
Geautomatiseerde videoadaptatie
gebaseerd op tijdsafhankelijke contextparameters

Automated Video Adaptation
Based on Time-Varying Context Parameters

Robbie De Sutter

Promotor: prof. dr. ir. R. Van de Walle
Proefschrift ingediend tot het behalen van de graad van
Doctor in de Ingenieurswetenschappen: Computerwetenschappen

Vakgroep Elektronica en Informatiesystemen
Voorzitter: prof. dr. ir. J. Van Campenhout
Faculteit Ingenieurswetenschappen
Academiejaar 2005 - 2006

ISBN 90-8578-099-3
NUR 965
Wettelijk depot: D/2006/10.500/57

Dankwoord

Met het indienen van dit doctoraat sluit ik een periode af van bijna
vijf jaar. Tijdens deze periode heb ik de kans gekregen om in een uit-
zonderlijk boeiend domein aan wetenschappelijk onderzoek te doen. Ik
heb prachtige kansen en gelegenheden gekregen om met uiterst inte-
ressante mensen te mogen discussiëren en dit de wereld rond op vele
internationale conferenties en meetings. Het bijwonen van dergelijke
conferenties en meetings heeft me als onderzoeker en als mens enorm
veel bijgebracht. Ik neem dan ook graag van de gelegenheid gebruik om
de mensen te bedanken zonder wie dit allemaal niet mogelijk zou zijn
geweest.

Eerst en vooral wens ik mijn promotor, prof. Rik Van de Walle, te
bedanken. Het is dankzij hem dat het kleine Multimedia Lab waarin
ik als onderzoeker ben begonnen in 2001 kon uitgroeien tot een inter-
nationaal gerespecteerde groep. Ik dank ook mijn promotor voor de
vele feedback- en discussiemomenten in de loop van mijn onderzoek en
tijdens het schrijven van deze thesis, zelfs op de momenten wanneer
de omstandigheden niet altijd optimaal waren. Tenslotte dank ik mijn
promotor ook om mij de mogelijkheid te hebben gegeven om me niet
uitsluitend als onderzoeker te laten ontplooien.

Also, I would like to thank prof. Hermann Hellwagner (University of
Klagenfurt – ITEC, Austria). He gave me the opportunity to conduct
research at his lab for a period of three months in a very idyllic setting.
At the same time, I wish to thank my former colleagues at ITEC for
their help during my research, but also for their hospitality and their
guided tours. Most of the work discussed in the fourth chapter was
realized during this visit.

Daarnaast wil ik mijn collega’s van Multimedia Lab en Medisip be-
danken. Mede dankzij hun feedback, discussies en hulp is dit doctoraat

ii Dankwoord

gevormd. Zonder hun kennis en de opbouwende kritiek was dit boek
er nooit gekomen. Bovendien zorgden ze ervoor dat het nooit saai was
op kantoor zodat ik me er altijd thuis heb gevoeld. Verder wil ik de
collega’s die delen uit dit boek hebben nagelezen, die één of meer van
mijn papers hebben nagelezen of die talloze Excel vakjes hebben zitten
inkleuren nog eens extra te bedanken voor de geleverde inspanningen.

Graag wil ik ook Rita Breems en Ellen Lammens langs deze weg be-
danken. Dankzij hen is de administratieve papierberg aan mij groten-
deels voorbijgegaan (oef). Maar ik wil hen zeker ook bedanken voor de
vele gesprekken aan de koffiemachine of tijdens de lunchpauzes.

Dit dankwoord is ook een uitgelezen kans om mijn ouders en mijn broer
te bedanken, vooral omdat zij altijd in mij zijn blijven geloven en blijven
steunen ook al ging het eens wat minder vlot. Ik wil mijn ouders in
het bijzonder danken voor de mogelijkheden en hulp die ze me gegeven
hebben om me op mijn eigen manier verder te ontplooien.

Ook wil ik mijn vrienden van harte bedanken voor de vele steun (en
afleiding) over de voorbije jaren. Ik dank hen dat ze me af en toe (let-
terlijk) uit mijn huis haalden om te ontspannen en te genieten van het
leven. Nu het doctoraat afgerond is, hoop ik wat meer tijd voor hen te
hebben.

Tot slot wil ik Jan bedanken, niet in het minst omdat hij alles zo grondig
heeft nagelezen en voor zijn niet aflatende begrip en motivatie tijdens
mijn doctoraatsonderzoek, ook tijdens de moeilijkere momenten. Jan,
je bent voor mij een zeer belangrijke echte steun geweest het voorbije
jaar. Dat er nog vele jaren mogen volgen!

Robbie De Sutter
14 september 2006

Samenvatting

Aangezien het Internet voortdurend uitbreidt met nieuwe multimediale
data die afspeelbaar is op nieuwe types van toestellen en die verstuurd
wordt over nieuwe soorten netwerken, is het noodzakelijk dat er actie
ondernomen wordt zodat gebruikers deze data overal, altijd en op een-
der welke manier kunnen raadplegen. Dit gebeurt momenteel door ad-
hocoplossingen. Neem bijvoorbeeld een Internet-gebaseerde Video-op-
Aanvraag toepassing die audiovisuele data over IP-gebaseerde netwerken
stroomt. Momenteel moet een eindgebruiker, die gebruik wil maken van
deze toepassing, vooraf verschillende (technische) vragen beantwoorden
over zijn toestel, zijn netwerkconnectie en zijn gebruikersvoorkeuren
– met andere woorden vragen over zijn gebruikersomgeving. Daarna
kan hij een versie kiezen die best geschikt is voor deze gebruikersomge-
ving. De aanbieder van de audiovisuele data moet per aangeboden video
meerdere versies hebben die uitsluitend verschillen op technisch vlak,
bijvoorbeeld verschillende resoluties, zodoende zoveel mogelijk verschil-
lende gebruikersomgevingen te ondersteunen. Dit heeft als gevolg dat
de eindgebruiker een versie ontvangt die niet geoptimaliseerd is voor zijn
toestel en dat de aanbieder meerdere versies van de audiovisuele data
moet onderhouden. Het spreekt voor zich dat deze oplossing onhoudbaar
is. Inderdaad, aangezien meer en meer nieuwe toestellen en netwerktech-
nologieën beschikbaar komen met elk hun eigen karakteristieken, moet
de videoaanbieder steeds meer versies ondersteunen per video of moet
de gebruiker zich tevreden stellen met een versie die minder geschikt is
voor zijn toestel.

Het Universele Multimediatoegang (Universal Multimedia Access, UMA)
raamwerk probeert voor dit probleem een oplossing aan te bieden. Het
doel is het mogelijk maken van de consumptie van multimediale data
in verschillende gebruikersomgevingen door middel van het creëren van
verschillende presentaties vanaf één bron.

iv Samenvatting

Het doel van deze thesis is het onderzoeken welke de vereisten zijn om
een UMA-compatibele architectuur en toepassing te realiseren, zoals de
Video-op-Aanvraag toepassing, en om de verschillende problemen die
hierbij ontstaan op te lossen.

Eerst wordt er bestudeerd hoe er op een gestandaardiseerde manier kan
beschreven worden wat er geconsumeerd wordt – de inhoud – en hoe
het geconsumeerd wordt – de context. Om het vergelijken van de ver-
schillende internationale standaarden voor het beschrijven van de in-
houd mogelijk te maken, wordt er een objectief evaluatie- en vergelij-
kingsmodel gedefinieerd. Dit model helpt bij het selecteren van de best
geschikte standaard voor een welbepaalde toepassing. Voor de UMA-
compatibele architectuur is dat de MPEG-7 specificatie. Vervolgens wor-
den er drie standaarden voor het beschrijven van de contextinformatie
bestudeerd. Hieruit blijkt dat de MPEG-21 Digitale Item Adaptatie
standaard de meest generieke en allesomvattende standaard is. Ondanks
het feit dat deze standaard zo omvangrijk is, wordt er een applicatiesuite
ontwikkeld die bruikbaar is op kleine, gelimiteerde toestellen (bijvoor-
beeld een GSM) en waarmee het mogelijk is om MPEG-21 compatibele
berichten te lezen, aan te passen en uit te schrijven.

De informatie over de inhoud en de context wordt gebruikt voor het
aanpassen van de audiovisuele datastroom zodat de resulterende geopti-
maliseerde versie bruikbaar is in de gegeven context. Deze thesis behan-
delt niet hoe een beslissing kan genomen worden over welke de gewenste
aanpassing is, maar bestudeert wel de vereisten zodat deze beslissing
kan genomen worden. Met andere woorden, er wordt nagegaan hoe de
informatie over de inhoud en de context uitgewisseld kan worden met een
component die een beslissing kan nemen. Dit wordt gerealiseerd door
de negotiatie te bekijken als het aanroepen van een functie op afstand.
Aansluitend wordt een belangrijke uitbreiding op UMA gëıntroduceerd,
namelijk het concept van tijdsafhankelijke metadata. Het basisidee is het
dynamisch aanpassen van de multimedia data op basis van een veran-
derende context door het hernegotiëren van de contextinformatie. Op
deze manier resulteren de aanpassingen in de gebruikersomgeving in het
dynamisch heroptimaliseren van de multimediale data.

Ook het aanpassen van de audiovisuele stromen is een belangrijk on-
derdeel in deze thesis. Na een overzicht van de huidige stand van za-
ken met betrekking tot de schaalbare videotechnieken en -standaarden,
wordt er in het bijzonder aandacht besteed aan regiogebaseerde
videocodering. Bij deze techniek wordt een bepaald deel van de

Samenvatting v

videoscène als belangrijker aanzien dan de rest van het beeld. MPEG-4
FGS maakt het mogelijk om deze regio visueel te verbeteren. Deze stan-
daard ondersteunt echter alleen een vaste zone voor de volledige videose-
quentie. Daarom worden er nieuwe en snelle algoritmen ontwikkeld die
het mogelijk maken om bewegende objecten in een videosequentie au-
tomatisch te volgen. Deze algoritmen werken in het gecodeerde domein
en maken gebruik van de bewegingsvectoren. Verschillende testen wor-
den uitgevoerd om de kwaliteit na te gaan. Een complexiteitsanalyse
bewijst bovendien dat de methoden voldoende snel en bruikbaar zijn in
ware-tijdstoepassingen. Bovendien zijn de algoritmen generiek en bruik-
baar in andere videocompressiestandaarden.

Deze thesis geeft ook een oplossing voor de belangrijkste problemen van
XML-gebaseerde data, zoals de inhouds- en contextinformatie, namelijk
de overheadkosten en het ontbreken van ondersteuning voor aanpassin-
gen. Eerst wordt er onderzoek verricht naar de verschillende manieren
om XML-gebaseerde data te verwerken. Dit resulteert in een globaal
overzichtsmodel van XML ontleders en gebaseerd op deze studie wordt er
een notatie-onafhankelijke XML ontleder ontwikkeld. Applicaties kun-
nen deze ontleder gebruiken om XML-gebaseerde data te verwerken zon-
der dat ze hoeven te weten welke notatie er werd gebruikt. Op deze
manier is het eenvoudig om een compacte (binaire) XML notatie te
gebruiken in plaats van de klassieke tekstuele notatie. Drie technieken
(ZIP-compressie, ASN.1-PER en MPEG-B BiM) worden geëvalueerd als
potentieel alternatief en dit op basis van hun compressie-efficiëntie (met
andere woorden de reductie van de overheadkosten) en hun onmiddel-
lijke inzetbaarheid in toepassingen. Uit het onderzoek blijkt dat BiM
het beste scoort met betrekking tot de compressie-efficiëntie, maar een
te hoge complexiteit heeft om onmiddellijk bruikbaar te zijn. Hoewel
ZIP-compressie een lagere compressie-efficiëntie heeft, is deze techniek
wel onmiddellijk bruikbaar als alternatieve XML notatie.

Tenslotte worden de besproken technieken gëıntegreerd in een Video-
op-Aanvraag applicatie die compatibel is met de UMA principes en die
tijdsafhankelijke metadata ondersteunt. Hiermee hoop ik dat ik de lezer
overtuigd heb dat de methoden en technieken besproken in deze thesis
een initiële en originele bedrage hebben geleverd voor het ontwikkelen
of het verbeteren van UMA-compatibele toepassingen.

vi Samenvatting

Summary

As the Internet is continuously expanding with new content that is con-
sumable on new devices and that can be transmitted over new types
of networks, actions are needed to make transparent and ubiquitous
content consumption possible anywhere, anytime, and anyhow. Cur-
rently, ad hoc solutions try to make this happen. Take, for example,
an Internet-based Video-on-Demand application, i.e., the streaming of
audio-visual content over IP-based networks. Today, if an end user wants
to consume audio-visual content over the Internet, he first has to answer
several technical questions about his device, the network connection, and
his personal preferences – in short, questions about the consumption
context. As a result, he can select a particular version of the video that
more or less suits the context. The content provider has a simulstore
containing a limited number of semantically equal videos with different
technical characteristics, for example audio-visual content streams with
different resolutions. The end user receives suboptimal content while the
content provider has to maintain several similar content streams. This
solution is inadequate and unsustainable in the long run, especially since
more and more different kinds of end-user devices and network technolo-
gies become available to acquire and consume audio-visual streams. As
such, either the content provider must support an increasing number
of versions of the same content or the consumer must be satisfied with
content that is less suited for his particular context.

The Universal Multimedia Access (UMA) framework provides an an-
swer for these problems. The core idea is to enable the consumption
of multimedia content for different usage contexts by creating differ-
ent representations of the same information from a single content base.
In other words, the UMA framework adheres to the “create once, play
everywhere” paradigm.

The objective of this thesis is to investigate into the requirements for

viii Summary

realizing a UMA-compliant architecture and application, for example a
Video-on-Demand application, and to address various issues during the
creation.

A first part that is investigated is how to describe in a standardized
way what is being consumed – i.e., the content – and how this is being
consumed – i.e., the context. In order to be able to compare the vari-
ous international standards for content description, an objective evalu-
ation and comparison framework is created which allows one to deter-
mine the most optimal standard for a particular usage. As a result, the
MPEG-7 specification proves to be a good selection to use in the UMA-
compliant architecture. Next, three context-description standards are
studied. From these, the MPEG-21 Digital Item Adaptation – Usage
Environment Description standard proves to be the most generic and
comprehensive standard available for context description. Although this
specification is vast, a software toolkit is developed that runs on very
constrained devices (such as cell phones) and that is able to read, modify,
and write MPEG-21 compliant messages.

The content and context information is used by a content adaptation
engine to optimize the audio-visual content in such a way that the re-
sulting optimized version is consumable in the given context. This thesis
does not focus on determining how the content adaptation should be per-
formed, but researches the prerequisites in order to make such a decision.
In other words, it is investigated how the content and context informa-
tion can be negotiated with the decision-taking engine by invoking a web
service. An important extension to the UMA framework is introduced,
namely the time-varying metadata concept. The main idea is to dy-
namically optimize the content to a changing context by re-negotiating
the context information. Modifications to the consumption environment
result in the re-optimization of the content on-the-fly.

The adaptation of the audio-visual streams is another important part
in this thesis. After an overview of the current state of the art in video
scalability techniques and standards, special attention is paid to the
Region-of-Interest (ROI) concept. A ROI is an area within a video
that is seen as more important than the remaining area. MPEG-4 FGS
makes it possible to visually improve this area. Unfortunately, this is a
fixed region throughout the videos sequence. New and lightweight ob-
ject tracking techniques are introduced that work within the compressed
domain by reusing the motion vector field to overcome this shortcom-
ing. Several tests are performed to demonstrate the quality of my object

Summary ix

tracking scheme and a time-complexity analysis proves that the scheme
is fast enough to work in real-time. Although the object tracking is im-
plemented in MPEG-4 FGS, the algorithms are generic and can be used
within other video codecs.

Furthermore, an important issue is solved, namely the verboseness and
lack of support for updates of XML-based data, such as the content and
context information. First, the techniques to process XML-based data
are investigated and modeled. Based on this research, a serialization-
agnostic XML parser is created. Applications using this parser can han-
dle XML data without being aware of the actual encoding format. So, it
is possible to use a non-verbose (binary) marshalling of the XML data
instead of traditional plain-text serialization. Three techniques (ZIP
compression, ASN.1-PER, and MPEG-B BiM) are studied as potential
alternatives by evaluating their compression efficiency (hence, overhead
reduction) and their usability in applications. The evaluation proves
that the BiM technology is the best for overhead reduction, however not
yet usable due to its complexity. Although ZIP compression does not
achieve the highest compression ratio, it can be used immediately as
alternative XML marshalling format.

Finally, all previously discussed techniques are integrated in a Video-
on-Demand application that is compliant with the UMA framework and
that can handle time-varying metadata. As such, I hope to have con-
vinced the reader that the techniques introduced in this thesis are use-
ful to create and to ameliorate (Internet-based) multimedia applications
and help to simplify the construction of genuine UMA-compliant appli-
cations.

x Summary

List of Abbreviations

AJAX Asynchronous JavaScript And XML
API Application Programming Interface
ASN.1 Abstract Syntax Notation One
AVC Advanced Video Coding
BBC British Broadcasting Corporation
BER Basic Encoding Rules
BiM Binary MPEG Format for XML
CC/PP Composite Capability / Preference Profiles
CER Canonical Encoding Rules
CIF Common Intermediate Format
CLDC Connected Limited Device Configuration
COM Component Object Model
CORBA Common Object Request Broker Architecture
DCMES Dublin Core Metadata Element Set
DCMI Dublin Core Metadata Initiative
DCOM Distributed Component Object Model
DCT Discrete Cosine Transform
DDL Description Definition Language
DER Distinguished Encoding Rules
DIA Digital Item Adaptation
DOM Document Object Model
EBU European Broadcasting Union
ERD Entity Relationship Diagram
ESCORT EBU System of Classification of Radio and Television Pro-

grams
FGS Fine-Granularity Scalability
GOP Group Of Pictures
GPRS General Packet Radio Service
GUI Graphical User Interface
HDTV High Definition Television
HTTP Hypertext Transfer Protocol
IEC International Engineering Consortium
IP Internet Protocol
IPMP Intellectual Property Management and Protection

xii List of Abbreviations

ISO International Organization for Standardization
ITU International Telecommunication Union
ITU.T ITU Telecommunication Standardization Sector
J2ME Java 2 Micro Edition
J2SE Java 2 Standard Edition
JVM Java Virtual Machine
JVT Joint Video Team
KLV Key - Length - Value
LDAP Lightweight Directory Access Protocol
LSB Least Significant Bit-plane
LZW Lempel - Ziv - Welsh
MARC Machine-Readable Cataloging
MC-3DSBC Motion-Compensated Three-Dimensional Subband Coding
MC-EZBC Motion-Compensated Embedded Zerotree Block Coding
MCTF Motion-Compensated Temporal Filtering
MDS Multimedia Description Schemes
METS Metadata Encoding & Transmission Standard
MIDP Mobile Information Device Profile
MIME Multipurpose Internet Mail Extensions
MOA2 Making of America II
MSB Most Significant Bit-plane
MSDN Microsoft Developer Network
MPEG Moving Picture Experts Group
OSI Open System Interconnection
PAL Phase Alternating Line
PER Packed Encoding Rules
PPM Prediction by Partial Match
QCIF Quarter CIF
RDF Resource Description Framework
ROI Region-of-Interest
RPC Remote Procedure Call
RSS Really Simple Syndication
RTP Real-Time Transport Protocol
RTCP Real-Time Control Protocol
RTSP Real-Time Streaming Protocol
SAX Simple API for XML
SDTV Standard Definition Television
SMEF Standard Media Exchange Framework
SMTP Simple Mail Transfer Protocol
SNR Signal-to-Noise Ratio
SNMP Simple Network Management Protocol
SOAP Simple Object Access Protocol
STX Streaming Transformations for XML
SVC Scalable Video Coding
TCP Transmission Control Protocol

List of Abbreviations xiii

UAProf User Agent Profile
UDDI Universal Description, Discovery, and Integration
UED Usage Environment Description
UMA Universal Multimedia Access
UMID Unique Material Identifier
UML Unified Modeling Language
URI Uniform Resource Identifier
UTF-8 8-bit Unicode Transformation Format
VCEG Video Coding Experts Group
VLC Variable Length Coding
VoD Video-on-Demand
VOP Video Object Pane
VRT Flemish Radio- and Television Network
W3C World Wide Web Consortium
WAP Wireless Access Protocol
WBXML WAP Binary XML
WSDL Web Services Description Language
XER XML Encoding Rules
XML Extensible Markup Language
XSLT Extensible Stylesheet Language Transformations

xiv List of Abbreviations

Contents

1 Introduction 1

1.1 Context . 1

1.2 Goal and Outline . 3

1.3 Overview Publications . 5

2 Metadata 7

2.1 Introduction . 7

2.2 Metadata for Content Description 8

2.2.1 Evaluation Criteria 9

2.2.2 Content-Description Standards 14

2.2.3 Selecting Our Content-Description Standard . . . 19

2.3 Metadata for Context Description 20

2.3.1 Context-Description Standards 21

2.3.2 Software Toolkit 24

2.4 Related Work . 29

2.5 Conclusions and Original Contributions 31

3 Negotiation 35

3.1 Introduction . 35

3.2 Content Adaptation . 36

3.2.1 Location of the Content Adaptation Engine 37

xvi Contents

3.2.2 Location of the Content Adaptation Decision Engine 38

3.3 Invoking the Content Adaptation Decision 42

3.3.1 XML-RPC . 42

3.3.2 SOAP . 44

3.4 Exchanging XML-based Information 47

3.4.1 Work Method . 47

3.4.2 Time-Varying Metadata 48

3.4.3 Problems and Concerns 50

3.5 Conclusions and Original Contributions 51

4 Alternative XML Serializations 55

4.1 Introduction . 55

4.2 Parsing XML Data . 56

4.2.1 Terminology . 56

4.2.2 Common XML Parser Functionalities 57

4.2.3 Survey of XML Parser Models 60

4.3 Solving the XML Verboseness 65

4.3.1 ZIP Compression 65

4.3.2 Abstract Syntax Notation One 67

4.3.3 Binary MPEG Format for XML 71

4.4 Serialization-Agnostic Parser 72

4.5 Evaluation . 75

4.5.1 Use Case 1: Usage Context Negotiation 75

4.5.2 Use Case 2: Really Simple Syndication 75

4.5.3 Methodology . 77

4.5.4 Results and Discussion 81

4.6 Related Work . 87

4.7 Conclusions and Original Contributions 95

Contents xvii

5 Video Scalability 99

5.1 Introduction . 99

5.2 Types of Video Scalability 100

5.2.1 Temporal Scalability 100

5.2.2 Signal-to-Noise Ratio Scalability 102

5.2.3 Spatial Scalability 103

5.3 Scalable Video Coders . 104

5.3.1 Fine-Granularity Scalability 104

5.3.2 Scalable Video Coding 108

5.3.3 Wavelets . 111

5.4 Object Tracking . 112

5.4.1 Fast Object Tracking Techniques 113

5.4.2 Evaluation, Results, and Discussion 127

5.5 Related Work . 136

5.6 Conclusions and Original Contributions 138

6 Integration and
Concluding Remarks 141

6.1 Integration . 141

6.2 Concluding Remarks . 143

A MPEG-21 DIA-UED 151

A.1 Overview specification . 151

A.1.1 User Characteristics 151

A.1.2 Terminal Capabilities 153

A.1.3 Network Characteristics 154

A.1.4 Natural Environments Characteristics 155

A.2 Class Model . 156

A.3 Examples . 170

A.3.1 UED Complete Example 1. 170

xviii Contents

A.3.2 UED Network Information Example. 173

A.3.3 UED Terminal Information Example. 173

A.3.4 UED Complete Example 2. 174

A.4 MPEG-21 DIA-UED Software Toolkit Usage 178

B Fast Object Tracking Algorithms Pseudo-Code 179

C UMA-compliant Video-on-Demand Application 185

C.1 Introduction . 185

C.2 Architecture and Usage Scenario 187

C.3 Technologies . 191

C.4 Application . 193

C.4.1 Client . 194

C.4.2 Network . 196

C.4.3 Broker . 198

C.4.4 Content Provider 200

C.5 Conclusions . 204

Publications 209

References 215

Contents xix

Chapter 1

Introduction

1.1 Context

During the last decade, the Internet steadily became a familiar technol-
ogy as more and more users enjoy its benefits day-to-day. Many new
and different kinds of (mobile) end-user devices enable ubiquitous access.
As users are more acquainted with the possibilities of the Internet, they
increasingly demand full access. They are satisfied with a rich multime-
dia experience at home, but they also desire this experience anywhere,
anytime, on any device.

To date, ad hoc solutions are in place to provide the end user with a
rich multimedia experience, typically intended for a particular usage on
a particular device for a particular network. A well-known solution is
to store semantically equal multimedia data several times with different
characteristics, for example different resolutions, in order to address the
different end-user devices. However, this method is no longer sustainable
as the number of different types of end users, end-user devices, networks,
and content rapidly increases. Assume, an end user wants to consume an
audio-visual stream. The success of this elementary operation depends
on many factors:

• The end user is a first, but often forgotten, important factor. In-
deed, his preferences determine, for example, the language of the
audio stream; his age implies whether or not he is authorized to
see particular content; and information on his hearing or visual
deficiencies can help to optimize the content. In other words, the

2 Introduction

end user decides how the content is presented. Content providers
should try to indulge these wishes because “the customer is always
right.”

• Different end-user devices have very diverse characteristics and
possibilities. Examples are the screen size, the resolution, the (re-
maining) battery capacity, the processing speed, the supported
video decoders, and so on. On a regular basis, a new class of
devices becomes available with features distinct from the existing
ones. It is not ideal, and usually impossible, to use the same con-
tent for two different classes of devices. For example, a cell phone
is not able to process content optimized for a high-end multimedia
desktop computer.

• The network is a third important factor. Thanks to network pro-
tocols that are constructed according to the Open System Inter-
connection (OSI) network layer model1, applications – such as an
audio-visual content streaming service – are shielded from the tech-
nical low-level details of a network connection. Nevertheless, the
specific kind of network technology, protocol, and carrier influ-
ences network delay, packet loss, error rate, and so on. Still the
most important limiting network factor to take into consideration
for audio-visual content streaming is the available bandwidth. Al-
though new and high-speed technologies become available and are
affordable, relatively slow networks are still being used and even
complemented with new technologies for specific market segments,
such as General Packet Radio Service (GPRS) for cell phones. As
such, the range in bandwidths that content providers must support
is still increasing.

• The content provider is the next factor to take into account as he is
responsible to stream the requested data to the end-user devices.
As such, he decides how the audio-visual data are encoded and
which network protocols are used. On top of that, if the number
of clients increases, the content provider must divide its saturated
bandwidth over several streams which results in a reduction of the
bandwidth for the individual streams. Furthermore, the processing
capacity of the content provider must be adequate to handle all
the requests of the clients.

1The OSI model is a standard of the International Organization for Standardiza-
tion (ISO) and defines a networking framework in seven layers. More information on
OSI is available at http://www.iso.org.

http://www.iso.org

1.2. Goal and Outline 3

• Previous factors deal with the context of the usage, the final fac-
tor deals with the content itself. The information about the con-
text can be used to determine the content layout. For example,
if the audio-visual stream is intended to be consumed on a PDA
with a display resolution of 352 × 288 pixels, the content should
fit this resolution. This can be accomplished by creating multi-
ple representations with different resolutions of the same content,
however this simulstore results in storage overhead. Another solu-
tion is storing content in a scalable way. This means that different
versions can be derived from the scalable bitstream on-the-fly by
simple, usually truncating, operations.

To cope with all these factors, a huge amount of ad hoc solutions must
be created. On top of that, some factors change during the consumption
of the multimedia content, such as the available bandwidth. This can
imply that the initial ad hoc solution is no longer appropriate and that a
new solution must be used or, in a worst case scenario, generated during
the actual consumption of the audio-visual content.

1.2 Goal and Outline

The goal of my thesis is to investigate into the requirements making
multimedia consumption possible anywhere, anytime, and anyhow by
adhering to the Universal Multimedia Access (UMA) concept. This
concept states that UMA-compliant architectures enable the consump-
tion of multimedia content for different usage contexts (hence, different
end-user interests and profiles, end-user devices, networks, and content
providers) by creating different representations of the same information
from a single content base [1].

In other words, in a UMA-compliant architecture the multimedia content
is optimized to what the end user wishes, while considering the context
wherein the content is consumed. As such, UMA subscribes the “create
once, play everywhere” paradigm.

In this thesis, I look at the different aspects that are needed in order to
create such an architecture according to the UMA principles.

In Chapter 2, a study is made on how to describe the content and the
context in a standardized way. For the former, I have developed evalu-
ation criteria to perform an objective comparison of the many available

4 Introduction

audio-visual content-description standards. For the latter, I have created
a software tool, based on a Moving Picture Experts Group (MPEG) stan-
dard, to express and handle information about the context. This tool
works on most end-user devices, even in very constrained environments
like on a cell phone.

The information about the content and the context is used to optimize
the multimedia content. This optimization is done by an adaptation en-
gine. In Chapter 3, different strategies on the location of this engine in a
UMA architecture are discussed. Wherever it is located, the content and
context information must be negotiated with the engine. I will discuss
the different possibilities on how to do this. I further elaborate on the
necessity that context updates – such as a change in the available band-
width – must be supported, which is my novel contribution to the UMA
concept. To conclude this chapter, I will demonstrate that, because the
Extensible Markup Language (XML) is used to record the content and
context information, there is overhead and hence bandwidth is wasted
during the negotiation phase.

In Chapter 4, I solve this overhead issue using alternative serialization
methods instead of the classical plain-text notation of XML-based data.
I create an XML parser that is capable of handling any kind of serializa-
tion technology in such a way that the user (for example, an application)
is unaware of the used serialization format. My solution is evaluated by
applying it to the context information that is negotiated with the adap-
tation engine. To further illustrate the advantage of my approach, I
applied the system to a well-known XML-based Internet application,
namely the Really Simple Syndication (RSS).

Chapter 5 is about video scalability as a means for multimedia content
optimization. After an overview of the different types and ways to cre-
ate scalable video content, I introduce a novel and fast technique with
low time complexity for object tracking. The feasibility of my technique
is demonstrated by implementing the algorithms in a scalable video en-
coder. The results of my object tracking algorithms are compared to
the results of a manual tracking scheme performed by a test audience.

Chapter 6 discusses the integration of the various techniques from the
previous chapters in a UMA-compliant Video-on-Demand (VoD) appli-
cation with support for context information updates. Finally, conclud-
ing remarks are drawn with an overview of the major contributions and
results of my research in this thesis.

1.3. Overview Publications 5

1.3 Overview Publications

The research that has lead to this thesis resulted in a number of publica-
tions. Two papers are accepted for publication in journals that appear in
the Science Citation Index, namely in Springer’s Multimedia Systems [2]
and in Springer’s Lecture Notes in Computer Science [3]. Two papers
are currently under review for publication in journals that appear in
the Science Citation Index, namely Eurasip’s Journal on Applied Sig-
nal Processing [4], and Elsevier’s Journal of Visual Communication and
Image Representation [5]. In addition, I have contributed 11 papers to
international conferences as first author [6–16]. Collaboration with fel-
low researchers resulted in 14 publications as co-author [17–30]. Finally,
10 contributions were submitted to the MPEG community [31–40].

6 Metadata

Chapter 2

Metadata

2.1 Introduction

As outlined in the introduction of this thesis, we want to investigate the
requirements to construct a UMA-based architecture. A first element
required for this construction is the need to have information on “what”
is being played – i.e., the content – and “how” it is being played – i.e., the
context. Assume the following straightforward example: a user wants to
consume high-resolution content (e.g., a video stream with a resolution
of 1920 × 1080 pixels) on his PDA that has a low-resolution display
(e.g., 352×288 pixels). The content and context information informs us
that the content must be adapted, in particular scaled-down, to make
consumption possible. Additional information on the content can give
hints to an adaptation engine how this adaptation can be executed.
Likewise, additional information on the context can result in additional
constraints.

In this chapter, we study the prerequisites for content adaptation,
namely the required information about the content and the context to
perform the adaptation. A generalized term for this supplemental infor-
mation is metadata. In this chapter, we discuss the different technologies
to describe content and context. The latter encompasses metadata about
the network, the end user and his preferences, the end-user device, the
content provider, and so on. The former includes metadata about the
type of content, the compression (encoding and decoding) technique,
rights information, et cetera.

8 Metadata

First, we investigate how to create, structure, and denote the meta-
data for content information in Section 2.2. We start by investigating
the existing technologies used by the larger content creators and con-
sumers, namely the television broadcasters. However, their techniques
prove to be insufficient for the description of audio-visual content, which
is the kind of content we envisage in the UMA-compliant architecture.
Luckily, many new international standards are available, specifically for
content annotation. To compare them, we have defined different eval-
uation criteria. These criteria allow the selection of the most optimal
specification for a particular application. As an example, four interna-
tional standards are discussed and compared by our criteria, namely,
Dublin Core Metadata Element Set (DCMES), Multimedia Content De-
scription Interface (better known as MPEG-7), P/Meta, and Standard
Media Exchange Framework (SMEF).

Next, we examine the techniques that can be used to describe the con-
text information in Section 2.3. Three technologies are discussed in
detail, namely HTTP Headers, Composite Capability / Preference Pro-
files (CC/PP), and the MPEG-21 Part 7 – Digital Item Adaptation –
Usage Environment Description (MPEG-21 DIA-UED) tool. Finally,
we evaluate the usability of the latter, even for constrained devices such
as cell phones. Our software developed for this purpose is currently ac-
cepted by the MPEG consortium as the reference software tool for the
MPEG-21 DIA-UED technology [11,32].

2.2 Metadata for Content Description

We have investigated the methods that are currently used by the larger
creators and consumers of (audio-visual) content, namely the television
broadcasters. As they work day-to-day with new and archived audio-
visual material, systems must be in place to find and retrieve the desired
data. In other words, television broadcasters are most likely to have good
content-description systems available.

Although many international standards are available, an audit of several
Flemish television broadcasters’ audio-visual libraries demonstrates that
each broadcaster uses its own proprietary system to annotate their (cur-
rently mostly tape-based) collections. As a result, exchanging content
between broadcasters and opening up these collections to consumers is
complicated. Nevertheless, most broadcasters desire such an interopera-

2.2. Metadata for Content Description 9

ble library of audio-visual content, which is preferably a digital file-based
system.

In [41] it is observed that “the metadata necessary for successful man-
agement and use of digital objects is both more extensive than and
different from the metadata used for managing collections of physical
material.” In other words, the metadata used to annotate tape-based
collections are not sufficient for digital file-based libraries. Hence, the
television broadcasters themselves are currently investigating which in-
ternational standard to implement. However, they are overwhelmed by
the extensive choice.

2.2.1 Evaluation Criteria

To address the aforementioned issue, we have defined several selection
criteria that can be used to compare and evaluate different metadata
standards for content description. These criteria are composed in such
a way that all aspects ranging from content organization to the different
types of metadata are taken into account. Nevertheless, the criteria are
independent of any restriction imposed by a particular content manage-
ment system.

Criterion 1: internal vs. exchange standards

For this first criterion, it is important to identify the involved parties that
exchange audio-visual content during its typical life cycle. The European
Broadcasting Union (EBU) identifies in [42] the consumers and three
trading entities, being the content creator, the content distributor, and
the archive. EBU has investigated the different relationships between
these four players and has presented the entities and the relationships in
the EBU P/Meta Business-to-Business Dataflow Model (see Figure 2.1).
This model is independent of any content-description standard and is
applicable for most content providers.

On the one hand, particular standards are specifically developed for
managing the metadata in the interior of a system. These standards are
further referred to as internal standards. Usually, they are represented
as an Entity Relationship Diagram (ERD) and describe the architecture
of the database that stores the metadata of the audio-visual content.

10 Metadata

Content
Creators

Content
Distributors

Archiving Consumers

Figure 2.1: EBU P/Meta Business-to-Business Dataflow Model [42].

On the other hand, other standards are used to structure the information
about the content to make transmissions between the different parties
possible. We call these standards exchange standards. “Exchange” must
be seen as broad as possible, namely between any combination of content
creator, content distributor, archive, and consumers.

Criterion 2: flat vs. hierarchical standards

The structural organization of the content description is a second cri-
terion. This indirectly determines how fine-grained the content is de-
scribed. Two extreme visions can be identified. On the one hand, the
content is considered an elementary and indivisible unit, resulting in a
coarse description, and on the other hand, the content is divided in small
sub-pieces each annotated separately, resulting in a very fine-grained de-
scription.

If the content is considered as an elementary and indivisible unit, the
content provider can associate this elementary unit with, for example, a
program. The metadata describes the content as a whole and does not
describe its individual parts. This model is referred to as a flat standard.

Sub-parts of the content can be annotated with much more detail. The
additional metadata belongs to the individual parts and permits the
user to perform a more detailed search on the content. For example as
illustrated in Figure 2.2, a program can be split up in several editorial
objects, corresponding to the individual scenes. Every editorial object
can be annotated with additional descriptive metadata, so it is possible
to search on the editorial object itself. In turn, editorial objects can

2.2. Metadata for Content Description 11

be broken down in different media objects. These media objects could
be the audio components, the video components, the subtitles, and so
on. This is also possible the other way around: a group of programs
belonging together can be collected in a program group. This program
group is annotated with information identical to all programs it holds,
for example, the name of the program. Hence, it is not necessary to re-
peat the same information for every program, but the program inherits
information from its program group. The underlying idea is that infor-
mation has to be added to the objects at the right level. This concept
is referred to as a hierarchical standard. A four-layered architecture as
discussed above is visualized in Figure 2.2.

Program
Group

Program

Editorial
Object

Media
Object

Program Program

Editorial
Object

Editorial
Object

Media
Object

Media
Object

Figure 2.2: Hierarchical organization of content description.

The content provider will not always want to use a hierarchical stan-
dard, although this has huge benefits for faster and more efficient search
and retrieve operations. Indeed, the most important reason for a con-
tent provider to restrict the metadata (and thus the decomposition of
the audio-visual asset), is to limit the cost associated to the amount of
metadata that needs to be collected. It is clear that, as the metadata
about an audio-visual object grows, the marginal profit of the additional
metadata decreases, but the cost to generate this additional metadata
increases disproportionally. At a certain moment, it will be impossible
to add additional metadata without making unjustified costs. In other

12 Metadata

words, the content provider will have to make a trade-off between cost
and comprehensiveness of the description of the content.

Criterion 3: supported types of metadata

Digital content is useless without technical information because we can-
not decode it. Adding rights information can augment content into an
asset. These are two examples of metadata types. Similar to the trade-
off between cost and comprehensiveness with regard to the granularity
of content description of criterion 2, content providers will have to select
the types of metadata they want to support. We can identify five types
as follows:

• Identification Metadata: the identification metadata are primarily
about information to singularly identify content. This can be done
by human interpretable fields, like a title or an index, or by ma-
chine understandable identifiers, like a Unique Material Identifier
(UMID) or a Uniform Resource Identifier (URI). Besides the iden-
tification metadata related to the content itself, other identifying
information could be required to locate content-related documents
that are potentially stored in another system, for example, a con-
tract number.

• Description & Classification Metadata: the descriptive metadata
describes what the content expresses. This could be done by pro-
viding a list of keywords that try to place the content in a particu-
lar semantic context. In some cases, the keywords are selected from
an organized dictionary of terms, i.e., a thesaurus. Other classifi-
cation schemes can be used to categorize the content in different
pre-defined classes, such as the genre and the audience. A very
well-known classification system is the EBU System of Classifica-
tion of Radio and Television programs (ESCORT) 2.4 system [43]
that organizes the content in conceptual, administrative, produc-
tion, scheduling, transmission, viewing, and financial groups. An-
other type of descriptive metadata comprises the description of the
content as short free-form text. This type of descriptive metadata
is well known and is extensively used in practically every content
annotation system. Unfortunately, this kind of field is error-prone
(e.g., spelling mistakes) and should be used with care.

2.2. Metadata for Content Description 13

• Technical Metadata: the technical metadata describes the techno-
logical characteristics of the related content. The minimal required
technical metadata must specify the audio and video decoder. This
minimal information gives the users the possibility to consume the
content. Hence, the technical metadata enables the content to
become usable.

• Security & Rights Metadata: the security metadata handles all
aspects from secure transmission (i.e., the encryption method) to
access rights (i.e., who has access clearance). As such, content
might become an asset for the content provider. The access rights
metadata can be split up in information about the rights holder
and information about contracts. The rights holder is the orga-
nization who owns the rights of the audio-visual content. Also,
the contracts related to the publication of the content and the
contracts of the people who are involved with the creation of the
content, are considered as rights metadata.

• Publication Metadata: the last type of metadata describes the pub-
lication(s) of the content. Every publication establishes a date of
publication, the time and duration of the publication, the method
of publication, and so on. This way, the content provider has an
idea of the frequency and the popularity of the content. Further-
more, this information is important to clear publication rights and
handle payments.

Criterion 4: syntax & semantics

Some standards define only syntax, others only semantics, but most
define both. The syntax defines how the representation of the metadata
must be done so a choice must be made between a textual and a binary
representation. The textual representation has the advantage that the
metadata are human readable, but at the same time it is very verbose.
The binary representation is dense, but it has the disadvantage that it
can only be handled by machines.

In case of plain-text notation, XML [44] is mostly used. If so, the meta-
data standard provides, besides the standard itself, usually an XML
Schema [45] that rigorously determines the syntax of the metadata.
This makes it possible to check the correctness (i.e., validity) of the
metadata. XML data can also easily be converted to another form, e.g.,

14 Metadata

XML data that is valid to another XML Schema, using a transforma-
tion style based on a transformation language such as the Extensible
Stylesheet Language Transformation (XSLT) [46] or Streaming Trans-
formations for XML (STX)1. These XML characteristics enable inter-
operability. More information on XML and its various tools is available
at the World Wide Web Consortium (W3C) Website2.

The semantics of the metadata standard determine the meaning of the
metadata elements. Without any semantic description, one is free to
assume the meaning of the different metadata elements, presumably re-
sulting in different interpretations between users. Only if the description
of the metadata elements is strictly defined, all users must agree on the
meaning of the metadata elements, which improves interoperability. The
former is hereafter referred to as open semantics; the latter is referred
to as closed semantics.

2.2.2 Content-Description Standards

In this section, we apply our evaluation criteria to four well-known meta-
data standards, namely DCMES, MPEG-7, P/Meta, and SMEF. Ta-
ble 2.1 gives a schematic overview of this evaluation of the four meta-
data standards. The results are used in the next section to determine
the optimal content-description standard to use in a UMA architecture.

Table 2.1: Overview of the Evaluation of the Metadata Standards.

DCMES MPEG-7 P/Meta SMEF
criterion 1 exchange exchange exchange internal
criterion 2 flat hierarchy hierarchy hierarchy

criterion 3

identification, identification, all all†

description, description,
and technical and technical

(limited)

criterion 4
open closed closed closed

XML & RDF ∗ XML XML ERD
† SMEF emphasizes rights metadata.

∗ DCMES can be mapped to XML and RDF.

1More information on STX is available at http://stx.sourceforge.net.
2The W3C Website is available at http://www.w3.org.

http://stx.sourceforge.net
http://www.w3.org

2.2. Metadata for Content Description 15

Dublin Core Metadata Element Set

The Dublin Core Metadata Initiative (DCMI)3 is an open consortium
engaged in the development of interoperable and online metadata stan-
dards that support a broad range of purposes and business models. The
DCMI defined in 1999 the first version of the Dublin Core Metadata
Element Set that consists of 15 elements. In a second phase, this model
was extended with three additional elements and a series of refinements,
resulting in version 1.1 of the specification [47].

The goal of the DCMES specification is to exchange resource descrip-
tions aiming at cross-domain applications (criterion 1). Both versions
of the specification are very straightforward and have two very impor-
tant limitations. On the one hand, there are no provisions for describ-
ing hierarchically structured audio-visual content – however, this can
be circumvented by making implicit references to other parts, – hence
DCMES is a flat standard (criterion 2). On the other hand, the number
of available metadata elements is too limited for thoroughly annotating
audio-visual resources (criterion 3).

With regard to criterion 4, the semantics are concisely described, still
the user has considerable freedom for his own interpretation. The DCMI
provides different ways for syntactically describing the metadata: there
are guidelines for incorporating DCMES in XML4 and guidelines to use
it in combination with the Resource Description Framework (RDF)5 [48].

Multimedia Content Description Interface

The International Organization for Standardization and the Interna-
tional Engineering Consortium (ISO/IEC) have created the Interna-
tional Standard 15938, formally named Multimedia Content Description
Interface, but better known as the MPEG-7 standard, which provides a
rich set of tools for thoroughly describing multimedia content [49–51].

The MPEG-7 standard is developed for, among other things, the ex-
change of metadata describing audio-visual content. It has been de-

3More information on DCMI is available at http://dublincore.org.
4The guidelines for the notation of DCMES in XML format are available at http:

//dublincore.org/documents/dc-xml-guidelines.
5The guidelines for the notation of DCMES in RDF format are available at http:

//dublincore.org/documents/dcq-rdf-xml.

http://dublincore.org
http://dublincore.org/documents/dc-xml-guidelines
http://dublincore.org/documents/dc-xml-guidelines
http://dublincore.org/documents/dcq-rdf-xml
http://dublincore.org/documents/dcq-rdf-xml

16 Metadata

signed to support a broad range of applications, without targeting a
specific application. As such, it is an exchange standard (criterion 1).

The MPEG-7 standard normatively defines the syntax, using an XML
Schema, and the semantics, via normative text, of all metadata elements
(criterion 4). The elements are structured as descriptors and description
schemes: a descriptor represents a particular feature of the audio-visual
content; a description scheme is an ordered structure of both descriptors
and other description schemes. This system is used to create a hierarchy
(criterion 2). For example, the audio-visual material can be described
by its temporal decomposition and by its media source decomposition.
The latter is divided into descriptions about the audio segment and the
video segment. This video segment is further decomposed into shots,
key frames, and objects.

The supported types of metadata (criterion 3) are mostly focused on the
description, technical, and, to a lesser degree, identification metadata.
No attention was paid to publication and rights and security metadata
elements, ISO/IEC addresses these types of metadata in different parts
of the MPEG-21 standard [52,53].

MPEG-7 consists of several parts: part three and four deal with the
technical metadata for video and audio content respectively; part five,
also referred to as Multimedia Description Schemes (MDS), defines de-
scriptors and description schemes for the classification of audio-visual
content. More information about MDS is given in [54] and an overview
of its different functional areas is visualized in Figure 2.3.

P/Meta

The P/Meta standard is developed by the EBU as a metadata vo-
cabulary for program exchange in the professional broadcasting indus-
try [55, 56]. Hence, it is not intended as an internal representation but
as an exchange format for program-related information in a business-to-
business environment (criterion 1).

The P/Meta standard creates a five-layered hierarchy (criterion 2): the
brand, the program group, the program, the program item, and the me-
dia object. A brand collects all the program groups with a recognizable
collective identity, e.g., information about the broadcasting station. Ev-
ery program group is composed of individual programs, which consist of
individual program items. Finally, every program item may be split up

2.2. Metadata for Content Description 17

Schema
Tools

Basic
Datatypes

Links &
Media

Location

Basic
Tools

Basic Elements

Content
Organization Collections Models

Creation &
Production

Media
Content

Management

Summaries

Views

Variations

Navigation
& Access

Usage

Structural
Aspects

Semantic
Aspects

Content
Description

User
Preferences

User
History

User
Interaction

Figure 2.3: Overview of MPEG-7 Part 5 – Multimedia Description Schemes
[54].

in media objects. This hierarchy is comparable with the one illustrated
in Figure 2.2.

To obtain this hierarchical structure, the standard defines a number of
P/Meta Sets and P/Meta Attributes. The latter is an element describ-
ing a particular feature; the former groups P/Meta Attributes and other
P/Meta Sets in such a way that all relevant metadata are collected for
describing the considered object. For example, every program group
and every program is annotated with identification (numbers and ti-
tles), classification (according to the ESCORT 2.4 system), and descrip-
tive metadata. Besides these three elementary types, the description of
the individual programs is complemented with four types, namely trans-
mission or publication metadata, metadata concerning editorial objects

18 Metadata

and media objects, technical metadata (audio and video specification,
compression schemes, and so on), and rights metadata (contract clauses,
rights list, and copyright holders). These enumerated types are also the
supported types of metadata (criterion 3).

P/Meta strictly defines all sets and attributes, resulting in a metadata
standard where every term is determined unambiguously. The syntax is
defined by an XML Schema (criterion 4).

Standard Media Exchange Framework

The Standard Media Exchange Framework has been developed by the
Media Data Group of BBC Technology, now Siemens SBS, on behalf of
the British Broadcasting Corporation (BBC). Through a close collabo-
ration with a wide variety of BBC projects, a profound understanding
of the broadcaster’s audio-visual media information requirements has
been derived. Although the model is developed for use within the BBC,
the definitions are organization independent and are usable for any other
(large) broadcaster. Also, SMEF is not endorsed by any standardization
organization. Nevertheless, this framework is seen by other broadcasters
as a reference model.

SMEF6 provides a rich set of data definitions for the range of information
involved in the production, development, use, and management of media
assets. Its purpose is to ensure that different in-house systems store this
information in the same way. Therefore, the SMEF standard defines an
ERD that provides a framework for storing the metadata in the system.
It is intended to be used within one broadcaster. Although the metadata
may flow between different internal division, we regard this specification
as an internal standard (criterion 1).

The SMEF metadata model records all information that becomes avail-
able during the whole production cycle, from a program concept over
media and editorial objects to the actual publication. An editorial ob-
ject (e.g., a program) can be split up in different media objects, making
this a hierarchical metadata model (criterion 2). Each media object can
be annotated extensively with descriptive and technical metadata. The
editorial object and media object entities can be linked with two other
entities, namely the usage restriction entity (describing the restrictions

6More information on SMEF is available at http://www.bbc.co.uk/guidelines/
smef.

http://www.bbc.co.uk/guidelines/smef
http://www.bbc.co.uk/guidelines/smef

2.2. Metadata for Content Description 19

on the use) and the copyright reporting entity (describing copyright de-
tails of the material). Hence, SMEF pays much attention to the rights
metadata (criterion 3).

With regard to criterion 4, the SMEF standard defines the semantics of
all entities and relationships. The definition of syntactical rules covers
the way the metadata are represented in the internal system.

2.2.3 Selecting Our Content-Description Standard

The selection of the optimal content-description standard depends on
the intended usage. In this section, we determine the optimal standard
for a UMA-compliant application that streams audio-visual content over
a network to a consumer. This content is optimized by a content adapta-
tion engine to suit the consumption context. Table 2.2 gives an overview
of the requirements for the content-description standard to be used in
the UMA architecture.

Table 2.2: Requirements Content-Description Standard.

Criteria Requirement
criterion 1 exchange
criterion 2 n/a (flat or hierarchy)
criterion 3 technical metadata
criterion 4 closed & XML

Our UMA-based use case implies that we require an exchange standard
as the content information will be handled by an adaptation engine.
This adaptation engine can be located anywhere between the content
provider and the content consumer, as will be explained in the next
chapter. As a result, the content description must be transmitted to
this engine, hence the selection of an exchange standard.

The description of the content is processed by a content adaptation
engine. How this information is structured is therefor not a concern and
can be flat or hierarchical.

With regard to the types of metadata, we especially need extensive tech-
nical information in order to assess the possibilities of content adapta-
tion. Descriptive metadata can also be used to steer content adapta-
tion (for example, to enable content summarization or to delete violent

20 Metadata

scenes). Identification metadata are less important for content adap-
tation and, strictly speaking, we do not need the security and rights
information nor publication metadata to perform content adaptation.

To improve interoperability, the content-description standard should
have a closed semantic and a strictly defined syntax, for example by
an XML Schema.

Given these requirements and the evaluation of the standards in the
previous section, we can conclude that MPEG-7 and P/Meta are both
candidates. On the one hand, P/Meta contains more types of metadata
than MPEG-7. On the other hand, MPEG-7 contains more low-level
(technical) descriptions of the content than the broadcaster’s oriented
P/Meta. Because the low-level content descriptions facilitate content
adaptation, MPEG-7 has a slight preference over P/Meta and the other
standards as the preferred standard to describe audio-visual content for
UMA-based applications. Note, the content-description standard might
be different for other (non-UMA) applications.

2.3 Metadata for Context Description

In this section, we investigate the available techniques to annotate the
context of the content consumption. Like the description of content,
it is important to use a non-proprietary, well-defined, and preferably
standardized solution in order to ensure interoperability. Unfortunately,
only a few standardized vocabularies to describe the context are avail-
able today. In this section, we discuss the three most important ones,
namely the use of HTTP Headers, Composite Capability / Preference
Profiles, and the MPEG-21 Digital Item Adaptation – Usage Environ-
ment Description tool.

The latter is the most generic and extensive one. To validate its usability
for constrained devices, we have developed a toolkit that is capable to
read, process, and write MPEG-21 DIA-UED compliant messages. This
toolkit is explained at the end of this section.

2.3. Metadata for Context Description 21

2.3.1 Context-Description Standards

HTTP Headers

The importance of having information about the usage context can al-
ready be seen in the first version of the Hypertext Transfer Protocol
(HTTP) as HTTP/1.0 [57] has a limited provision to exchange context
information between an end-user device (usually a Web browser) and a
content provider (always a Web server). This is accomplished by adding
a User-Agent field to the HTTP Header that contains information about
the requesting application; usually this is the name and version of the
Web browser such as “Mozilla/4.0.”

