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Chapter 1

Introduction

This thesis consists of 3 parts, spanning 5 chapters, and 3 appendixes. El-
liptic, parobolic, and hyperbolic partial differential equations are considered,
the emphasis being on numerical modeling. Our aim was to consider real world
problems, determine the techniques needed to solve them and tackle open math-
ematical problems related to them. This resulted in the treatment of various
subjects ranging from flow problems to adsorption experiments.

When considering real world problems, the emphasis is usually not on the
study of the solution itself, but on the use of the solution to reach a better
understanding of the world around us, or to build/construct better tools. This
directly leads to the field of inverse problems. It should therefore be no surprise
that we focussed on inverse problems. Two physical situations were consid-
ered: determining properties of the subsurface in relation to contaminants in
the groundwater flow, and determining the effective diffusion during the con-
struction of steel alloys.

These problems are both of diffusion type, although of very different nature:
one being convection-diffusion, with dominant convection and combined with
adsorption, the other being pure diffusion.

Diffusion, coupled with flow or other processes, is a long standing subject
within classical physics and yet a thoroughly modern one. Looking at the current
science and technology scene, one cannot help but be impressed that applica-
tions as diverse as biodiffusion across cell membranes and dopant diffusion in
semiconductors can be understood from a few similar basic rules. However, the
time and length scales involved can differ enormously, and extra processes like
adsorption, reaction, etc. can complicate the matter further. Many approxima-
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tion methods have been developed to study diffusion, each with its strong and
weak points. Many mathematical problems related to their development are
still open and many questions unanswered.

Our first task was the construction of the correct physical models for the
problems at hand. Secondly, we determined suitable approximation methods
to obtain solutions of the models. At last, but not least, we concentrated on
two open mathematical problems: convergence of the operator splitting method
for a nonlinear convection-diffusion equation, and existence of a solution for
a degenerate, variable coefficient, convection-diffusion-reaction problem, that
arises in the inverse problem of a degenerate nonlinear diffusion equation.

In addition, we solved the Toth’s regional flow problem without the simplifi-
cations and approximations considered by other authors. This is a groundwater
flow problem, of which the solution is needed to deduce contaminant flow. It
can be reduced to a steady state diffusion type problem. We could construct a
semi-analytical solution and evaluate it numerically.

1.1 Overview and main results

Part I, Direct problems Two model problems are described and appropriate
approximation methods are constructed.

The first problem is related to groundwater quality. Groundwater pollution
is becoming an ecology endangering problem caused by economic activities and
human lifestyle, not only in the industrial countries, but also in the developing
countries. It can lead to environmental disasters and water shortages: an ex-
plosive combination due to the ever increasing world population. In the near
future, many contaminated sites will have to be cleaned, and unspilt aquifers will
need protection. To help this fight, mathematical modeling is of fundamental
importance. Models can forecast future contamination situations, calculate the
impact of certain remedies and provide a better understanding of the processes
involved.

A major difficulty with the subsurface is that overall observation is not pos-
sible. The entire structure must be extrapolated from a limited number of dis-
crete observations. A field worker can only chose some specific points at which
to study the underground, mostly by taking ground samples, or by placing a
groundwater well. This often limits the possibilities of a mathematical model,
as insufficient data for the calibration of complicated regional groundwater pol-
lution models can undermine the validity of the decisions based on the model.
The determination of model characteristics is therefore very important.
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At the same time, the consequences of many processes, such as adsorption
and infiltration of NAPLs (nonaqueous phase liquids, like benzene) are still
unclear. Small scale tests and models need to be implemented to better un-
derstand these processes before they can be incorporated in regional models.
Convergence in ideal settings has to be proved to give the methods credibility.

In Chapter 2 the dual-well problem is solved. The dual-well is a subsurface
measurent technique, in which two wells are drilled, one pumping water into
the subsurface, and one pumping out the same amount of water. A tracer
is added to the water, and its concentration is measured at the outflow. The
dual well is in essence a convection-diffusion problem with dominant convection.
In Section 2.1 the mathematical tools are presented: operator splitting, the
Riemann problem and finite volume methods. In Section 2.2 the dual-well model
is deduced. The flow field is calculated, and the model for contaminant transport
is deduced. Then, the approximation method, without and with adsorption is
given. In Section 2.5 the approximate solution is proved to converge to a very
weak solution. Finally, Section 2.6 provides numerical experiments validating
the developed techniques.

The constructed mathematical model is novel in that it reduces the dual-
well problem in R? to a rectangular domain by a conformal mapping where the
flow takes place along the verticals. The contaminant flow is governed by a
convection-diffusion equation with dominant diffusion

OcF(u) —v(y)Oyu — g(z,y)V - D(z,y)Vu = 0.

We apply operator splitting as an approximation method. Here, the convection
is splitted from the diffusion. A Rieman solver is constructed for the transport
part, and a finite volume method for the diffusion part. We show that the
approximation is very effective and fast. Moreover, in the nonlinear setting
when also adsorption is considered, a hybrid implementation of the relaxation
method and Newton’s method combined with the finite volume method, allows
for taking large time steps and provides convergence in few iteration steps.

We define a very weak solution to the problem, see Definition 2.5.2. The
novelty is that boundary conditions are taken into account in the definition
itself. We prove convergence of the numerical method to this very weak solution
in Theorem 2.5.1. The proof is based on Riesz-Frechet-Kolmogorov compactness
arguments and techniques from Crandall and Majda [16]. One of the key points
is the proof of boundedness of the total variation, which is achieved in 2D by
combining the contributions of the different steps.

Finally, the performed experiments not only illustrate the validity of the
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approach, but also show how the different subsurface parameters influence the
output of the dual-well experiment.

The second problem treated in Part I relates to power losses in electrical
motors and transformators. These consist of iron cores which are made from
steel alloys. For economical and ecological reasons one wants to produce and
use alloys that optimize the inner workings of the motor or transformator. The
minimization of power losses can be achieved with steels that have a higher Si
(silicon) content than the nowadays produced ones. Industrial techniques are
being developed towards this purpose, but much work remains in optimizing
them and in understanding the physical processes involved.

One such physical process is the diffusion of Si into the steel matrix by a
technique called annealing diffusion. The interaction with Al (aluminium) com-
plicates the behaviour. Physical parameters for a ternary Si-Al-Fe combination
are mainly unknown, but are needed in order to obtain solutions of a model for
the time evolution of the alloy. A first step to obtain these parameters, avoiding
large research investments, is the determination of the apparent diffusion in a
simplified setting.

In Chapter 3 annealing diffusion is presented. In Section 3.1 the process
is explained, and a mathematical model is given. This model is reduced to
one with an apparent diffusion. Furthermore, a numerical approximation based
on the method of lines is developed, both with and without the presence of a
moving interface. In Section 3.2 physical experiments performed at LabMet of
Ghent University are presented, and in Section 3.3 numerical experiments are
given.

Our main, novel contribution is the set-up of the reduced model, and its
approximation based on the method of lines. Furhermore, in the case of a moving
interface, we show how the application of Landau’s transformation allows for a
straightforward determination of the time varying, a priori unknown position of
the inferface.

Part IT, Inverse problems The models developed in Part I depend on sev-
eral parameters, which have to be known exactly to enable the use of the models
on real-world examples. These parameters are diffusion coefficients, reaction
rates, etc. In this thesis, the set-ups have been specifically constructed to allow
the correct determination of some of the parameters: the purpose of the dual-
well is the retrieval of subsurface parameters, and during the annealing diffusion
extra measurements are performed to allow the determination of the diffusion
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coefficient.

We start in Chapter 4 with the treatment of diffusion annealing. First the
cost functional, measuring the deviation of the measured values from the values
obtained numerically for a choosen parameter set, is given. In Section 4.1 the
adjoint or costate problem is developed. This is an auxilary PDE that allows
to construct the gradient of the cost functional, which is needed to obtain the
optimal parameter values. The adjoint equation is of degenerate convection-
diffusion-reaction type. In Section 4.2, existence of solution of the adjoint equa-
tion is proved. At the end of the chapter, we provide an extension of the problem
to discrete time measurements and provide numerical experiments illustrating
the validity of the developed approximations.

Our main contribution is the construction of the costate problem for the
specific setting of diffusion annealing. We obtain an adjoint equation of the
form,

Oru — a(z, t)@iu = f(x,t),

where there is a degenerate, time varying point = = s(t), with a(x,t) = 0 for
x > s(t) and Jza(s(t),t) = c(t) with —oo < ¢(t) < 0.

The technique to arrive at the adjoint equation is well established. However,
the resulting adjoint equation seems not to have been considered so far. The
difficulty concerns the fact that the diffusion can be strongly degenerate, i.e.

Oza(s(t),t) = —oo,

resulting in a pure reaction problem in a part of the domain. We are able to
prove existence of a solution of the weak formulation, in two settings. First,
when only a regularization of a(z,t) around x = s(t) is considered, Theorem
4.2.1. Secondly, when a vanishing viscosity solution is considered, Theorem
4.2.2. A numerical experiment on a model problem shows that the adjoint
equation provides good results for the recovery of the parameters.

In Chapter 5 we consider the dual-well experiment. We give an overview of
parameter identification techniques for the subsurface in Section 5.1. In Section
5.2 the Levenberg-Marquardt method is presented and in Section 5.3 the adjoint
problem is developed, as well as a suitable numerical approximation. Finally,
in Section 5.4, numerical experiments are given.

The interesting feature of the chapter is that we develop the adjoint problem
for a convection-diffusion problem, where measurements are averaged values over
a part of the boundary, the so called break through curve. This could seem to be
a poor input for the adjoint equation. Indeed, the only way the experimentally
measured concentration ug(t) of the tracer in the outflow well (as solution of
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the direct problem in terms of u(z,y,t)), appears in the adjoint equation (given
in terms of v(z,y,t)), is through a boundary condition of the adjoint problem,

aay(g(a:,y)v(x,y,t))—bg(x,y)v(a:,y,t) = C/F (u(j(s)vg(s)vt)_uB(t) dSv op Fl'

One would expect this to lead to an ill-posed inverse problem, unsuitable for
the determination of parameters. The contrary is true: numerical experiments
give very good results. The concept of the dual-well turns out to be a powerfull
methodology to determine subsurface parameters.

Part ITI, On a practical groundwater flow problem In solving the dual-
well groundwater flow problem, we use the so-called Dupuit-Forchheimer ap-
proximation, which neglects vertical groundwater flow. While validating this
approach, we considered Toth’s regional flow problem, a well known example in
which vertical groundwater flow is very prominent. We discovered that although
the model is wel described in the literature, the approximations used are based
on strong simplifications. In the original paper [73], T6th projects the intricate
domain of the problem on a rectangle, whereas a more recent contribution [68]
uses an infinitely deep basin. In Chapter 6 we reconsider the problem giving
not only a semi-analytical solution, but also illustrating the use of an “infinite”
element method as a possible approximation technique.

The outline of Chapter 6 is as follows. In Section 6.2 the original analytical
solution of Téth is presented; in Section 6.3, we state the improved mathematical
model of our choice. An analytical solution involving infinite series is derived
in Section 6.4. The semi-analytical approach is discussed in Section 6.5, and
numerical results are compared with results from the literature. In Section 6.6,
we briefly sketch a finite element approach and an infinite element approach.
Furthermore, we demonstrate how the last method can be used for the case of
a very deep basin.

The main merit of this chapter is that it gives different types of solution to an
important problem, varying from (semi)-analytical ones to numerical solutions
by finite and infinite element methods.

Appendices To make this thesis (partially) self-contained, we added 3 appen-
dices. Appendix A reviews some standard mathematical tools from functional
analysis. Appendix B deals with basic concepts in groundwater modeling, en-
countered in Chapters 2 and 6. Finally, Appendix C covers the basic aspects of
numerical methods for inverse problems, as a background for Part II.
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1.2 Nederlandse samenvatting: Numerieke meth-
oden voor directe en inverse convectie-diffusie
vraagstukken

Introductie Deze thesis bevat 3 delen, verspreid over 5 hoofdstukken, en 3 ap-
pendices. Elliptische, parabolische en hyperbolische partiéle differentiaalverge-
lijkingen worden beschouwd. De nadruk ligt op numerieke modellering. Ons
doel was het bestuderen van enkele practische probleemstellingen, het bepalen
van de technieken nodig om deze op te lossen, en het beantwoorden van open
wiskundige vragen die ermee gerelateerd zijn. Dit resulteerde in de behande-
ling van diverse onderwerpen, gaande van stromingsproblemen tot adsorptie-
experimenten.

Bij vraagstukken met praktisch nut ligt de nadruk normaal niet op de studie
van de oplossing van het vraagstuk zelf, maar op het gebruik van die oplossing
om de fysische/chemische/. . . probleemstelling beter te begrijpen, en zo ons toe
te laten betere materialen, technieken, enz. te ontwerpen. Dit leidt onmiddelijk
tot inverse problemen. Het hoeft dan ook niet te verwonderen dat we focussen
op twee inverse problemen: het bepalen van eigenschappen van de ondergrond
in relatie tot contaminantentransport, en het bepalen van de effectieve diffusie
gedurende de constructie van staallegeringen.

Deze problemen zijn beide van het diffusietype, alhoewel met erg verschil-
lende eigenschappen: de ene is convectie-diffusie met dominante convectie en
gecombineerd met adsorptie, de andere is een puur diffusieprobleem.

Diffusie, al dan niet gekoppeld met andere processen, is een goed bestudeerd
thema binnen de klassieke fysica, maar terzelfdertijd een erg modern toepas-
singsgebied. Men kan enkel onder de indruk zijn van het feit dat toepassingen
die zo divers zijn als biodiffusie tussen celmembranen en doperingsdiffusie in
halfgeleiders, beschreven kunnen worden met enkele, gelijkaardige fysische ba-
sisregels. Niettemin kunnen de tijd- en lengteschalen sterk verschillen, en extra
wisselwerkingen, zoals adsorptie, reactie, enz., kunnen de complexiteit sterk
doen toenemen.

Veel benaderingstechnieken zijn ontworpen om diffusie te bestuderen, elk met
sterke en zwakke punten, maar veel hierbij opduikende wiskundige problemen
zijn nog onbeantwoord.

Onze eerste taak was de constructie van een correct fysisch model voor de
vraagstukken. Daarna bepalen we steeds een geschikte benaderingstechniek om
tot een oplossing te komen van het model. Uiteindelijk, concentreren we ons
op twee open wiskundige vraagstukken: convergentie van de operatorsplitsings-
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techniek voor niet-lineaire convectie-diffusievergelijkingen, en existentie van een
oplossing van een gedegenereerd convectie-diffusie-reactievraagstuk met vari-
abele coéfficiénten, dat optreedt bij de studie van het inverse probleem van een
ontaarde niet-lineaire diffusievergelijking.

Daarenboven lossen we Toth’s regionaal stromingsvraagstuk op, zonder de
simplificaties en benaderingen die tot nu toe gebruikt werden in de literatuur.
Dit is een grondwaterstromingsvraagstuk waarvan de oplossing kan gebruikt
worden om contaminantentransport te bepalen. Het vraagstuk kan gereduceerd
worden tot een stationair probleem van het diffusietype. We hebben een semi-
analytische oplossing opgesteld en numeriek geévalueerd.

Deel I, Directe vraagstrukken Twee specifieke problemen worden beschre-
ven en gepaste benaderingstechnieken worden ontwikkeld.

Het eerste probleem is verbonden met de kwaliteit van het grondwater.
Grondwatervervuiling is een groeiend probleem ten gevolge van economische
activiteiten en onze levenstijl, niet enkel in de industriéle landen, maar ook
in de ontwikkelingslanden. Het kan leiden tot milieurampen en watertekorten:
een explosieve combinatie ten gevolge van de stijgende wereldpopulatie. In de
nabije toekomst zullen veel vervuilde sites opgeruimd moeten worden en zullen
onbedoezelde aquifers moeten beschermd worden. Hierbij zullen mathematische
modellen een fundamentele rol spelen. Modellen kunnen toekomstige situaties
van vervuiling voorspellen, ze laten toe de impact van bepaalde remedies te on-
derzoeken, en bieden de mogelijkheid de betrokken processen beter te begrijpen.

Een belangrijke moeilijkheid betreffende de ondergrond is dat een grootscha-
lige monitoring niet mogelijk is. De totale structuur moet geéxtrapoleerd wor-
den vertrekkende van een beperkt aantal discrete metingen. Een veldwerker
kan enkel specifieke plaatsen kiezen waar hij de ondergrond bestudeert, via een
boring of door het opzetten van een boorput. Dit zorgt vaak voor beperkingen
in de mogelijkheden van een wiskundig model omdat er onvoldoende data zijn
voor de callibratie van complexe grondwaterpollutiemodellen. Dit ondermijnt
dan beslissingen die genomen worden op basis van het model. Bijgevolg is het
bepalen van karakterestieken van de ondergrond erg belangrijk.

Terzelfdertijd zijn de gevolgen van vele processen, zoals adsorptie en in-
filtratie van NAPLs (bv. benzeen), nog onduidelijk. Proeven op beperkte
schaal en modellen moeten geimplementeerd worden om tot een beter begrip te
komen, alvorens deze processen kunnen opgenomen worden in regionale model-
len. Verder moet minstens convergentie van de approximatiemethoden in ideale
omstandigheden bewezen worden om de methoden credibiliteit te geven.
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In Hoofdstuk 2 wordt het doublet-probleem opgelost. De doublet is een meet-
techniek waarin twee bronnen geboord worden. De ene bron wordt gebruikt om
water in de ondergrond te pompen (infiltratiebron), via de andere wordt dezelfde
hoeveelheid water terug opgepompt (onttrekkingsbron). Een merker wordt aan
het water toegevoegd, en de concentratie van de merker wordt gemeten in het
opgepompte water.

De doublet leidt in essentie tot een convectie-diffusieprobleem met dominante
convectie. In Sectie 2.1 worden de wiskundige methoden gepresenteerd die nodig
zijn om een oplossing te bekomen: operatorsplitsing, het Riemann probleem,
en eindige volumemethoden. In Sectie 2.2 wordt het doubletmodel afgeleid.
Het snelheidsveld wordt berekend, en het model voor contaminantentransport
wordt afgeleid. Daarna wordt de benaderingsmethode, met en zonder adsorptie,
gegeven. In Section 2.5 wordt bewezen dat de benadering convergeert naar een
erg zwakke oplossing. Uiteindelijk, in Sectie 2.6, valideren we de ontwikkelde
technieken aan de hand van numerieke experimenten.

Het ontwikkelde wiskundige model is vernieuwend in de zin dat het de dou-
blet reduceert van een probleem in R? tot een rechthoekig domein via een con-
forme afbeelding, waar bovendien de stroming gebeurt langs de vertikalen. Het
contaminantentransport wordt beheerst door een convectie-diffusievergelijking
met dominante diffusie van de vorm

O F(u) —v(y)Oyu — g(z,y)V - D(z,y)Vu = 0.

We passen operatorsplitsing toe als benaderingstechniek. Hierdoor wordt de
convectie gesplitst van de diffusie. Een Riemann methode wordt gebruikt voor
het transportgedeelte, en een eindige volumemethode voor het diffusiegedeelte.
We tonen aan dat de approximatie erg effectief en snel is. Daarenboven, in het
niet-lineaire geval, wanneer ook adsorptie beschouwd wordt, implementeren we
een combinatie van de relaxatiemethode en Newton’s methode op basis van de
eindige volumemethode. Dit laat toe grote tijdstappen te beschouwen, met con-
vergentie over één tijdstap van de niet-lineaire approximatie na enkele iteraties.

We definiéren vervolgens een erg zwakke oplossing van het probleem, zie
Definitie 2.5.2. Nieuw is dat de randcondities ingebouwd worden in deze definitie
zelf. We bewijzen dan de convergentie van de numerieke methode naar deze erg
zwakke oplossing, Theorema 2.5.1. Het bewijs is gebaseerd op Riesz-Frechet-
Kolmogorov compactheidsargumenten en op technieken van Crandall en Majda
[16]. Een van de kernpunten is het bewijs van de begrensdheid van de totale
variatie, die bereikt wordt in 2D door het combineren van de bijdragen van de
verschillende stappen.
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De uitgevoerde experimenten illustreren niet enkel de geldigheid van de werk-
wijze, maar tonen ook hoe verschillede ondergrondparameters invloed hebben
op de doubletmetingen.

Het tweede probleem dat behandeld wordt in Deel I, heeft verband met
stroomverliezen in electrische motoren en transformatoren. Deze bestaan uit
ijzerkernen gemaakt met staallegeringen. Omwille van economische en ecolo-
gische redenen beoogt men de produktie en het gebruik van legeringen die de
werking van de motor of transformator optimalizeren. De minimisering van de
stroomverliezen kan bereikt worden met staal dat een hogere Si (silicium) con-
centratie heeft dan het thans via massaproductie gemaakte staal. Met dit doel
worden industriéle technieken ontwikkeld, maar het optimalizeren hiervan en
het begrijpen van de relevante fysische processen blijven belangrijk.

Een van deze fysische processen is de diffusie van Si in de staalmatrix via
een techniek genaamd “diffusie annealing”, het opwekken van diffusie door het
uitgloeien van het staal. Dit zou een standaard probleemstelling kunnen zijn,
maar vanwege de interactie met Al (aluminium) treden complicaties op. Fy-
sische parameters voor een ternair Si-Al-Fe systeem zijn nog onbekend, maar
zijn toch nodig om tot oplossingen te komen in modellen die de tijdsevolutie van
de legering pogen te simuleren. Een eerste stap in het bekomen van deze para-
meters, zonder grote onderzoeksinversteringen, is het bepalen van een schijnbare
diffusie van een gereduceerd probleem.

In Hoofdstuk 3 wordt diffusie-annealing beschreven. In Sectie 3.1 wordt het
proces verklaard en een mathematisch model opgesteld. Dit model wordt dan
gereduceerd tot een model met een schijnbare diffusie. Ook ontwikkelen we
een numerieke benadering gebaseerd op de methode der lijnen, en dit zowel
voor het geval met een bewegend interactievlak als zonder. In Sectie 3.2 wor-
den fysische experimenten, uitgevoerd aan het laboratorium LabMet van de
Universiteit Gent weergegeven. In Sectie 3.3 vermelden we enkele numerieke
experimenten.

Onze voornaamste bijdrage is het construeren van een gereduceerd model
en de benadering ervan via de methode der lijnen. Verder hebben we in het
geval van een bewegend interactievlak aangetoond hoe het gebruik van Landau’s
transformatie toelaat om de tijdsveranderlijke en a priori ongekende positie van
dit vlak transparant te bepalen.

Deel II: Inverse vraagstrukken De modellen ontwikkeld in Deel I zijn
afhankelijk van verschillende parameters die nauwkeurig moeten gekend zijn om
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toe te laten de modellen te gebruiken in realistische omgevingen. De parameters
zijn bv. diffusiecoéfficienten, reactiesnelheden, enz. In deze thesis reflecteren de
modellen werkwijzen die specifiek opgesteld zijn om sommige van de parameters
te bepalen: het doel van de doublet is het bekomen van ondergrondparameters;
gedurende de annealing-diffusie worden extra metingen uitgevoerd om de dif-
fusiecoéfficient te bepalen.

We beginnen Hoofdstuk 4 met de probleembeschrijving van diffusie-annealing.
We stellen eerst de kostfunctionaal op. De kostfunctionaal is een maat voor
de afwijking tussen experimenteel bepaalde waarden van de oplossing van het
diffusieprobleem enerzijds en numeriek bekomen waarden van de oplossing cor-
responderend met een gekozen parameterstel anderzijds. In Sectie 4.1 wordt het
duaal probleem opgesteld. Dit is een hulpvraagstuk dat toelaat om de gradient
van de kostfunctionaal te berekenen. Deze gradient is nodig om de optimale pa-
rameterwaarden te vinden. De duale vergelijking is van het ontaarde convectie-
diffusie-reactietype. In Sectie 4.2 bewijzen we existentie van een oplossing van
de duale vergelijking. Op het einde van het hoofdstuk breiden we het probleem
uit tot discrete tijdsmetingen, en beschouwen we numerieke experimenten die
de bruikbaarheid van de ontwikkelde benaderingen aantonen.

De hoofdbijdrage bestaat uit het opstellen van het duaal probleem voor het
diffusie-annealingvraagstuk. We verkrijgen een differentiaalvergelijking van de
vorm

opu — a(z,t)0%u = f(x,t),

waarbij ontaarding optreedt in het tijdsveranderlijke punt = s(t), met a(z,t) =
0 voor x > s(t) en met d,a(s(t),t) = c(t), waarbij —oo < c(t) < 0.

De methode om een duaal probleem op te stellen is doorgaans goed gek-
end. In het huidig geval evenwel, is de resulterende duale vergelijking nog niet
beschouwd in de literatuur. De vergelijking kan namelijk sterk ontaard zijn,
Oza(s(t),t) = —oo, en overgaan in een puur reactieprobleem in een tijdsveran-
derlijk deel van het domein. We kunnen de existentie van een oplossing van de
zwakke formulering van het probleem bekomen in twee gevallen. Ten eerste via
een regularizatie van a(z,t) rond z = s(t), Theorema 4.2.1. Ten tweede wan-
neer een viscositeitsoplossing beschouwd wordt, Theorema 4.2.2. Een numeriek
experiment van een model probleem illustreert dat de duale vergelijking goede
resultaten oplevert voor de reconstructie van de parameters.

In Hoofdstuk 5 beschouwen we het doublet-experiment. We geven een over-
zicht van methoden voor parameteridentificatie voor de ondergrond in Sectie
5.1. In Sectie 5.2 wordt de Levenberg-Marquardt-methode bondig in herinne-
ring gebracht. In Sectie 5.3 wordt het duale probleem ontwikkeld, samen met
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een gepaste numerieke benadering. In Sectie 5.4 tenslotte, worden numerieke
experimenten gegeven.

De voornaamste bijdrage van het hoofdstuk is dat we een duaal probleem
uitwerken voor een convectie-diffusievraagstuk, waarbij de metingen gemiddelde
waarden zijn over een deel van de rand van het domein, de zogenaamde door-
sijpelingscurve. Dit lijkt beperkte informatie te zijn om een duaal probleem
mee op te stellen. Inderdaad, de enige manier dat de experimenteel opgemeten
concentratie up(t) van de merker in het opgepompte water (als resultaat van
het directe vraagstuk opgesteld in termen van u(z,y,t)), voorkomt in de duale
vergelijking (opgesteld in termen van v(x,y,t)), is via een randconditie van het
duale probleem,

aBy(g(;v,y)v(ny,t))—bg(%y)v(x,y,t) = c~/l‘ (u(j(s)vg(s)vt)_uB(t) ds, op Iy.

Men zou verwachten dat dit leidt tot een slecht gesteld invers probleem, waarmee
het bijzonder moeilijk is parameters te identificeren. Het tegendeel is evenwel
waar: via de numerieke experimenten worden zeer goede resultaten bekomen.
Dit illustreert dat de doublet een efficiénte methode oplevert om parameters van
de ondergrond mee te bepalen.

Deel ITI: Een practisch groundwaterstromings probleem Om het dou-
blet-grondwaterstromingsprobleem op te lossen, gebruiken we de zogenaamde
Dupuit-Forchheimer benadering, die vertikale grondwaterstroming verwaarloost.
Gedurende de validatie van deze techniek, werden we geconfronteerd met Toth’s
regionaal stromingsprobleem, een bekend voorbeeld waarin vertikale grondwa-
terstroming wél van belang is en zelfs een prominente rol speelt.

Alhoewel het model goed beschreven is in de literatuur, steunen de gebruikte
oplossingsmethoden op sterke vereenvoudigingen. In het originele rapport, [73],
projecteert Téth het domein op een rechthoek, terwijl een meer recente bij-
drage, [68], een oneindig diep domein gebruikt. In Hoofdstuk 6 behandelen we
het probleem en geven we niet enkel een semi-analytische oplossing, maar to-
nen we ook aan hoe de “oneindige” elementenmethode kan gebruikt worden als
approximatiemethode.

Het hoofdstuk is als volgt ingedeeld. In Sectie 6.2 geven we de originele
oplossing van Téth weer. In Sectie 6.3 beschouwen we een verbeterd wiskundig
model. Een analytische oplossing bestaande uit oneindige reeksen wordt afgeleid
in Sectie 6.4. De semi-analytische benadering wordt uiteengezet in Sectie 6.5. De
numerieke resultaten worden verder vergeleken met resultaten uit de literatuur.
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In Sectie 6.6 wordt dan kort de toepassing van de eindige elementenmethode
besproken, alsook van een gepaste oneindige elementenmethode. We tonen aan
hoe die laatste kan gebruikt worden bij de modellering van diepe grondlagen.

Het voornaamste doel van dit hoofdstuk is om voor een belangrijk hydro-
geologisch vraagstuk enkele uiteenlopende oplossingsmethodes voor te stellen,
gaande van een (semi)-analytische methode tot numerieke methoden.

Appendices Om deze thesis (gedeeltelijk) op zichzelf staand te maken, heb-
ben we 3 appendices toegevoegd. Appendix A geeft een overzicht van enkele
standaard resultaten uit de functionaalanalyse. Appendix B beschouwt basisbe-
grippen in verband met grondwatermodellering, nuttig voor Hoofdstukken 2 en
6. In Appendix C worden basisaspecten van numerieke methoden voor inverse
vraagstukken beschreven. Dit als achtergrond bij Deel III.
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Chapter 2

A nonlinear advection
dominated diffusion problem
in 2D

We consider advection-diffusion problems in a domain Q C R? modeled by the
variable coefficient equation

Orp(u) +V - (vu — DVu) = 0. (2.1)

Here ¢(u) is the retardation, v is the velocity field depending on the position,
and D is the diffusion tensor, also depending on the position. We look for a
solution u(x,t), x € Q and t € (0,T) := I, satisfying (2.1), along with an initial
condition

u(z,0) =u’(z), x€Q,

and boundary conditions of Dirichlet type
u(z,t) = up(z,t), x€dQp, t>0,
and Neumann type
Opu(z,t) =un(z,t), =€ 0Qn, t>0,
or Robin type

Onu(x,t) + c(z, t)ucx, t) = ug(z,t), =€ g, t>0,

17
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where 002 = 0Qp UOQN UONQr UT, measT' = 0.

These types of equations occur in porous media flow, heat transport in
flowing water, propagation of epidemics or carrier transport in semiconductors.
They are advection dominated because their so-called global Péclet number

||| codiam(£2)

Pe .=
[ Dlfoo

is significantly larger than 1.

Many difficulties are encountered in the numerical approximation of advec-
tion dominated diffusion problems. This is due to the nature of many approx-
imation methods, which have specific drawbacks. Duffision problems can effi-
ciently be solved with variational approximations (Galerkin methods), but these
fail dramatically when applied to hyperbolic problems, like pure advection prob-
lems. The reason is that hyperbolic problems entail discontinuities, and many
methods break down under such circumstances. Hyperbolic problems can be
solved with high-resolution finite volume methods, where appropriate numeri-
cal flux functions are used, but these are not as practical for diffusion problems.
Hybrid methods have been developed over the past decades; for an overview see
[43], Chapter 9, where StreamLine-Diffusion, Lagrange-Galerkin and Finite Vol-
ume methods are presented. See also [50], Chapter 7, for finite volume methods
(there called generalized upwind difference schemes). These methods are in full
development.

We have chosen a different approach. Instead of developing a method that
solves the advection dominated diffusion problem, we intend to use the broad
knowledge that exists on solving advection problems on one hand, and diffusion
problems on the other. A technique called operator splitting makes this possible:
the original problem is split in two: one purely hyperbolic problem, and one
parabolic problem.

The number of existing numerical methods is huge. In the choice of methods,
we were always guided by the practical example we wanted to solve, the dual-
well experiment. We will consider methods which are suitable for the dual-well.
We are aware that many other methods exsist, and that there might be better
choices.

This Chapter starts with an overview of the mathematical tools needed to
solve (2.1): the operator splitting method, Riemann solvers, and the finite vol-
ume method. In Section 2.2 we present the dual-well problem. The next two
Sections apply mathamatical tools to the dual-well problem, first without and
then with adsorption. Section 2.5 is devoted to the convergence of the numerical
approximation. Finally, in Section 2.6 numerical experiments are given.
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2.1 Mathematical tools

2.1.1 Operator splitting

Operator splitting is the technique of dividing a complicated differential equa-
tion into several simpler parts. The corresponding methods are called operator
splitting methods or fractional steps methods. The splitting of a differential equa-
tion can be done according to the subtype of the problems: diffusion, reaction,
advection, source terms. It can also be done according to the dimensions, so
called dimensional splitting.

Dimensional splitting

Dimensional splitting is typically used to reduce mutidimensional hyperbolic
problems to one dimensional problems. Consider the two dimensional conser-
vation law

Owu+ 0p f(u) + 9yg(w) =0, wu(z,y,0)=u’(z,y). (2.2)
Denote by 7,”“u° the solution of
0o+ 0:f(v) =0, v(z,y,0) = u’(z,y),
where y is a passive parameter. Similarly, let 7,"Yu° be the solution of
ow + Oyg(w) =0, w(x,y,0) =u’(z,y),

where x is a passive parameter. The idea of dimensional splitting is to approx-
imate the solution of (2.2) at ¢t = nAt, (n € Np), by

ule,y,nd) = [T 0 7] ul(w,y). (2.3)

The above is called a semi-discrete splitting method, as the operators 7 are
considered to produce exact solutions of the PDE’s. If the operators correspond
to a numerical method approximating the solution of the corresponding PDE,
we call the approximation a fully-discrete splitting method. It can be shown
that the semi-discrete dimensional splitting produces a sequence of functions
for At — 0 that converges to a solution of (2.2) in a weak sense, and that it
preserves stability, meaning that if v is a solution of a problem with different
data, y

8tv+a$f(u)+ay§(v) =0, ’U(l‘,y,O) :vo(xay)7
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we have that
o) = v 1) < o — wolly + Comax (17— Fluips g — dlip) - (24
For more details, see [27].

Convergence rate

It is important to give extra attention to the convergence rate. The intrinsic
error of the dimensional splitting is of the order v/At, see [27], Theorem 4.8.
So one might think this method performs much worse than other numerical
methods which are of first or higher order. This is not the case, as in the
operator splitting method, the timestep At is not bounded by a CFL condition.
The CFL condition in advection problems states that the timestep must relate
to the space grid in such a way that in one step the flow only reaches a point
of the space grid from points which are in the stencil of the numerical method.
Thus, a method that calculates the value in z; from values in z;_1,;, ;41 in
the previous timestep, must have a timestep such that the flow field indeed only
carries information from these neighboring points, i.e. vAt < Az. Formally we
introduce, see [48],

Definition 2.1.1 (CFL Condition). A numerical method can be convergent
only if its numerical domain of dependence contains the true domain of depen-
dence of the PDE, at least in the limit as At and Ax go to zero.

Note that the CFL condition is only a necessary condition for convergence
and stability, and is not always sufficient.

In advection dominated problems the CFL condition makes computation very
hard, as a small grid implies an extremely small timestep. The operator splitting
does not have this limitation, so one can split at time steps up to 10-15 times
the CFL numbers. This makes it a fast method, usefull in advection dominated
problems, or in problems where the computations need to be fast, like inverse
problems.

It must be noted that the numerical method used to solve the split problem,
does have to satisfy the CFL condition. For pure hyperbolic problems however,
special methods like front tracking, based on the Riemann problem, can be
used. These methods do not have a CFL type of limitation. Also pure diffusion
problems do not exhibit this limitation.

From the above discussion operator splitting techniques might appear to be
less usefull in non advection dominated problems. However, even then they
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might be handy to split the original problem in less complicated parts. Natu-
rally, the great advantage of being able to use a timestep which is much larger
than in other numerical methods is not an argument anymore.

Logical operator splitting: diffusion

In logical operator splitting, the original PDE is split along logical parts: dif-
fusion, advection, source terms, reaction, etc. Consider an advection diffusion
equation and initial condition

Oru+ Y 0o, fi(u) — pAu =0, u(z,0) =u’(z), (2.5)

Jj=1

where Au =}, 8z?u, and where 4 is a constant. Denote by 7;(t)u® the solution
of

Qv+ 0y, fj(v) =0, v(x,0) =u’(x),

and by D(t)u’ the solution of
Oww = pAw, w(zr,0) =u’(x).

The idea of operator splitting is to approximate the solution of (2.5) at t = nAt,
(Tl € NO)a by

u(z,nAt) ~ [D(At) o T, (At) o ... o T (AL)]" u®(z). (2.6)

For this semi-discrete operator splitting, the convergence to a weak solution u
of (2.5) can be proved, see [27].

In logical operator splitting, it is not necessary to solve the sub problems
in the same timestep as the operator splitting timestep At. Let At = [AT,
[ > 1 an integer. Then, another slightly different operator splitting method is
to approximate the solution of (2.5) at ¢ = nAt by

n

i(z,nAt) ~ |D(AL) o [T (AT) o ... 0o To(AT)]] uO(x). (2.7)

So far, we described only the semi-discrete method. In the fully discrete method,
the operator D(At), can again be approximated by a numerical method that
uses several timesteps to approximate the diffusion over At.
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Formal analysis for linear problems
In general, consider the linear PDE of the form
Ou = (A + B)u,

where A, B may be differential operators. For simplicity suppose they do not
depend explicitely on t. We have that

du=(A+B)u

If A, B depend on ¢t we would have to use the product rule and terms like 9;.4
would also appear. As the operators do not depend on ¢ we can write the
solution at time ¢t = At using Taylor series as

u(z, At) = wu(z, 0) +At(A+B)u(x 0) + 1(At)*(A + B)?u(z,0) + ...
= Z u(z,0)
7=0
= e (A+B)u(;v,0). (2.8)

Denoting by @ the solution obtained by the fractional step method, we have
a(z, At) = e2BeA My (2, 0).
Therefore, the splitting error is given by
u(z, At) — a(z, At) = (eAt(AHS) — eAtBeAtA) u(z, 0).
This can can be calculated by a Taylor series expansion, for 4

u(x, At)

(I+AtB+ 3(A)?B* +...) (I +AtA+ L(A)> A% + .. u(z,0)
= (I+At(A+B)+ L(At)*(A* +2BA+ B?) +...) u(z,0).
Comparing with (2.8) yields
u(z, At) — iz, At) = L(At)2(AB — BA)yu(z,0) + (AB — BA)O((AL)?). (2.9)

Hence, the splitting error depends on the commutator AB — BA and is zero
up only in the special case when the differential operators A and B commute.
Over all %; time steps, we arrive at a method that is first order accurate,
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even if the subproblems are solved exactly. Notice that the order of accuracy
obtained here only holds for smooth solutions. In the general case a lower order
of accuracy will be observed.

The above form of operator splitting is sometimes called Godunov splitting.
One can obtain second order accuracy with a slight modification called Strang
splitting. Tt is given formally by

1 1
T(x, At) = e22AABa Ay (1 0).

Practically the same accuracy is observed. This is due to the fact that the
coefficient of the O(At) term may be much smaller than the coefficient in the
second-order term. Strang splitting is often used in dimensional splitting. For
logical splitting it might be less favourable when also boundary conditions need
to be taken into account: there is little use in diffusion of a contaminant when
not yet the total influx over At has occured along the edges.

Objective

We will apply operator splitting to (2.1) and prove its convergence. The main
difference with previously published results is the fact that we consider a retar-
dation ¢(u) and that we will consider numerical methods which solve the split
problem in this setting. Thus, we don’t lean upon the transformation to a new
variable w = ¢(u), which would bring the problem in a form like (2.2) or (2.5).
For the semi-discrete method this distinction has no impact: results for w are
transferable to results for ¢(u), as the operators considered are exact solutions.
For the fully discrete method the numerical method approximating the problem
in w is different from the one in w.

Another difference with standard convergence proofs concerns the domain
Q). Most proofs are on infinite domains. We will consider a bounded domain,
with appropriate boundary conditions. The correct splitting of the boundary
conditions to the sub problems of the original problem is non-trivial, and has
to be done with care.

We will prove the convergence of the fully discrete operator splitting in Sec.
2.5.

2.1.2 The Riemann problem

Having split the problem in an advection and a diffusion problem, we need ap-
propriate numerical methods for each of them. We start with the hyperbolic
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problem. The most succesfull approximation methods are finite volume meth-
ods, especially the high resolution methods, see [48], and the front tracking
method, see [27]. We will not use the finte volume method for the hyperbolic
problem, but will use it for the parabolic problem, see Sec. 2.1.3.

We will apply the front tracking method, but in its most exact form: exact
solution of the Riemann problem. In general, the front tracking method can
solve all types of flux problems in a general way, based on a generalization of
the Riemann problem. For the application we have in mind, it is possible to
work with exact solutions. Therefore, the general front tracking method need
not be applied. However, when more complicated fluxes must be considered,
then all the results can be extended to encompass solutions obtained with the
front tracking method.

We start with the definition for one dimensional conservation laws.

Definition 2.1.2 (The Riemann problem). For conservation laws, the Rie-
mann problem is the initial value problem

u for <0

u, for x>0 (2.10)

Ou+ 0y f(u) =0, wu(z,0)= {

The reader is referred to [47, 71, 27] for a complete analysis of the Riemann
problem. Here, we briefly recall the results.

Motivation
We rewrite Eq. (2.10) in nonconservative form
O+ f'(u)dyu =0, (2.11)

and we define the characteristic curve as the solution of the differential equation

d /
—a(t) = f (u(x (1)) (2.12)

Proposition 2.1.1. Along any characteristic curve defined by (2.12) the solu-
tion of (2.11) is constant.

This follows from

d d
%u(m(t),t) = ul(a:(t),t)ax(t)—|—uz(x(t),t)

= w0, 0F (u (@ (1), 6) + us(e(t), 1
= 0.
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Here u; denotes the partial derivative of u with respect to the i-th argument.

From (2.12) it follows that the characteristic curves will intersect for certain
smooth initial conditions, at which moment the solution becomes a multi-valued
function. This is illustrated in Fig. 2.1 where a convex flux function is given and
the speed is drawn for a very sharp front (drawn as a shock, but here considered
to be smooth with large value of the derivative). In Fig. 2.1 (ii-b) a muti-valued
profile should develop. Physically, this is not acceptable. The solution for this
dilemma is that the function is no longer smooth: shocks are formed. Therefore,
shocks are essential in conservation laws, and the study of their basic form (the
Riemann problem) is important.

A ) u 4 (i)

I'(u2)
--------------- f(u) (a) (b)
f'(u1) ug p —— > )
g = L) —F(ug) —» S —» S
ulp—u2 |
4 ! uy + >
/1 : f'(u1)
|
: . .
U1 U2 U x

Figure 2.1: (i) Convex flux function f(u) (ii) Two shocks with corresponding
speeds

Weak solutions and acceptable shocks

If the solution u(z,t) has shocks in « = z;, then the original PDE (2.10) makes
no longer sense. To include the discontinuous solutions we may consider weak
solutions of the PDE.

Consider the problem

Ou+ 0, f(u) =0, wu(z,0)=u’(x), xcR. (2.13)
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We define the set of test functions, C} as
Cl={6eC {(rf) €R X [0,00) : 6 £0} Clab] x 0,7]),  (2.14)

for some a, b, T. The functions in C} are said to have compact support in
R x [0,00). This fact is denoted by the subscript 0. We multiply (2.13) by
¢ € C} and integrate with respect to  from —oo to oo, and with respect to t
from 0 to oo, to obtain

/Oo /Oo (w0 + f(u)0,¢] dadt + /Oo u¢’ da = 0, (2.15)
0 —00

— 00

where ¢ = ¢(z,0). All classical solutions will satisfy property (2.15), whereas
all continuoulsy differentiable functions u satisfying (2.15) will also be classical
solutions of (2.13). Also non differentiable functions might be solutions of (2.15).
Therefore, we introduce

Definition 2.1.3. If u statisfies (2.15) for all ¢ € C}, u is said to be a weak
solution of the initial-value problem (2.13).

Having extended the definition of a solution to the discontinuous cases, we
must specify which type of discontinuities are acceptable. We limit our interest
to solutions which are smooth except across one or more curves in (z, t)-space,
where they have jump discontinuities, which we call shocks. The following im-
portant result can be derived, see [27].

Proposition 2.1.2. Let C : x¢ = z¢(t) be a smooth curve in the (x,t)-space
accross which a weak solution u of (2.13) has a jump discontinuity. Let P =
(zo,t0), to > 0, be any point of C, s =% (ty), and let u; and u, be the limit
values of u from the left and the right of P, respectively. Then

(=) 22 = ) — f). (216)
The speed s :% is the speed of propagation of the discontinuity. Eq.
(2.16) is called the jump condition or the Rakine-Hugoniot condition. For the
Riemann problem this implies that if the given jump is acceptable, the speed of
the shock follows from (2.16). Indeed, the value of u cannot change left or right
of the shock (it is the constant u; and u, respectively). However, it is important
to note that physically unacceptable weak solutions will also satisfy the jump
condition. To chose the acceptable solution one uses an entropy condition.
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One of the most common entropy conditions is the so-called wiscous reg-
ularization, where (2.13) is replaced by diu + 0, f(u) = €% u, the so-called
regularized equation.. Since in a physical situation there will always be some
sort, of dissipation, which the modeler neglected when writing the conservation
law, we look for solutions (of the conservation law) that are the limit of the
regularized equation as € — 0. This is called the vanishing viscosity solution,
given by

Oput + 0, f(uf) = €02 uf, u(x,0) =u’(x), z€R, as e—0. (2.17)
The following entropy condition follows, [27].

Definition 2.1.4 (Entropy Condtion I). The solution u(x,t) of (2.15) con-
taining a discontinuity propagating with speed s, is said to satisfy Entropy Con-
dition I if

sk —w| <sign(k —wu) (f(k) = f(w)), (2.18)
for all k stricktly between u; and u,..

In the case of a convex flux function f this condition reads as

fw) > s> f'(uy). (2.19)

This corresponds with Fig. 2.1, where (2.19) is satisfied for the case (ii-b),
making this an acceptable shock, but not for case (ii-b).

The inequality (2.18) motivates another entropy condition, the Kruzkov en-
tropy condition. This is often more convenient as it combines the definition of
a weak solution with that of the entropy condition.

Definition 2.1.5 (KruZkov Entropy Condition). The solution u(z,t) of
(2.15) containing o discontinuity propagating with speed s, is said to satisfy the
Kruzkov Entropy Condition if

/ / (Iu— K|oy6 + sign(u — k) (f(u) — F())0a) >0, (2.20)

for all real constants k and all non-negative test functions ¢ € C5° (R x (0, 0)).

Here C§° is the space of infinitely differentable functions with compact sup-
port in R x (0,00). For the deduction of the Kruzkov Entropy Condition, and
the relationship with other entropy conditions, we refer to [27].
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General solution of the Riemann problem

We now have all the ingredients to solve the Riemann problem. We can deter-
mine wether a shock is acceptable, and calculate its speed. If the shock is not
acceptable, we have to follow the characteristics. A so-called rarefaction wave
develops. Its form can easily be written down mathematically, but in practice
it might be very hard to be determined. We look for a solution of the form
u = u(z,t) = w(xz/t) = w(z), where z = 7 is the only variable. Substitution in
(2.10) leads to
1
—t—zu/ + gf’(w)w’ =0 = z=f(w).
If f is strictly monotone, then w = f~!(z). In general f’ needs to be replaced

by a monotone function on the interval between [uy, u,].

