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A Journey Through Life

And I think over again
My small adventures
When with a shore wind
I drifted out in my kayak
And thought I was in danger.

My fears,
Those small ones
That I thought so big
for all the vital things
I had to get and to reach.

And yet, there is only
One great thing,
The only thing:
To live to see in huts and on journeys
The great day that dawns
And the light that fills the world.

Song of the Kitlinguharmiut (Copper Eskimo), from

the report of the Fifth Thule Expedition (1921-1924)
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teriële diversificatie. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 266

A.1 Complete strain history tree of theEnterococcus asinitype strain. . . . . . 274
A.2 Complete strain history tree of theEnterococcus aviumtype strain. . . . . . 274
A.3 Complete strain history tree of theEnterococcus canistype strain. . . . . . 275
A.4 Complete strain history tree of theEnterococcus casseliflavustype strain. . 275
A.5 Complete strain history tree of theEnterococcus cecorumtype strain. . . . 276
A.6 Complete strain history tree of theEnterococcus columbaetype strain. . . . 276
A.7 Complete strain history tree of theEnterococcus dispartype strain. . . . . . 277
A.8 Complete strain history tree of theEnterococcus duranstype strain. . . . . 277
A.9 Complete strain history tree of theEnterococcus faecalistype strain. . . . . 278
A.10 Complete strain history tree of theEnterococcus faeciumtype strain. . . . . 278



18 LIST OF FIGURES

A.11 Complete strain history tree of theEnterococcus flavescenstype strain. . . . 279
A.12 Complete strain history tree of theEnterococcus gallinarumtype strain. . . 279
A.13 Complete strain history tree of theEnterococcus gilvustype strain. . . . . . 280
A.14 Complete strain history tree of theEnterococcus haemoperoxidustype strain.280
A.15 Complete strain history tree of theEnterococcus hiraetype strain. . . . . . 281
A.16 Complete strain history tree of theEnterococcus malodoratustype strain. . 281
A.17 Complete strain history tree of theEnterococcus moraviensistype strain. . . 282
A.18 Complete strain history tree of theEnterococcus mundtiitype strain. . . . . 282
A.19 Complete strain history tree of theEnterococcus pallenstype strain. . . . . 283
A.20 Complete strain history tree of theEnterococcus pseudoaviumtype strain. . 283
A.21 Complete strain history tree of theEnterococcus raffinosustype strain. . . . 284
A.22 Complete strain history tree of theEnterococcus rattitype strain. . . . . . . 284
A.23 Complete strain history tree of theEnterococcus saccharolyticustype strain. 285
A.24 Complete strain history tree of theEnterococcus solitariustype strain. . . . 285
A.25 Complete strain history tree of theEnterococcus sulfureustype strain. . . . 286
A.26 Complete strain history tree of theEnterococcus villorumtype strain. . . . . 286



List of Tables

2.1 Excerpt of the synonym equivalence information for theBacillus cereus
type strain, retrieved from several online resources. The last row of the
table shows a normalized representation of the search results, where com-
plete deduplication of the synonym labels assigned to theBacillus cereus
type strain was performed with the help of theIncrementEquivalence
procedure discussed in subsection 2.2.2. See Table 2.6 for details on the
different data sources. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

2.2 Strain classes found within the current version of the integrated strain database,
having cultures marked with labelB2, or any syntactical equivalent label
according to the equational theory defined in subsection 2.2.1. This list
proves the usage of homonymous labels for indicating strains and cultures
in the field of microbiology. . . . . . . . . . . . . . . . . . . . . . . . . . . 45

2.3 Example of the occurrence of false negative strain classes in the integrated
strain database. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

2.4 Example strain class that demonstrates the presence of anomalies in the
synonymy evidence collected from different heterogeneousdata sources. . . 58

2.5 Strain history information of theBacillus cereustype strain, as it was found
in different catalogues of culture collections that are available online. . . . . 62

2.6 Data sources currently contributing to the equivalencerelations covered
within the integrated strain database. . . . . . . . . . . . . . . . . .. . . . 66

2.7 List of popular strains, determined as the strainss ∈ S with |U(s)| ≥ 35. . 68
2.8 Common strain statistics for a selection of culture collections. . . . . . . . 68
2.9 Completeness and correctness statistics for some data sources that were

incorporated during the construction of the integrated strain databaseI.
Data sources marked withc are subsections of the CABRI suite, while data
sources marked withu are part of the UKNCC suite. . . . . . . . . . . . . . 70

2.10 Examples of inconsistencies found during cross-referencing the Interna-
tional Nucleotide Sequence Database with the integrated strain database. . . 78

2.11 Polyphasic search results showing all experimental data generated for the
Enterococcus faeciumtype strain, known within the integrated microbial
information gateway. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

2.12 Integrated microbial information gateway search results showing 16S rRNA
gene sequences of allEnterococcusspp. type strains, deposited within the
International Nucleotide Sequence Database. . . . . . . . . . . .. . . . . 80

4.1 Matching table showingms(Bi, Bj) for the banding patterns of example
(4.18), with position toleranceε = 0.01. . . . . . . . . . . . . . . . . . . . 163

19



20 LIST OF TABLES

4.2 Matching table showingmc(Bi, Bj) for the banding patterns of example
(4.18), with position toleranceε = 0.01. . . . . . . . . . . . . . . . . . . . 165

4.3 Matching table showingmf (Bi, Bj) for the banding patterns of example
(4.18), with position toleranceε = 0.01. . . . . . . . . . . . . . . . . . . . 167

4.4 Difference in similarity coefficient implementations when combined with
alternative band matching algorithms. . . . . . . . . . . . . . . . . .. . . 173

4.5 Stochastic complexity for the different classifications of the example. . . . . 177

4.6 Distribution of type strains resulting from BinClass classification based
on data discretized by the BioNumerics histogram–based bandmatching
method with position toleranceε set to 0.005. BinClass run resulted in a
classification with 61 classes. . . . . . . . . . . . . . . . . . . . . . . . .. 187

4.7 Distribution of type strains resulting from BinClass classification based on
data discretized by the sliding window discretization method with ε set to
0.007 andδ set to 0.001 (so thatn = 994). BinClass run performed with
parameter settings (-F50 -S20), resulting in a classification with 64 classes
and a stochastic complexity of 739.92280. . . . . . . . . . . . . . . .. . . 188

4.8 BinClass classification based on data discretized by the sliding window
discretization method with the position tolerance parameter ε set to 0.007
and the resolution of the methodδ set to 0.001 (so that the vector lengthd
= 994). BinClass run performed with command line settings (-F50 -S20),
resulting in a classification with 64 classes and a stochastic complexity of
739.92280.1Class identifier,2Size (number of strainsn), 3Average num-
ber of bands (standard deviation) over all profiles in the class, 4Minimal
and maximal number of bands of all profiles in the class,5fAFLP cluster in
classification of Thompson et al. [103],6fAFLP cluster name as given in
Thompson et al. [103]; * indicates position of type strain; bold face indi-
cates revised name since publication of the paper by Thompson et al.[103],
7Frequency of original fAFLP cluster within class,8Average Shannon code
length of the class,9Class distortion,10Nearest class,11Hamming distance
to nearest class,12Farthest class,13Hamming distance to farthest class,
14Hamming distance between type strain and hypothetical median organ-
ism, 15Shannon code length of type strain. . . . . . . . . . . . . . . . . . . 189

4.9 Continuation of Table 4.8 . . . . . . . . . . . . . . . . . . . . . . . . . . .190

5.1 Overview of the most dominant genera within the FAME database. The
number of profiles associated to a given genus, as indicated in the column
with headerLMG, was determined by restricting the FAME database to the
samples that are linked to strains that are deposited into BCCMTM/LMG
Bacteria Collection. The alternative frequency count included in the col-
umn with headerMIS, is estimated by extracting the best match from the
identification against the Sherlock MIS TSBA50 identification library. . . . 229

5.2 Small excerpt of the agglomerative roll-up chromatographic peak statistics
per taxon for the new fatty acid peak naming window 11, with anECL
range between 13.800 and 13.826. . . . . . . . . . . . . . . . . . . . . . . 241



LIST OF TABLES 21

5.3 New peak naming windows derived from the peak occurrencehistogram,
with an overview of the taxa for which the corresponding fatty acid peaks
are significant according to a quality threshold of 0.25. Thefirst column
assigns an identifier to each of the newly delineated naming windows,
whereas the second column gives the ECL range that is covered by the
naming window. Theocc column indicates the total number of fatty acid
profiles in our proprietary FAME database for which a peak wasdetected in
the corresponding naming window. The values between brackets after the
scientific name of the taxa wherefore the peak was found to be significant
indicates the average percentage of the relative fatty acidamount found in
the samples of the taxonomic unit at hand, and the species andsubspecies
for a given genus are printed in bold face whenever a chromatographic peak
was found in more than two thirds of the species for the given genus. . . . . 244

5.4 Continuation of Table 5.3 . . . . . . . . . . . . . . . . . . . . . . . . . . .245
5.5 Continuation of Table 5.3 . . . . . . . . . . . . . . . . . . . . . . . . . . .246
5.6 Continuation of Table 5.3 . . . . . . . . . . . . . . . . . . . . . . . . . . .247
5.7 Continuation of Table 5.3 . . . . . . . . . . . . . . . . . . . . . . . . . . .248
5.8 Identification results of performing a pairwise comparison between the un-

known strainR-22030 and all fatty acid composition profiles available in
our proprietary FAME database. . . . . . . . . . . . . . . . . . . . . . . . 254

B.1 Named peak statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 305
B.2 Named peak statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 306
B.3 Peak statistics for peak 1. . . . . . . . . . . . . . . . . . . . . . . . . . .. 307
B.4 Peak statistics for peak 1. . . . . . . . . . . . . . . . . . . . . . . . . . .. 308
B.5 Peak statistics for peak 1. . . . . . . . . . . . . . . . . . . . . . . . . . .. 309
B.6 Peak statistics for peak 1. . . . . . . . . . . . . . . . . . . . . . . . . . .. 310
B.7 Peak statistics for peak 2. . . . . . . . . . . . . . . . . . . . . . . . . . .. 311
B.8 Peak statistics for peak 3. . . . . . . . . . . . . . . . . . . . . . . . . . .. 312
B.9 Peak statistics for peak 4. . . . . . . . . . . . . . . . . . . . . . . . . . .. 313
B.10 Peak statistics for peak 5. . . . . . . . . . . . . . . . . . . . . . . . . .. . 314
B.11 Peak statistics for peak 5. . . . . . . . . . . . . . . . . . . . . . . . . .. . 315
B.12 Peak statistics for peak 6. . . . . . . . . . . . . . . . . . . . . . . . . .. . 316
B.13 Peak statistics for peak 7. . . . . . . . . . . . . . . . . . . . . . . . . .. . 317
B.14 Peak statistics for peak 8. . . . . . . . . . . . . . . . . . . . . . . . . .. . 317
B.15 Peak statistics for peak 9. . . . . . . . . . . . . . . . . . . . . . . . . .. . 318
B.16 Peak statistics for peak 9. . . . . . . . . . . . . . . . . . . . . . . . . .. . 319
B.17 Peak statistics for peak 10. . . . . . . . . . . . . . . . . . . . . . . . .. . 319
B.18 Peak statistics for peak 10. . . . . . . . . . . . . . . . . . . . . . . . .. . 320
B.19 Peak statistics for peak 11. . . . . . . . . . . . . . . . . . . . . . . . .. . 321
B.20 Peak statistics for peak 11. . . . . . . . . . . . . . . . . . . . . . . . .. . 322
B.21 Peak statistics for peak 11. . . . . . . . . . . . . . . . . . . . . . . . .. . 323
B.22 Peak statistics for peak 11. . . . . . . . . . . . . . . . . . . . . . . . .. . 324
B.23 Peak statistics for peak 11. . . . . . . . . . . . . . . . . . . . . . . . .. . 325
B.24 Peak statistics for peak 12. . . . . . . . . . . . . . . . . . . . . . . . .. . 326
B.25 Peak statistics for peak 13. . . . . . . . . . . . . . . . . . . . . . . . .. . 326
B.26 Peak statistics for peak 14. . . . . . . . . . . . . . . . . . . . . . . . .. . 327



22 LIST OF TABLES

B.27 Peak statistics for peak 14. . . . . . . . . . . . . . . . . . . . . . . . .. . 328
B.28 Peak statistics for peak 14. . . . . . . . . . . . . . . . . . . . . . . . .. . 329
B.29 Peak statistics for peak 15 . . . . . . . . . . . . . . . . . . . . . . . . .. . 329
B.30 Peak statistics for peak 15. . . . . . . . . . . . . . . . . . . . . . . . .. . 330
B.31 Peak statistics for peak 15. . . . . . . . . . . . . . . . . . . . . . . . .. . 331
B.32 Peak statistics for peak 16. . . . . . . . . . . . . . . . . . . . . . . . .. . 332
B.33 Peak statistics for peak 17. . . . . . . . . . . . . . . . . . . . . . . . .. . 333
B.34 Peak statistics for peak 17. . . . . . . . . . . . . . . . . . . . . . . . .. . 334
B.35 Peak statistics for peak 18. . . . . . . . . . . . . . . . . . . . . . . . .. . 335
B.36 Peak statistics for peak 18. . . . . . . . . . . . . . . . . . . . . . . . .. . 336
B.37 Peak statistics for peak 18. . . . . . . . . . . . . . . . . . . . . . . . .. . 337
B.38 Peak statistics for peak 19. . . . . . . . . . . . . . . . . . . . . . . . .. . 338
B.39 Peak statistics for peak 20. . . . . . . . . . . . . . . . . . . . . . . . .. . 339
B.40 Peak statistics for peak 21. . . . . . . . . . . . . . . . . . . . . . . . .. . 340
B.41 Peak statistics for peak 21. . . . . . . . . . . . . . . . . . . . . . . . .. . 341
B.42 Peak statistics for peak 22. . . . . . . . . . . . . . . . . . . . . . . . .. . 341
B.43 Peak statistics for peak 23. . . . . . . . . . . . . . . . . . . . . . . . .. . 342
B.44 Peak statistics for peak 24. . . . . . . . . . . . . . . . . . . . . . . . .. . 343
B.45 Peak statistics for peak 24. . . . . . . . . . . . . . . . . . . . . . . . .. . 344
B.46 Peak statistics for peak 25. . . . . . . . . . . . . . . . . . . . . . . . .. . 345
B.47 Peak statistics for peak 25. . . . . . . . . . . . . . . . . . . . . . . . .. . 346
B.48 Peak statistics for peak 26. . . . . . . . . . . . . . . . . . . . . . . . .. . 347
B.49 Peak statistics for peak 27. . . . . . . . . . . . . . . . . . . . . . . . .. . 348
B.50 Peak statistics for peak 28. . . . . . . . . . . . . . . . . . . . . . . . .. . 348
B.51 Peak statistics for peak 28. . . . . . . . . . . . . . . . . . . . . . . . .. . 349
B.52 Peak statistics for peak 28. . . . . . . . . . . . . . . . . . . . . . . . .. . 350
B.53 Peak statistics for peak 29. . . . . . . . . . . . . . . . . . . . . . . . .. . 351
B.54 Peak statistics for peak 29. . . . . . . . . . . . . . . . . . . . . . . . .. . 352
B.55 Peak statistics for peak 30. . . . . . . . . . . . . . . . . . . . . . . . .. . 352
B.56 Peak statistics for peak 31. . . . . . . . . . . . . . . . . . . . . . . . .. . 353
B.57 Peak statistics for peak 32. . . . . . . . . . . . . . . . . . . . . . . . .. . 354



List of Abbreviations

ABCD Access to Biological Collection Data
AFLP Amplified Fragment Length Polymorphism
ANN Artificial Neural Network
ARDRA Amplified rDNA Restriction Analysis
BRC Biological Resource Centre
CABRI Common Access to Biotechnological Resources and Information
DNA Deoxyribonucleic Acid
DDBJ DNA Data Bank of Japan
ECL Equivalent Chain Length
EMBL European Molecular Biology Laboratory
FAFLP Fluorescent Amplified Fragment Length Polymorphism
FAME Fatty Acid Methyl Ester
GBIF Global Biodiversity Information Facility
GC Gas Chromatographic
GLA Generalized Lloyd Algorithm
HMO Hypothetical Median Organism
INSD International Nucleotide Sequence Database
KDD Knowledge Discovery in Databases
LIMS Laboratory Information Management System
MALDI-TOF-MS Matrix-Assisted Laser Desorption Ionisation Time-Of-Flight

Mass Spectrometry
MDS Multi-Dimensional Scaling
MGR Microbial Genetic Resource
MINE Microbial Information Network Europe
MIS Microbial Identification System
MLST Multilocus Sequence Typing
MLSA Multilocus Sequence Analysis
MSC Minimization of Stochastic Complexity
ODBC Open DataBase Connectivity
OLAP Online Analytical Processing
OLTP Online Transactional Processing
PCA Principal Component Analysis
PCR Polymerase Chain Reaction
PFGE Pulsed-Field Gel Electrophoresis

23



24 LIST OF ABBREVIATIONS

RAPD Randomly Amplified Polymorphic DNA
RFLP Restriction Fragment Length Polymorphism
RNA Ribonucleic Acid
SC Stochastic Complexity
SDS-PAGE Sodium Dodecyl Sulphate Polyacrylamide Gel Electrophoresis
SI Similarity Index
SIMCA Soft Independent Modeling of Class Analogy
SOM Self-Organizing Map
SQL Structured Query Language
SVM Support Vector Machine
TDQM Total Data Quality Management
TSBA Trypticase Soy Broth Agar
UPGMA Unweighted Pair-Group Method using Arithmetic Averages



Acknowledgments

”At last the three companions turned away, and never again
looking back they rode slowly homewards; and they spoke no
word to one another until they came back to the Shire, but
each had great comfort in his friends on the long grey road.”

— J. R. R. Tolkien

WHEN asked to make an analogy for the scientific endeavour thatI have undertaken
as a mathematician and computer scientist, to gradually work myself into the won-

drous world of microorganisms, I would definitely pick the famous spinning plates trick.
You’ve probably also admired this dance with gravity as a kid, just as I did, somewhere
on television or live in a circus theatre. As the music beginsto play, the performer runs
onstage carrying a stack of china plates and stands in front of a long set of head-high metal
rods. One at a time, the performer places a plate on a rod and sets it spinning – shaking
the rod to establish momentum – and then moves on to the next rod. At some point in this
process, the plate that was first in line starts to tip and looks as if it will fall. The performer
leaps over to the rod under it and shakes it again to continue the plate’s progress. As more
and more plates start to spin, the complexity of keeping all of the plates on the rods in-
creases, but the plates never fall. The performer finally completes the line of plates after
many near-disasters and the camera cuts to a wide-shot of theentire assembly, spinning
perfectly. Wild applause ensues from the audience.

The main difference, however, is that while the plate trick only takes one performer,
a much greater number of people has lend a helping hand to keepthe momentum going
during my scientific research. Many of the insights and ideasI have gathered about bac-
terial taxonomy, mathematics and computer science could never have matured without the
constant flow of questions, suggestions, and constructive criticism of many friends and
colleagues. Some worked as an inspiration and stimulation to push back my scientific fron-
tiers, some contributed ideas for technical topics, and some just made life more fun while I
was (not) working. It is mainly due to the credit and skills ofthese people that this doctoral
dissertation has reached the end without any broken china. Thanks are therefore due.

25



26 ACKNOWLEDGMENTS

Special thanks go to Jean Swings, whose visionary ideas and extensive circle of sci-
entific acquaintances have brought this interdisciplinaryproject into existence, and kept it
alive througout all the agonies and thriumps with which the roads of working on a PhD
seem to be paved. Jean, it was not always straightforward to figure out what action should
be undertaken as a response to your sometimes cryptic suggestions – yes you often remined
me of the Oracle of Delphi – but at least the open-mindedness of our many discussions have
been a constant challenge, and strongly determined the course of my work.

Also many thanks to Hans De Meyer, who really was there at the cradle of my scientific
career. I still remember as if it were yesterday how you askedabout my plans for the future
during the reception that was held after I got my licentiate degree in computer science.
At that time, all that was in the pipeline were the preparations for traveling to yet another
distant part of the world. So, you introduced me to your friend Jean who was investigating
microbes, and was searching for some collaboration with people from the mathematics
field. I think it was my complete ignorance on microorganisms, rather than anything else,
that made me curious about this proposition. Two years laterour roads crossed again, when
we started collaborating on the hierarchical clustering algorithms, together with Bernard De
Baets. Hans and Bernard, without your help and suggestions, this book would have been
harder to understand, contained more errors, been slightlyless complete, and probably been
a little shorter. And I would have missed all the fun we had in Varenna.

The exciting thing about interdisciplinary science is thatit may take quite some effort for
the specialists of a given research domain to find a common vocabulary for explaining the
interpretation of domain-dependent problems and solutions to the non-specialists. Much
of this I have learned the hard way during several meetings with the BioMaths workgroup,
so I also would like to cordially thank Brian Austin, Mats Gyllenberg and Timo Koski
for sharing their knowledge and opinions about practicallyanything in between Bayesian
classification and Scottish whisky. It took us quite some time to put our collaborative
efforts on the right tracks, but it is good to see that we’ve finally accomplished quite some
amazing things, and I strongly believe we will benefit even more from it somewhere in the
near future. Our forthcoming open workshop in Ghent might bethe first sign of that. I am
grateful to Tatu Lund for teaching me the ins and outs of the BinClass software package.

Some of the best ideas to be found in these pages were promptedby the penetrating
questions and inspiring comments from the colleagues and co-workers back home in the
Laboratory of Microbiology, although most of them have never stopped wondering what
on earth a mathematician was doing in their laboratory. In the first place a lot of my ap-
preciation goes to Marc Vancanneyt, whose interest and experience were simply invaluable
for building up the centralized data repository we have beenworking on during the last
couple of years. Marc, you were always available for some of-the-record discussion or
explanation, notwithstanding the fact that you are probably one of the hardest-working
people in the laboratory. Tackling the centralisation and cleanup of the fatty acid database
has been a good lesson for getting to know some of the practiceof microbiology, and I
would like to thank Cindy Snauwaert for punctually transferring the data into the central
database. I would also like to address a big vote of thanks to Joris Mergaert, who has
been sharing the same office with me during my first years in thelaboratory, and told me



ACKNOWLEDGMENTS 27

so many interesting stories about the bacteria and the people who are investigating them.
Joris, you are missed, both as an amazing scientist and as a good friend. Geert and Renata
Huys-Coopman, thanks for the many discussions during lunch (sorry Renata but we love
the sport of it), for keeping me up-to-date with the latest evolutions in the music scene, for
inviting us on your agrarian homeground, for the barbecues,and for all the little things.
Peter ’Dammy’ Vandamme, you took reponsability for introducing me to the people in the
laboratory and for explaining how proteins gels are treated, but foremost I would like to
thank you for constantly reminding me that work and pleasurecan go hand in hand and for
helping to keep the ’Thank God it’s Friday’-sessions alive and kicking. Fabiano Thomp-
son, thank you for the fruitful collaboration and the nice discussions. Expect me in Brasil
anytime, and remember to carry out your promise of giving me afew surfing lessons, so
that we can catch some tropical waves together. Margo Cnockaert and Klaas D’Haene,
thanks for cheering up the coffee breaks, and for being the right hand of Santa Claus. Paul
Segers, thank you for being around during the quite hours in the laboratory and for taking
life as it comes. Geert Kindt, many thanks for all your efforts when computers were not
doing what they are supposed to do, which seems to happen morethan often. In addition
to the people mentioned above, I would also like to thank Griet Casteleyn, Tom Coenye,
Jeaninne De Jaeger, Fernand Depoorter, Roberto Gelsomino, Dirk Dewettinck, Elke De
Clerck, Paul De Vos, Dirk Gevers, Johan Goris, Ben Lanoot, Liesbeth Masco, Sabri Naser,
Virginie Storms, Pavel Svec, Kim Heylen, Jeroen Heyrman, Bart Hoste, Danny Janssens,
Karel Kersters, Urbain Torck, Liesbeth Lebbe, Claudine Vereecke, Moniek Gillis, Miet
Martens, Anne Willems, Antoine Benoot – and not to forget the ones I forgot right now –
for helping me out with all my questions and day-to-day worries. And of course, I finally
would like to thank Annemie Struyvelt, who took care of things exactly as we knew she
would – masterfully and without a hint of complaint. Many of us wouldn’t have enjoyed
work as much as we do without your helping hand. Annemie, you’re the best !

I must admit that before I started studying mathematics, I pretty much expected to meet
the average profile of the super-intelligent, unwordly Einstein-brains, as these people are
usually perceived within the outside world. Luckily, I soonenough became to find out that
there were enough outliers in the field, and I wouldn’t have expected to meet so many excit-
ing personalities that I can still consider as my friends today. Vanessa & Benoit; Maarten,
Begga & your interstellar daughter Sterre; Luc & Marjolein; Pieter & Jan; Joeri, Greet &
Mona (she’s a punk rocker); Youri & Melissa; Jürgen & Claudia; Mario & Fabien; Boris &
Marika; Val̀ere, Wim, many thanks for the numerous weekends, trips when somebody was
staying abroad, travels around the world, skiing holidays,barbecues, Risk battles, parties in
Ghent (where it seems there’s always something to celebrate), and of course. . . Dranouter.

Working on a PhD equals to being seated for practically most of the day. So, as a result
of wanting to get rid of my excess energy and to compensate formy sometimes Burgundian
lifestyle, I found out that most of the other people I would like to thank can be associated
(classified) with many of my after-work sports activities.’t Jong Geweld: Kurt, Kathleen
& Femke; Pieter & Elke; Aaron ’Ronne’ & Inge; Tom ’Coeman’ & Kartrien; Bart ’de
Witten’ & Sarah; Tom ’Waldo’ & Tine, Nele ’Poerk’; Maarten ’Co’ & Lore; Joke; Willem
’Willy the King’ & Katelijne; Pieter ’Coeman’.ADW Platte Daken: Stefan, Stephan, Joost,
Hendrik ’Rikkie’, Gert. The RVT volley team: Kris, Mieke, Chris, Eddy, Jan, Katrien, Dirk



28 ACKNOWLEDGMENTS

’Boerie’, Vero, Geert, Yves, Elke. Nonetheless, some might strongly argue that mymens
sana in corpore sanacreed is badly compensated by the social events that tend to come
after the exercise.

The road of science is seeded with many interesting and intriguing people, and although
it is slightly unfair to single out individuals, it would be even more unfair not to mention
anyone. So I would like to especially mention some colleagues I’ve met along the way:
Marnix Vandaele and Walter Bossaert, my two promotors duringmy studies of mathematics
and computer science; Luc Vauterin, Paul Vauterin and Bruno Pot from the Applied Maths
team; Mohammed Amar, thanks for hosting the workshop in Rabatand a wonderful week
with David ’grosses frites’ Smith, Micah Krichevsky, Gina Koenig and Philippe Desmeth;
George Garrity, Juncai Ma, Hideaki Sugawara, François Guissart, Patricia Mergen, Jurgen
Tack, Hendrik Segers, Paolo Romano, and all the people at BCCM, EBRCNand BEBIF.

To conclude with, I have to say a big ”Thanks”to my brothers Tom & Lieselot, Jeroen
& Ilke who stuck with me through so many adventures, and also to the other Marble mem-
bers Stijn, Maarten, Geert and Arvid. And last but certainlynot least, my most bountiful
gratitude goes to my parents. Guido and Ingrid, the encouragement and care you gave me
throughout all those years really goes beyond words.

And for all of you who were wondering where I have been hangingaround lately, and
whom I may have painfuly forgotten to mention above: be warned, because now the writ-
ing of this book is over, I’m back on the road again . . .

Peter



Chapter 1

A Backpacker’s Guide to the
Landscape of Bacterial Taxonomy

”There is a theory which states that if ever anyone discovers
exactly what the universe is for and why it is here, it will
instantly disappear and be replaced by something even more
bizarre and inexplicable.

There is another which states that this has already happened.”

— Douglas Adams

WHAT are those wondrous life forms at the other side of the microscope? A ques-
tion that has intrigued many scientists ever since the pioneering era when Antonie

van Leeuwenhoek was first admiring these free-living bacterial cells through his 300 times
magnifying single lens microscope. But even long before the discovery of microbes, schol-
ars of Aristotle’s school were trying to group the myriad of observed living organisms into
natural and meaningful classes. This pursuit remains active, and the classifications are,
to some degree, still controversial. Figure 1.1 shows the example of a very incomplete
and informaltaxonomic tree, inspired by the stratified subdivisions proposed by Woese,
Kandler and Wheelis. This particular tree of life drills downthe branch containing the
mammals, leaving the other offshoot less specified. Bacterial subdivisions follow the same
general taxonomic outline, only the names may seem somewhatless familiar. Traditionally,
these classifications were based upon the morphology of organisms. Literally, morphology
means shape, but it is generally regarded to include the internal structure as well. In this
context, the particular genetic encoding for an organism iscalled itsgenotype, whereas
the resulting set of physical characteristics of an organism is called itsphenotype. Mor-
phology is only one part of the phenotype, where other parts include physiology, or the
function of living structures, and development. Nowadays,the life science taxonomies are
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Figure 1.1: A very incomplete and informal taxonomic tree. Items between brackets are
common or scientific names of representative organisms or classes.

increasingly tested upon and updated against the knowledgeof molecular structures and
sequences, which are generally regarded to be more revealing of evolutionary relationships
than are classical phenotypes. Particularly so among microorganisms.

Bacterial evolution is a complex and dynamic machinery, where the creation of new
combinations is performed in the genotypic search space, whereas selection of the most
feasible specimen occurs at the phenotypic level, by means of the evaluation of a natural
objective function known assurvival of the fittest. This discrepancy between genotype
and phenotype is very important because small allowable steps in the genotypic space may
have large consequences at the phenotypic space. Natural evolution is responsible for the
many spectacular abilities of living things, and for their tremendous diversity. Studying this
diversity of microorganisms as they are observed today forms the main subject of research
in bacterial taxonomy, whereas investigating the history of organismal lineagesas they
change through time is particularly called the domain ofphylogeny.

Polyphasicbacterial taxonomy is aimed at the integration and processing of many kinds
of data (phenotypic, genotypic and phylogenetic) on microorganisms, and essentially strives
after the delineation of an objective consensus type of taxonomy that gives evidence of the
least number of anomalies when confronted with all the collected empirical information.
The generally accepted present-daybacterial species conceptheavily relies on the defini-
tion of a threefold set of quantitative comparative rules, stating that the sample variability
within a species is restricted to≥ 97% 16S rRNA sequence similarity,≥ 70% DNA-DNA
homology and a≤ 2% difference in the G+C fraction of the complete genome. This con-
ceptual definition might seem quite arbitrary, while many issues, such as the frequency of
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horizontal gene transferoccurrence and its impact on the existing classification schemes,
remain open questions that challenge taxonomists today. Technical hurdles and a tedious
manual approach taken for the integration of dozens of information sources have kept the
current scope of most polyphasic studies rather minimal, whereas a great deal of subjective
decision making for the derivation of a consensus view on thedata is left on behalf of the
microbiologist’s personal interpretation. This turns thevalidation of the existing species
definition against new empirical information into a slowly ongoing process.

To break the rigidity of this approach, however, one could envisage a global information
system, which in a structured and uniform way captures the reams of experimental data
that are generated in the field of microbiology. Such a knowledge managemental struc-
turation would dramatically simplify the application of intelligent and well-founded data
mining techniques, as tools for the discovery of objective and universal taxonomic consen-
sus models in a more dynamic and a more automated manner. In addition, these automated
reasoning systems could adapt in a flexible way to the advent of new incoming data and
interact with the outside world whenever some of the necessary pieces for completion of
the taxonomic puzzle are missing or unclear. As well as new insights and hypotheses on
microbial life and its evolution could be easily tested against this vast knowledge base,
and possibly have an instant impact on standing taxonomic models. All validly described
taxa, their cultured and investigated strains, raw empirical information, published research
documents, and scientific names assigned to concepts duringprevious research should get
their place in the information system. Multiple cross-reference links should connect the
related pieces of information in the knowledge base. As such, new experimental data fed
to the integrated system could lead to an automatic re-evaluation of the existing taxonomy,
whereas the improved synthesis would become instantly available for the scientific com-
munity. The old-fashioned style of manually composing the rigid Linnean descriptions,
which are still part of the routine taxonomic practice, would become completely obsolete,
making the taxonomist’s job much more challenging as the process of boring repetitive
descriptions is basically taken over by the information system. As a result, the taxonomist
could focus on resolving the more interesting evolutionaryand other exiting fundamental
biological issues.

This thesis is an attempt to bridge just that range of exploration, from raw data to ab-
stract concept, or from practice to theory, in contemporarymicrobial taxonomy. As a re-
sult, it is situated on the cross-roads between microbiology, mathematics and computer
science. The art of drawing the landscape of bacterial diversity, used as figure of speech
for taxonomic modeling, is conceptualized by the three pendicular spatial axes depicted
in Figure 1.2, which generally correspond to the different domains of science that may
contribute to resolve the problem: measuring a representative variety of reproducible and
comparable experimental features on sets of bacteria (microbiology/taxonomy), designing
objective classification methods for finding groups in data in an unsupervised way (mathe-
matics/classification) and combining all experimental data and their different groupings in a
uniform and intelligent way (computer science/knowledge management). Current progress
in taxonomic modeling of the bacterial diversity has often restrictively exploited only one
or two of these dimensions at the same time. However, the axesare osmotically intertwined
within the envisaged microbial information system.
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Figure 1.2: Learning curve for understanding and modeling of a taxonomy that fits as
closely as possible to the observed phenomena of bacterial diversification.

With the explosion of recorded information, microbiologists for the first time found it
necessary to familiarize themselves with databases and thealgorithms needed to extract the
correlations between records, and in turn have put these to good use in the exploration of
natural relationships. This has emerged an ever-increasing environment of heterogeneous
and autonomous data sources, providing partially overlapping knowledge on investigated
microorganisms. A basic effort of the landscaping activityhenceforth is devoted to the con-
struction of solid pathways and bridges, which connect the related pieces of information
that are scattered throughout the scenery. As a result, microbiology might seriously benefit
from the design of intelligent software agents that can assist in the navigation through this
bacterial countryside, together with the development of data mining tools that can aid in the
discovery of new relations, patterns and principles that describe the steering mechanisms
of environmental evolution. An important barrier for understanding biology is learning its
language, which needs to be unequivocally defined before it can be correctly interpreted by
self-learning information systems. To this end, chapter 2 introduces the implementation of
an integrated strain database, a central repository aimed at the complete and correct accu-
mulation of the strain label equivalence relation used for referencing cultured bacterial sam-
ples into a wide variety of data sources. Traditionally, thestrain label synonym information
has been fragmentarily disseminated by a number of autonomous data providers, and suf-
fers heavily from syntactical variation, ambiguities and other inconsistencies. Through the
establishment of a solid framework for resolving these issues, the integrated strain database
might constitute the cornerstone of a divide and conquer strategy for the management of
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distributed microbial information, seamlessly glueing together the different pieces of the
taxonomic puzzle.

Primordial for recording and getting familiar with the diverse bacterial landscape is the
compilation of clarifying maps. Founded on the widely accepted Darwinian theory of evo-
lution, which states that any pair of organisms, no matter how different, has a common
ancestor somewhere in the near or distant past, stratified representations have since long
been the traditional instrument employed by many taxonomists to perform their cartog-
raphy of the microbial diversity. Applications range from the development of complete
taxonomies, to the delineation of the different subspeciesof a distinct but varied species.
The ability to draw hierarchies as a means to model the naturally occurring relationships
between a set of bacterial samples on the basis of their empirically determined features, is
intimately coupled to the characteristic min-transitivity of the pairwise similarity matrices,
which are calculated from the choice of a similarity coefficient that makes an estimation of
the relatedness between each pair of strains. However, similarity matrices derived from the
experimental bacterial characteristics are generally notmin-transitive by nature. This has
led to the development of a large battery ofhierarchical clustering methods, that approxi-
mate the given experimental similarity matrices by closelyneighbouring similarity models
that truely are min-transitive. Chapter 3 situates some of the traditional hierarchical clus-
tering algorithms into the general mathematical frameworkof transitive openings, closures
and approximations, and discusses some newly developed algorithms that belong to the
same family. The relative merits and demerits of this wealthof techniques are examined
through a series of comparative experiments.

Just as every backpacker trusts on his guidebook that contains several colorful maps,
each highlighting some other aspects of the surrounding countryside or representing the
scenery with a different level of detail, there might be manymeaningful groupings for a
given set of microbial features, each reflecting different insights into the underlying natural
relationships of the strains. Consequently, if there are several meaningful groupings, a va-
riety of classification techniques could be needed to revealthem all. However, taxonomists
traditionally have merely relied solely on hierarchical clustering methods to unravel natural
relationships among microorganisms. An approach that might result in a distorted view on
the multifaceted bacterial landscape. It is particularly appreciated that when using some
hierarchical method of clustering analysis, early decisions in the construction process may
preclude certain meaningful groupings at later stages. This unilateral kind of analysis thus
completely ignores the existence of state-of-the-art non-hierarchical classification meth-
ods for learning the hidden relationships behind sets of bacterial features. Chapter 4 has
sought to shatter this tradition for the particular case of classifying microbial strains on
the basis of their genotyping fingerprint profiles, an experimental technique used to sample
the bacterial genome that results in highly specific bandingpatterns. Applying classifi-
cation methods for the analysis of genotyping fingerprint patterns often requires several
preliminary transformations of the original data representation into a more workable com-
putational format. It is shown that a naive choice of the discretization method for turning
molecular banding patterns into binary vector format can have a harmful impact on the fi-
nal classification of the profiles. This has led us into an evaluation of the existing multiple
band matching methods and the introduction of a new technique – calledsliding window
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discretization– for transforming genotypic fingerprinting data into binary vector format.
In the context of an extensive set of fluorescent amplified fragment length polymorphism
(fAFLP) fingerprint patterns from strains of the familyVibrionaceae, it was demonstrated
that sliding window discretization results in the most lossless vector transformation com-
pared to other methods. Accordingly, the binary vectors were classified according to the
minimization of stochastic complexity, as an alternative strategy for the hierarchical cluster-
ing algorithms that is based on the optimization of an information theoretic expression. A
scrutinized comparison of the classifications for the same set of fAFLP fingerprint patterns
by different classification strategies has revealed that there was good overall correspon-
dence between the alternative groupings, but also confirmedthat no single classification
managed to reflect all the taxonomic relationships within the Vibrionaceae. The question
whether a single roadmap/taxonomy can be distilled that encompasses all aspects learned
on bacterial diversity, however, remains open.

Once all locations in the scenery are sufficiently accessible and connected, detailed maps
are drawn up to guide navigation, and our backpacks are stuffed with suitable camping
equipment, the discovery of new patterns can begin by means of a systematic exploration
of the landscape. With this in mind, chapter 5 attempts to demonstrate the implications and
abilities of knowledge discovery in databases as a valuabletechnology for the evaluation
of massive quantities of genotypic and phenotypic featuresacquired on microorganisms.
This all-round analysis strategy aims at the application ofa broad spectrum of data mining
tools, bearing in mind the necessity of preliminary steps indata cleansing, integration and
warehousing. In particular, exploitation of the vast amounts of information accumulated
during fifteen years of routine gas chromatographic analysis on the fatty acid content of
environmental aerobic bacteria is brought into focus. Along the lines of this investigation,
it is shown how learning new information for enhancing the discriminatory power of an
automated fatty acid recognition system, itself may gradually improve the resolution of
the technique for bacterial classification and identification, especially for some species that
previously were undistinguished by the methodology.

Achieving the goals of a self-learning reasoning system forlandscaping the bacterial
taxonomy, yet means that several major technical and organisational hurdles will need to
be overcome. This includes advancing the barriers of globaldata sharing, identify and
come up with ways to fill the gaps of observational efforts, and explore the possibilities of
novel data mining techniques to the benefits of understanding bacterial life. Despite the
slew of unresolved issues, let’s put on our hiking shoes and hit the road. . .
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Chapter 2

Knowledge Accumulation and
Resolution of Data Inconsistencies
during the Integration of
Microbial Information Sources

”Real–world data is dirty”

— Herńandez, M. A. & Stolfo, S. J.

THE internet has emerged as an ever-increasing environment of multiple heterogeneous
and autonomous data sources that contain relevant but overlapping information on mi-

croorganisms. Microbiologists might therefore seriouslybenefit from the design of intelli-
gent software agents that assist in the navigation through this information-rich environment,
together with the development of data mining tools that can aid in the discovery of new in-
formation. These applications heavily depend upon well-conditioned data samples that are
correlated with multiple information sources, hence accurate database merging operations
are desirable.

Information systems designed for joining the related knowledge provided by different
microbial data sources are hampered by the labelling mechanism for referencing microbial
strains and cultures, that suffers from syntactical variation in the practical usage of the
labels, whereas additionally synonymy and homonymy are also known to exist amongst
the labels. This situation is even complicated by the observation that the label equivalence
knowledge is itself fragmentarily recorded over several data sources which can be suspected
of providing information that might be both incomplete and incorrect.

37



38 CHAPTER 2. INTEGRATED STRAIN DATABASE

This chapter presents how extraction and integration of label equivalence information
from several distributed data sources has led to the construction of a so-called integrated
strain database, which helps to resolve most of the above problems. Given the fact that
information retrieved from autonomous resources might be overlapping, incomplete and
incorrect, much energy was spent into the completion of missing information, the discov-
ery of new associations between information objects and thedevelopment and application
of tools for error detection and correction. Through a thorough evaluation of the differ-
ent levels of incompleteness and incorrectness encountered within the incorporated data
sources, we have finally given proof of the added value of the integrated strain database as
a necessary service provider for the seamless integration of microbial information sources.

2.1 Introduction

Polyphasic taxonomy [71] of microorganisms is aiming at theintegration and processing
of many different kinds of data and information (phenotypic, genotypic and phylogenetic),
and essentially strives after the delineation of an objective consensus type of taxonomy that
represents the least amount of anomalies when confronted with all the attained knowledge.
Technical difficulties and a time-consuming manual approach to the integration of dozens
of information sources have kept the current scope of most polyphasic studies rather min-
imal, whereas a great deal of subjective decision making forthe derivation of a consensus
view on the data is left on behalf of the microbiologists. Onecould however envisage
a global information system that in a uniform way captures the reams of data generated
in the field of microbiology. This data structuration process would enable the intelligent
application of well-founded data mining techniques as a means to discover objective and
universal taxonomic consensus models on a more dynamic and amore automated manner.
Such a system could then adapt in a flexible way to the advent ofnew incoming data and
interact with the outside world when necessary pieces for the completion of the taxonomic
puzzle are missing or unclear.

A major technical hurdle that must be overcome for achievingthis goal, is to concisely
join all related information provided by the many distributed databases that contain rele-
vant information on microorganisms. This general problem of merging multiple databases
acquired from different sources with heterogeneous representations of the information is
frequently encountered in knowledge discovery in databases (KDD) and decision support
applications of large commercial and governmental organizations [37], but also finds its
way into several data-driven branches of science [26, 62], including biology [8, 16]. The
database integration process is difficult to solve both in scale and accuracy, and features
many aspects that need to be tackled. Notice however that more (and more reliable) con-
clusions can generally be drawn from the databases, after the integration process has been
conducted. Moreover, without performing the necessary data cleaning steps during the pro-
cess of database integration, many of the data mining algorithms that can be applied would
be rendered useless, as they heavily depend on the quality ofthe data under investigation
[57].
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With the rapid emergence of data formats and applications inbioinformatics supporting
a veritable cottage industry of databases, the design of commonly accepted and imple-
mented data formats and interrogation languages becomes paramount to support holistic
scenarios [62]. The issue of querying databases in environments where the distributed data
sources have different schemas has been addressed extensively in literature, and is known
as theschema integrationproblem [4, 44, 52, 54]. Multiple common schema design initia-
tives for the standardization of data exchange between distributed microbial data providers
have arisen over the past two decades: Microbial Information Network Europe (MINE;
[30, 70]) and Common Access to Biotechnological Resources and Information (CABRI;
[9]) are standard schemas designed specifically for disseminating information on microor-
ganisms, while the Global Biodiversity Information Facility (GBIF) supports both Access
to Biological Collection Data (ABCD; [1]) and Darwin Core [15] as standard schemas to
cover all information about the complete biodiversity on earth.

Successful database integration does however not only require the development of com-
mon schemas which allow searching the different information sources from a logical single
point of access, but also urges that the collected information is normalized and corrected
wherever necessary. In the framework of this chapter we are therefore primarily interested
in resolving the duplications and other inconsistencies showing up on the data level of
distributed microbial information sources. Thesedata integrationissues are complemen-
tary to their schema integration counterparts, but do not seem to have been fully addressed
within the problem domain of microbiology. One particular inconsistency that occurs on
the data level is the existence of multiple representationsfor the same real-world entity
within environments lacking unique consistently-used identifiers for the different object in-
stances [13]. This forms a serious hindrance for extractingall the related information on a
given entity from multiple distributed data sources. Currently there exists for example no
systematic cross-referencing between resources that supply basic strain information (see
Table 2.6 for some examples) and other public data sources such as nucleotide and protein
sequence databases [40] and scientific literature databases that provide additional features
of the strains. Automatic execution of basic computationaloperations for microbial appli-
cations, such as collecting all the 16S rDNA sequences of theEnterococcusspp. type strains
deposited in the public sequence databases, may as a result turn out to be very complicated
when the request must be completely and correctly answered on the fly [16]. Solutions
for this problem appearing in the literature have been called record linkage[27, 59, 60],
duplicate record elimination[5], the inter-database instance identificationproblem [72],
hardening soft databases[13], thedata cleaning(or data cleansing) problem [26] or the
merge\purgeproblem [36, 37]. Most deduplication techniques restrict themselves to the
detection and resolution of syntactical differences between the descriptors of the same en-
tity. The labelling mechanism applied for referencing microbial strains and cultures, how-
ever, does not only suffer from syntactical variations in its practical usage, but additional
semantic issues such as synonymy and homonymy are also knownto exist amongst the
strain numbers. The problems for this specific research areaare even more complicated
by the observation that the semantic label equivalence information is itself fragmentarily
recorded over several data sources, which can be suspected of providing information that
might be both incomplete and incorrect.
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The urgent need to get a complete and correct view on the semantic label equivalences
that exist in the field of microbiology, as required prior knowledge for setting up more
intelligent information systems, has inspired us into the construction of a so-calledinte-
grated strain database. In section 2.2 we explain in detail how the basic label equivalence
information can be extracted and integrated from several distributed and heterogeneous
data sources, in order to achieve a concise and complete representation of the equivalence
knowledge within the integrated strain database. This process both supports the comple-
tion of missing information and the discovery of new associations between information ob-
jects. The information captured within the integrated strain database is however seriously
threatened by the fact that the quality of information retrieved from autonomous resources
might be poor and that overlapping information can be contradictory. Section 2.3 therefore
presents an arsenal of error detection and correction toolsthat we have developed and ap-
plied as a means to improve the overal correctness of both theintegrated strain database and
its composing primary data sources. Some basic properties and statistics of the current ver-
sion of the integrated strain database are reviewed in section 2.4, together with a thorough
evaluation of the different levels of incompleteness and incorrectness encountered within
the currently incorporated data sources. These latter quality estimations should endorse
the added value of the integrated strain database as a necessary service provider for the
seamless integration of microbial information sources. Section 2.5 further works out on
this, by demonstrating how the integrated strain database forms the cornerstone of a solid
and manageable cross-referencing system that establishesmutual links between the infor-
mation provided by biological resource centers, empericalknowledge bases and scientific
research papers.

2.2 Construction of an integrated strain database

Data supplied by autonomous data sources typically includeidentifiers for real-world
entities that may vary among the different data sets, due to awide variety of reasons.
Hence, the equality of two values over the domain of a common join attribute is not speci-
fied as a simple arithmetic predicate, but rather by a series of equational axioms that define
equivalence, i.e. by an equational theory [36, 37]. We startthis section with an informal
description of several features of the equational theory that corresponds with the labelling
mechanism that is commonly applied to refer to strains and cultures in the field of micro-
biology. The observation that homonymous strain numbers exist implies that these labels
cannot be applied as unique identifiers for the unequivocal discrimination of strains and
cultures in a global information system. Moreover, as the semantic equivalence of syn-
onymous strain numbers is related to the mathematical notion of an equivalence relation, it
should always respect the properties of reflexivity, symmetry and transitivity. The practical
definition of the synonym equivalences, however, is currently dispersed over a myriad of
independent information sources, so that the semantic transitivity of the equational theory
is frequently broken and not completely accessible througha single point of entry. In a
second part of this section we therefore discuss how a central repository can be evoked,
which simultaneously resolves the ambiguities of homonymous strain numbers and offers
a complete picture on the equivalence relation of synonymous strain numbers.
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2.2.1 Equational theory for the microbial labelling system

Any method for learning and detection of duplicate representations and occurrences of
the same real-world entity within a given context, needs an underlying theory that defines
how the equivalence of two different representations is determined. This is refered to as
theequational theoryor thesimilarity modelof the problem domain, and it is said that the
equational theory dictates the logic of domain equivalence. The process of creating a good
equational theory is similar to the process of creating a good knowledge-base for an expert
system. Hence, in order to give a formal description of the similarity model for complex
problem domains, an expert that is intimately familiar withthe context is needed. After
all, any improperly defined equational theory will lead to either an increase in the number
of falsely matched entities (false positives) or to a decrease in the number of matching
descriptors that represent the same entity (false negatives) and accordingly should have
been recognized by the similarity model as being equivalent[37].

We set off with a rather informal introduction on the different concepts of an equational
theory for determining the equivalence of the strain numbers that are used as descriptors
for cultures and strains in the context of microbiology. Later on, in subsection 2.2.2, we
will come to a more formal explanation of how this similaritymodel was implemented for
the construction of the integrated microbial strain database, which is the subject of discus-
sion of this chapter. Staley and Krieg [69] describe the concepts of (bacterial) strains and
(bacterial) cultures in the following way. A (bacterial)strain is made up of the descendants
of a single isolation in pure culture, and usually is made up of a succession of cultures
ultimately derived from an initial single colony. They see a(bacterial)culture as a pop-
ulation of (bacterial) cells of the strain, instantiated ina given place during a given time,
e.g. in a test tube, on an agar plate or in a cryopreserved or lyophilized state intended for
long preservation. Although these formalisms have been specifically described here for the
microbial subdomain of bacteriology, they are equally applied for other kinds of microor-
ganisms, such as fungi and yeasts. Dijkshoornet al. [21] make further distinction between
a strain in the taxonomical senseand astrain in nature, but we will stick to the unqual-
ified strain terminology, implicitly referring to the former epithet. Differentlabels in the
form of textual strings (commonly calledstrain numbersby microbiologists) or barcodes
are assigned to some of the cultures, for the purpose of encoding properties of that specific
culture in a notebook or a database. Whether the occurrence ofa label should be interpreted
as a reference to a specific culture in the strain history or whether it is simply used as an
exemplar for referring to a strain as a whole, may depend on the context wherein the label is
used. In order to avoid confusion with the abstract strain concept as it is formalized within
the equational theory described here, we have therefore opted in favor of the more general
term label further on in this chapter, instead of sticking tothe more commonly applied
strain number terminology used in the field of microbiology.

Labels that reflect the same real-world entity and for which the equivalence can be
derived purely based on the syntactical representation of the labels, are calledsyntacti-
cally equivalentlabels. Minor variations in the spelling of a label assignedto a micro-
bial culture might occur, due to the fact that strict formatting rules for labels are lack-
ing or not adhered to in practical situations. With this in mind, the concept of a culture
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was abstracted in the integrated strain database as the equivalence class of all syntactical
variations encountered within the practical occurrences of the label assigned to a culture,
whereby the syntactical equivalence of two labels can be evaluated by a matching function
that allows for small variations in the spelling of the labels. Measurement of the syntac-
tical distance (or edit distance) between two string representations has been the subject
of a largely studied research area known asapproximate string matching, from which a
vast amount of domain-independent approximate string matching algorithms have emerged
[6, 12, 23, 28, 34, 45, 47, 50, 58, 61, 66]. Based on the domain-specific knowledge of an
entity and its semantics in the given problem domain, an interpretation function for the
evaluation of the syntactical equivalence of two entity labels may then be moulded from
the stipulation of a series of production rules, which can make use of approximative string
matching functions as their basic building blocks. Numerous examples of syntactical equa-
tional theories that are implemented accordingly, have been published for a wide variety
of concepts such as customer addresses [2], web pages [7], scientific publications [39, 55],
lexicon variants [41], medical patients [59, 60], fraud andmoney laundry actors [64], cen-
sus data [65] and business documents [75], amongst many others.

Management of syntactical equivalences in the integrated strain database has been or-
ganised on the basis of the textual decomposition of labels into the three syntactical units
that are schematically depicted in (2.1).

< label > := < acronym >< index >< postfix > . (2.1)

Theacronymof the label is composed of the prefix of the string representation of the label
up to (but not including) the first numerical character. The continuous substring of numer-
ical characters that follows the acronym constitutes the label index, whereas the remaining
part of the string is called thepostfixof the label. This decomposition follows the common
practice in microbiology that most labels are constructed by appending a descriptive string
for the instance that has assigned the label (e.g. the surname of an individual researcher
that has isolated the strain, the acronym of a culture collection that has received a sam-
ple of the strain or the acronym of a scientific project wherein the strain was applied or
investigated) with a unique numerical identifier that discriminates all the cultures worked
with by that instance. Additionally, different mechanismsare in place for the indication of
further subcultures of a given culture, which generally have in common that they add some
textual string at the end of an existing label. These additions are captured within the post-
fix unit of the label decomposition. Within the decomposed representation of the labels,
one or more units are allowed to represent empty strings. Theintegrated strain database
then automatically tackles most syntactical variation confronted with during practical us-
age of the labels, by the implementation of a series of production rules which transform
the decomposed units of a given label into a so-callednormalized syntactical form. Some
production rules for example trim the acronym and postfix units of a label from trailing and
leading white space characters and other delimiters such - or characters, or remove the
trailing T symbol of the postfix, which is merely an indication that the label corresponds
with a type strain, rather than being a real part of the label itself. Syntactical equivalence
of two labels can then simply be determined by checking whether both labels have the
same normalized syntactical form. Acronym and postfix comparisons are performed case-
insensitive, whereas the equality of indexes is irrespective of the number of leading zeroes.
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The integrated strain database also uses the decompositionof labels into their normalized
syntactical form, for implementing a mechanism to standardize the format of all labels as-
signed by the same instance. This mechanism is granular in that different formatting styles
may be set depending on the acronym of the label. The integrated strain database controls
the display style of the labels by the assignment of a customizable template format to each
acronym. These formatting templates for example indicate the string delimiters that must
be uniformly used between the acronym, index and postfix units of all labels having a given
acronym, and discriminate the acronyms that require leading zeroes to attain fixed-length
indexes from the acronyms that use variable-length indexes.

Equivalence of the labels used for referencing strains and cultures in the field of micro-
biology can however not be derived solely from the typography of the labels. Labels which
semantically refer to the same real-world entity but differsubstantially in their syntax, are
generally namedaliasesor synonyms. This kind of equivalences has to be defined on the
basis of more axiomatic foundations. It is common practice in microbiology that most
instances growing microbial cultures (either individual researchers, culture collections, or
research and industrial laboratories) apply their own system for labelling the biological
samples they work with, whereas these labels are consideredto be unique identifiers for
encoding information in the context of that instance. When a sample of biological material
gets transfered from one instance to another, the receivingparty may assign a new synonym
label to the received culture according to its own labellingsystem and communicate this
new alias to the depositor for reasons of traceability. Thisrelabelling tradition is mainly
kept alive for proper discrimination of both cultures harboured by the depositor and the
receiver, as a means to implement a total data quality management (TDQM) system for
monitoring the distribution of microbial strains and tracing possible contaminations. In
this way, as more cultures of a single isolate in pure cultureget distributed over numer-
ous instances, the amount of different labels that refer to the same microbial strain grows
accordingly. Moreover, data generated from and propertiesencoded on a given strain by
different people at different locations get completely defragmented, because in most cases
reference is made to the biological material using only the label of the culture that was
worked with. This observation forms a serious hindrance forthe retrieval of all known in-
formation about a given strain, in a sense irrespective of whatever synonym label that was
used for referencing the strain. In order to avoid such Babel-like confusion, it is therefore
essential to have the knowledge about all synonym labels that were assigned to any culture
that descends from the same single isolate in pure culture. In this respect, the strain concept
was abstracted in the integrated strain database as the equivalence relation of all cultures
descending from a single isolation in pure culture, hence bytransitivity also as the equiv-
alence relation of all labels assigned to any of these cultures, with a built-in syntactical
relaxation on the spelling of the labels.

At present, alias information of the microbial labelling system is fragmentarily recorded
over a number of laboratory notebooks, scientific papers that describe new microbial iso-
lates or reuse the biological material of previous studies,and catalogues of instances that
harbour cultured samples for further dissemination. Additionaly, enumerations of impor-
tant and well-documented strains (primarily type strains)are regularly recompiled from
information extracted from the above resources [31, 73], for the benefit of a readership that
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data source record ID species name synonym labels

ATCC ATCC 14579T Bacillus cereus 971; 13; NCIB 9373; NCTC 2599
CABRI CIP 66.24T Bacillus cereus ATCC 14579; CCM 2010; DSM 31; IAM 12605; JCM 2152; LMG 6923;

NCIB 9373; NCTC 2599
CABRI DSM 31T Bacillus cereus ATCC 14579; CCM 2010; LMG 6923; NCIB 9373; NCTC 2599
CABRI LMD 75.8T Bacillus cereus ATCC 14579; NCIB 9373; NCTC 2599; CCM 2010; DSM 31; Gibson
CABRI LMG 6923T Bacillus cereus ATCC 14579; CCEB 625; CCM 2010; CCUG 7414; CECT 148; CIP 66.24;

DSM 31; FIRDI 603; Ford 13; Gibson 971; IAM 12605; JCM 2152;
Logan B0002; NCFB 1771; NCIB 9373; NCTC 2599; NRRL B-3711; OUT 8406

CABRI NCIMB 9373T Bacillus cereus ATCC14579; CCM2010; CECT148; CIP66.24; DSM31; IAM12605; IFO15305;
JCM2152

CCM CCM 2010T Bacillus cereus ATCC 14579
CCRC CCRC 10603T Bacillus cereus ATCC 14579; CCM 2010; DSM 31; NCIMB 9373; NCTC 2599
CCRC CCRC 11026T Bacillus cereus IAM 12605
CCUG CCUG 7414T Bacillus cereus CCM 2010; NCIB 9373; ATCC 14579; NCTC 2599; Ford 13; DSM 31
CECT CECT 148T Bacillus cereus ATCC 14579; CCEB 625; CCM 2010; CCRC 10603; CCRC 11026; CCTM La 3674;

CCUG 7414; CIP 66.24; DSM 31; FIRDI 603; Ford 13; Gibson 971;
IAM 12605; JCM 2152; LMD 75.8; LMG 6923; NCFB 1771; NCIMB 9373;
NCTC 2599; OUT 8406; VTT E-93143

CECT CECT 5050T Bacillus cereus ATCC 14579; CCM 2010; CECT 148; DSM 31; Ford 13; Gibson 971;
LMG 6923; NCIMB 9373; NCTC 2599

CIP CIP 66.24T Bacillus cereus ATCC 14579; CCM 2010; DSM 31; IAM 12605; JCM 2152; LMG 6923;
NCTC 2599; NCIMB 9373

DSMZ DSM 31T Bacillus cereus ATCC 14579; CCM 2010; LMG 6923; NCIB 9373; NCTC 2599
IFO IFO 15305T Bacillus cereus ATCC 14579; CCM 2010; DSM 31; IAM 12605; JCM 2152; LMG 6923;

NCIB 9373; NCIMB 9373; NCTC 2599
JCM JCM 2152T Bacillus cereus ATCC 14579; CCM 2010; CCRC 10603; CCUG 7414; CECT 148; CIP 66.24;

DSM 31; IAM 12605; IFO 15305; KCTC 3624; LMG 6923; NBRC 15305;
NCFB 1771; NCIMB 9373; NCTC 2599; NRRL B-3711; VKM B-504

KCTC KCTC 3624T Bacillus cereus ATCC 14579; CCM 2010; CCRC 10603; CIP 66.24; DSM 31; IAM 12605;
IFO 15305; JCM 2152; LMG 6923; NCFB 1771; NCIMB 9373; NCTC 2599;
VKM B-504

LMG LMG 6923T Bacillus cereus ATCC 14579; CCEB 625; CCM 2010; CCUG 7414; CECT 148; CIP 66.24;
DSM 31; FIRDI 603; Ford 13; Gibson 971; IAM 12605; JCM 2152;
Logan B0002; NCFB 1771; NCIB 9373; NCTC 2599; NRRL B-3711; OUT 8406

NRRL NRRL B-3711T Bacillus cereus ATCC 14579; DSM 31; NCIB 9373; NCTC 2599
UKNCC NCTC 2599T Bacillus cereus Ford 13; ATCC 14579; NCIB 9373; DSM 31
UKNCC NCIMB 9373T Bacillus cereus Gibson971; Ford13; ATCC14579; CCM2010; CECT148; CIP66.24; IAM12605;

IFO15305; JCM2152; NCTC2599; NCDO1771
taxa (DSM) type strain Bacillus cereus ATCC 14579, CCM 2010, DSM 31, NCIB 9373, NCTC 2599

integrated type strain Bacillus cereus ATCC 14579; CCEB 625; CCM 2010; CCRC 10603; CCRC 11026; CCTM La 3674;
strain SID = 1101 CCUG 7414; CECT 148; CECT 5050; CIP 66.24; DSM 31; FIRDI 603; Ford 13;
database Gibson 971; Gibson; IAM 12605; IFO 15305; JCM 2152; KCTC 3624;

LMD 75.8; LMG 6923; Logan B0002; NBRC 15305; NCDO 1771; NCFB 1771;
NCIB 9373; NCIMB 9373; NCTC 2599; NRRL B-3711; OUT 8406; VKM B-504;
VTT E-93143; 13; 971

Table 2.1: Excerpt of the synonym equivalence information for theBacillus cereustype
strain, retrieved from several online resources. The last row of the table shows a nor-
malized representation of the search results, where complete deduplication of the syn-
onym labels assigned to theBacillus cereustype strain was performed with the help of
theIncrementEquivalence procedure discussed in subsection 2.2.2. See Table 2.6
for details on the different data sources.

is interested in reusing these strains for a variety of purposes. Typically, the authors of
these summarizing documents have collected a shortlist of synonym labels for the listed
strains, as an indication of the different instances from which cultures of the strains can be
retrieved. In the remaining part of this chapter we will simply refer to any of the previously
described information providers of synonymous labels as adata source. Manual extrac-
tion and collection of the complete synonym information from all of these data sources has
proven to be a time-consuming and error-prone activity. As an example, the upper part of
Table 2.1 shows an excerpt of the data sources that provide information on the synonym la-
bels assigned to theBacillus cereustype strain. This table clearly demonstrates that joining
alias information from a bunch of different data sources, ends up with a great deal of du-
plication within the collected data. Calculation of the union of all the gathered information
results in a normalized represention of all the known synonym labels, as is shown in the last
row of the table. We will go deeper into an automated procedure for synonym information
extraction and normalization in subsection 2.2.2. For the time being, we restrict ourselves
to the observation that none of the contacted data sources contains complete information
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SID CID label species name synonym labels

113562 368362 B2T Acinetobacter baylyi CIP 107474, DSM 14961
50260 268815 B-2 Actinomadura madurae A 124, DSM 43381, IMET 7144, IMRU 1136
58752 347460 B2 Aeromonas hydrophilasubsp.hydrophila NCIMB 640
60298 345118 B2 Bacillussp. NCIMB 10936
20512 65830 B2T Chryseobacterium defluvii CCUG 47675, CIP 107207, DSM 14219
59765 350023 B2 Clostridium butyricum KCTC 1902, NCIMB 9575
37398 267132 B-2 Corynebacterium glutamicum ATCC 21269, KCTC 9853
40698 267459 B2 Curtobacterium flaccumfaciens ATCC 33802
60975 303025 B2T Methylocapsa acidiphila DSM 13967, NCIMB 13765
43071 267727 B2 Morganella morganiisubsp.sibonii ATCC 51596
55683 269342 B-2 Neisseria gonorrhoeae CCUG 13573
58441 346764 B-2 ”Other unnamed bacteria” NCIMB 17
48170 268485 B2 Pseudomonas putida DSM 6376
35123 266888 B2 Streptococcus salivarius ATCC 9759
9856 267562 B2 Tenacibaculum maritimum ATCC 43397, CCM 3965, CECT 4276, CIP 103529,

IAM 14118, IFO 16015, JCM 8137, LMG 10398,
LMG 11611, NCIMB 2153, NCMB 2153, strain B2,
Wakabayashi B-2

Table 2.2: Strain classes found within the current version of the integrated strain database,
having cultures marked with labelB2, or any syntactical equivalent label according to the
equational theory defined in subsection 2.2.1. This list proves the usage of homonymous
labels for indicating strains and cultures in the field of microbiology.

about all the synonym labels assigned to theBacillus cereustype strain, whereas later on
in this chapter (see section 2.4) we will demonstrate that this is not at all a standalone case.

Yet another problem concerning the labels used in microbiology that cannot be resolved
on the syntactical level alone, is the context-dependency that might influence the semantic
interpretation of the labels. Labels which are syntactically equivalent under the conditions
of a well-defined syntactical equational theory, but represent different real-world entities
depending on the context they are extracted from, are calledhomonyms[13]. Those labels
that are considered to have no homonyms within the problem domain are calledunique la-
bels. Unique labels always have the same meaning, irrespective of the context they are used
in, what distincts them from the so-calledambiguous labelsthat need an extra evaluation
of the context before their exact semantical interpretation can be derived. Table 2.2 cleary
demonstrates that we have to take into account the possiblity of homonymy amongst the la-
bels that denote strains and cultures in the field of microbiology. This table shows a number
of strains that all include cultures that have been tagged with the syntactical equivalent la-
belsB2, B2T or B-2, notwithstanding the fact that the context indicates that the addressed
strains and cultures are not the same. Indeed, it is immediately evident from the table that
the labelB2T is for example equivocally used as a reference to cultures (more specifically
to the isolates) of the type strains ofAcinetobacter baylyi[10], Chryseobacterium defluvii
[43] andMethylocapsa acidiphila[17], apart from being assigned to cultures of a series of
other strains. The problem of deriving the exact semantic interpretation of a label from an
additional evaluation of the context from which the label was taken, has been intensively
studied in the field of computational linguistics [63].

2.2.2 Algorithm for incremental learning of label equivalences

In the previous subsection we gave an informal description of the equational theory
for the labelling system used in the field of microbiology. A formal similarity model for
this problem domain should thus account for syntactical variations in the practical use of
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the labels assigned to microbial cultures, and should in addition be able to cope with the
homonymy and the synonymy of the labels, which are non-syntactical contributions to the
semantic equivalences encountered within this problem domain. LetL̂ be the collection of
all labels that refer to strains and cultures in the field of microbiology, so that we can write
that

L̂ = [l1, l2, . . . , l|L̂|] . (2.2)

Due to the possibility of homonymy amongst labels inL̂, this collection must be captured
within a multisetor abagdata structure when it is captured within an information system.
This is reflected by the use of square brackets in the formulation of (2.2). Also remark that
throughout this chapter we use the notation|A| for indicating the size of a given countable
collectionA. The partition ofL̂ that lumps together all labels associated to the same culture,
is denoted as the countable set

Ĉ = {ĉ1, ĉ2, . . . , ĉ|Ĉ|} , (2.3)

where











ĉi ⊂ L̂ 1 ≤ i ≤ |Ĉ|
ĉi ∩ ĉj = ∅ 1 ≤ i, j ≤ |Ĉ|, i 6= j
⋃|Ĉ|

i=1 ĉi = L̂ ,

and each clasŝc of the partitionĈ is called a culture. We impose the additional requirement
to the partitionĈ that all labels within a culturêc are different, so that cultures can be rep-
resented as sets of labels. Labels that belong to the same class ofĈ are said to represent the
same culture, and the partition̂C thus represents the syntactic equivalence of the microbial
labelling system. The set of all cultureŝC is further partitioned into classes that harbour the
cultures that originate from the same isolate in pure culture. This partition is denoted aŝS,
and we have that

Ŝ = {ŝ1, ŝ2, . . . , ŝ|Ŝ|} , (2.4)

where



















ŝi ⊂ L̂ 1 ≤ i ≤ |Ŝ|
ŝi ∩ ŝj = ∅ 1 ≤ i, j ≤ |Ŝ|, i 6= j

(∀ĉ ∈ Ĉ)(∃ŝ ∈ Ŝ)(ĉ ⊆ ŝ)
⋃|Ŝ|

i=1 ŝi = L̂ .

Each class of the partition̂S is called a strain, and in analogy with the cultures we require
that all labels in a strain class are different, so that strains equally can be represented as sets
of labels. Labels that belong to the same class ofŜ are said to represent the same strain,
hence the partition̂S represents the synonym equivalence of the labelling system. As such,
the partitionsĈ andŜ impose a hierarchical partition upon the label spaceL̂, whereĈ is the
subpartition ofŜ. Accordingly, the problem dealt with in the framework of this chapter can
be described as the process of incrementally learning the triplet (L,C,S) from the partial
information supplied by a number of autonomous and heterogeneous data sources. Herein,
the triplet (L,C,S) is a representation of the partial knowledge we have learned so far about
the triplet (L̂,Ĉ,Ŝ) as it is observed in the real-world.

Before we come to the detailed description of an algorithm that automates the incre-
mental accumulation of label equivalence knowledge extracted from different data sources
into the triplet (L,C,S), we first set off with a short introduction on the representation of
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this triplet within the integrated strain database. For reasons of compactness, we will de-
note the status of the integrated strain database asI in the rest of this chapter. Initially,
before we have processed any information about the entitiesand their equivalences in the
real-world, the conceptual knowledge represented inI is empty, meaning that (L,C,S) ≡
(∅,∅,∅). The Object Model formulated by the Object Data ManagementGroup (ODMG;
[11]) discriminates literals from classes by the fact that each instance of a class has its own
identity, which is not the case for literal instances. Based on this model, the process of
archiving newly learned concepts as instances of first classobjects was coinedcapacity
augmentationby Josifovski and Risch [42]. In the specific case of learning the equivalence
classesC andS over the label spaceL, this can simply be achieved by the annotation of
each learned labell with an object identifierCl for the cultures and an object identifierSl

for the strains. We callCl the culture identifier (CID) of the labell, andSl the strain iden-
tifier (SID) of the labell. If two labels share the same culture identifier in the integrated
strain databaseI, they are considered to represent the same culture, while iftwo labels
share the same strain identifier they are considered to be synonymous labels of the same
strain. Remark that the hierarchical clustering of strains and cultures dictates that if two
labels share the same culture identifier, they necessarily also have to share the same strain
identifier. The application of object identifiers has the main advantage that data which is
relevant for the integrated strain database can be associated locally to strains and cultures.
Capacity augmentation also enables the use of culture and strain objects within attributes
and methods that are locally stored withinI, by treating them just as ordinary object iden-
tifiers. In addition, if strain and culture identifiers are made publicly available for reuse
outside the scope of the integrated strain database, they may contribute to the implementa-
tion of an integration schema that helps resolve the currentapplication of homonymous and
synonymous labels for encoding strain and culture information within peripheral databases
of microbial information, such as public sequence databases [40] and scientific literature
databases, an issue that is scrutinized in section 2.5. Thisopens a door for the execution of
advanced queries that abridge the boundaries of distributed and heterogeneous microbial
databases, which is a preliminary condition for the development of intelligent data mining
applications [16].

We now describe an algorithm designed for the incremental update of the entities and
equivalences stored in the integrated strain databaseI, as a simulation of the learning pro-
cess of possible new information extracted from a series of autonomous and heterogeneous
data sources. First we define arecord as any subset of a strain class inŜ, and we denote
the collection of all records asR with the following notation

R = {r1, r2, . . . , r|R|} , (2.5)

where(∀r ∈ R)(∃ŝ ∈ Ŝ)(r ⊆ ŝ) .

