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...that, in a few years, all great physical constants wilVedeen approximately
estimated, and that the only occupation which will be lefrien of science will be to
carry these measurements to another place of decimals.

JAMES C. MAXWELL (1831-1879)
SCOTTISH MATHEMATICIAN
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Samenvatting

Sinds ze in 1861 voor het eerst werden neergeschreven, rdviagwells vergelij-
kingen een bijzonder succesvolle beschrijving van maogische elektromagneti-
sche velden. Echter, ze kunnen slechts voor een klein asamabudige geomeéen
analytisch opgelost worden. Voor een brede waaier van medelektromagneti-
sche toepassingen, zoals het ontwerp van antennes, draatiommunicatiesyste-
men, optische systemen, hoogfrequente circuits, enzwadstaan deze analytische
oplossingen niet. Om deze reden zijn numerieke simulagigsnwoordig zeer be-
langrijk, en wordt er veel onderzoek verricht naar effite oplossingsmethodes voor
Maxwells vergelijkingen. Een belangrijke klasse van opiogsmethodes wordt bij-
voorbeeld gevormd door de eindige elementen methodes.t etk zullen we ons
echter concentreren op een andere zeer belangrijke klassengthodes, namelijk
de zogenaamde randintegraalvergelijkingstechniekenheti voordeel hebben dat de
stralingsvoorwaarde a priori kan voldaan worden, i.e. eoritet gebruik van ab-
sorberende randvoorwaarden. Een tweede voordeel is dajgometrgen die opge-
bouwd zijn uit een aantal homogene gebieden, enkel de ravalerdie gebieden
moeten meegenomen worden in de simulatie.

Gewoonlijk worden zogenaamde snelle multipool methodast(Multipole Me-
thods - FMMs) gebruikt om randintegraalvergelijkingena#int op te lossen. Deze
methodes gebruiken eergnarchische opdeling van de geometrie in groepen op meer-
dere niveaus, in combinatie met een decompositie van den€edenctie. De ef-
ficientie van een FMM hangt echter sterk af van het type deconpalsit gebruikt
wordt. Over het algemeen zijn FMMs gebaseerd op een multigi@mmpositie het
minst efficént, terwijl de meest effiente FMM (vooral bekend als Multilevel Fast
Multipole Algorithm (MLFMA)) gebaseerd is op een propagete viakke golven de-
compositie. FMMs die gebruik maken van de spectrale decsitipowan de Greense
functie liggen er ergens tussenin. Het probleem is echtehetaMLFMA door een
numerieke instabiliteit faalt indien de groepen kleinerdem dan een bepaalde kriti-
sche elektrische grootte. Indien de geometrie onderdedeatlolie significant kleiner
zijn dan de golflengte, kan de simulatie ervan bijgevolg gelbeuren door middel
van enkel het MLFMA. Een mogelijke oplossing bestaat erim legbride methode te
construeren, die het MLFMA gebruikt wanneer de groepentggenoeg zijn (HF in-
teracties) er@en van de minder effiéhte decomposities gebruikt wanneer dat niet het
geval is (LF interacties). Het volledige algoritme is eclm@ar zo snel als het traagste
onderdeel, waardoor deze hybride methodes suboptimaal 2if brengt ons tot de
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inhoud van dit werk: het verbeteren en vinden van altermatieoor de multipool- en
spectrale decomposities.

Deze nieuwe methodes vormen vooral een verbetering voonlftreedband si-
mulaties. Dit zijn simulaties waarbij de kleinste ondeesielan de geometrie elek-
trisch klein zijn. Voor breedbandproblemen is de volledggometrie bovendien
elektrisch groot. Breedband simulaties zijn echter beigggoals bijvoorbeeld bij
hoogfrequente printed circuit boards en microgolfcirenjtmetamaterialen of de ver-
strooiing van radargolven aan complexe vormen. Het feitddasneller wordende
computers steeds grotere simulaties toelaten verstezkttdend omdat zelfs zeer fijn
gediscretiseerde structuren significant groter dan deegojfé kunnen zijn.

Dit werk is als volgt georganiseerd: in hoofdsfuk 1 wordenveegelijkingen
van Maxwell gegeven, samen met de constitutieve vergediga en de stralingsvoor-
waarde. Een aantal eigenschappen die hieruit volgen wendsreens gegeven. Daarna
worden de analytische oplossingen van Maxwells vergalj&n in een oneindig ho-
mogeen isotroop medium in Cartesische en sferische caiatiropgesteld, alsook
de verbanden tussen deze twee soorten oplossingen. Instaiof2l worden de re-
sultaten van het eerste hoofdstuk toegepast voor de opipgan problemen waarin
inhomogeniteiten voorkomen. Onder andere wordt de medigewerstrooiings ver-
gelijking (multiple scattering equation) opgesteld, dabguikt wordt in hoofdstuk 7.
Tenslotte wordt ook de noodzakelijkheid van het gebruik W&tMs aangetoond.

De vijf daaropvolgende hoofdstukken corresponderen ntigess die uit het doc-
toraatsonderzoek zijn voortgevloeid. In hoofdstuk 3 westt verbetering voorgesteld
die van toepassing is op FMMs gebaseerd op de spectraléelliogsvan de Greense
functie. Deze techniek laat in het beste geval toe om de ddgs@gatie stap in het
algoritme te versnellen met een factor Verder wordt ook een nieuwe toepassing
van de Beltrami decompositie van het elektromagnetisclievomrgesteld. Het blijkt
namelijk mogelijk om, via deze decompositie, de twee stggdatronen van een vec-
toriele FMM nog or (nd) de (des)aggregatie te ontkoppelen.

De resultaten van hoofdstlik 3 laten toe om FMMs gebaseerdeogpéctrale
voorstelling van de Greense functie te versnellen. In hatatd4 wordt voor een
andere aanpak gekozen, die toegepast wordt op de tweediimaiesGreense func-
tie. In plaats van te vertrekken van de numeriek stabieletsgde decompositie en
deze zo effi@nt mogelijk te maken, gaan we uit van het effidie maar onstabiele
MLFMA en proberen we de instabiliteit weg te werken. Dit dealrdt bereikt door
de diagonalisatie van de multipool decompositie uit tdestetbt een zogenaamde nor-
malisatiefactor gmtroduceerd is. Het nieuwe additietheorema dat hiersitlteert
is stabiel voor alle frequenties en leidt dus tot een breedfaMM. Het wordt ook
aangetoond dat deze nieuwe FMM effigter is dan de multipool decompositie. De
stabiliteit van de methode is te verklaren door het feit @atzij het op een verdoken
manier, evanescente vliakke golven in rekening brengt.

In hoofdstuk 5 wordt in zekere zin de techniek die werd vosteld in hoofdstuk
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[4 uitgebreid naar drie dimensies, met als resultaat het NSPRYM (Nondirec-
tive Stable Plane Wave Multilevel Fast Multipole AlgorithmZoals in het tweedi-
mensionaal geval gebruikt het NSPWMLFMA evanescente viaiikeen, terwijl het
convergentiegebied nog steeds het complement van een.b@rigijn echter ook
een aantal belangrijke verschillen tussen het tweediroraal en driedimensionaal
algoritme. Zo is er slechtéén stralingspatroon, in vergelijking met twee in hoofd-
stuk/4. Dit maakt het NSPWMLFMA erg effient. Ook zijn de discretisatiepunten
van het vlakke golven additietheorema niet langer analytgekend, maar wordt het
QR-algoritme gebruikt voor de bepaling ervan. Dit heeftraslelig gevolg dat de
interpolaties met volle matrices moeten gebeuren. Dittéisnit de bruikbaarheid van
het NSPWMLFMA tot LF interacties. Een breedband methode ggdra op het NSP-
WMLFMA kan echter nog steeds geconstrueerd worden door estiore koppeling
met het MLFMA.

Een aantal nadelen van het NSPWMLFMA worden in hoofdstuk Balpen door
een volledig analytische decompositie van de Greenseifuimcte voeren, gebaseerd
op zogenaamde pseudosferische harmonieken. De spedalesehappen van de
pseudosferische harmonieken maken het mogelijk om dezmrgessitie numeriek
stabiel te maken voor LF interacties. De discretisatiepuktinnen uniform gespreid
gekozen worden, hetgeen interpolaties met behulp vanedésEourier transformaties
mogelijk maakt. De prijs die betaald wordt voor deze voaeddt het relatief hoge
aantal discretisatiepunten en een numerieke instabiiber HF interacties. Dit laat-
ste kan opnieuw ondervangen worden door een koppeling métleMA.

Tenslotte worden in hoofdstik 7 de FMMs uit hoofdstukken Hleyebruikt om
de effectieve materiaalparameters van metamaterialeapalén. Dit wordt gedaan
door de T-matrix van een sferisch stuk metamateriaal tekbasn met behulp van
numerieke simulaties, waarna deze T-matrix vergeleketvoet de analytische uit-
drukking voor een homogene sfeer. Hierdoor bekomt men esdsestvan transcen-
dente vergelijkingen voor de effectieve materiaalparanset Dit niet-lineair stelsel
kan omgezet worden naar een kwadratische vergelijkingdeonateriaalparameters.
Er wordt enerzijds aangetoond dat deze homogenisatieuoegoed werkt maar dat
ze anderzijds ook haar beperkingen heeft bij bepaalde dretgs en types van mate-
rialen.






Summary

Since 1861, when they were for the first time written down, WealKs equations have
provided an extremely successful description of macrasaslpctromagnetic fields.
However, they can only be solved analytically for a few siengeometries. For a
plethora of modern applications, like antenna design, lessecommunication sys-
tems, optical systems, high-frequency circuits and so loesd analytical solutions
are insufficient. Therefore, numerical simulations areyvierportant, and a great
deal of effort is put in the search for computationally eéfiti algorithms for solv-
ing Maxwell’'s equations. One important class of solutiochtd@ques for example, is
formed by the finite element methods. However, the focusiefwork will be on the
so-called integral equation methods, which have the adgearthat the radiation con-
dition can be satisfied a priori, i.e. without introducingatbing boundary conditions.
Another advantage is that when the geometry consists of deuof homogeneous
regions, only the boundaries of those regions need to be fakeaccount.

Usually, integral equations are efficiently solved usinegcabbed Fast Multipole
Methods (FMMs). These methods use a subdivision of the gegrimtdo boxes on
multiple levels, in combination with some kind of decompiosi of the Green func-
tion. However, the efficiency of the FMM strongly depends bae type of decom-
position used. Generally speaking, the least efficient oteth based on a multipole
decomposition, while the most efficient method (widely kmoag the Multilevel Fast
Multipole Algorithm (MLFMA)) is based on a propagating pamwave decomposi-
tion. The spectral decomposition of the Green function siesmewhere in between.
The problem with the MLFMA is that it suffers from a numeritaéakdown when the
boxes get smaller than a certain critical electrical sizeer&fore, if the geometry con-
tains features that are significantly smaller than the vemgth, the simulation cannot
be efficiently done using the MLFMA alone. A possible solatis the construction of
a hybrid method, which uses the MLFMA when the boxes are langeigh (HF inter-
actions) and use one of the less efficient methods when tleayor(LF interactions).
However, this algorithm is only as fast as the slowest algorj so these hybrids are
suboptimal. This brings us to the focus of this work: imprayiand finding more
efficient alternatives for the multipole and spectral deposition methods.

These new methods mainly improve the efficiency of low-fesggy and broad-
band simulations. These are simulations for which the ss@features of the ge-
ometry are electrically small. For broadband simulatidhe,entire geometry is also
electrically large. Broadband simulations are importéortexample in the simulation
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of HF printed circuit boards and microwave circuits, metterials or the scattering of
radar waves off complex shapes. The increasing capabibficomputers also adds
to this trend because they allow huge, yet still denselyrdtsed, structures.

This work is organized as follows: in chapter 1 Maxwell's ations are postu-
lated, along with the constitutive equations and the ramtiatondition. A few general
properties, of Maxwell’s equations are given as well. Sqgbsatly, the analytical
solution of Maxwell's equations in an infinite homogeneousdiom are derived in
both Cartesian and spherical coordinates. Relationsnignitie solutions in the two
coordinate systems are derived as well. chapter 2 outllresnethodology to solve
problems with inhomogeneities, using the results obtain¢ke first chapter. In par-
ticular, the electric field integral equation and the midtigcattering equation are
derived. Finally, the necessity of using FMMs is also exptdi.

The five ensuing chapters correspond to five articles thattezsfrom the per-
formed research. In chapter 3, an improvement to the spetceamposition based
FMM is presented. This improvement allows a reduction byaofaof at most6
of the computational cost of the (dis)aggregation step is BMM. Furthermore, a
new application of the well-known Beltrami decompositidretectromagnetic fields
is presented. It allows the decoupling of the two radiatiattgyns of any vectorial
FMM, even before(after) the (dis)aggregation stage has betered.

The results from chapter 3 allow a significant acceleratidfiMdMs based on the
spectral decomposition. In chagter 4, another approacdeid an the two dimensional
case. Instead of starting from the numerically stable spkedecomposition and try-
ing to make it more efficient, we start from the efficient bustable MLFMA and
attempt to make it numerically stable. This goal is achidwegostponing the diag-
onalization of the multipole decomposition until a so-edlhormalization factor has
been introduced. The novel addition theorem resulting ftris approach is stable
for all frequencies, hence it leads to a broadband FMM. Itde ahown that this new
FMM is more efficient than the multipole based FMM. This noadtlition theorem
can be interpreted as one using evanescent plane wave$) edptains the stability
of the decomposition.

In chapter 5, the two dimensional technique developed iptehia is more or less
generalized to three dimensions, resulting in the so-¢a8PWMLFMA (Nondi-
rective Stable Plane Wave Multilevel Fast Multipole Algbm). Similar to the two
dimensional case, the NSPWMLFMA uses evanescent plane wabds still hav-
ing the complement of a sphere as convergence region. Howtbege are several
differences too. For starters, there is only one radiatetepn, compared to the two
radiation patterns for the two dimensional case. This mate I NSPWMLFMA a
very efficient FMM. Also, the discretization points of theapk wave decomposition
are not known analytically anymore. Instead they are detexthby means of the
QR-algorithm. This has the unfortunate side effect thatitierpolations must be
performed using dense matrices. This in turn limits the iappllity of the NSP-
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WMLFMA to LF interactions. However, a broadband FMM can dtidl constructed
by seamlessly coupling the NSPWMLFMA with the MLFMA.

A number of disadvantages of the NSPWMLFMA are resolved imptdrag by
means of a fully analytical decomposition of the Green fiamcivhich is based on the
so-called pseudospherical harmonics. The special piepest the pseudospherical
harmonics allow the numerical stabilization of this decosipon for LF interactions.
The discretization points can be chosen in a uniformly sppacanner, which allows
the interpolations to be performed using Fast Fourier Toanss (FFTs). The price
we have to pay for this is a large number of discretizatiom{goand a numerical
instability for HF interactions. The latter problem can iaghe solved by using a
coupling with the MLFMA.

Finally, in chaptelr 7, the FMMs developed in chapters 3 ane:%at to use for the
determination of effective parameters of metamaterialsis i§ done by calculating
the T-matrix of a spherical sample of the metamaterial bymees full-wave solu-
tions. This T-matrix is then compared to the analytical esgion for a homogeneous
sphere. This results in a set of two transcendental equafiorihe effective parame-
ters. This set of nonlinear equations can be reduced to despppdratic equation for
the effective material parameters. This procedure is sitowvork well, although the
method does encounter some problems for certain frequeantkfor certain types of
materials.






List of Abbreviations

FMM
MLFMA
SPWM
NPWM
PWM
UMLFMA
NSPWMLFM
LF

HF

2-D

3-D

EFIE

PEC

SVD

MoM

RWG
BICGSTAB
FFT

Fast Multipole Method
Multilevel Fast Multipole Algorithm

Stable Plane Wave Method

Normalized Plane Wave Method

Plane Wave Method
Uniform Multilevel Fast Multipole Algorithm
Nondirective Stable Plane Wave Multilevel Fast Npdle Algorithm
low-frequency

high-frequency

two dimensional

three dimensional

Electric Field Integral Equation

Perfect Electrically Conducting

Singular Value Decomposition

Method of Moments

Rao-Wilton-Glisson

Biconjugate Gradients Stabilized Method
Fast Fourier Transform






List of Symbols

Vectors and matrices

Vectors are denoted by boldface letters, while matriceslarmted by letters in the
sans serif font. Unit vectors are denoted by a hat. Usuadiyitrm||a|| of a vectora
is denoted byi.

The position vector in three dimensions

The normalized position vector in three dimensions
The norm of the position vector in three dimensions
The position vector in two dimensions

The normalized position vector in two dimensions
The norm of the position vector in two dimensions
A matrix

I ™DV P S

Operators

Linear operators containing derivatives are denoted bynsiehan inverted hat.

The nabla operator

X The curl operator

The divergence operator

The angular momentum operator
Denotes complex conjugation

Yim (%) The scalar spherical wave operator
Xim l.) The vector spherical wave operator of first type

Wim (l) The vector spherical wave operator of second type

Electromagnetism

2m times the frequency
Permittivity of a medium
Permeability of a medium
Wavenumber of a medium
Impedance of a medium

N T O &



XXil L1ST OF SYMBOLS

E(r,t),e(r) Electric field in the time and frequency domain
H(r,t),h(r) Magnetic field in the time and frequency domain
D(r,t),d(r) Electric induction in the time and frequency domain
B(r,t),b(r)  Magnetic induction in the time and frequency domain
J(r,t),g(r)  Electric current in the time and frequency domain

(r) Magnetic current in the time and frequency domain
p(r,t), p(r) Electric charge in the time and frequency domain
n(r,t),7(r)  Magnetic charge in the time and frequency domain

Go(r) Scalar Green function in the frequency domain
Ge(r) Electric Green dyadic in the frequency domain
G (r) Magnetic Green dyadic in the frequency domain

hl(Q) (2) Spherical Hankel function of the second kind dtidorder
Ji (2) Spherical Bessel function of the second kind &hdrder
Hl(z) (2) Cylindrical Hankel function of the second kind aittl order
Ji () Cylindrical Bessel function of the second kind &ftfalorder
P (z) Legendre polynomial of degrde

Yim () Spherical harmonic

z{ . () Scalar multipole

Xim (7) Vector spherical harmonic of first type

Wi (7) Vector spherical harmonic of second type

M{m (7) Vector multipole of first type

N{m (7) Vector multipole of second type

Op.q Kronecker deltad, , = 1 if p = ¢, otherwised, , = 0
Dl oy (R) Element of the Wigner rotation matrix associated vitth
I'(z) Gamma function

sign () Sign function

Miscellaneous

J Denotesy -1
dim Sum over all € [0, c0] andm € [, ]
O (z) Complexity measure: cost Cz, with C' a constant called the prefactor.

1 The 3 by 3 identity matrix



List of Publications

Articles in international journals

e |. Bogaert, D. Pissoort, and F. Olyslager, “A normalizechglavave method for
2-D Helmholtz problems”Microwave and Optical Technology Lettewsl. 48,
no. 2, pp. 237-243, February 2006.

e |. Bogaert, D. Pissoort, and F. Olyslager, “A faster aggtiegafor 3-D fast
evanescent wave solvers using rotationgurnal of Computational Physics
vol. 227, no. 1, pp. 557-573, November 2007.

o J. De Zaeytijd, |. Bogaert, and A. Franchois, “An efficienbhigd MLFMA-FFT
solver for the volume integral equation in case of sparseiBFidmogeneous
dielectric scatterers’n press for Journal of Computational Physics

e |. Bogaert, J. Peeters, and F. Olyslager, “A nondirectiamelwave MLFMA
stable at low frequencies”Accepted for IEEE Transactions on Antennas and
Propagation

e |. Bogaert, J. Peeters, and F. Olyslager, “Homogenizatiome&tamaterials
using full-wave simulationsProvisionally accepted for Metamaterials (Invited

paper)

o |. Bogaert and F. Olyslager, “A low frequency stable planeavaddition theo-
rem”, Submitted to Journal of Computational Physics

Articles in conference proceedings

e |. Bogaert and F. Olyslager, “Full-wave analysis of a finitege of metamate-
rial”, in Proceedings of the International Student Seminar on MieraAppli-
cations of Novel Physical PhenomeRovaniemi, Finland, 24-25 August 2006,
pp. 47-49.

¢ |. Bogaert and F. Olyslager, “Exact modelling of a finite séempf metamate-
rial”, in Proceedings of the Applied Computational Electromagsefociety
Verona, Italy, 19-23 March 2007, pp. 273-278.



XXIV

LIST OF PUBLICATIONS

I. Bogaert, L. Knockaert, and F. Olyslager, “Efficient ca&tion of moment
integrals for tensor product basis functions”,Aroceedings of the IEEE Sym-
posium on Antennas and Propagatidfonolulu, USA, 10-15 June 2007, pp.
5636—-5639.

|. Bogaert, L. Meert, and F. Olyslager, “Fast full-wave daliion of a metama-
terial luneberg lens”, ifProceedings of the IEEE Symposium on Antennas and
Propagation Honolulu, USA, 10-15 June 2007, pp. 3476—-3479.

I. Bogaert, F. Olyslager, Y. Aén, and D. Pissoort, “Modeling and optimiza-
tion of advanced multilayered absorbers”,Hroceedings of the European Mi-
crowave ConferengéMunich, Germany, 9-12 October 2007, pp. 214-217.

I. Bogaert and F. Olyslager, “Exact full-wave simulationfofite pieces of
metamaterials and extraction of effective material patansg in Proceedings
of MetamaterialsRome, Italy, 22-26 October 2007, pp. 609—-612.

J. Peeters, |. Bogaert, J. Fostier, and F. Olyslager, “fateurvideband evalua-
tion of the shielding effectiveness of complex enclosusgsgian asynchronous
parallel NSPWMLFMA?, Accepted for the 19th International Zurich Sympo-
sium on Electromagnetic Compatibiljtgingapore, 19-23 May 2008.

F. Olyslager, K. Cools, I. Bogaert, J. Fostier, and J. PegtéiRecent ad-
vances in fast multipole methods to simulate ever larger rmode complex
structures”, Accepted for the 19th International Zurich Symposium orcEle
tromagnetic CompatibilitySingapore, 19-23 May 2008.

I. Bogaert, J. Peeters, J. Fostier, and F. Olyslager, “NSPWAMA: A low
frequency stable formulation of the MLFMA in three dimemsty Accepted
for the IEEE Symposium on Antennas and Propagatkam Diego, USA, 5-12
July 2008.

J. Peeters, |. Bogaert, J. Fostier, and F. Olyslager, ‘walle 3-D simulations
using the broadband NSPWMLFMASubmitted to the URSI General Assem-
bly, Chicago, USA, 7-16 August 2008.

Y. Arién, |. Bogaert, F. Olyslager, and K. Cools, “Creating a depigtform for

the modeling and optimization of advanced multilayerecadters”, Accepted
for Jourrées de Charaérisation de Makriaux Micro-ondesLimoges, France,
April 2008.

I. Bogaert and F. Olyslager, “New plane wave addition thew'e Accepted for
the International Conference on Mathematical Modeling af&/Phenomena
Vaxjo, Sweden, June 2008.



XXV

Conference abstracts

e F. Olyslager, J. De Zaeytijd, K. Cools, |. Bogaert, L. Me®t,Vande Ginste,
and D. Pissoort, “Applications of complex coordinates te MLFMA”, in
Proceedings of the USNC/URSI National Radio Science Mgekilonterey,
USA, 20-25 June 2004, p. 206.

e |. Bogaert, J. De Zaeytijd, D. Vande Ginste, D. Pissoort, Ksfager, and
E. Michielssen, “Simulation of extremely large 2D electamnetic problems”,
in Proceedings of the 5th Ugent-FTW PhD Symposi@hent, Belgium, 1 Dec.
2004, Paper 2.

e F. Olyslager, D. Pissoort, J. Fostier, |. Bogaert, J. De Bgkwand E. Michielssen,
“Efficient and accurate techniques to simulate large edetagnetic crystals”,
in Proceedings of the URSI National Radio Science Meetdaylder, USA,
4-7 Jan. 2006, p. 58.

e |. Bogaert, D. Pissoort, and F. Olyslager, “Accelerating #ygregation and
disaggregation in the stable plane wave method”Prioceedings of the URSI
Benelux Meetingeindhoven, The Netherlands, 12 May 2006, p. 7.

e |. Bogaert, D. Pissoort, and F. Olyslager, “Acceleratingdiggregation and dis-
aggregation in the stable plane wave methodRroceedings of the USNC/URSI
National Radio Science Meetinglbuquerque, USA, 9-14 July 2006, p. 302.

¢ |.Bogaertand F. Olyslager, “A low frequency stable forntigla of the MLFMA
in two dimensions”, Accepted for the USNC/URSI National Radio Science
Meeting San Diego, USA, 5-12 July 2008.

o J. Fostier, J. Peeters, |. Bogaert, and F. Olyslager, “Amemeirce, kernel-
independent, asynchronous, parallel MLFMA framework&ccepted for the
USNC/URSI National Radio Science Meetign Diego, USA, 5-12 July 2008.






BROADBAND MULTILEVEL FAST MULTIPOLE
METHODS






CHAPTER]

Introduction: Maxwell’s
equations and multipoles in
free space

* Kk k

Maxwell's equations, supplemented with the constitutipeagons of the mate-
rials involved and a suitable boundary condition at infinfiyovide a complete
description of macroscopic electromagnetic fields. In ghiapter, solutions of
Maxwell's equations in an infinitely large homogeneousraut medium will
be derived. Although in practice, no such medium existsetlselutions are
essential for the solution of Maxwell’s equations in moreeyal geometries.
How this is done is explained in the next chapter. In an irdlgitarge homoge-
neous isotropic medium, Maxwell's equations are tranelaily and rotation-
ally invariant, and analytical solutions exist in both Casian and spherical
coordinates. In this chapter, these analytical solutiorils lve derived as well
as the connection between the solutions in Cartesian andripgth coordi-
nates. Much of the material presented here has already begwedi, but is
scattered throughout the literature [1-5] and uses varimagations. There-
fore the aim of this chapter is to give a coherent derivatiod grovide a solid
foundation for the rest of this work.
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1.1 Maxwell's equations

Maxwell’s equations [6] in the time domain are given by

V x E(r,t) = —%B(r,m (1.1a)
V x H(r,t) = %D(r,t)—h](r,t), (1.1b)
V-D(r,t) = p(rt), (1.1¢)
V-B(r,t) = 0. (1.1d)

In this, E(r,t) and H (r, t) are the electric and magnetic fields, whil¥r, t) and
B(r,t) are the electric and magnetic inductions. Equations (laha)(1.1b) are
the curl equations while Eqns. (1l1c) ahd (1.1d) are caleddivergence equations.
Taking the divergence of (1.1b) and using (1.1c) in the tegalds the law of charge
conservation

5P )+ V- J(r,t) =0, (1.2)

By means of Fourier transformation, defined here as

Fiowf(t) = F(w) = / - e I@tf(t)dt, (1.3)
with inverse
SLFE) = 10 = 5 [ e P, (L.4)

Maxwell's equations in the frequency domain are obtained

V xe(r,w) = —jwb(r,w), (1.5a)
V x h(r,w) jwd(r,w) + j(r,w), (1.5b)
V-d(r,w) = p(rw), (1.5¢)
V.-b(r,w) = 0. (1.5d)

The law of charge conservation becomes
jwp(r,w) +V - j(r,w) = 0. (1.6)

Because Maxwell’s equations in the time domain are realgtiantities appearing in
(1.5) all have the symmetry properiy(r, —w) = w*(r,w). Therefore, the informa-
tion contained inw(r,w) for w > 0 is sufficient to construct the entire time domain
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signal by means of inverse Fourier transform. Hence we edlrict ourselves to pos-
itive w. Furthermore, we will from now on omit the explicit dependerf the various
guantities onw, since it only fulfills the role of a parameter in Maxwell'sieions,
and no derivatives are taken with respecttdAlso, in many practical situations, one
is only interested in a single frequency, making the exptiependence obsolete.

Maxwell’s equations in their own right are not sufficient tmguce a unigue solu-
tion. An appropriate boundary condition and constitutigeaions must be added to
get a unique solution. Here, we will assume constitutivatiehs of the simplest form

d(r) =ce(r), 1.7)
b(r) = ph(r), (1.8)
where the constantsand are respectively the permittivity and permeability of the

medium. Other parameters associated witlnd ;. are the wavenumber and the
impedanceZ

k=wyen Sk <0, (1.9
7= % (1.10)

The condition on the imaginary part &fis introduced to make sure that a wave de-
cays in the direction of its propagation (the direction af thoynting vector), i.e. it
expresses the passivity of the medium. With constitutiveatiqns[(1.7) and (1/8) it
becomes possible to eliminat&r) and b(r) from Maxwell’s equations. The curl
equations then become

V xe(r) = —jwuh(r), (1.11a)
V x h(r) = jwee(r)+3j(r). (1.11b)

With the constitutive relations known, a unique solutiolgained when an appro-
priate boundary condition at infinity is used. Throughous thiork, the Sommerfeld
radiation condition is used

lim r <§r —|—jk> e(r) =0, (1.12)

T—00

which expresses the fact that no radiation is coming frommiityfi In the time do-
main, the radiation condition manifests itself as the cltysarinciple. The radiation
condition [1.12) is also used for the other fields occurriniylaxwell’'s equations.

Maxwell’s equations can be written in terms of potentiafglded, since

V - b(r) =0, (1.13)
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there exists a so-called vector potentiét) satisfying
b(r) =V x a(r). (1.14)
Therefore[(1.11a) can be written as
V x [e(r) + jwa(r)] = 0. (1.15)

A curl-free vector field can be written as the gradient of dasdanction, the so-called
scalar potential

e(r) = —jwa(r) — Vo(r). (1.16)
Using the Lorenz gauge

V - a(r) + jweud(r) = 0, (1.17)
substitution of[(1.14) and (1.16) in the divergence equatigields

Via(r) + ka(r) = —uj(r), (1.18)

_ Vi)

VEo(r) +Ko(r) = ==

(1.19)
The vector components of Eqn. (1118) can be seen as threesepaalar Helmholtz
equations. Indeed, once the vector potential is known,atsgnple matter to deter-
mine the scalar potential by means of (1.17). This poteatigbmatically satisfies
(1.19). Determining the vector potential can be done udiegstalar multipoles, in-
troduced in 1.2.

Maxwell’s equations can also be written as Helmholtz equstof the fields them-
selves. Taking the curl of (1.11a) and substituting the sé@guation yields

V x (V xe(r)=V(V-e(r)) — 726(7') = w?cpe(r) — jupj(r)  (1.20)
or by means of the divergence equation (1.5¢) and chargenat®on [(1.6)

= 2

Vie(r) + k%e(r) = jwu |3(r) + 1

kﬁ(v 3] . (1.21)
with 2 = w?ep. In a similar way an equation can be found for)
Veh(r) + k2h(r) = —V x j(r). (1.22)

Equations/(1.21) and (1.22) could in principle be solveddlyiag a scalar Helmholtz
equation for each of the vector components. However, thdittons imposed by the
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divergence equations are not easily incorporated in sudhlwtian. Instead Eqgns.
(1.21) and[(1.22) should be solved by means of the vectoripolds, introduced in
13.

1.2 The scalar Helmholtz equation

In this section we will construct the general solution of siealar Helmholtz equation,
along with a number of properties of these solutions thatiaedul for the rest of this
work. The scalar Helmholtz equation is given by

V2 E(r) + K2 f(r) = 0. (1.23)

This equation is separable in Cartesian and spherical cwies. In the Cartesian
coordinate system, separation of variables leads to plawe solutions

fr) = F(k,)e %, (1.24)

where all the so-called wavevectdts satisfy
k, -k, = k. (1.25)

In spherical coordinates, separation of variables leattetfollowing general solution

1) =3 [arm 2 (k) + bim 2L, (k)] (1.26)

Im

with the so-called multipoles defined as

Z] . (kr) = ji (k1) Yim (7). (1.27)
ZP v (k1) = B (k) Vi (7). (1.28)

and the notation

o0 l
o= (1.29)
lm =0 m=-1
The multipoles containing the spherical Bessel functioesreell-behaved at the ori-
gin. In contrast, the multipoles containing the sphericahkl functions are singular
at the origin. However, they satisfy the radiation conditat infinity. In general, a
function satisfying/(1.23) can be expanded in both planeswand multipoles.
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1.2.1 The scalar Green function

The scalar Green function will now be determined. This figrcis useful for example
for determining the vector potential from a given electnigrent. The scalar Green
function is defined by the following equation

V2Go(r) + E2Go(r) = —5(r). (1.30)

Since the source term (the right hand side), the boundargittons at infinity and
the Helmholtz equation are all rotationally invariant, #edution must be rotationally
invariant as well, i.e. a linear combination @f (kr) and héz) (kr). We choose a
solution that satisfies the radiation condition, i@h((f) (kr), to be able to interpret
the Green function as a field radiated from the source to tgfibising the divergence
theorem, the constagt can be determined to be%. Then

e—jk:r

ik
Go(r) = — bt (kr) = S —

. 1.31
4mr ( )

The same result can also be obtained by spatially Fouriesfivaming [(1.30), which
yields

Go(r) = Fi o F oy P [kg e Jlr el (1.32)
- # OOO tjzoft?z t*dt, (1.33)
- 42';2 /OOO en;__ek;m tdt, (1.34)
N 4i:7r2 [ Z thkaQ tdt. (1.35)

If we assumek to have a slightly negative imaginary part (corresponding passive
material), this integral can be evaluated using contoegiration
efjk:r

Go(r) = : (1.36)

47r

Equation|(1.30) allows the simple expansiorﬁ{ﬁ) (kr) in plane waves. Indeed,
taking the spatial Fourier transform in theandy-direction yields

2

d 4
@w(/@m ky, 2) + (K = k3 — kp)w(ky, ky, 2) = ﬁ5(2)- (1.37)
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with
w(ke, by, 2) = Fopy Fyato 1S (k7) (1.38)

Taking the radiation condition into account, this yields #olution in the half-spaces
z20

1 s
w(ky, ky, 2) = 27Tl<:kz eTik=2 (1.39)
with K2 = k2 + kj
Vk? — K? kE>K
k, = ’ - (1.40)
—ivVK? -k, K>k
Taking the inverse spatial Fourier transform finally yiels > 0
WD (k) = —— / h / Tl ey g, (1.41)
0 21 J_ oo J_ oo Kk v

This can be simplified by substitutiri@,, k) with (k sin 6 cos ¢, k sin 6 sin ¢)

1 2m A
h) (kr) = ﬂ/o /Fe‘]’“’“<9=¢>*sineded¢> (1.42)

where the integration path = I'; + I'y is defined as shown in Figure 1.1. After this
substitutionk, = k cos 6. It is convenient to introduce the following notation

27
/ F(k)dk = / F(k(0, ¢)) sin 0d0d¢ (1.43)
& 0 r
which then allows to write
B (kr) = = / L1 (1.44)
0 27T £
It should be noted thdt (1.44) is only valid fer> 0. However, since the left hand side

is rotationally invariant, an integral representation tnverges in any half space of
choice can be easily found.

A plane wave expansion gf (kr) can also be found. It is given by

1 PN
go (kr) = o /S e IRk k. (1.45)
2
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=

-

NI
3
)

Figure 1.1: The integration patli = I'; + I's for Eqn. (1.42).

where the integral with subscrigt stands for integration over the unit sphere

2w pm
[ Fkyak = /O /0 F(k(0, 6)) sin 0d0ds. (1.46)

Equation|[(1.45) can then be proved by rotating the unit sphach that is rotated
intore,

1 PR B
— / e Ikrkesqp — — / e Ikrudy, (1.47)
47T So 2 1

sin(kr )

1.2.2 Alternative definition of the multipoles

The scalar multipoles (1.27) and (1.28) can also be definieg) tise so-called scalar
spherical wave operators, defined in Appendix A

i ) AVARN
le,m (kr) = JlYl,m (—jk) Jjo (kr), (1.49)

zp, (k) = 'Y, (fk) h? (kr). (1.50)
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This definition is equivalent due to Theorém B]1.1. A diremhgequence of (1.49),
(1.50), (1.45) and (1.44) is

l R . R
Z] (kr) = i? Vi (k:) eIk, (1.51)

Zp, (k) = = / e —ikkT g, (1.52)

1.2.3 Multipole expansion of a plane wave
A plane wave is a solution of the Helmholtz equation, thexefbcan be expanded in
multipoles. More precisely it can be expanded in the regulaltipoles, since a plane

wave is regular at the origin. The expansion can be obtaipeding the completeness
of the spherical harmonics (A.18) and integral represamt4fl.51)

eIk %‘1 Yim (k) /S 2 e o (k’) dk’, (1.53)
=4 > ()" Yo (k:) Zi, (kr). (1.54)
Im

This converges for alk. Using the spherical harmonic addition theorem (A.10) this
can also be written as

ek Z] (20 + 1), kr)Pl(k ) (1.55)

1.2.4 Multipole expansion of a general field

The expansion of a plane wave can now be used to expand a bigldrthat satisfies
(1.23) into multipoles. In a region wherf(r) satifies[(1.2B), it can be written as
a superposition of plane waves, aslin (1.24). By expandimgyeplane wave as in
(1.54), the multipole expansion is obtained as

r):4W§(— Yt ZF ( )

This series converges in a spherical region with a radiusragted by the distance
between the origin and the nearest point wl{eVe2 + k2] f(r) # 0. Using the scalar

(k). (1.56)
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spherical wave operators, this can also be written as

"
> Pk, Wi () = > E( nY_m<_Vk>eﬂ’”] :
r"=0

whereV"” denotes the gradient with respectrté. Apparently, the scalar spherical
wave operators can be used to calculate the coefficientseaithitipole expansion
(1.56). A generalization of (1.56) is obtained by replacjitg) with g(r + ')

szl n" 2z, (kr) Y _m <_V]k> g(r’). (1.58)

The following special case fax(-) = h((f) (k1]-||) deserves special attention, since
it is widely known

hD (k||r +¢'|]) = Z am(-1)'zl_,, (k') (=1)""Z] (k) (1.59)

= Z 20+ 1)(=1)'h> (kr') jy (kr) Py (7 7). (1.60)
=0

1.2.5 Translation matrices

An application of[(1.58) is the calculation of the scalansiation operator. This is a
matrix of (kr') defined by the property

Z o ke 0)) = [ hr)], 2 (). (1.61)

l2,ma

If the regular spherical Bessel functions are used fi.e. j, the left hand side satisfies
(1.23) everywhere. Therefore, Eqn. (1.61) converges for allf f = h, the left
hand side does not satisfy the Helmholtz equation in thetpoia- —7’, yielding
convergence if < r’. The translation matrix is required when a field, known imrter
of multipoles around the origin, has to be expanded in regulatipoles around the
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pointr’. Clearly, the elements of this matrix are given by
f /
[a (kr )} l2,ma;l1,m1

- m v’
= 4772 (=1)"2Y}, . (—;k) szl my (k') (1.62)

v/ v/
=4rjh(—1)y™y, | — | Vo | — kr'). 1.63
uwi ( ) la, 2 (—jk‘) l1,mq (—]]4}) fO( T) ( )

Since the scalar spherical wave operators are appligg(to’), which is a solution
of the Helmholtz equation, Eqn. (A.26) can be used to evalthas
=/

[af (kr/)] la,maosly,mq
v

X Z (_1)m2+m3~’4l1,ml;lz,me;lg,fmgi/lg,mg (]k) fo(krl)a (164)

ls,ms3

— 47 Z jll_l2_l3(_1)Tnz+m3"4117m1;l2,77n2;l3,7m3Zl];,ma (kr') ] (165)

l3,m3

These expressions were first derived in [4]. Another consecgi of Egn.[ (1.63) is a
set of recurrence relations, first obtained in [7]. They améved in a very straightfor-
ward manner by multiplying (1.63) with ,,, (_ij) and absorbing this factor once in

Y, —ms (_ljk) and once irty, m, (%) fo(kr") by means of Eqns. (A.23). Equat-
ing the two results yields the recurrences. These recursecan be used for a very
efficient calculation of the scalar translation matrices.

1.2.6 A plane wave addition theorem

The translation matrices described above can be diagedaliza plane wave basis,
as is done in [3]. Here, this diagonalized form will be prowed more direct way,
using (1.59) and the integral representation (1.51)

00 l
Gkl =33 52, k') ()™ [ Yiewm (k) e~ IkkT g
Sa

=0 m=—1

(1.66)

—_

= — [ Tl k)e 3%, (1.67)
47T Ss
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with the so-called translation operator defined by

%) l
T(kr' k) = 4n Y S 72 (k) (<) Yiom (R), (168)

=0 m=—1

M

“1@21+ DA (k') P, (f«’ : k) . (1.69)

I
o

The sum ovel in (1.69) does not converge, therefore it has to be intezdrit the
distributional sense. For practical use, the sum is ustiallycated at = L, with L

chosen such thdt (1.67) still holds within a certain acourdtis 'practical’ version
of the addition theorem is the basis of the MLFMA [8].

1.3 The vector Helmholtz equation

Equations[(1.21) and (1.22) are vectorial Helmholtz equati These can be inter-
preted as three scalar Helmholtz equations, and can thushzdswith the theory

developed in 1.2. Unfortunately, the divergence equatiom®se an additional con-
straint on the solutions. Indeed, in source free regiomsetfetric and magnetic fields
are divergence free. Incorporating this condition is doperteans of the so-called
vector multipoles, defined as

J 7kas:~'r' 7
M7, (kr) = 477/ le( ) dk, (1.70)
N7 (kr) = m( ) eIk g (1.71)
l,m 471_ S ’
h —jkkr
M (kr) = 277/X“”( )e dk, (1.72)
NP (k) =2 — (k) e IkkT gy (1.73)

or the equivalent

; ) A\
M, (kr) =j'Xim <_Jk) Jo (kr), (1.74)
. v .
Ni,, (kr) ="' Wi, <—jk)]° (&), (1.79)
. \Y
M;Lm (kr) = JZXl,m (—jk) h(()Q) (kr), (1.76)

N{,, (k) =7 Wi (jk) h (kr), (1.77)
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where the so-called vector spherical wave operators, dkifin&ppendiX A, are used.
Due to propertied (A.64) and (A.B65), the vector multipoles divergence free for
r>0

V.-M{,, (kr) =0, (1.78)
V-N/ (kr)=0. (1.79)

l,m

A representation oM{ . (kr) without integrals or spherical wave operators can be

obtained by expanding each component of vector sphericatdrac X, ,, (k) in
spherical harmonics by means lof (AL86)

-l 1 % tm—1 <’%) N
M (k)= _MmH. mYim (k e~IRT Q. (1.80
L (bT) = o 10+1) S| () (1.80)
~ 28 Y i (k)
Ao 77

1 B g (k)
=———M7 | mZ] (kr) |, (1.81)

- \/%7 Zl,m+1 (kr)
= g1 (kr) Xpm (7). (1.82)

Similarly
M (kr) = b :

L (k) = Ry~ (k) Xom (7) - (1.83)

An expression forN{’m (kr) can be found by expandir@’; ,,, (") in spherical har-
monics, by means of (A.87). However, a more convenient esgioa can be found by
using the definition oW, ,,, () (A.59)

] it ~ ~ 7 A~
Ny, (kr) = i— / (—jk) % Xim (k) e~ IkkT g (1.84)
, = s,
1. .
— 2V x MY, (kr). (1.85)

It is interesting to note that applying the curl once morddgehe reverse expression

M, (kr) = %v < NI (k). (1.86)

lm
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Evaluating the curl in Egn[ (1.85) yields

kN, (kr) = (Vi (kr)] x X (#) + 51 (kr) V x X (7)), (1.87)
— i W () =g s 93, )] 8
With
V 5 [r X VY (#)] = 7V Y (7) = VY (7)), (1.89)
N TCE l(j{:l)wlm (#), (1.90)
this becomes
NI (br) = T2 (k) W (7) + /10 T 1) ,(!;T) #Yim (7)), (1.91)
with
Ti(e) = Tl ()] = G (@) — L), (1.92)
Analogously,

(2)
Nl (i) = H2 () W () /105 D oy ) (L99)

with
l

X

_1d

P h? (x). (1.94)

HP (z) [2h? (@)] = 12, (@)

Together, formulas (1.82), (1.83), (1.91) and (1.93) altbe efficient calculation of
the vector multipoles.