HTTP/1.1 [58] extends the context description capabilities of the HTTP
Headers by defining the following additional header fields:

• Codec Capabilities: specifies all encoding and decoding capa-
bilities of the end-user device.

• Accept: this header field is used to specify the media types that
can be handled by the client application. The client application
lists the Multipurpose Internet Mail Extensions (MIME) types it
can process. Examples are text/html and audio/wav.

• Accept-Charset: the client uses this field to inform the server
about the character encoding set it can handle, for example,
us-ascii, and iso-8859-5.

• Accept-Encoding: similar to the Accept-header, but it is stricter
as the client only accepts the enlisted media types.

• Accept-Language: lists the preferred language(s) (and optionally
the country code) of the client application, for example, nl-BE,
en-US, and en.

• From: contains the e-mail address of the end user.

• Pragma: this header field contains application-specific additional
information.

Listing 2.1 shows an example on the usage of these fields.

22 Metadata

Listing 2.1: HTTP Headers request example.

GET / HTTP /1.1

Host: www.ugent.be

Connection: close

Accept: image/gif , image/x-xbitmap , image/jpeg , image/pjpeg ,

application/x-shockwave -flash , */*

Accept -Charset: us-ascii

Accept -Encoding: gzip

Accept -Language: en,nl-be

User -Agent: Mozilla /4.0 (compatible; MSIE 6.0; Windows NT

5.1; SV1; .NET CLR 1.1.4322; InfoPath .1)

Due to its nature, this solution is tightly coupled to the consultation of
Web pages. As such it is less suitable to use in other situations, like
requesting a video stream. Also, the description of the usage context is
very limited, however, it can be extended by adding application-specific
Pragma headers, but this jeopardizes interoperability.

Composite Capability / Preference Profiles

CC/PP [59] is a W3C recommendation of its Device Independence Ac-
tivity group. The task of this group is “to allow access to the web by
any Internet-enabled device.” CC/PP is a framework that enables the
creation of CC/PP profiles which describe device capabilities and user
preferences. It does not define a vocabulary itself, but allows a third
party to use this framework to create one.

A CC/PP profile is structured as a two-level hierarchy:

• Main components: a major branch in the profile, such as a hard-
ware and a software component.

• Attributes: detailed information logically associated with a compo-
nent. For example, screensize as part of the hardware component.

The combination of the components and their attributes creates the
vocabulary of a CC/PP profile. Apart from the vocabulary, the profile
defines its syntax using RDF, either in graph notation or by an XML
Schema.

Notwithstanding the flexibility of the framework, only a few CC/PP pro-
files are created to date, such as the User Agent Profile (UAProf) [60]

2.3. Metadata for Context Description 23

defined by the Open Mobile Alliance 7, formerly known as the Wireless
Application Protocol (WAP) Forum. This profile defines six main com-
ponents – hardware, software, network, browser, WAP characteristics,
and push characteristics, – each with various attributes. It is mainly
intended to describe the capabilities of cell phones in a standardized
way. An excerpt of the Nokia 3650 cell phone’s profile can be found in
Listing 2.28.

Listing 2.2: UAProf of the Nokia 3650 cell phone (excerpt).
<?xml version=” 1.0 ”?> <rdf:RDF

xmlns : rd f=” ht tp : //www.w3 . org /1999/02/22− rdf−syntax−ns#”
xmlns :pr f=” ht tp : //www. openmob i l ea l l i ance . org / [. . .] / ccppschema−20021212#”>
<r d f :D e s c r i p t i o n rd f : ID=”Nokia3650”>

<prf :component>
<r d f :D e s c r i p t i o n rd f : ID=”HardwarePlatform”>

<p r f : S c r e e nS i z e>176x208</ p r f : S c r e e nS i z e>
<prf :Model>Nokia3650</ pr f :Model>
<pr f :Sc r e enS i z eChar>15x6</ pr f :Sc r e enS i z eChar>
<pr f :Co lorCapable>Yes</ pr f :Co lorCapable>
[. . .]

</ r d f :D e s c r i p t i o n>
</prf :component>
<prf :component>

<r d f :D e s c r i p t i o n rd f : ID=”SoftwarePlat form”>
<prf :SoftwareNumber>6 .1</prf :SoftwareNumber>
<prf :JavaEnabled>Yes</ prf :JavaEnabled>
<prf:JVMVersion><rd f :Bag>< r d f : l i>

SunJ2ME1 .0
</ r d f : l i></ rdf :Bag></prf:JVMVersion>
<prf:OSName>Symbian OS</prf:OSName>
[. . .]

</ r d f :D e s c r i p t i o n>
</prf :component>
<prf :component>

<r d f :D e s c r i p t i o n rd f : ID=” NetworkCharacte r i s t i c s ”>
<pr f :Suppor tedBeare r s>

<rd f :Bag>
< r d f : l i>GPRS</ r d f : l i>
< r d f : l i>CSD</ r d f : l i>
</ rdf :Bag>

</ pr f :Suppor tedBeare r s>
[. . .]

</ r d f :D e s c r i p t i o n>
</prf :component>
<prf :component>

<r d f :D e s c r i p t i o n rd f : ID=”BrowserUA”>
<prf:BrowserName>Nokia Mobile In t e rn e t C l i en t</prf:BrowserName>
<pr f :BrowserVers ion>3 .0</ pr f :BrowserVers ion>
[. . .]

</ r d f :D e s c r i p t i o n>
</prf :component>
<prf :component>

<r d f :D e s c r i p t i o n rd f : ID=”WapCharacter i st ics ”>
<prf :WapDeviceClass>C</prf :WapDeviceClass>
<prf:WapVersion>1 . 2 . 1</prf:WapVersion>
[. . .]

</ r d f :D e s c r i p t i o n>
[. . .]

</prf :component>
</ r d f :D e s c r i p t i o n>

</rdf:RDF>

7More information on the Open Mobile Alliance is available at http://www.

openmobilealliance.org.
8The complete UAProf of the Nokia 3650 and many other examples are available

at http://w3development.de/rdf/uaprof repository.

http://www.openmobilealliance.org
http://www.openmobilealliance.org
http://w3development.de/rdf/uaprof_repository

24 Metadata

MPEG-21 Digital Item Adaptation – Usage Environment
Description

The last context-description standard we discuss is the Usage Environ-
ment Description (UED) tool within the MPEG-21 Part 7 – Digital
Item Adaptation (DIA) specification. More information on the other
tools of MPEG-21 Part 7 and the other parts of MPEG-21 can be found
in [52,53,61,62].

The UED tool contains four distinct parts, each containing several sub-
parts. The specification defines the semantics – by normative text –
and the syntax – by an XML Schema – of these four parts and their
subparts. By defining strict semantics, all UED-compliant applications
understand and interpret the information in a similar way. By defining
an XML Schema, the context description can be stored and exchanged
in a verifiably valid XML syntax. The combination of the two results
in a very strict representation of the context. This is an advantage to
create automated systems using this information. The disadvantage of
such a strict definition is the fact that it is not possible to extend or add
new parts to the description to accommodate missing or application
domain-specific features.

A detailed overview of the MPEG-21 DIA-UED specification is given in
Section A.1 in Appendix A.

2.3.2 Software Toolkit

From the three discussed context description specifications, only the
MPEG-21 DIA-UED standard is generically applicable. Indeed, HTTP
Headers are only useful for Web page requests and CC/PP is just a
framework. The UAProf technology that is based on CC/PP is too
specific and only useful for cell phones. It is possible to construct our
own CC/PP profile, however this profile is proprietary and can only
ensure interoperability if it is supported by the industry.

As the UED tool is a large specification, doubts arise on its usability on
constrained devices. We want to evaluate whether or not it is feasible
for a memory and processing limited terminal to read, manipulate, and
write XML data valid to the MPEG-21 specification. At the same time,
we want to facilitate the creation of UED-compliant applications by
ensuring that an application does not need to read and write XML data.

2.3. Metadata for Context Description 25

Toolkit Contents

To start, we made a thorough analysis of the UED standard using Unified
Modeling Language (UML) techniques9. This resulted in a detailed Class
Model of the specification (see Section A.2 in Appendix A).

This class model allows us to create a Java-based software toolkit, as
illustrated in Figure 2.4, that consists of a parser, an application pro-
gramming interface (API), and a serialization tool. Our parser is a tool
that can read XML files which are valid to the UED specification, i.e.,
valid to the MPEG-21 DIA-UED XML Schemas. The information in this
XML file is poured into an object tree. The object tree is an in-memory
and hierarchical representation of the UED parts and subparts. The API
defines and controls access to this object tree. Typical API operations
on a UED (sub)part are read, add, change, and remove. An example of
the API operations can be found in Appendix A, Section A.4. It is also
the responsibility of the API to block illegal operations on the object
tree. For example, it rejects an addition of a second subpart where the
specification defines that at most one is allowed. Furthermore, the API
also contains navigation operations to move through the object tree, for
example, get a specific subpart, and get the parent of the current part.
Finally, the serialization tool writes the information in the object tree
to an XML data stream that is guaranteed to be valid to the UED XML
Schemas, in other words, valid to the MPEG-21 DIA-UED specification.

Toolkit Implementation and Test Set-up

Our goal was to create a software toolkit that can be used on a con-
strained device; hence we implemented our toolkit such that it works on
a cell phone, such as the Nokia 3650. This cell phone runs the Symbian
Operating System version 6.1 and is able to execute Java 2 Platform,
Micro Edition (J2ME) applications with the Mobile Information De-
vice Profile (MIDP) 1.0 and Connected Limited Device Configuration
(CLDC) 1.0 configuration10 – like most recent mobile telephones. It
contains 512kb memory heap size for the J2ME applications, which is
the minimal size in order to be a J2ME CLDC-compliant device [63].

9More information on the Unified Modeling Language is available at http://www.
uml.org.

10More information on Java 2 Platform, Micro Edition is available at http://java.
sun.com/j2me and in [63].

http://www.uml.org
http://www.uml.org
http://java.sun.com/j2me
http://java.sun.com/j2me

26 Metadata
O

bj
ec

t t
re

e

API
(read, add, change, remove)

<DIA xmlns="urn:mpeg:mpeg21:2003:01-DIA-NS"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema”>
 <Description xsi:type="UsageEnvironmentType">
 <UsageEnvironment xsi:type="UsersType">
 <User xsi:type="UserType">
 <UserCharacteristic
 xsi:type="AudioPresentationPreferencesType">
 <VolumeControl>0.85</VolumeControl>
 <FrequencyEqualizer>

-10 -10 -10 -10 -10 -10 -10 -10 -10 -10
-10 -10 0 0 0 0 10 10 10 10
-10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10

 </FrequencyEqualizer>

M
P

EG
-2

1
D

IA
 in

pu
t

<n1:DIA xmlns:n1="urn:mpeg:mpeg21:2003:01-DIA”>
 <n1:Description n2:type="n1:UsageEnvironmentType”
 xmlns:n2="http://www.w3.org/2001/XMLSchema”>
 <n1:UsageEnvironment n2:type="n1:UsersType">
 <n1:User n2:type="n1:UserType">
 <n1:UserCharacteristic
 n2:type="n1:AudioPresentationPreferencesType”>
 <n1:VolumeControl>0.85</n1:VolumeControl>
 <n1:AudibleFrequencyRange>
 <n1:StartFrequency>1020</n1:StartFrequency>
 <n1:EndFrequency>20000</n1:EndFrequency>
 </n1:AudibleFrequencyRange>
 <n1:BalancePreference>-5</n1:BalancePreference>

M
P

E
G

-2
1

D
IA

 o
ut

pu
t

se
ria

liz
at

io
n

pa
rs

er

Figure 2.4: MPEG-21 DIA-UED Software Toolkit.

2.3. Metadata for Context Description 27

In other words, our toolkit was implemented according to the J2ME
MIDP 1.0 / CLDC 1.0 specifications. The size of the toolkit is about
355kb.

Table 2.3: Test set-up for the MPEG-21 DIA-UED Toolkit.

Size software toolkit 363,515 bytes
Input document (i.e., Listing A.1) 8,805 bytes
Object tree manipulations 27 read operations
(excerpt in Listing A.5) 54 change, add, and

remove operations
Output document 9,004 bytes

Another important requirement is the feasibility of the toolkit with re-
gard to the execution speed and required memory size. In order to eval-
uate this, we used following realistic usage scenario (see also Table 2.3).
First, a valid DIA-UED document is given as input to the parser (see
Listing A.1 in Appendix A). Next, different operations are performed
on the data using the API. A part of these manipulations can be found
in Listing A.5. Finally, everything is written out using the serialization
tool.

In order to determine the time required to execute the steps in this usage
scenario, we measured each step independently within a test application
that runs on a real Nokia 3650 cell phone. The test was repeated six
times without exiting the Java Virtual Machine (JVM) and all six tests
ran in the same thread. Next, we repeated these six runs of the test
ten times but between each execution we restarted the JVM. Hence, the
tests were executed sixty times in total.

We also investigated the maximum memory size that is being used while
executing the tests. This can be obtained using the Memory Monitor
Extension tool of the Java Wireless Toolkit, which is an integrated part
of the J2ME development environment. Although this tool only works
within an emulated environments, its results are relevant as the memory
architecture of the CLDC-compliant devices is accurately defined.

Results Test Toolkit

Figure 2.5 shows a picture of the output information on the Nokia 3650
cell phone when running the tests.

28 Metadata

Figure 2.5: Test of the MPEG-21 DIA-UED Software Toolkit on a Nokia
3250 cell phone.

Table 2.4 shows the timing results. We divide the sixty runs of the
scenario in two groups. The first group consists of the results for the
first time the usage scenario is executed after the JVM was restarted.
Hence, it consists of ten values. The average and the standard deviation
of these values are shown in Table 2.4 as the first execution. The average
and the standard deviation of the remaining fifty values are shown in
the table as the subsequent executions.

The huge difference in execution times between these two groups is un-
deniable apparent, especially for the parsing operation. During the first
execution, all necessary libraries and the input document must be read
from the storage card of the cell phone. This storage I/O access is a very
expensive operation, which is also proven by the relatively slow serial-
ization time of writing the XML-serialized output to the storage card.
However, as parsing and serializing are typically operations performed
only once at the start and the end of the application respectively, and

2.4. Related Work 29

Table 2.4: Execution Times of the MPEG-21 DIA-UED Toolkit Test.

Parsing Processing Serialization Total
(ms) (ms) (ms) (ms)

first execution
average 10,333 147 1,145 11,625
standard deviation 49 8 7 48

subsequent executions
average 717 145 1,213 2,074
standard deviation 19 26 40 83

because the API manipulation can be executed relatively fast, these slow
operations are not an insurmountable problem to use the toolkit on con-
strained devices. Also, it can be expected that MPEG-21 DIA-compliant
devices load some libraries whilst the device is booting.

The maximum memory used during the execution of the tests was
250,064 bytes. The Memory Monitor Extension tool also allows us to
investigate the memory size of a particular object instantiation; the max-
imum size of the object tree in memory is 21,648 bytes. It is clear that
(1) the size of the software toolkit is acceptable even for constrained de-
vices and (2) the heap memory requirement is about 48% of the minimal
guaranteed 512kb for J2ME CLDC-compliant devices.

Our software toolkit was submitted to the MPEG consortium and was
accepted as the reference software tool for the MPEG-21 DIA-UED spec-
ification.

2.4 Related Work

Before concluding this chapter, we briefly give an overview of related
research, in particular on content description.

Storing and annotating content in large collections is typically performed
by librarians. During the creation of digital libraries of books and im-
ages, they have built up a lot of expertise. This expertise could be usable
for the creation of digital file-based audio-visual content collections.

The purpose of a digital library – as seen by librarians – is described
in [64] as “electronic libraries in which large numbers of geographically

30 Metadata

distributed users can access the contents of large and diverse repositories
of electronic objects – networked text, images, maps, sounds, videos, cat-
alogues of merchandize, scientific, business and government data sets –
they also include hypertext, hypermedia and multimedia compositions.”
This statement emphasizes that the library community mainly focuses
on the disclosure and the exchange of digital objects. This resulted in the
creation of the Metadata Encoding & Transmission Standard (METS)
by the Library of Congress [65]. METS provides a format for encoding
metadata used for the management and the exchange of digital objects
stored within the library by extending the techniques developed by the
Making of America II (MOA2) project [66]. However, these standards
do not fix the structural, administrative, and technical metadata nor-
matively, while these metadata are essential for audio-visual content de-
scription and intended usage in UMA-compliant applications as investi-
gated in this thesis. Furthermore, these standards only refer to available
techniques in the pre-digital libraries community for descriptive meta-
data, such as Machine-Readable Cataloging (MARC) records [67] or the
Encoded Archival Description [68]. Also, these pre-digital documenta-
tion techniques are inadequate to fully document digital works.

Better suited standards for the digital libraries are more and more
being investigated and used, such as the General International Stan-
dard Archival Description [69] and the previously discussed DCMES
and MPEG-7 standards. In [70] these standards are discussed with re-
gard to their applicability for annotating books and images. The Open
Archive Initiative Protocol for Metadata Harvesting is one of the first
major efforts to address this issue and has selected DCMES to ensure
interoperability [71–73]. Unfortunately, the used techniques for creat-
ing and maintaining digital libraries of books and images – based on
METS and the results of the MOA2 project – “lack adequate provisions
for encoding of descriptive metadata, only supports technical metadata
for a narrow range of text- and image-based resources, provides no sup-
port for audio, video, and other time dependent media, and provides
only very minimal internal and external linking facilities” [41]. This im-
plies that solely using these technologies to create audio-visual digital
libraries is insufficient. These concerns are addressed by new metadata
standards with as main purpose to annotate and manage audio-visual
content. Several of them have been discussed in this chapter. However,
in contrast to the situation in the digital library community, there is
currently a plethora of audio-visual content annotation standards. As
such, our evaluation criteria allow one to compare these standards and

2.5. Conclusions and Original Contributions 31

select the most appropriate for his intended usage scenario.

2.5 Conclusions and Original Contributions

In this chapter, we investigated various solutions to describe “what” is
being consumed and “how” this is being consumed. This information
– metadata – is needed by an adaptation engine to modify content in
such a way that it is consumable for the given context, i.e., the UMA
principle.

First, the metadata description tools for the annotation of audio-visual
content were studied – the “what.” We evaluated the usefulness of the
tools that are currently used by the Flemish television broadcasters in
order to reuse them. Unfortunately, our studies showed that these tools
are proprietary and intended for tape-based content annotation, not for
digital file-based audio-visual content.

Luckily, many international content-description standards became avail-
able over the last few years. To compare and evaluate these, we have de-
termined four main evaluation criteria. Our criteria can be used to deter-
mine the most optimal content-description standard for a particular use
case. After evaluating four well-known content-description standards,
namely Dublin Core Metadata Element Set, MPEG-7, P/Meta, and the
Standard Media Exchange Framework, we concluded that MPEG-7 is
most appropriate to annotate audio-visual content in order to realize
UMA.

Next, three context-description tools were described – the “how” –
namely HTTP Headers, Composite Capability / Preference Profiles,
and the MPEG-21 Digital Item Adaptation – Usage Environment De-
scription tools. Unfortunately, no other generically applicable context-
description standard is available to date. From the discussion, it became
apparent that the MPEG-21 specification was the most useful technol-
ogy for the intended use in our UMA architecture.

However, as this is a very large specification, we had our doubts on its
usability on constrained devices, such as a cell phone. To check our
concerns, we created a software toolkit that can be used on the Java 2
Micro Edition platform, i.e., a platform that is more and more available
on constrained devices, such as cell phones. Our toolkit is also intended
to simplify the development of UED-compliant applications. Hence, it

32 Metadata

contains three parts: a parser that reads UED data and converts it to an
object tree; an API that allows manipulation of and navigation in that
tree; and a serialization tool that writes the object tree in an MPEG-21
DIA-UED compliant XML stream.

Tests of the software toolkit demonstrated its usability in terms of mem-
ory requirements and execution speed even on cell phones, although the
start-up time was rather long due to the low I/O throughput of the cell
phone’s storage card.

Our software toolkit was submitted and accepted by the MPEG con-
sortium as the reference software tool for the MPEG-21 Digital Item
Adaptation – Usage Environment Description tool.

Our research with regard to content and context description tools re-
sulted in the following papers and contributions to MPEG.

1. Jeroen Bekaert, Dimitri Van De Ville, Boris Rogge, Sam Lerouge,
Robbie De Sutter, Emiel De Kooning, and Rik Van de Walle.
Metadata-based Access to Multimedia Architectural and Histori-
cal Archive Collections. In Proceedings of SPIE/ITCom Internet
Multimedia Management Systems III, volume 4862, pages 22–29,
Boston, Massachusetts, USA, July 2002

2. Jeroen Bekaert, Robbie De Sutter, Rik Van de Walle, and Emiel
De Kooning. Metadata-based Access to Complex Digital Objects
in Multimedia Archival Collections. In Proceedings of Euromedia
2003, pages 10–13, Plymouth, United Kingdom, April 2003

3. Robbie De Sutter, Frederik De Keukelaere, and Rik Van de
Walle. Digital Item Adaptation – Usage Environment Description
Tool Parser. MPEG Contribution ISO/IEC JTC1/SC29/WG11
M10387, Waikoloa, Hawaii, USA, December 2003

4. Davy De Schrijver, Frederik De Keukelaere, Robbie De Sutter, and
Rik Van de Walle. Digital Item Adaptation – Reference Software
Tests. MPEG Contribution ISO/IEC JTC1/SC29/WG11 M10436,
Waikoloa, Hawaii, USA, December 2003

5. Robbie De Sutter, Frederik De Keukelaere, and Rik Van de Walle.
Evaluation of Usage Environment Description Tools. In Proceed-
ings of the 2004 International Conference on Internet Computing,
pages 66–72, Las Vegas, Nevada, USA, June 2004

2.5. Conclusions and Original Contributions 33

6. Davy De Schrijver, Robbie De Sutter, and Rik Van de Walle. Re-
port on Core Experiment on BSDL extensions. MPEG Contribu-
tion ISO/IEC JTC1/SC29/WG11 M12611, Nice, France, October
2005

7. Robbie De Sutter, Stijn Notebaert, Laurence Hauttekeete, and Rik
Van de Walle. IPEA: the Digital Archive Use Case. In Proceedings
of the IS&T Archiving 2006, pages 182–186, Ottawa, Canada, May
2006

8. Robbie De Sutter, Stijn Notebaert, and Rik Van de Walle. Eval-
uation of Metadata Standards in the Context of Digital Audio-
Visual Libraries. Lecture Notes in Computer Science, 4172:220–
231, September 2006

34 Negotiation

Chapter 3

Negotiation

3.1 Introduction

Using the content and the context information, a content adaptation
system can decide how to modify the content in such a way that it be-
comes usable in the given context. In this chapter, we investigate the
possibilities of the location of such an adaptation system in the UMA
architecture. Wherever this service is located, it must have the content
and context information at its disposal. In other words, the XML-based
data must be transmitted over the network to the adaptation system.
On top of that, this system must be informed whenever updates to
the context occurs, for example, a change in available bandwidth or a
significant drop in processing capacity due to the launch of a concur-
rent application. The entire process of informing the adaptation system
about the content and context, including updates thereof, in order to
decide upon the ideal version of the content is called negotiation. Ne-
gotiation is an important part in any UMA-compliant architecture as it
allows the adaptation engine to select or to construct a suitable version
of the content in such a way that the content can be consumed in the
particular context.

In this chapter, we first discuss the different location strategies for the
adaptation system in the UMA architecture. Next, we investigate solu-
tions to send XML-based data over a network and introduce our concept
of time-varying metadata. Finally, we demonstrate the impact of a fac-
tor that can not be underestimated during the negotiation, namely the
overhead due to the verboseness of the XML-based data.

36 Negotiation

3.2 Content Adaptation

Figure 3.1 illustrates the concept of a content adaptation system. Using
the content and context information, a content adaptation decision en-
gine determines the conditions and requirements, also called the adap-
tation rules. Together with the actual content, the rules are given as
input to the content adaptation engine. This engine actually performs
the content adaptation, which results in optimized content, i.e., content
that is usable in the given context.

Content
Adaptation

Engine

Content
Adaptation
Decision
Engine

adaptation
rules

content optimized
content

content
information

context
information

Content Adaptation System

Figure 3.1: A content adaptation system: the content adaptation decision
engine instructs the content adaptation engine how to modify the original con-
tent into optimized content. This decision is based on information about the
content and context.

In [26,74,75] a technique is proposed so the decision about the adaptation
rules is dealt with as a multi-criteria optimization problem, which can
be solved by the mathematical Pareto theory. In this thesis, we take
abstraction of the inner workings of the content adaptation decision
engine. However, we will discuss the different possibilities for audio-
visual content adaptation in Chapter 5 “Video Scalability.”

In this chapter, we investigate where the content adaptation engine and
the content adaptation decision engine are located in the UMA architec-
ture and how the content and context information are negotiated with
the latter. Again, we assume our use case of an end user who wants to
consume an optimized audio-visual stream from a content provider over

3.2. Content Adaptation 37

a network on his device. Hence, we will also assume that the audio-visual
stream is encoded by a conventional, non-distributed approach. Indeed,
in the conventional approach, the video encoder is computationally more
complex than the video decoder, whereas in the distributed video coding
model the opposite is true [76]. Because we focus on a Video-on-Demand
and/or broadcasting scenario, the non-distributed approach is most suit-
able.

3.2.1 Location of the Content Adaptation Engine

There are four possibilities to locate the content adaptation engine:

• Content server: the content adaptation is performed by the con-
tent provider, hence close to the original content source. This has
as advantage that the content provider has, to some extent, con-
trol over the adaptation process. For example, the streaming of
the audio-visual content can be aborted if the optimized content
does not achieve the minimal required quality level imposed by the
content provider. On the other hand, performing content adapta-
tion on the content server increases the complexity and workload
for the content provider.

• End-user device: the adaptation is performed on the terminal it-
self. This has as advantage that the same content can be sent to all
requesting devices, as such it migrates the responsibility for opti-
mized content delivery to the receiving device. A big disadvantage
is the fact that bandwidth is wasted. Indeed, only a part of the
received data is actually consumed on the client device. In addi-
tion, this solution is not always feasible, especially in constrained
environments, because the network or the end-user device cannot
process the data in real-time.

• Broker service: a dedicated service performs the content adapta-
tion. The advantage is that a separate system is responsible and
hence optimized to perform one task, namely adaptation. A dis-
advantage is an increased delay as the content must pass through
an additional system.

• Network: content adaptation is performed by nodes in the net-
work, e.g., a gateway, a router, etc. An advantage is that the
content adaptation can be divided in very small steps and spread

38 Negotiation

out over many nodes. As such, the delay due to the adaptation
process is kept as low as possible. A major disadvantage is the in-
creased complexity for the network nodes as these have to perform
additional tasks they are not primarily designed for.

It is also possible to combine two or more locations such that the content
is adapted several times, for example reducing the number of frames to
comply with the available bandwidth in the network and scaling the res-
olution down on the end-user device to the characteristics of the device.
Although this spreads the complexity of the adaptation over multiple
devices, the overhead and the additional delay is an issue. Hence, in the
remainder of the section, we assume that the content adaptation occurs
at one location.

Locating the adaptation engine at the end-user device or in the network
increases the complexity and overhead too much, making these two lo-
cations not feasible. The broker service is a good solution as long as the
additional delay is not a blocking factor. On the other hand, if the addi-
tional complexity and workload can be kept to a minimum, locating the
content adaptation at the content server also provides a good solution.

Usually, relatively simple and straightforward content adaptation
schemes, for example changing the frame rate, can be handled by
the content server mostly by tweaking parameters of the audio-visual
streaming server or truncating the bit stream. More advanced adap-
tation schemes, such as changing the resolution or the bit rate of a
non-scalable video stream, are typically performed by a dedicated ser-
vice, like a broker service. More information about video scalability will
be given in Chapter 5.

In the remainder of this chapter, we will assume a straightforward con-
tent adaptation scheme, hence we locate the content adaptation engine
at the content provider.

3.2.2 Location of the Content Adaptation Decision En-
gine

The same four locations are feasible for the content adaptation decision
engine, but the location of both engines does not necessarily need to
coincide. For each possible location, we illustrate the flow of the data
messages that must be exchanged in order to stream optimized video
content to an end-user device. Wherever the service is located, it must

3.2. Content Adaptation 39

have the content description information and the context description in-
formation from the end-user device, the network, and the content server
at its disposal. The adaptation rules are the result of the service.

• Content server (Figure 3.2): the decision is taken by the content
server. To do so, the engine only requires the context information
from the end-user device and the network as it has direct access
to the information about its own context and the content.

• End-user device (Figure 3.3): the content information and the
context information about the content server and the network are
transmitted to the end-user device. Together with the known infor-
mation about the end user and the device itself, the decision-taking
engine can determine the adaptation rules.

• Broker service (Figure 3.4): the decision engine is located at a
dedicated service. It receives the required information about the
content and the context and based on this data the adaptation
rules are determined.

• Network (Figure 3.5): it is possible to decide upon the adaptation
rules in the network by informing one or more network nodes about
the content and the end user, the end-user device, and the content
server context information.

All possible locations for the content adaptation decision engine are fea-
sible. Nevertheless, locating this engine at a dedicated broker service
provides scalability advantages. Indeed, if the requested audio-visual
content is available at different content providers or different (geograph-
ically distributed) content servers, the broker can send the request to
the most suitable server (e.g., in terms of workload or nearest to the
end-user device).

In the remainder of this chapter, we assume that the content adaptation
decision engine is located at a broker service. However, our explanation
hereafter is also valid for all other locations.

40 Negotiation

co
nt

en
t s

er
ve

r &
ad

ap
ta

tio
n

en
gi

ne
+

de
ci

si
on

 e
ng

in
e

ne
tw

or
k

re
qu

es
t +

co

nt
ex

t i
nf

or
m

at
io

n
(u

se
r,

de
vi

ce
)

op
tim

iz
ed

 c
on

te
nt

re
qu

es
t +

co

nt
ex

t i
nf

or
m

at
io

n
(u

se
r,

de
vi

ce
, n

et
w

or
k)

op
tim

iz
ed

 c
on

te
nt

co
nt

en
t s

er
ve

r &
ad

ap
ta

tio
n

en
gi

ne

ne
tw

or
k

re
qu

es
t

re
qu

es
t

co
nt

en
t +

 c
on

te
xt

in

fo
rm

at
io

n
(s

er
ve

r)
co

nt
en

t +
 c

on
te

xt

in
fo

rm
at

io
n

(s
er

ve
r +

 n
et

w
or

k)

ad
ap

ta
tio

n
ru

le
s

ad
ap

ta
tio

n
ru

le
s

op
tim

iz
ed

 c
on

te
nt

op
tim

iz
ed

 c
on

te
nt

co
nt

en
t s

er
ve

r &
ad

ap
ta

tio
n

en
gi

ne

ne
tw

or
k

+
de

ci
si

on
 e

ng
in

ere
qu

es
t +

 c
on

te
xt

 in
fo

rm
at

io
n

(u
se

r,
de

vi
ce

)
re

qu
es

t
co

nt
en

t +
 c

on
te

xt

in
fo

rm
at

io
n

(s
er

ve
r)

ad
ap

ta
tio

n
ru

le
s

op
tim

iz
ed

 c
on

te
nt

op
tim

iz
ed

 c
on

te
nt

co
nt

en
t s

er
ve

r &
ad

ap
ta

tio
n

en
gi

ne

ne
tw

or
k

re
qu

es
t +

 c
on

te
xt

 in
fo

rm
at

io
n

(u
se

r,
de

vi
ce

)

op
tim

iz
ed

 c
on

te
nt

op
tim

iz
ed

 c
on

te
nt

de
ci

si
on

 e
ng

in
e

(b
ro

ke
r s

er
vi

ce
)

co
nt

ex
t i

nf
or

m
at

io
n

(n
et

w
or

k)
re

qu
es

t +

ad
ap

ta
tio

n
ru

le
s

co
nt

en
t i

nf
or

m
at

io
n

+
co

nt
ex

t i
nf

or
m

at
io

n
(s

er
ve

r)

en
d-

us
er

 d
ev

ic
e

en
d-

us
er

 d
ev

ic
e

en
d-

us
er

 d
ev

ic
e

en
d-

us
er

 d
ev

ic
e

F
ig

u
re

3.
2:

T
he

co
nt

en
t

se
rv

er
de

ci
de

s
up

on
co

nt
en

t
ad

ap
ta

ti
on

ru
le

s.

co
nt

en
t s

er
ve

r &
ad

ap
ta

tio
n

en
gi

ne
+

de
ci

si
on

 e
ng

in
e

ne
tw

or
k

re
qu

es
t +

co

nt
ex

t i
nf

or
m

at
io

n
(u

se
r,

de
vi

ce
)

op
tim

iz
ed

 c
on

te
nt

re
qu

es
t +

co

nt
ex

t i
nf

or
m

at
io

n
(u

se
r,

de
vi

ce
, n

et
w

or
k)

op
tim

iz
ed

 c
on

te
nt

co
nt

en
t s

er
ve

r &
ad

ap
ta

tio
n

en
gi

ne

ne
tw

or
k

re
qu

es
t

re
qu

es
t

co
nt

en
t +

 c
on

te
xt

in

fo
rm

at
io

n
(s

er
ve

r)
co

nt
en

t +
 c

on
te

xt

in
fo

rm
at

io
n

(s
er

ve
r +

 n
et

w
or

k)

ad
ap

ta
tio

n
ru

le
s

ad
ap

ta
tio

n
ru

le
s

op
tim

iz
ed

 c
on

te
nt

op
tim

iz
ed

 c
on

te
nt

co
nt

en
t s

er
ve

r &
ad

ap
ta

tio
n

en
gi

ne

ne
tw

or
k

+
de

ci
si

on
 e

ng
in

ere
qu

es
t +

 c
on

te
xt

 in
fo

rm
at

io
n

(u
se

r,
de

vi
ce

)
re

qu
es

t
co

nt
en

t +
 c

on
te

xt

in
fo

rm
at

io
n

(s
er

ve
r)

ad
ap

ta
tio

n
ru

le
s

op
tim

iz
ed

 c
on

te
nt

op
tim

iz
ed

 c
on

te
nt

co
nt

en
t s

er
ve

r &
ad

ap
ta

tio
n

en
gi

ne

ne
tw

or
k

re
qu

es
t +

 c
on

te
xt

 in
fo

rm
at

io
n

(u
se

r,
de

vi
ce

)

op
tim

iz
ed

 c
on

te
nt

op
tim

iz
ed

 c
on

te
nt

de
ci

si
on

 e
ng

in
e

(b
ro

ke
r s

er
vi

ce
)

co
nt

ex
t i

nf
or

m
at

io
n

(n
et

w
or

k)
re

qu
es

t +

ad
ap

ta
tio

n
ru

le
s

co
nt

en
t i

nf
or

m
at

io
n

+
co

nt
ex

t i
nf

or
m

at
io

n
(s

er
ve

r)

en
d-

us
er

 d
ev

ic
e

en
d-

us
er

 d
ev

ic
e

+
de

ci
si

on
 e

ng
in

e

en
d-

us
er

 d
ev

ic
e

en
d-

us
er

 d
ev

ic
e

F
ig

u
re

3.
3:

T
he

en
d-

us
er

de
vi

ce
de

ci
de

s
up

on
co

nt
en

t
ad

ap
ta

ti
on

ru
le

s.

3.2. Content Adaptation 41

co
nt

en
t s

er
ve

r &
ad

ap
ta

tio
n

en
gi

ne
+

de
ci

si
on

 e
ng

in
e

ne
tw

or
k

re
qu

es
t +

co

nt
ex

t i
nf

or
m

at
io

n
(u

se
r,

de
vi

ce
)

op
tim

iz
ed

 c
on

te
nt

re
qu

es
t +

co

nt
ex

t i
nf

or
m

at
io

n
(u

se
r,

de
vi

ce
, n

et
w

or
k)

op
tim

iz
ed

 c
on

te
nt

co
nt

en
t s

er
ve

r &
ad

ap
ta

tio
n

en
gi

ne

ne
tw

or
k

re
qu

es
t

re
qu

es
t

co
nt

en
t +

 c
on

te
xt

in

fo
rm

at
io

n
(s

er
ve

r)
co

nt
en

t +
 c

on
te

xt

in
fo

rm
at

io
n

(s
er

ve
r +

 n
et

w
or

k)

ad
ap

ta
tio

n
ru

le
s

ad
ap

ta
tio

n
ru

le
s

op
tim

iz
ed

 c
on

te
nt

op
tim

iz
ed

 c
on

te
nt

co
nt

en
t s

er
ve

r &
ad

ap
ta

tio
n

en
gi

ne

ne
tw

or
k

+
de

ci
si

on
 e

ng
in

ere
qu

es
t +

 c
on

te
xt

 in
fo

rm
at

io
n

(u
se

r,
de

vi
ce

)
re

qu
es

t
co

nt
en

t +
 c

on
te

xt

in
fo

rm
at

io
n

(s
er

ve
r)

ad
ap

ta
tio

n
ru

le
s

op
tim

iz
ed

 c
on

te
nt

op
tim

iz
ed

 c
on

te
nt

co
nt

en
t s

er
ve

r &
ad

ap
ta

tio
n

en
gi

ne

ne
tw

or
k

re
qu

es
t +

 c
on

te
xt

 in
fo

rm
at

io
n

(u
se

r,
de

vi
ce

)

op
tim

iz
ed

 c
on

te
nt

op
tim

iz
ed

 c
on

te
nt

de
ci

si
on

 e
ng

in
e

(b
ro

ke
r s

er
vi

ce
)

co
nt

ex
t i

nf
or

m
at

io
n

(n
et

w
or

k)
re

qu
es

t +

ad
ap

ta
tio

n
ru

le
s

co
nt

en
t i

nf
or

m
at

io
n

+
co

nt
ex

t i
nf

or
m

at
io

n
(s

er
ve

r)

en
d-

us
er

 d
ev

ic
e

en
d-

us
er

 d
ev

ic
e

en
d-

us
er

 d
ev

ic
e

en
d-

us
er

 d
ev

ic
e

F
ig

u
re

3.
4:

T
he

br
ok

er
de

ci
de

s
up

on
co

nt
en

t
ad

ap
ta

ti
on

ru
le

s.

co
nt

en
t s

er
ve

r &
ad

ap
ta

tio
n

en
gi

ne
+

de
ci

si
on

 e
ng

in
e

ne
tw

or
k

re
qu

es
t +

co

nt
ex

t i
nf

or
m

at
io

n
(u

se
r,

de
vi

ce
)

op
tim

iz
ed

 c
on

te
nt

re
qu

es
t +

co

nt
ex

t i
nf

or
m

at
io

n
(u

se
r,

de
vi

ce
, n

et
w

or
k)

op
tim

iz
ed

 c
on

te
nt

co
nt

en
t s

er
ve

r &
ad

ap
ta

tio
n

en
gi

ne

ne
tw

or
k

re
qu

es
t

re
qu

es
t

co
nt

en
t +

 c
on

te
xt

in

fo
rm

at
io

n
(s

er
ve

r)
co

nt
en

t +
 c

on
te

xt

in
fo

rm
at

io
n

(s
er

ve
r +

 n
et

w
or

k)

ad
ap

ta
tio

n
ru

le
s

ad
ap

ta
tio

n
ru

le
s

op
tim

iz
ed

 c
on

te
nt

op
tim

iz
ed

 c
on

te
nt

co
nt

en
t s

er
ve

r &
ad

ap
ta

tio
n

en
gi

ne

ne
tw

or
k

+
de

ci
si

on
 e

ng
in

ere
qu

es
t +

 c
on

te
xt

 in
fo

rm
at

io
n

(u
se

r,
de

vi
ce

)
re

qu
es

t
co

nt
en

t +
 c

on
te

xt

in
fo

rm
at

io
n

(s
er

ve
r)

ad
ap

ta
tio

n
ru

le
s

op
tim

iz
ed

 c
on

te
nt

op
tim

iz
ed

 c
on

te
nt

co
nt

en
t s

er
ve

r &
ad

ap
ta

tio
n

en
gi

ne

ne
tw

or
k

re
qu

es
t +

 c
on

te
xt

 in
fo

rm
at

io
n

(u
se

r,
de

vi
ce

)

op
tim

iz
ed

 c
on

te
nt

op
tim

iz
ed

 c
on

te
nt

de
ci

si
on

 e
ng

in
e

(b
ro

ke
r s

er
vi

ce
)

co
nt

ex
t i

nf
or

m
at

io
n

(n
et

w
or

k)
re

qu
es

t +

ad
ap

ta
tio

n
ru

le
s

co
nt

en
t i

nf
or

m
at

io
n

+
co

nt
ex

t i
nf

or
m

at
io

n
(s

er
ve

r)

en
d-

us
er

 d
ev

ic
e

en
d-

us
er

 d
ev

ic
e

en
d-

us
er

 d
ev

ic
e

en
d-

us
er

 d
ev

ic
e

F
ig

u
re

3.
5:

T
he

ne
tw

or
k

de
ci

de
s

up
on

co
nt

en
t

ad
ap

ta
ti

on
ru

le
s.

42 Negotiation

3.3 Invoking the Content Adaptation Decision

Wherever the content adaptation decision engine is located in the UMA
architecture, information about the content, context, or both must be
negotiated. This implies transmitting the information over the network
to the engine.

Creating a content adaptation decision engine as an independent broker
service means that all content and context related information must be
transmitted over the network. Indeed, the broker service needs informa-
tion about the content and context from the content provider, network
context information from the network, and end user and end-user device
context information from the terminal. This is illustrated in Figure 3.4.

As explained in the previous chapter, the content and context informa-
tion is structured using XML. Hence, in order to transmit the content
and context information to the content adaptation decision engine, we
have to investigate how to transmit XML-based data over a network.

However, we can look at this issue from a different perspective. The
decision-taking engine takes as input various parameters (namely the
content and context information) and executes its algorithms using these
parameters to determine the adaptation rules. In other words, we invoke
a service that resides on a remote server and that will perform the nec-
essary calculations in order to decide about the adaptation rules. In the
remainder of this section, we explain the two most relevant techniques
that are designed to invoke these so called web services.

3.3.1 XML-RPC

The Extensible Markup Language – Remote Procedure Call (XML-
RPC1) was the first XML-based technique created to invoke web ser-
vices. It was designed as a lightweight and easy solution in contrast
to previous non-XML-based techniques, such as CORBA2 and DCOM3.
Indeed, XML-RPC simplifies interoperability and is easier to implement.
Furthermore, it uses the HTTP protocol as transport protocol. As a re-

1More information on XML-RPC is available at http://www.xmlrpc.com.
2More information on the Common Object Request Broker Architecture (CORBA)

technology is available at http://www.corba.org.
3More information on Microsoft’s Distributed Component Object Model (DCOM)

technology is available at http://msdn.microsoft.com/library/en-us/dndcom/

html/msdn dcomtec.asp.

http://www.xmlrpc.com
http://www.corba.org
http://msdn.microsoft.com/library/en-us/dndcom/html/msdn_dcomtec.asp
http://msdn.microsoft.com/library/en-us/dndcom/html/msdn_dcomtec.asp

3.3. Invoking the Content Adaptation Decision 43

sult, XML-RPC clients are having fewer problems to communicate with
servers than the older transport protocols like CORBA and DCOM.

An example of an XML-RPC message can be found in Listing 3.1. This
example illustrates the simplicity of XML-RPC. The lines 1 to 5 repre-
sent the classical HTTP-request Header. The content-type on line 4
specifies that the content is XML-based data (text/xml). The XML-
RPC request message itself is constructed as follows:

• The root node is called methodCall (line 8).

• The first child element of the root node is named methodName and
contains the name of the method that is called (line 9). It is up
to the receiver to interpret this name and execute the appropriate
service.

• The second child element of the root node (params) is optional and
groups the parameters (stored separately in param elements) for
the service (lines 10 to 14). These param elements must appear in
the same order as in the web service’s signature. The XML-RPC
standard specifies six data types in which the parameter value
can be stored: a four-byte signed integer, a boolean, a string, a
double-precision signed floating point number, an ISO formatted
date and time, and a base64-encoded binary value. On line 12 of
the example, a four-byte signed integer is used.

Listing 3.1: XML-RPC message (including HTTP Header fields).

1 POST /demo HTTP /1.0

2 User -Agent: Mozilla /4.0 (compatible; MSIE 6.0)

3 Host: www.ugent.be

4 Content -Type: text/xml; charset=utf -8

5 Content -length: 219

6

7 <?xml version="1.0"?>

8 <methodCall >

9 <methodName >examples.setAvailableBandwidth </ methodName >

10 <params >

11 <param >

12 <value ><int >9600 </int ></value >

13 </param >

14 </params >

15 </methodCall >

44 Negotiation

The creation of an XML-RPC message can easily be accomplished by
various tools. The most well-known tool is Microsoft’s XMLHTTP API
of which alternative implementations exist that run on non-Microsoft-
based platforms, such as the W3C’s XMLHttpRequest object4. This com-
ponent is also used in the upcoming Asynchronous JavaScript and XML
(AJAX) technology5. Although AJAX is intended to create “snappier”
(Web-based) user interfaces – for example, it is used in Google’s GMail
e-mail service6 – it can also be used to invoke remote procedures, mostly
because it allows asynchronous (XML-based) data exchange.

3.3.2 SOAP

The simplicity of the XML-RPC technology and, in particular, the re-
stricted set of possible data types for the parameter values resulted in
the development of a more advanced technology, namely the Simple Ob-
ject Access Protocol (SOAP) [77–79]. Just as the XML-RPC technique,
SOAP uses HTTP as transport protocol; bindings to other protocols,
such as the Simple Mail Transport Protocol (SMTP) are also supported.
Theoretically, a SOAP message is a one-way transmission between SOAP
nodes, from a SOAP sender to a SOAP receiver, optionally via additional
SOAP intermediaries. However, in practice, SOAP messages are usu-
ally bi-directional and are often complemented with additional advanced
techniques (such as routing and multi-casting).

In general, a SOAP message consists of two parts encapsulated in a
SOAP Envelope (see also Listing 3.2):

• an optional SOAP Header (lines 10 to 15): this block contains
additional information about the payload and is, as such, no part
of the payload. The SOAP Header is an extension mechanism for
SOAP applications. More information about the advanced stan-
dardized features of the SOAP Header are discussed hereafter.

• a mandatory SOAP Body (line 16 to 30): the actual payload of
the message intended for the SOAP receiver. The payload must
be structured in the XML format.

4More information the XMLHttpRequest object is available at http://www.w3.

org/TR/XMLHttpRequest.
5More information on AJAX is available at http://www.ajaxmatters.com.
6Google’s GMail e-mail service is available at http://www.gmail.com.

http://www.w3.org/TR/XMLHttpRequest
http://www.w3.org/TR/XMLHttpRequest
http://www.ajaxmatters.com
http://www.gmail.com

3.3. Invoking the Content Adaptation Decision 45

Listing 3.2: SOAP Message example (including HTTP Header fields).

1 POST /demo HTTP /1.0

2 User -Agent: Mozilla /4.0 (compatible; MSIE 6.0)

3 Host: www.ugent.be

4 Content -Type: text/xml; charset=utf -8

5 Content -Length: 1542

6

7 <?xml version="1.0" ?>

8 <soap:Envelope

9 xmlns:soap="http :// www.w3.org /2003/05/ soap -envelope">

10 <soap:Header >

11 <U:type xmlns:U="http ://www.ugent.be"

12 soap:role="http ://www.w3.org /2003/05/ soap -envelope/role

/next"

13 soap:relay="true"

14 soap:mustUnderstand="true">X</U:type >

15 </soap:Header >

16 <soap:Body >

17 <DIA

18 xmlns="urn:mpeg:mpeg21 :2003:01 -DIA -NS"

19 xmlns:xsi="http :// www.w3.org /2001/ XMLSchema -instance">

20 <Description xsi:type="UsageEnvironmentType">

21 <UsageEnvironmentProperty xsi:type="TerminalsType">

22 <Terminal >

23 <TerminalCapability xsi:type="DisplaysType">

24 <!-- Full Listing A.2 can be found in Appendix A. -->

25 </TerminalCapability >

26 </Terminal >

27 </UsageEnvironmentProperty >

28 </Description >

29 </DIA >

30 </soap:Body >

31 </soap:Envelope >

The listing above illustrates the advanced standardized features of SOAP
messaging with regard to the SOAP Header [78]. Each SOAP Header
child element can contain three attributes with special connotations:

• role: the role attribute specifies the SOAP node that must pro-
cess this SOAP Header child element (hereafter referred to as
SOAP Header block). There are three default roles defined in
the SOAP specification7:

7We list the (default) abbreviations of the standardized roles. Each role value
must be prefixed with http://www.w3.org/2003/05/soap-envelope/role/ as illus-
trated on line 12 in Listing 3.2.

http://www.w3.org/2003/05/soap-envelope/role/

46 Negotiation

– next: all SOAP intermediaries and the SOAP receiver must
process this SOAP Header block.

– none: no SOAP node (intermediaries and the receiver) can
process this SOAP Header block. However, it may be neces-
sary to investigate its value if a SOAP node is instructed to
do so (for example, another SOAP Header block).

– ultimateReceiver: only the SOAP receiver must process
this SOAP Header block.

It is possible to use a proprietary value as role. If a SOAP node
fits the role, then it must process the SOAP Header block. It is
not defined by the SOAP specification how this check must be
performed. By default, this attribute value is ultimateReceiver.

• relay: if this attribute contains the boolean value true, then the
SOAP Header block must be present when the SOAP message is
forwarded. This overrules the default work method defined in the
SOAP specification as this states that a SOAP Header block must
be removed after it has been processed, even if this is done by a
SOAP intermediary node. By default, this value is false.

• mustUnderstand: this boolean attribute determines that a pro-
cessing SOAP node (as determined by the role attribute) must
“understand” the information in the current SOAP Header block.
If this is required (a value true), but the node does not “under-
stand” the information, an error message must be returned to the
SOAP sender. According to the SOAP specification “understand-
ing a header means that the node must be prepared to do whatever
is described in the specification of that block” [77]. By default, this
value is false.

Without any of the enumerated attributes – thus, the default, – a SOAP
Header block is optionally processed only by the SOAP receiver. The
SOAP Header block in Listing 3.2 must be processed and understood by
all SOAP intermediaries without removing it and by the SOAP receiver.

The flexibility of the SOAP specification makes it possible to create
more advanced Web Service Infrastructures. The main idea of a Web
Service Infrastructure is to develop a library of remote (Internet-based)
procedures (i.e., services) that can easily be found by any client. Once
found, these services can be called using SOAP messages.

3.4. Exchanging XML-based Information 47

A service broker manages the library of services and publishes them using
the Universal Description, Discovery, and Integration (UDDI) specifica-
tion8. This industry-driven open specification defines a registry service
that service providers can use to expose their services. The service con-
sumers can use this to discover the services, hence it can be seen as a
telephone directory for Web Services.

To complete the infrastructure, the W3C is developing the Web Services
Description Language (WSDL)9. It specifies how to exchange informa-
tion about the service. This XML-based description contains informa-
tion about the goal of the service (for example, a small description of
the service), the name of the service, the allowed network bindings (for
example, HTTP and SMTP), the name of the parameters and their data
types, the expected return value data type, and so on. Finally, the SOAP
message itself is extended. The concept of SOAP Attachments10, similar
to e-mail attachments, and digital signatures for SOAP messages11 are
two examples of such extensions.

3.4 Exchanging XML-based Information

3.4.1 Work Method

The technologies described in the previous section make it possible to
invoke web services. Because we regard the content adaptation decision
engine as a web service, we can use one of the two described techniques
in our UMA architecture.

The decision engine is steered by three parties, each party sends specific
information as input to the service (see also Figure 3.6):

1. The content provider (i.e., the content server + adaptation engine)
sends as parameter value the XML-based content information data

8More information on UDDI is available at http://www.uddi.org.
9WSDL is not yet an endorsed standard as the first versions are a W3C Note.

Currently, W3C is developing a new version of WSDL that will become a W3C
recommendation. More information on WSDL is available at http://www.w3.org/

2002/ws/desc.
10More information on SOAP Attachments is available at http://www.w3.org/TR/

SOAP-attachments.
11More information on digital signatures for SOAP messages is available at http:

//www.w3.org/TR/SOAP-dsig.

http://www.uddi.org
http://www.w3.org/2002/ws/desc
http://www.w3.org/2002/ws/desc
http://www.w3.org/TR/SOAP-attachments
http://www.w3.org/TR/SOAP-attachments
http://www.w3.org/TR/SOAP-dsig
http://www.w3.org/TR/SOAP-dsig

48 Negotiation

valid to the MPEG-7 specification and the MPEG-21 DIA-UED
based context information.

2. The end-user device sends as parameter value the XML-based con-
text information data about the end user and the end-user device
valid to the MPEG-21 DIA-UED specification.

3. The network sends as parameter value the XML-based context
information data about the network valid to the MPEG-21 DIA-
UED specification.

If the RPC technology does not support XML-based data as a data type
– i.e., XML-RPC – the XML-based data can still be transmitted as a
plain-text “string” data type.

Next, the content adaptation decision engine processes the received in-
formation, for example using the MPEG-21 DIA-UED toolkit as dis-
cussed in Section 2.3.2. After deciding how the content is adapted, the
content adaptation decision engine invokes on its turn the content adap-
tation engine. The latter can also be seen as invoking a web service.
The adaptation engine exposes the adaptation methods it supports, for
example, stream at half the frame rate.

