


Living organisms seem more than the sum of their parts, and this very paradox
might be taken to suggest that there are limits to what we can know about them.
The new school of systems biology rests on the premise that complex phenomena can
best be understood by observing many events at once. How else can one hope to
understand consciousness, development, or immunity? In each example, many
separate events contribute to the whole phenomenon and do so simultaneously and
in many instances, synergistically.

Bruce Beutler (head of the research team that discovered the function of Toll-like receptor 4)
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1.1.  VIRUSES WITH A ROLE IN THE “PORCINE RESPIRATORY DISEASE COMPLEX”

1.1.1.  Porcine reproductive and respiratory syndrome virus

Introduction

In the eighties a new infectious disease of swine, characterized by outbreaks of

abortion, stillborn piglets, weak suckling pigs and respiratory disease, suddenly

emerged in North America and subsequently in Europe (Keffaber, 1989; Hill, 1990).

Two years after the initial report of this “mystery swine disease”, the causative virus

was isolated in the Netherlands and later named “porcine reproductive and respiratory

syndrome virus” or PRRSV (Wensvoort et al., 1991; Collins et al., 1992). PRRSV is

a member of the family Arteriviridae, which together with the family Coronaviridae,

belongs to the order Nidovirales (Cavanagh, 1997). PRRSV is unrelated to any of the

known porcine viruses and its origin remains unclear. European and North American

isolates have marked genetic and antigenic differences and represent two distinct

genotypes. Both genotypes probably drifted away from a common ancestor. Some

authors speculate that this ancestor is a murine arterivirus, namely the lactate

dehydrogenase-elevating virus, which may have crossed the species barrier

(Plagemann, 2003).

PRRSV is a small enveloped virus containing a capsid and single-stranded RNA

comprising 15000 nucleotides (reviewed by Meulenberg, 2000). The virion is

depicted in figure 1. The primary structural proteins are the nucleocapsid (N) protein,

the matrix (M) protein and the envelope protein glycoprotein 5 (GP5), which forms a

dimer with the M protein. GP5 contains neutralizing epitopes and is presumed to be

the attachment protein that binds with the cellular receptors. Four other minor

envelope proteins have been identified.

Most pigs become infected through the oronasal route after close contact with

virus-excreting pigs (Albina, 1997). Aerial transmission can occur, particularly in

winter and over distances of less than 3 km. Sows can become infected after

insemination with contaminated semen. PRRSV is highly prevalent in swine

populations all over the world. Virus infections are continuously maintained on most

Belgian farms and different strains can circulate at the same time (Vynckier and

Pensaert, 1993; Houben et al., 1995; Mateusen et al., 2002; Larochelle et al., 2003).
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Most pigs are protected by maternal antibodies until the age of 4 to 16 weeks and

become infected afterwards.

Figure 1. Structure of a PRRSV virion. The icosahedral capsid consists of nucleocapsid (N)
proteins, which surround the single-stranded RNA genome. Glycoprotein 5 (GP5) is
embedded in the envelope and forms a dimer with the matrix (M) protein. The envelope also
contains four different types of minor proteins, which are not shown here.

Pathogenesis of lung infection

The lung is the main target organ of PRRSV. Lung infection sustains cell-free

viremia, which results in spread to the lymphoid and reproductive system.

Transplacental transmission can occur at the end of gestation and lead to infection of

fetuses. Here we will discuss the effects of PRRSV infection on the lungs, with

emphasis on features that differ from other respiratory virus infections of swine, such

as porcine respiratory coronavirus (PRCV) and influenza virus infections.

Firstly, there is the persistent nature of PRRSV infection in the lungs. PRRSV

replicates for at least 5 to 7 weeks in the lungs and peak virus titers are obtained

between 7 and 14 days post inoculation (DPI) (Mengeling et al., 1995; Duan et al.,

1997b; Beyer et al., 2000; Labarque et al., 2000). In contrast, swine influenza virus is

fully cleared from the lungs one week after inoculation (Brown et al., 1993).

Secondly, PRRSV has a specific tropism for sialoadhesin-positive macrophages

(Duan et al., 1997a and 1998; Vanderheijden et al., 2003; Delputte and Nauwynck,

2004). Sialoadhesin is an immunoglobulin-like lectin on the membrane of distinct

subsets of macrophages, such as resident lung macrophages. Our laboratory identified

GP5

N

M

RNA
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this lectin as a specific receptor that mediates the entry of PRRSV in the cell. Blood

monocytes do not express this receptor and consequently are refractory to PRRSV

infection. Maturation into macrophages coincides with surface expression of

sialoadhesin and susceptibility to PRRSV infection. Macrophages are the main target

cells in the lungs and no other cell types are infected (Teifke et al., 2001).

A third feature is the massive infiltration of monocytes in the lungs during PRRSV

infection. The increase of monocyte-macrophages in bronchoalveolar lavage (BAL)

fluids is about 5 times higher during infection with PRRSV, than with PRCV or

influenza virus (Van Reeth et al., 1999). Moreover, Labarque et al. (2000) found that

the infiltration of monocytes is followed a few days later by a five-fold increase of

sialoadhesin-positive macrophages in BAL fluids. Presumably, the attracted

monocytes differentiate into new PRRSV-susceptible macrophages, which may be a

strategy of the virus to maintain virus replication in the lungs.

Finally, PRRSV induces an exceptionally weak innate immune response in the

lungs (Murtaugh et al., 2002). The production of proinflammatory cytokines during

the early stage of infection is a good parameter to measure the innate immune

response. Studies from our laboratory demonstrate that PRRSV is a poor inducer of

the proinflammatory cytokines tumour necrosis factor-  (TNF- ) and interferon-

(IFN- ) (Van Reeth et al., 1999). This is in contrast to swine influenza virus, which

elicits 10 and 1000-fold higher levels of the respective cytokines in the lungs during

the early stage of infection. Other researchers even suggest that PRRSV actively

suppresses production of both cytokines in infected cells (Albina et al., 1998a; Lopez-

Fuertes et al., 2000; Miller et al., 2004). In addition, PRRSV seems to somewhat

evade or postpone an effective specific immune response (Murtaugh et al., 2002).

Anti-PRRSV antibodies appear as soon as 7 to 10 DPI in sera and lungs, but are

unable to neutralize the virus (Yoon et al., 1995; Albina et al., 1998b; Labarque et al.,

2000). Low titers of neutralizing antibodies appear only 3 to 5 weeks later and this

correlates with elimination of the virus from the lungs. PRRSV-specific IFN-

producing T-lymphocytes appear as soon as 3 weeks after inoculation, but their

frequency in the blood remains unusually low during the following 7 to 9 weeks,

which suggests that PRRSV induces a weak cellular immune response (Meier et al.,

2003).



Chapter 1                                                                                                                                                  6

Lung pathology

Gross lung lesions vary from multifocal to diffuse consolidation of lung tissue

(Halbur et al., 1995). Typically, lungs fail to collapse and have a red and tan mottled

appearance. Microscopically, there is interstitial pneumonia with pronounced

thickening of interalveolar septa. The septa are infiltrated with mononuclear cells and

the alveolar lining generally appears intact. Alveoli contain a mixture of inflammatory

cells and necrotic macrophages. Although PRRSV does not replicate in epithelial cells

and most likely causes no direct damage to these cells, hyperplasia of type 2

pneumocytes is a common histopathological feature of PRRSV-infected lungs (Halbur

et al., 1995; Teifke et al., 2001).

Disease

PRRSV is considered to be one of the most important primary agents of the

“porcine respiratory disease complex” (PRDC) (Thacker, 2001; Choi et al., 2003).

The term PRDC refers to multifactorial respiratory disease in pigs, resulting from

interactions between primary virus or mycoplasma infections, secondary bacterial

infections and environmental factors (for review see Brockmeier et al., 2002).

Because of its assumed role in multifactorial respiratory disease and the occasional

reproductive losses, PRRSV is regarded as the most costly infectious agent in the US

swine industry (www.porkscience.org/documents/other/positionprrs.pdf). Since the

virus became enzootic, a significant increase of respiratory disease, secondary

bacterial infections and poor productivity has also been reported on many European

farms (Done and Paton, 1995). Nevertheless, an uncomplicated infection, particularly

under experimental conditions and with European isolates, fails to induce overt

respiratory disease (Van Reeth et al., 1996; Solano et al., 1997; Labarque et al., 2000

and 2002). Indeed, numerous nursery and grower pigs have been inoculated with

different European isolates in our laboratory and infections usually remained mild or

subclinical. The most consistent clinical signs were transient fever (40 to 41°C) and

decrease of appetite. However, genetic variation between circulating PRRSV strains

continues to increase and this might be accompanied with differences in virulence

(Forsberg et al., 2002; Grebennikova et al., 2004). Some strains, particularly of the

American type, are assumed to be more virulent and can induce severe respiratory

distress on their own (Halbur et al., 1995 and 1996). The mechanisms underlying this
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apparent difference in pathogenicity are so far unclear. It is nonetheless commonly

accepted that PRRSV has to cooperate with secondary agents to induce respiratory

disease.

One of the prevailing concepts is that PRRSV infection leads to a decrease of

innate defences in the lungs. This presumption follows from the fact that PRRSV

infects macrophages, which constitute the first line of defence in the lungs. Indeed, in

vitro infection of macrophages results in cell death within 24 to 48 hours after

inoculation (Paton et al., 1992; Suaréz et al., 1996; Oleksiewicz and Nielsen, 1999).

Additionally, studies on lung tissue demonstrated that part of the macrophages

surrounding infected cells undergo apoptosis (Sirinarumitr et al., 1998; Sur et al.,

1998; Choi and Chae, 2002; Labarque et al., 2003). Thanawongnuwech et al. (2000)

demonstrated that the capacity of the lungs to clear copper particles from the blood is

reduced during PRRSV infection, probably because of destruction of intravascular

lung macrophages. Furthermore, some dual inoculation studies revealed that PRRSV

infection renders the lungs susceptible to colonization with secondary invaders such

as Bordetella bronchiseptica and Streptococcus suis (Galina et al., 1994; Brockmeier

et al., 2000; Halbur et al., 2000; Thanawongnuwech et al., 2000; Schmitt et al., 2001).

However, many other studies, including those from our laboratory, do not confirm

the idea of an impaired innate defence. Firstly, PRRSV infection does not lead to

increased colonization of the lungs with many other bacteria, such as Pasteurella

multocida, Haemophilus parasuis, Mycoplasma hyopneumoniae and Salmonella

choleraesuis upon experimental inoculation (Cooper et al., 1995; Van Alstine et al.,

1996; Carvalho et al., 1997; Solano et al., 1997; Segalés et al., 1999; Thacker et al.,

1999; Brockmeier et al., 2001). Secondly, the total number of viable alveolar

macrophages does not decrease during PRRSV infection (Labarque et al., 2000). On

the contrary, infection causes a 5-fold increase of the number of alveolar macrophages

between 5 and 52 DPI. This is because at most 3% of total BAL cells become infected

with PRRSV and infiltrated monocytes differentiate into a new pool of macrophages

during infection (Mengeling et al., 1995; Duan et al., 1997b; Labarque et al., 2000).

Finally, previous studies from our laboratory revealed that PRRSV infection does not

impair clearance of influenza virus from the lungs (Van Reeth et al., 1996).

Most studies do not support a systemic immunosuppressive effect of PRRSV. One

experiment of Li and Yang (2003) suggests that the antibody response against a



Chapter 1                                                                                                                                                  8

commercial classical swine fever vaccine is diminished in PRRSV-infected pigs,

compared to uninfected pigs. However, this putative immunosuppressive effect of

PRRSV infection is refuted by many other studies (Molitor et al., 1992; Brun et al.,

1994; Albina et al., 1998b; De bruin et al., 2000). For example, PRRSV infection did

not weaken the development of vaccine-induced protection against pseudorabies

virus. On the contrary, some studies even suggest that PRRSV infection enhances the

humoral immune response against foreign antigens by stimulating polyclonal

proliferation of B-lymphocytes (Vézina et al., 1996; De Bruin et al., 2000;

Lamontagne et al., 2001).

In the past, our laboratory has studied the effects of dual infections with PRRSV

followed by other respiratory viruses, namely influenza virus or PRCV (Van Reeth et

al., 1996 and 2001). Serological data demonstrated that dual infections with these

viruses occur often under field circumstances (Van Reeth and Pensaert, 1994a;

Houben et al., 1995). Pigs were inoculated with PRRSV and 3 to 14 days later with

influenza virus or PRCV. Dual PRRSV-influenza virus and PRRSV-PRCV infections

sometimes caused significantly more respiratory disease and growth retardation than

each of the virus infections alone. Still, the clinical outcome of these dual infections

varied strongly within and between experiments. Within experiments, the proportion

of pigs that developed enhanced respiratory disease varied from 20 to 100%.

Moreover, the severity of respiratory disease and weight loss differed strongly

between experiments. Though our data support that interactions between respiratory

viruses potentially aggravate respiratory disease, dual inoculations with PRRSV and

other respiratory viruses lack the reproducibility that is required to study the

pathogenesis of multifactorial respiratory disease. This is probably due to the fact that

even a single experimental infection with a respiratory virus has intrinsic variation in

virological, inflammatory and clinical parameters. The variation of a second infection

will likely be extra enhanced, as the outcome of this infection depends partly on that

of the first infection.

Thus, it remains poorly understood how viruses, like PRRSV, can cooperate with

other agents in the induction of severe respiratory disease. This lack of knowledge of

the pathogenesis of multifactorial viral respiratory disease was inherited by the author

of this thesis and warrants the research described further.
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1.1.2.  Porcine respiratory coronavirus

Introduction

Porcine respiratory coronavirus (PRCV), a member of the coronaviridae, is a variant

of the transmissible gastroenteritis virus (TGEV) with altered tropism from the enteric

tract to the respiratory tract. This previously unrecognized coronavirus suddenly

emerged in Europe during the early eighties and was first isolated and described by

Pensaert et al. (1986).

PRCV is an enveloped virus containing a capsid and single-stranded RNA

comprising 30000 nucleotides (reviewed by Laude et al., 1993). The virion, depicted

in figure 2, contains three major structural proteins. The spike (S) protein is a

membrane-anchored glycoprotein that protrudes from the envelope as a trimer. This

protein induces virus-neutralizing antibodies and is considered to be the attachment

protein (Godet et al., 1994; Callebaut et al., 1996). The glycosylated matrix (M)

protein is integrated in the envelope and the phosphorylated nucleocapsid (N) protein

is closely associated with the RNA, with which it forms the helical nucleocapsid.

Figure 2. Structure of a PRCV virion (a). Nucleocapsid (N) proteins are complexed with the
RNA into a helix. The matrix (M) protein is embedded in the envelope. Spike (S)
glycoproteins are inserted in the envelope and form large peplomers, which protrude from the
outside of the virion. These peplomers are visible as a “corona” on the outside of the virion,
as illustrated in the photograph (b; courtesy of CDC, USA).

The genomes of PRCV and TGEV are highly homologous (96%), except for a

large deletion of 672 nucleotides in the S protein gene (Rasschaert et al., 1990). Most

S

N

M

RNA

a b
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likely, PRCV originated as a deletion mutant of TGEV. The S protein of PRCV lacks

224 amino acids and has a length of 1209 amino acids, whereas that of TGEV has a

length of 1431 amino acids. Smaller deletions are also present in the open reading

frame 3a. The deletions caused a shift of the tropism from the enteric tract to the

respiratory tract and utterly changed the epizootiology, pathogenesis and clinical

effects of the virus (Cox et al., 1990b; Ballesteros et al., 1997).

PRCV spreads rapidly through the air and pigs become infected through the

oronasal route (Pensaert et al., 1993). Nowadays, PRCV is considered to be

enzootically present in swine populations all over the world. Different surveys

demonstrate that most Belgian farms harbour the virus and more than 90% of the

sows have antibodies (Pensaert et al., 1993; Van Reeth et al., 1994a). Maternal

antibodies are protective until the age of 5 to 16 weeks and the majority of pigs

become infected afterwards.

Pathogenesis of lung infection

The pathogenesis of PRCV infection differs clearly from that of PRRSV infection.

Firstly, PRCV causes a typical acute lung infection (O’Toole et al., 1989; Cox et al.,

1990a). Highest virus titers are obtained between 2 and 5 days after inoculation and

virus is fully cleared from the lungs less than a week later. The lungs are incontestably

the main target organ, as virus titers here are higher than in any other organ. PRCV

can also readily be isolated from the trachea, tonsils and nasal mucosa. Low virus

titers have been detected in the blood, spleen, mesenteric lymph nodes and the

intestines of experimentally inoculated neonates (<1 week old) (O’Toole et al., 1989;

Cox et al., 1990a). In older pigs (>5 weeks old) virus replication seems to be

restricted to the lungs (Cox et al., 1990b).

Secondly, PRCV is an epitheliotropic virus. The main target cells in the lungs are

pneumocytes, bronchiolar epithelial cells and to a lesser extent bronchial epithelial

cells (Cox et al., 1990a). PRCV antigens are occasionally detected in lung

macrophages, but it is still unclear whether this represents a productive infection or

phagocytosis of virus particles and virus-contaminated cell debris. TGEV replicates

productively in alveolar macrophages, but this has not been verified for PRCV (Laude

et al., 1984). There are indications that PRCV, as other group 1 coronaviruses, uses

aminopeptidase-N as a receptor for entry in the cell (Delmas et al., 1993; Tresnan et
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al., 1996). This enzyme is expressed on the membrane of a wide range of cells,

including lung epithelial cells and enterocytes.

Thirdly, the cytokine profiles in the BAL fluids of PRCV-infected lungs differ

strikingly from those of PRRSV-infected lungs. PRCV is highly interferonogenic and

infection typically induces high levels of IFN-  in the lungs, whereas TNF-  and

interleukin-1 (IL-1) levels remain low or undetectable (Van Reeth et al., 1999). The

capacity to induce high levels of IFN-  is a common feature of many other

coronaviruses, such as TGEV (Baudoux et al., 1998). Particularly the M protein, a

glycoprotein abundantly expressed in the envelope of all types of coronaviruses, is a

potent inducer of IFN-  in peripheral blood mononuclear cells (Charley and Laude,

1988; de Haan et al., 2003).

Finally, PRCV induces a swift and effective immune response. This is illustrated

by the fact that high levels of virus-neutralizing antibodies are mounted in the blood

within one week after inoculation and their appearance is followed by complete virus

elimination around 7 to 10 days after inoculation (Laude et al., 1993).

Lung pathology

Pathological changes are characterized by lobular red consolidated areas, which are

most pronounced in the cranial and cardiac lung lobes (O’Toole et al., 1989; Halbur et

al., 1993). Microscopically, there is bronchointerstitial pneumonia with cuffing of

mononuclear cells around the small airways and thickening of interalveolar septa. Part

of the alveolar and bronchiolar epithelial cells are degenerated and necrotic.

Regeneration of lung tissue is visible from 7 days after inoculation and is

characterized by hyperplasia of type 2 pneumocytes and bronchiolar epithelial cells.

Disease

It is still a matter of debate whether PRCV causes clinical disease or not. Most

studies, including those from our laboratory, indicate that experimental infection

causes no or mild respiratory disease (O’Toole et al., 1989; Cox et al., 1990a; Halbur

et al., 1993; Van Reeth et al., 1999). Fever and anorexia were sometimes noted, but

pigs did not develop obvious respiratory disease. Some researchers reported mild to

severe respiratory disease upon experimental inoculation (Duret et al., 1988; van

Nieuwstadt and Pol, 1989; Vannier, 1990; Vaughn et al., 1994). The symptoms varied
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from sneezing, coughing, tachypnoea, dyspnoea to death. Vaughn et al. (1994)

suggest that the severity of the clinical signs depends on the strains used, and possibly

correlates with slight differences in the genomic deletions, but more research is

needed to validate this hypothesis. Pensaert et al. (1993) monitored several outbreaks

of PRCV in closed swine farms without the appearance of respiratory disease signs.

Obviously, many PRCV infections in the field remain subclinical, but in combination

with other (unknown) agents disease can occur. This is illustrated by other field

studies in which seroconversion of herds to PRCV was associated with the appearance

of clinical signs such as fever, anorexia, coughing and difficult breathing (Jestin et al.,

1987; Laval et al., 1991; Ulbrich et al., 1991; Bergevoet et al., 1997). Therefore,

some authors consider this virus, next to PRRSV and Mycoplasma hyopneumoniae, as

one of the primary agents of the porcine respiratory disease complex (Brockmeier et

al., 2002). Few studies, however, have examined the role of PRCV in multifactorial

respiratory disease. One study of Van Reeth and Pensaert (1994b) demonstrated that

dual infections of pigs with PRCV followed by influenza virus resulted in more severe

clinical signs and lung lesions than infections with only one of these viruses. Little is

known about the impact of a PRCV infection on a secondary bacterial infection in the

lungs. Although PRCV infections are very common and occur at an age when pigs are

challenged with a multitude of other pathogens, the true impact of PRCV on

respiratory disease in the field is difficult to assess at this moment.
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1.2.  LIPOPOLYSACCHARIDE OF GRAM-NEGATIVE BACTERIA AND ITS EFFECTS ON THE

RESPIRATORY TRACT

1.2.1.  Effects on the lungs of humans and pigs

Introduction

Richard Pfeiffer, a student of Robert Koch, was the first to describe endotoxins in

1892. He found that guinea pigs died after inoculation with dead Vibrio cholerae

bacteria and that this was due to heat-stable toxins, which were part of the “bacterial

body”. Several decades later, it became clear that endotoxin was composed of lipid

and carbohydrate, and hence the term lipopolysaccharide (LPS) came into usage. The

terms endotoxin and lipopolysaccharide are often used as synonyms, but their

meaning differs slightly. Endotoxin refers to LPS as it appears in nature, as fragments

of the cell wall together with other bacterial compounds (Rylander, 1994). LPS, on

the other hand, implies a chemically purified endotoxin, which is obtained by

extraction with trichloroacetic acid, phenol or phenol-chloroform-petroleum ether

(Galanos et al., 1969; Morrison and Leive, 1975). These LPS preparations are still

slightly contaminated with varying amounts of bacterial proteins, lipids and nucleic

acids, depending on the method used. LPS is used in most experimental exposure

studies and this term will be used further.

Structure

LPS is the main component of the outer membrane of Gram-negative bacteria and

is vital to the structural and functional integrity of the cell wall (Rietschel et al.,

1994). The general conformation of LPS is presented in figure 3. LPS consists of a

phospholipid, called lipid A, that is covalently linked to a hydrophilic

heteropolysaccharide (Rietschel et al., 1994). Lipid A is highly hydrophobic and

responsible for the endotoxic activity of LPS (Westphal et al., 1985; Rietschel et al.,

1993). Lipid A consists of a phosphorylated diglucosamine carrying different fatty

acids. The endotoxicity depends on the number, nature and arrangement of the fatty

acids and phosphate groups (reviewed by Erridge et al., 2002). The lipid A of

Escherichia and Salmonella species is considered to be highly endotoxic, whereas that

of Pseudomonas and Bordetella species is poorly endotoxic (Erridge et al., 2002). The
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polysaccharide of LPS is made up of two parts, an O-polysaccharide with a

composition varying between different bacterial species (O-antigens) and a rather

invariable core section, which is located between the O-polysaccharide and the lipid

A. Due to its amphiphilic nature, LPS forms micelle-like aggregates in solution. These

aggregates adopt a lamellar, cubic or hexagonal conformation, depending on the

structure of the lipid A, the length of the sugar chain and the environment

(Brandenburg et al., 1993; Erridge et al., 2002).

Figure 3. General structure of LPS (adapted from Holst et al., 1996). Lipid A is embedded in
the outer membrane of Gram-negative bacteria and consists of a phosphorylated
diglucosamine carrying several fatty acid chains. The oligosaccharide core links lipid A to the
O-polysaccharide. The inner core contains unusual sugars, such as Kdo and heptose. Both the
lipid A and core region are highly conserved, whereas the O-polysaccharide is more variable.
The latter contains up to fifty repeats of sugar units, which protrude from the outer membrane.
The O-polysaccharide contains antigenic determinants (O-antigens) specific for different
bacterial serotypes.
P: phosphate, GlcN: N-acetyl-D-glucosamine, Kdo: 3-deoxy-D-manno-oct-2-ulopyranosonic
acid, HEP: L-glycero-D-manno-heptose

Prevalence in the environment

LPS is released from the outer membrane during multiplication, but especially after

death and lysis of Gram-negative bacteria (Rietschel et al., 1994). Gram-negative

bacteria are ubiquitous in the environment and continuously release LPS. The amount

of airborne LPS depends mainly on the amount and source of organic dust in the air

(Rylander, 2002). Especially dust derived from faeces, bacteria-contaminated plants

such as grain or cotton, and organic waste contains high loads of LPS (Donham, 1991;

Wouters et al., 2000; Radon et al., 2002). Table 1 compares the concentrations of

airborne LPS in different environments. Airborne LPS can reach exceedingly high
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concentrations in animal confinement units. Concentrations increase dramatically

when dust is agitated, for example during moving or feeding of pigs (Zhiping et al.,

1996; Rylander, 2002). In households, humidifiers with contaminated water appear to

be an important source of airborne LPS (Mamolen et al., 1993). LPS that is associated

with the respirable fraction of dust (<5 µm) reaches the alveoli upon inhalation

(Pearson and Sharples, 1995).

Table 1. Concentrations of airborne LPS in different environments (adapted from Rask-
andersen et al., 1989; Zhiping et al., 1996; Hartung and Seedorf, 1999; Hasday et al., 1999;
Rylander, 2002).

Location Source LPS

agriculture swine 8-4900 ng/m3

dairy cattle 25-50000 ng/m3

poultry 33-301 ng/m3

animal feed 0.2-1870 ng/m3

grain dust 286-721 ng/m3

home humidifier 130-390 ng/m3

dust 18-50 ng/m3

other cotton mill 2-314 ng/m3

saw mill 0-4000 ng/m3

brewery 60-927 ng/m3

waste sewage 1-32170 ng/m3

cigarette smoke 120 ng/cigarette

outdoor air 0.19-0.49 ng/m3

Effects on the lungs

1) exposure through the blood

LPS is the most potent inflammatory component of Gram-negative bacteria and is

presumed to play a pivotal role in many inflammatory disorders, such as the “acute

respiratory distress syndrome” (ARDS) in humans (Brigham and Meyrick, 1986;

Bhatia and Moochhala, 2004). ARDS is characterized by acute lung injury and

hypoxemia, and primarily occurs as a lethal complication of sepsis with Gram-

negative bacteria, but can also be triggered by other processes, such as respiratory

virus infections (Hammer et al., 1997; Peiris et al., 2003). The acute lung injury is
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characterized by damage to endothelial cells, lung oedema and massive sequestration

of neutrophils in the vascular, and subsequently in the interstitial and bronchoalveolar

compartments of the lungs. Several researchers were able to reproduce the syndrome

in pigs by injecting a high dose of LPS (100-250 µg/kg) in the blood (Cohn et al.,

1991; Lutz et al., 1998; Carney et al., 2001). LPS acts mainly indirectly by inducing

harmful amounts of proinflammatory cytokines and reactive oxygen species, but can

also directly cause vascular injury by triggering apoptosis of endothelial cells

(reviewed by Bannerman and Goldblum, 2003).

2) exposure through the airways

LPS also affects the lungs after inhalation. There is convincing evidence that

inhalation of LPS-containing dust causes airway disease in humans. Certain

occupations that imply long-term exposure to organic dust, such as swine farmers,

cotton workers and veterinarians are especially at risk (Donham, 1990; Melbostad et

al., 1997; Radon et al., 2001). Swine farmers have an increased incidence of chronic

bronchitis and suffer more frequently from symptoms such as excessive sputum

production, coughing, wheezing and chest tightness. Inhalation of swine dust also

causes general symptoms such as fever, malaise and headache (Larsson et al., 1994).

