of his mechanics, and 

instead preferred to reduce all problems to considerations of centres of gravity (cf. chapter 3, section 3.5). 
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 It was already mentioned that Guidobaldo was one of the earliest and most important patrons 

of Galileo. Both men also corresponded on scientific matters and did some experiments together. It is 

therefore no surprise that we find important elements of Guidobaldo’s mechanics recurring in 

Galileo’s mechanical writings. But this also implies that the important conceptual differences that 

nevertheless exist must be considered significant. They clearly signal that Galileo was quite 

consciously trying to do something else in his conceptualization of mechanical phenomena.  

 There exist two different versions of Galileo’s treatise on mechanics, which he used during the 

1590’s for courses, the second of which was first published in 1634 in a French translation by 

Mersenne.406 One of the most conspicuous differences between both versions is the introduction that is 

only appended to the most extended version, which is in all respects a rather drastic reworking of the 

first version (and which is also the one translated by Mersenne). I will first discuss the body of the 

work and the most important aspect of the conceptualization of mechanical phenomena as it is 

presented there, and only then comment on this remarkable introduction – this is in all probability also 

the route taken by Galileo: it is the conceptualization that provided the elements for the introduction, 

and not vice versa. 

 I already explained how the Archimedean notion of centre of gravity played a crucial 

organizing role in Guidobaldo’s mechanics. In the extended version of his treatise, Galileo also opens 

his explanation of mechanical phenomena by introducing a proof of the law of the lever which is 

based on Archimedes’ proof. His proof contains many traces of Guidobaldo’s earlier explanations: the 

attention for the interplay between centre of gravity and point of suspension, and the relation between 

centre of gravity and tendency towards the centre of the world. Let me quickly summarize the proof. (I 

will gloss over many important points to focus attention on what is of most interest to the present 

discussion). 

 A uniform solid is suspended at its endpoints from a line AB which at its turn is suspended at 

the point G exactly in the middle (see figure 5.2). It will be in equilibrium. Now divide the solid in two 

unequal parts, and add an extra string at the point of division. It remains in equilibrium, as it will also 

if we now hang it from two other strings right above the parts’ respective centres of gravity and cut the 

other strings. At this point follows a geometrical proof of the fact that the ratio of the weights of the 

two unequal parts equals the ratio between the distances from which they are respectively suspended. 

Galileo then comments as follows: 

 

                                                 
406 Galilei 2002 contains a critical edition of both versions. See Mersenne 1966 for his translation of the treatise.  
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And from what has been said it seems to me clearly understood not only how the two unequal 

bodies CS and SD weigh equally when hanging from distances inversely proportional to their 

weights, but moreover how, in the nature of things, this is the same effect as if equal weights were 

suspended at equal distances, since in a certain sense the heaviness of the weight CS virtually 

spreads out beyond the support at G, and that of the weight SD shrinks back from it, as any 

speculative mind can understand by examining closely what has been said about the present 

diagram.407 

 
An argument which he summarizes as follows a few lines further: 

 
Having shown how the moments of unequal weights are equalized by being suspended inversely at 

distances having the same ratio…408 

 
This gloss is of course only comprehensible given the definition of “momento” which was introduced 

earlier in the treatise: 

 
Moment is the tendency to move downward caused not so much by the heaviness of the moveable 

body as by the arrangement which different bodies have among themselves.409 

 
I will not go into the complex history of this term, neither comment on its multiple meanings which 

play an important role in the development of Galileo’s further scientific writings.410 My focus here is 

on the use to which Galileo puts this novel concept in his theory of the simple machines. But it is 

important to recall that this notion was first introduced in the same context by Commandino who had 

defined centre of gravity as that point around which the parts of a body have equal moment. 

Guidobaldo evidently knew this definition, but never really made much use of this notion (cf. chapter 

3). As we will see, Galileo’s use of it is much more far-reaching than Commandino’s who never takes 

it beyond a strictly Archimedean context. 

 Now let us go back to the conclusion that Galileo drew from his proof of the law of the lever. 

In a striking piece of visual reasoning he teaches his readers to see what makes for equilibrium in 

mechanical situations: one can see how the relative positions of the respective centres of gravity are 

responsible for the fact that the effect of the separate bodies’ weights are distributed over space in such 

a way that they are conceptually reducible to a situation where a single body is hanging from its two 

end points. In this way one can see through the apparent marvelousness of this kind of situation and 

perceive the underlying and inherently stable configuration. This is then brought out explicitly by the 

                                                 
407 Opere II, p. 163. See also Galilei 2002, p. 52. (Transl. from Galilei 1960, p. 155.) 
408 Ibid. 
409 Opere II, p. 159. See also Galilei 2002, pp. 48-49. (Transl. from Galilei 1960, p. 151.) 
410 Cf. chapters 7 and 8 for some aspects of this story. Settle 1966 and Galluzzi 1979 are main sources for analyses of this 

concept in Galileo’s thinking. 
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introduction of the abstract concept of “moment”. In this move Galileo reasons himself from 

Guidobaldo’s understanding of mechanical phenomena as essentially caused by the relative position of 

centres of gravity with respect to a fixed point to a still more abstract stage. He sees that all 

equilibrium situations can be characterized by the fact that in a sense they are all the same. 

 Immediately after his Archimedean-style proof, Galileo introduces another way of considering 

the same situation. In this passage he offers a proof of the law of the lever based more closely on the 

proof procedure in the pseudo-Aristotelian Mechanical problems. This time he asks to consider what 

would happen if the two bodies A and B, situated at different distances on a balance, would start to 

move (see figure 5.3). Since they would move on circles with a different radius but a common centre, 

the speed of the body farthest from this centre would be proportionally faster. He concludes that 

 
[It is no] wonder that the weight A cannot be raised to D, though slowly, unless the other heavy 

body B is moved to E swiftly; and it is not foreign to the arrangement of nature that the speed of 

the motion of the heavy body B should compensate the greater resistance of the weight A when this 

moves more weakly to D, and the other descends more rapidly to E.411 

 
After which he again concludes that 

 
From this reasoning we may arrive at the knowledge that the speed of motion is capable of 

increasing moment in the moveable body in the same proportion as that in which the speed of 

motion is increased.412 

  
There are again much more subtleties involved in this proof, but it is clear that there is one vision 

dominating Galileo’s understanding of mechanical phenomena: whilst it may seem as if we are always 

dealing with unequal bodies, one heavy and strong and the other weak, this is because we do not fully 

comprehend the invariancies that actually underlie these situations; invariancies which can only be 

discovered by geometrically analyzing the appropriate diagrams. Mechanical devices are characterized 

by the conservation of moment. This is the common core he retracts from both the Aristotelian and 

Archimedean treatments of mechanics. 
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 Equipped with this understanding Galileo then analyzes all simple machines. He closely 

follows Guidobaldo’s reduction of the pulley to a combination of levers, but there is one important 

difference: the complete disappearance of considerations of centres of gravity. Moment has become 

                                                 
411 Opere II, p. 164. See also Galilei 2002, p. 53. (Transl. from Galilei 1960, p.156.) 
412 Ibid. 
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the commanding concept.413 The importance of this transformation becomes clear if we consider how 

Galileo puts the concept to work in analyzing the working of a simple instrument such as the lever. In 

this analysis he goes a step further than he did in his arguments leading up to the law of the lever, 

which were aimed at justifying the concept of moment rather than at using it to further ends, which is 

exactly what he does now. 

 He starts from a diagram similar to the one used earlier, where the distance CD is assumed 

five times the distance CB which equals CL (see figure 5.4). A body placed at D will have the same 

moment as a body five times as heavy that is placed at B. So the body at B can be moved to G by such 

a body, if we assume that an infinitesimal weight added to this body is enough to set the lever into 

motion.414 But considered from the perspective of conservation of moment, this is exactly the same 

thing as saying that a body five times lighter than the body at B can also be moved by the same body if 

we place it at L, since the proportionality that is expressed through the equality of moment remains 

invariant. And if we repeat this action five times, we can move the complete body that was placed at B 

to G. 

 
But to repeat the space ML is certainly nothing more nor less than to traverse a single time the 

interval DJ, five times this LM. Therefore to transfer the weight from B to G requires no less force 

and no less time or any shorter travel at D, than what is required when applied at L. And to sum up, 

the advantage acquired from the length of the lever CD is nothing but the ability to move all at 

once that heavy body which could be conducted only in pieces by the same force, during the same 

time, and with an equal motion, without the benefit of the lever.415 

  
In this further analysis Galileo moves from a consideration of conservation of moment to a more fine-

grained analysis of the transformation of moment that is effected through a mechanical machine. A 

machine is a device for redistributing moment over space. Instead of cutting up a heavy body in parts 

which could be transported by a given force without a machine, it allows one to transport the whole 

body by making the moving force traverse a proportionally larger distance. 

 It’s now time to move to the introduction of Galileo’s treatise. Let me first quote the first 

paragraph in full: 

 
It has seemed well worthwhile to me, before we descend to the theory of mechanical instruments, 

to consider in general and to place before our eyes, as it were, just what the advantages are that are 

                                                 
413 Among other things, this allows for an easy inclusion of other forces than weight within his conceptual structure, and 

Galileo accordingly can easily avoid the problems that Guidbaldo had to conceptualize the effect of the direction in which a 

power is applied to a machine. 
414 This condition of course neglects friction at the fulcrum, and hence oversteps what Guidobaldo thought to be permissible 

in mechanics (cf. chapter 3, section 3.6.2). In chapter 6, section 6.1.3, I will discuss what lies behind this profound difference 

in vision between Galileo and his patron. 
415 Opere II, p. 167. See also Galilei 2002, p. 56. (Transl. from Galilei 1960, p. 159.) 
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drawn from those instruments. This I have judged the more necessary to be done, the more I have 

seen (unless I am much mistaken) the general run of mechanicians deceived in trying to apply 

machines to many operations impossible by their nature, with the result that they have remained in 

error while others have been likewise been defrauded of the hope conceived from their promises. 

These deceptions appear to me to have their principal cause in the belief which these craftsmen 

have, and continue to hold, in being able to raise very great weights with a small force, as if with 

their machines they could cheat nature, whose instinct – nay, whose most firm constitution – is that 

no resistance may be overcome by a force that is not more powerful than it.416 

 
Whilst it is true that small weights may raise greater weights through the use of machines, this does 

not imply that a smaller force has overcome a greater resistance. Moment, which gives a measure for 

the force which is actually exercised through a machine, is always equal at the sides of the moving 

force and the resistance. 

 The contrast with the introduction to the earlier short version of his treatise is striking; this 

introduction actually consisted of one sentence, entirely traditional in the delineation of its subject: 

“The science of mechanics is that faculty which teaches the reasons and shows the causes of 

miraculous effects concerning the moving and lifting of great weights with little force that we see done 

with diverse instruments.”417 In his later version Galileo will correct himself and state that this is not 

done with little force, although only a little force is used – but it is used over a long path; it is put to a 

lot of “work”.  
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 At one point in his Mechanicorum liber, Guidobaldo had also already stated the following 

corollary: 

 
It is also evident that the more easily the weight is moved, the greater will be the time; and the 

greater the difficulty with which the weight is moved, the shorter the time; and conversely.418 

 
Yet nowhere does he enunciate this as a general principle upon which to build the science of 

mechanics. It is clear that he judged the dynamics between the three centres, the centre of gravity, of 

the balance, and of the world, as much better suited to play this role. This is probably due to a general 

humanistic project aimed at restoring the ancient science of mechanics, and as became especially clear 

from our analyses in chapter 3, it is crucially connected with the dispute over the possibility of 

                                                 
416 Opere II, p.155. See also Galilei 2002, p. 45. (Transl. from Galilei 1960, p. 147.) 
417 Galilei 2002, p. 5 
418 del Monte 1577, p. 105v. (Transl. from Drake and Drabkin 1969, p. 317.) 
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indifferent equilibrium in which he was engaged. It is clear that to his mind centre of gravity was the 

crucial element for a rational organization of mechanics. 

 In the first version of Galileo’s treatise practically the same statement also appeared as a 

corollary: 

 
But it must be remarked that so much as we make it easier on ourselves using a lever, that much 

more time will we have to take; and that so much as the force will be less than the weight, that 

much larger will be the distance over which the force travels than the distance over which the 

weight travels.419 

 
Somewhere in between this first version and the composition of the second version, i.e. during the 

1590’s, Galileo must have realized the potential of this enunciation as a general mechanical principle. 

Rather than thinking of a machine as an instrument to shift the centre of gravity of bodies, he starts to 

think of it as an instrument to redistribute moment. As we saw, all machines will now be characterized 

by the fact that they conserve an abstract quantity. And whereas it was commonly stated that 

mechanics brings about phenomena that are “praeter naturam”, Galileo now reproaches “the general 

run of mechanicians” that they talk as if they could cheat nature. It is very probable that the transition 

to this new way of framing the problem was suggested to Galileo by his reformulation of his treatment 

of mechanical phenomena by means of the concept of moment. One of the main attractive features of 

this principle must have been the possibility that was thus opened of clearly delineating the objective 

limits of what could be achieved through the use of machines. But, as I will now explain, in this move 

he radically transforms the meaning of nature. 
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Let me first go back to some of the crucial passages in which Galileo introduced the idea of 

the conservation of moment in his treatise: 

  
And from what has been said it seems to me clearly understood not only how the two unequal 

bodies CS and SD weigh equally when hanging from distances inversely proportional to their 

weights, but moreover how, in the nature of things [in rei natura], this is the same effect as if equal 

weights were suspended at equal distances... 

 
[It is no] wonder [non sarà maraviglia] that the weight A cannot be raised to D, though slowly, 

unless the other heavy body B is moved to E swiftly; and it is not foreign to the arrangement of 

                                                 
419 Galilei 2002, p. 7. 
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nature [né alieno dalla costituzione naturale] that the speed of the motion of the heavy body B 

should compensate the greater resistance... 

 
In both passages we see how Galileo equates conservation of moment with what is natural. The fact of 

this conservation is moreover enough to remove all wonder from this kind of mechanical phenomena. 

By linking this idea of conservation with the arrangement of nature, Galileo obviously changes what it 

might mean to do things that go against or lie outside this arrangement. 

When writers like Guidobaldo claimed that mechanical phenomena were outside nature, or 

that artisans worked in opposition to its laws, they were evidently not claiming that they were able to 

overstep the boundaries of what was possible; they merely showed their awareness of the Aristotelian 

way of identifying objects by the origin of their principles of coming into existence and of 

organization. Yet when Galileo states that it is impossible to achieve any effects that are “outside the 

constitution of nature” he is trying to ascertain the boundaries of the possible and the impossible. 

Galileo’s awareness that he is doing something else is testified by the fact that all explicit references to 

the traditional topoi from the introduction to the pseudo-Aristotelian Mechanical problems have 

disappeared from his own introduction. The fact that he instead chooses to attack the idle illusions of 

what he calls “the general run of mechanicians” is also very revealing and significant. Through this 

move he is shifting the legitimization for the science of mechanics from the topic of wonder to that of 

cognitive control. 

 A striking parallel is to be found in Salomon de Caus’ Les raisons des forces mouvantes. This 

author introduces a very sceptical message with respect to his predecessors, whom according to his 

judgement only knew how to invent on paper.420 Let me quote one very revealing passage from the 

dedication of his book to the French king, where he warns him that  

 
Les Princes sont souvent solicitez de tels Architectes & ingenieurs (plustost remplis de vaines 

imaginations que de bons fondements) pour leur faire entreprendre des ouvrages lesquelles ne 

peuvent aporter aucune utilité ni plaisir…421 

 
As is clear from a passage from the short introduction to his work, the main thing he reproaches these 

engineers is that they do not realize that time is also an important factor that must be accounted for in 

the operation of mechanical instruments. 

 It is clear that this places Galileo’s introduction in an interesting light; and even more so if we 

add the following quote from the closing paragraph of his own introduction: 

 

                                                 
420 He refers explicitly to Jacob Besson and Augustin Ramelli, authors of two of the most well-known so-called “Theaters of 

machines”, a genre to which de Caus’ book can also be taken to belong. He clearly tries to distance himself through his 

introduction, however, and his treatment is indeed more theoretically oriented. On this genre, see the next section 5.3.2. 
421 de Caus 1615, unnumbered dedication. 
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These, then, are the utilities that are drawn from mechanical instruments, and not those which, to 

the deception of so many princes and to their own shame, engineers of little understanding go 

dreaming about when they apply themselves to impossible undertakings.422 

 
It is of course tempting to speculate on the possibility that de Caus, who had spent some time in Italy, 

knew Galileo’s treatise (which seems to have been rather widely distributed); but I am in the first 

place interested in the fact that, whatever the source of his inspiration, he thought it was interesting 

and possibly rewarding to take this kind of stance in his dedication. This recurring feature seems to 

testify to the reality of the experience that rulers were often confronted with engineers who were 

unable to bring into practice the splendid projects they had promised; or at least that this could be 

perceived as a possible threat to the dignity of a ruler. It is a well known story that Galileo got himself 

into troubles early in his career by unfavourably judging the possibility of a project designed by 

Giovanni de’ Medici, the natural son of Grand Duke Cosimo. And after he became court 

mathematician in 1610, on different occasions he was called upon to judge the quality of proposed 

projects and new inventions.423 There seems to have been an institutional place for someone who 

claimed to be able to discipline the ambitions of the general run of mechanicians by passing 

judgements on the possibility or impossibility of their proposals, which of course confirms the general 

analyses of chapter 2, section 2.2. 
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 Within an Aristotelian framework there was nothing paradoxical about the fact that one could 

achieve effects that were “praeter naturam”, but it was in no way made into a theme whether there 

were any limits on these effects. This question was rather to be relegated to moral considerations, 

because of the close link with cunningness.424 But the latter category changed some of its moral 

connotations during the Renaissance, as the appearance of the genre of the theatres of machines at the 

end of the sixteenth century bears striking witness.425 These collections of engravings of mechanical 

inventions, mostly accompanied by very brief descriptions, enjoyed a wide popularity, but it is 

important not to misjudge the relation of these magnificent books to the actual artisanal practice. 

Rather than providing blueprints for actual machines or codifying elements of practice they seem to be 

                                                 
422 Opere II, p. 158. See also Galilei 2002, p. 48. (Transl. from Galilei 1960, p. 150.) 
423 Cf. e.g. Westfall 1989 for one such occasion. Another example is to be found in Opere VIII, pp. 571-581. Cf. also Opere 

IV, p. 32, referred to infra, in section 5.4.1. 
424 Vérin 1993, chapter 1, traces some of these moral question that surrounded the cunningness of mechanics. For some of the 

moral connotations that went together with the general category of “praeter naturam” and its transformations in early modern 

Europe, see Daston 1998. 
425 For some considerations on these still rather ill-understood works, see Keller 1978; Séris 1987, chapter 1; Vérin 1993, 

chapter 3; Vérin and Dolza 2002. Cf. also Popplow 2004. 
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intended primarily to display the ingenuity of their authors, who in this way advertise their capacities 

as engineers, capable of thinking out new projects. The depicted machines function as the incarnation 

of the engineer’s ingenium, more or less along the same lines as Renaissance art theorists identified 

disegno – design – both with the artist’s conception and the realization thereof in drawing. These 

engineers claimed to be people who knew how to transform very specific needs into projects that were 

capable of overcoming the many natural obstacles against the fulfilment of these needs. Cunningness 

had become something to be paraded. 

 I propose that we consider on the one hand the theatres of machines, and on the other hand 

writings such as Galileo’s treatise and those of his followers, as two different discursive practices that 

were grafted upon the same artisanal practice. Whereas the theatres suggest a free play of the 

imagination, only constrained by the intentions that must be put into practice, Galileo is exactly 

regimenting this play of the imagination through his abstract analyses; he tellingly stresses that certain 

things are “absolutely impossible to accomplish with any machine imagined or imaginable.”426 These 

two discursive practices present us with two very different modes of carving out a space of 

possibilities. But the limits that Galileo draws are not the limits of practical feasibility or of efficiency; 

the limits to what we can do with machines are the limits that are imposed on us by nature.  

 It is revealing to see how the topoi from the introduction to the pseudo-Aristotelian treatise are 

still implicitly structuring Galileo’s introduction, but in a profoundly transformed configuration. 

Wonder has ceased to be a central cognitive category, but it is immediately replaced by control. And 

whereas the former category was intimately linked with the issue of what it meant to be praeter 

naturam, the centrality of the latter category is due to the fact that nothing or nobody can overstep the 

boundaries of nature. But this reconfiguration is bound to have far-reaching consequences for the 

place of human agency in the discourses on machines, as we have seen this to be also inextricably 

connected with the topic of wonder. 

 This allows us to understand how an otherwise mysterious process can take place.427  As 

“nature” functions as a regulative normative instance within any discursive practice, a change in its 

import cannot simply take place on account of nature. That is, as long as it is not yet present, nature 

itself cannot force changes in its presence. But this implies that some kind of strong form of idealism 

or solipsism would seem to be the only options if we want to hold on to the idea that there have been, 

and still can be, upheavals in historical configurations that have as effect that “nature” takes on a 

whole new mode of functioning. This is of course one of the classic objections that have been levelled 

against attempts to develop a relativized Kantian position (as witnessed e.g. by the strong reactions 

that were provoked by Kuhn’s Structure of scientific revolutions, especially when it comes to the 

                                                 
426 Opere II, pp. 156-157. See also Galilei 2002, p. 46. (Transl. from Galilei 1960, p. 148. My emphases.) 
427 Cf. already chapter 1, section 1.3.1. 
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world-change talk)428. It is at this point that an archaeological approach can be especially fruitful. By 

taking into account that “nature” never functions in isolation, and that we are always dealing with a 

complex configuration that first allows the interdependent factors to play their particular functions, 

there is more room to understand how change can take place. In the present case, we can see how it is 

possible for Galileo to install a new way of functioning for “nature” by exploiting an interlocking 

complex of elements that had an undeniable presence. (This is why it is not solipsism or idealism: it 

starts from presence.) He is able to introduce nature as a new kind of presence by holding fixed some 

of the structural relations that hold between a legitimizing cognitive goal (or if one wants a 

“sensibility”), respectively wonder and control, and the functioning of nature; by grounding this goal 

in a social reality which can give it its legitimacy; and by showing how this can be seen to actually 

structure the working of machines, i.e. by exploiting an abstract mathematical structure that was 

already noticed by Guidobaldo but which had not been accorded any special significance by him. 
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 The disappearance of wonder as a central category and its replacement by control is again 

nicely brought out by comparing the theatres of machines with Galileo’s treatise. Whereas the former 

stress the functions of the depicted machines with all the pictorial and textual means that are at their 

disposal, the specific uses of the machines have completely disappeared from Galileo’s treatment. 

Rather than being expressions of human agency, machines have become exemplifications of the 

inviolable principles which constrain this agency. The identity of a machine no longer lies in its 

functional organization of material to a specific end, but in the fact that it is a closed system that 

conserves the amount of moment that is put into it. It is the unity of nature rather than the intention of 

men that constitutes their ontological character. The disappearance of wonder as a central category 

goes together with the fact that function becomes external to a machine’s identity. 

 We must be careful not to misconstrue the consequences of this disappearance of functional 

analyses from the body of Galileo’s text. It is not that the machines are no longer considered to be 

useful tools to attain certain ends, but this purpose has become something extrinsic to their functioning. 

At the same time this opens up an independent space for pragmatics as distinct from the considerations 

on the internal constitution of the machines. This space is already prominently present in Galileo’s 

introduction, which is tellingly titled “On the utilities that are derived from the mechanical science and 

from its instruments.” As already explained, this utility has nothing do with the fact that mechanicians 

would be able to work against nature. No, this utility is derived from the fact that machines transform 

the moment that we put into them, thus enabling us to accomplish all of the following useful effects: 
                                                 
428 Admittedly, this talk has often been confusing; I nevertheless submit that perfect sense can be made of it by developing a 

more sophisticated neo-Kantian position than Kuhn initially had at his disposal. Some parts of the present thesis are intended 

to contribute to such a position, but I can at this place only gesture towards this possibility. 
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• We can move a great weight without having to divide it into pieces. 

• We can adapt their components to the circumstances in which they must work. 

• Through their mediation we can use the force of several non-human sources of power, such as 

animals, water and wind. 

 
In none of these cases there is extra force created, but in all of them the available force is put to greater 

utility. It is the task of engineers to implement these pragmatic advantages in concrete situations, but 

the ends which can be reached in this way have become plain effects rather than “principles of motion”. 

Dealing with human intentions becomes the task of what can now become “technology”. 

 I cannot go into the constitution of something like technology as an independent field of 

knowledge and practice. Let me just point out that it will be situated somewhere in between the two 

discursive practices that I have outlined here: it will share the attention for particular circumstances 

with the theatres of machines, but it will be guided by a logic of rational control on what is within its 

power to achieve.429 And this control will make it possible to firmly anchor its attention for the 

particular within an economical logic, where it becomes of prime interest to calculate advantages and 

disadvantages.430 Rather than ascertaining the boundaries of the possible, it will be eager to exploit the 

potentialities that lie within them. At this point it also becomes possible to think of technology as 

applied science – which however is not to say that it becomes applied science. 

 As the artificial ceases to be a distinct category in this new way of conceiving nature, it might 

be claimed that Aristotle’s thinking was much closer to the artisans’ world, which is clearly organized 

around a functional perspective on objects – we only have to recall his attention for the analysis of 

what makes a saw a saw. In a sense this is obviously true and makes for part of what is sometimes 

perceived as the poverty of a mechanical world view. Yet, there is another aspect of artisanal 

experience which completely escapes Aristotle’s attention, and this is the awareness of frustrated 

expectations. It is clear for anyone who tries to construct such functional objects that not anything will 

work, that there are cases of persistent failure which cannot be immediately remedied. It would be 

foolish to claim that Aristotle was not aware of this fact; yet nowhere does he make these limitations 

on human agency in an independent object of knowledge. 

 Let me at this point also stress the important differences between the kind of process that I 

have been describing here and the point of view, which has been stressed by some authors since the 

1980’s, that highlights the importance of alchemy in breaching the boundaries between the artificial 

and the natural.431 I don’t want to deny the importance of this tradition, which had close links with 

scholastic philosophy and apparently had a major influence on Bacon. As William Newman states: 
                                                 
429 Cf. especially Séris 1987 and Vérin 1993 on these issues. 
430 This is of course perfectly in line with Galileo’s talk about the impossibility of cheating nature. The book of nature has 

become a bookkeeper’s affair. (For Galileo’s use of the metaphor of the book of nature, see chapter 9, sections 9.1 and 9.3.) 
431 See especially Newman 1989, 1998. 
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“alchemical texts from the high and late Middle Ages already were enunciating an attitude toward the 

art/nature division that was strikingly similar to the operative view of nature held by Francis Bacon 

and others in the Scientific Revolution.”432 What I do want to point out is that what I have isolated as 

particularly crucial in the new conceptualization of the identity of a machine, the setting of inviolable 

limits to their operation, seems to be completely missing in this tradition. Both traditions had their 

share in what we now isolate as the Scientific Revolution, but it is important not to loose sight of the 

important divergences that existed within these processes that happened more or less simultaneously. 

 Related to his stress on the alchemical tradition is the close association that had existed 

between mechanics and magic.433 This is a coupling that exists until well into the seventeenth century 

(through people like Athanasius Kircher and Gaspar Schott). I take it that Galileo’s stress on the 

inviolable limits imposed by nature, and the consequent disappearance of wonder as a central 

sentiment, can be seen as an important step towards the demise of this tradition. Technology is not 

something that has apparently limitless power; it has power exactly because it knows the limits of 

nature. Maybe the most important consequence of this process was the change in the moral status of 

man’s knowledge and exploitation of machines. The image of an earnest, sober, calculating and hence 

objective investigator will come to replace the exalted magus. But all this actually deserves a separate 

and better documented treatment, so I will leave it at this.434 

 

+�%���
�
�	�����'����������	����$���

 

� $����� %��	���
	�	������

 

 As Galileo starts to identify nature with this conservation principle, that is, with a principle 

that puts a limit on what is humanly possible to achieve, nature becomes identified with what is 

beyond human will. This will of course become an important rhetorical tool in his battles over the 

Copernican system, but I think it is important to realize that it finds it origin here in Galileo’s thinking 

on machines.435 It is also clear that it is not a terribly big step from this point to a picture of nature as 

governed by one uniform set of mathematically structured laws. In this respect it is very telling that 

Mersenne translates Galileo’s introduction as follows: 

 

                                                 
432 Newman 1998, p. 87. 
433 Cf. e.g. Eamon 1983. 
434 See Daston 1995 for a particularly interesting historiographical framework from which to investigate these kinds of 

processes. It is clear that a complete archaeological investigation could not neglect these processes in which the possible 

positions for a scientific subject are changed together with its possible objects. 
435 Cf. chapter 9, section 9.XX. 
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… que les artisans ne croyent pas qu’ils puissent servir aux operations don’t ils ne sont pas 

capables, & que l’on puisse lever de grands fardeaux avec peu de force: car la nature ne peut être 

trompée, ni ceder à ces droits…436 

 
His dedication to his translation contains even some more revealing passages: 

 
Mais j’estime que l’ordre & le règlement admirable que la nature observe dans les forces 

mouvantes, vous donnera encore plus de plaisir, parce que vous y verrez reluire une équité, & une 

justice perpétuelle qui se garde, & que l’on remarque si justement entre la force, la résistence, le 

temps, la vitesse & l’espace, que l’un recompense tousjours l’autre … 

Je croy que si la Justice pouvoit parler qu’elle confesseroit ingénuement qu’il n’y a nulle science 

naturelle qui luy soit si semblable, que celles des Mechaniques.437 

 
It is of course needless to recall that Mersenne was one of the prime movers in the birth of a 

mechanical philosophy.438  

 These are the lines along which we must answer the question about the grounds for the 

representative power of the balance. As a machine is now thought of as exemplifying inviolable 

invariancies, and human intentions have become extrinsic to their ontological identity, the idea of 

using mechanical tools in investigating natural principles also looses much of its paradoxical character. 

We can formulate this even more strongly: as the basic principles of this new mechanical science 

express the limits of our manipulative capabilities, it becomes natural to investigate these exactly 

through manipulations. It is through our way of interacting with it that nature now can first truly show 

itself. This allows mathematical instruments that had been primarily practical problem-solving tools 

now also to function as investigative tools.439 

 It is this background that explains the novelty of Galileo’s causal reasoning when compared 

with the Aristotelian one. We already noticed in chapter 4 how Galileo actually evacuated the 

Aristotelian cosmos from its causal and qualitative organizing structure, and replaced it by an 

organization structured around the model of a balance. Galileo remained silent on how to understand 

the causal structures responsible for this organization. This of course left the door open for the main 

complaint that the Aristotelian philosophers levelled against the mathematical sciences, i.e. that they 

are not scientific because they give no knowledge of causes. 440  We indeed have seen how a 

philosopher such as Mazzoni, who was close to Galileo and who had a very sympathetic attitude 

                                                 
436 Mersenne 1966, p. 23 (my emphases). 
437 Mersenne 1966, pp. 13-14, 16. 
438 Cf. Lenoble 1943, who pays especially attention to Mersenne’s battle against Renaissance naturalism, a battle in which the 

inviolability of nature’s prerogatives and the concomitant disappearance of the category of “praeter naturam” played a crucial 

role. 
439 I borrow the distinction between problem-solving and investigative tools from Bennett 1986, p. 2. 
440 Cf. chapter 2, section 2.1.2. 
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towards the mathematical sciences, basically agreed with this fact. That is, although it might seem 

plausible to assume that mixed sciences also involve formal causes (mathematical definitions), this can 

only be upheld if one is aware that one actually substantially changes the import of what makes for a 

formal cause, because the Aristotelian notion of substantial form simply plays no role within 

mathematical demonstrations.441 

 The 1612 Discourse on floating bodies provides some clear illustrations of how Galileo’s own 

causal talk is directly linked to nature’s new way of functioning as a regulative normative instance.442 

After having given an explanation that is entirely based on the conservation of moment in all instances 

of equilibrium, Galileo comments: “It appears to me that up to this point there has been sufficiently 

described and opened a road to the contemplation of the true, intrinsic, and proper cause of the diverse 

motions and of rest of different solid bodies in various mediums…” 443  In dismantling the 

Aristotelians’ view that the shape of the bodies is the cause of floating, he moreover skilfully uses 

experimental models that allow him to vary one element at a time.444 But this method of causal 

variations is of course only sensible given the regulative goal of establishing invariancies that hold 

under a well-circumscribed set of conditions.445 (He even goes as far as claiming, although not in print, 

that “cause is that which put [placed], the effect follows; and removed the effect is removed.”446 This 

must – implicitly – be understood to hold true only under very specific circumstances that are held 

fixed.)  

 In the Dialogue concerning the two chief world systems Galileo gives the following general 

characterization: “Thus I say that if it is true that one effect can have only one basic cause, and if 

between the cause and the effect there is a fixed and constant connection, then whenever a fixed and 

                                                 
441 Galileo perversely demonstrates this in his Archimedean explanation of the Aristotelian cosmological structure in De motu 

(see chapter 4, section 4.1.3). When claiming that it was natural that the heavier elements should occupy smaller spaces 

because of their greater density, he expresses this as follows: “that the form of earth caused its matter to be concentrated in a 

very narrow place” (Opere I, p. 253. Transl. from Galilei 2000, p. 3; my emphasis.) But this “form” has now taken on an 

entirely geometrical character! 
442 It is interesting to note that in justifying his participation in the controversy on floating bodies in a letter to his patron, the 

grand duke, Galileo draws attention to the fact that because of exactly the same kind of theoretical considerations concerning 

the true causes of floating “your Highness well recalls how, four years ago, I happened in your presence to contradict some 

engineers, otherwise excellent in their profession”. Opere IV, p. 32. (Transl. from Drake 1970, p. 164; my emphases.) 
443 Opere IV, p. 79. (Transl. from Drake 1981, p. 59.) 
444 Opere IV, pp. 88-89. Galileo cleverly chose to use wax as his central material, “since besides its receiving no sensible 

alteration from impregnation by water, it is tractable, and the same piece is very easily brought to any shape; while being 

very little less heavy than water, it can be brought to very nearly equal heaviness therewith by imbedding in it a few lead 

filings.” (Transl. from Drake 1981, p. 75.) 
445 “La pensée préscientifique ne s’acharne pas à l’étude d’un phénomène bien circonscrit. Elle cherche non pas la variation, 

mais la variété.” Bachelard 2004 [1938], p. 36. 
446 Opere IV, p. 22. (Transl. from Drake 1981, p. 217.) 
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constant alteration is seen in the effect, there must be a fixed and constant variation in the cause.”447 

The mathematization of nature has become thinkable for Galileo because he construes causal 

relations as relations; i.e. they are expressible through constant ratios and this is why they can easily 

be integrated within mathematical demonstrations (which for Galileo comes down to manipulating 

them through his geometry of proportions).448 

 It is because nature never transgresses certain inexorable boundaries that Galileo’s move in De 

motu and later in the Discourse on floating bodies cannot be transgressive either. Covered under the 

“protecting wings of the superhuman Archimedes”449 he can fly freely over what the Aristotelians 

arbitrarily had posited as boundaries, constrained only by nature itself. In the Assayer Galileo answers 

the Aristotelian philosopher Sarsi, which was actually a pseudonym for the Jesuit Grassi, as follows: 

“Sarsi perhaps believes that all the hosts of good philosophers may be enclosed within walls of some 

sort. I believe, Sarsi, that they fly, and that they fly alone like eagles, and not like starlings.”450  
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 The foregoing analysis teaches us something extremely important about the kind of sciences 

that Galileo is trying to develop. Instead of focussing on the empirical world in its full complexity, he 

directs his attention to isolated subsystems that allow invariancies to show themselves in the stable 

behaviour of these systems. But to achieve this, one has to choose the right level of abstraction. It is 

only under a very specific set of conditions that such stability is achieved, and demarcating these 

conditions takes a lot of hard work. (Consider e.g. the complete failure that Galileo met in trying to 

analyze magnetic phenomena.) It is only when one has found out the right way of describing things in 

the world, and at least as importantly, interacting with them, that it becomes possible to offer the kind 

of explanations that Galileo is searching for. This also automatically brings the problem of idealization 

to the fore, as any actually realizable physical system will at best be only approximately isolated from 

disturbing influences. The next chapter will be focussed on showing how Galileo was able to achieve 

some level of success in isolating some appropriately closed systems (i.e. closed off from disturbances 

in such a way that the system shows a relevant kind of stable behaviour – if analyzed at the right level 

of abstraction), which is a task preliminary to the development of full-fledged mathematical theories. 

The kind of stability that Galileo tries to uncover involves the fact that appropriately defined 

parameters are known to be always proportional to each other. The idea of functional dependence that 

is so crucial in modern physics is no part of Galileo’s mathematical apparatus, but his geometrical 

                                                 
447 Opere VII, p. 471. (Transl. from Galilei 2001, p. 517.) 
448 Cf. also Mertz 1980. 
449 Opere I, p. 300. (Transl. from Galilei 2000, p. 50.) 
450 Opere VI, pp. 236-237. (Transl. from Drake and O’Malley 1960, p. 189.) 
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framework does have place for a similar kind of predictive closure. The empirical stability should thus 

be reflected on the conceptual level. 

 This way of proceeding actually installs the specific interplay between universality and 

locality that has become so specific for modern physical sciences. If one has been able, in a very 

specific and local situation, to isolate a sufficiently closed system that shows some stable behaviour, 

one can transfer the lessons learned from this behaviour to all similar situations.451 And one can do this 

exactly because this stability expresses what lies outside our manipulative capabilities and hence must 

be ascribed to nature. This answers the question posed at the end of the previous chapter, why the 

balance has acquired the possibility to act as a model of intelligibility. But we can now add the 

important caveat that it can only play this function for situations that are sufficiently similar in all 

relevant characteristics. Chapter 7 and 8 will recount how this caveat actually led to the demise of the 

centrality of the balance model within Galileo’s science of motion, and simultaneously prepared the 

way for a new approach, as it turns out that the conditions under which a balance exemplifies relevant 

invariancies were not directly transferable to the case of free fall. 

 

                                                 
451 Let me add the important observation that Galileo at times uses the term “proportio” where we would use something like 

“analogy” (cf. e.g. Opere I, p. 292: this is a passage that was quoted in chapter 4, section 4.2.2, when I was discussing how 

the “analogy” with the balance determines relevant similarities for Galileo.). Similar situations are proportional situations, 

i.e. situations where the same kinds of ratio’s can be observed. 
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FIGURE 5.1 

The lighter body B is able to lift the heavy body A because their common centre of gravity C lies to the right of 

the centre of the balance, the fulcrum D, and this centre of gravity has a tendency to move towards the centre of 

the world whereas the fulcrum must remain stationary. (del Monte 1588, p. 3.) 

 

 

 

FIGURE 5.2 

The uniform solid CF is suspended at its endpoints from a line AB which at its turn is suspended at the point G 

exactly in the middle. It will be in equilibrium. Now divide the solid in two unequal parts CS and DS, and add an 

extra string at the point I. It remains in equilibrium, as it also will if we now hang it from two other strings right 

above the parts’ respective centres of gravity at K and L and cut the other strings. It can easily be geometrically 

proven that the ratio between the distances MG and GN equals the ratio of the weights of the respective unequal 

parts. (Opere IV, p. 161.) 
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FIGURE 5.3 

Since the two bodies A and B, situated at different distances on a balance, would move on circles with a different 

radius but a common centre, the speed of the body farthest from this centre would be proportionally faster.  

(Opere II, p. 163.) 

 

 

 

FIGURE 5.4 

The distance CD is assumed five times the distance CB which equals CL. A body placed at D will have the same 

momento as a body five times as heavy that is placed at B. So the body at B can in principle be moved to G by 

such a body, if we assume that an infinitesimal weight added to this body is enough to set the lever into motion. 

Considered from the perspective of conservation of moment, this is exactly the same thing as saying that a body 

five times lighter than the body at B can also be moved by the same body if we place it at L, since the 

proportionality which is expressed through the equality of moment remains invariant. And if we repeat this 

action five times, we can move the complete body that was placed at B to G, by cutting it in five equal pieces. 