3.4.2 Time-Varying Metadata

So far, we discussed the traditional Universal Multimedia Access con-
cept: content is optimized to suit the context. In the following, we refine
this concept by taking a changing context into account. As such, we re-
optimize the content if needed. For example, an end user is consuming
content on a portable computer connected to a wireless network. When
he connects this computer to a fixed local network, the available band-
width will (usually) increase. The content adaptation decision engine
must become aware of this change as it might alter the original decision
on how to optimize the content. In this example, it might become pos-
sible to send more frames per second thanks to the expanded network
capacity.

We define this kind of metadata as time-varying metadata, namely meta-
data which value is likely to change on relatively short term, for example
during the consumption of an audio-visual stream.

The definition and concept of time-varying metadata was introduced by
us in [8].

3.4. Exchanging XML-based Information 49

co
nt

en
t s

er
ve

r +
ad

ap
ta

tio
n

en
gi

ne

ne
tw

or
k

co
nt

en
t a

da
pt

at
io

n
de

ci
si

on
 e

ng
in

e

IN
V

O
K

E
+

M
P

E
G

-2
1

D
IA

-U
E

D
(u

se
r a

nd
 d

ev
ic

e
co

nt
ex

t i
nf

or
m

at
io

n)

IN
VO

K
E

+
M

P
E

G
-2

1
D

IA
-U

E
D

(n
et

w
or

k
co

nt
ex

t i
nf

or
m

at
io

n)

IN
V

O
KE

A
D

A
P

TA
TI

O
N

 +
(a

da
pt

at
io

n
pa

ra
m

et
er

)

IN
V

O
K

E
+

M
P

E
G

-7
(c

on
te

nt
 in

fo
rm

at
io

n)
+

M
P

E
G

-2
1

(c
on

te
xt

 in
fo

rm
at

io
n)

en
d-

us
er

 d
ev

ic
e

F
ig

u
re

3.
6:

In
vo

ki
ng

w
eb

se
rv

ic
es

on
th

e
co

nt
en

t
ad

ap
ta

ti
on

de
ci

si
on

en
gi

ne
an

d
on

th
e

co
nt

en
t

ad
ap

ta
ti

on
en

gi
ne

.

50 Negotiation

In our use case, time-varying metadata is information about the context
that can change during the consumption of the content. This is in
contrast to the information about the content that is fixed – at least
during the consumption of the content.

If the time-varying metadata changes (i.e., the context is changed), the
client or the network must re-send the context information to the broker.
As such, this new context can result in a change in the adaptation rules
such that a re-optimization of the content can occur. It is imperative to
create a smooth transition. In other words, we do not accept that the
user must restart the session or that the re-optimization involves a delay
during which the user does not receive audio-visual content. As such,
our content adaptation engine must work under real-time constrains.

3.4.3 Problems and Concerns

Sending complete and valid XML-based data over a network introduces
overhead. Not only is the plain-text serialization of the XML-based data
verbose, its tree-like structure generates overhead as well. In addition,
support for the time-varying metadata involves more XML-based data
messages to be transmitted. Indeed, each time a relevant change to the
context occurs, the context information (being the network information,
the end user and end-user device information, or the content server infor-
mation) must be transmitted. For example, if the available bandwidth
changes, the network must send a message similar to the one depicted
in Listing A.2 in Appendix A.

It is possible to enhance the content adaptation decision engine by ex-
posing web services particularly usable to exchange the time-varying
metadata values. For example, the engine could expose a “setAvailable-
Bandwidth” method that accepts as parameter an integer representing
the current available bandwidth in bytes per second. As such, the net-
work does not need to send a complete and valid UED message, but
only this value, hence reducing the overhead. For example, comparing
this solution to the complete UED-valid message as shown in Listing A.2
means a reduction from about 650 bytes to 4 bytes12.

12We assume that all characters of the XML-based data message string can be
represented by 1 byte, although 8-bit Unicode Transformation Format (UTF-8) char-
acters can take up to 4 bytes in particular cases. An integer data type is represented
in 4 bytes by most programming languages.

3.5. Conclusions and Original Contributions 51

The downside of this solution is an increased complexity for the content
adaptation decision engine as well as for the clients as more web services
must be implemented and used correctly. Hence, such a system forfeits
its flexibility and future compatibility. Indeed, an update on the struc-
ture of the information – thus, the XML Schemas – requires an update
of the interfaces, for example, a change in data type of a parameter. If
an end-user device is created according to an older version, it sends the
wrong kind of data or uses the wrong kind of web service. However,
if XML-based data is transmitted, the receiver can determine the ver-
sions of the XML Schemas that are used from, for example, the specified
namespace in the XML data.

In the following chapter, we solve the overhead of XML-based data ne-
gotiation using alternative XML serialization formats instead of the tra-
ditional plain-text notation.

3.5 Conclusions and Original Contributions

In this chapter, we discussed two important parts in our UMA architec-
ture, namely the negotiation and the content adaptation. The content
adaptation must ensure that the audio-visual content is optimized so it
becomes usable on a particular device, for a particular end user, and
for a particular network, hence the context. As such the content and
context information is negotiated in order to optimize the audio-visual
content.

We divided the content adaptation in two separate parts: a content
adaptation decision engine and a content adaptation engine. The for-
mer determines, based on the information about the context, how to
modify the audio-visual content, the latter performs the actual adapta-
tion. Next, we investigated the possible locations to place both engines
in the UMA architecture. It is not necessary that these coincide. Indeed,
it was decided to locate the content adaptation engine near the content,
hence at the content provider, and to place the content adaptation de-
cision engine as a separate part in the architecture.

Anywhere the content adaptation decision engine is located, it must
have the information about the content and the context at its disposal.
Hence, the XML-based data must be negotiated and transmitted over
the network. We took abstraction from the decision-taking engine by
regarding it as a web service. Indeed, the engine takes input parameters

52 Negotiation

and processes them, resulting in the rules for the content adaptation
engine.

Invoking a web server is typically done by a using the XML-RPC or the
SOAP technologies. We further discussed how this web service invoca-
tion concept fits in our UMA architecture.

Next, we introduced our concept of time-varying metadata, which is our
original contribution to the UMA framework. The main idea is to dy-
namically optimize the content to a changing context by re-negotiating
the context information. As such, we are able to handle alterations in
the environment automatically and re-optimize the content on-the-fly.

To conclude this chapter, we discussed an issue that occurs when negoti-
ating XML-based data, namely overhead. Indeed, XML-based data are
verbose due to the usage of a plain-text serialization and structural over-
head. This issue could be solved by enhancing and extending the web
services of the content adaptation decision engine, however this would
imply more complexity and a loss of flexibility. As such, we will investi-
gate other solutions to address the overhead issue in the next chapter.

The research that has resulted in this chapter of this thesis is also dis-
cussed in the following publications.

1. Robbie De Sutter, Boris Rogge, Dimitri Van De Ville, and Rik
Van de Walle. Adapting Mobile Multimedia Applications to
Changing End-User Preferences. In Proceedings of Euromedia
2002, pages 180–182, Modena, Italy, April 2002

2. Robbie De Sutter, Sam Lerouge, Jeroen Bekaert, Boris Rogge,
Dimitri Van De Ville, and Rik Van de Walle. Dynamic Adapta-
tion of Multimedia Data for Mobile Applications. In Proceedings of
SPIE/ITCom Internet Multimedia Management Systems III, vol-
ume 4862, pages 240–248, Boston, Massachusetts, USA, July 2002

3. Sam Lerouge, Boris Rogge, Robbie De Sutter, Jeroen Bekaert,
Dimitri Van De Ville, and Rik Van de Walle. A Generic Map-
ping Mechanism between Content Description Metadata and User
Environments. In Proceedings of SPIE/ITCom Internet Multime-
dia Management Systems III, volume 4862, pages 12–21, Boston,
Massachusetts, USA, July 2002

4. Boris Rogge, Robbie De Sutter, Jeroen Bekaert, and Rik Van de
Walle. An Analysis of Multimedia Formats for Content Descrip-

3.5. Conclusions and Original Contributions 53

tion. In Proceedings of SPIE/ITCom Internet Multimedia Man-
agement Systems III, volume 4862, pages 1–11, Boston, Mas-
sachusetts, USA, July 2002

5. Robbie De Sutter, Sam Lerouge, Jeroen Bekaert, and Rik Van de
Walle. Dynamic Adaptation of Streaming MPEG-4 Video for Mo-
bile Applications. In Proceedings of Euromedia 2003, pages 185–
190, Plymouth, United Kingdom, April 2003

6. Robbie De Sutter, Sam Lerouge, Wesley De Neve, Peter Lambert,
and Rik Van de Walle. Advanced Mobile Multimedia Applications:
using MPEG-21 and Time-Dependent Metadata. In Proceedings
of SPIE/ITCom Multimedia Systems and Applications VI, volume
5241, pages 147–156, Orlando, Florida, USA, September 2003

7. Sam Lerouge, Robbie De Sutter, Peter Lambert, and Rik Van de
Walle. Fully Scalable Video Coding in Multicast Applications. In
Proceedings of SPIE/Electronic Imaging 2004, volume 5308, pages
555–564, San Jose, California, USA, January 2004

8. Sam Lerouge, Robbie De Sutter, and Rik Van de Walle. Personal-
izing Quality Aspects in Scalable Video Coding. In Proceedings of
the IEEE International Conference on Multimedia & Expo, Ams-
terdam, The Netherlands, July 2005. Published on CD-ROM

54 Alternative XML Serializations

Chapter 4

Alternative XML
Serializations

4.1 Introduction

In Chapter 2, it is demonstrated that XML is used as the preferred
language to represent information about the content and the context.
XML has the advantage of being well established and widespread, how-
ever its main disadvantage is its verbose characteristic due to the fact
that XML data are serialized as plain text. This verboseness results in
overhead and should not be underestimated when it is used to exchange
information over slow or expensive networks as illustrated in Chapter 3.

This chapter explains our solution to the verboseness issue of XML using
alternative – i.e., non-textual – XML serialization formats and creating
an update functionality for the XML data. First, we investigate the tools
that are currently available to process XML-based data. We study the
typical features of these tools and classify them into different models.
Second, we introduce three techniques that can be used as an alternative
for the classic textual notation of XML data, namely ZIP compression,
Abstract Syntax Notation One (ASN.1), and Binary MPEG Format for
XML (BiM).

Hereafter, we create our serialization-agnostic parser, i.e., a parser that
can handle XML data serialized in plain text and in the three discussed
alternatives. On top of that, our parser has to support update func-
tionality. This requirement ensures optimal handling of time-varying

56 Alternative XML Serializations

metadata as discussed in previous chapter. Both requirements must be
accomplished without introducing additional complexity for the appli-
cation or the application developer.

Finally, we evaluate the usefulness of the alternative serialization formats
and the XML update functionality using our developed parser in two
real-life situations. The first application handles UED-based context
information; the second is based on the very popular RSS1 application.

It must be noted that by using a non-textual format for the serialization
of XML data, one of the key characteristics of XML is lost, namely
the (human) readability. We do not want to minimize the advantage
of this property. Nevertheless, in some cases, we do think that the
benefits of a compact representation of XML data are more important
than its readability, in particular to address the bandwidth concerns as
expressed in the previous chapter. Because the developed parser shields
the application and the application developer from any technical details
about the non-textual serialized XML data, we believe that using these
alternative serialization formats do not create an increased complexity
with regard to the usage of an alternative serialization format.

4.2 Parsing XML Data

This section provides a detailed study on existing techniques to handle
XML-based data by means of XML parsers. These parsers are cata-
logued into five XML parser models.

4.2.1 Terminology

In order to understand the remainder of this chapter, it is necessary to
define the terminology.

Definition 4.1. A parser is a (software) tool that analyzes and organizes
formal language statements into a usable form for a given purpose.

1The abbreviation RSS is sometimes also explained as Rich Site Summary or RDF
Site Summary and reflects to a particular version of the specification. The former
reflects to version 0.91, the latter to the versions 0.9 and 1.0. In this thesis, we use
version 2.0, which is called the Really Simple Syndication. More information on the
RSS 2.0 specification is available at http://www.rssboard.org/rss-specification.

http://www.rssboard.org/rss-specification

4.2. Parsing XML Data 57

Definition 4.2. A parser model is an abstract concept that specifies the
overall parsing principles that a compliant parser must obey.

Definition 4.3. XML markup is any of the following XML structures
(as defined in [44]): “a start tag, an end tag, an empty-element tag,
an entity reference, a character reference, a comment, a CDATA sec-
tion delimiter, a document type declaration, a processing instruction, an
XML declaration, a text declaration, and any white space that is at the
top level of the document entity (that is, outside the document element
and not inside any other markup).”

Definition 4.4. XML character data is all text that is not XML markup.
It is usually the textual content of XML elements.

Definition 4.5. An XML token (or in short a token) is XML markup
or XML character data.

Definition 4.6. An XML data stream is a well-formed sequence of XML
tokens.

Definition 4.7. An XML parser is a software tool that (1) handles the
reading of an XML data stream, (2) divides the stream into XML tokens,
and (3) makes the XML tokens available according to the rules of the
parser model.

4.2.2 Common XML Parser Functionalities

Currently, there are many different implementations of XML parsers
available, intended for various programming languages, platforms, types
of applications, and so on. Each parser is implemented according to a
specific parsing model. Nevertheless, the base functionality is the same,
namely processing XML data streams2. As such, they are constructed
around some common basic concepts. In this part of the section, we
give the results of our survey of these concepts. By combining (parts of)
these concepts in certain ways, different XML parser models are created
with different characteristics.

2An XML data stream is a flow of (XML-based) data that originates from a locally
stored XML file, XML content that is being downloaded from a remote location, or
any other source that produces XML-based data.

58 Alternative XML Serializations

Bootstrap

Bootstrapping is the entry point of a parsing process. To allow differ-
ent implementations of the same parser model, an interface offering the
bootstrap operations must be defined. The minimal operations are:

• Load: resolves and subsequently opens the physical source of the
XML data stream, such as a file or an HTTP connection.

• Prepare: detects the encoding format of the XML data stream.
This can be accomplished using the information in the XML
header, MIME-type information, or using a character encoding
detection algorithm as suggested in Appendix F of [44].

• Initialize: sets up the necessary internal structures such that nav-
igation and token operations, as discussed hereafter, can be exe-
cuted.

Specific implementations of a parser model can offer additional features,
such as, enable XML validation, perform normalization, and support for
XML entity replacements.

Navigation

The term navigation means the ability to move through the XML data
stream to reach a specific token:

• Simple forward navigation: every parser model must offer sim-
ple forward navigation, either explicit or implicit. Simple forward
navigation allows the application to instruct the parser to move
through the XML data one token at a time. This basic operation
is usually extended – and sometimes concealed – by more advanced
forward navigation methods such as: go to the next (start) tag,
go to the first child element, go to the last sibling, and similar
operations.

• Simple backward navigation: the basic operation is to move back
one XML token. It is usually extended by more advanced back-
ward navigation methods. Typical examples are: move to the par-
ent node, move to the previous sibling, and move to the root node.
Simple backward navigation is offered by some parser models.

4.2. Parsing XML Data 59

• Random navigation: this is the most flexible way for navigating
through the XML data. It allows the application to command the
parser to “jump” directly to certain parts in the XML data stream.
For example, the parser can: jump to an element with a specific
ID attribute value, jump to a token with a certain fully qualified
name, and address a token by an XPath [80] expression. It depends
on the parser model if this form of navigation is available.

Token Operations

By applying a navigation operation, the application can select a single
token in the XML data stream. We call this token the current token. The
next step is to act upon the current token by consuming or manipulating
it:

• Token consumption: all parser models allow token consumption,
also called read functionality. In this context, read means to inves-
tigate the current token and harvest its value. The main operation
is the retrieval of the token type, i.e., it identifies the current to-
ken as an element (a start tag or an end tag), an attribute, text
data, a CDATA section, a comment tag, a processing instruction,
or ignorable white space. Each token also returns its value. Fur-
thermore, the start tag, the end tag, and the attribute tokens also
make their name and namespace information available. Advanced
parsers can provide additional information, such as the number of
attributes and the number of children in case of a start tag.

• Token manipulation: some parser models allow the manipulation,
also called write functionality, of the XML data stream by adding
new tokens or by deleting the current token. Changing the current
token can be seen as a delete operation followed by an add oper-
ation. The add operation has multiple provisions. For example,
it is not allowed to add a processing instruction to an attribute
token. The delete operation on an element token must be seen as
the removal of the current element and all child elements, if any.
Note that this operation does not imply marshalling of the XML
data, which is strictly speaking not the responsibility of an XML
parser.

60 Alternative XML Serializations

Auxiliary Operations

The auxiliary operations are not necessary for the parsing of an XML
data stream and, as such, are no part of any parser model. However,
they are provided by most parser implementations as an aid for the
application, such as localization of the current token in the physical
stream, token comparison, namespace prefix lookup, duplication of a
token, and so on.

4.2.3 Survey of XML Parser Models

If an application processes an XML data stream, it accesses this data
indirectly using one of many available XML parsers. We studied these
available parsers and identified five distinct parser models. This section
describes each model in detail, starting from the oldest model that is
developed by the W3C, namely the Tree Model. The other models are
the Push Model, Pull Model, the Cursor Model, and the Mapping Model.
For each model, we list an example of a parser and the typical model
characteristics. This information is also summarized in Table 4.1.

Table 4.1: Comparing XML Parser Models.

Tree Push Pull Cursor Mapping
Model Model Model Model Model

Navigation
forward yes yes yes yes yes
backward yes no no yes yes
random yes no no yes yes

Token operations
consumption yes yes yes yes yes
manipulation yes no no optional yes

Processing speed
parsing slow fast fast fast–slow slow
consumption fast medium medium slow–fast fast
manipulation fast n/a n/a fast fast

Memory req. high low low low–high medium

4.2. Parsing XML Data 61

The Tree Model

This is the original and oldest model that exploits the tree structure
characteristic of an XML document. The XML tree is reconstructed in
memory in such a way that it reflects the XML data model [81]. The
parser grants the applications access to the in-memory tree and offers
navigation throughout the tree.

The characteristics of the Tree Model are:

• During the initialization step of the bootstrap, an in-memory tree
of the XML data is constructed.

• All navigation methods are available.

• All token operations (token consumption and token manipulation)
are available.

• The application is in control of the parser. In other words, the
application invokes the navigation methods and the token opera-
tions.

• Bootstrapping is slow because the complete XML data stream
must be processed in order to build the in-memory tree structure.
In addition, the XML data stream must be completely available
before the bootstrap method can create the tree, e.g., the data
must be entirely downloaded from an HTTP connection. Hence,
the tree model can not be used in streaming scenarios. After the
bootstrap method, the navigation and token operations are fast
because these operations occur on the tree in memory.

• The model requires a large memory size because the complete XML
data stream is mimicked in memory. For memory constrained en-
vironments, such as a cell phone, this requirement can be prob-
lematic.

The Xerces2 Java Parser3 based on the W3C Document Object Model
(DOM) [82] is an example of a parser functioning according to the prin-
ciples of the Tree Model.

3More information on Xerces2 Java Parser is available at http://xerces.apache.
org/xerces2-j.

http://xerces.apache.org/xerces2-j
http://xerces.apache.org/xerces2-j

62 Alternative XML Serializations

The Push Model

The second model that emerged after the Tree Model is the Push Model.
Its main goal is to address the shortcomings of the Tree Model, namely
the high memory requirements and the fact it is unusable for streaming
applications. The Push Model states that a compliant parser reads the
data stream and for each XML token an event is generated. The event
contains implicit and explicit information about the token. Using such
a model, the parser pushes the information to the application.

The characteristics of the Push Model are:

• The bootstrap consists of loading and preparing the data stream.
Almost no internal data structures must be created during the
initialization step.

• Only simple forward navigation is indirectly possible.

• Only token consumption is available.

• The parser is in control, the application does not know when and
if an event will be thrown. As such, implementing the application
is seen by some as difficult and unnatural.

• Parsing is very fast.

• Very few memory is required because the XML data is not stored
in memory. It is up to the application to store the necessary XML
data.

The Xerces2 Java Parser3 also supports the Simple API for XML (SAX)
standard4, which is an example of a Push Model compliant parser.

The Pull Model

Because the event-oriented programming model is seen as a disadvan-
tage, the Pull Model was developed. Pull Model compliant parsers read
only one single token after being instructed by the application. The ap-
plication can retrieve information about the token from the parser. As
such, the information is pulled from the parser by the application.

The characteristics of the Pull Model are:
4More information on SAX is available at http://sax.sourceforge.net.

http://sax.sourceforge.net

4.2. Parsing XML Data 63

• The bootstrap consists of loading and preparing the data stream.
Almost no internal data structures must be created during the
initialization step.

• Only simple forward navigation is possible.

• Only token consumption is available.

• The application controls and instructs the parser when to act upon
the data stream.

• Parsing is very fast.

• Very few memory is required because the XML data is not stored
in memory. It is up to the application to store the necessary XML
data.

The XMLPull5 parser is an example of this parser model.

The Cursor Model

The Cursor Model is very similar to the Pull Model, but allows random
access throughout the XML data stream by directly addressing XML
tokens using an XPath expression. The random access makes it possible
to target a specific part of the data and, as such, to create a view on
the data. The XPath expression can for example be used to hide certain
irrelevant tokens as such simplifying the token stream. These views can
be further examined by the application one token at a time, similar to
a Pull Model parser. Hence, the Pull Model can be seen as a forward
only and token consumption only version of the Cursor Model.

It is important to note that a specific Cursor Model parser implemen-
tation must make a tradeoff between processing speed and memory re-
quirements. Indeed, to obtain fast processing, especially fast XPath
navigation, it is necessary to store more information about the XML
document into memory.

The characteristics of the Cursor Model are:

• Depending on the specific implementation of the XPath support,
bootstrapping is either similar to the Tree Model or to the Push
and Pull Models.

5More information on the XMLPull parser is available at http://www.xmlpull.

org.

http://www.xmlpull.org
http://www.xmlpull.org

64 Alternative XML Serializations

• All navigation methods are available.

• All token operations (token consumption and token manipulation)
are available.

• The application controls the parser.

• Parsing is very fast, but depends on the XPath expression and the
parser implementation of the XPath support.

• The memory requirements depend on the specific parser imple-
mentation and range from very low to high.

The Microsoft .NET XPathNavigator6 is a parser created according to
the principles of the Cursor Model.

The Mapping Model

The last model differs from previous models as it focuses more on the
XML content and XML structure than on the XML semantics. First,
the model creates object-oriented classes based on the XML data struc-
ture. For example, the associated XML Schema or an XML data stream
analysis can be used to generate these classes. Second, the XML data,
and more specifically the XML content, is mapped to instances of the
created object-oriented classes. The application can use the instantiated
classes directly just as any other class instance.

The characteristics of the Mapping Model are:

• During the initialization step of the bootstrap, the object classes
are instantiated and populated with the XML data.

• All navigation methods are available.

• All token operations (token consumption and token manipulation)
are available.

• The application uses the instantiated classes directly.

6More information on the Microsoft .NET XPathNavigator is available at http:

//msdn.microsoft.com.

http://msdn.microsoft.com
http://msdn.microsoft.com

4.3. Solving the XML Verboseness 65

• Bootstrapping is slow because the complete data stream must be
completely processed. On top of that, the creation of the classes
adds an additional time-cost factor. However, once all data is
loaded into the instantiated classes, navigation and token opera-
tions are fast.

• This model has medium memory requirements to store the com-
plete XML data in memory, because the classes are optimized to
the characteristics of the XML structure and used data types.
Hence, the Mapping Model requires less memory than the Tree
Model, but more than the Pull and Push models.

The Microsoft .NET XmlSerializer7 is an example of a Mapping Model
compliant parser.

It must be mentioned that this model has several issues that prevent
a complete and correct mapping of the XML data model, such as the
impracticality of handling mixed content and preserving the order of the
XML tokens. Due to these issues and the additional time-cost factor for
class creation, the mapping model is mostly used for domain-specific
applications if the structure of the XML data is known in advance.

4.3 Solving the XML Verboseness

The verboseness issue of XML is more and more being recognized as a
potential problem for the adoption of XML in particular fields of appli-
cations. Many large and international consortia, like MPEG and W3C,
are investigating various solutions.

In this section, we discuss three alternative XML serialization formats
in detail, namely ZIP compression, ASN.1, and BiM.

4.3.1 ZIP Compression

The first alternative XML serialization format we discuss in detail is
a generic data compression technique, namely ZIP compression. This
well known, widespread, and very efficient compression technology is

7More information on the Microsoft .NET XmlSerializer is available at http://

msdn.microsoft.com.

http://msdn.microsoft.com
http://msdn.microsoft.com

66 Alternative XML Serializations

originally developed by PKWARE8 and is based on DEFLATE [83].
DEFLATE is a combination of the lossless data compression algorithms
of Abraham Lempel and Jacob Ziv, and Huffman coding [84].

Abraham Lempel and Jacob Ziv developed the LZ77 [85] and the im-
proved LZ78 [86] algorithms in 1977 and 1978 respectively. Terry Welch
extended the LZ78 algorithm resulting in the patented Lempel-Ziv-Welsh
(LZW) algorithm9. Various compression libraries, such as ZLIB [87]
and the aforementioned DEFLATE, are based on these techniques. We
briefly discuss the basic ideas of these algorithms hereafter. More infor-
mation can be found in [83–89].

The LZ77 algorithm makes use of a sliding look-back window containing
a predetermined number of characters. During the encoding of a data
stream, a certain position in the data stream is reached. At that position,
the longest subsequent character sequence is searched so this string is
also present in the look-back window preceding the current position. If
such a sequence is found, the location in the window and the length of
the sequence is output and the algorithm continues with the character
after the sequence; if not, the character at the current position is output
and the algorithm continues with the character at the next position.

The LZ78 algorithm is an improved version of the LZ77 algorithm,
mainly reducing the many (time-consuming) string comparisons. It uses
a look-up dictionary to achieve compression. Initial, the algorithm starts
with an empty dictionary and an empty string. The characters of the
data stream are added one by one to the string as long as that string is
found in the dictionary. When this is no longer the case, i.e. the string
is not present in the dictionary, three things happen: first, the look-up
index of the string without the last character in the dictionary is output;
second, the last character itself is output; and third, the string is added
to the dictionary.

The LZW algorithm is based on the LZ78 algorithm. In contrast to
LZ78, the look-up dictionary is not empty at the start of the algorithm,
but contains all possible characters of the data stream. The first char-
acter of the data stream becomes the initial string and is present in the
look-up dictionary. This is no longer the case when the subsequent char-
acter is added to the initial string. In general, if a string is not found

8More information on PKWARE is available at http://www.pkware.com.
9More information on LZW can be found in United States Patent 4,558,302, avail-

able at http://www.uspto.gov/patft.

http://www.pkware.com
http://www.uspto.gov/patft

4.3. Solving the XML Verboseness 67

in the dictionary, again three things happen: first, like in LZ78, the
look-up index of the string without the last character in the dictionary
is output; second, the new string is added to the dictionary (this is the
third step in LZ78); and third, all characters in the string are removed,
except the last one. Note that LZW never outputs a character to the
output stream, but only indexes.

In contrast to the other serialization techniques, ZIP compression does
not use any additional information about XML-based content. In other
words, ZIP does not incorporate extra intelligence, for example via an
XML Schema, to optimize its compression strategy. Whether or not this
is a shortcoming to obtain high compression efficiency will be pointed
out in Section 4.5.

4.3.2 Abstract Syntax Notation One

The International Telecommunication Union (ITU), and more specifi-
cally the ITU Telecommunication Standardization Sector (ITU.T) to-
gether with the ISO/IEC started development of the ASN.1 standard
in 1984 [90]. Originally, it was intended to describe the structure and
the type of any kind of organized data for representing, encoding, and
decoding of this data in a generic fashion. Currently, it is mainly used
in network applications, for example in the Simple Network Manage-
ment Protocol (SNMP), digital certificates, and directory services like
the Lightweight Directory Access Protocol (LDAP).

Figure 4.1 illustrates the principles of the ASN.1 specification. ASN.1
stores information in an ASN.1 data message, which is structured ac-
cording to an ASN.1 Schema. An original data message is serialized by
an ASN.1 encoder in an ASN.1 data message. An ASN.1 decoder per-
forms the inverse operation. The application that contains the ASN.1
encoder and the ASN.1 decoder is constructed by compiling standardized
ASN.1 encoding rule(s) into original application source code.

The ASN.1 Schema takes care of the abstract notation of the data by
dividing the data into small and simple basic data types – such as in-
tegers, booleans, and strings – and by combining these data types into
bigger structured types. Listing 4.1 contains an excerpt of the ASN.1
Schemas according to the MPEG-21 DIA-UED standard.

68 Alternative XML Serializations

ASN.1 Schema

Original
data message ASN.1 data message

Describes

Converted to

Compiled
into

ASN.1 source
code

(containing
encoding rules)

Original application
source code

ASN.1 encoder

ASN.1 decoder

Application

+

Figure 4.1: Data handling by an ASN.1 application.

Listing 4.1: Excerpt of the ASN.1 Schema of the MPEG-21 DIA-UED stan-
dard.

/* ### */

/* Definition of Destination */

/* ### */

DestinationType ::= SEQUENCE {

id [NOT NAMESPACE] [ATTRIBUTE] XSD.ID OPTIONAL ,

time [NAME AS CAPITALIZED] Schema -2001. TimeType OPTIONAL ,

location [NAME AS CAPITALIZED] PlaceType OPTIONAL ,

destinationClass [NAME AS CAPITALIZED] SEQUENCE {

choice [UNTAGGED] CHOICE {

freeClass -list [UNTAGGED] SEQUENCE OF freeClass

[NAME AS CAPITALIZED] TextualType ,

stereotypedClass

[NAME AS CAPITALIZED] ControlledTermUseType

}

} OPTIONAL ,

destinationName [NAME AS CAPITALIZED] TextualType OPTIONAL

}

The main task of the encoding rule is to remove any redundant struc-
tural information from the data and to make sure that the receiver of

4.3. Solving the XML Verboseness 69

the message uses the correct character set or decoder. If a program is
aware of the ASN.1 Schema and the selected ASN.1 encoding rule, it can
process (read and write) correctly formed data messages. The ASN.1
consortium has standardized the following encoding rules:

• Basic Encoding Rules (BER) [91]: the oldest ASN.1 encoding
method serializes the data message using a Key-Length-Value
(KLV) system. The Key (also called the Tag) is used to iden-
tify the data type, Length expresses the number of bytes the value
requires, and Value contains the actual data of the structure.

• Distinguished Encoding Rules (DER) [91]: DER is a variation of
BER. It defines a more strict system that eliminates all options
and choices such that the original data message can only be en-
coded into one unique ASN.1 data message. As such, DER is very
suitable to digitally sign information as only one form to represent
the data is possible.

• Canonical Encoding Rules (CER) [91]: equal to DER, but with
the ability to start processing a KLV triplet before it is completely
loaded into memory.

• Packed Encoding Rules (PER) [92]: PER is also based on BER,
but only stores the Key if this information cannot be derived from
the ASN.1 Schema. Also, the Length is not stored as long as its
value can be deduced from the used data type. Currently, PER is
the most optimized encoding rule in terms of compactness.

• XML Encoding Rules (XER) [93]: the name may give the impres-
sion it is only intended for the coding of XML data, however this
is not the case. In fact, the encoding rule serializes any data mes-
sage as plain-text XML. It uses the data type name as the XML
element name and its value as the XML element value.

Table 4.2 shows the results of a boolean value “true” that is encoded by
the different encoding rules. It is clear that PER reduces most overhead.

Recently, the ASN.1 standard was extended to improve support for XML
data, as illustrated in Figure 4.2, by defining mapping rules between an
XML Schema and an ASN.1 Schema [94]. As such, the ASN.1 Schema
can be seen as a full alternative to XML Schema.

Based on the ASN.1 Schema, different tools are available to automati-
cally generate source code that can be compiled into other applications.

70 Alternative XML Serializations

Table 4.2: ASN.1 encoding rules: results of encoding the boolean value “true.”

Encoding Rules Result for a boolean value “true”
BER (010101)16 or (010102)16 or . . .

DER & CER (0101FF)16
PER (1)2
XER <xer:BOOLEAN>true</xer:BOOLEAN>

These tools also generate source code for the different encoding rules so
for each encoding rule two methods are available: an encoding method
and a decoding method. The former accepts a valid XML file and returns
the ASN.1 data message; the latter accepts an ASN.1 data message and
returns a valid XML file. As such, it is trivial to process and generate
ASN.1 data messages compliant for a given XML Schema from any ap-
plication. ASN.1 in fact creates a specialized Mapping Model parser for
a particular XML Schema.

XML Schema ASN.1 Schema

XML file ASN.1 data message

Validates Describes

Converted to

Converted to

Compiled
into

ASN.1 source
code

(containing
encoding rules)

Original application
source code

ASN.1 encoder

ASN.1 decoder

Application

+

Figure 4.2: Handling XML documents by an ASN.1 application.

4.3. Solving the XML Verboseness 71

4.3.3 Binary MPEG Format for XML

The MPEG group developed an alternative XML serialization format
in 2001 as part of the MPEG-7 Part 1 – Systems standard (the Binary
format for Metadata) [49,95]. Initially, it was intended as an alternative
and compact serialization of the XML-based MPEG-7 descriptions. Ac-
cording to [95], this approach can also be applied to XML-based data
in general as long as there is an MPEG-7 Description Definition Lan-
guage (DDL) Schema [96] or a W3C XML Schema available. The DDL
adopted the XML Schema specification with some multimedia-related
extensions. Hence, XML Schema is a subset of DDL. Recently, the
MPEG-7 Binary format for Metadata technology has been relocated to
a new MPEG standard formally known as MPEG-B Part 1 – Binary
MPEG Format for XML, keeping the original abbreviation BiM [97].

BiM is an XML Schema aware encoding scheme for XML documents,
i.e., it uses information from the XML Schema to create an efficient
alternative serialization of XML documents within the binary domain.
This knowledge enables the removal of structural redundancy (e.g., white
space, and element and attribute names) thus achieving high compres-
sion ratios with respect to the document structure. Furthermore, ele-
ment and attribute names as well as data are encoded using dedicated
encoders based on the data type (e.g., integer, float, and string), which
further increases the compression ratio. The advantages of BiM over
traditional plain-text compression algorithms are the support of parsing
the XML data in the binary domain (thus without decoding to plain-text
XML), its streaming capabilities, and dynamic and partial updating of
existing XML trees.

To achieve the latter, BiM can divide an XML tree into different parts.
Each part is encoded into an access unit and contains optional schema
update units and one or more fragment update units. As a decoder needs
to know the set of utilized XML Schemas in order to decode the XML
data, the schema update unit makes it possible to modify the initial
set of schemas. More interesting are the fragment update units, which
in turn consist of three parts: a fragment update command, a fragment
update context, and a fragment update payload. The fragment update
command specifies the decoder action for the corresponding fragment
and can be either add, delete, replace, or reset, i.e., BiM provides partial
updates of an XML document. The fragment update context is used to
uniquely determine the location of the fragment to be updated in the

72 Alternative XML Serializations

AU updates the
description tree

Network

Access Units
(at the sender)

Access Units
(at the receiver)

Access Unit
(as network packet)

Figure 4.3: Streaming XML Documents over the Network using Access Units
(AUs).

XML document by, for example, an XPath expression. Finally, the
fragment update payload contains the actual encoded XML data of the
update. Figure 4.3 illustrates how an XML document is divided into
access units and streamed over the network. In particular, it shows how
a subtree of the whole XML document is transmitted over the network
and added to the XML tree at the receiver side (i.e., the dotted line).
BiM is the only standardized serialization format that natively supports
XML updates.

4.4 Serialization-Agnostic Parser

This section defines an XML parser that is capable of handling textual
XML as well as non-textual serialized XML data (Figure 4.4). On top
of that, our parser is able to transparently handle updates of XML
data, for example time-varying XML data as described in the previous
chapter. Hence, our XML parser supports and implements an update
functionality making it possible to modify parsed XML data on the fly.
First, we determine the optimal XML Parser Model.

Because we want to support update functionality, all parser models of-
fering only simple forward navigation cannot be used. This means that
the Push and Pull Models are not suitable. Indeed, keep the possibility
in mind that updates of the XML data can occur anytime. In other

4.4. Serialization-Agnostic Parser 73

ApplicationApplication ?

XML Parser

non-textual XML
15 F5 4E 98 36 AD

...

textual XML
<? xml version="1.0" ?>

...

Figure 4.4: Overview of a serialization-agnostic XML parser: the application
is unaware of the kind of XML serialization.

words, updates can modify information that has already been processed
by the parser. Parsers with only forward navigation cannot handle these
changes because the application has no access to the information that is
updated. Even if the application is informed that the data are changed,
it is necessary to restart the parsing.

The Mapping Model seems to provide the best solution because the
updates can manipulate the instantiated classes directly in a fast and
straightforward way. Thus, the application is immediately aware of the
modified information. Unfortunately, a parser compliant to the Map-
ping Model is built based on one or more specific XML Schemas, hence
it is only usable for XML data valid to the given XML Schema. As such,
this solution is advised if the XML Schemas are known during the devel-
opment of the parser. This is especially applicable for standardized and
normative schemas. Nevertheless, we want to develop a generic XML
parser; hence, we will not use this model.

From the two remaining XML parser models, the Cursor Model has a
slight advantage over the Tree Model as it has XPath handling capabil-
ities. If an update is accompanied by an XPath expression, the update
location can be found immediately by the parser by reusing this internal
capability. Moreover, the same XPath expression can also be used to
signal the application that an update took place at the given location.

Hence, the Cursor Model is our preferred parser model for the creation of

74 Alternative XML Serializations

ApplicationApplication

navigation &
data handling

retrieve XML document

se
ria

liz
at

io
n

ag
no

st
ic

 p
ar

se
r

textual

no

non-textual domain
15 F5 4E 98 36 AD

...

textual domain
<? xml version="1.0" ?>

...

in
te

rn
al

 X
M

L
tre

e

bo
os

tra
p

yes

bootstrap parser

?

Figure 4.5: Architectural overview of our serialization-agnostic XML parser
based on the Cursor Model.

the desired XML parser. We have chosen to optimize our parser for fast
XPath evaluation over memory compactness. The architectural overview
when using a Cursor Model parser is given in Figure 4.5. In practice, an
application retrieves an XML document from a source and sends it to
the bootstrap method of our parser. The bootstrap method determines
the serialization format of the XML data by looking at the extension of
the filename, or more advanced using the MIME-type information. Once
the bootstrap method has identified the serialization type, it can handle
the data appropriately. If the content encoding format of the XML
data is textual, it is only necessary to create the internal XML tree for
which existing XML Cursor Model parsers can be used. If the XML
data are encoded by a non-textual serialization format, the appropriate
decoder is used. If BiM is used, it is possible to create the internal

4.5. Evaluation 75

tree representation directly during decoding; for the ZIP compression
and ASN.1-PER encoding, the data stream must be completely decoded
before the creation of the internal XML tree can start.

In case of an update to a previously received XML data stream, no
special precautions need to be provided for BiM because it natively sup-
ports updates. For the three other serialization types, it is necessary to
explicitly indicate the fact it is an update. This is done during the boot-
strap method by adding an XPath expression that specifies the location
of the update. As such, it is possible to enable the update functionality
even for the serialization formats that do not natively support this. In
other words, as the BiM technique natively supports XML updates, we
created application specific update functionality also for the remaining
serialization techniques, in particular plain text, ZIP compression, and
ASN.1-PER encoding.

4.5 Evaluation

The goal of this section is to evaluate the usefulness of the alternative
XML serialization formats in comparison to the regular plain-text serial-
ization method. Besides the investigation of the compression efficiency,
we also measure the time required to serialize and to parse the XML data
using the different serialization methods. Two use cases are developed
for the evaluation as explained hereafter.

4.5.1 Use Case 1: Usage Context Negotiation

The first use case is based on a part of the context negotiation scenario
as described in the previous chapter. A client device uses the MPEG-21
DIA-UED software toolkit discussed in Section 2.3.2 to structure its
initial usage context. This information is sent to the broker. Next,
time-varying metadata are transmitted with updates to the initial usage
context.

4.5.2 Use Case 2: Really Simple Syndication

RSS is an XML-based application that enables users to be informed
when an update occurs to an Internet news source. The UML class
model of the RSS specification is depicted in Figure 4.6. RSS defines a

76 Alternative XML Serializations

container structure: an RSS document – the RSS feed – contains one or
more Channels, e.g., a weather information channel. A Channel stores,
among other things, information about the topic and combines multiple
Items. One Item holds a particular news piece on the topic of the given
Channel, e.g., the weather information for a particular city. An RSS
viewer retrieves the RSS feed from a server on a regular basis, e.g., by
downloading the RSS document every day. If new Items are available,
the RSS viewer informs its user about these by, for example, showing
the titles of the new Items on his or her display. The RSS publisher
updates the RSS feed by adding new Items or removing obsolete Items
at the server. Normally, the Channel information is not modified.

textInput
title : string
description : string
name : string
link : string

enclosure
url : string
length : string
type : string

channel
title : string
link : string
description : string
language [0..1] : string
copyright [0..1] : string
managingEditor [0..1] : string
webMaster [0..1] : string
pubDate [0..1] : string
lastBuildDate [0..1] : string
category [0..1] : string
generator [0..1] : string
docs [0..1] : string
cloud [0..1] : string
ttl [0..1] : int
rating [0..1] : string
skipHours [0..1] : string
skipDays [0..1] : string

textInput
0..1

image
url : string
title : string
link : string
width [0..1] : int
height [0..1] : int
description [0..1] : string

image
0..1

item
title [0..1] : string
link [0..1] : string
description [0..1] : string
author [0..1] : string
category [0..*] : category
comments [0..1] : string
enclosure [0..1] : enclosure
guid [0..1] : gui
pubDate [0..1] : dateTime
source [0..1] : string

item
0..*

category

domain [0..1] : string

gui

isPermaLink [0..1] : boolean

source

url : string

rss

version [0..1]

channel
1

string

Figure 4.6: The RSS feed structure.

Recently, RSS became a popular tool as a way to publish podcasts. In-
deed, a podcast publishes multimedia data (such as audio and video)
using RSS Feeds, such that the feed subscribers automatically receive
new content. This is accomplished by adding the optional enclosure el-
ement to an RSS Item, which contains an URL to the actual location of
the audio-visual data stream. As such, it is comparable to the technique

4.5. Evaluation 77

of adding multimedia content to a Web page.

The issues of the RSS application as it is used today are mainly related
to the way the RSS viewer checks the Internet news source for any
modification. Indeed, the RSS viewer regularly downloads the RSS data
file anew to verify if Items were added. If the RSS data file was not
changed since the last retrieval, this download is unnecessary and the
bandwidth waste is obvious. But even if new Items are present in the
RSS file, bandwidth is still wasted, because the new Items are usually
only a relatively small part of the complete XML file. Similar to the
problems explained in Chapter 3, this overhead is expensive for the end
user, especially when using an Internet connection that is paid for on a
per byte basis. For content providers, the overhead can also become a
big concern as the overhead becomes significant if millions of users are
subscribed to a particular feed. Note that content providers also pay a
fee for the bandwidth used. In other words, the overhead introduces a
cost for the end user as well as for the content provider.

This overhead can be addressed by creating a (proprietary) update func-
tionality for RSS. Our solution appends the date and time of the last
synchronization to the HTTP download request of the RSS viewer. As
such, the RSS provider only needs to send the new or modified Items.

4.5.3 Methodology

For the evaluation of the first use case, we created a realistic initial usage
context and three updates, all of them compliant to MPEG-21. The
three updates differ in size and target different parts of the usage context.
The first update modifies the information about the bandwidth of the
network. The second update changes the terminal’s display information.
And finally, the third update is a large update that changes the user and
the natural environment information. The listings of the initial context
and the updates are shown in Listings A.1 to A.4 of Appendix A.

For the second use case, we emulate the typical usage of the RSS appli-
cation. An RSS viewer retrieves the RSS data from a content provider
daily during the period of one month. In practice, we used the MSDN10

RSS feed of the month November 2004 containing a total of 53 Items

10The Microsoft Developer Network (MSDN) Website is available at http://msdn.
microsoft.com.

http://msdn.microsoft.com
http://msdn.microsoft.com

78 Alternative XML Serializations

scattered over the weekdays. A part of the RSS feed can be found in
Listing 4.2.

Listing 4.2: Excerpt of the Microsoft Developer Network RSS feed of the
month November 2004.

<?xml version="1.0" encoding="utf -8"?> <rss version="2.0"

xmlns:xsi="http: //www.w3.org /2001/ XMLSchema -instance"

xmlns="urn:mmlab:be:rss20">

<channel >

<title>MSDN Just Published </title >

<link>http://msdn.microsoft.com/</link>

<description >Keep current with all the new technical

articles , columns , specifications , and resources

published on the Microsoft Developer Network (MSDN).</

description >

<language >en -us</language >

<pubDate >2004 -11 -24 T22:11:49 </pubDate >

<lastBuildDate >2004 -11 -24 T22:11:49 </lastBuildDate >

<ttl>1440</ttl>

<item>

<title>.NET in the Real World: Code Generators with .NET

</title>

<description >You’re already using code generators

whether you know it or not; [...] </ description >

<link >http://msdn.microsoft.com/vstudio/using/columns/

realworld/default.aspx </link >

<category domain =" msdndomain:DevLangVers">ASP </category >

<pubDate >2004 -11 -04 T08:00:00 </pubDate >

</item >

<item >

<title >.NET Rocks! - Juval Lowy on .NET 2.0</title >

<description >Juval Lowy joins Carl , Rory , and the gang

this week for a romp [...] </ description >

<link >http://msdn.microsoft.com/dotnetrocks /</link >

<category domain =" msdndomain:ContentType">Multimedia </

category >

<pubDate >2004 -11 -03 T08:00:00 </pubDate >

</item >

[...]

</channel >

</rss >

The XML data of the two use cases are marshalled in four ways:

• Plain text: this is the classical way of marshalling XML data,
namely as plain text. For these tests, we use the UTF-8 notation,

4.5. Evaluation 79

which is the most common format for XML data. The XML data
are sent to the receiving application, i.e., the broker in Use Case
1 and the RSS viewer in Use Case 2. The receiving application
passes the data to the bootstrap method of our created parser.
The parser creates the internal XML tree for the given XML data.

• ZIP: the second method to serialize the XML data is by com-
pressing it before transmission. For the evaluation, we use the
internal ZIP compression functionality of Java 2 Standard Edi-
tion (J2SE) version 5.0, which is based on DEFLATE (see Sec-
tion 4.3.1). The bootstrap method of our parser accepts these
ZIP-compressed XML data and decompresses it into plain text
before starting the creation of the internal XML tree.

• ASN.1-PER: this serialization type applies the Abstract Syn-
tax Notation One Packed Encoding Rules, as discussed in Sec-
tion 4.3.2, to the textual XML data. To apply this serialization
type, the DIA-UED and RSS PER encoders and decoders are cre-
ated as follows. First, the ASN.1 Schemas are generated using the
MPEG-21 DIA-UED and RSS XML Schemas11. These generated
schemas are used to generate Java source code12. Next, the code is
compiled together with a newly developed application and results
in a new software module (see also Figure 4.2). This software mod-
ule accepts an XML file (valid to the particular MPEG-21 or RSS
schemas) as input and returns the ASN.1-PER encoded version
and vice versa. There are two independent ASN.1-PER software
modules: one module for Use Case 1 (based on the DIA-UED XML
Schemas) and one module for Use Case 2 (based on the RSS XML
Schema). These software modules are linked to our parser, never-
theless, it is necessary to fully decode the ASN.1 data messages to
plain text before the creation of the internal XML tree can start.

• BiM: this last alternative XML serialization format uses the Bi-
nary MPEG Format for XML, as described in Section 4.3.3. BiM is
applied to the textual XML data, resulting in BiM-encoded XML.
The parsing of this BiM-encoded data occurs directly by our de-
veloped parser, thus the internal XML tree is constructed simul-
taneously with the processing of the BiM serialized data. This is

11XML Schema to ASN.1 Schema conversion was done by the online translation tool
of the ASN.1 information Website, available at http://asn1.elibel.tm.fr/xsdasn1.

12Generation of Java source code from the ASN.1 Schemas was done by the OSS
Nokalva ASN.1 tools, available at http://www.oss.com.

http://asn1.elibel.tm.fr/xsdasn1
http://www.oss.com

80 Alternative XML Serializations

accomplished by integrating the BiM reference software code [98]
with our own serialization-agnostic parser. As a result, we do not
need to decode the data first before the creation of the internal
XML tree can start.

All four serialization methods are used in two modes, namely a Full
mode and an Update mode:

• Full mode: this is the classical way of exchanging XML-based in-
formation, in particular by transmitting the complete and well-
formed XML file valid to the corresponding XML Schemas. For
Use Case 1, the time-varying XML updates are applied to the us-
age environment description on the client device and the resulting
description is used as input for the serialization type. For the Use
Case 2, an RSS feed is constructed containing the Items published
up to the “current day” of the month.

• Update mode: in this mode, only the modifications are transmit-
ted. In other words, the three updates for the first use case and
the Items that were published between two successive days for
the second use case. Note, only the BiM serialization type can
natively handle updates to the previously received XML infor-
mation through its Access Units (as discussed in Section 4.3.3).
For all other serialization types, a proprietary, and therefore non-
interoperable, construction is created to handle the update infor-
mation. Our serialization-agnostic XML parser has hard-coded
rules to process these updates. As such, this mode is only for
the BiM serialization generic, interoperable, and applicable for
commercial and enterprise applications. Nevertheless, the update
mode for the plain text, ZIP, and ASN.1-PER serialization types
is useful for comparison.

For each use case, each serialization type, and each mode, we measured
the byte size of the data that must be transmitted, the time required to
parse the data, and – if applicable – the time required to prepare the
XML data before transmission. The latter implies the time to compress
the data for the ZIP serialization, to execute the ASN.1-PER encoding
software for the ASN.1-PER type, and to use the BiM reference software
encoder for the BiM serialization. The time required to parse the data
is the time needed for our serialization-agnostic parser to create the

4.5. Evaluation 81

internal tree and the time required to decompress the ZIP-compressed
XML data and the time required to decode the PER-encoded data using
the generated ASN.1-PER decoding software.

We executed hundred runs of the tests without exiting the Java Runtime
Environment. The results in Section 4.5.4 show the average thereof with
one outlier per test discarded. This outlier is caused by a run of the Java
garbage collector.

All measurements were performed on a low-end device, namely a laptop
computer equipped with an Intel Centrino Pentium M 1.1Ghz processor
running Windows XP Pro SP2 and J2SE version 5.0. For the runtime
measurements we use the System.nanoTime() method of J2SE version
5.0.

4.5.4 Results and Discussion

Use Case 1: Usage Context Negotiation

The results of the first use case are shown in Table 4.3 and Table 4.4.
The tables show for each of the four serialization types the byte size of
the data, the time required to parse this file, and the time required to
prepare the XML data. The latter value is found in the column denoted
with “prep.”

In case of the full mode (Table 4.3), the results clearly show that ZIP
compression doubles the parsing time compared to the plain-text seri-
alization and achieves a compression ratio of 4:1. ASN.1-PER triples
execution time and obtains a compression ratio of 5:1. And finally, the
time required to parse BiM-encoded XML data is about 90 times higher
than plain-text XML data while at the same time the byte size is about
ten times smaller.

In case of the update mode (Table 4.4), the BiM compression efficiency
decreases from 10:1 to 6:1, but the parsing time increases; BiM now
needs a huge time longer to parse the data in comparison to plain-text
serialization. Also, ZIP is less efficient, namely 3:1 and requires four
times more time to parse. Contrary to the other binary serialization
types, ASN.1-PER improves its compression efficiency, namely from 5:1
for the full mode to 10:1 for the update mode, without a time penalty.
This improvement is a result of the very high compression efficiency for
the first and second update (see Listings A.2 and A.3 in Appendix A).

82 Alternative XML Serializations

Because these updates do not contain any free-form text, with the ex-
ception of the id-attribute value, ASN.1-PER is able to create a very
condensed alternative serialization of the XML-based data that even
outperforms the two other methods.

The time to serialize the XML data for the different serialization meth-
ods reveals similar results: BiM is by far the slowest serialization type,
then ASN.1-PER, and finally, ZIP compression.

The slow parsing of the BiM-encoded XML data and the slow BiM se-
rializing of the textual XML data can be explained by the usage of the
MPEG reference software for BiM encoding and decoding, which is not
optimized in terms of execution time. Commercial implementations of
the MPEG-B standard should provide a more optimized solution in the
future, unfortunately such a solution is not yet available. Also, the
XML Schema for MPEG-21 DIA-UED is very complex and comprehen-
sive. Analysis of this schema is not straightforward and introduces a
time penalty for parsing and encoding. Optimized implementations of
the BiM standard will probably provide a caching mechanism for ana-
lyzed XML Schemas. Furthermore, as the MPEG-21 DIA-UED XML
Schemas are standardized, it is envisaged that applications or devices
will use a hard-coded version thereof avoiding the analysis phase of the
XML Schema. The ASN.1-PER serialization avoids this pitfall as the
analysis phase of the XML Schema is performed during creation of the
Java source code. ASN.1-PER requires over 200 Java classes to model
the UED XML Schemas, in other words over 200 complex type XML
elements are used in the schemas. The ASN.1-PER tools require about
400 milliseconds to create these classes.