This is well illustrated by a case report of Jolie et al. (1998b) that describes a transient

flu-like disease in veterinary students after visiting a swine farm. This flu-like disease

is sometimes referred to as “organic dust toxic syndrome” or “toxic pneumonitis”

(Von Essen et al., 1990). A Dutch survey indicates that large animal practitioners

experience 2 to 3 times more respiratory symptoms than their colleagues working in

small animal practice (Tielen et al., 1996). Also, Andersen et al. (2004) found a

disturbing correlation between working hours in hog barns and decline of pulmonary

function in veterinarians.

Swine dust causes airway inflammation characterized by infiltration of neutrophils

and production of proinflammatory cytokines (Larsson et al., 1994). Wang et al.

(1997) studied the production of proinflammatory cytokines in the lungs of healthy

subjects after a stay of 3 hours in a swine confinement building. All subjects

developed a significant increase of TNF- , IL-1 and IL-6 in their BAL fluids. The

concentration of LPS in the building was 1.2 µg / m3, which compares to

concentrations reported on other farms (Jolie, 1998). Inhalation of LPS-containing
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dust causes bronchial hyperresponsiveness and impairs lung function, characterized

by a decline of the forced expiratory volume in one second (FEV1) (Malmberg and

Larsson, 1993; Vogelzang et al., 1998; Larsson et al., 2001).

In recent years, more and more attention has come to the impact of LPS in

household dust on allergic disease. Concern was raised by a publication of Michel et

al. (1996) who found a positive correlation between indoor LPS levels and the

severity of asthma in atopic subjects. Asthmatics appear to be particularly sensitive to

inhaled endotoxin, and inhalation of relatively low amounts induces both immediate

and sustained airflow obstruction (Michel et al., 1989). Paradoxically, other

researchers postulate that exposure to LPS during childhood decreases the risk of

developing atopic asthma later in life (Kuipers et al., 2003; Douwes et al., 2004).

These researchers state that a relatively high level of exposure to LPS in early life

may keep allergen sensitisation and asthma from developing by promoting a Th1-type

immune response. Indeed, several studies suggest that early childhood exposure to

animals, such as indoor pets or farm animals, is associated with a lower prevalence of

asthma and hay fever (Johnson and Alford, 2002).

LPS is the most potent inflammatory component of organic dust and is assumed to

account for most of the biological effects of dust upon inhalation (Schwartz et al.,

1995; Zejda et al., 1994). Indeed, pretreatment with specific LPS antagonists

abolishes most of the inflammatory capacity of grain dust upon inhalation (Jagielo et

al., 1996 and 1998). Moreover, experimental exposure to an LPS aerosol mimics all

the biological effects of inhalation of organic dust in humans. This has been

thoroughly reviewed by Thorn (2001). Experimentally, LPS induces the typical

neutrophilic airway inflammation, decline of lung function and flu-like symptoms as

reported in field cases. The deterioration of lung function is due to LPS-induced

bronchoconstriction, bronchial hyperreactivity and to a lesser extent to reduced

alveolar-capillary diffusion (Michel, 2000). The threshold dose for inducing these

symptoms (30-40 µg) is about 14 times higher than the dose normally encountered in

swine confinement units (Thorn, 2001). The reason for this discrepancy is unclear, but

could be due to a different bioavailability of nebulized LPS compared to LPS in

respirable dust. It is more likely, however, that LPS acts in synergy with other

inflammatory components of dust, such as lipoteichoic acid, peptidoglycan or -1,3-

glucan, to induce lung inflammation (Wray et al., 2001).
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Although it is clear that exposure to LPS-contaminated swine dust contributes to

respiratory disease in humans, no such evidence is available for pigs. Few researchers

investigated the possible impact of airborne LPS on respiratory health in pigs and a

clear link between both has not been established in the field (Donham, 1991; Jolie et

al., 1998a). This discrepancy with human literature could be due to a lack of field

research, although some authors have suggested that pigs might be less sensitive to

airborne LPS than humans (Jolie, 1998). The latter hypothesis was supported by an

experiment of Urbain et al. (1999) in which pigs inhaled LPS-contaminated dust at a

concentration normally found in swine buildings (2.5 µg/m3) for 6 days. These pigs

did not develop lung inflammation or clinical signs. Inhalation of higher doses of LPS

(100 to 1000 µg/kg) caused infiltration of neutrophils, atelectasis and fever (Liggett et

al., 1986; Urbain et al., 1996). Apparently, LPS-induced lung inflammation only

occurs at inhalation doses that are markedly higher than normally encountered in the

environment. Even at these doses, no overt respiratory signs were observed. In spite

of the lack of respiratory signs, Urbain et al. (1996) demonstrated that bronchial rings,

isolated from LPS-exposed pigs, were hyperreactive upon stimulation with histamine.

Remarkably, similar doses of LPS (100 to 1000 µg/kg) cause acute respiratory

distress and even death when injected in the blood of pigs (Carney, 2001; Urbain et

al., 1996). In our hands, an LPS dose of 5000 µg/kg is required to consistently

induce substantial amounts of proinflammatory cytokines in the lungs of pigs upon

intratracheal inoculation (Van Reeth et al., 2000). For comparison, inhalation of 30 µg

LPS (  0.43 µg/kg) is already sufficient to induce detectable amounts of

proinflammatory cytokines in the lungs of humans (Wesselius et al., 1997).
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1.2.2.  The lipopolysaccharide receptor complex mediates biological activity

Introduction

Expressed by all Gram-negative bacteria, LPS serves as one of the primary targets

of the innate immune system. Recognition of the presence of LPS by cells provides

the host with a rapid detection of and reaction towards Gram-negative bacteria.

Pattern-recognition receptors bind to conserved structures of microbial pathogens,

such as LPS, and discriminate between self and non-self. During the past decade,

enormous progress has been obtained in the elucidation of LPS recognition and

signaling. According to the current model, recognition of LPS is initialized by the

cooperative interplay between the “lipopolysaccharide-binding protein” (LBP), the

membrane-bound or soluble forms of “cluster of differentiation 14” (CD14) and the

recently identified “Toll-like receptor 4” (TLR4) (for review see Martin, 2000).

Together, these proteins form the “LPS receptor complex” which is presented in

figure 4. The role of the different components is distinct and can be summarized as

follows:

1) LBP: binds free or cell wall-bound LPS and presents it to CD14

2) CD14: receives LPS from LBP and then associates with TLR4

3) TLR4: signals towards the nucleus leading to the release of proinflammatory

cytokines and other mediators.

Each component will be discussed in detail below.

LBP, an acute phase protein with a dual role

LBP is a class 1 acute phase protein of 60 kilodalton (kDa), which was first

identified in 1986 by Tobias and co-workers. LBP is constitutively present in the

plasma. Plasma of healthy humans contains about 2-20 µg/ml and levels increase up

to ten times during acute phase responses (Fenton and Golenbock, 1998). LBP in

plasma is mainly produced by hepatocytes in the liver. Recently, it was shown that

type 2 pneumocytes can also produce LBP after in vitro stimulation with the

proinflammatory cytokines TNF- , IL-1 or IL-6 (Dentener et al., 2000).

LBP functions as a “lipid transfer molecule” that extracts single LPS molecules

from LPS aggregates or directly from the bacterial outer membrane and transfers it to

CD14 or lipoproteins (Wurfel et al., 1994; Ulevitch et al., 1999). LPS released from
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Figure 4. Overview of the different steps of LPS recognition (adapted from Martin, 2000).
LPS-binding protein (LBP) extracts a single LPS molecule from an LPS aggregate and
transfers it to soluble or membrane-bound CD14 (sCD14, mCD14). The CD14-LPS complex
associates with Toll-like receptor 4 (TLR4), which is followed by intracellular signaling and
activation of proinflammatory genes. mCD14 is expressed on myeloid cells, but not on
epithelial cells. sCD14 can present LPS to TLR4 on epithelial cells and thus render these cells
more sensitive to LPS. LBP and sCD14 can also transfer LPS to lipoproteins, such as high-
density lipoproteins (HDL), which leads to neutralization and clearance of LPS.

Gram-negative bacteria forms micelle-like aggregates and spontaneous diffusion of

single LPS molecules from these aggregates to CD14 occurs at a very low rate. This

process is strongly accelerated in the presence of LBP. This way, LBP enhances the

proinflammatory effects of LPS 100- to 1000-fold (Hailman et al., 1994). For
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example, mice deficient in LBP do not mount an inflammatory response to small

amounts of LPS and, as a consequence, are more susceptible to colonization with

Gram-negative bacteria (Jack et al., 1997; Le Roy et al., 2001).

A second role of LBP is to transfer LPS to plasma lipoproteins and chylomicrons,

leading to neutralization and clearance (Wurfel et al., 1994; Vreugdenhil et al., 2003;

Hamann et al., 2005). A dynamic equilibrium is established during endotoxemia, in

which LPS is both shuttled to CD14, resulting in cellular activation, and to

lipoproteins, resulting in neutralization. The second pathway becomes predominant at

high concentrations of LBP, when LBP is more abundant than CD14. This way, high

concentrations of LBP can reduce the proinflammatory activity of LPS. Some

researchers suggest that low LBP concentrations, which are found during the onset of

infection, favour binding to CD14 and subsequent inflammation, whereas high

concentrations of LBP, which are mounted in the serum during the acute phase

response, favour binding to lipoproteins and reduce the proinflammatory effect of

LPS (Gioannini et al., 2003). Indeed, high concentrations of LBP in serum of patients

with sepsis can inhibit LPS activation of monocytes (Zweigner et al., 2001). Recently,

it becomes more and more evident that LBP also mediates recognition of other

bacterial compounds, such as lipoteichoic acid, peptidoglycan and acylated

lipopeptides (Schroder et al., 2004).

Less is known about the occurrence and role of LBP in the lungs. It was shown that

people suffering from asthma or acute respiratory distress syndrome have elevated

levels of LBP in their BAL fluids (Martin et al., 1992; Dubin et al., 1996; Martin et

al., 1997; Strohmeier et al., 2001). Most studies in the lungs indicate that LBP

enhances the proinflammatory effect of LPS. In rabbits, for example, it was shown

that LBP significantly increased TNF-  production and neutrophil infiltration after

intratracheal inoculation of a low dose of LPS (Ishii et al., 1993). Intratracheal

instillation of a mixture of LPS and LBP markedly induced TNF-  in BAL fluids,

whereas LPS alone did not.

Few data are available on LBP in pigs. One study quantified LBP in serum of pigs

throughout an experimental infection with Chlamydia suis (Sachse et al., 2004). LBP

was present in the serum of uninfected pigs in concentrations ranging from 0.5 to 6.5

µg/ml and concentrations increased 3 to 4-fold during infection.
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CD14, a receptor for different pathogen-associated molecules

CD14 is a 53 kDa glycoprotein expressed on the surface of myeloid cells (Antal-

Szalmas, 2000). CD14 is embedded in the cell membrane via a

glycosylphosphatidylinositol (GPI) anchor and has no transmembrane or

cytoplasmatic domains. The extracellular domain contains repeated leucine-rich

motifs, a characteristic shared with other pattern recognition receptors such as Toll-

like receptors. The number of CD14 molecules on the membrane varies according to

type, maturation and localization of the cell. Neutrophils generally express 33 times

less CD14 on their membranes than monocytes (Antal-Szalmas et al., 1997). In pigs,

two subsets of monocytes with respectively high and low CD14 expression have been

identified (Chamorro et al., 2000). Presumably, CD14-low monocytes present a more

mature “macrophage-like” phenotype. CD14 expression on macrophages depends

highly on the localization in the body. Peritoneal and pleural macrophages express

high amounts of CD14, whereas alveolar and intestinal macrophages express low to

undetectable amounts of CD14 (Hasday et al., 1997; Antal-Szalmas, 2000; Smith et

al., 2001).

In 1990, Wright et al. were the first to show that the myeloid differentiation marker

CD14 functions as an LPS receptor. CD14 binds with high affinity to LPS and this

complex shuttles to TLR4 (Jiang et al., 2000). Although unable to activate the cell on

its own, CD14 is necessary for recognition of low (clinically relevant) amounts of

LPS. Numerous studies in different species have demonstrated that impairment of

CD14 function, by neutralization with antibodies or use of knockout animals,

suppresses LPS-induced cytokine production, respiratory disease and shock (Ishii et

al., 1993; Haziot et al., 1996; Leturcq et al., 1996; Schimke et al., 1998; Tasaka et al.,

2003). Treatment with anti-CD14 strongly reduces acute inflammation after

intratracheal LPS exposure, but at the same time renders the lungs more susceptible to

colonization with Gram-negative bacteria (Frevert et al., 2000).

CD14 also exists in a soluble form, resulting either from the shedding of

membrane-bound CD14 or from the production of GPI-free CD14 molecules (Bazil et

al., 1989). Like LBP, soluble CD14 is constitutively present in the serum (2-6 µg/ml)

and concentrations rise during acute phase responses (Bazil and Strominger, 1991;

Bas et al., 2004). Increased levels of soluble CD14 were also found in BAL fluids of
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humans suffering from “acute respiratory distress syndrome” and asthma (Dubin et

al., 1996; Martin et al., 1997).

Soluble CD14 can accept LPS from LPS/LBP complexes and facilitate LPS-

dependent activation of CD14-negative cells, such as epithelial and endothelial cells

(Pugin et al., 1993). Indeed, Alexis et al. (2000) found a tight correlation between

soluble CD14 levels in the BAL fluid and the inflammatory response to inhaled LPS.

In contrast, soluble CD14 can also participate with LBP in the transfer of LPS to

plasma lipoproteins, thereby inactivating LPS (Wurfel et al., 1995).

CD14 was originally defined as a specific receptor for LPS, but there is increasing

evidence that CD14 functions as a receptor for components of various other

pathogens. Table 2 presents an overview of ligands shown to bind to CD14.

Table 2. Ligands of different pathogens that bind to CD14.

Origin Ligand Reference

Gram-negative bacteria LPS Wright et al., 1990

Gram-positive bacteria lipoteichoic acid Cleveland et al., 1996

peptidoglycan Dziarski et al., 1998

mycobacteria lipoarabinomannan Savedra et al., 1996

spirochaetes lipoproteins Sellati et al., 1998

fungi mannan Tada et al., 2002

viruses surface antigen of hepatitis B virus Vanlandschoot et al., 2002

arthropods chitosans Otterlei et al., 1994

CD14 recognizes various sugar or glycolipid motifs, acting as a lectin-like receptor.

Intriguingly, a recent study found that CD14 also mediates influenza virus-induced

cytokine production (Pauligk et al., 2004). A prevailing concept of innate immunity is

that CD14 provides a first line, low specificity screening of different microbial

ligands, which is followed by a very specific, but less sensitive binding to a second

line of pattern recognition receptors (Antal-Szalmas, 2000). The latter were recently

identified as Toll-like receptors.

TLR4, the crucial link for LPS signaling

TLR4 is a 100 kDa transmembrane protein characterized by an extracellular

leucine-rich domain and an intracellular signaling domain, called the ‘‘Toll domain’’
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(Rock et al., 1998). TLR4 is related to the Toll protein of the fruit fly (Drosophila

melanogaster), a protein involved in embryonic development and antifungal defence.

Ten human Toll-like receptors (TLR1 to 10) have been identified so far (Takeda et

al., 2003). All these are related to the Toll protein of the fruit fly and possess the same

intracellular Toll domain. This conserved signaling domain is part of an evolutionary

ancient immune response of both insects and vertebrates. The Toll domain is also

highly homologous to the signaling domain of the IL-1 receptor. By consequence,

LPS signaling operates in a manner that is very close to IL-1 signaling. IL-1 can thus

be considered as a cytokine that mimics the effects of LPS.

The group of Bruce Beutler was the first to identify TLR4 as an LPS signaling

receptor, a long-time missing link of LPS recognition (Poltorak et al., 1998). TLR4

physically associates with the CD14-LPS complex, which is followed by intracellular

signaling and eventually by the production of numerous mediators, such as the

proinflammatory cytokines TNF-  and IL-1 (Jiang et al., 2000). More and more

researchers argue that the interaction between LPS and TLR4 also requires the

presence of “myeloid differentiation protein-2” (MD-2), a secreted protein that is

associated with the extracellular part of TLR4 (Gioannini et al., 2004; Miyake, 2004).

Although TLR4 can induce a response against high concentrations of LPS (µg to

mg/ml), the concerted action of all three receptor components is necessary to engage

an inflammatory response against minute amounts of LPS (pg/ml) (Muta and

Takeshige, 2001). Recently, it was shown that polymorphisms in the TLR4 gene

cause variation in the LPS sensitivity of humans. A small percentage of people is

naturally hyporesponsive to LPS and this is associated with specific mutations in the

TLR4 gene (Arbour et al., 2000).

TLR4 is expressed on a wide variety of cells, including monocytes, macrophages,

epithelial and endothelial cells. One recent study describes the distribution of TLR4 in

different organs of pigs using polyclonal antibodies against murine TLR4 (Wassef et

al., 2004). In the lungs of pigs, alveolar and intravascular macrophages, monocytes,

bronchiolar epithelium and endothelium of large blood vessels stained positive for

TLR4.

The remaining members of the TLR family recognize conserved molecules of a

wide variety of other pathogens (reviewed by Takeda et al., 2003). TLR2, for

example, recognizes peptidoglycan and lipoteichoic acid of Gram-positive bacteria.
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Remarkably, some members also recognize RNA and proteins of viral origin. TLR3,

for example, recognizes double stranded RNA, which is produced during replication

of many viruses (Alexopoulou et al., 2001). Furthermore, it was shown that TLR4

plays a crucial role in the innate immune response against the respiratory syncytial

virus (RSV) (Kurt-Jones et al., 2000; Haynes et al., 2001). The fusion protein of RSV

binds to TLR4 on monocytes and thus triggers the production of cytokines. Moreover,

the clearance of RSV from the lungs is significantly impaired in TLR4-deficient mice.
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1.3.  INTERACTIONS BETWEEN VIRUSES AND BACTERIAL LIPOPOLYSACCHARIDE IN THE

LUNGS

Introduction

Interactions between viruses and bacteria in the induction of severe respiratory

disease have been described since the early thirties (Shope, 1931). However, little

remains known about the mechanisms whereby respiratory viruses can predispose for

disease by secondary agents. This also holds true for PRRSV and PRCV, two viruses

which are believed to play a role in the porcine respiratory disease complex (Thacker,

2001; Brockmeier et al., 2002). It is our working hypothesis that virus-induced

respiratory signs are caused for an important part by overproduction of inflammatory

mediators. Indeed, swine influenza virus induces high levels of the proinflammatory

cytokines TNF- , IL-1 and IL-6 in the lungs and these levels are correlated tightly

with the appearance of clinical signs (Van Reeth et al., 1998 and 2002a). PRRSV and

PRCV, in contrast, fail to simultaneously induce substantial levels of all three

cytokines in the lungs and uncomplicated infections cause no overt respiratory disease

(Van Reeth et al., 1999 and 2002b). In an attempt to study interactions between

respiratory viruses and secondary agents in a reproducible way, we have performed

subsequent inoculations of pigs with either PRRSV or PRCV, followed by a

secondary inoculation with LPS. Besides the fact that LPS is the most important

inflammatory component of Gram-negative bacteria (Rietschel et al., 1994), there

were three additional reasons to choose this agent.

Firstly, lungs of pigs are continuously exposed to LPS under farm conditions, as

LPS is present in stable dust in concentrations up to several microgrammes/m3 air

(Rask-Andersen et al., 1989; Zhiping et al., 1996). Also, LPS is released at high

concentrations in the lungs during pulmonary infections with Gram-negative bacteria

(Pugin et al., 1992). Treatment with antibiotics, especially those belonging to the -

lactam family, can induce a sudden and massive release of LPS from the bacterial cell

wall (Periti and Mazzei, 1999).

Secondly, standardized LPS preparations are commercially available and the total

amount of exposure in the lungs can easily be controlled, which is not the case for

replicating agents, such as viruses and bacteria. Combined inoculations with virus and
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LPS, therefore, may avoid the variability resulting from interference of a first virus

with replication of a second virus or bacterium.

Thirdly, LPS is a potent inducer of proinflammatory cytokines and exerts many of

its biological effects through cytokines (Rietschel et al., 1994). The effects of LPS are

dose-related, and relatively high doses are required to induce substantial cytokine

production and decreased lung function upon intratracheal inoculation. Low LPS

doses, on the other hand, induce only minute amounts of cytokines and no obvious

disease.

This chapter contains a summary of the experiments that were performed in our

laboratory. An overview hereof is presented in figure 5. In addition, we discuss briefly

some studies of other researchers who also examined virus-LPS interactions.

The combination of PRCV and LPS in the lungs of pigs

Studies in our laboratory demonstrated that PRCV sensitizes the lungs to LPS at

the very early stage of infection (Van Reeth et al., 2000). Gnotobiotic pigs were

inoculated intratracheally with PRCV and 24 hours later with LPS from E. coli (20

µg/kg). The effects of separate virus or LPS inoculations were subclinical and failed to

induce high or sustained cytokine levels in the lungs. The combination of both agents,

on the contrary, resulted in marked laboured breathing, dullness and loss of appetite

during the first 12 hours after the LPS inoculation. Prior infection with PRCV truly

potentiated the cytokine response to LPS, with 10 to 100 times higher titers of TNF- ,

IL-1 and IL-6 in the BAL fluids than after inoculation with each agent alone. Further

experiments demonstrated that the PRCV-LPS synergy depends on the interval

between PRCV and LPS inoculations. The typical clinical signs, together with high

cytokine titers, were seen with an interval of 12 to 24 hours between virus and LPS,

but not with shorter intervals. The titers of TNF-  and IL-6, but not of IL-1, were

tightly correlated with the clinical signs. An important question that remains is

whether PRCV also sensitizes the lungs to LPS at later stages of infection (>24 hours).

Unexpectedly, there was no clear synergistic effect between PRCV and LPS with

respect to lung pathological changes. Neutrophil infiltration, macroscopical and

microscopical lesions in the lungs of PRCV-LPS inoculated pigs resembled the

combined effects of each agent alone without synergy. Also, there was little

correlation between these pathological features and disease or cytokines. These
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observations were surprising, because a direct relationship between neutrophil

sequestration in the lungs and respiratory disorders has been demonstrated in many

other studies (Puneet et al., 2005). Activation of neutrophils in the lungs is a key event

in the generation of pulmonary injury in ARDS (Aldridge, 2002). Indeed, depletion of

neutrophils prevents pulmonary endothelial injury upon intravenous LPS inoculation

(Hefling and Brigham, 1981). One attractive hypothesis is that not structural lung

damage, but functional lung disturbances, such as bronchoconstriction, are responsible

for the difficult breathing after virus-LPS exposure. Interestingly, the combination of

TNF-  and IL-1 causes bronchoconstriction through the induction of thromboxanes in

rats (Martin et al., 2001).

The combination of PRRSV and LPS in the lungs of pigs

PRRSV is considered to be an important cause of multifactorial disease in pigs

(Thacker, 2001; Brockmeier et al., 2002). PRRSV infection in the lungs lasts

approximately 5 to 7 times longer than PRCV infection. The remarkably long duration

of PRRSV infection increases the chance that the lungs become exposed to other

agents, such as LPS, during the ongoing virus replication. The clinical effects of the

PRRSV-LPS combination were studied in conventional pigs of 5 to 10 weeks old

(Labarque et al., 2002). We used a European strain of PRRSV (Lelystad virus) and

LPS from E. coli (20 µg/kg). Pigs were inoculated intratracheally with PRRSV,

followed by LPS 3, 5, 6 or 9 days later. Pigs inoculated with PRRSV or LPS alone

were included as controls.

Exposure of pigs to PRRSV or LPS alone resulted in transient fever (40-40.9°C),

but respiratory symptoms were minimal or absent (<45 breaths per minute). In

contrast, exposure of PRRSV-infected pigs to LPS resulted in severe respiratory

disease, characterized by tachypnoea (45 to 154 breaths per minute), abdominal

breathing and dyspnoea in 87% of the pigs. These pigs also showed enhanced general

symptoms, such as high fever ( 41.0°C) and depression. Clinical signs started within

1 hour after LPS, reached a climax 2 to 4 hours later and disappeared between 12 and

24 hours after the LPS inoculation.

There is thus a strong synergy between PRRSV and LPS in the induction of

respiratory disease. The pathogenesis of this disease has not been studied yet. The

clinical signs of the PRRSV-LPS combination are remarkably similar to those of the
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PRCV-LPS combination. So, it is tempting to speculate that overproduction of

proinflammatory cytokines is also involved in this disease. It is our working

hypothesis that both PRRSV and PRCV prime the lungs for enhanced production of

Figure 5. Overview of the virus-LPS experiments performed at the Laboratory of Virology,
Faculty of Veterinary Medicine, Ghent University (Van Reeth et al., 2000; Labarque et al.,
2002). Control pigs were inoculated exclusively with PRCV, PRRSV (A) or bacterial LPS
(B). Other pigs were inoculated with virus followed one or several days later by inoculation
with LPS (C and D). The virus-LPS combination induced acute respiratory signs, which were
not seen after inoculation with virus or LPS alone. Moreover, the PRCV-LPS combination
induced massive amounts of the proinflammatory cytokine TNF-  in the lungs. This has not
been examined for the PRRSV-LPS combination.
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proinflammatory cytokines in response to minute amounts of LPS and thereby initiate

clinical disease. Possibly, both viruses sensitize the lungs to LPS in a similar way by

increasing different components of the LPS receptor complex, such as LBP and

CD14, during infection. These issues will be addressed further in the research

presented in this thesis.

Other studies on virus-LPS interactions

To our knowledge, PRRSV and PRCV are the only respiratory viruses that have

been shown to synergize with LPS in the induction of respiratory disease. Recently, it

has been described that systemic infection of mice with lymphocytic choriomeningitis

virus or vesicular stomatitis virus leads to fatal shock upon intraperitoneal inoculation

with a sublethal dose of LPS (Nguyen and Biron, 1999; Nansen and Thomsen, 2001).

The shock syndrome appeared to result from an overproduction of TNF-  in the

blood. Studies with IFN knockout mice indicated that virus-induced interferons, both

IFN- /  and - , are responsible for the increased systemic sensitivity to LPS

(Doughty et al., 2001; Nansen and Thomsen, 2001).

In vitro studies on virus-LPS interactions have yielded conflicting results.

Recently, it was shown that in vitro infection of airway epithelial cells with RSV up-

regulates TLR4, which in turn leads to an increased LPS response (Monick et al.,

2003). It is unknown whether a synergy between RSV and LPS also occurs in vivo in

the lungs. In 1990, Nain et al. demonstrated that influenza virus infection of

macrophages leads to transcription and accumulation of TNF-  messenger RNA

(mRNA) in the cytoplasm. Subsequent LPS stimulation leads to massive translation of

this mRNA and release of TNF-  in the medium. In contrast, many other studies

reported a decrease of the LPS response of virus-infected macrophages. This was the

case for bovine herpesvirus-1, bovine RSV, African swine fever virus and many other

viruses (Tsai et al., 1991; Bienhoff et al., 1992; Whittall and parkhouse, 1997). We

(unpublished data) and others (Chiou et al., 2000; Lopez-Fuertes et al., 2000) found

that PRRSV-infected macrophages become less responsive to LPS or phorbol

myristate acetate, characterized by a decrease of TNF-  production or oxidative burst.