1.3.1 The vectorial Green functions

The Green function of Eqns. (1.21) and (1.22) will now be dateed. This means
that the electric and magnetic field due to an elementanyjeliparent

Ja(r) = po(r), (1.95)

with p a constant vector, will be calculated. For the magnetic fielslcan be easily
done by multiplying the defining equatian (1.30) of the sc&@aeen function withp
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and applying the curl
V2Gn(r) - p+ kG (r) - p = —V x jy(r). (1.96)
with the magnetic Green dyadic defined as
Gm(r) = V x [1Go(7)] (1.97)

In the above,l is the 3 by 3 identity matrix and the fact that the Laplace operator
and the curl commute is used. Obtaining the electric fieldbmadone using the curl

equation|(1.11b)

Gu(r)-p = j% N % G(r) - — ()] w8
= jwig [vv [LGo(r)] - p+ k> [1Go(7)] .p] . (1.99)

Therefore the electric Green dyadic is given by
. 1l o«
Ge(r) = —jwp []l + kQVV} Go(r) (1.100)
The derivatives can be evaluated using the recurrences sptierical Hankel function

(1.101)

Interestingly, the eigenvalues of the electric Green dyadle immediately known
from this

A1 = —jwuGo(r) <2‘Z + (ki)Q) , (1.102)
Ao = A3 = —jwuGo(r) <1 - é - (I<;11°)2> . (1.103)

1.3.2 Vector multipole expansion of a vector plane wave

The vectorial Helmholtz equations have plane wave solatimfrthe formE e~ 7%
with the vectorE, completely free to chose. The condition that the divergenast
be zero yields the following constraint

k-Eq=0. (1.104)
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From their definitions (1.70), (1.71), (1.72) and (1.73%sitmmediately seen that the
vector multipoles are all superpositions of vector planeesasatisfying condition
(1.104). The reverse is also true

Ege_jkq‘ - Z |:al,mM{’m (kr) + bl:mNg,m (k'l"):| : (1105)

Lm

for all . The coefficients:; ,,, andb; ,,, can be determined by means of the complete-
ness[(A.72) of the vector spherical harmonics

Ege kT = lzn; /S2 E- [Xl,m (IAC/> Xzim (’%)

~1

+ Wi (K) Wi, (k)] e/ ak', (1.108)
which, by means of (1.70) and (1.71), yields

i = 475 (=1)" By - X (k) , (1.107)

Bl = dmj "1 By - W (k:) . (1.108)

1.3.3 Vector multipole expansion of a general vectorial field

The expansion of a vector plane wave can now be used to expgadeaal vector
field F'(r), that satisfies the vector Helmholtz equation and is divezgdree inside a
region, into multipoles

Fir+r)=%" [ahm(r’)Mim (k) + by (r')N7 (kr)} . (1.109)
l,m
The convergence radius of this series is again dictatedeébgdint nearest te’ where
{Vz + kﬂ F(r + ') # 0. The determination o, ,,, andb, ,,, is completely analo-
gous to the one used in (1.2.4) and yields

</
al,rn(r/) = 47Tjil(71)m+1Xl,—m (Vk> ! F(rl)7 (1110)
—J
/ c—141 m+1 v/ /
bim(r') = dmj T (=)W — -F(r"). (1.111)

An alternative way of expanding a general field in regularteemultipoles is by
means of the orthogonality properties of the vector sphkharmonics. Taking the
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dot product of Eqn. (1.109) witiXj, ., (#) andW7, .., (#) and integrating yields
Ju (k'T) ay m! (7",) = X7/7m/ (’IA") . F(T‘ + T‘/)d’f" (1112)
So

T (k’/’) bl’,m/ ('I",) = W;,'m/ (’IA°) . F(’I’ + ’I‘/)d’f’ (1113)
Sa

It should be noted that although the integration is over thiesphere, the argument
of F(r + r') still containsr as a free parameter, since

27 pm

F(r+r')di = / F(ri(0,¢) + 7') sin 6d0de. (1.114)
So 0 0

Thereforer can be chosen such that the integration domain falls withénconver-
gence radius of (1.109).

1.3.4 Vector multipole expansion of the Green dyadics

Equations/(1.110) and (1.111) will now be used to expand liheréec Green dyadic
in vector multipoles. This is easiest by means of the inlagmesentation (1.44)

Ge(r +7/) = —Z“T’; [IL . kk] ek () g (1.115)
g
Since
Xim (k) : [11 —kk| = X, (k) : (1.116)
Wim (k) : []1 - k:k:] = Wi (k) : (1.117)

this becomes

' (KT, (1.118)
bim(r') = —kwp(=1)" T INP L (—kr'). (1.119)

Written out, and replacing’ with —r’, this becomes
Gelr — ') = —kwp 3 (—1)™+ [Mgf_m (kr') M7, (kr)
lm
+ N}, (kr') N7 (kr)] . (1.120)

Since the electric Green dyadic corresponds to a sourcéetbedr = »’, the in-
equalityr < r’ must hold converge for convergence. Simply exchangimgdr’ in
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(1.120) thus yields a series that converges in the regiomevhe r’
Ge(r — ') = —kwp 3 (=1 [ MY, (kr) MY, (k")
lm

+ NP, (kr) N7, (kr')| . (1.121)

which can be interpreted as an expansion in the singulaoveuiltipoles. The vector
multipole expansion of the magnetic Green dyadic can béyeatstiained by applying
— -1V to (1.120) and (1.121) and using (1.85) and (1.86).

Jjwp

The limit of the vector multipole expansion of the electrice€n dyadic/ (1.120)
for r — 0 can be taken. In this way, an expression is obtained thatiis fieat all .
Sincej; (0) = 0 VI # 0, the limit of M7 (k) is zero. For the same reason, only

thel = 1 terms remain of those containidg{ym (kr) and the electric Green dyadic
is given by
1 .
Ge(r') = —kwp Y (1) 'NY _, (kr') N7, (0), (1.122)
m=—1
with the N'{  (0) given by
NI (0) = jy) —— (& — jé&,) (1.123)
bt 120" ITVD
; 1
N/ =j\/—e. 1.124
1,0 (0)=j 67re ) ( )
j [P )
Ni,(0)=—j m(ex + jeéy). (1.125)

1.3.5 Vector translation matrices

As was done for the scalar case, the translation matricegeftorial fields will now
be determined. The vector translation matrices are defiged a

M, el = 3 | [0 M7, (k)

la,masl1,ma
l2,m2

+ [a{WN(kr’)} NI (kr)|, (1.126)

l2.m2
l2,ma;li,m1 ’
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Nl k) =Y Ha{VM(kr'ﬂ M (kr)

l2,ma;l1,m1
la,mso

+ [ (kr)] Ni (kr)| . (L127)
la,masli,ma ’

Again, the convergence radius is infinitesdrfor f = j respectivelyf = h. Since

the vector multipoles are orthogonal (with respect to irdégn of the angular part

over the unit sphere), taking the curl of the the first equatinist yield the second

equation. Therefore

(k') = oy (k1) (1.128)
(k') = ol (k1) (1.129)

By means of (1.110) and (1.111), the remaining matrices asiyefound

[a{/[M(kT/)}

l2,ma2;l1,m1

v/ v/
=4 11 —ls -1 m2+1X _ X / 1.1
7T] ( ) l27 mo (jk> ll;ml (]k) fo(k?” )’ ( 30)

| k)]

l2,ma2;l1,m1

.~/ =/
o v v
= 4mjh b ()W, o, <M> - X1y <]k> folkr'). (1.131)

To evaluate the product of two vector spherical wave opesatoa?, ,, (kr'), Eqn.
(A.84) can be used
[O‘{WM(kr/)}
l2,ma;ly,m

=d4r Z jllilzila(7]-)MZer?’JrllS’ll.,m1;l2,—m2;l3,—m3Zl];m3 (kr/) . (1132)

l3,ms3
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Evaluating the product |aMN(kr ) is more complicated. Using Egn. (A.83) and the

integral representation of the spherical Hankel functiégm. (1.131) becomes
1,0 .
pi T (e [aWkr')}

la,majli,mq
/ Wi, om, (k) - Xiym, (k:) e IRk g, (1.133)

e~IRRT 4k, (1.134)

m/ Vi [Xteioma (k) Vi ()]

Here, V.- is the divergence operator with respecktaSince the expression between
brackets depends only @ only the angular derivatives remain when this operator is
expressed in spherical coordinates. Partial integrakien yields

1
5j*h“rl(fl)mz“ [aWkr')}

l2 may l1 mi
Yll,ml (k) eI 4k (1.135)

~/11z1+1 / f2imma

This integral can be evaluated by means of Eqgn. (A.86)/anzZ6)A.

[0‘{41\/(]““/)}

l2,ma;li,my
AL Flmt

_jk,,. . MH % [Oz (k’r‘/)]

ma [af(kr )]

\/ll (I1 + 1)l l2+1)

lz,m2+15l1,mq

(1.136)

)

la,mo;ly,my

N
~Xaza o ()]

l2,ma—15l1,m1

wherea/ (kr') is the scalar translation matrix (1/65).
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CHAPTERZ

Maxwell’'s Equations in the
Presence of Scatterers

* Kk k

In the previous chapter, Maxwell's equations were solveariinfinitely large
homogeneous isotropic medium. In this chapter, theseteesull be used to
obtain the solution of Maxwell's equations in an environteontaining a
number of homogeneous regions. An example of such an emérdns shown
in Figure[2.1. Solving Maxwell's equations in such a geométrgenerally
done by using the equivalence theorem, proved in Sectiondfidd the gen-
eral solution of Maxwell's equations in each homogeneogsre Then the
remaining degrees of freedom are tuned such that the boyrwtarditions, de-
rived in Section 2.1, are met. First we will use this generatmodology to
derive the electric field integral equation. Secondly, ttattering off a homo-
geneous dielectric sphere will be solved and the resultlvélgeneralized to
an equation that can be used when an arbitrary number of gzhee present.
Thirdly this equation will be further generalized such titalso applies to a
collection of objects whose circumscribed spheres do netlap. This equa-
tion is widely known as the T-matrix or multiple scatterirguation [1]. Fi-
nally, an analysis of the computational cost of solving #gsation is made to
illustrate the need for fast multipole methods (FMMs).

2.1 Boundary conditions

Boundary conditions are equations relating jumps in theldiégb current and charge
densities present at the jump. They are useful in many waysexXample in the
derivation of the equivalence theorem and in the solutioMakwell’s equations in
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€010

Figure 2.1: An example geometry consisting of homogeneous regions.

geometries containing sharp material boundaries. In steckse, the boundary con-
ditions are used to 'glue’ two solutions in different regiasf space together such that
their union satisfies Maxwell’s equations.

Usually the boundary conditions are derived from the iraefprm of Maxwell’s
equations. However, here we will use an alternative, maextlapproach. Consider
the following two situations: the first situation is the eatspace filled with a medium
with parameters,, ;1 and the second situation is the entire space filled with aunedi
with parameterss, 2. In spacep, with p € {1, 2}, the currentg ,(r), charges, (),
electric fieldse, (), magnetic fields,(r), electric inductionsd,(r) and magnetic
inductionsb,,(r) exist, all satisfying Maxwell's equations. Letr) denote the real
continuous function that is negative inside a region A, aoslitjve in the complement
of A, say region B. Now consider the situation where the meddarameters, currents
and fields from the spadeand?2 are used inside region A and region B respectively

e=H[—g(r)ler + H[g(r)] e2, (2.1)
e(r) = H[—g(r) ei(r) + H [g(r)] ex(r), (2.2)

and the same fau, h, j, p, d andb. Also, H [] denotes the Heaviside function. This
basically means that the two fields and media have been ptutaeach other at the
interface defined by(r) = 0, thus creating a jump. Substituting the new fields and
currents in Maxwell’'s equations immediately yields thecatled boundary conditions

VH[g(r)] x [ea(r) — ei(r)] =0, (2.33)
VH [g(r)] x [ha(r) — hi(r)] =0, (2.3b)
VH [g(r)] - [da(r) — di(r)] =0, (2.3c)
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VH [g(r)] - [ba(r) — by (r)] = 0. (2.3d)

BecauseéV g(r) is proportional to the external normalof region A,V H [¢(r)] can
be written as

VH [g(r)] = (g(r) Vg(r), (2.4)
= nd(g(r)) 5 -g(r) (25)

The factor&(g(r))%g(r) is a function that differs from zero only on the interface.
Actually it represents & distribution in the normal direction. Indeed,sif is a point

on the interface andis a small positive number

/5 6(g(tﬁ+rs))%g(tﬁ+rs)dt= 1. 2.6)

Applying this integration to Eqns.. (2.84d), (2/3b), (2.3n0§i42.3d) yields the familiar
expressions

n X [ez(rs) —e1(rs)] =0, (2.78)
R x [ha(ry) — hi(ry)] = 0, (2.7b)
n [d2(Ts) - dl(Ts)] = 07 (27C)
n- [bQ(Ts) - bl(rs)] =0, (27d)

which state that the tangential components of the eleatdcraagnetic field, and the
normal components of the electric and magnetic inductiostrbe continuous.

When the fields do not satisfy these boundary conditions ,(RB1axwell's equa-
tions can only be satisfied by introducing additional elecand magnetic surface
currents and charges

V xe(r) = —jwb(r)—m'(r), (2.8a)
V xh(r) = jwd(r)+j)+35(r), (2.8b)
V.d(r) = p(r)+p(r), (2.8¢)
V-b(r) = 7(r). (2.8d)

n X [ea(rs) —e1(rs)] = —m/(rs), (2.9)
1 x [ha(rs) — hi(rs)] = 5i(rs), (2.10)
n - [da(rs) — di(rs)] = pi(rs), (2.11)
n - [ba(rs) — bi(rs)] = 7h(rs) (2.12)
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Here, the subscript means that the quantity has been integrated across thiaoeer
as in Eqgn. [(2.6). It can be shown that, using the law of cormdienv of magnetic
charge

V-m!(r) = —jwr(r), (2.13)

Egns. [(2.111) and (2.12) follow from Eqns. (2.10) and (2.8pectively. This allows
the usage of (2!9) and (2.10) as the only boundary condit&inse the two other ones
are necessarily fulfilled.

2.2 The equivalence theorem

Using the boundary conditions derived in the previous eacit is possible to prove
the so-called equivalence theorem. This theorem statei iipossible to replace any
object by the following equivalent electric and magnetidace current distribution
on its surface

Js(rs) =n x h(ry), (2.14)
x e(rs), (2.15)

wherer, denotes a point on the surfaae,is the external normal and the fields in-
side the surface are zero. To prove the theorem, we need@shoiv that this new
field configuration constitutes a solution of Maxwell’s etjoas. The fields inside
the surface are zero and the fields outside of the surfacefinenichanged. Clearly
this field configuration solves Maxwell’s equations insidel @utside of the surface.
Additionally, the boundary conditions (2.9) and (2.10) aegisfied because of the
presence of currents (2.14) and (2.15). As was mentionedlirttis guarantees that
boundary conditions (2.11) and (2.12) are also satisfiech émnsequence Maxwell’s
equations are satisfied everywhere, which by the uniqueri¢iss solution proves the
equivalence theorem.

The equivalence theorem can be used to replace scattetksquivalent currents,
so that in the region where the fields are now zero, the seattan be harmlessly
replaced by free space. This in turn allows the use of thedpaee Green function
for the evaluation of the fields associated with the equivtad@d source currents.

2.3 The electric field integral equation

Here, the equivalence theorem will be used to derive theafleetelectric field in-

tegral equation (EFIE). This equation can be used to solesthattering off perfect
electrically conducting (PEC) targets. A perfect eleetific conducting surface has
the property that the tangential electric field must be zéndleed, if this were not
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the case, the current running on the PEC target would becofimété. Now apply
the equivalence theorem to the surface of the PEC targeauBedhe tangential elec-
tric field is zero, no magnetic current (2]15) is requiredgpresent the fields outside.
Therefore the most general possible form of the electrid fieltside of the PEC is
given by

e(r) =e*“°(r) + /S Geo(r —7")j,(r)dS’. (2.16)

The terme*“°(r) is added because the equivalent currents are not the omgntsir
there are also source currents, that illuminate the PE@ttafhe EFIE is then ob-
tained by setting the total tangential field to zero

n x e*°(r) = —n x / Ge(r —7r")7,(r")ds". (2.17)
Js

When this equation is properly discretized, the surfacesauiyr, (r') can be found by
solving a system of linear equations.

2.4 The multiple scattering equation

Another important equation is the so-called multiple soéty equation [1]. Itis used
to solve problems consisting of a collection of objects vehoscumscribed spheres
do not overlap. To arrive at the equation, the analyticaltsmh of one sphere will

be determined, after which this result will be used to carétan equation for the
scattering problem with many spheres. This equation is fhether generalized to
support other objects than spheres.

2.4.1 Analytical solution of a homogeneous sphere

Using boundary conditions (2.7), the analytic solution aidwell’'s equations in the
presence of a dielectric sphere will now be derived. Theyaical solution of a homo-
geneous sphere was first derived by Gustav Mie [2], after waaftkm wide crater
on Mars is named. However, the derivation will be repeataée hsing the conven-
tions and definitions used in this work. Assume that a spakerégion with radius:
and centered around the origin is comprised of a materil pgrmittivity ;, perme-
ability u;, impedanceZ; and wavenumbek;. The subscript stands for 'inside’. The
medium outside the sphere has permittivity permeability.,, impedanceZ, and
wavenumberk,, where the subscript has the obvious meaning 'outside’. Now as-
sume that an electromagnetic field, generated by sourcs&ledhe sphere, impinges
on the sphere. Due to the equivalence theorem, the sphebeaaplaced by tangen-
tial electric and magnetic currenjs(ar') andmg(a#) on its surface. These currents
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generate the so-called scattered field of the sphere. Bethesurrents are tangen-
tial, they can always be written as a superposition of vespbierical harmonics. This
in turn leads to the conclusion that the scattered field man the following form

e*t(r) = 3 |aisa MY, (kor) + b5t (kor)]

Lm

+ Z [ scaMJ ) dscaNg . (kor)} . (218)

However, this field has to satisfy the radiation conditionhefiefore the sum over
the regular multipoles must be omitted and the scattereditig$ the following most
general form

er) =Y [ s ML, (kor) + B2 N, (kor)} . (2.19)

lm

The source field is known and regular since the sources atgnasisto be known
and located outside of the sphere. It can therefore be ergandegular multipoles
centered around the origin

e(r) =3 [ soo M (kor) + bSONT (kor)] . (2.20)

lm

The electric field inside the sphee&(r) has to be regular, again because there are no
sources in the sphere. Using the equivalence theorem tbeséietds outside of the
sphere to zero then yields the following most general form

er) =Y [a;mM; o (ki) + b N7 (kir)} . (2.21)
lm

The magnetic fields are then easily obtained in both regigmsdans of curl equations
(1.86), (1.85) and (1.11b)

sco ] sco p T 5CO NJ. j
h (’I") = Vi Z |: lrrL (k‘o’l") + CI’l m ;,m (kor):| ) (222)
° lm
sca J sca sca
h ('I") = 7 Z |:b Ml ,m (k 7’) + ar, mN;L,m (kor):| ’ (223)
° lm
hi(r) = % 3 [ F M (kir) + N7 (kir)} . (2.24)

l,m
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Imposing the boundary conditions (2.7a) and (2.7b)
7 x [e°(aP) + e*“*(at)] = 7 x e'(at) Vi, (2.25)
x [h*°(a?) + h*“(at)] = # x h'(a?) Vi, (2.26)

can be done by taking the dot product of both sides \&th,, () andW, ,,, (#) and
integrating. For the electric field this yields

a5 1 (koa) + a35eh? (koa) = af . ji (kia) , (2.27)
biso i (koa) + b5 H (Koa) = b, T (kia) (2.28)

while the magnetic field gives

bi0 Ziji (Koa) + 05 Zih ™) (koa) = b} 1 Zoji (ia) (2.29)
a3 Zi ) (koa) + ai<2 Z 1) (koa) = ai , ZoTi (Kia) - (2.30)

Elimination of the "inside’ coefficients; ,, andb; ,, yields

2 2
Sco \71 (koa) + sca H( ) ( ) — Sco ’L]l ( Oa) + bSC(l Z h( ) (k a) (2 31)
YT (kia) ™ T (ka) b Zoji (ksa) TN Zoji (Kia)
asco ‘7l (koa) Ta sca H( ) (k CL) — asco ZOjl (koa) +a sca h(2) (k a) (2 32)
l,mm(kla) lm ,,7[(]6 a) l,m Zi]l (kla) lm Zz]l (kza) . .
This can be cast into
sca Ji(koa) Ji(kia)
am —_TM _ _ Zi v ji(koa) —Zo © ji(kia) (2 33)
aise ! 7, ko) Jila) by (koa) '
v ji(koa) 0 ji(kia) ji(koa)
sca Ji(koa) Ji(kia)
bl,m — TN _ _ Zo % ji(koa) —Zi t gi(kia) (2.34)
bpco 7 P kot) 5 Gilkia) WP (koa) '
% gi(koa) v gi(kia) gji(koa)

The knowledge of the multipole expansion of the source fiels tyields the knowl-
edge of the scattered field. In other words, the total fielchimwkn. The coefficients
al . andbi =~ and thus the fields inside the sphere are also easily caculating

l,m

Edns. (2. 7) and (2.28). For a perfect electrically conidgcsphere, the fields inside
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the sphere are identically zero, yielding the simpler esgigns

alscrg _ jl (koa) (235)
a?i% W (koa)

oo H<2>( a)

2.4.2 The multiple scattering equation for homogeneous spheres

The results from the previous subsection allow the solutibMaxwell's equations
in the presence of one homogeneous sphere. This result cextdreded [1] to an
environment with@) non-touching spheres, that have centgrand radiusae,,. The

field generated by the source is now expanded around all therep

e*?(r) = Y (a3 My, (8 (1 = 7)) + B0, NT, (6 (= 7). (2.37)

lm

Assuming that the source is located outside of the spherssséries converges in
a spherical region around every sphere. However, the splfieeénot only the field

from the source, but also the fields scattered by other sphétee field scattered by
the pth sphere can be determined with an argument similar to teeused in 2.4]1

and is given by

ey (r) = 3 [ Ml (k (1 = 1)) + 037 Nl ((r = m,))] . (238)

l,m

This holds for all||r —r,[| > a, with unknowna;%, andb:7, . Because the
spheres do not touch, this field is regular in a f|n|te spheriegion around every
sphere and can thus be expanded in regular multipoles atbhenth sphere center

e;m(r) = Z |:ap,n,l,7rLM{’m (k' (’I" - ’I"n)) + bp,ml,mN{’m (]4? (T‘ — T‘n)):| . (239)

Im
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where the coefficients,, ,, ; ., andb, ,, ; ., are obtained by means of the vector trans-
lation matrices from 1.315

Gp,n,lm = Z HO‘;\}M(I‘? (rn — rp))} L TR

Lomsl!m
Vo
+ [a{\IN(k (rn — Tp))]l P b;?ﬁ,m’:| ) (2.40)
bt = 3 ([ hra =] it
Vo it
+ [a{VN(k (ry, — 'rp))L B b‘;fﬁ’m,} . (2.41)

By means of(2.37) and (2.39), the total field impinging on:tiiesphere can thus be
written as

emr(r) =33 [[a;fgm + pn] M, (ki (7 = 7,))

p#n l,m
o [B5Em + bptn] N (k(r—r))]. (242)

Clearly, the fields scattered by the spheres determine this fi@mpinging on them.
However, the scattered fields are still unknown. They candberthined by enforcing
the boundary conditions on the surfaces of all the sphersisigithe results from 2.4.1

sca _ M sco
an,l,m - Tn,l § Apn,l,m + an,l,m (243)
p#n ]
sca _ N sco
n,l,m — Tn,l § b n,l,m + bn,l,m (244)
p#n |
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with T, and T.Y, defined in|(2.38) and (2.33). Putting all this together ysefke
multlple scatterlng equation

M _sco sca M sca
Tn la’nlm = 0nim _T E : E : |:|:aM]W - rp))i|lm'l’ m Ap 1’ m’
p#Enl ,m’ e
I sca
+ [QMN(k (T" - Tp)) Lol bp,l’ﬂn’ )
(2.45)
N 1sco  __ 1sca N f sca
Tn,l n,l,m = Ynim Tn,l E : E [[aNM(k (rn - TP)):| Ll Ap 1 m’
p#Enl,m’ ST07, T

ot ] ]
(2.46)

The left hand side is known, and if the sums oken are truncated so the maximum
value forl is L, the coefficients:;},, andb;',, can be determined by solving a
system of linear equations of ord2€(L + 1)2. Once the solution of this system
has been obtained, it is easily shown that the corresporfiifts solve Maxwell's
equations. Indeed, the field in the space between the spiseaesuperposition of
the source field and the scattered fields of the spheres, bhittions of Maxwell’'s
equations. In addition, the boundary conditions are mealse Eqns.| (2.43) and
(2.44) are satisfied. By the unigueness of the solution of wdlls equations, the

obtained solution is the solution of the many-sphereseagatf problem.

2.4.3 The multiple scattering equation for other objects

It should be noted that the reasoning that led to the scdtfaiel of a sphere (2.38),
can be repeated unchangedly for more complicated objextset], assume that object
n can be circumscribed by a sphere with radiysand centee,,. Then simply apply
the equivalence theorem to each object’s circumscribifigispand use the radiation
condition to obtain the most general scattered field fortteobject

e;s;ca(,’,) = Z [ fLC;lli m (k (’I" - Cn)) fLC;lle m (k( Cn)):| . (247)

lm

Then, can the multiple scattering equation be generaliaettiitrary objects? The
answer is no, because the other crucial part of the equatithre ire-expansion of this
scattered field in regular multipoles centered around theraibjects. For this series
to converge, the objects’ circumscribing spheres mustawtht nor overlap. When
this condition is met, it is clear that only Eqns. (2.43) d@dH) must be altered to
accommodate for the extra generality. Basically, Eqngl3)2and|(2.44) are replaced
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with the more general

=3 [[T"MM]l,m;l/,m’ i + [TEN] bn,l’,m’} . (2.48)
l/,m/
b:ﬁtm = Z [[TRNA/I}Z m;l’,m’ Al m/ + [TTILVN]l.m'l’ m/’ bn7l’7m':| ' (249)
l/,m/ k) il 9 ’ 4 ?
(2.50)

with Onlm = Ep;én Ap,nlm + afﬁﬁm andbn,l’m = Zp;én bp.nim + bfﬁim' The
matricesT MM TMN TNM andTXY are blocks of the so-called T-matrix of theh
object.

The T-matrix of an object can usually not be determined aicalyy. However,
numerically this can be done as follows. lLeeainda be the center and radius of the
circumscribing sphere of the object. Then calculate théteseal field of the object
for all the incoming fields given by the regular vector mubikpsM{m (k(r—rc¢))
and N7, (k(r —c)). These scattered fieldg>" (r) ande;=" (r) can be de-
composed in singular vector multipoles by means of

W (ka) [TMM], = | Xl ()il (o + af)ad, (2.51)
2

e (ka) [T, e = [ Wi (7)€l (e + i), (252)
2

W (ka) [TMN], = i X7, () - €@ (c + ar)dr, (2.53)
2

HZ(Q) (ka) [TNNL,'rn;l/,m’ = s Wzm (’F) ’ e;/c,(:r;{\](c—’_ a'f‘)dff‘? (254)
2

which uniquely determines the T-matrix.

2.5 The necessity of fast multipole methods

As shown in the previous section, the multiple scatteringag¢ign for @Q spheres,
where multipoles up to ordel are taken into account, becomes a dense system of
linear equations of orde¥ = 2Q(l + 1)?

Z-x=y, (2.55)

whereZ is the N x N system matrixx is the N x 1 vector containing the unknowns
andy is the N x 1 vector containing the source fields. Clearly, when a larga-nu
ber of spheres are involved or a high accuracy is requifediecomes very large.
Solving the linear system using direct methods, e.g. LU dgmsition, is then not



36 MAXWELL 'S EQUATIONS IN THE PRESENCE OF SCATTERERS

feasible anymore because direct methods hav@ &V?) computational and (N?)
memory complexity. The fact that the system is dense is chlwg¢he fact that every
sphere (observer sphere) receives fields from every othersggsource sphere). This
in turn is because the vector translation matrices (and #peicial cases, the Green
dyadics) are nonzero throughout the entire space. Thidewols thus not specific
to the multiple scattering equation: any integral equatimthod in electromagnetism
suffers from this complexity problem.

The application of iterative solvers, such as the bicortig@adient method [3],
can somewhat improve this situation. These methods stemtdrguess of the solution
xo, and evaluate its correctness by multiplying it witand checking the difference
Z -xy —y. Based on a set of rules that is specific to the type of itesatdlver used, a
new guess; is determined, which is usually closer to the actual sofuti@nx,. This
procedure is then repeated until, in tRéh iteration, the residual errdfZ - xp — y||
has been reduced below a preset threshold. Since in eaatidtera number of mul-
tiplications of the system matriX with test vectors is required, the computational
complexity of an iterative solution method R times the complexity of a matrix-
vector multiplication, i.e.O (PNQ). For well-conditioned problems, the number of
iterationsP is small, so that this indeed means a reduction of the cortipoéd cost.

Naturally, the aim then becomes to perform the matrix-veptaltiplications as
efficiently as possible. In the past, many fast algorithmeeHaeen developed for
this purpose [4-10]. Fast multipole methods (FMMs) are alfjuone of the most
important classes of these algorithms. FMMs can reducedh®patational comple-
xity of the multiplication of the system matrix with a vectioom O (N?) to O (N)
or O (Nlog N). This is accomplished by dividing the geometry of the probiato
a hierarchy of boxes, the so-called tree, and invoking ameosition of the Green
function. The tree is constructed by taking the box that @imistthe entire geometry
of the problem and recursively subdividing it until a stagpicriterion (for example
a given minimal box size) is violated. The expansions of tihee@ function are then
used to let the boxes interact as a whole.

The various possible decompositions of the Green functiea gse to different
FMMs and different circumstances under which the FMMs ptevan improvement
in complexity. Some examples are

e multipole decomposition: this is the oldest FMM [4], andueds the comple-
xity of a matrix-vector multiplication t@ (N) if kR, with R the size of the
simulated structure, does not become much larger thare. when the fre-
guency is sufficiently low. Also, the prefactor is quite larg

e propagating plane wave decomposition [5, 11]: this decaiipn yields an
O (Nlog® N) complexity, wheres € {0, 1,2} depends on the problem ge-
ometry and some algorithmic details. Although in princifiile most efficient
decomposition, it suffers from a numerical instability ghdrefore fails to de-
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liver accurate results when the smallest boxes becomdisimily smaller than
one wavelength. As a consequence the frequency must beentffichigh to
be able to use this decomposition.

e spectral, or directive evanescent plane wave decompogBidl2]: as one of
the more recent FMMs, this method works for both high and Iegdiencies.
However, the decomposition converges in only one half-apdderefore, six
different decompositions are required to cover the enpezs.

Clearly, these three methods all have their drawbacks. dridthowing chapters, ef-
forts to alleviate or eliminate these drawbacks will be présd.
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The main drawback of using the spectral representation @Ghreen function
in an FMM is the shape of the representation’s convergeng®rei.e. a half
space. Therefore, to cover the entire space, six rotatediames of the rep-
resentation are required. In this chapter, a novel techeido accelerate the
aggregation and disaggregation stages in an FMM using thecspl repre-
sentation of the Green function is presented. The new meathlodlates the
six plane wave radiation patterns from a multipole expangiaggregation)
and calculates the multipole expansion of an incoming fielohfthe six plane
wave incoming field patterns. It is faster than the directrapph for multi-
pole orders larger than one, and becomes six times fastdafge multipole
orders. The method relies on a connection between the tizatiens of the
six integral representations, and on the fact that the Wighenatrices become
diagonal for rotations around the-axis. The proposed technique can also be
extended to the vectorial case in two different ways, onehagiwis very sim-
ilar to the scalar case. The other method relies on a Beltrdatomposition
of the fields and is faster than the direct approach for anytipalle order.
This Beltrami decomposition is also not limited to solvesgg the spectral
representation, but can be used in any vectorial FMM.
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3.1 Introduction

Currently, several so-called Fast Multipole Algorithmswi®s) exist [1-7]. These
methods accelerate the matrix-vector multiplicationsunexgl for the iterative solu-
tion of the systems of linear equations arising in Method a@inénts based integral
equation solvers. Unfortunately, most of these methodgsamply to a specific type of
problem. The multilevel fast multipole method (MLFMA) isd®d on a homogeneous
plane wave expansion of the Green function to reduce the atatipn time and mem-
ory requirements for high frequency (HF) problem&xdN) - N denotes the number
of unknowns - or©O (N log N). However it completely fails for low frequency (LF)
problems due to roundoff errors. On the other hand, FMMs dasea multipole
expansion of the Green function reduce both computatioa imd memory require-
ments toO (N) for LF problems, but not for HF problems. Hence, they arerrefe
to as the low-frequency fast multipole methods (LF-FMMs). rilitigate this a new
class of FMMs was introduced, which all somehow rely on ardiszed version of the
spectral representation of the Green function. These rdstimost notably the stable
plane wave method [6,8], are capable of delivedhgV') or O (N log N) complexity
for LF and HF problems respectively. However, as shown intf8 MLFMA turns
out to be the most efficient FMM if the frequency is high enotglheach the target
accuracy. Therefore, the state of the art is to introduceel Ie the FMM tree above
(the HF part) which the MLFMA is used, and below (the LF part)iet either the
LF-FMM (as for example in [10]) or some form of evanescennplavave method (as
for example in [9]) is used. In [8,9], it is argued that therescent wave technique is
more efficient than the LF-FMM, especially for high accuesci The reason for this
is the diagonality of the translation operator, which restuthe cost of one translation
from O (L*) to O (L?) with L the multipole order (of the LF-FMM). This shows
that evanescent wave methods certainly are of practicaditapce for the LF part of
FMMs.

However, their main drawback is that the underlying Greewfion’s integral rep-
resentation only converges in one half-space of choice.dgequence, in practice,
six integral representations are needed to cover the esgiee. For the propagating
plane waves, all dependency on the half-space can be imabegdnto the translation
operator, thereby allowing to calculate all six integrghnesentations starting from
only one radiation pattern. Hence, for the propagatingelaaves, only one radia-
tion pattern is needed. For the evanescent plane waves uywtoaam such technique
exists despite several attempts to solve this conundrume¥ample, in [11], Jiang
and Chew split the evanescent plane waves into so calletloghavanescent plane
waves’ and 'deep evanescent plane waves'. The shallow plames are obtained by
extrapolating the propagating plane waves and improveftiogeacy of the method at
higher levels. However for very low frequencies or for vaswllevels in the tree, the
extrapolation has little use, since virtually none of thareescent plane waves will be
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shallow. Indeed, if the extrapolation would still be effeetat very low frequencies,
the MLFMA would to some extent still work at those frequescié\lso, according
to[11], itis not possible to calculate all six integral repentations of the deep evanes-
cent plane waves starting from only one radiation pattefre fieed for six radiation
patterns results in high memory requirements [10] and a baghputational cost. As
is done in [9, 12], the memory problem can be reduced by fitstitting a multipole
expansion of the radiated field, and then going to the planeWwasis. The calcula-
tion of the six evanescent radiation patterns from a mukipapansion will from here
on be referred to as 'aggregation’. The reverse procedaraely projecting the six
evanescent incoming field patterns of an FMM group onto ipoikis, will be referred
to as 'disaggregation’. These procedures not only ariskarf-part of [9], but can
also be used when for example multiple scattering from actitin of spheres is con-
sidered (where the sources in every FMM group are multipol¢ss thus important
to do the (dis)aggregation as efficiently as possible.

The main goal of this paper is to introduce an elegant, nowdlexact method
to do this (dis)aggregation. This new method relies on the afswigner rotation
matrices and the fact that these matrices are diagonal fations around the-axis.
The computation time is lower than the direct computatiainéf maximal multipole
order L is larger than one, which is true for all practical cases. &dwger, if a large
enough number of multipoles are used, the computation smediuced by a factor six
compared to the direct case. It will also be shown that thpgsed scheme applies to
both the scalar (for example acoustics) and the vectogalegtample electromagnet-
ics) case. In the latter case, two methods are provided eitensg of which is faster
than the direct approach fanymultipole order. The proposed methods do not reduce
the complexity however, so they can only be used for the Liff-gfathe FMM tree.
A drawback of the method occurs when one is simulating a sireiavhich is long
in one direction. Only a few of the six radiation patterns meeded then, while the
proposed method still calculates all six radiation page®uch inefficiencies can be
avoided by switching to the direct method for these cases.

Notation: throughout this work all sources and fields areiassl time-harmonic
with angular frequency; temporal dependencied~? are suppressed. Unit vectors
are denoted by a hét = % and the Cartesian unit vectors a&rg with 7 = z, v, 2.

3.2 FMMs with evanescent plane waves

An FMM with evanescent plane waves [6, 8, 11], like all FMM esduses a hierar-
chical cubical subdivision of the computational domainr @ interaction between
groups on a level, it relies upon the spectral decomposifaine spherical Hankel
function of the second kind and of zeroth order (1.44), whsateadily generalized to
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both positive and negative
1 . .
h? (kr) = — / FIkTAk, z=e,-r 2 0. (3.1)
2T £

Here, k is the free-space wavenumbér,— kk = (kz, ky, k.) the wave vector, and
r a global position vector. The integration with subscéipis defined in[(1.43) and
becomes

1 27 )
h(()2) (kr) = ﬂ/0 /FejFJk'T sin fdfd¢ (3.2)

with (ky, ky, k.) = k(cos ¢siné,sin ¢sinf, cosd). The integration patfi’ consists

of two pieces,I'; andT';, depicted in Figure 1.1 and corresponding to propagating
and evanescent plane waves respectively. Therefore ggraf(3.1) can be splitin a
propagating and an evanescent part

1 2m ) 1 2 )
h? (kr) = — / / TR gin 0dfde + — / / TR 5infdhde.  (3.3)
2 Jo Jry 2r Jo Jr,

Propagating FEvanescent

Then both integrals are discretized separately, for exarfigplthe case > 0:

Vp Ve
héZ)(kT) _ Z wésze*]kﬁp-r + Z wseefjkﬁe"r (34)

vp=1 ve=1

wherewfjp, szjp ,wg,_andk;,_are the weights and nodes of the propagating and evanes-
cent part respectively. The discretization of the propagaiart is straightforward [6].
The discretization of the evanescent part is more diffisitice the evanescent integral
in (3.3) covers an infinite region. However, sircgis given by the parameter equa-
tion = 7 +jt,t € [0,00] andk. = k cos 0, the integral converges in an exponential
manner ifz 2 0. This allows the discretization to be done with exponeracuracy.

It can be done in many ways, for example with a singular vakedhposition (SVD)
based approach. A uniform discretization is also possalkit after some further
coordinate transformations. Both the SVD and uniform @iSzations are described
in [6]. However, the details of the discretization are nopartant for the remainder
of this paper.

An important property of (3.1) is that it is valid only if = 0. In the plane: = 0,
this integral representation does not converge. For tleatiged version, matters are
even worse, since serigs (3.4) will only converge ifemainsfar enoughfrom the
planez = 0. A more rigorous criterium for convergence lof (3.4) is giweifi6], with
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some positive constaudt:

Va2 +y? < Cgz (3.5)

As a consequence, only a cone-like region around:tagis can be covered with
this expansion of the Green function. This situation is reiie by introducing extra
integral (series) representations which converge aloagtfandy-axes. As a result,

in total six integral representations are used, which vatdeforth be denoted ag,

24, and3+. This configuration has been ubiquitously used in the liteea[6, 8, 11].

In [6], it is shown that in an oct-tree using these six intégearesentations, criterium
(3.5) is always satisfied with' = /2, thus assuring convergence of the series. Figure
[3.1 shows an example configuration in which the field in thepdi due to sources

J in the box must be calculated by means of 3heexpansion, while the fields in the
pointd; must be calculated by means of the expansion.

.dl

edy

X

Figure 3.1: The radiated fields of the central box is given by different expansiothe different
cone-like regions. For example, the fieldsdin must be calculated using ti3e- expansion
while the fields ind> must be calculated by means of the expansion.

The propagating parts of the six series are all integrataves one half of the
Ewald sphere. As is shown in [6] this permits absorbing akcional dependence
into the weights. As a consequence only one radiation paigereeded for the propa-
gating part. Unfortunately, this is not possible for theregcent part [11]. Therefore,
from now on, we will focus on the evanescent part onlyugo andk;,_ will hence-
forth be written asv,, andk,,. In this paper, it will be shown that the six evanescent
radiation patterns can be calculated from a multipole egjpenwith asymptotically
the same computational cost as for one radiation patteus, ghining a factor six.
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The essential element of this novel method is the fact thenhtides of the different
representations are rotated versions of the nodes for ff@eion around the positive
z-axisk, (= k>):

k" =Rk, (3.6)
k2t =Rk, (3.7)
k)T =Rk, =k, (3.8)
In addition:
kP~ = —kPT Wpe {1,2,3}. (3.9)

with the matriceRR,, R, andR, defined as

or 1 0 1 0
3 1 0 0
or 1 0 0 1
R, =R <3, — (st &y +éz)> =1 0 of. (3.11)
3 01 0
R, =1 (3.12)

In this, the rotation matriR(«, u) is a3 by 3 matrix which rotates a vecteraround
the axisu (with w - u = 1) over the anglev into the vector, viz. ¢/ = R(«, u) - c.
The direction of rotation is determined by means of the rtugrid rule. A graphical
representation of this is given in Figlre B.2. It will now thes/n that the relationships
(3.6)-(3.9) can be unified in one symmetric expression. Bégiobserving thak,,,
Ry, andR, are all rotations around th%(éx + e, + é,)-axis. This means they all
can be converted into rotations around thaxis by means of one similarity transform.

With Ry = R (f arccos(-L), L (—&, + éy)) , this yields

V377 V2
1 2r
R: =Ry - R(—?,ez) - Ry, (3.13)
1 dr
Ry =Ry -R(=5 &) Ro, (3.14)
1 6m
R.=Ry"- R(—?,ez) -Ro. (3.15)

This means that the discretization points for all six repn¢ations can be unified in
one formula:

2
KPS =Ry [SR(‘?,@)} ‘Ro- k¥ Vse {-1,+1} ¥pe {1,2,3}. (3.16)
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Whens is used as an index, for example if}*, the +1 and —1 are denoted as-
and— respectively. Formula (3.16) is a form in which the symmdteyween the six
radiation patterns is visible. This symmetry will be crdéradeveloping the accel-
erated scheme, since it will allow the six radiation pattei;be decomposed in six
other patterns which require only one sixth of the amount ofkwo calculate. The
derivations will be presented in the following sections.

Figure 3.2: The rotation matrixR(«, u) rotates a vectoe around the axis: over the anglex
into the vectoic’. The direction of the rotation is determined by the right hand rule.

3.3 A faster (dis)aggregation for the scalar case

As stated in the introduction, the aggregation denotesdloeilation of the six evanes-
cent radiation patterns from a multipole expansion. Thacess is used and elabo-
rated in [9]. It consists of calculating

L !
O =3 " Vi (K)  vpe{1,23hse{-1,41},  (317)

=0 m=—1

where they;,,, are the multipole coefficients; ,, <kz) denotes a spherical harmonic
and L is the maximum multipole order that is taken into accounte &’ are the
discretization nodes from the evanescent part in (3.4). ddii@ition and some prop-
erties of the spherical harmonics are summarized in AppéddWhen &5 denotes
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the incoming field patterns in the six directions, the disaggtion is given by

blm = Z Wy Z q)gs(_l)myi,—m (’;is) (318)
v p,s

= Z Wy Z (pgs ljkm (I%ZS*> : (319)
v p,s

Here,* denotes the complex conjugate. The fact that - in contrafte¢modes - the
weightsw, do not depend op nor s has also been used. In the following sections,
the accelerated scheme will be developed.