As such, a record is a set of labels which by definition belong to the same strain, and the
collectionR represents all the accumulated information we have processed to learn the
knowledge stored in the integrated strain databaseI. A record that only contains ambigu-
ous labels is called anambiguous record. Remark also that for records we do not require
that ri ∩ rj = ∅ (1 ≤ i, j ≤ |R|), if i 6= j, which means that the synonym equivalence
information supplied by different records may be overlapping. Moreover, ifr ⊂ ŝ for a
givenr ∈ R andŝ ∈ Ŝ, we say that the synonym equivalence information supplied by the
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recordr is incomplete. Finally, we define the set of alldata sourcesD as a partition ofR,
so that

D = {d1, d2, . . . , d|D|}, (2.6)

where







di ⊂ R, 1 ≤ i ≤ |D|
di ∩ dj = ∅, 1 ≤ i, j ≤ |D|, i 6= j
⋃|D|

i=1 di = R .

The pseudo-code procedureIncrementEquivalence gives a detailed description of
an algorithm for updating the prior knowledge recorded in the integrated strain databaseI,
on the basis of the new equivalence information learned froma recordr = {l1, l2, . . . , l|r|}.
As was described previously, all labels in the recordr should be regarded as being syn-
onym labels of the same strain. On exit of the procedureIncrementEquivalence,
all labels of the recordr will be incorporated within the integrated strain databaseI and
annotated with the same strain identifierSr, which we call the strain identifier of the record
r. Additionally, the culture identifier for each of the labelsin the recordr will be available
on exit of the procedure.

IncrementEquivalence (r, I)1

Input: r = {l1, l2, . . . , l|r|} : record of synonym labels2

I : current status of (L,C,S)3

Output on exit:s : Sr4

ci : Cli 1 ≤ i ≤ |r|5

I : updated status of (L,C,S)6

7

s := NULL;8

unique found := false;9

for i from 1 to |r| do10

ci := NULL;11

12

for i from 1 to |r| do13

if is unique(li) then14

unique found := true;15

ci := culture.find(li);16

if ci 6= NULL then17

stemp := strain.find(ci);18

if s = NULL then s := stemp;19

else ifs 6= stemp then s := strain.union(s, stemp);20

21

if not (unique found) then Exit;22

if s = NULL then s := strain.create new;23

24

for i from 1 to |r| do25

if not (is unique(li)) then26

ci := culture.find(li, s);27

if ci = NULL then28

ci := culture.create new(li, s);29
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On lines 8–11, the algorithm starts with the initialisationof the object identifier variables
s andci (1 ≤ i ≤ |R|) to the valueNULL. This value indicates that no object is referenced
by the corresponding object identifier variable. The boolean flagunique found is ini-
tially set to false. During the execution of the procedure, the variablestemp is used for
temporary storage of a local strain object identifier.

The continuation of the algorithm sequentially loops twicethrough the set of labels in
the recordr, where the first loop (lines 13–23) only works upon the uniquelabels within
the record, as to avoid semantically incorrect strain merges caused by homonymous labels.
In order to discriminate the unique from the ambiguous labels, the functionis unique
returns a boolean value that determines whether the argument labell is unique (return value
true) or ambiguous (return value false). Theoretically, itis impossible to know in advance
whether or not a given label will be unique, as we have no complete prior knowledge about
the label spacêL. However, the implementation of the functionis unique in the inte-
grated strain database simply considers all labels that have an acronym which occurs within
a predefined list as unique. All other labels are conservatively regarded as being ambiguous.
The list of acronyms which define unique labels, was originally fed with acronyms of the
instances that are mentioned in the directory of culture collections published by the World
Data Centre for Microorganisms (WDCM; [74]). Additionally, the option to manually add
or remove acronyms to or from this list was built into the integrated strain database. Ap-
pendix C contains a snapshot of the list of acronyms used for prediction of label uniqueness
in the integrated strain database. This approximative and updateable way of estimating the
uniqueness of labels includes some hazards, but has proven to be workable in practice. Fol-
lowing, for each unique labell ∈ r, the associated culture identifierCl and strain identifier
Sl are looked up within the integrated strain databaseI. This is accomplished by an initial
transformation of the label into its normalized syntactic form, as discussed in section 2.2.1,
followed by a search for the presence of the normalized labelin L. In the pseudo-code, we
have split the lookup of object identifiers of a given label over two separate functions. The
functionculture.find(l) returns the culture identifier of the unique labell, if the nor-
malized form of the label already occurs inL. Otherwise, the valueNULL is returned. The
functionstrain.find(c) returns the strain identifier of the culture with culture identi-
fier c. This makes sense given the hierarchical relationship between strains and cultures. In
case the argument passed to the functionstrain.find is NULL, theNULL value is re-
turned. The two functionsstrain.find andculture.find can easily be composed
in order to directly lookup the strain identifier of a given label l, in the following way

strain.find(l) ≡ strain.find(culture.find(l)) . (2.7)

In case the strain identifierstemp found for the labelli of the recordr differs from the strain
identifier s found for the previously processed labels, we have discovered a situation in
the integrated strain database that contradicts with the definition of a record, namely that
all labels within the same record should represent the same strain. This can happen in
practical situations where the synonym information provided by the records is incomplete,
which may result in that fact that the necessary evidence forsynonymy of the labels of
the strains with identifierss and stemp was not yet discovered from processing previous
record information with the procedureIncrementEquivalence. The algorithm re-
solves such conflicting situations by merging the corresponding strain classes within the
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integrated strain database. This unification of strain classes is executed by the function
call strain.union(s, stemp) on line 20. Though very efficient algorithms exist for the
calculation of the transitive closure in cases where all pairwise equalities are known in
beforehand [19, 24, 48, 51], the chosen names of the functions in the pseudo-code of the
procedureIncrementEquivalence already suggest that we have opted for the im-
plementation of a union-find data structure [14, 38] for maintaining the transitivity of the
strain equivalence relation in the integrated strain database. After all, these union-find data
structures allow for the incremental management of an equivalence relation, which is more
appropriate than recalculating the whole transitive closure in environments where new or
updated information regularly shows up. Note that the problem of incrementally computing
the connected components of a graph is harder than just finding the connected components
[57]. Moreover, the merge of two strain classes might also trigger the merge of some of
their enclosed culture classes, as we have required that (normalized) labels must be unique
within the scope of a strain class. Although somewhat hiddenin the pseudo-code shown
here, the maintainance of the culture equivalence relationwas thus also implemented using
another union-find data structure in the integrated strain database. If no strain identifier
was found after an initial processing of the unique labels, it means that currently no strain
is known inI that has a unique synonym label in common with the record passed to the
procedureIncrementEquivalence. In other wordsL∩U(r) = ∅. For such cases, the
functionstrain.create new establishes that a new strain object is created inI as an
empty subset ofL. The new strain identifier is returned as the output value of the procedure
strain.create new, and will later on during the execution of the procedure be applied
to fill the newly created strain class with the normalized labels ofr.

After a first run through the unique labels of the recordr has determined the corre-
sponding object identifierSr of the strain within the integrated strain databaseI, with the
potential side-effect of creating a new strain object with an empty associated label set,
the resulting strain can be regarded as the necessary context for looking up the remain-
ing ambiguous labels of the recordr. After all, we have required that normalized labels
are different within the classes of the partitionS. The overloaded version of the function
culture.find(l, s) therefore looks up the culture identifier associated with the labell,
by searching for an occurrence of the normalized form of the label within the limited scope
of L that corresponds with the subset of labels associated to thestrain identifiers. Again,
theNULL value is returned if the search did not result in a matching normalized label in
I. Finally on line 29, the functionculture.create new(l, s) is called for each label
l for which no corresponding strain and culture objects were found during previous search
operations inL performed while executing the procedureIncrementEquivalence.
This function adds the normalized form of the labell to the set of all learned labelsL, and
tags it with the strain identifiers and the culture identifier of a newly created culture object.
In this way, each label of the recordr is guaranteed to be represented by a culture inC,
whereas all labels of the record belong to the same class ofS associated with the strain
identifier stored in the local variables that is returned by the procedure.

If an ambiguous record is passed as an argument to the algorithm, this would result in
the creation of a strain class containing solely ambiguous labels in the integrated strain
databaseI. Worse, if the same ambiguous record is repeatedly passed asan argument to
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the functionIncrementEquivalence in the frame of the iterative processing of the
data source wherein this record is embedded, new strain objects with the same information
content would repeatedly be created inI. Such strain objects are ambiguous themselves, as
the object identifiers associated to these strains or to the cultures within them would never
be retrieved by the functionsculture.find andstrain.find during execution of
the procedureIncrementEquivalence. This can be considered as a worse situation
than not learning anything from an ambiguous record. Therefore, we have built in the
option to stop the execution of the procedure on line 22, in case theunique found flag
indicates that the argument recordr is ambiguous.

We can further improve the performance of the algorithm, by adopting a priority search-
ing strategy for the retrieval of the culture identifier associated to a given label. Monge
et al. [57] came up with the idea that an extra evaluation of the pairwise equivalence of
two labels can be avoided, if that equivalence already follows from the transitivity of the
currently found equivalence relation. A similar pruning ofthe search space can in case of
the procedureIncrementEquivalence be accomplished by replacing line 16 of the
algorithm with the following piece of pseudo-code.

if s 6= NULL then
ci := culture.find(li, s);
if ci = NULL then ci := culture.find(li);

elseci := culture.find(li);

The above code excerpt states that in case a strain identifierfor the recordr was previously
found in the loop wherein this search is nested (s 6= NULL), we can pre-emptively perform
a restricted search on the subset ofL associated with the strain identifiers. This low-cost
limited search is then only followed by a more time consumingfull scan ofL, in case no
corresponding label was detected in the pruned search space. This idea is supported by
the prerequisite that all labels of the recordr have to belong to the same class inS after
execution of the procedureIncrementEquivalence, so that we can assume that there
is a realistic chance that some or all of the labels ofr will already belong to the same class
of S in I due to the records that were previously processed by the algorithm. Although
the extra limited search will result in a minor overhead whenthe amount of knowledge
learned inI is yet minimal so that only few overlapping information is processed by calls
to the procedureIncrementEquivalence, this is by far outweighed by the significant
savings in the number of times that a full scan ofL must be applied, in the case where
I gets saturated and the majority of the processed information is already captured within
the integrated strain database. Also remark that this extrarestricted search by no means
impairs the accuracy of the algorithm.

2.3 Error detection/correction strategies

In the previous section we have explained in detail how a complete equational theory for
the labelling system used in the field of microbiology can be jointly built up from the inte-
gration of partial and overlapping information extracted from a series of autonomous and
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heterogeneous data sources. However, from the first draft versions of the integrated strain
database, it became immediately evident that quite a large number of inconsistencies were
showing up in the information retrieved from the originating data sources. This observation
highly compromised the quality of the resulting database, and undermined our initial goal
of integrating the fragmented knowledge into a complete andcorrect information service
provider. Hernandez and Stolfo [37] state that in real-world datasets, one obviously cannot
estimate the true equivalence classes with high precision without a time consuming and
expensive human inspection and validation process. With this in mind, we will devote this
section to a discussion on some of the vulnerabilities of theintegration process and unravel
some strategies that we have additionally deployed during the construction of the integrated
strain database, in order to cope with information attainedfrom data providers that are not
completely trustworthy.

2.3.1 Basic error detection and correction

Under ideal circumstances, the entities and their equivalences learned in the integrated
strain databaseI, which we have represented by means of the triplet (L,C,S), should be a
complete and correct reflection of their counterparts (L̂,Ĉ,Ŝ) in the real world. However,
in practice we might encounter strain classess ∈ S which only contain a subset of all the
labels assigned to their corresponding real-world strainŝ ∈ Ŝ. In such cases, we say that
the known synonym information of the strains ∈ S is incomplete. Information collected
based on incomplete knowledge about the synonym labels assigned to a strain, might be
incomplete as well. The most obvious way to accomodate for incomplete information in
the integrated strain database, is to continuously monitorwhether new data sources are
made publicly available or the information content of previously processed data sources
has been updated. Synonym information extracted from the new or updated records can ac-
cordingly be incorporated in the integrated strain database by application of the procedure
IncrementEquivalence. One particular situation related to the problem of incom-
plete strains occurs when the integrated strain database contains two different strain classes
s1, s2 ∈ S which are both subsets of the same real-world strainŝ ∈ Ŝ. We say that such
equivalence classess1 ands2 arefalse negatives, because the integrated strain database has
failed to recognize that both classes deal with the same real-world entity. False negative
equivalence classes may result from the fact that the records that support those classes do
not share enough common unique labels. Otherwise, the equivalence classes would have
been merged due to the calculation of the transitive closureduring the execution of the pro-
cedureIncrementEquivalence. As an example, the observation that the equivalence
classes shown in Table 2.3 share the ambiguous labelHD-1 (which is not taken into ac-
count for merging strain classes in theIncrementEquivalence procedure), together
with the additional knowledge that their corresponding strains are identified to belong to the
same species, might provide sufficient evidence to a specialist in the domain to conclude
that in this case we are dealing with false negative strain classes. To resolve the detection
of this kind of false negatives, the necessary tools have been implemented in the integrated
strain database to support manual merges of equivalence classes. Remark however that
there is also some chance that the false negative equivalences of the example will be auto-
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SID species name synonym labels

20126 Bacillus thuringiensis ATCC 39756, CMCC 1615, HD-1
41574 Bacillus thuringiensis ATCC 33679, CCRC 14616, CECT 4454, Dulmadge HD-1, HD-1

KCTC 1507, NRRL B-3792, NCAIM B.01262, MKBT B-0044
62385 Bacillus thuringiensis DSM 6102, HD-1

Table 2.3: Example of the occurrence of false negative strain classes in the integrated strain
database.

matically resolved, in case the missing unique synonymy evidence is provided by a record
that is processed at some future point in time.

On the contrary, due to typographical mistakes or transcription errors the equational
theory might decide that two labels which belong to the same record are synonyms, even
though they may not represent the same strain in the real-world. As a result, some strain
classes in the integrated strain database might be composedof two or more true equivalence
classes, whereby the labels of several true strains have illegitimately been merged into
the same equivalence class caused by the calculation of the transitive closure. A strain
classs ∈ S is said to containfalse positiveequivalences, if at least two different strains
ŝ1, ŝ2 ∈ Ŝ exist in the real-world wherefores ∩ ŝ1 6= ∅ ands ∩ ŝ2 6= ∅. In the rest of this
subsection we will focus on a strategy we have developed for the detection and correction
of this kind of false positive strain classes in the integrated strain database. After all, the
properties of a strain that are collected using incorrectlymerged synonym information,
might be incorrectly joined together as well.

A systematic way to check the semantic accuracy when severaldata sources are avail-
able, is to compare and verify the information related to thesame entity provided by the
different resources [53]. In order to explain how this idea was implemented in the inte-
grated strain database, we first need to introduce the concept and construction of synonym
cross-reference matrices. For a given strain classs ∈ S, we defineRs as the subset of
records inR that contains all evidence that was found for the synonym labels of the strain
s, so that we have that

Rs = {r ∈ R |Sr = s} ≡ {r1, r2, . . . , rm} , (2.8)

where we have introduced the short notationm ≡ |Rs| for the number of records that are
contributing evidence for the synonym labels of the strains. As an example, Table 2.1 lists
all the records we have found with evidence for the synonym labels of theBacillus cereus
type strain. Generally, the synonym label evidence for a strain s thus exists ofm sets of
labels























r1 = {l11, l12, . . . , l1|r1|
}

r2 = {l21, l22, . . . , l2|r2|
}

...
rm = {lm1 , lm2 , . . . , lm|rm|} ,

(2.9)

which are integrated by means of theIncrementEquivalence procedure into a set of
culturesCs, which collectively constitute the strains. The setCs can thus be constructed as

Cs =
m
⋃

i=1

|ri|
⋃

j=1

culture.find(lij,s) ≡ {c1, c2, . . . , cn} , (2.10)



54 CHAPTER 2. INTEGRATED STRAIN DATABASE

where we have introduced another short notation,n ≡ |Cs|, for the number of culture
classes that form the subdivisions of the strains. Accordingly, we can define thesynonym
cross-reference matrixof the strains as the (m × n) binary matrix(bij)

j=1,...,n
i=1,...,m , with ele-

ments defined in the following way

bij =

{

0 ⇔ culture.find(lik,s) 6= cj , for all 1 ≤ k ≤ |ri|
1 otherwise .

(2.11)

As such, the boolean valuebij expresses whether or not the recordri contains a label that
is mapped to the culturecj in the integrated strain database. Figure 2.1 shows the graphical
representation of an example synonym cross-reference matrix for the Bacillus cereustype
strain. Hereby, we have annotated the rows of the synonym cross-reference matrix that are
extracted from an online catalogue of a culture collection with the label assigned to the
catalogue record (and thus to the culture stored and distributed by that culture collection),
together with the identification of the strain as mentioned in the catalogue. Rows that
correspond with records taken from the Bacterial Nomenclature Up-to-date [73] data source
are marked with the descriptortaxa (DSMZ), followed by the name of the taxon as
indicated in the data source record. It should be noticed that for this case, all instances have
uniformly identified the strain asBacillus cereus. This completely follows the expectations,
because the example is dealing with a type strain, which is bydefinition the name-bearer
of the species it belongs to. Each column of a synonym cross-reference matrix corresponds
with a culture ofCs, and is consequently tagged in Figure 2.1 with the most representative
label for the culture as determined within the integrated strain database. In the graphical
representation of the synonym cross-reference matrices, we have indicated 1-valued matrix
elementsbij with colored boxes, while positions of the matrix elements that equal to zero
are left blanc. Self-references, i.e. 1-valued matrix elements for which the row label of the
catalogue record is also a label of the culture of the corresponding column of the matrix,
are represented by means of a green box, whereas the other cross-references are marked
with a black box.

In this respect, synonym cross-reference matrices describe the presence or absence of
the pairwise cross-references that constitute the equational theory of synonym labels in an
easy-to-interpret manner. One can easily derive from a glancing inspection of the cross-
reference tables that the list of synonym strain labels is far from complete in most data
sources, which explains the urge to calculate the transitive closure of the partial equiva-
lences gathered from different data sources. This presence/absence can even be quantified
for a given strains using the synonym cross-reference matrices in the following way. For
a given recordri of the strain, the value1

m

∑m
j=1 bij summed over all columns of the cor-

responding row in the cross-reference matrix, expresses the completeness of the synonyms
mentioned in the record, in comparison with all known synonym labels of the strain in the
integrated strain database. Alternatively, the dual value1

n

∑n
i=1 bij summed over all rows

of thej-th column in the cross-reference matrix, gives an estimation of the presence of any
label of the corresponding culturecj as a synonym in the inspected data sources. These
values have been calculated for all rows and columns in the graphical representation of
the synonym cross-reference matrix of theBacillus cereustype strain. From this example
we can easily find out that the labelATCC 14579T has been referenced by all inspected
records of theBacillus cereustype strain, whereas theATCC culture collection (see Table
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Figure 2.1: Synonym cross-reference matrix for theBacillus cereustype strain.

2.6) record itself only mentions 14.7% of the synonyms knownby the integrated strain
database. On the other hand, theCECT culture collection (see Table 2.6) has managed to
include 64.7% of all known labels assigned to theBacillus cereustype strain in the cata-
logue entry of its proper cultureCECT 148T (which is the best result of allBacillus cereus
type strain records processed), while theCECT 148T label itself only occurs in 40% of the
Bacillus cereustype strain records of the scanned data sources. Also note the difference in
the synonym information content provided by the records labelledCECT 148T andCECT
5050T, notwithstanding the fact that both records represent different cultures of the same
strain distributed by the same culture collection.

The completeness of the evidence found for the synonym labels of a given strains within
all records of the inspected data sources, can be quantified as

ωs =
1

mn

m
∑

i=1

n
∑

j=1

bij . (2.12)

From the synonym cross-reference matrix of theBacillus cereustype strain it becomes
however immediatly evident that this value may show a slightunderestimation of the com-
pleteness, due to the fact that the equational theory has forexample missed the syntactical
equivalence of the labels971, Gibson andGibson 971 as being labels assigned to the
same culture. This situation occurs more often for ambiguous labels than for unique labels,
so that a more reliable estimation of the completeness of synonym evidence can be made if
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we restrict the calculation ofωs to the unique labels

ωu
s =

1

|Rs| |U(s)|
∑

r∈Rs

|U(r)| , (2.13)

where the superscriptu indicates the limitation of the scope to the unique labels.U(s)
denotes the subset of unique labels of the strains in formula (2.13), whileU(r) denotes
the subset of unique labels of the recordr. For theBacillus cereustype strain example
we find thatωu

s = 192
20×26

≈ 0.37, which means that for this case only 37% of the pairwise
synonym equivalences that are generated by the calculationof the transitive closure are di-
rectly retrieved from the inspected data sources. In section 2.4 we will demonstrate that the
synonym completeness is generally low to moderate for all strains. Strain classes for which
the completenesswu

s falls below an emperically determined threshold, could be suspected
of containing inconsistencies. After all, when strain classes are illegitimately merged in
the integrated strain database due to erroneous synonym information in the data sources,
one may expect that the total amount of correctly paired synonyms retrieved from the data
sources far outweighs the number of incorrect pairs. Hence,the transitive closure will re-
sult in a steep drop of the amount of evidence found for the merged equivalence classes,
with respect to the evidence found for the correctly splitted equivalence classes.

With the quantifierwu
s for the completeness of the synonym evidence found for a strain

class, we have discovered a first indicator that can be deployed for the detection of internal
inconsistencies within the strain classes of the integrated strain database. Table 2.4 depicts
and excerpt of the records inRs of an example strain class in the integrated strain database,
with an evidence completenesswu

s = 454
45×96

≈ 0.1051. The completeness value for this
strain class is extremely low, so that we might assume here that some of the underlying
data sources could be disseminating erroneous synonym information, which has possibly
driven the integration process into the creation of many more false positive equivalences
within the strain class. From the contextual information wehave included into Table 2.4, it
is indeed not difficult to derive that theIncrementEquivalence procedure has prob-
ably illegitimately merged the synonym labels of three differentStreptomycesspp. type
strains into a single equivalence class. With this in mind, strain classes with mixed taxo-
nomic identifications in their corresponding data sources have also been regarded as po-
tential intruders of the equivalence relation of label synonyms. This is a good example of
how meta-data might be applied for spotting errors within the integrated strain database.
Note however that for a given strain class, variation in the taxonomic naming between data
sources does not neccesarily reflect the presence of errors in the integrated strain database,
but might simply be a consequence of differences in taxonomic opinion, such as the use
of synonym names for the same taxon or the application of alternative methodologies and
insights for the identification of microorganisms. Where thecompleteness qualifierwu

s

might fail to detect inconsistencies within the union of strain classes with different sizes,
and the detection of mixed species classes is vulnerable fordifferent opinions reflected in
the contextual information and is unable to point out the merge of strains that belong to the
same species (which we know from our experience is not all that rare), an alternative in-
dicator that has been succesfully implemented for the detection of inconsistencies in strain
classes of the integrated strain database, searches for non-overlapping records of the same
data source that are linked to the same strain class. For these records, the evidence for
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merging the strain classes has not been directly found within the data source at hand. The
strain class shown in Table 2.4 abounds of non-overlapping records. For example none
of the records corresponding with the catalogue entriesATCC 3320T, ATCC 10745T or
ATCC 19762T has any label in common. Note that also in this case the presence of non-
overlapping records from the same data source related to thesame strain class, should not
automatically reflect errors in strain class itself, but might be due to the shortcoming of a
data source to include the expected internal synonym references between its own records.

Linkage of the integrated strain database with external data sources that provide addi-
tional strain information (calledperipheral databasesfor short in the context of this chap-
ter), does not only allow a better management of the peripheral data sources and leads to
the direct advantage of enabling more advanced and accuratequeries, but also opens up ad-
ditional ways of performing error detection in the integrated strain database. In section 2.5
we will demonstrate how the settlement of uniform cross-references may enable advanced
queries that bridge over the borders of both the integrated strain database that is discussed in
the context of this chapter and the public International Nucleotide Sequence Database [40].
As a result, one can easily collect all 16S rRNA sequences for agiven strain and calculate
the homogeneity amongst these sequences, which should presumably be highly similar.
Strain classes for which the compared sequences turn out to be too heterogeneous could
accordingly be checked on the correctness of their synonym labels in the integrated strain
database. There could however be a number of other reasons that cause the heterogeneity
amongst the sequences linked to the same strain class, such as poor quality of some of the
sequences or mistakes made in the cross-references betweenthe integrated strain database
and the sequence database, e.g. due to typographic errors inthe strain label mentioned in
the sequence database. Detection of these other kind of inconsistencies could have value in
its own right, but is left out of the scope of this chapter.

Having summed up a series of indicators for the discovery of possible inconsistencies
in the equivalence classes of the integrated strain database, it is still not always trivial to
confirm whether or not a mistake was made during the construction of some strain classes,
or to point out where the exact mistakes were made in the data sources, which caused the
illegitimate merge of strain classes such as the one shown inTable 2.4. This latter infor-
mation is necessary in order to enable the correct split of erroneously merged strain classes
in their true composing strain classes. In the integrated strain database we have therefore
implemented an error detection/correction strategy that builds on top of the synonym cross-
references matrices that were discussed before. After construction of the cross-reference
matrix of a strain class that is suspected of containing false positive equivalence infor-
mation, the error detection/correction strategy uses the transversal grouping (or two-way
joining) technique [35] for the simultaneous partitioningof both the binary row and col-
umn vectors of the matrix. In this way, data source records are clustered according to
their synonym information content, whereas at the same timethe different cultures that
compose the strain class are grouped according to their occurrences in the inspected data
sources. Alternative partitioning methods for the classification of binary vectors can be em-
bedded as options of the error detection/correction strategy, such as hierarchical clustering
algorithms [3, 67] in combination with manual or automated selection of an optimalα-cut
[22, 33], or non-hierarchical methods such ask-means clustering [3, 35] or classification
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record ID species name synonym labels

ATCC 3320T Streptomyces flavovirens IMRU 3320; ATCC 19758; CBS 129.20; CBS 496.68; IFO 12771; ISP 5062;
PSA 217; RIA 1038

ATCC 10745T Streptomyces fradiae CBS 498.68; ETH 13472; IFO 3718; IFO 12773; IMI 61202; KCC S-0133;
NCIB 8233; NRRL B-1195; PSA 61; PSA 156; RIA 1040

ATCC 19760T Streptomyces fradiae ISP 5063
ATCC 19762T Streptomyces griseobrunneus ISP 5066; CBS 500.68; ETH 31437; IFO 12775; IMRU 3068; KCC S-0380;

RIA 1042
CBS 129.20T Streptomyces flavovirens CBS 189.75; CBS 496.68; CBS 279.30; ISP 5062; ATCC 3320; ATCC 19758;

IMRU 3320; IFO 3716; IFO 3197; IFO 3412; IFO 12771; ETH 10248;
ETH 24134; ETH 31593; DSM 40062; RIA 635; RIA 1038

CBS 189.75T Streptomyces flavovirens ATCC 3320; ATCC 19758; ISP 5062; IMRU 3320; CBS 496.68; CBS 279.30;
CBS 129.20; IFO 3197; IFO 3412; IFO 3716; IFO 12771; ETH 10248;
ETH 24134; ETH 31593; DSM 40062; RIA 635; RIA 1038

CBS 498.68T Streptomyces fradiae ISP 5063; IMI 61202; ATCC 10745; ATCC 19760; IFO 3439; IFO 3718;
IFO 12773; IMRU 3535; NRRL B-1195; ETH 13363; ETH 13472; DSM 40063;
RIA 97; RIA 1040; CBS 414.54

CBS 500.68T Streptomyces griseobrunneus ISP 5066; ATCC 19762; IFO 12775; ETH 31581; IMRU 3068; DSM 40066;
RIA 1042; KCC S-0380

CCM 3174T Streptomyces fradiae ATCC 10745
CCM 3243T Streptomyces flavovirens ATCC 3320
CCUG 11105T Streptomyces griseobrunneus ISP 5066; HJ Kutzner; ATCC 19762; DSM 40066; CBS 500.68; ETH 31437;

IFO 12775
CECT 3197T Streptomyces fradiae ATCC 10745; ATCC 19760; Boots FD276; CBS 414.54; CBS 498.68; CCM 3174;

CCRC 12196; CCTM La 2925; DSM 40063; ETH 13363; ETH 13472; HMGB B923;
HUT 6095; IAM 0083; IFO 3439; IFO 3718; IFO 12773; IMET 42051; IMI 61202;
IMRU 3535; ISP 5063; JCM 4133; JCM 4579; KCC S-0133; KCC S-0579;

DSM 40062T Streptomyces flavovirens ATCC 19758; ATCC 3320; CBS 129.20; CBS 496.68; IFO 12771; IFO 3412;
IMRU 3320; ISP 5062; KCC S-0035; RIA 1038

DSM 40063T Streptomyces fradiae ATCC 10745; ATCC 19760; CBS 498.68; IFO 12773; IMRU 3535; ISP 5063;
JCM 4133; JCM 4579; NCIB 8233; NRRL B-1195; RIA 1040; ETH 13363;
ETH 13472; ETH 28510

DSM 40066T Streptomyces griseobrunneus ATCC 19762; CBS 500.68; CBS 500.68; IFO 12775; IMRU 3068; ISP 5066;
JCM 4380; RIA 1042; ETH 31437; ETH 31581

DSM 46372T Streptomyces fradiae CCM 3174; HMGB B 922; IFO 3439; IMET 40283; LBG A 3013; NCIB 8233;
NRRL B-1195; ETH 13363

IFO 3197T Streptomyces flavovirens
IFO 3412T Streptomyces flavovirens ATCC 3320; IAM W5-7
IFO 3439T Streptomyces fradiae NRRL B-1195
IFO 3716T Streptomyces flavovirens ATCC 3320
IFO 12174T Streptomyces fradiae OUT 8322; RIA 97
IFO 12771T Streptomyces flavovirens ATCC 19758; ATCC 3320; CBS 129.20; CBS 496.68; RIA 1038
IFO 12773T Streptomyces fradiae ATCC 10745; ATCC 19760; CBS 498.68; IFO 3718; RIA 1040
IFO 12775T Streptomyces griseobrunneus ATCC 19762; CBS 500.68; RIA 1042
IMI 061202T Streptomyces fradiae ATCC 10745
JCM 4035T Streptomyces flavovirens AS 4.575; ATCC 19758; ATCC 3320; CBS 129.20; CBS 279.30; CBS 496.68;

CCM 3243; CCRC 13689; DSM 40062; HUT 6019; HUT 6053; IFO 12771; IFO 3197;
IFO 3412; IFO 3716; IMET 40280; ISP 5062; NRRL B-1329; NRRL B-2685;
RIA 1038; RIA 635; VKM Ac-1723

JCM 4133T Streptomyces fradiae ATCC 10745; ATCC 19760; CBS 498.68; CCM 3174; CCRC 12196; DSM 40063;
HUT 6095; IFM 1030; IFO 12773; IFO 3439; IFO 3718; IMET 42051; IMI 061202;
ISP 5063; JCM 4579; NCIMB 11005; NCIMB 8233; NRRL B-1195; PCM 2330;
RIA 1040; RIA 97; VKM Ac-150; VKM Ac-151; V

JCM 4380T Streptomyces griseobrunneus ATCC 19762; CBS 500.68; CCRC 13674; CCUG 11105; DSM 40066; IFO 12775;
IMET 42052; ISP 5066; NCIMB 12975; NRRL B-2095; RIA 1042; VKM Ac-753

JCM 4578T Streptomyces flavovirens AS 4.575; ATCC 19758; ATCC 3320; CBS 129.20; CBS 279.30; CBS 496.68;
CCM 3243; CCRC 13689; DSM 40062; HUT 6019; HUT 6053; IFO 12771; IFO 3197;
IFO 3412; IFO 3716; IMET 40280; ISP 5062; NRRL B-1329; NRRL B-2685;
RIA 1038; RIA 635; VKM Ac-1723

JCM 4579T Streptomyces fradiae ATCC 10745; ATCC 19760; CBS 498.68; CCM 3174; CCRC 12196; DSM 40063;
HUT 6095; IFM 1030; IFO 12773; IFO 3439; IFO 3718; IMET 42051;
IMI 061202; ISP 5063; JCM 4133; NCIMB 11005; NCIMB 8233; NRRL B-1195;
PCM 2330; RIA 1040; RIA 97; VKM Ac-150; VKM Ac-151; V

LMG 19371T Streptomyces fradiae ATCC 10745; ATCC 19760; CBS 498.68; CCM 3174; CCRC 12196; DSM 40063;
HUT 6095; IFM 1030; IFO 12773; IFO 3439; IFO 3718; IMET 42051; IMI 061202;
ISP 5063; JCM 4133; JCM 4579; KCC S-0133; KCC S-0579; Lanoot R-8739;
NCIMB 11005; NCIMB 8233; NRRL B-1195; PCM 2330; VKM Ac-152; VKM Ac

NCIMB 8233T Streptomyces fradiae ATCC10745; ATCC19760; CBS498.68; CCM3174; CMI61202; DSM40063; DSM46372;
ETH13472; HUT6095; IAM0083; IFO3439; IFO3718; IFO12773; IMET42051;
IMRU3535; ISP5063; JCM4133; JCM4579; KCCS- 0133; KCCS-0579; NCIMB11005;
NRRL B-1195; RIA97; RIA 1040

NCIMB 12975T Streptomyces griseobrunneus ATCC19762; CBS500.68; DSM40066; HMGBB930; IFO12775; IMET42052; IMRU3068;
ISP5066; JCM4380; KCCS-0380; RIA1042

R-8739T Streptomyces fradiae LMG 19371; JCM4579
VKM Ac-1723T Streptomyces flavovirens ISP 5062; RIA 1038; ATCC 3320; ATCC 19758; CBS 129.20; CBS 496.68;

CBS 189.75; DSM 40062; IFO 3412; IFO 3716; IFO 12771; JCM 4035; JCM 4578
VKM Ac-150T Streptomyces fradiae ISP 5063; VKM Ac-151; VKM Ac 152; VKM Ac 764; RIA 1040; ATCC 10745;

ATCC 19760; CBS 498.68; DSM 40063; IFO 3718; IFO 12773; NCIMB 8233;
JCM 4133; JCM 4579

Table 2.4: Example strain class that demonstrates the presence of anomalies in the syn-
onymy evidence collected from different heterogeneous data sources.
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based on the minimization of stochastic complexity [32]. Whatever classification method
chosen for grouping the binary vectors, after transversal clustering it should be relatively
straightforward to delineate subgroups of corresponding rows and columns in the matrix.
These subgroups then correspond with the different strainsthat were merged together into
the same strain class, whereas the outliers of the subgroupsindicate the exact location and
nature of the errors made in the data source records. Note however that irrespective of the
level of automation built into the above error detection/correction strategy, our experience
learns that manual inspection of the end result is primordial for a decent correction of the
errors. An error detection/correction strategy that is solely based on the information in
the synonym cross-references tables might not be sufficiently armed to completely unravel
the ins and outs of some of the more difficult inconsistenciesdetected in strain classes of
the integrated strain database, e.g. in cases where the sameoriginal error has been prop-
agated over several data sources due to the manual copying ofthe synonym information
between data sources. For these complicated cases, the moretime-consuming process of
integrating the fragmentary strain history [16] has provento be a suitable alternative for
correctly resolving the errors made in the data sources. Howthese completely integrated
strain histories are assembled is further discussed in moredetail in subsection 2.3.2.

Figure 2.2 shows a graphical representation of the end-result after performing the previ-
ously discussed error detection/correction strategy for resolution of the inconsistencies in
the example strain class of Table 2.4. Horizontal and vertical classification was performed
using the unweighted pair-group method using arithmetic averages (UPGMA) hierarchi-
cal clustering method [67] working upon intermediate pairwise Dice similarity matrices
[20] for both the binary row and column vectors of the synonymcross-reference matrix
constructed for the strain class. Manual delineation of thedifferent subclasses was then
a formality for this example. The transversal clustering indeed points out that three dif-
ferent strains were illegitimately joined together into this strain class, which is completely
in agreement with our previous prediction based on the species names assigned to the dif-
ferent data source records. The detected outliers which reflect putative incorrect synonym
references, are indicated using red colored boxes in the graphical representation of the syn-
onym cross-references matrix. From these outlying boxes one can logically deduce that the
catalogue entry of the culture with labelDSM 40066T makes reference toCBS 498.68
as a synonym label, whereas other data sources more convincingly suggest that the correct
synonym should beCBS 500.68. Similarly, the catalogue entryNCIMB 8233T should
probably refer toRIA 1040 as a synonym label, instead of making reference to the label
RIA 1038. With the necessary tools built into the integrated strain database, we could
finally split the inconsistent strain class in its semantically correct subclasses which corre-
spond with the type strains ofStreptomyces flavovirens, S. fradiaeandS. griseobrunneus.
Remark also that due to this split action, the evidence completenesswu

s of the strain classes
substantially increases to respectively122

14×33
≈ 0.2641 for the S. flavovirenstype strain,

251
21×46

≈ 0.2598 for the S. fradiaetype strain and 77
10×17

≈ 0.4529 for the S. griseobrun-
neustype strain, and that no classes with mixed species naming are left over after the split
procedure.

To conclude with, not only the completeness of the integrated strain database will benefit
from the incorporation of as many data sources as possible, but also the data cross-checking
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power of the previously discussed error detection/correction strategy will significantly im-
prove if more pieces of overlapping evidence become available. The current restricted
scope of the integrated strain database caused by the limitation of merely processing only
bacterial data sources, precludes that erroneous cross-references between labels of strains
of bacteria, fungi and yeasts can be detected or corrected. However, these errors have
already infected the integrated strain database because some data sources provide mixed
synonym information on labels of all these different kinds of microorganisms. Monge and
Elkan [56] claim that for most duplicate detection problemsa small number of false pos-
itives and false negatives can be tolerated. They also estimate that in most heterogeneous
database systems there are only a few number of errors, so that the equivalence relations
found by a performant deduplication algorithm will be a goodapproximation of the true
semantic equivalence classes. By application of the error detection/correction strategies
outlined in this section for scanning the correctness of theequivalence classes of the inte-
grated strain database, the results of the data quality assessment made in the next section
will clearly demonstrate that the amount of errors made in the microbial data sources cannot
be neglected during the construction of solid information systems.

2.3.2 Integrated strain history

The information captured within the synonym cross-reference matrices alone may not be
sufficient to completely unravel the ins and outs of the more complex inconsistencies within
the integrated strain database. As an alternative approachfor error detection and correction
of synonym equivalences, integration of the fragmented strain history information into a
complete history tree has proven to be a very clarifying toolfor resolving most of the
more complicated cases. In this subsection we will discuss some of the efforts required
for the automatic construction of complete strain history trees and illustrate their error
detection capabilities through one of the striking examples encountered during curation of
the integrated strain database.

Culture collection catalogues record the strain history information within a field called
History of Deposit according to the CABRI standard [9], which should describe
the history of the cultured sample from its deposit into the collection up to the initial point
of isolation. All deposit history information for a given strain can then be easily extracted
from the online data sources linked to the corresponding strain class in the integrated strain
database. As an example, Table 2.5 shows the history information for theBacillus cereus
type strain as it can be found in the catalogues of a number of culture collections. This table
clearly demonstrates that the different data sources have adopted different formats for en-
coding the strain history information, due to the fact that the CABRI standard does not give
a formal prescription of formatting the content of theHistory of Deposit field. As
a consequence, it is a daunting task for software agents to process the history information
in a fully automated way. Nevertheless, the history information of theBacillus cereustype
strain in Table 2.5 contains quite some duplication, what makes that after standardization
and normalization of the data, the complete strain history tree of theBacillus cereustype
strain can be represented in a more informative way, as is shown in Figure 2.3. These kind
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Source Catalog entry Species name History

ATCC ATCC 14579T Bacillus cereus ATCC<<–RE Gordon<<–T. Gibson 971<<— W. Ford 13
CABRI CIP 66.24T Bacillus cereus ATCC 1966< R.E. Gordon: strain NRRL B-3711

< T. Gibson:strain 971< W.W. Ford: strain 13
CABRI DSM 31T Bacillus cereus <- ATCC <- R.E. Gordon<- T. Gibson, 971<- W.W. Ford, 13
CABRI LMD 75.8T Bacillus cereus LMD < Jun 1975, ATCC< R.E. Gordon< T. Gibson< W. Ford
CABRI LMG 6923T Bacillus cereus <- 1985, DSM<- ATCC <- R.Gordon<- T.Gibson<- W.Ford
CABRI NCIMB 9373T Bacillus cereus T.Gibson – W.W.Ford
CCM CCM 2010T Bacillus cereus R.E. Gordon<- T. Gibson<- W.W. Ford
CCRC CCRC 10603T Bacillus cereus 10603<< ATCC << R. E. Gordon<< T. Gibson 971<< W. Ford 13
CCRC CCRC 11026T Bacillus cereus 11026<< IAM
CCUG CCUG 7414T Bacillus cereus M.Kocur,CCM,Brno,Czechoslovakia 10 Aug 1978

<R.E.Gordon,IMRU<T.Gibson<W.W.Ford
CECT CECT 148T Bacillus cereus CECT, 1974< NCTC, 1963< T. Gibson< W.W. Ford.
CECT CECT 5050T Bacillus cereus CECT, 1992< DSMZ < ATCC < R.E. Gordon< T. Gibson

< W.W. Ford.
CIP CIP 66.24T Bacillus cereus 1966, ATCC<– R.E. Gordon: strain NRRL B-3711

<– T. Gibson: strain 971<– W.W. Ford: strain 13
DSM DSM 31T Bacillus cereus <- ATCC <- R.E. Gordon<- T. Gibson, 971<- W.W. Ford, 13
IFO IFO 15305T Bacillus cereus 1992. JCM 2152<== IAM 12605<== NCIB 9373

<== R.E. Gordon
JCM JCM 2152T Bacillus cereus <– IAM 12605<– NCIB 9373<– R. E. Gordon
KCTC KCTC 3624T Bacillus cereus <- IFO <- JCM<- IAM <- NCIB <- R.E. Gordon
LMG LMG 6923T Bacillus cereus <- 1985, DSM<- ATCC <- R.Gordon<- T.Gibson<- W.Ford
UKNCC NCIMB 9373T Bacillus cereus T.Gibson – W.W.Ford

Table 2.5: Strain history information of theBacillus cereustype strain, as it was found in
different catalogues of culture collections that are available online.

of graphs can be flexibly drawn with assistance of thedot software package [46]. In this
graphical representation of the completely integrated strain history tree, the orange boxes
represent cultures of theBacillus cereustype strain as they are stored in different culture
collections or private research collections. These boxes are labeled with the strain number
assigned by the collection holder. The role of culture equivalence classes for the represen-
tation of syntactical variation in the spelling of labels isclearly visible in Figure 2.3, where
the labels13 andFord 13 form a single culture node in the history tree.Idem ditofor
the labels971, Gibson andGibson 971. If the collection holder additionally provides
some identification of the cultured sample, the identification is shown in the bottom half
of the orange box. Deposit of a culture from one collection into another is represented
by an arrow linking the corresponding boxes, and annotated with the information known
about this deposition (date of deposit, depositor name, depositor institute,. . . ). Labels from
theBacillus cereustype strain equivalence class that have an unknown positionwithin the
completely integrated strain history tree, were lumped into a single blue box in the upper
left corner of Figure 2.3. More examples can be found in Appendix A, which contains the
completely integrated strain history of allEnterococcusspp. type strains.

According to the synonym label equivalences found for theEnterococcus gallinarum
type strain in different online culture collection catalogs, all strain numbers mentioned in
the graphical representation of the complete strain history in Figure 2.4 constitute a sin-
gle equivalence class. However, several catalog entries (NCTC 11428, ATCC 35038,
LMG 11207) contain some direct or indirect evidence that the corresponding cultures
should possibly be identified asEnterococcus faecalis. Within the history tree, one could
interprete this as a putative contamination of the completebranch rooted at the node la-
beled NCTC 11428 (or any higher node). The nodes of this affected branch are coloured
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light gray in the complete tree representation of Figure 2.4. A polyphasic identification
based on the analysis of fatty acid composition, sodium dodecyl sulphate (SDS) polyacry-
lamide gel electrophoresis (PAGE), fluorescent amplified fragment length polymorphism
(fAFLP) gel electrophoresis, and the complete DNA sequences of the atpA, pheS and rpoA
genes provides enough evidence that at least the cultureLMG 11207 harboured in the
BCCMTM/LMG Bacteria Collection indeed belongs to the speciesEnterococcus faecalis.
Comparable emperical information for the other cultures of the defective branch is required
in order to definitively sort out the nature and a possible solution for the anomalies in the
information provided by the different culture collectionsfor this case.

Apart from playing a significant role within the correction of errors in the equivalence
classes of synonym labels, integrated strain history knowledge also is an important pre-
requisite for tracking and tracing the tranfer of microbialgenetic resources (MGRs), in
light of monitoring intellectual property right issues when identifying the individuals and
groups that are entitled to be scientifically or financially rewarded for their contribution to
the conservation and sustainable use of the MGRs. This follows the conditions stated in
the Convention on Biological Diversity (Rio de Janeiro, June 5th, 1992).

2.4 Data quality assessment

Microbiologists isolate new strains on a daily basis, and cultures of existing strains are
regularly transferred between instances for a number of different purposes. As such, the
amount of equivalence information about the labels used in the field of microbiology grows
continuously, which turns the problem of learning and maintaining knowledge on the ex-
isting equivalences into an ever ongoing process. In this section we will therefore describe
some of the properties of label equivalences, measured on a single point-in-time snapshot
taken during the lifetime of the information accumulated inthe integrated strain database
I. Nonetheless, this will allow us to draw some general trendsand conclusions.

In order to compose a complete picture of all the existing equivalences concerning the
labels assigned to microorganisms, it is evident that we need to enclose as many sources
of information as possible for the construction of a centralrepository. Table 2.6 lists the
data sources processed by theIncrementEquivalence procedure, at the stage of the
integration process on which the snapshot ofI was taken. The wide range of document
exchange formats currently adopted by the different data sources, forms a major obsta-
cle for automation of the data collection process. Consequently, specific mediating agents
for retrieving all documents provided by the data sources and specific parsers for extract-
ing synonym label records and other relevant information from these documents, needed
to be separately implemented within the integrated strain database for practically every
data provider. Development of and adherence to worldwide accepted document format-
ting standards for exchange of microbial information, suchas MINE [30, 70], CABRI [9],
Darwin Core [15] or ABCD [1], would dramatically simplify this processing step. Some
data sources that originate from the same instance are available online in multiple versions.
For example, theLMG catalogue is both available from the BCCMTM website and from the
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data source acronym URL

American Type Culture Collection ATCC www.atcc.org
Czech Collection of Microorganisms CCM www.sci.muni.cz/ccm
Culture Collection, University of G̈oteborg, Sweden CCUG www.ccug.gu.se
Coleccíon Espãnola de Cultivos Tipo CECT www.cect.org/english/index.htm
Collection de l’Institut Pasteur CIP www.pasteur.fr/externe
Deutsche Sammlung von Mikroorganismen und ZellkulturenDSMZ www.dsmz.de
Institute for Fermentation, Osaka IFO www.ifo.or.jp/index e.html
Japan Collection of Microorganisms JCM www.jcm.riken.go.jp
Korean Collection for Type Cultures KCTC kctc.kribb.re.kr/english
Laboratory of Microbiology, Ghent LMG www.belspo.be/bccm/lmg.htm
Pasteur Culture Collection of Cyanobacteria PCC www.pasteur.fr/recherche/banques/PCC
All-Russian Collection of Microorganisms VKM www.vkm.ru

Common Access to Biological Resources and Information CABRI www.cabri.org
CABRI collects several culture collection catalogs into a uniform online catalogue.

Acronyms of bacterial subcatalogs currently covered within integrated strain database: CBS, CIP, DSMZ, IMI, LMD, LMG, MUCL, NCIMB

United Kingdom National Culture Collection UKNCC www.ukncc.co.uk/index.htm
UKNCC collects several culture collection catalogs into a uniform online catalogue.

Acronyms of subcatalogs currently covered within the integrated strain database: NCIMB, NCPPB, NCTC

Bacterial Nomenclature Up-to-Date (DSMZ) taxa (DSMZ) www.dsmz.de/bactnom/bactname.htm

Table 2.6: Data sources currently contributing to the equivalence relations covered within
the integrated strain database.

CABRI portal, while theNCIMB catalogue is incorporated in both the CABRI and UKNCC
suites, as shown in Table 2.6. Because the information content of different online versions
of the same catalogue is not necessarily identical, we have treated each version as a sep-
arate data source in the discussion here. Additionally, theinformation content of a given
data source is sensitive for changes over time, as new strains or supplementary synonyms
are included. We may however suppose that the information content of each earlier snap-
shot of a data source is a subset of the information content ofany more recent snapshot of
the data source. Hence, we have treated the last processed snapshot of a data source as the
one that provides all the information content of that data source and obsoletes all previous
snapshots. The instance acronyms specified in Table 2.6 are used as a reference for the
data sources in the rest of this chapter, where data sources that are embedded in the CABRI
suite are marked with ac superscript and data sources from the UKNCC suite with au

superscript. Note that the data sources currently processed for the construction of the in-
tegrated strain databaseI primarily contain information on bacterial strains. Data sources
that cover strains of fungi and yeasts are planned to be incorporated for the generation of
future versions of the database.

The current version of the integrated strain database is constructed within an Oracle 8.1.7
database (Oracle corporation, CA, USA) using the Data Warehousing technology [49], and
contains information on|C| = 311410 cultures which cluster together in a total of|S| =
120695 strain classes. For every set of labelsL ⊆ L, we denote the subset that contains
all unique labels ofL asU(L). With ST we denote the subset ofS that corresponds to the
official list of type strains defined in bacterial taxonomy, based on their valid publication
in the International Journal of Systematic and Evolutionary Microbiology. An electronic
version of this list is maintained by the Deutsche Sammlung von Mikroorganismen und
Zellkulturen, and published online under the headings of Bacterial Nomenclature Up-to-
date [73]. This data source has also been included in Table 2.6 as the data source with
acronymtaxa (DSMZ). The average number of unique labels assigned to all strainsin



2.4. DATA QUALITY ASSESSMENT 67

5 10 15 20 25 30
0

250

500

750

1000

1250

1500

60
63

6

14
16

0

 4
67

2

 2
50

3

 1
50

2

unique synonym labels per strain

st
ra

in
 fr

eq
ue

nc
y

Figure 2.5: Histogram of the amount of unique synonym labelsper strain|U(s)| for all
strainss ∈ S.

S is 1.919 (± 2.477), while the average number of unique labels assigned to the type
strains inST is 6.762 (± 6.092). This clearly indicates that in general type strainsare more
wide-spread than other strains, which is logical given their crucial role in the taxonomy
of bacteria. Figure 2.5 shows the histogram of the number of unique synonym labels per
strain |U(s)| for all strainss ∈ S. The contribution of the type strains has been colored
dark gray in this histogram, while a lighter shade of gray wasused for the contribution of
the other strains. The number of unique labels|U(s)| known for a strains ∈ S can be
considered as a measure for the global spread of the strain, hence also for the popularity of
the strain for use in biological applications. With this in mind, Table 2.7 depicts a list of the
most popular strains in the integrated strain database, retrieved as the strainss ∈ S with
|U(s)| ≥ 35. In this table we have chosen one of the synonymous labels of each strain as
the representative label for referencing the strain. Note also that it is common practice in
bacteriology that labels of type strains are annotated witha superscriptT. Table 2.8 presents
the amount of overlap between the microbial organisms deposited in a selection of culture
collections. The diagonal elements of the depicted matrix represent the number of strains
in the integrated strain database that are stored in the corresponding culture collection,
while the non-diagonal elements given the number of strainsthat are harboured in both
collections indicated at the left and bottom of the rows and columns in the matrix. From
the list of popular strains in Table 2.7 and the histogram shown in Figure 2.5 it should be
clear that the set of type strainsST can be regarded as the greatest common divisor of all
bacterial data sources. For the description of some furtherstatistics of the integrated strain
database and its composing data sources, we have therefore restricted the scope to the set of
type strainsST, with a further limitation to the unique labels of these typestrains wherever
this was appropriate.



68 CHAPTER 2. INTEGRATED STRAIN DATABASE

label ofs taxon |U(s)|
LMG 6326T Bacillus coagulans 35
LMG 16798T Bacillus lentus 35
LMG 13550T Lactobacillus acidophilus 36
LMG 8195 Staphylococcus aureussubsp.aureus 36
LMG 7135T Bacillus subtilissubsp.subtilis 36
LMG 5973T Streptomyces griseocarneus 37
LMG 6400T Lactobacillus rhamnosus 38
LMG 8221 Bacillus cereus 39
LMG 6399T Enterococcus hirae 40
LMG 7558 Bacillus licheniformis 41
LMG 4049T Paracoccus denitrificans 41
LMG 4050T Micrococcus luteus 42
LMG 1242T Pseudomonas aeruginosa 42
LMG 5359T Rhodococcus erythropolis 43
LMG 19302T Streptomyces griseussubsp.griseus 44
LMG 19371T Streptomyces fradiae 44
LMG 5968T Streptomyces aureofaciens 44
LMG 13261T Bacillus circulans 45
LMG 8197 Bacillus subtilissubsp.spizizenii 48
LMG 2189T Pseudomonas fluorescens 49
LMG 1284 Lactobacillus plantarum 51
ATCC 8664T Streptomyces lavendulaesubsp.lavendula 52
LMG 8596T Streptomyces rimosussubsp.rimosus 52
LMG 16000T Brevibacillus laterosporus 53
LMG 1673T Gluconobacter oxydanssubsp.suboxydans 56

Table 2.7: List of popular strains, determined as the strains s ∈ S with |U(s)| ≥ 35.

ATCC 19090
CCM 1072 2526
CCUG 2418 815 15148
CECT 1567 366 729 3682
CIP 2667 812 2102 729 7432
DSM 4706 866 1677 1009 2140 11873
IFO 3627 432 516 750 778 2111 11924
JCM 3180 511 932 690 1275 2654 2701 7030
KCTC 2652 350 705 658 853 1712 1543 1615 5191
LMD 316 130 148 119 154 188 118 86 104 1006
LMG 2986 858 2896 870 1875 2231 987 1170 899 269 17369
NCIMB 2665 664 986 794 1299 2100 1108 1259 966 251 1722 7123
NCPPB 378 69 120 84 115 138 44 50 34 10 1414 35 3184
NCTC 1706 450 1266 518 1143 738 324 467 350 120 856 661 31 5030

ATCC CCM CCUG CECT CIP DSM IFO JCM KCTC LMD LMG NCIMB NCPPB NCTC

Table 2.8: Common strain statistics for a selection of culture collections.
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Figure 2.6: Scatterplots of strain completeness versus synonym completeness versus syn-
onym correctness, for all type strains included in the integrated strain database.

For a given data sourced, the subset of records that correspond with a type strain inST

is indicated asdT, thus formally we have that

dT ≡ {r ∈ d | Sr ∈ ST} . (2.14)

The set of strains covered by the data sourced is noted asSd, with

Sd ≡ {Sr ∈ S | r ∈ d} . (2.15)

We use the short notationST
d ≡ Sd ∩ ST, to indicate the set of type strains covered by

the data sourced. For most data sourcesd that were processed for the construction of the
integrated strain databaseI, we have shown the number of records|d|, the number of type
strain records|dT|, and the number of type strains covered|ST

d| in Table 2.9. From this
table it is immediately obvious that different online versions that originate from the same
instance database do not necessarily cover the same information content. A comparison
of the number of type strain records and the number of type strains covered by a given
data source indicates that there is some degree of overlap within data sources, in that some
records refer to the same type strain. Our experience learnsthat the synonym information
is not necessarily the same for overlapping records that belong to the same data source.
This can easily be seen within the cross-reference table shown in Figure 2.1, where the
synonym information provided by the recordsCECT 148T andCECT 5050T is not iden-
tical, although both records are extracted from the same data source and represent different
cultures of the same strain. Moreover, the record that corresponds with labelCECT 148T

fails to refer to its synonym recordCECT 5050T, whereas the reverse synonym equiva-
lence reference is indeed correctly provided by theCECT data source.

With the knowledge accumulated in the integrated strain databaseI, we can make an
evaluation of the completeness and correctness of the information content of the different
data sources. As an estimation of the completeness of the strain information provided by a
given data sourced, we define thetype strain completenessγd as the fraction of type strains
covered by that data source, with respect to the number of type strains covered within the
integrated strain database

γd =
|ST

d|
|ST| . (2.16)
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d |d| |dT| |ST
d| γd σd εd

ATCC 16408 3740 3157 0.584 0.287 0.986
CBSc 1038 503 472 0.087 0.286 0.966
CCM 2214 608 604 0.112 0.402 0.975
CCUG 15401 2045 1722 0.319 0.358 0.980
CECT 3578 665 653 0.121 0.617 0.973
CIP 7181 2122 2090 0.387 0.439 0.978
CIPc 7038 1989 1962 0.363 0.433 0.978
DSMZ 11378 3885 3826 0.708 0.381 0.986
DSMZc 8067 3378 3327 0.616 0.349 0.984
IFO 11834 1496 1439 0.266 0.271 0.980
JCM 7123 2369 2132 0.394 0.779 0.971
KCTC 5465 1445 1262 0.233 0.491 0.950
LMDc 1016 147 122 0.023 0.221 0.932
LMG 14780 2136 1852 0.343 0.554 0.973
LMGc 11912 1510 1439 0.266 0.543 0.973
NCIMBc 6921 1555 1508 0.279 0.362 0.960
NCIMBu 14051 2975 1481 0.274 0.395 0.959
NCPPBu 3113 126 126 0.023 0.171 0.967
NCTCu 4934 732 706 0.131 0.210 0.985
VKM 2196 917 903 0.167 0.443 0.955

taxa (DSMZ) 8014 6475 5405 1.000 0.287 0.985

Table 2.9: Completeness and correctness statistics for somedata sources that were incor-
porated during the construction of the integrated strain databaseI. Data sources marked
with c are subsections of the CABRI suite, while data sources marked with u are part of the
UKNCC suite.
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Alternatively, we define thesynonym completenessσd of the data sourced as a comparison
between the number of unique synonym labels for type strainsprovided by the data source,
and all unique synonym labels for type strains known in the integrated strain databaseI, in
the following way

σd =

∑

r∈dT |U(r)|
∑

r∈dT |U(r̄)| . (2.17)

Herein, thecompletion̄r of a recordr represents the set of all synonym labels known within
the integrated strain databaseI for the strain that corresponds with that record, thus

r̄ = {l ∈ L | Sl = Sr} . (2.18)

The type strain completeness and synonym completeness values calculated for the data
sources mentioned in Table 2.9, clearly demonstrate that ingeneral the equivalence infor-
mation provided by the different data sources is only partial in comparison with the infor-
mation content covered within the integrated strain database, both in respect to the number
of incorporated strains and the number of synonym labels known for each strain. Only
two culture collections house over half of the validly described type strains, beingDSMZ
with 71% of the type strains andATCC with 58% of the type strains. On the other hand,
Table 2.9 also indicates that only three culture collections manage to disseminate over half
of the unique labels known by the integrated strain database, beingJCM with 78%,CECT
with 62% andLMG with 55%. Data sources that have a high score for type strain com-
pleteness, generally score worse for synonym completeness, and vice versa, as can be seen
from the left scatterplot in Figure 2.6. To conclude with, nosingle culture collection har-
bours cultures of all type strains, and all data sources score only moderately or low for the
completeness of the synonym labels they mention of the strains they cover. These obser-
vations confirm the need for a central repository that maintains updated information for all
synonym labels known of all strains used in microbiology.

If we denote byd† the subset of records of a given data sourced wherein at least one
inconsistency was detected by the error detection/correction strategy discussed in section
2.3, then thesynonym correctnessεd of a data sourced can be measured as

εd = 1 − |d†T|
|dT| . (2.19)

Note that in this definition we have used the abbreviated notation d†T for d† ∩ dT. We have
again worked on the limited scope of the type strain records for the calculation of the cor-
rectness statistic. We could safely do this without losing the generality of this statistic,
because 55% of the strains that were affected by the inconsistencies we have detected were
type strains. The synonym correctness values calculated for the different data sources in
Table 2.9 indicate that the amount of errors made in each datasource is relatively low, as
the total number of affected type strain records ranges from1.4% to 6.8% for the inspected
data sources. However, the fact that a single error against the pairwise definition of se-
mantic equivalence may cause a cascade of other equivalenceerrors, is a known property
of the transitive closure algorithm that was used to enforcetransitivity on the partially de-
fined equivalence relation in section 2.2.2. This phenomenon is known as the ’garbage
in, more garbage out’-effect caused by the transitive closure. As a result, a total of 614
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type strain equivalence classes — 11.4% of the currently described type strains — would
have been affected by the inconsistencies present in the originating data sources, without
the implementation of an error detection/correction strategy such as the one described in
section 2.3. This huge amount of errors would be unacceptable for a central repository
that envisions both completeness and correctness of the information it disseminates, and
it stresses the importance of all the efforts put into the detection and correction of errors
during the construction process of the integrated strain database.

Because each of the data sources still autonomously functions as an independent infor-
mation provider, and synonym information is frequently copied manually from one data
source into another, the detected errors should preferablybe corrected in these primary
sources of information. With this in mind, the errors that were detected and corrected
in the integrated strain databaseI can be regularly sent as feedback information to the
database managers of the orginating data sources. After all, the very nature of synonymy
in strain labels implies that a strategy for the detection and correction of errors within a
given data source can only discover inconsistencies when looking across the borders of
the data source at hand. In other words, this kind of problem cannot be resolved locally.
Apart from being used for reporting errors and proposing remedies to the administrators
of the inspected data sources, the list of detected and/or corrected errors is also applied in
the integrated strain database as a sort of blacklist, in order to prevent that records which
contain pairs of labels that occur on the blacklist give riseto the illegitimate merge of strain
classes that are known to be distinct. Instead, an exceptionis launched so that an appro-
priate evaluation of the anomaly can be made by the administrator of the integrated strain
database. As such, this blacklist avoids that errors which were resolved in the integrated
strain database, perturbate the equivalence relation again during subsequent handlings of
updated data sources wherein previously detected errors were not yet corrected. An addi-
tional advantage of the blacklist is that it automatically arms the integrated strain database
against the propagation of errors in the data sources, due tothe manual copying of synonym
labels from one data source into another. Consequently, the list of detected and corrected
errors can be regarded as an addendum of negative pairwise equivalences to the equational
theory that was discussed in section 2.2.

2.5 Linking autonomous microbial data sources

With the advent and the rapid emergence of the Internet, world wide access to multiple
public microbial information services has given a strong impetus to research in the field of
microbiology, by instantly disseminating the latest breakthroughs and insights within the
problem domain and establishing in the long term a pool of themicrobiologist’s collec-
tive knowledge. The online catalogues of biological resource centers (BRCs) provide basic
information on the isolation, identification and availability of many important and well-
characterized microorganisms. Emperical databases contain information on many of the
genotypic and phenotypic traits of these microbial strainsfor a broad range of experimental
techniques, which seriously vary in their interlab standardization and reproducibility. The
International Nucleotide Sequence Database (DDBJ/EMBL/GenBank) [40] has emerged as
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one of the greatest successes in the accumulation of reproducible experimental information,
providing parts or the whole genetic map of many of the life forms on earth. Completely
new branches of research, such as computational genomics, have been established on the
foundations of these sequence databases. Finally, probably the largest contribution to mi-
crobial research is currently only published in the scientific literature, which in itself forms
a heterogeneous knowledge base that is progressively accessible in electronic form.

The bewildering proliferation of these massive amounts of information urges the estab-
lishment of solid cross-references between the different autonomous and heterogeneous
data sources, in order to reduce the amount of data duplication between the information
providers, assist the researchers in the navigation through this data-rich environment by
merging all relevant information into a uniform view, and monitor the overall data quality
provided by the different web services through continuous cross-checking of the informa-
tion. Primordial to the establishment of durable cross-reference scenarios is the availability
of unique object identifiers for the unequivocal discrimination of and reference to the dif-
ferent entities in the problem domain. As an example, the assignment of accession numbers
as the unique object identifiers for genetic sequence data and the use of PubMed identifiers
that act on behalf of the scientific publications, have enabled a cross-referencing scheme
that maintains mutual links between the International Nucleotide Sequence Database and
the large PubMed literature repository collecting scientific publications from the life sci-
ences. However, as a consequence of the lack of unique identifiers for microorganisms,
microbial source information has never been involved in similar cross-references. Instead,
the necessary information about the microbial samples is partially copied into the peripheral
data sources, which perturbates the management of this information that is also subjected
to dynamic changes. In this section we will therefore demonstrate how the integrated strain
database may form the cornerstone of a solid and manageable cross-referencing system that
establishes mutual links between the information providedby biological resource centers,
emperical knowledge bases and scientific research papers.

2.5.1 Managing cross-references between BRCs and EMBL

The International Nucleotide Sequence Database stands model for many other databases
containing empirical data on microorganisms. Therefore, we have opted for this knowledge
base to exemplify how the genetic sequence information can be automatically linked with
the natural resources from which the DNA was extracted, and vice versa. In specific, we
make use of the European Molecular Biology Laboratory (EMBL) gateway as an access
point to the results of the many international initiatives for collecting genomic information
(http://srs.ebi.ac.uk). The issue at stake is sketched in Figure 2.7, illustrating
the desire to cross-reference the genomic sequence recordswith their associated biological
sample records found in the online catalogues of biologicalresource centers.

A serious deficiency of the public sequence databases is thatthere is no consistent
recording of the label for the individual culture from whichthe sequence was obtained.
According to the EMBL specifications, this information should be stored in the qualifiers
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Figure 2.7: Establishing direct or indirect cross-references between biological resource
centers and peripheral information sources leads to the cumbersome requirement of main-
taining a many-to-many relationship.

isolate or strain of the source feature, but the sequence deposit procedures do
not strictly prohibit that depositors provide the strain label information within any of the
other fields or – more critical – do not provide this information at all. Therefore, we have
developed a software tool that automatically parses complete EMBL formatted sequence
records for extraction of the associated strain label information. Missing labels require a
time-consuming manual lookup within the literature references associated to the sequence
records.

At first sight, the strain labels may seem good candidates forbuilding solid links be-
tween the sequence records and the corresponding culture collection catalogue records, but
unfortunately these labels associated with biological samples show some form of ambigu-
ity as was discussed in section 2.2. In order to see the consequences of synonymy and
homonymy of strain labels on the linkage problem, we refer once again to Figure 2.7. This
graphical representation depicts a simplified version of the International Nucleotide Se-
quence Database on the left side, containing only 11 representative sequence records. Each
sequence record is identified by its accession number on the left, whereas the strain label
that is extracted from the sequence record is shown on the left-hand side. Note that some
strain labels occur in multiple sequence records within thesequence database, and that ac-
cording to the synonymy of the labels, the example sequenceslogically belong to three
different strains. The right-hand side of the figure shows how sample cultures for each of
these strains are harboured in three representative culture collections. The culture collec-
tion records are identified by the labels assigned by the instances to each of the samples. In
case a cross-referencing scheme is envisioned where the records with corresponding labels
are inter-linked, taking into account syntactic variations in the spelling of the labels, one
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Figure 2.8: Indirect cross-referencing between biological resource centers and peripheral
information sources by using an intermediate integrated strain database allows autonomous
maintainance of two one-to-many relationships.

only finds the connections indicated by the solid lines. Thismeans that only eight out of
eleven sequence records can be associated with a record in the online culture collection cat-
alogues for the simple example show in Figure 2.7. However, the synonymy of the labels
dictates that many more indirect links can be found between the sequence records and the
culture collection catalogues, as is indicated by the dashed lines in the figure. In order to
discover all these indirect links, the complete knowledge of all synonym labels for a given
strain must be readily available, whereas at the same time some manual resolution of the
ambiguous labels cannot be avoided. And still there is no solution for the lack of unique
identifiers for the biological samples in order to instantiate these links in an unambiguous
way. Moreover, the management of direct or indirect cross-references between biological
resource center records and EMBL database records leads to the cumbersome requirement
of maintaining a many-to-many relationship.Id est, for each new sequence deposited into
the EMBL database, multiple links to the corresponding BRC catalog records may have to
be established, and reversely, for each culture deposited into a BRC, multiple references
to EMBL records may need to be created. This would truely be an example of bad data
management.

Many generic design patterns for software and data organization are founded on the
general principle of redirection using one or more intermediate levels, in order to improve
the overall flexibility and manageability of the system [29]. In the specific case of linking
EMBL records with BRC records, and vice versa, redirection can easily be implemented
by making use of the virtues of the integrated strain database, in a way that is illustrated in
Figure 2.8. In this flexible cross-referencing scheme, the EMBL records and BRC records
are no longer directly linked. Instead, each BRC record is directly linked to the integrated
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strain database. Under normal conditions, these referencecan be automatically established
as the BRCs make use of unique strain labels in most of the case. Similarly, each EMBL
record for which a strain label is found can also be direcly linked to the integrated strain
database, either automatically if the strain label is unique as defined by the integrated strain
database, or manually when it concerns ambiguous labels. Inthe latter case, the integrated
strain database provides the necessary context for resolving the ambiguity of the labels. All
cross-references can now be made persistent by using the culture identifiers as provided by
the integrated strain database as the unique object identifiers for the biological samples.
Note that each record added to either the EMBL database or to a BRCdatabase only re-
quires the establishment of a single reference to the integrated strain database in the scheme
of Figure 2.8. Linking a new record from aperipheraldata source (the adjective periph-
eral is used for all data sources other than the integrated strain database) may result in the
creation of a new culture equivalence class into the integrated strain database, if it con-
cerns a culture that was not known by the integrated strain database, or even a new strain
equivalence class if it concerns a newly isolated strain. Assuch, lookup of the relevant
culture identifier in the integrated strain database follows the same general outline of the
IncrementEquivalence procedure, using a record with only one label as the input
parameter. Remark that the cross-referencing scheme of Figure 2.8 resolves all direct and
indirect links between peripheral data sources and the integrated strain database using only
20 direct connections with the integrated strain database,which amounts to the total sum
of the records in the peripheral data sources, while the cross-referencing scheme of Figure
2.7 needs 33 links between the peripheral data sources in order to accomplish the same set
of mutual links. This discrepancy is even more pronounced inreal-world situations, where
it is envisioned that the BRC records are linked with multiple peripheral data sources, other
than the International Nucleotide Sequence Database.

Linkage of peripheral information records with ambiguous strain labels will not result
in an automatic resolution of the culture identifier, given the exit command on line 22 of
theIncrementEquivalence procedure. In these circumstances, human intervention
is required in order to sort out the exact semantics of the ambiguous label. To illustrate
how this procedure of manual linkage may be set up, let us consider the EMBL sequence
records with accession numbersAF509820, AJ309324 andAJ278726 that all refer to
their sequenced bacterial strain using the label ambiguousB2. From Table 2.2 we have
learned that multiple strains are referenced by this label,so that the label indeed deserves
to be tagged as ambiguous. If a closer look is taken to theAF509820 sequence record,
one may find out that the biological sample from which the DNA was extracted is identified
asAcinetobacter baylyi. This suggests that the EMBL record should be linked to the cul-
ture in the integrated strain database entry with identifier368362, according to the search
results presented in Table 2.2. This solution is confirmed bymanually looking up the syn-
onym labels in the publication by Carret al. [10] that is linked to EMBL entryAF509820.
Similarly, the EMBL sequence record with accession numberAJ309324 is identified as
Chryseobacterium defluvii, indicating that it should be linked to the culture in the integrated
strain database with identifier 65830. Again, this is confirmed by the synonym strain la-
bels mentioned in the paper by Kämpferet al. [43] that is linked to this EMBL entry.
For the final EMBL record with accession numberAJ278726, both the identification as
the speciesMethylocapsa acidiphilaand the synonym labels encoutered in the paper by
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Dedyshet al. [17] prove that the EMBL record should be linked to the integrated strain
database record with culture identifier 60975. Note that in this latter case, some of the syn-
onym labels are also incorporated into the EMBL record itself. After cross-referencing the
sequence database with the integrated strain database it can be easily derived that all three
of the above EMBL records represent sequences of bacterial type strains, notwithstanding
the fact that this information was not directly provided in the EMBL records with accession
numberAJ309324.