This is consistent with the fact that PRRSV infection of macrophages results in cell

death within 24 to 48 hours after inoculation (Paton et al., 1992; Suaréz et al., 1996;

Oleksiewicz and Nielsen, 1999). Therefore, it is likely that PRRSV-infected
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macrophages are not directly responsible for the increased LPS response in the lungs.

We hypothesize that this is rather an indirect effect of the PRRSV infection and

results from sensitization of uninfected lung cells and/or infiltration of new LPS-

responsive cells.
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Aims of the thesis

Porcine reproductive and respiratory syndrome virus (PRRSV) and porcine

respiratory coronavirus (PRCV) synergize with bacterial lipopolysaccharide (LPS) in

the induction of respiratory disease signs. This has been demonstrated during the very

early stage of the PRCV infection (from 12 to 24 hours after inoculation) and during a

major part of the PRRSV infection (from 3 to 9 days after inoculation). The main

aims of this thesis were to scrutinize the pathogenesis of virus-LPS induced

respiratory disease, with special emphasis on the role of proinflammatory cytokines as

mediators of virus-LPS disease, and to explore possible mechanism(s) of virus-

induced sensitisation to LPS. This was studied for PRRSV and for PRCV, two

respiratory viruses of swine with different cellular tropism.

The specific aims of this thesis were:

1) to study the pathogenesis of the PRRSV-LPS induced respiratory disease on a

cellular and cytokine level. More specifically, we wanted to examine whether

PRRSV, like PRCV, synergizes with LPS in the induction of proinflammatory

cytokines in the lungs and whether cytokines are correlated with the appearance of

respiratory signs

2) to confirm the role of proinflammatory cytokines, especially tumour necrosis

factor-  (TNF- ), in the induction of respiratory signs. Hereto, we compared the

effects of different drugs, including a cytokine inhibitor and two prostaglandin

inhibitors, on PRRSV-LPS induced clinical signs

3) to examine whether PRRSV infection induces an increase of the LPS recognition

proteins lipopolysaccharide-binding protein (LBP) and CD14 in the lungs, as a

potential mechanism of increased LPS sensitivity

4) to examine whether PRCV infection induces an increase of LBP and CD14 in the

lungs and verify whether this is associated with an increased LPS sensitivity
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Abstract

Porcine reproductive and respiratory syndrome virus (PRRSV) is a key agent in

multifactorial respiratory disease of swine. Intratracheal administration of bacterial

lipopolysaccharide (LPS) to PRRSV-infected pigs results in markedly enhanced

respiratory disease, whereas the inoculation of each agent alone results in largely

subclinical disease. This study examines whether PRRSV-LPS induced respiratory

disease is associated with the excessive production of proinflammatory cytokines in

the lungs. Gnotobiotic pigs were inoculated intratracheally with PRRSV followed by

LPS at 3, 5, 7, 10 or 14 days of infection and euthanized 6 hours after the LPS

inoculation. Controls were inoculated with PRRSV or LPS only or with phosphate-

buffered saline. Virus titers, (histo)pathological changes in the lungs, numbers of

inflammatory cells, and bioactive tumour necrosis factor-  (TNF- ), interleukin-1

(IL-1) and IL-6 levels in bronchoalveolar lavage fluids were examined. All pigs

inoculated with PRRSV-LPS developed severe respiratory disease, whereas the

controls that were inoculated with PRRSV or LPS alone did not. PRRSV infection

significantly enhanced cytokine production in response to LPS. Peak TNF- , IL-1 and

IL-6 titers were 10 to 100 times higher in the PRRSV-LPS inoculated pigs than in the

pigs inoculated with PRRSV or LPS alone and the titers correlated with the

respiratory signs. The levels of neutrophil infiltration and the pathological changes

detected in the lungs of PRRSV-LPS inoculated pigs resembled the combined effects

of the single PRRSV and LPS inoculations with no synergistic interaction between

both agents. These data demonstrate a synergy between PRRSV and LPS in the

induction of proinflammatory cytokines and an association between induction of these

cytokines and disease.
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Introduction

European strains of porcine reproductive and respiratory syndrome virus (PRRSV)

fail to cause respiratory disease as such. Nevertheless, PRRSV is considered one of

the most important etiological agents in multifactorial respiratory disease of swine,

both in Europe and in the United States (Thacker, 2001). Few studies, however, have

been able to reproduce clinical respiratory disease by experimental inoculation with

PRRSV followed by a secondary virus or bacterium (Galina et al., 1994; Van Reeth et

al., 1996; Thacker et al., 1999; Brockmeier et al., 2000). Variation in the severity of

clinical signs and lack of reproducibility are the main problems with this type of

studies. Even a single experimental infection with respiratory viruses results in

intrinsic variation in virological, inflammatory and clinical parameters. Therefore, a

second infection may enhance this variation, as the outcome of the second infection is

in part dependent on that of the first infection.

We have previously developed an alternative dual inoculation model consisting of

a primary inoculation with PRRSV followed by inoculation with a non-replicating

agent, namely lipopolysaccharide (LPS) from Escherichia coli (Labarque et al.,

2002). LPS is a major component of the outer membrane and the main endotoxin of

Gram-negative bacteria. Intratracheal administration of LPS (20 µg/kg body weight)

to PRRSV-infected pigs resulted in severe respiratory disease, characterized by

tachypnoea, abdominal breathing, dyspnoea and high fever. In contrast, the single

PRRSV or LPS inoculations resulted in subclinical or mild disease. This model

proved to be reproducible, in contrast to the classic dual infection models consisting

of inoculation with PRRSV followed by inoculation with a second replicating agent.

In addition, we believe that the PRRSV-LPS combination has practical relevance.

Most pigs become infected with PRRSV between 4 and 16 weeks of age and the virus

persists in the lungs for up to 40 days after inoculation (Labarque et al., 2000;

Mateusen et al., 2002). Also, most pigs are exposed to LPS under farm conditions, as

LPS is present in stable dust at concentrations ranging up to 4.9 µg/m3. Furthermore,

LPS is released at high concentrations in the lungs during pulmonary infections with

Gram-negative bacteria (Pugin et al., 1992; Zhiping et al., 1996).

The proinflammatory cytokines interleukin-1 (IL-1), tumour necrosis factor-

(TNF- ) and interleukin-6 (IL-6) are important mediators of several respiratory
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diseases. IL-1 and TNF-  are among the first cytokines that are produced in the lungs

during an infection. They cause infiltration and activation of leukocytes in the lungs,

increased microvascular permeability and pulmonary dysfunctions (Ulich et al., 1991;

Bielefeldt-Ohmann, 1995; Wang et al., 1997). IL-1 and TNF-  also induce a cascade

of secondary cytokines, such as IL-6. IL-6 is a potent inducer of acute-phase proteins

in the liver (Murtaugh et al., 1996). Although IL-6 is generally considered a

proinflammatory cytokine, it also has some anti-inflammatory properties (Tilg et al.,

1994). IL-6 can down-regulate the production of IL-1 and TNF-  and suppress their

activity by inducing IL-1 receptor antagonists and soluble TNF-  receptors.

Furthermore, the production of each of the three cytokines in the lungs has been

associated with general signs of disease such as fever, depression and anorexia.

The present study was undertaken to test the hypothesis that PRRSV-LPS induced

respiratory disease is associated with the excessive production of proinflammatory

cytokines in the lungs. Therefore, we compared the production of IL-1, TNF-  and

IL-6 in the lungs of pigs after dual inoculation with PRRSV and LPS with that after

the inoculation with each agent alone. Correlations between cytokine levels and

respiratory signs, macroscopic and microscopic lung pathology, and the infiltration of

inflammatory cells in the bronchoalveolar spaces were examined.

Materials and methods

Virus and LPS preparations

PRRSV (Lelystad strain) (Wensvoort et al., 1991) was used in the present study.

The virus used for inoculation was at the fifth passage in alveolar macrophages, which

had been obtained from 4- to 6-week-old gnotobiotic pigs. The inoculation dose was

106 tissue culture infective doses (TCID50)/pig.

LPS of a non-enteropathogenic strain of Escherichia coli (serotype 0111:B4,

trichloroacetic acid extraction, 90% purity) was obtained from Difco Laboratories

(Detroit, USA) and was used at a dose of 20 µg/kg body weight. This dose was based

on data from earlier experiments and was selected because it caused no clinical

disease and minimal IL-1 and TNF-  production in the lungs (Van Reeth et al.,

2000). Virus and LPS were diluted in sterile pyrogen-free phosphate-buffered saline

(PBS; Gibco, Merelbeke, Belgium) to obtain a 3 ml inoculum.



PRRSV synergizes with LPS in the induction of cytokines                                                                        55

Pigs, experimental design and sampling

Thirty-eight caesarean-derived colostrum-deprived pigs at the age of 4 weeks were

used. They were housed in individual Horsefall-type isolation units with positive

pressure ventilation and fed with commercial ultrahigh-temperature-treated cow’s

milk. All inoculations were performed intratracheally with a 20-gauge needle that was

inserted through the skin cranial to the sternum.

The pigs were allocated to 4 groups (table 1). Fourteen pigs were inoculated with

PRRSV and 3 (n = 2), 5 (n = 3), 7 (n = 6), 10 (n = 2) or 14 (n = 1) days later with LPS

(PRRSV-LPS group). These pigs were euthanized at 6 hours after the LPS

inoculation. This time point was chosen because previous virus-LPS experiments

showed that cytokine production peaks at 3 to 8 hours after the LPS inoculation and

declines afterwards (Van Reeth et al., 2000). Fourteen pigs were inoculated

exclusively with PRRSV and euthanized at 3 (n = 3), 5 (n = 3), 7 (n = 3), 10 (n = 4) or

14 (n = 1) days after inoculation (PRRSV control group). Five pigs were inoculated

exclusively with LPS and euthanized 6 hours later (LPS control group). Five pigs

were mock inoculated with PBS and euthanized 6 hours later (PBS control group). All

pigs were clinically monitored until euthanasia.

Samples from the left lung were collected for virological, histopathological and

standard bacteriological examinations. The right lung was used for lung lavage by an

earlier described method (Van Reeth et al., 1998). Recovered BAL fluids were

separated into cells and cell-free fluids by centrifugation (400  g, 10 min, 4°C). For

four of the six pigs that were inoculated with PRRSV and 7 days later with LPS, both

the left and right lungs were used for lung lavage.

Clinical and pathological examinations

Pigs were monitored for clinical signs daily throughout the experiment and every

hour after the LPS inoculation. At the moment of euthanasia a respiratory disease

score was attributed to each pig. Scores ranged from 0 to 4: 0 = normal; 1 =

tachypnoea when stressed; 2 = tachypnoea at rest; 3 = tachypnoea and dyspnoea at

rest; 4 = severe tachypnoea and dyspnoea with laboured, jerky breathing.

Macroscopic lung lesions were evaluated by visual inspection. For

histopathological examination, samples of the cardiac and diaphragmatic lung lobes
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were fixed in 10% neutral buffered formalin, embedded in paraffin, sectioned and

stained with haematoxylin and eosin.

BAL cells were counted in a Türk chamber and cytocentrifuge preparations were

stained with Diff-Quik  (Baxter, Düdingen, Switzerland) to determine the percentage

of neutrophils and mononuclear cells.

Cytokine bioassays

Cell-free BAL fluids were concentrated 20 times by dialysis against a 20% w/v

solution of polyethylene glycol (MW 20000) and cleared of residual virus by

centrifugation at 100000  g before analysis in cytokine bioassays. IL-1, IL-6 and

TNF-  bioassays have been described in detail elsewhere (Helle et al., 1988; Van

Reeth et al., 1999).

IL-1 was assayed by its capacity to stimulate proliferation of D10(N4)M cells in

the presence of concanavalin A (Grade IV, Sigma, Bornem, Belgium) and

recombinant human interleukin-2 (Genzyme, Cambridge, MA, USA). The percentage

of proliferation was determined by the thiazolyl blue (MTT) conversion procedure

and optical densities were measured. The number of biological units/ml of BAL fluid

was determined as the dilution that produced 50% maximal proliferation. To confirm

specificity of the bioassay, D10 cells were incubated with monoclonal rat anti-mouse

IL-1 receptor type 1 antibodies (Genzyme).

TNF-  activity was measured in a cytotoxicity assay with PK(15) subclone 15

cells (a gift from G. Bertoni, Bern, Switzerland) in the presence of actinomycin D.

The plates were stained with crystal violet and read spectrophotometrically. The

number of biological units/ml of BAL fluid was defined as the dilution that produced

50% cytotoxicity. Specificity was demonstrated by neutralization of samples with

rabbit anti-human TNF-  antibodies (Innogenetics, Zwijnaarde, Belgium).

IL-6 was assayed by its capacity to stimulate proliferation of B9 cells (a gift from

L. A. Aarden, Amsterdam, the Netherlands). The percentage proliferation was

determined by the thiazolyl blue (MTT) conversion procedure and optical densities

were measured. The number of biological units/ml of BAL fluid was determined as

the dilution that produced 50% maximal proliferation. To confirm specificity of the

bioassay, samples were neutralized with goat anti-porcine IL-6 antibodies (R&D

systems, Abingdon, UK).
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Bioassays were done with two-fold dilutions of samples in 96-well microtitration

plates. Laboratory standards were run in each bioassay. Samples were tested in two or

three individual bioassays and geometric means were calculated.

Virological and bacteriological examinations

Tissue samples from the diaphragmatic lobe of the left lung were used for

virological and bacteriological examinations. PRRSV titrations were performed on

alveolar macrophages using standard methods (Wensvoort et al., 1991). For

bacteriology, samples of lung tissue were plated on bovine blood agar and cultured

aerobically. A nurse colony of coagulase-positive Staphylococcus species was

streaked diagonally on each plate. Plates were inspected for bacterial growth after 48

and 72h. Colonies were then identified by standard techniques.

Statistical analysis

Standard two-sample Mann-Whitney tests were used to compare respiratory

disease scores and cytokine titers. Correlation coefficients were calculated using the

Spearman rank correlation test. P-values <0.05 were considered significant. Statistical

analyses were performed using SPSS 6.1.

Results

The lungs of all pigs were free of bacteria by culture. PRRSV titers are presented

in table 1. PRRSV was isolated from the lungs of all virus-inoculated pigs, but not

from pigs inoculated with LPS or PBS only. There were no differences in virus titers

between the pigs inoculated with PRRSV and LPS combined and the pigs inoculated

with PRRSV alone, or at the different time points after inoculation with PRRSV.

Clinical signs

Mean respiratory scores are presented in table 1. Pigs that received PBS or LPS

only remained asymptomatic. Pigs inoculated with PRRSV only showed no

respiratory signs at any day after inoculation. They showed mild anorexia and

dullness between 3 and 5 days after inoculation.
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In contrast, all PRRSV-LPS inoculated pigs developed marked respiratory signs.

All pigs were clinically normal before the LPS inoculation, but developed tachypnoea,

dyspnoea with laboured, abdominal breathing and depression within 1 to 2 hours after

the LPS inoculation. These signs were still present at the time of euthanasia. There

were no differences in disease severity among the pigs inoculated with LPS at 3, 5, 7,

10 or 14 days after inoculation with PRRSV. Respiratory disease scores were

significantly (P <0.05) higher for the PRRSV-LPS group than for any other group.

Table 1. Respiratory scores, virus titers and numbers of inflammatory cells in BAL fluids.

Euthanasia after Mean no. of BAL cells ± SD

(  106)

Inoculation

with

n

PRRSV

(days)

LPS

(hours)

Mean

resp.

score(1)

± SD

Mean virus

titer ± SD

(log10

TCID50
(2)/g)

neutrophils mononuclear

cells

PBS 5 -(3) - 0 ± 0 negative 2 ± 2 115 ± 52

PRRSV 3 3d - 0 ± 0 4.4 ± 1.1 5 ± 8 154 ± 115

3 5d - 0 ± 0 5.4 ± 1.3 4 ± 3 117 ± 42

3 7d - 0 ± 0 6.0 ± 0.6 7 ± 2 216 ± 71

4 10d - 0 ± 0 5.7 ± 0.9 38 ± 38 409 ± 219

1 14d - 0 6.0 3 337

LPS 5 - 6h 0 ± 0 negative 303 ± 105 233 ± 60

PRRSV-LPS 2 3d 6h 2 ± 1.4 6.0 ± 0 18 ± 23 121 ± 22

3 5d 6h 3 ± 0 5.1 ± 2.2 296 ± 163 208 ± 14

6 7d 6h 3.2 ± 0.8 5.5 ± 0.3 320 ± 263 275 ± 144

2 10d 6h 2.5 ± 0.7 5.9 ± 1.3 380 ± 474 486 ± 142

1 14d 6h 3 5.7 576 483

(1) respiratory scores were determined immediately before euthanasia and ranged from 0 to 4
(see text for the calculation of scores)
(2) 50% tissue culture infective dose
(3) not applicable
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Macroscopic and microscopic lung pathology

PBS control pigs did not have macroscopic or microscopic lung pathologies (figure

1). Lungs of PRRSV-inoculated pigs had a mottled appearance with multifocal red

and tan areas. Multifocal interstitial pneumonia was found microscopically.

Interalveolar septal thickening with infiltration of mononuclear cells was the major

feature and increased from 3 to 14 days after PRRSV inoculation. Inoculation with

LPS only resulted in milder pneumonic lesions. Macroscopic lesions were

characterised by focal areas of atelectasis and interlobular oedema. The characteristic

histopathological features were thickening of the interalveolar septa, although it was

less pronounced than that after inoculation with PRRSV, and bronchiolar infiltration

with neutrophils and mononuclear cells. Intra-alveolar oedema and focal transudation

of erythrocytes were occasionally seen.

Figure 1. Haematoxylin-eosin staining (  100) of the lungs of pigs inoculated with PBS only
(a), LPS only (b), PRRSV only (10 days after inoculation) (c), and the combination of
PRRSV and LPS over a 10-day interval (d). Interalveolar septal thickening was comparable in
pigs inoculated with PRRSV-LPS and pigs inoculated with PRRSV alone.

a b

c d
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The macroscopic and microscopic lung lesions after PRRSV-LPS inoculation

resembled the combination of the lesions seen after inoculation with PRRSV and LPS

alone. Lungs were mottled with small red and tan areas and interlobular oedema.

Microscopically, there was thickening of the interalveolar septa due to the infiltration

of mononuclear cells and neutrophils. The degree of septal thickening was

comparable to that seen after inoculation with PRRSV only.

Infiltration of inflammatory cells

BAL cells of the PBS control pigs consisted mainly of mononuclear cells (mean of

115  106 cells) and few neutrophils (mean of 2  106 cells) (table 1). PRRSV-

inoculated pigs showed an influx of mononuclear cells in the bronchoalveolar spaces

and this influx increased from 3 to 14 days after inoculation. Starting at 7 days after

inoculation with PRRSV, the mean number of mononuclear cells was at least two

times higher in PRRSV-inoculated pigs than in PBS control pigs. The number of

neutrophils was comparable to that in PBS control pigs, except for one pig with 91 

106 neutrophils. The LPS inoculation induced infiltration of both neutrophils (mean of

303  106 cells) and mononuclear cells (mean of 233  106 cells).

PRRSV-LPS inoculated pigs showed an influx of both mononuclear cells and

neutrophils. The amount and kinetics of the mononuclear cell infiltration were

comparable to those in the PRRSV control pigs. Neutrophil numbers, on the other

hand, were generally comparable to those in the LPS control pigs. Only 3 of the 14

PRRSV-LPS inoculated pigs had a higher number of neutrophils (567-786  106) than

the LPS control pigs. One pig showed no neutrophil infiltration at all (1  106) and

three pigs showed only minor neutrophil infiltration (19-44  106) compared to the

LPS control pigs. Two of these pigs were inoculated with LPS 3 days after PRRSV

inoculation, which explains the low mean number of neutrophils in this group.

Biologically active IL-1, TNF-  and IL-6 in BAL fluids

Figure 2 shows the IL-1, TNF-  and IL-6 titers in BAL fluids of individual pigs

after inoculation with PRRSV-LPS, PRRSV only and LPS only. PBS control pigs had

no detectable IL-1, TNF-  or IL-6. Ten out of fourteen PRRSV-inoculated pigs had

elevated titers of IL-1 with the highest titers (183-339 U/ml) at 10 days after

inoculation. Only 3 of these 14 pigs (which were euthanized 7, 10 and 14 days after
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Figure 2. Titers of proinflammatory cytokines in BAL fluids of PRRSV-LPS inoculated pigs
and pigs inoculated with PRRSV only or LPS only. Each dot corresponds to one pig: ( )
pigs inoculated with LPS at the indicated day after PRRSV inoculation, ( ) pigs inoculated
with PRRSV only, ( ) pigs inoculated with LPS only. Pigs inoculated with LPS were
euthanized 6 hours later. The dotted line represents the detection limit.
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inoculation, respectively) had detectable TNF-  titers (28-61 U/ml). Ten pigs had

detectable IL-6 titers (61-343 U/ml). LPS inoculation induced the production of all

three cytokines in the lungs. IL-1 (28-1022 U/ml) and IL-6 (1276-2659 U/ml) were

detected in all five pigs and TNF-  (28-133 U/ml) was detected in three pigs.

Compared to the pigs inoculated with PRRSV or LPS alone, 10 of 14 PRRSV-LPS

inoculated pigs showed significantly (P <0.05) increased titers of at least one of the

three cytokines. In nine pigs, the titers of IL-1 (2172-20480 U/ml), TNF-  (164-6047

U/ml) and IL-6 (2511-378724 U/ml) were strongly increased; and in one pig only the

titer of IL-1 (2840 U/ml) was increased. The highest cytokine titers were detected in

pigs inoculated with LPS 5 to 14 days after the PRRSV inoculation, and they were 10

to 100 times higher than the cytokine titers of the control pigs inoculated with PRRSV

or LPS only. Four PRRSV-LPS inoculated pigs, on the other hand, did not show

enhanced cytokine production. These pigs had negligible levels of TNF-  (<20-31

U/ml), and the levels of IL-1 (191-1571 U/ml) and IL-6 (266-2425 U/ml) were

comparable to those of the LPS control pigs.

The left and right lungs of pigs that were inoculated with PRRSV-LPS and whose

both lung halves were lavaged showed no difference in cytokine titers or cell counts

(P >0.05, data not shown).

Table 2 presents the correlation between respiratory scores, cytokine levels and

numbers of inflammatory cells in BAL fluids.

Table 2. Correlation coefficients between respiratory scores, cytokine titers and numbers of
inflammatory cells in BAL fluids.

Correlation with

Resp.

score

IL-1

titer

TNF-

titer

IL-6

titer

Neutrophils

no.

Mononuclear

cells no.

Resp. score 1 0.81 0.70 0.71 0.59 ns(1)

IL-1 titer -(2) 1 0.75 0.85 0.80 0.43

TNF-  titer - - 1 0.84 0.74 0.40

IL-6 titer - - - 1 0.84 ns

Neutrophils no. - - - - 1 0.61

Mononuclear cells no. - - - - - 1

(1) no significant correlation (P >0.05)
(2) not applicable
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The levels of all three cytokines were tightly correlated with each other and with the

respiratory scores and the neutrophil numbers. There was, however, little correlation

between neutrophil numbers and respiratory scores. The number of infiltrated

mononuclear cells did not correlate with cytokine levels or respiratory scores. The

four PRRSV-LPS inoculated pigs that did not have increases in cytokine levels also

had lower neutrophil numbers (1-129  106). The cytokine titers and BAL cell

numbers did not correlate with the virus titers (data not shown).

Discussion

This study demonstrates that a PRRSV infection sensitizes the lungs for the

production of proinflammatory cytokines upon exposure to LPS. Moreover, the

cytokine titers were tightly correlated with the appearance of respiratory signs. We

have previously documented a similar phenomenon for another respiratory virus of

swine that causes subclinical disease, porcine respiratory coronavirus (PRCV) (Van

Reeth et al., 2000). Like PRRSV, PRCV infection enhanced the production of TNF-

and IL-1 in response to LPS, and the levels of both cytokines correlated with the

severity of disease. The pathogenesis of PRRSV-LPS induced disease appears to be

similar to the pathogenesis of PRCV-LPS induced disease. As IL-1 and TNF-  have

overlapping effects and potentiate the effects of each other, we consider them both as

central mediators in virus-LPS induced disease. IL-6 levels in the lungs of pigs

inoculated with both virus and LPS were assessed for the first time in the present

study, and they were also found to be markedly enhanced. IL-6 is probably induced as

a secondary cytokine in response to IL-1 and TNF- , which may explain the tight

correlation between IL-6 levels and IL-1 and TNF-  levels. Because IL-6 has both

pro- and anti-inflammatory activities, it may either contribute to disease or counteract

the activities of IL-1 and TNF- .

We have indications that the tachypnoea and dyspnoea resulting from PRRSV-LPS

or PRCV-LPS inoculations are due to a functional process, such as

bronchoconstriction, rather than to structural lung damage. Firstly, the onset of

respiratory signs is hyperacute. In another PRRSV-LPS inoculation study, it was

shown that respiratory signs started within 1 hour after LPS, reached a climax 2 to 4

hours later and were clearly diminished 12 hours later (Labarque et al., 2000).
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Secondly, microscopic lung lesions of PRRSV-LPS inoculated and PRRSV-

inoculated pigs did not differ much. Pigs of both groups had interstitial pneumonia

typical of PRRSV infection, and LPS inoculation had little extra effect. The

inoculation with LPS as such caused a marked increase in the number of neutrophils

in BAL fluids, but there were no differences in neutrophil numbers between pigs

inoculated with PRRSV-LPS and those inoculated with LPS alone. Thirdly, it is well

known that IL-1 and TNF-  can cause bronchial hyperreactivity (Anticevich et al.,

1995; Okada et al., 1995) and bronchoconstriction (Martin et al., 2001), leading to

asthma-like symptoms. Moreover, TNF-  and IL-1 were shown to synergize in the

induction of bronchoconstriction in the rat lung (Martin et al., 2001). Therefore,

simultaneous overproduction of these cytokines after PRRSV-LPS inoculation may

cause increased and sustained contraction of bronchi, which may explain the acute

respiratory signs.

We cannot explain why four PRRSV-LPS inoculated pigs, which showed clear

respiratory signs, had only low cytokine titers and negligible neutrophil infiltration.

There were no consistent differences in PRRSV titers or the numbers of mononuclear

cells in BAL fluids between these and the other pigs. Because LPS exerts its effect

locally, our initial hypothesis was that the LPS inoculum probably did not reach the

right lung in those pigs and that cytokine production and neutrophil infiltration might

have been restricted to the left lung. To test this hypothesis we lavaged both the left

and right lungs of four PRRSV-LPS inoculated pigs. There were no differences in

cytokine levels or neutrophil infiltration between the two lung halves. Therefore, it

can be assumed that the LPS inoculum is distributed equally between both lung halves

in most pigs. The true reason for the variability in cytokine production and neutrophil

infiltration among PRRSV-LPS inoculated pigs is unclear.

There have been few studies on the interactions between viruses and LPS in vivo.

To our knowledge, PRRSV and PRCV are the first respiratory viruses shown to act

synergistically with LPS in the induction of respiratory disease and cytokines.

Recently, it has been described that systemic infection of mice with lymphocytic

choriomeningitis virus or vesicular stomatitis virus leads to fatal shock upon

intraperitoneal inoculation with a sublethal dose of LPS (Nguyen and Biron, 1999;

Nansen and Thomsen, 2001). It appeared that the shock syndrome was caused by the

overproduction of TNF- . Mice inoculated with virus-LPS had 3- to 50-fold higher
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serum TNF-  levels compared to those in the sera of mice inoculated with LPS only.