3.3.1 Aggregation

The accelerated scheme relies for a great deal on the caomé8t16) between the
discretization points for the six representations. Stlt#tin of (3.16) inOF* yields:

L

l
. _ 2pm ~3+
@gs = Z Z alm]l)/lvm <R0 L. |:SR(§762):| : RO : kv ) . (320)

=0 m=—1

The outer rotation in the argument of the spherical harmoaicbe brought outside
the function by means of the Wigner D-matrices, defined irtiBe@.2 in Appendix
[A, as follows

L l
s . _ 2pm . ~34+
@sz = Z Z Z alm]lDin,ml (RO 1) Y},ml <5R(§, ez) . RO . kw > (321)
=0

m=—1 m1

L
. 2pm ~3+4
= Z Z agmljl}/l,ml (SR(];),ez) -Ro - kv ) (322)

Ay =Y aimDh, 0 (Re) (3.23)

This sum runs overn only and thus can be done fast, compared to the full aggmeyati
After this operation, all sources are actually rotated tefarence system in which the
former%(éz + &, + é,) axis is the news-axis. In a second step the dependence
onp ands can be removed. According to equatidbn (A.6) the sphericahbaics are
eigenfunctions of the inversion operator (which replacds/ —r) with eigenvalues
(—1)!, which allows for the removal of. Moving thep-dependence out of the spheri-
cal harmonic can again be done using the Wigner D-matricesieMer a crucial point
here is that Wigner D-matrices for rotations around tkexis are diagonal, as stated
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in (A.44). This yields:

L l
o =3 3 df, s Y, (RO : k:3+) (3.24)

=0 m=—1

or after splitting the summations:

1 2
or =33 sreeE Y S dYim (Ro.ki+) (3.25)

r=0 ¢=0 r=1 mod2 g=m mod3s

The inner summation runs over all for which ¢ = m mod3 and alll for which
r = I mod2. 'mod’ means modulo, so for example= 7 mod3. Equation|(3.25)
shows that (3.17) can be re-expressed as an aggregatiordsosia new radiation
patterns<4"

KO = Z Z i Yiom (RO . k?f) Vq € {0,1,2}, Vr € {0,1}
r=1 mod2 ¢g=m mod3
(3.26)

However, only one sixth of the multipoles contributes tokeat these patterns. In
this way, calculating these six new patterns costs as &glealculating one pattern
with the direct formulal (3.17). Of course, there is the extat of a postprocessing
step, i.e., the summation overandr in (3.25), but this cost has only af (L?)
complexity and is negligible compared to the entire aggiegaNote that this whole
scheme works totally independent from the choice of thereisation pointsk:f’f.
Only the connection (3.16) is required. Another importasinpwas brought up by
one of the reviewers: very elongated structures requisethean six radiation patterns
to be computed. For example a long wire will need the FMM gmotqphave only
two radiation patterns. In this case (3.25) will only yield @symptotic factor two. If
an FMM group needs only one radiation pattern, then a swidhe direct method
should be made. The same considerations apply to the desgaggm and the first
method for the vectorial case. The second method will be shiowbe capable of
accelerating by a fact@reven if only one radiation pattern is required.

An explicit operation count will be done to show that the pregd method requires
less multiplications than the direct approach for most fizatcases. The operation
count for doing the rotation om;,,, (3.23) is:

L
1
do@+1)° = 5 (407 + 1202 +11L +33) (3.27)
=0

The operation count for the construction of the new radmfiatterns<I" clearly is
V(L + 1)2. V is the number of discretization points for the Green funtiantegral
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representation. The postprocessing step reqaé®smultiplications. Hence the total
number of multiplications is:

(AL? + 12L% +11L + 3) + V(L* + 2L 4 37) (3.28)

Q| =

The number of multiplications without acceleration6ig (L + 1)2. Therefore, the
value of V' for which the proposed method is faster than the one withotglaration
is given by:

1413 + 1202 + 11L + 3

1 | .
V>3—%mii0 31 k7 (329)

For the case wheré = 1, > in equation|(3.29) has to be replaced fiybecause
5L2% 4+ 10L — 31 is negative. Therefore, if = 1, (3.29) is not satisfied and the new
method is slower than the direct approach. Eor 2, the right hand side becomes
% < 4. Since the number of discretization points is always moenth (3.29)

is always satisfied. Moreovey, = O (L?) because the multipole and plane wave
expansion have approximately the same information cont€hts makes sure that
equation(3.29) is also satisfied for larger Therefore it is safe to say that for any
L > 1, the method presented[in 3.4.2 is faster than the direcoappr It has to be
acknowledged that this operation count has to be put in tie gerspective, because

different optimizations and hardware can have a great infle®n performance.

3.3.2 Disaggregation

The disaggregation can also be accelerated. The operatierenalogous to the ag-
gregation, but are done in reversed order. A short treatisagiven below for com-
pleteness. The derivation is again started by using (3rl@&.1L9), which yields:

blm—Zw”Zfb Y,( [SR(Q?T )} Ro ko > (3.30)

As a first step it is possible to remove the last rotation bytiplying b, with
Dl (Ry) and summing ovem:

ma,m

N S 2pm A 34
By = D D, 1 (Ro) blmwavZCI){j Y, (SR(S,eZ) Ro - k), )
" (3.31)



3.4 A faster (dis)aggregation for the vectorial case 51

Again the rotation around the-axis can be taken out of the spherical harmonics by
using the diagonal Wigner D-matrices:

l
Vs = Zwv Zq)gsgl S DY, (R(Q?T,éz)) Vi, (Ro- k) (3:32)

mg_—l
- Zwvzqws ey (Ro -y ). (3.33)
The summation ovey, s gives rise t® distinct new disaggregation patterns:

=hr = 3" orsgTe M E k€ {0,1,2},r € {0,1). (3.34)

These new patterns allow for a faster disaggregation bedheg each only contribute
to one sixth of the,

lm1

By = Zwv”ml mods.; mod2y, (Ro 12:?’**). (3.35)

In order to obtain thé,,, theb;m1 have only to be rotated back:

blm = Z Z m m1 Df;il msa (RO) bl,mg (336)
m;_fl mi=—
= Z Dm ,m 0_1 l,m1 (337)
mi=—
= Z Dml m ;ml (338)
mlzfl
(3.39)

3.4 A faster (dis)aggregation for the vectorial case

The proposed technique can also be used in the vectorial aase needed for the
general electromagnetic case. The vector muItipMﬁ;m (kr) and Nf’m (kr) are
defined in Sectioh 1.3. Because there are two sets, the wieltipefficients associ-
ated with the vector multipoles will thus carry the laBélor V besides the usuabnd
m. Because the vectorial case is less well-known, a showatern of the formulas
for the (dis)aggregation will be given here. L&{r) be the vectorial field generated
by sources inside a sphere with center This field can be expanded into outgoing
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multipoles:

L l
=3 3 [atnln ke =)+ N (k=) ] (340

=0 m=—

®(r) can now be expanded aroung as:
L l ‘
=037 [l (ke = 72) + BN, (R —12))| (341)
=0 m=—I

with b7 andb)",, defined by means of the vector multipole translation mat8{:[

[bM] _ {a’]{ﬂw (k(rg —71)) ol (k(re — Tl))] , [GM] (3.42)

b afony (k(ra — 1)) alipy (k(ra —r1))] eV

with o?,,, anda®,,, defined by means of the vector spherical wave operators in
(1.130) and (1.131)

[ (k)]s s = 237 l’/le X}, ,(I%*)e_jk'ddfe, (3.43)

apMN o =2 Lm Wi E) e ik ddk, _

[y n ()], ., =2j v 1/X, k) " (k) ikdqf,  (3.44)
1, p

if d-é, > 0. Here, theX, ,,, (-) andW ,,, (-) are the so-called vector spherical har-
monics, defined in Section A.3 in Appendix A. Integrals (3.48d [(3.44) can again
be split up in a propagating and an evanescent part and titscte The propagating
part will again be omitted. By means of (3.43), (3.44), angl fitvmulas[(A.66) and
in Appendix A, the aggregation toward the six evaeescadiation patterns
can be written as follows:

L l
O =3 3 [ah Xum (K) = ja, Wi (k)] (3.45)
=0 m=—1
The vector®??® has three Cartesian components. However, Eqns. (A.64)/A68)(
show that the radial component 6% is zero. This permits representing the vector
®P% with only the two components orthogonal A3°. An obvious choice for these
components is to take the part®° parallel withel” andéy’ , which are defined

as follows:
~ps - 2pm .
€0 = Ry b R(i?) ,€z) Ro- 63;} (3.46)
2
e, =Ry - R(%ﬁ,éz) ‘R - &5, (3.47)
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Heree¢ ande, 3t ,, are the two usual nonradial unit vectors in the sphericatdioate
system. ExpreSS|oﬁI46) does not containsan the right hand side for reasons
that will be explained in Sectian 3.4.2. The aggregatio®ff is thus reduced to an
aggregation to two scalar quantltles namelgfd, - ©7° andep”, - @7

L l

R s } s - ps . N aps - ps
ey, ey Z Z j {a%egv Xim (k:v ) —jaﬁneg’v “Wim (kzv )}
=0 m=—1
(3.48)
el e = Z Z {almee - Xim (l%zv)S) - ja%égf"v -Wim (lg:zs)}
=0 m=—1
(3.49)

This aggregation for the vectorial case can now be acceliattwo ways. These
will both be outlined below. In what follows we will only coiter (3.48) because the
formulas for (3.49) can be derived in a very similar fashion.

3.4.1 A Faster Aggregation for the Vectorial Case: Method 1

The rotations of the argument of the vector spherical hafosaran again be brought
outside by means of the Wigner D-matrices which yields:

Aps S __
(j)v O =
2pm A3+ S 2pm ~3+\ M
R(77€z)‘R0'e¢ﬂ, Z Z Xim | SR(——,&.)-Ro -k, aim
=0 m=—1
2 ~
— Wi (SR(Z;T,@’Z) Ro - k3+) a’le} (3.50)
with:
M
a/lml ZDm ml ]la{\{n (351)
Cl lm1 Z Drn m1 ] aivm (352)

To remove the dependence othe properties of the vector spherical harmoriics (A.60)
and|(A.61) can be used. The dependencge can again be removed using the diagonal
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Wigner D-matrices for rotations around theaxis:

e, O = Z Z st [ (Ro - €31,) - sz(Ro~I%f’,+) M (3.53)
1=0 m=—1

—js(Ro-&5%) - Wi (Ro-kf’f) a'f,vm} (3.54)

or after splitting the summations:

TR DI

r=0 ¢g=0

< > [Re-edh) Xiw (Ro-E) )l

r=1 mod2 g=m mod3
—js (Ro- &%) Wi (Ro- k) a'h,]  (355)

Despite the splitting of the sums, there is still amside the brackets. This can be
resolved by rewriting the sum as:

Aps @ps _ ZZST 7,q

r=0 q=0

< Y | X (Ro-edh) Xuw (Ro-k)dl

q=m Mod3 | r=1 mod2

Y (Re-elh) Wi (Ro-k, ) dl|  (356)
I=(1—r) mod2

Equation[(3.56) again requires only one sixth of the amotintark that is needed
for (3.48). Indeed, there are six new radiation patternsghuoh of them requires six
times less work. The disaggregation is entirely analogouisd aggregation.

3.4.2 A Faster Aggregation for the Vectorial Case: Method 2

The (dis)aggregation in the vectorial case can also be eratetl in a different way.
This method does not use the inversion properties of theowepherical harmonics,
but rather uses the transformation properties under theoperator. This method
is easier to implement and slightly faster than method 1. adgregation, given by
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(3.48) and[(3.49), can be concisely written as:

. ps ps L 1 Mp s,lm N.,p,s,l,m M
BB wb ol i e 1 PR
with:
Aghpetm — e X (K2, (3.58)
agpetm = jtep - [= Wi (k)] (3.59)
agrpetm — jles - X (K)) (3.60)
Ayt = jters =W (K], (3.61)

As stated before, the unit vectoe§’, andeé’’ are orthogonal to each other and to
kP®. As a consequence:

égsu (kZDS x éZ)Sv) = kgs (é«‘) v égsv) égsv (AO v kp‘?) (362)
=0 (3.63)
which yields, with the fact that;” andeg”, have unit length:

kD® x el = +keb, (3.64)

The sign can be chosen freely, but it is convenient to work &iplus sign, since that
is similar to the usual unit vectors in spherical coordisa#s a consequence:

kDS x &bt = keb, (3.65)
&b, x ki = kb, (3.66)
kels, x ebs = ko’ (3.67)

This particular choice explains wigj)’, has the additional factorin (3.47):

kb x e’ = kel =Ry R(Z—,&.) - Ro - [skit x & ] (3.68)

2
= skRy ! - R(%,éz) Ry - et (3.69)
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With this choice, it can be easily shown that:

kPe - ps
M,p,s,L, : A p s AN,p,s,l,
AP — (e x e) - X (R)) = A5 (3.70)
N,p,s,l,m 1+1 kps s > Ps M,p,s,l,m
yP,S5t, . v 5 N 'P,S5t,
Ad’,;)n =J ( k x eg,’u) ’ Wl»m (kv ) = ]Agmp (371)
So (3.57) becomes:
DS L ! N,p,s,l, M,p,s,l
_]egfv . (_)gs B Ael’vp s,l,m A@yvp 5l m . a{\gm (3 72)
DS *E:E: M,p,s,l, N,p,s,l, N !
€ O 1=0 m=—1 Ag ) Ag m

It is worthwhile to point out that thé x 2 matrix occurring in[(3.7R2) is circulant and
can thus be diagonalized by means ofatxe Fourier matrix. After some calculations,
this yields:

L l
1
- ADS ~DS ps __ z : N,p,s,l,m M,p,s,l,m M N
(_]ed)ﬂ) + 69}1)) . @U = 5 Z (AG,U + AO,’U (ahm + al,’m)
=0 m=—1

(3.73)

This expression allows to reduce the amount of work assextiaith the aggregations
by a factor two. It also exposes some fundamental aspectsobdivmultipoles. For
example consider the vector multipole translation matsigizen in[(3.42). This ma-
trix is block-circulant and can thus also be block-diaga®al by means of the x 2
Fourier matrix. This yields

[bM—I—bN] B {a%M—Fa%M 0 } ' {aM—&-aN} (3.74)
o — "] 0 afipy — o] (@™ —a .

This allows a two times faster application of the vector mpole translation matrix.
Another example can be found in [14]: the recurrences foc#heulation of the vector
multipole translation matrices?,,, anda’, ; are coupled, but they can be decoupled
by usinga®,,, £ of,  instead. As for the vector multipoles themselves, thiskloc
diagonalization of the vector multipole translation maid a change of basis which
boils down to using using the combinatiohé! + N7 instead ofM; andN/ .

All this is caused by the transformation propertieshdf + N7 under the curl
operator:

lm lm lm lm

Vo [M, =N =k [N, =M, | = 20 M, 2 N, (3.75)

ApparentlyM/ +N{ andM{ — N areeigenfunctions of the curl operator with
eigenvalues-k and—k respectively. Any electromagnetic field in a source-fregae
is a superposition of vector multipole&l; andN7 and can thus be decomposed
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into a part with eigenvalue-k and a part with eigenvalue k£ with respect to the
curl operator. This is the so-called Beltrami-decompositdf the electromagnetic
field [15,16]. Because the curl operator commutes with thedliation operator, these
parts will remain separated under translation. Indeedl|yampthe curl before or
after translation of one of the parts must yield the sameltiesm no mixing of the
two parts can take place under translation. Therefore,e¢htov multipole translation
matrix cannot contain coupling betwedd! + N/ andM] — N7 fields. For
the aggregation, no mixing will occur if the plane waves (tuiah the aggregation is
done) are also eigenfunctions of the curl operator. Alttowgt explicitly visible, this
is already the case in (3.73). To show this, Eqn. (3.73) isitem as:

(-jep, +ep,) - o
L l
IPIY, (el Een) Vi, (B)) [alt, +al]  (3.76)

pM»—‘

=

with me (+) defined in Egn.| (A.80). From this it is seen that the plane wdzere
the form

Vi (B) ek (3.77)
and it can be verified easily that these plane waves are eigetidns of the curl
operator:

v x [Vﬁm (kp) e—f’“is"‘} — 4V, (k”) kL (3.78)

A similar block-diagonalization as the one for the aggriegatan also be done for
the disaggregation, yielding an acceleration by a factor fhe dependencies (3/16)
can now be used again to obtain further acceleration by arfdlutee, resulting in a
total acceleration by a factor six. Unfortunately, the isien properties (A.60) and
(A.61) of the vector harmonics cannot be used any more bed&ﬂﬁn + Nf are
not eigenfunctions of the inversion operator. Indeed, thersioa and curl operator
do not commute, so their eigenfunctions cannot be the same.

The method described here is slightly faster than the meftomd Section 3.4.1.
This is because the factor two from the block-diagonaliratf the (dis)aggregation
is almost completely free of any overhead. Just combineafle anda;",, into
aj'r, + ap, before the start of the entire FMM and the two sets of coefiisige-
main completely independent until the FMM is finished. THsogoermits running
the FMM on two processors without any communication betwbem, with perfect
load balancing. Moreover, the second method is easier tteimgnt. It is worth-
while to point out that the gain from using eigenfunctionghe# curl operator is not
limited to evanescent wave solvers. In fact it can be useshinvectorial FMM in
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electromagnetics, including the MLFMA (faster (dis)aggation if both electric and
magnetic currents are present) and LF-FMMs (all translatiatrices become block-
diagonal, as shown in (3.74), yielding a factor two). Fipdlh the method described
here thek?* andk”~ radiation patterns do not couple. So if for example only ra-
diation patternk>* is required, only the threk?™ patterns will be calculated. As a
conseqguence an asymptotic fac2as still gained compared to the direct method.

An operation count as in Sectibn 3.3 will now be performede Bperation count
for doing the rotation on the two sets of coefficients is:

L

23 (2 +1)° =

=1

Wl N

(4L +12L% + 11L) (3.79)

The operation count for the construction of the new radigpiatterns clearly i$V (L?+
2L). The postprocessing step requiBs$” multiplications. The total cost is thus:

(4L° + 1207 + 11L) + 4V (L* + 2L + 9) (3.80)

wl N

The cost without acceleration 24V (L? + 2L). Therefore, the value df for which
the proposed method is faster than the one without acceleriatgiven by:

LAL? +12L + 11

V -
Z 6 B2+ 10L—9

(3.81)
Equation|(3.81) is always satisfiediif < 7, because the right hand side is certainly
smaller thanl which is smaller thari”. Moreover,V = O (L?) again assures that
equation[(3.81) is also satisfied for larger Therefore it is safe to say that for any
L, the method presented in 3.4.2 is faster than the direcbappr This will also be
validated in section 3.6. The acceleration factor is given b

24V (L? + 4L)
3 (4L3 41202 + 11L) + 4V (L2 + 4L + 9)

(3.82)

Again for largeL, V = O (LQ) so the acceleration factor becomes six.

3.5 Extensionto N axes

The rotation method described in the above can be genatatizecase wherd” axes
are located on a cone as in Figure 3.3. This generalizatiirbeidemonstrated for
the scalar case only, but evidently it can be used for theoviattcase as well. The
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Figure 3.3: An example configuration with seven axes.

formula fork2* becomes
ps _ p—1 2pm N+
kP =Ry' - [sR(55e2)| ‘Ro- k)T Ws € (1,41} ¥p € {1,..N} (3.83)

with Rg the rotation matrix which rotates the reference frame tovafr@me in which
the symmetry axis of the cone is the nevaxis. When all the steps of the method are
repeated, the following expression is obtained:

1 N
ors =" gl K (3.84)

r=0 ¢=0

Here,I'[¢ are2N new radiation patterns, which each requiré times less work than
one 'normal’ pattern. Therefore the total amount of work éealuating the9 is
independent of the number of ax&s The recombination step is the only remaining
step and can be done with an FFT. Indeed, the sum @vepresents precisely an
inverse FFT.
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3.6 Results

The vectorial stable plane wave method was applied to thitesicey from spheres
[17]. In particular the T-matrix method was used, descrilvedetail in [18], which
was then accelerated with the vectorial stable plane watkade The multipole-to-
plane-wave and plane-wave-to-multipole operations argalparts of this algorithm.
A uniform discretization of the evanescent integral in battthe integration variables
was used. This technique is discussed briefly in [6]. The otbflom Section 3.4]2
was used to speed up the (dis)aggregation. Figure 3.4 shevesteleration factor of
the (dis)aggregation from the multipole sources on thergste the evanescent plane
wave radiation patterns of the lowest-level boxes as a imof the multipole ordef
used on the spheres. The acceleration factor is defined si¢éne ime needed for the
direct schemel((3.49) and (3.48)) divided by the time neddethe newly proposed
method from Section 3.4.2. As can be seen, the curves shomgsfiuctuations. This

T T
—o— Aggregation on Intel

—O- Aggregation on Opteron
—8- Desaggregation on Intel

8 —0— Desaggregation on Opteron

Speedup Factor

1 1 1 1 1 1 1 1 1 1
1 2 3 4 5 6 7 8 9 10 11

Figure 3.4: The acceleration factor of Methatifor the vectorial case as a function bf The
Intel processor is a Pentium 4, 2.40GHz and the other processor igtaro® 270.

is caused by peculiarities in the hardware because wherotteis run on two differ-
ent processors (an Intel Pentium 4, 2.40GHz and an AMD Opt27®), the curves
behave differently. However, it is clear that the acceleratactor grows towards six
with increasing multipole order for all the curves.

In order to assess the acceleration directly in the contietkteostable plane wave
method, a typical multiple scattering problem was solvetie problem consists of
8 x 4 x 4 = 128 spheres with radiuscm on a rectangular grid with periddcm. The
spheres have a relative permittivity t and a relative permeability df. Figure 3.5
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shows the geometry of the problem. This scattering problers solved for various
accuracies at a frequency 05GHz, so the aggregation is in the LF regime. The
accuracy setting has an influence on both the stable plane mathod and on the
multipole order that is necessary to represent the fieldh@spheres. In this test, for
every multipole ordell betweenl and9, the accuracy obtained by an exact solver
was measured, and the stable plane wave method was setvier dieils accuracy. For
each box, all the radiation patterns were calculated, sdliearesults would be more
representative for larger scattering problems. The stalblge wave method used one
level with translations. Figure 3.6 shows a logarithmict mibthe iteration time and
accuracy as a function of the multipole order for both thedilaggregation method
and the method from Section 3.4.2. From|3.6 it is visible thatacceleration in this
problem saturates at approximately a factor four. This issed by the fact that the
other operations (near interactions, translation) alsb @mputational cost. Since
these operations are not accelerated, this has a negdtce@i the acceleration.

3.7 Conclusion

A novel method has been proposed that accelerates the oledtip-plane-wave and
plane-wave-to-multipole operations in the stable planeewaethod. The fact that
the Wigner D-matrices become diagonal for rotations ardhed-axis has been ex-
ploited to obtain a acceleration of a factor six. Apart froome overhead which
becomes negligible for not-too-small multipole orderss teduces the computational
cost of the six (dis)aggregations of the stable plane wawvthadeto the cost of only
one. The method has also been extended to the vectorial nds® she case with
N axes. For the vectorial case, two possible methods havepgreposed. The first
is very similar to the scalar case, the second uses the Belttacomposition of the
electromagnetic field. This second method permits spijtthe vectorial FMM into
two completely independent FMMs, including the (dis)aggt®n from multipoles.
As a consequence, some of the overhead associated withiraetbod is eliminated
and this results in a method which is faster than the dirgetagerh for any multipole
order. These results have been shown both theoreticallynantrically. The Bel-
trami decomposition is also valid for any vectorial FMM]Istielding an acceleration
of a factor two.
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N
‘ 'IN' 'N' ’» 'N'

Figure 3.5: The geometry for testing the performance of the new method in the stalle pla
wave method. The spheres with radiicsn and permittivityl 2 are located on & x 4 x 4 grid
with period15cm. The frequency i8.5GHz.
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Figure 3.6: The accuracy and time required fbiteration as a function of the multipole order
L. The scattering geometry is shown in 3.5.
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A Normalized Plane Wave
Method for 2-D Helmholtz
Problems
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* Kk k

Although the FMMs using the spectral decomposition of thee@rfunction
can be used for basically all frequencies, the fact that adliation patterns
are needed for each box limits the efficiency of these mettodesed, there is
some overlap in the validity regions of the six representetiof the radiated
fields. As a consequence, some of the points in the six repatissms must be
redundant. The MLFMA is nondirective, i.e. it requires oohe radiation pat-
tern, and is thus more efficient in this respect. HoweverMh&MA fails due

to numerical reasons if the boxes get too small compareddevévelength. It
is therefore useful to try to understand and control the nucaginstability of

the MLFMA. In this way, it is possible to find an intermedialgaithm that

combines the stability of the spectral methods with the dicgctivity of the

MLFMA. In the following, such an algorithm for the 2-D casel&seloped.

4.1 Introduction

The basic problem that will be addressed in this work is th®stattering of electro-
magnetic waves, i.e. a 2-D Helmholtz problem. This scattegroblem can always
be written as an integral equation in which a convolutionuosavith the 2-D Green
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function. All sources and fields are assumed time-harmadeioporal dependencies
e/“t are suppressed. Therefore, the 2-D Green function is giyethdo cylindrical
Hankel function of the second kind and zeroth order [1]. Thetidd of Moments
(MoM) reduces the continuous integral equation to a lingatesn of equations of
dimensionN. However, often, problems involve so many unknowns thatafime-
thods to solve the linear system, e.g., LU-decompositicst@o slow because of their
@) (N3) computational complexity. The brute-force applicationitefative solvers,
e.g., the biconjugate gradient method, permits to solvéirtear system ir©O (PNQ)
operations, wheré” is the number of iterations required by the iterative sobeer
reduce the residual error below a preset threshold. The atatipnal cost can be re-
duced dramatically by applying a fast multiplication scleerm.g. an FMM. At this
point, a distinction has to be made between low-frequenclpms (e.g., microwave
integrated circuits), which are physically small compatedhe wavelength but re-
quire many unknowns because of the small geometrical detaild high-frequency
problems (e.g., antenna arrays), which are large in cosatd the wavelength.
Consider the configuration depicted in Fig. 4.1, compgsinsource and an ob-
servation point residing gi; andp,; which are part of square source and observation
boxes centered abopt andp,,, respectively. The core of the 2-D low-frequency fast
multipole method (LF-FMM) is the multipole expansion of tHankel function [2]

K K
HP (kpsi) ~ Y > By, [0 am BPime - (4.2)
n=—Km=—K

Here,p,, is a shorthand notation fgr, — p,, p and¢ are defined by = p cos pu, +
psin pu, andk = w,/ep is the wavenumberis is the multipole order above which
the series is truncated. Theand matrices are defined in terms of Hankel and Bessel

<

Figure 4.1: The arrangement of the position vectors for two interacting groups.

functions as
[@(p)] = HZ,, (hp)ed =%, (4.2a)

(B(0)) o = Tn—m (kp)e? 709, (4.2b)
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Expression (4.1) can be generalized to the expansion oéhiyider Hankel functions
as follows
alp;) = Blejy) - alpy) - Blew) 4.3)
N—— N—— N——

Disaggregation Translation Aggregation

For low-frequency problems the implementation of 4.3 intmatilevel scheme im-
mediately leads to a matrix-vector multiplication with amgutational complexity that
scales a®) (V). For very-low-frequency problems, i.e., very smigll, the Hankel

and Bessel functions ih (4.2a) and (4.2b) become very langevary small, respec-
tively, resulting in overflow and underflow errors. Howevthis problem easily can
be solved using an appropriate normalization [2]. Althotigea computational cost
scales a®) (V), this scheme is 'slow’, i.e., has a large pre-factor, beeaaslations
and (dis)aggregations require matrix-vector multiplimas with dense matricesand

8.

For the same reason, the application[of (4.3) does not leadldwver compu-
tational complexity for high-frequency problems. Indeéat, these problems, the
required number of multipoles increases for higher levetoeding to the formula
K =~ kR + B, whereR is the radius of the circumscribed circle of the square boxes
on that level and3 is a constant. The cost needed to multiply the dense G ma-
trices with a vector is proportional to the square of the nendf multipoles. As a
consequence, the computational complexity remé)r(:%\f?) [2]. To obtain a lower
computational complexity for high-frequency problemsisinecessary to use diag-
onal aggregation, translation, and disaggregation nestrid his can be achieved by
expanding the Hankel function into plane waves (i.e. the MI2H3, 4])

Q
1 , . . ,
Hy (ko) = g5 o €00 o 000 Tk, pra, gu)el ™1 o=,
=-Q
(4.9)
Q
Tk, p,¢) = > HSP (kp)eP 5=, (4.5)
p=—Q
2mq
_ , 4.6
Y 20Q + 1 (4.6)

Similar to the number of multipoles, the number of plane vgayes related to the
box sizeR throughQ =~ 2kR + B’ with B’ another constant.

To reduce the pre-factor for low-frequency problems, it iddae very convenient
to have diagonal operators for that case as well. Unforaipathe MLFMA (4.4)
breaks down at low frequencies because of a numerical itistataused by round-
off errors. Indeed:H,(,z)(k;p) diverges exponentially as a function pfl if [p| >
kp. Hence, in[(4.5), very large numbers, i.él,§2)(kp) for large |p|, are added to
numbers of the order of unity, i.eH,(,Q)(kp) for small|p|, and the information in the
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smallest numbers is lost. In [5,6] this problem was tacklgdgiinhomogeneous plane
waves. In this work, an alternative, conceptually simptdresne will be presented. In
addition, the proposed scheme uses a lot of the machinarytfre original LF-FMM,
which means that existing low-frequency FMM solvers easily be modified.

4.2 The MLFMA

In this section, an alternative formulation of the MLFMA Wile derived which will
allow to remove the numerical instability mentioned at the ef Section 4.1. This
formulation starts directly from the truncated form of ttdedion theorem/ (4./1). A
translation in the LF-FMM corresponds to calculativig € [— K, K] something of
the form

K
o, = Z [a<pl’l)]nm [lg(pli)]mﬂ’
m=—K
K
= Z H,@m(kpl/l)ej("_m)qb“lJm(kpli)ejm¢l’i. 4.7)
m=—K

As the matrixa(p;,;) clearly is Toeplitz, the required matrix-vector multigiton
can be performed with Fast Fourier Transforms (FFTs). Tovstis, consider the
following identities

2K
1= > Spnm ¥n,me[-K, K], (4.8)
p=—2K
1 2K .,
S = g 2 ¢ W vnm e [FK.K], (49)

qg=—2K
with ¢; ; the Kronecker delta. By means of (4.8), eq. (4.7) can be peessed as
K 2K

Bu= > D Gy mHP (kpr1)e P T (hip) el (4.10)
m=—K p=—2K
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Replacing), ,,— by the sum in/(4.9) and exchanging some summation signssyéeld
diagonalized form for the translation operator

2K 2K

1 i
Po= ) 1K +1 > HP (kppi)ePPrie I
q=—2K p=—2K
K 2 2
) | ST lkpr)elm oo IR | SR (411)
m=—K

All the sums in[(4.11) can be calculated using FFTs and, vehatén more important,
the translations themselves are pointwise multiplicatiohtwo functions ofg. It
is worthwhile to point out that formula (4.11) has the samgsptal meaning and
computational cost as the MLFMA, but that it retains multgsorather than plane
waves as the basis functions for the radiation patterns.

However, this alternative formulation of the plane wave amgion still suffers
from the same numerical instability as the original vergidd). When looking at the
summation ovep in (4.11), it is obvious that, aH,(,z)(kp) grows exponentially larger
as a function op, the lower order terms become swamped in the higher ordmster
A similar swamping, but this time of the higher order multgg occurs in the sum
overm. These numerical instabilities eventually lead to the detedfailure of[(4.11)
for low frequencies. In the original formulation of the MLF(4.4), this cannot be
corrected [4]. However, the new formulation will allow torde an expansion that is
diagonal and stable at low frequencies.

4.3 A normalized plane wave method

Now we will show how the translation operator can be stabdgdnalized in the low-
frequency case. Identity (4.8) can be rewritten as

-1 2K
1= Y Syt 1375, t Pl ynom € [~ K, K], (4.12)
p=—2K p=0

with ¢ still a freely chosen number called the normalization factis new form of
(4.8) has been opted for because of the fatrthat also occurs in the asymptotic
behavior of % (z) if z is small ¢ < 1)

2Pl (pl-1)t

e p#0,

‘H}f‘) (x)’ e (4.13)
Zlnz p=0.
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Following the same steps as in the previous section Witi2j4ristead of (4.8), the
following expression for the matrix-vector-multiplicati is found

2K -1

1
_ }: E : H®) 1Pl gindiy =i T
@n = 4 n 1 p (kpl’l) € Ule 4K+
q=—2K |p=—2K

K
2mgm . 2mgn
l g T (kpps)ed ™ot me™ J4K+11 el TRET
m=—K

. . 2mqp
+ Z lZ H,(>2 kpm)t'p'eﬂp@’lefwl
x 4K +1

K
" [ > Tmlkpu)e it e ji;&l] O (4.14)

m=—K

This new form[(4.14) can be made numerically stable with gor@griate choice of
the normalization factot. Indeed, every Hankel function is accompanied by a factor
t?!, allowing it to be normalized. A remarkable feature [of (4.istthe fact that a
good normalization fon)(x) also normalizey,, (x) relatively well. Consider the
asymptotic expansion of the Bessel function for small

lml

| Jm ()] ~ (4.15)

In the first term of expression (4.14) the summation owveis normalized form > 0.
The J,,,(z) for which m < 0, are “anti-normalized”, resulting in their rapid loss.
However, as can be seen in (4.7), the terms for whick: 0 also very rapidly lose
importanceas |m| increases. A detailed analysis shows that the loss of/ther)
is approximately compensated by a comparable loss of irapoet of these terms in
(4.7). Here, "approximately’ means that the nett loss da#sdepend orkp. In the
second term of (4.14), thé,, (x) for whichm < 0, are normalized and the others are
anti-normalized. For the same reason, this does not resaltiramatic loss of preci-
sion and the numerical instability associated with the sations overn in (4.14) is
avoided.

In addition, the matrix-vector-multiplications assoei@tvith the aggregation and
disaggregation steps in a multilevel scheme can also bewl#iged in a similar way
by using variations on (4.8)

o for the aggregations, the following kind of matrix-vectoultiplication must be
done

K

= > B B01)] o (4.16)

m=—K
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K
= Y Tuem(kpr)e? T (Rpr ) (4.17)
m=—K

The 3(p;,;) Matrices are also Toeplitz, but the Bessel functidasayexpo-
nentially as their order increases. Because of this, theepowft have to be
rearranged
il S 2K S et~ P i > 0,
{ T e e (@19
YT ok Spmmt T Vn <0,

which yields the following diagonal formula

2K 2K

. . 27
¢l > > ﬁJp(sz/l)t’pe“"i"’le’J4K?+p1
q=—2K |p=—2K

K . - 2mTgm - 27gn
o T (kpr)edmerit—meTIIRTT | @ TKTT Wn > 0,

(I)n — Lm=—K
2K 2K

Y | (k) trertvie IR
qg=—2K |[p=—2K
K . . 27wgm . 27wgn
X{ > Jm(kpli)ejm¢litm6]‘”<+1] el IKFT Yn < 0.
m=—K

(4.19)

X

o for the disaggregations, a similar approach can be appHadte the multipole
expansions that are to be disaggregated increase withrggowultipole order,
another form off(4.8) is in order

1= {le)g—ﬂf 5”’”‘mt7(ffp)t‘m‘ vm 2 0, (4.20)
Yoo ok Opn—mt "™ Ym < 0.

4.4 Determination of the optimal normalization factor

Having derived normalized diagonal forms for the aggregmttranslation, and dis-
aggregation operators, the task ahead is the selection witable, if not optimal,
normalization factor. First consider the following sum, arising in the formulal@)
for the diagonal translation

2K
N HP (kp)tlrleiroe T, (4.21)
p=0

In comparison to the other sums, this sum is much more pronerteerical instability
mostly because the Hankel functioﬂém(kp) increasewith increasingp. As a con-
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sequence, the lowest order terms which contribute the matei addition theorem
(4.3) are lost in the higher order terms. This suggests thafl] is the most 'danger-
ous’ summation, and thus the one upon which to base the tierivaf ¢. By choosing
tas

1
RERICOIS
HyR (kp)
the highest and lowest order termslin (4.21) are of the sangmituge. It is worth-
while to point out that the asymptotic expressiﬁ@.lB)Hé?) (kp) contains the fac-
torial (|p| — 1)!. Afactorial never can be completely compensated with aoeaptial
function and this implies thatﬁp‘Hzgz)(kp) possesses a minimum at= +p,,;,. A
straightforward calculation shows that this minimum isatex at

(4.22)

kp

in = [ — 4.2
Pmin =[5, (4.23)
for smallkp (kp < 1). Here,[-] is the ceiling function. Since the largest term'in (4.21)
is Héz) (kp) which is of about the same magnitude as unity, the ratio ofthallest

and largest term is approximately equal to

2 .
11 H? (kp) ~ e3¢ (4.24)
[521 ke
2t
To obtain[(4.24), expression (4]13) was used, together Stitling’s formula and the
fact that[%] ~ %. Also, expression (4.22) farcan be crudely approximated as

(again for smalkp and largek)
ekp

4K’
wheree is Euler's number. From this it is clear that the ratio of theaiest and largest
term, and thus the loss of precision, depends only upon thacof multipoles used
and not on the argumehp

7-(-76 2‘ ~ A/ ﬂ7€7%. (426)
v 2t

For K equal to25 this yields a maximum loss of precision of abdotdigits for the
multipole ordersp = +p..;n. This seems quite a lot but, as will be shown further
on, the loss of precision for the addition theorém (4.1) with out to be much less
than this because the higher order terms (the ones clagsg; t9 contribute much less
to the 2-D Green function than the lower order terms. Heneg tto not require the
same accuracy.

ta (4.25)

Now, if the same value faris used on an entire level, which is desirable because it
eliminates the need to do the FFTs for every separate ttaorsla cannot be expected
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that all of the diagonal operators are fully normalized. Ergample, consider the
situation depicted in Fig. 4.2. Translatiohand2 respectively translate the multipole
pattern over a distangg andp,. These distances satisfy the following relation

% - g (4.27)
Q‘b
pP1 -

Figure 4.2: The two most extreme translations in 2-D FMM.

If ¢is chosen to be optimal for translati@rmccording to formula (4.22), thewill
not be optimal for translatioh. At this point it is important to realize that translation
2 requires less multipoles than translatibito achieve the same accuracy. This fact
can be exploited by choosirgptimal for the translation over the shortest translation
distance, i.e., translation According to (4.22), this normalization factor will be too
small for translatior2, resulting in an 'overnormalized’ translation operatomgfich
the multipole componentdecaywith increasing multipole order. However, the loss
of the higher order terms does not result in a loss of pretisecause we do not need
as many multipoles for translatiéhas for translation.

This same value fot can also be used for the aggregations (4.18) and disaggre-
gations[(4.2D). Since all translations on one level are avdistance at least twice
as large as the radius of a box on that level, the diagonakaggtjon and disaggre-
gation operators will be undernormalized, again resultirtpe favorable situation of
decaying multipole components. Due to the fact that a valuedan be found which
turns all multipole patterns occurring on a certain leveitdly decaying multipole
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patterns, the error is controllable over a wide interval @$gible values fofk’. This
is illustrated in the next section.

45 Results

The method described above has been numerically testec mittiation sketched in
Fig.[4.3. This Figure shows a two-level interaction betwpeandp; corresponding

444"44444444444444
1.59 1073\

Paq Pa

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

P '

Figure 4.3: Geometry for accuracy testing.

to the following expansion of the Green function

A
H0(2) DD(kpji)

K K
~ Z Z [ﬁ(de)](m B(Pac) - a(per) - B(Pva)lym [B(Pai)l o - (4.28)

n=—Km=—K

As all three stages of fast multipole methods occur in th@aesion, this configuration
is ideal for testing the accuracy of the normalized planeenaethod (NPWM) with
the diagonal aggregation, translation, and disaggregatages. Figurés 4.4 and 4.5
show the relative error between the direct application c&%and the normalized
plane wave method as a function of the normalization facfor K = 10 and K =
25. The functionsA(kp, t) andf(kp) are relative errors defined as

(2)NPWM
H, (kp,t)
Alkp,t) = |2 — 11, (4.29)
(1) ‘ HPAPP (kp)
(2)ADD
O(kp) = H()Tufp)q , (4.30)
H, (kp)

In both figures the errors for the shortest and the longasstation as in Fig. 4.2 are
plotted. The shortest translation corresponds to translat(p; = 3.18 1073)\) and
longest translation corresponds to translafigp, = 6.75 10~3)\), with an additional
diagonal aggregation and disaggregation. The two horédimes give the relative
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t

Figure 4.4: Comparison between the addition theorem and the diagonal form of th#add
theorem as a function of the normalization faatéor K = 10.

Figure 4.5: Comparison between the addition theorem and the diagonal form of tlittoadd
theorem as a function of the normalization faatéor K = 25.
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errors between the addition theorem (truncatefd amultipoles) and the Hankel func-
tion for the shortest and longest translations. The véfiivais the optimal value for

t obtained with[(4.22) and the 'shortest translation’ prggitm. From this it is clear
that the proposed formula fomorks very well, since it gives us the almost exact loca-
tion of the minimum in the error curve. Fig. 4.5 also demamtsts that the achievable
accuracy of the normalized plane wave method is high. Inde#hd K = 25 both A
andé reach10~1°. As a consequence, the error between the normalized plaves wa
method and the Hankel function is on the ordet @f °.

In the high-frequency regime,becomes approximately equal tprendering the
method equivalent to the MLFMA. Since the normalized plamevmethod entails
only diagonal operators and FFTs, the method also has the samplexity O (N))
for the high-frequency regime as the plane wave method. Mexven the region be-
tween the HF and LF regimes, some care is required. The riegsamich lead to
the conclusion that the accuracy of the normalized planeewasthod is high sup-
poses thakp < 1 to make sure that the asymptotic forms (4.13) and (4.15) ean b
used. In the intermediate frequency zone this is no longer, @nd error estimates
cannot be easily made. Therefore we resorted to numeritidge Fig[ 4.6 showd,
the best accuracy possible (optimized towards the numberutifpoles K) with the
normalized plane wave method, as a function of the trawslatistancé:p
H(§2)NPWM (/4;,0, toptimal)

Vi) = H? (kp)

—1. (4.31)

This calculation was performed for a geometry similar toghe depicted in Fig. 4.3,
but scaled up or down according to the translation distalhteclear that the method’s
accuracy is high for both the HF and LF regime, and that tharacy is slightly more
limited in the intermediate region, but not dramatically.

The normalized plane wave method described above has bgdeniented in a
multilevel scheme. For simplicity, only Perfect ElectiigaConducting (PEC) tar-
gets were used, illuminated by a Thpolarized wave (for which the electric field is
directed parallel with the targets). The simplest integralation describing this prob-
lem is the well-known Electric Field Integral Equation (EJ] which states that the
total electric field vanishes on the surface of the targets

i, [ £1(0) = 1 17 klp - pDin0ac 0] @32
p—C 4 Jo

Here,C is the integration path on the surface of the PEC targetsufikrown quan-

tity is the surface current.. The simulated structure consists of a dense arrangement
of P2 PEC cylinders inside a square with sizem such as in Fig. 4/7. For all the
simulations to comel” = 51. The surface current is discretized in terms of a séY of
pulse functions. The number of unknowiNsthen amounts t65025. The wavelength
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Figure 4.6: The minimal error achievable with the normalized plane wave method axadn
of the translation distance.