Definition 2.1.6 (Lower convex envelope). The lower convex envelope f_
of a function f in the interval [a,b] is the largest convex function that is smaller
than or equal to f in [a,b], so

fo(u) =sup{g(u)| g < f and g convex on [a,b]}.

For a function f, the lower convex envelope can be interpreted as an elastic
rubber band stretched along but below f from (a, f(a)) to (b, f(b)),

The following proposition summerizes the results for the solution of the
Riemann problem (2.10) in the case u; < u,.

Proposition 2.1.3. In the case u; < u,, the solution of (2.10) is given by

g for x < f_(u)t,
u(z,t) =w(z) =< (fL)"Ha/t) for fL(w)t <z < f(u)t, (2.21)
Uy for x> fL_(u,)t,

where f_ denotes the lower convexr envelope of f in the interval [u;, u,|, and
(f)~! is the inverse of its derivative.

This proposition is illustrated in Fig. 2.2

If w; > u,, we can transform the problem to the case given above by the
transformation x — —zx, from u, to u;. We need the lower convex envelope of
— f, which is nothing else than the negative of the upper concave envelope f—
from w; to u,. The latter is defined over the interval [a, b] by

f~(u) =inf{g(u)| g > f and g concave on [a, b]}.
We have
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Figure 2.2: Determination of the solution of the Riemann problem. (i) Flux

function f and it’s lower convex envelope f_. (ii ) The derivatives, where
Vg = W . (iii) The solution (f’_)~!(x/t), consisting of a shock and two
rarefaction waves.

Proposition 2.1.4. In the case u; > u,, the solution of (2.10) is given by

ug for x < f_(w)t,
u(a,t) =w(z) = ¢ (f)"Ha/t) for fL(w)t <z < fL (u)t, (2.22)
Uy for x> fL (u,)t,

where f—. denotes the upper concave envelope of f in the interval [u;,u,], and
(f.)~! is the inverse of its derivative.

Propositions 2.1.3 and 2.1.4 are valid as long as the envelope consists of a
finite number of intervals where f_ # f and f- # f, alternating with intervals
where f coincides with f_ or f . This can be extended to the case where f is
only Lipschitz continuous, see [27].
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Front tracking

In the application, i.e. the dual-well problem, it will be possible to work with
the exact Riemann solution, that is: the inverse (f’_)~! can be determined
explicitely. This is in general not the case. One usally approximates f by a
piecewise linear function f°. Then, the solution consists only of shocks which
are known exactly. These shocks are tracked, hence the name front tracking for
this method. It is important to show convergence of the solution obtained in
this way, to the solution of the original problem. See [27] for more details.

The method can be extended to higher dimensions. A suitable procedure is
to apply dimensional operator splitting.

2.1.3 Finite volume methods

The most popular difference methods are typically finite difference methods and
finite element methods. However, there is a third popular discretization method,
the finite volume method. Development of this method started already in 1960
(Forsythe and Wasow). It includes ideas from both finite difference and finite
element methdos, and is therefore sometimes called a generalized finite difference
method. For an extensive discussion see [43].

We start our treatment with the elliptic case. As mentioned before, the
finite volume method is also very succesfull in discretizing hyperbolic equations.
Therefore, it is often used in fluid flow problems.

Second order linear elliptic differential equation

Consider an equation of the form
Lu:= -V - (KVu—cu)+ru=f, (2.23)

where K : Q — R4 ¢:Q — R% and r, f : Q — R. For simplicity we restrict
ourselves to the case r =0 and d = 2.

In order to derive the finite volume discretization, the domain € will be
subdivided into M subdomains 2;, forming a partition of 2, with each §2; open,
simply connected, and polygonally bounded, and with Q; NQ; = @ (i # j) and
UM, Q; = Q. These subdomains are called control volumes or control domains.

Next, we integrate (2.23) over each control volume §2;, and apply Gauss’s
divergence theorem, to get

/ 1/-(I('Vu—cu)daz/fdac7 ie{l,...,M}, (2.24)
0Q; Q;
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Figure 2.3: Control Volume for the finite volume method in 2 dimensions.

where v denotes the outer unit normal to 99;. As the control volumes are
polygonally bounded, the left hand side can be rewritten as a sum of simple line
integrals

N4

Z/F l/ij-(KVu—cu)dU:/Qde ie{l,...,M}, (2.25)
j=17Ti :

where n; is the number of straight-line segments I';; of the boundary of €;, with
normal v|p,; =: v;;, a constant vector, see Fig. 2.3.

In the final step, the integrals appearing in (2.25) are appoximated. This
can be done in many different ways, and so different final discretizations are
obtained.

An important distinguishing condition between finite volume methods is the
position of the unknowns with respect to the control volumes. On the one hand
there are the cell-centred methods where the unknowns are associated with the
control volumes (eg. a function value at some interior point). On the other hand
there are the cell-vertex finite volume methods where the unknowns are located
at the vertices of the control volumes.

The main advantages of the method are, see e.g. [43]:

e Flexible geometry of the domain and admissibility for unstructered grids.
e Simple assembling
e Conservation of certain laws can be garanteed locally.

e Easy linearization of nonlinear problems
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e Simple discretization of boundary conditions
The drawbacks are

e Smaller range of application than finite element or finite difference meth-
ods.

e Difficulties in design of higher order methods.

e In higher spatial dimensions (d > 3), construction of general types of
control volumes can be complex and time-consuming

e Difficult mathematical analysis (stability, convergence, ...).

In the dual-well problem that we will consider, small amounts of contaminant
need to be tracked. Conservation of mass can be garanteed locally in finite
volume methods. For this reason we will use finite volume methods. Accuracy
will be obtained by reducing our spatial gridsize. This is a consequence of our
choice for operator splitting.

A second important reason to use a finite volume method is the fact that
we use a Riemann solver for the hyperbolic problem obtained in the operator
splitting. Therefore, our initial condition for the diffusion problem will be a
piecewise constant initial profile (certainly when front tracking is used, otherwise
also rarefaction waves occur). This is compatible with a cell-centered finite
volume method. The solution obtained by a cell-centered finite volume method
shows again a piecewise constant profile, the ideal starting point for a general
Riemann problem. So these two methods can be combined perfectly.

The integrals appearing in (2.25) will be approximated by central difference
formulas, as discussed further.

Extension to parabolic differential equations and nonlinearity

The extension to parabolic differential equations is relatively easy. First, the
spatial discretization is constructed. Then, a suitable time discretization is
chosen. Typically, backward or implicit Euler will be used. This will give rise
to a matrix equation that needs to be solved at all discrete time points.

Nonlinearity can be taken into account by many different methods, each of
which depending strongly on the specific type of nonlinearity considered. We
postpone this discussion to Section 2.4.4.
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/

Figure 2.4: Aquifer with dual-well. One recharge well and one pumping well.

2.2 The dual-well as a practical example

The practical setup we want to model in detail is the dual-well experiment.
For general terminology concerning groundwater flow and modeling, we refer to
Appendix B. This Section is organized as follows. First, the physical background
is given, demonstrating the relevance of the dual-well experiment. Next, the flow
field is determined, and finally, the contaminant transport model is developed.
The results obtained in this Section have been published jointly with Dr. D.
Constales and Prof. J. Kac¢ur in [15].

2.2.1 Physical background

The dual-well test, or doublet tracer test, is a field experiment consisting of an
injection well and extraction well of equal strength. They are used for deter-
mining model characteristics, [20, 63, 69, 76] over a global scale typically not
attainable in a laboratory. The scale of the experminents is typically 4 to 20 me-
ters, see Fig. 2.4. When steady state conditions are achieved for the flow field,
a pulse or step input tracer is introduced at the recharge well, and the break
through curve of this tracer is monitored at the pumping well. The tracer can
be a salt or a radioactive element (e.g. 31T or 3*Br). Sometimes recirculation
of the discharge water is employed.

If the aquifer is infinite, homogeneous and isotropic and when the effect of
the natural flow velocity near the well can be neglected, it is easy to formulate
a mathematical model for this system. The velocity distribution is the superpo-
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sition of two radial flow velocity fields generated by a source and a sink. In [28§],
an analytical expression for the tracer concentration distribution in a dual-well
test in integral form is given. It is found that dispersion in the extraction well
mainly appears in the beginning of pumping, when the relative concentration
is rather low. Already in 1971, Grove, [23], provided a program for calculating
the dispersivity based on the interpretation of a dual-well test.

Determination of dispersivities can be done by modifying the longitudinal
dispersivity, ar, so that the model output agrees with the observed curve. If
there are observation wells outside the line between the two wells, the transver-
sal dispersivity, ar, can be found by fitting the tracer concentration in the
observation wells.

Many field tracer tests have been done in the literature. It has been found
that the dispersivity values obtained by using mathematical models to interpret
tracer injection tests are not constant, but depend on the scale of the test. This
is not consistent with the original physical meaning of dispersivity. One ex-
planation is that since the porous media in the field are all inhomogeneous and
anisotropic, the larger the experiment scale is, the more heterogeneity is encoun-
tered, lifting the value of the dispersion. One way to handle this is the statistical
theory of mass transport, see e.g. [18]. Another possible explanation is the use
of an ‘incorrect’ model. If, for example, the mean flow changes over depth, a
model with fixed mean flow will obtain unphysical dispersivities. Generally, this
is the problem of using a two-dimensional model to a physical three-dimensional
problem. When interpreting test data, we must carefully analyse the conditions
of the test, and know the structure of the aquifer. Then, one can select the most
suitable model.

One can argue that since the three-dimensional numerical models can take
all practical conditions into account, it is most suitable for interpreting the
results of field experiments. Nevertheless, we will deduce a new two-dimensional
model for the dual-well test. First of all, a two-dimensional model is sensible
in many cases, as the distances involved are still small (4 to 20m). Secondly,
the model developed will have small numerical errors and will be stable and
convergent. Moreover, it will be very time efficient, an important property for
parameter identification. In Section 2.4 the model will be extended for nonlinear
adsorption. This will be done in such a way that convergence can be shown. As
far as we know, similar results don’t exist in the literature.

As final argument, we point out the specific difficulties in groundwater mod-
eling. The subsurface is a complex medium. Applying complicated models that
depend on numerous parameters, with no idea of the value of these and no
ability to validate them, has little use. Therefore, in commercial groundwater
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modeling, still many very basic models, like analytic element modeling, [24], are
used which depend on few global parameters such as the dispersivity. A good
estimation of these parameters with models based on in situ experiments, like
the dual-well, is important. The model we develop is a very good approximation
in a limited set of practical situations and willl be valuable in a larger set of
environments (like non-homogeneous ones), if used properly.

2.2.2 Flow field of the dual-well

We consider an infinite, homogeneous and isotropic aquifer of height H, with
two wells. The well at position (—d, 0) is an extraction well with discharge rate
(pumping rate) Q1 (> 0), and the well at position (d,0) is a recharge well with
pumping rate Q3 = —Q1, see Fig. 2.4. We can use the Dupuit-Forchheimer
approximation, simplifying the model to two dimensions. This will be valid if
the head gradients are not large, which can be garanteed with a dual-well. In
radial coordinates (the well is situated at » = 0), the flow potential for the
extraction well is then, see (B.11),

_@

1(r) 21w

Inr + Cy,
where C,, is a constant that has to be determined from the boundary conditions.
The flow equals Q, = —3,®1(r) and the Darcy velocity is ¢ = —(1/heg)0,P1,
where heg = min(h, H), H the height of the aquifer and h the piezometric head
(counted from the bottom of the aquifer).
The flow potential of the well doublet can be found by superposition of the
two wells. In cartesian coordinates this leads to
Ql (33 + d)2 + y2
P =—In—F——+ 2.26
(may) Ar n (iC —d)2 +y2 + @o, ( )
where the constant ®; must be determined from the boundary conditions. We
will write the discharge rate Q1 as Q. Eq. (2.26) satisfies the steady state
equation
AD =0, (2.27)

and can be completely determined by prescribing the flow potential in a reference
point (xo,yo), implying a value for the constant ®y. Note that when two head
values, hi, ho, are given at different points, the value of Q and &y can be
determined. In Fig. 2.5 the resulting flow potential is plotted, together with
the flow lines which are perpendicular to the equipotential lines of ®.
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Figure 2.5: Flow potential and flow lines for a dual well, modeled by a point
source and sink.

In the case that the regional flow in the aquifer can not be neglected, an
extra term must be added, see Section B.5, giving

O(x,y) = —Qox + Q In (z +d)° +y°

i 229

where Qg is the uniform flow field in the z-direction. So, for Qo > 0, there is
regional flow from left to right. Only for sufficiently large ), water injected at
the recharge well will reach the pumping well. It can be shown that this is the
case when ) > wdQo, see [24]. For contaminant transport, it seems more usefull
to set up the two wells such that Q¢ < 0, which will always allow recirculation
to occur.

In fact, solution (2.26) is not realistic in the neighborhood of the wells, since
there the Dupuit-Forchheimer approximation is strongly violated. This can be
solved by considering two wells separated by a distance D with given radii rq,
ro, (D > r1 +72), and by prescribing the head values reached on their boundary
under steady-state conditions. We use the notation B, (a,b) for the ball with
radius r and center in (a,b), and 9B, (a,b) for its boundary. Thus, we are
considering the equation

AP =0 inQ=R>*\B, (-d,0)UB,,(d+c,0), (2.29)
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where D = 2d + ¢, along with the boundary conditions ® = ®; on 9B, (—d,0)
and ® = ®; on 0B,,(d + ¢,0). This is the Dirichlet problem for an outer
domain. Due to the symmetry along the z-axis, we solve (2.27) in the upper
half-plane, see Fig. 2.6, with Dirichlet conditions on the half-circles and a ho-
mogeneous Neuman condition on the parts of the z-axis bordering the domain
(because of symmetry). This problem can be solved efficiently using conformal
mapping, and, especially, bipolar transformation, [52], that transforms (2.29)
into a rectangle Q = [0, 7] x [v(),v(?], see also Fig. 2.6.

v
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Figure 2.6: Boundary of the domain €2 in the (z,y) plane, and the domain Q
in (u,v)-coordinates after bipolar transfomation. A is the injection well, B the
extraction well.

Generally, the bipolar transformation is given by

sinh v sin u
%7 % u € [0,27), v €& (—o0,00),
(2.30)
where the value v can be chosen. The transformation has the special property
that curves with constant u or v are circles in the xy-space. This follows from
the identities

coshv — cosu’ coshv — cosu’

2
2 __7 )2 1 2.31
* +(y 2 cotu 4 sinu (231)
2
2 )2 2 o 1
- = ——. 2.32
(x 2 cothv ty 4 sinh? v ( )
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Thus, a constant v-value leads to a circle with radius %ﬁ and center on the

z-axis located in ¢ = 5—XL—. We can choose two v values, v) and v(?), that
will correspond with our given well radii, and we can choose v and ¢, so as to
center the corresponding circles in the correct position. This leads to the system

2d + ¢ =D
sinho® = ;-
r1

sinhv® = 5=
T2

b — _

2 coth v(1) =—d

94 _
2cothv(® d+c.

Simplifying, we find that the unknowns v, v(®), d , ¢ and ~ follow from

sinhv® = —-L
1
sinhv® = ;=
T2
d _ 1 2r12D241r14—27r12r3241r24—27r32 D24 D4
— 2 D?
_ 2 _ 2
y =2/d* —r§
c =D —2d.

With these values, the bipolar transformation (2.30) will transform the domain
Q into the rectangle [0, 7] x [v™"),v(?)], where we need to solve the Laplace
equation (2.27), see Fig. 2.6. Note that when r1 = 79, we have d = D/2 and
¢ = 0. The Laplace equation under the bipolar transformation is given by

e 0*®

o0z a_> =0, (u,v)€[0,7] x p®,0?]

4 (coshv — cosu)® (

~
where ®(u,v) = ®(x,y). This reduces again to the Laplace equation, now in
(u,v)-variables. In bipolar coordinates, the Laplace equation is separable. The
solution is uniquely defined if on all boundaries a boundary condition (Dirichlet,
Neumann, Robin) is given. In our approach, we have a homogeneous Neumann
condition in v = 0 and v = w, and a Dirichlet condition at the inflow and
outflow. The solution is given by

d(v) = Av+ B (2.33)
where A and B are determined by the boundary equations

Av) + B=d;,  Av® + B =, (2.34)
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In this way we obtain a simple exact solution of the flow problem in the domain
Q and, transforming back, in €. Here, the equipotential curves of ® in 2 create
the horizontal lines in Q (parallel with the u-axis) and the streamlines, which
are orthogonal to them, create the vertical lines, parallel with the v-axis.

0 1 2 3 0 1 2 3
M‘“‘“**Ljs O
4 4
o
2 r2
0o V lo Vv
}—2 F-2
\
-4 —_—
-6 — —6

Figure 2.7: Flow equipotential lines for a dual well in wv-coordinates. Left:
no regional flow. Right: regional flow aligned to dual-well flow, recirculation
between the dual wells: flow from top to bottom.

The potential (2.26) is a good approximation of the exact potential ® de-
termined from (2.29). Our solution is identical to a dual well constructed from
two point sources, where these sources are set in (—v/2,0), (v/2,0):

(o +7/2° + 9 :
= —L L 71 Py=A B=9%
V% n(x_7/2)2+y2 + %o v+ (’LL,’U),

under the given transformation. This allows for introducing the background
groundwater flow, i.e. the flow present in the subsurface independent of the
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Figure 2.8: Flow equipotential lines for a dual well in uv-coordinates, regional
flow against dual-well flow. Left: no recirculation between the dual wells, flow
from top to infinity, and from infinity to bottom. Right: partial recirculation,
part of top goes to bottom, and part goes to infinity.

wells, for which we suggest the general form

2 2
O(x,y) = %m%—#@o—@ox

— Av+p-cl__snh

_— 2.35
2 coshv — cosu ( )

= ®O(u,v).

Here A, B and C must be determined from the given value of the flow potential
in 3 points. Indeed, the head value will be no longer constant over the well
boundaries for (2.35).

We know that the head h is related to the flow potential, see (B.9)-(B.10).
Therefore, we can give the head values at inflow and outflow boundaries, and
calculate ®; and @5 needed in (2.34). The curve h(z,y) = H separates the
confined and unconfined zone.
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The seepage velocity v, is given by

1
hef‘f 90

Vo, (2.36)

Ve = —

where 6 is the porosity. Thus, the flow field is completely determined. We plot
the equipotential lines in several set-ups. The flow lines will be perpendicular
to them. In Fig. 2.7, Left, there is no regional flow. The injection well is at
the top. The water flows from the top to the bottom, with flow lines parallel to
the v-axis. In Fig. 2.7, Right, the regional flow is from z = +oco to z = —o0,
i.e., Qo < 0, so it goes from the injection to the extraction well. The resulting
flow lines are from the top to the bottom, but around the point at infinity.
There, we see the flow from = = +o0, i.e. (u,v) = (0,0+), to x = —o0, i.e.
(u,v) = (0,0-).

In Fig. 2.8, the regional flow is from z = —oco to © = 400, and the type of
flow depends on the strength of this flow field. To the right, we have the case of
a strong regional flow, making circulation of water from the injection well to the
extraction well impossible. To the left, the regional flow is weaker, and some of
the water of the injection well can still reach the extraction well.

For the mathematical model below, we take Q9 = 0, so C' = 0. In practice,
this means that the regional flow must be neglectible in comparison to the flow
field of the dual-well. In this case, as will be seen, the simple form of the flow
potential ® can be exploited.

2.2.3 Mathematical model for contaminant transport

The transport equation for a contaminant/tracer has the form (see (B.14)),

hegl

Oi(henC) = V - (hetDVC) = V(hesrvC) + —-,
0

(2.37)

where the porosity 6y is taken to be constant over the aquifer, and where D is
the dispersivity tensor

ViU
Dij ={(Do + ar|v|)di; + |T|j(0éL —ar)}, (2.38)

Dy being the molecular diffusion and ¢;; the Kronecker symbol. Moreover,

1
heff 90

UV =—

Vo (2.39)
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and ® is the solution of (2.29). The source term I models radioactive decay,
adsorption, etc. At the moment we set I = 0. We will come back to this point
in later Sections.

To use the analytical solution of the flow model in (2.37), we have to con-
sider an unbounded domain 2, which can cause many problems, in particular
numerical errors. Thus we transform (2.37) into the domain Q of the variables
u and v, using the same transformation as for the flow potential. This was done
first in [15]. It leads to complicated formulas and computations; we have relied
on symbolic computation using the Maple package. Moreover, to get a good
discretization, we must write the new governing equation in conservative form
in the uw and v variables. We briefly sketch the calculations, and then present
the final results in the absence of source terms (I = 0).

A direct calculation leads to the following transformation for the derivatives,

0 —2sinhwsinu 0  2(cosucoshv —1) 0

— = A = 2.
oz ol ou ~y ov’ (2.40)
0 2(cosucoshv —1) 0  2sinhwvsinu J

= = - = 2.41
dy ~y ou ~y v ( )

In the confined case (hex = H), using (2.39) and setting ®(z,y) = ®(v) =
Av + B, we get

5 (cos (u) cosh (v) — 1) d%(i (v)

Vg =

BoH~
~, sinh (v) sin (u) d%‘i (v)
Y T HQH’}/
- 2
(d%cb (v)) (cosh (v) — cos (u))>
[v] = 2 5 .
90 HQ’}/Q

Hence, (2.37) in the confined domain (where h > H, i.e., heg = H) yields:

8C = 7349% {au [(DOGOHAH— 2aT)\(8U<T>(v))) auc} + (2.42)

+ 0, [(Doaom ¥ 2aL)\(6U<T>(v))) 8,C + 7(&,5(@))0} } :

where A = coshv — cos u, and where 9,®(v) = A from (2.33).
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In the unconfined domain (where h < H, i.e., heg = h(v)), we use the
relation between the head value and the flow potential, i.e. from (B.10),

O(z,y) = $kh*(z,y).

This allows to write (2.39) as

— 1 1 2
V= h(x, y)GOV(Ekh (xvy))
It then follows that
2
vy = %(coshvcosu - 1)8}55}1]),
vy = ﬁ sinhvsinuagsjv),
2
k23’5—§j> (cosu — coshv)?
lv] = 2 22 .
07

Hence, (2.37) reads as

8,C “2(”) {au [(Doﬁoh(v)v + 2aTA(av&>(u))) auc} + o (243)

~v36oh
+ 0y [(Doboh(v)y + 20LA(0,8(1))) ,C +1(2,B()C] },

where we used 0,®(v) = kh(v)d,h(v).
For simplicity, we shall write (2.42), (2.43) in the form

0C = g{0u(ad,C) + 0,(b0,C)} + GI,C, in Q (2.44)
where g, a, b and G are known functions depending on u and v:

4
I A 30ohen(v)

b = DovyOohes(v) + 2a,AA, G = Avg,

, A= coshv — cosu,a = DyyOohes(v) + 2a7 A

and where () is a rectangle in the (u, v)-domain.
We consider the inflow boundary condition

C= Co(t) on Fl, (2.45)
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the symmetry boundary conditions
0,C =0o0n Iy UTy, (2.46)

and the outflow boundary condition
0,C =0onI;, (2.47)

where I'; := (0,7) x {v = v}, Ty := {0} x (v, 0@)), T3 := (0,7) x {vD)}
and Ty := {7} x (v, v(?). We consider the homogeneous initial condition

C((u,v),0) =0. (2.48)

The function Cy(t) is the prescribed concentration at the inflow, which we choose
to be constant, Cy(t) = C°, or pulse shaped.

The outflow boundary condition follows from the assumption that the con-
taminant concentration inside and outside the well lateral wall are approxi-
mately equal during extraction,

n-VC(xz,y)=0 on s,
n being the normal unit vector on I's. This is transformed to (2.47) using

coshvcosu — 1 sinu sinh v
ettt
y

cosu — coshv ’ cosu — coshv’

and (2.40)-(2.41).

The inflow boundary condition allows for diffusive flux. As the molecular
diffusion can usually be neglected, this diffusive flux follows from the molecu-
lar dispersion. For large molecular dispersion this will contribute to an extra
amount of contaminant mass or, in the case of a pulse, a mass loss due to the
injection well. This might be questionable, as molecular dispersion is a mechan-
ical process and cannot cause diffusion against the flow direction, or from the
well into the subsurface. Therefore, some authors, [49], suggest the advective
boundary condition

n - (C(t)v —DVC(t)) = Co(t)n - v, on IB,,(d+ ¢,0), (2.49)

with n being the normal unit vector on 0B,,(d + ¢,0). This BC is of Cauchy
type and expresses the fact that a fixed amount of contaminant mass will be
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present in the subsurface, independent of the dispersion coefficients. In the case
that the flow potential is given by (2.33), (2.49) reduces to

QQLA

(DOHOheg + (81,&)(1)))) 9,C + (0,®(v))C = (0,®(v))Co(t), on Ty,

(2.50)
taking into account (2.39) and (2.40)-(2.41) and

coshvcosu — 1 sinu sinh v

Ny = Ny =

cosu — coshv ’ cosu — coshv’

Note that (2.50) will only differ significantly from (2.45) for Dg or o, sufficiently
large.

2.3 Solution of advection dominated diffusion in
a rectangle
We have reduced the contaminant transport problem of the dual-well well to a

convection-diffusion equation with variable coefficients in a rectangle. We now
present the numerical discretization.

2.3.1 Numerical approximation of (2.44)

To solve this convection-diffusion problem, we use time stepping and operator
splitting. In each small time interval, the problem is split into 2 parts: the
transport problem and the diffusion problem, see Section 2.1.1. More in detail,
let 7 = T/n be a time step and C; =~ C((u,v),t;) for i =1,...,n. Given C;_1,
the relation
Ol' = Di(T)Ti(T)Ci_l, T = ti - ti—h

determines C;. The transport T%(7) corresponds to the solution ¢r of the
transport equation

Op — GOy = 0, (2.51)
with the inflow condition ¢ ((u,v(?),t) = Cy(t) and the initial condition

or((u,v),tiz1) = Ci_r.

The diffusion D?(7) is obtained by solving the diffusion equation
Op =g {au(a6u¢) + av(bav(b)} ) (2'52)
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with initial condition ¢((u,v),t;—1) = C’i1 /2 where

CY2 = Ti(r)Ciy = dr((u, ), ).
Then, we set
Ci = Di(r)C{"* = D'(1)T'(r)Ci1 = ((u,0), ).

The convergence of this approximation scheme is based on convergence results
for operator splitting, see [16], [31], and our own result in Section 2.5.

We still must mention the boundary conditions, in particular how the original
boundary conditions must be applied to the split problem. This is important
to get the correct physical solution. On I'; UT'3 U T4 there is the homogeneous
Neumann condition (2.46), (2.47) that must be split. During transport, there
is no flux on I's UT'3, so no boundary condition is needed. I'y is an outflow
boundary, so a boundary condition is impossible. During the diffusion step, the
boundary condition on I'y UT'sUTy is still the homogeneous Neumann condition.

It remains to determine how to split the boundary condition on I';. If the
boundary condition that needs to be satisfied is (2.45), we propose to take this
Dirichlet condition as boundary condition for the transport part, as well as for
the diffusion part. If the boundary condition is (2.50), we propose to split this
condition. During transport we consider the Dirichlet condition C/(u,v®)) =
Co(t). In this manner all mass flux of contaminant into the domain during a time
step has been realized during the transport step. Therefore, during the diffusion
step, we consider the homogeneous Neumann condition 9,C(u,v(?)) = 0. This
approach guarantees the correct mass balance.

The space discretization is based on the cell-centered finite volume concept,
with one unknown per cell, see Section 2.1.3. Let {u;};*, and {v;}}Z, be the
nodal points for a (not necessarily equidistant) partitioning in « and v, re-
spectively. We will construct a cell around these (u;,v;) points and the cell
value will be the concentration value in this point. We generally take a non-
equidistant v partitioning following from an equidistant z-partitioning along
the z-axis between the two wells. In the points {u;,v;} for j = 0, the Dirich-
let conditions for inflow concentration C' are prescribed. We have vy = v(?),
v = v s0 vy > vy, and 0 < wy < uy < 7, see Fig. 2.9. Let {ui, v}
be an inner point in Q. We define Auy = ujprr — Ui, Au_ = u; — u;_1,
Ui41/2 = U + Au+/2, Uj—1/2 = Ui — Au_/Z, Au = Uit1/2 — Ui—1/2- We pro-
ceed analogously for v, where, Av, = v;_; — vj, etc. Thus we obtain u;-strips
defined by (u;_1/9,uir1/2) X (v, v?), and in these strips the finite volume
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Vij = (Wi—1/2,Uit1/2) X (Vj41/2,vj—1/2) corresponding to (u;,v;). For the edges
of Qweset u_i/o =0, unyy1/2 =7, v_1/2 =vo and vpr41/2 = V-

2.3.2 Solution of the general transport problem

The solution of the transport problem (2.51) will be based on a piecewise
constant initial profile ¢q(v), i.e., the solution of a multiple Riemann prob-
lem, which is obtained in analytical form. We shall solve (2.51) in the strip
(Wig—1/2: ig1/2) X (v, v?), with shocks on the edges of the finite volume
vg = v@), V] = Vg2, Vg = Us/2, - -, Vi1 = UM—1/2, Vi = v see Fig. 2.9.
Denote ¢o(v) = U” for v € (v§,v5_;). We transform (2.51), with G = K'\*/he,

v i

v® =gy = vg

U1 | =
vf

V2 L

U3 .| =

=1

(1) _ _ €
v =y =0y

Uo un

Figure 2.9: The (u,v) domain divided in strips and cells.

where K is a constant, using the new variable y = y(v) where

heﬂ‘d’U

o KN M\ = (cosh(v) — pi,)?,  pi = COS U4, . (2.53)

y=G) =
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Then ¢(y,t) = ¢(v, 1) satisfies

019 — 3y¢ =0,  (y,0) = ¢o(v).

Since A is positive, the transformation is one to one. The solution can be written
in the form

¢(y7 t) = ¢(y + ta 0)7 or a(y7 O) = a(y - ta t)7

and, consequently, using the inverse G~! : y — v, we obtain ¢(v, ) from ¢o(v).
Notice that we need not compute the inverse in all points ¥, since it follows that

®(y, t) is piecewise constant with the values {U;}Z,. It is sufficient to compute

Uk hegedv
Y = " VR fork=0,...,M,
and then to shift it over the time step 7, and compute the inverse C:"l(yk —
7) = 0 for k = 0,..., M. The solution ¢(v,7) attains the constant value
Uir € {U;}IL, in the interval (0, d5—1)-

The initial condition ¢(y,0) = ¢o(v) has to be appoximated by a piecewise
constant function ¢§(v), so that the Riemann solution also applies at the inflow
boundary.

The final output, which will be used as input of the diffusion part (see
Section 2.3.3), is obtained by projecting ¢(v, 7) to a piecewise constant function
on intervals (v§,v§_y), j = 1,..., M. This corresponds to taking averages over
(v§,v$_1). For example, if o), € (v§,v5_;) and d—1,0k+1 ¢ (v§,v5_1), then we
have

5k—vj

Cvs_, — 6 .
€12 (w) = v A% s

k
€ €
” e for v € (vf,v5_4),
J

s Vi1 7Y

and, similarly, in other cases. Thus, if v{_; < dk—1 < vj_, and vf; < dy <vf,
then C’ll/z(v) = U%* for v € (v§,v5 ;). Then, Cl1/2 = PCY? = PT(1) is
piecewise constant and we can switch to the diffusion.

Recall that in the confined setting (hy > hy > H), we can express G(v) in

an analytical form, since heg is then the constant H, i.e. G(v) = G(v;p) =
(Glv;p) — G(vW:;p)) H/K and

— 2pz — 2 2p zZ—Dp
G = tan ———— 2.54
N I e I (e e AV e ol
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where z = e”, p = cosu;, (when we are in the strip w;y_1/2 < u < u;,41/2)-
In the unconfined setting, G/(v) must be determined numerically. We use a
Newton iteration to determine &, = G~'(yx — 7) for yx — 7 € (y;,y;—1) so that
O € (v§,v5_1): we look for the zero point of ¢ (v) = G(v)—(yx —7) starting from
v; where ¥(v;) = y; — yx + 7. Note that ¢(v) and the derivative ¢ (v) = Ih(eg
can be easily computed for every v.

If we neglect Dg, ar, ar (i.e. we don’t consider diffusion), the response of
contaminant injection at ¢ = 0 is expected exactly at time T, the reponse time,
with

e

heﬁ‘d'U
T, =yn, Qe T, = Teff%Y 2.55
Yo N, 1€ An K2 (2.55)
for u =7 (p = —1) in A, which corresponds to the line connecting the centers

of the wells. This time of response should correspond to the beginning of a
withdrawal curve corresponding to the pulse type injection of contaminant.

2.3.3 Solution of the diffusion part

As grid points we use the ordered pairs {u;,v;}, i =0,...,N; j =0,...,M.
The diffusion part of (2.44) is

O = g {0u(a(u,v)0,C) + 0y (b(u,v)0,C)} . (2.56)

As mentioned before, the boundary condition is a Dirichlet boundary or a ho-
mogeneous Neumann condition at the inflow, and homogeneous Neuman con-
ditions elsewhere. We integrate (2.56) over (tx_1,t;) and V;;. We assume fur-
ther that the values C;; and g;; = g(u;,v;) are dominant over V;;. Let us
denote by CF = Cg = Cit1,5, cv = CE/ = Ci-1,5, cN = Cg = C@jfl,
CcS =S CLN, aS’ bE, bW,

—C, . E _ E
i = Cij+1 and a” = agj

bN, b%. Then, applying the finite volume method, we consider

= aj41/2,; and similarly o',

v, / 0,Cyy dt = gu; / (0 (a1, 0)0uC) + Dy ({1, v)DuC)} dudo dt.
At At Vij

The approximation can be done using integration by parts and approximating
0, C on the edge (Ui+1/2, ’U), resp. (ui,l/z, U), forv e (Uj+1/2, Uj71/2) by (OE —
C)/(Auy) resp. (C —C")/(Au_), and similarly 9,C on the edges (u,vj41/2),
(u,v;_1/2). Combined with an implicit time step, we obtain the approximation
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scheme
Av w Av N Au s Au B
{w+< Aa e Vot AU++bm>r](}m_
Av
|: :| Ci 1,5 + |:7'A +aE:| Oi+1,j
Au B
+ } -1 T {Tmb ] Cij1 +wa,j 1(2.57)
where w = w;; = ‘gz;‘. Taking into account the boundary conditions, we have

to put @' = 0 for the points {ug,v;} and a¥ = 0 for the points {un,v;},
j =1,...,N. Moreover, for {u;,vap}, i =0,...,N, we take b° = 0 in (2.57).
The inflow boundary condition still needs to be considered. If we have to satisfy
a Neumann condition, we just need to put b~ = 0 for {u;, v}, i = 0,...,N.
In the case a Dirichlet condition must be applied, we know the value of the
concentration. In this case we join the finite volume around this point with
the next finite volume so that Vi1 is (u;—_1/2,uit1/2) X (vo,vs/2), and we set the
derivative equal to (C; o — C)/(vo — v1), where C; ¢ is the prescribed Dirichlet
condition at time 7.
The above scheme corresponds to the matrix system

ACF =d. (2.58)

Here, the matrix A is diagonal dominant and positive definite. The vector
d can be constructed from the previous timestep and the Dirichlet boundary
condition (if present), i.e, d;; = wC’fgl + 5j1bNKA—;jr7'Ci70, where ¢, is the
Kronecker symbol.

For the solution of this matrix equation we use the pre-conditioned conjugate
gradient method as implemented in the package Meschach. If ar = 0 and
Dy = 0, the diffusion is reduced to only the v-direction (a(u,v) = 0). Then a
simple TDMA (tridiagonal matrix algorithm, see [62]) can be used to solve in
each strip the one-dimensional diffusion, which we present in the next section.

2.3.4 Benchmark solution: the case ar = 0= D,

It is important to validate a model. Benchmark solutions can perform part
of this task. It is a solution of a simplified case, which can be solved more
accurately. By comparing the solution of the general model when the data
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converge to the data of the benchmark solution, one can estimate the accuracy
of the general model.

If we have only longitudinal dispersion, (i.e., ar = 0 = D), a different
approach than the one outlined in the previous section is possible. In this dis-
cretization, numerical diffusion arises due to the projection of the solution after
transport to piecewise constants, which is performed to get an initial condition
for the diffusion part. We can skip this projection step when only longitudinal
dispersion is taken into account, as the problem reduces to solving several one-
dimensional problems. We obtain a precise numerical approximation that can
be used as a benchmark solution.

We now apply in every u; strip the transformation (2.53) to the general form
(2.44). This gives for each strip u € (u;_1/2, u;41/2) the 1D convection-diffusion
problem

2aphe = ) (i))

8téi - ayéz = ay ~ aycz , Y € (yo yYUm
VK NG () )

(2.59)

where we have A(y, u;) = (@*1 (y), ul)

We avoid numerical dispersion due to the projection onto step functions
corresponding to the fixed grid {v;}72,, by doing all computations in the y
coordinate frame. For this we use a fixed (coarse) discretization {y;}/_, which
is uniform on (yéi), yg\i[)) with stepsize Ay(Y). Along with (2.59) we have boundary
and initial conditions

Cy$?,t) = Co(t) or 9,C(yo,t) =0, and 9,C(yn,t) =0, C(y,0) = 0.

Here, Cy(t) is again a step or a pulse input. To resolve the shocks that are
present in the input profile, we add a few grid points to do front tracking. This
means that the extra grid points are placed close to the front (fine grid), and
will move with the transport velocity —1. We denote the set of both fixed and
moving grid points of (3", y\)) by {y; e

The method of approximation for (2.59) is again operator splitting of the
transport part and diffusion part. For the simple one-dimensional hyperbolic
transport part, we take a time step At = ¢Ay(®, ¢ € Ny, which relates the
coarse grid stepsize with the time step. This is substantial as this implies that
the concentration in the fixed grid points is exactly known, and no interpolation

is necessary. We have exactly C(y;,t + At) = C(y;—q,t). Note that At changes
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from strip to strip. The moving grid points keep their concentration value, but
have to be shifted over a distance —At.

The diffusion part can be handled as in Section 2.3.3, where we set a(u,v) =
0. Special care needs to be taken with the moving grid points, because this
changes the grid after every time step. By means of the moving grid points we
can approximate the front of the wave much more precisely with a relatively
small number of fixed grid points and with preservation of the mass balance
(locally and globally).

To retrieve a result at a specific time ¢, (2.59) must be solved in all strips up
to a time ¢V > t, (with ¢ = Ay r € Np), and simple linear interpolation
in time is used to obtain the concentration value at ¢ for each strip separately.

2.3.5 General remark on operator splitting

In all our numerical approximations of (2.44), we apply operator splitting. This
means that we first consider transport during a time At, and then let the system
diffuse during the same time. Because in (2.56) and (2.59) the diffusion is place-
dependent, an error due to the operator splitting is introduced. This error
will be small if the time step of transport is sufficiently small, so that there is
only a small change in diffusion coefficients between the initial position and the
new position. The diffusion coefficients of the final position can then be taken
as a good approximations of the coefficients over the entire transport length.
Another approach would be to take as diffusion coefficients the average values
of the initial diffusion and final diffusion coeflicients.

2.4 Solution of advection dominated diffusion with
equilibrium adsorption

Now we will start adding nonlinearity to the problem. The solution obtained
in Section 2.3 is used to evaluate the accuracy of the discretization: when the
nonlineary disappears, we should recover the linear solution.

For contaminant transport, the main nonlinearity comes from adsorption
processes. When the contaminant flows through the subsurface a portion of it
sticks to the surface of the grains, which therefore behave as sinks. At the same
time, the contaminant can detach of the grain, which gives rice to a source of
contaminant.

Contaminant transport with adsorption is a very dynamical and difficult re-
search area. Precise mathematical models are available and a significant effort
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has been done to develop efficient numerical methods for the solution. However,
the solution of strongly nonlinear convection-diffusion problems with dominant
convection and nonlinear adsorption is still an open problem. The main reason
is that the solution can be localized with the sharp fronts and is very dynam-
ical. This is a very difficult task for precise numerical approximation. Various
types of regularizations (e.g., up winding) must be applied to stabilize numer-
ical oscilations and instabilities. This, in turn, leads to numerical dispersion
which shadows the influence of, and sensitivity on, the model data. In some
special cases desirable results have been obtained. Also in our model setting,
the dual-well, a contribution towards a precise numerical solution is obtained
by us.

Generally, adsorption gives rises to a source/sink term I, see (2.37). The
form of this term is deduced in [7, 69], and explained later in Section B.7. One
has

he0,C = V - (DhegVC) — V(hegvC) — %g 9,8, (2.60)
0

which for equilibrium adsorption is written as
hetO: F'(C) = V - (DhegVC') — V (hegv(C), (2.61)

where F(C) = C 4+ ¥(C), with ¥(C) the adsorption isotherm (hiding the o/6
terms in its definition). This is the same equation, apart from the time deriva-
tive, as (2.37). The transformations done previously on the space domain can be
repeated to obtain an equation over a 2-D rectangle in the case of the dual-well.
Then (2.44) is replaced by

O F(C) = g{04(a0,C) + 3, (b3,C)} + G8,C, in Q, (2.62)

with the same definition for g,a,b,G and €2, and also with the same initial

condition (2.48) and boundary conditions (2.46)-(2.47) and (2.45) or (2.50).

For brevity we will only work with BC (2.50), as this is the most physical one.
The results of this Section appeared in [39)].

2.4.1 Numerical approximation of (2.61)

To solve the convection diffusion problem above we use time stepping and oper-
ator splitting in which, for each small time interval, the problem is splitted into
2 parts: the transport problem and the diffusion problem. More in detail, let
T=T/L, (L € N), be a time step and let C,, ~ C((u,v),t,) forn=1,..., L.
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If C"~! is known, then the relation
C™ = D"(1)T™(1)C™™ Y, 7=ty —tn_1,

determines C™. The transport 7" (7) corresponds to the solution ¢ of the trans-
port equation

Ot F(p) — G(u,v)0y¢p =0, (2.63)
with the inflow condition
¢((u,v?), ) = Co(t)
and the initial condition
&((u,v),ty_1) = C™ L,

Then, we put
C”al/Q = T”L(T)Cnfl = ¢((u’ v)’ tn).

The diffusion D™(7) is obtained by solving the diffusion equation
O F(¢) = g{0u(adud) + 0y (b0u9)} , (2.64)
along with the initial condition
¢((u,0),tn—1) = C™1/2,
and the boundary condition
0,¢ =0 on 0.

The arguments for the specific splitting of the boundary condition are the same
as in the linear setting. Next, we set

O™ = D"(r)C™ Y2 = DM (r)T™ (1)L = 6((u, v), ).

We will prove convergence for this approximation in Section 2.5, based on con-
vergence results for operator splitting approximation, [16] and [31].

The space discretization for the nonlinear problem is the same as before, see
Section 2.3.1.
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2.4.2 Solution of the nonlinear transport problem

We consider (2.63) in the strip (uj,—1/2, Uig11/2) X (v, v(?)) with shocks on
the edges v,/ of the finite volumes. The resulting 1D-problem can be solved
by a semi-analytical Riemann method without a time step limitation for the
case of Langmuir or Freundlich type isotherms, see [37, 45]. The solution of
the transport problem (2.63) will again be based on a piecewise constant initial
profile ¢g(v), i.e., the solution of the multiple Riemann problem, see Section
2.1.2.

In the general case of isotherms we transform (2.63) by using the new variable
y = y(v) where
heffdv

y=Gi(v) = G(ui,v) = . 2

(2.65)

A = (cosh(v) —p;)?,  pi=cosui;, B(uiy) = @(ui,v) i=1,.., N.

We obtain (index 4 is omitted)

8tF(5) - 3y5 =0, &(y,0)=o(v). (2.66)

If the initial profile ¢o(v) in (2.66) is piecewise constant, then the solution
consists of the values of ¢o(v) and rarefactions in the intervals given by the
positions of the original shocks (i.e. original intervals) after time evolution 7. If
the original shock at y = y; was acceptable, then its position will be given by
the Rankin-Hugoniot speed movement

where y* denotes the upstream limit, and y~ the downstream limit. If the
original shock at y = y; was not acceptable, then it develops into the rarefaction
along the y-interval

(RN S
Flow,)l Y~ Flaty))

(yj — )-

If F is convex and ¢(y;,0) < (b(y;r,O), then the shock is acceptable. If
o(y;,0) = (b(y;r,()), then the shock is unacceptable. If F' is concave (e.g. for
Langmuir adsorption or Freundlich adsorption with p < 1), then the role of

acceptable and unacceptable shocks is interchanged.
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In the case of Freundlich isotherm, i.e. F'(s) = s + KjsP, the general form
of rarefaction is (see [37])

1
- tty—yi \"'
50:0) = (S B for0 <y -y <
v1) pEo(y; — v) i

In the case of Langmuir sorption isotherm, i.e. F(s) = s + K 11750 the
rarefaction is of the form (see [37])

- 1 2(y; —y) o
¢(y7t)—§2(—1+\/71\/t2_(2(yj_y)_t)2>, for 0 <y; —y <t

To construct the global entropy solution of the multiple Riemann problem, we
find the position of grid points (of the original shocks) after time length 7 and
put together the constant values and the local solutions of the rarefaction waves.
This holds for small time step 7 during which no collision arise between the
neighbouring shocks or rarefactions. The collisions of neighbouring shocks can
be treated as follows. The constant value between shocks disappears and we are
left with only one shock with the jump equal to the summation of the original
jumps. The collision of the rarefaction which meets the shocks can also be
described in an analytical form (see [37]), but we shall limit our time step up to
the first collision of rarefaction and shock, and project onto piecewise constants.
Then, we continue the transport. Since we consider only a very special initial
profile, it is simple to calculate this time limitation. From the solution of (2.66)
we obtain the desired solution of (2.63) for each strip ¢ = 1,..., N using the
backward transformation. In case that hy > hy > H, (confined aquifer), we can
express (2.65) as

2
o) = 1) — Colass. Y)Y PoH
Gi(v) = [Gus v) — Glus, o) 2=,
where
- _ 2pz — 2 2p zZ—p
G(UZ,U) - (1 —p2)(22 — 2p2 ¥ 1) + (1 —p2)3/2 arctan —1 _p2
with

z=e",p=cosu;.
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2.4.3 Solution of the projection problem

After transport we obtain the profile ¢(y) which consists of piecewise constant
parts and rarefactions waves. Before starting the diffusion, this profile must be
projected onto a piecewise constant profile ¢(y;) that will be used for diffusion.

From (2.66) is follows that F'(¢) is the conserved quantity, which is also clear
from a mass balance consideration. Thus, we need to find the value ¢(y;) for

which we have
_ Yj+1/2 _
P )by = Fidy= [ F(@)dy. (2.67)
Yj—1/2

The right hand side of (2.67) can be readily obtained in the case of a piecewise
constant profile. When rarefaction waves are encountered, exact projection has
been worked out in [37], and is given by

B
/ F(@(y) = J(8) — J(a), with J(8) = 8 [F(B(5)) — d(8)F'(3(8))]

Having determined F}, we can calculate ¢(y;) by a hybrid Newton-Raphson /bi-
section algorithm, see [70], in the case of Freundlich adsorption. For Langmuir
adsorption the inverse is a known function.

