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CHAPTER I: DISEASE HISTORY 

 

 

1.1 FIRST HIV/AIDS REPORTS 
 

The HIV/AIDS pandemic started 25 years ago. In 1981 clinicians in New York reported the 

increased incidence of the previously rare diseases Kaposi Sarcoma (KS) and Pneumocystis 

carinii pneumonia (PCP) in a population of homosexual men1. Soon other risk groups were 

identified (intravenous drug users, heterosexuals with high promiscuity and individuals 

receiving blood products), which led to the suspicion of an infectious agent.  

Omnipresent organisms not normally causing health problems were inexplicably responsible 

for serious clinical deterioration and even death. It was discovered that these opportunistic 

infections (OI’s) were related to the then unexplained cellular immune failure; called 

‘Acquired Immune Deficiency Syndrome’ (AIDS). Two years later, the chronic infection, 

leading to AIDS, was proven to be caused by a retrovirus, named Human Immunodeficiency 

Virus (HIV) 2.  

The main explanation for the immune deficiency caused by HIV-infection was found to be the 

progressive loss of CD4 T cells. These cells, central in the regulation of humoral and cellular 

immune effector functions, were found to decline due to direct viral cytotoxicity and more 

importantly indirect apoptosis inducing mechanisms 3. Once the CD4 T cells fall below the 

critical level of 200 cells/µl blood, the HIV-infected individual becomes extremely 

susceptible to develop opportunistic infections 4.  

 

 

1.1 THERAPY  

 

In 1987, the first antiretroviral (ARV) drug Azidothymidine (AZT) was approved by the Food 

and Drug Administration (FDA). Two years later it became obvious that AZT alone was 

unable to control viral replication in the long term. This was due to the rapid development of 

drug resistance 5.  

With time, new ARV drugs, targeting the viral Reverse Transcriptase (RT), were developed: 

they could be divided into two classes: Nucleoside/Nucleotide Reverse Transcriptase 

Inhibitors (NRTI’s) and Non-Nucleoside Reverse Transcriptase Inhibitors (NNRTI’s). In 

1996, another class of drugs, inhibiting the activity of the viral protease enzyme (protease 
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inhibitors: PI’s) was introduced. During that period, new hope for long term viral suppression 

arose: combinations of at least 3 different drugs of 2 distinct classes (NRTI’s, NNRTI’s or 

PI’s) were shown to suppress viral replication in the long term. This combination therapy was 

known as ‘Highly Active Antiretroviral Therapy’ (HAART).  

Indeed the introduction of HAART led to a dramatic decline in HIV-related morbidity and 

mortality: the recovery of immune functions reversed the risk to develop opportunistic 

infections. At the same time the HIV-transmission rate diminished. These trends, however, 

were only observed in the rich, western world. In Europe, the incidence of AIDS (late stage 

HIV-infection) in HIV-infected patients, declined over 4 years (between 1994 and 1998) from 

30,7 to 2,5 per 100 patients per year.  

Nevertheless, the global HIV pandemic is seriously growing. The World Health Organization 

(WHO) has set a goal of treating 3 million people with Antiretroviral Therapy (ART) by the 

end of 2005. By June 2005 only one million people were estimated to be on ART 6. This 

represents only 17% of the 5.8 million people that currently need ART. Provision of ART to 

all those in need will require a massive and unprecedented investment in health care systems 

of developing countries. In addition, scaling up HIV prevention also is a priority. A newly 

developed efficient HIV/AIDS vaccine could potentially offer the ultimate solution. However, 

there are currently no indications that such a vaccine will be available in the near future; the 

vaccines currently being studied have failed to exert a protective effect.  
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CHAPTER II: INTRODUCTION 

 

 

2.1 EPIDEMIOLOGY 

 

Global AIDS epidemic 

 
Fig. 1: The global AIDS epidemic. The number of people living with HIV and AIDS and the 

HIV prevalence in adults (15-49 years) are still increasing despite the introduction of 

HAART. 
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INTRODUCTION

In the late seventies and early eighties, a disease,
called “Slim disease”, caused more than 100 deaths in
Kasensero, a small village in Uganda (1, 2). Repeated
infections and cachexia were followed by a fatal
outcome. Because of a bloody guerr i l la war
investigations was never done. In 1981, dermatolo-
gists in New York observed a sudden higher
occurrence of a previously extremely rare skin cancer
in a population of gay men, which they first called “gay
cancer” (3). Shortly after, physicians in New York and
San Fransisco were also alarmed by a sudden rise in
occurrence of the same skin cancer; formerly known
as the Kaposi Sarcoma (KS), and an opportunistic
lung infection Pneumocystis carinii pneumonia (PCP)
(4). In those previously healthy homosexual men an
unexplained cellular immune failure was observed:
lymphopenia with a decline in number and function of
T helper cells and an inversion of the normal ratio T
helper cells / T suppressor cells. The term Acquired
Immune Deficiency Syndrome (AIDS), was defined
later the same year. Other associated opportunistic
infections were found in these (AIDS) patients:
candidiasis, toxoplasmosis, cryptococcosis, CMV
infections, etc. A similar distribution pattern to hepatitis
B infection was observed and relationships between
different cases were soon made; homosexual contact
clearly transmitting the disease. Recipients of blood or
blood derived products presenting with AIDS were
traced back to their donors dying or already dead from
AIDS (5). The modes of transmission of the immune
deficiency were found to be sexual intercourse,
through blood products or needle sharing and from
mother to child, pointing to a transmissible infectious
agent. The isolation of the virus responsible for AIDS

was accomplished in 1983 by scientists of the Institute
Pasteur in France (6). The virus found, was first called
HTLV-III /LAV (human T-cell lymphotropic virus-type III/
lymphadenopathy-associated virus). Later an
international committee named the virus Human
Immunodeficiency Virus (HIV). In 1985 an antibody
test was developed and approved by the FDA, so that
blood products could be screened. After infection, the
virus causes AIDS after a variable time. When a
person gets infected by the virus, the immune system
will be attacked, leading to a cellular immune
deficiency, presented as a decrease in CD4 T cells.
This explains the sensibility for opportunistic infections
and different cancers, by the presence of which AIDS
is defined. The CD4 T cell decline is the consequence
of immune activation and the subsequent apoptosis of
CD4 T-cells, rather than the cytopathic effect of the
virus.

The origin of the virus 

A retrospective study searching for the origins of the
HIV virus could detect the virus in the blood of a man
who died in 1959 (7). The patient had symptoms of
sickle cell anemia and lived in Leopoldville, now
Kinshasa in the former Belgian Congo. The sequence
of the virus detected in this man lies near the
ancestral sequence of the subtypes B and D,
suggesting that the ancestral HIV-1 must have existed
only a few years before that time. Other studies based
on mathematical models of the genetic evolution of
the virus estimated the ancestral HIV infection
between 1915 and 1940 (8). In Europe the first
documented patients were a Norwegian family (9); the
man, a sailor, probably infected his wife, who in turn
transmitted the virus to their child. They all died of
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opportunistic infections. The infection in this man
probably dated from before 1966.

The HIV virus is thought to originate from closely
related monkey viruses; Simian Immunodeficiency
Viruses (SIV). More than 25 species of monkeys
harbour SIV (10); as natural host and are not
suffering any damage to their immune system. In
humans two big classes of HIV can be found: HIV-1,
the most prevalent and HIV-2, especially found in
West-Africa. HIV-2 is genetically closely related to
SIVsm found in the sooty mangabey (11), native to
West-Africa, while HIV-1 is related to SIVcpz found
in a subspecies of chimpanzees native to West
Equatorial Africa (12), which share 98% of their
genome with humans. Transmission must in one or
another way have taken place. The exact mode of
transmission, however, is not known but several
hypotheses exist, although most of them do not
agree with HIV phylogenetic studies. A first theory is
based on the fact that in some regions monkeys are
hunted, killed and eaten. Another hypothesis is
based on medical research programs; in some
studies blood of chimpanzees, sooty mangabeys and
macaques was injected in healthy volunteers to
study the transmission of malaria (13). A third
hypothesis is the introduction of the virus in humans
through the use of a polio vaccine, produced in
monkeys or on monkey kidney cells (14). The polio-
vaccination trials were performed in the former
Belgian Congo in the fifties. A fourth hypothesis is
the transmission of the virus through an
experimental hepatitis B vaccine that was given to
homosexual men in New York and to black people in
Central Africa (15). Some people believe that the
virus was genetical ly engineered in order to

eliminate some populations. All these hypotheses
are sources of continuing debate and speculation.

Spread of the virus

Probably the virus originally entered into the human
population in Africa. Cross-over, however, could have
taken place on several occasions (16). The spread in
Africa was favored by the developing health care
system after the second world war; syringes, used
several times, polygamy, urbanization and modern
transport were factors stimulating the spread of the
virus. The role of international travel can’t be
overlooked; the possibly imaginative story of “patient
Zero” (5), a flight attendant, illustrating this. “Patient
Zero” would have traveled extensively worldwide, while
infecting a lot of people. The story says that a lot of the
early cases could be traced either directly or indirectly
to sexual contacts of this patient. Epidemiological
characteristics of the epidemic, however, are different in
the developing world compared to industrialized
countries: the developing countries showing more
heterosexual transmission and a much faster spread of
the infection. In the United States and Europe the high
risk groups are homosexual males, intravenous drug
users and people receiving blood products, while in
recent years the contribution of heterosexual infection
is relatively rising. In the industrialized world prevalence
is still rising also because of the access to medication
and the decline in mortality. In the developing world
heterosexual and vertical transmission are the most
frequent routes of transmission. The probability of
transmission being higher from men to women than the
reverse, women are infected at a younger age. Vertical
transmission, reaching up to 30%, occurs during

TABLE I - REGIONAL HIV/AIDS STATISTICS AND FEATURES, END OF 2003

Region Adults and children Adults and children Adult Adult and child
living with HIV/AIDS newly infected with HIV prevalence (%)* deaths due to AIDS

Sub-Saharan Africa 25.0-28.2 million 3.0-3.4 million 7.5-8.5 2.2-2.4 million
North Africa 470 000-730 000 43 000- 67 000 0.2-0.4 35 000-50 000
South & South-East Asia 4.6-8.2 million 610 000-1.1 million 0.4-0.8 330 000-590 000
East Asia & Pacific 700 000-1.3 million 150 000-270 000 0.1-0.1 32 000-58 000
Latin America 1.3-1.9 million 120 000-180 000 0.5-0.7 49 000-70 000
Caribbean 350 000-590 000 45 000-80 000 1.9-3.1 30 000-50 000
Eastern Europe & Central Asia 1.2-1.8 million 180 000-280 000 0.5-0.9 23 000-37 000
Western Europe 520 000-680 000 30 000-40 000 0.3-0.3 2 600-3 400
North America 790 000-1.2 million 36 000-54 000 0.5-0.7 12 000-18 000
Australia & New Zealand 12 000-18 000 700-1 000 0.1-0.1 <100

Total 40 million 5 million 1.1% 3 million
(34-46 million) (4.2-5.8 million) (0.9-1.3%) (2.5-3.5 million)

*The proportion of adults (15 to 49 years of age) living with HIV/AIDS in 2003, using 2003 population figures

The ranges around the estimates in this table define the boundaries within which the actual numbers lie, based on the best
available information. These ranges are more precise than those of previous years, and work is under way to increase even
further the precision of the estimates that will be published in 2004
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pregnancy, delivery or breastfeeding when no
treatment is available. In the industrialized world vertical
transmission dropped to less than 1% through the
introduction of therapy.

Sub-Saharan Africa is the most affected region
where two thirds of the people with HIV/AIDS are
living (16, 17) (Tab. I, Fig. 1). Prevalence varies greatly
between the different countries. In South Africa and
Zambia the prevalence in adults is 20% while in
Gambia and Somalia less than 2% of the adults are
infected. In four southern African countries infection
rates are even above levels that were thought
impossible; Botswana (37.5%), Lesotho (31.5%),
Swaziland (38.6%) and Zimbabwe (33.7%).

Trends differ from country to country: in Uganda the
prevalence dropped over a 10 year period from 30%
to 6% at the beginning of this decade and it continues
to decrease.

In Asia the epidemic started later, but exploded
during the last decade. The aggressive prevention
programs in Thailand and Cambodia showed that
reduction of transmission is possible. The infection
level is not above 3 to 4% in pregnant women in any
Asian country, but there is big concern that because
of the present high risk behavior outbreaks can be
expected. At this moment the spread of HIV is
augmenting especially in South and South East Asia.

In Latin America and the Caribbean the epidemic is
also spreading fast. The Caribbean being the second
most affected region in the world after Sub-Saharan
Africa. In Haiti, the most affected country of this

region, the prevalence is 6% in adults. The epidemic
there was recognized at the same time as the first
cases in the US, probably in relation with the sex
tourism of some homosexual men.

In South America, Brazil, a widely affected country,
took a leading role in efforts to fight HIV by producing
and providing free generic drugs and conducting large
education programs.

Eastern European countries show a big rise in
prevalence especially through IV drug use. Probably
the spread in this region is the fastest in the world.

The social and economic consequences in the
developing world are already being felt widely not only
in the health care system but also in education,
industry, agriculture, transport, human resources and
the economy in general. It’s difficult to overview all the
consequences of this dramatic epidemic.

Treatment of the disease

In the beginning of the pandemic, the first therapeutic
options were treatment of opportunistic infections.

In 1987 the FDA approved the first antiretroviral
medication zidovudine, AZT, which gave hope (18), 
but after a year it became clear that resistance
developed (19, 20) and it proved to have only a
temporary effect. In the early nineties several new
drugs, with a different action than AZT were produced.
In 1995, a new class of drugs was discovered: the
protease inhibitors PI. The great breakthrough came in
the same year when studies showed that using a

00002-E-1 – 1 December 2003
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Fig. 1 -  Adults and children estimated to be living with HIV/AIDS at the end of 2003.
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combination of three different drugs, viral replication
could be suppressed for a long period (21, 22). This
strategy, called HAART: Highly Active Antiretroviral
Therapy, became the norm in the industrialized world
and significantly influenced the mortality and morbidity.
In spite of this effective strategy, only 7% of the
patients in need of treatment were receiving it
thoughout the world in 2003. Cheaper generic drugs
are being produced by different countries in order to
combat the biggest killer in the world. The WHO has
planned to treat 3 million people living with HIV/AIDS
with antiretroviral medication in the developing world
by the end of 2005; the 3-by-5 project (23).

Knowledge of the immune system and the virus

Scientists worldwide are searching for a better
understanding of the immune system. The HIV
pandemic led to an explosion in scientific virological
and immunological studies. Destruction of the immune
system is being understood better and better, while no
cure has yet been found. Studying the differences
between the immune system of non human primates
and humans can help us to understand why the virus
is pathogenic in humans without causing devastating
effects in the respective natural hosts. In the natural
host the virus doesn’t cause immune activation.
Future therapeutic strategies could try to temper the
activation of the immune system. Another point of
study is the genetic dr ift of the HIV virus. The
existence of different genetic subtypes, with their
respective geographical distribution restricts the
possibilities for future vaccination strategies. The HIV
virus, showing a fast evolution through continuous
mutation, evades the specific immune answer, which
always seems a step behind. Moreover the capacity
for mutation is the cause of emerging drug resistance,
which is of great concern. In the western world, where
a lot of different drugs are used, the virus is subjected
to enormous genetic pressure. And in the developing
world fear exists that the efficacy of the limited drug
reper toire wil l  fast be exhausted because of
transmission of drug resistant viruses.

Current data

It is estimated that today 34-46 million people are
living with HIV/AIDS, 2.5 million of them are under the
age of 15 years. Last year 3 million people died of
AIDS and 5 million people became infected (Tab. II). In
the near future it is expected that even more people
will die of AIDS. In 2003 it was estimated that every
day 14,000 people become infected with the virus and
over 8,200 people died of AIDS every day. The
situation is most dramatic in Sub-Saharan-Africa
where two thirds of the people infected with HIV are
living. One in twelve adults is infected in this region!
95% of the people living with HIV/AIDS are living in
the developing world. It is expected that 6 million
people will die in the near future if they don’t receive
treatment. Life expectancy at birth has declined with
15 to 20 years in the most heavily affected countries.
From the beginning of the pandemic until now it is
estimated that 22 million people have already died of
AIDS. 14 million children became orphans due to
AIDS, meaning they lost one or both parents from
AIDS, before the age of 15. It is estimated that by
2010, at least 44 million children will have lost one or
both parents due to AIDS.

ACKNOWLEDGEMENTS

Ann Noë is supported by the Fund for Scientific Research
(FWO) Flanders Belgium.

Reprint requests to:
Ann Noë, MD
AIDS Reference Laboratory
Ghent University Hospital, Blok A
Department of Clinical Chemistry
Microbiology & Immunology
De Pintelaan 185
B-9000 Gent, Belgium
ann.noe@Ugent.be

TABLE II - GLOBAL ESTIMATES OF HIV INFECTION AND AIDS IN ADULTS AND CHILDREN (END OF 2003)

People living with HIV/AIDS Gobal 40.0 million
Africa 29.4 million
Adults 38.6 million
Women 19.2 million
Children 3.2 million

New HIV infections in 2003 5.0 million
Deaths due to HIV/AIDS in 2003 3.2 million
Total deaths from AIDS, 1982-2003 23.0 million
Children orphaned by AIDS 14.8 million

Data from UNAIDS (2003)
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2.2 EVOLUTION OF THE HIV INFECTION  

 

2.2.1 Clinical disease progression 

During the course of an HIV-infection, distinct clinical stages can be recognised. Immediately 

after HIV-infection, 40 to 90% of the patients7,8 experience symptoms such as fever, sore 

throat, nausea, diarrhoea, rash, myalgy, headache,… Because of the aspecificity of these 

symptoms, the disease often goes undiagnosed. The severity of this acute retroviral syndrome 

(ARS) differs from individual to individual. (This is an important factor in predicting the final 

clinical outcome 9, 10.)  

The acute infection stage, which can last for several weeks, is followed by an asymptomatic 

phase known as the period of ‘clinical latency’11, 12. This latency can last for several years 

(with an average of 10 years in the western world). During the asymptomatic stage, the risk 

for infections in the HIV-infected patient is similar to that of the general population, despite 

the appearance of enlarged lymph nodes.  

The transition to the late stage of the disease is marked by constitutional symptoms such as 

weight loss, fatigue, fever, sweats and some dermatological infections…  

The latest stage or the Acquired Immune Deficiency Syndrome (AIDS) is characterised not 

only by the occurrence of opportunistic infections specifically observed in severe immune 

deficient patients but also by central nervous symptoms caused by HIV and by particular 

cancers (WHO/CDC classification 2005) (Fig. 2).   

 

2.2.2 Virological aspects of HIV infection 

 

Viral load 

In the early phase of the HIV-infection, viral RNA concentrations in plasma reach peak levels 

of 105-108 copies/ml 13. This peak viral load (VL) is observed within a few weeks following 

the onset of infection.  

After 6 to12 months, steady-state plasma viral RNA levels are established, which are lower 

than those found during acute infection (~103-104 copies/ml plasma) 14. These steady state 

plasma levels are a good measure of the rate by which the HIV disease advances 15, 16.  