By use of knockout mice, it was demonstrated that virus-induced interferon was

responsible for the increased sensitivity to LPS (Doughty et al., 2001; Nansen and

Thomsen, 2001). Both interferon- /  and -  were able to sensitize mice to systemic

LPS exposure. It is unlikely, however, that interferon-  is involved in the

sensitization of PRRSV-infected pigs to LPS, because interferon-  production is

minimal during infection with PRRSV (Albina et al., 1998; Van Reeth et al., 1999).

It remains to be seen whether the PRRSV-induced infiltration of the lungs with

mononuclear cells contributes to the increased LPS responsiveness. PRRSV induces

pronounced infiltration of monocytes in the lungs, reaching a peak at 25 days after

inoculation (Labarque et al., 2000). In mice, it was shown that monocytes infiltrating

the lungs in response to monocyte chemo-attractant protein-1 (MCP-1) have increased

levels of expression of CD14, the LPS receptor, and become primed for enhanced

TNF-  production in response to LPS (Maus et al., 2001). It is possible that PRRSV-

attracted monocytes are an important source of cytokines upon LPS exposure and that

they are responsible for the enhanced cytokine response compared to the response of

uninfected lungs. In this study, the number of mononuclear cells in the

bronchoalveolar spaces did not correlate with the respiratory signs. There are two

important considerations in this regard. Firstly, the BAL cell profiles in PRRSV-LPS

inoculated pigs were partly the result of the LPS inoculation and as such did not

reflect the situation before the LPS inoculation. Secondly, we have counted

mononuclear cells in the BAL fluids and not in the interstitium, while interstitial

monocytes may be important targets for LPS.

In conclusion, respiratory viruses like PRRSV, which do not cause respiratory

signs on their own, can sensitize the lungs for the production of proinflammatory

cytokines and respiratory signs upon exposure to bacterial endotoxin. This interaction

may be important in the development of multifactorial respiratory disease, as is often

seen in the field.
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Abstract

The porcine reproductive and respiratory syndrome virus (PRRSV) synergizes with

bacterial lipopolysaccharide (LPS) in the induction of proinflammatory cytokines and

respiratory disease. We sought to confirm that the excessive production of these

cytokines is responsible for the acute respiratory signs after PRRSV-LPS exposure.

Hereto, we studied the effect of pentoxifylline, a phosphodiesterase inhibitor, on

PRRSV-LPS induced cytokine production and disease. Pentoxifylline is known to

suppress the production of TNF-  and other proinflammatory cytokines. The clinical

effects of two prostaglandin inhibitors, namely meloxicam and flunixin meglumine,

were also examined. Pentoxifylline, but not the prostaglandin inhibitors, significantly

reduced fever and respiratory signs of PRRSV-LPS inoculated pigs from 2 to 6 hours

after the LPS inoculation. The levels of tumour necrosis factor-  and interleukin-1 in

the lungs of pentoxifylline-treated PRRSV-LPS inoculated pigs were moderately

reduced compared to untreated PRRSV-LPS inoculated pigs, but were still markedly

higher than in control pigs inoculated with PRRSV or LPS only. The beneficial effect

of pentoxifylline on the respiratory disease could not be attributed solely to the

limited reduction of proinflammatory cytokines in the lungs. We conclude that

pentoxifylline is not a good tool to study the role of proinflammatory cytokines in

virus-LPS induced respiratory disease.
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Introduction

The porcine reproductive and respiratory syndrome virus (PRRSV) synergizes with

bacterial lipopolysaccharide (LPS) in the induction of proinflammatory cytokines and

respiratory disease (chapter 3.1). We wanted to confirm that the excessive production

of these cytokines in the lungs is responsible for the acute respiratory signs after

PRRSV-LPS exposure. Hereto, we tested the effect of a known cytokine inhibitor on

PRRSV-LPS induced disease. Pentoxifylline (Torental , Hoechst) is a non-selective

phosphodiesterase-inhibitor that suppresses the production of tumour necrosis factor-

 (TNF- ) (Noel et al., 1990; Lin et al., 2004) and according to some reports also

interleukin-1 (IL-1), IL-6 and IL-8 (Neuner et al., 1994). Moreover, pentoxifylline has

been successfully used to suppress systemic TNF-  levels in pigs (Gibson et al.,

1991). Additionally, we also examined the effects of two non-steroidal anti-

inflammatory drugs (NSAIDs), namely meloxicam (Metacam , Boehringer

Ingelheim) and flunixin meglumine (Finadyne , Schering-Plough). Both NSAIDs are

registered to treat inflammation in swine. They inhibit the synthesis of prostaglandins

and thromboxanes, which are eicosanoid mediators of inflammation (Odensvik et al.,

1989; Schmidt and Banting, 2000; Hirsch et al., 2003).

Materials and Methods

Five-week-old conventional pigs were inoculated intratracheally with 106 50%

tissue culture infective doses (TCID50) of the Lelystad strain of PRRSV and 5 days

later with LPS (20 µg/kg, derived from E. coli serotype 0111:B4, Sigma-Aldrich).

Ten hours and one hour before the LPS inoculation, pigs were treated with

pentoxifylline (120 mg/kg orally, n = 15), meloxicam (1.5 mg/kg im, n = 8) or

flunixin meglumine (5.5 mg/kg im, n = 3) or they were left untreated (n = 17).

Untreated PRRSV-inoculated (n = 7), LPS-inoculated (n = 8) and non-inoculated pigs

(n = 8) were also included. Clinical signs were monitored at -10, -1, 0, 2, 4, 6, 8, 10

and 12 hours after the LPS inoculation and evaluated using a scoring system. Pigs

were scored for fever (0: 39.9°C, 1: 40°C - 40.9°C, 2: 41°C), tachypnoea (0:

45, 1: 46 - 59, 2: 60), abdominal thumping (0: absent, 1: present) and dyspnoea

(0: absent, 1: present). The total score per pig was obtained at each time point by
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adding the scores for the different parameters and ranged from 0 to 6. At 4 hours after

the LPS inoculation, 14 pigs of the PRRSV-LPS group (7 pentoxifylline-treated and 7

untreated), 3 of the PRRSV group and 4 of the LPS group were euthanized. Bioactive

levels of TNF- , IL-1 and IL-6, and numbers of inflammatory cells in

bronchoalveolar lavage (BAL) fluids were determined as described previously (Van

Gucht et al., 2003).

Results

The evolution of clinical scores in all groups is presented in figure 1. Treatment

with pentoxifylline significantly reduced fever and respiratory signs, but side effects

like nervousness and tremor were seen in 40% of the pigs. Meloxicam and flunixin

meglumine had no significant effect on fever or respiratory signs.

Figure 1. Effect of pentoxifylline, meloxicam and flunixin meglumine treatment on clinical
signs of PRRSV-LPS inoculated pigs. Clinical scores are calculated as described in the text.
Values with an asterisk are significantly different from the untreated PRRSV-LPS group
(Mann-Whitney test, P <0.05)

The results of cytokine titrations and BAL cell enumerations are presented in table

1 and 2. Mean TNF- , IL-1 and IL-6 levels were 11 to 126 times higher in PRRSV-
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LPS inoculated pigs than in pigs inoculated with PRRSV or LPS only. Pentoxifylline

treatment of PRRSV-LPS inoculated pigs reduced the mean TNF-  and IL-1 levels 5-

and 3-fold respectively, but these levels were still 26- and 3.5-fold higher than those

of the singly inoculated pigs. Pentoxifylline treatment had no effect on IL-6 levels or

infiltration of inflammatory cells in the lungs.

Table 1. Effect of pentoxifylline treatment on titers of proinflammatory cytokines in BAL
fluids of PRRSV-LPS inoculated pigs at 4 hours after the LPS inoculation.

Mean BAL cytokine titers ± SEM (U/ml)Inoculation

with

Treatment n Mean clin.

score(1)

± SEM TNF- IL-1 IL-6

PRRSV-LPS PTX(2) 7 1.7a ± 0.5 1369a ± 912 4037a ± 1356 31196a ± 23168

PRRSV-LPS untreated 7 4.7b ± 0.4 6561b ± 1789 12359b ± 194 32802a ± 23683

PRRSV untreated 3 0.7a ± 0.3 <40c ± 0 490c ± 668 382b ± 625

LPS untreated 4 0.8a ± 0.3 52c ± 39 1149c ± 614 1443b ± 456

(1) clinical scores were determined immediately before euthanasia and ranged from 0 to 6
(see text for the calculation of scores), (2) pentoxifylline
a, b, c values with different superscripts are significantly different (Mann-Whitney test, P <0.05)

Table 2. Effect of pentoxifylline treatment on numbers of inflammatory cells in BAL fluids
of PRRSV-LPS inoculated pigs at 4 hours after the LPS inoculation.

Mean BAL cells ± SEM (  106)Inoculation

with

Treatment n

monomorphonuclear cells neutrophils

PRRSV-LPS PTX(1) 7 545a ± 101 1316a, b ± 381

PRRSV-LPS untreated 7 669a ± 118 1377a ± 209

PRRSV untreated 3 772a ± 157 315b ± 146

LPS untreated 4 659a ± 100 1039a, b ± 255

(1) pentoxifylline
a, b, c values with different superscripts are significantly different (Mann-Whitney test, P <0.05)

Discussion

This study demonstrated that pentoxifylline, a phosphodiesterase inhibitor, was

more effective for the treatment of virus-LPS induced disease than classic

prostaglandin synthesis inhibitors. Levels of TNF-  and IL-1 in PRRSV-LPS

inoculated pigs were reduced by pentoxifylline treatment, but they were still

considerably higher than those of the singly inoculated control pigs. The beneficial

effect of pentoxifylline on the respiratory disease could thus not be attributed solely to
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the limited reduction of proinflammatory cytokines in the lungs. Possibly, other

mechanisms contributed to the clinical improvement of pentoxifylline-treated pigs.

Pentoxifylline can also inhibit neutrophil activation, improve blood perfusion and

cause bronchodilatation (Tighe et al., 1990; Cortijo et al., 1993). Moreover,

pentoxifylline was recently found to inhibit translocation of nuclear factor- B to the

nucleus of alveolar epithelial cells upon LPS stimulation (Haddad et al., 2002).

Myers et al. (2002) studied the effect of pentoxifylline on acute lung inflammation

caused by Actinobacillus pleuropneumoniae infection in swine. They found that a

dose of 20 mg/kg sc had no effect on the expression of proinflammatory cytokines in

the lungs. Higher doses (200 mg/kg, sc) induced side effects such as vomiting,

diarrhoea and tremor. In vitro, pentoxifylline could fully abrogate transcription of

TNF-  mRNA in porcine alveolar macrophages, but such inhibitory concentrations

were not achievable in swine due to side effects. These researchers concluded that

pentoxifylline was a poor inhibitor of proinflammatory cytokine production in swine,

which agrees to some extent with our study.

Both NSAIDs had little effect on fever and respiratory signs, though they were

used at doses 2.5 to 3 times higher than prescribed by the respective companies. These

results indicate that eicosanoid mediators have no direct effect on the acute clinical

signs induced by the combination of PRRSV and LPS.

We conclude that pentoxifylline is not a good tool to study the role of

proinflammatory cytokines in virus-LPS induced respiratory disease. More specific

cytokine inhibitors are needed to confirm the role of proinflammatory cytokines in the

acute respiratory disease.
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Abstract

Porcine reproductive and respiratory syndrome virus (PRRSV) is a respiratory

virus of swine that plays an important role in multifactorial respiratory disease.

European strains of PRRSV cause mild or no respiratory signs on their own, but can

sensitize the lungs for the production of proinflammatory cytokines and respiratory

signs upon exposure to bacterial lipopolysaccharide (LPS). The inflammatory effect

of LPS depends on the binding to the LPS receptor complex. Therefore, we quantified

the amounts of CD14 and LPS-binding protein (LBP) in the lungs of pigs throughout

a PRRSV infection. Twenty-four gnotobiotic pigs were inoculated intranasally with

PRRSV (106 50% tissue culture infective doses per pig, Lelystad strain) or phosphate-

buffered saline (PBS) and euthanized 1 to 52 days later. Lungs were examined for

CD14 expression (immunofluorescence and image analysis), LBP (ELISA) and virus

replication. PRRSV infection caused a clear increase of CD14 expression from 3 to 40

days post inoculation (DPI) and LBP from 7 to 14 DPI. Both parameters peaked at 9-

10 DPI (40 and 14 times higher than PBS control pigs, respectively) and were

correlated tightly with virus replication in the lungs. Double immunofluorescence

labelings demonstrated that resident macrophages expressed little CD14 and that the

increase of CD14 expression in the PRRSV-infected lungs was probably due to

infiltration of highly CD14-positive monocytes in the interstitium. As both CD14 and

LBP potentiate the inflammatory effects of LPS, their increase in the lungs could

explain why PRRSV sensitizes the lungs for the production of proinflammatory

cytokines and respiratory signs upon exposure to LPS.
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Introduction

Porcine reproductive and respiratory syndrome virus (PRRSV) is a respiratory

arterivirus of swine that has a strict tropism for differentiated macrophages (Duan et

al., 1997). In spite of the fact that European strains of PRRSV fail to cause respiratory

disease on their own (Van Reeth et al., 1999), the virus is considered an important

cause of multifactorial respiratory disease (Thacker, 2001). However, little is known

about the mechanisms of interaction between PRRSV and secondary agents in the

lungs.

We have previously demonstrated that PRRSV sensitizes the lungs for the

production of proinflammatory cytokines and respiratory signs upon exposure to

lipopolysaccharides (LPS) (Labarque et al., 2002; Van Gucht et al., 2003). LPS are

endotoxins of Gram-negative bacteria. They are present in high concentrations in

organic dust of swine confinement units and they are released locally in the lungs

during infections with Gram-negative bacteria (Pugin et al., 1992; Zhiping et al.,

1996). Treatment with some antibiotics can even enhance the release of LPS from the

bacterial cell wall (Periti and Mazzei, 1999). Intratracheal administration of LPS (20

µg/kg body weight) to PRRSV-infected pigs results in severe respiratory signs,

characterized by tachypnoea, abdominal breathing, dyspnoea, high fever and

depression (Labarque et al., 2002). Pigs exposed to PRRSV or LPS only, in contrast,

develop no or mild respiratory signs. Also, PRRSV-LPS induced respiratory disease

is associated with an excessive production of proinflammatory cytokines in the lungs

(Van Gucht et al., 2003). Following exposure to LPS, the production of interleukin-1

(IL-1), tumour necrosis factor-  (TNF- ) and interleukin-6 (IL-6) in the lungs is 10 to

100 times higher in PRRSV-infected pigs than in uninfected pigs. In previous

experiments, pigs were exposed to LPS from 3 to 14 days after PRRSV inoculation

(Labarque et al., 2002; Van Gucht et al., 2003). The synergy between PRRSV and

LPS occurred at all time intervals, but was most pronounced between 5 and 14 days

after PRRSV inoculation.

LPS exert their inflammatory effects after binding to “cluster of differentiation 14”

(CD14), a specific LPS receptor which is expressed on monocytes and macrophages

and to a lesser extent on neutrophils (Antal-Szalmas et al., 1997). CD14 is a so-called

“pattern recognition receptor”. This is a receptor that recognizes conserved molecules
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of several pathogens, such as LPS from Gram-negative bacteria, lipoteichoic acid

from Gram-positive bacteria and chitosans from fungi and insects thereby initiating

the innate immune response against these organisms (Antal-Szalmas, 2000).

Numerous studies in different species have demonstrated that impairment of CD14

function, by neutralization with antibodies or use of knockout animals, suppresses

LPS-induced cytokine production, respiratory disease and shock (Ishii et al., 1993;

Haziot et al., 1996; Leturcq et al., 1996; Schimke et al., 1998; Frevert et al., 2000;

Tasaka et al., 2003). In humans and mice, the CD14-LPS complex binds to Toll-like

receptor 4 (TLR4) (Heumann and Roger, 2002). TLR4 has an intracellular tail that

activates messenger molecules, eventually leading to the activation of several

proinflammatory genes.

Binding of LPS to CD14 is enhanced by LPS-binding protein (LBP), a soluble

acute phase protein produced by liver and lung epithelial cells (Fenton and

Golenbock, 1998; Dentener et al., 2000). Plasma of healthy humans contains about 2-

20 µg/ml LBP and levels increase ten times during acute phase responses. LBP

facilitates the transfer of LPS from bacterial membranes to the cell surface receptor

CD14 and catalyzes the binding of LPS to CD14 (Hailman et al., 1994). This way,

LBP increases the biological effects of LPS 100- to 1000-fold. LBP plays a role in the

pathogenesis of the “adult respiratory distress syndrome” and asthma (Martin et al.,

1997; Strohmeier et al., 2001). CD14 and LBP are both important components of the

so-called “LPS receptor complex”.

A PRRSV infection causes a marked infiltration of the lungs with monocytes (Van

Reeth et al., 1999; Labarque et al., 2000). Monocytes express CD14 on their

membranes and produce proinflammatory cytokines in response to LPS. Also, LBP is

induced during the acute phase response of different infections. Therefore, we

hypothesize that, as a consequence of the PRRSV infection, CD14 expression and

LBP levels increase in the lungs, which may lead to LPS sensitization.

In this study, we quantified the levels of CD14 expression and LBP in the lungs of

pigs throughout a PRRSV infection. Further, the cells expressing CD14 were

characterized using monocyte-macrophage markers.



PRRSV increases CD14 and LBP in the lungs                                                                                      83

Materials and methods

Pigs, experimental design and sampling

Twenty-four colostrum-deprived pigs (age: 4 weeks) delivered by caesarean

section were used in the study. They were housed in individual Horsefall-type

isolation units with positive-pressure ventilation and fed with commercial ultrahigh-

temperature-treated cow’s milk.

Nineteen pigs were inoculated intranasally with 106 50% tissue culture infective

doses (TCID50) of the Lelystad strain in 3 ml phosphate-buffered saline (PBS; Gibco,

Merelbeke, Belgium) (1.5 ml in each nostril). A fifth passage on porcine alveolar

macrophages of the Lelystad strain of PRRSV (Wensvoort et al., 1991) was used. The

remaining five pigs were mock-inoculated with PBS. PRRSV-inoculated pigs were

euthanized at 1 (n = 1), 3 (n = 2), 5 (n = 2), 7 (n = 2), 9 (n = 2), 10 (n = 1), 14 (n = 3),

20 (n = 1), 25 (n = 1), 30 (n = 1), 35 (n = 1), 40 (n = 1) or 52 (n = 1) days post

inoculation (DPI). PBS control pigs were euthanized at 1 (n = 1), 7 (n = 1), 14 (n = 1),

30 (n = 1) or 52 (n = 1) DPI.

Tissue samples from the apical, cardiac and diaphragmatic lung lobes of the left

lung were collected for virological and bacteriological examinations and

immunofluorescence staining. For immunofluorescence staining, samples were

embedded in methylcellulose medium, frozen at -70°C and cryostat sections of 5 to 8

µm were made. The right lung was used for lung lavage by an earlier described

method (Van Reeth et al., 1998). Recovered bronchoalveolar lavage (BAL) fluids

were cleared from cells and debris by centrifugation (400  g, 10 min, 4°C). Cell-free

BAL fluids were then concentrated 20 times by dialysis against a 20% w/v solution of

polyethylene glycol (MW 20000) and again centrifuged at 100000  g.

Virological and bacteriological examinations

PRRSV titrations were performed on porcine alveolar macrophages using standard

methods (Wensvoort et al., 1991). PRRSV antigen-positive cells in lung tissue

sections were quantified using monoclonal antibodies (mAbs) against the

nucleocapsid (WBE1 and WBE4-6) and a streptavidin-biotin immunofluorescence

technique (Labarque et al., 2000). A distinction was made between viral antigen-

positive single cells and foci. Foci were defined as clusters of viral antigen-positive
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cells and cellular debris in the tissue. Because the number of cells was difficult to

determine, each cluster was counted as one viral antigen-positive focus.

For bacteriology, samples of lung tissue were plated on bovine blood agar and

cultured aerobically. A nurse colony of coagulase-positive Staphylococcus species

was streaked diagonally on each plate. Plates were inspected for bacterial growth after

48 and 72 hours. Colonies were then identified by standard techniques.

BAL cell quantification

The total amount of cells recovered from the BAL fluids was counted in a Türk

chamber. The percentage of neutrophils was determined using Diff-Quick® (Baxter,

Düdingen, Switzerland) staining of cytocentrifuge preparations. The percentage of

SWC3a- and sialoadhesin-positive cells was determined using flow cytometric

analysis (Becton Dickinson FACSCaliburTM, BD Cellquest software). SWC3a (mAb

74-22-15) is expressed on the cell membrane of monocytes, macrophages and

neutrophils (Thacker et al., 2001) and sialoadhesin (mAb 41D3) is expressed

exclusively on the cell membrane of differentiated macrophages (Vanderheijden et

al., 2003). Resident macrophages of uninfected lungs are sialoadhesin-positive,

whereas newly infiltrated monocyte-macrophages are sialoadhesin-negative

(Labarque et al., 2000). The number of sialoadhesin-negative monocyte-macrophages

was determined by subtracting the number of neutrophils, determined by Diff-Quick®

staining, and the number of sialoadhesin-positive cells from the number of SWC3a-

positive cells.

BAL cells (5 x 106) were incubated with optimal dilutions (in 10% goat serum) of

74-22-15 or 41D3 antibodies respectively for 1 hour at 4°C. Subsequently, BAL cells

were incubated with fluorescein isothiocyanate (FITC)-labeled goat-anti-mouse

polyclonal antibodies (4 µg/ml, 10% goat serum) (Molecular Probes, Eugene, Oregon,

USA) for 1 hour at 4°C. Three washings were done with cold PBS after each

incubation. BAL cells which were exclusively incubated with FITC-labeled goat anti-

mouse polyclonal antibodies were included as controls. Ten thousand cells were

analysed for each sample.
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CD14 quantification

Immunofluorescence staining for CD14 was performed on sections of the apical (n

= 1), cardiac (n = 2) and diaphragmatic (n = 2) lobes of each lung using mouse mAb

MIL2 (Thacker et al., 2001). Sections were fixed in 4% paraformaldehyde for 10 min

at room temperature, incubated with an optimal dilution (in 10% goat serum) of MIL2

antibodies and thereafter with FITC-labeled goat anti-mouse polyclonal antibodies (4

µg/ml, 10% goat serum) (Molecular Probes, Eugene, Oregon, USA). Sections were

mounted in a glycerin-PBS solution (0.9:0.1, v/v) with 2.5% 1,4-diazobicyclo-2.2.2-

octane (DABCO) (Janssen Chimica, Beerse, Belgium). Antibodies were diluted in

PBS with 10% goat serum. All incubations were performed at 37°C for 1 hour. After

fixation and incubation with the respective antibodies, sections were rinsed in PBS (4

 5 min). Specificity of the CD14 staining was determined by deletion of MIL2

antibodies and use of irrelevant mouse mAbs.

Fifteen pictures (1 picture  0.1 mm2) of the interstitium of each section were taken

randomly using a fluorescence microscope (  400) (Leica DM RBE, Leica

Microsystems GmbH, Wetzlar, Germany), a Sony  3CCD colour video camera (Sony

Corporation, Tokyo, Japan) and Adobe  Photoshop  5.0 LE (Adobe Systems, San

Jose, California, USA). Pictures were converted to black and white using the image

analysis program Scion Image 1.62C (Scion Corporation, Frederick, Maryland, USA).

Positive cells (green fluorescence) were converted to black pixels whereas negative

cells and background were converted to white pixels. The number of black pixels,

which depends on the number of positive cells and the amount of CD14 they express,

was counted. The average number of black pixels was calculated for each lung (5

sections, 15 pictures/section) and expressed as a ratio compared to the number of

black pixels in a reference sample. A section of the apical lung lobe of the PBS

control pig euthanized at 1 DPI was used as the reference sample.

Characterization of CD14-positive cells

Double immunofluorescence staining for CD14 (mAb MIL2, IgG2b isotype) and

sialoadhesin (mAb 41D3, IgG1 isotype) (Vanderheijden et al., 2003) or SWC3a (mAb

74-22-15, IgG1 isotype) (Pescovitz et al., 1984) was performed on sections of the

cardiac and diaphragmatic lung lobes. Sections were fixed in 100% methanol for 15

min and dried for 20 min at -20°C. Sections were incubated consecutively with
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optimal dilutions (in 10% goat serum) of 41D3 or 74-22-15 antibodies, FITC-labeled

goat anti-mouse IgG1 polyclonal antibodies (4 µg/ml, 10% goat serum) (Santa Cruz

Biotechnology, Santa Cruz, California, USA), biotinylated MIL2 antibodies (10

µg/ml), streptavidin-Texas Red (10 µg/ml) (Molecular probes, Eugene, Oregon, USA)

and Hoechst 33342 (10 µg/ml) (Molecular probes, Eugene, Oregon, USA). Sections

were mounted in a glycerin-PBS solution (0.9:0.1, v/v) with 2.5% DABCO (Janssen

Chimica, Beerse, Belgium). All incubations were performed at 37°C for 1 hour. After

fixation and incubation with the respective antibodies, sections were rinsed in PBS (4

 5 min). Specificity of the double labelings was determined by deletion of primary

antibodies and use of irrelevant mouse mAbs.

Digital images were taken using a Leica TCS SP2 laser scanning spectral confocal

system linked to a Leica DM IRB inverted fluorescence microscope (Leica

Microsystems GmbH, Wetzlar, Germany).

Immunohistochemical staining for CD14

Lung tissue sections were fixed in 100% methanol for 15 min and dried for 20 min

at -20°C. Sections were incubated for 30 min with a 0.5% (v/v) hydrogen peroxide-

sodium azide solution to quench endogenous peroxidase activity. Sections were

incubated consecutively with an optimal dilution (in 10% sheep serum) of MIL2

antibodies (1 h, 37°C), biotinylated sheep anti-mouse polyclonal antibodies (1:200, 1

h, 37°C) (Amersham Biosciences, Little Chalfont, UK), streptavidin-biotinylated

horseradish peroxidase complex (1:200, 30 min, 37°C) (Amersham Biosciences, Little

Chalfont, UK) and 3,3'-diaminobenzidine (DAB)/hydrogen peroxide chromogen

substrate (5 min, room temperature) (Sigma-Aldrich, Steinheim, Germany). Sections

were counter-stained with haematoxylin. After fixation and incubation with the

respective reagents, sections were rinsed in TRIS-buffered saline (3  5 min).

Sections were mounted with DPX (Fluka, Buchs, Switzerland). Specificity of the

CD14 staining was confirmed by replacement of MIL2 antibodies by irrelevant mouse

mAbs.

LBP quantification

LBP was quantified in BAL fluids using an ELISA kit for LBP of different species,

including swine LBP (Hycult biotechnology, Uden, the Netherlands).
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Statistical analysis

Differences between mean BAL cell numbers, CD14 ratios and LBP levels of

PRRSV-inoculated pigs and PBS control pigs were analysed using the Student’s t test.

Correlation coefficients ( ) between virus replication, CD14 expression and LBP

levels were calculated using the Spearman rank correlation test. P values <0.05 were

considered significant. Statistical analyses were performed using SPSS (version 6.1)

software.

Results

The lungs of all pigs were free of bacteria by culture. Clinical signs were not

observed, except for mild anorexia and dullness between 3 and 5 DPI.