2.4.4 Solution of the nonlinear diffusion problem

The same approximation scheme that has led to (2.57), now leads to

Av Av Au Au
o E AU w N Bu s Ku o
wF(C; ;) + <a Aus +a Ao +b Avs +b Av_) 7C; 4
Av Av
[TAU_ aW] Gt [TAU-;- GE} Cirrs

Au Au .
+ |:TA'U+ bN:| Ci,j-i,—l + |:T—AU bS:| Ci,j—l +WF(CW 1)7 (268)

where w = w;j = ‘Z—‘;‘, and F(C}'; ') is the value Fj; obtained in the projection
step.

Taking into account the boundary conditions we have to put "V = 0 for the
points {u1,v;} and a¥ = 0 for the points {un,v;}, 7 = 1,..., M. Moreover,
for {u;,v1},7=1,...,N, we take b> = 0 in (2.57), and b" = 0 for the points
{ui,vpr}-
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We suggest two possible solution methods for the nonlinear system of alge-
braic equations (2.68). First, we can use Newton type iterations, starting with
C = O™ L. This implies solving a matrix equation in every iteration step. If
ar = 0 and Dy = 0, the diffusion is reduced to only the v-direction (a(u,v) = 0)
and in each step a simple TDMA (tridiagonal matrix algorithm) can be used
to solve in each strip the one-dimensional diffusion problem. Note that only if
convergence of the Newton method is reached, mass balance will be kept. Thus,
timestep and gridsize should be carefully chosen to obtain this convergence after
a small number of iteration steps.

Secondly, we also implement a relaxation method as in [30] and [35] as follows

=1~ _ ~n-1 g Av w Av N Au g Au o
wA;; (G = O + (a A, +a A +b o 1 = Cys =

Av Av
|:TAU_ aW:| Cifl,j + [TAU_;,_ CLE] Cprl)j

A A
+ [TAUU bN} Cij+1+ [TA—ubS] Cij-1, (2.69)
+

where [ is an iteration parameter and
l n—
o _ F(O) - FCp)

DA
(2% @) n—1
Cij —Cij

) ._ n—1
Y F’(CM )

is a relaxation function.
We stop the iterations and define C; ; := C’i(’l;’) as soon as

(@) A — A"V <r and () Y

" o) — oo <, (2.70)

4,J
€ being a small tolerance. This is the stopping criterium.

Remark 2.4.1. The relaxation method is more robust than the Newton method,
allowing to solve also the higly nonlinear cases with large time steps. Therefore,
it is the prefered choice. However, close to the exact solution the Newton method
converges much faster. Furthermore, the stopping criterium (2.70) is not opti-
mal: around the moving interface, where the concentration is very small, A can
oscilate, preventing (2.70-b) to be fulfilled. To overcome this difficulty we sug-
gest several optimizations. We will illustrate the consequence by comparing the
typical number of iterations in the case of Freundlich adsorption with p = 0.25.
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With the standard stopping criterium there are typically 220 relazation iterations
per timestep at the beginning of the injection.

o A first optimization neglects what happens to the small concentrations,
and controls the mass balance instead. We stop the iterations and define
Cij = Ci()l;) as soon as

(a) for all C1) > ¢ or O™ > ¢ |/\£lJ°) - /\ lo 2 | <7, (2.71)

(b) ZAUZAUJ)\(ZO)(C ooy ~o. (2.72)

,J

Condition (2.72) follows from the conservation of mass argument. During
the diffusion step we have homogeneous Neumann BCs. Consequently,

/QatF( =0~ Z/ F(cy (C;f;l)) /T,

from which (2.72) follows. This procedure guarantees that the iterations
are continued in those cases where the solutions varies only a little when
passing from one iteration to the next, but the correct solution is not yet
obtained. We now have typically 110 relazation iterations per timestep,
and the problem of oscilating X is completely avoided.

o One of the reasons of slow convergence is that during the transport process
the interface was sharpened. During diffusion the interface then smooths
out again. However, the initial value of the relazation parameter \ to the
right is very large up to infinity (as the starting concentration is nearly
zero or zero), and needs to convergence to a value F(C)/C. The slow
convergence can be improved by taking for the values to the right of the
interface the same values for X(O) as those found in the previous run of the
diffusion step. After a run, we keep in memory the values to the right of
the interface which are smaller than D (D >> 1) and, at the beginning of
the next diffusion step, we take to the right of the interface these values as
the values for () in stead of F’ (ij_l).This typically reduces the number
of iterations to 65.

e Finally, we use the fast convergence of the Newton method close to the
solution. After every iteration step, we check wether the mass is conserved
up to a precision of 1%, i.e. we relax condition (2.72). If this is the case,
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we stop the relaxation iterations and continue with Newton iterations using
the last solution found during the relazation method. We do a minimim of
5 relazation iterations before starting the Newton iterations. This typically
reduces the number of iterations to 6 relaxation iterations and 15 Newton
iterations.

We conclude that we have developed a numerical approximation scheme for
the nonlinear dual-well problem, based upon operator splitting, the Riemann
problem, and a nonlinear finite volume scheme solved with a relaxation scheme.

2.5 Convergence of the numerical method in 2D

We now prove convergence of the operator splitting method applied to a bound-
ary value problem of the form

—L_9,F(v) — h(x, Y)0yv — (Oz(a(z, y)0zv + 0y (b(x, y)Oyv) =0

9(z,y)
’U(iC7 Y, O) = Uo(xa y)7
b(z,y)0yv + h(z,y)v = h(z,y)v°(z,y,t) on 'y (inflow), (2.73)
O,v=0 onTIy,

d,v =0 onI's (outflow),

where (z,y,t) € Qx T = [z(1) 2®]x [y y3)]x [0, T], T is the inflow boundary
(hn, < 0) given by the line y = y® (h(z,t) > 0), I's is the outflow boundary
(hn, > 0) given by the line y = y(*), and T'y is such that 9Q = T';UTUT'5. Here,
we are interested in functions F' of the type F'(v) = v + cb.(v), ¢ a constant
and v, a so-called equilibrium sorption isotherm. As always, 0, denotes the
outward normal derivative.

We will need the following assumptions: F~! is Lipschitz continuous, mono-
tone increasing with F'(0) = 0 and F(s) < Cp, if s < L. Furthermore « and b
are smooth and positive and g and h are smooth, positive and bounded.

Remark 2.5.1.

o We have taken F~' Lipschitz continuous as then the case of Freundlich
adsorption with power less than 1 is included (without need of special treat-
ment). This is the interesting case.

o The dual well fully fits into the scheme (2.73), except for one minor point:
g(u,v) as defined in (2.44) is zero in the point (0,0). This point can
however be disregarded as it is the point at infinity where the contaminant



2.5. Convergence of the numerical method in 2D 61

concentration is zero. We may regularize g by g > €, a positive function,
see further Remark 2.5.11.

The proof is based on the ideas presented in [16, 27, 25, 31, 46].

Let us first define the weak solution to problem (2.73). We obtain the vari-
ational weak formulation by multiplying (2.73) by a test function ¢(z,y,t) €
C>(Q x I), by integrating over  x I and performing once integration by parts.
This gives

I K

__/Qxl(ayh¢>u+-/£ /Cu> [(h¢vﬂy:y@)——(h¢vﬂy:qu dndt
- /QX[ [(020)(ady (v)) + (9yd) (bDy (v))]

(2)

/ /(1) gbaa w =z(2) — pad.(v )‘w w(l)}
+/0 ~/r(1) [¢b8y(v)‘y:y<2) _¢b6y(v)‘y:y<1>} =0. (2.74)

Next, we impose the boundary conditions of (2.73), with special care for the
inflow boundary. We consider test functions ¢ with ¢ = 0 on the outflow
(y = y™M) and with ¢(u,v,T) = 0. We are led to the following definition.

Definition 2.5.1. A weak solution u of (2.73) satisfies

/ (@) ) /way 2,9,0)
QxI

- /Q » [(02¢) (a0 (1)) + (8y$) (bDy (u))]

_/gm (o, h¢u+/ /(1) (Dpdudt] _ o =0, (2.75)

for all p(x,y,t) € C®(QA X I), with p =0 att =T, a.e. in Q, and with ¢ =0
on the outflow boundary T's (i.e. ¢(x,y™M),t) =0) for a.e. t > 0..

We can also introduce a very weak solution as follows
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Definition 2.5.2. A very weak solution u of (2.73) satisfies

Pl) [ Flo(ew)
/QX[@@ . +/Qig o, 0)

+ / w[0,(a0, (8)) + By (b0, (9))]
QxI

T 2(2)
—/Q I(ayh¢)u+/0 /() h° ()¢ dx dt|,_ = =0, (2.76)
X (1

for all ¢p(x,y,t) € C*°(2 x I) which have compact support near I's, and which
moreover fullfill = 0 at t =T, a.e. in Q, and also obey 0,9 = 0 on I'y and
0z¢0 =0 onT's for a.e. t > 0.

Remark 2.5.2. Note that since Oy¢ = 0 on I'y for a very weak solution, the

term — fOT frz((l)) bv8y¢|y:y<2> does no longer arise, which is desirable. The re-
quirement ¢ compact in the entire domain in stead of only near I's would also
set this term equal zero, but then the important inflow boundary condition on
Ty, i.e. the last term of (2.76), would not be present in the very weak solution.
The same goes for I's.

We first consider the semi-discrete method in which operator splitting is used
but the separate subproblems are solved exactly, and next the fully discrete
method in which the subproblems are solved numerically.

2.5.1 Semi-discrete method

As mentioned before, there are several ways to split the equation, see e.g., [16]
and [31]. Here we split with respect to the physical properties. Therefore, (2.73)
splits into a hyperbolic part

O F(v) — G(x,y)0yv = 0, (2.77)
where G = gh, and with inflow condition
v,y t) = o0, y®, 1) (2.78)

and initial condition
’U(iC7 Y, O) = UO($7 y)ﬂ
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and a parabolic part
O F(w) = g(z,y) {0z(a(z,y)0:w) + 9y (b(z, y)Oyw)} (2.79)

with initial condition
w($7 Y, O) = wo(xa y)

and boundary condition
d,w =0 on 9.

In what follows we choose a time step At and an integer n such that nAt =1T.
We denote further t,, = nAt.
The corresponding (semi-discrete) splitting method then reads

OAt(t) = [DAtOTAt]n C(), for ¢ S (tn—latn]a n = 17...,N,

where 7; and D; denote the solution operators of (2.77) and (2.79), respectively.
Note that due to the specific form of (2.77), where the characteristics are along
one of the axes, we have that this solution will be identical to the solution in the
case where the hyperbolic part is further split into one-dimensional equations:

Cat(t) = [DaroI0TE,]" Co, fort€ (tp_1,tn), n=1,....,N, (2.80)

where 7,2 is the exact solution operator associated with variable y, and the
hyperbolic operator for the z variable is the identity, or 7,2 = I.

2.5.2 Aim

Our goal is to prove convergence to the solution of (2.73) of the solution obtained
by the used operator splitting. Uniqueness of this solution follows from the
original porous media equation (2.37), which is in standard form, and is non-
degenerate.

A first possible approach is to put (2.37) into the form used in [25], and use
the operator splitting method as developed therein. This method would clearly
converge. In this section, we want to show that analogue techniques can be
used on the transformed equation (2.73), obtaining a proof of convergence for
our operator splitting method which starts from these transformed equations.

Let us first highlight the differences between (2.73) and [25]. First of all, it
is needed to set F'(v) = u, for which not necessarly a known inverse function
is known. Furthermore, the term heg, when discarded in the unsaturated case,
leads to a non-divergence free velocity field when handled as in [25], which is not
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considered there. Finally, we consider the full IVBP problem. Therefore other
complications arise, such as the correct splitting of the boundary conditions.

As there is no degeneracy of the diffusion term, the solution cannot contain
shocks: thus entropy solutions need not be considered for (2.73). However, as
we use operator splitting, the entropy condition plays an important role in the
hyperbolic part of the split equation. The solution of (2.73) satisfies entropy
conditions, even if they are not used to select the physical solution.

2.5.3 Fully discrete method

Practically, the exact solution operators need to be replaced by suitable nu-
merical methods. For the convergence proof, we use a relaxation type FVM to
approximate Dy, and a large step front tracking method to approximate 7;. In
this front tracking method we will work in a grid where the front tracking is
done strip-wise in every z-strip.

Let Dagy(t) stand for the FV solution operator associated with (2.79) at
time ¢ and let 75 A4y (t) stand for the front tracking solution operator associated
with (2.77). As mentioned before, we have 75 azy(t) = I 0 T5 ax(t).

After solving the hyperbolic step, we must project the solution onto a Carte-
sian grid. We consider a non-equidistant grid x;,y;, with ¢ = 1,..., Ny and
j=1,..., Ny, and set Az;; = Az;Ay; where Ax; = ;11 — x;, and analogously
for Ay;. The projection operator is constructed in such a way as to maintain
mass balance, ([ F(v)dQ). It is given by

1 ~
nv(z,y) = F~1 <|Q | / F(v(z,y)) dQ) =F 1 (7F(v)), for (z,y) € Qj,
ijl Jau;
(2.81)
where Qij = [xi,xiﬂ) X [ijijrl)a with ¢ = ]., .. .7N1 —landi= j7 . .,N2 —1.
If we assume that over the entire timestep the front tracking algorithm pro-
vides a solution, our fully discrete splitting method reads

Cn(t) = ['DAryyAtoﬂ'O'Zg?AyyAt]n Cy, forte (tn_l,tnL n=1,...,N,
(2.82)
where we used Dagy,at = Dagy(At), the same for 75 Ay a¢, and where n =
(6, Azy, At) represents the discretization parameters.
Note that the front tracking algorithm that we use is based on exact so-
lutions. This is in contrast with more general algorithms, based on piecewise
linear interpollations of the flux and velocity functions. These methods require
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a stability result which allows to prove convergence of the solution of the in-
terpolants to the real solution. This will not be needed when it is possible to
work with the exact flux and velocity function. The disadvantage however is
that the exact solution is no longer known when a shock reaches the beginning
of a rarefaction wave. This can be overcome by performing an extra projection
during the hyperbolic step. Our fully discrete splitting method then reads

l
Cy(t) = |Dasyaco[m0o Tiayanl'| Co, where > Aty =At,  (2.83)
k=1

and t € (tp—1,tn],n=1,...,N.
It is necessary to show that | < oo when At, Ax — 0. We have the following
Lemma.

Lemma 2.5.1. For the hyperbolic problem (2.66) solved by a Riemann solver
(2.83), with F(¢) = u, ¢ = f(u), 0 < f' < L, the number of projections
I needed during transport in (2.83) is for a given timestep At, At/Ax = C,
bounded above by Iy, with lyax independent of the timestep.

Proof. Set t=0. The initial condition is a piecewise constant function over a grid
{z;}. First, let us suppose that we project to piecewise constants everytime a
front passes a gridpoint. With front we mean the beginning of a rarefaction
wave, the end of a rarefaction wave, or a shock. As the flux function f =
F~! satisfies f’ < L, the speed of a front is less than L. The minimum time
after which a projection can happen is Az/L. and the maximum number of
projections is therefore imax = At/(Az/L) = CL, independent of the timestep.

We must still consider the fact that projection might happen before a front
passes a gridpoint. We only need to consider the case where a shock (as in Fig.
2.1, u; to wu,, speed s = (f(w) — f(ur))/(w; — u,)) meets the beginning of a
rarefaction wave (u;, speed f’(u;)) as only then projection is necessary (the case
where the end of a rarefaction wave meets a shock can be solved exactly). As we
started with a piecewise continuous initial condition the shock must be at t = 0
at a gridpoint z;, and the beginning of the rarefaction wave at z;1. Thus, in
order for the projection to happen before a front passes a gridpoint, we must
have s > 0 > f’(u;), which is not possible in our setup as f’ > 0. O

Remark 2.5.3. Lemma 2.5.1 plays a role for the exact Riemann solver which
is similar to the role of the Lemma showing that there are a finite number of
shock collisions for fized & for the front tracking method, where the flux f is
approzimated by a piecewise constant profile f°, see [27, 51]. In our setup shock
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collisions for a given initial condition will be finite for the same reasons as in
[27, 51]. However, every time a projection has to be done, the method must be
restarted. Therefore Lemma 2.5.1 is important.

Remark 2.5.4. The need for projection might seriously endanger the efficiency
of our solution method. In the expermints this will not be a problem as we con-
sider single injection pulses. In real erperiments, recirculation of contaminant
might be applied, and the problem of shocks meeting rarefaction waves will arise.
In a worst case scenario, it might be best to use the front tracking method instead
of an exact Riemann solver to avoid spurious projections. Other possible meth-
ods are projection on a larger resolution than the grid size, or only projection
around the problematic collision and not over the entire domain.

While using a numerical method, we obtain an approximate solution C*
in every point t; of the time discretization. In order to obtain convergence
results, we need functions that are defined on the whole interval [0,7]. This
has to be done carefull, as in one timestep At transport and diffusion happen
simultaneously, whereas in our discretization this has been split in two parts.
Therefore, we need to compress the two separate steps into one timestep. To
this end, all the transport is considered in the first half of the timestep, and the
diffusion in the other half, with projection at %. Let us therefore define the
following sequences:

(@, y, 1) = { Ts,0y (2t — t1,))0* (2, ) t € [trstry1/2)
A Daay,at(2(t — tiy12)) 0P 2(2,y) € (g2, thsr)

where 0¥ is the solution obtained at time t;. The parameter v corresponds to
time and space discretization. The definition of the sequences formally corre-
sponds to the operator splitting procedure.

The convergence proof consists of several basic steps:

e We prove that v, is uniformly bounded
e We show that v, has bounded total variation in the space variable
e We prove that v, is L;-Holder continuous in time with coeflicient 1

e Applying Riesz-Frechet-Kolmogorov’s compactness criterion we prove the
existence of convergent subsequences of v, converging for v — 0 in L;-
sense to some function v(zx, y,t)

e We show that the limit function v(z,y,t) satisfies the variational formu-
lation (2.75)
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For the fully discrete method (2.83) the result is summarized in the following
main theorem

Theorem 2.5.1 (Fully-discrete convergence). Let the retardation function
F(v) be such that it is nondecreasing and that F~1 is Lipschitz continuous. In
addition, let the functions g(z,y), h(z,y), a(z,y) and b(x,y) be smooth and
let g(z,v), a(x,y), b(z,y) be positive. If vo(z,y) and v°(z,y,.) are nonnega-
tive, bounded and of bounded total variation, then the numerical approximation
v™(z,y), obtained by the operator splitting scheme (2.83), converges to the very
weak solution of the convection-diffusion-adsorption problem (2.73) for n — occ.

For the semi-discrete method, a similar result can be obtained. In what
follows we concentrate on the fully discrete method.

2.5.4 The hyperbolic step and the projection

The transport step and projection step are obviously uniformly bounded and
have bounded total variation. However, these obvious results are obtained in
different coordinates/variables than the ones used in the subsequent diffusion
step. Therefore, we will write down these parts in detail. A further complication
is the dimensional splitting: total variation in one space dimension might be
bounded, but this has to be connected to the result obtained in the other space
dimension.

1D Hyperbolic step

The main construction in the numerical algorithm is the transformation of the
one dimensional hyperbolic equation into

aV — 05 f(V) =0, (2.84)

which is solved by front tracking with IC V/(7, 0) = V(%) and the BC V(3?), t) =
VO(t) at the inflow § = 7(?). Here, the variable 7 is obtained with a 1-1 transfor-
mation from y, and we have F(v) = V. As F is strictly monotone, also f = F~!
is strictly monotone. After the front tracking, projection to a Cartesian grid in
y is done. This grid is transformed 1-1 to a grid {y;}. This gives us values V;
which can be transformed back to the value v;; of the original variable v, where
we useV(j)|;_5 = F(vij). To this end a numerical procedure with a Newton
type of iteration can be used.

In general, the initial data vg, (or V), is approximated by a step function
Vo,Az = T, (or Vp,az), before the hyperbolic step is executed. Note that the
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result of our FVM will be a step function. Therefore, the stepwise approximation
must only be performed at ¢ = 0. Note that in the dual-well problem we have
vo(z) = 0.

We follow the reasoning of [25]. By construction, V' is not increasing in the
Loo-norm and has bounded variation. This is clear for the Cauchy problem,
from [51] where interpolated fluxes and velocities are used. For the IBVP the
boundary condition has to be taken into account. The outflow boundary has
no influence on the solution. The inflow boundary V°(t) is approximated by
a step function VJ,. The wave propagation from the inflow boundary will, by
construction, be decreasing in the L,,-norm. It adds not more to the variation
than the incoming wave has itself, see also [32]. Furthermore, all waves have
finite speed of propagation, also the ones at the inflow boundary, so the solution
is Lipschitz-continuous in time with respect to the L;-norm. Each solution sat-
isfies the entropy condition for the perturbed equation (Vo ax, VY, the piecewise
constant approximations of the initial and inflow condition respectively) and
thus is an entropy solution.

In [32] also a stability result is given. This results allows us to consider
Vo,az and VJ, for the IC and BC instead of the exact conditions. We do not
interpolate the flux and velocity field, so the stability result needs not to be as
general as in [25].

We summerize these considerations in the following lemma

Lemma 2.5.2. Let V(y,t) be a solution of (2.84) obtained by the front tracking
method. Then V satisfies the following estimates

VOOl

TVE(V (1)) < TV5(Vo) + TV, (VO() < TV5(Vo) + Ct,
[V(.t) = Voll, 7 < Ct,

V(. )l < max (|[Vo]l

where C' is a constant depending on the data. The solution can be constructed by
front tracking in a finite number of steps for any t > 0. It is stable with respect to
initial and boundary data: let V' and V2 be two solutions corresponding to ICs
Vi and V2, respectively, and corresponding to BCs V! and V92, respecively.
Then, we have

[V'(.t) - 1/2(.,t)||1,?7

IN

Ve = V&l g+ 1l [V = Vo2l
Vo = V&'l 5 + Ct,

IN

where the constant C' depends on the data (fluz, velocity and initial condition).
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This lemma can be easily rewritten in terms of variable v and coordinate y
as F' is a monotone increasing function.

Lemma 2.5.3. Let v(y,t) be a solution of (2.77) obtained by the front tracking
method as described before. Then v satisfies the following estimates

IF (0., 1))l < max (F(vo)lle - [[F (" (D] ) -

[0, B)ll o < max ([volloe - [[v°(O)]].o)
TVy(F(v(-,1))) < TVy(F(v0)) + TVi(F(°())) < TVy(F(vo)) + Ct,

Fu() = F) | _ o,
G 1

where C is a constant depending on the data. The solution can be constructed by
front tracking in a finite number of steps for any t > 0. It is stable with respect
to initial and boundary data: let v' and v? be two solutions corresponding to ICs
vy and v, respectively, and corresponding to BCs v%! and v°2, respectively;, as
the value of u cannot change left or right of the shock (it is the constant u; and
u, respectively) then we have

’F(vl) -~ P3| _ H F(vg) — F(v5)
G G

oo ?

‘ T 1E @M - FM)]
1 1

where the constant C' depends on the data (flux, velocity and initial condition).

Remark 2.5.5. The stability result can be extended to different flux and differ-
ent velocity fields with a KruZkov analysis, see [25, 51] and (2.4). Qualitatively,
the result is the same:

TVy(V (1)) < TVy(Ve) + Ct

and
V= V2| < V) = Villg + Ct,

where the constant C' depends on the data (fluz, velocity and initial condition).
More importantly, as different velocity fields are considered, the transformation
y to y can be seen as a velocity field, allowing to write ([51])

IF (") = F(v*)ll < [[F(vg) = F(vd)ll1 + Ct, (2.85)

which is a stronger stability result than the one of Lemma 2.5.3. We stress again
that to obtain this result a separate Kruzkov analysis must be done taking into
account velocity fields (like G).
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Remark 2.5.6. Lemma 2.5.3 can be further refined by invoking the Lipschitz

continuity of F~1: |v; —vg| = di: ()|Vi —=Vo| < C|Vi —Va| = C|F(v1)— F(v2)|,

and by taking into account that there are two constants C1,Cy such that 0 <
Ci <G< (.

1D-Projection step

After the transport step, a projection step is done. If we consider a timestep

At, then starting from v(z,t,) = v™, we arrive after one transport step at
1

Ts.nze.atv"™ = v(z,th41) = 072, With projection to the fixed grid, we then

obtain

1 1
ot =tz

The following lemma is straigthforward ([26]).

Lemma 2.5.4. Let h(z,t) € BV(R) be a function consisting from piecewise
constant parts and continuous monotone rarefaction waves, and let T and 7 be
the projection operators from (2.81). We have that

TV(F(h)) =TV(F(g)) =2 TV(xF(h)) = TV (F(rh)),

where g(x,t) is the function consisting of h, where the rarefaction waves are
replaced by piecewise constant functions interpolating the rarefaction waves.

Proof. Let F(h.) be a continuous approximation to F'(h) defined as follows.
In a small neighbourhoud of each jump, we let F(h.) be a linear interpola-
tion between the two constant values F(v;) and F(v.). Then TV (F(h)) =
TV (F(h.)) > TV(7F(h)), since 7F(h) is a particular partition of F'(h..).

Now let g be as defined. As the rarefaction waves are monotone, and F' is an
ascending function, we will have for every rarefaction wave s that TV (F(s)) =
TV (F(gldom(s)))- Therefore, by extension TV (F(h)) = TV (F(g)). O

We can also derive a result for the variation in time. We may do this multi-
dimensional as this does not add complexity.

Lemma 2.5.5. If C = Ax/7, the projection operator satisfies

|F("3) — F@3)[h = /Q FF(v) — F(v)|dady < CrTV (F("2)),
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1
Proof. We have that F(v""2) = F;;, a constant in the volume Q;; = (x;, 2i41) X
(yi,yi+1). Due to the properties of the projection operator (conservation of

— 1
F(v)), we have F';; < Fjj < Fy;, where F;; = min(F (2" 2)) in the volume €;;,
and analogously, F';; is the maximum.

1
If F is a smooth function, there is a point &; where F(7""2(¢;;)) = Fyj.
1

Applying the mean value theorem to F (7" 2), and with the point ;; less than
a distances Az and Ay separated from every point of €2;;, we obtain

|F(m+ ) —F@E+ 5|, < / 10, F(5"+3))| Axdady + / 10, (5" 3))| Aydazdy
Q Q

1
=CrTV(F(@""2)).
In the case that F' consists of shocks, we have
1
||F(’Un+%) _ F(57L+%)||1 = Z/ |Fm _ F(E’L+§)|dxdy
— Q.-
1] K

IN

S "(Fij — Fi))Aady < CrTV(FE"3)).
j
0

The above lemma will be usefull to relate all errors made to the total varia-
tion (TV) of the initial condition. Note that, independently, we have the follow-
ing result:

1

Lemma 2.5.6. If ||[F(0""2)|| < C , the projection operator satisfies
1 1
||F(Un+§) - F(5n+§)||1 —0, as Ax — 0.

Proof. Due to the properties of the projection operator (conservation of F(v)),
— 1
we have F;; < F;; < Fyj, where F;; = min(F(0""2)) in the volume Q

analogously, F';; is the maximum. We have

ijs and

IF@™2) —F@ 3) |y < S IQul(Fy—F,) =0, as Az —0,
i

which follows from the fact that two Riemann sums of the same integral 0 <
1
[ F({@""2) < C are considered. O
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2D hyperbolic step and projection

We now consider the full 2 dimensional problem. The boundedness is evident.
The TV result however is less clear.
Recall that

1 1
[0 Ts.ac,at0mo Ts ay At 0™ = [T 0T 0oTsayad 0" = 70772 = 0" T2, (2.86)

where the transport operator is in terms of u = F(v), instead of v. For the
combination of transport and projection it is best to perform both calculations
in the same coordinates. We do both in terms of u. We have, with F(v) = u,

1 1
[T 0 Ts.nu(At) o T 0 Ts gy (At)|u™ = [T o I 0 Ts py(At)]u" = 70" T2 = 0”2,
(2.87)
where 75 A, (At) is the transport operator acting on v. We prove the following
lemma.

Lemma 2.5.7. For (2.86) we have that

TV, ,(F(u"™*2)) < TV, ,(F(v")) + CT,

or equivalently
1
TV y(u"t2) < TV, ,(u") + Cr,

Proof. The proof goes along the lines of [26]. The operator 75 A, (At) is the
identity in our case, so it remains to show the assertion for 7 o 75 o, (At), the
transport in the y direction. Two ingredients will be used in this proof: first the
properties of the solution for the 1D problem in y and, secondly, the stability
of the solution for the 1D problem in y. These two parts correspond to the two
parts of the 2 dimensional total variation, given by

©) e

TV, (W )iy + [TV, (b)),

(1)

Y

TVayh(z,y) = /

ey

In the hyperbolic step the initial condition is a piecewise constant profile
uij, 4 =1,...,Ny and j = 1,..., No. If, for each fixed z, u(x,y) is a piecewise
constant function in y, we write

u;(2) = uljay<y<(i+1)ay (T, Y),

and similarly
ui(y) = uliAz<z<(i+1)Am(xa Y).-
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We also denote
ui(y,t) = T ay (L) ui(y),

which contains shocks and rarefaction waves. Due to the absence of transport
in the z direction,

uj(@,t) = Ts pz(t)uj(z) = uj(x).

According to Lemma 2.5.2, the solution of the 1D problem satisfies the in-
equality
TVy(ui(y, At)) < TV, (ui(y)) + CAL,

where y may be used instead of 3 as this is the one dimensional variation.
Furthermore, Lemma 2.5.4 yields:

nt3
,]

TV, (]} 2) < TV, (uily, A1),

Combining these results we have

1

TV,(u""2)Az < TV, (u")Azx + CTAz.

For TV, (u"*é) we will use the stability result (2.85). If we consider two
adjacent z-strips ¢ and 7 + 1 with solution wu;(y,t) and u;+1(y,t), then these
solutions are obtained in a y strip starting from different initial conditions u;(y)
and u;11(y) and slightly different velocity functions G(x,y). The stability result
says that

y(2) y(2)
[ e+ 80 —uite+ 80y < [ Juca(® - wi(oldy + Clae
y e
N2
< D fuiy — wiglAy + Cln)AL,

J=1

where C(n) indicates that C' depends on the data: flux function, velocity field
and initial data, which are all different from one strip to the other. However,
due to refinement of the grid, the two strips are less separated (i.e. at least one
is in a different position), and so C(7) changes as the data on which it depends
changes. To be more exact, from the Kruzkov analysis (Lemma 2.5.2, [51]) we
know the form of C(n), and we can extract the dependance on Az, which gives
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C(n) = CAx + O(Az?), where C is a constant depending on the flux, velocity
and initial data of strip ¢ only. Therefore, we obtain

y® Ny
/(1) |ui+1(t + At) — ui(t + At)|dy < Z |ui+1,j — ui,j|Ay + CAtAz. (288)
Y j=1

By definition of the projection operator we have

(2)

Yy
/ i (5.t + AE) — wiy,t + Ab)|dy
es

N2 Yi+1
= Z/ luiv1(y,t + At) — ui(y, ¢t + At)|dy
j=1"¥

Yi

1 1
’I’L+§ ’I’L+§

Noo o ryjgn No
= Z | / i1 (y, t + At) —u;(y,t + At)dy| = Z luigr? — iy 2 [Ay
j=1 7Y Jj=1
Combining with (2.88), and summing over i =1..., N7 — 1 yields

nJrl nJrl
D lugird = w2 Ay <Y fui; — ui gl Ay + CAt
@j ij
where ). Az =C.
Then
TVyu" /2 < TV, u" + O7.

2.5.5 The parabolic step

The boundedness of the diffusion and total variation decreasing property might
be expected in advance. For the exact solution of the parabolic step it is straight-
forward to show this property using the kernel, see [27]. However, for a FVW
type of discretization the proof is not as simple, and has not been done to
our knowledge for the 2D case. However, it turns out that the property is not
needed to prove convergence. It suffices to show that the TV is bounded over the
combined 3 steps: transport, projection and diffusion. We will proceed in this
way. First, we give the approximation scheme used, then we prove boundedness
and a stability result as obtained for the other steps. Finally, we prove a TV
property, that will allow us in the next section to combine the diffusion step
with the other steps, and get an upper bound on the total variation.
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Possible approximation schemes

The approximation scheme (2.68) is used to prove convergence. We rewrite it
as

A A Ax A
( VF(ij) + (ai 17j—y + az‘,j—y + bi,j 1= 4 bz}j _ﬁ) TW; ; =
A A
[7‘—2 Y ai+17j:| w; 1,5 + {7‘—2 y_ ai,]} wi_lyj

+ [Tﬁbi,jﬂ} Wi j+1 + [Tﬁbm} Wi j—1 +wF(wZ;1), (2.89)

where w = w;; = ‘;/—Lj‘, F(w:‘;l) is the value of F;; obtained in the projection
step, and where we allowed for a nonequidistant grid, so Azt =z}, — 2}, etc.

Taking into account the boundary conditions, we put a;; = 0 for the points
{z1,y;} and a;41,; = 0 for the points {zn,,y;}, j = 1,..., Na. Moreover, for
{zs,yn}, i =1,..., N1, we take b;; = 0 in (2.89), and b; j41 = 0 for the points
{331', YN, }

We will use (2.89), assuming w; ; to be its exact solution. In practice, sev-
eral different approximation schemes are considered. We revise them for future
reference. The nonlinear system of algebraic equations (2.89) will be solved
numerically by Newton type iterations, starting with C = C"~!. This implies
solving a matrix equation in every iteration step. This can be done up to a
desired order of accuracy.

We also consider the relaxation method, (2.69), which we write here as

W) _

(2]

(1-1) ) n—1 Ay Ay Az Az
wAi ;i (w—wi ) F i1 T iR 0t T biga,s ) Tw
Ay 1.0 NI )
{T—Az-*- az+1ya} Wily ;T | Trae= g | Wiy

x l T l
+ [rf—wbi,jﬂ} w), |+ [TAAy_ bm} w)_,, (2.90)

where [ is a iteration parameter and

Fwl)) - F(w}")

%, 3

. ) ._ g, n—1
Aij = 0} n—1 o Aij '_F(wi,j )
Wi 5 = Wi
is a relaxation function. If the convergence conditions

IAlo) _ \o=b) 7 3

) 2

(lo) _

T (2.91)

4]

)



76 Chapter 2. Advection dominated diffusion problem

e being a small tolerance, are met, we stop the iterations and define w; ; := wEl;)

For convenience, we rewrite (2.89) in two equivalent forms. For simplicity,
set Az, = Ax_ = Ay, = Ay_ = Az = Ay, and rewrite (2.89) as
~1
F(wz"j) — F(w:l] ) T
Gij AzxAy

(ai+17jZf+1,j — CL@jZiij + bi7j+1Zz’j7j+l — b”ZZJj) ,

(2.92)
where ij = w;j; — wi—1,; and Zgj = w;; — wj j—1- This equation is transformed
by setting

= U5, Wi = F_l(gijuij) = A(xi,yj,uij). (2.93)

The function A is monotone increasing in u: F is strictly increasing in w, so F~*
is strictly increasing in u, as g is fixed at a gridpoint. The scheme is therefore
equivalent to

n— T
wij -yt = Az (i1 (Auirg) — Aluiyg)) — aij(Aluig) — Alui-i,5))+

bij+1(Aui 1) — Aluig)) — big(A(uiz) — A(uij-1))) . (2.94)

This is a more complicated version of the implicit scheme used in [25], as here
A also depends on the space coordinates because of g. We will apply the mean
value theorem as follows:

A@iv1, Yy, wiv1,5) — ATi, Y5, wij)
= A(I¢+1vijui+1,j) - A(Ii+1vyj, u”) + A(%H;Z/jﬂz‘,j) - A(l‘uijuz',j)

0A 0A
= %(%H,ym&ﬂ,j)(uwu - uij) + <%>i+l ) Az,

for a suitable &;11,; and where (0A/0x);41,; = O0A/0x(ni41,v;5,u,;) for a suitable
Ni4+1. Then, we rewrite (2.94) as

wig = Uiyt = G Ly — Gi 2+ B 2l — Bzl (2.99)
+ﬁ (ai+1)j(8A/81')i+17jA{E — aij(GA/ﬁm)i7ij+
+0i,j+1(0A/0Y)i j 1Ay — bij(0A/y)i jAy)

where Zilyj = Uj,j — Ui—1,5, Zj

ij = Wi,j — Uij—1 and

Qit1,j = @it1,j 5oz A (Git1,5)s
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and identically _

Bij+1 = bijr1 ez A (Gijy1),
for suitable &1 ;, (;,j+1- Note that a, b are bounded and strictly positive. The
degeneracy only comes from the A’ term. We can rewrite the above as,

Uq,5 — uZ;l = a¢+1,jZii+l7j — &iijfj + 6i,j+1Zij’j+1 - 6i,jZij’j (296)
+az itrg = Yig +0i501 = dij),
where
Yit1,j = @iy1,;(0A)0x)iv15, Oijr1 = bijr1(0A/0Y)ij11-

An approximation of (2.96) is given by
wig —ulyt = G120 — G2+ Bigi 2l — Big 2, (2.97)
which is precisely the scheme used in [27].

Remark 2.5.7. In the degenerate point (0,0) we have that A(u) = 0 and A’ = 0.
In the region where no concentration is present, u = 0, this is also the case. At
the moving interface, we have lim,_o4 F'(v) = +00, so lim, o4 A’(u) = 0.

We summerize the 4 schemes that we have deduced:
Scheme (1): relaxation method. W™! is the solution of
Aij (il _ i a4 b beo) il
gT‘j ij  'Vi,g + (aH—l,J + Q5 + 4,7+2 + zg) A2 ig
.
A2 [aijWZfle + @i WL+ b Wi + 0 WL | =0, (2.98)

where \;; is the last calculated relaxation parameter.
Scheme (2): FV scheme. W™ is the solution of
F(Wi;) - FW ) T
7 L= + (aiy1,5 + aij + biji1 + bij) AL
.
Az?
Scheme (3): degenerate variable coefficient diffusion method. w is the
solution of

W, — (2.99)

[aijWi—1,j + @it1,;Wit1,j + bijr1Wi g1 + bWy j—1] = 0.

Tl = i gl J _ 3 .7
Wij — W5 = O‘HLJZz‘Jrl,j awzz‘j +ﬁl7J+1Zi,j+1 ﬂl,]Zi,j

-
+ s (Yix1,j — Yij + 0ig+1 — i), (2.100)
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Scheme (4): degenerate diffusion method. u is the solution of
wij =it = Qi1 2 — Qi 2+ Bign 2y — B2 (2.101)

Scheme (1) and (2) will be used in our practical computations. Convergence
of scheme (1) to the solution (2.79) has been proven in [35] in the Ly-norm. We
will prove convergence of the operator splitting method by using W". As an
extra point we can show afterwards that W™! converges to W". We have added
scheme (4), as results for this scheme exist in the litarature. A connection of
scheme (4) with our scheme (2) can be obtained through scheme (3).

Boundedness and stability

We only consider scheme (2). We prove the boundedness and stability in an
analogue form to the one obtained for the transport and projection.

Lemma 2.5.8. Let W™ and V™ be approzimate solutions of (2.79) generated
by the scheme (2.99). Then, one has

POV < [FWO)]oe, H”Wn) — PO

9

< [[Fr F
1 9

1
Proof. Choose in (2.99) i = [, j = k, such that W}, = max;; W;;. Due to the
properties of F', F(W],) = max;; F' ( i) We directly obtain max F W) <
max F'(W}"; 1Y, and therefore also max W < max W' !, This can be repeated
for miny; W”, which proves the first assertion by 1nduct10n on n. The second

assertion follows by subtracting (2.99) for W from the equation for V, with
dij = Wi — V2. This gives

Fl(gl) T

{ gijj -+ (@it1,5 + aij + bij41 + bij) = dij

- FOWiTY) — P
N [aijdi—1,j + it1,jdiy1,j + bijr1di jy1 + bijdi j—1]+ J J_J
v 9ij

Taking absolute values and summation over ¢ and j, leads to

H F(W™) — F(V™)
g

- HF(Wn—l) _ F(vn—l)
1 g

1

which proves the lemma. O
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Total variation result of [25]

In [25] the boundedness of the total variation of scheme (4) is suggested for
2 or more dimensions without proof. The techniques given are however not
extendable to higer dimensions. For clarity, we recall the results. We begin
with two esimates that can be readily extended to two or more dimensions.

Lemma 2.5.9. Let u™ and v™ be two solutions of (2.101). Then
lu™ oo < ulllocs  flu™ = v™[l1 < [lu® = v°s.

Proof. Eq. (2.101) is the implicit scheme used in [25] and the above result is
Lemma 2.2 from [25]. The L., estimate follows directly from (2.101) by the
same reasoning as in Lemma 2.5.8. The L;-stability is not proven explicitely
in [25, 27], but can be easily obtained by the arguments given. We show this
stability in 2 dimensions.

Rewrite (2.101) for «™ in its original form (2.94), and substract it from
the equation for v". By the mean value theorem we have A(u}';) — A(v};) =
A'(¢f3)(uj; — vpt;) for some appropriate (%. Writing UJr = uj’; — v}';, we obtain

T

A (CLEA/(CfH,j) ﬁrl,j

+a'V A( 1)U+ bV A( LU+ bSA/(ijfl) Z,Ljfl) .

(1+ (G (aF +a" b b)) Up = U+

The first factor in the left hand side is positive as A is an increasing function in
u. Taking absolute values, and summing over ¢ and j, we obtain

Ju™ — o™y < [lu =0y,
from which the required result follows by induction on n. O
The following result cannot be extended to higher dimensions:

Lemma 2.5.10. Let u™ be an approximate solution generated by the 1D version
of (2.101). Then
TV (u"™) < TV (u®)

Proof. We rely upon [25]. In 1D, the equation is

U; = u?_l + air12i41 — i Z; (2.102)
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We have that TV (u) = ). |Z;|. Proceeding similar as in the previous lemmas
we deduce from (2.102) that

Zi=Z{ + ojp1Zip1 Yoy 1Zi — 204 7;.

We bring the third term of the rhs to the left, take absolute values and sum
over ¢ to obtain the result. O

Another approach is needed to obtain TV diminishing properties of scheme
(2.99).
A sufficient total variation result
We begin by rewriting (2.99) as

F(W, j))—F(W)7")

_ _T . Y P Y]
9 = a7 [ai+1,5D} 41 ;W — ai; D} ;W]

+ & [bi,jHD{J—HW — by Dl W, (2.103)

where

i _ Wi i Wi, J Wi i —Wii
DijW = = Dy W =y,

We have the following lemma;
Lemma 2.5.11. Let W™ be the solution of (2.99) with a, b > 6 > 0, then

TTV(W")<ClaT—%Z ! [F(W)) — FW D] WrAzAy,  (2.104)
Gij

where C1 and Cs > 0 and where o > 0 is arbitrary but fized.

Proof. We multiply both sides of (2.103) with W;; and AzAy. We sum over
¢ and j, and apply Abels’ summation (A.2) in the rhs (integration by parts in
discrete form),. Using the boundary conditions (D;;W = 0), we arrive at

]‘ — n
Zg” [F(W]) — F(WR—Y)] Wi AzAy

+TZ[ (DLW™)? +b(DLW™)?] AwAy = 0. (2.105)
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For arbitrary a > 0 (fixed), the Cauchy inequality can be used, i.e. |f| <
2 + 5L f2. Combination with (2.105) leads to

> [[pywr| + |plw

ij

} AzAy (2.106)

< = i n J )2
< a|Q|+ a|Q|+HZ[ (Di,wmy? +b(DUW>]Ag;Ay
< o] - 11 Z L [F(W]) — F(W2 ] WiAzAy
- 200 T &~ g;5 K ’
where we used the assumption a,b > ¢ > 0. O

Remark 2.5.8. Note that for a pure diffusion problem, the scheme (2.99), does
provide an easy way to prove boundedness of total variation, see Lemma 2.5.12
below. From this lemma, it’s clear that oll difficulties arise from our hyperbolic
step performed between 2 diffusion steps, for which a result as in (2.107) is not
available.

Lemma 2.5.12. Let W™ be the solution of a pure diffusion problem obtained
by (2.99), where a, b > > 0. Then

n 02 i j
TV(W") < Cra+ =) {a(DijWO)Q + b(ngWO)Q} AzAy,
i
where C1 and Cy > 0 and where o > 0 is arbitrary but fized.
Proof. Denote a;; = a;;Dj;W and (;; = biijjW. Multiplying both sides

of (2.103) with Wi — Wi’;_l and AzAy, and summing on ¢ = 1,...,N; and
J=1,..., Ny gives

Z F/(é.%])(W W” 1 Z{ Q41,5 — az] (W WZZL 1)

i Gij
(Bi,j—&-l ﬂlj)( Wn 1)}

We apply Abels’ summation in the rhs (taking in (A.2) once a; = a;41,; and once
a; = i j+1).- As we consider a homogeneous Neumann BC, we have ay, 1, =
a1; =0 = ;1 = Bin,+1 (see the beginning of this section). Recalling that
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F' > 0, we obtain
T i yin (i i yrrn—1
0< == ai;DyW" (DW" Az — D;Ww" ! Ax)
i
T NI n J n 7 n—1
— = > b DLW (Dwraz - DLW 1 Ax).
9

We now use the identity

from which it follows that

3 <ai,j (D1, W) + by (D] jW”)2)

ij

<> (am‘ (DI, W) + by (DijWnl)Z) - (2.107)
i

Combined with (2.106) this gives the required result. O

Note that if we do not consider a homogeneous Neumann BC, the BC will
also influence the above total variation result.

2.5.6 The three steps combined

We use the following notation:

[Daz,ayat 0T o Ts ax At 0T O Ts Ay at] V" = [Daz,ay,at 0o Ts Ay ar] V"

~n+l

= Daz,ayat0om" T2
1

Dpz,ayatov" 2

" (2.108)

Recall that F~! is Lipschitz continuous, so that (F~1)'(s) < L, V|s| < L,
or, equivalently, F’(s) > 1/L;r. Before being able to prove the important TV
boundedness, we need to define an auxiliar function. We introduce
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We have that

[F(u) — F(v)]u > B(u) — B(v). (2.109)
Indeed note that [F(u) — F(v)]u = Fu)u — F(v)v — (u — v)F(v) > F(u)u —
F(v)v— [ F(z)dz = B(u) — B(v), since F(u) is monotone increasing. We also

have B(s) > 0 1f s> 0, and B(0) =0, as well as B'(s) = sF’(s). Consequently,
for Langmuir and Freundlich adsorption we have that B'(s) < Lg, V|s| < L. We
shall not use this last estimate, as the boundedness of B(s), V|s| < L, following
from the boundedness of F, V|s| < L, will be sufficient for our purposes. We
have the following lemma.

Lemma 2.5.13. The approzimation scheme given by (2.108) satisfies

t
[0"[lc < C,  and / TViy(vas(t)) dt < C,
0

where the constant C' is independent of the space and time discretization and only
depends on the domain and on a, b, ||v°|| s and ||vo||ec. Moreover, va(z,y,t) =
v"(z,y) for t € (tn—1,tn) is a piecewise constant function in (z,y).