(Opere II, p. 166.) 
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 In concluding chapter 4, I claimed that Galileo by 1591 had a language to speak (geometry), 

was forging himself a position to speak from (a geometrical philosopher), and had problems to 

address (the topical problems of motion), but that it is not clear whether he actually had objects to 

speak about. In the present chapter, I will analyze some crucial features of Galileo’s search process 

aimed at remedying this situation. This led him to introduce novel empirical facts, which we still 

acknowledge as valid, as crucial elements into his mathematical theory of motion. In the first section I 

will analyze the grounds behind his proto-inertial principle, which led to a mathematical treatment of 

projectile motion and indirectly made possible the formulation of exact mathematical proportions 

characterizing the acceleration of free fall. In the second section I will focus on Galileo’s insight in 

the independence of speeds of fall from specific gravity, at least for fall in a void. 

 In both cases it is clear that these novel facts could only be introduced as idealizations, not 

directly observable in empirical situations. The analyses of chapter 5 will be crucial to understand the 

status that such idealizations had within Galileo’s thinking. The stress on nature as “that which lies 

beyond human will” allows us to see why he would understand these novel facts to be valid 

idealizations in building a science of nature. As a result, we will also be in a position to understand 

the difference that separates Guidobaldo’s and Galileo’s mechanical investigations. It will become 

clear how Galileo’s focus on appropriately closed systems lies behind both his interest in his proto-

inertial principle, and the role that the pendulum could play in investigating the properties of free fall.  

 In a third section, I will take a rather different perspective on this same search process, now 

focussing on the kind of bodily manipulations that are required in bringing it to a successful end. I will 

argue that we need to take into account what I call “performative reason.” This disciplined way of 

engaging instruments such as a pendulum is an essential element in the possibility of building up 

abstract mathematical representations of concrete physical events. Highlighting this performative 

component will allow us to gain a more complete picture of the different levels at which a model of 

intelligibility functions.   
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 In De motu Galileo not only treats motion through media, in a separate chapter he also treats 

the problem of motion on an inclined plane. This problem can also be considered topical, but for a 

different tradition, i.e. the mixed science of mechanics. Galileo accordingly claims that the question 

“has been treated thoroughly by no philosopher, as far as I know”, but that he nevertheless chose to 

include it because it “concerns motion.”452 (He was not claiming that it had not yet been treated by any 

mathematician.) Medieval authors working in the Jordanus tradition typically dealt with this problem, 

and had already found the correct solution.453 Pappus also tackled the problem, and as we have seen, 

Guidobaldo included Pappus’ erroneous solution in his Mechanicorum liber.454 When repeating his 

own analysis in Le mecaniche Galileo will explicitly refer to Pappus’ attempt to criticize it.455 

 The problem as Galileo presents it is to find out how much the speed of a body moving down 

on an inclined plane is diminished as the slope of the plane becomes more horizontal. As a starting 

point he repeats a claim that he had already made in making intelligible his dynamical demonstrations, 

i.e. “that it is manifest that what is heavy is carried downward with as much force, as would be 

necessary for pulling it upward by force; that is, it is carried downward with as much force as that with 

which it resists going up.”456 To solve the inclined plane problem Galileo will try to find out the 

magnitude of the weight which suffices to equilibrate a body of a given weight on an inclined plane of 

a given slope, and then set the speed proportional to this weight. The similarity with his treatment of 

motion through a medium is clear: finding out the effective weight of a body in a specific situation is 

again the clue to Galileo’s method.457 

 To determine the effective weight of a body on an inclined plane Galileo cleverly exploits the 

properties of a bent lever (see figure 6.1). When an equal arm balance is in horizontal position, a body 

hanging from the end of its arm at point d will be equilibrated by a counterweight that is as heavy as 

the body itself. When this arm is pivoted around the fulcrum, while the other arm holding the 

counterweight remains in horizontal position, the counterweight will have to be less heavy due to the 

properties of a bent lever. The farther we turn the arm of the balance holding the body, the lighter the 

                                                 
452 Opere I, p. 296. (Transl. from Galilei 2000, p. 46.) 
453 See Moody and Clagett 1960 for the main treatises that make up the medieval science of weights; Brown 1978 is a 

convenient introduction. 
454 Cf. chapter 3, section 3.3.2. 
455 See infra section 6.1.2. 
456 Opere I, p. 297. (Transl. from Galilei 2000, p. 47.) Cf. chapter 4, section 4.2.2. 
457 There is a fragment among Galileo’s notes, in the hand of Mario Guiducci who was his assistant for a time after 1618, 

where the two phenomena are explicitly stated to be completely analogous with respect to each other (Opere VIII, p. 377). 
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counterweight has to be. But at any of the positions to which we can thus turn the body, it will have 

the same tendency towards motion as it would have if it were on the inclined plane that is tangent to 

that point on the circle traced by the bent arm. Hence, in figure 6.1, a body hanging at the point s 

would have the same tendency as if it were on the inclined plane gh. The geometry of the situation and 

the proportions characterizing the bent lever imply that the tendency towards motion on the inclined 

plane has the same ratio to the tendency to descend vertically as the vertical height of the inclined 

plane has to the path of oblique descent. (Or equivalently, that the force required to overcome a body’s 

weight on an inclined plane has this same ratio to the force required to overcome its weight along the 

vertical). 

 Galileo, after having given this demonstration, immediately adds the warning that “it must be 

understood of this demonstration that there exists no accidental resistance (roughness either of the 

mobile or of the inclined plane; or because of the shape of the mobile).”458 But it immediately follows 

that if this assumption were to be satisfied, “any mobile on a plane parallel to the horizon will be 

moved by a minimal force, indeed by a force smaller than any given force.”459 (The vertical height 

over which the body is to be moved is zero, so the force required to overcome its resistance against 

motion is also zero.) Galileo apparently understands this to be quite a momentous conclusion, as he 

continues: “And this, since it seems quite difficult to believe, will be demonstrated by the following 

demonstration.”460  

 We are dealing with the first steps towards some kind of inertial principle, but it is telling that 

Galileo immediately returns to the balance in an attempt to clarify it further. He now presents figure 

6.2 which abstracts the situation as presented in figure 6.1 one stage further, by stressing the essential 

properties of the balance as represented by a circle. The property that interests Galileo is the fact that 

any body hanging from point d can be moved by any force whatever at point b. But this smallest force 

would even suffice to raise the body, so “what wonder is it, that the same weight d should be moved, 

on a non ascending plane, by the same force or even a smaller one, than the force at b?”461  

 Seen from our own vantage point, Galileo is exploiting the fixed nature of the fulcrum that 

takes away force from the free weight of the body to model the constraining effect of the inclined 

plane; i.e. he is decomposing the force of weight in a component that is annulled by the constraining 

force and a resulting net force in the direction of motion. It is moreover immediately clear that the 

body hanging perpendicular under this fixed point has zero effective weight. We have seen that this 

                                                 
458 Opere I, p. 298. (Transl. from Galilei 2000, p. 48.) 
459 Opere I, p. 299. (Transl. from Galilei 2000, p. 49.) 
460 Ibid. 
461 Ibid. 
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was already explicit in Guidobaldo’s conceptualization of mechanical phenomena, 462  but Galileo 

remains almost completely silent on the physical role of the fulcrum. 

 Galileo adds some further considerations, this time completely detached from the balance: 

 
Furthermore: a mobile, having no extrinsic resistance, will go down naturally on a plane inclined 

no matter how little below the horizon, with no extrinsic force applied; as is evident in the case of 

water: and the same mobile does not go up on a plane erected no matter how little above the 

horizon except violently: it therefore remains that on the plane of the horizon itself it is moved 

neither naturally nor violently. Now if it is not moved violently, hence it will be able to be moved 

with the minimum of all possible forces.463 

 
Galileo is here connecting the conclusion that he first drew from the geometrical proportions 

characterizing a balance with the natural constitution of the universe. This is a possibility that must 

have been immediately clear to him, as he had already commented on the non-exhaustiveness of the 

Aristotelian dichotomy between natural and forced motion in the dialogue version of the treatise. In 

this context he tried to assess how to understand the circular motion of a marble sphere situated at the 

centre of the universe. 

 
Thus if there were a marble sphere at the center of the world, so that the center of the world and the 

center of the sphere were the same, and then a beginning of motion of the sphere were given by an 

external motor, perhaps then the sphere would not be moved by a violent motion but by a natural 

one; since there would be no resistance of the axes, and the parts of the sphere would neither 

approach nor recede from the center of the world. Now I have said, perhaps: because if such a 

motion were not violent, it would endure forever; but that eternity of motion seems far removed 

from the nature of earth itself, to which rest seems to be more pleasant than motion.464 

 
At this point Galileo is merely trying to explore the boundaries of the Aristotelian classificatory 

apparatus. His stance is uncommitted, and when he repeats this analysis in a separate chapter in the 

treatise version of De motu the uncertainty about the eternity of the motion remains. He presents the 

question whether the motion should endure or not, but nowhere gives an answer. For our purposes, the 

most important thing about these discussions is that Galileo is very clear about the fact that the 

indifference towards motion (an expression first used in Le mecaniche to characterize this situation) 

that was demonstrated geometrically in the discussion of inclined planes can also be understood as due 

to the fact that some bodies neither approach to, nor recede from the centre of the universe. 

 
                                                 
462 Cf. chapter 3, section 3.3.2. I already noted in a footnote in that section how this actually provided Guidobaldo with all the 

necessary tools to solve the inclined plane problem in a correct way. 
463 Opere I, p. 299. (Transl. from Galilei 2000, p. 49.) 
464 Opere I, p. 373. (Transl. from Galilei 2000, p. 120.) 
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 In Le mecaniche Galileo returns to the problem of the inclined plane. Although his actual 

derivation of the proportions characterizing equilibrium on an inclined plane follows the lines of De 

motu, the overall presentation of the problem is significantly different. In the earlier presentation the 

indifference to motion of a body on a horizontal plane was presented as a consequence from the 

proportions that characterize equilibrium (and hence motion) on an inclined plane. In the 

recapitulation in Le mecaniche it is presented as “an indubitable axiom” 465  that precedes the 

geometrical demonstrations. Its proper grounds are now sought in the considerations that were 

adduced in De motu as further confirmation of this remarkable conclusion.  

 Galileo repeats the analysis of bodies neither approaching nor receding from “the common 

centre of heavy things.”466 He also provides some further semi-empirical examples, referring not only 

to the earlier mentioned motion of water (which is now specified to run through a river bed that is very 

little slanted) but also to a motion on a “surface of a frozen lake or pond”. We shouldn’t forget that 

water management was one of the prime occupations of sixteenth and seventeenth century Italian 

engineers: it was no doubt a very significant fact to them that even the slightest slant was enough to 

make the water flow.467 

 Galileo further adds that Pappus had already attempted to treat inclined planes, but that in his 

opinion “he missed the mark, being defeated by the assumption which he made when he supposed that 

the weight would have to be moved in the horizontal plane by a given force.”468 Pappus had indeed 

stipulated that a force would be needed to put a body on a horizontal plane in motion, and had tried to 

find out which extra force would be needed on an inclined plane. As already indicated in the notes to 

the translation of his treatment in Cohen and Drabkin (1958), this is actually not the source of his error 

– after all, there is nothing wrong in principle with assuming the presence of friction.469 Whereas 

Pappus also had tried to find out the force needed to equilibrate a body on an inclined plane by 

exploiting a balance model, his model actually did not result in a correct decomposition of the force of 

the weight of the body. This becomes immediately clear if we take a look at the figure illustrating it 

(see figure 6.3 and accompanying explanation). His model implies that an infinite force would be 

needed to draw the body vertically upward, as in this case the force would be applied on a lever arm 

which has zero length. That Galileo had noticed this absurdity is revealed by his introduction of his 

                                                 
465 Opere II, p. 180. (Transl. from Galilei 1960, p. 171.) 
466 Opere II, p. 160. (Transl. from Galilei 1960, p. 152.) It is interesting to note how Galileo now avoids talking about the 

centre of the universe in this respect. 
467 Cf. Westfall 1989 for an occasion when Galileo acted as consultant for a large scale project that involved a plan to change 

the path of the river Bisenzio close to Firenze. 
468 Opere II, p. 181. (Transl. from Galilei 1960, p. 172.) 
469 Cohen and Drabkin 1958, p. 196, fn. 3. 
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own demonstration in the following words: “It will be better, given the force that would move the 

object perpendicularly upward (which would equal the weight of the object), to seek the force that will 

move it on the inclined plane.”470 Pappus’ error is thus to be avoided by starting from this boundary 

condition which will allow one to obtain physically sensible solutions. (This is in all probably also the 

way in which Galileo first saw how to correctly model the forces in the problem through a balance: 

consider the balance from figure 6.3, but now start by hanging two equal weights from both its arms 

when the circle, which now represents the balance rather than the body, touches a vertical plane.) 

 The main innovation in the actual demonstration of the proportions characterizing equilibrium 

on an inclined plane is that Galileo now formulates it in terms of “moment of weight” rather than in 

terms of weight as he had done in De motu. This time he is also much more explicit about the fact that 

he is actually modelling the effects of constraint, as is testified by the following passage (cf. again 

figure 6.1):  

 
But to consider this heavy body as descending and sustained now less and now more by the radii 

ar and as, and as constrained to travel among the circumference dsr, is not different from 

imagining the same circumference dsrb to be a surface of the same curvature placed under the 

same movable body, so that this body, being supported upon it, would be constrained to descend 

along it. For in either case the movable body traces out the same path, and it does not matter 

whether it is suspended form the center a and sustained by the radius of the circle, or whether this 

support is removed and it is supported by and travels upon the circumference dsrb.471 

 
It is interesting to notice already how suggestive this is of the pendulum as a further model for this 

kind of situation.472  

 After having derived the basic proportionality that characterizes equilibrium, Galileo goes on 

to illustrate how this explains the working of a screw. At the end of this analysis he introduces an 

extremely important discussion: “Finally one must not ignore the consideration which from the 

beginning has been said to hold for all mechanical instruments, that is, that whatever is gained in force 

by their means is lost in time and speed.” At first sight this might not be apparent in the present case. 

For if we consider a heavy body E being hauled up on an inclined plane by a lighter body F which can 

move down perpendicularly, and which is connected to E by a cord EDF, both bodies always move 

over the same distance in the same time (cf. figure 6.4). However, the important point to notice is that 

 
…heavy bodies do not have any resistance to transverse motions except in proportion to their 

removal from the center of the earth, then the movable body E not being raised more than the 

                                                 
470 Opere II, p. 181. (Transl. from Galilei 1960, pp. 172-173; my emphasis.) 
471 Opere II, p. 181. (Transl. from Galilei 1960, pp. 173-174. I changed the lettering to make it consistent with figure 6.1.) 
472 Cf. infra section 6.2. 
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distance CB in the whole motion AC, while F has dropped perpendicularly as much as the whole 

length of AC…473 

 
We have to compare the forces with respect to these unequal vertical distances. These are indeed in 

proportion to the weights, if we take account of the proportions characterizing equilibrium on inclined 

planes. 

 We can now understand why the indifference to motion of a body on a horizontal plane has 

changed status for Galileo and has become a general principle that is placed before introducing the 

actual derivations. It is this principle that allows him to decompose the motion of a body on the 

inclined plane in two components, and, as a result, to discern the general conservation of moment that 

should characterize any mechanical instrument. (The reformulation in terms of moment also 

immediately gains in significance.) The principle is still a mathematical consequence of the 

proportions that are derived for the inclined plane, but only because it now actually constrains which 

are the physically possible proportions. Any measure which does no justice to this constraint would 

threaten to venture into the physically impossible. It does indeed express something basic about the 

“constitution of nature with respect to the movements of heavy bodies.”  

 When forty years later, Galileo returns to the problem of the inclined plane after having 

published his Discorsi in 1638, he takes the by now logical next step: he explicitly bases his proof of 

the characteristic proportions of equilibrium on the conservation of moment. 474  The balance has 

completely disappeared from the picture, and the inclined plane has become a closed system in its own 

right, thanks to the proto-inertial principle. 
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 It is important to note that Galileo’s first steps towards the proto-inertial principle pivot around 

the balance’s fulcrum. (The preceding sentence should be read in its literal sense.) We have seen that it 

was precisely what Guidobaldo conceived to be the essential role of the fulcrum that made it 

impossible for him to abstract from the friction that it necessarily introduces when one tries to put a 

body on a balance in motion.475 That Galileo chooses to neglect this friction signals a significantly 

different way of conceptualizing physical problems. His next steps transferred the role of the fulcrum 

in annihilating a body’s weight to the plane on which the body is moving. But again, he focuses on the 

relations that hold between the forces exerted by the body and the constraining instance and neglects 

frictional forces as accidental. 

                                                 
473 Opere II, p. 186. (Transl. from Galilei 1960, pp. 177.) 
474 Cf. chapter 8, section 8.3.2. 
475 Cf. chapter 3, section 3.6.2. 
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How should we understand the difference that separates Galileo from Guidobaldo? It was 

already concluded that Guidobaldo does acknowledge the fact that ideally true propositions can be 

violated through material hindrances. However, these can count as deviations from true principles only 

under precise circumstances; i.e. when these principles already have shown their empirical validity. 

This was the main reason why he refused to give exact proportions for machines in motion. Of course, 

he still could have made the thought experiment of mentally abstracting from all friction (as we 

understand it, all that is essential about the fulcrum is its fixed nature); but this would have made no 

sense, given the way in which he was consciously positioning himself as a practitioner of the mixed 

sciences. (I don’t see any reason to doubt Guidobaldo’s capacities as a theoretical mathematician, and 

hence his capacity of making such abstraction if he would have seen any sense in doing so.) This 

requires him to posit only basic principles that can be found exemplified in material instances. This is 

why Guidobaldo can see sense in idealizing physical situations to introduce exact measures (after all, 

even the most precise balance will never be mathematically exact), but still refuses to introduce an 

idealized balance which would have a frictionless fulcrum. 

When we move to Galileo, the conditions under which something can count as a deviation 

from true principles apparently changed. I propose that we understand this as follows: what for 

Guidobaldo was an invalid abstraction becomes an innocuous idealization for Galileo. In making this 

distinction abstraction is tied to the scope of a model, whereas idealization has to do with its precision. 

Thinking away the physical nature of the fulcrum alters the scope of the theory for Guidobaldo, as it 

implies that we are no longer dealing with mechanics, but rather with pure mathematics; Galileo sees a 

continuum from a fulcrum with friction towards an ideal fulcrum which only alters the way in which 

the precise relations show up in empirical reality.476  

 But this leaves the important question open: what lies behind this change? A whole lot, as it is 

“nature” that has changed in the meantime – which of course immediately alters the valid scope of a 

theory. The importance of Galileo’s conservation principle in his mechanical treatise was sufficiently 

stressed in our analyses in chapter 5. One fact about it remains to be noticed, however, and that is that 

Galileo neglects friction in all his treatments of the different machines. We have seen how he 

introduced the conservation of moment by both the Archimedean and the pseudo-Aristotelian proof of 

the law of the lever. In the latter proof he is setting the balance in motion, and this is again repeated in 

his example illustrating the transformation of moment.477 However, if we take into account the status 

                                                 
476 In discussing the rotation of the marble sphere, discussed at the end of section 6.1.1, Galileo is very explicit on this when 

he comments on the necessity of supporting it at its axis: “But the more the ends of the axis are polished and thin, the less 

they will suffer resistance: so that, if we imagine them to be indivisibles, then no resistance will develop from them.” Opere I, 

p. 307. (Transl. from Galilei 2000, p. 59.) This extrapolation is still absent in the dialogue version of De motu, where it is 

simply asked whether there is “not always in such motion the resistance of the axes, which … resists the motion?” Opere I, p. 

373. (Transl. from Galilei 2000, p. 120.) 
477 Cf. chapter 5, sections 5.2.1 and 5.2.2. 
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that Galileo accorded to the proportions thus determined, the complete disappearance of friction 

becomes perfectly well-suited. As these proportions now express the boundaries of what can be 

effected with machines, it is only sensible to think away all friction: the frictionless situation sets the 

upper limit to what kinds of motion can be actually realized. Guidobaldo was interested in the possible, 

Galileo in the boundaries of the possible. This is what has changed an invalid abstraction in an 

innocuous, nay necessary, idealization. 

 Stillman Drake analyzed the difference between Guidobaldo and Galileo in the following 

terms: Galileo had been able to derive mathematical laws for motion from mechanics because he had 

understood that the addition of an insensible weight to a balance in equilibrium would suffice to put it 

in motion, but Guidobaldo “for lack of [this] simple bridge between statics and dynamics, is unable to 

formulate quantitative laws for the latter.” He goes on:  

 
Experience bore Guido out in a sense, as some power is lost in actual simple machines; … Yet 

Guido was in the habit of showing side by side material machines and schematic figures of them, 

and as a mathematician he should have been able to see the idealized truth. The fact that he did not 

is strong evidence that it is simpler for us to see this than it was for Galileo, who was the first to do 

so. Nor is this surprising; it was he who made it simpler for us.478 

 
To repeat my argument: as a pure mathematician Guidobaldo was probably capable of seeing what 

Drake calls “the idealized truth”, but as a mixed mathematician he refused to see the “truth” in it. The 

way in which truth functions as a normative instance for him is significantly different from how it 

works for Galileo. 

 Nature expresses what lies outside our manipulative capabilities. We can reduce friction more 

and more by fabricating ever more polished surfaces (and Galileo was certainly doing this, not only by 

referring to frozen lakes, but also by working on the material in his workshop): this lies within these 

capabilities. Not long after Galileo’s death we will even find out how to produce artificial voids: idem. 

But what we cannot change is what all bodies will do when put in motion on a frictionless surface and 

in a void. (Of course we could manipulate this behaviour by interacting directly with any single body; 

but in this way we would merely be reintroducing “external” disturbances that could be eliminated at 

will.) And this is the behaviour that our basic principles must express. In the present case, this 

behaviour is seen to follow from the basic properties characterizing weight, which all bodies posses. 

 There is a famous letter from Galileo to Guidobaldo, written in 1602, in which we find the 

first written traces of Galileo’s occupation with isochronous motion. In the same letter he also enters 

into the problem of idealization in the closing paragraph of the letter.  

 

                                                 
478 Translator’s footnote in Galilei 1960, pp. 166-167, fn. 24. 
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Regarding your question, I consider that what your Most Illustrious Lordship said about it was 

very well put, and that when we begin to deal with matter, because of its contingency the 

propositions abstractly considered by the geometrician begin to change: since one cannot assign 

certain science to the [propositions] thus perturbed, the mathematician is hence freed from 

speculating about them.479 

 
We don’t have Guidobaldo’s letter to which Galileo is answering, so we cannot be entirely sure about 

what both men were discussing. Guidobaldo must in all probability been complaining about Galileo’s 

occupation with deriving geometrical proportions characterizing motion, which could never be borne 

out in experience because of phenomena of friction. This is confirmed by the fact that earlier in the 

letter Galileo comments on Guidobaldo’s failed attempts to confirm isochronity for motion of balls in 

a hoop. In closing his letter, Galileo reassures his patron that he is well aware that these perturbed 

phenomena are beyond the scope of mathematical theories. What is left open, however, is what this 

tells about the status of the idealized proportions themselves. It is telling that Galileo remains silent on 

exactly this crucial point, which separates him from Guidobaldo’s own endeavours. 

 Let me in closing come back to Pappus’ “erroneous principle”. We can now see that from 

Galileo’s perspective there is nothing wrong in principle with assuming that we need an extra force to 

counter friction forces in treating problems of motion. However, it is important that this force is 

introduced at the right place. That means: not in setting up the terms of the problems. Friction merely 

disturbs the precise relations that are determinable in its absence. It belongs to the outside of the closed 

physical system: it can explain why moment is actually lost rather than conserved.  
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 We have seen how Galileo already in the first version of De motu posed the question whether 

a homogeneous marble sphere placed in the centre of the universe would persevere in an imparted 

rotational motion. As this question arose within his attempts to ascertain the boundaries of the 

Aristotelian classification of types of motion, it seemed impossible for him to give an unambiguous 

answer – simply because the kind of motion that the sphere would have was ambiguous in itself (when 

considered from within an Aristotelian typology). When introducing his proto-inertial principle in Le 

mecaniche, Galileo still remains silent on the precise characteristics of the motion we are dealing with. 

It is enough for his purposes to see that a body would simply be non-resistant to motion along the 

horizontal. 

 Shortly after having completed the final version of Le mecaniche, Galileo started a research 

program that would further investigate motion on inclined planes. Most importantly, as he announced 

in the earlier quoted letter to Guidobaldo, he had found out that he could mechanically derive that 

                                                 
479 Opere X, p. 100. (Transl. from Renn et al. 2000, p. 405. The translation in Drake 1978, p. 71 is rather inaccurate.) 
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motion on chords inscribed in a circle would always take the same time (see figure 6.5). This law of 

chords, which would occupy a central position in the 1638 Discorsi as theorem VI, seemed to carry 

the promise of opening up the possibility to demonstrate the isochronity of pendular motion, which he 

also announced in the same letter. He never succeeded, however. The closest he came was his 

scholium on brachistochrone motion to theorem XXII in the Discorsi, which he consciously did not 

present as a rigorous proof. It would be left to Christiaan Huygens to carry this research program to 

successful completion. 

 This stage in Galileo’s thinking signals a much greater awareness of the role of time as a 

parameter in the phenomena he is studying. As a result, he also pays closer consideration to speed as 

an object of his study in its own right (remember that in De motu Galileo had merely claimed that “he 

who assumes motion, necessarily assumes swiftness” and “consequently, swiftness comes from the 

same thing as does motion”).480 I won’t go into any of the conceptual problems that confronted Galileo 

in this respect, nor will I try to trace his attempts to integrate his newly acquired insights in a coherent 

deductive theory, which will finally result in days 3 and 4 of his Discorsi.481 I only want to draw 

attention to the fact that precisely at this stage of Galileo’s thinking does his proto-inertial principle 

start to function as a kinetic principle as well.  

 This period in Galileo’s research is of course connected with his investigations in the precise 

proportions that hold for the acceleration of falling bodies. Jürgen Renn and collaborators have 

recently shown that we have every reason to accept that Galileo already was aware of the parabolic 

shape of projectile motion in 1592, following a set of experiments that he did together with 

Guidobaldo.482 They in all probability threw inked balls along an inclined roof and recorded the 

trajectory followed by the balls (see figure 6.6). Guidobaldo wrote down in his notebook that the ball 

“will take the same path in falling as in rising, and the shape is … a line which in appearance is similar 

to a parabola and hyperbola”483. It appears that Galileo was at first primarily interested in the fact that 

the projectile clearly followed a symmetric path, which would certainly not be expected from an 

Aristotelian viewpoint. It also clearly belies the figures he had included in his De motu when 

discussing projectile motion (see figure 6.7), which followed Tartaglia in distinguishing a first part 

that was entirely straight, due to the impressed force, a middle part that is curved, which results from 

the mixture of the violent impressed force and the body’s natural tendency, and a final part where the 

body falls down perpendicularly, due to its own weight (this last part is not discussed by Galileo). But, 

                                                 
480 Opere I, p. 261. (Transl. from Galilei 2000, p. 15.) Cf. chapter 4, section 4.1.4. On Galileo as inheritor of a scholastic 

conception of velocity, see Souffrin 1992; Damerow et al. 2004, chapter 3. 
481 On this topic, see especially Wisan 1974; Damerow et al. 2004, chapter 3. 
482 Renn et al. 2000. (See also Damerow et al. 2004, pp. 158-164.) Fredette 1969, pp. 154-159, seems to have the first to 

draw attention to Guidobaldo’s discussion of these experiments in his notebook in connection with Galileo’s obvious interest 

in the parabolic path of projectiles. 
483 Quoted in Renn et al. 2000, p. 314. 
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from a backward looking perspective, the most suggestive fact about this discovery of the parabolic 

path is that a trained mathematician such as Galileo would have had no problem recognizing that this 

trajectory implied a times squared law for free fall if he would assume that the motion could be 

decomposed in a vertical accelerated and a horizontal uniform motion.  

 Renn et al. ascribe the fact that Galileo did not immediately stress the latter conclusion to what 

they call his practical turn in between 1592 and 1602. In this period he devoted most attention to 

practical problems, and did not pay much attention to purely theoretical issues.484 This is certainly part 

of the answer, but I think it is also important to take into account what was shown above: how the 

indifference to motion of a body on a horizontal plane only became something like a proto-inertial 

principle around 1600. This happened precisely in his writing on mechanics which Renn et al. would 

link with his practical interests, but the analysis in chapter 5 gives reason to prefer a more complex 

picture of Galileo’s relation to practical traditions. This is directly reflected in the status that this 

principle could have within his thinking.  

 It is only in Le mecaniche that Galileo presents his proto-inertial principle as an “indubitable 

axiom” that follows from “the constitution of nature with respect to the movements of heavy bodies”, 

whereas in De motu it had primarily served as a means to destabilize an Aristotelian framework. Even 

more importantly, it is only in the mechanical treatise that he explicitly treats motion on an inclined 

plane as composed of a horizontal component which requires no force and a vertical component that 

was forced. This is of course the kind of decomposition that could then lead to the law of fall – but 

Galileo only explicitly started considering it when thinking about how to understand the inclined plane 

as a closed mechanical system. As I already pointed out at the end of chapter 5, it is not evident to find 

out the right level of abstraction to describe systems in such a way that they enable one to observe 

interesting stable phenomena.485 Seeing the precise proportions characterizing natural acceleration in 

the path of a projectile requires one to understand both the decomposition and the horizontal 

component as natural in their own right.  

 Applying this decomposition to the parabolic path of projectiles would have taught Galileo 

something else of prime importance: that it was fruitful to think of his proto-inertial motion as uniform 

motion. (It is only this assumption that he can give a proportion characterizing the relation between 

distance fallen and time passed.) Its implication in this new set of phenomena thus further sharpens its 

characteristic properties, which had to remain ambiguous when seen from an earlier perspective. Once 

this further step is taken, Galileo can exploit the principle to link accelerated motion on an inclined 

plane with uniform horizontal motion through his so-called double distance rule. This in turn will 

become an extremely important conceptual tool in mathematically handling accelerated motion.486 

                                                 
484 It is questionable, though, how far this can be ascribed to the influence of Guidobaldo’s example, as Renn et al. suggest. 
485 Cf. chapter 5, section 5.4.2. 
486 Cf. Wisan 1974, pp. 205-206; Damerow et al. 2004, pp. 175-179. 
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 It is well documented that Galileo kept on experimenting with accelerated motion on inclined 

planes throughout his Paduan period, but the remaining evidence is often too scarce to enable us to be 

really sure about the kind of experiments he was performing to what ends. Let me refer to a recent 

article by Alexander Hahn that studies many of the reconstructions that have been offered and comes 

to the conclusion that primarily the folio 116v experiments stand out as a successful test of Galileo’s 

principles.487 In these experiments, Galileo rolled bodies from different heights on an inclined plane 

and after a short horizontal run with the speed collected on the inclined plane they were projected from 

the table on which the plane was mounted (cf. figure 6.8 and accompanying explanation). The 

distances at which the bodies hit the ground are recorded and compared with the heights of the 

inclined planes on which they collected their speeds.  Particularly interesting is the conclusion that 

Hahn draws: 

 
The discussion … shows that the experiment tests none of Galileo’s insights independently, but 

that it in fact tests Galileo’s account of motion as a whole. Therefore, it tests neither his law of fall 

nor his principle of inertia directly. Whereas the test of either the law of fall or the principle of 

inertia necessarily involves the measurement of time, the experiment of 116v bypasses any need to 

measure this elusive variable.488 

 
This precisely mirrors the way he probably found out simultaneously both his principle of inertia as a 

kinetic principle and the law of fall.489 Time only enters essentially into the mathematical proportions 

that bind together the principle and the law. But as we will see in section 6.3, this doesn’t imply that 

for Galileo time had not also a more concrete reality as a physical presence and a mathematical object. 
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 Let me briefly comment on some much discussed issues concerning Galileo’s proto-inertial 

principle. These have to do with its relation to on the one hand Newtonian inertia, and on the other 

hand something like a cosmological principle of circular inertia.490  A body lying on a perfectly 

horizontal plane is indifferent to motion according to Galileo, not because there are no forces, but 

precisely because there is equilibrium of forces. It is important, but in a sense only accidental, that 

these equilibrium situations primarily show in circular motion around the centre of the earth.491 The 

                                                 
487 Hahn 2002. 
488 Hahn 2002, p. 358. 
489 Drake 1973 believed that the tests were aimed at testing the principle of horizontal inertia; Naylor 1974 suggested that it 

was the times-squared law. See also Hill 1988.  
490 Drake 1970, chapters 12 and 13, offers a good introduction to some of the problems that arise. 
491 Chapter 8, section 8.2.2 will show an example where Galileo extended the idea to non-circular, and even non-horizontal, 

“inertial motion.” 



 170 
 

most important thing is that strictly speaking “inertial states” are only thinkable for Galileo in the 

presence of forces – in complete opposition to the classical viewpoint. This is of course due to 

Galileo’s conviction that gravity is something internal to matter, responsible for its essential tendency 

toward downward motion. If we follow the logic explained at the end of section 6.1.3, it is clear that 

we cannot directly intervene on the weight of a body: this is something that lies outside our 

manipulative capabilities. It is only when we start thinking of weight as due to an attractive force that 

it can properly be understood as an external property and that we can further abstract the description 

of inertial motion.  

 This situation poses serious problems for Galileo’s attempts at treating projectile motion 

mathematically.492 If he wants to prove that all projectile motion is parabolic, than he should assume 

that the motion in the direction in which the projectile is launched is inertial. But strictly speaking he 

can do this only for horizontal projection (as e.g. from a tabletop, as in most of his experiments). There 

is manuscript evidence of Galileo grappling with this problem, but in his final presentation in the 

Discorsi he passes over it in silence and merely presents the case of horizontal projection with no 

indication of its possibly limited nature. His disciple Torricelli first stated the case in its full generality 

and thus extended the inertial principle to arbitrary directions by adding the force of gravity as external 

to inertial motion.493  

 In the Discorsi there is nevertheless a passage where Galileo refers to motion upwards on an 

inclined plane as a “kind of mixture of equable ascending and accelerated descending motion.”494 

Galileo at times seems to be wavering on how to proceed best.495 But this does not so much betray a 

wavering between circular and rectilinear inertia, as it is often stated, as between gravity as internal 

and essential to a body, and gravity as somehow to be ascribed to an external force. As we know, this 

is a truly important problem that would exercise much of seventeenth century natural philosophy. 

 I will leave it at this. Let us just keep in mind how much Galileo’s physical thinking remains 

in flux. He is groping towards a set of satisfactory principles and he achieves some partial successes. 

But we should do him injustice by imposing a coherence that would be too neat to allow us to see the 

complexities with which he was actually confronted.496 

 

                                                 
492 These problems are extensively discussed in Damerow et al. 2004, pp. 208-236. See also Koyré 1966, pp. 273-276. 
493 See Damerow et al., pp. 284-286. This was also already discussed by Koyré 1966, pp. 298-299. 
494 Opere VIII, p. 244. (Transl. from Galilei 1974, p. 198; my emphases.) 
495 Another example is the treatment of extrusion in the 1633 Dialogue. 
496 The irrepressible Stillman Drake has the tendency to find this kind of coherence everywhere; hence also in the case of 

inertia, where he ends up with explaining away anything that might refer to genuine incertitude on Galileo’s part under the 

denominator of something like the well-heeded caution of a modern physical scientist who “refused to generalize beyond the 

reach of our available experimental evidence” (Drake 1970, p. 255).  
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 According to Viviani, Galileo’s first biographer, Galileo had already empirically observed the 

isochrony of pendulums in the 1583 as a student in Pisa.497 The fact would have first struck him while 

attending mass in the Duomo of Pisa and noticing that a swinging lamp kept pace with the music, even 

when the amplitude of its sings was noticeably diminishing. We shouldn’t forget that Galileo was a 

schooled musician and son of a professional musician and musical theorist, which does lend quite 

some credibility to this mode of discovery. Whatever the historical truth behind this story, when 

Galileo wrote his De motu, he remained completely silent on any precise properties that would 

characterize pendulum motion, nor do we find any other references to it before his 1602 letter to 

Guidobaldo, referred to earlier.498 There is only one explicit reference to pendulum motion in De motu. 

Galileo introduces the fact that a pendulum with a wooden bob comes quicker to rest to one made of 

lead to illustrate his views on the dissipation of impressed force.499 This places him squarely within a 

scholastic tradition, as Oresme had already introduced the pendulum as one of the prime examples to 

make visible some of the properties of impetus theory.500 It also makes clear that whatever the precise 

nature of his observations, Galileo was aware of the potential of the pendulum to illustrate physical 

phenomena. 

 Whether he had already made significant observation on pendular motion or not, the sudden 

appearance of its precise properties around 1602 can be traced to the hope of integrating them within 

his developing mechanical treatment of motion on inclined planes.501 We have already seen how 

Galileo explicitly stated in Le mecaniche that it doesn’t make a physical difference whether a body is 

                                                 
497 Settle 1995 reproduces the relevant parts of Viviani’s story, and adds a charming reconstruction of his own. 
498 Cf. sections 6.1.3 and 6.1.4 
499 Opere I, p. 335. Cf. also p. 413. 
500 Cf. Hall 1978. 
501 Some authors, most notably Wisan 1984b and Naylor 2003, have argued that this awakened interest in the properties of 

pendular motion is intrinsically connected with Galileo’s Copernicanism and the consequent significance of circular motion 

(an interpretation that has its pedigree in Koyré’s work). I agree with them that Galileo’s intriguing argument on “circular 

fall” in the 1633 Dialogue in all probability is an early treatment of fall that might well date back to the 1590’s, especially 

given the similarity with the argument in the dialogue version of De motu on acceleration as an optical illusion. (It is 

moreover clearly incompatible with his more mature views on free fall, as Galileo was quickly to admit, calling it “a poetic 

fiction” in a letter written after the Dialogue; cf. Opere VII, p. 89; transl. in Drake 1978, p. 377.) But I don’t believe that 

Galileo’s interest in Copernicanism offers a better explanation for the attention that he starts devoting to pendular motion 

than does the direct link with his treatment of the inclined plane that I point out in the text; after all, Galileo is in the first 

instance interested in the natural motion downwards in the pendulum, which simply doesn’t fit a Copernican natural circular 

motion. 
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constrained by an underlying plane or by a radius of a circle fixed in its centre.502 The latter situation is 

of course very suggestive of pendulum motion. It is equally suggestive to have a look at folio 151r 

(see figure 6.9) where Galileo in all probability offers the first proof of his law of chords, announced 

in his letter to Guidobaldo.503 This proof is directly obtained by transferring the tangent plane of his 

demonstration of the law of the inclined plane inside the circle where it becomes a chord. It is bound 

to remain a moot question whether Galileo had first observed the isochrony of circular motion and 

immediately hypothesized that his treatment of inclined planes might offer a physical proof for it; or 

whether he had first noticed the peculiar property of motion along the chords of a circle theoretically 

and then decided to check empirically whether it might be a clue to a more general property of motion 

along circles. The fact is that only at this point does he have a place for the pendulum to take on a 

specific evidentiary role within his mechanical theory. 

 It is no accident that Galileo became engrossed with the pendulum when finishing, or just 

having finished, the revised version of his Mecaniche which stressed the idea of mechanical machines 

as closed systems. One of the most striking characteristics of the pendulum is that the swinging ball 

always regains the height from which it started, thus immediately suggesting the idea of conservation 

of moment.504 Another property that becomes especially meaningful from this perspective is the strict 

dependence of a pendulum’s period on its length. As Galileo explains in his 1633 Dialogue: 

 
… the vibrations of … a pendulum are made so rigorously [con tal necessità] according to definite 

times, that it is quite impossible to make them adopt other periods except by lengthening or 

shortening the cord. Of this you may readily make sure by experiment [esperienza], tying a rock to 

a string and holding the end in your hand. No matter how you try, you can never succeed in making 

it go and back forth except in one definite time, unless you lengthen or shorten the string; you will 

see that it is absolutely impossible.505 

 
In the Discorsi the same property is expressed as follows: “it is necessary to note that each pendulum 

has its own time of vibration, so limited and fixed in advance that it is impossible to move it in any 

other period than its own unique and natural one [l’unico suo naturale].”506 It suffices to recall the 

conclusion of chapter 5, that “nature” in Galileo’s thinking became identified with what is beyond 

human will, to see how well-suited the pendulum was to be exploited as an investigative instrument.  