Given the manual exertions required to resolve ambiguous strain labels during lookup
of the corresponding culture identifier within the integrated strain database, it took us quite
some effort to link a selection of 130671 bacterial sequencerecords that are potentially
related to the 16S rRNA gene with the integrated strain database. At present, the attained
succes rate of this operation was that only 13636 (10.4%) of these sequence records have
been succesfully linked in the way described above. Although a vast number of the cur-
rently unlinked records concern sequences related to uncultured or uncultureable bacte-
rial strains, our experience from working with the EMBL sequence database is that still a
significant number of the unlinked records can be manually linked, at the cost of a time-
consuming lookup process. This may include looking up information within the integrated
strain database or within external data sources (mainly publications) linked to the public
sequence database. The cross-referencing scenario could be further improved if the infor-
mation provided by integrated strain database was made publicly accessible as web service,
so that culture identifiers could be looked up during the sequence deposit procedure. As
a result, the sequence database would be continuously enriched as an effort of the whole
research community and advanced searches involving information extracted via the cross-
reference links with the biological resource centers wouldbecome more reliable. This latter
issue is dealt with in subsection 2.5.2.

After establishing solid cross-reference links between the integrated strain database and
a peripheral data source such as the public sequence database, it again becomes possible
to perform integrity checks on the duplicated information provided by both data providers,
in a way much similar as during the construction of the integrated strain database itself.
Table 2.10 enumerates a small excerpt of the incorrect strain label references that have
been discovered within the International Nucleotide Sequence Database. The first part
of this table shows some inconsistencies that were detectedby comparison of the strain
identification information taken from both the sequence database and the integrated strain
database. The first column of this table gives the accession number of the EMBL se-
quence record together with the associated strain identification stored in theorganism
species field. The second column shows the strain label extracted from the EMBL se-
quence record with the corresponding strain identificationretrieved via the link with the
integrated strain database. Clearly, for these examples there is a discrepancy between this
identification information that is taken from both data sources. By consulting the literature
references linked to the EMBL records and searching the integrated strain database, the
cross-reference links have been corrected as indicated in the last column of the table. The
last few rows of Table 2.10 show examples of records in the public sequence database that
refer to strain labels that do not occur within the online catalogue of the corresponding
biological resource center. These incorrect references have been resolved in a similar way
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accession number incorrect strain reference correct strain reference

M58730 (Bifidobacterium asteroides) ATCC 29510 (Stenotrophomonas maltophilia) ATCC 25910T (B. asteroides)
X71855 (Clostridium xylanolyticum) ATCC 4963 (Lactobacillus gasseri) ATCC 49623T (C. xylanolyticum)
AB089482 (Derxia gummosa) ATCC 15594 (Arthrobotrys conoides) ATCC 15994T (D. gummosa)
Y17361 (Lactobacillus amylolyticus) DSM 1664 (Clostridium sporogenes) DSM 11664T (L. amylolyticus)
AB119197 (Beijerinckia indica) ATCC 9036 (Acinetobacter johnsonii) ATCC 9039T (B. ind.subsp.indica)
X16895 (Listonella anguillarum) ATCC 12964 (Streptococcus pyogenes) ATCC 19264T (L. anguillarum)
X80180 (Acetomicrobium flavidum) DSM 20663 (Lactobacillus sanfranciscensis) DSM 20664T (A. flavidum)

AJ224308 (Aeromonas popoffii) LMG 317541 (does not exist) LMG 17541T (A. popoffii)
X81623 (Shewanella putrefaciens) LMG 26268 (does not exist) LMG 2268T (S. putrefaciens)
AY655733 (Corynebacterium sphenisci) DSMZ 44792 (does not exist) DSM 44792T (C. sphenisci)
AY543023 (Brochothrix thermosphacta) DSMZ 20171 (does not exist) DSM 20171T (B. thermosphacta)
X55060 (Bacillus cereus) 1771 (NCD0) (does not exist) NCDO 1771T (B. cereus)
X74702 (Vibrio fischeri) ATCC 774 (does not exist) ATCC 7744T (V. fischeri)

Table 2.10: Examples of inconsistencies found during cross-referencing the International
Nucleotide Sequence Database with the integrated strain database.

as described before.

2.5.2 Advanced dynamic queries

Cross-referencing multiple autonomous and heterogeneous data sources by means of
the intermediate level provided by the integrated strain database, in essence creates a
transparant information gateway wherein the biological material takes up a centralized
role. This allows the execution of all sorts of advanced queries on the fly, which are in
part resolved by making use of the knowledge provided by the integrated strain database
in combination with information extracted from the peripheral data sources. As a result,
such dynamic queries can automatically bridge over multiple data sources that were phys-
ically separated before the integration process. Before theestablishment of the integrated
strain database, answering these advanced queries could bequite a labour-intensive and
time-consuming task. Consequently, the search results did not always gave a complete
and up-to-date view on the information provided by the in-house and public domain pe-
ripheral data sources. Throughout this chapter we already illustrated the applicability of
advanced queries for the implementation of some extensive integrity checks on duplicated
information that is distributed over several peripheral microbial data sources that are now
interconnected through the integrated strain database. Inthis section we focus on some
examples of advanced queries that are of a more direct use formicrobiologists.

Knowledge of all the experimental data that is determined for a given microbial strain is
primordial for easily setting up large polyphasic databases [71]. As an example, Table 2.11
presents a shortlist of the results from a query that searches within the emperical databases
connected to the integrated strain database for all known experimental data generated for
theEnterococcus faeciumtype strain. To answer this question, it was required to initially
lookup all strain labels that are used for referencing theE. faeciumtype strain and subse-
quently gather all experimental data linked to each of thesestrain labels. After assembling
an overview of the experimental knowledge, more detailed information may be acquired
for each separate experiment, by following the link to the particular peripheral data source.
This is the kind of advanced queries that is applied for embellishing the online catalogue
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experiment type experiment date label accession number

CHARACTER\API\RAPID ID 32 STREP (2.0) 1998-12-22 LMG 11423
CHARACTER\API\RAPID ID 32 STREP (2.0) 2003-05-14 17:16:55 LMG 11423

CHARACTER\FAME\TSBA50 (5.00) 1990-10-25 07:12:50 LMG 8149
CHARACTER\FAME\TSBA50 (5.00) 1990-10-31 12:51:14 LMG 8149
CHARACTER\FAME\TSBA50 (5.00) 1992-10-19 17:21:04 LMG 11423
CHARACTER\FAME\TSBA50 (5.00) 1992-10-19 19:21:39 LMG 12692 t2
CHARACTER\FAME\TSBA50 (5.00) 1992-10-20 07:13:47 LMG 12692 t1

FINGERPRINT\REP-PCR (GTG5) 2003-11-19 17:11:53 LMG 11423

FINGERPRINT\SDS-PAGE LMG 8149
FINGERPRINT\SDS-PAGE LMG 8149 t1
FINGERPRINT\SDS-PAGE LMG 8149 t2
FINGERPRINT\SDS-PAGE LMG 11423
FINGERPRINT\SDS-PAGE LMG 12692 t1
FINGERPRINT\SDS-PAGE LMG 12692 t2
FINGERPRINT\SDS-PAGE LMG 12692 QC 10/92

SEQUENCE\DNA\16S rRNA 1994-06-08 JCM 5804 D31676
SEQUENCE\DNA\16S rRNA 1998-01-08 CCUG 542 Y12906
SEQUENCE\DNA\16S rRNA 1998-03-24 JCM 5804 AB012213
SEQUENCE\DNA\16S rRNA 1999-07-22 NCFB 942 Y18294
SEQUENCE\DNA\16S rRNA 2000-07-08 DSM 20477 AJ276355
SEQUENCE\DNA\16S rRNA 2000-11-24 LMG 11423 AJ301830
SEQUENCE\DNA\16S rRNA 2001-12-21 CECT 410 AJ420800

SEQUENCE\DNA\16S-23S rRNA spacer 1997-02-21 ATCC 19434 X87180

Table 2.11: Polyphasic search results showing all experimental data generated for theEnte-
rococcus faeciumtype strain, known within the integrated microbial information gateway.

records of the BCCMTM/LMG Bacteria Collection (see Table 2.6) with pointers to all re-
lated EMBL sequence records and PubMed literature references. As an example, we refer
to the catalog record of theE. faeciumtype strain with the following URL

http://www.belspo.be/bccm/db/bacteria details2.asp?num=11423

The International Nucleotide Sequence Database lacks someof the necessary biological
strain information for resolving a direct search to find all 16S rRNA gene sequences of all
Enterococcusspp. type strains that have been deposited within the publicdomain reposi-
tory. The term direct search, used in this particular context, refers to the fact that the search
operation only makes use of the information incorporated into the sequence database it-
self. The only appropriate search option within the public sequence database is to retrieve
all 16S rRNA sequences associated withEnterococcusstrains, followed by manually fil-
tering out the entries that are associated with a type strain. Apart from being very time-
consuming, the precision of this search strategy might be affected as well by the presence of
outdated identification information and missing, ambiguous or incorrect strain information
in the public sequence database. Based on the established cross-reference links between
the EMBL sequence records and the integrated strain database, such kinds of queries can
be resolved more accurately, resulting in a list of relevantEMBL records for the example
query that is shown in Table 2.12. Four consecutive steps were taken by the integrated
strain database in order to answer the query. First of all, all validly described species of the
genusEnterococcuswere looked up in the database. The integrated strain database then
determined the type strain for each of these taxa, followed by a search for all synonym
labels known for each of the type strains. In a last step, all EMBL records associated to
any of the selected strain labels were extracted by scanningthe fixed cross-reference links
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acc nr. species name strain number deposit date description size

Y11621 E. asini AS2T (LMG 18727T) 1998-06-02 E.asini 16S rRNA gene 1551
D31674 E. avium NCDO 2369T (LMG 10744T) 1994-06-15 E.avium gene for 16S ribosomal RNA, partial sequence 166
Y18274 E. avium NCFB 2369T (LMG 10744T) 1999-07-22 E.avium (strain NCFB 2369T) 16S rRNA gene 1429
AJ301825 E. avium LMG 10744T 2000-11-24 E.avium 16S rRNA gene, strain LMG 10744 1833
Y12907 E. avium ATCC 14025T (LMG 10744T) 1998-01-08 E.avium 16S rRNA gene, partial (strain ATTC 14025. . . 366
AF133535 E. avium CIP 103019T (LMG 10744T) 1999-06-01 E.avium 16S ribosomal RNA gene, partial sequence 1524
X76177 E. canis LMG 12316T 1994-07-30 E.sp. (LMG12316) 16S rRNA gene 1440
AF039903 E. casseliflavus ATCC 25788T (LMG 10745T) 1998-02-03 E.casseliflavus 16S ribosomal RNA gene, partial sequence 1509
Y18161 E. casseliflavus NCIMB 11449T (LMG 10745T) 1999-07-22 E.casseliflavus 16S rRNA gene, strain NCIMB 11449 1421
AJ301826 E. casseliflavus LMG 10745T (LMG 10745T) 2000-11-24 E.casseliflavus 16S rRNA gene, strain LMG 10745 1904
Y12908 E. casseliflavus ATCC 25788T (LMG 10745T) 1998-01-08 E.casseliflavus 16S rRNA gene, partial (strain ATTC 25788. . . 366
AJ420804 E. casseliflavus CECT 969T (LMG 10745T) 2001-12-21 E.casseliflavus 16S rRNA gene, strain CECT969T 1451
Y18355 E. cecorum NCDO 2674T (LMG 11741T) 1999-07-22 E.cecorum 16S rRNA gene 1409
AJ301827 E. cecorum LMG 12902T 2000-11-24 E.cecorum 16S rRNA gene, strain LMG 12902 1667
AF061009 E. cecorum ATCC 43198T (LMG 11741T) 1999-02-08 E.cecorum 16S ribosomal RNA gene, partial sequence 1509
Y12917 E. cecorum CCUG 27299T (LMG 11741T) 1998-01-08 E.cecorum 16S rRNA gene, partial (strain CCUG 27299) 366
Y18275 E. columbae NCIMB 13013T (LMG 11740T) 1999-07-22 E.columbae (strain NCIMB 13013T)16S rRNA gene 1443
X56422 E. columbae NCIMB 13013T (LMG 11740T) 1992-03-12 E.columbae 16S rRNA gene 1493
AJ301828 E. columbae LMG 11740T 2000-11-24 E.columbae 16S rRNA gene, strain LMG 11740 1818
AF061006 E. columbae ATCC 51263T (LMG 11740T) 1999-02-08 E.columbae 16S ribosomal RNA gene, partial sequence 1481
Y12918 E. columbae CCUG 27894T (LMG 11740T) 1998-01-08 E.columbae 16S rRNA gene, partial (strain CCUG 27894) 366
Y18358 E. dispar NCIMB 13000T (LMG 13521T) 1999-07-22 E.dispar 16S rRNA gene 1397
AJ301829 E. dispar LMG 13521T 2000-11-24 E.dispar 16S rRNA gene, strain LMG 13521 1875
AF061007 E. dispar ATCC 51266T (LMG 13521T) 1999-02-08 E.dispar 16S ribosomal RNA gene, partial sequence 1514
Y12920 E. dispar CCUG 33309T (LMG 13521T) 1998-01-08 E.dispar 16S rRNA gene, partial (strain CCUG 33309) 366
Y18359 E. durans NCFB 596T (LMG 10746T) 1999-07-22 E.durans 16S rRNA gene 1434
AJ276354 E. durans DSM 20633T (LMG 10746T) 2000-07-08 E.durans 16S rRNA gene, strain DSM20633 1534
Y12909 E. durans ATCC 19432T (LMG 10746T) 1998-01-08 E.durans 16S rRNA gene, partial (strain ATTC 19432. . . 366
AJ420801 E. durans CECT 411T (LMG 10746T) 2001-12-21 E.durans 16S rRNA gene, strain CECT411T 1506
D31675 E. faecalis NCDO 581T (LMG 7937T) 1994-06-08 E.faecalis gene for 16S ribosomal RNA, partial sequence 199
Y18293 E. faecalis NCIMB 775T (LMG 7937T) 1999-07-22 E.faecalis 16S rRNA gene 1449
AJ301831 E. faecalis LMG 7937T 2000-11-24 E.faecalis 16S rRNA gene, strain LMG 7937 1556
AB012212 E. faecalis JCM 5803T (LMG 7937T) 1998-03-24 E.faecalis gene for 16S rRNA, partial sequence 1517
L16515 E. faecalis NCTC 775T (LMG 7937T) 1993-05-20 E.faecalis (NCTC 775) 16S ribosomal RNA,. . . 418
Y12905 E. faecalis ATCC 19433T (LMG 7937T) 1998-01-08 E.faecalis 16S rRNA gene, partial (strain . . . 366
AJ420803 E. faecalis CECT 481T (LMG 7937T) 2001-12-21 E.faecalis 16S rRNA gene, strain CECT481T 1477
D31676 E. faecium JCM 5804T (LMG 11423T) 1994-06-08 E.faecium gene for 16S ribosomal RNA, partial sequence 179
Y18294 E. faecium NCFB 942T (LMG 11423T) 1999-07-22 E.faecium 16S rRNA gene 1459
AJ276355 E. faecium DSM 20477T (LMG 11423T) 2000-07-08 E.faecium 16S rRNA gene, strain DSM20477 1533
AJ301830 E. faecium LMG 11423T 2000-11-24 E.faecium 16S rRNA gene, strain LMG 11423 1651
AB012213 E. faecium JCM 5804T (LMG 11423T) 1998-03-24 E.faecium gene for 16S rRNA, partial sequence 1523
Y12906 E. faecium ATCC 19434T (LMG 11423T) 1998-01-08 E.faecium 16S rRNA gene, partial (strain ATTC 19434. . . 366
AJ420800 E. faecium CECT 410T (LMG 11423T) 2001-12-21 E.faecium 16S rRNA gene, strain CECT410T 1489
Y18295 E. flavescens NCIMB 13226T (LMG 13518T) 1999-07-22 E.flavescens 16S rRNA gene 1425
AJ301832 E. flavescens LMG 13518T 2000-11-24 E.flavescens 16S rRNA gene, strain LMG 13518 1847
Y12923 E. flavescens CCUG 30567T (LMG 13518T) 1998-01-08 E.flavescens 16S rRNA gene, partial (strain CCUG 30567) 366
AJ420802 E. flavescens CECT 4481T (LMG 13518T) 2001-12-21 E.flavescens 16S rRNA gene, strain CECT4481T 1514
AJ301833 E. gallinarum LMG 13129T 2000-11-24 E.gallinarum 16S rRNA gene, strain LMG 13129 1568
Y12910 E. gallinarum CCUG 18658T (LMG 11207T) 1998-01-08 E.gallinarum 16S rRNA gene, partial (strain CCUG 18658) 366
AF039900 E. gallinarum ATCC 49573T (LMG 11207T) 1998-02-03 E.gallinarum 16S ribosomal RNA gene, partial sequence 1506
AJ420805 E. gallinarum CECT 970T (LMG 11207T) 2001-12-21 E.gallinarum 16S rRNA gene, strain CECT970T 1516
AY033814 E. gilvus PQ1T (CCUG 45553T) 2002-04-04 E.gilvus 16S ribosomal RNA gene, partial sequence 1295
AF286832 E. haemoperoxidus CCM 4851T (LMG 19487T) 2001-07-11 E.haemoperoxidus 16S ribosomal RNA gene, partial sequence 1512
Y18354 E. hirae NCFB 1258T (LMG 6399T) 1999-07-22 E.hirae 16S rRNA gene 1445
Y17302 E. hirae DSM 20160T (LMG 6399T) 1999-02-24 E.hirae 16S rRNA gene 1535
AJ276356 E. hirae DSM 20160T (LMG 6399T) 2000-07-08 E.hirae 16S rRNA gene, strain DSM20160 1535
AJ301834 E. hirae LMG 6399T 2000-11-24 E.hirae 16S rRNA gene, strain LMG 6399 1787
AF061011 E. hirae ATCC 8043T (LMG 6399T) 1999-02-08 E.hirae 16S ribosomal RNA gene, partial sequence 1507
Y12912 E. hirae ATCC 8043T (LMG 6399T) 1998-01-08 E.hirae 16S rRNA gene, partial (strain ATTC 8043. . . 366
AJ420799 E. hirae CECT 279T (LMG 6399T) 2001-12-21 E.hirae 16S rRNA gene, strain CECT279T 1514
Y18339 E. malodoratus NCFB 846T (LMG 10747T) 1999-07-22 E.malodoratus 16S rRNA gene 1461
AJ301835 E. malodoratus LMG 10747T (LMG 10747T) 2000-11-24 E.malodoratus 16S rRNA gene, strain LMG 10747 1701
AF061012 E. malodoratus ATCC 43197T (LMG 10747T) 1999-02-08 E.malodoratus 16S ribosomal RNA gene, partial sequence 1500
Y12911 E. malodoratus CCUG 30572T (LMG 10747T) 1998-01-08 E.malodoratus 16S rRNA gene, partial (strain . . . 366
AF286831 E. moraviensis CCM 4856T (LMG 19486T) 2001-07-11 E.moraviensis 16S ribosomal RNA gene, partial sequence 1509
Y18340 E. mundtii NCFB 2375T (LMG 10748T) 1999-07-22 E.mundtii 16S rRNA gene 1447
AJ301836 E. mundtii LMG 10748T 2000-11-24 E.mundtii 16S rRNA gene, strain LMG 10748 1864
AF061013 E. mundtii ATCC 43186T (LMG 10748T) 1999-02-08 E.mundtii 16S ribosomal RNA gene, partial sequence 1529
Y12913 E. mundtii CCUG 18656T (LMG 10748T) 1998-01-08 E.mundtii 16S rRNA gene, partial (strain CCUG 18656) 366
AJ420806 E. mundtii CECT 972T (LMG 10748T) 2001-12-21 E.mundtii 16S rRNA gene, strain CECT972T 1521
AY033815 E. pallens PQ2T (CCUG 45554T) 2002-04-04 E.pallens 16S ribosomal RNA gene, partial sequence 1294
AY028437 E. phoeniculicola JLB-1T (DSM 14726T) 2001-07-02 E.phoeniculicola 16S ribosomal RNA gene,. . . 1479
Y18356 E. pseudoavium NCFB 2138T (LMG 11426T) 1999-07-22 E.pseudoavium 16S rRNA gene 1424
AJ301837 E. pseudoavium LMG 11426T 2000-11-24 E.pseudoavium 16S rRNA gene, strain LMG 11426 1636
AF061002 E. pseudoavium ATCC 49372T (LMG 11426T) 1999-02-08 E.pseudoavium 16S ribosomal RNA gene, partial sequence 1513
Y12916 E. pseudoavium CCUG 33310T (LMG 11426T) 1998-01-08 E.pseudoavium 16S rRNA gene, partial (strain. . . 366
Y18296 E. raffinosus NCIMB 12901T (LMG 12888T) 1999-07-22 E.raffinosus 16S rRNA gene 1425
Y12914 E. raffinosus CCUG 29292T (LMG 12888T) 1998-01-08 E.raffinosus 16S rRNA gene, partial (strain . . . 366
AF326472 E. ratti DS 2705-87T (NCIMB 13635T) 2002-11-21 E.ratti 16S ribosomal RNA gene, partial sequence 1523
AF539705 E. ratti ATCC 700914T (NCIMB 13635T) 2002-09-12 E.ratti 16S ribosomal RNA gene, partial sequence 1503
X55766 E. saccharolyticus NCDO 2594T (LMG 11427T) 1992-03-12 S.saccharolyticus 16S rRNA gene (5’) 144
Y18357 E. saccharolyticus NCDO 2594T (LMG 11427T) 1999-07-22 E.saccharolyticus 16S rRNA gene 1456
AJ301839 E. saccharolyticus LMG 11427T 2000-11-24 E.saccharolyticus 16S rRNA gene, strain LMG 11427 1902
U30931 E. saccharolyticus NCDO 2594T (LMG 11427T) 1996-07-31 E.saccharolyticus 16S ribosomal RNA partial sequence 1521
AF061004 E. saccharolyticus ATCC 43076T (LMG 11427T) 1999-02-08 E.saccharolyticus 16S ribosomal RNA gene, partial sequence 1506
Y12919 E. saccharolyticus ATCC 43076T (LMG 11427T) 1998-01-08 E.saccharolyticus 16S rRNA gene, partial (strain ATTC 43076.. . 366
X55767 E. saccharolyticus NCDO 2594T (LMG 11427T) 1992-03-12 S.saccharolyticus 16S rRNA gene 1293
Y18338 E. solitarius NCIMB 12902T (LMG 12890T) 1999-07-22 E.solitarius 16S rRNA gene 1411
AF061010 E. solitarius ATCC 49428T (LMG 12890T) 1999-02-08 E.solitarius 16S ribosomal RNA gene,. . . 1341
AJ301840 E. solitarius DSM 5634T (LMG 12890T) 2000-11-24 E.solitarius 16S rRNA gene, strain DSM 5634 1653
Y12915 E. solitarius CCUG 29293T (LMG 12890T) 1998-01-08 E.solitarius 16S rRNA gene, partial (strain CCUG 29293) 367
Y18341 E. sulfureus NCIMB 13117T (LMG 13084T) 1999-07-22 E.sulfureus 16S rRNA gene 1391
X55133 E. sulfureus MUTK 31T (LMG 13084T) 1991-06-17 E.sulfureus 16S ribosomal RNA 1495
AJ301841 E. sulfureus LMG 13084T 2000-11-24 E.sulfureus 16S rRNA gene, strain LMG 13084 1902
AF061001 E. sulfureus ATCC 49903T (LMG 13084T) 1999-02-08 E.sulfureus 16S ribosomal RNA gene, partial sequence 1498
Y12921 E. sulfureus CCUG 33313T (LMG 13084T) 1998-01-08 E.sulfureus 16S rRNA gene, partial (strain CCUG 33313 ) 366
AJ271329 E. villorum LMG 12287T 2001-06-13 E.villorum 16S rRNA gene, strain LMG 12287 1512

Table 2.12: Integrated microbial information gateway search results showing 16S rRNA
gene sequences of allEnterococcusspp. type strains, deposited within the International
Nucleotide Sequence Database.
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between the integrated strain database and the public nucleotide sequence database. By
application of the dynamic search approach based on the information collected in and the
cross-references build around the integrated strain database, a total of 97 relevant records
were found for the example query. As a reference, the most recent version of theTaxonomic
Outline of the Prokaryotes[31] only contains 39 of these 16S rRNA sequence records, af-
ter performing some data reduction based on sequence quality evaluation. Some futher
remarks can be made on the search results shown in Table 2.12.It is clear that strain labels
that are ambiguous or are not related to large culture collections need to be incorporated
as well into solid cross-referencing schemes for connecting microbial data sources, such
as the one discussed in subsection 2.5.1. Otherwise no 16S rRNA sequence records would
have been found forEnterococcus asini, E. gilvus, E. pallensandE. phoeniculicolafor this
particular query. The importance of accurate quality control on the information duplicated
into multiple autonomous data sources is illustrated in theEMBL records with accession
numbersY12906 (E. faecium), Y12907 (E. avium), Y12908 (E. casseliflavus), Y12909
(E. durans), Y12912 (E. hirae) andY12916 (E. pseudoavium), where the acronym of the
strain label has been misspelled asATTC, instead of using the correct acronymATCC of the
American Type Culture Collection. Such anomalies are easily detected and corrected dur-
ing the establishment of cross-reference links with integrated strain database. We also note
that the EMBL record with accession numberX76177will never be retrieved from queries
that directly search forE. canissequences, given the inaccurate identification information
encoded into the EBML database for this record. For reasons ofcompleteness, we finally
remark thatE. porcinuswas found to be a junior synonym ofE. villorum [18], while E. se-
riolicida was reclassified asLactococcus garvieae[25]. The sequence records linked to
the type strains of these heterotypic synonyms have been discarded from the search results
shown in Table 2.12.

2.6 Conclusions and future perspectives

The present chapter has sketched the need for establishing adivide and conquer strategy
for the management of distributed microbial information providers, wherein a logical cen-
tral repository could take up the responsability to providea concise, complete and correct
view on the semantic equivalences of the labels assigned to microbial strains and cultures.
With the evocation of an integrated strain database for the accumulation of synonym label
equivalences gathered from a battery of data sources, we have made an initial attempt to
implement such a central repository. Our goal to achieve both completeness and correct-
ness of the information content of the integrated strain database, requires a perpetual en-
gagement in processing new and updated data sources, while monitoring the quality of the
incorporated data. In this respect, not only plans are at stake to process the information of
additional bacterial data sources, but also to widen the scope to other kinds of microorgan-
isms such as fungi and yeasts. We have also indirectly put forward how the integrated strain
database may introduce a system of unique indentifiers for resolving homonyny within the
currently applied microbial labelling mechanism and simultaneously provide the neces-
sary contextual information to settle the occurrences of ambiguous labels in peripheral
data sources. A web-enabled interface to the strain and culture equivalence relations could
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thus help to semi-automatically build cross-reference links between the integrated strain
database and data sources that contain related strain information. As such, the integrated
strain database might serve as a basic building block withinan information gateway that
seemlessly glues together all related pieces of the taxonomic puzzle. This could feed the
application of a multitude of data mining techniques for thediscovery of valuable new in-
sights within the data. We equally foresee a role for the automatic integration of complete
strain history information within the integrated strain database. This tracking and tracing
of the dissemination of microbial strains might as such givesupport to some quality control
and intellectual property right issues. Despite this slew of unresolved issues, the authors
hope that the ideas behind the integrated strain database might finally lead to some global
action in the integration of microbial data sources, instead of just wishful thinking.
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Chapter 3

Min-transitive Approximations of
Similarity Relations

”There are many meaningful groupings”

— Michael R. Anderberg

MIN-TRANSITIVE similarity relations are in one-to-one correspondence to hierar-
chical partition trees. These hierarchies somewhat resemble the diversification of

prokaryotic life according to the Darwinian theory of evolution [4]. As a result, the appli-
cation of hierarchical clustering methods for the approximative representation of empirical
similarity models into a stratified manner already has a long-term operational tradition for
the interpretation of relationships among groups of organisms in bacteriology, ranging from
the development of complete taxonomies [20] to the delineation of the different subspecies
of a distinct but varied species [41].

A new algorithm for generating a reflexive and symmetric min-transitive opening of a given
similarity relation is proposed. Since min-transitive similarity relations are nothing else but
hierarchical partition trees, the new opening algorithm can thus be compared to certain clas-
sical clustering algorithms. Various tests will illustrate that the new algorithm is efficient
and the generated opening is in practical situations usually a more reliable representation
of the original similarity relation than are the openings generated by other algorithms. In
addition, two new algorithms are proposed for generating a min-transitive approximation
of a given similarity relation, which in general deviates less from the given similarity re-
lation than are its min-transitive closure and openings, and which is guaranteed to be still
reflexive and symmetric. Since the new algorithms are weight-driven, they can be used
to generate layer by layer the partition tree associated to the corresponding min-transitive
approximation. We report on numerical tests that have been carried out on synthetic data to
compare the approximations generated by the new algorithmsto the min-transitive closure,
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a representative min-transitive opening and the min-transitive approximation delivered by
the UPGMA clustering algorithm.

3.1 Introduction

In numerical taxonomy, and in particular in the classification and identification of mi-
crobial organisms, one disposes of a wide variety of mathematical methods for grouping
taxonomical units into taxa on the basis of their phenotypicand genotypic characteristics.
Certain of these classification methods rely on the optimisation of an information-theoretic
expression, such as entropy or stochastic complexity [8, 21, 22]. Other methods such as
multi-dimensional scaling (MDS) and principal component analysis (PCA) are based on a
reduction of the feature space into a two or three dimensional representation. In this chap-
ter, we focus on another class of methods, the similarity-based hierarchical clustering meth-
ods, which make use of an intermediate similarity matrix that is built by means of an appro-
priate similarity measure. Upon that matrix, different classical clustering techniques can
be applied, such as single linkage clustering, complete linkage clustering [36], unweighted
pair-group method using arithmetic averages (UPGMA, [35])clustering, Ward’s method
[42], neighbour joining [34],. . ., in order to obtain a taxonomic stratification, usually rep-
resented in the form of a (hierarchical) partition tree or a dendrogram. Algebraically, such
a partition tree is equivalent to a min-transitive similarity matrix. Hence, any of these
methods turns out to be a way of deriving a min-transitive similarity matrix from the given
similarity matrix. Typically, a single partition of clusters is obtained by cutting the tree at
some level, or equivalently, by taking a cut of the corresponding min-transitive similarity
matrix.

Where the first group of methods, although based on well-founded theoretical princi-
ples, suffers in practice from a considerable time-complexity inherent to the underlying
optimisation problem, and the scaling methods only performwell for data sets with a small
number of interesting groups, the weakness of the hierarchical clustering methods lies in
the overwhelming variety of ad-hoc choices that must be made(e.g. the choice of a simi-
larity measure, a clustering method, an optimal cut off level) and the fact that with every
possible choice, in general, a different partition is obtained.

Nowadays, sophisticated software tools are available for the classification of bacteria
which cover a wide, representative range of classification methods. The abundance of
methods forces one to focus on the problem of identifying additional criteria for select-
ing a particular classification method and for obtaining an optimal partition of clusters. In
practice, the criteria used are often a kind of an optimisation condition, involving again
concepts such as entropy, complexity, compactness, fuzziness, etc. [14, 40]. On the other
hand, in the theory of fuzzy sets,T -transitive closures andT -transitive openings are well-
known concepts that tend to minimize, in some precise mathematical sense, the deviation
between the initial similarity matrix and a neigbouringT -equivalence relation. Herein,T
denotes a triangular norm [26], whereas a special role is played by the minimum operator
for the hierarchical representation of the fuzzy relations. Typically, single linkage cluster-
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ing generates the min-transitive closure, whereas complete linkage clustering generates a
min-transitive opening of the given similarity matrix.

Many algorithms exist for generating theT -transitive closure of an(n × n) similarity
matrix, the most efficient algorithms being of time orderO(n2) if the triangular norm is the
minimum operator, and of orderO(n3) otherwise. Much less efforts have been devoted to
the problem of generating one or moreT -transitive openings of a similarity matrix. In the
present context, we restrict ourselves to the particular problem of generating one or more of
the min-transitive openings of a similarity matrix. We willderive a new algorithm that turns
out to be very efficient compared to other algorithms. In particular, we will illustrate that
the min-transitive opening obtained by our method is in realistic applications, such as in the
domain of microbiology, on the average closer to the original matrix than the min-transitive
openings derived by other methods [5, 6]. Two more general algorithms will be proposed
for the generation of a min-transitive approximation of a given similarity relation, which
in general deviates less from the given similarity relationthan its min-transitive closure
and openings, and which is still guaranteed to be a similarity relation. Since these new
algorithms are weight-driven, they can also be used to generate layer by layer the partition
tree associated to the corresponding min-transitive approximation [7].

As a subdomain of microbiology, the ultimate goal of bacterial polyphasic taxonomy
[39] is to classify the evolutionary diversity of the prokaryotes in a way that reflects as
closely as possible the natural relationships between microorganisms. Practically, this clas-
sification is based on all available phenotypic, genotypic and phylogenetic characteristics
of a sample of bacterial strains, supplying information on different taxonomic levels. Geno-
typic data is derived from the nucleic acids (DNA and RNA) present in the cells, whereas
phenotypic data is derived from proteins and their functions, different chemotaxonomic
markers and a wide range of other expressed features. Since researchers in this field deal
with thousands of strains of bacteria, the time and space complexity of classification algo-
rithms is indeed very important. Also, since similarity matrices are generally very large
but their elements need not be stored with very high precision (e.g. round off to the second
decimal yielding 101 possible values), many matrix elements will have the same value. We
will bear this in mind when producing artificial data to test the quality of algorithms.

The outline of the present chapter is as follows. We set off with reviewing some charac-
teristics of fuzzy equivalence relations in section 3.2, followed by an overview in section
3.3 of some of the methods found in the literature for constructing theT -transitive closure
in a performant way. Section 3.4 goes deeper into the generalproperties of min-transitive
openings and their associated partition trees, from which we will derive a new algorithm for
generating a single min-transitive opening that is in general close to the original similarity
matrix compared to its other min-transitive openings. Finally, section 3.5 reviews some of
the work done on the generation of generalT -transitive approximations, where we present
two new weight-driven algorithms that produce approximative min-transitive similarity re-
lations that deviate less from the given similarity relation than are its min-transitive closure
and openings.
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3.2 Equivalence relations

The notion of a crisp equivalence relation (i.e. a reflexive,symmetric and min-transitive
binary relation) is a simple, yet important concept frequently encoutered in many math-
ematical theories. From a practical point of view, however,equivalence relations are of
limited use only, as they do not allow to express degrees of relationship, for instance prox-
imity or similarity degrees. This has led researchers already at an early stage to the theory
of fuzzy sets, and in particular to the calculus offuzzy relations[44]. Let us therefore first
recall some basic notions concerning similarity relations, triangular norms and partition
trees.

If X = {x1, x2, . . . , xn} is a finite universe with dimensionn, an equational theory
(also called asimilarity modelor proximity modelin some contexts) can be imposed on the
universeX by means of abinary fuzzy relationR.

Definition 3.2.1 A binary fuzzy relationR on a universeX is anX2 → [0, 1] mapping,
where the valueR(x, y) is a quantitative expression of the degree of relationship between
two membersx andy of the universeX.

As the issue of the current chapter is restricted to binary fuzzy relations, we will drop
the adjectivebinary further on in the text. A fuzzy relationR on a finite universeX
of cardinalityn might be represented by means of then × n matrix AR ≡ [aij]R, with
matrix elementsaij ≡ R(xi, xj) ∈ [0, 1]. If R and S are two fuzzy relations on the
same universeX, we say thatR is included inS (S containsR), denotedR ⊆ S, if
(∀(x, y) ∈ X2)(R(x, y) ≤ S(x, y)). In matrix notation we also writeAR ≤ AS. If the
fuzzy relationR is reflexive, i.e. for anyx ∈ X it holds thatR(x, x) = 1, AR has 1
everywhere on the diagonal. There also exists a weaker form of reflexivity, called local
reflexivity.

Definition 3.2.2 A fuzzy relationR on a universeX is locally reflexiveif

(∀(x, y) ∈ X2)(R(x, x) ≥ R(x, y)) . (3.1)

In the matrix representation, this means that a diagonal element is not smaller than any
element in the same row or column. Asimilarity relation R on a finite universeX is a
fuzzy relation that is reflexive and symmetric.

Definition 3.2.3 A similarity relation R on a (finite) universeX is a fuzzy relation onX
which is

(i) Reflexive: (∀x ∈ X)(R(x, x) = 1) ;

(ii) Symmetric: (∀(x, y) ∈ X2)(R(x, y) = R(y, x)) .
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The matrix representationAR of a similarity relationR is called asimilarity matrix(a sym-
metric matrix with elements in[0, 1] and 1’s on the diagonal). In a graph-theoretical envi-
ronment, a similarity relationR can be equivalently represented by means of a weighted
undirected complete graph, with the set of elements of the finite universe constituting the
vertices of the graph and the undirected edge connecting theverticesx and y carrying
weightR(x, y). This graph representation is more compact than the matrix representation,
as the symmetry of the similarity relation dictates that edges of the graph can be made
undirected. Moreover, given the reflexivity of similarity relations, loops can be removed
from the graph representation, as they can all be implicitlyregarded as 1.

Triangular norms(or t-normsfor short) were introduced in the sixties by Schweizer and
Sklar [37], as a means to generalize the triangle inequalityto probablistic metric spaces.
Since the eighties, they have been intensively applied for defining the intersection of fuzzy
sets and to model the logicaland in fuzzy logic. A t-norm is an increasing, commutative
and associative binary operation on the unit interval[0, 1] which has 1 as neutral element
[26].

Definition 3.2.4 A mappingT : [0, 1]2 → [0, 1] is called atriangular norm or t-norm, if
the following conditions are met

(i) Neutral element:(∀x ∈ [0, 1])(T (x, 1) = x) ;

(ii) Increasing: (∀(x, y, z) ∈ [0, 1]3)(x ≤ y ⇒ T (x, z) ≤ T (y, z)) ;

(iii) Commutative: (∀(x, y) ∈ [0, 1]2)(T (x, y) = T (y, x)) ;

(iv) Associative: (∀(x, y, z) ∈ [0, 1]3)(T (x, T (y, z)) ≤ T (T (x, y), z)) .

In some contexts,T (x, y) is also called theT -productof x andy, whenT is representing
a triangular norm. A triangular normT is calledidempotentif (∀x ∈ [0, 1])(T (x, x) = x).
The only triangular norm that is idempotent is theminimum operator

M(x, y) = min(x, y) . (3.2)

The minimum operator is also the largest triangular norm in the sense thatT (x, y) ≤
M(x, y) for all (x, y) ∈ [0, 1]2 and any other triangular normT . Other well-known ex-
amples of continuous t-norms are thealgebraic productP ,

P (x, y) = x y , (3.3)

theŁukasiewicz triangular normW ,

W (x, y) = max(x + y − 1, 0) , (3.4)

and thedrastic productZ, which is defined by

Z(x, y) =

{

min(x, y) if max(x, y) = 1 ,

0 otherwise.
(3.5)

The drastic product is also the smallest amongst the family of triangular norms. Both the
Łukasiewicz triangular norm and the drastic product havezero divisors, which means that
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there existx, y > 0 such thatT (x, y) = 0. The four triangular norms that were introduced
above, can be ranked in the following way

Z ≤ W ≤ P ≤ M . (3.6)

The inverse of a t-norm does not exist in general. A kind of inverse operator is nevertheless
provided by itsresidual implicator.

Definition 3.2.5 The residual implicatorIT of a t-normT is a [0, 1]2 → [0, 1] mapping
defined by

(∀(x, y) ∈ [0, 1]2)(IT (x, y) = sup{z ∈ [0, 1] |T (x, z) ≤ y}) . (3.7)

In case of a continuous t-normT andy ≤ x, IT (x, y) is the greatest solution of the equation
T (x, z) = y. Especially, we have that

IM(x, y) =

{

1 if x ≤ y ,

y if x > y ,
(3.8)

IP (x, y) =

{

1 if x ≤ y ,
y
x

if x > y ,
(3.9)

IW (x, y) = min(1 − x + y, 1) , (3.10)

and

IZ(x, y) =

{

1 if x < 1 ,

y if x = 1 .
(3.11)

The residual implicatorIT is sometimes also called thequasi-inverseof the t-normT [3].
For further reading on the properties of triangular norms, we refer to the work of Klement
et al. [26].

T -transitivity is regarded as one of the most crucial properties that can be attributed to
fuzzy relations, withT representing a triangular norm. The idea behind transitivity is that
the degree of the interaction between two elements should not be less than the degree of
any indirect chain containing other elements [18].

Definition 3.2.6 For a given t-normT , a fuzzy relationR on a universeX is calledT -
transitive, if for any(x, y, z) ∈ X3 it holds that

T (R(x, y), R(y, z)) ≤ R(x, z) . (3.12)

With the ranking of (3.6) in mind, we will also say for examplethat Łukasiewicz transi-
tivity is a weaker form of transitivity than min-transitivity, as from the above definition it
immediately follows that if a similarity relation is Łukasiewicz transitive it must equally be
min-transitive. In analogy to the case ofcrisp relations (i.e. relationsR where all elements
R(x, y) are in{0, 1}), aT -transitive similarity relation is also called aT -equivalence.
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Definition 3.2.7 A T -equivalenceR on a finite universeX is a fuzzy relation onX, which
is

(i) Reflexive: (∀x ∈ X)(R(x, x) = 1) ;

(ii) Symmetric: (∀(x, y) ∈ X2)(R(x, y) = R(y, x)) ;

(iii) T -transitive: (∀(x, y, z) ∈ X3)(T (R(x, y), R(y, z)) ≤ R(x, z)) ,

whereT represents a triangular norm.

If the property of symmetry is dropped from the definition of aT -equivalence, then the
fuzzy relation is called aT -preorder (or sometimes aT -quasi-order). Note that some
authors prefer to call fuzzy relations that conform to the properties of Definition 3.2.3
proximity relations, reserving the namesimilarity relation to describe fuzzy relations that
satisfy the properties of Definition 3.2.7.

For the special case where the triangular norm is the minimumoperator, it immediately
follows from its definition that ifR is a min-equivalence, then for any(x, y, z) ∈ X3, two of
the three elementsR(x, y), R(y, z), R(x, z) are equal while the third element is necessarily
greater than or equal to the two other elements, or stated differently

(∀(x, y, z) ∈ X3)(min{R(x, y), R(y, z), R(x, z)} = median{R(x, y), R(y, z), R(x, z)}) .
(3.13)

Based on the definition of theα-cut of a fuzzy relation, an even more simplified represen-
tation of min-equivalences can be constructed.

Definition 3.2.8 For a givenα ∈ [0, 1], thecut Rα at cutting levelα of a fuzzy relationR
on a universeX, is the crisp relation onX defined by

(x, y) ∈ Rα ⇔ R(x, y) ≥ α . (3.14)

If R has matrix representationAR, then the matrix representationARα
of Rα is given by

(aij)Rα
=

{

1 if aij ≥ α ,

0 if aij < α .
(3.15)

An important theorem states that a similarity relationR is min-transitive if and only if for
everyα ∈ [0, 1] the cutRα is min-transitive [44], hence an equivalence relation onX. The
equivalence classes ofRα constitute a partition ofX at cutting levelα. With decreasing
α, the equivalence classes tend to merge. The graph representation of this hierarchy of
equivalence classes is called thepartition treeof the min-equivalence. An alternative but
equivalent representation consists of a node-weighted binary tree with its leaf nodes repre-
senting the individual objects. This latter representation is often called thedendrogramof
a min-equivalence. Hereby, the degree of similarity between the objectsx andy coincides
with the weight of the least common ancestor in the binary tree of nodesx andy. Finally,
for the dendrogram it holds that weights of the nodes on a pathfrom a leaf node to the root
are non-increasing, where the weights of the leaf nodes are regarded as 1. Hence, the root
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Figure 3.1: Weighted undirected complete graph representation of the min-equivalenceR
associated to the min-transitive similarity matrixAR.

carries the lowest weight, which coincides with the smallest value of the min-equivalence.
The tree representation of min-equivalences is thus more compact than their correspond-
ing matrix or graph representations, due to the built-in hierarchical representation of the
min-transitivity feature of the fuzzy relations.

As an illustration of the different representations of min-equivalences, let us consider the
binary fuzzy relationR on a finite universeX = {1, 2, 3, 4, 5, 6} with matrix representation

AR =

















1.0 0.9 0.7 0.7 0.7 0.5
0.9 1.0 0.7 0.7 0.7 0.5
0.7 0.7 1.0 0.8 0.7 0.5
0.7 0.7 0.8 1.0 0.7 0.5
0.7 0.7 0.7 0.7 1.0 0.5
0.5 0.5 0.5 0.5 0.5 1.0

















. (3.16)

It can be easily shown that the fuzzy relation associated to the matrixAR is reflexive,
symmetric and min-transitive, hence a min-equivalence. Figure 3.1 shows the weighted
undirected complete graph representation of the min-equivalenceR associated to the min-
transitive similarity matrixAR. Any complete undirected subgraph composed from three
nodesi, j, k and three edges with respective weightsaij, ajk andaik, is called the(weighted)
triangle ∆ijk of the graph. It can then indeed be easily checked that for every triangle
within the graph representation of Figure 3.1, the two lowest edge weights are the same, as
was stated in (3.13). In Figure 3.2 are shown the (unique) partition tree and an associated
weighted binary tree of the min-equivalenceR. Note, that in this case the node-weighted
binary tree representation ofR is not unique, since two internal nodes, one being parent of
the other, carry the same weight. In fact, the other weightedbinary tree representation is
obtained by interchanging these two internal nodes. An equivalent (unique) representation
with general trees and weights strictly decreasing on all paths from a leaf node to the
root is also possible (see Figure 3.3). We will however restrict ourselves to binary tree
representations in the rest of this chapter, given the general bifurcation procedure through
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Figure 3.2: The partition tree (left) and a node-weighted binary tree (right) associated to
the min-transitive similarity matrixAR.
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Figure 3.3: Unique node-weighted general tree associated to the min-transitive similarity
matrixAR.

which these trees are constructed in most cases. Due to the binary structure of a node-
weighted tree associated to a min-transitive similarity matrix, each internal node possesses
exactly two branches and two associated disjoint subsets ofleaf nodes. These two subsets
will be called the twoclusters, sayC1 andC2, associated to that internal node, whereas
the internal node will be called theleast common ancestorof the two clusters. In the
example of Figure 3.2, for instance, the internal node closest to the root that carries weight
0.7 is the least common ancestor of the two clustersC1 = {1, 2, 3, 4} and C2 = {5}
associated to this node. Also note the common practice to scale the position of the internal
nodes of dendrograms according to their corresponding weights, which we have adopted
for the representation of all trees in this chapter. This helps to visualize the homogeneity or
heterogeneity of all clusters within the hierarchy, and simplifies the delineation ofα-cuts
for a given dendrogram. For the tree of Figure 3.3, one can forexample easily read that the
partition at cutting levelα = 0.75 is {{1, 2}, {3, 4}, {5}, {6}}.

A min-equivalence on a finite universe can thus be nicely visualized in a hierarchical
manner by means of its partition tree. In particular, such a tree facilitates the interpretation
of similarity relationships existing in a given set of objects and it is therefore not at all
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surprising that partition trees, also calledhierarchical clustering trees, have diverse appli-
cations. Essential for the existence of the partition tree representation of a min-equivalence,
is its defining property of min-transitivity. In many circumstances, however, similarity rela-
tions do not naturally possess this property, and consequently min-transitivity then needs to
be imposed artificially. This is for instance the case when the similarity relation is obtained
through the use of a similarity measure (e.g. the Jaccard measure [24], the Dice measure
[15], etc.) on the powerset of the set of objects under consideration, which generally results
in a weaker form ofT -transitivity or no transitivity at all [9]. Further on in this chapter we
will look for ways of calculating min-transitive approximations that are generally close to
their original similarity relation.

3.3 Transitive closure

From a practical point of view, the important question arises whether it is possible to
find (if it exists) the smallestT -transitive fuzzy relation dominating a given fuzzy relation,
or, in other words, whether it is possible to forceT -transitivity by adding minimal values
to the given fuzzy relation.

Definition 3.3.1 A fuzzy relationR̂T is called theT -transitive closureof a given fuzzy
relationR, if and only if the following conditions are met

(i) R̂T is T -transitive ;

(ii) R ⊆ R̂T ;

(iii) If R′ is T -transitive andR ⊆ R′, thenR̂T ⊆ R′ .

It is clear that theT -transitive closure, if it exists, must be unique. Indeed, if R̂T
1 and

R̂T
2 both satisfy Definition 3.3.1 for a given fuzzy relationR, then (iii ) implies R̂T

1 ⊆ R̂T
2

and R̂T
2 ⊆ R̂T

1 . This supports the use of the definite article in the definition of theT -
transitive closure. Moreover, it is shown that a fuzzy relation isT -transitive if and only if it
coincides with itsT -transitive closure [2]. A thorough investigation of the existence of the
T -transitive closure of a fuzzy relation can be found in [2, 11], where it is proven that any
fuzzy relationR on an arbitrary universeX has aT -transitive closure, for any t-normT .

The T -transitive closure of a similarity relationR can thus be regarded as the small-
estT -equivalence containingR. The studies on the existence of theT -transitive closure
of fuzzy relations [2, 11] also came up with a procedure for the construction of theT -
transitive closure for similarity relations through a series ofsup-T matrix multiplications,
which performs (in the worst case) withO(n3 log n) time complexity andO(n2) memory
requirements. Recall that thesup-T composition is defined in the following way.

Definition 3.3.2 Thesup-T compositionof two fuzzy relationsR andS on the same uni-
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verseX is the fuzzy relationR ◦T S onX defined by

R ◦T S(x, y) = sup
z∈X

T (R(x, z), S(z, y)) , (3.17)

whereT represents a triangular norm.

For finite universes, the supremum can be replaced by the maximum operator. IfAR = [rij]
andAS = [sij] are the respective matrix representations of two fuzzy relationsR andS of
cardinalityn, then the matrix representation of themax-T compositionR ◦T S is given by

(R ◦T S)ij = max
1≤k≤n

T (rik, skj) . (3.18)

Using the definition of thesup-T composition of fuzzy relations, theT -transitivity property
can be formulated more concisely, in that a fuzzy relation isT -transitive if and only if

R ◦T R ⊆ R . (3.19)

We will use the notationR(2)T := R ◦T R. As for finite universesX themax-T compo-
sition is associative for any t-normT , higher orderT -powers fork ≥ 2 can be defined
unambiguously as

R(k)T := R(k−1)T ◦T R = R ◦T R(k−1)T . (3.20)

It has been shown [2, 11] that theT -transitive closurêRT of a fuzzy relation on a universe
X with cardinalityn is given by

R̂T =
n

⋃

k=1

R(k)T , (3.21)

where∪ stands for the usualmax-based union of fuzzy sets. Also, the upper limitn can be
lowered by one unit ifR is locally reflexive. Given the fact that for locally reflexive fuzzy
relationsR on a universeX with cardinalityn, it holds that

R ⊆ R(2)T ⊆ R(3)T ⊆ . . . , (3.22)

theT -transitive closure of a similarity matrixR can thus be calculated aŝRT = R(n−1)T .
Practically, one computesRT

1 = R(2)T , RT
2 = R(4)T , . . . , RT

k = R(2k)T until RT
k = RT

k−1 or
2k ≥ n − 1. TheT -transitive closure is then given bŷRT = RT

k . This procedure is known
as thematrix method.

Many former studies have focused on the development of algorithms for the construc-
tion of the T -transitive closure, which perform better than the matrix method. Kandel
& Yelowitz [25] introduced anO(n3) column-row scanning algorithm that is basically a
reformulation of theFloyd-Warshall algorithm[32, 43], originally designed to solve the
all-to-all shortest path problem. By stating the Floyd-Warshall algorithm in abstract form,
Feijs & van Ommering [17] established a more general framework of methods that in-
cludes the so-calledgrid algorithm [38]. The traditional treatment of the Floyd-Warshall
algorithm for calculation of theT -transitive closure of ann-dimensional matrixA = [aij]
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Figure 3.4: Local min-transitive closure operation.

is based on three nested for-loops

for i from 1 to n do
for j from 1 to n do

for k from 1 to n do
ajk := max(ajk, T (aji, aik)) ;

endfor
endfor

endfor

On output, the original matrixA is overwritten with the matrix representation of theT -
transitive closure. In contrast to the matrix method, the Floyd-Warshall algorithm has the
same time complexity and storage requirements as a single matrix multiplication, respec-
tively O(n3) andO(n2). Naessenset al. [33] have introduced yet another algorithm for the
calculation of theT -transitive closure of fuzzy relations with time complexity O(n3) and
O(n2) memory needed.

For the specific case of the minimum operator as triangular norm, many algorithms have
been described in the literature that break the barrier ofO(n3) time complexity. The lo-
cal graph operation to transform a triangle that is not min-transitive into its min-transitive
closure counterpart, is to raise the minimal weight to the level of the middle weight (Fig-
ure 3.4). Note that their is only one way to perform this localoperation, which agrees to
the unicity of the min-transitive closure. An algorithm with time complexityO(n2) that
is inspired by Primm’s maximum weight spanning tree algorithm has been given by Dunn
[16]. It has been recently reformulated by Kundu [27] who hasalso indicated how in the
context of this algorithm the partition tree (called cluster-hierarchy tree) can be obtained
within O(n2) time. Lee [30] has equally succeeded to calculate the min-transitive closure
in O(n2) time, by making use of heaps. On the other hand, Larsen & Yager[28] have es-
tablished an algorithm that makes direct use of an intermediate tree representation and has
time complexityO(n2 log n) (the worst time complexity beingO(n3)). In fact, this algo-
rithm turns out to be equivalent with Kruskal’s maximum weight spanning tree algorithm.
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The so-called ascending-value method discussed in [19, 31]is yet another method with
time complexityO(n3). De Meyeret al. [13] have extended a previously derived weight-
driven algorithm for computing the min-transitive closureand associated partition tree of
a symmetric fuzzy relation inO(n2) time. We conclude the issue ofT -transitive closures
with the remark that the min-transitive closure of a similarity relation on a finite universe
is equivalent tosingle linkage clusteringwith the maximum as linkage function [36], for
which an efficient matrix update scheme exists that needs exactly n2 − 9

2
n operations [1].

3.4 Transitive openings

3.4.1 T -transitive openings of a similarity relation

In analogy with theT -transitive closure, one can ask for some largestT -equivalence
being included in a given similarity relationR. By definition, aT -transitive openingof a
fuzzy relationR is aT -transitive fuzzy relatioňRT that is included isR, such that no other
T -transitive fuzzy relation exists that containsŘT and is itself included inR.

Definition 3.4.1 A fuzzy relationŘT is called aT -transitive openingof a given fuzzy re-
lation R, if and only if the following conditions are met

(i) ŘT is T -transitive ;

(ii) ŘT ⊆ R ;

(iii) If R′ is T -transitive andŘT ⊆ R′ ⊆ R, thenR′ = ŘT .

A T -transitive opening of a fuzzy relationR is thus aT -transitive fuzzy relation that is max-
imally included inR. Therefore,T -transitive openings are also calledmaximalT -transitive
subrelationsin the literature [18]. Note that according to Definition 3.4.1, a similarity re-
lation R can have more than oneT -transitive opening, in contrast to the uniqueness of the
T -transitive closure. If, for instance,R is a similarity relation of cardinality three with
matrix elementsα ≤ β ≤ γ and if the conditionα ≥ min(β, γ) is violated, then the min-
equivalences respectively found by lowering the middle weight β to α, or by lowering the
largest weightγ to α, are the two min-transitive openings ofR, the first being in general
closer toR than the latter (more precisely, whenβ < γ). These local graph operations to
transform weighted triangles that are not min-transitive into their min-transitive opening
counterparts are shown in Figure 3.5, whereas the choice in local update transformations
gives rise to a multitude of min-transitive openings that can generally been drawn for a
given similarity relation that is not min-transitive.

In general, aT -transitive opening of a similarity relation is not necessarily symmetric,
or in other words, not necessarily aT -equivalence. The only general purpose algorithm of
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Fodor and Roubens [18], generating aT -transitive opening of a fuzzy relation, fails to pre-
serve symmetry when applied upon a symmetric fuzzy relation, which makes the algorithm
inapplicable for the construction of an approximative treerepresentation of a similarity re-
lation. This algorithm recursively calculates aT -transitive opening of a given fuzzy relation
R on the finite universeX = {x1, x2, . . . , xn} of cardinalityn in the following way

for j from 1 to n do
ŘT (x1, xj) = R(x1, xj) ;

endfor

for i from 2 to n do
for j from 1 to n do

if i > j then
ŘT (xi, xj) = min{R(xi, xj), U(xi, xj), V (xi, xj)} ;

else
ŘT (xi, xj) = min{R(xi, xj), V (xi, xj)} ;

endif
endfor

endfor

with
U(xi, xj) = min

1≤k≤n
IT (ŘT (xj, xk), R(xi, xk)) ,

and
V (xi, xj) = min

1≤k≤i−1
IT (ŘT (xk, xi), Ř

T (xk, xj)) .

Hence, this algorithm generates aT -transitive opening that has the same first row as its
originating fuzzy relation. Through simultaneous transpositions of the rows and columns
of the matrix representation associated to the fuzzy relation, the algorithm thus allows for
the generation of multiple openings of the given fuzzy relation. Note also that in general
the algorithm does not enable the calculation of allT -transitive openings for a given fuzzy
relation, not even in the special case whereT is the minimum operator, as there actually
exist min-transitive openings that have no row in common with their original similarity
relation.

The problem of generating all reflexive and symmetric min-transitive openings of a
given similarity relationR is simple whenR is injective, i.e. when all its non-diagonal
matrix elements are mutually different. For this particular case, an algorithmic solution has
been given by Leclerc [29], which progresses in the following manner. As all non-diagonal
matrix elements are mutually different, there exists in thematrix representationAR = [akl]
of the similarity relation a unique smallest matrix elementaij, that expresses the similar-
ity of the two most distant objectsxi andxj within the finite universe X. The universe
is accordingly partitioned into two subsetsXi andXj, such thatxi ∈ Xi andxj ∈ Xj.
This gives2n−2 different possibilities to divide the remaining elements of X \ {xi, xj}
over the two subsetsXi andXj. All matrix elementsakl = R(xk, xl) with xk ∈ Xi and
xl ∈ Xj are then lowered to the valueaij = R(xi, xj). To finally generate a reflexive
and symmetric min-transitive opening for the similarity relationR, the above procedure is
recursively repeated on the restricted universesXi andXj, until singleton sets or sets with



3.4. TRANSITIVE OPENINGS 105

·
·
·
·
·
·

T
T

T
T

T
T

r
i

rj

r
k

α β

γ
·
·
·
·
·
·

T
T

T
T

T
T

r
i

rj

r
k

α α

γ

-

·
·
·
·
·
·

T
T

T
T

T
T

r
i

rj

r
k

α β

γ
·
·
·
·
·
·

T
T

T
T

T
T

r
i

rj

r
k

α β

α

-

α ≤ β ≤ γ

OR

Figure 3.5: Local min-transitive opening operations.

only two elements are found. In theory, one could generate all min-transitive openings by
means of the above procedure, and evaluate which openings are closest to the originating
similarity relation, in terms of a predefined distance measure. However, Leclerc has also
proven that there exist(n − 1)! different min-transitive openings for an injective similar-
ity relation of cardinalityn [29], which turns the generation of all different openings into
an infeasible task, even for similarity relations of moderate cardinality. When operating
upon a non-injective similarity relationR, the algorithm still generates min-equivalences
that are included inR, but these are not necessarily min-transitive openings (however, all
the min-transitive openings are generated). An exception occurs whenR is crisp, in which
case Leclerc’s algorithm generates all min-transitive openings ofR and only these [23]. In
general, non-injective similarity relation thus have lessthan(n−1)! different min-transitive
openings.

In this section, we are primarily interested in the questionwhether algorithms exist that
generate a single reflexive and symmetric min-transitive opening, which is relatively close
to its originating similarity relation in comparison to other possible min-transitive openings
of that similarity relation. As far as we know, following thedivisive strategy of Leclerc,
only heuristic algorithms exist for the generation of a min-transitive subrelation, which
only result in a min-transitive opening in the majority of the cases. The classical algorithm
to calculate a reflexive and symmetric min-transitive opening for a given similarity relation
in an agglomerative way, is thecomplete linkage clusteringalgorithm [1, 36], which is
also known as thefarthest neighbour clusteringalgorithm. Further on, we will review this
algorithm in more detail, before we present a new alternative algorithm for the calculation
of a reflexive and symmetric min-transitive opening for a given similarity relation. But first
we inspect some properties of the binary tree representation of reflexive and symmetric
min-transitive openings.



106 CHAPTER 3. MIN-TRANSITIVE APPROXIMATIONS

3.4.2 The binary tree representation of min-transitive openings

According to the fact that every min-equivalence possessesat least one node-weighted
binary tree representation, any algorithm for generating areflexive and symmetric min-
transitive opening of a similarity matrixA = [aij], is essentially an algorithm that generates
a node-weighted binary tree for which the following conditions must hold:

(W1) The node weights are non-increasing on the paths from a leaf node to the root.

(W2) The weightw of an internal node with associated clustersC1 andC2, is the minimum
value of the matrix elementsaij, wherei andj run over all labels contained inC1

andC2 respectively, i.e.
w = min

i∈C1,j∈C2

aij . (3.23)

(W3) For any three clustersC1, C2, C3, such that the least common ancestor ofC1 ∪ C2

andC3 is the parent node of the least common ancestor ofC1 andC2, and such that
both ancestral nodes carry the same weight, sayλ, it must hold that

min
j∈C2,k∈C3

ajk ≤ λ . (3.24)

Clearly, condition (W1) must hold for any node-weighted binary tree representation of a
min-equivalence. Condition (W2) must hold for a binary tree representation of a symmetric
min-transitive opening of a given similarity matrixA. Indeed, suppose that the internal
node of the tree with associated clustersC1 andC2 carries the weightw′ different fromw
in (3.23). Ifw′ > w, then the tree cannot represent a min-transitive opening ofA (since at
least one element of the associated matrix is greater than the corresponding element ofA),
and if w′ < w, then the tree obtained by replacing the weightw′ by w represents a min-
equivalence containing the associated matrix and being itself contained inA. Finally, let us
suppose that condition (W3) were violated, in the sense that the binary tree representation
of a min-equivalenceA′ contained inA possesses a subtree like the one depicted on the
left-hand side of Figure 3.6, and whereµ = minj∈C2,k∈C3 ajk with µ > λ. Then, if this
particular subtree is replaced by the subtree on the right-hand side of Figure 3.6, one obtains
a node-weighted binary tree that is the representation of a min-equivalence that is contained
in A and contains the matrixA′, so thatA′ cannot be a reflexive and symmetric min-
transitive opening ofA.

We want to emphasize once more that the above conditions uponthe binary tree rep-
resentation of a reflexive and symmetric min-transitive opening of a similarity matrix are
necessary, yet not sufficient conditions.

3.4.3 The complete linkage clustering algorithm

In general, two main strategies for constructing a valid node-weighted binary tree of a
similarity relation can be distinguished,i) either by recursively splitting the set of leaf nodes



3.4. TRANSITIVE OPENINGS 107

¾
½

»
¼

¾
½

»
¼

¾
½

»
¼

¾
½

»
¼

¾
½

»
¼

¾
½

»
¼

u
l

l
l

,
,

,

u
HHHHHH

·
·

·
·

··
b

bb

u
l

l
l

,
,

,

u

T
T
T
T
TT

©©©©©©HHHH

C1 C2 C3 C1 C2 C3

λ

λ λ

µ

Figure 3.6: Tree conversion in case condition (W3) is violated.

and building the tree from the root onward (top-down approach, divisive clustering algo-
rithms), orii ) by gradually linking nodes and building the tree from the leaf-nodes onward
(bottom-up approach, agglomerative clustering algorithms). Leclerc’s algorithm is based
upon the first strategy, the complete linkage clustering algorithm upon the second. The
new min-transitive opening algorithm that will be presented further on, also falls within the
latter class of methods as it can be regarded as a modificationof the complete linkage clus-
tering algorithm. The genotypic and phenotypic bacterial features used for the construction
of similarity matrices that are applied for inducing numerical taxonomies within the field
of microbiology, are known to give more reliable measures for the close relationships be-
tween different microorganisms than for the more distant relationships (Figure 3.7, [39]).
Therefore, intuitively, it seems obvious that the succes rate for generating close openings
will be higher using an agglomerative strategy than with a divisive approach.

In order to situate more clearly the new algorithm with respect to complete linkage
clustering, let us define for a given similarity matrixA = [aij] on a finite universeX, the
degree of similarity between two clustersC1 andC2 (in general, two non-empty disjoint
subsets ofX) as

s(C1, C2) = min
i∈C1,j∈C2

aij . (3.25)

In the complete linkage clustering method, initially to each elementi is assigned a cluster
Ci = {i} and in each new step two existing clusters are merged into a new cluster as
follows: letC1, C2, . . . , Cm denote the actual clusters, then one determines the two clusters
Ci andCj for which the degree of similaritys(Ci, Cj) is maximal. If there are several
such maximal pairs, one pair is picked at random. The new cluster Ci ∪ Cj replaces the
two clustersCi, Cj, and all matrix elementsamn andanm with m ∈ Ci andn ∈ Cj are
lowered to the same values(Ci, Cj). Finally, this operational step is repeated until only one
single cluster containing all the elements remains. Note that the single linkage clustering
algorithm follows the same general agglomerative strategyas outlined above, with the only
exception that the maximum operator is used in the definitionof the cluster similarity in
(3.25).

It is clear that at the end of this repetitive process, the obtained matrix is a reflexive and
symmetric min-transitive opening of the given similarity matrix, as the conditions (W1–
W3) are trivially satisfied for the node-weighted binary tree, which can be gradually con-
structed in parallel with the generation of new clusters. Moreover, the required ordering of
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Figure 3.7: Schematic overview of the taxonomic resolutionof some of the currently used
techniques for comparing microorganisms (taken from [39] with courtesy of the author).
PFGE, pulsed-field gel electrophoresis; ARDRA, amplified rDNArestriction analysis;
RAPD, randomly amplified polymorphic DNA; AFLP, amplified fragment length polymor-
phism; MALDI-TOF-MS, matrix-assisted laser desorption ionisation time-of-flight mass
spectrometry; PCR, polymerase chain reaction; FAME, fatty acid methyl esther.

weights on the paths from the leaf nodes to the root is realised since for any three clusters
C1, C2 andC3 it holds that

s(C1 ∪ C2, C3) = min(s(C1, C3), s(C2, C3)) . (3.26)

By implementing the complete linkage clustering algorithm in an optimal way, it has
O(n2) space and time complexity [1], wheren denotes the dimension of the given matrix
(or, equivalently, the number of leaf nodes in the binary tree). Finally, note that for the
selection of two clusters possessing the actual maximum similarity, at every step all pairs
of clusters are taken into consideration. Intuitively, theassociated binary tree is therefore
expected to be usually rather well balanced.
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3.4.4 A new min-transitive opening algorithm

In the approach of the new min-transitive opening algorithm, initially also to each ele-
menti a clusterCi = {i} is assigned, whereas in each step two clusters are merged into a
single new one, until only a single cluster remains. But for the selection of the two merging
clusters we do not longer consider all pairs of clusters, in the hope to speed up the perfor-
mance of the algorithm. In fact, priority is given to the extension of one particular cluster
by one element at each step. More precisely, the construction of the binary tree is initialised
by selecting from the initial set of leaf nodes two differentnodes,i andj, for whichaij has
the largest value in the matrixA, and to merge them into the clusterC = {i, j}. From then
onwards, a typical intermediate situation is the one where just one clusterC contains more
than one element, and we search for the element not containedin C that is the most similar
to C, in other words the elementk 6∈ C for which s(C, {k}) reaches a maximum value
λ. If that maximum is attained for only onek, thenC is expanded into the new cluster
C ∪ {k}, which means that in the binary tree representation an internal node is created that
is associated to the two clustersC and{k} and carries the weightλ, whereas in the matrix
representation all elementsaik andaki with i ∈ C are lowered to the same valueλ. In
the case that in each consecutive step the maximum is attained by a single elementk, the
final binary tree is a skew tree (sometimes called a spinal or caterpillar) with node weights
strictly decreasing on the paths from a leaf node the root. Also, the associated matrix is a
reflexive and symmetric min-transitive opening ofA, due to property (3.26) (withC2 and
C3 singletons).

If, however, there is a step in which the maximumλ = s(C, {k}) is attained for more
than onek 6∈ C, say for the setK = {k1, k2, . . . , km}, then it is not allowed (unlike in the
complete linkage clustering algorithm) to pick oneki at random to joinC. Indeed, if in the
next step one of the remainingk’s, saykj, is again candidate for the merging process and
s(C ∪ {ki}, {kj}) = λ, then condition (W3) would be violated ifaij > λ and the finally
obtained binary tree would not be associated to a min-transitive opening ofA. To solve
this problem and to guarantee that condition (W3) will hold, we propose in this case to
apply in a recursive way the tree constructing mechanism explained so far, its application
now being restricted to the subset of nodesK = {k1, k2, . . . , km}, and this as long as the
weights carried by the newly created internal nodes are greater than or equal toλ. If such
a tree exists (with root node carrying weight not smaller than λ), the cluster formed by
the leaf nodes of this tree is in the next step merged at levelλ with the clusterC, and the
method continues as before; if no such tree exists, then it isallowed to pick at random
one node from the set{k1, k2, . . . , km} and to merge this single node with the clusterC at
cutting levelλ.

A more detailed description of the new algorithm is presented in the recursive pseudo-
code procedureGrowTree shown in Figure 3.8, which concerns the construction of the
node-weighted binary tree associated to a min-transitive opening. In fact, for an(n × n)
similarity matrix A the node-weighted binary tree representation of a reflexiveand sym-
metric min-transitive opening ofA is generated byGrowTree(A, S, L, 0), whereS =
{1, 2, . . . , n} denotes the initial (leaf) node set and the threshold valueλ is initially set to
0. On exit ofGrowTree, L is the subset of leaf nodes that are contained in the tree with
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root weight not strictly smaller thanλ. Note, however, that in the code only the creation
of the tree nodes is explicitly mentioned whereas the creation of pointers to parent nodes,
essential for the complete description of the tree structure, is left out. The main reason is
that for building a min-transitive opening matrix̌A of A, we don’t need this complete tree
description. Indeed, each time a new internal node is created in GrowTree, we simply
have to attribute to all matrix elementsǎij with i andj respectively in the leaf node sets of
the two linked branches, as final value the weight of that internal node.

From a comparison of the new min-transitive opening algorithm to the complete linkage
clustering algorithm, it is apparent that the average spaceand time-complexity of the former
is not worse than that of the latter. It is even expected that the multiplicative constant can be
made smaller for the new opening algorithm than for completelinkage clustering algorithm.
This has been confirmed by the many experiments that we have carried out.

