
Personalizing quality aspects
for video communication in
constrained heterogeneous
environments

Personalisatie van kwaliteitsaspecten
voor videocommunicatie in
beperkte, heterogene omgevingen

Sam Lerouge

Promotor: prof. dr. ir. R. Van de Walle

Proefschrift ingediend tot het behalen van de graad van
Doctor in de Ingenieurswetenschappen: Computerwetenschappen

Vakgroep Elektronica en Informatiesystemen
Voorzitter: prof. dr. ir. J. Van Campenhout
Faculteit Ingenieurswetenschappen
Academiejaar 2005-2006

i

Dankwoord

Met het indienen van dit doctoraat sluit ik een periode van ruim vier jaar
af, waarin ik de kans gekregen heb om in een boeiend domein aan wetenschap-
pelijk onderzoek te doen. Het is dan ook een uitgelezen kans om de mensen te
bedanken zonder wie dit werk niet mogelijk zou zijn geweest.

In de eerste plaats wil ik mijn promotor, prof. Rik Van de Walle bedan-
ken. Het is dankzij zijn onuitputtelijke inzet en zijn pionierswerk in de wereld
van multimedia binnen de Universiteit Gent dat het Multimedia Lab kon ont-
staan. Deze jonge onderzoeksgroep vormde voor mij het ideale kader voor het
behalen van mijn doctoraat. Verder wil ik benadrukken dat ik het bijzonder
apprecieer dat mijn promotor altijd tijd heeft willen vrijmaken voor mij, ook
wanneer de omstandigheden dat erg moeilijk maakten.

Ook mijn collega’s van het Multimedia Lab wil ik uitgebreid bedanken.
Niet alleen zorgde hun kennis en hun opbouwende kritiek ervoor dat mijn ei-
gen onderzoek steeds is kunnen blijven vooruitgaan, ook zorgden ze voor een
aangename werkomgeving waar ik mij altijd thuis heb kunnen voelen. Een
aantal onder hen hebben grote delen van dit boek tot in het kleinste detail
doorgenomen. Zonder hun kritische blik zou dit werk heel wat onnauwkeu-
righeden, inconsistenties en onduidelijkheden bevatten die ik nu dankzij hen
heb kunnen wegwerken. Hen wil ik dan ook in het bijzonder danken voor de
geleverde inspanningen.

Graag had ik ook Rita Breems langs deze weg bedankt, niet enkel omdat
zij me door haar werk van heel wat administratieve rompslomp heeft verlost,
maar ook omwille van de vele aangename gesprekken in de loop van mijn
onderzoek.

Peter Dossche verdient ook een woordje van dank, omdat hij een aanzien-
lijk deel van dit boek heeft doorgenomen om me te wijzen op mijn grootste
taalfouten. Doordat ik ervoor gekozen heb om dit werk niet in mijn moe-
dertaal neer te pennen, was zijn bijdrage van groot belang voor de kwaliteit
ervan. Verder wil ik iedereen danken die heeft meegewerkt aan het psycho-
visueel experiment dat in dit boek beschreven wordt. Hun medewerking was

ii

noodzakelijk om tot de resultaten te komen die de kroon op het werk van mijn
onderzoek vormen.

Dit dankwoord is ook een uitgelezen kans om mijn ouders te bedanken
omdat ze me alle mogelijke kansen gegeven hebben om te groeien tot wat ik
nu ben. Ze hebben me de kans gegeven om mijn studies aan te vatten en zijn
me altijd blijven steunen, op alle mogelijke manieren. Ook mijn broer wil ik
bedanken, net als mijn schoonfamilie, omdat ze altijd achter mij zijn blijven
staan en mij alle nodige hulp hebben willen aanreiken.

Tot slot wil ik graag mijn vrouw Lieve uitvoerig bedanken. We hebben
samen al een aantal schitterende jaren achter de rug, en hebben er hopelijk
nog veel te gaan. Lieve heeft me al die tijd maximaal gesteund, ook op de
moeilijkere momenten. Zonder haar zou ik wellicht nooit geraakt zijn waar ik
nu sta.

Sam Lerouge
24 november 2005

iii

Summary

The world of multimedia communication is drastically evolving since a
few years. Advanced compression formats for audiovisual information arise,
new types of wired and wireless networks are developed, and a broad range of
different types of devices capable of multimedia communication appear on the
market. The era where multimedia applications available on the Internet were
the exclusive domain of PC users has passed. The next generation multimedia
applications will be characterized by heterogeneity: differences in terms of the
networks, devices and user expectations.

This heterogeneity causes some new challenges: transparent consumption
of multimedia content is needed in order to be able to reach a broad audience.
Recently, two important technologies have appeared that can assist in realizing
such transparent Universal Multimedia Access. The first technology consists
of new scalable or layered content representation schemes. Such schemes are
needed in order to make it possible that a multimedia stream can be consumed
by devices with different capabilities and transmitted over network connec-
tions with different characteristics. The second technology does not focus on
the content representation itself, but rather on linking information about the
content, so-called metadata, to the content itself. One of the possible uses of
metadata is in the automatic selection and adaptation of multimedia presenta-
tions. This is one of the main goals of the MPEG-21 Multimedia Framework.

Within the MPEG-21 standard, two formats were developed that can be
used for bitstream descriptions. Such descriptions can act as an intermedi-
ate layer between a scalable bitstream and the adaptation process. This way,
format-independent bitstream adaptation engines can be built. Furthermore,
it is straightforward to add metadata information to the bitstream description,
and use this information later on during the adaptation process. Because of the
efforts spent on bitstream descriptions during our research, a lot of attention
is devoted to this topic in this thesis. We describe both frameworks for bit-
stream descriptions that were standardized by MPEG. Furthermore, we focus
on our own contributions in this domain: we developed a number of bitstream

iv

schemas and transformation examples for different types of multimedia con-
tent.

The most important objective of this thesis is to describe a content nego-
tiation process that uses scalable bitstreams in a generic way. In order to be
able to express such an application, we felt the need for a better understanding
of the data structures, in particular scalable bitstreams, on which this content
negotiation process operates. Therefore, this thesis introduces a formal model
we developed capable of describing the fundamental concepts of scalable bit-
streams and their relations. Apart from the definition of the theoretical model
itself, we demonstrate its correctness by applying it to a number of existing
formats for scalable bitstreams. Furthermore, we attempt to formulate a con-
tent negotiation process as a constrained optimization problem, by means of
the notations defined in the abstract model.

In certain scenarios, the representation of a content negotiation process as
a constrained optimization problem does not sufficiently reflect reality, espe-
cially when scalable bitstreams with multiple quality dimensions are involved.
In such case, several versions of the same original bitstream can meet all con-
straints imposed by the system. Sometimes one version clearly offers a better
quality towards the end user than another one, but in some cases, it is not
possible to objectively compare two versions without additional information.
In such a situation, a trade-off will have to be made between the different
quality aspects. We use Pareto’s theory of multi-criteria optimization for for-
mally describing the characteristics of a content negotiation process for scal-
able bitstreams with multiple quality dimensions. This way, we can modify
our definition of a content negotiation process into a multi-criteria optimiza-
tion problem.

One of the most important problems with multi-criteria optimization prob-
lems is that multiple candidate optimal solutions may exist. Additional infor-
mation, e.g. user preferences, is needed if a single optimal solution has to
be selected. Such multi-criteria optimization problems are not new. Unfortu-
nately, existing solutions for selecting one optimal version are not suitable in
a content negotiation scenario, because they expect detailed understanding of
the problem from the decision maker, in our case the end user.

In this thesis, we propose a scenario in which a so-called content negoti-
ation agent would give some sample video sequences to the end user, asking
him to select which sequence he liked the most. This information would be
used for training the agent: a model would be built representing the prefer-
ences of the end user, and this model can be used later on for selecting one
solution from a set of candidate optimal solutions.

Based on a literature study, we propose two candidate algorithms in this

v

thesis that can be used in such a content negotiation agent. It is possible to use
these algorithms for constructing a model of the user’s preferences by means
of a number of examples, and to use this model when selecting an optimal
version. The first algorithm considers the quality of a video sequence as a
weighted sum of a number of independent quality aspects, and derives a system
of linear inequalities from the example decisions. The second algorithm, called
1ARC, is actually a nearest-neighbor approach, where predictions are made
based on the similarity with the example decisions entered by the user.

This thesis analyzes the strengths and weaknesses of both algorithms from
multiple points of view. The computational complexity of both algorithms is
discussed, possible parameters that can influence the reliability of the algo-
rithm, and the reliability itself. For measuring this kind of performance, we
set up a test in which human subjects are asked to make a number of pair-
wise decisions between two versions of the same original video sequence. The
reliability of the two algorithms we proposed is tested by selecting a part of
these decisions for training a model, and by observing if this model is able to
predict other decisions entered by the same user. We not only compare both
algorithms, but we also observe the result of modifying several parameters on
both algorithms. Ultimately, we conclude that the 1ARC algorithm has an ac-
ceptable performance, certainly if the training set is sufficiently large. The
reliability is better than what would be theoretically achievable by any other
algorithm that selects one optimal version from a set of candidate versions, but
does not try to capture the user’s preferences.

Still, the results that we achieve are not as good as what we initially hoped.
One possible cause may be the fact that the algorithms we proposed currently
do not take sequence characteristics (e.g. the amount of motion) into account.
Other improvements may be possible by means of a more accurate descrip-
tion of the quality aspects that we take into account, in particular the spatial
resolution, the amount of distortion and the smoothness of a video sequence.

Despite the limitations of the algorithms we proposed, in their performance
as well as in their application area, we think that this thesis contains an initial
and original contribution to the emerging objective of realizing Quality of Ex-
perience in multimedia applications.

vi

vii

Samenvatting

In een periode van enkele jaren is de wereld van multimediacommunicatie
drastisch veranderd, en deze veranderingen zetten zich door. Geavanceerde
formaten voor de compressie van audiovisuele informatie worden ontwikkeld,
nieuwe vormen van bedrade en draadloze netwerktoegang verschijnen, en een
enorm bereik aan soorten toestellen die bruikbaar zijn voor multimediacom-
municatie is beschikbaar. Het tijdperk waarin multimediatoepassingen op het
Internet het exclusieve domein waren van PC-gebruikers is definitief voorbij.
De volgende generatie multimediatoepassingen zal gekenmerkt zijn door he-
terogeniteit: er zullen verschillen zijn wat betreft de netwerken, de toestellen
en de verwachtingen van de verschillende eindgebruikers.

Deze heterogeniteit zorgt voor nieuwe uitdagingen: wanneer men met
multimediatoepassingen een breed publiek wil bereiken, zal transparante con-
sumptie van die multimediale inhoud mogelijk moeten zijn. Recent zagen twee
groepen van technologieën het levenslicht die beide kunnen helpen bij het re-
aliseren van Universele Multimediatoegang. De eerste technologie is die van
schaalbare codering van audiovisuele inhoud. Dit soort van codering is nodig
om er op een vlotte manier voor te zorgen dat een bitstroom kan verwerkt wor-
den door toestellen met verschillende mogelijkheden, en verstuurd kan worden
over netwerken met verschillende eigenschappen. De tweede technologie richt
zich niet zozeer op de voorstelling van multimediale informatie zelf, maar eer-
der op het koppelen van de eigenlijke inhoud met beschrijvende informatie
over die inhoud, de zogenaamde metadata. Een van de mogelijke toepassingen
van metadata is de automatische selectie en aanpassing van multimediale pre-
sentaties. Dit is precies een van de belangrijkste doelstellingen van het Multi-
mediale Raamwerk dat ontwikkeld wordt onder de noemer MPEG-21.

Binnen de MPEG-21 standaard werden twee formaten ontwikkeld voor
het beschrijven van de structuur van bitstromen. Zulke beschrijvingen kun-
nen gebruikt worden als tussenliggende laag tussen een schaalbare bitstroom
en het proces dat instaat voor de adaptatie van zulke bitstromen. Hierdoor
kan adaptatiesoftware ontwikkeld worden onafhankelijk van het eigenlijke for-

viii

maat dat gebruikt wordt. Bovendien kan men eenvoudig metadata toevoegen
aan die beschrijvingen, en die metadata later gebruiken voor het aansturen
van de adaptatiesoftware. Omdat in ons onderzoek veel aandacht gegaan is
naar deze bitstroombeschrijvingstalen, is ook een deel van deze thesis aan dit
onderwerp gewijd. We beschrijven beide formaten zoals ze door MPEG ge-
definieerd werden, en we lichten ook onze eigen bijdragen toe: we stelden een
aantal zogenaamde bitstroomschema’s op, samen met voorbeelden van moge-
lijke adaptatiestappen, en dat voor verschillende formaten voor multimediale
inhoud.

De belangrijkste doelstelling van deze thesis was de beschrijving van het
proces dat we inhoudsnegotiatie1 noemen, wanneer er gebruik gemaakt wordt
van schaalbare formaten. Om zo een toepassing te kunnen beschrijven, vonden
we het nodig om de eigenschappen van de datastructuren die gebruikt werden,
in dit geval de schaalbare bitstromen, beter te begrijpen. Daarom introduceert
deze thesis een formeel model dat we ontwikkeld hebben dat in staat is om
de fundamentele concepten, relaties en afhankelijkheden zoals ze voorkomen
in schaalbare bitstromen, voor te stellen. Naast de definitie van het eigenlijke
model, tonen we ook de correctheid van dit model aan door het toe te passen
op een aantal bestaande schaalbare codeerformaten. Bovendien doen we een
eerste poging om op basis van dit model het proces van inhoudsnegotiatie voor
te stellen als een optimalisatieprobleem met beperkingen.

In sommige scenario’s, bijvoorbeeld wanneer er schaalbare bitstromen met
meerdere dimensies gebruikt worden, blijkt dat onze voorstelling van inhouds-
negotiatie als een optimalisatieprobleem met beperkingen onvoldoende de rea-
liteit benadert. Bij zulke bitstromen kunnen er immers meerdere aanpassingen
mogelijk zijn die aan alle beperkingen voldoen. Soms is het daarbij duidelijk
dat de ene versie beter is dan de andere, maar soms is het onmogelijk om op een
objectieve manier twee versies te vergelijken wanneer er geen bijkomende in-
formatie beschikbaar is. In dat geval zal er een afweging moeten gebeuren tus-
sen verschillende kwaliteitsaspecten die in rekening gebracht worden. We ma-
ken daarom gebruik van de theorie van Pareto rond multicriteria-optimalisatie
bij het formuleren van het proces van inhoudsnegotiatie wanneer er schaal-
bare bitstromen met meerdere dimensies gebruikt worden. Op die manier
herformuleren we het klassieke optimalisatieprobleem naar een multicriteria-
optimalisatieprobleem.

Eén van de belangrijkste problemen bij dit soort optimalisatieproblemen
is dat er meerdere oplossingen als optimaal beschouwd kunnen worden. In

1Met inhoudsnegotiatie bedoelen we het selecteren, aanpassen en aanbieden van een zo
goed mogelijke multimediale presentatie, gegeven de beperkingen opgelegd door de gebruikte
toestellen en netwerken.

ix

dat geval is er bijkomende informatie nodig, bijvoorbeeld gebruikersvoorkeu-
ren, om daaruit één oplossing te kiezen. Deze problematiek is uiteraard niet
nieuw, maar jammer genoeg zijn de bestaande oplossingen niet geschikt om
ons probleem op te lossen omdat ze telkens verwachten van de beslissingsma-
ker, in ons geval de eindgebruiker, dat die een zeer goed begrip heeft van het
probleem.

Om die reden stellen we in deze thesis een scenario voor waarin een zo-
genaamde agent2 voor inhoudsnegotiatie de eindgebruiker een aantal videose-
quenties laat beoordelen. De agent gebruikt deze informatie dan om een model
op te bouwen dat de voorkeuren van de gebruiker beschrijft, en dat later kan
gebruikt worden om één oplossing te kiezen uit een verzameling kandidaat-
optimale oplossingen.

Op basis van een literatuurstudie selecteerden we twee mogelijke algorit-
men die in zo een agent gebruikt kunnen worden. Beide algoritmen kunnen
gebruikt worden voor het opbouwen van een model op basis van een aantal
beoordelingen die de gebruiker als voorbeeld heeft ingegeven, en voor het ge-
bruiken van dit model bij het selecteren van een optimale versie. Het eerste
algoritme dat we bestuderen veronderstelt dat de kwaliteit van een videose-
quentie kan uitgedrukt worden als een gewogen som van kwaliteitsaspecten.
De voorbeeldbeoordelingen worden in dit geval omgezet naar een stelsel van
lineaire ongelijkheden bij het opbouwen van een model. In het tweede al-
goritme wordt er op zoek gegaan naar gelijkenissen tussen de te voorspellen
gegevens en de beoordelingen die de gebruiker als voorbeeld heeft gegeven.

In deze thesis analyseren we de voor- en nadelen van beide algoritmen
op verschillende vlakken. We bekijken de rekenkundige complexiteit van de
algoritmen, mogelijke parameters die gewijzigd kunnen worden, en de be-
trouwbaarheid. Om die te bepalen, hebben we een zogenaamde subjectieve
test opgesteld, waarbij de deelnemers een aantal keuzes tussen twee versies
van dezelfde videosequentie moeten maken. De betrouwbaarheid van de al-
goritmen kan dan nagegaan worden door een deel van de beslissingen van een
deelnemer te gebruiken als trainingsinformatie, wat overeenkomt met de voor-
beeldbeoordelingen voor de agent, en na te gaan of we op basis hiervan ook
andere keuzes van die deelnemer konden voorspellen. In deze thesis verge-
lijken we niet enkel de twee algoritmen met elkaar, maar gaan we ook voor
elk van de algoritmen na wat de gevolgen zijn van het aanpassen van bepaal-
de parameters. Uiteindelijk zullen we kunnen besluiten dat het algoritme dat
gebaseerd is op gelijkenissen een aanvaardbare betrouwbaarheid heeft, zeker

2In deze context is een agent een stuk software dat beslissingen neemt in de plaats van de
eindgebruiker, onder andere op basis van voorbeeldbeslissingen die deze gebruiker genomen
heeft.

x

wanneer er voldoende voorbeeldbeslissingen gebruikt worden. In dat geval is
de betrouwbaarheid immers beter dan wat theoretisch mogelijk is voor gelijk
welk algoritme dat ook één oplossing kiest uit een verzameling kandidaat-
optimale oplossingen, maar daarbij geen gebruik maakt van informatie over de
gebruikersvoorkeuren.

Toch blijken de resultaten die we bereiken minder goed te zijn dan wat
we initieel gehoopt hadden. Een mogelijke oorzaak ligt in het feit dat geen
enkele van de voorgestelde algoritmen rekening houdt met eigenschappen van
de originele sequentie (zoals bijvoorbeeld de hoeveelheid beweging). Andere
verbeteringen zijn wellicht mogelijk door een meer accurate beschrijving te
bepalen van de verschillende kwaliteitsaspecten die in rekening gebracht wor-
den: de resolutie, de distortie en de vloeiendheid van de videosequentie.

Ondanks de beperkingen van de algoritmen wat betreft hun betrouwbaar-
heid maar ook wat betreft hun toepassingsgebied, denken we dat we met deze
thesis een initiële en originele bijdrage hebben geleverd voor het bereiken van
wat men ervaringskwaliteit (Eng. Quality of Experience) noemt.

xi

List of abbreviations

API Application Programming Interface
AVC Advanced Video Coding
BiM Binary Format for Metadata
BSDL Bitstream Syntax Description Language
CIF Common Intermediate Format
CIFL Coding-Independent Fair Layered multicast
DCT Discrete Cosine Transform
DIA Digital Item Adaptation
DID Digital Item Declaration
DIDL Digital Item Declaration Language
DOM Document Object Model
FGS Fine-Granularity Scalability
FGST Fine-Granularity Scalability with Temporal scalability
FLAVOR Formal Language for Audio-Visual Object Representation
gBSD Generic Bitstream Syntax Description
GOP Group Of Pictures
GPRS General Packet Radio Service
HVS Human Visual System
IP Internet Protocol
ISO International Standards Organisation
ITU International Telecommunication Union
kbps kilobits per second
LAN Local Area Network
MC-EZBC Motion-Compensated Embedded Zerotree Block Coding
MCTF Motion-Compensated Temporal Filtering
MOS Mean Opinion Score
MPEG Moving Picture Experts Group
NTSC National Television System Committee
PAL Phase Alternating Line
PC Personal Computer
PDA Personal Digital Assistant
PSNR Peak Signal-to-Noise Ratio
QCIF Quarter CIF

xii

QoE Quality of Experience
QoS Quality of Service
ROI Region Of Interest
SAX Simple API for XML
SNR Signal-to-Noise Ratio
SSM Structured Scalable Meta-formats
STB Set-Top Box
UCD Universal Constraints Description
UED Usage Environment Description
UMA Universal Multimedia Access
UMCTF Unconstrained Motion-Compensated Temporal Filtering
UME Universal Multimedia Experience
UML Unified Modeling Language
UMTS Universal Mobile Telecommunications System
VOP Video Object Pane
VTC Visual Texture Coding
VQEG Video Quality Experts Group
WAP Wireless Access Protocol
XML Extensible Markup Language
XPath XML Path Language
XSLT Extensible Stylesheet Language Transformations

xiii

List of symbols

#(.) Number of elements in a vector
D The set of all data blocks
d̂ The label of data block d
[d] The payload of data block d
|d| The size of data block d
P The set of all parcels
B The set of all scalable bitstreams
p(x0, x1, . . .) A version of parcel p
p+ The closure of parcel p, the set of all versions of p
||p|| The size of parcel p
P The set of all properties
C The set of all constraints
〈p〉Cts The set of all feasible versions of p according to the con-

straints Cts
x �F y Solution x dominates solution y according to criteria F
PFF (X) Pareto frontier of the set of (feasible) solutions X , according

to criteria F
O(·) Asymptotic upper bound of an algorithm
Ω(·) Asymptotic lower bound of an algorithm
θ(·) Asymptotic tight bound of an algorithm
a �u b According to user u, sequence a is preferred to sequence b
a ≈u b User u does not prefer sequence a to sequence b or vice versa
a >u b Sequence a is implicitly preferred to sequence b, according to

user u

F (v)|v:V Average value of F (v), for all possible values of v ∈ V

Calg
U (n) Rate of consistent training sets for algorithm alg for a training

set size n, for all users in U

T alg
U (n) Reliability of algorithm alg, according to the test set method,

for a training set size n, for all users in U

Balg
U (n) Reliability of algorithm alg, according to the Best in Group

method, for a training set size n, for all users in U

xiv

Contents

1 Introduction 1
1.1 Context . 1

1.1.1 Scalable Video Coding 2
1.1.2 Quality of Experience 3

1.2 Outline . 4

2 Enabling technologies 7
2.1 Introduction . 7
2.2 Scalable video coding . 8

2.2.1 First efforts in scalable video coding 10
2.2.2 Fine-granularity scalability 11
2.2.3 Fully scalable wavelet-based video coding 12
2.2.4 Scalability in H.264/AVC 14

2.3 MPEG-21: The multimedia framework 15
2.3.1 Digital Item Declaration 17
2.3.2 Digital Item Adaptation 21

3 Bitstream descriptions 27
3.1 Introduction . 27
3.2 Bitstream Syntax Description Language 28

3.2.1 Introduction . 28
3.2.2 Specification . 30

3.3 Generic Bitstream Syntax Description 36
3.4 Producing bitstream descriptions 38

3.4.1 Uncompressed video in the YUV domain 38
3.4.2 MPEG-4 Visual . 43
3.4.3 MPEG-4 FGS . 47
3.4.4 Bitstream descriptions for other formats 55

3.5 Related work . 55
3.5.1 FLAVOR and XFLAVOR 55

xvi CONTENTS

3.5.2 SSM . 57
3.6 Conclusions and original contributions 57

4 An abstract model for scalable bitstreams 59
4.1 Introduction . 59
4.2 The abstract model . 60

4.2.1 Informal semantics 60
4.2.2 Definitions . 61

4.3 Mapping existing coding formats onto the abstract model . . . 64
4.3.1 Fine-granularity scalability 65
4.3.2 FGS with temporal scalability 65
4.3.3 Wavelet-based video coding 70

4.4 Content negotiation for scalable bitstreams 71
4.4.1 Introduction . 71
4.4.2 Constraints . 72
4.4.3 Selecting the best version 76

4.5 Other applications of the abstract model 78
4.6 Conclusions and original contributions 79

5 Multi-criteria optimization in video communication 81
5.1 Introduction . 81
5.2 Background of multi-criteria optimization 82
5.3 Complexity of calculating the Pareto frontier 84

5.3.1 Complexity analysis 84
5.3.2 Measurements . 85

5.4 Multi-criteria optimization in video coding 87
5.5 Content negotiation redefined 89
5.6 Selecting one solution from the Pareto frontier 90
5.7 Quality agents in content negotiation 92
5.8 Algorithms for capturing user preferences 96

5.8.1 Systems of inequalities 96
5.8.2 1ARC . 103

5.9 Related work . 108
5.10 Conclusions and original contributions 109

6 Performance of capturing user preferences 113
6.1 Introduction . 113
6.2 Terminology . 114
6.3 Test setup . 115

6.3.1 Sequences . 115
6.3.2 Presentation . 116

CONTENTS xvii

6.3.3 A note on the presentation of different resolutions . . . 119
6.3.4 Participants . 120

6.4 Evaluation methods . 120
6.4.1 Basic definitions . 120
6.4.2 Amount of inconsistent training sets 122
6.4.3 Test set method . 123
6.4.4 Best in Group method 124

6.5 General analysis . 125
6.6 Different versions for the SoI algorithm 128

6.6.1 Initial settings . 128
6.6.2 Influence of temporal quality 130
6.6.3 Influence of handling upper bounds 130

6.7 Different versions for the 1ARC algorithm 132
6.7.1 Initial settings . 132
6.7.2 Influence of temporal quality 133
6.7.3 Influence of the selection mechanism 134

6.8 Comparison between both algorithms 135
6.9 The impact of noise . 138
6.10 Conclusions and original contributions 139

7 Conclusions 143

A Bitstream descriptions for MPEG-4 FGS 147
A.1 Introduction . 147
A.2 BSDL Schema for MPEG-4 FGS 147
A.3 Merging BSDL FGS bitstream descriptions 154

B Sequences used in the subjective test 167

xviii CONTENTS

Chapter 1

Introduction

1.1 Context

The boost of the use of the Internet during the second half of the nineties was
a major step in the popularization of access to multimedia content. Before,
people were only used to consume mass information in a passive way: listening
to broadcast radio, watching television programs, reading newspapers, etc. The
way information is consumed on the World Wide Web is different in multiple
ways, the main difference being a more personalized way of interacting with
the content: people could actively search for information, rather than having
to wait for a particular television show.

Later on, technical evolutions enabled the distribution of more advanced
media types. Efficient compression algorithms, faster microprocessors, and
broadband internet access resulted in the possibility to consume audio and
video fragments and interactive scenes.

The last few years, access of multimedia content through the Internet is
no longer the exclusive domain of PC users. More limited devices, such as
Personal Digital Assistants (PDAs), set-top boxes (STBs) and even mobile
phones become capable of accessing the Internet and presenting audiovisual
information.

This evolution towards a more heterogeneous network of devices willing to
access the same information creates new challenges in the domain of multime-
dia presentation and distribution. The diversity of devices results in a diversity
of ways of interacting with the multimedia content:

• Different kinds of networks are used for accessing information on the
Internet. At the time of writing, about 77% of the Belgian internet users

2 Introduction

has a broadband connection, while 23% still uses a dial-up line1. Mo-
bile phones typically use GPRS or UMTS connections, that have a much
lower bandwidth than a typical broadband connection. Some PDAs use
a Wireless LAN access point to connect to the Internet. Such connec-
tions can have a high bandwidth, but significant fluctuations in terms of
bandwidth and delay are possible.

• The screen resolution of these devices also varies a lot. A desktop PC
has a high (and often configurable) resolution, whereas the resolution
of a mobile phone or a PDA is much smaller. The aspect ratio of the
resolutions on different devices is often different too.

• The differences in processing power result in different capabilities,
which can be important, e.g., for the real-time decoding of a video clip.

• Battery-enabled devices also have to take into account the power con-
sumption of particular operations.

• Different devices have different ways of interaction possibilities. A reg-
ular PC is the most flexible device regarding interaction possibilities;
set-top boxes and mobile phones are usually much more limited.

To this day, this growing problem of diversity of device characteristics
is solved by offering multiple versions of the same information. Web sites
are produced in different versions for supporting WAP2 or i-Mode. When
video sequences are offered, multiple versions are made available for support-
ing different ranges of bandwidth and different resolutions. It is clear that
such a solution can be quite costly in terms of production cost and storage re-
quirements. When the diversity of devices accessing multimedia content keeps
increasing, this cost will also increase.

1.1.1 Scalable Video Coding

As video is the kind of multimedia that is most demanding in terms of process-
ing power and data capacity, the problem of diversity is in this case the most
severe. Researchers recognized this problem and came up with a solution that
is called scalable video coding.

In this kind of coding, an encoder produces an embedded bitstream. This
means that within the produced bitstream, one can find reduced versions of the

1As reported by the Internet Service Providers Association of Belgium, February 2005.
2Wireless Access Protocol, a protocol for enabling mobile phones to access mostly text-

based information that is available on the Internet.

1.1. Context 3

original video sequence, by selecting the appropriate fragments of the stream
and dropping the others. This way, the quality of a bitstream can be reduced
by means of very basic editing operations, thus producing a new bitstream that
has a lower quality, but also has less requirements with respect to the properties
of the device of the end user.

When talking about the reduction of the quality of a scalable video se-
quence, we mostly think of three different kinds of quality reduction:

• Reduction of the frame rate or temporal resolution: the amount of frames
per second can be reduced, which results in a video sequence that runs
less smoothly or is more choppy than the original.

• Reduction of the spatial resolution: the number of pixels, horizontally
or vertically, can be reduced, which results in a smaller image.

• Quality scalability: the amount of distortion that is visible in the images
can be increased when decreasing the bit rate.

Only recently, coding schemes were developed that allowed all these types
of quality reduction to be available in the same bitstream; in this case we talk
about fully scalable video coding.

The first efforts in developing encoders that were able to produce scalable
bitstreams all resulted in a certain quality loss with respect to non-scalable so-
lutions: for a given bit rate the scalable codec would produce a bitstream of
a lower quality than its non-scalable counterpart. Very recent evolutions in
the scalable coding algorithms allowed the production of scalable bitstreams
that achieve the same quality as non-scalable streams. Because of these evolu-
tions, the Moving Picture Experts Group (MPEG) has started a standardization
process for scalable video coding.

As the concept of scalable video coding is so important for the delivery
of video presentations in constrained, heterogeneous environments, an entire
section of the following chapter is devoted to the evolutions in this domain.

1.1.2 Quality of Experience

Nearly concurrently with the important evolutions in the domain of scalable
video coding we just mentioned, a new idea about multimedia consumption
started to emerge: the concept of Quality of Experience (QoE) [1]. This can
be considered to be the natural evolution of the concept of Quality of Service
(QoS), mostly used in the context of communication networks.

In order to be able to set up reliable multimedia applications over the In-
ternet, the “best effort” nature of the Internet Protocol (IP) was a big problem.

4 Introduction

Using QoS, this drawback can be avoided by means of some sort of traffic
contract guaranteeing certain bounds on the throughput, latency, etc. of the
connection.

For the next generation multimedia applications, obtaining guarantees
about the service offered by the network is no longer sufficient. Extending
QoS to QoE means that we will also have to take into account the subjective
nature of the end users. In [1], Jain tries to summarize the challenges in realiz-
ing Quality of Experience in multimedia applications. The following quotation
matches very well with what we will present in this thesis, as we will summa-
rize at the end of this book.

To do so, we will have to develop measures that will help us cap-
ture QoE in a given application and use it. We need to make these
measures as applicable to our field as required by our practice,
while capturing the subjective nature of experience.

Some time before, Pereira and Burnett published an article that looks for-
ward towards the move from QoS to QoE as well [2]. Up to now, research
in multimedia focusses mainly on adapting a multimedia presentation to the
constraints imposed by the terminal and the network. This challenge is often
called Universal Multimedia Access (UMA). Pereira and Burnett claim that
ultimately, research will have to acknowledge that the end point of universal
multimedia consumption is the user and not the terminal.

Such a shift in focus from data delivery to the terminal to experience de-
livery to the users is called Universal Multimedia Experience (UME). Just like
Jain insists on the need for measures that can capture Quality of Experience,
Pereira and Burnett say that one of the problems that we have nowadays for re-
alizing UME is that there are not many mechanisms for measuring the quality
of an experience.

The most important part of this thesis is a framework that tries to harmo-
nize the new possibilities that are offered by scalable video coding with some
of the challenges that have to be overcome when realizing Universal Multime-
dia Experience.

1.2 Outline

The structure of this thesis is as follows. In the next chapter, we discuss into
detail two technologies that are essential in the development of applications
for the delivery of multimedia presentations in constrained, heterogeneous en-
vironments. The third chapter introduces the concept of bitstream descriptions

1.2. Outline 5

as an intermediate layer for adapting (scalable) bitstreams to the constraints
imposed by a particular environment. In chapter four, we define an abstract
model describing the structure of a scalable bitstream. We link this with the bit-
stream description mechanisms explained in chapter three, and use this model
for formally defining a content negotiation process in which a scalable bit-
stream is adapted, taking into account a number of constraints. Chapter five
introduces the general concept of multicriteria optimization, and explains why
and how this concept can be applied to a content negotiation process. We also
describe two algorithms that can be used for capturing subjective preferences
regarding video quality and for assisting the multicriteria optimization process.
In chapter six, we describe a test we executed involving a number of human
participants, for validating the two algorithms proposed for capturing the sub-
jective preferences of users. We end this thesis with the major conclusions that
can be drawn from the research described in this book.

The research that has lead to this thesis resulted in a number of publi-
cations. One paper [3] is published in a journal that appears in the Science
Citation Index. Another paper is currently under review for publication in
Elsevier’s Signal Processing: Image Communication. Our work served as a
contribution to a paper that is to be published in Multimedia Systems [4]. In
addition, there were 4 contributions to international conferences as a first au-
thor [5–8], and contributions to 7 other papers that were presented at interna-
tional conferences [9–15].

6 Enabling technologies

Chapter 2

Enabling technologies

2.1 Introduction

In this chapter, we introduce some important recent technological evolutions
that can assist in the delivery of multimedia information in heterogeneous,
constrained environments.

A first technology that we want to describe into detail is scalable video
coding. A scalable video encoder produces a scalable bitstream; as we al-
ready have mentioned in the previous chapter, such a bitstream can easily be
modified by means of some basic editing operations, such as the removal of
certain fragments from the bitstream. This way, a version containing a reduced
quality level is obtained, but at the same time this version imposes less require-
ments on the client and the network. This enables the possibility of adapting,
for example, the bitrate to the available bandwidth in the network, or the reso-
lution of the video to the screen resolution of the requesting device.

A second technology that is discussed in this chapter is MPEG-21. One of
the main objectives of this Multimedia Framework is the transparent delivery
of multimedia resources in heterogeneous networks, which corresponds very
well with the problems we want to tackle in this thesis. Because of the way
MPEG defines its standards, there is still a lot of freedom allowing competi-
tion between companies developing products that comply to these standards.
Throughout this thesis, we use this freedom at several places for creating useful
applications.

Together, scalable video coding and the MPEG-21 Multimedia Framework
can help application builders to realize the so called Universal Multimedia Ac-
cess (UMA): the ability to access multimedia content at any place, any time.
Because of the heterogeneous nature of terminals and networks involved, con-
tent negotiation is essential for implementing UMA. The process of content

8 Enabling technologies

content
provider

terminal

bitstream
properties

usage environment
description

adaptation
decision taking

engine

bitstream
adaptation

original
bitstream

adapted
bitstream

Figure 2.1: Generic representation of content negotiation and adaptation.

negotiation is schematically represented in Fig. 2.1. Here, an adaptation deci-
sion taking engine receives information about the capabilities of the terminal
and the network, and information about the properties of the original bitstream.
The engine tries to find a good adaptation decision, and transfers its decision
to the adaptation engine, that creates an adapted bitstream from the original
one.

Note that in this figure, the location of the adaptation decision taking en-
gine and the bitstream adaptation process are not specified. This can happen
on the server (content provider), client-side (at the terminal) or even in an in-
termediate node, such as a network gateway. The adaptation decision taking
process and the bitstream adaptation process don’t even have to take place on
the same location, as long as the decision taking engine is able to pass its de-
cision to the bitstream adaptation process.

2.2 Scalable video coding

Scalability is a principle that exists in the domain of video coding for a few
years. The underlying idea is that a bitstream can be logically split up in
different layers: a base layer offering a basic quality level, and one or more
enhancement layers at different levels, where each layer improves the qual-
ity of the bitstream when it is combined with all layers at lower levels. This
principle is schematically described in Fig. 2.2.

Quality can mean different things: it can point to the spatial resolution
(number of pixels in each image), the number of frames (temporal resolution),

2.2. Scalable video coding 9

encoder

base layer

first enhancement layer

second enhancement layer

decoder

Figure 2.2: Basic principle of scalable coding.

Figure 2.3: Three types of scalability in video coding.

or the severity of visual artifacts (distortion). These three different types of
scalability are represented in Fig. 2.3. In some of the coding schemes pre-
sented in this section, only one of these types of scalability is possible. In
other schemes, classified as fully scalable coding schemes, all of these types
are available at the same time, and can be exploited concurrently.

A huge number of applications can benefit from scalable video coding.
We focus on video distribution in heterogeneous environments, where scala-
bility can be used for adapting a bitstream to the complexity of the decoder
or the capacity of the network. Other useful scenarios are the transmission
of digital video signals over error prone channels, where the lower layers can
be transmitted in a more reliable way [16], region of interest coding [17], fast

10 Enabling technologies

browsing capabilities, encryption of higher layers for Digital Rights Manage-
ment [18, 19], etc. In this section, we give an overview of the recent develop-
ments in scalable video coding.

2.2.1 First efforts in scalable video coding

Layered video coding was first introduced by MPEG in the MPEG-2 standard.
An exhaustive overview of these techniques can be found in [20]. We only
give a brief summary of the techniques used to obtain a two-layered video
bitstream.

MPEG-2 provides multiple types of scalability. The objective was not to
adapt a video sequence to a given bit rate, but rather to adapt the decoding
complexity to the decoding device.

A first type of scalability provided by MPEG-2 is called data partitioning.
Here, the coefficients obtained after the Discrete Cosine Transform (DCT) are
split up: the most significant coefficients (low frequency information) are part
of the base layer, the others belong to the enhancement layer.

MPEG-2 also provides SNR scalability. This is obtained by using two
encoders: for each frame, a base layer encoder uses the normal coding scheme
to construct the base layer using a coarse quantization. The enhancement layer
coder performs a requantization of the DCT coefficients in order to construct
an enhancement layer containing finer quantized information, thus offering a
more detailed image and a higher SNR (Signal to Noise Ratio) value.

A third form of scalability provided by MPEG-2 is spatial scalability. The
base layer is obtained by first downsampling the input signal, and encoding the
resulting frames. Then the resulting base layer is decoded and upsampled to
the original resolution; these frames are then fed to the motion prediction part
of the enhancement layer encoder, thus enabling a spatio-temporal prediction
from both previous enhancement layer frames and the current base layer frame.

Another possibility for scalable video coding using the MPEG-2 standard
is temporal scalability. Technically speaking, this type of scalability is the
most simple one. It can be achieved by encoding only a reduced number of
frames in the base layer, and encoding the other frames in the enhancement
layer. The frames that belong to the enhancement layer are allowed to use in-
terlayer motion estimation: both base layer and enhancement layer frames can
be used as reference frames to do motion estimation. The base layer encoder
can only use base layer frames for the motion estimation.

The MPEG-2 standard also supports hybrid scalability, in which two
different types of scalability are combined, resulting in a three-layered bit-
stream.

2.2. Scalable video coding 11

An important step forward in scalable video coding was taken during the
development of the MPEG-4 standard. The schemes that exist in MPEG-2
are also present; all different types of scalability can be combined, resulting
in a bitstream that consists of more than two layers. In addition, object-based
scalability is also possible, in which the (temporal, spatial or SNR) quality of
specific parts of a scene can be improved. The most spectacular innovation
however, is surely the fine-granularity scalability (FGS).

2.2.2 Fine-granularity scalability

Fine-granularity scalability was developed to answer the need for a mechanism
that easily allows real-time adaptation of the transmission bit rate in scenarios
where video is offered using streaming technologies. At the same time, it had
to be possible to encode the video sequence only once, before the transmission.
Instead of optimizing the bitstream during encoding for one particular bit rate,
it is optimized for a range of bit rates. This could be a very useful tool for
supporting unicast and multicast streaming over the Internet [21, 22], where
the available bandwidth changes frequently.

An FGS-encoded video sequence actually consists of one base layer and
a single enhancement layer that improves the quality of the resulting video.
A very important difference with the SNR scalability found in MPEG-2 is
that this enhancement layer can be truncated by the streaming server at an
arbitrary point within each Video Object Pane (VOP, the MPEG-4 terminology
for a frame). This is shown in Fig. 2.4, where the streaming server will only
transmit the gray parts of the enhancement layer data. The size of these parts
is dynamically adapted to the actual available bandwidth between server and
client at transmission time. In contrast, in the SNR scalability of MPEG-2,
the bit rate of the enhancement layer had to be selected during the encoding
process.

Without giving too much details, we want to introduce the basic principles
of the FGS encoding scheme. The base layer is encoded following the non-
scalable, DCT-based MPEG-4 encoding scheme. For the enhancement layer,
embedded DCT coding is applied to the residual frames. In such a coding
scheme, each frame consists of a number of bitplanes. The first bitplane con-
tains the most significant bits of the DCT coefficients of the macroblocks of
the residual frames, the second bitplane contains the second most significant
bits, etc. An FGS bitstream is called embedded because reduced versions of
the data can be found inside the bitstream itself; they can be obtained by trun-
cating the bitstream at any point, thus removing the lower bitplanes.

As an addition to the embedded DCT coding technique, frequency weight-

12 Enabling technologies

I B BP P

Figure 2.4: Real-time bit rate adaptation in MPEG-4 FGS. Only the gray parts of the
enhancement layer data will be transmitted.

ing and selective enhancement can be applied. The first technique is used for
shifting the low frequency DCT coefficients, thus hoping to improve the visual
quality of reduced bitstreams. Selective enhancement is used for region of in-
terest (ROI) coding: macroblocks that belong to the ROI are shifted during
encoding, such that less information is dropped from these macroblocks when
reducing the bit rate.

In addition, MPEG-4 FGS can be combined with temporal scalability. This
is often called FGST, and this type of hybrid scalability allows to choose, at
transmission time, between temporal scalability and SNR scalability.

Here, the base layer offers a video at a low SNR quality and a lower frame
rate than the original sequence. The FGS scheme can be applied to improve the
SNR values of these frames. Frames that were not encoded in the base layer are
predicted from the base layer using motion estimation, and the residual frames
are encoded using the FGS scheme. Therefore, an FGST frame consists of two
parts: a set of motion vectors allowing the reconstruction of a predicted frame,
and a set of bitplanes that represent the encoded residual frame. As shown in
Fig. 2.5, FGST frames can be placed in the same enhancement layer, or in a
second enhancement layer.

2.2.3 Fully scalable wavelet-based video coding

In still image coding, wavelet subband filter banks are used to do a transfor-
mation on the image to obtain information that is easier to compress. This
can be used as a replacement for the block-based DCT transformation, and
has already proven its efficiency in image compression, for example in the
JPEG2000 standard [23].

An additional advantage of such coding schemes is the possibility to in-

2.2. Scalable video coding 13

base
VOP

FGS
VOP

FGST
VOP

base
VOP

base
VOP

FGS
VOP

FGS
VOP

FGST
VOP

base
layer

FGS-
FGST
layer

base
VOP

FGS
VOP

FGST
VOP

base
VOP

base
VOP

FGS
VOP

FGS
VOP

FGST
VOP

base
layer

FGS
layer

FGST
layer

(a)

(b)

base
VOP

FGS
VOP

FGST
VOP

base
VOP

base
VOP

FGS
VOP

FGS
VOP

FGST
VOP

base
layer

FGS-
FGST
layer

base
VOP

FGS
VOP

FGST
VOP

base
VOP

base
VOP

FGS
VOP

FGS
VOP

FGST
VOP

base
layer

FGS-
FGST
layer

base
VOP

FGS
VOP

FGST
VOP

base
VOP

base
VOP

FGS
VOP

FGS
VOP

FGST
VOP

base
layer

FGS
layer

FGST
layer

base
VOP

FGS
VOP

FGST
VOP

base
VOP

base
VOP

FGS
VOP

FGS
VOP

FGST
VOP

base
layer

FGS
layer

FGST
layer

base
layer

FGS
layer

FGST
layer

(a)

(b)

Figure 2.5: Two options to split up an FGST stream in layers: (a) the FGST VOPs
belong to the temporal enhancement layer, (b) FGS and FGST VOPs are found in the
same layer.

troduce scalable coding. Spatial scalability can be obtained very easily, as it
follows inherently from the subband coding scheme, in which a spatial decom-
position is applied. In addition, most schemes arrange the wavelet coefficients
in an embedded way. This means that low quality versions of the image can
be obtained from the bitstream by truncating it at a given point. This is ob-
tained by applying a bitplane coding technique to the wavelet coefficients: the
most significant bits are placed earlier in the bitstream (note the similarity with
MPEG-4 FGS coding).

The successes of such coding schemes for still images inspired researchers
to start exploring the possibilities of wavelet-based video coding. The objec-
tive is to develop a video coding scheme that creates fully scalable bitstreams.
This means that three types of scalability can be provided at the same time:

14 Enabling technologies

spatial, SNR and temporal scalability. Moreover, we do not want to lose com-
pression efficiency compared with the current state-of-the-art coding schemes.

Early work by Jens-Rainer Ohm resulted in algorithms for so-called Mo-
tion Compensated Temporal Filtering (MCTF), where 3-D wavelet-based sub-
band coding is applied after a motion compensation step [24, 25].

In [26], Hsiang and Woods present a successfully implemented wavelet-
based coding scheme that works in a similar way. It starts with a temporal
filtering on the motion trajectory, based on well known motion compensation
techniques [27]. A wavelet coder for still images is extended to three dimen-
sions, and is applied to the 3-D signal. This coding scheme offers three types
of scalability at the same time, and achieves a compression performance that
is better than nonscalable MPEG-2 video.

Other approaches work the other way around: first, frames are decom-
posed using a wavelet transform as is used in still image wavelet coding, and
after the decomposition, a temporal decomposition is executed in the wavelet
domain [28,29]. This class of algorithms is also referred to as 2D+t, while the
algorithms presented in the previous paragraphs belong to the t+2D class.