 The most peculiar property of the balance is its already mentioned isochrony; i.e. whatever the 

amplitude given to a swing, the time it takes remains unchanged. As a consequence, the pendulum 

                                                 
502 Cf. section 6.1.2. 
503 Cf. Wisan 1974, pp. 163-164. 
504 As we will see in chapter 8, section 8.3.1, this property will occupy a central place in Galileo’s presentation of his science 

of motion in the Discorsi. 
505 Opere VII, p. 475. (Transl. from Galilei 2001, p. 522; my emphases.) 
506 Opere VIII, p. 141. (Transl. from Galilei 1974, p. 99; my emphasis.) 



 173 
 

seems to be a particularly interesting closed system, comparable with, but at the same time 

interestingly different from a balance. Most importantly, since any swing always starts from zero speed, 

isochrony is only intelligible if we take into account that any downward motion is accelerated, and that 

this acceleration moreover obeys precise proportions which make the times always come out equal. 

No matter what the precise historical chronology between his empirical discovery of isochrony and his 

mathematical derivation of the law of chords, it is clear that once he had realized this connection, he 

was determined to see what could be learned from it concerning the proportions characterizing all 

natural accelerations.507 

 We know, and seventeenth century natural philosophers were quick to find out, that the simple 

pendulum is not truly isochronous. The equality of times only holds true for relatively small arcs of 

swing. Galileo never explicitly mentions this limitation, and at different places he even stresses that it 

is also supposed to hold for large amplitudes. This is one of these facts that exercised historians of 

science eager to find out how much Galileo had been truly experimenting, and how much he recurred 

to fictitious experiments.508 We can safely follow Naylor’s recent assessment of this issue with respect 

to the pendulum. Galileo undoubtedly did numerous experiments that established that the properties 

claimed by him hold for small angles, and he certainly would have been aware that some discrepancies 

arise for large amplitudes. But he would have noticed the same when experimenting with inclined 

planes, where the isochrony of chords can only be experimentally established for planes that aren’t too 

much inclined (for larger inclinations the motion is not smooth enough). In the latter case, Galileo had 

excellent theoretical reasons to believe that it nevertheless should have been true, and that the 

discrepancies thus had to be ascribed to accidental disturbances. The latter justification would then 

probably have been transferred to the case of pendulums as well, in the expectation that there was an 

essential correspondence between both cases.509 

 

                                                 
507 Machamer and Hepburn (2004) have recently provided a suggestive argument that the pendulum also provided the 

essential clue in Galileo’s search for the proper definition of uniform acceleration: with respect to space or to time? Central in 

their reconstruction stands, again, a diagram relating an inclined plane and pendulum through a circle – the prevalence and 

importance of this kind of diagrams in the development of Galileo’s science of motion is truly striking and merits a detailed 

study in its own right. 

It has also been argued that Galileo only looked for his times-squared law because he needed the proportion of time fallen 

with distance on an inclined plane to complete his search for the brachistochrone (cf. Wisan 1974, p. 175). If we assume that 

his Discorsi postulate was one of his earliest findings, based on the inclined plane theorem of Le mecaniche, it could even 

have directly led to the times-squared law. The dynamical proof of the postulate, discussed in chapter 8, section 8.3.2, 

presupposes the law of fall, but this implies that by presupposing the postulate, the times-squared relation (in its mean 

proportional form of course) could have been derived. 
508 For the discussion concerning the pendulum experiments, see Ariotto 1968; Drake 1975; MacLachlan 1976; Naylor 1976, 

1977, 2003; Erlichson 1994; Settle 1995.  
509 Naylor 2003, p. 180. This correspondence was so central to Galileo’s science of motion that Descartes could state that the 

whole third day of the Discorsi seemed to have been written to prove isochronism. Cf. Drake 1978, p. 391. 
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 One other property of pendulums that could have been easily noticed by Galileo is that the 

material of the bob does not make any difference on the period of a pendulum, although it is true that 

lighter materials will slow down much more quickly. But this poses important problems for Galileo’s 

claim in De motu that speed of fall is determined by a body’s specific weight. As a result, we would 

expect that experimenting with pendulums should have convinced him of the untenability of this 

earlier view. Surprisingly enough, we find him repeating it in his 1612 Discourse on floating bodies. 

This might be due to the observed difference in the rate of change of the amplitude which somehow 

could have suggested that the lighter bodies have an intrinsically slower motion (a suggestion that 

Galileo will dismantle in his Discorsi, as we will see below).510 Or it might be that he simply chose to 

ignore this for tactical reasons in the 1612 controversy, because he was not yet entirely sure about how 

to square this fact with a hydrostatic framework that contained so many valuable insights.  

 The publication of Galileo’s 1612 Discourse was followed by several published replies by 

Aristotelian philosophers. Together with Benedetto Castelli, a former pupil, Galileo prepared a set of 

answers to some of these, which were published in 1615. They contain the typical scathing remarks 

and repetitions of earlier arguments, but hidden in the train of one line of argument is presented a 

remarkable new argument.511 Drop a ball of ebony and one of lead into water: one will observe that 

their speeds differ considerably. Now let the same balls fall through air: one will observe that their 

speeds differ only to a very small degree. As a result we can conclude that it is very likely that if we 

would further rarefy the medium until we would reach a void, the speeds would be equal. Galileo 

stresses that the conclusion is valid for bodies of different specific gravity.  

 In De motu Galileo already gave an extrapolation argument for the effective weights of 

different kinds of bodies: the rarer the medium the smaller will be the ratio of the effective weights of 

two bodies a and b of equal size (i.e., with c, d, representing the weight of successively rarer media, (a 

– c)/(b – c) > (a – d)/(b – d) > … > a/b).512 That is, the denser the media, the greater will be the 

accidental differences between the weights of the bodies. Following the dynamical theory of De motu, 

this implies that the differences between their speeds will show the same properties. All that Galileo 

now adds in 1615 is the empirical observation that the differences between the speeds in a medium 

like air are already very small. By looking at the speeds directly, instead of only considering their 

presumed causes, i.e. the weights, Galileo lets experience overrule his earlier theoretical model.  

 This argument would of course have momentous consequences for the understanding of free 

fall, but these are not stressed at all in 1615. Again, it looks as if Galileo was not yet sure about what 

to do with the new insight. By the time he repeats the argument in the first day of the Discorsi he has 
                                                 
510 Cf. infra section 6.2.3 
511 Opere IV, p. 659. 
512 Opere I, pp 294-295.  
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apparently gained confidence in this conclusion which signals the (partial) breakdown of his 

hydrostatic understanding of the phenomenon of fall. In chapters 7 and 8, I will recount part of the 

story behind Galileo’s attempts to make sense of this fact. In the present chapter I will pursue how he 

deals with the specific problems of idealization and abstraction that are engendered by the conclusion 

of his extrapolation argument in the first day of the Discorsi. 

 The extrapolation argument leads to the same delineation of the proper domain for Galileo’s 

science of motion as he had already introduced in De motu, where it was claimed that “the true and 

natural differences of speeds … occur in the void only.” 513  An important question necessarily 

resurfaces at this point: is this an idealization that allows us to observe the phenomenon under study in 

its ideal circumstances where precise ratios can be discerned; or are we rather dealing with an 

illegitimate abstraction where we surreptitiously alter the scope of the theory (from natural to fictitious 

situations)? Why would it teach us something valuable about free fall of bodies to claim that in a void 

they would fall with equal speeds, when we see arising clear differences in their speeds in all actual 

instances – aren’t we just dealing with a different kind of phenomenon? We have seen that Galileo’s 

proto-inertial principle followed from the basic properties characterizing weight. In the present case, 

Galileo can no longer exploit any theoretical models to render the idealized behaviour fully intelligible 

and thus plausible. (Although we will see in chapters 7 and 8 that he came close to offering such a 

back-up.) 

 The extrapolation itself is of course supposed to offer an argument for the claim that we are 

dealing with a justified idealization. After all, it follows the logic of causal analysis that we saw to be 

guiding all Galileo’s investigations into causal structures. He is ascertaining the effect of varying one 

variable (density of the medium) on another variable (speeds of fall) while holding fixed a well-

circumscribed set of conditions (specific gravity of the falling bodies). But Galileo himself mentions a 

possible problem with the argument, which has to do with the question whether it couldn’t be true that 

it is only valid under (too) limited conditions – which would indeed turn its conclusion into an 

unwarranted abstraction. The suspicion is that this kind of extrapolation only holds true when one 

observes fall over small distances, whereas there would remain an irreducible difference between 

heavy and light bodies when they fall over long distances. As we will now see, Galileo undercuts this 

possible objection through a clever exploitation of the properties of pendulum motion which allows 

him to show that the situation claimed by him to obtain in a void is indeed truly relevant for 

understanding fall in media.  

 

                                                 
513 Opere I, p. 296. (Transl. from Galilei 2000, p. 93.) 
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 The first step taken by Galileo in closing the gap that separates the phenomenon of fall in a 

void from actually observable fall is to take account of a buoyancy effect. He had already done this in 

De motu, but the important difference is that he now starts from a situation in the void where all bodies 

fall with equal “absolute speed”514. If a body falls through a medium it inevitably happens that “the 

heaviness of the medium detracts from the heaviness of the moveable” which supposedly alters the 

speeds since this “heaviness is the instrument by which the moveable makes its way, driving aside the 

parts of the medium.”515  Galileo makes this effect clear by a number of examples. Suppose that 

lead is 10,000 times as heavy as air, while ebony is only 1000 times as heavy, and let water be 800 

times as heavy as air. The effect on the alleviation of lead, in going to a denser medium such as water, 

will be negligible compared with the effect of the denser medium on the specific gravity of ebony. 

Although they have the same “absolute speed”, the speeds of ebony and lead in dense media will differ 

considerably, due to the greater difficulty suffered by ebony in overcoming the obstacle posed by the 

medium. This buoyancy effect of the medium would be calculable in principle, provided all the 

absolute specific gravities were known, i.e. the specific gravity measured with respect to vacuum, and 

not with respect to air.516  

 Thus far, Galileo has merely followed the more than 40 years old lead of De motu. But he now 

adds an interesting complication, which gives his treatment of fall in media a much greater subtlety. 

As he notices, a medium not only alleviates, it also has a frictional effect, which is dependent on the 

speed of the falling body. “There is an increase of resistance in the medium, not because this changes 

its essence, but because of change in the speed with which the medium must be opened and move 

laterally to yield passage to the falling body that is successively accelerated.”517 (As a result any 

accelerating body will at a certain point reach a terminal velocity which will remain uniform.) At this 

stage Galileo no longer has a theoretical model which would allow him to calculate the difference a 

medium makes on the fall of different kinds of bodies. However, he will show how to isolate 

experimentally what differentiates the behaviour of these bodies.  

 Galileo is in particular interested in the differences that might arise between dense and light 

bodies when they fall over long distances, as he suggests himself that this might pose a problem for his 

                                                 
514 Opere VIII, p. 121. (Transl. from Galilei 1974, p. 80.) In the postils to Rocco, written shortly before Galileo started 

composing the Discorsi, Galileo speaks about the “natural velocity” of bodies in a void (Opere VII, p. 742). 
515 Opere VIII, p. 119. (Transl. from Galilei 1974, p. 78.) 
516 The formula with which Galileo is implicitly operating is of the form: v = v0 [w(body) – w(medium)]/w(body) (with ‘w()’ 

the specific gravities, ‘v0’ the absolute speed, and ‘v’ the speed in a medium). In chapter 8, section 8.1.2, I will try to dispel 

the suspicion that the recurrence of this hydrostatic way reasoning would be inconsistent with the insight that weight does not 

cause the speed of fall in a void.) 
517 Opere VIII, p. 119. (Transl. from Galilei 1974, p. 78.) 
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hypothesis of equal absolute speeds. In these circumstances, and even in a rare medium such as air, 

dense bodies will outstrip the light ones with considerable distances. Since such an observation poses 

practical problems, Galileo suggests an ingenious experimental setup, mimicking this situation.  

 
So I fell to thinking how one might many times repeat descents from small heights, and accumulate 

many of those minimal differences of time that might intervene between the arrival of the heavy 

body at the terminus and that of the light one, so that added together in this way they would make 

up a time not only observable, but easily observable.518  

 
The experimental device standing in for fall over great distances is a pendulum, and the assumed 

isochrony of the pendulum swings will be the clue to Galileo’s analysis.  

 When two balls, one of lead and one of cork, are made to swing on identical pendulums, two 

facts may be observed, Galileo claims. The swings of the different balls remain isochronous with each 

other, while the amplitude of the cork ball will diminish much more swiftly. That the swings remain 

isochronous implies that whenever the two balls traverse equal arcs, they do so in equal times: the 

greater retardation of the lighter body cannot be due to an inferior natural speed. Hence, there can be 

no direct correlation between the different specific gravities of the bodies and the different speeds if 

they fall over long distances. All differences that do arise must be due to the effect of the medium on 

the bodies, and this effect can thus be shown present in the (differing rate of) diminution of the 

amplitudes. Since the buoyancy effect is only dependent on the ratio between the specific gravities of 

the falling body and the medium, which is constant and thus cannot be responsible for a diminution of 

speed (as witnessed by the shrinking amplitudes), the friction effect must be the cause of the change in 

speeds. The fact that the rate of diminution is different for bodies of different specific gravity can then 

be explained hydrostatically. 

 In 1634 Galileo wrote down a long reply to a book by the Aristotelian Antonio Rocco. The 

latter had offered numerous criticisms of Galileo’s views as exposed in his 1633 Dialogue. Galileo’s 

replies were never published during his lifetime, but they contain many discussions that will reappear 

in the first day of the Discorsi.519  He also gives a long treatment of the effect of a medium in 

differentiating the speed of fall of different kinds of bodies. A the end of this discussion, he mentions 

that when these bodies fall over short distances their speeds will almost be completely equal, which 

implies that the differences that arise over longer distances cannot be due to their different specific 

gravity (which after all doesn’t change with the distance over which they fall), and as a result must be 

ascribed to the impediments of the medium.520  

                                                 
518 Opere VIII, p. 128. (Transl. from Galilei 1974, p. 87.) 
519 A particularly striking case will be analyzed in chapter 7, section 7.5, and chapter 8, section 8.1.1. 
520 Opere VII, p. 744. He brings up the question of fall over long distances as this was one of the criticisms that Rocco had 

levelled against him. 
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 In the period between writing this general rehearsal of his first day and its final composition, 

Galileo must have realized that this argument could be considerably strengthened by exploiting the 

properties of a pendulum. The interesting twist that Galileo can give to his argument by introducing 

the pendulum is that it combines the effects seen in fall over short and over long distances into one 

motion. Even when the pendulums have already been swinging for a long time, and the lead and the 

cork body are consequently moving at different speeds, the isochrony still remains. As a result, we are 

still assured that their natural speed of motion is the same (they have lost a lot of moment through the 

effects of friction, but when they fall through new swings from ever lower heights they show exactly 

the same acceleration). There are of course some physically significant differences between the cases 

of fall on a pendulum and free fall. Most importantly, in free fall the speeds keep on augmenting until 

a body reaches its terminal velocity due to friction effects, whereas on a pendulum a body will 

progressively slow down; a slowing down which moreover is the quickest at the beginning of the 

motion. But this in no way diminishes the pendulum’s value as a model for the kind of effects that 

Galileo is interested in: it shows both the differentiation between different kinds of bodies (in the long 

run) and their equal unhindered speeds (in the short run). 
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 Let us take stock of what Galileo has achieved with these discussions presented in the first day. 

He has shown that the proper domain to model free fall mathematically is fall in a void – since in this 

case all bodies will exhibit the same behaviour, independent of any other factors. Notice that he has 

not yet established the exact relations constituting such models: this will only be done in the third day 

where the times squared relation will find its place in an elaborated deductive structure built on the 

supposition of uniform acceleration. That the models thus constructed will still be relevant for all 

actually occurring instances of free fall, is secured by his particular experimental procedure, 

guaranteeing that the case of fall in a void is not merely the simplest case, but the most general. There 

can thus be no question of an invalid abstraction. By isolating all that actually differentiates different 

kind of bodies with respect to the phenomenon of free fall, it becomes possible for Galileo to attribute 

the presence of the “pure phenomenon” to actually occurring instances of free fall, even if these might 

show considerable deviations from the theoretical models.  

 In a sense Galileo is able to recover what could not be abandoned by Guidobaldo: the 

requirement that one needs a concrete exemplification of the basic principles of a mixed science. It has 

become considerably more complex to actually observe this exemplification, but the pendulum shows 

that the principle of equal acceleration really expresses a basic fact about all natural bodies. That 

Galileo considered this to be the function played by his experiments is demonstrated by the fact that he 

has Sagredo explicitly comment on their results, that it is “the most admirable and estimable condition 
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of the demonstrative sciences that they arise and flow from well-known principles, understood and 

conceded by all.”521 

 Later in the fourth day Galileo repeats his earlier claim that:  

 
…no firm science can be given of such events [accidenti] of heaviness, speed, and shape, which 

are variable in infinitely many ways. Hence to deal with such matters scientifically, it is necessary 

to abstract from them. We must find and demonstrate conclusions abstracted from the impediments, 

in order to make use of them in practice under those limitations that experience will teach us.522  

 
To this end he then tries to estimate the effect of air friction on different kind of bodies and under 

different conditions (again using the pendulum as an investigative tool).  

 In the first day, Galileo is doing something strikingly new, however. He is learning something 

about the ideal case from the way in which it is disturbed by the presence of a medium. Although he is 

still not giving a scientific treatment of the disturbances themselves, he shows how to exploit their 

presence to epistemic ends. In a more contemporary language, Galileo shows how to retract a 

meaningful signal from the noisy actual behaviour by looking at how signal and disturbances interact 

with each other. In his fascinating book on how this task is achieved in twentieth century laboratory 

science, Peter Galison fittingly illustrates this process through a reference to that other Florentine giant: 

 
Michelangelo was once asked how he had carved his marble masterpiece. The sculptor 

apocryphally responded that nothing could be simpler; all one needed was to remove everything 

that was not David. In this respect the laboratory is not so different from the studio. As the artistic 

tale suggests, the task of removing the background is not ancillary to identifying the foreground – 

the two tasks are one and the same.523 

 
It is interesting to note that Galileo’s pendulum shares some further characteristics with a modern 

scientific laboratory. As stressed by Bruno Latour, two of its most defining features are the change in 

scale and the change in the variability of the systems studied.524 Both are essential in its task to make 

significant patterns discernible. Both are of course crucial aspects of Galileo’s recourse to the 

pendulum. 

 In their discussions of Galileo’s pendulum experiments, Roland Naylor and David Hill present 

these as serving as a “didactic device” and as “a means of shoring up soft spots in his geometrical 

exposition”. 525  It is clear that contrary to these authors’ claims, these experiments play an 

epistemologically deep role. It is not accidental that the pendulum would continue to play an 
                                                 
521 Opere VIII, p. 131. (Transl. from Galilei 1974, p. 90.) 
522 Opere VIII, p. 276. (Transl. from Galilei 1974, p. 225.) 
523 Galison 1987, p. 256. 
524 Latour 1983. 
525 Naylor 1976, p. 399; Hill 1988, p. 666. 
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extremely important role in the further development of seventeenth century natural philosophy in the 

able hands of men as Huygens and Newton. I need not stress the important steps that both men will 

take beyond Galileo in their use of the pendulum. Not only do they offer a correct mathematical 

treatment, but, more importantly for the kind of issues I am discussing here, they use it to obtain 

accurate measures of the gravitational constant. This of course becomes an important element in the 

Newtonian style, as it allows the introduction of very severe constraints in their developing theory.526 

Yet it is useful to stress that notwithstanding the absence of this interest in ascertaining parameter 

values to further epistemic ends, Galileo is already exploiting the systematic nature of some deviations. 

He thus introduces the disturbances themselves into the picture as potential sources of knowledge 

about the pure phenomenon itself. 
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 In the present section I want to bring an aspect to the fore that is inextricable linked with 

Galileo’s experiments with inclined planes and pendulums, but that was passed over in silence in the 

two preceding sections. Let us try to imagine Galileo on the track of the peculiar properties of the 

pendulum. He is coming home after having attended mass in the Duomo in 1583 – he has just proven 

isochrony of inscribed chords in 1601 and is determined to see whether he is on to some really general 

and crucial property of phenomena of fall – he is working on his theory of the tides in 1595 and has 

become curious to learn about the behaviour of other oscillating systems – he is doing experiments on 

the properties of lute-strings together with his father in 1586 and starts playing around with one of 

these strings hanging down with a weight attached to it – whatever the precise occasion, we can easily 

guess how the process of investigation more or less must have taken place.527 Galileo would have first 

tried to ascertain whether a single pendulum really has a constant period independent of its amplitude. 

But what kind of time-keeper would have been precise enough to that end? Certainly none that were 

available to Galileo. But of course, if the hypothesized property would really hold, then this could be 

checked by seeing whether other equal pendulums swinging with different amplitudes would remain 

synchronous with the first pendulum (i.e. establishing isochrony through a wide range of synchronous 

relations). Hitting on this idea would have really started off Galileo’s investigations. Let me quote 

from Thomas Settle’s neat reconstruction: 

 

                                                 
526 Cf. chapter 1, section 1.1. Schliesser 2005 stresses this essential difference between on the one hand Galileo’s and on the 

other hand Huygens’ and Newton’s use of the pendulum as an investigative tool. Kuhn 1961 already stressed this important 

role for measurement in physical science. 
527 Cf. Settle 1995, pp. 26-28. 
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Start with two pendulums of equal length. First set them in motion in equal arcs; then on arcs with 

different excursions; then set one in motion and, a few seconds later, set the other in motion while 

the first is still swinging; as [sic] so on. In whatever sequence or configuration one can think of, the 

result that is most impressive is that in each case the pendulums keep pace with one another. With 

a little reflection there would be no other conclusion to draw: by their inherent nature pendulums 

of a given length beat equal intervals of time, no matter what the lengths of the excursions. 

Then having taken this first step, the rest is relatively easy. By substituting bobs of different 

weights and density one learns that the period is independent of those variables. 

Finally, by setting two pendulums in motion, one of which, say, is four times the length of the 

other and watching them swing in a sort of syncopated harmony, one discovers the proportionality 

between the length of a pendulum and its period. 

If we recall that in the 1580s there had been no previous discussion of these properties and no 

theoretical basis for even imagining their existence, the only way that Galileo could have 

discovered them was through some sort of empirical exploring, culminating, in effect, in 

performing the above steps.528 

 
But let me also summarily draw your attention to all that necessarily falls outside this discursive 

description of an explorative performance.529 Galileo would have needed to look for the right room to 

hang his pendulums (he often speaks about pendulums measuring over four braccia, i.e. longer than 

two meters). He would have needed the right kind of strings that wouldn’t stretch too much (especially 

in trying to find out the relation between length and frequency). He has to learn to release the balls of 

two pendulums at exactly the same time, or in such a way that they will swing in counter-beat, etc. In 

short, he has to know to handle his pendulums in the “right” way, involving all the small situational 

adjustments this may require. Anyone who has gone through the disciplinary exercise of an 

undergraduate physics lab will know that it may take quite some time before one masters seemingly 

simple gestures sufficiently to obtain truly stable results with an instrument such as the pendulum.  

 It is important not to loose sight of the fact that even the synchrony of two equal pendulums is 

something that first must be achieved. The pendulum can only play its role as an interesting closed 

system if it is approached through a repertoire of disciplined bodily gestures. It is as much this 

approach that makes it into a proto-laboratory as the conceptual relations it can be taken to express. 

Any potential researcher must first learn how to interiorize the proper way of engaging with material 

things such as a pendulum before he can start exploiting it as an investigative instrument. But of 

course, what it means to be “the proper way” depends on what kind of thing we take it to be in our 

engagement towards it. This in its turn depends on what we hope to disclose through our 

manipulations of this investigative instrument. And this finally leads us back to nature’s function as a 

                                                 
528 Settle 2001, p. 844. See also Settle 1995, pp. 26-27. 
529 See also Bjelic 2003, chapter 6. 
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regulative and normative instance. The proper way to interact with the pendulum is the way in which 

we can hope to discern the way in which it constrains exactly this interaction. But the dependence is 

mutual. Galileo’s nature can only function as normative instance given the presence of this kind of 

what I would like to call performative reason, which is necessarily embedded in locally situated 

practices.530  

 It is precisely because of this co-dependence, that this performative reason can be left out of 

any explicit picture. It is a situatedness that makes possible its own effacement, exactly because it is 

aimed at establishing “natural” facts. Once this goal is reached, the particular local circumstances 

which led up to it automatically dissolve in an unarticulated background.531 But, and this is of course 

an extremely important caveat, these natural facts couldn’t have been present if it wasn’t for this 

performative reason that allows them to show up. (To avoid misunderstanding: I wouldn’t want to 

claim that natural facts are dependent on any specific instantiations of this performative reason for 

their factuality. What I do want to claim is that they are dependent on a particular regime of such 

reason.)532 

 Let us have another look at this earlier quoted passage: 

  
… the vibrations of … a pendulum are made so rigorously [con tal necessità] according to definite 

times, that it is quite impossible to make them adopt other periods except by lengthening or 

shortening the cord. Of this you may readily make sure by experiment [esperienza], tying a rock to 

a string and holding the end in your hand. No matter how you try, you can never succeed in making 

it go and back forth except in one definite time, unless you lengthen or shorten the string; you will 

see that it is absolutely impossible.533 

 
It is obvious that anyone can make the rock go and back forth in many other ways than in one definite 

time – but none of these will be proper since they are disruptive with respect to the kind of behaviour 

that Galileo is interested in. The text presupposes that the reader knows this; that he is aware that not 

any way of engaging with the rock will do. (The hand in which the string is held should remain as 

quiet as possible; one should be standing still; one should see to it that the rock is swinging 

smoothly; …) This little “esperienza” of course only describes a first step, not yet aimed at 

                                                 
530 There has been a growing number of studies of these kinds of experimental practices since the 1980’s, both from 

sociological and philosophical perspectives. Cf. e.g. Hacking 1983; Collins 1985; Shapin and Schaffer 1985; Rouse 1987; 

Radder 1988 for but a very small number of the many interesting monographs that have been devoted to this topic. Pickering 

1992 is a collection of essays that provides a very nice sampling of many of the approaches that can be found. 
531 This is a topic that has received some attention in sociologically inspired analyses of science; cf. e.g. Shapin 1989, who 

speaks about the invisible technician; and Schaffer 1994, who analyzes some of the techniques by which the gestures of 

demonstrators operating physical demonstration devices were rendered tacit in eighteenth-century rational mechanics. 
532 Cf. already chapter 1, section 1.3.2. 
533 Opere VII, p. 475. (Transl. from Galilei 2001, p. 522; my emphases.) 
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establishing any precise ratios. Investigating further properties only adds further layers of performative 

complexity, demanding further skills that much be exercised in appropriate ways.  

 A nice example is Galileo’s famous experiment with the inclined proof as described in the 

third day of the Discorsi (to test the law of fall by timing the motion of a body rolling down an 

inclined plane). This is the experiment that brought Koyré to the infamous conclusion: “It is obvious 

that the Galilean experiments are completely worthless: the very perfection of their results is a 

rigorous proof of their incorrection.”534 In 1961 Thomas Settle experimentally disproved Koyré by 

performing the experiment as described by Galileo and actually achieving reasonably accurate 

results.535 In this experiment Galileo used a water clock to measure time (a pendulum would be ill-

suited since it doesn’t allow a continuous measure of time), which he could have calibrated against a 

pendulum. This calibration is already a complicated operation, involving the simultaneous operation of 

the water clock and the pendulum, coupled with an accurate observation which can only take place in 

the right kind of observational circumstances (it must be made sure that the operation of the water 

clock is synchronized with, as exactly as possible, the end of any swing). But let me also quote from 

Settle’s narrative reconstruction of his own experience in performing the experiment, which nicely 

brings out what I have been discussing above:536 

 
There are two crucial aspects [to the measurement of time]: the flow from the [water]pipe has to be 

uniform for at least the period of our longest readings, and the operator has to be trained so that he 

can release the ball and the flow of water at the same time and then stop the flow of water at the 

strike of the ball without anticipation or delay. In fact this second requirement is a most interesting 

one. When I first ran the experiment … it took a little while to get the feel of the experiment. And I 

sensed at the time that part of what I was doing was training myself to be an integral piece of the 

apparatus. I very definitely had the impression that there was a rhythm to the experiment, that what 

I was doing was training a set of monitored reflex reactions analogous to what I imagine a 

musician must be training as he begins to practice a new piece of music. The basic problem is 

learning to be able to replace the finger on the pipe at the strike of the ball as it hits the block 

somewhere down the slope of the plane, and this in such a way that the action takes place without 

conscious decision. … I have found that it is difficult to have other people come in cold and start 

doing the work well immediately. In fact my own early work started poorly. The point is that poor 

early results should not be regarded as conclusive. One should emulate Galileo and repeat the 

experiment “many, many times.”537 

 

                                                 
534 Koyré 1968, p. 94. 
535 Settle 1961. 
536 The parallel with some of Settle’s phrasings with Polanyi’s coeval analysis of tacit knowledge is striking (cf. Polanyi 1974 

[1958]). 
537 Settle 1966, p. 85. 
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The reference to a musician’s experience is of course not accidental: this was Galileo’s own 

background, as he was the son of a professional musician and musical theorist, had a brother that also 

was a professional musician, and was himself an accomplished lute player. He was thus intimately 

familiar with precisely timed operations. He could have put this to good use in operating instruments 

aimed at timing other phenomena. Stillman Drake has even put forward the charming hypothesis that 

Galileo would have tested his law of fall on inclined planes by measuring time through singing to the 

motion.538 Whatever the worth of this suggestion, uniform time was clearly not merely an abstract 

geometrical quantity for Galileo; it was inextricably bound up with the breathing (and, why not, 

singing) body of the skilled experimentalist who divides time through his trained gestures. 

 This disciplined way of engaging material objects is part of what I called the historical a priori. 

The pendulum can only function as an exemplar because it also embodies a specific performative 

reason. This reason is thus also an essential object for an archaeology of Galileo’s science of motion. I 

characterized critical philosophy in the Kantian tradition by its stress on an anthropocentric model of 

knowledge, on which objects are taken as given.539 (What is given to us is cognized only on taking it 

in.) As we now see, this should also be read quite literally. Since this taking takes place according to 

its own reason, it is no way capricious. It moreover depends on specific historical constellations in 

which it can find its place, as it needs the right kind of conditions of education and transmission.540 

 Again, this particular form of reason not only determines the kinds of possible objects for a 

particular knowledge, it simultaneously constitutes a particular kind of correlative subjectivity. The 

disciplined action always stands in between subject and scientific object.541 The scientific subject will 

have its own desires and its own bodily policies, which always hang together with the kind of objects 

that are being studied. In the previous chapter, I already signalled the very different sensibility with 

regard to the marvellous that underlies Galileo’s new sciences. A good way to characterize the 

disciplined gesturing that was analyzed in the present section, would be by stressing the necessary 

patience that goes with it (and that can be so nauseating annoying to the undergraduate student locked 

into an “impersonal” physics lab on a sunny afternoon in spring, trying to master the deceptively 

simple instrument in front of him and counting the swings on innumerable trials). 

 
Donner et surtout garder un intérêt vital à la recherche désintéressée, tel n’est-il pas le premier 

devoir de l’éducateur, à quelque stade de la formation que ce soit ? Mais cet intérêt a aussi son 

histoire et il nous faudra tenter, au risque d’être accusé de facile enthousiasme, d’en bien marquer 

                                                 
538 Drake 1975. 
539 Cf. chapter 1, section 1.2.2, 
540 Because it succeeds in mobilizing interesting forms of power, however, it can start imposing these conditions on its 

historical context. This is a line of investigation that I will not further pursue in the present thesis. 
541 “Dans la pensée scientifique, la méditation de l’objet par le subjet prend toujours la forme du projet.” Bachelard 2003 

[1934]. “The art of knowing is seen to involve an intentional change of being.” Polanyi 1974 [1958], p. 64. 
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la force tout au long de la patience scientifique. Sans cet intérêt, cette patience serait souffrance. 

Avec cet intérêt, cette patience est une vie spirituelle.542 
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 In section 6.2 we have already seen how the pendulum embodies some crucial theoretical 

principles of Galileo’s science of motion. We can now add that this is only possibly because it 

simultaneously embodies some kind of implicit performative reason. Only the combination of both aspects 

allows it to function as an exemplar for further research. In part this is clearly an inheritance of the mixed 

science tradition (it was already noticed a few times that the balance must be manipulated in a highly 

disciplined way), but I think we should not loose sight of the much greater open-endedness that is 

introduced in Galileo’s search for appropriately closed systems, as analyzed in sections 6.1 and 6.2. 

 The meaning of modern scientific concepts is neither fully determined by the conceptual 

structure of which they are a part, nor by the empirical objects/properties/… to which they are 

supposed to refer. It is only the way these aspects are put together by experimental means that gives 

these concepts their full meaning. At the same time, the character of the situations thus described takes 

on a new dimension. Similarly, as a result of Galileo’s experimental analysis it becomes possible for 

him to attribute the presence of the pure phenomenon to actually occurring instances of free fall, 

transforming the character of the latter through this attribution.543 From now on, it will thus become 

possible to speak meaningfully about the velocity and the acceleration of actually falling objects, and 

especially about the (mathematical) relations obtaining between them, as defined and analysed at the 

theoretical level of the new science. At the same time, the meaning of the abstract concepts of velocity 

and acceleration will be co-constituted through this attribution. The experiments with the pendulum 

and the inclined plane are essential to all this for Galileo, because they secure the reference of the pure 

phenomenon in non-pure situations. Without their intermediary his theory would remain a purely 

hypothetical mathematical scheme. In Bachelard’s terminology, they signal the transition from a 

phenomenology to a “phenomenotechnique” as the essential basis of science.  

 
Dans l’expérience, [la conceptualisation scientifique] cherche des occasions pour compliquer le 

concept, pour l’appliquer en dépit de la résistance du concept, pour réaliser les conditions 

d’application que la réalité ne réunissait pas. C’est alors qu’on s’aperçoit que la science réalise ses 

objets, sans jamais les trouver tout faits. La phénoménotechnique étend la phénoménologie. Un 

                                                 
542 Bachelard 2004 [1983], p. 12. 
543 In this section I will resolutely opt for an analytic perspective on Galileo’s science that doesn’t take into consideration 

what could have been (and could not have been) his own way of understanding his undertaking. In chapter 9 I will pay more 

attention to his own discursive positioning in this respect. 
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concept est devenu scientifique dans la proportion où il est accompagné d’une technique de 

réalisation.544 

 
This phenomenotechnique is what makes possible a mathematical science of nature. It is only through 

a disciplined way of engaging with material objects that we can start to discern stable relationships (if 

these are to be found – this is of course never guaranteed) that can be modelled mathematically as 

constant ratios. The mathematical closure that we strive for must thus be reflected at the level of 

gestural and observational management.  

 In this way we can start to add a further element to the question concerning an instrument’s 

mode of functioning as a model of intelligibility. We already introduced the idea that a balance has 

some kind of representative power, on account of which it can be taken to exemplify principles of 

natural philosophy and thus generate evidence for our physical theories. The same can be noticed 

about the way in which the pendulum functions in the experiments described in section 6.2.3 where 

the swinging bobs are taken to be representative for all falling bodies. As was argued, in both cases the 

grounds for this representative power must be sought in the discursive function of nature that we 

analyzed in chapter 5. But there is not only the question of their representativeness. There is also a 

further question why these concrete material objects can in turn be represented on an abstract level 

through mathematical structures exemplified in geometrical diagrams, which is equally crucial for 

their role within Galilean science. 

 Recently, philosophers of science in the analytical tradition have started thoroughly discussing 

the issue of scientific representation: what is it that enables one thing to represent another and as a 

consequence convey scientific knowledge about that other thing?545 As quickly becomes clear from 

these discussions, we cannot simply see representation as a two-place relation between two structures. 

This is basically so for two reasons: the representational relation is unidirectional;546 and the target 

system, supposedly a part of the natural world, will always be so rich in potential structures that we 

must first select one of these – but how does this selection finds place if it is not through representing 

the target system as having a particular structure, which of course seems to push the problem just one 

level back.547 Both problems can apparently be solved by bringing particular contexts of inquiry in the 

picture as a third element that both can anchor the representational direction in a notion of intended 

use, and can bring about the necessary prior selection of structures in a non-representational way. The 

latter point, as argued by Bas van Fraassen, is rather subtle: it involves the insight that within a context 

of investigation the relevant structure of a phenomenon under study is fixed through an indexical 

statement that links the structured representation of the phenomenon (in something like a data model) 

                                                 
544 Bachelard 2004 [1938], p. 75. 
545 See Frigg 2003 for an overview of the issues. 
546 Suarez 2003. 
547 van Fraassen (forthcoming). 
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to the phenomenon. For us (the investigators) it comes down to exactly the same to claim that (a) this 

is the phenomenon, and claiming that (b) this is the phenomenon as represented by us (in this data 

model); this is a pragmatic tautology, there is no room for denying one of both claims while holding 

on to the other, which actually means that the representational relation drops out of the picture – in the 

context of investigation.548 An abstract mathematical structure can thus represent a concrete physical 

phenomenon because in the context of any investigation the latter already presents itself in a 

structured way. But this is exactly what we have seen to be dependent on the exercise of performative 

reason. The fact that we can describe a phenomenon and summarize some of its characteristics in 

something like a data model is only possible because we engage the material things around us in a 

structured way. This is why performative reason is an essential ground for the representational power 

of Galileo’s geometrical diagrams. Remember our description of the investment of Galileo’s breathing 

and singing body in making possible the representation of time through an abstract mathematical 

quantity.549 

 Let me in closing try to sketch the multilayered picture that we can now see emerging around 

the idea of a model of intelligibility. To begin with, we have a relation between a mathematical 

representation and concrete material things that is made possible because the relevant behaviour of the 

latter is selected and stabilized through a set of disciplined manipulations. As a result these material 

things can be understood to constitute something like an experimental system. But we can also take 

this experimental system as representative for natural behaviour because these disciplined 

manipulations are regulated by the goal of finding out what constrains all possible manipulations. An 

instrument such as the balance or the pendulum accordingly introduces intelligibility on two levels. On 

the one hand it provides the abstract mathematical structures with concrete instantiations. On the other 

hand it also simultaneously gives structure and intelligibility to nature itself. But we must now also 

stress that it is not merely the instrument that plays this function, but rather our ways of dealing with it. 

                                                 
548 Ibid. 
549 A similar question: why can we represent the physical and lived space by a mathematical space? This is not to be sought 

in our cognitive architecture, as Kant thought, but in a disciplined way of engaging with our environment that we all learn to 

interiorize from a very early age on. 
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FIGURE 6.1 

When an equal arm balance is in horizontal position, a body hanging from the end of its arm at point d will be 

equilibrated by a counterweight at c that is as heavy as the body itself. When this arm is pivoted around the 

fulcrum a, while the other arm holding the counterweight remains in horizontal position, the counterweight will 

have to be less heavy due to the properties of a bent lever (the body at s weighs as if it were at the position p, 

etc.); and the farther we turn the arm of the balance holding the body, the lighter the counterweight will have to 

be. But at any of the positions to which we can thus turn the body it will have the same tendency towards motion 

as it would have if it were on the inclined plane that is tangent to that point on the circle traced by the bent arm (a 

body hanging at the point s would have the same tendency as if it were on the inclined plane gh, etc.). It follows 

from the proportions characterizing the bent lever and the geometry of the situation that the tendency towards 

motion on the inclined plane is to the tendency to descend vertically as the vertical height of the inclined plane is 

to its path of oblique descent. (Opere I, p. 297.) 