3.4.5 Numerical example

Let us illustrate the new min-transitive opening algorithmby means of the following
example, where the input matrixA is given by

A =

















1.0 0.9 0.6 0.4 0.3 0.4
0.9 1.0 0.7 0.3 0.4 0.3
0.6 0.7 1.0 0.8 0.4 0.4
0.4 0.3 0.8 1.0 0.7 0.2
0.3 0.4 0.4 0.7 1.0 0.5
0.4 0.3 0.4 0.2 0.5 1.0

















. (3.27)

Initially, the procedureGrowTree is called with the complete set of leaf nodesS =
{1, 2, 3, 4, 5, 6} and the threshold valueλ = 0 as parameter values. The maximal weight
0.9 for all pairs of different nodes taken from the setS is only reached for the nodes1
and2, so that these nodes are merged into the binary tree (a) shownin Figure 3.9. For the
remaining nodes, the maximal weights = 0.6 is attained for the singleton setK = {3}. As
a result, node3 can be safely merged with the existing tree (a), leading to dendrogram (b)
of Figure 3.9. In the next step however, the maximal weights = 0.3 is found for all mem-
bers of the subset of leaf nodesK = {4, 5, 6}. Accordingly, the procedureGrowTree
is recursively called with the subset of leaf nodesS = {4, 5, 6} and the threshold value
λ = 0.3 as parameters. In this recursive call on the restricted universe, the maximal weight
0.7 is reached for the nodes4 and5, so that the dendrogram (c) of Figure 3.9 is constructed.
The last remaining node6 cannot be merged with this dendrogram, as the resulting weight
would be0.2, which is lower than the threshold valueλ = 0.3 of the recursive call. This
means that the recursive call is exited, and the two dendrograms (b) and (c) are merged
into the new tree (d) shown in Figure 3.9. Finally, node6 is merged with the previously
constructed tree (d) at level0.2, althus resulting in the dendrogram (e) that represents the
binary tree representation of an opening of the similarity matrix (3.27).

In Figure 3.10 the left and right node-weighted binary treesare the ones associated to
the min-transitive openings generated respectively by thenew opening algorithm and by
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GrowTree (A, S, L, λ)
Input : A : similarity matrix

S : subset of leaf nodes
λ : threshold value

Output on exit : L : subset of leaf nodes that are contained in the tree
with root weight not strictly smaller than λ

begin
L := ∅
if #S ≤ 1 then Exit endif
Select(i, j) ∈ S2, i 6= j, such that(∀(l,m) ∈ S2, l 6= m) (aij ≥ alm)
if aij < λ then Exit endif
Create parent of{i} and{j}: weightaij

L := {i, j}
10:
Calculatetq = minp∈L apq ∀q ∈ S \ L
s := maxq∈S\L tq
K := {k | tk = s} ≡ {k1, k2, . . . , kn}
if s < λ then Exit
else
if K = {k1} then
Create parent ofL and{k1}: weights
L := L ∪ {k1}
if S 6= L then Goto 10endif

else
GrowTree (A,K, P, s)
if P = ∅ then
Create parent ofL and{k1}: weights
L := L ∪ {k1}; Goto 10

else
Create parent ofL andP : weights
L := L ∪ P ;
if S 6= L then Goto 10endif

endif
endif

endif
end

Figure 3.8: Pseudo-code of the recursive procedureGrowTree, which is the basic building
block for a new algorithm that calculates a reflexive and symmetric min-transitive opening
and associated binary tree representation for a given similarity relation with similarity ma-
trix A.
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Figure 3.9: Intermediate trees generated by thegrowTree procedure during the construc-
tion of the min-transitive opening of the similarity matrixgiven in (3.27).

the complete linkage clustering algorithm. With the new opening algorithm this is the only
tree that can be generated, whereas the complete linkage clustering algorithm yields in one
of the intermediary steps a choice between two options (moreprecisely, also the tree with
the branches at the nodes weighted0.3 and0.2 interchanged could have been generated).
Although in this example the number of leaf nodes is small, one can easily observe that the
tree generated by the new opening algorithm is indeed skewerthan the complete linkage
tree.

For the sake of completeness, we want to draw the attention upon the fact that the matrix
AR in (3.16) is nothing but the min-transitive closure of the matrix A used in this exam-
ple. Note that the node-weighted binary tree associated toAR and given in Figure 3.3, is
structurally different from both binary trees in Figure 3.10.

It seems impossible to predict theoretically whether the new opening algorithm, which
favours the construction of a skew binary tree, yields in general a min-transitive opening
that is closer or further away from the original matrix than is the min-transitive opening
obtained by the complete linkage clustering algorithm, which favours the construction of a
more balanced binary tree. In order to see whether a definite pattern can be recognized, we
need to carry out more experiments.

3.4.6 Measurement of average deviations

We can now ask the question which of the alternative opening algorithms has resulted in
the min-equivalence that is closest to the original similarity relation, and how the different
min-transitive openings score with respect to the min-transitive closure. After all, it is not



3.4. TRANSITIVE OPENINGS 113

1 2 3 4 5 6

0.9

0.6

0.7

0.3

0.2

1 2 3 4 5 6

0.9

0.8

0.3

0.5

0.2

Figure 3.10: The dendrogram generated by algorithmGrowTree (left) and the dendro-
gram generated by the complete linkage clustering algorithm (right) for the same input
matrix (3.27).

all that unnatural to search for the min-equivalence that has the smallest deviation from the
genuine similarity model. Therefore, we first need to choosea measure for expressing the
distanced(A,B) between twon-dimensional similarity matricesA = [aij] andB = [bij].
A first option is to calculate the normalizedl1-distance between the two similarity matrices,
which is given by

l1(A,B) =
2

n(n − 1)

∑

1≤i<j≤n

|aij − bij| . (3.28)

Clearly l1(A,B) represents the average difference between two non-diagonal elementsaij

andbij, where the calculation of the average is restricted to the upper-diagonal elements of
the matrices, given the symmetry and reflexivity propertiesof the similarity matrices we
work with. An analogous normalized measure can be derived from the Euclidean distance
or l2-distance, in the following way

l2(A,B) =

√

2

n(n − 1)

∑

1≤i<j≤n

(aij − bij)
2 . (3.29)

Note that both distance measures given above fall within theunit interval [0, 1]. For the
comparison of min-transitive openings and closures, whereno new matrix element values
are introduced with respect to the original similarity matrix, and thus the precision of the
matrices is not affected, we will opt for thel1-distance given in (3.28) as the measure for
determining the deviations during the calculation of approximative min-equivalences.

For the similarity matrixA in (3.27), we obtain that the reflexive and symmetric min-
transitive opening generated by the new opening algorithm and possessing the left tree
of Figure 3.10 as associated binary tree is at distance0.113, the reflexive and symmetric
min-transitive opening generated by the complete linkage clustering algorithm and pos-
sessing the right tree of Figure 3.10 as associated binary tree at distance0.153, and the
reflexive and symmetric min-transitive closure matrixAR in (3.16) at distance0.166 from
the input matrixA. In this particular example, the new opening algorithm thusgenerates
a min-transitive opening that is closer to the original matrix than both the min-transitive
opening generated by means of the complete linkage clustering algorithm and the unique
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min-transitive closure. The question naturally arises whether this is a general trend or just
a coincidence.

In order to check this out, we have compared five algorithms for generating a reflexive
and symmetric min-transitive opening of a given similaritymatrix: two based on linkage,
namely the complete linkage algorithm (CL) and the new opening algorithm (NA), and
three based on splitting, namely three variants of Leclerc’s algorithm, named L1, L2, L3
and corresponding to different splitting heuristics for generating one particular opening out
of all openings.

More precisely, Leclerc’s splitting heuristics are definedprimarily for the case that all
relational elements are mutually different (hence, all elements in the upper triangle of the
given similarity matrix, or equivalently, all weights in the graph of the similarity relation,
are different). For each of these variants, at each step a node setK is split into two disjoint
subsetsK1 andK2. The two nodesi andj in K for whichaij actually reaches a minimum
are separated,i being attributed toK1 and j to K2. The three algorithms (L1, L2, L3)
differ in the way in which the other nodes belonging toK are divided overK1 andK2,
respectively. With variant L1 of the algorithm, nodek ∈ K goes toK1 if aik > ajk, and to
K2 otherwise. In algorithm L2, the minimal spanning tree in theweighted graph associated
to the node setK is constructed (note that(i, j) is an edge in that tree), and all neighbours in
the tree of a node attributed toK1 are attributed toK2, and vice versa. Finally, in algorithm
L3 a maximal spanning tree in the graph associated toK is constructed, the tree is split into
two subtrees by discarding the edge of minimal weight and thenodes of the two subtrees
are attributed toK1 andK2, respectively. One can easily extend each of these heuristics
to the case where equal (non-diagonal) matrix elements occur, but it should be once more
emphasized that then L1, L2 and L3 do not always yield a min-transitive opening.

A first basic experiment consisted in executing the 5 algorithms on a same arbitrary
n-dimensional similarity matrix. By a randomn-dimensional similarity matrix we mean
that its independent elements (for instance the elements inthe upper triangular part of the
matrix) are uniformely selected from the set of numbers{j · 10−N | j = 0, 1, . . . , 10N}
with N a fixed integer.1 + 10N represents the maximum number of different values in the
matrix, henceN will be called theprecisionof the matrix hereafter. Matrices generated
with the above procedure are called matrices of type-1 in thecontext of this chapter, and
denoted by the subscriptt1. For a fixed dimensionn and precisionN , the 5 algorithms are
applied to the random similarity matrixAt1 , and each time the distance betweenAt1 and
the generated min-transitive openinǧAt1 is calculated. The experiment is then repeated
100 times and the mean distances are computed for every algorithm. In Figure 3.11 these
mean distances are plotted forn = 10 as functions of the precision of the input matrix.
Figure 3.12 shows the results for the casen = 100.

From these figures we first notice that the average differencebetween non-diagonal ele-
ments is remarkably high and even approaches 0.5 for high-dimensional random similarity
matrices with many different elements. This is apparently due to the fact that random
matrices violate the transitivity condition so badly that the original elements need to be
drastically lowered in order to obtain a min-transitive opening. The splitting algorithm L2
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Figure 3.11: Comparison of five min-transitive opening algorithms acting upon 10-
dimensional random similarity matrices (type-1).

is clearly the method that, compared to the other algorithms, generates the opening that
is the least deviating from the original similarity matrix,although for smaller dimensions
the difference with the complete linkage clustering algorithm CL, which in contrast to L2
always generates a min-transitive opening, becomes irrelevant. Finally, for this type of ran-
dom matrices, the new opening algorithm NA cannot compete with the complete linkage
algorithm, except for the case where many matrix elements have the same value (i.e. for
very low precisionN ).

Since random matrices are not the kind of matrices that standmodel for the simi-
larity matrices encountered in practical applications, wehave set up a second series of
experiments in the following way. First we have generated ann-dimensional random
vector x = (x1, x2, . . . , xn) with elements uniformly selected from the set of numbers
{j · 10−N | j = 0, 1, . . . , 10N} with N a fixed integer. From this random vector we con-
structed the similarity matrixA with matrix elementsaij = aji = 1 − |xi − xj| for all
i < j, andaii = 1. Matrices generated with the above procedure are called matrices of
type-2 and denoted by the subscriptt2. This way of constructing an arbitrary similarity
matrix At2 allows to attribute toN again the meaning of the precision of the matrix. It is
also known that such a matrixAt2 possesses a weak form of transitivity, belonging to the
family of T -transitivity properties withT a triangular norm. More precisely, the matrixA
is Łukasiewicz-transitive, which means that for alli, j, k it holds that

max(aik + akj − 1, 0) ≤ aij . (3.30)

In Figure 3.13 are compared the average distances between the min-transitive open-
ings generated by the five algorithms and an initial 10-dimensional similarity matrix of
precisionN , constructed as explained above. The average distance for fixedN has been
computed by repeating the experiment 100 times. Figure 3.14describes the average dis-
tances found for 100-dimensional similarity matrices. In both figures it is however difficult
to distinguish the results for algorithm L2, as they almost completely coincide with those
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Figure 3.12: Comparison of five min-transitive opening algorithms acting upon 100-
dimensional random similarity matrices (type-1).

obtained by algorithm L1. A first observation is that algorithm L3, which also before was
outperformed by the other algorithms, now is, as far as distance to the initial matrix is
concerned, performing very badly, whereas the difference between the other methods is
quasi irrelevant. Just looking at average distance, the complete linkage algorithm might be
considered the most preferable one, the only exception being the case of very low matrix
precision, where the role of closest min-transitive opening algorithm is taken over by the
new opening algorithm. However, taking also into consideration that the new algorithm
runs faster than the complete linkage algorithm, a general preference for our algorithm can
be justified.

A yet more decisive conclusion in the same direction can be drawn from a third series
of experiments in which we try to simulate as close as possible realistic situations as the
ones encountered in bacterial taxonomy. We now start by generating ten random vectors
xi (i = 1, 2, . . . , 10) with 120 components each, uniformly selected from the unitinterval
[0, 1]. These vectors are interpreted as fuzzy feature vectors anda 10-dimensional similarity
matrix S = [sij] is built by using the Jaccard similarity measure to express the similarity
between the vectors, i.e.

sij =

∑120
k=1 min(xi(k), xj(k))

∑120
k=1 max(xi(k), xj(k))

.

One of the properties of the Jaccard measure is that the obtained similarity matrixS is
always Łukasiewicz-transitive. In order to introduce again the concept of (variable) matrix
precision, the (arbitrary) similarity matrix for which we compute a min-transitive opening
by the different methods is notS, but instead the matrixA obtained by rounding off the
elements ofS conform the required precisionN . If, for example,N = 1, then all elements
are rounded off to the first decimal digit. Note that in this operation the symmetry of the
matrix will not be destroyed, but obviously, the Łukasiewicz-transitivity might get lost.
Matrices generated according to the above procedure are called matrices of type-3 and
subscripted with the markert3.
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Figure 3.13: Comparison of five min-transitive opening algorithms acting upon 10-
dimensional similarity matrices constructed from a 10-dimensional random vector (type-2).

In Figure 3.15 we compared the average distances between themin-transitive openings
generated by the five algorithms for the arbitrary 10-dimensional Jaccard-based similarity
matrices, where for eachN averages have been computed by repeating the experiment 100
times. Note the peculiar behaviour of algorithm CL for precision N = 1. Figure 3.16 de-
scribes the average distances found for 100-dimensional arbitrary Jaccard-based similarity
matrices, which are generated in the same way explained as before, with the only difference
that we start from 100 (120-dimensional) random vectors.

From Figures 3.15-3.16, one observes that our method systematically accounts for the
smallest mean distances, irrespective of the dimensionn and of the precisionN . Almost
similar results are obtained when one starts from the Łukasiewicz min-transitive closure of
a random similarity matrix (generated with the required precision).

3.5 Alternative transitive approximations

3.5.1 T -transitive approximations of a similarity relation

Approximative min-equivalences generated as min-transitive closures or min-transitive
openings are restricted both in the sense that they do not introduce new values with re-
spect to the original similarity matrix (as minimum and maximum are the only operations
performed on the matrix elements) and they only strictly raise or lower the values of the
original similarity relations in the respective cases. In this section we will therefore investi-
gate what are the possibilities to generateT -transitive approximations in the case where it is
allowed to simultaneously increase and decrease some of thematrix elements with respect
to their initial values. Intuitively, it can be expected that this might generateT -equivalences
that are generally closer to the original similarity matrixthan are itsT -transitive closure and
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Figure 3.14: Comparison of five min-transitive opening algorithms acting upon 100-
dimensional similarity matrices constructed from a 100-dimensional random vector
(type-2).

T -transitive openings.

De Baets & De Meyer [10] recently developed the so-calledcascade methodfor ap-
proximating a similarity relation on a finite universe by a min-equivalence, which tends
to minimize the deviation between the initial similarity relation and the min-equivalence
associated to the resulting partition tree. The key conceptof this method is an alternation
strategy ofT -transitive closure andT -transitive opening operations, accomplished by using
a parameterized family of triangular normsTs, such as the Schweizer-Sklar family [37] or
the Frank family [26], for which the t-normTs gradually progresses from the Łukasiewicz
t-norm W to the minimum operatorM . Remark that if a given t-normT belongs to a
known family of triangular norms that follows the conditions described above, the cascade
method also enables the calculation of aT -transitive approximation for any given similar-
ity relation, by stopping the alternation with aT -transitive closure, instead of progressing
completely up to a min-transitive approximation.

With UPGMA clustering(unweighted pair-group method using arithmetic averages)one
also usually obtains a min-equivalence of which some elements have been raised and other
ones lowered with respect to their initial values. The obtained min-transitive approximation
is therefore on the average closer to the initial relation than are, for instance, the approxima-
tions generated by the single linkage (closure) and complete linkage (opening) clustering
algorithms. The UPGMA algorithm follows the same general agglomerative clustering
strategy as the single linkage and complete linkage algorithms, as outlined in subsection
3.4.3. In the single linkage method each cluster is characterized by the shortest link needed
to connect any member of the cluster to some other member of the cluster, whereas in the
complete linkage method each cluster is characterized by the longest link needed to connect
every member of a cluster to every other member. Instead of relying on extreme values as
in these two cases, the UPGMA method evaluates the potentialmerging of two clustersC1
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Figure 3.15: Comparison of five min-transitive opening algorithms acting upon 10-
dimensional Jaccard-based similarity matrices (type-3) derived from 10 random vectors
(with 120 components).

andC2 in terms of the average degree of similarity between the elements of the two clusters

s(C1, C2) =

∑

i∈C1,j∈C2
aij

|C1||C2|
, (3.31)

where |C| represents the cardinality of the subsetC. An alternative method based on
average linkage consists of characterizing a cluster by theaverage of all links within it, so
that the degree of similarity between two clustersC1 andC2 is regarded as

s(C1, C2) =
2
∑

i<j∈(C1∪C2) aij

|C1 ∪ C2|(|C1 ∪ C2| − 1)
. (3.32)

The method resulting from the latter cluster similarity model is calledaverage linkage
within the new groupin [1], whereas the UPGMA method is termed asaverage linkage
between merged groups. As might be expected, both methods give results which are not
radically different. There exist performant matrix updateschemes for the implementation
of both min-transitive approximation algorithms based on the average linkage cluster simi-
larity models (3.31) and (3.32) [1]. Some textbooks [1, 36] mention hierarchical clustering
techniques that are vulnerable for reversals, such as centroid linkage techniques and me-
dian linkage techniques. A reversal occurs when an object (or cluster) joins a cluster after
the cluster has formed, but joins at a higher similarity level than that at which the clus-
ter formed. In these cases the triangle inequality is not met, and with only few reversals
the dendrogram starts to look like a wiring diagram for a color television set (Figure 3.17).
Therefore, the simplicity of the hierarchical representation (and the min-transitivity) is lost,
so that these kinds of hierarchical methods are not taken into consideration here.

An inherent weakness of UPGMA clustering and its variant method, however, is that
the generated min-transitive approximation and the structure of its associated partition tree
are not invariant under permutation of the objects. In orderto get rid of this subjectivity
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Figure 3.17: Example dendrogram with one reversal.

involved during the average linkage approximation procedures, we will propose in this
section two new weight-driven algorithms for obtaining a min-transitive approximation
of a similarity relation, and we report on the tests we have carried out to compare these
algorithms to other existing approximation algorithms.

3.5.2 A first new min-transitive approximation algorithm

The UPGMA method cannot be modified in the same way as the complete linkage clus-
tering algorithm was adapted to obtain the new min-transitive opening algorithm proposed
in subsection 3.4.4. However, the procedure that was previously applied for the derivation
of weight-driven algorithms for the computation of theT -transitive closure of an arbitrary
fuzzy relationR on a finite universe [13, 33], has inspired us to modify the UPGMA method
in a similar way. A detailed description of the first new weight-driven approximation algo-
rithm that is established in this manner, is presented in thepseudo-code procedureAPX1A
of Figure 3.18.
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APX1A (R, n)

Input : R, similarity relation
n, caridinality ofR

Output : Min-transitive approximatioñR of R, with R̃(i, j) := wij

begin
S := {1, 2, . . . , n}
V := {wij = R(i, j) | (i, j) ∈ S2}
W := {(i, j) | (i, j) ∈ S2 ∧ i < j}
repeat

Select(i, j) ∈ V such that
(∀ (l,m) ∈ V ) (wij ≥ wlm)

λ := wij

Build the maximal tree with node setP such that
{i, j} ⊆ P and for any two adjacent nodes
l,m ∈ P it holds thatwlm = λ

for all (l,m) ∈ P 2 ∧ (l < m) do
V := V \ {(l,m)}
if wlm < λ then wlm = wml := λ endif

endfor
for all k ∈ S \ P do

t := maxl∈P wkl

s := 1
#P

∑

l∈P wkl

if t ≤ λ then
for all l ∈ P do wkl = wlk := s endfor

endif
endfor

until V = ∅
end

Figure 3.18: Pseudo-code of the procedureAPX1A, which calculates a reflexive and sym-
metric min-transitive approximation and associated binary tree representation for a given
similarity relationR of cardinalityn.
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In algorithmAPX1A, every edge of the complete undirected complete graph represen-
tation of the given similarity relation is selected once, whereas the selection proceeds in
descending order of the edge weights (note that weights change during the computation),
the reason for which the algorithm is called aweight-drivenalgorithm. We will refer to
the currently selected edge as thepivot edgefurther on in the text. The weight of the pivot
edge, called thepivot weight, is denoted asλ and different consecutive pivot edges can have
the same pivot weight. Once a pivot edge with weightλ is selected, two main operations
are carried out. First we construct the largest tree containing the pivot edge and of which
all the edges possess weightλ. It is called themaximal treeand its node set is denoted by
P . The weights of the edges with end points inP that are smaller thanλ are raised to the
valueλ. Remark that this local weight-lifting step is similar in nature to the min-transitive
closure. Here, the procedure actually differs from the weight-driven algorithms for calcu-
lating the min-transitive closure, in that we cannot longerwork with a single pivot edge in
all cases, but rather with a cluster of pivot edges being all edges with end points in the max-
imal treeP . Secondly, for each nodek not contained inP we consider all the triangular
subgraphs consisting of that nodek and two nodes inP . If none of the edges connecting
k to a node inP is larger thanλ, then all these edges obtain as same new weight the arith-
metic mean of their initial values. In this way, all these triangular subgraphs have been
made min-transitive, and the local weight modifications to achieve this min-transitivity are,
according to the principle of least squares, the minimal possible ones. Let us call this part
the local optimization stepof the algorithm.

The proof that algorithmAPX1A yields upon its termination a final weighted graph that
is globally min-transitive, is based on the fact that the stepwise execution of the algorithm
is equivalent to the layer-by-layer construction of the unique partition tree associated to this
approximation. However, this equivalence can also be exploited to establish a highly effi-
cient implementation of algorithmAPX1A of which the time complexity is of optimal order
O(n2). Hence, the pseudo-code formulation of the algorithm shownin Figure 3.18 should
be regarded as instructional only as it seriously differs from the optimal implementation.

Another important property of the weight-driven algorithmis that its interruption at the
stage where all pivot edges with a same pivot weight, sayαs, have been considered, yields
an intermediate similarity relation whoseα-cut coincides for allα ≥ αs with theα-cut of
the min-transitive approximation. Hence, if not the entireapproximation but only anα-cut
of it is required, the algorithm can be interrupted once all edges carrying weight greater
than or equal toαs have been considered.

Since the arithmetic mean is used as a recipe for modifying weights, the algorithm
APX1A somewhat resembles the UPGMA clustering algorithm. There are, however, two
main differences to be emphasized. Firstly, when applied toa reflexive and symmetric crisp
relation, algorithmAPX1A generates a min-transitive crisp relation that collapses with the
min-transitive closure due to the treatment of the maximal tree cluster. In fact, the local
optimization step should be never executed in this case because it no longer produces any
effect, taking only the average of zero-weighted edges. Hence, it generates for any given
crisp similarity relation a unique partition (or classification). On the contrary, the applica-
tion of the UPGMA algorithm upon a crisp relation yields, in general, a min-equivalence,
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hence a full partition tree or dendrogram. In some contexts,this fuzzification of the equiv-
alence relation might be unwanted. Secondly, the new algorithm APX1A generates an
approximation that is less biased than the UPGMA approximation and at the same time is
independent of the order in which ties are resolved in the selection of the clusters to be
aggregated. Let us illustrate this difference on the trivial example where the graph of the
given relation is a triangle with edge weights 1, 1 and 0. Thisis clearly the weighted graph
of a relation that is not min-transitive. After UPGMA clustering, the zero weight is raised
to 1/2 and one of the unit weights is lowered to 1/2, but which one of them depends on
the order in which the objects are enumerated. On the other hand, algorithmAPX1A raises
the zero weight to 1 whatever the numbering of the objects is,thereby avoiding a bias for
any one of the objects that are initially indistinguishable. This procedure is graphically
represented in Figure 3.20.

3.5.3 Numerical example

In order to get a full understanding of the new min-transitive approximation algorithm,
we will illustrate its procedure in a stepwise fashion on thesimilarity matrixAR, given by

AR =

























1.0 0.3 0.6 0.8 0.1 0.6 0.2 0.2
0.3 1.0 0.6 0.2 0.7 0.6 0.8 0.8
0.6 0.6 1.0 0.5 0.4 0.9 0.5 0.5
0.8 0.2 0.5 1.0 0.0 0.5 0.1 0.1
0.1 0.7 0.4 0.0 1.0 0.4 0.8 0.8
0.6 0.6 0.9 0.5 0.4 1.0 0.5 0.5
0.2 0.8 0.5 0.1 0.8 0.5 1.0 0.9
0.2 0.8 0.5 0.1 0.8 0.5 0.9 1.0

























. (3.33)

It can be easily checked that this similarity matrix is Łukasiewicz transitive, but not min-
transitive, as for example the triangle∆234 does not satisfy the condition given in (3.13).
Initially, the set of candidate pivot edges reaching the maximal weightλ = 0.9 is equal to
{a36,a78}. If the lexicographically first edgea36 is chosen as starting point, a maximal tree
is found withP = {3,6} as the only nodes. For all nodes outside the setP , the local op-
timization step of algorithmAPX1A has no effect, as all pairs of non-maximal edges were
already identical in the corresponding triangles of the original similarity matrixAR. A sim-
ilar situation occurs in the next iteration step, whereλ = 0.9 still holds as pivot weight of
the edgea78, and the maximal tree consists of the node setP = {7,8}. In the following iter-
ation step, the pivot weight is lowered toλ = 0.8, whereas the set of candidate pivot edges
is {a14,a27,a28,a57,a58}. Starting from the lexicographically first edgea14, the procedure
APX1A finds the maximal tree with node setP = {1,4}. Now, the local optimization step
updates the weights according to the scheme

a12, a21(0.3); a42, a24(0.2) → 0.25 ,
a13, a31(0.6); a43, a34(0.5) → 0.55 ,
a15, a51(0.1); a45, a54(0.0) → 0.05 ,
a16, a61(0.6); a46, a64(0.5) → 0.55 ,
a17, a71(0.2); a47, a74(0.1) → 0.15 ,
a18, a81(0.2); a48, a84(0.1) → 0.15 .
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Note indeed that some weights are raised while others are lowered in this stage of the
algorithm. The next pivot edgea27, also carrying weightλ = 0.8, gives rise to the maximal
tree with node setP = {2,5,7,8}. For the first time in this example, the algorithmAPX1A
has encountered a maximal tree with more than two nodes, so that for all edges connecting
pairs of nodes taken from the setP it needs to be checked whether they are smaller than
the pivot weight. In that case, they must be increased to the level of the pivot weight.
For the current example, this only happens with the weight ofedgea25 (and its symmetric
counterparta52), which is raised from the value 0.7 up to the weight 0.8 of thepivot edge.
Subsequently, during the local optimization phase, the following weights are altered

a21, a12(0.25); a51, a15(0.05); a71, a17(0.15); a81, a18(0.15) → 0.15 ,
a23, a32(0.60); a53, a35(0.40); a73, a37(0.50); a83, a38(0.50) → 0.50 ,
a24, a42(0.25); a54, a45(0.05); a74, a47(0.15); a84, a48(0.15) → 0.15 ,
a26, a62(0.60); a56, a65(0.40); a76, a67(0.50); a86, a68(0.50) → 0.50 .

The pivot weight then jumps to the levelλ = 0.55, with the set of possible pivot edges
given by{a13,a16,a34,a46}. All these edges are interconnected at theλ-level, forming the
maximal tree with node setP = {1,3,4,6}, wherein no edges need to be augmented. For
the nodes external to the maximal tree, the following updatescheme holds

a12, a21(0.15); a32, a23(0.5); a42, a24(0.15); a62, a26(0.5) → 0.325 ,
a15, a51(0.15); a35, a53(0.5); a45, a54(0.15); a65, a56(0.5) → 0.325 ,
a17, a71(0.15); a37, a73(0.5); a47, a74(0.15); a67, a76(0.5) → 0.325 ,
a18, a81(0.15); a38, a83(0.5); a48, a84(0.15); a68, a86(0.5) → 0.325 .

Remark that for example the weighta12 has been iteratively updated in the last three local
optimization steps. These latter changes to the weights make the matrix min-transitive, so
that the remaining phases of the algorithm do not lead to any modifications of the matrix
elements. The resulting tree representation is shown in dendrogram (i) of Figure 3.19, and
the associated min-equivalence deviates 0.02790 from the original similarity matrixAR,
according to the normalizedl2-distance defined in (3.29). For the sake of completeness,
in Figure 3.19 are also depicted the dendrograms associatedto the min-transitive approxi-
mations of the similarity matrixAR generated by the UPGMA algorithm (dendrogram (ii ),
l2(AR, ÃM

R ) = 0.02782), the single linkage algorithm (dendrogram (iii ), l2(AR, ÃM
R ) =

0.04831) and the complete linkage algorithm (dendrogram (iv), l2(AR, ÃM
R ) = 0.05440). In

this example, the two average linkage approximation algorithms UPGMA andAPX1A thus
score apparently better than both the min-transitive closure and the min-transitive opening
according to the complete linkage method, with a slight advantage for the result of the
UPGMA algorithm.

3.5.4 A second new min-transitive approximation algorithm

Looking back for a moment to the example of the trivial crisp triangular graph with
weights 1, 1 and 0, if one sticks to the principle that the finalweights in the graph of the min-
transitive approximating fuzzy relation should be equal, as is the case for the min-transitive
closure, one can assign that weight in such a manner that, according to the principle of
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Figure 3.19: Min-transitive approximations of the similarity matrix AR given in (3.33), ac-
cording toi) the new algorithmAPX1A, ii ) UPGMA clustering,iii ) single linkage clustering
andiv) complete linkage clustering.

least squares, the changes with respect to the initial weights are minimal. Indeed, it is well-
known that this can be accomplished by using the arithmetic mean of the initial weights,
which in this case equals 2/3. Then, the sum of the squares of the distances between the
final and initial relation isE2 = (1/3)2 + (1/3)2 + (2/3)2 = 2/3, which is lower than the
sum for the approximation generated with algorithmAPX1A, namely 1 (see Figure 3.20).

The pseudo-code procedureAPX2A depicted in Figure 3.21 takes into consideration
this local minimization of the squares of distances, and it is therefore expected that the
min-transitive approximation generated byAPX2A will, on the average, be closer to the
initial similarity relation than the min-transitive approximation generated byAPX1A. A
price to be paid for this, is that the application ofAPX2A upon a crisp relation, in general
no longer yields a crisp relation.

As one can verify, algorithmAPX2A essentially differs from algorithmAPX1A in the
way the weights of the edges belonging to the subgraph with nodes in the setP (P still
being the node set of a maximal tree) are updated. InAPX1A all weights strictly smaller
than the actual pivot valueλ are raised toλ. In APX2A all weights in the subgraph that
are not strictly greater thanλ are averaged and raised or possibly lowered to that mean
value. If none of the weights has changed, then in the subgraph there were no edges with
weights smaller thanλ and the algorithm continues as inAPX1A. If, on the other hand,
these weights have changed, then in particular the weightλ of the actual pivot edge has
been lowered. This means that this edge must be temporarily abandoned as pivot edge. In
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Figure 3.20: Illustration of the difference in the procedure of some min-transitive approx-
imation algorithms on the trivial example where the graph ofthe given relation is a non-
transitive crisp triangle with edge weights 1, 1 and 0.

a further stage of the procedure it will become pivot edge again. The validity of algorithm
APX2A, namely that the final weighted graph is the graph of a min-equivalence, can be
proven in the same way as for algorithmAPX1A.

3.5.5 Numerical example

Let us again illustrate the new min-transitive approximation algorithmAPX2A by means
of the example similarity matrixAR given in (3.33). Basically, the same scheme as outlined
in subsection 3.5.3 is followed, untila27 is chosen as pivot edge with weightλ = 0.8.
Instead of increasing the weight of the edgea25 (and its symmetric counterparta52) from
the value 0.7 up to the weight 0.8 of the pivot edge, as done by the previous approximation
algorithmAPX1A, the hierarchical cluster algorithmAPX2A updates all edges belonging
to the complete subgraph with nodes from the maximal treeP = {2, 5, 7, 8} that are not
strictly greater than the pivot weightλ = 0.8 to the average value, in the following way

a25, a52(0.7) → 0.78 ,
a27, a72(0.8) → 0.78 ,
a28, a82(0.8) → 0.78 ,
a57, a75(0.8) → 0.78 ,
a58, a85(0.8) → 0.78 .

Remark that the edgea78 of the complete subgraph with nodes inP is not taken into account
for this local averaging process, as it carries weight 0.9, which is above the value of the
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APX2A (R, n)

Input : R, similarity relation
n, caridinality ofR

Output : Min-transitive approximatioñR of R, with R̃(i, j) := wij

begin
S := {1, 2, . . . , n}
V := {wij = R(i, j) | (i, j) ∈ S2}
W := {(i, j) | (i, j) ∈ S2 ∧ i < j}
repeat

Select(i, j) ∈ V such that
(∀ (l,m) ∈ V ) (wij ≥ wlm)

λ := wij

Build the maximal tree with node setP such that
{i, j} ⊆ P and for any two adjacent nodes
l,m ∈ P it holds thatwlm = λ

q := 0 ∧ c := 0
for all (l,m) ∈ P 2 ∧ (l < m) do

if wlm ≤ λ then q := q + wlm ∧ inc(c) endif
endfor
q := q/c
if q < λ then

for all (l,m) ∈ P 2 ∧ (l < m) do
if wlm ≤ λ then wlm = wml := q endif

endfor
else

for all (l,m) ∈ P 2 ∧ (l < m) do
V := V \ {(l,m)} endfor

for all k ∈ S \ P do

t := maxl∈P wkl

s := 1
#P

∑

l∈P wkl

if t ≤ λ then
for all l ∈ P do wkl = wlk := s endfor

endif
endfor

endif
until V = ∅

end

Figure 3.21: Pseudo-code of the procedureAPX2A, which calculates a reflexive and sym-
metric min-transitive approximation and associated binary tree representation for a given
similarity relationR of cardinalityn.
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Figure 3.22: Min-transitive approximation generated by the second new algorithmAPX2A
for the similarity matrixAR given in (3.33).

pivot weight. Where the procedureAPX1A previously only raised weights at this stage
of the algorithm, the procedureAPX2A now simultaneously increases and decreases some
of the weights of the edges in the complete subgraph with nodes in P . In particular, the
weight of the actual pivot edgea27 has been lowered, so that this edge must be temporarily
abandoned as pivot edge. However, for this example, the sameedgea27 is immediately
reselected as pivot edge in the next iteration step, so that the local optimization step is
anyhow executed as if nothing had happened. The rest of the procedure runs unaltered in
comparison to the one explained in subsection 3.5.3.

As a result, the min-equivalence generated by the algorithmAPX2A has an associated
dendrogram as shown in Figure 3.22. The approximative min-equivalence deviates 0.02785
from the original similarity matrixAR, according to the normalizedl2-distance defined in
(3.29). This is only slightly better than the deviation of the min-equivalence approxima-
tion produced by the procedureAPX1A, as could be expected given the optimisation of the
second algorithm in terms of the principle of least squares,and slightly worse than the de-
viation of the min-equivalence resulting from the UPGMA hierarchical clustering method.
Moreover, it should be noted that the tree topology of both dendrograms generated by the
new approximation algorithms is identical for the example similarity matrix AR given in
(3.33). In order to see whether a definite pattern can be recognized for the deviation caused
by the min-transitive approximation algorithms touched inthis section, we will carry out
some more detailed experiments in the next subsection.

3.5.6 Measurement of average deviations

We want to compare the min-transitive approximations obtained with the procedures
APX1A andAPX2A to the approximative min-equivalences generated by calculation of the
min-transitive closure, the min-transitive opening according to the complete linkage algo-
rithm and the min-transitive approximation of the UPGMA clustering algorithm. To make
relevant statistics, quite a lot of similarity relations ofdifferent cardinalities are required.
Also, one needs to consider sufficient variations between the extreme cases of all initial
weights equal and all initial weights different. Clearly, real data are lacking to carry out
such reliable tests and one needs to construct synthetic data that simulate as much as pos-
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sible the similarity matrices arising from real experiments.

We recall from our detailed investigation of the min-transitive opening deviations in
subsection 3.4.6, that random matrices are not the kind of matrices that stand model for
the similarity matrices encountered in practical applications. Therefore, we will restrict
ourselves here to randomly generated matrices of type-2 forperforming a statistical analy-
sis on the deviations of min-equivalences generated by different approximation algorithms.
The precision of these matrices is still indicated by the integer valueN . We have carried
out tests to compare the results of five approximative min-equivalence procedures:i) the
first new approximation algorithmAPX1A where within-cluster weights are set to the pivot
weight, ii ) the second new approximation algorithmAPX2A where within-cluster weights
are averaged,iii ) the UPGMA algorithm,iv) the single linkage clustering algorithm (SL)
which generates the min-transitive closure andc) the complete linkage clustering algorithm
(CL) which generates a representative min-transitive opening. We made the distinction be-
tween two test sets of random matrices: a set of matrices of precisionN = 1 (initial weights
can take 11 possible values) and a set of matrices of precision N = 2 (initial weights can
take 101 possible values). Each of these test sets contains matrices of which the dimension
n is a tenfold situated between 10 and 100. For each dimensionn and precisionN , 1000
sample type-2 matrices have been generated. The distance between a min-transitive ap-
proximation matrix and the initial matrix was computed using the normalizedl2-distance
defined for reflexive and symmetric matrices in (3.29). Notice however that the choice
between the normalizedl1-distance andl2-distance does not drastically influences the out-
come of the statistical analysis.

In Figures 3.23 and 3.24, against the dimensionn of the type-2 input matricesAt2 are
plotted the average distances of the five approximation matricesÃt2 (denoted SL, CL, UP-
GMA, APX1A andAPX2A) with respect to an initial Łukasiewicz-transitive similarity ma-
trix. Figure 3.23 shows the results for the case of matrix precisionN = 1 (initial matrix
elements rounded up to first decimal), whereas Figure 3.24 isconcerned with matrices of
precisionN = 2 (initial matrix elements rounded up to the second decimal).It should be
noted that this fixed precision is only a property of the inputmatrices, since all further com-
putations are performed with machine accuracy. It nevertheless accounts for the number of
times on the average a same initial weight occurs in the graphof the input fuzzy relation.

It is immediately apparent from both figures that the newly generated approximations,
as well as the UPGMA-approximation, are on the average significantly closer to the initial
matrix than are the min-transitive closure and the min-transitive opening resulting from the
complete linkage clustering. This is the major explanationof the fact that the application
of average linkage clustering algorithms is far more widespread in the research area of mi-
crobial taxonomy, than is the utilization of single linkageand complete linkage clustering.
Furthermore, as far as the average distance is concerned, wesee that the differences be-
tween our new approximations and the UPGMA-approximation become obsolete once the
initial matrix elements are almost all different. This makes Figure 3.24 difficult to read, as
the curves labelledAPX1A, APX2A and UPGMA are nearly completely coincident.

With the philosophy of the new min-transitive approximation procedures in mind, it
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Figure 3.23: Averagel2-distances of five types of approximation matrices to an initial
type-2 similarity matrix of dimensionn and of precisionN = 1.
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Figure 3.24: Averagel2-distances of five types of approximation matrices to an initial
type-2 similarity matrix of dimensionn and of precisionN = 2.
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is not surprising to see that the major differences between these algorithms, as far as the
average distance is concerned, are most prominent when the number of equal elements
within the initial similarity matrices is high, as is definitely the case for the larger ma-
trix dimensions in Figure 3.23. Looking more closely at the curves in this figure, we see
that the approximation algorithmAPX1A seems to degenerate completely to the level of
the min-transitive closure for initial matrices with many ties among the matrix elements,
whereas the algorithmAPX2A yields approximations that strikingly well keep pace with
the approximations generated by the UPGMA algorithm, notwithstanding the extra level
of objectivity built into its procedure. These observations are totally in agreement with
those found for the trivial example of Figure 3.20, which means that as far as the average
distance is concerned, the local optimization of distancesbetween matrix elements also
favours the global optimization of distances. Finally, since algorithmAPX1A requires less
computational efforts than algorithmAPX2A, both in the instructional descriptions given
here as well as in their optimal implementation, we can conclude that algorithmAPX1A
should be preferred for general situations, unless the input relation is crisp or has nearly all
its elements equal.

3.5.7 Min-transitive approximations using median linkage

Throughout this section, calculation of weight averages has been consistently used as
the agglomerative operation of choice for the linkage of clusters, because of its intrinsic
qualities in minimising the error sum of squaresE2. However, a criticism of this option
could be that it leads to unnecessary intermediate levels that were not present in the original
similarity model, or stated differently, that the average linkage methods get a large part of
their benefit with respect to the min-transitive closure andopening algorithms, by affecting
the initial accuracy of the similarity matrices.

To avoid this behaviour, it is possible to replace calculations of weight averages in the
new approximation algorithms, by the value of the median among the corresponding group
of weights. As a result, the first new approximation algorithm can be implemented accord-
ing to the pseudo-code procedureAPX1M shown in Figure 3.25, while the pseudo-code
procedureAPX2M of Figure 3.26 is similarly derived from the second new approximation
algorithm. Remark that for the latter algorithm, both average weight calculations have been
replaced by the derivation of the median of the weights. Notealso that the last letter of the
name of the new approximation procedures indicates whetheraverage linkage (A) or me-
dian linkage (M) was used in the agglomerative measure when merging clusters. In case
the median value needs to be determined from an even set of weights, the median linkage
algorithms choose the maximum of the two middle weights, keeping in mind that the new
algorithms are derived from an algorithm for calculating the min-transitive closure.

When applied upon the similarity matrixAR given in (3.33), both new median linkage
approximation algorithmsAPX1M andAPX2M result in the same min-equivalence, hav-
ing an associated binary matrix representation as depictedin Figure 3.27. The approxi-
mative min-equivalence deviates 0.03763 from the initial similarity matrix AR, according
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APX1M (R, n)

Input : R, similarity relation
n, caridinality ofR

Output : Min-transitive approximatioñR of R, with R̃(i, j) := wij

begin
S := {1, 2, . . . , n}
V := {wij = R(i, j) | (i, j) ∈ S2}
W := {(i, j) | (i, j) ∈ S2 ∧ i < j}
repeat

Select(i, j) ∈ V such that
(∀ (l,m) ∈ V ) (wij ≥ wlm)

λ := wij

Build the maximal tree with node setP such that
{i, j} ⊆ P and for any two adjacent nodes
l,m ∈ P it holds thatwlm = λ

for all (l,m) ∈ P 2 ∧ (l < m) do
V := V \ {(l,m)}
if wlm < λ then wlm = wml := λ endif

endfor
for all k ∈ S \ P do

t := maxl∈P wkl

if t ≤ λ then
c := 0
for all l ∈ P do inc(c) ∧ K[c] := wkl endfor
Sort the values inK in decreasing order

s := K[b c−1
2
c + 1]

for all l ∈ P do wkl = wlk := s endfor
endif

endfor
until V = ∅

end

Figure 3.25: Pseudo-code of the procedureAPX1M, which calculates a reflexive and sym-
metric min-transitive approximation and associated binary tree representation for a given
similarity relationR of cardinalityn.
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APX2M (R, n)

Input : R, similarity relation
n, caridinality ofR

Output : Min-transitive approximatioñR of R, with R̃(i, j) := wij

begin
S := {1, 2, . . . , n}
V := {wij = R(i, j) | (i, j) ∈ S2}
W := {(i, j) | (i, j) ∈ S2 ∧ i < j}
repeat

Select(i, j) ∈ V such that
(∀ (l,m) ∈ V ) (wij ≥ wlm)

λ := wij

Build the maximal tree with node setP such that
{i, j} ⊆ P and for any two adjacent nodes
l,m ∈ P it holds thatwlm = λ

c := 0 ∧ t := 1
for all (l,m) ∈ P 2 ∧ (l < m) do

if wlm ≤ λ then inc(c) ∧ K[c] := wlm ∧ t := min(t, wlm) endif
endfor
if t < λ then

Sort the values inK in decreasing order

q := K[b c−1
2
c + 1]

for all (l,m) ∈ P 2 ∧ (l < m) do
if wlm ≤ λ then wlm = wml := q endif

endfor
else

for all (l,m) ∈ P 2 ∧ (l < m) do
V := V \ {(l,m)} endfor

for all k ∈ S \ P do

t := maxl∈P wkl

if t ≤ λ then
c := 0
for all l ∈ P do inc(c) ∧ K[c] := wkl endfor
Sort the values inK in decreasing order

s := K[b c−1
2
c + 1]

for all l ∈ P do wkl = wlk := s endfor
endif

endfor
endif

until V = ∅
end

Figure 3.26: Pseudo-code of the procedureAPX2M, which calculates a reflexive and sym-
metric min-transitive approximation and associated binary tree representation for a given
similarity relationR of cardinalityn.
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Figure 3.27: Dendrogram associated to the min-transitive approximation generated by both
the new median linkage algorithmsAPX1M andAPX2M, for the example similarity matrix
AR given in (3.33).

to the normalizedl2-distance defined in (3.29). Given the additional restrictions on the
resulting min-equivalence, it is not unexpected that this min-transitive similarity matrix
deviates somewhat more from the initial similarity matrix than are the min-equivalences
attained by the average linkage methods. However, the median methods still produce a min-
equivalence that is significantly closer to the original matrix than are the single linkage and
complete linkage clusterings. All new approximation algorithms result in min-equivalences
with the same tree topology for this example.

We have repeated the same statistical measurements for the average deviations of the
median linkage cluster methods, as in our setup for the average linkage clustering methods
(see subsection 3.5.6). Figure 3.28 shows the deviations with increasing type-2 matrix
dimensionsn for the case of matrix precisionN = 1 (initial matrix elements rounded up to
first decimal), whereas Figure 3.29 is concerned with type-2matrices of precisionN = 2
(initial matrix elements rounded up to the second decimal).The same general conclusions
can be drawn for the deviations attained with the new median linkage approximations in
comparison to the single linkage, complete linkage and UPGMA cluster algorithms, as
for the new average linkage algorithms. Note however that the extra limitations on the
accuracy of the matrix elements for the final min-transitiveapproximations, have indeed
led to that fact that the new median linkage methods have somewhat floated away from the
average linkage methods, as far as distance to the initial matrix is concerned, but still score
on average significantly better than both the single linkageand complete linkage results.

3.6 Conclusions and future perspectives

In this chapter, we have simplified the complete linkage clustering algorithm in such a
way that in realistic situations it generates a reflexive andsymmetric min-transitive opening
of a similarity matrix that is closer to the initial matrix than with other opening algorithms
and even runs faster than these algorithms. We have also established two new weight-driven
algorithms that, for generating a min-transitive approximation of a similarity relation, are
as efficient as the UPGMA clustering algorithm and yield approximations that are compa-
rably close to the given relation. Unlike the UPGMA algorithm, the new algorithms do not
directly rely on the aggregation of clusters, although the computational steps depend upon
the descending order in which weights are selected in order to locally impose the property
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Figure 3.28: Averagel2-distances of five types of approximation matrices to an initial
similarity matrix of dimensionn and of precisionN = 1.
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Figure 3.29: Averagel2-distances of five types of approximation matrices to an initial
similarity matrix of dimensionn and of precisionN = 2.
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of min-transitivity. This approach has the advantage that,at least in principle, it opens
possibilities for modifying these algorithms in two different ways, namely to establish al-
gorithms that generate aT -transitive approximation of a given similarity relation,and to
establish algorithms that generate a min-transitive approximation (a fuzzy preorder) of a
given reflexive fuzzy relation. Note that no variants of the UPGMA clustering algorithm
are known that are applicable for non-symmetric fuzzy relations.

A choice between this wealth of min-transitive approximation techniques might be
driven by a series of evaluation criteria that were pointed out during this chapter. First
of all, we have used the error sum of squares (or an equivalentdistance measure) between
the approximated min-equivalences and their original similarity matrices, as a means to es-
timate the overall impact of the approximation algorithms on the genuine similarity model.
Furthermore, some methods suffer from subjective decisionmaking during their execution.
As a result, the generated min-transitive approximations are not invariant under permuta-
tion of the objects. The time and space complexity of the algorithms can be equally im-
portant for the classification of large numbers of objects. Finally, some algorithms restrict
the search space of surrounding min-equivalences by the fact that they do not introduce
new fuzzy weight values, or stated differently, they do not affect the accuracy of the origal
similarity model. Other methods conversely tend to introduce intermediate levels of fuzzy
values, which leads in the special case of crisp similarity matrices to a fuzzification of the
equivalence model.
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Chapter 4

Application of Sliding Window
Discretization and Minimization of
Stochastic Complexity for the Analysis
of Bacterial Genotyping Fingerprints

”Science is an endless search for truth. Any representation
of reality we develop can be only partial. There is no finality,
sometimes no single best representation. There is only deeper

understanding, more revealing and enveloping representations.”

— Carl R. Woese

EVER since the pioneering developments of the computationaltechniques used in the
field of numerical taxonomy in the 1950’s, microbiologists have traditionally applied

hierarchical clustering algorithms as their mathematicaltool of choice to unravel the taxo-
nomic relationships between microorganisms. However, this total reliance on the interpre-
tation of such stratified classifications suffers from beingsubjective, in that a wide variety
of ad hocchoices must be made during their construction. On the otherhand, the employ-
ment of more profound and objective mathematical methods – such as the minimization
of stochastic complexity – for the classification of bacterial genotyping fingerprint data is
seriously hampered by the prerequisite that this kind of methods only acts upon vectorized
data representations.

In this chapter, we have sought to shatter this tradition by adopting minimization of
stochastic complexity (SC) as a new strategy for the classification of genotyping finger-
printing profiles. Because the current BinClass implementation of this iterative optimiza-
tion algorithm for classification only works upon binary feature vectors, a new technique,
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coined sliding window discretization, for the transformation of genotypic fingerprint pat-
terns into binary vector format is presented. Within the context of an extensive fluores-
cent amplified fragment length polymorphism (fAFLP) data set of 507 strains from the
Vibrionaceaefamily, that has been analysed before following a traditional approach, we
demonstrate that the new sliding window discretization results in minimal loss of the orig-
inal information content captured in the banding patterns,in comparison to a number of
alternative discretization techniques. This new multipleband matching algorithm althus
extends the microbiologist’s toolbox of data mining techniques, by enabling the application
of state-of-the-art non-hierarchical classification methods for learning the hidden bacterial
relationships behind sets of genotypic fingerprint patterns.

The novel classification generated using the BinClass software package has been sub-
jected to an in–depth comparison with the hierarchical classification of the same data set,
in order to acknowledge the applicability of the new classification strategy as a more objec-
tive approach for the classification of genotyping fingerprint patterns. Recent DNA–DNA
hybridization and 16S rRNA sequence experiments proved thatthe classification based on
SC-minimization forms separate clusters that contain the fAFLP patterns for all represen-
tatives of the speciesEnterovibrio norgevicus, Vibrio fortis, Vibrio diazothropicusandVib-
rio campbellii, whereas previous hierarchical cluster analysis had suggested more hetero-
geneity within the fAFLP patterns by splitting the representatives of the above-mentioned
species into multiple distant clusters. As a result, the newclassification methodology has
highlighted some previously unseen relationships within the biodiversity of the familyVib-
rionaceae. This new taxonomical knowledge learned from an alternative classification of
the fAFLP patterns endorses the value of combining sliding window discretization with
minimization of stochastic complexity, as a clarifying classification strategy for the analy-
sis of bacterial genotyping fingerprints.

4.1 Introduction

Bacterial taxonomy and phylogeny have a long standing tradition of relying on a small
range of hierarchical clustering algorithms to establish taxonomies based on the phenotypic
and genotypic characteristics of microorganisms, with theoutput being represented in the
form of similarity matrices and dendrograms/trees. Notwithstanding, there has been some
concern about the subjective nature of the process [80]. It is generally appreciated that
when using a hierarchical method of cluster analysis, earlydecisions in the construction
process may preclude certain meaningful groupings at laterstages [97]. Moreover, for a
given data set there might be many meaningful groupings, that each reflect different aspects
of the underlying relationships. Therefore, a single classification may give a distorted view
of the multifaceted set of patterns. Consequently, if there are several meaningful groupings,
a variety of cluster analysis techniques will be needed to reveal them all [2].

Despite new developments in microbial taxonomy towards theusage of genotypic infor-
mation, there has thus been a tendency to rely on traditionalmathematical methods for the
data analysis [80]. This is regrettable because, as a consequence, biology does not benefit
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from the modern developments in mathematics and computational techniques. Standard
hierarchical clustering algorithms are still commonly used for classification of molecular
fingerprints, as their similarity model is based on the straightforward calculation of an inter-
mediate pairwise similarity or dissimilarity matrix [2, 97]. However, the weakness of this
family of methods lies in its overwhelming variety ofad hocchoices that must be made
(e.g. the choice of a band matching algorithm, a similarity measure, a clustering method,
an optimal cluster-cutoff level), which leaves much of the subjective decision making up to
the taxonomist.

Inspired by these observations, the family of well-foundedmathematical classification
methods that are based on the optimization of an informationtheoretic expression such as
entropy [39] or stochastic complexity [41], offers the opportunity to become a valuable
complementary alternative for the hierarchical classifications used in bacterial taxonomy
[36, 37, 38, 43]. However, where hierarchical clustering methods work upon a matrix of
pairwise determined similarity or dissimilarity values asto which they can make use of both
pairwise and multiple band matching methods to compare the fingerprint patterns, these
optimization methods are designed to work directly on vectorized data sets. Application of
this kind of methods for the classification and validation ofmolecular fingerprint profiles is
thus hindered by the required additional transformation ofthe banding patterns into (binary)
vector format. We will demonstrate that several existing discretization methods may lead
to an unacceptable reduction of the information content stored in the original fingerprint
patterns of some data sets, which has a dramatic negative impact on the final classification
results.

Within the framework of this study we present a new method, termedsliding window
discretization, for the transformation of molecular banding profiles, as obtained in bacterial
genotyping, into binary vector format. Clearly these transformations need to be performed
with minimal loss of information, in order to minimize theireffect on further stages of the
data analysis. We will demonstrate in the context of a large data set of fluorescent ampli-
fied fragment length polymorphism (fAFLP, [54]) fingerprintpatterns of strains from the
family Vibrionaceae, that this sliding window method conducts the transformation with
better conservation of the original information content inrespect to other transformation
methods. This will ultimately have a beneficial effect on classifications calculated from a
vector representation of the genotypic fingerprints withinthis data set. The sliding window
discretization technique is introduced in this chapter especially for application on the clas-
sification of genotyping fingerprint patterns of bacterial strains. However, we want to stress
here that the method might be more generally applicable intoany problem domain that has
a need for transforming continuous data sets into a discreterepresentation, in most cases as
a preliminary step for further data analysis.

The current chapter sets off with a brief description on the nature of genotypic fingerprint
patterns (section 4.2) and alternative approaches to compare these molecular signatures
by matching their densitometric curves or common bands (section 4.3). Most taxonomic
publications that build on the classification of genotypic fingerprint patterns tend to give
little or no information on the way different banding profiles are matched with each other.
Therefore, we have devoted two sections of this chapter at establishing a classification of
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the different band matching algorithms found in the literature or in special-purpose software
packages designed for clustering molecular fingerprints, where we introduce some new
terminology and give a formal discussion on each of the band matching algorithms. Section
4.6 reviews several pairwise band matching algorithms, while section 4.7 discusses some
multiple band matching algorithms that belong to the familyof methods for transforming
band patterns into binary vector format. Although a member of the same family, the new
sliding window band matching algorithm is introduced separately in section 4.8, where we
give a formal definition of the method and demonstrate its procedure onto a simple artificial
example. In section 4.10, we present an overview on the application of minimization of
stochastic complexity for the classification of binary feature vectors and its implementation
in the BinClass software package.

The case study dealt with in section 4.11 is conceived as a proof of principle, where
the scientific value of sliding window discretization is proven in the framework of an ex-
tended data set of fluorescent amplified fragment length polymorphism fingerprint patterns
of Vibrionaceaestrains. Thompsonet al. [103] have analyzed this set of 507 fAFLP fin-
gerprint profiles based on a hierarchical classification using Ward’s hierarchical clustering
algorithm [119]. This algorithm does not make a direct classification of the fingerprint
patterns, but rather works upon an intermediate similarityor dissimilarity matrix. In their
paper, Thompsonet al. [103] calculated this similarity matrix using the Dice similarity
coefficientsD [25]. From the hierarchical clustering, a plain classification was derived by
selecting a rather arbitraryα–cut based on the intuition of the authors and the distribution
of type and reference strains included in the data set. We will show for this set of data
that the sliding window method scores higher compared to other discretization methods, in
that it leads to a better conservation of the information content of the original fingerprint
patterns after discrete transformation. Based on this observation, the new discretization
method was chosen as data preprocessor for reclassificationof the same set of fingerprint
patterns based on more objective foundations and without taking into account prior knowl-
edge about the group of bacterial strains. To this means, theclassification method based
on minimizing the stochastic complexity of a binary vector representation of the data [40]
was chosen as a representative method from the family of evaluation function optimization
algorithms for classification. This method has been implemented in the BinClass soft-
ware package [42], which does not not only enable the calculation of an optimal classifica-
tion in the sense of stochastic complexity, but also allows the construction of a stochastic
complexity-driven hierarchy built on top of the optimal classification [37]. Both classifica-
tions have been subjected to a profound comparison, which shows a global correspondence
between the major parts of the two groupings. However, differences found between the
classifications have stimulated the discovery of new relationships within the taxonomy of
theVibrionaceaestrains, that have been confirmed by recent DNA–DNA hybridization and
16S rDNA sequence experiments [105, 106, 107, 108]. These results prove the value of the
new methodology as an alternative classification strategy in its own right, and the general
needi) to inspect a given data set from different angles using different mathematical mod-
els, in order to get a complete picture of all the relationships present in the data, andii ) to
test the robustness of the different classifications by investigation of their concordances and
disparities, in an attempt to sort out the artefacts inherent to the usage of the classification
procedures.
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4.2 Genotypic fingerprinting techniques

Over the past two decades, molecular biologists have developed a tremendous variety
of tools and techniques that directly reflect the whole or parts of the bacterial genome.
This has led to the construction of bacterial taxonomies based on detection of the natu-
rally occurring DNA polymorphisms [30, 74]. These evolutionary polymorphisms are the
result of naturally occurring point mutations (insertions, deletions, substitutions and inver-
sions) or large scale genetic rearrangements (gene duplications and transpositions) in the
DNA, and can be detected by scoring band presence versus absence in the genotypic fin-
gerprinting patterns that are generated by, e.g., DNA amplification procedures [49, 54]. In
principle, a restriction endonuclease (or restriction enzyme) recognizes a specific sequence
of nucleotide pairs and cleaves it. These enzymes are produced naturally by bacteria as a
mechanism for attacking foreign DNA from viruses, called bacteriophages, that intend to
penetrate the bacterial DNA. This desintegration process is called adigest, and the com-
bined application of multiple enzymes creates a collectionof restriction fragments, which
are cut up pieces of the original microbial DNA. The number and locations of restriction
sites vary with nucleotide sequence.

Thepolymerase chain reaction(PCR, Figure 4.1), though strikingly simple in both its
theory and practice, is a very powerful mechanism that makesit possible to rapidly produce
huge amounts of a specific region of DNA, simply by knowledge of a little bit of the se-
quence around the desired region. PCR exponentially amplifies (makes copies of) the target
DNA sequence, given a unique pair of sequences that bracket the desired piece. First, short
sequences of DNA (calledoligonucleotides, or oligos for short) complementary to each of
the bracketing sequences are synthesized. Creating short pieces of DNA with a specific
sequence is routine technology, nowadays often performed by laboratory robots. These
pieces are calledprimers. The primers, the target DNA and the enzyme DNA polymerase
are then combined. This mixture is heated, so that the hydrogen bonds in the DNA break
and the two strands of the double helix are separated, a process commonly calleddenatu-
ration. When the mixture cools sufficiently, the primers bind to the regions around the area
of interest, and the DNA polymerase replicates the DNA downstream of the primers. By
using a heat resistant polymerase from an Archaea species that lives at high temperatures,
it is possible to rapidly cycle this iterative heating/cooling process, doubling the amount
of desired segment of DNA each time. This technology makes possible the exponential
amplification of entire DNA molecules or any specific region of DNA for which bracketing
primers can be generated [49].

For visualization of the PCR product, a sample of the DNA mixture is loaded on a gel.
A charged molecule will be accelerated when it is placed in anelectric field. Positively
charged molecules will move towards negative electrodes and vice versa. By placing the
mixture of molecules of interest in a medium and subjecting them to an electric charge, the
molecules will migrate through the medium and separate fromeach other. How fast the
molecules will move both depends on their charge and their size, because bigger molecules
experience more resistance from the medium. The resulting procedure, calledelectrophore-
sis, involves putting a spot of the mixture to be analyzed at the top of a polyacrylamide or
agarosegel, and applying an electric field for a period of time. Then the gel is stained so
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Figure 4.1: Replication of the template DNA via PCR. During step1, the DNA double helix
is denaturated so that each strand is accessible. After cooling the mixture in step 2, the
primers bind to the loose DNA strands in order to allow subsequent binding of nucleotides.
During step 3, the initial strands are copied by extending the primers, and the entire process
can repeat all over again.

that the molecules become visible. These stains appear as stripes along the gel, and are
calledbands. The location of the bands on the gel are proportional to the charge and size of
the molecules in the mixture. The intensity of the stain is anindication of the amount of the
particular molecule in the mixture. If the molecules are allthe same charge, or have charges
proportional to their size (as, for example, DNA does) then electrophoresis separates them
purely by size. Often, several mixtures are run simultaneously on a single gel. This allows
for easy calibration to standards or visual comparison of the contents of different mixtures,
showing for example the absence of a particular molecular component in one. The adja-
cent, parallel runs on the same gel are sometimes calledlanes. The higher the similarity of
the two lanes compared, the closer their cleavage pattern. For some example photographed
electrophoresis gels we refer to Figures 4.2 and 4.3, where the remains of the slots at which
the original mixtures were loaded can still be detected on top of the photographed RFLP
gel. In the first example gel, molecular weight markers loaded in lanes 1, 2, 10 and 18 were
used as the calibration standards for normalization of the lanes loaded on physically sep-
arate gels, whereas for the same purpose a reference patternof theAeromonas hydrophila
subsp.hydrophilatype strain LMG 2844T was included in lanes 1, 6, 13, 23, 26, 32, 39 and
47 of the second example gel.
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Figure 4.2: Photograph of a typical 16S RFLP gel (image kindlysupplied by B. Lanoot).
Lanes 1, 2, 10 and 18 contain a mixture of molecular weight markers, included for proper
normalization of different gels.
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Figure 4.3: Scanned image of a radioactively labelled amplified fragment length polymor-
phism (AFLP) gel (image kindly supplied by G. Huys [50]). Lanes 1, 6, 13, 23, 26, 32,
39 and 47 contain a reference pattern of theAeromonas hydrophilasubsp.hydrophilatype
strain LMG 2844T, included for proper normalization of the lanes loaded on physically
separate gels.
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4.2.1 AFLP

The DNA fingerprinting technique, known as amplified fragment length polymorphism
(AFLP, [54]), is based on the selective amplification of genomic restriction fragments by
polymerase chain reaction to differentiate bacterial strains at the subgeneric level, and con-
sists of i) the digestion of total cellular DNA with two restriction enzymes and ligation
of restriction halfsite-specific adaptors to all restriction fragments,ii ) the selective ampli-
fication of these fragments with two PCR primers that have corresponding adaptor- and
restriction-site sequences as their target sites andiii ) the electrophoretic separation of the
PCR products on a polyacrylamide or agarose gel. Only a subsetof fragments will be
amplified because the primers contain at their 3’-end one or more bases (the so-called se-
lective bases) which are complementary to nucleotides flanking the restrictions sites and the
reaction conditions are such that only perfectly matched primers will initiate DNA synthe-
sis. In the original paper of Janssenet al. [54], radioactive labelling of one of the primers
was suggested for visualization of the restriction fragments. A major improvement was
obtained by switching from radioactive labelling to fluorescently labelled primers for de-
tection of fragments in an automatic sequence apparatus [59], in which case fAFLP is used
as acronym for the technique. Compared to other molecular techniques, probably the single
greatest advantage of the AFLP technology is its sensitivity to polymorphism detection at
the total-genome level, providing useful information about the short- and long-term evo-
lution of bacterial strains. In order to fully understand the strengths and limitations of the
AFLP technique and to get an appreciation of the kind of efforts required to produce this
data used by computer scientists, a detailed description onthe application of this molecular
tool is given in subsection 4.11.2.

4.3 Comparison of fingerprint patterns

After electrophoresis, each organism is characterized by abanding pattern. Accordingly,
these patterns are a direct reflection of the genetic relationships between the bacterial strains
examined and, therefore, can be considered as molecular signatures allowing numerical
analysis for characterization, classification and identification purposes. Although regarded
somewhat deprecated since the wide-spread availability ofinexpensive personal computers
and special-purpose software packages for computational analysis, visual comparison is
still a frequently used method for the interpretation of these electrophoresis patterns. Any-
how, it is always advisable to compare the results of computer analyses with the original
gel electrophoresis patterns or their photographs in most (if not all) of the cases, even if
computer-assisted analysis is thought to be the most objective method for interpretation
[79]. This will probably avoid clear misinterpretations ofthe profiles due to unacceptable
data reductions or ill-applied transformations during thenumerical processing.

In order to enable digital processing of the molecular signature profiles, the genotyping
fingerprint patterns are usually recorded by a densitometeror line scanner which measures
the optical density at regular sample points along the gel tracks, or by a digital camera
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Figure 4.4: Examples of normalized genotyping fingerprint patterns represented as densit-
ometric curves (left), band patterns (middle) and binary vectors (right).

that rasters the optical density of the whole gel surface. Once captured on a computer,
there exist several transformation procedures for preprocessing the banding patterns into a
workable numerical format. In essence, three digitized banding pattern representations are
suitable for computational analysis: normalized densitometric curve representation, nor-
malized band pattern representation and normalized (binary) vector representation (Figure
4.4). In order to achieve any of these representations, successive computational data trans-
formations are required, as is schematically indicated in Figure 4.5. These include graphi-
cal enhancements of image quality and removal of artefacts of the electrophoresis process.
After all, high background levels can heavily reduce the discriminatory strength of the
fingerprinting techniques, hence several algorithms have been developed to subtract the
background noise at different stages of the processing chain based on power series polyno-
mial trend analysis [28], linear regression [53], Fourier smoothing of concave kernels [62]
and rolling disk removal [101].

Normalization involves standardizing the length of the fingerprinting profiles to compen-
sate for inevitable tiny fluctuations within and between gels, as the electrophoresis results
are subject to experimental error. The latter are caused by small but notable variations in
factors such as preparation of bacterial samples, chemicalcomposition of the electrophore-
sis gel medium, exposure duration and strength of the electrical field during electrophoresis
and deviations during gel digitization. To enable the normalization procedure, a reference
bacterial extract or a mixture of molecular weight markers (containing purified proteins) is
included at regular positions within the gel (external reference patterns), or loaded inline
into each lane of the gel and revealed with a different color dye or hybridization probe
(internal reference patterns). Digitized traces are aligned (brought to equal length) by
three-point quadratic interpolation techniques [28]. This is achieved by aligning a num-
ber of stable and easily recognizable peaks on the references traces, whereby the intervals
between these peaks are stretched or shrinked following theinterpolation procedure. The
non-reference traces are recalculated in the same way as theclosest neighbouring reference
trace, or as a gradual interpolation of their surrounding reference traces [115].
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Once normalized one-dimensional densitometric curves areextracted for all gel lanes,
an estimation of the similarity of two bacterial samples canbe measured directly from
their electrophoregrams. This pairwise curve matching is primarily applicable for the com-
putational analysis of very complex banding patterns, suchas those generated by poly-
acrylamide gel electrophoresis (PAGE) of cellular proteinfingerprints, for which no sim-
ple band extraction can be performed without significant loss of the information content
stored within the original profiles [79]. For these cases, the resulting fingerprint patterns
are compared without any attempt to characterize individual electrophoretic bands. Several
pairwise curve matching coefficients are discussed in greater detail in section 4.4.

Genotypic electrophoresis patterns frequently contain clearly defined peaks. In these
cases, it is more suitable to further reduce the data into a set of peak positions and the
corresponding integrated peak areas. The analysis of bandsextracted from the genotyp-
ing fingerprint profiles is usually based on a formalsimilarity modelimposed on a given
set of fingerprint patterns [65, 97]. Such similarity modelsi) describe the relatedness of
bands between different fingerprint patterns andii ) provide an agglomerative method to
quantify this relatedness. Although large numbers of existing similarity and dissimilarity
coefficients are potentially useful for quantifying the resemblance of genotyping fingerprint
data, few alternatives are available for describing the relationship between bands of differ-
ent fingerprint patterns; a process commonly referred to asband matching[81, 89, 115].
Given a set of fingerprint patterns, where each pattern is represented as a vector of band
positions, two major band matching strategies can be distinguished.

A first possible band matching strategy is to define the necessary conditions for two
bands of different fingerprints to be matched. As this kind ofmatching relations are in
general non-transitive (meaning that if a band of patternA matches with a band of pattern
B, which in turn matches with a band of patternC, the band of patternA does not neces-
sarily match with that of patternC), these types of methods will be referred to aspairwise
band matching algorithms. Three alternative pairwise matching methods – called simple
pairwise band matching, closest pairwise band matching andfirst pairwise band matching
– are further discussed in more detail in section 4.6.

Another family of band matching procedures consists of transforming the band posi-
tion representation for each fingerprint pattern into a binary vector representation, so that
band positions are mapped to vector indices. Each vector index thus corresponds to a class
of common bands among the patterns. As the mapping procedureis the same for each
individual fingerprint pattern, all patterns will be transformed to vectors of equal length.
This latter type of method will thus be referred to asmultiple band matching algorithms
or discretizationalgorithms. A straightforward method for performing this transformation,
called equal–width discretization, partitions the range of the profiles inton subintervals
of equal width [78]. The BioNumerics software package (Applied Maths, Sint-Martens-
Latem, Belgium) offers a more sophisticated data–dependentmethod for generating a vec-
torized representation of fingerprint patterns. Both methods are discussed in more detail
in section 4.7. Finally, section 4.8 is completely dedicated to another member of this band
matching family, which is an extension of the equal–width discretization with partially
overlapping band classes. We have termed this method sliding window discretization.
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Further enhancements to improve the comparability of gel lanes can be obtained by a
repetitive lateral shift procedure carried out during the similarity calculation between in-
dividual pairs of traces. The technique iteratively searches for an optimal similarity fit
along thex-axis of the fingerprinting profiles, by probing small additive [79, 115] and/or
multiplicative [89] transformations of the profiles. However, these local alignment opti-
mization methods are only applicable for pairwise pattern comparisons (both curve or band
matching), and not for multiple band matching methods.

As a final remark, we want to note that in the context of DNA sequence analysis, the
same terminology ofpairwisealigned sequences [29, 34, 73, 96, 112] andmultiplealigned
sequences [3, 18, 35, 68, 120] is used to discriminate between non-transitive and transi-
tive data representations used for matching correspondingbases in different pairs of DNA
sequences. The multiple band matching process for fingerprint patterns, that transforms a
non-transitive band representation into a transitive vector representation, can then be seen
as the analogon of multiple sequence alignment that performs the same transformation for
DNA sequence data.

