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Samenvatting

Sinds ze in 1861 voor het eerst werden neergeschreven, vormen Maxwells vergelij-
kingen een bijzonder succesvolle beschrijving van macroscopische elektromagneti-
sche velden. Echter, ze kunnen slechts voor een klein aantaleenvoudige geometriëen
analytisch opgelost worden. Voor een brede waaier van moderne elektromagneti-
sche toepassingen, zoals het ontwerp van antennes, draadloze communicatiesyste-
men, optische systemen, hoogfrequente circuits, enzovoort, volstaan deze analytische
oplossingen niet. Om deze reden zijn numerieke simulaties tegenwoordig zeer be-
langrijk, en wordt er veel onderzoek verricht naar efficiënte oplossingsmethodes voor
Maxwells vergelijkingen. Een belangrijke klasse van oplossingsmethodes wordt bij-
voorbeeld gevormd door de eindige elementen methodes. In dit werk zullen we ons
echter concentreren op een andere zeer belangrijke klasse van methodes, namelijk
de zogenaamde randintegraalvergelijkingstechnieken, die het voordeel hebben dat de
stralingsvoorwaarde a priori kan voldaan worden, i.e. zonder het gebruik van ab-
sorberende randvoorwaarden. Een tweede voordeel is dat voor geometrïeen die opge-
bouwd zijn uit een aantal homogene gebieden, enkel de randenvan die gebieden
moeten meegenomen worden in de simulatie.

Gewoonlijk worden zogenaamde snelle multipool methodes (Fast Multipole Me-
thods - FMMs) gebruikt om randintegraalvergelijkingen efficiënt op te lossen. Deze
methodes gebruiken een hiërarchische opdeling van de geometrie in groepen op meer-
dere niveaus, in combinatie met een decompositie van de Greense functie. De ef-
ficiëntie van een FMM hangt echter sterk af van het type decompositie dat gebruikt
wordt. Over het algemeen zijn FMMs gebaseerd op een multipool decompositie het
minst efficïent, terwijl de meest efficiënte FMM (vooral bekend als Multilevel Fast
Multipole Algorithm (MLFMA)) gebaseerd is op een propagerende vlakke golven de-
compositie. FMMs die gebruik maken van de spectrale decompositie van de Greense
functie liggen er ergens tussenin. Het probleem is echter dat het MLFMA door een
numerieke instabiliteit faalt indien de groepen kleiner worden dan een bepaalde kriti-
sche elektrische grootte. Indien de geometrie onderdelen bevat die significant kleiner
zijn dan de golflengte, kan de simulatie ervan bijgevolg nietgebeuren door middel
van enkel het MLFMA. Een mogelijke oplossing bestaat erin een hybride methode te
construeren, die het MLFMA gebruikt wanneer de groepen groot genoeg zijn (HF in-
teracties) eńeén van de minder efficiënte decomposities gebruikt wanneer dat niet het
geval is (LF interacties). Het volledige algoritme is echter maar zo snel als het traagste
onderdeel, waardoor deze hybride methodes suboptimaal zijn. Dit brengt ons tot de
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inhoud van dit werk: het verbeteren en vinden van alternatieven voor de multipool- en
spectrale decomposities.

Deze nieuwe methodes vormen vooral een verbetering voor LF en breedband si-
mulaties. Dit zijn simulaties waarbij de kleinste onderdelen van de geometrie elek-
trisch klein zijn. Voor breedbandproblemen is de volledigegeometrie bovendien
elektrisch groot. Breedband simulaties zijn echter belangrijk, zoals bijvoorbeeld bij
hoogfrequente printed circuit boards en microgolfcircuiten, metamaterialen of de ver-
strooiing van radargolven aan complexe vormen. Het feit datde sneller wordende
computers steeds grotere simulaties toelaten versterkt deze trend omdat zelfs zeer fijn
gediscretiseerde structuren significant groter dan de golflengte kunnen zijn.

Dit werk is als volgt georganiseerd: in hoofdstuk 1 worden devergelijkingen
van Maxwell gegeven, samen met de constitutieve vergelijkingen en de stralingsvoor-
waarde. Een aantal eigenschappen die hieruit volgen wordeneveneens gegeven. Daarna
worden de analytische oplossingen van Maxwells vergelijkingen in een oneindig ho-
mogeen isotroop medium in Cartesische en sferische coordinaten opgesteld, alsook
de verbanden tussen deze twee soorten oplossingen. In hoofdstuk 2 worden de re-
sultaten van het eerste hoofdstuk toegepast voor de oplossing van problemen waarin
inhomogeniteiten voorkomen. Onder andere wordt de meervoudige verstrooiings ver-
gelijking (multiple scattering equation) opgesteld, die gebruikt wordt in hoofdstuk 7.
Tenslotte wordt ook de noodzakelijkheid van het gebruik vanFMMs aangetoond.

De vijf daaropvolgende hoofdstukken corresponderen met artikels die uit het doc-
toraatsonderzoek zijn voortgevloeid. In hoofdstuk 3 wordteen verbetering voorgesteld
die van toepassing is op FMMs gebaseerd op de spectrale voorstelling van de Greense
functie. Deze techniek laat in het beste geval toe om de (des)aggregatie stap in het
algoritme te versnellen met een factor6. Verder wordt ook een nieuwe toepassing
van de Beltrami decompositie van het elektromagnetische veld voorgesteld. Het blijkt
namelijk mogelijk om, via deze decompositie, de twee stralingpatronen van een vec-
toriële FMM nog v́oór (ná) de (des)aggregatie te ontkoppelen.

De resultaten van hoofdstuk 3 laten toe om FMMs gebaseerd op de spectrale
voorstelling van de Greense functie te versnellen. In hoofdstuk 4 wordt voor een
andere aanpak gekozen, die toegepast wordt op de tweedimensionale Greense func-
tie. In plaats van te vertrekken van de numeriek stabiele spectrale decompositie en
deze zo efficïent mogelijk te maken, gaan we uit van het efficiënte maar onstabiele
MLFMA en proberen we de instabiliteit weg te werken. Dit doelwordt bereikt door
de diagonalisatie van de multipool decompositie uit te stellen tot een zogenaamde nor-
malisatiefactor gëıntroduceerd is. Het nieuwe additietheorema dat hieruit resulteert
is stabiel voor alle frequenties en leidt dus tot een breedband FMM. Het wordt ook
aangetoond dat deze nieuwe FMM efficiënter is dan de multipool decompositie. De
stabiliteit van de methode is te verklaren door het feit dat ze, zij het op een verdoken
manier, evanescente vlakke golven in rekening brengt.

In hoofdstuk 5 wordt in zekere zin de techniek die werd voorgesteld in hoofdstuk
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4 uitgebreid naar drie dimensies, met als resultaat het NSPWMLFMA (Nondirec-
tive Stable Plane Wave Multilevel Fast Multipole Algorithm). Zoals in het tweedi-
mensionaal geval gebruikt het NSPWMLFMA evanescente vlakkegolven, terwijl het
convergentiegebied nog steeds het complement van een bol is. Er zijn echter ook
een aantal belangrijke verschillen tussen het tweedimensionaal en driedimensionaal
algoritme. Zo is er slechtśeén stralingspatroon, in vergelijking met twee in hoofd-
stuk 4. Dit maakt het NSPWMLFMA erg efficiënt. Ook zijn de discretisatiepunten
van het vlakke golven additietheorema niet langer analytisch gekend, maar wordt het
QR-algoritme gebruikt voor de bepaling ervan. Dit heeft alsnadelig gevolg dat de
interpolaties met volle matrices moeten gebeuren. Dit limiteert de bruikbaarheid van
het NSPWMLFMA tot LF interacties. Een breedband methode gebaseerd op het NSP-
WMLFMA kan echter nog steeds geconstrueerd worden door een naadloze koppeling
met het MLFMA.

Een aantal nadelen van het NSPWMLFMA worden in hoofdstuk 6 verholpen door
een volledig analytische decompositie van de Greense functie in te voeren, gebaseerd
op zogenaamde pseudosferische harmonieken. De speciale eigenschappen van de
pseudosferische harmonieken maken het mogelijk om deze decompositie numeriek
stabiel te maken voor LF interacties. De discretisatiepunten kunnen uniform gespreid
gekozen worden, hetgeen interpolaties met behulp van discrete Fourier transformaties
mogelijk maakt. De prijs die betaald wordt voor deze voordelen is het relatief hoge
aantal discretisatiepunten en een numerieke instabiliteit voor HF interacties. Dit laat-
ste kan opnieuw ondervangen worden door een koppeling met het MLFMA.

Tenslotte worden in hoofdstuk 7 de FMMs uit hoofdstukken 3 en5 gebruikt om
de effectieve materiaalparameters van metamaterialen te bepalen. Dit wordt gedaan
door de T-matrix van een sferisch stuk metamateriaal te berekenen met behulp van
numerieke simulaties, waarna deze T-matrix vergeleken wordt met de analytische uit-
drukking voor een homogene sfeer. Hierdoor bekomt men een stelsel van transcen-
dente vergelijkingen voor de effectieve materiaalparameters. Dit niet-lineair stelsel
kan omgezet worden naar een kwadratische vergelijking voorde materiaalparameters.
Er wordt enerzijds aangetoond dat deze homogenisatieprocedure goed werkt maar dat
ze anderzijds ook haar beperkingen heeft bij bepaalde frequenties en types van mate-
rialen.





Summary
Since 1861, when they were for the first time written down, Maxwell’s equations have
provided an extremely successful description of macroscopic electromagnetic fields.
However, they can only be solved analytically for a few simple geometries. For a
plethora of modern applications, like antenna design, wireless communication sys-
tems, optical systems, high-frequency circuits and so on, these analytical solutions
are insufficient. Therefore, numerical simulations are very important, and a great
deal of effort is put in the search for computationally efficient algorithms for solv-
ing Maxwell’s equations. One important class of solution techniques for example, is
formed by the finite element methods. However, the focus of this work will be on the
so-called integral equation methods, which have the advantage that the radiation con-
dition can be satisfied a priori, i.e. without introducing absorbing boundary conditions.
Another advantage is that when the geometry consists of a number of homogeneous
regions, only the boundaries of those regions need to be taken into account.

Usually, integral equations are efficiently solved using so-called Fast Multipole
Methods (FMMs). These methods use a subdivision of the geometry into boxes on
multiple levels, in combination with some kind of decomposition of the Green func-
tion. However, the efficiency of the FMM strongly depends on the type of decom-
position used. Generally speaking, the least efficient method is based on a multipole
decomposition, while the most efficient method (widely known as the Multilevel Fast
Multipole Algorithm (MLFMA)) is based on a propagating plane wave decomposi-
tion. The spectral decomposition of the Green function liessomewhere in between.
The problem with the MLFMA is that it suffers from a numericalbreakdown when the
boxes get smaller than a certain critical electrical size. Therefore, if the geometry con-
tains features that are significantly smaller than the wavelength, the simulation cannot
be efficiently done using the MLFMA alone. A possible solution is the construction of
a hybrid method, which uses the MLFMA when the boxes are largeenough (HF inter-
actions) and use one of the less efficient methods when they are not (LF interactions).
However, this algorithm is only as fast as the slowest algorithm, so these hybrids are
suboptimal. This brings us to the focus of this work: improving and finding more
efficient alternatives for the multipole and spectral decomposition methods.

These new methods mainly improve the efficiency of low-frequency and broad-
band simulations. These are simulations for which the smallest features of the ge-
ometry are electrically small. For broadband simulations,the entire geometry is also
electrically large. Broadband simulations are important,for example in the simulation



xvi SUMMARY

of HF printed circuit boards and microwave circuits, metamaterials or the scattering of
radar waves off complex shapes. The increasing capabilities of computers also adds
to this trend because they allow huge, yet still densely discretized, structures.

This work is organized as follows: in chapter 1 Maxwell’s equations are postu-
lated, along with the constitutive equations and the radiation condition. A few general
properties, of Maxwell’s equations are given as well. Subsequently, the analytical
solution of Maxwell’s equations in an infinite homogeneous medium are derived in
both Cartesian and spherical coordinates. Relations linking the solutions in the two
coordinate systems are derived as well. chapter 2 outlines the methodology to solve
problems with inhomogeneities, using the results obtainedin the first chapter. In par-
ticular, the electric field integral equation and the multiple scattering equation are
derived. Finally, the necessity of using FMMs is also explained.

The five ensuing chapters correspond to five articles that resulted from the per-
formed research. In chapter 3, an improvement to the spectral decomposition based
FMM is presented. This improvement allows a reduction by a factor of at most6
of the computational cost of the (dis)aggregation step in this FMM. Furthermore, a
new application of the well-known Beltrami decomposition of electromagnetic fields
is presented. It allows the decoupling of the two radiation patterns of any vectorial
FMM, even before(after) the (dis)aggregation stage has been entered.

The results from chapter 3 allow a significant acceleration of FMMs based on the
spectral decomposition. In chapter 4, another approach is used on the two dimensional
case. Instead of starting from the numerically stable spectral decomposition and try-
ing to make it more efficient, we start from the efficient but unstable MLFMA and
attempt to make it numerically stable. This goal is achievedby postponing the diag-
onalization of the multipole decomposition until a so-called normalization factor has
been introduced. The novel addition theorem resulting formthis approach is stable
for all frequencies, hence it leads to a broadband FMM. It is also shown that this new
FMM is more efficient than the multipole based FMM. This noveladdition theorem
can be interpreted as one using evanescent plane waves, which explains the stability
of the decomposition.

In chapter 5, the two dimensional technique developed in chapter 4 is more or less
generalized to three dimensions, resulting in the so-called NSPWMLFMA (Nondi-
rective Stable Plane Wave Multilevel Fast Multipole Algorithm). Similar to the two
dimensional case, the NSPWMLFMA uses evanescent plane waves, while still hav-
ing the complement of a sphere as convergence region. However, there are several
differences too. For starters, there is only one radiation pattern, compared to the two
radiation patterns for the two dimensional case. This makesthe NSPWMLFMA a
very efficient FMM. Also, the discretization points of the plane wave decomposition
are not known analytically anymore. Instead they are determined by means of the
QR-algorithm. This has the unfortunate side effect that theinterpolations must be
performed using dense matrices. This in turn limits the applicability of the NSP-
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WMLFMA to LF interactions. However, a broadband FMM can stillbe constructed
by seamlessly coupling the NSPWMLFMA with the MLFMA.

A number of disadvantages of the NSPWMLFMA are resolved in chapter 6 by
means of a fully analytical decomposition of the Green function which is based on the
so-called pseudospherical harmonics. The special properties of the pseudospherical
harmonics allow the numerical stabilization of this decomposition for LF interactions.
The discretization points can be chosen in a uniformly spaced manner, which allows
the interpolations to be performed using Fast Fourier Transforms (FFTs). The price
we have to pay for this is a large number of discretization points and a numerical
instability for HF interactions. The latter problem can again be solved by using a
coupling with the MLFMA.

Finally, in chapter 7, the FMMs developed in chapters 3 and 5 are put to use for the
determination of effective parameters of metamaterials. This is done by calculating
the T-matrix of a spherical sample of the metamaterial by means of full-wave solu-
tions. This T-matrix is then compared to the analytical expression for a homogeneous
sphere. This results in a set of two transcendental equations for the effective parame-
ters. This set of nonlinear equations can be reduced to a simple quadratic equation for
the effective material parameters. This procedure is shownto work well, although the
method does encounter some problems for certain frequencies and for certain types of
materials.
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• Y. Ari ën, I. Bogaert, F. Olyslager, and K. Cools, “Creating a design platform for
the modeling and optimization of advanced multilayered absorbers”, Accepted
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CHAPTER1

Introduction: Maxwell’s
equations and multipoles in

free space

⋆ ⋆ ⋆

Maxwell’s equations, supplemented with the constitutive equations of the mate-
rials involved and a suitable boundary condition at infinity, provide a complete
description of macroscopic electromagnetic fields. In thischapter, solutions of
Maxwell’s equations in an infinitely large homogeneous isotropic medium will
be derived. Although in practice, no such medium exists, these solutions are
essential for the solution of Maxwell’s equations in more general geometries.
How this is done is explained in the next chapter. In an infinitely large homoge-
neous isotropic medium, Maxwell’s equations are translationally and rotation-
ally invariant, and analytical solutions exist in both Cartesian and spherical
coordinates. In this chapter, these analytical solutions will be derived as well
as the connection between the solutions in Cartesian and spherical coordi-
nates. Much of the material presented here has already been derived, but is
scattered throughout the literature [1–5] and uses variousnotations. There-
fore the aim of this chapter is to give a coherent derivation and provide a solid
foundation for the rest of this work.
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1.1 Maxwell’s equations

Maxwell’s equations [6] in the time domain are given by

∇̌ × E(r, t) = − ∂

∂t
B(r, t), (1.1a)

∇̌ × H(r, t) =
∂

∂t
D(r, t) + J(r, t), (1.1b)

∇̌ · D(r, t) = ρ(r, t), (1.1c)

∇̌ · B(r, t) = 0. (1.1d)

In this, E(r, t) andH(r, t) are the electric and magnetic fields, whileD(r, t) and
B(r, t) are the electric and magnetic inductions. Equations (1.1a)and (1.1b) are
the curl equations while Eqns. (1.1c) and (1.1d) are called the divergence equations.
Taking the divergence of (1.1b) and using (1.1c) in the result yields the law of charge
conservation

∂

∂t
ρ(r, t) + ∇̌ · J(r, t) = 0. (1.2)

By means of Fourier transformation, defined here as

Ft→ωf(t) = F (ω) =

∫ ∞

−∞
e−jωtf(t)dt, (1.3)

with inverse

F−1
ω→tF (ω) = f(t) =

1

2π

∫ ∞

−∞
ejωtF (ω)dω, (1.4)

Maxwell’s equations in the frequency domain are obtained

∇̌ × e(r, ω) = −jωb(r, ω), (1.5a)

∇̌ × h(r, ω) = jωd(r, ω) + j(r, ω), (1.5b)

∇̌ · d(r, ω) = ρ(r, ω), (1.5c)

∇̌ · b(r, ω) = 0. (1.5d)

The law of charge conservation becomes

jωρ(r, ω) + ∇̌ · j(r, ω) = 0. (1.6)

Because Maxwell’s equations in the time domain are real, thequantities appearing in
(1.5) all have the symmetry propertyw(r,−ω) = w∗(r, ω). Therefore, the informa-
tion contained inw(r, ω) for ω ≥ 0 is sufficient to construct the entire time domain
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signal by means of inverse Fourier transform. Hence we will restrict ourselves to pos-
itive ω. Furthermore, we will from now on omit the explicit dependence of the various
quantities onω, since it only fulfills the role of a parameter in Maxwell’s equations,
and no derivatives are taken with respect toω. Also, in many practical situations, one
is only interested in a single frequency, making the explicit dependence obsolete.

Maxwell’s equations in their own right are not sufficient to produce a unique solu-
tion. An appropriate boundary condition and constitutive equations must be added to
get a unique solution. Here, we will assume constitutive relations of the simplest form

d(r) = εe(r), (1.7)

b(r) = µh(r), (1.8)

where the constantsε andµ are respectively the permittivity and permeability of the
medium. Other parameters associated withε andµ are the wavenumberk and the
impedanceZ

k = ω
√
εµ ℑk ≤ 0, (1.9)

Z =
ωµ

k
. (1.10)

The condition on the imaginary part ofk is introduced to make sure that a wave de-
cays in the direction of its propagation (the direction of the Poynting vector), i.e. it
expresses the passivity of the medium. With constitutive equations (1.7) and (1.8) it
becomes possible to eliminated(r) andb(r) from Maxwell’s equations. The curl
equations then become

∇̌ × e(r) = −jωµh(r), (1.11a)

∇̌ × h(r) = jωεe(r) + j(r). (1.11b)

With the constitutive relations known, a unique solution isobtained when an appro-
priate boundary condition at infinity is used. Throughout this work, the Sommerfeld
radiation condition is used

lim
r→∞

r

(
∂

∂r
+ jk

)

e(r) = 0, (1.12)

which expresses the fact that no radiation is coming from infinity. In the time do-
main, the radiation condition manifests itself as the causality principle. The radiation
condition (1.12) is also used for the other fields occurring in Maxwell’s equations.

Maxwell’s equations can be written in terms of potentials. Indeed, since

∇̌ · b(r) = 0, (1.13)
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there exists a so-called vector potentiala(r) satisfying

b(r) = ∇̌ × a(r). (1.14)

Therefore (1.11a) can be written as

∇̌ × [e(r) + jωa(r)] = 0. (1.15)

A curl-free vector field can be written as the gradient of a scalar function, the so-called
scalar potential

e(r) = −jωa(r) − ∇̌φ(r). (1.16)

Using the Lorenz gauge

∇̌ · a(r) + jωεµφ(r) = 0, (1.17)

substitution of (1.14) and (1.16) in the divergence equations yields

∇̌
2
a(r) + k2a(r) = −µj(r), (1.18)

∇̌
2
φ(r) + k2φ(r) =

∇̌ · j(r)

jωε
. (1.19)

The vector components of Eqn. (1.18) can be seen as three separate scalar Helmholtz
equations. Indeed, once the vector potential is known, it isa simple matter to deter-
mine the scalar potential by means of (1.17). This potentialautomatically satisfies
(1.19). Determining the vector potential can be done using the scalar multipoles, in-
troduced in 1.2.

Maxwell’s equations can also be written as Helmholtz equations of the fields them-
selves. Taking the curl of (1.11a) and substituting the second equation yields

∇̌ × (∇̌ × e(r)) = ∇̌(∇̌ · e(r)) − ∇̌
2
e(r) = ω2εµe(r) − jωµj(r) (1.20)

or by means of the divergence equation (1.5c) and charge conservation (1.6)

∇̌
2
e(r) + k2e(r) = jωµ

[

j(r) +
1

k2
∇̌(∇̌ · j(r))

]

. (1.21)

with k2 = ω2εµ. In a similar way an equation can be found forh(r)

∇̌
2
h(r) + k2h(r) = −∇̌ × j(r). (1.22)

Equations (1.21) and (1.22) could in principle be solved by solving a scalar Helmholtz
equation for each of the vector components. However, the conditions imposed by the
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divergence equations are not easily incorporated in such a solution. Instead Eqns.
(1.21) and (1.22) should be solved by means of the vector multipoles, introduced in
1.3.

1.2 The scalar Helmholtz equation

In this section we will construct the general solution of thescalar Helmholtz equation,
along with a number of properties of these solutions that areuseful for the rest of this
work. The scalar Helmholtz equation is given by

∇̌
2
f(r) + k2f(r) = 0. (1.23)

This equation is separable in Cartesian and spherical coordinates. In the Cartesian
coordinate system, separation of variables leads to plane wave solutions

f(r) =
∑

n

F (kn)e−jkn·r, (1.24)

where all the so-called wavevectorskn satisfy

kn · kn = k2. (1.25)

In spherical coordinates, separation of variables leads tothe following general solution

f(r) =
∑

l,m

[

al,mZ
j
l,m (kr) + bl,mZ

h
l,m (kr)

]

(1.26)

with the so-called multipoles defined as

Z
j
l,m (kr) = jl (kr)Yl,m (r̂) , (1.27)

Zh
l,m (kr) = h

(2)
l (kr)Yl,m (r̂) . (1.28)

and the notation
∑

l,m

=

∞∑

l=0

l∑

m=−l

. (1.29)

The multipoles containing the spherical Bessel functions are well-behaved at the ori-
gin. In contrast, the multipoles containing the spherical Hankel functions are singular
at the origin. However, they satisfy the radiation condition at infinity. In general, a
function satisfying (1.23) can be expanded in both plane waves and multipoles.
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1.2.1 The scalar Green function

The scalar Green function will now be determined. This function is useful for example
for determining the vector potential from a given electric current. The scalar Green
function is defined by the following equation

∇̌
2
G0(r) + k2G0(r) = −δ(r). (1.30)

Since the source term (the right hand side), the boundary conditions at infinity and
the Helmholtz equation are all rotationally invariant, thesolution must be rotationally
invariant as well, i.e. a linear combination ofj0 (kr) andh(2)

0 (kr). We choose a
solution that satisfies the radiation condition, i.e.Ch(2)

0 (kr), to be able to interpret
the Green function as a field radiated from the source to infinity. Using the divergence
theorem, the constantC can be determined to be− jk

4π . Then

G0(r) = − jk

4π
h

(2)
0 (kr) =

e−jkr

4πr
. (1.31)

The same result can also be obtained by spatially Fourier transforming (1.30), which
yields

G0(r) = F−1
kx→xF−1

ky→yF−1
kz→z

[
1

k2
x + k2

y + k2
z − k2

]

, (1.32)

=
1

2π2

∫ ∞

0

j0 (tr)

t2 − k2
t2dt, (1.33)

=
1

4irπ2

∫ ∞

0

eitr − e−itr

t2 − k2
tdt, (1.34)

=
1

4irπ2

∫ ∞

−∞

eitr

t2 − k2
tdt. (1.35)

If we assumek to have a slightly negative imaginary part (corresponding to a passive
material), this integral can be evaluated using contour integration

G0(r) =
e−jkr

4πr
. (1.36)

Equation (1.30) allows the simple expansion ofh
(2)
0 (kr) in plane waves. Indeed,

taking the spatial Fourier transform in thex- andy-direction yields

d2

dz2
w(kx, ky, z) + (k2 − k2

x − k2
y)w(kx, ky, z) =

4π

jk
δ(z). (1.37)
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with

w(kx, ky, z) = Fx→kx
Fy→ky

h
(2)
0 (kr) (1.38)

Taking the radiation condition into account, this yields the solution in the half-spaces
z ≷ 0

w(kx, ky, z) = 2π
1

kkz
e∓jkzz, (1.39)

with K2 = k2
x + k2

y

kz =

{√
k2 −K2, k ≥ K

−j
√
K2 − k2, K > k.

(1.40)

Taking the inverse spatial Fourier transform finally yields, ∀z > 0

h
(2)
0 (kr) =

1

2π

∫ ∞

−∞

∫ ∞

−∞

1

kkz
e−jk·rdkxdky. (1.41)

This can be simplified by substituting(kx, ky) with (k sin θ cosφ, k sin θ sinφ)

h
(2)
0 (kr) =

1

2π

∫ 2π

0

∫

Γ

e−jkk̂(θ,φ)·r sin θdθdφ (1.42)

where the integration pathΓ = Γ1 + Γ2 is defined as shown in Figure 1.1. After this
substitution,kz = k cos θ. It is convenient to introduce the following notation

∫

E
F (k̂)dk̂ =

∫ 2π

0

∫

Γ

F (k̂(θ, φ)) sin θdθdφ (1.43)

which then allows to write

h
(2)
0 (kr) =

1

2π

∫

E
e−jkk̂·rdk̂. (1.44)

It should be noted that (1.44) is only valid forz > 0. However, since the left hand side
is rotationally invariant, an integral representation that converges in any half space of
choice can be easily found.

A plane wave expansion ofj0 (kr) can also be found. It is given by

j0 (kr) =
1

4π

∫

S2

e−jkk̂·rdk̂. (1.45)
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ℑθ

ℜθΓ1

Γ2

π
2

Figure 1.1: The integration pathΓ = Γ1 + Γ2 for Eqn. (1.42).

where the integral with subscriptS2 stands for integration over the unit sphere

∫

S2

F (k̂)dk̂ =

∫ 2π

0

∫ π

0

F (k̂(θ, φ)) sin θdθdφ. (1.46)

Equation (1.45) can then be proved by rotating the unit sphere such thatr is rotated
into rêz

1

4π

∫

S2

e−jkrk̂·êzdk̂ =
1

2

∫ 1

−1

e−jkrudu, (1.47)

=
sin(kr)

kr
= j0 (kr) . (1.48)

1.2.2 Alternative definition of the multipoles

The scalar multipoles (1.27) and (1.28) can also be defined using the so-called scalar
spherical wave operators, defined in Appendix A

Z
j
l,m (kr) = jlYl,m

(
∇̌

−jk

)

j0 (kr) , (1.49)

Zh
l,m (kr) = jlYl,m

(
∇̌

−jk

)

h
(2)
0 (kr) . (1.50)
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This definition is equivalent due to Theorem B.1.1. A direct consequence of (1.49),
(1.50), (1.45) and (1.44) is

Z
j
l,m (kr) =

jl

4π

∫

S2

Yl,m

(

k̂
)

e−jkk̂·rdk̂, (1.51)

Zh
l,m (kr) =

jl

2π

∫

E
Yl,m

(

k̂
)

e−jkk̂·rdk̂. (1.52)

1.2.3 Multipole expansion of a plane wave

A plane wave is a solution of the Helmholtz equation, therefore it can be expanded in
multipoles. More precisely it can be expanded in the regularmultipoles, since a plane
wave is regular at the origin. The expansion can be obtained by using the completeness
of the spherical harmonics (A.18) and integral representation (1.51)

e−jk·r =
∑

l,m

Yl,m

(

k̂
)∫

S2

e−jkk̂
′·rY ∗

l,m

(

k̂
′)

dk̂
′
, (1.53)

= 4π
∑

l,m

(−1)mj−lYl,−m

(

k̂
)

Z
j
l,m (kr) . (1.54)

This converges for allr. Using the spherical harmonic addition theorem (A.10) this
can also be written as

e−jk·r =

∞∑

l=0

j−l(2l + 1)jl (kr)Pl

(

k̂ · r̂
)

. (1.55)

1.2.4 Multipole expansion of a general field

The expansion of a plane wave can now be used to expand a general field that satisfies
(1.23) into multipoles. In a region wheref(r) satifies (1.23), it can be written as
a superposition of plane waves, as in (1.24). By expanding every plane wave as in
(1.54), the multipole expansion is obtained as

f(r) = 4π
∑

l,m

(−1)mj−l

[
∑

n

F (kn)Yl,−m

(

k̂n

)
]

Z
j
l,m (kr) . (1.56)

This series converges in a spherical region with a radius determined by the distance

between the origin and the nearest point where
[

∇̌
2

+ k2
]

f(r) 6= 0. Using the scalar
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spherical wave operators, this can also be written as

∑

n

F (kn)Yl,−m

(

k̂n

)

=

[
∑

n

F (kn)Yl,−m

(

∇̌
′′

−jk

)

e−jkn·r′′

]

r′′=0

,

=

[

Yl,−m

(

∇̌
′′

−jk

)

f(r′′)

]

r′′=0

, (1.57)

where∇̌
′′

denotes the gradient with respect tor′′. Apparently, the scalar spherical
wave operators can be used to calculate the coefficients of the multipole expansion
(1.56). A generalization of (1.56) is obtained by replacingf(r) with g(r + r′)

g(r + r′) =
∑

l,m

4πj−l(−1)mZ
j
l,m (kr)Yl,−m

(

∇̌
′

−jk

)

g(r′). (1.58)

The following special case forg(·) = h
(2)
0 (k ||·||) deserves special attention, since

it is widely known

h
(2)
0 (k ||r + r′||) =

∑

l,m

4π(−1)lZh
l,−m (kr′) (−1)−mZ

j
l,m (kr) , (1.59)

=

∞∑

l=0

(2l + 1)(−1)lh
(2)
l (kr′) jl (kr)Pl

(
r̂ · r̂′) . (1.60)

1.2.5 Translation matrices

An application of (1.58) is the calculation of the scalar translation operator. This is a
matrixαf (kr′) defined by the property

Z
f
l1,m1

(k (r + r′)) =
∑

l2,m2

[
αf (kr′)

]

l2,m2;l1,m1
Z

j
l2,m2

(kr) . (1.61)

If the regular spherical Bessel functions are used, i.e.f = j, the left hand side satisfies
(1.23) everywhere. Therefore, Eqn. (1.61) converges for all r. If f = h, the left
hand side does not satisfy the Helmholtz equation in the point r = −r′, yielding
convergence ifr < r′. The translation matrix is required when a field, known in terms
of multipoles around the origin, has to be expanded in regular multipoles around the
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pointr′. Clearly, the elements of this matrix are given by

[
αf (kr′)

]

l2,m2;l1,m1

= 4πj−l2(−1)m2Yl2,−m2

(

∇̌
′

−jk

)

Z
f
l1,m1

(kr′) , (1.62)

= 4πjl1−l2(−1)m2Yl2,−m2

(

∇̌
′

−jk

)

Yl1,m1

(

∇̌
′

−jk

)

f0(kr
′). (1.63)

Since the scalar spherical wave operators are applied tof0(kr
′), which is a solution

of the Helmholtz equation, Eqn. (A.26) can be used to evaluate this

[
αf (kr′)

]

l2,m2;l1,m1
= 4πjl1−l2

×
∑

l3,m3

(−1)m2+m3Al1,m1;l2,−m2;l3,−m3
Yl3,m3

(

∇̌
′

−jk

)

f0(kr
′), (1.64)

= 4π
∑

l3,m3

jl1−l2−l3(−1)m2+m3Al1,m1;l2,−m2;l3,−m3
Z

f
l3,m3

(kr′) . (1.65)

These expressions were first derived in [4]. Another consequence of Eqn. (1.63) is a
set of recurrence relations, first obtained in [7]. They are derived in a very straightfor-

ward manner by multiplying (1.63) withY1,m

(
∇̌

′

−jk

)

and absorbing this factor once in

Yl2,−m2

(
∇̌

′

−jk

)

and once inYl1,m1

(
∇̌

′

−jk

)

f0(kr
′) by means of Eqns. (A.23). Equat-

ing the two results yields the recurrences. These recurrences can be used for a very
efficient calculation of the scalar translation matrices.

1.2.6 A plane wave addition theorem

The translation matrices described above can be diagonalized in a plane wave basis,
as is done in [3]. Here, this diagonalized form will be provedin a more direct way,
using (1.59) and the integral representation (1.51)

h
(2)
0 (k ||r + r′||) =

∞∑

l=0

l∑

m=−l

j−lZh
l,m (kr′) (−1)m

∫

S2

Yl,−m

(

k̂
)

e−jkk̂·rdk̂,

(1.66)

=
1

4π

∫

S2

T (kr′, k̂)e−jkk̂·rdk̂, (1.67)
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with the so-called translation operator defined by

T (kr′, k̂) = 4π

∞∑

l=0

l∑

m=−l

j−lZh
l,m (kr′) (−1)mYl,−m

(

k̂
)

, (1.68)

=

∞∑

l=0

j−l(2l + 1)h
(2)
l (kr′)Pl

(

r̂
′ · k̂

)

. (1.69)

The sum overl in (1.69) does not converge, therefore it has to be interpreted in the
distributional sense. For practical use, the sum is usuallytruncated atl = L, with L
chosen such that (1.67) still holds within a certain accuracy. This ’practical’ version
of the addition theorem is the basis of the MLFMA [8].

1.3 The vector Helmholtz equation

Equations (1.21) and (1.22) are vectorial Helmholtz equations. These can be inter-
preted as three scalar Helmholtz equations, and can thus be solved with the theory
developed in 1.2. Unfortunately, the divergence equationsimpose an additional con-
straint on the solutions. Indeed, in source free regions, the electric and magnetic fields
are divergence free. Incorporating this condition is done by means of the so-called
vector multipoles, defined as

M
j
l,m (kr) =

jl

4π

∫

S2

X l,m

(

k̂
)

e−jkk̂·rdk̂, (1.70)

N
j
l,m (kr) =

jl−1

4π

∫

S2

W l,m

(

k̂
)

e−jkk̂·rdk̂, (1.71)

Mh
l,m (kr) =

jl

2π

∫

E
X l,m

(

k̂
)

e−jkk̂·rdk̂, (1.72)

Nh
l,m (kr) =

jl−1

2π

∫

E
W l,m

(

k̂
)

e−jkk̂·rdk̂. (1.73)

or the equivalent

M
j
l,m (kr) = jlX l,m

(
∇̌

−jk

)

j0 (kr) , (1.74)

N
j
l,m (kr) = jl−1W l,m

(
∇̌

−jk

)

j0 (kr) , (1.75)

Mh
l,m (kr) = jlX l,m

(
∇̌

−jk

)

h
(2)
0 (kr) , (1.76)

Nh
l,m (kr) = jl−1W l,m

(
∇̌

−jk

)

h
(2)
0 (kr) , (1.77)
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where the so-called vector spherical wave operators, defined in Appendix A, are used.
Due to properties (A.64) and (A.65), the vector multipoles are divergence free for
r > 0

∇̌ · Mf
l,m (kr) = 0, (1.78)

∇̌ · Nf
l,m (kr) = 0. (1.79)

A representation ofM j
l,m (kr) without integrals or spherical wave operators can be

obtained by expanding each component of vector spherical harmonic X l,m

(

k̂
)

in

spherical harmonics by means of (A.86)

M
j
l,m (kr) =

jl

4π

1
√

l(l + 1)
MH ·

∫

S2








λ−
lm√
2
Yl,m−1

(

k̂
)

mYl,m

(

k̂
)

−λ+
lm√
2
Yl,m+1

(

k̂
)







e−jkk̂·rdk̂, (1.80)

=
1

√

l(l + 1)
MH ·







λ−
lm√
2
Z

j
l,m−1 (kr)

mZ
j
l,m (kr)

−λ+
lm√
2
Z

j
l,m+1 (kr)






, (1.81)

= jl (kr) X l,m (r̂) . (1.82)

Similarly

Mh
l,m (kr) = h

(2)
l (kr) X l,m (r̂) . (1.83)

An expression forN j
l,m (kr) can be found by expandingW l,m (r̂) in spherical har-

monics, by means of (A.87). However, a more convenient expression can be found by
using the definition ofW l,m (r̂) (A.59)

N
j
l,m (kr) =

jl

4π

∫

S2

(−jk̂) × X l,m

(

k̂
)

e−jkk̂·rdk̂, (1.84)

=
1

k
∇̌ × M

j
l,m (kr) . (1.85)

It is interesting to note that applying the curl once more yields the reverse expression

M
j
l,m (kr) =

1

k
∇̌ × N

j
l,m (kr) . (1.86)
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Evaluating the curl in Eqn. (1.85) yields

kN
j
l,m (kr) =

[
∇̌jl (kr)

]
× X l,m (r̂) + jl (kr) ∇̌ × X l,m (r̂) , (1.87)

=
d

dr
jl (kr) W l,m (r̂) − j

jl (kr)
√

l(l + 1)
∇̌ ×

[
r × ∇̌Yl,m (r̂)

]
. (1.88)

With

∇̌ ×
[
r × ∇̌Yl,m (r̂)

]
= r∇̌

2
Yl,m (r̂) − ∇̌Yl,m (r̂) , (1.89)

= − l(l + 1)

r2
rYl,m (r̂) −

√

l(l + 1)

jr
W l,m (r̂) , (1.90)

this becomes

N
j
l,m (kr) = Jl (kr) W l,m (r̂) + j

√

l(l + 1)
jl (kr)

kr
r̂Yl,m (r̂) , (1.91)

with

Jl (x) =
1

x

d

dx
[xjl (x)] = jl−1 (x) − l

x
jl (x) . (1.92)

Analogously,

Nh
l,m (kr) = H(2)

l (kr) W l,m (r̂) + j
√

l(l + 1)
h

(2)
l (kr)

kr
r̂Yl,m (r̂) , (1.93)

with

H(2)
l (x) =

1

x

d

dx

[

xh
(2)
l (x)

]

= h
(2)
l−1 (x) − l

x
h

(2)
l (x) . (1.94)

Together, formulas (1.82), (1.83), (1.91) and (1.93) allowthe efficient calculation of
the vector multipoles.

1.3.1 The vectorial Green functions

The Green function of Eqns. (1.21) and (1.22) will now be determined. This means
that the electric and magnetic field due to an elementary dipole current

jd(r) = pδ(r), (1.95)

with p a constant vector, will be calculated. For the magnetic fieldthis can be easily
done by multiplying the defining equation (1.30) of the scalar Green function withp
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and applying the curl

∇̌
2
Gm(r) · p + k2Gm(r) · p = −∇̌ × jd(r). (1.96)

with the magnetic Green dyadic defined as

Gm(r) = ∇̌ × [1G0(r)] (1.97)

In the above,1 is the3 by 3 identity matrix and the fact that the Laplace operator
and the curl commute is used. Obtaining the electric field canbe done using the curl
equation (1.11b)

Ge(r) · p =
1

jωε

[
∇̌ × Gm(r) · p − jd(r)

]
(1.98)

=
1

jωε

[
∇̌∇̌ · [1G0(r)] · p + k2 [1G0(r)] · p

]
. (1.99)

Therefore the electric Green dyadic is given by

Ge(r) = −jωµ
[

1 +
1

k2
∇̌∇̌

]

G0(r) (1.100)

The derivatives can be evaluated using the recurrences of the spherical Hankel function

Ge(r) = −jωµG0(r)

[(
2j

kr
+

2

(kr)2

)

r̂r̂ +

(

1 − j

kr
− 1

(kr)2

)

(1 − r̂r̂)

]

(1.101)

Interestingly, the eigenvalues of the electric Green dyadic are immediately known
from this

λ1 = −jωµG0(r)

(
2j

kr
+

2

(kr)2

)

, (1.102)

λ2 = λ3 = −jωµG0(r)

(

1 − j

kr
− 1

(kr)2

)

. (1.103)

1.3.2 Vector multipole expansion of a vector plane wave

The vectorial Helmholtz equations have plane wave solutions of the formE0e
−jk·r

with the vectorE0 completely free to chose. The condition that the divergencemust
be zero yields the following constraint

k · E0 = 0. (1.104)
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From their definitions (1.70), (1.71), (1.72) and (1.73) it is immediately seen that the
vector multipoles are all superpositions of vector plane waves satisfying condition
(1.104). The reverse is also true

E0e
−jk·r =

∑

l,m

[

al,mM
j
l,m (kr) + bl,mN

j
l,m (kr)

]

. (1.105)

for all r. The coefficientsal,m andbl,m can be determined by means of the complete-
ness (A.72) of the vector spherical harmonics

E0e
−jk·r =

∑

l,m

∫

S2

E0 ·
[

X l,m

(

k̂
′)

X∗
l,m

(

k̂
)

+ W l,m

(

k̂
′)

W ∗
l,m

(

k̂
)]

e−jkk̂
′·rdk̂

′
, (1.106)

which, by means of (1.70) and (1.71), yields

al,m = 4πj−l(−1)m+1E0 · X l,−m

(

k̂
)

, (1.107)

bl,m = 4πj−l+1(−1)m+1E0 · W l,−m

(

k̂
)

. (1.108)

1.3.3 Vector multipole expansion of a general vectorial field

The expansion of a vector plane wave can now be used to expand ageneral vector
field F (r), that satisfies the vector Helmholtz equation and is divergence free inside a
region, into multipoles

F (r + r′) =
∑

l,m

[

al,m(r′)M j
l,m (kr) + bl,m(r′)N j

l,m (kr)
]

. (1.109)

The convergence radius of this series is again dictated by the point nearest tor′ where
[

∇̌
2

+ k2
]

F (r + r′) 6= 0. The determination ofal,m andbl,m is completely analo-

gous to the one used in (1.2.4) and yields

al,m(r′) = 4πj−l(−1)m+1X l,−m

(

∇̌
′

−jk

)

· F (r′), (1.110)

bl,m(r′) = 4πj−l+1(−1)m+1W l,−m

(

∇̌
′

−jk

)

· F (r′). (1.111)

An alternative way of expanding a general field in regular vector multipoles is by
means of the orthogonality properties of the vector spherical harmonics. Taking the
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dot product of Eqn. (1.109) withX∗
l′,m′ (r̂) andW ∗

l′,m′ (r̂) and integrating yields

jl′ (kr) al′,m′(r′) =

∫

S2

X∗
l′,m′ (r̂) · F (r + r′)dr̂ (1.112)

Jl′ (kr) bl′,m′(r′) =

∫

S2

W ∗
l′,m′ (r̂) · F (r + r′)dr̂ (1.113)

It should be noted that although the integration is over the unit sphere, the argument
of F (r + r′) still containsr as a free parameter, since

∫

S2

F (r + r′)dr̂ =

∫ 2π

0

∫ π

0

F (rr̂(θ, φ) + r′) sin θdθdφ. (1.114)

Thereforer can be chosen such that the integration domain falls within the conver-
gence radius of (1.109).

1.3.4 Vector multipole expansion of the Green dyadics

Equations (1.110) and (1.111) will now be used to expand the electric Green dyadic
in vector multipoles. This is easiest by means of the integral representation (1.44)

Ge(r + r′) = −kωµ
8π2

∫

E

[

1− k̂k̂
]

e−jkk̂·(r+r′)dk̂. (1.115)

Since

X l,m

(

k̂
)

·
[

1− k̂k̂
]

= X l,m

(

k̂
)

, (1.116)

W l,m

(

k̂
)

·
[

1− k̂k̂
]

= W l,m

(

k̂
)

, (1.117)

this becomes

al,m(r′) = −kωµ(−1)m+1Mh
l,−m (−kr′) , (1.118)

bl,m(r′) = −kωµ(−1)m+1Nh
l,−m (−kr′) . (1.119)

Written out, and replacingr′ with −r′, this becomes

Ge(r − r′) = −kωµ
∑

l,m

(−1)m+1
[

Mh
l,−m (kr′) M

j
l,m (kr)

+ Nh
l,−m (kr′) N

j
l,m (kr)

]

. (1.120)

Since the electric Green dyadic corresponds to a source located atr = r′, the in-
equalityr < r′ must hold converge for convergence. Simply exchangingr andr′ in



20 MAXWELL ’ S EQUATIONS & M ULTIPOLES IN FREE SPACE

(1.120) thus yields a series that converges in the region where r > r′

Ge(r − r′) = −kωµ
∑

l,m

(−1)m+1
[

Mh
l,−m (kr) M

j
l,m (kr′)

+ Nh
l,−m (kr) N

j
l,m (kr′)

]

, (1.121)

which can be interpreted as an expansion in the singular vector multipoles. The vector
multipole expansion of the magnetic Green dyadic can be easily obtained by applying
− 1

jωµ∇̌× to (1.120) and (1.121) and using (1.85) and (1.86).

The limit of the vector multipole expansion of the electric Green dyadic (1.120)
for r → 0 can be taken. In this way, an expression is obtained that is valid for all r′.
Sincejl (0) = 0 ∀l 6= 0, the limit of M

j
l,m (kr) is zero. For the same reason, only

the l = 1 terms remain of those containingN j
l,m (kr) and the electric Green dyadic

is given by

Ge(r
′) = −kωµ

1∑

m=−1

(−1)m+1Nh
1,−m (kr′) N

j
1,m (0) , (1.122)

with theN
j
1,m (0) given by

N
j
1,−1 (0) = j

√

1

12π
(êx − jêy), (1.123)

N
j
1,0 (0) = j

√

1

6π
êz, (1.124)

N
j
1,1 (0) = −j

√

1

12π
(êx + jêy). (1.125)

1.3.5 Vector translation matrices

As was done for the scalar case, the translation matrices forvectorial fields will now
be determined. The vector translation matrices are defined as

M
f
l1,m1

(k (r + r′)) =
∑

l2,m2

[[

α
f
MM (kr′)

]

l2,m2;l1,m1

M
j
l2,m2

(kr)

+
[

α
f
MN (kr′)

]

l2,m2;l1,m1

N
j
l2,m2

(kr)

]

, (1.126)
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N
f
l1,m1

(k (r + r′)) =
∑

l2,m2

[[

α
f
NM (kr′)

]

l2,m2;l1,m1

M
j
l2,m2

(kr)

+
[

α
f
NN (kr′)

]

l2,m2;l1,m1

N
j
l2,m2

(kr)

]

. (1.127)

Again, the convergence radius is infinite orr′ for f = j respectivelyf = h. Since
the vector multipoles are orthogonal (with respect to integration of the angular part
over the unit sphere), taking the curl of the the first equation must yield the second
equation. Therefore

α
f
MM (kr′) = α

f
NN (kr′) (1.128)

α
f
MN (kr′) = α

f
NM (kr′) (1.129)

By means of (1.110) and (1.111), the remaining matrices are easily found

[

α
f
MM (kr′)

]

l2,m2;l1,m1

= 4πjl1−l2(−1)m2+1X l2,−m2

(

∇̌
′

−jk

)

· X l1,m1

(

∇̌
′

−jk

)

f0(kr
′), (1.130)

[

α
f
MN (kr′)

]

l2,m2;l1,m1

= 4πjl1−l2+1(−1)m2+1W l2,−m2

(

∇̌
′

−jk

)

· X l1,m1

(

∇̌
′

−jk

)

f0(kr
′). (1.131)

To evaluate the product of two vector spherical wave operators in αf
MM (kr′), Eqn.