K FMM NPWM
11 0.18 0.08
15 0.30 0.23
20 0.53 0.15

Table 4.1: The cost of the translation stage of the two methods and for different rolgtip
orders.

is 6000 m. The normalized plane wave method is compared to a mudtipolver,
which acts as a reference. The multipole solver itself is alstimized in the sense
that translations that are further away are done with ledipoles than translations
that are closer. Table 4.1 shows the CPU time for the trdoslatage of both the fast
multipole method (FMM) and the normalized plane wave metioodlifferent multi-
pole ordersK. This table shows that fak’ = 15, the cost of the translation stage is
even larger than the cost wifki = 20. This can be explained by looking at the corre-
sponding dimensionK + 1 of the FFTs that are required:- 11 +1=45=3-3-5
and4-20+1 =81 = 3-3-3-3. These are both products of small primes, but
41541 = 61 is prime, so the FFTs will be significantly slowerif = 15. The
FFTs were done with the FFTW library [7]. Table 4.2 shows thst of the FFTs and
the translations (pointwise multiplications as/in (4.1#))s demonstrates that the cost
of the translations is indeed rising linearly with the mupidtie orderk. It has to be
recognized that the cost associated with the FFTs can védjyveis a function ofi,
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Figure 4.7: The geometry of the simulated structure.

K FFTs Transfers
11 0.025 0.06
15 0.15 0.08
20 0.045 0.105

Table 4.2: The cost of the FFTs and the diagonal transfers for different multipalers.
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but even if a value fo¥ is chosen such thatk + 1 is prime, the diagonal method is
still faster than the traditional fast multipole method.

4.6 Conclusion

In this work, a normalized diagonal form of the addition tresn for multipoles in
2-D is derived. This approach has several merits, such ag lmeore efficient than
the low-frequency fast multipole method in the low-freqeyenegime and having the
same complexity as the MLFMA in the high-frequency regimiee fiormalized plane
wave method should thus be interpreted as a generalizatidmedVILFMA to the
intermediate- and low-frequency regime. Moreover, exgstnultipole solvers easily
can be modified to use this new method, since multipoles iearaimportant part of
the normalized plane wave method. The multilevel algorithimplemented and the
computer labor for the translation stage is shown to deereassiderably compared
to an already optimized multipole solver. The extensiorhefpiresented normalized
plane wave method to three dimensions is a possible areagtfoefresearch. However,
a similar normalization and diagonalization of the addittbeorem as described for
2-D in this work may not be as straightforward in 3-D.
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The normalized plane wave method developed in the previmser allows
an efficient treatment of two dimensional scattering profde As was stated
in the conclusion, applying the same ideas to the three diinaal case may
not straightforwardly result in a workable algorithm. Inmpliance with this
statement, any attempt to introduce a normalization fattotthe three dimen-
sional addition theorem destroyed the intricate symmetimethe translation
matrices that allow a diagonalization. Reinterpretatiohtlee normalization
factor as a rotation over a complex angle did not result in @éhdimensional
analogue either. Finally, progress was made by noticing,tidaen a uniform
sampling is used in théintegration of the addition theorem of the MLFMA and
a suitable complex shift is applied, translations along thaxis can be done
in a stable manner. This line of research has resulted in &hmethod, called
the Nondirective Stable Plane Wave Multilevel Fast Mulgpsigorithm (NSP-
WMLFMA), which can be used to evaluate the low-frequency ititEractions
that cannot be handled by the Multilevel Fast Multipole Altgon (MLFMA).
It uses a QR-based method to allow stable translations ithaldirections, not
only along thez-axis. The method combines error-controllability and diagl
translations through the use of evanescent plane waves.etAmpit also has
the key advantage that only one radiation pattern is require
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5.1 Introduction

For the solution of three dimensional acoustic and elecagmmetic time-harmonic
scattering problems (assuminé? time dependence throughout this work), integral
equations are of considerable practical importance. legdnthese can often be cast
as

Flr) = / TR (k||r — o'|[)dr, (5.1)

wherek is the wavenumber anm((f)(k [|r]|) is the spherical Hankel function of the
second kind and zeroth order, defined on page 437 in [1], wki@ieglecting a con-
stant factor) also the Green function of the three dimeradiscalar Helmholtz equa-
tion. The unknown7 (v’) can be defined in a volume (leading to a Volume Integral
Equation) or on a boundary (leading to a Boundary Integraiafiqn) or may consist
of discrete point sources. By means of the method of mom&htthse problems are
converted into a system of linear equations of dimengion

F=27-J, (5.2)

whereZ is the N x N system matrix,F" is the excitation vector and the vectdris
unknown and has to be solved for. Using direct solution nathsuch as an LU-
decomposition, is often not feasible sin¥eis usually very large and direct methods
have anO (N?) computational complexity. The application of iterativévens, such
as the biconjugate gradient method [3], permits to solvédilear system ir©® (PN 2)
operations, wher is the number of iterations required by the iterative soteere-
duce the residual error below a preset threshold. Sinced iggration, a number of
multiplications of the system matrix with test vectors is required, the computational
complexity of an iterative solution method can be reducethéise multiplications
are accelerated. In the past, many fast algorithms have dmeaxioped for this pur-
pose [4-10]. Fast multipole methods (FMMs) constitute gmartant class of such al-
gorithms that reduce the computational complexity of thétiplication of the system
matrix with a vector fromO (N?) to O (N) or O (N log N). This is accomplished
by dividing the geometry of the problem into a hierarchy oké® (sometimes called
a tree) and invoking some kind of decomposition of the Greewtion. Especially
the MLFMA, which relies on a propagating plane wave decotitjposof the Green
function, has been extensively used. The MLFMA has allowedsimulation of elec-
trically very large scattering problems [11] that do not @@m much sub-wavelength
geometrical detalil.

However, structures containing considerable sub-wagghegeometrical detalil
cannot be simulated efficiently using only the MLFMA. Thisgartant drawback has
been referred to as the LF breakdown of the MLFMA [12] and issea by numerical
roundoff error. Hence, broadband simulations require ttkegration of the MLFMA
with another method that efficiently takes care of the sulalemgth geometrical de-
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tail [13, 14]. One such other method is based on a multipot®gosition of the
Green function [15]. Although this method hé&s(N) computational complexity at
LF, the translations in this method are not diagonal (eveh point-and-shoot [16]),
resulting in a relatively slow algorithm. The nondiagonalnslations also lead to a
rapidly increasing computational cost in the intermedaatd high-frequency region,
so that a coupling with the MLFMA is necessary to maintain ¢heN log V) scal-
ing. As a response, methods based on the spectral reprisemtithe Green func-
tion were developed [9, 12, 17], which exhibit diagonal slations. These methods
use both propagating and evanescent plane waves and aetfast those based on
multipoles. Due to the diagonal translations, these metluach also be used in the
high-frequency (HF) regime. However, due to the directityaf the spectral rep-
resentation of the Green function, they need six differequiaasions of the Green
function in six different directions to cover the entire spa As a consequence the
factor hidden in the) (V) is still quite large [13, 18]. Moreover, it is stated in [13]
that whenever possible, the high-frequency method (MLFKI9uld be used instead
of the method based on the spectral representation. It geresworthwhile to try
to tame the LF breakdown and extend the validity range of th&MA into the LF
regime. In the past considerable work has been done toig&lfile MLFMA for
LF applications. For example in [19], a new two dimensionalMWA was derived
which is stable and error-controllable for all frequenci€sr the three dimensional
case, the so-called Uniform Multilevel Fast Multipole Atgbm (UMLFMA) was
constructed by Xuaat al.[20]. In the UMLFMA the integration is partly shifted into
the complex plane and the appropriate translation operat@ constructed numeri-
cally. The shift into the complex plane results in radiatpatterns that contain more
near field information. Unfortunately, the UMLFMA turnedtaiw be only poorly
error-controllable [21] and hence of limited use.

In this work, a novel FMM will be presented. This novel methdlde NSP-
WMLFMA, is based on the same mathematics as the MLFMA, butabletin the
LF regime. It can be coupled with the MLFMA, yielding a broadi algorithm. The
similarity of the NSPWMLFMA and the MLFMA makes this coupliagd its imple-
mentation especially straightforward. First the MLFMA Mble briefly revisited in
order to introduce quantities and notations needed in timaireder of the paper. In
particular the bandwidth properties of the translatiomyragation and disaggregation
operators will be discussed, as well as the chosen spetgcaétization. Then we will
discuss in Sectidn 5.3 the origin and nature of the LF breakdaf the MLFMA. The
findings of Section 5]3 will then be used in Sections 5.4/abdd&construct a stable
FMM valid at low frequencies. In Section 5.4 translationsnal thez-axis are stabi-
lized by using a shift into the complex plane somewhat singkain the UMLFMA.
However, unlike the UMLFMA, we will derive the translatioperator in closed form
and derive explicit formulas for the size of the shift in tharplex plane to control
the error. Section 5.5 extends the results of Section 5.Atslations in other direc-
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tions using a QR-decomposition. In Section 5.7 we invegitze DC-limit and show
that the developed method remains valid for static probléfasonclude Sectidn 5.8
contains a few numerical experiments to demonstrate theacy of the method.

5.2 The Multilevel Fast Multipole Algorithm

Consider two cubical regions, called boxes, with centgrandr, respectively. Both
boxes are of equal size, defined by their radius of the circulyiag sphere . The
first box containsP sources’, at positionsr; — a, and the second contair ob-
servation points at positions, + d,. The vectorsa,, d, andrr = ro — r; are
called the aggregation, disaggregation and translatietoveespectively and their
suma, + d, + r Will be denoted as,,. The length of this vector,, = ||r,4|| is
the distance between thugh source and theth observation point. The length of the
translation vector; = ||rr|| is the translation distance. Also, the vectoy + d,
will be denoted ag’)’. Suppose that the translation distanges larger tharr. In
that case the generated fields at all the observation pantbe calculated by means
of the addition theorem. This addition theorem is an exgamsf the Green function
into a continuous set of propagating plane waves, which istegral over the Ewald
sphere

efjk"’pq

1 2T pm ) )
R (krp) = — = — / eIk @ (krp, 0, ¢)e %44 sin 0d0de, (5.3)
0 ( Pq) _jkrpq 47T o 0 ( )

with k = kk = k cos ¢sinfe, + ksin ¢sinfe, + k cos fe, the wavevector and.,,
e, ande, the Cartesian unit vectors. The representation (5.3) oGteen function
converges if|a, + dy|| < rr, which is obviously the case if > 1, with 7 = 7.

The translation operatdF(krr, 0, ¢) and the exponentiat=7%74" have a similar
structure

L
T(krr,0,6) = Y21+ 1) 0 (krr) P (k- 7) (5.4)

=0

R = Y@+ 0k Py (R i) )
=0

with 757 = ||r%]|. The parametef. determines the relative accuracyf the addi-
tion theorem[(5.3). In the literature [22—-25], explicit fiaulas have been derived to
determinel as a function ot. However, here an implicit formula is presented, sim-
ilar to formula (3.41) on page 86 in [16], which is more appiae for further use
in this work. It can be easily shown, by means of the additleotem[(A.10) and
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orthonormality[(A.17) of the spherical harmonics, thaBf=®an be reduced to

L
2 (krpg) = 3 (=)' + Dkt AD (krp) P (75 - #7) . (5.6)
=0

This equation is well known, but is repeated here to emphkatszstrong link with
(5.3). By inspecting the worst case scenario, whéfe= 2rp and P, (#) - #7) = 1,
Eqn. (5.6) can be used to determihén order to obtain a specified target accuracy
This leads to the following condition

€

(2L + 3)jr+1(2krB) ‘h(LQll(kTT)‘ < € |h$? (kryq)

héQ)(krT)‘ . 67)

To avoid the possibility of getting near a zero of the splarigessel function, the
conditionL + 1 > 2krp should be added. If the convergence conditior 1 for
(5.3) is satisfied, such ah can always be found. In practice the condition

ﬁT‘B <rr, (58)

is imposed on the translation vector, with> 2 to limit the value of L obtained
using [(5.7). An obvious consequence of this is the existehaeminimal value forr,
denoted as,,i, = g The parametef is a setting for the MLFMA and is thus fixed
and explicitly known. For example, if is set to%, then the nearest two boxes for
which the addition theorem is used have one box in between.the

In the MLFMA the integral in[(5.8) is discretized, i.e. thentimuous superpo-
sition of plane waves is approximated by a finite sum of plaages. From[(5.6)
it is clear that terms of a higher order thdnin the expansion of the plane wave
(5.5) do not contribute tdsz)(krpq). Therefore, the summation in (5.5) can be trun-
cated atl = L whilst preserving the accuragy Moreover it can be shown that

h{? (kr , o
hfﬁ’ikii > 1foralll > 0if S (kry) < 0. Then from((5.7) it is easy to show that

(2L 4+ 3)jr+1(2krp) < e. Hence, the plane wave can be decomposed, with a relative
accuracy, into spherical harmonics of degree not higher thaisince the translation
operator is also comprised of spherical harmonics of degogdigher than’, their
product contains spherical harmonics of degré@2 L. This allows the discretization

of the integral by means dfL + 1 uniformly spaced points in thg-direction and

L + 1 Gauss-Legendre quadrature points infkdirection. An alternative discretiza-
tion which will be used throughout this work is a uniform distization in both the-




88 A NONDIRECTIVE PLANE WAVE MLFMA S TABLE AT LF

andé-direction

2T

Ony = 10, Yng € [1, No, (5.9)
Ny
2

with Ny = 2L 4+ 1 and N, = 2L + 2. This guarantees an accurate integration of a
function with a bandwidti2 L. This discretization is based on the fact that* ™4 is
quasi-bandlimited with bandwidth in trigonometric polynomials [26]. This means
that the plane wave can be written as a Fourier seri@saofl¢

o—ikTh Z Z al? ed(no+me) (5.11)

n=—Lm=—1L

Hence, to use the uniform points (5.10) and (5.9), this distation requires an ex-
tension of the integration domain @ x 27]. In addition, a smoothing of the prod-
uct of the translation operator witkin #| to a bandwidth in trigonometric poly-
nomials is required for optimal efficiency [21]. This smoethproduct is denoted as
T(krp, 0, )

1 21 27 ) -
hé?)(krpq)=8— / / e IR T T (kry,0,¢) |sin 6] dodg, (5.12)
Y5
9
2N9N¢ > Z e o TR T (ke Oy, b, ), (5.13)
ng=— 1n¢ 1

wherek,, ., = k (Hne , ¢n¢)- As explained in [26], compared to the Gauss-Legendre
discretization, the extension of the integration domaitially yields a discretization
with twice the number of points in thdirection, but this is a redundancy that can
be easily removed by using the identky6d, ¢) = k(2r — 0,¢ + w). The choice
Ny = 2L + 2 facilitates the use of this identity. Moreover, this unifodiscretization
has the advantage that the inter- and anterpolations of ttleMWA can all be done
using FFTs only.

Now consider the two boxes shown in Figure 5.1. Boxontains sourceg,, at
positionsr; — a,, that generate a field in the observation points at positiersd, in
box2. The discretized addition theorem (5.13) allows a fastuat#n of these fields.
To do this, the fields in the observation points are written as

(2) __ T T 7
zp:jpho (krpg) = 2Ny N, ()" - T, (5.14)



5.2 The Multilevel Fast Multipole Algorithm 89

with the column vecto®@? defined by means of the functick (k)

[\Ilq}N¢(n971)+n¢ = v (k7L9,71,¢) ) (515)

U (k)= Jpe Ik gikd (5.16)
p

Disaggregation

Aggregation

In the MLFMA, the calculations are not done in the order st by these formu-
las. First, the outgoing field of bokdue to the currents is calculated ('Aggregation’
in (5.16)). Then this outgoing field is multiplied elemenise with the translation
operatorT (translation) to obtain an incoming field on bxFinally, the actual field
values in the observation points are obtained by multigjyive incoming field by the
disaggregation exponential ('Disaggregation’in (5.16)) summing over, andn,.

If the size of the boxes remains constant, the cost of evaty#te fields in all the
observation points scales linearly with the number of sesiand observation points.
A multilevel version of this multiplication algorithm, usj a tree-like hierarchical
subdivision of the computational domain and a set of rulemase sure that (5.8) is
satisfied [16], leads to a linear scaling for general geaeretr

Box 2

T’2+q

Box 1

= |
T
:I I |
/.I I I
[ S

o S

Figure 5.1: The three steps in calculating interactions between two boxes in the MLFMA:
aggregation, translation and disaggregation.
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5.3 The Low-Frequency Breakdown

It turns out that if the boxes in the tree become too smallether on a fixed-precision
implementation of (5.3) becomes much larger than the tagmiracy, even whernl,
is chosen such that (5.7) is satisfied. This is because of memheoundoff error and
this phenomenon is widely known as the 'LF breakdown’ of theRWIA. The LF
breakdown of the addition theorem (5.3) can be attributethijéo the exponential
increase of the spherical Hankel functibﬁ)(:c) as a function of its order iff > z. As
a consequence the contributions of the low-order termis.#) (se accuracy and fi-
nally drop below the numerical noise level that is set by flg{order terms. Another
(less important) cause is the exponential decrease of therispl Bessel function
ji(z) as a function of its order if > z. In (5.5) the higher order terms drop below the
numerical noise level and do not contribute to the summatigymore. However, the
integral representation of the Green function requireshalée lost terms in both the
plane wave as the translation operator. In a sense, thddtiansoperator must extract
near field information from the outgoing fields which are affeld radiation pattern,
which is essentially ill-conditioned.

Now a crude but simple criterium for deciding whether theithold theorem is
stable or not is deduced. If the floating-point precisiof {s= 2.2 10~ in double
precision), it is clear from (5.4) that the zeroth-ordentdoses too much digits if

5(2L + 1) ]h?(m)‘ > e

h((JQ)(krT)’ . (5.17)

Invoking (5.7) and the LF asymptotic forms of the sphericahkiel and Bessel func-
tions, given on page 437 in [1]

(20— 1)!

W () = (5.18)
l
. X
Ji(@) = [CFk (5.19)

where the double factorial for positive integer values:a$ defined ag2n — 1)!! =
Cn)! - allows for the simplification of (5.17)

2nnl?

i (2krg) < 6T = 4. (5.20)
Similar to (5.17) a stability criterium for (5.5) can be dexdl

Due to the similarity of[(5.20) and (5.21) we conclude thathbeontributions to the
instability come into play below the same frequency, i.eenkr 3 becomes so small
thatj, (2krg) is lost in numerical roundoff error. This observation swgjgehat both
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breakdowns might be remedied simultaneously. For the shkerpleteness, it is
stated again that the instability in the translation opret more catastrophic than in
the plane wave because the low-order terms are lost, whittnilsote the most to the
addition theorem.

On the one hand, the LF breakdown is often regarded as a fiendahproblem,
because of the obvious physical explanation for the phenomenamely that the near
field has to be reconstructed from far field information. Asexdt before, this operation
is ill-conditioned. On the other hand, it is clear that inmit¢ precision no numerical
roundoff errors are introduced and the addition theoremamesnvalid for arbitrarily
low frequencies. As stated in the introduction, considieratsearch has already been
devoted to the stabilization of the MLFMA for LF. A stable foulation in two di-
mensions was presented in [19]. For the three dimensiosal, the UMLFMA was
developed [20] which shifts the integration ovein (5.3) into the complex plane (this
requires an extension of the integration domaifiitp and the appropriate translation
operator is constructed numerically. The shift of the iré#ign overd results in out-
going fields that contain more near field information. Uniostely, the UMLFMA's
error-controllability is poor [21] making it of limited use

5.4 A stable translation in the z-direction

5.4.1 An analytic translation operator

In this section a novel method is presented that allows etabhslations in the-
direction. The method uses a similar shift into the compliexe as the UMLFMA,
but since the construction of the novel method immediatdgs to an explicit expres-
sion for the translation operator, its numerical constauncis avoided. Moreover, we
will gain more insight in how the LF breakdown is eliminat&dich in turn results in
a much better error control.

The derivation starts with the integral expression for thiegd function with the
extended integration domain (5/12). For translations éxthlirection,rr is equal to
rré. and the expression for the translation operator (5.4) sfieplo

L
T(krre.,0,0) = > (2 +1)j'h{” (kre) P, (cosb) . (5.22)
=0

In Section 5.2 it was noted that the translation operatortin@smoothed to a band-
width L in trigonometric polynomials. In [21, 26], this is done byladating the
product of formula (5.22) with a smoothed versionifi §| and truncating the result
in Fourier space using an FFT. This method cannot be appdies] kince simply eval-
uating formula[(5.2R) is already unstable at LF and desttbgsinformation that is
comprised in the low-order terms. Instead an analytic iratiggn will be used for cal-
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culating the Fourier spectrum of the smoothed operiﬁ(eréz, 0, ¢). Sincel(5.22)
does not depend af, only a Fourier series ifi is necessary

L

T(krpé.,0,¢) = > by, (5.23)
with
1 ¢ (2)
= —1(2
bn =5 ; (204 1) m (k) £, (5.24)
and
27 )
fl = Py (cos 0) |sin ] e=Im?dg. (5.25)

0
(5.26)

The presence of the absolute valugdim ] makes this integral somewhat cumber-
some. However on page 335 in [1], a formula for the Legendignoonial of argu-
mentcos 6 is given which removes this problem. Rok 6 < m we have

2142 N (2k — NI+ K)!

Py(cosf) = R E 2k DN sin [(I + 2k + 1)6], (5.27)
=0

and forr < 0 < 27

2142 2 (2k — D)1+ k)!
sin [(1 + 2k +1)0]. (5.28)
T = k(20 + 2k + 1)1 [ ]

P(cosf) = —

Multiplying these expressions byin 6| yields a single expression valid for &ll

202 22 (2k — DN+ k) .
Z( M )

Py(cosf)|sinf] = R 2k £ 1)1 sin[(I + 2k + 1)0]sin6, (5.29)
— k! "

where(—1)!! = 1. The product of the two sine functions can be written in teahs
cosines which, if # 0, yields after some manipulations

ol &2 2k =31+ k-1
Py(cos ) |sin 6] = ——Z (2% + 1)~ 2l)+(2k++) P cos[(1 + 261,

(5.30)
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with (=3)!! = —1. Hence,

L#0: =205 (2 + D)/ E e St (S o + G2k,
Fh=l=0n #0455, Sratisn
l=0,n=0:4
(5.31)

From this, the Fourier spectrum @f(krré.,0,¢) can be easily calculated using
(5.24). The coefficientg! have the special property

fl=0V-l<n<l. (5.32)

This means that the spherical Hankel function of oideronly present in the Fourier
coefficientsb,, with n > 1. In other words: ifkr+ < 1 the Fourier coefficients,,
approximately show the same behavior as the spherical Hamations themselves.
Indeed, forkrr < 1 the Hankel functions increase superexponentially as atifumc
of their order, and the coefficientg can be approximated as

by & %j“”'hﬁ(km) {(271 +1) ,‘;“] : (5.33)
Here,(2n + 1) Il ~ /7 (4n + 1) is a slowly varying function ofi if |n| >> 1. As

a consequence of the similarity betwéarandhf) (krr), the magnitude of the spec-
trum increases superexponentially with risjng Figure 5.2 shows the absolute value
of the spectrunb,, for various values ofr,. From the two dimensional case [19], itis
known that a Fourier series with an exponentially incregsiectrum can be ‘normal-
ized’ by means of an exponential factor designed to compersathe increase of the
spectrum. The introduction of this exponential factor cardbne by shifting the in-
tegration path into the complex plane. It is worthwhile tampout that, although this
shift can only compensate an exponential, the superextiaitgincreasing spherical
Hankel function can be approximated by an exponential. Wecaime back to the
validity of this approximation later on. First the integraepresentation of the Green
function [5.12) is cast into a form only containing the irasig half ¢ > 0) of the
spectrum

1 oo [ L .
W) = 5= [ [ e [ > bneﬂ""] d6do, (5.34)
n=—1L
1 o 2 .. Pq 0 i < j
= — / e_]k.rA Z qnbne‘]ne + Z qnbne]ne d0d¢7
87 Jo 0 n——1~L n=0

(5.35)
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—— Lrr = 10.0

—~—krp =1.0
—A— Ly =0.1

—8— kTT =0.01

Figure 5.2: The absolute value of the Fourier coefficiemts of the translation operator

T(krré.,0,0) for various translation distances.
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whereqy = % andq,, = 1forn # 0. Sinceb,, = b_,, we can apply the transformation
[0, 9] — [2m — 0, ¢ + 7] to the first term to show that the two terms yield the same
result. This leads to

1 2m 27 ) v L .
h(()2)(krpq)zﬂ /O /0 eIk [anbnem@] dodg.  (5.36)
n=0

The translation operat@ﬁz_L b,e’™? has been replaced by a ‘one-sided translation
operator2 Z,Ll:o gnbne?™  which has a superexponentially increasing spectrum. The
integrand in|(5.36) is an entire functiontéfAs a consequence the integration p@gh
shown in Figure 5.3 can be shifted into the complex planeaBse of the periodicity

of the integrand contributions frofi; andCs cancel and as a consequence integration
alongCj and(C;, yields the same value. The addition theorem then becomes:

2 1 2 Imtix ; pq L .
hé)(krpq)zﬂ /0 /0 eI N " gubne’? | dd. (5.37)
n=0

+ix

It can be seen that this expression is similar to the one ngbe UMLFMA. However,
here the translation operator is known analytically. MeeFpthe explicit knowledge
of the translation operator will allow us to remove the ibdtty by choosing a quasi-
optimal value fory. A disadvantage of the shift into the complex plane is that th
symmetryk(0+ jx, ¢) = k(2 — 6 — jx, ¢+ ) can no longer be exploited to reduce
the number of discretization points as was possible witltlogtshift. However, in
Section 5.5, the excess number of points will be removed atren way.

Figure 5.3: Shifting the integration patty into the complex plane. The new integration path
is Cs.
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5.4.2 Determining y

Integral (5.37) is readily discretized using the uniforninge defined in[(5.9) and
(5.10), so the only undetermined parametey.isn order to determing, the relative
error A between the discretized version pf (5.37) and the expljiiesical Hankel
function will be investigated

A(kTT7 kT‘A, X5 E)

Ny No ™ —3k(0ng+iX;Pn, ) TA L Jnby, ,—nx
an:l Zn¢:1 N9N¢€ ¢ ¢ Zn:O q”bne o€ 1

h$D (k| |rre. +7al))

(5.38)

The dependence anis implicitly included in the determination af, Ny and V.
Figure[5.4 shows the relative errdr(0.015, —0.01€&., x, ¢) as a function ofy for
various target accuracies As can be seen, for each plottethere exists a range for
x Where the error becomes constant. This is the rangefof which the error due to
numerical roundoff-error is smaller than the error due teeosources (e.g. truncation
of the translation operator dt, finite number of integration points,...). A good value
of x should thus be chosen in this 'stable’ range. As can be skersite of this
stable range decreases if a higher accuracy is requiredhtially, the stable region
disappears and the target accuracy cannot be achieved emyhhmwever, as will be
shown in Subsection 5.4.3, in that case there is still th®omf increasingrin, i.€.
increasing the parametgr The cause of the disappearance of the stable region and
the influence okry andkr 4 on A is also investigated in Subsection 5.4.3.

A necessary condition foy to be in the stable region can be deduced by reasoning
that it must be possible to numerically (for example by meainEFT) recover the
coefficientsb,, from the one-sided translation opera@rﬁ=O Gnbne?™0me e =X with
sufficient accuracy. Using a similar reasoning as the ortiriggo (5.17), we find the
following condition fory

e@ > 8 |bp|e X, (5.39)

This condition provides a lower bound gn

1. 26|by]
> :
X =T b

(5.40)

As can be seen from the positions of the dashed verticaliimEigured 5.4, in practice
this inequality is a neccesary condition but not a sufficare fory to be in the stable
region.

How then to fix the value of? In the two dimensional case [19].is chosen such
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Figure 5.4: The relative error\(0.015, —0.01é., x;, ¢), as defined in (5.38) on the normalized
addition theorem (5.37) for various target accuraeiekhe dashed vertical lines show the lower
limits for x as determined with (5.40), while the solid vertical lines show the quasi-optima

choice fory as defined i (5.41).
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that the highest order term is of the same magnitude as thestesrder term. This
turned out to be a quasi-optimal value for the two dimendicase. The same reason-
ing can be repeated here, leading to a quasi-optimal valuthéothree dimensional
case given by

1

X:Zhl

2by,

| (5.41)

This choice clearly satisfies (5.40). In Figlre 5.4, thedsgértical lines denote the
value of y as determined with (5.41). It can be seen that, even for kigfet accura-
ciese, this choice remains in the flat part of the curve. Figuré &ds the nonzero
part of the spectrum of the one-sided translation operaithr amnormalization based
on (5.41). Clearly, the differences in magnitude are muchliemthan in the unnor-
malized (i.e. x = 0) case in Figure 5.2. For use in an FMM, various translation
distancesr occur. Therefore it is not immediately clear which one to insg.41).
Similar to the two dimensional case however, it can be easibn that themallest
translation distancerj“}i“ = fBrp = 2minT Should be used. Indeed the radiation
patterns contain enough information for the shortest tatioss, so they certainly
contain enough information for the longer translations.tHe translation operator
higher-orderb,, for longer translation distances might then get lost nucadlsi, but
that is not a problem since their contribution to the additieeorem is smaller than
the accuracy. It can thus be concluded that it is possiblsécone single value foy

on each FMM level, which is based on the smallest translatistance on that level.

Except for reducing the numerical instabilities in the #lation operator, the
choice [(5.41) also normalizes the radiation and receiviatiepn. Indeed, the prod-
uct of the radiation and receiving pattern can be written@saof plane waves of the
form e~7%4' . When taking the trigonometric expansion of such a plane &)
and after some manipulations using (5.37), it follows that

L
B (krpg) =7 gua™, by (5.42)

n=0

Because the highest-order term in this sum must be of ther @fdthe accuracy
¢ \hg2> (krT)‘, it follows

e|n® (krT)‘ ~ a’iquoeLX‘ lbpetx], (5.43)
b
~ | o™ |5 | (5.44)

~
~

1
apqLOeLX‘ - ‘h(()z)(krT)‘ ) (5.45)
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—©— krp = 10.0

-~ krr =1.0
—A— frr = 0.1
—8— krp = 0.01

-3 I I

10
5 10 15

Figure 5.5: The Fourier coefficients of the 'one-sided translation operator’ afeectmplex
shift of the integration path. The coefficients fer< 0 are zero and are omitted for clarity.
When compared to Figure 5.2, it is clear that the shift dramatically rexdiingedifferences in

magnitude between the coefficients.
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As a consequence: =~ % ’aﬂqLOeLX’. The normalization thus blows up the higher-
order coefficients in the spectrum, so that they can stilldteaved numerically (for
example by means of FFT). However, the spectrum still detaythe accuracy,
which will make the interpolations in the multilevel versiof this algorithm accurate.

Therefore, in the remainder of this work, formula (5.41)l\wé used to determing.

5.4.3 A stability limit

One could argue that, although the differences in magnitidae spectrum in the
normalized case (see Fig. 5.5) are much smaller than in thermalized case (see
Fig.[5.2), a dip in the former curve is still present. This Gigaused by the fact that
the double factorial in the asymptotic form of the Hankeldtion increases superex-
ponentially as a function of. As a consequence it cannot be completely compensated
for by a normalization as proposed here. Moreover the dipees for increasingd.

and could thus cause a numerical instability. This probless encountered in the
two dimensional case as well. A similar investigation far three dimensional case is
carried out in Appendix 5.A leading to the following critem, valid if 27,1, krp < 1

Nmin—L (nmin) !

min ™min
L

L]

> 65 (5.46)

with Nmin = Toin min)
cannot be achieved because of numerical roundoff errord theeother way around,
it also gives a rough estimate of the region where (5.37) easgxpected to give good
results. The thick line in Figure 5.6 is found when the indifyian (5.46) is turned
into an equality and = 2.2 10716, Criterium (5.46) expresses that, in the region
below this thick line, the target accuraey~ TI;iII; can be achieved. In the region
above the thick line, this is not possible. To show the apipnate validity of [(5.46),
Figure 5.6 also shows a contour plotefog;, A(0.017yin, —0.01&., X, 7o), with x
determined using the quasi-optimal (5.41) (based on al&ms distance’ X 7,,,;,,).
The contours can be divided in two regions. In the lower nedlee contours are
smooth and approximate the contours-gf-, which leads to the conclusion that the
target accuracy has been achieved in this region. In therupgen the contours
are chaotic. It can be clearly seen that the criterilum (Seff@ctively separates these
two regions. The separation is not exact because of theugsipproximations made
in the derivation of[(5.46) and the fact that (5.46) is basaldlg on the translation
operator. In Figuré 5.6, it can also be seen that, as expettetbw values of the
parameter,;,, the achievable accuracy is limited. For example,if, = 1.5 and
the calculations are done in double precision, the bestildesaccuracy is around
1.0 10—, which is still more than acceptable for most applicatidagher accuracy
is possible by increasing,;y, .

“@J . If this criterium is not satisfied, the target accuracy( . -
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Figure 5.6: A contour plot of the relative error expressed in number of digits
—1log;o A(0.017min, —0.01&-, X, T,2). The thick line is the line on which criteriurh (5.46)
becomes an equality. The contours approximate the contoutS/ofin the region below this
line, but become chaotic above it.
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5.5 Stable translations in other directions

Extending the results from Section 5.4 to translation dio@s other than along the
z-axis is not straightforward. The special propefty (5.32)ialu the spectrum of
the smoothed translation operatbtkrré., 0, ¢) satisfies does not easily extend to
other translations except the translation in the negatidirection. Therefore, an-
other technique is required that is derived in this sectidhe idea is that, if only
translations along the-axis can be stabilized, all translations should be reanitis
translations along the-axis. Suppose there abé distinct translation vectors, given
by r%. = r¥R, - e, Yv € [1, V], with rotation matrice®,. Then for each translation
the original addition theorem of the MLFMA (5.3) can be easéwritten by rotating
the k-space such that the translation is in thdirection

1 27 pmw )
héz)(krpq)zﬂ /0 /O eI ReR)TH T (krbe,, 0, ¢) sin 0dOdg. (5.47)

Following all the steps from Section 5.4 for a stable tratistein the z-direction, the
following expression is obtained

(2) 2m 27r+]X i(Rok)- L -
ho (krpa) = 32 A / ’ ;qnbnej dode.  (5.48)

0+jx

The wavevectorg (6 + jx, ¢) = kk (0 + jx, ¢) in this expression all share the fol-
lowing properties

{k} <) {k} 0, (5.49)
m[ } m[ic — cosh?y, (5.50)
[ } [ } = sinh? y. (5.51)

These properties are invariant under rotations, hécek also satisfies these prop-
erties. Properties (5.49), (5/50) and (5.51) will be uséerlan as a criterium for the
selection of wavevectors. However, expression (5.48) aabe used immediately in
an FMM. It is clear that if this integral is discretized usitige uniform points from

(5.9) and((5.10)

Ng Nq> L
2 7T —i(Ro-k(Ong+ixsdny ) )rh ind, —
he (krpg) = 55 2 D ¢ 3(Rork(Bug 00 )) 75| § g by edfma x|
0 ¢n9=1 nge=1 n=0

(5.52)
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the exponential has to be evaluated in the pdits k& (0,19 + 79X, qﬁw). Hence, for
each translation direction, i.e. for eakl, the outgoing fields have to be evaluated in
another set of points. Obviously this would be very ineffitie

Let us now discuss how this can be avoided. First the expient (Rv k)%’ s
replaced by¥? (R, - k) which is defined in (5.16) as the product of the outgoing fields
of a box and the disaggregation exponential. The funciiéiik) can be expanded in
spherical harmonics

[e%S) l

U(k)=> "> amYim (k) (5.53)

=0 m=—1

where the coefficients; ,,, are given by

=47 > Tpd (Y, (P9 (5.54)
p

When applied to wavevectors satisfying (5.409), (5.50) and formuld (5.41)
is used to determing, the infinite summation iri (5.53) can be truncated at L
because the absolute value of the highest order terms islef ©or less (otherwise
(5.48) would not achieve the target accuracy). This meaassthere are, up to an
accuracye, only (L + 1)? degrees of freedom, ., in ¥ (k). As a consequence,
if (L + 1) samples of? (k) are known, the coefficients; ., could in principle
be computed by solving a system of linear equations. Theseéncarn be used to
obtain ¥? (k) for the otherk. Of course, care must be taken when choosing these
sample points, because the linear system could be ill-tionéd. To this end consider
N, with N > (L + 1)2, wavevectorsk,, Vn € [1,N], satisfying(5.49), (5.50) and
(5.51). These conditions are added because all the waves8gt k (Hng + 4, (b%)
satisfy them, hence it is sensible to make surekhelso satisfy these criteria. Let
us also assume that theeg are chosen such that the samples(k,,) contain all the
information that is necessary for all the translations.sTdould be accomplished by
taking the wavevectorB, - k (6., + jx, ¢n,) for all v,ny, ny as thek,. However,
this approach would yield a rather largé. In Sectiori 5.8 alternative choices of the
k., will be explored and it will be shown that not that maky are needed. Let us
define a matriXv and two row vectora and ¥

L 0. ) (k:) Vi € [L,N], V1 € [0, L], Ym € [—1,1],

(5.55)
(a4 1) g1 = ]l(‘;lT':B) Vi € [0,L],¥m € [-1,1], (5.56)
(9] =0 (k,) Vn € [1,N]. (5.57)

The factorj;(2krz) has been introduced for scaling purposes. When applied to the
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sample wavevectois,,, (5.53) can be written as
MT . a = Wi, (5.58)

The goal is to seledtZ + 1)? linearly independent columns froM, such that these
columns form a well-conditioned basis for the other colunirigs task can be accom-
plished by means of a QR-algorithm. Here, we will select thiemns by means of
the usual QR-decomposition with pivoting of the matkix This choice is motivated
by the fact that the required code is widely available (foaraple in Matlab or La-
pack) and generally delivers good results. If robustnes$ ke utmost importance,
the strong Rank Revealing QR-algorithm proposed in [27] mamised to select the
columns. The QR-algorithm with pivoting provides a unitamgtrix Q, an upper tri-
angular matrixk and a permutation matriR. These three matrices are relatedvto
through the following equation:

M - P = Q . R (5.59)
~—~ ~—~ ~— N~~~
(L+1)2xN NxN (L+1)2x(L+1)2 (L+1)2xN

The permutation matri® determines which columns have been selected by the QR-
algorithm. The(L + 1)? selected wavevectofs,, are determined by

N
kn, =Y k[P, ¥ns€[1,(L+1)7. (5.60)
n=0

These wavevectors can now be used as the new discretizatiqh.52) instead of
R, - k (6’”9 + X ¢n¢). Clearly, this different discretization also requiresfefiént
translation operators. These will also be computed usiagtR-decomposition. For
this purpose, Eqnl._(5.59) will be rewritten as

Pll P12

M M .
My M) [Pm e

] =Qu1- [Ri1 Rz, (5.61)

where the submatricéd;, P11, Qi1 andRy; all have dimensiofiL +1)% x (L+1)2.
The values ofl'? (k) in the selected sample poirits, are

vl = [PlTl PQTJ - (5.62)

S

with the column vectoj®{], = W9 (IZ;”S). Combining|(5.58) with (5.62) and (5.61)
yields

v! =[Pl PL]-M"-a=(Qu Ri)" a (5.63)

The coefficients; ,,, are easily obtained becauQg, is unitary ancR;; is upper trian-
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gular. Moreover, the selection of columns by the QR algarithakes these operations
well-conditioned if a suitable starting skt, was taken. With

[Yv]l(l+1)+m+1,zv¢(n9—1)+n¢ = jl(2kTB)Ylﬂ” (Rv -k (ene + X ¢n¢)) , (5.64)
the function¥? (k) can be evaluated in the necessary points
W (Ry k(O + 5% #n,)) = YT -a = (R - Q- Y,) " -1 (5.65)

Now a new translation operator can be constructed, by almgpthe matrixRﬁl .
Q1 Y, into the translation operator from (5.52)

™ _ _
ijh(()2)(kqu) = NoN (‘I’Z)T ’ R111 : 111 Yy T, (5-66)
04iVe

Tnew

with the column vectofT: |y, _1)4n, = S gnbne™ne e~ "X If necessary,
the column vectol, - T', can be evaluated more efficiently as follows

l
/21 + 1
[Yv ) TZ]l(l+1)+m+1 Z Dm m' ’u m',Oa (5.67)

m=—1

with

No
Cy = 71(2krg) Ny Z P (cos (On, +7X)) [Z Gnbp el ™o e~ 1X ] : (5.68)

ng=1

where the Legendre polynomiahs (-) and Wigner rotation matrix eIemenlBin m (-
are defined in Eqns (A.11) and (A.39). Equation (5.67) cafuteer simplified by
means of((A.12), yielding

[Yv : TZ]l(l+1)+m+1 = C’l}/l,m, (RU . éz) = ClYVl,m ('f'%) . (569)

By means of thisY, - T can be evaluated i (L?) operations. Sinc¥,, - T,
has to be calculated for each possible translation opetatsrcan yield a significant
reduction in CPU time.

With the approach proposed in this section it is possiblea@ltithe necessary
translations in a stable manner, using only a minimal seisofdtization points. There
is a drawback, since this method uses a QR of a matrix of whith dimensions
increase quadratically with. Moreover, as will be seen in Section b.6, the interpola-
tions required for a multilevel algorithm are full matricéss a consequence this is an
LF technique.
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5.6 A multilevel algorithm

It is well known that in the MLFMA interpolation and anterptibn techniques are
needed to traverse between levels, and the same holds fondtieod presented in
the previous sections. Indeed, although the bandwidthdetermined on levey by
means of formuld (5]7), becomes nearly constant if the basesonsiderably smaller
than the wavelength, interpolation and anterpolation atpars are still necessary be-
cause the value of differs between levels. Also, because the QR-algorithracés!
wavevectors in a way that cannot be easily predicted, naapstoucture can be ex-
ploited, requiring a full interpolation matrix. Let the gaing field of a box with
sources’, on levelg be the column vectdd,;, with elements defined as

05, = > Tpe *uean vn, € [1,(Lg + 1)2). (5.70)
p

Herel?:fbs are the selected wavevectors on leyeNow define the interpolation matrix
I, that converts this discretized radiation pattégninto 8,1, i.e. 8,11 = |, - 0.
The size of the matrik, is (Ly41 + 1)? x (L, + 1)%. The result from the QR on level
g can be used to calculate this matrix. The approach is veryasito the one used in
the calculation of the translation operator. Proceedinip &ectiori 5.5 and defining
the matrixS as .

[S]l(l-i-l)-i-m-i—l,nS = jl(2k7'B)Yl,m (Eg:l) ’ (5'71)

Vns € [1,(Lgt1 + 1)?],VL € [0, Ly], m € [—1,1], the interpolation matrix becomes
l,= (R Qi -S)" . (5.72)

The accuracy of the interpolation will be investigated irti®mn[5.8. The anterpola-
tions can be done with the transposéd pof

As explained in Sectidn 5.5, the computational complexitthe QR-method be-
comes prohibitive when the boxes become considerablyridinga the wavelength.
In order to get a multilevel method that can also tackle Hébfams, a switch to the
MLFMA should be made at a certain level. This switch is stn#figrward, since one
only has to puty to zero and use the sample points and interpolations of thENVA.
upward from that level.

5.7 The DC limit

Let us now investigate how the presented method behaves.af€involves taking
the limit ¥ — 0 and using the asymptotic form (5.80) fgrderived in Appendix
[5.A. The addition theorem in the static limit for translatsoin thez-direction can be
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written as an integration over reaband¢ as follows

1 1 27 27 ) ) pa L .
L / e~ Ik(0+ix,¢) Ty —jk Z qnbnej”ee_"x dfde. (5.73)
0 0

Too AT
Pq n=0

The DC-limit of the Fourier coefficients of the one-sidedsiation operator becomes,
forn >0

, 1
Ilir% —jkqpbpe™X = — ———— (5.74)

To determine the DC-limit of the plane wave, we need thecstiait of k(6 + jx, ¢)

. . T . T
cos ¢sin(f + jx) oy [ s 1)
lim k(6 + jx, ) = lim k |sinpsin(d + jx)| =e - | jsing
k—0 k—0 , T
cos(f + jx) 1
(5.75)

Since this limit does not vanish, the static 'radiation @att of a constellation of
sources still contains information about these sourcesiatians [(5.74) and (5.75)
allow a stable translation for the static case indkdirection. For the other directions,
the QR-algorithm is again necessary. This requires theailzlon of the matrice$
andY,,, which necessitates taking the DC limit of a spherical harimoThe result of
this calculation is given in Appendix 5.B.