In Table 4.5, Figure 4.7, and Figure 4.8, the cumulated byte sizes for
the different serialization types are listed. These are the total number of
bytes that are sent when the three updates are consecutively applied to
the initial usage environment description. As such, this is the amount
of data that must be transmitted over the network to inform the broker
service about the context.

The reduction when using an alternative serialization format for XML
data is the highest for the BiM method with all its features exploited,
in other words, for BiM serialization in update mode.

4.5. Evaluation 83

P
la

in
T
ex

t
Z
IP

A
SN

.1
-P

E
R

B
iM

si
ze

pa
rs

e
si

ze
pr

ep
.

pa
rs

e
si

ze
pr

ep
.

pa
rs

e
si

ze
pr

ep
.

pa
rs

e
(b

yt
es

)
(m

s)
(b

yt
es

)
(m

s)
(m

s)
(b

yt
es

)
(m

s)
(m

s)
(b

yt
es

)
(m

s)
(m

s)

Fu
ll

U
E

D
8,

80
5

3
2,

17
5

4
6

1,
80

8
83

9
93

9
62

8
27

6
F
ir

st
up

da
te

8,
81

0
3

2,
17

9
4

6
1,

80
6

49
9

93
7

62
7

27
5

Se
co

nd
up

da
te

8,
57

4
3

2,
16

2
4

9
1,

78
5

57
9

93
3

62
7

27
5

T
hi

rd
up

da
te

13
,8

47
4

2,
79

0
5

7
2,

45
0

61
13

1,
04

6
65

4
27

9

T
ab

le
4.

3:
R

es
ul

ts
fo

r
U

se
C

as
e

1:
U

sa
ge

C
on

te
xt

N
eg

ot
ia

ti
on

–
Fu

ll
m

od
e.

P
la

in
T
ex

t
Z
IP

A
SN

.1
-P

E
R

B
iM

si
ze

pa
rs

e
si

ze
pr

ep
.

pa
rs

e
si

ze
pr

ep
.

pa
rs

e
si

ze
pr

ep
.

pa
rs

e
(b

yt
es

)
(m

s)
(b

yt
es

)
(m

s)
(m

s)
(b

yt
es

)
(m

s)
(m

s)
(b

yt
es

)
(m

s)
(m

s)

Fu
ll

U
E

D
8,

80
5

3
2,

17
5

5
7

1,
80

8
83

10
93

9
63

1
27

7
F
ir

st
up

da
te

71
0

1
52

4
3

3
45

9
2

30
5

68
1

26
5

Se
co

nd
up

da
te

80
8

1
52

6
2

6
55

7
2

69
7

68
0

26
7

T
hi

rd
up

da
te

10
,3

93
3

2,
10

7
4

7
1,

65
5

49
11

1,
11

0
1,

05
0

38
7

T
ab

le
4.

4:
R

es
ul

ts
fo

r
U

se
C

as
e

1:
U

sa
ge

C
on

te
xt

N
eg

ot
ia

ti
on

–
U

pd
at

e
m

od
e.

84 Alternative XML Serializations

0

5.
00

0

10
.0

00

15
.0

00

20
.0

00

25
.0

00

30
.0

00

35
.0

00

40
.0

00

Fu
ll

U
E

D
Fu

ll
U

E
D

 +
 fi

rs
t u

pd
at

e
Fu

ll
U

E
D

 +
 fi

rs
t +

se
co

nd
 u

pd
at

e
Fu

ll
U

E
D

 +
 fi

rs
t +

 s
ec

on
d

+
th

ird
 u

pd
at

e
ty

pe
 o

f U
ED

 n
ot

ifi
ca

tio
n

size (bytes)

P
la

in
 te

xt
B

iM
ZI

P
A

S
N

.1
-P

E
R

F
ig

u
re

4.
7:

C
um

ul
at

ed
by

te
si

ze
U

se
C

as
e

1:
U

sa
ge

C
on

te
xt

N
eg

ot
ia

ti
on

–
Fu

ll
m

od
e.

4.5. Evaluation 85

0

5.
00

0

10
.0

00

15
.0

00

20
.0

00

Fu
ll

U
E

D
Fu

ll
U

E
D

 +
 fi

rs
t u

pd
at

e
Fu

ll
U

E
D

 +
 fi

rs
t +

se
co

nd
 u

pd
at

e
Fu

ll
U

E
D

 +
 fi

rs
t +

 s
ec

on
d

+
th

ird
 u

pd
at

e
ty

pe
 o

f U
ED

 n
ot

ifi
ca

tio
n

size (bytes)

P
la

in
 te

xt
B

iM
ZI

P
A

S
N

.1
-P

E
R

F
ig

u
re

4.
8:

C
um

ul
at

ed
by

te
si

ze
U

se
C

as
e

1:
U

sa
ge

C
on

te
xt

N
eg

ot
ia

ti
on

–
U

pd
at

e
m

od
e.

86 Alternative XML Serializations

Table 4.5: Cumulated byte size for Use Case 1.

Full Update
size reduction size reduction

(bytes) (%) (bytes) (%)

Plain text 40,036 20,716 48.25
ZIP 9,306 76.75 5,332 86.68
ASN.1-PER 7,849 80.39 3,563 91.10
BiM 3,855 90.37 3,051 92.37

Use Case 2: Really Simple Syndication

The results of the second use case are listed in Table 4.6 and Table 4.7.
These tables show for each of the four serialization types the byte size
of the data, the time required to parse this file, and the time required to
prepare the XML data. The latter value is found in the column denoted
with “prep.”

In case of the full mode (Table 4.6), the results show that the time re-
quired to parse BiM-encoded XML data is about 20 times slower than
plain-text XML data, while at the same time the byte size is about five
times smaller. The compression efficiency is lower than in the first use
case because the XML data contains more string values whereas in Use
Case 1 there is more overhead due to the XML structure. This fact also
results in the lower compression efficiency for the ASN.1-PER serializa-
tion, namely 3:2. Only ZIP retains its compression ratio of 4:1. The
parsing and the encoding of the XML data for the different serialization
types are proportional to the byte size. The parsing of the BiM-encoded
XML data is faster in comparison to the first use case due to the sim-
ple XML Schema for RSS feeds. Nevertheless, the parsing time remains
high compared to the other serialization types. The ZIP serialization is,
again, the fastest of the three alternative serialization types.

Table 4.7 shows the results in the Update mode. The “–” value indicates
that there is no new Item for the given day, so no data is transmitted.
We notice, together with larger byte size values in Table 4.6, that the se-
rializing and parsing timings for the BiM serialization method is higher
than in the first use case. This can be explained as for every new Item
in the RSS feed, a new fragment update unit is created. The parsing
and serialization of multiple fragment update units into one access unit

4.6. Related Work 87

decreases the processing speed. Once again, we want to emphasize that
we use the non-optimized reference software and that a more optimized
implementation of the BiM specification, which handles multiple frag-
ment update units better, will reduce the executing time for parsing
as well as serializing. The results also show that the gap of the com-
pression efficiency for the different serialization types is closing. In fact,
ZIP compression outperforms BiM encoding with respect to parsing and
encoding – mainly due to performance issues of the BiM reference soft-
ware – but regarding byte size BiM is superior in all cases with a few
exceptions though. In particular, if many new RSS Items need to be
transmitted, ZIP provides a slightly better compression ratio than BiM.
This indicates that the overhead for creating a new fragment update
unit for every new Item is large, not only in terms of execution time,
but also in terms of bytes. Nevertheless, we would like to remind the
reader that BiM natively provides the update functionality, while for
ZIP compression we implemented application domain-specific rules in
our parser to achieve the same effect.

The cumulated byte sizes for the different serialization types are listed in
Table 4.8 and depicted in Figure 4.9 and Figure 4.10. We compare the
used bandwidth after one month with regard to the different serialization
types.

Once again, the reduction is the highest for BiM serialization in update
mode. However, ZIP is only slightly worse than BiM for both the full and
update modes, but the latter mode implies application domain-specific
handling of the data.

4.6 Related Work

Before concluding this chapter, we want to give an overview of other
activities currently undertaken to solve the verboseness issues of XML
data.

The W3C, the driving force behind XML, recognizes the verboseness
concerns and founded a task force in 2004 to investigate the usefulness
and desirability of an alternative serialization format. This resulted in
a first working draft of relevant use cases and applications that could
benefit from a non-textual serialization. This document is regularly up-
dated and can be found on the Website of the W3C [99]. The report
is used to determine if it is possible to select one specific kind of alter-

88 Alternative XML Serializations

T
ab

le
4.

6:
R

es
ul

ts
fo

r
U

se
C

as
e

2:
D

ai
ly

re
tr

ie
va

l
of

an
R

SS
fe

ed
–

Fu
ll

m
od

e.

P
la

in
te

xt
Z
IP

A
SN

.1
-P

E
R

B
iM

si
ze

pa
rs

e
si

ze
pr

ep
.

pa
rs

e
si

ze
pr

ep
.

pa
rs

e
si

ze
pr

ep
.

pa
rs

e
da

y
(b

yt
es

)
(m

s)
(b

yt
es

)
(m

s)
(m

s)
(b

yt
es

)
(m

s)
(m

s)
(b

yt
es

)
(m

s)
(m

s)

1
61

1
1

50
3

27
5

28
0

21
2

22
6

23
7

65
2

1,
21

7
1

76
2

27
4

68
7

23
2

43
7

24
6

66
3

1,
74

8
1

84
5

28
4

1,
01

8
26

3
52

2
24

8
66

4
3,

20
7

2
1,

22
4

30
5

2,
01

5
31

4
89

5
26

2
67

5
4,

01
3

2
1,

37
2

31
7

2,
56

4
34

5
1,

04
9

27
3

68
6

4,
01

3
2

1,
37

2
31

5
2,

56
4

33
5

1,
04

9
27

2
68

7
4,

01
3

2
1,

37
2

31
5

2,
56

4
35

5
1,

04
9

27
2

67
8

5,
37

2
2

1,
72

4
33

6
3,

49
5

41
6

1,
40

3
27

9
68

9
5,

37
2

2
1,

72
4

35
5

3,
49

5
41

6
1,

40
3

27
9

68
10

8,
78

3
3

2,
40

3
37

7
5,

90
5

55
9

2,
12

0
29

6
70

11
9,

70
3

4
2,

69
1

38
7

6,
59

9
59

10
2,

40
2

30
1

71
12

11
,4

17
4

2,
97

3
41

8
7,

74
1

67
11

2,
69

8
37

2
72

13
11

,4
17

4
2,

97
3

42
8

7,
74

1
65

11
2,

69
8

37
2

72
14

11
,4

17
4

2,
97

3
41

7
7,

74
1

65
11

2,
69

8
37

2
72

15
12

,3
98

5
3,

12
1

42
8

8,
37

7
70

12
2,

85
6

43
9

73

4.6. Related Work 89

T
ab

le
4.

6:
R

es
ul

ts
fo

r
U

se
C

as
e

2:
D

ai
ly

re
tr

ie
va

l
of

an
R

SS
fe

ed
–

Fu
ll

m
od

e
(c

on
ti

nu
ed

).

P
la

in
te

xt
Z
IP

A
SN

.1
-P

E
R

B
iM

si
ze

pa
rs

e
si

ze
pr

ep
.

pa
rs

e
si

ze
pr

ep
.

pa
rs

e
si

ze
pr

ep
.

pa
rs

e
da

y
(b

yt
es

)
(m

s)
(b

yt
es

)
(m

s)
(m

s)
(b

yt
es

)
(m

s)
(m

s)
(b

yt
es

)
(m

s)
(m

s)

16
15

,3
11

6
3,

51
4

45
9

10
,2

81
80

14
3,

30
6

89
5

74
17

17
,9

05
7

3,
93

8
50

11
12

,1
57

90
16

3,
73

2
1,

04
3

76
18

25
,5

26
9

4,
91

6
59

13
17

,0
92

12
0

23
4,

82
2

1,
04

1
90

19
27

,2
85

10
5,

13
7

62
15

18
,2

49
12

8
25

5,
06

4
1,

27
8

97
20

27
,2

85
10

5,
13

7
61

13
18

,2
49

12
6

25
5,

06
4

1,
27

8
98

21
27

,2
85

10
5,

13
7

61
14

18
,2

49
12

6
25

5,
06

4
1,

27
7

97
22

29
,4

97
10

5,
61

5
65

14
19

,7
76

13
4

26
5,

53
3

1,
29

2
99

23
30

,2
12

11
5,

74
4

65
16

20
,2

63
13

7
26

5,
65

6
1,

29
6

99
24

30
,2

12
11

5,
74

4
65

15
20

,2
63

13
8

27
5,

65
6

1,
29

8
99

25
30

,9
52

11
5,

97
7

66
16

20
,8

31
13

9
27

5,
88

6
1,

30
5

99
26

31
,6

06
11

6,
07

8
67

15
21

,2
86

13
9

28
6,

00
6

1,
30

4
10

0
27

31
,6

06
11

6,
07

8
67

17
21

,2
86

13
8

28
6,

00
6

1,
30

5
10

0
28

31
,6

06
11

6,
07

8
67

15
21

,2
86

13
7

28
6,

00
6

1,
30

7
10

0
29

33
,9

46
12

6,
45

7
70

17
22

,9
71

14
5

30
6,

39
6

1,
31

6
10

1
30

39
,6

69
14

7,
30

3
77

18
27

,0
75

16
5

34
7,

29
1

1,
74

7
10

3

90 Alternative XML Serializations

T
ab

le
4.

7:
R

es
ul

ts
fo

r
U

se
C

as
e

2:
D

ai
ly

re
tr

ie
va

l
of

an
R

SS
fe

ed
–

U
pd

at
e

m
od

e.

P
la

in
te

xt
Z
IP

A
SN

.1
-P

E
R

B
iM

si
ze

pa
rs

e
si

ze
pr

ep
.

pa
rs

e
si

ze
pr

ep
.

pa
rs

e
si

ze
pr

ep
.

pa
rs

e
da

y
(b

yt
es

)
(m

s)
(b

yt
es

)
(m

s)
(m

s)
(b

yt
es

)
(m

s)
(m

s)
(b

yt
es

)
(m

s)
(m

s)

1
61

1
1

54
8

27
5

28
0

21
2

22
6

23
7

65
2

1,
43

3
1

81
9

27
3

70
7

31
3

36
4

18
63

66
3

1,
35

8
1

78
7

26
4

63
1

36
3

33
0

18
64

66
4

2,
28

6
1

1,
06

1
28

5
1,

29
7

39
4

81
8

32
88

12
0

5
1,

63
3

1
87

5
27

4
84

9
30

4
42

5
18

60
66

6
–

–
–

–
–

–
–

–
–

–
–

7
–

–
–

–
–

–
–

–
–

–
–

8
2,

18
6

1
1,

04
4

27
3

1,
23

1
33

4
78

5
32

81
12

0
9

–
–

–
–

–
–

–
–

–
–

–
10

4,
23

8
2

1,
48

5
31

5
2,

71
0

46
6

1,
96

9
80

87
28

3
11

1,
74

7
1

98
4

28
4

99
4

38
4

51
9

18
83

67
12

2,
54

1
1

1,
06

4
29

4
1,

44
2

35
5

86
2

33
29

12
2

13
–

–
–

–
–

–
–

–
–

–
–

14
–

–
–

–
–

–
–

–
–

–
–

15
1,

80
8

1
88

4
27

4
93

6
32

4
42

7
18

65
67

4.6. Related Work 91

T
ab

le
4.

7:
R

es
ul

ts
fo

r
U

se
C

as
e

2:
D

ai
ly

re
tr

ie
va

l
of

an
R

SS
fe

ed
–

U
pd

at
e

m
od

e
(c

on
ti

nu
ed

).

P
la

in
te

xt
Z
IP

A
SN

.1
-P

E
R

B
iM

si
ze

pa
rs

e
si

ze
pr

ep
.

pa
rs

e
si

ze
pr

ep
.

pa
rs

e
si

ze
pr

ep
.

pa
rs

e
da

y
(b

yt
es

)
(m

s)
(b

yt
es

)
(m

s)
(m

s)
(b

yt
es

)
(m

s)
(m

s)
(b

yt
es

)
(m

s)
(m

s)

16
3,

74
0

2
1,

21
1

30
4

2,
20

4
41

6
1,

33
8

49
27

17
8

17
3,

42
1

2
1,

31
4

29
5

2,
17

6
40

5
1,

38
9

50
13

17
8

18
8,

44
8

3
1,

80
9

36
6

5,
23

5
64

11
4,

20
8

19
22

1
68

2
19

2,
58

6
1

1,
06

4
28

5
1,

45
7

36
5

86
1

33
52

12
6

20
–

–
–

–
–

–
–

–
–

–
–

21
–

–
–

–
–

–
–

–
–

–
–

22
3,

03
9

1
1,

29
9

28
4

1,
82

7
45

5
1,

26
6

50
00

18
3

23
1,

54
2

1
86

0
26

4
78

7
30

4
40

5
17

14
70

24
–

–
–

–
–

–
–

–
–

–
–

25
1,

56
7

1
92

5
27

4
86

8
31

4
46

9
17

46
70

26
1,

48
1

1
84

8
27

4
75

5
30

4
39

6
16

84
70

27
–

–
–

–
–

–
–

–
–

–
–

28
–

–
–

–
–

–
–

–
–

–
–

29
3,

16
7

1
1,

20
2

28
4

1,
98

5
40

5
1,

28
7

50
82

18
5

30
6,

55
0

3
1,

77
5

33
5

4,
40

4
58

8
3,

16
8

13
00

8
47

5

92 Alternative XML Serializations

0

10
0.

00
0

20
0.

00
0

30
0.

00
0

40
0.

00
0

50
0.

00
0

1
2

3
4

5
6

7
8

9
10

11
12

13
14

15
16

17
18

19
20

21
22

23
24

25
26

27
28

29
30

da
y

size (bytes)

P
la

in
 te

xt
B

iM
ZI

P
A

S
N

.1
-P

E
R

F
ig

u
re

4.
9:

C
um

ul
at

ed
by

te
si

ze
fo

r
U

se
C

as
e

2:
da

ily
re

tr
ie

va
l
of

th
e

R
SS

fe
ed

–
Fu

ll
m

od
e.

4.6. Related Work 93

0

10
.0

00

20
.0

00

30
.0

00

40
.0

00

50
.0

00

1
2

3
4

5
6

7
8

9
10

11
12

13
14

15
16

17
18

19
20

21
22

23
24

25
26

27
28

29
30

da
y

size (bytes)

P
la

in
 T

ex
t

B
iM

ZI
P

A
S

N
.1

-P
E

R

F
ig

u
re

4.
10

:
C

um
ul

at
ed

by
te

si
ze

fo
r

U
se

C
as

e
2:

da
ily

re
tr

ie
va

l
of

th
e

R
SS

fe
ed

–
U

pd
at

e
m

od
e.

94 Alternative XML Serializations

Table 4.8: Cumulated byte size for Use Case 2.

Full Update
size reduction size reduction

(bytes) (%) (bytes) (%)

Plain text 524,604 55,382 89.40
ZIP 110,885 78.86 21,858 95.83
ASN.1-PER 352,100 32.88 32,775 93.75
BiM 104,993 79.99 21,512 95.90

native serialization for different use cases. Furthermore, this task force
has recently released a new working draft describing measurement as-
pects, methods, caveats, test data, and test scenarios for evaluating the
potential benefits of an alternative serialization for XML [100]. Other
W3C activities related to alternative XML serialization include the ef-
ficient transportation of non-XML-based data within XML-based data
only, e.g., XML-binary Optimized Packing [101], and Resource Repre-
sentation SOAP Header Block [102]. Finally, W3C supports in [103]
the WAP Binary XML (WBXML) as an alternative serialization tech-
nique for Wireless Markup Language (WML) documents. WML is an
XML-based language intended as markup language and is mostly used
on WAP-enabled cell phones.

The Web service community is currently developing alternative XML
serialization schemes known as Fast Infoset [104] and Fast Web Ser-
vices [105]. The latter is built upon ASN.1; the former uses an indexing
mechanism that associates an index to each XML element, enabling its
usage for further occurrences of the same XML element, i.e., highly
repetitive content will benefit from this approach. However, for small
and complex XML documents the index table is again a burden. Perfor-
mance results comparing these two approaches with other binary XML
encoding schemes are not yet available.

Finally, we want to mention two proprietary solutions, namely XMill
[106] and XMLPPM [107]. The former exploits the self describing nature
of XML for compression by leveraging existing compression algorithms
and tools like ZIP compression and some simple data type specific com-
pressors. The latter is a compression tool for XML documents that com-
bines the Prediction by Partial Match (PPM) and the Multiplexed Hier-
archical Modeling algorithms. Currently these alternative XML serial-

4.7. Conclusions and Original Contributions 95

ization solutions are not yet stable for real-life applications, but progress
is being made. In [108] a comparison of XMill and XMLPPM to other
alternative serialization techniques is made in terms of compression effi-
ciency. The results demonstrate that BiM is superior to these solutions.

4.7 Conclusions and Original Contributions

As XML is more and more being used in multimedia applications to
represent miscellaneous information, the verbosity of the XML format
is becoming a concern, especially in constrained environments. In this
chapter, we studied possible solutions to this problem using alternative
XML serialization formats and by supporting an XML update function-
ality so only the modified information is transmitted.

First, we investigated the prerequisites to create a parser that can handle
both textual and non-textual encoded XML data and supports updates.
Therefore, the five XML parser models were investigated, namely the
Tree Model, the Push Model, the Pull Model, the Cursor Model, and
the Mapping Model. This research illustrates that, while the Push and
Pull parser models are fast and have the lowest memory requirements,
these models are not appropriate to handle XML updates. The Mapping
Model proves to be a very good model, however only for pre-defined
domain specific applications. Finally, the Cursor Model is to be preferred
over the Tree Model because of the inherent XPath support of the model
that can be exploited to support XML updates.

As a result, we created a parser according to the Cursor Model that is
capable of handling textual and non-textual encoded XML data. Ap-
plications can use this parser to handle XML data without being aware
of the actual content encoding format. Indeed, the usage of this parser
enables transparent access to XML-based data by shielding users, i.e.,
application developers, from its encoding format.

Next, we studied potential alternative XML serialization formats,
namely ZIP, ASN.1-PER, and BiM, and evaluated them against plain-
text serialization for two real-life applications: a UMA application where
a client device informs a broker service about its usage context and an
RSS application. The three alternative serialization types and the tra-
ditional textual serialization are used in two modes, namely a full mode
that handles complete and valid XML files and an update mode that
only processes the differences. Whereas only BiM natively supports up-

96 Alternative XML Serializations

dates, our parser was extended to support the update functionality for
the other serialization techniques by application domain-specific exten-
sions.

The results of the evaluation show that BiM serialization is the best
solution as alternative XML serialization format in terms of overhead
reduction efficiency as it reduces the required bandwidth and the asso-
ciated costs by more than 92% for the first use case and nearly 96% for
the second use case. This is mainly achieved thanks to the native sup-
port of updates. Furthermore, BiM-serialized data can be processed in
the binary domain. These characteristics make BiM a good alternative
serialization type with regard to compression efficiency and usability.

However, the tests clearly demonstrate the extremely slow parsing and
creation of BiM data. This is partially explained due to the usage of
the MPEG reference software implementation of MPEG-B, which is not
optimized for speed. It is expected that (commercial or open source)
implementations will exhibit a significantly better runtime behavior be-
cause the MPEG-B BiM specification does not have any inherent lim-
itation that would prevent this. Currently, however, there are no such
implementations available. Hence, BiM is currently not a recommended
solution, as long as optimized encoders and decoders are not available.
This is especially true for constrained devices as the additional process-
ing time, and hence power consumption, nullifies BiM’s advantages with
regard to compression efficiency. Unfortunately, we were not able to
create an optimized BiM encoder and decoder ourselves.

A practical alternative serialization method is the ZIP compression strat-
egy. Its main advantage is that most end-user devices already have built-
in support for ZIP compression and decompression. Furthermore, it is
extremely fast and its compression ratio is only slightly worse than BiM
encoding, especially if the XML data contains many string data types as
in Use Case 2. Its main disadvantage is the fact that it does not natively
support updates. This can only be achieved by a proprietary solution.

The lack of support for updates is also the main disadvantage for the
ASN.1-PER method. On top, ASN.1-PER requires an encoder and de-
coder specifically constructed for the data it has to process, i.e., every
XML Schema needs its own software module. Although this encoder
and decoder can be created automatically, it prevents the construction
of a generic parser. On the other hand, ASN.1-PER has acceptable ex-
ecution speed and very high compression ratio if no string data types

4.7. Conclusions and Original Contributions 97

are present. This makes ASN.1-PER an acceptable solution for specific
applications.

Alternative XML serialization formats can address the verboseness and
the non-existing update capabilities of XML trees. By letting XML
parsers handle these additional serialization formats, the complexity of
handling XML is not increased for the application developers. In fact,
they do not need to be aware of the actual content encoding format. End
users with mobile devices may benefit from such alternative serialization
formats by means of paying less for actually sending or retrieving the
same data.

The research that has led to this chapter of this thesis is also discussed
in our following publications and MPEG contributions.

1. Christian Timmerer, Stephen Davis, Itaru Kaneko, Spencer Cheng,
and Robbie De Sutter. Report of CE on MPEG-21 Binarisations.
MPEG Contribution ISO/IEC JTC1/SC29/WG11 M10974, Red-
mond, Washington, USA, July 2004

2. Robbie De Sutter, Christian Timmerer, Hermann Hellwagner,
and Rik Van de Walle. Using MPEG-21 Part 16 in Applica-
tions. MPEG Contribution ISO/IEC JTC1/SC29/WG11 M11325,
Palma De Mallorca, Spain, October 2004

3. Robbie De Sutter, Christian Timmerer, Hermann Hellwagner, and
Rik Van de Walle. Evaluation of Models for Parsing Binary En-
coded XML-based Metadata. In Proceedings of the IEEE Interna-
tional Symposium on Intelligent Signal Processing and Communi-
cation Systems, pages 419–424, Seoul, Korea, November 2004

4. Christian Timmerer and Robbie De Sutter. CE Report
on MPEG-21 Binarization. MPEG Contribution ISO/IEC
JTC1/SC29/WG11 M11744, Hong Kong, China, January 2005

5. Robbie De Sutter, Christian Timmerer, Hermann Hellwagner, and
Rik Van de Walle. Multimedia Metadata Processing: a Format
Independent Approach. In Proceedings of the 9th IASTED In-
ternational Conference on Internet and Multimedia Systems and
Applications, pages 343–348, Grindelwald, Switzerland, February
2005

6. Christian Timmerer, Ingo Kofler, Johannes Liegl, Hermann Hell-
wagner, Robbie De Sutter, Wim Van Lancker, and Rik Van de

98 Alternative XML Serializations

Walle. Report of CE on MPEG-21 Binary Format. MPEG Contri-
bution ISO/IEC JTC1/SC29/WG11 M11858, Busan, Korea, April
2005

7. Robbie De Sutter, Sam Lerouge, Davy De Schrijver, and Rik
Van de Walle. Enhancing RSS Feeds: Eliminating Overhead
through Binary Encoding. In Proceedings of the IEEE 3rd Inter-
national Conference on Information Technology and Applications,
pages 520–525, Sydney, Australia, July 2005

8. Wim Van Lancker, Robbie De Sutter, Davy De Schrijver, and Rik
Van de Walle. A Framework for Transformations of XML within
the Binary Domain. In Proceedings of the 10th IASTED Interna-
tional Conference on Internet and Multimedia Systems and Appli-
cations, pages 29–34, Innsbruck, Austria, February 2006

9. Robbie De Sutter and Rik Van de Walle. Saving Bandwidth for
RSS Feeds by using ASN.1 in E-learning Applications. In The 9th
IASTED International Conference on Computers and Advanced
Technology in Education, Lima, Peru, October 2006. Accepted for
Publication

10. Robbie De Sutter, Sam Lerouge, Peter De Neve, Christian Tim-
merer, Hermann Hellwagner, and Rik Van de Walle. Comparison
of XML Serializations: Cost Benefit vs. Complexity. Multimedia
Systems. To appear (DOI : 10.1007/s00530-006-0044-y)

Chapter 5

Video Scalability

5.1 Introduction

In this chapter, an important part to enable Universal Multimedia Ac-
cess is discussed, namely the multimedia (in particular audio-visual)
content itself. UMA’s objective is to supply any possible end-user de-
vice with content from one single content base. This implies that from
the original content, multiple versions must be derived that are consum-
able on a wide range of devices, from low-end terminals, such as PDAs,
up to high-end terminals, such as High Definition Televisions (HDTVs).
These devices not only differ in display size, but also in processing capac-
ity, supported decoders, (network) connectivity, and so on. Note that
multiple copies of the content base may be distributed over multiple (ge-
ographically disperse) servers for load balancing and load optimization
reasons.

In Chapter 3, we introduced the concept of a content adaptation engine.
This engine modifies audio-visual content so it becomes usable for a
given context. In this chapter, we investigate the techniques how to
perform this content adaptation.

One possible technique is to transcode the content [109]. Classical
transcoding is modifying the original content from one format of en-
coding into another format, usually by decoding the content and then
re-encoding it compliant to the desired type. This is a time-consuming
step due to the decoding and encoding steps. More recent transcoding
algorithms avoid these steps and work in the compressed domain. As

100 Video Scalability

a result, they are faster and also capable of changing particular char-
acteristics of the content, such as changing the frame rate and the bit
rate.

Another technique to achieve the UMA goal of supplying any kind of de-
vice with consumable content from a single content base is by encoding
it in a scalable way. As such, it becomes feasible to derive different ver-
sions from a single content base by simple, mostly truncation, operations
on the bitstream.

Within this chapter, we elaborate on the different types of scalability
for video content and give an overview of different scalable video coding
techniques. We also discuss a fast object tracking system. This system
consists of a collection of algorithms with low time complexity making
it possible to automatically track moving objects. Because our system
reuses information from the encoder, the object tracking can be per-
formed in real-time. The algorithms are implemented in an MPEG-4
Fine-Granularity Scalability (FGS) encoder and enhance its Region-of-
Interest (ROI) functionality.

5.2 Types of Video Scalability

Video Scalability means the possibility to manipulate a video stream in
the compressed domain so a new video stream can be obtained with
different characteristics. There are three main types of video scalability:

• temporal scalability.

• signal-to-noise ratio scalability.

• spatial scalability.

A video can be scaled in order to reduce the required bandwidth or to
lower the necessary processing power. The downside is degradation in
(perceived) quality.

5.2.1 Temporal Scalability

Temporal scalability modifies the number of frames per second. The
illusion of motion in a (natural) video is created by projecting roughly 24

5.2. Types of Video Scalability 101

slightly different images per second to the human visual system. Using
more images per second enforces this illusion so a more fluent motion
is perceived; using fewer images per second introduces a jerkiness that
humans can observe.

Temporal scalability is the easiest form of scalability and can be re-
alized by almost all existing video coders. If the video encoder does
not eliminate the temporal redundancy between frames (e.g., Motion
JPEG2000 [110]), temporal scalability is accomplished in a trivial way
by not transmitting or not decoding all the frames of the video stream
but only, for example, the odd frames in case of a dyadic temporal re-
duction.

 I B B P B B P B B P
Figure 5.1: Ten successive frames from the “Crew” sequence with
IBBPBBPBBP-GOP structure. The P-frames depend on the previous I or
P-frame; the B-frames depend on the previous and next I or P-frames; the
I-frames are independent of any other frame.

However, most video encoders try to minimize inter-frame redundancy
– i.e., removing the similarities between successive frames – because this
results in a higher compression ratio [111]. These kinds of encoders re-
quire a different strategy to allow temporal scalability. Typically, video
encoders do not work on complete video streams, but on a smaller group
of pictures (GOP). A GOP is the base work-unit of the video encoder,
hence the inter-frame redundancy within a GOP is to be eliminated.
A GOP starts with a frame that is encoded independently from any
other frame, also called an intra-coded frame or I-frame. The remain-
ing frames of the GOP are inter-coded frames. This means that these
frames use information from previous frames (also called P-frames) or
from previous and future frames (also called B-frames). Figure 5.1 illus-

102 Video Scalability

trates this concept for a GOP of ten frames. Because some frames are
referenced by other frames, these reference frames cannot be eliminated
when executing a frame rate reduction. Indeed, temporal scalability can
be performed by first dropping the unreferenced B-frames. If necessary,
the P-frames can be dropped back-to-front.

It should also be mentioned that recent video coding technologies (such
as the MPEG and ITU.T H.264/MPEG-4 Part 10 – Advanced Video
Coding and Scalable Video Coding standards) refine these principles.
They allow GOP structures that do not start with an intra-coded frame;
GOP structures that are changed during encoding; frames that are par-
titioned in several slices of different types (intra-coded I-slices and inter-
coded P- or B-slices); P-slices that use information from subsequent
slices, et cetera.

5.2.2 Signal-to-Noise Ratio Scalability

Signal-to-Noise Ratio (SNR) scalability modifies the number of visual
artifacts in and sharpness of the video stream, as illustrated in Fig-
ure 5.2.

(a) original image (b) overall quality reduc-
tion

(c) selective quality reduc-
tion

Figure 5.2: Examples of SNR Scalability.

SNR scalability can be accomplished by several techniques. In case
of classic Discrete Cosine Transform (DCT) based video coders, the
easiest way is by only using the upper-left coefficient(s) of the DCT-

5.2. Types of Video Scalability 103

matrix. It can also be realized by creating a multilayer version of the
video content, as illustrated in Figure 5.3, so the base layer contains the
coarsest version and the higher layers enhance this version. For wavelet-
based video coders, SNR scalability can be achieved by processing only
the LL-subband as will be explained in Section 5.3.3.

Nth Enhancement Layer

2nd Enhancement Layer

1st Enhancement Layer

Base Layer

Encoder Decoder

+

+

+

Figure 5.3: Schematic representation of a multilayer video encoder / decoder.

5.2.3 Spatial Scalability

Spatial scalability modifies the number of pixels in the video content,
resulting in a change of resolution. This form of scalability is very impor-
tant to support the many different display sizes of all existing terminals.
Indeed, it is a waste of resources to stream and decode a high definition
video with a resolution of 1920 × 1080 pixels on a Common Intermedi-
ate Format (CIF) sized (352 × 288 pixels) display. Figure 5.4 gives an
overview of the contemporary display resolutions.

Spatial scalability can be accomplished by resizing or by cropping the
original video content. Either way, it is the most difficult form of scal-
ability to realize with traditional DCT-based video coders and is only
feasible with an optimized video encoder. Encoders supporting this form
of scalability tend to use a multilayer approach, as illustrated above in
Figure 5.3. Here, the base layer contains the video feed in the lowest res-
olution, for example Quarter CIF (QCIF). By adding the information of
one or more layers, a higher resolution can be obtained. As such, spatial
scalability can be accomplished by only transmitting or decoding those
layers required to obtain the desired resolution. When using a wavelet-
based video coder, spatial scalability can be obtained more easily as will
be explained in Section 5.3.3.

104 Video Scalability

Full HDTV
1920x1080

Standard HDTV
1280x720

PAL SDTV
720x576

VGA
640x480

CIF
352x288

QCIF
176x144

Figure 5.4: Common display resolutions.

5.3 Scalable Video Coders

In this section, we give an overview of recent video coding technologies
that support scalability. As temporal scalability can easily be realized
as discussed in Section 5.2.1, we will only discuss recent video standards
that have specific support for at least one of the two other types of
scalability, namely SNR scalability or spatial scalability.

5.3.1 Fine-Granularity Scalability

The MPEG-4 Fine-Granularity Scalability standard [112] is a scalable
extension of the MPEG-4 Visual standard [113]. Its goal is to allow
streaming servers to adapt the bit rate of streamed video to the char-
acteristics of the network and, by extension, to the possibilities of the
end-user device. Basically, FGS creates two video layers (see Figure 5.5):
a base layer that contains a low quality version of the video that can be
streamed and decoded under any circumstances by any FGS-compliant
device, and an enhancement layer that improves the quality of the base
layer video. The enhancement layer is constructed in such a way that
the streaming server can truncate this bitstream at any desired bit loca-
tion, resulting in a loss of visual quality, but empowering the streaming
server to comply with the targeted bit rate. Hence, FGS supports SNR
scalability for a given video stream.

5.3. Scalable Video Coders 105

I B P B

enhancement layer

base layer base layer

enhancement layer

I B P B

enhancement layer

part of the enhancement
layer being transmitted

Rmax

RBL

encoder streaming server

Rt

RBL bit rate base layer

Rt targeted bit rate

maximum bit rateRmax

Figure 5.5: Real-time bit rate adaptation in MPEG-4 FGS. The streaming
server will only send the dark gray parts of the enhancement layer (the base
layer is always sent) to comply with the targeted bit rate [114,115].

The base layer is traditionally encoded with MPEG-4 Visual Simple
Profile [113, 116]. However, other encoding schemes for the base layer
are suggested in [117–120]. As such, FGS can be seen as an enhance-
ment scheme on top of existing coders delivering additional quality and
enabling various additional features.

When referring to FGS encoding, we actually refer to the encoding of the
enhancement layer, as the base layer is encoded by another codec. For
the encoding of the FGS enhancement layer, different techniques are
possible: Embedded Zero-tree Wavelet encoding [121, 122], matching
pursuit coding of the image residue [123], and bit-plane DCT residue
encoding [124] to name a few. Within MPEG, the latter was chosen as
the encoding technique for the MPEG-4 FGS enhancement layer.

The enhancement layer receives as input the DCT residue values from
a macroblock in a VOP1, i.e., the values obtained after subtracting the
de-quantized DCT coefficients of the base layer from the original DCT
coefficients (Figure 5.6a). The resulting residue matrix inherits all char-
acteristics of a DCT matrix. The difference to more traditional video
encoding schemes is a novel approach to encode these residual values.

1MPEG-4 defines a Video Object Plane (VOP) as a time sample of a video object,
such as a video frame.

106 Video Scalability

(b)

enhancement
layer

base
layer

low quality
video

VLD IDCT

MC

Q-1VLD IDCT

MC

Q-1

high quality
video

SEA-1

(I)DCT: (Inverse) Discrete Cosine Transformation
Q(-1): (Inverse) Quantization
MC: Motion Compensation
ME: Motion Estimation
VLC: Variable Length Coding
VLD: Variable Length Decoding
SEA(-1): (Inverse) Selective Enhancement Algorithms
(Bit-plane manipulations)

(a)

enhancement
layer

base
layer

video
DCT Q

Q-1

VLC

bitplane
VLC

IDCT

MC

DCT
residue

SEA

ME

Figure 5.6: (a) MPEG-4 FGS encoder and (b) MPEG-4 FGS decoder with
bit-plane shifting logic.

Most traditional video encoding schemes apply run-level encoding on the
values of the quantized DCT matrix of the macroblock obtained after a
specific scan method, such as raster-scan or zig-zag scan. The bit-plane
DCT residue encoding is performed by zig-zag scanning the values of the
residue matrix and by placing them in their binary form as a column in
a matrix (Figure 5.7). The sign of a value is stored separately, so only
the absolute value is used for the binary representation. A bit-plane is
one row in this matrix, thus a sequence of 256 bits in case the size of
a macroblock is 16 × 16 pixels, as in MPEG-4 Visual Simple Profile.
The top bit-plane is the Most Significant Bit-plane (MSB); the lowest
bit-plane is called the Least Significant Bit-plane (LSB).

The encoder processes the binary matrix representation of the residue
DCT values bit-plane by bit-plane, starting with the MSB and ending
with the LSB. Each bit-plane is translated to unique symbols and en-

5.3. Scalable Video Coders 107

10 0 13 0 ...00

0007 0 -2 0

0 2 00 0 00

0 0 00 0 00

0 0 00 0 00

0 0 00 0 00

0 -2 00 0 00

1

+

1

0

bit-plane
MSB

MSB-1

MSB-2

LSB+

1
0

+
-

1

0

-
+

1

+

1

00…0100000000100100LSB

00…0000100110100101MSB-2

00…0000000000000100MSB-1

00…0000000000000001MSB

...

...

Figure 5.7: Bit-plane representation of a DCT residue matrix.

coded by the run-length variable length coding (VLC) technique.

The encoder or a streaming server can drop one or more bit-planes –
starting with the LSB up to the MSB. Dropping a bit-plane means not
completely encoding or not completely transmitting the bit-plane and,
as a result, using fewer bits for the enhancement layer. This technique
enables the encoder or the streaming server to comply with the tar-
geted bit rate Rt in Figure 5.5. If one or more bit-planes are (partially)
dropped, the reconstructed values at the decoder side are less precise.
These less accurate values can still be used to rebuild the macroblocks
of the VOP, but with a decreased visual quality. When dropping bit-
planes, large residue values are more likely to have a reconstructed value
than small residue values as the larger values will have bits in the upper,
non-discarded, bit-planes.

Finally, we briefly introduce the support for Region-of-Interest in
MPEG-4 FGS. A ROI is an area within the video scene that is marked
as more important than the remaining areas. For example, a person in
a surveillance video is a more important object than the background.
Coders supporting the ROI concept create a video stream that ensures
that the visual artifacts first occur outside of the selected region. As
such, this is a special form of SNR scalability so only selected parts are
not degraded (Figure 5.2(c)).

108 Video Scalability

MPEG-4 FGS natively supports the ROI concept. It is done by execut-
ing an additional operation on the binary matrix representation before
bit-plane dropping and works on the complete DCT residue matrix of a
macroblock. A shift operation is performed on its values, i.e., multiply-
ing the matrix coefficient values with 2α (α is the number of bit-planes).
Because the binary representation of these shifted values appears in
higher bit-planes, they are placed more in front during encoding. This
improves the probability they will be present in the received – and prob-
ably truncated – enhancement layer. Hence, the probability increases
for all values within this DCT residue matrix to be reconstructed with a
higher precision. As a result, this operation shifts selected and complete
macroblocks by a given number of bit-plane levels and therefore can be
used to support ROI. Obviously, the adequate information about the
shifting is added for each macroblock to the resulting bitstream so the
decoder can perform the inverse transformation. This is represented by
the SEA−1 block in Figure 5.6b.

5.3.2 Scalable Video Coding

After MPEG finalized its MPEG-4 Visual standard, it teamed up again
with the ITU.T Video Coding Experts Group (VCEG) in the Joint
Video Team (JVT) that previously led to the highly successful MPEG-2
standard (dubbed H.262 by ITU.T). The JVT recently finalized the
H.264/MPEG-4 Part 10 – Advanced Video Coding (AVC) standard.
This coding standard achieves much higher compression ratios while
maintaining the same video quality levels when compared to other video
coders [125].

The AVC standard does not natively support scalability (temporal scal-
ability excluded). As this was perceived as a missing feature, the JVT
group started developing the Scalable Video Coding (SVC) standard,
which will be amendment 3 to the AVC specification [126, 127]. SVC is
a video coding standard that natively supports SNR and spatial scala-
bility, the latter being the main difference with FGS. After the initial
tests and evaluations of the different proposals, AVC was selected as the
base video coder for SVC.

In the remainder of the section, we explain how the different types of
scalability are achieved. Since the SVC standard is still work in progress,
this information is preliminary and might change. More information can
found in [25,128].

5.3. Scalable Video Coders 109

Video

Spatial
Reduction

Spatial
Reduction

Base Layer
(AVC Compliant)

Spatial Layer

Temporal
Decomposition

Motion
Coding

AVC
Transformation

Entropy
Encoding

Motion vectors

Texture information

SNR
(fine grain)

Base Layer (Core)

Temporal
Decomposition

Motion
Coding

AVC
Transformation

Entropy
Encoding

Motion vectors

Texture information

SNR
(fine grain)

Spatial
Interpolation

Texture information

Multiplexer

Bitstream

Spatial Layer

Temporal
Decomposition

Motion
Coding

AVC
Transformation

Entropy
Encoding

Motion vectors

Texture information

SNR
(fine grain)

Spatial
Interpolation

Motion information Texture information

Motion information

Figure 5.8: SVC encoder with three levels of spatial scalability and support
for fine-grain SNR scalability [127].

To obtain temporal scalability, SVC exploits the AVC capabilities by
creating a hierarchical, pyramid-like structure of B-pictures.

Spatial scalability is achieved by creating a multilayer video encoding
structure – Figure 5.8 shows for example a three-layered structure. The
base layer contains the lowest resolution of the video stream. When
adding the enhancement layers, the resolution of video is enlarged. Prac-
tically, the input video is first scaled by the “Spatial Reduction” block(s)
to the desired video resolution. The spatial scaling factor is not limited
to two (to get half resolution), but any factor may be used and also
cropping of the video is allowed.

Next, the video with the lowest resolution is the input for the base
layer. This video is encoded by a regular AVC encoder, as such an

110 Video Scalability

AVC-compliant bitstream is sent to the multiplexer. The encoding of
the enhancement layers is done slightly different as these layers not only
receive the original input video scaled to the desired resolution, but also
the decoded and up-scaled version of the video of the layer below the
current layer. Furthermore, the layer receives information about the
motion estimation from the layer below. This inter-layer information
exchange is an important novel concept for multilayer video coding and
allows the encoder to improve the motion estimation for the current
layer, for example, by accelerating the algorithm.

Finally, these layers are multiplexed into one bitstream. The bitstream
is constructed so at least the base layer can be decoded by any AVC-
compliant decoder. Even more, active network nodes can be created
that are capable of removing one or more enhancement layers. Hence,
networks can scale the streams to fit their bandwidth capacity.

SNR scalability in SVC is achieved in two ways: a fine-grain solution,
inspired by the FGS technology, and a coarse-grain system, using addi-
tional layers.

The fine-grain solution creates SNR scalability within a layer using a
method known as progressive refinement. This repeats the quantization
step in the entropy encoder several times, see also Figure 5.8. During
the first execution of this encoding step, a large quantization step size
is used. This results in a coarse version. In subsequent executions
the quantization step is reduced, resulting in a more accurate image.
Only the difference between this enhanced image and the image obtained
during the previous step is stored, as such reducing the overhead.

The coarse-grain solution provides SNR scalability by adding enhance-
ment layers to the multilayer structure. The same concept as for spatial
scalability intended layers is used for the SNR scalability intended layers.
The difference is that the latter works with the same video resolution as
the layer below, but the quantization step is lower. In other words, the
resulting stream of this layer is a more accurate version compared to the
resulting stream of the layer below. Again, inter-layer communication
is used to improve the processing. Note, that mixing layers intended for
spatial scalability with layers for coarse-grain SNR scalability is possible.

5.3. Scalable Video Coders 111

5.3.3 Wavelets

While wavelet-based (video) coders are not yet common due to their
high complexity, we briefly discuss this technology because of its good
scalability features.

A wavelet-based transformation is seen as an improved alternative for
DCT as it is insensitive to the introduction of block artifacts. Block
artifacts appear because DCT works on blocks of, for example, 16× 16
pixels and not on a complete video frame directly. During the decod-
ing and after the inverse DCT, the blocks are tiled to reconstruct the
video frame. However, as the encoding and decoding steps are lossy
transformations, these blocks differ, amongst other things, in color in-
tensity. This difference is most visible at their borders, hence the blocky
appearance.

Wavelets do not work on chunks of the frame, but on the frame as a
whole – although for optimized parallel processing the image is some-
times split-up. By applying a wavelet filter in the horizontal and vertical
direction, such as the Haar filter, four subbands are obtained. These sub-
bands are notated as LL, LH, HL and HH. LL is an approximation of
the original image, the other subbands contain information about the
difference between the LL image and the original image. The decom-
position can be repeated several times using the LL subband as input
image. Figure 5.9 shows a wavelet decomposition of the image “Lena.”

Figure 5.9: Wavelet decomposition of the image “Lena.”

112 Video Scalability

The image in the LL subband is not only a coarser version of the original
image, it is also half the size thereof. In other words, if only the LL
subband of a wavelet decomposed image is decoded, the resulting image
is a SNR and spatial scaled version. By combining particular subbands,
it is possible to obtain a pure SNR scaled version, a pure spatial scaled
version, or a combination of both.

The wavelet-based coding system as described above, can not only be
used for still images, but also for video sequences. Indeed, one can
simply code every frame independently (e.g., Motion JPEG2000 [110]).
However, these methods do not optimally remove the temporal redun-
dancies between frames. To realize the latter, many advanced motion-
compensated temporal filtering (MCTF) methods are described in the
literature, for example, the motion-compensated three-dimensional sub-
band/wavelet coding (MC-3DSBC) [129] and the motion-compensated
embedded zero-block coding (MC-EZBC) [130,131] to name a few.

5.4 Object Tracking

As explained earlier, a Region-of-Interest is a particular area in a video
scene that is seen as more important than the surrounding areas as illus-
trated in Figure 5.2(c). Usually, this implies that one or more objects in
this region deserve particular attention. An issue that arises is the iden-
tification of these important regions in the video scene and the tracking
of the object(s) throughout the video sequence. The remainder of this
chapter focuses on the latter issue and introduces novel algorithms to
make the pursuing of selected objects possible, also called object track-
ing. These new algorithms reuse the motion vectors that are estimated
during the motion estimation step of the video encoder. While other
comparable object tracking algorithms work in the uncompressed do-
main and have a very high computational complexity, our algorithms
work during the actual encoding of the video in the compressed domain
and use the information directly available from the encoder itself. This
results in an object tracking scheme that is very fast and that can be
used for real-time streaming applications.

Note, our techniques do not identify the objects, also called object seg-
mentation or object classification. It is assumed that the object that
has to be followed is determined beforehand, either by manual selection
(e.g., by a human operator) or automatically by using a segmentation

5.4. Object Tracking 113

technique. An overview of these techniques is given at the end of this
chapter.

Our algorithms are implemented on top of the MPEG-4 FGS reference
software2. We enhance the ROI capabilities of this coder by automati-
cally moving or resizing the ROI according to the motion or the change
in size of the tracked object. Pseudo-code listings as an illustration of
our algorithms are given in the Appendix B.

5.4.1 Fast Object Tracking Techniques

During the encoding of the base layer, with an MPEG-4 Visual Simple
Profile encoder, the motion vector field is estimated. This is a mathe-
matical representation of the displacement of a group of pixels between
related (previous) frames of a video stream. For each macroblock, one or
more motion vectors are estimated. We reuse this information to deter-
mine the motion of the object within the ROI, represented by a object
motion vector. This is illustrated by the dashed arrow in Figure 5.6a.
The object motion vector is used to move the location of the ROI and,
as such, to follow the motion of the object. Furthermore, as the object
becomes larger or smaller, for example due to camera zooming, the ROI
must grow or shrink accordingly.

The novel algorithms discussed in this section work on a frame3 per
frame basis; for each frame the following steps are executed (pseudo-
code in Listing B.1):

• First, the macroblocks that are part of the ROI are identified.

• Hereafter, the motion of the object within the ROI is determined,
using the motion vectors from selected macroblocks. This results
in the translation of the ROI.

• Next, the ROI is resized automatically to cope with the object
resizing using information from the motion vector field.

• Finally, the relevant macroblocks of the updated ROI are identified
and these are shifted by the shift value α.

2The reference software source code is available at http://megaera.ee.nctu.edu.
tw/mpeg. We used the Microsoft-FDAM1-v2.4-030305 version.

3Because our algorithms are independent of the actual video encoding technology
used, we prefer to use the generic term “frame” instead of “VOP.”

http://megaera.ee.nctu.edu.tw/mpeg
http://megaera.ee.nctu.edu.tw/mpeg

114 Video Scalability

To end this section, a cloaking technology is introduced and the time
complexity of the algorithms is given.

Selecting the macroblocks

In order to support the ROI concept, the default MPEG-4 FGS method
uses a matrix that contains the shift values for the macroblocks. This
matrix, also called the ROI mask, creates a direct mapping between a
macroblock and the Region-of-Interest. Indeed, if the shift value of a
macroblock is larger than zero, shifting of this block will occur, hence
the macroblock is part of the ROI. On the other hand, if the shift value
of a macroblock is zero, no shifting will occur, hence the macroblock is
no part of the ROI.

Because an MPEG-4 Visual Simple Profile base layer encoder uses mac-
roblocks of 16 × 16 pixels, these rather large blocks of pixels are not
suitable for fine-detailed object tracking. Hence, we do not use this de-
fault ROI mask, but we create an enhanced ROI mask that works as a
separate floating layer on top of the frame and the macroblocks within
the frame. This enhanced mask no longer needs to be aligned with the
boundaries of the macroblocks. Hence, our algorithms are independent
of the size of a macroblock, which is determined by the video encoding
specification. Figure 5.10 illustrates the enhanced ROI mask concept as
a floating layer (represented by the black grid) on top of the macroblocks
(represented by the white grid).

In addition, the enhanced mask is approximately the size of the object
that is being traced, not the size of the frame. More precisely, the
enhanced ROI mask usually has the same size of the region that is
visually improved and a cloaking mechanism ensures that the size of the
visually improved region and the size of the tracked object do not need
to coincide. Nevertheless, we first explain the object tracking system
without the cloaking technique.

The enhanced ROI mask is represented by the matrix T with dimensions
TC × TR; TC is the number of columns and TR is the number of rows in
the enhanced ROI mask. The value of an element in matrix T – referred
to as T (x, y) – represents the shift value α that has to be applied to the
corresponding macroblock(s). Note that if T (x, y) = 0, no shifting will
occur, allowing to create an arbitrary-shaped ROI that holds arbitrary-
shaped objects. Further, an element T (x, y) can represent any block

5.4. Object Tracking 115

size; here we use 8 × 8 pixels as block size, which is a quarter of the
default 16 × 16 pixels macroblock size in MPEG-4 FGS. This creates
a more fine-grained ROI mask, allowing a more neatly-fitting selection
of the object. The discussed algorithms can easily be modified to cope
with any other size. For the remainder of this chapter, we will assume
8× 8 pixels as block size for the ROI mask elements and a macroblock
size of 16× 16 pixels.