Plasma VL steadily augments as the disease progresses, ultimately reaching levels above 106 

copies/ml in the late AIDS stage (Fig. 2).  
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Diversity 

The HIV transmission generally occurs by only a restricted number of viruses 17, 18, explaining 

the low viral diversity early in infection 19. However, the viral diversity increases fast 

thereafter, due to the high mutation and replication rate of the virus. The high mutation rate of 

3x10–5 base pairs per replication cycle 20 results from the lack of proofreading activity of the 

Reverse Transcriptase (RT) 21. The combination of a high mutation rate and a high replication 

rate (108-1010 viral particles per day) 22 generates a huge diversity. All sorts of pressure result 

in a fast selection of escape viruses. One type of selective pressure is exerted by ART. Low 

adherence to the therapy and inefficient ART lead to a fast selection of drug resistant viruses. 

Another type of pressure is exerted by the immune system. Early in the HIV-infection, 

immune escape viruses are selected 23, 24. A third type of selective pressure is due to the 

specific micro-environment at the site of viral replication. Combined with a distinct 

distribution of target cells in tissues 26 this leads to localised divergence and 

compartmentalisation 25.  

Recombination is another mechanism explaining the viral diversity in the HIV-infected 

individual. Superinfection (the sequential infection from two sources), or concomitant 

infection explains co-infection with distinct HIV-subtypes. Inter- and intra-subtype genetic 

recombination occurs. The recombination rate will be higher intrasubtype compared to 

intersubtype 27-29, while influence on diversity will be of more importance when 

recombination occurs intersubtype.     

 

Latency 

The major impediment to the total eradication of HIV is the establishment of a viral reservoir. 

This already occurs in the first days after infection 30. In the transcriptionally silent condition, 

HIV evades recognition by the immune system and targeting by ART. 

When a cell becomes infected with HIV, the viral genome undergoes reverse transcription. 

The subsequently transcribed DNA either is inserted into the human genome (integrated DNA 

= proviral DNA) or remains non-integrated 31. The non-integrated form is unstable and 

decreases very fast under ART 32. On the other hand, the decay rate of the more stable 

integrated provirus under HAART is very low.  

The integration-site is located preferentially in active genes 33 and is supposed not only to 

determine the efficacy of subsequent viral replication but also to play a role in the latency 

status of the HIV-virus 34.  
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The resting memory CD4 T cells harbour the greatest part of the actually known HIV-

reservoir. Latency in these cells is supposed to arise from HIV-infection of activated CD4 T 

cells at the moment that these cells are turning to the resting state. Other cells that contribute 

to the latent HIV-reservoir are macrophages 25, monocytes 35, dentritic cells 25, 36, γδ T cells 37 

and natural killer (NK) cells 38. The contribution of all these different cell types to the latent 

pool, depends on the half-live of these cells, their cellular activity, sensitivity to apoptosis and 

their distribution in the distinct tissues (as the brain 39, testes, kidneys, …). The peripheral 

blood cells are the best accessible and most frequently studied HIV-infected cells, although, 

they are supposed to constitute only a minor fraction of the total HIV-reservoir. 

 

 

Clinical, virological and immunological evolution of an HIV-infection 

 
 

ig. 2: The distinct phases of the HIV-infection; clinical, viral load and CD4 T cell number 

er.com/encyclopedia/HIV). 

.2.3 Immunological evolution 

 a crucial role in the immune system are paralysed from the 

early start of HIV-infection. The adaptive as well as the innate immune system and the links 

between these systems are seriously affected. 
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(adapted from http://www.nationmast
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A major number of cells that play
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Adaptive immune system 

CD4/CD8 T cell ratio and CD4 T cell counts 

lready early in the HIV-infection, the number of CD4 T cells, constituting the main marker 

profoundly decreased. At the same time CD8 T cells expand, 

r the course of the HIV-infection 11. When CD4 

s as when to start preventive 

  

 

Fig. 3: Mechanisms contributing to the total number of blood CD4 T cells  

 

A

of disease progression, is 

leading to an inverted CD4/CD8 T cell ratio.  

After the early stage there is a spontaneous but incomplete recovery of CD4 T cells (Fig. 2), 

while the CD4/CD8 T cell ratio generally remains inverted.  

Afterwards, CD4 T cells gradually decline ove

T cells fall below a critical level (<200 cells/µl blood or <14% of blood lymphocytes), the risk 

to develop OI’s increases considerably. Clinical decision

treatment for OI’s and/or ART will strongly be influenced by the CD4 T cell count.   
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The progressive loss of the CD4 T cells is the result of the imbalance between the clearance 

and the renewal of those cells. This implies that the production of the CD4 T cells, which is in 

the order of 2x109 cells per day (in HIV-infection), is exceeded by its destruction. CD4 T cell 

destruction is caused by direct cytotoxicity of HIV and by apoptosis of HIV-infected and 

uninfected CD4 T cells.  

In vitro HIV-infection is associated with apoptosis of T cells and T cell lines 40-42. The 

activation state of the host cell probably influences its sensitivity to direct viral toxicity, as 

activated cells faster undergo apoptosis. Direct viral toxicity, however, is probably not the 

main reason for the CD4 T cell decline, as the number of HIV-infected cells is too low (in the 

order of 1/1000 to 1/8000) to explain the observed cell death and as only a minor fraction of 

the apoptotic cells is physically infected by HIV. Apoptosis has indeed been shown to occur 

especially in bystander cells 43 and less in productively HIV-infected cells 44, 45.  

Besides direct viral cytotoxicity, cell death can be explained by apoptosis induced by viral 

plasma proteins. In vitro, the interaction of the viral gp120 envelope protein with CD4 has 

been shown to impair lymphocyte function 46 and to prime T cells for programmed cell death 

CD) 47. Subsequent T cell receptor (TCR) engagement is sufficient to induce apoptosis. 

lternatively, if the HIV-infected cells are already activated, binding of gp120 to the 

lasma proteins have been reported to play a role in inducing cell death 48.   

n encounter. In HIV-infection a big proportion of the extensive cell 

ent

(P

A

CD4/CXCR4 molecules induces cell death. In addition, not only gp120, but also other HIV 

p

Apoptosis of lymphocytes also results from continuous immune activation as described in 

chronic infections with cytomegalovirus, Epstein Barr virus and varicella zoster. This 

physiological apoptosis is called activation induced cell death (AICD) 49, 50. AICD is the 

regulatory mechanism necessary in order to maintain the equilibrium in the repertoire of 

immune cells after antige

death can be attributed to AICD 51, 52.   

The immune response against HIV is as well responsible for the induction of cell death. This 

is mediated by cytotoxic T lymphocytes (CTL’s) and Natural Killer cells (NK cells) which 

lyse HIV-infected cells.  

Several scientists suggest that auto-immune mechanisms, provoked by HIV contribute to a 

progressive decline in CD4 T cell count and cause progression from HIV-infection to AIDS53.  

In addition to the enhanced destruction of CD4 T cells, also the replenishm  of those cells is 

severely affected by HIV-infection because of diminished thymic output. HIV-infection 

causes a profound reduction in precursor proliferation of thymocytes 54, leading to a serious 

limitation in CD4 T cell regeneration 55.  
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Trapping of CD4 T cells in the lymph nodes also contributes to the decline of their number in 

the blood 56. 

 

CD8 T cells, cytotoxic T cells (CTL) 

In the acute HIV-infection, a crucial role is attributed to HIV-specific CTL’s. The clonal 

expansion of these CTL’s is supposed to be responsible for the decline in plasma peak VL 57 

as it occurs simultaneous. Studies in non-human primates also provide arguments for the 

pivotal role of these CTL’s as depletion of CTL’s results in an uncontrolled viral replication 

and a fast progression to AIDS 58, 59. The antiviral effect of CTL’s relies on their possibility to 

lyse HIV-infected cells and to release soluble antiviral factors. 

DS is seen (Fig. 4).  

vation that over the disease course different HIV 

infection and are shown to be related with suppressed VL 61-63.      

nother mechanism that explains the persistence of HIV replication despite the presence of 

 of tolerance and clonal exhaustion because of the 

 

Despite the continuous presence of high amounts of HIV-specific CTL’s throughout the HIV 

disease, progression to AI

It is suggested that the efficacy of the CTL’s decreases after the acute phase of HIV-infection 

as a result of the depletion of sustaining HIV-specific CD4 T cells (Fig. 4; 1).  

In addition, the fast occurrence of immune escape HIV variants is responsible for the loss of 

efficient CTL immune responses 23, 24, 60(Fig. 4; 2). Antigen presentation as well as immune 

recognition can be affected by these mutations which diminish the sensitivity of HIV-infected 

cells to CTL-mediated lysis. The obser

peptides are recognised is in line with this hypothesis. Tat and Rev are especially targeted 

early in HIV-

A

HIV-specific CTL’s, is the induction

extremely high concentrations of antigen 64, 65 (Fig. 4; 3).   

Deficient co-stimulation, because of an HIV-induced decreased expression of co-stimulatory 

proteins, is an additional way by which the virus escapes immune responses (Fig. 4; 4).  
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Causes of CTL dysfunction  
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Fig. 4: Different mechanisms that contribute to the dysfunction of CTL’s 

 

 

Innate Immune system 

Also the cells of the innate immune system are seriously affected by the HIV virus. The 

immune dysfunction caused by HIV, in Natural Killer (NK) cells, NKT cells, monocytes, 

macrophages and Dendritic Cells (DC) (all responsible for the innate immune response), is 

characterised by serious functional impairment in addition to reduced cell numbers. NK cells 

are impaired in their cytotoxic activity, which can be explained by a shift in cell subsets; HIV 

causes an expansion of dysfunctional NK cells (CD56-/CD16+), which have an upregulated 

expression of inhibitory NK receptors and a downregulated expression of cytotoxic 

receptors66. Those cells also have an impaired secretion of antiviral cytotoxic cytokines. On 

the other hand HIV causes a downregulation in HLA class I A and B expression in the 

infected cells 67, which further increases their escape from NK cell killing. The NKT subset 
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expressing CD4, is seriously depleted in HIV infection 68. Monocytes and macrophages can 

become infected by HIV as they express CD4 and CCR5 coreceptor. Those cells, together 

with DC’s, are spreading the virus as a Trojan horse to the different organs 69. DC’s are 

impaired in their stimulation of T cells, probably because of a diminished expression of 

costimulatory cules and a block in their maturation 70.        

   

2.2.4 Inter-individual differences  

Disease progression varies strongly among HIV-infected individuals. A small subset of HIV-

infected individuals (1%) is able to maintain high and stable CD4 T cell counts together with 

low to undetectable plasma VL for more than 10-15 years in the absence of ART 71-73. These 

patients are called Long-Term Non-Progressors (LTNP). On the other hand, very fast 

progression with evolution to AIDS in several months also has been described 74, 75. In 

general, in the western world, HIV-infected individuals are without therapy, progressing to 

AIDS in a mean period of 10 years.  

Factors influencing the rate of disease progression in HIV infection vary greatly among 

individuals and are still poorly defined. Yet, HIV-specific CD4 helper and effector T cell 

responses are consistently found in LTNP 73. Certainly viral as well as host dependent 

mechanisms contribute to the rate of disease progression. Among viral factors deletions in 

d Nef and insertion 

 Vpu genes 77, have been related with slow or non-progression . In addition, host dependent 

echanisms are the expression of certain HLA class I haplotypes 78-80, expression of the Δ32 

r 81 or other co-receptor polymorphisms 82 and certain cytokine and 

 mole

Nef 76 and other rare molecular changes such as deletions in Gag, Env an

in

m

mutated CCR5 co-recepto

cytokine receptor specificities 83.    

Understanding the factors related with better outcome of the HIV-infection will improve our 

knowledge of the HIV-pathogenesis and will open perspectives for future treatment options.  
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2.3 INFLUENCE OF HAART ON CLINICAL DISEASE PROGRESSION, VIRAL 

RESERVOIRS AND IMMUNE FUNCTION 

 

Action sites of antiretroviral drugs 

 

 
Fig. 5: Viral replication and action sites of different antiretroviral drug classes (from: 

http://webs.wichita.edu/mschneegurt/biol103/lecture15/hiv_cycle_drugs_best.jpg). 

 

2.3.1 Influence of HAART on clinical disease progression  

The clinical impact of HAART strongly depends on the stage of the disease at which HAART 

 started. It is obvious that in the ‘clinical latency’ phase no immediate clinical benefit will be 

een. Moreover, adverse effects of ART can worsen the patient’s quality of life in the short 

nd long term. Depending on the specific antiretroviral drugs complications are 

podystrophy, glucose intolerance, allergies, gastro-intestinal intolerance and neurological 

conveniences. Those side effects are responsible for a large proportion of the 

ospitalisations among the HIV infected patients.  

he start of HAART late in the course of the HIV disease, on the other hand, can be followed 

y a spectacular clinical amelioration. When HIV-infected individuals are consulting with 

is

s

a

li

in

h

T

b

symptoms of AIDS, they will first receive treatment for the OI and ART will be started later. 

The effect of this combined treatment can be very spectacular and is known as the ‘Lazarus 
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Syndrome’. Patients nearly dying on admission in the hospital, are able to return to work and 

 lead a normal life after a period of treatment.  

After the instauration of HAART, however, some patients are clinically deteriorating despite 

decreasing VL and rising CD4 T cells. Side effects of medication but also unrecognised OI’s 

or auto-immune diseases can cause the new or aggravated symptoms. Progression to AIDS 

can easily occur in this late stage disease even after instauration of HAART. The CD4 T cell 

count at initiation of therapy is the dominant prognostic factor in this progression to AIDS 84.  

Another possible cause of clinical deterioration is paradoxically due to the immune recovery 

on ART. Pathogens, previously present in the tissue but unable to cause an immune reaction 

because of the profound immunologic failure, are now able to provoke a severe inflammatory 

response. This phenomenon is known as the immune reconstitution inflammatory syndrome 

(IRIS). The inflammatory reaction can be extremely strong, leading to death (for example 

through rise of intracranial pressure) or irreversible sequelae as for example blindness. HIV-

infected individuals at risk for IRIS are those with previous apparent or sub-clinical OI’s. The 

pathogens most frequently associated with IRIS are cytomegalovirus, Mycobacterium 

 and high 

lasma VL at the time of starting HAART 85. IRIS is associated with a strong decrease in 

T, starting HAART within the 

ate stage HIV-infection is able to prevent 

 to undetectable levels (<50 HIV copies/ml 

to

tuberculosis, Mycobacterium avium, Cryptococcus neoformans, hepatitis B and C and herpes 

zoster. Factors, related with a high occurrence of IRIS are low CD4 T cell count

p

plasma VL in the first 3 months after instauration of HAAR

first 30 days after initiating treatment for an OI and the fact of being ARV naïve before 

starting HAART 86. Other studies found that a higher rise in CD4 T cell percentage 87 and in 

CD4/CD8 T cell ratio 88 was especially correlated with a higher incidence of IRIS.  

It is difficult to distinguish between the intimately linked inflammation and active infection as 

the cause of clinical deterioration. Usually non steroidal anti-inflammatory drugs as well as 

corticosteroids eventually combined with antimicrobial therapy provide relief 89, 90.  

It is not known if a certain treatment strategy in l

IRIS. No consensus exists about the management of HIV-infected individuals presenting with 

severe immune deficiency and OI’s. Therapeutic decisions are taken case by case, relying on 

clinical presentation, drug related adverse effects, pill burden and the patient’s choice.  

 

2.3.2 Influence of HAART on viral load, latency and resistance  

HAART is generally able to suppress plasma VL

plasma). The time period after which this undetectable VL is reached is longer in patients 

with a high plasma VL (>105 log copies/ml) at the start of HAART.  
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Despite prolonged periods of efficient ART resulting in long term undetectable plasma VL, 

the latent HIV pool decreases very slowly. The half-life time of memory CD4 T cells, which 

harbour the greatest part of the latent HIV reservoir in the blood, is shown to be at least 44 

months 91, 92. Immune intervention (e.g. with IL-2) 93, 94 and HAART intensification 95 can 

augment the proviral decay rates. Proviral decay rates are also higher in treated acute HIV-

infection 96, 97.  

Sustained low level HIV replication is supposed to contribute to the containment or even the 

expansion of the HIV proviral reservoir 25. The frequency of detectable viral blips (>50 HIV 

copies/ml) was found to be two times higher in HIV-infected individuals treated during 

chronic infection compared to those treated during acute infection 98.  

Problems of ARV drug resistance, emerging fast during periods of non-compliance or sub-

optimal HAART, compromise the clinical benefits related to ART. Genotyping, detecting 

specific resistance-linked mutations, is the most frequently used method to detect drug 

resistance. A large number of mutations associated with resistance to the currently used ARV 

drugs are identified 99. These mutations generally emerge in a step-wise manner with a 

cumulative influence on the sensitivity to the ARV drugs. Different algorithms are used to 

predict phenotypical resistance based on the observed genotype (Stanford University, REGA 

Institute). The results of these predictions are guiding the clinicians in their choice for 

he timing of HAART intervention may be a key factor in determining the extent of possible 

r with a CD4 T cell count 

rlier in the HIV disease 

effective HAART combinations.  

 

2.3.3 Immune recovery under HAART 

Many cells that mediate important immune functions are affected by HIV: CD4 T cells, HIV-

specific CD4 and CD8 T cells, γδ T cells, dendritic cells (DCs), IFNα producing Antigen 

Presenting cells (APC’s), NK cells, Natural Killer T (NKT) cells,… These impaired immune 

functions cannot always recover with HAART.  

T

immune restoration. There is a consensus that patients with AIDS o

<200 cells/µl blood should receive HAART. Recent guidelines recommend now intervention 

with HAART at 350 CD4 T cells/µl blood. This is in line with studies demonstrating that the 

immune recovery will be more pronounced if therapy is started ea

course 100-102. However, studies have shown that even with extremely severe immune 

deficiency significant increases in CD4 T cell count could be obtained with HAART in 

combination with IL-2 103.  
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When the mean recovery of CD4 T cells is studied, a biphasic process is observed 104. In the 

first year, the number of memory CD4 T cells increases rapidly, which is explained by a 

ms responsible for this 

e answer, analysed by the T cell receptor (TCR) repertoire, 

 enhanced for CD8 T cells in HAART treated acute and chronic HIV-infection, while for 

 HAART treated acute infection 112.   