5.8 Results

The accuracy of addition theorem (5.66) will now be investiigl. Consider the ge-
ometry shown in Figure 5.7. The two boxes have a radliys = \2/—05 Box 1 contains
eight sources with strengththat are placed on the vertices (= the—a,, in (5.66)) of

the box. The field due to each of these sources is measuredhroéthe vertices (=
ther, + d, in (5.66)) of box2. This field is calculated both directly with the spherical
Hankel functionh” (kr,,) and the addition theorer (5.66). The maximum relative
error between these two is

e S e R (Thel,,,

A = ma
e thQ) (krpq)

—1. (5.76)

In particular, the influence of the choice of tkg on A will be investigated. The
numerical tests in Section 5.4 clearly showed that samlés ¢k (6., + jx; ¢n,))
carry enough information to do translations in thdirection accurately. It is easy to
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show that these points are also sufficient for translatiorthé negative:-direction.
The obvious question is then if these samples also containgininformation to do
the translations in any other direction. It turns out tha thnot the case. The first col-
umn in Table 5.1(a) list& when the point& (6,,, + jx, ¢,,) are used ak,,. Clearly,
the target accuracy is not achieved. Therefore, a bettesfqmints k,, is needed.
Note that each translation directi® - €, has its own, 'special’, set of wavevectors
Ry - k (0ny + jX, &n,) Of which it is known from Section 5.4 that they guarantee a
high accuracy. Therefore the union of all these waveve®qrsk (6., + jx, ¢n,, )

for all v, ng, ng should certainly contain enough information to do all trEmslations
in a stable manner. In principle it is feasible to do thiscsithe QR needs to be done
only once, and its cost is independent of the problem &izmut it still will be unnec-
essarily computationally intensive. Insteddtranslation directions will be selected,
sayR.,, - &, Yw € [1, W]. Figure 5.8 shows the four translation vector constelietio
that will be investigated here. These constellations,dbasehe vertices of polyhedra,
are aimed to be as spherically symmetric as possible to avwsatiucing preferential
directions. Tablé 5.1(a) lists the achieved accuracy usiagets of wavevectors as-
sociated with these constellations. The last two sets)ddbaith ¢ and d' use the
translation directions from Figures 5.8(c) and 5.8(d) eespely, but they have only
approximately one fourth the number of wavevectors pestadion direction. This is
achieved by settingVy = N, = L in (5.9) and|(5.10) when defining tle,. Table
[5.1(a) shows that the various sets achieve comparableamiesy except the one that
only uses thes-axis as translation direction. It can be seen thds usually smaller
than the target accuraeyand when it is bigger, it is only by a small amount. This
validates[(5.7) for determining the truncation bouidThe fact that the differences
in achieved accuracy between the sets (ignoring Set a) i, snticates that taking
the wavevectors of more translation directions increaseatcuracy only marginally.
Table 5.1(b) lists the DC limit ofA for the same geometry as in Figlre 5.7. The size
of the boxes is of no importance because of the scale inwianhese results con-
firm the findings from Table 5l1(a) and also clearly show tlaifity of the proposed
algorithm at DC.

Let us now investigate the accuracy of the interpolatiors fasiction of the num-
ber of levelsn|g, g The geometry shown in Figure 5.9 is basically the same as in
Figurg 5.7, but there is only one source and observatiort poinox 1 and box2 re-
spectively. Both boxes are dividege,,g| — 1 times, on each level only retaining the
box containing the source or observation point. The strectitat is obtained in this
way is a familiar oct-tree ofg,g| levels. The translation is always done on the high-
est level. The (dis)aggregation is done on the lowest lenélteaversing up (down)
the tree level by level by using interpolations (anterpotat). The target accuracy
ise = 107 and set ¢ is used as,,. Table[5.2 listsA for different numbers of
levels. From the results Table 5.2 it can be concluded thtriterpolations do not
inflict a significant error on the addition theorem. This id®expected from theo-
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(@)
| ¢ | Seta | Setb | Setc Set¢ | Setd |
1072 1 1.48 1077 [ 449 103 [ 2.76 1073 | 5.56 1072 | 3.35 1073
1072 19.69 10=2 [ 6.90 10~* | 4.65 10~ | 6.82 10~* | 2.55 10~*
107% [ 7471071 [ 710 10°° | 445 10°° | 2.01 10°* | 1.43 10~ ¢
107° [ 1.13 1071 [ 1.32 10~° | 4.19 107° | 8.04 107% | 5.73 10~©
1076 [ 403 1077 [ 1.18 1079 [ 238 1077 | 4.34 1077 | 4.35 107
1077 [ 313 1071 [ 748 1073 | 2.80 107 | 4.80 10~® | 2.54 10~

(b)

| ¢ | Seta | Setb | Setc Set¢ | Setd

1072 [ 783 1072255 1073 [ 1.98 103 [ 2.80 102 | 3.21 10 *
1073 [ 1.12 1071 [ 6.70 10~* [ 3.33 107 [ 8.29 10~* | 4.12 10~ *
107% [ 775 1071 [ 513 10°° | 344 107 ° | 2.64 10°* | 1.51 10~ ¢
1075 [ 3.50 1071 [ 8.42 1079 [ 5.96 107° [ 9.73 107 % [ 5.41 10°F
1076 [ 736 1071 [ 579 10-7 [ 2.11 107 | 2.01 10~ 7 | 2.87 107
10°7 [ 311 1079 [ 1.11 1077 | 1.08 10~7 | 1.09 10~7 | 6.09 10~

Table 5.1: The accuracy), defined in[(5.76), as a function of the target accuradgr the
various ways of constructing the set of wavevecters These sets are obtained by using the
wavevectors associated with the translation directions that are shown ie/Bigu Sets labeled
with an asterisk« use only approximately one fourth of the wavevectors for each direction
Tablg 5.0(b)(b) contains similar data for the DC limit.

Figure 5.7: The geometry for testing the accuracy of addition theorem (5.66).
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@) (b)

© (d)

Figure 5.8: Four constellations used for translation directions. The asterisk indicatesitfin
and the dots indicate the selected translation directions. Constellation 5s@&@jhez-axis
only, while constellations 5.8(h), 5.8(c) and 5.8(d) use the verticas ottahedron, tetrahedron
and dodecahedron respectively.
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’ evel ‘ A

1 1.22157364 10~3
1.22174995 10~8
1.22172432 10~3
1.22172979 108
1.22174006 10~3
1.22174492 108
1.22183636 10~8
8 1.22186867 108

| O O =W DN

Table 5.2: Error for the (dis)aggregation for different numbers of leve|s,g|.

retical grounds. Indeed, a radiation pattern of a box (oallgythat is sampled with
(Ly + 1)? points is oversampled. It is only after multiplication wahother exponen-
tial during the disaggregation that thede, +1)? points are really required. Therefore
the accuracy of an interpolation (anterpolation) can beiggntly better than.

The proposed algorithm will now be tested on a generic thmeeigsional scat-
tering problem. The scattering of a plane wave at a PEC cutieside2m (shown
as inset in Figure 5.10), is analyzed at frequendi&MHz (A = 0.628m), 47.7MHz
(A = 6.28m) and4.77kHz (A = 62.8km). The plane wave travels in the positive
z-direction and is polarized along theaxis. The solution is obtained by means of the
Magnetic Field Integral Equation (MFIE), discretized ggit200 standard RWG basis
functions. The MFIE was used because its condition numb@rezges to a constant
value as the frequency decreases, making it the ideal ctmatew the LF-stability of
the proposed method. The solution of the MFIE was accelknatang a single-level
vectorial fast multipole method using the proposed metidek translation operator
in the vectorial case is the same as in the scalar case. Ajththe vectorial aspect
requires a small modification to the aggregation (as on page B6]), it introduces
no further new problems, except in the interpolations (Wiédls outside the scope of
this contribution), which is why we opted for a single-leiraplementation. The size
of the boxes i$).4m, andr,;, = 1.732. The measure of accuracy used here is

o HJ _JrefH

K= (5.77)
[ et |

whereJ andJ,.; are the vectors containing the coefficients of the RWGs farersgnt-

ing the solution current. The reference solutily is obtained without any form of
acceleration, or equivalentty,;, = co. The accuracy is plotted as a function of the
truncation bandwidtt. at the various frequencies in Figure 5.10. For 477MHz

the accuracy of the MLFMA is also plotted. It can be seen thatrtewly proposed
method is slightly less accurate than the MLFMAL@TMHz. However, the MLFMA
becomes unstable arourdd = 26 and can thus not be used to achieve higher ac-
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Box 2

Box 1
_ AT - =
— —~ ! |
é —/j/—-fﬁ—|—_|//
~ - I I
= [ [ [
- | | | ! !
. b | [ |I ! !
I [ I I
I I I A= -
S— - _ | r—-=
_/__I r/#_-_l"“ﬁ/
r-==—-—__ _-"

Figure 5.9: An example geometry with three levels, used for investigating the interpolation
accuracy. The geometries with more levels are generated by dividisgthkest box into eight
smaller boxes of which the one closest to the vertex of the big box is selddtedlots denote

the source and observation points, while the asterisks denote the centeesboxes on the
different levels.

curacies. With decreasing frequency, this problem becommgse quickly. For the
casesf = 47.7MHz and especially’ = 4.77kHz no useful accuracy can be obtained
anymore with the MLFMA, whereas the novel method remainilstdt should also
be noted that once the frequency is sufficiently low, therectmves coincide. This
convincingly shows the error-controllability of the pregsal method at very low fre-
guencies. Also note that the achievable accuracy is high.

5.9 Conclusion

A novel method, the NSPWMLFMA, was presented to extend the MRFo the sta-

ble evaluation of LF interactions. It is based on a plane veaygnsion, but does not
use the spectral representation of the Green functiont, Birs addition theorem of
the MLFMA is used to construct a stable translation along:tlagis. This was made
possible by means of a shift of the integration domain ineod¢bmplex plane. The
optimal magnitude of this shift was determined using thesetbform expression of
the translation operator. A stability criterium was dedvand tested with numerical
results. Subsequently the method was extended to genanalation directions by
means of a QR-based method. Interpolations and anterpudatvere also provided,
allowing a full multilevel algorithm. The novel method usesich of the concepts
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<100} ]
107° | f = 4TTMHz (*)
----- f = 4TTMHz
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— f = 4.T7kHz
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L

Figure 5.10: The errorx on the solution vector for various frequencies. The curvEraMHz
with the asterisk shows the accuracy of the MLFMA. The surface triatignlaf the used PEC
cube with side&2m is shown as inset.
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that are known from the MLFMA, making it easy to implement kising MLFMA
schemes. Moreover, a coupling of the NSPWMLFMA with the MLFN&Astraight-
forward and yields a broadband MLFMA. The DC limit of the aigfom was also
presented and it was shown that the algorithm remains vafidthtic problems. It
was then shown that the algorithm exhibits favorable ecoatrollability properties
as compared to previous methods. Finally, the applicatidtheoNSPWMLFMA to a
generic scattering problem showed the usefulness of theadeb real-life applica-
tions.

5.A Region of error-controllability

Here, criterium/[(5.46) for the region of error-controllktyi will be derived. The

nearest translation is the most critical one, therefare= 27,,;,7g. Suppose that
2mminkre < 1, such that the spherical Hankel function can be approxithbteits

asymptotic form. Then by means pf (5.31) and (5.33) the fahig approximation for
n > 0 can be made

_ 1 (@2n-1l _
n bnle™™ g — ———— (2 1) fre "X, 5.78
q | | e q o (QTmirlk'TB)nJrl ( n+ )fne ( )
1 n!

~N—— ¢ ™ 5.79
27 (TminkTB)n+1e ’ ( )

with this, an asymptotic form foy can be deduced. With formula (5/41) ahd (5.79)

L
~ — In
X~

L

(Tmink’l"B)L ~n W —n (Tmink’f‘B) : (580)

In order to assess the loss of accuracy of (5.37) due to thimdijgure 5.5, it is not
sufficient to just look at the maximum difference in magnéusktween the Fourier
coefficientsg, b, e~"X. Indeed, since the high-order coefficients do not conteilzat
much, the requirements on their precision are less stringrea quantitative way, the
accuracy of thew-th coefficient should be at least roughly

€ ’ héz) (2TminkrB) ’
(5.81)

(2n + 1), (2krp)

hg) (2Tmin1€7’3) ‘ .

If the asymptotic expansion of the spherical Hankel funttian again be used, this
becomesr”; . Each coefficient,,b,e™ should be known with this precision if the

addition theorenm (5.37) is to obtain accuracyThe actual accuracy with which the
1 .
coefficients are known is given % As a consequence, the following has to
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hold for an accurate result

_aho <ern (5.82)
Q'Ilbne_nx eTmin. .
Together with[(5.79) and (5.80), this yields
!
oo (5.83)
€ [LY*

A simple calculation shows that the minimuty,;,, of the right hand side is located at

NMmin = \_EJ, (584)

Tmin
with the floor function|-|. Upon evaluating (5.83) inyin, and using the fact thatis
roughly equal to/—;L the following criterium is obtained

in?

(5.85)

5.B DC limit of the spherical harmonics

The DC limit of j;(2krB)Y).m (b) required for the calculation of the matrictt

andY, in the static case, will be taken here. The vedtpin its most general form,
satisfies the properties shownlin (5.49), (5.50) and (5Bigrefore we can generally
write b as follows

b = cosh xb,. + j sinh xb;, (5.86)

with real unit vectors, andb; satisfying the conditiorb, - b; = 0. The DC limit
of ji(2krg)Yim (b) can now be taken by means of the definition of the spherical

harmonics (A.1) in Appendix A. Definingg = b, + jb;, this becomes

A YL
lim j;(2675)Yi.m (b) _ [ 1 (—1)™(B, + jB,)" B ™ F,  (5.87)
k—0 Tmin
with
1

Fim = VAr@+ 1)( + m)l(l —m)!

(5.88)

Using this limit, the DC version of the algorithm from Secti6.5 is easily obtained.
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CHAPTERO

A Low Frequency Stable
Plane Wave Addition
Theorem
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* &k

In the previous chapter, the search for a broadband FMM in 8Bulted in
the semi-analytical NSPWMLFMA. However, it turns out that $table trans-
lation operator in thez-direction can be generalized to all the other directions.
This is done by replacing some spherical harmonics in thesietion operator
by novel so-called pseudospherical harmonics. The psebhgogsal harmon-
ics have a diverging Fourier spectrum, forcing them to beripteted as dis-
tributions. Despite this, the use of the pseudosphericailoaics allows the
construction of a practical plane wave addition theoremttisanumerically
stable for low frequencies, in contrast to the MLFMA. Howgthe diverging
Fourier spectrum causes a numerical instability for higadquencies. There-
fore, a combination of the traditional MLFMA and the new neetishould be
made to construct a broadband FMM. It should be noted thatdikeretiza-
tion points and translation operators are both calculataatiosed form, which
allows for an easy implementation.

6.1 Introduction

Integral equations containing the Green function of thetthelltz equation are a very
important class of problems in fields such as acoustics auremagnetics. Usually
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these equations are discretized by means of the method ofenterfil]. The dis-
cretized equation can then be interpreted as a linear systelimensionN, where
N is the number of basis functions used to discretize the iategjuation. A direct
solution (for example by means of an LU decomposition) nespu® (NS) opera-
tions, therefore this approach rapidly becomes imprdctaraincreasingN. Itera-
tive solution methods can be used to improve on this sitoafidey only requireP
matrix-vector multiplications to gradually converge toduwion. If the problem is
well conditioned,P << N. Of course the matrix-vector multiplications still recgiir
O (N?) operations, such that solving the problem requifes” N?) operations.

A further reduction in operations count can be achieved Iptyiy a so-called
Fast Multipole Method (FMM). These methods reduce the cewigl of a matrix-
vector multiplication from® (N?) to O (N) or O (NInN). The MLFMA is one
such method, and is very efficient for structures that do aotain much geometrical
detail on a sub-wavelength scale. The efficient simulatf@iractures that do contain
a lot of sub-wavelength geometrical detail, however, is@néed by the so-called LF
breakdown. The LF breakdown of the MLFMA [2] is not of mathdital origin but
is caused by the inevitable numerical roundoff error on aefiprecision computer.
Hence, broadband simulations require the integration efMiLFMA with another
method that efficiently takes care of the sub-wavelengtimgsacal detail. In [3] the
MLFMA is used in conjunction with a multipole based methodthaugh this multi-
pole based method achieves computational compléXifyV), the translations in this
method are not diagonal, resulting in a relatively slow &thm. In [4] the spectral
representation of the Green function is used, which leadsatgonal translation op-
erators. Unfortunately the spectral representation ofafeen function converges in
only one halfspace, thereby imposing the need for six rafigtatterns. This causes
the factor hidden in th& (N) or O (N In N) to be quite large. In addition, it is stated
in [4] that "the CPU time requirements of the scheme are mirgohwhen HF tech-
nigues are used wherever possible”. The term 'HF technigatss to the MLFMA.

All this obviates the need for an addition theorem that iblstat LF and similar to
the one used in the MLFMA. The first steps in the search for suchddition theorem
were taken in the Uniform Multilevel Fast Multipole Algdnitn (UMLFMA) [5]. In
the UMLFMA, the integration path is shifted into the compf@ane so as to include
more near field information in the radiation pattern. Howethe translation operators
are to be calculated numerically. The achievable accumaeysp rather limited [6].
Recently a novel method, the Nondirective Stable Plane \Wavélevel Fast Multi-
pole Algorithm (NSPWMLFMA [7]), has been proposed which does suffer from
these drawbacks. It also uses a shift into the complex plati@e&tead of numerically
constructing the translation operators, they are obtdirmed a QR decomposition of
an analytically known matrix. The discretization points flee radiation patterns are
also selected using QR decomposition, which guaranteegheagicuracy. However,
the fact that the discretization points are selected usie@R algorithm also destroys
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any symmetry properties of the discretization points. €fae, inter- and anterpola-
tions must be done using dense matrices, making these mperatmore costly part
of the algorithm for high accuracies. In this paper a novelitih theorem will be de-
rived that is completely known in closed form, i.e. explioitmulas for the translation
operators and discretization points will be given. As in tHdLFMA, a shift of the
integration path into the complex plane will then be used et numerically stable
at LF. A heuristic algorithm for the calculation of the comypkhift will be given and
the limits to the error-controllability will be exploredn kddition it will be shown that
the inter- and anterpolations can be performed efficiergiggiFFTs.

In this work, the norm of a vector is denoted by the same symabtthe vector, but
without boldfacew = /v - v. Unit vectors are denoted with a hat= 2. An asterisk
x denotes complex conjugation. In the MLFMA, the two most imt@nt vectors are
the translation vectars and the vector 4 (see Figurg 6/1). The vecter, = r, — 74
actually consists of a part coming from the aggregatipn= R, — r1 and a part from
the disaggregation; = Ry — r2. The translation vectorr is given by Ry — R,
suchthatr =r9 —r; =r4 + ro.

Box 2

Box 1

Figure 6.1: A typical configuration in the MLFMA.

6.2 A general form of the addition theorem of the
MLFMA

The addition theorem of the MLFMA is well known [8]. Howevétrjs not unique
in its usefulness to FMM as will be proven in Subsection 6.Mifact there may be
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an infinite number of possible addition theorems, all of whégjually valid for the
construction of an FMM (although they might be numericaihgtable). In the subse-
guent subsections three special cases will be discussexdofTivem will be shown to
reduce to known results from the literature, among whichugal addition theorem
of the MLFMA. These two special cases do not allow stableslation operators for
LF. The third case is based on a novel set of distributioressthicalled pseudospheri-
cal harmonics, and will be used in the next sections to coasti stable translation
operators.

6.2.1 A more general addition theorem
The starting point of the derivation is the addition theorfmthe spherical Hankel
function of the zeroth order and second kind

L
S (kr) = —— = 3" (=)' + Djikra) b\ (kre) P (74 - 77), (6.1)
=0

which converges absolutely ifr > rp. This equation can be found in [9], Egns.
(10.1.5) and (10.1.6). The functioR (-) is the Legendre polynomial of degrée
while Y; ,,, (6, ¢) is a spherical harmonic of degréand ordenn. Both are defined
in Appendix A. The truncation bound is determined such that the relative error
introduced by the truncation df (6.1) is lower than a giveresholde

(2L + 3)jry1(kra) ‘hL+1 krT)’ <e

n (krr)|. (6.2)
To avoid the possibility of using (6.2) near a zero of the siglaéBessel function, the

conditionL +1 > kr4 should be added. Now consider any set of functifins(¢, ¢)
such that the following property holds

/ Frm (0. 8)YE s (6, 6) (8, $)A0AD = 61,1 Gy 6.3)
D

for some integration domaif and weight distributionv(6, ¢). By means of((6.3),
(A.10) and the expansion of a plane wave

o—ik(0,0) T Z (20 + 1) i (kra) Py (fs(&,(b)-f'A), (6.4)
1=0

the spherical Hankel functio/lnff) (kr) can be written as

h? (kr / / —IROOTAT (krg, 0, d)w(6, ¢)dode, (6.5)
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with

L l
T(krp,0,0) =41 > > 570 (krr) frm(0,0)Y7, (07.67),  (6.6)

=0 m=—1

andk (0,¢) = kk (0, ¢), with k (0, ¢) = cos ¢sin & + sin ¢sin 0y + cos 02 and

k the wavenumber. Three valid choices fr,,, D andw will now be given. The
first two have already been described in the literature amavadely known and used.
However, no simple method exists to make these two translaperators numerically
stable at LF. The third choice uses a novel set of functidresso-called pseudospher-
ical harmonics, forf; ,,,. In contrast to the first two choices, the addition theorem
corresponding to this third choice can be made numerictdlyis for LF.

6.2.2 Choice 1: the MLFMA

By choosing
fl,m( 7¢) =Y ,m (0 ¢) (6.7)
w(f, ¢) = sin b, (6.8)
D =10,27] ® [0, 7], (6.9)

Eqn. (6.5) reduces to the traditional addition theorem efWMiLFMA

1 27 pm )
h? (kr) = /0 /O e IR TAT (kpp 6, ¢) sin 0dOd e, (6.10)

with the translation operator being defined as

L
T(krr,0,6) = > (20 + 1) 'n? (krr) P (k(a,gz))-fnT). (6.11)

=0
The addition theorem of the MLFMA is usually discretizedngsiGauss-Legendre
guadrature points [10].
6.2.3 Choice 2: the MLFMA with uniform discretization

In [11], Sarvas presented an approach corresponding t@liogving choices

i (8,0) = 5V (6,6)sin ), (6.12)
w(0,6) =1, (613)

D = [0,27] ® [0, 27], (6.14)
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Proving that this choice satisfies (6.3) is straightforwatten given Eqgn. [ (A7) of
AppendixX A. The integration domain runs over a full periodtud integrand in both
6 and ¢. Therefore the integration in (6.5) can be efficiently perfed using uni-
formly sampled points in both theand¢ direction provided that the Fourier series of
fi.m (6, ¢) in bothé and¢ are truncated at bandwidih (a smoothing operation).

2

Oy = ~—ng, g € [1, Ny, (6.15)
Ny
2

(b"d) = M’I’L(ﬁ, Vn¢ S [1,N¢}, (616)

with Ny = 2L + 1. The uniform sampling allows inter- and anterpolationsealbne
entirely with FFTs. Moreover ifV, is even, Eqn.[(A.7) allows a reduction of the
number of discretization points by a factor two, therefdig= 2L + 2.

6.2.4 Choice 3: pseudospherical harmonics

We propose the following novel choice

LU (0, 0)sin® ¥Ym >0
J— 2 ?
fim{6.9) = {;(1)mU;jm (0,¢)sinf Ym <0 (.17
w(0, ) =1, (6.18)
D = [0,27] ® [0, 27]. (6.19)

The U, (6, ¢) are distributions which are conveniently called "the psedheri-
cal harmonics”, defined in Appendix 6.A. Proving that thioicke satisfies (6.3) is
equivalent to proving Theorem 6.A.1 as is done in AppendiX &s in the previous
subsection, the integration in (6.5) can be efficiently perfed using a uniform dis-
cretization, this time withV, = Ny = 2L4 + 1. The number of points is calculated
based orl4, not L itself, for reasons that will be explained in Section/6.3sdlit will
become clear in Section 6.4 that a reduction of the numbeisofetization points, as
was possible in Subsectibn 6.2.3, is not possible anymdretefore, there is no need
to make the number of points in thedirection even, henc&/, = 2L; + 1 A uni-
form discretization again necessitates a smoothindof (6, ¢) sin 6 to bandwidth
L,. Therefore the Fourier spectrum©f ,,, (6, ¢) sin @ will be determined in Section
6.3. The special properties of the Fourier spectruiii,of, (6, ¢) sin § will then for the
first time allow the construction of analytically known LFbte translation operators.
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6.3 The pseudospherical harmonics as a Fourier se-
ries

The addition theorem following from the choice ffyr,,,, D andw in Subsectioh 6.2/4
is

1 21 p27 )
h (kr) = - /0 /O e RO TAT (kpy 0, $)dOdo, (6.20)

with the translation operator

l
T(krr,0, ¢)—27Tsm923_lh(2) (krr) >~ sm [V (07, 61) Upm (6, 0)
=0 m=0

+le7m (eTa (bT) Ulfm (97 ¢)} ’
(6.21)

with s,, = 1 — %6,,%0 and the fact thaU;j0 0,¢) = Uio (0,¢). The uniform dis-
cretization proposed in Subsection 6/2.4 allows the exaegration of a function
with bandwidth2 ;. Because the translation operator shares this bandwidithting
plane wave in (6.20), it must be smoothed to a bandwigthin practice, this amounts
to calculating the Fourier series bf ., (6, ¢) sin @ for m > 0, i.e. writing it as

Ui (0,¢)sind = ™ >~ upt, el (6.22)

and truncating the summation to the rarjge 4, Lg4]. It is worthwhile to point out
that property[(6.54) of Appendix 6.A yields a condition o tRourier coefficients,
namely

up = (=1)"up,,. (6.23)

The calculation of.}’,,, can be done by using Theorém 6.B.2

mt1 2
Um (6, ¢)sin = K pe’™? sin™+' 6 \f Z AL g sin [(1+m +2p +1)0]

(6.24)

with Theorem 6.B.2 proveni; ,, defined in Appendix A and\j,, defined in Ap-
pendix 6.B. It is shown in Lemma 6.B.3 thatf,  is interpreted adim, ., A7,
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then
N == prm (6.25)
Furthermore, using (6.63), it is easily seen that
N =0 Vpe[-l—m~1]. (6.26)

As a consequence Eqn. (6/24) can be rewritten as

oo

. om )
Upom (0, 6) sme):fjm,meﬂm‘f’smmﬂoﬁ > Ay el - (6.27)
pP=—00

Becausen > 0 in (6.21), it is possible to expandn™*! ¢ using the binomial the-
orem. Absorbing the result into the summation opeyields the following closed
form

1 Kl,m(_jyn m+1 _1\m— m—+1 u_q _
0 Vn — [ odd
with the binomial coefficient
(m+1)_ (m+1)! (6.29)
q g(m+1-q) '
Thewy,, satisfy the following curious property
Lemma 6.3.1 For any integerm, [ > 0 andm € [, ] the following holds
up'y, =0 VI > |n]. (6.30)

Proof The inequalityl > |n| and the summation bounds fgin Eqn. (6.28) yield the
following two inequalities

< ”T*l <0, (6.31)
-m—-1<—¢<0. (6.32)

The sum of Egns! (6.31) and (6.32) yields
—l—m—1<nT_l—q<0, (6.33)

which proves by means of Eqn. (6]26), that all the terms inrsation [(6.28) are zero,
concluding the proof. [
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It can also be verified that},  diverges as a function of if m > 2. However, as
mentioned before, the pseUdosphericaI harmonics arébdistms, therefore (6.22)
does not have to converge. Provided the distribution igated with a function that
has a Fourier spectrum that decays fast enough to compeheal&ergence, a well
defined result is obtained. Equation (6.28) makes it easwyltulate the smoothed
translation operator

T(kry,0,¢)
Le L L
=27 Z Z Zj*lhl@) (krp) s
n:—Ld m=0I[l=m
x [V, (00, é7) €™ + Y 0 (07, d7) €] uf,, e/, (6.34)
La L o
ST tameleIm?, (6.35)
n=—Lgm=—L
with
min(|n|,L)
tn,m =27 Z j_l_m+|m‘hl(2) (krT) (eTa ¢T) ul Jm|s (636)
I=|m|

where Lemma 6.3]1 was used to establish the upper bounddsutnmation ovet.
The two outer sums can be performed using the FFT algorithmtaithe uniform dis-
cretization. Assuming that,; does not differ too much from, the calculation of the
smoothed translation operatbtkrr, 6, ¢) requires the evaluation of?, in O (L3)
different arguments. The evaluation @f,, itself costsO (L) operations hence the
calculation of the smoothed translation operator is dotethay the® (L*) scaling
of calculating the various7, .. Although this problem is not that severe because the
uj',, can be reused for all the different translation directiomgyppendix 6.C we sup-
ply a more efficient recursive calculation method that y8edd© (L?) calculation of
all requiredu;’,,,

Using the uniform discretization from Egnk. (6.15) and 63, the smoothed trans-
lation operator can be directly discretized

Ny

3 Z Tkt Oy, G, ) Km0 0ms) 74 (6.37)

ng= 1 n¢_1

2
h( ) (kr N9N¢

An error analysis will now be performed to control the disizaion error and deter-
mine the value of_4. In this analysis the effects of roundoff error will be igadr a
subject being studied in the next section. The uniform diszation exactly integrates
every function of bandwidtR L. Because in the translation operator, the spectrum
of pseudospherical harmonics has been truncated to batidiijdthe orthogonality
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property |(6.A.1) between pseudospherical harmonics ahdrgal harmonics holds
after discretization if; < L,. The plane wave, however, contains spherical harmonics
with all orders, such that this inequality will be violatetherefore,[(6.37) becomes

L
h$? (kr) = (=" 2 + 1)ji(kra) D (krp) Py (74 - 7r) (6.38)
=0
Ny ¢
N0N¢ Z Z krT; n97¢n¢)

ng= 1n¢ 1

< 3 @0 k)P (B (Bngsb0,) - 7a) - (6.39)
I=Lq+1

Since L has been chosen to satisfy (6.1) with an accuraaye can conclude that
the second term must be reduced below the same accuracldhtés safeguard the
error-controllability of the method. In the MLFMA, this cdition is automatically
satisfied because the Fourier series of spherical harmoaitgrges. In the method
proposed here, however, the diverging nature of the Foseiees of the pseudospher-
ical harmonics blows up the second term. However, it can ppressed by choosing
L4 sufficiently large. Indeed, without taking into account rarioal roundoff error,
it is possible to make this term arbitrarily small because ldwest-order spherical
Bessel function ig.,+1(kra), which converges super-exponentiallyZif, > kr4.
For the same reason the valuelpf approached if the frequency drops. For situa-
tions wherekr 4 has a value around or above unity, however, the differentedssn
L4 and L can be significant. Numerical experiments can be used tordigte a suit-
able value forL, by starting atL; = L + 1 and gradually increasing,. For this
the translation operator with translation directionshould be used. This choice can
be understood by looking at translations close toztfais. Indeed, for these transla-
tions the factosin™! 67 contained withinyy' (61, ¢7) becomes dominant over the
diverging behavior ofi’,,,. Hence, their Fourier spectrum does not increase as fast as
the Fourier spectrum of other translation operators. Fordations far enough away
from thez-axis, this suppression of the divergence becomes lessaadtrong, and
disappears completely in thej-plane (whergd)r = 7). Therefore the translations
in the zy-plane should have approximately the fastest increasingi€ospectrum,
yielding a worst case scenario for the determinatio.@f To avoid having to take
into account the various possibtg, the following inequality is useful

< 204+ 1
- 47

(6.40)

l
Z |al,m|2-

m=—I

l
Z al,mY'l,m (97 (b)

m=—I
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As a consequence, whep,, is defined as

2 Ny
alm =J .]l krA N N Z Z kTTexa nead)n@)}/l m( nev(bng‘))a (641)

ng=1ng=1

the following inequality must be satisfied to obtain a retatccuracy

l
S Jaml* < e (kr). (6.42)

m=—1

21+1
>

I=Lg+1

6.4 A normalized translation operator

The translation operator derived in the previous sectiareither LF-stable nor HF-
stable. The instability for the HF case is caused by the espbal divergence of;’,,,
as a function ofi and cannot be easily remedied. However, for the LF ¢asecomes
fixed as the frequency drops, and the numerical instabiispeiated with the diverg-
ing u;',,, becomes fixed as well. The instability due to the super-eapbal increase
of the spherical Hankel functions, on the other hand, besomere and more of a
problem as the frequency drops. In this section the elinanaif this LF instability
of the translation operator will be discussed.

The smoothed translation operator as it was derived in théqus section (6.35)
has two very peculiar properties. First, the specttym, is zero whenevem| > |n|
or [/m| > L so that when a dot is placed at every nonzero Fourier coefficia
hourglass shaped figure is obtained. Second, the coeffigigntontains only Hankel
functions of ordern| or lower. These properties are not shared by the translation
operators of 6.2.2 and 6.2.3. They will enable us to constiticanslation operator
that remains valid at very low frequencies and even has a D{ IThe drawback is
a failure due to numerical roundoff error at HF.

The first part of the derivation entails a further manipwaatbf the smoothed trans-
lation operator. Consider a translation operator definddlkmsvs

k'f‘T,G ¢ Z Z QSntn mejneejm¢ (643)

n=0m=—L

Note that the summation overstarts at) instead of—L;. We will call T(krT, 0, 9)
the triangular translation operator, since its spectrumase or less triangle shaped.
It is easily seen that this translation operator is a valid fom use in[(6.20) since the
plane wave:—7*(%:#)'"4 js invariant under the transformatiof, ¢) — (27 —6, ¢+)
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and(—1)™t_n.m = thm

2w 27
/ e IRODTAT (ferp, 0, )dOd D

L

21 p27 Lg
il e~ Ik(0,0) A ¢ ejneejmd’d@dqﬁ
] > 3 tm

n=0m=—L

2W/ e Ik(0:0)ma Z i tn ejngejm¢d9d¢,
n=1m=—L

2 L

/ o ik(0.6) 7 Z St med™eimod0dg
n=0m=—L

2#/ 7‘]’6(04) ra Z Z 7m€jn0€jm¢d9d¢,

n=—Lgm=—L

2w p27
= — / e IROL)TAT (kr . 0, $)dOdg. (6.44)

The second part of the derivation of LF-stable translatiperators consists of
shifting the integration path along tiedirection into the complex plane

9 2w p2m4j5x ) N
h? (kr) = e /0 / e~ IR0 TAD (kpr 0, 6)dOd. (6.45)

Figurel 6.2 shows the old and new integration paths G'eandC, respectively. The
integrated function is analytical, hence the contribugiromCy andC, +Cs>+C5 are
equal. The integrated function is also periodic with petiagdhence the contributions
from C; andCj3 cancel each other, legitimating the shift in Eqn. (6.45) hiftsnto the
complex plane simply multiplies the Fourier coefficiedts t,, ,, with a factore="x.
The two outer sums in (6.43) can thus still be performed ugegFFT algorithm.

A side effect of the complex shift is that the symmetry of thene wave under the
transformation(, ) — (2 — 6, ¢ + ) can no longer be used to reduce the number
of points in a radiation pattern. Indedd,+ jx, ¢) maps into(2m — 6 — jx, ¢ + )
which is not a point in the integration domain.

In order to make Eqnl (6.45) numerically stable for low frengcies, the complex
shift must be tailored to compensate the divergent behafitire spectrum of the tri-
angular translation operator. In [7], a similar problemns@untered. However, only
translations in the-direction were stabilized. For this special case, theevaly was
chosen by imposing the condition that, after the applicatibthe complex shift, no
Fourier coefficient (of the translation operator) shoulgeha magnitude larger than
the magnitude of the lowest order coefficiegt. The aim of this was to avoid that the
highest order coefficients, which contribute the least enatidition theorem, numeri-
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Cs

Figure 6.2: Shifting the integration path, into the complex plane. The new integration path
is Cs.

cally overwhelm the low order terms. A similar reasoninglwé applied here, with
the generalization that the selected valug ofiust work for all translation directions.
We propose the following algorithm for calculating

1: Calculate2s,t, .,,¥n € [0,Lq4),m € [—L,L] for a translation vector; =
r%‘i“éx.
2: Determine the maximum over alt: ¢,, = max,,(|2s,tn,m|), ¥n € [0, Ly).
3 x=0
4: repeat
Determinen,,.x such thatt
if nmax = 0then

5 | > |tn],Vn € [0, Lq]
6:

7. 6=0

8

9

Mmax

else
§= -1

Mmax

t

M max

to

10. endif

11 t, = e ™t,,¥n € [0, L4]
122 x=x+96

13: until 6] < e

14: return y

with € a small number (e.g10~!2 in double precision), for determining whethét

is close enough to zero. Upon termination this algorithnidgie@ complex shift that

is suitable for all translations in they-plane, since the chosen translation direction is
e, and|2s,t, .| does not depend apir. It can, however, also be used for the other
translation directions. This can be understood by meanbetame argument as
the one used for the calculation bf;. The translations in they-plane usually have
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the Fourier coefficients with the largest magnitude, heheevialue ofy obtained
by means of the algorithm can be used for the other tranaktimo. Although this
argument is tenuous and does not actually prove that thetsdlg also works for
translation directions that are neither close totheplane nor to the-axis, numerical
experiments (see Section b.6) indicate that it is at legatoagmately valid.

The translation distance used in the algorithmJ8". The superscriptin is
introduced to indicate that the shortest translation ditashould be used. [f (6.45)
is used in an FMM, many different translation distances ameentered. As was
explained in [7], the shortest used translation distanceilghin this case be used in
the calculation ofy. This rule stems from the fact that the shortest translagguires
the most near-field information. Thereforeyifs adequate for the shortest translation,
the longer translations should also be accurate.

6.5 Transitions between levels

In a full multilevel scheme, a procedure must be devised dteutating the radiation
pattern of a box on level + 1 from the radiation patterns of its child boxes on level
p. In the MLFMA this procedure boils down to an interpolatiditioe radiation pat-
tern. The transposed procedure, corresponding to an atdéom in the MLEMA, is
required while going down in the tree. The method proposee has, in the LF case,
an almost constant number of samples. However, procedimgiarsto inter- and
anterpolations are still necessary because the value afaimplex shifty changes
between levels. We will call these the extrapolations, esithe integration domains
[0,27] ® 10, 2] + jx, and[0, 27] ® [0, 27] + jxp+1 are disjoint, wherg, is the value
of the complex shift on levaeh. As was noted in [6], these extrapolations can be done
using the FFT algorithm. However, this turned out to be digaintly less accurate
than a procedure based on least-squares fits. The leasesdaahnique, however,
has the disadvantage that dense matrices need to be newltiphi the following we
will propose an modified FFT based method that allows acewstrapolations. This
allows for a very efficient transition between the levels.

Let ¥ (6 + jx,, ¢) be the radiation pattern of a box on leygldiscretized with
2L" +1 points inf and¢. Then the extrapolation starts with the calculation, by msea
of FFT, of the spectrum o¥ (6 + jx,, ®)

Ly La LY Lh
v (0 + jXp’ ¢) = Z Z cn’mejnefnxpejm¢ = Z Z dfz,mejneejmd)

P[P TP TP
n=—Lym=—Lj n=—Lym=—Lj

(6.46)

The spectrunt,, ,,, can be seen as the spectrum®({é, ¢). Becausel (0, ¢) =
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¥ (2m — 0, ¢ + ), this spectrum satisfies the following property
Cn,m = (_l)mc—n,m- (647)

Also, db . = cnme” ™. This means that the spectruff) ,,, of ¥ (6 + jx,, ) has
a large magnitude for negativeand a small magnitude for positive From this it
immediately follows thati"’wm is known with much less accuracy thdﬁ‘wm. It
now turns out that changingactually amplifies these errors. Indeed, the effect of the
changing the complex shift from,, to x,,+1 is that the spectrund}, ,, is multiplied
with e"(x»=X»+1) " Sincex, > xp+1, this blows up the smaliz, . and shrinks the
larged;, ,,,. Hence the large relative error on the small coefficientsipldied as well.
This can be avoided by explicitly using the symmetry relaif6.47), leading to the

following formula

(6.48)

n,m

1 {n <0:dp e xpt)

“aso0:(omar, e 0wt

In this way, the entire spectrum df (6 + jx,+1,¢) is calculated fromd}, |, with
negativen. Hence they are known with a good accuracy. The radiatioteipabn
levelp + 1 can then be obtained by means of FFTs.

When going down in the tree, the transposed extrapolatiort brisised. This
transpose can be taken by writing all operations (FFTs,utation of dgj;}L with
(6.48)) as the multiplication of a matrix and taking the spose of the entire product.
The computational cost of this procedure is the same as fgmair extrapolation,
since the Fourier matrix is its own transpose.

6.6 Numerical results

6.6.1 Single level results

In the previous sections, a closed form expression for thestation operator was
derived, as well as a way to determine the paramedters; andx. In this section
we will investigate how well this ensemble of methods work#.calculations were
carried out in Matlab, in double precision. In the first tdwt frequency is varied for

a fixed configuration of boxes. The used configuration is thessen in Figure 6.1,
except that there are sources on all the vertRgs- r? of box 1 and receivers on all
the verticesR, — r{; of box 2. The64 interactions are all calculated both directly and
using the addition theorem. The error measfiris then calculated as the maximum
relative error (over thé4 interactions) between the numerically calculated andtexac
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spherical Hankel function

S . (kP + 72 — 7))

A=ma ~1/. (6.49)
o h((f) (k|re+rs —rl))
with
9 No ¢ (o )
B, (B 71) = <25 S0 7 Dkrr, O, + s 6, Je oo T I00m) T
0V¢ ng=1ng=1
(6.50)

The sides of the boxes aten. The maximum relative error is shown in Figlre 6.3,
for various target accuracies It can be seen that the error is always below the tar-
get acuracy, except for the rightmost points on the curva weitget accuracy0—2.
This failure can be traced back to the HF-breakdown of thétiaddtheorem. This
breakdown is seen earliest in the highest-accuracy cureuse botl. is higher and
smaller errors are visible. However, at the highest showguency the boxes have a
side of1.6 wavelengths, which is already quite large for a method wiassentially
HF unstable. According to [4], the sides of the boxes may beaall as).25 wave-
lengths for10~—2 accuracy with the MLFMA. This opens up the possibility of rirak

a switch to the MLFMA with uniform discretization, once thexes reach a certain
size, yielding a broadband method.

The results from the first test show that the proposed meshmior determining
L, L, and x are adequate if used for one translation. In the second teswill/
show that these parameters also work when many differenslaions have to be
performed, as is the case in an FMM. Since the calculationthf b; andy was based
on translations in they-plane, we will be mostly interested in the error contralip
of the method fofr differing much from3. The translations under consideration are
therefore defined by the following formula

rr =il 4 %) [sin (%) é, + cos (7;73) é } , Vn, €[0,4],n, € [0,30].
(6.51)

and shown in Figure 6.4. A further reason to omit a dependencgr is that the
values ofL; andy do not depend o, even if we would use a general translation
operator in thery-plane for their calculation. In addition, both the simpépdndence
on ¢t of the translation operator and numerical tests indicattttte error is relatively
invariant under rotations around theaxis. The accuracy results are summarized in
Figures 6.5(a) and 6.5(b). For both figures the target acgwas10~5, the sides of
the boxes werém and the shortest translation distan&&" was3m. The frequency
for Figure| 6.5(a) wag.77kHz, while the frequency for Figure 6.5(b) wagoMHz.
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Figure 6.3: The maximum relative erra as a function of frequency.