As the enhanced ROI mask floats on top of the frame, its location is
also required. This is specified in pixel coordinates (denoted as LX and
LY) and locates the upper-left corner of the mask. Note, this location
does not need to be aligned to a macroblock boundary.

T(x,y)(LX,LY)

TR

TC

Figure 5.10: A part of a frame where the card is selected as the ROI. The
enhanced ROI mask is a floating layer on top of the frame (represented by
the black grid) and it is not aligned to the boundaries of the macroblock
(represented by the white grid). The enhanced ROI mask has dimensions
TC × TR = 8× 10. An element of the mask is notated as T (x, y). The upper-
left corner of the mask has the coordinates (LX , LY).

Because of the decoupling of the ROI mask with the macroblocks, a
mapping algorithm is required to determine the macroblocks that are
(partially) covered by the ROI. Each element T (x, y) in the enhanced
ROI mask matrix T covers at least one macroblock, denoted as mi,j .

116 Video Scalability

The indices i and j are calculated by the formulas:

i =
⌊

LX + 8x

16

⌋
, j =

⌊
LY + 8y

16

⌋
where x = 0, 1, . . . , (TC − 1), y = 0, 1, . . . , (TR − 1), i ∈ [0,M [, and
j ∈ [0, N [(M being the number of macroblocks in a frame horizontally
and N being the number of macroblocks in a frame vertically).

The computed macroblock mi,j is tagged as part of the ROI and receives
the shift value T (x, y). As T (x, y) represents a block of 8 × 8 pixels, it
is possible that T (x, y) covers other macroblocks as well, as illustrated
in Figure 5.11, namely mi+1,j , mi,j+1, and mi+1,j+1. In Figure 5.11(b),
T (x, y) overlaps with macroblock mi,j and macroblock mi+1,j . This can
be mathematically expressed by the conditions (LX + 8x) mod 16 > 8
and (LY + 8y) mod 16 ≤ 8. Other overlaps can be determined in a
similar way. All macroblocks that are covered receive the shift value
T (x, y), hence in case of Figure 5.11(b) the macroblocks mi,j and mi+1,j

receive this shifting value. If a macroblock already received a shifting
value, then the highest shifting value is used. In case of Figure 5.11(b),
the macroblock mi,j receives the highest shifting value from the ROI
mask elements T (x− 2, y − 1), T (x− 1, y − 1), T (x, y − 1), T (x− 2, y),
T (x − 1, y), T (x, y), T (x − 2, y + 1), T (x − 1, y + 1), and T (x, y + 1)
assuming that x−2 ≥ 0, y−1 ≥ 0, and y+1 < TC . Listing B.2 contains
pseudo-code to determine the shifting values for all macroblocks.

The time complexity of the described algorithm to determine the mac-
roblocks that are covered by one ROI mask element T (x, y), is O(1): the
calculation of i and j with the given formulas and the determination of
overlaps with any neighboring macroblocks is done with a constant time
complexity. Note, all multiplication and division operations to select the
macroblocks can be executed by (fast) binary bit-shift operations.

Object Motion

Object tracking using the motion vectors of the object is only possible if
the motion vector field is available. Traditional base layer encoders, such
as implementations of the MPEG-4 Visual Simple Profile specification,
do not estimate the motion vector field for intra coded frames. This
limitation can be circumvented by different strategies. For example, the
encoder can be slightly modified, with minor overhead, in such a way
that motion estimation is performed – hence the determination of the

5.4. Object Tracking 117

macro
block

(a) (b)

(c) (d)

T(x,y)
j

j + 1

i + 1i

mi,j+1 mi+1,j+1

mi+1,jmi,j
j

j + 1

i + 1i

mi,j+1,k mi+1,j+1,k

mi+1,jmi,j T(x,y)

j

j + 1

i + 1i

mi,j+1,k mi+1,j+1,k

mi+1,j,kmi,j,k

j

j + 1

i + 1i

mi,j+1,k mi+1,j+1,k

mi+1,j,kmi,j,k

T(x,y) T(x,y)

j

j + 1

i + 1i

macro
blockT(x,y)

mi,j+1 mi+1,j+1

mi+1,jmi,j

(a)

j

j + 1

i + 1i

T(x,y)

mi,j+1 mi+1,j+1

mi+1,jmi,j

(b)

j

j + 1

i + 1i

T(x,y)

mi,j+1 mi+1,j+1

mi+1,jmi,j

(c)

j

j + 1

i + 1i

T(x,y)

mi,j+1 mi+1,j+1

mi+1,jmi,j

(d)

Figure 5.11: Mapping of the ROI mask element T (x, y) onto the macroblock
mi,j . (a) The ROI mask element (representing 8× 8 pixels) fits completely in
the macroblock mi,j of 16× 16 pixels. (b)(c)(d) The ROI mask element covers
neighboring macroblocks as well.

118 Video Scalability

motion vector field – even for intra coded frames. The motion estimation
can use the latest available frame as reference. In other words, the
dashed arrow in Figure 5.6 always provides the object motion vector
field, also for intra coded frames. Note, the motion vector field for intra
coded frames does not need to be stored into the resulting bitstream,
so this modification of the encoder’s implementation does not affect the
structure of the resulting encoded video bitstream. Because there is at
least one solution available, this and following subsections assume that
the motion vector field for the current frame is available.

To determine the motion of the object, the object motion vector (OMV)
is calculated and is used to translate the upper-left corner of the ROI
mask resulting in the adjustment of the LX and LY values of the ROI
mask. The OMV is calculated using the steps explained in the following
paragraphs.

For each T (x, y) element, four motion vectors are collected from the
motion estimation. Which motion vectors are chosen, depends on the
location of T (x, y) as shown in Figure 5.12 (motion estimation is in 4MV
mode4). As a result four sub-blocks are selected and the motion vectors
thereof are denoted as the vectors MV 1

x,y to MV 4
x,y (Listing B.5). The

selection of the motion vectors is independent of their accuracy; the
implementation in MPEG-4 FGS uses half pixel element precision as
MPEG-4 Visual Simple Profile is used for the base layer.

Next, four overlapping percentages (P1 to P4) are calculated. They
express the overlap of an element T (x, y) with the four selected sub-
blocks. In 4MV mode, first the horizontal (dx) and vertical (dy) overlap
of T (x, y) with the first sub-block is determined. This is illustrated by
Figure 5.13 and calculated using the formulas:

dx = 8− ((LX + 8x) mod 8) = 8− (LX mod 8)
dy = 8− ((LY + 8y) mod 8) = 8− (LY mod 8)

4 The 4MV mode divides a macroblock in four 8 × 8 blocks (sub-blocks). The
motion vectors of the four sub-blocks are estimated. For the macroblock mi,j these
are notated as MV γ

i,j , γ = 1, 2, 3, 4. 1MV mode – where only one motion vector per
macroblock is estimated – can also be used by the algorithm.

5.4. Object Tracking 119

j

j + 1

i + 1i

macro
block

(a)

j

j + 1

i + 1i

j

j + 1

i + 1i

j

j + 1

i + 1i

(b)

(c) (d)

MV 2
i+1,j

MV 4
i+1,j

MV 3
i,j+1 MV 4

i,j+1

MV 1
i,j MV 2

i,j

MV 3
i,j MV 4

i,j

MV 1
i+1,j

MV 3
i+1,j

MV 1
i,j+1 MV 2

i,j+1 MV 1
i+1,j+1MV 2

i+1,j+1

MV 3
i+1,j+1MV 4

i+1,j+1

MV 2
i+1,j

MV 4
i+1,j

MV 3
i,j+1 MV 4

i,j+1

MV 1
i,j MV 2

i,j

MV 3
i,j MV 4

i,j

MV 1
i+1,j

MV 3
i+1,j

MV 1
i,j+1 MV 2

i,j+1 MV 1
i+1,j+1MV 2

i+1,j+1

MV 3
i+1,j+1MV 4

i+1,j+1

MV 2
i+1,j

MV 4
i+1,j

MV 3
i,j+1 MV 4

i,j+1

MV 1
i,j MV 2

i,j

MV 3
i,j MV 4

i,j

MV 1
i+1,j

MV 3
i+1,j

MV 1
i,j+1 MV 2

i,j+1 MV 1
i+1,j+1MV 2

i+1,j+1

MV 3
i+1,j+1MV 4

i+1,j+1

MV 2
i+1,j

MV 4
i+1,j

MV 3
i,j+1 MV 4

i,j+1

MV 1
i,j MV 2

i,j

MV 3
i,j MV 4

i,j

MV 1
i+1,j

MV 3
i+1,j

MV 1
i,j+1 MV 2

i,j+1 MV 1
i+1,j+1MV 2

i+1,j+1

MV 3
i+1,j+1MV 4

i+1,j+1

j

j + 1

i + 1i

macro
block

(a)

j

j + 1

i + 1i

j

j + 1

i + 1i

j

j + 1

i + 1i

(b)

(c) (d)

T(x,y) T(x,y)

T(x,y) T(x,y)

T(x,y)

T(x,y)

T(x,y) T(x,y)

Figure 5.12: Selecting the four appropriate motion vectors for ROI mask
element T (x, y), based on the overlap with the macroblocks.

120 Video Scalability

The dx and dy values allow the calculation of the overlapping percentages
Pγ :

P1 = dxdy/64
P2 = (8− dx)dy/64
P3 = dx(8− dy)/64
P4 = (8− dx)(8− dy)/64

dx

dy P1 P2

P3 P4

mi,j

Figure 5.13: A macroblock mi,j , divided in four 8× 8 sub-blocks, is covered
by an T (x, y) element. The figure shows how to determine dx and dy and the
overlapping percentages P1 to P4.

These percentages Pγ are identical for all elements of the ROI mask
T , because we use a block size of 8 × 8 pixels for the ROI mask ele-
ments. Pseudo-code on how to calculate dx, dy, and Pγ can be found in
Listing B.3.

Next, the object motion vector (OMVx,y) for the T (x, y) element is de-
termined as the weighted sum of the motion vectors MV γ

x,y and the
overlapping percentages Pγ by:

OMVx,y =

∑4
γ=1

(
MV γ

x,y · Pγ

)∑4
γ=1 Pγ

(5.1)

Finally, the OMV is calculated as the average of all OMVx,y vectors:

OMV =

∑TC−1
x=0

∑TR−1
y=0 OMVx,y

TCTR
(5.2)

5.4. Object Tracking 121

The resulting motion vector is the overall object motion vector of the
ROI mask (Listing B.4). This vector is used to adjust the LX and LY

values.

Formula 5.1 has two additional constraints. The first constraint removes
the influence of motion vectors of too small overlapping areas. If Pγ is
smaller than a threshold λ, the value of Pγ is substituted by zero. This
explains the need of the divisor in Formula 5.1.

The second constraint removes the influence of the motion vectors being
part of the border of a ROI mask as these could become less reliable
after some iterations of the algorithm. If T (x, y) is part of the border of
the ROI mask, the vector OMVx,y is set to the null vector. In this case,
the divisor in Formula 5.2 is decreased with the number of ROI mask
elements that fulfills constraint (C.2).

These constraints can be expressed as follows:

(C.1) Pγ = 0 if Pγ < λ;

(C.2) OMVx,y = ~0 if (x = 0 or x = TC − 1) and TC > 2;
OMVx,y = ~0 if (y = 0 or y = TR − 1) and TR > 2.

With regard to the time complexity to compute the OMV vector, the
sums in Formula 5.2 are decisive and result in O(TC · TR) = O(n) with
n being the total number of elements of the ROI mask matrix T , i.e.,
the calculation is linear to the number of ROI mask matrix elements.
Indeed, an OMVx,y vector in Formula 5.1 is calculated in O(1) as all
MV γ

x,y and all Pγ (with γ = 1 . . . 4) are determined in O(1) for arbitrary
T (x, y). For MV γ

x,y this is proven by the time-complexity analysis in the
previous section. The Pγ values are calculated by simple straightforward
computations, hence O(1). In addition, these Pγ values are actually
calculated only once as they are equal for all elements of the ROI mask.

Object resizing

Object motion captures the global motion of the object inside the ROI.
In addition to this motion, it is also possible that the “size” of the
object changes, due to for example camera zooming or a change in the
relative distance of the object to the camera. As a result, the ROI must
also change in size, otherwise the ROI will be too small or too large
for the larger or smaller object respectively. We call this ROI resizing.

122 Video Scalability

The pseudo-code listing to perform object resizing as explained in this
section can be found in Listings B.6 and B.7.

In total there are two times three possible operations the size of a ROI
undergoes: (1.a) reduction in width; (1.b) stay equal in width; (1.c)
enlarge in width and (2.a) reduction in height; (2.b) stay equal in height;
(2.c) enlarge in height. For every frame, one action is selected from (1.a),
(1.b), and (1.c) and one action is selected from (2.a), (2.b), and (2.c).
Both actions are executed as explained further in this section.

The first step to enable automated resizing of the ROI, is to determine
the two appropriate actions. To do so, the change of the boundaries
of the ROI is calculated using the following formulas. Note, OMV1

x,y

represents the first vector component of the vector OMVx,y, hence the
horizontal motion; OMV2

x,y is the second vector component of this vector,
hence the vertical motion:

ML =
TR−1∑
y=0

OMV1
0,y/TR

MR =
TR−1∑
y=0

OMV1
TC−1,y/TR

MH = ML −MR (5.3)

MU =
TC−1∑
x=0

OMV2
x,0/TC

MD =
TC−1∑
x=0

OMV2
x,TR−1/TC

MV = MU −MD (5.4)

ML represents the horizontal motion of the left-hand ROI boundary,
MR is the horizontal motion of the right-hand ROI boundary, MU is the
vertical motion of the topmost boundary, and MD denotes the vertical
motion of the bottom boundary. MH is the horizontal motion and MV

is the vertical motion.

Next, the two ROI resize actions are determined by the formulas:

Action1 =


(1.a) : MH > δ
(1.b) : −δ ≤ MH ≤ δ
(1.c) : MH < −δ

(5.5)

5.4. Object Tracking 123

Action2 =


(2.a) : MV > δ
(2.b) : −δ ≤ MV ≤ δ
(2.c) : MV < −δ

(5.6)

δ is a threshold the motion of the ROI boundaries has to reach before
the reducing or enlarging of the ROI mask takes place.

Knowing the required actions, the resizing of the ROI can take place. In
case of action (1.a), the ROI matrix T is replaced by a new matrix T ′

with dimensions ((TC − 1)× TR). The shifting values of the new matrix
T ′ are a linear combination of the values of matrix T , expressed by the
Formula 5.7.

T ′(x, y) = round
(

(TC − x− 1)T (x, y) + (x + 1)T (x + 1, y)
TC

)
(5.7)

where
x = 0, 1, . . . , TC − 2, y = 0, 1, . . . , TR − 1.

This formula reduces the ROI matrix T by one column. Also, the loca-
tion of the enhanced ROI mask is translated so the center of the ROI
mask stays on the spot, hence LX = LX + 4. Next, we calculate the
residue as M ′

H = MH − 8. If the residue value M ′
H is still > δ, the

reduction procedure must be repeated. A similar matrix resize opera-
tion is executed in case of action (2.a) resulting in a new matrix with
dimensions (TC × (TR − 1)) and the new location LY = LY + 4. This is
repeated as long as the residue value M ′

V > δ.

In case of operations (1.b) and (2.b), the ROI matrix T remains invari-
ant.

Finally, in case of an enlarging size, the ROI matrix T is replaced by a
new matrix T ′ with dimensions ((TC + 1) × TR) and LX = LX − 4 in
case of (1.c) and (TC × (TR + 1)) and LY = LY − 4 in case of (2.c). The
values of new matrix T ′ are a linear combination of the values of matrix
T , analogue to the Formula 5.7. This enlarging must also be repeated
as long as the residue values M ′

H < −δ and M ′
V < −δ.

After applying the appropriate resizing actions, the residue values M ′
H

and M ′
V are between −δ and δ. This value is added to the results of the

calculation of Formula 5.3 and Formula 5.4 for the next frame, in other
words we accumulate the motion of the ROI boundaries over multiple
frames.

The time complexity of the algorithm to resize the ROI is determined
as follows. First, the algorithm calculates the horizontal and vertical

124 Video Scalability

motion (i.e., MH and MV) according to the Formula 5.3 and Formula 5.4.
These formulas aggregate over respectively the number of rows and the
number of columns of the ROI mask. This results in a time complexity of
O(TR) for Formula 5.3 and O(TC) for Formula 5.4. The outcome of the
formulas is used to determine the resizing action of the ROI according
to the Formulas 5.5 and 5.6. With regard to the time complexity, this
finding does not alter the time complexity.

The actual resizing of the ROI matrix depends on the type of action. If
no resizing occurs (actions (1.b) and (2.b)), no additional steps must be
performed, hence O(1).

In case of a vertical reduction (action (1.a)), the Formula 5.7 must be
executed. This formula creates a new matrix in O((TC − 1) · TR) =
O(TC · TR) = O(n), i.e., linear to the number of elements in the ROI
matrix. For all other actions ((1.c), (2.a), and (2.c)), the time complexity
can be deduced in a similar way, resulting in O(n) for each of these
actions. When combining two resize actions or a resize action that must
be repeated several times, the overall time complexity remains O(n).

Adding the time complexity O(TR) to calculate Formula 5.3 and the
O(TC) to calculate Formula 5.4 to the time complexity for an actual
resize action (O(n)), the time complexity for the ROI resizing algorithm
is O(n). If no resizing is done (O(1)), the time complexity is O(TR) or
O(TC), thus linear to the maximum number of rows or columns of the
ROI mask matrix.

Cloaking

The algorithms discussed previously enable the creation of an ROI mask
T , containing elements T (x, y) that represent shifting values for blocks
of 8 × 8 pixels. By setting a shift value to zero, it is possible to create
arbitrary-shaped ROI masks. However to determine the object motion
as described in previous section, the motion vectors for all T (x, y) ele-
ments are determined and used in the overall object motion vector calcu-
lations. If the object inside the ROI is not rectangular, the calculation of
the OMV uses all motion vectors within this ROI, even those that are not
associated with this object. This is not desirable as these are associated
with another object which might exhibit another motion trajectory. In
addition, sometimes it is desirable to differentiate between the area to
improve the visual quality and the object that is being tracked as the

5.4. Object Tracking 125

creation of a region slightly larger than the object itself improves visual
perception.

To solve these concerns, an additional cloaking layer is used that allows
full separation of the visually important region and the object that is
being tracked.

The cloaking layer is represented by a new matrix C. It has the identical
dimensions as matrix T and consists of binary values indicating whether
the OMVx,y vector must be taken into account in the overall object motion
vector calculations. The determination of the values in the matrix C is
done by a manual selection, similar to the determination of the object
that must be followed, i.e., the initial determination of matrix T and the
coordinates (Lx, Ly). This results in a third constraint for Formula 5.1:

(C.3) OMVx,y = ~0 if C(x, y) = 0.

Similar as for constraint (C.2), the divisor in Formula 5.2 is decreased
by the number of matrix elements that fulfill constraint (C.3).

In Figure 5.14 a part of a frame is shown from the “hall monitor” se-
quence (see Figure 5.15 for the complete frame). The white grid rep-
resents the borders of the macroblocks, the black grid is the enhanced
ROI mask matrix T and the cloaking matrix C, which coincide. The
hatched parts indicate the cloaking matrix elements larger than zero.
Only the motion vectors of the hatched parts will be used to determine
the overall object motion OMV.

For the macroblock selection and object tracking algorithms, nothing
changes when adding the cloaking matrix C, except for the overall object
motion Formula 5.2, which receives the additional constraint (C.3) and
the ROI resizing algorithm is extended in such a way that not only
matrix T is adjusted to the new size, but also cloaking matrix C. This
is done similar to the creation of matrix T ′ as discussed in the previous
subsection resulting in a new matrix C ′.

The cost in terms of time complexity for adding an additional cloaking
layer only occurs during the resize operation. As the same resizing
formulas are executed as for the ROI mask matrix T , the time complexity
is the same. Hence, the time complexity of resizing the ROI matrix T
and the cloaking matrix C is O(2n) = O(n).

126 Video Scalability

Figure 5.14: A part of a frame of the video sequence “hall monitor.” The
black grid represents the cloaking layer, which coincides with the enhanced
ROI mask matrix T . The hatched parts indicate the cloaking matrix elements
larger than zero. The motion vectors of the parts that are not hatched will not
be used to determine the overall object motion OMV.

Analysis of the Time Complexity

To conclude this section, an overall time-complexity analysis of our algo-
rithms is presented. The algorithms enabling automatic object tracking
in the compressed domain are based on two principles: object motion
and object resizing – resulting in ROI resizing.

For every frame, both algorithms are executed. As demonstrated in the
previous sections, both have a (worst-case) time complexity of O(n),
meaning that the time complexity is linear to the total number of ele-
ments n in the ROI mask matrix. Because both algorithms are sequen-
tial, the global time complexity for our algorithms is also O(n).

As such, using our lightweight object tracking algorithms implies adding
an additional time-cost that is linear to the size of the object we want to
track. Note, the size of the object is normally smaller than a complete
frame. Furthermore, performance analysis of the MPEG-4 reference

5.4. Object Tracking 127

software encoder and the MPEG-4 FGS reference software encoder in
[132] and [133] shows that the encoder needs tens of millions operations
per second. As such, our lightweight algorithms are only a very small
fraction of the total required encoding time. Hence, object tracking in
the compressed domain using the presented algorithms is feasible, even
for real-time streaming applications.

Finally, it must be noted that the object tracking algorithms do not add
any complexity to the video decoder. All algorithms, and associated
time complexity, are part of the video encoder.

5.4.2 Evaluation, Results, and Discussion

Methodology

In this section we evaluate the accuracy of our lightweight object track-
ing algorithms. First, we created a video of a playing card moving
from right to left against a non-uniform background, while the camera
is zooming in. The first frame shows the playing card at the right hand
side. Throughout the frames, the card moves towards and outside the
left boundary of the frame, until only a small piece is visible in the last
frame. Meanwhile the card has more than doubled in size due to the
camera zooming operation. The video has a resolution of 320× 240 re-
sulting in 20×15 macroblocks and has a length of 501 frames. A picture
from this video sequence is shown in Figure 5.10. We also used two well-
know test sequences, namely “hall monitor” (with a CIF resolution of
352× 288) and “crew” (with a high definition resolution of 1280× 720).
One can see excerpts of six frames of the former in Figure 5.15 and a
still image of the latter in Figure 5.16. The first sequence was chosen
because the object being tracked moves away from the camera (hence,
the object is “scaled down”). The second sequence was chosen because
of the larger resolution and higher complexity of the scene.

To test the algorithms, we need to compare our results to a “correct”
set. We asked four different persons who have no visual defects to indi-
cate for each frame the smallest possible rectangular region containing
the object, i.e. the card for the first test sequence; the man on the left
in “hall monitor” sequence and the man on the front right in the “crew”
sequence. All macroblocks that hold (a part of) this region are marked
and stored as the object indication for the given frame. The object in-
dication for the first frame was given as an input, the remaining frames

128 Video Scalability

Figure 5.15: Excerpts of six frames (no. 5, 15, 25, 35, 45, and 55) from the
“hall monitor” test sequence.

Figure 5.16: A still image from the “crew” test sequence.

5.4. Object Tracking 129

were tagged manually. From the four resulting sets of object indica-
tions, we distilled one reference set for each test sequence. In the next
subsection, the construction of these sets is discussed.

The same video feed is used as input video sequence for the object track-
ing algorithm. It receives a matrix T with the initial location (LX , LY)
so the selection of macroblocks, as explained in Section 5.4.1, results in
an object indication identical to the object indication that was given for
the first frame for the manual marking. In the first sequence, the play-
ing card fits perfectly in the ROI mask, hence the cloaking matrix C is
completely filled with values larger than 0. For the other two sequences,
the cloaking matrix C is used so that only the motion vectors of the
human form are taken into account. Figure 5.14 depicts the cloaking
matrix for the “hall monitor” sequence. All values of the matrix T are
α = 9. Next, different parameters were used to investigate their optimal
settings and their influence on the results:

• (C.1): λ = 0.00, λ = 0.05, λ = 0.10, λ = 0.15, λ = 0.20, λ = 0.25.

• δ in Formula 5.5 and Formula 5.6: δ = 2, δ = 4, δ = 8, and
δ = 16.

• applying and not applying (C.2).

It is necessary that λ ≤ 0.25 in constraint (C.1). If λ > 0.25 and the ROI
mask is located in such a way that none of the overlapping percentages
is larger than λ, then constraint (C.1) is never met and consequently
OMV will be the null vector. As a result, the values LX and LY do not
change, and the ROI mask will not move. For all subsequent frames,
the same event will occur, keeping the ROI mask at the same location.

All different combinations are encoded with an I(P*) GOP5 structure.
During the encoding, the macroblocks that are marked for selective en-
hancement by the algorithms are logged for each frame.

Results

First, we elaborate on the results of the manual object indication for
the given video by comparing the different indications given by the four

5 In this notation I(P*) means the encoded video starts with an I-frame, followed
by all P-frames.

130 Video Scalability

persons. To create the reference set for the first test sequence, 473 object
indications can be selected in a trivial manner as there is a majority. To
have for each of the 500 frames one object indication, 27 object indica-
tions must be added to the reference set. To do this, we determine the
person that contributed the most indications to the 473 object indica-
tions and we select the remaining 27 object indications from this person.
This results in a reference set of 500 object indications, for each frame
one indication.

The test reference sets for the “crew” and “hall monitor” sequences are
determined in a similar way.

It can be observed that selecting the “correct” region is, even for humans,
a difficult task. Further investigation of the results shows that most
often the four opinions only differ in one row and/or one column of
macroblocks.

Next, the logs that were created during the encoding of the video are
compared to the constructed reference set and compared to the reference
set accepting a minor dissimilarity of one row and/or one column. The
criterion for evaluation is the percentage of identical object indications:
the higher this value, the better the automatic algorithm performs. This
results in two measurements for each of the different test sequences:

(M.1) Compare to the reference set.

(M.2) Compare to the reference set and accept a dissimilarity of one
row and/or one column as correct.

The results are shown in Figure 5.17 and Table 5.1.

Discussion

The relationship of the results for (M.1) and (M.2) is as expected. Ob-
viously, the results that accept a dissimilarity of one row and/or one
column as correct (M.2) are always better than the cases were such
dissimilarity is not accepted (M.1).

We observe that the value of λ does not have a significant influence
on the results. Because Formula 5.1 weights the value of the motion
vector MV γ

x,y with overlapping percentage Pγ , the influence of small
overlapping areas is automatically reduced.

5.4. Object Tracking 131

010203040506070809010
0

M
.1

M
.2

M
.1

M
.2

M
.1

M
.2

M
.1

M
.2

M
.1

M
.2

M
.1

M
.2

C
.2

no
t C

.2
C

.2
no

t C
.2

C
.2

no
t C

.2

C
ar

d
H

al
l M

on
ito

r
C

re
w

(e
ac

h
pe

rc
en

ta
ge

 is
 a

n
av

er
ag

e
ov

er
 th

e
va

lu
es

 o
f t

he
 d

iff
er

en
t l

am
bd

as
)

percentage

de
lta

 =
 2

de
lta

 =
 4

de
lta

 =
 8

de
lta

 =
 1

6

F
ig

u
re

5.
17

:
O

b
je

ct
tr

ac
ki

ng
te

st
re

su
lt

s.

132 Video Scalability

T
ab

le
5.

1:
O

b
je

ct
tr

ac
ki

ng
te

st
re

su
lt

s
(i

n
%

).

C
ar

d
H

al
l
M

on
it

or
C

re
w

C
.2

no
t

C
.2

C
.2

no
t

C
.2

C
.2

no
t

C
.2

δ
λ

M
.1

M
.2

M
.1

M
.2

M
.1

M
.2

M
.1

M
.2

M
.1

M
.2

M
.1

M
.2

2
0.

00
9

18
8

13
5

36
5

37
18

68
14

70
0.

05
8

18
8

13
5

36
5

36
16

68
14

66
0.

10
10

19
8

14
5

36
5

36
16

68
14

68
0.

15
10

19
7

14
5

36
5

37
16

70
8

48
0.

20
11

20
7

14
4

38
5

38
8

46
8

42
0.

25
11

20
7

19
4

38
6

44
14

68
14

70

4
0.

00
75

96
30

59
11

85
10

85
14

78
14

78
0.

05
75

96
30

60
16

87
10

85
14

78
14

78
0.

10
76

96
31

61
12

86
10

85
14

78
14

78
0.

15
76

96
32

60
21

88
10

85
14

76
14

76
0.

20
74

96
30

60
20

86
11

86
14

72
14

72
0.

25
71

96
33

60
20

87
12

86
14

72
14

72

5.4. Object Tracking 133

T
ab

le
5.

1:
O

b
je

ct
tr

ac
ki

ng
te

st
re

su
lt

s
(i

n
%

)
(c

on
ti

nu
ed

).

C
ar

d
H

al
l
M

on
it

or
C

re
w

C
.2

no
t

C
.2

C
.2

no
t

C
.2

C
.2

no
t

C
.2

δ
λ

M
.1

M
.2

M
.1

M
.2

M
.1

M
.2

M
.1

M
.2

M
.1

M
.2

M
.1

M
.2

8
0.

00
15

34
14

36
2

34
2

42
10

72
10

72
0.

05
15

34
14

36
2

34
2

42
10

72
10

72
0.

10
15

34
14

36
2

34
2

42
10

72
10

72
0.

15
15

36
14

36
2

34
2

44
10

72
10

72
0.

20
15

35
14

35
2

34
2

42
10

72
10

72
0.

25
15

34
14

34
2

34
2

44
10

72
10

72

16
0.

00
14

28
14

29
2

20
2

26
10

48
10

48
0.

05
14

28
14

29
2

20
2

26
10

48
10

48
0.

10
14

28
14

30
2

20
2

25
10

48
10

48
0.

15
14

28
13

30
2

20
4

60
10

48
10

48
0.

20
14

28
13

30
2

21
2

25
10

46
10

46
0.

25
14

28
13

30
2

20
2

25
10

46
10

46

134 Video Scalability

We also observe that our algorithms are also insensitive to sudden motion
changes. Indeed, if the object stops, the calculation of the Object Motion
Vector will result in a null vector as the motion vectors associated with
the object will also be the null vector. Hence, the ROI mask will not
be displaced. If the object starts moving again, the motion vectors
will reflect this motion and the Object Motion Vector will reflect the
displacement of the object, regardless of the direction of this last motion.
In fact, the object that is being tracked in the “hall monitor” sequence
stops for a few frames and continues to move in another direction.

The table also shows the influence of parameter δ. The parameter δ
determines how fast the matrix T must be resized. The necessity of this
parameter is proven by the fact that the results for δ = 4 are superior.
This parameter is independent of the kind of resizing, namely an object
enlarging in the “card” and “crew” sequences and an object reduction
in the “hall monitor” sequence. The biggest difference is shown when
(C.2) is enabled. For the “card” sequence, the improvement for using
δ = 4 instead of δ = 8 ranges from 56.6% to 61.8%. When comparing
δ = 4 to δ = 16 the difference is even more clear. Setting the parameter
δ = 8 or δ = 16 makes the resizing algorithm too slow to react properly.
In case of the “card” sequence, this usually means that the matrix T
is too small as the algorithm does not counter the zoom in operation
immediately. δ is set to the optimal value of δ/2 = 4. In case of the
“crew” sequence, the enlarging of the traced object itself occurs more
steadily and slowly, when compared to the playing card of the first test
sequence. Hence the need to resize in two consecutive frames is rare;
the resizing is more distributed over multiple frames. As such, if the
algorithm misses a resize for one frame, it can correct this in the next
frame. This explains the smaller influence of the parameter δ. Setting
δ too small (e.g., δ = 2) results in an unsteady resizing.

The table also reveals the big impact of constraint (C.2) for the “card”
sequence, in particular when δ is set to 4. It is clear from the test that
the border of a ROI mask is less reliable, especially after some iterations.
Constraint (C.2) is never applied if the ROI mask is too small in size,
hence the conditions TC > 2 and TR > 2, otherwise it is possible that the
OMV is always the null vector. Constraint (C.2) must always be enabled
in combination with δ = 4 as this generates better results.

However the latter depends on the content of the video itself. As the
test video has a growing object due to a camera zooming operation,
setting δ larger than the optimal value, will result in a too small matrix

5.4. Object Tracking 135

T . Therefore, if the matrix T is smaller than the real object, adding
the motion vectors of the elements on the edges of matrix T , means
incorporating the motion vectors of the actual object being tracked; this
is good. For video sequences where the matrix T is larger than the
actual object, not enabling constraint (C.2) gives a worse result as the
motion vectors outside the actual object are taken into account.

The reason we do not observe this large influence for the two other
sequences is because of the usage of the cloaking matrix C. Indeed, be-
cause the used cloaking matrix – such as the one depicted in Figure 5.14
– removes most macroblocks that are part of the border, the enabling
or disabling of constraint (C.2) hardly influences the results for these
sequences.

To conclude, the optimal settings for a video sequence are:

• (C.1): λ ≤ 0.25

• (C.2): enabled or use cloaking matrix C

• δ: 4

Our automatic algorithm reaches near perfection when comparing to the
reference set and allowing one row or column mismatch (M.2) for the
“card” sequence: 96.1% on average over the six possible values for λ.
Comparing to the reference set without allowing one row or column mis-
match (M.1) gives an average result of 74.5% for this first test sequence.

For the “hall monitor” sequence, using the optimal settings our algo-
rithms achieve on average 86.5% when allowing one row or column mis-
match (M.2). However, if a mismatch is not allowed (M.1), the results
are much worse in comparison to the first sequence. The good results for
(M.2) indicate that mostly there is only one row and/or one column mis-
match. Looking more into detail we see that the automatic algorithm
marks the object too large, hence one column or one row too much.
While this restrains the percentages for (M.1), the visual perception is
not negatively influenced by enhancing a little more than the object.
Furthermore, the mismatch does not propagate over successive frames
so the algorithms are still useful.

Finally, the “crew” sequence achieves also a good result when using
the optimal settings: on average 75.7% when allowing one row or col-
umn mismatch (M.2). While these results are lower than the “card”

136 Video Scalability

sequence – particularly when comparing to (M.1) – it must be noted
that this sequence is far more complex as it contains more (moving)
objects, a moving background with similar texture and colorization of
the object that is being tracked, abrupt luminance changes due to flash
photography and so on.

5.5 Related Work

In Section 5.3, we discussed the most recent scalable video coders. An
older scalable video coding technology is MPEG-2. It is actually the first
widespread video coder that natively supports SNR and spatial scalabil-
ity (and temporal scalability like most video coders). It uses a two-layer
approach: a base layer contains the coarsest or smallest version and an
enhancement layer improves the quality or resolution thereof. MPEG-2
supports a scheme that combines both types of scalability, resulting in
a three-layer system. However, as the scalability features of this coder
are infrequently exploited and surpassed by more advanced technolo-
gies, we did not discuss this coder in detail. For more information about
MPEG-2 and its scalability features, we refer the reader to [75,134].

In Section 5.4, we discussed a fast object tracking scheme. In the lit-
erature many algorithms, systems, and techniques have been described
to identify and track objects in video streams. We first discuss object
segmentation, followed by object tracking algorithms.

Most discussed techniques for object segmentation use object models and
ontologies [135], color information (e.g., flesh tone for human face recog-
nition) [114,136], semantic and probabilistic decomposition of the video
frames with learning capabilities [137, 138], temporal comparisons be-
tween consecutive images of a video stream [139], leveled watershed tech-
niques [140], or a combination of the previous techniques as in [141,142].
These techniques could be used independently to track an object over
the consecutive frames of a video stream, but this implies a computa-
tionally burden.

The object tracking techniques can be subdivided into object tracking
in the pixel domain and object tracking in the compressed domain. The
former technique requires that the video stream is decoded before it can
be processed. Tracking in the pixel domain allows to apply advanced
techniques like stochastic algorithms [143], but the necessary decoding
step decelerates the tracking process and makes it infeasible for real-time

5.5. Related Work 137

applications.

The techniques for object tracking in the compressed domain take ad-
vantage of the motion vector field that the video encoders calculate
during the encoding process of the sequence. In [144], trajectory esti-
mation is made based on the motion vector field and partially decoded
DCT coefficients. While this technique promises to be “fast enough for
real-time applications,” it assumes that there is “no camera motion.” A
similar technique is discussed in [145], but fails when “the object was
small or the object was non-rigid or was changing a lot in shape and
size.” In [146], the camera motion is estimated using a Hough transform
for the overall motion and a mean-shift algorithm based on the motion
vector field. The technique has good results for shorter sequences, un-
fortunately the computations are rather complex and time-consuming,
making this technique difficult to implement for real-time applications.
Finally, we want to mention the work of Favalli et. al in [147]. In this
work it is described how object tracking can be done, solely using the
information of the motion vectors and applying very simple calculations,
hence adding “as little additional processing as possible to the complex-
ity of a standard decoder.”

Our object tracking scheme presented in this chapter is different from
the above discussed techniques, and from [147] in particular as it adds
no complexity to the decoder, and only very little additional computa-
tions with low time complexity to the encoder of the video stream. By
doing so, our techniques can be used for real-time streaming applications
in contrast to [146]. Also, the discussed techniques allow the tracking
of any kind of object of any arbitrary shape and are capable of han-
dling camera motion, object resizing, and object deformation, addressing
the main shortcomings of [144] and [145]. Furthermore, our techniques
are independent of the video encoding specification; for demonstration
and testing purpose we used the MPEG-4 FGS codec and exploited
its Region-of-Interest capabilities to visualize the results of the object
tracking algorithms. Finally, the novel methods for object tracking in
the compressed domain are detached from the macroblocks by introduc-
ing two independent layers on top of the macroblock grid. This enables
the tracking of fine-detailed objects.

138 Video Scalability

5.6 Conclusions and Original Contributions

In this chapter, we have discussed the various forms of scalability for
video streams, namely temporal scalability, SNR scalability, and spatial
scalability. We gave an overview of the different video coders that have
native support for one or more types of scalability. Special attention
was paid to the Region-of-Interest coding and we illustrated how ROI
can be accomplished in the MPEG-4 FGS codec.

Finally, we have discussed novel algorithms allowing a video coder to au-
tomatically track objects and implemented this functionality in MPEG-4
FGS to enhance its ROI capability. Our object tracking algorithms have
a very low time complexity that is linear to the size of the object, mak-
ing them very useful for real-time streaming applications. We use the
motion vector field calculated by the encoder’s motion estimation al-
gorithms to capture the overall motion of the tracked object. We also
introduced an algorithm that allows an encoder to cope with the “en-
largement” and “shrinking” of an object. All our algorithms are capable
of tracking any kind of object in a video stream. Furthermore, our algo-
rithms are not bound to the (relatively large) size of a macroblock; we
use a fine grid on top of a frame so the algorithms can track an object
in a more detailed way.

All our novel methods presented here are generic and can be imple-
mented in any codec that estimates the motion vector field. For testing
and evaluation purposes, we have implemented the algorithms within
the MPEG-4 FGS reference software encoder. We used the ROI capa-
bilities of this codec to visualize the results of the algorithms. A second
layer was introduced enabling us to differentiate between the Region-
of-Interest and the (possibly smaller) arbitrary-shaped objects within
this region. Three test sequences were used to evaluate the influence
of various parameters. The results of our algorithms were compared to
manually constructed reference sets so an optimal parameter set was
determined.

From these results, we can conclude that these novel lightweight algo-
rithms are capable of tracking objects in complex scenes; can handle
scaled down or scaled up objects; and are independent of the resolution
of the video stream.

Our algorithms have a very low time complexity, hence, they do not
prevent the video encoder to work in real-time. However, the MPEG-4

5.6. Conclusions and Original Contributions 139

FGS reference software that we used in our experiments is too slow for
real-time encoding as well as for real-time decoding. We did not succeed
in creating a real-time MPEG-4 FGS-compliant encoder or decoder. We
also did not succeed in creating a system that facilitates the identification
of the object that must be tracked nor incorporating such an existing
system.

The research that has resulted in this chapter of this thesis is also dis-
cussed in our following publications.

1. Koen De Wolf, Robbie De Sutter, Wesley De Neve, and Rik Van de
Walle. Comparison of Prediction Schemes with Motion Informa-
tion Reuse for Low Complexity Spatial Scalability. In Proceedings
of SPIE/Visual Communications and Image Processing, volume
5960, pages 1911–1920, Beijing, China, July 2005

2. Robbie De Sutter, Koen De Wolf, Sam Lerouge, and Rik Van de
Walle. Lightweight Object Tracking in Compressed Video Streams
Demonstrated in Region-of-Interest Coding. Eurasip Journal on
Applied Signal Processing. To appear

3. Davy De Schrijver, Wesley De Neve, Koen De Wolf, Robbie De Sut-
ter, and Rik Van de Walle. An Optimized MPEG-21 BSDL Frame-
work for the Adaptation of Scalable Bitstreams. Journal of Visual
Communication and Image Representation. To appear

140 Integration and Concluding Remarks

Chapter 6

Integration and
Concluding Remarks

6.1 Integration

Before concluding this thesis, we first discuss how to integrate the pre-
viously discussed techniques in order to create a UMA-compliant Video-
on-Demand application with support for time-varying metadata. The
goal of this application is to stream audio-visual content selected by an
end user over an IP-based network such that the content is dynamically
and on-the-fly optimized and adapted to the consumption context.

We briefly discuss the techniques that we have used in order to create
this VoD application hereafter. A detailed report and discussion on its
creation can be found in Appendix C. A demonstration version of this
application is available at the Multimedia Lab research group Website1.

To start, a client application invokes a web service at a broker service in
order to retrieve an overview of the available audio-visual streams and
this by using the SOAP technology discussed in Chapter 3. The end user
selects a stream through a graphical user interface (GUI) and his selec-
tion invokes another web service at the broker service. Simultaneously,
the context information is collected and structured using the MPEG-21
DIA-UED software toolkit which results in an MPEG-21 DIA-UED com-
pliant XML-data stream (Chapter 2). In order to reduce the overhead,

1The Multimedia Lab research group Website is available at http://

multimedialab.elis.ugent.be.

http://multimedialab.elis.ugent.be
http://multimedialab.elis.ugent.be

142 Integration and Concluding Remarks

the XML stream is compressed using the BiM technology, which was
discussed in Chapter 4. The broker processes the context information
using our serialization-agnostic parser, also discussed in Chapter 4, and
determines the adaptation rules. The client retrieves the location of
the streaming server and initiates the streaming request. The streaming
server processes the adaptation rules, adapts the audio-visual content us-
ing the scalability techniques discussed in Chapter 5, and starts stream-
ing the optimized content. Furthermore, the streaming server is capable
of handling updates of the adaptation rules – hence, indirectly also up-
dates of the context information – dynamically and on-the-fly in order to
realize the support for time-varying metadata, discussed in Chapter 3.
As such, the end user receives content optimized to the (changing) con-
text environment. More detailed information on the architecture, usage
scenario, technologies, and implementation of the application can be
found in Appendix C.

The creation of this application illustrates the usability of the previously
discussed techniques. Nevertheless, some issues were revealed. The main
issue was the lack of real-time decoders for scalable encoded video con-
tent; we selected AVC-encoded content as an alternative. As a conse-
quence, our on-the-fly content adaptation is limited to temporal scala-
bility and enabling/disabling of the audio stream. The more advanced
scalability schemes – such as the selective degradation of the video us-
ing Region-of-Interest enhanced with the fast object tracking technique
– could not be demonstrated in this application. Using MPEG-B BiM
as the alternative serialization method resulted in a second issue. To
BiM encode XML-based data, we use the Windows-based BiM refer-
ence software. However, as the network is emulated by software running
on a Linux-based operating system, the reference software could not be
used. Unfortunately, there are currently no (commercial or open source)
alternative BiM encoders available. Final and third issue, for demon-
stration purposes we allowed the end user to manually alter the context
information. Although this is acceptable and desirable to illustrate the
feasibility of the dynamic and on-the-fly adaptations, real-life applica-
tions should aggregate the context information automatically. However,
no generic solutions for realizing this currently exist.

Notwithstanding the aforementioned issues, we are convinced that this
Video-on-Demand application illustrates the usability of our results and
our novel contributions discussed in the previous chapters.

6.2. Concluding Remarks 143

6.2 Concluding Remarks

As the Internet is continuously expanding with new content that is con-
sumable on new devices and that can be transmitted over new types of
networks, actions are needed to make transparent and ubiquitous con-
tent consumption possible anywhere, anytime, and anyhow. Currently
ad hoc solutions try to make this happen, however these solutions are
inadequate and unsustainable in the long run. Take, for example, an
Internet-based Video-on-Demand application, hence, the streaming of
audio-visual content over IP-based networks. This kind of multimedia
content consumption is becoming more and more popular as illustrated
by rapid growing number of video blogs. Currently, if an end user wants
to consume audio-visual content over the Internet, he first has to answer
several technical questions about his device, the network connection, and
his personal preferences – in short, questions about the consumption
context. As a result, he can select a particular version of the video that
more or less suits the context. The content provider has a simulstore
containing a limited number of semantically equal videos with differ-
ent technical characteristics, for example audio-visual content streams
with different resolutions and frame rates. Hence, the end user receives
suboptimal content while the content provider has to maintain several
similar content streams.

As more and more different kinds of end-user devices and network tech-
nologies become available to acquire and consume audio-visual streams,
this solution is no longer acceptable. Indeed, either the content provider
must support an increasing number of different kinds of versions of the
same content or the consumer must be satisfied with content that is less
suited for his particular context.

The Universal Multimedia Access framework provides an answer for
these problems. The core idea is to enable the consumption of mul-
timedia content for different usage contexts (hence, different end-user
interests and profiles, end-user devices, networks, and content providers)
by creating different representations of the same information from a sin-
gle content base. In other words, it adheres to the “create once, play
everywhere” paradigm.

In this thesis, I have investigated the requirements to realize this UMA
vision by investigating the different parts required to create a UMA-
compliant VoD architecture.

144 Integration and Concluding Remarks

In Chapter 2, I studied how to describe in a standardized way what is
being consumed – i.e., the content – and how this is being consumed –
i.e., the context. After studying the work methods used by the Flem-
ish television broadcasters in order to describe their content, it became
clear that an evaluation framework was needed to compare the inter-
national standards for content description. I created such a framework
consisting of four main criteria that can be used to determine the most
optimal content-description standard for a particular usage. My eval-
uation framework is generic and can be used to compare any content-
description technology. This is demonstrated by applying the evaluation
criteria to DCMES, P/Meta, MPEG-7, and SMEF – these are interna-
tional standards to describe audio-visual content. The evaluation frame-
work demonstrated that MPEG-7 is the most appropriate standard to
annotate audio-visual content if this content information will be used in
UMA-compliant architectures. Second, I gave an overview of the cur-
rently available context-description standards, namely HTTP Headers,
CC/PP, and MPEG-21 DIA-UED. My study indicated that the latter is
the most generic and comprehensive standard. Although this standard
is vast, I created software that runs on very constrained devices (such
as cell phones) that is able to read, modify, and write UED-compliant
messages. As such, thanks to my software, application developers can
easily and rapidly develop applications that are MPEG-21 DIA-UED
compliant without the need to learn the specific UED syntax and struc-
ture. My software toolkit was submitted and accepted by the MPEG
consortium as the reference software tool for the MPEG-21 Digital Item
Adaptation – Usage Environment Description tool.

The information about the content and the context is used by a content
adaptation system in order to make adaptation of the content possible
such that the resulting optimized version is consumable in the given con-
text. In Chapter 3, I decided to tackle this by dividing the adaptation
process into a content adaptation decision engine and a content adapta-
tion engine. The former exploits the information about the content and
the context to determine how to adapt to content, i.e., the adaptation
rules; the latter performs the actual adaptation of the content. Next, I
decided on the location of these two engines in a UMA-compliant archi-
tecture: the content adaptation decision engine is placed as a separate
entity and the content adaptation engine is located near the content at
the content provider. Also, I investigated how to negotiate the content
and context information with the content adaptation decision engine.
By making abstraction of this decision taking process and regarding

6.2. Concluding Remarks 145

it as a web service. To invoke these web services, I investigated the
two most suitable techniques, namely XML-RPC and SOAP. Finally, I
discussed my important extension to the UMA framework, namely the
time-varying metadata concept. The main idea is to dynamically op-
timize the content to a changing context by re-negotiating the context
information. As such, the modifications to the consumption environ-
ment are handled automatically and result in the re-optimization of the
content on-the-fly.

Chapter 4 solves an important issue that came to light in the two previ-
ous chapters, namely due to the usage of XML to describe the content
and context information, overhead is introduced with regard to band-
width usage. Indeed, not only is XML-based data marshalled as verbose
plain text, XML also does not have any provisions to update informa-
tion as needed to support the time-varying metadata concept. In this
chapter, I first performed a study of the different kinds of XML parser
models. This research allowed me to decide upon the best model to
support XML updates, and hence time-varying metadata. As a result,
I created a serialization-agnostic XML parser according to the Cursor
Model. My parser is able to handle traditional plain-text XML data
as well as non-textual encoded XML data. As such, applications can
use my parser to handle XML data without being aware of the actual
encoding format. Hence, it shields the users from the technical details
of the encoding format so the usage of non-textual encoded XML data
is transparent and does not increase complexity for the user. Next, I
studied potential alternative (non-textual) XML serialization formats,
namely ZIP compression, ASN.1-PER, and MPEG-B BiM – the lat-
ter supports XML updates natively. These techniques were evaluated
to their applicability to address the overhead concerns when negotiating
the UED-based context information and for the XML and Internet-based
RSS application. Results show that the BiM technology is most efficient
in terms of overhead reduction (i.e., compression ratio), but worst in
terms of executing time performance. The latter is due to the usage of
non-optimized reference software. Unfortunately, I was unsuccessful in
creating an optimized BiM encoder and decoder myself. ZIP compres-
sion is ranked as the second best option because its compression ratio
is only a little bit lower in comparison to BiM. Furthermore, the ZIP
compressed data must be completely received before decompressing and
parsing can occur, while BiM data can be parsed immediately in the
compressed domain even if the data is not yet completely received. On
the other hand, the ZIP compression technique is very widespread and

146 Integration and Concluding Remarks

introduces a very low delay during processing. Hence, I believe the BiM
technology is very promising but only practically usable if optimized en-
coders and decoders become available. Until then, ZIP compression is a
more than acceptable alternative.

The discussed technologies in the first four chapters make it possible to
provide a content adaptation decision engine with content and context
information in a standardized and optimized way. Using this informa-
tion, the engine decides upon the adaptation rules. According to the
UMA principles, the optimized content should be derived from a sin-
gle content base. Chapter 5 starts with an overview of video scalability
techniques that makes it possible to manipulate audio-visual streams
in the compressed domain so a new stream can be obtained with other
(technical) characteristics. The three main types of scalability were dis-
cussed, namely temporal scalability, signal-to-noise ratio scalability, and
spatial scalability. Next, an overview was given of the most recent video
coding technologies that natively support the signal-to-noise ratio scal-
ability and/or the spatial scalability techniques, namely MPEG-4 FGS,
MPEG-4 SVC, and Wavelet-based video coding. Special attention was
paid to the Region-of-Interest technique in MPEG-4 FGS, which is a par-
ticular form of SNR scalability. A ROI is an area within the video that
is seen as more important than the remaining area. As such, if a quality
reduction of the video is required (for example, to comply with a given
bit rate), the area outside the ROI degrades before the area inside the
ROI. In the remainder of Chapter 5, I discussed my novel technique that
allows fast object tracking within the compressed domain by reusing the
motion vector field. My algorithms not only allow the tracking of an ob-
ject, but are also capable of handling the resizing thereof. To illustrate
the applicability of the algorithms, I have implemented them into the
MPEG-4 FGS encoder. Several tests were performed to demonstrate
the quality of the tracking algorithms. I also proved that my algorithms
are fast enough to work in real-time by analyzing thoroughly the time
complexity of the algorithms.

Finally, I briefly discussed the integration of the techniques described in
the previous chapters by creating a Video-on-Demand application that
is compliant with the UMA principles – i.e., streaming of audio-visual
content optimized to the consumption context – and that can handle
time-varying metadata – i.e., on-the-fly re-optimizing of the content to
a changing context. A detailed report on the construction of the VoD
application can be found in Appendix C.The lack of a real-time advanced

6.2. Concluding Remarks 147

scalable video decoder (for example, an MPEG-4 FGS decoder) was
revealed as a major problem to realize the VoD application. As such,
I was obliged to use a more traditional video codec, in particular the
H.264/MPEG-4 AVC codec. Hence, the application only optimizes video
streams using temporal scalability.

There are some interesting research topics that are not discussed in this
thesis, but that would be useful to investigate as an addition to the work
I have presented. A first topic is the way to decide upon the adaptation
rules. In my constructed application, I used a straightforward mapping
algorithm, however in practice this is a multi-criteria optimization prob-
lem. On top of that, different end users might disagree on the meaning of
“optimized content”: one might prefer a video with a smaller resolution
at full frame rate, while another might prefer a normal resolution at half
frame rate. If both optimized versions are feasible for the given context,
the determination of the adaptation rules is not as straightforward as a
mapping algorithm.