IV-infected patients starting HAART and is 

redistribution of CD4 T cells from the periphery, especially from the lymph nodes to the 

blood 105, 106. This is followed by a slow increase in naïve CD4 T cells, which continues for 2 

to 3 years after instauration of HAART 107. Therapy in early HIV-infection, however, can 

result in an immediate rise in naïve CD4 T cells 108. When mechanis

increase are further investigated a reduction in direct viral cytotoxicity and indirect apoptosis 

with an increased thymic output is expected. Al-Harthi et al. reported that a significant 

reduction of apoptosis because of HAART could only be found in HIV-infected patients who 

had >500 CD4 T cells/µl blood at the start of treatment 109, 110. Naïve CD4 T cells, rising after 

the instauration of HAART are supposed to proceed from the thymus. T cell receptor excision 

circles (TREC’s), a marker for recent thymic immigrants (RTE), are rising because of 

HAART even irrespective of HIV-infection 111. A longer thymocyte survival is suggested as 

explanation. Thymus volume is shown to increase in some patients after the instauration of 

ART. Also diversity of the immun

is

CD4 T cells amelioration was only seen in

Some patients fail to exhibit a marked increase in CD4 T cells despite a suppression of their 

VL to undetectable levels in response to HAART. The opposite, an increase in CD4 T cells 

without a total viral suppression, is also observed. This discordance between virological and 

immunological responses is seen in 5-27 % of H

associated with a poor clinical outcome 113. Thymus failure 114 or sustained apoptosis 115 are 

proposed to be the reason of failing immune recovery. PI-containing HAART regimens are 

associated with better immune recovery 116. Virological failure with immunological response 

can be explained by resistance 117 and adherence problems 118 but is also found associated 

with PI based regimens without drug resistance 119.  
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CHAPTER III: AIMS 

 
 
Although the benefit of HAART on HIV-related morbidity and mortality is proven, the 

current ART is unable to eradicate HIV. Moreover, short and long term drug toxicity, 

adherence problems because of drug intake fatigue and the resulting resistance problems all 

compromise the efficacy of HAART.  

For the optimal use of HAART, a lot of questions remain to be elucidated. When is the 

optimal time to start HAART? What are the risks and benefits of a temporary HAART 

regimen in early HIV-infection? Can HAART, started early in HIV-infection, induce a status 

of long-term non-progression? How long should temporary HAART in early HIV-infection be 

given? Is recycling of ARV drugs possible after resistance formation?  

To answer those questions we studied the effect of HAART in different cohorts of HIV-

infected individuals.  

 

1) As an introduction to the different sub-studies that are presented in this work, we assessed 

in article 1 the global impact of the first decade of HAART on the AIDS epidemic, with 

special emphasis on the differences between the western and the developing world.  

 

2) From viral as well as immunological point of view, treatment in acute HIV-infection can be 

very useful. Early treatment of HIV-infection restricts viral diversity and spread and the 

amount of latently HIV-infected cells. This strategy also preserves HIV-specific CD4 T cells 

and maintains a larger and broader CD4 T cell repertoire. Most of the studies showing a better 

immune recovery or a lower burden in viral HIV reservoir with early ART are assessing those 

factors while patients are still on therapy. As HAART is associated with diverse side effects 

and risk for drug resistance, it is important to evaluate whether temporary treatment can 

change the HIV disease evolution.  

In article 2, we investigated the benefit of HAART started early after HIV-infection. VL, CD4 

T cell count and HIV-specific immunity were analysed longitudinal after treatment 

interruption in a group of 40 patients. A cohort of 28 acute HIV-infected patients that 

remained untreated was followed as a control group.  

  

3) A large proportion of HIV-infected patients, however, first consults in the late stage of the 

HIV disease. In article 3, the start of HAART in late stage HIV-infection was investigated. 
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The clinical consequences of this strategy are illustrated by a case report of a tuberculosis 

(TB)/HIV co-infected patient suffering from IRIS.   

 

4+5) Although the theoretical ultimate goal of therapy is the total clearance of HIV from its 

host, it is more and more clear that this goal will not be reached in HIV-infection with the 

current HAART. This is mainly due to two factors: (1) the development of ARV drug 

resistance and (2) the presence of a long living HIV reservoir. ARV medication, exerting its 

action by blocking viral replication, can not target latent HIV as no replication takes place. 

The combination of resistance and latency compromising the efficacy of HAART, is 

addressed in articles 4 and 5. A cohort of patients harbouring resistant HIV was switched to 

an efficient HAART regimen which suppressed their plasma VL to undetectable levels for 

several years (mean: 59 months). Genotyping of pro-viral reservoir in those patients, assessed 

the persistence of the former resistance linked mutations and wild type HIV.    
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Abstract: We investigated the long-term benefit of early temporary antiretroviral therapy in 

HIV-1 infection. Sixty-eight recently infected individuals were selected of whom forty initiated 

antiretroviral therapy within the first 6 months of infection. Twenty eight patients remained 

untreated. Eight patients were excluded for further analysis because they did not achieve an 

undetectable viral load. The remaining 32 patients stayed on treatment for a mean period of 17,3 

months. Blood samples were collected regularly before, during and after treatment, for viral load 

(VL) determination and CD4 T cell count. HIV specific CD8 and CD4 T cells, producing IFN-γ 

in response to overlapping HIV peptides, were measured in 23 individuals (13 treated and 10 

untreated). The evolution of the different parameters in treated and untreated individuals was 

compared, after therapy interruption and infection respectively.   

Over the 3 years of treatment free follow-up a trend towards lower VL and higher CD4 T cell 

count was seen in the treated patients compared to the untreated individuals. No loss of HIV-

specific immune cells because of treatment was observed. In conclusion, our results indicate that 

temporary treatment early after infection can result in a delay in disease evolution that extends 

the strict time on therapy.  

 

Keywords: early treatment, HIV-infection, CD4 T cell count, viral load   

 

 

 

 

 

 

 

 

 

 

 

 

 



Introduction 

Acute HIV-1 infection is characterized by an extensive viral replication reaching levels of over 

106copies HIV-1 RNA/ml. The spontaneous decrease of viral load after the initial burst 1 is 

mainly attributed to the development of a specific immune response 2, 3, in combination with a 

profound loss of target CD4 T cells. Cytotoxic CD8 T cells (CTL’s), supported in their function 

by CD4 T cells, are thought to play a pivotal role in the early immune response as their expansion 

coincides with the decrease in plasma VL. In addition, studies in CD8 T cell depleted macaques 

demonstrated an uncontrolled replication of the virus and an accelerated clinical progress 4, 5. The 

efficacy of the CD8 T cell responses, however, seems strongly diminished in the later stages of 

the infection, as observations show that disease progresses despite the presence of high numbers 

of CTL’s. The decrease of sustaining CD4 T cells and the selection of immune escape mutants 

are possible explanations for the failure of the CTL’s.  

The possible benefit of treating patients during acute infection is a matter of controverse. 

Although studies showed that early ART could preserve HIV-specific immunity 6-8, side effects 

of the current treatment protocols such as lipodystrophy, glucose intolerance, allergies, gastro-

intestinal intolerance and neurological inconveniences limit their long term use.  Current 

guidelines therefore recommend the initiation of ART only in those patients in whom CD4 counts 

are indicative for a fast progression towards AIDS 9.   

Only few studies have evaluated the long-term effect of temporary early treatment on biological 

parameters as CD4 T cell count and VL. Although this approach might allow the preservation of 

HIV-specific CD4 T cell responses, and possibly induce a long term immune control, fear exists 

that after stopping the treatment, viral rebound soon abolishes the possible benefits.  

We studied 68 patients with an acute HIV-1 infection. Forty patients were temporary treated 

within the first six months of their infection, with individual adapted ART. Thirty two were able 

to reach undetectable viral load levels and were included for further analysis. Longitudinal 

analysis for VL and CD4 T cell count were performed and the results were compared for the 32 

treated and 28 untreated individuals. In 23 patients, 13 treated and 10 untreated, also the presence 

of HIV specific IFN-γ producing CD8 and CD4 T cells was examined. 

 

Materials and Methods 

 
Patient recruitment  



Sixty-eight adult individuals with a documented acute HIV-infection were included in the study. 

Sixty-six were Caucasian and sixty-four were men. Seventeen had been tested positive for 

syphilis, one patient had an active hepatitis B infection and 3 had active hepatitis C. Baseline 

clinical characteristics were comparable in both groups. Early infection was attributed to the 

individuals with either a documented HIV seroconversion, an isolated high risk exposure, an 

indeterminate western blot or an acute seroconversion syndrome. Forty patients were consulting 

the Aids reference Centre (ARC) in the first six months after the presumed infection date and 

were willing to participate in the study. They all received ART treatment. The ART combination 

was chosen on an individual basis. Twenty eight patients consulted the ARC later than six 

months after the presumed infection date and these patients were followed as untreated controls. 

The study was approved by the Ethical Committee of our institution and the participating patients 

signed the informed consent form. 

 

PBMC’s, CD4 T cell counts, HIV-1 levels:  

At each visit CD4 T cells numbers were determined by flow cytometry using the FACScan 

cytofluorometer and the Cellquest software (Beckton Dickinson Mountain View, California, 

USA). CD4 T cells numbers were expressed as cells per microliter whole blood. Plasma HIV-1 

was measured using the ultrasensitive Amplicor HIV-1 Monitor test (Roche Diagnostic Systems) 

with a lower detection limit of 1,7 log10 copies/ml and a higher detection limit of 5,0 log10 

copies/ml. PBMC’s were recovered by centrifugation on Ficoll-Hypaque gradients and 

cryopreserved in 90% FCS and 10% DMSO. PBMC’s were thawed on the day of testing.  

 

Stimulation assay for HIV specific CD4 and CD8 lymphocytes 

PBMC’s were thawed and used in a stimulation assay as described 10. PBMC’s were suspended at 

106 /150 µl RPMI medium, together with co-stimulatory antibodies; anti-CD49d and anti-CD28, 

at a final concentration of 1µg/ml each. Cells were divided in a 96 well round bottom plate and 

peptides were added at a concentration of 2µg/ml. The peptides were obtained from the NIBSC 

centralized Facility for AIDS reagents (UK). The peptides used were 20-mers spanning the rev, 

tat and p24 region and 15-mers spanning the p17 region of HIV-1 type B. As negative control, 

only co-stimulatory antibodies without peptides were added. As positive control we used SEB 

2µg/ml. 10µg/ml BFA was added to each well. The final volume was 200µl/well. Cells were left 



at 37°C in a humidified 7% CO2 incubator for 5 hours. After this incubation, cells were placed 

overnight in a refrigerator, protected from light. Subsequently, cell surfaces were stained with 

CD4-PerCP, CD3-APC and CD8-PE (Becton Dickinson). Cells were permeabilised with 

cytofix/cytoperm (BD) and additionally stained intracellular for IFN-γ-FITC (BD). Acquisition 

was done with the FACScalibur; 500.000 cells per test were acquired. Frequencies of IFN-γ 

producing cells were reported after subtraction of the frequencies in medium controls. Tests were 

done at least in two-fold and mean results were taken for presentation.  

 

Statistical analysis 

Statitistical analysis was performed using the program SPSS 12.0 for windows. The Mann 

Whitney test was used for analyzing differences between groups. For longitudinal tests in one 

group the Wilcoxon rank test was chosen. Kaplan Meier survival curve was used together with 

Log Rank testing for analyzing a defined endpoint over time. Only p values ≤0.05 were 

considered significant. 

 

Results 

Patient characteristics 

Of the 68 individuals with acute HIV-1 infection that were selected, 28 remained untreated. 

Treatment was initiated within 6 months after the onset of infection in 40. Eight of them did not 

reach undetectable viral load levels due to non-compliance (in 7) or side effects (in 1) and the 

therapy in these patients was stopped. Final analysis was performed on the remaining 32 treated 

(T) and the 28 untreated patients (UT). The treatment-free follow-up time was counted from the 

treatment interruption in the patients receiving therapy while for the patients who remained 

untreated the follow-up time was counted from the presumed infection date. The mean treatment 

free follow-up period was 34 months (5-87 months). The mean age at infection and the baseline 

CD4 T cell counts were comparable in both groups (UT: 34 years versus T: 36 years; p=0.744; 

UT: 506 versus T: 492 cells/µl; p=0.578), but a significantly lower mean VL was observed in the 

untreated individuals (p<0,001) (see Table I).  

 

The effect of ART on viral load 



Antiretroviral therapy suppressed plasma viral load to undetectable levels in the 32 patients after 

a mean period of less than four months. After one year of treatment free follow-up, the mean viral 

load in the patients who received treatment was lower than the mean viral load in the treatment 

naïve patients (3,95 log versus 4,42 log; p=0.060). Lower viral loads in the treated group were 

also observed after 2 and 3 years of follow-up, though differences were not statistically 

significant (respectively 3,86 log and 4,30 log after 2 years; p=0,108; 3,63 log and 4,05 log after 

3 years; p=0.172) (see Table I).  

The Kaplan Meier curve (not shown) illustrates the evolution of the VL in the two groups. An 

endpoint VL of 55 000 copies/ml was chosen. The treated patients were able to suppress their 

viral load to below this endpoint for a significant longer time compared to the treatment naïve 

patients (Log Rank: 0,027).  

Detailed observation of the evolution of the viral load after treatment cessation in the different 

patients revealed different patterns. In part of the patients, a peak of virus replication followed by 

a relative suppression was observed, others showed a viral rebound without any subsequent 

control and in others no peak levels but a slow continuous increase of the viral load over time 

was seen. In 2 treated patients VL remained extremely low after treatment interruption (less than 

2,00 log). In one of them, the viral load even remained undetectable during the whole follow-up 

period of 18 months. 

 

The effect of ART on CD4 T cell count  

The use of ART during acute infection resulted in a mean increase of 332 CD4 T cells/µl as 

compared to the pretreatment baseline value (p<0.001). One year after treatment interruption the 

mean CD4 T cell count in the treated group was 666 cells/µl compared to 490 cells/µl in the 

treatment naïve group one year after infection  (p=0.087). After two years the mean CD4 T cell 

counts were respectively 569 and 488 (p=0.500). After 3 years CD4 T cell counts were 708 and 

505 respectively (p=0.010) (table I).   

We observed an overall association between a low baseline CD4 T cell count and a fast decline of 

CD4 cells after treatment interruption. However, in 5 of the 9 treated patients with baseline CD4 

T cell counts under 350 cells/µl, no drop below this level was observed during the treatment free 

follow-up of respectively 9, 30, 30, 33 and 50 months. 

 



The effect of ART on the IFN-γ-producing HIV-specific T cells. 

We determined the presence of HIV-1 specific CD8 and CD4 T cell IFN-γ reaction  respectively 

200 and 500 days after treatment interruption or infection (see fig 2). The mean HIV-specific 

CD8 reaction was not significantly different for both groups (3.35 x106 cells/l at 200 days and 

5.27 x106 cells/l at 500 days in the treated group; 1.20 x106 cells/l at 200 days and 1.95 x106 

cells/l at 500 days in the untreated group) (p=0.108 and p=0.099 respectively). An increase in 

reactivity over time was observed in both groups.  

Equally, no differences in HIV-specific CD4 T cell reactivity were seen, with a mean reactivity in 

the treated group of 0.77 x106 cells/l after 200 days and 0.69 x106 cells/l after 500 days and of 

0.41 x106 cells/l after 200 days and 0.63 x106 cells/l after 500 days in the treatment naïve group 

(p=0.23 and p=1). Immune reaction against p24 was observed most frequently in both groups. 

The second most frequently recognized peptide for CD8 T cell reactivity was p17. No relation 

could be found between the intensity of the CD8 T cell reaction and the viral load. The CD4 T 

cell analysis revealed generally lower percentages of cells producing IFN-γ, but in the 5 treated 

individuals with at least 2000 x 103 HIV-specific CD4 T cells/l, long term viral suppression was 

seen in 3 and temporary viral suppression in 2. In the untreated individuals CD4 T cell reactivity 

never reached levels of 2000 x 103 cells/l.  

In 2 of the treated individuals, CD8 T cell reaction to p17 epitopes arose after more than one year 

of treatment interruption. Moreover, in 2 other patients CD8 T cell reaction against respectively 

tat and rev arose after more than 3 years of interruption.  

 

The effect of ART on the need to restart treatment 

We also compared the number of patients in both the treated and the untreated group who 

reached the criteria to start or restart HAART. These criteria are a CD4 T cell count of less then 

350 cells/µl and/or a VL above 55 000 copies/ml. The period before reaching these criteria was 

significantly longer in the treated compared to the untreated individuals (Log Rank: 0,033) (Fig 

1). Of the 28 untreated patients with a follow-up of more than 2 years, 19 reached the criteria. 

Only 8 of them effectively started HAART. Of the 26 treated patients that were followed for 

more than 2 years after treatment interruption, only 10 reached the defined criteria. Five 

effectively restarted treatment.   

 



Discussion 

A relative and durable viral control in early HIV-1 infection has been seen following structured 

treatment interruptions (STI) 11, 12. The aim of these controlled on- and off-cycles of drug intake 

was to stimulate the immune system through natural vaccination. Results, however, were 

disappointing and the observation in some cases of drug resistant viral variants during the periods 

of therapy interruption 13 further tempered the enthusiasm. Also the risk of an extreme loss of 

CD4 T cells was described 14. Therefore most STI studies are actually stopped. The effect of one 

single short period of early antiretroviral therapy on the long term outcome of the infection on the 

other hand, is still rarely studied. Jansen et al. found that only one out of 5 temporary treated 

acute HIV-infected patients was able to maintain a viral control, one year after treatment 

interruption 7. Desquilbet et al. were not able to show a difference in VL, one year after treatment 

interruption, between 58 temporary treated patients and 116 patients that were never treated 15. 

Markowitz et al. also were not able to see a positive effect on the viral load set point, one year 

after an early antiretroviral treatment either or not combined with an adjunctive vaccine in 16 

individuals tested 16. The aim of the study presented here was to assess the influence of early but 

temporary treatment in a real-life setting. Despite the lack of restrictions according to the choice 

of the antiretroviral regimen or the duration of the treatment we were able to show that this 

approach is definitely not harmful for the patient or for the disease process and that it might even 

lead to a delayed disease process after therapy interruption.        

 

Sixty eight patients with a documented acute HIV-1 infection and for whom the presumed 

infection date could be defined, were studied. Patients willing to participate in the study were 

divided in two groups according to the time of their first consultation. Forty patients first visited 

the Aids Reference Centre of our hospital within 6 months after the presumed infection date and 

in these patients therapy was initiated. The drug regimen was individually adapted. Two patients, 

included during 1997, received bitherapy, the remaining 38 received a HAART regimen 

composed of 3 or 4 drugs. In the 32 analysed patients, ART was given for a mean period of 17,3 

months after which all medication was stopped. Twenty eight patients first visited the ARC 6 

months or later after the presumed infection time. These patients remained untreated. Viral load 

and CD4 T cell counts were determined in both groups as markers of disease progression. The 

baseline characteristics of both the treated and untreated group were comparable with exception 



of the baseline viral load that was significantly higher in the treated compared to the untreated 

group. This difference is most likely due to the fact that the baseline viral load sample for the 

treated individuals was obtained within 6 months of the presumed infection time, while in the 

untreated patients the interval between sampling and infection time was more than 6 months. 

Therefore most of the samples from the treated individuals have been collected during the peak of 

viral replication. The differences in baseline viral load between both groups however did not 

influence the findings and final conclusions of this work. 

 

The ART regimens were well tolerated in all but one patient. Seven patients were unable to reach 

an undetectable viral load within 6 months of therapy initiation. All 7 admitted bad adherence. 