4.4 Pairwise curve matching

For the computational analysis of two densitometric curvespatternsA(x) andB(x), the
curves are represented as a series ofn sample points of the optical density along thex-axis

AT = (a1, a2, . . . , an) and BT = (b1, b2, . . . , bn) . (4.1)

The ith component of each vector is the score of theith sample point as measured by the
densitometer or extracted from the digitized gel image. ThesuperscriptT indicates the
transposition of vectors. All vectors in this section are regarded as column vectors, while
row vectors are represented as transposed column vectors. Two measures make sense for
estimating the similarity between these two sampled curve vectors: thecosine measure
andPearson’s product moment correlation. Each of them is scrutinized in the following
subsections.

4.4.1 Cosine measure

In linear algebra, theinner product(or scalar product) of two vectors is given by

<A,B> = AT B =
n

∑

i=1

aibi . (4.2)

In statistics, this quantity is also known as the sum of crossproducts betweenA andB.
The inner product of a vector with itself,AT A, is known as the sum of squares forA. The
square root of the sum of squares is the Euclidean norm or length of the vector, and is
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Figure 4.6: Illustration of the inner product and geometricinterpretation of the cosine
invariance.

conventionally written as|A| or ||A||. With this notation, an alternative expression for the
inner product betweenA andB is

AT B = |A||B| cos α , (4.3)

whereα is the angle betweenA andB in then-dimensional space. In a two-dimensional
space, this relation can be depicted as in Figure 4.6. The distance fromO (the origin) toP
is |A| cos α as is well known from elementary geometry. This quantity is also the length of
the orthogonal projection ofA ontoB. The inner product then is seen to be the product of
the length ofB and the length of the projection ofA ontoB. Solving equation (4.3) for the
cosine of the angleα gives

cos α =
AT B

|A||B| =

n
∑

i=1

aibi

([

n
∑

i=1

a2
i

][

n
∑

i=1

b2
i

])1/2
. (4.4)

The cosine of the angleα can be regarded as a measure of the similarity betweenA and
B, and its value is within the interval[−1, 1]. The cosine of the angleα for two collapsing
vectors is 1 (or -1 if they have opposite directions), while the cosine for two orthogonal
vectors is 0. Therefore, it is standard procedure to calculate the cosine similarity coefficient
as COSINE(A,B) = | cos α|, which results in a similarity value within the unit interval.
The more nearly parallel the two vectors, the greater is the cosine. The cosine similarity
coefficient is independent of the length of the vectors, as isobvious from the geometry
of Figure 4.6. Algebraically, letwa andwb be two non-zero scalar constants and define
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Â = wa A andB̂ = wb B. Then

ÂT B̂

|Â||B̂|
=

n
∑

i=1

(wa ai)(wb bi)

([

n
∑

i=1

w2
a a2

i

][

n
∑

i=1

w2
b b2

i

])1/2
(4.5)

=

wa wb

n
∑

i=1

aibi

|wa wb|
([

n
∑

i=1

a2
i

] [

n
∑

i=1

b2
i

])1/2
(4.6)

= sgn(wa wb)
AT B

|A||B| , (4.7)

where sgn(wa wb) is the sign (+ or -) of the product ofwa andwb. Given the absolute value
in the expression of the cosine similarity measure, we have in a more compact notation that

COSINE(A,B) = COSINE(wa A,wb B) . (4.8)

Thus, the cosine similarity coefficient is invariant to uniform multiplicative scaling. The
geometric interpretation of this relation is also shown in Figure 4.6. Every point on the line
OA and its projection in both directions (except for the originO itself) is equivalent toA
under the cosine measure, and likewise for the lineOB andB. Thus, the cosine similarity
coefficient is a many-to-one transformation which effectively ignores the relative magni-
tudes between the vectors, hence also the relative magnitudes between the densitometric
curves that are compared.

4.4.2 Pearson’s product moment correlation

The mean values for the feature vectorsA andB representing the sampled densitometric
curves are computed as

ā =
1

n

n
∑

i=1

ai and b̄ =
1

n

n
∑

i=1

bi . (4.9)

Now, if the vector means are subtracted from the original scores, the vectors of centered
scores are obtained as

ÂT = (a1 − ā, a2 − ā, . . . , an − ā) and B̂T = (b1 − b̄, b2 − b̄, . . . , bn − b̄) . (4.10)

Note thatÂ andB̂ have zero means. The inner product of the two centered vectors is called
the scatterof A andB. The inner product of̂A with itself is the scatter ofA or the sum



158 CHAPTER 4. SLIDING WINDOW DISCRETIZATION

of squared deviations around̄a. If the scatter is divided by the number of sample pointsn,
then the covariance and variance are recognized as

cov(A,B) =
ÂT B̂

n
=

1

n

n
∑

i=1

(ai − ā)(bi − b̄) , (4.11)

var(A) =
ÂT Â

n
=

1

n

n
∑

i=1

(ai − ā)2 . (4.12)

The covariance ofA andB is also known as the product moment ofA andB. Likewise,
var(A) is the product moment ofA. Pearson’s product moment correlation [75] between
the vectorsA andB is then defined as

r = r(A,B) =

∣

∣

∣

∣

∣

cov(A,B)

[var(A)var(B)]1/2

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

n
∑

i=1

(ai − ā)(bi − b̄)

([

n
∑
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(ai − ā)2

][
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∑
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(bi − b̄)2

])1/2

∣

∣
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∣

∣

∣
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. (4.13)

Note again that absolute value is taken to limit the possiblevalues of this measure to the
unit interval. By comparing the equations (4.4) and (4.13) itis apparent thatr is equal to
the absolute value of the cosine of the angle between the centered vectorŝA andB̂.

An alternative view of the Pearson product moment correlation can be established in
terms of standardized vectors, in which the components are transformed as

a∗
i =

(ai − ā)

[(var(A)]1/2
. (4.14)

The vectorA∗ with componentsa∗
i has zero mean and unit variance. The inner product of

A∗ andB∗ is then

A∗T B∗ =

n
∑

i=1

(ai − ā)(bi − b̄)

[var(A)var(B)]1/2
, (4.15)

so thatr = A∗T B∗

n
. The Pearson correlation is actually the absolute value of the covariance

of the standardized vectors.

Since the product moment correlation is the cosine of the angle between the centered
vectors, it inherits the multiplicative invariance of the cosine. In addition, it is also invariant
under the uniform addition of a constant to each element ofA or B. Let a+

i = ai + v for
all i. Then the mean of the transformed variable isā+ = ā + v. Therefore,

a+
i − ā+ = (ai + v) − (ā + v) = ai − ā . (4.16)

Thus, the added constant is subtracted out in the process of centering the scores. The com-
bined effect of these two forms of invariance is that Pearson’s product moment correlation
coefficient is invariant to any linear transformation, thatis

r(A,B) = r(wa A + va, wb B + vb) . (4.17)
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The Pearson correlation has a stronger form of invariance than the cosine because it is
unaffected by the uniform addition of a constant to each element of a score vector. But this
same property means that the correlation coefficient is lessdiscriminating than the cosine
as for givenA andB there are many more members in the equivalence class of all linear
transformations ofA andB than in the equivalence class of all multiples ofA andB.

The essential difference between the two measures is that the cosine is based on the
original scores (deviations from the origin) while the correlation coefficient is based on
centered scores (deviations about the mean). If the origin is well established and mean-
ingfull, then the original scores have meaning in an absolute sense and the cosine is an
appropriate measure of association. If the origin is arbitary or chosen for convenience,
then the original scores are meaningfull relative to each other and to their mean, but not
relative to the origin. In this case the correlation coefficient is an appropriate measure of
association. Note that for densitometric curve patterns that represent molecular fingerprint
profiles, background noise of the gel medium and other influencing factors might result in
a linear transformation of the original signal. As the linear transformation can be different
for lanes taken from different gels (or even from the same gel), the Pearson product mo-
ment correlation is the most frequently used similarity coefficient for calculating measures
of association between fingerprint profiles represented as sampled curves.

4.5 Band matching

Let us now tackle the problem of fingerprint band matching in amore formal context.
Given a set ofm genotyping fingerprint patterns{Bi}m−1

i=0 , where each pattern is repre-
sented as a list of band positions, the total number of bands of patternBi is denoted byni.
Thekth band of patternBi is indicated asbik and the measured or derived position of this
band is denoted byxik. Without loss of generality we can assume that the range of band
positions is scaled to the unit interval, such that0 ≤ xik ≤ 1 for all i ∈ {0, . . . ,m− 1} and
all k ∈ {0, . . . , ni − 1}, and that for all patterns the bands are ordered in increasing order
of band position, such that for each bandBi it holds thatxik < xil if k < l.

In spite of the numerous normalisation preprocessing stepsapplied to genotyping fin-
gerprint data before the actual comparative analysis is executed [56, 115], small shifts in
band positions cannot be avoided [89]. Therefore, all band matching methods discussed
in this chapter have in common that they make use of the same kind of error tolerance pa-
rameterε ∈ [0, 1]. The parameterε is systematically referred to as theposition tolerance
of the band matching method, because it compensates for small drifts in the run length of
the molecules during electrophoresis. In fact, the position tolerance is the maximal allowed
shift between two bands to still consider them as being homologous, i.e. equivalent for
comparison. The position toleranceε parameter should be carefully selected for a given
data set, as too large values lead to overfitting (many non-homologous bands in the same
band class) and too small values to underfitting (many homologous bands in different band
classes). Visual inspection of the band matching result on aseries of duplicate band pat-
terns generated for the same microbial sample may hereby avoid unexpected behaviour of
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the computational results.

In the forthcoming sections, several alternative methods for performing band matching
between genotypic fingerprint patterns are formally presented. As a means to illustrate
the procedure for each of these methods, we will elaborate ona small example data set,
containing only three genotyping fingerprint patterns withthe following band position rep-
resentations

B0 = [0.092, 0.167, 0.228, 0.236, 0.351, 0.424, 0.653, 0.787, 0.849, 0.921]

B1 = [0.096, 0.147, 0.237, 0.242, 0.355, 0.420, 0.427, 0.644, 0.655, 0.662, 0.783, 0.854]

B2 = [0.104, 0.244, 0.489, 0.562, 0.833, 0.856] .
(4.18)

These example banding patterns are graphically represented in Figure 4.7.
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Figure 4.7: Graphical representation of the example band patterns given in (4.18).

4.6 Pairwise band matching

As is already stated in the name itself, pairwise band matching methods impose a sim-
ilarity model onto a given set of banding patterns, by scoring the level of relatedness for
each couple of patterns in the data set. This results in the construction of a similarity or
dissimilarity matrix, as is shown in Figure 4.8. In the previous chapter we have presented
several techniques to impose a hierarchical ordering on topof these matrices. Other meth-
ods such as multidimensional scaling (MDS, [15, 21]) or self-organizing maps (SOM, [60])
also can generate classifications for a given data set from the information in its calculated
similarity or dissimilarity matrix. The actual agglomeration of two discrete band repre-
sentations into an estimation of their overall relatednessis performed in two successive
steps. First the homologous band are identified (i.e. bands that are regarded to represent
equivalent molecules). This step is termed as band matching. Secondly, a similarity coef-
ficient is applied to quantify the number of matched or commonbands into an estimation
of the global relatedness of the two patterns. Note that the scored homology in general is
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A

B

C

Figure 4.8: Pairwise band matching.

a non-transitive property of the bands, meaning that if a band of patternA matches with a
band of patternB, which in turn matches with a band of patternC, the band of patternA
does not necessarily match with that of patternC. As a result, even if the applied similarity
coefficient is known to produce similarity matrices that possess a weak form of transitivity
(e.g. Łukasiewicz transitivity) for a given set of feature vectors [24], similarity matrices
produced by pairwise band matching methods do not conform tothe same property in all
cases, as the compared vector representation of a given bandpattern (if it exists) may vary
over its different pairwise comparisons. Three alternative pairwise band matching methods
are reviewed in this section: simple pairwise band matching, closest pairwise band match-
ing and first pairwise band matching. For a survey on similarity coefficients we refer to
[2, 97].

4.6.1 Simple band matching

Although regarded as the most basic amongst all pairwise band matching methods
(hence the selection for its name), thesimple pairwise band matching methodhas to our
knowledge never been described in literature or applied forcomparison of molecular band-
ing profiles. But, as stated before, descriptions of the used band matching strategy in the
scientific literature or in the documentation of special-purpose software packages are gen-
erally pretty vague or completely missing. In the simple pairwise band matching method,
each band of patternBi will match with each band of patternBj within a distance de-
fined by the position toleranceε. Formally, we define the simple band matching function
ms(bik, bjl) by

ms(bik, bjl) =

{

1 ⇔ |xik − xjl| ≤ ε

0 ⇔ |xik − xjl| > ε .
(4.19)

Accordingly, we say that bandbik is matched with bandbjl only if ms(bik, bjl) = 1. The
functionms(bik, Bj) denotes the number of bands of patternBj that are matched with band
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bik, and is defined by

ms(bik, Bj) = #{bjl|l = 0, . . . , (nj − 1) ∧ ms(bik, bjl) = 1} . (4.20)

Following this definition, we say that the bandbik of patternBi is matched with a band of
patternBj only if ms(bik, Bj) ≥ 1. The number of bands of patternBi that are matched
with bands of patternBj is given by the value of the functionms(Bi, Bj), defined as

ms(Bi, Bj) = #{bik|k = 0, . . . , (ni − 1) ∧ ms(bik, Bj) ≥ 1} . (4.21)

It should be clear that although the definition ofms given in (4.19) is symmetric (i.e.,
ms(bik, bjl) = ms(bjl, bik)), the same property does not hold in general for counting the
number of matched bands of the patternsBi andBj as defined in (4.21). This means that
the number of matched bands when comparing two lanes does nothave to be the same
for both lanes. We will discuss the relationship of this pairwise method with the newly
introduced sliding window discretization method further on in this chapter.

Figure 4.9 shows a graphical illustration of the simple pairwise band matching method
applied to all pairs of patterns from the example given in (4.18) with position tolerance
ε = 0.01, where all couples of bands havingms(b0k, b1l) = 1 are connected by means of a
dotted line. Note that although there is a match between the first bands of the patternsB0

andB1, and between the first bands of the patternsB1 andB2, there is no match between
the first bands ofB0 andB2 for the chosen setting of the position toleranceε. Table 4.1
shows the band matching table for the simple pairwise band matching method, containing
the valuesms(Bi, Bj) for the fingerprint patterns of the example. This band matching
matrix indeed lacks symmetry.

4.6.2 Closest band matching

In theclosest pairwise band matchingmethod each band of patternBi will match with
another band of patternBj within a distance defined by the position toleranceε, only when
these bands aremutually closestto each other. By mutually closest bandsbik andbjl we
mean that there is no band in laneBj closer to bandbik of laneBi than bandbjl, and vice
versa. Formally, we define the closest band matching function mc(bik, bjl) by

mc(bik, bjl) =



























1 ⇔















|xik − xjl| ≤ ε

(∀k′ ∈ {0, . . . , ni − 1} \ {k})(|xik − xjl| < |xik′ − xjl|)
(∀l′ ∈ {0, . . . , nj − 1} \ {l})(|xik − xjl| < |xik − xjl′|)

0 otherwise.
(4.22)

Accordingly, we say that the bandsbik andbjl are matching bands of patternsBi andBj

only if mc(bik, bjl) = 1. The functionmc(bik, Bj), defined by

mc(bik, Bj) = #{bjl|l = 0, . . . , (nj − 1) ∧ mc(bik, bjl) = 1} , (4.23)
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denotes the number of bands of patternBj that are matched with the bandbik of pattern
Bi. Following this definition, we say that the bandbik of patternBi is matched with a band
of patternBj only if mc(bik, Bj) ≥ 1. It is easy to verify thatmc(bik, Bj) ∈ {0, 1}, which
means that a band will maximally match with one other band. Together with the symmetric
property ofmc(bik, bjl) this justifies the terminology thatbik andbjl arecommonbands of
the patternsBi andBj, often used in literature where this band matching method isapplied.

Although the conditions for matching bands are more strict in this method compared
with those of the simple band matching method, the additional advantage of using the clos-
est band matching method is that there is a possible vector representation for comparing a
pair of band patterns, so that all vector matching coefficients can be applied for quantifying
the pattern relatedness. We can define the functionmc(Bi, Bj), denoting the number of
bands the patternsBi andBj have in common, by

mc(Bi, Bj) = #{bik|k = 0, . . . , (ni − 1) ∧ mc(bik, Bj) = 1} . (4.24)

Note that the functionsmc given in (4.22) and (4.24) are now both symmetric. The closest
pairwise band matching method was first introduced by Salamon et al. [89], as the band
matching component of their align-and-count matching method for automated processing
of restriction fragment length polymorphism (RFLP) fingerprint patterns ofMycobacterium
tuberculosisstrains. The authors also concluded from their experience with analyzing ex-
tensive sets of RFLP banding patterns, that the errors in fragment length measurements are
proportional to the fragment length itself, i.e. larger drifting of the molecules towards the
end of the gel lanes. As a result, the value of the position toleranceε can be made variable
along the range of the banding patterns, which is applicablefor any pairwise band matching
method.

Figure 4.10 shows a graphical representation of the closestpairwise band matching
method applied to all pairs of patterns from example (4.18) with position toleranceε = 0.01,
where all couples of bands havingmc(b0k, b1l) = 1 are connected by means of a dotted line.
Table 4.2 shows the band matching table for the closest pairwise band matching method,
containing the valuesmc(Bi, Bj) for the fingerprint patterns of the example. This band
matching matrix is now indeed symmetric.

4.6.3 First band matching

In thefirst pairwise band matchingmethod, the bands of patternsBi andBj are scanned
in increasing band position order. The first pair of bands that is within a distance defined
by the position toleranceε will match, and the focus is shifted to the next two bands. If
no match is found between the two current bands in the scanning process, then the focus is
shifted to the next of the leftmost of the two bands under investigation. This procedure is
repeated until all bands of one of the given profiles have beencompletely scanned. More
formal, bandbik is matched with bandbjl only if mf (bik, bjl) = 1, where the pseudo-code
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of the algorithm for defining the first pairwise matching function mf (bik, bjl) is given by

for k from 0 to ni-1 do
for l from 0 to nj-1 do

mf(bik,bjl) = 0;

k = 0; l = 0;
while (k < ni and l < nj) do

if |xik - xjl| ≤ ε then
mf(bik,bjl) = 1;
mf(bjl,bik) = 1;
k = k + 1; l = l + 1;

else
if (xik < xjl) then k = k + 1;
else l = l + 1;

The matching functionsmf (bik, Bj) andmf (Bi, Bj) are defined as in (4.23) and (4.24).
These functions have the same transitivity and symmetry properties as their counterpart
matching functionsmc of the closest pairwise band matching method, so that this method
also has a possible vector representation for comparing each pair of band patterns. Fur-
ther on in this chapter, we will find an indication that the BioNumerics software package
(Applied Maths, Sint-Martens-Latem, Belgium) has implemented the first pairwise band
matching method for the comparison of banding patterns, although this is not explicitly
mentioned in the supplied user documentation.

Figure 4.11 shows a graphical representation of the first pairwise band matching method
applied to all pairs of patterns from example (4.18) with position toleranceε = 0.01, where
all couples of bands havingmf (b0k, b1l) = 1 are connected by means of a dotted line. Note
the difference in behaviour of the first and closest pairwiseband matching methods for
matching the common bands of patternsB0 andB1 in the range [0.228,0.242]. Where
the closest pairwise band matching method matches the middle couple of the four bands,
the first band matching method matches both leftmost and rightmost bands. Which of the
two interpretations is more correct may depend on the natureof the banding patterns under
investigation. Table 4.3 shows the band matching table for the first pairwise band matching
method, containing the valuesmf (Bi, Bj) for the fingerprint patterns of the example. This
band matching matrix indeed also shows a symmetric property.

4.7 Multiple band matching

Multiple band matching is an alternative technique to impose a similarity model upon a
given set of fingerprinting profiles. Each multiple band matching technique describes the
band relatedness for genotyping fingerprint patterns by means of a transformation of the
band position representationBi for each pattern into a (binary) vector representationVi,
where all vectors are of equal lengthn, as is depicted in Figure 4.12. In this representation
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A
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C

Figure 4.12: Multiple feature mapping: in the context of nucleotide sequences the mapping
of homologous base pairs is called multiple sequence alignment, while in the context of
molecular fingerprint patterns, we speak of normalization when aligning the band profiles,
and band matching when mapping the individual bands.

the vector indices are treated independently, but values atcorresponding vector positions
are comparable between the different fingerprint patterns.Note that although the final rep-
resentation will be generally the same for all multiple bandmatching methods, the meaning
of the corresponding indices of vector patterns with respect to the original band patterns
will be different for each method. Which multiple band matching methods are applicable
and which choice is the best at hand will both depend on the original band patterns (loss-
lessness of transformed information) and the numerical methods one wants to apply upon
the binary vector representations (meaning of vector indices).

Although a sheer endless series of similarity coefficients exists for the transformation of
the feature vector representation of a set of patterns into asimilarity matrix, such that all
classification methods that are applied in combination withpairwise band matching meth-
ods are equally applicable for analyzing the multiple band matching results, a number of
other classification and validation tools work directly upon the vector representation. Boot-
strap analysis measures the robustness of classification methods against small perturbations
of the orginal data set, by application of asampling with replacementprocedure. This arti-
ficial resampling process can only be mimicked on vector representations. But apparently
the most interesting opportunity offered by a vector representation of the original dataset,
is the possiblity to calculate and compare several group statistics for a selection of patterns:
i) group representatives can be determined as average feature vectors,ii ) the homogeneity
or heterogeneity of a group can be measured as the overall variance of the group, andiii )
features that most abundantly differentiate a given group from other groups can be traced
for, amongst many others. Several well-known classification and identification methods
explicitely make use of these group statistics for the execution of their procedure: mini-
mization of stochastic complexity,k-means, fuzzyc-means, principal component analysis
(PCA), artificial neural networks (ANN), support vector machines (SVM). In this chap-
ter we review three multiple band matching techniques, being equal-width discretization,
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histogram-based discretization and a new method called sliding window discretization.

4.7.1 Equal–width band matching

By far being the simplest and most frequently used discretization method, theequal–
width multiple band matchingmethod partitions the unit interval∆ = [0, 1] into n non-
overlapping contiguous subintervals∆k,(k=0,...,n−1) of equal widthε, defined by

{

∆k = [∆l
k, ∆

r
k[ = [kε, (k + 1)ε[, k = 0, . . . , n − 2

∆n−1 = [∆l
n−1, ∆

r
n−1] = [(n − 1)ε, nε] .

(4.25)

As was the case for all previous band matching methods presented in the current chapter,
the interval widthε will be called the position tolerance of the equal-width method and it
can be derived from the vector lengthn as

ε =
1

n
, (4.26)

or vice versa. Each band of fingerprint patternBi will be mapped to the unique interval∆k

that contains this band, so that the vectorVi can be constructed as

yik =

{

1 if (∃j ∈ {0, . . . , bi − 1})(xij ∈ ∆k)

0 otherwise.
(4.27)

This results in a many-to-one mapping between bands in the band pattern representation
and vector indices in the vector representation. Therefore, we say that the band:index rela-
tionship for this method is aN :1 relationship. A similar discretization method, known as
equal-frequency discretization, divides the unit interval inton subintervals such that the to-
tal number of features of all patterns is equally distributed over the different bins. Because
this method seems less applicable for the vector transformation of fingerprint patterns, we
will not go deeper into this technique here. A serious drawback of the equal-width dis-
cretization method for the vectorization of molecular banding patterns is that homologous
bands that are located relatively close together in light ofthe position toleranceε, might
still end up in neighbouring band classes, given the sharp boundaries drawn between these
non-overlapping classes. Nevertheless, this method has sporadicly been applied in studies
involving molecular fingerprint patterns where vector representations were needed [78],
which has definitely not contributed to the popularity of multiple band matching for finger-
print patterns.

Application of the equal–width discretization method to the fingerprint patterns of the
example given in (4.18), with the vector length set ton = 14 (henceε = 0.071), results in
the vector representation shown in Figure 4.13, where each vector indexk is labeled with
its corresponding subinterval∆k. It is standard procedure to discard the vector indexes that
are zero for all generated patterns, either directly from the vector representation or during
similarity and group statistics calculations.
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Figure 4.13: Equal-width discretization of the fingerprintpatterns from example (4.18) into
n = 14 band classes.

4.7.2 Histogram–based band matching

Thehistogram–based multiple band matchingmethod given here is implemented in the
BioNumerics software package (Applied Maths, Sint-Martens-Latem, Belgium; personal
communication with P. Vauterin), where it is simply termedband matching. This method
uses a data-dependent one-to-one mapping between bands in the band pattern representa-
tion and vector indices in the vector representation. This means that each band is mapped
to one and only one vector index and maximally one band is mapped to a certain vector
index for each fingerprint pattern. Therefore, we say that the band:index relationship is a
1:1 relationship. The method uses the following algorithm for mapping band positions to
vector indices.

1. Create a band–appearance histogram for all band positionsof all fingerprint patterns
Bi, where each band contributes to each histogram bin within the position tolerance
region (ε-region) of the band location. In the BioNumerics implementation, the con-
tribution to the histogram is constant over the wholeε-region, but other schemes are
equally possible, such as triangular contributions where the contribution is one at the
band position and zero at a distance from the band position greater than or equal to
the position toleranceε.

2. If the optimization parameter is used, each fingerprint profile is shifted within the
optimization interval such that the sum of the histogram values at the band positions
of the profile reaches a maximum.

3. Create a new band class at the position where the histogram reaches its maximal
value. This band class will correspond with a vector index inthe vector representa-
tion of the fingerprint patterns.

4. For each fingerprint pattern, the closest unassigned bandis assigned to the newly
created band class if there is such a band of the pattern within the given position
toleranceε.

5. Recreate the band–appearance histogram in the same way as described in step 1, only
taking into account the currently unassigned bands.

6. While there are unassigned bands, repeat the procedure from step 3 onwards.

The histogram–based multiple band matching method resultsin very compact vector rep-
resentations, having no indices that are zero–valued for all patterns. On the other hand, it
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Figure 4.14: Histogram–based multiple discretization of the example fingerprint patterns,
with the parameterε set to0.01 and no optimization.

heavily depends on the idea that each band position in the band representation of the finger-
print corresponds perfectly with a band in the original pattern. For very complex fingerprint
patterns however, it is not always obvious to extract clearcut band positions from the orig-
inal fingerprint pattern using an automated band extractionalgorithm, the naked eye, or a
combination of both techniques. In fact, for many fingerprinting techniques the notion of
a band is rather artificial taken into account the different interpolation effects that occur
during the electrophoresis. The histogram–based algorithm thus fails in situations where
the resolution of bands within a pattern is very close to or even lower than the lateral shift
due the normalisation and band extraction errors, because the algorithm forces two bands
of the same fingerprint pattern that are within the position toleranceε into different band
classes. A highly similar algorithm is implemented within the LecPCR software package
presented by Mougelet al. [72].

Applying the histogram–based multiple band matching algorithm to the example given
in (4.18) with the position tolerance parameterε set to0.01 and no optimization, results in
the vector representation of the fingerprint patterns as given in Figure 4.14. In this represen-
tation, each vector indexk is labeled with the average band position of all bands associated
to the corresponding band class. For convenience of comparison with the original banding
patterns, the vector indices are reordered in increasing order of average band position.

4.8 Sliding window discretization

In the previous section we have indicated how application ofthe equal-width method
for discretization of molecular fingerprint patterns suffers from drawing sharp boundaries
around its non-overlapping band classes. Histogram–basedmultiple band matching, a dis-
cretization method that introduces the concept of overlapping band classes, on the other
hand, is unsuccessful in dealing with complex banding patterns as it forces each band into
a separate band class, hereby neglecting the putative artefacts of prior band extraction pro-
cedures that may distort peaks in the original scanned profile. After all, our experience
with band extractions for several types of molecular fingerprinting techniques learns that
peaks of nearly identical size or peaks showing shoulders intheir densitometric curve are
often inconsistenly extracted as one single band or as multiple closely located bands for
different fingerprint patterns, both by human and computer-assisted band extraction algo-
rithms. The human brain is surprinsingly capable of compensating for such discrepancies
when performing visual comparisons, whereas computational methods often fail to have
built-in capabilities to explicitely accomodate for this kind of inconsistencies. Therefore,
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we introduce sliding window discretization as a new method for multiple band matching
that combines the strengths of the two previous methods and can be made insensitive to
most artefacts of the band extraction procedures by meticulous selection of its parameters.

As the sliding window discretization method is yet another member of the family of
multiple band matching algorithms, it also transforms the band position representationBi

of each fingerprint pattern into a (binary) vector representation Vi, where all vectors are
of equal lengthn. The binary value at thekth index of vectorVi will be noted asyik.
The sliding window discretization method definesn subintervals∆k,(k=0,...,n−1) of the unit
interval∆ = [0, 1] as

{

∆k = [∆l
k, ∆

r
k[ = [kδ, kδ + ε[, k = 0, . . . , n − 2

∆n−1 = [∆l
n−1, ∆

r
n−1] = [(n − 1)δ, (n − 1)δ + ε] .

(4.28)

These subintervals∆k are of equal widthε. The position tolerance parameterε of the
method must be chosen such that

1

n
≤ ε < 1 , (4.29)

and the parameterδ, called theresolutionof the method, must be chosen in respect to the
parametersn andε such that

δ =
1 − ε

n − 1
. (4.30)

Whenδ = ε = 1
n
, the sliding window discretization method is reduced to theequal–width

method that is described in subsection 4.7.1. For all other values of the parameterε, one has
δ < ε, which means that the subintervals∆k are overlapping. This discretization method
thus scans the full range of the fingerprint patterns througha window of lengthε at some
regular intervals with intermediate distanceδ. Each band of fingerprint patternBi will be
mapped to all intervals∆k that contain this band, so that the vectorVi can be constructed
as

yik =

{

1 if (∃j ∈ {0, . . . , bi − 1})(xij ∈ ∆k)

0 otherwise.
(4.31)

This results in a many-to-many mapping between bands in the band pattern representation
and vector indices in the vector representation. Therefore, we say that the band:index
relationship for this method is aN :N relationship.

There is another interpretation for the sliding window discretization method, which re-
lates it to the histogram–based multiple band matching method described in subsection
4.7.2. In this interpretation, the unit interval [0,1] is partitioned in equal–width subintervals
of lengthδ, and the bands contribute to all subintervals that are within a distance defined
by the position toleranceε of the actual band position. As such, the bands are not seen as
located on a fixed point but merely represent a region around the band position. This point
of view also explains why we callδ the resolution of the sliding window discretization
method. For some applications the introduction of dependencies among the features may
be unwanted.

Application of the sliding window discretization method onto the fingerprint patterns
of the example given in (4.18), with the vector length set ton = 40 and the position



4.9. BAND PATTERN SIMILARITY QUANTIFICATION 173

Jaccard(Bi, Bj) Dice(Bi, Bj) Jeffrey’s x(Bi, Bj)

ms - ms(Bi,Bj)+ms(Bj ,Bi)

ni+nj

1
2

(

ms(Bi,Bj)

ni
+

ms(Bj ,Bi)

nj

)

mc
mc(Bi,Bj)

ni+nj−mc(Bi,Bj)

2mc(Bi,Bj)

ni+nj

1
2

(

mc(Bi,Bj)

ni
+

mc(Bi,Bj)

nj

)

mf
mf (Bi,Bj)

ni+nj−mf (Bi,Bj)

2mf (Bi,Bj)

ni+nj

1
2

(

mf (Bi,Bj)

ni
+

mf (Bi,Bj)

nj

)

mij
m11

m11+m10+m01

2m11

2m11+m10+m01

1
2

(

m11

m11+m10
+ m11

m11+m01

)

Table 4.4: Difference in similarity coefficient implementations when combined with alter-
native band matching algorithms.

tolerance set toε = 0.05, results in the vector representation as shown in Figure 4.15. The
resolution of the sliding window discretization methodδ is 0.0244 for this case. Again, the
vector indexes that are zero for all generated patterns can be discarded either directly from
the vector representation or during similarity and group statistics calculations, in order to
control the total length of the vectors.

0 0 1 1 1 0 0 0 1 1 1 0 0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0

0 1 1 1 1 1 1 1 1 1 0 0 1 1 1 1 1 1 0 0 0 0 0 0 1 1 1 1 0 0 1 1 1 1 1 1 0 0 0 0

0 1 1 1 1 1 1 1 1 1 0 0 1 1 1 1 1 1 0 0 0 0 0 0 1 1 1 0 0 0 1 1 1 1 1 1 1 1 0 0

[0
.0

00
0,

0.
05

00
[

[0
.0

24
4,

0.
07

44
[

[0
.0

48
7,

0.
09

87
[

[0
.0

73
1,

0.
12

31
[

[0
.0

97
4,

0.
14

74
[

[0
.1

21
8,

0.
17

18
[

[0
.1

46
2,

0.
19

62
[

[0
.1

70
5,

0.
22

05
[

[0
.1

94
9,

0.
24

49
[

[0
.2

19
2,

0.
26

92
[

[0
.2

43
6,

0.
29

36
[

[0
.2

67
9,

0.
31

79
[

[0
.2

92
3,

0.
34

23
[

[0
.3

16
7,

0.
36

67
[

[0
.3

41
0,

0.
39

10
[

[0
.3

65
4,

0.
41

54
[

[0
.3

89
7,

0.
43

97
[

[0
.4

14
1,

0.
46

41
[

[0
.4

38
5,

0.
48

85
[

[0
.4

62
8,

0.
51

28
[

[0
.4

87
2,

0.
53

72
[

[0
.5

11
5,

0.
56

15
[

[0
.5

35
9,

0.
58

59
[

[0
.5

60
3,

0.
61

03
[

[0
.5

84
6,

0.
63

46
[

[0
.6

09
0,

0.
65

90
[

[0
.6

33
3,

0.
68

33
[

[0
.6

57
7,

0.
70

77
[

[0
.6

82
1,

0.
73

21
[

[0
.7

06
4,

0.
75

64
[

[0
.7

30
8,

0.
78

08
[

[0
.7

55
1,

0.
80

51
[

[0
.7

79
5,

0.
82

95
[

[0
.8

03
8,

0.
85

38
[

[0
.8

28
2,

0.
87

82
[

[0
.8

52
6,

0.
90

26
[

[0
.8

76
9,

0.
92

69
[

[0
.9

01
3,

0.
95

13
[

[0
.9

25
6,

0.
97

56
[

[0
.9

50
0,

1.
00

00
]

V0

V1

V2

Figure 4.15: Binary vector representation resulting from application of the sliding window
discretization method on the band patterns given in (4.18),with the vector length set to
n = 40 and the position tolerance set toε = 0.05.

4.9 Band pattern similarity quantification

The choice of a suitable band matching strategy might be strongly dependent on the
type of the fingerprint patterns under investigation and thenature of the analysis one wants
to perform. Moreover, the chosen band matching method also influences the applicability
and implementation of the similarity coefficients for quantifying the strength of relatedness
between pairs or groups of patterns. Table 4.4 gives a summary of the differences in the
implementation of the Jaccard [52], Dice [25] and Jeffrey’sx similarity coefficients for
all band matching methods presented in this chapter. The first three rows correspond with
simple, closest and first pairwise band matching respectively, whereas the shown similarity
coefficients are identically implemented for all multiple band matching algorithms, as is
indicated in the last row of the table.
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For two binary feature vectors resulting from any of the multiple band matching algo-
rithms, most similarity measures are based on frequency counts of the four combinations
of corresponding index values:m11 represents the number of vector indices where both
vectors score 1, whereasm00 is the number of vector indices that are 0 for the two vectors.
The valuem10 indicates how many vector indices are one in the first vector and zero in the
second vector, whilem01 is the dual case.

As the closest and first pairwise band matching methods associate a given band with at
most one band of another pattern, the pairwise matching of any two banding patterns can be
depicted as well using a vector representation. Because of this, the same implementation of
the similarity coefficients can be used as for the case of multiple band matching methods,
with the sole exception that the frequency valuem00 is always zero. In Table 4.4, the
corresponding similarity coefficient implementations aretherefore presented in terms of
the terminology introduced in subsections 4.6.2 and 4.6.3.Note however that the vector
representations of a given band pattern might differ between different pairwise comparisons
involving the pattern. As a result, the Jaccard and Dice similarity coefficients will no
longer produce Łukasiewicz transitive similarity matrices, as they do for feature vector
representations [24].

Because the first pairwise band matching functionms(Bi, Bj) gives up the symmetric
property caused by the fact that one band can be matched with many other bands and vice
versa, no vector representation can represent the simple pairwise band matching, and there
is no clear translation of the frequency counts. The Dice andJeffrey’sx similarity coeffi-
cients, however, offer an opporunity to associate both valuesms(Bi, Bj) andms(Bj, Bi)
within the same agglomerative measure, in order to maintainsymmetry within the similar-
ity matrices. An analog expression for the Jaccard coefficient does not exist.

4.10 Minimization of stochastic complexity

4.10.1 Stochastic complexity principles

According to Rissanen [86] the best model to explain a given set of data is the one which
minimizes the sum ofi) the length in bits of the description of the model, andii ) the length
in bits of the description of the data within the model. This follows Occam’s Razor, the
principle that tells us not to introduce more concepts than necessary to explain observed
facts. Classifying a collection of items according to some method (classification model)
amounts to encoding information about the data. Applied to the classification problem,
Rissanen’s principle therefore yields that the best classification of a set of items is the one
which requires the least number of bits to code the classification with respect to the model
chosen and to code the data within the classification. The relevant mathematical quantity
describing the code length is that ofstochastic complexity(SC) [86]. The best classification
is thus the one that minimizes SC.



4.10. MINIMIZATION OF STOCHASTIC COMPLEXITY 175

Suppose that each item is represented by a binary vectorX = (x1, . . . , xd) of lengthd.
As classification model we choose a mixture

λ1p1 + · · ·λkpk (λ1 + λ2 + · · · + λk = 1, λi ≥ 0) (4.32)

of multivariate Bernoulli distributions

pj(x) =
d

∏

i=1

(1 − θij)
1−xiθxi

ij (4.33)

Herepj represents thejth class. The rationale for this choice is that among all probability
distributions on the spaceBd of binaryd-vectors, compatible with the data in the sense that
∑

x∈Bd, xi=1
pj(x) is the relative frequencyθij of ones in theith position in items in thejth

class, the multivariate Bernoulli distribution (4.33) is the unique distribution that maximizes
Shannon’s entropy [39]. Gyllenberget al. [40] showed that for this choice of classification
model and a uniform prior distribution, the expression of stochastic complexity per strain
is given by

SC =
1

t

(

log
k(k + 1) · · · (t + k − 1)

t1!t2! · · · tk!
+

k
∑

j=1

d
∑

i=1

log
(tj + 1)!

tij!(tj − tij)!

)

, (4.34)

wherek is the number of classes,t is the total number of items,tj is the number of items
in classj andtij is the number of items in classj with the ith component equal to 1.log
denotes the logarithm to the base 2. The first term within the parentheses on the right
hand side of (4.34) describes the complexity of the classification and the second term the
complexity of the strains with respect to the classification. As such, stochastic complexity
accomodates for overfitting by penalizing through the first term the possible classifications
with many separate classes, and for underfitting by accounting for items that badly fit the
class they are appointed to using the second term. A classification scheme that stores all
items in a single class (extreme underfitting) has zero cost in the first term of the stochastic
complexity, but maximal cost in the second term of the stochastic complexity. On the
opposite side of the classification spectrum, grouping all items within their proper class
(extreme overfitting) forces the stochastic complexity into maximal cost-assignment of the
first term, but zero penalization in the second term. The optimal classification in terms of
stochastic complexity often lies in between these two extremes. It should be noted that in
the expression of stochastic complexity given in (4.34), the number of classesk is fixed.
The optimal classification among all possible classifications with any number of classes can
however be determined by using a global stochastic complexity minimization algorithm,
such as the one implemented in the BinClass sofware package.

4.10.2 BinClass implementation

If there exists an objective function to measure the overallgoodness of a given classifi-
cation, a naive approach to find the optimal classification interms of this objective function
would simply calculate the cost function for each putative classification and choose the
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one producing the optimum. However, the number of possibilities to groupt items intok
classes is given by Stirling’s number of the second kind [1]

Sk
t =

1

k!

k
∑

j=0

(−1)k−j

(

k
j

)

jt , (4.35)

which grows exponentially. For even the relatively small problem of grouping 25 items
into 5 classes, the number of possibilities is the astounding quantity

S5
25 = 2.436.684.974.110.751 . (4.36)

The problem is compounded by the fact that the number of groups is usually unknown, so
that the number of possibilities is a sum of Stirling number.In the case of 25 items, we
have a total number of different classifications given by

S25 =
25

∑

k=1

Sk
25 > 4 × 1018 . (4.37)

Even small classification problems cannot be evaluated in this naive way even with the
newest of powerful number-crunching computers, so more intelligent methods are needed
to tackle the problem.

With stochastic complexity as evaluation function for classifications of binary vectors,
the BinClass software package [42] scans the whole range or a user-selected slice of the
possible cluster numbersk ∈ {1, 2, . . . , t}, wheret is the total number of items in the clus-
tering problem. For a fixed number of classesk, a random classification is generated and
iteratively improved by application of several variants ofthegeneralized Lloyd algorithm
(GLA, [33, 63]; also known ask-means or the Linde-Buzo-Gray algorithm) with theShan-
non code length[20] as distance function. Because of the known problem of this method
that it possibly gets stuck into local optima, a number of heuristics to avoid local optima
are built into the software package, and additionally the procedure is repeated for a num-
ber of different start classifications for any fixedk. For all classifications produced by the
k-means algorithm, the stochastic complexity is calculated, and the classification with the
overal minimal value of the stochastic complexity is considered as the best classification
by BinClass. This process is calledmiminimization of stochastic complexity. The Binclass
software package also offers tools for minimization of SC using fuzzyc-means algorithms
(expectation maximization), addition of new items to existing classifications (cumulative
classification) and construction of hierarchical trees, based on the evaluation of stochastic
complexity.

Minimization of stochastic complexity has been previouslyapplied to the taxonomy
of Enterobacteriaceae[36, 37, 38] andVibrionaceae[43], based on some characteristic
features of the phenotype observed from a representative sample of strains. Although the
bits in the vectorized data sets used in these case studies might be dependent on each
another, it is known that the previously described ’naive’ Bayesian classification model
performs quite well [36, 37, 38, 43]. The classification technique based on the minimization
of stochastic complexity can be extended in such a way that dependencies between the bits
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in the binary vector representation are taken into account [44]. However, this extension
would dramatically add to the running time of the algorithm and is therefore not taken into
considertation for the case study discussed in section 4.11.

4.10.3 A simple example

In this section we illustrate the basic idea of stochastic complexity minimization by
a simple numerical example. Consider a collection of playingcards (not necessarily an
ordinary pack), in which each card is characterized byd = 4 binary features:i) colour (red
= 1, black = 0),ii ) shape (heart-shaped, i.e.,♥ and♠ = 1, non-heart shaped, i.e.,♦ and♣
= 0), iii ) parity (odd = 1, even = 0), andiv) royalty (K, Q andKn = 1, other cards = 0).
Thus, for instance,9♥ is represented by the feature vector(1, 1, 1, 0).

Now assume that the collection to be classified by minimization of stochastic complexity
consists of five cards, viz.K♥, Kn♥, 2♣, 3♣ and4♣. The four features chosen cannot
distinguish betweenK♥ andKn♥ or between2♣ and4♣, so essentially we have only
three different cards out of24 = 16 possible. The reason why we consider such a small
collection is that in real taxonomical applications the number of strains to be classified is
only a tiny fraction of the totality of possible feature vectors.

The three feature vectors can be classified in only one way into k = 1 class, in three
ways intok = 2 classes and in one way intok = 3 classes. For all possible classifi-
cations we have calculated the stochastic complexity usingformula (4.34). The result is
summarized in Table 4.5, from which we see that the classification separating the hearts
from the clubs is the optimal one as evaluated by measuring the stochastic complexity.
For more extensive data sets, it is of course unfeasible to enumerate all possible classifica-
tions and calculate the stochastic complexity of each classification. The implementation in
the BinClass software package finds a reliable approximation of the least stochastic com-
plexity value SCmin(k) for any possible number ofk classes. The overall SC-minimum is
then obtained by choosing the classification intok classes resulting in the least of numbers
SCmin(k).

number of classification stochastic
classes (k) complexity

1 c1={K♥,Kn♥,2♣,3♣,4♣} 4.72551

2 c1={K♥,Kn♥}, c2={2♣,3♣,4♣} 4.36634

c1={K♥,Kn♥,3♣}, c2={2♣,4♣} 5.00033

c1={K♥,Kn♥,2♣,4♣}, c2={3♣} 5.70689

3 c1={K♥,Kn♥}, c2={2♣,4♣}, c3={3♣} 5.19578

Table 4.5: Stochastic complexity for the different classifications of the example.
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4.10.4 Finding the optimalα-cut for hierarchical classifications

A crucial issue when evaluating the dendrograms resulting from hierarchical cluster
analysis, is the dilemma of selecting the number of clustersin the final solution [70], or,
using the terminology of the previous chapter, finding the optimal α-cut for deriving an
equivalence relation from the hierarchical grouping. In the research domain of microbial
taxonomy, it is common practice to include a selection of type and reference strains into
the set of strains under investigation, followed by visual delineation of the cluster cut off
level based on the intuition of the researcher and his prior knowledge on the distribution of
these reference strains, in order to attain clusters that correspond with the bacterial species
concept. This bacterial species definition is usually described by empirical criteria. DNA-
DNA cross-hybridization of≥70% has been suggested to indicate that two bacteria belong
to the same species [122]. Incited by the recommendations ofthe latest report of theAd
Hoc Committee on Reconciliation of Approaches to Bacterial Systematics[100], it has now
been demonstrated by many authors that bacteria with cross-hybridization levels of≥70%
have a 16S rDNA sequence similarity of≥97%. The whole discussion of the bacterial
species concept in terms of fixed levels of similarity between strains stems from some ex-
perimental observations that demonstrate the existence ofdiscontuities between groups of
data [14]. However, the reports of the ad hoc commission lacka detailed description of
the experimental methods, similarity measures and their parameters settings for quantify-
ing the degree of relatedness used for conceptualizing the bacterial species. As a result,
these sharp quantitive boundaries can only be used as rule ofthumb, rather than as a strict
definition.

In analogy to the observation of discrete natural boundaries between species, many pro-
cedures for automated delineation of the number of clustersin a specific data set have been
proposed in the scientific literature. When a hierarchical clustering method is used, these
procedures are often calledstopping rules[69]. In a broader context, an objective function
for evaluating the overall goodness of a classification is called anindex. In general, one can
discriminate two families of evaluation functions. A first class of indices estimates the clas-
sification of a set of items by means of the distance or similarity values calculated between
any pair of items. Well-known members of this family are the Cindex [48], the gamma
index [12], the G(+) index [87] and the point-biserial correlation [69]. The optimal number
of clusters is found where the above measures attain their minimum or maximum value. A
second group of indices is based on some group statisics directly calculated from the fea-
ture vectors. This family includes the Ball-Hall index [11],Calinski-Harabasz index [17],
Davies-Bouldin index [22], gap statistic [111], Hartigan index [45], Krzanowski-Lai index
[61], negative log-likelihood [121], Ratkowsky-Lance index [84] and silhouette index [55],
among many others. A comprehensive survey of methods for estimating the number of
clusters is given by Milligan [69, 70].

Stochastic complexity, defined in (4.34), can also be added to the latter family of meth-
ods for the special case of evaluating classifications of binary feature vectors. For the
example outlined in subsection 4.10.3, calculation of the transitive closure (single linkage
clustering) upon the similarity matrix of simple matching (≈ Hamming distance) values
leads to three possibleα-cuts. Evaluation of the stochastic complexity for each of these cut-
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ting levels would also point out the optimal classification for this example, using a smaller
number of calculations of the objective function. More research would be needed to com-
pare the behaviour of stochastic complexity for delineating ’natural’ clusters, in respect to
other evaluation functions.

4.11 Application to the taxonomy ofVibrionaceae

In this case study we evaluate the application of minimization of stochastic complexity
in combination with sliding window discretization, as a viable strategy for the classification
of bacterial genotypic fingerprinting patterns. To this means, we work on an fAFLP data set
of 507 strains belonging to the familyVibrionaceae. Thompsonet al. [103] present com-
plete background information on this data set, together with a classification of the banding
patterns based on Ward’s hierarchical clustering algorithm [119]. The goal of this study
is to test the robustness of the hierarchical approach by comparison with a classification
derived using a method from a different mathematical family.

For generating a classification based on the minimization ofstochastic complexity, the
BinClass software package [42] is used. As this classificationmethod is limited to the clas-
sification of fixed–length binary vectors, we initially needto transform the fAFLP molec-
ular fingerprinting data into binary vector format. Severalalternatives were evaluated for
this purpose, in order to minimize the influence on the original similarity model used by
Thompsonet al. [103]. Sliding window discretization produced the most conservative dis-
cretization for the data set under investigation. The classification generated by the BinClass
software package is compared in great detail with the original classification derived from
hierarchical clustering, in order to find out where the classification methods agree and dis-
agree.

4.11.1 Ecological and taxonomical traits of the familyVibrionaceae

Since the very first discovery and isolation of the speciesVibrio cholerae(the causative
agent of cholera) in the last half of the 19th century, a tremendous amount of research on
the biology of vibrios (i.e. Vibrionaceaestrains) has been done. The familyVibrionaceae
has been under extensive investigation during the last few decades, making it by far the best
documented marine taxon [58]. According to the most recent outline of Bergey’s Manual
of Systematic Bacteriology [13], the genusVibrio (51 species), along withAllomonas(1
species),Catenococcus(1 species),Enterovibrio (1 species),Grimontia (1 species),Lis-
tonella(2 species),Photobacterium(7 species) andSalinivibrio (1 species), form the fam-
ily Vibrionaceaewhich belongs to theγ-Proteobacteria[27, 99]. Members of this family
are Gram negative, usually motile rods, mesophilic and chemoorganotrophic, facultative
anaerobes and inhabitants of brackish, estuarine and pelagic waters and sediments. Vibrios
are in high abundance in the marine environment and may participate in the nutrient cycling
[26, 46, 82]. Moreover, they form the dominant culturable microbiota in and/or on marine
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organisms, e.g., corals, fish, molluscs, seagrass, sponges, shrimps, and zooplankton, where
these vibrios probably play an important role in digestion and nutrition [71, 85, 90]. Sev-
eralVibrio species are human and animal pathogens, while others form a serious threat to
fish, shellfish and corals [8, 88]. The use ofVibrio strains as probiotics has been reported
[5, 114], although in this respect the role of certainVibrio species, e.g.V. alginolyticus, is
still controversial.

With the advent of new molecular techniques, major taxonomic modifications have been
proposed recently. Additional toi) the discovery of novel species [31, 32, 92, 93] andii ) the
transfer of existing species to other new or existing genera[95, 113], iii ) the most promi-
nent flux in the taxonomical reorganisation is the subdivision of the original family into four
separate families, i.e.,Salinivibrionaceae(comprising the genusSalinivibrio), Enterovib-
rionaceae(comprising the generaEnterovibrioandGrimontia), Photobacteriaceae(com-
prising the genusPhotobacterium) andVibrionaceae(comprising all theVibrio species ex-
cept for theV. fischerigroup). While the important (re)allocation of strains into species was
achieved by molecular techniques such as AFLP and rep-PCR, the(re)organisation of the
higher taxonomic ranks was primarily based on phylogeneticanalysis of concatenated 16S
rRNA, recA [102] and rpoA [110] gene sequences. So far, the whole-genome sequences
of six vibrios (i.e.V. cholerae[47], V. parahaemolyticus[67], V. vulnificus[19, 57],V. fis-
cheri [116] andP. profundum[117]) are available and at least another two (i.e.V. lentus
andV. salmonicida) are under way. Complete genome sequences have shown that hori-
zontal gene transfer, gene duplication and decay, and otherrearrangements are probably
driving forces in the evolution of genomes, which might sheda different light on bacterial
taxonomy. An elaborated review on the biodiversity of vibrios and the latest taxonomical
developments is given in [109].

4.11.2 fAFLP fingerprinting on selection of bacterial strains

Within the framework of this study we have analyzed a total set of 507 fluorescent
amplified fragment length polymorphism (fAFLP, [54]) fingerprint patterns from isolates
of the familyVibrionaceae, including 386 isolates originating from the marine aquacultural
environment harvested between 1985 and 2001. This data set is identical with that studied
by Thompsonet al. [103], and all strains used in this study are listed in Appendix D.
Strains were grown on Marine Agar 2216E (Difco Co., USA) at 27◦C (V. fischeri, V. logei,
V. tapetis, V. salmonicidaandV. wodaniswere grown at 18–19◦C) for 24 hours, except for
V. choleraewhich was grown at Brain Heart Infusion Agar (Difco Co., USA). All strains
included in this study are deposited in the BCCMTM/LMG Bacteria Collection at the Ghent
University. Approximately 0.01g of bacterial cells were harvested for DNA extraction,
following the technique described previously by Pitcheret al. [77]. Concentration and
purity of the DNAs were estimated measuring optical densities at 234, 260 and 280 nm
using a Uvicom 941+ spectrophotometer (Kontron Instruments, Italy). DNA integrity was
verified on a 1% Agarose gel in 1× TAE buffer (40mM Tris/Acetate, 1mM EDTA, pH 8.0).

Fluorescent amplified fragment length polymorphism (fAFLP) template preparation was
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carried out essentially as described by Janssenet al. [54]. It has been shown that the ap-
plication of this high resolution genomic fingerprinting technique might have a tremen-
dous impact on the study of the diversity, taxonomy and phylogeny of several bacteria
[123]. Moreover, experience with this technique has made clear that similarity measures
based on the AFLP patterns reflect well the DNA-DNA hybridisation measures between
bacteria. Due to its high discriminatory power, AFLP can thus be used as an identifica-
tion tool. To accomplish this for the given data set, oneµg of high-molecular-mass DNA
was digested withTaqI (5’TCGA3’) and HindIII (5’AAGCTT3’) (Amersham Pharmacia
Biotech, Sweden), followed by ligation of restriction half-site specific adapters to all re-
striction fragments with T4 ligase (Amersham Pharmacia Biotech, Sweden). Templates
were precipitated in a solution containing 50% Isopropanoland 1.25 M NH4OAc and dis-
solved in 100µl T0.1E buffer (10 mM Tris-HCL, 0.1 mM EDTA, pH 8.0). Two subsequent
PCR amplifications were applied. For the pre-selective PCR-amplification, 5 µl of tem-
plate was mixes with 0.6µl H00-ABI primer (5’GACTGCGTACCAGCTT3’; 1µM), 0.6
µl T00-ABI primer (5’CGATGAGTCCTGACCGA3’; 5µM), and 18.7µl of Amplifica-
tion Core Mix (Applied Biosystems, USA). The amplification reactions were performed in
a GeneAmp PCR System 9600 thermocycler (Applied Biosystems, USA) using the follow-
ing temperature program: 2 min at 72◦C and 20 cycles of 20 sec at 94◦C, 30 sec at 56◦C and
2 min at 72◦C. Pre-selective products were diluted in 130µl T0.1E buffer (10 mM Tris-
HCL, 0.1 mM EDTA, pH 8.0). In the selective PCR-amplification, 2.0 µl of the diluted
solution was mixed with 0.7µl H01-6FAM primer (5’GACTGCGTACCAGCTTA3’; 1M),
0.7µl T03-ABI (5’CGATGAGTCCTGACCGAG’; 5µM), and 10µl of Amplification Core
Mix. The H01-6FAM primer is fluorescently labelled, and the selective bases at the 3’-end
are underlined. The temperature profile of the selective amplification was as follows:i)
denaturation for 2 min at 94◦C, ii ) 10 cycles of : denaturation for 20 sec at 94◦C, annealing
at decreasing stringency at 67-n◦C for 30 sec (withn the cycle number), and extension at
72◦C for 2 min,iii ) 20 cycles of : denaturation for 20 sec at 94◦C, annealing at 56◦C for 30
sec, and extension at 72◦C for 2 min, andiv) final extension at 60◦C for 30 min.

Separation of the selective PCR products was generated on 36cm denaturing polyacry-
lamide gels (4.25% Acrylamide, 6 M Urea in 1× TBE/89 mM Tris + 89 mM Boric acid
+ 2mM EDTA, pH 8.3) on an ABI Prism 377 DNA sequencer (Applied Biosytems, USA).
Before loading 1µl of the samples on the gel, 1.5µl of the selective product was mixed
with a loading buffer (0.75µl deionised Formamide, 0.25µl Blue Dextran, 50 mM EDTA
solution, 0.5µl GeneScan-500 TAMRA size standard and 0.5µl GeneScan-2500 TAMRA
size standard) and heated at 95◦C for 3 min. The mix was kept on a thermobloc (-20◦C)
while the gel was being loaded. The data were registered during electrophoresis run at 51◦C
by the ABI PrismTM Data Collection Software (Applied Biosystems, USA) for 3.5 hours.
Tracking and normalization of the lanes were performed by the GeneScan 3.1 software
package (Applied Biosystems, USA). The total number of bandsof the fAFLP profiles
ranged from 46 to 164, with a global average of 107 bands and a standard deviation of 23.
More detailed band statistics for each separate class resulting from the classification based
on the minimization of stochastic complexity, are includedin Table 4.8.

In their original paper, Thompsonet al. [103] have imported the normalized band pat-
terns, containing fragments of 50 to 536 base pairs, into theBioNumerics 2.0 software
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package (Applied Maths, Sint–Martens–Latem, Belgium) for further numerical analysis.
Classification of the fAFLP fingerprinting profiles was performed using the Dice similarity
coefficientsD [25] and Ward’s hierarchical clustering method [119]. For relaxed frag-
ment comparison, a band position tolerance value of 0.5% wasallowed to compensate for
misalignment of homologuous bands due to technical imperfections. The Ward/Dice hi-
erarchical clustering of the fAFLP band patterns of the 507 strains studied, resulted in 69
clusters (labelled A1,A2,. . . ,A69) and 4 singleton fingerprint patterns (labelled U1,U2,U3
and U4) at a cut-off level of 45% similarity. This level of cluster delineation was selected
based on previous studies concerningAcinetobacter[54], Aeromonas[51], Bradyrhizobium
[123] andVibrio [6, 7, 76] and prior knowledge about the distribution of the type strains
within the data set. With a few exceptions, each actually recognised species showed a char-
acteristic genome pattern and fell into a separate cluster.Visual inspection revealed that
some clusters harboured more diverse isolates than other clusters, which were composed
of highly related patterns, almost identical to each other.Strains with indistinguishable
genomes were isolated from the same source at the same date and place, suggesting the
occurrence of one particular clone.

For reproducibility control, the fAFLP fingerprint patterns of 70 representative strains
were generated twice, starting from new DNA isolation. The 70 pairs of band patterns
were numerically analysed and the mean Dice similarity value found for reproduced fin-
gerprint patterns was 91±3%. This similarity value is in accordance with previous studies
using AFLP [54, 123]. Strains clustering at the reproducibility level or higher were in-
distinguishable by fAFLP. Duplicate fingerprint patterns have been discarded from further
cluster analysis.

4.11.3 Discretization of fAFLP fingerprint patterns

A classification strategy based on the optimization an information theoretic expression
such as stochastic complexity, which is a quantitative criterion for evaluation of the global
goodness of a given classification with respect to the given data set, requires that the fAFLP
fingerprint patterns of theVibrio isolates are transformed into a binary vector representa-
tion. Moreover, when comparing classifications of a given data set produced by different
classification methods, one has to take into account the influence of the possible alterna-
tive similarity models that are used in combination with these clustering techniques. In
our case, we want to compare the classification described by Thompson et al. [103] using
Ward’s hierarchical clustering algorithm [119] with a classification based on the minimiza-
tion of stochastic complexity, in order to evaluate the classification method incorporated in
the BinClass software package [42] for usage in bacterial taxonomy.

In the paper of Thompsonet al. [103], Ward’s classification algorithm works on a simi-
larity matrix containing similarity values calculated using the first pairwise band matching
algorithm (position toleranceε = 0.005) in combination with the Dice similarity coeffi-
cient sD [25]. The classification based on the minimization of stochastic complexity, on
the other hand, works upon a binary vector representation ofthe given data set. Therefore,
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we need to apply a multiple band matching algorithm to transform the band representation
of the original data set into binary vector representation.

In order to minimize the effect of this data transformation on the BinClass classification,
we evaluated several multiple band matching algorithms by calculating thecophenetic cor-
relationgiven by
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as a means of measuring the strength of the association between two similarity models
[97], where(rij)

n−1
i,j=0 and(sij)

n−1
i,j=0 are the similarity matrix representations of the similar-

ity models under comparison. By careful inspection of the formulas (4.13) and (4.38), it
is clear that the cophenetic correlation is nothing else than an extension of Pearson’s prod-
uct moment correlation towards symmetric matrices. The matrix based onsD as described
by Thompson et al. [103] was used for estimating the parameter settings of the different
band matching methods (position toleranceε and vector lengthn). For each multiple band
matching method, Thompson’s similarity matrix was compared with thesD similarity ma-
trices generated for a number of different parameter settings of the given multiple band
matching method. The parameter values resulting in a maximal cophenetic correlation
were then chosen as the optimal setting for the method. For equal-width discretization,
the optimal performance was attained for a vector transformation with n = 149 classes
(position toleranceε = 0.0067), while the best histogram-based discretization had a po-
sition tolerace setting of 0.005, producing binary vectorsof length 319. Sliding window
discretization was most conservative for the position tolerance parameterε set to 0.007 and
the resolution parameterδ set to 0.001 (so thatn = 994).

All cophenetic correlations between thesD matrices of the different band matching algo-
rithms presented in sections 4.6 and 4.7, applied upon theVibrio/AFLP data set according
to the implementations of the Dice coefficient given in Table4.4, are shown in Figure 4.16.
A position tolerance setting ofε = 0.005 was used throughout all pairwise band match-
ing calculations. From this matrix of congruences between the different similarity models
we conclude that sliding window discretization transformsthe original data representation
into binary vector representation with least change of the similarity model (cophenetic cor-
relation 0.944), while the histogram–based method resultsin much larger change of the
similarity model (cophenetic correlation 0.857). It is also remarkable that the sliding win-
dow discretization method is highly related to the simple pairwise band matching method
(cophenetic correlation 0.971) for this data set, as can be seen from the single linkage
classification of the congruence matrix in Figure 4.16. Sliding window discretization can
thus be regarded as the multiple alignment counterpart of simple pairwise band matching.
Strikingly, both methods were introduced as new band matching in this chapter. Because
it is important to mimic the same band position tolerance behaviour and reduce the effect
of fragment comparison of the fingerprint patterns within the classification process, in or-
der to enable an objective comparison of the different classification strategies applied to the
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0.882 0.832 0.857 0.852 0.838 1.000

0.919 0.898 0.905 0.884 1.000 0.838

0.957 0.931 0.908 1.000 0.884 0.852

0.944 0.956 1.000 0.908 0.905 0.857

0.971 1.000 0.956 0.931 0.898 0.832

1.000 0.971 0.944 0.957 0.919 0.882sliding window

simple pairwise

first pairwise

equal width

closest pairwise

histogram-based

Figure 4.16: Cophenetic correlations between thesD similarity matrices of different band
matching algorithms applied on theVibrio/AFLP data set.

sameVibrio/fAFLP data set, the vector transformation produced by the sliding window dis-
cretization method was selected for further classificationusing minimization of stochastic
complexity.

In addition to the model congruence matrix shown before, Figure 4.17 depicts the pair-
wisesD similarity scatterplots for different similarity models,comparing the original pair-
wise Dice similarity measurements as calculated by the BioNumerics software package
(Applied Maths, Sint-Martens-Latem, Belgium) in the study of Thompsonet al. [103]
plotted along thex-axis, with the corresponding pairwise Dice similarity produced by the
band matching methods reviewed in sections 4.6 and 4.7 estimations plotted along they-
axis. A first observation is the quasi perfect correlation (r = 0.996) between the first
pairwise band matching method and the pairwise band matching results from the BioN-
umerics software package. This proves that first band matching is indeed the pairwise
method implemented in the BioNumerics software. The small deviation of the correlation
from the unit value must be due to unavoidable rounding errors during the export procedure
of banding patterns and similarity matrices from the BioNumerics software package. A sec-
ond observation is the apparent relationship between the simple, first and closest pairwise
band matching methods given by

ms(Bi, Bj) ≥ mf (Bi, Bj) ≥ mc(Bi, Bj) , (4.39)

given that the same position toleranceε is used in all methods. Currently, there is no formal
proof of the general validity of this relationship.

4.11.4 Classification of binary vectors

In a first attempt to classify the fAFLP fingerprinting patterns of theVibrio data set,
the histogram–based band matching method built into the BioNumerics software package
(Applied Maths, Sint-Martens-Latem, Belgium) was used for generating a binary vector
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Figure 4.17: PairwisesD similarity scatterplots for different similarity models,compar-
ing the original pairwise Dice similarity measurements as calculated by the BioNumerics
software package in the study of Thompsonet al. [103] plotted along thex-axis, with
their corresponding pairwise Dice similarity estimationsplotted along they-axis produced
by i) simple pairwise band matching (r = 0.956), ii ) closest pairwise band matching
(r = 0.905), iii ) first pairwise band matching (r = 0.996), iv) equal-width band matching
(r = 0.908), v) histogram band matching (r = 0.857 andvi) sliding window discretization
(r = 0.944).
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representation of the AFLP fingerprinting patterns. These binary vectors were then clas-
sified by application of the BinClass software package, resulting in the classification as
summarized in Table 4.6, which shows only the classes containing type strains. From a
taxonomic point of view, this classification was rather unhelpful, as it contains a class
(BC1) that harbours many different type strains. Apart from this, the rest of the classifica-
tion corresponds well with the original classification described by Thompson et al. [103].
These observations have driven us into the exploration of alternative band matching algo-
rithms, presented earlier in this chapter. As a result, we selected the vector representation
rendered by the sliding window discretization as a more conservative representation of the
information content stored in the original banding patterns.

For a second trial, the binary vectors resulting from the sliding window discretization
procedure were classified using minimization of stochasticcomplexity [40], as it was im-
plemented in the BinClass software package [42]. This algorithm is an example of an
unsupervised non-hierarchical classification method, insofar that it does not make use of
any prior knowledge or assumptions on the data set other thanthe binary vector repre-
sentation of its characteristics and that it presents its final outcome as a plain partitioning
of the data set into non-overlapping classes. The default BinClass command line settings
were selected, except for the-F parameter (safety value) that was set to 50, and the-S
parameter was set to 20. This has resulted in the classification with 64 classes (labelled
BC1,BC2,. . . ,BC64) that is summarized in Table 4.7, by showing onlythe classes contain-
ing type strains. From a taxonomic viewpoint the type strains are now neatly distributed
over the different classes, which indicates that this classification is preferable over the pre-
vious one. A more detailed presentation of the BinClass classification, showing some group
statistics of the different classes and their contained type strains, is given in Table 4.8. The
optimal stochastic complexity found for the data set was 739.92. It should be noted that
the BinClass software package automatically accommodates tomonomorphic bands by
discarding vector indexes that have the same binary value before performing the classifica-
tion, hence taking only into account the bands that are polymorphic within the data set. For
reasons of completeness, we have depicted in Figure 4.18 an agglomerative hierarchical
clustering built on top of the classification described in Table 4.8. The algorithm used to
gradually merge the classes at each agglomerative step was introduced by Gyllenberg et al.
[37]. The value at each bifurcation point indicates the stochastic complexity index of the
corresponding classification. The leaf nodes of the dendrogram are labelled with the class
identifier from the BinClass classification (taxa of the type strains present in each class are
indicated between square brackets).