Proof. The first inequality follows directly from Lemma 2.5.3 and Lemma 2.5.8,
using the Lipschitz continuity of F~!1, i.e. [[v"]|oc < C||F(v™)]]0o-
1
For the second inequality, we use Lemma 2.5.11, where W™~ = v""2, and
we apply (2.109) to get
TV (v

n+ %
ij

< Ciat — 02 Z L [F ntl) )] ""'1AxAy

+1
< Ciar — Z” L 1B "H 1} t2 )} AzAy

1
=Clar- 2y, L [ i) B(v?;r?)} dzdy

+&y, L +3 (2, y)) — B(Ufj)} dady

g
I8
=Crar — 2, o= / o) — B(upy)] dady
L@
[

)| dndy
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<Ciar— 23, &~ / vt = B(v)] dady
C 1
+3 2 / [

n+§ nad . 1
+02 Zm 917 /Q l:F(Uij ) —F(v +2($,y))] dxdy.

l\JlH

) = P)] (5743 (2, y))dady

)

The last term at the rhs is zero, as this is exactly the projection (2.81). The
third term can be estimated by using F(||v"s) = [[F(0™)]lcc < [[F(0°) |00 =
F(|[19 s) so that [[v"]|ee < |19l = C||F(v°)]|oo. Moreover, invoking Lemma

2.5.3 (Lipschitz continuity in time of the transport) and g > € we find

1 n n
- % Zij - [B(”i;rl) - B(”ij)] dzdy.
Q; 9
Next, by summing on n —fixing « arbitrarely— we may arrive at

n

DIV < CUIFE))T = Co Xy 51 [Blofy) = B(vfy)] Ay
i=1

< CUF@ )T +Co X5 55 Bloh)) Avy

< C(IF@)])T + Gl o) < ¢,

where we still used the fact that 0 < 2B(v) < 2||F(v°)|[ol[t°||cc. This is the
required result. O

The TV boundedness property of Lemma 2.5.13 can be rephrased as follows.

Lemma 2.5.14. The approzimation scheme given by (2.108) satisfies

T
/ / lvat(x + kAz,y + 1Ay, t) — va(z, y, t)| dedydt < C(IAz + kAy),
0o Ja

(2.110)
where C' only depends on the domain, on a and b, and on ||v°]| s and ||vo||so-
Moreover, vai(x,y,t) = v"(z,y) fort € (tn—1,tn) s a piecewise constant func-
tion in (x,y).
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We estimate the total variation in ¢. We take ¢ € (¢,,,t,41). For the hyper-
bolic and the projection step this result has already been obtained. It remains
to consider the parabolic part.

Lemma 2.5.15. The approzimation scheme given by (2.108) satisfies
T
/ / lvat(z,y,t + k1) —var(x,y,t)| dedydt < CvVEkr, (2.111)
0 Jo

where C' only depends on the domain, on a and b and on ||v°o and ||vo||so-
Moreover, vai(z,y,t) = v"(z,y) for t € (tn_1,tn) is a piecewise constant func-
tion in (x,y).

Proof. We consider a smooth function ¢, and its piecewise constant approxima-
tion ¢p = Paq,.ar = @45, for (z,y) € Q;;. We multiply both sides of (2.103) by
¢i; and sum up over ¢ and j. Using the notation (2.108) and applying (A.2),
we get

1 n+l
> / — [F(v;;-“)—ij 2)| ¢ndady
ij Qij 9ij

< 7|3 [as[Diu" 1Dl 6n + big [Dv" 1Dl 6n] Azdy
ij

< 7O max (| D*én o, [|DYnlloc) TV (")

< O7|[Von TV (™)

< OT||VO||loTV (™). (2.112)
Here, we used the estimate || F(v"1)]| s < ||[F(v°)|leo < C, the properties of a
and b, and the fact that ¢, — ¢ for 7 — 0, dropping higher order terms in 7.

We establish weak Lipschitz continuity in time similarly as in [27] (with

a technique due to Kruzkov). Due to the strong Lipschitz continuity of the
hyperbolic operator and the properties of the projection, (2.81), we have that

1
n+§

1 L
— | F(v; — F(@""2 (x, :| dzdy = 0, 2.113
S [, 5 FesH - e ade @113
and

1 1
— |F@""2(2,y)) — F(vjj)| pndady < Cl|¢]loT. 2.114
;/QJ s [ ("2 (z,y)) (vj)] éndady 18] 0T ( )
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Combining the three steps (2.112), (2.113), (2.114), and repeating the argu-

ment for time steps n,n+1,...,n+ k, we find,

1 k .
> /Q [P = ()] ndady < Clgllackr+CIVSlocT YTV (")
@ ij 2t =1

Multiplying by 7, summing on n, we get

T
/O /Q é [F(va(z, yt + k7)) — F(var(z, . £))] édadydt < C(|@lloo-+| V6] oo ) kT,

by Lemma 2.5.13. Changing the summation by integrals, errors are introduced
due to numerical differentiation (e.g. g;; replaced by g(z,y)). However, these go
to zero as Az — 0. Now, let w;, be a smooth mollifier with support in [—h, h]3,
define

¥ =sgn(va(z,y,t + k1) — var(z, y,t)),
and set ¢ = wp(z,y,t) 1. Standard arguments based upon the properties of
wy, allow us to write, see [33, 46]

T 1 1
/ / I (vl .t + 7)) = Ploae(a, )] dedydt < C(h )kr < OV,
0 Q

(2.115)
where h = Vk7. Recall that va; is bounded. Use the fact that TV (v) <
CTV(F(v)), (F'(v) > &), and notice that g < C. We conclude that

T
/ / lvat(z,y, t + kT) — var(x, y, t)| dedydt < CVET. (2.116)
0o Ja

O

2.5.7 Existence

The convergence of the sequence (vat(z,y,t)) for At — 0 follows from the
Riesz-Fréchet-Kolmogorov theorem, see Appendix A, Theorem A.2.2. With
this Theorem we can state:

Lemma 2.5.16. If At — 0, then there erists a subsequence v,,(x,y,t) of the
sequence va¢(x,y,t) such that v,, — v for j — 00 in L11oc(2 x 1), @ x I =
(D, 23)) x (yM),y3)) x (0,T).
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Proof. Lemma 2.5.13 implies that va¢(z,y,t) is uniformly bounded. From
Lemma 2.5.14 and 2.5.15 it follows that

T
/ / [vac(z + kEAz,y + 1Ay, t + mAL) —vae(x, y, t)| dedydt
o Jo
< C(kAz + IAy + VmAL),

Thus the condition of the compactness criterion in the Riesz-Fréchet-Kolmogorov
theorem is satisfied. Consequently, there exists a subsequence v,, (z,y,t) that
converges to some v(z,y,t) in Ly 10c(Q x I). O

Remark 2.5.9. We emphasize the fact that the convergence is in L1 1oc(2 X I),
so nothing can be said on the value of v on the boundary. The weak formulation
(2.75) does not need the value of v on the boundary, as only vy and v°, given
functions, appear in the boundary terms of the weak formulation. Therefore,
this weak formulation is consistent with our approach for proving convergence.

Before continuing, we need a more elaborated function than va;, which is
piecewise continuous in time. We define v, (x,y,t) as

v (33 y t) _ { %,Ay(Z(t_ tk))vk(x,y), te [tkvtk+l/2)
A Daay,at(2(t — tiy12)) 082 (2, y), € [thr1y2, tegr)

where v is the solution obtained at time t; and v**1/2 = 775 Ay (2(t11/2 —

t))wk (x,y) = 77'17]”% (z,y), with & = 0,..., N — 1. Furthermore, t; 1/ =
(tk+1 — tk)/Q. We write 7, = tg11 — ti-

All the results obtained for va; are also valid for v,,. We now prove Theorem
2.5.1, the convergence of the solution obtained by our operator splitting method
to the very weak solution (2.76) of (2.73).

Proof of Theorem 2.5.1. Lemma 2.5.16 claims that the sequence {v,}a,>0
converges to some v(x, y,t). To complete the convergence proof for the splitting
procedure, it is now sufficient to show that this limit is the very weak solution
(2.76) of problem (2.73).

Let us consider test functions ¢(z,y,t) € C*(Q x I), with compact sup-
port near the outflow boundary. At the inflow boundary, y = y®, we im-
pose 8y¢|y:y(2) = 0 and at the no-flow boundary we impose 8I¢‘z:x(1) =0=
8z¢|$:1(2>. Furthermore, we require ¢(z,y,T) = 0. The variational formula-
tion is then given by (2.76). We need to show that the limit function v(z,y,t)
satisfies (2.76). We use the ideas from [16, 27].
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We begin with the transport part for ¢t € (tg,t and consider the new

k+%) ’
variable z = 2(t —ty,), and the accompanying transformation of the test function
&(z,y,2) = ¢(x,y,% + tx). Write formally v, (u,v,t) = v&(2(t — tx)), where
vE(t) = T5,a,4(t)v" (x,y). In the considered time interval, v, is the exact solution
of the transport problem (2.77) with initial condition the piecewise constant
function v*, and with inflow condition v(z,y®,t) = v°(z,y®,t). Therefore,
we can write

t o1
/ k2 %F(U)&ggb vyay(hqb)) dQ dt

:‘//7—’c M@za—vl}(z)ay (ha)) dQ%dZ
QJo

g
F (vk e pa® @
:%/ (UT(Z)) _%/ / hok (2 &
Q 9 Z:O 0 (1) y=y@®
1
F () F (u,(t)
=1/ — 2o dQ — 1% vk ) d§)
L[t a3 [ g
tret1 2 T _
—%/ ho (z, y @ £)¢( ) da dt,
tr (1)
F (o3
F( Vt
:%/7( )<b / 0y (te o(ty) dQ
41 _ _
/ / (z,y @, D)p(F) d df + O(AH?). (2.117)
te &8

For the last equality, we used t = 2t —ty) +tr, and ¢ € C'(Q x I) so
o(5 + tp) = ¢(t) + O(At) for t € (tg,tpy1). The error goes to zero, even
after summation over k (i.e. Y, (At)? — 0), so we can drop the error term.

We now turn our attention to the diffusion part over the time interval
(t, L ,t;,) with initial condition v*+1/2. This corresponds to scheme (2.103).
For 51mphcity set Azt = Az~ = Az and Ay"T = Ay~ = Ay. Multiply both
sides of (2.103) with ¢;; = ¢(x;,y;,tr), and sum over ¢ and j. Using the stan-



2.5. Convergence of the numerical method in 2D 89

dard notation (2.108) and qbffl = ¢(2,yj, tes1), we get that

N; N» k+35
AzAy F(Ulj) F(v; ?)
1= Y (bl
Vit1,5 — Vij Vij — Vi—1,j
e (aiH’j ix Ay —aig = Az j Ay)
Vi, 4 — V44 Vi,j — V45—
- qbij <bi,j+1 7’j+ix J Ax — b17j7J Ay it Al‘) :| =0.

We rearrange the first term, and apply Abel’s summation (A.2) on the last two
terms. This allows to write

k+3

I i%": AzAy _¢fj+1 — Oij Floi) + F(vij) g™ ~ Fluy; ?)oi
B 9ij Tk “ Tk Tk
i=0 j=0 7%
N; Ns
bij — Gic1,j  Vij — Vie1,j
+ Z Z Az @i, Az AzAy
i=1 j=0
N N
+ 21: i Oij = Pinjory Vid TViicLngng () (2.118)
i=0 j=1 Ay ! Ay

where we used ag; = an,+1,; = 0 = b; 0 = b; n,+1 because of the homogeneous
Neumann boundary condition. We again apply Abel’s summation on the second
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and third double sum of (2.118), to obtain

N1 k+1 k+1 k+2
AxAy bii T — bij F(vij) ¢ ( )bij
I = Y F(v;; Y
ZZ Gij Tk (UJ) + Tk Tk
=0 j=0
N1 No
¢zg ¢z 1,5 ¢i—1,j — ¢i—2,j Vi—1,5
_ Z Z < L a1 Az s AzxAy
=2 j=0
_ Z Z < (bl] ¢Z,j*1 . b i i1 (bLJflA ¢z732) Uz,Ajfl AxAy
i=0 j=2 y Y Y
ONL . — PNi—1,5 'UN7 ®1,j — ¢0,5 Vo,j
_,_Za Nij 1,J ml J 1,J Zal’j J ~ JAxJ
¢1N ¢1N 1U1N ¢10'U10
+ Zb 2 Ay 2= 2 Zb Ay 0. (2.119)

The four single sums contain values of our solution v on the boundary. These
terms are all zero for sufficiently small Az, Ay. The b, y, term vanishes because
of 9y¢ = 0 on the outflow boundary because of the compact support there; the
other 3 terms vanish because of the boundary conditions imposed on ¢ at the
other boundaries. We therefore have

k+
I— %1: i AﬂjAy ¢k+1 ¢1j F(?} ) + F(vlj)(bfj_l o ( 2 )¢Z]
i—0 j=o Jii Tk Y Tk Tk

N1—1 Ng
¢5z+1, ¢1 ¢i,‘_¢i—1,' Vi,
p3p3 (* vl ey v b v

i=1 j=0
N1 Nao—1
i1 — Pij ¢ij_¢ij—1>vij
— b i1 ——— — by i —— ) 2 AgxAy = 0. (2.120
D2 3 (o P - B ) ey =0 2120

By reordening terms, multiplying by Tk, writing formally v, (u,v,t) = vk (2(t —

t)), where vk (t) = Ds az,ay(t)v Nas 2(x,y), (2.120) can be seen as an approxi-
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mation of the equality

// [ Z¢( )+ vp(2) (3xa8x5(z)—8yb8y$(z)) dQdz

:/QF(”D(T’“ L) dQ — / ”D 0)dQ, (2.121)

— 1

By passing from (2.120) to (2.121), errors appear that are due to numerical
differentiation and integration in time and space. However, these errors go to
zero as At — 0, also after summation on k. Therefore, we need not consider
them further. As a last step we rewrite (2.121) as

/ /tk+1 {%w&thﬂ + v, (t) (0,00, 0(t) + aybay¢(t)):| dQdt
QJt

1
2

). (2.122)

1
2

/F(m(tm» Jao /F oh3
Q

Combining the two results by adding (2.117) and (2.122) for k =0,...,N—1,
we arrive at

IWAC

1
+§

at¢ X7 (t)vy y (he)

l\)lb—‘

+ xp (t)vy (t) (02005 0(t) + 0ybOyo(t)] ) dQ dt
= %/ w¢(T) 4o — %/ ng(o) dQ
Q Q

g g
n_l 1 1 (b(thrl)
1 :JIH—E _ vk+§ 2
#12 [ [Fern - rorn] =R
%// y @ t)o(t)drdt. (2.123)
(1)

Here, x7(t) and xp(t) are characteristic functions defined as

o 1 forte Uk[tk,tk+1/2) o 1 forte Uk[tk+1/2,tk+1)
xz(t) = { 0 otherwise » xo(t) = 0 otherwise.

3



92 Chapter 2. Advection dominated diffusion problem

We have ([16, 27])
x7(t) and xp(t) — % in Ly(0,T7) for At—0

Recall further that the test function ¢ was chosen so as to satisfy ¢(T") = 0.
Moreover, for At — 0 (n — o0), the projection error represented by the third
term on the rhs of (2.123), tends to zero. This property follows from

1N71 o 1 4 0, %)
E;O/Q{F(UHQ)_F(UHQ)} g+ i

N-1 1 ..
- 1Yy [F@’H%) - F(vfj*i)] — 4o

k=0 ij Vi
N-1 11 [0t 1) it 1)
oy L ket kti I\t L
AT e -red] [F -
k=0 ij 7<% K
= L + 1.

dQ)

By the definition of the projection, (2.81), we have that I = 0, Vk. For Iy we
can use the smoothness of ¢ and g, g > ¢, Lemma 2.5.5 and Lemma 2.5.13, to
obtain

N-1 1
Bos 1Y [ [reed - pelh| [V [oelTole] o, g
k=0 79 € €
N-1 L
< LN OAtTV(F@FT2))Az < CAx.
k=0

We now pass to the limit At — 0 in (2.123), with At = CAx. Taking into
account the convergence of v, to v in L1 16c(€2 X I), we finally obtain that the
limit function v satisfies (2.76). O

Remark 2.5.10 (Uniqueness). Having proved convergence of our approxi-
mation scheme to a very weak solution of (2.73), we may address the question
of uniqueness. We can refer to other works to partly answer this question (like
[27, 61]). For our problem, uniqueness of a one-dimensional version of (2.73),
however with other BCs, has been proved in [{4]. Some work has also been done
in [42]. Under a transformation w = F(v), we can also refer to [34], at least
when Q = R%.
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Remark 2.5.11 (Lipschitz continuity and cut-off). At the beginning of
this Section, we noted that we need to reqularize g by a function g., everywhere
positive. So the obtained very weak solution is in fact the very weak solution
of this regularized problem, (v.). According to [38] there exists a subsequence
{€;}j>0 such that (ve,) is weakly convergent in appropriate function spaces and
the limit is the very weak solution of the original problem (2.73). We further
required the Lipschitz continuity of F~'. If this condition is not fulfilled we
may pass to a reqularization (eg. the case of Freundlich adsorption p > 1, where
F'(0) = 0). Again, a convergent subsequence can be found, converging to the
very weak solution of the original problem, [38].

2.5.8 Boundary conditions and operator splitting

It is important to comment on the relation between boundary conditions and
the operator splitting method. As far as we know, boundary conditions are
rarely considered in previous works for convection-diffusion equations and op-
erator splitting: the authors limit themselves to the Cauchy problem. The
reason for this restriction is the local convergence obtained with Riesz-Fréchet-
Kolmogorov compactness theorem. This does not allow to consider the limit
function on the boundary. Hence, Dirichlet and Neuman boundary conditions,
which are commonly considered in convection-diffusion problems, are difficult
to be handled.

Most problem in the literature are purely hyperbolic or are degenerate
parabolic equations, requiring the introduction of entropy solutions. This com-
plicates the inclusion of boundary conditions. For an overview of the difficulties
with Dirichlet BCs and hyperbolic problems, see [12]. The difficulties concern
the fact that the characteristics may intersect 02 from the interior, such that
the boundary condition does not hold pointwise for all times. This argument has
led us to consider different types of boundary conditions on the inflow boundary
and on the outflow boundary.

Before continuing, we mention that splitting methods are also used in com-
bination with reduction to ODEs, allowing the use of solution methods for ODEs
(Method of Lines). Much work has been done to incorporate boundary condi-
tions in this setting with specific boundary correction techniques, see e.g. [29].

In our case, (2.73) is a parabolic equation, and the weak formulation can
be readily obtained. We have a known, fixed velocity field, allowing the iden-
tification of no-flux boundaries, inflow and outflow boundaries. In a general
2-D setting this is no longer the case. If one considers for instance the equa-
tion Oru + Vf(u) — Au = 0, imposing a no-flow boundary condition is more
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complicated. Therefore, an operator splitting method is not optimal for general
types of boundary value problems. In our case, the velocity field and flux func-
tion is such that flow boundary conditions (inflow /outflow /no-flow) are satisfied
independent of the value of w.

As seen, some special boundary conditions can be considered when a parabolic
equation like (2.73) is solved by operator splitting of the transport and diffusion
part. The first task is the inclusion of the initial condition in the weak formu-
lation. Moreover, we have proved that an advective influx boundary condition
can also be considered. We can state the following:

Proposition 2.5.1. A convection-diffusion problem solved by operator splitting
of the transport and diffusion part, with a Diriclet BC over the inflow boundary
during transport, and a homogeneous Neumann BC during the diffusion, cor-
responds to a convection-diffusion problem with an advective influx BC (mized
type) over the inflow boundary.

This follows directly from the proof of Theorem 2.5.1.

Remark 2.5.12. Operator splitting is mainly used to overcome the difficul-
ties due to the dominant convection. This dominant convection over the inflow
boundary implies two things. First, the difference between a Dirichlet BC and
the advective influz BC will be small as the diffusion part is much smaller than
the convective part. Secondly, dominant convection over the inflow boundary
will make it physically very difficult to implement a Dirichlet BC in o real ex-
periment. Some feedback mechanism is needed, such as equilibrium desorption
to garantee the Dirichlet BC. For flow problems, an advective influx BC appears
to be most appropriate.

Remark 2.5.13. The above consideration implies that, although the diffusion
step has homogeneous Neumann BC and it is the last step of the operator split-
ting, the resulting limit function will not obey a homogeneous Neumann BC, but
is the weak solution with advective influx BC. This is consistent with the fact
that we have only convergence in L jo.-sense.

Remark 2.5.14. The advective influr BC corresponds in a pure hyperbolic
problem to a Dirichlet BC (a = 0=10). Thus, one is led to introducing boundary
entropy conditions. This can be avoided in our approach. However, the solution
of the transport part does satisfy not only (2.77) but also entropy conditions, see
[12, 82].

The second type of BC that does not give problems is a Neumann boundary
condition over a no-flow boundary.
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Proposition 2.5.2. A Neumann boundary condition over a no-flow boundary
implies no flux during the transport part, and the Neumann BC during the
diffusion part.

The homogeneous Neumann boundary condition for a hyperbolic PDE in a
general setting has been considered in detail in [12, 32]

It remains to consider the outflow boundary. During transport no boundary
condition is considered, while during diffusion a homogeneous Neumann BC is
taken. From Remark 2.5.13 we deduce that the limiting function will not satisfy
a homogeneous Neumann BC, as is required by the original problem (2.73). We
are not concerned with this complication since we consider dominant convection
and it seems difficult to physically impose a homogeneous Neumann BC at the
outflow. There is no better alternative for the outflow BC in (2.73). A free
outflow BC, as is implemented by the operator splitting method, is reasonable,
and has the advantage that the outflow is not affecting the solution, which would
be the case with a real “no-flow” boundary condition. In fact, the original BC
has limited sense as it conflicts with the physical meaning of the extraction well.
However, the BC can be interpreted as follows: roughly speaking b(x, y)0,v +
h(z,y)v = h(x,y)vout, and the convection is dominant, h >> b. Therefore,
¥ & Uout, hence 9yv ~ 0.

Dirichlet BC and non-homogeneous Neumann BC

It is an open problem wether or not a Dirichlet BC or non-homogeneous Neu-
mann BC for a convection-diffusion problem can be implemented with an oper-
ator splitting method. The common way to implement a Dirichlet BC would be
to require a Dirichlet BC during transport and during diffusion. This will give
a convective and a diffusive flux over the inflow. As seen, a non-homogeneous
Neumann BC over a part of the boundary where there is no velocity field (no
flux for the transport part) can be implemented in the operator splitting by
taking this BC only for the diffusion part. During transport no BC is needed
over a no-flux boundary.

A Dirichlet BC over a no-flux boundary, or a Neumann BC over a flux-
boundary, or a Robin type BC which is not of the advective flux type, would all
imply difficulties for an operator splitting approach, just as the handling of these
types of BC still give rise to many open problems for hyperbolic problems. One
can argue however that these type of BCs are not the most physically reasonable.
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Figure 2.10: Computational grid in Cartesian coordinates for equally spaced,
40 x 40, (u,v) nodal points.

2.6 Numerical experiments

2.6.1 Without adsorption

For the direct problems, we shall consider a “standard” example with the fol-
lowing defining data: the wells each have a radius of r; = ro = 15cm and
their centers are placed 10m from each other (d = 5m, ¢ = 0). The height of
the aquifer is H = 10m, the porosity of the soil is 6y = 0.2 and the hydraulic
conductivity ¥ = 107°m/s = 0.864m/day. The longitudinal dispersivity or,
and its transversal counterpart o, as well as the prescribed head value at the
extraction well and at the injection well, will be varied in several experiments.
We inject the tracer with constant concentration C(?)(t) = Cj. For ease of
presentation we set Cyp = 1. The tracer does not decay (1 = 0) and molecular
diffusion is neglected. In this Section we only present data obtained with the
flux boundary condition (2.50).

The computational grid, for 40 x 40 equally spaced nodal points in the trans-
formed (u,v) variables, is plotted (transformed back to Cartesian coordinates)
in Figure 2.10.
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Experiment 1: convergence

We use the benchmark scheme to investigate the convergence of the standard
scheme. For this purpose we calculate the root-mean-square error (RMS) for
different grid sizes and time steps. As a reference we use the break through
curve (BTC) of the benchmark solution with 80 strips, 800 fixed divisions on
the y-axis and 10 moving gridpoints around the shock. The standard example
is used with ar = 0, ar = 0.1, h;y = 10 and hy = 20. The BTC is determined
over a period of 18 days after the injection of a step input.

In Table 2.1 the results are given for the benchmark method, and in Table 2.2
for the general method. For the benchmark solution we have better behaviour,
and a low error. Taking a larger operator splitting time step increases the
error more than decreasing the number of grid points does. Apparently, the
operator splitting error is such that adding moving grid points makes it more
prominent when the timestep is above a certain treshold, here At = 0.1 days.
Adding moving grid points does reduce the error when the splitting time step
is less than 0.1 days. It is then possible to use a fixed grid of 200 divisions
with low error. Therefore, we use the benchmark method with 80 strips, 200
fixed y-axis divisions, 10 moving gridpoints around the inflow shocks, and a
time step of 0.05 days. To make the influence of the moving grid points clearly
visible in a picture, we show in Fig. 2.11 a cut-out of the BTC obtained for
this example, but with a pulse input of Cy during 1 day. Moving grid points
are used for the beginning and for the end of the shock. The BTC for a 800
grid, with no moving gridpoints or with 20 moving grid points per shock, is
hardly distinguishable from the 200 grid with 10 moving gridpoints per shock.
On the other hand, the 200 grid with no moving gridpoints, doesn’t provide an
acceptable approximation.

The standard scheme gives overall larger errors, as can be seen in Table 2.2.
This is mainly due to the projection error. For further experiments we shall use
the 80 x 400 grid or 80 x 200 grid, with time step 0.05 days. Similar results as
in Tables 2.1, 2.2 are obtained for a pulse input.

In Table 2.3, we give the RMS difference of the BT C obtained with increasing
longitudinal dispersivity in the benchmark or standard scheme, compared to the
BTC obtained with the benchmark scheme for a;, = Om. This RMS difference
should converge to 0 with decreasing . This is the case for the benchmark
method, but for the general method there is a threshold below which we cannot
reduce the RMS difference. Again, this is due to the numerical dispersion caused
by the projection operator. We conclude that the standard scheme in this
example can only be used for a value of the longitudinal dispersivity larger than
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Strips | #Ydiv | FUmov | At (days) RMS
80 800 0 0.05 | 0.0001409
80 400 10 0.05 | 0.0001146
80 400 0 0.05 | 0.0003805
80 200 10 0.05 | 0.0003021
80 200 0 0.05 | 0.0008496
80 100 10 0.05 | 0.0005780
80 100 0 0.05 | 0.0017165
80 800 10 0.1 | 0.0001696
80 800 0 0.1 | 0.0002189
80 800 10 0.2 | 0.0004247
80 800 0 0.2 | 0.0004194
80 800 10 0.4 | 0.0009222
80 800 0 0.4 | 0.0009181

Table 2.1: RMS error of the benchmark solution, depending on the number of
strips, the number of fixed y-divisions, the number of moving grid points per
shock, and the operator splitting time step.

0.001, or e,/ D > 0.0001.

Experiment 2: BTC of step input

For the benchmark solution, the transversal dispersivity is neglected (ar = 0).
We apply the method in 80 strips, with y4, = 400. The injected front is
tracked with 10 moving grid points, and the time step of the operator splitting
is 0.05 days. Furthermore, the head value is h; = 10m at the extraction well
and he = 15m at the injection well. The resulting BTCs of the confined flow
for 7 different values for o, /D are plotted in Fig. 2.12. The result is scaled to
the same values as used in [76] to allow comparison. A careful analysis of the
figures shows that for low values of oy, /D our scheme produces similar BTCs as
in [76], but that for higher dispersivities clearly different results are obtained.
It is important to point out that the approximation method in [76] is only valid
when ay/D < 0.1. Therefore, the last curve that should be compared is the
one corresponding to ay,/D = 0.05; it is still in excellent agreement. Thus, our
results are very reliable.
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strips | cells | At (days) RMS
80 | 800 0.05 | 0.0005759
80 | 400 0.05 | 0.0006244
80 | 200 0.05 | 0.0008579
80 | 100 0.05 | 0.001490
80 | 800 0.1 0.001017
80 | 800 0.2 | 0.001760
80 | 800 04 0.002993

Table 2.2: RMS error of the standard scheme, depending on the number of
strips, the number of cells and on the operator splitting time step.

ar (m) [ RMS BM RMS
0 0 | 0.003095

10-% | 0.0002567 | 0.003095
105 | 0.0007136 | 0.003098
10~% | 0.001439 | 0.003121
1073 | 0.002597 | 0.003935
10~2 | 0.004281 | 0.004351

Table 2.3: RMS difference with increasing o, of the benchmark scheme and of
the standard scheme when compared with the benchmark scheme for a;;, = Om.
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Figure 2.11: Importance of moving grid points in BTC obtained with the bench-
mark solution. Cut-out of BTC for oy, = 0.1m, ap = 0.0m, pulse of 1 day. Top
curve: 200 grid, no moving points; bottom curve: 800 grid with 20 moving
gridpoints per shock.

Experiment 3: BTC pulse input

We now inject the tracer with a constant concentration C'®)(t) = 1 during 1
day, after which we inject zero concentration, C®(t) = 0. As mentioned, we
use the standard method in an 80 x 400 grid with time step 0.05 days to get
equally good results as with the benchmark method. In Fig. 2.13 we again give
the scaled BTCs for several oy /D values.

Experiment 4: influence of confined versus unconfined flow

Our numerical scheme allows for confined, unconfined or partially confined-
unconfined flow as long as the Dupuit-Forchheimer approximation is valid. We
can investigate the influence of this on the BTC: using the standard method
in a 80 x 400 grid on the standard example with oy = 0.2m, ap = 0 = Dy,
timestep 0.05 days and several injection and extraction head values, we obtain
Fig. 2.14.

All BTCs are obtained with a head difference Ah = 5m. For all confined flow,
the same BTC is retrieved, as it should. For partially confined-unconfined flow
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Figure 2.12: BTC with step input for oz, /D = 0.2, 0.1, 0.05, 0.02, 0.01, 0.005
and 0.002m scaled to match [76].

(he = 13m, h; = 8m) and unconfined flow (hy = 10m, h; = 5m and hy = 6m,
hi = 1m), clearly different BTCs are found. The BTC curves for unconfined flow
differ from each other at the same Ah, unlike the case of confined flow, since
the transport problem is nonlinear with respect to h. When Ah is constant
and hy; > bm, the obtained BTCs do not differ significantly from the confined
case. If hy < 5m, the corresponding BTC are dependent on hs and h;. Also
the rate of the pumping differs greatly (for the same Ah) when hy and hy are
in unsaturated levels. At Ah = 5m, the pumping rate Q is 32.43m?/day for
confined flow and 11.35m?/day for unconfined flow (h; = 1, hy = 6). The lower
transmissivity for unconfined flow explains the shifting of the BTC to the right.

The differences can also be clarified by the breakthrough time (¢grr), which
we define as the fastest possible breakthrough of contaminant in the absence of
diffusive terms. This tgrr follows from (2.53) with u = T,

o hendv

BIT ™ ] @ K(cosh(v) + 1)2’

which in the confined regime simplifies to

e
p :i/ dv
BIT ™ Anh J,a) (cosh(v) +1)2’
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Figure 2.13: BTC with pulse input for «y,/D = 0.2, 0.1, 0.05, 0.02, 0.01, 0.005
and 0.002m scaled to match [76].
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Figure 2.14: BTC for 4 different head values. The top curve corresponds to
confined flow and Ah = 5. The other curves correspond to partially confined-
unconfined flow with ho = 13m, h; = 8m, and unconfined flow with hy = 10m,
hy = 5m and hy = 6m, h; = 1lm, respectively
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and in the unconfined regime to

ue K /”(2) h(v) dv
IBTT = A7 :
Ah Jyo  2Eh2 (cosh(v) + 1)?

Here, k = 5220 (v® — W), As in the unconfined domain h(v) = /2448 we
will always have tgpp < tg7p. Thus, for our example we have ¢t = 6.47days,
and for h; = 1m, hy = 6m we have t§7 = 7.88days. Note that these values
correspond to the peaks of the corresponding BTCs in Fig. 2.14, which is exactly
what could be expected after injection of a short pulse.
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Figure 2.15: Concentration levels for relative values 0.05,0.10,...,0.95 for the
standard example with o, = 0.5m and apr = Om, after 1, 3, 6 and 9 days of

operation.
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Experiment 5: influence of dispersion coefficients

In Fig. 2.15 we plot the evolution of the tracer concentration after 1, 3, 6 and 9
days in the (x,y) plane, caused by a step input for the standard example with
ayp = 0.5m, ar = Om, hy = 4m and h, = 15m. Note that the concentration
levels (isoclines) are relative, i.e., the value 0.5 means that the concentration
in the pore water equals half the concentration of the tracer at the injection
well. As the well radius is not visible on the plots, a small circle has been drawn
around the wells. Since the solution is symmetrical with respect to the z-axis,
we shall only plot the positive y-axis from now on.

To illustrate the influence of the transversal dispersivity ar on the solution,
we plot in Fig. 2.16 the concentration levels for the same data and times as in
Fig. 2.15, except that ar = 0.01m. To illustrate the influence of the longitudinal

Concentration after 3 days

Concentration after 1 day

0.05

N

-10 5 o 5 10 15 20 -10
x (m)

y (m) y (m)

N
S

Concentration after 6 days
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//m\\

x (0

15 20 -10

Figure 2.16: Concentration levels for relative values 0.05,0.10,...,0.95 for the
standard example with o, = 0.5m and ar = 0.01m, after 1, 3, 6 and 9 days of
operation.

dispersivity oy, on the solution, we plot in Fig. 2.17 the concentration levels for
ar = 0.05m (keeping ar = 0.01m).

Finally, in Fig. 2.18, we show the result for a;, = 0 = ap(= Dy).

To give an overview of the effect on the BTC of different values of longitudinal
and transversal dispersivity, the BTCs of the previous 4 experiments are shown
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Figure 2.17: Concentration levels for relative values 0.05,0.10,...,0.95 for the
standard example with oy = 0.05m and a7 = 0.01m, after 1, 3, 6 and 9 days
of operation.

in Fig. 2.19.

By comparing the results in Fig. 2.15-2.19 we want to illustrate the influence
of the dispersion coefficients. When ay = ar = 0 (Dg = 0) the concentration
field should exhibit a shock (along one isocline). In Fig. 2.18 we obtain a system
of isoclines creating a narrow strip which becomes broader after a long time
period, especially in the regions far away from the extraction well. However,
these regions are only of importance for the late time behaviour of the BTC.
The smoothening of the shock is due to the numerical dispersion of our method
(in the projecting process). These results are still better than those obtained
by other approximation methods (e.g., upwinding). We have taken «p in these
experiments only 10% of the value of oy, as is discussed in the literature. The
influence of such a value of o is significantly smaller compared to that of ap.
The presence of ap can only be recognized by the fact that the isoclines can then
end behind the extraction well, which cannot appear when ar = 0. (Compare
Fig. 2.15 and Fig. 2.16, and note at the extraction well a sharp transition in the
isoclines, or not). This illustrates the ability of the transversal dispersivity to
spread contaminant from one streamline to adjacent streamlines. The influence
of ar on the BTC is depicted in more detail in Fig. 2.20, see Experiment 6.
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Figure 2.18: Concentration levels for relative values 0.05,0.10,...,0.95 for the
standard scheme with oy, = 0.0m and ar = 0.0m, after 1, 3, 6 and 9 days of
operation.

The influence of the longitudinal dispersivity is more significant, and we can
compare the time evolution of the strip of isoclines, which is broader for the
higher values of oy, Also, the time in which contaminant reaches the extraction
well is shorter for larger values of ay, (compare Fig. 2.16, 2.17, 2.18.). The most
convincing influence of o can be seen on the BTCs in Fig. 2.19. The shape
of the BTCs, especially in the early phase, and also their starting points, are
the most important for the determination of the parameter a;, when the inflow
BC was a step input. However, if the inflow BC is of pulse type, then the time
evolution of the entire BTC will be useful for the determination of .
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Figure 2.19: BTCs of the tests in experiment 5, Fig. 2.15-2.18.

Experiment 6: transversal dispersivity

We illustrate the influence of the transversal dispersivity on the BTC with a
pulse input of 1 day in the standard example with oy, = 0.1, hy = 10m, hy =
15m, and with ap taking the values 0, 0.02, 0.05, 0.1 and 0.2m. The results
are obtained with the standard method (since ar is nonzero) in a 80 x 400 grid
with an operator splitting time step of 0.05 days. In Fig. 2.20, we see that the
influence of ar is very small. The maximum value of the BTC shifts somewhat
backwards and is slightly reduced with increasing ar. We may conclude that to
compute ar from a measured BTC with an inverse method, the measurement
data will have to be very precise.
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Figure 2.20: BTC with pulse input for a;, = 0.1m, and ar = 0 (top curve),
0.02, 0.05, 0.1 and 0.2m (lowest curve).

Comparison with method of lines

The problem at hand was solved with an upwind method of lines in [13]. This
method gave bad results. As a comparison, one of the results obtained is given
for the following data: r = ro = 15cm, d = 10m, H = 10m and h; = 4m,
ha = 15m, porosity of the soil fy = 0.2, hydraulic conductivity k = 10~°m/s =
0.864m/day. Dispersivities are taken as ay, = 0.05, ar = 0.01, Dy = 1072 ~ 0.
Computations are done in a 40x40 grid with an upwind method of lines, see
Fig. 2.21. These figures must be compared with Fig. 2.17. The implemented
method of lines is seen to have far too much numerical dispersion to make this
method suitable for parameter identification.
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Figure 2.21: Concentration levels for relative values 0.05,0.10,...,0.95 with
method of lines after 1, 3, 6 and 9 days of operation.

2.6.2 Mass balance and advective inflow flux

In all experiments up to now, we worked with the advective boundary condition,
see (2.49), which is transformed to (2.50):

QQLA
)

(Doﬂoheff + (3@@))) 8,C + (8,2(v))C = (8,®(v))Co(t), v=0v?,

We suggested to split as follows: for the transport equation take
Clu,v,t) = Co(t), v=0v®, (2.124)
and for the diffusion equation
9,C(u,v,t) =0, v=0v?. (2.125)

We proved convergence of the solution obtained with this splitting method to
the solution of the original convection-diffusion problem with an advective in-
flow BC. This corresponds to the physical meaning of dispersion, which cannot
contribute to diffusive flux at the inflow. Note that this assumes D, to be
neglectable, as molecular diffusion does contribute there to a diffusive flux.
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For these BC’s, the mass balance only consist of advective inflow and advec-
tive outflow. Generally, for the mass balance, we need the advective inflow flux
Min

adv?

I // OoheaCp(z,y,t)(n - v) dsdt
At J 6By, (d+c,0)
= (8v(i)(’()))/ / C’(u,v@),t)dtdu7
atJo

the diffusive flux at the inflow,

Mg = - / / Ooher(n - DVC(z,y,t)) ds dt
At J 6By, (d+c,0)

—/ / (DOHOhefH— ZO“TLA(aU&’(U))) 9,C(u, v?) dt du,
At JO

—which can be positive or negative— and the advective outflow flux,
Myge = / / OohesCp(x,y,t)(n - v)dsdt
At J5B,, (—d,0)

_ (avci(v))/m/oﬁ Clu, vV ) dt du,

as well as the mass MP* in the uv-space. This latter mass can be calculated in
every cell by multiplying the concentration with the volume and the porosity,
ie.

MPTS = HoheﬁciyjAV%y

1,7 4J
where C; ; is the average concentration over the cell and where AV, is the
volume in the zy-plane that corresponds to the uwv-cell:

Aijy = do

Yy

//Haurxavr” du dv
B ﬁ//dudv
4 A2

where r = (z(u,v), y(u,v),0). This expression cannot be calculated analytically
and will be approximated numerically.
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Due to mass balance we have

in
M, adv adv

+ M — M = MPY. (2.126)

In the case of the BC (2.45) we have the simplification C'(u, v, t) = Co(t)m
and hence
= @) [ Cot)dt.
At
In the case of the advective boundary condition (2.50) we will have

aiv + MEg = (0,(0))m [ Co(t)dt.
At
The suggested splitting of the BC (2.45) by means of (2.124)-(2.125), will fulfill
this equation.
We now present a series of experiments in which the influence of the bound-
ary condition at the inflow is illustrated, and we present mass balance tables.

Experiment 1: step input

We repeat the step input experiment. In other words, the wells have a radius
of r1 = ro = 15cm and their centers are placed 10m from each other (d = 5m,
¢ = 0). The height of the aquifer is H = 10m, the porosity of the soil is
0 = 0.2, the hydraulic conductivity is ¥ = 107°m/s = 0.864m/day and the
transversal counterpart and the molecular diffusion are considered neglectible,
ar = 0 = Dy. The longitudinal dispersivity aj is varied, and we measure
the BTC. We inject the tracer with constant concentration C?)(¢) = Cy. For
an easy presentation we set Cy = 1. The result is shown in Fig. 2.22. Little
difference is found for a low longitudinal dispersivity. For large «ap, there is
a noticeable difference. This is even more apparant in a mass balance table
like Tables 2.4 and 2.5. Mass values are obtained dimensionless as Cy(t) = 1.
Realistic values in kg can be obtained by multiplication with an appropriate
inflow concentration. In Table 2.4 we see the situation for oy, = 2. In this case,
there is a large difference in the results for the two different BC’s. However,
when oy = 0.1, we obtain a neglectable difference between the two BC’s, see
Table 2.5.

Experiment 2: pulse input

In Fig. 2.23 we consider the same experiment, but now for a pulse input of 1
day. The same observation holds: only for large dispersion a difference is found
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Figure 2.22: BTC with step input for ay,/L = 0.2, 0.1, 0.05, 0.02, 0.01, 0.005
and 0.002m. Left for Dirichlet inflow BC with operator splitting method. Right
for advective flux inflow BC under OS.

days | M™ M2 MP™S | Bal | t M™ MY MPTS | Bal
1 26.07 0.0009 2535 [ 0.72 || 1 16.16 0.0004  16.19 | -0.03
5 99.40  4.097 9434 [ 097 | 5 | 80.79 2950 78.20 | -0.35
10 [ 183.76  26.316  156.79 | 0.66 || 10 [ 161.59 21.948 140.53 | -0.89
15 | 266.21 60.2843 205.679 | 0.25 || 15 | 242.38 53.404 192.42 | -1.41

Table 2.4: Total mass inflow and outflow, total mass present, and mass balance,
in the case of a;, = 2 with step input. Left for Dirichlet inflow BC with operator
splitting method. Right for advective flux inflow BC under operator splitting

(0S).
days | M™ M2 MP™ | Bal | ¢ M™ MOt pPres | Bal.
1 16.28 0 16.29 [ -0.01 || 1 16.16 0 16.19 | -0.03
5 80.91  0.033 81.17 | -0.29 [[5 | 80.79 0.032  81.06 | -0.30
10 | 161.59 13.860 148.83 | -0.99 || 10 | 161.59 13.827 148.76 | -1.00
15 242.5 45.526 198.54 | -1.57 || 15 | 242.38 45.480 198.48 | -1.58

Table 2.5: Total mass inflow and outflow, total mass present, and mass balance,

in the case of ay = 0.1 with step input.
operator splitting method. Right for advective flux inflow BC under OS.

Left for Dirichlet inflow BC with
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Figure 2.23: BTC with pulse input of 1day for o, /L = 0.2, 0.1, 0.05, 0.02, 0.01,
0.005 and 0.002m. Left for Dirichlet inflow BC with operator splitting method.
Right for advective flux inflow BC under OS.

days | M™ M2 MP™S | Bal | t M™  MOSE MPTS | Bal
1 26.07 0.0000 2535 | 0.72 |1 [16.16 0.0004 16.19 | -0.03
5 1742 2192 1525 | -0.03 || 5 | 16.16 1.657 14.62 | -0.12
10 |16.16 5.651 11.07 | -0.07 || 10 | 16.16 5.036 11.24 | -0.12

15 16.16 7.405 9.09 | -0.08 || 15 | 16.16 6.982 9.29 | -0.11

Table 2.6: Total mass inflow and outflow, total mass present, and mass balance,
in the case of ay = 2 with pulse input of 1 day. Left for Dirichlet inflow BC
with operator splitting method. Right for advective flux inflow BC under OS.

between the two BC’s. This follows clearly from Table 2.6, where the mass
balance is given for o, = 2. From the values for the Dirichlet type of BC, we
see there is an inflow diffusive flux up to ¢ = 1day, after which there is a clear
negative inflow diffusive flux causing the total inflow mass to decrease. In Fig.
2.23 this gives rise to the higher peak value and lower tail for oy, = 2 in the
Dirichlet type BC, as opposed to the case of an advective flux BC.

2.6.3 Adsorption

We now give some solutions of the dual-well direct problem where the adsorption
coefficients are varied. We limit ourselves to Freundlich adsorption. Only break
through curves are given, as the plots in the xy domain provide little extra
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Figure 2.24: Solution of equilibrium mode problem for D = 0.001, Kq = 1,
p = 0.75, with Aiy = 40 fixed and with 7 respectively being 5, 1, 0.1, 0.05, at
final time T = 15.

information compared to the linear solutions.

Convergence tests in 1-D

First we investigate the convergence and the dependence of the solution on the
discretization. For this we use (2.62) in 1D, = (0, L), in stead of in the dual-
well setting. We takea =0, G=1,b=D, g =1, F(C) = C + KCP, together
with homogeneous Neumann boundary conditions and a Riemann initial con-
dition: wo(x) = 1if © < 1, ug(z) = 0 otherwise. This setting corresponds to
the developed numerical approximation in one single strip. It provides a good
view upon convergence as the plots are transparant and can be related to simple
examples of transport problems.

From theoretical considerations we know that for fixed 7/Ay the solution
converges as 7 — 0. Here, y is the transformed variable from (2.53). This is
behaviour we observed in Fig. 2.24, where D = 0.001, Ky = 1 and p = 0.75.
Starting from 7 = 0.1, the concentration profile does not change noticeably
anymore as convergence is reached. The two telltale signs of adsorption can be
observed: the development of a tail to the left, and the sharp front that remains
at the right although diffusion is present.

In Fig. 2.25 we illustrate the influence of the different errors by presenting
the same example for 3 different values of the diffusion: D = 0.1, 0.01 and
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Figure 2.25: Solution of an equilibrium mode problem with Ky = 1, p = 0.75,
at time 7' = 12, for 3 values of the diffusion: D = 0.1, 0.01 and 0.0001, each
with 3 different discretizations: Ay = 0.05, 7 = 1.5 (dashed line) ; Ay = 0.02,
7 = 0.1 (dotted line); and Ay = 0.002, 7 = 0.01 (solid line). Also the analytical
solution for D = 0 is given.

0.0001. The first error is the operator splitting error, due to the splitting of the
PDE in different pieces. This error decreases when 7 does. As the transport part
is exact, no error is introduced in this part. Instead, we have a projection error
due to the projection of the transport solution to piecewise constant functions.
This error decreases when Ay does. Next, we have the error from the diffusive
part, which decreases with smaller timesteps and smaller gridsize. We observe
that for 7 = 1.5 the operator splitting error produces quite large errors, even
in the large diffusion case (where numerical dispersion of the approximations
is smaller than the diffusion). For D = 0.1 and D = 0.01 convergence has
been reached by the method, as can be deduced from the small change when
passing from 7 = 0.1 to 7 = 0.01. This is not the case for D = 0.0001, where
convergence is not reached yet. This is entirely due to the projection error, as
in this case we have almost no diffusion, which results in sharps shocks that can
only be resolved completely in a fine grid.