 

 

FIGURE 6.2 

The balance from figure 6.1. Any small weight at b would suffice to equilibrate the body at d when it would be 

hanging at e, close enough to a. But this implies that this small weight would always be able to raise the body 

when it would hang from d. 
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FIGURE 6.3 

The inclined plane of Pappus’ proof (taken from Pigafetta’s translation of Guidobaldo’s Mecaniche where it was 

included; del Monte 1581, p. 121r). The body on the inclined planes has weight A, the weight needed to 

equilibrate it on the inclined plane has weight B, which needs to be determined. Pappus proposes to consider the 

balance EG with fulcrum L. The weight A hangs from the point E, the weight B that must hang from the point G 

to equilibrate the body can now be found out by the law of the lever and the geometry of the situation. If we 

consider what happens if the body is to be equilibrated along a vertical plane, we immediately notice that F and 

L coincide and that the arm HF has zero length, which makes the weight necessary to equilibrate the body 

infinite according to Pappus’ model. 

 

 

FIGURE 6.4 

The heavy body E can be hauled up the inclined plane AD by the lighter body F falling perpendicularly, because 

the spaces traversed in vertical direction will be respectively BC and AC. (Opere II, p. 187.) 
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FIGURE 6.5 

Galileo in 1602 announced his law of chords in a letter to Guidobaldo. A body descending on any of the chords 

FA, EA, DA, CA or even BA will reach the point A in the same time. It can also be demonstrated that the journey 

SIA will be completed faster than the journey SA (which is of course only intelligible given the accelerated 

character of the motion). The latter fact also opens up the search for the brachistochrone (the path of swiftest 

descent), which Galileo hypothesized to be circular. (Opere X, p. 99.) 

 

  

FIGURE 6.6 

The roof along which Guidobaldo and Galileo threw inked balls, and Guidobaldo’s sketch of the trajectory taken 

by these balls. (Renn et al. 2000, p. 313.) 

 

 

FIGURE 6.7 

The figure accompanying Galileo’s discussion of projectile motion in De motu. (Opere I, p. 340.) 
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FIGURE 6.8 

The experiment of folio 116v. Balls are released from different heights h on an inclined plane that is placed on a 

table (the middle horizontal line in the drawing). After a time t they will be deflected on the table, and after a 

short run on the table the balls are projected from the table with their speeds v. The balls hit the ground at a 

distance R.  Since whatever the speed the ball had at the point it is projected from the table, it will always hit the 

ground after an equal time, R is proportional to v (principle of superposition and inertial horizontal motion).  

Because of the definition of uniform acceleration, v is moreover proportional to t. The law of fall gives t2 

proportional to d for the motions along the inclined plane. Finally d is always proportional to the vertical height 

above the table h. As a result Galileo can check whether h is proportional with R2, as recorded by the measures 

on the folio. (Galileo’s notes on motion can be consulted online at http://www.mpiwg-

berlin.mpg.de/Galileo_Prototype/MAIN.HTM) 

 

 

FIGURE 6.9 

Folio 151r in all probability contains the first derivation of the law of chords (limited to the special case where 

motion along one chord is compared with fall along the perpendicular). The moment on fd is the same as the 

moment of the inclined plane tangent to the circle in e; but the latter is known to be to the body’s “total” moment 
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of fall along the perpendicular as ca is to ab (by the proportions characterizing the inclined plane). The geometry 

of the diagram then teaches that the moment of the body along fd is to this total moment along gd as the line fd is 

to the line gd. But this implies that motion along gd will take the same time as motion along fd. (Opere VIII, p. 

378.) 
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     “Surely I won’t loose my head to such an extent that, while falling, I 

wouldn’t study the laws of free fall.”550 

 

 

 In this chapter I will take up an issue that was already mentioned in chapter 4: the ambiguous 

status of weight in Galileo’s explanatory scheme in De motu. I will try to uncover some aspects of the 

ways in which Galileo deals with what we would call absolute and specific weight. It will be seen that 

whereas the clear and evident principles which should ground his science of motion are based on 

experiences with the absolute weight of bodies, he nevertheless believed that something like specific 

weight provides a better measure for the speed of fall. These two facts sit uneasily together within De 

motu. To fully comprehend the background to this problem and Galileo’s way of dealing with it, it will 

be necessary to start with a detailed analysis of his tract on the hydrostatic balance. 

 In De motu Galileo showed no signs of consideration with the problem that I sketch here. He 

believed that he could bridge the gap between the two concepts of weight through his famous thought 

experiment on the speed of falling bodies. We will see how it actually plays the role of a surrogate 

model of intelligibility. In this role it would continue to play an important role within Galileo’s 

thinking. It is by rethinking his though experiment in 1634, that Galileo explicitly lays bare the gap 

that existed within his earlier theory. Consequently he is also able to see what was responsible for that 

gap, and how it could be avoided. In the next chapter we will see how he exploits this insight in some 

fragments that postdate the Discorsi, to come to a more satisfying understanding of the dynamics 

behind free fall. 

 The development in Galileo’s dynamical thinking that will be sketched here leads to the 

demise of the balance as the central model to understand phenomena of motion. Galileo comes to 

understand that the conditions under which the balance functions properly are not transferable to the 

situation of falling bodies. It accordingly looses its representative power. The closure that 

characterized the balance as a particularly interesting system turns out to be irrelevant for 

understanding the behaviour of falling bodies. 

 

                                                 
550 The dadaist Hugo Ball, quoted in Safranski 1998, p. 115.  
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 Archimedes jumping out his bathtub is one of these images that have captured popular 

imagination. Historians of science are of course quick to point out how this is part of a romanticized 

image of science. It seems to have been no different at the end of the sixteenth century. The story was 

well known throughout the renaissance, through the numerous editions of Vitrivius’ books on 

architecture. Vitrivius recounts how Archimedes exposed the deceit of a goldsmith who had stolen 

part of the gold that he had received to make a crown for king Hiero and had replaced it by silver.551 It 

must have appealed enormously to mathematicians trying to secure their social position. After all, it 

was only Archimedes, through his knowledge of the principles of hydrostatics, who had been able to 

protect the highest authorities from being swindled by a mere artisan. However, the ones who were 

most self-conscious about their status as having a privileged understanding of mechanical principles 

were prone to be dismissive of Vitrivius’ account. The method attributed by him to Archimedes falls 

short of the certainty and exactness of which they were capable, and which they had learned from 

Archimedes himself.�

� And so we find Galileo at age 22 tackling the problem of Hiero’s crown in La bilancetta, a 

short tract devoted solely to this problem.552 He prides himself on having reinvented the true method 

that must have been used by Archimedes, having all the exactness required by the true mathematician. 

His solution is based on a hydrostatic balance, a device that had been used earlier to tackle this 

problem.553 It is often claimed that the main interest of Galileo’s manuscript lies in the technical 

innovations proposed with respect to the balance used. 554  Nevertheless, the theoretical treatment 

offered of the balance provides us with an invaluable picture of the young man attempting to gain full 

mastery of Archimedean hydrostatics; a mastery that he soon will be trying to exploit in building a 

natural philosophical treatment of motion on its basis, as we already have already seen in chapter 4. 

Crucial in this respect is the behaviour of mixtures of pure metals that lies at the heart of the solution 

to the crown problem. Of particular interest are Galileo’s peculiar handling of weight, and his analysis 

of the effect of a medium on a body’s weight.555�

                                                 
551 Clagett 1978, pp. 1066-1068, n.2 sketches the diffusion of the work in the renaissance; ibid., pp. 1066-1085 is a useful 

account of the occurrences of the crown problem during the renaissance. 
552 Opere I, pp. 210-220. 
553 Cf. Napolitani 1988, pp.163-164. 
554 Cf. e.g. Drake 1978, p. 6; Wallace 1984, p. 221. 
555 Most discussion’s of Galileo’s early work contain passing references to La bilancetta, but a detailed analysis of Galileo’s 

actual proof procedure has not yet been provided. All more or less detailed expositions of Galileo’s method that I know of 

translate it into modern terms and e.g. use algebraic methods. 
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 How can we detect whether a crown of a given weight is fully made up of gold or of a mixture 

of gold and silver; and if a mixture, in what ratio? If we sink a body in water, it will loose weight by 

an amount equal to the weight of an equal volume of water (by the 7th proposition of Archimedes’ first 

book on floating bodies). Hence, the smaller the difference between the specific weight of a metal and 

that of water, the more the metal will suffer a loss of weight. It is this proportionally different 

behaviour that Galileo wishes to exploit in determining the proportion of two different metals in one 

mixture. Take a sample of gold and one of silver, weigh them both in air and subsequently in water. 

By recording the weight-loss, one can determine the respective proportions in which gold and silver 

are alleviated, and, as a result, their specific weights. Now weigh the crown in air and water, and 

determine the proportion in which it is alleviated. This last proportion can be related to the earlier 

determined proportions for the pure metals, fixing the proportion of gold and silver in the crown. Such 

is the broad outline of Galileo’s method, in which he seems to follow the lines of earlier attempted 

solutions to the crown problem. Here is Galileo’s own description:�

   
Let us suspend a [piece of] metal on [one arm of] a balance of great precision, and on the other arm 

a counterpoise weighing as much as the piece of metal in air. If we now immerse the metal in 

water and leave the counterpoise in air, we must bring the said counterpoise closer to the point of 

suspension [of the balance beam] in order to balance the metal. Let, for instance, ab be the balance 

[beam] and c its point of suspension; let a piece of some metal be suspended at b and 

counterbalanced by the weight d. If we immerse the weight b in water the weight d at a will weigh 

more, and to make it the same we should bring it closer to the point of suspension c, for instance to 

e. As many times as the distance ac will be greater than the distance ae, that many times will the 

metal weigh more than water. Let us then assume that weight b is gold and that when this is 

weighed in water, the counterpoise d goes back to e; then we do the same with very pure silver and 

when we weigh it in water its counterpoise goes in f. This point will be closer to c [than is e], as 

experience shows us, because silver is less heavy [men grave] than gold. The difference between 

the distance af and the distance ae will be the same as the difference between the gravity [gravità] 

of gold and that of silver. But if we shall have a mixture of gold and silver it is clear that because 

this mixture is in part silver it will weigh less than pure gold, and because it is in part gold it will 

weigh more than pure silver. If therefore we weigh it in air first, and if then we want the same 

counterpoise to balance it when immersed in water, we shall have to shift said counterpoise closer 

to the point of suspension c than the point e, which is the mark for gold, and farther than f, which is 

the mark for pure silver, and therefore it will fall between the marks e and f. From the proportion in 

which the distance ef will be divided we shall accurately obtain the proportion of the two metals 

composing the mixture. So, for instance, let us assume that the mixture of gold and silver is at b, 
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balanced in air by d, and that this counterweight goes to g when the mixture is immersed in water. I 

now say that the gold and silver that compose the mixture are in the same proportion as the 

distances fg and ge.556 

 
To our modern eyes, the absence of any explicit reference to the concept of specific weight is 

conspicuous. At the same time, we easily interpret Galileo’s reference to “gravità” as pertaining to it. 

After all, this is exactly what a hydrostatic balance does: it measures differences in specific weight. 

And if specific weights can be measured, Hiero’s crown problem is solved. The absence of the concept 

might seem even stranger when we take into account that the term was used from the Middle Ages on. 

However, there are good reasons for this absence.557 For one thing, Archimedes himself never uses the 

concept – so if Galileo really wanted to claim that he could provide the original method used by his 

paragon, he should be able to do without it. But more importantly, it is absent in Archimedes for good 

reasons. Within the confines of classical proportion theory, as expounded in book five of Euclid’s 

Elements, it is impossible to define the concept as the ratio of weight to volume, since ratios are only 

defined between magnitudes of the same kind.558 There is no doubt that Galileo always regarded the 

mathematical instrument of proportional theory as regulative for his theorizing. That he consciously 

tried to evade the concept of specific weight is further corroborated by the belated introduction of it in 

the 1612 controversy on floating bodies. By that time he has discovered a flaw in his earlier analysis 

of the relation between a body and the medium in which it is immersed. It is only at this point, when 

no other routes are open to him, that he explicitly defines “gravità in ispecie” (which immediately 

forces him to belabour an extension of Euclidean proportion theory, analogous with the way in which 

he defines uniform speed).559 I will come back to this in section 7.4. Let us first see in more detail how 

he tries to analyze the hydrostatic balance within the framework set by classical proportion theory.  

 When hanging a sample of gold from the balance at point b (see fig. 7.1), and weighing it first 

in air by hanging a counterweight at point a, and then in water by readjusting the position of the 

counterweight until at point e it anew equilibrates the sample, the law of the balance gives us for the 

ratio of the weight of gold in air to its weight in water:560 

  (gold : gold in water) :: (ac : ec). 

                                                 
556 Opere, I, pp. 217-218. (Transl. from Fermi and Bernardini 1961, pp. 115-116.) 
557 See Napolitani 1988 for much more on this issue, although he pays surprisingly little attention to Galileo’s procedure in 

La Bilancetta. 
558 Grattan-Guinness 1996 offers a short and useful overview of the status of ratios and proportions within Euclid’s Elements. 

There are some further potential problems with introducing the concept of specific weight as a quantity that can have a ratio, 

as explained in Napolitani 1988, pp. 190-196.  
559 This analogy is spelled out in detail in Napolitani 1988. 
560 I follow the common practice of representing the ratio of a to b as (a : b) and the proportionality of two ratios (a : b) and 

(c : d) as (a : b)  :: (c : d) 
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Since we know that the weight of gold in water is equal to the difference of the weight of gold in air 

and the weight of an equal volume of water, we can transform this proportion in the following:561 

  (gold : watergold) :: (ac : ae),      (1) 

where the subscript “gold” refers to the fact that we are dealing with the weight of a volume of water 

equal in volume to the sample of gold. Equivalently we have: 

  (silver : watersilver) :: (ac : af),      (2) 

with f the position of the counterweight when the sample of silver is immersed in water; and (again 

with g the second position of the counterweight): 

  (mixture : watermixture) :: (ac : ag).     (3) 

Commenting on (1) and (2), Galileo claims that it follows that the difference between af and ae is the 

same as the difference between the “gravity” of gold and the one of silver. What can this mean, and 

how does it follow?  

 It is clear that by “gravity,” Galileo can only be referring here to something like what we 

would call specific weight. Nevertheless, he did start by measuring absolute weights, and applying the 

law of the lever to these. The transformation from absolute to “specific” weight is made possible by 

the physics of the situation, which seems to demand that the volume of water is always equal to the 

volume of the metal. Notwithstanding the fact that we are dealing with absolute weights in the first 

ratios of proportions (1)-(3), these proportions are valid regardless of the volume of the weighed 

bodies. This implies that physically speaking Galileo can consider the volumes of water mentioned in 

proportions (1) and (2) to be equal to each other, and by then applying the rule ex aequali562 derive that 

(gold : silver) :: (af : ae), or equivalently563 that (gold - silver : silver) :: (af - ae : ae), where gravity 

now must be understood as the weight of an unit volume of the metal. 

 Physically speaking, but not mathematically! As Galileo does not see weight as the product of 

specific weight and volume, there are no volumes for him to cancel out in the mentioned proportions 

(which cancelling out, moreover, only makes sense from an algebraic point of view – and proportion 

theory is not algebra). And surely, the samples being weighed are not presumed to be equal in volume 

– as Galileo is attempting to reconstruct Archimedes’ reasoning in solving the problem of Hiero’s 

crown, this would not have made any sense: if the volume of the crown had been known, no 

hydrostatics would have been needed to expose the treacherous artisan. 

 We find Galileo reaching his result by equivocating: from the fact that the metal will always 

be opposed by an equal volume of water, he goes on to reason as if this equal volume was a unit 

volume, while his terminology proved flexible enough to cover up possible ambiguities. As mentioned, 

physically speaking he is justified in making these shifts from equal to unit volumes – and 

undoubtedly he realized this. However, only a few years later we will find him equivocating on 

                                                 
561 By the rule convertendo which states that from (a : b) :: (c : d) one can derive (a : a - b) :: (c : c - d). 
562 From (a : b) :: (d : e) and (b : c) :: (e : f) derive that (a : c) :: (d : f). 
563 By the rule dividendo, which states that from (a : b) :: (c : d) one can derive (a - b : b) :: ( c - d : d). 
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exactly the same point, yet this time without having the same means to justify it. But before we come 

to that episode, let us return to Galileo’s understanding of mixtures. This will prove crucial in his 

attempt to cover up the problems caused by that equivocation, through the introduction of his thought 

experiment. 

 Starting from proportions (1)-(3) it is possible to derive the following two proportions:564 

  (gold : gold - mixture) :: (ag : ag - ae),      

  (mixture - silver : silver) :: (af - ag : ag), 

which can be compounded:565 

  (gold : gold - mixture) • (mixture - silver : silver) :: (af - ag : ag - ae). 

Since the gravity of the mixture “has part of the silver” and “part of the gold”, the ratio (gold - 

mixture : gold) can be taken as a measure for the amount of silver contained in the mixture (assuming 

the mixture to be homogenous); and equivalently for the second ratio on the left. From which the 

desired conclusion follows.  A mixture of two elements will always be “in between” these elements 

with respect to its “gravity.” 
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 The hydrostatic balance and its schematic representation function as a powerful embodiment 

of Galileo’s knowledge about the relation between the “gravities” of a mixture and its component 

elements. At the same time, the balance also embodied a rich tradition of thinking about the relation 

between weight, velocity, and mechanical effects. When these two aspects are put together a very 

suggestive picture emerges. 

 Let us first have another look at figure 7.1. It follows from Galileo’s analysis that the lengths 

ae, af, and ag, stand for respectively the distances at which one counterweight must be hung to keep in 

equilibrium a body with more gravity, with less gravity, and a mixture of these (distances which can 

be related in exact proportion to the gravities, which are the same whatever the volume of the bodies). 

Let us now have a look at figure 7.2, which illustrates the main tenets of one influential way of 

understanding mechanical problems, which stretches back to the pseudo-Aristotelian Mechanical 

problems (written probably around 3thC BC) and which Galileo will incorporate in his Mecaniche.566 

As we saw, central to this view was an understanding of the law of the lever which crucially used the 

speeds of the bodies on a balance, and which was based on the geometrical properties of the circle. A 

                                                 
564 By the rules invertendo which states that from (a : b) :: (c : d) one can derive (b : a) :: (d : c), together with convertendo 

and dividendo. 
565 The symbol ‘•’ is used to denote a ratio compounded of two ratios, which is not to be confounded with multiplication, 

although in the present case the results are the same.  
566 We have already seen in chapter 3 how Guidobaldo’s recuperated this kind of demonstration, and in chapter 5 how 

Galileo integrated it in his Mecaniche.  
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body hanging in A can be held in equilibrium by a lighter body hanging at the point B. For consider 

what would happen if the bodies would start to move: since they are constrained by the balance they 

will move at the circumference of a circle; now, since they will always have moved over distances AD 

and BE in an equal time, the lighter body, which will have moved a over a longer distance, will have 

travelled faster. We can understand that bodies of different weight can give rise to the same 

mechanical effect (i.e. equilibrium), by seeing that they also differ with respect to another crucial 

factor: speed, which can offset the differences in weight – associated with all points on the arm of a 

balance comes a different speed. �

� Both figures show how multiple explanatory schemes are embodied in one instrument: the 

balance. If we now mentally conceive the superposition of these pictures, since both refer to the same 

instrument, a suggestion emerges that maybe was too hard to resist: there is a different speed 

associated with every different (“specific”) “gravity” – and this speed is independent of the volume of 

the bodies.�

� That the encounter with the hydrostatic balance indeed proved to be very enlightening for 

Galileo is testified by a fragment from the aborted dialogue version of De motu:�

   
I am, at last, unable to avoid demonstrating to you some theorems, from the comprehension of 

which you will understand most clearly not only what you are asking for, but also what ratio 

bodies have, both heavy ones and light ones, with regard to the swiftness or the slowness of their 

motion, as well as what the ratio is of the heavinesses and lightnesses of one and the same body, if 

we were to weigh it in different media: all these things had to be demonstrated when I tried to find 

the real reason by which we could, in a mixture of two metals, assign to each individual metal a 

very precise share.567  
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 We have already encountered of the main features of Galileo’s explanatory scheme in De motu 

in chapter 4. It was also pointed out that his measure for the speed of fall contained an ambiguity 

which has to do with the status of his concept of “weight.”568 I will now elaborate a bit on this problem, 

which has received surprisingly little attention. Let me begin with quoting a few passages in which 

Galileo illustrates his basic dynamical scheme. 

     

                                                 
567 Opere I, p. 379. (Transl. from Galilei 2000, p. 125.) 
568 Cf. chapter 4, section 4.1.4. 
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Let us show concerning upward motion, that solid magnitudes lighter than water, having been 

impelled into water, are carried upward with as much force, as that by which a quantity of 

water, whose size is equal to the size of the submerged magnitude, will be heavier than that 

magnitude [tanto vi, quanto aqua, cuius moles nequetur moli demersae magnitudinis, ipsa 

magnitidine gravior erit].569 

 
The Archimedean inspiration is clear: the force upon a body is measured by the difference in weight 

between body and medium. But when we have a look at the way in which speeds are related to these 

forces, an Aristotelian aspect becomes obvious as well: 

 
If then this piece of wood, for example, whose heaviness [gravitas] is 4, is carried upward in 

water, and the heaviness [gravitas] of an amount of water as great in size as the size of the 

wood is 6, then the wood will be carried with a swiftness of 2 ...570 

 
Galileo replaced the Aristotelian geometric ratio with an Archimedean arithmetic ratio as a measure 

for the force of motion, but he retains the basic Aristotelian idea that speeds and forces are 

proportional.  

 We have seen how Galileo made crucial use of the balance to justify his dynamical 

explanatory scheme.571 Experiences with a balance provide the basic physical facts, commanding 

general assent, about natural bodies. This makes it possible for these bodies’ motive force to become 

integrated into a mathematical explanatory scheme. Weight is thus not only a mathematical quantity 

that stands in all kind of relations to other quantities such as volume, but it is also a physical property 

shared by all bodies that constrains these mathematical relations in a physically meaningful way. This 

constraint is expressed in the general principle that Galileo borrowed from experiences with the 

balance, i.e. “that the heavier cannot be raised by the less heavy.”572  

 Both Raymond Fredette and Paolo Galluzzi have stressed that Galileo, upon revising the first 

book of his treatise, discarded the chapter in which he introduced the balance analogy.573 Fredette 

ascribes this primarily to the tensions arising because of the asymmetry between upward (forced) and 

downward (natural) motions. Galluzzi, however, sees another reason why Galileo might have judged 

the analogy to be improper. He claims that Galileo’s Archimedean explanation of the causes for 

downward and upward motion is based upon the specific weights of the bodies and the media, whereas 

the balance only measures absolute weights. We can indeed easily see that these quantities are 

dimensionally incommensurable, but it should be clear from Galileo’ treatment of the hydrostatic 

                                                 
569 Opere I, p. 269. (Transl. from Galilei 2000, p. 21.) 
570 Opere I, p. 270. (Transl. from Galilei 2000, p. 22.) 
571 See chapter 4, section 4.2. 
572 Opere I, p. 258. (Transl. from Galilei 2000, p. 11.) 
573 Fredette 1969, p. 272; Galluzzi 1979, p. 190. 
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balance in La bilancetta that for him this distinction was not at all clear-cut. Remember that his 

treatment of this balance also starts from absolute weights and then implicitly transforms these in what 

we would call specific weights. That something similar could be going on in De motu is clear when we 

have another look at the two last quoted passages. Both do reveal a crucial fact about Galileo’s 

dynamical thinking in De motu. He is undeniably reasoning with the actual volumes of the moving 

bodies, and measuring the force by the difference in (absolute) weight for these volumes.574 That is, in 

modern parlance, the commanding concept seems to be effective weight rather than specific weight. 

But this means that also within this hydrostatic context, a balance measures a body’s tendency to 

downward motion. This direct identification is clearly illustrated by yet another quotation: 

   
We are said to be weighed down [gravari], when a certain weight [pondus] which tends downward 

by its heaviness [pondus] rests on us, and we need to resist by our force [vi] in order that it does 

not go down any further; now this resisting is what we call being weighed down [gravari].575 

 
A body’s tendency to motion is directly responsible for its experienced weight, which is measured by 

the force that is necessary to resist that motion. We can see how fundamental this kind of force-

resistance pair is in Galileo’s thinking by remembering the central role it played in his examples that 

were supposed “to lay clearly in the open” the nature of the phenomena of free fall.576 (In these 

examples, he asked the reader to imagine drawing up a body through a medium, or breaking the 

equilibrium of a balance by adding a small weight.) Both this quotation and the two earlier ones come 

from chapters which are completely retained in the revised version of the first book.577 Galileo’s 

experience with balances is still implicitly structuring his thinking, even after he has discarded the 

explicit analogy with a balance.578 He has no other way to introduce the motive power of a physical 

body into his mathematical framework. 

                                                 
574 Further confirmation for this identification can be found in the second book of De motu. When discussing the possible 

cause of acceleration, Galileo first claims that “we know with certainty, from the things demonstrated in the first book, that 

speed and slowness follow heaviness and lightness.” (Opere I, p. 318. Transl. from Galilei 2000, p. 69.) Since Galileo uses 

“gravitatem”, this might still be taken as ambiguous between absolute and “specific” weight (lightness – “levitatem” – must 

obviously be read as relative, as taught by the first chapter of the first book). Galileo however continues by asking what could 

cause the change in weight that is responsible for the acceleration, and he adds that “the natural and intrinsic heaviness of the 

mobile is certainly not diminished, since neither its size nor its density [nec … moles nec densitas] is diminished: it remains, 

therefore, that that diminution of heaviness is against nature and accidental.” (Ibid.) It is clear that here the “naturalis et 

intrinseca mobilis gravitas” refers to an absolute weight, as it could also be changed by a diminution of volume. 
575 Opere I, p. 288. (Transl. from Galilei 2000, p. 39.) 
576 Cf. chapter 4, section 4.2.2. 
577 See Fredette 1969, chapter 4. 
578 That he kept equating this principle with the balance model is clear from the following passage in the 1633 Dialogue: 

“SALV. Do you not believe that the tendency of heavy bodies to move downward, for example, is equal to their resistance to 

being driven upward? SAGR. I believe to be exactly so, and it is for this reason that two equal weights in a balance are seen 

to remain steady and in equilibrium.” Opere VII, 240. (Transl. from Galilei 2001, p. 248.) 
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 That Galileo is undeniably reasoning on actual volumes, and that, as a result, he sets the force 

equal to a difference in absolute weights might come as a surprise to many, given that it is always 

stated in the secondary literature that in De motu Galileo sets the speed of a falling body proportional 

to the difference of the specific weights of body and medium.579 It is undeniable that this is indeed 

how we would interpret the actual proportions that he at different places assigns to the speeds of 

different bodies. The central question to a satisfactory understanding of Galileo’s De motu becomes: 

how and why does he make this transition? 
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 Let me first quote a crucial passage in which Galileo makes exactly this transition: 

 
If … mobiles differ in size [mole] and in heaviness [gravitate], having taken hold, from the larger, 

of a part that is equal to the smaller mobile, we will again have two mobiles which differ in 

heaviness and not in size; and this part will observe the same ratio with the other mobile in its 

motion, as the whole of the other intact mobile (for … it is with the same swiftness that the part 

and the whole of mobiles of the same species are moved). Thus is it evident how, if the ratio of the 

motions of those mobiles that differ only in heaviness and not in size is given, the ratios of those 

that differ in any other way are also given.580  

 
Notwithstanding the fact that Galileo is reasoning on weights of equal volumes, he claims that he can 

always generalize his results by pretending that these equal volumes were unit volumes. The clue to 

the transition from absolute to “specific” weights thus lies in the equality of the speeds of bodies of the 

same material. As we will now see, he tries to justify this equality of speeds precisely on the basis of 

an argument starting from the absolute weights of the bodies. This further testifies to the fact that it is 

                                                 
579 Wisan 1978, p. 7, e.g. states that it follows from Galileo’s natural philosophy that “‘natural’ motion is caused by relative 

heaviness and lightness” and immediately adds between parentheses: “Galileo intends relative density”. I propose that we be 

more careful with ascribing intentions to Galileo and pay attention to the actual ambiguities with which his texts present us. 

Even Westfall, who is unusually careful in stating that Galileo claims that the force of a body in a medium equals the 

“amount by which its weight exceeds that of an equal volume of water”, also states on the same page that “when Galileo said 

that speed in a void depends on the total weight of a body, he meant its specific weight”, without explaining how such a 

transition would be effected. (Westfall 1971, p. 15; my emphases.) (Clagett 1978, p. 577, also shows a similar and revealing 

shift in discussing Benedetti’s similar theory, when he first states: “Therefore, the greater the excess of the specific weight of 

the body over that of the medium [the greater the effective weight of the body over the medium and thus] the greater the 

speed of fall” (my emphasis), but in the rest of his presentation consequently talks about the “proportionality statement 

connecting speeds with the excesses of specific weight” without commenting on how to make this transition – which would 

be necessary given his own stress on the causal role of effective weight rather than specific weight.) 
580 Opere I, p. 267. (Transl. from Galilei 2000, p. 19. My emphasis.) 
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the latter property that is really basic in Galileo’s thinking. The transition to specific weight is then 

supposed to follow from purely mathematical considerations. 

 It is at the beginning of the 8th chapter, “In which it is demonstrated that different mobiles 

moving in the same medium observe another ratio than the one attributed to them by Aristotle,” that 

Galileo tries to establish the equal speeds for all bodies of the same material. He begins by asking 

whether it wouldn’t be ridiculous to imagine a direct proportionality between volume and speed for 

bodies of the same kind, but immediately goes on “make more use of reasons than of examples (for 

we are seeking the causes of effects, which are not reported by experience).”581 And this reasoning 

goes as follows: 

 
Thus, if we conceive in our mind that the water, on which a beam and a small piece of the same 

beam float, becomes imperceptibly and progressively lighter, in such a way that in the end the 

water gets to be lighter than the wood and the pieces of wood start slowly to go down, who would 

ever say that the beam would go down first or more swiftly than the small piece of wood? For 

although a large beam may be heavier than a small piece of wood, the beam must be put into 

relation with the great quantity of water that must be raised by it, and the small piece of wood with 

the small quantity of water [that must be raised by it]: and since an amount of water as great in size 

as the beam itself must be raised by the beam, and similarly for the small piece of wood, these two 

amounts of water, namely those that are raised by the pieces of wood, will have the same ratio in 

heaviness to one another as their sizes have [eandem inter se in gravitate proportionem habebunt 

quam suae moles habent] (for the parts of homogeneous things are to one another in heaviness as 

they are in size, something which should be demonstrated), that is, the ratio that the sizes of the 

beam and the small piece of wood have to one another: hence the heaviness of the beam will have 

the same ratio to the heaviness of the water that must be raised by it as the heaviness of the small 

piece has to the heaviness of the water that must be raised by it: and the reluctance of the large 

quantity of water [to be raised] will be surpassed by the large beam with the same facility as the 

resistance of a little water will be overcome by the small piece of wood.582  

 
It seems that Galileo is claiming that the equal speeds follow from Archimedean considerations. But 

this does not really make sense. What he actually proves is that Wbody/Wmedium is invariant for bodies of 

the same material, but to conclude from this that the speeds are equal implies that he would be 

employing an Aristotelian geometric ratio (with the resistance of the medium measured by its weight) 

instead of the Archimedean arithmetic ratio which he explicitly favours as the central dynamical 

formula. Given Galileo’s dynamical scheme and the fact that Wbody/(Wbody - Wmedium) also is invariant, 

all that we can conclude is that for any two bodies of the same material, there is a constant ratio 

between the speeds of these bodies in void and in a medium. This only implies that the speeds of these 

                                                 
581 Opere, I p. 263. (Transl. from Galilei 2000, p. 16.) 
582 Opere I, p. 264. (Transl. from Galilei 2000, p. 17.) 
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bodies are diminished in the same proportion by a medium, not that they are the same.583 Only upon 

the supposition that the speeds of all bodies of the same material are the same in the void would the 

equality of their speeds in a medium follow. But why would these speeds in the void be the same? 

This in no way follows from Galileo’s Archimedean-Aristotelian dynamical scheme – it is even in 

explicit opposition to it. It seems that he is left without a way of rendering this fact intelligible. 

 It is clear that the proportional alleviation effect of a medium cannot account for the equal 

speeds of bodies of the same material – unless one is willing to reverse to an Aristotelian reading of 

the “facilitate” with which a body can overcome a medium’s “repugnantia”, a view against which 

Galileo vehemently argues at other places in the same treatise. Strictly speaking, Galileo cannot make 

the transition from absolute to specific weights. This raises the further question: why does he 

nevertheless want to make it? After all, he could as well have developed a theory which is directly 

based on his Archimedean-Aristotelian scheme, and set v ~ Wbody - Wmedium. 

 A first clue to a possible answer is given by Galileo himself, when he raises empirical 

objections against a direct proportionality between speed and weight which he dubs “ridiculous.” 

Moreover, when he will recount his own development in the 1630’s, he again stresses these 

considerations as the first to have raised his suspicion against Aristotle’s explanations.584 In doing so, 

he (implicitly) also dismisses the proportionality with an alleviated weight, which however would be 

less ridiculous (since the differences would be smaller). It is nevertheless quite possible that he was 

convinced that also these differences in speed would be too large to be empirically credible. But, as we 

have seen, it is also true that in the same De motu, he is quite willing to invoke seemingly ad hoc 

explanations to account for the striking differences between the accelerated character of the motion of 

all actually falling bodies and the uniform character of the motion of his theoretical models. In this 

case he did let his theoretical model overrule the empirical observations. It seems that there must be a 

hidden motivation behind his choice which cannot be traced back solely to its empirical plausibility. 

 I submit that Galileo’s experience with the hydrostatic balance provides the most important 

clue for understanding this tension in his dynamical thinking in De motu. It was crucial to the strategy 

used to solve the crown problem in La bilancetta that the behaviour of a sample in a medium was 

independent of its volume. It is the hydrostatic balance which had shown him that all bodies of the 

same material are equally affected by a medium. Moreover, it was already pointed out that the 

properties of bodies on a balance were closely linked with their “speeds” on the balance.585 Galileo’s 

argument in De motu should be seen as a failed attempt to mimic the cogent reasoning behind the 

irrelevance of volume for a hydrostatic balance, with the results now translated to speeds. 

                                                 
583 This is easily seen when we translate the situation in modern terms: that speed v is proportional with Wbody - Wmedium, 

implies that v ~ (densitybody – densitymedium) x volume; this implies that for bodies of the same material but of different 

absolute weight, their speeds in the same medium will be proportional with their respective volumes. 
584 Cf. infra section 7.5.1. 
585 Cf. supra section 7.1.3. 
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 “But it is pleasing [sed libet] to confirm this by another argument.”586 Such is Galileo’s own 

introduction to his famous thought experiment in De motu. This other argument for the equality of the 

natural speeds of bodies of the same material has received much more attention than the confused 

attempt based on the proportional alleviation effects of the medium. This is undoubtedly due to a 

fascination for the cleverness of the argument, but it may also result from the simple fact that this 

argument does seem to reach its goal cogently. I agree that the argument is indeed unassailable, but it 

remains to be pointed out that the premises are not as innocent as they might look. We will see how 

Galileo’s presentation of the thought experiment provides further indications of the far-reaching 

repercussions of his earlier encounter with the hydrostatic balance. �

� Let us first consider Galileo’s own presentation of his thought experiment.�

 
And first, let the following be presupposed: namely, if there are two mobiles, one of which is 

moved faster than the other, the combination of the two is moved more slowly than that part which 

was moved faster than the other, but more swiftly than the remaining part, which, alone, was 

carried more slowly than the other… 

This having been presupposed, I argue as follows: by proving that mobiles of the same species, of 

unequal sizes, are carried with the same swiftness.  

Let there be two mobiles of the same species, the larger a, and the smaller b; and, if it can be done, 

as our adversaries hold, let a be moved more swiftly than b. There are then two mobiles one of 

which is moved more swiftly than the other; hence, according to what has been presupposed, the 

combination of the two will be moved more slowly than the part, which alone, was moved more 

swiftly than the other. If then a and b are combined, the combination will be moved more slowly 

than a alone: but the combination of a and b is larger than a alone: hence, contrary to our 

adversaries' view, the larger mobile will be moved more slowly than the smaller; which would 

certainly be unsuitable [inconveniens]. What clearer indication do we require of the falsehood of 

Aristotle's opinion?587 

 
The argument inevitably leads to its conclusion: bodies of the same material have the same speeds in 

free fall. Following Gendler’s neat reconstruction we can summarize the argumentative structure as 

follows:588 (1) natural speed is mediative (the natural speed of a combined body will fall between the 

                                                 
586 Opere I, p. 264. (Transl. from Galilei 2000, p. 17.)  
587 Opere I, pp. 264-265. (Transl. from Galilei 2000, pp. 17-18.) 
588 Gendler 1998, p. 404. 
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natural speeds of the component bodies); (2) weight is additive (the weight of a combined body will be 

the sum of the weights of the component bodies); hence (3) natural speed is not directly proportional 

to weight; and, moreover the only way to hold on to (1) – (3) simultaneously is by asserting that (4) 

natural speed is independent of weight. 

 The crux of the argument seems to lie in premise (1). One could wonder how Galileo can 

claim to know that this is a valid assumption. A first possible answer is provided by the following note 

which he wrote in a margin in the original manuscript: “Aristotle makes this same assumption in the 

solution of the 24th Mechanical Problem.” Now, this is a little bit of a stretch on Galileo’s part. The 

24th Mechanical Problem deals with the famous paradox of Aristotle’s wheel, not at all with the 

natural speeds of falling bodies. The importation of that assumption, in the context of the thought 

experiment would require a much more substantial argument. It is not at all obvious that rolling 

wheels and falling bodies partake in the same principles. Moreover, if this assumption were accepted 

only on Aristotle’s authority, then it might well function in a reduction of the Aristotelian theory, but 

not in an argument which seeks to establish an alternative theory. For the conclusion (4) to hold 

generally, independent grounds for accepting premise (1) must be present. However, such grounds are 

provided by Galileo: 

  
As, for example, if we understand two mobiles, such as a piece of wax and an inflated bladder, 

both of which are carried upward from deep water, but the wax more slowly than the bladder, we 

ask that it be conceded, that if they are combined, the combination will go up more slowly than the 

bladder alone, but more swiftly than the wax alone. Indeed this is very clear: for who doubts that 

the slowness of the wax will be diminished by the speed of the bladder, and, on the other hand, that 

the speed of the bladder will be retarded by the slowness of the wax, and that a certain motion 

intermediate between the slowness of the wax and the speed of the bladder will result?589  

 
The same argument is then repeated for a piece of wood and an inflated bladder falling downward in 

air. These are of course very revealing examples. The first thing to notice is that they involve bodies of 

different material. Now, since Galileo wants to conclude that for bodies of the same material the speed 

of fall is equal, it would have been clearly self-defeating if he could have adduced empirical examples 

of this kind to illustrate his assumption. But this also points toward the fact that Galileo considered his 

assumption to be an empirical fact of the matter, possibly following a theoretical principle, but surely 

recognizable without such a principle at hand. Secondly, the provenance of this empirical fact of the 

matter is easily recognizable. Take two bodies of different material and compare their behaviour with 

the behaviour of a mixture of these materials…  

 Once again Galileo translates the situation of La bilancetta by having natural speeds mirror the 

positions of the counterweight on the hydrostatic balance. These positions on the balance arm had 

                                                 
589 Opere I, p. 265. (Transl. from Galilei 2000, p. 18.) 
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indeed undeniably shown that “specific weight” is mediative. But this implies that the proportionality 

of speed with “specific weight” is a hidden assumption of his thought experiment. The thought 

experiment thus accomplishes the transformation from absolute to “specific” weights by presupposing 

the latter. 
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 Once that the conclusion of the thought experiment is reached, it becomes impossible to hold 

on to a proportionality between speed and absolute (effective) weight. However, this leaves Galileo 

without any intelligible dynamics, as the balance is his paradigm case of a situation in which the 

motive force of a body can be noticed. In La bilancetta, he had been able to take these motive forces, 

as measured by absolute weights, as the starting point for analyzing specific weights, by exploiting the 

fact that any body is always opposed by an equal volume of water in a hydrostatic balance. At this 

point he thus did also not consider specific weights as giving rise to forces directly. That he still holds 

on to this indirect relation in De motu is clear if we remember that at several places (after already 

having presented the thought experiment), Galileo does set speeds proportional to forces which are 

measured by differences in absolute weights – differences which then can be transformed into 

differences of “specific” weights by pretending (on the basis of the thought experiment) that the 

results hold independently of the volumes. But if we are not mistaken in imputing to Galileo a 

dynamics which still refers back to experiences with absolute weights, then the conclusion of the 

thought experiment must have presented a potential conundrum for him.�

� The absence of an explicit concept of specific weight undoubtedly helped to mask the 

dynamical problem. By not explicitly thematizing the dimensional differences within the 

undifferentiated concept of “grave”, the conundrum might have seemed less pressing (and indeed 

seems to have been largely ignored by most Galileo scholars). There was of course also the attempt at 

explaining the equality of speeds by considering the alleviation effect of a medium, which might have 

eased Galileo’s mind at this point – provided he did not realize himself that the argument was 

incoherent with what he claimed at other places. But it must anyway have been clear to him that this 

was insufficient. This can be seen from the fact that after that he has established the possibility of 

motion in a void, he proclaims that the thought experiment must also be valid in this situation.590 

Given that the argument is supposed to remain precisely the same, it is clear that the effect of the 

medium can not be operative in reaching the desired conclusion.  