(A.84) can be used

[

α
f
MM (kr′)

]

l2,m2;l1,m1

= 4π
∑

l3,m3

jl1−l2−l3(−1)m2+m3+1Bl1,m1;l2,−m2;l3,−m3
Z

f
l3,m3

(kr′) . (1.132)
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Evaluating the product inαf
MN (kr′) is more complicated. Using Eqn. (A.83) and the

integral representation of the spherical Hankel function,Eqn. (1.131) becomes

1

2
j−l1+l2−1(−1)m2+1

[

α
f
MN (kr′)

]

l2,m2;l1,m1

=

∫

E
W l2,−m2

(

k̂
)

· X l1,m1

(

k̂
)

e−jkk̂·r′

dk̂, (1.133)

=
−jk

√

l1(l1 + 1)

∫

E
∇̌k ·

[

X l2,−m2

(

k̂
)

Yl1,m1

(

k̂
)]

e−jkk̂·r′

dk̂. (1.134)

Here,∇̌k· is the divergence operator with respect tok. Since the expression between
brackets depends only on̂k, only the angular derivatives remain when this operator is
expressed in spherical coordinates. Partial integration then yields

1

2
j−l1+l2−1(−1)m2+1

[

α
f
MN (kr′)

]

l2,m2;l1,m1

=
−kr′

√

l1(l1 + 1)
·
∫

E
X l2,−m2

(

k̂
)

Yl1,m1

(

k̂
)

e−jkk̂·r′

dk̂. (1.135)

This integral can be evaluated by means of Eqn. (A.86) and (A.26)

[

α
f
MN (kr′)

]

l2,m2;l1,m1

=
−jkr′ · MH

√

l1(l1 + 1)l2(l2 + 1)
·







λ+
l2,m2√

2

[
αf (kr′)

]

l2,m2+1;l1,m1

m2

[
αf (kr′)

]

l2,m2;l1,m1

−λ−
l2,m2√

2

[
αf (kr′)

]

l2,m2−1;l1,m1






, (1.136)

whereαf (kr′) is the scalar translation matrix (1.65).
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CHAPTER2

Maxwell’s Equations in the
Presence of Scatterers

⋆ ⋆ ⋆

In the previous chapter, Maxwell’s equations were solved inan infinitely large
homogeneous isotropic medium. In this chapter, these results will be used to
obtain the solution of Maxwell’s equations in an environment containing a
number of homogeneous regions. An example of such an environment is shown
in Figure 2.1. Solving Maxwell’s equations in such a geometry is generally
done by using the equivalence theorem, proved in Section 2.2, to find the gen-
eral solution of Maxwell’s equations in each homogeneous region. Then the
remaining degrees of freedom are tuned such that the boundary conditions, de-
rived in Section 2.1, are met. First we will use this general methodology to
derive the electric field integral equation. Secondly, the scattering off a homo-
geneous dielectric sphere will be solved and the result willbe generalized to
an equation that can be used when an arbitrary number of spheres are present.
Thirdly this equation will be further generalized such thatit also applies to a
collection of objects whose circumscribed spheres do not overlap. This equa-
tion is widely known as the T-matrix or multiple scattering equation [1]. Fi-
nally, an analysis of the computational cost of solving thisequation is made to
illustrate the need for fast multipole methods (FMMs).

2.1 Boundary conditions

Boundary conditions are equations relating jumps in the fields to current and charge
densities present at the jump. They are useful in many ways, for example in the
derivation of the equivalence theorem and in the solution ofMaxwell’s equations in
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ε1,µ1
ε2,µ2

ε0,µ0

Figure 2.1: An example geometry consisting of homogeneous regions.

geometries containing sharp material boundaries. In the last case, the boundary con-
ditions are used to ’glue’ two solutions in different regions of space together such that
their union satisfies Maxwell’s equations.

Usually the boundary conditions are derived from the integral form of Maxwell’s
equations. However, here we will use an alternative, more direct approach. Consider
the following two situations: the first situation is the entire space filled with a medium
with parametersε1,µ1 and the second situation is the entire space filled with a medium
with parametersε2, µ2. In spacep, with p ∈ {1, 2}, the currentsjp(r), chargesρp(r),
electric fieldsep(r), magnetic fieldshp(r), electric inductionsdp(r) and magnetic
inductionsbp(r) exist, all satisfying Maxwell’s equations. Letg(r) denote the real
continuous function that is negative inside a region A, and positive in the complement
of A, say region B. Now consider the situation where the medium parameters, currents
and fields from the space1 and2 are used inside region A and region B respectively

ε = H [−g(r)] ε1 +H [g(r)] ε2, (2.1)

e(r) = H [−g(r)] e1(r) +H [g(r)] e2(r), (2.2)

and the same forµ, h, j, ρ, d andb. Also,H [·] denotes the Heaviside function. This
basically means that the two fields and media have been put next to each other at the
interface defined byg(r) = 0, thus creating a jump. Substituting the new fields and
currents in Maxwell’s equations immediately yields the so-called boundary conditions

∇̌H [g(r)] × [e2(r) − e1(r)] = 0, (2.3a)

∇̌H [g(r)] × [h2(r) − h1(r)] = 0, (2.3b)

∇̌H [g(r)] · [d2(r) − d1(r)] = 0, (2.3c)
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∇̌H [g(r)] · [b2(r) − b1(r)] = 0. (2.3d)

Because∇̌g(r) is proportional to the external normaln̂ of region A,∇̌H [g(r)] can
be written as

∇̌H [g(r)] = δ(g(r))∇̌g(r), (2.4)

= n̂δ(g(r))
∂

∂n
g(r). (2.5)

The factorδ(g(r)) ∂
∂ng(r) is a function that differs from zero only on the interface.

Actually it represents aδ distribution in the normal direction. Indeed, ifrs is a point
on the interface andǫ is a small positive number

∫ ǫ

−ǫ

δ(g(tn̂ + rs))
d

dt
g(tn̂ + rs)dt = 1. (2.6)

Applying this integration to Eqns. (2.3a), (2.3b), (2.3c) and (2.3d) yields the familiar
expressions

n̂ × [e2(rs) − e1(rs)] = 0, (2.7a)

n̂ × [h2(rs) − h1(rs)] = 0, (2.7b)

n̂ · [d2(rs) − d1(rs)] = 0, (2.7c)

n̂ · [b2(rs) − b1(rs)] = 0, (2.7d)

which state that the tangential components of the electric and magnetic field, and the
normal components of the electric and magnetic induction must be continuous.

When the fields do not satisfy these boundary conditions (2.7), Maxwell’s equa-
tions can only be satisfied by introducing additional electric and magnetic surface
currents and charges

∇̌ × e(r) = −jωb(r) − m′(r), (2.8a)

∇̌ × h(r) = jωd(r) + j(r) + j′(r), (2.8b)

∇̌ · d(r) = ρ(r) + ρ′(r), (2.8c)

∇̌ · b(r) = π′(r). (2.8d)

which leads to the more general boundary conditions

n̂ × [e2(rs) − e1(rs)] = −m′
s(rs), (2.9)

n̂ × [h2(rs) − h1(rs)] = j′
s(rs), (2.10)

n̂ · [d2(rs) − d1(rs)] = ρ′s(rs), (2.11)

n̂ · [b2(rs) − b1(rs)] = π′
s(rs). (2.12)
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Here, the subscripts means that the quantity has been integrated across the interface
as in Eqn. (2.6). It can be shown that, using the law of conservation of magnetic
charge

∇̌ · m′(r) = −jωπ′(r), (2.13)

Eqns. (2.11) and (2.12) follow from Eqns. (2.10) and (2.9) respectively. This allows
the usage of (2.9) and (2.10) as the only boundary conditions, since the two other ones
are necessarily fulfilled.

2.2 The equivalence theorem

Using the boundary conditions derived in the previous section, it is possible to prove
the so-called equivalence theorem. This theorem states that it is possible to replace any
object by the following equivalent electric and magnetic surface current distribution
on its surface

js(rs) = n̂ × h(rs), (2.14)

ms(rs) = −n̂ × e(rs), (2.15)

wherers denotes a point on the surface,n̂ is the external normal and the fields in-
side the surface are zero. To prove the theorem, we need only to show that this new
field configuration constitutes a solution of Maxwell’s equations. The fields inside
the surface are zero and the fields outside of the surface are left unchanged. Clearly
this field configuration solves Maxwell’s equations inside and outside of the surface.
Additionally, the boundary conditions (2.9) and (2.10) aresatisfied because of the
presence of currents (2.14) and (2.15). As was mentioned in 2.1, this guarantees that
boundary conditions (2.11) and (2.12) are also satisfied. Asa consequence Maxwell’s
equations are satisfied everywhere, which by the uniquenessof the solution proves the
equivalence theorem.

The equivalence theorem can be used to replace scatterers with equivalent currents,
so that in the region where the fields are now zero, the scatterer can be harmlessly
replaced by free space. This in turn allows the use of the freespace Green function
for the evaluation of the fields associated with the equivalent and source currents.

2.3 The electric field integral equation

Here, the equivalence theorem will be used to derive the so-called electric field in-
tegral equation (EFIE). This equation can be used to solve the scattering off perfect
electrically conducting (PEC) targets. A perfect electrically conducting surface has
the property that the tangential electric field must be zero.Indeed, if this were not
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the case, the current running on the PEC target would become infinite. Now apply
the equivalence theorem to the surface of the PEC target. Because the tangential elec-
tric field is zero, no magnetic current (2.15) is required to represent the fields outside.
Therefore the most general possible form of the electric field outside of the PEC is
given by

e(r) = esco(r) +

∫

S

Ge(r − r′)js(r
′)dS′. (2.16)

The termesco(r) is added because the equivalent currents are not the only currents;
there are also source currents, that illuminate the PEC target. The EFIE is then ob-
tained by setting the total tangential field to zero

n̂ × esco(r) = −n̂ ×
∫

S

Ge(r − r′)js(r
′)dS′. (2.17)

When this equation is properly discretized, the surface currentjs(r
′) can be found by

solving a system of linear equations.

2.4 The multiple scattering equation

Another important equation is the so-called multiple scattering equation [1]. It is used
to solve problems consisting of a collection of objects whose circumscribed spheres
do not overlap. To arrive at the equation, the analytical solution of one sphere will
be determined, after which this result will be used to construct an equation for the
scattering problem with many spheres. This equation is thenfurther generalized to
support other objects than spheres.

2.4.1 Analytical solution of a homogeneous sphere

Using boundary conditions (2.7), the analytic solution of Maxwell’s equations in the
presence of a dielectric sphere will now be derived. The analytical solution of a homo-
geneous sphere was first derived by Gustav Mie [2], after whoma104km wide crater
on Mars is named. However, the derivation will be repeated here using the conven-
tions and definitions used in this work. Assume that a spherical region with radiusa
and centered around the origin is comprised of a material with permittivityεi, perme-
ability µi, impedanceZi and wavenumberki. The subscripti stands for ’inside’. The
medium outside the sphere has permittivityεo, permeabilityµo, impedanceZo and
wavenumberko, where the subscripto has the obvious meaning ’outside’. Now as-
sume that an electromagnetic field, generated by sources outside the sphere, impinges
on the sphere. Due to the equivalence theorem, the sphere canbe replaced by tangen-
tial electric and magnetic currentsjs(ar̂) andms(ar̂) on its surface. These currents
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generate the so-called scattered field of the sphere. Because the currents are tangen-
tial, they can always be written as a superposition of vectorspherical harmonics. This
in turn leads to the conclusion that the scattered field must have the following form

esca(r) =
∑

l,m

[

asca
l,mMh

l,m (kor) + bsca
l,mNh

l,m (kor)
]

+
∑

l,m

[

csca
l,mM

j
l,m (kor) + dsca

l,mN
j
l,m (kor)

]

. (2.18)

However, this field has to satisfy the radiation condition. Therefore the sum over
the regular multipoles must be omitted and the scattered field has the following most
general form

esca(r) =
∑

l,m

[

asca
l,mMh

l,m (kor) + bsca
l,mNh

l,m (kor)
]

. (2.19)

The source field is known and regular since the sources are assumed to be known
and located outside of the sphere. It can therefore be expanded in regular multipoles
centered around the origin

esco(r) =
∑

l,m

[

asco
l,mM

j
l,m (kor) + bsco

l,mN
j
l,m (kor)

]

. (2.20)

The electric field inside the sphereei(r) has to be regular, again because there are no
sources in the sphere. Using the equivalence theorem to set the fields outside of the
sphere to zero then yields the following most general form

ei(r) =
∑

l,m

[

ai
l,mM

j
l,m (kir) + bil,mN

j
l,m (kir)

]

. (2.21)

The magnetic fields are then easily obtained in both regions by means of curl equations
(1.86), (1.85) and (1.11b)

hsco(r) =
j

Zo

∑

l,m

[

bsco
l,mM

j
l,m (kor) + asco

l,mN
j
l,m (kor)

]

, (2.22)

hsca(r) =
j

Zo

∑

l,m

[

bsca
l,mMh

l,m (kor) + asca
l,mNh

l,m (kor)
]

, (2.23)

hi(r) =
j

Zi

∑

l,m

[

bil,mM
j
l,m (kir) + ai

l,mN
j
l,m (kir)

]

. (2.24)
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Imposing the boundary conditions (2.7a) and (2.7b)

r̂ × [esco(ar̂) + esca(ar̂)] = r̂ × ei(ar̂) ∀r̂, (2.25)

r̂ × [hsco(ar̂) + hsca(ar̂)] = r̂ × hi(ar̂) ∀r̂, (2.26)

can be done by taking the dot product of both sides withX l,m (r̂) andW l,m (r̂) and
integrating. For the electric field this yields

asco
l,mjl (koa) + asca

l,mh
(2)
l (koa) = ai

l,mjl (kia) , (2.27)

bsco
l,mJl (koa) + bsca

l,mH(2)
l (koa) = bil,mJl (kia) , (2.28)

while the magnetic field gives

bsco
l,mZijl (koa) + bsca

l,mZih
(2)
l (koa) = bil,mZojl (kia) , (2.29)

asco
l,mZiJl (koa) + asca

l,mZiH(2)
l (koa) = ai

l,mZoJl (kia) . (2.30)

Elimination of the ’inside’ coefficientsai
l,m andbil,m yields

bsco
l,m

Jl (koa)

Jl (kia)
+ bsca

l,m

H(2)
l (koa)

Jl (kia)
= bsco

l,m

Zijl (koa)

Zojl (kia)
+ bsca

l,m

Zih
(2)
l (koa)

Zojl (kia)
, (2.31)

asco
l,m

Jl (koa)

Jl (kia)
+ asca

l,m

H(2)
l (koa)

Jl (kia)
= asco

l,m

Zojl (koa)

Zijl (kia)
+ asca

l,m

Zoh
(2)
l (koa)

Zijl (kia)
. (2.32)

This can be cast into

asca
l,m

asco
l,m

= TM
l = −

Zi
Jl(koa)
jl(koa) − Zo

Jl(kia)
jl(kia)

Zi
H(2)

l
(koa)

jl(koa) − Zo
Jl(kia)
jl(kia)

h
(2)
l

(koa)

jl(koa)

, (2.33)

bsca
l,m

bsco
l,m

= TN
l = −

Zo
Jl(koa)
jl(koa) − Zi

Jl(kia)
jl(kia)

Zo
H(2)

l
(koa)

jl(koa) − Zi
Jl(kia)
jl(kia)

h
(2)
l

(koa)

jl(koa)

. (2.34)

The knowledge of the multipole expansion of the source field thus yields the knowl-
edge of the scattered field. In other words, the total field is known. The coefficients
ai

l,m and bil,m and thus the fields inside the sphere are also easily calculated using
Eqns. (2.27) and (2.28). For a perfect electrically conducting sphere, the fields inside
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the sphere are identically zero, yielding the simpler expressions

asca
l,m

asco
l,m

= − jl (koa)

h
(2)
l (koa)

, (2.35)

bsca
l,m

bsco
l,m

= − Jl (koa)

H(2)
l (koa)

. (2.36)

2.4.2 The multiple scattering equation for homogeneous spheres

The results from the previous subsection allow the solutionof Maxwell’s equations
in the presence of one homogeneous sphere. This result can beextended [1] to an
environment withQ non-touching spheres, that have centerrn and radiusan. The
field generated by the source is now expanded around all the spheres

esco(r) =
∑

l,m

[

asco
n,l,mM

j
l,m (k (r − rn)) + bsco

n,l,mN
j
l,m (k (r − rn))

]

. (2.37)

Assuming that the source is located outside of the spheres, this series converges in
a spherical region around every sphere. However, the spheres feel not only the field
from the source, but also the fields scattered by other spheres. The field scattered by
the pth sphere can be determined with an argument similar to the one used in 2.4.1
and is given by

esca
p (r) =

∑

l,m

[

asca
p,l,mMh

l,m (k (r − rp)) + bsca
p,l,mNh

l,m (k (r − rp))
]

. (2.38)

This holds for all||r − rp|| > ap with unknownasca
p,l,m and bsca

p,l,m. Because the
spheres do not touch, this field is regular in a finite spherical region around every
sphere and can thus be expanded in regular multipoles aroundthenth sphere center

esca
p (r) =

∑

l,m

[

ap,n,l,mM
j
l,m (k (r − rn)) + bp,n,l,mN

j
l,m (k (r − rn))

]

. (2.39)
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where the coefficientsap,n,l,m andbp,n,l,m are obtained by means of the vector trans-
lation matrices from 1.3.5

ap,n,l,m =
∑

l′,m′

[[

α
f
MM (k (rn − rp))

]

l,m;l′,m′
asca

p,l′,m′

+
[

α
f
MN (k (rn − rp))

]

l,m;l′,m′
bsca
p,l′,m′

]

, (2.40)

bp,n,l,m =
∑

l′,m′

[[

α
f
NM (k (rn − rp))

]

l,m;l′,m′
asca

p,l′,m′

+
[

α
f
NN (k (rn − rp))

]

l,m;l′,m′
bsca
p,l′,m′

]

. (2.41)

By means of (2.37) and (2.39), the total field impinging on thenth sphere can thus be
written as

eimp
n (r) =

∑

p6=n

∑

l,m

[[
asco

n,l,m + ap,n,l,m

]
M

j
l,m (k (r − rn))

+
[
bsco
n,l,m + bp,n,l,m

]
N

j
l,m (k (r − rn))

]

. (2.42)

Clearly, the fields scattered by the spheres determine the fields impinging on them.
However, the scattered fields are still unknown. They can be determined by enforcing
the boundary conditions on the surfaces of all the spheres. Using the results from 2.4.1

asca
n,l,m = TM

n,l




∑

p6=n

ap,n,l,m + asco
n,l,m



 (2.43)

bsca
n,l,m = TN

n,l




∑

p6=n

bp,n,l,m + bsco
n,l,m



 (2.44)



34 MAXWELL ’ S EQUATIONS IN THE PRESENCE OF SCATTERERS

with TM
n,l andTN

n,l defined in (2.33) and (2.33). Putting all this together yields the
multiple scattering equation

TM
n,la

sco
n,l,m = asca

n,l,m − TM
n,l

∑

p6=n

∑

l′,m′

[[

α
f
MM (k (rn − rp))

]

l,m;l′,m′
asca

p,l′,m′

+
[

α
f
MN (k (rn − rp))

]

l,m;l′,m′
bsca
p,l′,m′

]

,

(2.45)

TN
n,lb

sco
n,l,m = bsca

n,l,m − TN
n,l

∑

p6=n

∑

l′,m′

[[

α
f
NM (k (rn − rp))

]

l,m;l′,m′
asca

p,l′,m′

+
[

α
f
NN (k (rn − rp))

]

l,m;l′,m′
bsca
p,l′,m′

]

.

(2.46)

The left hand side is known, and if the sums overl,m are truncated so the maximum
value for l is L, the coefficientsasca

n,l,m and bsca
n,l,m can be determined by solving a

system of linear equations of order2Q(L + 1)2. Once the solution of this system
has been obtained, it is easily shown that the correspondingfields solve Maxwell’s
equations. Indeed, the field in the space between the spheresis a superposition of
the source field and the scattered fields of the spheres, both solutions of Maxwell’s
equations. In addition, the boundary conditions are met because Eqns. (2.43) and
(2.44) are satisfied. By the uniqueness of the solution of Maxwell’s equations, the
obtained solution is the solution of the many-spheres scattering problem.

2.4.3 The multiple scattering equation for other objects

It should be noted that the reasoning that led to the scattered field of a sphere (2.38),
can be repeated unchangedly for more complicated objects. Indeed, assume that object
n can be circumscribed by a sphere with radiusan and centercn. Then simply apply
the equivalence theorem to each object’s circumscribing sphere and use the radiation
condition to obtain the most general scattered field for thenth object

esca
n (r) =

∑

l,m

[

asca
n,l,mMh

l,m (k (r − cn)) + bsca
n,l,mNh

l,m (k (r − cn))
]

. (2.47)

Then, can the multiple scattering equation be generalized to arbitrary objects? The
answer is no, because the other crucial part of the equation is the re-expansion of this
scattered field in regular multipoles centered around the other objects. For this series
to converge, the objects’ circumscribing spheres must not touch nor overlap. When
this condition is met, it is clear that only Eqns. (2.43) and (2.44) must be altered to
accommodate for the extra generality. Basically, Eqns. (2.43) and (2.44) are replaced
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with the more general

asca
n,l,m =

∑

l′,m′

[[
TMM

n

]

l,m;l′,m′ an,l′,m′ +
[
TMN

n

]

l,m;l′,m′ bn,l′,m′

]

, (2.48)

bsca
n,l,m =

∑

l′,m′

[[
TNM

n

]

l,m;l′,m′ an,l′,m′ +
[
TNN

n

]

l,m;l′,m′ bn,l′,m′

]

. (2.49)

(2.50)

with an,l,m =
∑

p6=n ap,n,l,m + asco
n,l,m andbn,l,m =

∑

p6=n bp,n,l,m + bsco
n,l,m. The

matricesTMM
n , TMN

n , TNM
n andTNN

n are blocks of the so-called T-matrix of thenth
object.

The T-matrix of an object can usually not be determined analytically. However,
numerically this can be done as follows. Letc anda be the center and radius of the
circumscribing sphere of the object. Then calculate the scattered field of the object
for all the incoming fields given by the regular vector multipolesM

j
l,m (k (r − c))

andN
j
l,m (k (r − c)). These scattered fieldsesca,M

l,m (r) ande
sca,N
l,m (r) can be de-

composed in singular vector multipoles by means of

h
(2)
l (ka)

[
TMM

]

l,m;l′,m′ =

∫

S2

X∗
l,m (r̂) · esca,M

l′,m′ (c + ar̂)dr̂, (2.51)

H(2)
l (ka)

[
TNM

]

l,m;l′,m′ =

∫

S2

W ∗
l,m (r̂) · esca,M

l′,m′ (c + ar̂)dr̂, (2.52)

h
(2)
l (ka)

[
TMN

]

l,m;l′,m′ =

∫

S2

X∗
l,m (r̂) · esca,N

l′,m′ (c + ar̂)dr̂, (2.53)

H(2)
l (ka)

[
TNN

]

l,m;l′,m′ =

∫

S2

W ∗
l,m (r̂) · esca,N

l′,m′ (c + ar̂)dr̂, (2.54)

which uniquely determines the T-matrix.

2.5 The necessity of fast multipole methods

As shown in the previous section, the multiple scattering equation forQ spheres,
where multipoles up to orderL are taken into account, becomes a dense system of
linear equations of orderN = 2Q(l + 1)2

Z · x = y, (2.55)

whereZ is theN ×N system matrix,x is theN × 1 vector containing the unknowns
andy is theN × 1 vector containing the source fields. Clearly, when a large num-
ber of spheres are involved or a high accuracy is required,N becomes very large.
Solving the linear system using direct methods, e.g. LU decomposition, is then not
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feasible anymore because direct methods have anO
(
N3
)

computational andO
(
N2
)

memory complexity. The fact that the system is dense is caused by the fact that every
sphere (observer sphere) receives fields from every other sphere (source sphere). This
in turn is because the vector translation matrices (and their special cases, the Green
dyadics) are nonzero throughout the entire space. This problem is thus not specific
to the multiple scattering equation: any integral equationmethod in electromagnetism
suffers from this complexity problem.

The application of iterative solvers, such as the biconjugate gradient method [3],
can somewhat improve this situation. These methods start from a guess of the solution
x0, and evaluate its correctness by multiplying it withZ and checking the difference
Z · x0 − y. Based on a set of rules that is specific to the type of iterative solver used, a
new guessx1 is determined, which is usually closer to the actual solution thanx0. This
procedure is then repeated until, in theP th iteration, the residual error||Z · xP − y||
has been reduced below a preset threshold. Since in each iteration, a number of mul-
tiplications of the system matrixZ with test vectors is required, the computational
complexity of an iterative solution method isP times the complexity of a matrix-
vector multiplication, i.e.O

(
PN2

)
. For well-conditioned problems, the number of

iterationsP is small, so that this indeed means a reduction of the computational cost.
Naturally, the aim then becomes to perform the matrix-vector multiplications as

efficiently as possible. In the past, many fast algorithms have been developed for
this purpose [4–10]. Fast multipole methods (FMMs) are arguably one of the most
important classes of these algorithms. FMMs can reduce the computational comple-
xity of the multiplication of the system matrix with a vectorfrom O

(
N2
)

to O (N)

or O (N logN). This is accomplished by dividing the geometry of the problem into
a hierarchy of boxes, the so-called tree, and invoking a decomposition of the Green
function. The tree is constructed by taking the box that contains the entire geometry
of the problem and recursively subdividing it until a stopping criterion (for example
a given minimal box size) is violated. The expansions of the Green function are then
used to let the boxes interact as a whole.

The various possible decompositions of the Green function give rise to different
FMMs and different circumstances under which the FMMs provide an improvement
in complexity. Some examples are

• multipole decomposition: this is the oldest FMM [4], and reduces the comple-
xity of a matrix-vector multiplication toO (N) if kR, with R the size of the
simulated structure, does not become much larger than1, i.e. when the fre-
quency is sufficiently low. Also, the prefactor is quite large.

• propagating plane wave decomposition [5, 11]: this decomposition yields an
O (N logsN) complexity, wheres ∈ {0, 1, 2} depends on the problem ge-
ometry and some algorithmic details. Although in principlethe most efficient
decomposition, it suffers from a numerical instability andtherefore fails to de-
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liver accurate results when the smallest boxes become significantly smaller than
one wavelength. As a consequence the frequency must be sufficiently high to
be able to use this decomposition.

• spectral, or directive evanescent plane wave decomposition [9, 12]: as one of
the more recent FMMs, this method works for both high and low frequencies.
However, the decomposition converges in only one half-space. Therefore, six
different decompositions are required to cover the entire space.

Clearly, these three methods all have their drawbacks. In the following chapters, ef-
forts to alleviate or eliminate these drawbacks will be presented.
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⋆ ⋆ ⋆

The main drawback of using the spectral representation of the Green function
in an FMM is the shape of the representation’s convergence region, i.e. a half
space. Therefore, to cover the entire space, six rotated versions of the rep-
resentation are required. In this chapter, a novel technique to accelerate the
aggregation and disaggregation stages in an FMM using the spectral repre-
sentation of the Green function is presented. The new methodcalculates the
six plane wave radiation patterns from a multipole expansion (aggregation)
and calculates the multipole expansion of an incoming field from the six plane
wave incoming field patterns. It is faster than the direct approach for multi-
pole orders larger than one, and becomes six times faster forlarge multipole
orders. The method relies on a connection between the discretizations of the
six integral representations, and on the fact that the Wigner D-matrices become
diagonal for rotations around thez-axis. The proposed technique can also be
extended to the vectorial case in two different ways, one of which is very sim-
ilar to the scalar case. The other method relies on a Beltramidecomposition
of the fields and is faster than the direct approach for any multipole order.
This Beltrami decomposition is also not limited to solvers using the spectral
representation, but can be used in any vectorial FMM.
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3.1 Introduction

Currently, several so-called Fast Multipole Algorithms (FMMs) exist [1–7]. These
methods accelerate the matrix-vector multiplications required for the iterative solu-
tion of the systems of linear equations arising in Method of Moments based integral
equation solvers. Unfortunately, most of these methods only apply to a specific type of
problem. The multilevel fast multipole method (MLFMA) is based on a homogeneous
plane wave expansion of the Green function to reduce the computation time and mem-
ory requirements for high frequency (HF) problems toO (N) -N denotes the number
of unknowns - orO (N logN). However it completely fails for low frequency (LF)
problems due to roundoff errors. On the other hand, FMMs based on a multipole
expansion of the Green function reduce both computation time and memory require-
ments toO (N) for LF problems, but not for HF problems. Hence, they are referred
to as the low-frequency fast multipole methods (LF-FMMs). To mitigate this a new
class of FMMs was introduced, which all somehow rely on a discretized version of the
spectral representation of the Green function. These methods, most notably the stable
plane wave method [6,8], are capable of deliveringO (N) orO (N logN) complexity
for LF and HF problems respectively. However, as shown in [9], the MLFMA turns
out to be the most efficient FMM if the frequency is high enoughto reach the target
accuracy. Therefore, the state of the art is to introduce a level in the FMM tree above
(the HF part) which the MLFMA is used, and below (the LF part) which either the
LF-FMM (as for example in [10]) or some form of evanescent plane wave method (as
for example in [9]) is used. In [8,9], it is argued that the evanescent wave technique is
more efficient than the LF-FMM, especially for high accuracies. The reason for this
is the diagonality of the translation operator, which reduces the cost of one translation
from O

(
L4
)

to O
(
L2
)

with L the multipole order (of the LF-FMM). This shows
that evanescent wave methods certainly are of practical importance for the LF part of
FMMs.

However, their main drawback is that the underlying Green function’s integral rep-
resentation only converges in one half-space of choice. By consequence, in practice,
six integral representations are needed to cover the entirespace. For the propagating
plane waves, all dependency on the half-space can be incorporated into the translation
operator, thereby allowing to calculate all six integral representations starting from
only one radiation pattern. Hence, for the propagating plane waves, only one radia-
tion pattern is needed. For the evanescent plane waves up to now no such technique
exists despite several attempts to solve this conundrum. For example, in [11], Jiang
and Chew split the evanescent plane waves into so called ’shallow evanescent plane
waves’ and ’deep evanescent plane waves’. The shallow planewaves are obtained by
extrapolating the propagating plane waves and improve the efficiency of the method at
higher levels. However for very low frequencies or for very low levels in the tree, the
extrapolation has little use, since virtually none of the evanescent plane waves will be
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shallow. Indeed, if the extrapolation would still be effective at very low frequencies,
the MLFMA would to some extent still work at those frequencies. Also, according
to [11], it is not possible to calculate all six integral representations of the deep evanes-
cent plane waves starting from only one radiation pattern. The need for six radiation
patterns results in high memory requirements [10] and a highcomputational cost. As
is done in [9,12], the memory problem can be reduced by first calculating a multipole
expansion of the radiated field, and then going to the plane wave basis. The calcula-
tion of the six evanescent radiation patterns from a multipole expansion will from here
on be referred to as ’aggregation’. The reverse procedure, namely projecting the six
evanescent incoming field patterns of an FMM group onto multipoles, will be referred
to as ’disaggregation’. These procedures not only arise in the LF-part of [9], but can
also be used when for example multiple scattering from a collection of spheres is con-
sidered (where the sources in every FMM group are multipoles). It is thus important
to do the (dis)aggregation as efficiently as possible.

The main goal of this paper is to introduce an elegant, novel and exact method
to do this (dis)aggregation. This new method relies on the use of Wigner rotation
matrices and the fact that these matrices are diagonal for rotations around thez-axis.
The computation time is lower than the direct computation ifthe maximal multipole
orderL is larger than one, which is true for all practical cases. Moreover, if a large
enough number of multipoles are used, the computation time is reduced by a factor six
compared to the direct case. It will also be shown that the proposed scheme applies to
both the scalar (for example acoustics) and the vectorial (for example electromagnet-
ics) case. In the latter case, two methods are provided, the second of which is faster
than the direct approach foranymultipole order. The proposed methods do not reduce
the complexity however, so they can only be used for the LF-part of the FMM tree.
A drawback of the method occurs when one is simulating a structure which is long
in one direction. Only a few of the six radiation patterns areneeded then, while the
proposed method still calculates all six radiation patterns. Such inefficiencies can be
avoided by switching to the direct method for these cases.

Notation: throughout this work all sources and fields are assumed time-harmonic
with angular frequencyω; temporal dependenciesejωt are suppressed. Unit vectors
are denoted by a hat̂k = k

k , and the Cartesian unit vectors areeτ , with τ = x, y, z.

3.2 FMMs with evanescent plane waves

An FMM with evanescent plane waves [6, 8, 11], like all FMM codes, uses a hierar-
chical cubical subdivision of the computational domain. For the interaction between
groups on a level, it relies upon the spectral decompositionof the spherical Hankel
function of the second kind and of zeroth order (1.44), whichis readily generalized to
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both positive and negativez

h
(2)
0 (kr) =

1

2π

∫

E
e∓jk·rdk̂, z = êz · r ≷ 0. (3.1)

Here,k is the free-space wavenumber,k = kk̂ = (kx, ky, kz) the wave vector, and
r a global position vector. The integration with subscriptE is defined in (1.43) and
becomes

h
(2)
0 (kr) =

1

2π

∫ 2π

0

∫

Γ

e∓jk·r sin θdθdφ (3.2)

with (kx, ky, kz) = k(cosφ sin θ, sinφ sin θ, cos θ). The integration pathΓ consists
of two pieces,Γ1 andΓ2, depicted in Figure 1.1 and corresponding to propagating
and evanescent plane waves respectively. Therefore the integral (3.1) can be split in a
propagating and an evanescent part

h
(2)
0 (kr) =

1

2π

∫ 2π

0

∫

Γ1

e∓jk·r sin θdθdφ

︸ ︷︷ ︸

Propagating

+
1

2π

∫ 2π

0

∫

Γ2

e∓jk·r sin θdθdφ

︸ ︷︷ ︸

Evanescent

. (3.3)

Then both integrals are discretized separately, for example for the casez > 0:

h
(2)
0 (kr) =

Vp∑

vp=1

wp
vp
e
−jkp

vp
·r

+

Ve∑

ve=1

we
ve
e−jke

ve
·r (3.4)

wherewp
vp

, kp
vp

,we
ve

andke
ve

are the weights and nodes of the propagating and evanes-
cent part respectively. The discretization of the propagating part is straightforward [6].
The discretization of the evanescent part is more difficult,since the evanescent integral
in (3.3) covers an infinite region. However, sinceΓ2 is given by the parameter equa-
tion θ = π

2 + jt, t ∈ [0,∞] andkz = k cos θ, the integral converges in an exponential
manner ifz ≷ 0. This allows the discretization to be done with exponentialaccuracy.
It can be done in many ways, for example with a singular value decomposition (SVD)
based approach. A uniform discretization is also possible,albeit after some further
coordinate transformations. Both the SVD and uniform discretizations are described
in [6]. However, the details of the discretization are not important for the remainder
of this paper.

An important property of (3.1) is that it is valid only ifz ≷ 0. In the planez = 0,
this integral representation does not converge. For the discretized version, matters are
even worse, since series (3.4) will only converge ifr remainsfar enoughfrom the
planez = 0. A more rigorous criterium for convergence of (3.4) is givenin [6], with
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some positive constantC:

√

x2 + y2 < Cz, (3.5)

As a consequence, only a cone-like region around thez-axis can be covered with
this expansion of the Green function. This situation is remedied by introducing extra
integral (series) representations which converge along thex- andy-axes. As a result,
in total six integral representations are used, which will henceforth be denoted as1±,
2±, and3±. This configuration has been ubiquitously used in the literature [6,8,11].
In [6], it is shown that in an oct-tree using these six integral representations, criterium
(3.5) is always satisfied withC =

√
2, thus assuring convergence of the series. Figure

3.1 shows an example configuration in which the field in the point d1 due to sources
J in the box must be calculated by means of the3+ expansion, while the fields in the
pointd2 must be calculated by means of the1+ expansion.

X

Y

Z

d1

d2

J

Figure 3.1: The radiated fields of the central box is given by different expansionsin the different
cone-like regions. For example, the fields ind1 must be calculated using the3+ expansion
while the fields ind2 must be calculated by means of the1+ expansion.

The propagating parts of the six series are all integrationsover one half of the
Ewald sphere. As is shown in [6] this permits absorbing all directional dependence
into the weights. As a consequence only one radiation pattern is needed for the propa-
gating part. Unfortunately, this is not possible for the evanescent part [11]. Therefore,
from now on, we will focus on the evanescent part only, sowe

ve
andke

ve
will hence-

forth be written aswv andkv. In this paper, it will be shown that the six evanescent
radiation patterns can be calculated from a multipole expansion with asymptotically
the same computational cost as for one radiation pattern, thus gaining a factor six.
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The essential element of this novel method is the fact that the nodes of the different
representations are rotated versions of the nodes for the expansion around the positive
z-axiskv (= k3+

v ):

k1+
v = R−1

x · kv, (3.6)

k2+
v = R−1

y · kv, (3.7)

k3+
v = R−1

z · kv = kv, (3.8)

In addition:
kp−

v = −kp+
v ∀p ∈ {1, 2, 3}. (3.9)

with the matricesRx, Ry andRz defined as

Rx = R

(

−2π

3
,

1√
3
(êx + êy + êz)

)

=





0 1 0

0 0 1

1 0 0



 , (3.10)

Ry = R

(
2π

3
,

1√
3
(êx + êy + êz)

)

=





0 0 1

1 0 0

0 1 0



 . (3.11)

Rz = 1 (3.12)

In this, the rotation matrixR(α,u) is a3 by 3 matrix which rotates a vectorc around
the axisu (with u · u = 1) over the angleα into the vectorc′, viz. c′ = R(α,u) · c.
The direction of rotation is determined by means of the righthand rule. A graphical
representation of this is given in Figure 3.2. It will now be shown that the relationships
(3.6)-(3.9) can be unified in one symmetric expression. Begin by observing thatRx,
Ry, andRz are all rotations around the1√

3
(êx + êy + êz)-axis. This means they all

can be converted into rotations around thez-axis by means of one similarity transform.

With R0 = R
(

− arccos( 1√
3
), 1√

2
(−êx + êy)

)

, this yields

Rx = R−1
0 · R(−2π

3
, êz) · R0, (3.13)

Ry = R−1
0 · R(−4π

3
, êz) · R0, (3.14)

Rz = R−1
0 · R(−6π

3
, êz) · R0. (3.15)

This means that the discretization points for all six representations can be unified in
one formula:

kps
v = R−1

0 ·
[

sR(
2pπ

3
, êz)

]

· R0 · k3+
v ∀s ∈ {−1,+1} ∀p ∈ {1, 2, 3}. (3.16)
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Whens is used as an index, for example inkps
v , the+1 and−1 are denoted as+

and− respectively. Formula (3.16) is a form in which the symmetrybetween the six
radiation patterns is visible. This symmetry will be crucial in developing the accel-
erated scheme, since it will allow the six radiation patterns to be decomposed in six
other patterns which require only one sixth of the amount of work to calculate. The
derivations will be presented in the following sections.

c
c′

u

α

Figure 3.2: The rotation matrixR(α, u) rotates a vectorc around the axisu over the angleα
into the vectorc′. The direction of the rotation is determined by the right hand rule.

3.3 A faster (dis)aggregation for the scalar case

As stated in the introduction, the aggregation denotes the calculation of the six evanes-
cent radiation patterns from a multipole expansion. This process is used and elabo-
rated in [9]. It consists of calculating

Θps
v =

L∑

l=0

l∑

m=−l

almj
lYl,m

(

k̂
ps

v

)

∀p ∈ {1, 2, 3}, s ∈ {−1,+1}, (3.17)

where thealm are the multipole coefficients,Yl,m

(

k̂
)

denotes a spherical harmonic

andL is the maximum multipole order that is taken into account. The kps
v are the

discretization nodes from the evanescent part in (3.4). Thedefinition and some prop-
erties of the spherical harmonics are summarized in Appendix A. WhenΦps

v denotes
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the incoming field patterns in the six directions, the disaggregation is given by

blm =
∑

v

wv

∑

p,s

Φps
v (−1)mYl,−m

(

k̂
ps

v

)

(3.18)

=
∑

v

wv

∑

p,s

Φps
v Y

∗
l,m

(

k̂
ps∗
v

)

. (3.19)

Here,∗ denotes the complex conjugate. The fact that - in contrast tothe nodes - the
weightswv do not depend onp nor s has also been used. In the following sections,
the accelerated scheme will be developed.

3.3.1 Aggregation

The accelerated scheme relies for a great deal on the connection (3.16) between the
discretization points for the six representations. Substitution of (3.16) inΘps

v yields:

Θps
v =

L∑

l=0

l∑

m=−l

almj
lYl,m

(

R−1
0 ·

[

sR(
2pπ

3
, êz)

]

· R0 · k̂
3+

v

)

. (3.20)

The outer rotation in the argument of the spherical harmoniccan be brought outside
the function by means of the Wigner D-matrices, defined in Section A.2 in Appendix
A, as follows

Θps
v =

L∑

l=0

l∑

m=−l

∑

m1

almj
lDl

m,m1

(
R−1

0

)
Yl,m1

(

sR(
2pπ

3
, êz) · R0 · k̂

3+

v

)

(3.21)

=

L∑

l=0

l∑

m1=−l

a′lm1
jlYl,m1

(

sR(
2pπ

3
, êz) · R0 · k̂

3+

v

)

(3.22)

where
a′lm1

=
∑

m

almD
l
m,m1

(
R−1

0

)
(3.23)

This sum runs overm only and thus can be done fast, compared to the full aggregation.
After this operation, all sources are actually rotated to a reference system in which the
former 1√

3
(êx + êy + êz) axis is the newz-axis. In a second step the dependence

on p ands can be removed. According to equation (A.6) the spherical harmonics are
eigenfunctions of the inversion operator (which replacesr by −r) with eigenvalues
(−1)l, which allows for the removal ofs. Moving thep-dependence out of the spheri-
cal harmonic can again be done using the Wigner D-matrices. However a crucial point
here is that Wigner D-matrices for rotations around thez-axis are diagonal, as stated



3.3 A faster (dis)aggregation for the scalar case 49

in (A.44). This yields:

Θps
v =

L∑

l=0

l∑

m=−l

a′lmj
lsleim 2pπ

3 Yl,m

(

R0 · k̂
3+

v

)

(3.24)

or after splitting the summations:

Θps
v =

1∑

r=0

2∑

q=0

sreiq 2pπ
3

∑

r=l mod2

∑

q=m mod3

a′lmj
lYl,m

(

R0 · k̂
3+

v

)

(3.25)

The inner summation runs over allm for which q = m mod3 and all l for which
r = l mod2. ’mod’ means modulo, so for example1 = 7 mod3. Equation (3.25)
shows that (3.17) can be re-expressed as an aggregation towards six new radiation
patternsκqr

v

κqr
v =

∑

r=l mod2

∑

q=m mod3

a′lmj
lYl,m

(

R0 · k̂
3+

v

)

∀q ∈ {0, 1, 2}, ∀r ∈ {0, 1}

(3.26)
However, only one sixth of the multipoles contributes to each of these patterns. In
this way, calculating these six new patterns costs as littleas calculating one pattern
with the direct formula (3.17). Of course, there is the extracost of a postprocessing
step, i.e., the summation overq and r in (3.25), but this cost has only anO

(
L2
)

complexity and is negligible compared to the entire aggregation. Note that this whole
scheme works totally independent from the choice of the discretization pointsk3+

v .
Only the connection (3.16) is required. Another important point was brought up by
one of the reviewers: very elongated structures require less than six radiation patterns
to be computed. For example a long wire will need the FMM groups to have only
two radiation patterns. In this case (3.25) will only yield an asymptotic factor two. If
an FMM group needs only one radiation pattern, then a switch to the direct method
should be made. The same considerations apply to the disaggregation and the first
method for the vectorial case. The second method will be shown to be capable of
accelerating by a factor2 even if only one radiation pattern is required.

An explicit operation count will be done to show that the proposed method requires
less multiplications than the direct approach for most practical cases. The operation
count for doing the rotation onalm (3.23) is:

L∑

l=0

(2l + 1)2 =
1

3

(
4L3 + 12L2 + 11L+ 3

)
(3.27)

The operation count for the construction of the new radiation patternsκqr
v clearly is

V (L+ 1)2. V is the number of discretization points for the Green function’s integral
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representation. The postprocessing step requires36V multiplications. Hence the total
number of multiplications is:

1

3

(
4L3 + 12L2 + 11L+ 3

)
+ V (L2 + 2L+ 37) (3.28)

The number of multiplications without acceleration is6V (L + 1)2. Therefore, the
value ofV for which the proposed method is faster than the one without acceleration
is given by:

V >
1

3

4L3 + 12L2 + 11L+ 3

5L2 + 10L− 31
∀ L > 1 (3.29)

For the case whereL = 1, > in equation (3.29) has to be replaced by< because
5L2 + 10L − 31 is negative. Therefore, ifL = 1, (3.29) is not satisfied and the new
method is slower than the direct approach. ForL = 2, the right hand side becomes
35
9 < 4. Since the number of discretization points is always more than 3, (3.29)

is always satisfied. Moreover,V = O
(
L2
)

because the multipole and plane wave
expansion have approximately the same information content. This makes sure that
equation (3.29) is also satisfied for largerL. Therefore it is safe to say that for any
L > 1, the method presented in 3.4.2 is faster than the direct approach. It has to be
acknowledged that this operation count has to be put in the right perspective, because
different optimizations and hardware can have a great influence on performance.

3.3.2 Disaggregation

The disaggregation can also be accelerated. The operationsare analogous to the ag-
gregation, but are done in reversed order. A short treatmentis given below for com-
pleteness. The derivation is again started by using (3.16) in (3.19), which yields:

blm =
∑

v

wv

∑

p,s

Φps
v Y

∗
l,m

(

R−1
0 ·

[

sR(
2pπ

3
, êz)

]

· R0 · k̂
3+∗
v

)

. (3.30)

As a first step it is possible to remove the last rotation by multiplying blm with
Dl∗

m2,m (R0) and summing overm:

b′lm2
=
∑

m

Dl∗
m2,m (R0) blm =

∑

v

wv

∑

p,s

Φps
v Y

∗
l,m2

(

sR(
2pπ

3
, êz) · R0 · k̂

3+∗
v

)

.