Virus replication

All PBS control pigs were negative for PRRSV. Mean virus titers in the lungs at

different days after the PRRSV inoculation are shown in table 1. Infectious virus was

detected in the lungs of PRRSV-inoculated pigs euthanized between 1 and 40 DPI,

except in one pig euthanized at 30 DPI. Virus titers were highest between 7 and 14

DPI (105.8 to 106.6 TCID50/g) and decreased slowly thereafter (105.1 to 101.0 TCID50/g).

Virus titers of the apical, cardiac and diaphragmatic lung lobes were similar.

Figure 1 shows the evolution of the mean number of viral antigen-positive cells

and foci in the lungs throughout the PRRSV infection. Viral antigen-positive cells and

foci were observed from 3 to 25 DPI and from 3 to 14 DPI, respectively. Mean

numbers of both singly infected cells (39/mm2 lung tissue) and infected foci (29/mm2

lung tissue) peaked at 9 DPI. No infected cells were detected in the lungs of PBS

control pigs.

BAL cell quantification

The evolution of the number of different types of BAL cells throughout the

PRRSV infection is shown in table 1. PBS control pigs had 114 to 256 x 106 BAL

cells. Ninety-four percent of these cells were sialoadhesin-positive macrophages,

2.7% were sialoadhesin-negative monocyte-macrophages and 1% were neutrophils.
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The remaining cells (2%) were negative for SWC3a. Most of these cells had low

granularity and small size and were presumably lymphocytes.

During PRRSV infection, all types of BAL cells increased significantly. Total

numbers of BAL cells increased from 9 to 52 DPI and were 2- to 5-fold higher

compared to the PBS control pigs. Most pronounced were increases in the numbers of

sialoadhesin-negative monocyte-macrophages. The highest numbers of these cells

were detected between 10 and 20 DPI and were 32- to 55-fold higher compared to the

PBS control pigs. During the late stage of infection from 25 to 52 DPI, the numbers of

sialoadhesin-positive macrophages increased 3- to 4-fold compared to the PBS control

pigs. The numbers of neutrophils were increased between 7 and 52 DPI. In most

PRRSV-infected pigs, except the pig euthanized at 10 DPI, neutrophils represented

only a minor fraction (1 to 15%) of total BAL cells. The highest numbers of SWC3a-

negative cells were detected between 7 and 52 DPI and were 10- to 40-fold higher

compared to the PBS control pigs.

CD14 quantification

The evolution of CD14 expression in the lungs throughout the PRRSV infection is

presented in figure 1. CD14 expression in the lungs of PBS control pigs varied little

(ratio of 0.4 to 1.5). Throughout the PRRSV infection, CD14 ratio’s increased from 3

to 9 DPI, peaked at 9 DPI (ratio of 40.1) and returned to the level of the PBS control

pigs at 40 DPI.

Characterization of CD14-positive cells

Results of the double stainings and immunohistochemical staining are presented in

figures 2 and 3. In the lungs of PBS control pigs, cells with high CD14 expression

were scarce (15 ± 11 cells/mm2) and distributed as round, single cells in the

interstitium. More than 90% of resident macrophages (sialoadhesin-positive)

expressed almost no visible CD14.

During infection, the number of highly CD14-positive cells increased and these

cells formed clusters in the interstitium. Between 9 and 14 DPI, the frequency of

highly CD14-positive cells and the size of the clusters were greatest. Extensive areas

of the interstitium were filled with highly CD14-positive cells, whereas bronchial

walls and lumina contained almost no CD14-positive cells. More than 95% of the



Table1. Mean virus titers and numbers of BAL cells in the lungs during PRRSV infection.

Inoculation

with

Number

of pigs

BAL cells ± SD (  106)Euthanasia

at…DPI

with PRRSV

Virus titers ± SD

(log10 TCID50
(1)/g

    lung tissue) total sial+

macro(2)

sial-

mono-macro(3)

neutro(4) SWC3a-

cells(5)

PBS 5 n.a.(6) negative 187 ± 51 176 ± 49 5.0 ± 1.7 1.9 ± 0.5 3.7 ± 1.0

PRRSV 1 1 5.8 152 137 4.2 1.5 9.1*

2 3 5.3 ± 0.1 132 ± 33 115 ± 35 6.9 ± 0.8 2.4 ± 1.2 7.0* ± 1.4

2 5 5.4 ± 0.8 140 ± 31 116 ± 24 5.6 ± 0.9 2.8 ± 0.6 15.5* ± 4.9

2 7 5.9 ± 0.2 261 ± 39 154 ± 27 40.1* ± 4.5 6.5* ± 0.7 60.0* ± 8.5

2 9 6.6 ± 0.7 351* ± 23 137 ± 85 91.1* ± 47.8 42.5* ± 17.7 83.0* ± 38.2

1 10 5.8 750* 248 195.5* 247.5* 60.0*

3 14 5.9 ± 0.3 583* ± 269 260 ± 193 161.3* ± 20.4 27.7* ± 24.5 134.7* ± 36.0

1 20 5.1 590* 270 272.8* 11.8* 35.4*

1 25 5.0 687* 488* 123.2* 27.5* 48.1*

1 30 negative 782* 649* 7.9 7.8* 117.3*

1 35 4.0 990* 673* 158.8* 9.9* 148.5*

1 40 1.0 642* 469* 19.3* 64.2* 89.9*

1 52 negative 717* 617* 7.4 7.2* 86.0*

(1) 50% tissue culture infective dose, (2) sialoadhesin-positive macrophages, (3) sialoadhesin-negative monocyte-macrophages,
(4) neutrophils, (5) SWC3a-negative cells with low granularity and small size, presumably lymphocytes, (6) not applicable,
( ) values marked with an asterisk differ significantly (P <0.05) from those of the PBS control pigs
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Figure 1. Evolution of virus replication (a), CD14 expression (b) and LBP levels (c) in the
lungs throughout a PRRSV infection. Each dot corresponds to one pig and the bars represent
the mean at each time point. In the first graph, grey bars/dots represent the number of viral
antigen-positive cells and white bars/dots represent the number of viral antigen-positive foci.
Mean CD14 ratios and LBP levels marked with an asterisk ( ) differ significantly (P <0.05)
from those of the PBS control pigs.
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Figure 2. Double immunofluorescence staining (  400) for CD14-sialoadhesin (a) and CD14-
SWC3a (b) of the lung tissue of a PBS- and a PRRSV-inoculated pig at 14 DPI. Sialoadhesin
is a marker for differentiated macrophages and SWC3a for both monocytes and macrophages.
The PBS-inoculated pig has few highly CD14-positive cells as indicated by the arrow. The
majority of resident sialoadhesin-positive macrophages express little CD14. Their signal is
too weak to be visible on the photograph. The PRRSV-inoculated pig shows a clear increase
of highly CD14-positive cells. These cells are sialoadhesin-negative, clustered in the
interstitium and have typical round morphology as shown by the picture at higher
magnification ( ;  3200). Most highly CD14-positive cells are positive for SWC3a as
indicated by the yellow colour in the merge picture.
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Figure 3. Immunohistochemical staining (  200) for CD14 of the lung tissue of a PBS- (a)
and a PRRSV-inoculated (b) pig at 14 DPI. The alveolar interstitium, bronchioli and large
bloodvessels are indicated respectively by the numbers 1, 2 and 3. Highly CD14-positive cells
(brown colour) are clustered in the alveolar interstitium of the PRRSV-inoculated pig.

Figure 4. Immunofluorescence staining (  400) for CD14 of blood monocytes (a), peritoneal
macrophages (b) and alveolar macrophages (c) freshly isolated from a PBS-inoculated pig.
The majority of monocytes and peritoneal macrophages express high amounts of CD14 on
their membranes (green colour). Most of the alveolar macrophages (>90%) show weak CD14
expression, only a minority of cells express high amounts of CD14 (arrow).

highly CD14-positive cells were SWC3a-positive and siaoladhesin-negative. These

cells were round with a round to kidney-shaped nucleus, corresponding to a

monocyte-like phenotype. These cells differed clearly from the resident macrophages,

which were large, irregular, SWC3a- and sialoadhesin-positive. A minority (<5%) of

the highly CD14-positive cells also expressed sialoadhesin.

alveolar macrophagesperitoneal macrophagesblood monocytes
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The relatively weak expression of CD14 on alveolar macrophages in uninfected

lungs is illustrated by figure 4. This figure shows a CD14 staining of blood

monocytes, peritoneal and alveolar macrophages isolated from a PBS-inoculated pig.

Most blood monocytes and peritoneal macrophages expressed high amounts of CD14

on their membranes, which contrasted clearly with the weak expression on alveolar

macrophages.

LBP quantification
The evolution of LBP levels in the lungs throughout the PRRSV infection is

presented in figure 1. All pigs had detectable levels of LBP in their BAL fluids. PBS

control pigs had 71 ± 63 ng LBP/ml. PRRSV-infected pigs euthanized between 7 and

14 DPI had 4 to 14 times higher levels (303-989 ng/ml) of LBP than PBS control

pigs. At the other stages of infection, LBP levels were comparable to those of PBS

control pigs.

Correlations

CD14 ratios were tightly correlated with the number of viral antigen-positive cells

(  = 0.88, P <0.01), the number of viral antigen-positive foci (  = 0.85, P <0.01), and

virus titers (  = 0.79, P <0.01). LBP levels were also correlated with these parameters,

but correlation coefficients were lower (  = 0.67,  = 0.72 and  = 0.72, respectively).

CD14 ratios and LBP levels were weakly correlated with each other (  = 0.61, P

<0.01).

Discussion

This study demonstrates that PRRSV causes a clear increase of CD14 and LBP in

the lungs of pigs. Both parameters peaked at 9-10 DPI and were correlated tightly

with virus replication in the lungs. CD14 and LBP are important components of the

LPS receptor complex and several studies found a correlation between the amount of

CD14 and LBP in the lungs and the sensitivity of the lungs to LPS (Martin et al.,

1992; Ishii et al., 1993; Maus et al., 2001; Jiang et al., 2003; Moriyama et al., 2004).

Although not proven, we believe that the increase of both receptor components in the

lungs could be an important cause of the enhanced LPS responsiveness during

PRRSV infection (Van Gucht et al., 2003). To our knowledge, this is the first study
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that describes the evolution of CD14 expression and LBP levels in the lungs

throughout a respiratory virus infection.

The biological effect of LPS depends on two antagonistic processes. On the one

hand, LPS can bind to scavenger molecules leading to internalization and degradation

without cytokine production (Stamme and Wright, 1999; Augusto et al., 2003; Jiang

et al., 2003; Alcorn and Wright, 2004). On the other hand, LPS can bind to CD14

leading to intracellular signaling, stimulation of inflammatory genes and cytokine

production. So, the inflammatory effect of LPS depends on the balance between

scavenger molecules and signaling receptors (Jiang et al., 2003). Control pigs show

little CD14 expression in the lungs, which may explain their low LPS sensitivity. It is

likely, therefore, that an important part of the inhaled LPS is bound by scavenger

molecules and degraded without causing inflammation in the lungs of such pigs.

During PRRSV infection, the abundant CD14 expression will probably increase the

chance that LPS binds to CD14 leading to massive cytokine production and clinical

signs.

In uninfected lungs, only few cells expressed high levels of CD14. The majority of

macrophages (>90%) expressed low levels of CD14 (see figures 2 to 4). The CD14

expression of these cells was often difficult to distinguish from the background of the

surrounding tissue. Still, flow cytometric studies show that the majority of alveolar

macrophages bear CD14 on their membrane (own observations; Thacker et al., 2001;

Murtaugh and Foss, 2002), but compared to blood monocytes or peritoneal

macrophages the CD14 signal is weak (Ziegler-Heitbrock et al., 1994; Hasday et al.,

1997; McCullough et al., 1999; Maus et al., 2001; Jiang et al., 2003). In humans for

example, freshly isolated alveolar macrophages express only 9% of the amount of

CD14 expressed by blood monocytes (Hasday et al., 1997). Moreover, it was shown

that viral infection of human alveolar macrophages reduces CD14 expression on their

membranes (Hopkins et al., 1996). Expression of CD14 depends highly on the

localization and microenvironment of the cell. For example, intestinal macrophages,

in contrast to peritoneal macrophages, lack CD14 expression and, as a consequence,

are unresponsive to LPS (Smith et al., 2001). This is beneficial because, otherwise,

intestinal macrophages would constantly be activated by the high LPS content in the

gut lumen. As lungs are continuously exposed to environmental LPS, it is possible
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that a similar suppression of CD14 expression on resident lung macrophages helps to

prevent chronic lung inflammation.

During the PRRSV infection, there was a gradual increase of highly CD14-positive

cells in the interstitium with a peak at 10 DPI. Because most cells were round,

clustered in the interstitium and expressed markers for monocytes (CD14, SWC3a),

but not for macrophages (sialoadhesin), we believe that these cells were infiltrated

monocytes attracted by PRRSV. Most of these cells did not contain PRRSV antigens

and therefore were probably not infected (data not shown). Macrophages, which were

irregularly shaped, scattered in the interstitium and sialoadhesin-positive, usually had

low CD14 expression. It is likely that the process of differentiation into macrophages

coincides with a decrease of CD14 expression, a process which has been previously

described in pigs (Basta et al., 1999; Sanchez et al., 1999; Chamorro et al., 2000). In

the present study, a few sialoadhesin-positive macrophages also expressed high levels

of CD14. These cells may have been at an intermediate stage of differentiation.

We have reproduced the PRRSV-LPS synergy in both gnotobiotic and

conventional pigs (Labarque et al., 2002; Van Gucht et al., 2003). Here, we studied

CD14 expression in the lungs of gnotobiotic pigs which were kept under germ-free

conditions and low environmental LPS. To study whether this high sanitary status had

an effect on CD14 expression, we compared the lungs of conventional pigs (age: 6

and 12 weeks, n = 5) with those of the control pigs used in this study. The pattern and

intensity of CD14 staining of lung tissue sections differed little between both types of

pigs. Moreover, infection of conventional pigs with PRRSV increased the amount of

CD14 in the lungs 8 to 32 times at 6 DPI. Therefore, we believe that our observations

on gnotobiotic pigs also apply to pigs kept under conventional circumstances.

We observed a marked increase of sialoadhesin-negative monocyte-macrophages

in the bronchoalveolar spaces throughout the PRRSV infection. Their numbers were

increased from 7 to 40 DPI and highest numbers were detected between 10 and 20

DPI. CD14 expression in the lung interstitium increased from 3 to 9 DPI and was

back to normal at 40 DPI. So, it seems that the increase of monocyte-macrophages in

the bronchoalveolar spaces is secondary to the increase of CD14 expression in the

lung interstitium with a delay of some days. It is likely that CD14-positive monocytes,

which have infiltrated the interstitium during the first two weeks of infection (high

virus replication), differentiate into macrophages with low CD14 expression and
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migrate into the bronchoalveolar spaces. This is in agreement with the high number of

sialoadhesin-positive macrophages in the bronchoalveolar spaces at the late stage of

PRRSV infection (25-52 DPI), when virus replication is low and CD14 expression in

the lung tissue has decreased strongly.

In this study, immunofluorescence staining of tissue sections was used to quantify

CD14 expression in the lungs. This technique allows to visualize CD14 expression in

the different compartments (bronchoalveolar, interstitial and intravascular) of the

lungs. In preliminary studies, we have performed flow cytometric analysis of CD14

on BAL cells of pigs euthanized at 9, 10 and 14 DPI with PRRSV (n = 6) and of PBS-

inoculated pigs (n = 5). In the PRRSV-infected pigs, we found a 2- to 3- fold increase

of the number of CD14-positive cells. The mean fluorescence intensity of these cells

was slightly higher (  1.7) than that of the alveolar macrophages of the control pigs.

The flow cytometric analysis of BAL cells, therefore, confirmed the data obtained by

immunofluorescence staining on lung tissue sections, though the increase of CD14

was higher with the latter technique (23- to 40-fold compared to control pigs). A

possible explanation for this difference is that the majority of highly CD14-positive

cells were clustered in the interalveolar and peribronchial interstitium and not in the

bronchoalveolar compartment (see figures 2 and 3).

LBP, another component of the LPS receptor complex, was increased from 7 to 14

DPI. At the other stages of infection, the LBP concentration in the lungs was

comparable with that of the PBS control pigs. A PRRSV infection sensitizes the lungs

for the effects of LPS as early as 3 DPI. So, LBP could have contributed to the

increased sensitivity for LPS between 7 and 14 DPI, but not between 3 and 7 DPI.

CD14, on the other hand, was increased from 3 DPI onwards and could also account

for the sensitisation at the earlier stages of infection. LPS induced the highest cytokine

titers at 5 to 14 days after PRRSV inoculation (Van Gucht et al., 2003) and at these

time points CD14 was also most abundant in the lungs. So, the amount of CD14

appeared to correlate better with the LPS response than the LBP levels.

According to the literature, LBP can be produced by hepatocytes in the liver or by

type 2 pneumocytes in the lungs in response to proinflammatory cytokines such as IL-

1 and IL-6 (Fenton and Golenbock, 1998; Dentener et al., 2000). Asai et al. (1999)

reported that serum levels of haptoglobin, another acute phase protein, together with

serum levels of IL-6 were increased significantly between 7 and 21 days after PRRSV
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inoculation. We did not study LBP levels in serum, but it is possible that LBP levels,

like haptoglobin levels, are increased in serum during a PRRSV infection. Increased

LBP levels in serum could account for the increased levels in the lungs. However,

local production of LBP can not be excluded, as both IL-1 and IL-6 are produced in

the lungs during a PRRSV infection and can stimulate the production of LBP in

pneumocytes (Van Gucht et al., 2003).

Earlier research in our laboratory demonstrated a similar synergy between porcine

respiratory coronavirus (PRCV) and LPS in the induction of respiratory signs and

cytokines in the lungs (Van Reeth et al., 2000). PRCV, like PRRSV, causes a

subclinical infection of the lungs of swine and preliminary data suggest that PRCV-

infected lungs also show an increase of CD14 expression. So, the increase of CD14

expression and synergy with LPS are probably not unique for PRRSV and could be a

common feature of different respiratory viruses. However, PRRSV replicates for 5 to

7 weeks in the lungs, while PRCV replication lasts only 7 to 10 days. Therefore,

interactions with endotoxins are more likely for PRRSV than for PRCV.

There have been few studies on the interactions between other respiratory viruses

and LPS in vivo. Recently, it was shown that in vitro infection of airway epithelial

cells with respiratory syncytial virus (RSV) results in an up-regulation of TLR4,

which in turn leads to an increased LPS response (Monick et al., 2003). TLR4 is a

component of the LPS receptor complex that is essential for transmembrane signaling

of the LPS signal (Heumann and Roger, 2002). It is unknown whether a synergy

between RSV and LPS also occurs at the lung level. It is possible that PRRSV as well

increases TLR4 expression in the lungs, but specific antibodies to demonstrate

porcine TLR4 are not available at this moment. In contrast to CD14 and LBP, TLR4

is crucial in the LPS signaling cascade. The interaction between TLR4 and LPS is,

however, potently enhanced by CD14 and LBP and these receptor components are

necessary to respond to low doses ( 10 ng/ml) of LPS, which are more likely to occur

in vivo (Muta and Takeshige, 2001; Tsan et al., 2001).

In conclusion, we propose the following mechanism for the clinical synergy

between PRRSV and LPS. During infection, PRRSV attracts massive amounts of

monocytes into the lungs which express high levels of CD14. This increase of CD14

and possibly also the increase of LBP, both important components of the LPS

receptor complex, could explain why PRRSV sensitizes the lungs for the production
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of proinflammatory cytokines and respiratory signs upon exposure to bacterial LPS.

However, the true significance of CD14 and LBP in the sensitisation of the lungs for

LPS remains to be proven.
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Abstract

Porcine respiratory coronavirus (PRCV) is a respiratory virus of swine, related to

the severe acute respiratory syndrome coronavirus of humans. CD14 and

lipopolysaccharide-binding protein (LBP) recognize bacterial lipopolysaccharide

(LPS) and potently enhance its endotoxic activity. This study aimed to quantify CD14

and LBP in the lungs of pigs throughout a PRCV infection and verify whether this is

associated with an increased response to LPS. Gnotobiotic pigs were inoculated

intratracheally with PRCV (n = 34) or phosphate-buffered saline (PBS; n = 5) and

euthanized 1 to 15 days post inoculation (DPI). Cell-associated CD14 was quantified

in lung tissue sections by immunofluorescence microscopy and image analysis.

Soluble CD14 (flow cytometric assay) and LBP (ELISA) were quantified in

bronchoalveolar lavage (BAL) fluids. In an additional experiment, 7 pigs were

inoculated intratracheally with PRCV and 3 (n = 3) or 7 (n = 4) days later with LPS

(20 µg/kg). Control pigs were inoculated exclusively with LPS (n = 3). Pigs were

euthanized 4 hours after the LPS inoculation and levels of tumour necrosis factor-

and interleukin-6 were determined in the BAL fluids. Infectious PRCV in the lungs

was detected from 1 to 9 DPI and the amounts of cell-associated CD14, soluble CD14

and LBP were markedly increased from 1 to 12 DPI. Highest amounts of cell-

associated CD14 in lung tissue sections were found at 1-2 DPI (mean 10-fold increase

compared to PBS control pigs) and between 5 and 12 DPI (mean 15-fold increase),

while soluble CD14 and LBP peaked between 4 and 9 DPI (mean 4-fold and 35-fold

increases, respectively). The cell types expressing CD14 varied throughout the

infection. High levels of CD14 expression were subsequently found on monocyte-like

cells (1-2 DPI), macrophage-like cells (3-12 DPI) and pneumocytes (7-9 DPI). Four

out of seven pigs that were inoculated with PRCV and 3 or 7 days later with LPS

developed acute respiratory distress and high cytokine titers (  6) in the BAL fluids,

in contrast to pigs inoculated with LPS alone. This adds to an earlier study in which

we demonstrated an enhanced LPS response at 1 day after PRCV inoculation. We

propose that the massive increase of LBP and CD14 in the lungs during both the early

and late stage of PRCV infection enhances the response to subsequent LPS exposure.
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Introduction

Coronaviruses cause infections of the respiratory tract of many species, including

humans and swine. The porcine respiratory coronavirus (PRCV) is highly prevalent in

swine populations all over the world (for review see Laude et al., 1993). Typically,

pigs become infected at the age of 5 to 16 weeks and the virus replicates in the lungs

for up to 10 days. PRCV shares several characteristics with the “severe acute

respiratory syndrome” coronavirus (SARS CoV), a genetically related virus that

recently emerged in humans (Holmes, 2003; Nicholls J.M. et al., 2003). Both viruses

have a tropism for lung epithelial cells and cause bronchointerstitial pneumonia and

necrotizing alveolitis. Uncomplicated infections often remain mild or subclinical, but

may evolve into severe respiratory disease.

We have previously shown that PRCV synergizes with bacterial

lipopolysaccharide (LPS) in the induction of severe respiratory disease at the very

early stage of infection (Van Reeth et al., 2000). LPS, also called endotoxin, is a

major component of the outer membrane of Gram-negative bacteria and a potent

inducer of proinflammatory cytokines. In the above-mentioned study, pigs were

inoculated intratracheally with PRCV followed by LPS at a 12 to 24 hours interval.

This led to excessive production of proinflammatory cytokines in the lungs and the

simultaneous appearance of acute respiratory distress, which did not occur after

inoculation with PRCV or LPS only. It is still unknown, however, whether such a

synergy between PRCV and LPS would also occur at later stages of the PRCV

infection. This is of particular interest as the clinical course of coronavirus infections

sometimes aggravates at an advanced stage of infection for unknown reasons. For

example, humans infected with SARS coronavirus can develop the “acute respiratory

distress syndrome” (ARDS) after the first week of infection (Peiris et al., 2003).

While it is unknown which factors are responsible for the “clinical worsening” at this

late stage of infection, excessive production of cytokines seems to be involved

(Beijing Group of National Research Project for SARS, 2003; Ng et al., 2004; Wong

et al., 2004; Salto-Tellez et al., 2005).

LPS induces proinflammatory cytokines after binding to its specific receptor

complex (reviewed by Heumann and Roger, 2002). LPS-binding protein (LBP) and

CD14 are major components of this complex. LBP is a soluble acute phase protein
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produced by the liver and lung epithelial cells (Fenton et al., 1998; Dentener et al.,

2000). LBP extracts single LPS molecules from bacterial membranes or LPS

aggregates and transfers them to CD14. CD14 is a “pattern recognition receptor”

which is expressed on the membranes of monocytes and macrophages and to a lesser

extent on neutrophils (Antal-Szalmas, 2000). CD14 also exists in soluble from, which

is enzymatically cleaved from the membrane or directly secreted from the cytoplasm

(Bufler et al., 1995). Membrane-bound or soluble CD14 binds LPS with high affinity

and presents it to Toll-like receptor 4 (TLR4), which leads to activation of different

proinflammatory genes. Studies in different species have demonstrated that

impairment of CD14 or LBP function, by neutralization with antibodies or use of

knockout animals, suppresses LPS-induced cytokine production, respiratory disease

and shock (Ishii et al., 1993; Frevert et al., 2000; Tasaka et al., 2003). Moreover, an

increase of CD14 and LBP in the lungs can enhance LPS sensitivity and thus

contribute to the development of inflammatory lung diseases, such as ARDS and

asthma (Dubin et al., 1996; Martin et al., 1997; Strohmeier et al., 2001). Alexis et al.

(2001) found a tight correlation between levels of CD14 (both soluble and membrane-

bound) in the lungs of humans and the inflammatory response to inhaled LPS.

We hypothesize that infection with PRCV will increase the amount of CD14 and

LBP in the lungs, which may lead to LPS hypersensitivity.

The objectives of this study were to quantify the amount of CD14 and LBP in the

lungs during the course of a PRCV infection. Both cell-associated and soluble CD14

were quantified and CD14-positive cells were characterized using different markers.

In addition, we examined the effects of LPS exposure in the lungs at 3 and 7 days

after PRCV inoculation.

Materials and Methods

Virus and LPS preparations

The Belgian 91V44 isolate of PRCV was used at the second passage in swine testis

(ST) cells (Van Reeth and Pensaert, 1994). The virus stock was purified by sucrose

density gradient centrifugation and contained <1.5 endotoxin units/ml by the gel-clot

Limulus amoebocyte lysate assay (Pyrogent plus, BioWhittaker, Walkersville, USA).

The inoculation dose was 107 50% tissue culture infective doses (TCID50) per pig.
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LPS of Escherichia coli (serotype 0111:B4, trichloroacetic acid extraction, 90%

purity) was obtained from Sigma-Aldrich (St. Louis, USA) and used at a dose of 20

µg/kg body weight. This dose has been used in previous experiments and causes no

respiratory disease signs and minimal production of proinflammatory cytokines in the

lungs upon intratracheal inoculation (Van Reeth et al., 2000; Labarque et al., 2002;

Van Gucht et al., 2003). Virus and LPS were diluted in sterile pyrogen-free

phosphate-buffered saline (PBS; Gibco, Merelbeke, Belgium) to obtain a 3 ml

inoculum.

Pigs, experimental design and sampling

Fourty-nine caesarean-derived colostrum-deprived pigs at the age of 3.5 weeks

were used. The pigs originated from 6 sows and were housed in individual Horsefall-

type isolation units with positive-pressure ventilation and fed with commercial

ultrahigh-temperature-treated cow’s milk.