This leads to the parametelis= 20, L, = 21 andx = 11.51098 for Figure 6.5(a) and
L =24, Ly = 32 andy = 1.03578 for Figure 6.5(b). From these figures, it is clear
that the accuracy requirements are fulfilled for all thegddtanslations. Therefore,
this validates the heuristic algorithms devised for calting L, andy and shows the
usefulness of the new addition theorem in an FMM.

6.6.2 Multilevel results

The extrapolation procedure outlined in Section 6.5 antlatsspose were also imple-
mented in Matlab and tested on a geometry as shown in Figbrd Be largest boxes
have sidedm, the frequency i477MHz and the target accuracy i9~°. The largest
boxes are dividea,...; — 1 times and the error of the addition theorem is again cal-
culated as the maximum error over tecombinations of vertices. Table 6.1 shows
the obtained accuracy for various numbers of levels. Thesdts clearly demonstrate
the error-controllability of the total algorithm.

6.7 Conclusion

A novel plane wave addition theorem has been presented. slicamstructed by ju-
diciously replacing spherical harmonics in the transtatiperator of the MLFMA
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| nevel | Accuracy

1 2.430667966162078 10~ 7
1.970807036056693 10~7
1.970906654170130 10~7
1.970871348190628 107
1.970960996697772 10~7
1.969563794810023 107
1.970044079688026 10~7
1.968621907003791 107
1.968419081134079 10~
1.968573919736930 107

O 0| [ O U =] W DN

—
o

Table 6.1: Error on the addition theorem in a multilevel environment, for differembbers of
levelsnicvel.

Figure 6.6: One of the geometries used for testing the accuracy of the interpolatidres. T
number of levelsever determines how deeply the largest boxes are divided. This particular
geometry has three levels.
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with pseudospherical harmonics. Although these novelibigtons have a diverging
Fourier spectrum, truncation of the spectrum yields a fiaitd valid translation op-
erator. However, the divergence of the spectrum makes ib&siple to choose the
truncation bound arbitrarily large, without leading to aR Rumerical instability. A

fast algorithm for calculating the Fourier spectrum hasnbeevided. For LF, the

specific form of the Fourier spectrum of the pseudosphehiaainonics has allowed
us to find a complex shift that is capable of compensating mibtte divergence of
the spherical Hankel function, thereby eliminating the hBtability. In addition, the

transitions between levels can be done very efficientlygiBifTs. To the best knowl-
edge of the authors, this is the first analytically known plarave addition theorem
that is numerically stable in the quasi static regime. Mwegothe numerical results
show that it is error controllable for sufficiently high freencies. Therefore a hybrid
method with the usual MLFMA is straightforward, yielding emadband method.

6.A Pseudospherical harmonics

The so-called pseudospherical harmotiigs, (6, ¢) used in this paper are defined as

_sin™@ /1 d
Un 0 :Kw dej& <A do
1,m (0, 9) Im€ 2] sin 6 d6

I4+m
> [S(0)sin 0], (6.52)

with S(0) = % a piecewise constant function that has vakiefor  €]0, x| and
has value-1 for 6 €]r, 2r[. The derivatives in (6.52) must be interpreted in a dis-
tributional sense, sincE; ., (¢, ¢) contains Dirac delta distributions and derivatives
thereof. Therefore the pseudospherical harmonics onlg haeaning when they are
integrated with sufficiently smooth functions.

The following properties of the pseudospherical harmomies very similar to
properties (A.6) and (A.7) of the spherical harmonics

Ul,m (71— - 97 ¢ + 7‘-) = (_l)lUl,m (07 ¢) 5 (653)
Ul}m (27T—97¢+7T) = _Ul,m (€7¢) (6.54)

However, property (A.8) nor an orthogonality relation lig@&17) exist for the pseu-
dospherical harmonics. Instead the following orthogdpaélation holds

Theorem 6.A.1 For any integersl;, o and mq, mo satisfyingl; > 0 and —[; <
m; < I; the following holds

2 p27
/ / Uiymy (6,0) lemQ (0, ¢) sin 0d0de = 261, 1,0m, ms - (6.55)
0 0

Proof Let @ denote the left hand side of Eqn. (6.55). To prove Theoremi6 fixst
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replaceY;; .. (0,) by (=1)™2Y, —n, (0, ¢) and integrate ovep

thml Klz,—mz
21111! 2l2l2!

2 1 d li+my 1 q lo—ma
< 2 d ol 1
X/O (sin9 dg) [S(0) sin™" 0] (sin&d&) [sin®'? 0] sin 6d6.

(6.56)

Q = 27'(-6171177712 ( - 1)"L2

The integral can be transformed into a well-defined integsaperforming partial
integration/; + m4 times

T lo+1
(—1)htm /2 S(6) sin® ¢ L dyEn [sin®"* ] sin 6d0. (6.57)

Due to the definition ofS(6), the productS(6) sin # becomegsin §|. At this point
the symmetry of the integrand can be used to reduce the &itegrdomain tdo, .
This brings a factodl + (—1)**% in front of the integral. Then partial integration
can again be performdd + m; times, yielding an integral that is very similar to the
orthogonality integral of the spherical harmonics

1 1)t T d\tTm in2l g Lod\em™ in%2 §] sin Hd0
L+ (=1)"7%) . \smoao [sin®'* 6] T [sin®'? 0] sin 6d6.

(6.58)
As a consequence Eqn. (6156) becomes
27 pm
Q = (1 + (_1)l1+l2)/ ml,ml (97 d)) Y—lz,mg (9, ¢) sin 9d0d¢ = 25l1,126m1,m2o
0 0
(6.59)

This conludes the proof dof (6.55).01

6.B Useful properties of the pseudospherical harmon-
icS

In this appendix, some properties will be proven that aressary for calculating the
Fourier spectrum of the pseudospherical harmonics. Feswill prove the following
lemma
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Lemma 6.B.1 For any integer satisfyingl > 0 the following holds

S(6) sin? 6 = 2(_1);21(7?1 +1) f: ? Eﬁ 1 5 1 é; sin [(2p + 1)0] (6.60)
2

Proof It is easily verified that the result holds fbe= 0. It then remains to be proven
from induction that if [(6.60) is correct for a certain> 0, it is correct forl + 1.
Therefore the product of the right hand side of (6.60) wittf # must be investigated.
o, 2T 20 4+1) ST (p—1+3)
sin%6 2
P ST )
DT (=l
- 22Hlg F(p+i+3)

x {2sin[(2p + 1)0] — sin [(2p + 3)0] —sin [(2p — 1)6]}

1) (20 + 1) p 5) .
__ure+y) QQZH Z2l+1 2 + )7( g;sm[@pﬂ)e]

sin [(2p + 1)6]

- sin[(2p + 1)8], (6.61)

%fU”H%(L%D+1) P(p—(+1
22041 r ;} L(p+(1+1

which concludes the proof.(]

Now we move on to proving the wanted equality

Theorem 6.B.2 For any integersd and m satisfyingl > 0 and -/ < m < [ the
following holds

l+m I+m+1 ©
(sii&c?@) [S(0)sin® 0] = 2\/2(l+1) SN sin[(l+m+2p+1)0],

p=0

(6.62)

with
p _ Llet+tm+3)T(+m+p+1)
bm ™ Pm+H)T((+p+3)T(p+1)

(6.63)

Proof This proof will also be done using induction. By means of Lea6rB.1 and

P+1) _ (=)T+1) (6.64)

L (—l+3) 2 /m
it is easy to provd (6.62) for the special case= —I. Now assume that (6.62) holds
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for a certainm € [—1, [, then we have to prove that it also holds for+ 1

1 d l+m+1 .
<Sin 7 de) [5(6) sin®" 4]

1 d\ 24T (1 41) &
= 7 AP sin[(1 2p + 1)0 6.65
(Sin9d9> Jr pz:% Lo SI[(L+m +2p + 1)0] (6.65)
1 2[+m+1r l+1

" sing Z +m o+ 2p+ AT, cos [(I+m+2p+1)6].

(6.66)

The factor(l +m +2p + 1))7,,, can be dealt with by means of the following identity

(+m+2p+ )N =20 = AL (6.67)

This identity is still valid in the special case where= 0 becaus% = 0. Equation
(6.65) then becomes

1 2mHIT (1 4-1) i (

p p—1 .
sin 6 N Nm1 /\l,m+1> cos [(I +m + 2p + 1)0]

p=0

2l+m+21’\ l
——+Z)\lm+1$1n [(1+m+2p+2)0]. (6.68)

which concludes the proof.(J

For completeness, the following property)(ﬂ‘m will also be shown:

Lemma 6.B.3 For anyz and any integep > 0,7 > 0 andm € [, ] the following
holds

lim {)\lm )\lfj;l*m’l} =0. (6.69)

T—p
Proof Using the definition (6.63) fok, "~ I=m=1 yields

Afzrflfmfl _ r (71’ B l — %) r (71.)
Fln s P (et )T
sin(m(x + 1+ m))sin(r(z +m — 1))

- 2N 6.70
sin(rx) sin(r(z + 1+ 3)) Im (6.70)

The following form of the functional equation of the Gammadtion was used to
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obtain this result

r'i—z)T 1)=— . 71
(AT (+1) == (6.7)
By means of Eqn[ (6.70), the limit reduces to
: T —x—l—-m—1| _ \p I+m (_1)p+m+1 _
lim N+ A | =X {1 eV S = 0 672)

where we used I'@spital’s rule. O

6.C Recursive calculation of u},

Here we will supply a recurrence formula and an algorithm i@ be used for an
O (L?) calculation ofuj’,,, with n,1 € [0, L] andm fixed. The values ofi},, for
negativen can be obtained by means of Egn. (6.23). The recurrence &pia the
following Lemma:

Lemma 6.C.1 For any integem, [ > 0 andm € [, (] the following holds

2l Jr 1 ~M ~ 1 ~MN ~T
= [uz;:f + ul’m} = (L+m)ahl, + (- m+ Daril, (6.73)
o,

Kl,m '

with g, =
Proof We start with the following identity

20+1

; [Af“ﬂ{m} = (+mNt 4 (l—m+ 1A (6.74)

,m —1,m +1,m"

The proof of this using Eqn._(6.63) is tedious but straightfard. Now we replace
with 2L — ¢ to obtain

F1—(1—1
n+ 2( ) q

nl—(l+1)
e

Hl=m+ DA 2

2

l,m l—1,m

2 1 (n4+2)—1 n—1l__
l"‘ |:2 q+)‘l,72n q}:(l—&—m)/\

(6.75)

Applying the sum operat&% Z’;Z{)l (—1)m~—a (mljl) to this entire equation yields
Eqn. (6.73) which concludes the proof]

For the special case when = [ — 2, Lemma 6.3.1 reduces the recurrence to the
simpler form

(6.76)
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The following algorithm can now be used to calculate all g, for a fixed m:

1. Calculateiy, ,,Vn € [m, L] and;; Vn € [m+1, L] using the direct formula

m+1,m
(6.28)

2o forl=m+2toL do

3 Calculatei] ,, froma_; ,, by means of (6.76)

4: end for

5. forh=0by2to L —m —4do

6: forl=m+2toL—h—2do

7: n=I0l+h

8: Calculates;'+? fromay', ., 4/, anda;y', by means of (6.73)
9: end for

10: end for
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* %k k

Here, the broadband FMMs developed in the chapgters 3 and @ajpdied to
the simulation of metamaterials. Metamaterials are stnoes consisting of a
large number of more or less homogeneously distributediglast with spe-
cific properties. Because the inhomogeneities are at a snakth smaller than
the wavelength, these structures can be treated as homoggerdfective ma-
terials. These artificial materials may have propertiesttage not found in
natural materials, for example a negative index of refrati The simulation
of metamaterials is a broadband problem. Indeed, by dedimitie wavelength
is larger than the smallest geometrical detail (the pagg&), and at the same
time the wavelength is usually smaller than the entire pifometamaterial,
as for example ih 7.4]1. The simulation method consistseofrthltiple scat-
tering equation from 2.4.3, accelerated by means of the SBPRIA [9] and
the technique described in Chapter 3. The determinatioheftmatrix of one
particle is done by means of a Method of Moments surfaceraiteguation
solver that is accelerated with the NSPWMLFMA from Chaptelrbaddi-
tion to simulating the metamaterials, we also present desem full-wave
homogenization formulas to extract the effective matg@amhmeters from the
T-matrix of a spherical piece of metamaterial. Examplesfyehe accuracy
and limitations of the method.
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7.1 Introduction

In this paper we want to explore the possibilities of fullweaelectromagnetic field
simulations to find effective material parameters of metanias, i.e. we try to solve
the homogenization problem using accurate field simulati®y a metamaterial we
understand, in this paper, a random mixture of inclusionisestded in a host medium.
The inclusions, called particles in this paper, can havegaometry and any linear
material properties.

Although we see more and more full-wave simulations of ttatedng of fields
at finite pieces of metamaterials in literature, using Wwive simulations to come to
effective parameters has been explored only limitedly.lyEefforts have been done
by Whites using a Method of Moments (MoM) thin wire integratiation simulation
for chiral materials [1], [2] and [3]. In those publicatiosigherical ensembles of chiral
wire particles were considered. The most advanced effatdeae in [4] which con-
sidered a spherical ensemble of dielectric spheres andtheedmatrix method [5]
to come to effective permittivities. In [6] the homogenipatof a mixture of metal
needles was considered, also using a Method of Moments (Mbid)wire integral
equation simulation method. In that paper not only sphehigtalso cylindrical en-
sembles were considered.

In the present contribution we will also use the T-matrix Inoet and a spherical
ensemble of particles to obtain effective material paransetin order to be able to
simulate a large number of particles we accelerate the Tixmaethod with a Fast
Multipole Method (FMM) [7]. In [8] also a T-matrix method wassed to calculate
the scattering at a large ensemble of spheres (not the hamzagjen) in the realm of
metamaterials. It was accelerated compared to [4] by usBiggle Level FMM.

One of the most widely known FMMs is the Multilevel Fast Mptile Algorithm
(MLFMA). However, the problem at hand is difficult to handlévthe propagating
plane wave based MLFMA because it contains much geomettatall, i.e. the parti-
cles, that are small compared to the wavelength. To overd¢bim@roblem we resort
to the Stable Plane Wave MLFMA (SPWMLFMA) [9] which is furthexcelerated by
the method described in [10].

Unlike in [4] and [8] we will not limit the analysis to sphe&tparticles but con-
sider generally shaped particles. The T-matrix of eachigiaiis determined using a
MoM technique based on a surface integral equation. The Moahalyze one parti-
cle is also accelerated by an FMM. Again one faces the prothetthe MLFMA is
not suitable and now we resort to the recently developeddi@ttive SPWMLFMA
(NSPWMLFMA) [11].

Generally shaped particles which are randomly ordered aiedted lead in the
most general form to a bi-isotropic material. If the pagfchave handedness then the
material will be chiral. As said above we will use a spherigasemble of particles
and compare this ensemble with an effective homogeneois®toepic sphere with
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the same radius. In [3] and [4] the average of a Monte Carlttesirag simulation
over a number of different random ensembles is considerad6]lthe average is
taken over different angles of incidence for the same enkeoflspheres. In both
cases this result is then fitted to the Mie series of an isatrgphere. Here we use
a sufficiently large ensemble such that an average overeliff@angles of incidence
is again suitable for homogenization. However, this is ratoanplished by doing
several scattering simulations but immediately by congidea summing operation
on the T-matrix of the entire ensemble. We also do not useirdfitechnique to find
the effective parameters but develop a new closed form flaniiased on recursive
properties of spherical Bessel functions, to derive thectiffe parameters directly
form the T-matrix.

This paper is organized as follows. First we develop the lgenization assuming
that the T-matrix of the entire ensemble is known. Then we gome details about the
numerical simulation technique to obtain the T-matrix oé garticle and the T-matrix
of the entire ensemble. In Section 4 we verify the method dsd discuss some
problems and limitations. Finally, a number of examplassiitate the method. In the
last section we will also look at a general scattering expenit, as in [8], without
considering homogenization. We consider examples wituaB50000 unknowns.
First results of this work have been reported in [12] and [13]

7.2 Homogenization

7.2.1 Field expansion in a bi-isotropic medium

Let us first find a general field solution in a sourceless homeges bi-isotropic
medium using vector multipoles. The Maxwell curl equatioa bi-isotropic medium,
using ane’“* time dependence, are given by [14]

e R el &

We assume that the material parameter matrix can be didgedaising an eigenvalue
decomposition as follows

jw [_f _ﬂ —V. [’f)l ]SJ VL (7.2)

wherek; andk, are the eigenvalues and where the maétizontains the correspond-
ing eigenvectors. The eigenvaluks and k, are the wavenumbers of the medium.
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Invoking a Beltrami decomposition [15] yields decoupled equations

- o) [k 0 O(r)

v o) = [0 0] [om) (739
with @ (r) and®(r) the so-called Beltrami fields that are related todle) andh(r)
fields through

O(r)| _ -1 |elr)
2] =V [ 74
The vector multipoles are defined as
M, (ir) = SO (e 59V (5), 75)
N, (kr) = %v x MY, (kr), (7.6)

with integer! € [0,00] andm € [—[,!]. The spherical harmonicg, ,, () are de-
fined in Appendix A and the unit vectaris given by . The functionf;(-) and the
superscriptf in the vector multipoles denote any of the spherical Besgaitfons of
orderl. Due to the properties of the vector multipoles, the fiﬁfgn (kr), defined as

sz,m (kr) + N{;m (kr), satisfies
V x 8], (kr) = kS{,, (kr), (7.7)

which means thaS{m (kr) are the eigenfunctions of the curl operator corresponding
to the eigenvalué. A general field can now be expressed as

om=3" {all’mS{’m (kyr) + b}, S0, (klr)} , (7.8)
L,m

o(r)=Y [aimS{,m (kor) + b2, ST, (kgr)] : (7.9)
lm

where in the first terny;(-) is replaced by the spherical Bessel functigné) and in
the second term by the spherical Bessel functipfi) that is defined as

hy (kr) = [s(k)]'RS® (s(k)kr), (7.10)

with s(k) = —sign (3(k)) andhl@) (+) the spherical Hankel function of second kind
and order.
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7.2.2 T-matrix of a bi-isotropic sphere

Consider a homogeneous bi-isotropic sphere with radiaisd parameterg, u, £, ()
embedded in free space with parameters 1p). Suppose the fields outside the
sphere are represented by

|:eo('f‘):| —\e. Zl,m all,mSmeL (k?’l") + bll,ms?,m (kf’f‘) (711)
h?(r) St (03 S (BgP) + 07,81, (kgr)| |

l,m

with V°, k¢ and k$ resulting from the diagonalization (7.2) for free spaceapae-
ters. The sphere will impose a relation between the codfiisi¢h; ,,, b7,,) and
(a},,, a7 ,,,). We define this relation as the T-matfy’, ., .., for the Beltrami fields,

l.e.
b} a;
Im| _ B l,m’
B = D Tl 5| (7.12)
l,m l’,m/ al’,m’

The usual T-matrixT; ..., .+ for the fields [5] is then given b¥; .0 = (V")’1 .
Tfm;l,m, - V. The fields inside the sphere are

i

>im €l S{ (kir)
m m 2 Lm AT 7.13
El,m Clz,msim (k%?“) ( )

with V¢, ki andké resulting from the diagonalizatioh (7.2) for the parametgfthe
sphere.

The continuity of the tangential electric and magnetic 8edtithe boundary of the
sphere can be expressed as

. Cl al bl
AV lm | _ Ve.io. l,m VO .he. l,m 7.14
J [m J [m Y [b%,m] S
1 1 1
i % | Clm _\/o .o, Alm 0. o bl,m
V U [Cim V n [a%7m + V hl [b%7m] 5 (715)
with
o _ [di(kSa) 0 ] % [Jz (k{a) 0 }
= . , = e 7.16
s TP I £ (P (7:16)
hl ( ‘fa) 0 | b Hl (ki’a) 0
o_ ho — 7.17
! [ 0 hi (kSa)|’ : 0 H; (kga) |’ (7.17)
; 7 (kia) 0 % [Jl (kia) 0 ]
= . . , = . , 7.18
Ji |: 0 ji (k‘%a)_ Ji 0 7 (k‘éa) ( )
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and

Ti(2) = 0 ()] = o (2) — i (a) (7.19)

1(2) = —— g ()] = i (@) = g (@ :
1d l

Hy(z) = E@[Ihl (@)] = hi—1 (z) - . (z). (7.20)
It can be immediately seen from the systém (7.14) and (7Hdi)the T-matrix must
have a block diagonal forf ., .. = T80, m/, Where the2 by 2 diagonal
blocksT/ ., were denoted bi . This special form of the T-matrix can be traced

back to the rotational invariance of the bi-isotropic sghefolution of the system

(7.14) and((7.1b) finally leads to
-1 N o L -1
T () VR ) ) v

o v = () ] o

7.2.3 Homogenization

Consider a spherical piece of metamaterial with radiesnbedded in free space for
which we have determined the T-matfif,, ., ... How this is done will be explained
in the next section. We will now show that it is possible toedatine the material
parameters, p, ¢ and¢ in closed form of an equivalent homogeneous sphere. Hence,
we assume that it is possible to homogenize the piece of na¢tsial and that it is

possible to fit the T-matrix of a homogeneous spherﬁﬁg;l,,m,.

The T-matrix of a bi-isotropic sphere is block diagonal twitby 2 blocks) due
to spherical symmetry. However, the matﬁigm;l,ym/ which resulted from the simu-
lation of a random ensemble of particles will not be entifgllyck diagonal. From
Tlc,m;z/,m' a block diagonal matriﬁ'lc,m;l,’m, is obtained by averaging over all spatial
rotations. This is, as explained in [5], accomplished by

l
TC +C C
Tl,m;l/,m’ = Tl 51,1’5771,771’ = 61,[’6m,7n’ § Tl,m.;l,m? (722)

m=—1

where again the shorthand notatl‘ijﬁ was introduced to indicate the diagonal blocks
of TEWZ,M,. In a next step we transfori{” to the corresponding T—matrﬂ?lC’B for
the Beltrami fields of free space

TOP =ve 77 (vo)~h. (7.23)
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If we now identify T¢"Z with T2 from (7.21) we find after some manipulations

VY -iil i\ —1 o :o0 o o TC, o %o o o TC,B1—
\% 'Jz'(Jz) (V) = (Ve v hp TP VeGP Ve by TP (7.24)

The quantities on the right-hand side are known, those olethhhand side are sought
for. An eigenvalue decomposition, i.e. a diagonalizatafrthe right-hand side yields

X . 1
the matricesl; with the eigenvectors and the diagonal maffix (j}) with the

eigenvalues denoted gs; andy; ». Now we have to determine the wavenumbiys
andk$ by solving the equation

T (kpa)  Gica(kja)
Yk = = -

l
(AW =il - (7.25)
Ji(kpa) Ji(kpa) kya

for k = 1,2. This can be done in an elegant manner in closed form withaunly
to solve a transcendental equation. Invoking a recursilatioe for spherical Bessel
functions

j1— 1 20+ 1
& 15)6) b= (7.26)
Jt @
allows us to write the following quadratic equation fgr, k£ = 1,2,
l 1 20+1
Yk + o5+ = (7.27)
ko yipan + Ei kja

Of the two roots, one can be rejected by substituting thetisoliback in [(7.25) and
checking which root is best. From the knowledge:bfandks andV* the equivalent
material parameters are eventually found using (7.2).

In this derivation we have tacitly assumed that the algoriftields values:} and
ki andV?, i.e. equivalent material parameters, that are indeperafdn In practice
this will not be the case and for different values/afiifferent equivalent material
parameters will be found. However, if a homogenization efpiece of metamaterial
is to make sense, then it is to be expected that the variatidtheomaterial parameters
for small values of will be small. Or stated differently the variation on the eél
parameters will provide an error estimate for these mdteai@meters.

7.3 Simulation technique

This section explains how we calculate the T-matrix of a siphérandom ensemble of
particles. This is done in two stages. First we determin€Tthmeatrix of one particle
using a MoM scattering simulation technique considerinffeceént incident fields.
Then we determine the T-matrix of the ensemble using an SPVWWA_F-matrix
method.
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The T-matrix method requires that the circumscribing seb@f none of the par-
ticles overlap. This puts some limitations on the densitthefparticles. Generating
random ensembles of spheres comprising a given volumednaistnot that straight-
forward. We opted for the following method. First we place qrarticle at a random
position in the spherical piece of material, then we add ars#@@article at another
random position. If the circumscribing spheres do not @mgre leave the second
particle, otherwise we generate another random positiothéoparticle. This process
is continued iteratively until the desired volume fractifrparticles is obtained. This
algorithm has its limitations because it does not allow v&gh volume fractions of
particles and because it has an exponential CPU-complasityfunction of the vol-
ume fraction. If the considered particles have no sphesgaimetry then one also
needs to generate a random orientation for each particlelar to obtain an isotropic
metamaterial.

A random direction(d, ¢) for a particle is found by using = 27, andf =
cos~1(2v5 — 1) with v; andw, uniformly distributed ovef0, 1]. The particle is then
oriented along this direction and rotated around this tivadyy a random anglé =
273, with v5 uniformly distributed overf0, 1]. A random position(r, 6, ¢) for the
particle is found by again generating a random directiy) and a random radial
coordinater = aui/g with a the radius of the ensemble angd uniformly distributed
over|0, 1].

7.3.1 T-matrix of one particle

In this section we will present a brief overview of the sintida method used to
determine the T-matrix of a single particle. The T-matriXdand from calculating
the scattering of vector multipoles with(-) = j;(-) and evaluating the field in a set
of points on a sphere surrounding the particle. This fieldéntprojected back on the
vector multipoles as in Egns. (2/51), (2.52), (2.53) ang4p.

For the present discussion we assume that the particle iSCadBect with an
arbitrary shape. Non-PEC particles consisting of diffeisotropic materials can be
treated in a similar way [17]. We use an Electric Field In&édtquation (EFIE) for
the PEC particles considered here. The integral equatiensodved using a Galerkin
MoM in which the unknown surface current density is disaedi on a triangular
mesh with Rao-Wilton-Glisson vectorial basis functiong.athieve high accuracy the
singular part of the Green functions is extracted for bothgélf-patch and neighbor-
patch integrations. These integrations over the sing@ergre all being evaluated in
closed form.

For particles with a complex geometry the number of unknowrts discretize
the surface current density can be very large. A direct eoludf the MoM prob-
lem requires® (n*) CPU-time and soon becomes unpractical. For that reason we
resort to an FMM that has af? (nlogn) complexity. We assume the reader to be
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familiar with the basics of FMMs, for an introduction see.[7The classical plane
wave based MLFMA breaks down at low frequencies due to logsuaferical ac-
curacy. This means that the boxes on the lowest level in thEMW for structures
containing significant sub-wavelength geometrical detslwill be the case for par-
ticles with complex geometries, will contain a consideeabumber of unknowns.
Several attempts have been proposed to remedy this probikbimuivhaving to resort
to non-diagonal translation operators. The crux is to ipocate more near-field in-
formation in the plane wave spectrum. This can be done bypacating evanescent
plane waves leading to the Stable Plane Wave MLFMA (SPWMLFNB)which
needs6 radiation patterns along different directions. Recently a new method, the
non-directional SPWMLFMA (NSPWMLFMA), was devised [11] thaids thesé
different directions.

Often a particle will contain symmetries where two pairsraéracting triangles
are geometrically equal which means that the correspondioglements in the MoM
matrix are equal. In [16] and [17] we have shown that a spleey [t£8] allows to extract
these geometrical symmetries@(n logn) computational complexity, whene are
the number of unknowns. Even for structures with limited syetry this method
yields savings in CPU-time. The extra memory needed for thaystree is only
required during the set-up phase of the NSPWMLFMA. An impletaton of the
NSPWMLFMA is available as open-source software from [19]isTdlso considers
non-PEC objects and includes an asynchronous paralielizaf the algorithm for
distributed memory GRID environments connected by gigattiernet.

7.3.2 T-matrix of an ensemble

To determine the T-matrix of an ensembleMofparticles from the T-matrices of these
particles we will use the T-matrix approach as describeddgn2.4.3 or [5]. If each
T-matrix containsM? elements then this requires the solution of a linear system o
N M unknowns. SinceV will be large it is not possible to use a direct or even an
iterative solution of this system. The constituents arellsooapared to wavelength,
although the ensemble can be several wavelengths in simeniBans that the numer-
ical problem is at the same time a low- and a high-frequenoplpm. The solution

of the linear system can again be accelerated using an FMhiguee. In order to be
able to use small boxes and to fully exploit the potentiahefEMM we will again re-
sort to the SPWMLFMA as derived by [9]. In this way it becomesgible to obtain a
computational and memory complexity &f(N M log NM). The SPWMLFMA re-
quires the conversion of the vectorial multipoles into esoent plane waves alo6g
different directions. In [10] a method has been devisedréduces the computational
complexity of this conversion by a factor 6f
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7.4 \Verification

7.4.1 Luneburg lens

A Luneburg lens is a spherical object of which the permittikitig a radial dependence
given bye(r) = ¢9(2 — ;—2) with a the radius of the lens [20]. It has the property to
focus an incident plane wave at a point on the surface of thg, lat least in the
geometric optics regime. Let us now consider a metamatetiiaburg lens witl, =

8 built from a large number of spherical particles with ingieg density towards to
the center of the lens. The density as a function of the radasguessed from the
Maxwell-Garnett approximation [20] which yields a radigjp@ndence of the volume
fraction of inclusions given by

]-_é r,4nc 2
f(r) = ——a2 Erane T2 (7.28)

2
4 — Zﬁ Erjincl — 1

The wavelength i8m, the particles have a diametei0of2) and a relative permittivity
of €;.inct = 12. Inthe exampleéV = 42899 particles andl/ = 6 vector multipoles per
particle were considered leading 267394 unknowns. Figure 1 shows the focusing
of the amplitude of the field when a plane wave is incident enléins from the right.
The example proves the validity of homogenization using WelkGarnett and the
accuracy of the simulation method.

(@) (b)
Figure 7.1: Amplitude of the field in a metamaterialiheburg lens illuminated by a plane wave
from the right. The right figure shows the amplitude is in dB.

7.4.2 Influence of the radius «

Simulations to obtain effective material parameters shimmilarities with deriving
material parameters from measurements. We will illustoate of these similarities
here: the influence of resonances of the set-up. Let us camaidpherical arrange-
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ment with radiuse = 0.2m of N = 2409 dielectric spherical particles with radius
0.01m and relative permittivity20. Figure 2 shows the effective relative permittiv-
ity and permeability as a function of frequency obtainedifes 1 (left) and/ = 2
(right). We note several resonances in the curve which spard to zeroes gf (ka)
(solid vertical lines) and7; (ka) (dashed vertical lines). By considering differént
values or spherical arrangements of different radii theafof these resonances can
be eliminated.

25 ' ' 25

i i
L . i N
Kkt EAAAR R

¥ ! ¥ *
[ *x * % ' ¥
* L A
% ** I »*

o o o0 000
1/0000000000000000, | *9000000, | 0 00 030 20000006
‘

000 1 ooooooooooooooooooooooOo

° . OE)T=1 | | ° L 0E).T=2
o O)1=1 ! o OW)1=2

s
0 6 8 10 o 2 a 6 8
Frequency (Hz) x10° Frequency (Hz) x10°

(@ (b)

o 2

Figure 7.2: Effective relative permittivity and permeability as a function of frequeioc [ = 1
(left) andl = 2 (right).

7.4.3 Limitations

The FMM algorithm is based on an iterative solution of thedéinsystem of equations
that results from th&-matrix method. It provides a fast matrix-vector multiglion
in each iteration. However, an FMM will only be successfith# number of iterations
remains much smaller than the number of unknowi®. The number of iterations
needed in iterative solvers is related to the condition nema the linear system of
equations [21].

Let us consider a small spherical ensemble with= 125 spherical particles
with M = 30, i.,e. NM = 3750 unknowns. The spherical ensemble has a radius
a = 0.082m and the particles have a radius®f112m. We chose a frequency of
f = 900MHz. Figure 3 shows the number of iteratiaN$ needed to obtain a relative
accuracy ofl0~7 in the BICGSTAB iterative solution method [21] as a functioh
the parametet. The parameter determines the material parameters of the spherical
inclusions. The number of iterations was limiteditm0.

We note that when the relative permittivity and/or the peahility of the inclu-
sions drops below a value ef0.75 the number of iterations increases fast. This limits
the use of the method as discussed in this paper for negatiex imaterials or plas-
monic materials. Things are somewhat better than illustraere because we did not
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Figure 7.3: Number of iterations as a function of material parameters of the inclusions

include losses. Losses will reduce the condition numbettl@dumber of iterations.
An example of a negative index medium with losses simulatigd @ur method was
presented in [12] and verified with Maxwell-Garnett mixinges.

To get an idea of the origin of these condition number proklésh us consider
the Mie scattering at a homogeneous negative index sphéneawadiuse = 8m, a
relative permittivitye, = —1.5 and a relative permeability,, = —1 at a frequency
f = 47.7MHz. Figure 4 shows the amplitude and phase of the electtitd@mponent
along the direction corresponding to the linear polargatf the incident plane wave
in the cross-section of the sphere. We note very high fielehsities at the surface
of the sphere that decay quickly even for modetaté¢ and|u..|. If we consider a
spherical arrangement of particles to achieve this behdkie means that intricate
interactions between the particles are necessary. Natelasreversal of the phase
inside the sphere as expected for a negative index material.

In principle, the condition problem can be resolved by using@dequate precondi-
tioner. For periodic arrangements of scatterers, suchtag irealm of electromagnetic
crystals, successful preconditioners have been devisd [2ue to the random ar-
rangement of particles these cannot be applied here. Ing@iremetric Gauss-Seidel
preconditioner is used for particles with positive perivity and permeability. This
preconditioning problem is focus of further challengingearch.

There are also other limitations on the applicability osthiethod. One such lim-
itation has to do with the fundamental limitations of homiaigation. Suppose having
a periodic arrangement of particles that form an electraratig crystal then it is not
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Figure 7.4: Plane wave incident on a homogeneous negative index sphere. Thigueé
shows the amplitude and the right figure the phase of the component elettdc field along
the polarization of the incident plane wave.

obvious what homogenization means. It is to be expectedithah the particles are

moved randomly from the periodic lattice homogenizatiol mot suddenly become

meaningful. It is our belief that one has to resort to pagdhat are small compared
to the wavelength.

7.5 Numerical results

7.5.1 A non-chiral particle

Consider a spherical ensemble of loop-wire PEC particlégurg 5 (left) shows the
current density on the particle, as well as the triangulashrier the MoM simulation.
The diameter of the inclusions 202mm and the diameter of the wiresG2mm.
The number of unknowns per inclusion in the MoM was= 4316. We consider
spherical ensembles witN' equal t0126, 248, 501, 1016 and 1981 particles with a
particle density 00.0345mm~3 and a frequency df.98GHz. Homogenization yields
the following material parameters (average overiltifferent ensembles)

= T 1.26427 — 0.000055 —0.00000008 — 0.0000055 | -
(7.29)
Note that, as expected, no chirality is found and that thedesre extremely small.
Tables 1 and 2 show the material parameters for the 5 ensgmble function of the
parametet used in the homogenization procedure of Section 2.3. We sagyvery
small variations in the material parameters as a functidreofl V.

[ 2 ] B {0.000000034—0.000005]’ 0.9428 — 0.00001;
vl =
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AT S

@

(b)

Figure 7.5: Current density on a wire-loop particle (left) and a chiral particle (right).

AN | 126 248 501 1016 1981
1 1.2686 1.2627 1.2686 1.2509 1.2610
2 1.2631 1.2621 1.2642 1.2697 1.265Bable 1: Effective relative
3 1.2599 1.2639 1.2632 1.2728 1.2624
4 1.2593 1.2665 1.2633 1.2763 1.2616

permittivity as a function of and N for the wire-loop particle of Fig. 5 (left).
I\N \ 126 248 501 1016 1981

1 0.94117 0.94271 0.94079 0.95330 0.94356

2 0.94263 0.94275 0.94199 0.94129 0.940T&ble 2: Effective
3 0.94399 0.94267 0.94228 0.94091 0.94235

4 0.94474 0.94262 0.94246 0.94066 0.94302

relative permeability as a function bAnd NV for the wire-loop particle of Fig. 5

7.5.2 A chiral particle

(left).

As a last example we consider an ensemble of spiral PEC leatiEigure 5 (right)
shows the current density on the particle, as well as thegtkar mesh for the MoM
simulation. The diameter of the inclusions2i202mm and the wire has an elliptical
cross-section with major diamet@ri4mm and minor diameter.07mm. The number
of unknowns per inclusion in the MoM was= 4584. We consider spherical ensem-
bles with N equal to126, 248, 501, 1016 and 1981 particles with a particle density
of 0.0345mm~3 and a frequency 0d5.98GHz. Homogenization yields the following
material parameters (average over ftdifferent ensembles)

£

¢ B
VEOHO MEO —

€0 €oH0

0.0007 + 0.2033j
1.6347 — 0.00145

1.1072 — 0.0004;
~0.0007 — 0.20325 ] °

(7.30)
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We find lossless reciprocal bi-isotropic, i.e. chiral, migeparameters as expected.
Now consider a rectangular block of this metamaterial of 8% x 2\ x A\ with
an inclusion density of.023mm? at a frequency 05.98GHz. This means that there
are N = 11580 inclusions. We také// = 30 vector multipoles per particle leading
to NM = 347400 unknowns in the T-matrix method. Using a brute-force MoM

analysis, as e.g. in [3], of this sample would result in a frobof Nn = 53082720
unknowns. Although currently no such large MoM problemsehbeen solved it is
likely to happen in the foreseeable future [23] and [24].

We excite the block of metamaterial in two ways. Once usingpald in the
symmetry plane of the block (Fig. 6, left) (symmetric configfion) and once using a
dipole in the top plane of the block (Fig. 6, right) (asymritetonfiguration). Figure
7 shows the amplitude of the magnetic field in the-plane of the block for both
situations. Note the symmetry of the field for the symmetoafguration and the
asymmetry for the asymmetric configuration.

= L,

2%

(b)

Figure 7.6: Rectangular block of chiral metamaterial excited by a dipole in a symmé&tnep
(left) an outside a symmetry plane (right).
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Figure 7.7: Amplitude of thez-component of the magnetic field in thg-plane corresponding
to the configurations of Fig. 6.
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Now we proceed as follows. First we again determine the efeenaterial para-
meters for a spherical ensemble of these particles and d¢nisitg. Then we use the
bi-isotropic version of the Maxwell-Garnett mixing ruleJpto determine the mate-
rial parameters of equivalent homogeneous chiral spHeyanticles of the same size
and density that yield the same effective material pararsetéinally we use these
spherical chiral particles in the asymmetric configuratibirig. 6 of the rectangular
block. The amplitude of the magnetic field in the symmetrnnples shown on the left
of Fig. 8. Note the similarity with the left figure of Fig. 7.r&lly we put the chirality
to zero in our spherical particle and perform again the samelation. The result on
the right of Fig. 8 now is symmetric proving that the asymmatrthe right figure of
Fig. 7 and the left figure of Fig. 8 indeed is due to chirality.

s o as
4 .
0
4 as
o~ ., 0 .
100, 55 100 aad
B .
° 0 -
as B
100 / F 100 L,
200 | % 200
B .
-
as
B .
5

00|

40 %0 20 10 0 10 20 MO 400 0 300 200 10 0 100 200 30 400

Figure 7.8: Amplitude of thex-component of the magnetic field in thg-plane for the configu-
ration on the right of Fig. 6 when considering equivalent sphericahtparticles and non-chiral
particles.

7.6 Conclusions

It was shown that recent advances in computational eleetgoetics allow full-wave
simulations of finite pieces of metamaterials comprisimgstef thousands of inclu-
sions. In particular the use of the NSPWMLFMA MOM combinedhwihe SP-
WMLFMA T-matrix method was shown to be capable of derivingeefive material
parameters of metamaterials. We also derived a closed fonmuia to find the ef-
fective material parameters from the full-wave simulasiavithout requiring fitting
algorithms and Monte Carlo simulations. Finally some latigns of the method have
been highlighted, some of which, hopefully, will be alleeid during further research.
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Conclusion and future
research

In this work, a number of novel techniques have been devditipe can be used to
efficiently simulate LF and broadband FMMs. For exampleiéiedniques introduced
in Chapter 3 yield an acceleration of at most a faétfor the (dis)aggregation stage
in FMMs based on the spectral decomposition of the GreertifumcThis was shown
using theoretical as well as experimental grounds. The&ultdecomposition tech-
nique is very interesting in this respect because it is noitéid to FMMs that use
the spectral decomposition. Indeed, it can be applied tovantorial FMM, thereby
yielding an acceleration of a factdiin the (dis)aggregation stage.

In Chapter 4 a stabilized two dimensional addition theorems imtroduced. This
addition theorem is found by diagonalizing the multipolgiidn theorem, but only
after a normalization factor has been introduced. This @ggr yields a decomposi-
tion of the Green function that remains numerically stabledfl frequencies. Also it
has the additional advantage that the region of converdeeisdmplement of a circu-
lar disk which, compared to FMMs using the spectral decortiposresults in a much
simpler tree. A fully broadband FMM can be constructed usimgnew addition the-
orem. Furthermore, it was shown that this decompositiondsenoptimal for use in
an FMM than the multipole expansion. A disadvantage is tloé tfzat the method
requires two radiation patterns. Future research will tgdizcus on the reduction of
this number to one.

A three dimensional generalization, the NSPWMLFMA, of theht@que pro-
posed in Chapter/4 was introduced in Chapter 5. As in the twedsional case, the
resulting addition theorem is LF stable and converges irginethat is the comple-
ment of a sphere. A disadvantage is the fact that it requif@R #o determine the dis-
cretization points, which has the immediate consequendernge interpolation matri-
ces. Because of this, the NSPWMLFMA is not broadband in its ogit. However,
it is possible to construct a broadband FMM by coupling th&&M8ALFMA with the
MLFMA. This hybrid has been implemented in the parallel femmrk OpenFMM [1]
and the Method of Moments solver Cassandra. An example afapabilities of this
solver is shown in Figure 7.9. This simulation was performsitg the combined field
integral equation, by means 811541 RWG basis functions. The number of required
iterations wasl51 to converge ta& = 10~3. The simulation was run oh6 proces-
sors, and each iteration to@ks to complete. The Thunderbird 214.15m long and
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the wavelength of the impinging plane wave6i28m. Clearly this is a broadband
problem. The upper level of the FMM was done using the MLFMAjlerthe levels
below that are handled by the NSPWMLFMA. Future researchfadilis on finding
a way to do the interpolations of the NSPWMLFMA in a fast wayishould allow
the method to be used for all frequencies, not just LF. Anoihieresting topic is
the study of the distribution of the discretization poirtiattare selected by the QR.
It might for example be possible to find a criterium that thpeats have to satisfy
in order to get a numerically stable decomposition. Anoth&resting question is
whether the NSPWMLFMA can be made even more accurate or Botare there
fundamental limits to its accuracy ?

40

Figure 7.9: The magnitude (dB) of the electric currents on a PEC Thunderbird 2, illatexih
by a frontally impinging plane wave.

Compared to the NSPWMLFMA, the fully analytical LF stable FMiMroduced
in Chaptef 6 has the advantage that the interpolations calohe using FFTs, but
the disadvantage that it generally uses four times moreeatization points. For the
rest it offers similar capabilities as the NSPWMLFMA. Indeatthough the fast in-
terpolations would in principle allow a fully broadband atijhm, this is prevented
by an HF numerical instability in the addition theorem. Tdfere a coupling with
the MLFMA is required, as for the NSPWMLFMA. Future researdtlas analytical
FMM will largely coincide with the research on the NSPWMLFMMdeed, these
two lines of research both search for the holy grail of FMMeggsh: an analytically
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known plane wave decomposition of the Green function thstable for all frequen-
cies, can achieve very high accuracies and yields an FMMishas efficient as the
MLFMA would be without numerical roundoff errors. Such agaiithm would, apart
from being very efficient and much more elegant than a hybethad, allow an easy
implementation since no ad hoc criteria are needed thatrdigte when to switch
between algorithms. Such a fully broadband algorithm walds be invaluable for
the construction of a broadband time domain algorithm. éaldéf the algorithm de-
pends on the frequency in a smooth way, the inverse Foudesfiorm can be taken
efficiently.