(3.31)
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Again the rotation around thez-axis can be taken out of the spherical harmonics by
using the diagonal Wigner D-matrices:

b′lm2
=
∑

v

wv

∑

p,s

Φps
v s

l
l∑

m3=−l

Dl∗
m2,m3

(

R(
2pπ

3
, êz)

)

Y ∗
l,m3

(

R0 · k̂
3+∗
v

)

(3.32)

=
∑

v

wv

∑

p,s

Φps
v s

le−im2
2pπ
3 Y ∗

l,m2

(

R0 · k̂
3+∗
v

)

. (3.33)

The summation overp, s gives rise to6 distinct new disaggregation patterns:

Ξk,r
v =

∑

p,s

Φps
v s

re−ik 2pπ
3 ,∀k ∈ {0, 1, 2}, r ∈ {0, 1}. (3.34)

These new patterns allow for a faster disaggregation because they each only contribute
to one sixth of theb′lm1

:

b′lm1
=
∑

v

wvΞm1 mod3,l mod2
v Yl,m1

(

R0 · k̂
3+∗
v

)

. (3.35)

In order to obtain theblm, theb′lm1
have only to be rotated back:

blm =

l∑

m3=−l

l∑

m1=−l

Dl∗
m,m1

(
R−1

0

)
Dl∗

m1,m3
(R0) bl,m3

(3.36)

=

l∑

m1=−l

Dl∗
m,m1

(
R−1

0

)
b′l,m1

(3.37)

=

l∑

m1=−l

Dl
m1,m (R0) b

′
l,m1

. (3.38)

(3.39)

3.4 A faster (dis)aggregation for the vectorial case

The proposed technique can also be used in the vectorial case, as is needed for the
general electromagnetic case. The vector multipolesM

f
l,m (kr) andN

f
l,m (kr) are

defined in Section 1.3. Because there are two sets, the multipole coefficients associ-
ated with the vector multipoles will thus carry the labelM orN besides the usuall and
m. Because the vectorial case is less well-known, a short derivation of the formulas
for the (dis)aggregation will be given here. LetΦ(r) be the vectorial field generated
by sources inside a sphere with centerr1. This field can be expanded into outgoing
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multipoles:

Φ(r) =

L∑

l=0

l∑

m=−l

[

aM
lmMh

l,m (k(r − r1)) + aN
lmNh

l,m (k(r − r1))
]

(3.40)

Φ(r) can now be expanded aroundr2 as:

Φ(r) =
L∑

l=0

l∑

m=−l

[

bMlmM
j
l,m (k(r − r2)) + bNlmN

j
l,m (k(r − r2))

]

(3.41)

with bMl,m andbNl,m defined by means of the vector multipole translation matrix [13]:

[
bM

bN

]

=

[
αh

MM (k(r2 − r1)) αh
NM (k(r2 − r1))

αh
NM (k(r2 − r1)) αh

MM (k(r2 − r1))

]

·
[
aM

aN

]

(3.42)

with αh
MM andαh

MN defined by means of the vector spherical wave operators in
(1.130) and (1.131)

[
αh

MM (kd)
]

l′,m′,l,m
= 2jl−l′

∫

E
X l,m

(

k̂
)

· X∗
l′,m′

(

k̂
∗)
e−jk·ddk̂, (3.43)

[
αh

MN (kd)
]

l′,m′,l,m
= 2jl−l′+1

∫

E
X l,m

(

k̂
)

· W ∗
l′,m′

(

k̂
∗)
e−jk·ddk̂, (3.44)

if d · êz > 0. Here, theX l,m (·) andW l,m (·) are the so-called vector spherical har-
monics, defined in Section A.3 in Appendix A. Integrals (3.43) and (3.44) can again
be split up in a propagating and an evanescent part and discretized. The propagating
part will again be omitted. By means of (3.43), (3.44), and the formulas (A.66) and
(A.67) in Appendix A, the aggregation toward the six evanescent radiation patterns
can be written as follows:

Θ
ps
v =

L∑

l=0

l∑

m=−l

jl
[

aM
lmX l,m

(

k̂
ps

v

)

− jaN
lmW l,m

(

k̂
ps

v

)]

(3.45)

The vectorΘps
v has three Cartesian components. However, Eqns. (A.64) and (A.65)

show that the radial component ofΘ
ps
v is zero. This permits representing the vector

Θ
ps
v with only the two components orthogonal tokps

v . An obvious choice for these
components is to take the part ofΘ

ps
v parallel withê

ps
φ,v andê

ps
θ,v, which are defined

as follows:

ê
ps
φ,v = R−1

0 · R(
2pπ

3
, êz) · R0 · ê3+

φ,v (3.46)

ê
ps
θ,v = sR−1

0 · R(
2pπ

3
, êz) · R0 · ê3+

θ,v (3.47)
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Hereê
3+
φ,v andê

3+
θ,v are the two usual nonradial unit vectors in the spherical coordinate

system. Expression (3.46) does not contain ans in the right hand side for reasons
that will be explained in Section 3.4.2. The aggregation toΘ

ps
v is thus reduced to an

aggregation to two scalar quantities namely toê
ps
φ,v · Θps

v andê
ps
θ,v · Θps

v :

ê
ps
φ,v · Θps

v =

L∑

l=0

l∑

m=−l

jl
[

aM
lmê

ps
φ,v · X l,m

(

k̂
ps

v

)

− jaN
lmê

ps
φ,v · W l,m

(

k̂
ps

v

)]

(3.48)

ê
ps
θ,v · Θps

v =

L∑

l=0

l∑

m=−l

jl
[

aM
lmê

ps
θ,v · X l,m

(

k̂
ps

v

)

− jaN
lmê

ps
θ,v · W l,m

(

k̂
ps

v

)]

(3.49)

This aggregation for the vectorial case can now be accelerated in two ways. These
will both be outlined below. In what follows we will only consider (3.48) because the
formulas for (3.49) can be derived in a very similar fashion.

3.4.1 A Faster Aggregation for the Vectorial Case: Method 1

The rotations of the argument of the vector spherical harmonics can again be brought
outside by means of the Wigner D-matrices which yields:

ê
ps
φ,v · Θps

v =

[

R(
2pπ

3
, êz) · R0 · ê3+

φ,v

]

·
L∑

l=0

l∑

m=−l

[

X l,m

(

sR(
2pπ

3
, êz) · R0 · k̂

3+

v

)

a′
M
lm

− jW l,m

(

sR(
2pπ

3
, êz) · R0 · k̂

3+

v

)

a′
N
lm

]

(3.50)

with:

a′
M
lm1

=
∑

m

Dl
m,m1

(R−1
0 )jlaM

l,m (3.51)

a′
N
lm1

=
∑

m

Dl
m,m1

(R−1
0 )jlaN

l,m (3.52)

To remove the dependence ons the properties of the vector spherical harmonics (A.60)
and (A.61) can be used. The dependence onp can again be removed using the diagonal
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Wigner D-matrices for rotations around thez-axis:

ê
ps
φ,v · Θps

v =

L∑

l=0

l∑

m=−l

sleim 2pπ
3

[(
R0 · ê3+

φ,v

)
· X l,m

(

R0 · k̂
3+

v

)

a′
M
lm (3.53)

− js
(
R0 · ê3+

φ,v

)
· W l,m

(

R0 · k̂
3+

v

)

a′
N
lm

]

(3.54)

or after splitting the summations:

ê
ps
φ,v · Θps

v =

1∑

r=0

2∑

q=0

sreiq 2pπ
3

×
∑

r=l mod2

∑

q=m mod3

[(
R0 · ê3+

φ,v

)
· X l,m

(

R0 · k̂
3+

v

)

a′
M
lm

−js
(
R0 · ê3+

φ,v

)
· W l,m

(

R0 · k̂
3+

v

)

a′
N
lm

]

(3.55)

Despite the splitting of the sums, there is still ans inside the brackets. This can be
resolved by rewriting the sum as:

ê
ps
φ,v · Θps

v =

1∑

r=0

2∑

q=0

sreiq 2pπ
3

×
∑

q=m mod3




∑

r=l mod2

(
R0 · ê3+

φ,v

)
· X l,m

(

R0 · k̂
3+

v

)

a′
M
lm

−j
∑

l=(1−r) mod2

(
R0 · ê3+

φ,v

)
· W l,m

(

R0 · k̂
3+

v

)

a′
N
lm



 (3.56)

Equation (3.56) again requires only one sixth of the amount of work that is needed
for (3.48). Indeed, there are six new radiation patterns, but each of them requires six
times less work. The disaggregation is entirely analogous to the aggregation.

3.4.2 A Faster Aggregation for the Vectorial Case: Method 2

The (dis)aggregation in the vectorial case can also be accelerated in a different way.
This method does not use the inversion properties of the vector spherical harmonics,
but rather uses the transformation properties under the curl operator. This method
is easier to implement and slightly faster than method 1. Theaggregation, given by
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(3.48) and (3.49), can be concisely written as:

[

ê
ps
φ,v · Θps

v

ê
ps
θ,v · Θps

v

]

=

L∑

l=0

l∑

m=−l

[

A
M,p,s,l,m
φ,v A

N,p,s,l,m
φ,v

A
M,p,s,l,m
θ,v A

N,p,s,l,m
θ,v

]

·
[

aM
l,m

aN
l,m

]

, (3.57)

with:

A
M,p,s,l,m
θ,v = jlê

ps
θ,v · X l,m

(

k̂
ps

v

)

, (3.58)

A
N,p,s,l,m
θ,v = jlê

ps
θ,v ·

[

−jW l,m

(

k̂
ps

v

)]

, (3.59)

A
M,p,s,l,m
φ,v = jlê

ps
φ,v · X l,m

(

k̂
ps

v

)

, (3.60)

A
N,p,s,l,m
φ,v = jlê

ps
φ,v ·

[

−jW l,m

(

k̂
ps

v

)]

. (3.61)

As stated before, the unit vectorsê
ps
θ,v and ê

ps
φ,v are orthogonal to each other and to

kps
v . As a consequence:

ê
ps
θ,v ×

(

kps
v × ê

ps
φ,v

)

= kps
v

(

ê
ps
θ,v · êps

φ,v

)

− ê
ps
φ,v

(

ê
ps
θ,v · kps

v

)

(3.62)

= 0 (3.63)

which yields, with the fact that̂eps
φ,v andê

ps
θ,v have unit length:

kps
v × ê

ps
φ,v = ±kêps

θ,v (3.64)

The sign can be chosen freely, but it is convenient to work with a plus sign, since that
is similar to the usual unit vectors in spherical coordinates. As a consequence:

kps
v × ê

ps
φ,v = kê

ps
θ,v (3.65)

ê
ps
θ,v × kps

v = kê
ps
φ,v (3.66)

kê
ps
φ,v × ê

ps
θ,v = kps

v (3.67)

This particular choice explains whŷeps
θ,v has the additional factors in (3.47):

kps
v × ê

ps
φ,v = kê

ps
θ,v = R−1

0 · R(
2pπ

3
, êz) · R0 ·

[
sk3+

v × ê
3+
φ,v

]
(3.68)

= skR−1
0 · R(

2pπ

3
, êz) · R0 · ê3+

θ,v (3.69)
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With this choice, it can be easily shown that:

A
M,p,s,l,m
φ,v = −jl(

kps
v

k
× ê

ps
θ,v) · X l,m

(

k̂
ps

v

)

= jA
N,p,s,l,m
θ,v (3.70)

A
N,p,s,l,m
φ,v = jl+1(

kps
v

k
× ê

ps
θ,v) · W l,m

(

k̂
ps

v

)

= jA
M,p,s,l,m
θ,v (3.71)

So (3.57) becomes:

[

−jêps
φ,v · Θps

v

ê
ps
θ,v · Θps

v

]

=
L∑

l=0

l∑

m=−l

[

A
N,p,s,l,m
θ,v A

M,p,s,l,m
θ,v

A
M,p,s,l,m
θ,v A

N,p,s,l,m
θ,v

]

·
[

aM
l,m

aN
l,m

]

(3.72)

It is worthwhile to point out that the2 × 2 matrix occurring in (3.72) is circulant and
can thus be diagonalized by means of the2×2 Fourier matrix. After some calculations,
this yields:

(−jêps
φ,v ± ê

ps
θ,v) · Θps

v =
1

2

L∑

l=0

l∑

m=−l

(

A
N,p,s,l,m
θ,v ±A

M,p,s,l,m
θ,v

) (
aM

l,m ± aN
l,m

)

(3.73)

This expression allows to reduce the amount of work associated with the aggregations
by a factor two. It also exposes some fundamental aspects of vector multipoles. For
example consider the vector multipole translation matrix as given in (3.42). This ma-
trix is block-circulant and can thus also be block-diagonalized by means of the2 × 2

Fourier matrix. This yields

[
bM + bN

bM − bN

]

=

[
αh

MM + αh
NM 0

0 αh
MM − αh

NM

]

·
[
aM + aN

aM − aN

]

(3.74)

This allows a two times faster application of the vector multipole translation matrix.
Another example can be found in [14]: the recurrences for thecalculation of the vector
multipole translation matricesαh

MM andαh
MN are coupled, but they can be decoupled

by usingαh
MM ± αh

MN instead. As for the vector multipoles themselves, this block-
diagonalization of the vector multipole translation matrix is a change of basis which
boils down to using using the combinationsM

f
lm ± N

f
lm instead ofMf

lm andN
f
lm.

All this is caused by the transformation properties ofM
f
lm ± N

f
lm under the curl

operator:

∇̌ ×
[

M
f
lm ± N

f
lm

]

= k
[

N
f
lm ± M

f
lm

]

= ±k
[

M
f
lm ± N

f
lm

]

(3.75)

ApparentlyMf
lm+N

f
lm andM

f
lm−N

f
lm are eigenfunctions of the curl operator with

eigenvalues+k and−k respectively. Any electromagnetic field in a source-free region
is a superposition of vector multipolesM j

lm andN
j
lm and can thus be decomposed
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into a part with eigenvalue+k and a part with eigenvalue−k with respect to the
curl operator. This is the so-called Beltrami-decomposition of the electromagnetic
field [15,16]. Because the curl operator commutes with the translation operator, these
parts will remain separated under translation. Indeed, applying the curl before or
after translation of one of the parts must yield the same result, so no mixing of the
two parts can take place under translation. Therefore, the vector multipole translation
matrix cannot contain coupling betweenM

f
lm + N

f
lm andM

f
lm − N

f
lm fields. For

the aggregation, no mixing will occur if the plane waves (to which the aggregation is
done) are also eigenfunctions of the curl operator. Although not explicitly visible, this
is already the case in (3.73). To show this, Eqn. (3.73) is rewritten as:

(

−jêps
φ,v ± ê

ps
θ,v

)

· Θps
v

=
1

4

L∑

l=0

l∑

m=−l

jl
(

−jêps
φ,v ± ê

ps
θ,v

)

· V ∓
l,m

(

k̂
ps

v

) [
aM

l,m ± aN
l,m

]
(3.76)

with V ±
l,m (·) defined in Eqn. (A.80). From this it is seen that the plane waves have

the form

V ∓
l,m

(

k̂
ps

v

)

e−jkps
v ·r (3.77)

and it can be verified easily that these plane waves are eigenfunctions of the curl
operator:

∇̌ ×
[

V ∓
l,m

(

k̂
ps

v

)

e−jkps
v ·r
]

= ±kV ∓
l,m

(

k̂
ps

v

)

e−jkps
v ·r (3.78)

A similar block-diagonalization as the one for the aggregation can also be done for
the disaggregation, yielding an acceleration by a factor two. The dependencies (3.16)
can now be used again to obtain further acceleration by a factor three, resulting in a
total acceleration by a factor six. Unfortunately, the inversion properties (A.60) and
(A.61) of the vector harmonics cannot be used any more because M

f
lm ± N

f
lm are

not eigenfunctions of the inversion operator. Indeed, the inversion and curl operator
do not commute, so their eigenfunctions cannot be the same.

The method described here is slightly faster than the methodfrom Section 3.4.1.
This is because the factor two from the block-diagonalization of the (dis)aggregation
is almost completely free of any overhead. Just combine theaM

l,m and aN
l,m into

aM
l,m ± aN

l,m before the start of the entire FMM and the two sets of coefficients re-
main completely independent until the FMM is finished. This also permits running
the FMM on two processors without any communication betweenthem, with perfect
load balancing. Moreover, the second method is easier to implement. It is worth-
while to point out that the gain from using eigenfunctions ofthe curl operator is not
limited to evanescent wave solvers. In fact it can be used inany vectorial FMM in
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electromagnetics, including the MLFMA (faster (dis)aggregation if both electric and
magnetic currents are present) and LF-FMMs (all translation matrices become block-
diagonal, as shown in (3.74), yielding a factor two). Finally, in the method described
here thekp+

v andkp−
v radiation patterns do not couple. So if for example only ra-

diation patternk2+
v is required, only the threekp+

v patterns will be calculated. As a
consequence an asymptotic factor2 is still gained compared to the direct method.

An operation count as in Section 3.3 will now be performed. The operation count
for doing the rotation on the two sets of coefficients is:

2

L∑

l=1

(2l + 1)2 =
2

3

(
4L3 + 12L2 + 11L

)
(3.79)

The operation count for the construction of the new radiation patterns clearly is4V (L2+

2L). The postprocessing step requires36V multiplications. The total cost is thus:

2

3

(
4L3 + 12L2 + 11L

)
+ 4V (L2 + 2L+ 9) (3.80)

The cost without acceleration is24V (L2 + 2L). Therefore, the value ofV for which
the proposed method is faster than the one without acceleration is given by:

V >
L

6

4L2 + 12L+ 11

5L2 + 10L− 9
(3.81)

Equation (3.81) is always satisfied ifL < 7, because the right hand side is certainly
smaller than1 which is smaller thanV . Moreover,V = O

(
L2
)

again assures that
equation (3.81) is also satisfied for largerL. Therefore it is safe to say that for any
L, the method presented in 3.4.2 is faster than the direct approach. This will also be
validated in section 3.6. The acceleration factor is given by:

24V (L2 + 4L)
3
2 (4L3 + 12L2 + 11L) + 4V (L2 + 4L+ 9)

(3.82)

Again for largeL, V = O
(
L2
)

so the acceleration factor becomes six.

3.5 Extension to N axes

The rotation method described in the above can be generalized to a case whereN axes
are located on a cone as in Figure 3.3. This generalization will be demonstrated for
the scalar case only, but evidently it can be used for the vectorial case as well. The
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Figure 3.3: An example configuration with seven axes.

formula forkps
v becomes

kps
v = R−1

0 ·
[

sR(
2pπ

N
, êz)

]

· R0 · kN+
v ∀s ∈ {−1,+1} ∀p ∈ {1, ..., N} (3.83)

with R0 the rotation matrix which rotates the reference frame to a new frame in which
the symmetry axis of the cone is the newz-axis. When all the steps of the method are
repeated, the following expression is obtained:

Θps
v =

1∑

r=0

N∑

q=0

sreiq 2pπ
N Γrq

v (3.84)

Here,Γrq
v are2N new radiation patterns, which each require2N times less work than

one ’normal’ pattern. Therefore the total amount of work forevaluating theΓrq
v is

independent of the number of axesN . The recombination step is the only remaining
step and can be done with an FFT. Indeed, the sum overq represents precisely an
inverse FFT.
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3.6 Results

The vectorial stable plane wave method was applied to the scattering from spheres
[17]. In particular the T-matrix method was used, describedin detail in [18], which
was then accelerated with the vectorial stable plane wave method. The multipole-to-
plane-wave and plane-wave-to-multipole operations are natural parts of this algorithm.
A uniform discretization of the evanescent integral in bothof the integration variables
was used. This technique is discussed briefly in [6]. The method from Section 3.4.2
was used to speed up the (dis)aggregation. Figure 3.4 shows the acceleration factor of
the (dis)aggregation from the multipole sources on the spheres to the evanescent plane
wave radiation patterns of the lowest-level boxes as a function of the multipole orderL
used on the spheres. The acceleration factor is defined here as the time needed for the
direct scheme ((3.49) and (3.48)) divided by the time neededfor the newly proposed
method from Section 3.4.2. As can be seen, the curves show strong fluctuations. This
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Figure 3.4: The acceleration factor of Method2 for the vectorial case as a function ofL. The
Intel processor is a Pentium 4, 2.40GHz and the other processor is an Opteron 270.

is caused by peculiarities in the hardware because when the code is run on two differ-
ent processors (an Intel Pentium 4, 2.40GHz and an AMD Opteron 270), the curves
behave differently. However, it is clear that the acceleration factor grows towards six
with increasing multipole order for all the curves.

In order to assess the acceleration directly in the context of the stable plane wave
method, a typical multiple scattering problem was solved. The problem consists of
8×4×4 = 128 spheres with radius5cm on a rectangular grid with period15cm. The
spheres have a relative permittivity of12 and a relative permeability of1. Figure 3.5



3.7 Conclusion 61

shows the geometry of the problem. This scattering problem was solved for various
accuracies at a frequency of0.5GHz, so the aggregation is in the LF regime. The
accuracy setting has an influence on both the stable plane wave method and on the
multipole order that is necessary to represent the fields on the spheres. In this test, for
every multipole orderL between1 and9, the accuracy obtained by an exact solver
was measured, and the stable plane wave method was set to deliver this accuracy. For
each box, all the radiation patterns were calculated, so that the results would be more
representative for larger scattering problems. The stableplane wave method used one
level with translations. Figure 3.6 shows a logarithmic plot of the iteration time and
accuracy as a function of the multipole order for both the direct aggregation method
and the method from Section 3.4.2. From 3.6 it is visible thatthe acceleration in this
problem saturates at approximately a factor four. This is caused by the fact that the
other operations (near interactions, translation) also add computational cost. Since
these operations are not accelerated, this has a negative effect on the acceleration.

3.7 Conclusion

A novel method has been proposed that accelerates the multipole-to-plane-wave and
plane-wave-to-multipole operations in the stable plane wave method. The fact that
the Wigner D-matrices become diagonal for rotations aroundthez-axis has been ex-
ploited to obtain a acceleration of a factor six. Apart from some overhead which
becomes negligible for not-too-small multipole orders, this reduces the computational
cost of the six (dis)aggregations of the stable plane wave method to the cost of only
one. The method has also been extended to the vectorial case and to the case with
N axes. For the vectorial case, two possible methods have beenproposed. The first
is very similar to the scalar case, the second uses the Beltrami decomposition of the
electromagnetic field. This second method permits splitting the vectorial FMM into
two completely independent FMMs, including the (dis)aggregation from multipoles.
As a consequence, some of the overhead associated with the new method is eliminated
and this results in a method which is faster than the direct approach for any multipole
order. These results have been shown both theoretically andnumerically. The Bel-
trami decomposition is also valid for any vectorial FMM, still yielding an acceleration
of a factor two.
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Figure 3.5: The geometry for testing the performance of the new method in the stable plane
wave method. The spheres with radius5cm and permittivity12 are located on a8 × 4 × 4 grid
with period15cm. The frequency is0.5GHz.
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⋆ ⋆ ⋆

Although the FMMs using the spectral decomposition of the Green function
can be used for basically all frequencies, the fact that six radiation patterns
are needed for each box limits the efficiency of these methods. Indeed, there is
some overlap in the validity regions of the six representations of the radiated
fields. As a consequence, some of the points in the six representations must be
redundant. The MLFMA is nondirective, i.e. it requires onlyone radiation pat-
tern, and is thus more efficient in this respect. However, theMLFMA fails due
to numerical reasons if the boxes get too small compared to the wavelength. It
is therefore useful to try to understand and control the numerical instability of
the MLFMA. In this way, it is possible to find an intermediary algorithm that
combines the stability of the spectral methods with the non-directivity of the
MLFMA. In the following, such an algorithm for the 2-D case isdeveloped.

4.1 Introduction

The basic problem that will be addressed in this work is the 2-D scattering of electro-
magnetic waves, i.e. a 2-D Helmholtz problem. This scattering problem can always
be written as an integral equation in which a convolution occurs with the 2-D Green
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function. All sources and fields are assumed time-harmonic; temporal dependencies
ejωt are suppressed. Therefore, the 2-D Green function is given by the cylindrical
Hankel function of the second kind and zeroth order [1]. The Method of Moments
(MoM) reduces the continuous integral equation to a linear system of equations of
dimensionN . However, often, problems involve so many unknowns that direct me-
thods to solve the linear system, e.g., LU-decomposition, are too slow because of their
O
(
N3
)

computational complexity. The brute-force application ofiterative solvers,
e.g., the biconjugate gradient method, permits to solve thelinear system inO

(
PN2

)

operations, whereP is the number of iterations required by the iterative solverto
reduce the residual error below a preset threshold. The computational cost can be re-
duced dramatically by applying a fast multiplication scheme, e.g. an FMM. At this
point, a distinction has to be made between low-frequency problems (e.g., microwave
integrated circuits), which are physically small comparedto the wavelength but re-
quire many unknowns because of the small geometrical details, and high-frequency
problems (e.g., antenna arrays), which are large in comparison to the wavelength.

Consider the configuration depicted in Fig. 4.1, comprising a source and an ob-
servation point residing atρi andρj which are part of square source and observation
boxes centered aboutρl andρl′ , respectively. The core of the 2-D low-frequency fast
multipole method (LF-FMM) is the multipole expansion of theHankel function [2]

H
(2)
0 (kρji) ≈

K∑

n=−K

K∑

m=−K

[
β(ρjl′)

]

0n
[α(ρl′l))]nm [β(ρli)]m0 . (4.1)

Here,ρab is a shorthand notation forρb−ρa, ρ andφ are defined byρ = ρ cosφux +

ρ sinφuy andk = ω
√
ǫµ is the wavenumber;K is the multipole order above which

the series is truncated. Theα andβ matrices are defined in terms of Hankel and Bessel

ρi

x

y

z

ρj

ρl

ρl′

Figure 4.1: The arrangement of the position vectors for two interacting groups.

functions as
[α(ρ)]nm = H

(2)
n−m(kρ)ej(n−m)φ, (4.2a)

[β(ρ)]nm = Jn−m(kρ)ej(n−m)φ. (4.2b)
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Expression (4.1) can be generalized to the expansion of higher order Hankel functions
as follows

α(ρji) = β(ρjl′)
︸ ︷︷ ︸

Disaggregation

· α(ρl′l)
︸ ︷︷ ︸

Translation

· β(ρli)
︸ ︷︷ ︸

Aggregation

(4.3)

For low-frequency problems the implementation of 4.3 into amultilevel scheme im-
mediately leads to a matrix-vector multiplication with a computational complexity that
scales asO (N). For very-low-frequency problems, i.e., very smallkρ, the Hankel
and Bessel functions in (4.2a) and (4.2b) become very large and very small, respec-
tively, resulting in overflow and underflow errors. However, this problem easily can
be solved using an appropriate normalization [2]. Althoughthe computational cost
scales asO (N), this scheme is ’slow’, i.e., has a large pre-factor, because translations
and (dis)aggregations require matrix-vector multiplications with dense matricesα and
β.

For the same reason, the application of (4.3) does not lead toa lower compu-
tational complexity for high-frequency problems. Indeed,for these problems, the
required number of multipoles increases for higher levels according to the formula
K ≈ kR + B, whereR is the radius of the circumscribed circle of the square boxes
on that level andB is a constant. The cost needed to multiply the denseα or β ma-
trices with a vector is proportional to the square of the number of multipoles. As a
consequence, the computational complexity remainsO

(
N2
)

[2]. To obtain a lower
computational complexity for high-frequency problems, itis necessary to use diag-
onal aggregation, translation, and disaggregation matrices. This can be achieved by
expanding the Hankel function into plane waves (i.e. the MLFMA [3,4])

H
(2)
0 (kρji) =

1

2Q+ 1

Q
∑

q=−Q

ejkρjl′ cos (αq−φjl′ )Tq(k, ρl′l, φl′l)e
jkρli cos (αq−φli),

(4.4)

Tq(k, ρ, φ) =

Q
∑

p=−Q

H(2)
p (kρ)ejp(φ+ π

2 −αq), (4.5)

αq =
2πq

2Q+ 1
. (4.6)

Similar to the number of multipoles, the number of plane wavesQ is related to the
box sizeR throughQ ≈ 2kR+B′ with B′ another constant.

To reduce the pre-factor for low-frequency problems, it would be very convenient
to have diagonal operators for that case as well. Unfortunately, the MLFMA (4.4)
breaks down at low frequencies because of a numerical instability caused by round-
off errors. Indeed:H(2)

p (kρ) diverges exponentially as a function of|p| if |p| >
kρ. Hence, in (4.5), very large numbers, i.e.,H(2)

p (kρ) for large |p|, are added to
numbers of the order of unity, i.e.,H(2)

p (kρ) for small |p|, and the information in the
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smallest numbers is lost. In [5,6] this problem was tackled using inhomogeneous plane
waves. In this work, an alternative, conceptually simpler scheme will be presented. In
addition, the proposed scheme uses a lot of the machinery from the original LF-FMM,
which means that existing low-frequency FMM solvers easilycan be modified.

4.2 The MLFMA

In this section, an alternative formulation of the MLFMA will be derived which will
allow to remove the numerical instability mentioned at the end of Section 4.1. This
formulation starts directly from the truncated form of the addition theorem (4.1). A
translation in the LF-FMM corresponds to calculating∀n ∈ [−K,K] something of
the form

Φn =

K∑

m=−K

[α(ρl′l)]nm [β(ρli)]m0 ,

=

K∑

m=−K

H
(2)
n−m(kρl′l)e

j(n−m)φl′lJm(kρli)e
jmφli . (4.7)

As the matrixα(ρl′l) clearly is Toeplitz, the required matrix-vector multiplication
can be performed with Fast Fourier Transforms (FFTs). To show this, consider the
following identities

1 ≡
2K∑

p=−2K

δp,n−m ∀n,m ∈ [−K,K], (4.8)

δp,n−m ≡ 1

4K + 1

2K∑

q=−2K

e−j 2πq
4K+1 [p−(n−m)] ∀n,m ∈ [−K,K], (4.9)

with δi,j the Kronecker delta. By means of (4.8), eq. (4.7) can be re-expressed as

Φn =

K∑

m=−K

2K∑

p=−2K

δp,n−mH
(2)
p (kρl′l)e

jpφl′lJm(kρli)e
jmφli . (4.10)
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Replacingδp,n−m by the sum in (4.9) and exchanging some summation signs yields a
diagonalized form for the translation operator

Φn =

2K∑

q=−2K




1

4K + 1

2K∑

p=−2K

H(2)
p (kρl′l)e

jpφl′le−j 2πqp
4K+1





×
[

K∑

m=−K

Jm(kρli)e
jmφlie−j 2πqm

4K+1

]

ej 2πqn
4K+1 . (4.11)

All the sums in (4.11) can be calculated using FFTs and, what is even more important,
the translations themselves are pointwise multiplications of two functions ofq. It
is worthwhile to point out that formula (4.11) has the same physical meaning and
computational cost as the MLFMA, but that it retains multipoles rather than plane
waves as the basis functions for the radiation patterns.

However, this alternative formulation of the plane wave expansion still suffers
from the same numerical instability as the original version(4.4). When looking at the
summation overp in (4.11), it is obvious that, asH(2)

p (kρ) grows exponentially larger
as a function ofp, the lower order terms become swamped in the higher order terms.
A similar swamping, but this time of the higher order multipoles, occurs in the sum
overm. These numerical instabilities eventually lead to the complete failure of (4.11)
for low frequencies. In the original formulation of the MLFMA (4.4), this cannot be
corrected [4]. However, the new formulation will allow to derive an expansion that is
diagonal and stable at low frequencies.

4.3 A normalized plane wave method

Now we will show how the translation operator can be stably diagonalized in the low-
frequency case. Identity (4.8) can be rewritten as

1 ≡
−1∑

p=−2K

δp,n−mt
|p|t(n−m) +

2K∑

p=0

δp,n−mt
|p|t−(n−m) ∀n,m ∈ [−K,K], (4.12)

with t still a freely chosen number called the normalization factor. This new form of
(4.8) has been opted for because of the factort|p| that also occurs in the asymptotic
behavior ofH(2)

p (x) if x is small (x < 1)

∣
∣
∣H(2)

p (x)
∣
∣
∣ ≈

{
2|p|(|p|−1)!

πx|p| ∀p 6= 0,
2
π lnx p = 0.

(4.13)
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Following the same steps as in the previous section with (4.12) instead of (4.8), the
following expression for the matrix-vector-multiplication is found

Φn =

2K∑

q=−2K





−1∑

p=−2K

1

4K + 1
H(2)

p (kρl′l)t
|p|ejpφl′le−j 2πqp

4K+1





×
[

K∑

m=−K

Jm(kρli)e
jmφlit−me−j 2πqm

4K+1

]

tnej 2πqn
4K+1

+

2K∑

q=−2K

[
2K∑

p=0

1

4K + 1
H(2)

p (kρl′l)t
|p|ejpφl′le−j 2πqp

4K+1

]

×
[

K∑

m=−K

Jm(kρli)e
jmφlitme−j 2πqm

4K+1

]

t−nej 2πqn
4K+1 . (4.14)

This new form (4.14) can be made numerically stable with an appropriate choice of
the normalization factort. Indeed, every Hankel function is accompanied by a factor
t|p|, allowing it to be normalized. A remarkable feature of (4.14) is the fact that a
good normalization forH(2)

p (x) also normalizesJm(x) relatively well. Consider the
asymptotic expansion of the Bessel function for smallx

|Jm(x)| ≈ x|m|

2|m| |m|! . (4.15)

In the first term of expression (4.14) the summation overm is normalized form ≥ 0.
The Jm(x) for which m < 0, are “anti-normalized”, resulting in their rapid loss.
However, as can be seen in (4.7), the terms for whichm < 0 also very rapidly lose
importanceas |m| increases. A detailed analysis shows that the loss of theJm(x)

is approximately compensated by a comparable loss of importance of these terms in
(4.7). Here, ’approximately’ means that the nett loss does not depend onkρ. In the
second term of (4.14), theJm(x) for whichm ≤ 0, are normalized and the others are
anti-normalized. For the same reason, this does not result in a dramatic loss of preci-
sion and the numerical instability associated with the summations overm in (4.14) is
avoided.

In addition, the matrix-vector-multiplications associated with the aggregation and
disaggregation steps in a multilevel scheme can also be diagonalized in a similar way
by using variations on (4.8)

• for the aggregations, the following kind of matrix-vector multiplication must be
done

Φn =
K∑

m=−K

[β(ρl′l))]nm [β(ρli)]m0 , (4.16)



4.4 Determination of the optimal normalization factor 71

=

K∑

m=−K

Jn−m(kρl′l)e
j(n−m)φl′lJm(kρli)e

jmφli . (4.17)

The β(ρl′l) matrices are also Toeplitz, but the Bessel functionsdecayexpo-
nentially as their order increases. Because of this, the powers oft have to be
rearranged

1 ≡
{

t|n|
∑2K

p=−2K δp,n−mt
−(p+m) ∀n ≥ 0,

t|n|
∑2K

p=−2K δp,n−mt
(p+m) ∀n < 0,

(4.18)

which yields the following diagonal formula

Φn =







t|n|
2K∑

q=−2K

[
2K∑

p=−2K

1
4K+1Jp(kρl′l)t

−pejpφl′le−j 2πqp
4K+1

]

×
[

K∑

m=−K

Jm(kρli)e
jmφlit−me−j 2πqm

4K+1

]

ej 2πqn
4K+1 ∀n ≥ 0,

t|n|
2K∑

q=−2K

[
2K∑

p=−2K

1
4K+1Jp(kρl′l)t

pejpφl′le−j 2πqp
4K+1

]

×
[

K∑

m=−K

Jm(kρli)e
jmφlitme−j 2πqm

4K+1

]

ej 2πqn
4K+1 ∀n < 0.

(4.19)

• for the disaggregations, a similar approach can be applied.Since the multipole
expansions that are to be disaggregated increase with growing multipole order,
another form of (4.8) is in order

1 ≡
{∑2K

p=−2K δp,n−mt
−(n−p)t|m| ∀m ≥ 0,

∑2K
p=−2K δp,n−mt

(n−p)t|m| ∀m < 0.
(4.20)

4.4 Determination of the optimal normalization factor

Having derived normalized diagonal forms for the aggregation, translation, and dis-
aggregation operators, the task ahead is the selection of a suitable, if not optimal,
normalization factort. First consider the following sum, arising in the formula (4.14)
for the diagonal translation

2K∑

p=0

H(2)
p (kρ)t|p|ejpφe−j 2πlp

4K+1 . (4.21)

In comparison to the other sums, this sum is much more prone tonumerical instability
mostly because the Hankel functionsH(2)

p (kρ) increasewith increasingp. As a con-
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sequence, the lowest order terms which contribute the most in the addition theorem
(4.3) are lost in the higher order terms. This suggests that (4.21) is the most ’danger-
ous’ summation, and thus the one upon which to base the derivation of t. By choosing
t as

t =

∣
∣
∣
∣
∣

H
(2)
0 (kρ)

H
(2)
2K(kρ)

∣
∣
∣
∣
∣

1
2K

, (4.22)

the highest and lowest order terms in (4.21) are of the same magnitude. It is worth-
while to point out that the asymptotic expression (4.13) forH

(2)
p (kρ) contains the fac-

torial (|p|−1)!. A factorial never can be completely compensated with an exponential
function and this implies thatt|p|H(2)

p (kρ) possesses a minimum atp = ±pmin. A
straightforward calculation shows that this minimum is located at

pmin = ⌈kρ
2t

⌉, (4.23)

for smallkρ (kρ < 1). Here,⌈·⌉ is the ceiling function. Since the largest term in (4.21)
is H(2)

0 (kρ) which is of about the same magnitude as unity, the ratio of thesmallest
and largest term is approximately equal to

t⌈
kρ
2t

⌉H(2)

⌈ kρ
2t

⌉(kρ) ≈
√

2

π kρ
2t

e−
kρ
2t . (4.24)

To obtain (4.24), expression (4.13) was used, together withStirling’s formula and the
fact that⌈kρ

2t ⌉ ≈ kρ
2t . Also, expression (4.22) fort can be crudely approximated as

(again for smallkρ and largeK)

t ≈ ekρ

4K
, (4.25)

wheree is Euler’s number. From this it is clear that the ratio of the smallest and largest
term, and thus the loss of precision, depends only upon the number of multipoles used
and not on the argumentkρ

√

2

π kρ
2t

e−
kρ
2t ≈

√
e

πK
e−

2K
e . (4.26)

ForK equal to25 this yields a maximum loss of precision of about10 digits for the
multipole ordersp = ±pmin. This seems quite a lot but, as will be shown further
on, the loss of precision for the addition theorem (4.1) willturn out to be much less
than this because the higher order terms (the ones close topmin) contribute much less
to the 2-D Green function than the lower order terms. Hence they do not require the
same accuracy.

Now, if the same value fort is used on an entire level, which is desirable because it
eliminates the need to do the FFTs for every separate translation, it cannot be expected
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that all of the diagonal operators are fully normalized. Forexample, consider the
situation depicted in Fig. 4.2. Translations1 and2 respectively translate the multipole
pattern over a distanceρ1 andρ2. These distances satisfy the following relation

ρ1

ρ2
=

√
2

3
. (4.27)

ρ1

ρ 2

x

y

z

Figure 4.2: The two most extreme translations in 2-D FMM.

If t is chosen to be optimal for translation2 according to formula (4.22), thentwill
not be optimal for translation1. At this point it is important to realize that translation
2 requires less multipoles than translation1 to achieve the same accuracy. This fact
can be exploited by choosingt optimal for the translation over the shortest translation
distance, i.e., translation1. According to (4.22), this normalization factor will be too
small for translation2, resulting in an ’overnormalized’ translation operator ofwhich
the multipole componentsdecaywith increasing multipole order. However, the loss
of the higher order terms does not result in a loss of precision because we do not need
as many multipoles for translation2 as for translation1.

This same value fort can also be used for the aggregations (4.18) and disaggre-
gations (4.20). Since all translations on one level are overa distance at least twice
as large as the radius of a box on that level, the diagonal aggregation and disaggre-
gation operators will be undernormalized, again resultingin the favorable situation of
decaying multipole components. Due to the fact that a value for t can be found which
turns all multipole patterns occurring on a certain level inmildly decaying multipole
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patterns, the error is controllable over a wide interval of possible values forK. This
is illustrated in the next section.

4.5 Results

The method described above has been numerically tested on the situation sketched in
Fig. 4.3. This Figure shows a two-level interaction betweenρi andρj corresponding

ρi ρj

ρa

ρb ρc

ρd

1.
59

10
−

3
λ

Figure 4.3: Geometry for accuracy testing.

to the following expansion of the Green function

H
(2)ADD
0 (kρji)

≈
K∑

n=−K

K∑

m=−K

[
β(ρjd)

]

0n
[β(ρdc) · α(ρcb) · β(ρba)]nm [β(ρai)]m0 . (4.28)

As all three stages of fast multipole methods occur in this expansion, this configuration
is ideal for testing the accuracy of the normalized plane wave method (NPWM) with
the diagonal aggregation, translation, and disaggregation stages. Figures 4.4 and 4.5
show the relative error between the direct application of (4.28) and the normalized
plane wave method as a function of the normalization factort for K = 10 andK =

25. The functions∆(kρ, t) andθ(kρ) are relative errors defined as

∆(kρ, t) =

∣
∣
∣
∣
∣

H
(2)NPWM
0 (kρ, t)

H
(2)ADD
0 (kρ)

− 1

∣
∣
∣
∣
∣
, (4.29)

θ(kρ) =

∣
∣
∣
∣
∣

H
(2)ADD
0 (kρ)

H
(2)
0 (kρ)

− 1

∣
∣
∣
∣
∣
. (4.30)

In both figures the errors for the shortest and the longest translation as in Fig. 4.2 are
plotted. The shortest translation corresponds to translation 1 (ρ1 = 3.18 10−3λ) and
longest translation corresponds to translation2 (ρ2 = 6.75 10−3λ), with an additional
diagonal aggregation and disaggregation. The two horizontal lines give the relative
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Figure 4.4: Comparison between the addition theorem and the diagonal form of the addition
theorem as a function of the normalization factort for K = 10.
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Figure 4.5: Comparison between the addition theorem and the diagonal form of the addition
theorem as a function of the normalization factort for K = 25.
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errors between the addition theorem (truncated atK multipoles) and the Hankel func-
tion for the shortest and longest translations. The vertical line is the optimal value for
t obtained with (4.22) and the ’shortest translation’ prescription. From this it is clear
that the proposed formula fortworks very well, since it gives us the almost exact loca-
tion of the minimum in the error curve. Fig. 4.5 also demonstrates that the achievable
accuracy of the normalized plane wave method is high. Indeed, withK = 25 both∆

andθ reach10−10. As a consequence, the error between the normalized plane wave
method and the Hankel function is on the order of10−10.

In the high-frequency regime,t becomes approximately equal to1, rendering the
method equivalent to the MLFMA. Since the normalized plane wave method entails
only diagonal operators and FFTs, the method also has the same complexity (O (N))
for the high-frequency regime as the plane wave method. However, in the region be-
tween the HF and LF regimes, some care is required. The reasoning which lead to
the conclusion that the accuracy of the normalized plane wave method is high sup-
poses thatkρ < 1 to make sure that the asymptotic forms (4.13) and (4.15) can be
used. In the intermediate frequency zone this is no longer true, and error estimates
cannot be easily made. Therefore we resorted to numerical testing. Fig. 4.6 showsΨ,
the best accuracy possible (optimized towards the number ofmultipolesK) with the
normalized plane wave method, as a function of the translation distancekρ

Ψ(kρ) =

∣
∣
∣
∣
∣

H
(2)NPWM
0 (kρ, toptimal)

H
(2)
0 (kρ)

− 1

∣
∣
∣
∣
∣
. (4.31)

This calculation was performed for a geometry similar to theone depicted in Fig. 4.3,
but scaled up or down according to the translation distance.It is clear that the method’s
accuracy is high for both the HF and LF regime, and that the accuracy is slightly more
limited in the intermediate region, but not dramatically.

The normalized plane wave method described above has been implemented in a
multilevel scheme. For simplicity, only Perfect Electrically Conducting (PEC) tar-
gets were used, illuminated by a TMz-polarized wave (for which the electric field is
directed parallel with the targets). The simplest integralequation describing this prob-
lem is the well-known Electric Field Integral Equation (EFIE), which states that the
total electric field vanishes on the surface of the targets

lim
ρ→C

[

E i
z(ρ) − ωµ

4

∮

C

H
(2)
0 (k|ρ − ρ′|)jz(ρ′)dc′ = 0

]

. (4.32)

Here,C is the integration path on the surface of the PEC targets. Theunknown quan-
tity is the surface currentjz. The simulated structure consists of a dense arrangement
of P 2 PEC cylinders inside a square with size1 m such as in Fig. 4.7. For all the
simulations to come,P = 51. The surface current is discretized in terms of a set ofN

pulse functions. The number of unknownsN then amounts to65025. The wavelength
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Figure 4.6: The minimal error achievable with the normalized plane wave method as a function
of the translation distance.

K FMM NPWM
11 0.18 0.08
15 0.30 0.23
20 0.53 0.15

Table 4.1: The cost of the translation stage of the two methods and for different multipole
orders.

is 6000 m. The normalized plane wave method is compared to a multipole solver,
which acts as a reference. The multipole solver itself is also optimized in the sense
that translations that are further away are done with less multipoles than translations
that are closer. Table 4.1 shows the CPU time for the translation stage of both the fast
multipole method (FMM) and the normalized plane wave methodfor different multi-
pole ordersK. This table shows that forK = 15, the cost of the translation stage is
even larger than the cost withK = 20. This can be explained by looking at the corre-
sponding dimension4K + 1 of the FFTs that are required:4 · 11 + 1 = 45 = 3 · 3 · 5
and4 · 20 + 1 = 81 = 3 · 3 · 3 · 3. These are both products of small primes, but
4 · 15 + 1 = 61 is prime, so the FFTs will be significantly slower ifK = 15. The
FFTs were done with the FFTW library [7]. Table 4.2 shows the cost of the FFTs and
the translations (pointwise multiplications as in (4.14))This demonstrates that the cost
of the translations is indeed rising linearly with the multipole orderK. It has to be
recognized that the cost associated with the FFTs can vary wildly as a function ofK,
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Figure 4.7: The geometry of the simulated structure.

K FFTs Transfers
11 0.025 0.06
15 0.15 0.08
20 0.045 0.105

Table 4.2: The cost of the FFTs and the diagonal transfers for different multipoleorders.
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but even if a value forK is chosen such that4K + 1 is prime, the diagonal method is
still faster than the traditional fast multipole method.

4.6 Conclusion

In this work, a normalized diagonal form of the addition theorem for multipoles in
2-D is derived. This approach has several merits, such as being more efficient than
the low-frequency fast multipole method in the low-frequency regime and having the
same complexity as the MLFMA in the high-frequency regime. The normalized plane
wave method should thus be interpreted as a generalization of the MLFMA to the
intermediate- and low-frequency regime. Moreover, existing multipole solvers easily
can be modified to use this new method, since multipoles remain an important part of
the normalized plane wave method. The multilevel algorithmis implemented and the
computer labor for the translation stage is shown to decrease considerably compared
to an already optimized multipole solver. The extension of the presented normalized
plane wave method to three dimensions is a possible area for future research. However,
a similar normalization and diagonalization of the addition theorem as described for
2-D in this work may not be as straightforward in 3-D.
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The normalized plane wave method developed in the previous chapter allows
an efficient treatment of two dimensional scattering problems. As was stated
in the conclusion, applying the same ideas to the three dimensional case may
not straightforwardly result in a workable algorithm. In compliance with this
statement, any attempt to introduce a normalization factort in the three dimen-
sional addition theorem destroyed the intricate symmetries in the translation
matrices that allow a diagonalization. Reinterpretation of the normalization
factor as a rotation over a complex angle did not result in a three dimensional
analogue either. Finally, progress was made by noticing that, when a uniform
sampling is used in theθ integration of the addition theorem of the MLFMA and
a suitable complex shift is applied, translations along thez-axis can be done
in a stable manner. This line of research has resulted in a novel method, called
the Nondirective Stable Plane Wave Multilevel Fast Multipole Algorithm (NSP-
WMLFMA), which can be used to evaluate the low-frequency (LF) interactions
that cannot be handled by the Multilevel Fast Multipole Algorithm (MLFMA).
It uses a QR-based method to allow stable translations in allthe directions, not
only along thez-axis. The method combines error-controllability and diagonal
translations through the use of evanescent plane waves. However, it also has
the key advantage that only one radiation pattern is required.
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5.1 Introduction

For the solution of three dimensional acoustic and electromagnetic time-harmonic
scattering problems (assumingejωt time dependence throughout this work), integral
equations are of considerable practical importance. In general, these can often be cast
as

F(r) =

∫

J (r′)h(2)
0 (k ||r − r′||)dr′, (5.1)

wherek is the wavenumber andh(2)
0 (k ||r||) is the spherical Hankel function of the

second kind and zeroth order, defined on page 437 in [1], whichis (neglecting a con-
stant factor) also the Green function of the three dimensional scalar Helmholtz equa-
tion. The unknownJ (r′) can be defined in a volume (leading to a Volume Integral
Equation) or on a boundary (leading to a Boundary Integral Equation) or may consist
of discrete point sources. By means of the method of moments [2], these problems are
converted into a system of linear equations of dimensionN

F = Z · J , (5.2)

whereZ is theN × N system matrix,F is the excitation vector and the vectorJ is
unknown and has to be solved for. Using direct solution methods, such as an LU-
decomposition, is often not feasible sinceN is usually very large and direct methods
have anO

(
N3
)

computational complexity. The application of iterative solvers, such
as the biconjugate gradient method [3], permits to solve thelinear system inO

(
PN2

)

operations, whereP is the number of iterations required by the iterative solverto re-
duce the residual error below a preset threshold. Since in each iteration, a number of
multiplications of the system matrixZ with test vectors is required, the computational
complexity of an iterative solution method can be reduced ifthese multiplications
are accelerated. In the past, many fast algorithms have beendeveloped for this pur-
pose [4–10]. Fast multipole methods (FMMs) constitute an important class of such al-
gorithms that reduce the computational complexity of the multiplication of the system
matrix with a vector fromO

(
N2
)

to O (N) or O (N logN). This is accomplished
by dividing the geometry of the problem into a hierarchy of boxes (sometimes called
a tree) and invoking some kind of decomposition of the Green function. Especially
the MLFMA, which relies on a propagating plane wave decomposition of the Green
function, has been extensively used. The MLFMA has allowed the simulation of elec-
trically very large scattering problems [11] that do not contain much sub-wavelength
geometrical detail.