The pigs were allocated to 4 groups. Thirty-four pigs were inoculated exclusively

with PRCV and euthanized at 1 (n = 5), 2 (n = 3), 3 (n = 5), 4 (n = 3), 5 (n = 3), 7 (n =

6), 9 (n = 4), 12 (n = 3) or 15 (n = 2) days after inoculation (PRCV group). Seven pigs

were inoculated with PRCV and 3 (n = 3) or 7 (n = 4) days later with LPS (PRCV-

LPS group). These pigs were euthanized at 4 hours after the LPS inoculation.

Previous experiments showed that this time point is optimal for detection of de novo

synthesis of cytokines upon LPS inoculation (Van Reeth et al., 2000). Three pigs

were inoculated exclusively with LPS and euthanized 4 hours later (LPS group). Five

pigs were mock-inoculated with PBS and euthanized 4 hours later (PBS group). All

inoculations were performed intratracheally with a syringe and 20-gauge needle that

was inserted through the skin cranial to the sternum.

The right lung was used for lung lavage as described previously (Van Reeth et al.,

1998). Recovered BAL fluids were separated into cells and cell-free fluids by

centrifugation (400  g, 10 min, 4°C). Cell-free BAL fluids were concentrated 20

times by dialysis against a 20% w/v solution of polyethylene glycol (MW 20000) and

again centrifuged at 100000  g. Tissue samples from the apical, cardiac and

diaphragmatic lung lobes of the left lung were collected for virological and

bacteriological examinations and immunofluorescence staining. For

immunofluorescence staining, samples were embedded in methylcellulose medium,
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frozen at -70°C and cryostat sections of 5 to 8 µm were made. Serum from all pigs

was collected at euthanasia.

Clinical signs

All pigs were observed daily for clinical signs throughout the experiment. In

addition, LPS-inoculated pigs were observed immediately before and every hour after

the LPS inoculation for clinical signs. A score was attributed to tachypnoea (0: <60,

1: 60-90, 2: >90), abdominal thumping (0: absent, 1: present), severe dyspnoea (0:

absent, 1: present), anorexia (0: absent, 1: present) and depression (0: absent, 1:

present). The total score per pig was obtained by adding the scores for each parameter

and ranged from 0 to 6.

Virological and bacteriological examinations

The amount of infectious PRCV in lung tissue homogenates of pooled samples of

apical, cardiac and diaphragmatic lung lobes was determined by virus titration in

swine testis (ST) cells according to standard procedures (Van Reeth and Pensaert,

1994). Bacteriological examinations of lung tissue samples were performed as

described earlier (Van Gucht et al., 2003).

Antibody titration

PRCV-neutralizing antibodies in sera were titrated using a virus-neutralization

assay as described by Voets et al. (1980). Two-fold dilutions of sera were mixed with

the Purdue strain of transmissible gastroenteritis virus (TGEV) and inoculated on the

swine kidney cell line SK6. Absence of cytopathic effect indicated the presence of

neutralizing antibodies. PRCV and TGEV are closely related and neutralizing

antibodies are fully cross-reactive.

BAL cell analysis

Total cell numbers in BAL fluids were counted in a Türk chamber. The percentage

of neutrophils was determined using Diff-Quick® (Baxter, Düdingen, Switzerland)

staining of cytocentrifuge preparations. The percentage of sialoadhesin-, SWC3a-,

CD3- and IgM-positive cells was determined using flow cytometric analysis (Becton

Dickinson FACSCaliburTM, BD Cellquest software) as described earlier (Van Gucht et
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al., 2005). Sialoadhesin (mAb 41D3) is expressed exclusively on the membrane of

differentiated macrophages and SWC3a (mAb 74-22-15) is expressed on monocytes,

macrophages and neutrophils (Thacker et al., 2001; Vanderheijden et al., 2003).

Resident macrophages of uninfected lungs are sialoadhesin-positive, whereas newly

infiltrated monocyte-macrophages are sialoadhesin-negative (Labarque et al., 2000).

The number of sialoadhesin-negative monocyte-macrophages was determined by

subtracting the number of neutrophils and the number of sialoadhesin-positive

macrophages from the number of SWC3a-positive cells. CD3 (mAb PPT3) is

expressed on T-lymphocytes and IgM (mAb 28.4.1) on B-lymphocytes (Van Zaane

and Hulst, 1987; Kirkham et al., 1996).

Cytokine analysis

The bioassays for tumour necrosis factor-  (TNF- ) and interleukin-6 (IL-6) have

been described in detail elsewhere (Helle et al., 1988; Van Reeth et al., 1999). TNF-

activity was measured in a cytotoxicity assay with PK(15) subclone 15 cells and IL-6

was assayed by its capacity to stimulate proliferation of B9 cells. Specificity was

demonstrated by neutralization of samples with rabbit anti-human TNF-  antibodies

(Innogenetics, Zwijnaarde, Belgium) or goat anti-porcine IL-6 antibodies (R&D

systems, Abingdon, UK). Laboratory standards were run in each bioassay. Samples

were tested in three individual bioassays and geometric means were calculated.

Quantification of cell-associated CD14 in lung tissue sections

The amount of cell-associated CD14 in lung tissue sections was quantified using

immunofluorescence microscopy and image analysis as described previously (Van

Gucht et al., 2005). Briefly, immunofluorescence staining for CD14 was performed

on sections of the apical (n = 1), cardiac (n = 2) and diaphragmatic (n = 3) lobes of

each lung using mouse mAb MIL2 (Thacker et al., 2001). Specificity of the CD14

staining was determined by deletion of MIL2 antibodies and use of irrelevant mouse

mAbs.

Fifteen pictures (1 picture  0.1 mm2) of the interstitium of each section were taken

randomly using a fluorescence microscope (  400) (Leica DM RBE, Leica

Microsystems GmbH, Wetzlar, Germany), a Sony  3CCD colour video camera (Sony

Corporation, Tokyo, Japan) and Adobe  Photoshop  5.0 LE (Adobe Systems, San
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Jose, California, USA). Pictures were converted to black and white using the image

analysis program Scion Image 1.62C (Scion Corporation, Frederick, Maryland, USA).

Positive cells (green fluorescence) were converted to black pixels whereas negative

cells and background were converted to white pixels. The number of black pixels,

which depends on the number of positive cells and the amount of CD14 they express,

was counted. The average number of black pixels was calculated for each lung (6

sections, 15 pictures/section) and expressed as a ratio compared to the number of

black pixels in a reference sample. A section of the apical lung lobe of one of the PBS

control pigs was used as the reference sample.

Quantification of soluble CD14 in BAL fluids

A flow cytometric assay, adapted from Antal-Szalmas et al. (2001), was used to

quantify soluble CD14 in BAL fluids. This assay is based on the competition between

membrane-bound CD14 on macrophages and soluble CD14 in BAL fluids for binding

to anti-CD14 antibodies. The sensitivity is 30 to 120 ng soluble CD14/ml. Briefly,

BAL fluids were mixed with MIL2 antibodies, resulting in an antibody concentration

of 1 µg/ml. PBS was used as a negative control (no soluble CD14). The BAL fluid-

MIL2 mixtures were incubated for 30 minutes at 37°C to allow binding of soluble

CD14 with the antibodies. Porcine alveolar macrophages (5  106, obtained from

conventional pigs at the age of 4 weeks) were then incubated with the BAL fluid-

MIL2 mixtures for 1 hour at 4°C. Subsequently, the cells were incubated with FITC-

labeled goat-anti-mouse polyclonal antibodies (4 µg/ml, 10% goat serum) (Molecular

Probes, Eugene, Oregon, USA) for 1 hour at 4°C. The cells were washed 3 times with

cold PBS after each incubation. The median fluorescence intensity (MFI) of the

macrophages was determined using flow cytometric analysis (Becton Dickinson

FACSCaliburTM, BD Cellquest software). Ten thousand cells were analysed for each

sample. BAL fluids that contain soluble CD14 reduce the availability of MIL2

antibodies for binding to CD14 on the macrophages, resulting in a decrease of the

MFI. The amount of soluble CD14 in BAL fluids was expressed as a ratio compared

to the control sample without soluble CD14 (PBS). This ratio was calculated by

dividing the MFI of the negative control sample (PBS) with the MFI of the BAL fluid

samples.
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Identification of CD14-positive cells in lung tissue sections

CD14-positive cells in lung tissue sections were identified using markers for

macrophages (sialoadhesin and SWC3a), monocytes (SWC3a) and epithelial cells

(cytokeratin 18; mAb CY-90, Sigma-Aldrich, St. Louis, USA). Cytokeratin 18 is

expressed in bronchiolar epithelial cells and type 2 pneumocytes (Schlichenmaier et

al., 2002).

Double immunofluorescence stainings for CD14 (mAb MIL2, IgG2b isotype) and

sialoadhesin (mAb 41D3, IgG1 isotype), CD14 and SWC3a (mAb 74-22-15, IgG1

isotype) or CD14 and cytokeratin 18 (mAb CY-90, IgG1 isotype) were performed on

sections of the cardiac and diaphragmatic lung lobes according to a previously

described method (Van Gucht et al., 2005). Briefly, sections were fixed in methanol

and incubated consecutively with optimal dilutions of 41D3, 74-22-15 or CY-20

antibodies, FITC-labeled goat anti-mouse IgG1 polyclonal antibodies (4 µg/ml, 10%

goat serum) (Santa Cruz Biotechnology, Santa Cruz, California, USA), biotinylated

MIL2 antibodies (10 µg/ml), streptavidin-Texas Red (10 µg/ml) (Molecular probes,

Eugene, Oregon, USA) and Hoechst 33342 (10 µg/ml) (Molecular probes, Eugene,

Oregon, USA). Specificity of the double stainings was determined by deletion of

primary antibodies and use of irrelevant mouse mAbs.

Digital images were taken using a Leica TCS SP2 laser scanning spectral confocal

system linked to a Leica DM IRB inverted fluorescence microscope (Leica

Microsystems GmbH, Wetzlar, Germany).

LBP quantification

LBP was quantified in BAL fluids and sera using an ELISA for LBP of different

species, including swine (Hycult biotechnology, Uden, the Netherlands).

Statistical analysis

Standard two-sample Mann-Whitney tests were used to compare values between

groups. P-values <0.05 were considered significant. Statistical analyses were

performed using SPSS 11.0.
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Results

Clinical signs during PRCV infection

Clinical signs were not observed in PBS control pigs. Seventeen out of thirty-four

PRCV-inoculated pigs did not develop any general or respiratory signs after PRCV

inoculation. Mild and transient abdominal thumping and/or increased breathing rates

were occasionally seen in 12 pigs between 1 and 12 DPI (score 1 to 2). Only 5 pigs

showed obvious respiratory disease (score >2) between 3 and 8 DPI. They developed

tachypnoea, dyspnoea, depression and/or anorexia. Coughing was observed in 4 of the

17 pigs with clinical signs between 4 and 8 DPI.

Virus titers in the lungs

The evolution of virus titers in the lungs is shown in figure 1. PBS control pigs

were negative for PRCV. Infectious virus was detected in the lungs of PRCV-

inoculated pigs from 1 to 9 DPI. PRCV was isolated from the lungs of all pigs

between 1 and 5 DPI. At 7 and 9 DPI, virus was isolated from the lungs of 6 out of 10

pigs. Mean titers were highest (5.4 to 7.3 TCID50/g lung tissue) from 1 to 5 DPI and

strongly decreased at 7 DPI (3.3 TCID50/g lung tissue) and 9 DPI (2.4 TCID50/g lung

tissue). The lungs of all pigs were free of bacteria by culture.

Anti-PRCV antibodies in serum

Mean antibody titers in sera are shown in table 1. Neutralizing antibodies were

absent in PBS control pigs and in PRCV-inoculated pigs from 1 to 4 DPI. Two of

three pigs had low antibody titers (16) at 5 DPI. All pigs had seroconverted by 7 DPI

with titers ranging from 48 to 192. At later stages of infection (9-15 DPI), all pigs had

high antibody titers (248 to 2560).

Evolution of BAL cells during PRCV infection

Mean numbers of the different types of BAL cells are presented in table 1. PBS

control pigs had 64 to 142  106 BAL cells. Ninety-three percent of these cells were

sialoadhesin-positive macrophages, 3.6% were sialoadhesin-negative monocyte-

macrophages, 1% were T-lymphocytes and less than 1% were neutrophils or B-

lymphocytes.   
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Figure 1. Evolution of virus titers (a), cell-associated CD14 in lung tissue (b), soluble CD14
in BAL fluids (c) and LBP in BAL fluids (d) throughout a PRCV infection. Each dot
corresponds to one pig and the solid line represents the mean at each time point. The dotted
line represents the detection limit for virus titrations.
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Table 1. Mean numbers of different types of BAL cells and serum antibody titers during PRCV infection.

BAL cells ± SD (  106)Inoculation

with

No.

of

pigs

Euthanasia

at…DPI

with PRCV

total sial+

macro(1)

sial-

mono-macro(2)

neutro(3) T-

lympho(4)

B-

lympho(5)

VN titer(6)

± SD

PBS 5 n.a.(7) 96 ± 32 79 ± 0.8 3.5 ± 1.8 0.4 ± 0.1 1.4 ± 1.3 0.7 ± 0.5 <2 ± 0

PRCV 5 1 164* ± 29 123 ± 18 20 ± 8 17* ± 15 2.3 ± 0.3 2.2 ± 1.1 <2 ± 0

3 2 142* ± 19 74 ± 9 19 ± 2 13* ± 9 1.4 ± 0.1 1.6 ± 0.8 <2 ± 0

5 3 148* ± 50 101 ± 40 15 ± 17 10* ± 13 1.9 ± 1.5 1.0 ± 0.7 <2 ± 0

3 4 179* ± 45 66 ± 30 53 ± 35 9*± 0.7 3.7 ± 0.8 2.0 ± 1.0 <2 ± 0

3 5 225* ± 80 103 ± 35 101* ± 51 7* ± 5 20 ± 6 3.4 ± 0.9 11 ± 7

6 7 304* ± 83 102 ± 50 44* ± 30 15* ± 8 51* ± 32 8.1* ± 5.4 114* ± 51

4 9 407* ± 216 92 ± 32 131* ± 71 79* ± 108 52* ± 39 9.2* ± 2.9 422* ± 151

3 12 179 ± 86 52 ± 27 53 ± 32 25* ± 19 12 ± 6 2.4* ± 1.3 1493* ± 798

2 15 237 ± 89 148 ± 106 58 ± 6 6 ± 2 15 ± 3 2.9 ± 0.9 1600* ± 960

(1) sialoadhesin-positive macrophages, (2) sialoadhesin-negative monocyte-macrophages, (3) neutrophils, (4) CD3-positive T-lymphocytes, (5) IgM-positive
B-lymphocytes, (6) virus-neutralizing antibody titer in serum, (7) not applicable,
( ) values marked with an asterisk differ significantly (P <0.05) from those of the PBS control pigs
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During PRCV infection, total cells increased significantly (P <0.05) from 1 to 9

DPI and mean numbers peaked at 9 DPI with a 4-fold increase compared to the PBS

control pigs. The number of sialoadhesin-positive macrophages remained rather

constant throughout the infection. In contrast, the number of sialoadhesin-negative

monocyte-macrophages was increased from 1 to 15 DPI. At 1 DPI, the mean number

of these cells was 6 times higher than in the PBS control pigs, which was probably

due to rapid infiltration of blood monocytes towards the infected sites. Mean numbers

peaked at 9 DPI and were 37 times higher than in the PBS control pigs. Neutrophils

increased significantly (P <0.05) from 1 to 12 DPI. The mean number of neutrophils

was highest at 9 DPI, but this peak was due to an exceptionally high amount of

neutrophils in the lungs of one pig (240  106). T-lymphocytes and B-lymphocytes

increased significantly (P <0.05) from 5 to 9 and 7 to 12 DPI respectively.

Evolution of cell-associated CD14 in lung tissue sections during PRCV infection

The evolution of the amount of cell-associated CD14 in lung tissue sections is

presented in figure 1. The amount of cell-associated CD14 in the lung tissue of PBS

control pigs varied little (ratio of 0.4 to 1.6). Mean ratios were significantly (P <0.05)

increased at 1 and 2 DPI (10 times higher than in the PBS control pigs). CD14

expression in tissue sections varied however strongly between pigs during the first

two days of infection, with increases in 3 out of 5 pigs at 1 DPI and in 2 out of 4 pigs

at 2 DPI. Mean CD14 ratios were rather low at 3 and 4 DPI, but rose again

significantly (P <0.05) between 5 and 12 DPI with a peak at 9 DPI (15 times higher

than in the PBS control pigs).

Identification of CD14-positive cells in tissue sections of PRCV-infected lungs

Figure 2 shows the distribution of different types of CD14-positive cells in lung

tissue sections of PRCV-inoculated and PBS control pigs. Cells with high CD14

expression were scarce (13 ± 12 cells/mm2) in the lungs of PBS control pigs.

Typically, they had a monocyte-like phenotype, characterized by round cell

morphology, kidney-shaped nucleus and expression of SWC3a, but not of

sialoadhesin. Epithelial cells (cytokeratin 18-positive) were CD14-negative and most

(>90%) resident macrophages (sialoadhesin-positive) expressed little CD14 on their

membranes.
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During infection there was an increase of 3 types of highly CD14-positive cells. (i)

The first two days of infection, there was an accumulation of highly CD14-positive

monocyte-like cells. These cells were clustered around and inside bronchioli and to a

lesser extent around small bronchi. They were round, had round to kidney-shaped

nuclei and were SWC3a-positive and sialoadhesin-negative. (ii) At later stages, there

was a progressive increase of highly CD14-positive macrophage-like cells, which

were clustered or scattered in the alveolar tissue. These cells were large, had round

nuclei and were SWC3a-positive and sialoadhesin-negative. These cells were seen

from 3 to 12 DPI, but were most abundant at 7 and 9 DPI. (iii) At 7 and 9 DPI, CD14-

positive “type 2 pneumocytes” appeared in the alveolar tissue. These cells were

positive for cytokeratin 18, but negative for SWC3a and sialoadhesin. At this stage of

infection, there was a strong (regenerative) hyperplasia of type 2 pneumocytes and a

small fraction (about 1%) of these cells expressed CD14.

Evolution of soluble CD14 in BAL fluids during PRCV infection

The evolution of soluble CD14 levels in BAL fluids during PRCV infection is

presented in figure 1. BAL fluids of PBS control pigs contained no detectable soluble

CD14 (ratio <1). At 1 DPI, soluble CD14 was detected in 2 out of 5 pigs. At later

stages of infection, soluble CD14 was detected in BAL fluids of almost all pigs. Mean

soluble CD14 ratios were significantly (P <0.05) increased from 2 to 12 DPI and

highest levels were detected between 5 and 9 DPI. At this stage of infection, ratios

were 3 to 4 times higher compared to the PBS control pigs.

Evolution of LBP levels in BAL fluids and sera during PRCV infection

The evolution of LBP levels in BAL fluids is presented in figure 1. PBS control

pigs had mean LBP levels of 25 ±  46 ng/ml. Mean LBP levels were significantly

increased from 1 to 9 DPI with a peak of 863 ± 354 ng/ml at 7 DPI. Values returned

to normal at 15 DPI.

The sera of PBS control pigs had mean LBP levels of 1722 ± 271 ng/ml and serum

levels did not change upon infection.
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Figure 2. Double immunofluorescence staining for CD14 and cytokeratin 18 in the lung
tissue of PBS- and PRCV-inoculated pigs. Figure 2a (  400) demonstrates that PBS-
inoculated pigs contain few highly CD14-positive cells in the lung tissue (arrow). At 1 DPI,
there is a massive accumulation of highly CD14-positive monocyte-like cells near the
bronchioli. At 7 DPI, the alveolar tissue contains numerous clusters of highly CD14-positive
macrophage-like cells. At this time point of infection, part of the type 2 pneumocytes also
express CD14, as indicated by the yellow colour in the merge picture. Figure 2b (  1600)
illustrates in more detail the expression of CD14 in a cytokeratin 18-positive pneumocyte.
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Clinical signs and cytokine production after inoculation with PRCV and LPS

Table 2 compares virus titers, clinical scores, neutrophil numbers and cytokine

titers in the lungs of PRCV-LPS inoculated pigs with those of pigs inoculated with

LPS, PRCV or PBS alone. Pigs inoculated with PRCV or PBS alone are the same as

described higher.

PBS control pigs had no detectable TNF-  and low levels of IL-6 (<20 to 100

U/ml) in their BAL fluids. PRCV-inoculated pigs had low to moderate levels of TNF-

 (<20 to 435 U/ml) and substantial IL-6 levels (<20-20479 U/ml) at 3 DPI. At 7 DPI,

TNF-  was undetectable and IL-6 levels had decreased strongly (43-997 U/ml). Pigs

inoculated with LPS only showed no respiratory or general signs before or after the

LPS inoculation. LPS induced a massive increase of neutrophils, low levels of TNF-

(20-42 U/ml) and moderate levels of IL-6 (220-2456 U/ml) in the BAL fluids.

Two of three pigs that were inoculated with PRCV and 3 days later with LPS

developed severe respiratory disease, characterized by abdominal thumping, dyspnoea

and tachypnoea (60-90 breaths/min) after the LPS inoculation. The remaining pig

developed no signs of respiratory disease upon the LPS inoculation. All pigs were

depressed after the LPS inoculation. Clinical signs were not observed before the LPS

inoculation. TNF-  and IL-6 titers of the pigs with respiratory signs were at least 6

times higher than the mean titers of the corresponding PRCV and LPS control pigs.

Cytokine titers of the pig without respiratory signs were comparable to those of the

singly inoculated control pigs. Remarkably, no virus was isolated from the lungs of

this pig. Neutrophil numbers of PRCV-LPS inoculated pigs were comparable to those

of pigs inoculated with LPS only.

Two of the four pigs which were inoculated with PRCV and 7 days later with LPS

developed severe respiratory disease, characterized by abdominal thumping, dyspnoea

and severe tachypnoea (>90 breaths/min) after the LPS inoculation. The remaining

two pigs developed no respiratory signs after the LPS inoculation. All pigs were

depressed after the LPS inoculation. One pig that developed severe respiratory disease

upon LPS inoculation, also showed mild tachypnoea (score = 1) before the LPS

inoculation. Clinical signs were not observed in the other pigs before the LPS

inoculation. TNF-  and IL-6 titers of the pigs with severe respiratory disease were at

least 6 times higher than the means of the corresponding PRCV and LPS control pigs.

Cytokine titers of the pigs without respiratory signs were comparable to those of the
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pigs inoculated with LPS only and the neutrophil numbers in their BAL fluids were

even markedly lower. Virus titers varied strongly at 7 days after PRCV inoculation,

but this was not correlated with the LPS response.

Table 2. Virus titers, clinical scores, neutrophil infiltration and cytokine production in the
lungs of PRCV-LPS inoculated pigs and control pigs.

Inoculum Time of
euthanasia after
inoculation with

Cytokines in
BAL fluid

PRCV
(days)

LPS
(h)

Virus titer
(log10

TCID50
(1)/g)

Clin.
score(2)

Neutrophils
in BAL

fluid
(  106) TNF-

(U/ml)
IL-6

(U/ml)
-(3) - <1.7 0 0.4 <20 71
- - <1.7 0 0.4 <20 96
- - <1.7 0 0.3 <20 58
- - <1.7 0 0.5 <20 100

PBS

- - <1.7 0 0.1 <20 <20

3 - 6.7 0 5 435 4662
3 - 6.6 1 7 160 8032
3 - 7.6 0 35 295 20479
3 - 3.7 0 13 47 3144

PRCV

3 - 5.1 0 0.8 <20 116

7 - 4.8 2 30 <20 744
7 - 4.7 2 14 <20 109
7 - <1.7 0 12 <20 997
7 - 5.3 4 16 <20 249
7 - 1.5 2 11 <20 43
7 - <1.7 0 6 <20 58

- 4 <1.7 0 148 20 220
- 4 <1.7 0 932 42 2456

LPS

- 4 <1.7 0 420 33 715

3 4 7.7 4* 136 1798 95276
3 4 7.0 4* 80 2032 47277

PRCV-LPS

3 4 <1.7 1 495 333 549

7 4 2.6 3* 1274 756 16890
7 4 <1.7 4* 403 251 6312
7 4 4.2 1 12 <20 726
7 4 <1.7 1 38 39 1264

(1) 50% tissue culture infective dose, (2) clinical scores were determined immediately before
euthanasia and ranged from 0 to 6 (see text for the calculation of scores), (3) not applicable
values in bold represent a synergistic interaction between PRCV and LPS
( ) these pigs had no or mild clinical signs (score 0 to 1) immediately before the LPS
inoculation, but developed severe respiratory disease within 1 hour after the LPS inoculation
(score 3 to 4)
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Discussion

PRCV infection caused a significant increase of CD14 and LBP in the lungs. This

increase was detected as early as 1 day after virus inoculation and remained

significant until 12 days after inoculation. The cell types expressing CD14 varied

throughout the PRCV infection. High levels of CD14 expression were subsequently

found on monocyte-like cells (1-2 DPI), macrophage-like cells (3-12 DPI) and

pneumocytes (7-9 DPI). In the beginning of infection, there was an accumulation of

highly CD14-positive monocyte-like cells near the bronchioli (see figure 1). Up to

20% of the epithelial cells in these bronchioli were infected, as revealed by

immunofluorescence staining for PRCV antigens (data not shown). At later stages, the

majority of infected cells were pneumocytes, whereas infected bronchioli became

rare. This agrees with the fact that we seldom observed peribronchiolar clusters of

highly CD14-positive monocytes at later stages than 2 DPI. Surprisingly, highly

CD14-positive pneumocytes appeared in the lung tissue at the late stage of infection.

At this stage there was pronounced hyperplasia of type 2 pneumocytes and part of

these cells expressed high levels of CD14. This was unexpected, as CD14 is

considered to be a specific marker for myeloid cells (Martin et al., 1994). Few

researchers reported CD14 expression in other cell types. Two reports describe that

lung epithelial cells of mice can be induced to express CD14 upon stimulation with

IL-1 or TNF-  (Fearns and Loskutoff, 1997; Fearns and Ulevitch, 1998). In our study,

however, the latter cytokines were not found in the BAL fluids of lungs with CD14-

positive pneumocytes.

Two soluble components of the LPS receptor complex, namely soluble CD14 and

LBP, increased significantly in the BAL fluids during PRCV infection. Soluble CD14

can present LPS to TLR4 on epithelial cells and thus render these cells sensitive to

low amounts of LPS (Heumann and Roger, 2002). Bronchial and bronchiolar

epithelial cells are among the first cells in the lungs that come into contact with LPS,

but do not express CD14 on their membranes. The presence of soluble CD14 in the

bronchoalveolar fluid could thus be crucial for their interaction with LPS.

Soluble CD14 and LBP are constitutively produced by the liver and circulate in the

blood (Fenton et al., 1998; Bas et al., 2004). Still, we have indications that the

increase of soluble CD14 and LBP in the BAL fluids is due to local production in the



PRCV increases CD14 and LBP in the lungs                                                                                        121

lungs and not to plasma leakage from the blood. The increase of soluble CD14 and

LBP levels in BAL fluids, for example, is not correlated with an increase of other

plasma proteins, such as haptoglobin (unpublished data). Moreover, serum LBP levels

did not rise during PRCV infection. Dentener et al. (2000) demonstrated that type 2

pneumocytes produce LBP in response to cytokines such as TNF-  and IL-6. Both

cytokines are produced locally in the lungs during PRCV infection and could thus

have triggered local LBP production.