Variation of adsorption parameters

We investigate the dependence of the BTC of a dual-well experiment on the
parameters of the model. A good dependence is crucial for later parameter
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identification. For these experiments the wells have each a radius of 15cm and
their centers are placed 10m apart. The height of the aquifer is 10m, the porosity
of the soil is 6y = 0.2 and the hydraulic conductivity is 0.864m/day. The
head value is 10m at the extraction well and 15m at the injection well. The
transversal dispersivity ar, and the molecular diffusion Dy are kept 0, as they
can be neglected in most cases. We inject the tracer with constant concentration
Co(t) = Cp during 1 day.

We have already shown that the BTC has a good dependence on the lon-
gitudinal dispersivity and on the hydraulic conductivity. Now we investigate
the influence of the adsorption parameters on the equilibrium mode Freundlich
type adsorption. For the nonlinear case, we have to work dimensionless, so we
transform (2.62) (where ar = 0 and Dy = 0) to

C oCht OV C C
at<00+ it A A e I Raiten (2.127)

where ®(s) = KosP. We investigate the dependence on p = 96;3); 1Ko in Fig.
2.26 and on p in Fig. 2.27. The p parameter controls the retardation of the
BTC. The p-parameter controls the nonlinearity. The highly nonlinear case,
p = 0.25, can be distinguished from the setups close to linearity (p close to 1).

These results indicate the possibility to use the dual-well experiment for

adsorption parameter identification of the subsurface by the method presented.
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C/Co

" freundiich, dependance on rho

t (days)
Figure 2.26: Dependence of the BTC for pulse input on the value of p with fixed
p=0.9 and oy = 0.02m. From left to right we have p equal to 0 (linear case),
0.01, 0.1 and 0.5.

C/Co

T freundlich, dependence on p, pulse 0.1 day -

0.1 [

t (days)
Figure 2.27: Dependence of the BTC for pulse input on the value of p with fixed
p=0.1 and ay, = 0.02m. From top to bottom we have p equal to 0.9, 0.75, 0.5
and 0.25.



Chapter 3

A degenerate diffusion
problem in 1D

We now focus on a degenerate diffusion problem. With degenerate we mean
that the diffusion coefficient can be 0. Numerical, and even analytical solutions
to several problems of this type are known.

We solve this type of problem as it appears in the engineering set-up that
we want to model: enrichment of steel with silicon by diffusion annealing. The
final aim is to solve an inverse problem which we consider in Part II, Chapter
4.

As a solution technique we choose the method of lines, also called semi-
discretization technique: a PDE is transformed into an ODE by a suitable spatial
discretization. For a comprehensive overview, we refer to [29]. This technique
allows for solving many practical problems, including hyperbolic problems when
information concerning the characteristics is incorporated in the method. The
result illustrated in Fig. 2.21 was obtained by this method. We emphasize that
this result was obtained in one of the most complex settings for the mehod of
lines: dominant convection. With extra efforts (e.g. by the use of flux limiters,
...) probably better results might be obtained there. However, to reduce com-
puting times, a different solution method was invoked. For the actual problem,
no diffuculties with the method of lines are expected.

119
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3.1 Annealing diffusion as a practical example

Electrical steel is an excellent soft magnetic material used for the construction of
electrical motors and transformers. Its composition is basically high purity FeSi
or FeSiAl alloys. Normally, the alloying content never exceeds 3 wt%. Beyond
this concentration the material becomes very brittle due to the concurrence of
the ordering phenomena D03 and B2 and it is not possible to perform cold
rolling [67].

However, the magnetic properties, namely power losses and magnetostriction
are optimized when the alloying content reaches 6.5 wt%.

High Si and Al electrical steel with improved magnetic properties can be
produced by hot dipping in a molten Al-25%Si bath followed by diffusion an-
nealing. The hot dipping gives rise to a Si rich layer on top of the substrate,
which is subsequently diffused into the bulk at high temperatures, called anneal-
ing diffusion. Hence, this higher Si content alloys can only be manufactured if
an additional final step is introduced in the production route of electrical steel:
enrichment by surface deposition of Si and Al and next its diffusion into the
bulk material. Recent research has shown that the magnetic and mechanical
properties of the high Si electrical steel produced by diffusion depend strongly
on the shape of the diffusion profile obtained after the annealing [4]. The differ-
ent applications of the electrical steel require different magnetic and mechanical
properties. Therefore, we need a diffusion model capable of predicting the diffu-
sion profiles depending on the different conditions of the production process (e.g.
annealing temperature, time, Si and Al content of the substrates, microstructure
previous to the diffusion annealing) is necessary. We will present this model in
the following Sections. The results appeared in [3, 56].

3.1.1 Mathematical model of diffusion annealing

From [66], we know that the Fe-Si interdiffusion is highly dependent on the Si
concentration. Therefore, taking into account the dependence of the diffusion
D on the Si concentration, C, is indispensible. As we have a ternary system,

this is analogue to [60]. Therefore, the diffusion equation to be used is, with
1 =1 (Si), 2 (Al),

e _ 0 (D;”a (e.c8) 290 |y 0. %) 5.1)
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where 0 < x < L, 0 <t < oo. The superscript 3 indicates the dependent
element (Fe). Furthermore, we have the noflow boundary conditions

802(;),16) - 805’6(5,25)’ (3.2)
along with initial conditions
C}(x,0) = C (). (3.3)
The Si concentration C}, (mol/mm?) is obtained from
08 = s (3.4)

b
zsivsi + xa1vAl + (100 — zg; — TAL)UFe

where x; is the atomic percent and v; is the molar volume of each element
(vsi = 12.0 x 103, va; = 10.0 x 103, vpe = 7.10 x 10> mm?3/mol). The Al
concentration is obtained in the same way.

We work in one dimension only. Hence, (3.1)-(3.3) can only be used once
the coating has been made homogeneous in the lateral direction. Therefore, for
the initial condition for this system we use the measured concentration profile
after some minutes of diffusion annealing.

Our main problem when solving (3.1)-(3.3), is the fact that the interdiffusion
coefficients Df'j are unknown. Therefore, we not only have to solve the equations,
but at the same time we need to retrieve these interdiffusion coefficients from
the experiments.

First, the coupled system of PDEs is reduced to a single PDE. This is possible
because the diffusion path during diffusion annealing is monotone in the Al-Si
concentration. We refer to the experiments, see Fig. 3.5, and to other ternary
diffusion paths in [21]. It follows that the diffusion path can be assumed to be
given by a well defined function

C3 = f(C}). (3.5)

Given the at% of Si in the steel, we can extract the value of Al along the diffusion
path.
Under the above assumption, the PDE system decouples, and we can write

formally,
oC} (z,t) 0 23 (3 IC3 (x,t)
o oz D (CF (x,1)) o ) (3.6)
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where 0 < 2 < L, 0 <t < 0o, and D??3 is the apparent diffusion coefficient of Si
in Fe along the diffusion path f. Again noflow boundary conditions hold

9C3(0,t) o AC3(L,t)
g =0= I (3.7
along with an initial condition
C(2,0) = G5, (2). (3.8)

Remark 3.1.1. Diffusion in alloys can be subjected to the so-called Kirkendall
effect, see [21] chapter 17. This effect causes, due to the difference of diffusion
speed of the different components, a solid-state advection (lattice flow). This
complicates the analysis. Formally it can be seen as another part of the apparent
diffusion coefficient, cf. [21].
3.1.2 Moving interface
We first introduce the substrate problem.
Definition 3.1.1. The substrate problem is defined by
0w — Oy (D(u) O,u) =0 in (0,L) x (0,T), (3.9)
with D(u) € L, D(u) > 0, along with boundary conditions
w(0,¢) =co or — D(u(0,t))0,u =0, (3.10)
—D(u(L,t))0pu=0, 0<t<T, (3.11)
and an initial condition
u(z,0) =u’(z), x€(0,L), (3.12)
where the initial function u®(x) is given by
u(z) >8 x€[0,50, u'(z)=68 =€ /]so,L], (3.13)
with 0 < sg < L, § > 0. We assume further that u°(x) is smooth up to x = sq.

The function u°(z) is not analytic in x = s. The value of ¢ is the amount of
Si in Fe present in the substrate without any annealing performed. As a special
case we have the zero substrate problem when ¢ = 0.

A characteristic property of the zero substrate problem combined with de-
generate diffusion D(0) = 0, is the movement of the contact point = = s(t).
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Definition 3.1.2. The contact point is the point x = s(t) where u(s(t),t) =0,
with s(0) = so.

The speed of the contact point is denoted as $(¢t). We have the following
property.

Proposition 3.1.1. Assume that the speed of the contact point is finite in the
substrate problem. Let (3.9) be satisfied in x = s(t) in the limit sense. Then the
following holds

§t) = — lim D’(u)@u—i—D(u)aﬂ%u (3.14)
N z—s(t)~ * Ozu '
= — lim <8r/ Mdz) (3.15)
z—s(t)~ 0 z

Proof. From the definition of the contact point we have that w(s(t),t) is inde-
pendent on t. Therefore, if $(t) is finite,

0= —u(s(t),t) = Oru + 5(t)0zu.

Vo)
—~
~~
~—
—
g

lim <D’(u)31u + D(u) 35“)

x—s(t)— o xz—s(t)~ Optt

“D
g DO (o [P0,
z—s(t)~ U z—s(t)~ 0 Z

Here, in the second line we noted that the flux D ()9, u and the function u both
tend to zero at the interface. This allows to use de 'Hospital’s rule in reverse
(as D(0) = 0). O
Remark 3.1.2. From (3.15) it follows that the function D) st be integrable.

u

|

|
5
|

Remark 3.1.3. From (3.14) some deductions can be made on the form of the
concentration profile u(x,t) in the contact point x = s(t) in order that for a given
diffusion coefficient the speed $(t) is indeed finite. If for example D(u) = uP,
p > 0, then we have lim,_, 44— D(u) = 0 in the zero substrate problem. The
propagation speed (3.14) is finite in the following cases.

2
o Iflim, ) % is finite or behaves as ﬁ, where 0 < k < p, the second
term of (3.14) is zero.
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o If p =1, then D'(u) = c, a constant. Therefore lim,_, ) O,u = f(t),
with f(t) > 0.

e Ifp>1, thenlim,_ 4 — D'(u) = 0. To have a finite speed, it is necessary
that O,u ~ u'~P. In this way, lim, gy~ D' (u)0zu is still a finite function
of t. This means however that lim,_ )~ O,u = 0o.

o If p <1, the same deduction can be made, now with lim,_, )~ Ozu = 0.

Remark 3.1.4. From Remark 3.1.3 it follows that O,u should be avoided in
numerical computations. Therefore, the form (8.15) should be used. If the speed
of the contact point is finite, the function F(x) defined by

will have a finite derivative in © = s(t).

In general, the initial concentration profile will only be a given set of data-
points. Therefore, u’(x) will be constructed by suitable polynomial interpola-
tion. Hence, 0,u and 9u are normally two non zero, bounded, constants. From
(3.14) we obtain that $(t) = 0 for p > 1, and $(¢) = oo for 0 < p < 1. This
does not allow us to recover s(t), but indicates what will happen numerically:
the initial function will transform to a profile with the desired derivative in the
contact point.

3.1.3 Analytical solution

For special forms of (3.6) analytical solutions are known. We are interested
in particular with the cases where D(C) = 0, as this corresponds to a moving
interface, which may be observed in the experiments. For the Cauchy problem,
in the special case that D(C,p) = (p+ 1)CP, p > 0, a closed form solution
exists when the initial profile is C(x,0) = Ed(x) (the Dirac measure). It is the
Barenblatt-Pattle solution, [65] p.31, taking the form

t—1/(+2) (1 — O)2)/p f < s(t):
oot (1= /s, forlal <s); 0
0, for o] > s(t),
with the interface given by

2(p+1)(p+2) 11/ (p+2)

. (3.17)

s(t) =



3.1. Annealing diffusion as a practical example 125

This solution has a singularity at « = s(t).

This Barenblatt-Pattle solution can be used to test the numerical approx-
imation. At x = 0 we have the required homogeneous Neumann boundary
condition, and we have this also in = L, as long as the interface does not
reach = L. The solution C(z,t) to (3.6)-(3.7), with the initial condition taken
to be v(z, k) from (3.16) with k a positive constant and such that s(k) < L, is
given by v(x,t — k).

3.1.4 Numerical approximation

A numerical approximations that allows us to solve (3.6)-(3.8), for general dif-
fusion coeflicients is constructed. This method is used later on to extract the
value of D?3(C}) from the experiments.

No moving interface

For simplicity, in the real experiments we will only consider the case of steels with
Si 3 wt%. Hence, no phase changes occur, and we can assume D?3(C}) > 0 in
the entire domain. As the diffusion is everywhere positive, no moving interface
arises. In the future also experiments with non Si enriched steels might be
considered.

Given the apparent diffusion coefficient D(C$) ~ D?3(C%), system (3.6)-
(3.8) can be solved as in [59]. Here, we suggest a different approach. We
construct the solution C3(z,t) of (3.6)-(3.8) in an approximative way by re-
ducing it to an initial value problem for a nonlinear system of ODEs by means
of a nonequidistant finite difference discretization with respect to the space
variable. Next, a stiff ODE solver is used to solve the system of ODEs. The
interval (0, L) is partitioned by the set of grid points {z;}Y,. We denote
Ci(t) ~ C}(x;,t) and let Iy(z,i) stand for the Lagrange polynomial of the
second order interpolating the points (z;—1,Ci—1), (zi,Ci) and (x;y1,Cit1)-
Then, we approximate 9,C by dls(z;,i)/dx = (dla(z,i)/dz)r=z, and O2C by
d?ly(x;,i)/dx?® = (d%lz(w,4)/d2z?) y=s,. To include the Neumann BC’s, the gov-
erning PDE is extended to the boundary points. It is discretized similarly as in
the inner points by the introduction of the fictive points y_1 and yx.1, whose
concentration values are chosen to satisfy the BC’s. Equation (3.6) leads to the
system of ODEs

d d? , ) d RE
aCz(t) — D(CZ)@ZQ(QI“Z) —D (CZ) [%lg(xz, Z):| = O7 (318)
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g

for i = 0,...,N, where D'(s) = dldjis . This system of nonlinear ODE can be
solved using a standard package for stiff ODEs, e.g. LSODA.

Moving interface

We indicate how the case of a moving interface can be best solved numerically.
We split (0, L) into two domains Q; = (0,s(t)) and Qo = (s(t),L). Using

Landau’s transformation y = -7, the PDE (3.9) on Q;(t) becomes an equation

on the fixed domain (0, 1). Denoting the corresponding solution by C1(y, 1), it
holds that

1_ 1 _ S(t) 1 1_ 1 1 201 1 211
a,C" = 0,C ys(t)é)yC ,  0.C S(t)ayc , 0:C Sz(t)ayc . (3.19)
Thus, we are led to the transformed PDE
— 1 — $(t) , ==
1_ - 1 1) _ 1 _—
0T = 550 (picho,cT) vyt =0 (3.20)

The interval (0,1) is partitioned by the set of grid points {y;}~,, with y; =
Yo, (i =0,...,N), where ap = 0 and Zl]io a; = 1. We can choose these
gridpoints so as to obtain a more dense discretization around the point y = 1.
We denote C} (t) ~ CL(y;,t) and let I3(y, i) stand for the Lagrange polynomial of
the second order interpolating the points (y;—1, C{,), (vi, C}) and (yi41,C}yq).
Then, we approximate d,C* by dla(yi,1)/dy = (dl2(y,1)/dy)y=y, and J;Ct by
d?la(y;,1)/dy? = (d*12(y,4)/dy?)y=y.- In the case of a Dirichlet BC, the nodal
point yo need not be considered. In the case of a Neumann BC, we extend the
governing PDE to the boundary point and discretize it similarly as for the inner
points by the introduction of a fictive point y_;. Equation (3.20) leads to the
system of ODES

d . 1 d? 1, Td NE
—C(t) — D(C;)—la(y;, 1) — D (C;) | =—l2(ys,
dtcz( ) SQ(t) (Cz)dyg 2(y Z) SQ(t) (C ) dy 2(y 7’)
5(t) d ,
—yi——=—I2(y;,1) =0, 21
ys(t)dy 2(yi,4) =0, (3.21)
fori=1,...,N — 1, and, in the case of a Neumann BC, also for i = 0.

In the second domain () the concentration remains constant, C(x,t) = 0.
In the interface point « = s(t) the following ODE must be satisfied

(3.22)
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where F) is the second degree Lagrange polynomial interpolating the points
(yn—2, F(CY ), (yn—1,F(Ck_,)) and (1, F(s(t)) = 0). This equation only
applies as long as s(t) < L. When s(t) > L, we switch to the case of no moving
interface. Next, (3.21)-(3.22) are solved by means of a standard package for stiff
ODES, e.g. LSODA based on a backward finite difference formula.

Power type of diffusion

In the case of a power type diffusion coefficient, D(s) = p15P2(1 + p3s + pss?),
p2 > 0, an additional transformation is performed, see also [14]. This transfor-
mation is suggested by Remark 3.1.3 where we noted that d,u ~ u'~?. The
transformation from u-variable to v-variable by means of u = v'/? leads to the
expression p ~ O0,v. All power degeneracies are removed in this way, which
makes v(z) more appropriate for the application of Lagrange interpolation. For
example, (3.16) is transformed into an expression for v that is quadratic in z.
Using Lagrange polynomials of the second order for the space discretization, the
space interpolation will be exact. Hence, the differences between the exact and
the numerical solution of e.g. the Barenblatt-Pattle problem will be solely due
to time integration errors. Generally, under the transformation C' = v'/?, we
obtain, instead of (3.21), the ODE system

d 1 N {%E(%J)r
%Uil(t) - Sg(t)D((Uil)l/ )d—ygb(yw) - W
! P p P S(t) d ; 0 =
(D(EDYDEDY? + A= pD(EDY) = vl o) =0, (3.23)

and likewise for (3.22). Here, l~2(y¢, i) is now the Lagrange polynomial of the
second order interpolating the points (yi—1,v;_;), (¥i,v}) and (yiy1, v}, ).

3.2 Physical experiments

These experiments were carried out by José Barros at LabMet, Department of
Metallurgy and Materials Science, Ghent University. They will be extensively
discussed, together with hot dipping experiments and mechanical/magnetic ex-
periments of the samples, in his upcoming PhD-thesis. Here we give a short
overview of the experiments concerning the diffusion annealing, which are rele-
vant for the model we will construct.
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3.2.1 Experimental procedure

The substrates chosen for the production of the high Si and Al alloys were com-
mercial Fe-Si alloys (0 to 3wt%Si). After degreasing the electrical steel plates
are subjected to the hot dipping: first the samples are preheated for 45s at
800°C and then they are dipped in a molten Al-25 wt%Si bath at 800°C for
times ranging between 5 and 100s. Finally, the samples cool down under a flux
of No. After hot dipping the specimens were heated in a resistance tube furnace
under a N, protective atmosphere. The temperatures ranged between 900 and
1100°C.

Samples were carefully polished and the concentration profiles through the thick-
ness of the samples were determined by EDS in a SEM. EDS was also used to
analyze element concentration in the different layers present in the coating.

3.2.2 Coating composition and formation

The coating formation is a reaction-diffusion process. Together with intermetal-
lic growth there is substrate dissolution in the molten bath. Both processes are
dependent on the chemical composition of the substrate and on the dipping
parameters, such as sample temperature previous to dipping, dipping time and
cooling rate after dipping, as discussed in [5]. Figure 3.1 and 3.2 show the ap-
pearance of the coating after the hot dipping and fast cooling (450 °C/min) and
slow cooling (30 °C/min), respectively. The chemical composition of the differ-
ent intermetallic layers can be found in Table 3.1. In the fast cooled samples the
first layer in contact with the substrate is 1. A very irregular 74 layer grows over
the 71. Finally, the external layer is an eutectic Al-Si matrix in which there can
be found pure Si areas. Additional layers like Fe3Si, nFeyAls and 75-75 appear
in the slow cooled samples. The samples were dipped during 5s to avoid mass
loss by dissolution in the molten bath. The chemical composition through the
coating thickness can be found in Fig. 3.3. The diffusion path followed during
the coating formation at 800°C is depicted in Fig. 3.4.

3.2.3 Diffusion annealing

The main diffusion annealing parameters are time and temperature. They will
determine not only the final concentration profiles of Si and Al but also the
resulting texture of the material and therefore its mechanical and magnetic
properties. For the diffusion experiments substrates containing 3 wt%Si were
chosen in order to ensure ferritic phase in all the range of temperatures. The
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Al-Si matrix

AccV SpotMagn Det WD ——— 10um
250kV 40 5000x SE 10.0 Coated substrate FeSi 3wt%

Figure 3.1: Coating for FeSi 3wt%), fastly cooled.

Figure 3.2: Coating for FeSi 2.4wt%, slowly cooled.
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Figure 3.3: Composition through the thickness of the coating for FeSi 3wt%,
dipped during 5s.

Phase Composition Theoretical at% Measured at%
Al Fe Si Al Fe Si
T1 A10_42Fe0.39810.19 42 39 19 39.2 34.3 26.5
T2 A10_54Fe0.26810.20 54 26 20 52.3 24.4 23.3
T3 Alg s0Fep.05Sip0s 50 25 25 52.3 244 23.3
T4 A10.48F60‘15Si(3‘37 48 15 37 50.2 16.6 33.2
T9 Al 36Fep.365ip.08 36 36 28 39.2 343 26.5
n FesAlj 0 7 29 0 69.4 30.6
DO03(51) Fe;3Si - 5 25 - 7750 22.50

Table 3.1: Theoretical and measured composition of the intermetallic com-
pounds.
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Substrate

Fe

Figure 3.4: Ternary phase diagram for Fe-Al-Si at 800°C, [53], and diffusion
path at 800°C during 5s dipping, fastly cooled FeSi 3wt% substrate.
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Figure 3.5: Ternary phase diagram for Fe-Al-Si at 1100°C, [53], and diffusion
path at 1100°C during 5min, FeSi 3wt% substrate.

annealings were performed at 1100°C. At this annealing temperature the ternary
diagram simplifies and, as shown in Fig. 3.5, diffusion takes place mainly in the
a-phase. A typical diffusion profile can be seen in Fig. 3.6.

3.3 Numerical experiments

For all experiments a homogeneous Neumann BC at both edges is considered.

3.3.1 Power type diffusion

We consider diffusion of the power like form. This allows us to compare the
numerical results with the Barenblatt-Pattle exact solution. In Fig. 3.7 we show
a few diffusion profiles starting from a realistic initial condition with D(C) =
0.4C1%9. An experimental Si-profile measured after 30 minutes of diffusion
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Figure 3.6: Diffusion profiles for samples annealed at 1000°C during 30 min
(top) and at 1100°C during 60 min(bottom).
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Figure 3.7: Diffusion profiles of Si (at%) into steel (um). A typical Si-profile
after hot dipping is depicted in red. The lines in green, blue and purple show
the diffusion after 1, 7 and 30 minutes, respectively for D(C) = 0.4C**°. An
experimental Si-profile taken after 30 min of diffusion annealing is depicted in
light blue.
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Figure 3.8: Diffusion profiles of the Barenblatt-Pattle solution with D(C) =
2.5C15. The initial profile is shown in red. The other curves depict profiles

after 10, 60 and 120 sec, respectively, as modeled with a nonequidistant moving
grid.

annealing is also plotted. This curve matches the modeled curve very well.
The model uses a uniform grid with 100 equidistant points. The first 10um of
the 400pum sample is not present as this fraction melted away during the hot
dipping.

As a second example, we model the Barenblatt-Pattle problem, where the
initial condition is the value of (3.16) at a time t; > 0. We decompose the
domain in 2 parts: left and right of the singularity. On the right part the
solution is identically zero. We can use (3.23). In Fig. 3.8 the resulting profiles
are shown for the choice D(C) = 2.5C'-5. The initial profile is taken so that
the edge occurs at = 1. The moving grid consists of 100 points and the grid is
more dense at the edges. Compared to the exact solution, the absolute error is
nowhere larger than 107°. In Fig. 3.9 the same experiment is repeated, but now
with a fixed equidistant grid on the interval (0,13.5) consisting of 100 points.
Here, the transformation C' = v'/? was also performed, but now on (3.18). The
largest error is at the moving front, confirming the necessity of extra datapoints
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Figure 3.9: Diffusion profiles of the Barenblatt-Pattle solution with D(C) =
2.5C15. The initial profile is shown in red. The other curves depict the concen-
tration profiles after 10, 60 and 120 sec, respectively, obtained with an equidis-
tant grid over the interval (0,13.5). For comparison, we also show the exact
solution at ¢ = 120sec (compare with Fig. 3.8).
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Figure 3.10: Apparent diffusion coefficient at 1100°C (full) and Fe-Si interdif-
fusion coefficient (dashed), in m?/s.

around the diffusion front to increase the accuracy there.

3.3.2 B-spline diffusion

In the following numerical experiment we have used 41 gridpoints x; over the
interval (Opm,500um). The diffusion coefficient is a B-spline through 8 point
couples (Cy,Dy), k = 1,...,8 where C; = 0.8¢ — 5 and Cs = 1.7¢ — 5. This
B-spline interpolant is given in Fig. 3.10, together with the values of a Fe-Si
interdiffusion ( (0 at%Al)) taken from [66]. As initial condition for the concen-
tration we have used the experimental data after 5 min of diffusion annealing.

The result of the model with this diffusion coefficient is given in Fig. 3.11 for
the 3 timesteps for which we have experimental data. The modeled curves are
good approximations of the expermiments except for the 3h-curves. However,
for the longest annealing times we detected mass loss specifically of Al. This
phenomen is not included in the model and it probably explains the deviation.
More experimental work will be needed to quantify this mass loss and decide
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initial condition
- - - - model for 30 min
0,000015 = experiment for 30 mj
—
£
E 0,000010
o
£
= .
c T T T T
S 0,000015 100 200 300 400 500
s
[ + experiment for 1h
g_ = experiment for 3h
€ -+ model for 3h
° model for 1h
o
0,000010

Position (um)

Figure 3.11: Experimental and modeled concentration profiles for 5 min, 30
min, 1h and 3h, respectively, at 1100°C.
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how to adapt the model to incorporate this late-time behaviour.






Part 11

Inverse Problems
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In Part I several mathematical models were presented to solve practical
engineering problems. We call such methods direct problems or also forward
problems: given the mathematical model and the necessary data, the problem
can be solved. However, in constructing the model, many parameters are used,
see for example the dispersivities in (B.13) or the sorption constants in (B.18)-
(B.21). These parameters need to be known to use the model. In contrast,
inverse problems arise when a mathematical model is used to recover the
parameters. To this aim, experimental results need to be known.

Inverse problems can also be utilized to determine the optimal way of con-
trolling a process so to get a desired result. In this setup the parameters may be
time dependent and can be changed by human intervention, like e.g. pressure
or temperature.

The most straithforward way of estimating parameters is curve fitting. The
experiment is plotted as a curve, and the direct problem is solved several times
to obtain benchmark curves with several parameters. Comparing experimental
data with the benchmark, the parameter values are estimated. It is clear that
this is only possible if there are few parameters, and the model is stable. Stability
here means that a small perturbation in the experimental values, does not lead
to very different values of the recovered parameters.

We will present inverse problems for the methods developed in Part I. Our
focus will be on the adjoint method, also called costate method. In Chapter 4
we apply this to diffusion annealing. In Chapter 5 we consider the dual-well
problem. For an overview of basic results on numerical methods that can be
used to solve inverse problems, and for some background information on inverse
methods in general, we refer to Appendix C.






Chapter 4

Inverse problems in annealing
diffusion

In Chapter 3 annealing diffusion in a ternary alloy was solved. Briefly summur-
izing, the diffusion was modeled by (3.6), i.e.

3 X 3 x
0 — 2 (o (e () 2520 @)

for 0 < x < L, t > 0. Here, D?? is the apparent diffusion coefficient of Si in Fe
along a given diffusion path in the ternary alloy Si-Al-Fe .

As the diffusion coefficient D$® is unknown, it must be determined from the
experiments. We consider the following general problem.

o0C -V -(D(C)VC)=0 inQx(0,T), (4.2)
along with boundary conditions
C=Cyp ondQy, —DC)VC-v=0 ondy, 0<t<T, (4.3)
and an initial condition
C(x,0) =C%x), zeQ. (4.4)

Here, Q) is an open bounded domain, 99; and 02y are open non-overlapping
parts of its Lipshitz boundary 99 (such that 9Q = 99, U0Qs), (0,T) is a given
time interval and C° represents the given initial concentration profile.

145
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Let
C*(z,t) forxe,te(0,T), (4.5)

be a ‘given’ function, viz. suitably constructed by interpolation of measured
values at discrete space-time points (x,t). From (4.5) the function D(C), C €
(0,1), has to be restored. Our aim is to determine the unknown function D(s),
s € (0,1), so that the measured values (4.5) are well approximated by the
numerical results from the corresponding direct problem.

To this end we look for a function D in a class of explicit functions parametrized
by a vector p = (p1,...,pm). More explicitely, we take D = D(s,p), where
s € (0,1) and p € U,g C R™, with U,q an admissible compact subset of R™.
Possible choices for D(s, p) are

e Power law
D(s,p) = p15"*(1 + p3s + pas). (4.6)

e Linear interpolation

D(s,p) = pi + 22" Pis in) for s € (ih,(i+1)h), i=0,...,m—1,

h
(4.7
with h = L.
e B-spline interpolation

D(s,p) = value at s of the natural B-spline interpolant, (4.8)

through the points (Ck,pr), k=1,...,m,
where the values Cj, are prescribed. (4.9)
We look for an optimal vector-parameter p = (p1, . . ., Pm) such that the cost

functional
T
F(p) = F(C,p) = / / Clot,p) — C*(a, )P dedt,  (4.10)
0 Ja

attains its minimum on U,q at p = p. Here, C(x,t,p) is the solution of (4.2)-
(4.4) with D asin (4.6)-(4.8). The vector p is obtained as the limit of a sequence

~

{pr}$2, such that F(pr+1,Crt1) < F(pr,Cr) and F(pi,Ck) — F(P,C),
where Cy, = C(z,t, pi).
The results of this chapter have been published in [3, 40, 56].
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4.1 The adjoint problem

4.1.1 Deduction

We deduce the adjoint problem, see Section s:adcome, for Eq. (4.2)-(4.4), with
cost functional (4.10). We have the following result.

Theorem 4.1.1. Let C(z,t,p) be the solution of (4.2)-(4-4), where D(s,p) is
a smooth function, and let F be defined by (4.10). Let ¥(x,T) be the solution
of the following convection-diffusion equation

0,9 —V - (D(C(x, T — 7,p))Vi(z, 7))
+ DL(C(a,T — 7,p))VC(x,T — 7,p) - Vo (,7) =
=2 (0(:& T—7,p)—C*x,T—7)) (4.11)

where D, = dDdis), along with boundary and initial conditions given by
P(x,7) =0 for x € 00,
p) T) V= 0 for x € 00y, (4.12)

(z,
Vo, 7
$(w,0) =

D(C,
Then,

VpF(p) / / V,D(Cl2,t,p)) (VC(t,p) - Vib(w, 1)) dwdt,  (4.13)

where
Yz, t) =z, T —t). (4.14)

Proof. Let the perturbed value p + dp, (0p = (0p1,...,0pm)), give rise to the
solution C'+ §C. We are looking for a linear mapping (i.e. Gateaux differential)
between §F := F(p + dp,C + 0C) — F(p,C) and ép. Neglecting the second
order terms of dp we obtain

T
SF =2 /O /Q 5C (C(p) — C*(,t)) dw dt. (4.15)

To eliminate 6C from (4.15) we derive a boundary value problem in vari-
ations in the following way. Since C + dC is the solution of (4.2)-(4.4) corre-
sponding to p + dp, we have

04(C' +6C) — V- (D(C + 5C,p+8p) V(C +06C)) =0 in Qx (0,T), (4.16)
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along with boundary conditions
C+6C=Cy on 1, —-D(CH+C,p+dp)V(C+6C)-v=0 on 0Qy, (4.17)

and initial condition
C(x,0) +6C(z,0) = C(x). (4.18)

Substracting ‘equationwise’ (4.2)-(4.4) from (4.16)-(4.18) and neglecting again
second order terms, we find the equation in variations

8,(3C) — V - [D(C, p) V5C + D,(C, p)sCVC + (V,D(C,p) - 5p)VC] = 0

(4.19)
in 2 x (0,7, along with boundary conditions
6C=0 on an,
[D(C,p)V(6C) + DL(C,p)dCVC + (V,D(C,p) - dp)VC] - v =0 on 09y,
(4.20)
and initial condition
5C(x,0) = 0. (4.21)

Multiplying (4.19) by a smooth function ¢ (z, t), to be specified below, integrat-
ing over Q x (0,7) and using (4.20) and (4.21), we get

T T
/§C¢dx —/ /5Catwdxdt
Q 0 0 Q

- / ' / [D(C,p)V(5C) + D'.(C,p)VCSC + (V,D(C, p) - 8p)VC] - vip dar di
0 Q4

T
+ / / | D(C,p)(V(5C) - V) +DL(C,p)(VC - Ver)oC
0 Q 0
+(V,D(C,p) - 8p)(VC - w)] dedt = 0. (4.22)

We restrict the auxiliary function ) (z, t) so as to obey the conditions

Y(z,t) =0 for x € 9Qy, D(C,p)Vy(z,t)v =0 forxe 0Dy, ¢Y(z,T)=0.
(4.23)
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Integration by parts of the term (7) in (4.22) leads to

—/T/ §C [0y + V- (D(C,p)Vp) — DL(C,p)(VC - V)] dadt
0 Q .
+ /O /Q V,D(C,p)(VC - Vi) dadt - 5p — 0. (4.24)

Now, the function ¥ (x,t) can be chosen in a unique way from the requirement
that the parabolic equation

Op+ V- (D(C,p)VY) = D(C,p)VC - Vi =2(C(p) - C*(x,1)),  (4.25)

is satisfied together with (4.23). For this choice of 1, the relations (4.15) and
(4.24) yield

T
OF = / / V,D(C,p)VC - Vi dxdt dp. (4.26)
0o Jo

By putting 7 = T — t, the problem consisting of (4.23) and (4.25) is reduced to
the parabolic problem (4.11)-(4.12).

From the expression (4.26) we obtain the gradient of the cost functional as
in (4.13). O

Remark 4.1.1. The proof above has to be adapted in the case of a moving inter-
face. In this case the solution C(x,t) has only C?-regularity up to the interface;
at the interface the original PDE is only fulfilled from the left. Therefore, inte-
gration by parts can only be done up to the interface of C, respectively C + 0C.
However, the border terms still drop out as there is no flux over the interface,
and the other terms can be extended over the entire domain. The following is
important to note in the interface problem:

e BC (4.12) at the symmetry boundary only makes sense when the interface
has reached the boundary. Otherwise, this BC is superfluous. This is con-
sistent with (4.12) as we have a pure reaction problem when the boundary

is not reached yet by the interface (which, of course, makes satisfying the
BC impossible).

o The function 1(x,T) used in the proof also only needs to be smooth up to
the interface, as integration by parts in space is only done up to this point.
We comment on this later.
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4.1.2 Numerical approximation

Equation (4.11) is a convection-diffusion equation with respect to 1) and can be
solved with appropriate methods. For simplicity, we chose again the method of
lines, which was used for the direct problem, see (3.18) and (3.21).

We follow the ansatz as in the 1D problem with moving interface of Chapter
3. To solve (4.11), we first solve the direct problem, and subsequently the
adjoint system (4.11)-(4.12) for ¢. By the same Landau’s transformation and
space discretizations the values C} = C'(y;, T —7) and C? = C?*(y;, T — ) can
be used to construct values for D(C, p) and C. Note that the profiles of 1) and
C will be, generally, qualitatively different, hence the nonequidistant grid will
not necessarely lead to a better approximation.

Denote Fl(7) =~ w_(yl, ) on Qy(7), and similarly F2() ~ ¢%(y;,7) on
Q5(7). Next, denote by pk(y,4) the second order Lagrange polynomial interpo-
lating these values in the points (y;—1, F 1), (v, FF) and (yi1, Ff ) for k=1
and 2. Furthermore, set Cf =~ C*(y;,T — 7). Two ODE-systems are obtained:

d 1 d? s(T—71) d

iy 20 W 1 i i pl(y;. 1) = —2(Ct—CF

dr [ (T) 82(T o 7_) (C ) y (y ’ )+y S(T — 7_) dyp2(y aZ) (Cz Cz )7
(4.27)

fori=1,...,N —1, and also for i = 0 in the case of a Neumann BC, and

d 1 d?
—F ) —— D(C?)—p2(y:. ]
dr j(T) (X—S(T—T))2 (Cj)d 2p2(y]7-7)
s(r—-) d . .
gmd— (yjaj) = —2(0} - Cj)a (4-28)

for j=1,...,M — 1, and also for j = 0 in the case of a Neumann BC.

The interface equation is the same as in the direct problem, (3.22), allowing
the elimination of Fi = F3, from (4.27) (4.28). From the solution we only
need to keep track of the values d F! = dpr(yz, i) and di F} = dypg (y;,7) at
equidistant time values t = tq,...,ty,.

4.1.3 Computation of V,F

The analytic form of V,F is given by (4.13). This expression will be approxi-
mated using the numerical values of C, VC and V1), obtained in the previous
sections. We emphasize that the values for C' and v are calculated in the same
grid points x; and the same time points ¢,,, the latter being equidistant with



4.2. Convergence for 9,9 — a(z,7)0%) = f(x,T) 151

time step At. Then, considering 1 (x,t) = ¥(z,7) = ¢(x, T — t), we obtain

m—1 N 1 ozl
v, Ep) = 3 A |30 U, b ) a - 0)
k=0 1=0
- (of +a3yy) 2 2 2 —1
+) 5 TRV, D(C () Ay O () F (m k))m . (4.29)

Jj=0

1ol 02— 2
where ay = ay, =0=af = aj, .

4.2 Convergence for 0.¢(z,7) — a(z,7)0%)(x,7) =
f(x,7), a being degenerate

Equation (4.11) is a degenerate convection-diffusion pure reaction problem in
the case of zero substrate problem, where we have a moving interface with on
the right of it C' = 0, so that D(C) = 0. In this specific case it is not a priori
clear wether the system (4.11)-(4.12) has a solution. In this Section we shall
prove the existence of a solution.

The one-dimentional differential equation (4.11) has the form

Oep(x,t) + alz, )02 (x, t) = f(o,1), (4.30)
along with boundary conditions
0:1(0,t) =0, a(L,t)0,¢(L,t) =0, (4.31)

and stopping condition
O (2, T) =0, (4.32)

where a(z,t) (= D(C,p)) and f(z,t) (= 2(C(p) — C*(x,t))), are known func-
tions.

The original problem, C(z,t), has a moving front at s(t), s(0) = so > 0,
of which it is known from porous media equations that it starts to move at
t =Ty > 0, and afterwards is strictly increasing. Due to the behaviour of C'
and the degeneracy of D, we have that the function a(x,t) has in (sg, s(T)) the
same moving support as C. Moreover, if C(xq, %) > 0, then the solution is C'*°-
smooth in a neighbourhood of z¢ for ¢ > t¢. On the other hand, Va = D'(C)VC
which can become undefined at the interface.
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This can be explained as follows. If we consider the Barenblatt-Pattle so-
lution, (3.16), we have that, D'(C) is 0 (for p; > 1), or oo (for 0 < py < 1).
The second par of Vat, VC depends on the solution. For the Barenplatt-Pattle
solution VC' = —oo for  — s(t), (for p; > 1) or VC = 0 for z — s(t) (for
0 < p2 < 1), and we get always Va = ¢, with —oo < ¢ < 0. In general, although
the solution is smooth up to the interface, and the speed of the interface 5(t)
is finite, it need not be the case that Va is bounded. Consider for example the
PDE, [65],

Oyw = 0, [(aw2 — bw)@zw} ,

which has the traveling-wave solution

w= \/20196 + 2ac?t + ca,

and the moving edge
2ac%t + co

261

s(t) =

In this case, D(w) = aw? — bw and D’(w) is nonzero at the interface w = 0,
whereas 9, w|,—o = sign(cy)oo. Therefore, Va = —oco, and we conclude that in
general we cannot assume regularity of a. This degeneracy does not allow the
use of energy type a priori estimates (no integration by parts), so one of the
main tools in the analysis of existence is not applicable.

To summarize, we can assume the following for a:

1. a(z,t) has strictly increasing support up to s(t),
0<sp<s(t)<s(T)<L, 0<s<K

2. a(z,t) =0for x > s(t), (4.33)
3. Oga(s(t),t) = c(t), with —oo < ¢(f) <O.
In the case ¢(t) = —oo, we call the problem degenerate.

Here, K is a constant. For simplicity we take s(7') < L. In the case we need to
model up to times s(T") > L, we can use the results given here up to s(t.) = L,
and then use the known results for diffusion-reaction problems to obtain results
for t > t..

The numerical discretization given in Section 4.1.2 is “impractical” for a
convergence proof. We start therefore with a more suitable discretization based
on the same principles.
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4.2.1 Discretization

As in Section 4.1.2 the domain with moving interface at = = s(t) is trans-
formed to two fixed domains by Landau’s mapping. Eq. (4.30) splits then in
two convection-diffusion equations:

(T—7) a(y, 7)
(T—7) 2T —7)

87—{51 + yz 811{51 T 65{/;1 = _J}}(va)7 y € (0,1), (4.39)

along with boundary and initial conditions

0y1r(0,7) =0, iy, 0) =0, (4.35)
and 7
87'1;[[ - y%ay{/;ll = _ﬁl(y77)7 ye (07 1)7 (436)

along with boundary and initial conditions

8’.‘/1511 (07 T) = 07 {/;II (y7 0) = Oa (437)

and along with the continuity condition

br(1,7) = brr(1,7). (4.38)

We used 7 = T' — ¢t and the fact that a(z,t) = 0 when = > s(t). Here a(y,7) =
a(ys(T' — 1), T — 7), and analogously for fr(y,7), and frr(y,7).

Remark 4.2.1. The use of a continuity condition between the two equations at
y = 1 is formal. We cannot guarantee continuity. Therefore, in our approxi-
mation scheme we shall always regularize the function a(x,t) locally at x = s(t)
by ana, so that the continuity of solution at x = s(t) is assured. This is called
A-regularization. In the limiting process (discretization parameters converg-
ing to zero) we cannot guarantee this property. The a priori estimates which
we will deduce later don’t exclude the creation of a shock at x = s(t) which can
depend on the order of the degeneracy of a (i.e. Oya(s(t),t) = —o0), the speed
5(t) and the regularity property of f in the neighbourhood of x = s(t). For this
reason, the continuity v;(1,7) = ¥r1(1,7) is only considered formally, and we
include it into the approximation scheme, proving convergence to the original
equation. However, we will not consider this continuity for the definition of our
variational solution. See also Remark 4.1.1.
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0 s(t) L
9 | toa 0 A
>
b) ‘ AV | Ay
0 vy Y 0

Figure 4.1: a) Domain decomposition in two parts: (0, L) = (0, s(¢)) U (s(t), L).
b) Mapping to the fixed uniform y interval.

Remark 4.2.2. The BC (4.87) in y = 0 is formal, as (4.37) only consists of
pure reaction in y = 0 and the flow is towards y = 0 from the interior of the
domain. See also Remark 4.1.1

We regularize the function a by aa so that an — a if A — 0, the A-
regularization. Its exact definition will be given in Section 4.2.4. It suffices to
state that as a consequence we can use the continuity of the solution at = s(t),
and we need to provide the extra terms arising from this aa in the numerical
approximation of (4.36). After regularization, (4.36) reads as

$(T—7)

aA(yaT)
T

(L—s(T—1))?

We approximate (4.34) and (4.36/4.39) by using central difference in the
elliptic part and upwind type differences in the convective terms. For sim-
plicity, we consider a uniform space discretization {y;}M,, A, = vi — yi_1,
Vi = 1,...,M. The fixed nodal point y; corresponds to the moving grid
point z;(t) = y;s(t) in the x variable in part I of the domain, and to z;(t) =
L — y;(L — s(t)) in part II. We have that A,(t) = x;(t) — z;—1(t) = Ays(t) in
part I, and Ay (t) = z;(t) — zi—1(t) = —Ay(L — s(t)) in part II, see Fig. 4.1.

Let V;(7) ~ ¥;(yi,7), Vi = 0,..., M, and Varpi(7) := Was_;, where W; ~
Jn(yi,ﬂ, Vi =0,...,M, see Fig. 4.2. Then our approximation scheme is of

37{511 - ay{ﬁvn - 35{511 = —J?H(Z/ﬂ')- (4-39)



4.2. Convergence for 9,9 — a(z,7)0%) = f(x,T) 155

0 s(t L
I ‘( ) 11
>
Vo Vi Vum Vi Vamr
WM Wi WO

Figure 4.2: Numerical approximation on the space grid.

the form
Vit SybVim —Y 0tV — Vi) = fi, =1, M —1 (4.40)
S Ssz ) b b )
where ViV v v
5_%: i 1—1’ 5+‘/1: +1 — 1,
Ay Ay
and
. $ _ M+ + —
Vigi+——ym—i0 Vigi — —-— (0" Vagys — 0 Vayyi) = i, (4.41
Mti T oYM M+ (L_S)gAy( M+ M+i) = [ayi, (441)

i=1,...,M —1, where we used shorthand notation $ = $(T'—7), s = s(T'— 1),
and
a; =an(yi,7), in Part I,
ari+i = an(yYm—i,7), in Part IT,

and

fo==Filyi),  farvi = =Frrlyp—ism), =1, M -1,

Eq. (4.41) is obtained by upwind discretization of (4.39) in terms of W:

T e S _
W; L—syl& W; (L—s)QAy(d W,—o6Wy)=1fr i=1,....M -1,
(4.42)

with af = apyi and ff = fayr4i. The values of Vj and Vo, follow from the
boundary condition. The approximation of (4.30) in the point x = s(t) follows
by using upwinding for the convection part of (4.34) and (4.39), and by determin-
ing 921 from the approximate values V at the nonuniformily spaced points '/,



156 Chapter 4. Inverse problems in annealing diffusion

xp—1 and xpr41, corresponding with yyr and ypr—1 in part I (xpr—1 < yar—1)
and part IT (zpr41 < yar—1)- This gives

. $ 2aM 1 + 1 _
V, _ Vv — [ Vi — — = 4.4
M+S5 M L3y<L 85 M 85 VM) far, ( 3)

where we have used 1A,s + 1A, (L —s) = $LA,. Now (4.40)-(4.43) represent
the discretization of (4.30) with respect to moving nodal points, using central
differences for 92 and upwind for the corresponding convective term which arises
from the moving gridpoints.

For the time discretization we use an implicit Euler scheme. Consider the
time point 7, = nh, n =1,..., Ny, Nyh =T, and denote V" ~ V;(1,).