TheHamming distancebetween two binary vectors is defined as the number of bits that
are different, from which the distance between two classes can be defined as the mean
pairwise Hamming distance between members of the two classes [38]. Thecentroidof a
class is by definition the vector giving the frequencies of 1’s for the different attributes. By
rounding off each component of the centroid to the nearest binary value (0 or 1) one obtains
the hypothetical median organism(HMO; [64]). Thedistortion of a class, defined as the
average number of bits by which the members of the class differ from the HMO (average
Hamming distance), can be regarded as a measure of the heterogeneity of a class.Shannon
code length[20] between a class member and the centroid of the class was used as an
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class ID strain designation reference no.
BC1 Salinivibrio costicola LMG 11651T

Vibrio salmonicida LMG 14010T

Vibrio navarrensis LMG 15976T

Vibrio hollisae LMG 17719T

Vibrio gazogenes LMG 19540T

Photobacterium iliopiscarium LMG 19543T

Vibrio aerogenes LMG 19650T

Vibrio proteolyticus LMG 3772T

Vibrio nigripulchritudo LMG 3896T

Listonella pelagia LMG 3897T

Photobacterium phosphoreum LMG 4233T

Vibrio fischeri LMG 4414T

Vibrio cincinnatiensis LMG 7891T

Vibrio fluvialis LMG 7894T

Vibrio mimicus LMG 7896T

Vibrio orientalis LMG 7897T

Vibrio logei NCIMB 2252T

BC2 Vibrio halioticoli LMG 18542T

BC3 Vibrio alginolyticus LMG 4409T

BC7 Vibrio campbellii LMG 11216T

BC12 Vibrio trachuri LMG 19643T

Vibrio harveyi LMG 4044T

BC13 Vibrio ichthyoenteri LMG 19664T

BC16 Vibrio mediterranei LMG 11258T

Vibrio shiloi LMG 19703T

BC19 Vibrio ordalii LMG 13544T

BC20 Vibrio splendidus LMG 19031T

BC22 Vibrio tubiashii LMG 10936T

Vibrio wodanis NCIMB 13582T

BC23 Vibrio diazotrophicus LMG 7893T

BC25 Listonella anguillarum LMG 4437T

BC26 Vibrio vulnificus LMG 13545T

BC27 Vibrio parahaemolyticus LMG 2850T

BC32 Vibrio diabolicus LMG 19805T

BC35 Vibrio pectenicida LMG 19642T

BC36 Vibrio natriegens LMG 10935T

BC37 Vibrio furnissii LMG 7910T

BC38 Vibrio metschnikovii LMG 11664T

BC41 Vibrio nereis LMG 3895T

BC42 Vibrio aestuarianus LMG 7909T

BC43 Vibrio cholerae LMG 4406T

BC44 Vibrio scophthalmi LMG 19158T

BC47 Vibrio tapetis LMG 19706T

BC48 Photobacterium histaminum LMG 19445T

Photobacterium damselaesubsp.damselae LMG 7892T

BC49 Vibrio rumoiensis LMG 20038T

Photobacterium angustum LMG 8455T

BC50 Photobacterium leiognathi LMG 4228T

BC55 Vibrio penaeicida LMG 19663T

BC57 Vibrio mytili LMG 19157T

Table 4.6: Distribution of type strains resulting from BinClass classification based on data
discretized by the BioNumerics histogram–based band matching method with position tol-
eranceε set to 0.005. BinClass run resulted in a classification with 61 classes.
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class ID strain designation reference no.
BC1 Vibrio halioticoli LMG 18542T

BC2 Vibrio alginolyticus LMG 4409T

BC5 Vibrio ordalii LMG 13544T

Listonella anguillarum LMG 4437T

BC7 Vibrio gazogenes LMG 19540T

Vibrio fluvialis LMG 7894T

Vibrio furnissii LMG 7910T

Vibrio logei NCIMB 2252T

BC11 Vibrio splendidus LMG 19031T

BC12 Vibrio trachuri LMG 19643T

Vibrio harveyi LMG 4044T

BC14 Vibrio ichthyoenteri LMG 19664T

BC18 Vibrio diabolicus LMG 19805T

BC20 Photobacterium histaminum LMG 19445T

Photobacterium damselaesubsp.damselae LMG 7892T

BC21 Vibrio mediterranei LMG 11258T

Vibrio shiloi LMG 19703T

BC24 Listonella pelagia LMG 3897T

Vibrio cincinnatiensis LMG 7891T

BC25 Vibrio proteolyticus LMG 3772T

Photobacterium phosphoreum LMG 4233T

BC26 Vibrio vulnificus LMG 13545T

BC27 Vibrio tubiashii LMG 10936T

BC28 Vibrio parahaemolyticus LMG 2850T

BC29 Vibrio pectenicida LMG 19642T

BC30 Vibrio diazotrophicus LMG 7893T

BC33 Vibrio campbellii LMG 11216T

BC34 Vibrio salmonicida LMG 14010T

Photobacterium leiognathi LMG 4228T

Photobacterium angustum LMG 8455T

BC37 Vibrio wodanis NCIMB 13582T

BC38 Vibrio natriegens LMG 10935T

Vibrio orientalis LMG 7897T

BC39 Photobacterium iliopiscarium LMG 19543T

Vibrio fischeri LMG 4414T

BC43 Salinivibrio costicola LMG 11651T

BC44 Vibrio navarrensis LMG 15976T

Vibrio hollisae LMG 17719T

Vibrio scophthalmi LMG 19158T

BC45 Vibrio mytili LMG 19157T

BC46 Vibrio tapetis LMG 19706T

BC48 Vibrio nereis LMG 3895T

BC49 Vibrio metschnikovii LMG 11664T

BC50 Vibrio aestuarianus LMG 7909T

BC52 Vibrio cholerae LMG 4406T

BC54 Vibrio rumoiensis LMG 20038T

BC55 Vibrio aerogenes LMG 19650T

BC57 Vibrio penaeicida LMG 19663T

BC58 Vibrio mimicus LMG 7896T

BC62 Vibrio nigripulchritudo LMG 3896T

Table 4.7: Distribution of type strains resulting from BinClass classification based on data
discretized by the sliding window discretization method with ε set to 0.007 andδ set to
0.001 (so thatn = 994). BinClass run performed with parameter settings (-F50 -S20),
resulting in a classification with 64 classes and a stochastic complexity of 739.92280.
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
BC1 24 101 (8) 90-114 A67 V. halioticoli* 24/24 475 141 BC9 329 BC63 468 206 658
BC2 24 116 (20) 75-147 A49 V. diabolicus 2/6 541 171 BC36 312 BC63 467

A62 V. alginolyticus* 22/22 151 494
BC3 22 76 (9) 58-100 A68 E. norvegicus 18/18 418 131 BC44 392 BC63 487

A69 E. norvegicus* 4/4 122 412
BC4 21 126 (14) 96-146 A05 V. neptunius* 21/21 240 78 BC61 257 BC63 488 140 494
BC5 18 93 (13) 60-114 A38 V. anguillarum* 8/8 523 168 BC42 371 BC63 500 291 759

A39 V. ordalii* 10/10 74 366
BC6 16 116 (13) 79-135 A09 V. fortis* 1/8 482 151 BC11 328 BC63 493 351 1014

A61 V. cyclitrophicus 15/15
BC7 14 66 (11) 46-91 A11 V. logei* 1/7 691 243 BC25 356 BC63 491 348 924

A21 V. gazogenes* 1/2 325 897
A27 V. fluvialis* 4/4 239 697
A28 V. fluvialis 2/2
A29 V. furnisii* 5/5 212 581
U4 Vibrio sp. R-3681 1/1

BC8 13 134 (19) 106-164 A09 V. fortis 5/8 417 133 BC57 340 BC60 478
A60 V. fortis 8/8

BC9 13 79 (9) 66-93 A10 V. pelagius 1/2 610 206 BC1 329 BC63 483
A12 V. cincinnatiensis 1/6
A64 V. neonatus* 9/9 167 547
A65 Vibrio sp. 2/2

BC10 13 120 (12) 105-141 A30 V. harveyi 12/14 570 187 BC56 254 BC63 479
A59 V. tubiashii 1/18

BC11 12 126 (10) 109-143 A50 V. splendidus* 11/16 630 218 BC47 322 BC3 463 190 560
A59 V. tubiashii 1/18

BC12 12 115 (14) 94-147 A36 V. harveyi* 12/12 520 179 BC6 363 BC63 503 124 435
A36 V. trachuri* 208 554

BC13 12 101 (8) 90-112 A66 V. ezurae* 12/12 388 129 BC2 381 BC63 478 83 321
BC14 12 111 (9) 98-126 A63 V. ichthyoenteri* 12/12 376 130 BC53 398 BC48 489 248 572
BC15 11 137 (9) 124-149 A04 V. coralliilyticus 10/10 271 77 BC16 264 BC58 483

A59 V. tubiashii 1/18
BC16 10 134 (9) 116-148 A01 V. coralliilyticus 4/10 412 141 BC15 264 BC60 472

A02 V. coralliilyticus 6/6
BC17 10 121 (15) 94-149 A52 V. chagasii 4/7 588 201 BC36 285 BC63 469

A53 V. chagasii* 5/5 130 470
A59 V. tubiashii 1/18

BC18 10 109 (15) 72-128 A08 V. brasiliensis* 7/7 546 175 BC2 368 BC60 473 26 314
A11 V. logei 1/7
A49 V. diabolicus* 2/6 374 836

BC19 9 119 (11) 105-144 A11 V. logei 2/7 6 178 BC11 346 BC60 472
A55 V. lentus 7/7

BC20 9 116 (17) 95-145 A46 V. kanaloae* 5/5 621 213 BC36 344 BC63 458 102 440
A56 P. ang./P. d. dam.* 2/8 259 661
A56 P. histaminum* 292 741
A59 V. tubiashii 2/18

BC21 9 115 (23) 75-141 A06 V. med.*/V. shil. 9/10 468 162 BC55 309 BC58 472 113 423
A06 V. med./V. shil.* 208 578

BC22 9 121 (10) 106-143 A45 V. tasmaniensis* 6/6 461 154 BC47 330 BC25 463 65 308
A56 P. ang./P. d. dam. 1/8
A58 V. pen./V. rum./V. tap. 2/17

BC23 9 106 (5) 96-115 A32 V. harveyi 4/9 408 137 BC51 271 BC60 469
A33 V. rotiferianus* 5/5 77 324

BC24 8 104 (18) 85-139 A01 V. coralliilyticus 4/10 617 213 BC15 290 BC63 497
A09 V. fortis 2/8
A10 V. pelagius* 1/2 336 903
A12 V. cincinnatiensis* 1/6 340 838

BC25 8 64 (13) 50-97 A12 V. cincinnatiensis 1/6 599 217 BC10 329 BC63 502
A19 P. phosphoreum* 1/2 341 916
A25 V. proteolyticus* 3/3 248 568
A31 V. harveyi 3/3

BC26 8 85 (9) 73-98 A11 V. logei 3/7 498 174 BC20 363 BC63 474
A24 V. vulnificus* 5/5 179 481

Table 4.8: BinClass classification based on data discretized by the sliding window dis-
cretization method with the position tolerance parameterε set to 0.007 and the resolu-
tion of the methodδ set to 0.001 (so that the vector lengthd = 994). BinClass run per-
formed with command line settings (-F50 -S20), resulting ina classification with 64 classes
and a stochastic complexity of 739.92280.1Class identifier,2Size (number of strainsn),
3Average number of bands (standard deviation) over all profiles in the class,4Minimal and
maximal number of bands of all profiles in the class,5fAFLP cluster in classification of
Thompson et al. [103],6fAFLP cluster name as given in Thompson et al. [103]; * indicates
position of type strain; bold face indicates revised name since publication of the paper
by Thompsonet al. [103], 7Frequency of original fAFLP cluster within class,8Average
Shannon code length of the class,9Class distortion,10Nearest class,11Hamming distance
to nearest class,12Farthest class,13Hamming distance to farthest class,14Hamming dis-
tance between type strain and hypothetical median organism, 15Shannon code length of
type strain.
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
BC27 8 103 (9) 92-119 A12 V. cincinnatiensis 1/6 658 231 BC32 294 BC3 460

A14 V. campbellii 1/4
A37 V. campbellii 4/10
A57 V. diazotrophicus 1/4
A59 V. tubiashii* 1/18 275 717

BC28 7 109 (13) 96-128 A42 V. parahaemolyticus* 6/6 535 182 BC2 362 BC63 488 103 393
A58 V. pen./V. rum./V. tap. 1/17

BC29 7 112 (17) 84-129 A13 V. nig./V. ori. 1/7 419 128 BC40 362 BC63 475
A19 P. phosphoreum 1/2
A43 V. pectenicida* 5/5 54 288

BC30 7 96 (12) 85-120 A12 V. cincinnatiensis 1/6 554 193 BC27 370 BC63 481
A34 V. diazotrophicus 5/5
A57 V. diazotrophicus* 1/4 247 632

BC31 7 115 (7) 103-122 A03 V. coralliilyticus 7/7 158 56 BC16 288 BC60 500
BC32 7 95 (12) 79-117 A18 V. navarrensis 1/2 514 167 BC27 294 BC63 477

A37 V. campbellii 6/10
BC33 6 115 (16) 84-131 A14 V. campbellii* 3/4 598 224 BC10 303 BC3 471 191 484

A32 V. harveyi 1/9
A59 V. tubiashii 2/18

BC34 6 115 (15) 101-146 A21 V. gaz./V. sal.* 1/2 705 253 BC61 380 BC63 479 364 896
A54 V. myt./P. lei* 3/5 156 523
A56 P. ang.*/P. d. dam. 1/8 302 778
A59 V. tubiashii 1/18

BC35 6 123 (17) 103-146 A16 V. hispanicus* 3/3 559 197 BC17 332 BC3 474 153 461
A58 V. pen./V. rum./V. tap. 1/17
A59 V. tubiashii 2/18

BC36 6 124 (12) 107-141 A49 V. diabolicus 1/6 663 237 BC17 285 BC60 458
A52 V. chagasii 3/7
A59 V. tubiashii 2/18

BC37 6 91 (15) 66-111 A07 V. wodanis* 6/6 374 129 BC51 365 BC3 485 127 384
BC38 6 93 (15) 67-109 A13 V. nig./V. ori.* 1/7 496 170 BC20 362 BC63 497 310 758

A48 V. natriegens* 5/5 142 453
BC39 5 98 (20) 66-118 A15 V. fis.*/P. ili. 4/4 652 234 BC19 370 BC63 481 129 523

A15 V. fis./P. ili.* 270 715
A56 P. ang./P. d. dam. 1/8

BC40 5 133 (13) 111-147 A51 V. pomeroyi* 4/6 480 162 BC42 345 BC63 495 175 458
A58 V. pen./V. rum./V. tap. 1/17

BC41 5 94 (30) 67-149 A12 V. cincinnatiensis 1/6 520 175 BC62 318 BC48 454
A26 V. hepatarius* 3/4 28 325
A59 V. tubiashii 1/18

BC42 5 131 (12) 117-147 A51 V. pomeroyi 2/6 626 216 BC40 345 BC3 476
A58 V. pen./V. rum./V. tap. 2/17
A59 V. tubiashii 1/18

BC43 5 76 (12) 61-94 A22 S. costicola* 2/2 573 209 BC41 380 BC63 475 266 568
A23 V. xuii* 3/3 143 534

BC44 5 81 (17) 53-98 A17 V. scophthalmi* 3/3 611 216 BC32 355 BC63 496 72 430
A18 V. navarrensis* 1/2 365 791
U2 V. hollisae* 1/1 388 819

BC45 5 103 (13) 83-120 A47 V. pacinii* 3/3 503 182 BC20 368 BC3 475 109 441
A54 V. mytili* 2/5 274 560

BC46 5 145 (9) 135-156 A58 V. pen./V. rum./V. tap.* 5/17 492 168 BC47 327 BC7 490 42 337
BC47 5 119 (13) 100-136 A50 V. splendidus 5/16 440 153 BC11 322 BC13 469
BC48 4 100 (8) 90-110 A44 V. nereis* 4/4 425 167 BC61 383 BC14 489 219 514
BC49 4 102 (23) 71-130 A20 V. metschnikovii* 3/3 353 130 BC5 376 BC63 504 98 255

A59 V. tubiashii 1/18
BC50 4 96 (6) 87-102 A35 V. aestuarianus* 4/4 321 115 BC30 374 BC63 490 166 400
BC51 4 99 (14) 84-120 A32 V. harveyi 4/9 387 149 BC23 271 BC49 477
BC52 4 104 (13) 82-113 A40 V. cholerae* 4/4 489 181 BC56 383 BC63 490 229 594
BC53 3 127 (6) 121-135 A01 V. coralliilyticus 2/10 414 150 BC15 272 BC48 471

A13 V. nig./V. ori. 1/7
BC54 3 126 (6) 117-131 A58 V. pen./V. rum.*/V. tap. 3/17 406 147 BC2 355 BC63 475 71 330
BC55 3 68 (3) 64-71 A06 V. med./V. shil. 1/10 519 188 BC21 309 BC63 522

A49 V. diabolicus 1/6
U1 V. aerogenes* 1/1 181 512

BC56 3 111 (11) 96-122 A13 V. nig./V. ori. 1/7 444 161 BC10 254 BC48 476
A30 V. harveyi 2/14

BC57 3 128 (22) 98-150 A13 V. nig./V. ori. 1/7 508 184 BC8 340 BC59 472
A58 V. pen.*/V. rum./V. tap. 2/17 210 534

BC58 2 103 (5) 98-107 A41 V. mimicus* 2/2 257 128 BC27 387 BC63 500 99 257
BC59 2 85 (33) 52-118 A56 V. tubiashii 1/8 504 252 BC20 356 BC48 481

U3 Vibrio sp. R-1586 1/1
BC60 2 103 (9) 94-111 A57 V. diazotrophicus 2/4 218 109 BC13 385 BC31 500
BC61 2 109 (10) 99-118 A56 P. d. damselae 2/8 159 79 BC4 257 BC63 495
BC62 2 75 (11) 64-86 A13 V. nig.*/V. ori. 1/7 390 195 BC41 318 BC63 490 148 390

A26 V. hepatarius 1/4
BC63 1 127 (0) 127-127 A59 V. tubiashii 1/18 1 0 BC16 423 BC55 522
BC64 1 100 (0) 100-100 A13 V. nig./V. ori. 1/7 1 0 BC38 374 BC59 471

Table 4.9: Continuation of Table 4.8
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Figure 4.18: Agglomerative hierarchical clustering builton top of the classification de-
scribed in Table 4.8. The algorithm used to gradually merge the classes at each agglom-
erative step was introduced by Gyllenberg et al. [37]. The value at each bifurcation point
indicates the stochastic complexity index of the corresponding classification. Dendrogram
leaf nodes are labelled with the class identifier from the BinClass classification (taxa of the
type strains present in each class are indicated between square brackets;E.≡ Enterovibrio,
P.≡ Photobacterium, S.≡ Salinivibrio, V.≡ Vibrio).
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alternative distance function, where the average Shannon code length of all class members
with respect to the centroid of the class gives an alternative quantifier for describing the
heterogeneity of the class. For both the distortion and the average Shannon code length
it holds that classes with lower values for these parametersare more homogeneous than
classes with higher values.

From a taxonomic viewpoint the fingerprint profiles of the type strains that were in-
cluded in the data set are more or less neatly distributed over the different classes that
result from the BinClass classification (see Table 4.8), although this was not forced by any
subjective descision making within the classification strategy and the type strain informa-
tion was not regarded as prior knowledge by the classification scheme. This proves that the
partitioning of the fAFLP patterns from the current study byminimization of the stochastic
complexity, generated classes that generally correspond well with the species delineated
within the family Vibrionaceae. In this context, both the centroid and the HMO can be
regarded as estimations of fictitious representatives for each class, thus by extension also to
the species that are represented by these classes. The Hamming distance to the HMO and
the Shannon code length may then be employed as measures for evaluating the typicality of
a pattern for the class it belongs to, or stated differently,they measure how typical a strain
is for the species to which it is identified to by a given classification procedure applied on a
chosen set of characters of the strain. As a type strain has tobe designated when a species
is first described and named, the nomenclatural type strain is nothing more than the name
bearer of the species and is usually the first strain known [16]. Hence, at the time of type
strain selection so little information has yet been found out about the constellation of the
species that will be represented by that strain, that there is not enough statistical evidence
in order to assure that the type strain is indeed also a typical strain [98]. Moreover, some
of the type strains might be comparatively old and have lost useful characters due to gene
loss caused by the long preservation time of the strains.

The source code and a user manual of the BinClass software package are distributed
as supplementary data with the online version of the paper [23] that presents part of the
results presented in this chapter (seehttp://ijs.sgmjournals.org). Due to the
command line interface and the ANSI C compliance of the source code, the software eas-
ily compiles on most operating systems (Win32, UNIX, Linux). For convenience of the
readership, all BinClass–formatted input files and the outputfiles generated by the soft-
ware package in the framework of this study were included as well as supplementary data,
together with an executable version of the program that has been compiled to run on all
Win32 platforms. One of the output files generated by the BinClass software package
contains a complete description of the classification results, in which each of the 507Vib-
rionaceaestrains is accounted for. This information is far too extensive to be reported in
detail within this chapter.
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4.11.5 Comparison of the alternative classifications

In order to rate the value of minimizing stochastic complexity for the classification of
bacterial genotyping fingerprint patterns, in this subsection the BinClass classification of
the fAFLP patterns generated from theVibrionaceaestrains included in the case study is
compared with the classification of the same data set as described by Thompsonet al. [103].
A simple test statistic for measuring the similarity of different classification is provided by
theRand statistic[83]. This statistic is defined as the fraction of agreement,i.e. the number
of pairs of objects that are either in the same groups in both partitions or in different groups
in both partitions or in different groups in both partitions, divided by the total number
of pairs of objects. As such, it measures the proportion of consistent allocations by the
two classifications. For two classificationsC1 andC2 of a given set ofn items, a formal
expression of the Rand statistic is given by

Rand(C1, C2) =
2

n(n − 1)

n
∑

i=1

n
∑

j=i+1

cij , (4.40)

where the valuecij is 1 if the two itemsi andj either belong to the same or to different
classes in both classifications, otherwise it equals to zero. The Rand statistic lies between
0 and 1, where 1 indicates that the two partitions are perfectly congruent. If the Rand index
is 0, then there is no correspondence between the two classifications. The Rand statistic
between the two classifications of the case study is 0.98353,indicating that there is good
overall agreement between the two classifications.

A more detailed representation of the congruence between two classifications can be
given by the construction of a simplecontigency table, to depict the cross-classification of
items in the two partitions [2]. Figure 4.19 shows a graphical representation of the conti-
gency table for the two classifications compared in this subsection. In this representation,
each row represents a class from the classification described previously by Thompsonet
al. [103], with the assigned class identifier in the first column and the number of strains in
the last column. Each column represents a class from the BinClass classification, with the
assigned class identifier in the first row and the number of strains in the last row. The values
in the row–column intersections represent the number of strains that the two corresponding
classes have in common. Through manual permutation of the rows and columns of the
contigency table, we have transformed the original table into a representation that supports
the intuitive appreciation that the more congruence there is between the two classifications,
the better the contigency table can be aligned around the diagonal.

As a final inspection of the concordances and disparities between both classifications
investigated in this section, the new classification was presented for evaluation by an expert
in the taxonomy of Vibrionaceae, being the author of the original hierarchical classifica-
tion of the fAFLP patterns [103]. The following subsection presents the outcome of this
investigation, together with the taxonomic implications for theVibrio data set.
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Figure 4.19: Comparison of the classification described by Thompson et al. [103] and
the BinClass classification based on data discretized by the sliding window method with
the position tolerance parameterε set to 0.007 and the resolution of the methodδ set to
0.001 (so that the vector lengthd = 994). BinClass run performed with command line
settings (-F50 -S20), resulting in a classification with 64 classes and a stochastic complexity
of 739.92280. Each row represents a class from the classification described previously
by Thompsonet al. [103], with the assigned class identifier in the first column and the
number of strains in the last column. Each column representsa class from the BinClass
classification, with the assigned class identifier in the first row and the number of strains in
the last row. The values in the row–column intersections represent the number of strains
that the two corresponding classes have in common.



4.11. APPLICATION TO THE TAXONOMY OFVIBRIONACEAE 195

4.11.6 Evaluation of classification by domain expert

The 507 strains examined in this study formed 64 classes (BC1,.. . ,BC64), several of
which (i.e. BC1, BC4, BC12, BC13, BC14, BC31, BC37, BC48, BC50, BC52, BC58) cor-
responded exactly with classes of the clustering of the samedata set usingsD/Ward and an
arbitrary cluster cut off value of 45% [103]. In addition, new relationships among former
fAFLP clusters have been disclosed, many of which are in agreement with recent DNA–
DNA hybridisation and 16S rDNA sequence experiments. Class BC1harboured 24Vibrio
halioticoli strains, with low pattern distortion (≈ heterogeneity) and was most closely re-
lated to BC9 which comprised a newVibrio species,V. neonatus, phylogenetically related
to V. halioticoli [91, 92]. Class BC2 had 24 strains, including the type strain ofV. algi-
nolyticusand twoV. diabolicusstrains according to the clustering obtained by Thompson
et al. [103]. Interestingly, these twoV. diabolicusstrains were originally identified by Van-
denberghe et al. [114], using phenotypic and genotypic techniques, asV. alginolyticus. The
nearest class of BC2 was BC36 which harboured oneV. diabolicusstrain.

Class BC3 harboured 22Enterovibrio norvegicusstrains. The combination of the two
fAFLP clusters, A68 and A69, into BC3 is in complete agreement with more recent anal-
yses based on DNA hybridisation and 16S rDNA sequences whichproved both fAFLP
clusters A68 and A69 are in fact a single species,E. norvegicus[104]. The nearest class
of BC3 was BC44 which holdsV. hollisae. This is also the closest phylogenetic neigh-
bour ofEnterovibriobased on 16S rDNA analysis, having about 95% sequence similarity
[104]. Class BC4 consisted of 21V. neptuniusstrains of remarkable low pattern diver-
sity, while class BC5 merged allV. anguillarumandV. ordalii strains analysed.V. ordalii
was described by Schiewe et al. [94] to encompass biotype twoof V. anguillarum. It is
well known that these species are highly related, having nearly 100% 16S rDNA similar-
ity and 70% DNA-DNA similarity. Class BC6 hosted the type strainof V. fortis and 15
V. cyclitrophicusstrains, while most of the other members ofV. fortisappeared in BC8 and
BC24. V. fortis was proposed to encompass strains of the former fAFLP clusters A9 and
A60 [105]. The fact that the type strain of this species clusters apart from all other species
members may suggest that the type strain ofV. fortis is a species on its own, and that this
heterogeneous species may be split into new species in the future. Class BC8 merged 5
strains of the former fAFLP group A9 and all 8 strains of A60 which correspond to the
newly describedV. fortis. Clearly BC8 differs from the type strain ofV. fortis (see BC6).

Class BC7 consisted of 14 strains including the type strains ofV. gazogenes, V. fluvialis,
V. furnissiiandV. logei. A remarkable feature of this diverse class is the high distance of
all type strains towards the hypothetical median organism (HMO, [64]). It is reasonable
that V. fluvialis and V. furnissii (former biotype ofV. fluvialis) group together although
one would not expect the attraction of the psychrophilicV. logeito this class. A 16S rDNA
based phylogenetically analysis ofV. logeirevealed that this organism is more related to the
psychrophilic vibrios (e.g.V. fischeri, V. salmonicida, V. wodanis) than to any of the species
within BC7. Class BC9 (n=13) hosted 9 strains of a newVibrio species,V. neonatus[92].
This class attracted two other vibrios namedV. pelagiusandV. cincinnatiensiswhich are
most probably representatives of this new species. Classes BC10, BC12, BC23, BC25,
BC33, BC51 and BC56 hostedV. harveyistrains, although the type strain ofV. harveyiwas
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in BC12 suggesting that this is a very diverse species. Whereas BC11 (n=12) harboured the
type strain and most reference strains ofV. splendidusand a strain ofV. tubiashii. This class
was related to BC47. Strains originally allocated toV. tubiashii[103] were repartitioned
into different BC classes (BC10, BC11, BC15, BC17, BC20, BC27, BC33, BC34, BC35,
BC36, BC41, BC42, BC49, BC58 and BC63), being the type strain allocated to BC27.
This suggests that the originalV. tubiashiigroup as delineated by Thompson et al. [103]
was quite artificial. The remainingV. splendidusstrains formed a separated group, BC47,
which may be a variant ofV. splendidusor a new species. Two strains of BC47 were found
in the so called ribotype cluster C described by Mácian et al. [66].

Class BC13 hosted a newVibrio species,V. ezurae[91, 92], while BC14 harboured 12
V. ichthyoenteristrains. Classes BC15 and BC16 comprised mostV. coralliilyticus strains
[10], although BC24, BC31 and BC53 harboured 4, 7, and 2 strains of this species. It
is quite remarkable that BC31 makes a (homogeneous) cluster onits own, suggesting it
is a variant ofV. coralliilyticus. Strains of this class appear to be specialised in causing
disease inNodipecten nodosusbivalve larvae, while otherV. coralliilyticusare known coral
pathogens [10]. Class BC17 consisted of 10 strains, including the type strain ofV. chagasii
and most reference strains of this new species [107]. The nearest neighbour of BC17 was
BC36 which hosted threeV. chagasiistrains (LMG 13220, LMG 13222, LMG 13239),
suggesting that they may be yet another new species. In fact acloser examination of the
fAFLP patterns ofV. chagasiistrains and the DNA-DNA hybridisation data indicates a
large diversity within this species in support with the new grouping obtained here. In class
BC18 two species,V. brasiliensisandV. diabolicus, were merged. Of course this is not an
ideal situation but, the grouping might be just a reflection of the phylogenetic relatedness
between the two species as they share about 98% 16S rDNA similarity. BC19 harboured all
V. lentusstrains and twoV. logeistrains. Interestingly, the nearest neighbour class of BC19
was BC11. It is well known thatV. lentusandV. splendidusare highly related species. The
strains allocated toV. logeiin the previous fAFLP analysis [103] were quite heterogeneous,
as can be seen with the new partitioning of the strains. The type strain ofV. logeiappeared
in BC7, but other 1, 2, and 3 strains appeared in BC18, BC19 and BC26, respectively.
These strains were supposed to beV. logei, however the results presented here undermine
this assumption.

BC20 merged together three type strains (i.e.P. damselae, P. histaminumandV. kanaloae),
which might undermine the value of the new classification. However,P. damselaewas orig-
inally clustered withP. angustum[103]. P. angustumappears now in BC34 which merges
the type strains ofV. salmonicidaandP. leiognathi. BC21 consists of nineV. mediterranei
strains, including the former type strain ofV. shilonii [103]. BC22 comprised six strains of
a newly described species,V. tasmaniensis[106] which attracted 3 strains from two very
heterogeneous fAFLP clusters, A56 and A58. Thompson et al. [103] highlighted that the
precise taxonomic allocation of isolates clustering with more than one type strain was un-
clear, requiring further investigation. Here we demonstrate the partitioning of such isolates
by using minimization of stochastic complexity, pointing out to the usefulness of this new
approach. BC23 harbouredV. rotiferianus[31] and fourV. harveyistrains. According to
Gomez-Gil et al. [31] both species are highly related, and the results presented here may
suggest that those four strains identified asV. harveyiare in factV. rotiferianus. BC23 was
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related to BC51 which hosted four diverseV. harveyiisolates. Class BC24 attracted the type
strains ofV. cincinnatiensisandV. pelagius, whereas BC25 attractedP. phosphoreumand
V. proteolyticus. All these species were clearly separated in the clusteringof Thompson et
al. [103], but with the SC-minimizing classification one may expect that certain species be
grouped together. This fact may be just a reflection of the limitation of band patterns which
happen to give similar fingerprints between completely unrelated species (e.g.P. phospho-
reumandV. proteolyticus). We inspected the original patterns of the species within BC25
and found large gaps, which will turn out in zeros in the binarized patterns used for com-
parisons.

Class BC26 consisted of fiveV. vulnificusstrains. This class also attracted three so
calledV. logeistrains. Two of this strains i.e. VIB 523 and STD3-996 are clearly V. vul-
nificus representatives misidentified by Thompson et al. [103]. Arias et al. [4] identified
VIB 523 to the speciesV. vulnificususing phenotypic and genotypic techniques, while our
16S rDNA sequence of STD3-996 revealed 100% similarity towards V. vulnificus. BC27
consisted of 8 strains including the type strain ofV. tubiashii, while BC28 had 7 strains
including the type strain ofV. parahaemolyticus. BC28 was closely related to BC2 which
hostedV. alginolyticus(a former variant ofV. parahaemolyticus). BC29 comprised the
speciesV. pectenicidaand two other strains which have been probably misidentifiedin
the former analysis of Thompson et al. [103]. Surprisingly,Class BC30 put together the
former fAFLP cluster A34 and the type strain ofV. diazotrophicus. Originally A34 was
thought to be a new species, however recent DNA-DNA hybridisation data has proven that
A34 belongs toV. diazotrophicus. Class BC33 harboured the six strains including the type
strain ofV. campbellii. Whereas BC34 clustered together the type strains ofV. salmonicida,
P. angustumandP. leiognathi.

Class BC35 accommodatedV. hispanicusand three other strains. BC38 merged the type
strains ofV. orientalisandV. natriegens. Originally the type strains ofV. orientalisand
V. nigripulchritudogrouped together with other five strains of uncertain taxonomic position
[103]. BC39 groupedV. fischeriandP. iliopiscariusand so did our previous clustering
[103]. BC40 consisted of fourV. pomeroyistrains, including the type strain, but two strains
of this species were found in BC42. This is interesting in that these two strains (LMG
21351 and LMG 21352) differ in fAFLP patterns and the DNA-DNAhybridisation data,
suggesting that these two strains are in fact at the outskirts of the speciesV. pomeroyi
[107]. Classes BC43 to BC45 suffered all from the same problem, namely merging of
more the one type strain. Oddly enough,Salinivibrio costicolaandV. xuii such different
species were attracted to the same class, BC43. On the other hand, BC46 consisted of
threeV. tapetisstrains which were previously merged withV. penaeicidaandV. rumoiensis
in the so called fAFLP cluster A58. In the present analysisV. rumoiensisappeared in
BC54 andV. penaeicidain BC57. Classes BC48, BC49, BC50, BC52 and BC58 harboured
V. nereis, V. metschnikovii, V. aestuarianus, V. cholerae, andV. mimicus, respectively. All
these species had previously formed clusters on their own [103].

For theVibrio/AFLP data set, there was good overall agreement between theclassifica-
tion based on the minimization of stochastic complexity andthe classification as described
by Thompson et al. [103] based on Ward’s hierarchical clustering algorithm. However, it
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is quite clear that certain heterogeneous fAFLP groups e.g.A12, A13, A56, A58 and 59
were totally repartitioned with the new classification. Obviously, many of the repartitioned
strains had been given only tentative names. For instance, A59 harboured the type strain of
V. tubiashiiand thus we assumed that all strains clustering together with this type strain at
the level of as low as 45% similarity would belong to the speciesV. tubiashii. Apparently
this assumption goes beyond the discrimination of fAFLP andthe mathematical algorithms
used for fAFLP pattern analysis. Additionally, in other cases (see e.g. BC46, BC54 and
BC57) the new classification has repartitioned type strains which were grouping together
in a former analysis [103] in separated classes. Some ”hidden”relationships have been dis-
closed with the help of the BinClass classification. This is thecase for the former fAFLP
groups A68 and A69 which appear in class BC3 (Enterovibrio norvegicus). Likewise A9
and A60 are merged in BC8 (Vibrio fortis), clusters A34 and A57 in BC30 (V. diazotroph-
icus), and also clusters A14 and A37 in BC27 (V. campbellii). All these four classes have
been validated by DNA–DNA hybridisation data which showed that these classes harbour
strains from the same species [104, 105].

4.12 Conclusions and future perspectives

The study dealt with in the current chapter, originated fromour general interest to bridge
the gap between the genotypic information provided by molecular fingerprint patterns –
nowadays intensively used for establishing reliable bacterial taxonomies – and the applica-
tion of the modern techniques in mathematics and computational science for finding groups
in data. Where the polyphasic paradigm has gradually settleddown in the field of bacterial
taxonomy, stating that a natural classification of the microorganisms should encompass all
relationships exposed by a broad range of their genotypic and phenotypic features, the same
way of thinking should be extended to the usage of computational methods for analyzing
and visualizing the relationships among bacterial strains. Sole reliance on hierarchical clus-
tering techniques, since long the dominant instrument in the taxonomist’s toolbox, might
skew the perception of the bacterial features or fail to extract some of the hidden relation-
ships. From the observation that there might be several meaningful groupings to explain
a multifaceted set of data, a variety of cluster analysis techniques will be needed to reveal
them all.

Applying state-of-the-art classification methods for the analysis of genotyping finger-
print patterns, often includes several transformations ofthe original data representation
into a more workable computational format. In this chapter we have shown that a naive
choice of the discretization method for turning molecular banding patterns into binary vec-
tor format can have a harmful impact on the final classification of the profiles. This has led
us into an evaluation of the existing multiple band matchingmethods and the introduction
of a new technique – called sliding window discretization – for transforming genotypic
fingerprinting data into binary vector format. In the context of an extensive set of fAFLP
fingerprint patterns from strains of the familyVibrionaceae, it was demonstrated that slid-
ing window discretization results in the most lossless vector transformation compared to
other methods. Accordingly, the binary vectors were classified based on the minimization
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of stochastic complexity, as an alternative strategy for the hierarchical clustering algorithms
that are commonly used in bacterial taxonomy. A scrutinizedcomparison of the classifi-
cations for the same set of fAFLP fingerprint patterns by different classification strategies
has revealed that there was good overall correspondence between the alternative group-
ings, but also confirmed that no single classification managed to reflect all the taxonomic
relationships within theVibrionaceae.

One of the exiting opportunities offered by successful transformation of electrophoresis
patterns into vector representation, in the sense that the transformation does not lead to
heavy reduction of the information content originally stored in the fingerprint patterns, is
that a wide scope of other well-founded clustering methods are applicable for further anal-
ysis of the data: k-means, fuzzy c-means, artificial neural networks (both supervised and
unsupervised), support vector machines, among many others. Many of these methods have
not yet proven their value within the domain of bacterial taxonomy, and certainly not for the
classification of molecular fingerprints. And still the important open question remains: how
to intelligently merge all aspects learned from several genotypic and phenotypic bacterial
features and how to combine classification results from different clustering methods into a
consensus taxonomy of microbial diversity that is stable, descriptive, predictive, objective
and highly informative. And preferably this consensus taxonomy should be established in
an automated and dynamic way.
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Chapter 5

Improving the Discriminatory Power
of Bacterial Whole Cell Fatty Acid
Methyl Ester Analysis

”In theory, there is no difference between
theory and practice. In practice, there is.”

— Chuck Reid

THE current chapter examines how the discriminatory power ofa bacterial whole cell
fatty acid identification system can be significantly enhanced, by exploring the vast

amounts of information accumulated during fifteen years of routine gas chromatographic
analysis on the fatty acid content of environmental aerobicbacteria. This large knowledge
base is established as a collaborative effort between the Laboratory of Microbiology at the
Ghent University and the BCCMTM/LMG Bacteria Collection. Construction of a global
peak occurrence histogram is shown to serve as a highly informative tool for assessing the
delineation of naming windows, used during the automatic recognition of fatty acid com-
pounds. Along the lines of this data mining application, it is suggested that several naming
windows of the Sherlock MIS TSBA50 peak naming method may need to be re-evaluated
in order to fit more closely with the bulk of observed fatty acid profiles. Simultaneously,
the peak occurrence histogram instigated the delineation of 32 new peak naming windows,
accounting for a 26% increase in the total set of fatty acid features taken into consideration
for bacterial identification. By scrutinizing the relationships between the newly delineated
naming windows and the many taxonomic units covered within the proprietary fatty acid
database, all new naming windows were proven to correspond with stable features of some
specific groups of microorganisms. This latter analysis clearly underscores the impact of
incorporating the new fatty acid compounds for improving the resolution of the bacterial
identification system and endorses the applicability of knowledge discovery in databases
within the field of microbiology.
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5.1 Introduction

Variations in the fatty acid content of bacterial cells havebeen widely used for bacterial
classification and identification for more than 40 years. Ever since the introduction of
gas chromatographic analysis of cellular fatty acids by Abel et al. [1], this technique has
been frequently applied in various taxonomic studies [49].Numerous scientific papers
have used the fatty acids between 9 and 20 carbons in length tocharacterize genera and
species of bacteria, especially nonfermentative Gram negative microorganisms [34]. With
the many improvements in automated calibration and interpretation of the chromatographic
profiles, reproducible fatty acid profiles nowadays can be generated rapidly, provided that
strains are grown under specified standardized conditions [25], and the identification of
microorganisms by analysis of their cellular fatty acid composition has become a routine
method in many laboratories.

The construction and the information content of a large datawarehouse that contains
the results of a long-term gas chromatographic analysis study on the fatty acid content of
a broad diversity of environmental aerobic bacteria, established as a collaborative effort
between the Laboratory of Microbiology at the Ghent University and the BCCMTM/LMG
Bacteria Collection, is outlined in section 5.2. After reviewing the occurrence of fatty acids
in the bacterial cell (most of them are found within the cytoplasmic membrane as con-
stituents of the polar lipids and glycolipids [41]), we explain how the Sherlock Microbial
Identification System (MIS; Microbial ID, Inc. (MIDI), Newark, Delaware, USA) was em-
ployed for the separation and identification of cellular fatty acid methyl esters (FAME).
This software package was chosen merely because of its library generation capability, the
large number of known compounds recognized by the system’s peak naming tables, the
ability to compare a large number of strains over a period of time, and the routine use of
this system for bacterial analysis in many laboratories [38]. The chromatographic fatty acid
peaks are automatically named and quantified by the system, and the wealth of information
contained in these compounds can be used for bacterial identification by considering not
only the presence or absence of each acid, but also by using the data in quantitative fashion
[34]. In order to fully exploit all opportunities offered bythe assemblage of bacterial fatty
acid content information, the data is routinely transferedto a relational database system
that is accessible through the ODBC interface of the BioNumerics software package (Ap-
plied Maths, Sint-Martens-Latem, Belgium), which offers animproved set of tools for data
management and online transactional processing (OLTP). Finally, it is explained how the
data was further predigested in terms of the data warehousing paradigm, as to improve the
overall performance for more complex data mining applications [17, 20].

Some properties about the distribution of the bacterial whole cell fatty acid content are
unraveled in section 5.3, by only taking into account the presence and absence of the fatty
acid compounds recorded into the proprietary FAME databasefor a broad variety of mi-
croorganisms. A review is given on the frequency of occurrence for all peaks named by
means of the Sherlock MIS TSBA50 method and it is demonstrated how the information
in the FAME database can be employed to test hypotheses concerning the uniqueness of
qualitative fatty acid templates for a certain group of microorganisms. Additionally, it is
explored how the construction of a global peak occurrence histogram might contribute to a
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better delineation of the peak naming windows, applied for the automatic identification of
fatty acid compounds on the basis of their location in the chromatograms. In this context,
several peaks were detected in the peak occurrence histogram, which do not correspond
with one of the existing naming windows currently defined in the Sherlock MIS TSBA50
peak naming table. In order to check whether these yet unnamed histogram peaks corre-
spond with stable fatty acid compounds, section 5.4 attempts to predict the significance of
each peak for the different taxonomic units present in the database, taking into account that
the discovery of new fatty acid compounds may affect the estimated total quantity of fatty
acids for some strains, and also the overall relationships between strains as observed from
fatty acid analysis [38]. Finally, pairwise database identification is proposed as an alterna-
tive identification technique opposed to the library identification approach implemented in
the Sherlock MIS.

5.2 FAME database construction

5.2.1 Cellular fatty acids

Despite their differences, most cells of the living organisms dwelling our blue planet
have a great deal in common with each other. Every cell, whether an archebacterium living
in a superheated sulphur vent at the bottom of the ocean or a cell in a hair follicle within the
fur of a two-ton polar bear roaming the arctic circle span hascertain basic qualities: they
containcytoplasmandgenetic material, are enclosed in amembraneand have similar basic
mechanisms for translating genetic messages into the main type of biological molecule, the
protein. Membranes are the boundaries between the cell and the outside world. All present
day cells have aphospholipidcell membrane. Phosopholipids are lipids (oils or fats) with
a phosphate group attached. The end with the phosphate groupis hydrophilic(attracted to
water) and the lipid ishydrophobic(repelled by water). Cell membranes generally consist
of two layers of these molecules, with the hydrophobic ends facing in, and the hydrophilic
ends facing out. This keeps water and other materials from getting through the membrane,
except in a controlled way through special pores and channels. A lot of the action in cells
happens at the membrane. For single celled organisms such asbacteria, the membrane
contains molecules that can sense the environment. Some bacterial cell walls can surround
and engulf food, or attach and detach parts of themselves in order to move around. The
bacterial cell membrane also plays a crucial role in the energy production, by maintaining
a large acidity difference between the inside and the outside of the cell [12].

Chemotaxonomy is based on investigating the chemical composition of bacterial cells,
such as their cellular fatty acids, mycolic acids, polar lipids, quinones, polyamines, cell
wall compounds and exopolysaccharides [43]. Thefatty acidscan be defined as carboxylic
acid derivatives of long-chain aliphatic molecules, such as lipids and lipopolysaccharides.
Just as all the other organic molecules they are expressionsof the information encoded
in the nucleic acids (DNA), so they can be used as taxonomic markers provided they are
stable and discontinuously distributed. In bacteria, fatty acids range in chain length from
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2 carbon molecules to over 90 carbon components, as found in mycolic acids. Taxonom-
ically, fatty acids within a range between 10 and 24 carbon molecules provide the most
important source of information and are present across a diverse range of microorganisms.
Lower molecular weight compounds are usually associated with metabolism, e.g. fermen-
tation end-products, and are distinct from cellular or structural fatty acids. Although they
might also contain useful taxonomic information, they are usually not considered for the
characterisation of bacterial strains [37].

A wide variety of lipids are present in bacterial cells, but most fatty acids are found
within the cytoplasmic membrane as constituents of polar and glycolipids, where they form
an integral part of the lipid bilayer (Figure 5.1). Other types of lipids, such as sphingophos-
pholipids, only occur in a restricted number of taxa and wereshown to be valuable dis-
criminatory features within these groups [18]. Structuralfatty acids are also present in the
outer membrane of gram-negative bacteria as constituents of the lipopolysaccharide (Fig-
ure 5.2). Consequently, whole-organism hydrolysates of gram-negative bacteria not only
contain fatty acids from the cytoplasmic membrane, but alsothose from the outer mem-
brane. In lipopolysaccharide, the 3-hydroxy fatty acids form a characteristic component of
Lipid A and their ubiquitous but discontinuous distribution has made them valuable tax-
onomically. The diversity in fatty acid types (chain lengths, double bond positions and
substituent groups) and their highly regulated productionmakes them useful taxonomic
markers. Mostly, the total cellular fatty acid fraction is extracted, but particular fractions
such as polar lipids have also been analyzed separately [7, 41].

More than 300 different chemical structures of fatty acids have been identified. The
wealth of information contained in these compounds can be estimated by considering not
only the presence or absence of each acid, but also by using the data in a quantitative
fashion. While the theoretical ability to differentiate amongst2300 different combinations is
not practical due to the nonrandom distribution within groups of bacteria, the huge number
of fatty acids creates some descriptive opportunities for defining bacterial taxa [34]. An
overview of the various kinds of fatty acids found in bacteria is assembled in Figure 5.3.
Fatty acids can be classified according to the basic structure of their carbon skeleton, i.e. the
number of carbon atoms, the number and position of the doublebonds in the carbon chain,
and the presence of functional groups. The chemical composition of the straight chain
palmitic acid, written as 16:0, is shown in Figure (i). The number before the colon refers to
the number of carbons in the compound, the number after the colon indicates the number of
double bonds in the carbon chain. Thecarboxyl group(COOH) is at the right. In Figure (ii ),
the designation 16:1 indicates that the compound has 16 carbons and 1 double bond. The
chemical structure represents the unsaturated fatty acid 16:1ω7c. Note that both hydrogens
at the double bond are on the same side in thecisconformation. Theω7c notation refers to
the 7th carbon from theω-end of the chain. When counting from the carboxyl group that is
located at the reverseα-end of the chain, the same compound can be equivalently noted as
16:1cis9. Fatty acids with unknown double bond positions are differentiated using capital
letters, as in 15:1 iso F and 15:1 anteiso A. Figure (iii ) shows the unsaturated fatty acid 16:1
ω7t. This compound is intransconformation, because the hydrogens at the double bond are
on opposite sides of the molecule. Biosynthetically, fatty acids with odd carbon numbers
can be considered as a different series of acids from those with even carbon numbers. In
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Figure 5.1: Bacterial cell wall of the gram-positive bacteria, showing the structure of pepti-
doglycan. Together, the carbonhydrate backbone (glycan portion) and amino acids (peptide
portion) make up peptidoglycan. The frequency of peptide cross bridges and the number
of amino acids in these bridges vary with the bacterial species (picture taken from Tortora
et al. [39]).

Figure 5.2: Bacterial cell wall of the gram-negative bacteria (picture taken from Tortoraet
al. [39]).
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general, unsaturated fatty acids (those containing doublebonds) of bacteria are monoenoic
or monounsaturated, that is, they have only one double bond.In contrast, polyenoic fatty
acids have two or more double bonds and a more limited distribution. The position of the
double bonds is biosynthetically significant and hence of taxonomic value.

Fatty acids can be subdivided into two groups, namely straight chain and branched fatty
acids. The latter include iso-, anteiso-, 10-methyl- and dimethyl acetal-branched fatty acids,
and also the cyclopropane fatty acids. Iso- and anteiso-branched fatty acids are methyl-
branched fatty acids at the second and third carbon from theω-end (non-carboxyl end) of
the carbon chain, respectively, and are unique to bacteria.Examples are shown in Fig-
ures (iv) and (v), where themethyl group(CH3) occurs at the second, respectively third,
to the last carbon in the chain. Similarily, the 10-methyl-branched fatty acids, such as
17:0 10-methyl depicted in Figure (vi) have a methyl group at the tenth carbon position
counted from theα-end. 18:0 10-methyl is also known as tuberculostearic acid(TBSA)
or 10-methyloctadecanoic acid. Figure (vii) represents the cyclopropane fatty acid 17:0
cyclo ω7c. Again, when counting from theα-end of the chain, the same compound can
be alternatively noted as 17:0 cyclo 9-10. This molecule is composed of 16:1ω7c, with
addition of an extra carbon group at the double bond position. Dimethyl acetal 16:0, shown
in Figure (viii ), is abbreviated to 16:0 DMA. Dimethyl acetals occur as analogs of the fatty
acids present in anaerobic bacteria, and can contain any of the functional groups present in
the fatty acids of (iv-vii).

The normal hydrocarbon of 16 carbon atoms in length, writtenas n 16:0, is depicted
in Figure (ix), while Figure (x) represents aldehyde 16:0. Examples of 2-hydroxy and
3-hydroxy fatty acid molecules with 16 carbons are shown in Figures (xii) and (xiii ), having
a hydroxyl group added at the 2nd (α) and 3rd (β) position respectively. Hydroxyl groups
may occur at other positions besides the second and third carbons. However, these are
rarely found among bacterial species. Combinations of the various functional groups dis-
cussed above also occur. As an illustration of mixing different structural elements, we refer
to the fatty acid 17:0 ISO 2OH that is given in Figure (xiv), combining an iso-branched
methyl group with a hydroxyl group at the second carbon from the ω-end in the carbon
chain. Finally, the chemical structure in Figure (xv) represents the fatty acid methyl ester
16:0, where a methyl group is added to the carboxyl group on the right to increase the
volatility of the fatty acids, althus enabling gas chromatographic (GC) separation of the
cellular fatty acids. This compound is noted as 16:0 FAME.

5.2.2 Chromatographic fatty acid decomposition

Bacterial fatty acids, unlike many other phenotypic characteristics, are genetically highly
conserved, owing their essential role in cell structure andfunction. In addition, technical
advances through the development of fused-silica capillary columns, automatic injection
systems, digital integrators and standardized calibrators have increased the applicability
of whole-cell fatty acid analysis by gas-liquid chromatography [24]. The most stable and
reproducible cellular fatty acid profiles are achieved by carefully regulating the growth con-
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Figure 5.3: Nomenclature of fatty acids
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ditions [34]. After all, several scientific papers have reported on the effects of physiological
age of the cell cultures, growth temperature, incubation time, and cultivation medium on
the bacterial fatty acid composition [16]. However, differences in growth conditions and
extraction procedures influence only the quantitative content of the fatty acid methyl es-
ters in most cases, rather than the overall qualitative image of the fatty acid composition
[41]. To minimize these variables, a standard protocol was accurately followed as much as
possible during the construction of an in-house bacterial fatty acid composition database
covering a broad spectrum of environmental aerobic microorganisms. Such a standardized
protocol must be carefuly devised, to accomodate good growth for the majority of bac-
teria, and the protocol we have followed was especially designed for the construction of
the TSBA50 identification library that is commercially exploited within the Sherlock Mi-
crobial Identification System (MIS; Microbial ID, Inc. (MIDI), Newark, Delaware, USA).
Most aerobic bacteria will grow well on the prescribed Trypticase Soy Broth Agar (TSBA),
which consists of 30 gl−1 Trypticase Soy Broth (BBL) and 15 gl−1 of Bacto Agar (Difco).
The chosen growth period is 24 hours at a fixed temperature of 28◦C, and the effect of
physiological age is minimized in the broth cultures by harvesting cells from a streak on
the overlap between the second and third quadrant on the plate. Those bacteria that will
not grow under the prescribed conditions are cultivated according to the conditions which
would be most commonly used for their growth in the laboratory. These deviating con-
ditions are carefully noted down into the fatty acid database, in order to enable a correct
interpretation of the fatty acid profiles during later stages of data analysis.

The method applied for the extraction and derivation of bacterial whole-cell fatty acid
methyl esters was initially described by Miller [29]. Briefly, it takes the following five steps
to prepare the GC ready extracts. Approximately 40 to 50 mg (wet weight) of bacterial cells
is harvestedfrom the streaked plate, and placed into a clean test tube (13×100 mm) with a
Teflon-lined screw cap. Cells are thensaponifiedby heating them at 100◦C for 30 min after
the addition of 1.0 ml of 15% NaOH (w/v) in 50% aqueous methanol (v/v). The hydrolysate
is then cooled to ambient temperature, 3.25 N of HCl in 45.8% methanol is added, and the
mixture is heated at 80◦C for 10 min (this step is critical in time and temperature). This
drops the pH of the solution below 1.5 and causesmethylation(for the increased volatility
in a partially polar column) of the fatty acid. The fatty acidmethyl ester is poorly soluble in
the aqueous phase at this point. The methylated fatty acids are then quickly cooled down to
ambient temperature andextractedthrough the addition of 1.25 ml of hexane/methyl tert-
butyl ether (1:1 vol/vol), after which the tubes are capped and gently shaken for about 10
minutes. This will extract the fatty acid methyl esters intothe organic phase for use with the
gas chromatograph. Subsequently, the tubes are uncapped and the aqueous (lower) phase
is pipetted out and discarded. Finally, in order to reduce contamination of the injection port
liner, the column and the detector, the sample iswashedby adding 1.2% of dilute NaOH
(w/v) to the remaining organic layer. The base washing removes underivatized fatty acids
and trace amounts of HCl from the solution, which degrade the column and distort the
peak shape of hydroxy fatty acids in subsequent runs [22]. Approximately two-thirds of
the organic layer containing the fatty acid methyl esters (FAMEs) is then transferred to a
septum-capped sample vial for GC analysis. The previous procedure is summarized on top
of Figure 5.4.
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After preparation, fatty acid methyl esters were analyzed on a HP 6890A gas chromato-
graph (Hewlett-Packard Co., Avondale, Pennsylvania, USA) equipped with a flame ioniza-
tion detector, automatic sampler and computer. Gas-liquidchromatographic separation of
the fatty acid methyl esters was achieved with a fused-silica capillary column (25 m× 0.2
mm) coated with cross-linked 5% phenylmethyl silicone (filmthickness 0.33µm; HP Ultra
2). The specific operating parameters of the instrument are controlled and set automati-
cally by the ChemStation software (version 4.02, Hewlett-Packard). This software package
is tightly coupled to the Sherlock MIS and is used for operating sampling, analysis, and
integration of the chromatographic samples. The user specified parameters are as follows:
injector temperature, 250◦C; detector temperature, 300◦C; and oven (column) temperature,
programmed from 170◦C to 300◦C at 5◦C/min and held at 300◦C for 5 min prior to recy-
cling. The flame ionization detector allows for a large dynamic range and provides good
sensitivity. Hydrogen is the carrier gas, nitrogen is the ‘make-up’ gas, and air is used to sup-
port the flame. Until the year 2000, the chromatograms with peak retention times and areas
were produced on a recording integrator coupled to a HP 5890Agas chromatograph and
were electronically transferred to the computer for analysis, storage and chromatographic
report generation. After switching to a HP 6890A gas chromatograph, the electronic sig-
nals from the GC detector were directly passed over to the computer where the task of peak
recognition and area determination was taken over by the ChemStation software, but the re-
sults generated before and after that technical alterationremained mutually comparable. A
typical chromatogram generated for theBacillus cereustype strainLMG 6923T is shown
in the middle of Figure 5.4.

5.2.3 Calibration and cellular fatty acid identification

Even after accurately following well-established incubation protocols and GC operating
conditions, results can be distorted by ordinary equipmentdrift and inter-lab environmental
differences. To achieve reproducibility, Sherlock MIS regularly calibrates the chromato-
graphic unit using an external calibration standard developed and manufactured by MIDI.
The standard is a mixture of the straight chain saturated fatty acids from 9 to 20 carbons
in length (9:0 to 20:0) and five hydroxy acids. All compounds are added quantitatively so
that the gas chromatographic performance may be routinely evaluated by the MIDI soft-
ware each time the calibration mixture is analyzed. The hydroxy compounds are sensitive
to small changes in pressure/temperature relationships and to contamination of the injec-
tion port liner. As a result, these calibration compounds also function as quality control
checks for the system [34]. A sample containing a fresh calibration mixture is processed
several times at the start of every new batch run of bacterialsamples, and is rerun after
every user-defined number of samples to allow for recalibration during batch processing.

Retention time data obtained from injecting the calibrationmixture is converted into
equivalent chain length(ECL) units for bacterial fatty acid naming. The ECL value for
each fatty acid peak can be derived as a linear interpolationof its elution time in relation to
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bacterial

culture

saponification

& methylation

extraction

& sample cleanup

GC analysis

& peak naming

identification of bacteria

against commercial libraries

Sherlock Version: 3.10 DATA7:E01A04488A 31-MAR-04 17:52:42

-----------------------------------------------------------------------------------------------------------------
ID: 4416 BACI-CEREU (LMG 6923 T/QC9/01/KW3/P20) Date of run: 04-OCT-01 23:12:07
Bottle: 19 SAMPLE [TSBA40]

RT Area Ar/Ht Respon ECL Name % Comment 1 Comment 2
------- --------- ------ ------ ------ -------------------- ------ -------------------- --------------------
1.665 440858438 0.028 . . . 6.992 SOLVENT PEAK . . . . . . . < min rt
4.258 269 0.029 1.027 11.609 12:0 ISO . . . . . . 0.56 ECL deviates -0.000 Reference -0.002
5.259 7723 0.031 0.995 12.614 13:0 ISO . . . . . . 15.48 ECL deviates 0.000 Reference -0.002
5.353 528 0.029 0.993 12.701 13:0 ANTEISO . . . . 1.06 ECL deviates -0.001 Reference -0.003
6.480 1814 0.034 0.975 13.619 14:0 ISO . . . . . . 3.56 ECL deviates 0.000 Reference -0.002
6.976 1702 0.039 0.970 14.002 14:0 . . . . . . . . 3.32 ECL deviates 0.002 Reference -0.001
7.892 18967 0.037 0.964 14.623 15:0 ISO . . . . . . 36.83 ECL deviates 0.000 Reference -0.002
8.026 1497 0.037 0.963 14.714 15:0 ANTEISO . . . . 2.90 ECL deviates 0.001 Reference -0.002
9.073 505 0.036 0.960 15.389 16:1 w7c alcohol . . 0.98 ECL deviates 0.002
9.230 1016 0.041 0.960 15.487 Sum In Feature 2 . . 1.97 ECL deviates -0.001 14:0 3OH/16:1 ISO I
9.446 2257 0.049 0.960 15.621 16:0 ISO . . . . . . 4.36 ECL deviates -0.006 Reference -0.009
9.829 5040 0.042 0.959 15.859 Sum In Feature 3 . . 9.74 ECL deviates 0.007 15:0 ISO 2OH/16:1w7c
10.059 1512 0.037 0.959 16.002 16:0 . . . . . . . . 2.92 ECL deviates 0.002 Reference -0.000
10.425 849 0.040 0.959 16.220 15:0 2OH . . . . . . 1.64 ECL deviates 0.001
10.711 2401 0.041 0.959 16.390 ISO 17:1 w10c . . . 4.64 ECL deviates 0.002
10.836 2233 0.046 0.959 16.463 ISO 17:1 w5c . . . . 4.32 ECL deviates 0.002
11.119 2960 0.041 0.959 16.631 17:0 ISO . . . . . . 5.72 ECL deviates 0.001 Reference -0.002

******* 1016 . . . . . . . . . SUMMED FEATURE 2 . . 1.97 12:0 ALDE ? unknown 10.928

******* . . . . . . . . . . . . . . . . . . . . . . . . . . . 16:1 ISO I/14:0 3OH 14:0 3OH/16:1 ISO I

******* 5040 . . . . . . . . . SUMMED FEATURE 3 . . 9.74 16:1 w7c/15 iso 2OH 15:0 ISO 2OH/16:1w7c

Solvent Ar Total Area Named Area % Named Total Amnt Nbr Ref ECL Deviation Ref ECL Shift
---------- ---------- ---------- ------- ---------- ------- ------------- -------------
440858438 51273 51273 100.00 49634 10 0.003 0.003

-----------------------------------------------------------------------------------------------------------------
TSBA50 [Rev 5.0] Bacillus . . . . . . . . . . . . . . . . . . . . . 0.602

B. cereus . . . . . . . . . . . . . . . . . . . 0.602
B. c. GC subgroup A . . . . . . . . . . . . . 0.602

B. thuringiensis . . . . . . . . . . . . . . . . 0.509
B. t. canadensis . . . . . . . . . . . . . . . 0.509
B. t. israelensis . . . . . . . . . . . . . . 0.416
B. t. kurstakii . . . . . . . . . . . . . . . 0.372

Figure 5.4: Fatty acid methyl ester extraction procedure (top), sample chromatographic
report (middle) and sample composition report (bottom) resulting from automated fatty
acid separation by the Sherlock Microbial Identification System.
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the elution times of the known series of straight chain fattyacids of the calibration mixture

ECLx = n +
RTx − RTn

RTn+1 − RTn

, (5.1)

where RTx is the retention time of the unknown fatty acidx. RTn represents the retention
time of the saturated fatty acid methyl ester (havingn carbon atoms) precedingx in the
calibration mixture, and RTn+1 is the retention time of the saturated fatty acid methyl ester
eluting afterx in the calibration mixture [34]. As such, the saturated fatty acids of the
calibration mixture are assigned an ECL value correspondingto their chain length (e.g. 11:0
≡ ECL 11.000). Calibration thus accounts for large changes in absolute retention times as
long as the relative positions remain unchanged. In this respect, calibration of fatty acid
profiles is performed in complete analogy with the normalization of gel electrophoresis
patterns as discussed in Chapter 4, where the external calibration mixture takes on the role
of an external molecular weight marker.

Thus, it is possible by interpolation with the external calibration standard to compute the
ECL value for each detected compound following a GC analysis.The cellular fatty acids
of the unknown samples (i.e. the non-calibration samples) are then identified by match-
ing their ECL values with the naming windows of a predefined peak naming method. In
essence, a peak naming table is composed of a series of ECL windows of variable width
(most naming windows are between 0.020 and 0.030 ECL units wide) and a name for
the fatty acid compound that corresponds with most or all chromatographic peaks that fall
within each particular window. The exact structure of the compound that corresponds with
a peak in a chromatogram is generally determined using mass spectrometry. But once the
relation between the chemical structure and the chromatographic position is known, the
naming window approach avoids the extra step of mass spectroscopic analysis for the iden-
tification of the fatty acids. An example of the TSBA50 (version 5.0) peak naming method
that is used by the Sherlock MIS for naming the fatty acids of aerobic bacteria grown on
TSBA medium is shown in section B.3. Apart from the commercially available peak nam-
ing methods, Sherlock MIS also contains the necessary toolsthat support the creation of
user-defined peak naming tables. After naming the peaks in anunknown sample, Sher-
lock MIS compares the ECL values for most stable series (e.g. saturated straight chain or
branched chain acids) to the peak naming table’s theoretically perfect values and may re-
calibrate internally if sufficient differences are detected. This feature allows the system to
be up and running for two days unattended without worrying about drift between runs [34].

Practical constraints like the length of the capillary column and the limited run time
force acceptance of less than perfect chromatography. As a result, some peaks will not
be clearly separated and their corresponding naming windows in the peak naming table
are overlapping. Because it is essential for further computational analysis not to separate
equivalent fatty acids during the peak naming process, the Sherlock approach makes use of
so-calledsummed featureswherever imperfect peak discrimination occurs. This meansthat
although normalized peaks are still associated to the window having its center closest to the
observed peak (which carries the correct name for the compound in the majority of cases),
the overlapping windows are regarded as a single character when comparing vectors of
named features. When multiple gas chromotographic peaks aredetected for the composing
windows of a summed feature, their peak areas are added up. This extinguishes harmful
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effects of incorrect peak identification during cluster analysis and pattern recognition. Sev-
eral examples of predefined summed features can be found in the TSBA50 peak naming
method outlined in section B.3, where clusters of associatednaming windows are indicated
by equal negative identifiers. For this peak naming table, summed feature 1 comprises any
combination of 15:1 iso H, 15:1 iso I and 13:0 3OH. Summed feature 2 is composed of
12:0 aldehyde, unknown 10.928, 16:1 iso I and 14:0 3OH. Summed feature 3 comprises
15:0 iso 2OH, 16:1ω7c, or both. Summed feature 4 collects 17:1 iso I, 17:1 anteiso B, or
both. 18:2ω6,9c, 18:0 anteiso, or both together form summed feature 5. Summed feature
6 comprises 19:1ω11c, 19:1ω9c, or both. Summed feature 7 comprises any combina-
tion of unknown 18.846, 19:1ω6c and 19:0 cycloω10c. As can be observed from the
definition of summed feature 2, the summed feature approach can also be employed for
the agglomeration of non-overlapping peak windows that correspond with closely related
compounds. In this particular case, the 12:0 aldehyde compound is a breakdown product
of the 14:0 3OH fatty acid. The breakdown becomes more and more significant as the in-
jection port liner gets older and dirtier. The relative amounts of these fatty acids vary over
the lifetime of the liner, but the sum of the peaks remains stable [22]. Note also that the
chemical composition of some chromatographic peaks has notas yet been determined by
mass spectroscopy. Unknown fatty acids are therefore designated with the termunknown
followed by the equivalent chain length of their naming window center, so that they can be
incorporated in computation analysis of the fatty acid profiles.

Following computer analysis by the Sherlock MIS, a fatty acid identification report is
generated for any sample run, which contains a variety of parameters concerning each peak
in the chromatogram. These include retention time, area, area/height ratio, response factor,
equivalent chain length, peak name (specific fatty acid), and relative amount of the fatty
acid present in the cell, as well as some calibration information. It is the expression of the
peak area values as percentage of the total area of all named peaks in the chromatogram
(exclusive of the solvent front) that will be used for comparison of different fatty acid
profiles. Because the area measured from the chromatogram increases towards the end of
a profile, peak areas in the beginning of a profile are somewhatunderestimated, whereas
peak areas at the end of a profiles are slightly overestimated. Peaks in the early part of the
analysis are more affected by GC oven temperatures and thoselater in the analysis are more
severely impacted by carrier gas flow rates. The use of an electronic pressure controller to
achieve constant flow minimizes the latter type of error in the gas chromatograph [34]. In
order to attain an objective approximation of the relative fatty acid amountar

i of the ith
named peak, a weighted expression is used

ar
i =

ri a
a
i

∑

j∈Np

rj aa
j

, (5.2)

whereNp represents the set of named peaks of the profile,aa
k is the absolute area of the

kth peak, andrk is the weight factor assigned according to the ECL position ofthe kth
peak. In the Sherlock MIS jargon, these weights are termedresponse factors, and their
value is calculated by interpolation from a comparison between the known and measured
concentrations of the compounds in the calibration mixture. Remark that the sum of the
relative fatty acid amounts for a given profile, as defined in (5.2), is 1.
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An example report derived from the chromatogram of theBacillus cereustype strain
LMG 6923T is shown at the bottom of Figure 5.4. For the fatty acid peak 13:0 anteiso,
the measured retention time was 5.353 min. The integrated area under the peak amounts
to 528, with an area/height ratio of 0.029. This latter valueis important for quality control
of the samples, because during the analysis of materials such as fatty acids, the extrac-
tion procedure may carry over sterols, non-methylated fatty acids and other non-fatty acid
materials. Additionally, electronic noise may result in transient spikes, which might inter-
fere with the chromatography. Fatty acid peaks always have area/height ratios greater than
0.017 and less than 0.070, making it possible to ignore peaksif values are found outside of
this interval. Electronic noise spikes are typically less than 0.017, whereas non-fatty acid
methyl ester peaks (carryover, sterols, etc.) are usually greater than 0.070 [34]. After nor-
malization with the calibration mixtures run before the profile, an equivalent chain length
of 12.701 is found, and the peak can be named by finding its associated window in the peak
naming table. The total area of the named peaks in the fatty profile amounts to 51273, but
according to the denominator of (5.2) this value should be adjusted to 49634 (included in
the sample report as thetotal amount). As a result, the relative contribution of this peak to
the total area isar = 528×0.993

49634
× 100 = 1.06%. The first comment for this peak in de fatty

acid composition report indicates that this peak has emerged faster than expected by one
thousandth of an ECL unit, when compared to the center of the window in the TSBA peak
naming table.

5.2.4 Library identification of bacteria

In this subsection we explain how the Sherlock MIS performs identification of bacterial
strains with an unknown taxonomic position, from the knowledge of their cellular fatty
acid composition. Identification analysis of the fatty acidprofile of an unknown sample
happens by comparison to the entries of a predetermined identification library. For the
construction of the commercial identification libraries that are optionally delivered with
the distribution of the Sherlock MIS, several ten thousandsof fatty acid patterns from well-
characterized type and reference strains were generated according to a strict protocol of
sample growth and fatty acid extraction procedures, in order to avoid major qualitative and
quantitative variability in the fatty acid profiles caused by these influencing factors. To
attain comparability with a particular identification library, the whole-cell fatty acid methyl
ester composition for the unknown microorganism should be determined according to the
same incubation protocol as used for the samples during library generation. Apart from the
commercially available identification libraries, the Sherlock Library Generation Software
package enables the creation of custom identification libraries that are trained by a selected
set of proprietary microorganisms. Again, a well-described protocol of growth conditions
should be adhered to the construction of such libraries.

Each entry from an identification library must be composed ofthe fatty acid profiles
generated for some type and reference cultures that form a coherent taxonomic unit, e.g. a
species or a subspecies. For the commercial libraries that are provided with the Sherlock
MIS, strains were collected from experts and culture collections around the world, in order
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to avoid a potential geographical bias. Wherever possible, 20 or more strains of a species
or subspecies were analyzed for the creation of the library entry, as to gain some idea of the
variability within the taxonomic unit. When an existing taxon showed an excessive amount
of variability among the fatty acid profiles of its samples, the taxon was further split into
gas chromatographic subgroups (GC groups) to form separatelibrary entries [34]. It should
be noted that these GC groups have no real standing in bacterial taxonomy. MIDI suggests
to assemble at least 10 different strains for the construction of a single entry in a propri-
etary identification library, but of course for some rare species this number might not be
available. In general, we can state that each library entry gives rise to an(n×m) data matrix

A =













a11 a12 . . . a1m

a21 a22 . . . a2m

...
...

. ..
...

an1 an2 . . . anm













, (5.3)

wherem represents the number of features in the fatty acid peak naming table andn reflects
the number of fatty acid profiles that were generated for the construction of the library
entry. Each row of the matrix thus corresponds with a bacterial strain used for the library
construction and each column is associated with a feature from the peak naming table.
The valueaik represents the relative area of the fatty acid peak (or peaksin casek is a
summed feature) that contributes to featurek in the ith sample, with respect to the total
area of all named peaks in the profile of samplei, as was defined in (5.2). To get an
idea, the commercially available peak naming table of the TSBA50 method has 135 peak
naming windows, assembled intom = 123 different features by the definition of 7 groups
of summed features (see section B.3).

The identification problem raises the important question onhow to make an intelligent
estimation of the closeness of an unknown sample given by therow vector

x = (x1, x2, . . . , xm) , (5.4)

representing its whole-cell fatty acid methyl ester profileencoded in a similar way as the
rows composing the data matrix of a library entry, on the one hand, and on the other hand
the taxonomic unit associated to a library entry with a data matrix as given in (5.3). A naive
approach to solve this problem is to calculate the mean fattyacid profile from the patterns
in the library entry as the row vector given by

µ = (µ1, µ2, . . . , µm) , (5.5)

with

µk =
1

n

n
∑

i=1

aik 1 ≤ k ≤ m , (5.6)

and to express the closeness of the unknown sample to the library entry as theEuclidean
distancebetween the fatty acid profilex of the unknown sample and the mean fatty acid
profileµ of the library entry in the following way

d2(x, µ) =
m

∑

k=1

(xk − µk)
2 . (5.7)
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We have indicated this as a naive measure because application of the Euclidean distance is
not completely suitable for the purpose of identification based on fatty acid patterns, since
the distance measure is isotropic and the identification problem is not, as every feature
may not have the same behaviour. As an illustration, imaginethat the patterns in a library
entry show relative areas that are densely concentrated around tk for fatty acidk, while
for fatty acid l the same patterns are within a much wider interval around thevalue tl.
Then a differenced betweenxk andtk is much more significant than the same difference
d measured betweenxl andtl. Euclidean distance does not take into account this possible
asymmetry. The amount of variability for each fatty acid canbe empirically determined in
terms of the variance per feature over all samples in a library entry, represented as the row
vector

σ = (σ1, σ2, . . . , σm) , (5.8)

with

σk =
1

n

n
∑

i=1

(aik − µk)
2 =

1

n

n
∑

i=1

a2
ik − µ2

k 1 ≤ k ≤ m . (5.9)

The closeness between the fatty acid profilex of the unknown sample and the mean fatty
acid profileµ of the library entry, relative to the varianceσ within the profiles of the library
entry, can then be expressed as thenormalized Euclidean distancedefined by

d2(x, µ, σ) =
m

∑

k=1

(xk − µk)
2

σk

. (5.10)

When the Euclidean distance or a related similarity coefficient is used, the major fatty acids
(i.e. the fatty acids that occur in large quantities) account for most of the global similarity
or dissimilarity, whereas the minor fatty acids, which may be as useful for differentiation,
have little impact on the overall similarity [49]. This is exactly the problem that is resolved
by the application of the normalized Euclidean distance forthe comparison of unknown
fatty acid patterns with the mean fatty acid profile of a library entry. However, this distance
measure still treats the different fatty acids features as completely independent units, while
in reality there might occur some transformations of the fatty acid composition due to small
temperature shifts or age differences [30]. For example, 16:0 might turn into 16:1 due to
the action of a desaturase [34]. These interrelations between the fatty acid compositions of
a library entry can be captured within the(m × m) covariance matrix

Σ =













c11 c12 . . . c1m

c21 c22 . . . c2m

...
...