The increase of soluble CD14 in the BAL fluids during infection could be due to

local shedding of membrane-bound CD14. Monocytes, more than macrophages, are

an important source of soluble CD14, which is cleaved from their membranes in

response to cytokines such as interferon-  (Bazil and Strominger, 1991; Hasday et al.,

1997). Interestingly, the accumulation of highly CD14-positive monocytes near the

bronchioli during the first 2 days of infection is followed by a two-fold increase of

soluble CD14 in the BAL fluids on the third day of infection. Moreover, this increase

of soluble CD14 coincides with a decrease of cell-associated CD14 in the lung tissue.

CD14 and LBP recognize bacterial LPS and potently enhance its endotoxic activity

in the lungs. Several studies found a correlation between the amount of CD14 and

LBP in the lungs and the sensitivity to LPS (Dubin et al., 1996; Martin et al., 1997;

Alexis et al., 2001; Strohmeier et al., 2001). Indeed, part of the PRCV-inoculated pigs

developed acute respiratory signs and high levels of TNF-  and IL-6 in the lungs after

LPS exposure at 3 and 7 days of infection. These results add to an earlier study in

which we demonstrated a similar synergy at 1 day of infection (Van Reeth et al.,

2000). Thus, it seems that PRCV can sensitize the lung to LPS during the entire

infection (1 to 7 DPI). The synergy in the induction of cytokines appeared to be

stronger at 1 and 3 days of infection, but more experiments are necessary to confirm

this.

Three of seven PRCV-inoculated pigs responded poorly to the LPS exposure. One

of these pigs was exposed to LPS at 3 days after virus inoculation. No virus was

found in the lungs of this pig, whereas high virus titers are expected at this time point

after virus inoculation. The reason for this is unclear, but it indicates that productive

virus infection is mandatory to sensitize the lungs to LPS at 3 DPI. Indeed, in contrast

to the other pigs at 3 DPI, there was no increase of soluble CD14 or LBP in the BAL

fluid of this pig. The 2 remaining “low responders” were exposed to LPS at 7 days
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after PRCV inoculation. Their low LPS response was not correlated with lower virus

titers or lower levels of soluble CD14 and LBP in the BAL fluids. So far, we can not

explain the pronounced differences in LPS sensitivity at the end of infection.

Moreover, the strikingly low number of neutrophils in the BAL fluids of the “low

responder” pigs, suggests that most of the LPS was neutralized before it could activate

cells. The biological effects of LPS depend on the balance between LPS receptor

proteins and scavenger molecules (Hampton et al., 1991; Stamme and Wright, 1999;

Martin, 2000; Iovine et al., 2002; Jiang et al., 2003). Possibly, scavenger mechanisms

were stimulated at the end of infection and this could have countered the effects of

LBP and CD14 in these pigs.

Variation in clinical development at an advanced stage of infection is also a feature

of SARS CoV infection of humans. Peiris et al. (2003) describe that 38% of SARS

CoV-infected patients developed severe pulmonary disease around 9 days of

infection, whereas viral pneumonia resolved in other patients. Several authors

suggested that the clinical worsening of SARS patients during the second week of

infection is due to an “immunopathological response” and not to direct viral damage

(Holmes, 2003; Hsueh et al., 2003; Peiris et al., 2003). SARS patients typically

develop ARDS at a time point when virus load is decreasing and specific antibodies

are mounted. In our study, we found a strong increase of CD14 expression on

pneumocytes and macrophages at a similar time point of infection. We hypothesize

that the SARS CoV-associated hyperinflammation and acute respiratory distress

might have a similar aetiology as the LPS hyperreactivity in PRCV-infected pigs. The

expression of pattern recognition receptors has not been studied in SARS CoV-

infected lungs, but a massive load of “activated” macrophages is a typical histological

feature of these lungs. Although not proven, several authors suggest that SARS may

be caused by overproduction of proinflammatory cytokines by infiltrated

macrophages (Nicholls et al., 2003; Van Bever et al., 2004).

In earlier experiments, we found that infection with porcine reproductive and

respiratory syndrome virus (PRRSV), another respiratory virus of swine, also

increases CD14 and LBP in the lungs, which is likewise associated with enhanced

LPS sensitivity. The evolution of CD14 expression and LBP levels differs somehow

between both virus infections. Firstly, the increase of CD14 in PRRSV-infected lungs

is mainly due to infiltration of monocyte-like cells, whereas most macrophages
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express little CD14 and pneumocytes remain CD14-negative. Secondly, the increase

of CD14 and LBP in the lungs is tightly correlated with PRRSV replication. The

highest amounts are found at the peak of virus replication and levels decrease strongly

as PRRSV titers decline at the end of infection. This is clearly different for PRCV-

infected lungs, where high levels of CD14 and LBP are found at the end of infection.

The reasons for these differences are unclear. Nevertheless, it is tempting to speculate

that the increase of these LPS recognition molecules is involved in the enhanced LPS

sensitivity during both virus infections.

In conclusion, we found a strong increase of cell-associated CD14, soluble CD14

and LBP in the lungs of PRCV-infected pigs. We also demonstrated a synergy

between PRCV and LPS in the induction of respiratory signs and proinflammatory

cytokines at both early and late stages of infection. CD14 and LBP are primary

components of the LPS receptor complex and their increase in the lungs could

account for the increased LPS sensitivity during virus infection. The true role of

CD14 and LBP in the virus-LPS synergy will be explored in further studies.
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General discussion

Porcine reproductive and respiratory syndrome virus (PRRSV) and porcine

respiratory coronavirus (PRCV) are respiratory viruses of swine, that are important

primary agents of multifactorial respiratory disease. The research in this thesis was

inspired by the apparent paradox that both viruses are involved in respiratory disease

in the field, but experimental infections cause no or mild disease. In order to cause

overt respiratory disease, PRRSV and PRCV need to interact with secondary agents,

which are usually absent under experimental conditions. This is not surprising as

animal experiments are performed in sterile rooms, with minimal dust concentrations

and optimal climate. We believe that an important secondary factor could be bacterial

lipopolysaccharide (LPS). LPS is the most important inflammatory component of

Gram-negative bacteria and is present in organic dust of swine stables (Rietschel et

al., 1994; Rylander, 2002). Also, there is convincing evidence that natural exposure to

LPS-contaminated swine dust causes airway inflammation and lung function decline

in humans (reviewed by Thorn, 2001).

In an attempt to study multifactorial respiratory viral disease, we have performed

subsequent inoculations of pigs with either PRRSV or PRCV, followed by a

secondary inoculation with LPS (Van Reeth et al., 2000; Labarque et al., 2002; Van

Gucht et al., 2003, 2005a and b). In our experiments, the interval between virus and

LPS inoculations ranged from 3 to 14 days for PRRSV and from 1 to 7 days for

PRCV. Virus-infected pigs that are exposed to LPS develop severe respiratory and

general disease, whereas uninfected pigs do not. The first virus-LPS induced disease

signs are usually vomiting and shivering at 40 minutes to 1 hour after LPS.

Respiratory signs start within 1 hour after LPS, reach a climax 2 to 4 hours later and

are clearly decreasing 12 hours later. Typical signs include severe tachypnoea (54-154

breaths/minute), dyspnoea, high fever ( 41°C) and depression. The clinical synergy

between PRRSV and LPS has proven to be very reproducible. Since the initial

experiment, 108 pigs in 12 different experiments have been inoculated with both

PRRSV and LPS, together with the appropriate control pigs. The clinical synergy was

observed in more than 85% of pigs. The synergy between PRCV and LPS has been

reproduced in 16 out of 19 pigs spread over 3 experiments.
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A main aim of this thesis was to unravel the pathogenesis of virus-LPS induced

respiratory disease, with special emphasis on the possible role of proinflammatory

cytokines. For this purpose, gnotobiotic pigs were inoculated intratracheally with

PRRSV and 3 to 14 days later with LPS (chapter 3.1). As expected, PRRSV-infected

pigs developed acute respiratory signs upon intratracheal LPS inoculation, in contrast

to pigs inoculated with PRRSV or LPS only. Moreover, peak tumour necrosis factor-

 (TNF- ), interleukin-1 (IL-1) and IL-6 titers were 10 to 100 times higher in

PRRSV-LPS inoculated pigs than in the singly inoculated pigs and this excessive

cytokine production was associated with disease. Though a poor cytokine inducer as

such, PRRSV sensitized the lungs for the production of proinflammatory cytokines

upon LPS stimulation. In contrast, neutrophil infiltration, macroscopic and

microscopic lesions in the lungs of PRRSV-LPS inoculated pigs resembled the

combined effects of the single PRRSV and LPS inoculations without synergy. The

histological lung lesions of PRRSV-infected pigs were little aggravated by subsequent

LPS exposure. This suggests that the difficult breathing of PRRSV-LPS inoculated

pigs resulted from functional disturbances such as bronchoconstriction, rather than

from structural lung damage.

The pathogenesis of PRRSV-LPS induced disease appears to be similar to the

pathogenesis of PRCV-LPS induced disease. The combination of PRCV and LPS did

not markedly enhance neutrophil infiltration or lung lesions, but did cause an

exaggerated production of proinflammatory cytokines in the lungs, similar to the

PRRSV-LPS combination (Van Reeth et al., 2000; chapter 4.2). The profile and

quantity of cytokines in the lungs was similar for both combinations. These clear

resemblances suggest that both viruses sensitize the lungs to LPS in a similar way.

The strong association between the levels of proinflammatory cytokines,

particularly TNF- , and the respiratory signs after virus-LPS exposure, led us to

assume that these cytokines where somehow responsible for the observed respiratory

disease. This hypothesis was fed by previous studies with swine influenza virus. Van

Reeth et al. (1998 and 2002) found that the appearance of clinical signs during

influenza virus infection is tightly correlated with the levels of interferon-  (IFN- ),

TNF- , and IL-6 in the BAL fluids. Indeed, IL-1 and TNF-  can cause bronchial

hyperreactivity leading to asthma-like symptoms (Kips et al., 1992; Thomas et al.,

1995). Moreover, the combination of TNF-  and IL-1 causes bronchoconstriction
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through the induction of thromboxanes in rats (Martin et al., 2001). Possibly,

overproduction of these cytokines after virus-LPS inoculation causes increased and

sustained contraction of bronchi, which may explain the acute respiratory signs.

However, in a preliminary experiment, we were unable to bear out such a process. In

that experiment, treatment of PRRSV-LPS exposed pigs with the bronchodilatory

drugs atropine and/or clenbuterol ( 2-agonist) did not improve respiratory signs.

Besides airflow obstruction, LPS exposure can also hamper alveolar-capillary

diffusion (Herbert et al., 2002). More refined techniques such as lung function tests

and blood gas analysis are necessary to identify the cause(s) of difficult breathing

after virus-LPS exposure.

In an attempt to confirm the role of proinflammatory cytokines in virus-LPS

induced respiratory disease, PRRSV-infected pigs were treated with pentoxifylline

prior to the moment of LPS exposure (chapter 3.2). Pentoxifylline is a xanthine that

inhibits the intracellular phosphodiesterase enzyme, resulting in decreased production

of proinflammatory cytokines (Neuner et al., 1994). Unexpectedly, pentoxifylline had

only a minor effect on cytokine production in the lungs, but at the same time caused a

significant reduction of respiratory signs and fever. Possibly, pentoxifylline inhibited

other disease mediators or directly caused bronchodilatation, leading to improved

airflow (Cortijo et al., 1993). We should bear in mind that virus-LPS exposure

probably induces many other types of mediators, which might potentiate the

biological effects of proinflammatory cytokines. LPS stimulation of human

monocytes, for example, leads to increased transcription of an impressive 118 genes

of which many cytokines, chemokines and enzymes (Suzuki et al., 2000). Fourteen

percent of LPS-induced transcripts coded for unknown proteins. Moreover,

Germonpre et al. (1999) revealed that monocyte-macrophages release substance P, a

neuropeptide with potent bronchoconstrictory activity, upon LPS exposure.

The significance of the interaction between viruses and LPS in respiratory disease

in the field is difficult to assess and may depend on several factors, such as the level

of virus replication in the lungs and the level of LPS exposure. Exposure to LPS is

variable and depends on several factors, such as concentration of stable dust, load of

Gram-negative bacteria in the lungs and use of antibiotics. In our experiments, LPS

was administered to pigs at a dose of 20 µg/kg body weight. Most pigs weighed 5-10

kg and thus received 100-200 µg LPS. Assuming an environment with an LPS
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concentration of 4.9 µg/m3 air (Zhiping et al., 1996) and a respiratory volume of 0.3

m3/hour, pigs of the same weight as in our experiments would be exposed to a total

dose of airborne LPS of approximately 35 µg per day. Thus, one could argue that pigs

in the field are exposed to lower doses of airborne LPS than those used

experimentally. Urbain et al. (1999) demonstrated that pigs, in contrast to humans, do

not develop lung inflammation or respiratory signs upon inhalation of LPS-

contaminated dust in concentrations commonly found in swine buildings. Possibly,

PRRSV or PRCV infection could be the trigger that renders the lungs of pigs

susceptible to the detrimental effects of LPS in swine dust.

LPS is not only inhaled with dust, but it is also released locally in the lungs during

an infection with Gram-negative bacteria. It was shown that at least part of the lung

lesions and clinical signs of an infection with Gram-negative bacteria, such as

Actinobacillus pleuropneumoniae, are caused by the release of LPS from the bacterial

cell wall (Udeze et al., 1987; Idris et al., 1993). The LPS release from 105 colony

forming units (CFU) of E. coli during a 6 hours growth period in vitro is 16.8 µg (Van

Den berg et al., 1992). Theoretically, 104.1 CFU/g lung tissue would thus be sufficient

to produce 200 µg of LPS in the lungs during the same period (assuming a lung

weight of 100 g). Lung infection with Gram-negative bacteria often results in higher

titers (Haesebrouck F., personal communication). It is thus likely that most infections

with Gram-negative bacteria will produce high enough amounts of LPS to induce

excessive cytokine production in virus-infected lungs. In theory, any infection of the

deeper lungs with Gram-negative bacteria has the potential of synergizing with

PRRSV or PRCV, if sufficient amounts of LPS are released. We did not perform dual

inoculations with virus and whole Gram-negative bacteria, but several groups were

unable to demonstrate a clinical synergy between PRRSV and bacteria, like

Haemophilus parasuis and Pasteurella multocida (Cooper et al., 1995; Carvalho et

al., 1997; Solano et al., 1997). It should be mentioned, however, that bacteria could

not be isolated from the lungs of most dually inoculated pigs in these studies. This

means that there was no opportunity for an interaction between PRRSV and locally

released LPS. Nevertheless, mixed infections with Gram-negative bacteria are very

common under field circumstances. A retrospective study of Zeman (1996) revealed

that more than halve of 221 PRRSV-infected lungs were concurrently infected with
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bacteria, such as Pasteurella multocida, Haemophilus parasuis and Salmonella

species.

The biological activity of LPS, which is determined by the structure of the lipid A

component, depends on the species of bacteria (Erridge et al., 2002). We used LPS

derived from E. coli, which is generally considered to have high endotoxic activity.

The endotoxic activity of LPS of Gram-negative bacteria that colonize the airways of

pigs has not been studied. It is, however, likely that LPS of several of these bacteria,

such as Bordetella bronchiseptica, has lower endotoxic activity than that of E. coli.

The bulk of LPS in swine dust originates most likely from enterobacteriaceae, such as

E. coli, and can thus be considered highly endotoxic (Zucker et al., 2000; Erridge et

al., 2002).

We do not know whether prolonged LPS exposure will lead to chronic respiratory

disease or, on the contrary, to LPS tolerance. LPS tolerance has been shown in

numerous animal models and is characterized by a decreased sensitivity to LPS after

repeated LPS exposure (reviewed in Cavaillon et al., 2003). In unpublished

experiments, we have exposed PRRSV-infected pigs up to 3 times to LPS at 3, 6 and

9 days after virus inoculation without a decrease of the clinical response to LPS. This

suggests that PRRSV-infected pigs do not become refractory to LPS. Also, recent

research demonstrated that 5-day-long and 8-week-long exposure of mice to an

aerosol of LPS led to respectively sustained cytokine production and chronic

pneumonia (Brass et al., 2003).

An important part of the research in this thesis aspired to explain how virus

infections can synergize with LPS in the lungs. LPS recognition and inflammation is

initialized by the cooperative interplay between the “LPS-binding protein” (LBP), the

membrane-bound or soluble forms of CD14 and the recently identified “Toll-like

receptor 4” (TLR4) (for review see Martin, 2000). Together, these proteins form the

“LPS receptor complex” which is presented in figure 4 on page 20. The biological

effect of LPS in the lungs depends on two antagonistic processes. On the one hand,

LPS can bind to scavenger receptors, surfactant protein A or “bactericidal

permeability increasing protein”, leading to neutralization and degradation without

cytokine production (Hampton et al., 1991; Stamme and Wright, 1999; Iovine et al.,

2002). On the other hand, LPS can bind to the LPS receptor complex, leading to

intracellular signaling, stimulation of inflammatory genes and cytokine production.
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So, the inflammatory effect of LPS in the lungs depends on the balance between

scavenger molecules and signaling receptors (Martin, 2000; Jiang et al., 2003). Our

working hypothesis was that virus infection in the lungs would lead to increased

recognition and subsequent inflammatory signaling of LPS. The early recognition of

LPS is mediated by LBP and CD14. We speculated that the amount of both proteins

would be limited in “healthy” uninfected lungs and that infection with PRRSV or

PRCV would significantly increase their levels. This hypothesis was inspired by

earlier work on the pathogenesis of inflammatory bowel disease. Resident

macrophages of healthy intestines express no or low CD14 and are unresponsive to

LPS (Smith et al., 2001; Smythies et al., 2005). The gut naturally contains high

amounts of LPS and the absence of CD14 is seemingly important to prevent chronic

inflammation. In contrast, intestines affected with inflammatory bowel disease are

typically infiltrated with CD14-positive monocytes (Rugtveit et al., 1997). These

highly LPS-responsive cells are assumed to contribute significantly to the chronic

inflammation of the intestinal wall.

We found that lungs of uninfected pigs contained relatively low amounts of CD14

and LBP (chapters 4.1 and 4.2). Most resident macrophages expressed little CD14 and

occasionally a highly CD14-positive monocyte was found in the lung tissue.

Accordingly, LBP levels varied from 0 to 100 ng/ml BAL fluid, which is 20 times

less than normal serum levels. The low amount of CD14 and LBP may protect the

lungs from an excessive response to common LPS exposure. This “quiescent” state

alters radically during PRRSV or PRCV infection. Both virus infections caused a

massive increase of the LPS recognition molecules in the lungs. LBP levels in BAL

fluids increased up to 14 and 35 times during PRRSV and PRCV infection

respectively. Similarly, we found a 40 and 15 times increase of cell-associated CD14

in the lung tissue. Moreover, PRCV-infection caused a significant increase (  4) of

soluble CD14 in the BAL fluids. Soluble CD14 can render CD14-negative cells, such

as airway epithelial cells, sensitive to LPS (Pugin et al., 1993). This parameter was

not studied in BAL fluids of PRRSV-infected lungs. It is tempting to speculate that

the increase of LPS and CD14 is responsible for the increased LPS response during

infection. We did not prove a causal relationship in our studies, but many other

researchers found a correlation between the amount of CD14 and LBP in the lungs
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and the sensitivity of the lungs to LPS (Dubin et al., 1996; Martin et al., 1997; Alexis

et al., 2001; Strohmeier et al., 2001).

We now have indications that both PRCV and PRRSV sensitize the lungs to LPS

similarly through the increase of CD14 and LBP. This is remarkable as the

pathogenesis of both viruses differs explicitly (Van Reeth et al., 1999). PRRSV has a

strict tropism for macrophages and causes a slow and persistent lung infection.

Maximum virus replication occurs exceptionally late at 7 to 14 days after inoculation

and low amounts of virus are able to persist for several weeks thereafter. In contrast,

PRCV has a tropism for epithelial cells and causes a typical acute lung infection.

Replication lasts one week and the virus is then fully cleared by an effective immune

response. It is thus not surprising that we found some major differences in the profile

of CD14 expression and LBP levels between both virus infections.

Firstly, CD14-positive cell types in the lungs are different for both virus infections.

PRRSV-infected lungs are typically infiltrated with massive amounts of highly CD14-

positive monocytes, whereas PRCV infection also triggers a progressive increase of

highly CD14-positive macrophages and hyperplastic type 2 pneumocytes towards the

end of infection.

Secondly, the amounts of CD14 and LBP in the lungs are tightly correlated with

the kinetic profile of PRRSV replication, but not with that of PRCV replication.

Highest amounts of CD14 and LBP are found at the peak of PRRSV replication and

levels decrease strongly as virus titers decline towards the end of infection. This is

clearly different for PRCV-infected lungs, where high amounts of CD14 and LBP are

found at the end of infection, when a specific immune response is mounted and most

virus has been cleared from the lungs. The reasons for these differences are thus far

unclear.

LBP and CD14 are also involved in the recognition of conserved molecules of

other types of pathogens, such as peptidoglycan and lipoteichoic acid, which are

components of the cell wall of Gram-positive bacteria (Muhvic et al., 2001; Schroder

et al., 2003). It is therefore possible that PRRSV and PRCV also sensitize the lungs

for other bacterial cell wall components. Moreover, research indicates that LPS,

peptidoglycan and lipoteichoic acid synergize in the induction of cytokines (De

Kimpe et al., 1995; Wray et al., 2001). Stable dust contains a mixture of these
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molecules and the effect of LPS may thus be enhanced by other cell wall components

(Zhiping et al., 1996).

To our knowledge, PRRSV and PRCV are the first respiratory viruses that are

shown to synergize with LPS in the induction of respiratory disease. The question

arises whether the sensitisation to LPS is a typical feature of PRRSV and PRCV

infections or may also occur during infection with other respiratory viruses. PRRSV

and PRCV are both enveloped RNA viruses that belong to the order Nidovirales,

based on a common genomic organisation and cellular replication strategy (reviewed

by Cavanagh, 1997). Despite their classification in the same order of viruses and some

structural resemblances, the pathogenesis of both virus infections differs strikingly as

outlined on pages 4 to 5 and 10 to 11. Importantly, the target cells for replication are

unrelated and the interferon-inducing capacity differs completely for both viruses. It is

thus tempting to speculate that the increase of LPS recognition proteins and

sensitisation to LPS is an unspecific response of the lungs to viral infection and

possibly also occurs during infection with other, unrelated respiratory viruses.

Moreover, mechanical and thermal insults have been reported to increase CD14 and

LBP expression in the lungs (Fang et al., 2002). Recent experiments in rabbits, for

example, demonstrated that mechanical ventilation with a large tidal volume causes

up-regulation of CD14 in the lungs, which is followed by increased LPS sensitivity

(Moriyama et al., 2004). It is thus likely that a wide variety of agents can prime the

lungs to LPS under experimental conditions. Nevertheless, respiratory viruses like

PRRSV and PRCV may play a unique pioneer role in sensitizing the lungs to LPS or

other environmental agents in the field. Unlike most bacteria, PRRSV and PRCV are

fully capable of infecting healthy “unspoiled” lungs. In this regard, respiratory viruses

may be the first pieces of the puzzle that is multifactorial respiratory disease.

The synergy between virus and LPS is remarkably potent. Virus infection

potentiates LPS-induced TNF-  production up to 100-fold in the lungs, which often

results in TNF-  levels exceeding 1000 U/ml of BAL fluid (Van Reeth et al., 2000;

chapters 3.1, 3.2 and 4.2). These levels are many-fold higher than induced by any

single respiratory virus infection, including influenza virus infection, or combination

of virus infections ever examined in our laboratory. Moreover, careful scrutiny of the

literature learns that a cytokine synergy of this magnitude in the lungs is

undocumented for any other combination of agents. Eileen Thacker and co-workers,
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for example, studied the interactions between PRRSV and mycoplasma

hyopneumoniae infections and reported a mere 1.5-fold increase of TNF-  production

in the lungs of dually infected pigs, compared to pigs infected with each agent alone

(Thanawongnuwech et al., 2004). Important in this regard is that the cell wall of

mycoplasma species contains no LPS.

Most pigs become infected with PRRSV, PRCV and potentially many other viruses

during the first weeks after weaning. In a very short time frame, lungs of growing pigs

are thus loaded with LPS recognition proteins and LPS-responsive cells in an

environment burdened with LPS and other bacterial compounds. This potentially

explosive situation might lead to excessive cytokine production in the lungs of some

pigs and tilt primarily subclinical virus infections above a clinical threshold.

Our findings throw a new light upon the role of virus infections in exacerbations of

inflammatory lung diseases such as asthma and the “acute respiratory distress

syndrome” (ARDS). Respiratory viruses, such as rhinovirus and respiratory syncytial

virus, are known to trigger acute asthma attacks (Gern, 2004; Tan, 2005). Johnston et

al. (2005), for example, found that the “September epidemic” of acute asthma attacks

occurs mainly in children with underlying rhinovirus infections, which thrive

abundantly during that time of the year. The mechanisms hereof are largely unknown,

but our work suggests that virus-induced sensitisation to LPS might be a factor. This

hypothesis is fed by the knowledge that humans are particularly sensitive to

environmental LPS, which is also a known risk factor for acute asthma exacerbations

(Michel et al., 1996).

Recently, a new coronavirus with a tropism for pneumocytes, named “severe acute

respiratory syndrome” coronavirus (SARS CoV), emerged in humans (Ksiazek et al.,

2003). Although the infection sets off during the first week as a mild viral pneumonia,

with fever as the main symptom, a minority of patients develop the lethal ARDS

during the second week of infection (Peiris et al., 2003, Van Bever et al., 2004).

Typically, the clinical worsening of SARS CoV infection occurs when the virus load

in the lungs has decreased and virus-specific antibodies appear in the circulation

(Wang et al., 2004). This led several authors to assume that SARS is an

“immunopathological” disease, but the true pathogenesis of the syndrome remains

enigmatic. Our work with PRCV provides a new way of thinking regarding clinical

exacerbations of coronavirus infections. Indeed, we demonstrated that the lungs are
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bulked with CD14 and LBP at the end of infection and preliminary work demonstrates

that this may be associated with an increased LPS response. Interestingly, SARS-

affected lungs are typically loaded with “activated” macrophages and the syndrome is

associated with excessive production of cytokines (Huang et al., 2005; Salto-Tellez et

al., 2005). LPS recognition proteins have not been quantified in SARS-CoV infected

lungs, but an exaggerated response to LPS or other bacterial compounds might

contribute to the development of SARS.

It is commonly accepted that viruses cooperate with secondary bacteria in the

induction of severe respiratory disease, yet little is known about the mechanisms of

virus-bacterium cooperation. Most proposed mechanisms emanate from the

assumption that viruses damage barriers, decrease innate and/or specific immune

responses and that this opens the gate for secondary invaders. The latter are in turn

responsible for clinical worsening (reviewed by Brockmeier et al., 2002). Indeed,

mixed infections with viruses and bacteria are very common in pigs, but a true

decrease of antibacterial lung defences has not been proven for most respiratory virus

infections of swine or other species. This thesis describes a new kind of interaction

between respiratory viruses and bacteria in the induction of severe respiratory disease.