For the remaining 32 patients therapy resulted in a fast drop of viral loads to below the limit of 

detection and a significant increase of the CD4 T cell count. After treatment interruption viral 

load rebounded in 31. One patient was able to maintain an undetectable viral load during the 

whole treatment free follow-up period of 18 months. Encouraging was that, despite the renewed 

virus replication and a decrease of the CD4 T cell count after the treatment stop, lower viral load 

levels and higher CD4 counts were consistently found after 1, 2 and 3 years follow up in the 

treated compared to the untreated patients, although, differences were not significant. Viral load 

levels and CD4 T cell numbers are generally accepted as good prognostic markers for disease 

progression 17-19. Our results are therefore indicative for a delay in disease progression in the 

treated individuals that extends beyond the strict on-treatment period.   

 

The number of patients included in the analysis for the 3 year follow-up time point was 

significantly reduced in both groups due to a drop out of those patients who needed to start or 

restart therapy and due the fact that for several patients the actual follow-up time did not exceed 2 

years. After 2 years of follow-up, the untreated patients achieved significantly faster the criteria 

to initiate medication compared to the treated patients. Therapy had to be initiated in 67,9% of 

the untreated patients, while reinitiation of therapy was needed in only 38,5% of the treated 

patient. The better outcome of the patients who received temporary treatment is also clearly 

illustrated in the Kaplan Meier curve in Fig 1, showing a significantly lower drop-out of patients 

because of viral loads exceeding 55 000 copies/ml in the treated group compared to the untreated 



group. We chose 55 000 copies/ml as cut-off value for the VL, as above this level HAART was 

often started 20.   

 

The difference in conclusion between our study and the former temporary treated patient cohorts 

reported, could be explained by our study design. We omitted patients not achieving undetectable 

viral load from further analysis. Only 1 patient in our study had adverse events that required 

interruption of treatment. The prevalence of adverse events was much higher in the study of 

Desquilbet et al. (12/58) 15, which could imply a higher risk for low level replication under 

treatment. However, we found the same mean VL set point after one year treatment interruption 

(3,95 log). In their study 22% were women, which were related with lower VL set points, while 

in our study only 9% were women. Their control patients were taken from another study cohort, 

at a much earlier time point (1989 ↔ 1996-2003), which could provoke a selection bias. 

Markowitz et al. 16 used vaccines, activating immune cells, and so inducing a higher amount of 

target cells. This could have a negative effect on the viral rebound. Jansen et al. studied only 5 

patients, so it is difficult to make general conclusions 7. 

 

We also analysed the cellular immune responses against several HIV peptides. In agreement with 

the results presented by others 6-8, 21-23, we were able to show that HIV-specific T cells are 

preserved through therapy in early HIV-infection. Besides, from the small cohort of patients that 

we studied we observed that the magnitude and the breadth of the CD4 and CD8 response in the 

treated patients after treatment interruption were superior to the untreated group. Absolute 

numbers of HIV-specific CD4 T cells exceeded 2 000 x 103 cells/l in all 5 patients with a post-

treatment suppression of the viral load; however, in 2 this suppression was only temporary. No 

relation between HIV-specific CD8 T cells and HIV-specific CD4 T cells or VL was seen. We 

observed that in most of the patients, HIV-specific CD8 T cell reaction is increasing over time 

after treatment interruption and that the response is broadening. Rising viral diversity can explain 

the broader T cell receptor recognition over time. It is also remarkable that even after a long time 

(> 3 years) of treatment interruption, new HIV peptides can be targeted. 

 

The improved outcome in the treated patients could be explained by efficient activation of a 

sufficient pool of HIV specific memory cells through viral rebound. Treating early in infection 



could also preserve other precious functions of the immune system 24. Restriction of viral 

diversity by early treatment might be beneficial for the immune response after treatment stop. A 

reduction of viral spread and proviral levels can have similar effects. 

 

The study presented here was performed on a relatively low number of patients. Although the 

results are promising, further analysis on larger patient populations is definitely needed to allow a 

better insight in the impact of temporary treatment on the disease evolution. Studies, aimed at 

elucidating the differences between those patients with a favourable outcome after treatment 

interruption and those with a bad outcome, will improve our understanding of the HIV 

pathogenesis and might guide the development of alternative intervention strategies. The ideal 

treatment period is actually unknown and needs further studies. In literature treatment in acute 

HIV infection varies between some weeks 8 and several years (3 years 16). Although the number 

of patients that we studied is small, our results pointed towards an improved outcome after longer 

treatment (more that 15 months) compared to shorter treatment (results not shown), but this 

observation definitely needs further evaluation. 

 

Acknowledgements 

A.N. is a PhD student supported by the Fund for Scientific Research-Flanders. We thank the 

NIBSC centralized Facility for AIDS reagents (UK) for the peptides. We thank the physicians 

and the patients who took part in the study. We thank Els Demecheleer and Nancy De Cabooter 

for their help in collecting PBMC’s.  

 

 

References 

 
 
1. Daar ES, Moudgil T, Meyer RD, Ho DD. Transient high levels of viremia in patients with 

primary human immunodeficiency virus type 1 infection. N Engl J Med. Apr 4 
1991;324(14):961-964. 

2. Koup RA, Safrit JT, Cao Y, et al. Temporal association of cellular immune responses 
with the initial control of viremia in primary human immunodeficiency virus type 1 
syndrome. J Virol. Jul 1994;68(7):4650-4655. 

3. Musey L, Hughes J, Schacker T, Shea T, Corey L, McElrath MJ. Cytotoxic-T-cell 
responses, viral load, and disease progression in early human immunodeficiency virus 
type 1 infection. N Engl J Med. Oct 30 1997;337(18):1267-1274. 



4. Jin X, Bauer DE, Tuttleton SE, et al. Dramatic rise in plasma viremia after CD8(+) T cell 
depletion in simian immunodeficiency virus-infected macaques. J Exp Med. Mar 15 
1999;189(6):991-998. 

5. Schmitz JE, Kuroda MJ, Santra S, et al. Control of viremia in simian immunodeficiency 
virus infection by CD8+ lymphocytes. Science. Feb 5 1999;283(5403):857-860. 

6. Alter G, Hatzakis G, Tsoukas CM, et al. Longitudinal assessment of changes in HIV-
specific effector activity in HIV-infected patients starting highly active antiretroviral 
therapy in primary infection. J Immunol. Jul 1 2003;171(1):477-488. 

7. Jansen CA, De Cuyper IM, Steingrover R, et al. Analysis of the effect of highly active 
antiretroviral therapy during acute HIV-1 infection on HIV-specific CD4 T cell functions. 
Aids. Jul 22 2005;19(11):1145-1154. 

8. Oxenius A, Price DA, Easterbrook PJ, et al. Early highly active antiretroviral therapy for 
acute HIV-1 infection preserves immune function of CD8+ and CD4+ T lymphocytes. 
Proc Natl Acad Sci U S A. Mar 28 2000;97(7):3382-3387. 

9. Wang C, Vlahov D, Galai N, et al. Mortality in HIV-seropositive versus -seronegative 
persons in the era of highly active antiretroviral therapy: implications for when to initiate 
therapy. J Infect Dis. Sep 15 2004;190(6):1046-1054. 

10. Cosma A, Nagaraj R, Buhler S, et al. Therapeutic vaccination with MVA-HIV-1 nef 
elicits Nef-specific T-helper cell responses in chronically HIV-1 infected individuals. 
Vaccine. Dec 8 2003;22(1):21-29. 

11. Kaufmann DE, Lichterfeld M, Altfeld M, et al. Limited durability of viral control 
following treated acute HIV infection. PLoS Med. Nov 2004;1(2):e36. 

12. Rosenberg ES, Altfeld M, Poon SH, et al. Immune control of HIV-1 after early treatment 
of acute infection. Nature. Sep 28 2000;407(6803):523-526. 

13. Tremblay CL, Hicks JL, Sutton L, et al. Antiretroviral resistance associated with 
supervised treatment interruptions in treated acute HIV infection. Aids. May 2 
2003;17(7):1086-1089. 

14. Oxenius A, Hirschel B. Structured treatment interruptions in HIV infection: benefit or 
disappointment? Expert Rev Anti Infect Ther. Jun 2003;1(1):129-139. 

15. Desquilbet L, Goujard C, Rouzioux C, et al. Does transient HAART during primary HIV-
1 infection lower the virological set-point? Aids. Dec 3 2004;18(18):2361-2369. 

16. Markowitz M, Jin X, Hurley A, et al. Discontinuation of antiretroviral therapy 
commenced early during the course of human immunodeficiency virus type 1 infection, 
with or without adjunctive vaccination. J Infect Dis. Sep 1 2002;186(5):634-643. 

17. Mellors JW, Munoz A, Giorgi JV, et al. Plasma viral load and CD4+ lymphocytes as 
prognostic markers of HIV-1 infection. Ann Intern Med. Jun 15 1997;126(12):946-954. 

18. Mellors JW, Rinaldo CR, Jr., Gupta P, White RM, Todd JA, Kingsley LA. Prognosis in 
HIV-1 infection predicted by the quantity of virus in plasma. Science. May 24 
1996;272(5265):1167-1170. 

19. Craib KJ, Strathdee SA, Hogg RS, et al. Serum levels of human immunodeficiency virus 
type 1 (HIV-1) RNA after seroconversion: a predictor of long-term mortality in HIV 
infection. J Infect Dis. Sep 1997;176(3):798-800. 

20. Jacobs B, Neil N, Aboulafia DM. Retrospective analysis of suspending HAART in 
selected patients with controlled HIV replication. AIDS Patient Care STDS. Jul 
2005;19(7):429-438. 



21. Altfeld M, Rosenberg ES, Shankarappa R, et al. Cellular immune responses and viral 
diversity in individuals treated during acute and early HIV-1 infection. J Exp Med. Jan 15 
2001;193(2):169-180. 

22. Oxenius A, Fidler S, Brady M, et al. Variable fate of virus-specific CD4(+) T cells during 
primary HIV-1 infection. Eur J Immunol. Dec 2001;31(12):3782-3788. 

23. Fidler S, Oxenius A, Brady M, et al. Virological and immunological effects of short-
course antiretroviral therapy in primary HIV infection. Aids. Oct 18 2002;16(15):2049-
2054. 

24. George MD, Reay E, Sankaran S, Dandekar S. Early antiretroviral therapy for simian 
immunodeficiency virus infection leads to mucosal CD4+ T-cell restoration and enhanced 
gene expression regulating mucosal repair and regeneration. J Virol. Mar 
2005;79(5):2709-2719. 

 
 
 



Fig 1 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig 1:  

Kaplan-Meier curve showing the percentage of patients who reach the criteria to start 

HAART; CD4 T cells <350 cells/ml and/or VL >55000 copies/µl, over time. Time is 

expressed in months. Log Rank between the T and UT group is 0,033.  
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Fig 2 a 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig 2 b 
 
 

 

 

 

 

 

 

 

 

 

 

 

Fig 2a Representative example of dot plots representing the reaction of CD3 CD8 T cells to 

the negative controle, to HIV-1 tat, rev, p17 and p24 peptides and to SEB.  

Fig 2b Cross-sectional absolute numbers (expressed in number x 103 cells/l) of HIV-specific 

CD8 and CD4 T cells at 200 and 500 days of therapy-free follow-up in treated (T) and 

untreated (UT) individuals. Means are shown with lines. 
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Table I 

UT group T group p values

(re)starting therapy in first 12 months of follow-up 6 3
(re)starting therapy after 12-24 months of follow-up 2 2
follow-up of less than 24 months 0 5
loss to follow-up 0 1

CD4 at baseline* 506 (31-1051) n=28 492 (199-1168) n=32 p=0,578
CD4 at end therapy 821 (385-1408) n=32
rise in CD4 after therapy
CD4 1 year after stop therapy or infection** 490 (44-882) n=22 666 (270-1310) n=29 p=0,087
CD4 2 years after stop therapy or infection 488 (245-868) n=19 569 (256-1110) n=20 p=0,500
CD4 3 years after stop therapy or infection 505 (213-1440) n=13 708 (324-1040) n=10 p=0,011

VL at baseline* 4,31 (2,04-5,00) n=28 4,87 (4,00-5,00) n=32 p<0,001
VL 1 year after stop therapy or infection** 4,42 (2,33-5) n=25 3,95 (1,70-5,00) n=29 p=0,060
VL 2 years after stop therapy or infection 4,30 (2,04-5,00) n=18 3,86 (1,70-5,00) n=20 p=0,108
VL 3 years after stop therapy or infection 4,05 (1,80-5,00) n=13 3,63 (1,70-4,80) n=10 p=0,172

mean values (min-max)
* different time point after infection for treated and 
untreated individuals
** CD4 and VL values were taken from the period 
between 8 and 12 months of follow-up

 
Table I. Characteristics of untreated (UT) and treated (T) individuals over time.    
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CLINICAL SCIENCE

Drug-Resistant Variants That Evolve During Nonsuppressive
Therapy Persist in HIV-1–Infected Peripheral Blood
Mononuclear Cells After Long-Term Highly Active

Antiretroviral Therapy
Chris Verhofstede, PhD,* Ann Noë, MD,* Els Demecheleer, BSc,* Nancy De Cabooter, BSc*

Filip Van Wanzeele, MD,† Bea Van Der Gucht, MD,† Dirk Vogelaers, MD,† and Jean Plum, MD*

Abstract: The aim of this study was to determine whether drug-
resistant virus persists in peripheral blood mononuclear cells
(PBMCs) after long-term suppression of virus replication. Proviral
DNA was extracted from the PBMCs of 11 patients on long-term
highly active antiretroviral therapy (HAART). Genotyping of the re-
verse transcriptase (RT) and protease gene of several proviral variants
was performed using limiting dilution polymerase chain reaction and
single-copy sequencing. All patients were on successful HAART for
a mean period of 59 months but had a history of suboptimal therapy
and genotypic drug resistance before. Comparison of the amino acid
sequence of the RT and protease gene in the different proviral vari-
ants, with that of the plasma virus isolated before HAART treatment,
revealed that the different drug-resistant viral variants that evolved
during the process of gradually building up resistance were still de-
tectable in the PBMCs in 10 of the 11 patients tested. The proportion
of resistant variants was found to correlate with the time that the re-
sistant variants had been able to replicate. These data clearly show
that virus variants that are able to replicate for a certain period enter
the latent reservoir and remain archived in the PBMCs for a very long
period.

Key Words: drug resistance, provirus, latent reservoir, persistence of
drug resistance
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INTRODUCTION
Despite a decrease in plasma viral RNA to below the

level of detection after starting highly active antiretroviral
therapy (HAART), virus persists for a very long period in what
is called the latent reservoir.1–6 Our current knowledge of this

reservoir (i.e., how it originates, how it is maintained and even-
tually renewed) is still very limited. An important stable long-
term viral reservoir in patients on HAART is thought to be
composed of resting memory CD4+ T cells carrying replica-
tion-competent viral genomes.1,2 The proportion of these cells
is supposed to be low, but as demonstrated recently, they per-
sist for many years even in the absence of active virus replica-
tion.7 Finzi et al.3,4 showed that a latently infected CD4+ T-cell
compartment becomes established very early in infection, but
the factors that are involved in the maintenance and eventual
replenishment of this compartment are still largely unknown.
Moreover, much debate continues about the importance of re-
sidual viral replication as a mechanism of replenishment of the
latent reservoir during HAART.4,8–10

If not fully suppressive, any antiretroviral treatment used
today will result in the development of resistance. We and oth-
ers have shown that in the majority of patients with drug-
resistant virus, treatment interruption results in the reemer-
gence of drug-susceptible HIV-1.11–13 These observations
have evoked large interest in structured treatment interruptions
as a way to reduce the amount of resistant virus to very low
levels, thereby possibly increasing the chance of durable viral
suppression on subsequently resumed therapy.13–16 The re-
sults of these structured treatment interruption studies are still
controversial but a fast reemergence of resistant variants under
the selective pressure of the new antiretroviral regimen has
been demonstrated already.17,18 If and to what extent resistant
virus enters the latent reservoir, and for how long it persists in
this reservoir, are still unknown. A better insight into the ki-
netics of the latent virus reservoir and its composition with
regard to wild-type and resistant virus might help to improve
the strategies for successful treatment of heavily exposed in-
dividuals.

To study the persistence of proviral sequences carrying
drug-resistant mutations, we selected 11 patients who were on
fully suppressive HAART for several years but who had been
exposed to suboptimal therapy previously. The main objective
was to see whether many years of selection for drug-resistant
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virus followed by a long period of suppression of replication
would lead to the disappearance of the wild-type drug-
sensitive virus and replacement by mutant drug-resistant virus
in the reservoir. Also, we wanted to examine the value of
sequencing of the cellular provirus as a way to obtain infor-
mation about previous drug resistance. We used limiting
dilution polymerase chain reaction (PCR) followed by se-
quencing of the single-copy PCR products to genotype the re-
verse transcriptase (RT) and protease gene of different proviral
variants.

MATERIALS AND METHODS

Study Population
Eleven patients were selected from the patient cohort of

the AIDS Reference Center of the University Hospital in
Ghent, Belgium. Patients from this cohort are followed inten-
sively. Enrollment was based on the following criteria: the pa-
tients had received suboptimal treatment before HAART, they
carried drug-resistant virus as revealed by sequencing at the
time of HAART initiation, and they had currently been on
HAART for >4 years. Viral load determinations during
HAART were performed at least every 2–3 months. Viral load
remained undetectable (<50 copies/mL) during the whole pe-
riod with exception of 1 occasional positive result (206
copies/mL) after 48 months of HAART in patient 1. Viral load
returned to <50 copies/mL in a sample taken from this patient
1 month later. Before HAART, the patients were treated with
either zidovudine (AZT), zalcitabine (ddC), didanosine (ddI),
or lamivudine (3TC) as monotherapy or in combination. One
patient participated in a nonnucleoside reverse transcriptase
inhibitor (NNRTI) trial and received the drug loviride. Subop-
timal therapy was given for a mean period of 46 months. Most
patients received a total of 2 or 3 drugs. During the pre-
HAART treatment, plasma was collected every 3–6 months
for viral load determination. In all patients, the viral load
remained detectable during the whole pre-HAART treatment
period.

At the time the peripheral blood mononuclear cell
(PBMC) samples were taken, all patients were on HAART for
a mean period of 59 months (range 54–68) with a combination
of 2 nucleoside reverse transcriptase inhibitors (NRTIs) and 1
or 2 protease inhibitors (PIs). All patients were white and in-
fected with subtype B virus. Their mean age was 43 years
(range 32–54).

HIV RNA Quantification
Plasma samples were obtained at each visit and stored at

−70°C. HIV RNA quantification was performed using the Ul-
trasensitive Cobas Amplicor HIV-1 Monitor Test (Roche Mo-
lecular Systems, Branchburg, NJ) with a detection limit of 50
copies/mL.