Recent evolutions regarding the temporal filtering, called Unconstrained
Motion Compensated Temporal Filtering (UMCTF), allow an increased coding
performance and a reduced delay [30].

2.2.4 Scalability in H.264/AVC

The best standardized video coding scheme in terms of compression efficiency,
is currently H.264/AVC, also known as MPEG-4 Part 10 [31,32]. In itself, this
codec is not meant to offer scalable bitstreams, even though temporal scalabil-
ity can be offered in certain situations [33, 34].

Because of the high bit rate savings of H.264/AVC compared to other video
coding schemes, scalable extensions to the existing H.264/AVC are currently
developed within MPEG. Temporal scalability can be realized by implement-
ing a Motion Compensated Temporal Filtering (MCTF), as used in wavelet-
based video coding, and for which the standardized syntax from H.264/AVC
can be reused [35]. By iteratively applying the temporal decomposition, mul-
tiple temporal levels can be offered.

SNR scalability can be implemented by requantizing the quantization error
of the previous SNR layer, while using a finer quantization step size. This can
be added to the current H.264/AVC specification with only minor additions.

For enabling resolution scalability, more extensions are needed, because
an encoder should have the option of using up-sampled lower-resolution mac-
roblocks for prediction, for reusing motion vectors from lower resolution lay-

2.3. MPEG-21: The multimedia framework 15

ers, and for reusing the up-sampled residual signal of the lower resolution
layer. When motion vectors are reused, a motion vector refinement will have
to be transmitted for accurately describing the predicted motion in the higher
resolution layers [36].

2.3 MPEG-21: The multimedia framework

The problem of heterogeneous devices that are used to access the same mul-
timedia content was one of the main reasons why the MPEG standardization
committee started considering the definition of an entire multimedia frame-
work for delivery and consumption, which resulted in the new MPEG-21 stan-
dard.

Rather than creating a world in which each community develops its own
standard for exchanging multimedia content, MPEG-21 seeks to create the big
picture of multimedia standards. It tries to establish interoperability between
the different parts of a multimedia production chain by focusing on how the
elements of a multimedia application infrastructure should interact. Where
open standards for such interaction are missing, MPEG is creating new parts
to fill the gaps [37, 38].

The global vision of MPEG-21 can be summarized as follows: to define a
multimedia framework to enable transparent and augmented use of multime-
dia resources across a wide range of networks and devices used by different
communities [39].

The fundamental unit for distribution and transaction in the MPEG-21
framework is the Digital Item. This is a combination of resources, meta-
data and structural information, expressing the relationships that exist between
these resources and their metadata.

The MPEG-21 standard is split up into a number of distinct parts. Some
parts are already finalized, while others are still in development. The following
list is a complete overview of all parts of the MPEG-21 framework at the time
of writing.

1. Vision, Technologies and Strategy: defines an architectural overview of
the MPEG-21 framework, together with a number of requirements.

2. Digital Item Declaration: specifies a model (semantics) of the concept
of a Digital Item, together with its representation (syntax). We discuss
this part in Sect. 2.3.1.

3. Digital Item Identification: defines how to uniquely identify a Digital
Item or a particular part of it.

16 Enabling technologies

4. Intellectual Property Management and Protection: provides an inter-
operable mechanism for the reliable protection of multimedia content
across different devices.

5. Rights Expression Language: defines a language for declaring rights and
permissions; the terms used in this language are defined in the Rights
Data Dictionary.

6. Rights Data Dictionary: specifies a dictionary of key terms used to de-
scribe the rights of different users.

7. Digital Item Adaptation: defines description tools that allow transparent
access to multimedia content by shielding users from the properties of
the terminals and networks in use. We discuss this part in Sect. 2.3.2.

8. Reference software: bundles software packages that implement the
different tools specified in other MPEG-21 parts.

9. File Format: defines a file format for storing and distributing Digital
Items in an efficient way.

10. Digital Item Processing: defines how Digital Items can be processed in
an interoperable way.

11. Evaluation methods for persistent association technologies: documents
best practices in evaluating persistent association technologies using a
common methodology.

12. Test bed for MPEG-21 resource delivery: provides a test bed for deliv-
ering scalable content and for evaluating the behavior of the delivery of
this content in a streaming environment.

13. Scalable Video Coding: moved to the MPEG-4 specification for scalable
extensions for Advanced Video Coding, and is no longer part of the
MPEG-21 standard.

14. Conformance: defines testing procedures for different parts of the
MPEG-21 framework, in order to validate compliance of particular im-
plementations of the MPEG-21 standard.

15. Event reporting: standardizes mechanisms for monitoring and commu-
nicating events relating to Digital Items and/or the programs and devices
that operate on them.

2.3. MPEG-21: The multimedia framework 17

16. Binary Format: enables the efficient storage and exchange of several
kinds of MPEG-21 descriptions by means of an efficient compression
method for XML documents.

17. Fragment identification of MPEG resources: specifies a syntax for ad-
dressing specific parts of resources of different MPEG media types.

18. Schemas: contains all XML Schema files for the different MPEG-21
parts.

The main advantage of splitting up the standard into distinct parts is that
they don’t have to be used as a whole: each part can equally be used stand-
alone in particular applications. This is the approach we use further on in the
following chapter: we use a number of technologies defined in MPEG-21 Part
7, the Digital Item Adaptation specification, without using other MPEG-21
parts. As will become clear in the following section, the Digital Item Dec-
laration can easily be used in a meaningful way without the other MPEG-21
parts.

In the remainder of this section, we go deeper into detail on two parts of the
MPEG-21 specification that are particularly of interest when delivering multi-
media content in heterogeneous environments: Digital Item Declaration [40]
and Digital Item Adaptation [41]. The former defines a language for describ-
ing structured digital items, and provides hooks for offering different versions
of the same content. The latter is entirely devoted to the seamless adaptation
of multimedia presentations to a particular environment.

2.3.1 Digital Item Declaration

In MPEG-21 Part 1, Vision, Technologies and Strategy [37], Digital Items are
defined as structured digital objects, with a standard representation, identifica-
tion and metadata within the MPEG-21 framework. The actual representation
of a Digital Item is defined in the Digital Item Declaration [40, 42, 43]. This
document consists of three parts:

• An abstract model defining a set of abstract elements and concepts that
are relevant for declaring Digital Items.

• The representation of the model gives a formal description of the syntax
and semantics of the elements and concepts of the model, expressed
by means of XML. This XML representation is called the Digital Item
Declaration Language (DIDL).

18 Enabling technologies

Container

Item

DescriptorDescriptor

Component

DescriptorDescriptor

Resource

Item

DescriptorDescriptor

Component

DescriptorDescriptor

Resource

Item

DescriptorDescriptor

Component

DescriptorDescriptor

Resource

DescriptorDescriptor

Choice

Selection_1

Selection_2

Component

DescriptorDescriptor

Resource

Condit ion

+ Selection_1

Figure 2.6: Building blocks of a Digital Item.

• The MPEG-21 DIDL Schema is an XML Schema defining the gram-
mar of the Digital Item Declaration model and Digital Item Declaration
Language in XML.

The abstract model has been designed to be as flexible and general as possi-
ble, providing hooks that enable higher level functionality and interoperability.
This way, the model can be used in higher level models, for example within
other parts of MPEG-21. The abstract model can also help to perform map-
pings between existing languages that have related mechanisms for defining
digital items.

In Fig. 2.6, an example Digital Item is shown, in which several building
blocks of the abstract model are used: resources that identify the actual con-
tent, descriptors, for expressing descriptive information, components, that
are used to bind resources to descriptors, items, that are used to declare log-
ically indivisible works or compilations, and containers for grouping related
items or other containers.

The Digital Item Declaration provides a powerful mechanism for realiz-
ing Universal Multimedia Access: most elements can be made conditionally

2.3. MPEG-21: The multimedia framework 19

available, by means of conditions. This is achieved by means of choices and
selections, where the state of certain predicates can be determined. Choices
and selections can contain human-readable or machine-readable information
contained in descriptors for assisting in selecting the appropriate choices.

As an example of a complete Digital Item Declaration, the DIDL document
in Listing 2.1 represents the Digital Item that is graphically represented in
Fig. 2.6.

Listing 2.1: A basic Digital Item Declaration.

<DIDL xmlns="urn:mpeg:mpeg21:2002:02-DIDL-NS">
<Container>

<Item>
<Descriptor>

<Statement mimeType="text/plain">
This is the first item in our collection

</Statement>
</Descriptor>
<Component>

<Descriptor>
<Statement mimeType="text/plain">

Here you can find the actual resource
</Statement>

</Descriptor>
<Resource mimeType="video/mpeg"

ref="http://myserver/videos/video_1.mpg"/>
</Component>

</Item>
<Item>

<Descriptor>
<Statement mimeType="text/plain">

This is the second item in our collection
</Statement>

</Descriptor>
<Component>

<Descriptor>
<Statement mimeType="text/plain">

Here you can find the actual resource
</Statement>

</Descriptor>
<Resource mimeType="video/mpeg"

ref="http://myserver/videos/video_2.mpg"/>
</Component>

</Item>
<Item>

<Descriptor>
<Statement mimeType="text/plain">

This is the third item in our collection

20 Enabling technologies

</Statement>
</Descriptor>
<Descriptor>

<Component>
<Resource mimeType="image/jpeg"

ref="http://myserver/images/thumbnail_3.jpg"/>
</Component>

</Descriptor>
<Choice minSelections="1" maxSelections="1">

<Selection select_id="high_bandwidth"/>
<Selection select_id="low_bandwidth"/>

</Choice>
<Component>

<Condition require="high_bandwidth"/>
<Descriptor>

<Statement mimeType="text/plain">
Here you can find the high bandwidth version

</Statement>
</Descriptor>
<Resource mimeType="video/mpeg"

ref="http://myserver/videos/video_3_300kbps.mpg"/>
</Component>
<Component>

<Descriptor>
<Statement mimeType="text/plain">

Here you can find the low bandwidth version
</Statement>

</Descriptor>
<Resource mimeType="video/mpeg"

ref="http://myserver/videos/video_3_100kbps.mpg"/>
</Component>

</Item>
</Container>

</DIDL>

The DID we just presented, contains an example of how the MPEG-21
Digital Item Declaration specification can be used for offering multimedia con-
tent in heterogeneous environments. In the example, a high bit rate and a low
bit rate version of the same video sequence exist, but the high bit rate version
is only available if the predicate high bandwidth is true. This predicate is
assigned a value when evaluating a choice, in which one of three options (high,
medium or low available bandwidth) has to be selected.

In a practical example, the Choice element and the Selection ele-
ments will contain descriptors. This can be human-readable information, that
can be used for presenting the user a dialog box where he has to make an ap-
propriate selection. It can also contain machine-readable information, such

2.3. MPEG-21: The multimedia framework 21

Digital Item Adaptation
Engine

Resource

Adaptation Engine

Description

Adaptation Engine

Scope of

standardization

Adapted
Digital Item

Adapted
Digital ItemDigital ItemDigital Item

DIA ToolsDIA Tools

Figure 2.7: Digital Item Adaptation architecture [41, 45].

as MPEG-7 metadata [44] or a usage environment description as defined in
MPEG-21 Digital Item Adaptation [41].

2.3.2 Digital Item Adaptation

Another part of MPEG-21 that focuses on enabling the distribution of multime-
dia content in heterogeneous environments is surely MPEG-21 Part 7, Digital
Item Adaptation [41, 45, 46]. Its goal is to offer tools for the effective adapta-
tion of multimedia presentations. In this section, we give an overview of the
DIA specification.

The conceptual architecture of Digital Item Adaptation is shown in
Fig. 2.7. Here, we can see that a Digital Item is subject to a resource adaptation
engine as well as a description adaptation engine. Together, these engines pro-
duce an adapted Digital Item. An important remark in Fig. 2.7 is that the DIA
specification does not standardize the adaptation engines themselves, but only
the tools that are used for steering these engines [39, 45]. This way, MPEG
opens competition between different companies offering DIA engines: they
can implement the engines in several ways, e.g., focussing more on the speed
of implementation or rather on the resulting quality.

The DIA specification consists in itself of different parts that can be used
stand-alone or in combination with other MPEG-21 tools. These parts can
be grouped into the following eight clusters; each of them is described in the
following sections.

• The Usage Environment Description Tools provide a language for de-
scribing different aspects of the usage environment: user characteristics,

22 Enabling technologies

terminal capabilities, network capabilities and natural environment char-
acteristics.

• The BSDLink tool provides facilities to link several parts of an adapta-
tion chain into an entire adaptation architecture.

• The Bitstream Syntax Description tools define mechanisms for describ-
ing the high-level structure of a bitstream. This can facilitate the adap-
tation of these bitstreams.

• The next category is referred to as Terminal and Network Quality of
Service, and allows to describe relationships between QoS constraints,
adaptation operations and the resource qualities that result from these
operations.

• The Universal Constraint Description Tools provide a mechanism for
expressing limitation and optimization constraints on adaptations.

• Metadata adaptability specifies hint information for reducing the com-
plexity of adapting the metadata contained in a Digital Item.

• The goal of the Session Mobility tool is to capture and transmit the
configuration state of Digital Item when it is transferred from one de-
vice to another.

• The DIA Configuration Tools can assist an adaptation engine in its
configuration.

Usage Environment Description Tools

A Usage Environment Description provides descriptive information about sev-
eral aspects of the usage environment. This information can be used by a Dig-
ital Item Adaptation Engine for taking into account the constraints imposed by
the environment, preferences expressed by the end user, etc.

The following aspects of the usage environment can be covered in a Usage
Environment Description.

• Characteristics of the end user, such as general user information, con-
tent and presentation preferences, accessibility characteristics, mobility
characteristics and destination.

• Characteristics of the terminal that is used for accessing Digital Items.
This can be information about the decoding and encoding capabilities,
input-output capabilities and device properties, such as power and stor-
age characteristics.

2.3. MPEG-21: The multimedia framework 23

• Static and dynamic characteristics of the network that is available, such
as the maximum bandwidth, the guaranteed minimum bandwidth, delay
characteristics, packet loss rate, bit error rate, etc.

• The characteristics of the natural environment of the usage of a Digi-
tal Item. This comprises the location and the time of usage, but also
audio-visual environment characteristics, such as background noise and
illumination.

In Listing 2.2, a Usage Environment Description is shown, giving infor-
mation about the characteristics of the network between the terminal and the
server. This Usage Environment Description contains only information about
the network characteristics, in particular its capabilities (maximum and min-
imum available bandwidth) and its specific conditions at that moment: the
maximum and average bandwidth, the delay that is measured, and the packet
loss rate. A Resource Adaptation Engine can use this information when it
wants to reduce the bit rate of a scalable video sequence when transmitting it
to the terminal.

Listing 2.2: A usage environment description containing information about the net-
work characteristics.

<DIA xmlns="urn:mpeg:mpeg21:2003:01-DIA-NS">
<Description xsi:type="UsageEnvironmentType">

<UsageEnvironment xsi:type="NetworkCharacteristicsType">
<NetworkCharacteristics xsi:type="NetworkCapabilityType"

maxCapacity="384000" minGuaranteed="32000"/>
<NetworkCharacteristics xsi:type="NetworkConditionType">

<AvailableBandwidth maximum="256000" average="80000"
interval="330"/>

<Delay packetTwoWay="330" delayVariation="66"/>
<Error packetLossRate="0.05"/>

</NetworkCharacteristics>
</UsageEnvironment>

</Description>
</DIA>

BSDLink

The main goal of the BSDLink tool is to link any kind of steering description
tools (e.g., a Usage Environment Description) with the bitstream description
tools in a flexible and extensible way. A BSDLink links steering description
information, such as AdaptationQoS information, bitstream description infor-
mation, and possible transformations for this bitstream description together.

24 Enabling technologies

The output of the steering description is used as an input parameter for the
transformation on the bitstream description.

Bitstream Syntax Description

Within the MPEG-21 Digital Item Adaptation specification, two mechanisms
for expressing bitstream descriptions by means of XML are defined. These
bitstream descriptions assist a Resource Adaptation Engine in transforming a
(possibly scalable) bitstream by means of rather straightforward editing op-
erations. Because of the importance of bitstream descriptions for this thesis,
and because of our original contributions in this domain, an entire chapter (see
Chapter 3) of this thesis is devoted to the subject of bitstream descriptions.

Terminal and Network Quality of Service

Another cluster in Digital Item Adaptation is called Terminal and Network
QoS. This is a set of tools that enable the expression of relationships between
Quality of Service constraints imposed by the network (e.g., the available
bandwidth) and the terminal (e.g., computational capabilities), the possible
adaptation operations, and the influence of these adaptations on the resulting
quality or utility. This way, an effective adaptation strategy can be formulated
that can help in determining an optimal adaptation decision.

Universal Constraints Description tools

The Universal Constraints Description (UCD) tool allows the expression of
constraints by means of resource and environment characteristics, as well as
optimization guidelines.

The UCD tool becomes very powerful when used in conjunction with
AdaptationQoS information from the Terminal and Network QoS tool. Us-
ing both sources of information, a Resource Adaptation Engine can construct
a generic constrained optimization problem, as described in [47].

The variables in such a problem are expressed by means of IOPins. Depen-
dencies between these variables are expressed by means of modules. Different
types of modules exist: look-up tables, numeric functions, and lists of possible
utility values [48]. Information in the Usage Environment Description can be
referenced from the Terminal and Network QoS tools. The constraints and the
optimization functions of the optimization problem can be expressed by means
of the UCD tool.

As a concrete example, consider a fully scalable video sequence. Each
Group of Pictures is treated as a single adaptation unit. Relevant variables that

2.3. MPEG-21: The multimedia framework 25

MUKHERJEE et al.: TERMINAL AND NETWORK QUALITY OF SERVICE

3

is the number of variables. For each adaptation unit n, the
optimization problem to be solved is given by:

Maximize or Minimize {On,j(I[n], H[n])}, j=0,1,...,Jn–1
subject to: Ln,k(I[n], H[n]) = true, k=0,1,…,Kn–1

where Ln,k(I[n], H[n]), are Boolean expressions called limit
constraints, and On,j(I[n], H[n]), are numeric expressions
called optimization constraints. The vector H[n] in the
expressions of On,j and Ln,k represents the history of all past
decisions for adaptation units 0,1,…, n-1. In other words, if
I*[n] represents a solution to the problem for the nth adaptation
unit, we can denote: H[n] = {I*[0], I*[1],…, I*[n-1]}. An
ADTE makes decisions for the vectors I[n] sequentially for n
= 0,1,2,… The dependency on history of past decisions is
needed in certain cases, as in Section V.D.

The number of optimization constraints (Jn) is arbitrary. If
Jn=0, any solution in the feasible region – defined as the
region of the solution space where the limit constraints are
satisfied – is acceptable. The case Jn=1 defines a common
single-criterion optimization problem with usually a unique
solution. The case Jn>1 defines a multi-criteria problem
[23][24], where any Pareto optimal solution in the feasible
region is accpetable.

The DIA tools, AdaptationQoS and UCD used in
combination, support the above decision-taking mechanism.
Variables are termed IOPins and are defined in the
AdaptationQoS description. In cases involving multiple
adaptation units, there is one IOPin defined in AdaptationQoS
that indexes successive adaptation units, while other IOPins
are functions of this IOPin. The AdaptationQoS description
also conveys the known interdependencies between IOPins
using various data types called modules defined in the tool.
These include look-up tables, numeric functions represented
by an expression stack, or lists of values assumed for each
adaptation choice termed utility functions. Note that the UCD
or AdaptationQoS can still reference values from the UED,
but the processing is driven by UCD or AdaptationQoS rules
to ensure semantics-independent operation. Fig. 3 shows an
example AdaptationQoS description with a variety of IOPins
connected by module definitions as well as a UCD. This
figure is further explained in Section IV.A. Specific examples
of AdaptationQoS and UCD are provided in Section V.

Note that the semantics of the IOPins are immaterial within
the ADTE because they are simply regarded as mathematical
variables to solve in a generic optimization problem.
However, they are very much important at the provider and

receiver ends or other nodes from where the AdaptationQoS
or UCD originates. That is because, the UCD creator in many
cases would not be expected to know the identifier of the
IOPin (variable) defined in the provider side AdaptationQoS
description, corresponding to a given semantics. In order to
enable linking of the UCD to the right IOPins in
AdaptationQoS, DIA creates a number of dictionaries termed
classification schemes to standardize terms having pre-defined
semantics for representing media characteristics, usage
environment characteristics, and segment decompositions. The
AdaptationQoS associates the IOPins it defines with terms
that are the closest in semantics, while the UCD creator uses
the same terms to specify the problem, rather than use
identifiers of the IOPins directly. The ADTE simply performs
a textual match of the classification scheme terms used in
AdaptationQoS and UCD to know how the constraints
specified in UCD using semantics terms map to IOPins.

IV. ADTE OPTIMIZATION
Generally speaking, an ADTE can have several inputs to it,

comprising an AdaptationQoS, and several UCDs or UEDs
from various sources. Based on these inputs, the ADTE needs
to make appropriate adaptation decisions, by solving one or
more constrained optimization problems [25]. We first discuss
the single UCD case, and then present options to cover
multiple UCDs originating from different sources.

A. Optimization problem involving free variables
The AdaptationQoS declares and defines several IOPins,

some of which are independent, while others depend on other
IOPins. Among the independent IOPins, some are assigned
based on usage environment inputs either explicitly through
the UCD or through data semantically referenced from a
UED. Additionally, in cases involving multiple adaptation
units there is one independent adaptation unit IOPin. The
remaining independent IOPins, denoted x[n], comprise N free
variables that need to be optimized. This classification of
IOPins is illustrated in Fig. 3. At the start of the optimization
process, the ADTE performs simple analyses of the UCD and
AdaptationQoS to determine the free IOPins. Then it performs

 NTEMP NSPATIAL

NSNR
GOF-0

NTEMPNSPATIAL

NSNR
GOF-1

BITRATE = f(NTEMP, NSPATIAL, NSNR) for each GOF

Fig. 2. Adaptation variables for fully scalable video.

Module

Module

Module

Module

Adaptation
unit IOPin

IOPins
assigned

from usage
environment

Free IOPins
(decision

space)

I0

I1

I2

I3

I4

I5

I8

I7

I6

I9

Dependent IOPins

Independent IOPins
UCD

Min (I9 + a. I7): I10>A, I8<B

Module

I10

Fig. 3. Illustration of IOPins in AdaptationQoS.

Figure 2.8: Illustrations of IOPins and Modules in Terminal and Network QoS [47].

are assigned from the UED, expressed by means of IOPins, are the screen res-
olution and the available bandwidth. They are used for expressing constraints
on the acceptable solutions, by means of Modules that compare the resolution
of the adapted sequence and the screen resolution of the terminal, and the bit
rate and the available bandwidth. The free variables, also expressed as IOPins,
are the number of spatial and temporal levels, and the number of bit planes that
are allowed. Probably, a weighted sum of the resulting PSNR value, resolution
and frame rate will be used as an optimization function.

Fig. 2.8 shows an example of a Terminal and Network QoS description,
consisting of IOPins and Modules from the AdaptationQoS tool, as well as
UCD information. As can be seen from the figure, some IOPins are indepen-
dent, while others depend on other IOPins by means of Modules. Within the
independent IOPins, some are assigned from the usage environment, one is
used for referring to a particular adaptation unit, and the remaining IOPins are
free variables that can be modified during the adaptation process. The UCD in
the example consists of two constraints on the possible values of the dependent
IOPins, and a minimization function derived from two dependent IOPins.

Metadata Adaptability

The next cluster of DIA tools deals with Metadata Adaptability. This descrip-
tion tool specifies hint information that can be used to reduce the complexity
of adapting the metadata contained in a Digital Item, by filtering the Digital
Item from less interesting or too detailed information.

26 Enabling technologies

Session Mobility

The Session Mobility tool offers a mechanism for preserving the current state
of interaction between a particular User and a Digital Item when the User
wants to change to another device. This configuration state consists of the
states of the different predicates of the Digital Item, but also application-state
information. It is transmitted by means of a so-called context Digital Item.

DIA Configuration tools

The DIA Conf iguration tool assists a terminal in resolving the choices and
selections of a Digital Item. It allows the author of a Digital Item to specify
which DIA descriptors are needed from the sender and receiver side, and which
choices of the Digital Item should be automatically configured by the terminal
and which choices should be presented to the end user.

Chapter 3

Bitstream descriptions

3.1 Introduction

In the introduction of this thesis, we already briefly discussed the properties of
scalable video coding. The most important property of compressed bitstreams
that are encoded in a scalable way, is that they can be adapted to a lower quality
version imposing less requirements by means of rather straightforward editing
operations. This way, a reduced bitstream can be produced, that is suitable for
the constraints imposed by the environment.

As an alternative to scalable video coding, real-time transcoding exists for
quite some time [49]. Here, fast dedicated implementations operate on the bit-
streams. The same approach can be used for developing software for adapting
scalable bitstreams. Even though these editing operations are supposed to be
straightforward, it is still an annoying and error-prone task to produce software
that is capable of executing the adaptation process. It is often difficult to reuse
such application-specific and format-specific software in similar applications
operating on the same coding format.

Moreover, in order to steer this adaptation in an intelligent way, it can be
useful to attach descriptive information, metadata, to the bitstream itself. This
information can be used, for example, for filtering a multimedia presentation
based on its content [50], or for inserting so called generic complexity metrics
that can help estimating the complexity needed for decoding a bitstream [51].

To overcome these problems, it is useful to have a high-level description
of the structure of a scalable bitstream, in parallel with the bitstream itself.
Such bitstream descriptions can then serve as a level of abstraction operating
on top of the bitstream level: manipulations executed on the bitstream descrip-
tions reflect manipulations on the bitstream itself. The preferred language for
representing these structural descriptions is XML, the eXtensible Markup Lan-

28 Bitstream descriptions

guage [52], for a number of reasons.

• XML offers a very flexible way of describing highly structured data.

• In a few years time, XML has become the de facto language for de-
scribing metadata [53]. This way, bitstream descriptions can be easily
integrated with existing metadata standards, such as MPEG-7 [44].

• A huge amount of tools exist for processing XML information in a fast,
reliable and flexible way.

• XML is extensible: it is possible to add information to an existing XML
document in such a way that applications that are not familiar with this
new information will ignore it.

• As it is represented by means of plain text, XML is platform indepen-
dent.

Within Part 7 of the MPEG-21 standard, that offers the tools needed for
Digital Item Adaptation (DIA) [41], two related frameworks are defined that
can be used for bitstream descriptions.

In this chapter, we first describe these frameworks. Next, we discuss our
original contributions in this domain, in particular the construction of a num-
ber of useful examples of how the frameworks proposed by MPEG-21 can be
used for producing descriptions of bitstreams that comply to existing scalable
formats. Before concluding the chapter, we describe some other languages for
bitstream descriptions that are developed outside MPEG.

In general, a bitstream description generation and adaptation can be de-
scribed as is shown in Fig 3.1. In the remainder of this chapter, this figure is
reused for describing the typical architectural properties of the different bit-
stream description frameworks that are discussed in this chapter.

3.2 Bitstream Syntax Description Language

3.2.1 Introduction

The main objective of BSDL, the Bitstream Syntax Description Language [54–
57], is that it should be possible to automatically produce bitstream descrip-
tions in XML, based on a formal definition of the syntax of these bitstreams.
This syntax definition should also be sufficient for regenerating a bitstream
from an adapted bitstream description.

3.2. Bitstream Syntax Description Language 29

Bitstream
description generationBitstream Bitstream

description

Bitstream
generation

Adapted
bitstream

Bitstream
description

transformation

Transformed
bitstream

description

Figure 3.1: General architecture for a bitstream description generation and transfor-
mation system [45].

The entire work flow of the BSDL framework is shown in Fig. 3.2. In this
framework, a bitstream that complies to a certain syntax, described by means
of a BSDL Schema, is fed to the BinToBSD process. This process uses the
BSDL Schema to produce a bitstream description. This description can be
adapted using any tool for manipulating XML data, such as XSLT (eXtensible
Stylesheet Language - Transformations) [58], an application that uses an XML
parser that implements an API such as DOM (Document Object Model)1 or
SAX (Simple API for XML)2, etc. In principle, one can even use a basic text
editor for adapting the bitstream description. It is important to note that the
appropriate selection of a good transformation mechanism is very important,
as it has a significant impact on the execution speed and memory consumption
of the transformation step [4, 59].

After manipulating the bitstream description in an appropriate way, we
end up with an adapted bitstream description. The BSDToBin tool is capable
of using this description to generate the adapted bitstream itself, using the in-
formation that can be found in the BSDL Schema. If the bitstream description
contains references to the original bitstream, this bitstream is also needed as
an input to the BSDToBin process, as can be seen from Fig. 3.2.

The most innovative idea behind the Bitstream Syntax Description Lan-
guage is that the language for expressing a BSDL Schema is an extension of
the XML Schema [60] language. Whereas an XML Schema defines a syntax

1DOM, the Document Object Model, is a language-independent API for manipulating XML
documents.

2http://www.saxproject.org

30 Bitstream descriptions

BinToBSD

BSDL
Schema

bitstream XML description

BSDToBinadapted
bitstream

Transformation

adapted
XML description

Figure 3.2: Data flow in the BSDL framework.

for a certain class of XML documents, a BSDL Schema defines a syntax for
a certain class of XML bitstream descriptions, and is at the same time a syn-
tax for the bitstreams themselves3. This way, existing XML Schema tools can
be used for validating the correctness of a BSDL bitstream description with
respect to its BSDL Schema.

In the following section, we give a complete description of all constructs
that can appear in a BSDL Schema that complies to the MPEG-21 DIA
specification. A number of example BSDL Schemas for several types of bit-
streams can be found in Sect. 3.4.

3.2.2 Specification

As we just mentioned, the BSDL Schema language is an extension of XML
Schema. It also defines a limited number of restrictions on what can occur in
a Schema. The extensions are expressed by means of two XML Schemas. The
Schema for BSDL-1 Extensions defines a number of attributes and data types
that can be used in a BSDL Schema, but that do not exist in XML Schema.
The BSDToBin process only needs these extensions for producing correct bit-
streams from a bitstream description. The Schema for BSDL-2 Extensions
defines a number of additional extensions to XML Schema that can be needed
to resolve ambiguities in the BinToBSD process.

3This explains the name Bitstream Syntax Description Language.

3.2. Bitstream Syntax Description Language 31

Restrictions on XML Schema

Some constructs and data types that can occur in an XML document and that
can be expressed in an XML Schema are not useful for bitstream descriptions
as they can cause certain ambiguities. Therefore, BSDL defines a number of
restrictions on the XML Schema language.

A first restriction is that data that occurs in the bitstream can only appear
inside an XML element, not in an attribute. The reason for this restriction is
that the order of appearance of an attribute in an XML element has no meaning,
and can therefore be modified by any tool operating on the XML document.

Mixed content is not allowed either, as all elements must be assigned
a type. Therefore, xsd:mixed cannot occur in a BSDL Schema. Ele-
ments with no type, expressed by means of xsd:any, xsd:anyType or
xsd:anySimpleType are not allowed either.

Only a limited number of data types that exist in XML Schema are allowed
in BSDL. Only those for which a binary representation is possible, are permit-
ted. For instance, xsd:integer is not allowed, as the number of bytes
needed for representing such an element is not specified. An element of type
xsd:int is allowed, because in this case, the number of bytes is fixed. In
Table 3.1, all data types that belong to XML Schema that are allowed to occur
in a BSDL Schema, are shown. Note that some of these data types do not have
an a priori length. If such a data type occurs in a BSDL Schema, BinToBSD
will need information belonging to the BSDL-2 Extensions for determining
the actual length. This problem does not occur for BSDToBin as the length of
the data becomes clear when evaluating the content of the element.

In addition, other data types can be defined in a BSDL Schema, by re-
stricting the range of one of the existing unsigned data types, using the
xsd:maxExclusive restricting mechanism of XML Schema. Listing 3.1
shows how we can define a new data type that consists of exactly 5 bits.

Listing 3.1: Example of the use of xsd:maxExclusive in BSDL.

<!-- the following data type exists of 5 bits -->
<xsd:simpleType name="a5bitsToken">

<xsd:restriction base="xsd:unsignedByte">
<xsd:maxExclusive value="32"/>

</xsd:restriction>
</xsd:simpleType>

32 Bitstream descriptions

Table 3.1: Overview of all XML Schema data types that are allowed in BSDL, to-
gether with their length, expressed in bytes.

data type length
xsd:string unlimited
xsd:float 4
xsd:double 8

xsd:hexBinary unlimited
xsd:base64Binary unlimited

xsd:long 8
xsd:int 4
xsd:short 2
xsd:byte 1

xsd:unsignedLong 8
xsd:unsignedInt 4

xsd:unsignedShort 2
xsd:unsignedByte 1

BSDL-1 Extensions

The Schema for BSDL-1 Extensions defines two new data types: byteRange
and bitstreamSegment, both used for referring to fragments of the orig-
inal bitstream. Elements of the byteRange data type consist of two non-
negative integer values. The first value refers to a location in the cur-
rent bitstream, represented as a byte offset, where the fragment begins,
and the second value indicates the length, in bytes, of this fragment. A
bitstreamSegment element has the same function, but elements of this
data type have a start and a length attribute. This data type only exists
for compatibility with the gBSD standard, also part of MPEG-21 Digital Item
Adaptation, that is discussed in Sect. 3.3.

The bitstream where a byteRange or a bitstreamSegment refers
to, is declared by means of the bitstreamURI attribute. It can occur in the
root element of a bitstream description, thus providing a default value for that
description, but can also occur in a byteRange or a bitstreamSegment,
thus overwriting the default location of the referred bitstream.

A final extension defined in the Schema for BSDL-1 Extensions is the
ignore attribute. Elements in a bitstream description that carry this attribute
will be ignored by the BSDToBin process if its value is set to true, either in the
bitstream description itself, or in the BSDL Schema by setting its default value
to true. This way, it is easy to add metadata information to a bitstream descrip-

3.2. Bitstream Syntax Description Language 33

tion in such a way that it does not influence the generation of the (adapted)
bitstream itself.

BSDL-2 Extensions

The most important extension in BSDL-2 is the use of XPath4 expressions.
Sometimes, the presence, the number of occurrences or the length of a par-
ticular element in a bitstream depends on the value of another element of the
bitstream. Such situations can be expressed in a BSDL Schema. The Bin-
ToBSD process needs these expressions for generating the correct bitstream
description.

When the number of occurrences of a particular element depends on the
value of another element, this can be expressed by using the nOccurs at-
tribute, that can contain an XPath expression. If it is absent, its value is
supposed to be 1. In order to make sure that the BSDL Schema is a correct
XML Schema for the produced bitstreams, the values for minOccurs and
maxOccurs must correspond with all possible values for nOccurs.

Often, elements of a bitstream are conditional. In a BSDL Schema, this is
expressed by means of the if or the ifNext attribute. An element containing
an if attribute only occurs in the bitstream description if the XPath expression
in the attribute evaluates to true. An ifNext attribute contains a hexadecimal
value or a range of hexadecimal values (2 values, separated by a dash), as is
shown in Listing 3.2. In this case the element will only occur if the following
bytes in the stream correspond with the value or range of values mentioned in
the ifNext attribute. As it was the case for nOccurs, the minOccurs and
maxOccurs attributes should have appropriate values, if we want to be able
to use the BSDL Schema as a valid XML Schema.

Listing 3.2: Example of the use of ifNext in a BSDL Schema.

<xsd:element name="elem" type="bt:b3" bs2:ifNext="20-FF"
minOccurs="0" maxOccurs="unbounded"/>

<!-- elem element occurs repeatedly
until the following 3 bits are all zero -->

<xsd:element name="stop" type="bt:b3" fixed="0"/>

We deliberately omitted the namespace declarations of BSDL, for reasons
of compactness. The same goes for the other BSDL and gBSD fragments of
this chapter. For completeness, all relevant namespaces and the prefixes we
used for them in this chapter, can be found in Table 3.2.

4XPath is a language for selecting fragments of an XML document.

34 Bitstream descriptions

Table 3.2: Namespaces for BSDL and gBSD.

specification namespace prefix
BSDL-1 urn:mpeg:mpeg21:2003:01-DIA-BSDL1-NS bs1

BSDL-2 urn:mpeg:mpeg21:2003:01-DIA-BSDL2-NS bs2

gBSD urn:mpeg:mpeg21:2003:01-DIA-gBSD-NS gbsd

Another attribute defined in the Schema for BSDL-2 Extensions is the
rootElement attribute in the xsd:schema element. This attribute tells
the BinToBSD process which element of the schema should be used as the
root element of the bitstream description.

In BSDL-1, some XML Schema data types can have an unlimited repre-
sentation size, as can be seen in Table 3.1. The same goes for the byteRange
data type. In these cases, the BinToBSD process needs additional infor-
mation to know how long the actual elements are, otherwise all remain-
ing bytes in the bitstream are considered to be part of that element. Be-
cause XML Schema does not support such constructs directly, the use of
xsd:annotation/xsd:appinfo inside an xsd:restriction ele-
ment is needed.

One of the mechanisms we can use for limiting the range of unlimited data
types is the length attribute, that can contain an XPath expression determin-
ing the number of bytes the element consists of. In Listing 3.3, an example
of the use of the length attribute to determine the length of a byteRange
data type is shown: the number of bytes in the second field corresponds with
the value of the first field minus 2. The length attribute cannot be used in
combination with xsd:length, startCode or endCode constructions.

Listing 3.3: BSDL fragment in which the length (in bytes) of the second element is
determined by the value of the first element.

<xsd:element name="header">
<xsd:complexType>

<xsd:sequence>
<xsd:element name="firstfield" type="xsd:unsignedShort"/>
<xsd:element name="secondfield">

<xsd:simpleType>
<xsd:restriction base="bs1:byteRange">

<xsd:annotation>
<xsd:appinfo>

<bs2:length value="../this:firstfield - 2"/>
</xsd:appinfo>

</xsd:annotation>
</xsd:restriction>

3.2. Bitstream Syntax Description Language 35

</xsd:simpleType>
</xsd:element>

</xsd:sequence>
</xsd:complexType>

</xsd:element>

Another way of determining the length of an unlimited data type is the
use of startCode or endCode types. When the length of an element is
restricted using these constructions, the BinToBSD process looks for the next
occurrence of the hexadecimal pattern or range that is mentioned in the value
attribute of the startCode or endCode element. When startCode is
used, the pattern does not belong to the current element, in the case of an
endCode, it does. An example of the use of start codes in BSDL is given in
Listing 3.4. The end of both payloads is determined by the start code of the
following element, which can either fall within the given range (from 0000
up to 0010) or correspond with a fixed value (in this case 0020).

Listing 3.4: Example of the use of startCode in a BSDL Schema.

<xsd:simpleType name="PayloadType">
<xsd:restriction base="bs1:byteRange">

<xsd:annotation><xsd:appinfo>
<bs2:startCode value="0000-0010"/>
<bs2:startCode value="0020"/>

</xsd:appinfo></xsd:annotation>
</xsd:restriction>

</xsd:simpleType>
<xsd:element name="init" type="bt:b8"/>
<xsd:element name="payload_1" type="PayLoadType"/>
<xsd:element name="marker" type="bt:b16"/>
<xsd:element name="payload_2" type="PayLoadType"/>

A final construction that belongs to BSDL-2 is the ifUnion construction.
This is comparable with the well known switch/case constructions in most
programming languages, and is used when an element of a BSDL Schema
is defined using xsd:union. In that case, one type from a list of types,
enumerated in the memberTypes attribute, is allowed to occur.

In order to be able to select the appropriate type, BinToBSD needs the
information that occurs in the ifUnion elements. The index of the first
ifUnion element for which the XPath expression evaluates to true will de-
termine which element will be selected. If all n expressions evaluate to false,
the member type with position n + 1 is selected. This way, this element is
actually treated as a default type.

36 Bitstream descriptions

The following example (Listing 3.5) should make the use of this construc-
tion easier to understand. When the first expression evaluates to true, type
bt:b1 is selected. If all expressions are false, type bt:b4 is selected.

Listing 3.5: Example of the use of xsd:union combined with ifUnion elements in a
BSDL Schema.

<xsd:element name="elt1">
<xsd:simpleType>

<xsd:union memberTypes="bt:b1 bt:b2 bt:b3 bt:b4">
<xsd:annotation>

<xsd:appinfo>
<bs2:ifUnion value="../pref:someOtherElt < 2"/>
<bs2:ifUnion value="../pref:someOtherElt < 4"/>
<bs2:ifUnion value="../pref:someOtherElt < 8"/>

</xsd:appinfo>
</xsd:annotation>

</xsd:union>
</xsd:simpleType>

</xsd:element>

3.3 Generic Bitstream Syntax Description

One drawback of BSDL is that, even though it makes abstraction of the bit-
streams that are used, and therefore is generic to some extent, the BSDToBin
process needs to know the BSDL Schema that is in use, as can be seen from
Fig. 3.2. As a consequence, BSDToBin needs to know all Schemas for all
bitstream descriptions it has to be able to process, and therefore is not truly
format independent. This can cause problems in case BSDToBin has to be ex-
ecuted on a constrained device. For this reason, the generic Bitstream Syntax
Description, gBSD [50, 57], was developed. This format is also standardized
as part of MPEG-21 Digital Item Adaptation. In Fig. 3.3, a data flow diagram
is presented for the gBSD framework, in a similar way as in Fig. 3.2. The most
important difference is that there is no longer a format specific BSDL Schema
in use.

In gBSD, a bitstream description also describes a high-level structure of
the logical units of a bitstream. In contrast to BSDL, the notation of these
logical units, standardized in the gBSD Schema, is format independent. This
is achieved by using only two types of elements that can occur in any generic
bitstream description: gBSDUnit and Parameter.

A logical unit in the original bitstream is referred to by means of the
gBSDUnit element. These elements refer to the original bitstream in a sim-

3.3. Generic Bitstream Syntax Description 37

bitstream description
generationbitstream XML description

gBSDToBinadapted
bitstream

Transformation

adapted
XML description

Figure 3.3: Data flow in the gBSD framework.

ilar way as the byteRange data type of BSDL. A gBSDUnit can contain
a number of other gBSDUnit or Parameter elements, thus enabling the
possibility of creating a hierarchical description of the bitstream structure.

A gBSDUnit can also contain a number of arguments. The start and
length attributes point to the beginning and the length of the bitstream frag-
ment referred to by the current representation. They only get processed when
the unit has no child elements. A syntacticalLabel attribute can be used
for inserting codec-dependent information, thus assisting a transformation en-
gine that is aware of the coding format in use. The marker attribute is used
for inserting semantic, application-specific information that can be used for
adapting the bitstream.

The Parameter element is used for situations in which the value of a
syntactical element of the bitstream (e.g., the resolution of an image or a video)
might need to be changed during the adaptation process. A Parameter ele-
ment contains the numerical value of this syntactical element, but also the data
type that is used for representing this value in the bitstream. The data types
that can be used are the same as for BSDL-1.

Three attributes are defined for determining the exact way in which a bit-
stream fragment is located. The bitstreamURI has the same meaning as in
BSDL, and uses the BSDL-1 namespace. The addressUnit can be either
bit or byte, and denotes the unit for the values of the start and length
attributes. The value of the addressMode attribute is Absolute when
the start attribute denotes the distance from the beginning of the bitstream,
Consecutive can be used when it is assumed that each unit immediately
follows the preceding unit (in this case, the start attribute is not needed), or

38 Bitstream descriptions

Offset, when the start attribute denotes the distance from the beginning
of the previous unit.

The addressing attributes can occur in the top-level element of type
gBSDType (usually a Description element of the Digital Item Adapta-
tion namespace), thus denoting the default values. These values can be over-
written when any of the addressing attributes occurs in a gBSDUnit or a
Parameter.

When looking at Fig. 3.3, we see that in the gBSD data flow there is no
replacement for the BinToBSD process. As gBSD is truly format independent,
there is no longer a bitstream syntax description for a class of bitstreams, as
it is the case for BSDL by means of a BSDL Schema. As a consequence,
there is no standardized way of generating bitstream descriptions, and different
options are possible. For example, a video encoder might be extended in such
a way that it no longer only produces a compressed bitstream, but in addition
also produces a bitstream description that complies to the gBSD format. A
second possibility is demonstrated in Sect. 3.4, where we translate a BSDL
description into a gBSD description by means of a small piece of software
written specifically for the conversion from BSDL to gBSD. Such software is
format-dependent, as it needs to understand the syntax and semantics of the
BSDL bitstream description.

3.4 Producing bitstream descriptions

In this section, we describe a number of example bitstream descriptions that
comply to the BSDL or the gBSD specifications. We developed them our-
selves during the research that lead to this thesis, in order to demonstrate the
possibilities of high-level bitstream descriptions.

3.4.1 Uncompressed video in the YUV domain

A first example of a BSDL Schema is a very simple one, that was developed
as an introduction exercise for people willing to discover the possibilities of
BSDL. Even though such a BSDL Schema will probably never be used in
practice, as uncompressed video is normally not used for the storage or trans-
mission of a video signal5, the example can be used for demonstrating the most
important properties of BSDL.

5In a production environment, where any quality loss is to be avoided, YUV information is
frequently used for exchanging digital video data. However, in our opinion, bitstream descrip-
tions do not offer much additional value in such an environment.

3.4. Producing bitstream descriptions 39

Frame …Frame Frame

Y U V

Figure 3.4: Structure of a YUV 4:2:0 bitstream.

The YUV file format

Before a video signal is compressed, the video data exists somehow in an un-
compressed way: for every pixel in the image, a number of values are used for
representing the actual color of that pixel. The most well known color space
is probably the RGB color space, in which a color is decomposed into a red,
a green and a blue channel. For each of these channels, a value is used for
representing the intensity of the color.

In digital video compression, the YUV color space is more common.
Again, a color is decomposed into three channels: the Y component repre-
sents the luminance of the color, and the chrominance (color information) is
represented by the U and the V channel (sometimes, the names Cr and Cb are
used). The term YUV 4:4:4 is used when one Y, U and V value is used for
every pixel.

An interesting property of the Human Visual System is that it is much more
sensitive to luminance information than chrominance information. Because
of this property, the U and V data are often downsampled, thus drastically
reducing the amount of data with nearly any quality loss. When for every
horizontal pair of pixels only 1 U and 1 V value is stored, the term YUV 4:2:2
is used. The BSDL Schema that we present in this section is targeted at the
YUV 4:2:0 format, in which case only 1 U and 1 V value for every block of 4
pixels, while for each pixel, one Y value remains.