We introduce the standard Rothe functions. Define the time continuous

functions
T —Tn

Vin(r) = Vit == (VT =) (4.44)

s

YT € (Tn, Tnt1), VR =0,1,... Ny, Vi=0,1,...2M.
In agreement with the method of lines, the limit function when h — 0 is
considered first, and it is shown that

Vh,i(t) — Vi(7), uniformly on (0,T). (4.45)

To distinguish the two considered domains, we formally define

War—i(T) == Varyi(7), with i=0,..., M. (4.46)
Define also,
VAW, 7) = Vieia(r) + T2 (Vi (1) = Vi (1), (447)
y
WAy, 7) o= Wia (1) + £ (Wilr) = Wi (7)), (448)
y

Yy € (yi—1,9:), Vi = 1,... M. We show the convergence to a limit function
when A, — 0,

VA, 7)(1) = V(y,7), W2y, 7)(r) = W(y,7). (4.49)



4.2. Convergence for 9,9 — a(z,7)0%) = f(x,T) 157

4.2.2 Weak solution

Definition 4.2.1. A couple (¥1(y,t), ¥11(y,t)) is a variational solution to

(4.34) and (4.36), respectively, if ;1 € Loo(I x (0,1)), dytp € La(I, L2 10c(0,1))
and TV (¢11) < 00, such that the identities

/ / br0rd dydr — / / Oy1610) lalys(T — 7), T — 7)¢] dydr

—AA y;8y1m¢dyd7'z/l/o of(ys(T —7),T — 7)dydr, (4.50)

/ / virrodydr = [ / T iy ) dyd

:/I/O SF(L—y(L - s(T — 7)), T — 7)dydr, (4.51)

hold for all ¢ € C°°(I x (0,1)) with support ¢ C [0,T) x [0,1) = Qr-.

Remark 4.2.3. The continuity condition ¥;(1,t) = ¥;1(1,t) is not guaranteed.
The functions 1 and 11 have a finite total variation and vy is Lipschitz con-
tinuous in y € (0,Q), VQ < 1, but we are not able to prove the continuity at

y=1.
Definition 4.2.2. The function

1/11( t), —t), xz € (0,s(t)), t € (0,T);

) = 4.52

Vi) {¢H( s T 1), ze(s(t).L), t € (0.,T), (4.52)

is a variational solution to (4.30)-(4.32), iff ¥1(y,7) and ¥11(y,T) are varia-
tional solutions to (4.34) and (4.36) (see Definition 4.2.1).

Some extra assumptions on a will be needed. Let us assume there is a
constant ) < 1 such that we have the following properties of a:

% < K(Q,7), min a; > 5(Q) > 0.
Y

max
0<i<L,LA,<Q 0<i<L,LA,<Q,7€(0,T)
(4.53)

Our main result is:
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Theorem 4.2.1. Under the assumptions (4.33) and (4.53), and with [ €
Loo(Q) C HY(Q), there erists a variational solution to (4.30)-(4.32) in the
sense of Definition 4.2.2. The approximate solution generated by

VA (1) = {VA(L T—t),  ze(0,s(),t>0;

s(t)?

4.54
WA (G, T 1), e (s(t),L), t >0, (4.54)

converges pointwise (up to a subsequence) to a variational solution to (4.30)-

(4.82).

The proof of this theorem involves the same techniques of Section 2.5. An-
other approach would be to regularize the PDE over the entire domain (not only
the interface), and use standard techniques for convection-diffusion. We will
give an overview of this approach in Section 4.2.5. We now prove the necessary
a priori estimates, and the TV estimates needed for Theorem 4.2.1.

4.2.3 A priori estimates

Estimates for V;* are given first. When there is no risk for notational confusion,
we drop the superscript n in the time step.

Lemma 4.2.1. If ¢y = fOT max, f(y,7)dr < oo, then there exists a constant
C(cf) < o0 so that
. max v <c¢, (4.55)
0<j<2M, n=1,...,N,,
uniformly for h (h < hg).
If furthermore fOT fOL |0, f (2,t)| dzdt < oo, then
2M—2

T L
ozt <e / / |8, f(x,1)| ddt, (4.56)
0 0

i=1

Proof. Let maxo<i<on V"™ = V;"*'. From (4.40)-(4.43), using an implicit
Euler scheme and reordening terms, we get

[+ (v + B)R] V" < max V" 4+ yhV," T + BV, + hmax fi,

l=0,...,2M. Hence

max V;" " < max V" + hmax f;.
K3 K3 2
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Similarly,
min V"t > min V;" + hmin f;,
I3 I3 i

and therefore

max |V < max [VP|4+h max |fi. (4.57)
0<i<2M 0<i<2M 0<i<2M
This is a recurrent inequality with respect to n. Using the initial condition
V0 =0, (4.55) follows, which proves the first assertion of the Lemma.
For the second assertion, note that the time discretization gives, after rear-
ranging the terms:

[1+ <syi+1 i a; i ;41 ) h] Z;z+1 _ Zf-|— < SY; + Q@ )hZi—Jrll

sA,  s2AZ 0 s2A2 sA, | s2A2
+ jzizlghzﬁrll"‘h(fwl —fi), i=1,...,.M —2, (4.58)
Y

5 apr—1 QCLM
1 - el 2 ) p ZTL+1 —Zn
[ i <8Ay " s2A2 * L5A5> } M—1 = “M-1

Sym—1 | am-—1 nt1 2ap il
hZ — = nz —fa )
+ < sA, + 32A72J> M—2 T L(L—S)AZ v Fh(fa = fu—1), (4.59)

éyM—l 2an ap+1 atl N
1 =
[ " <(L —5)Ay ’ L(L —s)AZ * (L — 3)2A5> h} 4 47

s 2am n apM+1 n
* <5Ay * L5A2> hZy + mhzﬂﬂ +h(fysr = far), (4.60)
v Yy

and
SYM—i—1 AN +i AN4it1 - .
1 Zntl —ogn
[ i <<L —9a, T T - sm;) h] M = D

SYM—i AN +i nt1
+ + YA
<(L—3)Ay (L—s)2A§> M+i—1

QM +i+1 n )
T (L — 5)2A2 hZyt oy h(farirn = farga), i=1,...,M =2, (4.61)
Y
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along with the boundary conditions
Zy =0, Zanm—1 = 0. (4.62)

All the coeflicients in (4.58)-(4.61) are non-negative. We take absolute values
n (4.58)-(4.61) and then sum up for i = 1,...,2M — 2. Due to the specific
structure of the coefficients we obtain the recurrent inequality

Syl ai n+1
) 1%

2M -2 2M -2 <
i=1 i=1

2M -2

a2nM—1 n
+hw |Zo |+ h Z

le

This recurrent inequality implies (4.56). We used the initial condition Z? = 0 for
alli=0,...,2M — 1, and (4.62),ie. Z, =0=2,,, ,foralll=1,...,N,. O

We now consider the limit function.
Lemma 4.2.2. In the limit h — 0 one obtains
Vin (1) = Vi(1) uniformly on (0,T), (4.63)

with Vi 1, from (4.44).
The function V;(7) satisfies (4.40)-(4.43) and also the a priori estimates

max [Vi(r)| <C, Vi=0,...,2M, (4.64)
7€(0,T)
and
2M—1
> WVipa(r) = Viln)| < C, (4.65)
1=0

uniformly with respect to A,,.

Proof. The convergence follows from the definition of V;j and the bounded-
ness of V;, obtained in Lemma, 4.2.1, combined with the Ascoli-Arzeld Theorem
(Theorem A.2.1). More precisely, we have

|ZARR VAL

|8T‘/i,h( )| - h

<C(Ay,a,f) maX|V"| Vh < hyg, (4.66)
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where the last inequality comes from the fact that the lhs is the approximation
of V;, allowing us to replace it using (4.40), so that all terms can be estimated
for fixed Ay.

Lemma 4.2.1 then implies (4.64)-(4.65). Furthermore, time discretisation of
(4.40) implies that

‘/;nJrl B V;n S(TnJr ) Yi n4+1 n+1
L - _S(T7L+1) A (V Vvi—l )

a‘i(TnJrl) n+1 n+1 n+1 n+1
—_— . —_ . —_ . 'l n ) 4-
+ S(Tn+1)2A§ ((Vz+1 V") = Viiy )) + fi(Tnt+1),  (4.67)

for all n = 0,1,...,Np, (Nvh = T). We now take the limit A; — 0 so that
Tn, = hing — 7. The rhs of (4.67) has a limit and consequently

Cvmtoye L am
fim = —— = V<>——7A—< (1) = Viea (7))
+ (()—)Ah (Vear () — Vi) — (Vi) — Vier (7)) + hfi(r).

Similar limits hold for (4.41) and (4.43), which proves the Lemma. O

We now turn our attention to V2 and W*2. We have the following a priori
estimates with respect to the space dependency.

Lemma 4.2.3. The a priori estimates

1 1
/0 0,V (y.7)| dy < C, / 0,0, dy<C,  (468)

hold uniformly with respect to A, T € (0,T). Furthermore, under the assump-
tions (4.53) we have in the first domain an energy type a priori estimate,

FAy
5(Q) / Soa, / (8,VA (4, 7)) dy dr < K(Q), (4.69)

uniformly for {A}, and L with LA, < Q <1 (K independant of A,).
Proof. From Lemma 4.2.2 and (4.63) we obtain

M—-1

D

=0

Viga(r) = Vi(7)
A

Y

A, /|8VAy, )| dy < C,
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and a similar result for W, which proves (4.68).
Now we write (4.40) as

A

where we denoted 6V; = 0V, = % To proof the energy estimate, we first
multiply (4.70) by V;A,. Summation for i = 1,...,5 < M gives

J
%Z@(Z y+z A Z (6Vip1—0V;)Vi = ZflVA (4.71)
i=1

i=1

Note that (4.71) can be written in the form
Lij+ 1 — I35 =14;. (4.72)

If the given function f is bounded, then by Lemma 4.2.2 and (4.68) we estimate
1
|I27j| S C/ ‘5UVA| dy S C, |I4,j| S C (473)
0

Using Abel’s summation, (A.2), for the term I3 ; gives

1 : 1 : Q; — Ai—1
Ly = 5 iE:1‘/i(ai5‘/i+l ai10V;) = > Ty(sviviAy
1 2 1
= —8—2 Zai—l(d‘/i) Ay + [Clej(S‘/jq_l - &0V05V1] 8_2 (474)

i=1
J

1 a; — Q;—1

2 Ay

=1

SViViA,,.

Now, multiply (4.71) by A, and sum for j = 1,...,L, with LA, < Q < 1.
Noticing that V3 = 0 and invoking (4.73) and (4.74), we obtain

J J
S 0.(Vi)Pa2 4+ Si2 Sa, S a1 (6Vi)a,

j=1i=1 j=1 i=1

1 & !
§O+S—22Ayz
j=1 =1

N =

% 6Vi| VA, + 2Zajv 6Vig1| Ay (4.75)

Y
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The third term of the rhs can be estimated in the same way as I ;. To estimate
(4.75) further we apply the properties of a given in (4.53). We find

L j L J
1
52D O-(ViPAL+8(Q) DAy Y (OVi)*Ay < K(@Q7).  (476)
j=1 i=1 j=1 =1
Integrating (4.76) over (0, ), and noticing that
/ K(Q.7)dr = K(Q) < o0, (477)
leads to
1 T,
5/ ZA ZA )2dr +46(Q )/O > A (6Vh)PA, dr < K(Q),
i= j=1 =1
(4.78)
which implies the required result (4.69). O

Remark 4.2.4. From Lemma 4.2.3 energy estimates are seen to be only possible
in the first domain, away from the degeneracy point. In this part, we can take
the limit A, — 0 and get convergence. Unfortunately, the L, estimates (4.68)
are not that usefull, as the L1-space is not reflexive, and hence compactness does

not follow from an estimate of the type fOQ |0: f| dz < C. We will have to work
towards Kolmogorov compactness to prove convergence over the entire domain.

Remark 4.2.5. This is the first time the structure of O a(x,t) plays a role in
the form of the assumptions (4.53). Here, the degeneracy at x = s(t) has been
overcome by leaving out the neighbourhood of x = s(t), see Fig. 4.8. Only within
this reduced region energy type estimates can be constructed.

We now deduce analogous results with respect to the 7-variable.

Lemma 4.2.4. Let the assumptions (4.53) be satisfied. Then,

/T z/ / Ay, 7 +2) — VA(y7T))2 dydzdr < C(Q)z, (4.79)

uniformly for {A} with Q < 1, and

T rQ
/ / |0, W (y,7)| dydr < C, (4.80)
0 0

uniformly for {A}, with Q < 1.
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“a(a:,t)
6(Q) ‘ x = s(t) @
l Q y=1 Ty
YL Ym

Figure 4.3: The region around the edge = = s(¢) is left out in order to obtain a
priori error estimates of the energy type.

Proof. We integrate (4.40) over (7, 7+z). Multiplying by (Vi(7 + z) — Vi(7)) A,
and summing for i =1,...,j yield

> (Vilr+2) - Vi(r)* A, =

J T+z s o
_ ;%Ay/T %5%@) dr (Vi(r + 2) = Vi(1))

J

T4z Cli("") - _ (r r (r ) Vilr
+Z;/T W[Mﬂ(r) SVi(r)] dr (Vi(r + 2) — V(7))

J T+2
+2Ay/ fi(r)dr (Vi(1 + 2) = Vi(7)) =h;+1;+1I3;. (4.81)
i=1 T

By Lemma 4.2.2 and Lemma, 4.2.3 it follows that

J T4z
Lyl <Cz |Iayl < CZAy/ F()dr < Cs (4.82)

i=1 T
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Abel’s summation for I ; implies for the part with Vi(r + z),

G Vi) = 8V drvi 42

I, = .
s =
= T+ _a(n) rVi(r + 2z
- ‘/T (S(T_T))Q(sVPrl( )d V]( + )
T4z
—/ 7%(2 50Vi(r) drVo (7 + 2)

T+2
-
z

I Tz ai(r)Vi(r +2) —aia(r)Viea(r +2)
> T 1) e

= /T+Z 7j(7a) OVip1(r)drVi(r + 2)
L @ T

T+

2 a;(r)oVi(T + 2)
(s(T —r))?

J

Z SVi(r)drA,

J T4z _

Z / alr) — @il y o oVl dr = L+ T+ L,
=1 T

Ay(s(T —1))?
where we used 07 = 0. By Lemma 4.2.2 and Lemma 4.2.3, we estimate
|J3,;] < CK(Q)z, provided that j < L, LA, < Q. (4.83)

By the Cauchy inequality it follows that
1 J T4z CL() 9
WEEEE N / _al) gy
}JQJ} < 2222 y G2 (6Vi(r))” dr
g A (OVi(r + 2))*

dr+Cz Z Ay (0Vi(T + 2))? (4.84)

=1

<

For J} ; we have

T4z
e [ vaear (4.85)
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We now multiply (4.81) by A, and sum for j = 1,..., L. Next, we integrate
over (0,7 — z). The estimates obtained till now that are of the form C(Q)z,
will, after this operation, still be of the form C(Q)z. Then, by means of Lemma
4.2.3 the sum over j (discrete space integration) in (4.85) can be estimated to
be bounded above by Cz. The second term of (4.84) can also be estimated by
means of Lemma, 4.2.3 to be bounded above by C(Q)z. We conclude that

T—z L J
/0 SN (ir+2) - Vi(n)? AZdr < C(Q)z+

j=11:=1

T—=z 7+z L J
C / / ZAyZAy §Vi(r))? drdr. (4.86)
0 T =

To estimate the last term of (4.86) we use Lemma 4.2.3 in combination with the
estimate (see Fig. 4.4)!

T—z T
/ / r)drdr < 22/ g(r))dr with g >0, (4.87)
0

which implies that

T—2 L J
/ DD (Vilr+2) = Vi(r)? Aldr < C(Q)z, (4.88)
0 j=11:=1
uniformly for {A} with Ay)L <@ < 1.

As a consequence of (4.47) assertion (4.79) holds.

We now turn our attention to W4. In general, a} = 0, see (4.33.2), (4.36).
However, we allow for a regularization of a, such that a; > 0 close to the interface
x = s(t). Therefore, there is an index L such that, for i < L (A, < Ag), af =0.
Consequently, from (4.42) we get

‘Wi(r)‘ < C6Wi| + fr, fori=1,...,L. (4.89)

Due to Lemma 4.2.3 we find
T L

/Z C//|8W Y, T |dyd7’—|—//|f y,7)| dydr
0 =1

< (4.90)
IThis estimates follows from changing the order of integration, i.e. from Fig. 4.4 we have
that fT z f:+z g(r)drdr < fo S g(r)drdr = fOT g(r)(r — (r — 2))dr.

IN
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TA
r=T r=17+2z
T—-=z
g9(r) =0
0 z T
Figure 4.4: Motivation for estimate (4.87)
from which assertion (4.80) follows. O

Remark 4.2.6. Estimate (4.80) of Lemma 4.2.4 only holds because af = 0.
Note further that the integration on (0,Q) in Lemma 4.2.4 allows us to use a
discretization of a, denoted by an, where apr # 0 and even ap;—r # 0 as long
as M —k > L. Taking an nr, to be the last value of an that is non zero, we
can, for a given Q, choose Ay small enough so that ap ; =0, y; < Q.

To finish the a priori estimates, we need to rephrase the energy type estimate
(4.69), obtained in Lemma 4.2.3, that allows a combination with (4.79).

Lemma 4.2.5. Let the assumptions of Lemma 4.2.3 be satisfied. Then,

T +Q pu )
/O/O/J(VA(y+paT)—VA(y,T)) dydxdrgsz(Q+p0), (4.91)

holds uniformly for {A}, 0 < p < po, with Q + po < 1.

Proof. Estimate (4.69) can be rewritten as

T Q T
/O /O /0 (8yVA(y7T))2dydxdT§K(Q). (4.92)

One calculates

y+p 1
VA +p. 1) - VA(y,7) =/ 8yVA(y',T)dy’=p/ Ay V2 (y +rp,7)dr,
Yy 0
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where we set ' = y+7p (0, denotes the partial derivative to the first component
throughout). Hence,

1
(VA +p,7) - VA7) < pz/o (0,VA(y +rp,7))" dr,

and consequently,
T Q T 9
///(VA(y—kpm)—VA(yﬁ)) dydadr
o Jo Jo
T Q T 1 9
Spg/ / // (3yVA(y+rp,7')) drdydzdr.
o Jo Jo Jo

By (4.92), the transformation £ = y +rp, 2 = p+x, r = r, gives,
T Q 2
/ / / (VAy+p,7) = V23(y,7)) dydedr
0 0 0
1 T rQ+p pz—ptrp )
= p2/ / / / (ayVA(faT)) dédzdrdr
0 0 p TP

1 T Q+p z
2 A 9 : ,

uniformly for {A}, 0 < p < pg, with @ +po < 1. Here we used z —p +rp < z
when r € (0,1). O
4.2.4 Convergence

We now prove the compactness of {V2} and {W%} in Ly and L respectively.

Lemma 4.2.6. The sequence {V21}2, (JA)] — 0 for | — o0) is relatively
compact in La(I x (0,Qv)) for any Qv < 1.

The sequence {W21}2, is relatively compact in L1(I x (0,Qw)) for any
Qw < 1.

Proof. For V2 we can rewrite the estimates (4.79) and (4.91) using the formula

/ ¢ / " f(s) dsdar = / Q- D)



4.2. Convergence for 9,9 — a(z,7)0%) = f(x,T) 169

We get

T—z Q' 9
/0 / (@ — ) (VA7 +2) — VA7) dydr < C(@)2

T Q )
/0 /0 (@ — ) (VA +p.r) — VA, m)* dydr < C(@Q )0,

Vz < zg, p < po. This implies that

T—=z Q" 9
/O /0 (VA7 +2) = VA(y, 1) dydr < C(Q")z, (4.93)

with Q" < @Q’. Then, by a Kolmogorov compactness argument, the compactness
of {VA}in Ly(I x Q") follows, where Q" < Q' < 1.
For W4, a straightforward consequence of Lemma, 4.2.3 is that

T rQ
/ / |0,W(y,7)| dydr < C.
0 0

Together with Lemma 4.2.4 this gives the required compactness result by Kol-
mogorov compactness. O

In Lemma 4.2.6 the constants @y and Qw depend on the chosen regular-
ization of a, combined with the assumptions (4.53). We review the different
possibilities.

1. No specific regularization is applied. Due to the space discretization, this
implies a discrete regularization (linear interpolation of a(z;,t)). In part I of
the domain we have Qv < 1 to satisfy (4.53). In part II we have no limitation,
so we can take Qw = 1. Only due to the continuity condition at x = s(t), we
have continuity there.

2. The following regularization can be used. Let {A.(t)} = {z:(t)}2 be
a set of moving grid points for the numerical approximation of (4.30) and let
xp(t) = s(t) correspond to the degeneracy point of a. Then, define

a(z,t) for x < xpr—1(t)
an(z,t) = ¢ ps(z,t) zp—1(t) <z < Tpr42(t) (4.94)
0 for x > xpr40(t),

where ps(x, t) is the bicubic spline, which satisfies p3(zar—1(¢),t) = a(xp—1(t),t),
Ozps(xpr—1(t),t) = dpalzrr—1(t),t), and analogously at xpr4o. Clearly, for this



170 Chapter 4. Inverse problems in annealing diffusion

regularization aa(z,t) — a(z,t), uniformly in (0, L), for A, — 0. Now, condi-
tion (4.53) is always satisfied, and we can take in part I, Qv = 1. However, in
part II we have Qw < 1, such that it corresponds with a value xg > zpr42. It
is always possible to choose A, sufficiently small to fulfill this condition.

3. Another possibility is to apply an epsilon regularization:

Definition 4.2.3 (e-regularization). The e-regularization of (4.30) is defined
by
O, ) + ac(x, ) (x,t) = f(x,1), (4.95)

where ac := a + €, € > 0 being a small constant.

Note that (4.95) differs from (4.30) by a small viscosity term, €921, only.
Also a. is degenerate, i.e. 0za.(s(t),t) = —oo. Thus, the unboundedness of the
derivative of a remains. Therefore, in part I of the domain we need Qy < 1. In
part II, the diffusion term does not disappear. Therefore, all estimates for W
are invalid. The necessary alterations are considered in Section 4.2.5. To obtain
the required solution, the limit ¢ — 0 will have to be considered.

In all cases, one of the two constants () remains. This is not a difficulty as
the following lemma holds.

Lemma 4.2.7. Consider o sequence {A;}7°, with |A;| — 0 for I — co. There
exists aV € Loo(Ix(0,1)) and W € Loo(Ix(0,1)), and a subsequence {I} C {I}
so that for A;, — 0 one has

VAlk(y,t) — V(y,t), WAL (y,t) = W(y,t) for a.e. (y,t) € (0,1) x (0,T).

Proof. Consider {Q;}, @Q; /" 1 for I — oo. We can choose a {l;} C {l} so that
VAu — V and W2n — W for a.e. (y,t) € (0,Q1) x (0,T). Since Q; /' 1, by
the method of diagonalization, we can choose a subsequence {A;, } C {A;} so
that VA% — V and W24 — W for a.e. (y,t) € (0,1) x (0,T). As before, the
convergence of V is in Lo and the one of W is in L. The boundedness of V'
and W follows from Lemma 4.2.2. This completes the proof. O

We are now prepared to prove Theorem 4.2.1.

Proof of Theorem 4.2.1. Due to Definition 4.2.2 it is sufficient to prove that
VA = ¢pr and W2 — 97, where 1; and 1;; are the corresponding variational
solutions of (4.34) and (4.36), respectively.

We consider a sequence {A;}72, with gridsize |AL| — 0 for | — oco. The

number of gridpoints is given by M;. Let ¢ € COO(QT). Denote by ¢;(1) =
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< ;;:_4—11//22 ¢(y,7)dy, i = 1,...,L (we omit the index ). Multiply (4.40) by

¢$:iA, and sum for ¢ = 1,..., M. Since supp¢ C [0,T) x [0,1) there exists an
integer [y so that ¢; =0 for i = M — 1, M when [ > [;. We obtain the equality

M-1 M-l M1 M—1
; Vios Ay + Z; ;yi5‘/i¢iAy_ Z; S—;(5V¢+1 — Vi) = Z; fidiAy. (4.96)
By Abel’s summation this reduces to
M-t M-l
Y 5 O0Vier = 0Vi)oi = — Y | —0Vid(aidn) Ay,

i=1 =1

where we used 0V; = 0 and ap—1¢p—1 = 0. Integrating (4.96) with respect to
7 and performing integration by parts yields

T M-1 . T M-1 3 B
—/ > Vidia, dT+/ > ;yzfsVi(ﬁAAy dr
0 =1 0 =1

T M—-1 T M-—1

1 -
+/O ; 8—25‘/iay(a¢)AAydT:/0 ; fARA, dr,  (4.97)

where we used V;(0) = 0 and ¢;(T) = 0. We denoted by (a¢)® the piecewise
linear function in y defined by means of a;¢; as in (4.47). The function ¢* is
piecewise constant in y, so ¢ = ¢; for y € (y;_1, ;). The same holds for f2.
We can rewrite (4.97) in the form (see (4.47), (4.48)),

T 1 - T ol ~
—/ /VAaTQSAdydT—F/ / ~gR0, VAP dydr
o Jo o Jo S
T o1 T 1
o Jo o Jo

First, we estimate

T 1 T 1
_ 1
/ / \VA—VA\dydT=§|Ay|/ / |0,V2] dydr < C|A,| — 0, (4.99)
0 0 0 0

by Lemma 4.2.3.
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Since VA — V in Ly((0,7) x (0,1)), VA — V ae. in (0,T) x (0,1) (see
Lemma 4.2.7) and |V2| < C < oo (from Lemma 4.2.2), and since ¢ is smooth,
it follows from (4.99) by invoking the Lebesgue theorem, (A.2.3), that?

/ / vAaT¢Adydr—> / / vV, ¢ dydr. (4.100)

From (4.69) we obtain, as in Lemma 4.2.6, that

/ / (0y va dydT < K(Q) for Q< 1. (4.101)

This in turn implies the existence of a subsequence of {V2} for which 9, V2 —
x in Lo(I x (0,Q)) (weak convergence) (see Appendix, Lemma A.2.4). From

the identity
/ / vAa Oyvdydr = — / / 6V vdydr,

with v € C§°(Qr) and from the convergences

/ / VA9,vdydr — / / Vo, dydr,
o Jo A=0Jo Jo

T 1 T 1
/ / ayVAv dydr — / / x vdydr,
o Jo A=0Jo Jo
we find that

T 1 T 1
/ / Vv dydr = / / x vdydr Vv e C5°(Qr).
o Jo o Jo

Hence, x = 9,V € La(I x (0,Q))? in the weak sense. We can assume (¢ is fixed)
that supp, ¢ < @ < 1, therefore

T 1 . T 1 .
/ / 2gR0,VA4A dydr — / / 240,V dydr, (4.102)
0 o S A—0 0 0 S

2This is seen as follows. We have

(VA2,8:¢%) = (V2,8:¢° —0:¢) + (VA —V2,8:¢) + (V2,0:9)
< VAL, |10-6% = 070l|Ly + VA = VAL, 11070 Lo + (VA 0-0).

In the limit, the first term tends to 0 by the smoothness of ¢ and the second term by (4.99).
It remains to prove that we can pass to the limit under the integral sign. Notice that V2 —
V a.e., and that |V2| < g, where g is an integrable function.Thus, Lebesgue’s theorem is
applicable.

3Here we write y € (0,Q). Note that the y-integrals are on (0,1) due to the compact
support of v.
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since £§2¢® — 2y¢ in Ly(Qr) (strongly).
Slmllarly,

/ / L 0,V20,(a0)® dydr — / / Lo,V (a0)dydr,  (4.103)

since 0,(ag)® — 9y(ap) in La(Qr) (strongly). Furthermore, we have that
fA¢" — —fo, due to the fact that f; = —f(yis(T —7),T — 7).

Taking the limit |A, | — 0in (4.98) and applying (4.100)-(4.103), we conclude
that V = 1 satisfies (4.50).

Now, multiply (4.42) by ¢;A, and sum for ¢ = 1,..., M. Due to the prop-
erties of the regularization of a (see (4.94)), we have that a; = 0 for : < L. We
can assume that supp, ¢ < Q = LA, < 1 because ¢ has compact support. It
follows that the contribution resulting from the third term of (4.42) is 0. The
argument used for 9, V2 cannot be repeated for 9,W*, because we only proved
that ayWA € L1, and L; is not reflexive. To this end we proceed as follows.
Due to

M-1 M—1

D s Wir1didy = yv16m 1 W —yodoWi — > Wid(diyi)A,, (4.104)
i=1 1=1

we obtain

Z Wi, + Z W), = Z o, (410)

where we used ¢p;—1 = 0 and yo = 0 (Note that in general W # 0). Integrating
over 7 and performing integration by parts yield

/ / W20,¢" dydr + / / —WAa , (dy)> dydr

_ /0 /O " FAGA dydr. (4.106)

We now take the limit |A,| — 0 and use W2 — W in L (I x (0,Q)) (see Lemma
4.2.7 and Lemma, 4.2.2). Replacing V2 and V2 by W2 and W2 in the estimate
(4.99) gives W2 — W in Li(I x (0,Q)). The smoothness of ¢ together with
(4.106) implies the identity (4.51). Thus, W = ¥ (y, 7).
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It remains to prove the boundedness of the total variation of v; and ;.
Passing to the modulus and integrating the equality

1
VA(y—Fe,T)—VA(y,T):e/ VA +re,T)dr, 0<y<l—e (4.107)
0

over (t,y) € (0,T) x (0,1 — ¢€) gives

T 1—e¢
// |VA(Z/+€77') ya <€// / |3V Y, T ‘dyder<eC
o Jo

(4.108)
Similarly,
1—e
/ / ‘WAy-i-ET — WAy, ) // / ‘6W (y, 7 |dyd¢dr<eC’
(4.109)

We let |A,| — 0 in (4.108)-(4.109). By the pointwise convergences V2 — V/
and W2 — W and by the Lebesgue theorem, it follows that

1—e
hH(lJ sup — / / V(y+er)—V(y,7)| dydr < C < o0, (4.110)
€~ o Jo
and a similar result for W. O

Remark 4.2.7. Despite the obtained theoretical results about the solution of
(4.30)-(4.32), there are still open questions concerning uniqueness and smooth-
ness of the solution ;. However, the solution 11 is (at least) Holder continuous
fory € (0,Q) in Ly(0,T'). This is a consequence of Oytbr € Lo((0,T) x (0,Q)):
by the Cauchy-Schwarz inequality we have

Y2
oy, 7) — o (a7 < am(mds\
Y1
Y2 1/2
< |y1—y2|”2(/ |6yw1(§,7)|2d5> :
Y1
and hence,
T T rQ
/ r(a, ) — brln D dr < o — gl / / 1By01 (6,72 dédr
0 0 0
< 0@ lyr — .
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4.2.5 Convergence of the c-regularization

We introduced an e-regularization in Definition 4.2.3. As a consequence, the
problem in part IT of the domain is of the same type as in part I. Therefore, the
results for V' also hold for W in the e-regularization.

The solution can be guaranteed in the sense of Definition 4.2.1 and Definition
4.2.2, where we replace 1 by ¥y, Y11 by ¥11,e, a by a + € and (4.51) by

1 1
[ [ onvroavar— [ [y ztsin 0,0 ayar

1 1
[ | et lad) dudr = [ [ op(Loy(L-s(r-r). T-7) dyar.
o Y (4.111)

The variational solution ¢ . and 7 . can be constructed (as a limit) by means
of the same approximation scheme as used in Section 4.2.4 where a. is replaced
by aa + €, see (4.94)

The convergence of the scheme will be in Ly for both V and W, as opposed
to the earlier result, Lemma 4.2.6. However, it remains to prove that for ¢ — 0
the solution converges to the one of the original problem where W converges in
L1, 80 e — 1.

The L, estimates required for W can be easily recovered. The estimates of
Lemma 4.2.3 remains valid. Thus, we have

T 1
/ / |8yWA’€(y, T)| dydr < C. (4.112)
o Jo

Furthermore, by the Cauchy-Schwarz inequality we have

T—z Q
/ / WAy, 7+ 2) — WAy, )| dydr
0 0

T2 0 1/2
<C </ / (WA’E(y,T +2) — WA’E(y,T))2 dyd7'> < CzY?) (4.113)
0 0

where we used the result (4.93) from Lemma 4.2.6, which is now valid for W€,
Taking the limit |A| — 0 and using Lebesgue’s dominated convergence the-
orem (the *¢ are bounded) we have for part I

T—2z Q
/0 /0 (Wr1,e(y, T+ 2) — Yr.e(y,7))° dydadr < C(Q)z, (4.114)
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T Q
/ / (@yr.e(y,7))* dydadr < K(Q), (4.115)
o Jo
T Q ,
/ / (Vre(y+p,7) = Vr.e(y,7)” dydedr < p*K(Q), (4.116)
o Jo
on account of (4.79)-(4.91). For part II, the inequalities (4.112) and (4.113) give
T
/ / 10y ¥11,e(y, 7)| dydr < C, (4.117)
o Jo
T—z Q
/ / Wrr,e(y, 7+ 2) = Yure(y, 7)| dydr < Cz'/2. (4.118)
0 0

More in detail, the inequality (4.117) is argued as follows. In (4.112) C is
independent of A and e. The analogue of (4.101) in part IT is now

/ / (9, W2 )2 dydr < C, (4.119)
as 6(Q) = e and K(Q) < C in part II. We deduce that (e > 0 is fixed),

D, WA e Oa W€, in Ly(I x (0,Q)), VQ < 1,

T rQ T rQ
/ / d,Wepdydr = lim / / Dy WS <p dydr,
o Jo [Al=0.Jo Jo

Vo € Loo(Qr) C Lo(I x (0,Q)). It holds that

and

T rQ T rQ
/ / |0,W€| dydr = sup / / O, Weo dydr
070 I¢lo<1J0 Jo
T Q
= sup hm/ / ayWA’e(bdydT
|¢] . <11A]—0
< lolle sup hm/ / 0, W2 dydr
11A]—0
< C.

By a similar argument as in the previous section (see the proof of Theorem
4.2.1), we have that 9,W¢ = dytr7 . in the weak sense.
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The above estimates and a Kolmogorov compactness argument imply the
compactness of {¢1 .} in La(I, (0,Q)), VQ < 1, and the compactness of {17}
in L1(Z,(0,Q)), VQ < 1. Consequently, as in the previous section, we obtain

"/JI,E _>Owla for a.e. (va) € (OaT) X (07 1)7
y the method of diagonalization) and,
by th hod of di lizati d

wII,e —6"/)[[; for a.e. (y7T) € (OaT) X (Oa 1)

As 17 ¢ is uniformly bounded, we also have L;(Qr)-convergence. Next, we may
easily prove that {¢y, s} is a variational solution to (4.30)-(4.32) in the sense
of Definition 4.2.1 and Definition 4.2.2. This reasoning leads to the following
theorem.

Theorem 4.2.2. Let {11, Y11} be the variational solution of the e-regulari-
zation, obtained as a limit of the numerical approzimation {V>¢, W€}, with
a < ap +¢€. Then {”Q/J]’E,’QZJ]]’E} — {”Q/J[,w[[} for e — 0 in (Lg((O,T) X (07 1)) X
L1((0,T) x (0,1))), where {11,%11} s a variational solution of (4.30)-(4.32).

Proof. In addition to the previous arguments it remains to prove that {¢r, ¥y}
as a limit of {¢1, ¥r1,} is a variational solution.

In the case of ¢; the proof consists of the following steps. From (4.115) and
from 1. — 1 in Lo(I x (0,1)) it follows that,

Oythr,e = Oytpr, in Lo(I x (0,Q)) for any @ < 1.
Then, in the identity (cf. (4.50))

/1/01w1’687¢dyd7-_//1y§3y1/)1,e¢dydr
// Oypr,<0y [acd] dydT_// fodydr, (4.120)

we may pass to the limit e — 0, noticing that 9y [ac¢] — 0y [a¢] in Lo(I % (0,Q))
((0,Q) is the support of ¢). It follows that v . can be replaced by ¢ giving
(4.50).

In the case of part II, take the limit e — 0 in (4.111), where a. = e. Estimate
the last term on the lhs by

6// 50y 11,e0y¢ dydr

< eC’// |0y 11| dydr < €C,
(4.121)
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due to (4.117). Moreover, we use the convergences ;7 — ¥ and J. — 0 for
e — 0 in (4.111). This completes the proof. O

Remark 4.2.8. The problem (4.30) has been regularized by a viscocity term
€021p. The corresponding viscocity solution {1y ., W .} converges to the varia-
tional one, which we define as a viscosity solution. In the theory of Kruzkov the
uniqueness of the entropy (viscocity) solution is proved. However, our elliptic
part creates the convective term which is singular (because of d,a(s(t),t) = —o0)
and this is not included there. In any case our numerical approrimation con-
verges to the viscosity solution (as defined here) under the assumption that the
weak solution to (4.30)-(4.32) is unique. Our convergence result is only up to
a subsequence of {A;}. If the variational solution is unique, then the original
sequence {V21, WY is converging for | — oco.

4.3 Discrete time measurements

An adjoint method has been developed for inverse annealing diffusion problems.
The adjoint method works well, as is confirmed by experiment 4.4.1, and from
the experiments in the next Chapter.

However, in practice for diffusion annealing an extra difficulty is encountered.
The cost to get experimental values C*(z,t) over the entire setup time from 3
to 6 hours is prohibitive. A version is needed that takes discrete measurement
times into account, i.e. C*(z,t;), i« = 1,...,L. Typically, measurements are
obtained at times 5min, 30min, 1h, 3h. This does not allow to construct e.g. a
piecewise linear approximation in time of f(z,t).

The above theory can be adapted by using in stead (4.10) a cost functional
given by

kﬁ
I

M
Z/Q[C(l‘,thp)—0*(x,t¢)]2da:

T M
| 1t -t p) - a0 s
i=1

where § is the Dirac function. Theorem 4.1.1 changes slightly, in that the rhs
of (4.11) is now given by —f(z,T — 7) with

M
fla,t) = Z 2(C(x,t;,p) — C*(x, ;) 3(t — t;).
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Figure 4.5: Function x?(p) for p = (2.5,1.5). Left is the po-axis, right the
pr-axis. The contour lines are for the values 0.5, 1, 5, 10, 20 and 30.

This makes the implementation of the costate method more complicated, as
the adjoint equation has become a convection-diffusion equation, with reaction
only at specific timesteps. We plan to implement the procedure for the case
of discrete time measurements in the near future. In this thesis we apply the
Levenberg-Marquardt method as an inverse method since this can be easily
implemented, see Section C.4.4. In the numerical experiments, we demonstrate
the effectiveness of the continuous time version of the developed costate method.

4.4 Numerical experiments

4.4.1 Experiment 1: Adjoint method

We consider again the Barenblatt-Pattle problem. We take the diffusion co-
efficient D(C) := (p + 1)CP. The function C*(z,t), (4.5), is taken to be the
exact solution given by (3.16). Starting from an initial diffusion coefficient
D(C,p) = p1CP2, p = (p1, p2), the method is expected to converge to the exact
solution p = (p + 1, p).

To evaluate the algorithm, we compare the calculated value of V,F(p),
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(4.29), in some points, with the plot of the x?(p)-function defined by

X2(p) = (C(Il, tjap) - O(xivtjvi)))z )

Jj=11i=0

where C(x;,t;) is the approximated solution to (4.2)-(4.4) that is obtained with
our numerical model. This comparison technique is valid, as x? will have the
same qualitative behaviour as F, (4.10).

In Fig. 4.5 we have plotted x?(p) for M = 60 and N = 100, in a sample of
width X = 15, that underwent diffusion during 60 sec. We can distinguish two
regions: an ellipsoidal valley floor where x?(p) < 1, with midpoint being the
minimum p = (2.5,1.5), and the region where 1 < x?(p). In the valley floor, the
gradient should be very small. Therefore, small errors can lead to a direction of
the gradient which does not point away from the minimum, as it should. Most
inverse methods will fail once the parameter values are within this region. In
the remaining part of the region, the gradient should be perpendicular to the
contour lines, and pointing away from the minimum.

| N=101,At=01s [ p1 | p2 | —V,F | RMS ]
1 25 1 | (-2.54,8.73) [ 0.0556
2 2.5 | 1.5 | (0.222,-0.511) | 0.0214
3 25| 2 | (2.27,-5.82) | 0.0495
4 2.5 | 25| (3.20,-7.07) | 0.0826
5 35| 15| (-1.27,5.18) | 0.0364
6 45| 15| (-1.43,7.55) | 0.0538
7 4 | 1] (-2.35,12.8) | 0.0855

[ N=202,At=0.05s | p1 | p2 | —-V,F | RMS |
8 2.5 [ 1.5 | (0.124, -0.410) [ 0.0159
9 25 | 25| (3.26,-7.37) | 0.0804

Table 4.1: Values of —V,F and root-mean square error for several parameter-
sets.

In Table 4.1 several values of —V,F are presented. These were obtained by
means of the developed numerical method, where At = 0.1sec and where an
equidistant grid with 101 gridpoints was used. Here, At does not refer to the
used time discretization, as this is done automatically in our stiff ODE solver,
but only to the discretization of —V,F, (4.29). All values correspond with the
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expected ones from Fig. 4.5. This indicates that all inverse methods which are
based on the obtained value for V,F will converge to p.

To illustrate the effect of grid refinement, we also present in Table 4.1 the
case of an equidistant grid with 202 gridpoints. The change in —V,F is small,
but the root-mean square error (RMS) at (2.5,1.5) clearly decreases.

4.4.2 Experiment 2: Levenberg-Marquardt

In Fig. 3.10 an apparent diffusion coefficient is given that was obtained using the
Levenberg-Marquardt method on the data depicted in Fig. 3.11. The diffusion
coefficient was constructed with 8 couples (Cy, pi), where C; = 0.8 1075 and
Cs = 1.7,107°. As initial values for the parameters p, we took the diffusion
values from [66], the Si-Fe interdiffusion (0 at%Al). This Si-Fe interdiffusion is
also shown in Fig. 3.10.






Chapter 5

Inverse problems for the
dual-well experiment

5.1 Subsurface parameter identification

In Chapter 2, an efficient numerical method has been developed to solve con-
vection dominated diffusion problems, and this was applied to the the dual-well.
The importance of dual-well experiments is the determination of the properties
of the subsurface, see Appendix B for an overview.

We demonstrated that the measured BTC shows a clear response to the value
of a number of parameters, mainly the longitudinal dispersivity «r, the conduc-
tivity k£ and the parameters arising in the adsorption isotherms. In subsurface
modeling, common experiments to determine dispersivities or other parameters
are the following.

e The column experiment. Water with tracer concentration Cy is injected
into a column. The concentration is measured at the other end. This is a
laboratory scale experiment of range 1m.

e Single well injection-extration method. This is a global scale experiment
of range 2 to 4 m. A radioactive tracer like 3! or 34 Br is injected into
a well for a time to. Then fresh water is injected to push for some time,
after which water is extracted from the well. Probes at different depths
record the concentration over time.

183
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e Dual-well or multi-well tests. At a range of 4 to 20 m, a single well
cannot control the velocity field, so dual-well tests or multi-well tests are
used. In the dual-well extraction-injection tests, two wells are drilled about
10 meters apart. Water is pumped from one well and injected into the
other at the same rate, so as to form a steady flow field. After steady
state conditions are achieved, a tracer is added into the injection well,
either continously or in a pulse. By sampling from the extraction well, we
obtain a curve of the tracer concentration versus time. Observation wells
can be added to measure the concentration in different places around the
extraction well. An extension of this method form the multi-well tests,
that use more than two wells.

e Global multi-well tests. On a range of 20 to 100 m, multi-well systems
can still be used, but loose their accuracy, as the natural flow field will be
dominant. This can be solved by drilling two parallel rows of wells, per-
pendicular to the natural flow field. A steady and uniform one-dimensional
flow will appear between the two lines, after which a tracer can be injected
into the aquifer from a well in the middle of the row.

In all of these experiments, one obtains a so called break through curve (BTC)
from which all information needs to be extracted.

For the inverse problem we shall measure the time evolution of the concen-
tration C'()(¢) in the extraction well depending on the concentration evolution
C®@(t) in the injection well, see Chapter 2. The average concentration at out-
flow is the advective tracer mass flow per second in the well over the volume
of water flowing per second. The mass in the subsurface is the mass in the zy-
plane times the height and porisity, Ophes, see Section 2.2. Therefore, denoting
by p the parameters on which the model, and hence the break through curve,
depends,

f5Br1 (—a,0) DohesCp(z, y,t)(n - v) ds
fziBrl (—d,0) Ooher(n - v) ds
fszT1 (—d,0) Cp(x,y,t)(n - V®)ds

= 5.1
féBrl(_d’O)(n -V®)ds (5.1)

Jo He 0y, o), 1)(0,B(0) V(o ( >>2+<y/(u>>2du
foﬂ' 2(coshv(61>—cosu) ) \/ :E' u) ( ))2du

1 us
= —/ Cp(u, v, t)du
™ Jo

ciM) =
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Here n denotes the outward normal vector on the boundary 0B,, (—d,0) of the
circle with radius r; centred at (—d,0). The index p is the model parameter
vector, e.g. p = (k,ar,ar). If p is given, C,(,l)(t) can be computed from (2.44)-
(2.48). Thus (5.1) is the only measurement information that we shall use in
the inverse problem. Note that this type of measurement is very different from
to those in Chapter 4, where experimental values over the entire domain where
given. Here, only an integral over a part of the boundary is known.

The approximation scheme developed in Chapter 2 was accurate and fast.
These are the main characteristics needed to solve inverse problems. Accurate
but slow schemes will fail to obtain answers in a reasonable time, whereas fast
but less accurate methods will provide non-reliable answers.

We now present how the developed scheme can be optimally used for pa-
rameter identification, invoking the techniques explained in Appendix C. We
start with the Levenberg-Marquardt method applied to the dual-well. Next, we
develop a costate method for this set-up. These results have been published in
[58, 41]. Recently, the adjoint technique has been extended to non-equilibrium
adsorption and to the use of a different penalty function by J. Kacur and J.
Babusikové in [36].

5.2 Use of the Levenberg-Marquardt method

For the inverse problem we first use the Levenberg-Marquardt method. As
our parameters are in RT™\{0} we optimize the logarithm of the parameters
instead of the parameters themselves. This has the benefit that the parameters
cannot attain negative values, and that the stepsize is always relative. Thus, we
introduce a penalty function

Flp) =D _(C7 () = ¢ (),

where C'1) is the measured BTC and C;()l) is the concentration in the extraction
well corresponding to a parameter set p = (p1, .. ., p,) and obtained numerically
from (2.44)-(2.48). Starting from an initial parameter set p*, a new set is given
by

pitt =pk+ (JiDy)| P (5.2)
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Here, (Ji)i; = pjﬁijz()i)(ti) the logarithmic Jacobian, (Dy); = C,(,l)(ti) -

CM(t;) and X is a parameter which is initially chosen equal to Tr(J{ Ji.)/Tr(I),
see [70]. If the new parameter set gives rice to a smaller penalty function value,
it is retained, and ) is divided by an ever increasing integer so as to get quadratic
convergence. In the other case, the parameter set is discarded, and another set
is sought with a larger A value. The process is stopped when A becomes larger
than a preset value Amax-

The main advantage of the Levenberg-Marquardt method is its robustness.
However, the numerical determination of the Jacobian can have a heavy price,
especially when the solution of the direct problem is elaborate, and there are
many parameters. For every parameter p;, an extra direct run with p; + Ap; is
needed to obtain (J);;.

5.3 Use of the adjoint equation method

As mentioned before, the adjoint equation method determines the gradient of
the cost functional in terms of the parameters. This gradient can then be used
in an iteration based method as for example conjugate gradient methods, De
Broyden methods, etc.