In Chapter 7, the methods developed in Chapters 5 and 6 haveused to de-
termine the T-matrix of an entire spherical sample of metane. This T-matrix
was then compared to the analytical expression of the Timatra homogeneous
bi-isotropic sphere. The resulting equations have beewrsho reduce to a simple
quadratic equation in the effective material parametetschwis easily solved. The
effectiveness of the approach has been demonstrated bysraEanmerical tests on
a number of metamaterials. Some limitations of the tectaigere also encountered.
For example, when the particles that constitute the metnmhtire highly resonant
or comprised of a material with a negatiwer p, the iterative solver converges very
slowly. Therefore, future research will consist of a sedotteffective preconditioners
for this kind of problems.



170 CONCLUSION AND FUTURE RESEARCH




Bibliography

[1] J. Fostier, J. Peeters, and F. Olyslager. Open FMM.






APPENDICES






APPENDIXA

Scalar and vector spherical
harmonics and wave
operators

A.1 Scalar spherical harmonics

Here the spherical harmonics will be introduced. The sphéharmonics are func-
tions on the unit sphere, therefore they are usually definéu tve spherical coor-
dinatesf and ¢ as arguments. However, here it is convenient to use an dgniva
definition, which simplifies the notation when rotations eoasidered. It uses a unit
vector# = T as argument, whose componests- £, j = £ andZ = Z obviously
satisfy2? + §2 + 22 = 1. Then the definition is

mKl,m
207

Yim (7) = (-1) (& +49)" P (2), VI€[0,00], Vm € [-1,1]. (A1)

For integerl andm so thatl € [0, co] andm € [, []. The functionP;™ (-) is defined
as

I+m
P (t) = (;) (> —1]", (A.2)

2t +1 (1 —m)!
K m = “?m. (A.3)

The index! is called the degree and is called the order of the spherical harmonic.
Sometimes it is convenient to use the usifaly) form of the spherical harmonics. In

and
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that case the notation should be interpreted as follows

Yl,m (0; ¢) = }/l,m (7%(93 ¢)) y (A4)

with
7(0,¢) = cos ¢sin e, + sin ¢ sin fé, + cos bé.. (A.5)

A.1.1 Properties

Using definitions (A.1) and (A.4), the following propertiekthe spherical harmonics
are easily proven

Vi (=) = (=1)'Ypm (7) (A.6)
Yim (2r—0,6+m) = Yim (0,9). (A7)

For real arguments the following holds

(=1)"Ypmm (7) = Y (7). (A.8)
For complex arguments this has to be generalized to

(=1)"Yi,m (7) = Y7 (77), (A.9)

such that the complex conjugation of the entire functiosetff the conjugation of the
argument. The so-called spherical harmonic addition #raas given by

l
D ()™ (1) Yim (72) (A.10)

m=—

47

Pl(fl"f‘Q):T_i_l

with the Legendre polynomials defined as

l
P(t) = ﬁ <§t) (2 —1]". (A.11)

. 20+ 1
Yim (€2) = \/?5%0. (A.12)

Furthermore the spherical harmonics are closely connégtiee angular momentum
operatorL

Another useful property is

> . . R 1 .
L=—jrxV=j {easingaﬁ - €¢69] . (A.13)
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Indeed, the spherical harmonics are eigenfunctions ofplaﬁamorsi2 andl. =eé.-L
L*Yi () = 11+ 1) Y (7) (A.14)
LY, (7)) = mYpm (7). (A.15)

When the integration over the unit sphere is defined as

2w p
/ F(#)di = / / F(#(0, 6)) sin 0d0d, (A.16)
So 0 0

with #(6, ¢) given by (A.5), the operatots” andL, = &, - L are Hermitian operators
with respect to the dot product defined by this integratioher€fore, the spherical
harmonics are orthogonal with respect to this dot producie @ the specific choice
for K .., they are also normalized, leading to the following orthomality relation

/S )/llaml (7%) Y—l:,mg (”A’) dr = 611,125m17m2'
2

In addition, the spherical harmonics are also complete, i.e

o 1
;m;le,m (*) /S2 F(#)Y, (#)dr = F(#').

Other useful identities contain the so-called ladder dpesa
Ly=1L,+jL,=(é,+jé&,) L,
with the following properties

LaYim (7) = N5 Yimr (7),

and

/\fm:\/(lj:m—&-l)(lqim).

(A.17)

(A.18)

(A.19)

(A.20)

(A.21)

Recurrence relations constitute another set of usefutiitgs) With the special cases

. 3. )
Y11 () = g(x_]y)v
. 3
Yio(P) = 727
. 3.
Vi1 (F) = =/ o= (& + j9)

(A.22a)
(A.22b)

(A.22¢)
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the following holds

Y17—1 (ff‘) Yz,m ('f') = _Blnl}/l—l,m—l ( ) + B m+1

1 Yieime1 (7)), (A.23a)
Yio@)Yim (7) =AY m (7) + AL Yig1m (7)), (A.23b)
Vi1 (#)Yim (7) = =B, "Yi1me1 (7) + B Yigrmy () (A.23c)
with A" en B} given by
(I+m)(l—m)
V 20+ 1) 21 @+ 1)@ —1) (A.24)
I+m)(l+m—1)
Vi \/ 2020+ 1)(20 - 1) (A-25)

These properties can be proven by induction, or they candieaga special case of
the more general formula

)/llaml (If’) }/lzﬁnz r Z ‘All777L1;127m2;ls7m3}/l;m3 (f;)

Y (7)) (A.26)
l3,m3
with

Allyml;lz«,mz;ls,ms

[ Yivins ) Vi (59 Vi, () 05 -
_ \/(% +1)(2 + 1)(2s + 1)

ll 12 l3 l1 12 l3
4 0 0 0 mq

) . (A.28)
mo M3

The expressions between brackets are3thgvigner symbols. Another useful recur-
rence is

(CC - jg)A;—nYl,m+l ("A") + 27”'73}/177% (A) + /\l_m(ﬁj + jg)Yl,m—l (';q)

=0. (A.29)
This relation is the manifestation of the operator equality

(& — j9) Ly + 220, + (& + j9)L (A.30)

A.1.2 Efficient calculation

The recurrence relations (A.23) can be used to efficienfigutate the spherical har-
monics. The required values faf ,,, () are provided in[(A.22). First substitute
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m = 1 in (A.23d) andm = —[ in (A.234) to obtain

. 20+ 3 47T A
Yig1,41 () =\ 5T 1 \/ Yia( (7) (A.31)
R 20+ 3 47r R
Yigr—a+1) (P) =/ 77 iV Vi1 (P) Y (7). (A.32)

With these equations the spherical harmonics with= 4/ can be calculated from

the starting valué&j o (7) = \/%. Subsequently, for eveny,, the recurrence (A.23b)
over!

1

m
Al+1

Yigi,m (7) = Y10 (P) Yim (7) = A"Yi_1,m ()], (A.33)
is used to calculate all necessary spherical harmonics.theospecial case where
I = |m/|, this equation reduces to the simpler form

Yim41,m (7) = Y10 (P) Y| m (7) /2 |m| + 3 \/7 (A.34)

All the recurrences in this process are stable in the dobadh which they are used.
Moreover, the calculation of the coefficient$™ and B;" requiresO (1) operations.

Therefore the calculation of all thB? spherical harmonics of degree lower than

requiresO (L?) operations, which is clearly the best possible complexity.

A.2 Wigner rotation matrices

Now the transformation properties under rotations of theesipal harmonics will be
given. We assume the rotation to be defined in terms of an gothed rotation matrix
R, such that a unit vectat is rotated intor’ = R - # when the rotation is applied. A
general rotation can also be represented by means of asorotatisa and a rotation
anglea. In that case the rotation matrix will acquiéeand . as arguments. Some
details of this representation and a way to calcuR{&, o) can be found if A.2.3.
The most general expansion of a rotated spherical harmegigén by

o0

Yipm, (R-7) =) Z b’ (R)Yiym, () (A.35)

12 0 m2:7l2

The operatod,” = L - L is rotationally invariant due to the scalar product (thia ca
also be proven directly by means of (Al13)), therefore it bareasily applied to both
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sides of|(A.35)

ll(ll + 1) ll’ml Z Z 12 +1 dirlLllzmg(R)lez,mz (I’A’.) (A36)

l2 0 mz——lz

ExpandingY;, ., (R - #) by means of (A.35) and integrating over the unit sphere with
Yyh o, (7) yields

Or more explicitly
divts (R)=0 Vi #13 (A.38)

Apparently, spherical harmonics of degreare transformed into a sum of spherical
harmonics of the same degree. Therefore Egn. (A.35) can ittervas

Yim, (R- Z Dins iy (R) Yim, (7) (A:39)
Tng——l
The matricesD!, .. (R) (labeled with and function ofR) are widely known as the

Wigner rotation matrices, or simply Wigner matrices.

A.2.1 Properties

Since integration over the unit sphere is rotationally iraat

/ Yiymy (P) Y}, o, (R-7)dP = Y, ma (R_1 - 7) Y m, (P)d7,  (A.40)
SQ 82

the Wigner matrices are unitary

DY,y R) =Dl (RTY). (A41)
Or more explicitly
Z Dm 7n1 nL ,ma (R) = 5m1,m2~ (A42)

m=—1
Another property is given by
4 .
m1, Z Dm1,m2 m270 20 + 15/1 my (R ’ ez) : (A43)

H’Lg——l
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Therefore the spherical harmonics are a special case of ifpeeWatrices. Another
special case of the Wigner matrices occurs when a rotatmmarthez-axis over an
angleg is used

Diy g (R(@2,8)) = €760, s, (A.44)
with
cos@ —sinf8 0
R(e,,B) = |sin8 cosfB 0]. (A.45)
0 0 1

A.2.2 Efficient calculation of the Wigner matrices

For the efficient calculation of the Wigner matrices, therapph advocated in [1]
will be adopted. The Wigner matrix fér= 0 is trivially 1. The Wigner matrixD! for
=1

DL, s (R) DL (R) DL, (R)

D' = D(l),—l (R D(lJ,l (R) ) (A.46)
)

N &34 1 j .
e O Tl -2 V3| v O [R
i ) — ~# —h ol
M
it is easily seen that
1 /3 v ViRl g v
Z Yi1(R-7) z
Therefore the Wigner matrix is given by
D!=M-R-MT, (A.49)

since the matriM is unitary. Recurrences will now be deduced that allow thgni&fi
matrices forl > 1 to be calculated recursively. L&t denote the following

Yi_1(R-#)
YioR-#) | Yim(R-7). (A.50)
Yi1(R-7)

Q=
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Then the rotated version of (A.23) is

—Blm}/l—l,m—l ( ) 1+T+1Y2+1 m—1 (R ’IA")
Q= APY o (R-7) + Az+1Yl+1 m (R-7) . (A.51)

)
—B "Y1 (R-7) + Bz+1 Yij1,me1 (R-7)

@ can also be expanded as follows

Y 1 (7)
Q= Z D, (R Yio (#) | Vi (7)), (A52)
m/=—1 Y171 ('f*)

which, using Eqns| (A.23), leads to

—B" Y g1 (7) + BlJrl Y1 (7)
Z Dm " . A;n/%_l,m/ ( ) + Al+1n+1,m’ (’F)
mi=—1 —B ™ Yie et (7) + Bl Y (7)
(A53)

Now integrate the two expression f@r, namely (A.51) and (A.53), With} ;1 ,,,, (7)
over the unit sphere. This yields, after a tedious caloufati

1 BH—TlDin mi+1 (R) Bl-i-TJrngll mi (R)
D' | A Dy, (R) | = AZ?TD}{ m (R) |- (A.54)
BlyillDin my—1 (R) BZT—T DrrJLrJrl mi (R)

This equation thus yields a means of calculating the Wigratrisnfor degred + 1
from the Wigner matrix for degree In practice the second component of Edn. (A.54)

is used to calculate alD’}, (R) for all m, and form € [-1,1]. Then the first and
third components are used to calculatealf . (R) for all my and form = —1 — 1

andm = [ + 1 respectively.

A.2.3 Rotations defined by axis and angle

Sometimes, it is more convenient to represent a rotatioha@sduple(a, o). Here
the unit vectora denotes the axis around which the rotation is performedcamsi
the rotation angle. The direction of the rotation is detewdi by means of the right
hand rule. When the rotation has to be performed on a vegttire resultv’ can be
easily obtained by means of quaternions. Indeed, when tttene is encoded in the
guaterniorn: as follows

c= [O Vg Uy vz] , (A.55)
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and the unit quaterniog contains the rotation parameters as follows,

q=[cosY a-é,sing a-e,sin a-é.sing], (A.56)

(&)

thenv’ can be found by means of
=100 v, v, vl]=qgxecxqg " (A.57)
Here, x denotes quaternion multiplication agdk ¢~ ! = [1 0 0 O}. When the

rotation matrixR(a, «) corresponding to the rotation is required, it can be obthine
by using [(A.57) on the three Cartesian unit vectors.

A.3 Vector spherical harmonics

The vector spherical harmoni®; ,,, (#) andW, ,,, () are defined as follows

LY, (#)
Xim (7) TS (A.58)
Wi (7) =7 x Xy m (7). (A.59)

A.3.1 Properties

The vector spherical harmonics satisfy many properties tikthose satisfied by the
spherical harmonics. Among these are the transformatiopgpties under inversion

Xim (=) = (=)' Xy (7), (A.60)
Wi (—7) = (=)W, (7), (A.61)

and under complex conjugation

<_1)m+1Xl,—m ("%) 3 (A62)
(=)™ W (7). (A.63)

Xim (77)
Wim (77)

The vector spherical harmonics do not have a radial comgonen

(A.64)
P Wi (7) =0, (A.65)
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which is readily proven by means of the definition (A.58) dAdb0). The following
properties are also useful and easily proven with elemgntzstor algebra

Wim (7)) Wi (7) = Xim (7) - X (7)), (A.66)
Wim (7) - Xvme (P) = =Xim (P) - Wy (7). (A.67)
The following orthogonality properties hold
8 X m, (7) - X;;,mz () dF = 01, 1,0m1 mas (A.68)
: Wiym, (7) - W, (7) AP = 01, 1,0my ma s (A.69)
: X1y m,y () - le’m (7)di =0, (A.70)
) Wiy, () - X,y () die = 0. (A.71)

Equations[(A.68) and (A.69) are easily proven using theomrtinmality of the spher-
ical harmonics and the fact thdt is Hermitian. Equations (A.70) and (A.71) are
proven by means ok - V; ,,, (#) = 0. The completeness relation is given by

Z/S Xim (7) X[ (7)) + Wi () W1, (#)] - F(7)d#
=1 —#7]- F(#), (A.72)

It can be seen that the radial componen#tf) is lost. This is obviously caused by
the fact that the vector spherical harmonics are purelyematigl. To get a complete
basis, a third set of vector spherical harmonics that haslialreomponent must be
added. This set is given byY; ,,, (7). The additional orthonormality properties are
easily shown, however, we will not further elaborate on thigd set since it is not
required in this work.

Under rotations, the vector spherical harmonics transiarthe same manner as
the spherical harmonics, i.e.

R™' X, (R-7 Z DYy s (R) Xy (7) (A.73)
mg——l
R Wi, (R-# Z Dy RYW i, (7). (A.74)

mz—fl
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This can be proven faX; ,,,, (R - 7) as follows

R™' X, (R-7) = —jR™" - [(R-7) X (R- V)] Yy m, (RF) 1(11+1) (A.75)

Because the cross product of two rotated vectors is thesbtabss product , this can
be simplified to

LY, .., (R?
R X, (R 7) = — 2=~ (RY)

= > Dy (R X, (7) (A.76)

and likewise forW, ,,,, (R - )

X
l
= Z Dfﬂl,mz(R)Wl,mg ('f') (A77)

A recurrence ovem for the vector spherical harmonics can be found by applying
L to Eqn. (A.29), yielding

2le,7rL ('f')
= (& = JD) N X tmer1 (7) +2mEX () + N, (& 4 59) Xim—1 (7) -
(A.78)
Taking the cross product withyields a similar expression
—2j X m (P)
= (& = JON W ima1 (F) + 2mEW oy (7) + A, (& + GO W i1 (7).
(A.79)

Expressions (A.78) and (A.79) are coupled recurrencesy the be decoupled by
using the linear combinations

Vi, () = Xy (7) £ Wi (7). (A.80)
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Equations[(A.78) and (A.79) then become

2V ()
— (5 A\ )T £ - v E (4 - (5 N + 5
- (x - jy))‘lmvl,erl (T‘) + szvl,m (’l") + )\lm(m + ]y)vl,mfl (7’) .

(A.81)
The vector spherical harmonics also satisfy the followiagilg proven identities

Xll,’n’L] (’%) ) Xlzﬂng (’%)

)
L -l +1)—l(+1 . .
bl Dbt Dy () Vi, (). (A82)
2/ (I + D)ia(ly + 1)

—jrV -

Xty (k) Wiy, () = WACEIE Vi, (k) Xtpoms ()] (A83)
Equation[(A.82) can be used to show that

Bllgm1§127m2§13»m3 = /S [X117m1 (fi") : XlQ,mz (72)] Y—l3,m3 (f‘) dr
2

. Zg(lg + 1) — ll(ll + 1) — lg(lg + 1)
B NACEACES)

All;m1§l27m2§l3;m3 (A.84)

A.3.2 Efficient calculation

The X, ,,, () can be expressed in term of the spherical harmonics by mdahe o
ladder operators (A.19)

L1 | T )
Xim (P) = m i(ex —jéy)Ly + i(em +jéy)L_ +e.L.| Y (P),
(A.85)
which, by means of (A.20), evaluates to
A ~
Xy (7) Ly W?n_{(r) (A.86)
m (1) = —/—— . mY;m (7 , .
b 0+1) i (7)

with M defined in[(A.47). This expression immediately allows tHizigt calculation
of X; ,, (7) from the spherical harmonics. The spherical harmonics sietras can
in turn be calculated efficiently by means of the algorithraatibed in A.1.2. With
X .m (7) known, W ,,, () is rapidly obtained by means of Eqn. (A.59). An alterna-
tive expression is obtained when the cross product wvithexplicitly calculated, after
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which the factorse, y andz are absorbed into the spherical harmonics using (A.23).
This is a tedious calculation and we give only the result

Wi (7)
i (=) [(l + D)B"Yi—1m-1 (#) + 1B Y g e (7)
=/ ——==M"T | (I DAYy (7) + LA Yi 1 m ()
3 l ,m N 1+1ti+1,m . )
VIEED L4 DB () + 1B Yiga e (7)

(A.87)

with A7 and B;™ defined in|(A.24) abd (A.25).

A.4 Scalar and vector spherical wave operators

The scalar spherical wave operators, introduced in [2]defened by substituting
with - in the definition of the spherical harmonics

v (=" Kim (0 O\ _.( 1 O
Yim (]k)—(k) 20l (amay) Fi (gka) (A.88)

with P/ (-) defined in/(A.2). For example, the following explicit fornauor / = 1
can be found

()

< 1 3 -
v

Yial =%

With the scalar spherical wave operators defined, the definiif the vector spherical
wave operators is trivial: simply replagdy % in (A.86) and|(A.87). When applied
to a plane wave with wavevectgmwith k- k = k2, the scalar spherical wave operators
can be immediately evaluated

v . . _
—jk-r — ) _Jk.fr' .
Yim (_j k) ¢ Vi (k) (A.90)
Because every field/(r) satisfying the Helmholtz equation

Viw(r) + k2w(r) = 0 (A.91)
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can be written as a superposition of such plane waves, thexr Sgdnerical wave oper-
ators satisfy the following property

v v
W (5 Vi ()

oo I3
=3 > ALy, (D)"Y, <_v;k)w(r). (A.92)

l3:0 mnglg

Equation[(A.23) has a similar analogue.
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APPENDIXB

Spherical Bessel functions

B.1 Spherical Bessel functions

A spherical Bessel functioffy () is defined as the solution of the spherical Bessel
differential equation

d ( 2 d f;(m)) + [2® =11+ 1)] filz) =0. (B.1)

de \* dz

This is a second-order differential equation, hence thexdveo linearly independent
solutions. There are an infinite number of linear combimegtiof these solutions, but
we will mainly use the following two

30) =3y @), 52)
h? () = \/EH;?; (z). (B.3)

The functions/,, (x) andH? (z) are the cylindrical Bessel functions, defined in [1].

B.1.1 Properties

The spherical Bessel functions satisfy two recurrenceiogis

20+1
x

(21 + 1)0%fl(x) (@) — (L4 1) foan (@), (B.4b)

filz) = fiia (@) + fipa(2), (B.4a)
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which can also be written as

@) = o) - g, (8.52)

i) = L)~ froa(e). (B.5b)

The following cross product formula is also useful

@) 2, (@) — i () WP (@) = (8.6)

The spherical Bessel functions naturally arise in the smiutf the three dimensional
scalar Helmholtz equation.

B.1.2 A special identity

Here we will prove the following Theorem

Theorem B.1.1 For every integei € [0, o] andm € [—I, 1], the following holds

%@@m=ﬂmm<:;>hwm ®.7)
with
Z{ . (kr) = filkr)Yim (), (B.8)

wheref;(z) is a spherical Bessel function, i.e. a function satisfyiBdlj. The differ-
ential operatory; ,,, (%k) is defined in A.4.

Before proving Theorem B.1.1, the following lemma will fits proven

Lemma B.1.2 For every integel € [0, co] andm € [, (], the following holds

v —m
Y1 (jjk> ; Bllef—l,mf—l (kr) + Bl+1+1ZJl§-1,m—1 (kr)
Yi,O *ljk Zl,m (]f?") = _j 7AZ;LZZ—1,m (kT‘) + A?}rllzl-}-l,m (k’l") ’
Yia —l]k By Z]y gy (k) + BET ZY ()

(B.9)

with A;* and B;™ defined in/(A.24) and (A.25).



B.1 Spherical Bessel functions 193

Proof Let @ denote the left hand side of (B.9). Then the following is lgastiown

@= —21313\/3'\/' vz, (br) (B.10)
= ‘Z;\/EM [ fi(kr)V Y (7) 4 Yim (7) V fi(kr)] (B.11)
:% %M- [—fdkr)f“x [7 % VY (#)] + Yim (f')f“(ifz(kr)} (8.12)

Or by means of the definition &fl andW, ., (") in (A.47) and|(A.59) respectively

3 fi(kr) 5 e (f”) —
Q= 47]{:7M-Wl,m P) VI 4 1) + jYim (7) | Yio () fi(kr).
= kr R d(kr)
Y11 (7)
(B.13)

By means of((A.87), the first term becomes

\/Eflgff) M- Wy, (#) I+ 1)
B Yy ()

fl(k'r) _(l + 1)Blyn}/l—1,m 1 ( ) 1+1
A DAY () AR Vi ()| (B4)
—(I+1)B ™Y —1,m+1 (T) — ZBZ_H Yit1,mt1 (7)

while, by means of (A.23), the second term becomes

Yi s (f)] .
3Yim (P) | Y10 (#) | =7 filkr)
Yis (7) d(kr)
=B"Y,1m-1(?) + BT Y1 me (7)
= J 3y 17) APV (7) + ATy Vi (7) . (B.15)
T

=B ™Y1 m1 ( )+Bl+1 Yigrme (7)

The derivative of the spherical Bessel function in Eqn. 8 .dan now be expanded
by means of recurrences (B.5). For the part containing sgddrarmonics of degree
1—1, recurrence (B.5a) should be used while (B.5b) should be fase¢he degreé+1
harmonics. It is easily seen that, after this substitutibe terms containin ’(k’") are
canceled by (B.14). Therefore

Bl fie1(kr)Yi—1m—1 () + BT fipa (kr)Yiea m—1 (7)
— AP fra(kr)Yio1m (7) + AT fra (k)Y m (7) , (B.16)
B fl—l(kT)Yl—l,mH( )+ Bl fraa (k) Yiga men (7)

Q=-j
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which concludes the proof of Lemma B.1L..2]

Theorem B.1.1 will now be proven

Proof Equation|(B.7) is trivially true foi = 0. The casd = 1 can be proven by
replacingl in Eqn. (B.13) by zero. Sinc® o (#) is identically zero andl fy(z) =
— f1(z), this leads to the required result. An inductive argumefitivaw be used to
prove [B.7) for highef. Assume thaf (B.)7) holdgl < L. Then

v v
Yi () Y () v
Via (50) | 200 =3 | Yoo () | Vi () folhr) ®17
v (2 v (2

Let @ denote the left hand side of Eqr. (Bl17). Sinfgkr) is a solution of the
Helmbholtz equation, recurrences (Al23) also hold for tracspherical wave opera-
tors

7BZLYL—1,WL—1 % + BZT1+1YL+1,m—1 (%

)
Q=i ATY 1 1m % + AT YLi1im ( ?k
B ™YL 1m+1( A4 )+BL+1YL+1m+1 —% )
_B7LRZ£ 1,m—1 (kr) — BLJTH LHYLH m—1 %) fO kr)
=7 Apzi_ 1 (k) = AP G5 ( fo( . (B.19)

—B_mZ{ I (k’!’) _ Z:}-le+ YL+1,m+1 (_l]k) fO(k’f’)

fo(kr) (B.18)

v

According to Lemma B.1]2) is also given by

—BPZ]_y oy (k) = By z L (k)
Q=j Ang 1o (BT) — LHZ£+1m(k;'r) , (B.20)
-By mZL 1,m+1 (kr) — B?:11ZL+1 m+1 (kr)

Comparing/(B.19) and (B.20) yields
v —m
B Y 1<—jk> folkr) = Bzl (kr), (B.21a)

) v "
*ATLn+1JL+1YL+1,m (_Jk> fo(kr) = *AL+1Z£+1,m (kr), (B.21b)

m V m
—BLflleHYLH m+1 (_jk) fo(kr) = _BLlelngrl mt1 (kr). (B.21c)

Since AT, | # 0if [m| # L + 1, the equality ofiZ+1Y, (%k) fo(kr) and
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Z£+1,m (kr) under the same conditions encan be proven using (B.2lLb). For prov-
ing the casesn = L + 1 andm = —L — 1, Eqgns. [(B.21c) respectively (B.21a) can
be used. As a consequence (B.7) hotdis< L + 1, which concludes the proof by

induction. O
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APPENDIXC

Conference papers

C.1 Exact Modeling of a Finite Sample of
Metamaterial

|. Bogaert and F. Olyslager

Abstract: Metamaterials are electromagnetically complex strustute this contri-
bution we present a technique that allows for a detailedyaisabf a finite sample
of metamaterial incorporating all electromagnetic intéicns. To this end we use a
full-wave T-matrix formalism. To accelerate the simulagove use the Stable Plane
Wave Multilevel Fast Multipole Method. We also present &dimmethod to derive the
effective material parameters from the T-matrix of a spta@isample of metamaterial.

Keywords: metamaterials, fast multipole methods

C.1.1 Introduction

Metamaterials consist of a large number of constituentsegiaidéd in a host medium.
Each constituent can have a complex structure and e.g. stafgprinted ring res-
onators and dipoles. When considering a finite piece of metaimbone is interested
in the overall effective medium parameters of this pieceeseheffective parameters
are usually estimated from the polarizabilities of a cduostit using homogenization
formulas such as Maxwell-Garnett or Bruggeman [1].

In this paper we want to use another approach. We aim at peirfgra full-wave
numerical simulation of a finite sample of metamaterial amehtderive the effec-
tive parameters from these scattering simulations by cosgawith a homogeneous
sample of material with the same geometry. In this way alldleetromagnetic in-
teractions are taken into account. This approach allow® wheck the validity of
the homogenization formulas. Such formulas fail when thesitg of the constituents
become high and these formulas also assume a material dférgxtent. This also



200 CONFERENCE PAPERS

means that the dependence of the geometry of the sample effehve parameters
only can be estimated using a full-wave simulation.

To solve the scattering problem we will use the T-matrix agigh [2]. We will
first determine the T-matrix of each constituent and thersidamning the interactions
between all the T-matrices. If there akeconstituents, and if each T-matrix contains
M? elements then this requires the solution of a linear systemv &/ unknowns.
SinceN will be large it is not possible to use a direct or even an fiegssolution of
this system. The constituents are small compared to waglealthough the sample
can be several wavelengths in size. This means that the reahproblem is at the
same time a low- and high-frequency problem. The solutiomefinear system can
be accelerated using a multilevel fast multipole technigutethis technique needs to
be valid for high as well as low frequencies. For this purpmseopted the use of the
Stable Plane Wave Method as derived by [3]. In this way it bee®possible to obtain
a computational and memory complexity@f{ N M). We also use an acceleration to
convert multipoles into evanescent plane waves as has leesed recently in [4].

To derive the effective parameters of a metamaterial weaasitisider a spherical
sample. From the T-matrix of the individual constituentsca@ derive the T-matrix
of the entire sample using the Stable Plane Wave Method. Weecompare this T-
matrix with the T-matrix of a homogeneous sphere to iderttify effective material
parameters. It turns out this can be done in a very elegantusing a recurrence
relation of Bessel functions.

C.1.2 Analysis

The examples will consider a spherical sample consistingpbierical inclusions.
Spherical inclusions have an analytical T-matrix. We wilb® the validity of the
Maxwell-Garnett and Bruggeman formula and show the pd#gibd derive a nega-
tive index material for an example proposed in [5]. First ve¢éetimine the T-matrix
of the constituents of the metamaterial. This starts froenilbmination of the con-
stituent by incoming fields of the following forms

L []l (k’l‘) )/l,m (’I")] Einc,Q

_ 1
11+ 1) b

E;N (r) = (r) kvwa%ﬂ,(CQ

wherek is the wavenumbedy,,,(r) are the scalar spherical harmonics and whiere
is the angular momentum operator

1 d d

L=—jrxV=jley

The resulting scattered fields can be decomposed into amgctimilar to[(C.1), but
with spherical Hankel functions instead of spherical Befsections. The coeffi-
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cients arising in this decomposition can be interpretechérses of the T-matrix of the
constituent. All scattering information of the constittiencontained in the T-matrix.

In the next step the T-matrix of the entire spherical sanmpldeitermined. This is
done using the Stable Plane Wave Method as developed in [8JwM/not go into
the details of this multilevel fast multipole technique buffice to say that the method
remains stable at low frequencies by also incorporatingneseent plane waves in
addition to propagating plane waves. In the disaggregatimhaggregation steps it
is necessary to transform the vectorial spherical harnsomipansion of the T-matrix
into plane waves. For the evanescent plane waves this esguitifferent expansions
along thetz-, £y- and thet-z-axis. Recently [4] a new method was derived to reduce
the workload of this process by a factor@f

In the final step the T-matrix of the entire sample is matctethe analytical
T-matrix of an homogeneous sphere. This T-matrix is diaband the diagonal ele-
ments are given by

Z{jl(koa) _ Z .71(]@1‘0«)

Tl tji(koa) © ji(kia) C.3
Im Z_HL(Z)(koa) _ Ti(kia) h;z)(k(,a) ’ ( )
? jl(koa) ojl(kma) jl(k'oa)
Ji(koa)  r Ji(kia)
T2 _ _ Zo Ji(koa) Zs Ji(kia) (C.4)
bm 7 M2 hoa) o Filkia) i (hoa) '
o ji(koa) tgi(kia)  gi(koa)

x dx T dx
andk;, the impedance and wavenumber inside the sphere. The reftdides of both
of these equations are known as are the radius of the piecetaimaterial and the
parameters of the surrounding host medium. Therefore #esations can be solved
for the two quantities%’ (thus yieldingZ;) and A; = ilé,f;‘)) From the latter, a
unique value fotk;a is not easily found, but since this quantity is known for a \eho
series of, the recurrences of the Bessel functions can be used toxahtafollowing

quadratic equation which can be solved easily

Here, Ji(z) = L4 [zj)(x)] andH\* (z) = L & [xhl@)(z)]. The unknowns aré;

1+1)\? I+1
— ( ko > + (Al — AH_l)H + AjA1+1=0. (C.5)

Determining which one of the two roots to choose is done bgutating these roots
for various! and checking which one is consistent.

C.1.3 Numerical example

As an example we consider a spherical sample with rallius1.477m at a frequency
of 25MHz, hence the spheres have a diameter of about one quaréewatelength
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in free space. The host medium has a relative permittiwity= —1.5 + 5 and a
relative permeability:,, = 2.0 + 1.24. In the host medium spheres with a radius of
r = 0.1m are embedded. These spheres have a relative permittivity —6 + 0.95
and a relative permeability, = 1.5 + 0.25. By varying the number of spheres
we vary the volume fraction of the inclusions. To obtain higllume fractions we
invert the medium by interchanging the material parametitse spheres and the host
medium. Figuré CJ/1 shows a volume fraction16f6 obtained by randomly placing
500 spheres in the spherical host medium. Figures C.2 and Cp&ctagely show

05 LT 0.5

05 o . 05

Figure C.1: A spherical sample with00 spheres.

the real and imaginary part of the effective relative petiniiy. The result predicted
in [5] using the Bruggeman homogenization formula (indécbas "Mackay” on the
figures)are also shown as well as the results of the Maxwath€tt formula. As can
be seen the Maxwell-Garnett formula is more accurate thamthggeman formula.
Similar conclusions can be drawn from the real and imagipany of the effective
permeability as shown in Figures C.4 and C.5.

For each volume fraction we only considered one realizatibthe medium.
Nevertheless the simulated results show a very smooth lhiadicating that the
medium really can be considered homogeneous. Uking (C.®awealerive the ef-
fective medium parameters also for various values. dt turns out that our results
are independent dfagain confirming previous conclusion. This conclusion wél
less evident if one considers higher frequencies. Thenfteetige parameters will
depend on the radius of the spherical example and diffeeslizations will yield
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o Medium 1

= Medium 2
---- MG 1
=== MG 2

R — Mackay

Figure C.2: Real part of the effective permittivity.

o Medium 1

= Medium 2
Iy ---- MG 1

.6 === MG 2

— Mackay

Figure C.3:

Imaginary part of the effective permittivity.
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L85

Medium 1
Medium 2
MG 1

MG 2
Mackay

Figure C.4: Real part of the effective permeability.

Medium 1
Medium 2
MG 1

MG 2
Mackay

Figure C.5: Imaginary part of the effective permeability.
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o Medium 1

el s Medium 2
---- MG 1

=== MG 2

— Mackay

=8-0-0-0-0-0"3"% 0 o

Figure C.6: Negative phase velocity parameter.

different effective parameters.
For the example considered here we also calculated theivieegéitase velocity
parametepy py given by [5]

~ Reerr]l | Rpeyy]
PNEV = Slees] * Spters] (c.6)

For a negative index medium this parameter has to be negalie curve in Fig-
urel C.6 indeed shows a region of volume fractions correspgrid a negative index
medium.

C.1.4 Conclusions

It is shown that using a multilevel fast multipole methodlinting evanescent and
propagating plane waves such as the stable plane wave nadtbwd for the accurate
simulation of a finite piece of metamaterial. These simafetiallow to check the
validity of the homogenization assumption as well as of hgemization formulas. We
also presented a new direct method to obtain the effectiranpeters from a spherical
sample.
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C.2 Efficient Calculation of Moment Integrals for
Tensor Product Basis Functions

I. Bogaert, L. Knockaert, and F. Olyslager
Abstract: The calculation of moment integrals for the solution of gred equations
is still an arduous task. A considerable amount of liteetexists concerning the
treatment of the various singularities, but it is usuallgdssed on one type of basis
function and one Green function. Moreover, the number otsssive quadratures
in a moment integral can be rather large, in particular f@ 8elume integral equa-
tions (VIES). A more general approach will be presented fartensor product basis
functions. This type of basis function often arises in voduimiegral equations. The
new approach is based on the known Abel transform propertige Green function,
which provide a way to expand the Green function of genemaledision into a su-
perposition of Gaussians. This allows the quadratures thwedifferent dimensions
to be decoupled, which enhances the computational effiziehdurther simplifica-
tion of the moment integral to only a single integration carattained when the basis
functions are polynomial, which is usually the case.

C.2.1 Method of moments in electromagnetics

Consider e.g. the following VIE ifR:
u(r) = /K(rm’)v(r')dr’ (C.7)

with dr = dz;...dz4. Equation[(C.7) can be converted into linear equations byrmse
of the method of moments which consists in expandifig) into a suitable set aV

basis functionsd,, (r'):
N

v(r') =Y vaAn(r') (C.8)

n=1

and integrating (C17) witlV, possibly different, test functionB,,,(r). The resulting
linear system of equations is given by:

N
/Bm(r)u(r)dr = Z Zmnn, m=1,...,N (C.9

n=1

with the so-called moment matrix given by

Zn = //Bm(r)K(r,r’)An(r’)drdr', myn=1,...N (C.10)
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For electromagnetic application&(r, r’) is usually the free-space Green function in
d dimensions:
K(r,v') = ga(k,|r —7']) (C.11)

wherek is the wavenumber angj (-, -) is defined in[(C.14). Since the Green function
exhibits a singularity, the calculation of these integialsot obvious if the basis and
test functionsB,,,(r) and A,,(r) have overlapping support. The most widely used
method to perform the quadrature is extracting the sinqudarof the Green function
and integrating that part analytically. However, the résglanalytical expressions
can be very complicated and some limit cases may also neethbptention. More-
over, these expressions are specific to the Green functistised. Going from 2-D
to 3-D, for example, will alter the expressions consideyaln addition, the numerical
evaluation of the remaining nonsingular part of the integaa require a large number
of Green function evaluations. Wherns the number of quadrature nodes per dimen-
sion, O(¢??) Green function evaluations are needed for (C.10). For 3-Bsythis
results inO(¢®) evaluations. It would therefore be desirable to have a noettith a
lower computational cost which works for any dimensiband for any overlap the
support of the basis and test functions might have. In thipauch a method will
be presented for tensor product basis functions. This mieasis and test functions
can be written as

d
F(r) =[] fu(zw) (C.12)

C.2.2 The Green function as a superposition of Gaussians

Thed-dimensional Green function is the fundamental solutiothefHelmholtz equa-
tion in R%:

V2 ga(k, r]) + K2ga(k, |r]) = 5(r) (C.13)
and is given by [6]:
—_—
galk,r) = 2(5—)"F HE, (kr) (C.14)

whereH,(f)(-) is the Hankel function of the second kind. A very interesfimgperty
of the Green function was presented in [7], in connectiomhe Abel transform of
ga(k, ). The Abel transform is defined as

o0

O(r)=Af(r) = / f(Vr2 +a2?)dx (C.15)

— 0o
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By applying the Abel transform to (C.13), itis easy to shoetthg,(k, r) = gq_1(k, 7).
Also, the Abel transform has a continuous set of Gaussiaméigctions

Ae="" = \/?e_"'r2 Ro > 0. (C.16)
o

It can be readily verified that

j —jkr — _ _7"@ 2 —@ 17
g1(k,r) = YAe 27rf/ i dp (C.17)
where®a > 0, R > 0 andjk = /aB. As a consequence, thedimensional
Green function can be seen as a continuous superpositioausdzans. Together with
(C.16), this yields an expression for all the higher-dinmemnal Green functions:

ga(k,7) ( ) e e % dp (C.18)

27‘(\/7

It should be noted that the requirementsdoand3 can only be met for lossy media.
As a consequence, (CJ/18) is invalid if there are no losseweMer, this can be easily
remedied by moving the integration pathfof (G.18) into theptex plane.

C.2.3 Calculating the moment integral

We now substitute expression (C.18) in the moment inte@rdlQ):

Zmn = -

o d—1 )
e | (Vf) % Quun(p)dp (C.19)

where

Qun(p / / B (r)e” 3 Zom(mmm) 4 pydrdr’ (C.20)

The integral in/(C.19) can be evaluated easily with an ada@auss-Legendre quadra-
ture routine. Although the original moment integral had rgsiarity, this singular-
ity does not appear i), (p), and with Gauss-Legendre quadratugg,,, (0) never
needs to be evaluated. Hence, it becomes very easy to aamng\wesired accuracy.
Note that adding another integral will not in general rediingeworkload. However, if
we suppose the basis functions are separable, then theatuadr over the different
dimensions become separated, i.e.

an H // w,m xw ’;%(mw—a:w) aw,n(xiu)dzwdx;) (C21)
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Hence the2d quadratures have been replaced3bguccessive quadratures, thereby
lowering the computational complexity @(dq? P), whereP is the number of nodes
for the quadrature of (C.19). Usually, thg .., (z,,) anda,, ,,(«,) are piecewise poly-
nomials, so the double quadratures in (C.21) can be dongtmadly by means of the
Error function, reducing the number of quadratures to omg,cand the computa-
tional complexity taO(dP) ! This method is very useful for moment integrals arising
in VIEs for electromagnetic inversion problems. Thesegraéequations typically
have polynomial basis functions on a rectangular mesh [#6%use the exact geom-
etry of the problem is not known a priori. Since any polyndnsin be written as a
sum of tensor products, the method presented here can béoustidiently calculate
these moment integrals.

C.2.4 Example: 2-D volume integral equation

The proposed method has been applied to the two-dimensidviacattering by a
square region (see Figure C.7) with relative permittiaty. The sides of the square
are one wavelength long and the incoming field is a plane WB\%& = w. e 7+2.
The following VIE for the TM case was used:

_ 1l
B (r) = B"(r) - (e, - 1) | 1 / nlhfr = DB () dady (€22)

wherek is the wavenumber of free space afydis the relative permittivity of the
medium in the square. As basis and test functions the Chebysitynomials'(n, z) =
cos(n arccos ) were used up to degrés in bothz andy directions, i.e A, m, (1) =
By ms (1) = T(mq,z)T (m2,y). Chebyshev polynomials were chosen because of
their nice interpolatory properties. The resulting eliedield from this
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Figure C.7: Total electric field for scattering bya. = 2 square.

calculation is shown in Figufe C.7. This result has beerdasdid with the result
from a boundary integral equation.

C.2.5 Conclusion

A novel method for efficiently calculating moment integrddased on the Abel trans-
form properties of the Green function, has been presented applicable to any

tensor product basis function. If, in addition, the basiscfions are polynomial, the
moment integrals can be calculated with just one numericaticature.
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C.3 Fast Full-Wave Validation of a Metamaterial
Lineburg Lens

I. Bogaert, L. Meert, and F. Olyslager
Abstract: Metamaterials have received much attention in the past.pdhsibility of
creating a metamaterial with just the required propertigssbme given application
is tantalizing. However, designing a metamaterial appibcausually entails making
assumptions, concerning for example the homogeneity afdtamaterial. Only the
experiment or a full-wave analysis of the design, which @&isorporates the detailed
structure of the metamaterial, can justify these assumgtmd validate a design. In
this paper, a stable plane wave fast multipole method foulsiting a metamaterial
consisting of a collection of spheres will be presented. A#lastrative example, this
method will then be used to simulate @neburg lens which was designed using the
Maxwell-Garnett approximation formula.