Also the aggregation of the context information is a related research
topic. The MPEG-21 DIA-UED tool and my software toolkit make it
possible to easily express the context, however no generic solutions cur-
rently exist to automatically retrieve this information from the network,
the end user, and his device.

A third topic is about the time-varying metadata. In this thesis, I as-
sumed that each time an update of the time-varying metadata occurs,
this is signaled to the content adaptation decision engine. However, if the
context is very fluctuating, for example unsteady network bandwidth,
sending this information each time would result in a very unstable adap-
tation of the content. Hence, a minimum threshold should be defined
before the modified context information is transmitted. Research on the
optimal threshold levels must still be performed.

A fourth research topic is related to the alternative XML serializations.
Although these techniques solve the overhead concerns of XML, it also
makes some XML tools unusable, most notably the XML transforma-
tion tools. Transforming alternatively serialized XML-based data in the
binary domain is a challenging new research topic.

And finally, although research with regard to video scalability is very
advanced, like my object tracking techniques, these techniques are un-
fortunately only suitable for research purposes. Real-time scalable video
encoders and decoders are needed to convince content providers of the

148 Integration and Concluding Remarks

advantages of these advanced scalability techniques.

Notwithstanding the aforementioned open issues, I hope to have con-
vinced the reader that the techniques introduced in this thesis are use-
ful to create and to ameliorate (Internet-based) multimedia applications
and help to simplify the construction of real UMA-compliant applica-
tions.

The research that has lead to this thesis resulted in a number of publica-
tions. Two papers are accepted for publication in journals that appear in
the Science Citation Index, namely in Springer’s Multimedia Systems [2]
and in Springer’s Lecture Notes in Computer Science [3]. Two papers
are currently under review for publication in journals that appear in
the Science Citation Index, namely Eurasip’s Journal on Applied Sig-
nal Processing [4], and Elsevier’s Journal of Visual Communication and
Image Representation [5]. In addition, I have contributed 11 papers to
international conferences as first author [6–16]. Collaboration with fel-
low researchers resulted in 14 publications as co-author [17–30]. Finally,
10 contributions were submitted to the MPEG community [31–40].

6.2. Concluding Remarks 149

Appendix A

MPEG-21 DIA-UED

In this appendix, we give background information on and examples of
the MPEG-21 DIA-UED context description tool as introduced in Chap-
ter 2.

First, we give a detailed overview of the different parts and subparts of
the MPEG-21 DIA-UED tool.

Next, the UML class models are shown in Figure A.1 to Figure A.16.

Hereafter in Section A.3, several examples of usage context descriptions
compliant to the UED specification are given. The first example is
used for the tests to evaluate the UED software toolkit of Section 2.3.2.
All examples are used for the evaluation of the alternative serialization
formats in Chapter 4. Listing A.1 is the initial input for the Use Case 1;
Listing A.2, A.3, and A.4 show the three updates.

Finally, this appendix shows an example on the usage of the API of the
UED software toolkit, which is also used during the software toolkit test
in Section 2.3.2.

A.1 Overview specification

A.1.1 User Characteristics

The first and largest part is the User Characteristics part. It contains in-
formation about the user, his preferences, and his intentions. Table A.1
gives an overview of the different subparts and their meaning.

152 Appendix A: MPEG-21 DIA-UED

Table A.1: UED – User Characteristics.

User Info:
stores generic information about the user, such as his name
and contact address.

Usage Preferences:
defines the preference of the user on the usage of different
types of content. For example, news content is preferred over
entertainment.

Usage History:
gives information about the previous actions the user has un-
dertaken for specific types of content. For example, record a
news broadcast.

Audio Presentation Preferences:
stores the user preferences in regard to the audio component
of a multimedia presentation, such as preferred volume, equal-
izer settings, and default output device.

Display Presentation Preferences:
contains information in regard to the visualization of a mul-
timedia presentation. Examples are the preferences of the
brightness, saturation, contrast, and color temperature.

Graphic Presentation Preferences:
determines the preferred modification in graphical quality by
the user if such change is required. The user can declare his
preference in regard to the geometry, texture, and animation.

Conversion Preferences:
if content is not suitable for a specific terminal, adaptation
of that content may occur. By adding information in this
subpart, the user can give information about its preferred
way of converting content, for example, from video to images
or to audio.

Presentation Priority Preferences:
if there are multiple methods to convert media, this subpart
allows the user to express an order in these conversions that
may also be dependent on the type of content. For example,
sport content may be converted to audio, while news content
must be converted to images.

A.1. Overview specification 153

Table A.1: UED – User Characteristics (continued).

Focus of Attention:
stores information about the region the user is particularly
interested in, for example, a news presenter instead of the
news studio setting. This can be used to improve the qual-
ity for this region or to increase the content with additional
information about the region.

Visual Impairment:
contains information about the visual deficiency of the user,
such as his form of blindness.

Auditory Impairment:
contains information about the hearing deficiency of the user,
such as hearing loss in the left and/or right ear.

Mobility Characteristics:
stores information on the movement of the user, for example,
his direction.

Destination:
stores the final destination of the user. This can be used to
enable context-aware services.

A.1.2 Terminal Capabilities

The second part of the UED tool is the Terminal Capabilities part.
It contains information on the hardware specifications of the end-user
device. Its subparts are listed in Table A.2.

Table A.2: UED – Terminal Capabilities.

Codec Capabilities:
specifies all encoding and decoding capabilities of the end-
user device.

Display:
contains information on the display(s) of the end-user device,
for example, resolution, color capabilities, and refresh rate.

154 Appendix A: MPEG-21 DIA-UED

Table A.2: UED – Terminal Capabilities (continued).

Audio Output Capabilities:
gives the number, type, characteristics, power, and other use-
ful information on the speaker(s) of the end-user device.

User Interaction Possibilities:
enlists the possibilities and characteristics of the input pos-
sibilities of the end-user device, such as information on the
keyboard, mouse, and microphone.

Device Class:
selects the type of end-user device from a list of possibilities.

Power Characteristics:
gives information on the battery status of the end-user device,
such as power and estimated remaining time.

Storage Possibilities:
contains information on the storage capabilities of the end-
user device, for example, available free space and transfer
rate.

Data Input/Output Characteristics:
gives information on all I/O-devices, such as the number of
devices and bus speed.

Benchmark Information:
stores information about the overall processing capacity of
the end-user device by a benchmark rating.

IPMP Tools:
gives an overview of the supported Intellectual Property Man-
agement and Protection (IPMP) capabilities of the end-user
device.

A.1.3 Network Characteristics

Next, the Network Characteristics part describes the static network ca-
pabilities and the time-varying network conditions, hence it is composed
of two subparts as shown in Table A.3.

A.1. Overview specification 155

Table A.3: UED – Network Characteristics.

Network Capability:
stores static information about the theoretical characteristics
of the network, namely minimal guaranteed available band-
width, maximum available bandwidth, error rate, error cor-
rection capabilities, and guarantee for in-sequence delivery of
packets.

Network Conditions:
contains dynamic information about the actual status of the
network, in particular feedback on the delay, error rate, and
available bandwidth.

A.1.4 Natural Environments Characteristics

Finally, the UED tool is completed with the Natural Environments Char-
acteristics part that describes the surroundings of the end user. Ta-
ble A.4 gives an overview of the subparts of this final part.

Table A.4: UED – Natural Environment Characteristics.

Location:
stores the actual location of the end user, either by his pre-
cise geographical location (using longitude and latitude coor-
dinates) or by a description (e.g., an address).

Time:
tells the local time at the location of the end user.

Audio Environment:
gives information on the noise at the location of the end user.

Illumination:
stores information on the light intensity that hits the display
of the end-user device.

156 Appendix A: MPEG-21 DIA-UED

A.2 Class Model

DIABase

id [0..1] : ID

DIADescription

DIA

Description
1

anyType

<< XSDrestriction>>

Figure A.1: MPEG-21 DIA-UED Class Model – DIA Base Data Type.

Users

User

User
0..*

UserCharacteristicBase

UserCharacteristic
0..*

UsageEnvironmentPropertyBase

NaturalEnvironments NetworksTerminals

NaturalEnvironmentCharacteristicBase

UsageEnvironment

UsageEnvironmentProperty
0..*

Terminal

TerminalCapabilityBase

TerminalCapability
0..*

NetworkCharacteristicBase

NaturalEnvironment

NaturalEnvironmentCharacteristic
0..*

NaturalEnvironment
0..*

Network

Network
0..*

NetworkCharacteristic
0..*

Terminal
0..*

DIABase

DIADescription

Figure A.2: MPEG-21 DIA-UED Class Model – Usage Environment.

A.2. Class Model 157

<< XSDsimpleType>>
FrequencyEqualizerType
length : string

<< XSDsimpleType>>
FrequencyEqualizerBaseType
minInclusive : string
maxInclusive : string

<< XSDsimpleType>>
anon14

PerceptualParameters
SourcePresence [0..1] : float
SourceWarmth [0..1] : float
SourceBrilliance [0..1] : float
RoomPresence [0..1] : float
RunningReverberance [0..1] : float
Envelopment [0..1] : float
LateReverberance [0..1] : float
Heavyness [0..1] : float
Liveness [0..1] : float
RefDistance [0..1] : float
FreqLow [0..1] : float
FreqHigh [0..1] : float
TimeLimit1 [0..1] : float
TimeLimit2 [0..1] : float
TimeLimit3 [0..1] : float

ImpulseResponse
href [0..1] : anyURI
SamplingFrequency [0..1] : nonNegativeReal
BitsPerSample [0..1] : nonNegativeInteger
NumOfChannels [0..1] : nonNegativeInteger

AudioPresentationPreferences
VolumeControl [0..1] : zeroToOneType
FrequencyEqualizer [0..1] : FrequencyEqualizerType
AudioOutputDevice [0..1] : anon15
BalancePreference [0..1] : anon16
SoniferousSpeed [0..1] : anon17

Soundfield

Soundfield
0..1

AudibleFrequencyRange
StartFrequency : float
EndFrequency : float

AudibleFrequencyRange
0..1

PerceptualParameters
0..1

ImpulseResponse
0..1

UserCharacteristicBase

<< XSDsimpleType>>
anon16

minInclusive : string
maxInclusive : string

<< XSDsimpleType>>
anon17

minExclusive : string

float

DIABase

Figure A.3: MPEG-21 DIA-UED Class Model – User Characteristic (part A).

158 Appendix A: MPEG-21 DIA-UED

GeneralResourcePriorities

ModalityPriorities

ModalityPriorities
0..1

GenrePriorities

GenrePriorities
0..1

Modality

priorityLevel [0..1] : nonNegativeReal

Modality
0..*

Genre

priorityLevel [0..1] : nonNegativeReal

Genre
0..*

PresentationPriorityPreference

GeneralResourcePriorities
0..1

SpecificResourcePriorities

Object [0..*] : Object

SpecificResourcePriorities
0..1

UserCharacteristicBase

Object
priorityLevel [0..1] : nonNegativeReal
target : anyURI

DIABase

ControlledTermUse

Figure A.4: MPEG-21 DIA-UED Class Model – User Characteristic (part B).

A.2. Class Model 159

SpecificResourceConversions

Object

target : anyURI

Object
0..*

ResourceConversion

Conversion
order : nonNegativeInteger
weight [0..1] : nonNegativeReal

Conversion
0..*

ControlledTermUse

From
0..1

To
1

ConversionPreference

SpecificResourceConversions
0..1

GeneralResourceConversions
0..1

UserCharacteristicBase

DIABase

Figure A.5: MPEG-21 DIA-UED Class Model – User Characteristic (part C).

160 Appendix A: MPEG-21 DIA-UED

U
pd

at
eI

nt
er

va
l

xR
ad

iu
s

[0
..1

] :
 in

te
ge

r
yR

ad
iu

s
[0

..1
] :

 in
te

ge
r

La
st

U
pd

at
eP

oi
nt

 [0
..1

] :
 G

eo
gr

ap
hi

cP
oi

nt
La

st
U

pd
at

eB
in

In
de

x
[0

..1
] :

 in
te

ge
r

Lm
ax

 [0
..1

] :
 in

te
ge

r
Va

lu
es

 [0
..1

] :
 a

no
n1

5

Ti
m

e

La
st

U
pd

at
eT

im
e

0.
.1

D
es

tin
at

io
n

D
es

tin
at

io
nN

am
e

[0
..1

] :
 T

ex
tu

al D
es

tin
at

io
nC

la
ss

Fr
ee

C
la

ss
 [0

..*
] :

 T
ex

tu
al

D
es

tin
at

io
nC

la
ss

0.
.1

Ti
m

e
0.

.1

P
la

ce

Lo
ca

tio
n

0.
.1

U
se

rC
ha

ra
ct

er
is

tic
B

as
e

M
ob

ili
ty

C
ha

ra
ct

er
is

tic
s

E
rr

at
ic

ity

Va
lu

es
 [0

..1
] :

 a
no

n1
6

U
pd

at
eI

nt
er

va
l

0.
.1

E
rr

at
ic

ity
0.

.1

D
ire

ct
iv

ity
m

ea
su

re
dI

nt
er

va
l [

0.
.1

] :
 in

te
ge

r
M

ea
n

[0
..1

] :
 fl

oa
t

Va
ria

nc
e

[0
..1

] :
 fl

oa
t

Va
lu

es
 [0

..1
] :

 a
no

n1
7

D
ire

ct
iv

ity
0.

.1

C
on

tro
lle

dT
er

m
U

se

S
te

re
ot

yp
ed

C
la

ss
1

D
IA

B
as

e

F
ig

u
re

A
.6

:
M

P
E

G
-2

1
D

IA
-U

E
D

C
la

ss
M

od
el

–
U

se
r

C
ha

ra
ct

er
is

ti
c

(p
ar

t
D

).

A.2. Class Model 161

Vi
su

al
Im

pa
irm

en
tD

eg
re

e
N

um
er

ic
D

eg
re

e
: z

er
oT

oO
ne

Ty
pe

Te
xt

ua
lD

eg
re

e
: a

no
n1

8

A
ud

io
gr

am
Fr

eq
12

5H
z

[0
..1

] :
 fl

oa
t

Fr
eq

25
0H

z
: f

lo
at

Fr
eq

50
0H

z
: f

lo
at

Fr
eq

10
00

H
z

: f
lo

at
Fr

eq
15

00
H

z
[0

..1
] :

 fl
oa

t
Fr

eq
20

00
H

z
: f

lo
at

Fr
eq

30
00

H
z

[0
..1

] :
 fl

oa
t

Fr
eq

40
00

H
z

: f
lo

at
Fr

eq
60

00
H

z
[0

..1
] :

 fl
oa

t
Fr

eq
80

00
H

z
: f

lo
at

A
ud

ito
ry

Im
pa

irm
en

t

R
ig

ht
E

ar
1

Le
ftE

ar
1

U
se

rC
ha

ra
ct

er
is

tic
B

as
e

Vi
su

al
Im

pa
irm

en
t

rig
ht

S
ig

ht
 [0

..1
] :

 fl
oa

t
le

ftS
ig

ht
 [0

..1
] :

 fl
oa

t
B

lin
dn

es
s

[0
..1

] :
 B

lin
dn

es
s

Lo
w

Vi
si

on
Im

pa
irm

en
t

H
em

ia
no

pi
a

[0
..1

] :
 H

em
ia

no
pi

a

La
ck

O
fC

on
tra

st
0.

.1
Li

gh
tS

en
si

tiv
ity

0.
.1

N
ee

dO
fL

ig
ht

0.
.1

C
en

te
rV

is
io

nL
os

s
0.

.1
P

er
ip

he
ra

lV
is

io
nL

os
s

0.
.1

Lo
ss

O
fF

in
eD

et
ai

l
0.

.1

Lo
w

Vi
si

on
S

ym
pt

om
s

0.
.1

C
ol

or
Vi

si
on

D
ef

ic
ie

nc
y

D
ef

ic
ie

nc
yT

yp
e

: a
no

n1
9

C
ol

or
Vi

si
on

D
ef

ic
ie

nc
y

0.
.1

D
ef

ic
ie

nc
yD

eg
re

e
1

H
em

ia
no

pi
a

si
de

 :
si

de

B
lin

dn
es

s

ey
eS

id
e

: e
ye

S
id

e
D

IA
B

as
e

F
ig

u
re

A
.7

:
M

P
E

G
-2

1
D

IA
-U

E
D

C
la

ss
M

od
el

–
U

se
r

C
ha

ra
ct

er
is

ti
c

(p
ar

t
E

).

162 Appendix A: MPEG-21 DIA-UED

C
ol

or
P

re
fe

re
nc

e

B
in

N
um

be
r :

 u
ns

ig
ne

d1
2

Va
lu

e
P

re
fe

rr
ed

Va
lu

e
: u

ns
ig

ne
d1

2
R

ef
er

en
ce

Va
lu

e
: u

ns
ig

ne
d1

2

Va
lu

e
0.

.*

G
ra

ph
ic

sP
re

se
nt

at
io

nP
re

fe
re

nc
es

G
eo

m
et

ry
E

m
ph

as
is

 [0
..1

] :
 z

er
oT

oO
ne

Ty
pe

Te
xt

ur
eE

m
ph

as
is

 [0
..1

] :
 z

er
oT

oO
ne

Ty
pe

A
ni

m
at

io
nE

m
ph

as
is

 [0
..1

] :
 z

er
oT

oO
ne

Ty
pe

U
se

rC
ha

ra
ct

er
is

tic
B

as
e

D
is

pl
ay

P
re

se
nt

at
io

nP
re

fe
re

nc
es

C
ol

or
Te

m
pe

ra
tu

re
P

re
fe

re
nc

e
0.

.1
B

rig
ht

ne
ss

P
re

fe
re

nc
e

0.
.1

S
at

ur
at

io
nP

re
fe

re
nc

e
0.

.1
C

on
tra

st
P

re
fe

re
nc

e
0.

.1

S
te

re
os

co
pi

cV
id

eo
C

on
ve

rs
io

n

S
te

re
os

co
pi

cV
id

eo
C

on
ve

rs
io

n
0.

.1

Fr
om

2D
To

3D
S

te
re

os
co

pi
c

P
ar

al
la

xT
yp

e
: a

no
n2

0
D

ep
th

R
an

ge
 :

ze
ro

To
O

ne
Ty

pe
M

ax
D

el
ay

ed
Fr

am
e

[0
..1

] :
 n

on
N

eg
at

iv
eI

nt
eg

er

Fr
om

2D
To

3D
S

te
re

os
co

pi
c

0.
.1

Fr
om

3D
S

te
re

os
co

pi
cT

o2
D

Le
ftR

ig
ht

In
te

rV
id

eo
 :

an
on

21

Fr
om

3D
S

te
re

os
co

pi
cT

o2
D

0.
.1

D
IA

B
as

e

F
ig

u
re

A
.8

:
M

P
E

G
-2

1
D

IA
-U

E
D

C
la

ss
M

od
el

–
U

se
r

C
ha

ra
ct

er
is

ti
c

(p
ar

t
F
).

A.2. Class Model 163

Fo
cu

sO
fA

tte
nt

io
n

R
O

I [
0.

.1
] :

 R
O

I

Te
xt

Fo
cu

sO
fA

tte
nt

io
n

te
xt

P
re

se
nt

at
io

nS
pe

ed
 [0

..1
] :

 n
on

N
eg

at
iv

eR
ea

l
K

ey
w

or
d

[0
..*

] :
 K

ey
w

or
d

Te
xt

Fo
cu

sO
fA

tte
nt

io
n

0.
.1

M
ed

ia
Lo

ca
to

r

S
ce

ne
O

bj
ec

tF
oc

us
O

fA
tte

nt
io

n
0.

.1

Fo
nt

fo
nt

C
ol

or
 [0

..1
] :

 to
ke

n
fo

nt
S

iz
e

[0
..1

] :
 p

os
iti

ve
In

te
ge

r
fo

nt
Ty

pe
 [0

..1
] :

 to
ke

n

Fo
nt

0.
.1

U
se

rC
ha

ra
ct

er
is

tic
B

as
e

U
sa

ge
P

re
fe

re
nc

es
U

se
rIn

fo
U

sa
ge

H
is

to
ry

U
se

rP
re

fe
re

nc
es

U
sa

ge
P

re
fe

re
nc

es
0.

.*

A
ge

nt

U
se

rIn
fo

0.
.1

U
sa

ge
H

is
to

ry

U
sa

ge
H

is
to

ry
0.

.*

R
O

I
ur

i :
 a

ny
U

R
I

up
da

te
In

te
rv

al
 [0

..1
] :

 n
on

N
eg

at
iv

eR
ea

l
D

IA
B

as
e

F
ig

u
re

A
.9

:
M

P
E

G
-2

1
D

IA
-U

E
D

C
la

ss
M

od
el

–
U

se
r

C
ha

ra
ct

er
is

ti
c

(p
ar

t
G

).

164 Appendix A: MPEG-21 DIA-UED

C
od

ec
C

ap
ab

ili
tie

s

C
od

ec
C

ap
ab

ili
ty

B
as

e

D
ec

od
in

g
0.

.*
E

nc
od

in
g

0.
.*

C
od

ec
P

ar
am

et
er

B
as

e

C
od

ec
P

ar
am

et
er

0.
.*

Vi
de

oC
ap

ab
ili

tie
s

S
ce

ne
G

ra
ph

C
ap

ab
ili

tie
s

Im
ag

eC
ap

ab
ili

tie
s

A
ud

io
C

ap
ab

ili
tie

s
G

ra
ph

ic
sC

ap
ab

ili
tie

s
Tr

an
sp

or
tC

ap
ab

ili
tie

s
C

on
tro

lle
dT

er
m

U
se

Fo
rm

at
1

C
od

ec
P

ar
am

et
er

B
itR

at
e

B
itR

at
e

[0
..1

] :
 B

itR
at

e

C
od

ec
P

ar
am

et
er

Fi
llR

at
e

Fi
llR

at
e

[0
..1

] :
 in

te
ge

r

C
od

ec
P

ar
am

et
er

Ve
rte

xR
at

e

Ve
rte

xR
at

e
[0

..1
] :

 in
te

ge
r

C
od

ec
P

ar
am

et
er

M
em

or
yB

an
dw

id
th

M
em

or
yB

an
dw

id
th

 [0
..1

] :
 in

te
ge

r

C
od

ec
P

ar
am

et
er

B
uf

fe
rS

iz
e

B
uf

fe
rS

iz
e

[0
..1

] :
 in

te
ge

r

Te
rm

in
al

C
ap

ab
ili

ty
B

as
e

D
IA

B
as

e

F
ig

u
re

A
.1

0:
M

P
E

G
-2

1
D

IA
-U

E
D

C
la

ss
M

od
el

–
T
er

m
in

al
C

ap
ab

ili
ty

(p
ar

t
A

).

A.2. Class Model 165

K
ey

In
pu

t

C
on

tro
lle

dT
er

m
U

se

K
ey

In
pu

t
1

U
se

rIn
te

ra
ct

io
nI

np
ut

S
up

po
rtB

as
e

M
ic

ro
ph

on
e

Ta
bl

et
M

ou
se

Tr
ac

kb
al

l
S

tri
ng

In
pu

t
P

en

G
en

er
ic

P
en

re
so

lu
tio

n
[0

..1
] :

 n
on

N
eg

at
iv

eI
nt

eg
er

Te
rm

in
al

C
ap

ab
ili

ty
B

as
e

S
to

ra
ge

s
U

se
rIn

te
ra

ct
io

nI
np

ut
s

G
en

er
ic

M
ou

se
re

so
lu

tio
n

[0
..1

] :
 n

on
N

eg
at

iv
eI

nt
eg

er
bu

tto
ns

 :
no

nN
eg

at
iv

eI
nt

eg
er

sc
ro

llW
he

el
 [0

..1
] :

 b
oo

le
an

Ta
bl

et
1

M
ou

se
1

S
to

ra
ge

S
to

ra
ge

0.
.*

S
to

ra
ge

C
ha

ra
ct

er
is

tic
B

as
e

S
to

ra
ge

C
ha

ra
ct

er
is

tic
0.

.*

S
to

ra
ge

C
ha

ra
ct

er
is

tic
s

in
pu

tT
ra

ns
fe

rR
at

e
[0

..1
] :

 n
on

N
eg

at
iv

eI
nt

eg
er

ou
tp

ut
Tr

an
sf

er
R

at
e

[0
..1

] :
 n

on
N

eg
at

iv
eI

nt
eg

er
si

ze
 [0

..1
] :

 fl
oa

t
w

rit
ab

le
 [0

..1
] :

 b
oo

le
an

Tr
ac

kb
al

l
1

U
se

rIn
te

ra
ct

io
nI

np
ut

U
se

rIn
te

ra
ct

io
nI

np
ut

S
up

po
rt

0.
.*

U
se

rIn
te

ra
ct

io
nI

np
ut

0.
.*

P
en 1

D
IA

B
as

e

F
ig

u
re

A
.1

1:
M

P
E

G
-2

1
D

IA
-U

E
D

C
la

ss
M

od
el

–
T
er

m
in

al
C

ap
ab

ili
ty

(p
ar

t
B

).

166 Appendix A: MPEG-21 DIA-UED

AudioOutputCapabilityBase

AudioOutputCapabilities
lowFrequency [0..1] : float
highFrequency [0..1] : float
signalNoiseRatio [0..1] : float
power [0..1] : float
numChannels [0..1] : nonNegativeInteger

Resolution
horizontal : integer
vertical : integer
activeResolution [0..1] : boolean

TerminalCapabilityBase

AudioOutputs Displays

Chromaticity
x : zeroToOneType
y : zeroToOneType

AudioOutput

AudioOutput
0..*

AudioOutputCapability
0..*

AudioMode
samplingFrequency [0..1] : float
bitsPerSample [0..1] : integer

Mode
0..*

DisplayCapabilityBase

DisplayCapability
stereoscopic [0..1] : boolean
maximumBrightness [0..1] : float
contrastRatio [0..1] : positiveInteger
gamma [0..1] : float
bitsPerPixel [0..1] : integer
colorCapable [0..1] : boolean
sRGB [0..1] : boolean
fieldSequentialColor [0..1] : boolean
backlightLuminance [0..1] : zeroToOneType
dotPitch [0..1] : float
activeDisplay [0..1] : boolean
ScreenSize [0..1] : ScreenSize
ColorBitDepth [0..1] : ColorBitDepth
CharacterSetCode [0..*] : characterSetCode

Display

Display
0..*

DisplayCapability
0..*

Mode
refreshRate [0..1] : float
SizeChar [0..1] : SizeChar

Mode
0..*

ColorPrimaries

ColorPrimaries
0..1

ControlledTermUse

RenderingFormat
0..*

Resolution
0..*

ChromaticityRed
1

ChromaticityGreen
1

ChromaticityBlue
1

ChromaticityWhite
0..1

ScreenSize
horizontal : float
vertical : float

ColorBitDepth
red : integer
green : integer
blue : integer

SizeChar
horizontal : integer
vertical : integer

DIABase

Figure A.12: MPEG-21 DIA-UED Class Model – Terminal Capability
(part C).

A.2. Class Model 167

DeviceBenchmarkBase

CPUBenchmark
name : termReferenceType
baseValue : float

ThreeDBenchmark
name : termReferenceType
meanValue : float

TerminalCapabilityBase

DataIOsBenchmarks

Benchmark

DeviceBenchmark
0..*

DataIO

DataIOCharacteristicBase

DataIOCharacteristic
0..*

DataIOCharacteristics
busWidth [0..1] : nonNegativeInteger
transferSpeed [0..1] : nonNegativeInteger
maxDevices [0..1] : nonNegativeInteger
numDevices [0..1] : nonNegativeInteger

DataIO
0..*

Benchmark
0..*

DIABase

Figure A.13: MPEG-21 DIA-UED Class Model – Terminal Capability
(part D).

168 Appendix A: MPEG-21 DIA-UED

DeviceClass

ControlledTermUse

DeviceClass
0..1

TerminalCapabilityBase

IPMPTools
IPMPTool [0..*] : IPMPTool
IPMPSType [0..*] : hexBinary

PowerCharacteristics
averageAmpereConsumption [0..1] : integer
batteryCapacityRemaining [0..1] : integer
batteryTimeRemaining [0..1] : integer
runningOnBatteries [0..1] : boolean

DIABase

Figure A.14: MPEG-21 DIA-UED Class Model – Terminal Capability
(part E).

NetworkCapability
maxCapacity [0..1] : nonNegativeInteger
minGuaranteed [0..1] : nonNegativeInteger
inSequenceDelivery [0..1] : boolean
errorDelivery [0..1] : boolean
errorCorrection [0..1] : boolean

NetworkCharacteristicBase

NetworkCondition
startTime [0..1] : timePointType
duration [0..1] : durationType
AvailableBandwidth [0..1] : AvailableBandwidth
Delay [0..1] : Delay
Error [0..1] : Error

AvailableBandwidth
minimum [0..1] : nonNegativeInteger
maximum [0..1] : nonNegativeInteger
average [0..1] : nonNegativeInteger

Delay
packetTwoWay [0..1] : nonNegativeInteger
packetOneWay [0..1] : nonNegativeInteger
delayVariation [0..1] : integer

Error
packetLossRate [0..1] : nonNegativeReal
bitErrorRate [0..1] : nonNegativeInteger

DIABase

Figure A.15: MPEG-21 DIA-UED Class Model – Network Characteristic.

A.2. Class Model 169

NaturalEnvironmentCharacteristicBase

IlluminationCharacteristics

Illuminance [0..1] : nonNegativeInteger

AudioEnvironment
NoiseLevel [0..1] : float
NoiseFrequencySpectrum [0..1] : anon1

Time Location

TypeOfIllumination

ColorTemperature : unsigned8

TypeOfIllumination
0..1

Time

Time
1

Place

Location
1

Chromaticity
x : zeroToOneType
y : zeroToOneType

Chromaticity
1

DIABase

Figure A.16: MPEG-21 DIA-UED Class Model – Natural Environment Char-
acteristic.

170 Appendix A: MPEG-21 DIA-UED

A.3 Examples

A.3.1 UED Complete Example 1.

Listing A.1: MPEG-21 DIA-UED example 1.

<?xml version=” 1.0 ” encoding=”UTF−8”?>
<DIA

xmlns=”urn:mpeg:mpeg21:2003:01−DIA−NS”
xmlns:mpeg7=”urn:mpeg:mpeg7:schema:2001”
xmlns :x s i=” ht tp : //www.w3 . org /2001/XMLSchema−i n s t ance ”
xs i : s chemaLocat ion=”urn:mpeg:mpeg21:2003:01−DIA−NS
schemaDocs/UED. xsd”>
<Desc r ip t i on x s i : t y p e=”UsageEnvironmentType”>
< !−− User C h a r a c t e r i s t i c s −−>
<UsageEnvironmentProperty x s i : t y p e=”UsersType”>

<User>
<Use rCha ra c t e r i s t i c x s i : t y p e=”UserInfoType”>

<User In fo x s i : t y p e=”mpeg7:PersonType”>
<mpeg7:Name>

<mpeg7:GivenName>Robbie</mpeg7:GivenName>
<mpeg7:FamilyName>De Sutter</mpeg7:FamilyName>

</mpeg7:Name>
</ User In fo>

</ Use rCha ra c t e r i s t i c>
<Use rCha ra c t e r i s t i c x s i : t y p e=”UsagePreferencesType ”>

<UsagePre ferences>
<mpeg7 :F i l t e r ingAndSearchPre fe rences>

<mpeg7 :C l a s s i f i c a t i onP r e f e r en c e s>
<mpeg7:Genre h r e f=”urn:mpeg:mpeg7:cs :GenreCS:2001:1 . 6 ”>

<mpeg7:Name>Sports</mpeg7:Name>
</mpeg7:Genre>
<mpeg7:Genre h r e f=”urn:mpeg:mpeg7:cs :GenreCS:2001:3 ”>

<mpeg7:Name>Entertainment</mpeg7:Name>
</mpeg7:Genre>
<mpeg7:Genre h r e f=”urn:mpeg:mpeg7:cs :GenreCS:2001:6 ”>

<mpeg7:Name>Movies</mpeg7:Name>
</mpeg7:Genre>
</ mpeg7 :C l a s s i f i c a t i onPr e f e r en c e s>

</ mpeg7 :F i l t e r ingAndSearchPre fe rences>
</ UsagePre fe rences>

</ Use rCha ra c t e r i s t i c>
<Use rCha ra c t e r i s t i c x s i : t y p e=”UsageHistoryType”>

<UsageHistory>
<mpeg7:UserActionHistory>

<mpeg7:ObservationPeriod>
<mpeg7:TimePoint>2000−10−09T18:00−08 :00</mpeg7:TimePoint>
<mpeg7:Duration>PT6H</mpeg7:Duration>
</mpeg7:ObservationPeriod>
<mpeg7:UserActionList>
<mpeg7:ActionType>

<mpeg7:Name>PlayStream</mpeg7:Name>
</mpeg7:ActionType>
<mpeg7:UserAction>

<mpeg7:ProgramIdent i f i e r>
urn:mymedia:av:02−mnf−109
</mpeg7 :ProgramIdent i f i e r>

</mpeg7:UserAction>
<mpeg7:UserAction>

<mpeg7:ProgramIdent i f i e r>
urn:mymedia:av:14−znn−623
</mpeg7 :ProgramIdent i f i e r>

</mpeg7:UserAction>
<mpeg7:UserAction>

<mpeg7:ProgramIdent i f i e r>
urn:mymedia:av:73−mov−814
</mpeg7 :ProgramIdent i f i e r>

</mpeg7:UserAction>
</mpeg7:UserActionList>

</mpeg7:UserActionHistory>
</UsageHistory>

</ Use rCha ra c t e r i s t i c>

A.3. Examples 171

<Use rCha ra c t e r i s t i c x s i : t y p e=”AudioPresentat ionPreferencesType ”>
<VolumeControl>0 .85</VolumeControl>
<FrequencyEqual izer>
−10 −10 −10 −10 −10 −10 −10 −10 −10 −10
−10 −10 0 0 0 0 10 10 10 10
−10 −10 −10 −10 −10 −10 −10 −10 −10 −10 −10
</FrequencyEqual izer>
<AudibleFrequencyRange>
<StartFrequency>20</ StartFrequency>
<EndFrequency>20000</EndFrequency>
</AudibleFrequencyRange>
<Soundf i e ld>
<ImpulseResponse h r e f=” ht tp : //www. sac . or . kr / conce r tHa l l / hal lImp . wav”>

<SamplingFrequency>44100</SamplingFrequency>
<BitsPerSample>16</BitsPerSample>
<NumOfChannels>1</NumOfChannels>

</ ImpulseResponse>
</ Soundf i e ld>
<Soni f e rousSpeed>0 .5</ Soni f e rousSpeed>

</ Use rCha ra c t e r i s t i c>
<Use rCha ra c t e r i s t i c x s i : t y p e=” Mob i l i tyCharac t e r i s t i c sType ”>

<UpdateInterva l>
<LastUpdatePoint l a t i t u d e=” 35.00 ” long i tude=” 135.7 ”/>
<LastUpdateBinIndex>4</LastUpdateBinIndex>
<LastUpdateTime>

<mpeg7:TimePoint>2002−09−20T15:22+01 :00</mpeg7:TimePoint>
</LastUpdateTime>
<Lmax>180</Lmax>
<Values>

0 .4 0 .2 0 .1 0 .1 0 .1 0 .1 0 .0 0 .0
0 .0 0 .0 0 .0 0 .0 0 .0 0 .0 0 .0 0 .0
0 .0 0 .0 0 .0 0 .0 0 .0 0 .0 0 .0 0 .0
0 .0 0 .0 0 .0 0 .0 0 .0 0 .0 0 .0 0 .0

</Values>
</UpdateInterva l>
<Di r e c t i v i t y>
<Mean>35</Mean>
<Variance>27</Variance>
<Values>

0 .1 0 .2 0 .5 0 .2 0 .0 0 .0 0 .0 0 .0
0 .0 0 .0 0 .0 0 .0 0 .0 0 .0 0 .0 0 .0

</Values>
</ D i r e c t i v i t y>

</ Use rCha ra c t e r i s t i c>
<Use rCha ra c t e r i s t i c x s i : t y p e=”DestinationType ”>

<Time><mpeg7:TimePoint>2002−09−20T17:00+01 :00</mpeg7:TimePoint></Time>
<DestinationName>Awaji Yumebutai</DestinationName>

</ Use rCha ra c t e r i s t i c>
</User>

</UsageEnvironmentProperty>
< !−− Terminal C a p a b i l i t i e s −−>
<UsageEnvironmentProperty x s i : t y p e=”TerminalsType”>

<Terminal>
<TerminalCapabi l i ty x s i : t y p e=”CodecCapabi l i t iesType ”>

<Decoding x s i : t y p e=”AudioCapabi l i t iesType ”>
<Format h r e f=”urn:mpeg:mpeg7:cs:AudioCodingFormatCS:2001:4 . 4 ”>

<mpeg7:Name>MPEG−1 Layer I I I + MPEG−2 Low Sampling Rate Layer I I I I I I</
mpeg7:Name>

</Format>
<Format h r e f=”urn:mpeg:mpeg7:cs:AudioCodingFormatCS:2001:4 . 3 . 2 ”>

<mpeg7:Name>MPEG−2 Audio AAC Main P r o f i l e</mpeg7:Name>
</Format>
</Decoding>
<Decoding x s i : t y p e=” ImageCapabi l i t iesType ”>
<Format h r e f=”urn:mpeg:mpeg7:cs :VisualCodingFormatCS:2001:4 ”>

<mpeg7:Name>JPEG</mpeg7:Name>
</Format>
</Decoding>
<Decoding x s i : t y p e=” ImageCapabi l i t iesType ”>
<Format h r e f=”urn:mpeg:mpeg7:cs :VisualCodingFormatCS:2001:6 . 1 . 2 ”>

<mpeg7:Name>JPEG2000 jp2p P r o f i l e − Level 1</mpeg7:Name>
</Format>
</Decoding>
<Decoding x s i : t y p e=”VideoCapabi l i t i e sType ”>
<Format h r e f=”urn:mpeg:mpeg7:cs :VisualCodingFormatCS:2001:2 . 1 . 1 ”>

<mpeg7:Name>MPEG−2 Video Simple P r o f i l e @ Main Level</mpeg7:Name>
</Format>

172 Appendix A: MPEG-21 DIA-UED

</Decoding>
<Decoding x s i : t y p e=”VideoCapabi l i t i e sType ”>
<Format h r e f=”urn:mpeg:mpeg7:cs :VisualCodingFormatCS:2001:3 . 1 . 2 ”>

<mpeg7:Name>MPEG−4 Visua l Simple P r o f i l e @ Level 1</mpeg7:Name>
</Format>
</Decoding>
<Decoding x s i : t y p e=”VideoCapabi l i t i e sType ”>
<Format h r e f=”urn:mpeg:mpeg7:cs :VisualCodingFormatCS:2001:3 . 3 . 2 ”>

<mpeg7:Name>MPEG−4 Visua l Advanced Simple P r o f i l e @ Level 1</mpeg7:Name>
</Format>
</Decoding>

</TerminalCapabi l i ty>
<TerminalCapabi l i ty x s i : t y p e=”DisplaysType”>

<Display id=” pr imary d i sp lay ”>
<Disp layCapab i l i ty x s i : t y p e=”DisplayCapabi l i tyType ” co lorCapable=” true ”

ac t i v eD i sp l ay=” true ”>
<Mode>
<Reso lut ion ho r i z on t a l=”240” v e r t i c a l=”320”/>
</Mode>

</ Disp layCapab i l i ty>
</Display>
<Display id=” secondary d i sp l ay ”>
<Disp layCapab i l i ty x s i : t y p e=”DisplayCapabi l i tyType ” co lorCapable=” f a l s e ”>

<Mode>
<Reso lut ion ho r i z on t a l=”176” v e r t i c a l=”144”/>
</Mode>

</ Disp layCapab i l i ty>
</Display>

</TerminalCapabi l i ty>
<TerminalCapabi l i ty x s i : t y p e=”PowerCharacter i st icsType ”

batteryTimeRemaining=”4200” runningOnBatter ies=” true ”/>
<TerminalCapabi l i ty x s i : t y p e=”StoragesType”>

<Storage x s i : t y p e=”StorageType”>
<S to r ag eCha ra c t e r i s t i c x s i : t y p e=” StorageCharac te r i s t i c sType ”

inputTransferRate=”8” s i z e=”1200” wr i t ab l e=” true ”/>
</ Storage>

</TerminalCapabi l i ty>
<TerminalCapabi l i ty x s i : t y p e=”DataIOsType”>

<DataIO x s i : t y p e=”DataIOType”>
<DataIOCharacter i s t i c x s i : t y p e=”DataIOCharacter i st icsType ” busWidth=”128”/

>
</DataIO>

</TerminalCapabi l i ty>
</Terminal>

</UsageEnvironmentProperty>
< !−− Network C h a r a c t e r i s t i c s −−>
<UsageEnvironmentProperty x s i : t y p e=”NetworksType”>

<Network>
<NetworkCharacter i s t i c x s i : t y p e=”NetworkCapabilityType” maxCapacity=”384000

” minGuaranteed=”32000”/>
<NetworkCharacter i s t i c x s i : t y p e=”NetworkConditionType” durat ion=”

PT330N1000F”>
<AvailableBandwidth maximum=”256000” average=”80000”/>
<Delay packetTwoWay=”330” de layVar ia t i on=”66”/>
<Error packetLossRate=” 0.05 ”/>

</ NetworkCharacter i s t i c>
</Network>

</UsageEnvironmentProperty>
< !−− Natura l Envrionment C h a r a c t e r i s t i c s −−>
<UsageEnvironmentProperty x s i : t y p e=”NaturalEnvironmentsType”>

<NaturalEnvironment>
<Natura lEnvi ronmentCharacter i s t i c x s i : t y p e=”LocationType”>

<Locat ion>
<mpeg7:GeographicPosit ion>

<mpeg7:Point l ong i tude=” 135.75 ” l a t i t u d e=” 35.00 ” a l t i t u d e=” 10.00 ”/>
</mpeg7:GeographicPosit ion>
<mpeg7:Region>jp</mpeg7:Region>
</Locat ion>

</ Natura lEnvi ronmentCharacter i s t i c>
<Natura lEnvi ronmentCharacter i s t i c x s i : t y p e=”TimeType”>

<Time>
<mpeg7:TimePoint>1998−07−10T15:22+01 :00</mpeg7:TimePoint>
</Time>

</ Natura lEnvi ronmentCharacter i s t i c>
<Natura lEnvi ronmentCharacter i s t i c x s i : t y p e=”AudioEnvironmentType”>

<NoiseLeve l>20</NoiseLeve l>
<NoiseFrequencySpectrum>

A.3. Examples 173

40 30 20 10 10 10 10 10 10 10
10 40 40 40 30 30 30 20 20 20
10 10 10 10 10 10 10 10 10 10
10 10 10
</NoiseFrequencySpectrum>

</ Natura lEnvi ronmentCharacter i s t i c>
</NaturalEnvironment>

</UsageEnvironmentProperty>
</ Desc r ip t i on>

</DIA>

A.3.2 UED Network Information Example.

Listing A.2: MPEG-21 DIA-UED Network Information Example.

<?xml version=” 1.0 ” encoding=”UTF−8”?> <DIA
xmlns=”urn:mpeg:mpeg21:2003:01−DIA−NS”
xmlns:mpeg7=”urn:mpeg:mpeg7:schema:2001”
xmlns :x s i=” ht tp : //www.w3 . org /2001/XMLSchema−i n s t ance ”
xs i : s chemaLocat ion=”urn:mpeg:mpeg21:2003:01−DIA−NS
schemaDocs/UED. xsd”>

<Desc r ip t i on x s i : t y p e=”UsageEnvironmentType”>
<UsageEnvironmentProperty x s i : t y p e=”NetworksType”>

<Network>
<NetworkCharacter i s t i c x s i : t y p e=”NetworkConditionType” durat ion=”

PT330N1000F”>
<AvailableBandwidth maximum=”9600” average=”4400”/>
<Delay packetTwoWay=”330” de layVar ia t i on=”66”/>
<Error packetLossRate=” 0.05 ”/>

</ NetworkCharacter i s t i c>
</Network>

</UsageEnvironmentProperty>
</ Desc r ip t i on>

</DIA>

A.3.3 UED Terminal Information Example.

Listing A.3: MPEG-21 DIA-UED Terminal Information Example.

<?xml version=” 1.0 ” encoding=”UTF−8”?> <DIA
xmlns=”urn:mpeg:mpeg21:2003:01−DIA−NS”
xmlns:mpeg7=”urn:mpeg:mpeg7:schema:2001”
xmlns :x s i=” ht tp : //www.w3 . org /2001/XMLSchema−i n s t ance ”
xs i : s chemaLocat ion=”urn:mpeg:mpeg21:2003:01−DIA−NS
schemaDocs/UED. xsd”>

<Desc r ip t i on x s i : t y p e=”UsageEnvironmentType”>
<UsageEnvironmentProperty x s i : t y p e=”TerminalsType”>

<Terminal>
<TerminalCapabi l i ty x s i : t y p e=”DisplaysType”>

<Display id=” pr imary d i sp lay ”>
<Disp layCapab i l i ty x s i : t y p e=”DisplayCapabi l i tyType ” co lorCapable=”

true ” ac t i v eD i sp l ay=” true ”>
<Mode>

<Reso lut ion ho r i z on t a l=”1600” v e r t i c a l=”1200” id=”myNewScreen” /
>

</Mode>
</ Disp layCapab i l i ty>

</Display>
</TerminalCapabi l i ty>

174 Appendix A: MPEG-21 DIA-UED

</Terminal>
</UsageEnvironmentProperty>

</ Desc r ip t i on>
</DIA>

A.3.4 UED Complete Example 2.

Listing A.4: MPEG-21 DIA-UED Complete Example 2.
<?xml version=” 1.0 ” encoding=”UTF−8”?> <DIA
xmlns=”urn:mpeg:mpeg21:2003:01−DIA−NS”
xmlns:mpeg7=”urn:mpeg:mpeg7:schema:2001”
xmlns :x s i=” ht tp : //www.w3 . org /2001/XMLSchema−i n s t ance ”
xs i : s chemaLocat ion=”urn:mpeg:mpeg21:2003:01−DIA−NS
schemaDocs/UED. xsd”>
<Desc r ip t i on x s i : t y p e=”UsageEnvironmentType”>
< !−− User C h a r a c t e r i s t i c s −−>
<UsageEnvironmentProperty x s i : t y p e=”UsersType”>

<User>
<Use rCha ra c t e r i s t i c x s i : t y p e=”UserInfoType”>

<User In fo x s i : t y p e=”mpeg7:PersonType”>
<mpeg7:Name>

<mpeg7:GivenName>Somebody</mpeg7:GivenName>
<mpeg7:FamilyName>Else</mpeg7:FamilyName>

</mpeg7:Name>
</ User In fo>

</ Use rCha ra c t e r i s t i c>
<Use rCha ra c t e r i s t i c x s i : t y p e=”UsagePreferencesType ”>

<UsagePre ferences>
<mpeg7 :F i l t e r ingAndSearchPre fe rences>

<mpeg7 :C l a s s i f i c a t i onP r e f e r en c e s>
<mpeg7:Genre h r e f=”urn:mpeg:mpeg7:cs :GenreCS:2001:5 ”>

<mpeg7:Name>Music</mpeg7:Name>
</mpeg7:Genre>
<mpeg7:Genre h r e f=”urn:mpeg:mpeg7:cs :GenreCS:2001:1 . 2 ”>

<mpeg7:Name>Drama</mpeg7:Name>
</mpeg7:Genre>
<mpeg7:Genre h r e f=”urn:mpeg:mpeg7:cs :GenreCS:2001:2 ”>

<mpeg7:Name>News</mpeg7:Name>
</mpeg7:Genre>
<mpeg7:Genre h r e f=”urn:mpeg:mpeg7:cs :GenreCS:2001:1 . 8 ”>

<mpeg7:Name>Po l i t i c s</mpeg7:Name>
</mpeg7:Genre>
<mpeg7:Genre h r e f=”urn:mpeg:mpeg7:cs :GenreCS:2001:4 ”>

<mpeg7:Name>Soc i e ty</mpeg7:Name>
</mpeg7:Genre>
</ mpeg7 :C l a s s i f i c a t i onPr e f e r en c e s>

</ mpeg7 :F i l t e r ingAndSearchPre fe rences>
</ UsagePre fe rences>

</ Use rCha ra c t e r i s t i c>
<Use rCha ra c t e r i s t i c x s i : t y p e=”UsageHistoryType”>

<UsageHistory>
<mpeg7:UserActionHistory>

<mpeg7:ObservationPeriod>
<mpeg7:TimePoint>2004−09−09T18:00−08 :00</mpeg7:TimePoint>
<mpeg7:Duration>PT10H</mpeg7:Duration>
</mpeg7:ObservationPeriod>
<mpeg7:UserActionList>
<mpeg7:ActionType>

<mpeg7:Name>PlayStream</mpeg7:Name>
</mpeg7:ActionType>
<mpeg7:UserAction>

<mpeg7:ProgramIdent i f i e r>
urn : e l s emed ia : av : 15−pol−news−245
</mpeg7 :ProgramIdent i f i e r>

</mpeg7:UserAction>
<mpeg7:UserAction>

<mpeg7:ProgramIdent i f i e r>
urn : e l s emed ia : aud io : 75d−ds45−qq

A.3. Examples 175

</mpeg7 :ProgramIdent i f i e r>
</mpeg7:UserAction>
<mpeg7:UserAction>

<mpeg7:ProgramIdent i f i e r>
urn : e l s emed ia : av : 46−avi−102
</mpeg7 :ProgramIdent i f i e r>

</mpeg7:UserAction>
</mpeg7:UserActionList>

</mpeg7:UserActionHistory>
</UsageHistory>

</ Use rCha ra c t e r i s t i c>
<Use rCha ra c t e r i s t i c x s i : t y p e=”AudioPresentat ionPreferencesType ”>

<VolumeControl>0 .5</VolumeControl>
<AudibleFrequencyRange>
<StartFrequency>40</ StartFrequency>
<EndFrequency>10000</EndFrequency>
</AudibleFrequencyRange>
<Soundf i e ld>
<ImpulseResponse h r e f=” ht tp : //mmlab . be/ e l s e /music .wma”>

<SamplingFrequency>22100</SamplingFrequency>
<BitsPerSample>32</BitsPerSample>
<NumOfChannels>6</NumOfChannels>

</ ImpulseResponse>
</ Soundf i e ld>
<Soni f e rousSpeed>0 .7</ Soni f e rousSpeed>

</ Use rCha ra c t e r i s t i c>
<Use rCha ra c t e r i s t i c x s i : t y p e=” Disp layPresentat ionPre fe rencesType ”>

<ColorTemperaturePreference>
<BinNumber>1000</BinNumber>
<Value>

<Pre fer redValue>995</ Pre fer redValue>
<ReferenceValue>990</ReferenceValue>

</Value>
<Value>

<Pre fer redValue>1995</ Pre fer redValue>
<ReferenceValue>1990</ReferenceValue>

</Value>
<Value>

<Pre fer redValue>2995</ Pre fer redValue>
<ReferenceValue>2990</ReferenceValue>

</Value>
</ColorTemperaturePreference>
<Br ightne s sPre f e r ence>
<BinNumber>606</BinNumber>
<Value>

<Pre fer redValue>105</ Pre fer redValue>
<ReferenceValue>190</ReferenceValue>

</Value>
<Value>

<Pre fer redValue>456</ Pre fer redValue>
<ReferenceValue>159</ReferenceValue>

</Value>
<Value>

<Pre fer redValue>798</ Pre fer redValue>
<ReferenceValue>165</ReferenceValue>

</Value>
</ Br i gh tne s sPre f e r ence>
<Satura t i onPre f e r ence>
<BinNumber>606</BinNumber>
<Value>

<Pre fer redValue>105</ Pre fer redValue>
<ReferenceValue>190</ReferenceValue>

</Value>
<Value>

<Pre fer redValue>456</ Pre fer redValue>
<ReferenceValue>159</ReferenceValue>

</Value>
</ Satura t i onPre f e r ence>
<Contras tPre f e rence>
<BinNumber>606</BinNumber>
<Value>

<Pre fer redValue>15</ Pre fer redValue>
<ReferenceValue>20</ReferenceValue>

</Value>
<Value>

<Pre fer redValue>25</ Pre fer redValue>
<ReferenceValue>36</ReferenceValue>

176 Appendix A: MPEG-21 DIA-UED

</Value>
<Value>

<Pre fer redValue>50</ Pre fer redValue>
<ReferenceValue>60</ReferenceValue>

</Value>
<Value>

<Pre fer redValue>100</ Pre fer redValue>
<ReferenceValue>160</ReferenceValue>

</Value>
<Value>

<Pre fer redValue>800</ Pre fer redValue>
<ReferenceValue>1000</ReferenceValue>

</Value>
<Value>

<Pre fer redValue>2000</ Pre fer redValue>
<ReferenceValue>2600</ReferenceValue>

</Value>
</ Contras tPre f e rence>
<Stereoscop icVideoConvers ion>
<From2DTo3DStereoscopic>

<ParallaxType>Pos i t i v e</ParallaxType>
<DepthRange>0 .7</DepthRange>
<MaxDelayedFrame>3</MaxDelayedFrame>

</From2DTo3DStereoscopic>
<From3DStereoscopicTo2D>

<Lef tRight InterVideo>Right</ Le f tRight InterVideo>
</From3DStereoscopicTo2D>
</ Stereoscop icVideoConvers ion>

</ Use rCha ra c t e r i s t i c>
<Use rCha ra c t e r i s t i c x s i : t y p e=” GraphicsPresentat ionPre fe rencesType ”>

<GeometryEmphasis>1 .0</GeometryEmphasis>
<TextureEmphasis>0 .5</TextureEmphasis>
<AnimationEmphasis>0 .5</AnimationEmphasis>

</ Use rCha ra c t e r i s t i c>
<Use rCha ra c t e r i s t i c x s i : t y p e=”Convers ionPreferenceType ”>

<GeneralResourceConvers ions>
<Conversion order=”1” weight=” 1 .0 ”>

<From hre f=”urn:mpeg:mpeg7:cs :ContentCS:2001:4 . 2 ”>
<mpeg7:Name>Video</mpeg7:Name>
</From>
<To hre f=”urn:mpeg:mpeg7:cs :ContentCS:2001:4 . 2 ”>
<mpeg7:Name>Video</mpeg7:Name>
</To>

</Conversion>
<Conversion order=”3” weight=” 1 .0 ”>

<From hre f=”urn:mpeg:mpeg7:cs :ContentCS:2001:4 . 2 ”>
<mpeg7:Name>Video</mpeg7:Name>
</From>
<To hre f=”urn:mpeg:mpeg7:cs :ContentCS:2001:4 . 1 ”>
<mpeg7:Name>Image</mpeg7:Name>
</To>

</Conversion>
<Conversion order=”2” weight=” 1 .0 ”>

<From hre f=”urn:mpeg:mpeg7:cs :ContentCS:2001:4 . 2 ”>
<mpeg7:Name>Video</mpeg7:Name>
</From>
<To hre f=”urn:mpeg:mpeg7:cs :ContentCS:2001:1 ”>
<mpeg7:Name>Audio</mpeg7:Name>
</To>

</Conversion>
<Conversion order=”4” weight=” 1 .0 ”>

<From hre f=”urn:mpeg:mpeg7:cs :ContentCS:2001:4 . 2 ”>
<mpeg7:Name>Video</mpeg7:Name>
</From>
<To hre f=”urn:mpeg:mpeg7:cs :ContentCS:2001:5 ”>
<mpeg7:Name>Text</mpeg7:Name>
</To>

</Conversion>
</GeneralResourceConvers ions>

</ Use rCha ra c t e r i s t i c>
<Use rCha ra c t e r i s t i c x s i : t y p e=” Pre senta t i onPr io r i tyPre f e r enceType ”>

<Gene ra lRe sou r c ePr i o r i t i e s>
<Moda l i t yP r i o r i t i e s>

<Modality p r i o r i t yL e v e l=” 1 .5 ”
h r e f=”urn:mpeg:mpeg7:cs :ContentCS:2001:4 . 2 ”>

<mpeg7:Name>Video</mpeg7:Name>
</Modality>

A.3. Examples 177

</ Moda l i t yP r i o r i t i e s>
<Genr eP r i o r i t i e s>

<Genre p r i o r i t yL e v e l=” 1 .6 ”
h r e f=”urn:mpeg:mpeg7:cs :GenreCS:2001:1 . 6 ”>
<mpeg7:Name>Sports</mpeg7:Name>
</Genre>

</ Gen r eP r i o r i t i e s>
</ Gene ra lRe sou r c ePr i o r i t i e s>

</ Use rCha ra c t e r i s t i c>
<Use rCha ra c t e r i s t i c x s i : t y p e=” Mob i l i tyCharac t e r i s t i c sType ”>

<UpdateInterva l>
<LastUpdatePoint l a t i t u d e=” 45.05 ” long i tude=” 105.0 ”/>
<LastUpdateBinIndex>4</LastUpdateBinIndex>
<LastUpdateTime>

<mpeg7:TimePoint>2004−09−10T12:00+01 :00</mpeg7:TimePoint>
</LastUpdateTime>
<Lmax>150</Lmax>
<Values>

0 .4 0 .2 0 .1 0 .1 0 .1 0 .1 0 .0 0 .0
0 .0 0 .0 1 .0 0 .0 0 .0 0 .0 0 .0 0 .0
0 .0 0 .0 0 .0 1 .0 0 .4 0 .5 0 .0 0 .0
0 .0 0 .0 0 .0 0 .0 0 .0 0 .0 0 .0 0 .0

</Values>
</UpdateInterva l>
<Di r e c t i v i t y>
<Mean>15</Mean>
<Variance>20</Variance>
<Values>

0 .1 0 .2 0 .5 0 .2 0 .0 0 .0 0 .0 0 .0
0 .0 1 .0 0 .0 0 .8 0 .5 0 .5 0 .4 0 .0

</Values>
</ D i r e c t i v i t y>

</ Use rCha ra c t e r i s t i c>
<Use rCha ra c t e r i s t i c x s i : t y p e=”DestinationType ”>

<Time>
<mpeg7:TimePoint>2004−09−09T18:00+01 :00</mpeg7:TimePoint>
</Time>
<DestinationName>Ghent</DestinationName>

</ Use rCha ra c t e r i s t i c>
</User>

</UsageEnvironmentProperty>
< !−− Natura l Envrionment C h a r a c t e r i s t i c s −−>
<UsageEnvironmentProperty x s i : t y p e=”NaturalEnvironmentsType”>

<NaturalEnvironment>
<Natura lEnvi ronmentCharacter i s t i c x s i : t y p e=”LocationType”>

<Locat ion>
<mpeg7:GeographicPosit ion>

<mpeg7:Point l ong i tude=” 14.20 ” l a t i t u d e=” 46.39 ” a l t i t u d e=” 448.00 ”/>
</mpeg7:GeographicPosit ion>
<mpeg7:Region>at</mpeg7:Region>
</Locat ion>

</ Natura lEnvi ronmentCharacter i s t i c>
<Natura lEnvi ronmentCharacter i s t i c x s i : t y p e=”TimeType”>

<Time>
<mpeg7:TimePoint>2004−09−13T17:33+01 :00</mpeg7:TimePoint>
</Time>

</ Natura lEnvi ronmentCharacter i s t i c>
<Natura lEnvironmentCharacter i s t i c x s i : t y p e=”AudioEnvironmentType”>

<NoiseLeve l>40</NoiseLeve l>
<NoiseFrequencySpectrum>
10 10 10 10 10 10 10 10 10 10
10 10 10 10 30 30 10 10 10 10
10 10 10 10 10 10 10 10 10 10
10 10 10
</NoiseFrequencySpectrum>

</ Natura lEnvi ronmentCharacter i s t i c>
<Natura lEnvironmentCharacter i s t i c

x s i : t y p e=” I l l um ina t i onCharac t e r i s t i c sType ”>
<TypeOfI l luminat ion>
<ColorTemperature>105</ColorTemperature>
</TypeOfI l luminat ion>
<I l luminance>250</ I l luminance>

</ Natura lEnvi ronmentCharacter i s t i c>
</NaturalEnvironment>

</UsageEnvironmentProperty>
</ Desc r ip t i on>

</DIA>

178 Appendix A: MPEG-21 DIA-UED

A.4 MPEG-21 DIA-UED Software Toolkit
Usage

Listing A.5: UED Toolkit test – API Usage (excerpt).