The files that are commonly used for storing uncompressed YUV data do
not have any header information. In order to be able to work with such files,
information about the resolution and the frame rate has to be provided man-
ually. The actual file is just a concatenation of bytes representing Y, U and
V values. When a video sequence has a spatial resolution of N by M pixels,
each frame consists of N ×M luminance values, followed by N×M

4 U values
and N×M

4 V values. Each Y, U or V value consists of exactly one byte. This
structure is schematically represented in Fig. 3.4.

40 Bitstream descriptions

BSDL Schema

Listing 3.6 shows the entire BSDL Schema for YUV data. For convenience,
we skipped the namespace declarations, as we also did for the remaining XML
listings of this chapter. The Sequence element is defined as an unlimited
number of Frames, and each Frame consists of one luma component, called
Y, of 176×144 bytes, followed by the two chroma components, called U and
V respectively, each having 176×144

4 bytes.

Listing 3.6: A BSDL Schema for uncompressed YUV 4:2:0 data having a resolution
of 176x144 pixels.

<xsd:schema bs2:rootElement="yuv:Sequence">
<!-- **** Root element declaration **** -->
<xsd:element name="Sequence">

<xsd:complexType>
<xsd:sequence>

<xsd:element ref="yuv:Frame"
minOccurs="0" maxOccurs="unbounded"/>

</xsd:sequence>
<xsd:attribute ref="xml:base"/>

</xsd:complexType>
</xsd:element>

<!-- **** Frame declaration **** -->
<xsd:element name="Frame">

<xsd:complexType>
<xsd:sequence>

<xsd:element name="Y" type="yuv:luma"/>
<xsd:element name="U" type="yuv:chroma"

minOccurs="0"/>
<xsd:element name="V" type="yuv:chroma"

minOccurs="0"/>
</xsd:sequence>

</xsd:complexType>
</xsd:element>

<!-- **** Declaration of basic types **** -->
<xsd:simpleType name="luma">

<xsd:restriction base="bs1:byteRange">
<xsd:annotation>

<xsd:appinfo>
<bs2:length value="176 * 144"/>

</xsd:appinfo>
</xsd:annotation>

</xsd:restriction>
</xsd:simpleType>
<xsd:simpleType name="chroma">

<xsd:restriction base="bs1:byteRange">

3.4. Producing bitstream descriptions 41

<xsd:annotation>
<xsd:appinfo>

<bs2:length value="176 * 144 div 4"/>
</xsd:appinfo>

</xsd:annotation>
</xsd:restriction>

</xsd:simpleType>
</xsd:schema>

In this Schema, the length of the luma and chroma parts is defined by
means of the bs2:length. To improve readability, we used XPath expres-
sions for calculating the actual number of bytes present in each part.

When we apply this BSDL Schema to the BinToBSD process, the bit-
stream description of a YUV file will look as is shown in Listing 3.7.

Listing 3.7: Bitstream description of a YUV file.

<Sequence bs1:bitstreamURI="stefan_qcif.yuv" xmlns="YUVqcif">
<Frame>

<Y>0 25344</Y>
<U>25344 6336</U>
<V>31680 6336</V>

</Frame>
<Frame>

<Y>38016 25344</Y>
<U>63360 6336</U>
<V>69696 6336</V>

</Frame>
<!-- and so on -->

</Sequence>

Possible transformations

Even though uncompressed YUV data cannot be considered to be a scalable
format, we can still apply some interesting transformations. A first transfor-
mation is the reduction of the frame rate to half of the original frame rate. It is
fairly straightforward to implement such a transformation in XSLT, as is shown
in Listing 3.8.

Listing 3.8: Transformation for reducing the frame rate using the bitstream descrip-
tion of a YUV sequence.

<xsl:stylesheet xmlns:yuv="YUVqcif">
<xsl:output method="xml" indent="yes"/>

42 Bitstream descriptions

<!-- Match all -->
<xsl:template match="@*|node()">

<xsl:copy>
<xsl:apply-templates select="@*|node()"/>

</xsl:copy>
</xsl:template>
<!-- Match even frame numbers -->
<xsl:template match="yuv:Frame[position() mod 2 = 0]">

<!-- Nothing ! -->
</xsl:template>

</xsl:stylesheet>

In this XSLT Stylesheet, all elements of the original XML document are
copied, except those frames that have an even position in the sequence.
When the resulting bitstream description is used for generating an adapted
version of the sequence, it will contain only half of the frames. Note that when
watching the sequence using a YUV player, the reduced frame rate will have
to be entered.

Another interesting transformation that can be executed is the removal of
the chroma information, thus ending up with a grayscale version of the video
sequence. This transformation can be implemented using XSLT as shown in
Listing 3.9. Here, all XML elements are copied, except the U and V elements,
which contain chrominance information.

Listing 3.9: Transformation for removing the color information in the bitstream de-
scription of a YUV sequence.

<xsl:stylesheet xmlns:yuv="YUVqcif">
<xsl:output method="xml" indent="yes"/>
<!-- Match all -->
<xsl:template match="@*|node()">

<xsl:copy>
<xsl:apply-templates select="@*|node()"/>

</xsl:copy>
</xsl:template>
<!-- Match chroma components -->
<xsl:template match="yuv:U | yuv:V">

<!-- Nothing ! -->
</xsl:template>

</xsl:stylesheet>

3.4. Producing bitstream descriptions 43

3.4.2 MPEG-4 Visual

MPEG-4 Visual is a popular standard for video compression. It is used in well
known multimedia products such as QuickTime, DivX and XViD. The BSDL
Reference Software comes with a BSDL Schema that can be used for MPEG-4
Visual Elementary Streams. However, this schema was tailored towards the
MPEG-4 reference software, and failed to produce bitstream descriptions for
compressed bitstreams produced by other implementations.

Therefore, we corrected and expanded this schema so that it would be
useful for other bitstreams compliant with the MPEG-4 Visual specification.
Where possible, we also tried to simplify it. The resulting modified Schema is
presented in Listing 3.10.

Listing 3.10: BSDL Schema for bitstreams that comply to the MPEG-4 Visual
specification.

<xsd:schema targetNamespace="MPEG4" xmlns:mp4="MPEG4"
bs2:rootElement="mp4:VOS">

<!-- **** Visual Object Sequence declaration **** -->
<xsd:element name="VOS">

<xsd:complexType>
<xsd:sequence>

<xsd:element ref="mp4:VisObj" minOccurs="0"
maxOccurs="unbounded"/>

<xsd:element name="VOS_endcode"
type="mp4:StartCodeType" fixed="000001B1"
minOccurs="0"/>

</xsd:sequence>
</xsd:complexType>

</xsd:element>
<!-- **** Visual Object declaration **** -->
<xsd:element name="VisObj" bs2:ifNext="000001B0">

<xsd:complexType>
<xsd:sequence>

<xsd:element name="VOS_code" type="mp4:StartCodeType"
fixed="000001B0"/>

<xsd:element name="profile_level" type="bt:b8"/>
<xsd:element name="VisObj_code"

type="mp4:StartCodeType" fixed="000001B5"/>
<xsd:element name="VisObj_data">

<xsd:simpleType>
<xsd:restriction base="bs1:byteRange">

<xsd:annotation><xsd:appinfo>
<bs2:startCode value="00000100"/>

</xsd:appinfo></xsd:annotation>
</xsd:restriction>

</xsd:simpleType>
</xsd:element>

44 Bitstream descriptions

<xsd:element name="VidObj_code"
type="mp4:StartCodeType" fixed="00000100"/>

<xsd:element ref="mp4:VOL"/>
</xsd:sequence>

</xsd:complexType>
</xsd:element>
<!-- **** Video Object Layer declaration **** -->
<xsd:element name="VOL">

<xsd:complexType>
<xsd:sequence>

<xsd:element name="VOL_code" type="mp4:StartCodeType"
fixed="00000120"/>

<xsd:element name="VOL_data" type="mp4:PayloadType"/>
<xsd:element ref="mp4:VOP" maxOccurs="unbounded"/>

</xsd:sequence>
</xsd:complexType>

</xsd:element>
<!-- **** VOP declaration **** -->
<xsd:element name="VOP" bs2:ifNext="000001B6">

<xsd:complexType>
<xsd:sequence>

<xsd:element name="VOP_code" type="mp4:StartCodeType"
fixed="000001B6"/>

<xsd:element name="VOP_coding_type" type="bt:b2"/>
<xsd:element name="stuffing" type="bt:b6"/>
<xsd:element name="payload" type="mp4:PayloadType"/>

</xsd:sequence>
</xsd:complexType>

</xsd:element>
<!-- **** Declaration of basic types **** -->
<xsd:simpleType name="StartCodeType">

<xsd:restriction base="xsd:hexBinary">
<xsd:length value="4"/>

</xsd:restriction>
</xsd:simpleType>
<xsd:simpleType name="PayloadType">

<xsd:restriction base="bs1:byteRange">
<xsd:annotation><xsd:appinfo>

<bs2:startCode value="000001B0"/>
<bs2:startCode value="000001B6"/>

</xsd:appinfo></xsd:annotation>
</xsd:restriction>

</xsd:simpleType>
</xsd:schema>

In Fig. 3.5, the syntactical structure of an MPEG-4 Visual Elementary
Stream is shown. We have included this figure because of the similarities with
the bitstream description we just showed: both in Listing 3.10 and in Fig. 3.5,

3.4. Producing bitstream descriptions 45

Visual Object Visual Object

…

Video Object Layer

Video Object Plane Video Object Plane

…

Payload

Start code
or end code

Header data

Figure 3.5: Structure of an MPEG-4 Visual bitstream.

it can be seen that an MPEG-4 bitstream can consist of a sequence of Visual
Objects, and that such an object can correspond with a Visual Object Layer,
that in turn is a sequence of Video Object Planes. Most of these elements begin
with a start code and a certain amount of header information.

Listing 3.11 shows how a bitstream description of a particular MPEG-4
sequence may look like.

Listing 3.11: BSDL description of an MPEG-4 Visual bitstream.

<VOS bs1:bitstreamURI="news.cmp" xmlns="MPEG4">
<VisObj>

<VOS_code>000001B0</VOS_code>
<profile_level>244</profile_level>
<VisObj_code>000001B5</VisObj_code>
<VisObj_data>9 1</VisObj_data>
<VidObj_code>00000100</VidObj_code>
<VOL>

<VOL_code>00000120</VOL_code>
<VOL_data>18 23</VOL_data>
<VOP>

<VOP_code>000001B6</VOP_code>
<VOP_coding_type>0</VOP_coding_type>
<stuffing>16</stuffing>
<payload>46 5747</payload>

</VOP>
<VOP>

<VOP_code>000001B6</VOP_code>
<VOP_coding_type>1</VOP_coding_type>
<stuffing>17</stuffing>
<payload>5798 1119</payload>

46 Bitstream descriptions

</VOP>
<VOP>

<VOP_code>000001B6</VOP_code>
<VOP_coding_type>2</VOP_coding_type>
<stuffing>16</stuffing>
<payload>6922 150</payload>

</VOP>
<!-- etc. -->

</VOL>
</VisObj>
<!-- multiple VisObj elements possible -->

</VOS>

An MPEG-4 Visual Elementary Stream can contain three different types
of frames: an I-frame is an intra-coded frame that uses no temporal prediction,
a P-frame is predicted from the previous I- or P-frame, and a B-frame is pre-
dicted from the previous and the following I- or P-frame. Because B-frames
are never used for prediction, they can safely be removed from the bitstream,
thus realizing a basic kind of temporal scalability. According to the MPEG-4
specification, the value of the VOP coding type field in the header of a frame
is 0 in case of an I-frame, 1 for a P-frame and 2 for a B-frame. As a conse-
quence, we can express the removal of B-frames in a bitstream description us-
ing XSLT as follows: all elements are copied, except VOP elements for which
the VOP coding type is 2. This is shown in Listing 3.12.

Listing 3.12: Removal of B-frames in MPEG-4 Visual sequences.

<xsl:stylesheet xmlns:m="MPEG4">
<xsl:output method="xml" indent="yes"/>
<!-- Match all -->
<xsl:template name="tplAll" match="@*|node()">

<xsl:copy>
<xsl:apply-templates select="@*|node()"/>

</xsl:copy>
</xsl:template>
<!-- Match B_VOP - Overrides tplAll -->
<xsl:template name="tplB_VOP"

match="m:VOP[m:VOP_coding_type=2]">
<!-- Nothing ! -->

</xsl:template>
</xsl:stylesheet>

3.4. Producing bitstream descriptions 47

3.4.3 MPEG-4 FGS

In the previous section, we utilized the most commonly used subset of the
MPEG-4 Visual specification, called Advanced Simple Profile. More complex
coding schemes also exist, such as the Fine-Granular Scalability (FGS) [21],
that we already discussed in Sect. 2.2. In MPEG-4 FGS, a bitstream consists
of a base layer that is encoded using the techniques that are equally available
in the Advanced Simple Profile. In addition, there is an enhancement layer
that offers SNR scalability in a fine-grained way.

This fine-grained nature means that within each frame, the data of the en-
hancement layer can be truncated at any arbitrary point, as is described in
Fig. 2.4. This way, a streaming server can dynamically adapt the bit rate of the
transmitted video sequence to the actual bandwidth available between server
and client at transmission time.

When MPEG-4 FGS is combined with temporal scalability, we talk about
FGST. Because of the very flexible scalability properties, MPEG-4 FGST is
a very interesting test case for both bitstream description mechanisms (BSDL
and gBSD) that we introduced in this chapter. In the remainder of this section,
we show how we can use BSDL for generating high-level bitstream descrip-
tions of FGS and FGST bitstreams. We also show how we can generate gBSD
descriptions from these BSDL descriptions.

BSDL Schema

Because the entire BSDL Schema for the case of MPEG-4 FGS is rather large,
we only show a small fragment of it in Listing 3.13. The entire schema can
be found in Appendix A. The most important difference with the Schema for
MPEG-4 bitstreams as shown in Listing 3.10, is that the regular Video Ob-
ject Planes are replaced with the definition of an FGSVOP. The most interest-
ing property of such Video Object Planes, is that they consist of a number of
BitPlanes that can be addressed easily by means of their start codes.

Listing 3.13: Fragment of the BSDL Schema for FGS enhancement layer streams.

<xsd:schema targetNamespace="MPEG4"
bs2:rootElement="mp4:Bitstream">

<!-- **** Root element declaration **** -->
<xsd:element name="Bitstream">

<xsd:complexType>
<xsd:sequence>

<xsd:element ref="mp4:VOS" minOccurs="0"/>
<xsd:element ref="mp4:VO" minOccurs="0"/>
<xsd:element ref="mp4:VOL" minOccurs="0"/>

48 Bitstream descriptions

</xsd:sequence>
</xsd:complexType>

</xsd:element>
<!-- Skipped some definitions -->
<!-- **** VOL declaration **** -->
<xsd:element name="VOL" bs2:ifNext="00000120-0000012F">

<xsd:complexType>
<xsd:sequence>

<xsd:element
name="video_object_layer_start_code"
type="mp4:StartCodeType"/>

<xsd:element name="random_accessible_vol"
type="bt:b1"/>

<xsd:element
name="video_object_type_indication"
type="bt:b8"/>

<!-- More header information -->
<xsd:element ref="FGSVOP" minOccurs="0"

maxOccurs="unbounded"
bs2:if="mp4:video_object_type_indication

= 18"/>
</xsd:sequence>

</xsd:complexType>
</xsd:element>
<!-- Skipped some definitions -->
<xsd:element name="FGSVOP" bs2:ifNext="000001B9">

<xsd:complexType>
<xsd:sequence>

<xsd:element name="fgs_vop_start_code"
type="mp4:StartCodeType" fixed="000001B9"/>

<xsd:element name="vop_coding_type"
type="bt:b2"/>

<xsd:element name="modulo_time_base"
type="bt:b1" fixed="1"
minOccurs="0" maxOccurs="unbounded"
bs2:ifNext="80-FF"/>

<xsd:element name="modulo_time_base"
type="bt:b1" fixed="0"/>

<xsd:element name="marker_bit"
type="bt:b1" fixed="1"/>

<!-- More header information -->
<xsd:element ref="mp4:BitPlane"

maxOccurs="unbounded"/>
</xsd:sequence>

</xsd:complexType>
</xsd:element>
<xsd:element name="BitPlane"

bs2:ifNext="00000140-0000015F">
<xsd:complexType>

3.4. Producing bitstream descriptions 49

<xsd:sequence>
<xsd:element name="fgs_bp_start_code"

type="mp4:StartCodeType"/>
<xsd:element name="BP_data"

type="mp4:PayloadType" />
</xsd:sequence>

</xsd:complexType>
</xsd:element>
<!-- Skipped some definitions -->

</xsd:schema>

In Table 3.3, we show a fragment of the specification of the syntax of FGS
bitstreams. The relation between the MPEG-4 specification and the BSDL
Schema for these bitstreams should be visible from this table.

Table 3.3: Fragment of the MPEG-4 specification for FGS bitstreams.

FGSVideoObjectPlane() { No. of bits
fgs vop start code 32
fgs vop coding type 2
do {

modulo time base 1
} while (modulo time base != ’0’)
marker bit 1
/* skipped some header information */
if (nextbits bytealigned () == fgs bp start code) {

while(nextbits bytealigned() !=
’000 0000 0000 0000 0000 0000’ ||
nextbits bytealigned () == fgs bp start code) {

if (start of bit plane())
fgs bp start code 32

else { /* not relevant here */
}
fgs macroblock()

}
next start code()

}
}

In Listing 3.14, we show the most interesting part of an FGS bitstream
description. We removed most of the header information, so that the bitplane

50 Bitstream descriptions

information is more visible. Again, a more complete example of a bitstream
description can be found in Appendix A.

Listing 3.14: Bitstream description generated using the BSDL Schema for MPEG-4
FGS.

<Bitstream bs1:bitstreamURI="stockholm_fgs.cmp" xmlns="MPEG4">
<VOS>

<!-- Skipped -->
</VOS>
<VO>

<!-- Skipped -->
</VO>
<VOL>

<video_object_layer_start_code>
00000121

</video_object_layer_start_code>
<random_accessible_vol>1</random_accessible_vol>
<video_object_type_indication>

18
</video_object_type_indication>
<fgs_layer_type>1</fgs_layer_type>
<!-- Skipped some header information -->
<FGSVOP>

<fgs_vop_start_code>000001B9</fgs_vop_start_code>
<vop_coding_type>0</vop_coding_type>
<modulo_time_base>0</modulo_time_base>
<marker_bit>1</marker_bit>
<!-- Skipped some header information -->
<BitPlane>

<fgs_bp_start_code>00000140</fgs_bp_start_code>
<BP_data>31 176</BP_data>

</BitPlane>
<BitPlane>

<fgs_bp_start_code>00000141</fgs_bp_start_code>
<BP_data>211 3945</BP_data>

</BitPlane>
<BitPlane>

<fgs_bp_start_code>00000142</fgs_bp_start_code>
<BP_data>4160 9742</BP_data>

</BitPlane>
<BitPlane>

<fgs_bp_start_code>00000143</fgs_bp_start_code>
<BP_data>13906 14137</BP_data>

</BitPlane>
</FGSVOP>
<!-- and so on -->

</VOL>
</Bitstream>

3.4. Producing bitstream descriptions 51

Conversion to gBSD description

For the case of FGS bitstreams, we tested the possibility of converting a BSDL
description of a base layer, an FGS enhancement layer and an additional FGST
enhancement layer to a gBSD description using dedicated software.

A first problem that occurs in this conversion is that there are three original
bitstreams, as shown in Fig. 2.5 (a), each producing its own bitstream descrip-
tion. In order to facilitate the adaptation process, it is more interesting that a
single generic bitstream description is used for all these bitstreams.

Fortunately, this can easily be implemented in gBSD by using the
globalAddressInfo attribute to denote the location of the original bit-
stream appropriately. When generating an adapted bitstream using such a bit-
stream description, the description will still have to be preprocessed, such that
separate descriptions are produced, which can be used for producing each of
the adapted bitstreams.

The entire data flow is shown in Fig. 3.6. The encoder produces three
bitstreams, of which each produces a BSDL bitstream description. These de-
scriptions are merged and transformed into a single gBSD description, that
can be transformed by an adaptation engine. In order to reproduce the three
adapted bitstreams, a filtering process is needed for generating the bitstream
descriptions belonging to the correct bitstream. These descriptions can then be
used by the gBSDToBin process for producing the appropriate bitstreams.

The Java code for merging three BSDL bitstream descriptions for FGS bit-
streams into a single gBSD bitstream description is too exhaustive to show
here; interested readers can find it in Appendix A. Listing 3.15 shows how
the resulting gBSD bitstream description looks like. The meaning of the in-
formation that is present in the marker attributes of the gBSDUnits is not
important right now, but will be explained in the next chapter.

Listing 3.15: Bitstream description in gBSD format of MPEG-4 FGS streams.

<DIA xmlns="urn:mpeg:mpeg21:2003:01-DIA-NS">
<Description xsi:type="gBSDType"

gbsd:addressUnit="byte" gbsd:addressMode="absolute"
gbsd:globalAddressInfo="stockholm.cmp">

<gbsd:gBSDUnit marker=":parcel:0" start="0" length="56155">
<gbsd:gBSDUnit marker=":label:(0,0) :fps:15.0 :kbps:56"

start="0" length="29"
globalAddressInfo="stockholm.cmp"/>

<gbsd:gBSDUnit marker=":label:(0,0)"
start="0" length="18"
globalAddressInfo="stockholm_fgs.cmp"/>

<gbsd:gBSDUnit marker=":label:(0,0)"
start="0" length="28"

52 Bitstream descriptions

encoder
input v ideo

F G S T layer

F G S layer

base layer
BinToBSD

BinToBSD

BinToBSD

BSD merge

F G S T descr ipt ion

F G S descr ipt ion

base layer
descr ipt ion

gBSD
descr ipt ion

transformation

adapted
gBSD
descr ipt ion

gBSDToBin

gBSDToBin

gBSDToBindecoder
output v ideo

F G S T layer

F G S layer

base layer

filter filter filter

F G S T
descr ipt ion

F G S
descr ipt ion

base layer descr ipt ion

Figure 3.6: Adapting FGS bitstreams using gBSD.

globalAddressInfo="stockholm_e.cmp"/>
<gbsd:gBSDUnit marker=":label:(0,0)"

start="29" length="10321"/>
<gbsd:gBSDUnit marker=":label:(0,1) :fps:15.0 :kbps:73"

start="18" length="9"
globalAddressInfo="stockholm_fgs.cmp"/>

<gbsd:gBSDUnit marker=":label:(0,1)"
start="27" length="180"
globalAddressInfo="stockholm_fgs.cmp"/>

<gbsd:gBSDUnit marker=":label:(0,2) :fps:15.0 :kbps:176"
start="207" length="3949"
globalAddressInfo="stockholm_fgs.cmp"/>

<gbsd:gBSDUnit marker=":label:(0,3) :fps:15.0 :kbps:378"
start="4156" length="9746"
globalAddressInfo="stockholm_fgs.cmp"/>

<gbsd:gBSDUnit marker=":label:(0,4) :fps:15.0 :kbps:437"
start="13902" length="14141"
globalAddressInfo="stockholm_fgs.cmp"/>

<gbsd:gBSDUnit marker=":label:(1,0) :fps:30.0 :kbps:63"

3.4. Producing bitstream descriptions 53

start="28" length="454"
globalAddressInfo="stockholm_e.cmp"/>

<gbsd:gBSDUnit marker=":label:(1,1) :fps:30.0 :kbps:81"
start="482" length="101"
globalAddressInfo="stockholm_e.cmp"/>

<gbsd:gBSDUnit marker=":label:(1,2) :fps:30.0 :kbps:192"
start="583" length="610"
globalAddressInfo="stockholm_e.cmp"/>

<gbsd:gBSDUnit marker=":label:(1,3) :fps:30.0 :kbps:432"
start="1193" length="3860"
globalAddressInfo="stockholm_e.cmp"/>

<gbsd:gBSDUnit marker=":label:(1,4) :fps:30.0 :kbps:604"
start="5053" length="9586"
globalAddressInfo="stockholm_e.cmp"/>

<gbsd:gBSDUnit marker=":label:(0,0)"
start="10350" length="3093"/>

<gbsd:gBSDUnit marker=":label:(0,1)"
start="28043" length="9"
globalAddressInfo="stockholm_fgs.cmp" />

<!-- and so on -->
</gbsd:gBSDUnit>
<gbsd:gBSDUnit marker=":parcel:1"

start="56155" length="56363">
<!-- and so on -->

</gbsd:gBSDUnit>
<!-- and so on -->

</Description>
</DIA>

A straightforward way of adapting this kind of bitstream descriptions is
by using XSLT for removing those bitplanes and temporal levels that are not
needed, by means of the information available in the marker attributes of the
gBSDUnit elements. This is shown in Listing 3.16. Note that, when we want
to fully exploit the features of FGS, we can also modify the length attribute
of the highest bitplane that appears in the adapted bitstream description.

Listing 3.16: Removing all but the first two bitplanes and all temporal levels of an
FGS bitstream description.

<xsl:stylesheet>
<xsl:output method="xml" indent="yes"/>
<!-- Match all -->
<xsl:template name="tplAll" match="@*|node()">

<xsl:copy>
<xsl:apply-templates select="@*|node()"/>

</xsl:copy>
</xsl:template>

54 Bitstream descriptions

<!-- Drop certain blocks - Overrides tplAll -->
<xsl:template

match="gbs:gBSDUnit[contains(@marker,’:label:’)]">
<xsl:choose>

<xsl:when test="contains(@marker,’:label:(0,0)’)">
<xsl:copy>

<xsl:apply-templates select="@*|node()"/>
</xsl:copy>

</xsl:when>
<xsl:when test="contains(@marker,’:label:(0,1)’)">

<xsl:copy>
<xsl:apply-templates select="@*|node()"/>

</xsl:copy>
</xsl:when>
<xsl:otherwise>

<!-- Nothing -->
</xsl:otherwise>

</xsl:choose>
</xsl:template>

</xsl:stylesheet>

The resulting bitstream description cannot be used directly for generating
an adapted bitstream, because the gBSD description contains the descriptions
of multiple bitstreams. Therefore, some preprocessing is needed. This can be
achieved for the first enhancement layer as is shown in Listing 3.17.

Listing 3.17: Filtering the entire gBSD description such that only the description of
one bitstream remains.

<xsl:stylesheet>
<xsl:output method="xml" indent="yes"/>
<!-- Match all -->
<xsl:template name="tplAll" match="@*|node()">

<xsl:copy>
<xsl:apply-templates select="@*|node()"/>

</xsl:copy>
</xsl:template>
<!-- Only copy elements belonging to enhancement layer -->
<xsl:template

match="gbs:gBSDUnit[contains(@marker,’:label:’)]">
<xsl:if test="@globalAddressInfo = ’stockholm_fgs.cmp’">

<xsl:copy>
<xsl:apply-templates select="@*|node()"/>

</xsl:copy>
</xsl:if>

</xsl:template>
</xsl:stylesheet>

3.5. Related work 55

3.4.4 Bitstream descriptions for other formats

The list of examples discussed in this chapter for coding formats for which
bitstream descriptions can be generated, is of course not complete. We only
discussed those cases for which we delivered an original contribution.

Within the Multimedia Lab, other BSDL Schemas were developed as well.
Davy De Schrijver and Chris Poppe did this for a fully scalable wavelet-based
video codec [59]. Wesley De Neve created a BSDL Schema for the recent
and successful H.264/AVC standard for video coding, also known as MPEG-4
Part 10 [14, 33, 34].

In other publications, we can find bitstream descriptions in both BSDL
and gBSD formats for the JPEG2000 still image coding standard, that allows
multiple types of scalability concurrently [57]. Lafruit et al. use BSDL for
implementing view-dependent transmission of texture images for 3-D scenes
using the scalable MPEG-4 Visual Texture Coding (VTC) [61]. Depending
on the angle and the distance of the viewer, the level of detail and quality is
dynamically selected and triggers the transformation of the BSDL description
of the texture information. Di Giacomo et al. apply BSDL for the adaptation
of human facial and body animations [62].

3.5 Related work

BSDL and gBSD are standardized frameworks for using bitstream descrip-
tions, but are not the only languages for working with such descriptions. In
this section, we briefly discuss some other frameworks that have similar prop-
erties and goals.

3.5.1 FLAVOR and XFLAVOR

FLAVOR, the Formal Language for Audio-Visual Object Representation [63],
is originally targeted at the automatic generation of parsers for multimedia bit-
streams. This is achieved by describing the syntactical structure of a bitstream
in FLAVOR code, which can be translated by the FLAVOR compiler into Java
or C++ code to be integrated in a parser, decoder, . . . for that type of bitstreams.

The FLAVOR code has a similar functionality as a BSDL Schema, but
is in itself not targeted at the generation of bitstream descriptions. In the in-
troduction of this chapter, we mentioned that the preferred language for bit-
stream descriptions is XML. This was recognized by the FLAVOR develop-
ers. As an extension to the FLAVOR framework, XFLAVOR adds support for
XML [64, 65].

56 Bitstream descriptions

Executable code

Flavor
code

bitstream XML description

Bitgenadapted
bitstream

Transformation

adapted
XML description

Flavorc

Figure 3.7: Data flow in the XFLAVOR framework.

XFLAVOR enables the creation of a bitstream description in XML and
the generation of a bitstream from a (possibly adapted) bitstream description.
The entire data flow is represented in Fig. 3.7. The FLAVOR code is com-
piled by the FLAVOR compiler (marked Flavorc in Fig. 3.7) into executable
code that can produce a bitstream description in XML. This description can be
transformed, prior to the regeneration of the adapted bitstream by means of the
Bitgen software.

Note that, in contrast with the BSDL data flow (see Fig. 3.2), there is
no connection between the original bitstream and the bitstream generation
process. This is because the bitstream description contains all information
needed for reproducing the bitstream. As a consequence, this description is
not as compact as a bitstream description in BSDL: a FLAVOR bitstream de-
scription is even larger than the original bitstream.

An additional property of XFLAVOR is the automatic generation of an
XML Schema for the bitstream descriptions generated with XFLAVOR. Note
the difference between this schema and a BSDL Schema: a BSDL Schema is
generated manually and is used for producing BSDL bitstream descriptions,
whereas the XML Schema in XFLAVOR is automatically generated from the
FLAVOR code.

3.6. Conclusions and original contributions 57

3.5.2 SSM

In [66, 67], Mukherjee and Said present the Structured Scalable Meta-formats
framework (SSM), a methodology for the representation and adaptation of
scalable content. This methodology is based on a model of the structure of
the most common types of scalable bitstreams.

The SSM framework also defines an XML description of the structure of
a scalable bitstream, that reflects the model defined by the SSM framework.
Because of the tight coupling between the SSM model and its language for
expressing bitstream descriptions, this language is less flexible than BSDL or
gBSD, but at the same time also less ambiguous: a transformation implemen-
tation that is familiar with the SSM model can transform any description in a
meaningful way. This way, a truly format agnostic transformation and adapta-
tion process can be implemented. This is one step further than gBSD, where
the bitstream generation process is format agnostic, but the transformation is
not: the transformation implementation must understand the meaning of the
contents of the marker and syntacticalLabel attributes when execut-
ing a meaningful transformation.

3.6 Conclusions and original contributions

In this chapter, we introduced the added value that can be offered in multime-
dia distribution environments when using bitstream descriptions, preferably in
XML. Such bitstream descriptions can help in developing more generic adap-
tation engines, and allow the coupling of the actual content of a multimedia
stream with additional metadata, that can be used for steering the adaptation
process.

We described into detail two languages for bitstream descriptions that are
standardized in MPEG-21 Digital Item Adaptation, in particular the Bitstream
Syntax Description Language (BSDL) and the generic Bitstream Syntax De-
scription language (gBSD).

Our own original contributions introduced in this chapter consist of the
definition of BSDL Schemas for uncompressed raw video data in the YUV
format, MPEG-4 Visual Elementary Streams and bitstreams following the
MPEG-4 Fine-Granular Scalability. For this last case, we also showed how we
can use such BSDL bitstream descriptions for generating format-independent
gBSD bitstream descriptions.

For each of these classes of bitstreams, we gave at least one example of
a possible transformation that can be executed in a meaningful way on a bit-
stream description. These transformations were implemented using XSLT and

58 Bitstream descriptions

exploited the scalable aspects of the bitstreams. After transformation, the bit-
stream descriptions correspond with bitstreams that are more compact, but
offer a lower visual quality.

In this chapter, we also looked at bitstream descriptions for other bitstream
formats, and we briefly discussed two related methodologies for generating
and using bitstream descriptions.

Three important disadvantages of using bitstream descriptions were not
mentioned. First, the generation of a bitstream description, its transformation
and the generation of the adapted bitstream require an additional computa-
tional cost that can become significant in some scenarios [59]. Another dis-
advantage is that the generation and processing of bitstream descriptions does
not fit nicely in streaming scenarios, where the acceptable delay is limited.
Solutions to this problem are explored in [68]. A final disadvantage is that the
size of the bitstream descriptions can become rather large with respect to the
bitstream itself. This problem can be reduced by means of one of the existing
frameworks for XML compression [69], such as MPEG-7 BiM (Binary format
for MPEG-7) [44].

Our contributions in the domain of bitstream descriptions can be found in
the following publications.

1. Sam Lerouge, Boris Rogge, Dimitri Van De Ville, Rik Van de Walle,
and Jan Van Campenhout. An XML-based framework for content adap-
tation. In Proceedings of Euromedia, pages 175–179, Modena, Italy,
April 2002.

2. Wesley De Neve, Sam Lerouge, Peter Lambert, and Rik Van de
Walle. A performance evaluation of MPEG-21 BSDL in the context of
H.264/AVC. In Proceedings of SPIE 2004: Signal and Image Process-
ing and Sensors, volume 5558, pages 555–566, Denver, Colorado, USA,
August 2004.

3. Davy De Schrijver, Chris Poppe, Sam Lerouge, Wesley De Neve, and
Rik Van de Walle. MPEG-21 bitstream syntax descriptions for scalable
video codecs. Multimedia Systems, to appear.

Chapter 4

An abstract model for
scalable bitstreams

4.1 Introduction

As described in the previous chapters, scalable video coding is a key tech-
nology for enabling video communication in constrained, heterogeneous en-
vironments. The process of automatically selecting the version offering most
quality within the limits forced by the capabilities of the requesting device,
is usually called content negotiation, which was the most important research
topic leading to this thesis.

During research on content negotiation procedures for transmitting scal-
able video bitstreams, we discovered some unexpected complexities [3,6]. We
were convinced it would be useful to define an abstract model describing the
properties of scalable bitstreams, and to use this model as a tool for reason-
ing about applications using such bitstreams. This would help us in formally
defining a content negotiation process in a mathematical way: a process that
finds the optimal adaptation operation, that maximizes the utility, the overall
user’s satisfaction, while meeting all constraints imposed by the system.

Important advantages of formalizing the description of data structures (in
our case scalable bitstreams) and applications processing these structures, are
the possibility to reason about these applications before actually implementing
them, but also the possibility of validating of the correctness of implementa-
tions. Some formalisms, such as the Unified Modeling Language (UML) [70]
can even be used to some extent for automatic code generation.

We were not the only ones that felt the need for formalizing the process of
multimedia content negotiation and adaptation. In [71], Chang and Vetro pro-
pose a formalization of video adaptation by defining the fundamental entities

60 An abstract model for scalable bitstreams

and concepts in such a scenario, in particular resources, adaptation operations
and resulting utilities. Using these concepts and their relations, they describe
a video adaptation process as a constrained optimization problem.

The Structured Scalable Meta-formats framework (SSM) [66, 67] that we
already mentioned in the chapter on bitstream descriptions, developed by a
team from HP Labs, is a methodology for the representation and adaptation of
scalable content. It is based on a model of the structure of scalable bitstreams.
The model that we present in this chapter, is strongly influenced by the SSM
model. As opposed to the work of Mukherjee and Said, we aimed at defining
the model in a more formal way. In this approach, it is possible to describe any
kind of application that is based on the properties of scalable bitstreams, as we
show in Sect. 4.4.

4.2 The abstract model

4.2.1 Informal semantics

Before moving on to the actual definitions of the model, we explain the under-
lying principles of the model in a more informal way.

As we have mentioned in Chapter 2, a scalable bitstream consists of a base
layer and one or more enhancement layers (see Fig. 2.2). More advanced al-
gorithms for encoding scalable multimedia data allow different types of scal-
ability at the same time. In our model, each type of scalability corresponds
to one scalability axis. An entire bitstream can be split up into a sequence
of parcels (sometimes also called adaptation units [72]). When talking about
video coding, a parcel will typically consist of a number of frames; it is the
unit of information for which adaptation can be applied.

Figure 4.1 schematically shows the structure of a parcel that consists of
three scalability axes: a temporal, a spatial and an SNR axis. The temporal
axis (the frame rate axis on the figure) consists of three levels, because we
suppose three different frame rates are possible: 30, 15 and 7.5 frames per
second. These levels correspond with a base layer and two enhancement layers
in the temporal dimension. The bitstream consists of four bitplanes, therefore
allowing four levels for the SNR axis. In addition, three different resolutions
are possible (4CIF, CIF, and QCIF1). This is shown in the figure by the three
levels along the resolution axis.

1CIF is the Common Intermediate Format, a resolution of 352 by 288 pixels that is fre-
quently used in digital video coding. QCIF, or Quarter CIF, is obtained by taking the half of
the horizontal and spatial resolution. 4CIF is obtained by doubling the horizontal and spatial
resolution and corresponds approximately to the resolution of a television signal.

4.2. The abstract model 61

SNR (bitplane levels)

re
so

lu
tio

n

fra
me r

ate

Figure 4.1: Graphical representation of the data blocks of a parcel that consists of
three scalability axes.

In Fig. 4.1, for every possible combination of levels (that can be identified
with a label) there is exactly one data block. This is not a requirement of our
model: in the example that is shown in Listing 4.1, multiple data blocks car-
rying the same label exist within the same parcel. The gray data blocks in the
figure are the data blocks that form one specific version of the parcel, in par-
ticular the one that offers a 15 frames per second sequence at CIF resolution,
and that consists of 3 bitplanes.

4.2.2 Definitions

In this section, we introduce the definitions that we developed, and that pro-
duce the core of the abstract model for scalable bitstreams we developed.

A bitstream is a sequence of parcels. Such a parcel consists of a num-
ber of data blocks. Each data block has a label, which is an N -dimensional
vector with non-negative integer components. N is the number of scalability
axes; each component of a label can be considered to be a coordinate on the
scalability axes of the corresponding parcel, and thus identifies to which layer
the data block belongs to, regarding that scalability axis.

Definition 4.1. The set of all data blocks is denoted D. The label of a data
block d ∈ D is represented as a vector d̂, where d̂ ∈ {(x0, x1, . . . , xN−1)|xi ∈
N0}.

The actual data that is contained in the data block and that will be the
interesting part for the decoder is called the payload and is just a sequence of

62 An abstract model for scalable bitstreams

bits. The size of a data block is the number of bits in the payload of a block.

Definition 4.2. The payload of a data block d is denoted [d], where [d] =
(b0, b1, . . . , bn−1), with bi ∈ {0, 1}. The size of a data block d ∈ D is denoted
|d|, where |d| = #[d], and # is the operator that maps a vector to its number
of components: if [d] = (b0, b1, . . . , bn−1), then |d| = n.

In content negotiation, the decision about the adaptation of a scalable bit-
stream is not taken at the bitstream level, but at the parcel level. This way, the
process is capable of reacting to changes in the usage environment. A parcel
is a set of data blocks that are logically related: as we have said before, it is
the unit of information for which adaptation can be applied. In a video stream,
this is typically one frame or a group of sequential frames (such as a GOP, a
Group of Pictures, in MPEG terminology).

Definition 4.3. A parcel p is defined as a set of data blocks. P is the set of all
possible parcels: (∀p ∈ P)(p ⊂ D).

Within each parcel, there can be any number of scalability axes. The scal-
ability axes determine in which way scalability can be applied to the bitstream.
In scalable video coding, typical scalability axes are the temporal, bitplane (or
SNR), and resolution axis. When a bitstream has a temporal scalability axis, it
means that it can be adapted to versions having a lower frame rate.

The number of scalability axes in a parcel corresponds to the number of
components of the label of each data block (denoted d̂) in the parcel. It should
be clear that this number is supposed to be the same for all data blocks that
belong to the same parcel. This is stated in the next rule.

Rule 4.1. (∀p ∈ P)(∀d ∈ p)(#(d̂) = S) where S is the number of scalability
axes in p.

The number of levels of one scalability axis determines the number of
options one has when using the scalability possibilities of the parcel along this
axis. It corresponds to the number of available layers as in Fig. 2.2, when
considering only one scalability axis.

Rule 4.2. The number of levels of the i-th scalability axis of parcel p is denoted
pi, where pi = max

d∈P
(d̂i + 1), when d̂i is the i-th component of vector d̂.

The next definition states that in our model, a scalable bitstream is a se-
quence of parcels.

Definition 4.4. The set of all scalable bitstreams is denoted B, where B =
{(p0, p1, . . .)|pi ∈ P}.

4.2. The abstract model 63

According to this definition, a scalable bitstream b ∈ B is a vector of
parcels pi ∈ P . This vector should be interpreted as a sequence of parcels,
as we do not use the properties of n-dimensional vectors when looking at bit-
streams: all relevant operations are performed at the parcel level.

Usually, the number of scalability axes and their levels would be the same
for each parcel of a scalable bitstream. However, we chose not to force this
requirement in our model, as it is not necessary for the applications we are
thinking of. This way the model is still valid for scalable bitstreams that would
not have a constant number of scalability axes and levels.

Now we are ready to define how we can generate a reduced bitstream from
a scalable bitstream by selecting the appropriate data blocks, while dropping
the other blocks.

First, we introduce the concept of a version of a parcel. A version of a
parcel is in itself a parcel, a subset of the original parcel. It is identified by
the original parcel and an N -dimensional vector, where N corresponds to the
number of scalability axes of the original parcel.

Definition 4.5. A version of a parcel p can be denoted p(x0, x1, . . . , xS−1),
when S is the number of scalability axes of p. A particular version is composed
as follows: p(x0, x1, . . . , xS−1) = {d ∈ p|(∀i ∈ {0, 1, . . . , S−1})(xi ≤ d̂i)}.
Note that p(x0, x1, . . . , xS−1) ⊆ p.

According to this definition, a version of a parcel is a subset of the original
parcel, composed in such a way that it contains all the data blocks for which all
of the levels are not greater than the corresponding level of the version itself.

For a better understanding, Fig. 4.2 shows a parcel containing two scal-
ability axes, one having four levels, a second one having three levels. For
each combination of levels, one data block is shown with its label. All blocks
marked in gray belong to the same version. In a similar way, the gray blocks in
Fig. 4.1 belong to the same version of a parcel that consists of three scalability
axes.

The base layer of a parcel can be defined as the set of data blocks d of
that parcel that have d̂ =

−→
0 as a label. According to Def. 4.5, the base layer

of a parcel will be part of any possible version of that parcel. Because of this
property, global header information should be part of the base layer, as this
guarantees that this information will be part of all possible versions.

The closure of a parcel can now be defined as all versions that can be
derived from a certain parcel. Note that the closure of a parcel is in itself a set
of parcels, and all these parcels are subsets of the original parcel.

Definition 4.6. The closure of a parcel p ∈ P is denoted p+, where p+ =
{q ∈ P |(∃x0, x1, . . . , xS−1)(q = p(x0, x1, . . . , xS−1))}.

64 An abstract model for scalable bitstreams

SNR Scalability

(0,0) (1,0) (2,0) (3,0)

(0,1) (1,1) (2,1) (3,1)

(0,2) (1,2) (2,2) (3,2)

Sp
at

ia
l S

ca
la

bi
lit

y

version (2,1)

Figure 4.2: Representation of the data blocks of a parcel that consists of two scalabil-
ity axes. The blocks marked in gray belong to version (2,1).

An important concept in the content negotiation process for scalable bit-
streams is the notion of properties. A property is actually a function that maps
a version of a parcel to some value.

Definition 4.7. The set of all properties is denoted P, where P = {f |f : P 7→
R}.

A useful example of a property is the ||.|| operator applied to a parcel,
which is defined as the size of all data blocks belonging to that parcel. It
should be obvious that ||.|| ∈ P.

Definition 4.8. The size of a parcel p is denoted ||p||, and is defined as follows:
p ∈ P ⇒ ||p|| =

∑
d∈p

|d|.

In the context of scalable video coding, other useful properties are the
frame rate, the spatial resolution, and the visual quality of the individual
frames, typically expressed using PSNR (Peak Signal-to-Noise Ratio) values.
Note that some of these properties cannot be derived immediately from the
bitstream structure as defined by the model, but can be supplied as additional
metadata.

In Def. 4.7, we have defined properties as functions that can be applied to
all possible parcels. In our examples, however, we only look at the properties
of the parcels that are in the closure of one particular parcel.

4.3 Mapping existing coding formats onto the abstract
model

A model does not offer any added value if there is no clear connection with
the reality. In this section, we give some examples of how the model that we

4.3. Mapping existing coding formats onto the abstract model 65

just defined can be applied to some of the existing video coding schemes that
were introduced in Chapter 2. For the case of fine-granularity scalability with
temporal scalability, we also show how we can use a bitstream description
framework such as gBSD for explicitly making the link between a bitstream
and our model. We developed these examples in order to prove that our model
corresponds well with existing structures for scalable video coding.

4.3.1 Fine-granularity scalability

According to the MPEG-4 standard, the base layer and enhancement layer data
of an FGS video sequence are placed in separate streams. As a consequence,
one should bear in mind that the payload of the data blocks of the base layer are
located in a different stream than the payload of the other data blocks. Apart
from that, this separation between streams is not a problem for our model.

According to the model, a scalable bitstream is considered to be a sequence
of parcels. In the FGS case, we can choose to declare one parcel as correspond-
ing with the data belonging to one VOP (one frame) in the video sequence. If
this division is considered too fine, one could decide to place all frames of one
GOP (Group of Pictures) in the same parcel.

The only possibility for exploiting the scalability of an FGS stream is in
the SNR axis. In theory, an FGS stream can be cut off at any arbitrary position
within a certain bitstream. Therefore, we could consider every single byte
as a data block. However, it seems to be more convenient to group all data
belonging to the same bitplane into one data block.

When an enhancement layer bitstream consists of four bitplanes in the cur-
rent parcel, we can split up the two bitstreams into five data blocks for each
VOP. The payload of the first data block, identified with label (0), is the data
in the base layer that corresponds with the current VOP. The data block having
label (1) is found in the first bitplane of the current VOP of the enhancement
layer, the one with label (2) corresponds with the second bitplane, and so on.

Interesting properties of the different versions of an FGS parcel that can be
used in content negotiation scenarios may be the size, the computational com-
plexity and the estimated or calculated PSNR value (or some other distortion
measure) of each possible version.