 This helps us to pinpoint the gap that remains in Galileo’s dynamical conceptualization of 

motion more precisely. As the transformation procedure which he used to such great effect in La 

bilancetta completely breaks down in the void, he is left without any way to connect his mathematical 

                                                 
590 Opere I, pp. 283-4. 



 208 
 

scheme with the shared experiences that had to secure its applicability to the motion of physical bodies. 

What he offers instead is his thought experiment, which supposedly can provide for an equally 

incontestable experience that could possibly anchor his explanatory scheme – albeit it does this, as we 

saw, by actually presupposing further experiences which go back to phenomena involving dense 

media. That it is indeed supposed to render the dynamics of free fall immediately intelligible is further 

proved by the following passage, which follows almost directly after the presentation of the thought 

experiment: 

 
But, I ask, who will not recognize the truth of this on the spot [veritas non statim cognoscitur], 

when he examines it in a pure and simple and natural way? For if we presuppose that the mobiles a 

and b are equal and that they are very near each other, then, by the consensus of all, they will be 

moved with equal swiftness: and if we understand that while they are being moved, they are joined, 

why, I ask, will they double the swiftness of their motion, as Aristotle held, or increase it?591 

 
The question is to the point, and it will be the starting point for a successful solution of the conundrum 

in the postils to Rocco, but at this point it must remain a rhetorical question. If a balance does indeed 

measure a body’s tendency for downward motion, as repeatedly implied by Galileo in De motu, then 

the only natural response to the question would be: why not? This is not to deny that Galileo was 

convinced that they do not: he clearly believed that specific gravity provided a much better measure 

for the speed of fall. But it is the argumentative structure of De motu itself that leaves a gap at exactly 

this point: the central empirical principle that should ground his mixed science derives its evident 

character from experiences involving a body’s absolute weight. 

 One might wonder whether it is really justified to call this gap a “conundrum”, as there is no 

sign that Galileo was puzzled by it in any significant respect.592 As far as De motu goes, this might be 

true, but as will become clear in section 7.5, at a later time Galileo indeed began to wonder about how 

to connect the behaviour of the bodies in his thought experiment with their behaviour on a balance. At 

this point he has clearly become aware of the gap that exists between his full explanatory scheme and 

the basic experiences that were first thought to ground its applicability. If we would not be allowed to 

think of this gap as a conundrum, we might as a result loose the means to understand the dynamics 

behind Galileo’s thinking, as it seems that it really did trigger Galileo’s rethinking of the thought 

experiment in a fundamental new way. As was already noticed, once the gap is perceived as a 

conundrum, the crucial question becomes why bodies of the same material would have to move with 

the same speed in the void. In this situation the empirical examples which were adduced by Galileo to 

justify the first premise of his thought experiment loose their intuitive plausibility, which was based on 

the experience with the behaviour of mixtures in dense media. This shows that, although he does not 

                                                 
591 Opere I, p. 266. (Transl. from Galilei 2000, p. 18.) 
592 I have to thank Paolo Palmieri for pushing me on this point. 
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need to change the argument itself, he would need some other kind of justification for the mediative 

character of natural speeds. In the later presentations of the thought experiment exactly such a 

justification will be provided, which will be explicitly dynamical in character.593 As we will see, once 

that he has provided this justification for the first premise, Galileo will also be in a better position to 

solve the conundrum raised by the conclusion.  

 Recapitulating our analysis of Galileo’s thought experiment in De motu, we can say that it 

plays a crucial role therein in at least two respects. It enables him to make the transition from absolute 

to “specific” weight as the relevant factor for the natural motion of bodies, without having to define 

the latter explicitly. At the same time, it covers up the fact that Galileo by his own standards misses a 

fully intelligible dynamics for free fall. This transition from absolute to “specific” weight cannot be 

based on the effect of a medium on the weight of bodies, while Galileo nowhere gives a hint of how to 

understand “specific” weight as a primordial and immediately intelligible dynamical factor: the only 

model which he possesses for understanding motive forces is the balance which measures absolute 

weights; and all his dynamical thinking is based on the idea that speeds are caused by such forces. 
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 Galileo never published or even circulated the manuscript of De motu. As a result, we can 

safely conclude that he was not convinced of the resulting natural philosophy, whatever the precise 

reasons for his own dissatisfaction.594 However, throughout his career he kept returning to topics and 

concepts which were already introduced within De motu. We will have a brief look at one context in 

which he further developed and articulated some aspects of his dynamical thinking. This will further 

corroborate the analysis of the argumentative gap that is left in De motu. �

� In 1610 Galileo moved to Florence to become court mathematician and philosopher of the 

grand duke of Tuscany, where he almost immediately became invested in a controversy on the reason 

why bodies stay atop on water.595 In the course of these discussions he realized the need to define 

specific gravity explicitly, an event which will further clarify the fundamentally limited status of this 

concept within his dynamical thinking. But before discussing this episode, it is necessary to briefly 

recapitulate some well-known basic facts about Galileo’s conceptualization of mechanical effects.596�

 In the most extended version of Le mecaniche, Galileo introduces a set of definitions for his 

basic concepts. The first is immediately very interesting: 

                                                 
593 To be discussed in section 7.5.1 and in chapter 8, section 8.1.1. 
594 See already chapter 4, section 4.3.2. 
595 This controversy was already frequently referred to in chapter 4 
596 See also chapter 5, section 5.2 
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We call heaviness [gravità], then, that tendency to move naturally downward which, in solid bodies, 

is found to be caused by the greater or lesser abundance of matter [materia] of which they are 

constituted.597 

 
Weight is here undeniably taken absolutely, and is still indissolubly connected to a tendency for 

downward motion. What is added is the specification that the more matter a body contains, the more 

heaviness and thus tendency for motion downward (a specification which was already implicit in De 

motu)598. But the real innovation of the mechanical treatise is the next concept to be introduced: 

 
Moment is the tendency to move downward caused not so much by the heaviness of the movable 

body as by the arrangement which different heavy bodies have among themselves. … Thus moment 

is that impetus to go downward composed of heaviness, position, and of anything else by which this 

tendency may be caused.599 

 
As we have seen in chapter 5, this proved to be a very fruitful concept, which allows Galileo to give 

his mechanical treatise a clear and powerful structure. To our present purposes, one aspect of Galileo’s 

treatment of a body’s moment is crucial: its measurement. As witnessed by the expression “moment is 

that impetus to go downward,” moment is intimately related with dynamical effects, yet it is always 

measured by a resisting counterweight. If we e.g. consider Galileo’s analysis of motion on an inclined 

plane, we see that each body’s impetus to go downward on such a plane is measured by the weight of a 

body keeping it in equilibrium, attached to it by a balance with bent arms, suspended above the 

plane.600 

 We can immediately learn two crucial facts about Galileo’s dynamical thinking at this stage. 

Firstly, dynamical forces are measured by (static) weights. The balance remains the one and only 

instrument to understand force. The transition from the static measure to the dynamical effect is then 

made by the principle that the addition of “an insensible weight”601 is sufficient to set in motion a 

weight that is held in equilibrium on a balance or an inclined plane. Secondly, moment as the cause of 

these dynamical effects arises from the modification of absolute weight. Although there is a clear 

                                                 
597 Opere, II, p. 159. (Transl. from Galilei (1960), p. 151.) 
598 See chapter 4, section 4.1.3 
599 Opere II, p. 159. (Transl. from Galilei 1960, p. 151.) 
600 Galileo’s discussion of the inclined plane in Le mecaniche is an expansion of an earlier discussion in the second book of 

De motu. As was already remarked by Damerow et al. 2004, p. 147, n. 39, the presence of this discussion in the latter work 

gives rise to an incoherence, as the speed of the motion is measured by its “moment” (a term not yet introduced in De motu) 

and accordingly is proportional with the body’s absolute weight (modified by the inclination of the plane). This is actually an 

instance of the dynamical conundrum that threatens the whole of De motu. 
601 Opere II, p. 163. 
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broadening of Galileo’s dynamical framework through the introduction of momento, it is still 

indissolubly tied to absolute weight. Specific weight appears impotent to cause any effects. 

 Paolo Galluzzi has stressed that Galileo is cautious to remain silent on any link between 

moment and the resulting speeds in Le mecaniche.602 As the treatise is devoted to mechanics, and as an 

investigation into precise measures of speed as a result falls outside its scope, it is hard to decide what 

to make of such silence. Anyway, for our present purposes it is enough to notice that absolute weights 

remain the paradigm cases of forces; and if Galileo possibly did no longer hold on unequivocally to a 

proportionality between forces and speed (although, as we will see, there are passages in the later 

Discourse on floating bodies which suggest that he had not yet let go this idea), he certainly has not 

found a way to make sense of any other possible connection. 
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 That specific gravity cannot unproblematically function as a measure for force emerges most 

clearly from Galileo’s Discourse on bodies that stay atop of water, or move in it from 1612. The 

Discourse was an outcome of Galileo’s involvement in a public dispute concerning the reason why ice 

floats on water.603 The opening sections of the work are of particular interest to us, since Galileo starts 

by reconsidering the foundations of Archimedean hydrostatics. As was pointed out by William Shea, 

Galileo started a first draft of the work by repeating the analyses of floating, sinking, and rising of 

bodies in a medium as they were already presented in De motu. Subsequently, he discovered that these 

were insufficient because they are not generally applicable, a discovery that forced him to work out an 

original new approach to hydrostatics.604 

 The complication that arose for Galileo’s former treatment of hydrostatics is that he realized 

that a body immersed in water is not always opposed by an equal volume of water. (Just imagine the 

case of a large body immersed in a very narrow vessel.) It is clear that this had profound implications 

for Galileo’s understanding of hydrostatic phenomena. This vitiated his strategy of transforming 

differences in absolute weights to differences in (unconceptualized) “specific weights”. Furthermore, 

how could he furthermore understand cases of equilibrium in such situations – when the absolute 

weights of an immersed body and a much smaller amount of water can differ greatly, although both 

being equal in “specific weight”? 

                                                 
602 Galluzzi 1978, p. 219. Galluzzi ascribes this caution to Galileo’s realization that any straightforward relation between 

moment and speed would be unable to account for the acceleration along an inclined plane. 
603 For an account of the circumstances surrounding the publication of the Discourse, see Biagioli 1993, chapter 3, which also 

contains interesting discussions on some other aspects of its contents. 
604 Shea 1972, pp. 18-20. Besides Shea 1972 and Biagioli 1993, other extended analyses of this approach, and Galileo’s path 

leading up to it, are Galluzzi 1979, pp. 227-246, and Palmieri 2005a. 
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 The first and foremost thing to notice is that Galileo presents this as an “admirable and almost 

incredible event”605 which stands in need of an ingenious explanation. Although he will go on to give, 

for the first time, an explicit definition of specific weight (by stating that “the absolute weights of 

solids have the compounded ratios of their specific weights and their volumes”606), he clearly does not 

see it as immediately explanatory to claim that the body and the medium have equal specific weight. 

Once again, we find further corroboration for the fact that Galileo did not consider specific weight as a 

primordial explanatory factor. He nevertheless had to introduce it explicitly in the Discourse, for 

reasons that I will now briefly discuss. 

 Galileo’s explanation, which is ingenious indeed, for this admirable event is based on his 

concept of mechanical moment. The general cause of equilibrium is equality of moments, not equality 

of absolute weights (which is only a special case of the former). The truly central model for 

understanding natural phenomena is the balance with unequal arms, where we can notice equilibrium 

obtaining between bodies of different absolute weight. One of the possible factors making up a body’s 

moment is the speed of its motion.607 Galileo will now also introduce this factor in his discussion of 

hydrostatic phenomena by taking into account the reciprocal motions of a body and the medium in 

which it is immersed. To this end he proves some geometrical theorems relating the volumes of the 

body and the medium with the path over which they respectively ascend and descend when the body is 

raised by hydrostatic pressure. When a body that is immersed in a very narrow vessel is expelled from 

the medium, the medium will descend over a proportionally much larger distance than the body will 

ascend. One can see this intuitively by noticing that the level of the medium will be lowered 

considerably more by the expulsion of the body (see figure 7.3). If the proportion between the lengths 

over which body and medium move are known, the proportion between the speeds is known as well, 

since both motions take place in the same time. This theorem, together with the explicit definition of 

specific weight allows Galileo to analyse all cases of immersion, emersion, and floatation. If the ratios 

of the specific weights of a body and a medium are given, the ratios of their absolute weights can be 

compared with the ratios of their volumes due to the definition of specific weight. The ratios of the 

volumes then can be transformed into a ratio of speeds due to the geometric theorem. As a result, the 

ratios of absolute weights can be compared with the ratios of the speeds, and the respective moments 

can be evaluated (resulting in equilibrium or disequilibrium). As an extra gain, Galileo now can also 

give a quantitative determination of the exact conditions of equilibrium, i.e. how much of a floating 

body will be immersed in the medium before it comes to a rest. 

                                                 
605 “accidente ammirando e quasi incredibile” Opere IV, p. 67. (Transl. from Drake 1981, p. 26.) 
606 Opere IV, p. 74. (Transl. from Drake 1981, p. 44.) 
607 This follows from the pseudo-Aristotelian proof of the law of the lever. 
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 Once again, we see that absolute weights remain the primordial dynamical factor through their 

participation in a body’s moment.608 A body’s specific weight merely expresses some proportionality 

between this absolute weight and the body’s volume. This proportion then controls the specific 

proportion between the moments of the body and the medium in which it is immersed. As a result, 

specific weight can function as a kind of mathematical measure for the behaviour of a body in a 

medium, but it cannot be said to cause this behaviour in any unproblematic way. (It belongs to the 

mathematical part of his mixed science, not to the physical.) And if we consider the situation in a void, 

specific weight again loses all relevance. It is only when analyzing the interaction between a body and 

a medium that it functions as a relevant concept, as witnessed by close attention to Galileo’s 

explanatory scheme. 

 In the concluding section of the Discourse, we find Galileo writing that the “heaviness 

[gravità] of the medium must be compared with the heaviness of the moveable” and “that is the single, 

true, proper, and absolute cause of swimming above or going to the bottom.”609 We are confronted 

with an apparent return to the original Archimedean scheme where the concept of moment does not 

occur. The extension of Galileo’s explanatory scheme with that concept is only needed in those 

situations where the hydrostatic paradox can arise. However, the preceding pages of the treatise give 

the impression that Galileo might really have had specific weights in mind when writing this sentence 

– and many readers have understood him exactly that way.610 He claims there that “it is not the greater 

absolute heaviness, but greater specific heaviness, that is the cause of greater speed, nor does a ball of 

wood weighing ten pounds descend more swiftly than one of the same material that weighs ten 

ounces.”611 The presence of this old De motu theory, but now formulated explicitly in terms of specific 

weight, in his Discourse testifies that Galileo had not yet found a way to fill in the gap introduced into 

his natural philosophy by the absence of any fully intelligibly dynamics for natural motion. Although 

the latter treatise is not focussed on the problem of explaining natural motion, the dynamical ideas 

which are introduced in it cannot help to make sense of the equal speeds of bodies of the same 

material. Indeed, when we consider the motion of bodies in a medium that is not enclosed in a vessel, 

as is the case for natural motion, the speeds of the body and the medium will always be equal, and the 

moments again reduce to the absolute weights.  

                                                 
608  Another way to state this would be that Galileo’s conceptualization still starts from the balance as its model of 

intelligibility, but that he now has generalized this model to include the case of an unequal arm balance. (A similar move had 

already been made with his treatment of the inclined plane; see chapter 6, section 6.1.1 and 6.1.2.) 
609 Opere IV, pp. 139-140. (Transl. from Drake 1981, p. 194.) 
610 Stillman Drake, e.g., adds in his translation the following note to the passage just quoted: “Galileo considered his three 

kinds of floating to have been reduced to a single cause, the lesser specific weight of the floating object in comparison with 

water.” (Drake 1981, p. 231). Cf. also Wallace 1983, p. 619: “he feels that he has successfully determined the true, natural, 

and primary cause of a body’s floating or sinking, namely, its specific gravity relative to that of the medium in which it is 

immersed.” 
611 Opere IV, p. 133. (Transl. from Drake 1981, p. 180.) 
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 Galileo worked on his Dialogue concerning the two chief world systems mainly during the 

1620’s, and finally saw them to press in 1633. Dispersed throughout the work are allusions to the new 

science of motion discovered by the “Academician.” For many seventeenth century philosophers, this 

was the only first hand knowledge they had of Galileo’s work on natural motion. In one of these 

digressions, Galileo has Salviati state that Aristotle was mistaken in claiming that speed of fall is 

proportional to the weight of the falling body. He does not adduce any arguments for his statement, 

except for the empirical implausibility of such proportionality, but he does limit his remarks to bodies 

of the same material.612�

 It is of course an understatement to claim that the Dialogues spurred some debate. One of the 

philosophers who took up Galileo’s challenge and tried to stand up in Aristotle’s defence was Antonio 

Rocco, who in 1634 published his Esercitationi filosofiche in response.613 Among the many things for 

which he took Galileo to task was his ignorance of the true reasons behind the phenomenon of free fall. 

As Galileo was not the man to let criticism that he considered misdirected easily pass, he prepared 

some notes (never published during his lifetime) in which he had his usual sarcastic fun with Rocco, 

and in which he gave the arguments which he had omitted from his Dialogues. It is at this point that he 

finally faces the gap that he was left with in De motu. How can he understand weight as a dynamic 

factor without thereby having to claim that speed of fall must be proportional with it?614 

 One of the remarkable things about Galileo’s postils is their unusually direct style. Galileo 

seems not so much to be trying to convince Rocco, as that he is rehearsing his arguments for himself. 

He moreover introduces the central and most interesting part of his arguments by claiming that he will 

now be presenting the reasons by which he convinced himself of the falsity of Aristotle’s teachings. 

We always have to be careful with such autobiographical reconstructions, but they undeniably give an 

invaluable insight in Galileo’s thinking at this stage – if not necessarily in his earlier thoughts. Such an 

exercise in reconstruction forces him to think through the problem again, consciously trying to unravel 

                                                 
612 Opere VII, pp. 249-250. 
613 Rocco’s Esercitationi were reprinted by Favaro in his edition of Galileo’s works (Opere VII, pp. 567-712). 
614 I owe the suggestion that I should have a look at Galileo’s postils to Rocco to Paolo Palmieri. These postils have up to 

now not received much attention; Drake translates some passages in his Galileo at work (Drake 1978, pp. 361-367); and Shea 

1972 and Galluzzi 1978 pay passing attention to some passages (see the respective indexes), as does McMullin 1978, p. 226. 

Palmieri 2005b provides a first more detailed analysis of these postils (which are strictly speaking much more than mere 

postils). Cf. already chapter 6, section 6.2.3, for some further aspects. 
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the most central aspect of it, which could then lead to a natural and gradual dawning of insight. It is as 

if in this place he is practicing his favourite Socratic questioning on himself. 

 First, Galileo claims, he “immediately felt repugnance” in his intellect upon reading 

Aristotle’s texts, for “how could it be that a body ten times or twenty times heavier than the other 

should fall downwards with ten times or twenty times the speed”?615 Taking this as his starting point, 

he then “formed an axiom that could not be doubted by anyone,” i.e.: 

  
that any heavy body [corpo grave] that is descending has in its motion degrees of speed, limited by 

nature and so predetermined, that to alter them, by increasing the speed or diminishing it, could not 

be done without using violence against it in order to retard it or to prevent its abovementioned 

limited natural course.616 

 
This axiom will serve as a justification for the crucial premise of his thought experiment. It will be 

remembered that in his initial presentation of the thought experiment in De motu, this premise was 

justified on grounds of the empirical plausibility of the mediative character of natural speeds. The fact 

that the new justification introduces explicitly dynamical considerations already testifies to the fact 

that Galileo has gained confidence in his understanding of the dynamics behind the thought 

experiment. 

 Next, Galileo introduces not the full blown thought experiment, but the limited version for two 

equal bodies that are falling with the same speed. In De motu this version came after the general 

thought experiment, and it served there to hide the absence of a fully intelligible dynamics behind the 

thought experiment. Having now started by laying out a dynamical principle, Galileo will use the same 

limited situation to show what this principle plays in the case of these falling bodies being tied 

together. The interesting fact about this situation is that no one would doubt that two equal bodies do 

fall with the same speed. But if the body that results from their being tied together would have a 

different speed, Galileo now asks “which one of them [original bodies] will be the one which, adding 

impetus to the other, will double its speed”? Whereas in De motu, he rested content with claiming that 

such a doubling of the speed would be unintelligible, he is now trying to come to grips with this 

unintelligibility. Given his dynamical principle, it is clear that at least in this situation none of the 

bodies will exercise a force on the other. 

 After this preparatory stage, Galileo presents the thought experiment. Again conspicuous is the 

explicitly dynamical formulation with which he describes the set-up: 

 
Assume now, mister Rocco, that these assumptions are true, which I don’t think you are able to 

doubt. Thus, every descending weight [grave] has degrees of speed determined by nature, and that 

those degrees cannot be increased if not by violating its abovementioned natural constitution. 

                                                 
615 Opere VII, p. 731. 
616 Opere VII, p. 731. 
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Consider the two moving bodies A, the major, and B, the minor, of which, if it is possible, A is 

naturally faster and B less fast. Since, given the above, the natural speed of B can only be increased 

by violence, if we would want to increase it by attaching the faster A to it, it will be agreed that the 

speed of that body A, in violating B, would diminish partially, since there is no more reason that the 

bigger speed of A operates in the minor speed of B, than that the slowness of B reoperates in the 

velocity of A.617 

 
The reduction argument then follows as before.  

 Not only is the formulation of the thought experimental set-up explicitly dynamical, it also 

betrays the origin of these dynamical ideas. I already stressed how the balance model shaped Galileo’s 

understanding of forces, and that one of the central facts about this model was the presence of force-

resistance pairs. This clearly surfaces in the passage just quoted, but even more importantly, it is now 

transformed into a true action-reaction pair (which from our vantage point is not strictly speaking the 

same as the equilibrating forces on a balance, which both exert their force – actually their moment – 

on a third body, the balance). If the faster body exerts a force on the slower, the slower will also have 

to exert an opposite force on the faster. This explicit recognition of the presence of a reaction for every 

action, at least in this kind of situation, will prove to be of the utmost importance in shaping Galileo’s 

further dynamical thinking. 

 True, in the De motu presentation of the thought experiment Galileo had already stated: “who 

doubts that the slowness of the wax will be diminished by the speed of the bladder, and, on the other 

hand, that the speed of the bladder will be retarded by the slowness of the wax.”618 Nonetheless, the 

explicit insight that this mutual retardation and acceleration is the effect of interacting forces is 

conspicuously missing.619 Most importantly, he does not think through its possible consequences for 

what happens in the thought experiment – as is testified by the very different treatment of the case of 

the two equal bricks. Considerations of empirical and intuitive plausibility seem to do most of the 

work in this early version. The true innovation of the postils lies in the attempt to uncover the grounds 

behind these judgements. 

 Immediately after the formal presentation of the thought experiment follows the most 

interesting passage of the postils – and, I would add, one of the most fascinating pieces of writing ever 

produced by Galileo. I will quote in full:�

�

                                                 
617 Opere VII, p. 732. 
618 Opere I, p. 265. (Transl. from Galilei 2000, p. 18.) 
619 It is perfectly possible (and I tend to believe: true) that at the time of De motu, Galileo understood the effect of combining 

the wax with the bladder (and vice versa) purely in terms of the effect on their “specific” gravity (in perfect analogy with 

what happens with the alloys of the king’s crown), which is then only indirectly reflected in the speeds. (Remember that he is 

talking about what happens if we bring together bodies of a different specific gravity.) 
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These are mathematical advances, mister Rocco. They are consequences that, as far as I can 

ascertain, were not expected by you. And since I am certain that you persist in believing that once 

the gravity in A is increased by the addition of B, its velocity should also increase, if not 

proportionally to the weight [peso] as you required up to now with Aristotle, then at least in some 

way; how much would it not surprise you if I would show you that the addition of B does not 

increase the gravity of A with one hair, nor would the addition of a thousand B’s increase it, and that 

given that is doesn’t grow in weight [peso], by consequence its speed doesn’t grow either, thus 

making you touch with your own hand how you are totally misled in this matter! So you will say: 

how could it be true that, A and B being two pieces of lead, the one put on top of the other, it will not 

increase its gravity? And I would add that even if B was made of cork the weight [peso] will increase, 

and I agree with you in admitting that A, placed on a balance, will weigh [peserà] more with the 

addition of B, even if it was not of cork, but a flake of cotton wool or one leaf of flax; and if A would 

weigh [pesasse] a hundred pounds, and B an ounce of plumes, on the balance their compound will 

weigh [peserà] a hundred pounds and one ounce. Yet to take advantage of this experience in 

reference to what we are concerned with is a useless and irrelevant matter. But at any rate, mister 

Rocco, if you put the palm of one hand under a cannonball weighing a hundred pounds [100 libbre 

di peso], which is suspended and supported by a rope, and you would only touch it, tell me whether 

you would feel weighed down [aggravarvi]? I know that you will answer no, for its weight [peso] is 

supported by a rope, and its descending is entirely prevented. When the rope is cut, and you would 

interdict this effect by the strength of your arm, you would indeed feel a burden [gravarvi] on your 

hand, which [hand] should do the job of the rope by prohibiting to the ball its natural descent. But 

when you would not oppose the ball which has been let free, but you would give in to its impetus by 

lowering the hand with the same speed at which the ball would descend, tell me anew if you, apart 

from touching it, would feel yourself weighed down by its weight [dal suo peso gravarvi]? It is 

absolutely necessary to reply that this is not the case, because you don’t offer any resistance to the 

pressing [premura] of that weight [peso]. Conclude now from this clear and brief reasoning, since it 

is not possible to define being weighed down [aggravato] if not as that opposition to a weighing 

body that is descending, that by the addition and superimposition of the abovementioned bricks the 

one to the other, which even you will allow to be descending with equal velocity because they are 

the same, the gravity of the one is not increased by the other. Hence, also the velocity is not 

increased.620 

 
“Yet to take advantage of this experience in reference to what we are concerned with is a useless and 

irrelevant matter.” In this one sentence is contained the resolution of the conundrum. In one master 

stroke Galileo restructures the whole of his natural philosophy. By asking Rocco to imagine using a 

falling balance, he shows its inapplicability as a model for a very central class of natural phenomena. 

As a result, the balance loses the centrality which it always had within his philosophy. He now urges 

                                                 
620 Opere VII, pp. 732-733. 
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that if we want to understand the dynamics of falling bodies, we should not be misled by what happens 

on a balance!  

 The way Galileo establishes this limitation of his original model of intelligibility merits closer 

attention. The most important step in his attempts to convince Rocco (and himself, I would suggest) 

occurs when he substitutes the hand and arm for the previously assumed balance. This substitution 

enables him to physically grasp the absence of action-reaction pairs in the case of the falling body and 

the hand moving down with the same speeds. Indeed, everybody can feel this for himself – even the 

illustrious signor Rocco could do so. The hand and arm are moreover easily assimilated to a second 

body falling along with the first body. And in the absence of any interaction, it then makes no sense to 

speak about the falling bodies weighing more or less. This latter conclusion is of course justified 

through the claim that “it is not possible to define being weighed down if not as that opposition to a 

weighing body that is descending.” At first sight it might seem that Galileo is reverting to some kind 

of subjective notion of weight by placing this stipulation at the centre of his explanations.621 Yet on 

this interpretation we would lose sight of the essentially interactive aspect of the action of the force of 

weight which he is laying bare here. His terminology makes clear that he is interested in the two sides 

of this interaction: there is no “pesare” of the body without the experience of being burdened 

(“aggravato”), which in turn finds its origin in the counter-force we have to keep on exerting on the 

body. Galileo is able to extract something fundamental about the property of weight from our way of 

experiencing it: a body’s gravity gives rise to “peso” only if it is opposed by a continually (re)acting 

resisting force.  
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 As we have seen above, in De motu Galileo had given the following definition: 

 
We are said to be weighed down [gravari], when a certain weight [pondus] which tends downward 

by its heaviness [pondus] rests on us, and we need to resist by our force [vi] in order that it does 

not go down any further; now this resisting is what we call being weighed down [gravari].622 

 
It is important to ask why this definition had not already in this early work led up to the conclusions 

which are now shown to follow from it. In the first place it is important to note that Galileo had 

introduced this definition of being weighed down in De motu to back up his claim that elements have 

no weight in their own place. Since elements simply do not tend downward anymore when they are in 

their natural place, this situation is considerably more straightforward than when one is dealing with 

                                                 
621 Palmieri 2005b, p. 232, n. 26, speaks of a “‘psychological’ definition of weight”. 
622 Opere I, p. 288. (Transl. from Galilei 2000, p. 39.) 
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falling bodies. These do have a tendency for downward motion, and the balance would thus have 

seemed eminently applicable.  

 Most importantly, the balance itself serves to hide the necessary action-reaction pairs in the 

measurement of weight. After all, the seemingly crucial elements for such measurements are the 

weight and counterweight and their respective distances from the fulcrum. The physical role of the 

fulcrum itself is often passed over in silence, although it is precisely the fixed nature of the latter 

which enables the measurement. The counterweight can only resist the downward motion of the 

weight because the fulcrum introduces a reaction force on the combined action of both weights into 

the system. (If the bodies weren’t continually weighing down on the fixed point this reaction force 

would not arise, and the system would simply fall down.) Yet, the confusion easily arises that it is the 

counterweight which plays the resistive role of the given definition, which would make the non-sense 

of using a falling balance less obvious.  

 This comes out clearly in the revised version of the chapter dealing with the question whether 

an element has weight in its own place. Galileo stresses still more emphatically than in the first version 

that we cannot say that the elements have weight in their place because “heavy bodies cannot always 

exert their weight [gravitatem]” The reason is obviously that the parts of the medium “resist with as 

much weight as is exerted upon them”.623 But we can remember from chapter 4 that this situation was 

immediately assimilated to a balance with a counterweight acting as the resistive force. The role of the 

fulcrum simply cannot be thematized as long as Galileo holds on to this direct analogy! In this respect 

it is suggestive to note, as has been done by Paolo Palmieri, that in De motu Galileo had presented the 

two equal bricks as falling adjacent to each other, while in the postils he is considering bricks which 

are put upon each other.624 This seems to be exactly what is needed to bring the interactive character of 

weighing down to the fore, whereas the former presentation was still very much tied to the image of a 

balance.625  

 That it is furthermore precisely the interactive aspect which is still missing at the time of De 

motu is proved by a passage in which Galileo seems to come close to the insights which he reached 

only here in the postils. In offering an explanation of the accidental acceleration of free fall, he already 

stressed the fact that when a “stone is at rest in someone's hand, one must not say that in that case he 

who holds it impresses no force on the stone: for since the stone exerts pressure downward by its 
                                                 
623 Opere I, p. 365. (Transl. from Galilei 1960, p. 122.) 
624 Palmieri 2005b, p. 232. 
625 Guided by this image it might even have appeared as if the two falling bodies were keeping each other in equilibrium, 

hence mutually weighing down on each other (this is the kind of image which Galileo will repudiate in the fragment on the 

law of the lever, referred to at the end of the present section). This is moreover precisely the image which guided Benedetti in 

presenting his version of the thought experiment, since he suggests that four equal bodies fall down with the same speed as 

the body that is composed by their conjunction because the separated bodies will together be able to equilibrate the body 

composed of them during their fall; cf. his Resolutio… from 1553 (translated in Drake and Drabkin 1969, see especially pp. 

150-151). 
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heaviness, it is necessary that it be impelled upward by the hand with an equal quantity of force, 

neither larger nor smaller.”626 Yet when the stone is let go, the force of the hand remains for some time 

with it, although continually diminishing in strength.627 A few pages earlier, Galileo had already 

explained how we should conceptualize such impressed force. The body in which it is impressed 

retains its natural and intrinsic weight, but it assumes a preternatural lightness “in the same manner as 

[its own innate and intrinsic heaviness] is also lost when it is placed in media heavier than itself.”628 

And the first book of De motu had made abundantly clear how we should model this effect of a 

medium. The idea of impressed lightness actually becomes an attempt to have the balance model 

transferred into the body. To put the situation graphically: Galileo imagines the body during its fall as 

if it is continually in a balance with as counterweight the impressed force which is gradually 

diminishing, causing the body to become heavier in fall and speeding up. He had not yet freed himself 

from the falling balance; and the resisting force was indeed assimilated to a counterweight. 

 That Galileo brought precisely these features to the focus of his attention after having 

rethought his thought experiment is testified by a dialogue fragment which was probably intended for 

inclusion in either the first or the second edition of the Discorsi, but which remained in manuscript 

form.629 In this fragment, Galileo expresses doubts about the conclusiveness of the pseudo-Aristotelian 

proof method for the law of the lever (he had always significantly refrained from granting it the status 

of a demonstration in his writings). Instead he offers a more satisfactory proof; a proof which also 

differs from the Archimedean proof that was given by Galileo both in Le mecaniche and in the second 

day of the Discorsi (presumably because Galileo sought a more physically appealing proof). If one 

puts two weights on a balance, and then let it go freely, it will fall perpendicularly along the line 

connecting the common centre of gravity of the two weights with the centre of heavy things. But if we 

fix the balance in this common centre of gravity, there will be no motion and the balance will be in 

equilibrium (and if this fulcrum does not coincide with the centre of gravity, the arms of the balance 

will respectively move up and down). Now, this proof was not original with Galileo, as it faithfully 

recapitulates the teachings of Guidobaldo del Monte (without mentioning the latter).630 However, the 

fact that we find Galileo reversing to exactly this kind of explanation is significant. In the Dialogue 

concerning the two chief world systems of 1633, he had still presented the pseudo-Aristotelian proof 

method without any sign of dissatisfaction (but with the usual caution in not calling it a demonstration, 

but referring to its confirmation by many experiments “con molte esperienze”).631 But now, after 

                                                 
626 Opere I, p. 320. (Transl. from Galilei 2000, p. 70.) 
627 Cf. chapter 4, section 4.1.5. 
628 Opere I, pp. 311-312. (Transl. from Galilei 2000, p. 64.) 
629 Opere VIII, pp. 438-440. 
630 See chapter 3 for Guidobaldo’s mechanics. Micheli 1995, pp. 150-151, points out the similarity between Guidobaldo’s 

and Galileo’s treatments, yet in a slightly different context.  
631 Opere VII, pp. 241-242 
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having rethought his thought experiment, he apparently comes to prefer an explanation which 

explicitly singles out the necessity of a fixed fulcrum. To put it a little bit more suggestive: his new 

method of proof is designed to show that a falling balance is no longer an instrument for the 

measurement of weight. 
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 Philosophers of science in the second half of the twentieth century have been mainly interested 

in an analysis of the structure of scientific explanations, and tended to be rather critical about the 

notion of understanding which was often deemed to be too subjective to be of any real interest.632 This 

is not the time and place to enter into a critical re-evaluation of these views, but let it suffice to point 

out that any view on the nature of explanation has to account for the status of certain basic brute facts 

which are apparently not in need of further explanation and can serve as explanatory bedrock for other 

phenomena. It seems that we have to take serious the idea that for any broadly conceived explanatory 

framework there is always something about the proffered explanations that is responsible for them 

“making sense.” (This feature comes especially to the foreground in periods where competing 

frameworks struggle for the right to speak about a class of phenomena; periods where the allegation of 

unintelligibility is often levelled in both directions.) The sense of intelligibility is not merely a 

subjective feeling accompanying explanations, but refers to a basic way of going about in offering and 

receiving them; a basic way which can be shared by a large group of people and which most 

importantly can have a clear normative force.633 

 This is directly connected with the status of the empirical principles that should ground 

Galileo’s mixed science. These should command universal assent because of their evident character.634 

They are supposed to express what the things in the world themselves show. In this way the 

mathematician can assume a set of facts that need not be further explained and as a result open up the 

possibility of explaining further phenomena. What is most important for our purposes is not so much 

the existence of such a set, however, but the grounds on which it is selected.  

 Galileo wants to reduce phenomena to shared experiences which are incontestable for “every 

man of ordinary intelligence”635 when the latter is interacting with an instrument such as the balance. 

As explained, this implies that nature’s discursive function as a regulative instance has been crucially 

transformed. As we have also seen, this interaction has to be guided by an implicit form of 

                                                 
632 See Hempel (1965), p. 413, for an exemplary and influential statement of this view. 
633 Cf. chapter 1, section 1.2.2. 
634 Cf. Dear 1995, p. 42. See also chapter 4, section 4.2.2. 
635 Opere VII, p. 183. (Transl. from Galilei 2001, p. 183.) 
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performative reason. But against this background the balance can function as a model of intelligibility. 

This makes it possible that the phenomena present themselves in a structured and thus intelligible way, 

which in turn implies that Galileo’s mathematical explanations of the properties of natural motion can 

also make sense. 

 But it is of course one thing to have a model of intelligibility which in principle makes it 

possible to anchor mathematical explanations in shared and incontestable experiences, and another 

thing to put it fruitfully to work. This supposes that these experiences can be seamlessly integrated 

within the explanatory scheme. However, the latter also has its own exigencies that at times potentially 

drive it towards another road leaving a gap between scheme and basic experiences. This is the natural 

result of the fact that the scheme is always supposed to explain a different and richer set of phenomena. 

We have now seen that this is what happened in Galileo’s first attempts to come to grips with the 

dynamics of free fall.  

 It is precisely in an attempt to cover up this gap that Galileo introduces his thought experiment 

for the first time. It is primarily intended to restore intelligibility to his explanatory scheme, rather than 

to provide independent empirical confirmation thereof.636 It is in this function that it continued to play 

a crucial role in Galileo’s dynamical thinking. Galileo remained deeply concerned with the connection 

between on the one hand mechanical instruments such as the balance, and on the other hand the 

phenomenon of free fall; and it is exactly the thought experiment that allowed him to mediate between 

both sets of phenomena. It is through rethinking the thought experiment that he was able to uncover 

the crucial facts that were responsible for the gap that – with hindsight – had to exist within his first 

attempts at natural philosophy.  

 It is probably no accident that it was precisely a thought experiment that lay behind much of 

the dynamics of Galileo’s thinking. Its seemingly paradoxical character still has the power to fascinate 

many people and the act of rethinking the thought experiment was probably stimulated by exactly this 

paradoxical character – with as effect that in unravelling the paradox Galileo was able to forge 

profound changes in his conceptual framework.637 But the effect of this rethinking must remain hidden 

as long as we ignore the subtle but profound differences that exist between the different presentations 

                                                 
636 Galileo’s thought experiment has been the topic of some recent philosophical debates, but these primarily focussed on its 

epistemological status, i.e. the kind of confirmation it can provide for his empirical claim on the independence of speed of 

fall from weight, and not so much on its role within Galileo’s dynamical thinking. (The conclusions reached in the present 

chapter are relevant for these debates, but I won’t spell this out.) Koyré 1968 and Westfall 1966, 1971 are among the few 

authors who explicitly consider this role, as was already done by Mach 1960, p. 251. However, these authors also remain 

silent on the crucial role played by Galileo’s rethinking of this thought experiment during different stages of his career. That 

is, they assume that Galileo could draw some important lessons from the thought experiment, but they do not treat the 

question how Galileo came to see that it implied these lessons.  
637 Paolo Palmieri has recently stressed the important cognitive role that paradoxes played for Galileo, both within his own 

thinking and in the presentation of his ideas (Palmieri 2005a). 
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of his thought experiment and especially the different justification for its crucial premise, as has been 

done up to now.  
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 It is interesting to note how Galileo establishes the limitation of the balance as a model of 

intelligibility by exploiting some of its particular properties. In the postils to Rocco he leads his reader 

through a number of steps that make clear which are the conditions under which the balance can 

function to ascertain the properties of natural bodies. To this end he asks the reader to imagine 

engaging in a particular set of bodily interactions with a heavy body, which taken together show that it 

makes no sense to conceive of the motive power of a moving body as a “static” weight. Because the 

balance must be used in a highly disciplined manner, it is possible to for Galileo to show in a very 

precise way some of its inherent limitations. 