. . .
...

cm1 cm2 . . . cmm













, (5.11)

where the covariance between two fatty acidsk andl is empirically determined as

ckl =
1

n

n
∑

i=1

(aik − µk)(ail − µl) . (5.12)

As such, the covariance matrix captures the mole-for-mole relationship of the conversion
of one fatty acid into another. Note that for the diagonal elements of the covariance matrix
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holds thatckk = σk. Taking into account both the variances and covariances of the fatty
acids found in the patterns of the library entry, the closeness between the fatty acid profile
x of the unknown sample and the mean fatty acid profileµ of the library entry can be
expressed using the standard formula for multivariate Gaussian (or normal) distance given
by

d2(x, µ, Σ) = (x − µ) Σ−1 (x − µ)T . (5.13)

Herein, the superscript in the expression(x−µ)T refers to the use of the transposed column
vector of(x − µ), andΣ−1 is the inverse of the covariance matrixΣ. The matrix multi-
plication in (5.13) results in a single value, that is known as theMahalanobis distance.
In case the features are effectively independent of each other, the non-diagonal elements
(covariances) of the covariance matrix are zero, and the Mahalanobis distance reduces to
the normalized Euclidean distance. Additionally, when thefatty acids are isotropic, the
covariance matrix becomes the identity matrix (except for amultiplicative constant) and
the Mahalanobis distance is reduced to the usual Euclidean distance. But in general, the
Mahalanobis distance is more sensitive than the Euclidean distance as it takes into account
the variability and correlation among the fatty acids. Fatty acid profiles with equal Ma-
halanobis distance to the mean feature vector of a library entry form a multidimensional
ellipsoid. The center of the ellipsoid is given by the mean fatty acid profileµ, and the
direction of the axes is indicated by the eigenvectors ofΣ. The length of the axes is given
by 2

√
λi, whereλi (1 ≤ i ≤ m) represent theith eigenvalue ofΣ. In principle, at least

2m different fatty acid profiles are required for the construction of a library entry where-
fore the covariance matrixΣ is not singular (i.e. the determinant of the matrix is not zero).
For most practical library entries it will thus be impossible to calculate the inverse of the
covariance matrix directly. The procedure suggested in this case by a pattern recognition
technique called SIMCA (Soft Independent Modeling of Class Analogy) is based on the
eigenvalue-eigenvector analysis of the matrixΣ. A small value is added to all eigenvalues
to avoid that some eigenvalues are zero or close to zero. To get the inverted matrixΣ−1,
the adjusted eigenvalues are then inverted and rotated by the eigenvector matrix. A similar
approach is implemented in the Sherlock MIS (Charley Carter, Microbial ID Inc., personal
communication).

The correlation between an unknown organism’s fatty acid profile and a given library
entry is then expressed as a value within the unit interval [0,1], termed as thesimilarity
index(SI) within the context of the Sherlock MIS suite. Based on theMahalanobis distance
d calculated in (5.13), the SI of a particular fatty acid profile compared to the established
population mean of the library entry is given by

SI(x,A) = e−(αd)2 , (5.14)

whereα is equal to a constant such that SI = 0.6 whend = 3.0 [24]. These latter two
values can be altered as the parameters of proprietary identification libraries, but usually
these preset default values perform very well. A value of 1.0for the similarity index means
a perfect match with the taxon associated to the library entry. The identification proce-
dure is completed by comparing the fatty acid profile of the unknown organism with all
entries of the chosen identification library, and presenting a summary of the best matches.
An example of this can be found at the bottom of the sample composition report shown
in Figure 5.4, for the commercial identification library TSBA50 (note that peak naming
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tables and identification libraries are essentially independent components of the Sherlock
MIS, but both modules carry the same name TSBA50 in this particular case). The MIDI
documentation suggests that strains with a similarity of 0.5 or higher and with a separation
of 0.1 between the first and second match can be considered as good library identifications.
If the similarity index falls within the interval [0.3,0.5]and is well separated from the sec-
ond choice (> 0.1), the identification of the fatty acid profile may be acceptable but the
unknown sample could be an atypical strain of the taxonomic unit associated to the library
entry. Values lower than 0.3 suggest that the taxon of the unknown sample is probably not
included in the identification library, but the best matchedlibrary entries anyhow indicate
its closely related taxa [34].

5.2.5 Proprietary database construction

After chromatographic analysis, calibration, peak namingand library identification by
the Sherlock MIS, each batch of fatty acid profiles is transfered to a relational Oracle 8.1.7
database management system (Oracle corporation, CA, USA). During this process, both
the TSBA50 peak naming method and the TSBA50 identification library are chosen as
the default options, but other combinations are optional when more specific types of data
analysis are required. If a fatty acid profile has passed a redundancy check (all generated
profiles are represented only once in the relational database), it is linked onto the integrated
strain database as discussed previously in section 2.5. Remember that most mutual links
with the integrated strain database can be established automatically, but that some ambigu-
ous cross-references might need to be resolved by human intervention at a later stage. As
such, the fatty acid methyl ester data becomes an integral part of the laboratory information
management system (LIMS) of the Laboratory of Microbiologyat the Ghent University
and the associated BCCMTM/LMG Bacteria Collection, where it forms a coherent unit with
the integrated strain database, other empirically determined bacterial features, literature
references and some administrative information. Many cross-reference links between the
different components of the LIMS are either set up automatically or can be manually es-
tablished. Moreover, as they are incorporated together with previous analyses into the
integrated FAME database, the new fatty acid profiles becomeimmediately available for
further computational analysis within the BioNumerics software package (Applied Maths,
Sint-Martens-Latem, Belgium) through application of the Database Sharing Tools mod-
ule that implements the standard Open DataBase Connectivity (ODBC) protocol in the
optional Connected Databases package. The choice of data management and data min-
ing tools offered by the BioNumerics software package by far outperforms those that are
built into the Sherlock MIS, and the data is readily accessible in a multi-user environment
without the extra need for cumbersome manual data import procedures on behalf of the
microbiologists. As the last step of this completely automated batch processing procedure,
a personalized email message is dispatched to all staff members containing a summary of
the Sherlock MIS identification results for the bacterial samples they have deposited into
the batch. The curator of the FAME database, equally warned by an email notification after
batch processing, can in parallel perform the required quality control checks on the fatty
acid batch and take appropriate measures whenever necessary.
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Since the very first recordings of whole-cell fatty acid methyl ester chromatograms in
Februari 1989 using the Sherlock MIS, over fifteen years later, 52284 fatty acid profiles
have accumulated in the FAME database that is collectively established by the Laboratory
of Microbiology at the Ghent University and the BCCMTM/LMG Bacteria Collection, with
a total amount of 965796 peaks detected within these chromatograms. The majority of
taxa covered within this vast knowledge base reflects the general interest of the laboratory
in the taxonomy of aerobic bacteria, primarily isolated from environmental (non-clinical)
samples. Most strains were subjected to fatty acid analysisin the framework of taxonomic
research projects, during the initial screening stages forthe polyphasic classification [43] of
large sets of samples from the generaAeromonas[13, 14, 15],Arcobacter[42], Bordetella
[40], Flavobacterium[2], Pseudomonas[41], Rhizobium[38], Streptomyces[27], andXan-
thomonas[47, 48, 49, 50], among many others. Chromatographic analysis of the fatty acid
composition of a large group of strains isolated from Arcticand Antarctic waters revealed
members of new and old taxa related to the generaAlteromonas, Cytophaga, Glaciecola,
Halomonas, Pseudoalteromonas, Rhizobium, Rhodococcus, ShewanellaandSulfitobacter
[28, 45]. It was found that in order to maintain fluidity of themembranes under low temper-
ature conditions, polar isolates are characterized by highamounts of unsaturated fatty acids
[28]. Microbial identification based on fatty acid analysiswas also implemented for inves-
tigating the biodiversity of heterotrophic bacteria colonizing mural paintings that showed
visual deterioration by microorganisms, uncovering the dominant presence ofArthrobac-
ter, Bacillus, Paenibacillus, MicrococcusandStaphylococcusspecies, but also nocardio-
form actinomycetes and gram-negative bacteria [10]. Apartfrom its use as a fast screening
technique, knowledge of the cellular fatty acid composition also plays an important role in
the description of new bacterial taxa in many scientific publications. As an illustration, we
refer to the descriptions ofArcobacter butzleriandA. skirrowii [42], Brachybacterium fres-
conisandB. sacelli[11], Flavobacterium hydatis[2] andLeeuwenhoekiella aequorea[31].
As a third application, the BCCMTM/LMG Bacteria Collection also produces fatty acid pro-
files within the implementation of a total data quality management (TDQM) system, given
the cheapness, high throughput and long-term reproducibility of the technique. Of course,
complete information about the different contributions tothe accumulation of the diverse
range of fatty acid profiles in the database, would result in asheer endless enumeration of
scientific studies and other applications.

To get an impression of the high variation in the taxonomic units covered within our pro-
prietary FAME database, an excerpt of the most dominant bacterial genera represented in
the fatty acid database is depicted in Table 5.1. For all taxaincorporated within this list, the
frequency of occurrence was estimated by extracting the identification interpretations from
two autonomous information sources. The number of profiles associated to a given genus,
as indicated in the column with headerLMG, was determined by restricting the FAME
database to the samples that are linked to strains that are deposited into BCCMTM/LMG
Bacteria Collection, either directly or by use of a synonym strain label as derived from
the connection with the integrated strain database. This estimation is based on a restricted
fraction of the database, but the accurracy of the strain identification is highly reliable, as
most of the strains are characterized based on a polyphasic approach. The alternative fre-
quency count included in the column with headerMIS, is based on an interpretation that
covers all samples of the FAME database, estimated by extracting the best match from the
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genus LMG MIS
Bacillus 942 5667
Aeromonas 624 3789
Pseudomonas 1024 3584
Xanthomonas 2626 2415
Vibrio 596 2014
Stenotrophomonas 578 1584
Staphylococcus 90 1548
Paenibacillus 346 1224
Burkholderia 412 1128
Salmonella 15 977
Corynebacterium 84 917
Acidovorax 86 858
Acinetobacter 319 847
Pseudoalteromonas 93 839
Brevibacillus 131 768
Microbacterium 63 625
Geobacillus 32 594
Chryseobacterium 97 577
Rhodococcus 46 546
Micrococcus 45 544
Arthrobacter 99 532
Brevundimonas 99 442

genus LMG MIS
Microbacterium 63 625
Geobacillus 32 594
Chryseobacterium 97 577
Rhodococcus 46 546
Micrococcus 45 544
Arthrobacter 99 532
Brevundimonas 99 442
Enterococcus 276 432
Variovorax 4 379
Pantoea 159 376
Photobacterium 66 346
Novosphingobium 5 327
Kurthia 4 312
Psychrobacter 29 311
Shewanella 72 309
Kocuria 35 282
Ralstonia 70 259
Lactobacillus 52 256
Neisseria 21 242
Enterobacter 24 226
Escherichia 15 224
Zobellia 3 224

genus LMG MIS
Thermus 1 223
Sphingomonas 72 196
Flavobacterium 146 195
Paucimonas 10 195
Pseudoxanthomonas 1 194
Sphingobacterium 73 192
Sphingopyxis 33 180
Brevibacterium 22 173
Achromobacter 63 170
Ochrobactrum 18 167
Klebsiella 7 160
Listeria 71 156
Listonella 55 156
Xanthobacter 1 150
Mycobacterium 37 148
Yersinia 17 140
Lysobacter 1 137
Paracoccus 12 135
Pectobacterium 152 132
Gluconobacter 26 130
Rhodobacter 1 129
Kluyvera 2 124

Table 5.1: Overview of the most dominant genera within the FAME database. The number
of profiles associated to a given genus, as indicated in the column with headerLMG, was
determined by restricting the FAME database to the samples that are linked to strains that
are deposited into BCCMTM/LMG Bacteria Collection. The alternative frequency count
included in the column with headerMIS, is estimated by extracting the best match from
the identification against the Sherlock MIS TSBA50 identification library.

identification against the Sherlock MIS TSBA50 identification library. This identification
is generally less accurate, as it solely relies on the interpretation of the fatty acid profiles,
but it covers a broader range of the samples in the FAME database. In total, 1097 validly
described taxa are at least represented by the fatty acid composition of their type strain in
the FAME database, whereas several other reference strainshave been scanned as well for
most taxa. This amount significantly outnumbers the 888 library entries that are incorpo-
rated into the commercially available TSBA50 identification library of the Sherlock MIS,
some of them even representing (artificial) GC groups of the same taxon. However, it is
important to note that both knowledge bases only share 664 taxa, essentially making them
valuable complementary information sources.

5.2.6 Data warehousing for OLAP

In the next two sections, we will present some more statistics of the proprietary FAME
database of the Laboratory of Microbiology at the Ghent University and the BCCMTM/LMG
Bacteria Collection, and indicate how the information that isstored into this database can
be exploited to improve the peak naming of the fatty acid chromatograms and to enhance
the power of fatty acid analysis for the identification of unknown bacteria. However, before
performing any further computational analysis on the largeassembly of FAME database en-
tries, the transactional information captured along the normalization principles of relational
databases [5] was predigested in terms of the data warehousing paradigm, as to improve the
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overall performance of the calculations involved in onlineanalytical processing (OLAP).
This data transformation included the introduction of redundancy into the physical storage
of the data and the massive use of column indexing [17, 20].

In order to allow instant monitoring of the data quality for newly generated fatty acid
profiles and estimate the reproducibility of whole-cell fatty acid analysis over a long period
of time, most batch runs contained a reference sample of theStenotrophomonas maltophilia
type strainLMG 958T (≡ ATCC 13637T). Fatty acid profiles that failed to pass our
propriety quality control checks in addition to the qualitycontrol performed by the Sherlock
MIS, were discarded from the analytical data warehouse during this preprocessing stage.
As a result, the total number of profiles taken into account for statistics was reduced to
49017, amounting for 940602 fatty acid peaks detected on thechromatograms.

5.3 Qualitative FAME analysis

5.3.1 Distribution of bacterial fatty acids

Qualitative analysis of the bacterial whole-cell fatty acid methyl ester composition solely
relies on the presence or absence of certain fatty acids, without taking into account absolute
or relative amounts of the compounds detected within the bacterial cell. As a first quali-
tative application, we were interested in the distributionof the different types of fatty acid
molecules encountered in the broad diversity of environmental aerobic bacteria as a whole,
which is representatively covered by the samples in our proprietary FAME database. To this
end, Figure 5.5 shows the histogram of chromatographic fatty acid peaks that were named
using the TSBA50 peak naming method, derived from the reduced set of high-quality pro-
files in the FAME database. The named fatty acids are depictedin descending order of
occurrence within the chromatograms.

This histogram clearly demonstrates that the different chemical constellations of fatty
acids that can be detected by the Sherlock MIS are not equallydistributed among the aer-
obes. If occurrence in 25% of the chromatographic profiles within the database is taken as
the cut off level, we can conclude that the straight chain fatty acids with 12 to 18 carbon
atoms (except for 13:0) and the iso-branched fatty acids with 13 to 17 carbon units are om-
nipresent in the aerobic bacteria, together with 15:0 anteiso and 17:0 anteiso, the 3-hydroxy
fatty acids 12:0 3OH and 14:0 3OH (as the dominant component of summed feature 2),
and the unsaturated fatty acids 16:1ω7c (as the dominant component of summed feature
3), 17:1ω8c and 18:1ω7c. The straight chain fatty acid 16:0 was even found in 95% of
the generated profiles, and is thus qualitatively the least discriminatory fatty acid. On the
opposite side of the histogram we find the very rare but highlydiscriminatory fatty acids,
in casuthe evenly numbered anteiso fatty acids 12:0 anteiso (specifically encountered in
Flammeovirga aprica, Flavobacterium saccharophilumandMarinilabilia salmonicolor),
14:0 anteiso (specifically encountered inAlicyclobacillus acidoterrestrisandTenacibacu-
lum maritimum) and 16:0 anteiso (specifically encountered inStreptomyces rutgersensis
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5.3.2 Uniqueness of fatty acid combinations

In the description of bacterial taxa within the specializedscientific literature, one can
often find statements about the combination of several fattyacids that is supposed to be
qualitatively unique for a specific taxonomical unit. Such hypothesis can be easily tested
against the complete database of fatty acid profiles, using straightforward SQL queries
[5]. As an example, we reconsider the claim by Yanget al. [50], based on their obser-
vation that the methyl-branched fatty acid 11:0 iso, together with the two branched-chain
hydroxy fatty acids 11:0 iso 3OH and 13:0 iso 3OH occurred in almost allXanthomonas
strains within their extensive set of samples. Accordingly, the authors state that to their
knowledge, these three fatty acids have not been found together in other bacteria and are
thus useful features to differentiateXanthomonasfrom other bacteria. When subjected to
the FAME database, it becomes immediately clear that apart from being unique toXan-
thomonasandStenotrophomonas(a genus split off fromXanthomonasafter publication of
Yang et al. [50]), this combination of fatty acid compounds is also found in some or all
strains of the speciesBurkholderia cepacia, Fulvimonas soli, Idiomarina baltica, Pseu-
domonas beteli, P. boreopolis, P. hibiscicola, P. pictorum, Rhodovulum sulfidophilum, She-
wanella denitrificansandS. frigidimarina. It should however be noted that on the basis
of a large set of phenotypic features,Pseudomonas beteliandP. hibiscicolawere found to
be synonyms ofStenotrophomonas maltophilia[44]. This has not yet been confirmed by
solid genotypic evidence, but at least one can suppose that these species are likely to be
closely related. As such, the original claim should be relaxed in some sense. When tak-
ing into account quantitative amounts of the fatty acid content of the bacterial cells, these
different taxa can be easily separated from theXanthomonas-Stenotrophomonasgroup on
the basis of the three previously named fatty acids. As a general conclusion, quantitative
combinations of fatty acid compounds are rarely exclusive for certain taxa, even for higher
order branches in the hierarchy, in a sense that exceptions can be found in most cases. This
once more underscores the necessity for the application of qualitative measures in order to
improve the separation of bacterial taxa based on their fatty acid content.

5.3.3 Delineation of peak naming windows

In order to clearly situate this final type of qualitative analysis, let us first inspect the
Sherlock MIS fatty acid composition report of strainLMG 21428T shown in Figure 5.6.
This is the type strain ofPseudoalteromonas prydzensis, a psychrotrophic (i.e. thriving
at relatively low temperatures), halotolerant (i.e. thriving at relatively high salt concentra-
tions) bacterium isolated from the Antarctic sea ice [3]. Remark that no correct identi-
fication at the species level was accomplished by the commercial TSBA50 identification
library, because no entry representing this taxon is currently incorporated within the iden-
tification library. However, the exact genus identificationwas found anyhow, indicated by
library matches with some closely neighbouring species of the genusPseudoalteromonas.
Also note the illustration of the summed feature approach, where the relative amounts for
the peaks 16:1ω7c and 15:0 iso 2OH, bundled into summed feature 3, are added.As a
last minor comment on this fatty acid composition report, wepoint out the fact that dur-
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Sherlock Version: 3.10 DATA7:E02429367A 31-MAR-04 18:20:42

-----------------------------------------------------------------------------------------------------------------
ID: 6583 PSEA-PRYDZ(LMG21428T/QC3/02/Q3/20C/P18) Date of run: 29-APR-02 11:14:34
Bottle: 6 SAMPLE [TSBA40] Date edited: 30-APR-02 13:31:47

RT Area Ar/Ht Respon ECL Name % Comment 1 Comment 2
------- --------- ------ ------ ------ -------------------- ------ -------------------- --------------------
1.666 443829656 0.028 . . . 6.994 SOLVENT PEAK . . . . . . . < min rt
2.517 169 0.020 . . . 8.826 . . . . . . . . . . . . . < min rt
3.701 284 0.031 1.066 10.999 11:0 . . . . . . . . 0.13 ECL deviates -0.001 Reference -0.001
4.063 630 0.030 1.049 11.425 10:0 3OH . . . . . . 0.28 ECL deviates 0.003
4.382 2677 0.029 1.035 11.801 unknown 11.799 . . . 1.18 ECL deviates 0.002
4.552 4049 0.031 1.028 12.001 12:0 . . . . . . . . 1.78 ECL deviates 0.001 Reference 0.002
4.648 462 0.028 1.025 12.090 11:0 ISO 3OH . . . . 0.20 ECL deviates 0.001
5.021 3981 0.033 1.015 12.438 11:0 3OH . . . . . . 1.72 ECL deviates 0.000
5.390 2695 0.032 . . . 12.782 . . . . . . . . . . . . .
5.624 1140 0.038 1.000 13.000 13:0 . . . . . . . . 0.49 ECL deviates 0.000 Reference 0.002
5.750 2527 0.036 0.998 13.098 12:0 ISO 3OH . . . . 1.08 ECL deviates 0.000
5.992 393 0.038 0.993 13.286 12:1 3OH . . . . . . 0.17 ECL deviates -0.002
6.208 18230 0.036 0.990 13.454 12:0 3OH . . . . . . 7.70 ECL deviates -0.000
6.671 3049 0.037 . . . 13.814 . . . . . . . . . . . . .
6.910 4016 0.037 0.980 14.000 14:0 . . . . . . . . 1.68 ECL deviates -0.000 Reference 0.002
7.332 605 0.038 . . . 14.287 . . . . . . . . . . . . .
7.600 2326 0.039 0.972 14.471 Sum In Feature 1 . . 0.97 ECL deviates 0.001 13:0 3OH/15:1 i I/H
8.072 11259 0.040 0.968 14.793 15:1 w8c . . . . . . 4.65 ECL deviates -0.000
8.165 930 0.039 0.967 14.856 15:1 w6c . . . . . . 0.38 ECL deviates 0.000
8.376 12287 0.038 0.966 15.000 15:0 . . . . . . . . . . . ECL deviates 0.000
8.814 3847 0.043 . . . 15.274 . . . . . . . . . . . . .
9.156 652 0.047 0.961 15.488 Sum In Feature 2 . . 0.27 ECL deviates -0.000 14:0 3OH/16:1 ISO I
9.379 1173 0.040 0.960 15.627 16:0 ISO . . . . . . 0.48 ECL deviates -0.000 Reference 0.002
9.614 2818 0.033 0.958 15.774 16:1 w9c . . . . . . 1.15 ECL deviates 0.000
9.684 79430 0.043 0.958 15.818 Sum In Feature 3 . . 32.47 ECL deviates -0.004 16:1 w7c/15 iso 2OH
9.737 10748 0.030 0.958 15.851 Sum In Feature 3 . . 4.39 ECL deviates -0.001 15:0 ISO 2OH/16:1w7c
9.974 39721 0.042 0.957 15.999 16:0 . . . . . . . . 16.22 ECL deviates -0.001 Reference 0.000

11.032 1032 0.040 0.953 16.630 17:0 ISO . . . . . . 0.42 ECL deviates -0.000 Reference 0.001
11.190 545 0.039 0.953 16.724 17:0 ANTEISO . . . . 0.22 ECL deviates 0.001 Reference 0.002
11.305 27800 0.044 0.953 16.793 17:1 w8c . . . . . . 11.30 ECL deviates 0.001
11.379 4596 0.055 . . . 16.837 . . . . . . . . . . . . .
11.654 7540 0.045 0.952 17.001 17:0 . . . . . . . . 3.06 ECL deviates 0.001 Reference 0.002
13.067 17560 0.048 0.949 17.823 18:1 w7c . . . . . . 7.11 ECL deviates -0.000
13.372 811 0.048 0.949 18.000 18:0 . . . . . . . . 0.33 ECL deviates -0.000 Reference 0.000
13.513 416 0.035 0.949 18.082 11 methyl 18:1 w7c . 0.17 ECL deviates 0.001
14.743 886 0.044 . . . 18.798 . . . . . . . . . . . . .

******* 2326 . . . . . . . . . SUMMED FEATURE 1 . . 0.97 15:1 ISO H/13:0 3OH 13:0 3OH/15:1 i I/H

******* . . . . . . . . . . . . . . . . . . . . . . . . . . . 15:1 ISO I/13:0 3OH

******* 652 . . . . . . . . . SUMMED FEATURE 2 . . 0.27 12:0 ALDE ? unknown 10.928

******* . . . . . . . . . . . . . . . . . . . . . . . . . . . 16:1 ISO I/14:0 3OH 14:0 3OH/16:1 ISO I

******* 90178 . . . . . . . . . SUMMED FEATURE 3 . . 36.87 16:1 w7c/15 iso 2OH 15:0 ISO 2OH/16:1w7c

Solvent Ar Total Area Named Area % Named Total Amnt Nbr Ref ECL Deviation Ref ECL Shift
---------- ---------- ---------- ------- ---------- ------- ------------- -------------
443829656 271116 243152 89.69 234348 10 0.001 0.001
-----------------------------------------------------------------------------------------------------------------

TSBA50 [Rev 5.0] Pseudoalteromonas . . . . . . . . . . . . . . . . 0.655
P. nigrifaciens . . . . . . . . . . . . . . . . 0.655
P. tetraodonis . . . . . . . . . . . . . . . . . 0.651
P. haloplanktis . . . . . . . . . . . . . . . . 0.560 (Vibrio, Alteromo

P. h. haloplanktis . . . . . . . . . . . . . . 0.560 (Vibrio, Alteromo

Figure 5.6: Sherlock MIS fatty acid composition report for the Pseudoalteromonas
prydzensistype strainLMG 21428T.

ing transition from the commercial peak naming method TSBA40 to peak naming method
TSBA50, MIDI considered to treat the straight chain fatty acid compound 15:0 as a zero
feature, in order to avoid artificial variance in the fatty acid profiles that results in poor sim-
ilarity index calculations.Id est, although the chromatographic peak 15:0 is still identified
by the peak naming method TSBA50, it is no longer taken into account during calcula-
tion of the relative amounts of the fatty acid compounds. This decision is supported by
MIDI following work with coryneforms and related organisms, which often produce un-
known peaks located in the 15:0 naming window that are non-reproducible fragments of
long chain mycolic acids, and the fact that acid-fast organisms often produce fragments
that also fall within the 15:0 naming window, although they are not related to this fatty
acid compound (Ralph Paisley, Microbial ID Inc., personal communication). MIDI also
claims that the number of bacteria containing fatty acid compound 15:0 is rather low, but
this was clearly contradicted by our investigation on the distribution of bacterial fatty acids



234 CHAPTER 5. IMPROVED DISCRIMINATORY POWER OF FAME ANALYSIS

in subsection 5.3.1, where a 15:0 peak was found in 52.5% of all fatty acid profiles. Conse-
quently, the 15:0 compound (or the breakdown product that falls within this window) is no
longer taken into account for the calculation of the total amount of named peaks, resulting
in a fraction of100 × 243152

271116
= 89.7% of the total fatty acid content being recovered by the

Sherlock MIS for further computational analysis.

Most striking, however, is the observation that the Sherlock MIS has failed to name
some of the peaks in the chromatogram ofPseudoalteromonas prydzensisLMG 21428T,
although some of these unnamed fatty acids are present in rather traceable amounts. The
obvious reason for this hiatus, is that the peak naming windows of the TSBA50 method
do not cover the complete ECL range within the interval [9.000,20.000]. Outside of this
interval, no peaks are named by the Sherlock MIS for the aerobic bacteria, due to the
limited length of the capillary column. During their analysis of the cellular fatty acids of
Agrobacterium, Bradyrhizobium, Mesorhizobium, RhizobiumandSinorhizobiumspecies
using the Sherlock MIS, Tigheet al. stated the important note that when evaluating the
fatty acid composition of large groups of previously unexamined strains, the detection of
new compounds is not uncommon and it is important to include them into the peak naming
methods for establishing accurate relationships between groups [38]. We will demonstrate
that this is a truism that has been overlooked all too often. Vandammeet al. [42] also listed
some unnamed peaks during a polyphasic study of the genusArcobacter, most of them now
being included into the commercial TSBA50 peak naming method.

Inspired by these observations, we have further investigated the success rate of peak
naming in the complete database of fatty acid profiles. In total, 781456 peaks (83%) have
been named by the TSBA50 peak naming method, whereas 159146 peaks remained un-
named, from which 99946 peaks (11%) fall within the ECL range [9.000,20.000]. During
forthcoming calculations, we have primarily concentratedourselves on the peaks that fall
within this latter ECL interval. In order to enable differentiation of the chromatographic
peaks representing reproducible fatty acid compounds fromthe artefacts of the technique,
we have scrutinized the distribution of chromatographic peak locations by calculating a
histogram showing the occurrence of chromatogram peaks grouped by their normalized
ECL position. Sherlock MIS fatty acid composition reports show ECL values with a pre-
cision of10−3, so we have stuck to histogram bins of 0.001 ECL units wide. A graphical
representation of the histogram, covering the complete ECL range [7.000,21.000] of fatty
acid methyl ester peak locations detected within the complete database of chromatograms,
is depicted in Figure 5.7. The contributions of fatty acid peaks named by the TSBA50 peak
naming method of the Sherlock MIS are indicated in green, while the unnamed fatty acid
peak contributions are indicated in red. Remark that due to rounding errors in the repre-
sentation of the ECL values, some histogram bins may contain both named and unnamed
peak contributions. In these cases, we have plotted the contribution of the unnamed peaks
on top of those of the named peaks. At a glance, one easily notices by analogy with the
histogram peaks that represent the named fatty acid features, that quite a large number of
unnamed peaks are scattered in a non-random way throughout the histogram, representing
clusters of chromatographically inseparable fatty acid compounds ranging in abundance
from high, over moderate, to low. These clusters are good candidates to become part of the
peak naming process, by inclusion of their corresponding ranges as naming windows into
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the peak naming methods.

More can be learned about the distribution of the large set offatty acid chromatographic
peaks by heavily zooming in the scope towards a limited section of the ECL range. An
example of the peak occurrence histogram restricted to the ECL interval between 18.600
and 19.000 is given in Figure 5.8. Appendix B contains the complete list of histogram
illustrations, covering the entire ECL range [8.000,21.000] in chunks of 0.200 ECL units.
The naming windows of the TSBA50 peak naming method are incorporated at the bottom
of the histogram, by means of a line with arrows at the outsides (only one arrow is shown if
the corresponding window bridges across the boundaries of the selected interval), with the
name of the associated fatty acid compound underneath. Overlapping windows can be eas-
ily discriminated and are shown at different vertical positions to improve readibility. This
representation has turned out to be an utmost handy vehicle for evaluating the delineation
of peak naming windows, from which a number of important conclusions can be drawn.

First of all it should be clearly stated that in general thereis a good correspondence
between the peaks in the histogram on the one hand, and the naming windows as defined by
the TSBA50 peak naming method of the Sherlock MIS on the otherhand. This underscores
the assumption that robust histogram peaks represent identical fatty acid compounds that
are more or less abundantly present in cells of aerobic bacteria. However, in addition
the histogram also reveals some clearcut problems with the delineation of peak naming
windows which urgently need to be sorted out. Three different situations occur.

Some histogram peaks only partially overlap with the namingwindows as defined by
the Sherlock MIS. These histogram peaks suggest that the ECL delineation of several nam-
ing windows should be redefined, requiring a shift for some ofthe naming windows, an
increase or decrease in the width of these naming windows, ora complete restructuration
of some neighbouring naming windows. Figure 5.8 contains anillustration of this issue in
the definition of summed feature 7, combining the three naming windows 19:1ω6c, 19:0
cyclo ω10c and unknown 18.846. From the histogram we can infer that there are proba-
bly only two fatty acids within the range of summed feature 7,and that some extension
of the window range towards the left is required in order to cover the leftmost histogram
peak. Moreover, these fatty acid peaks are apparently separated quite nicely by the chro-
matograph, so that there is perhaps even no need for the introduction of a summed feature
in this particular case. A similar situation occurs for the combination of 12:0 aldehyde
and unknown 10.928 into summed feature 2, which may probablybe resolved by merging
these two windows into a single naming window that represents 12:0 aldehyde. Many more
examples can be spotted along the tracks of the detailed histogram shown in Appendix B.

Secondly, for several naming windows, one or more shouldersappear within the corre-
sponding histogram range. This situation most probably reflects the interference of multiple
fatty acids that cannot be clearly separated due to the limitations of the chromatographic
technology. Representing these cases by a single naming window is not harmfull for the
bacterial identification system itself, which also makes use of summed features to cope
with overlapping naming windows. However, in light of a consistent application of the
summed feature approach, it would be rather natural to sort out each of these cases by the
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introduction of several overlapping naming windows constituting a single summed feature.
This would clearly improve the descriptive power of the fatty acid identification system, as
the different chromatographic peaks could be more precisely named with the most likely
fatty acid compound that they represent. In the detailed region of the histogram covered
by Figure 5.8, the window named 19:0 iso evidently shows three spikes, suggesting that
the naming window should better be replaced by a summed feature with three overlap-
ping naming windows.Idem ditofor the window representing the fatty acid 19:0 cyclo
ω6c, which could be separated into two or three overlapping windows along the informa-
tion provided by the histogram. The peak named 14:1ω5c used to be a summed feature
in the AEROBE method (a predecessor of the TSBA50 method), composed of two nam-
ing windows representing 14:1ω5t and 14:1ω5c. A similar duality is suggested by the
peak occurrence histogram calculated from our proprietarydatabase, supporting the rein-
statement of this summed feature. Again, much more examplesof analogous cases can be
easily spotted in the other parts of the histogram shown in Appendix B.

Finally, some red coloured histogram peaks immediately catch the eye, representing
fatty acid compounds that currently have no overlap with anyexisting naming window of
the TSBA50 peak naming method. Consequently, those peaks arenot taken into account
during the bacterial identification procedure implementedby the Sherlock MIS, as was
previously illustrated by the fatty acid composition report in Figure 5.6. An investigation
on the ECL delineation of these histogram peaks and their inclusion as naming windows
in the existing peak naming methods could seriously enhancethe discriminatory power of
the bacterial identification system that makes use of named peaks, while the resolution by
mass spectroscopy of the fatty acid compound that corresponds with those histogram peaks
would simultaneously improve the naming power of the fatty acid identification system for
the description of bacterial taxa. In the framework of this chapter we have primarily focused
our attention onto the delineation of the most abundant and clearly separated unnamed
peaks showing up in the histogram, and scrutinized their significance for the taxa that are
included in the FAME database that was discussed in section 5.2. As an immediate result,
32 new naming windows have been established, accounting foran increase of 26% in the
number of features recognized by the fatty acid analysis. The fact that these additional
fatty acids are only present in a moderate or low amount of thesamples screened within the
FAME database, could indicate that they constitute important discriminatory features for
certain bacterial taxa, both in a quantitative and qualitative manner. We come back in more
detail on some of the quantitative aspects of the newly detected peaks in subsection 5.4.1.
The correct naming of the compounds associated with the newly identified histogram peaks
is postponed until some future point in time.

Some evident parallels can be drawn between the manual delineation of the fatty acid
naming windows using a histogram of normalized chromatographic peak locations, as it
was discussed in this subsection, and the histogram-based multiple band matching method
discussed in subsection 4.7.2. Both methods calculate a histogram based on the peak po-
sitions of large sets of banding patterns for the detection of homologous peaks and use
overlapping positional windows to accomodate for small peak shifts due to technical im-
perfections. However, the fatty acid peak recognition approach differs in its application
of variable sized windows instead of a fixed position tolerance ε and the introduction of
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summed features for the agglomeration of peaks in overlapping windows. These character-
istics might also prove their value for the discretized comparison of particular types of gel
electrophoresis patterns.

5.4 Quantitative FAME analysis

Besides the presence of unique fatty acids, quantitative information can be used as well
to enhance the differentiation between taxonomic units. Many authors have reported the
equality of the qualitative content of some closely relatedmicrobial taxa, whereas these
same groups of bacteria could be easily discriminated when taking into account the relative
distribition of the fatty acid compounds. Huyset al. [13] concluded that the differences
between species of the genusAeromonaswere mainly quantitative, which suggests that
differentiation of the genotypic hybridization groups in the genusAeromonasby fatty acid
methyl ester analysis is possible only when a high-resolution identification system like the
Sherlock MIS is used. They report that although the fatty acid profiles were very similar,
minor quantitative variations could be used to differentiate phenospecies and/or hybridiza-
tion groups. Quasi identical conclusions were drawn from the fatty acid composition of the
genusBordetella, whereB. bronchisepticastrains were distinguished from all other strains
by small but significant amounts of fatty acids 12:0 2OH, 19:0cyclo ω8c, and summed
feature 7, proving again that, in general, strains belonging to the same species exhibit only
minor quantitative differences in their fatty acid profiles[40].

Vancanneytet al. [41] claimed that differences in the growth conditions and extraction
procedures may influence the quantitative behaviour of the fatty acid analysis rather than
the qualitative content of the fatty acid composition of thebacterial cell. This underscores
the importance of the well-designed incubation protocols that were strictly followed as
much as possible for the construction of our in-house fatty acid database. Variations for the
most abundant fatty acids were generally found to be less than 3% among repeated profiles
of the same strain, indicating the good reproducibility of the standardized procedure [50].
We will now demonstrate how the knowledge covered into our proprietary database can be
exploited as a good alternative for the identification of unknown bacterial strains and how
the same information can endorse the significance of some newly detected fatty acid peak
naming windows for the bulk identification of the chemical structure corresponding with
chromatogram peaks.

5.4.1 Stability of new fatty acid peaks

In order to validate the new naming windows that were delineated from the chromato-
graphic peak occurrence histogram in subsection 5.3.3, it is required to check whether they
correspond withstablefatty acids. Used in this context, stable means that for manywell-
characterized strains of a particular organism, a chromatographic peak for the extracted
fatty acid must appear in a significant amount in most of the sample profiles [22]. This
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stability could already be predicted as a general property of the naming windows from the
evident non-random distribution of the selected histogrampeaks, but in this section we
will further scrutinize the importance of the newly delineated peaks by investigating their
significance for all taxa at the different levels in the taxonomic hierarchy.

To attain reliable and well-founded groupings of taxonomicunits required for this kind
of data mining activity, it is of utmost importance to have a good idea about the identi-
fication of the biological samples included in the FAME database that was discussed in
section 5.2.5. Because most fatty acid profiles were includedin the database during large
screenings of new bacterial isolates within the framework of taxonomic research projects,
clearcut polyphasic strain identifications were not alwaysavailable at the time of encoding
the samples into the database. As to assure the necessary feedback, the fatty acid records
were automatically or manually linked onto the integrated strain database, according to the
flexible cross-referencing approach discussed in section 2.5. The identification information
of the integrated strain database is independently updatedas improved taxonomic insights
are gained from new experimental evidence for the bacterialstrains. In order to get full
confidence in the characterization of the bacterial strainsused for determining the relation-
ship between existing taxa and the new fatty acid peaks, we further restricted the scope of
the calculations to the fatty acid profiles of strains that were taken from the BCCMTM/LMG
Bacteria Collection at the time of chromatographic fatty acidanalysis or were deposited
into that collection at a later stage. After all, bacterial strains are only incorporated into
the BCCMTM/LMG Bacteria Collection after they are identified according to an extensive
polyphasic analysis, and their identification is constantly monitored against and updated
according to the most recent insights in bacterial taxonomy. It should be noted that, in
general, at the time of fatty acid analysis most strains are not yet deposited into the culture
collection but are included during the final stages of the identification process, which goes
along with relabelling of the bacterial samples by the assignment of anLMG number. This
once more underscores the importance of cross-referencingthe FAME database with the
integrated strain database by means of the approach reviewed in section 5.2.5. In total,
14548 (30%) of the fatty acid profiles that were linked to the integrated strain database
could be traced as being deposited into the BCCMTM/LMG Bacteria Collection. One la-
cuna still present in the implementation of the integrated strain database is the lack of an
automatic tool for resolving the synonymy of bacterial taxa, including the correction of
deprecated and misspelled names. This deficiency may lead tothe unnatural split of some
taxa into different entities during the analysis.

It is well known that some fatty acids are highly informativeas taxonomic markers,
whereas others may vary from strain to strain [49]. Therefore, we have subjected the qual-
itative fatty acid distribution for each of the 32 newly delineated peak naming windows to
a computational analysis using the hierarchical cube operator [9, 26, 33], which performs
a roll-up agglomeration on the measured characteristics ofthe chromatographic peaks ac-
cording to the standing taxonomic stratification of the bacteria. In essence, this means that
all fatty acid profiles are initially grouped according to their identification into the taxo-
nomic hierarchy, and that the agglomerative operation takes place from the most specific
levels of the hierarchy towards the most general levels. Table 5.2 shows a small excerpt
of the agglomerative roll-up chromatographic peak statistics per taxon for the new fatty
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acid peak naming window 11, with an ECL range between 13.800 and 13.826. Complete
lists for all investigated new naming windows are included in section B.2.2 of the appen-
dices. The first column of these tables shows the different taxa for which at least one
sample was encountered within the FAME database, having a chromatographic peak in the
ECL range of the naming window at hand. Indentation was used toreflect the hierarchical
relationship of the different taxa. Closely inspecting thisdata learns that some of theBre-
vundimonas diminuta[35] strains are still encoded using the former name of the species,
beingPseudomonas diminuta. In a similar way, the identification of some strains of the
speciesAlteromonas stellipolaris[46] is clearly misspelled asAlteromonas stellaepolaris
in the database. Due to this alternative naming, the corresponding samples are erroneously
grouped into different taxonomic units for analysis purposes. This hindrance could be
overcome by the implementation of a tool for the resolution of known synonyms and mis-
spellings in the taxonomic names. Another improvement of the taxonomic grouping could
be realized by the inclusion within the integrated strain database of the information on tax-
onomic ranks above the genus level. As a result, the hierarchical cube agglomeration would
be extended to higher order ranks such as families and orderswithin the prokaryotes [8].

The following three table columns give an impression on the frequency of detecting a
chromatographic peak within the ECL range of the corresponding peak naming window
for the taxon at hand. The second column (tot) indicates the total number of fatty acid
profiles for the given taxon that are incorporated into the FAME database (recall that the
analysis is restricted to the fatty acid profiles of strains from the BCCMTM/LMG Bacteria
Collection), whereas the first column (occ) amounts to the portion of these profiles that
shows a chromatographic peak within the relevant ECL range. The fraction of these val-
ues, represented as a percentage, is shown in the third column (rel). The operation of
hierarchical cube agglomeration can be illustrated in a simple manner, by inspection of the
second peak frequency column (tot). The database contains 23 profiles of strains that are
identified asPhotobacterium damselaesubsp.damselae, and 3 profiles ofPhotobacterium
damselaesubsp. piscicidastrains. Addition of these two values results in a total of 26
strains for the speciesPhotobacterium damselae. By adding the number of profiles for all
Photobacteriumspecies, a total number of 66 profiles for the genus is found. Note however
that the total number of fatty acid profiles considered at a certain taxonomic level might be
higher than the sum of the number of profiles for all the taxonomic sublevels shown in
the peak significance tables. This is for example the case forthe genusBrevundimonas,
for which 99 fatty acid profiles are found within the FAME database. The reason for this
shortage of profiles when inspecting the taxonomic sublevels is twofold. In the first place,
not all subtaxa of a given taxon necessarily appear in the lists as shown in Table 5.2, either
because no samples for these taxa were incorporated in the FAME database, or none of
the peak profiles for the taxonomic unit showed a chromatographic peak within the ECL
range of the peak naming window at hand. For example in the case of the genusBre-
vundimonasfor the peak naming window covering the ECL interval between 13.800 and
13.826, no chromatographic peaks were found for samples of the speciesBrevundimonas
aurantiaca, B. bacteroidesandB. vesicularis, while no profiles were present in the database
for strains identified as the speciesBrevundimonas nasdae, recently described from strains
isolated at the Russian space station Mir [21]. A second groupof fatty acid profiles that
is not accounted for at the subtaxon level of a given taxon, are the profiles of strains that
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ECL ar

taxon occ tot rel µ( an
at

) µ( pn
pt

) µ σ µ σ bc bc

Actinobacillussp. 4 4 100.00% 98.12% 84.24% 13.815 0.001 1.30 0.21 1.15 1.60
Actinobacillus equuli 3 3 100.00% 98.19% 84.12% 13.814 0.001 1.20 0.08 1.15 1.30

Actinobacillus equulisubsp.equuli 3 3 100.00% 98.19% 84.12% 13.814 0.001 1.20 0.08 1.15 1.30
Actinobacillus lignieresii 1 1 100.00% 97.92% 84.62% 13.815 0.000 1.60 0.00 1.60 1.60

Alteromonassp. 27 30 90.00% 93.38% 85.97% 13.814 0.001 0.88 0.23 0.41 1.57
Alteromonas macleodii 6 6 100.00% 93.14% 89.34% 13.814 0.001 0.67 0.12 0.52 0.85
Alteromonas stellaepolaris 5 5 100.00% 90.63% 81.39% 13.814 0.001 0.92 0.17 0.72 1.12
Alteromonas stellipolaris 15 15 100.00% 93.29% 83.41% 13.814 0.001 0.98 0.19 0.74 1.57

Aquicellasp. 4 4 100.00% 89.40% 75.66% 13.810 0.001 0.37 0.18 0.22 0.63
Aquicella lusitana 2 2 100.00% 86.31% 75.65% 13.809 0.000 0.50 0.18 0.37 0.63
Aquicella siphonis 2 2 100.00% 92.49% 75.67% 13.810 0.001 0.25 0.04 0.22 0.27

Arcobactersp. 141 158 89.24% 93.41% 85.91% 13.813 0.001 6.05 4.03 0.40 18.85
Arcobacter butzleri 23 23 100.00% 94.97% 85.61% 13.814 0.001 4.61 1.96 0.85 8.29
Arcobacter cryaerophilus 83 91 91.21% 91.87% 87.57% 13.814 0.001 8.31 3.41 3.04 18.85
Arcobacter skirrowii 35 40 87.50% 95.45% 81.60% 13.812 0.002 1.64 1.51 0.40 6.33

Azospirillumsp. 2 6 33.33% 98.84% 95.96% 13.813 0.001 0.77 0.00 0.77 0.77
Azospirillum irakense 2 2 100.00% 96.51% 87.87% 13.813 0.001 0.77 0.00 0.77 0.77

Brevundimonassp. 50 99 50.51% 93.81% 82.83% 13.814 0.001 1.11 0.51 0.13 1.87
Brevundimonas alba 2 2 100.00% 89.41% 77.08% 13.817 0.001 0.47 0.09 0.41 0.54
Brevundimonas diminuta 40 51 78.43% 93.40% 81.74% 13.814 0.001 1.32 0.30 0.67 1.87
Brevundimonas intermedia 1 3 33.33% 95.68% 87.66% 13.816 0.000 0.18 0.00 0.18 0.18
Brevundimonas subvibrioides 1 5 20.00% 92.39% 83.40% 13.813 0.000 0.13 0.00 0.13 0.13
Brevundimonas variabilis 2 2 100.00% 90.15% 78.89% 13.815 0.001 0.36 0.13 0.27 0.46

Cellvibrio sp. 24 59 40.68% 97.24% 88.51% 13.815 0.002 0.45 0.19 0.21 0.91
Cellvibrio fibrivorans 9 11 81.82% 97.01% 83.49% 13.816 0.001 0.56 0.23 0.21 0.91
Cellvibrio mixtus 2 2 100.00% 96.68% 82.31% 13.813 0.001 0.48 0.29 0.28 0.69

Cellvibrio mixtussubsp.mixtus 2 2 100.00% 96.68% 82.31% 13.813 0.001 0.48 0.29 0.28 0.69
Cellvibrio ostraviensis 5 9 55.56% 97.92% 84.52% 13.814 0.000 0.41 0.11 0.33 0.59
Cellvibrio vulgaris 7 7 100.00% 97.88% 80.10% 13.815 0.001 0.36 0.06 0.31 0.47

Enterovibriosp. 2 2 100.00% 96.07% 85.99% 13.815 0.000 1.52 0.10 1.45 1.58
Enterovibrio coralii 2 2 100.00% 97.25% 84.38% 13.815 0.000 1.52 0.10 1.45 1.58

Glaciecolasp. 8 9 88.89% 92.45% 86.31% 13.813 0.003 1.67 2.00 0.21 5.02
Glaciecola mesophila 4 5 80.00% 98.45% 96.99% 13.811 0.002 0.26 0.08 0.21 0.38
Glaciecola pallidula 2 2 100.00% 86.38% 80.95% 13.814 0.000 4.82 0.29 4.61 5.02
Glaciecola punicea 2 2 100.00% 89.23% 87.42% 13.815 0.003 1.37 0.15 1.26 1.47

Listonellasp. 51 55 92.73% 97.70% 88.71% 13.814 0.001 0.78 0.32 0.39 1.83
Listonella anguillarum 47 51 92.16% 97.64% 88.61% 13.814 0.001 0.77 0.29 0.52 1.83
Listonella pelagia 4 4 100.00% 98.43% 90.00% 13.814 0.001 0.94 0.61 0.39 1.61

Moritella sp. 5 5 100.00% 84.95% 80.36% 13.815 0.000 7.73 4.60 3.73 13.01
Moritella abyssi 2 2 100.00% 81.80% 84.31% 13.815 0.000 12.75 0.38 12.48 13.01
Moritella marina 1 1 100.00% 88.85% 77.78% 13.815 0.000 3.73 0.00 3.73 3.73
Moritella profunda 2 2 100.00% 86.16% 77.71% 13.815 0.000 4.70 0.15 4.60 4.81

Photobacteriumsp. 51 66 77.27% 98.21% 89.11% 13.814 0.001 0.76 0.32 0.21 1.74
Photobacterium angustum 6 7 85.71% 98.99% 90.18% 13.813 0.001 0.43 0.15 0.31 0.73
Photobacterium damselae 21 26 80.77% 97.91% 88.03% 13.814 0.001 0.74 0.27 0.21 1.37

Photobacterium damselaesubsp.damselae 20 23 86.96% 98.25% 89.87% 13.814 0.001 0.76 0.25 0.46 1.37
Photobacterium damselaesubsp.piscicida 1 3 33.33% 95.38% 73.94% 13.811 0.000 0.21 0.00 0.21 0.21

Photobacterium eurosenbergii 2 2 100.00% 98.92% 96.23% 13.816 0.001 0.82 0.02 0.81 0.83
Photobacterium leiognathi 19 22 86.36% 98.59% 88.65% 13.814 0.001 0.78 0.27 0.46 1.37
Photobacterium phosphoreum 3 9 33.33% 97.41% 90.93% 13.815 0.001 1.42 0.39 0.99 1.74

Pseudoalteromonassp. 84 93 90.32% 92.07% 88.40% 13.814 0.001 0.75 0.56 0.13 3.33
Pseudoalteromonas atlantica 6 7 85.71% 96.80% 87.55% 13.814 0.001 1.36 0.19 1.14 1.56
Pseudoalteromonas citrea 2 2 100.00% 92.02% 79.69% 13.813 0.001 0.88 0.06 0.84 0.93
Pseudoalteromonas espeijana 9 9 100.00% 89.71% 88.25% 13.814 0.001 1.22 0.84 0.43 3.14
Pseudoalteromonas flavipulchra 3 4 75.00% 93.71% 88.88% 13.817 0.001 0.18 0.01 0.16 0.19
Pseudoalteromonas haloplanktis 25 28 89.29% 93.77% 91.01% 13.814 0.001 0.62 0.63 0.19 3.33
Pseudoalteromonas issachenkonii 8 8 100.00% 89.30% 85.94% 13.814 0.001 0.54 0.16 0.42 0.92
Pseudoalteromonas luteoviolacea 1 2 50.00% 97.86% 89.85% 13.813 0.000 0.32 0.00 0.32 0.32
Pseudoalteromonas maricaloris 10 12 83.33% 88.37% 85.54% 13.814 0.002 0.32 0.14 0.13 0.52
Pseudoalteromonas nigrifaciens 6 7 85.71% 91.77% 91.16% 13.815 0.001 0.77 0.33 0.42 1.20
Pseudoalteromonas paragorgicola 4 4 100.00% 92.78% 90.08% 13.815 0.001 1.27 0.33 1.03 1.74
Pseudoalteromonas prydzensis 4 4 100.00% 88.66% 81.25% 13.814 0.001 1.06 0.11 0.89 1.12
Pseudoalteromonas ruthenica 6 6 100.00% 92.31% 88.99% 13.814 0.001 0.74 0.21 0.44 1.01

Pseudomonassp. 259 1024 25.29% 95.22% 87.33% 13.813 0.004 0.59 1.55 0.07 12.57
Pseudomonas aurantiaca 4 4 100.00% 84.62% 57.96% 13.804 0.002 0.41 0.06 0.34 0.47
Pseudomonas beijerinckii 1 1 100.00% 98.68% 84.62% 13.813 0.000 0.55 0.00 0.55 0.55
Pseudomonas diminuta 3 3 100.00% 93.74% 85.51% 13.814 0.001 1.95 0.47 1.62 2.49
Pseudomonas lundensis 4 5 80.00% 62.74% 57.29% 13.816 0.002 5.10 6.09 0.12 12.57
Pseudomonas luteola 3 3 100.00% 99.74% 90.30% 13.813 0.000 0.28 0.07 0.20 0.34
Pseudomonas marginalis 51 80 63.75% 99.22% 89.76% 13.814 0.001 0.28 0.08 0.14 0.60

Pseudomonas marginalispv. alfalfae 10 12 83.33% 99.62% 90.88% 13.814 0.001 0.31 0.07 0.15 0.38
Pseudomonas marginalispv. marginalis 27 41 65.85% 99.26% 90.55% 13.815 0.001 0.28 0.10 0.15 0.60
Pseudomonas marginalispv. pastinacae 5 13 38.46% 99.33% 94.39% 13.814 0.001 0.20 0.04 0.14 0.25

Pseudomonas spinosa 2 2 100.00% 99.00% 88.19% 13.814 0.001 1.00 0.24 0.83 1.17
Shewanellasp. 55 72 76.39% 90.08% 87.04% 13.813 0.001 0.67 0.48 0.08 3.12

Shewanella algae 2 4 50.00% 89.92% 92.17% 13.812 0.001 0.11 0.03 0.08 0.13
Shewanella denitrificans 8 8 100.00% 92.06% 88.47% 13.812 0.000 0.65 0.08 0.52 0.73
Shewanella fidelis 4 4 100.00% 91.49% 89.36% 13.814 0.001 0.35 0.06 0.30 0.43
Shewanella frigidimarina 9 10 90.00% 90.92% 81.90% 13.814 0.001 1.33 0.68 0.95 3.12
Shewanella hanedai 4 4 100.00% 82.46% 84.15% 13.814 0.001 0.67 0.02 0.65 0.70
Shewanella japonica 5 5 100.00% 95.33% 83.93% 13.812 0.001 0.46 0.07 0.36 0.56
Shewanella livingstonensis 3 3 100.00% 88.55% 80.87% 13.813 0.000 1.11 0.13 1.02 1.26
Shewanella marinintestina 3 4 75.00% 87.38% 89.43% 13.813 0.001 0.33 0.02 0.31 0.35
Shewanella olleyana 4 5 80.00% 89.88% 86.04% 13.810 0.001 0.43 0.15 0.31 0.64
Shewanella putrefaciens 3 9 33.33% 89.35% 93.24% 13.813 0.000 0.21 0.05 0.17 0.26
Shewanella sairae 3 3 100.00% 94.85% 85.93% 13.812 0.001 0.62 0.15 0.47 0.76
Shewanella schlegeliana 4 4 100.00% 89.09% 86.80% 13.813 0.001 0.26 0.03 0.23 0.30
Shewanella violacea 3 3 100.00% 85.43% 81.67% 13.813 0.001 1.20 0.20 1.07 1.43

Table 5.2: Small excerpt of the agglomerative roll-up chromatographic peak statistics per
taxon for the new fatty acid peak naming window 11, with an ECL range between 13.800
and 13.826.
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are only identified at the level of accuracy provided by the taxon itself. For example, in
the Brevundimonascase, the strainsLMG 9564, LMG 9567 andLMG 11070 are only
accurately identified at the genus level.

Furthermore, the rolled up statistics also contain an indication of the peak naming suc-
cess rate of the TSBA50 peak naming method that is commercially available within the
Sherlock MIS. The valueµ(an

at
) presents the average (µ) percentage of the cumulative

amount of fatty acids within the named peaks (an), with respect to the total fatty acid
content found within the bacterial cell (at). These latter values can be immediately ex-
tracted from the Sherlock MIS peak naming report as the namedarea and the total area
respectively, taking into account the reponse factor for correcting the absolute amount of
fatty acids as given in formula (5.2). As an alternative measure, the valueµ(pn

pt
) expresses

the average percentage of the named peaks (pn) over the total number of peaks detected in
the chromatogram. Only chromatographic peaks within the ECLrange [9.000,20.000] are
taken into account. Table 5.2 clearly shows that the relative amount of the named peaks
can be relatively high for a given taxon, whereas there is still a high fraction of unnamed
peaks, and vice versa. These two parameters together thus give an impression whether
there is either a large number of low-amount unnamed peaks orrather only a small number
of unnamed peaks but with a significant contribution to the total fatty acid content of the
relevant taxon, or anything in between.

The peak statistics tables also agglomerate for each taxon the average and standard devi-
ation (σ) of the normalized ECL position, for the chromatographic peaks within the given
ECL interval of the corresponding new naming window. Table 5.2 shows little or no vari-
ation in the ECL positions of the chromatographic peaks for the new naming window cov-
ering the ECL interval between 13.800 and 13.826. This is in complete agreement with
the single sharp peak encountered with the corresponding naming window in the histogram
presented in section B.1. For naming windows that show one or more shoulders in the
histogram, these values may aid in the assignment of the corresponding taxon to one of the
multiple spikes.

A final group of values are related to the relative amount of the fatty acids within the
newly delineated peak naming window, with respect to the total amount of named fatty
acids. Apart from the average and standard deviation, also the mininal (bc) and maxi-
mal (de) relative amounts are shown. It should be noted that the addition of one or more
new peak naming windows for the naming of previously unnamedpeaks within the chro-
matographic peak profile, influences the value of the denominator in the expression of the
relative area (5.2), thus also the values of all relative amounts calculated by the Sherlock
MIS. Because the response factors are missing in the unnamed peaks in the Sherlock MIS
sample composition reports, we have applied two simplifications for the calculation of the
relative areas. The effect of response factor corrections is ignored by regarding all weights
as 1.0 in expression (5.2), and the sum in the denominator is only restricted to all chromato-
graphic peaks in the ECL range between 9.000 and 20.000, instead of a further limitation to
the named peaks. Note that as such the value for the denominator is readily available as the
total area in the Sherlock MIS sample composition reports, and the resulting simplification
assumes that all relevant peaks are named after introduction of the 32 new peak naming
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windows. This is true for a majority of the profiles in the current version of our proprietary
FAME database.

The significance of the newly discovered peak naming windowsfor each of the validly
described taxonomic units directly follows from the tablespresented in appendix B. Al-
though this sheer amount of information at first glance mightseem overwhelming or even
daunting, it definitely reflects the size and complexity of the knowledge present into our
proprietary FAME database. In order to sort out the taxonomic units for which the peaks
are most stable, we can apply the same quality threshold thatis also used for the elimi-
nation of features in the Sherlock MIS library entries that have a very low mean and/or
are present in only a small percentage of the samples relatedto a given taxonomic unit.
This quality threshold is based on the product of the averagerelative amount of the fatty
acids per taxon (µ(ar)) and the fraction of samples which contain a chromatographic peak
within the corresponding naming window (rel/100). A typical value for the quality thresh-
old suggested by MIDI is 0.25. Application of the quality threshold onto the taxa covered
within our proprietary FAME database results in a summary ofthe taxonomic units for
which the newly discovered peaks are highly stable, as is shown in Table 5.3. The first
column assigns an identifier to each of the newly delineated naming windows, whereas the
second column gives the ECL range that is covered by the namingwindow. Theocc col-
umn indicates the total number of fatty acid profiles in our proprietary FAME database for
which a peak was detected in the corresponding naming window. This value hence is not
restricted to the profiles associated to a strain contained within the BCCMTM/LMG Bacteria
Collection, but takes into account all profiles, regardless of the quality or precision of their
taxonomic identification. The last column enumerates all taxonomic units for which the
quality threshold was at least 0.25. For reasons of compactness, the taxa mentioned in this
list were restricted to the lowest level in the hierarchy forwhich the fatty acid peak was
found and the few samples of anaerobic species incorporatedinto our proprietary FAME
database were discarded. Also, if two or more species or subspecies of the same genus
appear in the list, the genus name is only fully given with thefirst scientific name, and
abbreviated to the first letter of the name in all subsequent scientific names. The value be-
tween brackets represents the average percentage of the relative fatty acid amount found in
the samples of the taxonomic unit at hand. In order to highlight the fact that a given naming
window is highly specific for a certain genus, the species andsubspecies of that genus are
printed in bold face in Table 5.2 whenever a chromatographicpeak was found in more than
two thirds of the species for the given genus.

Comparison of the peak frequencies calculated for the new peak naming windows with
those of the peaks named with the Sherlock MIS TSBA50 peak naming method learns
that the newly discovered peaks only occur in a moderate to low number of the profiles
in our proprietary FAME database. Not very surprising, because we previously observed
in subsection 5.3.3 that 83% of the peaks were already named by the TSBA50 peak nam-
ing method. Nonetheless, peak 11, covering the ECL range between 13.800 and 13.826,
was found in 21.4% of the fatty acid profiles in our proprietary FAME database. Moss
& Lambert-Fair have identified this fatty acid peak as 14:1ω7c by means of mass spec-
trometry [23], whereas chromatographic peaks on the same position are interpreted as 13:0
iso 2OH according to the peak naming table of the Culture Collection at the University
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ID ECL occ taxa for which the histogram peak is significantly found

1 9.201
9.246

2253 Acidomonas methanolica(0.28%),Azorhizobium caulinodans(4.44%),Bacillus carotarum(0.76%),
B. cohnii (2.15%), B. flexus(1.70%), B. halodurans(0.72%), B. macroides(0.70%), B. shackle-
tonii (0.94%),B. similibadius(0.93%),Blastobacter denitrificans(0.36%),Brachybacterium alimen-
tarium (0.45%), B. nesterenkovii(1.58%), B. tyrofermentans(0.73%), Enterococcus saccharolyti-
cus(0.37%),Erwinia tracheiphila(1.72%),Kurthia zopfii(0.67%),Muricauda ruestringensis(1.24%),
Paenibacillus alginolyticus(0.93%),Paralactobacillus selangorensis(0.72%),Pseudomonas beijer-
inckii (0.77%),Roseobacter denitrificans(0.43%),R. litoralis (0.44%),Ruegeria algicola(0.36%),Sta-
leya guttiformis(0.55%),Streptomyces roseoviolaceus(0.27%),Sulfitobacter mediterraneus(0.29%),
S. pontiacus(0.31%),Ureibacillus terrenus(1.09%),Vibrio pomeroyi(1.88%)

2 10.067
10.099

2903 Aeromonas allosaccharophila(0.36%), A. culicicola (0.48%), A. enteropelogenes(0.36%), En-
terovibrio coralii (0.76%),Listonella anguillarum(1.17%),Rhodobacter sphaeroides(0.32%),Vib-
rio mediterranei(0.47%),Yersinia enterocoliticasubsp.enterocolitica(2.99%)

3 10.464
10.487

1828 Acidomonas methanolica(1.63%),Blastobacter denitrificans(0.92%),Cellvibrio fibrivorans(0.78%),
C. fulvus (0.87%), C. mixtussubsp.mixtus (0.90%), C. ostraviensis(0.72%), C. vulgaris(0.66%),
Collimonas fungivorans(0.38%),Pseudomonas aurantiaca(2.28%),P. chlororaphis(0.76%),P. cor-
rugata (0.52%),P. frederiksbergensis(1.50%),P. putida (0.68%),P. umsongensis(0.58%),Ruege-
ria algicola (0.78%)

4 11.187
11.206

901 Acidomonas methanolica(0.44%),Bacillus vedderi(1.51%),Blastobacter denitrificans(0.48%),Cel-
lvibrio fulvus (0.27%),C. mixtussubsp.mixtus(0.31%),C. vulgaris(0.27%),Pseudomonas auranti-
aca(0.80%),P. frederiksbergensis(0.45%)

5 11.960
11.976

1788 Blastobacter denitrificans(0.63%), Bradyrhizobium elkanii(0.49%), B. liaoningense(0.94%),
Ochrobactrum tritici (0.75%), Pseudomonas alcaligenes(5.04%), P. aurantiaca (1.58%),
P. beteli (0.31%),P. hibiscicola(0.29%),P. stutzeri(7.98%),Psychrobacter fozii(0.73%),P. glac-
incola (0.70%), Rhodovulum sulfidophilum(0.36%), Stenotrophomonas africana(0.27%), S. mal-
tophilia (0.32%), S. rhizophila (0.28%), Xanthomonas arboricolapv. celebensis(0.35%), X. ar-
boricola pv. fragariae (0.37%), X. arboricola pv. poinsettiicola(0.27%), X. axonopodispv. cora-
canae(0.35%),X. axonopodispv. desmodii(0.37%),X. axonopodispv. lespedezae(0.29%),X. ax-
onopodis pv. martyniicola (0.33%), X. sp. pv. cannabis (0.32%), X. sp. pv. cannae (0.42%),
X. sp. pv. coriandri (0.38%), X. sp. pv. lantanae (0.34%), X. sp. pv. nigromaculans(0.33%),
X. sp. pv.phormiicola (0.31%),X. sp. pv.vitiscarnosae(0.28%),X. sp. pv.zantedeschiae(0.45%),
X. sacchari(0.29%),X. theicola(0.36%),X. translucenspv. phlei (0.28%)

6 12.340
12.358

709 Brevibacillus centrosporus(5.70%), Pseudomonas aurantiaca(1.68%), P. chlororaphis (0.73%),
P. frederiksbergensis(3.14%),P. umsongensis(0.56%)

7 12.770
12.787

796 Loktanella salsilacus(0.88%),Pseudoalteromonas citrea(0.39%), P. espeijana(1.12%), P. flavip-
ulchra (0.56%), P. haloplanktis(0.99%), P. issachenkonii(1.11%), P. maricaloris (1.06%), P. ni-
grifaciens (1.61%), P. paragorgicola(0.85%), P. prydzensis(1.21%), P. ruthenica(0.38%), Rhein-
heimera baltica(1.05%),Roseobacter gallaeciensis(0.71%)

8 13.136
13.149

341 Aquicella lusitana (0.79%), A. siphonis (0.43%), Pseudomonas frederiksbergensis(0.75%), She-
wanella denitrificans(0.67%), S. frigidimarina (0.29%), S. hanedai(0.43%), S. japonica(0.62%),
S. livingstonensis(0.27%),S. olleyana(0.64%),S. sairae(0.55%),S. violacea(0.72%)

9 13.515
13.529

840 Bacillus firmus (0.92%), Bifidobacterium adolescentis(1.13%), B. cuniculi (1.33%), Bre-
vibacterium epidermidis(1.51%), Enterococcus pseudoavium(2.22%), Gulosibacter molinativo-
rax (19.63%),Microscilla arenaria (0.51%),Moraxella subgen.Moraxella bovis(1.58%),M. sub-
gen. Moraxella nonliquefaciens(1.79%), Moritella marina (0.77%), M. profunda (0.46%), My-
cobacterium aurum(6.92%), M. gilvum (5.02%), M. vanbaalenii (7.26%), Pseudomonas al-
caligenes(4.09%), Streptomyces canescens(1.34%), S. citreus (1.60%), S. coelicolor (2.94%),
S. felleus(1.07%),S. limosus(0.73%),S. odorifer(1.77%),S. paucisporogenes(0.34%),S. rutgersen-
sis subsp.rutgersensis(2.38%),S. tendae(0.91%),Vibrio logei (0.79%),V. superstes(0.42%),Xan-
thomonas axonopodispv. dieffenbachiae(5.40%)

Table 5.3: New peak naming windows derived from the peak occurrence histogram, with an
overview of the taxa for which the corresponding fatty acid peaks are significant according
to a quality threshold of 0.25. The first column assigns an identifier to each of the newly de-
lineated naming windows, whereas the second column gives the ECL range that is covered
by the naming window. Theocc column indicates the total number of fatty acid profiles in
our proprietary FAME database for which a peak was detected in the corresponding naming
window. The values between brackets after the scientific name of the taxa wherefore the
peak was found to be significant indicates the average percentage of the relative fatty acid
amount found in the samples of the taxonomic unit at hand, andthe species and subspecies
for a given genus are printed in bold face whenever a chromatographic peak was found in
more than two thirds of the species for the given genus.
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ID ECL occ taxa for which the histogram peak is significantly found

10 13.761
13.772

703 Acetobacter orleanensis(1.31%), Aequorivita crocea (0.27%), Aerococcus viridans(1.27%),
Arcanobacterium pyogenes(0.35%), Bacillus azotoformans(0.90%), Bifidobacterium ani-
malis (1.06%), B. bifidum (0.88%), B. catenulatum(1.37%), B. infantis (0.89%), Corynebac-
terium afermentanssubsp.afermentans(0.28%), C. argentoratense(0.29%), C. coyleae(0.32%),
C. flavescens(0.65%), C. imitans (0.37%), C. pseudotuberculosis(0.39%), C. seminale(0.57%),
Macrococcus brunensis(0.94%),M. hajekii (1.68%),M. lamae(1.08%),Marinobacter hydrocarbon-
oclasticus(0.96%),Mycobacterium aichiense(0.37%),M. peregrinum(0.38%),Oleiphilus messinen-
sis(0.51%),Paenibacillus antarcticus(0.78%),Thermomonas haemolytica(0.79%),Vagococcus fluvi-
alis (1.51%),Vibrio kanaloaei(0.58%),Xanthomonas populi(1.59%)