4.3.2 FGS with temporal scalability

When we consider an FGST sequence, things become a little more compli-
cated because now there is a second scalability axis because of the temporal
scalability that is available.

66 An abstract model for scalable bitstreams

Suppose we start from a video sequence that has a frame rate of 30 fps
when no data is dropped. When removing the FGST enhancement layer, a 15
fps sequence is left. The bitplane structure is the same as in the FGS example.
As in the previous case, we can consider an entire GOP as one parcel. Another
possibility would be to consider two successive frames as one parcel, as the
only dependencies across the parcel borders are targeting the base layer, and
the base layer is present in all versions.

As there are only two options in the temporal dimension, this axis has two
levels. Just like in the previous example, the SNR axis consists of 5 levels.

We can split up the payload of the different streams as follows. The data
blocks of the current parcel that consist of the base layer frames have label
(0, 0). Bitplane i in the FGS VOP has label (0, i), as in the FGS case. The
bitplanes of the FGST VOP have label (1, i). When we split up the motion
vector information of the FGST VOP from the rest of the VOP, we can consider
this information as the payload of data block (1, 0).

In Fig. 4.3, a graphical representation of the structure of such an FGST
sequence is shown, along with the different available data blocks and their
labels. The first two frames represent the same information as in Fig. 2.5 (a).
In the following two frames, we marked the different bitplanes and motion
vectors, and in the last two frames, the labels are shown of the data blocks
corresponding with all parts of the frames.

As described in Chapter 3 when discussing bitstream descriptions, we de-
veloped a mechanism for generating a gBSD description of the structure of an
FGST video sequence. In a first step, a BSDL description is generated, based
on a BSDL schema for MPEG-4 FGS/FGST bitstreams. As the entire sequence
consists of three bitstreams, we end up with three BSDL descriptions.

For the second step, we developed a DOM-based Java application that
parses the existing descriptions, transforms them and merges them into one
single gBSD description. During this step, information about properties that
can be calculated immediately (in particular, the frame rate and the bit rate) is
added to the bitstream description. The code for generating these descriptions
can be found in Appendix A.

In a third phase, all versions are generated, and their PSNR values are cal-
culated. This information is manually added to the existing gBSD description.
Listing 4.1 shows how the bitstream description looks like after all these steps.

Listing 4.1: Example gBSD description of an FGST video sequence.

<dia:DIA>
<dia:Description xsi:type="gBSDType"

gbsd:addressUnit="byte" gbsd:addressMode="absolute"

4.3. Mapping existing coding formats onto the abstract model 67

base
VOP

base
layer

FGS
VOP

FGST
VOP

base
VOP

FGS
layer

FGST
layer

BP 3

BP 2

BP 1

BP 0

BP 3

BP 2

BP 1

BP 0

(0,0)

MV

(0,1)

(0,2)

(0,3)

(0,4)

(1,4)

(1,3)

(1,2)

(1,1)

(1,0)

Figure 4.3: Representation of an FGST sequence in the model. The sequence consists
of base layer VOPs, FGS VOPs and FGST VOPs. The FGS and FGST VOPs each
consist of 4 bitplanes; FGST VOPs also contain motion vector information. In the last
VOPs, the labels for the corresponding data blocks are shown.

gbsd:globalAddressInfo="base.cmp">
<gbsd:gBSDUnit marker=":parcel:0" start="0" length="56155">

<gbsd:gBSDUnit marker=":label:(0,0) :fps:15.0 :kbps:449
:psnr:33.6" start="0" length="29"/>

<gbsd:gBSDUnit marker=":label:(0,0)"
start="0" length="18"
globalAddressInfo="fgs.cmp"/>

<gbsd:gBSDUnit marker=":label:(0,0)"
start="0" length="28"
globalAddressInfo="fgst.cmp"/>

<gbsd:gBSDUnit marker=":label:(0,0)"
start="29" length="10321"/>

<gbsd:gBSDUnit marker=":label:(0,1) :fps:15.0 :kbps:584
:psnr:34.2" start="18" length="9"
globalAddressInfo="fgs.cmp"/>

<gbsd:gBSDUnit marker=":label:(0,1)"
start="27" length="180"
globalAddressInfo="fgs.cmp"/>

<gbsd:gBSDUnit marker=":label:(0,2) :fps:15.0 :kbps:1410
:psnr:37.5" start="207" length="3949"
globalAddressInfo="fgs.cmp"/>

<gbsd:gBSDUnit marker=":label:(0,3) :fps:15.0 :kbps:3029

68 An abstract model for scalable bitstreams

:psnr:43.0" start="4156" length="9746"
globalAddressInfo="fgs.cmp"/>

<gbsd:gBSDUnit marker=":label:(0,4) :fps:15.0 :kbps:3498
:psnr:44.5" start="13902" length="14141"
globalAddressInfo="fgs.cmp"/>

<gbsd:gBSDUnit marker=":label:(1,0) :fps:30.0 :kbps:506
:psnr:32.6" start="28" length="454"
globalAddressInfo="fgst.cmp"/>

<gbsd:gBSDUnit marker=":label:(1,1) :fps:30.0 :kbps:652
:psnr:33.0" start="482" length="101"
globalAddressInfo="fgst.cmp"/>

<gbsd:gBSDUnit marker=":label:(1,2) :fps:30.0 :kbps:1541
:psnr:35.0" start="583" length="610"
globalAddressInfo="fgst.cmp"/>

<gbsd:gBSDUnit marker=":label:(1,3) :fps:30.0 :kbps:3460
:psnr:38.6" start="1193" length="3860"
globalAddressInfo="fgst.cmp"/>

<gbsd:gBSDUnit marker=":label:(1,4) :fps:30.0 :kbps:4863
:psnr:41.3" start="5053" length="9586"
globalAddressInfo="fgst.cmp"/>

<gbsd:gBSDUnit marker=":label:(0,0)"
start="10350" length="3093"/>

<gbsd:gBSDUnit marker=":label:(0,1)"
start="28043" length="9"
globalAddressInfo="stockholm_cif_fgs.cmp"/>

<!-- and so on -->
</gbsd:gBSDUnit>
<gbsd:gBSDUnit marker=":parcel:1"

start="56155" length="56363">
<!-- and so on -->

</gbsd:gBSDUnit>
<!-- and so on -->

</dia:Description>
</dia:DIA>

In the generated description, we used the marker mechanism of gBSD for
defining the structural elements as defined in the abstract model. The top-level
gBSDUnit elements represent the parcels of the bitstream. They are marked
by :parcel:i, in which i is the sequence number of the parcel.

Within the parcels, any number of data blocks can be found, each
corresponding with a gBSDUnit that carries a label, marked by the
:label:(x,y,...) syntax.

For assigning properties to the different versions of each parcel, we em-
ployed the following convention: a property consists of a name, enclosed by
colons, followed by a value, for example :fps:15, and can be added to the
marker of any data block. This value corresponds with the value of the prop-

4.3. Mapping existing coding formats onto the abstract model 69

Table 4.1: Conventions for mapping a gBSD description on the abstract model

Marker Location Link with the model
:parcel:i top level,

always occurs
Represents the i-th parcel p ∈ P of the
bitstream.

:label:

(x,y,...,z)

second level,
always occurs

Data block d ∈ D, with d̂ =
(x, y, . . . , z).

:prop:value second level Property prop ∈ P; when this
occurs in data block d of parcel
p, with d̂ = (x, y, . . . , z), then
prop(p(x, y, . . . , z)) = value. Note
that any name for the property can oc-
cur, except parcel and label.

erty that is mentioned, for the version of the current parcel that has the same
identifier as the label of the data block that is marked by the property.

All the conventions we just mentioned for mapping a gBSD description on
our abstract model are summarized in Table 4.1. The following remarks have
to be taken into account.

• The entire bitstream b ∈ B, a sequence of parcels, is found in a
dia:Description of type gBSDType.

• According to Rule 4.1, the number of elements in the label of all data
blocks of the same parcel should be the same. This is supposed to be
reflected in gBSD descriptions that follow the conventions of Table 4.1.

• The payload of a data block can be found by means of the addressing
information and the start and length attributes of the gBSDUnit
that corresponds with that data block.

• The size of a data block (|d|) can be determined by means of the
length attribute of the gBSDUnit that corresponds with d. If the
addressMode is byte, the value of the length attribute has to be
multiplied by 8.

The approach that we followed here for MPEG-4 FGST sequences can be
applied for other scalable bitstreams for which a mapping to our model can be
defined, and for which a bitstream description can be produced.

70 An abstract model for scalable bitstreams

Header

GOP

GOP

GOP

GOP

Bitstream GOP

.

.

.

Header

Content

Temp.
Level 1

Temp.
Level 2

Temp.
Level 3

Motion
Vectors

Subband

Subband

Subband

Subband
Temp.
Level 4

Figure 4.4: Structure of an MC-EZBC bitstream.

4.3.3 Wavelet-based video coding

The most interesting example of coding formats for which our model can be
applied, is probably the one that is based on the fully scalable video coding
scheme called MC-EZBC (Motion-Compensated Embedded Zerotree Block
Coding, an improvement of what is presented in [26]). Parcels in these bit-
streams have three scalability axes: an SNR axis, a resolution axis and a tem-
poral axis.

The entire bitstream in MC-EZBC consists of header information followed
by a sequence of Groups of Pictures (GOPs). Each GOP starts with a GOP
header containing general motion information, followed by the information of
a number of distinct temporal subbands, with motion vectors in between. Each
temporal subband is split up into a number of spatial subbands, that are coded
by means of a bitplane coding technique. This structure is shown in Fig. 4.4.

In our model, an MC-EZBC parcel corresponds with one GOP in the video
sequence, and is typically 16 or 32 frames long (we can think of a video frag-
ment of approximately one second). The number of levels for each axis is
determined during the encoding process: for the temporal axis, it corresponds
with the number of temporal levels, for the resolution axis the number of spa-
tial levels, and for the SNR axis, it depends on the maximum number of bit-
planes available within each spatial subband.

The label of each data block is determined by the temporal level, the spatial
subband, and the bitplane where it belongs to. For each possible label, there
exists exactly one data block in the current parcel. Therefore, Fig. 4.1 can

4.4. Content negotiation for scalable bitstreams 71

represent a MC-EZBC parcel. The first temporal level of Fig. 4.4 is composed
of the blocks that appear closest to the viewer in Fig. 4.1. The first spatial
subband of this temporal level corresponds with the first row in Fig. 4.1. In
turn, each block within this row corresponds with one bitplane of that subband.

4.4 Content negotiation for scalable bitstreams

Now we are ready to describe how we can formally define a content negotia-
tion process in a scenario for streaming video over the Internet, on top of the
abstract model. The aim of a content negotiation process is, given the limita-
tions of the usage environment, to select a value on each scalability axis (in the
case of a fully scalable bitstream an SNR level, a resolution and the number
of frames per second) that corresponds with a reduced version of the parcel
that meets all limitations, but at the same time maximizes the quality as expe-
rienced by the user. We need to introduce some additional definitions that are
not part of the core of our model, but rather belong to this specific application.

4.4.1 Introduction

One application that can benefit from scalability in video coding is multimedia
content negotiation, an essential part of what is often called Universal Multi-
media Access [73]. Content negotiation for scalable bitstreams can be defined
as a process that has a scalable bitstream and a usage environment description
as input, and the output is a reduced version of the bitstream, suitable for the
given usage environment. In this context, the usage environment consists of
the following aspects.

• The characteristics of the terminal (this captures both hardware and soft-
ware).

• The network characteristics (such as average bandwidth and error rate).

• User preferences (such as preferred language).

• The natural environment of the user (such as location).

A schematic representation of a content negotiation process is already
given in Fig. 2.1 of Chapter 2. Such a process can be decomposed into several
phases.

1. The first step, which could be considered to be a preprocessing phase,
is the translation of the usage environment description into constraints.

72 An abstract model for scalable bitstreams

Such a translation can be based on a format for usage environments,
such as MPEG-21 DIA. A more future-proof solution, that should be
able to cope with new vocabularies, can be based on ontologies [74]. In
our experiments, the constraints were expressed manually.

2. In the second phase, all possible versions are compared with the con-
straints, in order to construct a set of feasible versions. It is obvious that
the version that ultimately will be selected, must be feasible.

3. The actual selection step is the third phase. Its aim is to choose one
particular version from the set of feasible versions, in such a way that a
maximum quality is offered towards the end user.

4. The fourth phase consists of offering the actual payload of the selected
version to the decoding device. This can be done by means of one of the
bitstream description mechanisms discussed in the previous chapter.

4.4.2 Constraints

We define constraints in the same way we constructed our model: by means
of definitions. A constraint is actually a function that maps a version to a
boolean value. Semantically, a constraint tells if a parcel is feasible (evaluates
to true) or not.

Definition 4.9. The set of all constraints is denoted C, where C 3 c : P 7→
{true, false}. We say that a parcel p ∈ P is feasible according to a set of
constraints Cts ⊂ C iff (∀c ∈ Cts)(c(p) = true).

Typically, such constraints depend on the usage environment. As an exam-
ple, the resolution of the screen of the receiving device might limit the spatial
resolution of the images and video data that can be accepted. However, it is
important to note that a constraint may also be imposed by the content creator.
A musician may for example state that a song can be adapted, but during the
adaptation, the quality is not allowed to drop below a certain threshold. As a
third example, when a streaming video sequence is transmitted over the inter-
net, the network will impose a constraint, in particular an upper bound for the
bit rate, corresponding with the available bandwidth.

Within MPEG-21 Digital Item Adaptation, the Universal Constraint De-
scriptor (UCD) is introduced as a mechanism for describing different types
of constraints. These constraints can use constant values, but can also refer
to bitstream properties or properties coming from the Usage Environment De-
scription (UED). As such, any of the types of constraints that we just described
can be expressed using the UCD mechanism.

4.4. Content negotiation for scalable bitstreams 73

Listing 4.2 shows how a bandwidth constraint can be expressed in UCD.
There can be several limit constraints, each expressed by means of a stack
function. The values that can occur in these stack function expressions will
often refer to the UED of the terminal or information about the properties of
the adapted media.

Listing 4.2: Example of a bandwidth constraint expressed using UCD.

<DIA>
<DescriptionMetadata>

<!-- omitted definition of classification schemes -->
</DescriptionMetadata>
<Description xsi:type="UCDType">

<AdaptationUnitConstraints>
<!-- a LimitConstraint is expressed

by means of a stack function -->
<LimitConstraint>

<!-- actual bit rate of the media,
should occur somewhere else, e.g., in
AdaptationQoS or in the bitstream description -->

<Argument xsi:type="SemanticalRefType"
semantics=":MEI:7"/>

<!-- available bandwidth, found in the UED -->
<Argument xsi:type="ExternalIntegerDataRefType"

uri="my_UED.xml#
xmlns(dia=urn:mpeg:mpeg21:2003:01-DIA-NS)
xpointer(//dia:NetworkCharacteristics

/dia:AvailableBandwidth/@average)"/>
<!-- boolean IsLessThanOrEqualTo operator -->
<Operation operator=":SFO:38"/>

</LimitConstraint>
</AdaptationUnitConstraints>

</Description>
</DIA>

In Sect. 4.3.2, we proposed a mechanism for inserting information about
the properties of the different possible versions in a bitstream description. This
information can also be expressed in a standardized format compliant with
MPEG-21 Digital Item Adaptation, by means of the AdaptationQoS tool.

Consider Listing 4.3, where different properties of the available ver-
sions of a fully scalable video sequence are represented. The labels in our
model are composed from the TEMPORAL LAYERS, SPATIAL LAYERS, and
QUALITY LAYERS. This can be marked in the relevant IOPins in the Adap-
tationQoS description by means of the semantics attribute.

The FRAMERATE, FRAMEWIDTH, FRAMEHEIGHT, and CODESIZE are

74 An abstract model for scalable bitstreams

properties of the different versions that can be calculated from the iden-
tifier (the different layers) of each version. The CODESIZE is different for
each parcel, which is why a ContentSwitch is needed. Another prop-
erty, REQD GOP BW, the required bandwidth, is expressed as a function of
the code size: as each GOP consists of 16 frames, the original frame rate is
30 frames per second, and the CODESIZE is expressed in bytes, the required
number of bits per second available is calculated as CODESIZE × 8

16/30 , or
CODESIZE.15.

Listing 4.3: Example of expressing properties of a scalable video sequence using
AdaptationQoS.

<DIA>
<DescriptionMetadata>

<!-- omitted definition of classification schemes -->
</DescriptionMetadata>
<Description xsi:type="AdaptationQoSType">

<Module xsi:type="LookUpTableType">
<AxisRef iOPinRef="TEMPORAL_LAYERS" />
<Content iOPinRef="FRAMERATE">

<ContentValues xsi:type="FloatMatrixType"
mpeg7:dim="5">

<Matrix>1.875 3.75 7.5 15 30</Matrix>
</ContentValues>

</Content>
</Module>
<Module xsi:type="LookUpTableType">

<AxisRef iOPinRef="SPATIAL_LAYERS" />
<Content iOPinRef="FRAMEWIDTH">

<ContentValues xsi:type="FloatMatrixType"
mpeg7:dim="6">

<Matrix>11 22 44 88 176 352</Matrix>
</ContentValues>

</Content>
<Content iOPinRef="FRAMEHEIGHT">

<ContentValues xsi:type="FloatMatrixType"
mpeg7:dim="6">

<Matrix>9 18 36 72 144 288</Matrix>
</ContentValues>

</Content>
</Module>
<Module xsi:type="LookUpTableSwitchType"

switchIOPinRefs="GOP">
<AxisRef iOPinRef="TEMPORAL_LAYERS" />
<AxisRef iOPinRef="SPATIAL_LAYERS" />
<AxisRef iOPinRef="QUALITY_LAYERS" />
<ContentSwitch iOPinRef="CODESIZE">

<ContentDataSwitch switchValues="0">

4.4. Content negotiation for scalable bitstreams 75

<ContentValues xsi:type="FloatMatrixType"
mpeg7:dim="5 6 5">

<Matrix>
123 136 148 161 173
533 612 686 763 838
1543 1866 2188 2500
<!-- and so on -->

</Matrix>
</ContentValues>

</ContentDataSwitch>
<ContentDataSwitch switchValues="1">

<!-- more CODESIZE information -->
</ContentDataSwitch>

</ContentSwitch>
</Module>
<Module xsi:type="StackFunctionType"

iOPinRef="REQD_GOP_BW">
<StackFunction>

<Argument xsi:type="InternalIOPinRefType"
iOPinRef="CODESIZE" />

<Argument xsi:type="ConstantDataType">
<Constant xsi:type="FloatType">

<Value>15</Value>
</Constant>

</Argument>
<!-- multiply -->
<Operation operator=":SFO:18" />

</StackFunction>
</Module>
<IOPin id="CODESIZE" />
<IOPin id="FRAMERATE" semantics=":MEI:20" />
<IOPin id="FRAMEWIDTH" semantics=":MEI:17" />
<IOPin id="FRAMEHEIGHT" semantics=":MEI:18" />
<IOPin id="TEMPORAL_LAYERS">

<Axis>
<AxisValues xsi:type="IntegerVectorType">

<Vector>0 1 2 3 4</Vector>
</AxisValues>

</Axis>
</IOPin>
<IOPin id="SPATIAL_LAYERS">

<Axis>
<AxisValues xsi:type="IntegerVectorType">

<Vector>0 1 2 3 4 5</Vector>
</AxisValues>

</Axis>
</IOPin>
<IOPin id="QUALITY_LAYERS">

<Axis>

76 An abstract model for scalable bitstreams

<AxisValues xsi:type="IntegerVectorType">
<Vector>0 1 2 3 4</Vector>

</AxisValues>
</Axis>

</IOPin>
<IOPin id="GOP" semantics=":SEG:1">

<Axis>
<AxisValues xsi:type="IntegerVectorType">

<Vector>
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

</Vector>
</AxisValues>

</Axis>
</IOPin>
<IOPin id="REQD_GOP_BW" semantics=":MEI:7" />

</Description>
</DIA>

We are now ready to describe the second phase of a content negotiation
process, the construction of the set of feasible versions, in a more formal way:
we define the set of feasible versions of a parcel according to a set of con-
straints.

Definition 4.10. The set of all feasible versions of a parcel p ∈ P , according
to a set of constraints Cts ⊂ C, is denoted 〈p〉Cts, where 〈p〉Cts = {v ∈
p+|(∀c ∈ Cts)(c(v) = true)}.

According to the definition, the set of feasible versions of a parcel is the
set of all versions v that are part of the closure of the parcel (all versions that
can be generated from the original parcel), for which all constraints evaluate to
true. Note that we suppose that this set of constraints is composed in the first
phase.

As an example, suppose that a first constraint limits the bit rate of the par-
cel to a certain amount, corresponding with the available bandwidth, and a
second constraint limits the spatial resolution, corresponding with the resolu-
tion of the display of the receiving device. Only those versions that fulfill both
constraints, can be considered feasible versions.

4.4.3 Selecting the best version

In the third phase, we start from a set of feasible versions, and the objective
is to select one version that offers the best quality towards the end user. We
suppose we have a specific property, a quality function Q : P 7→ R for which

4.4. Content negotiation for scalable bitstreams 77

Q(p) represents the quality offered by parcel p towards the end user. Now we
are ready to define a content negotiation application.

Definition 4.11. A content negotiation problem can be defined as follows:
Given:

• a bitstream b ∈ B,

• a quality function Q ∈ P,

• a set of constraints Cts ⊂ C.

Find an adapted bitstream b′ ∈ B, subject to:

• #b = #b′, and

• (∀i ∈ {0, 1, . . . ,#b− 1})(b′i = arg max
p∈〈bi〉Cts

Q(p))

More informally, we define a content negotiation problem as the process of
deriving an adapted bitstream b′ from an original bitstream b, in such a way that
in each parcel bi, the adapted parcel b′i satisfies all constraints Cts imposed by
the usage environment (b′i ∈ 〈bi〉Cts), and at the same time maximizes a certain
quality function Q.

In Def. 4.11, we have used a fixed set of constraints Cts. In practice,
however, it is expected that the constraints imposed by the environment will
change during the transmission of the bitstream [12]. To model such a situa-
tion, we need to change the definition, and use a sequence of sets of constraints
instead of one such set. Each set within this sequence then corresponds to the
constraints that exist at the transmission time of the corresponding parcel.

An additional problem might occur in case of heavily fluctuating con-
straints. This can cause significant fluctuations in the observed visual quality.
As a consequence, it might be necessary to use modified constraints, rather
than the actual constraints that are immediately implied by the usage environ-
ment, in order to obtain more graceful changes in terms of visual quality.

When only one scalability axis is available, and the usage environment is
only constrained by the bandwidth, we could use the size-function (as defined
in Def. 4.8) as a quality function (Q ≡ ||.||), because we can expect that the
more layers are received, the more quality is offered. In this case, the version
that contains most layers and that is still feasible, will offer most quality and
will be selected for transmission.

In more complicated cases, we can use other properties as quality func-
tions, such as the PSNR value of a particular parcel. In [72], some useful

78 An abstract model for scalable bitstreams

examples of combinations of constraints and quality functions can be found,
in the context of MPEG-21 Digital Item Adaptation.

Within MPEG-21, the UCD can be used for defining what is called an
optimization constraint, which is a quality or utility function that has to be
maximized or a cost function that has to be minimized. Listing 4.4 shows how
to express such a quality function in UCD.

Listing 4.4: Expressing by means of UCD that a particular quality function needs to
be maximized.

<DIA>
<Description xsi:type="UCDType">

<AdaptationUnitConstraints>
<LimitConstraint>

<!-- details about one particular constraint -->
</LimitConstraint>
<!-- several LimitConstraints can be expected -->
<OptimizationConstraint optimize="maximize">

<Argument xsi:type="ExternalIOPinRefType"
iOPinRef="#VISUAL_QUALITY" />

</OptimizationConstraint>
</AdaptationUnitConstraints>

</Description>
</DIA>

4.5 Other applications of the abstract model

In the previous section, we showed how the abstract model for scalable bit-
streams can be used for describing a content negotiation process. For vali-
dating the usefulness of the model, we also used it for describing a multicast
protocol that was designed for scalable bitstreams [7].

Because the topic of new network protocols for multimedia sessions does
not entirely fall within the scope of this thesis, we only briefly discuss the way
we applied our model to such a protocol.

This protocol, called CIFL (Coding-Independent Fair Layered Multicast),
is designed to be a generic, stable, TCP-friendly protocol for setting up layered
multicast sessions. Details about the protocol can be found in the original
paper by El Khayat and Leduc [75].

Because of a number of requirements imposed by the protocol, only a sub-
set of the bitstreams that are valid according to the definitions of the model,
can be used. Fortunately, we were able to demonstrate that it is possible to
translate a bitstream that does not belong to this subset, in such a way that

4.6. Conclusions and original contributions 79

the transformed bitstream does, by creating empty data blocks and by merging
multiple data blocks together.

An important addition to the basic abstract model defined in Sect. 4.2,
is the concept of timing information. We achieved this by introducing time
stamps, that are defined as the moment when the processing of a particular
parcel begins.

A concept that is in use in the CIFL protocol, and that can easily be defined
using our model, is a channel. This is a sequence of data blocks belonging to
subsequent parcels, all having the same label. A subscription set is a set of
channels that a user receives at some time. In order to receive exactly those
data blocks necessary for reconstructing a particular version, a subscription set
has an identifier, which has a similar meaning as the identifier of a version of
a parcel. CIFL also uses synchronization points, which are time stamps used
for notifying when a user is allowed to modify its subscription set.

When such a synchronization point occurs, two actions are possible for a
receiver: a join means that a number of channels is added to the subscription
set, a leave means that a number of channels is removed. Based on the de-
scription of the CIFL protocol, we formally defined these actions by means of
a number of preconditions that all have to be satisfied before the action can
take place, and a number of postconditions, describing the state changes that
occur when the action is executed.

This way, we demonstrated that the abstract model that we defined in this
chapter can be used for describing other applications that use scalable bit-
streams, apart from the content negotiation problem for which the model was
defined.

4.6 Conclusions and original contributions

In this chapter, we formally defined an abstract model that can be used for
describing the structure of any kind of scalable bitstream. We achieved this by
means of a number of definitions and rules, but we also described the more
informal semantics of this model.

We validated the correctness of this model by checking different algo-
rithms for scalable video coding, to see if they can be mapped onto the model
definitions. For one particular case, MPEG-4 FGST, we used the generic
gBSD bitstream descriptions for an explicit mapping onto the model. By
means of the facilities of gBSD for adding metadata information, we created
explicit links between particular bitstream fragments, represented by means of
gBSD units, and the structural elements defined in the model.

The main goal of setting up such an abstract model for scalable bitstreams

80 An abstract model for scalable bitstreams

is the possibility of formally describing applications that use these bitstreams.
In this chapter, we showed how this could be done for two different applica-
tions. The first one described the problem of multimedia content negotiation,
in which the best possible available version has to be transmitted to the client,
taking into account a number of constraints that can be imposed by the termi-
nal, the network or other parts of the environment.

The second application of which we showed how we could formally de-
scribe it, was the definition of a protocol that was designed for multicast trans-
mission of scalable bitstreams. All relevant concepts were formally defined
using our model, and the possible actions were described by means of precon-
ditions and postconditions.

As we will discuss in the next chapter, our definition of a content nego-
tiation process does not take into account certain aspects of the reality. As a
consequence, we will have to further extend our definition of a content negoti-
ation process to be able to describe these aspects.

The research that lead to this chapter of this thesis is also discussed in the
following of our publications.

1. Sam Lerouge, Boris Rogge, Robbie De Sutter, Jeroen Bekaert, Dimitri
Van De Ville, and Rik Van de Walle. A generic mapping mechanism
between content description metadata and user environments. In Inter-
net Multimedia Management Systems III, volume 4862 of Proceedings
of SPIE, July 2002.

2. Sam Lerouge, Peter Lambert, and Rik Van de Walle. Multi-criteria op-
timization for scalable bitstreams. In Visual Content Processing and
Representation, 8th International Workshop VLBV 2003, volume 2849
of Lecture Notes in Computer Science, September 2003.

3. Sam Lerouge, Robbie De Sutter, Peter Lambert, and Rik Van de Walle.
Fully scalable video coding in multicast applications. In Electronic
Imaging 2004, volume 5308 of Proceedings of SPIE, pages 555–564,
San Jose, January 2004.

Chapter 5

Multi-criteria optimization in
video communication

5.1 Introduction

In video coding, compression is achieved by lowering the quality of the in-
coming signal somehow. The most common way of reducing the quality is
by means of what is usually called adaptive quantization: rounding errors are
allowed in order to reduce the bit rate, but at the same time distortion is intro-
duced. The formal definition of a content negotiation process, as introduced in
Sect. 4.4, where one quality function is used, reflects such a scenario. It also
sufficiently describes adaptation scenarios based on transcoding or scalable
coding where only one quality aspect can be modified, e.g. MPEG-4 FGS.

Sometimes, better results are possible when multiple quality aspects can
be modified at the same time. This is possible during encoding, transcoding,
and also with some types of scalable coding, such as MPEG-4 FGST and fully
scalable video coding, using wavelet-based coding or based on H.264/AVC.

In such scenarios, it no longer makes sense to describe the quality of the
video as a single quality function. Rather, a multi-dimensional adaptation is
possible, where multiple quality functions have to be maximized at the same
time. Existing theoretical frameworks for optimizing the quality in video com-
munication, such as the well known rate-distortion optimization frameworks
based on Lagrangian cost [31], are not capable of describing such a situation.

As we have said in the previous chapter, the objective of a content negoti-
ation process is to maximize the overall quality or utility towards the end user,
given all the constraints imposed by the system. Because of these constraints
(e.g. the available bandwidth), the solution where all quality functions are
optimal probably does not fulfill all constraints. In such a situation, a trade-

82 Multi-criteria optimization

off will have to be made between the different quality functions, which is a
problem that is often not straightforward.

The problem of making trade-offs between multiple optimization functions
is not new. The first to describe such situations in a mathematical way was
Vilfredo Pareto [76], a teacher in economics. In the following section, we
introduce all important definitions belonging to the Pareto theory. Later on, we
show how we can apply these principles to the domain of content negotiation.

5.2 Background of multi-criteria optimization

The first definition that we introduce in this section is the one of a multi-
criteria optimization problem [77]. The main difference between such an
optimization problem, and what we could call classic optimization problems,
is that in this case, more than one optimization function exists.

Definition 5.1. A multi-criteria optimization problem is defined as follows:

Find x = (x0, x1, . . . , xn−1)

Maximizing: F(x) = (F0(x), F1(x), . . . , Fk−1(x))

Subject to: gi(x) ≤ 0; i = 0, 1, . . . , l − 1
hj(x) = 0; j = 0, 1, . . . ,m− 1

In this definition, each Fi is called an objective function or optimization
function, and gi and hj are constraints, limiting the set of candidate solutions.
A solution x that meets all of these constraints is said to be feasible.

The concept of dominance is crucial in multi-criteria optimization. We
say that solution x dominates solution y if and only if x performs at least as
well as y for all objective functions, and better than y for at least one objective
function.

Definition 5.2. A solution x = (x0, x1, . . . , xn−1) dominates another solution
y = (y0, y1, . . . , yn−1) according to F = (F0, F1, . . . , Fk−1)

⇔

(∀i ∈ {0, . . . , k−1})(Fi(x) ≥ Fi(y))∧(∃j ∈ {0, . . . , k−1})(Fj(x) > Fj(y)).

To improve readability, we note x �F y.

In Fig. 5.1, an example is given of a set of candidate solutions for which
two criteria X and Y need to be optimized. It should be clear that solution a
dominates solution b, as it is better than b on one criterion, and not worse than

5.2. Background of multi-criteria optimization 83

X

Y

b a

c

Figure 5.1: Example of a Pareto frontier for two optimization criteria.

b on the other criterion. At the same time, a and c cannot be compared using
the concept of dominance: going from one of these solutions to the other one
can only happen by improving the value of one criterion, while lowering the
other one.

The Pareto frontier of a multi-criteria optimization problem is defined
as the set of feasible solutions that are not dominated by any other feasible
solution. It should be obvious that all candidate solutions that belong to the
Pareto frontier can be considered to be optimal solutions.

Definition 5.3. The Pareto frontier of a multi-criteria optimization problem
having candidate solutions X and a vector of objective functions F is defined
as follows:

PFF(X) = {x ∈ X|(@y ∈ X)(y �F x)}.

A solution that belongs to the Pareto frontier is said to be Pareto optimal.

In this definition, the set of candidate solutions X only consists of solutions
that are feasible according to all constraints gi and hi, as in Def. 5.1.

More informally, a Pareto optimal solution is a feasible solution for which
any other feasible solution is worse on at least one optimization criteria. Mov-
ing from one Pareto optimal solution to another one is therefore only possible
by improving on at least one criterion but at the same time worsening an-
other criterion. As all solutions in the Pareto frontier are considered optimal
solutions, it often occurs that a multi-criteria optimization problem does not
produce one optimal solution but rather a set of optimal solutions that cannot
further be compared if no additional information is available.

84 Multi-criteria optimization

In Fig. 5.1, all white solutions are dominated by at least one other solu-
tion. The black solutions are not dominated, and therefore belong to the Pareto
frontier.

If only one solution has to be selected from the Pareto frontier, a trade-
off will have to be made between the different optimization functions. It
will be necessary to somehow make clear which criteria are more important
than others, and how much more important they are. In the domain of Multi-
Criteria Decision Analysis [78], several frameworks for assisting a human, the
so-called decision maker, in selecting an appropriate solution are developed.
In Sect. 5.6, we briefly present an overview of these frameworks.

5.3 Complexity of calculating the Pareto frontier

In general, one of the main issues in solving multi-criteria optimization prob-
lems using the Pareto frontier, is the complexity of calculating the frontier.

Because the candidate solutions in the problems we are thinking of are the
available versions of a parcel, only a finite number of candidate solutions has
to be taken into account. In such situations, it is possible to use an exhaustive
search algorithm, such as the one shown in Algorithm 5.1.

5.3.1 Complexity analysis

Because of the exhaustive nature of the presented search algorithm, we should
be concerned with its computational complexity. When determining the the-
oretical complexity of an algorithm, we use the well-known O(·) (or Big-O),
Ω(·) and θ(·) notations for describing the asymptotic behavior of algorithms.
Respectively, they describe the asymptotic upper bound, lower bound, and
tight bound. The latter means that the lower and upper bounds are the same.

When doing a basic analysis of the algorithm as described here, we start
with noting that the isFeasible function is linear with the number of constraints.
For simplicity, we only consider the number of feasible versions n.

Let k be the number of criteria involved in the optimization process. The
dominates function has to do a comparison for each criterion, until it finds one
where the second solution has a higher value than the first one. This function
has a complexity of O(k).

First, we discuss the lower bound for the complexity. In this case, the first
solution will dominate all other solutions. The set O will therefore always
contain one element, except for the first iteration. Therefore, the complexity
of the body of the loop between line 6 and line 14 is Ω(k). This loop will be
executed n times, so the total complexity is Ω(n.k).

5.3. Complexity of calculating the Pareto frontier 85

Algorithm 5.1 An exhaustive search algorithm for determining the Pareto
frontier.

function GETPARETOFRONTIER(S) //S is the set of all versions
2: O := ∅ //current set of non-dominated solutions

for all s in S do
4: if isFeasible(s) then

dom := false //initially, suppose s is not dominated
6: for all o in O do

if dominates(o, s) then
8: dom := true //s cannot belong to O

break
10: end if

if dominates(s, o) then
12: O := O - o //remove solution o

end if
14: end for

if dom = false then
16: O := O + s

end if
18: end if

end for
20: return O

end function

For the upper bound, we consider the worst case situation where all solu-
tions are part of the Pareto frontier. In this case, the result of the dominates
function is always false. The complexity of the body of the loop between line
6 and line 14 is O(k) + O(k) = O(k). This loop is averagely executed n/2
times (the average size of the set O), so the complexity for the loop is O(n.k).
As this part is executed n times, the total complexity will be O(n2.k).

5.3.2 Measurements

In [3], we performed some measurements using an implementation of the pre-
sented algorithm, to see if the calculation of the Pareto frontier can become
problematic in a content negotiation application.

These measurements were done by profiling a Java implementation of Al-
gorithm 5.1 for calculating the Pareto frontier using three ‘real-life’ descrip-
tions of scalable bitstreams in the SSM framework [66]. We compared the time
spent on the parsing of the XML descriptions with the time spent on calculat-

86 Multi-criteria optimization

Table 5.1: Parsing time compared to the time needed for calculating the Pareto fron-
tier, for three different SSM descriptions.

sequence versions criteria size
(KiB)

time
(ms) parsing frontier other

VTC 54 2 5 098 413 97.4% 1.5% 1.1%
MPEG-4 20 3 22 2 97.0% 1.3% 1.7%
MC-EZBC 210 4 85 21 70.5% 27.6% 1.9%

ing the Pareto frontier. The results of these measurements, executed in 2003,
can be found in the original paper [3].

The most important conclusion at that time was that the real bottleneck
was not the calculation of the Pareto frontier, but rather the time needed for
parsing XML documents, even though an efficient SAX parser was used.

Since then, the performance of XML parsers has seriously evolved. There-
fore, we decided to run the same code with more recent XML libraries. These
measurements were performed on a computer running a Pentium 4 2.8 GHz,
using 1 GiB of RAM. The software ran on a Windows XP Professional, using
Java 1.5.0 02 with Xerces as XML parser. In order to avoid any influence of
the speed of the disk, the SSM description was loaded into the memory before
the actual measurements started. The results can be found in Table 5.1.

The first column refers to the test sequence used (more information can
be found in [3]). The second column is the number of available versions in
the SSM description. In the third column, the number of criteria is shown. In
the fourth column, the size of the SSM description can be found, expressed in
KiB. The fifth column shows the total amount of time needed for processing
the description, expressed in ms. The following two columns show the relative
amount of time spent on parsing the description and calculating the Pareto
frontier. The remaining time, shown in the last column, covers initializations,
such as class initializations.

It is clear that for the data we used for testing, the time spent for the cal-
culation of the Pareto frontier remains acceptable, as it is far below the time
needed for parsing the bitstream descriptions. As expected, the time needed
for calculating the Pareto frontier increases when the number of versions and
the number of criteria increases. The large time consumption for the VTC case
can be explained by the large size of the description. For the MC-EZBC case,
the relative amount of time spent for calculating the Pareto frontier is so large
because of the large number of versions and criteria taken into account.

5.4. Multi-criteria optimization in video coding 87

5.4 Multi-criteria optimization in video coding

As we already mentioned in the introduction, in video coding it can be possible
to consider several optimization functions at the same time, when not only the
distortion, but also the resolution and the frame rate are allowed to change.
Because we want to end up with one optimal solution, a trade-off will have to
be made between these quality aspects, taking into account the constraints, in
particular the target bit rate.

In what we could call traditional video coding, this decision has to be made
during the encoding step. Because in most scenarios hardly any information
about the end user is available, it makes most sense to take only into account
information on the input video sequence itself. This is the approach followed
by Reed and Lim [79]. They propose a mechanism for automatically making
these trade-offs, based on the properties of the input signal. They define an
integer programming formulation and present an algorithm for computing an
optimal solution when controlling the bit rate by jointly adapting the frame
rate, the resolution and the distortion.

These are not the only situations in which trade-offs between different
quality aspects have to be made. In analog television broadcasting, a trade-
off between the resolution and the frame rate of the images had to be made.
In different television standards, this trade-off is taken in a different way. An
NTSC signal carries images containing typically 485 visual lines at a refresh
rate of 60 Hz (interlaced), whereas a PAL signal has 575 visual lines, but at
only 50 interlaced frames per second.

The use of interlaced frames instead of progressive frames can also be con-
sidered a trade-off: in order to achieve a high frame rate, the actual resolution
is only half of the resolution of a television screen. Some other relevant situa-
tions in which trade-offs can occur in multimedia distribution can be found in
the following list.

• In very low bit rate transmission of audiovisual information, the alloca-
tion of bandwidth to the audio and the video signal can become very im-
portant. In such a situation, an appropriate choice for making this trade-
off will greatly influence the quality perceived by the end user [80].

• A utility-based network adaptation system is presented in [81]. It con-
tains a utility-fair algorithm for scaling multiple media objects, while
taking into account user preferences.

• In [82], a generalized framework is proposed for determining an optimal
adaptation strategy when multiple objects of a multimedia presentation
can be adapted.

88 Multi-criteria optimization

Table 5.2: Properties of the different versions of a video sequence.

version frame rate (Hz) PSNR value (dB) bit rate (kbps)
1 15 28 46
2 15 34 128
3 15 40 400
4 30 26 64
5 30 32 256
6 30 36 1200

• Transmission over a network where the client (or the server) has to pay
per byte, rather than proportional with the connection time or a fixed
fee. Such scenarios currently occur in GPRS networks, amongst others.
In such a situation, a user might not be willing to receive a version that
is twice as big as another one but that only offers 5 percent more qual-
ity. A formalism for making trade-offs between network cost and user
satisfaction is presented in [83].

• In mobile devices, one of the critical aspects is battery life. A user might
not be willing to sacrifice a lot of his battery capacity to watch the news
at full quality, if he can watch it at a lower quality while saving a lot of
battery power.

Let us consider a practical example to make the problem of multi-criteria
optimization in video communication more concrete. Suppose we want to
transmit a video sequence over the Internet. Different versions of the sequence
are available (either because it was encoded using a scalable coding algorithm,
or because simulstore1 is used, or because a real-time transcoder is available),
all having different properties, as summarized in Table 5.2. The available bit
rate is limited to 200 kbps. Under these circumstances, we want to maximize
both the frame rate and the PSNR value. More formally, we can state that
Q = {PSNRvalue, framerate}, and that c(v) ≡ bitrate(v) ≤ 200 is the only
constraint involved. The entire sequence is treated as one parcel p.

Because of the bit rate constraint, 3 versions are not available: versions 3,
5 and 6, so 〈p〉{c} = {1, 2, 4}. Within the set of feasible versions, we see that
version 1 is worse than version 2, as it is not better than that version on any
of the two criteria that we want to maximize. We say that version 2 dominates
version 1 (2 �Q 1). Therefore, version 1 cannot be part of the Pareto frontier.

1The term simulstore is used in situations where a server has different versions of the same
multimedia presentation stored on its disks, all available for download.

5.5. Content negotiation redefined 89

Version 2 and version 4 however cannot be compared in the same way: both
are better regarding one criterion but worse regarding the other one. As there is
no other feasible version dominating version 2 and version 4, they both belong
to the Pareto frontier: PFQ(〈p〉{c}) = {2, 4}.

It should be clear that it is impossible to determine which of both versions
is actually the best, if we don’t have any additional information. We need to
know if the user is willing to reduce the frame rate from 30 to 15 frames per
second (fps), if he would gain 8 dB in terms of PSNR quality.

5.5 Content negotiation redefined

In Def. 4.11, we considered a content negotiation problem as the process of
selecting one feasible version that has the highest score according to a max-
imization function. When we want to optimize multiple criteria, we need to
redefine this process as follows.

Definition 5.4. A multi-criteria content negotiation problem can be defined
as follows:
Given:

• a bitstream b ∈ B,

• a set of quality functions Q = (Q0, Q1, . . . , Qk−1),
where Qj ∈ P,

• a set of constraints Cts ⊂ C.

Find an adapted bitstream b′ ∈ B, subject to:

• #b = #b′, and

• (∀i ∈ {0, 1, . . . ,#b− 1})(b′i ∈ PFQ(〈bi〉Cts))

Possible quality functions that can be used, according to the examples
given in the previous section, are the frame rate, the spatial resolution, a distor-
tion measure such as PSNR, the audio quality, the network cost (that needs to
be minimized), battery power consumption (that also needs to be minimized),
etc.

We were the first to describe a content negotiation process as a multi-
criteria optimization problem [3]. Later, this approach was adopted by
Mukherjee et al. [72], whose formulation appears in the specification of the
Universal Constraints Description (UCD) of MPEG-21 Digital Item Adapta-
tion. According to Def. 5.4, any solution that is part of the Pareto frontier, is

90 Multi-criteria optimization

considered to be an optimal solution of a content negotiation problem. This is
the way it is defined in the MPEG-21 Digital Item Adaptation as well: when
multiple optimization functions are taken into account, any Pareto optimal so-
lution is acceptable.

This way, there is no trade-off to be made. In the MPEG philosophy, it
is up to the companies implementing intelligent Adaptation Decision Taking
Engines to develop smart algorithms for making these trade-offs.

We believe that this can be done in an intelligent way when more infor-
mation is available, in addition to the information of the bitstream, the quality
functions and the constraints. We propose to consider the preferences of the
end user for making a trade-off when selecting one optimal solution. This
approach matches well with the concept of Quality of Experience, which is
introduced in Chapter 1.

5.6 Selecting one solution from the Pareto frontier

In the domain of Multi-Criteria Decision Analysis [78], several methods exist
for finding one optimal solution from a set of candidate solutions (also called
alternatives), most of them taking into account the preferences of the user (also
called the decision maker).

In weighing methods, the key concept of describing the preferences of the
decision maker is the weight. In these methods, a weight is to be considered
a measure of the relative importance of the criteria according to the decision
maker.

The most widely spread method in this group of methods is the method of
the weighted sum. Here, the values of the alternatives have to be normalized
to a [0, 1] interval, such that the ratio wi/wj of two weights can be considered
a “substitution rate”: when the utility of attribute i decreases by an amount δ,
the utility of attribute j has to increase by a factor δwi/wj to keep the global
utility constant.

Several possibilities exist for obtaining the weights from the decision
maker. In the simple classification method, the simple cardinal evaluation
method and the ratio method, the decision maker has to declare the weights di-
rectly, without much considerations. In the method of successive comparisons,
the decision maker has to compare additions of the importance of the criteria,
which leads to more accurate estimations, but is cognitively more difficult for
the decision maker.

Another well known weighing method is the Analytic Hierarchy
Process [84]. This is an eigenvalue method, in which the decision maker is
asked to compare the different criteria two by two and to assign a value rep-

5.6. Selecting one solution from the Pareto frontier 91

A

B

D

C

E

F

A

D E F

B C

PROMETHEE I

PROMETHEE I I

Figure 5.2: Output of the PROMETHEE methods.

resenting their relative importance. These values are placed in a matrix, for
which the eigenvalues are calculated in order to retrieve the weights them-
selves.

Even though outranking methods also take into consideration the weights
defined by the decision maker, the approach is quite different. The basic con-
cept is the notion of outranking: an alternative a outranks an alternative b when
a is at least as good as b on a majority of the criteria, and not performing con-
siderably worse on any of the other criteria.