DNA Extraction and Limiting Dilution PCR
DNA was extracted from freshly isolated PBMCs using

the QIAamp Blood Kit (QIAGEN GmbH, Hilden, Germany).
DNA samples were diluted 10-fold and 5 µL of this dilution
was added to each of at least 40 identical PCR mixes contain-
ing the outer primer set (sense 5�-ATGATGCAGAGAG-
GCAATTT-3�; antisense 5�-TTCTGTATGTCATTGA-
CAGTCCAGC-3�) to amplify an approximately 1200-bp frag-
ment spanning the protease and the first 240 amino acids of the
RT gene. Amplification was performed for a total of 35 cycles
(20 seconds at 94°C, 20 seconds at 50°C, and 1 minute at
72°C), after which 2 µL of the amplified products were trans-
ferred to 48 µL of 2 reaction mixes containing either a primer
set to amplify the protease gene (sense 5�-AGAGCCAACAG-
CCCCACCA-3�; antisense 5�-GGGCCATCCATTCCTG-
GCTT-3�) or a primer set to amplify the first part of the RT
gene (sense 5�- CCAAAAGTTAAACAATGGCCATTGAC-
AGA-3�; antisense 5�-AGTTCATAACCCATCCAAAG-3�).
Nested PCR amplification was performed for 30 cycles (20
seconds at 94°C, 20 seconds at 57°C, and 30 seconds at 72°C).
Positive PCR products were selected for sequence analysis
only if less than one-third of the replicate reactions were found
positive. DNA samples for which more than one-third of the
reactions were positive were diluted 10-fold further, and the
PCR reactions were repeated until a dilution was found for
which no more than one-third of the reactions were positive.
Both positive and negative controls were included in all PCR
assays to assess the sensitivity of the reaction and to detect
possible contamination. The lower limit of detection of the
PCR assay was equivalent to 1 copy per reaction. All positive
PCR products were sequenced.

Sequencing
Direct sequencing of both sense and antisense strands of

the inner PCR products was done with the dRhodamine Ter-
minator Cycle Sequencing Ready Reaction kit (Applied Bio-
systems, Foster City, CA). The sequencing reaction was per-
formed with the same primers as the ones used in the inner
PCR reactions, but to obtain a full sequence of both strands of
the RT gene fragment, 2 additional sequencing reactions were
run with internal primers (sense 5�- GGGNGAYGCA-
TATTTTTCARTWCC-3�; antisense 5�- CCTGGTGTYTCA-
TTRTTTRYACTT-3�). Sequencing reaction products were
analyzed on an ABI 310 Genetic Analyzer (Applied Biosys-
tems). A minimum of 11 (range 11–18) different PCR products
were sequenced for each patient sample. The principle of lim-
iting dilution sequencing is based on the mathematical calcu-
lation that if no more than one-third of replicate PCR reactions
are positive, the likelihood that the PCR products are the result
of the amplification of only 1 molecule is ∼70%. Limiting di-
lution sequencing allows us to obtain an accurate profile of the
distribution of different variants in a single sample.19

Verhofstede et al J Acquir Immune Defic Syndr • Volume 35, Number 5, April 15 2004

474 © 2004 Lippincott Williams & Wilkins



The likelihood of comparing single provirus sequencing data is
further enhanced by withdrawing all sequencing products for
whom visual inspection of the electropherograms revealed
nucleotide mixtures at �1 positions. Sequences containing
stop codons or frame shifts indicating defective virus were also
withdrawn. Sequencing results were only used in the analysis if
the sequence of both strands was available and fully concordant.

Genotypic Analysis of Plasma Viral RNA
RT-PCR of the RT and protease genes was performed on

stored plasma viral RNA using the Titan One Tube RT-PCR
System (Roche Molecular Systems). Direct sequencing of the
PCR product was done as described for the proviral DNA
samples. Amino acid substitutions were identified by compari-
son of the plasma RNA sequences with a consensus HIV-1
subtype B sequence.

Phylogenetic Analysis
Nucleotide sequences were assembled using the BioEdit

package (www.mbio.ncsu.edu/BioEdit). Phylogenetic analy-
ses and neighbor-joining tree reconstructions were performed
using programs from version 3.6 of the PHYLIP package
(http://evolution.genetics.Washington.edu/phylip), with a
maximum likelihood distance matrix and a transition to trans-
version ratio of 2.0. Approximate confidence limits for indi-
vidual branches were assigned by bootstrap resampling with
1000 replicates. Tree diagrams were plotted with Treeview
v1.4 (http://taxonomy.zoology.gla.ac.uk/rod/treeview).

Nucleotide Sequence Accession Numbers
The nucleotide sequences reported in this paper have

been submitted to GenBank and were given accession numbers
AY356748 to AY357066.

RESULTS

Response to HAART
Table 1 summarizes the treatment history and response

to HAART for the patients enrolled in the study. Patients are
ordered according to the time on suboptimal therapy. All pa-
tients showed a rapid decline in plasma viral load to below the
levels of quantification (<50 copies/mL) after initiation of
HAART. Values all remained undetectable on repeated mea-
surements during the whole treatment period. HAART also re-
sulted in an important increase in CD4 count (mean CD4 rise:
575, range 203–837).

Proviral DNA Sequencing
Table 2 summarizes the results of the sequencing analy-

sis of the RT gene of proviral DNA variants isolated from
PBMCs collected after an average HAART period of 59
months and the results of the sequencing analysis of the RT
gene of plasma virus isolated from consecutive blood samples
during the pre-HAART period. Baseline plasma samples were
not always available (missing for patients 6, 8, 9, 10, and 11).
The proviral DNA was shown to be constituted of a mixture of
wild-type proviruses and drug-resistant proviruses in 9 of the
11 patients studied. Only in patient 1 were no drug-resistant
proviral variants detected. This patient had been on suboptimal
therapy for the shortest period (11 months). In patient 9, only
variants with resistant mutations were found. This patient had
been on suboptimal therapy for a long period (5 years), indi-
cating a possible association between the time on suboptimal
therapy and the amount of resistant proviral variants. This as-
sumption is further strengthened by the observed overall cor-
relation between the time on suboptimal therapy and the rela-

TABLE 1. Treatment History and Viral and Cellular Response to HAART

Patient
Age
(y)

Suboptimal Therapy HAART
Viral Load (log) CD4

Drugs Taken

Time on
Therapy

(mo) Regimen

Time on
HAART

(mo)
At HAART
Initiation

At PTMC
Sampling

At HAART
Initiation

At PBMC
Sampling

1 32 AZT 11 d4T + 3TC + RTV + SQV 60 4.41 <1.70 297 781

2 47 AZT-ddC-ddl 15 d4T + 3TC + RTV + SQV 68 4.39 <1.70 <100 781

3 49 AZT-ddC-ddl-3TC 20 AZT + 3TC + RTV + SQV 59 4.59 <1.70 144 455

4 54 AZT-3TC 22 d4T + RTV + SQV 62 5.12 <1.70 324 979

5 34 AZT-ddC-ddl 27 d4T + 3TC + RTV + SQV 60 4.89 <1.70 121 737

6 41 AZT-ddC-LV 48 d4T + ddl + RTV + SQV 54 4.64 <1.70 347 735

7 43 AZT-ddl 50 d4T + 3TC + RTV + SQV 55 4.82 <1.70 168 1005

8 45 AZT-ddC 60 d4T + 3TC + IDV 60 4.31 <1.70 305 1034

9 47 AZT-ddl 60 d4T + ddl + RTV + SQV 60 4.32 <1.70 388 591

10 41 AZT-ddC 67 d4T + 3TC + NFV 57 4.08 <1.70 249 871

11 41 AZT-ddC 96 d4T + 3TC + RTV + SQV 55 4.03 <1.70 594 1388

AZT, zidovudine; ddC, zalcitabine; ddl, didanosine; LV, loviride; 3TC, lamivudine; d4T, stavudine; RTV, ritonavir; SQV, saquinavir; IDV, indinavir; NFV, nelfinavir.
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TABLE 2. Results of the Sequence Analysis of the RT Gene in Viral RNA Isolated From Consecutive Plasma Samples Taken
During the Pre-HAART Period (Left) and in Proviral DNA Isolated From a Single PBMC Sample Taken After Several Years of
Successful HAART (Right)

Patient Date Therapy

Plasma Virus

HAART Regimen
41
M

67
D

69
T

70
K

103
K

184
M

210
L

215
T

219
K

1 01-18-96 no — — — — — — — — — d4T + 3TC + RTV + SQV

03-11-96 AZT — — — — — — — — —

04-05-96 AZT — — — — — — — — —

05-31-96 AZT — N — R — — — — —

07-26-96 AZT — N — R — — — Y —

09-23-96 AZT — N — R — — — Y —

12-12-96 AZT — N — R — — — Y —

12-13-96 Start HAART

2 04-19-95 no — — — — — — — — — d4T + 3TC + RTV + SQV

06-19-95 AZT — — — — — — — — —

08-01-95 AZT + ddC — — — — — — — Y —

09-21-95 AZT + ddC — N — R — — — Y —

11-09-95 AZT + ddC — N — R — — — Y —

12-12-95 ddI — — — — — — — — —

02-14-96 ddI — N — R — — L/W Y K/E

04-09-96 ddI — N — R — — L/W Y K/E

08-01-96 ddI — N — K/R — — — Y E

09-03-96 Start HAART

3 05-23-95 no AZT + 3TC + RTV + SQV

06-13-95 AZT — — — — — — — — —

08-01-95 AZT + ddC — — — — — — — — —

09-25-95 AZT + ddC — — — — — — — Y —

12-14-95 AZT + ddC — N — R — — — Y —

01-15-96 AZT + ddC — N — R — — — Y —

06-06-96 AZT + ddI — — — — — — — Y —

07-25-96 AZT + ddI — — — — — — — Y —

08-21-96 AZT + ddI L — — — — — W Y —

10-18-96 AZT + 3TC L — — — — V W Y —

01-27-97 Start HAART

4 05-09-95 no — — — — — — — — — d4T + RTV + SQV

06-15-95 AZT + 3TC — — — — — M/V — — —

07-13-95 AZT + 3TC — — — — — V — — —

10-11-95 AZT + 3TC — — — — — V — — —

12-13-95 AZT + 3TC — D/N — K/R — V — — —

03-20-96 AZT + 3TC — N — R — V — — —

05-15-96 AZT + 3TC — N — R — V — — —

09-18-96 AZT + 3TC — N — R — V — I Q

11-19-96 AZY + 3TC — N — R — V — I/F Q

03-27-97 Start HAART — N — R — V — F Q

5 10-28-94 no — — — — — — — — — d4T + 3TC + RTV + SQV

03-23-95 AZT + ddC — — — — — — — — —

05-15-95 AZT + ddC — — — — — — — — —

08-16-95 AZT + ddC — N — R — — — Y —

02-26-96 AZT + ddI — — — K/R — — — Y/F —

07-17-96 AZT + ddI — D/N — R — — L/W Y/F E

12-16-96 AZT + ddI — N — R — — W Y/F E

03-24-97 AZT + ddI L N — R — — W Y E

04-07-97 Start HAART L N — R — — W Y E
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TABLE 2. (continued) Results of the Sequence Analysis of the RT Gene in Viral RNA Isolated From Consecutive Plasma Samples
Taken During the Pre-HAART Period (Left) and in Proviral DNA Isolated From a Single PBMC Sample Taken After Several Years
of Successful HAART (Right)

Patient
Date Sampling

PBMC n*

Provirus

41
M

67
D

69
D

70
K

103
K

184
M

210
L

215
T

219
K

1 13-03-01 18 — — — — — — — — —

2 05-23-02 5 — — — — — — — — —

1 — — — — — — — Y —

4 — N — R — — — Y E

1 — N — R — — W Y E

3 12-03-01 14 — — — — — — — — —

1 — — — — — — — Y —

1 — N — R — — — Y —

1 L — — — — V W Y —

4 05-15-02 10 — — — — — — — — —

1 — N — R — V — — —

1 — N — R — V — F Q

5 04-08-02 8 — — — — — — — — —

1 — — — — — I — — —

1 — N — R — — — — —

3 — N — R — — — F E

2 — N — R — — W Y E

1 L N — R — — W Y E

1 L N N R — — W Y E
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TABLE 2. (continued) Results of the Sequence Analysis of the RT Gene in Viral RNA Isolated From Consecutive Plasma Samples
Taken During the Pre-HAART Period (Left) and in Proviral DNA Isolated From a Single PBMC Sample Taken After Several Years
of Successful HAART (Right)

Patient Date Therapy

Plasma Virus

HAART Regimen
41
M

67
D

69
T

70
K

103
K

184
M

210
L

215
T

219
K

6 02-28-94 AZT L — — — — — L/W Y — d4T + ddI + RTV + SQV

05-24-94 AZT + ddC + LV L — — — — — L/W Y —

06-29-94 AZT + ddC + LV L — — — — — W Y —

08-05-94 AZT + ddC + LV L — — — — — W Y —

01-23-95 AZT + ddC + LV L — — — — — W Y —

05-23-95 AZT + ddC + LV L — — — N/K — W Y —

05-30-96 AZT + ddC + LV L — — — N — W Y —

08-23-96 Start HAART

7 02-03-93 no — — — — — — — — —

01-12-94 AZT M/L — — — — — — T/Y —

06-15-94 AZT — — — — — — — T/Y —

08-17-94 AZT M/L — — — — — — Y —

03-15-95 AZT L — — — — — L/W Y —

03-13-96 AZT + ddI L — — — — — W Y —

07-04-96 AZT + ddI L — — — — — W Y —

11-20-96 AZT + ddI L — — — — — W Y —

04-09-97 Start HAART L E — — — — W Y —

8 03-17-94 AZT — — — R — — — — — d4T + 3TC + IDV

03-08-95 AZT — — — R — — — Y —

04-26-95 AZT — D/N — R — — — Y/T Q/K

05-16-95 AZT + ddC — D/N — R — — — Y/T —

10-16-95 AZT + ddC — N — R — — — Y Q

03-26-96 AZT + ddC — N — R — — — Y Q

06-24-96 AZT — N — R — — — Y/T —

09-03-96 AZT — N — R — — — Y Q

01-17-97 Start HAART

9 09-11-95 AZT — D/E — R — — — — Q/K d4T + 3TC + RTV + SQV

11-13-95 AZT — E — R — — — — —

01-10-96 AZT + ddI — D/N — R — — — T/F Q

09-30-96 AZT + ddI — N — R — — — F Q

03-24-97 Start HAART — N — R —- — — F Q

10 03-11-93 AZT — — — — — — — — — d4T + 3TC + NFV

01-05-95 AZT — — — — — — — — —

01-09-96 AZT — — — R — — — — —

02-06-96 AZT — — — R — — — I —

05-06-96 AZT — — S/T K/R — — — T/Y —

10-07-96 AZT — — — R — — — — —

11-12-96 AZT + ddC — — — — — — — Y —

01-13-97 AZT + ddC — — — — — — — Y —

04-01-97 Start HAART — — — — — — — Y —

11 11-23-92 AZT — — N R — — — — — d4T + 3TC + RTV + SQV

04-21-93 AZT — — N R — — — — —

09-22-93 AZT — — N R — — — — —

03-01-94 AZT — — N R — — — — —

07-25-94 AZT + ddC — — N R — — — — —

04-10-95 AZT + ddC — — N R — — — — —

08-07-95 AZT + ddC — G/D N R — — — — —

11-13-95 AZT + ddC — G N R — — — — Q

03-12-96 AZT + ddC — G N R — — — — Q

04-07-97 Start HAART — G N R — — — — Q
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TABLE 2. (continued) Results of the Sequence Analysis of the RT Gene in Viral RNA Isolated From Consecutive Plasma Samples
Taken During the Pre-HAART Period (Left) and in Proviral DNA Isolated From a Single PBMC Sample Taken After Several Years
of Successful HAART (Right)

Patient
Date Sampling

PBMC n*

Provirus

41
M

67
D

69
D

70
K

103
K

184
M

210
L

215
T

219
K

6 02-05-01 2 — — — — — — — — —

2 L — — — — — — Y —

3 L — — — — — W Y —

2 L — — — N — W — —

3 L — — — N — W Y —

7 11-21-01 2 — — — — — — — — —

2 L — — — — — — Y —

2 L — — — — — W Y —

7 L E — — — — W Y —

8 03-12-02 4 — — — — — — — — —

4 — N — R — — — — —

4 — — — R — — — Y —

1 — N — R — — — Y —

1 — N — R — — — Y Q

9 03-06-02 3 — — — R — — — — —

1 — E — R — — — —

1 — N — R — — — — —

1 — N — R — — — — Q

1 — G — R — — — F Q

8 — N — R — — — F Q

1 L N — R — — — F Q

10 01-07-02 4 — — — — — — — — —

7 — — — R — — — — —

4 — — S R — — — — —

11 11-21-01 2 — — — — — — — —

3 — — — R — — — — —

7 — — N R — — — — —

2 — G N R — — — — —

4 — G N R — — — — Q

*Number of proviral variants with the corresponding mutational pattern.
AZT, zidovudine; ddC, zalcitabine; ddl, didanosine; 3TC, lamivudine; d4T, stavudine; LV, loviride; RTV, ritonavir; SQV, saquinavir; IDV, indinavir; NFV,

nelfinavir.
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tive amount of mutant sequences between the proviral variants
(logistic regression coefficient r2 = 0.6308; P = 0.004)
(Fig. 1).

The number of different proviral variants that were de-
tected in 1 sample varied from 3 to 8. Proviral variants with
resistant mutations were heterogeneous in all patients; variants
with either different numbers of mutations or different combi-
nations of mutations were detected in the same patient. Results
of sequencing analysis performed retrospectively on stored
plasma samples revealed that most of these variants had been
circulating in the plasma transiently during the period of sub-
optimal therapy (Table 2). Proviral variants with additional
mutations as compared with the variants found in plasma were
seen in only 1 patient (patient 5). This patient carried a variant
with an additional M184I mutation and a variant with an addi-
tional T69N mutation. Proviral variants with PI-associated pri-
mary mutations were not observed (data not shown).

Phylogenetic Analysis
After aligning the whole nucleotide sequence of about

1000 base pairs (protease gene and part of the RT gene) of all
proviral and viral variants, a phylogenetic tree was constructed
for each patient. The codons associated with resistance were
removed from the alignment before the phylogenetic analysis
was performed so that the tree topology was not determined by
the resistance mutations. All trees showed a pronounced inter-
mingling of viral and proviral sequences. No indications for a
separate evolution within the provirus population were found.
Despite removal of codons associated with resistance muta-
tions before the analysis, variants with the same resistance pat-

tern always clustered together. Two representative trees are
shown in Figure 2. One tree is constructed from the results of
patient 3. This patient had been on suboptimal therapy for 20
months. The proportion of wild-type variants in the provirus is
high. Drug-resistant viral and proviral variants cluster together
but bootstrap support for clustering was low (<50%). The sec-
ond tree is constructed from the results of patient 7. This pa-
tient had been on suboptimal therapy for 50 months. The pro-
portion of wild-type variants in the provirus is low. An inter-
mingling of viral and proviral variants can be observed, and
there is no evidence for a separate evolution of the provirus
population.