We found that infection with PRRSV or PRCV sensitizes the lungs of pigs to LPS, a

cell wall component of Gram-negative bacteria. Virus-infected pigs that are exposed

to an as such “harmless” dose of LPS develop excessive amounts of proinflammatory

cytokines in their lungs, together with acute respiratory distress. Moreover, we found

that infection with PRRSV or PRCV increases the amount of LBP and CD14, two

components of the LPS receptor complex, in the lungs. We propose that the increase

of both proteins in the lungs during virus infection enhances the early recognition and

inflammatory effects of LPS. However, the exact role of CD14 and LBP in the

clinical synergy between virus and LPS requires further study.
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Conclusion and future prospects

As a general conclusion, it can be stated that infection with PRRSV or PRCV

sensitizes the lungs of pigs to LPS, which is a major inflammatory component of the

cell wall of Gram-negative bacteria. Virus-infected pigs that are exposed to an as such

“harmless” dose of LPS develop excessive amounts of proinflammatory cytokines in

their lungs, together with acute respiratory distress. Prior treatment of these pigs with

a phosphodiesterase inhibitor reduces the severity of clinical signs, but it is unclear

through which mechanisms this drug manifests its effects. Further work revealed that

infection with PRRSV or PRCV increases the amount of LBP and CD14 in the lungs.

We propose that the increase of both components of the LPS receptor complex

enhances the early recognition and inflammatory effects of LPS. Possibly, the

interaction between virus infection and bacterial LPS represents one of the catalysts of

multifactorial lung disease.

Several issues discussed in this thesis require further research. Importantly, we still

need to prove that the increased amounts of LBP and CD14 in the lungs contribute to

the enhanced response to LPS during virus infection. A plausible approach to achieve

this is neutralization of LBP and CD14 by use of specific antibodies. Two strategies

can be followed here. One consists of in vivo treatment with antibodies to elucidate

whether neutralization of LBP and/or CD14 attenuates disease signs and cytokine

production in the lungs of virus-infected pigs after instillation of LPS. This approach

requires large amounts of antibodies, but proved to be successful in other species,

such a mice and rabbits. An in vitro model with LPS-responsive cells may represent a

less elaborative alternative. BAL fluids of virus-infected pigs, containing elevated

levels of LBP and soluble CD14, are likely to enhance cytokine production in cultured

cells after LPS challenge. If neutralization of LBP and/or soluble CD14 abolishes

these effects, the biological significance of elevated levels of LBP and soluble CD14

in BAL fluids of virus-infected lungs is confirmed.

In addition, the effect of virus infection in the lungs on the expression of two

remaining components of the LPS receptor complex, namely TLR4 and MD-2, merits

attention. The biology of Toll-like receptors represents an exciting and promising new

chapter in the “book” of infectious animal diseases. The nucleotide and amino acid
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sequences of porcine TLR4 were recently published (GenBank : accession numbers

AB188301 and BAD36843). Although no specific antibodies against porcine Toll-like

receptors are available at this moment, it is likely that they will be in the near future.

This would enable us to study the impact of virus infection on the expression of these

signaling receptors that reside at the interface of the extra- and intracellular milieu.

The general discussion of this thesis formulates the hypothesis that sensitisation to

LPS might be a common feature of different types of respiratory viruses. Indeed

PRRSV and PRCV cause different types of infections in the lungs, still both

infections prime the lungs similarly for an increased LPS response. This hypothesis

can be challenged by infecting pigs with a third non-related respiratory virus, such as

swine influenza virus, and subsequently assessing their response to LPS. Moreover, it

is worth to examine whether virus infection sensitizes the lungs to cell wall

components of other types of micro-organisms, such as lipoteichoic acid and

peptidoglycan of Gram-positive bacteria or -glucan of fungi. Organic dust contains a

mixture of these molecules and the lungs are thus naturally exposed to a combination

of different cell wall toxins.

The combination of virus and LPS in the lungs provides a unique model to study

the role of different proinflammatory cytokines in multifactorial respiratory disease.

Impressive amounts of proinflammatory cytokines are produced in the lungs at a

highly predictable time point, starting at 1 hour after the LPS inoculation. As

illustrated in chapter 3.2, treatment with anti-inflammatory drugs that target enzymes

involved in cytokine production or activity is not specific enough to pinpoint the

contribution of different cytokines in respiratory disease. The latter goal is better

achieved by selective blocking of cytokine effects with neutralizing antibodies or

receptor antagonists. This will be a focus of future research in our laboratory.
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Summary

Porcine reproductive and respiratory syndrome virus (PRRSV) and porcine

respiratory coronavirus (PRCV) are respiratory viruses of swine, that are important

primary agents of multifactorial respiratory disease. Little is known about the

mechanisms of cooperation between respiratory viruses and other agents in the

induction of multifactorial lung disease. In an attempt to study this, we have

performed subsequent inoculations of pigs with either PRRSV or PRCV, followed

one or several days later by an intratracheal inoculation with bacterial

lipopolysaccharide (LPS). LPS is the most important inflammatory component of the

cell wall of Gram-negative bacteria and is present in organic dust of swine stables.

Virus-infected pigs that are exposed to LPS (20 µg/kg) in the lungs typically develop

severe respiratory disease signs, whereas uninfected pigs that are exposed to the same

dose of LPS do not. Thus, both respiratory viruses synergize with LPS in the

induction of clinical signs.

The main aims of this thesis were to unravel the pathogenesis of virus-LPS induced

respiratory disease, with special emphasis on the role of proinflammatory cytokines as

mediators of virus-LPS disease, and to explore possible mechanism(s) of virus-

induced sensitisation to LPS.

Chapter 1 reviews the pathogenesis of PRRSV and PRCV infections and the

biological effects of LPS on the lungs. We explain how LPS is recognized in the lungs

and how this results in the production of proinflammatory cytokines. Moreover, we

review the current knowledge on virus-LPS interactions both in vitro and in different

laboratory animals.

Chapter 3 deals with the pathogenesis of the respiratory disease caused by the

combination of PRRSV infection and LPS in the lungs. In chapter 3.1, we studied the

pathogenesis of the PRRSV-LPS interaction on a cellular and cytokine level. More

specifically, we examined whether PRRSV synergizes with LPS in the induction of

proinflammatory cytokines in the lungs and whether high cytokine levels are

associated with the appearance of respiratory signs. For this purpose, gnotobiotic pigs

were inoculated intratracheally with PRRSV followed by LPS (20 µg/kg) at 3, 5, 7, 10

or 14 days of infection, and euthanized 6 hours after the LPS inoculation. Control pigs
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were inoculated exclusively with PRRSV, LPS or phosphate-buffered saline (PBS).

Virus titers, (histo)pathological changes in the lungs, numbers of inflammatory cells

and bioactive tumour necrosis factor-  (TNF- ), interleukin-1 (IL-1) and IL-6 levels

in the bronchoalveolar lavage (BAL) fluids were examined.

As expected, all PRRSV-LPS inoculated pigs developed severe respiratory disease,

in contrast to the singly inoculated control pigs. Moreover, PRRSV infection

significantly enhanced cytokine production in response to LPS. Peak TNF- , IL-1 and

IL-6 titers were 10 to 100 times higher in PRRSV-LPS inoculated pigs than in the

singly PRRSV- or LPS-inoculated pigs and the titers correlated with the respiratory

signs. Neutrophil infiltration and pathological changes in the lungs of PRRSV-LPS

inoculated pigs resembled the additive effect of the single PRRSV and LPS

inoculations without synergy. These data demonstrate a synergy between PRRSV and

LPS in the induction of proinflammatory cytokines and an association between these

cytokines and disease.

The pathogenesis of the PRRSV-LPS induced disease appears to be similar to the

pathogenesis of the PRCV-LPS induced disease. The combination of PRCV and LPS

does not markedly enhance neutrophil infiltration or lung lesions, but causes an

exaggerated production of proinflammatory cytokines in the lungs, similar to the

PRRSV-LPS combination (see chapter 4.2). The profile and quantity of cytokines in

the lungs is similar for both combinations, suggesting that both viruses sensitize the

lungs to LPS in a similar way.

The study described in chapter 3.2 aimed to confirm the role of proinflammatory

cytokines in the induction of respiratory signs. We studied the effect of pentoxifylline,

a phosphodiesterase inhibitor, on PRRSV-LPS induced cytokine production and

disease. According to the literature, pentoxifylline can suppress the production of

TNF-  and other proinflammatory cytokines. The clinical effects of two

prostaglandin inhibitors, namely meloxicam and flunixin meglumine, were also

examined.

Pentoxifylline, but not the prostaglandin inhibitors, significantly reduced

respiratory signs and fever in PRRSV-LPS inoculated pigs from 2 to 6 hours after the

LPS inoculation. The levels of TNF-  and IL-1 in the lungs of pentoxifylline-treated

PRRSV-LPS inoculated pigs were moderately reduced compared to untreated
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PRRSV-LPS inoculated pigs. Still, cytokine levels remained markedly higher than in

control pigs inoculated exclusively with PRRSV or LPS. So, the beneficial effect of

pentoxifylline on the respiratory disease could not be attributed solely to the limited

reduction of proinflammatory cytokines in the lungs. We conclude that pentoxifylline

is not a good tool to study the role of proinflammatory cytokines in virus-LPS induced

respiratory disease.

The research described in chapter 4 aspired to explain how virus infections can

synergize with LPS in the lungs. LPS recognition and inflammation are initialized by

the cooperative interplay between the “LPS-binding protein” (LBP), the membrane-

bound or soluble forms of CD14 and the recently identified “Toll-like receptor 4”

(TLR4). Together, these proteins form the “LPS receptor complex” which is presented

in figure 4 on page 20. Our working hypothesis was that virus infection in the lungs

leads to LPS sensitisation by increasing the amount of LPS recognition molecules.

The earliest recognition of LPS is mediated by LBP and CD14 and binding to these

proteins initiates the LPS signaling cascade. We speculated that the amount of both

proteins would be limited in “healthy” uninfected lungs and that infection with

PRRSV or PRCV would significantly increase their levels.

In the study described in chapter 4.1, we quantified the amount of LBP and cell-

associated CD14 in the lungs of pigs throughout a PRRSV infection. Gnotobiotic pigs

were inoculated intranasally with PRRSV or PBS (control pigs) and euthanized 1 to

52 days later. The amount of LBP in the BAL fluids was determined with an ELISA

and the amount of CD14 expression in lung tissue sections was determined by

immunofluorescence microscopy and image analysis.

Infectious virus was detected in the lungs from 1 to 40 days post inoculation (DPI).

PRRSV infection caused a clear increase of CD14 expression from 3 to 40 days post

inoculation (DPI) and of LBP from 7 to 14 DPI. Both parameters peaked at 9-10 DPI

(40 and 14 times higher than in uninfected control pigs, respectively) and were

correlated tightly with virus replication in the lungs. Double immunofluorescence

labeling demonstrated that resident macrophages expressed little CD14 and that the

increase of CD14 expression in the PRRSV-infected lungs was mainly due to

infiltration of highly CD14-positive monocytes in the interstitium.
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The study of chapter 4.2 aimed to quantify CD14 and LBP in the lungs throughout

a PRCV infection and to examine whether increased amounts of CD14 and LBP may

be associated with an increased in vivo response to LPS. Gnotobiotic pigs were

inoculated intratracheally with PRCV or PBS (control pigs) and euthanized 1 to 15

DPI. LBP and cell-associated CD14 were quantified in a similar way as for the

PRRSV infection. Moreover, we quantified soluble CD14 in the BAL fluids using a

flow cytometric assay. In an additional experiment, pigs were inoculated

intratracheally with PRCV and 3 (n = 3) or 7 (n = 4) days later with LPS (20 µg/kg).

Control pigs were inoculated exclusively with LPS. Pigs were euthanized 4 hours

after the LPS inoculation and levels of TNF-  and IL-6 were determined in the BAL

fluids.

Infectious virus was detected in the lungs from 1 to 9 DPI. The amount of cell-

associated CD14 in the lungs increased up to 15 times between 1 and 12 DPI. The cell

types expressing CD14 varied throughout the infection. High levels of CD14

expression were subsequently found on monocyte-like cells (1-2 DPI), macrophage-

like cells (3-12 DPI) and pneumocytes (7-9 DPI). Moreover, soluble CD14 and LBP

levels in the BAL fluids increased up to 4 and 35 times between 1 and 12 DPI. In

correspondence, we found that part of the PRCV-inoculated pigs developed acute

respiratory distress and high cytokine titers (  6) in the BAL fluids upon LPS

exposure at 3 (n = 2) and 7 (n = 2) DPI, which was not seen after LPS exposure of

uninfected control pigs. This adds to an earlier study in which we demonstrated an

enhanced LPS response at 1 day after PRCV inoculation.

The increase of LBP and CD14 in the lungs during the PRRSV and PRCV

infections could thus account for the increased LPS response. This implies that both

viruses sensitize the lungs in a similar way. Still, the evolution of LBP levels and

CD14 expression during both virus infections differs in two important aspects. Firstly,

the amount of LBP and CD14 in the lungs is tightly correlated with the kinetic profile

of PRRSV replication, but not with that of PRCV replication. At the late stage of the

PRRSV infection (20-40 DPI), virus titers are strongly reduced and at the same time

the amount of LBP and CD14 in the lungs is significantly decreased. In contrast, high

amounts of LBP and CD14 are found in the lungs at the end of the PRCV infection (7-

9 DPI), when most virus has been cleared from the lungs. Secondly, PRRSV and

PRCV infections cause an increase of different types of CD14-positive cells in the
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lung tissue. Both infections induce infiltration of CD14-positive monocytes, but

highly CD14-positive macrophages and type 2 pneumocytes are only found during the

PRCV infection.

In conclusion, we found that infection with PRRSV or PRCV sensitizes the lungs

of pigs to LPS. Virus-infected pigs that are exposed to an as such “harmless” dose of

LPS develop excessive amounts of proinflammatory cytokines in their lungs, together

with acute respiratory distress. Further work revealed that infection with PRRSV or

PRCV increases the amount of LBP and CD14 in the lungs. We propose that the

increase of both components of the LPS receptor complex enhances the early

recognition and inflammatory effects of LPS. However, the exact role of LBP and

CD14 in the clinical synergy between virus and LPS remains to be proven. Possibly,

the interaction between virus infection and bacterial LPS represents one of the

catalysts of multifactorial lung disease.
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Samenvatting

Het porcien reproductief en respiratoir syndroom virus (PRRSV) en het porcien

respiratoir coronavirus (PRCV) zijn respiratoire virussen van het varken die een rol

spelen als gangmakers van multifactoriële ademhalingsziekte. Het is grotendeels

onduidelijk hoe deze virussen samenwerken met andere agentia bij het tot stand

komen van multifactoriële ademhalingsziekte. Om dit te bestuderen, hebben we een

experimenteel model op punt gesteld waarbij varkens eerst geïnoculeerd worden met

PRRSV of PRCV en vervolgens, na een interval van één of meerdere dagen, een

intratracheale toediening van bacterieel lipopolysaccharide (LPS) krijgen. LPS is de

belangrijkste ontstekingsverwekkende component van de celwand van Gram-

negatieve bacteriën en komt voor in organisch stof van varkensstallen. Virus-

geïnfecteerde varkens waarvan de longen blootgesteld worden aan LPS (20 µg/kg)

ontwikkelen typisch ernstige ademhalingsziekte. Dit is niet het geval bij niet-

geïnfecteerde varkens die aan dezelfde dosis LPS worden blootgesteld. Er is dus een

duidelijk synergisme tussen deze virusinfecties en bacterieel LPS bij de inductie van

acute ademhalingsziekte.

De doelstellingen van deze thesis waren om meer inzicht te krijgen in de

pathogenese van virus-LPS geïnduceerde ademhalingsziekte, met de nadruk op de

mogelijke rol van pro-inflammatoire cytokinen als ziektemediatoren, en om na te gaan

welke mechanismen aan de basis liggen van de verhoogde LPS gevoeligheid van de

longen tijdens virusinfectie.

Hoofdstuk 1 bespreekt de pathogenese van PRRSV en PRCV infecties en de

biologische effecten van LPS op de longen. We verklaren hoe LPS wordt herkend in

de longen en hoe dit aanleiding geeft tot de lokale productie van pro-inflammatoire

cytokinen. Daarenboven bieden we een overzicht van wat gekend is over de

interacties tussen virussen en LPS en dit zowel in vitro als bij proefdieren.

Hoofdstuk 3 gaat over de pathogenese van de ademhalingsziekte veroorzaakt door

de combinatie van een PRRSV infectie en LPS in de longen. De studie in hoofdstuk

3.1 beschrijft de pathogenese van de PRRSV-LPS geïnduceerde ziekte op het niveau

van cellen en cytokinen. We hebben ondermeer onderzocht of er een synergisme
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bestaat tussen PRRSV en LPS in de inductie van pro-inflammatoire cytokinen in de

longen en of hoge cytokinengehalten geassocieerd zijn met het optreden van

ademhalingsziekte. Daartoe hebben we gnotobiotische biggen intratracheaal

geïnoculeerd met PRRSV gevolgd door LPS (20 µg/kg) 3, 5, 7, 10 of 14 dagen later.

Deze varkens werden 6 uren na de LPS toediening geëuthanaseerd. Controlevarkens

werden uitsluitend geïnoculeerd met PRRSV, LPS of fosfaat-gebufferde

zoutoplossing (FGZ). De longletsels werden macroscopisch en microscopisch

beoordeeld. Het aantal ontstekingscellen en de gehalten van bioactief tumor necrosis

factor-  (TNF- ), interleukine-1 (IL-1) en IL-6 werden bepaald in de

bronchoalveolaire lavage (BAL) vochten.

Zoals verwacht, ontwikkelden de PRRSV-LPS geïnoculeerde varkens duidelijke

ademhalingssymptomen in tegenstelling tot de controlevarkens die enkel met PRRSV

of LPS geïnoculeerd werden. Daarenboven veroorzaakte de LPS toediening bij de

PRRSV-geïnfecteerde varkens een opvallend verhoogde productie van pro-

inflammatoire cytokinen in de longen. De piekgehaltes van TNF- , IL-1 en IL-6

waren 10 tot 100 keer hoger bij PRRSV-LPS geïnoculeerde varkens dan bij varkens

die enkel geïnoculeerd werden met PRRSV of LPS. Meer nog, het gehalte van deze

cytokinen was gecorreleerd met de ernst van de ademhalingssymptomen. Het aantal

neutrofielen in de BAL vochten en de longletsels van PRRSV-LPS geïnoculeerde

varkens waren het additief effect van de enkelvoudige PRRSV en LPS inoculaties,

zonder een synergistische interactie. Uit deze studie blijkt dat er een synergisme

bestaat tussen PRRSV en LPS in de inductie van pro-inflammatoire cytokinen en dat

de overmatige productie van deze cytokinen geassocieerd is met het optreden van

ademhalingssymptomen.

De pathogenese van de PRRSV-LPS geïnduceerde ziekte vertoont sterke

gelijkenissen met deze van de PRCV-LPS geïnduceerde ziekte. De combinatie van

PRCV en LPS veroorzaakt eveneens geen opvallende toename van de

neutrofieleninfiltratie of longletsels, maar veroorzaakt wel een overmatige productie

van pro-inflammatoire cytokinen in de longen, net zoals bij de combinatie van

PRRSV en LPS (zie hoofdstuk 4.2). Het cytokinenprofiel in de longen is gelijkaardig

voor beide combinaties, wat doet vermoeden dat PRRSV en PRCV de longen op een

gelijkaardige manier sensitiseren voor LPS.



Chapter 7                                                                                                                                                158

De studie in hoofdstuk 3.2 had als doelstelling om het belang van pro-

inflammatoire cytokinen als mediatoren van de virus-LPS geïnduceerde

ademhalingsziekte te bevestigen. Zo hebben we het effect bestudeerd van

pentoxifylline, een fosfodiesterase inhibitor, op de PRRSV-LPS geïnduceerde

cytokinen en symptomen. Volgens verschillende literatuurbronnen remt pentoxifylline

de productie van TNF-  en mogelijk ook van andere pro-inflammatoire cytokinen.

Daarenboven hebben we nagegaan of behandeling met twee verschillende

prostaglandineninhibitoren, namelijk meloxicam en flunixine meglumine, een effect

heeft op de symptomen.

Pentoxifylline, maar niet de prostaglandineninhibitoren, veroorzaakte een

significante onderdrukking van zowel de respiratoire symptomen als de koorts bij de

PRRSV-LPS geïnoculeerde varkens in de periode van 2 tot 6 uren na de LPS

inoculatie. De titers van TNF-  en IL-1 in de longen van pentoxifylline-behandelde

PRRSV-LPS geïnoculeerde varkens waren matig onderdrukt in vergelijking met die

van onbehandelde PRRSV-LPS geïnoculeerde varkens. De cytokinentiters waren

echter nog steeds significant hoger dan deze van controlevarkens die enkel

geïnoculeerd werden met PRRSV of LPS. Het gunstig klinisch effect van

pentoxifylline kan dus niet uitsluitend verklaard worden door de beperkte

onderdrukking van de cytokinenproductie. Daarom besluiten we dat behandeling met

pentoxifylline géén goede strategie vormt om de rol van pro-inflammatoire cytokinen

in de virus-LPS geïnduceerde ademhalingsziekte te ontleden.

Het onderzoek dat geschetst wordt in hoofdstuk 4 ambieerde om een verklaring te

vinden voor het synergisme tussen virus en LPS in de longen. De herkenning van LPS

en het daarmee-geassocieerde ontstekingssignaal worden geïnitieerd door de binding

met het “LPS-bindend proteïne” (LBP), CD14 en de recent ontdekte “Toll-like

receptor 4” (TLR4). Tezamen vormen deze eiwitten het “LPS receptorcomplex” dat

schematisch weergegeven wordt in figuur 4 op pagina 20. Het was onze

werkhypothese dat een virusinfectie de longen sensitiseert voor LPS door toename

van verschillende “LPS herkenningsmoleculen”. LBP en CD14 zijn verantwoordelijk

voor de allervroegste herkenning van LPS en vormen de eerste schakels in de

signalisatieketting van LPS. We veronderstelden dat het gehalte van beide eiwitten in
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“gezonde” niet-geïnfecteerde longen beperkt zou zijn en dat infectie met PRRSV of

PRCV een significante toename van beide LPS herkenningsmoleculen zou induceren.

In de studie beschreven in hoofdstuk 4.1 hebben we de hoeveelheden LBP en cel-

geassocieerd CD14 gekwantificeerd in de longen tijdens het verloop van een PRRSV

infectie. Gnotobiotische varkens werden intranasaal geïnoculeerd met PRRSV of FGZ

(controlevarkens) en 1 tot 52 dagen later geëuthanaseerd. De hoeveelheid LBP in het

BAL vocht werd bepaald met behulp van ELISA en de hoeveelheid CD14 in

longweefselcoupes werd bepaald met behulp van immunofluorescentiemicroscopie en

beeldanalyse.

PRRSV vermeerderde in de longen van 1 tot 40 dagen post inoculatie (DPI). De

infectie veroorzaakte een significante toename van de hoeveelheid CD14 van 3 tot 40

DPI en van LBP van 7 tot 14 DPI. Beide parameters piekten op 9-10 DPI

(respectievelijk 40 en 14 keren hoger dan bij niet-geïnfecteerde controlevarkens) en

waren goed gecorreleerd met de hoeveelheid virus in de longen. Dubbelkleuringen

toonden aan dat de longmacrofagen weinig CD14 tot expressie brachten. De toename

van CD14 in PRRSV-geïnfecteerde longen werd voornamelijk veroorzaakt door

massale infiltratie van sterk CD14-positieve monocyten in het longweefsel.

We hebben eveneens de evolutie van LBP en CD14 bestudeerd in de longen

gedurende een PRCV infectie en nagegaan in hoeverre een eventuele toename van

beide eiwitten geassocieerd is met verhoogde LPS gevoeligheid. Deze studie wordt

beschreven in hoofdstuk 4.2. Gnotobiotische varkens werden intratracheaal

geïnoculeerd met PRCV of FGZ (controlevarkens) en 1 tot 15 dagen later

geëuthanaseerd. De hoeveelheden LBP en cel-geassocieerd CD14 werden op dezelfde

manier bepaald als bij de PRRSV infectie. Daarenboven hebben we ook de

hoeveelheid opgelost CD14 in het BAL vocht bepaald met behulp van een flow-

cytometrische test. In een bijkomend experiment werden varkens intratracheaal

geïnoculeerd met PRCV en 3 (n = 3) of 7 (n = 4) dagen later met LPS (20 µg/kg).

Controlevarkens werden uitsluitend geïnoculeerd met LPS. Deze varkens werden 4

uren na de LPS toediening geëuthanaseerd en de gehalten van TNF-  en IL-6 werden

bepaald in de BAL vochten.
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PRCV vermeerderde in de longen van 1 tot 9 DPI. De hoeveelheid cel-

geassocieerd CD14 in het longweefsel nam tot 15 maal toe in de periode van 1 tot 12

DPI. De celtypes die CD14 tot expressie brachten, varieerden naargelang het stadium

van de infectie. In het beging van de infectie was er een uitgesproken accumulatie van

sterk CD14-positieve monocyten (1-2 DPI) en op latere stadia werden vooral sterk

CD14-positive macrofagen (3-12 DPI) en type 2 pneumocyten (7-9 DPI)

waargenomen. Daarenboven was er een 4 en 35-voudige toename van de

hoeveelheden opgelost CD14 en LBP in de BAL vochten tussen 1 en 12 DPI. In

overeenstemming met deze resultaten, vertoonde een deel van de PRCV-geïnfecteerde

varkens een sterk verhoogde LPS respons op 3 (n = 2) en 7 (n = 2) DPI. Deze

resultaten vullen een vroegere studie aan waarin we reeds een verhoogde LPS

gevoeligheid vaststelden bij PRCV-geïnfecteerde varkens op 1 DPI.

De toename van LBP en CD14 in de longen is dus mogelijk verantwoordelijk voor

de verhoogde LPS respons tijdens beide virusinfecties. Deze stelling impliceert dat

beide virussen de longen op een gelijkaardige manier gevoelig maken voor LPS. Toch

zijn er twee belangrijke verschilpunten op het gebied van LBP en CD14 evolutie in de

longen. Ten eerste zijn de hoeveelheden LBP en CD14 strak gecorreleerd met het

kinetisch profiel van de PRRSV vermeerdering, maar niet met dat van de PRCV

vermeerdering. Tijdens de late fase van de PRRSV infectie (20-40 DPI) is de

hoeveelheid virus sterk gereduceerd en is tegelijkertijd de hoeveelheid LBP en CD14

in de longen beduidend afgenomen. Daarentegen zijn grote hoeveelheden LBP en

CD14 aanwezig in de longen op het einde van de PRCV infectie (7-9 DPI), ondanks

dat het meeste virus reeds verdwenen is uit de longen tijdens deze late fase van de

infectie. Ten tweede is er een duidelijk verschil in het type cellen dat CD14 tot

expressie brengt. Tijdens beide virusinfecties is er een toename van CD14-positieve

monocyten, maar alleen tijdens de PRCV infectie worden ook sterk CD14-positieve

macrofagen en type 2 pneumocyten waargenomen.

Als besluit kan gesteld worden dat infectie met PRRSV of PRCV de longen

sensitiseert voor LPS. Virus-geïnfecteerde varkens die blootgesteld worden aan een

op zich “onschadelijke” dosis LPS produceren overmatig veel pro-inflammatoire

cytokinen in de longen, wat gepaard gaat met het plots optreden van acute

ademhalingssymptomen. Verder onderzoek toonde aan dat infectie met PRRSV of
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PRCV een toename van de hoeveelheden LBP en CD14 induceert in de longen. Wij

stellen voor dat de toename van beide LPS receptorcomponenten een vroege

herkenning van LPS bespoedigt met een verhoogde biologische respons tegenover

LPS tot gevolg. De exacte rol van LBP en CD14 in het klinisch synergisme tussen

virus en LPS moet echter nog bewezen worden. Mogelijk is de interactie tussen

virusinfectie en bacterieel LPS één van de katalysatoren van multifactoriële

ademhalingsziekte.
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