One class of outranking methods is the series of ELECTRE methods.
These methods define a concordance set for two alternatives a and b as the
set of criteria for which a scores better than b. The discordance set is the set
of criteria for which b scores better than a. These sets are used for defining
a concordance and discordance index, in which the weights of the different
criteria are taken into account. These indices are then used for determining if
one alternative outranks another one. More advanced versions of the ELEC-
TRE methods also take into account a preference threshold and an indifference
threshold.

The PROMETHEE method uses preference functions for each criterion.
Such a function defines how much one alternative is preferred over another
one, according to that criterion, in function of the deviation of the values of
both alternatives. These preference functions are used for calculating a posi-
tive and negative outranking flow. In turn, these values are used for defining
a partial preorder (PROMETHEE I) or a less reliable complete preorder

92 Multi-criteria optimization

(PROMETHEE II). This is represented graphically in Fig. 5.2, where version
A is obviously considered the best alternative according to PROMETHEE I,
but versions B, C and D cannot be compared. When using the less restrictive
PROMETHEE II method, it appears that D can be considered better than B or
C.

5.7 Quality agents in content negotiation

The methodologies presented in the previous section demand a lot of input
from the decision maker, and are difficult to use in a content negotiation sce-
nario. Still, in order to make an intelligent choice among the Pareto optimal
solutions, we need additional input from the end user. The problem is that
in practice, a user will not want to select one optimal version manually. We
identified two reasons for that.

• Most users have insufficient knowledge about the meaning of the
different quality aspects (optimization criteria) used in video coding. As
an example, most users do not know what it means when a sequence has
a PSNR value of 28 dB. This also explains why it does not make sense
to obtain weights from the user explicitly.

• When consuming a multimedia presentation, the user does not want to
be interrupted with questions for selecting the optimal version from the
Pareto frontier. As these decisions have to be taken for every parcel (see
Def. 5.4), it is very well possible that this will occur every second.

It is clear that if we want to offer a personalized adaptation, we need to
obtain the additional user preference information in a different, less explicit
way. One option that we found was to consider the possibilities of agents that
can act on behalf of the user as much as possible in taking decisions, in order
to minimize the amount of explicit user interaction.

Some 10 years ago, research in Artificial Intelligence partly evolved into
the exploration of so-called interface agents. Such agents provide active assis-
tance to a user and can act as a personal assistant that imitates tasks that are
executed regularly by the user. The agent can achieve this by learning from
the user’s behavior as well as from other more experienced agents. During this
learning process, the agent becomes more and more effective.

According to Maes [85], a learning agent acquires its competence from
four different sources.

5.7. Quality agents in content negotiation 93

1. The agent learns by continuously “looking over the shoulder” of the user
as the user is performing actions. The agent can then look for recurrent
patterns, and try to automate these.

2. The agent can learn from indirect feedback, when the user takes a
different action than the one offered by the agent. The user can also
give explicit feedback for actions automated by the agent.

3. The agent can learn from examples given explicitly by the user. This
way, the user can train the agent by giving it hypothetical examples of
events and situations and telling the agent what to do in those cases.

4. The agent can ask for advice from agents that assist other users with the
same task and that may have built up more experience. Additionally, the
agent can learn to trust agents that have proven to recommend actions
that the user appreciated.

The application of these machine learning techniques for building au-
tonomous agents has proven to be successful for automated e-mail handling,
meeting scheduling, news filtering, entertainment selection, and web page an-
notation [85, 86] amongst others.

The concept of agents acting on behalf of the user has already appeared for
a while in the domain of multimedia. Within MPEG-7, the Multimedia Con-
tent Description Interface, hooks are provided for allowing software agents to
automatically figure out the personal tastes of users, and use this information
to discover, select and recommend new multimedia content using this infor-
mation [87].

To our knowledge, we were the first to apply the basic principles of agents
to a content negotiation process. Here, the objective is to construct a model of
the preferences of the end user regarding the different quality aspects. When
looking at the principles of interface agents, we think that such a model can be
constructed from the following sources of information.

1. Every time the agent fails taking a decision because his model seems not
reliable enough, the choice is left to the user who will have to take the
decision explicitly. The agent will learn from this decision by refining
the user model.

2. The user should always be able to recall a decision that has been taken
by the agent. Again, the agent will have to update its user model.

3. If the user wants to avoid interaction as much as possible, it might be
useful to train the agent in advance. The agent can offer some predefined

94 Multi-criteria optimization

examples to the user; the decisions taken by the user can be used to
initiate or refine the user model.

4. It might be useful that the agent learns from other, more experienced
agents that assist other users.

As an additional requirement, the agent has to operate in real time: it has
to be able to resolve a decision before the next request arrives. Because of
this requirement, the last option for learning the preferences might not be ap-
propriate. In addition, we expect that models for different users will differ
significantly. The first source for learning a model is also not recommended
because of the reasons mentioned in the beginning of this section.

As a consequence, the major requirements that we identified for a model
capable of capturing the preferences of the end user regarding different quality
aspects, are the following.

• As users are not willing to spend a long time taking example decisions,
the algorithm has to be able to construct a model from a very small set
of example decisions.

• Constructing a model from a set of example decisions should be possi-
ble in a reasonable amount of time, even though there are no hard time
constraints imposed.

• Selecting one version from the set of candidate versions has to be possi-
ble in real time: such decisions must be taken immediately, and at a high
rate, as we want to be able to respond quickly to changes in the con-
straints imposed by the system (e.g., changes in the available bit rate, a
battery running low, etc.).

• A user must have the possibility to recall the decision of the agent. The
algorithm for building a model must be able to use this information for
updating the model.

Figure 5.3 shows how the training process could look like. When a user
starts using his multimedia player for the first time, the agent asks him to ex-
press his preferences by means of some example decisions that are used for
training the agent. These example decisions can be obtained by means of pair-
wise comparisons, as in Fig. 5.3. When not only visual quality aspects are
taken into account, for example when considering audio quality as an addi-
tional optimization criterion, it is necessary to use a different approach. The
most obvious solution would be to use absolute scores, where the user is asked

5.7. Quality agents in content negotiation 95

Select the best sequence

Left RightEqual

Figure 5.3: Example of how an agent that is part of a multimedia player can be
trained.

to assign a number between 0 and 10 to a video sequence, expressing the qual-
ity of the sequence as observed by the user.

In the domain of psychophysics, tests are often conducted where the re-
sponsiveness of observers with respect to a certain signal, also called a stim-
ulus, is measured. Already in 1876, Fechner conceived the idea that a psy-
chophysical experiment could be conducted where the stimuli would have no
obvious single numerical quantity [88, 89]. This could be used in studies on
esthetics, where observers have to choose the one of two objects that is most
pleasant. In 1927, Thurstone published his law of comparative judgement [90],
which is a mathematical method for constructing a psychological scale from
comparative judgements. Pairwise comparisons are also commonly used in
well-known approaches in the domain of multi-criteria optimization, such as
the Analytic Hierarchy Process [84].

The popularity of using pairwise comparisons when information has to
be obtained from users comes from the fact that people often find it easier
to compare two objects than to assign some absolute value to related objects.
This way, the reliability of the information obtained from the user is increased.
Because of this, we prefer to use pairwise relative example decisions.

96 Multi-criteria optimization

5.8 Algorithms for capturing user preferences

During an exhaustive literature study, we selected two classes of algorithms
that can be used for capturing user preferences based on some example de-
cisions expressed by means of pairwise comparisons. Both algorithms meet
the requirements we defined in the previous section. We describe the main
advantages and disadvantages of both algorithms.

The actual performance, in particular the reliability when predicting de-
cisions from the end user, is measured by means of a subjective test we per-
formed. This test and its results are described in the next chapter.

5.8.1 Systems of inequalities

General description

This algorithm is related to the weighing methods for solving multi-criteria
problems. In such methods, the overall utility (or cost) of a particular solution
is determined as a weighted sum of its criteria. The weights are supposed to
be provided by the end user.

The basic assumption of our proposed algorithm is that we can describe the
personalized quality of a video sequence as a weighted sum of the individual
quality aspects of the sequence. These quality aspects, such as frame rate,
resolution and Peak Signal-to-Noise Ratio (PSNR), only depend on the video
sequence, and are not user-dependent. The weights depend on the preferences
of the end user, and it is the task of the agent to learn them from the example
decisions. To summarize, we can describe the quality of a version S of a
sequence according to a user u as follows:

Qu(S) =
∑
f∈F

wu
f Sf ; (5.1)

with F a set of measurable quality aspects (properties as in Def. 4.7: F ⊂
P) derived from the sequence features, wu

f the (strictly positive) value of the
weight for feature f according to user u, and Sf the value of feature f for
sequence S. Note that we consider the sequence features F to be optimization
criteria (quality features), rather than cost functions. In case a sequence feature
f should be minimized (e.g., power consumption), a derived feature f ′ that has
to be maximized will have to be used, e.g., by inverting the original feature.

With this approach, we have translated the multi-criteria content negoti-
ation problem, as defined in Def. 5.4, back to a content negotiation problem
with a single optimization criterion, as defined in Def. 4.11. More precisely,
we can rewrite Def. 5.4 as follows.

5.8. Algorithms for capturing user preferences 97

Definition 5.5. A content negotiation problem that takes into account the pref-
erences of a user u by means of a weighted sum, can be defined as follows:
Given:

• a bitstream b ∈ B,

• a set of features F ⊂ P,

• a set of user-dependent weights wu
f for each of the features f ∈ F ,

• a set of constraints Cts.

Find an adapted bitstream b′ ∈ B, subject to:

• #b = #b′, and

• (∀i ∈ {0, 1, . . . ,#b− 1})(b′i = arg max
v∈〈bi〉Cts

∑
f∈F wu

f vf).

In this definition, we presume that the weights are known at the time of
solving the content negotiation problem. It is the task of the agent to construct
a model of the preferences of the end user; this model is actually the set of
weights wu

f .
The algorithm that we propose learns these weights from a set of example

decisions by means of a system of inequalities. In the remainder of this and in
the following chapter, the algorithm for modelling user preferences by means
of systems of inequalities is abbreviated as the SoI algorithm.

Constructing a model

The information that the agent uses for learning user preferences is a set of
pairwise example decisions obtained from the user. Suppose that user u states
that sequence A is better than sequence B when training his agent2. We can
translate this statement into the following inequality: Qu(A) > Qu(B). Ac-
cording to Eq. 5.1, this is equivalent to:∑

f∈F

wu
f (Af −Bf) > 0. (5.2)

Thus, each example decision that is obtained from the user when training
the agent results in such a linear inequality. The entire training set therefore

2From now on, for reasons of simplicity, we treat the sequences that are used for training
the agent as consisting of only one parcel.

98 Multi-criteria optimization

generates a system of linear inequalities. Note that this type of inequality is
equivalent to the following inequality:

∑
f∈F

w′u
f (Af −Bf) > 0; w′u

f =
wu

f

c
, c > 0. (5.3)

In other words, we are allowed to rescale the weights with some constant value,
as long as it is positive. In particular, if we select one of the weights as this
value (c = wu

i), we can remove one unknown value from the system of in-
equalities. This corresponds with stating that w′u

i = 1.
In general, a system of inequalities does not produce a single solution but

rather a region of feasible solutions. To solve this problem, we decided to
choose the coordinates of the centroid of this region as the ideal solution of the
region. Note that, as the inequalities are all linear, when the region is bounded,
it will be convex, and therefore it is guaranteed that the centroid will be part of
the solution region.

In case of three features, there are two unknown feature weights to be de-
termined, and therefore we can represent this process graphically, as is shown
in Fig. 5.4. In this figure, the dashed lines represent the inequalities derived
from the example decisions of the user: sequence A1 is better than B1, and A2

is better than B2. Implicitly, there are lower bounds for all weights, as they
are supposed to be strictly positive. In this situation, it is relatively easy to
calculate the centroid of the solution region.

When more features are taken into consideration, it might be more difficult
to calculate the centroid. In such a situation, it may be more appropriate to
search for any solution that is part of the solution region, e.g. by means of the
Fourier-Motzkin algorithm [91].

A problem occurs when the system of inequalities that is produced from
the example decisions is inconsistent. In such a case, no solution can be found
that fulfills all the inequalities in the system, and we have to remove one or
more inequalities in order to make the system consistent. An example can be
found in Fig. 5.5, where one example decision indicated a low importance for
weight wf1 , and the other decision indicated a high importance for the same
weight.

When the system is consistent, the solution region can also be unbounded,
and in that case it is not possible to determine a centroid. We can overcome
this problem by adding upper bounds to the possible values of the different
weights as shown in Fig. 5.6. If there were no upper bounds in this situation,
it would not be possible to determine a centroid.

5.8. Algorithms for capturing user preferences 99

wf1

Q(A1) > Q(B1)

wf2

Q(A2) > Q(B2)

Figure 5.4: Graphical representation of the process of determining the weights using
a system of inequalities.

Updating a model

In case the user rejects a certain decision taken by the agent, the agent has
to update its model of the user preferences accordingly. This can be done by
adding an inequality as in Eq. 5.3 to the entire system of inequalities, where
version A is the sequence selected by the user and B the version selected by
the agent.

In case the resulting system of inequalities becomes inconsistent, one or
more inequalities have to be removed. For selecting which inequalities should
be removed, the following rules can be applied.

• The newly added inequality should not be removed.

• The number of inequalities that are removed should be as low as possi-
ble.

• In case several options are possible for removing inequalities, it is pre-
ferred to remove the oldest inequalities.

When removing older inequalities, a model will be easily capable of adapt-
ing itself to changing user expectations. On the other hand, older statements
have proven to be reliable, and therefore it might make more sense not to re-
move them so easily. Ideally, we would be able to define a metric expressing
the amount of (in)consistency of one statement with respect to a number of

100 Multi-criteria optimization

wf1

Q(A1) > Q(B1)

wf2

Q(A2) > Q(B2)

Figure 5.5: Inconsistent decisions in the SoI algorithm.

other statements, and use this metric for removing the most inconsistent state-
ment, rather than using age as a decision criterium for removal.

Advantages

The major advantage of the SoI algorithm is that once the weights for the
preferences of a particular user are determined, it is easy to determine the
expected quality of the different available versions and select that version that
has the highest score.

A first advantage that follows from this is that this algorithm is very inter-
esting from a computational point of view: only a small number of multipli-
cations, additions and comparisons are needed to find an optimal version from
the set of candidate versions.

More specifically, calculating the score of one sequence corresponds to
the calculation of Eq. (5.1), and has a complexity of θ(k), when k is the num-
ber of features considered in the model. When we want to select one version
from a set of n candidate best versions, the overall complexity for calculat-
ing the quality values is θ(nk). In addition, for determining the best version,
we need to perform n − 1 comparisons, which results in an overall complex-
ity of θ(nk) + θ(n) = θ(nk). As we can consider k as a (small) constant
value (in our test we describe in the next chapter, three features were used),
we can safely say that this selection process is linear in terms of the amount of
candidate solutions.

5.8. Algorithms for capturing user preferences 101

wf1

Q(A1) > Q(B1)

wf2

Q(A2) > Q(B2)

wf1 < a

wf2 < b

Figure 5.6: An unbounded solution region in the SoI algorithm.

Another advantage that is a consequence of the simplicity of the algorithm
is that we can express the content negotiation problem as defined in Def. 5.5
by means of the Universal Constraint Descriptor (UCD) that is standardized
within MPEG-21 Digital Item Adaptation. Because we can translate multiple
optimization criteria into a single optimization function, any MPEG-21 com-
pliant Adaptation Decision Taking Engine will produce the same result.

A final interesting property of using this algorithm is that it is not necessary
that the set of candidate solutions only contains Pareto optimal solutions. It
is straightforward to prove that the version that is considered to be the best
version according to this algorithm, will always belong to the Pareto frontier.

Theorem 5.1. Suppose we have a content negotiation problem that takes into
account the preferences of a user u by means of a weighted sum, with con-
straints Cts ⊂ C and features F ⊂ P. Then, the optimal version p′ of a parcel
p ∈ P is always a Pareto optimal version:

p′ ∈ PFF (〈p〉Cts). (5.4)

Proof. From Def. 5.5, we know that

p′ = arg max
v∈〈p〉Cts

∑
f∈F

wu
f vf . (5.5)

Suppose that there exists a feasible version q that dominates p′ in the Pareto
sense:

(∃q ∈ 〈p〉Cts)(q �F p′). (5.6)

102 Multi-criteria optimization

Then, according to Def. 5.2:

(∀f ∈ F)(qf ≥ p′f) ∧ (∃f ∈ F)(qf > p′f). (5.7)

Therefore, as all weights are defined as strictly positive:∑
f∈F

wu
f qf >

∑
f∈F

wu
f p′f , (5.8)

which is in conflict with our initial assumption:
∑

f∈F wu
f p′f is supposed to be

the maximum possible value. As a consequence, we can conclude that

(@q ∈ 〈p〉Cts)(q �F p′), (5.9)

and therefore, according to Def. 5.3,

p′ ∈ PFF (〈p〉Cts). (5.10)

Disadvantages

As we have already mentioned, one of the disadvantages of the way of cal-
culating the weights in the SoI algorithm is that it is not guaranteed that we
will find a solution based on a set of example decisions. Therefore, it may be
possible that one or more example decisions have to be removed when training
the agent, in case the resulting system is inconsistent.

When no upper bounds on the values are used, it is also possible that no
solution can be found because the system yields an unbounded region. In that
case, additional training information may be needed, which can be annoying
for the user. If we do use upper bounds for avoiding such problems, the choice
of the values for the upper bounds will have a serious impact on the solution
that will be generated. This can be seen in Fig. 5.4: when the upper bounds
for wf1 or wf2 are modified, the centroid of the solution region will change as
well. As a consequence, the upper bounds have to be selected very carefully,
e.g. based on the results of an experiment in which several test persons are
involved.

Another important disadvantage of this algorithm is that it relies on a linear
behavior of the quality measures F in terms of the actual value or utility as
experienced by the user. More specifically, a change δ in terms of feature
f ∈ F should cause a change in the subjective quality of approximately k · δ,
with k some constant value. Unfortunately, this is not always the case. As
an example, suppose that we use the frame rate as a quality measure. The

5.8. Algorithms for capturing user preferences 103

difference in frame rate between 30 fps and 15 fps is 15 fps, but in terms of
subjective quality it is much less significant than the difference between 15 fps
and 7.5 fps. Similarly, but less extreme, this is also the case for PSNR values:
the difference between 46 and 48 dB will probably be less noticeable than the
difference between 32 and 34 dB.

5.8.2 1ARC

General description

The second algorithm that we present for capturing user preferences related to
visual quality, is called 1ARC [92], which is a nearest-neighbor approach. In
this approach, each object (in our case a video sequence) is represented by its
coordinates, based on the features of the object (this can be the same set F that
we used in the previous algorithm). When a user states that version A is better
than version B, an arrow will be drawn from B to A (denoted B → A), as can
be seen in Fig. 5.7. This happens for every pair of sequences that is used for
training the model.

When we want to use such a model for predicting whether version X is
better than version Y , we draw an arrow Y → X , and detect which arrow
belonging to the model best resembles the new arrow, based on the distances
between the beginning and the end of the arrows. The same is done for an
arrow X → Y . Ultimately, the arrow that seems to be the most reliable is
selected as the predicted decision.

In Fig. 5.7, arrow B2 → A2 best resembles Y → X , and B1 → A1

best resembles X → Y . The former seems to be the most reliable among
both options, so we conclude that Y → X is more likely, and therefore X is
considered to be better than Y .

Both during the search for the best resembling version, as well as when
determining the most reliable arrow, a distance measure is needed. Of course,
the accuracy of this distance measure has a significant impact on the reliability
of the algorithm, as we will demonstrate in the next chapter.

For a better understanding, the algorithm we just explained is written down
in pseudo code in Algorithm 5.2. In this algorithmic description, sX denotes
the similarity of B → A with the most resembling Y → X (lower values
indicate a higher similarity), and sY the most resembling X → Y , in which
smaller values denote a higher resemblance. If sX is smaller than sY , the most
likely situation would be Y → X , and X would be selected as the best version.

104 Multi-criteria optimization

fr
a

m
e

 r
a

te

PSNR

X

Y

A0

B0

B1

B2

A2

A1

d(B1 ,X)

d(A1 ,Y)

d(A2 ,X)

d(B2 ,Y)

Figure 5.7: Explanation of the 1ARC algorithm.

Constructing a model

The construction of a model is straightforward in the 1ARC algorithm when
a number of example pairwise preferences is available. The model itself is
nothing more than a set of arrows, as in Fig. 5.7, that correspond with the
example preferences given by the user.

Updating a model

Updating a model when the user recalls a decision taken by the agent can also
be rather straightforward. In the first place, the arrow that lead to the wrong
decision taken by the agent, is removed from the model. Second, a new arrow
is added, having its tail at the version that was wrongly selected by the agent
and its head at the version selected by the end user.

Advantages

The most important advantage of this algorithm is the simplicity for generating
and updating a model, as well as for representing it.

A second interesting property of the 1ARC algorithm is that it is less sen-
sitive to the nonlinear behavior of the properties of the different versions that
are taken into account. It is the distance measure that is used, rather than the
features themselves, that has a serious influence on the reliability of the algo-
rithm.

5.8. Algorithms for capturing user preferences 105

Algorithm 5.2 An algorithmic description of comparing solutions X and Y
using the 1ARC algorithm. In this description, d(., .) is a metric describing the
distance or resemblance between the characteristics of two video sequences.

function FINDBEST(X,Y,model) //X and Y are versions to be compared,
the model is a set of comparisons of the form Bi → Ai

2: sX := ∞
sY := ∞

4: for all B → A in model do
if d(A,X) + d(B,Y) < sX then

6: sX := d(A,X) + d(B,Y)
end if

8: if d(B,X) + d(A,Y) < sY then
sY := d(B,X) + d(A,Y)

10: end if
end for

12: if sX ≤ sY then
return X

14: else
return Y

16: end if
end function

Disadvantages

The main disadvantage of this approach lies in the complexity of the evaluation
of the model. Whereas the construction of a model is easy and cheap in terms
of computational cost, predicting a decision by comparing two sequences is
more costly. Unfortunately, the first activity will not occur frequently, whereas
the second activity will.

It would be interesting to determine the computational complexity of se-
lecting the best version from a set of candidate versions, and compare this
with the complexity we calculated for the SoI algorithm. If we suppose that
we use a Euclidian or Manhattan distance as the distance metric d(A,B), this
calculation has a complexity of θ(k), with k the number of features taken into
account. The for-loop of the algorithm described in Algorithm 5.2, will be exe-
cuted t times, with t the number of comparisons that are part of the training set.
Therefore, the process of comparing two candidate versions has a complexity
of θ(tk). When we want to find the best version from a set of n versions, the
total complexity is θ(ntk).

When comparing the complexity of selecting one best version from a set

106 Multi-criteria optimization

Algorithm 5.3 Description of the algorithm for determining an optimal version
using the 1ARC algorithm. The algorithm is constructed in such a way that it
is certain that a Pareto optimal solution will be found.

function 1ARC(V,model) //V is the set of candidate versions
2: o := V[0] //Currently optimal version

V := V - V[0]
4: for all v in V do

if not dominates(o,v) then
6: if dominates(v,o) then

o := v
8: else

o := FindBest(o,v,model)
10: end if

end if
12: end for

return o
14: end function

of versions, we see that the complexity of the 1ARC algorithm is a factor t
larger: it increases linearly with the size of the training set. Note that this
factor does not occur in the case of using a weighted sum, because the size
of the training set only influences the complexity of determining the weights,
and this is a process that will not occur frequently. As a consequence, from a
computational point of view, using systems of inequalities is more interesting
than using the 1ARC algorithm.

In the calculation of the computational complexity, we did not take into
account another disadvantage of the 1ARC algorithm: in theory, it may be
possible that we end up with a solution that is not Pareto optimal. This can
be avoided in two ways: either we do a pre-filtering on the set of candidate
versions using Algorithm 5.1, or we check for domination when comparing
two versions before we apply the nearest neighbor algorithm. This approach
is shown in Algorithm 5.3.

When we apply one of these techniques for ensuring that a Pareto optimal
solution will be found, we need to recalculate the computational complexity.
According to Sect. 5.3.1, the lower bound for the pre-filtering process is Ω(nk)
and the upper bound is O(n2k). In the best case, only one Pareto optimal
solution is present; in that case no additional calculations are needed, so the
total complexity stays at Ω(nk). In the worst case, all n solutions are in the
Pareto frontier. In that case, the total complexity is O(n2k) + O(ntk) =

5.8. Algorithms for capturing user preferences 107

Z

X
Y

Figure 5.8: Influence of the order of evaluation in the 1ARC algorithm.

O(nk(t + n)).
In the method described in Algorithm 5.3, the lower bound occurs when

the first solution dominates all others. In that case, the dominates function,
with complexity θ(k) is executed exactly n times, and no other calculations
are needed. As a consequence, the lower bound is Ω(nk). In the worst case,
no solution dominates another one. In this case, in each loop, the dominates
function is executed twice and the FindBest function once, so the total com-
plexity for the body of the loop is 2O(k) + O(tk) = O(tk). As this loop is
executed n times, the total upper bound is O(ntk).

As a consequence, Algorithm 5.3 is the most interesting way of using the
1ARC algorithm. It is more efficient than pre-filtering the Pareto frontier,
and it is not even worse than an algorithm that does not take into account the
domination of the candidate solutions.

A final, but important disadvantage of the 1ARC algorithm is that it is pos-
sible that in certain situations the outcome of the algorithm depends on the
order in which the candidate versions are evaluated. This is shown in Fig. 5.8.
The information that belongs to the training set is represented by means of ar-
rows, as in Fig. 5.7. Suppose that we want to determine which of the candidate
solutions X, Y and Z is the best. According to the 1ARC algorithm, any of the
three candidate versions can be considered the best version, depending on the
order of evaluation: if we follow the alphabetic order, Z is the best version, but
if we first compare X and Z, and then Y, Y is considered to be the best version.

We developed an approach that is aimed at suppressing this problem. It
starts from a set of Pareto optimal candidate solutions. Within this set, all
candidate solutions are compared, using a modified version of Algorithm 5.2:

108 Multi-criteria optimization

instead of returning a boolean value, the difference between sY and sX is
returned. We call this value the likeliness that version X is better than version
Y ; when it is positive X is considered to be better than Y :

l(X, Y) = sY − sX . (5.11)

The total likeliness that a version vi is the best version of the set of Pareto
optimal solutions PF , is defined as follows:

L(vi) =
∑

vj∈PF

l(vi, vj). (5.12)

Note that l(X, Y) = −l(Y, X) and that l(X, X) = 0. The version vi that
maximizes L(vi) is selected as the best version.

A disadvantage of the proposed approach is that the complexity of calcu-
lating an optimal solution is increased even more: it is no longer sufficient to
do n − 1 comparisons in the set of candidate solutions. As l(Y, X) can be
calculated from l(X, Y), and l(X, X) doesn’t need to be calculated, n.(n−1)

2
comparisons have to be made to determine all L(vi) values. As a consequence,
the complexity of selecting an optimal version is θ(n2tk) instead of θ(ntk).

Moreover, the proposed method expects a set of Pareto optimal solutions.
This means that, in the worst case, the total complexity isO(n2k)+O(n2tk) =
O(n2tk). Therefore, in situations where a large number of Pareto optimal
solutions can occur, this method might not be useful.

5.9 Related work

In the previous sections, we proposed to use software agents that model the
preferences of the end user for solving the problem of making trade-offs be-
tween multiple quality aspects of a video sequence. We were the first to pro-
pose such a user-centric solution, but other approaches can be found in the
literature as well.

In video transcoding [49], it was recognized before that an intelligent com-
bination of different types of quality reduction could achieve a better overall
quality or utility. In this context, the broader term utility, originating from the
domain of economics, is often used instead of quality; it expresses the overall
user’s satisfaction.

Several implementations of making a trade-off between reducing the frame
rate and allowing distortions exist. In [93], a dynamic frame rate control algo-
rithm is proposed, that uses motion information in order to reduce the frame
rate without introducing too much jerkiness. A similar approach, where end

5.10. Conclusions and original contributions 109

users are allowed to express their preferences by means of a jerkiness thresh-
old, is presented in [94].

In [79], Reed and Lim propose a mechanism for automatically making
trade-offs between the temporal and spatial resolution and the distortion. They
define an integer programming formulation and present an algorithm for com-
puting an optimal solution when the bit rate is controlled by jointly adapting
the frame rate, the resolution and the distortion.

Since a few years, fully scalable video coding is becoming more and more
mature. This stimulated research on formalizing and solving the decision tak-
ing problem in making trade-offs between multiple quality aspects.

In [72], Mukherjee et al. present an architecture based on MPEG-21 Dig-
ital Item Adaptation for realizing the adaptation and the delivery of a scalable
video sequence in a format-agnostic way. They also incorporate a decision-
taking mechanism in this architecture, but they do not try to solve the problem
of making trade-offs between quality aspects. In [47], they further formalize
this decision-taking process.

The formalization proposed by Chang and Vetro [71] has some similarities
with the formulation of Mukherjee et al. Both describe a content negotiation
problem as a constrained optimization problem.

A possible solution based on this formulation can be found in [95]. The
major difference between the approach of Wang et al. and our user-centric ap-
proach, is that they try to learn the optimal adaptation by means of a subjective
quality evaluation and by assuming that sequences with similar characteristics
are likely to have a similar optimal adaptation. In other words, whereas we
look at the preferences of individual users, they look at the characteristics of
the sequence that is to be adapted.

In [96], Önür and Alatan describe the optimal adaptation selection as
a multi-criteria adaptation process. They consider the overall utility of an
adapted version of a video sequence as a weighted sum of several indepen-
dent utility functions. As it is easier to obtain an accurate modelling of these
independent utility functions, by means of exhaustive subjective tests, the over-
all utility value will be more reliable as well. Similar to what is described in
this paper, they also produce a set of Pareto optimal candidate solutions. They
consider the solution that utilizes the available resources to the fullest extent
the one that is expected to be the best from the Pareto set.

5.10 Conclusions and original contributions

In this chapter, we demonstrated that it is better to define a content negotiation
process as a multi-criteria optimization problem instead of a constrained opti-

110 Multi-criteria optimization

mization problem with one criterion, as it better reflects the reality. We were
the first to define such a problem in this way [3], but this approach is already
adopted by others [47, 72], and is even reflected in the MPEG-21 Digital Item
Adaptation specification.

For a better understanding of the consequences of using a multi-criteria ap-
proach, we introduced the most important concepts of the Pareto theory, which
is a mathematical approach for handling multi-criteria optimization problems.
We also modified the formal definition of a content negotiation problem with
one criterion, as defined in the previous chapter, to a content negotiation prob-
lem with multiple optimization criteria.

Because solving a multi-criteria optimization problem is more complex
than an optimization problem involving one criterion, we looked at the con-
sequences of following this approach regarding the computational complexity.
We did this from a theoretical point of view, by means of complexity analysis,
as well as by means of time measurements on some practical use cases.

As a multi-criteria optimization problem can produce multiple possible so-
lutions that cannot be compared without further information, we gave a brief
overview of existing frameworks for assisting a user in making a good deci-
sion. Unfortunately, due to the nature of the problem we want to handle, these
approaches could not be used.

Instead, we looked at the fundamental concepts behind interface agents
that act on behalf of an end user. From these concepts, we derived a number of
requirements for possible algorithms that can be used by an agent that selects
appropriate solutions in a content negotiation scenario.

We presented two different algorithms that are capable of constructing a
model of the preferences of an end user from a set of example decisions.
Once constructed, such a model can be used for predicting other decisions
that should be taken by the user.

The first algorithm, referred to as the System of Inequalities (SoI) algo-
rithm, is based on the assumption that the overall quality of a video sequence
can be determined by means of a weighted sum of the features of the sequence.
These weights are user-dependent and represent the preferences of the user.
From a set of example decisions, a system of linear inequalities can be de-
rived, in which the weights are the unknown values.

The second algorithm that we proposed is the 1ARC algorithm, which is a
kind of nearest-neighbor approach. We were the first to apply this algorithm
to the domain of video quality. In the 1ARC algorithm, each example decision
is represented by means of an arrow, using the features of each instance as
a vector of coordinates. When a decision has to be predicted, the arrow that
best resembles the arrow that is to be predicted, is selected as the most reliable

5.10. Conclusions and original contributions 111

prediction.
In the next chapter, we will describe how we set up a test for measuring the

prediction accuracy of both algorithms. We will describe the results, and the
influence of particular configuration parameters and minor modifications on
the algorithms on their performance. This way, we can draw some additional
conclusions on the algorithms that we presented in this chapter.

Our research in the domain of multi-criteria optimization, applied to video
communication, resulted in the following publications.

1. Sam Lerouge, Peter Lambert, and Rik Van de Walle. Multi-criteria op-
timization for scalable bitstreams. In Visual Content Processing and
Representation, 8th International Workshop VLBV 2003, volume 2849
of Lecture Notes in Computer Science, September 2003.

2. Sam Lerouge, Robbie De Sutter, and Rik Van de Walle. Personalizing
quality aspects in scalable video coding. In Proceedings of the IEEE
International Conference on Multimedia and Expo (ICME) 2005, July
2005.

112 Performance of capturing user preferences

Chapter 6

Performance of capturing
user preferences

6.1 Introduction

In the previous chapter, we presented two different algorithms that are capable
of constructing a model of the preferences of a user regarding the aspects of
visual quality, from a set of example decisions taken by the user by means of
pairwise comparisons. We discussed some of the general properties, advan-
tages and disadvantages of both methods.

The actual prediction performance, the reliability of both algorithms, was
not discussed in the previous chapter. This performance can only be measured
in a meaningful way by means of a subjective test. In such a test, a number
of test persons is asked to observe a number of video sequences and assign a
value to these sequences, either directly or indirectly. The results from this test
are compared with the results obtained from objective data, i.e. data based on
algorithms instead of user input.

In this chapter, we describe how we have set up this test. We use the
results of the test for measuring the prediction performance of both pro-
posed algorithms. We study the influence of particular parameters and minor
modifications of the algorithms on the overall result, and we compare the best
versions of both algorithms to see if one of them outperforms the other one.

Before describing the test setup and the results, we give an overview of
the terminology that is used in this chapter, in order to avoid any confusion on
terms such as algorithm, model, method, etc.

114 Performance of capturing user preferences

6.2 Terminology

In this and in the previous chapter, an algorithm is composed of two proce-
dures. The first procedure is capable of constructing a model of the preferences
of a user based on some example decisions. The second procedure is aimed
at selecting one optimal version from a set of candidate versions, taking into
account the information that can be found in the model.

In this thesis, two algorithms are considered. The weight-based algorithm
uses a system of inequalities for constructing the model, and is called the SoI
algorithm. The second algorithm is an existing nearest-neighbor approach for
modelling user preferences, and is called the 1ARC algorithm.

A model is the output of the first step of an algorithm. It is a structural
representation of the preferences of one particular end user, that can be used
for predicting decisions on behalf of that user.

The SoI algorithm produces a model that consists of a set of user-
dependent weights, one for each quality feature that is considered in the al-
gorithm. In the 1ARC algorithm, a model is a set of arrows representing the
example decisions given by the user. The coordinates of the head and tail of
each arrow are determined by the features of the sequences involved.

A quality feature is a property, in the sense of the properties defined in
Def. 4.7 of Chapter 4. It is a function that assigns a particular value to a parcel,
or in our case a version of an entire video sequence1. The term quality feature
points to the nature of the property: it says something about a particular quality
aspect of a video sequence, in the sense that it is proportional to the utility it
offers towards an end user. A good example of a quality feature is the frame
rate: the higher the frame rate, the more the sequence will be appreciated by
an end user, if all other quality aspects remain constant.

A method is a way of analyzing the prediction performance (the reliabil-
ity) of an algorithm. In this chapter, we use two such methods. In the test set
method, the correct prediction of pairwise decisions is measured. In the best
in group method, or the BiG method, the correct prediction of the best version
from a set of candidate versions is evaluated. Both methods are described more
in detail in Sect. 6.4.

A sequence is one video sequence that is observed by a participant of the
subjective test. In the domain of psychophysics, the broader term stimulus is
used. In the test, multiple sequences produced from the same original are used.
All sequences that were created from the same original (uncompressed) video
sequence, are part of the same sequence group.

1In our test, we treated each video sequence as consisting of one parcel.

6.3. Test setup 115

Table 6.1: Overview of the 6 sequences used in the subjective test, together with the
target bit rate used for the reduced versions.

sequence description bit rate
(kbps)

coastguard Two boats crossing each other across the shore;
continuous camera panning

300

stefan Tennis player; camera is following the player,
high motion from camera and subject, complex
textures

400

akiyo News anchor; no camera movement, slow move-
ment from subject

128

foreman Man presenting a construction yard; moderate
movement from both the subject and the camera

300

mother Mother and daughter sitting in front of a camera;
no camera movement

200

silent Woman talking in sign language; no camera
movement but significant movement from the
subject

200

6.3 Test setup

As we already described in Chapter 5, we were convinced that when asking
the user some example decisions for training an agent, pairwise comparisons
would offer the most reliable information. We used this assumption in the
algorithms described in Sect. 5.8. As a consequence, it makes most sense to
apply this principle of pairwise comparisons in the setup of the subjective test.

6.3.1 Sequences

We used six different original sequences in this test. A brief description of the
content of the sequences can be found in Table 6.1. In order to have a bet-
ter understanding of the content of the sequences, for each sequence, a frame
is shown in Appendix B. All sequences were encoded using a fully scalable
video codec based on the MC-EZBC algorithm that we already mentioned in
Sect. 4.3.3. We preferred to use a fully scalable video codec because it is this
kind of video compression we have in mind for modelling user preferences.
For each sequence, a target bit rate was determined in such a way that the dis-
tortion would certainly be visible for the version having the highest resolution

116 Performance of capturing user preferences

Table 6.2: Distortion of all versions that are used, expressed by means of PSNR values
(expressed in dB).

CIF QCIF
sequence 30 Hz 15 Hz 7.5 Hz 30 Hz 15 Hz 7.5 Hz
coastguard 29.34 30.45 31.98 33.62 35.21 38.36
stefan 25.28 27.51 30.33 29.31 32.68 37.63
akiyo 36.05 36.82 37.52 40.07 40.99 41.89
foreman 32.34 33.55 35.09 36.93 39.01 41.86
mother 38.20 39.09 40.22 41.61 42.83 44.53
silent 31.48 32.42 33.25 35.07 36.51 38.21

and the highest frame rate. Otherwise, if the distortion would not be visible,
we expected that it would not be possible to capture the trade-offs a user is
making between the distortion and other quality aspects. The bit rate used for
each sequence group is also represented in Table 6.1.

The original sequences have a CIF resolution (352 by 288 pixels), a frame
rate of 30 frames per second, and are 300 frames (10 seconds) long. From
each original sequence, we generated six different versions, at two different
resolutions (CIF and QCIF) and three frame rates (30, 15 and 7.5 frames per
second). As said, each version was encoded using the same bit rate. The
resulting distortion can be found in Table 6.2, expressed by means of PSNR
values. For each original frame that is shown in Appendix B, we show the
corresponding distorted frame of the version at 30 frames per second and the
original resolution in the same Appendix.

For calculating the PSNR values shown in Table 6.2, a reference sequence
is needed, having the same frame rate and resolution, and containing no dis-
tortion. These reference sequences are obtained by generating a version at the
same frame rate and resolution but with an unlimited bit rate; this procedure
generates a version in which no distortion is visible. As a consequence, the
values in Table 6.2 are good representatives of the distortion of all versions.

6.3.2 Presentation

If we would have wanted to present each participant all possible pairs within
one sequence group, for each group

(
6
2

)
= 6!

4!2! = 15 comparisons would have
to be shown. Not only would this limit the amount of sequence groups that we
could show, we also learned from a preliminary test that so many repetitions of
the same content had a negative impact on the concentration of the participants.

As a consequence, a different approach was needed, in which not all pos-

6.3. Test setup 117

Figure 6.1: Screenshot of the subjective test.

sible pairs would be presented. We decided that during the test, we would
only work with those versions that are considered to be the best among those
that were already shown, according to the participant. This is possible because
only one participant is interacting with the computer that is used for the test.

In addition, we wanted to avoid that a particular pair of sequences is always
presented in the beginning or at the end of a session, because the concentration
of the participants may be lower than in the middle of the session. Such guide-
lines can be found in the recommendations defined by the ITU for setting up
subjective tests concerning video quality [97]. As a consequence, the selec-
tion of a particular sequence group is determined randomly during the session.
Similarly, we wanted the position (left or right of the screen) to be determined
randomly as well.

A screenshot of the test is shown in Fig. 6.1. After filling in a form with
some personal information (such as the age, sex, education, etc.), the user is
presented two sequences belonging to the same sequence group, one on the
left side of the screen, another one on the right side of the screen. When the
sequences are finished, the user has to select one of both versions as the best

118 Performance of capturing user preferences

one, or he can enter a neutral decision by declaring that he finds it impossible
to choose one version. He can also ask for replaying both sequences. This kind
of decision has to be taken 30 times.

The test was always performed on the same device, a laptop, in order to
avoid any influence caused by the quality or the resolution of the screen that
was used. Because the test was not always taken on the same location, we
could not guarantee constant lighting conditions. The screen of the laptop that
was used has a resolution of 1024x768 pixels, with a refresh rate of 60 Hz, and
a 15 inch display size.

Algorithm 6.1 Selection process for determining the sequences that will be
shown to the test subject.

S0 := [s0, s1, . . . , s5]
...

S5 := [s30, s31, . . . , s35]
S := [S0, . . . , S5]
T:= [0, 0, . . . , 0]
for i := 0 to 5 do

t := random(S[i]) //Randomly select one sequence from the group
S[i] := S[i] - t //Remove the sequence from its group
T[i] := t //Mark the sequence as the best from its group

end for
for i := 1 to 30 do

j := random(0..size(S)-1) //Randomly select a sequence group
top := T[j]
new := random(S[j]) //Randomly select a sequence from the group
S[i] := S[i] - new //Remove the sequence from its group
if S[i] = ∅ then

S := S - S[i] //Remove the sequence group
T := T - T[i]

end if
if random(0..1) = 1 then

present(top, new) //Randomly select presentation position
else

present(new, top)
end if
if best(new) then

T[j] := new //Replace the best version of the current group
end if

end for

6.3. Test setup 119

The procedure for selecting which sequence pair is presented to the partic-
ipant is as follows. Initially, for each sequence group, one randomly selected
sequence is defined to be the best version. When a new decision has to be
obtained from the user, the first thing that occurs is the random selection of
one of the remaining sequence groups. From this group, a version that was
not shown yet is selected. If only one version is available, the sequence group
can be removed for future decisions. The selected version is then presented to
the user, together with the best version of the sequence group at that moment.
The location (left or right) is also determined randomly. If the user states that
the new version is better, it becomes the best version in that group. The whole
procedure of selecting and presenting pairs of video sequences, as we have just
described, is written down in pseudo code in Algorithm 6.1.

6.3.3 A note on the presentation of different resolutions

Some people might argue that the spatial resolution of a video sequence should
not be treated as a configurable quality aspect. Instead, the largest resolution
that still fits the display resolution of the target device should be selected. We
do not agree that this solution is correct in all scenarios. For example, consider
a scenario in which a display with a high resolution is used (such as a laptop or
a tablet PC), but with a limited network connection (such as a GPRS connec-
tion). If in such a situation a version would be selected that corresponds with
the screen resolution, the distortion would probably be unacceptably high. As
a consequence, we think that the spatial resolution is indeed an aspect that
should be considered when selecting an optimal adaptation configuration.

As can be seen from Fig. 6.1, we chose to present the low resolution ver-
sions in their actual resolution, rather than to present an upsampled version of
the sequence at the same resolution as the high resolution versions.

Both approaches have their advantages and disadvantages. When present-
ing upsampled versions, several algorithms can be used for the upsampling
process [98], and there is a risk that the selected upsampling algorithm can
have an influence on the result of the test. As a consequence, we might be test-
ing the performance of the upsampling algorithm, rather than the subjective
preference of a user towards high resolution or low resolution versions.

On the other hand, the approach that we used has some disadvantages as
well. In particular, the low resolution versions always appear sharper and less
distorted, not only because more bits are available per pixel, but also because
distortions are less visible as their sizes are smaller.

When the approach presented in this thesis would be implemented in a
commercial product (say, a multimedia player), both approaches are possible,

120 Performance of capturing user preferences

0

2

4

6

8

10

12

<=24 25-34 35-44 45-54 >=55
age

pa
rt

ic
ip

an
ts

Figure 6.2: Age histogram of the 30 participants.

but it is recommended that the way the training sequences are presented to the
user is the same as the way video sequences will be shown during actual usage.
That is, when the player always presents its sequences in their actual resolu-
tion, the training sequences should also be presented in their actual resolution.
In contrast, when the player always rescales video sequences, the training se-
quences should also be upsampled in the same way before they are presented
to the user.

6.3.4 Participants

The results that we describe in this chapter are obtained from 30 participants,
of which 19 men and 11 women. They had different educational backgrounds,
and there was a large distribution in terms of the frequency of watching televi-
sion or visiting a movie theater. From the 30 participants, 2 can be considered
visual experts, i.e. they are familiar with the aspects of digital image and video
coding from their professional background. Because their results did not differ
much from the other participants, we decided not to exclude them from the test.
The distribution of the age of the participants can be found in Fig. 6.2, where
an age histogram is shown.

6.4 Evaluation methods

6.4.1 Basic definitions

Before explaining the two methods we use for evaluating the reliability of the
algorithms presented in the previous chapter, we introduce some definitions

6.4. Evaluation methods 121

that will help formalizing the description of these methods.

Definition 6.1. The set of all sequences is denoted S. This set of sequences
can be split up into sequence groups, where each sequence of the same group
is generated from the same original sequence. We denote a sequence group as
follows: Si.

It is clear that Si ⊂ S. Furthermore, there are no sequences that are
not part of a sequence group: S =

⋃
Si. Moreover, all sequence groups are

disjunct: (∀i 6= j)(Si ∩ Sj = ∅).

In this test, we used six sequence groups, S0, . . . , S5, each consisting of
six different sequences: #Si = 6.

Definition 6.2. When user u states that sequence a is better than sequence b,
we write a �u b. When he states that he could not decide if he prefers a or b,
we write a ≈u b, which is equivalent to b ≈u a.

Note that, as can be seen in Algorithm 6.1, a, b ∈ Si: when two versions
are compared, they are always part of the same sequence group.

In addition, it is useful to define a more general version of the �u opera-
tor, that makes indirect comparisons stated by the same user. This operator is
defined in the following definition.

Definition 6.3. A sequence a is preferred to a sequence b by user u, if one out
of four conditions is satisfied:

a >u b ⇔


a �u b ∨
(∃c)(a �u c ∧ c >u b) ∨
(∃c)(a >u c ∧ c ≈u b) ∨
(∃c)(a ≈u c ∧ c >u b)

The information that we obtain from a user that participated in our test, is a
set of pairwise decisions of both types defined in Def. 6.2. Mostly, we are only
interested in those decisions where the user stated a preference, not a neutral
decision2. Therefore, we separated the following sets of decisions.