11 13.800
13.826

10484 Actinobacillus equulisubsp.equuli (1.20%),A. lignieresii (1.60%),Aeromonas culicicola(0.39%),
A. enteropelogenes(0.35%),A. hydrophilasubsp.dhakensis(0.37%),A. ichthiosmia(0.49%),A. popof-
fii (0.41%), A. salmonicidasubsp.masoucida(0.36%), A. schubertii(0.63%), Agrobacterium lu-
teum(3.97%),Alteromonas macleodii(0.67%), A. stellaepolaris(0.92%), A. stellipolaris (0.98%),
Aquaspirillum polymorphum(1.12%), Aquicella lusitana(0.50%), Arcobacter butzleri (4.61%),
A. cryaerophilus (8.31%), A. skirrowii (1.64%), Azospirillum irakense(0.77%), Brenneria para-
disiaca (0.66%), Brevundimonas alba(0.47%), B. diminuta (1.32%), B. variabilis (0.36%), Cel-
lvibrio fibrivorans (0.56%), C. mixtussubsp.mixtus (0.48%), C. vulgaris (0.36%), Devosia nep-
tuniae (1.21%), Enterococcus avium(2.88%), E. canis (1.56%), E. casseliflavus (1.40%),
E. columbae (5.07%), E. dispar (3.46%), E. durans (1.26%), E. faecalis (1.51%), E. fae-
cium (2.62%), E. flavescens(0.93%), E. gallinarum (1.46%), E. gilvus (1.41%), E. hi-
rae (1.38%), E. malodoratus (3.67%), E. mundtii (1.28%), E. pseudoavium(2.17%), E. raf-
finosus (2.64%), Enterovibrio coralii (1.52%), Flavobacterium gillisiae(0.52%), Flexibacter au-
rantiacus subsp. copepodarum(0.29%), Frateuria aurantia (0.43%), Fusobacterium nuclea-
tum subsp.nucleatum(0.38%),Glaciecola pallidula(4.82%), G. punicea(1.37%), Grimontia hol-
lisae (1.98%), Halomonas cupida(0.52%), H. pacifica (1.76%), H. venusta(0.45%), Lactobacil-
lus brevis(1.02%),L. delbrueckiisubsp.bulgaricus(0.81%),Lactococcus garvieae(2.35%), L. lac-
tis subsp. lactis (0.91%), Leuconostoc mesenteroidessubsp.dextranicum(1.28%), Listonella an-
guillarum (0.77%), L. pelagia(0.94%), Marinospirillum minutulum(7.34%),Microbacterium terre-
gens(1.31%),Moritella abyssi(12.75%),M. marina (3.73%),M. profunda (4.70%), Mycoplana bul-
lata (2.05%),Neisseria flavescens(0.70%),N. perflava(0.88%),Oceanimonas doudoroffii(0.67%),
Oleiphilus messinensis(0.42%), Pectobacterium cacticida(0.42%), P. wasabiae(0.27%), Photo-
bacterium angustum(0.43%), P. damselaesubsp. damselae(0.76%), P. eurosenbergii(0.82%),
P. leiognathi (0.78%), P. phosphoreum(1.42%), Plesiomonas shigelloides(0.58%), Pseudoal-
teromonas atlantica(1.36%),P. citrea(0.88%),P. espeijana(1.22%),P. haloplanktis(0.62%),P. is-
sachenkonii(0.54%), P. maricaloris (0.32%), P. nigrifaciens (0.77%), P. paragorgicola(1.27%),
P. prydzensis(1.06%), P. ruthenica (0.74%), Pseudomonas aurantiaca(0.41%), P. beijer-
inckii (0.55%),P. diminuta(1.95%),P. lundensis(5.10%),P. luteola(0.28%),P. marginalispv. alfal-
fae (0.31%),P. spinosa(1.00%),Psychromonas profunda(12.45%),Rheinheimera baltica(2.15%),
Roseobacter gallaeciensis(0.84%), R. litoralis (0.61%), Salinivibrio costicola subsp. costi-
cola (1.23%), Shewanella denitrificans(0.65%), S. fidelis (0.35%), S. frigidimarina (1.33%),
S. hanedai (0.67%), S. japonica (0.46%), S. livingstonensis(1.11%), S. olleyana (0.43%),
S. sairae(0.62%),S. schlegeliana(0.26%),S. violacea(1.20%), Sphaerotilus natans(1.36%),Strep-
tococcus thoraltensis(1.27%),Vibrio aestuarianus(0.55%), V. anguillarum (0.90%), V. brasilien-
sis (0.66%), V. campbellii (0.36%), V. chagasii (0.62%), V. cincinnatiensis (0.26%), V. coral-
liilyticus (0.35%), V. crassostreae(0.55%), V. cyclitrophicus (0.53%), V. diabolicus (0.26%),
V. diazotrophicus(0.52%), V. ezurae (1.76%), V. fischeri (0.88%), V. fortis (0.61%), V. gal-
licus (0.75%), V. halioticoli (1.10%), V. harveyi (0.36%), V. hepatarius (0.57%), V. hispani-
cus (0.51%), V. kanaloae (0.49%), V. kanaloaei (0.67%), V. lentus (1.12%), V. logei (1.88%),
V. mediterranei (0.60%), V. metschnikovii (0.52%), V. mytili (0.56%), V. navarrensis(0.36%),
V. neonatus (1.21%), V. neptunius (0.43%), V. nereis (0.66%), V. nigripulchritudo (0.53%),
V. ordalii (1.14%), V. orientalis (0.90%), V. pacinii (0.61%), V. parahaemolyticus(0.31%),
V. pelagius (0.75%), V. pomeroyi (0.74%), V. proteolyticus (0.31%), V. rotiferianus (0.39%),
V. shilonii (0.38%), V. splendidus (0.75%), V. tasmaniensis(1.42%), V. tubiashii (0.66%),
V. vulnificus (0.39%), V. xuii (0.43%), Xanthomonas arboricolapv. corylina (2.88%), X. horto-
rum pv. taraxaci (0.26%), X. sp. pv.gummisudans(0.33%), X. translucenspv. phlei (0.29%), Zy-
momonas mobilissubsp.mobilis(2.19%)

12 14.570
14.581

804 Brachybacterium alimentarium(2.42%), B. conglomeratum(1.66%), B. faecium(0.91%), B. fres-
conis (1.25%), B. paraconglomeratum(1.07%), B. rhamnosum(2.12%), B. sacelli(1.38%), B. ty-
rofermentans(2.38%), Plantibacter flavus(0.59%)

13 14.811
14.817

288 Arenibacter latericius (0.62%), Brumimicrobium glaciale (0.75%), Cellulophaga algi-
cola (1.21%),C. baltica (0.63%),Cytophaga latercula(0.59%),Flavobacterium aquatile(0.88%),
F. columnare(0.90%),F. degerlachei(0.98%),F. frigoris (0.55%),F. fryxellicola (0.72%),F. gelidila-
cus(1.00%),F. hibernum(1.34%),F. micromati(1.31%),F. aurantiacussubsp.excathedrus(1.93%),
F. tractuosus(1.25%),Muricauda ruestringensis(0.60%)

Table 5.4: Continuation of Table 5.3
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ID ECL occ taxa for which the histogram peak is significantly found

14 15.160
15.193

3366 Actinobacillus equuli subsp. equuli (0.39%), A. lignieresii (0.48%), Aeromonas hy-
drophila subsp. dhakensis (0.35%), Bacillus horikoshii (0.85%), Brachybacterium fresco-
nis (2.15%),B. nesterenkovii(2.01%),Brenneria paradisiaca(0.43%),Burkholderia glumae(1.19%),
Corynebacterium casei(1.00%), C. singulare (1.26%), Curtobacterium plantarum(0.42%), Er-
winia billingiae (0.39%), E. persicina(0.71%), E. rhapontici (0.56%), Flexibacter ruber(1.67%),
Hafnia alvei(0.50%),Klebsiella pneumoniaesubsp.ozaenae(0.33%),Pantoea agglomerans(0.34%),
Pectobacterium cacticida(0.34%), P. carotovorum subsp. odoriferum (0.38%), P. chrysan-
themi (0.45%), P. wasabiae(0.34%), Polaribacter glomeratus(2.44%),Proteus vulgaris(0.40%),
Pseudomonas corrugata(1.26%), P. tremae (0.40%), Rhodobacter sphaeroides(0.32%),
Sporosarcina pasteurii(0.71%),Tenacibaculum maritimum(0.57%),Xanthomonas hyacinthi(1.93%)

15 15.266
15.282

5359 Acidovorax avenae subsp. avenae (0.53%), Aeromonas ichthiosmia (0.28%), Al-
teromonas macleodii(0.40%), Arcobacter nitrofigilis (1.06%), A. skirrowii (2.90%), Brevundi-
monas alba(1.77%),Devosia neptuniae(0.88%),Glaciecola pallidula(5.24%),G. punicea(5.73%),
Grimontia hollisae(0.51%),Ketogulonicigenium robustum(0.54%),Listonella anguillarum (1.42%),
L. pelagia (0.87%), Loktanella fryxellensis (2.21%), Marinospirillum minutulum (6.79%),
Moritella abyssi(3.46%), M. marina (2.90%), M. profunda (5.35%), Neisseria flavescens(0.69%),
Paracoccus denitrificans(1.25%),P. zeaxanthinifaciens(1.39%),Pseudoalteromonas citrea(2.50%),
P. prydzensis(1.39%), Pseudomonas aurantiaca(2.17%), P. chlororaphis (0.95%), P. frederiks-
bergensis(0.86%), P. umsongensis(0.94%), Rheinheimera baltica(5.07%), Roseobacter den-
itrificans (5.67%), R. litoralis (4.66%), Ruegeria algicola (0.90%), Shewanella frigidima-
rina (1.64%), S. livingstonensis(1.28%), Staleya guttiformis(3.92%), Streptomyces antibioti-
cus (2.01%), S. caelestis(1.51%), S. netropsis(1.41%), Sulfitobacter brevis(2.81%), S. mediter-
raneus (3.82%), S. pontiacus(3.09%), Vibrio aestuarianus (0.97%), V. anguillarum (1.43%),
V. brasiliensis (0.64%), V. chagasii (0.72%), V. cincinnatiensis (0.28%), V. coralliilyti-
cus (0.82%), V. crassostreae(1.66%), V. cyclitrophicus (1.20%), V. diazotrophicus (1.04%),
V. ezurae (0.40%), V. fischeri (1.46%), V. fortis (0.67%), V. hepatarius (0.95%), V. hispani-
cus (1.05%), V. kanaloae (0.65%), V. kanaloaei (1.09%), V. lentus (2.18%), V. logei (1.01%),
V. metschnikovii (0.66%), V. navarrensis (0.29%), V. neptunius (0.68%), V. nereis (0.93%),
V. nigripulchritudo (2.33%), V. ordalii (1.51%), V. orientalis (0.78%), V. pacinii (1.25%),
V. pelagius (0.79%), V. pomeroyi (1.57%), V. splendidus (1.59%), V. tasmaniensis(1.37%),
V. tubiashii (0.98%),V. vulnificus (0.36%)

16 15.403
15.423

317 Aeromonas jandaei(2.83%),A. trota (1.17%),A. veroniibiogrp.sobria (1.66%),Flavobacterium tir-
renicum(4.69%),Flexibacter elegans(0.54%),Pseudomonas pictorum(0.67%),Stenotrophomonas ni-
tritireducens (0.26%), Streptomyces argenteolus(17.79%), S. aureofaciens(14.36%), S. bluen-
sis (11.99%),S. cinnamoneus(26.44%),S. cinnamoneussubsp.cinnamoneus(26.44%),S. coriofa-
ciens(25.09%),S. kentuckensis(24.03%),S. sampsonii(30.50%),Xanthomonas sacchari(0.29%)

17 15.935
15.955

830 Aequorivita lipolytica (0.92%), Algoriphagus ratkowskyi(3.45%), Arenibacter latericius(1.30%),
Arthrobacter aurescens(6.12%), Capnocytophaga granulosa(0.51%), C. haemolytica(0.56%),
Cellulophaga baltica (1.78%), C. fucicola (0.90%), C. lytica (0.72%), C. pacifica (0.88%),
Chitinophaga pinensis(35.88%), Chryseobacterium indoltheticum(0.56%), C. michiganen-
sis subsp.insidiosus(10.85%),Cytophaga aurantiaca(45.97%),C. hutchinsonii(38.63%),C. mari-
noflava (0.40%), Flavobacterium hydatis(0.67%), F. johnsoniae(0.70%), F. succinicans(0.76%),
F. aurantiacussubsp.copepodarum(3.77%),F. elegans(19.42%),Gillisia limnaea(4.40%),Leeuwen-
hoekiella aequorea(0.78%),Microscilla furvescens(28.01%),Myroides odoratimimus(0.50%),No-
cardioides simplex(3.63%), Paenibacillus ehimensis(0.72%), P. larvae subsp. larvae (2.17%),
P. larvaesubsp.pulvifaciens(2.46%),Salegentibacter salegens(3.65%),Sphingobacterium multivo-
rum (1.19%),Streptomyces albofaciens(14.85%),S. anandii(7.43%),S. flavofungini(0.89%),S. pe-
ruviensis(0.82%),Tenacibaculum maritimum(2.31%),T. ovolyticum(1.06%), Xanthomonas arbori-
colapv. corylina (2.46%),X. axonopodispv. malvacearum(15.47%)

18 16.076
16.099

2286 Achromobacter insolitus(0.68%),A. piechaudii(0.86%),A. ruhlandii (0.67%),A. spanius(0.75%),
A. xylosoxidans subsp. denitrificans (0.65%), A. xylosoxidans subsp. xylosoxidans (0.49%),
Aeromonas bestiarum(32.97%),A. veronii biogrp. sobria (32.06%),Alcaligenes faecalis(0.75%),
Aquaspirillum autotrophicum(0.97%),Arthrobacter oxydans(0.82%),A. polychromogenes(0.86%),
Bordetella avium(1.15%), B. bronchiseptica(0.79%), B. hinzii (1.16%), B. holmesii (0.84%),
B. parapertussis(1.05%), B. trematum (0.90%), Burkholderia plantarii (0.67%), Caenibac-
terium thermophilum(0.80%), Flexibacter roseolus(2.69%), Gardnerella vaginalis (4.21%),
Herbaspirillum lusitanum(0.36%),Kerstersia gyiorum(1.18%),Klebsiella oxytoca(0.71%),Nocar-
dioides simplex(1.05%), Oxalicibacterium flavum(1.51%), Paenibacillus validus(5.72%), Pando-
raea norimbergensis(0.51%), Pedobacter piscium(3.54%), Photobacterium damselaesubsp.pis-
cicida (0.99%), Pigmentiphaga kullae(1.07%), Pseudomonas stutzeri(14.37%), Ralstonia taiwa-
nensis(0.55%),Schlegelella thermodepolymerans(0.76%),Streptococcus pyogenes(0.75%),Strep-
tomyces antibioticus(3.35%), S. caelestis(6.83%), S. netropsis(1.40%), Taxeobacter chitinovo-
rans(0.79%),Thermoanaerobacter thermohydrosulfuricus(1.15%),Yersinia enterocoliticasubsp.en-
terocolitica(0.59%)

Table 5.5: Continuation of Table 5.3
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ID ECL occ taxa for which the histogram peak is significantly found

19 16.100
16.120

517 Aeromonas bestiarum(21.17%),A. caviae(38.37%),A. encheleia(5.24%),A. eucrenophila(7.24%),
A. hydrophila subsp. hydrophila (39.09%), A. media (41.10%), Brachybacterium alimentar-
ium (12.78%),B. conglomeratum(9.81%), B. faecium(2.83%), B. fresconis(3.91%), B. paracon-
glomeratum(6.00%), B. rhamnosum(10.15%), B. sacelli (3.80%), B. tyrofermentans(10.34%),
Burkholderia cepacia(6.96%), Enterococcus avium(12.17%), E. casseliflavus(5.81%), E. ceco-
rum(5.45%),E. columbae(2.01%),E. durans(13.86%),E. faecium(19.15%),E. gallinarum(10.75%),
E. mundtii(22.62%),E. sulfureus(7.24%),E. villorum (17.53%),Flexibacter ruber(14.74%),Nocar-
dioides albus(0.88%),Plantibacter flavus(2.85%),Pseudomonas aeruginosa(19.41%),P. lunden-
sis (27.09%),P. putida(23.03%),Rhizobium leguminosarum(6.75%),Streptococcus uberis(1.97%),
Streptomyces murinus(0.88%),S. rimosussubsp.rimosus(0.86%),Subtercola pratensis(0.37%),Xan-
thomonas arboricolapv. corylina (15.18%)

20 16.193
16.200

403 Bacillus halmapalus(0.60%),B. horikoshii (1.27%),B. pseudalcaliphilus(1.22%),Flexibacter ru-
ber (3.93%),Pseudomonas aeruginosa(21.83%),Psychrobacter immobilis(0.36%),Thermoanaer-
obacter thermohydrosulfuricus(0.99%),Xanthomonas albilineans(0.81%),X. hyacinthi(1.07%)

21 17.306
17.325

1280 Aeromonas popoffii(0.33%),Alteromonas stellaepolaris(0.52%),A. stellipolaris(0.59%),Flavobac-
terium flevense(0.47%), F. fryxellicola (0.38%), F. psychrolimnae(0.37%), Glaciecola pal-
lidula (0.34%), Loktanella salsilacus(3.57%), Pseudomonas amygdali(5.54%), P. auranti-
aca (0.61%),P. caricapapayae(0.52%),P. coronafaciens(0.64%),P. syringaepv. oryzae(1.12%),
P. syringaepv. pisi (1.11%), P. syringaepv. tagetis (0.60%), Psychromonas profunda(2.51%),
Shewanella sairae(0.39%), Tenacibaculum ovolyticum(0.88%), Vibrio algosus (0.42%),
V. kanaloaei(1.49%), V. ordalii (0.29%), Xanthomonassp. pv.gummisudans(0.51%), X. translu-
censpv. hordei(0.81%),X. translucenspv. phlei (0.78%),X. translucenspv. poae(0.62%),X. translu-
censpv. undulosa(0.66%)

22 17.588
17.600

146 Chryseobacterium scophthalmum(0.86%), Flammeovirga aprica (0.95%), Microscilla are-
naria (0.91%), Streptomyces albidus(0.42%), S. alboviridis (0.51%), S. anandii (0.94%),
S. anulatus (0.47%), S. aureofaciens(3.20%), S. bacillaris (0.85%), S. caeruleus(1.94%),
S. canescens(0.86%), S. citreus (0.66%), S. curacoi (0.37%), S. echinatus(1.54%), S. fluo-
rescens(0.69%), S. griseocarneus(1.32%), S. kentuckensis(2.58%), S. limosus(1.20%), S. mur-
inus (1.14%), S. nogalater(1.83%), S. noursei(2.95%), S. oligocarbophilus(0.42%), S. pluricol-
orescens(2.19%),S. rimosus(1.29%),S. rimosussubsp.rimosus(1.29%),S. rutgersensis(0.46%),
S. rutgersensissubsp.rutgersensis(0.46%),S. septatus(1.03%),S. viridifaciens(0.36%),Tenacibacu-
lum ovolyticum(2.42%)

23 17.600
17.616

279 Ahrensia kielensis(2.33%),Cryomorpha ignava(1.96%),Loktanella fryxellensis(8.11%), L. salsi-
lacus (5.86%), L. vestfoldensis(4.04%), Roseobacter denitrificans(9.66%),R. litoralis (14.10%),
Ruegeria algicola(6.54%),Staleya guttiformis(11.98%),Streptomyces tendae(0.90%),Sulfitobac-
ter brevis(7.47%),S. delicatus(1.69%),S. dubius(1.05%),S. mediterraneus(14.40%), Tenacibac-
ulum maritimum (7.94%),T. ovolyticum(2.18%)

24 17.743
17.757

3155 Achromobacter insolitus(0.68%),A. piechaudii(0.78%),A. ruhlandii (0.60%),A. spanius(0.62%),
A. xylosoxidanssubsp.denitrificans(0.62%),A. xylosoxidanssubsp.xylosoxidans(0.50%), Alcali-
genes faecalis(0.61%),Aquaspirillum autotrophicum(0.93%),Bacillus drentensis(7.24%),B. ther-
macidophilumsubsp.porcinum (0.83%), Bordetella avium (1.14%), B. bronchiseptica(0.94%),
B. holmesii (0.79%), B. parapertussis(1.60%), B. trematum (0.85%), Burkholderia ambi-
faria (0.42%),B. multivorans(0.49%),B. plantarii (0.60%),Caenibacterium thermophilum(0.66%),
Hafnia alvei (0.39%), Halomonas marina(0.31%), Herbaspirillum lusitanum(0.33%), Kerster-
sia gyiorum (1.11%), Klebsiella oxytoca(0.62%), K. pneumoniaesubsp. pneumoniae(0.67%),
Lactobacillus plantarum(8.99%), Oxalicibacterium flavum(1.16%), Pandoraea apista(0.38%),
P. norimbergensis(0.36%),Photobacterium damselaesubsp.piscicida (1.07%),Pigmentiphaga kul-
lae (1.00%), Pseudomonas aurantiaca(0.26%), Rahnella aquatilis(0.53%), Ralstonia taiwanen-
sis (0.50%), Schlegelella thermodepolymerans(0.60%), Streptococcus pluranimalium(17.67%),
S. pyogenes(1.28%), Vagococcus fluvialis(39.69%), Yersinia enterocoliticasubsp. enterocolit-
ica (0.49%)

25 17.783
17.809

1382 Aeromonas encheleia(7.57%), A. eucrenophila(6.30%), A. veronii biogrp. sobria (11.36%),
Belliella baltica (0.43%), Capnocytophaga gingivalis(0.50%), C. ochracea(0.44%), C. sputi-
gena (0.41%), Chryseobacterium balustinum (0.56%), C. gleum (0.54%), C. indolo-
genes (0.52%), C. indoltheticum (0.51%), C. joostei (0.41%), C. meningosepticum(0.47%),
Cytophaga aurantiaca(0.73%), C. latercula (0.31%), C. marinoflava (0.38%), Empedobac-
ter brevis (0.57%), Enterococcus avium(24.49%), E. dispar (2.64%), E. faecium (33.54%),
E. flavescens(49.05%), E. gilvus (18.60%), E. pseudoavium(17.26%), E. raffinosus(21.80%),
Flavobacterium aquatile(0.39%), F. frigidarium (0.47%), F. hydatis (0.32%), F. johnso-
niae (0.40%),F. limicola (0.32%),F. pectinovorum(0.57%),Flexibacter aurantiacussubsp.excathe-
drus (0.30%),F. ruber (0.38%),Lactobacillus plantarum(39.65%),Lactococcus lactissubsp.lac-
tis (11.20%),Myroides odoratimimus(0.37%),M. odoratus(0.45%), Pedobacter heparinus(0.53%),
P. saltans(0.63%),Promyxobacterium flavum(0.58%),Pseudomonas aeruginosa(41.07%),P. alcali-
genes(36.32%),P. corrugata(16.17%),P. fluorescens(13.43%),P. stutzeri(31.74%),Streptococ-
cus pluranimalium(19.55%),Streptomyces pluricolorescens(2.35%),Vagococcus fluvialis(5.37%)

Table 5.6: Continuation of Table 5.3
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ID ECL occ taxa for which the histogram peak is significantly found

26 18.129
18.150

448 Acinetobacter johnsonii(4.85%),Aeromonas caviae(9.18%),Gluconacetobacter intermedius(1.29%),
Pandoraea apista(0.91%), P. norimbergensis(0.89%), P. pnomenusa(0.83%), P. pulmoni-
cola (1.20%), Paracoccus zeaxanthinifaciens(0.88%),Pseudomonas chlororaphis(11.46%),P. savas-
tanoi pv. savastanoi(20.53%),P. syringaepv. maculicola(17.03%),Ralstonia syzygii(1.19%),Strep-
tomyces tenebrarius(0.33%)

27 18.416
18.429

929 Aquicella lusitana (5.55%), A. siphonis (1.07%), Maricaulis salignorans(2.17%), M. virginen-
sis(3.57%),Stenotrophomonas africana(0.38%)

28 18.429
18.450

4343 Achromobacter insolitus(1.37%),A. piechaudii(1.39%),A. ruhlandii (0.98%),A. spanius(1.09%),
A. xylosoxidanssubsp.denitrificans (0.92%), A. xylosoxidanssubsp.xylosoxidans(0.82%), Acti-
nomyces turicensis(8.17%), Alcaligenes faecalis(1.01%), Aquaspirillum autotrophicum(1.78%),
Bifidobacterium thermacidophilum(1.67%),B. thermacidophilumsubsp.porcinum(1.67%),Borde-
tella avium (2.02%), B. bronchiseptica(1.14%), B. hinzii (1.37%), B. holmesii (1.13%), B. para-
pertussis(2.24%), B. trematum (1.49%), Brenneria nigrifluens(0.78%), B. paradisiaca(0.37%),
Burkholderia ambifaria(0.64%),B. caledonica(1.11%),B. cepacia(0.78%),B. fungorum(0.64%),
B. gladioli pv. gladioli (0.47%),B. glathei(0.55%),B. multivorans(0.65%),B. phenazinium(0.63%),
B. plantarii (1.04%),Caenibacterium thermophilum(1.07%),Enterobacter cloacae(0.49%),E. in-
termedius (0.28%), Erwinia billingiae (0.45%), E. persicina (0.45%), E. rhapontici (0.61%),
Escherichia coli (0.42%), Flexibacter ruber (11.48%), Gardnerella vaginalis (4.19%), Haf-
nia alvei (0.57%), Halomonas marina(0.91%), Herbaspirillum lusitanum (0.45%), Kerster-
sia gyiorum (1.83%), Klebsiella oxytoca(0.93%), K. pneumoniaesubsp. pneumoniae(0.96%),
Kluyvera ascorbata(0.38%),Oligella urethralis (0.79%),Oxalicibacterium flavum(1.79%),Pando-
raea apista(0.72%), P. norimbergensis(0.71%), P. pnomenusa(0.71%), P. pulmonicola(0.79%),
P. sputorum (0.62%), Pantoea agglomerans(0.52%), Pectobacterium cacticida(0.83%), Photo-
bacterium damselaesubsp.piscicida (1.86%), P. leiognathi (1.03%), P. phosphoreum(2.51%),
Pigmentiphaga kullae(1.29%), Proteus mirabilis (0.71%), Pseudomonas abietaniphila(0.52%),
P. agarici (0.65%), P. aurantiaca (0.41%), P. azotoformans(0.63%), P. chlororaphis (0.50%),
P. extremorientalis(0.61%), P. syzygii(0.69%), P. taetrolens(0.52%), P. vancouverensis(0.68%),
Rahnella aquatilis (1.04%), Ralstonia syzygii (0.63%), R. taiwanensis(0.64%), Rhodobac-
ter sphaeroides(0.44%),Salmonella choleraesuissubsp.choleraesuis(0.37%),Schlegelella thermod-
epolymerans(0.91%),Streptococcus pyogenes(1.35%),S. cinnamoneussubsp.cinnamoneus(0.39%),
Y. enterocoliticasubsp.enterocolitica(1.47%),Y. ruckeri (0.54%)

29 18.787
18.804

1559 Acetobacter orleanensis(0.26%), A. pasteurianus(1.77%), Alteromonas stellaepolaris(0.77%),
A. stellipolaris(0.69%),Brevundimonas alba(1.13%),B. bacteroides(0.96%),B. diminuta(1.42%),
B. subvibrioides(1.16%), B. variabilis (0.90%), Caulobacter henricii(0.37%), Maricaulis parji-
mensis(1.93%), M. salignorans(0.54%), M. virginensis (2.60%), Nocardioides jensenii(0.57%),
Ochrobactrum intermedium(0.64%), Pseudoalteromonas flavipulchra(1.97%), P. haloplank-
tis (0.88%), P. issachenkonii(0.58%), P. maricaloris (0.89%), P. paragorgicola(0.57%), P. pry-
dzensis(0.43%), Rhizobium phaseoli(0.96%), Roseobacter gallaeciensis(0.86%), Shewanella al-
gae(0.59%),Vibrio albensis(1.09%)

30 18.918
18.938

166 Bordetella avium(2.11%), Brachybacterium alimentarium(3.91%), B. conglomeratum(4.55%),
B. faecium (4.39%), B. fresconis (4.18%), B. nesterenkovii (4.22%), B. paraconglomera-
tum (2.34%), B. rhamnosum (1.37%), B. sacelli (3.96%), B. tyrofermentans (3.58%), Bre-
vundimonas diminuta(4.30%), Burkholderia cenocepacia(18.20%),B. cepacia(15.20%),B. mul-
tivorans (8.76%), B. stabilis (18.86%), Enterococcus avium(4.98%), E. faecalis(9.62%), E. hi-
rae (13.53%), E. malodoratus(4.70%), E. raffinosus(14.11%), E. solitarius (4.80%), Pando-
raea norimbergensis(25.67%)

31 18.948
18.978

1530 Achromobacter insolitus(0.43%),A. piechaudii(0.46%),A. ruhlandii (0.32%),A. spanius(0.48%),
A. xylosoxidanssubsp.denitrificans(0.36%),A. xylosoxidanssubsp.xylosoxidans(0.29%), Borde-
tella avium (0.65%), B. bronchiseptica(0.45%), B. holmesii (0.39%), B. parapertussis(0.71%),
B. trematum(0.45%), Caenibacterium thermophilum(0.44%),Enterococcus avium(5.22%),E. du-
rans (14.91%), E. faecalis (13.75%), E. faecium (13.49%), E. hirae (10.72%), E. malodora-
tus (22.77%),Flexibacter tractuosus(1.66%),Schlegelella thermodepolymerans(0.39%),Streptococ-
cus pyogenes(0.62%),S. uberis(4.67%),Weissella cibaria(12.17%),Yersinia enterocoliticasubsp.en-
terocolitica(0.56%)

32 19.960
19.985

599 Acetobacter pomorum(1.31%),Azospirillum irakense(2.38%),Bacillus amyloliquefaciens(5.42%),
Bifidobacterium bifidum(2.63%),B. boum(1.96%),B. breve(0.67%),B. choerinum(1.86%),B. infan-
tis (0.89%),B. longum(9.47%),B. magnum(2.84%),B. pseudolongum(1.15%),Carnobacterium mo-
bile (1.33%),Corynebacterium amycolatum(2.11%),Gluconacetobacter europaeus(0.79%),G. in-
termedius(5.20%), G. xylinussubsp.sucrofermentans(2.64%), G. xylinussubsp.xylinus (1.35%),
Lactobacillus acidophilus(2.17%), L. brevis (1.20%), L. paracasei(0.81%), Leuconostoc pseu-
domesenteroides(2.06%), Rhodococcus ruber(0.55%), Shewanella hanedai(0.72%), S. marinin-
testina(0.35%),S. schlegeliana(0.39%),S. violacea(0.82%),Weissella paramesenteroides(1.04%)

Table 5.7: Continuation of Table 5.3
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of Göteborg, Sweden (CCUG;http://www.ccug.gu.se/pages/faxstd.lst).
The exact compound associated to each of the newly discovered naming windows is cur-
rently unknown. Resolving the chemical structure of these fatty acids by mass spectrometry
would significantly improve the descriptive power of fatty acid analysis for each of the tax-
onomic units for which one or more of the new fatty acid peaks are found to be highly
stable.

If we recall the Sherlock MIS fatty acid composition report depicted in Figure 5.6, it
is easy to determine that the newly delineated peaks would resolve 4 out of the 6 un-
named peaks in this particular case. The chromatographic peak detected at ECL posi-
tion 12.782 would be associated to the new naming window withidentifier 7, accounting
for 1.11% of the total amount of fatty acid content of the bacterial cell. The percent-
age of the relative amount was calculated following the Sherlock MIS procedure, thus
only taking into account the named peaks and performing corrections on the absolute
amounts by applying response factor weights. The response factors for the previously
unnamed peaks were estimated using a linear interpolation of the values from the sur-
rounding chromatographic peaks, relative to the ECL position of the peaks. Similarly, the
peaks located at ECL positions 13.814, 15.274 and 18.798 would respectively be asso-
ciated to the naming windows 11 (1.23%), 15 (1.51%) and 29 (0.34%), where the val-
ues between brackets again represent the relative amount found for the fatty acid com-
pounds. Further inspection of the two peaks that still remain unnamed, highlights that
the peak at ECL position 16.837 appears in a significant amount. Again, at that location
in the peak occurrence histogram, a spike is observed. A similar evaluation as outlined
earlier in this subsection for the window covered by the histogram peak, suggests that
another new peak should be added to the peak naming table, covering the ECL range be-
tween 16.833 and 16.841. The naming window is found to contain chromatographic peaks
that are stable forAeromonas jandaei(4.10%),A. schubertii(3.63%),A. sobria(3.55%),
A. veronii biogrp. veronii (3.04%), Pseudoalteromonas espeijana(4.71%), P. flavipul-
chra (1.23%),P. haloplanktis(2.76%),P. issachenkonii(3.75%),P. luteoviolacea(1.60%),
P. maricaloris(4.30%),P. prydzensis(1.88%),Sphingobacterium multivorum(3.33%) and
Xylanimonas cellulosilytica(1.17%). This clearly demonstrates that the extensions of the
TSBA50 peak naming table suggested by the information captured within our proprietary
FAME database are far from being exhausted.

To conclude with, data mining of the fatty acid profiles within our proprietary FAME
database has given enough conclusive evidence about the significance of the newly delin-
eated peak naming windows, either because they are highly stable for some loosely coupled
species, or even because they are found to be stable for the majority of species with a genus
or any other higher taxonomic group of organisms. As such, these new naming windows
are good candidates for being added to the existing peak naming tables, as to enhance the
recognition of fatty acid compounds for further computational analysis. But this definitely
is not the end of the story. Many small peaks that appear in thepeak occurrence histogram
are worth the investigation, in a similar way as we have done for the new peaks discussed
above. After all, these histogram peaks might turn out to be highly specific for some species
that are rarely found in the FAME database, not placing them directly on the foreground at
a first glancing inspection of the peak occurrence histogram. Moreover, as mentioned pre-
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viously in subsection 5.3.3, the peak occurrence histogramalso suggests the re-evaluation
of some of the existing naming windows in the TSBA50 peak naming window in order to
fit more closely to the observed chromatographic peak positions. And following the task of
establishing an updated peak naming table, probably the most time-consuming issue will
be the incorporation of these new peaks into the existing library entries and the addition of
new library entries to cover a broader range of the bacterialdiversity.

5.4.2 Pairwise database identification of bacteria

Bundling multiple fatty acid profiles of bacterial samples belonging to the same taxo-
nomic unit into a single coherent library entry, has the major advantage that knowledge
about the intra-group variability of the cellular fatty acid content can be taken into account
for enhancing the accuracy of bacterial identification, as was reviewed in subsection 5.2.4.
However, a number of obvious disadvantages are coupled to the creation and usage of li-
brary entries. The selection of strains for the construction of a library entry is critical, in
order to assure good quality of the identification results. First of all, enough strains of a
given taxonomic unit are required to get a sufficient impression on the heterogeneity of the
fatty acid content for the given taxon. This constitutes a problem for rare species, where-
fore only a limited number of representatives have been isolated in pure culture. Secondly,
it is primordial to restrict the selection of samples to the well-characterized strains for a
given taxonomic unit, as the inclusion of misidentified strains can dramatically distort the
representativity of the library entry for a given taxon. This relates to the problem that calcu-
lation of mean fatty acid profiles involves some subjective data assessment. Consequently,
most identification libraries only take into account the validly described taxa and some
well-characterized groups of strains, ignoring the vast amount of fatty acid profiles from
samples yet having an unknown taxonomic position. As a result, library identification is
most frequently restricted to what is known, not exploring the frontiers of bacterial diver-
sity. Good library creation requires a lot of experience andis especially time-consuming.
For the management of an identification library that covers most of the bacterial diversity,
it is very hard to keep pace with the rapid expansion of bacterial taxonomy. Even the
Sherlock MIS TSBA50 identification covers only a fraction ofall environmental bacteria.

As a viable alternative for the library identification of bacteria, it is also possible to
perform a pairwise comparison between the fatty acid composition of an unknown strain
and all fatty acid profiles recorded in a large data warehouse. In essence, this answers
the question whether a similar fatty acid pattern as that of the unknown sample has been
encountered before, regardless of the identification quality and precision of the matching
profiles in the database. This approach works along the established lines of FASTA [32] and
BLAST [36], which are software tools for the identification ofDNA or protein sequences
against the sequences stored in public sequence databases.Because the calculation of a
similarity coefficient between the fatty acid profile of an unknown sample and all fatty acid
profiles into our proprietary FAME database might result in long waiting times, we have
designed a tool that proceeds in two sequential stages. In a first step, the search space is
restricted to the fatty acid profiles in the database that contain at least a certain combination
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of named fatty acids. Careful composition of the fatty acid template is required in order
not to impair the accuracy of the identification, but our experience learns that it is generally
sufficient to assemble the qualitative fatty acid template from a small selection of the most
abundant fatty acids in the profile of the unknown sample. However the software provides
sufficient flexibility for template creation to the user. As an extension, it is even possible
to incorporate quantitative aspects into the fatty acid template, by providing restrictive
intervals on the relative amounts for the selection of namedfatty acids in the template.
Template restrictions are processed by means of dynamic SQLqueries, which can be made
very performant by means of appropriate indexing of the fatty acid database. Secondly,
for each profile of the FAME database that matches the conditions stated in the template
filter, a similarity value is calculated with the fatty acid profile of the unknown sample,
and a selection of the best matching profiles is presented to the user for further analysis.
Because the above procedure is implemented using the BioNumerics scripting language,
all similarity coefficients provided by that software package can be selected as an optional
parameter of the identification procedure.

Let us consider an example to illustrate the pairwise database identification procedure
described above. Figure 5.9 depicts the Sherlock MIS fatty acid composition report for the
strainR-22030 (≡ KMM 6066 ≡ LMG 22555), isolated from the sea urchinStrongylo-
centrotus intermediusin Troitsa Bay, Gulf of Peter the Great, Sea of Japan. The bacterial
sample was grown in plates of Marine agar 2216 (Difco). At thetime of encoding the
properties of the fatty acid profile into the Sherlock MIS database, the bacterial sample
was considered as belonging to the species[Cytophaga] marinoflavabased on a 97.2%
16S rDNA sequence similarity with the nucleotide sequence of strain LMG 1345 (acces-
sion number AF203475, 1445 nucleotides in length). The use of square brackets in the
scientific name reflects the clear misassignment of the species to the genusCytophaga, and
recentlyLeeuwenhoekiella marinoflavahas been proposed as a new name for the species
[31]. Inspection of the similarity index values in the Sherlock MIS fatty acid composition
report learns that the identification results that are attained by comparison to the TSBA50
identification library give no acceptable characterization of the bacterial sample. Therefore,
we have subjected the fatty acid profile to pairwise databaseidentification, using a qualita-
tive template composed of the 5 most abundant fatty acids, being 17:1 isoω9c (21%), 15:0
iso (17.46%), 17:0 iso 3OH (12.21%), summed feature 3 (11.93%) and 15:1 iso G (8.57%).
After SQL filtering, 742 fatty acid profiles in our proprietary FAME database were found
to match the template. This means that only 1.5% of the profiles in the FAME database
need to be processed during the similarity coefficient evaluation stage, which results in
a serious performance boost compared to a full database scan. If the Canberra metric is
used for calculating the pairwise similarities of the fattyacid profiles, regarding missing
fatty acids as zero valued features, the evaluation of the pruned search space results in the
identification report shown in Table 5.8. These matching profiles definitely suggests that
the unknown strain belongs to the CFB group (Cytophaga/Flavobacterium/Bacteroides) of
bacteria, and is probably a member of the recently describedspeciesLeeuwenhoekiella ae-
quorea, a halotolerant bacterium of the familyFlavobacteriaceae, isolated from the marine
environment [31]. Note that pairwise database comparison of an unknown fatty acid pro-
file does not only provide information about the closeness tosome predefined taxonomic
unit, but also reveals some direct relationships with the individual strains of the taxon. This
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detailed strain level information is not known after identification against the Sherlock MIS
libraries, and from a scientific viewpoint it would at least be relevant to have knowledge
about the exact group of strains that were used for the construction of each of the com-
mercial identification library entries. The species level identification of the unknown fatty
acid profile from the example is confirmed by the 99.8% 16S rDNAsequence similarity
between the nucleotide sequence of strain KMM 6066 (accession number AJ780980, 1474
nucleotides in length) and the nucleotide sequence of theLeeuwenhoekiella aequoreatype
strain LMG 22550T (accession number AJ278780, 1475 nucleotides in length) and 84%
DNA-DNA homology between both strains. It should be noted that none of the closely
neighbouring species that were found after performing pairwise identification against our
proprietary FAME database are currently incorporated as anentry in the TSBA50 iden-
tification library. This explains the poor identification performance of the commercially
available library for this particular example.

As a final remark, we come back on the issue that pairwise fattyacid profile compar-
ison cannot benefit from the knowledge of intra-group variability, as was the case with
the library identification approach implemented into the Sherlock MIS. Nonetheless, some
similarity coefficients incorporate some prior assumptions about the variance of fatty acid
profiles, which could make them more apt to pairwise fatty acid comparisons than other
similarity measures. TheCanberra metric[19] applied in the example above, is usually
meant for non-negative variables only. This measure makes the summation of a series of
ratios, not only taking into account the distance between two points but also their distance
to the origin. As a result, pairs of points that are at the sameEuclidean distance are con-
sidered less distant by the Canberra metric when they are further away from the origin. A
multivariate similarity measure based on the Canberra metric is given by

sCANB(x, y) = 1 − 1

n

n
∑

k=1

|xk − yk|
xk + yk

. (5.15)

Similarity coefficients like the Canberra metric are regarded more adequate for the pairwise
comparison of fatty acid profiles than the Euclidean distance, because they adopt a relaxed
error tolerance to fatty acid compounds that are more abundantly present in the bacterial
cell, than to fatty acids that are found in much smaller quantities. This corresponds to the
assumption that the variability in library entries is proportional to the relative quantity of
the fatty acid. There is no counterpart for the covariance inthe Canberra metric, as all
features are treated independently.

5.5 Conclusions and future perspectives

Evaluation of the massive amounts of knowledge acquired on the fatty acid composition
of prokaryotic cells, performed in a way as discussed in the current chapter, once more
underscores the importance and implications of knowledge discovery in databases as a
valuable and complementary technology besides the routineanalysis usually performed on
the data. Throughout the description of the consecutive computational analysis steps, we
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Sherlock Version: 3.10 DATA7:E04610635A 31-AUG-04 11:45:57

-----------------------------------------------------------------------------------------------------------------
ID: 13261 CYTO-MARIN(R-22030/Q3/M12/B234/P20) Date of run: 10-JUN-04 21:46:45
Bottle: 15 SAMPLE [TSBA50]

RT Area Ar/Ht Respon ECL Name % Comment 1 Comment 2
------- --------- ------ ------ ------ -------------------- ------ -------------------- --------------------
1.579 504029031 0.029 . . . 7.001 SOLVENT PEAK . . . . . . . < min rt
5.348 3638 0.070 1.046 12.615 13:0 ISO . . . . . . 0.56 ECL deviates 0.001 Reference -0.000
6.615 6381 0.072 1.023 13.617 14:0 ISO . . . . . . 0.97 ECL deviates -0.002 Reference -0.003
6.686 5723 0.086 . . . 13.670 . . . . . . . . . . . . . > max ar/ht
7.131 581 0.036 1.015 14.000 14:0 . . . . . . . . 0.09 ECL deviates 0.000 Reference -0.001
7.802 57475 0.037 1.005 14.441 15:1 ISO G . . . . . 8.57 ECL deviates 0.001
7.934 1628 0.038 1.004 14.528 15:1 ANTEISO A . . . 0.24 ECL deviates 0.001
8.081 117581 0.037 1.002 14.624 15:0 ISO . . . . . . 17.46 ECL deviates 0.001 Reference -0.000
8.217 25092 0.038 1.000 14.714 15:0 ANTEISO . . . . 3.72 ECL deviates 0.001 Reference -0.001
8.434 4616 0.039 0.997 14.856 15:1 w6c . . . . . . 0.68 ECL deviates 0.000
8.654 46714 0.039 0.994 15.001 15:0 . . . . . . . . . . . ECL deviates 0.001
8.847 1084 0.040 0.991 15.117 14:0 ISO 3OH . . . . 0.16 ECL deviates -0.002
9.410 8856 0.040 0.984 15.459 16:1 ISO H . . . . . 1.29 ECL deviates -0.002
9.686 19618 0.040 0.981 15.627 16:0 ISO . . . . . . 2.85 ECL deviates -0.000 Reference -0.001

10.046 82407 0.049 0.977 15.845 Sum In Feature 3 . . 11.93 ECL deviates -0.007 15:0 ISO 2OH/16:1w7c
10.200 4289 0.045 . . . 15.939 . . . . . . . . . . . . .
10.300 2092 0.043 0.974 15.999 16:0 . . . . . . . . 0.30 ECL deviates -0.001 Reference -0.002
10.531 13679 0.042 0.971 16.134 15:0 ISO 3OH . . . . 1.97 ECL deviates -0.000
10.685 6311 0.043 0.969 16.224 15:0 2OH . . . . . . 0.91 ECL deviates 0.005
11.019 146732 0.042 0.965 16.418 ISO 17:1 w9c . . . . 21.00 ECL deviates 0.002
11.143 11824 0.045 0.964 16.490 Sum In Feature 4 . . 1.69 ECL deviates 0.004 17:1 ANTEISO B/i I
11.201 8314 0.041 0.963 16.524 ANTEISO 17:1 w9c . . 1.19 ECL deviates 0.000
11.298 6558 0.049 0.962 16.580 unknown 16.582 . . . 0.94 ECL deviates -0.002
11.381 4055 0.042 0.961 16.629 17:0 ISO . . . . . . 0.58 ECL deviates -0.001 Reference -0.002
11.461 1102 0.044 . . . 16.675 . . . . . . . . . . . . .
11.540 620 0.038 0.959 16.721 17:0 ANTEISO . . . . 0.09 ECL deviates -0.002 Reference -0.003
11.661 3615 0.044 0.958 16.792 17:1 w8c . . . . . . 0.51 ECL deviates -0.000
11.782 12744 0.046 0.956 16.862 17:1 w6c . . . . . . 1.81 ECL deviates 0.002
12.277 19656 0.046 0.950 17.147 16:0 ISO 3OH . . . . 2.77 ECL deviates -0.003
12.927 1997 0.053 0.943 17.518 16:0 3OH . . . . . . 0.28 ECL deviates -0.001
13.416 1765 0.045 . . . 17.797 . . . . . . . . . . . . .
13.629 4711 0.047 0.934 17.919 18:1 w5c . . . . . . 0.65 ECL deviates -0.000
13.788 2060 0.064 0.933 18.009 18:0 . . . . . . . . 0.28 ECL deviates 0.009 Reference 0.009
14.049 88642 0.046 0.929 18.159 17:0 ISO 3OH . . . . 12.21 ECL deviates -0.002 Reference -0.002
14.216 22138 0.048 0.927 18.255 17:0 2OH . . . . . . 3.04 ECL deviates 0.001
14.450 2689 0.048 0.924 18.389 TBSA 10Me18:0 . . . 0.37 ECL deviates -0.003
14.697 890 0.043 0.921 18.531 17:0 3OH . . . . . . 0.12 ECL deviates -0.005
14.870 4298 0.045 0.919 18.630 19:0 ISO . . . . . . 0.59 ECL deviates -0.004 Reference -0.004
15.513 1354 0.049 0.911 18.999 19:0 . . . . . . . . 0.18 ECL deviates -0.001 Reference -0.001

******* 82407 . . . . . . . . . SUMMED FEATURE 3 . . 11.93 16:1 w7c/15 iso 2OH 15:0 ISO 2OH/16:1w7c

******* 11824 . . . . . . . . . SUMMED FEATURE 4 . . 1.69 17:1 ISO I/ANTEI B 17:1 ANTEISO B/i I

Solvent Ar Total Area Named Area % Named Total Amnt Nbr Ref ECL Deviation Ref ECL Shift
---------- ---------- ---------- ------- ---------- ------- ------------- -------------
504029031 753528 693935 92.09 674545 13 0.003 0.003
-----------------------------------------------------------------------------------------------------------------

TSBA50 [Rev 5.0] Chryseobacterium . . . . . . . . . . . . . . . . . 0.036 (Flavobacterium)
C. balustinum . . . . . . . . . . . . . . . . . 0.036 (Flavobacterium)
C. indologenes . . . . . . . . . . . . . . . . . 0.023 (Flavobacterium)

Zobellia . . . . . . . . . . . . . . . . . . . . . 0.034 (marine agar,48h,Cytophaga)
Z. uliginosa . . . . . . . . . . . . . . . . . . 0.034 (marine agar,48h,Cytophaga)

Figure 5.9: Fatty acid composition report of strainR-22030 isolated from the sea urchin
Strongylocentrotus intermediusin Troitsa Bay, Gulf of Peter the Great, Sea of Japan. No
acceptable identification results were attained by comparison to the TSBA50 identification
library.

repeatedly stressed the utmost importance of a good data managemental structuration for
achieving high quality and strongly reliable results from the data mining process. Only
when all aspects of the problem domain that are required for agood interpretation of the
data are incorporated into the knowledge base, fully automated and dynamic self-learning
systems can be established. This issue is nicely illustrated by the lack of a taxonomic
name resolver in the integrated strain database, which has led to the ignorance of synonym
and misspelled scientific names during bundling of the samples into taxonomic units along
the lines of the analysis. By an extension of the information system with this kind of
modules, we can gradually approach the envisioned intelligent reasoning systems needed
for dynamic taxonomic modelling.

In essence, the information embodied in a large knowledge base, representing more than
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strain labels taxon sCANB

LMG 22550T, R-7695T, ANT 14T Leeuwenhoekiella aequorea 0.920

LMG 22554, R-9871, ANT 54b/2 Leeuwenhoekiella aequorea 0.910

LMG 22551, R-9860, ANT 18d/2 Leeuwenhoekiella aequorea 0.893

LMG 22553, R-9866, ANT 35/2 Leeuwenhoekiella aequorea 0.892

LMG 22552, R-7702, ANT 26b Leeuwenhoekiella aequorea 0.890

LMG 21968T, R-18984T, KMM 3524T, NBRC 100249T Salegentibacter holothuriorum 0.825

LMG 1345T, ATCC 19326T, DSM 2042T, DSM 3653T, IAM 14116T,
IFO 14170T, IFO 15939T, JCM 8517T, KCTC 2915T, NBRC 14170T,
NBRC 15939T, NCIMB 397T, NCMB 397T, Reichenbach Cy m 1T, SW1T

Leeuwenhoekiella marinoflava 0.797

LMG 21964T, BA134T, CIP 108006T, DSM 15883T Belliella baltica 0.754

LMG 21432T, ACAM 643T, Bowman 9-3T, DSM 14238T, QSSC9-3T Aequorivita sublithincola 0.753

Table 5.8: Identification results of performing a pairwise comparison between the unknown
strainR-22030 and all fatty acid composition profiles available in our proprietary FAME
database.

fifteen years of experience in gas chromatographic analysison a broad diversity of aerobic
bacteria, has enabled us to systematically improve the discriminatory power of an auto-
mated fatty acid identification system in a number of ways. Fitting the naming windows of
a commercially available peak identification method onto a histogram that displays the po-
sitional occurrence of chromatographic peaks detected in our proprietary FAME database,
suggested re-evaluation of the demarcation of some existing naming windows in order to
match them more tightly with the observed data set and revealed the presence of a series of
unmatched, yet significant, histogram peaks. By careful examination of the qualitative and
quantitative relationships between each of the latter histogram peaks and the taxonomic
units incorporated into our proprietary FAME database, it is predicted that all the newly
discovered naming windows represent stable fatty acid compounds that constitute some
significant fraction of the fatty acid content for at least a number of validly described taxa.
As such, it is obvious that the new naming windows should be reckoned with during the
future design of peak naming methods. This observation triggers a series of secondary
measures. First of all, determination of the exact chemicalcompound that corresponds
with each of the novel peak recognition windows, would definitely improve the descriptive
power of chromatographic fatty acid analysis. Additionally, an update of the peak naming
tables implies a renewal of the identification libraries forthe characterization of unknown
bacterial samples. The impact of a 26% increase in the numberof discriminatory features
upon the resolution of bacterial taxa that were previously indistinguishable by routine fatty
acid analysis, remains an open question that deserves further attention during forthcoming
research.

Investigation on the scope of taxonomic units incorporatedwithin our proprietary FAME
database, proves the range extension of the bacterial diversity covered by the commercial
identification libraries. This conclusion is fully exploited through the implementation of
software tools for pairwise database identification, whichdo not only take into account the
fatty acid profiles generated for strains of validly described taxa, but scratch the surface
of all known fatty acid compositions of the complete bacterial diversity embodied within
the knowledge base. The latter observation and the high level of inter-lab reproducibility
achieved by the automated fatty acid extraction technology, fosters the idea of establishing



5.5. CONCLUSIONS AND FUTURE PERSPECTIVES 255

an international knowledge base for accumulation of the information on bacterial fatty
acid composition, in complete analogy to the InternationalNucleotide Sequence Database
initiative that provides public access to piles of completeor partial genome sequences.
This enterprise would dramatically gear knowledge accumulation on a broad range of the
microbial community as a collaborative research activity,further enhancing the power of
fatty acid analysis for bacterial classification and identification.
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Hoofdstuk 6

Summary in Dutch
Nederlandstalige Samenvatting

”Wat is een ‘cultuur’? Zoekt u het maar op. ‘Een groep micro-
organismen die onder gereguleerde omstandigheden op een voe-
dingsbodem worden gekweekt.’ Een gewriemel van bacteriën op
een objectglaasje, dat is alles, een laboratoriumexperiment dat zich
samenleving noemt. De meesten van ons, kronkelaars, maken op dat
glaasje het beste van het leven; we zijn het er zelfs over eens trots op
die ’cultuur’ te zijn, we knielen als slaven die hun stem uitbrengen
voor slavernij of hersens voor lobotomie, voor de god van alle debiele
micro-organismen en bidden om te worden gehomogeniseerd of gedood
of gemachineerd; we beloven te gehoorzamen.”

— Salman Rushdie

WAT zijn die wonderbaarlijke wezens die leven aan de andere kant van de micro-
scoop? Een intrigerende vraag waar menig wetenschapper meeheeft geworsteld

sedert de baanbrekende periode waarin Antonie van Leeuwenhoek voor het eerst deze au-
tonoom levende bacteriële cellen gadesloeg doorheen zijn 300 maal uitvergrotendemicro-
scoop met́eén enkele lens. Eeuwen voor de ontdekking van de microben hielden studenten
uit de school van Aristoteles zich reeds bezig met het ordenen volgens natuurlijke en bete-
kenisvolle klassen van de schare levende organismen die zijhadden waargenomen. Deze
uitdaging blijft brandend actueel, en sommige onderverdelingen zijn tot op zekere hoogte
nog steeds controversieel. Figuur 1.1 toont het voorbeeld van een zeer onvolledige en infor-
meletaxonomische boom, gëınspireerd op de gelaagde indeling zoals die werd voorgesteld
door Woese, Kandler en Wheelis. Deze stamboom belicht in het bijzonder de tak van de
zoogdieren, en is minder specifiek voor andere delen van de familie van levende organis-
men. De onderverdeling van de bacteriën volgt hetzelfde algemene stramien, alleen klinken

263



264 UITTEKENEN VAN HET BACTERIËLE TAXONOMISCHE LANDSCHAP

Oorsprong van het Leven

(Universele Voorouder)

Prokarya Eukarya

Bacteria

(Escherichia coli)

Archaea

(Acidilobus aceticus)
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(algen, amoeben)
Dieren

Schimmels

(paddestoelen, voetschimmels)

Groene Planten

(bomen, bloemen, grassen)

Gewervelden
Ongewervelden

(insecten, wormen, schelpdieren, slakken)

Vissen

(haaien, forellen)

Reptielen

(slangen, hagedissen)
Zoogdieren

Amfibiën

(kikkers, watersalamanders)

Vogels

(adelaars, vinken)

Monotremata

(vogelbekdieren)

Buideldieren

(kangoeroes)

Leptictida

(konijnen)

Knaagdieren

(muizen)

Carnivoren

(wolven)
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(zeehonden)
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(vleermuizen)

Primaten
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Figuur 6.1: Een zeer onvolledige en informele taxonomischeboom. Aanduidingen tussen
haakjes slaan op gemeenzame of wetenschappelijke benamingen voor typische organismen
of klassen.

de namen misschien iets minder vertrouwd in de oren. Traditioneel werden deze classifi-
caties opgesteld op basis van de morfologie van de organismen. Morfologie is afgeleid uit
het Griekse woord voor vorm, maar veelal wordt ook de internestructuur ingesloten als
onderdeel van de betekenis. In deze context wordt de specifieke genetische codering van
een organisme aangegeven als diensgenotype, terwijl de resulterende expressie aan fysieke
eigenschappen hetfenotypevan het organisme wordt genoemd. Morfologie beslaat slechts
één enkel gedeelte van het fenotype, waar andere onderdelen bestaan uit de fysiologie,
of de werking van levende structuren, en de ontwikkeling. Heden ten dage worden deze
biowetenschappelijke taxonomiën steeds meer getoetst en aangepast aan de kennis van de
moleculaire structuren en sequenties, die algemeen genomen een beter beeld schetsen van
de evolutionaire verwantschappen dan de klassieke fenotypische kenmerken. Studie van de
micro-organismen heeft hierin steeds een belangrijke voortrekkersrol te vervullen gehad.

Bacterïele evolutie is een complex en dynamisch raderwerk, waarin nieuwe combinaties
worden gecrëeerd in de genotypische zoekruimte, terwijl natuurlijke selectie van de meest
succesvolle exemplaren plaatsgrijpt op fenotypisch niveau, door middel van de evaluatie
van een objectieve functie die genoegzaam bekend staat als de wet van de sterkste. Deze
discrepantie tussen genotype en fenotype is zeer belangrijk, aangezien kleine maar aan-
vaardbare sprongen in de genotypische ruimte zware gevolgen kunnen hebben op het vlak
van de fenotypie. Natuurlijke evolutie is dan ook verantwoordelijke voor de vele spec-
taculaire capaciteiten waarover levende wezens beschikken, en voor hun overweldigende
verscheidenheid. Het bestuderen van de hedendaagse diversiteit die micro-organismen in
het bijzonder vertonen, vormt de basis van het onderzoek naar bacterïele taxonomie, ter-
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wijl het uitpluizen van de tijdslijn van organische aftakkingen behoort tot het specifieke
onderzoeksdomein van de fylogenie.

Polyfasischebacterïele taxonomie beoogt de integratie en verwerking van alle gekende
fenotypische, genotypische en fylogenetische eigenschappen van de micro-organismen, en
streeft in essentie naar het afbakenen van een objectieve allesomvattende taxonomie, die
een minimum aan tegenstrijdigheden vertoont wanneer ze wordt afgemeten aan de verza-
melde empirische informatie. De algemeen gangbare opvatting omtrent een groep bacteriën
die tot dezelfde soort worden gerekend, i.e. het zogenaamdebacterïele species concept, is
vandaag de dag gestoeld op een drieledige set van kwantitatieve vergelijkingsregels, die
stellen dat de variabiliteit binnen een groep soortgenotenis ingeperkt tot 97% gelijkenis
van hun 16S rRNA sequenties, 70% DNA-DNA homologie en 2% verschil in de G+C
verhouding van hun volledige genomen. Deze conceptuele definitie kan vrij gekunsteld
overkomen, terwijl verschillende open kwesties een blijvende uitdaging vormen voor de
hedendaagse taxonoom. Voorbeeld hiervan is de grote discussie die momenteel gaande
is omtrent de frequentie waarmee horizontale uitwisselingvan genen zich manifesteert en
de impact hiervan op bestaande classificatieschema’s. Technische belemmeringen en een
tijdrovende aanpak bij het handmatig consulteren van de vele uiteenlopende informatie-
bronnen, hebben er toe geleid dat de huidige omvang van de meeste polyfasische studies
vrij beperkt blijft, terwijl een groot gedeelte van de subjectieve beslissingen tijdens het op-
hangen van een overzichtsbeeld sterk afhankelijk is van de persoonlijke interpretatie van de
microbioloog. Dit brengt met zich mee dat de ratificatie van het bacterïele species concept
ten opzicht van de empirische informatie zich slechts met een slakkengangetje ontvouwt.

Om de stugheid van deze benadering te doorbreken, kan men zich gemakkelijk een
globaal kennissysteem voor de geest halen dat de vellen vol experimentele gegevens, die
voortspruiten uit de microbiologische onderzoeksverrichtingen, op een gestructureerde en
gëuniformiseerde manier kan absorberen. Een dergelijk kennisbeheersysteem zou een on-
gelofelijke vooruitgang betekenen voor de mogelijke toepassing van intelligente en goed
gefundeerde methodes voor het ontginnen van de gegevens, ingezet als hulpmiddel om het
afbakenen van objectieve en universele taxonomische consensusmodellen op een betere
manier te stroomlijnen en te automatiseren. Bovendien kunnen dergelijke inferentiesys-
temen in staat worden geacht om ogenblikkelijk te reageren op een toevloed van nieuwe
gegevens en interactief te communiceren met de buitenwereld indien noodzakelijke stuk-
ken voor het vervolledigen van de taxonomische puzzel zouden ontbreken. De geldigheid
van nieuwe inzichten of hypothesen omtrent het leven en de evolutie van bacterïen zou on-
middellijk kunnen getoetst worden aan deze vergaarbakken vol kennis, mogelijks met een
directe aanpassing van bestaande taxonomische modellen tot gevolg. Alle geldig beschre-
ven taxa, hun gekweekte en onderzochte stammen, empirisch verkregen materiaal, gepubli-
ceerde onderzoeksdocumenten en wetenschappelijke benamingen toegekend aan abstracte
concepten uit vroeger onderzoek zouden hun plaats moeten krijgen binnen dit kenniskader.
De oubollige methodiek waarmee Linneaanse beschrijvingenworden opgesteld, nog steeds
een wezenlijk onderdeel van de taxonomische routine, kan dan worden overgedragen als
taak aan het informatiesysteem, zodat de taxoom zijn volledige aandacht kan toespitsen op
de meer fundamentele en evolutionaire vraagstukken van de microbiologie.
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Figuur 6.2: Ontwikkelingsproces voor het begrijpen en modelleren van een taxonomie die
zo nauw mogelijk aansluit bij de waargenomen verschijnselen van bacterïele diversificatie.

Deze thesis is een poging om precies dit onderzoeksgebied teoverbruggen dat ligt tus-
sen ruw gegeven en abstract concept, tussen praktijk en theorie, binnen het kader van de
hedendaagse bacteriële taxonomie. Als gevolg hiervan is het een kruisbestuiving geworden
tussen microbiologie, wiskunde en computerwetenschappen. De kunst om het landschap
van de bacteriële diversiteit uit te tekenen, gebruikt als een metafoor voor het modelleren
van de taxonomie, wordt geabstraheerd door de richtingen van de drie orthogonale assen in
de voorstelling van Figuur 6.2, die grotendeels overeenkomen met de drie domeinen van de
wetenschap die kunnen bijdragen tot een oplossing voor het gestelde probleem: het bepalen
van een representatieve waaier aan reproduceerbare en vergelijkbare experimentele ken-
merken van een verzameling bacteriën (microbiologie/taxonomie), het ontwerpen en im-
plementeren van objectieve classificatiemethodes voor hetgroeperen van gegevens op een
niet gecöordineerde manier (wiskunde/classificatie) en het consolideren van experimentele
gegevens en hun verschillende onderverdelingen via een uniforme en verstandige aanpak
(computerwetenschappen/kennisbeheer). De huidige vooruitgang die geboekt wordt in de
bacterïele taxonomie bij het modelleren van de diversiteit zoals die wordt waargenomen in
de natuur, beperkt zich hoofdzakelijk tot het gelijktijdige exploiteren vańeén, hoogstens
twee, van deze dimensies. In het voor ogen gehouden kennisbeheersysteem zitten deze
dimensies echter op een osmotische manier in elkaar verweven.

Met een steeds sterker wordende toename aan de te verwerken hoeveelheid informa-
tie hebben microbiologen zich gaandeweg meer en meer toegelegd op het interageren met
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grote databanken, en hebben ze zich onderlegd in de algoritmen die de correlatie tussen re-
cords kunnen helpen bepalen, om zo de natuurlijke verwantschappen tussen bacteriën beter
te kunnen onderzoeken. Dit heeft een immer uitdijend kluwenvan heterogene en autonome
informatiebronnen gecreëerd, die een fragmentarisch beeld schetsen van de verworven ken-
nis over de micro-organismen. Een belangrijke pijler van debacterïele landschapsarchitec-
tuur bestaat dan ook uit het aanleggen van de nodige bruggen en wegen, om de gerelateerde
stukken informatie die doorheen het landschap verspreid liggen met elkaar te verbinden.
Tengevolge hiervan kan de microbiologie enorm voordeel halen, zowel uit het ontwerpen
van intelligente stukken software die als gids kunnen fungeren binnen het bacteriële land-
schap, als bij de ontwikkeling van nieuwe exploratiemiddelen die kunnen bijdragen tot het
ontdekken van de oorzakelijke verbanden, patronen en principes die de drijvende krach-
ten zijn achter de landschapsontwikkeling. Het beheersen van het technisch jargon vormt
een belangrijke instapdrempel tot de wereld van de biologie, een taal die op een ondub-
belzinnige manier moet worden gedefinieerd alvorens ze kan worden gëınterpreteerd door
zelflerende informatiesystemen. Met deze problematiek in gedachten, bespreekt hoofdstuk
2 de implementatie van eengëıntegreerde stammendatabank, een centraal orgaan voor het
schetsen van een zo kompleet en correcte mogelijk beeld omtrent de equivalentierelaties
tussen stamnummers, die in tal van informatiebronnen verwijzen naar bepaalde gekweek-
te bacterïen. Traditioneel kan men hiervoor de partiële synoniemenlijsten raadplegen die
worden verspreid door de verschillende spelers in het landschap, rekening houdend met
het feit dat ze vaak bol staan van verschillen in spelling, dubbelzinnigheden en andere
vormen van inconsistentie. Bij het opstellen van een goed gefundeerd kader dat tegemoet
komt aan deze kwesties, kan de geı̈ntegreerde stammendatabank de hoeksteen vormen tot
een verdeel-en-heers strategie voor het beheren van dit gedistribueerde informatiesysteem,
aangezien het toelaat om de verschillende stukken van de taxonomische puzzel naadloos in
elkaar te passen.

Het samenstellen van duidelijke landkaarten is een uitermate belangrijke voorwaarde om
niet te verdwalen in het wijdse bacteriële landschap. Geënt op de algemeen aangenomen
Darwiniaanse evolutietheorie, die stelt dat elk paar organismen, hoe verschillend ook, een
gemeenschappelijke voorouder moet hebben gehad in een nabij of ergens lang vervlogen
verleden, vormen gestratificeerde voorstellingen het middel bij uitstek waarmee taxono-
men de microbïele diversiteit hebben in kaart gebracht. De toepassingen lopen uiteen van
het opstellen van volledige stambomen, tot het afbakenen van de verschillende ondersoor-
ten van een duidelijk te onderscheiden maar toch intern verdeelde soort. De mogelijkheid
om dergelijke hierarchiën op te stellen als voorstelling van de natuurlijke verwantschappen
tussen verzamelingen bacteriën op basis van hun empirisch bepaalde kenmerken, is nauw
verbonden met de karakteristieke min-transitieve eigenschap van de similariteitsmatrices,
die worden berekend uit de keuze van een similariteitsmaat voor het schatten van de graad
van verwantschap tussen elk paar stammen. Nochthans zijn similariteitsmatrices die ex-
perimenteel worden afgeleid uit bepaalde bacteriële kenmerken van nature uit meestal niet
min-transitief. Dit heeft geleid tot de ontwikkeling van een waar arsenaal aanhierarchische
clusteringsmethodes, die de experimentele similariteitsmatrices benaderen door middel van
naburige similariteitsmodellen die wel min-transitief zijn. Hoofdstuk 3 situeert enkele vaak
gebruikte hierarchische clusteralgoritmen in het algemeen wiskundig kader van transitieve
openingen, sluitingen en benaderingen, en schuift ook enkele nieuwe leden van die familie
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naar voren. De troeven en zwakheden van deze overdaad aan technieken worden aan elkaar
afgewogen op basis van een reeks vergelijkende experimenten.

Net zoals elke rugzaktoerist een blind vertrouwen heeft op de vele landkaarten in zijn
reisgids, die elk een ander aspect van het landschap benadrukken of de omgeving voorstel-
len met een verschillend oog voor detail, bestaat de mogelijkheid dat er meerdere zinvolle
onderverdelingen te maken zijn op basis van de kenmerken vaneen gegeven bacteriën-
verzameling, die elk een gedeeltelijke weerspiegeling geven van de vele inzichten in de
onderliggende natuurlijke verwantschappen tussen de stammen. Tengevolge van het feit
dat er verschillende betekenisvolle onderverdelingen mogelijk zijn, is er een breed assorti-
ment aan classificatiemethodes nodig om al deze relaties bloot te leggen. We moeten echter
vaststellen dat vele taxonomen bijna uitsluitend gebruik maken van hierarchische cluster-
methodes om de natuurlijke verwantschappen tussen micro-organismen uit te pluizen. Deze
benadering kan leiden tot een vervormde aanblik op het veelzijdige bacterïele landschap.
Het is bijvoorbeeld genoegzaam bekend dat bij het gebruik van hierarchische methoden
voor clusteranalyse, beslissingen tijdens de initiële stappen in de procedure ervoor kunnen
zorden dat bepaalde zinvolle groeperingen reeds op voorhand worden uitgesloten. Deze
eenzijdige manier van analyseren laat bestaande geavanceerde niet-hierarchische classifi-
catiemethodes dus volledig links liggen bij het opsporen van alle verborgen relaties achter
de bestudeerde bacteriële eigenschappen. In hoofdstuk 4 gaan we op zoek om deze tra-
ditie te doorprikken voor het specifieke geval van het groeperen van bacteriële stammen
op basis van hun genotypische vingerafdrukken, een familievan experimentele technieken
voor het bemonsteren van het bacteriële genoom die resulteren in zeer specifieke bandpa-
tronen. Het toepassen van classificatiemethodes voor de analyse van deze genotypische
vingerafdrukpatronen gaat meestal gepaard met een aantal voorbereidende transformaties
van de originele gegevens naar een formaat dat zich beter leent tot berekeningen. Er wordt
aangetoond dat een naı̈eve keuze van de discretisatiemethode voor het omzetten van de
moleculaire bandpatronen naar een binair vectorformaat, zwaar nadelig kan uitvallen voor
de kwaliteit van de uiteindelijke classificatie van de profielen. Deze vaststelling heeft ons
ertoe gebracht om een evaluatie te maken van verschillende bestaande meervoudigeband
matching-methodes. Eveneens stellen we een nieuwe techniek voor om genomische vin-
gerafdrukgegevens om te zetten naar binair vectorformaat,een procedure die wesliding
window discretizationhebben gedoopt. In de context van een uitgebreide set fAFLP (flu-
orescent amplified fragment length polymorphism) vingerafdrukpatronen van stammen uit
de familie derVibrionaceae, hebben we aangetoond dat sliding window discretization re-
sulteert in de meest conservatieve vectortransformatie invergelijking tot andere metho-
des. Aansluitend werden de binaire vectoren onderworpen aan een classificatie op basis
van het minimaliseren van de stochastische complexiteit, een alternatieve strategie voor
de hierarchische clusteralgoritmen die gebaseerd is op de optimalisatie van een informa-
tietheoretische uitdrukking. Een nauwgezette vergelijking tussen de classificatieresultaten
van dezelfde set van fAFLP vingerafdrukprofielen die werdenbekomen met verschillende
classificatiestrategieën heeft aangetoond dat de grote lijnen van de alternatieve onderver-
delingen grotendeels gelijk lopen, terwijl er eveneens bevestiging kwam van het feit geen
enkele methode er in geslaagd was om alle taxonomische verwantschappen tussen deVi-
brionaceaete omvatten. De vraag of eŕeén enkele wegenkaart/taxonomie kan worden
opgesteld die alle onderkende aspecten van de bacteriële taxonomie weerspiegelt, blijft
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voorlopig open.

Eens de nodige verbindingswegen zijn aangelegd om een voldoende connectiviteit te
kunnen waarborgen tussen de verschillende entiteiten uit het landschap, gedetailleerde
landkaarten een overzichtsbeeld schetsen van de omgeving,en de rugzakken zijn overladen
met aangepast kampeermateriaal, kan de zoektocht naar nieuwe wetmatigheden aanvatten
met een systematische exploratie van de wereld. Dit in het achterhoofd houdend, proberen
we in hoofdstuk 5 aan te tonen waartoe kennisextractie uit databanken in staat moet worden
geacht en wat hiervan de implicaties zijn voor de evaluatie van de massale hoeveelheden
genotypische en fenotypische kenmerken die zijn verzameldover de micro-organismen.
Ingebed in deze alles overschouwende manier van analyseren, zit de betrachting om een
breder waaier aandata mining-technieken toe te passen, steeds indachtig dat het opkui-
sen, integreren en structureren van de gegevens een belangrijke voorwaarde blijft om de
betrouwbaarheid van de resultaten te kunnen garanderen. Inhet bijzonder hebben we ons
toegespitst op het napluizen van de schat aan informatie diewerd verzameld gedurende
vijftien jaar routinematig onderzoek naar de vetzuursamenstelling van aerobe omgevings-
bacterïen via gas-chromatografie. In het kader van dit onderzoek werd aangetoond hoe
het extraheren van nieuwe informatie ter verbetering van het scheidend vermogen van een
volledig geautomatiseerd vetzuurherkenningssysteem, zelf ten goede kan komen aan de
classificatie en identificatie van bacteriën, behorende tot soorten die voorheen niet uiteen
konden gehouden worden op basis van deze techniek.

Vooraleer de betrachtingen van een autodidactisch inferentiesysteem voor het uitteke-
nen van het landschap van de bacteriële diversiteit kunnen gerealiseerd worden, zullen nog
verschillende belangrijke technische en organisatorische hindernissen moeten overwonnen
worden. Dit vraagt het verleggen van de grenzen van een mondiale uitwisseling van gege-
vens, het nasporen en invullen van de hiaten in de waarnemingen, en het verkennen van de
mogelijkheden van nieuwe technieken voor het ontginnen vangegevens, ten voordele van
een beter inzicht in het leven en de evolutie van bacteriën. In plaats van het hoofd te buigen
voor de vele onopgeloste kwesties, laat ons de stapschoenenaansnoeren en ogenblikkelijk
de daad bij het woord voegen. . .
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