However, structures containing considerable sub-wavelength geometrical detail
cannot be simulated efficiently using only the MLFMA. This important drawback has
been referred to as the LF breakdown of the MLFMA [12] and is caused by numerical
roundoff error. Hence, broadband simulations require the integration of the MLFMA
with another method that efficiently takes care of the subwavelength geometrical de-
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tail [13, 14]. One such other method is based on a multipole decomposition of the
Green function [15]. Although this method hasO (N) computational complexity at
LF, the translations in this method are not diagonal (even with point-and-shoot [16]),
resulting in a relatively slow algorithm. The nondiagonal translations also lead to a
rapidly increasing computational cost in the intermediateand high-frequency region,
so that a coupling with the MLFMA is necessary to maintain theO (N logN) scal-
ing. As a response, methods based on the spectral representation of the Green func-
tion were developed [9, 12, 17], which exhibit diagonal translations. These methods
use both propagating and evanescent plane waves and are faster than those based on
multipoles. Due to the diagonal translations, these methods can also be used in the
high-frequency (HF) regime. However, due to the directionality of the spectral rep-
resentation of the Green function, they need six different expansions of the Green
function in six different directions to cover the entire space. As a consequence the
factor hidden in theO (N) is still quite large [13, 18]. Moreover, it is stated in [13]
that whenever possible, the high-frequency method (MLFMA)should be used instead
of the method based on the spectral representation. It thus seems worthwhile to try
to tame the LF breakdown and extend the validity range of the MLFMA into the LF
regime. In the past considerable work has been done to stabilize the MLFMA for
LF applications. For example in [19], a new two dimensional MLFMA was derived
which is stable and error-controllable for all frequencies. For the three dimensional
case, the so-called Uniform Multilevel Fast Multipole Algorithm (UMLFMA) was
constructed by Xuanet al. [20]. In the UMLFMA the integration is partly shifted into
the complex plane and the appropriate translation operators are constructed numeri-
cally. The shift into the complex plane results in radiationpatterns that contain more
near field information. Unfortunately, the UMLFMA turned out to be only poorly
error-controllable [21] and hence of limited use.

In this work, a novel FMM will be presented. This novel method, the NSP-
WMLFMA, is based on the same mathematics as the MLFMA, but is stable in the
LF regime. It can be coupled with the MLFMA, yielding a broadband algorithm. The
similarity of the NSPWMLFMA and the MLFMA makes this couplingand its imple-
mentation especially straightforward. First the MLFMA will be briefly revisited in
order to introduce quantities and notations needed in the remainder of the paper. In
particular the bandwidth properties of the translation, aggregation and disaggregation
operators will be discussed, as well as the chosen spectral discretization. Then we will
discuss in Section 5.3 the origin and nature of the LF breakdown of the MLFMA. The
findings of Section 5.3 will then be used in Sections 5.4 and 5.5 to construct a stable
FMM valid at low frequencies. In Section 5.4 translations along thez-axis are stabi-
lized by using a shift into the complex plane somewhat similar as in the UMLFMA.
However, unlike the UMLFMA, we will derive the translation operator in closed form
and derive explicit formulas for the size of the shift in the complex plane to control
the error. Section 5.5 extends the results of Section 5.4 to translations in other direc-
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tions using a QR-decomposition. In Section 5.7 we investigate the DC-limit and show
that the developed method remains valid for static problems. To conclude Section 5.8
contains a few numerical experiments to demonstrate the accuracy of the method.

5.2 The Multilevel Fast Multipole Algorithm

Consider two cubical regions, called boxes, with centersr1 andr2 respectively. Both
boxes are of equal size, defined by their radius of the circumscribing sphererB . The
first box containsP sourcesJp at positionsr1 − ap and the second containsQ ob-
servation points at positionsr2 + dq. The vectorsap, dq andrT = r2 − r1 are
called the aggregation, disaggregation and translation vector respectively and their
sumap + dq + rT will be denoted asrpq. The length of this vectorrpq = ||rpq|| is
the distance between thepth source and theqth observation point. The length of the
translation vectorrT = ||rT || is the translation distance. Also, the vectorap + dq

will be denoted asrpq
A . Suppose that the translation distancerT is larger than2rB . In

that case the generated fields at all the observation points can be calculated by means
of the addition theorem. This addition theorem is an expansion of the Green function
into a continuous set of propagating plane waves, which is anintegral over the Ewald
sphere

h
(2)
0 (krpq) =

e−jkrpq

−jkrpq
=

1

4π

∫ 2π

0

∫ π

0

e−jk·apT (krT , θ, φ)e−jk·dq sin θdθdφ, (5.3)

with k = kk̂ = k cosφ sin θêx + k sinφ sin θêy + k cos θêz the wavevector and̂ex,
êy andêz the Cartesian unit vectors. The representation (5.3) of theGreen function
converges if||ap + dq|| < rT , which is obviously the case ifτ > 1, with τ = rT

2rB
.

The translation operatorT (krT , θ, φ) and the exponentiale−jk·rpq
A have a similar

structure

T (krT , θ, φ) =

L∑

l=0

(2l + 1)j−lh
(2)
l (krT )Pl

(

k̂ · r̂T

)

, (5.4)

e−jk·rpq
A =

∞∑

l=0

(2l + 1)j−ljl(kr
pq
A )Pl

(

k̂ · r̂pq
A

)

, (5.5)

with rpq
A = ||rpq

A ||. The parameterL determines the relative accuracyǫ of the addi-
tion theorem (5.3). In the literature [22–25], explicit formulas have been derived to
determineL as a function ofǫ. However, here an implicit formula is presented, sim-
ilar to formula (3.41) on page 86 in [16], which is more appropriate for further use
in this work. It can be easily shown, by means of the addition theorem (A.10) and
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orthonormality (A.17) of the spherical harmonics, that (5.3) can be reduced to

h
(2)
0 (krpq) =

L∑

l=0

(−1)l(2l + 1)jl(kr
pq
A )h

(2)
l (krT )Pl (r̂

pq
A · r̂T ) . (5.6)

This equation is well known, but is repeated here to emphasize its strong link with
(5.3). By inspecting the worst case scenario, wherer

pq
A = 2rB andPl (r̂

pq
A · r̂T ) = 1,

Eqn. (5.6) can be used to determineL in order to obtain a specified target accuracyǫ.
This leads to the following condition

(2L+ 3)jL+1(2krB)
∣
∣
∣h

(2)
L+1(krT )

∣
∣
∣ ≤ ǫ

∣
∣
∣h

(2)
0 (krpq)

∣
∣
∣ ≈ ǫ

∣
∣
∣h

(2)
0 (krT )

∣
∣
∣ . (5.7)

To avoid the possibility of getting near a zero of the spherical Bessel function, the
conditionL + 1 > 2krB should be added. If the convergence conditionτ > 1 for
(5.3) is satisfied, such anL can always be found. In practice the condition

βrB < rT , (5.8)

is imposed on the translation vector, withβ > 2 to limit the value ofL obtained
using (5.7). An obvious consequence of this is the existenceof a minimal value forτ ,
denoted asτmin = β

2 . The parameterβ is a setting for the MLFMA and is thus fixed
and explicitly known. For example, ifβ is set to 4√

3
, then the nearest two boxes for

which the addition theorem is used have one box in between them.

In the MLFMA the integral in (5.3) is discretized, i.e. the continuous superpo-
sition of plane waves is approximated by a finite sum of plane waves. From (5.6)
it is clear that terms of a higher order thanL in the expansion of the plane wave
(5.5) do not contribute toh(2)

0 (krpq). Therefore, the summation in (5.5) can be trun-
cated atl = L whilst preserving the accuracyǫ. Moreover it can be shown that∣
∣
∣
∣

h
(2)
l

(krT )

h
(2)
0 (krT )

∣
∣
∣
∣
≥ 1 for all l ≥ 0 if ℑ (krT ) ≤ 0. Then from (5.7) it is easy to show that

(2L+ 3)jL+1(2krB) ≤ ǫ. Hence, the plane wave can be decomposed, with a relative
accuracyǫ, into spherical harmonics of degree not higher thanL. Since the translation
operator is also comprised of spherical harmonics of degreenot higher thanL, their
product contains spherical harmonics of degree0 to 2L. This allows the discretization
of the integral by means of2L + 1 uniformly spaced points in theφ-direction and
L+ 1 Gauss-Legendre quadrature points in theθ-direction. An alternative discretiza-
tion which will be used throughout this work is a uniform discretization in both theφ-
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andθ-direction

θnθ
=

2π

Nθ
nθ, ∀nθ ∈ [1, Nθ], (5.9)

φnφ
=

2π

Nφ
nφ, ∀nφ ∈ [1, Nφ], (5.10)

with Nθ = 2L + 1 andNφ = 2L + 2. This guarantees an accurate integration of a
function with a bandwidth2L. This discretization is based on the fact thate−jk·rpq

A is
quasi-bandlimited with bandwidthL in trigonometric polynomials [26]. This means
that the plane wave can be written as a Fourier series ofθ andφ

e−jk·rpq
A =

L∑

n=−L

L∑

m=−L

apq
nme

j(nθ+mφ). (5.11)

Hence, to use the uniform points (5.10) and (5.9), this discretization requires an ex-
tension of the integration domain to[2π × 2π]. In addition, a smoothing of the prod-
uct of the translation operator with|sin θ| to a bandwidthL in trigonometric poly-
nomials is required for optimal efficiency [21]. This smoothed product is denoted as
T̃ (krT , θ, φ)

h
(2)
0 (krpq) =

1

8π

∫ 2π

0

∫ 2π

0

e−jk·rpq
A T (krT , θ, φ) |sin θ|dθdφ, (5.12)

=
π

2NθNφ

Nθ∑

nθ=1

Nφ∑

nφ=1

e
−jknθ,nφ

·rpq
A T̃ (krT , θnθ

, φnφ
), (5.13)

whereknθ,nφ
= k

(
θnθ

, φnφ

)
. As explained in [26], compared to the Gauss-Legendre

discretization, the extension of the integration domain initially yields a discretization
with twice the number of points in theθ-direction, but this is a redundancy that can
be easily removed by using the identityk(θ, φ) = k(2π − θ, φ + π). The choice
Nφ = 2L+ 2 facilitates the use of this identity. Moreover, this uniform discretization
has the advantage that the inter- and anterpolations of the MLFMA can all be done
using FFTs only.

Now consider the two boxes shown in Figure 5.1. Box1 contains sourcesJp at
positionsr1−ap that generate a field in the observation points at positionsr2 +dq in
box2. The discretized addition theorem (5.13) allows a fast evaluation of these fields.
To do this, the fields in the observation points are written as

∑

p

Jph
(2)
0 (krpq) =

π

2NθNφ
(Ψq)

T · T̃ , (5.14)
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with the column vectorΨq defined by means of the functionΨq (k)

[Ψq]Nφ(nθ−1)+nφ
= Ψq

(
knθ,nφ

)
, (5.15)

Ψq (k) =
∑

p

Jpe
−jk·ap

︸ ︷︷ ︸

Aggregation

e−jk·dq

︸ ︷︷ ︸

Disaggregation

. (5.16)

In the MLFMA, the calculations are not done in the order suggested by these formu-
las. First, the outgoing field of box1 due to the currents is calculated (’Aggregation’
in (5.16)). Then this outgoing field is multiplied element-wise with the translation
operatorT̃ (translation) to obtain an incoming field on box2. Finally, the actual field
values in the observation points are obtained by multiplying the incoming field by the
disaggregation exponential (’Disaggregation’ in (5.16))and summing overnθ andnφ.
If the size of the boxes remains constant, the cost of evaluating the fields in all the
observation points scales linearly with the number of sources and observation points.
A multilevel version of this multiplication algorithm, using a tree-like hierarchical
subdivision of the computational domain and a set of rules tomake sure that (5.8) is
satisfied [16], leads to a linear scaling for general geometries.

Box 2

Box 1 rT

r2 + dq

r1 − ap

Figure 5.1: The three steps in calculating interactions between two boxes in the MLFMA:
aggregation, translation and disaggregation.
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5.3 The Low-Frequency Breakdown

It turns out that if the boxes in the tree become too small, theerror on a fixed-precision
implementation of (5.3) becomes much larger than the targetaccuracyǫ, even whenL
is chosen such that (5.7) is satisfied. This is because of numerical roundoff error and
this phenomenon is widely known as the ’LF breakdown’ of the MLFMA. The LF
breakdown of the addition theorem (5.3) can be attributed mainly to the exponential
increase of the spherical Hankel functionh(2)

l (x) as a function of its order ifl > x. As
a consequence the contributions of the low-order terms in (5.4) lose accuracy and fi-
nally drop below the numerical noise level that is set by the high-order terms. Another
(less important) cause is the exponential decrease of the spherical Bessel function
jl(x) as a function of its order ifl > x. In (5.5) the higher order terms drop below the
numerical noise level and do not contribute to the summationanymore. However, the
integral representation of the Green function requires allthose lost terms in both the
plane wave as the translation operator. In a sense, the translation operator must extract
near field information from the outgoing fields which are a farfield radiation pattern,
which is essentially ill-conditioned.

Now a crude but simple criterium for deciding whether the addition theorem is
stable or not is deduced. If the floating-point precision isδ (= 2.2 10−16 in double
precision), it is clear from (5.4) that the zeroth-order term loses too much digits if

δ(2L+ 1)
∣
∣
∣h

(2)
L (krT )

∣
∣
∣ > ǫ

∣
∣
∣h

(2)
0 (krT )

∣
∣
∣ . (5.17)

Invoking (5.7) and the LF asymptotic forms of the spherical Hankel and Bessel func-
tions, given on page 437 in [1]

h
(2)
l (x) ≈ j

(2l − 1)!!

xl+1
, (5.18)

jl(x) ≈
xl

(2l + 1)!!
, (5.19)

where the double factorial for positive integer values ofn is defined as(2n − 1)!! =
(2n)!
2nn! , allows for the simplification of (5.17)

jL(2krB) < δτ ≈ δ. (5.20)

Similar to (5.17) a stability criterium for (5.5) can be derived

(2L+ 1)jL(2krB) < δ. (5.21)

Due to the similarity of (5.20) and (5.21) we conclude that both contributions to the
instability come into play below the same frequency, i.e. when2krB becomes so small
thatjL(2krB) is lost in numerical roundoff error. This observation suggests that both
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breakdowns might be remedied simultaneously. For the sake of completeness, it is
stated again that the instability in the translation operator is more catastrophic than in
the plane wave because the low-order terms are lost, which contribute the most to the
addition theorem.

On the one hand, the LF breakdown is often regarded as a fundamental problem,
because of the obvious physical explanation for the phenomenon: namely that the near
field has to be reconstructed from far field information. As stated before, this operation
is ill-conditioned. On the other hand, it is clear that in infinite precision no numerical
roundoff errors are introduced and the addition theorem remains valid for arbitrarily
low frequencies. As stated in the introduction, considerable research has already been
devoted to the stabilization of the MLFMA for LF. A stable formulation in two di-
mensions was presented in [19]. For the three dimensional case, the UMLFMA was
developed [20] which shifts the integration overθ in (5.3) into the complex plane (this
requires an extension of the integration domain to2π) and the appropriate translation
operator is constructed numerically. The shift of the integration overθ results in out-
going fields that contain more near field information. Unfortunately, the UMLFMA’s
error-controllability is poor [21] making it of limited use.

5.4 A stable translation in the z-direction

5.4.1 An analytic translation operator

In this section a novel method is presented that allows stable translations in thez-
direction. The method uses a similar shift into the complex plane as the UMLFMA,
but since the construction of the novel method immediately leads to an explicit expres-
sion for the translation operator, its numerical construction is avoided. Moreover, we
will gain more insight in how the LF breakdown is eliminated,which in turn results in
a much better error control.

The derivation starts with the integral expression for the Green function with the
extended integration domain (5.12). For translations in the z-direction,rT is equal to
rT êz and the expression for the translation operator (5.4) simplifies to

T (krT êz, θ, φ) =
L∑

l=0

(2l + 1)j−lh
(2)
l (krT )Pl (cos θ) . (5.22)

In Section 5.2 it was noted that the translation operator must be smoothed to a band-
width L in trigonometric polynomials. In [21, 26], this is done by calculating the
product of formula (5.22) with a smoothed version of|sin θ| and truncating the result
in Fourier space using an FFT. This method cannot be applied here, since simply eval-
uating formula (5.22) is already unstable at LF and destroysthe information that is
comprised in the low-order terms. Instead an analytic integration will be used for cal-
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culating the Fourier spectrum of the smoothed operatorT̃ (krT êz, θ, φ). Since (5.22)
does not depend onφ, only a Fourier series inθ is necessary

T̃ (krT êz, θ, φ) =
L∑

n=−L

bne
jnθ, (5.23)

with

bn =
1

2π

L∑

l=0

(2l + 1)j−lh
(2)
l (krT )f l

n, (5.24)

and

f l
n =

∫ 2π

0

Pl (cos θ) |sin θ| e−jnθdθ. (5.25)

(5.26)

The presence of the absolute value in|sin θ| makes this integral somewhat cumber-
some. However on page 335 in [1], a formula for the Legendre polynomial of argu-
mentcos θ is given which removes this problem. For0 < θ < π we have

Pl(cos θ) =
2l+2

π

∞∑

k=0

(2k − 1)!!(l + k)!

k!(2l + 2k + 1)!!
sin [(l + 2k + 1)θ] , (5.27)

and forπ < θ < 2π

Pl(cos θ) = −2l+2

π

∞∑

k=0

(2k − 1)!!(l + k)!

k!(2l + 2k + 1)!!
sin [(l + 2k + 1)θ] . (5.28)

Multiplying these expressions by|sin θ| yields a single expression valid for allθ

Pl(cos θ) |sin θ| =
2l+2

π

∞∑

k=0

(2k − 1)!!(l + k)!

k!(2l + 2k + 1)!!
sin [(l + 2k + 1)θ] sin θ, (5.29)

where(−1)!! = 1. The product of the two sine functions can be written in termsof
cosines which, ifl 6= 0, yields after some manipulations

Pl(cos θ) |sin θ| = −2l+1

π

∞∑

k=0

(2k + l)
(2k − 3)!!(l + k − 1)!

k!(2l + 2k + 1)!!
cos [(l + 2k)θ] ,

(5.30)
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with (−3)!! = −1. Hence,

f l
n =







l 6= 0 : −2l+1
∑∞

k=0(2k + l) (2k−3)!!(l+k−1)!
k!(2l+2k+1)!! [δl+2k,n + δl+2k,−n]

l = 0, n 6= 0 : 4
∑∞

k=0
δ2k,n+δ2k,−n

1−4k2

l = 0, n = 0 : 4

(5.31)

From this, the Fourier spectrum of̃T (krT êz, θ, φ) can be easily calculated using
(5.24). The coefficientsf l

n have the special property

f l
n = 0 ∀ − l < n < l. (5.32)

This means that the spherical Hankel function of orderl is only present in the Fourier
coefficientsbn with n ≥ l. In other words: ifkrT < 1 the Fourier coefficientsbn
approximately show the same behavior as the spherical Hankel functions themselves.
Indeed, forkrT < 1 the Hankel functions increase superexponentially as a function
of their order, and the coefficientsbn can be approximated as

bn ≈ 1

2π
j−|n|h(2)

|n|(krT )
[

(2n+ 1)f |n|n

]

. (5.33)

Here,(2n+ 1)f
|n|
n ≈

√

π(4n+ 1) is a slowly varying function ofn if |n| >> 1. As

a consequence of the similarity betweenbn andh(2)
n (krT ), the magnitude of the spec-

trum increases superexponentially with rising|n|. Figure 5.2 shows the absolute value
of the spectrumbn for various values ofkrT . From the two dimensional case [19], it is
known that a Fourier series with an exponentially increasing spectrum can be ‘normal-
ized’ by means of an exponential factor designed to compensate for the increase of the
spectrum. The introduction of this exponential factor can be done by shifting the in-
tegration path into the complex plane. It is worthwhile to point out that, although this
shift can only compensate an exponential, the superexponentially increasing spherical
Hankel function can be approximated by an exponential. We will come back to the
validity of this approximation later on. First the integralrepresentation of the Green
function (5.12) is cast into a form only containing the increasing half (n ≥ 0) of the
spectrum

h
(2)
0 (krpq) =

1

8π

∫ 2π

0

∫ 2π

0

e−jk·rpq
A

[
L∑

n=−L

bne
jnθ

]

dθdφ, (5.34)

=
1

8π

∫ 2π

0

∫ 2π

0

e−jk·rpq
A

[
0∑

n=−L

qnbne
jnθ +

L∑

n=0

qnbne
jnθ

]

dθdφ,

(5.35)
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Figure 5.2: The absolute value of the Fourier coefficientsbn of the translation operator
T̃ (krT êz, θ, 0) for various translation distances.
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whereq0 = 1
2 andqn = 1 for n 6= 0. Sincebn = b−n we can apply the transformation

[θ, φ] → [2π − θ, φ + π] to the first term to show that the two terms yield the same
result. This leads to

h
(2)
0 (krpq) =

1

4π

∫ 2π

0

∫ 2π

0

e−jk·rpq
A

[
L∑

n=0

qnbne
jnθ

]

dθdφ. (5.36)

The translation operator
∑L

n=−L bne
jnθ has been replaced by a ‘one-sided translation

operator’2
∑L

n=0 qnbne
jnθ, which has a superexponentially increasing spectrum. The

integrand in (5.36) is an entire function ofθ. As a consequence the integration pathC0,
shown in Figure 5.3 can be shifted into the complex plane. Because of the periodicity
of the integrand contributions fromC1 andC3 cancel and as a consequence integration
alongC0 andC2 yields the same value. The addition theorem then becomes:

h
(2)
0 (krpq) =

1

4π

∫ 2π

0

∫ 2π+jχ

0+jχ

e−jk·rpq
A

[
L∑

n=0

qnbne
jnθ

]

dθdφ. (5.37)

It can be seen that this expression is similar to the one used in the UMLFMA. However,
here the translation operator is known analytically. Moreover, the explicit knowledge
of the translation operator will allow us to remove the instability by choosing a quasi-
optimal value forχ. A disadvantage of the shift into the complex plane is that the
symmetryk(θ+ jχ, φ) = k(2π−θ− jχ, φ+π) can no longer be exploited to reduce
the number of discretization points as was possible withoutthe shift. However, in
Section 5.5, the excess number of points will be removed in another way.

ℑθ

ℜθ

C2

C3

C0

C1

χ

2π

Figure 5.3: Shifting the integration pathC0 into the complex plane. The new integration path
is C2.
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5.4.2 Determining χ

Integral (5.37) is readily discretized using the uniform points defined in (5.9) and
(5.10), so the only undetermined parameter isχ. In order to determineχ, the relative
error Λ between the discretized version of (5.37) and the explicit spherical Hankel
function will be investigated

Λ(krT , krA, χ, ǫ)

=

∣
∣
∣
∣
∣
∣

∑Nθ

nθ=1

∑Nφ

nφ=1
π

NθNφ
e
−jk(θnθ

+jχ,φnφ
)·rA

[
∑L

n=0 qnbne
jnθnθ e−nχ

]

h
(2)
0 (k ||rT êz + rA||)

− 1

∣
∣
∣
∣
∣
∣

.

(5.38)

The dependence onǫ is implicitly included in the determination ofL, Nθ andNφ.
Figure 5.4 shows the relative errorΛ(0.015,−0.01êz, χ, ǫ) as a function ofχ for
various target accuraciesǫ. As can be seen, for each plottedǫ there exists a range for
χ where the error becomes constant. This is the range ofχ for which the error due to
numerical roundoff-error is smaller than the error due to other sources (e.g. truncation
of the translation operator atL, finite number of integration points,...). A good value
of χ should thus be chosen in this ’stable’ range. As can be seen, the size of this
stable range decreases if a higher accuracy is required. Eventually, the stable region
disappears and the target accuracy cannot be achieved anymore. However, as will be
shown in Subsection 5.4.3, in that case there is still the option of increasingτmin, i.e.
increasing the parameterβ. The cause of the disappearance of the stable region and
the influence ofkrT andkrA onΛ is also investigated in Subsection 5.4.3.

A necessary condition forχ to be in the stable region can be deduced by reasoning
that it must be possible to numerically (for example by meansof FFT) recover the
coefficientsbn from the one-sided translation operator

∑L
n=0 qnbne

jnθnθ e−nχ with
sufficient accuracy. Using a similar reasoning as the one leading to (5.17), we find the
following condition forχ

ǫ
|b0|
2

≥ δ |bL| e−Lχ. (5.39)

This condition provides a lower bound onχ

χ ≥ 1

L
ln

2δ |bL|
ǫ |b0|

. (5.40)

As can be seen from the positions of the dashed vertical linesin Figure 5.4, in practice
this inequality is a neccesary condition but not a sufficientone forχ to be in the stable
region.

How then to fix the value ofχ? In the two dimensional case [19],χ is chosen such
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Figure 5.4: The relative errorΛ(0.015,−0.01êz, χ, ǫ), as defined in (5.38) on the normalized
addition theorem (5.37) for various target accuraciesǫ. The dashed vertical lines show the lower
limits for χ as determined with (5.40), while the solid vertical lines show the quasi-optimal
choice forχ as defined in (5.41).
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that the highest order term is of the same magnitude as the lowest-order term. This
turned out to be a quasi-optimal value for the two dimensional case. The same reason-
ing can be repeated here, leading to a quasi-optimal value for the three dimensional
case given by

χ =
1

L
ln

∣
∣
∣
∣

2bL
b0

∣
∣
∣
∣
. (5.41)

This choice clearly satisfies (5.40). In Figure 5.4, the solid vertical lines denote the
value ofχ as determined with (5.41). It can be seen that, even for high target accura-
ciesǫ, this choice remains in the flat part of the curve. Figure 5.5 shows the nonzero
part of the spectrum of the one-sided translation operator with a normalization based
on (5.41). Clearly, the differences in magnitude are much smaller than in the unnor-
malized (i.e. χ = 0) case in Figure 5.2. For use in an FMM, various translation
distancesrT occur. Therefore it is not immediately clear which one to usein (5.41).
Similar to the two dimensional case however, it can be easilyseen that thesmallest
translation distancermin

T ≡ βrB ≡ 2τminrB should be used. Indeed the radiation
patterns contain enough information for the shortest translations, so they certainly
contain enough information for the longer translations. Inthe translation operator
higher-orderbn for longer translation distances might then get lost numerically, but
that is not a problem since their contribution to the addition theorem is smaller than
the accuracy. It can thus be concluded that it is possible to use one single value forχ
on each FMM level, which is based on the smallest translationdistance on that level.

Except for reducing the numerical instabilities in the translation operator, the
choice (5.41) also normalizes the radiation and receiving pattern. Indeed, the prod-
uct of the radiation and receiving pattern can be written as asum of plane waves of the
form e−jk·rpq

A . When taking the trigonometric expansion of such a plane wave(5.11)
and after some manipulations using (5.37), it follows that

h
(2)
0 (krpq) = π

L∑

n=0

qna
pq
−n,0bn. (5.42)

Because the highest-order term in this sum must be of the order of the accuracy

ǫ
∣
∣
∣h

(2)
0 (krT )

∣
∣
∣, it follows

ǫ
∣
∣
∣h

(2)
0 (krT )

∣
∣
∣ ≈

∣
∣
∣a

pq
−L,0e

Lχ
∣
∣
∣

∣
∣bLe

−Lχ
∣
∣ , (5.43)

≈
∣
∣
∣a

pq
−L,0e

Lχ
∣
∣
∣

∣
∣
∣
∣

b0

2

∣
∣
∣
∣
, (5.44)

≈
∣
∣
∣a

pq
−L,0e

Lχ
∣
∣
∣

1

π

∣
∣
∣h

(2)
0 (krT )

∣
∣
∣ . (5.45)
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As a consequence:ǫ ≈ 1
π

∣
∣
∣a

pq
−L,0e

Lχ
∣
∣
∣. The normalization thus blows up the higher-

order coefficients in the spectrum, so that they can still be retrieved numerically (for
example by means of FFT). However, the spectrum still decaysto the accuracyǫ,
which will make the interpolations in the multilevel version of this algorithm accurate.
Therefore, in the remainder of this work, formula (5.41) will be used to determineχ.

5.4.3 A stability limit

One could argue that, although the differences in magnitudeof the spectrum in the
normalized case (see Fig. 5.5) are much smaller than in the unnormalized case (see
Fig. 5.2), a dip in the former curve is still present. This dipis caused by the fact that
the double factorial in the asymptotic form of the Hankel function increases superex-
ponentially as a function ofn. As a consequence it cannot be completely compensated
for by a normalization as proposed here. Moreover the dip deepens for increasingL
and could thus cause a numerical instability. This problem was encountered in the
two dimensional case as well. A similar investigation for the three dimensional case is
carried out in Appendix 5.A leading to the following criterium, valid if2τminkrB < 1

τnmin−L
min

(nmin)!

[L!]
nmin

L

> δ (5.46)

with nmin =
⌊

L
√

L!
τmin

⌋

. If this criterium is not satisfied, the target accuracy (ǫ ≈ τ−L
min)

cannot be achieved because of numerical roundoff error. Used the other way around,
it also gives a rough estimate of the region where (5.37) can be expected to give good
results. The thick line in Figure 5.6 is found when the inequality in (5.46) is turned
into an equality andδ = 2.2 10−16. Criterium (5.46) expresses that, in the region
below this thick line, the target accuracyǫ ≈ τ−L

min can be achieved. In the region
above the thick line, this is not possible. To show the approximate validity of (5.46),
Figure 5.6 also shows a contour plot of− log10 Λ(0.01τmin,−0.01êz, χ, τ

−L
min), withχ

determined using the quasi-optimal (5.41) (based on a translation distance0.01
k τmin).

The contours can be divided in two regions. In the lower region the contours are
smooth and approximate the contours ofτ−L

min, which leads to the conclusion that the
target accuracy has been achieved in this region. In the upper region the contours
are chaotic. It can be clearly seen that the criterium (5.46)effectively separates these
two regions. The separation is not exact because of the various approximations made
in the derivation of (5.46) and the fact that (5.46) is based solely on the translation
operator. In Figure 5.6, it can also be seen that, as expected, for low values of the
parameterτmin, the achievable accuracy is limited. For example ifτmin = 1.5 and
the calculations are done in double precision, the best possible accuracy is around
1.0 10−9, which is still more than acceptable for most applications.Higher accuracy
is possible by increasingτmin.
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5.5 Stable translations in other directions

Extending the results from Section 5.4 to translation directions other than along the
z-axis is not straightforward. The special property (5.32) which the spectrum of
the smoothed translation operatorT̃ (krT êz, θ, φ) satisfies does not easily extend to
other translations except the translation in the negativez-direction. Therefore, an-
other technique is required that is derived in this section.The idea is that, if only
translations along thez-axis can be stabilized, all translations should be rewritten as
translations along thez-axis. Suppose there areV distinct translation vectors, given
by rv

T = rv
T Rv · ez ∀v ∈ [1, V ], with rotation matricesRv. Then for each translation

the original addition theorem of the MLFMA (5.3) can be easily rewritten by rotating
thek-space such that the translation is in thez-direction

h
(2)
0 (krpq) =

1

4π

∫ 2π

0

∫ π

0

e−j(Rv·k)·rpq
A T (krv

T ez, θ, φ) sin θdθdφ. (5.47)

Following all the steps from Section 5.4 for a stable translation in thez-direction, the
following expression is obtained

h
(2)
0 (krpq) =

1

4π

∫ 2π

0

∫ 2π+jχ

0+jχ

e−j(Rv·k)·rpq
A

[
L∑

n=0

qnbne
jnθ

]

dθdφ. (5.48)

The wavevectorsk (θ + jχ, φ) = kk̂ (θ + jχ, φ) in this expression all share the fol-
lowing properties

ℜ
[

k̂
]

· ℑ
[

k̂
]

= 0, (5.49)

ℜ
[

k̂
]

· ℜ
[

k̂
]

= cosh2 χ, (5.50)

ℑ
[

k̂
]

· ℑ
[

k̂
]

= sinh2 χ. (5.51)

These properties are invariant under rotations, henceRv · k̂ also satisfies these prop-
erties. Properties (5.49), (5.50) and (5.51) will be used later on as a criterium for the
selection of wavevectors. However, expression (5.48) cannot be used immediately in
an FMM. It is clear that if this integral is discretized usingthe uniform points from
(5.9) and (5.10)

h
(2)
0 (krpq) =

π

NθNφ

Nθ∑

nθ=1

Nφ∑

nφ=1

e
−j(Rv·k(θnθ

+jχ,φnφ))·rpq
A

[
L∑

n=0

qnbne
jnθnθ

−nχ

]

,

(5.52)
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the exponential has to be evaluated in the pointsRv · k
(
θnθ

+ jχ, φnφ

)
. Hence, for

each translation direction, i.e. for eachRv, the outgoing fields have to be evaluated in
another set of points. Obviously this would be very inefficient.

Let us now discuss how this can be avoided. First the exponential e−j(Rv·k)·rpq
A is

replaced byΨq (Rv · k) which is defined in (5.16) as the product of the outgoing fields
of a box and the disaggregation exponential. The functionΨq (k) can be expanded in
spherical harmonics

Ψq (k) =

∞∑

l=0

l∑

m=−l

al,mYl,m

(

k̂
)

, (5.53)

where the coefficientsal,m are given by

al,m = 4π
∑

p

Jpj
−ljl(kr

pq
A )Y ∗

l,m (r̂pq
A ) . (5.54)

When applied to wavevectors satisfying (5.49), (5.50) and (5.51), and formula (5.41)
is used to determineχ, the infinite summation in (5.53) can be truncated atl = L

because the absolute value of the highest order terms is of order ǫ or less (otherwise
(5.48) would not achieve the target accuracy). This means that there are, up to an
accuracyǫ, only (L + 1)2 degrees of freedomal,m in Ψq (k). As a consequence,
if (L + 1)2 samples ofΨq (k) are known, the coefficientsal,m could in principle
be computed by solving a system of linear equations. These can in turn be used to
obtainΨq (k) for the otherk. Of course, care must be taken when choosing these
sample points, because the linear system could be ill-conditioned. To this end consider
N , with N ≥ (L + 1)2, wavevectorskn ∀n ∈ [1,N ], satisfying (5.49), (5.50) and
(5.51). These conditions are added because all the wavevectorsRv ·k

(
θnθ

+ jχ, φnφ

)

satisfy them, hence it is sensible to make sure thekn also satisfy these criteria. Let
us also assume that thesekn are chosen such that the samplesΨq (kn) contain all the
information that is necessary for all the translations. This could be accomplished by
taking the wavevectorsRv · k

(
θnθ

+ jχ, φnφ

)
for all v, nφ, nθ as thekn. However,

this approach would yield a rather largeN . In Section 5.8 alternative choices of the
kn will be explored and it will be shown that not that manykn are needed. Let us
define a matrixM and two row vectorsa andΨ

q

[M]l(l+1)+m+1,n = jl(2krB)Yl,m

(

k̂n

)

∀n ∈ [1,N ],∀l ∈ [0, L],∀m ∈ [−l, l],
(5.55)

[a]l(l+1)+m+1 =
al,m

jl(2krB)
∀l ∈ [0, L],∀m ∈ [−l, l], (5.56)

[Ψq]n = Ψq (kn) ∀n ∈ [1,N ]. (5.57)

The factorjl(2krB) has been introduced for scaling purposes. When applied to the
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sample wavevectorskn, (5.53) can be written as

MT · a = Ψ
q. (5.58)

The goal is to select(L + 1)2 linearly independent columns fromM, such that these
columns form a well-conditioned basis for the other columns. This task can be accom-
plished by means of a QR-algorithm. Here, we will select the columns by means of
the usual QR-decomposition with pivoting of the matrixM. This choice is motivated
by the fact that the required code is widely available (for example in Matlab or La-
pack) and generally delivers good results. If robustness isof the utmost importance,
the strong Rank Revealing QR-algorithm proposed in [27] canbe used to select the
columns. The QR-algorithm with pivoting provides a unitarymatrix Q, an upper tri-
angular matrixR and a permutation matrixP. These three matrices are related toM

through the following equation:

M
︸︷︷︸

(L+1)2×N

· P
︸︷︷︸

N×N
= Q

︸︷︷︸

(L+1)2×(L+1)2

· R
︸︷︷︸

(L+1)2×N

(5.59)

The permutation matrixP determines which columns have been selected by the QR-
algorithm. The(L+ 1)2 selected wavevectors̃kns

are determined by

k̃ns
=

N∑

n=0

kn [P]n,ns
∀ns ∈ [1, (L+ 1)2]. (5.60)

These wavevectors can now be used as the new discretization for (5.52) instead of
Rv · k

(
θnθ

+ jχ, φnφ

)
. Clearly, this different discretization also requires different

translation operators. These will also be computed using the QR-decomposition. For
this purpose, Eqn. (5.59) will be rewritten as

[
M11 M12

]
·
[
P11 P12

P21 P22

]

= Q11 ·
[
R11 R12

]
, (5.61)

where the submatricesM11, P11, Q11 andR11 all have dimension(L+1)2×(L+1)2.
The values ofΨq (k) in the selected sample pointsk̃ns

are

Ψ
q
s =

[
PT

11 PT
21

]
· Ψq, (5.62)

with the column vector[Ψq
s]ns

= Ψq
(

k̃ns

)

. Combining (5.58) with (5.62) and (5.61)

yields

Ψ
q
s =

[
PT

11 PT
21

]
· MT · a = (Q11 · R11)

T · a. (5.63)

The coefficientsal,m are easily obtained becauseQ11 is unitary andR11 is upper trian-
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gular. Moreover, the selection of columns by the QR algorithm makes these operations
well-conditioned if a suitable starting setkn was taken. With

[Yv]l(l+1)+m+1,Nφ(nθ−1)+nφ
= jl(2krB)Yl,m

(

Rv · k̂
(
θnθ

+ jχ, φnφ

))

, (5.64)

the functionΨq (k) can be evaluated in the necessary points

Ψq
(
Rv · k

(
θnθ

+ jχ, φnφ

))
= YT

v · a =
(
R−1

11 · Q−1
11 · Yv

)T · Ψq
s. (5.65)

Now a new translation operator can be constructed, by absorbing the matrixR−1
11 ·

Q−1
11 · Yv into the translation operator from (5.52)

∑

p

Jph
(2)
0 (krpq) =

π

NθNφ
(Ψq

s)
T · R−1

11 · Q−1
11 · Yv · T z

︸ ︷︷ ︸

Tnew

, (5.66)

with the column vector[T z]Nφ(nθ−1)+nφ
=
∑L

n=0 qnbne
jnθnθ e−nχ. If necessary,

the column vectorYv · T z can be evaluated more efficiently as follows

[Yv · T z]l(l+1)+m+1 = Cl

√

2l + 1

4π

l∑

m′=−l

Dl
m,m′ (Rv) δm′,0, (5.67)

with

Cl = jl(2krB)Nφ

Nθ∑

nθ=1

Pl (cos (θnθ
+ jχ))

[
L∑

n=0

qnbne
jnθnθ e−nχ

]

, (5.68)

where the Legendre polynomialsPl (·) and Wigner rotation matrix elementsDl
m,m′ (·)

are defined in Eqns. (A.11) and (A.39). Equation (5.67) can befurther simplified by
means of (A.12), yielding

[Yv · T z]l(l+1)+m+1 = ClYl,m (Rv · êz) = ClYl,m (r̂v
T ) . (5.69)

By means of this,Yv · T z can be evaluated inO
(
L2
)

operations. SinceYv · T z

has to be calculated for each possible translation operator, this can yield a significant
reduction in CPU time.

With the approach proposed in this section it is possible to do all the necessary
translations in a stable manner, using only a minimal set of discretization points. There
is a drawback, since this method uses a QR of a matrix of which both dimensions
increase quadratically withL. Moreover, as will be seen in Section 5.6, the interpola-
tions required for a multilevel algorithm are full matrices. As a consequence this is an
LF technique.
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5.6 A multilevel algorithm

It is well known that in the MLFMA interpolation and anterpolation techniques are
needed to traverse between levels, and the same holds for themethod presented in
the previous sections. Indeed, although the bandwidthLg, determined on levelg by
means of formula (5.7), becomes nearly constant if the boxesare considerably smaller
than the wavelength, interpolation and anterpolation operations are still necessary be-
cause the value ofχ differs between levels. Also, because the QR-algorithm selects
wavevectors in a way that cannot be easily predicted, no special structure can be ex-
ploited, requiring a full interpolation matrix. Let the outgoing field of a box with
sourcesJp on levelg be the column vectorθg, with elements defined as

[θg]ns
=
∑

p

Jpe
−jk̃

g

ns
·ap ∀ns ∈ [1, (Lg + 1)2]. (5.70)

Herek̃
g

ns
are the selected wavevectors on levelg. Now define the interpolation matrix

Ig that converts this discretized radiation patternθg into θg+1, i.e. θg+1 = Ig · θg.
The size of the matrixIg is (Lg+1 + 1)2 × (Lg + 1)2. The result from the QR on level
g can be used to calculate this matrix. The approach is very similar to the one used in
the calculation of the translation operator. Proceeding asin Section 5.5 and defining
the matrixS as

[S]l(l+1)+m+1,ns
= jl(2krB)Yl,m

(
ˆ̃
kg+1

ns

)

, (5.71)

∀ns ∈ [1, (Lg+1 + 1)2],∀l ∈ [0, Lg],m ∈ [−l, l], the interpolation matrix becomes

Ig =
(
R−1

11 · Q−1
11 · S

)T
. (5.72)

The accuracy of the interpolation will be investigated in Section 5.8. The anterpola-
tions can be done with the transpose ofIg.

As explained in Section 5.5, the computational complexity of the QR-method be-
comes prohibitive when the boxes become considerably larger than the wavelength.
In order to get a multilevel method that can also tackle HF-problems, a switch to the
MLFMA should be made at a certain level. This switch is straightforward, since one
only has to putχ to zero and use the sample points and interpolations of the MLFMA
upward from that level.

5.7 The DC limit

Let us now investigate how the presented method behaves at DC. This involves taking
the limit k → 0 and using the asymptotic form (5.80) forχ derived in Appendix
5.A. The addition theorem in the static limit for translations in thez-direction can be



5.8 Results 107

written as an integration over realθ andφ as follows

1

rpq
=

1

4π

∫ 2π

0

∫ 2π

0

e−jk(θ+jχ,φ)·rpq
A

[

−jk
L∑

n=0

qnbne
jnθe−nχ

]

dθdφ. (5.73)

The DC-limit of the Fourier coefficients of the one-sided translation operator becomes,
for n ≥ 0

lim
k→0

−jkqnbne−nχ =
1

rT

j−nn!

π
[

L
√
L!
]n . (5.74)

To determine the DC-limit of the plane wave, we need the static limit of k(θ+ jχ, φ)

lim
k→0

k(θ + jχ, φ) = lim
k→0

k





cosφ sin(θ + jχ)

sinφ sin(θ + jχ)

cos(θ + jχ)





T

= e−jθ
L
√
L!

rT





j cosφ

j sinφ

1





T

.

(5.75)

Since this limit does not vanish, the static ’radiation pattern’ of a constellation of
sources still contains information about these sources. Equations (5.74) and (5.75)
allow a stable translation for the static case in thez-direction. For the other directions,
the QR-algorithm is again necessary. This requires the calculation of the matricesM
andYv, which necessitates taking the DC limit of a spherical harmonic. The result of
this calculation is given in Appendix 5.B.

5.8 Results

The accuracy of addition theorem (5.66) will now be investigated. Consider the ge-
ometry shown in Figure 5.7. The two boxes have a radiuskrB =

√
3

20 . Box 1 contains
eight sources with strength1 that are placed on the vertices (= ther1−ap in (5.66)) of
the box. The field due to each of these sources is measured in each of the vertices (=
ther2 +dq in (5.66)) of box2. This field is calculated both directly with the spherical

Hankel functionh(2)
0 (krpq) and the addition theorem (5.66). The maximum relative

error between these two is

∆ = maxpq

∣
∣
∣
∣
∣
∣

π
NθNφ

∑(L+1)2

ns=1 e−jk̃ns ·rpq
A [T new]ns

h
(2)
0 (krpq)

− 1

∣
∣
∣
∣
∣
∣

. (5.76)

In particular, the influence of the choice of thekn on ∆ will be investigated. The
numerical tests in Section 5.4 clearly showed that samples of Ψq

(
k
(
θnθ

+ jχ, φnφ

))

carry enough information to do translations in thez-direction accurately. It is easy to
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show that these points are also sufficient for translations in the negativez-direction.
The obvious question is then if these samples also contain enough information to do
the translations in any other direction. It turns out that this is not the case. The first col-
umn in Table 5.1(a) lists∆ when the pointsk

(
θnθ

+ jχ, φnφ

)
are used askn. Clearly,

the target accuracy is not achieved. Therefore, a better setof pointskn is needed.
Note that each translation directionRv · êz has its own, ’special’, set of wavevectors
Rv · k

(
θnθ

+ jχ, φnφ

)
of which it is known from Section 5.4 that they guarantee a

high accuracy. Therefore the union of all these wavevectorsRv · k
(
θnθ

+ jχ, φnφ

)

for all v, nφ, nθ should certainly contain enough information to do all the translations
in a stable manner. In principle it is feasible to do this, since the QR needs to be done
only once, and its cost is independent of the problem sizeN but it still will be unnec-
essarily computationally intensive. InsteadW translation directions will be selected,
sayRw · êz ∀w ∈ [1,W ]. Figure 5.8 shows the four translation vector constellations
that will be investigated here. These constellations, based on the vertices of polyhedra,
are aimed to be as spherically symmetric as possible to avoidintroducing preferential
directions. Table 5.1(a) lists the achieved accuracy usingthe sets of wavevectors as-
sociated with these constellations. The last two sets, labeled with c∗ and d∗ use the
translation directions from Figures 5.8(c) and 5.8(d) respectively, but they have only
approximately one fourth the number of wavevectors per translation direction. This is
achieved by settingNθ = Nφ = L in (5.9) and (5.10) when defining thekn. Table
5.1(a) shows that the various sets achieve comparable accuracies, except the one that
only uses thez-axis as translation direction. It can be seen that∆ is usually smaller
than the target accuracyǫ and when it is bigger, it is only by a small amount. This
validates (5.7) for determining the truncation boundL. The fact that the differences
in achieved accuracy between the sets (ignoring Set a) is small, indicates that taking
the wavevectors of more translation directions increases the accuracy only marginally.
Table 5.1(b) lists the DC limit of∆ for the same geometry as in Figure 5.7. The size
of the boxes is of no importance because of the scale invariance. These results con-
firm the findings from Table 5.1(a) and also clearly show the stability of the proposed
algorithm at DC.