Definition 6.4. The set of all statements for which user u stated that he pre-
ferred one sequence over another is called the preference set, and is denoted
Pu, with Pu = {ai �u bi}.

2During a small test that was set up as a preparation of the test described in this chapter, we
noticed that it was not correct to consider these neutral decisions as statements expressing that
the quality of both sequences was approximately equal, because this would create too much
inconsistent behavior.

122 Performance of capturing user preferences

Definition 6.5. The set of all statements for which user u stated that he could
not choose between two sequences is called the indifference set, and is denoted
Iu, with Iu = {ai ≈u bi}.

Definition 6.6. The set of all statements entered by user u is called the decision
set, and is denoted Du, with Du = Pu ∪ Iu.

A model of the preferences of a participant is always constructed from a
subset of the preference set, and will be used for predicting decisions taken on
behalf of that user.

Definition 6.7. A model of user u, based on the training set t, where t ⊂ Pu,
using algorithm alg, is denoted Malg

t .
A model can be used as a relational operator, as it is capable of comparing

two sequences. We write aMalg
t b when the model considers a to be better than

b.

When using the 1ARC algorithm, all training sets produce valid models.
In the SoI algorithm, training sets can be inconsistent or unbounded; in that
case no model can be produced. This situation is denoted as follows.

Definition 6.8. When a training set t fails to produce a model, the model is said
to be inconsistent. This is denoted as follows: Malg

t = ⊥. This is equivalent
with saying that nothing can be predicted from the model: Malg

t = ⊥ ⇔
(@x, y)(xMalg

t y).

Before concluding this section containing the basic definitions that are
used in the following sections, we need to introduce the notation that we use
for denoting the average of a series of values.

Definition 6.9. The average of a series of function values F (v), where v can
be any element of a set V , is denoted by means of F (v)|v:V . This value can be
determined as follows:

F (v)|v:V =
∑

v∈V F (v)
#V

.

6.4.2 Amount of inconsistent training sets

For the SoI algorithm, where models can be inconsistent, it is useful to know
the probability of ending up with an inconsistent model. Therefore, we define
the amount of inconsistent models as follows.

6.4. Evaluation methods 123

Definition 6.10. The rate of inconsistent models of size n for user u, using al-
gorithm alg, is denoted Ialg(u, n), and is determined as follows: Ialg(u, n) =

I(Malg
t)|t:T , where T contains all training sets of size n for user u: T = {t ⊂

Pu|#t = n}, and

I(Malg
t) =

{
1 when Malg

t = ⊥,
0 otherwise

.

The rate of inconsistent models of an algorithm alg for a specific size of
a training set n, for a set of users U , is denoted Ialg

U (n), and is defined as
follows: Ialg

U (n) = Ialg(u, n)|u:U .

In a similar way, we can define the amount of training sets that do produce
a model. In that case, we talk of a consistent model.

Definition 6.11. The rate of consistent models of size n for user u, using al-
gorithm alg, is denoted Calg(u, n), and is determined as follows: Calg(u, n) =
1− Ialg(u, n).

The rate of consistent models of an algorithm alg for a specific size of
a training set n, for a set of users U , is denoted Calg

U (n), and is defined as
follows: Calg

U (n) = Calg(u, n)|u:U .

6.4.3 Test set method

In the test set method, the basic idea is that the preference set of a particular
user is split up into a training set and a test set. The training set is used for
constructing a model, and this model is used for predicting all decisions in
the preference set that are not part of the training set. This is written down
formally in the following definition.

Definition 6.12. The reliability of a training set t ⊂ Pu for user u, using
algorithm alg, is denoted T alg(t), and is determined as follows:

T alg(t) =
{
⊥ when Malg

t = ⊥,
c
m otherwise

,

with c = #{x �u y ∈ {Pu \ t}|xMalg
t y}, the number of correctly predicted

statements in the test set Pu \ t, and m = #{Pu \ t}, the size of the test set.

Mostly, we are interested in the average reliability of a particular algorithm
for a fixed training set size, for one user or for all participants of our test.

Definition 6.13. The reliability of all training sets of size n for user u,
using algorithm alg, is denoted T alg(u, n), and is determined as follows:
T alg(u, n) = T alg(t)|t:T , with T the set of all valid training sets of size n
for user u: T = {t ⊂ Pu|#t = n ∧ ¬(T alg(t) = ⊥)}.

124 Performance of capturing user preferences

The reliability of an algorithm alg for a specific size of a training set n,
for a set of users U , is denoted T alg

U (n), and is defined as follows: T alg
U (n) =

T alg(u, n)|u:U .

The major advantages of the test set method are that the results are easier
to understand (for example, an accuracy of about 50% is what we would ob-
tain when taking random decisions), and that the information that is used for
evaluation is independent of the training set.

6.4.4 Best in Group method

In the Best in Group method, sometimes abbreviated to BiG method, we ob-
serve in how many cases a prediction algorithm is capable of predicting a cor-
rect best version within a sequence group. Before explaining the method itself,
we need to explain what we mean when we talk about the best sequence in a
sequence group.

Definition 6.14. The set of best versions of a sequence group Si according to
user u is denoted Ŝiu, and is determined as follows: Ŝiu = {s ∈ Si|(@s′ ∈
Si)(s′ >u s)}.

When looking at Algorithm 6.1, we can conclude that the top sequence T[i]
at the end of the test will always be part of the set of best versions from that
group, together with all versions for which the user considered it impossible to
declare if they where better or worse than the ultimate best version: T[i] ≈u s,
s being another version belonging to the same sequence group.

In a similar way, a prediction algorithm has to select one best version from
a sequence group Si using a model of user u. If that version is part of the
set of best versions Ŝiu, the algorithm made a correct prediction. Note that,
as explained in Sect. 5.8.2, in the case of the 1ARC algorithm, the order of
evaluation can have an influence on the ultimate decision.

Definition 6.15. The best version of a sequence group Si according to model
Malg

t is denoted B(Si,Malg
t).

In the BiG method, the reliability of a training set t ⊂ Pu for user u, using
algorithm alg, is denoted Balg(t), and is determined as follows:

Balg(t) =

{
⊥ when Malg

t = ⊥,
c
g otherwise

,

with c = #{0 ≤ i ≤ g − 1|B(Si,Malg
t) ∈ Ŝiu}, the number of correctly

predicted best versions, and g the total number of sequence groups.

6.5. General analysis 125

Again, we are mostly interested in the average reliability of a particular
algorithm for a fixed training set size, for one user or for all participants of our
test.

Definition 6.16. Using the BiG method, the reliability of all training sets of
size n for user u, using algorithm alg, is denoted Balg(u, n), and is determined
as follows: Balg(u, n) = Balg(t)|t:T , with T the set of all valid training sets of
size n for user u: T = {t ⊂ Pu|#t = n ∧ ¬(T alg(t) = ⊥)}.

The reliability of an algorithm alg for a specific size of a training set n,
for a set of users U , is denoted Balg

U (n), and is defined as follows: Balg
U (n) =

Balg(u, n)|u:U .

The most important advantage of the BiG method is that in practice, only
the correct selection of the best version is important. In the test set method, an
incorrect ordering of two bad versions will be taken into account, even though
such an error is not so problematic, because none of both versions will be
selected as the best version in a content negotiation scenario. The BiG method
does not take these mistakes into account, as it better matches with the context
of the content negotiation process.

A disadvantage is that the evaluation information (the Ŝiu sets) is not in-
dependent of the training set: all statements belonging to the preference set,
including those that are part of the training set, are needed for determining the
best versions. Furthermore, the interpretation of the resulting numbers is not as
obvious as in the case of the test set method. In the next section, we introduce
some reference points to overcome this problem.

6.5 General analysis

In this section, we want to observe the behavior of the participants of the test
as a whole. We treat them as a homogeneous group, to see what sorts of
conclusions we can draw.

For each sequence s, we counted the amount of users that selected that
version as the best version for its sequence group: #{u ∈ U |s ∈ Ŝiu}. For
each sequence group, we can plot this information in a chart. This is what
is shown in Fig. 6.3 for the mother sequence group. Note that because par-
ticipants may have selected multiple versions of a sequence group as the best
versions (#(Ŝiu) ≥ 1), the sum of the percentages may exceed 100%. We can
clearly see that there is no agreement regarding the preference of the different
participants. Even the most popular version can only satisfy 50% of the par-
ticipants; the other participants considered at least one of the other versions to
be better.

126 Performance of capturing user preferences

30 Hz, CIF, 38.2 dB

15 Hz, CIF, 39.1 dB

7.5 Hz, CIF, 40.2 dB

30 Hz, QCIF, 41.6 dB

15 Hz, QCIF, 42.8 dB

7.5 Hz, QCIF, 44.5 dB

0.0%

10.0%

20.0%

30.0%

40.0%

50.0%

60.0%
A

m
ou

nt
 o

f v
ot

es

Figure 6.3: Percentage of users that selected a particular version of the mother se-
quence as the best.

In Table 6.3, we show for all sequences which version was mostly preferred
by the participants, and how frequently they were ranked as (one of) the best
version(s) of that sequence group.

From this information, we can deduce a number of reference points that
can be used in the best in group method. A first reference point is the theoret-
ically optimal reliability that can be obtained when using no personalization.
This corresponds with a scenario where a content provider uses a test panel that
has to select the best version for each sequence and for each bit rate the content
provider wants to offer. It is the optimal result that any algorithm can achieve

Table 6.3: Maximum result possible when selecting the best version of a sequence
without doing personalization.

sequence maximum properties
coastguard 53.3 % 15 Hz, CIF
stefan 56.7 % 30 Hz, QCIF
akiyo 66.7 % 15 Hz, QCIF
foreman 60.0 % 30 Hz, QCIF
mother 50.0 % 30 Hz, QCIF
silent 50.0 % 30 Hz, QCIF

6.5. General analysis 127

that is targeted at selecting an optimal version from a set of candidate versions,
but that does not take any user-specific information into account. Examples of
such algorithms can be found in [95] and [96], amongst others.

This first reference point is calculated by taking the average of the maxi-
mum reliability for each sequence, as is shown in Table 6.3, which is in this
case 56.1%. Formally, this value is determined as follows. First, this is how
the maximum reliability for a particular sequence group is calculated:

RP1(Si) = max
s∈Si

#{u ∈ U |s ∈ Ŝiu}
#U

. (6.1)

From this, the average value is determined:

RP1 = RP1(Si)|i:{0,...,g−1}, (6.2)

g being the amount of sequence groups that are considered.
If one of the prediction algorithms is capable of crossing this border when

using the BiG method, we can say that we achieved true personalization when
using that algorithm, because its performance is better than the optimal perfor-
mance any algorithm can achieve when using no user-specific information.

The scenario of a content provider using a test panel, as associated with the
first reference point, is probably not very realistic: it would be very costly to
use a test panel for every sequence and for every bit rate that would be offered.
In a more practical situation, a test panel would only be contacted once, and
for every range of bit rates, the optimal overall frame rate and resolution would
be determined. The performance of using this approach will be used further
on as a second reference point (RP2).

Table 6.4 summarizes for each possible configuration (i.e., frame rate and
resolution) the average amount of users that were satisfied. From this table,
we can conclude that the highest amount of users that can entirely be satisfied
when selecting a fixed frame rate and resolution (RP2) is 48.3%, when we
would always offer a version at QCIF resolution and a frame rate of 30 frames
per second, in the bandwidth range of 100 to 400 kbps.

A final interesting reference point (RP3) is what we would obtain when
selecting a random version of the sequence group as the best possible version.
If we would do that, we would obtain an average reliability of 28.7%. This
number should be interpreted in the same way as the 50% border in the test set
method: if we go below this number, we would have done better by randomly
selecting a version as the best.

128 Performance of capturing user preferences

Table 6.4: Maximum reliability possible when choosing a constant frame rate and
resolution for selecting the best version.

frame rate resolution reliability
30 Hz CIF 20.6 %
15 Hz CIF 22.2 %
7.5 Hz CIF 15.0 %
30 Hz QCIF 48.3 %
15 Hz QCIF 42.8 %
7.5 Hz QCIF 23.3 %

6.6 Different versions for the SoI algorithm

6.6.1 Initial settings

In the initial version of evaluating the performance of the algorithm described
in Sect. 5.8.1, referred to as SoIinit, we used the frame rate level, the reso-
lution level, and the PSNR value of the sequence as the different quality mea-
sures:

FSoIinit = {psnr, frlevel, reslevel}. (6.3)

More precisely, Sfrlevel is 2 if sequence S contains 30 frames per second, 1 if
it has 15 fps, and 0 for 7.5 fps. Similarly, Sreslevel is 1 for CIF sequences and
0 for QCIF sequences. Furthermore, wpsnr = 1, and wfrlevel and wreslevel are
user-dependent, and need to be determined while solving the system of linear
inequalities. To summarize:

Sfrlevel =


2 , when Sfr = 30
1 , when Sfr = 15
0 , when Sfr = 7.5

, (6.4)

Sreslevel =
{

1 , when Sres = CIF
0 , when Sres = QCIF

. (6.5)

When using the SoI model, a problem that can occur is that the system is
inconsistent. In Fig. 6.4, the dashed line shows CSoIinit

U (n), with 2 ≤ n ≤ 6,
the average amount of training sets that produce a solution, for the settings just
presented. As expected, this number first increases because the probability
of ending up with an unbounded region decreases when more inequalities are
present. When we keep increasing the size of the training set, the probability of
obtaining an inconsistent system is also increased. This phenomenon already
causes a global decrease of the amount of systems that produce a solution with

6.6. Different versions for the SoI algorithm 129

0.0%

5.0%

10.0%

15.0%

20.0%

25.0%

30.0%

35.0%

40.0%

45.0%

2 3 4 5 6
Size of training set

Initial version

Influence of
temporal quality

Figure 6.4: Amount of training sets that produce a consistent system with a bounded
solution region.

50.0%

52.0%

54.0%

56.0%

58.0%

60.0%

62.0%

64.0%

2 3 4 5 6
Size of training set

Initial version

Influence of
temporal quality

RP2

RP1

30.0%

35.0%

40.0%

45.0%

50.0%

55.0%

60.0%

2 3 4 5 6
Size of training set

Initial version

Influence of
temporal quality

(a) (b)

Figure 6.5: Performance of two versions of the SoI algorithm, using (a) the test set
method and (b) the best in group method.

a training set of size 4. Note that even in the optimal case, only 36.7% of the
training sets produce a preference model.

The reliability of the training sets that did produce a solution, T SoIinit
U (n)

and BSoIinit
U (n) can be found in Fig. 6.5. The performance of the initial version

is again represented by means of a dashed line. In the test set method, we
see that the reliability slowly increases when the training set is increased. The
optimal result is with a training set of size 5, with a 60.1% reliability, which is a
disappointingly poor result. A similar conclusion can be drawn from the results
of the BiG method. Here, we see that the initial version of the SoI algorithm
cannot satisfy more users than what would be achieved when we would always
offer a version at QCIF resolution at 30 frames per second (denoted by means
of the gray line marked RP2).

130 Performance of capturing user preferences

6.6.2 Influence of temporal quality

In the initial version, the difference between 30 and 15 frames per second was
considered equally important as the difference between 15 and 7.5 frames per
second. This however does not correspond well with the subjective quality
observed by most people: the difference between 15 and 7.5 fps is very sig-
nificant, whereas the difference between 30 and 15 fps is sometimes hardly
observable.

In this section, we discuss the influence of the accuracy of the individual
quality aspects used by both methods. More precisely, we try to predict the
temporal quality in a more accurate way. In particular, in the SoItemp algo-
rithm, we considered the difference between 15 and 7.5 fps three times more
significant than the difference between 30 and 15 fps, based on our intuition.
Therefore, we modified the definition of Sfr in as follows: if sequence S con-
tains 30 frames per second it has value 4, for a sequence of 15 fps, Sfr is given
the value 3, and 0 in case of 7.5 fps.

More formally, the quality features that are now considered are the follow-
ing:

FSoItemp = {psnr, frqual, reslevel},

in which frqual is defined as follows:

Sfrqual =


4 , when Sfr = 30
3 , when Sfr = 15
0 , when Sfr = 7.5

.

In Fig. 6.5, we can compare the improvement obtained when using a better
estimation of the temporal quality for the SoI model. In the test set method,
a gain of 1.2% up to 2.1% is observed between T SoIinit

U (n) and T SoItemp
U (n).

In the best in group method, the improvement when going from BSoIinit
U (n)

to BSoItemp
U (n) is more significant: from 2.6% up to 4.7%. This way, the SoI

model approaches the reference point of using fixed adaptation parameters.
Unfortunately, we failed to cross this border.

The probability of finding a consistent training set increases as well when
using a more reliable way of estimating the temporal quality. For a training
set of size 5, the amount of consistent training sets increased from 30.9% to
34.2%. The differences for other sizes are smaller, as can be seen in Fig. 6.4.

6.6.3 Influence of handling upper bounds

When analyzing the performance of the two versions of the model described in
Sect. 6.6.1 and 6.6.2, we noticed that some users had unexpectedly bad results:

6.6. Different versions for the SoI algorithm 131

0.0%

10.0%

20.0%

30.0%

40.0%

50.0%

60.0%

70.0%

80.0%

90.0%

100.0%

2 3 4 5 6
Size of training set

Initial version

Influence of temporal
quality
Influence of handling
upper bounds

Figure 6.6: Amount of training sets that produce a consistent system with a bounded
solution region.

not even half of the decisions in the test set were correctly predicted, which
means that a random guess would be more reliable than using a model of the
user’s preferences. When investigating the numbers more closely, we noticed
that these users had a high number of training sets that yielded an unbounded
solution region, and therefore no weights could be deduced.

Ending up with a system producing an unbounded region of solutions
means something totally different than having an inconsistent system. In the
case of an unbounded region, it means that at least one of the unknown weights
(in our case, wreslevel and wfrqual) should be much larger than the weight that
was assigned a value of 1 (in our case, wpsnr), as the corresponding quality as-
pect is considered more important for that user. Instead of ignoring this case,
we should be capable of incorporating this information in our model.

The easiest way to do this, is to add upper bounds to the values of the un-
known weights. We determined these upper bounds empirically: for a subset
of all participants, we tried several possibilities for these upper bounds. From
these experiments, we found that wfrqual ∈ [0, 8] and wreslevel ∈ [0, 8] would
be a good choice. These settings are incorporated in the SoIbounds algo-
rithm.

The most remarkable improvement when using upper bounds can be ex-
pected from the amount of training sets that produce a solution. This is repre-
sented in Fig. 6.6, where all three versions of the SoI algorithm are presented.
As expected, when the size of the training set is small, most training sets are
capable of producing a model of the user’s preferences.

In Fig. 6.7, we see that this addition of upper bounds has a positive effect
on the performance of the algorithm. The gain observed in the test set method
(T SoItemp

U (n) and T SoIbounds
U (n)) ranges between 2.4% and 2.7%. In the BiG

method, the gain BSoIbounds
U (n) − BSoItemp

U (n) is even more remarkable: it

132 Performance of capturing user preferences

50.0%

52.0%

54.0%

56.0%

58.0%

60.0%

62.0%

64.0%

66.0%

2 3 4 5 6
Size of training set

Influence of temporal
quality
Influence of handling
upper bounds

RP2

RP1

30.0%

35.0%

40.0%

45.0%

50.0%

55.0%

60.0%

2 3 4 5 6
Size of training set

Influence of temporal
quality
Influence of handling
upper bounds

(a) (b)

Figure 6.7: Performance of the two best versions of the SoI algorithm, using (a) the
test set method and (b) the best in group method.

fluctuates around 4%. Because of this, the RP2 performance is now easily
achieved. Still, the reliability of the SoI algorithm remains below the RP1

value, which is the theoretically optimal result that can be achieved when no
user preferences are taken into account.

6.7 Different versions for the 1ARC algorithm

6.7.1 Initial settings

In the 1ARC algorithm, as described in Sect. 5.8.2, the way the distance
between two alternatives is measured, can significantly influence the perfor-
mance of the algorithm. In the initial version, that we call 1ARCinit, we used
the Euclidian distance between the coordinates of the points, and those coordi-
nates are given by (psnr, frlevel, reslevel). The meaning of these parameters is
exactly the same as in Sect. 6.6.1. More formally, the distance d1ARCinit(X, Y)
between two sequences X and Y , as it occurs in Algorithm 5.2, is defined as
follows:

d1ARCinit(X, Y) =
√

∆2
psnr + ∆2

frlevel + ∆2
reslevel, (6.6)

in which
∆f = Xf − Yf . (6.7)

In the 1ARC algorithm, there is no problem of training sets that do not
produce any model, so we do not have to discuss this when looking at its
performance. In Fig. 6.8, we show the reliability of this version, T 1ARCinit

U (n)
and B1ARCinit

U (n), by means of the dashed line. We see that for all training sets,

6.7. Different versions for the 1ARC algorithm 133

50.0%

52.0%

54.0%

56.0%

58.0%

60.0%

62.0%

64.0%

66.0%

68.0%

70.0%

2 3 4 5 6 7 8
Size of training set

Initial version

Influence of
temporal quality

RP2

RP1

30.0%

35.0%

40.0%

45.0%

50.0%

55.0%

60.0%

2 3 4 5 6 7 8
Size of training set

Initial version

Influence of
temporal quality

(a) (b)

Figure 6.8: Performance of two versions of the 1ARC algorithm, using (a) the test set
method and (b) the best in group method.

the performance is at least 60%, and increases when the size of the training set
increases. We also see that this initial version approaches the optimal reference
point for a training set of size 8, but that it is not capable of crossing this border.

6.7.2 Influence of temporal quality

In Sect. 6.6.2, we observed a better performance when a more accurate de-
scription of the temporal quality is used. It is useful to observe the influence of
using the frqual measure, as defined in Sect. 6.6.2, in the 1ARCinit algorithm.
We use the name 1ARCtemp for this improved version.

This is not the only modification in the improved version of the 1ARC
algorithm. In the definition of a useful distance measure, it is important that
the different quality aspects use a common scale. In this case, we chose to
rescale the values that where used onto a 1 to 5 scale, which is a commonly
used range for expressing Mean Opinion Scores (MOS) in subjective quality
measurement, 1 expressing an unacceptably bad quality, and 5 expressing an
excellent quality.

This way, the coordinates of this version were given by
(MOSpsnr,MOSfr,MOSres). As a consequence, the distance between
two sequences is calculated as follows:

d1ARCtemp(X, Y) =
√

∆2
MOSpsnr + ∆2

MOSfr + ∆2
MOSres, (6.8)

In this definition, MOSpsnr was defined as follows:

SMOSpsnr = 4 · Spsnr −minpsnr
maxpsnr−minpsnr

+ 1, (6.9)

134 Performance of capturing user preferences

in which Spsnr has the same value as in the previous version, and minpsnr and
maxpsnr are the lowest and highest PSNR value, respectively, that occur in
all the sequences used in the test (see Table 6.2). The values of MOSfr were
obtained by using the same values as in the improved version of the SoI model,
incremented by 1:

SMOSfr = Sfrqual + 1. (6.10)

SMOSres had a value of 5 for a CIF sequence, and 3 for a QCIF sequence:

Sreslevel =
{

5 , when Sres = CIF
3 , when Sres = QCIF

. (6.11)

In Fig. 6.8, we can compare the performance of the 1ARCtemp version of
the 1ARC algorithm with its initial version 1ARCinit. We observe that there
is a significant improvement: for the test set method, there is an improvement
between 2.3% and 3.0%. The highest reliability is achieved with a training set
of size 8: we achieve an accuracy of 67.9%. In the BiG method, the largest
improvement is at the lower training set sizes: for a training set of size 2, the re-
sults of the initial version were B1ARCinit

U (2) = 42.4%, whereas the improved
version scores B1ARCtemp

U (2) = 47.4%. This difference decreases when the
training set size increases, but for a training set of size 8, the improved version
still outperforms the initial version by 2.4%.

6.7.3 Influence of the selection mechanism

In Sect. 5.8.2, we showed that the order of evaluating the different candidate
optimal versions can have an influence on which version is selected as the
best version. We proposed a modification to the algorithm, by determining
the likeliness that a version X is better than another version Y , and using this
information to determine which version is most likely to be the best from the
set of candidate optimal versions.

We implemented this modification in another version of our evaluation
algorithms, 1ARCselect, to see if the performance of the algorithm would
improve, according to the BiG method. Note that the results of the test set
method do not change (T 1ARCinit

U (n) = T 1ARCselect
U (n), for any n), as there

is no modification on the way two versions are compared, but only on the way
one version is selected from a larger set of candidate versions.

As there is no difference in comparing sequences two by two, the perfor-
mance of the test set method does not change. Therefore, in Fig. 6.9, we only
compare the performance of the 1ARCtemp version with the 1ARCselect
version regarding the BiG method. We observe that for all training set sizes,

6.8. Comparison between both algorithms 135

RP2

RP1

30.0%

35.0%

40.0%

45.0%

50.0%

55.0%

60.0%

65.0%

2 3 4 5 6 7 8
Size of training set

Influence of temporal
quality
Influence of the
selection mechanism

Figure 6.9: Performance of two versions of the 1ARC algorithm, using the best in
group method.

there is an improvement, and this improvement becomes larger for larger train-
ing sets: with a training set of size 2, there is only 0.3% improvement. For a
training set of size 8, the gain increased up to 3.0%. It is interesting to note that
the improved version already crosses the RP1 value when the training set has
size 6. It is important to remember that there is an additional cost in using this
more reliable algorithm: this version is quadratic rather than linear in terms of
the number of candidate solutions, and both algorithms are linear in terms of
the size of the training set.

6.8 Comparison between both algorithms

In Fig. 6.10, we have plotted the best performing version of each of both al-
gorithms, SoIbounds and 1ARCselect, in order to compare them. Note that
for the SoI algorithm, we only calculated the results up to a training set size
of 6, because at that point, the chance of finding a training set that produces a
preference model drops below 50%.

In Fig. 6.10 (a), one of the most important observations is that the values
of T SoIbounds

U (n) increase much slower than those of T 1ARCselect
U (n) when n

is increased. In fact, it even decreases when changing the training set size from
5 to 6: T SoIbounds

U (5) > T SoIbounds
U (6). The 1ARC algorithm does not show

such a behavior: its reliability keeps increasing for larger training set sizes.
As a consequence, the difference between the performance of both algorithms
increases as well: from 1.3% up to 3.2%.

When looking at Fig. 6.10 (b), we note a similar behavior. Even though
the results of the SoI algorithm increase more rapidly than when looking at the
test set method, the difference with the 1ARC algorithm becomes bigger for

136 Performance of capturing user preferences

50.0%

52.0%

54.0%

56.0%

58.0%

60.0%

62.0%

64.0%

66.0%

68.0%

70.0%

2 3 4 5 6 7 8
Size of training set

SoI algorithm

1ARC algorithm

RP2

RP1

30.0%

35.0%

40.0%

45.0%

50.0%

55.0%

60.0%

65.0%

2 3 4 5 6 7 8
Size of training set

SoI algorithm

1ARC algorithm

(a) (b)

Figure 6.10: Comparison of the performance of the SoI and the 1ARC algorithm,
using (a) the test set method and (b) the best in group method.

the larger training sets: from 3.4% up to 5.6% in this case.
Before claiming that the 1ARC algorithm outperforms the SoI algorithm,

we should be certain that the difference is not caused by coincidence, but by a
systematic trend. This can be checked by means of the paired t-test.

In such a test, a so-called t-value is calculated and compared with a critical
t-value. The calculated t-value is obtained by taking the ratio of the mean of
the differences in the scores and the standard error of the differences in the
scores. More formally:

t =
d

σd

, (6.12)

d being the average of the differences between two series, and σd its standard
error.

In our case:

d = T 1ARCselect(u, n)− T SoIbounds(u, n)|u:U (6.13)

for the test set method and

d = B1ARCselect(u, n)− BSoIbounds(u, n)|u:U (6.14)

for the BiG method, in which n is a fixed training set size, and 1ARCselect
and SoIbounds are the best versions of the 1ARC algorithm and SoI algorithm
presented in this Sect. 6.7.3 and Sect. 6.6.3, respectively.

The actual calculated t-values for the test set method and the BiG method
can be found in Table 6.5 and 6.6. In both tables, the first column shows the

6.8. Comparison between both algorithms 137

Table 6.5: Calculated t-values for the test set method, when comparing the best ver-
sion of the SoI and the 1ARC algorithm.

k d σd t

2 1.3% 1.3% 1.01
3 1.6% 1.3% 1.30
4 2.0% 1.3% 1.51
5 2.5% 1.4% 1.81
6 3.2% 1.5% 2.22

Table 6.6: Calculated t-values for the BiG method, when comparing the best version
of the SoI and the 1ARC algorithm.

k d σd t

2 3.4% 2.2% 1.57
3 4.1% 2.1% 1.97
4 4.6% 2.0% 2.32
5 5.0% 1.9% 2.66
6 5.6% 1.9% 2.98

size of the training set, the second column the average difference, the third
column the standard error of this difference, and the fourth column shows the
actual calculated t-value.

When we want a 95% confidence, and we are using the results of 30 test
subjects, the critical t-value is 1.70 in the case of a one-tailed test, where we
want to know if we can safely say that the average of the differences is positive.

When looking at Table 6.5 and 6.6, we see that this value is not exceeded
for the smaller training set sizes. As a consequence, we cannot conclude from
the experiments we conducted that the 1ARC algorithm outperforms the SoI
algorithm for small training set sizes. For training set sizes of at least 5, we are
confident that the 1ARC algorithm is more reliable than the SoI algorithm. It
may well be possible that this confidence would be increased if the results of
more participants would be added.

When considering the BiG method, the difference between the 1ARC
algorithm and the SoI algorithm increases. The critical t-value for a 95%
confidence is reached as soon as the training set size is at least 3. For training
set sizes of 4 or more, the critical t-value of 2.15, corresponding with a 98%
confidence, is even reached.

138 Performance of capturing user preferences

6.9 The impact of noise

The results of the algorithms for predicting user preferences, as presented in
this chapter, are rather good, but still far from perfect. When machine learning
techniques are applied for predicting preferences in any domain, a high relia-
bility, mostly above 90%, is expected. In the results we presented, the average
reliability does not even reach 70%.

There are three reasons for this limited performance. A first reason comes
from the requirements of the algorithms used, as introduced in Sect. 5.7: the
training sets are very small, building a model should not take too much time,
and taking decisions has to be possible in real time. Therefore, complex ma-
chine learning approaches such as neural networks cannot be applied in this
scenario. As our models are not so complex, we can expect that they will be
less accurate.

A second reason is already mentioned: both algorithms start from the as-
sumption that the overall quality of a sequence can be expressed by means
of a number of independent quality aspects, that can be described very accu-
rately. Unfortunately, the accuracy of the metrics we used is far from perfect,
as we already discussed when talking about the temporal quality. The same
goes for PSNR: it is known that PSNR does not correlate very well with the
characteristics of the Human Visual System (HVS).

Recent evolutions in the understanding of the Human Visual System re-
sulted in new visual quality metrics that are far more accurate in describing
the visual quality of a sequence as experienced by humans. A recent report
of the Video Quality Experts Group (VQEG) discusses six different quality
metrics that all outperform PSNR significantly when looking at the correla-
tion between the quality estimated by the quality metrics and the judgements
entered by a test panel [99]. In [100], Wang et al. present a new distortion
measure called the Structural Similarity (SSIM) index, for which they proved
it outperforms PSNR in terms of accuracy in predicting the visual quality of
both still images and video data.

The third cause of the limited performance is probably the one having the
most significant impact: the problem of noise. When we talk about noisy
statements, we mean statements in the preference set of an end user, for which
that particular user would normally take the opposite decision. This is mostly
caused by a lack of concentration at some point during the test. It is nearly
inevitable that this will occur rather frequently.

A single noisy statement in the test of a participant already causes a dra-
matic decrease in the performance of our model. Suppose the size of the pref-

6.10. Conclusions and original contributions 139

erence set of a user is k, and we are testing a perfect algorithm3, for a training
set of size n. In this case, the total number of possible training sets is

(
n
k

)
.

When one noisy statement exists in the set of k statements, the number of cor-
rupted training sets, i.e. the training sets that contain the noisy statement is
represented by

(
n−1
k−1

)
. This means that the rate of corrupted training sets is(

n−1
k−1

)(
n
k

) =
n

k
.

We suppose that for all these training sets, we fail to predict all the k − n
statements in the test set. The rate of training sets that should produce a perfect
model is 1 − n

k = k−n
k , but for these models, 1 out of k − n statements will

not be predicted correctly. Therefore, the total amount of incorrectly predicted
statements will be

n

k
+

k − n

k
· 1
k − n

=
n + 1

k
.

Suppose that a user has taken 28 discriminating statements, of which one
should be considered noise, and we want to evaluate a perfect algorithm for a
training set of size 6 using the test set method. In such a situation, we would
fail to predict a statement correctly in 25% of the cases. So, even though we
are using a perfect model, we will achieve an accuracy of only 75% when
evaluating the test set method!

6.10 Conclusions and original contributions

The main objective of this chapter was to evaluate the prediction accuracy
of the two algorithms presented in Chapter 5. We proposed these algorithms
as candidates for capturing individual preferences of users regarding visual
quality, and for using them in a multimedia content negotiation agent, that
would retrieve the optimal version of a scalable video sequence, given the
constraints imposed by the environment.

In order to measure the performance in terms of prediction accuracy of
both algorithms, we set up a subjective test, in which the participants are asked
to compare two versions of the same original sequence, and to select one of
them as the best version. In Sect. 6.3, we described all details of the setup of
this test.

3When talking about a perfect algorithm, we mean an algorithm that can predict all state-
ments from any training set, as long as the statements in this training set are consistent (no
noise). As soon as noise is involved, the algorithm fails.

140 Performance of capturing user preferences

We defined two methods for evaluating the performance of both algo-
rithms. In these evaluation methods, all possible training sets are generated
and used for predicting information that is not in the training set. For the Best
in Group method, we defined three reference points to get a better understand-
ing of the actual performance of the algorithms. One of these reference points
corresponds with the maximum performance that can be achieved when no
personalization is used in any way, i.e., the same version is offered to all users.

For the Systems of Inequalities algorithm, none of the different versions
that we implemented crossed all reference points. As a consequence, it may be
possible to implement some other method that has a better prediction accuracy,
even when it does not take user preferences into account. At the same time,
we observed that the way the problem of unbounded regions is handled, has
a significant impact on the overall result. The same goes for the metrics used
for measuring the individual quality aspects: using a metric for the temporal
quality that better reflects the reality, resulted in a better overall performance.

In the 1ARC algorithm, a similar modification had a positive effect as well.
When using a realistic metric for expressing the temporal quality, we noticed
that the reliability of the algorithm improved. In the previous chapter, we men-
tioned the problem of the order of evaluating the different candidate versions,
and we proposed a modification that should be able to overcome this prob-
lem. We proved that this assumption was correct: the modification caused a
significant improvement of the reliability of the algorithm.

When the parameters for the 1ARC algorithms are selected appropriately,
and the training set is sufficiently large, the algorithm is more reliable than any
algorithm that performs the same task but that does not attempt to model the
preferences of the end user. The reliability of the optimal configuration of the
1ARC algorithm seems to be better than the optimal configuration of the SoI
algorithm. We validated this by means of a paired t-test. From that test, we
concluded that we could only state that the 1ARC algorithm outperforms the
SoI algorithm for larger training sets.

Still, the results are less convincing than what we initially hoped to achieve.
Several reasons can be found, explaining different causes for the relatively
low performance. We showed that even a small amount of noisy statements
expressed by a participant could already drastically reduce the overall result
for that particular user.

One cause of these noisy statements might be the fact that users did not
have the opportunity to express how much they preferred one sequence over
another. Such gradations would probably give us more information, that is
likely to be more reliable as well. On the other hand, we would have to rethink
the methods we used for measuring the reliability of the algorithms.

6.10. Conclusions and original contributions 141

Another reason explaining why the algorithms do not achieve a very high
accuracy, is in the simplicity of the underlying models that were used. We
assumed that the individual quality aspects are not user-dependent, and fur-
thermore, are perfectly measurable. This certainly does not reflect reality. For
example, we showed that a small correction of one particular quality metric
can already cause significant changes in the performance of the algorithms.

As a consequence, we can assume that better results are still possible, if we
would use better quality metrics. Recently, metrics for measuring the distortion
of images and video sequences are developed that have a better correlation with
human perception than PSNR, the metric that we used in our experiments. In
the case of temporal quality, it should be possible to develop a similar metric,
that not only considers the frame rate itself, but also the amount of motion
of the video sequence. Unfortunately, no such metric exists to this day as far
as we know. Another solution would be to follow the approach of Önür and
Alatan [96]. They conduct subjective tests for obtaining more accurate values
of the individual quality functions.

Intuitively, we felt that the overall subjective quality or utility as experi-
enced by the end user is not only determined by the user preferences, but also
by the content of the video sequence. As an example, a user may find the
temporal quality more important when watching an action movie than when
watching the news. Such aspects are not incorporated in our model.

In a recent publication by Wang et al. [95], an approach is presented that
tries to solve the same problem as what we did in this and the previous chap-
ter: determining which adaptation should be selected, in such a way that the
overall utility is maximized. Their approach differs from ours in the source of
information that is used: while we try to relate user preferences to the over-
all utility, they try to relate sequence characteristics to the overall utility, also
by means of a learning process. According to the results they describe, their
approach is more satisfying than ours. At the same time, they report a sig-
nificant drop in the performance of their method in the medium bandwidth
range (between 200 and 600 kbps). They say that this “comes from the fact
that at mid bandwidths human subjects do not show consistent preferences to
specific dimensions among different spatio-temporal scales”. This phenom-
enon is exactly what we tried to capture with our algorithms. Note that this
medium bandwidth range broadly corresponds to the bit rates we used for the
sequences in our test.

As a conclusion, it seems that more successful results should be possi-
ble by using a joint approach, in which both user preferences and sequence
characteristics are captured and used for predicting the optimal adaptation op-
eration. This could be possible by using the method proposed by Wang et al.

142 Performance of capturing user preferences

for determining the values of the individual quality aspects, and our method
for distilling the overall quality for a particular end user, taking his preferences
into account.

The results of the subjective test that is described in this chapter, can also
be found in the following publication. A second publication is submitted to a
journal and is currently under review.

1. Sam Lerouge, Robbie De Sutter, and Rik Van de Walle. Personalizing
quality aspects in scalable video coding. In IEEE Proceedings of ICME
2005, Amsterdam, The Netherlands, July 2005.

Chapter 7

Conclusions

The world of multimedia communication is drastically evolving since a few
years. Advanced compression formats for audiovisual information arise, new
types of wired and wireless networks are developed, and a broad range of
different types of devices capable of multimedia communication appear on the
market. The era where multimedia applications available on the Internet were
the exclusive domain of PC users has passed. The next generation multimedia
applications will be characterized by heterogeneity: differences in terms of the
networks, devices and user expectations.

This heterogeneity causes some new challenges: transparent consumption
of multimedia content is needed in order to be able to reach a broad audi-
ence. In Chapter 2, we described two important types of technologies that are
both essential for realizing such transparent Universal Multimedia Access. In
the first place, scalable or layered content representation schemes are needed
in order to make it possible that a multimedia stream can be consumed by de-
vices with different capabilities and transmitted over network connections with
different characteristics. The second technology does not focus on the content
representation itself, but rather on linking information about the content, so-
called metadata, to the content itself. One of the possible uses of metadata is
in the automatic selection and adaptation of multimedia presentations. This is
one of the main goals of the MPEG-21 Multimedia Framework.

Within the MPEG-21 standard, two formats were developed that can be
used for bitstream descriptions. Such descriptions can act as an intermedi-
ate layer between a scalable bitstream and the adaptation process. This way,
format-independent bitstream adaptation engines can be built. Furthermore,
it is straightforward to add metadata information to the bitstream description,
and use this information later on during the adaptation process. Because of the
efforts spent on bitstream descriptions during our research, the entire Chap-

144 Conclusions

ter 3 is devoted to this topic. After a description of the two frameworks for
bitstream descriptions that were standardized by MPEG, we elaborated our
own contributions: a number of bitstream schemas and transformation exam-
ples for different types of multimedia content.

Our ultimate goal was to describe a content negotiation process that uses
scalable bitstreams in a generic way. In order to be able to express such an
application, we felt the need for a better understanding of the data structures,
in particular scalable bitstreams, on which this content negotiation process op-
erates. Therefore, we developed a formal model describing the fundamental
concepts of scalable bitstreams and their relations and dependencies. This for-
mal model can be found in Chapter 4. Apart from the definition of the theoret-
ical model itself, we demonstrated its correctness by applying it to a number of
existing formats for scalable bitstreams. We made a first attempt to formulate
a content negotiation process as a constrained optimization problem, by means
of the notations defined in the abstract model.

In Chapter 5, we explained why the representation of a content negotiation
process as a constrained optimization problem does not sufficiently reflect re-
ality, especially when scalable bitstreams with multiple quality dimensions are
involved. After introducing Pareto’s theory of multi-criteria optimization, we
modified our definition of a content negotiation process into a multi-criteria
optimization problem. We were the first to do so, and currently this approach
is already adopted by others.

One of the most important problems with multi-criteria optimization prob-
lems is that multiple candidate optimal solutions may exist. Additional infor-
mation, e.g. user preferences, is needed if a single optimal solution has to be
selected. In Chapter 5, we explained why existing solutions from the domain
of multi-criteria optimization are not suitable in a content negotiation scenario.
We proposed a scenario in which a so-called content negotiation agent would
give some sample video sequences to the end user, asking him to select which
sequence he liked the most. This information would be used for training the
agent: a model would be built representing the preferences of the end user,
and this model can be used later on for selecting one solution from a set of
candidate optimal solutions.

We proposed two candidate algorithms that can be used for constructing
a model of the user’s preferences and for using this model when selecting an
optimal version. The first one considers the quality of a video sequence as a
weighted sum of a number of independent quality aspects, and derives a system
of linear inequalities from the example decisions. The second algorithm, called
1ARC, is a nearest-neighbor approach, where predictions are made based on
the similarity with example decisions entered by the user. We analyzed the

145

strengths and weaknesses of both algorithms from multiple points of view.
The actual performance, the reliability of both algorithms is discussed in

Chapter 6. We described how we set up a test in which human subjects had to
make a number of pairwise decisions between two versions of the same origi-
nal video sequence. The two algorithms we proposed could then be tested by
selecting a part of these decisions for training a model, and by observing if this
model would be able to predict other decisions entered by the same user. Apart
from comparing both algorithms, we observed the result of modifying several
parameters on both algorithms. Ultimately, we could conclude that the 1ARC
algorithm had an acceptable performance, certainly when the training set was
sufficiently large. The reliability was better than what would be theoretically
achievable by any other algorithm that selects one optimal version from a set
of candidate versions, but does not try to capture the user’s preferences.

Still, the results that we achieved are not as good as what we hoped. One
possible cause may be the fact that we did not take sequence characteristics,
such as the amount of motion, into account. Intuitively, we expect that this
would improve the reliability of our user-centric approach. Our intuition is
confirmed by a recent publication in the literature, where more or less the
same problem is handled, but instead of learning user preferences and use this
information for predicting the overall quality of a sequence, the relation be-
tween sequence characteristics and observed quality is learned and used for
predicting the quality of other sequences.

There are some other interesting research topics that are not discussed in
this thesis, but that would be useful to investigate as an addition to the frame-
work we presented. As a first topic, it would be interesting to explore the
usability of the agent-based approach we proposed: are users prepared to un-
dergo a training session, how long is this training session allowed to be, how
can users reject the agent’s decision and select an alternative solution in an
intuitive way, etc.

A second option for future research would be to explore a more advanced
way of taking advantage of the principles of software agents. As an example,
it would be useful to see if it would be possible to allow agents to communi-
cate with each other, in order to build more sophisticated models. This way,
decisions for which there is a large agreement among most users can be reused
for other users.

Another research topic that has not been covered in this thesis is the way
constraints are determined. We supposed they were available at any time. In
practice, some constraints are not known beforehand, but have to be predicted.
Moreover, one should bare in mind that drastically changing constraints, for
example regarding the bit rate, may result in an instable visual quality, which

146 Conclusions

can be very annoying for an end user. As a consequence, it might be necessary
to modify certain constraints in order to avoid such fluctuations.

In Chapter 1, we cited a fragment of an article from Ramesh Jain on the
concept of Quality of Experience. We repeat it here, because it nicely helps us
summarizing some of the important original contributions that can be found in
this thesis.

To do so, we will have to develop measures that will help us cap-
ture QoE in a given application and use it. We need to make these
measures as applicable to our field as required by our practice,
while capturing the subjective nature of experience.

In this thesis, the given application we focussed on was a multimedia con-
tent negotiation process that takes advantage of scalable bitstreams. By de-
composing the global quality or utility of a video sequence into a number of
independent quality aspects or features, we developed measures that can be
used in the content negotiation process. We managed to develop algorithms
that are capable of capturing the Quality of Experience as observed by a user,
and this was done in such a way that it captures the subjective nature of expe-
rience, by taking into account the preferences of the individual end user.

With this citation, we hope that we have convinced the reader that this
thesis, although limited in its performance and its application area, offers one
of the first significant steps towards the objective of offering true Quality of
Experience in multimedia applications.

Appendix A

Bitstream descriptions for
MPEG-4 FGS

A.1 Introduction

In this appendix, we show the entire BSDL Schema that we used for generating
bitstream descriptions for MPEG-4 FGS video sequences, as well as a detailed
example of a bitstream description generated by means of this Schema. We
also show the Java code that we produced for generating a gBSD description
from BSDL descriptions of the base and enhancement layers of an FGS se-
quence.

A.2 BSDL Schema for MPEG-4 FGS

In what follows, the entire BSDL Schema for MPEG-4 FGS is shown, followed
by one particular bitstream description generated with this schema.

Listing A.1: BSDL Schema for MPEG-4 FGS.