// prefix the first occurrence of StartFrequency with "10".

String theStartFreq [] = (theAFR [0]. getStartFrequency ());

theStartFreq [0] = new String("10").concat(theStartFreq [0]);

theAFR [0]. setStartFrequency(theStartFreq);

// set the first occurrence of SoniferousSpeed to 1.9

String theSoniferousSpeed [] = new String [1];

theSoniferousSpeed [0] = new String("1.9");

theAPPT.setSoniferousSpeed(theSoniferousSpeed);

// create a new element: BalancedPreferred

String balancePreference [] = new String [1];

balancePreference [0] = new String(" -5");

theAPPT.setBalancePreference(balancePreference);

// delete the element Soundfield

theAPPT.setSoundfield(new SoundfieldType [0]);

// network

NetworkType theNetwork = theNetworks.getNetwork ()[0];

NetworkCharacteristic [] currentNC = theNetwork.

getNetworkCharacteristics ();

// add a new networkCharacteristic

NetworkCharacteristic newNC = new NetworkCharacteristic ();

NetworkConditionType newNCC = new NetworkConditionType ();

newNCC.setDuration("PT500N2000F");

// AvailableBandwidth

AvailableBandwidth [] ab = new AvailableBandwidth [1];

ab[0] = new AvailableBandwidth ();

ab[0]. setMaxium(new Integer (10000));

ab[0]. setMinimum(new Integer (5000));

newNCC.setAvailableBandwidth(ab);

Appendix B

Fast Object Tracking
Algorithms Pseudo-Code

This appendix contains the pseudo-code listings for the fast object track-
ing algorithms introduced in Section 5.4.

Algorithm B.1: Fast object tracking algorithm – main procedure.
for each frame do

// Start procedure
// Initialization frame
Algorithm B.3
OMV = calculateOMV using Algorithm B.4

// Translated mask
LX = LX + OMV1

LY = LY + OMV2

// Perform Resize Actions
MH = calculate Formula 5.3
MV = calculate Formula 5.4
Algorithm B.6 // resize horizontal
Algorithm B.7 // resize vertical

// Determine Macroblock Shifting Values
Algorithm B.2

end

180 Appendix B: Fast Object Tracking Pseudo-code

Algorithm B.2: Determine shifting values for all macroblocks.
// Reset the shifting values for all macroblocks
for i = 0 to M − 1 do

for j = 0 to N − 1 do
mi,j = 0

end
end
// For all matrix elements T
for x = 0 to TC − 1 do

for y = 0 to TR − 1 do
// Determine i and j
i = trunc((LX + 8 ∗ x)/16)
j = trunc((LY + 8 ∗ y)/16)

// Set shifting values to macroblocks
if (LX + 8 ∗ dx) mod 16 ≤ 8 and
(LY + 8 ∗ dy) mod 16 ≤ 8 then

// Figure 5.11(a)
mi,j = max(mi,j , T (x, y))

else if (LX + 8 ∗ dx) mod 16 > 8 and
(LY + 8 ∗ dy) mod 16 ≤ 8 then

// Figure 5.11(b)
mi,j = max(mi,j , T (x, y))
mi+1,j = max(mi+1,j , T (x, y))

else if (LX + 8 ∗ dx) mod 16 ≤ 8 and
(LY + 8 ∗ dy) mod 16 > 8 then

// Figure 5.11(c)
mi,j = max(mi,j , T (x, y))
mi,j+1 = max(mi,j+1, T (x, y))

else if (LX + 8 ∗ dx) mod 16 > 8 and
(LY + 8 ∗ dy) mod 16 > 8 then

// Figure 5.11(d)
mi,j = max(mi,j , T (x, y))
mi+1,j = max(mi+1,j , T (x, y))
mi,j+1 = max(mi,j+1, T (x, y))
mi+1,j+1 = max(mi+1,j+1, T (x, y))

end
end

end

181

Algorithm B.3: Initialization for each frame.
// Calculate dx, dy

dx = 8− (LX mod 8)
dy = 8− (LY mod 8)

// Calculate Pγ and
∑4

γ=1 Pγ

P1 = (dx ∗ dy)/64
P2 = ((8− dx) ∗ dy)/64
P3 = (dx ∗ (8− dy))/64
P4 = ((8− dx) ∗ (8− dy))/64
if P1 < λ then P1 = 0
if P2 < λ then P2 = 0
if P3 < λ then P3 = 0
if P4 < λ then P4 = 0
Psum = P1 + P2 + P3 + P4

Algorithm B.4: Calculate OMV.
// For all matrix elements T
for x = 0 to TC − 1 do

for y = 0 to TR − 1 do
// Get MV 1

x,y ...MV 4
x,y using Algorithm B.5

// Calculate formula (5.2)

OMVx,y = MV 1
x,y∗P1+MV 2

x,y∗P2+MV 3
x,y∗P3+MV 4

x,y∗P4

Psum

// Apply Constraint (C.2)
if ((x = 0 or x = TC − 1) and TC > 2) or
((y = 0 or y = TR − 1) and TR > 2) then

OMVx,y = ~0
C2Counter++

end
end

end

// Calculate overall object motion result.
for x = 0 to TC − 1 do

for y = 0 to TR − 1 do
OMV+ = OMVx,y

end
end
OMV = OMV/((TC ∗ TR)−C2Counter)

182 Appendix B: Fast Object Tracking Pseudo-code

Algorithm B.5: Determine MV x,y.

// Determine i and j
i = trunc((LX + 8 ∗ x)/16)
j = trunc((LY + 8 ∗ y)/16)
// Determine MV x,y

if (LX + 8 ∗ dx) mod 16 ≤ 8 and (LY + 8 ∗ dy) mod 16 ≤ 8 then
// Figure 5.12(a)
MV 1

x,y = MV 1
i,j

MV 2
x,y = MV 2

i,j

MV 3
x,y = MV 3

i,j

MV 4
x,y = MV 4

i,j

else if (LX + 8 ∗ dx) mod 16 > 8 and (LY + 8 ∗ dy) mod 16 ≤ 8
then

// Figure 5.12(b)
MV 1

x,y = MV 2
i,j

MV 2
x,y = MV 1

i+1,j

MV 3
x,y = MV 4

i,j

MV 4
x,y = MV 3

i+1,j

else if (LX + 8 ∗ dx) mod 16 ≤ 8 and (LY + 8 ∗ dy) mod 16 > 8
then

// Figure 5.12(c)
MV 1

x,y = MV 3
i,j

MV 2
x,y = MV 4

i,j

MV 3
x,y = MV 1

i,j+1

MV 4
x,y = MV 2

i,j+1

else if (LX + 8 ∗ dx) mod 16 > 8 and (LY + 8 ∗ dy) mod 16 > 8
then

// Figure 5.12(d)
MV 1

x,y = MV 4
i,j

MV 2
x,y = MV 3

i+1,j

MV 3
x,y = MV 2

i,j+1

MV 4
x,y = MV 1

i+1,j+1

end

183

Algorithm B.6: Perform Resize Actions – horizontal.
// Action (1.a)
if MH > δ then

repeat
for x = 0 to TC − 2 do

for y = 0 to TR − 1 do

T ′(x, y) = round
(

(TC−x−1)T (x,y)+(x+1)T (x+1,y)
TC

)
end

end

MH = MH − 8
LX = LX + 4

until MH ≤ δ

// Action (1.c)
else if MH < −δ then

repeat
for x = 0 to TC do

for y = 0 to TR − 1 do

T ′(x, y) = round
(

(TC−x)T (x,y)+(x)T (x−1,y)
TC

)
end

end

MH = MH + 8
LX = LX − 4

until MH ≥ −δ
end

184 Appendix B: Fast Object Tracking Pseudo-code

Algorithm B.7: Perform Resize Actions – vertical.
// Action (2.a)
if MV > δ then

repeat
for x = 0 to TC − 1 do

for y = 0 to TR − 2 do

T ′(x, y) = round
(

(TR−y−1)T (x,y)+(y+1)T (x,y+1)
TR

)
end

end

MV = MV − 8
LY = LY + 4

until MV ≤ δ

// Action (2.c)
else if MV < −δ then

repeat
for x = 0 to TC − 1 do

for y = 0 to TR do

T ′(x, y) = round
(

(TR−y)T (x,y)+(y)T (x,y−1)
TR

)
end

end

MV = MV + 8
LY = LY − 4

until MV ≥ −δ
end

Appendix C

UMA-compliant
Video-on-Demand

Application

C.1 Introduction

In this appendix, we discuss in detail how to develop a UMA-compliant
Internet-based Video-on-Demand application with support for time-
varying metadata as introduced in Section 6.1. We combine the results
of all previous chapters and select the suitable techniques in order to
realize this desired VoD application.

We have chosen to develop a VoD application as this kind of applica-
tion is ideal to evaluate the usefulness of our contributions discussed
in this thesis and to evaluate whether or not these new techniques can
improve the existing VoD solutions. In addition, we observe that Video-
on-Demand applications are increasingly being used, as illustrated by
the rapidly increasing numbers of available video blogs.

Current Internet-based VoD systems require an end user to manually
select the type of video by answering several (technical) questions, illus-
trated in Figure C.1. Most common questions are the preferred video
encoding scheme and player (e.g., Apple’s “QuickTime”1 or Microsoft’s

1More information on QuickTime is available at http://www.apple.com/

quicktime.

http://www.apple.com/quicktime
http://www.apple.com/quicktime

186 Appendix C: UMA-compliant Video-on-Demand Application

“Windows Media Player”2), the network connection speed (e.g., “broad-
band” versus “dial-up” – in Figure C.1 denoted as “high quality” and
“low quality” respectively), and the preferred video size (e.g., “small,”
“medium,” “large,” or “high definition”). This information is used to
select one particular version of the video from a repository of semanti-
cally equal audio-visual streams with different technical characteristics
– i.e., a simulstore. For each possible selection a different video stream
exists.

Figure C.1: Example of an actual Internet-based VoD system: the end user
manually selects the type of video by answering (technical) questions.

Next, the selected video is streamed to the end-user device. If the user
made a faulty choice, the content is either not consumable on his device
(for example, he has chosen “QuickTime” as video player, but his device
is not equipped with this player) or the stream does not fully exploit the

2More information on Windows Media Player is available at http://www.

microsoft.com/windows/windowsmedia.

http://www.microsoft.com/windows/windowsmedia
http://www.microsoft.com/windows/windowsmedia

C.2. Architecture and Usage Scenario 187

possibilities of the context (for example, the end user selected “low qual-
ity” although his network connection fits the bandwidth requirements
for “high quality”). In addition, the stream restarts completely when
the end user changes one of his choices during the consumption of the
audio-visual stream, for example, he notices that “high quality” does
not work well on his device, so he selects “low quality.”

As one can see, the traditional Internet-based VoD systems have various
limitations. Although improvements are made by the content providers,
such as a reduction in the number of (technical) questions, it is still not
compliant to the UMA principles. For example, the use of a simulstore
results in sub-optimal content being delivered to the consumer.

In addition to the Internet-based applications, other VoD applications
gain popularity, especially thanks to digital television. For example, in
Flanders the “net gemist” (“just missed”) services of the public broad-
caster Flemish Radio- and Television Network (VRT)3 allows digital
television subscribers to request television programs via their set-top
boxes on demand. Although this is a VoD application, we will not con-
sider it because the context is pre-determined. Indeed, the network and
the capabilities of the set-top boxes are exactly known and identical for
all end users. As such, it is possible to optimize the audio-visual content
to this fixed context in advance.

In this appendix, we first discuss the architecture for the intended VoD
application as well as the operating procedures in the usage scenario.
Next, we select the feasible technologies discussed in this thesis to han-
dle the different tasks defined in the scenario. Finally, we construct a
VoD application based on the described architecture and the selected
technologies.

C.2 Architecture and Usage Scenario

As stated in the introduction, our VoD application must be UMA com-
pliant and capable of handling time-varying metadata. We have chosen
to create an architecture that closely resembles the one discussed in
Section 3.4. As such, it contains four components:

• Client: this comprises the end user and his device on which the
audio-visual content is consumed. The end-user device handles all

3More information on the VRT is available at http://www.vrt.be.

http://www.vrt.be

188 Appendix C: UMA-compliant Video-on-Demand Application

communication with the end user through a GUI.

• Network: an IP-based network, such as the Internet.

• Broker: an intermediary component that contains an inventory of
the available audio-visual content. The broker also decides how
to optimize the content, thus also being the content adaptation
decision engine.

• Content Provider: this component is responsible to adapt and
stream the content over the network to the client. The content
adaptation engine is placed here as recommended in Section 3.2.

The Video-on-Demand mode of operation is divided in two phases: an
initialization phase and a consumption phase. During the first phase,
several steps are executed as illustrated in Figure C.2:

network broker content provider

4. request available content

5. overview available content

3a. context information (end user and end-user device)
3b. context information

(network)

7. adaptation rules

8. content location

6. request content

1. register client

2. unique identifier

9. request content stream

10. optimized content stream

3c. context information
(content provider)

client

Figure C.2: Initialization of the VoD application.

1. To start, the client registers itself with the broker.

C.2. Architecture and Usage Scenario 189

2. The broker replies with a unique identifier for this session. All
subsequent communication must contain this identifier.

3. In the third step, the broker receives information about the con-
text:

a. The client sends information about the end user and the end-
user device.

b. The network pushes its context information, for example avail-
able bandwidth, to the broker.

c. The content provider informs the broker about its status, for
example workload and remaining processing capacity.

It is desirable to negotiate this information at the start of the
application so the broker can take the context into account for all
upcoming replies.

4. The client requests an overview of the available content.

5. The broker creates the requested overview and eliminates the con-
tent that is indisputably not feasible for the given context, for ex-
ample, if the quality of the adapted version is unacceptable. The
client receives the list and presents it to the end user.

6. After the end user selected a video, the client informs the broker
about the choice. The broker retrieves information on the selected
video and the content provider. If the broker manages multiple
content providers, the broker can select the best provider for the
given context, for example, the one nearest to the client.

7. Having the information about the context, the chosen content, and
the selected content provider, the broker determines the adapta-
tion rules. These rules are transmitted to the content provider.

8. The broker informs the client on the location of the content.

9. The client requests the content from the content provider.

10. The content provider optimizes the requested content using the
received adaptation rules from the broker. Afterwards, the content
provider streams this optimized content over the network to the
client.

190 Appendix C: UMA-compliant Video-on-Demand Application

After the initialization phase, the client receives content optimized to the
initial context. This optimized content is derived from a single content
base, hence, this scenario is compliant to the principles of the UMA
framework.

However, during consumption, we expect that the context will change
according to the concept of time-varying metadata as described in Sec-
tion 3.4.2. If so, we want to re-optimize the content to the new context.
This results in the following steps (Figure C.3):

network broker content provider

1a. changing context (end user and end-user device)

1b. changing context
(network)

2. adaptation rules

3. optimized content stream

1c. changing context
(content provider)

client

Figure C.3: Handling time-varying metadata during content consumption.

1. The broker is informed about the changed context. This can be
done by either one of the following parts:

a. The client sends information about the changed context infor-
mation on the end user and the end-user device.

b. The network sends information about the changed context in-
formation of the network capabilities and conditions.

c. The content provider informs the broker about its changed con-
text, e.g. current processing load.

C.3. Technologies 191

2. The broker re-determines the adaptation rules and sends these to
the content provider.

3. The content provider re-optimizes the content on-the-fly, i.e., with-
out restarting the session.

These steps can be repeated as many times as required. As such, our sce-
nario is compliant to the principles of the UMA framework and handles
time-varying metadata.

C.3 Technologies

In this section, we assign a feasible technology to accomplish a particular
step. First, we select the technologies for the steps in the initialization
phase depicted in Figure C.2:

1. The registration process can be seen as invoking a web service in
order to retrieve the unique session identifier. Hence, we can use
any of the RPC’s discussed in Section 3.3. Here, we select the
SOAP over HTTP technology, mainly because it is very straight-
forward to use and to implement. Furthermore, the infrastructure
to support SOAP – in general, the Web service infrastructure –
is currently natively supported by most Web servers, which facili-
tates the construction.

In order to have a uniform interaction model, SOAP is always used
for any communication with the broker.

2. The broker replies to the SOAP message of step 1 with an acknowl-
edgment of successful registration containing the unique identifier
that was determined for the session.

3. In the third step of the initialization phase, the client, the network,
and the content provider inform the broker about their context.
In Section 2.3, we selected the MPEG-21 DIA-UED specification
to structure and store this context information.

It is possible to simply wrap the UED-based context information
in a SOAP message – illustrated in Listing 3.2 of Section 3.3 –
however, this generates overhead due to the verboseness of the
plain-text XML notation. Hence, we apply an alternative serial-
ization format before sending the data, as discussed in Chapter 4.

192 Appendix C: UMA-compliant Video-on-Demand Application

MPEG-B BiM should be used as it provides the best result. As an
alternative, the XML-based data can be ZIP compressed, which
is the second best alternative serialization technique. The result-
ing data are added as an attachment to the SOAP message as
discussed at the end of Section 3.3.2.

4. The next step is a straightforward request to retrieve information
about the available content.

5. The broker embeds its answer (i.e., the overview of the avail-
able content) in the SOAP reply. This answer contains at least
a (human-readable) title and an identifier for each available video
stream. It is necessary that the client knows the structure of the
information. For example, it is possible to use a generic container
structure, such as MPEG-21 Digital Item Declaration [52, 53].

Different to the architecture described in Section 3.4, we assume
that the broker has a local repository containing information on the
available content. This repository can be updated by the content
provider by sending information about new or updated content.
The content provider can use MPEG-7 as content-description tool,
as discussed in Section 2.2. Because this information is static and
updates thereof can be performed independently from the actual
VoD application, we do not consider how to create and update this
repository.

6. The client informs the broker about the selected video.

7. In this step, the broker decides on the adaptation rules. As stated
in the introduction of Section 3.2, we do not go into detail how to
reach an optimal decision; here we use a straightforward mapping
algorithm.

Still, the alternativly serialized UED-based data (received in
step 3) must be processed. The serialization-agnostic parser,
discussed in Section 4.4, and the MPEG-21 DIA-UED software
toolkit, discussion in Section 2.3.2, can be used to simplify this
process.

The resulting adaptation rules are transmitted to the content
provider. This can be done by a SOAP message or by an ad hoc
solution.

8. The broker sends a SOAP reply containing the URI of the content.
This is a reply to the SOAP message of step 6.

C.4. Application 193

9. The client requests the content from the content provider using
the URI with the session identifier appended.

10. Finally, the content provider optimizes and streams the selected
audio-visual content to the client.

According to the principles of the UMA concept, it is required to
automatically derive different versions from a single content base.
This requires content encoded in a scalable way, as discussed in
Section 5.3. Unfortunately, no advanced scalable video encod-
ing technique currently has a real-time decoder. As the real-time
decoding of the audio-visual stream is a pre-requisite for our ap-
plication, it is imperative to use a video coding technology that
supports this. As such, we selected AVC as the video compression
technology – AVC was introduced in Section 5.3.2. This further
implies that the content adaptation is limited to temporal scal-
ability for the video stream and enabling or disabling the audio
stream.

The technologies selected above can also be used for the steps of the
consumption phase depicted in Figure C.3. Indeed, the first step is
comparable to the third step of the initialization phase. Furthermore,
if MPEG-B BiM is used as an alternative serialization format, the up-
date functionality of BiM can be exploited to further reduce the over-
head. The second step of the consumption phase is equal to initialization
step 9. Finally, the third step is similar to step 10, however, during the
consumption phase the adaptation of the audio-visual stream can not
interrupt or restart the stream. Hence, this adaptation must occur on-
the-fly.

C.4 Application

In the remainder, we investigate the implementation details and issues to
create a VoD application based on the usage scenario and the selected
technologies. A technical overview of the architecture and the used
technologies of the VoD application is depicted in Figure C.8 at the end
of this appendix.

194 Appendix C: UMA-compliant Video-on-Demand Application

C.4.1 Client

The client is an application with a GUI that allows the user to select and
consume a video. In order to demonstrate the on-the-fly and real-time
content adaptation, this GUI also allows an end user to emulate changes
of the context.

Figure C.4: Client GUI application: select the broker service.

Figure C.4 shows the user interface to choose a broker. Selecting a
specific broker invokes the first five steps of the initialization phase. As
a result, an overview of the available videos is presented to the user
(Figure C.5).

Figure C.5: Client GUI application: select an available video.

After the user selects one of these, the final user interface is shown
(Figure C.6). The requested and (dynamically) adapted audio-visual
stream is rendered in the center of this GUI. To the left and to the right
thereof, several options are presented. These options allow the end user
to emulate a change in the context. Clicking on a button results in the
creation of an MPEG-21 DIA-UED compliant message that is sent to

C.4. Application 195

the broker. Hence, it emulates step 1a of the consumption phase. The
broker re-determines the adaptation rules and sends them to the content
provider. The latter re-adapts the audio-visual stream on-the-fly, which
becomes visible in the GUI. Table C.1 gives an overview of the mapping
of a particular button to the UED-based information that is sent to the
broker.

Figure C.6: Client GUI application: playing the selected video.

The client application was developed in the J2SE version 5.0 program-
ming language. The rendering of the audio-visual stream was handled
by Apple’s QuickTime player, which was embedded in the GUI using the
QuickTime for Java API [148]. All SOAP handling was performed by
the Java Web Services Developer Pack4, in particular, we used version
1.3 of the SOAP with Attachments API for Java (SAAJ) library to send
the context information. Our client also uses our MPEG-21 DIA-UED
software toolkit, as discussed in Section 2.3.2, to simplify the creation of
UED-compliant messages. Finally, the client uses BiM as alternative se-
rialization format to reduce the overhead as discussed in Chapter 4 and
recommended in previous section. The BiM encoding of the UED-based
data is performed by the BiM reference software [98], similar to Use
Case 1 in the evaluation of the alternative XML serialization formats in

4More information on the Java Web Service Developer Pack is available at http:

//java.sun.com/webservices/jwsdp.

http://java.sun.com/webservices/jwsdp
http://java.sun.com/webservices/jwsdp

196 Appendix C: UMA-compliant Video-on-Demand Application

Section 4.5. The client application exploits the update functionality of
BiM to further reduce the overhead of the context information.

C.4.2 Network

The network was modeled by the Click Modular Router5. This router
makes it possible to create advanced real-life network topologies in order
to emulate existing networks. It comes with various network elements,
each emulating a specific part of a network, for example a queue.

To test our application, we implemented a straightforward set up in
the Click router whereby the PacketBandwidthShaper element plays the
most important role (Figure C.7). This network element – developed
by the Department of Information Technology of Ghent University –
makes it possible to modify the available bandwidth of the Click router
on-the-fly and does this in an intelligent way that closely resembles real
bandwidth fluctuations in a network. The router allows us to emulate
various other network conditions, such as jitter, error ratio, and packet
loss. Nevertheless, we have confined ourselves to support only modifica-
tions in the available bandwidth as proof of concept.

Click router GUIClick router GUI

Java Applet Window

Scale*2 Normal Scale/2 Compute Graph Blanco Screen

Show configSaveDraw LineRemove LineRemove ElementReloadManPageQueue

PacketBandwidthShaper QueuePollDevice Queue ToDevice

Figure C.7: The implemented network topology using the Click Modular
Router.

Additionally, we developed an application that monitors the available
bandwidth of the (emulated) network by reading out the value of the
PacketBandwidthShaper element in Click. This application notifies the
broker whenever a change of the bandwidth occurs. This monitoring
tool was developed in the Java programming language and, similar to

5More information on the Click Modular Router is available at http://www.read.
cs.ucla.edu/click.

http://www.read.cs.ucla.edu/click
http://www.read.cs.ucla.edu/click

C.4. Application 197

T
ab

le
C

.1
:

C
lie

nt
ap

pl
ic

at
io

n:
m

ap
pi

ng
ru

le
s

of
th

e
G

U
I

co
nt

ex
t

em
ul

at
io

n
bu

tt
on

s
to

a
U

E
D

-c
om

pl
ia

nt
co

nt
ex

t
m

es
sa

ge
.

G
U

I
ca

te
go

ry
G

U
I

se
le

ct
io

n
U

E
D

na
m

e
U

E
D

pa
ra

m
et

er
U

E
D

va
lu

e

A
ud

io
P

re
fe

re
nc

e
A

ud
io

O
n

au
di

o
pr

es
en

ta
ti

on
vo

lu
m

e
co

nt
ro

l
1

A
ud

io
O

ff
pr

ef
er

en
ce

0
A

ud
io

O
ut

pu
t

Sp
ea

ke
rs

A
va

ila
bl

e
au

di
o

ou
tp

ut
nu

m
be

r
of

ch
an

ne
ls

2
A

va
ila

bi
lit

y
N

o
Sp

ea
ke

rs
A

va
ila

bl
e

ca
pa

bi
lit

ie
s

0

N
et

w
or

k
B

an
dw

id
th

51
2

kb
/s

(o
r

hi
gh

er
)

ne
tw

or
k

ca
pa

bi
lit

y
av

ai
la

bl
e

ba
nd

w
id

th

51
20

00
38

4
kb

/s
38

40
00

25
6

kb
/s

25
60

00
19

2
kb

/s
19

20
00

12
8

kb
/s

12
80

00
64

kb
/s

64
00

0

P
ow

er

C
on

ne
ct

ed
to

an
E

le
ct

ri
ca

l
O

ut
le

t
po

w
er

ch
ar

ac
te

ri
st

ic
ru

nn
in

g
on

ba
tt

er
ie

s
fa

ls
e

R
un

ni
ng

on
B

at
te

ri
es

:
...

tr
ue

...
Fu

ll

po
w

er
ch

ar
ac

te
ri

st
ic

ti
m

e
re

m
ai

ni
ng

36
00

...
H

al
f

18
00

...
Q

ua
rt

er
60

0
...

L
ow

60
...

V
er

y
L
ow

30

198 Appendix C: UMA-compliant Video-on-Demand Application

the client GUI, all SOAP handling was performed by the SAAJ library.
In order to create MPEG-21 DIA-UED compliant information about the
network status to the broker, the network also makes use of our UED
software toolkit. This results in UED-compliant context information,
similar to Listing A.2 in Appendix A.

In order to reduce the overhead, we preferred the MPEG-B BiM tech-
nology – as recommended in previous section – using the BiM reference
software. Unfortunately, the reference software only works on Microsoft
Windows operating systems because it calls functionalities stored in pre-
compiled Windows-based libraries. As Click runs on a Linux-based oper-
ating system, it is not feasible to use the BiM reference software. There
are currently no alternative BiM encoders available. Hence, we used the
second best alternative serialization format, namely ZIP compression.

C.4.3 Broker

The broker exposes four web services that can be invoked. These services
handle all incoming requests of the broker (represented by the incoming
arrows in Figure C.2 and Figure C.3). The outcome of the web services
is sent to the originator of the request, this is represented by the broker’s
outgoing arrows in the aforementioned figures.

The first three web services are related to steps in the initialization
phase. The web service register (Table C.2) takes care of the incoming
request of step 1 and its reply is step 2. The web service getOverview
(Table C.3) handles the request of step 4 and the reply of step 5. The
web service getVideo (Table C.4) handles the incoming request of step 6
and the reply of step 8.

The fourth web service setUEDContext (Table C.5) allows clients and
networks to send or update the context information (step 3 of the initial-
ization phase and step 1 of the consumption phase). In order to reduce
overhead, it is suggested to use an alternative serialization method. Be-
cause the broker transfers the received information to our serialization-
agnostic parser, the data may be serialized in any of the following for-
mats: plain-text XML, BiM encoded, ZIP compressed, and ASN.1-PER
encoded. In addition, these serialization types may be mixed in different
SOAP messages.

The Web service functionality of the broker is implemented using similar

C.4. Application 199

techniques as the client and is complemented with Apache’s Tomcat6

Web server to provide the Web service infrastructure.

Table C.2: Broker web service: register.

Name register
Parameter(s) None.
Return value A session identifier.
Description Registers a client and returns a unique ses-

sion identification string.
SOAP request body <register/>
SOAP return body <result>identifier</result>

Table C.3: Broker web service: getOverview.

Name getOverview
Parameter(s) The session identifier.
Return value MPEG-21 Digital Item.
Description Retrieves an overview of the available

videos.
SOAP request body <getOverview

sessionID="identifier"/>
SOAP return body <DIDL><Container id="Movies">[...]

The broker is also responsible to determine the adaptation rules and
must inform the content provider about its decision. Our content adap-
tation decision engine is a straightforward mapping algorithm whereby
we take particular characteristics of the context into account. The map-
ping is depicted in Table C.6. We take the context characteristics into
account that the client sends out after a button on the GUI is pressed
(Table C.1) and the context information transmitted by the network
monitoring application. If the network bandwidth in the Click router
differs from the selected network bandwidth in the GUI of the client,
the broker uses the smallest value.

6More information on Tomcat is available at http://tomcat.apache.org.

http://tomcat.apache.org

200 Appendix C: UMA-compliant Video-on-Demand Application

Table C.4: Broker web service: getVideo.

Name getVideo
Parameter(s) The session and video identifier.
Return value The URI.
Description Retrieves the URI of the given video.
SOAP request body <getVideo sessionID="identifier"

videoID="video identifier"/>
SOAP return body <URI>rtsp: // URIvideo </URI>

Table C.5: Broker web service: setUEDContext.

Name setUEDContext
Parameter(s) The session identifier (optional) and the

UED-compliant context as attachment.
Return value None.
Description Sets (or updates) the context information

with the UED-compliant information. If no
session identifier is given, only the network
context information can be set or updated.

SOAP request body <setUEDContext
sessionID="identifier"/>

SOAP return body Empty.

C.4.4 Content Provider

The main task of the content provider is to stream the requested video
optimized according to the adaptation rules and to inform the broker
about its status. The latter is useful to make load-balancing between
different content providers possible. It also makes load-optimization for
different streams on one content provider possible. Nevertheless, we
did not add this kind of negotiation to our demonstration application,
although similar techniques as for the negotiation of the client and the
network with the broker could be used.

From the various available streaming servers, we have selected Apple’s
Darwin Streaming Server7 because this server provides all required base

7More information on Darwin Streaming Server is available at http://developer.
apple.com/opensource/server/streaming.

rtsp://URIvideo
http://developer.apple.com/opensource/server/streaming
http://developer.apple.com/opensource/server/streaming

C.4. Application 201
T
ab

le
C

.6
:

C
on

te
nt

ad
ap

ta
ti

on
de

ci
si

on
en

gi
ne

:
m

ap
pi

ng
ru

le
s

fr
om

U
E

D
-c

on
te

xt
in

fo
rm

at
io

n
to

ad
ap

ta
ti

on
ru

le
s.

st
re

am
ad

ap
ta

ti
on

ty
pe

U
E

D
na

m
e∗

U
E

D
pa

ra
m

et
er

U
E

D
va

lu
e

audio

off
au

di
o

pr
es

en
ta

ti
on

pr
ef

er
en

ce
vo

lu
m

e
co

nt
ro

l
0

au
di

o
ou

tp
ut

ca
pa

bi
lit

ie
s

nu
m

be
r

of
ch

an
ne

ls
0

on
au

di
o

pr
es

en
ta

ti
on

pr
ef

er
en

ce
vo

lu
m

e
co

nt
ro

l
>

0
au

di
o

ou
tp

ut
ca

pa
bi

lit
ie

s
nu

m
be

r
of

ch
an

ne
ls

>
0

video

al
l
fr

am
es

po
w

er
ch

ar
ac

te
ri

st
ic

ru
nn

in
g

on
ba

tt
er

ie
s

fa
ls

e

po
w

er
ch

ar
ac

te
ri

st
ic

ru
nn

in
g

on
ba

tt
er

ie
s

tr
ue

+
ti

m
e

re
m

ai
ni

ng
≥

36
00

ne
tw

or
k

ca
pa

bi
lit

y
av

ai
la

bl
e

ba
nd

w
id

th
≥

51
20

00

dr
op

B
-f
ra

m
es

po
w

er
ch

ar
ac

te
ri

st
ic

ru
nn

in
g

on
ba

tt
er

ie
s

tr
ue

+
ti

m
e

re
m

ai
ni

ng
≥

18
00

&
<

36
00

ne
tw

or
k

ca
pa

bi
lit

y
av

ai
la

bl
e

ba
nd

w
id

th
≥

38
40

00
&

<
51

20
00

dr
op

B
-

&
25

%
P

-f
ra

m
es

po
w

er
ch

ar
ac

te
ri

st
ic

ru
nn

in
g

on
ba

tt
er

ie
s

tr
ue

+
ti

m
e

re
m

ai
ni

ng
≥

60
0

&
<

18
00

ne
tw

or
k

ca
pa

bi
lit

y
av

ai
la

bl
e

ba
nd

w
id

th
≥

25
60

00
&

<
38

40
00

dr
op

B
-

&
50

%
P

-f
ra

m
es

po
w

er
ch

ar
ac

te
ri

st
ic

ru
nn

in
g

on
ba

tt
er

ie
s

tr
ue

+
ti

m
e

re
m

ai
ni

ng
≥

60
&

<
60

0
ne

tw
or

k
ca

pa
bi

lit
y

av
ai

la
bl

e
ba

nd
w

id
th

≥
12

80
0

&
<

25
60

00

I-
fr

am
es

on
ly

po
w

er
ch

ar
ac

te
ri

st
ic

ru
nn

in
g

on
ba

tt
er

ie
s

tr
ue

+
ti

m
e

re
m

ai
ni

ng
<

60
ne

tw
or

k
ca

pa
bi

lit
y

av
ai

la
bl

e
ba

nd
w

id
th

≥
64

00
0

&
<

12
80

0
no

vi
de

o
ne

tw
or

k
ca

pa
bi

lit
y

av
ai

la
bl

e
ba

nd
w

id
th

<
64

00
0

*
M

u
lt

ip
le

e
n
tr

ie
s

a
re

“
o
r
”

c
o
m

b
in

e
d
.

202 Appendix C: UMA-compliant Video-on-Demand Application

functionalities (i.e., it is capable of streaming AVC-encoded bitstreams),
flawlessly works together with Apple’s QuickTime player that is embed-
ded in the client software, and its C++-based source code is available.
The latter is an important advantage as our content adaptation engine
can be directly built into the streaming server.

Darwin Streaming Server uses the Real-Time Transport Protocol (RTP)
[149] to stream video content. This is a one-way protocol solely in-
tended to transmit data. As such, RTP is often complemented with the
Real-Time Streaming Protocol (RTSP) [150] and the Real-Time Control
Protocol (RTCP) (also defined in [149]). The former is a kind of “re-
mote control” and supports features as start, pause, stop, rewind, go
the next chapter, et cetera. The latter is a feedback mechanism that
informs the streaming server about the status of the network, such as
jitter and packet loss. It should be noted that RTCP can not be used
in our VoD application because the content adaptation decision engine
is not located at the streaming server, hence the RTCP feedback can
not be taken into account during the content adaptation decision taking
process.

Listing C.1 depicts the (most important) code that we have added to the
Darwin Streaming Server in order to integrate the content adaptation
engine with the streaming server. This code is executed every time an
RTP packet is going to be sent.

First, the session identifier is retrieved and stored in the theSessionID
variable (lines 1 to 4). The content adaptation engine uses this identifier
to select the appropriate adaptation rules for this particular client and
stream. As such, the adaptation engine can perform different kinds of
adaptations for different streams simultaneously.

Next, the payload type of the RTP packet is investigated. In case of
audio payload (line 7), our algorithm checks whether or not the audio
stream is enabled (line 10). If not, the content of the RTP packet is
removed (line 13) and as a result, the Darwin Streaming Server discards
this packet.

In case of video payload (line 19), we first perform on lines 21 to 27 a
check similar to the audio payload check. The remaining lines exploit
the excellent provisions of the Darwin Streaming Server with regard
to temporal scalability. The streaming server supports a quality level
concept for the video stream, which regulates the frame rate. In total,
Darwin pre-defines five quality levels (Table C.7). By setting our desired

C.4. Application 203

quality level (determined by the adaptation rules), we can alter the frame
rate of the video stream on-the-fly and in real-time.

Listing C.1: Adding real-time content adaptation functionality to the Darwin
Streaming Server.

1 // Get the Session Identifier of the client & video stream

2 QTSS_RTPPayloadType thePayloadType = (QTSS_RTPPayloadType)

theLastPacketTrack ->Cookie2;

3 char *theSessionID = NULL;

4 theErr = QTSS_GetValueAsString ((QTSS_Object)inParams ->

inClientSession , qtssCliSesReqQueryString , 0, &

theSessionID);

5

6 // check payload: audio?

7 if (thePayloadType == qtssAudioPayloadType)

8 {

9 // check: audio enabled?

10 if (! rdsExtension ->getVolumeEnabled(theSessionID))

11 {

12 // audio disabled: discard packet

13 (* theFile)->fPacketStruct.packetData = NULL;

14 continue;

15 }

16 }

17

18 // check payload: video?

19 if (thePayloadType == qtssVideoPayloadType)

20 {

21 // check: video enabled?

22 if (! rdsExtension ->getVideoEnabled(theSessionID))

23 {

24 // video disabled: discard packet

25 (* theFile)->fPacketStruct.packetData = NULL;

26 continue;

27 }

28

29 // Retrieve the quality level parameter from the content

adaptation engine.

30 *theQualityLevel = rdsExtension ->getBandwidthParameter(

theSessionID);

31

32 // Set the quality level

33 (* theFile)->fFile.SetTrackQualityLevel(

theLastPacketTrack , *theQualityLevel);

34 }

204 Appendix C: UMA-compliant Video-on-Demand Application

Table C.7: Overview of the temporal scalability support in the Darwin
Streaming Server.

Keyword Value Temporal Scalability
kAllPackets 0 Full frame rate.
kNoBFrames 1 The B-frames are not transmitted.
k75PercentPFrames 2 The B-frames are not transmitted

and only the first three quarters of
the P-frames are transmitted.

k50PercentPFrames 3 The B-frames are not transmitted
and only the first half of the P-
frames are transmitted.

kKeyFramesOnly 4 Only the I-frames are transmitted.

The code added to the Darwin Streaming Server contains three method
calls to the rdsExtension object. Practically, this object processes the
adaptation rules received from the broker, maps these rules in a straight-
forward way to Darwin’s quality levels, and keeps an overview of the
different client sessions. As these are typical bookkeeping operations,
we do not discuss this object in detail.

A technical overview of the architecture and the used technologies is
given in Figure C.8.

C.5 Conclusions

In this appendix, we presented a report on the usability of the (novel)
technologies discussed and introduced in this thesis by developing a
Video-on-Demand application that is constructed according to the UMA
principles and capable of handling time-varying metadata. By creating
such an application we proved that our novel techniques are (amongst
other things) usable to ameliorate the current available VoD solutions.

Based on the results of the research presented in this thesis, we developed
a realistic architecture for a VoD application, composed of four compo-
nents, namely a client, a network, a broker, and a content provider.
The interaction between these components is divided in two phases: an
initialization phase and a consumption phase. The former ensures the
creation of a UMA-compliant application; the latter enables support for

C.5. Conclusions 205

N
et

w
or

k:

C
lic

k
M

od
ul

ar
 R

ou
te

r

B
ro

ke
r:

To
m

ca
t W

eb
se

rv
ic

e
C

on
te

nt
 P

ro
vi

de
r:

D
ar

w
in

 S
tre

am
in

g
Se

rv
er

C
lic

k
M

od
ul

ar
 R

ou
te

r
Ja

va
 5

.0
 +

 S
A

AJ
 1

.3
M

PE
G

-2
1

D
IA

-U
E

D
 S

of
tw

ar
e

To
ol

ki
t

Li
nu

x
(D

eb
ia

n)

To
m

ca
t W

eb
 S

er
ve

r
Ja

va
 5

.0
 +

 S
A

AJ
 1

.3
M

PE
G

-2
1

D
IA

-U
E

D
 S

of
tw

ar
e

To
ol

ki
t

S
er

ia
liz

at
io

n
A

gn
os

tic
 P

ar
se

r
W

in
do

w
s

20
03

 A
dv

an
ce

d
S

er
ve

r

Ja
va

 5
.0

 +
 S

AA
J

1.
3

Q
ui

ck
Ti

m
e

7
fo

r J
av

a
M

PE
G

-2
1

D
IA

-U
ED

 S
of

tw
ar

e
To

ol
ki

t
B

iM
 e

nc
od

er
W

in
do

w
s

X
P

 P
ro

fe
ss

io
na

l

D
ar

w
in

 S
tre

am
in

g
S

er
ve

r 5
.5

A
V

C
-e

nc
od

ed
 c

on
te

nt
C

++
-b

as
ed

 c
on

te
nt

 a
da

pa
ta

tio
n

en
gi

ne
W

in
do

w
s

20
03

 A
dv

an
ce

d
S

er
ve

r

ad
ap

ta
tio

n
ru

le
s

(a
d

ho
c

so
lu

tio
n)

R
TS

P
-b

as
ed

pl
ay

ba
ck

 c
on

tro
l

R
TP

-b
as

ed
A

V
C

-e
nc

od
ed

vi
de

o
st

re
am

ZI
P

-c
om

pr
es

se
d

U
E

D
 a

tta
ch

m
en

t

S
O

A
P

s
e
t
U
E
D
C
o
n
t
e
x
t

r
e
g
i
s
t
e
r

g
e
t
O
v
e
r
v
i
e
w

g
e
t
V
i
d
e
o

S
O

A
P

S
O

A
P

Bi
M

-e
nc

od
ed

U
ED

 a
tta

ch
m

en
t

C
lie

nt
:

Ja
va

 G
U

I

F
ig

u
re

C
.8

:
V

oD
A

pp
lic

at
io

n:
te

ch
ni

ca
l
ov

er
vi

ew
.

206 Appendix C: UMA-compliant Video-on-Demand Application

time-varying metadata.

Next, we selected the technologies that are suitable for the different
steps in the two phases. This selection is based on the results of the
previous chapters. Finally, we discussed the implementation details of
an actual VoD application according to the defined architecture and
using the selected technologies. This results in the creation of a VoD
application whereby the content is adapted on-the-fly and in real-time
to the changing context. A demonstration version of this application is
available at the Multimedia Lab research group Website8.

Although we have achieved our main objective as to prove the applicabil-
ity of the discussed and novel introduced techniques, some parts could
not be realized as desired. The main issue was the lack of real-time
decoders for scalable encoded video content; we selected AVC-encoded
content as an alternative. As a consequence, our on-the-fly content
adaptation is limited to temporal scalability and enabling/disabling of
the audio stream. The more advanced scalability schemes – such as
the selective degradation of the video using Region-of-Interest enhanced
with our fast object tracking technique – could not be demonstrated in
this application. Using MPEG-B BiM as the alternative serialization
method resulted in a second issue. To BiM encode XML-based data, we
use the Windows-based BiM reference software. However, as the net-
work is emulated by a Click Modular Router running on a Linux-based
operating system, the reference software could not be used. Unfortu-
nately, there are currently no (commercial or open source) alternative
BiM encoders available. Final and third issue, for demonstration pur-
poses we allowed the end user to manually alter the context information.
Although this is acceptable and desirable to illustrate the feasibility of
our architecture, real-life applications should aggregate the context in-
formation automatically. However, no generic solutions for realizing this
currently exist.

Notwithstanding the aforementioned issues, we are convinced that our
constructed architecture and application illustrates the usability of our
results and our novel contributions discussed in this thesis.