 Galileo started his endeavours in natural philosophy with the firm belief that weight was the 

characteristic property of all natural bodies that allowed them to become integrated in a mathematical 

explanatory scheme. He now discovers that the closure that characterized the balance as a particularly 

interesting system is irrelevant for understanding falling bodies. As a consequence, it turns out that 

weight is not the right characteristic to introduce as the central property of bodies in building a 

mathematical science of motion.  

 As a result of this deconstruction of the balance model (as applicable to falling bodies), 

Galileo can now uphold seemingly conflicting theses. Weight is indeed a force, and if a body has more 

matter (and as a result more gravity), it exerts a greater force that can be measured using a balance. 

Exerting more force does moreover result in an increase of speed. And yet, speed of free fall can be 

independent of gravity, the reason being that falling bodies do not necessarily weigh down more by 

the addition of more matter – or to say the same thing, that this extra added matter exerts an extra 

force on the body which would cause it to speed up. 

 Galileo also must have felt the uneasiness that anyone feels who is first confronted with this 

insight. After all, as was already repeatedly claimed in his earlier writings, weight as measured by a 

balance is caused by the body’s gravity, which is a tendency to move naturally downward. In his 

postils to Rocco Galileo stresses that this still holds true,638 but he also warns Rocco that it does not 

necessarily follow that this greater tendency causes a greater speed, only that the body “has to tend 

more downwards.”639 It is true that Galileo does not yet give an explicit explanation of how we should 

understand the precise link between this tendency and the resulting speed, but we will see that there 

are some clear hints in his latest thoughts on natural motion.  

                                                 
638 Opere VII, pp. 722, 725. 
639 Opere VII, p. 722. 
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 As Winifred Wisan once aptly stated, “Galileo … lived long enough and maintained sufficient 

mental prowess to become in effect his own best disciple”.640 The fascinating creative process that lay 

behind the development of Galileo’s dynamical thinking – a process that spans a period of more than 

fifty years – bears striking witness to this fact. This will be further illustrated in the next chapter where 

we will discuss some aspects of the Discorsi and some fragments that postdate its publication. At this 

point he will exploit the thought experiment to find a way in which he can reintroduce the motive 

power of bodies in his mathematical science of motion. That is, the thought experiment will start to 

function as a model of intelligibility in its own right.641 
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 Writing chapter 4, which was written long after the present chapter, I reread the memoranda 

attached to De motu. To my great discomfort I came across the following note that Galileo had already 

written down at the time of working on De motu: 

 
The definition of the heavy and the light through motion handed down by tradition is not a good 

one: for when a heavy or light thing is being moved, it is neither heavy nor light. For that thing is 

heavy which exerts weight on something; but what exerts weight on something else is resisted by 

that thing; hence a heavy thing, when it exerts weight, is not moved: as is evident if you have a 

stone in hand, which then will exert weight when the hand resists its heaviness; but if it is moved 

downward with the stone, the stone will not then exert weight on the hand. Hence the definition 

will better be: That thing is heavier which remains under things that are lighter.642 

 
Now, let me first point out that Galileo is again treating a topical problem having to do with motion. 

The Jesuit philosophers at the Collegio Romano, e.g., did discuss whether “the definitions of light and 

heavy that are given in terms of rest, that is, standing above and below, are to be preferred to those 

given in terms of motion.”643 It is also clear that the way Aristotelian philosophers tried to arbitrate this 

question was again very different from Galileo’s proposed answer; the former e.g. tried to assess 

whether the perfection of the nature of the elements consists more in rest or in motion.644  

 The fact remains that the presence of this passage in the memoranda seems to go counter to 

the above analyses. This may in the first place stand as a methodological warning post that as 

                                                 
640 Wisan (1984), p. 271. 
641 See chapter 8, sections 8.1 and 8.2. 
642 Opere I, p. 413. (Transl. from Galilei 2000, p. 157.) 
643 Wallace 1984, p. 169. 
644 Wallace 1984, p. 169. 
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historians of science we are extremely dependent on the sources that survived the dust of time, and 

that any of the conclusions that we can reach on their basis are bound to remain highly conjectural. 

(Admittedly, in the present case this was primarily due to my own unaccountable neglect of an 

important source that was easily consultable, but the general point may stand.) The historian that 

studies De motu is presented with some further complications, as we are dealing with a rich set of 

traces of Galileo’s attempts to construct a mathematical natural philosophical treatment of motion, yet 

without a finished produced that is singled out by himself as his considered view of the matter. 

 So what do we have to make of this passage from the memoranda? Fact is that Galileo did not 

include it in any of the versions of his treatise. But he does define heaviness as that property of bodies 

“to remain under lighter ones,”645 in agreement with the conclusion reached in this passage. Was it just 

his stab at the topical question treated by the Aristotelians, and did he finally decide that it was not 

important enough to include it? Or maybe, did he realize while working on his treatise that he should 

try to justify the fact that he had opted for this characterization? In any case, and I take this to be the 

most important, as far as we can judge it stands completely unconnected with any of the discussions 

on the speed of motion. 

 The most careful conclusion to draw is that Galileo at the time of De motu already had all the 

elements at his disposal that would later allow him to unravel the dynamical conundrum, but that there 

is no evidence that he brought these elements together at that time. That is, he does not use the 

situation as described in the above passage to make intelligible the dynamics behind the thought 

experiment, as he would do in his postils to Rocco. As a consequence, I don’t think that the presence 

of this passage among the memoranda necessarily invalidates my analysis of the dynamical 

conundrum. It only highlights the complexity of the writings that taken together make up Galileo’s 

“older notes on motion”. It is furthermore not implausible to suggest that Galileo first realized that he 

could unravel the paradoxical situation presented by the thought experiment by exploiting the insight 

contained in the above passage as he was browsing through the folder that contained these “older notes 

on motion” while planning to write a rebuttal of Rocco’s criticisms. (That the analysis in the postils is 

inspired by this passage is undeniable.) After all, the discussions in his postils recapitulate many 

messages from De motu, so it is highly probable that he had this folder close to him at that time. 

 Another, more far-reaching possibility is to conclude that this passage shows how Galileo 

already became aware of the inapplicability of the balance model while writing De motu. The 

disappearance of the chapter explicitly spelling out the analogy in the revised version could reflect this 

insight.646 (But it must be stressed that whereas in the postils Galileo explicitly likens the situation of 

the hand holding the body with that of the body lying in a balance, this association is not yet made in 

the memoranda fragment.) Yet even in this revised version Galileo still sets the speed of motion equal 

                                                 
645 Opere I, p. 253. (Transl. from Galilei 2000, p. 3.) 
646 Cf. supra section 7.2.1. 
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to the difference in absolute weight between the body and the medium through which it is moving. 

Seen from this light, it becomes possible that this was the main reason for abandoning the treatise 

without even ever circulating it. But even if we want to opt for this interpretation, the analyses in the 

present chapter can still stand; we would only be forced to push back the chronology almost forty 

years in time. 

 So maybe the most important thing that we can learn from this passage is that from the very 

beginning, Galileo was conscious of the fact that measuring physical quantities is a complex operation, 

which demands very specific circumstances to be carried out validly. It may stand as a testimony of 

Galileo’s intuitive agility that he had already introduced the situation of the hand moving down with 

the body while he was still assessing how far an Archimedean scheme could be pushed wherein the 

body supposedly still exercises its weight when moving downward (as it is this weight that causes it to 

have the speed it has). 
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FIGURE 7.1  

The hydrostatic balance from La bilancetta. A sample of respectively gold, silver, and a mixture of both are first 

weighed in air from the point b with counterweight in a. When the samples are now weighed in water, the 

counterweight will have to be shifted to the respective positions e, f, and g. Associated with each different kind 

of body is a position on the balance, independent of the volume of the bodies. (Opere I, p. 217.) 

 

 

 

FIGURE 7.2  

The “pseudo-Aristotelian” proof of the law of the lever. The lighter body at point B will be able to equilibrate the 

heavier body at A because in moving from B to E it moves faster than the other body in moving from A to D 

(since both motions take place in equal times). Different positions on the balance are associated with different 

speeds. (Opere II, p. 163). 
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FIGURE 7.3 

A solid ABCD is immersed in a vessel with water filled up till the level AE. When the solid body is raised from 

the water up till it is in the position GHLM the water will fall over a distance AO. Galileo easily proves that “the 

descent of the water, measured from the line AO, has to the ascent of the prism, measured from the line GA, the 

same ratio that the base GF of the solid has to the surface of water NO.” In a very narrow vessel, the water will 

accordingly fall over a proportionally larger distance than the body will rise. (Opere IV, p. 72. Transl. from 

Drake 1981, p. 40.) 
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 It was seen in the previous chapter how Galileo’s thought experiment led to the demise of the 

balance as the central model for his theory of motion. In the present chapter, I will show how Galileo 

tried to render the phenomenon of free fall intelligible in a new way. It will be seen how the thought 

experiment takes over the role of the balance as a model of intelligibility directing Galileo’s 

dynamical thinking, by drawing particular facts about the relation between weight, free fall, and 

equilibrium to his attention. 

 A large part of my analysis will be based on some fragments that postdate the publication of 

the Discorsi. These primarily involve Galileo’s attempts to come to grips with the phenomenon of 

percussion, which he had already unsuccessfully grappled with in Le mechaniche. In trying to 

understand this phenomenon, Galileo became fully aware of the special role played by time within the 

dynamics of falling bodies. As we will see, this made it possible for him to understand both weight and 

acceleration as common effects of a deeper-lying cause, a body’s moment of gravity. In this way, he 

actually separated what could from now on be understood as statics and dynamics. 

 In the last section, it will be seen how this enabled Galileo to close an important gap that 

existed in the formal structure of the Discorsi, where he had been forced to introduce a postulate on 

the speeds that bodies acquire on differently inclined planes of equal height. However, this goes 

counter to his insistence on the fact that the basic physical principles that constrain a mathematical 

science must be evident for all. His renewed engagement with the phenomenon of percussion offered 

Galileo the required insights to understand the dynamics underlying the validity of his postulate. This 

then allowed him to anchor his mathematical theory of motion anew in a suitable principle that 

expresses a basic property of all bodies. 

 At this point we have come full circle in our investigations of the grounds of Galileo’s science 

of motion. The balance provided his starting point but we have seen how it was quickly joined by the 

inclined plane and the pendulum. The thought experiment made him aware of the limitations that 

accrue to all constrained systems as models for phenomena of motion. Yet it looks as if this constraint 

at the same time is what makes possible the kind of closure that interested Galileo so much. His latest 

fragments on motion, analyzed in the present chapter, show how Galileo started broadening his 

conceptual framework in a way that could allow one to discern a relevant kind of closure also in free 

dynamical systems. This study of Galileo’s attempts at stabilizing his conceptual apparatus thus 

complements the study of his stabilization of empirical situations in chapter 6. The stabilization of 

concepts cannot be independent of the stabilization of the empirical situations, as the former are 

supposed to represent the latter. And both are dependent on a prior stabilized field of knowledge as 

analyzed in chapter 5. 
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� Almost immediately after his fateful encounter with the Roman inquisition that followed upon 

the publication of the Dialogue, Galileo began preparing a work in which he would finally expound 

his theory of motion. The work, which would go to press in 1638 as the Discourses and mathematical 

demonstrations concerning two new sciences pertaining to mechanics and local motions, was 

essentially a continuation of many earlier researches on both natural motion and the strength of 

materials. As we have seen, at the time of composing the Discorsi Galileo also wrote down his postils 

to Rocco, so it is not surprising to find much of its contents reappearing in the book.647 However, there 

are also some minor but relevant changes in the presentation which I will comment upon in the present 

subsection.  

 Galileo’s refutation of Aristotle’s teachings on free fall is one of the many topics treated in the 

first day. It follows almost exactly the more than forty years old lead of De motu. He first attacks the 

idea that the speed of fall is proportional to the weight of the bodies by stating that such 

proportionality is simply ridiculous, since empirically wildly implausible. Thereupon follows the 

thought experiment, explicitly restricted to bodies of the same specific gravity.648 The presentation of 

the thought experiment itself is clearly modelled on the earlier recapitulation in the postils to Rocco. 

However, it is no longer preceded by the limited argument for two equal bodies. Apparently, Galileo 

had become so confident in his understanding that he no longer thought that he needed this 

preliminary situation, which had served him so well to unravel the conundrum. The argument itself is 

also presented in a tighter form, apparently the result of a conscious rewriting, but the crucial premise 

on the mediativity of natural speeds is again introduced on the basis of exactly the same explicitly 

dynamical considerations. 

 After the presentation of the reductio argument follows a discussion between Simplicio and 

Salviati, which Galileo uses to convey the same crucial message as in his earlier reprimand against 

Rocco. The presentation is again much more streamlined, thereby loosing some of its earlier 

forcefulness, but there is an interesting novel feature, which I have emphasized in the text: 

 
SIMP. I find myself in a tangle, because it still appears to me that the smaller stone added to the 

larger adds weight [peso] to it; and by adding weight, I don’t see why it should not add speed to it, 

or at least not diminish its speed in it. 

                                                 
647 It is interesting to note that also many of the passages on infinity in the first day of the Discorsi were already contained in 

these postils, which as a result provide a fairly extensive sketch of the discussions in this first day. 
648 This limitation is explained in section 8.1.2. 
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SALV. Here you commit another error, Simplicio, because it is not true that the smaller stone adds 

weight [peso] to the larger. 

SIMP. Well, that indeed is quite beyond my comprehension. 

SALV. It will not be beyond it a bit, when I have made you see the equivocation in which you are 

floundering. Note that one must distinguish heavy bodies [gravi] put in motion from the same 

bodies in a state of rest. A large stone placed in a balance acquires weight [peso] with the 

placement on it of another stone, and not only that, but even the addition of a coil of hemp will 

make it weigh [pesar] more by the six or seven ounces that the hemp weighs [peserà]. But if you 

let the stone fall freely from a height with the hemp tied to it, do you believe that in this motion the 

hemp would weigh on [graviti sopra] the stone, and thus necessarily speed up its motion? Or do 

you believe it would retard this by partly sustaining the stone? 

We feel weight [sentiamo gravitarci] on our shoulders when we try to oppose the motion that the 

burdening weight [peso] would make; but if we descended with the same speed with which such a 

heavy body would naturally fall, how would you have it press and weigh on us [graviti sopra]? Do 

you not see that this would be like trying to lance someone who was running ahead with as much 

speed as that of his pursuer, or more? Infer, then, that in free and natural fall the smaller stone does 

not weigh upon [non gravita sopra] the larger, and hence does not increase the weight [peso] as it 

does at rest.649 

 
First notice the complete reversal with respect to the earlier presentation of the thought experiment in 

De motu.650 There the reductio argument was immediately followed by the question: why would the 

bodies change speed on being tied together? Here we are confronted with the opposite question: why 

wouldn’t they? But most importantly, the question is now followed up with an answer. It seems that it 

is only now, when he is in the position to dismantle the conundrum, that Galileo dares to bring it fully 

into the open. Now he can play his favourite argumentative game of first completely destabilizing his 

opponent’s prior convictions by making him admit what he seemingly has to deny, followed upon by 

the presentation of his own alternative view which enables him to restore coherence in at least the 

reader’s mind (if not necessarily the opponent’s). 

 The innovation with respect to the treatment in the postils to Rocco is subtle but of the utmost 

importance.651 Whereas in the earlier exposition, Galileo merely claimed that the balance could not be 

used to measure the weight of falling bodies, he now sees a distinction within these bodies themselves. 
                                                 
649 Opere VIII, p. 108. (Transl. from Galilei 1974, pp. 67-68.) 
650 Cf. chapter 7, section 7.3.2. 
651 Another innovation introduced in the Discorsi is the example of the lance, which seems to open up Galileo’s insight in 

action-reaction to a more general treatment of impact. Interestingly enough, Galileo indeed takes up the very same example 

later in the fourth day when he discusses the differences in impact of projectiles depending on the state and characteristics 

(elastic vs. inelastic) of the thing struck. At the same time, this treatment clearly shows the limitations of Galileo’s 

understanding of the generality of action-reaction, as in this context he remains almost completely (but only almost!) silent 

on the effect that the impact has on the motion of the projectile itself. (Opere VIII, p. 291.) 
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That is, he explicitly moves from a limitation in the model to an essential difference in the target 

system. We would say: either a body’s weight is used in accelerating it, or in pressing down on the 

balance which resists its motion, but it cannot do both things simultaneously. We will see in below 

how we can impute to Galileo something rather similar on the basis of his treatment of fall in a dense 

medium.652  

 At this point, we witness how a peculiar feature of a model of intelligibility (its inapplicability) 

is transferred to the world. This feature can now become one of the immediate characteristics that the 

things in the world “show themselves.” Of course, one first has to be taught to see (or feel) this fact – 

through thinking through the thought experiment – but once one has learned to notice it, it becomes 

one of these incontestable experiences that can back up explanations of more complicated phenomena. 

This is of course not to deny that learning how to exploit this fact in explaining further phenomena 

takes a lot of hard work, which it finally would take someone of the stature of Newton to fully 

accomplish. Yet, we will see in sections 8.2 and 8.3 how Galileo himself already made some 

preliminary attempts in such a direction. 
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 One thing that has puzzled some scholars, such as Alexandre Koyré, is Galileo’s explicit 

restriction of the thought experiment to bodies of the same material.653 After all, he wants to assert that 

the conclusion should be valid for all kinds of bodies, and apparently there is nothing in the thought 

experiment which seems to necessitate such restriction. Instead he only removes this limitation further 

on in his discussions, upon introducing the extrapolation argument for bodies falling through media of 

ever greater rareness.654 So why not use the thought experiment to reach his intended goal at once? 

There are a few possible lines an answer might take. One of these stresses the historical development 

of Galileo’s own ideas.655 The chosen order of presentation in the Discorsi could be seen as a simple 

recapitulation thereof. As we have seen, this is the way in which the presentation in the postils was 

fashioned. Since we can find more or less the same structure of presentation in the Discorsi, it seems 

that this could be at least part of the explanation. However, Salviati explicitly stresses that the 

conclusion of the thought experiment is only valid for bodies of the same specific gravity. 656 

Apparently, Galileo didn’t see this as merely a historically contingent limitation. If we can understand 

the reason behind this limitation, we would be in a much better position to understand the status of 

Galileo’s thought experiment within his own thinking. 

                                                 
652 Cf. section 8.1.3. 
653 Cf. Koyré 1968, p. 49. 
654 Cf. chapter 6, section 6.2.2. 
655 This is the answer given by Koyré himself. 
656 Opere, VIII, p. 109. 
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 It is useful to go back for a moment to some of the discussions in chapter 7. In commenting on 

Galileo’s failed attempt at justifying the equal speeds of fall of bodies of the same material, I noted 

that such equality would only follow if it were assumed that these bodies would already have the same 

speed of fall in the void – a fact which could not be proven by Galileo’s hydrostatic considerations, 

but which could by the thought experiment.657 Given that the thought experiment can prove this 

equality of speeds in a void, Galileo’s hydrostatical analysis of the effect of a medium shows that its 

conclusion is still valid in a medium.658 And Galileo still uses hydrostatics as a means to analyze the 

effects of a medium in the Discorsi.659 It is thus undeniable that on Galileo’s own understanding of the 

situation the conclusion of the thought experiment is valid for all kinds of media (dense or vacuum) 

only if the bodies have the same specific gravity. His argumentative strategy moreover does not allow 

him to single out the void before he has proven its possibility, and he will do this only further on in the 

first day. To summarize: Galileo limits his thought experiment to bodies of the same specific gravity, 

because he knows that only then the conclusion of the thought experiment is valid in all contexts. 

 It could be retorted that nothing in the thought experiment itself justifies such limitation. This 

is true, due to the negligence of the effects of a medium in its set-up. But again, this is explainable if 

we take into account Galileo’s argumentative strategy, which consists in first analysing the dynamical 

role of the weight of a falling body, and only afterwards the role of the medium. However, it is clear 

that he himself knew very well what the effects of a medium were. Hence, without having the aims to 

justify this at that point of his presentation, he was conscious of the need to limit his thought 

experiment to bodies of the same specific gravity. 

 This analysis clearly shows that Galileo’s thought experiment does not function in an 

argumentative vacuum. Some factors that are not thematized in the thought experiment itself remain 

operative in limiting its scope. That these factors are not thematized, and that yet Galileo is clearly 

conscious of their relevance for the situation, demonstrates the function the thought experiment had 

for him. He is not so much interested in proving semi-empirical regularities, since that would imply 

that he should have taken into account all factors known to be relevant, as that he is concerned about 

understanding how weight functions as a dynamical factor. And the latter analysis is most perspicuous 

in the case of bodies of the same specific gravity, since for them the effect of the medium can be 

neglected. (When the bodies would differ in specific gravity, their weight will no longer be affected in 

a proportionally similar way by a medium, which would complicate what would happen when they 

were to form a compounded body.) 

                                                 
657 Cf. chapter 7, section 7.2.2 and 7.2.3. 
658 This implies that the thought experiment is not rendered superfluous by the hydrostatical analysis, as is claimed by 

Clavelin 1968, p. 334, n. 12. At this point of the discussions, without taking into account the extrapolation argument, it is still 

essential to guarantee the equality of speed of fall in the void. 
659 This use might seem problematic from some perspectives, and it could even be claimed that it is outright inconsistent – I 

will discuss this issue in section 8.1.3. 
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 After having presented the thought experiment and his claim that in a void all bodies would 

fall with the same speeds, Galileo goes on to explain why we do not observe this equality in dense 

media.660 The explanatory scheme is immediately recognizable: the primary effect of a medium is to 

subtract from the weight of an immersed body, following Archimedean hydrostatics. 661  The re-

emergence of this framework within the Discorsi raises some problems for Galileo, which he nowhere 

explicitly tackles, but which he tries to circumvent in his presentation. 

 The guiding idea behind Galileo’s explanation is simple. Assuming the empirically suggested 

equality of speeds in a void, the alleviation effect of a medium serves as a measure for the way in 

which this speed is affected by the medium. The only innovation with respect to De motu thus seems 

to be the assumption of equal speeds in a void. But why would the ratio between a body’s weight and 

an equal volume of the medium’s weight serve as a measure for the way the body’s speed is affected, 

if this speed is not caused by the body’s weight in the first place? How can Galileo justify this 

reappearance of weight as a dynamic factor after having discarded its role? The De motu explanation 

of the effect of a medium sits uncomfortable within the Discorsi.662 

 It is very improbable that Galileo would not have noticed the tension within his discussions in 

the first day. That he nevertheless extensively discusses this analysis of the medium’s effect testifies to 

the fact that he must at least have been satisfied with its empirical plausibility. In introducing this 

analysis he moreover briefly touches on this problematic issue: 

 
If we then assume the principle that in a medium no resistance exists at all to speed of motion, 

whether because it is a void or for any other reason, so that the speeds of all moveables would be 

equal, we can very consistently assign the ratios of speeds of like and unlike moveables, in the same 

and in different filled (and therefore resistant) mediums. This we shall do by considering the extent 

to which the heaviness [gravità] of the medium detracts from the heaviness [gravità] of the 

moveable, which heaviness is the instrument by which the moveable makes its way, driving aside the 
                                                 
660 Cf. already chapter 6, section 6.2.3.  
661 Galileo nowhere explicitly differentiates between buoyancy and a medium’s frictional effect. Nevertheless, Clavelin 1968, 

pp. 331-353 (especially pp. 342-343), has claimed that it is possible to discern a coherent distinction between these effects in 

Galileo’s treatment of them. In the present paper, I will not try to decide the hard question whether this is truly possible and 

justified (which would also involve a careful reading of the treatment of the effect of a medium as it is presented in the postils 

to Rocco). I will rather take a necessary first step towards a satisfactory answer: to ascertain the different status (with respect 

to the earlier De motu treatment) that attaches to the buoyancy effect after Galileo reached his new understanding of weight 

as a dynamic factor through rethinking the thought experiment.  
662 The tension was already eloquently summarized by Dijksterhuis 1922, p. 233: “by subtracting the upward pressure, the 

effect of the medium has been taken into account; it is now as if we were again in a void, but with a lighter body. But this is 

supposed to fall as fast as the heavier…” (my translation). 
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parts of the medium. No such action occurs in the void, and therefore no difference in speed is 

derived from different heaviness.663 

 
The description is suggestive, but a little too cryptic to impute to Galileo a definite solution to the 

tension. Yet, if we remember how he made intelligible the non-operativeness of absolute weight in 

free fall, we can see how this is already constraining his attempts at such a solution. It is entirely 

coherent to assume that weight again becomes operative at the moment that a body encounters a 

medium in its fall, since the parts of the medium are at rest and as a result truly resistive – there is 

something for the body at which it can weigh down.664 

 The remaining puzzle resides in the fact that this should have an effect at the body’s speed. 

This does suggest that whatever it is that is operative in giving a body its downward motion, it is 

somehow intimately related to weight without being identical with it. Either it is giving a body its 

downward motion (and in such a way that all bodies receive the same speeds), or it is giving it weight 

by which it can push aside the parts of the medium. In the latter case, the fact that it gives the body 

weight also implies that it gives the body less of its downward motion.  

 
The medium … opposes that transverse motion now with less, and now with greater resistance, 

according as it must be slowly or swiftly opened to give passage to the moveable … . This means 

some retardation and diminuation in the acquisition of new degrees of speed… .665  

 
Apparently, a body can also be at rest and in motion at the same time. The distinction between moving 

bodies and bodies at rest is only an absolute distinction when we neglect the presence of a resisting 

medium. But this latter conclusion remains unsaid in the Discorsi.  
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 One striking fact about Galileo’s presentation in the first day remains to be mentioned: the 

almost casual treatment of the accelerated character of free fall. It is true that when treating the 

frictional effect of a medium he cleverly exploits this acceleration, but the overall impression is 

undeniably that Galileo seems more concerned about the fact that in a void all bodies have the same 

speeds, i.e. that there is no direct correlation between (specific) weight and natural motion, than he is 

about the accelerated character of that motion.  

                                                 
663 Opere VIII, p. 119. (Transl. from Galilei 1974, p. 78. My emphases.) 
664 Damerow et al. 2004, pp. 269-70, claim that Galileo simply takes over the older De motu theory with the addition of the 

proposition that in a vacuum all bodies fall with the same speed – implying that his dynamical thinking has remained 

basically unchanged in between the two treatises. It is clear that I cannot accept such a conclusion. 
665 Opere VIII, p. 119. (Transl. from Galilei 1974, p. 78.) 
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 It is important to remind ourselves of the fact that from the beginning Galileo was presented 

with different challenges in his attempts at developing a new science of motion. As was already 

mentioned in chapter 4, Galileo’s hydrostatic model seems to have room only for uniform motions. 

The tension is created by the idea that causes and effects must be proportional.666 That a body’s speed 

changes during natural motion, whereas its weight remains constant, further complicated Galileo’s 

attempt at understanding weight as a dynamic factor; i.e. it is another fact that sits very uneasily with 

his original model of intelligibility. 

 Of course, by the time of the Discorsi, Galileo had abandoned his hydrostatic model for free 

fall, and he was strongly convinced of the fact that acceleration was an essential characteristic of 

natural motion. This conviction seems to have been mainly the result of the discovery that he could 

give an exact mathematical description of this acceleration.667 Winifred Wisan and Paolo Galluzzi 

have shown how Galileo at first tried to come to grips with this acceleration through the exploitation 

of his understanding of motion on an inclined plane.668 Such an attempt had appeared destined to fail 

however, because it seemed that it could not accommodate the fact that this acceleration should be 

independent of weight. 669  By the time of the Discorsi, he had not come up with a satisfactory 

understanding of acceleration, and it seems to be accepted there without further ado as a basis fact of 

nature: 

 
A heavy body has from nature an intrinsic principle of moving toward the common center of heavy 

objects (that is, of our terrestrial globe) with a continually accelerated movement, and always 

equally accelerated, so that in equal times there are added equal new momenta and degrees of 

speed.670 

 
In the introductory discussions of the third day, Galileo moreover has Salviati famously declare that 

“for the present, it suffices our Author that we understand him to want us to investigate and 

demonstrate some attributes of a motion so accelerated (whatever be the cause of its 

acceleration)…”671 That Galileo truly saw this only valid “for the present,” and remained concerned 

about providing causal analyses of natural phenomena – albeit having changed the criteria about what 

counts as a successful analysis – will become clear when in sections 8.2 and 8.3 we discuss some 

fragments that postdate the Discorsi and where Galileo explicitly engages in such causal analysis. This 

is further proven by the fact that Galileo at times also tried to indicate that his constant acceleration (at 

least) didn’t have to be in contradiction with the proportionality between cause and effect. 

                                                 
666 Which is a crucial part of Galileo’s causal analyses, as we have seen in chapter 5, section 5.4.1. 
667 Cf. chapter 6, section 6.1.4. 
668 Wisan 1974, pp. 222-229; Galluzzi 1978, especially chapter 4 of the second part. 
669 Cf. infra section 8.3, to see how Galileo returned to this line of research after having completed the Discorsi. 
670 Opere VIII, p. 118. (Transl. from Galilei 1974, p. 77.) 
671 Opere VIII, p. 202. (Transl. from Galilei 1974, p. 159.) 
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When I consider that a stone, which falls from some height starting from rest, constantly acquires 

new increments of velocity, why should I not believe that these additions are made in the simplest 

and easiest manner of all? The moveable remains the same, as does the principle of motion. Why 

should the other factors not remain equally constant? You will say: the velocity then remains the 

same. Not at all! The facts establish that the velocity is not constant, and that the motion is not 

uniform. It is necessary then to place the identity, or if you prefer the uniformity and simplicity, 

not in the velocity but in the increments of the velocity, that is, in the acceleration.672  

 
The constant effect shows in the acceleration, not in the velocity of natural motion. The constant cause 

somehow lies in the falling body and is connected with the effect as a “principle of motion”. That the 

cause lies in the falling body irrevocably brings to mind the body’s matter – certainly if we take into 

account Galileo’s scorn for explanations through “occult” properties. And as we already have seen, at 

the beginning of his Mecaniche Galileo defined a body’s weight to be caused by its matter.673 Again, 

there seems to be “something” about the body that is both responsible for its natural motion downward 

and for its weight – but as the thought experiment has by now taught, without being simply 

identifiable with the latter. 

 Both the accelerated character of free fall and the interaction with a dense medium inevitably 

bring a question to the fore that was left unanswered by the thought experiment: granted that it is 

intelligible that natural motion is not determined by weight, it is only natural to further inquire into 

what it is that does determine its character. At first sight the thought experiment could not offer any 

further help on this score. It had anyway always been presented without taking into account 

acceleration. Yet in the next section we will see how it played a role in Galileo’s final efforts, in which 

he came close to a satisfactory understanding of the phenomenon of free fall. 
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 At the closing sections of the Discorsi, Galileo repeats a promise which he had already 

expressed earlier in the fourth day: that he will also discuss the phenomenon of percussion, by which a 

moving weight exerts a much greater power on any resistance than does a body which is merely 

weighing down.674 On this topic Galileo admits, through the intermediary voice of Salviati, to have 

“long remained in … shadows”, and only “after he had spent thousands of hours during his life in 

                                                 
672 Opere II, p. 262. (Transl. from Westfall 1971, p. 5. My emphases.) This is a passage from a first draft of the third day of 

the Discorsi, which is commonly dated around 1609. 
673 Opere II, p. 159. Cf. chapter 7, section 7.4.1. 
674 Opere VIII, pp. 292-293, 312-313. 



 238 
 

theorizing and philosophizing about this, he had arrived at some ideas very distant from our first 

conceptions”.675 Galileo however was never able to complete the projected fifth day of the Discorsi in 

which he would live up to that promise, but among his manuscripts are contained a dialogue which 

was intended to that end as well as some further notes on the topic.676 

 That these attempts to come to grips with the phenomenon of percussion in part postdate the 

publication of the Discorsi implies that Galileo could tackle the problem starting from the dynamical 

insights which he had already reached within the postils to Rocco and the first day of the Discorsi. As 

we will see, by bringing together the problems treated in these works with the problem of percussion, 

he was able to come very close to a more or less satisfactory solution to the remaining puzzles within 

his understanding of free fall. These leads would afterwards be further taken up by Evangelista 

Torricelli, who had assisted Galileo in the final months of his life. In the first two subsections, I will 

first offer a summary of an important conclusion that Galileo reaches in his notes on percussion and 

then provide a new interpretation of how this conclusion became integrated in Galileo’s attempts at 

developing a satisfactory dynamics for free fall. In the third subsection, I will finally show how we can 

see the thought experiment still driving these very last investigations undertaken by Galileo.677 

 The first traces of Galileo’s involvement with the problem of percussion date from the time of 

Le mecaniche. When he comes back to the problem at the end of his life, he still tries to subsume it 

under his analysis of the mechanical machines. This implies that he tries to understand the mechanism 

by which the force of the weight of the body is multiplied so that it can give rise to potentially useful 

effects by means of the concept of (mechanical) moment. It will be remembered that a body’s moment 

expresses its tendency for downward motion, and that it arises from its heaviness combined with either 

its relative position (with respect to the fulcrum of a lever), or with its velocity.678 It is clear that in the 

case of percussion velocity will be the relevant parameter.  

 The main part of the dialogue on percussion consists in the exposition of several possible ways 

of measuring the moment of percussion of a falling body. The recurring theme during these 

discussions is the infinity of this moment. One proposal is to take as measure the static weight that 

drives a pole as far in the ground as does the blow of a percussant body. Galileo explicitly uses the 

term “dead weight” for this measuring body which operates through its heaviness alone. The problem 

with this proposal is that the measure is dependent on the resistance of the pole – the more resistant it 
                                                 
675 Opere VIII, p. 293. (Transl. from Galilei 1974, p. 242.) 
676 See Drake 1978, chapters 20 and 21, for the historical circumstances surrounding both the announcement and non-

delivery of the fifth day. 
677 Galileo’s theory of percussion has not received much attention in the literature. Yet both Westfall 1971, chapter 1, and 

Galluzzi 1979, chapter 7 of the second part, contain very useful and insightful discussions, as do Moscovici 1967 and de 

Gandt 1987 who both also discuss Torricelli’s exposition of this theory. Torricelli might provide an important link between 

these latest thoughts of Galileo and the further development of seventeenth-century mechanics, but this topic falls outside the 

scope of the present thesis. 
678 Cf. chapter 7, section 7.4.1. 
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is, the proportionally heavier the dead weight must be to have the same effect as the falling body. Yet, 

although this procedure is not appropriate as a uniform measure for the moment of percussion, it 

already teaches Galileo something important. If a body has fallen on the pole and driven it a certain 

distance in the ground, and if we then let it fall again on the pole, its second blow will drive it still 

further in the ground (although a smaller distance). The same is obviously not true of the dead weight: 

it operates by pressing, which effect can not be accumulated once the pole has been driven a certain 

distance. No matter how long it will lie on top of the pole, its effect is already completely exhausted. 

This implies that the effects of percussion and of a dead weight are truly incomparable. Any resistance 

which is not infinite will always give way to a blow of a percussant body, which thus can be said to 

have an infinite moment. 

 Another proposal to measure the moment of percussion is to use a system consisting of two 

weights connected by a rope over a pulley, one weight lying on an inclined plane, the other hanging 

freely along the vertical side of the plane. By letting the free body fall over a certain distance until it 

pulls the other body through the rope, the moment of its percussion can be measured by determining 

the distance over which the resisting weight is moved on the inclined plane. The necessary conclusion 

is again that any weight will be lifted by a falling body, since the counterweight is initially at rest, and 

thus has a moment which is zero compared to that of the moving body. 

 Both instances make clear that the infinity of the moment of percussion is actually the result of 

the incommensurability of the effect of a falling body with the effect of a dead weight. This 

incommensurability can be understood by considering the role played by time. As was already clear 

from the case with the dead weight pressing on the pole, the effect of its moment is exhausted in a 

single instant. The same is obviously not true of the falling body, which can accumulate its moments 

of gravity before actually hitting the pole.679 In one of the fragments attached to the dialogue, we find 

the following summary of the situation by Galileo, where he discusses the differences between a body 

that presses against another and a body that strikes it: 

 
…the one that moves [a thing] by pressing without striking, and the other that acts by striking. The 

mover that operates without impact moves only a resistance which is less, though [it may be] only 

insensibly [less], than the power [virtù] of the pressing heaviness; but that will move it through an 

infinite distance, accompanying it always with its same force. That which moves by striking moves 

any resistance, thought [this may be] immense; but [moves it only] through a limited distance. 

Hence I consider these two propositions true: that the percussent moves an infinite resistance 

through a finite and limited interval, while the pressing [force] moves a finite and limited 
                                                 
679 The possibility of such accumulation is a belated consequence of Galileo’s initial choice to conceptualize moment as the 

combination of the effects of weight and speed; i.e., moment is not merely a restriction that is placed on the effect of a 

constrained weight but something that adds to its effect. The former possibility could also have sufficed to make sense of the 

pseudo-Aristotelian proof of the law of the lever as given in Le mechaniche, but it would have excluded the possibility of 

including percussion as a mechanical effect. 
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resistance through an infinite interval; hence to the percussent, the interval is proportionable, and 

not the resistance, while to the pressing [force] the resistance, and not the interval [is 

proportionable]. These things make me doubt whether Sagredo’s question has an answer, as one 

that seeks to equate things that are incommensurable; for such I believe are the actions of 

percussion and of pressing.680 

   
Hence, time is a potential measure for the moment of percussion, but (static) weight is not, whereas 

weight is a measure for the moment exercised by gravity alone, but time is not. 
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 The intimate relationship between moment of percussion and time is a conclusion of 

potentially great moment.681 Galileo in his definition of naturally accelerated motion had already 

proclaimed that since “the closest affinity holds between time and motion,” the uniformity of 

acceleration had to be understood as the fact that “in any equal times, equal additions of swiftness are 

added on.”682 Obviously, Galileo also reflected on the relationship between his analysis of the moment 

of percussion and his work on naturally accelerated motion. In another note appended to the dialogue 

on percussion, we find the following passage: 

 
The moment of a body in the act of percussion is nothing but a composite and aggregate of infinitely 

many momenta, each of them equal only to a single moment, either internal and natural per se, as is 

that moment of its own absolute weight [gravità assoluta] which it eternally exercises when placed 

on any resistant body, or else extrinsic and violent, as is that moment of the moving power. Such 

momenta go accumulating during the time of  motion of the heavy body from instant to instant with 

equal increments, and are stored therein, in exactly the way that the speed of a falling body goes 

increasing; for as in the infinitely many instants of a time, however short, a heavy body goes ever 

passing through new and equal degrees of speed, always retaining those acquired in the previously 

elapsed time, so also in the moveable those momenta (either natural or violent, conferred on it by 

nature or by art) go conserving themselves and compounding from instant to instant, etc.683 

 
As has been stressed by Paolo Galluzzi, Galileo refrains here from explicitly stating that we are 

dealing with a direct causal relationship between the accumulation of the momenta (which must be 

here understood as momenta of gravity, as indicated by Galileo himself) and the acceleration of the 

motion.684 He “merely” points out a striking analogy between both phenomena. According to Galluzzi 
                                                 
680 Opere VIII, p. 343. (Transl. from Galilei 1974, pp. 303-304.)  
681 Despite my different conclusion, for the following I am much indebted to the discussions in Galluzzi 1979. 
682 Opere VIII, pp. 197-198. (Transl. from Galilei 1974, p. 154.) 
683 Opere VIII, p. 344. (Transl. from Galilei 1974, p. 304.) 
684 Galluzzi 1979, p. 403. 
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this must be attributed to the independence of acceleration from weight – how could this fact have 

possible been squared with such a causal relationship? 