Let us now investigate the accuracy of the interpolations asa function of the num-
ber of levelsnlevel. The geometry shown in Figure 5.9 is basically the same as in
Figure 5.7, but there is only one source and observation point in box 1 and box2 re-
spectively. Both boxes are dividednlevel− 1 times, on each level only retaining the
box containing the source or observation point. The structure that is obtained in this
way is a familiar oct-tree ofnlevel levels. The translation is always done on the high-
est level. The (dis)aggregation is done on the lowest level and traversing up (down)
the tree level by level by using interpolations (anterpolations). The target accuracy
is ǫ = 10−7 and set c∗ is used askn. Table 5.2 lists∆ for different numbers of
levels. From the results Table 5.2 it can be concluded that the interpolations do not
inflict a significant error on the addition theorem. This is tobe expected from theo-



5.8 Results 109

(a)

ǫ Set a Set b Set c Set c∗ Set d∗

10−2 1.48 10−1 4.49 10−3 2.76 10−3 5.56 10−3 3.35 10−3

10−3 9.69 10−2 6.90 10−4 4.65 10−4 6.82 10−4 2.55 10−4

10−4 7.47 10−1 7.10 10−5 4.45 10−5 2.01 10−4 1.43 10−4

10−5 1.13 10−1 1.32 10−5 4.19 10−6 8.04 10−6 5.73 10−6

10−6 4.03 10−1 1.18 10−6 2.38 10−7 4.34 10−7 4.35 10−7

10−7 3.13 10−1 7.48 10−8 2.80 10−8 4.80 10−8 2.54 10−8

(b)

ǫ Set a Set b Set c Set c∗ Set d∗

10−2 7.83 10−2 2.55 10−3 1.98 10−3 2.80 10−3 3.21 10−3

10−3 1.12 10−1 6.70 10−4 3.33 10−4 8.29 10−4 4.12 10−4

10−4 7.75 10−1 5.13 10−5 3.44 10−5 2.64 10−4 1.51 10−4

10−5 3.50 10−1 8.42 10−6 5.96 10−6 9.73 10−6 5.41 10−6

10−6 7.36 10−1 5.79 10−7 2.11 10−7 2.01 10−7 2.87 10−7

10−7 3.11 10+0 1.11 10−7 1.08 10−7 1.09 10−7 6.09 10−8

Table 5.1: The accuracy∆, defined in (5.76), as a function of the target accuracyǫ for the
various ways of constructing the set of wavevectorskn. These sets are obtained by using the
wavevectors associated with the translation directions that are shown in Figure 5.8. Sets labeled
with an asterisk∗ use only approximately one fourth of the wavevectors for each direction.
Table 5.0(b)(b) contains similar data for the DC limit.

r2 + dq

r1 − ap

Box 2

Box 1

Figure 5.7: The geometry for testing the accuracy of addition theorem (5.66).
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Figure 5.8: Four constellations used for translation directions. The asterisk indicates the origin
and the dots indicate the selected translation directions. Constellation 5.8(a) uses thez-axis
only, while constellations 5.8(b), 5.8(c) and 5.8(d) use the vertices ofan octahedron, tetrahedron
and dodecahedron respectively.
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nlevel ∆

1 1.22157364 10−8

2 1.22174995 10−8

3 1.22172432 10−8

4 1.22172979 10−8

5 1.22174006 10−8

6 1.22174492 10−8

7 1.22183636 10−8

8 1.22186867 10−8

Table 5.2: Error for the (dis)aggregation for different numbers of levelsnlevel.

retical grounds. Indeed, a radiation pattern of a box (on level g) that is sampled with
(Lg + 1)2 points is oversampled. It is only after multiplication withanother exponen-
tial during the disaggregation that these(Lg+1)2 points are really required. Therefore
the accuracy of an interpolation (anterpolation) can be significantly better thanǫ.

The proposed algorithm will now be tested on a generic three dimensional scat-
tering problem. The scattering of a plane wave at a PEC cube with side2m (shown
as inset in Figure 5.10), is analyzed at frequencies477MHz (λ = 0.628m), 47.7MHz
(λ = 6.28m) and4.77kHz (λ = 62.8km). The plane wave travels in the positive
x-direction and is polarized along thez-axis. The solution is obtained by means of the
Magnetic Field Integral Equation (MFIE), discretized using 7200 standard RWG basis
functions. The MFIE was used because its condition number converges to a constant
value as the frequency decreases, making it the ideal choiceto show the LF-stability of
the proposed method. The solution of the MFIE was accelerated using a single-level
vectorial fast multipole method using the proposed method.The translation operator
in the vectorial case is the same as in the scalar case. Although the vectorial aspect
requires a small modification to the aggregation (as on page 81 in [16]), it introduces
no further new problems, except in the interpolations (which falls outside the scope of
this contribution), which is why we opted for a single-levelimplementation. The size
of the boxes is0.4m, andτmin = 1.732. The measure of accuracy used here is

κ =
||J − Jref ||
||Jref ||

(5.77)

whereJ andJref are the vectors containing the coefficients of the RWGs for represent-
ing the solution current. The reference solutionJref is obtained without any form of
acceleration, or equivalentlyτmin = ∞. The accuracyκ is plotted as a function of the
truncation bandwidthL at the various frequencies in Figure 5.10. Forf = 477MHz
the accuracy of the MLFMA is also plotted. It can be seen that the newly proposed
method is slightly less accurate than the MLFMA at477MHz. However, the MLFMA
becomes unstable aroundL = 26 and can thus not be used to achieve higher ac-
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Box 2

Box 1

Figure 5.9: An example geometry with three levels, used for investigating the interpolation
accuracy. The geometries with more levels are generated by dividing thesmallest box into eight
smaller boxes of which the one closest to the vertex of the big box is selected. The dots denote
the source and observation points, while the asterisks denote the centers of the boxes on the
different levels.

curacies. With decreasing frequency, this problem becomesworse quickly. For the
casesf = 47.7MHz and especiallyf = 4.77kHz no useful accuracy can be obtained
anymore with the MLFMA, whereas the novel method remains stable. It should also
be noted that once the frequency is sufficiently low, the error curves coincide. This
convincingly shows the error-controllability of the proposed method at very low fre-
quencies. Also note that the achievable accuracy is high.

5.9 Conclusion

A novel method, the NSPWMLFMA, was presented to extend the MLFMA to the sta-
ble evaluation of LF interactions. It is based on a plane waveexpansion, but does not
use the spectral representation of the Green function. First, the addition theorem of
the MLFMA is used to construct a stable translation along thez-axis. This was made
possible by means of a shift of the integration domain into the complex plane. The
optimal magnitude of this shift was determined using the closed form expression of
the translation operator. A stability criterium was derived and tested with numerical
results. Subsequently the method was extended to general translation directions by
means of a QR-based method. Interpolations and anterpolations were also provided,
allowing a full multilevel algorithm. The novel method usesmuch of the concepts
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Figure 5.10: The errorκ on the solution vector for various frequencies. The curve at477MHz
with the asterisk shows the accuracy of the MLFMA. The surface triangulation of the used PEC
cube with side2m is shown as inset.
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that are known from the MLFMA, making it easy to implement in existing MLFMA
schemes. Moreover, a coupling of the NSPWMLFMA with the MLFMAis straight-
forward and yields a broadband MLFMA. The DC limit of the algorithm was also
presented and it was shown that the algorithm remains valid for static problems. It
was then shown that the algorithm exhibits favorable error-controllability properties
as compared to previous methods. Finally, the application of the NSPWMLFMA to a
generic scattering problem showed the usefulness of the method to real-life applica-
tions.

5.A Region of error-controllability

Here, criterium (5.46) for the region of error-controllability will be derived. The
nearest translation is the most critical one, thereforerT = 2τminrB . Suppose that
2τminkrB < 1, such that the spherical Hankel function can be approximated by its
asymptotic form. Then by means of (5.31) and (5.33) the following approximation for
n ≥ 0 can be made

qn |bn| e−nχ ≈ qn
1

2π

(2n− 1)!!

(2τminkrB)n+1
(2n+ 1)fn

n e
−nχ, (5.78)

≈ 1

2π

n!

(τminkrB)n+1
e−nχ, (5.79)

with this, an asymptotic form forχ can be deduced. With formula (5.41) and (5.79)

χ ≈ 1

L
ln

∣
∣
∣
∣

L!

(τminkrB)L

∣
∣
∣
∣
≈ ln

L
√
L! − ln (τminkrB) . (5.80)

In order to assess the loss of accuracy of (5.37) due to the dipin Figure 5.5, it is not
sufficient to just look at the maximum difference in magnitude between the Fourier
coefficientsqnbne−nχ. Indeed, since the high-order coefficients do not contribute so
much, the requirements on their precision are less stringent. In a quantitative way, the
accuracy of then-th coefficient should be at least roughly

ǫ
∣
∣
∣h

(2)
0 (2τminkrB)

∣
∣
∣

(2n+ 1)jn(2krB)
∣
∣
∣h

(2)
n (2τminkrB)

∣
∣
∣

. (5.81)

If the asymptotic expansion of the spherical Hankel function can again be used, this
becomesǫτn

min. Each coefficientqnbnenχ should be known with this precision if the
addition theorem (5.37) is to obtain accuracyǫ. The actual accuracy with which the

coefficients are known is given byδ
1
2 b0

qnbne−nχ . As a consequence, the following has to
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hold for an accurate result

δ

∣
∣
∣
∣

1
2b0

qnbne−nχ

∣
∣
∣
∣
< ǫτn

min. (5.82)

Together with (5.79) and (5.80), this yields

δ

ǫ
<

n!

[L!]
n
L

τn
min. (5.83)

A simple calculation shows that the minimumnmin of the right hand side is located at

nmin = ⌊
L
√
L!

τmin
⌋, (5.84)

with the floor function⌊·⌋. Upon evaluating (5.83) innmin, and using the fact thatǫ is
roughly equal toτ−L

min, the following criterium is obtained

δ < τnmin−L
min

(nmin)!

[L!]
nmin

L

. (5.85)

5.B DC limit of the spherical harmonics

The DC limit of jl(2krB)Yl,m

(

b̂
)

, required for the calculation of the matricesM

andYv in the static case, will be taken here. The vectorb̂, in its most general form,
satisfies the properties shown in (5.49), (5.50) and (5.51).Therefore we can generally
write b̂ as follows

b̂ = coshχb̂r + j sinhχb̂i, (5.86)

with real unit vectorŝbr and b̂i satisfying the condition̂br · b̂i = 0. The DC limit

of jl(2krB)Yl,m

(

b̂
)

can now be taken by means of the definition of the spherical

harmonics (A.1) in Appendix A. DefiningB = b̂r + jb̂i, this becomes

lim
k→0

jl(2krB)Yl,m

(

b̂
)

=

[
L
√
L!

τmin

]l

(−1)m(Bx + jBy)mBl−m
z Flm, (5.87)

with

Flm =
1

√

4π(2l + 1)(l +m)!(l −m)!
. (5.88)

Using this limit, the DC version of the algorithm from Section 5.5 is easily obtained.
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CHAPTER6

A Low Frequency Stable
Plane Wave Addition

Theorem
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⋆ ⋆ ⋆

In the previous chapter, the search for a broadband FMM in 3-Dresulted in
the semi-analytical NSPWMLFMA. However, it turns out that the stable trans-
lation operator in thez-direction can be generalized to all the other directions.
This is done by replacing some spherical harmonics in the translation operator
by novel so-called pseudospherical harmonics. The pseudospherical harmon-
ics have a diverging Fourier spectrum, forcing them to be interpreted as dis-
tributions. Despite this, the use of the pseudospherical harmonics allows the
construction of a practical plane wave addition theorem that is numerically
stable for low frequencies, in contrast to the MLFMA. However, the diverging
Fourier spectrum causes a numerical instability for high frequencies. There-
fore, a combination of the traditional MLFMA and the new method should be
made to construct a broadband FMM. It should be noted that thediscretiza-
tion points and translation operators are both calculated in closed form, which
allows for an easy implementation.

6.1 Introduction

Integral equations containing the Green function of the Helmholtz equation are a very
important class of problems in fields such as acoustics and electromagnetics. Usually



122 A LOW FREQUENCY STABLE PLANE WAVE ADDITION THEOREM

these equations are discretized by means of the method of moments [1]. The dis-
cretized equation can then be interpreted as a linear systemof dimensionN , where
N is the number of basis functions used to discretize the integral equation. A direct
solution (for example by means of an LU decomposition) requiresO

(
N3
)

opera-
tions, therefore this approach rapidly becomes impractical for increasingN . Itera-
tive solution methods can be used to improve on this situation. They only requireP
matrix-vector multiplications to gradually converge to a solution. If the problem is
well conditioned,P << N . Of course the matrix-vector multiplications still require
O
(
N2
)

operations, such that solving the problem requiresO
(
PN2

)
operations.

A further reduction in operations count can be achieved by applying a so-called
Fast Multipole Method (FMM). These methods reduce the complexity of a matrix-
vector multiplication fromO

(
N2
)

to O (N) or O (N lnN). The MLFMA is one
such method, and is very efficient for structures that do not contain much geometrical
detail on a sub-wavelength scale. The efficient simulation of structures that do contain
a lot of sub-wavelength geometrical detail, however, is prevented by the so-called LF
breakdown. The LF breakdown of the MLFMA [2] is not of mathematical origin but
is caused by the inevitable numerical roundoff error on a finite-precision computer.
Hence, broadband simulations require the integration of the MLFMA with another
method that efficiently takes care of the sub-wavelength geometrical detail. In [3] the
MLFMA is used in conjunction with a multipole based method. Although this multi-
pole based method achieves computational complexityO (N), the translations in this
method are not diagonal, resulting in a relatively slow algorithm. In [4] the spectral
representation of the Green function is used, which leads todiagonal translation op-
erators. Unfortunately the spectral representation of theGreen function converges in
only one halfspace, thereby imposing the need for six radiation patterns. This causes
the factor hidden in theO (N) orO (N lnN) to be quite large. In addition, it is stated
in [4] that ”the CPU time requirements of the scheme are minimized when HF tech-
niques are used wherever possible”. The term ’HF techniques’ refers to the MLFMA.

All this obviates the need for an addition theorem that is stable at LF and similar to
the one used in the MLFMA. The first steps in the search for suchan addition theorem
were taken in the Uniform Multilevel Fast Multipole Algorithm (UMLFMA) [5]. In
the UMLFMA, the integration path is shifted into the complexplane so as to include
more near field information in the radiation pattern. However, the translation operators
are to be calculated numerically. The achievable accuracy is also rather limited [6].
Recently a novel method, the Nondirective Stable Plane WaveMultilevel Fast Multi-
pole Algorithm (NSPWMLFMA [7]), has been proposed which doesnot suffer from
these drawbacks. It also uses a shift into the complex plane but instead of numerically
constructing the translation operators, they are obtainedfrom a QR decomposition of
an analytically known matrix. The discretization points for the radiation patterns are
also selected using QR decomposition, which guarantees a high accuracy. However,
the fact that the discretization points are selected using the QR algorithm also destroys
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any symmetry properties of the discretization points. Therefore, inter- and anterpola-
tions must be done using dense matrices, making these operations a more costly part
of the algorithm for high accuracies. In this paper a novel addition theorem will be de-
rived that is completely known in closed form, i.e. explicitformulas for the translation
operators and discretization points will be given. As in theUMLFMA, a shift of the
integration path into the complex plane will then be used to make it numerically stable
at LF. A heuristic algorithm for the calculation of the complex shift will be given and
the limits to the error-controllability will be explored. In addition it will be shown that
the inter- and anterpolations can be performed efficiently using FFTs.

In this work, the norm of a vector is denoted by the same symbolas the vector, but
without boldface:v =

√
v · v. Unit vectors are denoted with a hatv̂ = v

v . An asterisk
∗ denotes complex conjugation. In the MLFMA, the two most important vectors are
the translation vectorrT and the vectorrA (see Figure 6.1). The vectorrA = ra−rd

actually consists of a part coming from the aggregationra = R1−r1 and a part from
the disaggregationrd = R2 − r2. The translation vectorrT is given byR2 − R1

such thatr = r2 − r1 = rA + rT .

Box 2

Box 1 rT

r1

r2

R1

R2

Figure 6.1: A typical configuration in the MLFMA.

6.2 A general form of the addition theorem of the
MLFMA

The addition theorem of the MLFMA is well known [8]. However,it is not unique
in its usefulness to FMM as will be proven in Subsection 6.2.1. In fact there may be
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an infinite number of possible addition theorems, all of which equally valid for the
construction of an FMM (although they might be numerically unstable). In the subse-
quent subsections three special cases will be discussed. Two of them will be shown to
reduce to known results from the literature, among which theusual addition theorem
of the MLFMA. These two special cases do not allow stable translation operators for
LF. The third case is based on a novel set of distributions, the so-called pseudospheri-
cal harmonics, and will be used in the next sections to construct LF stable translation
operators.

6.2.1 A more general addition theorem

The starting point of the derivation is the addition theoremfor the spherical Hankel
function of the zeroth order and second kind

h
(2)
0 (kr) =

e−jkr

−jkr =

L∑

l=0

(−1)l(2l + 1)jl(krA)h
(2)
l (krT )Pl (r̂A · r̂T ) , (6.1)

which converges absolutely ifrT > rT . This equation can be found in [9], Eqns.
(10.1.5) and (10.1.6). The functionPl (·) is the Legendre polynomial of degreel,
while Yl,m (θ, φ) is a spherical harmonic of degreel and orderm. Both are defined
in Appendix A. The truncation boundL is determined such that the relative error
introduced by the truncation of (6.1) is lower than a given thresholdǫ

(2L+ 3)jL+1(krA)
∣
∣
∣h

(2)
L+1(krT )

∣
∣
∣ ≤ ǫ

∣
∣
∣h

(2)
0 (krT )

∣
∣
∣ . (6.2)

To avoid the possibility of using (6.2) near a zero of the spherical Bessel function, the
conditionL+1 > krA should be added. Now consider any set of functionsfl,m(θ, φ)

such that the following property holds

∫ ∫

D

fl,m(θ, φ)Y ∗
l′,m′ (θ, φ)w(θ, φ)dθdφ = δl,l′δm,m′ , (6.3)

for some integration domainD and weight distributionw(θ, φ). By means of (6.3),
(A.10) and the expansion of a plane wave

e−jk(θ,φ)·rA =

∞∑

l=0

(2l + 1)j−ljl(krA)Pl

(

k̂ (θ, φ) · r̂A

)

, (6.4)

the spherical Hankel functionh(2)
0 (kr) can be written as

h
(2)
0 (kr) =

1

4π

∫ ∫

D

e−jk(θ,φ)·rAT (krT , θ, φ)w(θ, φ)dθdφ, (6.5)
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with

T (krT , θ, φ) = 4π
L∑

l=0

l∑

m=−l

j−lh
(2)
l (krT ) fl,m(θ, φ)Y ∗

l,m (θT , φT ) , (6.6)

andk (θ, φ) = kk̂ (θ, φ), with k̂ (θ, φ) = cosφ sin θx̂ + sinφ sin θŷ + cos θẑ and
k the wavenumber. Three valid choices forfl,m, D andw will now be given. The
first two have already been described in the literature and are widely known and used.
However, no simple method exists to make these two translation operators numerically
stable at LF. The third choice uses a novel set of functions, the so-called pseudospher-
ical harmonics, forfl,m. In contrast to the first two choices, the addition theorem
corresponding to this third choice can be made numerically stable for LF.

6.2.2 Choice 1: the MLFMA

By choosing

fl,m(θ, φ) = Yl,m (θ, φ) , (6.7)

w(θ, φ) = sin θ, (6.8)

D = [0, 2π] ⊗ [0, π], (6.9)

Eqn. (6.5) reduces to the traditional addition theorem of the MLFMA

h
(2)
0 (kr) =

1

4π

∫ 2π

0

∫ π

0

e−jk(θ,φ)·rAT (krT , θ, φ) sin θdθdφ, (6.10)

with the translation operator being defined as

T (krT , θ, φ) =

L∑

l=0

(2l + 1)j−lh
(2)
l (krT )Pl

(

k̂ (θ, φ) · r̂T

)

. (6.11)

The addition theorem of the MLFMA is usually discretized using Gauss-Legendre
quadrature points [10].

6.2.3 Choice 2: the MLFMA with uniform discretization

In [11], Sarvas presented an approach corresponding to the following choices

fl,m(θ, φ) =
1

2
Yl,m (θ, φ) |sin θ| , (6.12)

w(θ, φ) = 1, (6.13)

D = [0, 2π] ⊗ [0, 2π], (6.14)
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Proving that this choice satisfies (6.3) is straightforwardwhen given Eqn. (A.7) of
Appendix A. The integration domain runs over a full period ofthe integrand in both
θ andφ. Therefore the integration in (6.5) can be efficiently performed using uni-
formly sampled points in both theθ andφ direction provided that the Fourier series of
fl,m(θ, φ) in bothθ andφ are truncated at bandwidthL (a smoothing operation).

θnθ
=

2π

Nθ
nθ, ∀nθ ∈ [1, Nθ], (6.15)

φnφ
=

2π

Nφ
nφ, ∀nφ ∈ [1, Nφ], (6.16)

with Nθ = 2L+ 1. The uniform sampling allows inter- and anterpolations to be done
entirely with FFTs. Moreover ifNφ is even, Eqn. (A.7) allows a reduction of the
number of discretization points by a factor two, thereforeNφ = 2L+ 2.

6.2.4 Choice 3: pseudospherical harmonics

We propose the following novel choice

fl,m(θ, φ) =

{
1
2Ul,m (θ, φ) sin θ ∀m ≥ 0
1
2 (−1)mU∗

l,−m (θ, φ) sin θ ∀m < 0
, (6.17)

w(θ, φ) = 1, (6.18)

D = [0, 2π] ⊗ [0, 2π]. (6.19)

The Ul,m (θ, φ) are distributions which are conveniently called ”the pseudospheri-
cal harmonics”, defined in Appendix 6.A. Proving that this choice satisfies (6.3) is
equivalent to proving Theorem 6.A.1 as is done in Appendix 6.A. As in the previous
subsection, the integration in (6.5) can be efficiently performed using a uniform dis-
cretization, this time withNφ = Nθ = 2Ld + 1. The number of points is calculated
based onLd, notL itself, for reasons that will be explained in Section 6.3. Also, it will
become clear in Section 6.4 that a reduction of the number of discretization points, as
was possible in Subsection 6.2.3, is not possible anymore. Therefore, there is no need
to make the number of points in theφ direction even, henceNφ = 2Ld + 1 A uni-
form discretization again necessitates a smoothing ofUl,m (θ, φ) sin θ to bandwidth
Ld. Therefore the Fourier spectrum ofUl,m (θ, φ) sin θ will be determined in Section
6.3. The special properties of the Fourier spectrum ofUl,m (θ, φ) sin θ will then for the
first time allow the construction of analytically known LF stable translation operators.
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6.3 The pseudospherical harmonics as a Fourier se-
ries

The addition theorem following from the choice forfl,m,D andw in Subsection 6.2.4
is

h
(2)
0 (kr) =

1

4π

∫ 2π

0

∫ 2π

0

e−jk(θ,φ)·rAT (krT , θ, φ)dθdφ, (6.20)

with the translation operator

T (krT , θ, φ) = 2π sin θ

L∑

l=0

j−lh
(2)
l (krT )

l∑

m=0

sm

[
Y ∗

l,m (θT , φT )Ul,m (θ, φ)

+Yl,m (θT , φT )U∗
l,m (θ, φ)

]
,

(6.21)

with sm = 1 − 1
2δm,0 and the fact thatU∗

l,0 (θ, φ) = Ul,0 (θ, φ). The uniform dis-
cretization proposed in Subsection 6.2.4 allows the exact integration of a function
with bandwidth2Ld. Because the translation operator shares this bandwidth with the
plane wave in (6.20), it must be smoothed to a bandwidthLd. In practice, this amounts
to calculating the Fourier series ofUl,m (θ, φ) sin θ for m ≥ 0, i.e. writing it as

Ul,m (θ, φ) sin θ = ejmφ
∞∑

n=−∞
un

l,me
jnθ (6.22)

and truncating the summation to the range[−Ld, Ld]. It is worthwhile to point out
that property (6.54) of Appendix 6.A yields a condition on the Fourier coefficients,
namely

u−n
l,m = (−1)mun

l,m. (6.23)

The calculation ofun
l,m can be done by using Theorem 6.B.2

Ul,m (θ, φ) sin θ = Kl,me
jmφ sinm+1 θ

2m+1

√
π

∞∑

p=0

λ
p
l,m sin [(l +m+ 2p+ 1)θ] ,

(6.24)

with Theorem 6.B.2 proven,Kl,m defined in Appendix A andλp
l,m defined in Ap-

pendix 6.B. It is shown in Lemma 6.B.3 that ifλp
l,m is interpreted aslimx→p λ

x
l,m,
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then

λ
p
l,m = −λ−p−l−m−1

l,m . (6.25)

Furthermore, using (6.63), it is easily seen that

λ
p
l,m = 0 ∀p ∈ [−l −m,−1]. (6.26)

As a consequence Eqn. (6.24) can be rewritten as

Ul,m (θ, φ) sin θ = −jKl,me
jmφ sinm+1 θ

2m

√
π

∞∑

p=−∞
λ

p
l,me

j(l+m+2p+1)θ. (6.27)

Becausem ≥ 0 in (6.21), it is possible to expandsinm+1 θ using the binomial the-
orem. Absorbing the result into the summation overp yields the following closed
form

un
l,m =







1
2

Kl,m(−j)m

√
π

∑m+1
q=0 (−1)m−q

(
m+1

q

)
λ

n−l
2 −q

l,m ∀n− l even

0 ∀n− l odd
, (6.28)

with the binomial coefficient
(
m+ 1

q

)

=
(m+ 1)!

q!(m+ 1 − q)!
. (6.29)

Theun
l,m satisfy the following curious property

Lemma 6.3.1 For any integern, l ≥ 0 andm ∈ [−l, l] the following holds

un
l,m = 0 ∀l > |n| . (6.30)

Proof The inequalityl > |n| and the summation bounds forq in Eqn. (6.28) yield the
following two inequalities

−l < n− l

2
< 0, (6.31)

−m− 1 ≤ −q ≤ 0. (6.32)

The sum of Eqns. (6.31) and (6.32) yields

−l −m− 1 <
n− l

2
− q < 0, (6.33)

which proves by means of Eqn. (6.26), that all the terms in summation (6.28) are zero,
concluding the proof. �
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It can also be verified thatun
l,m diverges as a function ofn if m > 2. However, as

mentioned before, the pseudospherical harmonics are distributions, therefore (6.22)
does not have to converge. Provided the distribution is integrated with a function that
has a Fourier spectrum that decays fast enough to compensatethe divergence, a well
defined result is obtained. Equation (6.28) makes it easy to calculate the smoothed
translation operator

T̃ (krT , θ, φ)

= 2π

Ld∑

n=−Ld

L∑

m=0

L∑

l=m

j−lh
(2)
l (krT ) sm

×
[
Y ∗

l,m (θT , φT ) ejmφ + Yl,m (θT , φT ) e−jmφ
]
un

l,me
jnθ, (6.34)

=

Ld∑

n=−Ld

L∑

m=−L

tn,me
jnθejmφ, (6.35)

with

tn,m = 2π

min(|n|,L)
∑

l=|m|
j−l−m+|m|h(2)

l (krT )Y ∗
l,m (θT , φT )un

l,|m|, (6.36)

where Lemma 6.3.1 was used to establish the upper bound for the summation overl.
The two outer sums can be performed using the FFT algorithm, due to the uniform dis-
cretization. Assuming thatLd does not differ too much fromL, the calculation of the
smoothed translation operatorT̃ (krT , θ, φ) requires the evaluation ofun

l,m in O
(
L3
)

different arguments. The evaluation ofun
l,m itself costsO (L) operations hence the

calculation of the smoothed translation operator is dominated by theO
(
L4
)

scaling
of calculating the variousun

l,m. Although this problem is not that severe because the
un

l,m can be reused for all the different translation directions,in Appendix 6.C we sup-
ply a more efficient recursive calculation method that yields anO

(
L3
)

calculation of
all requiredun

l,m.
Using the uniform discretization from Eqns. (6.15) and (6.16), the smoothed trans-

lation operator can be directly discretized

h
(2)
0 (kr) =

π

NθNφ

Nθ∑

nθ=1

Nφ∑

nφ=1

T̃ (krT , θnθ
, φnφ

)e−jk(θnθ
,φnφ)·rA . (6.37)

An error analysis will now be performed to control the discretization error and deter-
mine the value ofLd. In this analysis the effects of roundoff error will be ignored, a
subject being studied in the next section. The uniform discretization exactly integrates
every function of bandwidth2Ld. Because in the translation operator, the spectrum
of pseudospherical harmonics has been truncated to bandwidth Ld, the orthogonality
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property (6.A.1) between pseudospherical harmonics and spherical harmonics holds
after discretization ifl2 ≤ Ld. The plane wave, however, contains spherical harmonics
with all orders, such that this inequality will be violated.Therefore, (6.37) becomes

h
(2)
0 (kr) =

L∑

l=0

(−1)l(2l + 1)jl(krA)h
(2)
l (krT )Pl (r̂A · r̂T ) (6.38)

+
π

NθNφ

Nθ∑

nθ=1

Nφ∑

nφ=1

T̃ (krT , θnθ
, φnφ

)

×
∞∑

l=Ld+1

(2l + 1)j−ljl(krA)Pl

(

k̂
(
θnθ

, φnφ

)
· r̂A

)

. (6.39)

SinceL has been chosen to satisfy (6.1) with an accuracyǫ, we can conclude that
the second term must be reduced below the same accuracy threshold to safeguard the
error-controllability of the method. In the MLFMA, this condition is automatically
satisfied because the Fourier series of spherical harmonicsconverges. In the method
proposed here, however, the diverging nature of the Fourierseries of the pseudospher-
ical harmonics blows up the second term. However, it can be suppressed by choosing
Ld sufficiently large. Indeed, without taking into account numerical roundoff error,
it is possible to make this term arbitrarily small because the lowest-order spherical
Bessel function isjLd+1(krA), which converges super-exponentially ifLd > krA.
For the same reason the value ofLd approachesL if the frequency drops. For situa-
tions wherekrA has a value around or above unity, however, the difference between
Ld andL can be significant. Numerical experiments can be used to determine a suit-
able value forLd by starting atLd = L + 1 and gradually increasingLd. For this
the translation operator with translation directionêx should be used. This choice can
be understood by looking at translations close to thez-axis. Indeed, for these transla-
tions the factorsin|m| θT contained withinY ∗

L,m (θT , φT ) becomes dominant over the
diverging behavior ofun

l,m. Hence, their Fourier spectrum does not increase as fast as
the Fourier spectrum of other translation operators. For translations far enough away
from thez-axis, this suppression of the divergence becomes less and less strong, and
disappears completely in thexy-plane (whereθT = π

2 ). Therefore the translations
in the xy-plane should have approximately the fastest increasing Fourier spectrum,
yielding a worst case scenario for the determination ofLd. To avoid having to take
into account the various possiblerA, the following inequality is useful

∣
∣
∣
∣
∣

l∑

m=−l

al,mYl,m (θ, φ)

∣
∣
∣
∣
∣
≤
√

2l + 1

4π

√
√
√
√

l∑

m=−l

|al,m|2. (6.40)
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As a consequence, whenal,m is defined as

al,m = j−ljl(krA)
4π2

NθNφ

Nθ∑

nθ=1

Nφ∑

nφ=1

T̃ (krT êx, θnθ
, φnφ

)Yl,m

(
θnθ

, φnφ

)
, (6.41)

the following inequality must be satisfied to obtain a relative accuracyǫ

∞∑

l=Ld+1

√

2l + 1

4π

√
√
√
√

l∑

m=−l

|al,m|2 < ǫh
(2)
0 (kr) . (6.42)

6.4 A normalized translation operator

The translation operator derived in the previous section isneither LF-stable nor HF-
stable. The instability for the HF case is caused by the exponential divergence ofun

l,m

as a function ofn and cannot be easily remedied. However, for the LF caseL becomes
fixed as the frequency drops, and the numerical instability associated with the diverg-
ing un

l,m becomes fixed as well. The instability due to the super-exponential increase
of the spherical Hankel functions, on the other hand, becomes more and more of a
problem as the frequency drops. In this section the elimination of this LF instability
of the translation operator will be discussed.

The smoothed translation operator as it was derived in the previous section (6.35)
has two very peculiar properties. First, the spectrumtn,m is zero whenever|m| > |n|
or |m| > L so that when a dot is placed at every nonzero Fourier coefficient an
hourglass shaped figure is obtained. Second, the coefficienttn,m contains only Hankel
functions of order|n| or lower. These properties are not shared by the translation
operators of 6.2.2 and 6.2.3. They will enable us to construct a translation operator
that remains valid at very low frequencies and even has a DC limit. The drawback is
a failure due to numerical roundoff error at HF.

The first part of the derivation entails a further manipulation of the smoothed trans-
lation operator. Consider a translation operator defined asfollows

T̂ (krT , θ, φ) =

Ld∑

n=0

L∑

m=−L

2sntn,me
jnθejmφ. (6.43)

Note that the summation overn starts at0 instead of−Ld. We will call T̂ (krT , θ, φ)

the triangular translation operator, since its spectrum ismore or less triangle shaped.
It is easily seen that this translation operator is a valid one for use in (6.20) since the
plane wavee−jk(θ,φ)·rA is invariant under the transformation(θ, φ) → (2π−θ, φ+π)
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and(−1)mt−n,m = tn,m

1

4π

∫ 2π

0

∫ 2π

0

e−jk(θ,φ)·rA T̂ (krT , θ, φ)dθdφ

=
1

4π

∫ 2π

0

∫ 2π

0

e−jk(θ,φ)·rA

Ld∑

n=0

L∑

m=−L

tn,me
jnθejmφdθdφ

+
1

4π

∫ 2π

0

∫ 2π

0

e−jk(θ,φ)·rA

Ld∑

n=1

L∑

m=−L

tn,me
jnθejmφdθdφ,

=
1

4π

∫ 2π

0

∫ 2π

0

e−jk(θ,φ)·rA

Ld∑

n=0

L∑

m=−L

tn,me
jnθejmφdθdφ

+
1

4π

∫ 2π

0

∫ 2π

0

e−jk(θ,φ)·rA

−1∑

n=−Ld

L∑

m=−L

(−1)mt−n,me
jnθejmφdθdφ,

=
1

4π

∫ 2π

0

∫ 2π

0

e−jk(θ,φ)·rA T̃ (krT , θ, φ)dθdφ. (6.44)

The second part of the derivation of LF-stable translation operators consists of
shifting the integration path along theθ direction into the complex plane

h
(2)
0 (kr) =

1

4π

∫ 2π

0

∫ 2π+jχ

jχ

e−jk(θ,φ)·rA T̂ (krT , θ, φ)dθdφ. (6.45)

Figure 6.2 shows the old and new integration paths, i.e.C0 andC2 respectively. The
integrated function is analytical, hence the contributions fromC0 andC1+C2+C3 are
equal. The integrated function is also periodic with period2π, hence the contributions
fromC1 andC3 cancel each other, legitimating the shift in Eqn. (6.45). A shift into the
complex plane simply multiplies the Fourier coefficients2sntn,m with a factore−nχ.
The two outer sums in (6.43) can thus still be performed usingthe FFT algorithm.
A side effect of the complex shift is that the symmetry of the plane wave under the
transformation(θ, φ) → (2π − θ, φ+ π) can no longer be used to reduce the number
of points in a radiation pattern. Indeed,(θ + jχ, φ) maps into(2π − θ − jχ, φ + π)

which is not a point in the integration domain.

In order to make Eqn. (6.45) numerically stable for low frequencies, the complex
shift must be tailored to compensate the divergent behaviorof the spectrum of the tri-
angular translation operator. In [7], a similar problem is encountered. However, only
translations in thez-direction were stabilized. For this special case, the value ofχ was
chosen by imposing the condition that, after the application of the complex shift, no
Fourier coefficient (of the translation operator) should have a magnitude larger than
the magnitude of the lowest order coefficientt0,0. The aim of this was to avoid that the
highest order coefficients, which contribute the least in the addition theorem, numeri-
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ℑθ

ℜθ

C2

C3

C0

C1

χ

2π

Figure 6.2: Shifting the integration pathC0 into the complex plane. The new integration path
is C2.

cally overwhelm the low order terms. A similar reasoning will be applied here, with
the generalization that the selected value ofχ must work for all translation directions.
We propose the following algorithm for calculatingχ:

1: Calculate2sntn,m,∀n ∈ [0, Ld],m ∈ [−L,L] for a translation vectorrT =

rmin
T êx.

2: Determine the maximum over allm: tn = maxm(|2sntn,m|),∀n ∈ [0, Ld].
3: χ = 0

4: repeat
5: Determinenmax such that|tnmax

| ≥ |tn| ,∀n ∈ [0, Ld]

6: if nmax = 0 then
7: δ = 0

8: else
9: δ = 1

nmax
ln
∣
∣
∣
tnmax

t0

∣
∣
∣

10: end if
11: tn = e−nδtn,∀n ∈ [0, Ld]

12: χ = χ+ δ

13: until |δ| < ǫ

14: return χ

with ǫ a small number (e.g.10−12 in double precision), for determining whether|δ|
is close enough to zero. Upon termination this algorithm yields a complex shift that
is suitable for all translations in thexy-plane, since the chosen translation direction is
êx and|2sntn,m| does not depend onφT . It can, however, also be used for the other
translation directions. This can be understood by means of the same argument as
the one used for the calculation ofLd. The translations in thexy-plane usually have
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the Fourier coefficients with the largest magnitude, hence the value ofχ obtained
by means of the algorithm can be used for the other translations too. Although this
argument is tenuous and does not actually prove that the selectedχ also works for
translation directions that are neither close to thexy-plane nor to thez-axis, numerical
experiments (see Section 6.6) indicate that it is at least approximately valid.

The translation distance used in the algorithm isrmin
T . The superscriptmin is

introduced to indicate that the shortest translation distance should be used. If (6.45)
is used in an FMM, many different translation distances are encountered. As was
explained in [7], the shortest used translation distance should in this case be used in
the calculation ofχ. This rule stems from the fact that the shortest translationrequires
the most near-field information. Therefore, ifχ is adequate for the shortest translation,
the longer translations should also be accurate.

6.5 Transitions between levels

In a full multilevel scheme, a procedure must be devised for calculating the radiation
pattern of a box on levelp + 1 from the radiation patterns of its child boxes on level
p. In the MLFMA this procedure boils down to an interpolation of the radiation pat-
tern. The transposed procedure, corresponding to an anterpolation in the MLFMA, is
required while going down in the tree. The method proposed here has, in the LF case,
an almost constant number of samples. However, procedures similar to inter- and
anterpolations are still necessary because the value of thecomplex shiftχ changes
between levels. We will call these the extrapolations, since the integration domains
[0, 2π]⊗ [0, 2π]+jχp and[0, 2π]⊗ [0, 2π]+jχp+1 are disjoint, whereχp is the value
of the complex shift on levelp. As was noted in [6], these extrapolations can be done
using the FFT algorithm. However, this turned out to be significantly less accurate
than a procedure based on least-squares fits. The least-squares technique, however,
has the disadvantage that dense matrices need to be multiplied. In the following we
will propose an modified FFT based method that allows accurate extrapolations. This
allows for a very efficient transition between the levels.

Let Ψ(θ + jχp, φ) be the radiation pattern of a box on levelp, discretized with
2Lp

d +1 points inθ andφ. Then the extrapolation starts with the calculation, by means
of FFT, of the spectrum ofΨ(θ + jχp, φ)

Ψ (θ + jχp, φ) =

Lp
d∑

n=−Lp
d

Lp
d∑

m=−Lp
d

cn,me
jnθ−nχpejmφ =

Lp
d∑

n=−Lp
d

Lp
d∑

m=−Lp
d

dp
n,me

jnθejmφ

(6.46)

The spectrumcn,m can be seen as the spectrum ofΨ(θ, φ). BecauseΨ(θ, φ) =
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Ψ(2π − θ, φ+ π), this spectrum satisfies the following property

cn,m = (−1)mc−n,m. (6.47)

Also, dp
n,m = cn,me

−nχp . This means that the spectrumdp
n,m of Ψ(θ + jχp, φ) has

a large magnitude for negativen and a small magnitude for positiven. From this it
immediately follows thatdp

|n|,m is known with much less accuracy thandp
−|n|,m. It

now turns out that changingχ actually amplifies these errors. Indeed, the effect of the
changing the complex shift fromχp to χp+1 is that the spectrumdp

n,m is multiplied
with en(χp−χp+1). Sinceχp > χp+1, this blows up the smalldp

n,m and shrinks the
largedp

n,m. Hence the large relative error on the small coefficients is amplified as well.
This can be avoided by explicitly using the symmetry relation (6.47), leading to the
following formula

dp+1
n,m =

{

n ≤ 0 : dp
n,me

n(χp−χp+1)

n > 0 : (−1)md
p
−n,me

−n(χp+χp+1)
(6.48)

In this way, the entire spectrum ofΨ(θ + jχp+1, φ) is calculated fromdp
n,m with

negativen. Hence they are known with a good accuracy. The radiation pattern on
levelp+ 1 can then be obtained by means of FFTs.

When going down in the tree, the transposed extrapolation must be used. This
transpose can be taken by writing all operations (FFTs, calculation of dp+1

n,m with
(6.48)) as the multiplication of a matrix and taking the transpose of the entire product.
The computational cost of this procedure is the same as the original extrapolation,
since the Fourier matrix is its own transpose.

6.6 Numerical results

6.6.1 Single level results

In the previous sections, a closed form expression for the translation operator was
derived, as well as a way to determine the parametersL, Ld andχ. In this section
we will investigate how well this ensemble of methods works.All calculations were
carried out in Matlab, in double precision. In the first test the frequency is varied for
a fixed configuration of boxes. The used configuration is the one seen in Figure 6.1,
except that there are sources on all the verticesR1 − rp

a of box1 and receivers on all
the verticesR2 − r

q
d of box2. The64 interactions are all calculated both directly and

using the addition theorem. The error measure∆ is then calculated as the maximum
relative error (over the64 interactions) between the numerically calculated and exact
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spherical Hankel function

∆ = maxpq

∣
∣
∣
∣
∣

h
(2)
0,num. (k |rT + rp

a − r
q
d|)

h
(2)
0 (k |rT + r

p
a − r

q
d|)

− 1

∣
∣
∣
∣
∣
. (6.49)

with

h
(2)
0,num. (k |r|) =

π

NθNφ

Nθ∑

nθ=1

Nφ∑

nφ=1

T̂ (krT , θnθ
+ jχ, φnφ

)e−jk(θnθ
+jχ,φnφ)·r

(6.50)

The sides of the boxes are1m. The maximum relative error is shown in Figure 6.3,
for various target accuraciesǫ. It can be seen that the error is always below the tar-
get acuracy, except for the rightmost points on the curve with target accuracy10−8.
This failure can be traced back to the HF-breakdown of the addition theorem. This
breakdown is seen earliest in the highest-accuracy curve because bothL is higher and
smaller errors are visible. However, at the highest shown frequency the boxes have a
side of1.6 wavelengths, which is already quite large for a method whichis essentially
HF unstable. According to [4], the sides of the boxes may be assmall as0.25 wave-
lengths for10−3 accuracy with the MLFMA. This opens up the possibility of making
a switch to the MLFMA with uniform discretization, once the boxes reach a certain
size, yielding a broadband method.

The results from the first test show that the proposed mechanisms for determining
L, Ld andχ are adequate if used for one translation. In the second test we will
show that these parameters also work when many different translations have to be
performed, as is the case in an FMM. Since the calculation of bothLd andχwas based
on translations in thexy-plane, we will be mostly interested in the error controllability
of the method forθT differing much fromπ

2 . The translations under consideration are
therefore defined by the following formula

rT = rmin
T (1 +

nr

4
)
[

sin
(πnt

30

)

êx + cos
(πnt

30

)

êz

]

, ∀nr ∈ [0, 4], nt ∈ [0, 30].

(6.51)

and shown in Figure 6.4. A further reason to omit a dependenceon φT is that the
values ofLd andχ do not depend onφT , even if we would use a general translation
operator in thexy-plane for their calculation. In addition, both the simple dependence
onφT of the translation operator and numerical tests indicate that the error is relatively
invariant under rotations around thez-axis. The accuracy results are summarized in
Figures 6.5(a) and 6.5(b). For both figures the target accuracy was10−5, the sides of
the boxes were1m and the shortest translation distancermin

T was3m. The frequency
for Figure 6.5(a) was4.77kHz, while the frequency for Figure 6.5(b) was239MHz.



6.7 Conclusion 137

10
−4

10
−2

10
0

10
2

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

 

 

ε = 1e−02
ε = 1e−04
ε = 1e−06
ε = 1e−08

Frequency (MHz)

M
ax

im
um

re
la

tiv
e

er
ro

r

Figure 6.3: The maximum relative error∆ as a function of frequency.

This leads to the parametersL = 20,Ld = 21 andχ = 11.51098 for Figure 6.5(a) and
L = 24, Ld = 32 andχ = 1.03578 for Figure 6.5(b). From these figures, it is clear
that the accuracy requirements are fulfilled for all the tested translations. Therefore,
this validates the heuristic algorithms devised for calculatingLd andχ and shows the
usefulness of the new addition theorem in an FMM.

6.6.2 Multilevel results

The extrapolation procedure outlined in Section 6.5 and itstranspose were also imple-
mented in Matlab and tested on a geometry as shown in Figure 6.6. The largest boxes
have sides1m, the frequency is477MHz and the target accuracy is10−6. The largest
boxes are dividednlevel − 1 times and the error of the addition theorem is again cal-
culated as the maximum error over the64 combinations of vertices. Table 6.1 shows
the obtained accuracy for various numbers of levels. These results clearly demonstrate
the error-controllability of the total algorithm.

6.7 Conclusion

A novel plane wave addition theorem has been presented. It was constructed by ju-
diciously replacing spherical harmonics in the translation operator of the MLFMA
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X

Z

Figure 6.4: The tested translations. For each translation distance, only one of the31 translations
is depicted.
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Figure 6.5: The maximum relative error as a function ofθT .



140 A LOW FREQUENCY STABLE PLANE WAVE ADDITION THEOREM

nlevel Accuracy

1 2.430667966162078 10−7

2 1.970807036056693 10−7

3 1.970906654170130 10−7

4 1.970871348190628 10−7

5 1.970960996697772 10−7

6 1.969563794810023 10−7

7 1.970044079688026 10−7

8 1.968621907003791 10−7

9 1.968419081134079 10−7

10 1.968573919736930 10−7

Table 6.1: Error on the addition theorem in a multilevel environment, for different numbers of
levelsnlevel.

Figure 6.6: One of the geometries used for testing the accuracy of the interpolations. The
number of levelsnlevel determines how deeply the largest boxes are divided. This particular
geometry has three levels.
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with pseudospherical harmonics. Although these novel distributions have a diverging
Fourier spectrum, truncation of the spectrum yields a finiteand valid translation op-
erator. However, the divergence of the spectrum makes it impossible to choose the
truncation bound arbitrarily large, without leading to an HF numerical instability. A
fast algorithm for calculating the Fourier spectrum has been provided. For LF, the
specific form of the Fourier spectrum of the pseudosphericalharmonics has allowed
us to find a complex shift that is capable of compensating mostof the divergence of
the spherical Hankel function, thereby eliminating the LF instability. In addition, the
transitions between levels can be done very efficiently using FFTs. To the best knowl-
edge of the authors, this is the first analytically known plane wave addition theorem
that is numerically stable in the quasi static regime. Moreover, the numerical results
show that it is error controllable for sufficiently high frequencies. Therefore a hybrid
method with the usual MLFMA is straightforward, yielding a broadband method.