For our convenience we present the deduction of the adjoint system in a
slightly less complex setting. We assume Dy = 0 and a7 = 0. This is feasible
as these two parameters are very small compared to the other parameters, and
therefore have only a small influence on the BTC. Observe that it is not feasible
to determine these two parameters in the experiment used to obtain sorption
isotherms. Therefore, they do not play a role in the construction of the adjoint
system.

From (2.62), the problem to be solved is

9 (C + B(py, 0)) = g(u, )9, (2pAA0, C) } + g(u, v) Av0, C, (5.3)

where p, are the parameters in the time derivative, e.g. for Freundlich (K, q),
and p,, e.g. (ar), are the parameters in the diffusion part. Furthermore,
B(py,C) = #¥(C) and g is a known function depending on u and v:

472

=———— A=coshv—cosu
v30phes (V)

g
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The boundary conditions become, see Chapter 2,
(20@/\14

) 8,C + AC = ACy(t) on Ty, (5.4)
9,0 =00onTyUTy, 9,C=0 onTs. (5.5)

The parameters p = (p,,p,) must be retrieved by the inverse method.
We consider the penalty function,

T N
F(p) = / (CO () = CD @) dt = > AL(CV (1) = CD (1)) (5.6)
0 i=1
We now deduce the corresponding costate method.

5.3.1 Deduction of the adjoint system

We prove the following.

Theorem 5.3.1. Let C(u,v,t,p) be the solution to the problem (5.3)-(5.5),
where B is a smooth function, t € (0,T) and F is defined by (5.6). Let 1)(x,T)
be the solution of the following convection-diffusion equation

(14 B'(py, Clu,v, T — 7)) 0rb(u, v, 7) — 02X Ap20,(g(u, v)(u, v, 7))
+ Av0, (g(u, v)Y(u,v, 7)) =0, (5.7)

where B’ = %, p = (p1,p2) and p2 = «y, along with the boundary condi-
tions

dy(9¥) =0, on Ty, (5.8)
Outh = 0, along Ty and Ty, (5.9)
2AAp20,(g) — gAy) = % /077 (2 (C(u, v, T —71)—CO(T — T))) du, (5.10)

on I's, together with the initial condition

Y(u,v,0) =0, (u,v)é€ [u(l),u(z)] X [v(l),v(z)]. (5.11)

Then, one has
T
V,F - <_/ /atwmsdvclt—/ v, B(0)(0) dV,
0 Jo Q

/T/ 20A(0,C) 0y (g(u, v)1) dth)7 (5.12)
0o Ja
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where (u,v,t) = Y(u,v, T — ).
Proof. As a first step we deduce the variation §F of the cost functional:
§F = F(p+dp)—F(p)

= [ [0 - e - e - 0] ai

:/OT

c
_ / ! (CMP 0<1>()) (cgisﬁc;l)(t)—zé(l)(t)) at
0

_ /OT[ / 5C,(u v(l)du} [;/OW (6C(u,vV)+

2 (C,,(u, oMy — é<1>(t))) du] dt.

M %) — oO2(t) — 26D (1) (s = CO®)] at

p+6p p+3p P

Here, we have omitted that all concentrations depend on ¢. Dropping higher
order terms, we have

T T
5F = / / K()5C, (u, o™, ¢) dudt, (5.13)
0 0

up to first order, where

K(t) = = /O i (2(Clu e, 1) ~ CO ) au.

T2

In the next step the equation in variations is used to eliminate 6C' from
(5.13). First note that the solution corresponding to the parameters p + dp is
C + 6C and satisfies (5.3)-(5.13). Substract equation (5.3) for C' + §C from the
equation for C. Using

B(p, + 6p,,C + 6C) = B(p,C) + B'(p1,C)5C + V,, B 6p, + HO.T,

where B’ = ac’ and neglecting higher order terms, we arrive at

0:{6C + B'(p,,C)6C + V,, B - 6p, } = g(u,v)dy (2AA [6p20,C + p20,6C1)
+ g(u,v)Av0,0C, (5.14)
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with boundary conditions

20A
- [p20,6C + 6p20,C] + ASC =0 on Ty, 0,6C =0, elsewhere, (5.15)

and initial condition

0C(u,v,0) = 0. (5.16)

Eq. (5.14)-(5.16) constitute the problem in variations. We multiply (5.14) by a
smooth function ¥ (u,v,t), to be specified below, and integrate over Q x (0,7).
Integration by parts gives

T

dv
0

[ 660+ B w015 + 9,5 -dpy)
Q

T
—/ / () [6C + B'(py,C)6C + V,,, B - 6p,] dVdt
o Ja

T
I / / INA [3paByC + padadC] Du(g(u, v)e0) AVt
0 Q

e

dudt

T T
+ / / 9(u, v)2XA [6p20,C + p20,6C] ¢
o Jo o)

e

dudt.
v

- / ' | adCo, (gt o) avar + / ' / " g, ) ArdC

We perform integration by parts on the term that contains 0,0C. We invoke
the BC and IC. Furthermore, we restrict the auxiliary function v (u,v,t) so as
to obey the condition

Y(u,v,T)=0.
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This leads to
T T
/ / 5CO (1 + B (py,C)) dVdt + / / OV, BVt - 5p,
0 Q 0 Q
T
+ [ VuBOUOV-op, - [ [ 240,000 (g(u,0)0) aVat b,
Q 0 Q

T
—l—/o /950 (002X Ap20, (g(u, v)y)] dVdt (5.17)

e

dudt
e

T ™
_ / / SC2X\Ap2d, (g(u, v)1))
0 0

T T
+ /0 /0 g(u, v)yA(=6C)yp dudt

1):1)(2)
@

dudt = 0.
(D

- /O ' /Q 6C0, (g(u, v)) Ay dVdt + /O : /0 ' 6Cg(u, v)p Ay

By choosing appropriate constraints on the function ¢ this can be further sim-
plified. Indeed, if 1 is taken so that it satisfies

(14 B'(py,C)) 0t + 0,2 Ap20y (g (u, v)¢)) — Oy (g(u, v)¥) Ay =0, (5.18)
together with the boundary condition:
Au(g(u,v®)p) =0, on Ty (5.19)
then (5.17) simplifies to

T
/ / OV, BAVdt - Sp, + / v, B(0)(0)dV - 5p,
0 Q Q
T
- / /2/\A(8UC)Bv(g(u7u)1/J)dth op2 (5.20)
0 Q

T T
- / / 3C (u, vV, 1) [Wpaav(gw,v(”w)—g(uw“))Aw dudt = 0.
0 0

Comparing this equation with (5.13), we see that the last integral is equal to
0F, if a last boundary condition is imposed on % on the outflow boundary, viz.

[224p20, (9(t, 0 0)) = g, o) Ay, 00, 0)| = K(t) on T3 (5.21)
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where
K(t) = % /Oﬂ (2(Coluv.1) ~ ¢O)) du.

Consequently, the boundary condition on I's is independent on u. Note that up
to now we have no BC on I'; and I'y. This was to be expected since convection
and diffusion happen along the characteristics (v-lines) due to the used trans-
formation and due to the fact that ar = 0 = Dy. To complete the system, the
following two BC are added:

Oy = 0, along 'y and I'y. (5.22)

The choice is based on the same symmetry reasons that are used for the BC of
the direct problem on these edges. O

5.3.2 Numerical approximation

Problem (5.7)-(5.11) is a variable coefficient convection-diffusion problem, with
coefficients depending on space and time. As flow and diffusion are along v-
lines, the problem is split in independent v-strips. Each subproblem will then
be solved independently as a 1-dimensional convection-diffusion problem. We
choose the method of lines for the numerical approximation. Setting u = u;,
consider a partition {v;}, (j = 0,..., M), of the v-strip, where vy = v!) and
var = v®). Denote 1; () ~ ¥ (u;,vj,7) and let Iz(v, ) stand for the Lagrange
polynomial of the second order interpolating the points (v;_1,%;-1), (v, ;) and
(vj41,%;41). Then, approximate 0,¢ by dlz(v;,j)/dy = (dl2(v, j)/dy)v=., and
02 by d?ly(vj, §)/dy? = (d*l2(v, j)/dy?®)y=v, . For the Robin BCs, the governing
PDE is extended to the boundary points and is approximated similarly as in the
inner points. To this end, introduce fictive points v_; and vys41 and assign to
them the values that v obtained from the discretization of the Robin BC by
means of the second order Lagrange interpolant in the border points. This leads
to the system of ODEs

d A dla(vj,7)  2ApaAg d*la(vj, )
%1% (1) — W] (2p2 (0u(Ag) + A0wg) — 97) dy 1+ 8 dy?

(2]92811 O‘avg) - 'Yavg) wj (T)a (5-23)

1+B
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with j =0,..., M, (u,v) = (u;,v;), along with

dl 0
2AAng% + (2AAp20,9 — gAY)Yo (1) = K (T — 1), with (u,v) = (u;, vo),
(5.24)
and
dl M .
9% + (0pg)har (1) = 0, with (u,v) = (u;,vr), (5.25)

This gives M+3 equations for the M+3 unknowns, (j = —1,0,..., M +1). The
system (5.23)-(5.25) is solved by a standard package for stiff ODE, e.g. LSODA.
For the numerical realization of (5.12), let us first note that for Freundlich ad-
sorption it holds that V,, B = (C?, KoC?1n(C)). In the case of initial condition
(2.48) one has V,, B(0) = 0, simplifying (5.12). Then, numerical approximations
for C, ¢, 0u), 0,7 and 0,C lead to V.F.

We refer to Appendix C for the construction of iteration schemes based on
VF, like the conjugate gradient method that we will use in the experiments.
Different methods to determine this gradient can be used for the purpose of
comparison and they are also discussed there.

5.4 Numerical experiments

5.4.1 Without adsorption

For these linear inverse problems we only apply the Levenberg-Marquardt me-
thod, as the direct computation is very fast, and the number of parameters is
low. We shall consider a “standard” example with the following defining data:
the wells have each radius r; = 2 = 15cm and their centers are placed 10m
from each other (d = 5m, ¢ = 0). The height of the aquifer is H = 10m, the
porosity of the soil is fy = 0.2 and the hydraulic conductivity is k¥ = 10~°m/s =
0.864m/day. The longitudinal dispersivity «y, its transversal counterpart ar,
as well as the prescribed head value at the extraction well and at the injection
well will take various values in several experiments.

The computational grid, for 40 x 40 equally spaced nodal points in the trans-
formed (u,v) variables, is plotted (transformed back to Cartesian coordinates)
in Fig. 2.10.

For the inverse problem experiments, a pulse type of injection is used: the
concentration is constant C'(?)(t) = C; for 1 day and then is set to 0. For ease of
presentation, we take Cy = 1. The tracer is assumed not to decay and molecular
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k aj, aT RMS
1.7280 | 0.20000 | 0.02000 0.06152
1.3903 | 0.21460 | 0.02008 0.04759
1.0360 | 0.24149 | 0.02017 0.02242
0.8140 | 0.25024 | 0.02019 | 0.008917
0.8604 | 0.18218 | 0.02013 | 0.005374
0.8629 | 0.10900 | 0.02002 | 0.0008367
0.8661 | 0.09925 | 0.01995 | 8.744e-05
0.8660 | 0.09902 | 0.01965 | 8.202e-05
0.8656 | 0.09922 | 0.01773 | 6.702e-05
0.8645 | 0.09978 | 0.01241 | 2.226e-05
0.8640 | 0.1000 | 0.01014 | 2.126e-06
0.8640 | 0.1000 | 0.01000 | 1.462e-07

Table 5.1: Successive estimated parameter values for the pulse input injection
case, using only the extraction well averages, use of standard scheme.

diffusion is neglected. Resulting tracer concentrations in the extraction well for
this type of injection have been shown in Fig. 2.13 and Fig. 2.15.

The Levenberg-Marquardt method is based on repetitive execution of the
direct problem. If for this direct problem the standard scheme is applied, see
Section 2.3, we use an 80 x 200 grid with operator splitting time step 0.05 days
for the experiment and the inverse algorithm. If we use the benchmark scheme,
see Section 2.3.4, then a7 is set equal to zero, and the method is applied on 80
strips, with yq;, = 200 and time step 0.05 days. We always use the BTC over 18
days in the inverse experiments.

Experiment 1

We consider a BTC obtained for ay, = 0.1, ar = 0.01, h; = 4m and he = 15m.
Recall that £ = 0.864m/day. In Table 5.1 we display the successive values of the
estimated parameters by the Levenberg-Marquardt method, when starting from
the inaccurate initial values k = 1.728m/day, ar = 0.2m, ar = 0.02m. In Table
5.2 we display the same inverse experiment, except that now the benchmark
method is used in the Levenberg-Marquardt method.

Observe that in general the inverse method gives convergence first to k,
and to a lesser extend also to ay. It starts to converge to the final ap only
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k ary, RMS
1.7280 | 0.20000 0.06210
1.4414 | 0.2106 0.05073
1.0994 | 0.2307 0.02822
0.8332 | 0.2509 | 0.008319
0.8496 | 0.1942 | 0.005873
0.8616 | 0.1171 | 0.001336
0.8639 | 0.1007 | 5.832e-05
0.8640 | 0.09999 | 1.037e-06
0.8640 | 0.10000 | 7.919e-08

Table 5.2: Successive estimated parameter values for the pulse input injection
case, using only the extraction well averages, use of benchmark scheme.

after recovering these values. Therefore, we suggest the following strategy: first
apply the benchmark method to determine k and «y, in a first approximation.
Then, use the slower general method to refine & and «y and determine arp
simultaneously.

Experiment 2

We investigate the stability of the solution of the ill-posed inverse problem by
adding artificial noise to the measurement data. This noise is normally dis-
tributed with a standard deviation o. Fig. 5.1 shows the result of this pertur-
bation on the BTC for ¢ = 0.001 and ¢ = 0.01. In Table 5.3 we display the
successive values of the estimated parameters, when starting from the inaccu-
rate initial values k¥ = 1m/day, oy = 0.2m, with ¢ = 0.01, for the benchmark
method. We recover the exact values within 10%. The same result is obtained
with the general method. The transversal dispersivity cannot be recovered, not
even when o = 0.001. Starting from the inaccurate initial values k¥ = 1m/day,
ar = 0.2m, ar = 0.2m, with ¢ = 0.001, we recovered k¥ = 0.8635m/day,
ar = 0.1006m and ap = 0.004884m. Using only the BTC at the extraction well
does not allow us to recover the transversal dispersivity.

Experiment 3

A different approach has been used in Table 5.4, where we display the successive
values of the estimated parameters using the perturbed BTC (0 = 0.001) from
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Figure 5.1: BTC of pulse input for ay = 0.1m and the result of artificial noise

with ¢ = 0.001 and o = 0.01.

k aj, RMS
1.0000 | 0.20000 | 0.02030
0.8889 | 0.2002 | 0.01124
0.8505 | 0.1971 0.01000
0.8499 | 0.1883 | 0.009788
0.8538 | 0.1638 | 0.009237
0.8600 | 0.1248 | 0.008622
0.8624 | 0.1108 | 0.008538
0.8627 | 0.1095 | 0.008536

Table 5.3: Successive estimated parameter values for the pulse input injection

case, using the perturbed BTC (o = 0.01), use of benchmark scheme.
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k aj, aT RMS
1.0000 | 0.2000 | 0.02000 0.01844
0.8656 | 0.2000 | 0.01999 0.00648
0.8500 | 0.1938 | 0.01994 | 0.005953
0.8539 | 0.1782 | 0.01981 | 0.005193
0.8595 | 0.1420 | 0.01934 | 0.003219
0.8651 | 0.1059 | 0.01775 | 0.001109
0.8654 | 0.0997 | 0.01414 | 0.0009662
0.8648 | 0.0999 | 0.01094 | 0.0009640
0.8646 | 0.1000 | 0.01003 | 0.0009635
0.8646 | 0.1000 | 0.00996 | 0.0009634

Table 5.4: Successive estimated parameter values for the pulse input injection
case, using the perturbed extraction well averages (o = 0.001) and the perturbed
concentration values at an extra point (—5.6m, Om) (o = 0.0002).

the extraction well and the perturbed breakthrough data (o = 0.0002) at an
extra point. Note that the maximum concentration reached at this extra point
is only 0.0007. Convergence is reached for the three parameters. The conver-
gence is also faster: the parameter ar starts to converge before the other two
parameters have reached stable values. The RMS error in Table 5.4 is calculated
at the extraction well only. If in this experiment ¢ = 0.01 for the BTC at the
extraction well, similar results are obtained.

The better performance of the second method clearly lies in the presence
of values in a special, additional point. From the figures illustrating the direct
problem solutions, it is clear that the intensity with which the tracer can diffuse
beyond the extraction well is highly dependent on the value of ar. Therefore,
taking into accountn additional measurements at the extra point (—5.6m, Om ),
situated just beyond the extraction well, contributes essentially to the sensitivity
of the cost functional on ar.

We have also performed similar experiments in the setting of constant injec-
tion concentration, but the sensitivity on the parameter ar did not noticeably
increase. Experiments in which different weights are given to different portions
of the BTC in the cost functional, do not improve the convergence. Note further
that the bigger the ar value, the faster this value will converge if an extra point
is taken into consideration.
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P FD CD AM
(0.2,0.6) (0.095,-0.0065) (0-0938,-0.00644) (0.0874, -0.00673)
(0.094, 0.608) | (0.00741, -0.000568)  (0.00027 , -0.000603)  (0.000116, -0.000529)

(0.1016, 0.729) Stop. Cost = 0.000091

(0.1, 0.3) (0.0484, -0.0088) (0.0382 , -0.00919) (0.0349, -0.00899)
(0.0794, 0.305) | (0.0107, -0.00497) (0.00152 , -0.00531)  (-0.00275, -0.00514)
(0.0742, 0.474) | (-0.0151, -0.00063) (-0.023, -0.00074) (-0.024, -0.00066)
(0.0926, 0.516) | (0.0103, -0.00133) (0.0031 , -0.00136) (0.0023, -0.00121)
(0.1018, 0.769) Stop. Cost = 0.000038

Table 5.5: Gradient by 3 different techniques

5.4.2 With adsorption

In this section we use an experiment where the BTC is the result of the direct
model with the following parameters: d = 10m, ry = ro = 0.15m, H = hy =
10m, he = 15m, 6y = 0.2, k = 0.864, ar, = 0.02. Moreover, we consider
Freundlich adsorption with ¥(s) = Kys? = 0.1s"-%. There are 100 measurement
points at the extration well during the time interval [0,7] = 18 days. Operator
splitting is done every 0.1 days. At the inflow boundary there is again an
injection with Cy(t) = 1 for t € (0,1) and Cy(t) = 0 afterwards. The parameters
that we will try to recover inversely are o, Ky and gq.

Adjoint method

To illustrate the adjoint equation method (AM) for determining V.F from (5.12),
we compare this gradient with gradients that are calculted numerically with

the forward (FD), V,, = W, and center difference (CD), V,, =

f(’””p”) f( =9pi)  Take dp = 0.01, so that the FD is of order 0.01 and CD
of order 0 0001. FD and CD require repectively one and two extra solutions
of the direct problem per parameter in order to obtain the gradient. In Table
5.5 we present VF for different adsorption parameters p = (Ky,q). The first
and fourth line are initial values, the other lines give the minima as found by
line search based on the conjugate gradient method using as gradient the value
obtained by AM; the values in the table are the gradients for these parameter
obtained with the 3 different methods. We stopped the iterations when the cost
F < 0.0001.

The FD doesn’t provide good results as one parameter is retrieved within the
given accuracy, after which the error on the gradient is such that the sequence of
values for the second parameter can no longer converge. CD is comparable with
AM (slightly less good). The AM requires solving a linear PDE; it is obtained
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el
o+

P cost
(0.1, 0.3) 0.0065042
(0.0981 0.366) 0.0035
(0.0961 0.448) 0.0016
(0.0952 0.547) 0.00059
(0.0961 0.668) 0.00012

P cost
(0.2, 0.6) 0.035
(0.134 0.528) 0.0080
(0.105 0.608) 0.00075
(0.099 0.743) 0.000023

il
o+

w N = O
NS U )

Table 5.6: Levenberg-Marquardt iterations starting from 2 parameter sets

in a fraction of the time needed to solve one single direct problem.

Levenberg-Marquardt method

In a second experiment we compared the conjugate gradient method, based on
the adjoint gradient method, with the Levenberg-Marquardt method,

The main advantage of the Levenberg-Marquardt method is its robustness.
However, the numerical determination of the Jacobian can be computationally
costly, especially when the solution of the direct problem is elaborate, which is
the case in the present example. For every parameter p;, an extra direct run
with parameter value p; + Ap; is needed. Therefore, a direct run and an inverse
run will need (n + 1) times the time needed for solving (5.3), where n is the
number of parameters.

Again, we only allow the adsorption parameters to change. Starting the
Levenberg-Marquardt method (LM) from p = (0.2,0.6) and p = (0.1,0.3), the
initial values of Table 5.5, the iterations given in Table 5.6 are obtained. It can
be seen that LM is a little less efficient in the number of gradients that have
to be determined compared to the AM. Therefore, LM is an adequate method
if a small number of parameters is considered. In inverse problems with many
parameters the AM is preferable (inverse algorithms based on the gradient that
are better than CG can be used). Nevertheless, it may not be forgotten that
the line search needed to retrieve the minimum, implies several extra executions
of the direct problem when a method that uses line search, like CG, is used.
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Chapter 6

A practical groundwater flow
problem

6.1 Physical background: Toth’s regional flow
problem

Complex real world groundwater flow problems are often idealized so to admit
analytical solutions, which though “elementary” give a good insight in basic
groundwater hydraulics. Toth’s regional flow problem is an example of this,
and is referenced in many textbooks, e.g. [9], and [24]. Our goal is to re-
approach this problem so as to get a semi-analytical solution in a more realistic
domain, Fig. 6.2.

We consider the problem of groundwater flow in a small drainage basin,
as first presented by Toth in [72] and theoretically analysed in [73]. The basin
has vertical impenetrable boundaries corresponding to symmetry considerations.
The longitudinal component can be neglected as in most small basins the slopes
of the valley flanks greatly exceed the longitudinal slopes of the valley floors.
Therefore, a two-dimensional model can be adopted in (z, z) coordinates, with
x the horizontal coordinate and z the elevation. The basin furthermore has
the special property that the water table follows the surface. This is possible
when the aquifer has a low conductivity and there is abundant rainfall. First,
the domain is assumed to be limited by a horizontal impermeable boundary
at the base. Next, we will consider a semi-infinite domain, having no base.

201
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This last assumption will approximate the situation of very deep basins. In the
absence of sources, the stationary hydraulic head, h(z, z), satisfies the steady
state equation

V- (K(2)Vh(z,z)) =0, in Q

where K (z) is the hydraulic conductivity, see (B.5).

There exist several simplified approaches for the problem. Toth, [72] and
[73], has studied the boundary value problem for Laplace’s equation (KX (z) con-
stant) in a finite vertical, two dimensional, saturated, homogeneous, isotropic
region bounded on top by a sloping sinusoidal curve, which represents the wa-
tertable. However, he approximates the problem by reducing the domain to
a rectangle with the given top boundary values projected onto the top of this
rectangle. This assumes that the solution has the same value on the top of the
rectangle as it did on the given boundary. In [68] the top boundary condition
is taken into account exactly, but a vertically infinite region is considered, the
z-coordinate varying from 0 to —oo. The hydraulic conductivity is assumed
to decrease exponentially with depth, i.e., K(z) = ce??, which is supported by
some experimental data. The assumption of the semi-infinite region, of course,
only allows reliable results for deep drainage basins but not for the usual basins
of depth from 600 up to 1000 feet, as studied by Toth. More generally, numer-
ical methods such as finite difference or finite element methods can be used to
solve such problems, but these methods require more CPU-time with increasing
depth of the basins, and don’t provide as much qualitative information as a
formal solution.

In this chapter, we first search the hydraulic head h in a non-homogeneous
porous medium, in a region bounded between two vertical impermeable bound-
aries, bounded on top by a sloping sinusoidal curve and by a horizontal im-
permeable boundary at the base. We extend the result by allowing a Dirichlet
boundary condition at the base. The latter is conform with an underlying
confined aquifer of high conductivity that interacts with the considered low
conductive region.

To deal with the present problem, we first extend the semi-analytical method
of [68] and reduce the problem to solving an infinite system of linear equations.
In case of a Dirichlet boundary condition at the base we use a Fourier series de-
composition of the boundary condition. This involves a Gramm matrix which is
positive definite. This system is truncated so as to yield an approximate solution
that provides the best match with the given boundary data at the top surface.
To test the validity of the method, a simple Galerkin finite element method was
implemented. Moreover, an infinite element method was implemented to reduce
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0 10 20 30

Figure 6.1: Area in Central Alberta with parallelism of creeks.

the computation in case of deep drainage basins.

An outline of this chapter is as follows. In Section 6.2 we present the original
analytical solution of Téth. In Section 6.3, we state the mathematical model
for the hydraulic potential. In Section 6.4, we derive a formal solution to the
boundary value problem by a suitable Fourier expansion method and infinite
linear system techniques. In Section 6.5, we discuss the semi-analytical approach
and obtain some numerical results that are compared with results from the
literature. In Section 6.6 we briefly sketch a finite element approach and we
also deal with an infinite element method.

For continuity with the sources and citations, American units, i.e., miles and
feet, will be used almost everywhere in this chapter. The results presented here
appeared in [57, 55]; an outline of the numerical algorithms was presented in
[54].
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6.2 Toth’s regional flow model

In [72], Toth started the study of small drainage basins in Central Alberta,
Canada, Fig. 6.1. The surface of the area generally slopes downward to the
east. The surface is very gently rolling and is subdivided by a few main creeks
into nearly parallel watersheds and valleys. The distances between adjacent
water divides are 6 to 10 miles. The creeks all have tributary coulees that are
dry except during periods of surface runoff.

He observed 3 features: a close correlation of the piezometric surface with
the topography in general; relatively high or low natural levels in certain wells
as compared with the general piezometric surfaces at wells of similar depth; the
different character of the change in head with changing well depth, if the wells
are grouped according to recharge and discharge areas. Examining the effects
of the topography and geology, he suggested the following conditions:

1. No confined or unconfined flow system of large areal extent can be formed.
It can be stated that any single watershed seems to constitue a unit system
in the groundwater flow, allowing to speak of single local regions that can
be studied independantly.

2. Vertical impermeable boundaries can be assumed to exist for all practical
purposes at water divides and streams. This is because the topography
is approximately symmetrical relative to either a water divide or a valley
bottom. Further, recharge is due to infiltrating rain and melt water, wich
is equally distributed on both sides of a divide or stream.

3. An abrupt decrease in permeability can be considered to exist at the bot-
tom of the top layer. This top layer is the Paskapoo formation (mostly
soft gray, clayey sandstone) of thickness from 0 to 600 or 1000 feet going
from east to west across the area. Below this is the Edmonton forma-
tion (sandstones and siltstones cemented with bentonitic clay), which is
marked by a drop in permeability. Further evidence for this aspect is
contact springs that exist where contact zones outcrop. We can therefore
treat this boundary as a horizontal impermeable boundary.

In the theoretical approach [73] an analytic solution was given. The surface
of the water table was taken to have a fixed slope, superimposed with a sinus
function. The region of the groundwater flow was represented however by a
rectangular area, Fig. 6.2. This rectangle was made of a horizontal impermeable
boundary at its base, by two impermeable boundaries extending downward from
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Figure 6.2: The domain.

the stream and the water divide, and by a horizontal line at the elevation of
the stream along which the head is supposed to be the same as that for the real
water table.

The mathematical model for the steady state case of the hydraulic head h
is the following. The domain Q is 0 < z < L, =T < z < 0. The water table is

given by
2
g(z) = % +Vsin< ng) ,

where L > 0,7 > 0, a > 0, and V are constants and n is a fixed positive integer.
From (B.5) with constant hydraulic conductivity, we obtain

Ah(z,z) =0, (6.1)
where A is the Laplacian. The four boundary conditions are

Oh Oh

— =0 = =— o=, = 0,
83:' 0 83:' L
oh
a_ lz=— = 0,
8z| r

h(z,z=0) = T+ g(x),
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where the impermeable base is the stratum for the head. The general solution
of the Laplace equation can be written as

h(z,z) = e **(Acos kx + Bsinkx) 4+ e**(M cos kx + N sin kz),

where the arbitrary constants A, B, M, N are determined by the boundary
conditions. The final expression reads, [73],

V
hx,z) = T+ g + 2—(1 —cos2mn) + (6.2)
2mnV L (1 — cos 2mn cosmm) aL
w23 | o

cosmm — 1)

— 27m) — (mm)?

cos(mmx/L) cosh(mmz/L)
L cosh(mnT/L) ’

and satisfies the boundary conditions and the Laplace equation. Toth gives
several examples for different values of the parameters; these can be compared
with the (general) examples later in this chapter.

A well known result was obtained for deep basins, see the figures in [73].
Three distinctly different types of flow systems can occupy a basin: local, in-
termediate and regional systems. A local system of groundwater flow has its
recharge area at a topographic high and its discharge area at an adjacent topo-
graphic low area. An intermediate system has its recharge and discharge areas
a few topographic highs and lows further away. Finally, the regional system has
its recharge area at the water divide and its discharge area at the bottom of the
valley. This system is present in all deep basins.

In the next section, we present our more general mathematical model. It is
an extension of [68]. We will highlight the differences of our results with those
of [68] throughout.

6.3 General mathematical model

As in [73] we consider the following governing differential equation for the hy-
draulic head h(x, z) in the stationary regime in absence of sources

V- (e®Vh(z,2)) = 0,in Q. (6.3)
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Figure 6.3: The domain

The hydraulic conductivity is K = ce? (c a positive constant, d > 0). The
domain ) under consideration is given by (see Fig. 6.3)

2
0<x<L and —T<z<g(a:)5—{%+‘/sin<ng)], (6.4)
where L > 0,7 > 0, a > 0, and V are constants and n is a fixed positive integer.

The boundary conditions are given by

oh oh
5 7=0 = g le=2 =0, (6.5)
hz,2) =2 on z=g(x), (6.6)
and
oh
&Lz:fT - Oa (67)
or
M, 2)|z=—1 = f(z). (6.8)

Here, as in [68], g is defined by (6.4). Moreover, f is a piecewise smooth function
on [0,L]. We recall that in [68], the depth T of the soil layer is taken to be
infinity, the boundary conditions (6.7-6.8) being replaced by the condition that
h is bounded for z — —o0.
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6.4 Analytical solution

By separation of variables a formal analytic solution of the diffusion equation
(6.3), i.e.

0?h  0*h  Oh

—+-5+d—=0 inQ 6.9

02 " 92 Yz RS (6.9)
under the mentioned boundary conditions is found. We set h(z, z) = X (2)Z(2).

We obtain 2 separate second order ODE which can readily be solved taking into
account the BCs. With BC(6.5) we derive

o) = { P00 b S cos ) (e ) 6.10)
m=1

M,0 + 12,06
2.2
—diq/d2+4mL;T , meN. (6.11)

Moreover, 1; m (i = 1 and 2; m = 0,1, ...) are arbitrary constants. In (6.10) the
top line corresponds with the case d = 0, the bottom line with the case d # 0.
We'll keep this notation throughout.

The coefficients 7; ,, (i = 1,2;m =0,1,2...), are determined in such a way
that h(z, z) satisfies the remaining BCs (6.6) and (6.7) or (6.8).

Here, A is given by

1
AE = -
™2

Case of Neumann BC (6.7)
The function h(z, z), given by (6.10), coping with (6.7), has the form

= mmx At - -
h(w,2) =n10+ D 1m cos( 2 ) [emz - /\—TG(AM’\;)TG)""Z] . (6.12)

m=1

Case of Dirichlet BC (6.8)
Imposing (6.8) on the function (6.10) requires that

_ ) mo—n2oT S mm( -\LT 7>\,_,LT)
oy = { 0 0T b S (™) (e T 4 e ) (619

m=1
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0 < z < L. On account of this cosine Fourier series expansion of f, we may ob-
tain the coefficients 7, in terms of 1; ,,,, m € N. Consequently, the expression
(6.10) reduces to

h(z,z) = % + miz D, COS(m;JTQC)eA;(erT) + { 7127’]02,1;(;17:&_(1%1 ¢ d(=41)) }
+ W;i:l M,m Cos(mzmc) [e)‘;z - e(’\f_ﬂ*Ajﬂ)TeA;ﬂZ} (6.14)

where
Dm:%/OLf(t)cosmedt,meN. (6.15)

The expressions (6.12) and (6.14) can be combined into a single one, viz

Dy = MAL, - Bo(1+ ap2)
h = = Dy, e () T
(z, 2) 5 mZﬂ cos( i Je + Bo(1 — age—dG+T))
+ Z Bm COS(mgm) [ekinz - ame(A;ﬂ_Vﬂ)TeA;ﬂz} . (6.16)
m=1

Here, (3., (m € N), are arbitrary constants. In the case of the BC (6.7) one has

A
ao=0,a, = )\—’_n, (m € Ny), Dy, =0, (m € N).

m

In the case of the BC (6.8) one takes
am =1, (m € N), and D,, given by (6.15).

The coefficients 3,,, (m € N), must be determined by imposing the remaining
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BC (6.6), i.e
2 - a2 LV sin(258e
_ [% +Vsin( 2T ] _ Do _ Z D, cos( M o =4 i)
Bo(l + QOW)
Bo(1 — age " ~lEVein(n)) )
- mnx + Jax . 2mnx
—|-mZ:1 B, cos( ) {exp [ A, { T T V sin( T )H (6.17)

_ 2
—ame()‘m_)‘r'z)T exp {—)\:n {% + V sin( ﬂzwr)H } ,0<x< L.
This condition is made non-dimensional by setting
y=a/L, ap = fm/L, 0t =XEL, D,, = D,,/L, (m €N)

and ~ R
a=a/L, V=V/L T=T/L.

Introducing K (y) = ay + V sin(27ny) for 0 < y < 1, we get from (6.17) that

Do

-K(y) — — — Z D, cos(rmry)e"mTe_‘7 K ()
m=1
—K)
R R (6.18)
040(1 _ aoedeLedLK(y))
+ Z Qi cOS(mary) [e“’jnK( V) _q,,e0mom)Te—om K(y)}
m=1
Define
1+ao=5Y, d=0,k=0
ug(y) = cos(kmy) [efo;:K(y) _ ake(U;*Uz—)Tefok_K(y)} . otherwise.

Then, condition (6.18) can be rewritten in the form

— -—= - Z D, cos(mmy)efmTe=om K W) — Z amum(y), (6.19)

m=1 m=0
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where 0 < y < 1, from which the remaining coefficients ., (m € N), must
be determined. Multiplying both sides of (6.19) by ux(y) and integrating with
respect to y over (0, 1), we arrive at the formal infinite system of equations

> bk = i, k €N, (6.20)
m=0
with
1
bem = / ug(y)um (y) dy. (6.21)
0
1 DO 1
o = [ wwKdy - [ wwady (622
0 0

oo

1
-D,, Z/o u(y) cos(may)em T e~ Tm KW gy

The infinite matrix B= [bgm|k,m=0.1,2,... is the Gramm matrix of the set {u :
k € N}.

The integrals (6.21) and (6.22) can be evaluated analytically. To this end
we recall the definition of the modified Bessel functions of the 1st kind

Im( ):(%) Zk 0(%) m7

and we invoke the identity (see [22])

e—psin9 +22[2q COS 2(]9 +2212q 1 )bln((Qq_l)a)v (623)

q=1

V6, in order to deal with e~k K(®).

We first evaluate 2 auxiliary integrals, which are then used to express by, and
cr- We make some notational assumptions for brevity. In both expressions the +
symbol denotes the sum of two terms, one for each sign, or the sum of four terms

if there are a pair of plus and minus signs (see [68]). For example, ﬁ =
+b —b tatb _ _ __a+tb —b —a+b —a—b
(a-;—lb)2+c+ (a—ab)2+c7 and (ia:;:lb+c)2 - (a—&l—lb-‘,-c)2 + (a—ab+c)2 + (—a-ll-lb+c)2 + (—afb-‘,-c)2 :
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On account of (6.23) we obtain

1
T(m,k, A, B) E/ cos(mmy) cos(kmy)e~ATBIEW) gy
0
a(A+ B)(1 — e*a(AJrB)(_l)ker)
(m £ k)22 + a2(A + B)2
a(A + B)(1 — e~ @A+TB) (_1)ktm)
[(m + k)7 + dgnn)” + a%(A + B)?

(6.24)

= Sh(V(A4+B)

(—1)%I24(V(A+ B))

NGRS
WK

_|_

Q
I
-

(=1)%I5, 1 (V(A + B)) x

NGRS
hE

+

Q
—

[(2;— 1)2nm £ (m =+ k)7 (1 — e~ @A+B) (—1)k+m)

[(2¢ — 1)2n7 + (m £ k)n]> +a2(A+ B)2 A+B#0.

Similarly, (6.23) leads to

S(k,A) = — /01 K (y)cos(kmy)e AEKW) dy (6.25)

_ aniayd _Aae D [@A? - (k)] (1= (CDFem™)
oo { @Ay + i " (@A) + (k)2 }
Voo (@nrtkr) (1-(=1)Fe )
_EIO(VA) (2mr + kﬂ)z + (aA)z
} 0o . 5 Ad efaA(_l)k
_a,q:1(_1) Izq(VA) {_ (dA)2 + (kﬂ' + 4qn7r)2
@A) G ) (1 (1o
[(@A)? + (kr + 4gnm)?)?
[+k7 + dgnm + 2na] (1 — (—1)ke—24)
[£km + 4gnm + 2n7]? + (aA)?

[(2q = 1)2nm £ kr] e A (-
(@A)? + [(2q — 1)2n7 + kn)*

2aA[(2q — 1)2nm + kr (1 — (—1)ke=04)
[(@A)? + ((2q — 1)2n7 + k7))
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<r

[\

v o0 Yy (V) { aA(1- (—1)k2—aA)
- [(2q — 2)2n7 £ kn]” + (aA)?

aA ( — (—l)ke’“A)
- [4gnm + kn)® + (aA)? } A0

Now, the entries of the Gramm matrix entering the infinite linear system (6.20)
can be written as:

boo = 1—2a0e” TT(0,0,0,07) + ape2 TT(0,0,0,207), when d # 0,
2 a
boo = ].—ao( +ﬁ+2v?—ﬂ_¥2 ), when d =0,
bog = T(0,k,0,07) —ares —7TT(0,k,0,0;) + %S(k,oy)
— %6 =TS (k, 0y, ), when d =0, k #0,
boe = —ape T L Dk ko o) + e R TT (ke ko 07),
when d =0, k # 0,
bem = T(kym, o), 07) — amen )Tk m, o, o)

—ape T % )TT(k m, o, o5 )

Fapame'r Ton = =TT (kom0 oL ),

Y mo

when d =0, (k — m)k # 0, and when d # 0, k +m # 0.

Similarly, the right hand side of (6.20) reads

1 = ~ .
— 5 —2a0e” 75(0,05) — Do (1 — 70 TT7(0,0,0, 00_))

CcCop =
—mee”;j( mO,Um,O)—eUOTT(m 0,0,,,0 _)), d # 0,
m=0

o= e (%8 D (1-4)

- Z DpenT (T ( (0,m,o,,,0)+ S(m,om)> , when d =0,

m=0
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e, = S(k,of)— ake(”’v_*”:)TS(k, o

)
—Dy (T(07 k,0,07) — el ~2)TT(0, &, 0, o—,;))

»Ymo

- Z DpeonT (T(m7 ko, o) — e(”;*”z)TT(m, k,o,, Uk_)) ,

m=0

with k =1,2,....
From (6.20), the unknowns «,,, m € N are obtained.

6.5 Approximation of the formal solution and nu-
merical experiments

The solution h(z, z) to the flow problem is given by (6.16). In practice, we must
approximate h by a truncated expression of the form

1
Do (IMTT A= (i) Bo(1+ao%)
hN,l(l’, z) = > + Z:le COS(T)B Bo(1 — aoefd(erT))
N mmx + +
bz Ap=A)T A;z} 6.26
+ 1nZ:1 Bm cos( 7 ) [e ame e , (6.26)

where the integers N and [ are parameters and —T < z < g(z), 0 < = < L.
Recall that in case of the homogeneous Neumann BC (6.7), D,, = 0 for all
m € N. The expression (6.26) with D,,, # 0 corresponds to the Dirichlet BC
(6.8) approximated by

1
h(x,z)|Z:_T = fi(z) = % + Z D, cos(
m=1

mmnx

). (6.27)

Notice that not only the Fourier coefficients D,, of f are decreasing functions of
m, but also A, (A, < 0), and moreover z +7T > 0 in (6.26). Thus, in (6.26), !
may be taken relatively small. The function hy,; above satisfies the BC (6.7) or
(6.27), as well as the BC (6.5). The error at the top surface z = g(z), 0 < z < L,
of the domain 2, committed when using hy ;(z, z) instead of h(z, z) reads

eni(z) =hni(z,g(x)) —g(z), 0 <z < L. (6.28)

The index [ has to be suppressed in case of BC (6.7).
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8,

Legend
S N= 20
- N =40
— N=60

Figure 6.4: The error on the top boundary in case of a Neumann BC for different
N-values, with data a/L = 0.05, V = 50, d = 0, L = 20000, 7' = 2000.

Minimizing the error ey ;(x) in the Lo-norm leads to the finite linear system
for o, = ﬁi”, (m=0,...,N):

N
> bmom =cx, k=0,1,...,N, (6.29)

m=0

where b, and ¢g, (k and m = 0,...,N), are given by (6.21) and (6.22), re-
spectively. This system is nothing else than the truncated version of (6.20). It
is regular. Indeed, the finite Gramm matrix is symmetric and, as the functions
ui(y), (k = 1,...,N), are linearly independent, also positive definite. System
(6.29) provides the best matching solution in the Ly(0, L)-sense on the top
boundary for a given N. The error ey () can easily be evaluated numerically.
The parameter N is chosen so that |len ;(x)|| is within a required accuracy. Fig.
6.4 depicts ey () for a specific choice of data with BC (6.7), (D,, =0, m € N),
for different values of N.

Some numerical results of the procedure are now described. These were



216 Chapter 6. A practical groundwater flow problem

X
X
0 10000 20900 0l 10Q00 20000

N

r—1000z

r—1000

e

r—2000

Figure 6.5: Equipotential lines in case of a Neumann BC. Data in left part:
a/L =0.05,V =50,d =0, n =4, L = 20000, T = 2000. Data in right part:
a/L =0.02,V =50,d=0,n=4, L = 20000, T = 1400.

obtained with a standard mathematical package, viz Maple. No programming
was necessary. In Fig. 6.5 we present 2 results with the same data as in [73]
(Neumann BC at the base). For N = 60, the equipotential lines are in full
agreement with those of [73]. Moreover, they are obtained over the entire do-
main, in contrast with [73]. Note that the flowlines of the groundwater flow
are perpendicular to these equipotential lines. In the left part of Fig. 6.5 we
have regional flow, i.e. flow from the highest part towards the lowest part of the
region, while in the right part there is only local flow, i.e. flow from a hill to the
nearest valley.

In the case of a shallow basin with decreasing conductivity and a Neumann
BC, Fig. 6.6 shows the equipotential lines for d = 0.00235 (N = 100) and
d = 0.0235 (N = 120) for the same region as considered in the right part
of Fig. 6.5. Note that for the second value of d the relative conductivity is
reduced from 1 to 0.1 on a depth of 100 feet. A direct consequence of the
conductivity decreasing with depth, is the decrease of the region where there is
vertical flow, i.e. the equipotential lines are more vertical, indicating horizontal
flow. Note, however, that the decreasing conductivity doesn’t change the local
flow character compared to the case d = 0. When T >> a/2, the numerical
results for the equipotential lines are found to be in good agreement with those
from [68], as it should on account of (6.18), when compared to the corresponding
relation in [68].

As a last example, we consider a region with a Dirichlet boundary at the
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base. We take the function f appearing in (6.8) to be linear in x:
f(z) = ux + v, v and v constant. (6.30)

This BC can be interpreted as corresponding to an underlying, highly conduc-
tive, aquifer. The function f then represents the Dupuit-Forcheimer flow (see
[24]) in this aquifer. The resulting equipotential lines are depicted in Fig. 6.7
for 2 specific choices of the data. For the truncated series (6.26) we have taken
[ = 21 and N sufficiently high to reduce the error to 1 % or less of the main
topographical features.

6.6 Numerical approximation methods

6.6.1 Finite element algorithm

Let 00 =T, UT,, with I'y NIy = @, be the boundary of 2. Here, I'; represents
the upper surface of the physical domain. We consider the diffusion equation
(6.3) under the BCs

oh
% = 0Oon Fl,
h = gonTly,

where ¢ is a given sufficiently smooth function defined on I's. For a weak for-
mulation of this BvP, 02 is only assumed to be Lipschitz continuous. Consider
the function space

V={ve H(Q) |v=0o0nTs}. (6.31)

Recall the weak formulation of the problem: find h € H*(Q) such that

dh dv  dhdv
ho)= | e | —— 4 ——|do=0, YweV. .32
a(h,v) /Qe [da:dx—i_dzdz} o=0, Yve (6.32)
and
h=g,on Is. (6.33)

Let 7,,, be a regular triangulation of Qs U _being a polygonal domain that
approximates Q. Set 0,,, = ['1;;, Ul'a,,,, where I'y,,, and ', are polygonal lines
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which piecewisely linearly interpolate I'y and I's, respectively. Here, m denotes
the mesh parameter. The standard finite element space on €2, is

Xm = {v e C°Q)| v| is a polynomial of degree 1 VK € 7, } .

The approximate (nonconforming) BVP corresponding to (6.32)-(6.33) takes the
form: find h,, € X,, such that

alhm,v) = 0, VweV,={veX,| v=0on fgm}.
hen = gm O F2m~

Here, g,, is the piecewise linear Lagrange-interpolant of g on I's,,.

The results of the FEM are found to be in full agreement with those from the
previous section. Actually, the equipotential lines obtained with both methods
are nearly identical. An example of the obtained equipotential lines is given
in the left part of Fig. 6.11 for a Neumann BC at the base, for a relatively
deep region (L = 8000, T' = 3000), which has been divided in 3025 triangular
elements.

However, the FEM does require more CPU-time with increasing depth of the
basin. Moreover, it cannot be applied to the BVP in [68] on a semi-infinite region
(i.e. T = —00). In Section 6.6.2 we’ll show how to cope with this difficulty by an
infinite element method. The hydraulic head will be obtained for a semi-infinite
region by using a small number of elements in the mesh, leading to minimal
CPU-time.