<xsd:schema targetNamespace="MPEG4" xmlns:mp4="MPEG4"
xmlns:bt="urn:mpeg:mpeg21:2003:01-DIA-BasicDatatypes-01"
xmlns:bs0="urn:mpeg:mpeg21:2003:01-DIA-BSDL0-NS"
xmlns:bs1="urn:mpeg:mpeg21:2003:01-DIA-BSDL1-NS"
xmlns:bs2="urn:mpeg:mpeg21:2003:01-DIA-BSDL2-NS"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
elementFormDefault="qualified"
bs2:rootElement="mp4:Bitstream">

<xsd:import
namespace="urn:mpeg:mpeg21:2003:01-DIA-BasicDatatypes-01"
schemaLocation="../BasicTypes.xsd"/>

148 Bitstream descriptions for MPEG-4 FGS

<!-- **** Root element declaration **** -->
<xsd:element name="Bitstream">

<xsd:complexType>
<xsd:sequence>

<xsd:element ref="mp4:VOS" minOccurs="0"/>
<xsd:element ref="mp4:VO" minOccurs="0"/>
<xsd:element ref="mp4:VOL" minOccurs="0"/>

</xsd:sequence>
<xsd:attribute ref="xml:base"/>

</xsd:complexType>
</xsd:element>
<!-- **** VOS declaration **** -->
<xsd:element name="VOS" bs2:ifNext="000001B0">

<xsd:complexType>
<xsd:sequence>

<xsd:element
name="video_object_sequence_start_code"
type="mp4:StartCodeType" fixed="000001B0"/>

<xsd:element name="profile_and_level_indication"
type="bt:b8"/>

<xsd:element name="visual_object_start_code"
type="mp4:StartCodeType" fixed="000001B5"/>

<xsd:element name="visual_object_data"
type="mp4:PayloadType"/>

<xsd:element ref="mp4:VO" minOccurs="0"/>
<xsd:element ref="mp4:VOL" minOccurs="0"/>
<xsd:element

name="video_object_sequence_end_code"
type="mp4:StartCodeType" fixed="000001B1"/>

</xsd:sequence>
</xsd:complexType>

</xsd:element>
<!-- ***** VO declaration **** -->
<xsd:element name="VO" bs2:ifNext="00000100-0000011F">

<xsd:complexType>
<xsd:sequence>

<xsd:element name="video_object_start_code"
type="mp4:StartCodeType"/>

</xsd:sequence>
</xsd:complexType>

</xsd:element>
<!-- **** VOL declaration **** -->
<xsd:element name="VOL" bs2:ifNext="00000120-0000012F">

<xsd:complexType>
<xsd:sequence>

<xsd:element
name="video_object_layer_start_code"
type="mp4:StartCodeType"/>

<xsd:element name="random_accessible_vol"

A.2. BSDL Schema for MPEG-4 FGS 149

type="bt:b1"/>
<xsd:element

name="video_object_type_indication"
type="bt:b8"/>

<xsd:element name="is_object_layer_identifier"
type="bt:b1" minOccurs="0"
bs2:if=

"mp4:video_object_type_indication = 1"/>
<xsd:element name="fgs_layer_type"

type="bt:b2" minOccurs="0"
bs2:if=

"mp4:video_object_type_indication = 18"/>
<xsd:element name="video_object_layer_verid"

type="bt:b4" minOccurs="0"
bs2:if="mp4:is_object_layer_identifier = 1"/>

<xsd:element name="video_object_layer_priority"
type="bt:b3" minOccurs="0"
bs2:if="mp4:is_object_layer_identifier = 1

or mp4:video_object_type_indication = 18"/>
<xsd:element name="aspect_ratio_info"

type="bt:b4"/>
<xsd:element name="par_width"

type="bt:b4" minOccurs="0"
bs2:if="mp4:aspect_ratio_info = 15"/>

<xsd:element name="par_height"
type="bt:b4" minOccurs="0"
bs2:if="mp4:aspect_ratio_info = 15"/>

<xsd:element name="vol_control_parameters"
type="bt:b1" fixed="0"/>

<xsd:element name="video_object_layer_shape"
type="bt:b2" minOccurs="0" fixed="0"
bs2:if="mp4:video_object_type_indication = 1"/>

<xsd:element name="marker_bit"
type="bt:b1" fixed="1"/>

<xsd:element name="vop_time_increment_resolution"
type="bt:b16"/>

<xsd:element name="stuffing"
type="bs0:fillByte"/>

<xsd:element name="VOL_data"
type="mp4:PayloadType" />

<xsd:element ref="FGSVOP" minOccurs="0"
maxOccurs="unbounded"
bs2:if=

"mp4:video_object_type_indication = 18"/>
<xsd:element ref="VOP" minOccurs="0"

maxOccurs="unbounded"
bs2:if="mp4:video_object_type_indication = 1"/>

</xsd:sequence>
</xsd:complexType>

150 Bitstream descriptions for MPEG-4 FGS

</xsd:element>
<!-- **** VOP declaration **** -->
<xsd:element name="VOP" bs2:ifNext="000001B6">

<xsd:complexType>
<xsd:sequence>

<xsd:element name="VOP_code"
type="mp4:StartCodeType" fixed="000001B6"/>

<xsd:element name="vop_coding_type"
type="bt:b2"/>

<xsd:element name="modulo_time_base"
type="bt:b1" fixed="1" minOccurs="0"
maxOccurs="unbounded" bs2:ifNext="80-FF"/>

<xsd:element name="modulo_time_base"
type="bt:b1" fixed="0"/>

<xsd:element name="marker_bit"
type="bt:b1" fixed="1"/>

<xsd:element name="vop_time_increment"
type="mp4:time_incr"/>

<xsd:element name="stuffing"
type="bs0:fillByte"/>

<xsd:element name="VOP_data"
type="mp4:PayloadType" />

</xsd:sequence>
</xsd:complexType>

</xsd:element>
<xsd:element name="FGSVOP" bs2:ifNext="000001B9">

<xsd:complexType>
<xsd:sequence>

<xsd:element name="fgs_vop_start_code"
type="mp4:StartCodeType" fixed="000001B9"/>

<xsd:element name="vop_coding_type"
type="bt:b2"/>

<xsd:element name="modulo_time_base"
type="bt:b1" fixed="1" minOccurs="0"
maxOccurs="unbounded" bs2:ifNext="80-FF"/>

<xsd:element name="modulo_time_base"
type="bt:b1" fixed="0"/>

<xsd:element name="marker_bit"
type="bt:b1" fixed="1"/>

<xsd:element name="vop_time_increment"
type="mp4:time_incr"/>

<xsd:element name="stuffing"
type="bs0:fillByte"/>

<xsd:element name="VOP_data"
type="mp4:PayloadType" />

<xsd:element ref="mp4:BitPlane"
maxOccurs="unbounded"/>

</xsd:sequence>
</xsd:complexType>

A.2. BSDL Schema for MPEG-4 FGS 151

</xsd:element>
<xsd:element name="BitPlane"

bs2:ifNext="00000140-0000015F">
<xsd:complexType>

<xsd:sequence>
<xsd:element name="fgs_bp_start_code"

type="mp4:StartCodeType"/>
<xsd:element name="BP_data"

type="mp4:PayloadType" />
</xsd:sequence>

</xsd:complexType>
</xsd:element>
<!-- **** Basic Types **** -->
<xsd:simpleType name="StartCodeType">

<xsd:restriction base="xsd:hexBinary">
<xsd:length value="4"/>

</xsd:restriction>
</xsd:simpleType>
<xsd:simpleType name="PayloadType">

<xsd:restriction base="bs1:byteRange">
<xsd:annotation>

<xsd:appinfo>
<bs2:startCode value="000001"/>

</xsd:appinfo>
</xsd:annotation>

</xsd:restriction>
</xsd:simpleType>
<xsd:simpleType name="time_incr">

<xsd:union
memberTypes="bt:b1 bt:b2 bt:b3 bt:b4 bt:b5 bt:b6">
<xsd:annotation>

<xsd:appinfo>
<bs2:ifUnion value="2 >

//mp4:VOL/mp4:vop_time_increment_resolution"/>
<bs2:ifUnion value="4 >

//mp4:VOL/mp4:vop_time_increment_resolution"/>
<bs2:ifUnion value="8 >

//mp4:VOL/mp4:vop_time_increment_resolution"/>
<bs2:ifUnion value="16 >

//mp4:VOL/mp4:vop_time_increment_resolution"/>
<bs2:ifUnion value="32 >

//mp4:VOL/mp4:vop_time_increment_resolution"/>
<bs2:ifUnion value="64 >

//mp4:VOL/mp4:vop_time_increment_resolution"/>
</xsd:appinfo>

</xsd:annotation>
</xsd:union>

</xsd:simpleType>
</xsd:schema>

152 Bitstream descriptions for MPEG-4 FGS

Listing A.2: Bitstream description generated using the BSDL Schema for MPEG-4
FGS.

<Bitstream xml:base="stockholm_cif_fgs.cmp"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns="MPEG4" xmlns:mp4="MPEG4"
xsi:schemaLocation="MPEG4 file:/./MPEG4-FGS.xsd"
xmlns:pref0="urn:mpeg:mpeg21:2003:01-DIA-BasicDatatypes-01">

<VO>
<video_object_start_code>

00000101
</video_object_start_code>

</VO>
<VOL>

<video_object_layer_start_code>
00000121

</video_object_layer_start_code>
<random_accessible_vol>1</random_accessible_vol>
<video_object_type_indication>

18
</video_object_type_indication>
<fgs_layer_type>1</fgs_layer_type>
<video_object_layer_priority>

2
</video_object_layer_priority>
<aspect_ratio_info>1</aspect_ratio_info>
<vol_control_parameters>0</vol_control_parameters>
<marker_bit>1</marker_bit>
<vop_time_increment_resolution>

30
</vop_time_increment_resolution>
<stuffing>12</stuffing>
<VOL_data>13 5</VOL_data>
<FGSVOP>

<fgs_vop_start_code>000001B9</fgs_vop_start_code>
<vop_coding_type>0</vop_coding_type>
<modulo_time_base>0</modulo_time_base>
<marker_bit>1</marker_bit>
<vop_time_increment xsi:type="pref0:b5">

0
</vop_time_increment>
<stuffing>76</stuffing>
<VOP_data>24 3</VOP_data>
<BitPlane>

<fgs_bp_start_code>00000140</fgs_bp_start_code>
<BP_data>31 176</BP_data>

</BitPlane>
<BitPlane>

<fgs_bp_start_code>00000141</fgs_bp_start_code>
<BP_data>211 3945</BP_data>

A.2. BSDL Schema for MPEG-4 FGS 153

</BitPlane>
<BitPlane>

<fgs_bp_start_code>00000142</fgs_bp_start_code>
<BP_data>4160 9742</BP_data>

</BitPlane>
<BitPlane>

<fgs_bp_start_code>00000143</fgs_bp_start_code>
<BP_data>13906 14137</BP_data>

</BitPlane>
</FGSVOP>
<FGSVOP>

<fgs_vop_start_code>000001B9</fgs_vop_start_code>
<vop_coding_type>0</vop_coding_type>
<modulo_time_base>0</modulo_time_base>
<marker_bit>1</marker_bit>
<vop_time_increment xsi:type="pref0:b5">

2
</vop_time_increment>
<stuffing>76</stuffing>
<VOP_data>28049 3</VOP_data>
<BitPlane>

<fgs_bp_start_code>00000140</fgs_bp_start_code>
<BP_data>28056 74</BP_data>

</BitPlane>
<BitPlane>

<fgs_bp_start_code>00000141</fgs_bp_start_code>
<BP_data>28134 3024</BP_data>

</BitPlane>
<BitPlane>

<fgs_bp_start_code>00000142</fgs_bp_start_code>
<BP_data>31162 9784</BP_data>

</BitPlane>
<BitPlane>

<fgs_bp_start_code>00000143</fgs_bp_start_code>
<BP_data>40950 14681</BP_data>

</BitPlane>
</FGSVOP>
<!-- and so on -->

</VOL>
</Bitstream>

154 Bitstream descriptions for MPEG-4 FGS

A.3 Merging BSDL FGS bitstream descriptions into
one gBSD bitstream description

For generating a bitstream description in a gBSD format, one can use BSDL
descriptions and transform this into gBSD, e.g. using XSLT or a programming
language. The following Java code fragment shows how this can be done for
the case of MPEG-4 FGS bitstreams. Because multiple streams are available,
multiple bitstream descriptions exist and must be merged into a single descrip-
tion.

A.3. Merging BSDL FGS bitstream descriptions 155
L

is
tin

g
A

.3
:

G
en

er
at

in
g

a
gB

SD
bi

ts
tr

ea
m

de
sc

ri
pt

io
n

in
Ja

va
ba

se
d

on
ex

is
tin

g
B

SD
L

de
sc

ri
pt

io
ns

.

p
a
c
k
a
g
e

b
e
.
m
m
l
a
b
.
s
l
e
r
o
u
g
e
;

i
m
p
o
r
t

j
a
v
a
.
i
o
.
*
;

i
m
p
o
r
t

j
a
v
a
.
l
a
n
g
.
*
;

i
m
p
o
r
t

j
a
v
a
x
.
x
m
l
.
p
a
r
s
e
r
s
.
*
;

i
m
p
o
r
t

j
a
v
a
x
.
x
m
l
.
t
r
a
n
s
f
o
r
m
.
*
;

i
m
p
o
r
t

j
a
v
a
x
.
x
m
l
.
t
r
a
n
s
f
o
r
m
.
d
o
m
.
D
O
M
S
o
u
r
c
e
;

i
m
p
o
r
t

j
a
v
a
x
.
x
m
l
.
t
r
a
n
s
f
o
r
m
.
s
t
r
e
a
m
.
S
t
r
e
a
m
R
e
s
u
l
t
;

i
m
p
o
r
t

o
r
g
.
w
3
c
.
d
o
m
.
*
;

p
u
b
l
i
c

c
l
a
s
s

B
S
D
M
e
r
g
e

{
p
u
b
l
i
c

s
t
a
t
i
c

v
o
i
d

u
s
a
g
e
(
)

{
S
y
s
t
e
m
.
o
u
t
.
p
r
i
n
t
l
n
(

"
B
S
D
M
e
r
g
e

-
t
o
o
l

f
o
r

m
e
r
g
i
n
g

F
G
S
-
T

B
S
D
L

d
e
s
c
r
i
p
t
i
o
n
s

i
n
t
o

a
g
B
S
D

d
e
s
c
r
i
p
t
i
o
n
.
"
)
;

S
y
s
t
e
m
.
o
u
t
.
p
r
i
n
t
l
n
(
"
\
t
S
a
m

L
e
r
o
u
g
e
,

m
a
r
c
h
-
a
p
r
i
l

2
0
0
4
\
n
"
)
;

S
y
s
t
e
m
.
o
u
t
.
p
r
i
n
t
l
n
(
"
U
s
a
g
e
:

B
S
D
M
e
r
g
e

-
b
a
s
e

b
.
x
m
l

-
f
g
s

f
.
x
m
l

-
f
g
s
t

f
t
.
x
m
l

[
-
o
u
t

g
b
s
d
.
x
m
l
]
"
)
;

S
y
s
t
e
m
.
o
u
t
.
p
r
i
n
t
l
n
(
"
\
t
b
.
x
m
l

:
B
S
D
L

d
e
s
c
r
i
p
t
i
o
n

o
f

t
h
e

b
a
s
e

l
a
y
e
r
"
)
;

S
y
s
t
e
m
.
o
u
t
.
p
r
i
n
t
l
n
(
"
\
t
f
.
x
m
l

:
B
S
D
L

d
e
s
c
r
i
p
t
i
o
n

o
f

t
h
e

F
G
S

e
n
h
a
n
c
e
m
e
n
t

l
a
y
e
r
"
)
;

S
y
s
t
e
m
.
o
u
t
.
p
r
i
n
t
l
n
(
"
\
t
f
t
.
x
m
l

:
B
S
D
L

d
e
s
c
r
i
p
t
i
o
n

o
f

t
h
e

F
G
S
T

e
n
h
a
n
c
e
m
e
n
t

l
a
y
e
r
"
)
;

S
y
s
t
e
m
.
o
u
t
.
p
r
i
n
t
l
n
(
"
\
t
g
b
s
d
.
x
m
l

(
o
p
t
i
o
n
a
l
)
:

o
u
t
p
u
t

(
m
e
r
g
e
d
)

g
B
S
D

d
e
s
c
r
i
p
t
i
o
n

(
d
e
f
a
u
l
t
:

s
t
d
o
u
t
)
"
)
;

} p
u
b
l
i
c

s
t
a
t
i
c

v
o
i
d
m
a
i
n
(
S
t
r
i
n
g

a
r
g
s
[
]
)

{
S
t
r
i
n
g

b
a
s
e
n
a
m
e

=
n
u
l
l
;

S
t
r
i
n
g

f
g
s
n
a
m
e

=
n
u
l
l
;

S
t
r
i
n
g

f
g
s
t
n
a
m
e

=
n
u
l
l
;

S
t
r
i
n
g

o
u
t
n
a
m
e

=
n
u
l
l
;

I
n
p
u
t
S
t
r
e
a
m

b
a
s
e

=
n
u
l
l
;

I
n
p
u
t
S
t
r
e
a
m

f
g
s

=
n
u
l
l
;

156 Bitstream descriptions for MPEG-4 FGS
I
n
p
u
t
S
t
r
e
a
m

f
g
s
t

=
n
u
l
l
;

O
u
t
p
u
t
S
t
r
e
a
m

o
u
t

=
n
u
l
l
;

/
*
*
*

r
e
a
d
i
n
g

p
a
r
a
m
e
t
e
r
s
*
*
*
/

f
o
r

(
i
n
t

i
=

0
;

i
<

a
r
g
s
.
l
e
n
g
t
h
;

i
+
+
)

{
i
f

(
a
r
g
s
[
i
]
.
e
q
u
a
l
s
(
"
-
b
a
s
e
"
)
)

b
a
s
e
n
a
m
e

=
a
r
g
s
[
+
+
i
]
;

e
l
s
e

i
f

(
a
r
g
s
[
i
]
.
e
q
u
a
l
s
(
"
-
f
g
s
"
)
)

f
g
s
n
a
m
e

=
a
r
g
s
[
+
+
i
]
;

e
l
s
e

i
f

(
a
r
g
s
[
i
]
.
e
q
u
a
l
s
(
"
-
f
g
s
t
"
)
)

f
g
s
t
n
a
m
e

=
a
r
g
s
[
+
+
i
]
;

e
l
s
e

i
f

(
a
r
g
s
[
i
]
.
e
q
u
a
l
s
(
"
-
o
u
t
"
)
)

o
u
t
n
a
m
e

=
a
r
g
s
[
+
+
i
]
;

e
l
s
e

i
f

(
a
r
g
s
[
i
]
.
e
q
u
a
l
s
(
"
-
h
e
l
p
"
)
)

{
u
s
a
g
e
(
)
;

r
e
t
u
r
n
;

} e
l
s
e

{
u
s
a
g
e
(
)
;

S
y
s
t
e
m
.
e
x
i
t
(
-
1
)
;

}
} /
*
*
*

c
h
e
c
k
i
n
g

p
a
r
a
m
e
t
e
r

v
a
l
u
e
s
*
*
*
/

i
f

(
b
a
s
e
n
a
m
e

=
=

n
u
l
l
)

{
u
s
a
g
e
(
)
;

S
y
s
t
e
m
.
o
u
t
.
p
r
i
n
t
l
n
(
"
\
n
[
E
R
R
O
R
]

b
a
s
e

l
a
y
e
r

m
u
s
t

b
e

s
p
e
c
i
f
i
e
d
"
)
;

S
y
s
t
e
m
.
e
x
i
t
(
-
1
)
;

} e
l
s
e

{
t
r
y

{

A.3. Merging BSDL FGS bitstream descriptions 157
b
a
s
e

=
n
e
w

F
i
l
e
I
n
p
u
t
S
t
r
e
a
m
(
b
a
s
e
n
a
m
e
)
;

} c
a
t
c
h

(
F
i
l
e
N
o
t
F
o
u
n
d
E
x
c
e
p
t
i
o
n

e
)

{
S
y
s
t
e
m
.
o
u
t
.
p
r
i
n
t
l
n
(
"
\
n
[
E
R
R
O
R
]

b
a
s
e

l
a
y
e
r

d
e
s
c
r
i
p
t
i
o
n

n
o
t

f
o
u
n
d
"
)
;

S
y
s
t
e
m
.
e
x
i
t
(
-
1
)
;

}
} i
f

(
f
g
s
n
a
m
e

=
=

n
u
l
l
)

{
u
s
a
g
e
(
)
;

S
y
s
t
e
m
.
o
u
t
.
p
r
i
n
t
l
n
(
"
\
n
[
E
R
R
O
R
]

F
G
S

l
a
y
e
r

m
u
s
t

b
e

s
p
e
c
i
f
i
e
d
"
)
;

S
y
s
t
e
m
.
e
x
i
t
(
-
1
)
;

} e
l
s
e

{
t
r
y

{
f
g
s

=
n
e
w

F
i
l
e
I
n
p
u
t
S
t
r
e
a
m
(
f
g
s
n
a
m
e
)
;

} c
a
t
c
h

(
F
i
l
e
N
o
t
F
o
u
n
d
E
x
c
e
p
t
i
o
n

e
)

{
S
y
s
t
e
m
.
o
u
t
.
p
r
i
n
t
l
n
(
"
\
n
[
E
R
R
O
R
]

F
G
S

l
a
y
e
r

d
e
s
c
r
i
p
t
i
o
n

n
o
t

f
o
u
n
d
"
)
;

S
y
s
t
e
m
.
e
x
i
t
(
-
1
)
;

}
} i
f

(
f
g
s
t
n
a
m
e

=
=

n
u
l
l
)

{
u
s
a
g
e
(
)
;

S
y
s
t
e
m
.
o
u
t
.
p
r
i
n
t
l
n
(
"
\
n
[
E
R
R
O
R
]

F
G
S
T

l
a
y
e
r

m
u
s
t

b
e

s
p
e
c
i
f
i
e
d
"
)
;

S
y
s
t
e
m
.
e
x
i
t
(
-
1
)
;

} e
l
s
e

{
t
r
y

{
f
g
s
t

=
n
e
w

F
i
l
e
I
n
p
u
t
S
t
r
e
a
m
(
f
g
s
t
n
a
m
e
)
;

} c
a
t
c
h

(
F
i
l
e
N
o
t
F
o
u
n
d
E
x
c
e
p
t
i
o
n

e
)

{

158 Bitstream descriptions for MPEG-4 FGS
S
y
s
t
e
m
.
o
u
t
.
p
r
i
n
t
l
n
(
"
\
n
[
E
R
R
O
R
]

F
G
S
T

l
a
y
e
r

d
e
s
c
r
i
p
t
i
o
n

n
o
t

f
o
u
n
d
"
)
;

S
y
s
t
e
m
.
e
x
i
t
(
-
1
)
;

}
} i
f

(
o
u
t
n
a
m
e

=
=

n
u
l
l
)

o
u
t

=
S
y
s
t
e
m
.
o
u
t
;

e
l
s
e

{
t
r
y

{
o
u
t

=
n
e
w

F
i
l
e
O
u
t
p
u
t
S
t
r
e
a
m
(
o
u
t
n
a
m
e
)
;

} c
a
t
c
h

(
F
i
l
e
N
o
t
F
o
u
n
d
E
x
c
e
p
t
i
o
n

e
)

{
S
y
s
t
e
m
.
o
u
t
.
p
r
i
n
t
l
n
(
"
\
n
[
E
R
R
O
R
]

O
u
t
p
u
t

f
i
l
e

c
o
u
l
d

n
o
t

b
e

c
r
e
a
t
e
d
"
)
;

S
y
s
t
e
m
.
e
x
i
t
(
-
1
)
;

}
} /
*
*
*

c
r
e
a
t
e

a
D
O
M

p
a
r
s
e
r
*
*
*
/

D
o
c
u
m
e
n
t
[
]

B
S
D

=
n
e
w

D
o
c
u
m
e
n
t
[
3
]
;

D
o
c
u
m
e
n
t

o
u
t
B
S
D

=
n
u
l
l
;

t
r
y

{
D
o
c
u
m
e
n
t
B
u
i
l
d
e
r
F
a
c
t
o
r
y

f
a
c
t

=
D
o
c
u
m
e
n
t
B
u
i
l
d
e
r
F
a
c
t
o
r
y
.
n
e
w
I
n
s
t
a
n
c
e
(
)
;

f
a
c
t
.
s
e
t
N
a
m
e
s
p
a
c
e
A
w
a
r
e
(
t
r
u
e
)
;

D
o
c
u
m
e
n
t
B
u
i
l
d
e
r

p
a
r
s
e
r

=
f
a
c
t
.
n
e
w
D
o
c
u
m
e
n
t
B
u
i
l
d
e
r
(
)
;

B
S
D
[
0
]

=
p
a
r
s
e
r
.
p
a
r
s
e
(
b
a
s
e
)
;

B
S
D
[
1
]

=
p
a
r
s
e
r
.
p
a
r
s
e
(
f
g
s
)
;

B
S
D
[
2
]

=
p
a
r
s
e
r
.
p
a
r
s
e
(
f
g
s
t
)
;

o
u
t
B
S
D

=
p
a
r
s
e
r
.
n
e
w
D
o
c
u
m
e
n
t
(
)
;

} c
a
t
c
h

(
E
x
c
e
p
t
i
o
n

e
)

{
S
y
s
t
e
m
.
o
u
t
.
p
r
i
n
t
l
n

(
"
[
E
R
R
O
R
]

S
o
m
e
t
h
i
n
g

w
e
n
t

w
r
o
n
g

d
u
r
i
n
g

X
M
L

p
a
r
s
i
n
g
:
\
n
\
n
"

+
e
)
;

e
.
p
r
i
n
t
S
t
a
c
k
T
r
a
c
e
(
)
;

A.3. Merging BSDL FGS bitstream descriptions 159
} S
t
r
i
n
g
[
]

b
i
t
s
t
r
e
a
m

=
n
e
w

S
t
r
i
n
g
[
3
]
;

f
o
r

(
i
n
t

i
=

0
;

i
<

3
;

i
+
+
)

b
i
t
s
t
r
e
a
m
[
i
]

=
B
S
D
[
i
]
.
g
e
t
D
o
c
u
m
e
n
t
E
l
e
m
e
n
t
(
)
.
g
e
t
A
t
t
r
i
b
u
t
e
(
"
x
m
l
:
b
a
s
e
"
)
;

/
*
*
*

i
n
i
t
i
a
l
i
z
e

o
u
t
p
u
t

b
i
t
s
t
r
e
a
m

d
e
s
c
r
i
p
t
i
o
n

*
*
*
/

E
l
e
m
e
n
t

d
e
s
c
r
i
p
t
i
o
n

=
n
u
l
l
;

t
r
y

{
E
l
e
m
e
n
t

r
o
o
t

=
o
u
t
B
S
D
.
c
r
e
a
t
e
E
l
e
m
e
n
t
(
"
d
i
a
:
D
I
A
"
)
;

r
o
o
t
.
s
e
t
A
t
t
r
i
b
u
t
e
(
"
x
m
l
n
s
:
d
i
a
"
,
"
u
r
n
:
m
p
e
g
:
m
p
e
g
2
1
:
2
0
0
3
:
0
1
-
D
I
A
-
N
S
"
)
;

r
o
o
t
.
s
e
t
A
t
t
r
i
b
u
t
e
(
"
x
m
l
n
s
"
,
"
u
r
n
:
m
p
e
g
:
m
p
e
g
2
1
:
2
0
0
3
:
0
1
-
D
I
A
-
g
B
S
D
-
N
S
"
)
;

r
o
o
t
.
s
e
t
A
t
t
r
i
b
u
t
e
(
"
x
m
l
n
s
:
x
s
i
"
,
"
h
t
t
p
:
/
/
w
w
w
.
w
3
.
o
r
g
/
2
0
0
1
/
X
M
L
S
c
h
e
m
a
-
i
n
s
t
a
n
c
e
"
)
;

d
e
s
c
r
i
p
t
i
o
n

=
o
u
t
B
S
D
.
c
r
e
a
t
e
E
l
e
m
e
n
t
(
"
d
i
a
:
D
e
s
c
r
i
p
t
i
o
n
"
)
;

d
e
s
c
r
i
p
t
i
o
n
.
s
e
t
A
t
t
r
i
b
u
t
e
(
"
x
s
i
:
t
y
p
e
"
,
"
g
B
S
D
T
y
p
e
"
)
;

E
l
e
m
e
n
t

h
e
a
d
e
r

=
o
u
t
B
S
D
.
c
r
e
a
t
e
E
l
e
m
e
n
t
(
"
H
e
a
d
e
r
"
)
;

E
l
e
m
e
n
t

d
e
f
a
u
l
t
v
a
l
s

=
o
u
t
B
S
D
.
c
r
e
a
t
e
E
l
e
m
e
n
t
(
"
D
e
f
a
u
l
t
V
a
l
u
e
s
"
)
;

d
e
f
a
u
l
t
v
a
l
s
.
s
e
t
A
t
t
r
i
b
u
t
e
(
"
a
d
d
r
e
s
s
U
n
i
t
"
,
"
b
y
t
e
"
)
;

d
e
f
a
u
l
t
v
a
l
s
.
s
e
t
A
t
t
r
i
b
u
t
e
(
"
a
d
d
r
e
s
s
M
o
d
e
"
,
"
a
b
s
o
l
u
t
e
"
)
;

d
e
f
a
u
l
t
v
a
l
s
.
s
e
t
A
t
t
r
i
b
u
t
e
(
"
g
l
o
b
a
l
A
d
d
r
e
s
s
I
n
f
o
"
,
b
i
t
s
t
r
e
a
m
[
0
]
)
;

h
e
a
d
e
r
.
a
p
p
e
n
d
C
h
i
l
d
(
d
e
f
a
u
l
t
v
a
l
s
)
;

d
e
s
c
r
i
p
t
i
o
n
.
a
p
p
e
n
d
C
h
i
l
d
(
h
e
a
d
e
r
)
;

r
o
o
t
.
a
p
p
e
n
d
C
h
i
l
d
(
d
e
s
c
r
i
p
t
i
o
n
)
;

o
u
t
B
S
D
.
a
p
p
e
n
d
C
h
i
l
d
(
r
o
o
t
)
;

} c
a
t
c
h

(
D
O
M
E
x
c
e
p
t
i
o
n

e
)

{
S
y
s
t
e
m
.
o
u
t
.
p
r
i
n
t
l
n

(
"
[
E
R
R
O
R
]
:

f
a
i
l
e
d

t
o

c
o
n
s
t
r
u
c
t

t
h
e

g
B
S
D

d
e
s
c
r
i
p
t
i
o
n
\
n
"

+
e
)
;

} /
*
*
*

s
t
a
r
t

r
e
a
d
i
n
g

d
a
t
a

f
r
o
m

t
h
e

b
i
t
s
t
r
e
a
m

*
*
*
/

i
n
t
[
]

c
u
r
s
o
r

=
n
e
w

i
n
t
[
3
]
;

160 Bitstream descriptions for MPEG-4 FGS
b
o
o
l
e
a
n

h
e
a
d
e
r
s

=
t
r
u
e
;

b
o
o
l
e
a
n

e
n
d

=
f
a
l
s
e
;

i
n
t

p
a
r
c
e
l
s

=
1
;

i
n
t
[
]

f
r
a
m
e
c
o
u
n
t

=
n
e
w

i
n
t
[
2
]
;

f
r
a
m
e
c
o
u
n
t
[
0
]

=
f
r
a
m
e
c
o
u
n
t
[
1
]

=
0
;

f
l
o
a
t

p
r
e
v
t
i
m
e

=
0
;

l
o
n
g
[
]
[
]

s
i
z
e

=
n
e
w

l
o
n
g
[
2
]
[
8
]
;

t
r
y

{
/
*

a
s
s
i
g
n

a
l
l

g
l
o
b
a
l

h
e
a
d
e
r
s

t
o

l
a
b
e
l
(
0
,
0
)

i
n

t
h
e

f
i
r
s
t

p
a
r
c
e
l

*
/

E
l
e
m
e
n
t

p
a
r
c
e
l

=
o
u
t
B
S
D
.
c
r
e
a
t
e
E
l
e
m
e
n
t
(
"
g
B
S
D
U
n
i
t
"
)
;

p
a
r
c
e
l
.
s
e
t
A
t
t
r
i
b
u
t
e
(
"
m
a
r
k
e
r
"
,
"
:
p
a
r
c
e
l
:
0
"
)
;

p
a
r
c
e
l
.
s
e
t
A
t
t
r
i
b
u
t
e
(
"
s
t
a
r
t
"
,

"
0
"
)
;

f
o
r

(
i
n
t

i
=

0
;

i
<

3
;

i
+
+
)

{
E
l
e
m
e
n
t

d
a
t
a

=
o
u
t
B
S
D
.
c
r
e
a
t
e
E
l
e
m
e
n
t
(
"
g
B
S
D
U
n
i
t
"
)
;

d
a
t
a
.
s
e
t
A
t
t
r
i
b
u
t
e
(
"
m
a
r
k
e
r
"
,
"
:
l
a
b
e
l
:
(
0
,
0
)
"
)
;

/
*

g
e
t

t
h
e

l
e
n
g
t
h

o
f

t
h
e

h
e
a
d
e
r
*
/

N
o
d
e

V
O
L
_
d
a
t
a

=
B
S
D
[
i
]
.
g
e
t
E
l
e
m
e
n
t
s
B
y
T
a
g
N
a
m
e
N
S
(
"
M
P
E
G
4
"
,
"
V
O
L
_
d
a
t
a
"
)
.
i
t
e
m
(
0
)
.
g
e
t
F
i
r
s
t
C
h
i
l
d
(
)
;

c
u
r
s
o
r
[
i
]

=
I
n
t
e
g
e
r
.
p
a
r
s
e
I
n
t
(
V
O
L
_
d
a
t
a
.
g
e
t
N
o
d
e
V
a
l
u
e
(
)
.
s
p
l
i
t
(
"

"
)
[
0
]
)

+
I
n
t
e
g
e
r
.
p
a
r
s
e
I
n
t
(
V
O
L
_
d
a
t
a
.
g
e
t
N
o
d
e
V
a
l
u
e
(
)
.
s
p
l
i
t
(
"

"
)
[
1
]
)
;

d
a
t
a
.
s
e
t
A
t
t
r
i
b
u
t
e
(
"
s
t
a
r
t
"
,

"
0
"
)
;

d
a
t
a
.
s
e
t
A
t
t
r
i
b
u
t
e
(
"
l
e
n
g
t
h
"
,

I
n
t
e
g
e
r
.
t
o
S
t
r
i
n
g
(
c
u
r
s
o
r
[
i
]
)
)
;

d
a
t
a
.
s
e
t
A
t
t
r
i
b
u
t
e
(
"
g
l
o
b
a
l
A
d
d
r
e
s
s
I
n
f
o
"
,
b
i
t
s
t
r
e
a
m
[
i
]
)
;

s
i
z
e
[
0
]
[
0
]

+
=

c
u
r
s
o
r
[
i
]
;

p
a
r
c
e
l
.
a
p
p
e
n
d
C
h
i
l
d
(
d
a
t
a
)
;

} N
o
d
e
L
i
s
t
[
]

V
O
P

=
n
e
w

N
o
d
e
L
i
s
t
[
3
]
;

i
n
t

c
l
o
c
k

=
0
;

i
n
t

c
l
o
c
k
b
a
s
e

=
0
;

i
n
t

f
g
s
t
c
l
o
c
k

=
0
;

i
n
t

f
g
s
t
c
l
o
c
k
b
a
s
e

=
0
;

A.3. Merging BSDL FGS bitstream descriptions 161
i
n
t

c
l
o
c
k
u
n
i
t

=
I
n
t
e
g
e
r
.
p
a
r
s
e
I
n
t
(
B
S
D
[
0
]
.
g
e
t
E
l
e
m
e
n
t
s
B
y
T
a
g
N
a
m
e
N
S

(
"
M
P
E
G
4
"
,
"
v
o
p
_
t
i
m
e
_
i
n
c
r
e
m
e
n
t
_
r
e
s
o
l
u
t
i
o
n
"
)
.
i
t
e
m
(
0
)
.
g
e
t
F
i
r
s
t
C
h
i
l
d
(
)
.
g
e
t
N
o
d
e
V
a
l
u
e
(
)
)
;

i
n
t
[
]

p
o
s

=
n
e
w

i
n
t
[
2
]
;

f
o
r

(
i
n
t

i
=

0
;

i
<

3
;

i
+
+
)

{
i
f

(
i

=
=

0
)

V
O
P
[
i
]

=
B
S
D
[
i
]
.
g
e
t
E
l
e
m
e
n
t
s
B
y
T
a
g
N
a
m
e
N
S
(
"
M
P
E
G
4
"
,
"
V
O
P
"
)
;

e
l
s
e
V
O
P
[
i
]

=
B
S
D
[
i
]
.
g
e
t
E
l
e
m
e
n
t
s
B
y
T
a
g
N
a
m
e
N
S
(
"
M
P
E
G
4
"
,
"
F
G
S
V
O
P
"
)
;

i
f

(
i

<
2
)

p
o
s
[
i
]

=
0
;

} w
h
i
l
e

(
t
r
u
e
)

{
/
*

c
h
e
c
k

i
f

a
n
e
w

p
a
r
c
e
l

s
h
o
u
l
d

b
e

c
r
e
a
t
e
d

(
i
f

t
h
e

n
e
x
t

f
r
a
m
e

i
s

a
n

I
-
f
r
a
m
e
)

*
/

i
f

(
e
n
d

|
|

(
!
h
e
a
d
e
r
s

&
&

(
(
E
l
e
m
e
n
t
)

V
O
P
[
0
]
.
i
t
e
m
(
p
o
s
[
0
]
)
)
.
g
e
t
E
l
e
m
e
n
t
s
B
y
T
a
g
N
a
m
e
N
S
(

"
M
P
E
G
4
"
,
"
v
o
p
_
c
o
d
i
n
g
_
t
y
p
e
"
)
.
i
t
e
m
(
0
)
.
g
e
t
F
i
r
s
t
C
h
i
l
d
(
)
.
g
e
t
N
o
d
e
V
a
l
u
e
(
)
.
e
q
u
a
l
s
(
"
0
"
)
)
)

{
p
a
r
c
e
l
.
s
e
t
A
t
t
r
i
b
u
t
e
(
"
l
e
n
g
t
h
"
,

I
n
t
e
g
e
r
.
t
o
S
t
r
i
n
g
(
c
u
r
s
o
r
[
0
]

-
I
n
t
e
g
e
r
.
p
a
r
s
e
I
n
t
(
p
a
r
c
e
l
.
g
e
t
A
t
t
r
i
b
u
t
e
(
"
s
t
a
r
t
"
)
)
)
)
;

d
e
s
c
r
i
p
t
i
o
n
.
a
p
p
e
n
d
C
h
i
l
d
(
p
a
r
c
e
l
)
;

/
/

i
n
s
e
r
t

f
r
a
m
e

r
a
t
e

N
o
d
e
L
i
s
t

u
n
i
t
s

=
p
a
r
c
e
l
.
g
e
t
E
l
e
m
e
n
t
s
B
y
T
a
g
N
a
m
e
(
"
g
B
S
D
U
n
i
t
"
)
;

i
n
t

b
=

0
;

i
n
t

e
=

0
;

f
l
o
a
t

t
i
m
e

=
(
(
f
l
o
a
t
)

c
l
o
c
k
)

/
c
l
o
c
k
u
n
i
t

-
p
r
e
v
t
i
m
e
;

f
l
o
a
t
[
]

f
p
s

=
n
e
w

f
l
o
a
t
[
2
]
;

f
p
s
[
0
]

=
f
r
a
m
e
c
o
u
n
t
[
0
]

/
t
i
m
e
;

f
p
s
[
1
]

=
f
r
a
m
e
c
o
u
n
t
[
1
]

/
t
i
m
e
;

p
r
e
v
t
i
m
e

=
c
l
o
c
k

/
c
l
o
c
k
u
n
i
t
;

l
o
n
g
[
]
[
]

t
o
t
a
l
s
i
z
e

=
n
e
w

l
o
n
g
[
2
]
[
8
]
;

f
o
r

(
i
n
t

i
=

0
;

i
<

2
;

i
+
+
)

f
o
r

(
i
n
t

j
=

0
;

j
<

8
;

j
+
+
)

f
o
r

(
i
n
t

i
i

=
0
;

i
i

<
=

i
;

i
i
+
+
)

f
o
r

(
i
n
t

j
j

=
0
;

j
j

<
=

j
;

j
j
+
+
)

t
o
t
a
l
s
i
z
e
[
i
]
[
j
]

+
=

s
i
z
e
[
i
i
]
[
j
j
]
;

162 Bitstream descriptions for MPEG-4 FGS
f
o
r

(
i
n
t

i
=

0
;

i
<

u
n
i
t
s
.
g
e
t
L
e
n
g
t
h
(
)
;

i
+
+
)

{
S
t
r
i
n
g

m
a
r
k
e
r

=
(
(
E
l
e
m
e
n
t
)

u
n
i
t
s
.
i
t
e
m
(
i
)
)
.
g
e
t
A
t
t
r
i
b
u
t
e
(
"
m
a
r
k
e
r
"
)
;

i
f

(
m
a
r
k
e
r
.
i
n
d
e
x
O
f
(
"
:
l
a
b
e
l
:
(
0
,
"

+
b

+
"
)
"
)

!
=

-
1
)

{
(
(
E
l
e
m
e
n
t
)

u
n
i
t
s
.
i
t
e
m
(
i
)
)
.
g
e
t
A
t
t
r
i
b
u
t
e
N
o
d
e
(
"
m
a
r
k
e
r
"
)
.
s
e
t
V
a
l
u
e
(
m
a
r
k
e
r

+
"

:
f
p
s
:
"

+
f
p
s
[
0
]

+
"

:
k
b
p
s
:
"

+
(
(
i
n
t
)

(
t
o
t
a
l
s
i
z
e
[
0
]
[
b
]
*

8
/

t
i
m
e

/
1
0
0
0
)
)
)
;

b
+
+
;

} e
l
s
e

i
f

(
m
a
r
k
e
r
.
i
n
d
e
x
O
f
(
"
:
l
a
b
e
l
:
(
1
,
"

+
e

+
"
)
"
)

!
=

-
1
)

{
(
(
E
l
e
m
e
n
t
)

u
n
i
t
s
.
i
t
e
m
(
i
)
)
.
g
e
t
A
t
t
r
i
b
u
t
e
N
o
d
e
(
"
m
a
r
k
e
r
"
)
.
s
e
t
V
a
l
u
e
(
m
a
r
k
e
r

+
"

:
f
p
s
:
"

+
f
p
s
[
1
]

+
"

:
k
b
p
s
:
"

+
(
(
i
n
t
)

(
t
o
t
a
l
s
i
z
e
[
1
]
[
e
]
*

8
/

t
i
m
e

/
1
0
0
0
)
)
)
;

e
+
+
;

}
} i
f

(
e
n
d
)

b
r
e
a
k
;

f
o
r

(
i
n
t

i
=

0
;

i
<

2
;

i
+
+
)

f
o
r

(
i
n
t

j
=

0
;

j
<

8
;

j
+
+
)

s
i
z
e
[
i
]
[
j
]

=
0
;

f
r
a
m
e
c
o
u
n
t
[
0
]

=
f
r
a
m
e
c
o
u
n
t
[
1
]

=
0
;

p
a
r
c
e
l

=
o
u
t
B
S
D
.
c
r
e
a
t
e
E
l
e
m
e
n
t
(
"
g
B
S
D
U
n
i
t
"
)
;

p
a
r
c
e
l
.
s
e
t
A
t
t
r
i
b
u
t
e
(
"
m
a
r
k
e
r
"
,
"
:
p
a
r
c
e
l
:
"

+
(
p
a
r
c
e
l
s
+
+
)
)
;

p
a
r
c
e
l
.
s
e
t
A
t
t
r
i
b
u
t
e
(
"
s
t
a
r
t
"
,

I
n
t
e
g
e
r
.
t
o
S
t
r
i
n
g
(
c
u
r
s
o
r
[
0
]
)
)
;

} h
e
a
d
e
r
s

=
f
a
l
s
e
;

/
*

a
d
d

b
a
s
e

l
a
y
e
r

f
r
a
m
e

t
o

c
u
r
r
e
n
t

p
a
r
c
e
l

*
/

E
l
e
m
e
n
t

d
a
t
a

=
o
u
t
B
S
D
.
c
r
e
a
t
e
E
l
e
m
e
n
t
(
"
g
B
S
D
U
n
i
t
"
)
;

d
a
t
a
.
s
e
t
A
t
t
r
i
b
u
t
e
(
"
m
a
r
k
e
r
"
,
"
:
l
a
b
e
l
:
(
0
,
0
)
"
)
;

d
a
t
a
.
s
e
t
A
t
t
r
i
b
u
t
e
(
"
s
t
a
r
t
"
,

I
n
t
e
g
e
r
.
t
o
S
t
r
i
n
g
(
c
u
r
s
o
r
[
0
]
)
)
;

N
o
d
e

V
O
P
_
d
a
t
a

=
(
(
E
l
e
m
e
n
t
)

V
O
P
[
0
]
.
i
t
e
m
(
p
o
s
[
0
]
)
)
.
g
e
t
E
l
e
m
e
n
t
s
B
y
T
a
g
N
a
m
e
N
S
(

"
M
P
E
G
4
"
,
"
V
O
P
_
d
a
t
a
"
)
.
i
t
e
m
(
0
)
.
g
e
t
F
i
r
s
t
C
h
i
l
d
(
)
;

i
n
t

e
n
d
p
o
s

=
I
n
t
e
g
e
r
.
p
a
r
s
e
I
n
t
(
V
O
P
_
d
a
t
a
.
g
e
t
N
o
d
e
V
a
l
u
e
(
)
.
s
p
l
i
t
(
"

"
)
[
0
]
)

+

A.3. Merging BSDL FGS bitstream descriptions 163
I
n
t
e
g
e
r
.
p
a
r
s
e
I
n
t
(
V
O
P
_
d
a
t
a
.
g
e
t
N
o
d
e
V
a
l
u
e
(
)
.
s
p
l
i
t
(
"

"
)
[
1
]
)
;

d
a
t
a
.
s
e
t
A
t
t
r
i
b
u
t
e
(
"
l
e
n
g
t
h
"
,

I
n
t
e
g
e
r
.
t
o
S
t
r
i
n
g
(
e
n
d
p
o
s

-
c
u
r
s
o
r
[
0
]
)
)
;

s
i
z
e
[
0
]
[
0
]

+
=

e
n
d
p
o
s

-
c
u
r
s
o
r
[
0
]
;

c
u
r
s
o
r
[
0
]

=
e
n
d
p
o
s
;

p
a
r
c
e
l
.
a
p
p
e
n
d
C
h
i
l
d
(
d
a
t
a
)
;

f
r
a
m
e
c
o
u
n
t
[
0
]
+
+
;

f
r
a
m
e
c
o
u
n
t
[
1
]
+
+
;

i
f

(
p
o
s
[
0
]

+
1

<
V
O
P
[
0
]
.
g
e
t
L
e
n
g
t
h
(
)
)

{
c
l
o
c
k
b
a
s
e

+
=

(
(
(
E
l
e
m
e
n
t
)