6.A Pseudospherical harmonics

The so-called pseudospherical harmonicsUl,m (θ, φ) used in this paper are defined as

Ul,m (θ, φ) = Klme
jmφ sinm θ

2ll!

(
1

sin θ

d

dθ

)l+m
[
S(θ) sin2l θ

]
, (6.52)

with S(θ) = |sin θ|
sin θ a piecewise constant function that has value+1 for θ ∈]0, π[ and

has value−1 for θ ∈]π, 2π[. The derivatives in (6.52) must be interpreted in a dis-
tributional sense, sinceUl,m (θ, φ) contains Dirac delta distributions and derivatives
thereof. Therefore the pseudospherical harmonics only have meaning when they are
integrated with sufficiently smooth functions.

The following properties of the pseudospherical harmonicsare very similar to
properties (A.6) and (A.7) of the spherical harmonics

Ul,m (π − θ, φ+ π) = (−1)lUl,m (θ, φ) , (6.53)

Ul,m (2π − θ, φ+ π) = −Ul,m (θ, φ) . (6.54)

However, property (A.8) nor an orthogonality relation like(A.17) exist for the pseu-
dospherical harmonics. Instead the following orthogonality relation holds

Theorem 6.A.1 For any integersl1, l2 andm1,m2 satisfyinglj ≥ 0 and −lj ≤
mj ≤ lj the following holds

∫ 2π

0

∫ 2π

0

Ul1,m1
(θ, φ)Y ∗

l2,m2
(θ, φ) sin θdθdφ = 2δl1,l2δm1,m2

. (6.55)

Proof LetQ denote the left hand side of Eqn. (6.55). To prove Theorem 6.A.1, first
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replaceY ∗
l2,m2

(θ, φ) by (−1)m2Yl2,−m2
(θ, φ) and integrate overφ

Q = 2πδm1,m2(−1)m2
Kl1,m1

2l1 l1!

Kl2,−m2

2l2 l2!

×
∫ 2π

0

(
1

sin θ

d

dθ

)l1+m1 [
S(θ) sin2l1 θ

]
(

1

sin θ

d

dθ

)l2−m1 [
sin2l2 θ

]
sin θdθ.

(6.56)

The integral can be transformed into a well-defined integralby performing partial
integrationl1 +m1 times

(−1)l1+m1

∫ 2π

0

S(θ) sin2l1 θ

(
1

sin θ

d

dθ

)l2+l1 [
sin2l2 θ

]
sin θdθ. (6.57)

Due to the definition ofS(θ), the productS(θ) sin θ becomes|sin θ|. At this point
the symmetry of the integrand can be used to reduce the integration domain to[0, π].
This brings a factor1 + (−1)l1+l2 in front of the integral. Then partial integration
can again be performedl1 +m1 times, yielding an integral that is very similar to the
orthogonality integral of the spherical harmonics

(1 + (−1)l1+l2)

∫ π

0

(
1

sin θ

d

dθ

)l1+m1[
sin2l1 θ

]
(

1

sin θ

d

dθ

)l2−m1[
sin2l2 θ

]
sin θdθ.

(6.58)

As a consequence Eqn. (6.56) becomes

Q = (1 + (−1)l1+l2)

∫ 2π

0

∫ π

0

Yl1,m1
(θ, φ)Y ∗

l2,m2
(θ, φ) sin θdθdφ = 2δl1,l2δm1,m2

.

(6.59)

This conludes the proof of (6.55).�

6.B Useful properties of the pseudospherical harmon-
ics

In this appendix, some properties will be proven that are necessary for calculating the
Fourier spectrum of the pseudospherical harmonics. First we will prove the following
lemma
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Lemma 6.B.1 For any integerl satisfyingl ≥ 0 the following holds

S(θ) sin2l θ =
2(−1)lΓ (2l + 1)

22lπ

∞∑

p=0

Γ
(
p− l + 1

2

)

Γ
(
p+ l + 3

2

) sin [(2p+ 1)θ] (6.60)

Proof It is easily verified that the result holds forl = 0. It then remains to be proven
from induction that if (6.60) is correct for a certainl ≥ 0, it is correct forl + 1.
Therefore the product of the right hand side of (6.60) withsin2 θ must be investigated.

sin2θ
2(−1)lΓ (2l + 1)

22lπ

∞∑

p=0

Γ
(
p− l + 1

2

)

Γ
(
p+ l + 3

2

) sin [(2p+ 1)θ]

=
(−1)lΓ (2l + 1)

22l+1π

∞∑

p=0

Γ
(
p− l + 1

2

)

Γ
(
p+ l + 3

2

)

× {2 sin [(2p+ 1)θ] − sin [(2p+ 3)θ] − sin [(2p− 1)θ]}

= − (−1)lΓ (2l + 1)

22l+1π

∞∑

p=0

2(l + 1)(2l + 1)
Γ
(
p− l − 1

2

)

Γ
(
p+ l + 5

2

) sin [(2p+ 1)θ]

=
2(−1)l+1Γ (2(l + 1) + 1)

22(l+1)π

∞∑

p=0

Γ
(
p− (l + 1) + 1

2

)

Γ
(
p+ (l + 1) + 3

2

) sin [(2p+ 1)θ] , (6.61)

which concludes the proof.�

Now we move on to proving the wanted equality

Theorem 6.B.2 For any integersl andm satisfyingl ≥ 0 and −l ≤ m ≤ l the
following holds

(
1

sin θ

d

dθ

)l+m
[
S(θ) sin2l θ

]
=

2l+m+1Γ (l + 1)√
π

∞∑

p=0

λ
p
l,m sin [(l +m+ 2p+ 1)θ] ,

(6.62)
with

λ
p
l,m =

Γ
(
p+m+ 1

2

)
Γ (l +m+ p+ 1)

Γ
(
m+ 1

2

)
Γ
(
l + p+ 3

2

)
Γ (p+ 1)

. (6.63)

Proof This proof will also be done using induction. By means of Lemma 6.B.1 and

Γ (l + 1)

Γ
(
−l + 1

2

) =
(−1)lΓ (2l + 1)

22l
√
π

, (6.64)

it is easy to prove (6.62) for the special casem = −l. Now assume that (6.62) holds
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for a certainm ∈ [−l, l[, then we have to prove that it also holds form+ 1

(
1

sin θ

d

dθ

)l+m+1
[
S(θ) sin2l θ

]

=

(
1

sin θ

d

dθ

)
2l+m+1Γ (l + 1)√

π

∞∑

p=0

λ
p
l,m sin [(l +m+ 2p+ 1)θ] (6.65)

=
1

sin θ

2l+m+1Γ (l + 1)√
π

∞∑

p=0

(l +m+ 2p+ 1)λp
l,m cos [(l +m+ 2p+ 1)θ] .

(6.66)

The factor(l+m+ 2p+ 1)λp
l,m can be dealt with by means of the following identity

(l +m+ 2p+ 1)λp
l,m = λ

p
l,m+1 − λ

p−1
l,m+1. (6.67)

This identity is still valid in the special case wherep = 0 because 1
Γ(0) = 0. Equation

(6.65) then becomes

1

sin θ

2l+m+1Γ (l + 1)√
π

∞∑

p=0

(

λ
p
l,m+1 − λ

p−1
l,m+1

)

cos [(l +m+ 2p+ 1)θ]

=
2l+m+2Γ (l + 1)√

π

∞∑

p=0

λ
p
l,m+1 sin [(l +m+ 2p+ 2)θ] . (6.68)

which concludes the proof.�

For completeness, the following property ofλp
l,m will also be shown:

Lemma 6.B.3 For anyx and any integerp ≥ 0, l ≥ 0 andm ∈ [−l, l] the following
holds

lim
x→p

[

λx
l,m + λ−x−l−m−1

l,m

]

= 0. (6.69)

Proof Using the definition (6.63) forλ−x−l−m−1
l,m yields

λ−x−l−m−1
l,m =

Γ
(
−x− l − 1

2

)
Γ (−x)

Γ
(
m+ 1

2

)
Γ
(
−x−m+ 1

2

)
Γ (−x− l −m)

,

=
sin(π(x+ l +m)) sin(π(x+m− 1

2 ))

sin(πx) sin(π(x+ l + 1
2 ))

λx
l,m. (6.70)

The following form of the functional equation of the Gamma function was used to
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obtain this result

Γ (−z) Γ (z + 1) = − π

sin(πz)
. (6.71)

By means of Eqn. (6.70), the limit reduces to

lim
x→p

[

λx
l,m + λ−x−l−m−1

l,m

]

= λ
p
l,m

[

1 + (−1)l+m (−1)p+m+1

(−1)p+l

]

= 0, (6.72)

where we used l’Ĥospital’s rule. �

6.C Recursive calculation of unl,m

Here we will supply a recurrence formula and an algorithm that can be used for an
O
(
L2
)

calculation ofun
l,m, with n, l ∈ [0, L] andm fixed. The values ofun

l,m for
negativen can be obtained by means of Eqn. (6.23). The recurrence is proven in the
following Lemma:

Lemma 6.C.1 For any integern, l ≥ 0 andm ∈ [−l, l] the following holds

2l + 1

2

[

ũn+2
l,m + ũn

l,m

]

= (l +m)ũn+1
l−1,m + (l −m+ 1)ũn+1

l+1,m, (6.73)

with ũn
l,m =

un
l,m

Kl,m
.

Proof We start with the following identity

2l + 1

2

[

λ
p+1
l,m + λ

p
l,m

]

= (l +m)λp+1
l−1,m + (l −m+ 1)λp

l+1,m. (6.74)

The proof of this using Eqn. (6.63) is tedious but straightforward. Now we replacep
with n−l

2 − q to obtain

2l + 1

2

[

λ
(n+2)−l

2 −q

l,m +λ
n−l
2 −q

l,m

]

= (l +m)λ
n+1−(l−1)

2 −q

l−1,m +(l −m+ 1)λ
n+1−(l+1)

2 −q

l+1,m .

(6.75)

Applying the sum operator(−j)m

2
√

π

∑m+1
q=0 (−1)m−q

(
m+1

q

)
to this entire equation yields

Eqn. (6.73) which concludes the proof.�

For the special case whenn = l − 2, Lemma 6.3.1 reduces the recurrence to the
simpler form

ũl
l,m =

2(l +m)

2l + 1
ũl−1

l−1,m. (6.76)
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The following algorithm can now be used to calculate all theũn
l,m for a fixedm:

1: Calculatẽun
m,m∀n ∈ [m,L] andũn

m+1,m∀n ∈ [m+1, L] using the direct formula
(6.28)

2: for l = m+ 2 toL do
3: Calculateũl

l,m from ũl−1
l−1,m by means of (6.76)

4: end for
5: for h = 0 by 2 toL−m− 4 do
6: for l = m+ 2 toL− h− 2 do
7: n = l + h

8: Calculateũn+2
l,m from ũn

l,m, ũn+1
l−1,m andũn+1

l+1,m by means of (6.73)
9: end for

10: end for
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⋆ ⋆ ⋆

Here, the broadband FMMs developed in the chapters 3 and 5 areapplied to
the simulation of metamaterials. Metamaterials are structures consisting of a
large number of more or less homogeneously distributed particles with spe-
cific properties. Because the inhomogeneities are at a scalemuch smaller than
the wavelength, these structures can be treated as homogeneous effective ma-
terials. These artificial materials may have properties that are not found in
natural materials, for example a negative index of refraction. The simulation
of metamaterials is a broadband problem. Indeed, by definition the wavelength
is larger than the smallest geometrical detail (the particles), and at the same
time the wavelength is usually smaller than the entire pieceof metamaterial,
as for example in 7.4.1. The simulation method consists of the multiple scat-
tering equation from 2.4.3, accelerated by means of the SPWMLFMA [9] and
the technique described in Chapter 3. The determination of the T-matrix of one
particle is done by means of a Method of Moments surface integral equation
solver that is accelerated with the NSPWMLFMA from Chapter 5. In addi-
tion to simulating the metamaterials, we also present closed-form full-wave
homogenization formulas to extract the effective materialparameters from the
T-matrix of a spherical piece of metamaterial. Examples verify the accuracy
and limitations of the method.
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7.1 Introduction

In this paper we want to explore the possibilities of full-wave electromagnetic field
simulations to find effective material parameters of metamaterials, i.e. we try to solve
the homogenization problem using accurate field simulations. By a metamaterial we
understand, in this paper, a random mixture of inclusions embedded in a host medium.
The inclusions, called particles in this paper, can have anygeometry and any linear
material properties.

Although we see more and more full-wave simulations of the scattering of fields
at finite pieces of metamaterials in literature, using full-wave simulations to come to
effective parameters has been explored only limitedly. Early efforts have been done
by Whites using a Method of Moments (MoM) thin wire integral equation simulation
for chiral materials [1], [2] and [3]. In those publicationsspherical ensembles of chiral
wire particles were considered. The most advanced effort was done in [4] which con-
sidered a spherical ensemble of dielectric spheres and usedthe T-matrix method [5]
to come to effective permittivities. In [6] the homogenization of a mixture of metal
needles was considered, also using a Method of Moments (MoM)thin wire integral
equation simulation method. In that paper not only spherical but also cylindrical en-
sembles were considered.

In the present contribution we will also use the T-matrix method and a spherical
ensemble of particles to obtain effective material parameters. In order to be able to
simulate a large number of particles we accelerate the T-matrix method with a Fast
Multipole Method (FMM) [7]. In [8] also a T-matrix method wasused to calculate
the scattering at a large ensemble of spheres (not the homogenization) in the realm of
metamaterials. It was accelerated compared to [4] by using aSingle Level FMM.

One of the most widely known FMMs is the Multilevel Fast Multipole Algorithm
(MLFMA). However, the problem at hand is difficult to handle with the propagating
plane wave based MLFMA because it contains much geometricaldetail, i.e. the parti-
cles, that are small compared to the wavelength. To overcomethis problem we resort
to the Stable Plane Wave MLFMA (SPWMLFMA) [9] which is furtheraccelerated by
the method described in [10].

Unlike in [4] and [8] we will not limit the analysis to spherical particles but con-
sider generally shaped particles. The T-matrix of each particle is determined using a
MoM technique based on a surface integral equation. The MoM to analyze one parti-
cle is also accelerated by an FMM. Again one faces the problemthat the MLFMA is
not suitable and now we resort to the recently developed non-directive SPWMLFMA
(NSPWMLFMA) [11].

Generally shaped particles which are randomly ordered and oriented lead in the
most general form to a bi-isotropic material. If the particles have handedness then the
material will be chiral. As said above we will use a sphericalensemble of particles
and compare this ensemble with an effective homogeneous bi-isotropic sphere with
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the same radius. In [3] and [4] the average of a Monte Carlo scattering simulation
over a number of different random ensembles is considered. In [6] the average is
taken over different angles of incidence for the same ensemble of spheres. In both
cases this result is then fitted to the Mie series of an isotropic sphere. Here we use
a sufficiently large ensemble such that an average over different angles of incidence
is again suitable for homogenization. However, this is not accomplished by doing
several scattering simulations but immediately by considering a summing operation
on the T-matrix of the entire ensemble. We also do not use a fitting technique to find
the effective parameters but develop a new closed form formula, based on recursive
properties of spherical Bessel functions, to derive the effective parameters directly
form the T-matrix.

This paper is organized as follows. First we develop the homogenization assuming
that the T-matrix of the entire ensemble is known. Then we give some details about the
numerical simulation technique to obtain the T-matrix of one particle and the T-matrix
of the entire ensemble. In Section 4 we verify the method and also discuss some
problems and limitations. Finally, a number of examples illustrate the method. In the
last section we will also look at a general scattering experiment, as in [8], without
considering homogenization. We consider examples with about 350000 unknowns.
First results of this work have been reported in [12] and [13].

7.2 Homogenization

7.2.1 Field expansion in a bi-isotropic medium

Let us first find a general field solution in a sourceless homogeneous bi-isotropic
medium using vector multipoles. The Maxwell curl equation in a bi-isotropic medium,
using anejωt time dependence, are given by [14]

∇̌ ×
[
e(r)

h(r)

]

= jω

[−ζ −µ
ε ξ

]

·
[
e(r)

h(r)

]

. (7.1)

We assume that the material parameter matrix can be diagonalized using an eigenvalue
decomposition as follows

jω

[−ζ −µ
ε ξ

]

= V ·
[
k1 0

0 k2

]

· V−1, (7.2)

wherek1 andk2 are the eigenvalues and where the matrixV contains the correspond-
ing eigenvectors. The eigenvaluesk1 andk2 are the wavenumbers of the medium.
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Invoking a Beltrami decomposition [15] yields decoupled curl equations

∇̌ ×
[
Θ(r)

Φ(r)

]

=

[
k1 0

0 k2

]

·
[
Θ(r)

Φ(r)

]

, (7.3)

with Θ(r) andΦ(r) the so-called Beltrami fields that are related to thee(r) andh(r)

fields through
[
Θ(r)

Φ(r)

]

= V−1 ·
[
e(r)

h(r)

]

. (7.4)

The vector multipoles are defined as

M
f
l,m (kr) =

fl(kr)
√

l(l + 1)
(−jr × ∇̌)Yl,m (r̂) , (7.5)

N
f
l,m (kr) =

1

k
∇̌ × M

f
l,m (kr) , (7.6)

with integerl ∈ [0,∞] andm ∈ [−l, l]. The spherical harmonicsYl,m (r̂) are de-
fined in Appendix A and the unit vector̂r is given by r

r . The functionfl(·) and the
superscriptf in the vector multipoles denote any of the spherical Bessel functions of
orderl. Due to the properties of the vector multipoles, the fieldS

f
l,m (kr), defined as

M
f
l,m (kr) + N

f
l,m (kr), satisfies

∇̌ × S
f
l,m (kr) = kS

f
l,m (kr) , (7.7)

which means thatSf
l,m (kr) are the eigenfunctions of the curl operator corresponding

to the eigenvaluek. A general field can now be expressed as

Θ(r) =
∑

l,m

[

a1
l,mS

j
l,m (k1r) + b1l,mSh

l,m (k1r)
]

, (7.8)

Φ(r) =
∑

l,m

[

a2
l,mS

j
l,m (k2r) + b2l,mSh

l,m (k2r)
]

, (7.9)

where in the first termfl(·) is replaced by the spherical Bessel functionsjl (·) and in
the second term by the spherical Bessel functionhl (·) that is defined as

hl (kr) = [s(k)]lh
(2)
l (s(k)kr) , (7.10)

with s(k) = −sign (ℑ(k)) andh(2)
l (·) the spherical Hankel function of second kind

and orderl.
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7.2.2 T-matrix of a bi-isotropic sphere

Consider a homogeneous bi-isotropic sphere with radiusa and parameters(ε, µ, ξ, ζ)
embedded in free space with parameters(ε0, µ0). Suppose the fields outside the
sphere are represented by

[
eo(r)

ho(r)

]

= Vo ·





∑

l,m

[

a1
l,mS

j
l,m (ko

1r) + b1l,mSh
l,m (ko

1r)
]

∑

l,m

[

a2
l,mS

j
l,m (ko

2r) + b2l,mSh
l,m (ko

2r)
]



 , (7.11)

with Vo, ko
1 andko

2 resulting from the diagonalization (7.2) for free space parame-
ters. The sphere will impose a relation between the coefficients (b1l,m, b

2
l,m) and

(a1
l,m, a

2
l,m). We define this relation as the T-matrixTB

l,m;l′,m′ for the Beltrami fields,
i.e. [

b1l,m
b2l,m

]

=
∑

l′,m′

TB
l,m;l′,m′ ·

[

a1
l′,m′

a2
l′,m′

]

. (7.12)

The usual T-matrixTl,m;l′,m′ for the fields [5] is then given byTl,m;l′,m′ = (Vo)
−1 ·

TB
l,m;l′,m′ · Vo. The fields inside the sphere are

[
ei(r)

hi(r)

]

= Vi ·
[∑

l,m c1l,mS
j
l,m

(
ki
1r
)

∑

l,m c2l,mS
j
l,m

(
ki
2r
)

]

, (7.13)

with Vi, ki
1 andki

2 resulting from the diagonalization (7.2) for the parameters of the
sphere.

The continuity of the tangential electric and magnetic fields at the boundary of the
sphere can be expressed as

Vi · jil ·
[

c1l,m
c2l,m

]

= Vo · jol ·
[

a1
l,m

a2
l,m

]

+ Vo · ho
l ·
[

b1l,m
b2l,m

]

, (7.14)

Vi · j̃il ·
[

c1l,m
c2l,m

]

= Vo · j̃ol ·
[

a1
l,m

a2
l,m

]

+ Vo · h̃o
l ·
[

b1l,m
b2l,m

]

, (7.15)

with

jol =

[
jl (k

o
1a) 0

0 jl (k
o
2a)

]

, j̃ol =

[Jl (k
o
1a) 0

0 Jl (k
o
2a)

]

, (7.16)

ho
l =

[
hl (k

o
1a) 0

0 hl (k
o
2a)

]

, h̃o
l =

[Hl (k
o
1a) 0

0 Hl (k
o
2a)

]

, (7.17)

jil =

[
jl
(
ki
1a
)

0

0 jl
(
ki
2a
)

]

, j̃il =

[Jl

(
ki
1a
)

0

0 Jl

(
ki
2a
)

]

, (7.18)
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and

Jl (x) =
1

x

d

dx
[xjl (x)] = jl−1 (x) − l

x
jl (x) (7.19)

Hl (x) =
1

x

d

dx
[xhl (x)] = hl−1 (x) − l

x
hl (x) . (7.20)

It can be immediately seen from the system (7.14) and (7.15) that the T-matrix must
have a block diagonal formTB

l,m;l′,m′ = TB
l δl,l′δm,m′ , where the2 by 2 diagonal

blocksTB
l,m;l,m were denoted byTB

l . This special form of the T-matrix can be traced
back to the rotational invariance of the bi-isotropic sphere. Solution of the system
(7.14) and (7.15) finally leads to

TB
l =

[(

j̃il

)−1

·
(
Vi
)−1 · Vo · h̃o

l −
(
jil
)−1 ·

(
Vi
)−1 · Vo · ho

l

]−1

·
[
(
jil
)−1 ·

(
Vi
)−1 · Vo · jol −

(

j̃il

)−1

·
(
Vi
)−1 · Vo · j̃ol

]

. (7.21)

7.2.3 Homogenization

Consider a spherical piece of metamaterial with radiusa embedded in free space for
which we have determined the T-matrixTC

l,m;l′,m′ . How this is done will be explained
in the next section. We will now show that it is possible to determine the material
parametersε, µ, ζ andξ in closed form of an equivalent homogeneous sphere. Hence,
we assume that it is possible to homogenize the piece of metamaterial and that it is
possible to fit the T-matrix of a homogeneous sphere toTC

l,m;l′,m′ .

The T-matrix of a bi-isotropic sphere is block diagonal (with 2 by 2 blocks) due
to spherical symmetry. However, the matrixTC

l,m;l′,m′ which resulted from the simu-
lation of a random ensemble of particles will not be entirelyblock diagonal. From
TC

l,m;l′,m′ a block diagonal matrix̂TC
l,m;l′,m′ is obtained by averaging over all spatial

rotations. This is, as explained in [5], accomplished by

T̂C
l,m;l′,m′ = T̂C

l δl,l′δm,m′ = δl,l′δm,m′

l∑

m=−l

TC
l,m;l,m, (7.22)

where again the shorthand notationT̂C
l was introduced to indicate the diagonal blocks

of T̂C
l,m;l′,m′ . In a next step we transform̂TC

l to the corresponding T-matrix̂TC,B
l for

the Beltrami fields of free space

T̂
C,B
l = Vo · T̂C

l · (Vo)−1. (7.23)
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If we now identifyT̂
C,B
l with TB

l from (7.21) we find after some manipulations

Vi · jil ·
(

j̃il

)−1

·
(
Vi
)−1

= [Vo · jol +Vo ·ho
l · T̂C,B

l ] · [Vo · j̃ol +Vo · h̃o
l · T̂C,B

l ]−1. (7.24)

The quantities on the right-hand side are known, those on theleft-hand side are sought
for. An eigenvalue decomposition, i.e. a diagonalization,of the right-hand side yields

the matricesVi with the eigenvectors and the diagonal matrixjil ·
(

j̃il

)−1

with the

eigenvalues denoted asyl,1 andyl,2. Now we have to determine the wavenumberski
1

andki
2 by solving the equation

yl,k =
Jl

(
ki

ka
)

jl(ki
ka)

=
jl−1(k

i
ka)

jl(ki
ka)

− l

ki
ka
, (7.25)

for k = 1, 2. This can be done in an elegant manner in closed form without having
to solve a transcendental equation. Invoking a recursion relation for spherical Bessel
functions

jl−1(x)

jl(x)
+

1
jl(x)

jl+1(x)

=
2l + 1

x
, (7.26)

allows us to write the following quadratic equation forki
k, k = 1, 2,

yl,k +
l

ki
ka

+
1

yl+1,k + l+1
ki

k
a

=
2l + 1

ki
ka

. (7.27)

Of the two roots, one can be rejected by substituting the solution back in (7.25) and
checking which root is best. From the knowledge ofki

1 andki
2 andVi the equivalent

material parameters are eventually found using (7.2).
In this derivation we have tacitly assumed that the algorithm yields valueski

1 and
ki
2 andVi, i.e. equivalent material parameters, that are independent of l. In practice

this will not be the case and for different values ofl different equivalent material
parameters will be found. However, if a homogenization of the piece of metamaterial
is to make sense, then it is to be expected that the variation on the material parameters
for small values ofl will be small. Or stated differently the variation on the material
parameters will provide an error estimate for these material parameters.

7.3 Simulation technique

This section explains how we calculate the T-matrix of a spherical random ensemble of
particles. This is done in two stages. First we determine theT-matrix of one particle
using a MoM scattering simulation technique considering different incident fields.
Then we determine the T-matrix of the ensemble using an SPWMLFMA T-matrix
method.
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The T-matrix method requires that the circumscribing spheres of none of the par-
ticles overlap. This puts some limitations on the density ofthe particles. Generating
random ensembles of spheres comprising a given volume fraction is not that straight-
forward. We opted for the following method. First we place one particle at a random
position in the spherical piece of material, then we add a second particle at another
random position. If the circumscribing spheres do not overlap we leave the second
particle, otherwise we generate another random position for the particle. This process
is continued iteratively until the desired volume fractionof particles is obtained. This
algorithm has its limitations because it does not allow veryhigh volume fractions of
particles and because it has an exponential CPU-complexityas a function of the vol-
ume fraction. If the considered particles have no sphericalsymmetry then one also
needs to generate a random orientation for each particle in order to obtain an isotropic
metamaterial.

A random direction(θ, φ) for a particle is found by usingφ = 2πν1 andθ =

cos−1(2ν2 − 1) with ν1 andν2 uniformly distributed over[0, 1]. The particle is then
oriented along this direction and rotated around this direction by a random angleψ =

2πν3, with ν3 uniformly distributed over[0, 1]. A random position(r, θ, φ) for the
particle is found by again generating a random direction(θ, φ) and a random radial
coordinater = aν

1/3
4 with a the radius of the ensemble andν4 uniformly distributed

over [0, 1].

7.3.1 T-matrix of one particle

In this section we will present a brief overview of the simulation method used to
determine the T-matrix of a single particle. The T-matrix isfound from calculating
the scattering of vector multipoles withfl(·) = jl(·) and evaluating the field in a set
of points on a sphere surrounding the particle. This field is then projected back on the
vector multipoles as in Eqns. (2.51), (2.52), (2.53) and (2.54).

For the present discussion we assume that the particle is a PEC object with an
arbitrary shape. Non-PEC particles consisting of different isotropic materials can be
treated in a similar way [17]. We use an Electric Field Integral Equation (EFIE) for
the PEC particles considered here. The integral equations are solved using a Galerkin
MoM in which the unknown surface current density is discretized on a triangular
mesh with Rao-Wilton-Glisson vectorial basis functions. To achieve high accuracy the
singular part of the Green functions is extracted for both the self-patch and neighbor-
patch integrations. These integrations over the singular part are all being evaluated in
closed form.

For particles with a complex geometry the number of unknownsn to discretize
the surface current density can be very large. A direct solution of the MoM prob-
lem requiresO

(
n3
)

CPU-time and soon becomes unpractical. For that reason we
resort to an FMM that has anO (n log n) complexity. We assume the reader to be
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familiar with the basics of FMMs, for an introduction see [7]. The classical plane
wave based MLFMA breaks down at low frequencies due to loss ofnumerical ac-
curacy. This means that the boxes on the lowest level in the MLFMA for structures
containing significant sub-wavelength geometrical detail, as will be the case for par-
ticles with complex geometries, will contain a considerable number of unknowns.
Several attempts have been proposed to remedy this problem without having to resort
to non-diagonal translation operators. The crux is to incorporate more near-field in-
formation in the plane wave spectrum. This can be done by incorporating evanescent
plane waves leading to the Stable Plane Wave MLFMA (SPWMLFMA)[9] which
needs6 radiation patterns along6 different directions. Recently a new method, the
non-directional SPWMLFMA (NSPWMLFMA), was devised [11] thatavoids these6
different directions.

Often a particle will contain symmetries where two pairs of interacting triangles
are geometrically equal which means that the correspondingtwo elements in the MoM
matrix are equal. In [16] and [17] we have shown that a splay tree [18] allows to extract
these geometrical symmetries inO (n log n) computational complexity, wheren are
the number of unknowns. Even for structures with limited symmetry this method
yields savings in CPU-time. The extra memory needed for the splay tree is only
required during the set-up phase of the NSPWMLFMA. An implementation of the
NSPWMLFMA is available as open-source software from [19]. This also considers
non-PEC objects and includes an asynchronous parallelization of the algorithm for
distributed memory GRID environments connected by gigabitEthernet.

7.3.2 T-matrix of an ensemble

To determine the T-matrix of an ensemble ofN particles from the T-matrices of these
particles we will use the T-matrix approach as described in e.g. 2.4.3 or [5]. If each
T-matrix containsM2 elements then this requires the solution of a linear system of
NM unknowns. SinceN will be large it is not possible to use a direct or even an
iterative solution of this system. The constituents are small compared to wavelength,
although the ensemble can be several wavelengths in size. This means that the numer-
ical problem is at the same time a low- and a high-frequency problem. The solution
of the linear system can again be accelerated using an FMM technique. In order to be
able to use small boxes and to fully exploit the potential of the FMM we will again re-
sort to the SPWMLFMA as derived by [9]. In this way it becomes possible to obtain a
computational and memory complexity ofO (NM logNM). The SPWMLFMA re-
quires the conversion of the vectorial multipoles into evanescent plane waves along6
different directions. In [10] a method has been devised thatreduces the computational
complexity of this conversion by a factor of6.
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7.4 Verification

7.4.1 Lüneburg lens

A Lüneburg lens is a spherical object of which the permittivityhas a radial dependence
given byε(r) = ε0(2 − r2

a2 ) with a the radius of the lens [20]. It has the property to
focus an incident plane wave at a point on the surface of the lens, at least in the
geometric optics regime. Let us now consider a metamaterialLüneburg lens witha =

8λ built from a large number of spherical particles with increasing density towards to
the center of the lens. The density as a function of the radiuswas guessed from the
Maxwell-Garnett approximation [20] which yields a radial dependence of the volume
fraction of inclusions given by

f(r) =
1 − r2

a2

4 − r2

a2

εr,incl + 2

εr,incl − 1
. (7.28)

The wavelength is2m, the particles have a diameter of0.12λ and a relative permittivity
of εr,incl = 12. In the exampleN = 42899 particles andM = 6 vector multipoles per
particle were considered leading to257394 unknowns. Figure 1 shows the focusing
of the amplitude of the field when a plane wave is incident on the lens from the right.
The example proves the validity of homogenization using Maxwell-Garnett and the
accuracy of the simulation method.

(a) (b)

Figure 7.1: Amplitude of the field in a metamaterial Lüneburg lens illuminated by a plane wave
from the right. The right figure shows the amplitude is in dB.

7.4.2 Influence of the radius a

Simulations to obtain effective material parameters show similarities with deriving
material parameters from measurements. We will illustrateone of these similarities
here: the influence of resonances of the set-up. Let us consider a spherical arrange-
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ment with radiusa = 0.2m of N = 2409 dielectric spherical particles with radius
0.01m and relative permittivity20. Figure 2 shows the effective relative permittiv-
ity and permeability as a function of frequency obtained forl = 1 (left) and l = 2

(right). We note several resonances in the curve which correspond to zeroes ofjl (ka)
(solid vertical lines) andJl (ka) (dashed vertical lines). By considering differentl-
values or spherical arrangements of different radii the effect of these resonances can
be eliminated.
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Figure 7.2: Effective relative permittivity and permeability as a function of frequency for l = 1
(left) andl = 2 (right).

7.4.3 Limitations

The FMM algorithm is based on an iterative solution of the linear system of equations
that results from theT -matrix method. It provides a fast matrix-vector multiplication
in each iteration. However, an FMM will only be successful ifthe number of iterations
remains much smaller than the number of unknownsNM . The number of iterations
needed in iterative solvers is related to the condition number of the linear system of
equations [21].

Let us consider a small spherical ensemble withN = 125 spherical particles
with M = 30, i.e. NM = 3750 unknowns. The spherical ensemble has a radius
a = 0.082m and the particles have a radius of0.0112m. We chose a frequency of
f = 900MHz. Figure 3 shows the number of iterationsNit needed to obtain a relative
accuracy of10−7 in the BICGSTAB iterative solution method [21] as a functionof
the parametert. The parametert determines the material parameters of the spherical
inclusions. The number of iterations was limited to4000.

We note that when the relative permittivity and/or the permeability of the inclu-
sions drops below a value of−0.75 the number of iterations increases fast. This limits
the use of the method as discussed in this paper for negative index materials or plas-
monic materials. Things are somewhat better than illustrated here because we did not
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Figure 7.3: Number of iterations as a function of material parameters of the inclusions.

include losses. Losses will reduce the condition number andthe number of iterations.
An example of a negative index medium with losses simulated with our method was
presented in [12] and verified with Maxwell-Garnett mixing rules.

To get an idea of the origin of these condition number problems let us consider
the Mie scattering at a homogeneous negative index sphere with a radiusa = 8m, a
relative permittivityεr = −1.5 and a relative permeabilityµr = −1 at a frequency
f = 47.7MHz. Figure 4 shows the amplitude and phase of the electric field component
along the direction corresponding to the linear polarization of the incident plane wave
in the cross-section of the sphere. We note very high field intensities at the surface
of the sphere that decay quickly even for moderate|εr| and |µr|. If we consider a
spherical arrangement of particles to achieve this behavior this means that intricate
interactions between the particles are necessary. Note also the reversal of the phase
inside the sphere as expected for a negative index material.

In principle, the condition problem can be resolved by usingan adequate precondi-
tioner. For periodic arrangements of scatterers, such as inthe realm of electromagnetic
crystals, successful preconditioners have been devised [22]. Due to the random ar-
rangement of particles these cannot be applied here. In [8] asymmetric Gauss-Seidel
preconditioner is used for particles with positive permittivity and permeability. This
preconditioning problem is focus of further challenging research.

There are also other limitations on the applicability of this method. One such lim-
itation has to do with the fundamental limitations of homogenization. Suppose having
a periodic arrangement of particles that form an electromagnetic crystal then it is not
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(a) (b)

Figure 7.4: Plane wave incident on a homogeneous negative index sphere. The left figure
shows the amplitude and the right figure the phase of the component of theelectric field along
the polarization of the incident plane wave.

obvious what homogenization means. It is to be expected thatwhen the particles are
moved randomly from the periodic lattice homogenization will not suddenly become
meaningful. It is our belief that one has to resort to particles that are small compared
to the wavelength.

7.5 Numerical results

7.5.1 A non-chiral particle

Consider a spherical ensemble of loop-wire PEC particles. Figure 5 (left) shows the
current density on the particle, as well as the triangular mesh for the MoM simulation.
The diameter of the inclusions is2.202mm and the diameter of the wires is0.2mm.
The number of unknowns per inclusion in the MoM wasn = 4316. We consider
spherical ensembles withN equal to126, 248, 501, 1016 and1981 particles with a
particle density of0.0345mm−3 and a frequency of5.98GHz. Homogenization yields
the following material parameters (average over the5 different ensembles)

[
ζ√

ε0µ0

µ
µ0

ε
ε0

ξ√
ε0µ0

]

=

[
0.00000003 + 0.000005j 0.9428 − 0.00001j

1.26427 − 0.00005j −0.00000008 − 0.000005j

]

.

(7.29)
Note that, as expected, no chirality is found and that the losses are extremely small.
Tables 1 and 2 show the material parameters for the 5 ensembles as a function of the
parameterl used in the homogenization procedure of Section 2.3. We onlysee very
small variations in the material parameters as a function ofl andN .
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(a) (b)

Figure 7.5: Current density on a wire-loop particle (left) and a chiral particle (right).

l\N 126 248 501 1016 1981
1 1.2686 1.2627 1.2686 1.2509 1.2610
2 1.2631 1.2621 1.2642 1.2697 1.2656
3 1.2599 1.2639 1.2632 1.2728 1.2624
4 1.2593 1.2665 1.2633 1.2763 1.2616

Table 1: Effective relative

permittivity as a function ofl andN for the wire-loop particle of Fig. 5 (left).

l\N 126 248 501 1016 1981
1 0.94117 0.94271 0.94079 0.95330 0.94356
2 0.94263 0.94275 0.94199 0.94129 0.94018
3 0.94399 0.94267 0.94228 0.94091 0.94235
4 0.94474 0.94262 0.94246 0.94066 0.94302

Table 2: Effective

relative permeability as a function ofl andN for the wire-loop particle of Fig. 5
(left).

7.5.2 A chiral particle

As a last example we consider an ensemble of spiral PEC particles. Figure 5 (right)
shows the current density on the particle, as well as the triangular mesh for the MoM
simulation. The diameter of the inclusions is2.202mm and the wire has an elliptical
cross-section with major diameter0.14mm and minor diameter0.07mm. The number
of unknowns per inclusion in the MoM wasn = 4584. We consider spherical ensem-
bles withN equal to126, 248, 501, 1016 and1981 particles with a particle density
of 0.0345mm−3 and a frequency of5.98GHz. Homogenization yields the following
material parameters (average over the5 different ensembles)

[
ζ√

ε0µ0

µ
µ0

ε
ε0

ξ√
ε0µ0

]

=

[
0.0007 + 0.2033j 1.1072 − 0.0004j

1.6347 − 0.0014j −0.0007 − 0.2032j

]

. (7.30)
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We find lossless reciprocal bi-isotropic, i.e. chiral, material parameters as expected.
Now consider a rectangular block of this metamaterial of size 2λ × 2λ × λ with

an inclusion density of0.023mm−3 at a frequency of5.98GHz. This means that there
areN = 11580 inclusions. We takeM = 30 vector multipoles per particle leading
to NM = 347400 unknowns in the T-matrix method. Using a brute-force MoM
analysis, as e.g. in [3], of this sample would result in a problem ofNn = 53082720

unknowns. Although currently no such large MoM problems have been solved it is
likely to happen in the foreseeable future [23] and [24].

We excite the block of metamaterial in two ways. Once using a dipole in the
symmetry plane of the block (Fig. 6, left) (symmetric configuration) and once using a
dipole in the top plane of the block (Fig. 6, right) (asymmetric configuration). Figure
7 shows the amplitude of the magnetic field in thexy-plane of the block for both
situations. Note the symmetry of the field for the symmetric configuration and the
asymmetry for the asymmetric configuration.

(a) (b)

Figure 7.6: Rectangular block of chiral metamaterial excited by a dipole in a symmetry plane
(left) an outside a symmetry plane (right).

(a) (b)

Figure 7.7: Amplitude of thex-component of the magnetic field in thexy-plane corresponding
to the configurations of Fig. 6.
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Now we proceed as follows. First we again determine the effective material para-
meters for a spherical ensemble of these particles and this density. Then we use the
bi-isotropic version of the Maxwell-Garnett mixing rule [20] to determine the mate-
rial parameters of equivalent homogeneous chiral spherical particles of the same size
and density that yield the same effective material parameters. Finally we use these
spherical chiral particles in the asymmetric configurationof Fig. 6 of the rectangular
block. The amplitude of the magnetic field in the symmetry plane is shown on the left
of Fig. 8. Note the similarity with the left figure of Fig. 7. Finally we put the chirality
to zero in our spherical particle and perform again the same simulation. The result on
the right of Fig. 8 now is symmetric proving that the asymmetry in the right figure of
Fig. 7 and the left figure of Fig. 8 indeed is due to chirality.

(a) (b)

Figure 7.8: Amplitude of thex-component of the magnetic field in thexy-plane for the configu-
ration on the right of Fig. 6 when considering equivalent spherical chiral particles and non-chiral
particles.

7.6 Conclusions

It was shown that recent advances in computational electromagnetics allow full-wave
simulations of finite pieces of metamaterials comprising tens of thousands of inclu-
sions. In particular the use of the NSPWMLFMA MOM combined with the SP-
WMLFMA T-matrix method was shown to be capable of deriving effective material
parameters of metamaterials. We also derived a closed form formula to find the ef-
fective material parameters from the full-wave simulations without requiring fitting
algorithms and Monte Carlo simulations. Finally some limitations of the method have
been highlighted, some of which, hopefully, will be alleviated during further research.
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Conclusion and future
research
In this work, a number of novel techniques have been developed that can be used to
efficiently simulate LF and broadband FMMs. For example, thetechniques introduced
in Chapter 3 yield an acceleration of at most a factor6 for the (dis)aggregation stage
in FMMs based on the spectral decomposition of the Green function. This was shown
using theoretical as well as experimental grounds. The Beltrami decomposition tech-
nique is very interesting in this respect because it is not limited to FMMs that use
the spectral decomposition. Indeed, it can be applied to anyvectorial FMM, thereby
yielding an acceleration of a factor2 in the (dis)aggregation stage.

In Chapter 4 a stabilized two dimensional addition theorem was introduced. This
addition theorem is found by diagonalizing the multipole addition theorem, but only
after a normalization factor has been introduced. This approach yields a decomposi-
tion of the Green function that remains numerically stable for all frequencies. Also it
has the additional advantage that the region of converge is the complement of a circu-
lar disk which, compared to FMMs using the spectral decomposition, results in a much
simpler tree. A fully broadband FMM can be constructed usingthis new addition the-
orem. Furthermore, it was shown that this decomposition is more optimal for use in
an FMM than the multipole expansion. A disadvantage is the fact that the method
requires two radiation patterns. Future research will mainly focus on the reduction of
this number to one.

A three dimensional generalization, the NSPWMLFMA, of the technique pro-
posed in Chapter 4 was introduced in Chapter 5. As in the two dimensional case, the
resulting addition theorem is LF stable and converges in a region that is the comple-
ment of a sphere. A disadvantage is the fact that it requires aQR to determine the dis-
cretization points, which has the immediate consequence ofdense interpolation matri-
ces. Because of this, the NSPWMLFMA is not broadband in its ownright. However,
it is possible to construct a broadband FMM by coupling the NSPWMLFMA with the
MLFMA. This hybrid has been implemented in the parallel framework OpenFMM [1]
and the Method of Moments solver Cassandra. An example of thecapabilities of this
solver is shown in Figure 7.9. This simulation was performedusing the combined field
integral equation, by means of341541 RWG basis functions. The number of required
iterations was151 to converge toǫ = 10−3. The simulation was run on16 proces-
sors, and each iteration took20s to complete. The Thunderbird 2 is14.15m long and
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the wavelength of the impinging plane wave is6.28m. Clearly this is a broadband
problem. The upper level of the FMM was done using the MLFMA, while the levels
below that are handled by the NSPWMLFMA. Future research willfocus on finding
a way to do the interpolations of the NSPWMLFMA in a fast way. This would allow
the method to be used for all frequencies, not just LF. Another interesting topic is
the study of the distribution of the discretization points that are selected by the QR.
It might for example be possible to find a criterium that thesepoints have to satisfy
in order to get a numerically stable decomposition. Anotherinteresting question is
whether the NSPWMLFMA can be made even more accurate or not, i.e. are there
fundamental limits to its accuracy ?

Figure 7.9: The magnitude (dB) of the electric currents on a PEC Thunderbird 2, illuminated
by a frontally impinging plane wave.

Compared to the NSPWMLFMA, the fully analytical LF stable FMMintroduced
in Chapter 6 has the advantage that the interpolations can bedone using FFTs, but
the disadvantage that it generally uses four times more discretization points. For the
rest it offers similar capabilities as the NSPWMLFMA. Indeed, although the fast in-
terpolations would in principle allow a fully broadband algorithm, this is prevented
by an HF numerical instability in the addition theorem. Therefore a coupling with
the MLFMA is required, as for the NSPWMLFMA. Future research on this analytical
FMM will largely coincide with the research on the NSPWMLFMA.Indeed, these
two lines of research both search for the holy grail of FMM research: an analytically
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known plane wave decomposition of the Green function that isstable for all frequen-
cies, can achieve very high accuracies and yields an FMM thatis as efficient as the
MLFMA would be without numerical roundoff errors. Such an algorithm would, apart
from being very efficient and much more elegant than a hybrid method, allow an easy
implementation since no ad hoc criteria are needed that determine when to switch
between algorithms. Such a fully broadband algorithm wouldalso be invaluable for
the construction of a broadband time domain algorithm. Indeed, if the algorithm de-
pends on the frequency in a smooth way, the inverse Fourier transform can be taken
efficiently.

In Chapter 7, the methods developed in Chapters 5 and 6 have been used to de-
termine the T-matrix of an entire spherical sample of metamaterial. This T-matrix
was then compared to the analytical expression of the T-matrix of a homogeneous
bi-isotropic sphere. The resulting equations have been shown to reduce to a simple
quadratic equation in the effective material parameters, which is easily solved. The
effectiveness of the approach has been demonstrated by means of numerical tests on
a number of metamaterials. Some limitations of the technique were also encountered.
For example, when the particles that constitute the metamaterial are highly resonant
or comprised of a material with a negativeε or µ, the iterative solver converges very
slowly. Therefore, future research will consist of a searchfor effective preconditioners
for this kind of problems.
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APPENDIXA

Scalar and vector spherical
harmonics and wave

operators

A.1 Scalar spherical harmonics

Here the spherical harmonics will be introduced. The spherical harmonics are func-
tions on the unit sphere, therefore they are usually defined with the spherical coor-
dinatesθ andφ as arguments. However, here it is convenient to use an equivalent
definition, which simplifies the notation when rotations areconsidered. It uses a unit
vectorr̂ = r

r as argument, whose componentsx̂ = x
r , ŷ = y

r andẑ = z
r obviously

satisfyx̂2 + ŷ2 + ẑ2 = 1. Then the definition is

Yl,m (r̂) = (−1)mKl,m

2ll!
(x̂+ jŷ)

m Pm
l (ẑ) , ∀l ∈ [0,∞], ∀m ∈ [−l, l]. (A.1)

For integerl andm so thatl ∈ [0,∞] andm ∈ [−l, l]. The functionPm
l (·) is defined

as

Pm
l (t) =

(
d

dt

)l+m
[
t2 − 1

]l
, (A.2)

and

Kl,m =

√

2l + 1

4π

(l −m)!

(l +m)!
. (A.3)

The indexl is called the degree andm is called the order of the spherical harmonic.
Sometimes it is convenient to use the usual(θ, φ) form of the spherical harmonics. In
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that case the notation should be interpreted as follows

Yl,m (θ, φ) = Yl,m (r̂(θ, φ)) , (A.4)

with
r̂(θ, φ) = cosφ sin θêx + sinφ sin θêy + cos θêz. (A.5)

A.1.1 Properties

Using definitions (A.1) and (A.4), the following propertiesof the spherical harmonics
are easily proven

Yl,m (−r̂) = (−1)lYl,m (r̂) , (A.6)

Yl,m (2π − θ, φ+ π) = Yl,m (θ, φ) . (A.7)

For real arguments the following holds

(−1)mYl,−m (r̂) = Y ∗
l,m (r̂) . (A.8)

For complex arguments this has to be generalized to

(−1)mYl,−m (r̂) = Y ∗
l,m (r̂∗) , (A.9)

such that the complex conjugation of the entire function offsets the conjugation of the
argument. The so-called spherical harmonic addition theorem is given by

Pl (r̂1 · r̂2) =
4π

2l + 1

l∑

m=−l

(−1)mYl,−m (r̂1)Yl,m (r̂2) , (A.10)

with the Legendre polynomials defined as

Pl (t) =
1

2ll!