DISCUSSION
Although advances in HIV treatment have reduced the

morbidity and mortality rates among HIV-infected individu-
als, all currently prescribed antiretroviral drugs fail to elimi-
nate the latent reservoir and it is clear that, with the current
treatment strategies, eradication of the virus will never be pos-
sible. Therapy has to be taken for life, and this is complicated
due to the adverse effects of the drugs and due to the emer-
gence of drug resistance. HIV-infected individuals in whom
drug regimens have repeatedly failed often harbor virus with
multiple drug resistance–associated mutations. Although it has
been shown that stopping therapy or switching from one class
of drugs to another leads to the disappearance of the resistant
strains from the plasma in the majority of cases, the question of
whether this also will enable recycling of these drugs in the
future is not yet clearly answered.11,12 Although viral latency
under HAART is the subject of several studies, the mecha-
nisms of HIV persistence and reservoir establishment remain
largely unknown.2–5,7,8,20,21

We studied the variability of the RT and protease gene in
the provirus of patients who were under long-term HAART but
who had a history of suboptimal therapy in the past. Our results
confirm the observations of others that cells containing HIV-1
provirus remain detectable for periods extending several
years.7,10 Proviral sequences with a fully wild-type RT gene
were found in 10 of the 11 patients despite the fact that in all
these patients drug-resistant mutants have been favored by the
selective conditions for many years. For the 1 patient in whom
no wild-type proviral variants were detected, no pretreatment
plasma samples were available so we cannot exclude the pres-
ence of the 70R mutation as a polymorphism already before
starting medication.

In accordance with the findings in HIV-1–infected chil-
dren, our results show that viruses in the latent reservoir are
diverse and reflect selection by the pre-HAART regimens.21

From the results of this study we have arguments to support the
observation also made recently by Strain et al.10 that the main-
tenance of the cellular reservoir is a dynamic process. New
variants that are able to replicate for a certain period enter the

FIGURE 1. Association between the time on suboptimal
therapy and the proportion of proviral sequences with drug
resistance–associated mutations in the RT gene. The propor-
tion of proviral sequences with drug resistance–associated mu-
tations is expressed as percentage of the total number of ana-
lyzed proviral sequences for that patient. Logistic regression
coefficient r2 = 0.6308; P = 0.004.
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reservoir to be conserved for longer periods. With a few ex-
ceptions, all mutant virus variants that were found in the
plasma during the process of gradually building up resistance
were still detectable several years later in the provirus. From
the correlation that we observed between the period on subop-
timal therapy before HAART and the proportion of mutant
proviral sequences in the PBMCs, we can conclude that the
quantity that a certain variant occupies within the reservoir will
depend in part on the period that this variant has been able to
replicate. However, the slow fading out of the oldest vari-
ants—in these cases the wild-type variants—might also con-
tribute to the observed correlation.

We were not able to find indications for a further virus
evolution under HAART. Only in patient 5, two observations
might reflect some evolution: the detection of a 184I-carrying
proviral variant and a 69N variant in provirus but not in
plasma. The patient was on a combination of stavudine
(d4T) + 3TC + ritonavir (RTV) + saquinavir (SQV) and se-
lection of a 69N by this combination is possible, although
it is more likely that this mutant arose during the pre-HAART
bitherapy with AZT and ddI but was missed in plasma.
The 184I mutation is known to be a 3TC-resistant transient
intermediate stage between the wild-type 184M and the 3TC-
resistant 184V.22 Because 3TC is a component of the HAART
regimen and the patient has never taken 3TC before, the
chance is high that this variant arose during the HAART
period. However, we cannot exclude the occurrence of 184I as
a natural polymorphism. In this regard it is important to note
that the 184I mutation was detected in a proviral variant with
an otherwise completely wild-type background. 3TC was a
component of HAART in 9 of the 11 patients, but no other
patients showed proviral sequences with mutations at codon
position 184.

PIs were a component of the HAART regimen in all
patients but no additional PI-associated mutations compared
with the secondary mutations already present in the plasma

FIGURE 2. Rooted neighbor-joining trees of the HIV-1 protease
and RT gene from viral RNA (bars) and proviral DNA (squares)
of patients 3 and 7. Viral RNA was isolated from plasma at
different time points during nonsuppressive therapy (date of
sampling is indicated in the bar). Proviral DNA was isolated
from a single PBMC sample taken after 59 months (patient 3)
and 55 months (patient 7) of successful HAART. The resistance
pattern of each isolate is indicated but the codons associated
with drug resistance mutations were removed from the
nucleotide alignment before phylogenetic analysis. Trees were
rooted with a reference subtype B strain (B.FR.83.HX). The
numbers at the nodes indicate proportion of support in 1000
bootstrap resamplings. Only bootstrap proportions of �50%
are indicated. WT, wild-type, no resistance-associated muta-
tions detected.
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virus before HAART initiation were detected (results not
shown). An additional argument against further evolution
of proviral sequences is the fact that phylogenetic analysis
revealed intensive intermingling of proviral and viral variants
in all patients.

Currently, plasma is the only compartment used rou-
tinely for drug resistance testing and studies that address the
role of the cellular reservoir with regard to emerging drug re-
sistance and conservation of drug resistance are limited.21 Our
results show that infected PBMCs of patients under HAART
contain a heterogeneous mixture of different viral variants. Be-
cause of this heterogeneity, population-based sequencing of
provirus will presumably only detect major variants and will
not provide valuable information about the resistance poten-
tial. Limiting dilution sequencing, conversely, was shown to
allow detection of archived viral resistance, but the method is
time consuming and expensive and therefore not suitable for
large-scale use. It also remains to be examined to what extent
the archived viruses remain replication competent. In this
study, 10 sequences with stop codons, frame shifts, or hyper-
mutations were found on the total of 173 sequences that were
analyzed and they were removed from the analysis. However,
our observations are limited to the HIV-1 protease and part of
the RT gene and we cannot exclude the occurrence of muta-
tions resulting in defective virus elsewhere in the genome. De-
spite the fact that we have no evidence for the replication com-
petence of the archived proviral sequences, we consider the
lack of any selective pressure that might be induced by in vitro
culture as an important advantage, allowing a better estimate
of the quantitative distribution of the different proviral variants
present.

The results described here have important clinical impli-
cations because they confirm the long-term persistence of any
drug-resistant virus once it has arisen, thereby permanently
jeopardizing certain treatment options. In the patients studied
here, HAART was initiated at a time when resistance testing
was not performed. It is important to notice that, with the cur-
rent knowledge, several of the drug combinations used at that
time would no longer be prescribed in these patients, consid-
ering the observed genotypic resistance patterns. However,
even with a suspected “less active” HAART, all patients
showed a long-term virologic and immunologic response to
the treatment, indicating that drugs to which resistance is pre-
dicted can still have therapeutic value in a combination regi-
men. Besides the fact that resistance is seldom an all-or-
nothing phenomenon and low-grade resistance can be over-
come by high drug concentrations, the results of this study
point to another possible explanation for this observation, the
fact that despite the detection of fully resistant virus in plasma,
the majority of infected cells might still contain wild-type vi-
rus. As part of a combination regimen, drugs to which resis-
tance has been developed can still add to the activity of the

combination by preventing the replication of this latent wild-
type, drug-sensitive, virus pool.
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The latent HIV-1 reservoir in patients undergoing HAART:
an archive of pre-HAART drug resistance

Ann Noë, Jean Plum and Chris Verhofstede*

AIDS Reference Laboratory, Ghent University Hospital, De Pintelaan 185, B-9000 Gent, Belgium

Recent studies on patients with a history of pre-HAART drug resistance, but currently on a successful
regimen, provided new insights into the dynamics of the latent cellular viral reservoir. Results indi-
cated that the latent reservoir is an archive, composed of a mixture of wild-type and drug-resistant
strains. The studies showed that, even after years of successful HAART, the wild-type viral strains that
circulated before the initiation of the therapy as well as all the different drug-resistant viral strains that
evolved over time during eventual periods of non-suppressive treatment, remain detectable in the pro-
viral reservoir. These findings support the hypothesis that during active viral replication, new variants,
including drug-resistant ones, continuously enter the latent viral reservoir. It can be concluded that, as
a consequence of the lifelong conservation of this latent reservoir, the potency of drugs for which
resistance once developed will remain reduced, even after years of withdrawal of the drug.

Keywords: reservoirs of resistance, mechanisms of resistance, mutations

Introduction

Since the availability of sensitive assays for viral load quantifi-
cation in plasma, it has become clear that HIV-1 infection is
characterized by a continuous massive virus replication, even
during the asymptomatic phase of the disease. Although the
immune system exerts some control, it generally fails to
completely arrest the replication or reduce it to a form of true
latency as is seen for other viral infections. The process of con-
tinuous virus replication can be interrupted or at least signifi-
cantly reduced by HAART. But, although the introduction of
HAART results in undetectable levels of plasma virus in the
majority of patients, HAART fails to completely eradicate the
virus in vivo, even after years of uninterrupted therapy. Viral
persistence is thought to be the result of the long-term survival
of a pool of infected, resting CD4 cells. Recent studies in
patients on successful HAART but with a history of pre-
HAART drug resistance, provided new evidence for the dynamic
nature of the latent reservoir and showed that any viral variant,
including any drug-resistant variant that has been allowed to
replicate for a certain time during the infection, will enter the
reservoir and remain conserved.

Long-term latent reservoir

Finzi et al.1 showed the establishment of a latently infected CD4
cell compartment already very early in infection. The cellular
reservoir is found predominantly in resting DR–CD4 cells with
a memory phenotype.2,3 The half-life of these cells is long (44

months) and this long lifespan, combined with the possibility of
self-renewal by proliferation, ensures their lifelong presence.
How these cells originate is still a matter of controversy, but it
has been postulated that the reservoir of latently infected cells is
generated when lymphoblasts that are in the process of reverting
to a resting state, become infected.4,5 Whether the long half-life
of the infected cells is the only reason for the persistence of
these cells during HAART treatment or whether the latent pool
is fully or partly maintained by ongoing low-level viral replica-
tion despite treatment, has long been unclear. But the lack of
detectable evolution in the envelope and polymerase sequences
of viral strains in the cellular reservoir during HAART, argues
against entry of new genotypes in the latent pool during success-
ful treatment, and supports the belief that persistence depends
primarily on the intrinsic stability of the infected cells.6

The HIV reservoir during HAART treatment

In patients on successful HAART, the presence of resting CD4
cells harbouring replication-competent virus has been demon-
strated by several groups.1,7 – 9 In line with these observations is
the consistent clinical finding of a quick rebound of plasma virus
in all patients who stop treatment, indicating the presence of a
latent reservoir that enables quick reinitiation of replication
whenever the drug pressure is removed.10,11

But perhaps the most convincing argument for long-term con-
servation of viral strains comes from the observation that a ces-
sation of treatment or a switch of antiretroviral drugs in patients
treated for more than 2 years with suboptimal drug regimens,
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resulted in the replacement of the resistant virus in the plasma
by wild-type variants.12 – 14 In the majority of the patients studied,
the replacement of the mutant by the wild-type virus was abrupt
and fast, indicating that it was the result of the reappearance of
archived wild-type virus and not of the reversal of mutations in
the resistant variants. This finding was remarkable since drug-
resistant virus predominated in the plasma of these patients for
several years and at least an important reduction in the popu-
lation of wild-type virus through a natural process of cell death
could be presumed. If wild-type virus persists in the latent
reservoir for such a long time, then it could be postulated that
drug-resistant strains too will be conserved.

Ruff et al.15 were the first to demonstrate that drug-resistant
viruses, selected by non-suppressive regimens in infected chil-
dren, entered the reservoir and persisted during HAART. Sub-
sequently, Lambotte et al.16 compared a polymorphic region of
the env gene and part of the reverse transcriptase gene in pre-
HAART plasma and in the reservoir lymphocytes, in nine treated
patients with long-term undetectable plasma viral load. They
observed archiving of pre-HAART plasma clones in six patients
and confirmed the co-existence of wild-type and drug-resistant
virus in reservoir T cells in two. We studied the variability of
the RT and protease gene in the provirus of 11 patients on suc-
cessful HAART for years, but with a period of suboptimal regi-
mens before.17 Not only could we confirm the co-existence of
wild-type and drug-resistant virus in the proviral reservoir after
5 years or more of HAART, but we were also able to show that,
with a few exceptions, all mutant virus variants that were
detected in the plasma before HAART initiation, during the pro-
cess of gradually building up resistance, were still present in the
latent reservoir. Moreover, we observed a correlation between
the time period on suboptimal therapy before HAART and the
proportion of mutant, drug-resistant, proviral sequences in the
cells, indicating that the quantity that a certain variant occupies
within the reservoir depends in part on the period that this var-
iant has been able to replicate. These data prove that the reser-
voir of latently HIV-1-infected cells is dynamic, and that newly
infected cells continuously turn into latency to enter the reser-
voir. These data also indicate the extreme long-term conserva-
tion of all variants that have ever entered the reservoir. The
latent reservoir can be considered as the life-long archive of
whatever viral strain that ever evolved and replicated.

Clinical implications of the persistence
of drug resistance

Once it has arisen, long-term persistence of any drug-resistant
virus jeopardizes, in a permanent manner, the use of drugs to
which resistance has developed. This finding again emphasizes
the importance of considering the whole treatment history of a
patient whenever a new combination therapy is initiated. Recy-
cling of any drug that was part of a non-suppressive treatment
regimen, even if the drug was taken years ago, might result in
the reactivation of archived resistant strains and must be avoided
unless there are no valid alternatives.

However, the observation that the viral reservoir contains a
heterogeneous mix of wild-type variants and mutant variants
with different degrees of drug resistance, also indicates that even
drugs to which resistance has developed may still ‘add’ to the
activity of a combination therapy by preventing the replication

of the drug-sensitive virus pool in the reservoir. Since the wild-
type virus is believed to be the fittest variant, suppressing the
replication of these wild-type strains can be important, especially
in patients with limited treatment options, and might contribute
to the reduced viral-load set-point as is observed in many treated
patients with drug-resistant viraemia.18,19 On the other hand, con-
tinuation of a failing regimen risks the further accumulation of
drug-resistance mutations and an expansion of the reservoir of
cells infected with drug-resistant variants, and is not advisable.
Whether the proportion of cells infected with drug-resistant
strains in the latent reservoir has any impact on the success or
failure of subsequent salvage regimens still remains to be
examined.

Currently, plasma is the only compartment used routinely for
drug resistance testing. However, the observation that the pro-
viral compartment contains an archive of the different strains,
wild-type and drug-resistant, that have evolved during the infec-
tion, makes this proviral reservoir the ideal substrate for analysis
of the ‘resistance-potential’ in a patient. This can be of special
importance in those patients from whom no samples have been
conserved and no historical data are available.

Conclusion

An important number of data indicate that the long-lived cellular
reservoirs of HIV in patients reflect a heterogeneous population
of replication-competent viral strains. The diversity of the
reservoir is dynamic and results from successive archiving of
circulating plasma viruses during the course of HIV infection,
including the drug-resistant variants. Archived variants are
assumed to remain life-long, thereby precluding the successful
recycling of any drug towards which resistance has arisen.

Our knowledge of the latent HIV-1 latent reservoir is rapidly
increasing. Only a thorough understanding of the development
and maintenance of the latent reservoir will allow the develop-
ment of new therapeutic strategies, aimed at a combined effect
of arresting viral replication and eliminating the latent reservoir.
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CHAPTER V: GENERAL CONCLUSIONS AND FUTURE PERSPECTIVES 

 

Although HAART dramatically slows the progression of HIV disease and decreases the 

transmission rate, the HIV/AIDS prevalence is still rising worldwide. This rise can be explained 

by the fact that currently (in 2005) only 17% of the patients in need of HAART are effectively 

treated (http://www.unaids.org/epi/2005/doc/report_pdf.asp).  

For the worldwide implementation of HAART the economical and logistic needs are enormous. 

At this moment, hope for a future stabilisation of the HIV/AIDS pandemic is based on these ARV 

programs which form an essential support for prevention strategies1. We must encourage 

implementation of ARV as it has been proven valuable in resource poor settings, despite the 

multiple challenges2. The WHO developed treatment guidelines, adapted to resource limited 

settings in order to treat large numbers of patients despite restricted logistic means 

(http//www.who.int/3by5/publications/documents /arv_guidelines/en/). Currently, an 

exponentially rising number of patients is treated with affordable drug regimens through several 

ARV implementation projects. However, fear exists that the improved access to treatment will 

result in the emergence and spread of resistant viruses. Efforts to prevent resistance are especially 

focused on counselling as good compliance is the best way to prevent its occurrence. CD4 T cell 

count and especially viral load determination help to evaluate the efficacy of an antiretroviral 

regimen and they allow the early recognition of therapy failure. Early detection of resistance 

enables a fast intervention, thereby reducing the risk of accumulated resistance mutations, of 

cross resistance and of multi drug resistance. Assays for CD4 determination and certainly for 

viral load quantification are still unaffordable in most developing countries. Cheap tests and 

strategies are urgently needed for follow-up3. Fear for resistance may not jeopardize the efforts to 

fight the virus in these resource poor settings, as yet no evidence exists that the risk for resistance 

is higher in these regions compared to the Western world 4.  

 

As access to and use of ART are improving, it is critical to define regimens which offer the 

highest benefit with a minimum of adverse effects. One approach might be to search for a 

specific treatment strategy that enables the induction of a status of long term non progression 

(LTNP). In LTNP a high number of functional HIV-specific CD4 T cells can consistently be 

found 5. A comparable conservation of the CD4 T cell responses has been reported in some 

 91



patients treated early in HIV-infection 6-11. In addition, a lower proviral load is observed in LTNP 

and in patients treated during acute HIV-infection, compared to patients treated during chronic 

HIV-infection. 12 Part of this thesis aimed to investigate the effect of early but temporary ART on 

HIV-infection. The effect of treatment on HIV-specific CD4 T cells and proviral load in acute 

HIV infection has in most studies been analysed while patients are still on medication. As ARV 

treatment has considerable short and long term side effects, it is of interest to examine the benefit 

of a short treatment period. Are HIV-specific CD4 T cells preserved after the treatment 

interruption? What is the evolution of proviral load after treatment interruption? Can HIV disease 

progression be delayed with a temporary treatment? What is the impact of side effects?  

 

We investigated the impact of temporary ART in acute HIV-infection on the two most generally 

used markers of disease progression: the number of CD4 T cells and the VL. We also studied the 

effect of the treatment on the immune function and we paid attention to the frequency of serious 

side effects of the medication. On the recent CROI (February 8, 2006, Early, uninterrupted 

treatment for HIV infection reduces complications, E. Susman) a study was presented in which 

over 2300 patients were evaluated for the occurrence of drug related side effects. According to 

these investigators, treatment in early infection was related with 60% less side effects compared 

to treatment in chronic infection. Also in terms of immune recovery early treatment was 

beneficial. However, they advise to continue the antiretroviral treatment without interruption. The 

better tolerance to therapy in early infection is in line with the observation of a low occurrence of 

side effects, in our patient group;  only one patient in 40 had to stop the treatment because of side 

effects.   

 

When we compared the VL and CD4 T cell count between untreated and treated patients at a 

same period of time after infection and treatment interruption respectively, we observed lower 

mean plasma VL and higher mean CD4 lymphocyte counts in the treated patients (X). This 

indicates that early temporary treatment might delay disease progression for a time period that 

exceeds the course of treatment. Because of a limited follow-up period in the untreated patients, 

we unable to compare the same time points after infection in both groups (X). 
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In one of the treated patients, no viral presence could be found after stopping the antiretroviral 

therapy even for a follow-up period, up to this moment, of 18 months. Obtaining a better insight 

in the underlying mechanisms that explain this efficient virus control could be very interesting. In 

this patient, viral characteristics, proviral load, HIV-specific immunity, and other host factors are 

further being studied.  