Application of the FEM. The FEM is more versatile than the semi-
analytic solution, in that (6.3) can be solved in more general settings like dif-
ferent domains. As an example, we consider areal recharge in a small basin.
We set up the following experiment. Consider 2 parallel rivers (at 2 = 0 and
x = L, x the transversal direction), with an elevation in between. The longitu-
dinal components of the flow can be neglected if the slope of the elevation flanks
greatly exceeds the longitudinal slopes of the river floors and the longitudinal
slope of the elevation top. Therefore, also in this case a 2-dimensional scheme
can be adopted, with = the horizontal coordinate along the elevation flanks and
z the depth. We may consider the rivers to act as no-flow boundaries, simula-
rly as in [72, 73]. As before, the groundwater level follows the surface. Below
the considered domain, we have an aquifer. This aquifer will undergo an areal
recharge due to the overlying basin. Based on the Dupuit-Forcheimer model,
we take the bottom boundary condition (6.8) to be

hw:L - hw—

f(z) = —Ex(x — L)+ 7 =+ haeo (6.34)

2
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Figure 6.8: Topology elevation between two rivers. Top of elevation is at z = 0,
L = 5500m, underlying aquifer at z = —400m. Equipotential lines for h,—o =
—290m, hy—y, = —300m, N = 0.05/L and d = 0.008.

with h,—o and h,—r, the hydraulic head of the aquifer under the rivers, and with
N being the areal recharge (dimension L/T), see [24].

For the experiment, we consider the elevation as in Fig. 6.8 and we take as
data for this problem h,—o = —290m, h,—; = —300m, L = 5500m, d = 0.008
and N = 0.05/L. This means that the areal recharge over the length L totalizes
0.05 m/s. The resulting equipotential lines are given in the same figure.

6.6.2 Infinite element algorithm

Comparison of the results of Section 6.5 for BC (6.7), with those from a semi-
infinite region, [68], shows that both results are in close agreement when 7' >>
a/2. Therefore, to reduce computational efforts, it is interesting to consider a
semi-infinite approach in those cases.

An infinite element method, [10] or [78], may be developed, using a constant
but unknown far field value of the hydraulic head for z — —oo, which replaces
the boundedness assumption in [68].

Let €2 be the semi-infinite region shown in Fig. 6.9. The boundary is denoted
by T1 UT,, with Ty Ny = . We have that I'; are vertical lines extending to
—o0. Consider the following BCs

h
% = 0 on Pl,
h = gonly,

h—cg as z— —o0,cg constant,

where again g is a given sufficiently smooth function defined on I'y, where I'; is
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Figure 6.9: The mapping of the infinite rectangular elements.

assumed to be Lipschitz continuous. We introduce an analogue function space
V asin (6.31). The weak formulation of the problem is identical to (6.32)-(6.33).

We construct a mesh for €2,,,. Here, Q,, is a semi-infinite polygonal domain
that approximates €, with boundary T'; U I's,,, where the polygonal line T's,,
piecewisely linearly interpolates the curved boundary I's of 2. The domain ,,
is splitted into a bounded part 5, and an unbounded part (¢ by means of
the horizontal line I's, z = —T. For g, we consider a regular triangulation
Tm, while on ;¢ we consider a mesh p,, of semi-infinite rectangles matching
perfectly with the elements of 7,,, see Fig 6.9. For the IEM we take globally
continuous, elementwise polynomials of degree 1 on Qg,. On i, we use globally
continuous, elementwise mapped bilinear polynomials as specified below.

Let K be a generic semi-infinite rectangular element, the corner points of
which are numbered as in Fig. 6.9. The abscissa of nodes 1 and 4 are denoted by
o and 2, respectively. We consider a master square element K with corners
(£1,+£1) in the &n-plane, as indicated. The mapping (£,7) — (z, 2) given by

2K K 2K 4K — 2 _ zﬁ(+rf{
{w= o e eI B v i
z= 2(-T—a)<L +a — a=(=2T—a) _
( )1+"7 + n= z—(—2T—a) 1
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/
\\\//

.r"

Figure 6.10: The nodes on I'3, and the connected semi-infinite rectangles.

transforms K into K, with correspondence of the nodes. Here, « < —T is a
parameter, the horlzontal line z = « inside K corresponding to the midline
n =0 of K. We denote this mapping by Fx. On K we consider the space
Q1(K) of bilinear polynomials. For each © € Q,(K) define

v(w,2) = (&), when (z,2) = Fx (&), (§,m) € K (6.35)

The function v is called a mapped bilinear function on K. Define 2 function
spaces on {2

Xm = {veC’Q)| v|y is a polynomial of degree 1 VK € 7,,, and
v|x is a mapped bilinear function with (6.36)
v|,_,_o — ¢ VK € py,, ¢ constant}

Vi = {veXn| v=0 on fgm} ) (6.37)

Consider the following discrete variational problem: find h,, € X, such that

alhm,v) = 0, YveV,

hm = gm On 1—‘Qm-

Here, g,, is the piecewise linear Lagrange-interpolant of g on I'y,,.

For computational purposes we must identify a suitable basis for the approx-
imation space X,,. To this end three types of nodes are distinguished: (a) the
nodes in Qg,\I's, corresponding to the triangulation 7,,; (b) the nodes on T's;
(c) the single node at infinity, corresponding with z — —oco. For simplicity in
notation, let the nodes on I's be numbered from 1 to N, see Fig 6.10. Moreover,
let the M nodes in Qg,\I's be numbered from N + 1 to N + M.
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To the M nodes in Qg, \I's we associated the functions h;, (i = N+1,..., N+
M) on Q) given by

hilg. = standard cardinal basis function on Qan corresponding to
Qfin

the node (x;,2;) in 7,
hi|Qinf = 0

The functions h;, (i = 1,..., N) associated to the N nodes on I's are defined by

hilg. = standard cardinal basis function on Qg corresponding to
Qf:n
the node (x;,2;) in 71,
hilg, = Y corresponding to ¢y on K through Fr,
hilg, . = @bf’i’l corresponding to ¢, on K through Fx, _,
h; = 0 elsewhere in Q¢

Here 1&1 and 1/34 are standard bilinear bqsisfunctions in K , associated to the
nodes 1 and 4, respectively. Recall that ¢1(£,n) = $(1 — &)(1 +n), ¥a(&,n) =
11+ +n). B

Finally, the function h;,; defined on €2, associated to the node at infinity is

hinf|§ﬁn = 0
_ T+
hi“fbmf = 1= 2T+aof%2'
It is continuous on I's and has the property: hi¢ — 1 for z — —oo. Observe
that the function h;, s has been constructed as the image of the function

Py + 13 = 17777 on K (6.38)
under the transformation Fg,, (for all i =1,..., N).
One easily sees that
Xh = span{hl, ceey hN, hN+1, ceey hN+M; hinf}.

Moreover, these N + M + 1 functions are linearly independent and thus form a
basis for Xj,. Of course, deleting the basisfunctions associated to nodes on 'y,
we are left with a basis for the space V},. In the decomposition

N+M

Up = Z cih; + Cffhinf, (6.39)
i=1
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Figure 6.11: Equipotential lines. Left: FEM in case of Neumann BC at the
base, with data L = 8000, a/L = 0.1, V = 80, d = 0.00235, T = 3000. Right:
IEM with the same data and o = —12000.

it holds that ¢; = up(zi,2;), ¢ = 1,..., N + M. Moreover, cg = lim,_,_ up,
(independent on z), i.e. cg represents the constant far field value.

Again, the results of the IEM are in full agreement with those from the
literature. In Fig. 6.11 equipotential lines are depicted, to the left obtained
with FEM, and to the right obtained with IEM. Both arise for the same data,
L = 8000, T" = 3000. The horizontal line in this figure corresponds with z =
—T. The parameter o has been set at —12000. The domain is divided in
3025 triangles and 40 semi-infinite rectangles. We obtained a far field value
cg = —411.971, which corresponds with the far field value that is obtained with
the semi-analytical method of [68], for N = 100, namely c¢g = —411.868.

6.7 Conclusion

We have developed a semi-analytical method to solve the groundwater flow
problem (6.3), under different boundary conditions, in a finite region bounded
on top by a sloping sinusoidal boundary. The method is simple and can easily
be implemented in a mathematical package. In particular, for the special case
of the Laplace equation (d = 0), the result has the same qualitative behaviour
as the one in [73]. However, our solution is valid on the entire region under
consideration, which is not the case in [73]. Furthermore, for the special case
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of a semi-infinite region (T = c0), the result is in full agreement with [68]. The
results over semi-infinite domains coincide with the results obtained for deep
regions with an impenetrable lower boundary.

Furthermore, we developed 2 different numerical methods that can be used
to readily solve problem (6.3). Both methods are found to give results which
are in full agreement with those from the semi-analytical method. They impose
no limitation on the form of the top boundary function g. The semi-analytical
method could also be adapted to handle this feature by using numerical inte-
gration instead of the decomposition in Bessel series.

The second numerical method was an infinite element method. It’s worth
mentioning that this method provides an alternative for the situation of too
many elements that arises in deep regions with the standard FEM. By using an
IEM the number of elements could be kept to a minimum, while still providing
excellent results. Note that the used standard FEM broke up for deep regions
when d # 0, because of too small entries in the stiffness matrix. Using some
form of adaptivity might resolve this difficulty. However, by using IEM, this
difficulty can readily be avoided.






Appendix A

Notations, concepts and
auxiliary results

A.1 Basic definitions, identities and inequalities

Let Q ¢ R™, (n = 1,2 or 3), be an open bounded domain with a Lipschitz-
continuous boundary and let [ = (0,7"), with 7" > 0 finite.

Total variation

There are several definitions possible for the total variation of a function. Most
common is the following definition:

Definition A.1.1. A function g € Loo(I X Q) has a bounded total variation (in
7 and x) if

TV (g) := hm sup — / / lg(x +e,7) — g(z,7)| dedr

+ lim sup — / / lg(z, 7+ €) — g(z,7)| dedr < c0. (A.1)

e—0

227



228 Appendix A. Notation and auxiliary theorems

Abel’s summation

Abel’s summation is a discrete version of the formula of integration by parts.
We have that

m m

Z bi(a; —ai—1) = bpmam — boag — Z(bz —bi—1)ai—1, (A.2)
i=1 i=1
Cauchy-Schwartz

Let H be an innerproduct space with associated innerproduct (.,.)y and norm
[I-llzz- Then one has

(z,9)g < |z||ulylleg, Vrandye H.

Young, Cauchy

The Young inequality is

1 1 1 1
ab< —a? + -b?, with ~+ - =1, (pand ¢ € RY), Va,beRT,
p q p q

The Cauchy-inequality is the special case

2 2

a
b< — 4+ —, VabeRt
a_2+2, a,b € R

from which it follows that

1
ab< Za2 4+ —p?, Ya>0, Va,beR*.
2 200

Holder

The Holder inequality is

1 1
/Q|fg|s||f||LpHg||Lq, Cho =1, (pand g €RY), VS € Ly(Q), Vg € Ly(©).
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Poincaré

There are several version of this inequality, relating a function to it’s gradient.
Commonly used is:

30 =C(Q) > 0 (fixed): |ul|z, < C|Vulr,, YueWyP(Q), 1<p< oo
In one dimension we have

30 =C(Q) > 0 (fixed): |ullwrr < Oz, YueW,P(Q), 1<p< oo

A.2 Theorems

We begin with the Ascoli-Arzelad Theorem, [77].

Theorem A.2.1 (Ascoli-Arzeld). Let X be a compact metric space, and
C(X) the Banach space of real-valued continuous functions f on X normed by
| f]l = supgex | f(x)]. Then a sequence {fn(x)} C C(X) is relatively compact in
C(X) if the following two conditions are satisfied:

fn(x)is equi-bounded (in n), i.e., sup sup |fn(x)| < oo,
n>lzeX

fn(x)is equi-continuous (in n), i.e., lim sup |fr(x) — fu(2")] =0
6—0 n>1,dist(z,z’)<é

Now we give the requirements for Kolmogorov compactness, which is an
extension of the Ascoli-Arzela theorem, valid in C, to L, (see [77], p.275 or [11],
p.72).

Theorem A.2.2 (Riesz-Fréchet-Kolmogorov). Let Q C R™ be open and let
w be strongly included" in Q. Assume that F is a bounded subset of L,(Q), with
1 <p < oo. Suppose that

Ve>0 3§>0, 6 <dist(w,CQ),
such that
[f(z+h) = fll,w) <€ VYheR"™ with |h| < and VfeF(*). (A.3)
Then F is relatively compact in L,(w).

1w is strongly included in Q if for the closure of w in R™, written @, we have that @ C Q

and @ is compact; we denote this by w CC Q.

2Note that if + € w and |h| < § < dist (w, CQ), that then z +h € Q and f(x+h) makes
sense. This can be seen as an integral equicontinuity condition similar to the one in the Ascoli
theorem.
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For functions which are also time dependent we can use the triangle inequal-
ity

I[f(x+p,t4+q)— f(, )l < | f(@+p,t+q)— flx, t+ )|+ f (2, t+q) — f(x,t)]],

to get Kolmogorov compactness if condition (A.3) is satisfied for every term
separately. Note further that requirement (A.3) is weaker than asking that the
partial derivative is bounded.

From [11], p. 54

Theorem A.2.3 (Lebesgue dominant convergence theorem). Let {f,}
be a sequence of L1(Q)) functions. Suppose that

a) fn(z) — f(2) a.e inQ,

b) there exists a function g € L1(Q2) such that for each n, |f,(z)] < g(z) a.e. in
Q.

Then; f € Ll(Q) and ||fn - f||L1 — 0.

Let h € Loo(£2). Under de conditions of the theorem one has that (f,,h) —
(f;h). [Note that (fn,h) = (fu = f,h) + (f; 1) < [[fa = fllz.|1Bl[Lo + (F, 1)

We end with a result on the extraction of a weak convergent subsequence
from a bounded sequence, [17]

Theorem A.2.4 (Eberlein-Shmulyan theorem). A Banach space X is re-
flexive if and only if every bounded sequence of X contains o subsequence which
converges weakly to an element of X.



Appendix B

Basic concepts in
groundwater flow modeling

B.1 The subsurface

“Subsurface” is the general term to indicate the medium that can be found
under the surface. This includes the fixed part of the earth, together with the
groundwater and the other substances and organisms within it. The subsurface
gives a massive impression, but in reality it is a mixture of particles of soil
with holes in between filled with fluid (water, oil) and/or air and gases. Many
processes take place: water flows through the empty spaces, bacteria live on the
surface of the soil particles, the soil adsorbs contaminants that are in the water,
fractures form when the water evaporates.

We focus on groundwater flow and on transport of a single contaminant.
Groundwater is present in almost all geological formations. In some materials
it flows very slowly, e.g. in clay or stone, in others relatively fast, e.g. in sand
or gravel. For most practical applications, the slow groundwater flow can be
neglected. Furthermore, it is generally not necessary to study the individual
erratic flow of a water molecule through the pores of the subsurface. A more
global view will be sufficient for most applications. Then, the movement of
groundwater can be described mathematically in a relatively simple way. The
main equations of water movement are based on two fundamental principles:
Darcy’s law and the conservation of mass.

231
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Material B0 (%)
Gravel, medium 32
Sand, medium 39
Sand, fine 43
Clay 42
Limestone 30
Dolomite 26
Dune sand 45
Loess 49
Shale 6
Tuff 41
Basalt 17

Table B.1: Representative values of porosity 6.

B.2 Nomenclatura

The subsurface consists of solid particles and empty spaces, called pores.
Porosity is the amount of pores compared to the the total volume of the under-
ground. We denote it by 6y. In Table B.1 some representative values are given.
The pores are partly filled with air, partly with water. The proportion of these
two elements classifies the subsurface. The water table is defined as the level
to which water will rise in a well drilled into the subsurface. Under this level we
have the saturated zone. Capillary water is the water that is held by surface
tension forces just above this water table. We call this zone the capillary zone
or fringe. The vadose zone extends from the upper limit of this zone to the
lower edge of the soil-water zone. Vadose zone water is held in place by hy-
groscopic, i.e., adsorption to the surface of the soil grains, and capillary forces.
Infiltrating water passes downward toward the water table as gravitational flow.
The top layer is handled independently, as the water amount in this soil-water
zone depends on the weather. In the zone of saturation, the porosity is a direct
measure of the water contained per unit volume. When we discuss water flow,
this generally only applies to the saturated zone. Only a portion of the water
can by removed from this zone by drainage or by pumping from a well. The
volume of water released from this zone per unit surface area per unit decline in
the water table is called the specific yield. More complicated situations may
arise, see [9] for details.



B.3. Darcy’s law and hydraulic conductivity 233

Apart from this general vertical division of the subsurface, a division that
accounts for the stratified nature of geological formations is often used in ground-
water flow modeling. The many layers of the subsurface are subdivided accord-
ing to their characteristics; three main subdivisions are made. The aquifer
is a formation that contains sufficient saturated permeable material to yield
significant quantities of water to wells or springs. An aquiclude is on the op-
posite side of the spectrum: it is a relatively impermeable confining unit, such
as clay. A formation in between these two, such as a sandy clay layer, is called
an aquitard. This may leak water to adjacent sand aquifers. In many models,
one is only concerned about the behaviour of the aquifers. The other layers
are viewed only as boundary conditions. In doing so, one must keep in mind
that the reality is much more complex. Three dimensional models take all this
complexity into account. But the disadvantage is that only in few places the
complete stratification of the subsurface is known.

Aquifers form our groundwater resource, and get most attention from mod-
elers. They may be classified as unconfined or confined. In an unconfined
aquifer, there is a water table. A confined aquifer does not have a water table.
This can happen e.g. when an aquifer lays in between two aquicludes, and is
completely saturated with water.

B.3 Darcy’s law and hydraulic conductivity

The first groundwater model was developed in 1856 by Henri Darcy, [19]. In
Fig. B.1 we depict his experiment. He investigated the flow of water through
columns of sand, by measuring the water levels hy, hy. These water levels are
refered to as piezometric surface or hydraulic head or heads, for short.
We have
h = p + z,
v

neglecting velocities. Here p is the pressure, v the specific weight of water,
and z the elevation above a horizontal datum. He discovered one of the most
important laws in hydrology: the flow rate through porous media is proportional
to the head loss and inversely proportional to the length of the flow path. The
specific discharge or Darcy velocity, ¢ is,

dh
P
where k is a proportionality constant called the hydraulic conductivity. The
minus sign indicates that flow is in the direction of decreasing heads. The Darcy

g=—k (B.1)
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S h,

z

‘ Zl—ljl; |h1

¥ datum

Figure B.1: Darcy’s experiment

velocity ¢ is an average discharge velocity through the entire cross section of the
column. The actual groundwater molucules are limited to the pore space only,
so the seepage velocity v, will be

-4
o

The hydraulic conductivity & of a soil or rock depends on a variety of physical
factors, and is an indication of an aquifer’s ability to transmit water. In Table
B.2 we give some representative values. As can be seen, k can vary many orders
of magnitude in an aquifer that may contain different types of material. These
aquifers are called heterogeneous aquifers.

A further complication are variations in one or more directions due to the
processes of deposition and layering. This is called anisotropy. Mostly, the
hydraulic conductivity in the vertical direction is found to be less than the value
in the horizontal directions. In three dimensions we write

(B.2)

Us

where K is a second order tensor with nine components. For an isotropic
medium, this will be kI. Here, k can be a function of the depth z. For a
simple anisotropic medium, it will still be a diagonal matrix, but with three
different diagonal elements.
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Material (unconsolidated) k (1072 m/sec)

Gravel, 3.0to0 3 x 1072

Sand, medium 6 x1072t0 9 x 107°
Sand, fine 2x1072t02 x 107
Loess 2x103tol x 1077
Clay 5x 107" to 1 x 107°
Limestone and dolomite 6 x 1074 to1 x 1077
Shale 2x1077to1 x 10711
Basalt 4 %1075 t02 x 107°
Permeable basalt 2to4 x 1075

Table B.2: Representative values of hydraulic conductivity k.

Darcy’s law applies to laminar flow (no large pores) in porous media, and
is certainly valid for Reynolds number! less than 1, which is applicable in most
groundwater systems.

B.4 Mass conservation equation

We take a representative elementary volume. More precisely, we consider a
rectangular box with measures Az, Ay and Az, centred at the point (z,y, z),
and having its boundary planes two by two orthogonal to the X-, Y- and Z-
axis, respectively. The law of conservation of mass in a time interval (¢,t + At)
requires that

Mass in — Mass out = change in storage.

In the limit Az — 0, Ay — 0, Az — 0 and At — 0, this readily leads to

[_aw(pwqw) - ay(pwqy) - az(pqu)] = at(pwao)ﬂ (B4)

in which p,, is the density of water in the point (z,y,z) at time ¢, ¢, ¢, and
q. are the components of the Darcy flux and 6 is the porosity. If we assume a
constant p,,, substitute (B.3) and take steady state conditions, we obtain

V- (KVh) = 0. (B.5)

IThe Reynolds number is defined by pqd/u, with d the pore space, i the viscosity of the
pore fluid, p the density.
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B.5 Dupuit-Forchheimer flow

In many groundwater models, the Dupuit-Forchheimer approximation is used.
Dupuis (1863) and Forchheimer (1886) independently suggested that flow lines
are predominantly horizontal, and velocities do not vary over the aquifer depth.
See [24], Chapter 3, for details, or [9], Section 2.5. We briefly recall the main
results here. The Dupuit-Forchheimer approximation assumes that

0z
This leads to one of the most essential simplifications of real-world groundwa-
ter flow problems: three-dimensional flow problems reduce to two-dimensional
ones. This assumption is normally valid when the length of a flow line is large
compared to the aquifer thickness or when the head gradient is not large.
A usefull concept is the fluid potential. We first define the discharge @ in
the z and y direction as

heff heﬂ
Q. - / Gdz, Q= / a,dz, (B.6)
0 0

where heg is the effective height of the water column, i.e. heg = min(H,h),
with H being the height of the aquifer and the head h being measured from the
base of the aquifer on. In the Dupuit-Forchheimer approximation the specific
discharge q does not vary over the aquifer height, and hence

Qw = heffqaca Qu = heﬁ'qy~

The flow potential or discharge potential ®(z,y) is the function for which
holds

oP oP
L= - B.7
Under the steady state conditions (B.5) one has
AP =0.
Combining (B.7) and (B.2), we obtain the seepage velocity as
1
Ve = — Vo (B.8)

heﬁ' 90 .
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The flow potential is known for many elementary situations, see [24]. Rele-
vant to our work is the relation between the flow potential and hydraulic head.
For confined and unconfined flow we respectively have that

P
P

z,y) = kHh(x,y)— 1kH? (h>H), (B.9)
z,y) = ikh*(z,y), (h<H). (B.10)
In the case of uniform flow field in the x-direction with discharge Qg, it holds
b =—Qpx+C.

In the case of a well, the pumping rate @,, (=discharge rate) must be given.
In polar coordinates (r, ), assuming circular symmetry of the well, (B.7) gives
i® _ Qu

dr — 2mr’

where the right hand side follows from the continuity of the flow across a circle
of radius r around the well. Integration gives

O(r) = 2—;”1117"4—0, (B.11)

where the integration constant C' must be chosen so that ® satisfies the boundary
condition. Using (B.9)-(B.10) to obtain the prescribed flow potential @ at a
distance R, we can write

O(r) = %ln% + ®g.

An important principle for flow potentials, is the principle of superposition.
As an example, the flow potential of a well @, at the origin, placed in a uniform
flow field Qg in the z-direction, is given by

@:—Qox—i—%lnr—i—a
27

B.6 Contaminant transport

Contaminants in the groundwater will move around with the water. This mass
transport will cause changes in solute concentration. The primary causes are:

1. Advection. The solute flows with its carrier, the solvent.
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Hydrodynamic Dispersion. The combined effects of mechanical dis-
persion and molecular diffusion spreads the contaminant out. Mechanical
dispersion is a mechanical process: because of the stochastic nature of
the pore space distribution in porous media and the nonhomogeneity of
the microscopic velocity distribution, the tracer particle groups are being
separated continously during the flow process. This causes the tracer to
spread out more than what is expected from just the mean flow velocity.
Molecular diffusion is caused by the nonhomogeneous distribution of the
tracer particles in a fluid. The tracer molecules in high concentration will
move towards the low concentration areas. Normally, mechanical disper-
sion plays the major role, but when the flow velocity is extremely low,
molecular diffusion may become more prominent. Dispersion along the
mean flow direction is called longitudinal dispersion; dispersion perpen-
dicular to it is called transversal dispersion.

Sources and sinks. A well can pump contaminant in or out, a buried
tank can leak contaminant, etc.

Adsorption and ion exchange. Adsorption and ion exchange occur at
the interface between the solid and liquid phases. The solute in the liquid
may be adsorbed by the solid. The mass in the solid may also get into the
liquid by dissolution or by ion exchange.

Chemical reaction and biological processes. Chemical reactions can
change the solute. Biological processes such as the reproduction of bacteria
will also change the concentration of certain solutes.

Radioactive decay. Radioactive components within the fluid will de-
crease in concentration as a result of decay.

All these factors should be taken into consideration. However, the impor-
tance of each factor may differ strongly from case to case. The convection-
diffusion equation for a contaminant in an isotropic medium (see [8, 69]) reads

8,(66C) = V - (0,DVC) — V - (0gv,C) + I. (B.12)

Here, C is the concentration of the contaminant in the groundwater, I denotes
the sources or sinks, the velocity vs = (v1,v2,v3) is given by (B.8), and D is
the dispersivity tensor, given by

Dij = {(Do + arvs|)di; + %(% —ar)}, i,j=123, (B.13)
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where Dy is the molecular diffusion, oy the longitudinal dispersivity, ar the
transversal dispersivity, and d;; the Kronecker symbol. If we inject water with
tracer concentration Cy into an aquifer, and the water injected per unit time
per unit porous media is W;, we have I = W;(y. In the case of extraction, with

Wpg the water extracted per unit time per unit porous media, the sink term
becomes I = —WgC.

Remark B.6.1. The expression (B.13) follows from a specific model, see [69].
Different models are possible. Therefore, care should be taken to verify the va-
lidity of the approach to a specific set-up. Certain properties must be checked,
e.g., the aquifer must be isotropic. Note also that mechanical dispersion cannot
cause a contaminant to move against the direction of flow; only molecular dif-
fusion can have this effect. If, however, in (B.13) the velocity is very high, the
diffusion is high too and a net flow of contaminant against the groundwater flow
could be observed, breaking the validity of this specific dispersivity model. One
could then, as a first modification of (B.13), make oy and ar dependant on the
mean velocity v, reducing their value when the mean velocity becomes large.

We now rewrite (B.12) for the case of the Dupuit-Forchheimer approxima-
tion. In a Dupuit-Forchheimer approximation, we reduce the problem to a 2D
setting by making the mass balance in the xy-plane. Here, diffusive and advec-
tive fluxes are multiplied by the effective height of the watercolumn, heg. Thus,
the advective flux through a point (z,y) is given by hegbovsC(x,y). Hence,
(B.12) reduces to

O (Goheffc) =V- (Goheﬂ?DVC) —-V- (Gohegsz) + heg!, (B14)

where v, and D are now given by their two-dimensional analogon.

B.7 Adsorption

The effect of adsorption can be assigned to a source/sink term. Consider si-
multaneously the mass balance within the solid phase (the soil matrix) and the
fluid phase. In the equilibrium assumption, the quantities of the tracer in solid
and groundwater are continuously in equilibrium. Thus, a change in one phase
immediately causes a change in the other. Denoting by S the concentration of
the tracer in the solid phase, i.e., the tracer mass in a unit volume of the solid,
the tracer mass conservation gives

9 (0S) = f. (B.15)
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Here, we have introduced the unknown function f for the mass of tracer trans-
ferred from liquid to solid per unit time and per unit volume of porous media.
o is the density of the porous media where adsorption takes place. In certain
applications it is valid to put o = 1 — 6y, i.e. the fraction of the soil matrix in
the total volume. In the liquid phase we have

8t(900) =V- (eoDVC) -V (00'050) — f (B16)
Eliminating the unknown function f from (B.15)-(B.16) yields
0t(60C) =V - (0DVC) — V - (6pvsC) — 0¢(0S). (B.17)

Here, S will be some function of C, S = ¥(C), which we call the sorption
isotherm?.

Many isotherms are considered in the geo-hydrological literature, depending
on the particular problem considered. The selection of the appropriate isotherm
is based on the study of the interacting components and on experiments. The
following sorption isotherm are most common, [8]

1. The linear isotherm

U(C)=aC +0d. (B.18)
2. Langmuir isotherm
w(e) = 2 (B.19)
S 14bC '
3. Freundlich isotherm
U (C) = aCP. (B.20)

4. Lindstrom-Van Genuchten isotherm

U(C) = aCe 2V, (B.21)

If the porosity 6y and the density o are constants, we can write (B.17) concisely

- 8(C) = V- (DVC) — V- (v,C) — 8:(¥(C)), (B.22)

where the fraction % is included into the constants that appear in the sorption
isotherm ¥(C).

2In some textbook S is the tracer mass per unit mass of solid. Then, in the formulas, Sps
will be the tracer mass per unit volume of the solid, where ps is the density of the solid, [8].
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In non-equilibrium, the amount of adsorption will deviate from the equilib-
rium adsorption. Therefore, the concentration of the tracer in the solid phase
obeys

S = k(¥(C) - 9), (B.23)

where k is the rate constant of adsorption. This equation is then coupled with
(B.17). Equilibrium is reached for x — oc.
B.8 Radioactive decay
For radioactive decay, the term I in (B.12) is replaced by
I=-X9C,

where )\ is the decay constant. If we consider both decay and adsorption, the
tracer mass conservation in the solid phase leads to

3i((1—00)S) = f — A(1 — 60)S, (B.24)

where again f is the mass of tracer transferred from liquid to solid per unit time
and per unit volume of porous media. In the liquid phase we have

0:(00C) =V - (60DVC) — V- (BpvsC) — f — A C. (B.25)
Eliminating the unknown function f from (B.24)-(B.25), we obtain
01(00C) = V-(60DVC) =V (0pv,C) =0 ((1—60)S)—A(1—6y)S —6p\C, (B.26)
which, under constant porosity 6y, can be written as

8(C) = V- (DVC) — V- (v,C) — 8,(¥1(C)) — AT, (C) —AC,  (B.27)

1—60¢

where . is included in V4.
In the non-equilibrium case, (B.26) needs to be coupled with

88 = r(T5(C) — S) — AS. (B.28)






Appendix C

Basic facts on numerical
methods for inverse problems

C.1 Introduction

An inverse problem aims at determining the parameters of a model so that the
solution itself satisfies certain given conditions. Typically, the conditions are
experimental values at a certain time point ¢. However, other types of conditions
can be required, such as for example smoothness of a prescribed function.

Inverse problems can be considered to be at least as important, if not more,
than direct problems. Consider for example CFD: huge effort has been done to
efficiently calculate the pressure and turbulent flow around airplane wings, giv-
ing the impression that little will be gained from future developments. However,
the industry aims at creating airplanes with optimal drag and lift, not at cal-
culating pressure curves around the wings, although that information is needed
to achieve the goal. The real quest, which will require huge research effort in
the coming years, is that for models that not only solve the direct problem, but
also determine the optimal wing within certain design bounds.

Inverse problems are known to be often ill-posed. This means that small
changes in the conditions which the solution of the inverse problem must sat-
isfy, can lead to large changes in the parameters searched. This is the so-called
instability of the inverse method. Fortunately, it is often possible to impose ad-
ditional constraints that bias the solution. This is called regularization. Regular-
ization is often essential to obtain reliable solutions to ill-posed or ill-conditioned

243
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inverse problems.

In the case of diffusion problems like the ones studied in Part I, the ill-
posedness comes from the physical background. No matter what the diffusion
coeflicient is, if the boundary conditions considered are no-flow boundaries, the
result at large time will be the same constant value over the entire domain. From
this constant value, no inverse method is capable of determining parameters of
the model. This emphasizes the importance of the construction of meaningfull
experiments, like e.g. the dual-well.

Two additional reasons, apart from the ill-posedness, make inverse problems
hard. The first is the problem of existence of a solution: the existence of a
model fitting the given required conditions is uncertain. The reason can be the
approximation in the physical model or noise in the data. Linked to this is
the error margin of the measurements which will result in ranges of parame-
ter values instead of a well defined value. Secondly, uniqueness is an issue: if
exact solutions exist, they may not be unique. The classic example is the ex-
ternal gravitational field from a spherically symmetric mass distribution, which
depends only on the mass, not on the radial density distribution.

In this chapter we focus on the mathematical tools (inverse problem for PDE,
and the theory of adjoint methods) needed in the later chapters. We refer to
[1] for a general introduction to inverse problems, as well as to [74], where the
emphasis is on computational methods. For optimization techniques we refer
the reader to [64].

C.2 The penalty function

If an analytical solution is not known, a precise numerical method is needed to
solve the direct problem. The inverse problem is then solved by minimising a
penalty function F, also called cost functional. The penalty function measures
the deviation of the experiment from the numerical solution. Suppose that N
experimental values, ¢;, taken at time ¢; and/or at position z;, ¢ = 1,..., N, are
given. Let o; be their deviation. Then, a typical choice for the penalty function
is the least squares fit of the data:

N 2
1 Gp(ti, vi) — ¢
F(p) = = ey ) C.1
)=y (2= (©1)
=1
where ¢, is the numerical solution obtained with the parameter set p.
The penalty function is often regularized to overcome the ill-posedness of

the inverse problem. The most common regularization is the so-called Tikhonov
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filter, see [1, 74]. We will not need any regularization for the inverse problems
considered here, because

e the results obtained without regularization are physically acceptable and
reasonable;

e regularization creates a bias in the solution of the inverse problem. This is
acceptable if it has a physical basis, which is not obvious for the problems
we will consider. Indeed, the parameters are not related with each other,
which makes Tikhonov type of regularization unsuitable.

It must be mentioned that not applying some type of regularization is not stan-
dard. However, if good results are obtained, it is acceptable. Applying a regu-
larization adds extra terms to the penalty function (C.1), see again [1, 74] for
details. All inverse methods given in the next sections can be adapted conse-
quently.

C.3 Abstract framework

We present the different methods in an abstract framework. Consider the initial
value problems of the form

at) = A(Qu(t)+ f(t), 0<t<tp, (C.2)
w©0) = o. (C.3)

Here A(q) is a bounded linear operator on a Hilbert space H, depending on
parameters q; the inner product on H is denoted by (-,-), and @(t) indicates
differentiation of u(t) with respect to t. We assume that g lies in a set Q4p of
admissible parameters contained in a normed linear parameter space Q. The
map q — A(q) is supposed to be Gateaux differentiable in the operator norm,
and the derivative is denoted by %.

In general it is assumed that the solution u belongs to the state space

H = L*(0,tp; H),

which is a Hilbert space with inner product

(. g = /0 (gt
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Moreover, we assume the existence of an observation space Z, which is a Hilbert
space with inner product (-, )z, and an observation operator

C:H— Z.

Given an observation z of u, the goal is to determine the parameter q. The
abstract translation of (C.1), neglecting the deviation, is then: determine q €
Q ap that minimizes the functional

J(q) = 3lCulq) - 2[|%, (C.4)

where u(q) is the solution of (C.2).
The gradient of J defined by

[erad 7 (q)); = %J(q +he)| = ag—q(f), (C.5)

is often used to obtain mingeco,, J(q). Here, e; is the standard ith unit vector
of Q. For further use we also define the Hessian
92T (q)

[HGSS j(q)]zj = 56]13% . (CG)

C.4 Optimization: Gradient based methods

The goal of this section is to provide the tools to analyze and compute minimiz-
ers for the cost functional. We focus on gradient based methods, also including
those based on higher order derivatives like the Hessian that can effectively be
estimated by the gradient. These methods are the most common ones, but other
methods, like genetic algorithms, exist.

Consider a functional J : R™ — R. Assume throughout that 7 is sufficiently
smooth, i.e. it has derivatives of sufficiently high order to implement the envis-
aged methods.

C.4.1 Steepest descent method

We consider the following algorithm.
Steepest Descent Method
n:=1;
Py := initial guess;
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begin steepest descent iterations
g,, := —grad J(py); #negative gradient
Zp = argmin,~o J(py + 29,,); #line search
pn+1 = pn + ann;
n:=n+1;

end steepest descent iterations

One of the key components is the line search. A common way to implement
it is to suppose that the functional J is quadratic, and estimate the initial value
of z in the line search. Optimizing this search is relevant since each evaluation
of J involves the computationally difficult task of solving a direct problem.
Inexact line search algorithms have been developed. See [74].

The steepest gradient method exhibits slow convergence in the case of ill-
conditioned systems, i.e. 7 has an ill-conditioned Hessian. A rapidly convergent
alternative is then the conjugate gradient method.

C.4.2 Conjugate gradient method

The conjugate gradient method converges faster than the steepest descent method.
Indeed, it provides the means to gain an optimal search direction pointing to
the minimum of the functional instead of to the steepest descent direction. This
method is mathematically based on the observation that finding the minimum
of ||Gh — f|| corresponds to solving the equation Gh = f, where Gisan x n
nonsingular matrix. This equation is readily solved by expressing the problem
in terms of a GT G-conjugate basis.
We now describe the version of the ¢G method for positive quadratic func-
tionals.
CG method for quadratic minimization
We minimize J(p) = ¢+ (b,p) + 3(Hp,p), where H is symmetric, positive
definite.
n:=1;
P, := initial guess;
gy := Hp, + b; #initial gradient
ho := —gg; #initial search direction
begin C@G iterations
zn = argmin,so J (p,, + zh,); #line search
Pri1 i= Pn + Znha;
gn+1 = Hpn+1 + b7
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. <th,9n+1> .
7n L (hn’th> )
Popi1:=—gni1 + Ynha; # so that (h,11,Hh,) =0
n:=n+1;

end CG iterations

In the above algorithm it is possible to replace the line search with a cal-
culated step based on the quadratic form. However, this is not the case in
general problems. In fact, for those one needs a nonlinear ¢G method such as
the Fletcher-Reeves conjugate gradient method, [64, 74].

C.4.3 Newton methods and the practical Gauss-Newton
method

Newton’s algorithm is one of the oldest and best methods for solving root finding
problems. In its simplest form it converges only if the initial guess is sufficiently
close to a solution.

In the Newton method we consider the quadratic approximation to J(g+s),

Qn(s) = J(q) + (grad J(q), s) + 3 (HessJ(q)s, s). (C.7)

If the Hessian is positive definite, then Q,(s) has a unique minimizer which
satisfies
gradJ (q) + HessJ (q)s = 0. (C.8)

Taking g + s as a new estimate for the minimizer of J starting from g, we
obtain the Newton iteration

i1 =4q, — [Hessj(q)]*lgradj(q)7 n=12,....

The advantage is that the method is straightforward, and no line search is
needed.

However, the disadvantage is twofold. First, convergence is guaranteed only
when the initial estimate is sufficiently close to a local minimizer, with rapid con-
vergence only obtained near the minimizer. Secondly, it may be quite expensive
to compute the Hessian and solve the linear system (C.8).

The first disadvantage can be overcome by applying a trust region glob-
alization, as explained in the next subsection. The second disadvantage can
be overcome by replacing the true Hessian by an approximation derived from
current and previous gradients of J. The most popular scheme for this is the
BFGS method, see [64, 74]. This method, however, does not guarantee positive
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definiteness of the approximated Hessian in all cases. In this thesis, we choose
the Gauss-Newton method, [1].

Gauss-Newton method The Hessian of J is approximated by

grad J (g)[grad J (q)]”
HessJ(q) =~ . C.9
(@) N (©9)
This approach is validated by (C.4). From that equation we have [grad J(q)]x =
ICu(q) — z||ga—fm||(3u(q) — z||z, and the (j, k) element of the Hessian reads

0 0
HesT (@l = g0 (10u(a) ~ 2= lCuta) <]
0 0
= a—quCU(Q) - Z||Za—qk||CU(Q) — 2|z
62
HCula) -2l Cola) ~ 2l

From the above it follows that in the Gauss-Newton approach, the last term is
neglected, which is valid if ||Cu(q) — z||z is small.

In practice, this method is applied to (C.1) as follows (see also [6]). Assume
p,, to be the parameter vector at the n-th iteration of the inverse algorithm,
having dimension M. The new parameter vector p,,, can be found from

I d (Pagr — Pn) + 1 Fo =0, (C.10)
where J! is the transposed of the Jacobian matrix .J,,, defined by

tia 7 . .
(Jn)m:aij, i=1,...,N, j=1,...,M, (C.11)

0;

and F,, is the column matrix defined by

(F7)i:w i=1,...,N. (C.12)

a; ’
From (C.10) it follows that

The practical Gauss-Newton method given here is somewhat more elabo-
rated than the standard scheme. Indeed, it uses a Jacobian matrix calculated in
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all experiment points (z;, t;), instead of the gradient of the cost functional. This
supports the practical implemantation of a finite difference based deduction of
the gradient which relies on storing the change in the measurement value in
every experimental point, see Section C.5.

Although the Newton-Gauss method only uses first order derivatives, it con-
verges quadratically if p,, is close to the optimum value p* which in turn has a
residual tending to zero, i.e. ||Cu(p*) — z||z — 0. If the residual is non-zero the
rate may become linear, and if it is too large, or if the initial value is far from
the optimum, the method will diverge.

C.4.4 Trust region globalization and the practical Levenberg-
Marquardt method

In this approach, the implementation requires the solution s of a quadratic
constrained minimization problem,

min Q,,(s) subject to ||s|| < A,. (C.14)

Here Q, is the quadratic approximation (C.7) of J, while A, is a positive
scalar, called the trust region radius, which is varied as the iteration proceeds.
We obtain iterations of the form

Qpi1 = q, — HessT(q) + A1) 'gradJ(q), n=1,2,...,

where )\, is zero if the constraint is inactive at iteration n (Newton’s method is
obtained), and a positive Lagrange multiplier otherwise. Trust region methods
tend to be more robust for ill-conditioned problems than line search techniques.
However, their implementation can be problematic, as the exact solution of
(C.14) can be computationally very expensive. Therefore, several approximate
solution schemes have been developed, see [64] section 1.2.4. One of earliest
applications is the Levenberg-Marquardt method.

Levenberg-Marquardt method The Levenberg-Marquardt method is the
simplest extension of the Gauss-Newton method. It minimizes (C.1) under the
constraint that the step taken from p, to p,,; is on a hypersphere of radius
A,. With the Lagrange multiplicator method, this gives, see [6], the update
formula

Ppt1 =Pn — (Jan + AnI)_lngn, (C.15)
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where ) is the Lagrange multiplicator, I the unity matrix of order n, and J,, F,
are given by (C.11), (C.12). A starting value for the extra parameter \,, must be
chosen. A good initial value is Ay = Tr(J{ J1)/Tr(1), [70]. If F(p, 1) < F(p,),
it is retained and we take a smaller multiplicator A,4+1 < A, in the next step.
Otherwise, the parameter set p,, ; is discarded and another one is sought with
a larger A\, value, e.g. A\, = 2\,, replacing A by twice its value. Note that if
An = 0, the Gauss-Newton method is obtained, whereas if )\, is large we are
close to a steepest descent method.

The advantage of the Levenberg-Marquardt method is that, by reducing A, a
quadratic behaviour of the method near the optimum is achieved. On the other
hand, by increasing A\ further away from the optimum, the method does not
diverge as easily, and might escape from local minima of the penalty function.

If the parameters are all positive, and have values several orders of magni-
tude apart, it is worthwile to apply the Levenberg-Marquardt method to the
logarithm of the parameters. The reason is that the method produces equal
step sizes for all parameters, which is of no use if the parameters are not of
the same order. Minimizing the logarithm overcomes this drawback. Thus, the
parameter vector in (C.15) is p,, = [1np§"), . ,1np(M”)]T, where p;-n) is the jth
component of parameter p in the nth iteration. Hence, the jth component of p
is found from
W p{™Y = [T T+ M) T E] 4", (C.16)

J

J J
where F, is similar as in (C.12), and J,, is given by
[Tnlij = Omp;) P, (tis Ti) = PjOp,; Op, (tis Ti) = pi[Inli
(i=1,...,N,j=1,...,M). Here, J, is as in (C.11). From (C.16) we get

n n — jgjn—ﬂ—kl 71‘7::Fn .
p{mH) = il ) I (C.17)

which can be approximated by

n+1 n T —17 n
Y = [T+ AT R g (C.18)

C.5 Gradient determination methods

Having outlined several methods that are based on the gradient of a least squares
fit in the observation space, we now discuss diffrent ways to obtain this gradient.
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C.5.1 Finite differences

The most straithforward way of determining the gradient is by finite differences
(FD), as this implies that a solution method must be developed only for the
direct problem.

The formulas used for the gradient are

0J (q)
Opi

~ L7q+he) - T(a)l

which is of first order in h, and

557;‘1) ~ %[j(q + he;) — J(q — he;)],

which is of second order in h.

Determining 7 (q) needs solving the direct problem in order to obtain Cu(q).
Thus, the first order FD needs one extra solution of the direct problem for every
parameter p; (M in total), and the second order FD needs two extra direct
problems to be solved (2M in total). When dealing with many parameters this
is not efficient.

Note further that the step h cannot be arbitrarily small because of limits in
the approximation of the direct problem. Here, roundoff errors also play a role.

C.5.2 Adjoint or costate methods

Adjoint methods can greatly reduce the cost of gradient evaluations. Here, the
gradient is found by solving a PDE related to the direct problem, and performing
several inner products. As an illustration, we give a formal presentation of the
method for the steady state case of (C.2).

In the steady state case, we have that

Alqu=f. (C.19)

For example, in a diffusion setting where the diffusion coefficient is a constant
parameter, we could consider A(D) = —DA(").

For simplicity assume that A is linear, invertible, and Fréchet differentiable.
Differentiation of the identity

A(q)A(q) " =1,
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yields
d dA
ZA(q) = —A(q) == Aq) .
da (q) (q) i (q)

Assume further that the forward problem is well-posed, and denote its solution
by
u=A(q)~'f.

Introduce the parameter-to-observation map F : Q — Z,
F(q) =CA(q)"'f.

Setting r(q) = F(q) — z, (C.5) leads to

rad (@), = - (a+hes)

— <%F(q+h6¢) h_O,T(Q)>Z
- - <CA(q)_1 (%&) A(Q)_lfaT(Q)>Z
- {(foe) 2@ A o))

The last equality follows by taking Hilbert space adjoints.
Denote by v the solution to the costate or adjoint equation

H

A*(q)v=—C"r(q), (C.20)

then

oag,~((BeYus) | i=toon can

Thus, the gradient is obtained by solving the adjoint equation (C.20) and per-
forming M inner products (C.21). For further details and an example we refer
to [74].

This deduction can also be developed for time-dependent problems such as
(C.2), see [75]. This leads to a formulation of the adjoint equation with a final
condition instead of an initial condition, as we encounter also in the Part II. The
adjoint equation for the problems discussed in Part I are deduced in Part II by
a more constructive approach, which is more suitable for specific applications
than the formal deduction given here, see Section 4.1 and Section 5.3.
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The application of the costate method to time dependent problems is in full
development, and several authors obtained disappointing results. Quoting from
[2] “... it was extremely difficult to obtain accurate search directions with gradi-
ents computed in this manner”. Questions have thus been raised concerning the
accuracy and convergence of costate approximations, even when the numerical
methods being used are known to converge rapidly on the direct problem. In
[75] it is shown that high order accuracy time-marching schemes on the forward
problem do not necessarily lead to high order accurate costate approximations.
Moreover, in some cases these approximations don’t converge at all. However,
these authors show that under certain circumstances, rapidly converging gradi-
ent approximations do follow. It is also shown that the numerical quadrature
scheme, used for the inner products, plays an important role in the final accuracy
of the gradient. Many of these problems come from the observation operator C
involving pointwise evaluations in time.

In Part I, we deduce the adjoint equation method for the problems discussed
in Part I and show that in these settings the method works well. We also prove
convergence of the approximation to the adjoint equation in the case of the
annealing problem.
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