(
d

dt

)l
[
t2 − 1

]l
. (A.11)

Another useful property is

Yl,m (êz) =

√

2l + 1

4π
δm,0. (A.12)

Furthermore the spherical harmonics are closely connectedto the angular momentum
operatorĽ

Ľ = −jr × ∇̌ = j

[

êθ
1

sin θ
∂φ − êφ∂θ

]

. (A.13)
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Indeed, the spherical harmonics are eigenfunctions of the operatoršL
2

andĽz = êz·Ľ

Ľ
2
Yl,m (r̂) = l(l + 1)Yl,m (r̂) , (A.14)

ĽzYl,m (r̂) = mYl,m (r̂) . (A.15)

When the integration over the unit sphere is defined as

∫

S2

F (r̂)dr̂ =

∫ 2π

0

∫ π

0

F (r̂(θ, φ)) sin θdθdφ, (A.16)

with r̂(θ, φ) given by (A.5), the operatoršL
2

andĽz = êz ·Ľ are Hermitian operators
with respect to the dot product defined by this integration. Therefore, the spherical
harmonics are orthogonal with respect to this dot product. Due to the specific choice
for Kl,m, they are also normalized, leading to the following orthonormality relation

∫

S2

Yl1,m1
(r̂)Y ∗

l2,m2
(r̂) dr̂ = δl1,l2δm1,m2

. (A.17)

In addition, the spherical harmonics are also complete, i.e.

∞∑

l=0

l∑

m=−l

Yl,m

(
r̂
′)
∫

S2

F (r̂)Y ∗
l,m (r̂) dr̂ = F (r̂′). (A.18)

Other useful identities contain the so-called ladder operators

Ľ± = Ľx ± jĽy = (êx ± jêy) · Ľ, (A.19)

with the following properties

Ľ±Yl,m (r̂) = λ±l,mYl,m±1 (r̂) , (A.20)

and
λ±l,m =

√

(l ±m+ 1)(l ∓m). (A.21)

Recurrence relations constitute another set of useful identities. With the special cases

Y1,−1 (r̂) =

√

3

8π
(x̂− jŷ), (A.22a)

Y1,0 (r̂) =

√

3

4π
ẑ, (A.22b)

Y1,+1 (r̂) = −
√

3

8π
(x̂+ jŷ). (A.22c)
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the following holds

Y1,−1 (r̂)Yl,m (r̂) = −Bm
l Yl−1,m−1 (r̂) +B−m+1

l+1 Yl+1,m−1 (r̂) , (A.23a)

Y1,0 (r̂)Yl,m (r̂) = Am
l Yl−1,m (r̂) +Am

l+1Yl+1,m (r̂) , (A.23b)

Y1,+1 (r̂)Yl,m (r̂) = −B−m
l Yl−1,m+1 (r̂) +Bm+1

l+1 Yl+1,m+1 (r̂) , (A.23c)

with Am
l enBm

l given by

Am
l =

√

3

4π

√

(l +m)(l −m)

(2l + 1)(2l − 1)
, (A.24)

Bm
l =

√

3

4π

√

(l +m)(l +m− 1)

2(2l + 1)(2l − 1)
. (A.25)

These properties can be proven by induction, or they can be seen as a special case of
the more general formula

Yl1,m1
(r̂)Yl2,m2

(r̂) =
∑

l3,m3

Al1,m1;l2,m2;l3,m3
Y ∗

l3,m3
(r̂) , (A.26)

with

Al1,m1;l2,m2;l3,m3

=

∫

S2

Yl1,m1
(r̂)Yl2,m2

(r̂)Yl3,m3
(r̂) dr̂ (A.27)

=

√

(2l1 + 1)(2l2 + 1)(2l3 + 1)

4π

(
l1 l2 l3

0 0 0

)(
l1 l2 l3

m1 m2 m3

)

. (A.28)

The expressions between brackets are the3j-Wigner symbols. Another useful recur-
rence is

(x̂− jŷ)λ+
lmYl,m+1 (r̂) + 2mẑYl,m (r̂) + λ−lm(x̂+ jŷ)Yl,m−1 (r̂) = 0. (A.29)

This relation is the manifestation of the operator equality

(x̂− jŷ)Ľ+ + 2ẑĽz + (x̂+ jŷ)Ľ− = 2r̂ · Ľ = 0 (A.30)

A.1.2 Efficient calculation

The recurrence relations (A.23) can be used to efficiently calculate the spherical har-
monics. The required values forY1,m (r̂) are provided in (A.22). First substitute



A.2 Wigner rotation matrices 179

m = l in (A.23c) andm = −l in (A.23a) to obtain

Yl+1,l+1 (r̂) =

√

2l + 3

l + 1

√

4π

3
Y1,1 (r̂)Yl,l (r̂) , (A.31)

Yl+1,−(l+1) (r̂) =

√

2l + 3

l + 1

√

4π

3
Y1,−1 (r̂)Yl,−l (r̂) . (A.32)

With these equations the spherical harmonics withm = ±l can be calculated from
the starting valueY0,0 (r̂) = 1√

4π
. Subsequently, for everym, the recurrence (A.23b)

overl

Yl+1,m (r̂) =
1

Am
l+1

[Y1,0 (r̂)Yl,m (r̂) −Am
l Yl−1,m (r̂)] , (A.33)

is used to calculate all necessary spherical harmonics. Forthe special case where
l = |m|, this equation reduces to the simpler form

Y|m|+1,m (r̂) = Y1,0 (r̂)Y|m|,m (r̂)
√

2 |m| + 3

√

4π

3
. (A.34)

All the recurrences in this process are stable in the direction in which they are used.
Moreover, the calculation of the coefficientsAm

l andBm
l requiresO (1) operations.

Therefore the calculation of all theL2 spherical harmonics of degree lower thanL
requiresO

(
L2
)

operations, which is clearly the best possible complexity.

A.2 Wigner rotation matrices

Now the transformation properties under rotations of the spherical harmonics will be
given. We assume the rotation to be defined in terms of an orthogonal rotation matrix
R, such that a unit vector̂r is rotated intôr′ = R · r̂ when the rotation is applied. A
general rotation can also be represented by means of a rotation axisâ and a rotation
angleα. In that case the rotation matrix will acquirêa andα as arguments. Some
details of this representation and a way to calculateR(â, α) can be found in A.2.3.
The most general expansion of a rotated spherical harmonic is given by

Yl1,m1
(R · r̂) =

∞∑

l2=0

l2∑

m2=−l2

dl1,l2
m1,m2

(R)Yl2,m2
(r̂) (A.35)

The operatořL
2

= Ľ · Ľ is rotationally invariant due to the scalar product (this can
also be proven directly by means of (A.13)), therefore it canbe easily applied to both
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sides of (A.35)

l1(l1 + 1)Yl1,m1
(R · r̂) =

∞∑

l2=0

l2∑

m2=−l2

l2(l2 + 1)dl1,l2
m1,m2

(R)Yl2,m2
(r̂) (A.36)

ExpandingYl1,m1
(R · r̂) by means of (A.35) and integrating over the unit sphere with

Y ∗
l3,m3

(r̂) yields

l1(l1 + 1)dl1,l3
m1,m3

(R) = l3(l3 + 1)dl1,l3
m1,m3

(R) (A.37)

Or more explicitly
dl1,l3

m1,m3
(R) = 0 ∀l1 6= l3 (A.38)

Apparently, spherical harmonics of degreel are transformed into a sum of spherical
harmonics of the same degree. Therefore Eqn. (A.35) can be written as

Yl,m1
(R · r̂) =

l∑

m2=−l

Dl
m1,m2

(R)Yl,m2
(r̂) (A.39)

The matricesDl
m1,m2

(R) (labeled withl and function ofR) are widely known as the
Wigner rotation matrices, or simply Wigner matrices.

A.2.1 Properties

Since integration over the unit sphere is rotationally invariant

∫

S2

Yl1,m1
(r̂)Y ∗

l2,m2
(R · r̂) dr̂ =

∫

S2

Yl1,m1

(
R−1 · r̂

)
Y ∗

l2,m2
(r̂) dr̂, (A.40)

the Wigner matrices are unitary

Dl∗
m2,m1

(R) = Dl
m1,m2

(
R−1

)
. (A.41)

Or more explicitly

l∑

m=−l

Dl∗
m,m1

(R)Dl
m,m2

(R) = δm1,m2
. (A.42)

Another property is given by

Dl
m1,0 (R) =

l∑

m2=−l

Dl
m1,m2

(R) δm2,0 =

√

4π

2l + 1
Yl,m1

(R · êz) . (A.43)



A.2 Wigner rotation matrices 181

Therefore the spherical harmonics are a special case of the Wigner matrices. Another
special case of the Wigner matrices occurs when a rotation around thez-axis over an
angleβ is used

Dl
m1,m2

(R(êz, β)) = ejm1βδm1,m2
, (A.44)

with

R(êz, β) =





cosβ − sinβ 0

sinβ cosβ 0

0 0 1



 . (A.45)

A.2.2 Efficient calculation of the Wigner matrices

For the efficient calculation of the Wigner matrices, the approach advocated in [1]
will be adopted. The Wigner matrix forl = 0 is trivially 1. The Wigner matrixD1 for
l = 1

D1 =





D1
−1,−1 (R) D1

−1,0 (R) D1
−1,1 (R)

D1
0,−1 (R) D1

0,0 (R) D1
0,1 (R)

D1
1,−1 (R) D1

1,0 (R) D1
1,1 (R)



 , (A.46)

can be easily calculated fromR. Starting from Eqns. (A.22)





Y1,−1 (r̂)

Y1,0 (r̂)

Y1,1 (r̂)



 =
1

2

√

3

π






x̂−jŷ√
2

ẑ

− x̂+jŷ√
2




 =

1

2

√

3

π






1√
2

− j√
2

0

0 0 1

− 1√
2

− j√
2

0






︸ ︷︷ ︸

M





x̂

ŷ

ẑ



 , (A.47)

it is easily seen that

1

2

√

3

π
M · R ·





x̂

ŷ

ẑ



 =





Y1,−1 (R · r̂)

Y1,0 (R · r̂)

Y1,1 (R · r̂)



 =
1

2

√

3

π
D1 · M ·





x̂

ŷ

ẑ



 . (A.48)

Therefore the Wigner matrix is given by

D1 = M · R · MH , (A.49)

since the matrixM is unitary. Recurrences will now be deduced that allow the Wigner
matrices forl > 1 to be calculated recursively. LetQ denote the following

Q =





Y1,−1 (R · r̂)

Y1,0 (R · r̂)

Y1,1 (R · r̂)



Yl,m (R · r̂) . (A.50)
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Then the rotated version of (A.23) is

Q =





−Bm
l Yl−1,m−1 (R · r̂) +B−m+1

l+1 Yl+1,m−1 (R · r̂)

Am
l Yl−1,m (R · r̂) +Am

l+1Yl+1,m (R · r̂)

−B−m
l Yl−1,m+1 (R · r̂) +Bm+1

l+1 Yl+1,m+1 (R · r̂)



 . (A.51)

Q can also be expanded as follows

Q =

l∑

m′=−l

Dl
m,m′ (R) D1 ·





Y1,−1 (r̂)

Y1,0 (r̂)

Y1,1 (r̂)



Yl,m′ (r̂) , (A.52)

which, using Eqns. (A.23), leads to

Q =

l∑

m′=−l

Dl
m,m′ (R) D1 ·






−Bm′

l Yl−1,m′−1 (r̂) +B−m′+1
l+1 Yl+1,m′−1 (r̂)

Am′

l Yl−1,m′ (r̂) +Am′

l+1Yl+1,m′ (r̂)

−B−m′

l Yl−1,m′+1 (r̂) +Bm′+1
l+1 Yl+1,m′+1 (r̂)




 .

(A.53)

Now integrate the two expression forQ, namely (A.51) and (A.53), withYl+1,m1
(r̂)

over the unit sphere. This yields, after a tedious calculation

D1 ·





B−m1

l+1 Dl
m,m1+1 (R)

Am1

l+1D
l
m,m1

(R)

Bm1

l+1D
l
m,m1−1 (R)



 =





B−m+1
l+1 Dl+1

m−1,m1
(R)

Am
l+1D

l+1
m,m1

(R)

Bm+1
l+1 Dl+1

m+1,m1
(R)



 . (A.54)

This equation thus yields a means of calculating the Wigner matrix for degreel + 1

from the Wigner matrix for degreel. In practice the second component of Eqn. (A.54)
is used to calculate allDl+1

m,m1
(R) for all m1 and form ∈ [−l, l]. Then the first and

third components are used to calculate allDl+1
m,m1

(R) for all m1 and form = −l − 1

andm = l + 1 respectively.

A.2.3 Rotations defined by axis and angle

Sometimes, it is more convenient to represent a rotation as the couple(â, α). Here
the unit vectorâ denotes the axis around which the rotation is performed andα is
the rotation angle. The direction of the rotation is determined by means of the right
hand rule. When the rotation has to be performed on a vectorv, the resultv′ can be
easily obtained by means of quaternions. Indeed, when the vectorv is encoded in the
quaternionc as follows

c =
[
0 vx vy vz

]
, (A.55)
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and the unit quaternionq contains the rotation parameters as follows,

q =
[
cos α

2 â · êx sin α
2 â · êy sin α

2 â · êz sin α
2

]
, (A.56)

thenv′ can be found by means of

c′ =
[
0 v′x v′y v′z

]
= q × c× q−1. (A.57)

Here,× denotes quaternion multiplication andq × q−1 =
[
1 0 0 0

]
. When the

rotation matrixR(â, α) corresponding to the rotation is required, it can be obtained
by using (A.57) on the three Cartesian unit vectors.

A.3 Vector spherical harmonics

The vector spherical harmonicsX l,m (r̂) andW l,m (r̂) are defined as follows

X l,m (r̂) =
ĽYl,m (r̂)
√

l(l + 1)
, (A.58)

W l,m (r̂) = r̂ × X l,m (r̂) . (A.59)

A.3.1 Properties

The vector spherical harmonics satisfy many properties akin to those satisfied by the
spherical harmonics. Among these are the transformation properties under inversion

X l,m (−r̂) = (−1)lX l,m (r̂) , (A.60)

W l,m (−r̂) = (−1)l+1W l,m (r̂) , (A.61)

and under complex conjugation

X∗
l,m (r̂∗) = (−1)m+1X l,−m (r̂) , (A.62)

W ∗
l,m (r̂∗) = (−1)m+1W l,−m (r̂) . (A.63)

The vector spherical harmonics do not have a radial component

r̂ · X l,m (r̂) = 0, (A.64)

r̂ · W l,m (r̂) = 0, (A.65)
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which is readily proven by means of the definition (A.58) and (A.59). The following
properties are also useful and easily proven with elementary vector algebra

W l,m (r̂) · W l′,m′ (r̂) = X l,m (r̂) · X l′,m′ (r̂) , (A.66)

W l,m (r̂) · X l′,m′ (r̂) = −X l,m (r̂) · W l′,m′ (r̂) . (A.67)

The following orthogonality properties hold

∫

S2

X l1,m1
(r̂) · X∗

l2,m2
(r̂) dr̂ = δl1,l2δm1,m2

, (A.68)

∫

S2

W l1,m1
(r̂) · W ∗

l2,m2
(r̂) dr̂ = δl1,l2δm1,m2

, (A.69)

∫

S2

X l1,m1
(r̂) · W ∗

l2,m2
(r̂) dr̂ = 0, (A.70)

∫

S2

W l1,m1
(r̂) · X∗

l2,m2
(r̂) dr̂ = 0. (A.71)

Equations (A.68) and (A.69) are easily proven using the orthonormality of the spher-
ical harmonics and the fact thaťL is Hermitian. Equations (A.70) and (A.71) are
proven by means of̌L · ∇̌Yl,m (r̂) = 0. The completeness relation is given by

∑

l,m

∫

S2

[
X l,m (r̂)X∗

l,m

(
r̂
′)+ W l,m (r̂) W ∗

l,m

(
r̂
′)] · F (r̂′)dr̂

′

= [1− r̂r̂] · F (r̂), (A.72)

It can be seen that the radial component ofF (r̂) is lost. This is obviously caused by
the fact that the vector spherical harmonics are purely tangential. To get a complete
basis, a third set of vector spherical harmonics that has a radial component must be
added. This set is given bŷrYl,m (r̂). The additional orthonormality properties are
easily shown, however, we will not further elaborate on thisthird set since it is not
required in this work.

Under rotations, the vector spherical harmonics transformin the same manner as
the spherical harmonics, i.e.

R−1X l,m1
(R · r̂) =

l∑

m2=−l

Dl
m1,m2

(R) X l,m2
(r̂) , (A.73)

R−1W l,m1
(R · r̂) =

l∑

m2=−l

Dl
m1,m2

(R) W l,m2
(r̂) . (A.74)
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This can be proven forX l,m1
(R · r̂) as follows

R−1X l,m1
(R · r̂) = −jR−1 ·

[
(R · r) × (R · ∇̌)

]
Yl,m1

(Rr̂)
1

√

l(l + 1)
(A.75)

Because the cross product of two rotated vectors is the rotated cross product , this can
be simplified to

R−1X l,m1
(R · r̂) =

ĽYl,m1
(Rr̂)

√

l(l + 1)

=
l∑

m2=−l

Dl
m1,m2

(R)X l,m2
(r̂) (A.76)

and likewise forW l,m1
(R · r̂)

R−1W l,m1
(R · r̂) = R−1 · [(R · r̂) × X l,m1

(R · r̂)]

= r̂ ×
[
R−1X l,m1

(R · r̂)
]

=

l∑

m2=−l

Dl
m1,m2

(R)W l,m2
(r̂) . (A.77)

A recurrence overm for the vector spherical harmonics can be found by applying
Ľ to Eqn. (A.29), yielding

2jW l,m (r̂)

= (x̂− jŷ)λ+
lmX l,m+1 (r̂) + 2mẑX l,m (r̂) + λ−lm(x̂+ jŷ)X l,m−1 (r̂) .

(A.78)

Taking the cross product witĥr yields a similar expression

−2jX l,m (r̂)

= (x̂− jŷ)λ+
lmW l,m+1 (r̂) + 2mẑW l,m (r̂) + λ−lm(x̂+ jŷ)W l,m−1 (r̂) .

(A.79)

Expressions (A.78) and (A.79) are coupled recurrences. They can be decoupled by
using the linear combinations

V ±
l,m (r̂) = X l,m (r̂) ± jW l,m (r̂) . (A.80)
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Equations (A.78) and (A.79) then become

±2V ±
l,m (r̂)

= (x̂− jŷ)λ+
lmV ±

l,m+1 (r̂) + 2mẑV ±
l,m (r̂) + λ−lm(x̂+ jŷ)V ±

l,m−1 (r̂) .

(A.81)

The vector spherical harmonics also satisfy the following easily proven identities

X l1,m1

(

k̂
)

· X l2,m2

(

k̂
)

=
Ľ

2 − l1(l1 + 1) − l2(l2 + 1)

2
√

l1(l1 + 1)l2(l2 + 1)
Yl2,m2

(

k̂
)

Yl1,m1

(

k̂
)

, (A.82)

X l1,m1

(

k̂
)

· W l2,m2

(

k̂
)

=
−jr∇̌

√

l1(l1 + 1)
·
[

Yl1,m1

(

k̂
)

X l2,m2

(

k̂
)]

. (A.83)

Equation (A.82) can be used to show that

Bl1,m1;l2,m2;l3,m3
=

∫

S2

[X l1,m1
(r̂) · X l2,m2

(r̂)]Yl3,m3
(r̂) dr̂

=
l3(l3 + 1) − l1(l1 + 1) − l2(l2 + 1)

2
√

l1(l1 + 1)l2(l2 + 1)
Al1,m1;l2,m2;l3,m3

(A.84)

A.3.2 Efficient calculation

The X l,m (r̂) can be expressed in term of the spherical harmonics by means of the
ladder operators (A.19)

X l,m (r̂) =
1

√

l(l + 1)

[
1

2
(êx − jêy)Ľ+ +

1

2
(êx + jêy)Ľ− + êzĽz

]

Yl,m (r̂) ,

(A.85)

which, by means of (A.20), evaluates to

X l,m (r̂) =
1

√

l(l + 1)
MH ·







λ−
lm√
2
Yl,m−1 (r̂)

mYl,m (r̂)

−λ+
lm√
2
Yl,m+1 (r̂)






, (A.86)

with M defined in (A.47). This expression immediately allows the efficient calculation
of X l,m (r̂) from the spherical harmonics. The spherical harmonics themselves can
in turn be calculated efficiently by means of the algorithm described in A.1.2. With
X l,m (r̂) known,W l,m (r̂) is rapidly obtained by means of Eqn. (A.59). An alterna-
tive expression is obtained when the cross product withr̂ is explicitly calculated, after
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which the factorsx, y andz are absorbed into the spherical harmonics using (A.23).
This is a tedious calculation and we give only the result

W l,m (r̂)

=

√

4π

3

(−j)
√

l(l + 1)
MH ·





(l + 1)Bm
l Yl−1,m−1 (r̂) + lB−m+1

l+1 Yl+1,m−1 (r̂)

−(l + 1)Am
l Yl−1,m (r̂) + lAm

l+1Yl+1,m (r̂)

(l + 1)B−m
l Yl−1,m+1 (r̂) + lBm+1

l+1 Yl+1,m+1 (r̂)



 ,

(A.87)

with Am
l andBm

l defined in (A.24) abd (A.25).

A.4 Scalar and vector spherical wave operators

The scalar spherical wave operators, introduced in [2], aredefined by substitutinĝr
with ∇̌

−jk in the definition of the spherical harmonics

Yl,m

(
∇̌

−jk

)

=

(−j
k

)m
Kl,m

2ll!

(
∂

∂x
+ j

∂

∂y

)m

Pm
l

(
1

−jk
∂

∂z

)

, (A.88)

with Pm
l (·) defined in (A.2). For example, the following explicit formula for l = 1

can be found







Y1,−1

(
∇̌

−jk

)

Y1,0

(
∇̌

−jk

)

Y1,1

(
∇̌

−jk

)








=
1

−2jk

√

3

π
M · ∇̌. (A.89)

With the scalar spherical wave operators defined, the definition of the vector spherical
wave operators is trivial: simply replacer̂ by ∇̌

−jk in (A.86) and (A.87). When applied
to a plane wave with wavevectork with k ·k = k2, the scalar spherical wave operators
can be immediately evaluated

Yl,m

(
∇̌

−jk

)

e−jk·r = Yl,m

(

k̂
)

e−jk·r. (A.90)

Because every fieldw(r) satisfying the Helmholtz equation

∇̌
2
w(r) + k2w(r) = 0 (A.91)
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can be written as a superposition of such plane waves, the scalar spherical wave oper-
ators satisfy the following property

Yl1,m1

(
∇̌

−jk

)

Yl2,m2

(
∇̌

−jk

)

w(r)

=

∞∑

l3=0

l3∑

m3=−l3

AL1,L2,L3
(−1)mYl3,−m3

(
∇̌

−jk

)

w(r). (A.92)

Equation (A.23) has a similar analogue.
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APPENDIXB

Spherical Bessel functions

B.1 Spherical Bessel functions

A spherical Bessel functionfl(x) is defined as the solution of the spherical Bessel
differential equation

d

dx

(

x2 d

dx
fl(x)

)

+
[
x2 − l(l + 1)

]
fl(x) = 0. (B.1)

This is a second-order differential equation, hence there are two linearly independent
solutions. There are an infinite number of linear combinations of these solutions, but
we will mainly use the following two

jl (x) =

√
π

2x
Jl+ 1

2
(x) , (B.2)

h
(2)
l (x) =

√
π

2x
H

(2)

l+ 1
2

(x) . (B.3)

The functionsJν (x) andH(2)
ν (x) are the cylindrical Bessel functions, defined in [1].

B.1.1 Properties

The spherical Bessel functions satisfy two recurrence relations

2l + 1

x
fl(x) = fl−1(x) + fl+1(x), (B.4a)

(2l + 1)
d

dx
fl(x) = lfl−1(x) − (l + 1)fl+1(x), (B.4b)



192 SPHERICAL BESSEL FUNCTIONS

which can also be written as

d

dx
fl(x) = fl−1(x) −

l + 1

x
fl(x), (B.5a)

d

dx
fl(x) =

l

x
fl(x) − fl+1(x). (B.5b)

The following cross product formula is also useful

jl (x)h
(2)
l−1 (x) − jl−1 (x)h

(2)
l (x) = − j

x2
. (B.6)

The spherical Bessel functions naturally arise in the solution of the three dimensional
scalar Helmholtz equation.

B.1.2 A special identity

Here we will prove the following Theorem

Theorem B.1.1 For every integerl ∈ [0,∞] andm ∈ [−l, l], the following holds

Z
f
l,m (kr) = jlYl,m

(
∇̌

−jk

)

f0(kr), (B.7)

with

Z
f
l,m (kr) = fl(kr)Yl,m (r̂) , (B.8)

wherefl(x) is a spherical Bessel function, i.e. a function satisfying (B.1). The differ-

ential operatorYl,m

(
∇̌

−jk

)

is defined in A.4.

Before proving Theorem B.1.1, the following lemma will firstbe proven

Lemma B.1.2 For every integerl ∈ [0,∞] andm ∈ [−l, l], the following holds








Y1,−1

(
∇̌

−jk

)

Y1,0

(
∇̌

−jk

)

Y1,1

(
∇̌

−jk

)







Z

f
l,m (kr) = −j






Bm
l Z

f
l−1,m−1 (kr) +B−m+1

l+1 Z
f
l+1,m−1 (kr)

−Am
l Z

f
l−1,m (kr) +Am

l+1Z
f
l+1,m (kr)

B−m
l Z

f
l−1,m+1 (kr) +Bm+1

l+1 Z
f
l+1,m+1 (kr)




 ,

(B.9)

withAm
l andBm

l defined in (A.24) and (A.25).
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Proof LetQ denote the left hand side of (B.9). Then the following is easily shown

Q =
1

−2jk

√

3

π
M · ∇̌Z

f
l,m (kr) (B.10)

=
j

k

√

3

4π
M ·

[
fl(kr)∇̌Yl,m (r̂) + Yl,m (r̂) ∇̌fl(kr)

]
(B.11)

=
j

k

√

3

4π
M ·

[

−fl(kr)r̂ ×
[
r̂ × ∇̌Yl,m (r̂)

]
+ Yl,m (r̂) r̂

d

dr
fl(kr)

]

. (B.12)

Or by means of the definition ofM andW l,m (r̂) in (A.47) and (A.59) respectively

Q =

√

3

4π

fl(kr)

kr
M · W l,m (r̂)

√

l(l + 1) + jYl,m (r̂)





Y1,−1 (r̂)

Y1,0 (r̂)

Y1,1 (r̂)




d

d(kr)
fl(kr).

(B.13)

By means of (A.87), the first term becomes

√

3

4π

fl(kr)

kr
M · W l,m (r̂)

√

l(l + 1)

= j
fl(kr)

kr





−(l + 1)Bm
l Yl−1,m−1 (r̂) − lB−m+1

l+1 Yl+1,m−1 (r̂)

(l + 1)Am
l Yl−1,m (r̂) − lAm

l+1Yl+1,m (r̂)

−(l + 1)B−m
l Yl−1,m+1 (r̂) − lBm+1

l+1 Yl+1,m+1 (r̂)



 , (B.14)

while, by means of (A.23), the second term becomes

jYl,m (r̂)





Y1,−1 (r̂)

Y1,0 (r̂)

Y1,1 (r̂)




d

d(kr)
fl(kr)

= j
d

d(kr)
fl(kr)





−Bm
l Yl−1,m−1 (r̂) +B−m+1

l+1 Yl+1,m−1 (r̂)

Am
l Yl−1,m (r̂) +Am

l+1Yl+1,m (r̂)

−B−m
l Yl−1,m+1 (r̂) +Bm+1

l+1 Yl+1,m+1 (r̂)



 . (B.15)

The derivative of the spherical Bessel function in Eqn. (B.15) can now be expanded
by means of recurrences (B.5). For the part containing spherical harmonics of degree
l−1, recurrence (B.5a) should be used while (B.5b) should be used for the degreel+1

harmonics. It is easily seen that, after this substitution,the terms containingfl(kr)
kr are

canceled by (B.14). Therefore

Q = −j





Bm
l fl−1(kr)Yl−1,m−1 (r̂) +B−m+1

l+1 fl+1(kr)Yl+1,m−1 (r̂)

−Am
l fl−1(kr)Yl−1,m (r̂) +Am

l+1fl+1(kr)Yl+1,m (r̂)

B−m
l fl−1(kr)Yl−1,m+1 (r̂) +Bm+1

l+1 fl+1(kr)Yl+1,m+1 (r̂)



 , (B.16)
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which concludes the proof of Lemma B.1.2.�

Theorem B.1.1 will now be proven

Proof Equation (B.7) is trivially true forl = 0. The casel = 1 can be proven by
replacingl in Eqn. (B.13) by zero. SinceW 0,0 (r̂) is identically zero andd

dxf0(x) =

−f1(x), this leads to the required result. An inductive argument will now be used to
prove (B.7) for higherl. Assume that (B.7) holds∀l ≤ L. Then








Y1,−1

(
∇̌

−jk

)

Y1,0

(
∇̌

−jk

)

Y1,1

(
∇̌

−jk

)







Z

f
L,m (kr) = jL








Y1,−1

(
∇̌

−jk

)

Y1,0

(
∇̌

−jk

)

Y1,1

(
∇̌

−jk

)







YL,m

(
∇̌

−jk

)

f0(kr) (B.17)

Let Q denote the left hand side of Eqn. (B.17). Sincef0(kr) is a solution of the
Helmholtz equation, recurrences (A.23) also hold for the scalar spherical wave opera-
tors

Q = jL








−Bm
L YL−1,m−1

(
∇̌

−jk

)

+B−m+1
L+1 YL+1,m−1

(
∇̌

−jk

)

Am
L YL−1,m

(
∇̌

−jk

)

+Am
L+1YL+1,m

(
∇̌

−jk

)

−B−m
L YL−1,m+1

(
∇̌

−jk

)

+Bm+1
L+1 YL+1,m+1

(
∇̌

−jk

)







f0(kr) (B.18)

= j








−Bm
L Z

f
L−1,m−1 (kr) −B−m+1

L+1 jL+1YL+1,m−1

(
∇̌

−jk

)

f0(kr)

Am
L Z

f
L−1,m (kr) −Am

L+1j
L+1YL+1,m

(
∇̌

−jk

)

f0(kr)

−B−m
L Z

f
L−1,m+1 (kr) −Bm+1

L+1 j
L+1YL+1,m+1

(
∇̌

−jk

)

f0(kr)







. (B.19)

According to Lemma B.1.2,Q is also given by

Q = j






−Bm
L Z

f
L−1,m−1 (kr) −B−m+1

L+1 Z
f
L+1,m−1 (kr)

Am
L Z

f
L−1,m (kr) −Am

L+1Z
f
L+1,m (kr)

−B−m
L Z

f
L−1,m+1 (kr) −Bm+1

L+1 Z
f
L+1,m+1 (kr)




 , (B.20)

Comparing (B.19) and (B.20) yields

−B−m+1
L+1 jL+1YL+1,m−1

(
∇̌

−jk

)

f0(kr) = −B−m+1
L+1 Z

f
L+1,m−1 (kr) , (B.21a)

−Am
L+1j

L+1YL+1,m

(
∇̌

−jk

)

f0(kr) = −Am
L+1Z

f
L+1,m (kr) , (B.21b)

−Bm+1
L+1 j

L+1YL+1,m+1

(
∇̌

−jk

)

f0(kr) = −Bm+1
L+1 Z

f
L+1,m+1 (kr) . (B.21c)

SinceAm
L+1 6= 0 if |m| 6= L + 1, the equality ofjL+1YL+1,m

(
∇̌

−jk

)

f0(kr) and
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Z
f
L+1,m (kr) under the same conditions onm can be proven using (B.21b). For prov-

ing the casesm = L + 1 andm = −L − 1, Eqns. (B.21c) respectively (B.21a) can
be used. As a consequence (B.7) holds∀l ≤ L + 1, which concludes the proof by
induction. �
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APPENDIXC

Conference papers

C.1 Exact Modeling of a Finite Sample of
Metamaterial

I. Bogaert and F. Olyslager
Abstract: Metamaterials are electromagnetically complex structures. In this contri-
bution we present a technique that allows for a detailed analysis of a finite sample
of metamaterial incorporating all electromagnetic interactions. To this end we use a
full-wave T-matrix formalism. To accelerate the simulations we use the Stable Plane
Wave Multilevel Fast Multipole Method. We also present a direct method to derive the
effective material parameters from the T-matrix of a spherical sample of metamaterial.

Keywords: metamaterials, fast multipole methods

C.1.1 Introduction

Metamaterials consist of a large number of constituents embedded in a host medium.
Each constituent can have a complex structure and e.g. consist of printed ring res-
onators and dipoles. When considering a finite piece of metamaterial one is interested
in the overall effective medium parameters of this piece. These effective parameters
are usually estimated from the polarizabilities of a constituent using homogenization
formulas such as Maxwell-Garnett or Bruggeman [1].

In this paper we want to use another approach. We aim at performing a full-wave
numerical simulation of a finite sample of metamaterial and then derive the effec-
tive parameters from these scattering simulations by comparison with a homogeneous
sample of material with the same geometry. In this way all theelectromagnetic in-
teractions are taken into account. This approach allows us to check the validity of
the homogenization formulas. Such formulas fail when the density of the constituents
become high and these formulas also assume a material of infinite extent. This also
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means that the dependence of the geometry of the sample on theeffective parameters
only can be estimated using a full-wave simulation.

To solve the scattering problem we will use the T-matrix approach [2]. We will
first determine the T-matrix of each constituent and then considering the interactions
between all the T-matrices. If there areN constituents, and if each T-matrix contains
M2 elements then this requires the solution of a linear system of NM unknowns.
SinceN will be large it is not possible to use a direct or even an iterative solution of
this system. The constituents are small compared to wavelength, although the sample
can be several wavelengths in size. This means that the numerical problem is at the
same time a low- and high-frequency problem. The solution ofthe linear system can
be accelerated using a multilevel fast multipole techniquebut this technique needs to
be valid for high as well as low frequencies. For this purposewe opted the use of the
Stable Plane Wave Method as derived by [3]. In this way it becomes possible to obtain
a computational and memory complexity ofO(NM). We also use an acceleration to
convert multipoles into evanescent plane waves as has been derived recently in [4].

To derive the effective parameters of a metamaterial we willconsider a spherical
sample. From the T-matrix of the individual constituents wecan derive the T-matrix
of the entire sample using the Stable Plane Wave Method. Thenwe compare this T-
matrix with the T-matrix of a homogeneous sphere to identifythe effective material
parameters. It turns out this can be done in a very elegant wayusing a recurrence
relation of Bessel functions.

C.1.2 Analysis

The examples will consider a spherical sample consisting ofspherical inclusions.
Spherical inclusions have an analytical T-matrix. We will show the validity of the
Maxwell-Garnett and Bruggeman formula and show the possibility to derive a nega-
tive index material for an example proposed in [5]. First we determine the T-matrix
of the constituents of the metamaterial. This starts from the illumination of the con-
stituent by incoming fields of the following forms

E
inc,1
lm (r) =

Ľ [jl (kr)Yl,m (r)]
√

l(l + 1)
E

inc,2
lm (r) =

1

k
∇̌ × E

inc,1
lm (r), (C.1)

wherek is the wavenumber,Ylm(r) are the scalar spherical harmonics and whereL̂

is the angular momentum operator

Ľ = −jr × ∇̌ = j

[

eθ
1

sin θ

d

dθ
− eφ

d

dφ

]

. (C.2)

The resulting scattered fields can be decomposed into functions similar to (C.1), but
with spherical Hankel functions instead of spherical Bessel functions. The coeffi-
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cients arising in this decomposition can be interpreted as entries of the T-matrix of the
constituent. All scattering information of the constituent is contained in the T-matrix.

In the next step the T-matrix of the entire spherical sample is determined. This is
done using the Stable Plane Wave Method as developed in [3]. We will not go into
the details of this multilevel fast multipole technique butsuffice to say that the method
remains stable at low frequencies by also incorporating evanescent plane waves in
addition to propagating plane waves. In the disaggregationand aggregation steps it
is necessary to transform the vectorial spherical harmonics expansion of the T-matrix
into plane waves. For the evanescent plane waves this requires6 different expansions
along the±x-,±y- and the±z-axis. Recently [4] a new method was derived to reduce
the workload of this process by a factor of6.

In the final step the T-matrix of the entire sample is matched to the analytical
T-matrix of an homogeneous sphere. This T-matrix is diagonal and the diagonal ele-
ments are given by

T 1
l,m = −

Zi
Jl(koa)
jl(koa) − Zo

Jl(kia)
jl(kia)

Zi
H(2)

l
(koa)

jl(koa) − Zo
Jl(kia)
jl(kia)

h
(2)
l

(koa)

jl(koa)

, (C.3)

T 2
l,m = −

Zo
Jl(koa)
jl(koa) − Zi

Jl(kia)
jl(kia)

Zo
H(2)

l
(koa)

jl(koa) − Zi
Jl(kia)
jl(kia)

h
(2)
l

(koa)

jl(koa)

. (C.4)

Here,Jl(x) = 1
x

d
dx [xjl(x)] andH(2)

l (x) = 1
x

d
dx

[

xh
(2)
l (x)

]

. The unknowns areZi

andki, the impedance and wavenumber inside the sphere. The left hand sides of both
of these equations are known as are the radius of the piece of metamaterial and the
parameters of the surrounding host medium. Therefore theseequations can be solved
for the two quantitiesZo

Zi
(thus yieldingZi) andAl = Jl(kia)

jl(kia) . From the latter, a
unique value forkia is not easily found, but since this quantity is known for a whole
series ofl, the recurrences of the Bessel functions can be used to obtain the following
quadratic equation which can be solved easily

−
(
l + 1

kia

)2

+ (Al −Al+1)
l + 1

kia
+AlAl+1 + 1 = 0. (C.5)

Determining which one of the two roots to choose is done by calculating these roots
for variousl and checking which one is consistent.

C.1.3 Numerical example

As an example we consider a spherical sample with radiusR = 1.477m at a frequency
of 25MHz, hence the spheres have a diameter of about one quarter ofa wavelength
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in free space. The host medium has a relative permittivityεr = −1.5 + j and a
relative permeabilityµr = 2.0 + 1.2j. In the host medium spheres with a radius of
r = 0.1m are embedded. These spheres have a relative permittivityεr = −6 + 0.9j

and a relative permeabilityµr = 1.5 + 0.2j. By varying the number of spheres
we vary the volume fraction of the inclusions. To obtain highvolume fractions we
invert the medium by interchanging the material parametersof the spheres and the host
medium. Figure C.1 shows a volume fraction of16% obtained by randomly placing
500 spheres in the spherical host medium. Figures C.2 and C.3 respectively show

Figure C.1: A spherical sample with500 spheres.

the real and imaginary part of the effective relative permittivity. The result predicted
in [5] using the Bruggeman homogenization formula (indicated as ”Mackay” on the
figures)are also shown as well as the results of the Maxwell-Garnett formula. As can
be seen the Maxwell-Garnett formula is more accurate than the Bruggeman formula.
Similar conclusions can be drawn from the real and imaginarypart of the effective
permeability as shown in Figures C.4 and C.5.

For each volume fraction we only considered one realizationof the medium.
Nevertheless the simulated results show a very smooth behavior indicating that the
medium really can be considered homogeneous. Using (C.5) wecan derive the ef-
fective medium parameters also for various values ofl. It turns out that our results
are independent ofl again confirming previous conclusion. This conclusion willbe
less evident if one considers higher frequencies. Then the effective parameters will
depend on the radius of the spherical example and different realizations will yield
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Figure C.2: Real part of the effective permittivity.
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Figure C.3: Imaginary part of the effective permittivity.
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Figure C.4: Real part of the effective permeability.
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Figure C.5: Imaginary part of the effective permeability.
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Figure C.6: Negative phase velocity parameter.

different effective parameters.
For the example considered here we also calculated the negative phase velocity

parameterρNPV given by [5]

ρNPV =
ℜ[εeff ]

ℑ[εeff ]
+

ℜ[µeff ]

ℑ[µeff ]
. (C.6)

For a negative index medium this parameter has to be negative. The curve in Fig-
ure C.6 indeed shows a region of volume fractions corresponding to a negative index
medium.

C.1.4 Conclusions

It is shown that using a multilevel fast multipole method including evanescent and
propagating plane waves such as the stable plane wave methodallows for the accurate
simulation of a finite piece of metamaterial. These simulations allow to check the
validity of the homogenization assumption as well as of homogenization formulas. We
also presented a new direct method to obtain the effective parameters from a spherical
sample.
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C.2 Efficient Calculation of Moment Integrals for
Tensor Product Basis Functions

I. Bogaert, L. Knockaert, and F. Olyslager
Abstract: The calculation of moment integrals for the solution of integral equations
is still an arduous task. A considerable amount of literature exists concerning the
treatment of the various singularities, but it is usually focussed on one type of basis
function and one Green function. Moreover, the number of successive quadratures
in a moment integral can be rather large, in particular for 3-D volume integral equa-
tions (VIEs). A more general approach will be presented herefor tensor product basis
functions. This type of basis function often arises in volume integral equations. The
new approach is based on the known Abel transform propertiesof the Green function,
which provide a way to expand the Green function of general dimension into a su-
perposition of Gaussians. This allows the quadratures overthe different dimensions
to be decoupled, which enhances the computational efficiency. A further simplifica-
tion of the moment integral to only a single integration can be attained when the basis
functions are polynomial, which is usually the case.

C.2.1 Method of moments in electromagnetics

Consider e.g. the following VIE inRd:

u(r) =

∫

K(r, r′)v(r′)dr′ (C.7)

with dr = dx1...dxd. Equation (C.7) can be converted into linear equations by means
of the method of moments which consists in expandingv(r′) into a suitable set ofN
basis functionsAn(r′):

v(r′) =
N∑

n=1

vnAn(r′) (C.8)

and integrating (C.7) withN , possibly different, test functionsBm(r). The resulting
linear system of equations is given by:

∫

Bm(r)u(r)dr =
N∑

n=1

Zmnvn, m = 1, ..., N (C.9)

with the so-called moment matrix given by

Zmn =

∫ ∫

Bm(r)K(r, r′)An(r′)drdr′, m, n = 1, ..., N (C.10)
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For electromagnetic applications,K(r, r′) is usually the free-space Green function in
d dimensions:

K(r, r′) = gd(k, |r − r′|) (C.11)

wherek is the wavenumber andgd(·, ·) is defined in (C.14). Since the Green function
exhibits a singularity, the calculation of these integralsis not obvious if the basis and
test functionsBm(r) andAn(r) have overlapping support. The most widely used
method to perform the quadrature is extracting the singularpart of the Green function
and integrating that part analytically. However, the resulting analytical expressions
can be very complicated and some limit cases may also need special attention. More-
over, these expressions are specific to the Green function that is used. Going from 2-D
to 3-D, for example, will alter the expressions considerably. In addition, the numerical
evaluation of the remaining nonsingular part of the integral can require a large number
of Green function evaluations. Whenq is the number of quadrature nodes per dimen-
sion,O(q2d) Green function evaluations are needed for (C.10). For 3-D VIEs, this
results inO(q6) evaluations. It would therefore be desirable to have a method with a
lower computational cost which works for any dimensiond and for any overlap the
support of the basis and test functions might have. In this paper, such a method will
be presented for tensor product basis functions. This meansbasis and test functions
can be written as

F (r) =

d∏

w=1

fw(xw) (C.12)

C.2.2 The Green function as a superposition of Gaussians

Thed-dimensional Green function is the fundamental solution ofthe Helmholtz equa-
tion in R

d:
∇̌

2
gd(k, |r|) + k2gd(k, |r|) = δ(r) (C.13)

and is given by [6]:

gd(k, r) =
j

4
(
k

2πr
)

d−2
2 H

(2)
d−2
2

(kr) (C.14)

whereH(2)
n (·) is the Hankel function of the second kind. A very interestingproperty

of the Green function was presented in [7], in connection with the Abel transform of
gd(k, r). The Abel transform is defined as

Φ(r) = Af(r) =

∫ ∞

−∞
f(
√

r2 + x2)dx (C.15)
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By applying the Abel transform to (C.13), it is easy to show thatAgd(k, r) = gd−1(k, r).
Also, the Abel transform has a continuous set of Gaussian eigenfunctions

Ae−σr2

=

√
π

σ
e−σr2 ℜσ > 0. (C.16)

It can be readily verified that

g1(k, r) =
j

2k
e−jkr = − 1

2π
√
α

∫ ∞

0

e
−πα r2

ρ2 e−
βρ2

4π dρ (C.17)

whereℜα > 0, ℜβ > 0 and jk =
√
αβ. As a consequence, the1-dimensional

Green function can be seen as a continuous superposition of Gaussians. Together with
(C.16), this yields an expression for all the higher-dimensional Green functions:

gd(k, r) = − 1

2π
√
α

∫ ∞

0

(√
α

ρ

)d−1

e
−πα r2

ρ2 e−
βρ2

4π dρ (C.18)

It should be noted that the requirements forα andβ can only be met for lossy media.
As a consequence, (C.18) is invalid if there are no losses. However, this can be easily
remedied by moving the integration path of (C.18) into the complex plane.

C.2.3 Calculating the moment integral

We now substitute expression (C.18) in the moment integral (C.10):

Zmn = − 1

2π
√
α

∫ ∞

0

(√
α

ρ

)d−1

e−
βρ2

4π Qmn(ρ)dρ (C.19)

where

Qmn(ρ) =

∫ ∫

Bm(r)e
−πα

ρ2

∑d
w=1(xw−x′

w)
2

An(r′)drdr′ (C.20)

The integral in (C.19) can be evaluated easily with an adaptive Gauss-Legendre quadra-
ture routine. Although the original moment integral had a singularity, this singular-
ity does not appear inQmn(ρ), and with Gauss-Legendre quadrature,Qmn(0) never
needs to be evaluated. Hence, it becomes very easy to achieveany desired accuracy.
Note that adding another integral will not in general reducethe workload. However, if
we suppose the basis functions are separable, then the quadratures over the different
dimensions become separated, i.e.

Qmn(ρ) =

d∏

w=1

∫ ∫

bw,m(xw)e
−πα

ρ2 (xw−x′
w)

2

aw,n(x′w)dxwdx′w (C.21)
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Hence the2d quadratures have been replaced by3 successive quadratures, thereby
lowering the computational complexity toO(dq2P ), whereP is the number of nodes
for the quadrature of (C.19). Usually, thebw,m(xw) andaw,n(x′w) are piecewise poly-
nomials, so the double quadratures in (C.21) can be done analytically by means of the
Error function, reducing the number of quadratures to only one, and the computa-
tional complexity toO(dP ) ! This method is very useful for moment integrals arising
in VIEs for electromagnetic inversion problems. These integral equations typically
have polynomial basis functions on a rectangular mesh [8,9]because the exact geom-
etry of the problem is not known a priori. Since any polynomial can be written as a
sum of tensor products, the method presented here can be usedto efficiently calculate
these moment integrals.

C.2.4 Example: 2-D volume integral equation

The proposed method has been applied to the two-dimensionalTM-scattering by a
square region (see Figure C.7) with relative permittivity2.0. The sides of the square
are one wavelength long and the incoming field is a plane waveEinc = uze

−jkx.
The following VIE for the TM case was used:

Etot(r) = Einc(r) − k2(εr − 1)

∫ 1

−1

∫ 1

−1

g2(k, |r − r′|)Etot(r′)dxdy (C.22)

wherek is the wavenumber of free space andεr is the relative permittivity of the
medium in the square. As basis and test functions the Chebyshev polynomialsT (n, x) =

cos(n arccosx) were used up to degree15 in bothx andy directions, i.e.Am1,m2
(r) =

Bm1,m2
(r) = T (m1, x)T (m2, y). Chebyshev polynomials were chosen because of

their nice interpolatory properties. The resulting electric field from this
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Figure C.7: Total electric field for scattering by aεr = 2 square.

calculation is shown in Figure C.7. This result has been validated with the result
from a boundary integral equation.