8The Multimedia Lab research group Website is available at http://

multimedialab.elis.ugent.be.

http://multimedialab.elis.ugent.be
http://multimedialab.elis.ugent.be

C.5. Conclusions 207

Publications

Articles in Journals

1. Robbie De Sutter, Sam Lerouge, Peter De Neve, Christian Tim-
merer, Hermann Hellwagner, and Rik Van de Walle. Comparison
of XML Serializations: Cost Benefit vs. Complexity. Multimedia
Systems. To appear (DOI : 10.1007/s00530-006-0044-y)

2. Robbie De Sutter, Stijn Notebaert, and Rik Van de Walle. Eval-
uation of Metadata Standards in the Context of Digital Audio-
Visual Libraries. Lecture Notes in Computer Science, 4172:220–
231, September 2006

3. Robbie De Sutter, Koen De Wolf, Sam Lerouge, and Rik Van de
Walle. Lightweight Object Tracking in Compressed Video Streams
Demonstrated in Region-of-Interest Coding. Eurasip Journal on
Applied Signal Processing. To appear

4. Davy De Schrijver, Wesley De Neve, Koen De Wolf, Robbie De Sut-
ter, and Rik Van de Walle. An Optimized MPEG-21 BSDL Frame-
work for the Adaptation of Scalable Bitstreams. Journal of Visual
Communication and Image Representation. To appear

Papers in Conferences with International Refer-
ees (first author)

1. Robbie De Sutter, Hans De Meyer, Bernard De Baets, and Helga
Naessens. Fuzzy Similarity Measures and Tree Comparison. In
Proceedings of the Atlantic Symposium on Computational Biol-

210 Publications

ogy and Genome Information Systems & Technology, pages 87–91,
Durham, North Carolina, USA, March 2001

2. Robbie De Sutter, Boris Rogge, Dimitri Van De Ville, and Rik
Van de Walle. Adapting Mobile Multimedia Applications to
Changing End-User Preferences. In Proceedings of Euromedia
2002, pages 180–182, Modena, Italy, April 2002

3. Robbie De Sutter, Sam Lerouge, Jeroen Bekaert, Boris Rogge,
Dimitri Van De Ville, and Rik Van de Walle. Dynamic Adapta-
tion of Multimedia Data for Mobile Applications. In Proceedings of
SPIE/ITCom Internet Multimedia Management Systems III, vol-
ume 4862, pages 240–248, Boston, Massachusetts, USA, July 2002

4. Robbie De Sutter, Sam Lerouge, Jeroen Bekaert, and Rik Van de
Walle. Dynamic Adaptation of Streaming MPEG-4 Video for Mo-
bile Applications. In Proceedings of Euromedia 2003, pages 185–
190, Plymouth, United Kingdom, April 2003

5. Robbie De Sutter, Sam Lerouge, Wesley De Neve, Peter Lambert,
and Rik Van de Walle. Advanced Mobile Multimedia Applications:
using MPEG-21 and Time-Dependent Metadata. In Proceedings
of SPIE/ITCom Multimedia Systems and Applications VI, volume
5241, pages 147–156, Orlando, Florida, USA, September 2003

6. Robbie De Sutter, Frederik De Keukelaere, and Rik Van de Walle.
Evaluation of Usage Environment Description Tools. In Proceed-
ings of the 2004 International Conference on Internet Computing,
pages 66–72, Las Vegas, Nevada, USA, June 2004

7. Robbie De Sutter, Christian Timmerer, Hermann Hellwagner, and
Rik Van de Walle. Evaluation of Models for Parsing Binary En-
coded XML-based Metadata. In Proceedings of the IEEE Interna-
tional Symposium on Intelligent Signal Processing and Communi-
cation Systems, pages 419–424, Seoul, Korea, November 2004

8. Robbie De Sutter, Christian Timmerer, Hermann Hellwagner, and
Rik Van de Walle. Multimedia Metadata Processing: a Format
Independent Approach. In Proceedings of the 9th IASTED In-
ternational Conference on Internet and Multimedia Systems and
Applications, pages 343–348, Grindelwald, Switzerland, February
2005

Publications 211

9. Robbie De Sutter, Sam Lerouge, Davy De Schrijver, and Rik
Van de Walle. Enhancing RSS Feeds: Eliminating Overhead
through Binary Encoding. In Proceedings of the IEEE 3rd Inter-
national Conference on Information Technology and Applications,
pages 520–525, Sydney, Australia, July 2005

10. Robbie De Sutter, Stijn Notebaert, Laurence Hauttekeete, and Rik
Van de Walle. IPEA: the Digital Archive Use Case. In Proceedings
of the IS&T Archiving 2006, pages 182–186, Ottawa, Canada, May
2006

11. Robbie De Sutter and Rik Van de Walle. Saving Bandwidth for
RSS Feeds by using ASN.1 in E-learning Applications. In The 9th
IASTED International Conference on Computers and Advanced
Technology in Education, Lima, Peru, October 2006. Accepted for
Publication

Papers in Conferences with International Refer-
ees (co-author)

1. Jeroen Bekaert, Dimitri Van De Ville, Boris Rogge, Sam Lerouge,
Robbie De Sutter, Emiel De Kooning, and Rik Van de Walle.
Metadata-based Access to Multimedia Architectural and Histori-
cal Archive Collections. In Proceedings of SPIE/ITCom Internet
Multimedia Management Systems III, volume 4862, pages 22–29,
Boston, Massachusetts, USA, July 2002

2. Sam Lerouge, Boris Rogge, Robbie De Sutter, Jeroen Bekaert,
Dimitri Van De Ville, and Rik Van de Walle. A Generic Map-
ping Mechanism between Content Description Metadata and User
Environments. In Proceedings of SPIE/ITCom Internet Multime-
dia Management Systems III, volume 4862, pages 12–21, Boston,
Massachusetts, USA, July 2002

3. Boris Rogge, Robbie De Sutter, Jeroen Bekaert, and Rik Van de
Walle. An Analysis of Multimedia Formats for Content Descrip-
tion. In Proceedings of SPIE/ITCom Internet Multimedia Man-
agement Systems III, volume 4862, pages 1–11, Boston, Mas-
sachusetts, USA, July 2002

212 Publications

4. Jeroen Bekaert, Robbie De Sutter, Rik Van de Walle, and Emiel
De Kooning. Metadata-based Access to Complex Digital Objects
in Multimedia Archival Collections. In Proceedings of Euromedia
2003, pages 10–13, Plymouth, United Kingdom, April 2003

5. Sam Lerouge, Robbie De Sutter, Peter Lambert, and Rik Van de
Walle. Fully Scalable Video Coding in Multicast Applications. In
Proceedings of SPIE/Electronic Imaging 2004, volume 5308, pages
555–564, San Jose, California, USA, January 2004

6. Peter Lambert, Lieven Eeckhout, Robbie De Sutter, Koen De Boss-
chere, and Rik Van de Walle. Low-Level Behavioral Analysis of
the JVT/AVC Decoder. In Proceedings of SPIE/Electronic Imag-
ing 2004, pages 1371–1382, San Jose, California, USA, January
2004

7. Jo Van Hoecke, Robbie De Sutter, and Paul De Knop. IKGym:
Innovation through Co-operation in Quality Management. In Pro-
ceedings of the 12th European Sport Management Congress, page
294, Ghent, Belgium, September 2004

8. Frederik De Keukelaere, Robbie De Sutter, and Rik Van de Walle.
MPEG-21 Session Mobility on Mobile Devices. In Proceedings of
the 2005 International Conference on Internet Computing, pages
287–293, Las Vegas, Nevada, USA, June 2005

9. Koen De Wolf, Robbie De Sutter, Wesley De Neve, and Rik Van de
Walle. Comparison of Prediction Schemes with Motion Informa-
tion Reuse for Low Complexity Spatial Scalability. In Proceedings
of SPIE/Visual Communications and Image Processing, volume
5960, pages 1911–1920, Beijing, China, July 2005

10. Sam Lerouge, Robbie De Sutter, and Rik Van de Walle. Personal-
izing Quality Aspects in Scalable Video Coding. In Proceedings of
the IEEE International Conference on Multimedia & Expo, Ams-
terdam, The Netherlands, July 2005. Published on CD-ROM

11. Davy De Schrijver, Robbie De Sutter, Peter Lambert, and Rik
Van de Walle. Lossless Image Coding based on Fractals. In Pro-
ceedings of the 7th IASTED International Conference on Signal
and Image Processing, pages 52–57, Honolulu, Hawaii, USA, Au-
gust 2005

Publications 213

12. Jo Van Hoecke, Paul De Knop, and Robbie De Sutter. IKGym:
A functional Quality System as Management Tool for Voluntary
Board Members. In Proceedings of the 13th Congress of the Euro-
pean Association for Sport Management, pages 277–278, Newcastle
Gateshead, U.K., September 2005

13. Wim Van Lancker, Robbie De Sutter, Davy De Schrijver, and Rik
Van de Walle. A Framework for Transformations of XML within
the Binary Domain. In Proceedings of the 10th IASTED Interna-
tional Conference on Internet and Multimedia Systems and Appli-
cations, pages 29–34, Innsbruck, Austria, February 2006

14. Jo Van Hoecke, Hugo Schoukens, and Robbie De Sutter. Foot
PASS: a Constructive and Distinctive Quality System for Youth
Academies of Professional Football Clubs. In Proceedings of the
14th Congress of the European Association for Sport Management,
Nicosia, Cyprus, September 2006. Accepted for Publication

MPEG Contributions

1. Frederik De Keukelaere, Wesley De Neve, Robbie De Sutter, and
Rik Van de Walle. Suggestions Concerning MPEG-21 Digital Item
Method Operations and their Implementation. MPEG Contri-
bution ISO/IEC JTC1/SC29/WG11 M9754, Trondheim, Norway,
July 2003

2. Robbie De Sutter, Frederik De Keukelaere, and Rik Van de
Walle. Digital Item Adaptation – Usage Environment Description
Tool Parser. MPEG Contribution ISO/IEC JTC1/SC29/WG11
M10387, Waikoloa, Hawaii, USA, December 2003

3. Davy De Schrijver, Frederik De Keukelaere, Robbie De Sutter, and
Rik Van de Walle. Digital Item Adaptation – Reference Software
Tests. MPEG Contribution ISO/IEC JTC1/SC29/WG11 M10436,
Waikoloa, Hawaii, USA, December 2003

4. Frederik De Keukelaere, Jeroen Bekaert, Patrick Hochstenbach,
Robbie De Sutter, Herbert Van de Sompel, and Rik Van de
Walle. Issues related to the inclusion of DIP information in
DIDs. MPEG Contribution ISO/IEC JTC1/SC29/WG11 M10424,
Waikoloa, Hawaii, USA, December 2003

214 Publications

5. Jeroen Bekaert, Frederik De Keukelaere, Robbie De Sutter, and
Rik Van de Walle. BNB Comments on ISO/IEC 21000-10 CD
Part 10: Digital Item Processing. MPEG Contribution ISO/IEC
JTC1/SC29/WG11 M10621, Munich, Germany, March 2004

6. Christian Timmerer, Stephen Davis, Itaru Kaneko, Spencer Cheng,
and Robbie De Sutter. Report of CE on MPEG-21 Binarisations.
MPEG Contribution ISO/IEC JTC1/SC29/WG11 M10974, Red-
mond, Washington, USA, July 2004

7. Robbie De Sutter, Christian Timmerer, Hermann Hellwagner,
and Rik Van de Walle. Using MPEG-21 Part 16 in Applica-
tions. MPEG Contribution ISO/IEC JTC1/SC29/WG11 M11325,
Palma De Mallorca, Spain, October 2004

8. Christian Timmerer and Robbie De Sutter. CE Report
on MPEG-21 Binarization. MPEG Contribution ISO/IEC
JTC1/SC29/WG11 M11744, Hong Kong, China, January 2005

9. Christian Timmerer, Ingo Kofler, Johannes Liegl, Hermann Hell-
wagner, Robbie De Sutter, Wim Van Lancker, and Rik Van de
Walle. Report of CE on MPEG-21 Binary Format. MPEG Contri-
bution ISO/IEC JTC1/SC29/WG11 M11858, Busan, Korea, April
2005

10. Davy De Schrijver, Robbie De Sutter, and Rik Van de Walle. Re-
port on Core Experiment on BSDL extensions. MPEG Contribu-
tion ISO/IEC JTC1/SC29/WG11 M12611, Nice, France, October
2005

References

[1] Andrew Perkis, Yousri Abdeljaoued, Charilaos Christopoulos,
Touradj Ebrahimi, and Joe F. Chicharo. Universal Multimedia
Access from Wired and Wireless Systems. Circuits, Systems and
Signal Processing – Special Issue on Multimedia Communications,
20(3-4):387–402, May 2001.

[2] Robbie De Sutter, Sam Lerouge, Peter De Neve, Christian Tim-
merer, Hermann Hellwagner, and Rik Van de Walle. Comparison
of XML Serializations: Cost Benefit vs. Complexity. Multimedia
Systems. To appear (DOI : 10.1007/s00530-006-0044-y).

[3] Robbie De Sutter, Stijn Notebaert, and Rik Van de Walle. Eval-
uation of Metadata Standards in the Context of Digital Audio-
Visual Libraries. Lecture Notes in Computer Science, 4172:220–
231, September 2006.

[4] Robbie De Sutter, Koen De Wolf, Sam Lerouge, and Rik Van de
Walle. Lightweight Object Tracking in Compressed Video Streams
Demonstrated in Region-of-Interest Coding. Eurasip Journal on
Applied Signal Processing. To appear.

[5] Davy De Schrijver, Wesley De Neve, Koen De Wolf, Robbie
De Sutter, and Rik Van de Walle. An Optimized MPEG-21 BSDL
Framework for the Adaptation of Scalable Bitstreams. Journal of
Visual Communication and Image Representation. To appear.

[6] Robbie De Sutter, Hans De Meyer, Bernard De Baets, and Helga
Naessens. Fuzzy Similarity Measures and Tree Comparison. In
Proceedings of the Atlantic Symposium on Computational Biol-
ogy and Genome Information Systems & Technology, pages 87–91,
Durham, North Carolina, USA, March 2001.

216 References

[7] Robbie De Sutter, Boris Rogge, Dimitri Van De Ville, and Rik
Van de Walle. Adapting Mobile Multimedia Applications to
Changing End-User Preferences. In Proceedings of Euromedia
2002, pages 180–182, Modena, Italy, April 2002.

[8] Robbie De Sutter, Sam Lerouge, Jeroen Bekaert, Boris Rogge,
Dimitri Van De Ville, and Rik Van de Walle. Dynamic Adapta-
tion of Multimedia Data for Mobile Applications. In Proceedings
of SPIE/ITCom Internet Multimedia Management Systems III,
volume 4862, pages 240–248, Boston, Massachusetts, USA, July
2002.

[9] Robbie De Sutter, Sam Lerouge, Jeroen Bekaert, and Rik Van de
Walle. Dynamic Adaptation of Streaming MPEG-4 Video for Mo-
bile Applications. In Proceedings of Euromedia 2003, pages 185–
190, Plymouth, United Kingdom, April 2003.

[10] Robbie De Sutter, Sam Lerouge, Wesley De Neve, Peter Lambert,
and Rik Van de Walle. Advanced Mobile Multimedia Applications:
using MPEG-21 and Time-Dependent Metadata. In Proceedings
of SPIE/ITCom Multimedia Systems and Applications VI, volume
5241, pages 147–156, Orlando, Florida, USA, September 2003.

[11] Robbie De Sutter, Frederik De Keukelaere, and Rik Van de Walle.
Evaluation of Usage Environment Description Tools. In Proceed-
ings of the 2004 International Conference on Internet Computing,
pages 66–72, Las Vegas, Nevada, USA, June 2004.

[12] Robbie De Sutter, Christian Timmerer, Hermann Hellwagner, and
Rik Van de Walle. Evaluation of Models for Parsing Binary En-
coded XML-based Metadata. In Proceedings of the IEEE Interna-
tional Symposium on Intelligent Signal Processing and Communi-
cation Systems, pages 419–424, Seoul, Korea, November 2004.

[13] Robbie De Sutter, Christian Timmerer, Hermann Hellwagner, and
Rik Van de Walle. Multimedia Metadata Processing: a Format
Independent Approach. In Proceedings of the 9th IASTED In-
ternational Conference on Internet and Multimedia Systems and
Applications, pages 343–348, Grindelwald, Switzerland, February
2005.

[14] Robbie De Sutter, Sam Lerouge, Davy De Schrijver, and Rik
Van de Walle. Enhancing RSS Feeds: Eliminating Overhead

References 217

through Binary Encoding. In Proceedings of the IEEE 3rd Inter-
national Conference on Information Technology and Applications,
pages 520–525, Sydney, Australia, July 2005.

[15] Robbie De Sutter, Stijn Notebaert, Laurence Hauttekeete, and Rik
Van de Walle. IPEA: the Digital Archive Use Case. In Proceedings
of the IS&T Archiving 2006, pages 182–186, Ottawa, Canada, May
2006.

[16] Robbie De Sutter and Rik Van de Walle. Saving Bandwidth for
RSS Feeds by using ASN.1 in E-learning Applications. In The 9th
IASTED International Conference on Computers and Advanced
Technology in Education, Lima, Peru, October 2006. Accepted for
Publication.

[17] Jeroen Bekaert, Dimitri Van De Ville, Boris Rogge, Sam Lerouge,
Robbie De Sutter, Emiel De Kooning, and Rik Van de Walle.
Metadata-based Access to Multimedia Architectural and Histori-
cal Archive Collections. In Proceedings of SPIE/ITCom Internet
Multimedia Management Systems III, volume 4862, pages 22–29,
Boston, Massachusetts, USA, July 2002.

[18] Sam Lerouge, Boris Rogge, Robbie De Sutter, Jeroen Bekaert,
Dimitri Van De Ville, and Rik Van de Walle. A Generic Map-
ping Mechanism between Content Description Metadata and User
Environments. In Proceedings of SPIE/ITCom Internet Multime-
dia Management Systems III, volume 4862, pages 12–21, Boston,
Massachusetts, USA, July 2002.

[19] Boris Rogge, Robbie De Sutter, Jeroen Bekaert, and Rik Van de
Walle. An Analysis of Multimedia Formats for Content Descrip-
tion. In Proceedings of SPIE/ITCom Internet Multimedia Man-
agement Systems III, volume 4862, pages 1–11, Boston, Mas-
sachusetts, USA, July 2002.

[20] Jeroen Bekaert, Robbie De Sutter, Rik Van de Walle, and Emiel
De Kooning. Metadata-based Access to Complex Digital Objects
in Multimedia Archival Collections. In Proceedings of Euromedia
2003, pages 10–13, Plymouth, United Kingdom, April 2003.

[21] Sam Lerouge, Robbie De Sutter, Peter Lambert, and Rik Van de
Walle. Fully Scalable Video Coding in Multicast Applications. In

218 References

Proceedings of SPIE/Electronic Imaging 2004, volume 5308, pages
555–564, San Jose, California, USA, January 2004.

[22] Peter Lambert, Lieven Eeckhout, Robbie De Sutter, Koen
De Bosschere, and Rik Van de Walle. Low-Level Behavioral Anal-
ysis of the JVT/AVC Decoder. In Proceedings of SPIE/Electronic
Imaging 2004, pages 1371–1382, San Jose, California, USA, Jan-
uary 2004.

[23] Jo Van Hoecke, Robbie De Sutter, and Paul De Knop. IKGym:
Innovation through Co-operation in Quality Management. In Pro-
ceedings of the 12th European Sport Management Congress, page
294, Ghent, Belgium, September 2004.

[24] Frederik De Keukelaere, Robbie De Sutter, and Rik Van de Walle.
MPEG-21 Session Mobility on Mobile Devices. In Proceedings of
the 2005 International Conference on Internet Computing, pages
287–293, Las Vegas, Nevada, USA, June 2005.

[25] Koen De Wolf, Robbie De Sutter, Wesley De Neve, and Rik Van de
Walle. Comparison of Prediction Schemes with Motion Informa-
tion Reuse for Low Complexity Spatial Scalability. In Proceedings
of SPIE/Visual Communications and Image Processing, volume
5960, pages 1911–1920, Beijing, China, July 2005.

[26] Sam Lerouge, Robbie De Sutter, and Rik Van de Walle. Personal-
izing Quality Aspects in Scalable Video Coding. In Proceedings of
the IEEE International Conference on Multimedia & Expo, Ams-
terdam, The Netherlands, July 2005. Published on CD-ROM.

[27] Davy De Schrijver, Robbie De Sutter, Peter Lambert, and Rik
Van de Walle. Lossless Image Coding based on Fractals. In Pro-
ceedings of the 7th IASTED International Conference on Signal
and Image Processing, pages 52–57, Honolulu, Hawaii, USA, Au-
gust 2005.

[28] Jo Van Hoecke, Paul De Knop, and Robbie De Sutter. IKGym:
A functional Quality System as Management Tool for Voluntary
Board Members. In Proceedings of the 13th Congress of the Euro-
pean Association for Sport Management, pages 277–278, Newcastle
Gateshead, U.K., September 2005.

[29] Wim Van Lancker, Robbie De Sutter, Davy De Schrijver, and
Rik Van de Walle. A Framework for Transformations of XML

References 219

within the Binary Domain. In Proceedings of the 10th IASTED
International Conference on Internet and Multimedia Systems and
Applications, pages 29–34, Innsbruck, Austria, February 2006.

[30] Jo Van Hoecke, Hugo Schoukens, and Robbie De Sutter. Foot
PASS: a Constructive and Distinctive Quality System for Youth
Academies of Professional Football Clubs. In Proceedings of the
14th Congress of the European Association for Sport Management,
Nicosia, Cyprus, September 2006. Accepted for Publication.

[31] Frederik De Keukelaere, Wesley De Neve, Robbie De Sutter, and
Rik Van de Walle. Suggestions Concerning MPEG-21 Digital Item
Method Operations and their Implementation. MPEG Contri-
bution ISO/IEC JTC1/SC29/WG11 M9754, Trondheim, Norway,
July 2003.

[32] Robbie De Sutter, Frederik De Keukelaere, and Rik Van de
Walle. Digital Item Adaptation – Usage Environment Description
Tool Parser. MPEG Contribution ISO/IEC JTC1/SC29/WG11
M10387, Waikoloa, Hawaii, USA, December 2003.

[33] Davy De Schrijver, Frederik De Keukelaere, Robbie De Sutter, and
Rik Van de Walle. Digital Item Adaptation – Reference Software
Tests. MPEG Contribution ISO/IEC JTC1/SC29/WG11 M10436,
Waikoloa, Hawaii, USA, December 2003.

[34] Frederik De Keukelaere, Jeroen Bekaert, Patrick Hochstenbach,
Robbie De Sutter, Herbert Van de Sompel, and Rik Van de
Walle. Issues related to the inclusion of DIP information in
DIDs. MPEG Contribution ISO/IEC JTC1/SC29/WG11 M10424,
Waikoloa, Hawaii, USA, December 2003.

[35] Jeroen Bekaert, Frederik De Keukelaere, Robbie De Sutter, and
Rik Van de Walle. BNB Comments on ISO/IEC 21000-10 CD
Part 10: Digital Item Processing. MPEG Contribution ISO/IEC
JTC1/SC29/WG11 M10621, Munich, Germany, March 2004.

[36] Christian Timmerer, Stephen Davis, Itaru Kaneko, Spencer
Cheng, and Robbie De Sutter. Report of CE on MPEG-21 Bi-
narisations. MPEG Contribution ISO/IEC JTC1/SC29/WG11
M10974, Redmond, Washington, USA, July 2004.

220 References

[37] Robbie De Sutter, Christian Timmerer, Hermann Hellwagner,
and Rik Van de Walle. Using MPEG-21 Part 16 in Applica-
tions. MPEG Contribution ISO/IEC JTC1/SC29/WG11 M11325,
Palma De Mallorca, Spain, October 2004.

[38] Christian Timmerer and Robbie De Sutter. CE Report
on MPEG-21 Binarization. MPEG Contribution ISO/IEC
JTC1/SC29/WG11 M11744, Hong Kong, China, January 2005.

[39] Christian Timmerer, Ingo Kofler, Johannes Liegl, Hermann Hell-
wagner, Robbie De Sutter, Wim Van Lancker, and Rik Van de
Walle. Report of CE on MPEG-21 Binary Format. MPEG Contri-
bution ISO/IEC JTC1/SC29/WG11 M11858, Busan, Korea, April
2005.

[40] Davy De Schrijver, Robbie De Sutter, and Rik Van de Walle. Re-
port on Core Experiment on BSDL extensions. MPEG Contribu-
tion ISO/IEC JTC1/SC29/WG11 M12611, Nice, France, October
2005.

[41] Jerome McDonough, Merrilee Proffitt, and MacKenzie Smith.
Structural, Technical, and Administrative Metadata Standards.
A Discussion Document. Technical Report, Digital Library Fed-
eration, December 2000. Available at http://www.diglib.org/
standards/stamdframe.htm.

[42] European Broadcasting Union. Metadata Exchange Scheme, v1.0.
Technical Report No. 290, April 2002. Available at http://www.
ebu.ch/trev 290-hopper.pdf.

[43] European Broadcasting Union. ESCORT: EBU System of
Classification of RTV Programmes. Technical Report, Oc-
tober 1995. Available at http://www.ebu.ch/en/technical/
metadata/specifications.

[44] Tim Bray, Jean Paoli, C. M. Sperberg-McQueen, Eve Maler, and
François Yergeau. Extensible Markup Language (XML) 1.0 (Third
Edition). Technical Report World Wide Web Consortium (W3C)
(Recommendation), February 2004. Available at http://www.w3.
org/TR/2004/REC-xml-20040204.

[45] David C. Fallside and Priscilla Walmsley. XML Schema Part 0:
Primer Second Edition. Technical Report World Wide Web Con-

http://www.diglib.org/standards/stamdframe.htm
http://www.diglib.org/standards/stamdframe.htm
http://www.ebu.ch/trev_290-hopper.pdf
http://www.ebu.ch/trev_290-hopper.pdf
http://www.ebu.ch/en/technical/metadata/specifications
http://www.ebu.ch/en/technical/metadata/specifications
http://www.w3.org/TR/2004/REC-xml-20040204
http://www.w3.org/TR/2004/REC-xml-20040204

References 221

sortium (W3C) (Recommendation), February 2004. Available at
http://www.w3.org/TR/2004/REC-xmlschema-0-20041028.

[46] James Clark. XSL Transformations (XSLT). Technical Re-
port World Wide Web Consortium (W3C) (Recommendation),
November 1999. Available at http://www.w3.org/TR/1999/
REC-xslt-19991116.

[47] Dublin Core Metadata Initiative. Dublin Core Metadata Element
Set, Version 1.1: Reference Description. Technical Report, 2004.
Available at http://www.dublincore.org/documents/dces.

[48] Frank Manola, Eric Miller, and Brian McBride. Re-
source Description Framework (RDF) Primer. Technical Re-
port World Wide Web Consortium (W3C) (Recommendation),
February 2004. Available at http://www.w3.org/TR/2004/
REC-rdf-primer-20040210.

[49] B. S. Manjunath, Philippe Salembier, and Thomas Sikora, edi-
tors. Introduction to MPEG-7: Multimedia Content Description
Language. John Wiley & Sons, June 2002.

[50] José M. Mart́ınez, Rob Koenen, and Fernando Pereira. MPEG-7:
The Generic Multimedia Content Description Standard, Part 1.
IEEE Multimedia, 9(2):78–87, April 2002.

[51] José M. Mart́ınez. MPEG-7: Overview of MPEG-7 Description
Tools, Part 2. IEEE Multimedia, 9(3):83–93, July 2002.

[52] Ian Burnett, Rik Van de Walle, Keith Hill, Jan Bormans, and
Fernando Pereira. MPEG-21: Goals and Achievements. IEEE
Multimedia, 10(4):60–70, October 2003.

[53] Ian Burnett, Fernando Pereira, Rik Van de Walle, and Rob Koe-
nen, editors. The MPEG-21 Book. John Wiley & Sons, March
2006.

[54] Philippe Salembier and John R. Smith. MPEG-7 Multimedia De-
scription Schemes. IEEE Transactions on Circuits, Systems and
Video Technology, 11(6):748–759, 2001.

[55] European Broadcasting Union. P/Meta Metadata Exchange
Scheme v1.1. Technical Report No. 3295, June 2005.
Available at http://www.ebu.ch/en/technical/metadata/
specifications/notes on tech3295.php.

http://www.w3.org/TR/2004/REC-xmlschema-0-20041028
http://www.w3.org/TR/1999/REC-xslt-19991116
http://www.w3.org/TR/1999/REC-xslt-19991116
http://www.dublincore.org/documents/dces
http://www.w3.org/TR/2004/REC-rdf-primer-20040210
http://www.w3.org/TR/2004/REC-rdf-primer-20040210
http://www.ebu.ch/en/technical/metadata/specifications/notes_on_tech3295.php
http://www.ebu.ch/en/technical/metadata/specifications/notes_on_tech3295.php

222 References

[56] European Broadcasting Union. Metadata Exchange Standards.
Technical Report No. 284, September 2000. Available at http:
//www.ebu.ch/en/technical/trev/trev 284-hopper.pdf.

[57] Tim Berners-Lee, Roy Fielding, and Frystyk Henrik. Hypertext
Transfer Protocol - HTTP/1.0. Internet Engineering Task Force
Request for Comment 1945, May 1996.

[58] Roy Fielding, James Gettys, Jeffrey Mogul, Henrik Frystyk, Larry
Masinter, Paul Leach, and Tim Berners-Lee. Hypertext Transfer
Protocol - HTTP/1.1. Internet Engineering Task Force Request
for Comment 2616, June 1999.

[59] Graham Klyne, Franklin Reynolds, Chris Woodrow, Hidetaka
Ohto, Johan Hjelm, Mark H. Butler, and Luu Tran. Com-
posite Capability / Preference Profile (CC/PP): Structure and
Vocabularies. Technical Report World Wide Web Consortium
(W3C) (Recommendation), January 2004. Available at http:
//www.w3.org/TR/2004/REC-CCPP-struct-vocab-20040115/.

[60] Open Mobile Alliance. UAProf User Agent Profiling Specifica-
tion. Report No. WAP-248-UAPROF-20011020-a, October 2001.
Available at http://www.openmobilealliance.org.

[61] ISO/IEC. Information Technology – Multimedia framework
(MPEG-21) – Part 7: Digital Item Adaptation. ISO/IEC Inter-
national Standard 21000-7:2004, October 2004.

[62] Anthony Vetro and Christian Timmerer. Digital Item Adap-
tation: Overview of Standardization and Research Activities.
IEEE Transactions on Multimedia – Special Issue on MPEG-21,
7(3):435–445, June 2005.

[63] Kim Topley. J2ME in a nutshell. O’Reilly, 2002.

[64] V. Sreenivasulu. The Role of a Digital Librarian in the Man-
agement of Digital Information Systems (DIS). Aslib Proceeding,
18(1):12–20, 2000.

[65] Digital Library Federation. METS: Metadata Encoding and
Transmission Standard. Technical Report, November 2005. Avail-
able at http://www.loc.gov/standards/mets.

http://www.ebu.ch/en/technical/trev/trev_284-hopper.pdf
http://www.ebu.ch/en/technical/trev/trev_284-hopper.pdf
http://www.w3.org/TR/2004/REC-CCPP-struct-vocab-20040115/
http://www.w3.org/TR/2004/REC-CCPP-struct-vocab-20040115/
http://www.openmobilealliance.org
http://www.loc.gov/standards/mets

References 223

[66] Digital Library Federation. The Making of America II. Tech-
nical Report, November 2005. Available at http://sunsite.
berkeley.edu/MOA2.

[67] Library of Congress. Understanding MARC Authority Records.
Cataloging Distribution Service, June 2003.

[68] The Society of American Archivists. Encoded Archival Descrip-
tion: Tag Library. Society of American Archivists, June 2002.

[69] International Council on Archives. ISAD(G): General Interna-
tional Standard Archival Description, Second edition. September
1999.

[70] Jeroen Bekaert, Dimitri Van De Ville, Boris Rogge, Iwan Strauven,
Emiel De Kooning, and Rik Van de Walle. Metadata-based Access
to Multimedia Architectural and Historical Archive Collections: a
Review. Aslib Proceeding, 54(6):362–371, December 2002.

[71] Shien-Chiang Yu, Hsueh-hua Chen, and Huai-wen Chang. Build-
ing an Open Archive Union Catalog for Digital Archives. The
Electronic Library, 23(4):410–418, August 2005.

[72] Herbert Van de Sompel and Carl Lagoze. The Santa Fe Convention
of the Open Archives Initiative. D-Lib Magazine, 6(2), February
2000.

[73] Carl Lagoze and Herbert Van de Sompel. The Making of the Open
Archives Initiative Protocol for Metadata Harvesting. Library Hi
Tech, 21(2):118–128, 2003.

[74] Sam Lerouge, Peter Lambert, and Rik Van de Walle. Multi-criteria
Optimization for Scalable Bitstreams. In the 8th International
Workshop on Visual Content Processing and Representation, vol-
ume 2849 of Lecture Notes in Computer Science, September 2003.

[75] Sam Lerouge. Personalizing Quality Aspects for Video Communi-
cation in Constrained Heterogeneous Environments. PhD thesis,
Ghent University, November 2005.

[76] Bernd Girod, Anne Aaron, Shantanu Rane, and David Rebollo-
Monedero. Distributed Video Coding. Proceedings of the IEEE,
Special Issue on Advances in Video Coding and Delivery, 93(1):71–
83, January 2005.

http://sunsite.berkeley.edu/MOA2
http://sunsite.berkeley.edu/MOA2

224 References

[77] Nilo Mitra. SOAP Version 1.2 Part 0: Primer. Technical
Report World Wide Web Consortium (W3C) (Recommenda-
tion), June 2003. Available at http://www.w3.org/TR/2003/
REC-soap12-part0-20030624.

[78] Martin Gudgin, Marc Hadley, Noah Mendelsohn, Jean-Jacques
Moreau, and Henrik Frystyk Nielsen. SOAP Version 1.2 Part 1:
Messaging Framework. Technical Report World Wide Web Con-
sortium (W3C) (Recommendation), June 2003. Available at
http://www.w3.org/TR/2003/REC-soap12-part1-20030624.

[79] Martin Gudgin, Marc Hadley, Noah Mendelsohn, Jean-Jacques
Moreau, and Henrik Frystyk Nielsen. SOAP Version 1.2 Part 2:
Adjuncts. Technical Report World Wide Web Consortium (W3C)
(Recommendation), June 2003. Available at http://www.w3.org/
TR/2003/REC-soap12-part2-20030624.

[80] James Clark and Steve DeRose. XML XPath Language. Tech-
nical Report World Wide Web Consortium (W3C) (Recommen-
dation), November 1999. Available at http://www.w3.org/TR/
1999/REC-xpath-19991116.

[81] Bert Bos. The XML Data Model. Technical Report World Wide
Web Consortium (W3C) (Essay), April 1997. Available at http:
//www.w3.org/XML/datamodel.html.

[82] Arnaud Le Hors, Philippe Le Hégaret, Lauren Wood, Gavin
Nicol, Jonathan Robie, Mike Champion, and Steve Byrne. Doc-
ument Object Model (DOM) Level 3 Core Specification. Tech-
nical Report World Wide Web Consortium (W3C) (Recommen-
dation), April 2004. Available at http://www.w3.org/TR/2004/
REC-DOM-Level-3-Core-20040407.

[83] Peter Deutsch. DEFLATE Compressed Data Format Specification
version 1.3. Internet Engineering Task Force Request for Comment
1951, May 1996.

[84] David A. Huffman. A Method for the Construction of Minimum-
Redundancy Codes. Proceedings of the I.R.E., pages 1098–1102,
September 1952.

[85] Jacob Ziv and Abraham Lempel. A Universal Algorithm for Se-
quential Data Compression. IEEE Transactions on Information
Theory, 23(3):337–343, 1977.

http://www.w3.org/TR/2003/REC-soap12-part0-20030624
http://www.w3.org/TR/2003/REC-soap12-part0-20030624
http://www.w3.org/TR/2003/REC-soap12-part1-20030624
http://www.w3.org/TR/2003/REC-soap12-part2-20030624
http://www.w3.org/TR/2003/REC-soap12-part2-20030624
http://www.w3.org/TR/1999/REC-xpath-19991116
http://www.w3.org/TR/1999/REC-xpath-19991116
http://www.w3.org/XML/datamodel.html
http://www.w3.org/XML/datamodel.html
http://www.w3.org/TR/2004/REC-DOM-Level-3-Core-20040407
http://www.w3.org/TR/2004/REC-DOM-Level-3-Core-20040407

References 225

[86] Jacob Ziv and Abraham Lempel. Compression of Individual Se-
quences via Variable Rate Coding. IEEE Transactions on Infor-
mation Theory, 24(5):530–535, 1978.

[87] Peter Deutsch and Jean-Loup Gailly. ZLIB Compressed Data For-
mat Specification version 3.3. Internet Engineering Task Force
Request for Comment 1950, May 1996.

[88] Mark Nelson and Jean-Loup Gailly. The Data Compression Book
– second edition. M&T Books, April 1995.

[89] Khalid Sayood. Introduction to Data Compression. Morgan Kauf-
mann Publishers, January 1996.

[90] ITU-T and ISO/IEC. Information Technology – Abstract Syn-
tax Notation One (ASN.1) Specification of Basic Notation. Re-
port No. ITU-T Rec. X.680 (2002), ISO/IEC 8824-1:2002, 2002.
Available at http://www.itu.int/ITU-T/studygroups/com17/
languages/X.680-0207.pdf.

[91] ITU-T and ISO/IEC. Information Technology – ASN.1 Encoding
Rules: Specification of Basic Encoding Rules (BER), Canonical
Encoding Rules (CER) and Distinguished Encoding Rules (DER).
Report No. ITU-T Rec. X.690 (2002), ISO/IEC 8825-1:2002, 2002.
Available at http://www.itu.int/ITU-T/studygroups/com17/
languages/X.690-0207.pdf.

[92] ITU-T and ISO/IEC. Information Technology – ASN.1 Encod-
ing Rules: Specification of Packed Encoding Rules (PER). Re-
port No. ITU-T Rec. X.691 (2002), ISO/IEC 8825-2:2002, 2002.
Available at http://www.itu.int/ITU-T/studygroups/com17/
languages/X.691-0207.pdf.

[93] ITU-T and ISO/IEC. Information Technology – ASN.1
Encoding Rules: XML Encoding Rules (XER). Report
No. ITU-T Rec. X.693 (2001), ISO/IEC 8825-4:2001, 2002.
Available at http://www.itu.int/ITU-T/studygroups/com17/
languages/X.693-0112.pdf.

[94] ITU-T and ISO/IEC. Information Technology – ASN.1 Encoding
Rules: Mapping W3C XML Schema Definitions into ASN.1. Re-
port No. ITU-T Rec. X.694 (2004), ISO/IEC 8825-5:2004, 2004.
Available at http://www.itu.int/ITU-T/studygroups/com17/
languages/X694.pdf.

http://www.itu.int/ITU-T/studygroups/com17/languages/X.680-0207.pdf
http://www.itu.int/ITU-T/studygroups/com17/languages/X.680-0207.pdf
http://www.itu.int/ITU-T/studygroups/com17/languages/X.690-0207.pdf
http://www.itu.int/ITU-T/studygroups/com17/languages/X.690-0207.pdf
http://www.itu.int/ITU-T/studygroups/com17/languages/X.691-0207.pdf
http://www.itu.int/ITU-T/studygroups/com17/languages/X.691-0207.pdf
http://www.itu.int/ITU-T/studygroups/com17/languages/X.693-0112.pdf
http://www.itu.int/ITU-T/studygroups/com17/languages/X.693-0112.pdf
http://www.itu.int/ITU-T/studygroups/com17/languages/X694.pdf
http://www.itu.int/ITU-T/studygroups/com17/languages/X694.pdf

226 References

[95] Ulrich Niedermeier, Jörg Heuer, Andreas Hutter, Walter Stechele,
and Andre Kaup. An MPEG-7 Tool for Compression and Stream-
ing of XML Data. In Proceedings of the IEEE International Con-
ference on Multimedia and Expo, volume 1, pages 521–524, Lau-
sanne, Switzerland, August 2002.

[96] Jane Hunter. An Overview of the MPEG-7 Description Definition
Language (DDL). IEEE Transactions on Circuits and Systems for
Video Technology, 11(6):765–772, June 2001.

[97] ISO/IEC. Information Technology – MPEG Systems Technologies
– Part 1: Binary MPEG Format for XML. ISO/IEC International
Standard 23001-1:2006, March 2006.

[98] ISO/IEC. Information Technology – Multimedia Content Descrip-
tion Interface – Part 6: Reference Software. ISO/IEC International
Standard 15938-6:2003, June 2003.

[99] Mike Cokus and Santiago Pericas-Geertsen. XML Binary Char-
acterization Use Cases. Technical Report World Wide Web Con-
sortium (W3C) (Working Group Note), March 2005. Available at
http://www.w3.org/TR/2005/NOTE-xbc-use-cases-20050331.

[100] Stephen D. Williams and Peter Haggar. XML Binary
Characterization Measurement Methodologies. Technical Re-
port World Wide Web Consortium (W3C) (Working Group
Note), March 2005. Available at http://www.w3.org/TR/2005/
NOTE-xbc-measurement-20050331.

[101] Martin Gudgin, Noah Mendelsohn, Mark Nottingham, and
Hervé Ruellan. XML-binary Optimized Packaging. Techni-
cal Report World Wide Web Consortium (W3C) (Recommenda-
tion), January 2005. Available at http://www.w3.org/TR/2005/
REC-xop10-20050125.

[102] Anish Karmarkar, Martin Gudgin, and Yves Lafon. Re-
source Representation SOAP Header Block. Technical Re-
port World Wide Web Consortium (W3C) (Recommendation),
January 2005. Available at http://www.w3.org/TR/2005/
REC-soap12-rep-20050125.

[103] Bruce Martin and Bashar Jano. WAP Binary XML Content For-
mat. Technical Report World Wide Web Consortium (W3C)

http://www.w3.org/TR/2005/NOTE-xbc-use-cases-20050331
http://www.w3.org/TR/2005/NOTE-xbc-measurement-20050331
http://www.w3.org/TR/2005/NOTE-xbc-measurement-20050331
http://www.w3.org/TR/2005/REC-xop10-20050125
http://www.w3.org/TR/2005/REC-xop10-20050125
http://www.w3.org/TR/2005/REC-soap12-rep-20050125
http://www.w3.org/TR/2005/REC-soap12-rep-20050125

References 227

(Note), June 1999. Available at http://www.w3.org/1999/06/
NOTE-wbxml-19990624.

[104] Paul Sandoz, Alessando Triglia, and Santiago Pericas-Geertsen.
Fast Infoset. Sun Developer Network Technical Article,
June 2004. Available at http://java.sun.com/developer/
technicalArticles/xml/fastinfoset.

[105] Paul Sandoz, Santiago Pericas-Geertsen, Kohuske Kawaguchi,
Marc Hadley, and Eduardo Pelegri-Llopart. Fast Web Services.
Sun Developer Network Technical Article, August 2003. Available
at http://java.sun.com/developer/technicalArticles/xml/
fastWS.

[106] Hartmut Liefke and Dan Suciu. XMill: an Efficient Compressor
for XML Data. In Proceedings of the 2000 ACM SIGMOD Inter-
national Conference on Management of Data, pages 153–164, May
2000.

[107] James Cheney. Compressing XML with Multiplexed Hierarchical
PPM Models. In Proceedings of IEEE Data Compression Confer-
ence, pages 163–172, October 2001.

[108] Christian Timmerer, Ingo Kofler, Johannes Liegl, and Hermann
Hellwagner. An Evaluation of Existing Metadata Compression
And Encoding Technologies for MPEG-21 Applications. In Pro-
ceedings of the 7th IEEE International Symposium on Multimedia,
pages 534–539, December 2005.

[109] Anthony Vetro, Charilaos Christopoulos, and Huifang Sun. Video
Transcoding Architectures and Techniques: an Overview. IEEE
Signal Processing Magazine, 20(2):32–36, March 2003.

[110] ISO/IEC. Information Technology – JPEG 2000 Image Coding
System – Part 3: Motion JPEG 2000. ISO/IEC International
Standard 15444-3:2002, November 2004.

[111] Iain Richardson. Video Codec Design: Developing Image and
Video Compression Systems. John Wiley & Sons, May 2002.

[112] Weiping Li. Overview of Fine Granularity Scalability in MPEG-4
Video Standard. IEEE Transactions on Circuits and Systems for
Video Technology, 11(3):301–317, March 2001.

http://www.w3.org/1999/06/NOTE-wbxml-19990624
http://www.w3.org/1999/06/NOTE-wbxml-19990624
http://java.sun.com/developer/technicalArticles/xml/fastinfoset
http://java.sun.com/developer/technicalArticles/xml/fastinfoset
http://java.sun.com/developer/technicalArticles/xml/fastWS
http://java.sun.com/developer/technicalArticles/xml/fastWS

228 References

[113] Fernando Pereira and Touradj Ebrahimi, editors. The MPEG-4
Book. Prentice Hall, July 2002.

[114] Mihaele van der Schaar and Yun-Ting Lin. Content-based Selec-
tive Enhancement for Streaming Video. In IEEE International
Conference on Image Processing, volume 2, pages 977–980, Octo-
ber 2001.

[115] Hayder Radha, Mihaela van der Schaar, and Shirish Karande.
Scalable Video Transcaling for the Wireless Internet. Eurasip
Journal on Applied Signal Processing, 2004(2):265–279, February
2004.

[116] Atul Puri and Tsuhan Chen, editors. Multimedia Systems, Stan-
dards, and Networks. Marcel Dekker Inc., March 2000.

[117] Marek Domanski, Lukasz Blaszak, and Slawomir Mackowiak. AVC
Video Coders with Spatial and Temporal Scalability. In Proceed-
ings of Picture Coding Symposium, pages 41–46, April 2003.

[118] Kemal Ugur, Giorgos Louizis, Panos Nasiopoulos, and Rabab
Ward. Extremely Fast Selective Enhancement Method for Fine
Granular Scalable Enabled H.264 Video. In IEEE Canadian Con-
ference on Electrical and Computer Engineering, volume 3, pages
1103–1106, May 2003.

[119] Kemal Ugur and Panos Nasiopoulos. Combining Bitstream
Switching and FGS for H.264 Scalable Video Transmission Over
Varying Bandwidth Networks. In IEEE Pacific Rim Conference
on Communications, Computers and signal Processing, volume 2,
pages 972–975, August 2003.

[120] Joao Ascenso and Fernando Pereira. Drift Reduction for a H.264-
AVC Fine Grain Scalability with Motion Compensation Archi-
tecture. In IEEE International Conference on Image Processing,
volume 4, pages 2259–2262, October 2004.

[121] Ke Shen and Edward J. Delp. Wavelet Based Rate Scalable Video
Compression. IEEE Tansactions on Circuits and Systems for
Video Technology, 9(1):109–122, February 1999.

[122] Hongyang Chao and Ming Wei. Rate Scalable Video Compres-
sion based on Flexible Block Wavelet Coding Technique. In IEEE

References 229

4th Workshop on Multimedia Signal Processing, pages 415–420,
October 2001.

[123] Osama K. Al-Shaykh, Eugene Miloslavsky, Toshio Nomura, Ralph
Neff, and Avideh Zakhor. Video Compression Using Matching
Pursuits. IEEE Transactions on Circuits and Systems for Video
Technology, 9(1):123–143, February 1999.

[124] Fan Ling, Weiping Li, and Hongqiao Sun. Bitplane Coding of DCT
Coefficients for Image and Video Compression. In Proceedings of
SPIE Visual Communications and Image Processing, pages 500–
508, January 1999.

[125] Peter Lambert, Wesley De Neve, Philippe De Neve, Ingrid Mo-
erman, Piet Demeester, and Rik Van de Walle. Rate-Distortion
Performance of H.264/AVC Compared to State-of-the-Art Video
Codecs. IEEE Transactions on Circuits and Systems for Video
Technology, 16(1):134–140, January 2006.

[126] Thomas Wiegand, Gary Sullivan, Julien Reichel, Heiko Schwarz,
and Mathias Wien. Text of ISO/IEC 14496-10:2006/PDAM3
Scalable Video Coding. MPEG Output Document ISO/IEC
JTC1/SC29/WG11 N7795, Bangkok, Thailand, January 2006.

[127] Julien Reichel, Heiko Schwarz, and Mathias Wien. Joint Scal-
able Video Model JSVM-6. MPEG Output Document ISO/IEC
JTC1/SC29/WG11 N8015, Montreux, Switzerland, April 2006.

[128] Koen De Wolf, Davy De Schrijver, Wesley De Neve, and Rik
Van de Walle. Adaptive Residual Interpolation: a Tool for Efficient
Spatial Scalable Video Coding. In The International Conference
on Image Processing, Computer Vision, & Pattern Recognition,
volume 1, pages 131–137, June 2006.

[129] Seung-Jong Choi and John W. Woods. Motion-Compensated 3-D
Subband Coding of Video. IEEE Transactions on Image Process-
ing, 8(2):155–167, February 1999.

[130] Jens-Rainer Ohm, Mihaela van der Schaar, and John W. Woods.
Interframe Wavelet Coding – Motion Picture Representation for
Universal Scalability. Elsevier Journal on Signal Processing: Im-
age Communication, 19:877–908, 2004.

230 References

[131] Jens-Rainer Ohm. Advances in Scalable Video Coding. In Pro-
ceedings of The IEEE, volume 93, pages 42–56, January 2005.

[132] Fabio Cavalli, Rita Cucchiara, Massimo Piccardi, and Prati An-
drea. Performance Analysis of MPEG-4 Decoder and Encoder. In
4th EURASIP - IEEE International Symposium on Video, Image
Processing and Multimedia Communications, pages 227–231, June
2002.

[133] Olli Lehtoranata and Timo D. Hämäläinen. Complexity Analysis
of Spatially Scalable MPEG-4 Encoder. In IEEE International
Symposium on System-on-Chip, pages 57–60, November 2003.

[134] Barry G. Haskell, Atul Puri, and Arun N. Netravali, editors. Dig-
ital Video: an Introduction to MPEG-2. Chapman and Hall, De-
cember 1996.

[135] Stamatia Dasiopoulou, Vasileios Mezaris, Ioannis Kompat-
siaris, Vasileios-Kyriakos Papastathis, and Michael G. Strintzis.
Knowledge-Assisted Semantic Video Object Detection. IEEE
Transactions on Circuits and Systems for Video Technology,
15(10):1210–1224, October 2005.

[136] Hualu Wang and Shih-Fu Chang. A Highly Efficient System for
Automatic Face Region Detection in MPEG Video. IEEE Transac-
tions on Circuits and Systems for Video Technology, 7(4):615–628,
August 1997.

[137] Christoph Bregler. Learning and Recognizing Human Dynamics
in Video Sequences. In IEEE Computer Society Conference on
Computer Vision and Pattern Recognition, pages 568–574, June
1997.

[138] Andrea Cavallaro, Olivier Steiger, and Touradj Ebrahimi. Seman-
tic Video Analysis for Adaptive Content Delivery and Automatic
Description. IEEE Transactions on Circuits and Systems for Video
Technology, 15(10):1200–1209, October 2005.

[139] Alain Lipton, Hironobu Fujiyoshi, and Raju Patil. Moving Target
Classification and Tracking from Real-Time Video. In Proceedings
of the fourth IEEE Workshop on Applications of Computer Vision,
pages 8–14, October 1998.

References 231

[140] Shao-Yi Chien, Yu-Wen Huang, and Liang-Gee Chen. Predictive
Watershed: A Fast Watershed Algorithm for Video Segmentation.
IEEE Transactions on Circuits and Systems for Video Technology,
13(5):453–461, May 2003.

[141] Orachat Sukmarg and Kamisetty R. Rao. Fast Object Detection
and Segmentation in MPEG Compressed Domain. In TENCON
2000 Proceedings, pages 364–368, September 2000.

[142] Vasileios Mezaris, Ionnis Kompatsiaris, Nikolaos V. Boulgouris,
and Michael G. Strintzis. Real-Time Compressed-Domain Spa-
tiotemporal Segmentation and Ontologies for Video Indexing and
Retrieval. IEEE Transactions on Circuits and Systems for Video
Technology, 14(5):606–621, May 2004.

[143] Michael Isard and Andrew Blake. Contour Tracking by Stochastic
Propagation of Conditional Density. In Proceedings of the Euro-
pean Conference on Computer Vision, pages 343–356, April 1996.

[144] Wen-Nung Lie and Ruey-Lung Chen. Tracking Moving Objects
in MPEG-Compressed Videos. In IEEE International Conference
on Multimedia and Expo, pages 1172–1175, August 2001.

[145] Radhakrishna Achanta, Mohan Kankanhalli, and Phillippe Mul-
hem. Compressed Domain Object Tracking for Automatic Index-
ing of Objects in MPEG Home Video. In IEEE International
Conference on Multimedia and Expo, pages 61–64, August 2002.

[146] Sung-Mo Park and Joonwhoan Lee. Object Tracking in MPEG
Compressed Video using Mean-Shift Algorithm. In Proceedings
of Joint Conference of the 4th International Conference on Infor-
mation, Communications and Signal Processing, volume 2, pages
748–752, December 2003.

[147] Lorenzo Favalli, Alessandro Mecocci, and Fulvio Moschetti. Object
Tracking for Retrieval Applications in MPEG-2. IEEE Transac-
tions on Circuits and Systems for Video Technology, 10(3):427–
432, April 2000.

[148] Tom Maremaa and William Stewart. QuickTime for Java: A
Developer Reference. Morgan Kaufmann, August 1999.

[149] Henning Schulzrinne, Stephen Casner, Ron Frederick, and Van
Jacobson. RTP: A Transport Protocol for Real-Time Applications.

232 References

Internet Engineering Task Force Request for Comment 3550, July
2003.

[150] Henning Schulzrinne, Anup Rao, and Robert Lanphier. Real Time
Streaming Protocol (RTSP). Internet Engineering Task Force Re-
quest for Comment 2326, August 1998.

	Introduction
	Context
	Goal and Outline
	Overview Publications

	Metadata
	Introduction
	Metadata for Content Description
	Evaluation Criteria
	Content-Description Standards
	Selecting Our Content-Description Standard

	Metadata for Context Description
	Context-Description Standards
	Software Toolkit

	Related Work
	Conclusions and Original Contributions

	Negotiation
	Introduction
	Content Adaptation
	Location of the Content Adaptation Engine
	Location of the Content Adaptation Decision Engine

	Invoking the Content Adaptation Decision
	XML-RPC
	SOAP

	Exchanging XML-based Information
	Work Method
	Time-Varying Metadata
	Problems and Concerns

	Conclusions and Original Contributions

	Alternative XML Serializations
	Introduction
	Parsing XML Data
	Terminology
	Common XML Parser Functionalities
	Survey of XML Parser Models

	Solving the XML Verboseness
	ZIP Compression
	Abstract Syntax Notation One
	Binary MPEG Format for XML

	Serialization-Agnostic Parser
	Evaluation
	Use Case 1: Usage Context Negotiation
	Use Case 2: Really Simple Syndication
	Methodology
	Results and Discussion

	Related Work
	Conclusions and Original Contributions

	Video Scalability
	Introduction
	Types of Video Scalability
	Temporal Scalability
	Signal-to-Noise Ratio Scalability
	Spatial Scalability

	Scalable Video Coders
	Fine-Granularity Scalability
	Scalable Video Coding
	Wavelets

	Object Tracking
	Fast Object Tracking Techniques
	Evaluation, Results, and Discussion

	Related Work
	Conclusions and Original Contributions

	Integration and Concluding Remarks
	Integration
	Concluding Remarks

	MPEG-21 DIA-UED
	Overview specification
	User Characteristics
	Terminal Capabilities
	Network Characteristics
	Natural Environments Characteristics

	Class Model
	Examples
	UED Complete Example 1.
	UED Network Information Example.
	UED Terminal Information Example.
	UED Complete Example 2.

	MPEG-21 DIA-UED Software Toolkit Usage

	Fast Object Tracking Algorithms Pseudo-Code
	UMA-compliant Video-on-Demand Application
	Introduction
	Architecture and Usage Scenario
	Technologies
	Application
	Client
	Network
	Broker
	Content Provider

	Conclusions

	Publications
	References