C.3.1 The LUneburg lens

The classic ineburg lens [10, 11] of radiusis a spherically symmetric lens which
has an index of refraction given by:

n(r)=14/2 - = (C.23)

with r the distance to the centre of the lens. If a plane wave imgimgethe lens,
a focal point exists at the far side of the surface of the Ieftss property is often
used in so-called lineburg reflectors, which have a good conductor coveringgbar
the lens. The continuous variation of the index of refrati®usually approximated

Figure C.8: Luneburg lens with homogeneous concentric shells.
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using homogeneous concentric shells (see Figure C.8)tdagst theoretically, it can
also be done using a collection of electrically small diglespherical inclusions in a
host medium with a variable inclusion density. For such samaterial, the Maxwell-
Garnett homogenization formula [1] predicts the follownegative permittivity:

e =1+ _f(’;(o‘) (C.24)

Here, f(r) is the sphere density (the number of spheres per cubic neetdr) is the
polarizability of one sphere, given by:

€s— 1

=3V
@ €s+ 2

(C.25)

with €, andV respectively the relative permittivity and volume of eaélthe spheres.
By equation|(C.23) the relative permittivity is known andsthermits the calculation
of the sphere density as a function of the distance to theaent

2
31-5
a4_f

f(r)= (C.26)

C.3.2 Simulation method

In order to simulate a large number of spheres, the T-mateathod is used. In this
method the incoming and scattered electric field of evergspls expressed in terms
of the vectormultipoles [12]:

l

E™(r ZXL: > [ainem,, (r) + vienNg,, ()] (C.27)

=0 m=-—1
L l
E*r) =3 Y [ M () + bz NI (r )} (C.28)
=0 m=-1
where
af, ) = ZUEDYin ] )Lt ) (c29)

B 1+ 1) k

with j;(+) andhl(z)(-) respectively the spherical Bessel function and the spalgtian-
kel function of the second kind. The angular momentum opet&is given by:

d d
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The total field impinging on théth sphere is the field generated by the source plus
the scattered fields of all the other spheres. Mathematjahls can be expressed as
follows:

inc,k MN ) sc,j so k
alm alm l’m/ ) A l'm! (er’) Aoy (C 31)
zn(' k ( ) MM ( ) ) ) bs( 7 + bso k
j#k U ,m’ lm Am\Tik)  Qum 1rm/ T 5k 1'm/ Im.

The a-matrices are the translation matrices for the vectoripoidis [12]. To get a
solvable linear system of equations, another relation éetwthe scattered and incom-
ing field of the spheres is required. This relation is prodidg means of the so-called
T-matrix of the spheres. The T-matrix of a sphere convertinaoming field, ex-
pressed as a vector of multipole coefficients, into the spwading scattered field:

sc,k inc,k
(02T a
=3 % T 1] ca

=0 m=—1 Im

For a homogeneous sphéfg,, ,,,, is a diagonal matrix and it can be computed ana-
lytically. For more complex geometries, it can be calcudatamerically. Multiplying
(C.31) with Tf;,,., ,,,, Yields a matrix equation which only contains the scatterdsi

Solving this matrix equation can be done using an LU-decaitipn, but this re-
quiresO(N?) multiplications and?(N?) memory size. For large problems, this is
unacceptable. However, using an iterative technique inboeation with a fast mul-
tipole method (FMM) for the matrix-vector multiplicationthe computational com-
plexity and memory requirements can both be reduce@(®y’). The geometrical
detail of metamaterials is smaller than the wavelengthevhipiece of metamaterial
is usually larger than the wavelength. Therefore, the FMMHe simulation of meta-
materials must work for both low-frequency (LF) as highginency (HF) problems.
The Stable Plane Wave Method (SPWM) [13] satisfies this requeént. It incorpo-
rates propagating as well as evanescent plane waves by ofd¢hagollowing spectral
representation of the Green function:

(2 eTFikr DY dk dk!/ — >
hy (yr) 27r/ / V(. K z=u, -1 20. (C.33)

Here, k. is a quantity depending opand K = , /k2 + k2, defined as
V ’72 - K27 Y 2 K
—JjVE? =% K>y

Unfortunately, equation (C.33) is valid onlyif=> 0. This is caused by the fact that
evanescent waves grow exponentially if this condition issatisfied, causing the in-

k(7. K) = { (C.34)
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tegral representation (C.33) to diverge. Similar expmssior the other half-spaces
are easily obtained, but the fact that six different represi®ns ¢,y,z = 0) are
needed means a serious reduction of the efficiency of theadethhe aggregations
and disaggregations are the dominant computational cblstaever, it has been re-
cently shown [4] that the (dis)aggregation from (to) mudtgs to (from) the six plane
wave patterns can be accelerated by using the symmetry afjgregation matrices.
This acceleration has been used here.

C.3.3 Results

A Luneburg lens with a diameter 8fwavelengths was simulated. The wavelength is
2m, the radius of the spheres(is2m, and their relative permittivity i$2. The total
number of spheres 42899, which results in257394 unknowns if only the dipole
scattering term is taken into account. The incoming fieldjidame wave traveling in
the negative:-direction: E""“(r) = u,e’* ™. The simulation was run on a computer
with 4 Opteron 270 processors. Multithreading was only used f(dis)aggregation
stage. Memory usage was approximateGb and the simulation took0 hours. In
figures C.9(a) and C.9(b), the amplitude and phase,of E'*(r) are plotted in the
planez = 0. In C.9(a) the spheres intersecting with this plane are stiewn, while
in|C.9(b) the contour of the lens is shown. The focussingcefié the lens is clearly
visible in both plots, thereby validating the design andgimeulation method.
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C.4 Exact full-wave simulation of finite pieces of
metamaterials and extraction of effective
material parameters

|. Bogaert and F. Olyslager
Abstract: A stable plane wave multilevel fast multipole method (SPWNWA) is
presented for the simulation of the scattering at a venelaigmber of scatterers using
the T-matrix method. The method is used to accurately sitatlee interaction of an
incident field with a piece of metamaterial consisting of @éanumber of particles
embedded in a host medium. From the scattering data it islpess derive effective
material parameters of the piece of metamaterial. We wilstwo examples. The
first one consists of a metamaterialieburg lens and illustrates the interaction of the
incident field with a large number of scatterers and the sgooe is a chiral medium
composed from a large number of metal spiral like objectslaradrates the extraction
of effective parameters.

C.4.1 Introduction

The T-matrix of a particle relates incoming and scatteredorél spherical harmonic
coefficients of the fields. Knowing the T-matrix for each petin a cloud allows the
construction of a linear system of equations describingrttezaction of an incoming
field with the cloud. The dimensiaN of the system is equal to the number of particles
multiplied by the number of spherical harmonics per pagtidlypically the size of the
particles will be small and the size of the cloud will be lacgenpared to wavelength.
To solve this system efficiently we will use the SPWMLFMA [13hieh is valid in
the low and the high frequency regime. We have further acateld and optimized
this method [14].

The T-matrix of an individual particle is evaluated analgtly in the case of a
sphere or using a detailed Method of Moments integral egnathalysis in the case of
a more complex particle. For metal particles we use an étdatd integral equation.

To extract the effective material parameters of a metanahtermposed of a cloud
of particles a spherical cloud is considered and the T-mafrihe total cloud is calcu-
lated. From that an analytical technique is used to extrif@ttave material parame-
ters. l.e. material parameters of a homogeneous spheretmenined that produce
the same T-matrix as the spherical cloud. Since differen¢spal harmonics can be
compared we have a check for the accuracy. In practise wdaak# the average of
the result of four to five such spherical harmonics.
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C.4.2 A Luneburg lens

As a first example we consider diheburg lens o8\ diameter build from a large
number of spherical particles with increasing density talsao the center of the lens.
The density as a function of radius was guessed from the Max¥agnett approxi-
mation. The particles have a diametefadf2\ and a relative permittivity of2. In the
exampleN = 257394 for 42899 spherical particles. Figure C.10 shows the focussing
of the amplitude of the field when a plane wave is incident @nléims from the right.
The example proves the validity of homogenization using WielkGarnett and the
accuracy of the simulation method.
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Figure C.10: Plane wave incident on a metamateriéineburg lens.

C.4.3 A chiral medium

Now we consider particles that are metal spirals as showrigar& C.11. The di-
ameter of a particle i2.202mm and the perfectly conducting wire has an elliptical
cross-section with a major diameter@®i4mm and a minor diameter 0f07mm. The
surface current density on the wire is discretized ugigyl Rao-Wilton-Glisson basis
functions. Figure C.11 shows the current density on the wiien a plane wave is
incident at a frequency &.98GHz.

Spherical clouds composed of randomly positioned and rahdoriented parti-
cles are build. We consider clouds consistingl 2%, 250, 500, 1000 and 2000 par-
ticles each with a density @f.0345 particles per mm. The centers of two particles
are at least separated Bysomm. In each case we determined the effective material
parameters by comparing the total T-matrix with that of a bgeneous bi-isotropic
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Figure C.11: Surface current density on a perfectly conducting chiral particle.

Figure C.12: Spherical cloud with 1000 particles.
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sphere. We took the average of the effective material pasmef each of these five
constellations and we found

(C.35)

£

g - _ . _ -
= Teero 1.6347 — 0.0014; 0.0007 — 0.20325

l & 1 B [0.0007+0.2033j 1.1072 — 0.0004;

where we used the material parameter definitions of a bidpa medium as defined
in [15]. As( = —¢£ we indeed recover a reciprocal bi-isotropic medium, i.ehisat
medium. Also note that the numerical simulations give risetlossless medium
within numerical accuracy. The variance on the matrix el@selerived from the
effective parameters of the five constellations is

0.0043;  0.011

0.022  0.00405] " (C.36)

Hence, an accuracy betwe&th and2% on the effective parameters is obtained.
A spherical cloud withL000 particles is shown in Figure C.12. Each small sphere
on this figure represents a spiral like particle as shownguifel C.11.

C.4.4 Conclusion

We show that using advanced fast multipole methods it besqrossible the simulate
finite pieces of metamaterial comprising a very large nundfescattering particles.
We demonstrated that this method allows for the extractfoeffective parameters
from a finite piece of metamaterial.
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C.5 Accurate Wideband Evaluation of the Shielding
Effectiveness of Complex Enclosures Using an
Asynchronous Parallel NSPWMLFMA

J. Peeters, |. Bogaert, J. Fostier, and F. Olyslager
Abstract: We present the application of the Non-directive Stable &Mfave Mul-
tilevel Fast Multipole Algorithm (NSPWMLFMA) to the simuliain of the shielding
effectiveness of enclosures with complex fillings. The rodts parallelized with
an asynchronous algorithm in order to allow highly efficismhulations in an inex-
pensive GRID computing environment. The whole method ity feitror controlled.
Further increased efficiency is obtained by using Bloclebapreconditioners, splay
trees (STs) to extract symmetries in the geometry and darefiluation of self-patch
and neighbor-patch integrals. Numerical examples of aoucks with and without
equipment illustrate the method. We will also focus on the oflossy materials to
increase the shielding efficiency of metal enclosures atoesonance frequencies.

C.5.1 Introduction

In [16] a detailed study was made on the shielding perforrmafmetallic enclosures.
The simulation of the shielding effectiveness of an enai®samains a difficult task
because of two main reasons. First, the accuracy of the afions needs to be very
high. This requires high precision calculations and verg @liscretizations both lead-
ing to high computational costs. Second, every geomettailde the enclosure is of
importance. Taking into account this detail again puts ldgmands on the compu-
tational complexity. In [16] a Method of Moments (MoM) bassatle [17] was used
in order to achieve the required accuracy. The high comiouiat cost limited the
simulations to low frequencies and simple geometries.

We have already shown that the Multilevel Fast Multipole &ithm (MLFMA)
[18] is especially suited for evaluation of the shieldingfpemance of enclosures.
This method combines a high accuracy with limited compateti cost. IfN rep-
resents the number of unknowns to discretize the unknowmv@ent) electric and
magnetic current densities on surfaces then the compoéhtemst of the MLFMA
is O (N log N). For three-dimensional problems, involving consideragi@emetrical
detail and/or of several wavelengths in si2éwill grow rapidly requiring consider-
able computer resources even when using MLFMA.

Two-dimensional simulations of shielding enclosures gisinboundary integral
equation accelerated with MLFMA were presented in [19] &].[In these contribu-
tions we demonstrated the importance of the accuracy irps#th and neighbor-patch
integrations, the importance of preconditioning and theafsSTs to efficiently extract
symmetry. In [21] we presented an asynchronous paralteNde-MA that allows for
efficient parallelization of the MLFMA method on inexpersiGRID computer en-
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vironments connected by a slow switch. The asynchronowusmitiign is also highly

performant compared to existing synchronous paralléinatof the MLFMA when

considering multiple object scattering as is encountendtié evaluation of shielding
enclosures comprising realistic hardware. An implemémaif this two-dimensional
parallel MLFMA is available as open source software from|[Zpplications of this

method reach far beyond EMC problems, see e.g. [23].

In [21] we already mentioned the possibility to extend thgodathm to three di-
mensions by considering elementary three-dimensionétiestay examples. This pa-
per wants to further explore this and show its abilities taleate realistic shielding
problems. We apply the MLFMA on different surface integrquiations to calculate
the scattering at multiple homogeneous dielectric or p#sfeeonducting (PEC) ob-
jects. Since the classical plane wave based MLFMA breaksdavow frequencies
it is not very suitable to simulate objects with sub-wavgtbndetail. However, re-
cently a very efficient new plane wave based MLFMA, the NSPWMIA has been
developed [24] that remains stable at low frequencies. # ESPWMLFMA was
developed for scalar wave propagation problems, here wieédirst time apply it for
vectorial wave propagation.

The asynchronous parallelization scheme developed inff2 #jvo-dimensional
problems is shown to be fully applicable for the three-disienal NSPWMLFMA
as will be illustrated here for the first time. As in the twordinsional case we
will devote special attention to preconditioning, accerevaluation of self-patch and
neighbor-patch integrations and the use of STs. In pasti¢he performance in three-
dimensions of STs [25] deserves special attention.

In [16] it was argued that shielding at resonance frequanazieenclosures bene-
fits from the use of absorbing materials. We will show thatdakgnchronous parallel
NSPWMLFMA is capable to include lossy objects without losamguracy. As we
did for the two-dimensional implementation we also mads thiee-dimensional im-
plementation available as open-source software from [22].

The scope of this paper does not allow us to give a detailecrigéien of all the
elements of the asynchronous parallel NSPWMLFMA. We wilfisefwith a brief
discussion of each of these elements with the relevantaetess, where possible, and
rather focus on the simulation results. We will compare lteswmith results obtained
in [16], show results of the shielding efficiency of a typigarsonal computer tower
and illustrate the effect of absorbing materials. More Iteswill be shown during the
presentation at the conference.

C.5.2 Theory
Surface integral equations

The geometry that we consider consists of a number of honeageisotropic dielec-
tric objects, each characterized by its complex permijtignd permeability, and of
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PEC objects both embedded in an isotropic background, lySue¢ space. Objects
can be embedded into other objects and objects can touchodfaehcreating lines
where three or more materials come together.

The scattering at such geometries is evaluated by surféegrat equations with
as unknowns the (equivalent) electric and magnetic sudaceent densities on the
boundaries of each object. Several integral equationscasile, for an overview we
refer to [26]. We use a combination of different types of gntg equations depending
on the type of objects and the frequencies involved. For &teD objects, such as en-
closures with apertures, we use the Electric Field Inte§gaiation (EFIE), for closed
objects we use EFIE below the first resonance frequency dliject and the Com-
bined Field Integral Equation (CFIE) above that frequeray. very low frequencies
we resort to the Magnetic Field Integral Equation (MFIE) ieasl of EFIE because
it is better conditioned at low frequencies. For dielestriee use the Nller integral
equation at low frequencies and the Poggio-Miller-Charagriigton-Wu-Tsai (PM-
CHWT) formulation at high frequencies.

Method of Moments

We use a Galerkin MoM where the surface current densitiegliaoeetized on a tri-

angular mesh with Rao-Wilton-Glisson vectorial basis fiorws. To achieve high

accuracy the singular part of the Green functions is exathfdr both the self-patch
and neighbor-patch integrations. These integrationstbessingular part are all being
done in closed form. The remaining regular part of the Greeantion and the integra-
tions for interactions that are nor self-patch nor neightertich are done numerically
using Gaussian quadrature rules defined on a triangle [27].

Special care is taken when objects are touching. In the pastauching objects
were often simulated by including a very small gap betweemthwhile this simpli-
fies the implementation and does not lead to significant dtrdoes involve twice as
many unknowns along the touching surface as strictly necgs#/e opted for a more
cumbersome implementation, as described in [28], thatdaviicluding these gaps
and extra unknowns and that at the same time remains a fugrkalscheme, which
avoids half basis functions at lines where three or more riadgecome together.

Splay Trees

Often large structures contain symmetries where two pdifgteracting triangles
are geometrically equal which means that the correspontiilmgelements in the
MoM matrix are equal. In [20] we have shown for two-dimensibproblems that
a ST [25] allows to extract these geometrical symmetriestHernear interactions
in O (N log N) time complexity, making it compatible with the MLFMA. Als@f

three-dimensional problems the ST method can be used affigiagain leading to
anO (N log N) complexity. Because the near interactions are relativelyenmpor-
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tant in three than in two dimensions, the savings by usinge®d sven more profound.
Even for structures with limited symmetry some savings aemsvhich shows that the
overhead imposed by unsuccessful search operations tedimirhe extra memory
needed for the ST is only needed during the set-up phase MIRMA.

NSPWMLFMA

The classical plane wave based MLFMA breaks down at low ®eqies due to loss
of numerical accuracy. This means that the boxes on the tdexed in the MLFMA
for structures containing significant sub-wavelength gewital detail will contain a
considerable number of unknowns. Several attempts have flmeposed to remedy
this problem without having to resort to non-diagonal ttatisn operators. The crux
is to incorporate more near-field information in the planevevapectrum. This can
be done by incorporating evanescent plane waves leadirfietStable Plane Wave
MLFMA [3] which needs6 radiation patterns along different directions. Recently
a new method, the NSPWMLFMA, was devised [24] that avoidseltedifferent
directions for scalar wave propagation problems. In thistioution we for the first
time report results obtained with the NSPWMLFMA for vectbrisave propagation.
The NSPWMLFMA is easily incorporated in and is fully compéitwith the classical
MLFMA.

Asynchronous parallelization

In [21] it was announced that the asynchronous paralléinateveloped for two-
dimensional MLFMA was mutatis-mutandis applicable forttmee-dimensional case.
In this contribution we, for the first time, present resuli$ained in three dimensions.
The asynchronous parallelization uses a space filling doressign different boxes
in the MLFMA to different processors. The workload is thewidiéd in small packets
which are arranged in a priority queue. The priority queusui#t using an advanced
heuristic and avoids communication bursts between procgss would be the case
in synchronous parallelization. This makes this methodhlgiguitable for low cost
GRID computing environments connected by standard gigahérnet. It is also very
favorable when scattering at multiple objects is consid@sis the case for shielding
effectiveness evaluations.

C.5.3 Shielding problems

As a verification we first consider the cubical brass box ofatisionss50cm by 50cm
by 50cm that was also extensively investigated in [16]. The figemel of the box is
interchangeable and here we will consider a front panel witiit of 5cm by 20cm
in the center of the box. As a reference solution we considemxawithout a front
panel. The box is perpendicularly illuminated by a plane evaith the electric field
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polarized orthogonal to the slit. The electric field is meadtin the center of the box.
The set-up is shown in Fig. C.13.

Figure C.14 shows the shielding efficiency of the box wherbtiwe without front
panel is used as reference. As a comparison also resultgfgjnare shown which
consist both of measurements and simulations. As can betkearew simulations
are somewhat closer to the measurements than the simglati¢h6]. This is due to
the fact that the number of unknown& = 11744 is about ten times higher than was
possible in [16].

In [16] it was mentioned that the application of absorbingenals in a shielding
enclosure could help improving the shielding efficiencyusbresonance frequencies.
To illustrate this effect we place an absorbing platel@ém by 46cm by 2cm at a
distance of2cm from the bottom in the cubic enclosure. Horizontally thete is
centered in the box. The complex relative permittivity of fhlate is2 — 2. As a
comparison we also consider a lossless plate with the samendions but with a
relative permittivity of2. The entire structure is meshed usiNg= 38951 unknowns.
Figurd C.15 shows the shielding efficiency as a functionaddiency with lossy plate,
with lossless plate and without plate. The reference alvisythe enclosure with
open front and without plate. We note as expected an inciaageelding efficiency
around resonances. Also note that the losses of the plagedrate responsible for an
increased shielding efficiency. In Fig. C.17 the amplitufitne vertical component of
the electric field is shown in a vertical cross-sectionahplaf the enclosure at the first
resonance. The figure on the left corresponds with the lssglate and the figure on
the right with the lossy plate. Note the substantial de@éasield amplitudes inside
the enclosure due to the losses.

As a final example we consider a personal computer filled witiraber of ob-
jects and a number of holes in the casing. Figures C.17 ar@l@v& an idea of the
mesh which resulted itV = 44852 unknowns. WithN = 44852 the problem was
simulated onl6 processors§ dual core2GHz AMD 64 bit processors connected by
a 1GBit Ethernet switch) using.2GByte of memory when using STs ahdGByte
without using STs. AR50MHz the setup time reduced frofit0s to 526s due to the
use of STs. The NSPWMLFMA requirel5s per iteration for a total o251 iter-
ations. Figureé C.19 shows the shielding efficiency as a fanaf frequency when
considering an incident plane wave with the electric fielthpped along the height
of the case. Three different discretizations are constegsulting inN = 15495,

N = 33394 and N = 66980. The small difference in shielding efficiency at low fre-
guencies is due to a reduction of numerical leakage thrdugtvalls when using finer
meshes. The amplitude of the vertical electric field compbirethe central vertical
cross-section at a resonancd @Hz is shown in Fig. C.20.
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Figure C.17: Internal view of a personal computer. Dimensions are in m and the yeltgw
indicates the measure point.

Figure C.18: Front (left) and rear (right) view of the external mesh of a persooapter.
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Figure C.20: Amplitude of the vertical electric field component in the cross section of the
enclosure of Figs. C.17 ahd C|1820MHz.



232 CONFERENCE PAPERS

C.5.4 Conclusions

We demonstrated the use of a non-directional plane wavalbAsEMA stable at low
frequencies for the simulation of complex shielding proide An advanced asyn-
chronous parallel implementation of the MLFMA allows fofigient simulations on
inexpensive GRID computing environments. Further researid focus on better
preconditioners to reduce the number of iterations and rdsvéurther acceleration
of the algorithms in order to be able to simulate even morepexstructures with
reasonable computational effort.
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C.6 Recent Advances in Fast Multipole Methods to
Simulate Ever Larger and More Complex
Structures

F. Olyslager, K. Cools, J. Peeters, |. Bogaert, J. Fosti€edters, F.P. Andriulli and
E. Michielssen

Abstract: In this paper we wish to focus on some recent advances in thtldwal
Fast Multipole Algorithm (MLFMA). Three different topicsiivbe discussed briefly:
a seamless extension of the MLFMA to low frequencies, anadsymous paralleliza-
tion of the MLFMA suitable for grid computing environmentscaa new Caldém
based preconditioner for the Electric Field Integral EgpratEFIE). This will be il-
lustrated by three scattering examples in frequency anel diomain.

C.6.1 Introduction

Since the introduction of the MLFMA the use of integral egoiaé has seen a new
impetus [18]. The MLFMA drastically reduces the computatiband memory com-
plexity of Method of Moments (MoM) discretizations for balary integral equations
from O (N?) to O (Nlog N) with N the number of unknowns in the discretization.
At the same time the numerical error is fully controlled in MMA. The MLFMA has
been used to simulate problems involving several millidnsn&knowns [29], [21] and
in two dimensions problems of tens of thousands wavelerigtsize [30].

In [31] we have concentrated on the application of MLFMA fdvi€ shielding
problems. Here, we will focus on a number of recent advantése MLFMA. First
we will investigate a stable and seamless extension [24hefdassical MLFMA
to low frequencies resulting in the first truly broadband N4 that does not rely
on directional translation operators. As a second extaensi briefly discuss a new
parallelization scheme [21] for the MLFMA. Contrary to eiig schemes the new
scheme is asynchronous and very well suited to handle rfulbipject scattering.
Finally we discuss a new preconditioning method based o #igebn identities for
the Electric Field Integral Equation (EFIE) [32], [33]. Bhmnethod was introduced for
time domain integral equations but is also suited for lovgfiency EFIE frequency
domain problems.

We will illustrate these advances by a few numerical exaspigwo and three
dimensions and in frequency and time domain. For more exasnpe refer to the
presentation during the conference and to the cited lilezatMost of the code that
was implemented to test these new advances is availableasoprce software under
GPL licence [22].
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C.6.2 The NSPWMLFMA

The Nondirective Stable Plane Wave Multilevel Fast Mulkipalgorithm (NSPWMLFMA
[24]) is a novel method for calculating the low frequency Jlifteractions that can-
not be handled by the classical MLFMA. An interaction is edlLF if the source
and observer are closer to each other than approximatelywanelength. To expand
fields this close to the source into plane waves in a stablenaraevanescent plane
waves are necessary. The MLFMA uses only propagating plavesvand therefore
succumbs to a severe numerical instability when dealing Wit interactions. Al-
ternative algorithms can be used to deal with the LF int@yast The most widely
used ones are based on multipoles [34] or the spectral dexsitigm of the Green
function [3, 35]. However, the former has the disadvantdge the translations are
not diagonal and the latter needs six radiation patterneverall possible translation
directions. As a consequence these methods are compuatftisnboptimal.

The NSPWMLFMA aims to combine the strengths of the multipald apectral
methods and do away with the weaknesses. It does so by usiogeh lt--stable
addition theorem for translations in thedirection. This addition theorem employs
evanescent plane waves, hence its stability. However,ritrast to the spectral me-
thods, it is still based on the same fundamental formula asotie underlying the
MLFMA. Therefore it shares the MLFMA's convergence chaeaistics and requires
only one radiation pattern. There is one problem with thditéwh theorem, though.
It is numerically stable only for translations indirection. Therefore it is necessary
to rotate the coordinate system such that the vector coingettte centers of the in-
teracting source and observer boxes is parallel tatheis. This causes the radiation
patterns to be rotated too, and this in turn causes the tisatien points of the ra-
diation patterns to be different for every translation cfien. This problem is solved
by using the QR-algorithm to select a special set of sampietp@wave vectors in
which to evaluate the radiation pattern). These sampleépaiie chosen such that the
samples contain sufficient information to fully describe thdiation pattern, i.e. the
samples can be solved for the multipole coefficients of td@tean pattern. The QR
selection procedure of the sample points makes sure tlsabpieiration is well condi-
tioned. The knowledge of the multipole coefficients theowadl the calculation of the
radiation pattern in all other possible sample points. Eniables the construction of
an interpolation matrix that converts the selected sangiflése radiation pattern into
the required sample points for a certain translation. Thasrimis then absorbed into
the translation operator for this direction. In this waymarically stable translation
operators are found for all translation directions. Thedafetelected sample points
defines the single radiation pattern.

The LF equivalents of inter- and anterpolations are done bsns of dense ma-
trices. This is a disadvantage of the NSPWMLFMA since the sfzhese matrices
grows quadratically with the electric size of the boxes. réfare, the NSPWMLFMA
is an LF technique. It can, however, be easily coupled sesfylevith the MLFMA
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to obtain a broadband method. Also, the DC limit of the algponi exists, which
clearly shows its LF stability. It is noteworthy that redgna new version of the
NSPWMLFMA was created that uses translation operators tieakrzown in closed
form [36].

C.6.3 Asynchronous Parallelization

The current trend in computer architecture is to incorposatveral “cores” into a sin-
gle processing unit (CPU) [37]. These cores run indepehdant can hence be seen
as a parallel system. With the ever dropping hardware prameral computers can
be connected using a cheap but fast interconnection nesuatkas Gigabit Ethernet.
It is clear that, in order to take advantage of this increds®mputational power, the
traditional serial algorithms need to be modified to run iatsa distributed environ-
ment.

Previous efforts towards distributed parallel MLFMA weagdely focused on
scattering from very large 3-D PEC objects. Using advancad balancing schemes
and fast interconnection networks, problems with a vergdarumber of unknowns
have been demonstrated [29]. These implementations astedly synchronous and
are characterized by alternating phases of calculatiorcantmunication. Attempts
for such an approach on Gigabit Ethernet networks led to agffioiency.

Recently, we proposed an asynchronous approach to thdgfiaedion of the
MLFMA [21]. The term “asynchronous” denotes that differgmbcesses can exe-
cute different types of operations at a given point in time. il¢/Bome nodes are
communicating, others could be calculating, leading to ebepreading of com-
munication through time. This alleviates the need for esp@ninterconnection net-
works and avoids communication in bursts. Furthermores &pproach allows for
an efficient parallelization of simulations that comprisaltiple dielectric objects.
The asynchronous MLFMA has been applied to both two dimeasirE/TM) and
three dimensional problems. The source code of these sate@rbe obtained free of
charge [22].

C.6.4 Preconditioning

The linear systems of equations resulting from the discagin of integral equa-
tions are often ill-conditioned. This is especially cungmne for the application of
MLFMA since it will drastically increase the number of itéicms in the iterative solu-
tion process. Hence, reducing the condition number by usiagonditioning strate-
gies is of paramount importance when wishing to reduce timepcdational load of
MLFMA. lll-conditioned systems can stem from differentgiris. On the one hand
the physical geometry of the scatterer itself can induch bandition numbers. This
will be the case when strong interference effects are eneceshsuch as in e.g. pho-
tonic crystals. Dedicated preconditioners can be develdpaeduce the condition
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number [38]. On the other hand the used integral equatielf itan be the cause of
large condition numbers. This is e.g. the case with the EFiEnincreasing the den-
sity of the mesh. This is especially worrysome when simaretiover wide frequency
bands are necessary with a constant mesh or when dealingavitiiniform meshes.

The condition number of EFIE can be improved by construaiisg-called Caldén
preconditioner (see e.g. [39]). T[j] represents the integral operator in the EFIE
acting on the unknown current densi#;j on the surface of the scatterer then the in-
tegral equation can be written compactlyas= u,, x e‘(r) + T[j](r) for a PEC
with e’ the incident electric field and,, the unit vector normal to the scatterer’s sur-
face. Caldesn preconditioning amounts to operatifigon this EFIE resulting in the
Caldebn preconditioned EFIE (CP-EFIB)= T'[u,, x €'](r) + T?[j](r). It can be
shown using the Caldén identities thafl™> has a bounded singular value spectrum
when the frequency or the mesh density decreases.

Discretizing thel™ operator by a direct Galerkin method is impractical. Theref
a discretization is used that considers a product of tworelized operator§™. In
the classical MoM for the EFIE the domain @f is discretized using RWG basis
functions and the rang using curl-conforming RWG basis fonet(i.e.u,, x RWG
basis functions). This cannot be used twice 16t since a singular Gram matrix
is encountered when projecting the range of the first opemtdhe domain of the
second operator. Recently, [32,33,40], it was shown thiattm be resolved elegantly
by discretizing the domain of the secofidoperator in so-called Buffa-Christiansen
basis functions (BC basis functions) [40] and the range,in< BC basis functions.

C.6.5 2D frequency domain example

As a two dimensional example, we consider an indoor propay&xample. The
geometry consists of a woodety (= 3.5) office cubicle with metal (PEC) supports in
which metal (PEC) cupboards have been placed. The sizeloteaicle is2m by2m.

A TM line current operating @8GHz is used to excite the structure. The total number
of unknowns using % discretization ist8 045. Using four AMD Opteror270 cores,
the iterative solution tooR58s and726 iterations to converge to a tolerancelof 3.

A 1) x 1) block-Jacobi preconditioner was used. Fig. C.21 showsldwrizal field
density inside the cubicle. Although the number of unknoigmather modest in this
example we have used the same technique to simulate prollé&ms5 000 000 of
unknowns [21]. We have also used it for passive optical pstfR3].

C.6.6 3-D frequency domain example

As a three dimensional example, we consider the broadbatigsng at PEC objects,
in casu “Thunderbird 2”. First we illuminate a formation éfée Thunderbirds with
a frontal linearly polarized wave at a frequency such thatémgth of a Thunderbird
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Figure C.21: Electric field density in an office cubicle.
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Figure C.22: HF current densities on the surface of a formation of three Thundistbir

corresponds td5 wavelengths. The electric component of the incident wawvar-is
thogonal to the wings, i.e. vertical. This problem is sinbetbwith the CFIE to avoid
spurious reflections and discretized using25 559 unknowns. It was simulated in
about100 iterations or20 AMD Opteron270 cores to a tolerance af)~3. The prob-
lem requirec0 times1.2GByte of memory and each iteration last&sb. Fig.]C.22
shows the current distribution on the surface of the foromati

To demonstrate the efficacy of the NSPWMLFMA one single Thubide was
illuminated by the same plane wave but now at a frequency evtier length of the
Thunderbird i50.014 wavelengths. For stability reasons a MFIE was used that was
discretized with101 466 unknowns. Usind 2 processors each iteration toPés and
convergence to a tolerance tf 2 was reached aftex1 iterations. Fig! C.23 shows
the current distribution.

C.6.7 3-D time domain example

As a last example we consider a 3-D scattering problem indiomeain. A plane wave
time pulse is incident on the PEC structure of Fig. C.24. Pniblem is analyzed
with a time domain EFIE and illustrates the capabilities @faddebn preconditioner
and the use of BC basis functions. Without preconditionirghoblem require800
iterations per time step and with preconditioner this reguol5 iterations. A typical
time response for the current density on the structure issho Fig.[C.25. We see
that the result of the non-preconditioned and preconditiosolution coincide. The
frequency response is shown in Fig. C.26. Note the two adfaesonances that cause
the beating phenomenon in Fig. C.25. For more informatiahather examples we
refer to [32] and [33].
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Figure C.23: LF current densities on the surface of one Thunderbird.

C.6.8 Conclusions

Three different recent advances in the development of thEMIA have been illus-
trated. We are convinced that further challenging advaircéise MLFMA will ul-
timately result in a broadband parallel algorithm thataficfor the simulation of
three-dimensional problems of thousands of wavelengttsizin comprising several
billions of unknowns on affordable computer networks.
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Figure C.24: Geometry and mesh of two intertwined spiral conductors.
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Figure C.25: Time response of the current density due to a pulse incident on the straétu
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C.7 NSPWMLFMA: A Low Frequency Stable
Formulation of the MLFMA in Three Dimensions

|. Bogaert, J. Peeters, J. Fostier, and F. Olyslager

Abstract: The iterative solution of integral equations containing €reen function
of the Helmholtz equation as the integration kernel requiepeated matrix-vector
products. These products can be accelerated by means ofaled-fast multipole
method (FMM). Of the many fast multipole methods in use totiagy Multilevel Fast
Multipole Algorithm (MLFMA) is arguably among the most swssful ones. It al-
lows the simulation of electrically large structures tha entractable with direct or
unaccelerated iterative solvers. Testimony to the MLFMAgiad uses is its im-
plementation in various commercial EM software packages s FEKO and CST
Microwave studio. However, the MLFMA has one big drawbacknuanerical in-
stability prevents the method from being used on low fregugiLlF) interactions,
i.e. interactions between sources and observers thatsgdhan approximately one
wavelength apart. As a consequence configurations congagignificant subwave-
length geometrical detail cannot be efficiently treatedigishe MLFMA alone and a
hybrid method is necessary. However, the LF methods in utytare generally less
efficient due to non-diagonal translation operators (rpalé methods) or the need
for six radiation patterns (spectral methods). In this dbaotion a novel algorithm,
called the Nondirective Stable Plane Wave Multilevel Fastthdole Algorithm (NSP-
WMLFMA) [24], will be presented that is stable at LF, exhibitagonal translation
operators and requires only one radiation pattern. Theaddthbased on an analyti-
cal expression for a translation operator in thdirection. This translation operator is
made numerically stable using a shift of the integratior patto the complex plane.
It even has a DC-limit. A QR-based method is then used to extiea applicability
to all the other translation directions. The algorithm hiae &een parallelized using
Open FMM [22]. Finally some numerical results will be shown.

C.7.1 The LF breakdown of the MLFMA

The LF breakdown can be understood by looking at the trdaslatperator of the
MLFMA

L
T(krr,0,6) = > (20 + 1) 'n? (krr) P, (k: 0, ¢) rT) (C.37)
=0

with k£ the wavenumber;+ = rp77 the translation vector aﬂiﬂ(e, @) = cos ¢ sin 0+
sin ¢ sin 0y + cos6z. The functionsP, (-) are the Legendre polynomials. Because
the spherical Hankel functioh;l@) (krr) increases exponentially as a function/ af

[ > krp, the terms with a low are eventually swamped in the high order terms. Obvi-
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ously, the loss of the low order terms is catastrophic bexthey contribute the most
to the addition theorem.

Various approaches have been explored to deal with thislgmrob Maybe the
most radical approach is to replace the MLFMA with a methagklleon the spectral
representation of the Green function [3]. Another appraadio construct a hybrid
method where the LF interactions are treated using a mistij3d] or spectral repre-
sentation [35] based method. However, the multipole basettiad does not exhibit
diagonal translation operators and the spectral methaplsreesix radiation patterns
for each box, making all these approaches less efficientttfeMLFMA, if it were
not numerically unstable. Indeed, it is stated in [35] theg high frequency tech-
niqgue (MLFMA) should be used whenever possible. Hence, mdéation of the
MLFMA that is stable at LF is desirable. A first attempt to abtsuch a formulation
can be found in [41], where a complex shift of the integrapaith is performed and
the translation operators are found numerically. Howether,achievable accuracy is
rather limited [42].

C.7.2 A stable translation in the z-direction

The method presented here is based on a uniform discretizatithe addition theo-
rem, as described in [43]. This means that the double Fospiectrum of the trans-
lation operator timegin 6| has to be truncated at a bandwidthFor a translation in
the z-direction, the truncated translation operafdiré., 0, $) depends only ol
and can be written as follows

L
T(krpeé.,0,¢) = > by, (C.38)
n=—1L
g )
_ 1 (2 1
bn—%Z(QlJrl)j h? (k) fL. (C.39)

=0

The coefficientsf! can be calculated analytically and have the crucial prgpeet

fL =0 V—1<mn <1l Through a series of further manipulations and a shift of the
integration path into the complex plane, this allows thestarction of a numerically
stable translation in the-direction. The analytical expression f@f and an explicit
formula for the magnitude of the complex shift can be founfRii.

C.7.3 Stable translations in the other directions

In order to obtain stable translations in a general directip = »rR - e, with R a
3 x 3 rotation matrix, it is necessary to express it as a tramsiati thez-direction

1 21 pm )
h$? (K ||lra +rrl) = o /0 /0 e IRETAT (krre, 0, ) sin0dfde.  (C.40)
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The key problem is that the discretization points of theatdn pattern are rotated
differently for each translation direction. Therefore weul need a separate set of
plane waves for each different translation, which would esynefficient. To avoid
this, a QR is used to select the least dependent plane wamgstigat they constitute
a basis for the other plane waves. This process then allavst#ble translation op-
erators in the:-direction to be transformed such that they can be used osefleeted
plane waves.

C.7.4 Numerical results

The accuracy of the proposed method was tested on the catfgushown in Figure
[C.27. The sides of the boxes dmm long. Figure C.28 shows the obtained accuracy
as a function of the frequency. The accuracy is defined as &xénmum relative error

of all the64 interactions between the vertices of bband box2.

Box 2

y_/j e e
| ““~j«~4___ 1
[ | | [
[
!
[
=

Figure C.27: The geometry for testing the accuracy.

As can be seen, the method keeps on working fine even for venfrémuen-
cies. In fact the method remains stable all the way down to D limit is derived
in [24]. For high frequencies the error increases becalesectuiredl for a certain
accuracy increases. As for simulation results, Figure |GI28vs simulations of a
plane wave impinging on an A380 airplane. These simulatieeie performed us-
ing an asynchronously parallelized [21, 22] vectorial i@rof the hybrid MLFMA -
NSPWMLFMA.
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Figure C.28: The maximum relative error as a function of the frequency for varinuscation
boundsL.
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Figure C.29: Currents on the A380 airplane for plane waves impinging from the left. The
wavelengths ar@.63m (top), 63m (bottom left) and5300m (bottom right) respectively. The
number of unknowns i800000 (top) and117000 (bottom left and right).
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C.8 New Plane Wave Addition Theorems

I. Bogaert, and F. Olyslager

Integral equations containing the Green function of thenthalltz equation play
an important role in computational acoustics and electgpratics. Numerical dis-
cretization of these equations results in a linear systediroénsionN, whereN is
the number of basis functions used to discretize the integpaation. For largeV
a direct solution of the system soon becomes impracticalomedhas to resort to an
iterative solution technique where the matrix vector piida each iteration step still
requiresO (N?) operations.

The Multilevel Fast Multipole Algorithm (MLFMA) [18] redues the computa-
tional complexity of the matrix vector product @ (N In N). The MLFMA is based
on a plane wave addition theorem for the Green function wtier&reen function is
written as an integral over the Ewald sphere and where tlegiand is written as a
product of a long range translation operator and a shoreréagjor.

It turns out that this expansion of the Green function is mitjue and that several
types of plane wave addition theorems are possible. Agtaajleneral formalism can
be developed from which several new addition theorems caiobeeived. The clas-
sic addition theorem used for the MLFMA is not stable whensidering distances
small compared to wavelength, i.e. when the argument of teerifunction becomes
small. This phenomenon is called the Low Frequency (LF)Hitean of the addition
theorem. The new formalism allows to develop addition thew that avoid this LF
breakdown.

The starting point of the derivation is the addition theofenthe spherical Hankel
function of the zeroth order and second kind

L
e (kr) = ——— = 3" (=)' + Dju(kra) b\ (krp) P (74 - #7), (C.41)

wherer = |r| andr = r4 + 7. This addition theorem converges absolutely if
rp > r4. The function?, (-) is the Legendre polynomial of degrgevhileY; ,,, (6, ¢)

is a spherical harmonic of degréand ordenn. Now consider any set of functions
f1,m (6, @) such that the following property holds

/ fl,m(97 ¢)lef7m’ (07 ¢) w(97 ¢)d9d¢ = 6l,l’6m,m’a (C42)

D

for some integration domaif® and weight distributionu (6, ¢). By means ofl (C.42),
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properties of the Legendre functions and the expansion tHrepvave

e~ Ik(0,0)r Z 20+ 1)y jl (kr)P, (k (0, 9) "f’A) ’ (C.43)
=0

the spherical hankel functio%ﬁz) (kr) can be written as

_ b / / e IRODTAT (kepr 0, ¢)w (6, ¢)dOdo, (C.44)
7
D
with a translation operator defined through
L l
T(krr,0,0) =415 > 570 (krp) frm(0,0)Yi,, 07, 67),  (C.45)

=0 m=—1

andk (0, ¢) = kk (0, ¢), with k (0, ¢) = cos ¢sin O + sin ¢psin Oy + cos 6z andk
the wavenumber.

In this contribution we will consider three valid choices ,,,, D andw. Let us
now very briefly discuss these three choices. An in depth emasitical analysis will
be given during the presentation and in the full paper.

By choosing
fl,’rn(97 ¢) = Yi,m (9, ¢) ) (C46)
w(f,¢) =sinb, (C.47)
D = [0,27] ® [0, 7], (C.48)

(C.44) reduces to the classic addition theorem of the MLFM#aol faces the problem
of not being stable whekr << 1. The integration over the domain requires Gauss-
Legendre quadrature points.

The following choice, already proposed in [43],

fim(6,0) = 5Vium (6,6)sin ). (c49)
w(f,¢) =1, (C.50)
D =10,27] ® [0, 27], (C.51)

allows a Fast Fourier Transform (FFT) based evaluation efittegration over the
domainD provided that the Fourier series fif,,, (6, ¢) in both# and¢ are truncated
at bandwidthZ. (a smoothing operation).
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We propose the following novel choice

LU (0,4)sin YVm >0
(@, 0)=142"" , C.52
fim(8,9) {;(—1)MUl’jm (0, ¢)sind ¥m < 0 (C.52)
w(0,¢) = 1, (C.53)
D =[0,27] ® [0, 27]. (C.54)

The U, ., (6, ¢) are distributions which are conveniently called "the pseydherical
harmonics” defined as

204+1 (1 —m)! . ,sin™0 1 d\"™ [|sine
Ul,m (97¢): ( ) imeo < ) |:||

4 (l—i—m)!e 2Ul \sinf do

sin 0

sin? 9} .
(C.55)

As in the previous choice it can be shown that smoothing &llB®T integration but
in addition it yields LF stable analytical translation ogkers.
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