 Since the notes we are discussing here are among the last of Galileo’s life, it is possible that he 

had no time left to think this problem through, and was forced to end with the cautionary tone that is 

discerned by Galluzzi. Given his earlier analyses of the thought experiment, he nevertheless had all the 

elements at his disposition to come up with a solution. It was already concluded there that adding extra 

matter does not press on a falling body, and that therefore no extra speeds are added – although such a 

body with greater gravity will have to “tend more downwards”. Seeing the thought experimental 

situation through the mechanical conceptual apparatus which Galileo is exploiting in his analysis of 

percussion, it is clear that this extra matter does add moment of gravity. This extra moment will then 

also be accumulated during the time of fall. And it is indeed undeniable that a heavier body will have a 

greater moment of percussion at the time it meets a resistance. What remains is the question why the 

greater moment of gravity has its effect in a greater percussion, but not in a greater increment of speed. 

That Galileo knew how to understand this, is evidenced by the following fragment, again from the 

notes appended to the dialogue on percussion. I will quote a long part, to give a taste of Galileo’s 

knack of extracting physical insight from everyday phenomena.  

 
He who shuts the bronze door of San Giovanni will try in vain to close them with one single push; 

but with a continual impulse he goes impressing on that very heavy movable body such a force 

[forza] that when it comes to strike and knock against the jamb, it makes the whole church tremble. 

From this one sees how there is impressed in moveables – and the more, the heavier [più gravi] 

these are – and how there is multiplied and conserved in them the force [forza] that has been 

communicated to them over some time.  

A similar effect is seen in a great bell, which is not set in strong and impetuous motion with a 

single pull of its rope, nor with four, or six [pulls], but [is] with a great many. These being long 

repeated, the final [pulls] add force [forza] to that acquired from the preceding pulls; and the 

thicker and the heavier [grave] the bell shall be, the more force [forza] and impetus it acquires, this 

being communicated to it in a longer time and by a larger number of pulls than are required for a 

small bell, into which impetus is readily put, but from which it is also readily taken away, this 

[small bell] not drinking in, so to speak, as much force [forza] as the larger one.685 

 
If we are allowed to translate this insight to the case of falling bodies, we finally reach a completely 

coherent understanding of the phenomenon of free fall. The body’s gravity is continually 

pulling/pushing the body down, adding increments of speeds, yet the heavier the body, the stronger the 

                                                 
685 Opere VIII, pp. 345-346. (Transl. from Galilei 1974, pp. 305-306.) A comparable passage, also dealing with the sounding 

of a great bell is found in the first day of the Discorsi (Opere VIII, p. 141). The example of the bell actually goes back to De 

motu, where it was used to argue that it is not mysterious that a motive quality can be imparted into a body where it resides 

for some time. 
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pulls/pushes shall have to be. More matter adds more moment, but not more speed, since now there is 

also more matter that must be put in motion. Are we allowed to translate this insight? I would urge that 

Galileo was moving towards a position in which this made perfect sense. Have another look at the 

previously cited fragment in which the analogy between the accumulation of momenta of gravity and 

increments of speeds was expounded, and notice how Galileo is clear on the fact that it is indifferent 

whether these momenta are natural or violent. This reading is further confirmed by another fragment 

which was dictated by the by then blind Galileo’s to Viviani in which he compares the action of 

gravity in natural motion with the wind which moves a boat.686 

 Further indirect proof is provided by the fact that Galileo was not as reluctant as suggested by 

Galluzzi to consider the continuous action of the momenta of gravity as the cause of the acceleration 

in free fall. On introducing the system with the two connected bodies on an inclined plane as a way to 

measure the moment of percussion, Galileo also considers a special case: what happens if the bodies 

have the same weight? The body moving along the vertical is in free fall until it snaps the cord. At this 

point the weights of both bodies cancel out, and the combined system has a speed conferred to it by 

the moment of percussion of the first body. Given that there now is equilibrium of forces, this speed 

will be equably conserved. Significantly, Galileo himself explicitly likens this situation to what 

happens on a perfectly horizontal plane. 687  Even more suggestive, he then adds the following 

explanation for this situation, linking it with the acceleration which gave the percussion its moment: 

 
Now it is evident that this degree of speed will not go on increasing when its cause [cagione] of 

increase is taken away, this being the weight [gravità] of the descending body itself; for its weight 

[gravità] no longer acts when its propensity to descend is taken away by the repugnance to rising 

of its companion of equal weight [peso].688 

 

                                                 
686 Opere VIII, pp. 441-442. Galluzzi also cites this fragment as evidence for the fact that Galileo in the end came close to the 

kind of view just expounded in this paragraph. He also cites from writings of Torricelli and Baliani where a similar view is 

expressed. (Galluzzi 1979, pp. 323-326.) The example of the boat again has a long history. In his reply to the reaction of his 

Aristotelian opponents to his Discourse on floating bodies, which he wrote together with Benedetto Castelli, Galileo explains 

the effect of violent motion where the mover has the opportunity to stay in contact with the moved body by analogy of the 

wind that keeps on adding extra speed to the sailing ship. As noticed by Michele Camerota and Mario Helbing, Galileo 

borrows the example of the ship from the writings of the Jesuit Benito Pereira, who used it in a rather similar context in a 

book that was referred to by Galileo in his De motu (Camerota and Helbing 2000, p. 356). We have by now already noticed a 

few times how Galileo returns over and over again to the same simple analogies, but adds new layers of meaning to them 

through his evolving conceptual structures and physical insights. This offers a fascinating glimpse of the working of Galileo’s 

imaginative reasoning. (In the earlier occurrences of the ship example, e.g., this is not yet linked with the natural acceleration 

of falling bodies, but on the contrary with the violent extrusion of a body lighter than the medium in which it is moving!) 
687 This confirms the analysis of Galileo’s proto-inertial principle in chapter 6, see especially section 6.1.5. 
688 Opere VIII, p. 337. (Transl. from Galilei 1974, p. 297.) 
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A similar view is also contained in the fragment where Galileo compared the action of gravity with the 

wind blowing in the sail of a boat: in both cases the motive force acts to add extra speed on a body 

which is already in motion due to the earlier action of the force – the accelerated character is thus 

explained as the joint effect of a constant force and the conservation of motion, both linked with a 

uniform flow of time. 

 If we take all this together, the following picture emerges: at every instant of time the body’s 

gravity gives rise to a moment of gravity, which in its turn gives the body a degree of speed – which 

will be independent of the particular strength of this moment. Both these momenta and degrees of 

speed are conserved during the next instants of time, respectively explaining the percussive effect and 

the natural acceleration. This also provides an alternative explanation for Galileo’s reluctance about 

claiming a direct causal relationship between the accumulation of momenta of gravity and the degrees 

of speed, which merely were said to increase in the same way. To claim such a direct causal 

relationship would indeed be too hasty, since this would not take into account the independent 

conservation of momenta and speeds – or to put it differently, this would ignore the crucial role 

played by time. Yet, this does not preclude that each individual moment is the cause of each individual 

degree of speed. 

 

� ������ D�
�� ��
�� ��	�����������
�	�

 

 It is clear that the foregoing attribution of these ideas to Galileo is in part a reconstruction on 

the basis of what may seem rather scant information. The main reason for doing so lies in the intimate 

link of these ideas with the lessons learned from the thought experiment. Without taking the latter into 

account as a natural source for the further development of Galileo’s dynamical thinking, these latest 

ideas might indeed appear as a loose set of fragmentary insights.689  

 There are a few places where we can clearly detect the influence of the way Galileo rethought 

his thought experiment in his attempts to ascertain the moment of percussion. In at least two passages 

in his dialogue on percussion, there is a direct return to the analysis of weight that he had attempted in 

his postils to Rocco. At one point he describes an attempt to measure percussion involving a balance 

with at one end a counterweight and at the other end a bucket filled with water, under which was hung 

another empty bucket. The upper bucket was then pierced with a hole, and the idea was that the 

percussive effect of the water could then be ascertained through the extra counterweight that had to be 

added. Yet a complication arises because the water, while it is in the air in between both buckets, 

 
does not weigh [non gravita] at all against either upper or lower bucket. Not against the upper, for 

the parts of water are not attached together, so they cannot exert force [far forza] and draw down 

on those above, as would some viscous liquid, such as pitch or lime, for example. Nor [does it 

                                                 
689 As implied by Westfall 1971, p. 39; Wisan 1984, p. 286.  
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weigh] against the lower [bucket], because the falling water goes with continually accelerated 

motion, so its upper parts cannot weigh down [gravitare] or press against its lower ones. Hence it 

follows that all the water contained in the jet is as if it were not in the balance.690 

 
It is noteworthy that by now Galileo explicitly stresses that it is the relative acceleration that is of 

importance rather than the speeds, a fact which was not mentioned in the postils (where acceleration 

remained completely out of the picture – although Galileo consciously seems to have left ample room 

for its introduction by always using “degrees of speed”). In a second passage Galileo repeats the 

example of the ball and hand moving down with the same speed.691 

 However, the effect of the thought experiment is much more pervasive: it does not just provide 

a few striking examples, it offers a new way of thinking about weight itself. The use of active language 

is conspicuous throughout the notes on percussion. Galileo continually speaks about a body exerting 

its gravity (“essercitasse sua gravita”692) and about the operation of its gravity (“operando colla 

gravità”693). This is obviously linked with his central goal, i.e. measuring the effect of percussion. But 

is seems that he had now found a way of moving ahead towards this goal,694 precisely because he had 

realized that he had to conceptualize a body’s dead weight (“peso”) as an effect as well. This 

moreover immediately paved the way for a reintegration of this weight in Galileo’s still developing 

dynamical scheme which he is exploring in these notes on percussion. It was only a small conceptual 

step from the realization that the measurement of weight is only possible if there is a continually re-

acting force to the point where we find Galileo explicitly speaking of a body’s “moment of its own 

absolute weight [gravità assoluta] which it eternally exercises when placed on any resistant body”.695 

 The thought experiment thus had provided Galileo with the necessary basis to conceive of a 

body’s weight peculiar non-relation with time. Every body has gravity, which at every moment of time 

generates a moment of gravity. Either this moment of gravity is opposed by a resisting force which 

arises because the body presses which its moment on another body, or a degree of speed is 

                                                 
690 Opere VIII, pp. 324-325. (Transl. from Galilei 1974, p. 285.) 
691 Opere VIII, p. 331. 
692 Opere VIII, p. 325. 
693 Opere VIII, p. 325. 
694 As already indicated, there is short section in Le mecaniche which deals with percussion, but in it Galileo did not reach 

any interesting results. Torricelli also describes some early experiments of Galileo, which he did in Padua, but which again 

were unable to lead to any unambiguous conclusions (cf. Moscovici 1967, pp. 433-435). We will see in section 8.3.1 how 

Galileo in 1639 wrote to Baliani that he had finally been able to reduce the force of percussion to a very easy explanation. 

The fact that all these developments in Galileo’s thinking postdate the Discorsi argues for the fact that rethinking the thought 

experiment was momentous for Galileo, and that he accordingly had not started doing this at the time of De motu. This is an 

important argument for the more cautious conclusion that I drew in the postscript to chapter 7. 
695 Opere VIII, p. 344. (Transl. from Galilei 1974, p. 304.) 
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generated.696 If the resisting body remained in place, because it is somehow fixed, all the continuously 

arising momenta of gravity will in their turn be continuously annihilated. If the body is not opposed at 

all, the continuously arising momenta will cause a universal uniformly accelerated motion as 

explained in the previous subsection.697 

 Paolo Galluzzi, in his study of the concept of moment in Galileo, has stressed the polysemic 

nature of the term.698 It could refer to an infinitesimal quantity in general, to a body’s tendency to 

motion, and to the more specific concept of mechanical moment. We can see how this provided 

Galileo with the needed latitude that finally opened up the promise of closure at a new level of 

abstraction. The multiple meanings of moment can be tied together in a single conceptual framework 

by paying attention to the physical significance of the parameter time. In Le mecaniche, time also 

played a role in conceptualizing the transformation of moment, but this role remained completely 

interchangeable with space, due to the fact that both sides of the machines are always operated in 

equal times. However, by thinking of percussion as also being a mechanical instrument, this constraint 

must be abandoned. Time suddenly gains in physical significance: it is not merely an explanandum, as 

with the isochrony of circular motion, but a causal factor in its own right. Galileo is learning to discern 

mathematical closure in non-constrained systems, thus widening the scope for his new science of 

nature. What he misses, though, is the right kind of mathematical apparatus that would have allowed 

him to really move ahead to exploit this closure. The infinitesimal characteristics of the flow of time 

remained quasi intractable. 
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 The final presentation of Galileo’s mathematical science of motion in the third and fourth days 

of the Discorsi was built upon the definition of uniform acceleration (“equal momenta of swiftness 

added in equal times”) and a postulate that stipulated that “the degrees of speed acquired by the same 

moveable over different inclinations of planes are equal whenever the heights of those planes are 

                                                 
696 The latter generation is an action without a reaction. This is another example of the limited nature of Galileo’s action-

reaction principle (see also supra, note appended in section 8.1.3). This is of course connected with Galileo’s 

conceptualization of gravity as internal to a body, whereas Newton’s gravitational force will have an unproblematic reaction 

in the attraction of the earth by the falling body. (It is somewhat imprecise to refer to the moment of gravity as a force 

internal to the body, since in its pressing and percussion it has an external action on other bodies – however when its effect is 

the addition of a degree of speed its action remains internal and devoid of reaction.) 
697 As is often the case with Galileo, he is not entirely consistent in his terminology, but one can see a fairly general attempt 

to use “peso” exclusively for what we would call static weight, and “gravita” for the underlying dynamical cause. 
698 Galluzzi 1979. 
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equal”699 (cf. figure 8.1). This was one of the first results that Galileo had reached on the basis of his 

treatment of the inclined plane in Le mecaniche.700 As has been shown by Winifred Wisan and Paolo 

Galluzzi, in the period before 1610 Galileo attempted to establish a dynamical explanation for the 

accelerated character of fall that was based upon his concept of mechanical moment.701 The basic idea 

was that the change in moment (as defined in Le mecaniche) on differently inclined planes could 

somehow cause the different accelerations that bodies have on these planes. As explained by Wisan: 

“Thus, Galileo must be thinking here in terms of an increasing velocity which is, at each instant, 

proportional to an increasing momentum, while the latter is, in turn, generated by and in some sense 

proportional to, the static momentum, or the effective weight of the body.”702 This scheme makes 

acceleration dependent on a body’s absolute weight, which explains its abandonment sometime after 

1610. As a result of this change in mind Galileo no longer had the means to prove that the speeds of 

bodies falling along differently inclined planes of the same height would be equal. However, this fact 

was essential to the general structure of the mathematical science of motion that he had built up. There 

seemed to be no other option but to present it as a postulate, “un solo pricipio domanda e suppone 

vero.”703 

 We have already seen how the ideal of a mixed science required that its basic principles would 

be evident and as a result could be conceded by all.704 The presence of this postulated principle 

accordingly presents an important gap in the formal structure of Galileo’s science of motion. He tries 

to compensate for this by introducing a clever experiment with a pendulum. The experiment 

establishes that a bob swinging on a pendulum will always have acquired an amount of momento in its 

downward swing that suffices to bring it back to its original height. This will also be true if we shorten 

the length of the cord at the moment it has reached its lowest point, as a result of which its upward 

path will be steeper (this is achieved by placing a nail perpendicularly under the cord’s point of 

suspension; cf. figure 8.2). But if the bob would have started by swinging down along this steeper path, 

it would also have gone up to the same height (since the height of the swings is always the same for 

the same pendulum). The momenta acquired along different paths are thus the same as long as these 

paths have the same height. But, as Galileo notices, this experiment supposes circular paths, whereas 

the postulate is about inclined planes. His demonstration thus falls “little short of equality with 

necessary demonstration”705 – he cannot render his principle evident and understood by all. 
                                                 
699 Opere VIII, p. 205. (Transl. from Galilei 1974, p. 162.) 
700 Cf. Wisan 1974, p. 162. 
701 Wisan 1974, pp. 222-229; Galluzzi 1979, chapter 3 of the second part. 
702 Wisan 1974, p. 223. 
703 Opere VIII, p. 205. 
704 Cf. chapter 4, section 4.2.2; chapter 7, section 7.6.1. I already quoted Galileo’s statement in the first day of the Discorsi 

that it is “the most admirable and estimable condition of the demonstrative sciences that they arise and flow from well-known 

principles, understood and conceded by all.” Opere VIII, p. 131. (Transl. from Galilei 1974, p. 90.) 
705 Opere VIII, p. 205. (Transl. from Galilei 1974, p. 162.) 
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 This gap implies that Galileo is confronted with the problem that it is not immediately clear 

whether his mathematical demonstrations are actually about the behaviour of physical bodies. It 

signals the lack of an evident principle that would allow him to connect physical events with 

mathematical explanations, as he had earlier done in De motu with the help of the balance. But as he 

was convinced by now, the balance could no longer play this role. In a letter Baliani, written in 1639, 

Galileo admits that the postulate constitutes the weak spot of his new science of motion. However, the 

seventy-five years old man (who had become completely blind by now) continues: 

 
Know, then, that after my having lost my sight, and consequently my faculty of going more deeply 

into propositions and demonstrations more profound than those last discovered and written by me, 

I [instead] spent the nocturnal hours ruminating on the first and simplest propositions, recording 

these in and arranging them in better form and evidence. Among these it occurred to me to 

demonstrate the said postulate in the manner you will in time see, if I shall have sufficient strength 

to improve and amplify what was written and published by me up to now about motion by adding 

some little speculations, and in particular those relating to the force of percussion, in the 

investigation of which I have consumed hundreds and thousands of hours, and have finally reduced 

this to very easy explanation, so that people can understand it in less than half an hour of time.706 

 
Exactly one month later, Galileo proposes to send the completed demonstration to Baliani.707 In a 

letter to Benedetto Castelli, written at the end of the same year, Galileo announces again that he has a 

demonstration for the postulate and tells that he intends to include it in further editions of his 

Discorsi.708 The demonstration was for the first time published in the posthumous second edition from 

1655. 
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 It is clear from the letter to Baliani that Galileo was simultaneously thinking about a possible 

demonstration for his postulate and the problem of percussion. We have seen that in the latter context 

the relation between absolute weight and gravity as a dynamic cause was in the process of being 

significantly restructured. It is accordingly no surprise that the earlier mechanical proof of the 

postulate could find a new appeal in Galileo’s mind.  

 The actual proof of the postulate is preceded by a lemma in which Galileo proves his inclined 

plane theorem, already established in De motu and Le mecaniche.709 There are some clear marks that 

link this new version of the proof with the period after the Discorsi, such as the claim that along the 

                                                 
706 Opere XVIII, p. 78. (Transl. from Drake 1978, pp. 400-401.)  
707 Opere XVIII, p. 95. 
708 Opere XVIII, pp. 125-126. 
709 Cf. chapter 6, section 6.1.1 and 6.1.2. 
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horizontal a heavy body’s impetus for descending is completely “extinguished”. Another conspicuous 

difference with the earlier proof is the absence of the detour via the balance which was suspended 

above the inclined plane. Galileo instead immediately exploits what in Le mecaniche was only 

presented as a confirmation of the validity of the proof, not as an independent proof: the relationship 

between the vertical spaces which two connected bodies traverse when the first moves on the inclined 

plane and the second along the vertical side of the right-handed triangle formed by the inclined plane 

and a horizontal plane (cf. figure 8.3). He argues that in order for there to be equilibrium the body 

along the vertical side must be lighter than the other body in the same proportion as the vertical height 

is shorter than the length of the inclined plane, as this is always the inverse ratio of their respective 

(vertically measured) descent and ascent. Galileo himself explicates that this condition of equilibrium 

is “exactly as is demonstrated in all cases of mechanical movements” – i.e. that “when equilibrium 

(that is rest) is to prevail between two moveables, their speeds or their propensions to motion [le loro 

propensioni al moto] – that is, the spaces they would pass [si passerebero] in the same time – must be 

inverse to their weights [gravita]”.710 Galileo stresses the virtual aspect of the motions with much care. 

Notice moreover that strictly speaking both bodies move with the same speeds as they of necessity 

will have travelled over an equal path in an equal time. One must of course only consider the vertical 

space they would pass, since the moveable “exclusively exercises its resistance” 711  through that 

direction. It is not so much different physical speeds (which are equal) that change the moment of a 

body, but rather the relative direction with respect to the perpendicular of their actual path of motion. 

Galileo further comments that as a result of this, “the lesser weight [peso] …, which exercises its total 

moment in the vertical …, will be the precise measure of the partial moment that the greater weight 

[peso] exercises along the inclined plane”712. 

 At first sight it might seem that Galileo is simply reversing to the old idea that the absolute 

weight of a body is somehow the dynamical cause of its natural motion, as he again is using (static) 

weight as a measure for a body’s moment of descent.713 But if we look back at his earlier treatises 

from the vantage point which had now been reached in his thinking on percussion, it is clear that these 

contained some ambiguities. (And this is exactly what Galileo claims to have been doing. He could not 

think out new abstruse geometrical derivations without actually seeing the diagrams. But his agility of 

mind seems to have been undiminished in all other respects.) To put it a little more precisely: because 

of the conceptual choices that had now unambiguously been made by Galileo, it becomes possible to 

discern different options that were compatible with the earlier treatments. Weight can be a measure for 

                                                 
710 Opere VIII, p. 217. (Transl. from Galilei 1974, pp. 173.) 
711 Ibid. 
712 Ibid. 
713 Although most scholars express this doubt without really endorsing it, Dijksterhuis 1924, pp. 261-264, does not hesitate to 

claim that in this passage Galileo is still reasoning completely within an Aristotelian framework. 
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moment of descent without necessarily being its cause. One can also try to understand both as effects 

of a common cause: gravity.  

 This insight also opened up the leeway to understand why bodies of different weight would 

still undergo the same acceleration in natural motion. Since weight is only measurable for bodies at 

rest, it can at most be a measure for the tendency – the propension – to motion, but not for the actual 

motive effect of gravity. And if this motive effect is to arise, the body with all its bulk must first be put 

in motion. Weight and acceleration are simply distinct effects, related in a different way to their 

common cause. Galileo’s raised awareness of the need to stress the virtual nature of the motions thus 

makes perfect sense.  

 Yet despite this severing of the link between weight and motion, Galileo in the demonstration 

of his postulate still measures the moment of gravity of a body on an inclined plane through the weight 

necessary to equilibrate the body. This need not have bothered him much, however. He is not so much 

interested in the differences (or similarities) between bodies of different weight along the same path, 

but rather in the differences between the same body when falling vertically and along an inclined plane 

of the same height. After all, the postulate states that “the degrees of speed acquired by the same 

moveable over different inclinations of planes are equal whenever the heights of those planes are 

equal.”714  

 Since a body obviously does not change its bulk, the fact that it will exert a precisely measured 

smaller moment of moment along the inclined plane results in a different rate of acceleration: 

“Whatever the impetuses at the beginning [nella prima mossa], that proportionality will hold for the 

degrees of speeds gained during the same time, since both [impetuses and speeds] increase in the same 

ratio during the same time.”715 The demonstration of Galileo’s postulate then exploits this measure for 

the reduction of the acceleration to show that the body will acquire the same speeds when falling 

vertically and obliquely along the same height. The specifics of this demonstration, which also 

depends on the times-squared relation, need not bother us here. 

 Most scholars discussing this proof have assumed, following Thomas Settle, that Galileo here 

simply dodges the issue of the independence of acceleration from weight by restricting the discussion 

to one body.716 Now it is true that Galileo does not enter into the issue at all, probably because he did 

                                                 
714 Opere VIII, p. 205. (Transl. from Galilei 1974, p. 162; my emphases.) 
715 Opere VIII, p. 218. (Transl. from Galilei 1974, p. 174.) 
716 Settle 1966, p. 205: “Galileo argued from a constrained mechanical system to an open dynamical system, and it is not at 

all clear that he did so legitimately. If his analysis were valid, it would seem permissible to argue that bodies weighing 

differently, and therefore having different total moments, ought to fall (in the same time) distances proportional to their 

weight. … Now it is not clear whether at this point Galileo was consciously aware of these objections. But he had effectively 

taken care of them. In all the general discussions, and in all the theorems were problems of this sort could arise, Galileo 

always wrote of comparing the motions of one and the same ball, or two identical balls, moving on their respective planes.” 

Cf. also Wisan 1974, p. 226; 1984, p. 286; Galluzzi 1979, p. 312-313, n. 5; de Gandt 1995, pp. 105-107. Dijksterhuis’ 

resolutely negative evaluation was already cited in a footnote supra. 
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not want to complicate things further, or maybe because he was not entirely sure yet how to expound 

his new ideas. Still he might have felt pretty confident that he was in a position to handle it adequately. 

The theorem is obviously valid for all bodies since these always have the same degrees of speed added 

along the vertical. Moreover, this general validity crucially depends on the fact that the body 

considered in the proof remains the same.717 The latter fact can also be interpreted as a sign of 

Galileo’s sharp insight in the situation, rather than as an attempt to circumvent an insoluble problem. It 

is exactly because he had reintegrated weight in his new conceptual scheme that he could continue to 

exploit its properties – such as its apparent diminishment along an inclined plane. 
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 A mathematical science of nature should have some principles which constrain the 

mathematical relations in a physically sensible way. The geometrical framework that Galileo 

developed around the definition of uniform acceleration was constrained through his postulate, which 

however didn’t seem to express anything basic about physical bodies. This is precisely what the 

dynamical proof on the basis of the inclined plane theorem had to offer. After all, it is based on the 

basic property that characterizes all simple machines, and which expresses an inviolable principle of 

nature. It can thus be claimed that the new demonstrations shows that the postulate expresses a 

property that all bodies have simply in virtue of the things they are.  

 Stillman Drake claimed that “what one thinks of his dynamic foundation for the science of 

kinematics will depend on individual taste.”718 This misrepresents the extent to which Galileo could 

have thought of his own endeavour as “kinematics.” His science was about the motion of natural 

bodies, and all bodies have gravity. The latter fact should accordingly constrain what could be the 

physically true proportions characterizing these bodies’ motions. This is already true about Galileo’s 

earliest attempts in De motu and he would never let go of this ideal. After that he discovered that he 

could not use the balance to introduce the bodies’ basic properties into his science of motion, he was 

left without a means to directly justify his basic principle that was grounded in his inclined plane 

theorem. But almost all his proportions were actually derived on its basis. There should accordingly 

also be something right about what he saw on the balance and the inclined plane. 

                                                                                                                                                         
The basic argument that I am making here is that Galileo had the right conceptual tools to argue from a constrained 

mechanical system to an open dynamical system (although not the mathematical apparatus that would allow him to really 

move ahead with it). When the constraint is cut, the body will use its moment of gravity, as was measured by a counterweight, 

to accelerate; and all bodies will do this according to the ratio of their effective weight to their absolute weight, which implies 

that the role of absolute weight cancels out. 
717 As we would now see it, this guarantees that the mass is equal and that forces thus can be used as direct measures for the 

accelerations. 
718 Drake 1978, p. 394. 
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 The discovery that both weight and acceleration can be taken as two distinct effects of the 

underlying cause of gravity is then a momentous insight. By consciously separating the behaviour of 

heavy bodies constrained to remain at rest and bodies in free motion, Galileo effectively separates 

what we would call the domains of statics and dynamics. His treatment of these domains moreover 

shows some structural similarities with our classical understanding of them. Yet we should not loose 

sight of the essential differences between Galileo’s understanding and a modern one. He might have 

separated what we can recognize as statics and dynamics, but he had “dynamicized” all motion. Even 

“inertial motion” is essentially an effect of a special kind of dynamical situations.719 Paradoxically, 

Galileo who is often hailed as the father of modern kinematics, couldn’t conceive of kinematics 

strictly speaking. Motion remained unthinkable for him in the absence of all forces.  

 On the other side of the historiographical spectrum, one could also recognize some traces of 

the medieval impetus theories in Galileo’s independent conservation of the accumulated momenta 

responsible for the force of percussion.720 Yet more important than what remains of the older views, is 

what has changed in the meantime. In his De motu explanation of the accidental acceleration of bodies 

in free fall, Galileo had already explicitly conceptualized the force which is impressed on a body by 

someone or something preventing its motion as an artificial lightness. We have also seen how in his 

notes on percussion Galileo still conceptualized artificially impressed momenta as commensurable to 

the internal and natural momenta of gravity. But by now the concept of moment has replaced the 

concept of heaviness/lightness. This has enabled Galileo to see static weight as an effect of something 

more fundamental. “Statics” is no longer the basis of all his thinking; it is only the special situation in 

which the natural momenta are opposed by a resisting force. Natural motion can be understood 

“dynamically” within its own right, with time appropriately being the determining factor that sets apart 

dynamics from statics. That it can be understood within its own right testifies to the fact that Galileo 

has by now found a way of offering new incontestable experiences which can anchor his explanatory 

scheme. Once the thought experiment has taught us to look at the world in the right way, the things 

themselves indeed show us that we should distinguish between bodies constrained to remain at rest 

and bodies in free motion.  

 It is important to see that Galileo not merely separates statics and dynamics. He integrates 

them within a broader conceptual frame built around the notion of moment of gravity. This makes it 

possible to reintroduce some of the principles based on what can now be thought of as statical 

considerations into his science of motion. This is what we see in his demonstration of the postulate. 

Moment of gravity is measured both by weight and by acceleration, but not simultaneously. This is 

why a body’s gravity indeed constrains the mathematical proportions characterizing its motion in a 

way that is related to its weight. If Newton would have ever read the second version of the Discorsi 

                                                 
719 Cf. chapter 6, section 6.1, especially 6.1.5. 
720 Cf. supra section 8.2.2. 
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(which he probably didn’t), he could have recognized something profoundly right about Galileo’s 

demonstration of his postulate. As we have seen, Newton went on to show how a suitable definition of 

the concepts of force and mass allowed one to reintroduce a general mathematical closure for non 

constrained systems; a closure that could be achieved exactly because of the interplay between a 

body’s statical properties and its acceleration when impelled by an impressed force. 
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FIGURE 8.1 

Galileo’s postulate: bodies falling along CB, CD, and CA will have the same speed when arriving at the lowest 

point. (Opere VIII, p. 205.) 

 

FIGURE 8.2 

A bob is hung from a cord attached in the point A and is made to swing form C to D. If we fix a nail in the points 

E or F, it is seen that the bob will rise to the points G or I, which are situated at the same height as C and D. This 

implies that the moment acquired upon descending from arc DB is equal to the moment acquired along arcs GB 

and IB. (Opere VIII, p. 206.)   
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FIGURE 8.3 

The proof of the inclined plane. The weight of body H will need to have the same ratio to the weight of G as the 

length FC has to FA, because the vertical distance traversed by H will equal FA and the one by G will equal FC. 

(Opere VIII, p. 215.) 

 



 255 
 

/� ����	$������	����� �����
����

 

 

There is not only a liberation in the mathematical project, but also a new experience and  

formation of freedom itself, i.e., a binding with obligations which are self-imposed.721 

 

 

 In this concluding chapter, I return to some of the issues that were introduced in chapter 2. I 

will try to assess how Galileo is discursively positioning himself in some of his later writings, with a 

focus on the Dialogo. We will see which elements he invokes to legitimize his mathematical science of 

nature. It will turn out that in doing so he refers obliquely to the Quaestio de certitudine, but only to 

deconstruct the discours in which this discussion was inscribed. A central element in his own 

strategies is the metaphor of the book of nature. 

  My discursive analysis should allow us to come up with a more nuanced picture of Galileo’s 

relation to late sixteenth-century Platonic thinking. As already indicated at the beginning of chapter 2, 

this issue has structured many of the twentieth-century debates on Galileo’s science. I won’t go into 

any of these debates, but the consequences of my analysis should be obvious for anyone familiar with 

them. However, my prime interest lies with the question how Galileo himself is attempting to stabilize 

the discursive field in which his new sciences are operating.  

 I feel a hesitation to add more comments on this chapter, which in many ways is the most 

tentative of the studies presented in this thesis. It feels like the beginning of my own rethinking of the 

previous chapters rather than as a closure. 

                                                 
721 Heidegger 1967, p. 97. 
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 That the book of nature is written in geometrical characters is one of the most famous images 

used by Galileo. It is obviously an important place for anyone interested in assessing how he tried to 

discursively position his mathematical approach to study nature. It is important to realize that it is a 

metaphor with a history, though. Not only was the image of the book of nature commonplace in 

Renaissance thinking, Galileo’s appropriation of it also happened in a few consecutive steps.722  

 In a fist stage, Galileo used the image to ridicule Aristotelian philosophers who thought that 

they were studying nature, whereas they were only studying human books. In a letter written to Kepler 

in 1610, Galileo talks about his new discoveries with the telescope. He mocks the philosophers who 

tried to refute his observations by means of logical arguments, “as if they were magical incantations” 

that could make disappear what is truly in nature.723 The message is clear: syllogistic logic is an 

instrument with which we can only clarify the relations that hold between different texts. But if we 

want to clarify the relations that hold in nature, another instrument of investigation is needed 

(remember that the telescope would have been considered a mathematical instrument). As we have 

seen in chapter 4, this is a rhetoric strategy that Galileo already uses in De motu, where he ridicules the 

philosophers’ concern about interpreting Aristotle correctly rather than studying nature.724  

 A second stage arises when Galileo enters into his dispute with the churchmen over the right 

to speak on the true constitution of the universe. He tries to safeguard the legitimacy of his own 

position by presenting it as complementary to that of the theologians. Whereas the latter study the 

Holy Scripture, he studies that other book written by God, the book of nature. As he puts it in his 

famous letter to the Grand Duchess Catherina, written in 1615: 

 
I think that in discussions of physical problems [problemi naturali] we ought to begin not from the 

authority of scriptural passages, but from sense-experiences and necessary demonstrations; for the 

holy Bible and the phenomena of nature proceed alike from the divine Word, the former as the 

dictate of the Holy Ghost and the latter as the observant executrix of God’s commands. It is 

necessary for the Bible, in order to be accommodated to the understanding of every man, to speak 

                                                 
722 For the pedigree of the image, see Garin 1961, Bono 1995. For the development of the image within Galileo’s writings, 

see Biagioli 2003. 
723 “Putat enim hoc hominum genus [the philosophers opposed to him], philosophiam esse librum quendam velut Eneida et 

Odissea; vera autem non in mundo aut in natura, sed in confrontatione textuum (utor illorum verbis), esse quaerenda. Cur 

tecum diu ridere non possum? quos ederes cachinnos, Keplere humanissime, si audires, quae contra me, coram Magno Duce, 

Pisis a philosopho illius Gymnassii primario prolata fuerunt, dum argumentis logicalibus, tanquam magicis 

praecantationibus, novos planetas e caelo divellere et avocare contenderet?” Opere X, p. 423 (my emphases). 
724 Cf. chapter 4, section 4.1.2. 
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many things which appear to differ from the absolute truth so far as the bare meaning of the words 

is concerned. But Nature, on the other hand, is inexorable and immutable; she never transgress the 

laws imposed on her, or cares a whit whether her abstruse reasons and methods of operations are 

understandable to men.725 

 
Galileo thus for the first time compares his own undertaking as directed to the reading of a book, to 

position himself as also authorized to speak on the true constitution of nature. The important 

difference between the natural philosopher (Galilean style) and the theologian lies in the nature of 

their books. But exactly because they deal with different emanations of the same God, they can never 

be in a true opposition. The theologians must recover the message that God gave to men, and to that 

end they enter into a hermeneutical exercise, discovering the true meaning that is conveyed through 

Scripture. The natural philosopher must offer necessary demonstrations based on sense-experiences. 

The first Book is polysemous, the second unambiguous. But both are legitimate objects of study.726 

 A third stage occurs during the controversy on the comets. In 1623, Galileo returns to the 

image of the book of nature, but now in a context where he is positioning himself against the 

Aristotelian philosophers. In the Assayer Galileo responded to a treatise by the Jesuit Orazio Grassi, 

who had published his treatise under the pseudonym of Sarsi.727 In the course of his arguments Galileo 

introduces the following famous passage: 

 
It seems to me that I discern in Sarsi a firm belief that in philosophizing it is essential to support 

oneself upon the opinion of some celebrated author, as if when our minds are not wedded to the 

reasoning of some other person they ought to remain completely sterile and barren. Possibly he 

thinks that philosophy is a book of fiction [un libro e una fantasia] by some writer, like the Iliad or 

Orlando Furiosi – books in which the least important thing is whether what is written in them is 

true. Well, Sig. Sarsi, that is not the way matters stand. Philosophy is written in this grand book – I 

mean the universe – which stands continually open to our gaze, but it cannot be understood unless 

one first learns to comprehend the language and interpret [conoscer] the characters in which it is 

written. It is written in the language of mathematics, and its characters are triangles, circles, and 

other geometrical figures, without which it is humanly impossible to understand a single word of it; 

without these, one wanders about in a dark labyrinth. Sarsi seems to think that our intellects should 

be enslaved to that of some other man … and that in the contemplation of the celestial motions one 

should adhere to somebody else.728 

 
                                                 
725 Opere V, p. 316. (Transl. from Galilei 1957, p. 182.) 
726 Biagioli 2003 offers much more detailed considerations of the ways in which this image is mobilized by Galileo in his 

struggles on Copernicanism. 
727 Biagioli 1993, chapter 5, contains a very perceptive analysis of the circumstances surrounding this dispute, and its 

sedimentation in the complex and hybrid text that is The assayer. 
728 Opere IV, p. 232. (Transl. from Drake and O’Malley 1960, pp. 183-184.) 
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Galileo is here mocking Grassi’s defensive move in which the latter had asked “whom then should be 

followed?” as a reply to Galileo’s (rather unwarranted) attack on his excessive reliance on the 

authority of Tycho Brahe.729 But a very similar rhetorical ploy will reappear in the Dialogue where the 

authority in question is the usual suspect, Aristotle.730 

 Whereas Galileo earlier ridiculed the Aristotelians for their reliance on textual strategies, he 

now claims that he also is reading a book. But his book is of course incomparable to their human-

made books. This discursive move allows him to underwrite the notion of truth that already was 

operative in De motu.731 In that treatise, Galileo stressed that truth has the essential property that once 

noticed it cannot possibly be denied.732 The image of philosophy as “written in this grand book – I mean 

the universe – which stands continually open to our gaze,” but “written in the language of 

mathematics” now brings together the transparency of his mathematical method, which he opposed to 

the Aristotelians, with the authority of God’s book that he borrowed from the theologians. 
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 Galileo’s image doesn’t function without its aporias, though.733 His geometrical book of nature 

is not written by human authors, but neither is it written for human readers. It primarily functions to 

assure the divine guarantee underwriting his notion of truth. The bible is written in a language that is 

already ours, which must allow us to understand the deeper message that it conveys. The book of 

nature, on the contrary, doesn’t have an intended audience. This implies that Galileo simultaneously 

needs the transparency (as a divine guarantee) and has to claim that we do not immediately understand 

its language – we first have to learn to comprehend it. Moreover, as emphasized by Biagioli, in the 

same letter to the Grand Duchess in which he introduces the book of nature, Galileo also stresses the 

fallible and progressive character of philosophical knowledge. 734  Again, this seems to sit 

uncomfortably together with the implied transparency. 

 Notwithstanding this possible instability of Galileo’s own metaphor, its intended meaning is 

transparent enough: if things in nature are to be seen as signs, they have no other than a literal meaning; 

                                                 
729 Drake and O’Malley 1960, pp. 71, 183. 
730 In the Dialogue Galileo has Simplicio even repeat Grassi’s objection, but with Aristotle substituted for Tycho: “But if 

Aristotle is to be abandoned, whom shall we have for a guide in philosophy?” Opere VII, p. 138. (Transl. from Galilei 2001, 

p. 130.) 
731 Cf. chapter 4, section 4.3.1. 
732 Cf. again the following expressions: “[truth’s] traces shine brightly in various place”; “the force of truth”; “if [the truth] 

had once been found by someone, immediately and without controversy, being what it is by its nature, it would have allowed 

itself to be seen and known by all”; “This objection is surely of great importance; but nevertheless it is not so powerful that it 

can obscure the splendor of the truth.” Opere I, pp. 274, 284, 294, 335. (Transl. from Galilei 2000, pp. 25, 35, 45, 85.) 
733 Cf. Bono 1995, pp. 193-198; Biagioli 2003. 
734 Biagioli 2003, p. 576. 
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they don’t signify something else, whether this would be a divine message or a philosophical system. 