V
O
P
[
0
]
.
i
t
e
m
(
p
o
s
[
0
]

+
1
)
)
.

g
e
t
E
l
e
m
e
n
t
s
B
y
T
a
g
N
a
m
e
N
S
(
"
M
P
E
G
4
"
,
"
m
o
d
u
l
o
_
t
i
m
e
_
b
a
s
e
"
)
.
g
e
t
L
e
n
g
t
h
(
)

-
1
)

*
c
l
o
c
k
u
n
i
t
;

c
l
o
c
k

=
c
l
o
c
k
b
a
s
e

+
I
n
t
e
g
e
r
.
p
a
r
s
e
I
n
t
(
(
(
E
l
e
m
e
n
t
)

V
O
P
[
0
]
.
i
t
e
m
(
p
o
s
[
0
]

+
1
)
)
.

g
e
t
E
l
e
m
e
n
t
s
B
y
T
a
g
N
a
m
e
N
S
(
"
M
P
E
G
4
"
,
"
v
o
p
_
t
i
m
e
_
i
n
c
r
e
m
e
n
t
"
)
.

i
t
e
m
(
0
)
.
g
e
t
F
i
r
s
t
C
h
i
l
d
(
)
.
g
e
t
N
o
d
e
V
a
l
u
e
(
)
)
;

} e
l
s
e
c
l
o
c
k

+
=

2
;

/
*

a
d
d

F
G
S

e
n
h
a
n
c
e
m
e
n
t

l
a
y
e
r

t
o

c
u
r
r
e
n
t

p
a
r
c
e
l

*
/

d
a
t
a

=
o
u
t
B
S
D
.
c
r
e
a
t
e
E
l
e
m
e
n
t
(
"
g
B
S
D
U
n
i
t
"
)
;

d
a
t
a
.
s
e
t
A
t
t
r
i
b
u
t
e
(
"
m
a
r
k
e
r
"
,
"
:
l
a
b
e
l
:
(
0
,
1
)
"
)
;

d
a
t
a
.
s
e
t
A
t
t
r
i
b
u
t
e
(
"
s
t
a
r
t
"
,

I
n
t
e
g
e
r
.
t
o
S
t
r
i
n
g
(
c
u
r
s
o
r
[
1
]
)
)
;

d
a
t
a
.
s
e
t
A
t
t
r
i
b
u
t
e
(
"
g
l
o
b
a
l
A
d
d
r
e
s
s
I
n
f
o
"
,
b
i
t
s
t
r
e
a
m
[
1
]
)
;

V
O
P
_
d
a
t
a

=
(
(
E
l
e
m
e
n
t
)

V
O
P
[
1
]
.
i
t
e
m
(
p
o
s
[
0
]
)
)
.

g
e
t
E
l
e
m
e
n
t
s
B
y
T
a
g
N
a
m
e
N
S
(
"
M
P
E
G
4
"
,
"
V
O
P
_
d
a
t
a
"
)
.
i
t
e
m
(
0
)
.
g
e
t
F
i
r
s
t
C
h
i
l
d
(
)
;

e
n
d
p
o
s

=
I
n
t
e
g
e
r
.
p
a
r
s
e
I
n
t
(
V
O
P
_
d
a
t
a
.
g
e
t
N
o
d
e
V
a
l
u
e
(
)
.
s
p
l
i
t
(
"

"
)
[
0
]
)

+
I
n
t
e
g
e
r
.
p
a
r
s
e
I
n
t
(
V
O
P
_
d
a
t
a
.
g
e
t
N
o
d
e
V
a
l
u
e
(
)
.
s
p
l
i
t
(
"

"
)
[
1
]
)
;

d
a
t
a
.
s
e
t
A
t
t
r
i
b
u
t
e
(
"
l
e
n
g
t
h
"
,

I
n
t
e
g
e
r
.
t
o
S
t
r
i
n
g
(
e
n
d
p
o
s

-
c
u
r
s
o
r
[
1
]
)
)
;

s
i
z
e
[
0
]
[
1
]

+
=

e
n
d
p
o
s

-
c
u
r
s
o
r
[
1
]
;

c
u
r
s
o
r
[
1
]

=
e
n
d
p
o
s
;

p
a
r
c
e
l
.
a
p
p
e
n
d
C
h
i
l
d
(
d
a
t
a
)
;

/
/
a
t
t
a
c
h

a
n

a
p
p
r
o
p
r
i
a
t
e

l
a
b
e
l

t
o

e
a
c
h

b
i
t
p
l
a
n
e

N
o
d
e
L
i
s
t

b
p
s

=
(
(
E
l
e
m
e
n
t
)

V
O
P
[
1
]
.
i
t
e
m
(
p
o
s
[
0
]
)
)
.
g
e
t
E
l
e
m
e
n
t
s
B
y
T
a
g
N
a
m
e
N
S
(
"
M
P
E
G
4
"
,
"
B
i
t
P
l
a
n
e
"
)
;

164 Bitstream descriptions for MPEG-4 FGS
f
o
r

(
i
n
t

i
=

0
;

i
<

b
p
s
.
g
e
t
L
e
n
g
t
h
(
)
;

i
+
+
)

{
d
a
t
a

=
o
u
t
B
S
D
.
c
r
e
a
t
e
E
l
e
m
e
n
t
(
"
g
B
S
D
U
n
i
t
"
)
;

d
a
t
a
.
s
e
t
A
t
t
r
i
b
u
t
e
(
"
m
a
r
k
e
r
"
,
"
:
l
a
b
e
l
:
(
0
,
"

+
(
i

+
1
)

+
"
)
"
)
;

d
a
t
a
.
s
e
t
A
t
t
r
i
b
u
t
e
(
"
s
t
a
r
t
"
,

I
n
t
e
g
e
r
.
t
o
S
t
r
i
n
g
(
c
u
r
s
o
r
[
1
]
)
)
;

d
a
t
a
.
s
e
t
A
t
t
r
i
b
u
t
e
(
"
g
l
o
b
a
l
A
d
d
r
e
s
s
I
n
f
o
"
,
b
i
t
s
t
r
e
a
m
[
1
]
)
;

V
O
P
_
d
a
t
a

=
(
(
E
l
e
m
e
n
t
)

V
O
P
[
1
]
.
i
t
e
m
(
p
o
s
[
0
]
)
)
.

g
e
t
E
l
e
m
e
n
t
s
B
y
T
a
g
N
a
m
e
N
S
(
"
M
P
E
G
4
"
,
"
B
P
_
d
a
t
a
"
)
.
i
t
e
m
(
i
)
.
g
e
t
F
i
r
s
t
C
h
i
l
d
(
)
;

e
n
d
p
o
s

=
I
n
t
e
g
e
r
.
p
a
r
s
e
I
n
t
(
V
O
P
_
d
a
t
a
.
g
e
t
N
o
d
e
V
a
l
u
e
(
)
.
s
p
l
i
t
(
"

"
)
[
0
]
)

+
I
n
t
e
g
e
r
.
p
a
r
s
e
I
n
t
(
V
O
P
_
d
a
t
a
.
g
e
t
N
o
d
e
V
a
l
u
e
(
)
.
s
p
l
i
t
(
"

"
)
[
1
]
)
;

d
a
t
a
.
s
e
t
A
t
t
r
i
b
u
t
e
(
"
l
e
n
g
t
h
"
,

I
n
t
e
g
e
r
.
t
o
S
t
r
i
n
g
(
e
n
d
p
o
s

-
c
u
r
s
o
r
[
1
]
)
)
;

s
i
z
e
[
0
]
[
i
+
1
]

+
=

e
n
d
p
o
s

-
c
u
r
s
o
r
[
1
]
;

c
u
r
s
o
r
[
1
]

=
e
n
d
p
o
s
;

p
a
r
c
e
l
.
a
p
p
e
n
d
C
h
i
l
d
(
d
a
t
a
)
;

} /
*

a
d
d

F
G
S
T

e
n
h
a
n
c
e
m
e
n
t

l
a
y
e
r

t
o

c
u
r
r
e
n
t

p
a
r
c
e
l

*
/

w
h
i
l
e

(
t
r
u
e
)

{
i
f

(
p
o
s
[
1
]

=
=

V
O
P
[
2
]
.
g
e
t
L
e
n
g
t
h
(
)
)

b
r
e
a
k
;

i
n
t

t
e
m
p
c
l
o
c
k
b
a
s
e

=
f
g
s
t
c
l
o
c
k
b
a
s
e
;

f
g
s
t
c
l
o
c
k
b
a
s
e

+
=

(
(
(
E
l
e
m
e
n
t
)

V
O
P
[
2
]
.
i
t
e
m
(
p
o
s
[
1
]
)
)
.

g
e
t
E
l
e
m
e
n
t
s
B
y
T
a
g
N
a
m
e
N
S
(
"
M
P
E
G
4
"
,
"
m
o
d
u
l
o
_
t
i
m
e
_
b
a
s
e
"
)
.
g
e
t
L
e
n
g
t
h
(
)

-
1
)

*
c
l
o
c
k
u
n
i
t
;

f
g
s
t
c
l
o
c
k

=
f
g
s
t
c
l
o
c
k
b
a
s
e

+
I
n
t
e
g
e
r
.
p
a
r
s
e
I
n
t
(
(
(
E
l
e
m
e
n
t
)

V
O
P
[
2
]
.
i
t
e
m
(
p
o
s
[
1
]
)
)
.

g
e
t
E
l
e
m
e
n
t
s
B
y
T
a
g
N
a
m
e
N
S
(
"
M
P
E
G
4
"
,
"
v
o
p
_
t
i
m
e
_
i
n
c
r
e
m
e
n
t
"
)
.
i
t
e
m
(
0
)
.

g
e
t
F
i
r
s
t
C
h
i
l
d
(
)
.
g
e
t
N
o
d
e
V
a
l
u
e
(
)
)
;

i
f

(
f
g
s
t
c
l
o
c
k

>
c
l
o
c
k
)

{
f
g
s
t
c
l
o
c
k
b
a
s
e

=
t
e
m
p
c
l
o
c
k
b
a
s
e
;

/
/

r
e
s
e
t

c
l
o
c
k
b
a
s
e

b
r
e
a
k
;

} /
/

h
e
a
d
e
r

d
a
t
a

b
e
l
o
n
g
s

t
o

l
a
b
e
l

(
1
,
0
)

d
a
t
a

=
o
u
t
B
S
D
.
c
r
e
a
t
e
E
l
e
m
e
n
t
(
"
g
B
S
D
U
n
i
t
"
)
;

A.3. Merging BSDL FGS bitstream descriptions 165
d
a
t
a
.
s
e
t
A
t
t
r
i
b
u
t
e
(
"
m
a
r
k
e
r
"
,
"
:
l
a
b
e
l
:
(
1
,
0
)
"
)
;

d
a
t
a
.
s
e
t
A
t
t
r
i
b
u
t
e
(
"
s
t
a
r
t
"
,

I
n
t
e
g
e
r
.
t
o
S
t
r
i
n
g
(
c
u
r
s
o
r
[
2
]
)
)
;

d
a
t
a
.
s
e
t
A
t
t
r
i
b
u
t
e
(
"
g
l
o
b
a
l
A
d
d
r
e
s
s
I
n
f
o
"
,
b
i
t
s
t
r
e
a
m
[
2
]
)
;

V
O
P
_
d
a
t
a

=
(
(
E
l
e
m
e
n
t
)

V
O
P
[
2
]
.
i
t
e
m
(
p
o
s
[
1
]
)
)
.

g
e
t
E
l
e
m
e
n
t
s
B
y
T
a
g
N
a
m
e
N
S
(
"
M
P
E
G
4
"
,
"
V
O
P
_
d
a
t
a
"
)
.
i
t
e
m
(
0
)
.
g
e
t
F
i
r
s
t
C
h
i
l
d
(
)
;

e
n
d
p
o
s

=
I
n
t
e
g
e
r
.
p
a
r
s
e
I
n
t
(
V
O
P
_
d
a
t
a
.
g
e
t
N
o
d
e
V
a
l
u
e
(
)
.
s
p
l
i
t
(
"

"
)
[
0
]
)

+
I
n
t
e
g
e
r
.
p
a
r
s
e
I
n
t
(
V
O
P
_
d
a
t
a
.
g
e
t
N
o
d
e
V
a
l
u
e
(
)
.
s
p
l
i
t
(
"

"
)
[
1
]
)
;

d
a
t
a
.
s
e
t
A
t
t
r
i
b
u
t
e
(
"
l
e
n
g
t
h
"
,

I
n
t
e
g
e
r
.
t
o
S
t
r
i
n
g
(
e
n
d
p
o
s

-
c
u
r
s
o
r
[
2
]
)
)
;

s
i
z
e
[
1
]
[
0
]

+
=

e
n
d
p
o
s

-
c
u
r
s
o
r
[
2
]
;

c
u
r
s
o
r
[
2
]

=
e
n
d
p
o
s
;

p
a
r
c
e
l
.
a
p
p
e
n
d
C
h
i
l
d
(
d
a
t
a
)
;

/
/
a
t
t
a
c
h

a
n

a
p
p
r
o
p
r
i
a
t
e

l
a
b
e
l

t
o

e
a
c
h

b
i
t
p
l
a
n
e

b
p
s

=
(
(
E
l
e
m
e
n
t
)

V
O
P
[
2
]
.
i
t
e
m
(
p
o
s
[
1
]
)
)
.
g
e
t
E
l
e
m
e
n
t
s
B
y
T
a
g
N
a
m
e
N
S
(
"
M
P
E
G
4
"
,
"
B
i
t
P
l
a
n
e
"
)
;

f
o
r

(
i
n
t

i
=

0
;

i
<

b
p
s
.
g
e
t
L
e
n
g
t
h
(
)
;

i
+
+
)

{
d
a
t
a

=
o
u
t
B
S
D
.
c
r
e
a
t
e
E
l
e
m
e
n
t
(
"
g
B
S
D
U
n
i
t
"
)
;

d
a
t
a
.
s
e
t
A
t
t
r
i
b
u
t
e
(
"
m
a
r
k
e
r
"
,
"
:
l
a
b
e
l
:
(
1
,
"

+
(
i

+
1
)

+
"
)
"
)
;

d
a
t
a
.
s
e
t
A
t
t
r
i
b
u
t
e
(
"
s
t
a
r
t
"
,

I
n
t
e
g
e
r
.
t
o
S
t
r
i
n
g
(
c
u
r
s
o
r
[
2
]
)
)
;

d
a
t
a
.
s
e
t
A
t
t
r
i
b
u
t
e
(
"
g
l
o
b
a
l
A
d
d
r
e
s
s
I
n
f
o
"
,
b
i
t
s
t
r
e
a
m
[
2
]
)
;

V
O
P
_
d
a
t
a

=
(
(
E
l
e
m
e
n
t
)

V
O
P
[
2
]
.
i
t
e
m
(
p
o
s
[
1
]
)
)
.

g
e
t
E
l
e
m
e
n
t
s
B
y
T
a
g
N
a
m
e
N
S
(
"
M
P
E
G
4
"
,
"
B
P
_
d
a
t
a
"
)
.
i
t
e
m
(
i
)
.
g
e
t
F
i
r
s
t
C
h
i
l
d
(
)
;

e
n
d
p
o
s

=
I
n
t
e
g
e
r
.
p
a
r
s
e
I
n
t
(
V
O
P
_
d
a
t
a
.
g
e
t
N
o
d
e
V
a
l
u
e
(
)
.
s
p
l
i
t
(
"

"
)
[
0
]
)

+
I
n
t
e
g
e
r
.
p
a
r
s
e
I
n
t
(
V
O
P
_
d
a
t
a
.
g
e
t
N
o
d
e
V
a
l
u
e
(
)
.
s
p
l
i
t
(
"

"
)
[
1
]
)
;

d
a
t
a
.
s
e
t
A
t
t
r
i
b
u
t
e
(
"
l
e
n
g
t
h
"
,

I
n
t
e
g
e
r
.
t
o
S
t
r
i
n
g
(
e
n
d
p
o
s

-
c
u
r
s
o
r
[
2
]
)
)
;

s
i
z
e
[
1
]
[
i
+
1
]

+
=

e
n
d
p
o
s

-
c
u
r
s
o
r
[
2
]
;

c
u
r
s
o
r
[
2
]

=
e
n
d
p
o
s
;

p
a
r
c
e
l
.
a
p
p
e
n
d
C
h
i
l
d
(
d
a
t
a
)
;

} p
o
s
[
1
]
+
+
;

f
r
a
m
e
c
o
u
n
t
[
1
]
+
+
;

} i
f

(
+
+
p
o
s
[
0
]

=
=

V
O
P
[
0
]
.
g
e
t
L
e
n
g
t
h
(
)
)

e
n
d

=
t
r
u
e
;

166 Bitstream descriptions for MPEG-4 FGS
} p
a
r
c
e
l
.
s
e
t
A
t
t
r
i
b
u
t
e
(
"
l
e
n
g
t
h
"
,

I
n
t
e
g
e
r
.
t
o
S
t
r
i
n
g
(
c
u
r
s
o
r
[
0
]

-
I
n
t
e
g
e
r
.
p
a
r
s
e
I
n
t
(
p
a
r
c
e
l
.
g
e
t
A
t
t
r
i
b
u
t
e
(
"
s
t
a
r
t
"
)
)
)
)
;

d
e
s
c
r
i
p
t
i
o
n
.
a
p
p
e
n
d
C
h
i
l
d
(
p
a
r
c
e
l
)
;

} c
a
t
c
h

(
D
O
M
E
x
c
e
p
t
i
o
n

e
)

{
S
y
s
t
e
m
.
o
u
t
.
p
r
i
n
t
l
n

(
"
[
E
R
R
O
R
]
:

f
a
i
l
e
d

t
o

c
o
n
s
t
r
u
c
t

t
h
e

g
B
S
D

d
e
s
c
r
i
p
t
i
o
n
\
n
"

+
e
)
;

} /
*
*
*

e
x
p
o
r
t
i
n
g

g
B
S
D

d
e
s
c
r
i
p
t
i
o
n
*
*
*
/

t
r
y

{
T
r
a
n
s
f
o
r
m
e
r

i
d
T
r
a
n
s
f
o
r
m

=
T
r
a
n
s
f
o
r
m
e
r
F
a
c
t
o
r
y
.
n
e
w
I
n
s
t
a
n
c
e
(
)
.
n
e
w
T
r
a
n
s
f
o
r
m
e
r
(
)
;

i
d
T
r
a
n
s
f
o
r
m
.
s
e
t
O
u
t
p
u
t
P
r
o
p
e
r
t
y
(
"
i
n
d
e
n
t
"
,

"
y
e
s
"
)
;

i
d
T
r
a
n
s
f
o
r
m
.
s
e
t
O
u
t
p
u
t
P
r
o
p
e
r
t
y
(
"
{
h
t
t
p
:
/
/
x
m
l
.
a
p
a
c
h
e
.
o
r
g
/
x
s
l
t
}
i
n
d
e
n
t
-
a
m
o
u
n
t
"
,

"
2
"
)
;

S
o
u
r
c
e

i
n
p
u
t

=
n
e
w

D
O
M
S
o
u
r
c
e
(
o
u
t
B
S
D
)
;

R
e
s
u
l
t

o
u
t
p
u
t

=
n
e
w

S
t
r
e
a
m
R
e
s
u
l
t
(
o
u
t
)
;

i
d
T
r
a
n
s
f
o
r
m
.
t
r
a
n
s
f
o
r
m
(
i
n
p
u
t
,

o
u
t
p
u
t
)
;

/
/
S
y
s
t
e
m
.
o
u
t
.
p
r
i
n
t
l
n

(
)
;

} c
a
t
c
h

(
T
r
a
n
s
f
o
r
m
e
r
E
x
c
e
p
t
i
o
n

e
)

{
S
y
s
t
e
m
.
o
u
t
.
p
r
i
n
t
l
n

(
"
[
E
R
R
O
R
]
:

f
a
i
l
e
d

t
o

p
r
i
n
t

o
u
t

t
h
e

g
B
S
D

d
e
s
c
r
i
p
t
i
o
n
\
n
"

+
e
)
;

} t
r
y

{
o
u
t
.
c
l
o
s
e
(
)
;

} c
a
t
c
h

(
I
O
E
x
c
e
p
t
i
o
n

e
)

{
S
y
s
t
e
m
.
o
u
t
.
p
r
i
n
t
l
n

(
"
[
E
R
R
O
R
]
:
\
n
"

+
e
)
;

}
}

}

Appendix B

Sequences used in the
subjective test

In this appendix, we show some images of the six sequences that were used
in the subjective test presented in Chapter 6. For each sequence, we show one
frame of the original sequence, and the same frame in the encoded version at
30 frames per second and CIF resolution, which is the version that contains the
most severe amount of distortion.

The images that are shown on the left pages come from the original se-
quences that were used in the subjective test. These sequences were not pre-
sented to the participants, but were used for producing the actual sequences
that were presented in the test.

On the right pages, the same frames are shown, this time extracted from the
encoded sequences. In most images, the distortion introduced by the encoding
process is clearly visible. The bit rates that were used for encoding these se-
quences can be found in Table 6.1; the PSNR values, indicating the amount of
distortion, can be found in Table 6.2.

168 Sequences used in the subjective test

coastguard (original)

coastguard.bmp

stefan (original)

stefan.bmp

169

coastguard (encoded)

coastguard_dist.bmp

stefan (encoded)

stefan_dist.bmp

170 Sequences used in the subjective test

akiyo (original)

akiyo0.bmp

foreman (original)

foreman.bmp

171

akiyo (encoded)

akiyo_dist.bmp

foreman (encoded)

foreman_dist.bmp

172 Sequences used in the subjective test

mother (original)

mother.bmp

silent (original)

silent.bmp

173

mother (encoded)

mother_dist.bmp

silent (encoded)

silent_dist.bmp

174 Sequences used in the subjective test

References

[1] Ramesh Jain. Quality of experience. IEEE Multimedia, 11(1):95–96, January
2004.

[2] Fernando Pereira and Ian Burnett. Universal multimedia experiences for to-
morrow. IEEE Signal Processing Magazine, 20(2):63–73, March 2003.

[3] Sam Lerouge, Peter Lambert, and Rik Van de Walle. Multi-criteria optimiza-
tion for scalable bitstreams. In Visual Content Processing and Representation,
8th International Workshop VLBV 2003, volume 2849 of Lecture Notes in Com-
puter Science, September 2003.

[4] Davy De Schrijver, Chris Poppe, Sam Lerouge, Wesley De Neve, and Rik
Van de Walle. MPEG-21 bitstream syntax descriptions for scalable video
codecs. Multimedia Systems, 2006. To appear.

[5] Sam Lerouge, Boris Rogge, Dimitri Van De Ville, Rik Van de Walle, and Jan
Van Campenhout. An XML-based framework for content adaptation. In Pro-
ceedings of Euromedia 2002, pages 175–179, Modena, Italy, April 2002.

[6] Sam Lerouge, Boris Rogge, Robbie De Sutter, Jeroen Bekaert, Dimitri Van
De Ville, and Rik Van de Walle. A generic mapping mechanism between con-
tent description metadata and user environments. In Internet Multimedia Man-
agement Systems III, volume 4862 of Proceedings of SPIE, July 2002.

[7] Sam Lerouge, Robbie De Sutter, Peter Lambert, and Rik Van de Walle. Fully
scalable video coding in multicast applications. In Proceedings of SPIE/Elec-
tronic Imaging 2004, volume 5308, pages 555–564, San Jose, California, USA,
January 2004.

[8] Sam Lerouge, Robbie De Sutter, and Rik Van de Walle. Personalizing quality
aspects in scalable video coding. In IEEE Proceedings of ICME 2005, Amster-
dam, The Netherlands, July 2005.

[9] Robbie De Sutter, Sam Lerouge, Jeroen Bekaert, Boris Rogge, Dimitri Van
De Ville, and Rik Van de Walle. Dynamic adaptation of multimedia data for
mobile applications. In Internet Multimedia Management Systems III, volume
4862 of Proc. of SPIE, July 2002.

176 REFERENCES

[10] Jeroen Bekaert, Dimitri Van De Ville, Boris Rogge, Sam Lerouge, Robbie
De Sutter, and Rik Van de Walle. Metadata-based access to multimedia archi-
tectural and historical archive collections. In Internet Multimedia Management
Systems III, volume 4862 of Proceedings of SPIE, July 2002.

[11] Robbie De Sutter, Sam Lerouge, Jeroen Bekaert, and Rik Van de Walle. Dy-
namic adaptation of streaming MPEG-4 video for mobile applications. In Pro-
ceedings of Euromedia 2003, pages 185–190, Plymouth, UK, April 2003.

[12] Robbie De Sutter, Sam Lerouge, Wesley De Neve, Peter Lambert, and Rik
Van de Walle. Advanced mobile multimedia applications: using MPEG-21 and
time-dependent metadata. In Proceedings of SPIE/ITCom 2003, volume 5241,
pages 147–156, Orlando, USA, September 2003.

[13] Wesley De Neve, Peter Lambert, Sam Lerouge, and Rik Van de Walle. Assess-
ment of the compression efficiency of the MPEG-4 AVC specification. In Pro-
ceedings of SPIE/Electronic Imaging 2004, volume 5308, pages 1082–1093,
San Jose, California, USA, January 2004.

[14] Wesley De Neve, Sam Lerouge, Peter Lambert, and Rik Van de Walle. A
performance evaluation of MPEG-21 BSDL in the context of H.264/AVC. In
Proceedings of SPIE 2004: Signal and Image Processing and Sensors, volume
5558, pages 555–566, Denver, Colorado, USA, August 2004.

[15] Robbie De Sutter, Sam Lerouge, Davy De Schrijver, and Rik Van de Walle.
Enhancing RSS feeds: Eliminating overhead through binary encoding. In Pro-
ceedings of the 3rd International Conference on Information Technology and
Applications, Sidney, Australia, July 2005.

[16] Fernando Pereira and Touradj Ebrahimi. The MPEG-4 Book. Prentice Hall,
New Jersey, 2002.

[17] Sungdae Cho and William A. Pearlman. A full-featured, error-resilient, scal-
able wavelet video codec based on the set partitioning in hierarchical trees
(SPIHT) algorithm. IEEE Transactions on Circuits and Systems for Video Tech-
nology, 12(3):157–171, March 2002.

[18] Susie J. Wee and John G. Apostolopoulos. Secure scalable streaming enabling
transcoding without decryption. In Proceedings of the IEEE International Con-
ference on Image Processing (ICIP), Thessaloniki, Greece, October 2001.

[19] Chun Yuan, Bin B. Zhu, Yidong Wang, Shipeng Li, and Yuzhuo Zhong. Ef-
ficient and fully scalable encryption for MPEG-4 FGS. In Proceedings of the
International Symposium on Circuits and Systems (ISCAS), Bangkok, Thailand,
May 2003.

[20] Barry G. Haskell, Atul Puri, and Arun N. Netravali. Digital Video: an Intro-
duction to MPEG-2. Chapman and Hall, 1997.

[21] Weiping Li. Overview of Fine Granularity Scalability in MPEG-4 video
standard. IEEE Transactions on Circuits and Systems for Video Technology,
11(3):301–317, March 2001.

REFERENCES 177

[22] Hayder M. Radha, Mihaela van der Schaar, and Yingwei Chen. The MPEG-4
Fine-Grained Scalable video coding method for multimedia streaming over IP.
IEEE Transactions on Multimedia, 3(1):53–68, March 2001.

[23] Majid Rabbani and Rajan Joshi. An overview of the JPEG 2000 still image
compression standard. Signal Processing: Image Communication, 17(1):3–48,
January 2002.

[24] Jens-Rainer Ohm. Motion-compensated 3-D subband coding with multireso-
lution representation of motion parameters. In Proceedings of the IEEE Inter-
national Conference on Image Processing (ICIP), volume 3, pages 250–254,
1994.

[25] Jens-Rainer Ohm. Three-dimensional subband coding with motion compensa-
tion. IEEE Transactions on Image Processing, 3(5):559–571, September 1994.

[26] Shih-Ta Hsiang and John W. Woods. Embedded video coding using invert-
ible motion compensated 3-D subband/wavelet filter bank. Signal Processing:
Image Communication, 16(8):705–724, May 2001.

[27] Seung-Jong Choi and John W. Woods. Motion-compensated 3-D subband cod-
ing of video. IEEE Transactions on Image Processing, 8(2):155–167, February
1999.

[28] Yiannis Andreopoulos, Mihaela van der Schaar, Adrian Munteanu, Peter
Schelkens, and Jan Cornelis. Fully-scalable wavelet video coding using in-band
motion compensated temporal filtering. In Proc. IEEE International Confer-
ence on Acoustics Speech, and Signal Processing (ICASSP), volume 3, pages
417–420, Hong Kong, China, March 2003.

[29] Yiannis Andreopoulos, Adrian Munteanu, Joeri Barbarien, Mihaela van der
Schaar, Jan Cornelis, and Peter Schelkens. In-band motion compensated tem-
poral filtering. Signal Processing: Image Communication, 19(5):653–673, Au-
gust 2004.

[30] Deepak S. Turaga, Mihaela van der Schaar, Yiannis Andreopoulos, Adrian
Munteanu, and Peter Schelkens. Unconstrained motion compensated temporal
filtering (UMCTF) for efficient and flexible interframe wavelet video coding.
Signal Processing: Image Communication, 20(1):1–19, January 2005.

[31] Thomas Wiegand, Heiko Schwarz, Anthony Joch, Faouzi Kossentini, and
Gary J. Sullivan. Rate-constrained coder control and comparison of video cod-
ing standards. IEEE Transactions on Circuits and Systems for Video Technol-
ogy, 13(7):688– 703, July 2003.

[32] Thomas Wiegand, Gary J. Sullivan, Gisle Bjontegaard, and Ajay Luthra.
Overview of the H.264/AVC video coding standard. IEEE Transactions on
Circuits and Systems for Video Technology, 13(7):560–576, July 2003.

[33] Wesley De Neve, Frederik De Keukelaere, Koen De Wolf, and Rik Van de
Walle. Applying MPEG-21 BSDL to the JVT H.264/AVC specification in

178 REFERENCES

MPEG-21 session mobility scenarios. In Proc. 5th Workshop on Image Analy-
sis for Multimedia Interactive Services (WIAMIS), pages 4–7, Lisboa, Portugal,
April 2004.

[34] Wesley De Neve, Davy Van Deursen, Davy De Schrijver, Koen De Wolf, and
Rik Van de Walle. Using bitstream structure descriptions for the exploitation of
multi-layer temporal scalability in H.264/MPEG-4 AVC’s base specification. In
Proceedings of the Pacific-Rim Conference on Multimedia (PCM), Jeju, Korea,
November 2005.

[35] Heiko Schwarz, Detlev Marpe, and Thomas Wiegand. MCTF and scalability
extension of H.264/AVC. In Proceedings of PCS’04, San Francisco, CA, USA,
December 2004.

[36] Ralf Schäfer, Heiko Schwarz, Detlev Marpe, Thomas Schierl, and Thomas
Wiegand. MCTF and scalability extension of H.264/AVC and its application
to video transmission, storage and surveillance. In Proceedings of Visual Com-
munications and Image Processing (VCIP) 2005, Beijing, China, July 2005.

[37] ISO/IEC. ISO/IEC 21000-2:2003 Information technology – Multimedia frame-
work (MPEG-21) – Part 1: Vision, Technologies and Strategy, November 2004.

[38] Ian Burnett, Rik Van de Walle, Keith Hill, Jan Bormans, and Fernando Pereira.
MPEG-21: Goals and achievements. IEEE Multimedia, 10(4):60–70, October
2003.

[39] Jan Bormans, Jean Gelissen, and Andrew Perkis. MPEG-21: The 21st cen-
tury multimedia framework. IEEE Signal Processing Magazine, 20(2):53–62,
March 2003.

[40] ISO/IEC. ISO/IEC 21000-2:2003 Information technology – Multimedia frame-
work (MPEG-21) – Part 2: Digital Item Declaration second edition, July 2005.

[41] ISO/IEC. ISO/IEC 21000-7:2004 Information technology – Multimedia frame-
work (MPEG-21) – Part 7: Digital Item Adaptation, October 2004.

[42] Frederik De Keukelaere and Rik Van de Walle. Digital item declaration and
identification. In The MPEG-21 Book. To appear, 2005.

[43] Ian S. Burnett, Stephen J. Davis, and Gerrard M. Drury. MPEG-21 Digital
Item Declaration and Identification – principles and compression. IEEE Trans-
actions on Multimedia, 7(3):400–407, June 2005.

[44] B.S. Manjunath, Philippe Salembier, and Thomas Sikora. Introduction to
MPEG-7: Multimedia Content Description Interface. Wiley, New Jersey, 2003.

[45] Anthony Vetro. MPEG-21 Digital Item Adaptation: Enabling universal multi-
media access. IEEE Multimedia, 11(1):84–87, January 2004.

[46] Anthony Vetro and Christian Timmerer. Digital Item Adaptation: Overview
of standardization and research activities. IEEE Transactions on Multimedia,
7(3):418–426, June 2005.

REFERENCES 179

[47] Debargha Mukherjee, Eric Delfosse, Jae-Gon Kim, and Yong Wang. Optimal
adaptation decision-taking for terminal and network quality of service. IEEE
Transactions on Multimedia, 7(3):454–462, June 2005.

[48] Jae-Gon Kim, Yong Wang, and Shih-Fu Chang. Content-adaptive utility-based
video adaptation. In IEEE International Conference on Multimedia and Expo
(ICME), Baltimore, Maryland, USA, July 2003.

[49] Anthony Vetro, Charilaos Christopoulos, and Huifang Sun. Video transcoding
architectures and techniques: an overview. IEEE Signal Processing Magazine,
20(2):18–29, March 2003.

[50] Christian Timmerer, Gabriel Panis, Harald Kosch, Jörg Heuer, Hermann Hell-
wagner, and Andreas Hutter. Coding format independent multimedia content
adaptation using XML. In Internet Multimedia Management Systems IV, vol-
ume 5242 of Proceedings of SPIE, September 2003.

[51] Mihaela van der Schaar and Yiannis Andreopoulos. Rate-distortion-complexity
modeling for network and receiver aware adaptation. IEEE Transactions on
Multimedia, 7(3):471–479, June 2005.

[52] Tim Bray, Jean Paoli, C.M. Sperberg-McQueen, Eve Maler, and François
Yergeau. Extensible Markup Language (XML) 1.0 (third edition). Technical
report, W3C, February 2004.

[53] Kal Ahmed, Danny Ayers, Mark Birbeck, Jay Cousins, David Dodds, Josh
Lubell, Miloslav Nic, Daniel Rivers-Moore, Andrew Watt, Robert Worden, and
Ann Wrightson. XML Meta Data. Wrox, 2001.

[54] Myriam Amielh and Sylvain Devillers. Multimedia content adaptation with
XML. In 8th International Conference on Multimedia Modeling MMM2001,
pages 127–145, Amsterdam, The Netherlands, November 2001.

[55] Myriam Amielh and Sylvain Devillers. Bitstream syntax description language:
Application of XML schema to multimedia content adaptation. In Proceedings
of the Eleventh International World Wide Web Conference, Honolulu, Hawaii,
USA, May 2002.

[56] Sylvain Devillers. XML and XSLT modeling for multimedia bitstream ma-
nipulation. In Poster Proceedings of the Tenth International World Wide Web
Conference, Hong Kong, China, May 2001.

[57] Gabriel Panis, Andreas Hutter, Jörg Heuer, Hermann Hellwagner, Harald
Kosch, Christian Timmerer, Sylvain Devillers, and Myriam Amielh. Bitstream
syntax description: a tool for multimedia resource adaptation within MPEG-21.
Signal Processing: Image Communication, 18(8):699–719, September 2003.

[58] James Clark. XSL Transformations (XSLT) version 1.0. Recommendation,
W3C, November 1999.

180 REFERENCES

[59] Davy De Schrijver, Wim Van Lancker, and Rik Van de Walle. Performance of
a scalable bitstream adaptation process based on high level XML descriptions.
In Proceedings of the Workshop on Image Analysis for Multimedia Interactive
Services (WIAMIS), Montreux, Switzerland, April 2005.

[60] David C. Fallside and Priscilla Walmsley. XML Schema part 0: Primer (second
edition). Recommendation, W3C, October 2004.

[61] Gauthier Lafruit, Eric Delfosse, Roberto Osorio, Wolfgang van Raemdonck,
Vissarion Ferentinos, and Jan Bormans. View-dependent, scalable texture
streaming in 3-D QoS with MPEG-4 visual texture coding. IEEE Transactions
on Circuits and Systems for Video Technology, 14(7):1021–1031, July 2004.

[62] Thomas Di Giacomo, Chris Joslin, Stéphane Garchery, HyungSeok Kim, and
Nadia Magnenat-Thalmann. Adaptation of virtual human animation and repre-
sentation for MPEG. Computers & Graphics, 28(4):65–74, August 2004.

[63] Alexandros Eleftheriadis. Flavor: A language for media representation. In
Proceedings of ACM Multimedia, pages 1–9, Seattle, WA, USA, November
1997.

[64] Danny Hong and Alexandros Eleftheriadis. XFLAVOR: Bridging bits and ob-
jects in media representation. In Proceedings of the IEEE International Confer-
ence on Multimedia and Expo (ICME), Lausanne, Switzerland, August 2002.

[65] Alexandros Eleftheriadis and Danny Hong. Flavor: A formal language for
audio-visual object representation. In Proceedings of ACM International Con-
ference on Multimedia, New York, NY, USA, October 2004.

[66] Debargha Mukherjee and Amir Said. Structured scalable meta-formats (SSM)
for Digital Item Adaptation. In Internet Imaging IV, volume 5018 of Proceed-
ings of SPIE, January 2003.

[67] Debargha Mukherjee, Amir Said, and Sam Liu. A framework for fully format-
independent adaptation of scalable bit-streams. IEEE Transactions on Cir-
cuits and Systems for Video Technology, Special Issue on Video Adaptation,
15(10):1280–1290, October 2005.

[68] Sylvain Devillers, Christian Timmerer, Jörg Heuer, and Hermann Hellwagner.
Bitstream syntax description-based adaptation in streaming and constrained en-
vironments. IEEE Transactions on Multimedia, 7(3):463–470, June 2005.

[69] Robbie De Sutter, Christian Timmerer, Hermann Hellwagner, and Rik Van de
Walle. Multimedia metadata processing: a format independent approach. In
Proceedings of the 9th IASTED International Conference Internet and Mul-
timedia Systems and Applications (EuroIMSA), pages 343–348, Grindelwald,
Switzerland, February 2005.

[70] Martin Fowler and Kendall Scott. UML Distilled: A Brief Guide to the Standard
Object Modeling Language (2nd Edition). Addison-Wesley, 1999.

REFERENCES 181

[71] Shih-Fu Chang and Anthony Vetro. Video adaptation: Concepts, technologies,
and open issues. Proceedings of IEEE, Special Issue on Advances in Video
Coding and Delivery, 93(1):148–158, January 2005.

[72] Debargha Mukherjee, Huisheng Wang, Amir Said, and Sam Liu. Format-
agnostic adaptation using the MPEG-21 DIA framework. In Proceedings of
SPIE 2004: Applications of Digital Image Processing, volume 5558, pages
351–362, Denver, Colorado, USA, November 2004.

[73] Anthony Vetro, Charilaos Christopoulos, and Touradj Ebrahimi. Universal mul-
timedia access. IEEE Signal Processing Magazine, 20(2):16, March 2003.

[74] Peter Soetens, Matthias De Geyter, and Stijn Decneut. Multi-step media adap-
tation with semantic web services. In Proceedings of the Third International
Semantic Web Conference (ISWC 2004), Hiroshima, Japan, November 2004.

[75] Ibtissam El Khayat and Guy Leduc. A stable and flexible TCP-friendly conges-
tion control protocol for layered multicast transmission. In Interactive Distrib-
uted Multimedia Systems, volume 2158 of Lecture Notes in Computer Science,
September 2001.

[76] Vilfredo Pareto. Cours d’Economie Politique. Lausanne, 1896.

[77] Ralph E. Steuer. Multiple criteria optimization: theory, computation and ap-
plication. Krieger Publishing Company, 1986.

[78] Ralph L. Keeney and Howard Raiffa. Decisions with Multiple Objectives: Pref-
erences and value trade-offs. Wiley, New York, 1976.

[79] Eric C. Reed and Jae S. Lim. Optimal multidimensional bit-rate control for
video communication. IEEE Transactions on Image Processing, 11(8):873 –
885, August 2002.

[80] Stefan Winkler and Christof Faller. Maximizing audiovisual quality at low
bitrates. In Proceedings of the Workshop on Video Processing and Quality
Metrics, Scottsdale, Arizona, USA, January 2005.

[81] Paul Bockeck, Andrew T. Campbell, Shih-Fu Chang, and Raymond R.-F. Liao.
Utility-based network adaptation for MPEG-4 systems. In Proceedings of
NOSSDAV 1999, Basking Ridge, New Jersey, USA, June 1999.

[82] Rakesh Mohan, John R. Smith, and Chung-Sheng Li. Adapting multime-
dia internet content for universal access. IEEE Transactions on Multimedia,
1(1):104–114, March 1999.

[83] Carlos E. Luna, Lisimachos P. Kondi, and Aggelos K. Katsaggelos. Maximiz-
ing user utility in video streaming applications. IEEE Transactions on Circuits
and Systems for Video Technology, 13(2):141 – 148, February 2003.

[84] Thomas L. Saaty. The Analytic Hierarchy Process. McGraw-Hill, New York,
1980.

182 REFERENCES

[85] Pattie Maes. Agents that reduce work and information overload. Communica-
tions of the ACM, 37(7):31–40, July 1994.

[86] Bradley J. Rhodes and Pattie Maes. Just-in-time information retrieval agents.
IBM Systems Journal, 39(3-4):685–704, 2000.

[87] Peter van Beek, John R. Smith, Touradj Ebrahimi, Teruhiko Suzuki, and Joel
Askelof. Metadata-driven multimedia access. IEEE Signal Processing Maga-
zine, 20(2):40–52, March 2003.

[88] Gustav Theodor Fechner. Vorschule der Aesthetik. Breikopf & Härterl, Leipzig,
1876.

[89] George A. Gescheider. Psychophysics: Method, Theory and Application.
Lawrence Erlbaum Associates, Hillsdale, New Jersey, 1985.

[90] Louis Leon Thurstone. A law of comparative judgement. Psychological Re-
view, 34:273–286, 1927.

[91] George B. Dantzig and B. Curtis Eaves. Fourier-Motzkin elimination and its
dual. Journal of Combinatorial Theory (A), 14(3):288–297, May 1974.

[92] L. Karl Branting and Patrick S. Broos. Automated acquisition of user prefer-
ences. International Journal of Human-Computer Studies, 46:55–77, 1997.

[93] Jenq-Nenq Hwang, Tzong-Der Wu, and Chia-Wen Lin. Dynamic frame-
skipping in video transcoding. In IEEE Workshop on Multimedia Signal
Processing, pages 616–621, December 1998.

[94] Giovanni Iacovoni, Salvatore Morsa, and Renzo Felice. Quality-temporal
transcoder driven by the jerkiness. In IEEE Proceedings of ICME 2005, Ams-
terdam, The Netherlands, July 2005.

[95] Yong Wang, Mihaela van der Schaar, Shih-Fu Chang, and Alexander C. Loui.
Classification-based multi-dimensional adaptation prediction for scalable video
coding using subjective quality evaluation. IEEE Transactions on Circuits and
Systems for Video Technology, Special Issue on Analysis and Understanding
for Video Adaptation, 15(10):1270–1279, October 2005.

[96] Özgür D. Önür and A. Aydin Alatan. Video adaptation for transmission chan-
nels by utility modeling. In IEEE Proceedings of ICME 2005, Amsterdam, The
Netherlands, July 2005.

[97] ITU. ITU-R recommendation BT.500-11 ”methodology for the subjective as-
sessment of the quality of television pictures, 2002.

[98] A. Murat Tekalp. Digital Video Processing. Prentice-Hall, Englewood Cliffs,
NJ, 1995.

[99] VQEG. Final report from the Video Quality Experts Group on the validation
of objective models of video quality assessment, phase II.
http://www.vqeg.org, August 2003.

REFERENCES 183

[100] Zhou Wang, Ligang Lu, and Alan C. Bovik. Video quality assessment based
on structural distortion measurement. Signal Processing: Image Communica-
tion, Special issue on objective video quality metrics, 19(2):121–132, February
2004.

	Introduction
	Context
	Scalable Video Coding
	Quality of Experience

	Outline

	Enabling technologies
	Introduction
	Scalable video coding
	First efforts in scalable video coding
	Fine-granularity scalability
	Fully scalable wavelet-based video coding
	Scalability in H.264/AVC

	MPEG-21: The multimedia framework
	Digital Item Declaration
	Digital Item Adaptation

	Bitstream descriptions
	Introduction
	Bitstream Syntax Description Language
	Introduction
	Specification

	Generic Bitstream Syntax Description
	Producing bitstream descriptions
	Uncompressed video in the YUV domain
	MPEG-4 Visual
	MPEG-4 FGS
	Bitstream descriptions for other formats

	Related work
	FLAVOR and XFLAVOR
	SSM

	Conclusions and original contributions

	An abstract model for scalable bitstreams
	Introduction
	The abstract model
	Informal semantics
	Definitions

	Mapping existing coding formats onto the abstract model
	Fine-granularity scalability
	FGS with temporal scalability
	Wavelet-based video coding

	Content negotiation for scalable bitstreams
	Introduction
	Constraints
	Selecting the best version

	Other applications of the abstract model
	Conclusions and original contributions

	Multi-criteria optimization in video communication
	Introduction
	Background of multi-criteria optimization
	Complexity of calculating the Pareto frontier
	Complexity analysis
	Measurements

	Multi-criteria optimization in video coding
	Content negotiation redefined
	Selecting one solution from the Pareto frontier
	Quality agents in content negotiation
	Algorithms for capturing user preferences
	Systems of inequalities
	1ARC

	Related work
	Conclusions and original contributions

	Performance of capturing user preferences
	Introduction
	Terminology
	Test setup
	Sequences
	Presentation
	A note on the presentation of different resolutions
	Participants

	Evaluation methods
	Basic definitions
	Amount of inconsistent training sets
	Test set method
	Best in Group method

	General analysis
	Different versions for the SoI algorithm
	Initial settings
	Influence of temporal quality
	Influence of handling upper bounds

	Different versions for the 1ARC algorithm
	Initial settings
	Influence of temporal quality
	Influence of the selection mechanism

	Comparison between both algorithms
	The impact of noise
	Conclusions and original contributions

	Conclusions
	Bitstream descriptions for MPEG-4 FGS
	Introduction
	BSDL Schema for MPEG-4 FGS
	Merging BSDL FGS bitstream descriptions

	Sequences used in the subjective test