 

Whether the preserved HIV-specific immunity contributes to the better outcome is not 

unequivocally proven. In agreement with the results presented in different other studies 6-11, we 

found that ART in early infection sometimes preserves HIV-specific immunity. However, we did 

not find a correlation between the amount and diversity of HIV-specific CD8 T cell reactivity and 

plasma VL. But, our results are in favour of a possible correlation between high HIV-specific 

CD4 T cell response and suppressed plasma VL. All the individuals studied for HIV-specific 

immunity, who suppressed for a long time their viral replication, had high amounts of HIV-

specific CD4 T cells. The same numbers of immune cells, however, were also found in patients, 

who were able to only temporary suppress their viral levels. So the question remains if the HIV-

specific CD4 T cells are suppressing viral replication or if VL determines the fate of the HIV-

specific CD4 T cells.  

 

High HIV-specific CD8 T cell responses were not seen at baseline in the 5 patients that were 

tested before treatment initiation. This can be due to the fact that we addressed this parameter in 

the first 6 months after infection, before the immune response was fully developed. However, it is 
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also possible that the role of CD8 T cells might have been overestimated in the literature, as their 

response is too late and too weak 13. Also of importance is the fact that we only studied 

circulating blood cells, while most HIV-specific CD8 T cells are attracted to the lymph nodes, 

where they exert their antiviral function 14. Another possibility is that due to the baseline 

activation status of the CD8 T cells, those cells are unable to produce extra IFN-γ  in response to 

an in vitro stimulation. 

We analysed the number of HIV-specific CD8 and CD4 T cells by peptide stimulation and 

measuring intracellular IFN-γ expression. Because of the restricted number of cells available, we 

were not able to address the relation between VL suppression and IL-2 secretion or proliferation 

capacity.  

 

We also analysed the genetic background of our tested patients. An association between certain  

HLA antigens and a better outcome of the patient has been described. The genetic background is 

of importance as it is linked to the strength of the immune responses. Some HLA Class I antigens 

(HLA B27, B 63, B57, B58) are related with a better clinical outcome15-17, while HLA B35 is 

related with a faster progression of the disease18. In our cohort of acute infected patients we were 

not able to find any relation between HLA class I antigens and the immune responses or the 

disease outcome.  

 

In literature, two studies evaluating the effect of ‘Structured Treatment Interruption’ (STI) in 

early infection, have shown a limited long-term benefit after stopping the treatment 19, 20. These 

STI may not have the same impact on viral spread and proviral HIV reservoir compared to 

continuous HAART, because of the repetitive viral rebound and viral spread associated with each 

therapy interruption. The strategy of STI also includes the risk of drug-resistance 21 and of an 

enhanced loss of CD4 T cells 22.  

 

The proviral load might be a good prognostic marker to predict viral rebound after treatment 

interruption 23. Therefore several strategies have been developed aiming to reduce  the amount of 

latent HIV-infected cells. Starting HAART early after HIV-infection limits HIV proviral 

spread24. The decay rate of proviral load is observed to be higher in treated acute compared to 
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treated chronic infection. Moreover, HAART in early HIV-infection has been shown to decrease 

cell associated infectivity (CAI) 24 and gives hope to seriously limit viral rebound.  

 

Lafeuillade showed that a longer treatment period early in infection resulted in lower proviral 

load 25. In our study we also found a correlation between better outcome and a longer period of 

treatment. Studies evaluating the influence of the length of the treatment period in PHI on the 

final outcome are not done yet26. In the different studies that we found in literature, the treatment 

period varies between some weeks 11 and several years (3 years 27).  

Criteria to analyse the ideal time to stop HAART in acute HIV-infection should be defined. The 

usefulness of the total CD4 T cell number or the number of HIV-specific CD4 T cells or the 

proviral load as prognostic markers for predicting viral rebound and/or clinical outcome after 

treatment interruption must be evaluated32. Besides, larger studies with longer follow-up are 

needed to analyse the possible relation between those factors and long time control of virus 

replication after treatment stop 

 

Studies have shown that immune activation therapies, with T cell activators and/or IL-2 fail to 

eradicate HIV infection 28. On the contrary, those therapies induce an increase in T cell turnover 

and susceptible target cells thereby augmenting the viral replication. Recently, encouraging 

results are obtained with more selective strategies, which aim at activating the quiescent proviral 

genome without influencing the activation status of the immune cells by using prostratin and 

valproic acid 29-31. A possible interesting strategy to deplete HIV provirus from resting cells could 

consist of a combination of early antiretroviral treatment and prostratin and valproic acid.  

 

As only a small percentage of HIV-infected patients are diagnosed during acute HIV-infection, it 

can be argued that the studied strategy might have a limited impact on the overall HIV-infected 

population. However, in our hospital 9,7% of all the HIV-infected patients that were followed 

over the period of inclusion, were seen within the first six months of infection. Also, if a 

combination of different strategies would have a proven beneficial effect, more efforts could be 

put in programs for the active tracing of early infection. Detection of acute HIV-infection, 

through pooling of sera, has been shown feasible and cost effective 33, 34. In high risk populations, 

a significant number of patients with acute HIV-infection can be detected 35. Pilcher et al. studied 
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the prevalence of acute HIV-infection in a population consulting a clinic for sexually transmitted 

diseases (STD) in Malawi. They found a prevalence of acute HIV-infection of 5% among 

antibody-negative individuals 35. Detection of acute HIV-infection is not only important for the 

possible benefit related with ARV treatment, but also for prevention of HIV-transmission which 

is extremely high during acute HIV-infection 36-42. In addition, study of acute HIV-infection can 

help us to better understand factors related with protection and with a lower VL set point, which 

is of importance in future vaccine development and drug design.  

 

A rising problem related to the improved availability of HAART is the management of side 

effects. In the western world, a high percentage of the hospitalisations in HIV-infected 

individuals are due to side effects. Next to those side effects, also IRIS is directly linked with 

therapy intake. Fear exists that the incidence of IRIS, will seriously rise in the developing 

countries as access to treatment is improving. This relies especially on the high prevalence of 

pathogens associated with IRIS in the developing countries (Mycobacterium tuberculosis, 

Mycobacterium avium, Cryptococcus neoformans, CMV, hepatitis B and C). TB, the second 

infectious killer worldwide after HIV, is in developing countries often seen in co-infection with 

HIV. Both infections, separately and combined, are associated with IRIS after treatment 

instauration. Mycobacteria are the pathogens most frequently implicated in IRIS after 

instauration of HAART, causing approximately 40% of the IRIS cases, reported up to 2002 43. 

Especially extrapulmonary TB is a strong risk factor for paradoxical reactions 44-46. The 

distinction between inflammation and active infection as the cause of deteriorating clinical 

symptoms after treatment instauration is often not clear. Breen et al. suggested that HAART 

could induce and/or aggravate clinical symptoms of active TB infection 47.  

Little is known about the incidence of IRIS in the developing world 48. The benefits of HAART 

on HIV and the incidence of TB infection are much higher than the possible risks. It is known 

that because of HAART, the incidence of tuberculosis decreased by approximately 70-90% in 

treated cohorts living in high and low income countries 49-52.  

Interaction of HIV with other highly prevalent tropical diseases can have a high impact on 

worldwide morbidity and mortality. HIV induced immune dysfunction increases the incidence of 

malaria 53 and severe malaria 54, 55 while Plasmodium falciparum parasitaemia on the other hand, 

causes higher plasma VL 56. The effect of malaria on HIV disease progression and HIV 
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transmission rate remains to be elucidated 57. No IRIS has been described related to Plasmodium 

falciparum. 

 

The incidence of IRIS can possibly be reduced by early treatment of OI’s in immune 

compromised patients and/or by early ARV treatment of HIV-infection, thereby avoiding serious 

immune dysfunction. This also requires broader use of screening methods and a better access to 

medical care to detect infections in an earlier or clinical latent stage. This is extremely difficult as 

in these immune compromised persons, expression of symptoms is often delayed, while at the 

time of detection the TB infection is more likely to be multibacillary.    

For the many HIV-infected patients consulting in an advanced stage of the HIV-infection, a better 

understanding of the mechanisms responsible for IRIS can be useful to enable an adaptation of 

treatment strategies and guidelines for TB/HIV co-infected patients. Anti-inflammatory drugs and 

glucocorticosteroids have been shown to give relieve 58, 59. Also surgery and therapeutic 

aspiration are often needed. Pires et al. observed a clinical and immunological benefit of 

concomitant administration of HAART and immune therapy with IL-2 plus GM-CSF 60. They 

suggested that IRIS is associated with an inadequate recovery of immune functions and found the 

absence of lymphoproliferative responses and IL-2 production in response to recall/viral antigens 

which could be induced by immune therapy with IL-2 and GM-CSF. Those immune modulating 

treatments, however, are actually still inaccessible for the developing world.  

 

Another major problem related to the use of HAART is caused by resistance. In our study on the 

latent HIV-reservoir we show the archiving of all replication competent HIV variants. Retrieving 

an individuals’ therapy history is possible by analysing HIV-proviral sequences. Archiving 

implicates that once resistance arose, it can permanently jeopardize future treatment options. This 

emphasizes the importance of preventing resistance through adherence and optimal treatment 

regimens. World wide programs trying to prevent mother to child transmission (MTCT) with 

mono-or bi-therapy, fast elicit resistance linked mutations 61-69. Depending on the time this sub-

optimal treatment is given and on the antiretroviral drugs used, these mutations will develop with 

a different rate. Moreover, this strategy is not only associated with much higher HIV transmission 

rate, but also transmission of  resistant virus to the child 70. Future treatment options of those 

HIV-infected women and children can hereby seriously be restricted. Studies have to investigate 

 97



if previous used preventive MTCT programs are decreasing the efficacy of later started HAART 

in these HIV infected patients. Far most the best option is to use triple-drug MTCT prophylaxis, 

which has been proven highly efficient despite the standardized approach in the resource poor 

setting 61.  

Big concern exists about infection with resistant viruses 71. Reported percentages of HIV-

infection with resistant viruses are between 10 and 30% 72-74. This percentage gives an idea of the 

efficiency of the ARV used in a certain community.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 98



References  
 
1. Harries AD. Management of HIV in resource-poor countries, with a focus on sub-Saharan 

Africa. Lepr Rev. Sep 2002;73(3):268-275. 
2. Krain A, Fitzgerald DW. HIV antiretroviral therapy in resource-limited settings: 

experiences from Haiti. Curr HIV/AIDS Rep. Jun 2005;2(2):98-104. 
3. Colebunders R, Moses KR, Laurence J, et al. A new model to monitor the virological 

efficacy of antiretroviral treatment in resource-poor countries. Lancet Infect Dis. Jan 
2006;6(1):53-59. 

4. Kuritzkes DR. Extending antiretroviral therapy to resource-poor settings: implications for 
drug resistance. Aids. Jun 2004;18 Suppl 3:S45-48. 

5. Rosenberg ES, Billingsley JM, Caliendo AM, et al. Vigorous HIV-1-specific CD4+ T cell 
responses associated with control of viremia. Science. Nov 21 1997;278(5342):1447-
1450. 

6. Alter G, Hatzakis G, Tsoukas CM, et al. Longitudinal assessment of changes in HIV-
specific effector activity in HIV-infected patients starting highly active antiretroviral 
therapy in primary infection. J Immunol. Jul 1 2003;171(1):477-488. 

7. Altfeld M, Rosenberg ES, Shankarappa R, et al. Cellular immune responses and viral 
diversity in individuals treated during acute and early HIV-1 infection. J Exp Med. Jan 15 
2001;193(2):169-180. 

8. Fidler S, Oxenius A, Brady M, et al. Virological and immunological effects of short-
course antiretroviral therapy in primary HIV infection. Aids. Oct 18 2002;16(15):2049-
2054. 

9. Jansen CA, De Cuyper IM, Steingrover R, et al. Analysis of the effect of highly active 
antiretroviral therapy during acute HIV-1 infection on HIV-specific CD4 T cell functions. 
Aids. Jul 22 2005;19(11):1145-1154. 

10. Oxenius A, Fidler S, Brady M, et al. Variable fate of virus-specific CD4(+) T cells during 
primary HIV-1 infection. Eur J Immunol. Dec 2001;31(12):3782-3788. 

11. Oxenius A, Price DA, Easterbrook PJ, et al. Early highly active antiretroviral therapy for 
acute HIV-1 infection preserves immune function of CD8+ and CD4+ T lymphocytes. 
Proc Natl Acad Sci U S A. Mar 28 2000;97(7):3382-3387. 

12. Pires A, Hardy G, Gazzard B, Gotch F, Imami N. Initiation of antiretroviral therapy 
during recent HIV-1 infection results in lower residual viral reservoirs. J Acquir Immune 
Defic Syndr. Jul 1 2004;36(3):783-790. 

13. Altfeld M, van Lunzen J, Frahm N, et al. Expansion of pre-existing, lymph node-localized 
CD8+ T cells during supervised treatment interruptions in chronic HIV-1 infection. J Clin 
Invest. Mar 2002;109(6):837-843. 

14. Folkvord JM, Anderson DM, Arya J, MaWhinney S, Connick E. Microanatomic 
relationships between CD8+ cells and HIV-1-producing cells in human lymphoid tissue in 
vivo. J Acquir Immune Defic Syndr. Apr 15 2003;32(5):469-476. 

15. den Uyl D, van der Horst-Bruinsma IE, van Agtmael M. Progression of HIV to AIDS: a 
protective role for HLA-B27? AIDS Rev. Apr-Jun 2004;6(2):89-96. 

16. Frahm N, Adams S, Kiepiela P, et al. HLA-B63 presents HLA-B57/B58-restricted 
cytotoxic T-lymphocyte epitopes and is associated with low human immunodeficiency 
virus load. J Virol. Aug 2005;79(16):10218-10225. 

 99



17. Stewart-Jones GB, Gillespie G, Overton IM, et al. Structures of three HIV-1 HLA-
B*5703-peptide complexes and identification of related HLAs potentially associated with 
long-term nonprogression. J Immunol. Aug 15 2005;175(4):2459-2468. 

18. Tomiyama H, Miwa K, Shiga H, et al. Evidence of presentation of multiple HIV-1 
cytotoxic T lymphocyte epitopes by HLA-B*3501 molecules that are associated with the 
accelerated progression of AIDS. J Immunol. May 15 1997;158(10):5026-5034. 

19. Hoen B, Fournier I, Lacabaratz C, et al. Structured Treatment Interruptions in Primary 
HIV-1 Infection: The ANRS 100 PRIMSTOP Trial. J Acquir Immune Defic Syndr. Nov 1 
2005;40(3):307-316. 

20. Kaufmann DE, Lichterfeld M, Altfeld M, et al. Limited durability of viral control 
following treated acute HIV infection. PLoS Med. Nov 2004;1(2):e36. 

21. Schweighardt B, Ortiz GM, Grant RM, et al. Emergence of drug-resistant HIV-1 variants 
in patients undergoing structured treatment interruptions. Aids. Nov 22 2002;16(17):2342-
2344. 

22. Roger PM, Durant J, Ticchioni M, et al. Apoptosis and proliferation kinetics of T cells in 
patients having experienced antiretroviral treatment interruptions. J Antimicrob 
Chemother. Aug 2003;52(2):269-275. 

23. Hatzakis AE, Touloumi G, Pantazis N, et al. Cellular HIV-1 DNA load predicts HIV-
RNA rebound and the outcome of highly active antiretroviral therapy. Aids. Nov 19 
2004;18(17):2261-2267. 

24. Strain MC, Little SJ, Daar ES, et al. Effect of treatment, during primary infection, on 
establishment and clearance of cellular reservoirs of HIV-1. J Infect Dis. May 1 
2005;191(9):1410-1418. 

25. Lafeuillade A, Poggi C, Hittinger G, Counillon E, Emilie D. Predictors of plasma human 
immunodeficiency virus type 1 RNA control after discontinuation of highly active 
antiretroviral therapy initiated at acute infection combined with structured treatment 
interruptions and immune-based therapies. J Infect Dis. Nov 15 2003;188(10):1426-1432. 

26. Dybul M, Fauci AS, Bartlett JG, Kaplan JE, Pau AK. Guidelines for using antiretroviral 
agents among HIV-infected adults and adolescents. Ann Intern Med. Sep 3 2002;137(5 Pt 
2):381-433. 

27. Markowitz M, Jin X, Hurley A, et al. Discontinuation of antiretroviral therapy 
commenced early during the course of human immunodeficiency virus type 1 infection, 
with or without adjunctive vaccination. J Infect Dis. Sep 1 2002;186(5):634-643. 

28. Fraser C, Ferguson NM, Ghani AC, et al. Reduction of the HIV-1-infected T-cell 
reservoir by immune activation treatment is dose-dependent and restricted by the potency 
of antiretroviral drugs. Aids. Apr 14 2000;14(6):659-669. 

29. Biancotto A, Grivel JC, Gondois-Rey F, et al. Dual role of prostratin in inhibition of 
infection and reactivation of human immunodeficiency virus from latency in primary 
blood lymphocytes and lymphoid tissue. J Virol. Oct 2004;78(19):10507-10515. 

30. Lehrman G, Hogue IB, Palmer S, et al. Depletion of latent HIV-1 infection in vivo: a 
proof-of-concept study. Lancet. Aug 13-19 2005;366(9485):549-555. 

31. Rullas J, Bermejo M, Garcia-Perez J, et al. Prostratin induces HIV activation and 
downregulates HIV receptors in peripheral blood lymphocytes. Antivir Ther. Aug 
2004;9(4):545-554. 

32. Goujard C, Bonarek M, Meyer L, et al. CD4 cell count and HIV DNA level are 
independent predictors of disease progression after primary HIV type 1 infection in 
untreated patients. Clin Infect Dis. Mar 1 2006;42(5):709-715. 

 100



33. Quinn TC, Brookmeyer R, Kline R, et al. Feasibility of pooling sera for HIV-1 viral RNA 
to diagnose acute primary HIV-1 infection and estimate HIV incidence. Aids. Dec 1 
2000;14(17):2751-2757. 

34. Pilcher CD, McPherson JT, Leone PA, et al. Real-time, universal screening for acute HIV 
infection in a routine HIV counseling and testing population. Jama. Jul 10 
2002;288(2):216-221. 

35. Pilcher CD, Price MA, Hoffman IF, et al. Frequent detection of acute primary HIV 
infection in men in Malawi. Aids. Feb 20 2004;18(3):517-524. 

36. Janssen RS, Holtgrave DR, Valdiserri RO, Shepherd M, Gayle HD, De Cock KM. The 
Serostatus Approach to Fighting the HIV Epidemic: prevention strategies for infected 
individuals. Am J Public Health. Jul 2001;91(7):1019-1024. 

37. Cates W, Jr., Chesney MA, Cohen MS. Primary HIV infection--a public health 
opportunity. Am J Public Health. Dec 1997;87(12):1928-1930. 

38. Flanigan T, Tashima KT. Diagnosis of acute HIV infection: it's time to get moving! Ann 
Intern Med. Jan 2 2001;134(1):75-77. 