All explanations will have to involve exclusively horizontal relations between things that are directly 

noticeable in the world. There is no place for relations of vertical signification, wherein things in the 

world would refer to a different level of reality.735  

 But this leaves open the question: what is it about this transparency that obstructs an easy 

reading? What can it mean to come to learn to recognize something that is transparent? 
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 Halfway the second day of the Dialogue concerning the two chief world systems, there is a 

long argument in which Galileo tries to rebuke one of the strongest objections against the Copernican 

hypothesis: if the earth would really be whirling around its own axis at high speeds, then “rocks and 

animals would necessarily be thrown toward the stars, and buildings could not be attached to their 

foundations with cement so strong that they too would not suffer similar ruin.”736 The Aristotelian 

Simplicio seems to be particularly taken by this argument, and announces that “it will be a difficult 

thing to remove it or to unravel it.”737 This gives Salviati the opportunity to start playing his favourite 

game: 

 
The unravelling depends upon some data well known and believed by you just as much as me, but 

because they do not strike you, you do not see the solution. Without teaching them to you then, 

since you already know them, I shall cause you to resolve the objection by merely recalling 

them.738 

 
This remark then elicits the following question from Simplicio: 

 
 SIMP. I have frequently studied your manner of arguing, which gives me the impression that you 

lean toward Plato’s opinion that nostrum scire sit quoddam reminisci. So please remove all 

questions for me by telling me your idea of this. 

SALV. How I feel about Plato’s opinion I can indicate to you by means of words and also by deeds. 

In my previous arguments I have more than once explained myself with deeds. I shall pursue the 

same method in the matter at hand, which may then serve as an example, making it easier for you 

                                                 
735 On the opposition between horizontal and vertical schemes of representation, see e.g. Hallyn 1987, pp. 20-21. 
736 Opere VII, p. 214. (Transl. from Galilei 2001, pp. 218-219.) 
737 Opere VII, p. 217. (Transl. from Galilei 2001, pp. 221.) 
738 Ibid. 
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to comprehend my ideas about the acquisition of knowledge if there is time for them some other 

day, and if Sagredo will not be annoyed by our making such a digression.739 

  
Salviatio thus proceeds with his deeds. To unravel the objection of the whirling earth, he proposes to 

investigate first what happens with a rock that is thrown after having moved along the arc of a circle in 

a notch of a stick. To this end he asks what would be the motion of the rock the moment it leaves the 

stick.  

 
SIM. Let me think a moment here, for I have not formed a picture of it in my mind. 

SALV. Listen to that, Sagredo; here is the quoddam reminisci in action, sure enough.740  

 
Is this response “openly ironic”?741 It is possible to read it thus, certainly if one is already convinced of 

the fact that Galileo’s basic attitude towards Plato’s philosophy is ironic (as Hatfield is). But I am not 

too sure that we should read this remark as something else than a sincere comment on Galileo’s views 

on the acquisition of knowledge and the place therein of recollection.742 To better see the importance 

of this question, let us take a closer look at Plato’s Meno. 

 The dialogue between Socrates and Meno is aimed at (other than Socrates’ wooing of the 

young man, of course) finding a satisfactory definition of virtue. During their discussions Meno hits 

upon the following paradox: you cannot search for what you don’t know already, and you need not 

search for what you do know already. That you cannot search for what you don’t know already is 

supposed to follow from the fact that otherwise you could not recognize it when you should hit upon it. 

So how is genuine learning then to occur?743 Socrates’ answer is that “the whole of searching and 

learning is recollection.”744  

                                                 
739 Opere VII, p. 217. (Transl. from Galilei 2001, pp. 221-222.) 
740 Opere VII, p. 218. (Transl. from Galilei 2001, p. 222.) 
741 Hatfield 1990, p. 122. Despite my crucial disagreement on this fact, Hatfield’s essay contains many valuable insights and 

arguments. 
742 My analysis of Galileo’s appropriation of the doctrine of anamnesis owes a lot to Heidegger’s short but penetrating 

treatment of “the modern mathematical science of nature” in his 1935-1936 lectures (which were mainly devoted to Kant’s 

critique of pure reason). See Heidegger 1967. 
743 Some might be tempted to dismiss this as a pseudo-problem. This depends on how to construe the terms at issue, of course. 

But there is something profoundly right – or so is the basic idea behind most of the present thesis – about the insight that one 

at least needs to start with a general framework in which to categorize and understand possible answers before one is able to 

pick out one as the right answer. One can of course search for a pair of trousers without knowing where it is, but one must at 

least be able to recognize it as a pair of trousers when one sees it. It is the latter problem that is fundamental: Plato (as 

Aristotle after him; cf. already chapter 5, section 5.1.1) is engaged in trying to come to grips with the question what makes a 

thing the thing it is; e.g. a pair of trousers, or virtue. Of course, one could argue that this does not make the paradox less of a 

pseudo-problem, as the second premise seems to break down on this interpretation – one can be able to recognize something, 

without having found it already; hence, although you “know” the thing, you still have to search for it. This reading would 

turn the problem at hand into something profoundly boring instead of profoundly right. I would urge that we need to push 
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 To clarify this view Socrates calls in a slave boy, ignorant of geometry, whom he will make 

“recall” a geometrical proposition that he ostensibly did not know: that the length of the side of a 

square double in size of a given square equals the length of the diagonal of this given square. To this 

end he draws figures in the sand and probes the boy with his incisive questioning. While doing this 

Socrates makes sure to check regularly with Meno to “pay attention as to which seems to you to be 

true of him, either that he is recollecting or that he is learning from me.”745 As he announces at another 

place, just before he starts a series of questions that will lead the boy to recognize his own earlier 

mistaken answer as faulty: “Well, observe him recollecting in sequence, as one ought to recollect.”746; 

or as he might have put it as well: “Listen to that, Meno; here is the quoddam reminisci in action, sure 

enough.” 

 Plato’s distinction between teaching and recollecting boils down to the difference between 

accepting propositions on the authority of a teacher and making the crucial judgements for oneself. As 

a result, it hence doesn’t really matter that the slave-boy’s answers are mostly of a yes/no nature: he 

still decides himself whether he truly believes certain statements to be true or not. In the same vein, the 

figures drawn in the sand may be essential to awaken the boy’s considered opinion on the matter, but 

in the end they are quite immaterial to the core of Socrates’ “teaching”. The latter is primarily and 

essentially aimed at bringing the boy to see for himself a host of logical relations that hold between his 

opinions, hence bringing him to knowledge. 

 
True opinions too are a very fine thing as so long as they stay in their place, and produce all sorts 

of good things; but they are not willing to stay in their place for a long time, but run away out of a 

man’s soul, so they are not worth very much, until someone ties them down by working out the 

explanation. This, my friend Meno, is recollection…747 

 
In this way we have at once laid bare the core of Galileo’s own dialectical strategy in his 

Dialogue. Salviati makes Simplicio first recall “some data well known and believed by you just as 

much as me,” but the most important step happens when through his probing questioning he can make 

his companion realize unexpected consequences by simply asking him to keep “in mind the 

propositions which you have told me, collect them all together, and tell me what you gather for 

                                                                                                                                                         
back the questioning until we reach the interesting reading: i.e. to the question how do you first come to know the thing – 

how do you manage to pick it out as “really” being the object of your study. Either you have done this already, or you will 

never be able to do it. Many of Kuhn’s struggles in his Structure of scientific revolutions can be read as rehearsals of this 

same piece in a different key. 
744 Meno 81d. (Transl. from Plato 1985, p. 67.) 
745 Meno 82c. (Transl. from Plato 1985, p. 67.) 
746 Meno 82e. (Transl. from Plato 1985, p. 71.) 
747 Meno 98a. (Transl. from Plato 1985, p. 115. My emphases.) 
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them.”748 The prime effect is often to make Simplicio aware of the fact that what Feyerabend called 

“natural interpretations” are indeed interpretations after all.749 I will not enter into the many subtleties 

of Galileo’s argumentative strategies in this respect, however – I only want to point out something 

almost trivial: making Simplicio recall what he already knew almost invariably comes down to make 

him think about his own opinions!750  

Disappointingly trivial? That depends. Galileo shows himself a devilishly accurate reader of 

Plato’s dialogue.751 Consider the following exchange between Simplicio and Sagredo, following an 

argument concerning the motion of projectiles, in which Simplicio is challenged to express his opinion 

on the matter: 

 
SIM. I should say in the first place that I have not observed any such things; second, that I do not 

believe them; and then, in the third place, if you should assure me of them and show me proofs of 

them, that you would be a veritable demon. 

SAGR. One like Socrates’s, though; not one from hell. But the showing depends on you; I say to 

you that if one does not know the truth by himself, it is impossible for anyone to make him know it. 

I can indeed point out things to you, things being neither true nor false; but as for the true – that is, 

the necessary; that which cannot possibly be otherwise – every man of ordinary intelligence either 

knows this by himself or it is impossible for him ever to know it. … Therefore I tell you that the 

causes in the present problem are known to you, but are perhaps not recognized as such.752 

 
Similarly, while unravelling the argument concerning the whirling earth, the following dialogue takes 

place: 

 
SIMP. … I understand it completely in my own mind, but I do not know how to express it. 

SALV. I also see that you understand the thing itself, but lack the proper terms for expressing it. 

Now these I can indeed teach you; that is, I can teach you the words, but not the truths…753 

 
Galileo’s involvement with Meno’s paradox is undeniable, and would not have been missed by any 

moderately schooled contemporary reader. His allusions to the Platonic theory of recollection run 

much deeper than being a mere rhetorical (and ironic) embellishment. By stressing that Simplicio 

                                                 
748 Opere VII, p. 219. (Transl. from Galilei 2001, p. 224.) 
749 Feyerabend 1980, pp. 73 ff.  
750 For analyses of the fine-structure of Galileo’s arguments in the Dialogue, see Finocchiaro 1980, which also contains a 

negative assessment of Feyerabend’s analysis of Galileo’s arguments. Yet, he still acknowledges Feyerabend’s insight in the 

status of these natural interpretations. 
751 Let me just mention that Plato’s Opera were also part of Galileo’s library. 
752 Opere VII, pp. 183-184. (Transl. from Galilei 2001, p. 183.) 
753 Opere VII, pp. 218. (Transl. from Galilei 2001, p. 223.) Compare with Socrates who can teach the slave-boy the name of 

the line that he picks out as being the line sought (Meno 85a) – but that it is indeed this line that was being sought is the boy’s 

own judgement. 
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already knows the answers to the questions being discussed although he does not yet realize it, Galileo 

in the first place propagates a certain view on the nature of teaching.754 It is best summed up in one 

other dialogue fragment: 

 
SIMP. I leave it to you to judge. 

SALV. Rather, I want you to be the judge.755 

 
True teaching is at most a pointing out, a guidance; its essence consists in offering to others the 

possibility to learn themselves, rather than in the offering of true statements. 756 Only when someone 

comes to recognize the truth as such can he be said to have learned something. Only upon acquiring 

the stability that necessarily turns all cognition in re-cognition – i.e. as having already been always 

true, as “that which cannot be otherwise” – does knowledge arise from opinion. The moment one 

comes to know something it ceases to have been possible that one did not yet know it (Meno’s 

paradox). That is why it is necessary that a pupil is “recover[ing] the knowledge from himself”757 for 

himself. If not tied down thus, it would never acquire the needed stability. That Simplicio’s cognitive 

acts in the Dialogo “involve something more than mere recollection”758 only shows how diligent a 

pupil of Plato Galileo was. 

 Plato complemented his analysis in the Meno with a metaphysical theory aimed at further 

developing the concrete import of recollection in achieving true knowledge. Galileo remains 

completely silent on anything to do with Platonic forms. He reads Plato as if the example with the 

slave-boy constitutes the complete answer to Meno’s paradox. That is, he puts all weight on the 

dialectical process and remains silent on the innate and ideal nature of the recollected knowledge. In 

that sense he is more Socratic than Platonic. But Plato himself still seems rather uncommitted on this 

issue in the Meno. The most important advantage that Socrates claims for his way of dealing with 

                                                 
754 That Simplicio already knows the answer by himself is announced almost before any single argument in the Dialogo; cf. 

next to the passages already quoted Opere VII, pp. 36, 48, 107, 113, 115 (a very clear allusion to the Meno), 162, 166, 171, 

186, 194, 220, 222, 223, 276, 351ff, 359 (I might have missed some further places). This obviously plays an important 

rhetorical role, as admitted by Galileo himself, when he has Sagredo say: “since proceeding by interrogations seems to me to 

shed much light upon things, in addition to the pleasure one may get out of pumping one’s companion and making things 

drop from his lips which he never knew that he knew, I shall make use of that artifice.” Opere VII, p. 276. (Transl. from 

Galilei 2001, pp. 291-292.) Yet even here he simultaneously states that it “sheds much light upon things.”  
755 Opere VII, p. 262. (Transl. from Galilei 2001, p. 273.) 
756 Let me add yet another fragment, only to show how much Galileo keeps on emphasizing this message throughout the 

Dialogo: “SIM. I know it, and Aristotle taught it to me. SAGR. Please tell me by what kind of proof. SIM. Proofs from the 

senses. SAGR. Then has Aristotle made you see what you would not have seen without him? Did he even lend you his eyes? 

You mean that Aristotle said it to you, made you notice it, reminded you of it; not that he taught it to you.” Opere VII, p. 184. 

(Transl. from Galilei 2001, p. 184.) How right is Brian Vickers’s remark that “one of the running motifs in the Dialogo might 

be called “The Education of an Aristotelian””! (Vickers 1983, p. 99.)  
757 Meno 85d. (Transl. from Plato 1985, p. 79. My emphasis.) 
758 Hatfield 1990, p. 123. 
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Meno’s paradox is that it “makes men active and ready to search” whereas just accepting the dilemma 

(“that contentious argument”) without further ado “would make us lazy”, which is only “pleasant to 

hear for those men who are soft.”759 The insight that all true knowledge is recollection is hence taken 

as an incentive to inquiry by Plato. One can be in the position to truly know and still have to search. 

Remember that Plato spoke about the necessity of “recollecting in sequence”. It is not question of 

“merely” recalling – the process in which one comes to anamnesis involves a regulated calling to 

mind. As a result one comes to better understand one’s own opinions; one sees how one should be 

thinking about the topic at issue if being faithful to one’s own ratio; the contents of one’s mind are tied 

down by the mind itself. 

 So I propose: recollection is just another word for understanding. It involves an act of the 

mind in which it grasps something in its invariance – which it can only do by thinking it as 

mathematical. 
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 It is no accident that Plato chooses a “mathematical” (i.e. geometrical) example to illustrate 

the nature of recollection while the dialogue is actually devoted to an analysis of virtue. Let us not 

forget that the Greek word for “learning” is mathesis.760 Meno’s paradox draws attention to the fact 

that not anything is learnable, but geometry provides a paradigmatic example that it is nevertheless 

possible to achieve objective knowledge. So what is special about this kind of knowledge?  

Galileo had been trying to provide an answer since his earliest writings. We only need to recall 

the passage from his De motu, where he explicitly opposed the teaching of “his” mathematicians with 

that of the philosophers.761 Given this early concern, it is no wonder that Plato’s Meno could have 

made such an impression on him. One important extra element is added now: the dialectical context in 

which this judging takes place.762 Salviati not only stresses that Simplicio already knows what he is 

about to “teach” him, he also adds that these things are “known and believed by you just as much as 

me” – Sagredo states to the same effect that “any man of ordinary intelligence either knows this by 

himself or it is impossible for him ever to know it”. The results that will be reached in these 

investigations are hence objectively binding for anyone – by learning to think for himself, Simplicio is 

actually thinking for everybody.  

                                                 
759 Meno 81d-e. (Transl. from Plato 1985, p. 67.) 
760 “Mathesis” is also the term used by Plato (cf. the Greek text in Plato 1985). 
761 Cf. chapter 4, section 4.1.2. 
762 “Dialectical” is here obviously intended in a broad sense, not tied to the Aristotelian discussions of the topic understood 

under that term.  
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There is no doubt that the use of the dialogue form was part of Galileo’s tactic in dealing with 

the precarious situation in Rome.763 But while this form might have been exploited (to no great success) 

to help convey the impression that the subject was discussed in Ciceronian fashion in utramque 

partem, it still is true that the arguments against the Copernican hypothesis stand refuted at the end of 

the dialogue. Galileo had moreover already used the dialogue form in his earliest writings, and 

continued to return to it throughout his career. But it is only in the Dialogo that he knows to exploit its 

intrinsic interest to its full effect.764 By leading Simplicio through a Socratic questioning on a host of 

natural phenomena, Galileo actually helps the reader to internalize the proper discipline of 

mathematical reasoning.765  

 Let me illustrate this with a delightful example from an early work by Galileo, the Dialogue of 

Cecco di Ronchitti. In this wonderful satiric dialogue, published pseudonymously in 1605, Galileo 

discusses a book that was aimed at undermining his earlier public lectures on the 1604 nova.766 The 

two protagonists are Matteo and Natale, both peasants. On the basis of their common sense they 

ridicule the conclusions reached by Academic Philosophers. Central in the controversy over the nova 

stood the position of the new star: under the moon or far up in the “perfect” heavens. Crucial (as 

always) was the absence of parallax, the book criticized by Galileo had claimed that these 

measurements were not applicable to the nova. To show how misguided this criticism is, Matteo 

instructs Natale on how to ascertain distances and lengths in a most certain way.767 To this end he asks 

him to judge whether a poplar, standing by the river bank where the two friends are waiting for the 

evening, is higher than a willow. By walking around Natale quickly discovers that his answer will 

depend on the position from which is he is looking at them, especially when Matteo makes him climb 

in still another (and higher) tree. By actually having his protagonist moving around, skinning his knee 

by climbing walnut trees, Galileo makes him see and feel for himself what changes, and consequently 

                                                 
763 For a short and recent treatment of Galileo’s use of the dialogue form, see Spranzi 2004. See also Vickers 1983; Moss 

1993. 
764 The relative worth of the dialogue form versus other modes of literary presentation was a topic of discussion in its own 

right during the Renaissance. It would be very interesting, to pursue this further in connection with the analysis of Galileo’s 

use of it that I am presenting here. Let me just offer the following quote from a 16th century work devoted to this topic: “Je 

me demande s’il ne faudrait pas … dire que le dialogue est le père de toute doctrine véritable, puisqu’il nous montre le 

chemin qui, si on l’emprunte, nous permet d’aller plus facilement de ce que nous comprenons par l’opinion à ce que nous 

comprenons par la vue de l’esprit, et de ce qui est fondé sur la vraisemblance à ce qui est fondé sur la vérité.” (Carlo Sigonio, 

quoted and translated in Spranzi 2004, pp. 38-39.) 
765 This move would certainly have been helped by the general humanist tendency to praise thinking for oneself over 

accepting propositions on authority. 
766 For Galileo’s authorship of the dialogue, and for the circumstances surrounding its publication, see Drake’s introduction 

to his translation of the work in Galilei 1976. 
767 The opening of the dialogue immediately sets the tone: “MAT. What is this fellow that wrote the book? Is he a land-

surveyor? NAT. No, he is a Philosopher. MAT. A Philosopher, is he? What has philosophy got to do with measuring?” 

Opere II, p. 315. (Transl. from Galilei 1976, p. 38.) 
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also what remains invariant, under different conditions of observation. He lets the objective facts 

become “as plain as a cowshed.”768 Despite the presence of initially misleading sense impressions 

anybody has to agree that the willow is higher than the poplar. This conclusion can only be reached on 

the basis of these sense impressions controlled through mathematical reasoning. 

In the Dialogo, Sagredo offers another beautiful illustration of this through an event (un 

accidente)… 

 
…from which (in complete agreement with what we are saying) one may learn how easily anyone 

may be deceived by simple appearances, or let us say by the impressions of one’s senses. This 

event is the appearance of those who travel along a street by night of being followed by the moon, 

with steps equal to theirs, when they see it go gliding along the eaves of the roofs. There it looks to 

them just as would a cat really running along the tiles and putting them behind it; an appearance 

which, if reason did not intervene, would only too obviously deceive the senses.769 

 
Remember Meno’s paradox: you need to be in a position where you can recognize what you are 

presented with. 

 His own active involvement makes it possible for Natale to discern a stable kernel in the 

changing appearances of things. The experiences in which Salviati similarly wants Simplicio to anchor 

his own beliefs do not function as premises in a syllogistic framework, but as the elements of an 

analysis of more complex phenomena. This is what mathesis is about: to bring one to the position 

where one can recognize the underlying “objective” relations. And this involves asking Simplicio to 

imagine that he were in a boat, looking at the top of the mast moving together with him on the waves; 

or that he were shooting arrows from a riding carriage; or throwing hoops; etc. But just as Matteo not 

only had Natale climbing trees, but also kept asking questions about what he could learn by 

juxtaposing his judgements, so Simplicio is never left a moment of rest. Salviati and Sagredo pose as 

the land-surveyors of Simplicio’s mindscape. They show him how to ascertain relations of implication 

between different judgements that he makes himself. And they show him that, as a result, there exists 

another mode of determining the nature of empirical facts. Just as Matteo stressed that parallax 

measurements remain valid even if the moon were made of polenta, so Salviati and Sagredo keep 

reminding Simplicio that these determinations can be reached completely independent from any 

considerations on the essential nature of things in the world.770 

 Galileo also exploits geometrical diagrams to make palpable the consequences of some of 

these structural relationships that he is teaching Simplicio to notice. But it is important to see that such 

a diagram only becomes a model because it is discursively embedded within the text where it is put to 

                                                 
768 Opere II, 330. (Transl. from Galilei 1976, p. 48.) 
769 Opere VII, p. 281. (Transl. from Galilei 2001, pp. 297-298.) 
770 For the polenta: Opere II, p. 315. 
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use. It is only because Salviati is disciplining Simplicio’s way of approaching the things that surround 

him that these diagrams can take on their particular sense.771 We have already seen something similar 

at the end of chapter 6, where it was explained how mathematics can be used to represent facts about 

the world.772 This depends as much on our way of engaging with the world as it does on the resources 

of mathematics itself.  

 To sum up: Galileo is illustrating under which conditions observational facts can be turned 

into evidence. Salviati is teaching Simplicio the relevance of facts already known by him. As a result, 

relationships that can be noticed to hold between things in the world are imbued with a new kind of 

significance – they can become ratios. And the dialogue format allows him to display the ways in 

which we have to actively search for these conditions. Once Simplicio lets his thinking be guided by 

Salviati’s questioning, he is forced to leave behind his beloved peripatetic framework. With a sure 

hand Galileo leads the investigations towards the properties which enable him to construct a 

completely different way of approaching these experiences.773  

In the foregoing chapters we have seen with sufficient detail what this kind of approach 

consists in. I won’t repeat these analyses here. Let me, in closing, only stress that this shows that 

Galileo’s references to the method of anamnesis do not serve as a concealment of the true sources of 

his revolutionary moves, as Feyerabend maintains;774 on the contrary, they highlight them. Anamnesis 

is no passive quasi-mystical process, but it is the result of a search process aimed at uncovering 

invariancies that anyone can notice.  
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 We left section 9.1 with the question what it could mean to come to learn to recognize 

something that is already transparent, as Galileo’s book of nature supposedly is. We can now see that 

this seeming aporia is actually a version of Meno’s paradox. We first need to be in the right position to 

                                                 
771 Cf. e.g. the argument on the whirling earth. After that Simplicio answered Salviati’s questions on the projection of heavy 

things from a swinging sling, Salviati answers Sagredo’s doubts on a particular point as follows: “The objection does you 

credit, Sagredo, and in order to shed light on it so that we can more clearly comprehend it … let us define it by reducing it to 

a diagram, which will perhaps also bring it more easily to a solution.” Opere VII, p. 225. (Transl. from Galilei 2001, p. 231.) 

The diagram is then constructed on basis of the properties which Simplicio already was made to notice as a result of 

Salviati’s probing questions.  
772 Cf. chapter 6, section 6.3.2. 
773 As stated by Sagredo, referring to Salviati’s “teaching”: “I feel myself being gently led by the hand; and although I find no 

obstacles in the road, yet like the blind I do not see where my guide is leading me, nor have I any means of guessing where 

such a journey must end.” Opere VII, p. 472. (Transl. from Galilei 2001, p. 518.) 
774 Feyerabend 1980, p. 81. 
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recognize what we are presented with; a right position that has to be actively constructed. The link 

with the Meno allows Galileo to bring in the Platonic anamnesis as a discursive element and this 

allows him to stabilize his own metaphor.775 We have already noticed how anamnesis is severed from 

the Platonic theory of forms in Galileo’s text. This is why he had Salviati stress that he would illustrate 

his views on the acquisition of knowledge with deeds rather than by means of words. The recollection 

lies in the active process itself (it is a collecting that is of such nature that it can be repeated at any 

moment by anyone), not in a passive remembrance. The transparency of nature must be ascribed to the 

fact that anyone can always bring himself in the position to recognize what he sees.  

 The instability that threatened Galileo’s metaphor can be undone by abandoning a strictly 

visual understanding of its message. At the end of the first day of the Dialogo, Galileo distinguishes 

two ways to understand the human understanding: intensively and extensively. The latter mode is 

related to the number of propositions understood, the former to the perfection with which a proposition 

is understood. Salviati claims that taken extensively, humans know very little, but that taken 

intensively, the human intellect “equals the Divine in objective certainty”776 when it comes to the 

mathematical sciences. Simplicio is shocked but Salviati disagrees that this would detract “from the 

majesty of Divine wisdom.” 777  Thereupon follows an important clarification: when it comes to 

mathematical truths, “our method proceeds with reasoning by steps from one conclusion to another 

[procede con discorsi e con passage di conclusione in conclusione], while His is one of simple 

intuition.”778 God sees a circle and in one glance understands what he sees; we have to proceed by 

reasoning from property to property. When confronted with simple figures such as circles and 

triangles, it is not true for us that “everything is always present.”779 Even when it comes to pure 

mathematics, we are never in a position to grasp immediately what we are confronted with. But what 

we come to know, we know as perfect as God knows it.  

 Again, we see the same double movement which involves both appropriating divine authority, 

while simultaneously pushing it away as a far removed, but ultimately attainable limit point. In 

Galileo’s science, mathematics has become a universal instrument to solve local problems. His 

discourse on his own discipline could not but mirror this bivalence.  

 

                                                 
775 The metaphor recurs in the dedication to the Dialogo. When defining what it means to be philosopher, Galileo claims that 

“the great book of nature … is the proper object of philosophy” (Opere VII, p. 27; transl. from Galilei 2001, p. 3). We have 

already seen a few times how these dedications were crucial in the authors’ discursive positioning. The metaphor thus 

occupies a truly central role in Galileo’s discursive strategies in the Dialogo. 
776 Opere VII, p. 129. (Transl. from Galilei 2001, p. 118.) 
777 Opere VII, p. 129. (Transl. from Galilei 2001, p. 119.) 
778 Ibid. 
779 Opere VII, p. 129. (Transl. from Galilei 2001, p. 120.) 
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 By invoking anamnesis to illustrate the mathematical method, Galileo would have brought the 

Quaestio de certitudine to the mind of all educated readers. We have seen in chapter 2 how a 

mathematical study of the empirical world could be granted legitimacy by inscribing it in a 

Platonically inspired discourse. Philosophers as Catena and Mazzonni argued that the boundary 

between an ideal realm of mathematical objects and the empirical world could be mediated through 

Platonic reminiscence. Because God has implanted his geometrical ideas in our minds, we can 

recognize them in their imperfect material realizations. After all, the world is also to be thought of as a 

manifestation of the Divine rationality – the material things partake in the ideal forms on the model of 

the Platonic methexis. Blancanus also gestured towards a similar justification but could be less explicit 

on the role of anamnesis because of his Jesuit background.780 

 To see how Galileo invokes these positions in introducing his own views, it is useful to go 

back to the earlier quoted passage in which the topic of anamnesis was explicitly introduced, but now 

adding the further reaction by Sagredo: 

  
 SIMP. I have frequently studied your manner of arguing, which gives me the impression that you 

lean toward Plato’s opinion that nostrum scire sit quoddam reminisci. So please remove all 

questions for me by telling me your idea of this. 

SALV. How I feel about Plato’s opinion I can indicate to you by means of words and also by deeds. 

In my previous arguments I have more than once explained myself with deeds. I shall pursue the 

same method in the matter at hand, which may then serve as an example, making it easier for you 

to comprehend my ideas about the acquisition of knowledge if there is time for them some other 

day, and if Sagredo will not be annoyed by our making such a digression. 

SAGR. Rather, I shall be much obliged. For I remember that when I was studying logic, I never 

was able to convince myself that Aristotle’s method of demonstration, so much preached, was very 

powerful [Perché mi ricordo che quando studiavo logica, mai non potetti restar capace di quella 

tanto predicata dimostrazion potissima di Aristotile].781 

  
This is a revealing mistake in translation. As Galileo was familiar with the issues surrounding the 

Quaestio de certitudine, there can be no doubt about how we should read the last sentence.782 Here is a 

                                                 
780 Cf. chapter 2, section 2.1.2.3, 2.1.2.5, 2.1.2.6. 
781 Opere VII, p. 217. (Transl. from Galilei 2001, pp. 221-222.) 
782 In his early notebooks on logic, in all probability composed while he was a young professor in Pisa, he cites a definition of 

demonstration potissima, which is the one by Averroes that was also invoked by Piccolomini. (These notebooks have been 

translated and published in Wallace 1992a. For the definition see Wallace 1992, p. 102.) His library did hold Barozzi’s book 

on the Quaestio… as well as Mazzoni’s. (The contents of Galileo’s library can be searched at the website of the Firenze 

Instituto e Museo di Storia della Scienza - http://www.imss.fi.it/indice.html.) He held close contacts with the Jesuit professors 
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mathematician who also claims to be a philosopher, but who outright dismisses this debate on the 

status of potissima demonstrations as senseless. True, the person speaking is Sagredo, not Salviati who 

primarily functions as Galileo’s mouthpiece – but the effect is only more devastating, as the former is 

presented as the person of good sense, with whom the reader is invited to identify.  

 Let us try to be as precise as possible about what is happening in this passage. Simplicio notes 

the similarity between Salviati’s recurring remarks on recollection and Plato’s doctrine. Salviati 

refuses to give a straightforward answer, referring to his deeds as encapsulating his ideas about the 

acquisition of knowledge. Sagredo adds that he is very interested in the matter because he was never 

able to understand what the philosophical discussions were about. As a result, the reader is invited to 

see Galileo’s method as offering an alternative answer to questions such as those discussed in the 

Quaestio de certitudine.783 

 Both the Platonically inspired philosophers and Galileo need God to authorize the 

mathematical study of nature. In both cases, this authority is delegated to humans through the doctrine 

of anamnesis. But at this point an important shift has taken place. No longer does this recollection 

serve as mediation between two different ontological realms. The legitimacy of the mathematical 

study is not tied to a purely intelligible realm towards the empirical things in the world “strive,” it lies 

in this book that is nature itself. 

 However, this has a profound effect on the issues discussed in the Quaestio. These discussions 

were structured around the relative importance of mathematics’ objects and its demonstrations in 

explaining its supreme certainty. But Galileo now erases these objects from his own discourse.784 

Halfway his unravelling of the argument concerning the extruding effect of the earthly rotation, he 

inserts another digression, which throws further light on this erasure: 

 
SAGR. The argument is very subtle, but nonetheless convincing, and it must be admitted that 

trying to deal with physical matters without geometry is attempting the impossible. 

SALV. Simplicio will not say so, though I do not believe he is one of those Peripatetics who 

discourage their disciples from the study of mathematics as a thing that disturbs the reason and 

renders it less fit for contemplation. 

SIM. I would not do Plato such an injustice, although I should agree with Aristotle that he plunged 

into geometry too deeply and became too fascinated by it. After all, Salviati, these mathematical 

subtleties do very well in the abstract, but they do not work out when applied to sensible and 

physical matters. For instance, mathematicians may prove well enough in theory that sphaera 

                                                                                                                                                         
at the Collegio Romano, who as we have seen also participated in the debate. And the debate was focused around the 

University of Padua, where he would spend the years between 1592 and 1610. 
783 For a different view on how Galileo is positioning himself with respect to the Quaestio, see Feldhay 1998. 
784 In the Discourse on floating bodies, Galileo had already emphatically stated: “I say that shapes, as simple shapes, not only 

do not operate in physical things, but are never even found separate from bodily substances; nor have I ever proposed shapes 

denuded of sensible matter.” (Opere IV, p. 90; transl. from Drake 1981, p. 81.) 
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tangit planum in puncto, a proposition similar to the one at hand; but when it comes to matter, 

things happen otherwise.785 

 
This is again familiar ground from chapter 2, where we saw Pereira invoking exactly the same 

example. Salviati answers by immediately attacking Simplicio for his ignorance of geometry. True, 

Simplicio often admits not being well schooled about the topic, but that should have been irrelevant 

for the question about the applicability of mathematics to the empirical world, which is properly 

speaking a purely philosophical issue. Salviati offers a short geometrical proof to establish the fact that 

if a sphere would not touch a plane in a single point, it would no longer be a sphere (which is of course 

so by definition).  

 
SIMP. This proves it for abstract spheres, but not material ones. 

SALV. Show me then where the fallacy of my argument lies, so that it is not conclusive for 

material spheres although it is for immaterial and abstract ones.786 

 
In this way, Salviati actually invites Simplicio to reason mathematically about what the latter claimed 

could not be treated thus. Simplicio doesn’t notice the trap and brings in the imperfection of matter. It 

is immediately retorted by Salviati that this cannot suffice as an answer because it at most can prove 

that no material things are actually spherical, which is another thing than claiming that material 

spheres touch a plane in more than one point. 

 The general point that Galileo is aiming for is clear. Any form can in principle be given a 

mathematical description. Some of these descriptions will be simple, like that of a sphere, others will 

be hideously complicated. Things that are spherical touch a plane in one point; things that aren’t, touch 

them in more points. But one cannot make geometrical claims about spheres and falsify them by 

referring to things that aren’t spherical. 

 
The errors, then, lie not in the abstractness or concreteness, not in geometry or physics, but in a 

calculator who does not know how to make a true accounting.787 

 
The filosofo geometra is exactly someone who does know how to settle his accounts. He won’t point 

to perturbed proportions and then claim that the pure proportions are false. He’ll show how to account 

for the differences.  

 The discussion then returns to the issue of material spheres, and goes on for a few pages, 

driving home the message that there is no principled distinction between simple and irregular 

                                                 
785 Opere VII, p. 229. (Transl. from Galilei 2001, pp. 236-237.) 
786 Opere VII, p. 233. (Transl. from Galilei 2001, p. 240.) 
787 Opere VII, p. 234. (Transl. from Galilei 2001, p. 241.) 
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geometrical forms. Whatever the degree of complexity, any material thing simply has the shape it has. 

But Salviati brusquely cuts off the discussion: 

 
Please, gentlemen, it seems to me that we have gone off woolgathering. Since our arguments 

should continue to be about serious and important things, let us waste no more time on frivolous 

and quite trivial altercations.788 

 
Galileo’s message is clear. The really interesting problems lie elsewhere. In the course of one long 

argument, this is the second time that he introduces an unmistakable reference to the Quaestio only to 

set apart his own position. As the reference to making a true account shows, there is a problem about 

idealization and abstraction. But as is emphasized in the rest of the discussion, this has nothing to do 

with the possibility of mathematical description. The disappearance of mathematical objects as a 

special ontological category displaces the problem. 
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 We have seen how Galileo structured his mathematical sciences of nature on the model that he 

inherited from the mixed science tradition. This would have taught him from the beginning that the 

real problem lay not in giving mathematical descriptions of material things, but in giving fruitful 

descriptions; i.e. the problem was to find out the right axioms to constrain his mathematical 

framework in a physically sensible way, thus allowing for explanations.  

 I already indicated in chapter 2 that the two kinds of criticisms that the philosophers 

traditionally levelled against the mathematical sciences are not unconnected. 789  The problem of 

idealizations (physical things never exemplify exact mathematical properties) seems to derive its 

appeal from an abstractive view on mathematical entities (mathematics deals with purely accidental 

properties, by abstracting away everything that is natural and essential). We can see this connection 

reflected in Galileo’s strategy: having abandoned the latter view, the problem of idealization as 

traditionally construed has lost all sense for him. 

 Ernan McMullin has claimed that Galileo’s treatment of idealization wavers between two 

views: on the one hand the force of mathematics would not be diminished by the presence of 

impediments which merely make it hard to give a proper description; on the other hand Galileo 

sometimes talks as if “material nature is seen as not exactly following mathematizable norms, whether 

simple or complex.”790 However, the presence of passages suggesting both these views does not imply 

that Galileo was wavering in any sense (at least not on this matter). The passages in which he stresses 

                                                 
788 Opere VII, p. 236. (Transl. from Galilei 2001, p. 244.) 
789 Chapter 2, section 2.1.1. 
790 McMullin 1978, p. 231. 
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the first view occur when he emphasizes the fact that any material thing can be given a mathematical 

description. The passages in which he claims that some things fall outside the scope of a mathematical 

treatment don’t deal with description, but with explanation. This seeming divergence only illustrates 

the two levels on which any mixed science operates. 

 However, this also implies that whereas the original problem of idealization has lost all sense 

to Galileo, it resurfaces at the second level: that of finding out how a mathematical explanation can be 

given of natural events. The dislocation of the Quaestio within Galileo’s own text reflects a crucial 

feature of the way in which he invokes the metaphor of the book. As we noticed above, it entails a 

purely horizontal level of signification.791 The problem of idealization that confronts Galileo is one 

that is situated completely within this realm. Because of this, the impediments themselves become 

possible objects for thought. There is something that separates the ideal proportions from the perturbed 

proportions, rather than mere privation.792 One can in principle account for their presence.793 

 In chapter 6, we have analyzed how Galileo deals with the problem of idealization. Most 

importantly, we have seen how it is regulated by what have seen to be nature’s discursive function as a 

normative instance. Not any way of accounting will do. The geometrical philosopher is accountable to 

nature. But this allows us to uncover one more discursive layer in Galileo’s book metaphor. We began 

our narrative of the different stages of this metaphor ten years too late. As we have seen in chapter 5, 

nature’s inexorable and immutable character is already operative as a crucial discursive element in Le 

mecaniche. Nature is not only indifferent with respect to human opinions, but also with respect to 

human desires. It is that which constrains what lies within our powers to achieve. 

 Galileo’s primary models like the balance or the pendulum are representative for natural 

behaviour. That’s the guarantee that underwrites his idealizations. It is because of nature’s specific 

regulative function that we can see what happens in these systems as in some essential aspects alike to 

natural events. Galileo’s reading of the book of nature is structured around analogical movements that 

stay within the realm of the empirical world. Let us not forget that Galileo’s geometry was a geometry 

of proportions. The circles and triangles that are the characters of the book of nature encode 

knowledge about a set of invariant relations. Galileo would have understood the human gaze, to which 

the book of nature stands continually open, as directed to these structural features. “Seeing” the world 

as mathematical involves approaching it in a certain way. It means actively searching for invariant 

ratios, noticing analogies between different structures.794 

  In the Dialogo Salviati is teaching Simplicio to be rational. He is bringing him to notice ta 

mathema, that what is learnable. And the image of the book of nature simultaneously invokes the 

                                                 
791 Cf. supra section 9.1.2. 
792 Compare with what said about the Platonically inspired discourses in chapter 2, sections 2.1.2 and 2.1.3. 
793 As we have seen, at one point the impediments even become objects for thought in a stronger sense, in that they can be 

exploited to epistemic ends. Cf. chapter 6, section 6.2.4. 
794 Remember that proportion also means analogy for Galileo; cf. chapter 5, section 5.4.2. 
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divine logos as a presence. The continual transference between these discursive elements constitutes 

the knot of Galileo’s legitimization of his mathematical sciences of nature. 
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