C.2.5 Conclusion

A novel method for efficiently calculating moment integrals, based on the Abel trans-
form properties of the Green function, has been presented. It is applicable to any
tensor product basis function. If, in addition, the basis functions are polynomial, the
moment integrals can be calculated with just one numerical quadrature.
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C.3 Fast Full-Wave Validation of a Metamaterial
Lüneburg Lens

I. Bogaert, L. Meert, and F. Olyslager
Abstract: Metamaterials have received much attention in the past. Thepossibility of
creating a metamaterial with just the required properties for some given application
is tantalizing. However, designing a metamaterial application usually entails making
assumptions, concerning for example the homogeneity of themetamaterial. Only the
experiment or a full-wave analysis of the design, which alsoincorporates the detailed
structure of the metamaterial, can justify these assumptions and validate a design. In
this paper, a stable plane wave fast multipole method for simulating a metamaterial
consisting of a collection of spheres will be presented. As an illustrative example, this
method will then be used to simulate a Lüneburg lens which was designed using the
Maxwell-Garnett approximation formula.

C.3.1 The Lüneburg lens

The classic L̈uneburg lens [10, 11] of radiusa is a spherically symmetric lens which
has an index of refraction given by:

n(r) =

√

2 − r2

a2
(C.23)

with r the distance to the centre of the lens. If a plane wave impinges on the lens,
a focal point exists at the far side of the surface of the lens.This property is often
used in so-called L̈uneburg reflectors, which have a good conductor covering part of
the lens. The continuous variation of the index of refraction is usually approximated

Figure C.8: Lüneburg lens with homogeneous concentric shells.
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using homogeneous concentric shells (see Figure C.8) but, at least theoretically, it can
also be done using a collection of electrically small dielectric spherical inclusions in a
host medium with a variable inclusion density. For such a metamaterial, the Maxwell-
Garnett homogenization formula [1] predicts the followingrelative permittivity:

εr = 1 +
f(r)α

1 − 1
3f(r)α

. (C.24)

Here,f(r) is the sphere density (the number of spheres per cubic meter)andα is the
polarizability of one sphere, given by:

α = 3V
εs − 1

εs + 2
(C.25)

with εs andV respectively the relative permittivity and volume of each of the spheres.
By equation (C.23) the relative permittivity is known and this permits the calculation
of the sphere density as a function of the distance to the centre:

f(r) =
3

α

1 − r2

a2

4 − r2

a2

(C.26)

C.3.2 Simulation method

In order to simulate a large number of spheres, the T-matrix method is used. In this
method the incoming and scattered electric field of every sphere is expressed in terms
of the vectormultipoles [12]:

Einc(r) =

L∑

l=0

l∑

m=−l

[

ainc
lm M

j
lm(r) + binc

lm N
j
lm(r)

]

(C.27)

Esc(r) =

L∑

l=0

l∑

m=−l

[

asc
lmMh(2)

lm (r) + bsc
lmNh(2)

lm (r)
]

(C.28)

where

M
f
lm(r) =

Ľ [fl(kr)Ylm(r)]
√

l(l + 1)
N

f
lm(r) =

1

k
∇̌ × M

f
lm(r) (C.29)

with jl(·) andh(2)
l (·) respectively the spherical Bessel function and the spherical Han-

kel function of the second kind. The angular momentum operator L̂ is given by:

Ľ = −jr × ∇̌ = j

[

eθ
1

sin θ

d

dθ
− eφ

d

dφ

]

(C.30)
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The total field impinging on thekth sphere is the field generated by the source plus
the scattered fields of all the other spheres. Mathematically, this can be expressed as
follows:
[

a
inc,k
lm

b
inc,k
lm

]

=
∑

j 6=k

∑

l′,m′

[

αMM
lm,l′m′(rjk) αMN

lm,l′m′(rjk)

αMN
lm,l′m′(rjk) αMM

lm,l′m′(rjk)

]

·
[

a
sc,j
l′m′

b
sc,j
l′m′

]

+

[

a
so,k
lm

b
so,k
lm

]

(C.31)

Theα-matrices are the translation matrices for the vectormultipoles [12]. To get a
solvable linear system of equations, another relation between the scattered and incom-
ing field of the spheres is required. This relation is provided by means of the so-called
T-matrix of the spheres. The T-matrix of a sphere converts anincoming field, ex-
pressed as a vector of multipole coefficients, into the corresponding scattered field:

[

a
sc,k
l′m′

b
sc,k
l′m′

]

=

L∑

l=0

l∑

m=−l

Tk
l′m′,lm ·

[

a
inc,k
lm

b
inc,k
lm

]

(C.32)

For a homogeneous sphereTk
l′m′,lm is a diagonal matrix and it can be computed ana-

lytically. For more complex geometries, it can be calculated numerically. Multiplying
(C.31) with Tk

l′m′,lm yields a matrix equation which only contains the scattered fields.

Solving this matrix equation can be done using an LU-decomposition, but this re-
quiresO(N3) multiplications andO(N2) memory size. For large problems, this is
unacceptable. However, using an iterative technique in combination with a fast mul-
tipole method (FMM) for the matrix-vector multiplications, the computational com-
plexity and memory requirements can both be reduced toO(N). The geometrical
detail of metamaterials is smaller than the wavelength while a piece of metamaterial
is usually larger than the wavelength. Therefore, the FMM for the simulation of meta-
materials must work for both low-frequency (LF) as high-frequency (HF) problems.
The Stable Plane Wave Method (SPWM) [13] satisfies this requirement. It incorpo-
rates propagating as well as evanescent plane waves by meansof the following spectral
representation of the Green function:

h
(2)
0 (γr) =

1

2π

∫ ∞

−∞

∫ ∞

−∞
e∓jk·r dkxdky

γkz(γ,K)
, z = uz · r ≷ 0. (C.33)

Here,kz is a quantity depending onγ andK =
√

k2
x + k2

y, defined as

kz(γ,K) =

{√

γ2 −K2, γ ≥ K

−j
√

K2 − γ2, K > γ
(C.34)

Unfortunately, equation (C.33) is valid only ifz ≷ 0. This is caused by the fact that
evanescent waves grow exponentially if this condition is not satisfied, causing the in-
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tegral representation (C.33) to diverge. Similar expressions for the other half-spaces
are easily obtained, but the fact that six different representations (x, y, z ≷ 0) are
needed means a serious reduction of the efficiency of the method. The aggregations
and disaggregations are the dominant computational costs.However, it has been re-
cently shown [4] that the (dis)aggregation from (to) multipoles to (from) the six plane
wave patterns can be accelerated by using the symmetry of theaggregation matrices.
This acceleration has been used here.

C.3.3 Results

A Lüneburg lens with a diameter of8 wavelengths was simulated. The wavelength is
2m, the radius of the spheres is0.12m, and their relative permittivity is12. The total
number of spheres is42899, which results in257394 unknowns if only the dipole
scattering term is taken into account. The incoming field is aplane wave traveling in
the negativez-direction:Einc(r) = uxe

jk·r. The simulation was run on a computer
with 4 Opteron 270 processors. Multithreading was only used for the (dis)aggregation
stage. Memory usage was approximately7Gb and the simulation took10 hours. In
figures C.9(a) and C.9(b), the amplitude and phase ofux · Etot(r) are plotted in the
planex = 0. In C.9(a) the spheres intersecting with this plane are alsoshown, while
in C.9(b) the contour of the lens is shown. The focussing effect of the lens is clearly
visible in both plots, thereby validating the design and thesimulation method.
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(a) Amplitude (dB)

(b) Phase (rad)

Figure C.9: Amplitude and phase of thex-component of the electric field in the Lüneburg lens.
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C.4 Exact full-wave simulation of finite pieces of
metamaterials and extraction of effective

material parameters

I. Bogaert and F. Olyslager
Abstract: A stable plane wave multilevel fast multipole method (SPWMLFMA) is
presented for the simulation of the scattering at a very large number of scatterers using
the T-matrix method. The method is used to accurately simulate the interaction of an
incident field with a piece of metamaterial consisting of a large number of particles
embedded in a host medium. From the scattering data it is possible to derive effective
material parameters of the piece of metamaterial. We will show two examples. The
first one consists of a metamaterial Lüneburg lens and illustrates the interaction of the
incident field with a large number of scatterers and the second one is a chiral medium
composed from a large number of metal spiral like objects andillustrates the extraction
of effective parameters.

C.4.1 Introduction

The T-matrix of a particle relates incoming and scattered vectorial spherical harmonic
coefficients of the fields. Knowing the T-matrix for each particle in a cloud allows the
construction of a linear system of equations describing theinteraction of an incoming
field with the cloud. The dimensionN of the system is equal to the number of particles
multiplied by the number of spherical harmonics per particle. Typically the size of the
particles will be small and the size of the cloud will be largecompared to wavelength.
To solve this system efficiently we will use the SPWMLFMA [13] which is valid in
the low and the high frequency regime. We have further accelerated and optimized
this method [14].

The T-matrix of an individual particle is evaluated analytically in the case of a
sphere or using a detailed Method of Moments integral equation analysis in the case of
a more complex particle. For metal particles we use an electric field integral equation.

To extract the effective material parameters of a metamaterial composed of a cloud
of particles a spherical cloud is considered and the T-matrix of the total cloud is calcu-
lated. From that an analytical technique is used to extract effective material parame-
ters. I.e. material parameters of a homogeneous sphere are determined that produce
the same T-matrix as the spherical cloud. Since different spherical harmonics can be
compared we have a check for the accuracy. In practise we willtake the average of
the result of four to five such spherical harmonics.
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C.4.2 A Lüneburg lens

As a first example we consider a Lüneburg lens of8λ diameter build from a large
number of spherical particles with increasing density towards to the center of the lens.
The density as a function of radius was guessed from the Maxwell-Garnett approxi-
mation. The particles have a diameter of0.12λ and a relative permittivity of12. In the
exampleN = 257394 for 42899 spherical particles. Figure C.10 shows the focussing
of the amplitude of the field when a plane wave is incident on the lens from the right.
The example proves the validity of homogenization using Maxwell-Garnett and the
accuracy of the simulation method.

Figure C.10: Plane wave incident on a metamaterial Lüneburg lens.

C.4.3 A chiral medium

Now we consider particles that are metal spirals as shown in Figure C.11. The di-
ameter of a particle is2.202mm and the perfectly conducting wire has an elliptical
cross-section with a major diameter of0.14mm and a minor diameter of0.07mm. The
surface current density on the wire is discretized using4584 Rao-Wilton-Glisson basis
functions. Figure C.11 shows the current density on the wirewhen a plane wave is
incident at a frequency of5.98GHz.

Spherical clouds composed of randomly positioned and randomly oriented parti-
cles are build. We consider clouds consisting of125, 250, 500, 1000 and2000 par-
ticles each with a density of0.0345 particles per mm3. The centers of two particles
are at least separated by2.6mm. In each case we determined the effective material
parameters by comparing the total T-matrix with that of a homogeneous bi-isotropic
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Figure C.11: Surface current density on a perfectly conducting chiral particle.

Figure C.12: Spherical cloud with 1000 particles.
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sphere. We took the average of the effective material parameters of each of these five
constellations and we found

[
ζ√

ε0µ0

µ
µ0

ε
ε0

ξ√
ε0µ0

]

=

[
0.0007 + 0.2033j 1.1072 − 0.0004j

1.6347 − 0.0014j −0.0007 − 0.2032j

]

. (C.35)

where we used the material parameter definitions of a bi-isotropic medium as defined
in [15]. As ζ = −ξ we indeed recover a reciprocal bi-isotropic medium, i.e. a chiral
medium. Also note that the numerical simulations give rise to a lossless medium
within numerical accuracy. The variance on the matrix elements derived from the
effective parameters of the five constellations is

[
0.0043j 0.011

0.022 0.0040j

]

. (C.36)

Hence, an accuracy between1% and2% on the effective parameters is obtained.
A spherical cloud with1000 particles is shown in Figure C.12. Each small sphere

on this figure represents a spiral like particle as shown in Figure C.11.

C.4.4 Conclusion

We show that using advanced fast multipole methods it becomes possible the simulate
finite pieces of metamaterial comprising a very large numberof scattering particles.
We demonstrated that this method allows for the extraction of effective parameters
from a finite piece of metamaterial.
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C.5 Accurate Wideband Evaluation of the Shielding
Effectiveness of Complex Enclosures Using an

Asynchronous Parallel NSPWMLFMA

J. Peeters, I. Bogaert, J. Fostier, and F. Olyslager
Abstract: We present the application of the Non-directive Stable Plane Wave Mul-
tilevel Fast Multipole Algorithm (NSPWMLFMA) to the simulation of the shielding
effectiveness of enclosures with complex fillings. The method is parallelized with
an asynchronous algorithm in order to allow highly efficientsimulations in an inex-
pensive GRID computing environment. The whole method is fully error controlled.
Further increased efficiency is obtained by using Block-Jacobi preconditioners, splay
trees (STs) to extract symmetries in the geometry and careful evaluation of self-patch
and neighbor-patch integrals. Numerical examples of enclosures with and without
equipment illustrate the method. We will also focus on the use of lossy materials to
increase the shielding efficiency of metal enclosures around resonance frequencies.

C.5.1 Introduction

In [16] a detailed study was made on the shielding performance of metallic enclosures.
The simulation of the shielding effectiveness of an enclosure remains a difficult task
because of two main reasons. First, the accuracy of the simulations needs to be very
high. This requires high precision calculations and very fine discretizations both lead-
ing to high computational costs. Second, every geometric detail in the enclosure is of
importance. Taking into account this detail again puts highdemands on the compu-
tational complexity. In [16] a Method of Moments (MoM) basedcode [17] was used
in order to achieve the required accuracy. The high computational cost limited the
simulations to low frequencies and simple geometries.

We have already shown that the Multilevel Fast Multipole Algorithm (MLFMA)
[18] is especially suited for evaluation of the shielding performance of enclosures.
This method combines a high accuracy with limited computational cost. IfN rep-
resents the number of unknowns to discretize the unknown (equivalent) electric and
magnetic current densities on surfaces then the computational cost of the MLFMA
is O (N logN). For three-dimensional problems, involving considerablegeometrical
detail and/or of several wavelengths in size,N will grow rapidly requiring consider-
able computer resources even when using MLFMA.

Two-dimensional simulations of shielding enclosures using a boundary integral
equation accelerated with MLFMA were presented in [19] and [20]. In these contribu-
tions we demonstrated the importance of the accuracy in self-patch and neighbor-patch
integrations, the importance of preconditioning and the use of STs to efficiently extract
symmetry. In [21] we presented an asynchronous parallelized MLFMA that allows for
efficient parallelization of the MLFMA method on inexpensive GRID computer en-
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vironments connected by a slow switch. The asynchronous algorithm is also highly
performant compared to existing synchronous parallelizations of the MLFMA when
considering multiple object scattering as is encountered in the evaluation of shielding
enclosures comprising realistic hardware. An implementation of this two-dimensional
parallel MLFMA is available as open source software from [22]. Applications of this
method reach far beyond EMC problems, see e.g. [23].

In [21] we already mentioned the possibility to extend this algorithm to three di-
mensions by considering elementary three-dimensional scattering examples. This pa-
per wants to further explore this and show its abilities to evaluate realistic shielding
problems. We apply the MLFMA on different surface integral equations to calculate
the scattering at multiple homogeneous dielectric or perfectly conducting (PEC) ob-
jects. Since the classical plane wave based MLFMA breaks down at low frequencies
it is not very suitable to simulate objects with sub-wavelength detail. However, re-
cently a very efficient new plane wave based MLFMA, the NSPWMLFMA, has been
developed [24] that remains stable at low frequencies. In [24] NSPWMLFMA was
developed for scalar wave propagation problems, here we forthe first time apply it for
vectorial wave propagation.

The asynchronous parallelization scheme developed in [21]for two-dimensional
problems is shown to be fully applicable for the three-dimensional NSPWMLFMA
as will be illustrated here for the first time. As in the two-dimensional case we
will devote special attention to preconditioning, accurate evaluation of self-patch and
neighbor-patch integrations and the use of STs. In particular the performance in three-
dimensions of STs [25] deserves special attention.

In [16] it was argued that shielding at resonance frequencies of enclosures bene-
fits from the use of absorbing materials. We will show that theasynchronous parallel
NSPWMLFMA is capable to include lossy objects without losingaccuracy. As we
did for the two-dimensional implementation we also made this three-dimensional im-
plementation available as open-source software from [22].

The scope of this paper does not allow us to give a detailed description of all the
elements of the asynchronous parallel NSPWMLFMA. We will suffice with a brief
discussion of each of these elements with the relevant references, where possible, and
rather focus on the simulation results. We will compare results with results obtained
in [16], show results of the shielding efficiency of a typicalpersonal computer tower
and illustrate the effect of absorbing materials. More results will be shown during the
presentation at the conference.

C.5.2 Theory

Surface integral equations

The geometry that we consider consists of a number of homogeneous isotropic dielec-
tric objects, each characterized by its complex permittivity and permeability, and of
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PEC objects both embedded in an isotropic background, usually free space. Objects
can be embedded into other objects and objects can touch eachother creating lines
where three or more materials come together.

The scattering at such geometries is evaluated by surface integral equations with
as unknowns the (equivalent) electric and magnetic surfacecurrent densities on the
boundaries of each object. Several integral equations are possible, for an overview we
refer to [26]. We use a combination of different types of integral equations depending
on the type of objects and the frequencies involved. For openPEC objects, such as en-
closures with apertures, we use the Electric Field IntegralEquation (EFIE), for closed
objects we use EFIE below the first resonance frequency of theobject and the Com-
bined Field Integral Equation (CFIE) above that frequency.For very low frequencies
we resort to the Magnetic Field Integral Equation (MFIE) in stead of EFIE because
it is better conditioned at low frequencies. For dielectrics we use the M̈uller integral
equation at low frequencies and the Poggio-Miller-Chang-Harrington-Wu-Tsai (PM-
CHWT) formulation at high frequencies.

Method of Moments

We use a Galerkin MoM where the surface current densities arediscretized on a tri-
angular mesh with Rao-Wilton-Glisson vectorial basis functions. To achieve high
accuracy the singular part of the Green functions is extracted for both the self-patch
and neighbor-patch integrations. These integrations overthe singular part are all being
done in closed form. The remaining regular part of the Green function and the integra-
tions for interactions that are nor self-patch nor neighbor-patch are done numerically
using Gaussian quadrature rules defined on a triangle [27].

Special care is taken when objects are touching. In the past two touching objects
were often simulated by including a very small gap between them. While this simpli-
fies the implementation and does not lead to significant error, it does involve twice as
many unknowns along the touching surface as strictly necessary. We opted for a more
cumbersome implementation, as described in [28], that avoids including these gaps
and extra unknowns and that at the same time remains a full Galerkin scheme, which
avoids half basis functions at lines where three or more materials come together.

Splay Trees

Often large structures contain symmetries where two pairs of interacting triangles
are geometrically equal which means that the correspondingtwo elements in the
MoM matrix are equal. In [20] we have shown for two-dimensional problems that
a ST [25] allows to extract these geometrical symmetries forthe near interactions
in O (N logN) time complexity, making it compatible with the MLFMA. Also for
three-dimensional problems the ST method can be used efficiently, again leading to
anO (N logN) complexity. Because the near interactions are relatively more impor-
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tant in three than in two dimensions, the savings by using STsare even more profound.
Even for structures with limited symmetry some savings are seen which shows that the
overhead imposed by unsuccessful search operations is limited. The extra memory
needed for the ST is only needed during the set-up phase of theMLFMA.

NSPWMLFMA

The classical plane wave based MLFMA breaks down at low frequencies due to loss
of numerical accuracy. This means that the boxes on the lowest level in the MLFMA
for structures containing significant sub-wavelength geometrical detail will contain a
considerable number of unknowns. Several attempts have been proposed to remedy
this problem without having to resort to non-diagonal translation operators. The crux
is to incorporate more near-field information in the plane wave spectrum. This can
be done by incorporating evanescent plane waves leading to the Stable Plane Wave
MLFMA [3] which needs6 radiation patterns along6 different directions. Recently
a new method, the NSPWMLFMA, was devised [24] that avoids these 6 different
directions for scalar wave propagation problems. In this contribution we for the first
time report results obtained with the NSPWMLFMA for vectorial wave propagation.
The NSPWMLFMA is easily incorporated in and is fully compatible with the classical
MLFMA.

Asynchronous parallelization

In [21] it was announced that the asynchronous parallelization developed for two-
dimensional MLFMA was mutatis-mutandis applicable for thethree-dimensional case.
In this contribution we, for the first time, present results obtained in three dimensions.
The asynchronous parallelization uses a space filling curveto assign different boxes
in the MLFMA to different processors. The workload is then divided in small packets
which are arranged in a priority queue. The priority queue isbuilt using an advanced
heuristic and avoids communication bursts between processors as would be the case
in synchronous parallelization. This makes this method highly suitable for low cost
GRID computing environments connected by standard gigabitEthernet. It is also very
favorable when scattering at multiple objects is considered as is the case for shielding
effectiveness evaluations.

C.5.3 Shielding problems

As a verification we first consider the cubical brass box of dimensions50cm by50cm
by 50cm that was also extensively investigated in [16]. The frontpanel of the box is
interchangeable and here we will consider a front panel witha slit of 5cm by 20cm
in the center of the box. As a reference solution we consider abox without a front
panel. The box is perpendicularly illuminated by a plane wave with the electric field
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Figure C.13: Cubic box with slit illuminated by a plane wave.

Figure C.14: Shielding effectiveness of the box in Fig. C.13.
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polarized orthogonal to the slit. The electric field is measured in the center of the box.
The set-up is shown in Fig. C.13.

Figure C.14 shows the shielding efficiency of the box when thebox without front
panel is used as reference. As a comparison also results from[16] are shown which
consist both of measurements and simulations. As can be seenthe new simulations
are somewhat closer to the measurements than the simulations in [16]. This is due to
the fact that the number of unknownsN = 11744 is about ten times higher than was
possible in [16].

In [16] it was mentioned that the application of absorbing materials in a shielding
enclosure could help improving the shielding efficiency around resonance frequencies.
To illustrate this effect we place an absorbing plate of46cm by 46cm by 2cm at a
distance of2cm from the bottom in the cubic enclosure. Horizontally the plate is
centered in the box. The complex relative permittivity of the plate is2 − 2j. As a
comparison we also consider a lossless plate with the same dimensions but with a
relative permittivity of2. The entire structure is meshed usingN = 38951 unknowns.
Figure C.15 shows the shielding efficiency as a function of frequency with lossy plate,
with lossless plate and without plate. The reference alwaysis the enclosure with
open front and without plate. We note as expected an increasein shielding efficiency
around resonances. Also note that the losses of the plate indeed are responsible for an
increased shielding efficiency. In Fig. C.17 the amplitude of the vertical component of
the electric field is shown in a vertical cross-sectional plane of the enclosure at the first
resonance. The figure on the left corresponds with the lossless plate and the figure on
the right with the lossy plate. Note the substantial decrease in field amplitudes inside
the enclosure due to the losses.

As a final example we consider a personal computer filled with anumber of ob-
jects and a number of holes in the casing. Figures C.17 and C.18 give an idea of the
mesh which resulted inN = 44852 unknowns. WithN = 44852 the problem was
simulated on16 processors (8 dual core2GHz AMD 64 bit processors connected by
a 1GBit Ethernet switch) using3.2GByte of memory when using STs and1.6GByte
without using STs. At250MHz the setup time reduced from960s to526s due to the
use of STs. The NSPWMLFMA required0.5s per iteration for a total of251 iter-
ations. Figure C.19 shows the shielding efficiency as a function of frequency when
considering an incident plane wave with the electric field polarized along the height
of the case. Three different discretizations are considered resulting inN = 15495,
N = 33394 andN = 66980. The small difference in shielding efficiency at low fre-
quencies is due to a reduction of numerical leakage through the walls when using finer
meshes. The amplitude of the vertical electric field component in the central vertical
cross-section at a resonance at1GHz is shown in Fig. C.20.
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Figure C.15: Shielding effectiveness of the box in Fig. C.13 with a lossy plate (diamonds),
with a lossless plate (stars) and without a plate (circles).

Figure C.16: Field distribution at first resonance in the box of Fig. C.13 with lossless (left) and
lossy (right) plate.
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Figure C.17: Internal view of a personal computer. Dimensions are in m and the yellowdot
indicates the measure point.

Figure C.18: Front (left) and rear (right) view of the external mesh of a personal computer.
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Figure C.19: Shielding effectiveness of the enclosure of Figs. C.17 and C.18.

Figure C.20: Amplitude of the vertical electric field component in the cross section of the
enclosure of Figs. C.17 and C.18 at250MHz.
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C.5.4 Conclusions

We demonstrated the use of a non-directional plane wave based MLFMA stable at low
frequencies for the simulation of complex shielding problems. An advanced asyn-
chronous parallel implementation of the MLFMA allows for efficient simulations on
inexpensive GRID computing environments. Further research will focus on better
preconditioners to reduce the number of iterations and towards further acceleration
of the algorithms in order to be able to simulate even more complex structures with
reasonable computational effort.
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C.6 Recent Advances in Fast Multipole Methods to
Simulate Ever Larger and More Complex

Structures

F. Olyslager, K. Cools, J. Peeters, I. Bogaert, J. Fostier, J. Peeters, F.P. Andriulli and
E. Michielssen

Abstract: In this paper we wish to focus on some recent advances in the Multilevel
Fast Multipole Algorithm (MLFMA). Three different topics will be discussed briefly:
a seamless extension of the MLFMA to low frequencies, an asynchronous paralleliza-
tion of the MLFMA suitable for grid computing environments and a new Caldeŕon
based preconditioner for the Electric Field Integral Equation (EFIE). This will be il-
lustrated by three scattering examples in frequency and time domain.

C.6.1 Introduction

Since the introduction of the MLFMA the use of integral equations has seen a new
impetus [18]. The MLFMA drastically reduces the computational and memory com-
plexity of Method of Moments (MoM) discretizations for boundary integral equations
from O

(
N2
)

to O (N logN) with N the number of unknowns in the discretization.
At the same time the numerical error is fully controlled in MLFMA. The MLFMA has
been used to simulate problems involving several millions of unknowns [29], [21] and
in two dimensions problems of tens of thousands wavelengthsin size [30].

In [31] we have concentrated on the application of MLFMA for EMC shielding
problems. Here, we will focus on a number of recent advances in the MLFMA. First
we will investigate a stable and seamless extension [24] of the classical MLFMA
to low frequencies resulting in the first truly broadband MLFMA that does not rely
on directional translation operators. As a second extension we briefly discuss a new
parallelization scheme [21] for the MLFMA. Contrary to existing schemes the new
scheme is asynchronous and very well suited to handle multiple object scattering.
Finally we discuss a new preconditioning method based on theCaldeŕon identities for
the Electric Field Integral Equation (EFIE) [32], [33]. This method was introduced for
time domain integral equations but is also suited for low frequency EFIE frequency
domain problems.

We will illustrate these advances by a few numerical examples in two and three
dimensions and in frequency and time domain. For more examples we refer to the
presentation during the conference and to the cited literature. Most of the code that
was implemented to test these new advances is available as open source software under
GPL licence [22].
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C.6.2 The NSPWMLFMA

The Nondirective Stable Plane Wave Multilevel Fast Multipole Algorithm (NSPWMLFMA
[24]) is a novel method for calculating the low frequency (LF) interactions that can-
not be handled by the classical MLFMA. An interaction is called LF if the source
and observer are closer to each other than approximately onewavelength. To expand
fields this close to the source into plane waves in a stable manner, evanescent plane
waves are necessary. The MLFMA uses only propagating plane waves and therefore
succumbs to a severe numerical instability when dealing with LF interactions. Al-
ternative algorithms can be used to deal with the LF interactions. The most widely
used ones are based on multipoles [34] or the spectral decomposition of the Green
function [3, 35]. However, the former has the disadvantage that the translations are
not diagonal and the latter needs six radiation patterns to cover all possible translation
directions. As a consequence these methods are computationally suboptimal.

The NSPWMLFMA aims to combine the strengths of the multipole and spectral
methods and do away with the weaknesses. It does so by using a novel LF-stable
addition theorem for translations in thez-direction. This addition theorem employs
evanescent plane waves, hence its stability. However, in contrast to the spectral me-
thods, it is still based on the same fundamental formula as the one underlying the
MLFMA. Therefore it shares the MLFMA’s convergence characteristics and requires
only one radiation pattern. There is one problem with this addition theorem, though.
It is numerically stable only for translations inz-direction. Therefore it is necessary
to rotate the coordinate system such that the vector connecting the centers of the in-
teracting source and observer boxes is parallel to thez-axis. This causes the radiation
patterns to be rotated too, and this in turn causes the discretization points of the ra-
diation patterns to be different for every translation direction. This problem is solved
by using the QR-algorithm to select a special set of sample points (wave vectors in
which to evaluate the radiation pattern). These sample points are chosen such that the
samples contain sufficient information to fully describe the radiation pattern, i.e. the
samples can be solved for the multipole coefficients of the radiation pattern. The QR
selection procedure of the sample points makes sure that this operation is well condi-
tioned. The knowledge of the multipole coefficients then allows the calculation of the
radiation pattern in all other possible sample points. Thisenables the construction of
an interpolation matrix that converts the selected samplesof the radiation pattern into
the required sample points for a certain translation. This matrix is then absorbed into
the translation operator for this direction. In this way, numerically stable translation
operators are found for all translation directions. The setof selected sample points
defines the single radiation pattern.

The LF equivalents of inter- and anterpolations are done by means of dense ma-
trices. This is a disadvantage of the NSPWMLFMA since the sizeof these matrices
grows quadratically with the electric size of the boxes. Therefore, the NSPWMLFMA
is an LF technique. It can, however, be easily coupled seamlessly with the MLFMA
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to obtain a broadband method. Also, the DC limit of the algorithm exists, which
clearly shows its LF stability. It is noteworthy that recently a new version of the
NSPWMLFMA was created that uses translation operators that are known in closed
form [36].

C.6.3 Asynchronous Parallelization

The current trend in computer architecture is to incorporate several “cores” into a sin-
gle processing unit (CPU) [37]. These cores run independently and can hence be seen
as a parallel system. With the ever dropping hardware prices, several computers can
be connected using a cheap but fast interconnection networksuch as Gigabit Ethernet.
It is clear that, in order to take advantage of this increase of computational power, the
traditional serial algorithms need to be modified to run in such a distributed environ-
ment.

Previous efforts towards distributed parallel MLFMA were largely focused on
scattering from very large 3-D PEC objects. Using advanced load balancing schemes
and fast interconnection networks, problems with a very large number of unknowns
have been demonstrated [29]. These implementations are essentially synchronous and
are characterized by alternating phases of calculation andcommunication. Attempts
for such an approach on Gigabit Ethernet networks led to a poor efficiency.

Recently, we proposed an asynchronous approach to the parallelization of the
MLFMA [21]. The term “asynchronous” denotes that differentprocesses can exe-
cute different types of operations at a given point in time. While some nodes are
communicating, others could be calculating, leading to a better spreading of com-
munication through time. This alleviates the need for expensive interconnection net-
works and avoids communication in bursts. Furthermore, this approach allows for
an efficient parallelization of simulations that comprise multiple dielectric objects.
The asynchronous MLFMA has been applied to both two dimensional (TE/TM) and
three dimensional problems. The source code of these solvers can be obtained free of
charge [22].

C.6.4 Preconditioning

The linear systems of equations resulting from the discretization of integral equa-
tions are often ill-conditioned. This is especially cumbersome for the application of
MLFMA since it will drastically increase the number of iterations in the iterative solu-
tion process. Hence, reducing the condition number by usingpreconditioning strate-
gies is of paramount importance when wishing to reduce the computational load of
MLFMA. Ill-conditioned systems can stem from different origins. On the one hand
the physical geometry of the scatterer itself can induce high condition numbers. This
will be the case when strong interference effects are encountered such as in e.g. pho-
tonic crystals. Dedicated preconditioners can be developed to reduce the condition
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number [38]. On the other hand the used integral equation itself can be the cause of
large condition numbers. This is e.g. the case with the EFIE when increasing the den-
sity of the mesh. This is especially worrysome when simulations over wide frequency
bands are necessary with a constant mesh or when dealing withnon-uniform meshes.

The condition number of EFIE can be improved by constructinga so-called Calderón
preconditioner (see e.g. [39]). IfT [j] represents the integral operator in the EFIE
acting on the unknown current density#j on the surface of the scatterer then the in-
tegral equation can be written compactly as0 = un × ei(r) + T [j](r) for a PEC
with ei the incident electric field andun the unit vector normal to the scatterer’s sur-
face. Caldeŕon preconditioning amounts to operatingT on this EFIE resulting in the
Caldeŕon preconditioned EFIE (CP-EFIE)0 = T [un × ei](r) + T 2[j](r). It can be
shown using the Calderón identities thatT 2 has a bounded singular value spectrum
when the frequency or the mesh density decreases.

Discretizing theT 2 operator by a direct Galerkin method is impractical. Therefore
a discretization is used that considers a product of two discretized operatorsT . In
the classical MoM for the EFIE the domain ofT is discretized using RWG basis
functions and the rang using curl-conforming RWG basis functions (i.e.un ×RWG

basis functions). This cannot be used twice forT 2 since a singular Gram matrix
is encountered when projecting the range of the first operator on the domain of the
second operator. Recently, [32,33,40], it was shown that this can be resolved elegantly
by discretizing the domain of the secondT operator in so-called Buffa-Christiansen
basis functions (BC basis functions) [40] and the range inun ×BC basis functions.

C.6.5 2D frequency domain example

As a two dimensional example, we consider an indoor propagation example. The
geometry consists of a wooden (ǫr = 3.5) office cubicle with metal (PEC) supports in
which metal (PEC) cupboards have been placed. The size of each cubicle is2m by2m.
A TM line current operating at6GHz is used to excite the structure. The total number
of unknowns using aλ10 discretization is48 045. Using four AMD Opteron270 cores,
the iterative solution took258s and726 iterations to converge to a tolerance of10−3.
A 1λ× 1λ block-Jacobi preconditioner was used. Fig. C.21 shows the electrical field
density inside the cubicle. Although the number of unknownsis rather modest in this
example we have used the same technique to simulate problemswith 15 000 000 of
unknowns [21]. We have also used it for passive optical set-ups [23].

C.6.6 3-D frequency domain example

As a three dimensional example, we consider the broadband scattering at PEC objects,
in casu “Thunderbird 2”. First we illuminate a formation of three Thunderbirds with
a frontal linearly polarized wave at a frequency such that the length of a Thunderbird
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Figure C.21: Electric field density in an office cubicle.
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Figure C.22: HF current densities on the surface of a formation of three Thunderbirds.

corresponds to15 wavelengths. The electric component of the incident wave isor-
thogonal to the wings, i.e. vertical. This problem is simulated with the CFIE to avoid
spurious reflections and discretized using1 025 559 unknowns. It was simulated in
about100 iterations on20 AMD Opteron270 cores to a tolerance of10−3. The prob-
lem required20 times1.2GByte of memory and each iteration lasted28s. Fig. C.22
shows the current distribution on the surface of the formation.

To demonstrate the efficacy of the NSPWMLFMA one single Thunderbird was
illuminated by the same plane wave but now at a frequency where the length of the
Thunderbird is0.014 wavelengths. For stability reasons a MFIE was used that was
discretized with101 466 unknowns. Using12 processors each iteration took20s and
convergence to a tolerance of10−3 was reached after21 iterations. Fig. C.23 shows
the current distribution.

C.6.7 3-D time domain example

As a last example we consider a 3-D scattering problem in timedomain. A plane wave
time pulse is incident on the PEC structure of Fig. C.24. Thisproblem is analyzed
with a time domain EFIE and illustrates the capabilities of aCaldeŕon preconditioner
and the use of BC basis functions. Without preconditioner this problem requires300

iterations per time step and with preconditioner this reduces to15 iterations. A typical
time response for the current density on the structure is shown in Fig. C.25. We see
that the result of the non-preconditioned and preconditioned solution coincide. The
frequency response is shown in Fig. C.26. Note the two adjacent resonances that cause
the beating phenomenon in Fig. C.25. For more information and other examples we
refer to [32] and [33].
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Figure C.23: LF current densities on the surface of one Thunderbird.

C.6.8 Conclusions

Three different recent advances in the development of the MLFMA have been illus-
trated. We are convinced that further challenging advancesin the MLFMA will ul-
timately result in a broadband parallel algorithm that allows for the simulation of
three-dimensional problems of thousands of wavelengths insize comprising several
billions of unknowns on affordable computer networks.
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Figure C.24: Geometry and mesh of two intertwined spiral conductors.
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Figure C.25: Time response of the current density due to a pulse incident on the structure of
Fig. C.24.
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Figure C.26: Frequency response of Fig. C.24.
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C.7 NSPWMLFMA: A Low Frequency Stable
Formulation of the MLFMA in Three Dimensions

I. Bogaert, J. Peeters, J. Fostier, and F. Olyslager
Abstract: The iterative solution of integral equations containing the Green function
of the Helmholtz equation as the integration kernel requires repeated matrix-vector
products. These products can be accelerated by means of a so-called fast multipole
method (FMM). Of the many fast multipole methods in use today, the Multilevel Fast
Multipole Algorithm (MLFMA) is arguably among the most successful ones. It al-
lows the simulation of electrically large structures that are intractable with direct or
unaccelerated iterative solvers. Testimony to the MLFMAs myriad uses is its im-
plementation in various commercial EM software packages such as FEKO and CST
Microwave studio. However, the MLFMA has one big drawback: anumerical in-
stability prevents the method from being used on low frequency (LF) interactions,
i.e. interactions between sources and observers that are less than approximately one
wavelength apart. As a consequence configurations containing significant subwave-
length geometrical detail cannot be efficiently treated using the MLFMA alone and a
hybrid method is necessary. However, the LF methods in use today are generally less
efficient due to non-diagonal translation operators (multipole methods) or the need
for six radiation patterns (spectral methods). In this contribution a novel algorithm,
called the Nondirective Stable Plane Wave Multilevel Fast Multipole Algorithm (NSP-
WMLFMA) [24], will be presented that is stable at LF, exhibitsdiagonal translation
operators and requires only one radiation pattern. The method is based on an analyti-
cal expression for a translation operator in thez-direction. This translation operator is
made numerically stable using a shift of the integration path into the complex plane.
It even has a DC-limit. A QR-based method is then used to extend the applicability
to all the other translation directions. The algorithm has also been parallelized using
Open FMM [22]. Finally some numerical results will be shown.

C.7.1 The LF breakdown of the MLFMA

The LF breakdown can be understood by looking at the translation operator of the
MLFMA

T (krT , θ, φ) =

L∑

l=0

(2l + 1)j−lh
(2)
l (krT )Pl

(

k̂ (θ, φ) · r̂T

)

, (C.37)

with k the wavenumber,rT = rT r̂T the translation vector and̂k (θ, φ) = cosφ sin θx̂+

sinφ sin θŷ + cos θẑ. The functionsPl (·) are the Legendre polynomials. Because
the spherical Hankel functionh(2)

l (krT ) increases exponentially as a function ofl if
l > krT , the terms with a lowl are eventually swamped in the high order terms. Obvi-
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ously, the loss of the low order terms is catastrophic because they contribute the most
to the addition theorem.

Various approaches have been explored to deal with this problem. Maybe the
most radical approach is to replace the MLFMA with a method based on the spectral
representation of the Green function [3]. Another approachis to construct a hybrid
method where the LF interactions are treated using a multipole [34] or spectral repre-
sentation [35] based method. However, the multipole based method does not exhibit
diagonal translation operators and the spectral methods require six radiation patterns
for each box, making all these approaches less efficient thanthe MLFMA, if it were
not numerically unstable. Indeed, it is stated in [35] that the high frequency tech-
nique (MLFMA) should be used whenever possible. Hence, a formulation of the
MLFMA that is stable at LF is desirable. A first attempt to obtain such a formulation
can be found in [41], where a complex shift of the integrationpath is performed and
the translation operators are found numerically. However,the achievable accuracy is
rather limited [42].

C.7.2 A stable translation in the z-direction

The method presented here is based on a uniform discretization of the addition theo-
rem, as described in [43]. This means that the double Fourierspectrum of the trans-
lation operator times|sin θ| has to be truncated at a bandwidthL. For a translation in
the z-direction, the truncated translation operatorT̃ (krT êz, θ, φ) depends only onθ
and can be written as follows

T̃ (krT êz, θ, φ) =
L∑

n=−L

bne
jnθ, (C.38)

bn =
1

2π

L∑

l=0

(2l + 1)j−lh
(2)
l (krT )f l

n. (C.39)

The coefficientsf l
n can be calculated analytically and have the crucial property that

f l
n = 0 ∀ − l < n < l. Through a series of further manipulations and a shift of the

integration path into the complex plane, this allows the construction of a numerically
stable translation in thez-direction. The analytical expression forf l

n and an explicit
formula for the magnitude of the complex shift can be found in[24].

C.7.3 Stable translations in the other directions

In order to obtain stable translations in a general direction rT = rT R · ez with R a
3 × 3 rotation matrix, it is necessary to express it as a translation in thez-direction

h
(2)
0 (k ||rA + rT ||) =

1

4π

∫ 2π

0

∫ π

0

e−j(R·k)·rAT (krT ez, θ, φ) sin θdθdφ. (C.40)
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The key problem is that the discretization points of the radiation pattern are rotated
differently for each translation direction. Therefore we would need a separate set of
plane waves for each different translation, which would be very inefficient. To avoid
this, a QR is used to select the least dependent plane waves, such that they constitute
a basis for the other plane waves. This process then allows the stable translation op-
erators in thez-direction to be transformed such that they can be used on theselected
plane waves.

C.7.4 Numerical results

The accuracy of the proposed method was tested on the configuration shown in Figure
C.27. The sides of the boxes are1m long. Figure C.28 shows the obtained accuracy
as a function of the frequency. The accuracy is defined as the maximum relative error
of all the64 interactions between the vertices of box1 and box2.

Figure C.27: The geometry for testing the accuracy.

As can be seen, the method keeps on working fine even for very low frequen-
cies. In fact the method remains stable all the way down to DC.This limit is derived
in [24]. For high frequencies the error increases because the requiredL for a certain
accuracy increases. As for simulation results, Figure C.29shows simulations of a
plane wave impinging on an A380 airplane. These simulationswere performed us-
ing an asynchronously parallelized [21,22] vectorial version of the hybrid MLFMA -
NSPWMLFMA.



246 CONFERENCE PAPERS

Figure C.28: The maximum relative error as a function of the frequency for varioustruncation
boundsL.

Figure C.29: Currents on the A380 airplane for plane waves impinging from the left. The
wavelengths are0.63m (top),63m (bottom left) and6300m (bottom right) respectively. The
number of unknowns is500000 (top) and117000 (bottom left and right).
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C.8 New Plane Wave Addition Theorems

I. Bogaert, and F. Olyslager
Integral equations containing the Green function of the Helmholtz equation play

an important role in computational acoustics and electromagnetics. Numerical dis-
cretization of these equations results in a linear system ofdimensionN , whereN is
the number of basis functions used to discretize the integral equation. For largeN
a direct solution of the system soon becomes impractical andone has to resort to an
iterative solution technique where the matrix vector product in each iteration step still
requiresO

(
N2
)

operations.

The Multilevel Fast Multipole Algorithm (MLFMA) [18] reduces the computa-
tional complexity of the matrix vector product toO (N lnN). The MLFMA is based
on a plane wave addition theorem for the Green function wherethe Green function is
written as an integral over the Ewald sphere and where the integrand is written as a
product of a long range translation operator and a short range factor.

It turns out that this expansion of the Green function is not unique and that several
types of plane wave addition theorems are possible. Actually a general formalism can
be developed from which several new addition theorems can beconceived. The clas-
sic addition theorem used for the MLFMA is not stable when considering distances
small compared to wavelength, i.e. when the argument of the Green function becomes
small. This phenomenon is called the Low Frequency (LF) breakdown of the addition
theorem. The new formalism allows to develop addition theorems that avoid this LF
breakdown.

The starting point of the derivation is the addition theoremfor the spherical Hankel
function of the zeroth order and second kind

h
(2)
0 (kr) =

e−jkr

−jkr =

L∑

l=0

(−1)l(2l + 1)jl(krA)h
(2)
l (krT )Pl (r̂A · r̂T ) , (C.41)

wherer = |r| andr = rA + rT . This addition theorem converges absolutely if
rT > rA. The functionPl (·) is the Legendre polynomial of degreel, whileYl,m (θ, φ)

is a spherical harmonic of degreel and orderm. Now consider any set of functions
fl,m(θ, φ) such that the following property holds

∫ ∫

D

fl,m(θ, φ)Y ∗
l′,m′ (θ, φ)w(θ, φ)dθdφ = δl,l′δm,m′ , (C.42)

for some integration domainD and weight distributionw(θ, φ). By means of (C.42),
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properties of the Legendre functions and the expansion of a plane wave

e−jk(θ,φ)·rA =

∞∑

l=0

(2l + 1)j−ljl(kr)Pl

(

k̂ (θ, φ) · r̂A

)

, (C.43)

the spherical hankel functionh(2)
0 (kr) can be written as

h
(2)
0 (kr) =

1

4π

∫ ∫

D

e−jk(θ,φ)·rAT (krT , θ, φ)w(θ, φ)dθdφ, (C.44)

with a translation operator defined through

T (krT , θ, φ) = 4π

L∑

l=0

l∑

m=−l

j−lh
(2)
l (krT ) fl,m(θ, φ)Y ∗

l,m (θT , φT ) , (C.45)

andk (θ, φ) = kk̂ (θ, φ), with k̂ (θ, φ) = cosφ sin θx̂ + sinφ sin θŷ + cos θẑ andk
the wavenumber.

In this contribution we will consider three valid choices for fl,m,D andw. Let us
now very briefly discuss these three choices. An in depth mathematical analysis will
be given during the presentation and in the full paper.

By choosing

fl,m(θ, φ) = Yl,m (θ, φ) , (C.46)

w(θ, φ) = sin θ, (C.47)

D = [0, 2π] ⊗ [0, π], (C.48)

(C.44) reduces to the classic addition theorem of the MLFMA which faces the problem
of not being stable whenkr << 1. The integration over the domainD requires Gauss-
Legendre quadrature points.

The following choice, already proposed in [43],

fl,m(θ, φ) =
1

2
Yl,m (θ, φ) |sin θ| , (C.49)

w(θ, φ) = 1, (C.50)

D = [0, 2π] ⊗ [0, 2π], (C.51)

allows a Fast Fourier Transform (FFT) based evaluation of the integration over the
domainD provided that the Fourier series offl,m(θ, φ) in bothθ andφ are truncated
at bandwidthL (a smoothing operation).
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We propose the following novel choice

fl,m(θ, φ) =

{
1
2Ul,m (θ, φ) sin θ ∀m ≥ 0
1
2 (−1)mU∗

l,−m (θ, φ) sin θ ∀m < 0
, (C.52)

w(θ, φ) = 1, (C.53)

D = [0, 2π] ⊗ [0, 2π]. (C.54)

TheUl,m (θ, φ) are distributions which are conveniently called ”the pseudospherical
harmonics” defined as

Ul,m (θ, φ) =

√

2l + 1

4π

(l −m)!

(l +m)!
eimφ sinm θ

2ll!

(
1

sin θ

d

dθ

)l+m [ |sin θ|
sin θ

sin2l θ

]

.

(C.55)

As in the previous choice it can be shown that smoothing allows FFT integration but
in addition it yields LF stable analytical translation operators.
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