39. Jacquez JA, Koopman JS, Simon CP, Longini IM, Jr. Role of the primary infection in 
epidemics of HIV infection in gay cohorts. J Acquir Immune Defic Syndr. Nov 
1994;7(11):1169-1184. 

40. Janssen RS, Satten GA, Stramer SL, et al. New testing strategy to detect early HIV-1 
infection for use in incidence estimates and for clinical and prevention purposes. Jama. 
Jul 1 1998;280(1):42-48. 

41. Leynaert B, Downs AM, de Vincenzi I. Heterosexual transmission of human 
immunodeficiency virus: variability of infectivity throughout the course of infection. 
European Study Group on Heterosexual Transmission of HIV. Am J Epidemiol. Jul 1 
1998;148(1):88-96. 

42. Pilcher CD, Eron JJ, Jr., Vemazza PL, et al. Sexual transmission during the incubation 
period of primary HIV infection. Jama. Oct 10 2001;286(14):1713-1714. 

43. Shelburne SA, 3rd, Hamill RJ, Rodriguez-Barradas MC, et al. Immune reconstitution 
inflammatory syndrome: emergence of a unique syndrome during highly active 
antiretroviral therapy. Medicine (Baltimore). May 2002;81(3):213-227. 

44. Breen RA, Smith CJ, Bettinson H, et al. Paradoxical reactions during tuberculosis 
treatment in patients with and without HIV co-infection. Thorax. Aug 2004;59(8):704-
707. 

45. Cheng VC, Ho PL, Lee RA, et al. Clinical spectrum of paradoxical deterioration during 
antituberculosis therapy in non-HIV-infected patients. Eur J Clin Microbiol Infect Dis. 
Nov 2002;21(11):803-809. 

46. Cheng VC, Yam WC, Woo PC, et al. Risk factors for development of paradoxical 
response during antituberculosis therapy in HIV-negative patients. Eur J Clin Microbiol 
Infect Dis. Oct 2003;22(10):597-602. 

47. Breen RA, Smith CJ, Cropley I, Johnson MA, Lipman MC. Does immune reconstitution 
syndrome promote active tuberculosis in patients receiving highly active antiretroviral 
therapy? Aids. Jul 22 2005;19(11):1201-1206. 

48. Lawn SD, Bekker LG, Miller RF. Immune reconstitution disease associated with 
mycobacterial infections in HIV-infected individuals receiving antiretrovirals. Lancet 
Infect Dis. Jun 2005;5(6):361-373. 

49. Badri M, Wilson D, Wood R. Effect of highly active antiretroviral therapy on incidence of 
tuberculosis in South Africa: a cohort study. Lancet. Jun 15 2002;359(9323):2059-2064. 

 101



50. Girardi E, Antonucci G, Vanacore P, et al. Impact of combination antiretroviral therapy 
on the risk of tuberculosis among persons with HIV infection. Aids. Sep 8 
2000;14(13):1985-1991. 

51. Ledergerber B, Egger M, Erard V, et al. AIDS-related opportunistic illnesses occurring 
after initiation of potent antiretroviral therapy: the Swiss HIV Cohort Study. Jama. Dec 
15 1999;282(23):2220-2226. 

52. Santoro-Lopes G, de Pinho AM, Harrison LH, Schechter M. Reduced risk of tuberculosis 
among Brazilian patients with advanced human immunodeficiency virus infection treated 
with highly active antiretroviral therapy. Clin Infect Dis. Feb 15 2002;34(4):543-546. 

53. Patnaik P, Jere CS, Miller WC, et al. Effects of HIV-1 serostatus, HIV-1 RNA 
concentration, and CD4 cell count on the incidence of malaria infection in a cohort of 
adults in rural Malawi. J Infect Dis. Sep 15 2005;192(6):984-991. 

54. Chirenda J, Siziya S, Tshimanga M. Association of HIV infection with the development 
of severe and complicated malaria cases at a rural hospital in Zimbabwe. Cent Afr J Med. 
Jan 2000;46(1):5-9. 

55. Grimwade K, French N, Mbatha DD, Zungu DD, Dedicoat M, Gilks CF. HIV infection as 
a cofactor for severe falciparum malaria in adults living in a region of unstable malaria 
transmission in South Africa. Aids. Feb 20 2004;18(3):547-554. 

56. Kublin JG, Patnaik P, Jere CS, et al. Effect of Plasmodium falciparum malaria on 
concentration of HIV-1-RNA in the blood of adults in rural Malawi: a prospective cohort 
study. Lancet. Jan 15-21 2005;365(9455):233-240. 

57. Whitworth JA, Hewitt KA. Effect of malaria on HIV-1 progression and transmission. 
Lancet. Jan 15-21 2005;365(9455):196-197. 

58. French MA, Price P, Stone SF. Immune restoration disease after antiretroviral therapy. 
Aids. Aug 20 2004;18(12):1615-1627. 

59. Hirsch HH, Kaufmann G, Sendi P, Battegay M. Immune reconstitution in HIV-infected 
patients. Clin Infect Dis. Apr 15 2004;38(8):1159-1166. 

60. Pires A, Nelson M, Pozniak AL, et al. Mycobacterial immune reconstitution inflammatory 
syndrome in HIV-1 infection after antiretroviral therapy is associated with deregulated 
specific T-cell responses: beneficial effect of IL-2 and GM-CSF immunotherapy. J 
Immune Based Ther Vaccines. Sep 25 2005;3:7. 

61. Chersich MF, Gray GE. Progress and Emerging Challenges in Preventing Mother-to-
Child Transmission. Curr Infect Dis Rep. Sep 2005;7(5):393-400. 

62. Clarke JR, Braganza R, Mirza A, et al. Rapid development of genotypic resistance to 
lamivudine when combined with zidovudine in pregnancy. J Med Virol. Nov 
1999;59(3):364-368. 

63. Eastman PS, Shapiro DE, Coombs RW, et al. Maternal viral genotypic zidovudine 
resistance and infrequent failure of zidovudine therapy to prevent perinatal transmission 
of human immunodeficiency virus type 1 in pediatric AIDS Clinical Trials Group 
Protocol 076. J Infect Dis. Mar 1998;177(3):557-564. 

64. Ekpini RA, Nkengasong JN, Sibailly T, et al. Changes in plasma HIV-1-RNA viral load 
and CD4 cell counts, and lack of zidovudine resistance among pregnant women receiving 
short-course zidovudine. Aids. Mar 8 2002;16(4):625-630. 

65. Frenkel LM, Wagner LE, 2nd, Demeter LM, et al. Effects of zidovudine use during 
pregnancy on resistance and vertical transmission of human immunodeficiency virus type 
1. Clin Infect Dis. May 1995;20(5):1321-1326. 

 102



66. Kully C, Yerly S, Erb P, et al. Codon 215 mutations in human immunodeficiency virus-
infected pregnant women. Swiss Collaborative 'HIV and Pregnancy' Study. J Infect Dis. 
Mar 1999;179(3):705-708. 

67. Palumbo P, Holland B, Dobbs T, et al. Antiretroviral resistance mutations among 
pregnant human immunodeficiency virus type 1-infected women and their newborns in 
the United States: vertical transmission and clades. J Infect Dis. Nov 1 2001;184(9):1120-
1126. 

68. Welles SL, Pitt J, Colgrove R, et al. HIV-1 genotypic zidovudine drug resistance and the 
risk of maternal--infant transmission in the women and infants transmission study. The 
Women and Infants Transmission Study Group. Aids. Feb 18 2000;14(3):263-271. 

69. Mandelbrot L, Landreau-Mascaro A, Rekacewicz C, et al. Lamivudine-zidovudine 
combination for prevention of maternal-infant transmission of HIV-1. Jama. Apr 25 
2001;285(16):2083-2093. 

70. Nolan M, Fowler MG, Mofenson LM. Antiretroviral prophylaxis of perinatal HIV-1 
transmission and the potential impact of antiretroviral resistance. J Acquir Immune Defic 
Syndr. Jun 1 2002;30(2):216-229. 

71. Tozzi V, Corpolongo A, Bellagamba R, Narciso P. Managing patients with sexual 
transmission of drug-resistant HIV. Sex Health. 2005;2(3):135-142. 

72. Grossman Z, Lorber M, Maayan S, et al. Drug-resistant HIV infection among drug-naive 
patients in Israel. Clin Infect Dis. Jan 15 2005;40(2):294-302. 

73. Masquelier B, Bhaskaran K, Pillay D, et al. Prevalence of transmitted HIV-1 drug 
resistance and the role of resistance algorithms: data from seroconverters in the 
CASCADE collaboration from 1987 to 2003. J Acquir Immune Defic Syndr. Dec 15 
2005;40(5):505-511. 

74. Metzner KJ, Rauch P, Walter H, et al. Detection of minor populations of drug-resistant 
HIV-1 in acute seroconverters. Aids. Nov 4 2005;19(16):1819-1825. 

 
 
 

 103



 



 
 
 

CHAPTER VI: SUMMARY______________________ 

 105



 



 

CHAPTER VI: SUMMARY 

 

5.1 EPIDEMIOLOGY 

 

HAART has been of great benefit in reducing morbidity and mortality related to HIV/AIDS in 

the western world. However, as worldwide only 17% of the HIV-infected patients in need of 

therapy are receiving HAART, the pandemic is still expanding. Especially in the developing 

world, where 95% of the people with HIV/AIDS are living, the situation is dramatic. Our 

epidemiologic overview shows the urgency to enhance efforts against this number one killer 

worldwide. There is an urgent need for broader preventive strategies, higher access to 

treatment and in the future, hopefully, an efficient vaccine or new therapies leading to a 

harmless symbiosis of the virus with his host or to a total HIV eradication.   

 

5.2 HAART TREATMENT IN EARLY HIV-INFECTION 

 

Studies suggested that early treatment of an HIV-infection can be useful and sometimes lead 

to a control of viral replication after stopping therapy. We studied a cohort of 68 recently 

HIV-infected patients. In 40 of them HAART was started in the first 6 months of their HIV-

infection. Thirty-eight patients were retained for analysis. They were treated for different 

periods of time (mean: 17,3 months). The 28 remaining patients remained untreated and were 

followed as controls. VL, CD4 T cell percentages and HIV-specific immunity were followed 

after treatment interruption. Values were compared between treated (n=32) and untreated 

acute HIV-infected individuals (n=28).  

The treated patient group was found to have a longer VL suppression and higher CD4 T cell 

numbers after treatment interruption. This effect was seen throughout the follow-up period of 

3 years after treatment stop. HIV-specific immunity was not lost by early HAART. Moreover, 

our results show a correlation between high HIV-specific CD4 T cell IFN-γ production and 

VL suppression.  

Criteria for safely stopping HAART remain to be elucidated: candidate markers are CD4 T 

cell numbers, HIV-specific CD4 T cells and proviral load. This, however, needs to be 

addressed in a study with treatment over a longer time and with longer follow-up.      
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5.3 HAART TREATMENT IN LATE HIV-INFECTION 

 

The clinical impact of HAART is most pronounced in late stage HIV-infection when HIV-

related symptoms are present. However, a controversial clinical deterioration after treatment 

instauration can be observed in some late stage HIV-infected patients. Symptoms, due to 

increased inflammatory responses are related to treatment induced immune restoration.  

We illustrated this IRIS in an HIV/TB co-infected patient. Serious symptoms developed after 

the instauration of TB and HIV-treatment. Prednisolone gave relieve of general symptoms, 

while lymph node abscesses continued to appear and persisted up to 8 months after treatment 

start. After 1 year TB treatment was stopped. The patient remained in good clinical condition 

for 3 years. She then developed again lymph node abscesses, which were Ziehl Nielsen 

positive, while specific culture was negative. She was again treated for 9 months with 

tuberculostatic drugs. Symptoms disappeared again and since 2 years she is in good clinical 

condition.  

The incidence of IRIS is increasing as access to care is rising. By treating HIV-infection 

earlier in the disease course, IRIS could be avoided. This would need an earlier diagnosis, a 

higher awareness of possible HIV-infection and a better health education. For people 

consulting with extremely low CD4 T cell counts, immune modulating therapies could be 

useful in the prevention or management of IRIS.   

 

5.4 HAART AND LATENT RESISTANT HIV 

 

Viral latency is the major impediment to total eradication of HIV with the current ART. 

Resistance, on the other hand, compromises the efficacy of HAART. We studied the 

behaviour of the HIV-reservoir in a cohort of 11 patients in whom resistant virus evolved after 

sub-optimal ART. The patients were switched to an efficient HAART regimen resulting in 

viral suppression to undetectable levels. After a mean treatment period of 59 months, blood 

samples of these 11 patients were analysed for HIV proviral sequences. The presence of 

resistant HIV variants could be revealed in 10 of the 11 patients. The patient in whom no 

resistant HIV variants were found had been on sub-optimal therapy for the shortest period of 

time (11 months). A positive correlation was found between the period on sub-optimal 

HAART and the percentage resistant HIV variants in the HIV proviral pool.  

 108



 

We conclude that archiving of all replication competent HIV variants over the patient’s 

disease history, takes place. Recycling of drugs to which resistance arose seems therefore 

impossible.   
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HOOFDSTUK VI: SAMENVATTING 

 

 

5.1 EPIDEMIOLOGIE 

 

Het introduceren van Highly Active Antiretrovirale Therapie (HAART) heeft een groot 

aandeel gehad in het verminderen van de morbiditeit en de mortaliteit veroorzaakt door 

HIV/AIDS in de westerse wereld. Nochtans neemt de pandemie nog steeds toe, vooral omdat 

wereldwijd slechts 17% van de HIV-geïnfecteerde patiënten die behandeling nodig hebben, 

HAART krijgen. Voornamelijk in de ontwikkelingslanden, waar 95% van de patiënten met 

HIV/AIDS leven, is de situatie dramatisch. Ons epidemiologisch overzicht benadrukt de 

noodzaak om de inspanningen tegen deze wereldwijde nummer één doodsoorzaak te 

verhogen. Er is een dringende nood aan uitbreiding van preventieve strategieën en 

toegankelijkheid tot medische zorgen. Voor de toekomst wordt gehoopt op een efficiënt 

vaccin of nieuwe therapieën die tot een onschadelijke symbiose leiden van het virus met zijn 

gastheer of tot de volledige eliminatie van het virus.  

 

5.2 HAART BEHANDELING IN DE VROEGE HIV-INFECTIE 

      

Studies suggereren dat vroege behandeling van de HIV infectie nuttig kan zijn en soms leidt 

tot langdurige onderdrukking van HIV na onderbreking van de behandeling. We bestudeerden 

een cohorte van 68 recent HIV-geïnfecteerde patiënten. In 40 van hen werd HAART gestart in 

de eerste 6 maanden van hun HIV-infectie. Tweeëndertig patiënten werden weerhouden voor 

analyse. Deze patiënten werden behandeld gedurende verschillende tijdsperiodes (gemiddeld: 

17,3 maanden). Achtentwintig patiënten bleven onbehandeld en werden gevolgd als controles. 

Virale load (VL), CD4 T cel percentages en HIV-specifieke immuniteit werden opgevolgd na 

onderbreking van de behandeling. Waarden werden vergeleken tussen behandelde patiënten 

(n=32) en  niet behandelde acuut HIV-geïnfecteerde individuen (n=28).  

De behandelde patiënten groep bleek een langduriger suppressie van de VL en hogere CD4 T 

cel aantallen te hebben na therapie onderbreking. Dit verschil werd gezien gedurende de 

volledige follow-up periode van 3 jaar na het stoppen van de behandeling. HIV-specifieke 

immuniteit ging niet verloren door vroege HAART. Onze resultaten toonden een 

overeenkomst tussen een hoge IFN-γ productie door HIV-specifieke CD4 T cellen en de 

suppressie van de VL.  
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Criteria voor het veilig stoppen van HAART moeten nog gedefinieerd worden: mogelijke 

parameters zijn CD4 T cel aantallen, HIV-specifieke CD4 T cellen en proviral lading. Dit 

moet echter onderzocht worden in een studie met langere behandelingsperiode en met langere 

follow-up tijd.     

 

5.3 HAART BEHANDELING IN DE LATE HIV-INFECTIE 

 

De klinische invloed van HAART is meest uitgesproken in de late fase van de HIV-infectie 

wanneer HIV-gerelateerde symptomen aanwezig zijn. Nochtans kan men in sommige HIV-

geïnfecteerde patiënten in deze late fase een tegenstrijdige klinische achteruitgang zien na het 

instellen van de behandeling. Symptomen, toegeschreven aan een toegenomen inflammatoir 

antwoord worden veroorzaakt door het immuun herstel geïnduceerd door de behandeling.  

We illustreren deze IRIS in een HIV/TB gecoïnfecteerde patiënte. Ze ontwikkelde ernstige 

symptomen na het instellen van de TB en HIV-behandeling. Prednisolone gaf verlichting van 

de algemene symptomen, terwijl lymfe knoop abcessen bleven verschijnen en aanwezig 

bleven tot 8 maand na het opstarten van de behandeling. Na 1 jaar werd de TB behandeling 

gestopt. De patiënt bleef in goede conditie gedurende 3 jaar. Dan ontwikkelde zij terug lymfe 

knoop abcessen, die Ziehl Nielsen positief waren, terwijl de specifieke cultuur negatief was. 

Ze werd opnieuw behandeld met tuberculostatica gedurende 9 maand. Symptomen verdwenen 

terug en ze is nu in goede algemene conditie sinds 2 jaar.  

De incidentie van IRIS neemt toe aangezien de toegang tot medische zorgen stijgt. Door HIV-

infectie in een vroeger stadium te behandelen, kan IRIS vermeden worden. Dit vergt een 

vroegere diagnose, een hoger vermoeden van een mogelijke HIV-infectie en een betere 

gezondheidsopvoeding. Voor mensen die consulteren met een extreem laag aantal CD4 T 

cellen, kan immuun modulerende behandeling nuttig zijn in de preventie of de behandeling 

van IRIS. 

 

5.4 HAART EN LATENTE, RESISTENTE HIV-INFECTIE 

 

Virale latentie is de voornaamste struikelsteen voor volledige uitroeiing van HIV met de 

huidige ART. Resistentie, aan de andere kant, vermindert de doeltreffendheid van HAART. 

We bestudeerden het gedrag van het HIV-reservoir in 11 patiënten die resistentie 

ontwikkelden na sub-optimale behandeling. De patiënten werden vervolgens behandeld met 

een efficiënt HAART regime wat resulteerde in onderdrukking van het virus tot niet te 
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detecteren plasma spiegels. Na een gemiddelde behandelingsperiode van 59 maanden, werden 

bloedstalen van deze 11 patiënten geanalyseerd voor HIV provirale sequenties. De 

aanwezigheid van resistente HIV varianten kon aangetoond worden in 10 van de 11 patiënten. 

De patiënt bij wie geen resistente HIV varianten werden gevonden was voor de kortste 

periode behandeld met sub-optimale therapie (11 maanden). Een positieve relatie werd 

gevonden tussen de periode van sub-optimale HAART en het percentage resistente HIV 

varianten in de provirale pool.  

We besluiten dat lange termijn archivering van alle replicatiecompetente HIV varianten 

optreedt. Hergebruik van medicatie tegen dewelke resistentie optrad lijkt daardoor 

onmogelijk.             
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