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CHAPTER 1
GENERAL INTRODUCTION

1. Literature review

1.1. Evolution and biodiversity of woody bamboo

The bamboos (Poaceae: Bambusoideae) are traditionally described as a heterogeneous group of
mostly perennial, rhizomatous forest grasses with broad, pseudopetiolate leaves, chlorenchyma
with arm and fusoid cells, often bracteate synflorescences, and trimerous flowers (Clark 1997,
Zhang & Clark 2000). The Bambusoideae is a polyphyletic assemblage, belonging to the most
ancestral components of the grass family (Clark 1997), but a bambusoid clade consisting of the
woody bamboos (Bambuseae) and the herbaceous olyroid bamboos (Olyreae, Parianeae and
Buergersiochloeae) is supported as monophyletic (Zhang & Clark 2000). Within this bamboo
clade, the woody bamboos (Bambuseae) and the herbaceous bamboos (Olyreae) each form a
monophyletic clade (Zhang & Clark 2000). The presence of woody culms, the differentiation
between foliage and culm leaves (reflecting the two phases of shoot growth and development),
and the gregarious flowering cycles at long intervals are all structural characters that unite the
woody bamboos (Zhang & Clark 2000). It is generally accepted that the woody bamboos diverged
from a herbaceous ancestor adapted to more open environments (Takhtajan 1969; Clayton &
Renvoize 1986; Clark et al. 1995; Clark 1997). They evolved to compete for light with trees and
other woody vegetation and play unquestionably an important role in forest dynamics. They are
usually found growing in clearings and along forest margins, and when there is disturbance, the
bamboos are superbly equipped to take advantage (Clark 1997). Gregarious, monocarpic
flowering behaviour is considered by Widmer (1997) as being associated with forest dynamics.
Simultaneous flowering and the subsequent germination of countless seedlings allow bamboos to
compete very effectively with tree saplings in the event of a break in the forest canopy. The very
rapid growth rate of culms may also be important in this respect.

Janzen (1976) proposed predator satiation as a hypothesis to explain the cyclical, gregarious
flowering. In this scenario so much fruit is produced that the local seed predators cannot eat all of
it and the remaining seed can regenerate. But given the relatively short life cycles of these
predators in comparison to the very long cycles of 50, 60, 80 or over 100 years for some
bamboos, it is difficult to explain the selective pressure. Therefore Clark (1997) speculates that
energy partitioning during the life cycle of plants competing with trees is a more plausible factor in
the evolution of this unusual flowering behaviour. Energy requirements for fast vegetative growth
and large size are probably high, so delay in flowering might be a reasonable adaptation. Still a
lot of work has to be done to understand this complex flowering behaviour.
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It is suggested by Clark (1997) that the earliest bamboos were tropical, lowland, and Gondwanan
(southern hemisphere) in their early diversification, during which time they split into two major
lineages, one herbaceous and the other woody. She speculates that the earliest woody bamboos
occupied tropical regions with a single lineage that radiated into the northern temperate zones
and into tropical montane habitats.

Bamboos are distributed from 46° North to 47° South latitude and their altitudinal range is from
sea level to over 4000 m in equatorial highlands (Soderstrom et al. 1988). Bamboos are found in
the largest abundance and variety on the southern and south-eastern borders of Asia, from India
through China and Japan to Korea. In the vast Eurasian continent north, west, and northwest of
Tibet and China, however, no native bamboo has been found (McClure 1966). The natural
distribution of bamboo in the world has been modified mainly by human intervention.

The lowest diversity of woody bamboo is found in continental Africa where five species naturally
occur (Brystriakova et al. 2003a). The greatest potential bamboo richness is in East Africa (Fig. 1-
1a). The low diversity of bamboo species in mainland Africa, compared with Asia, Madagascar
and the Americas, may relate to past climatic variation on the continent. The ancestral woody
bamboos are thought to have arisen in the wet Gondwanaland (Clark 1997). It is possible that
after the break-up of Gondwanaland the African genera isolated (Clayton & Renvoize 1999) and
that climate and vegetation patterns in Africa have provided limited opportunities for their
expansion and radiation within forest habitats, in contrast to genera on other continents. Despite
their lack of diversity in Africa, bamboos play an important role in ecology and biodiversity
conservation. In many places, especially at high altitude, African bamboo species form vast pure
stands, which provide important shelter and resources for some key species of conservation
interest, for example for the eastern mountain gorilla (Gorilla beringei beringei) (Brystriakova et al.
2003a).

Madagascar is considered to have 33 species of woody bamboo and is therefore strikingly more
rich in species than continental Africa. Thirty-two of these species are endemic and a single
species, Bambusa vulgaris, is pantropical in distribution. As this last species is mainly found near
villages and along rivers, it is possible that it is introduced. The richness and endemism of the
woody bamboo flora of Madagascar reflects the island’s long (c. 140 million years) isolation from
other land masses and the resulting unique evolutionary pathways that have led to extremely high
levels of endemism in both flora and fauna (Brystriakova et al. 2003a).

The Americas are collectively much richer in bamboo species than either continental Africa or
Madagascar, but have lower diversity than the Asia-Pacific region (Fig. 1-1a). There are
approximately 430 species in the Americas of which more than 40 % belongs to a single genus,
Chusquea (Brystriakova et al. 2003a). The greatest diversity is in South America with the highest
bamboo diversity in Brazil, the northern and central Andes and Mexico. The Unites States has
only a single woody bamboo species (Arundinaria gigantea). Throughout South America, woody
bamboos are an important part of forested ecosystems. This dense vegetation is often an
important refuge for wildlife species from surrounding native hardwood forests that are being
destroyed (Judziewicz et al. 1999). Bamboo stands provide habitat and food for a wide range of
mammals, birds, amphibians and invertebrates.

4



Introduction

Vi Az [y, < Caal w 30 &0

{ I } - e I
.‘KI } L
% L"‘-*{{ 4 i 50
[ | Na 2]

Wy ;\
0 b 1 e ¥
- - - £ !

Patential species richness: |, [L-H.- ‘ ﬁ?-ﬁ‘-!-;;f

tribe Bambuseae i \‘\qr #

Humber of species b iy | o

1-3 h

o 4-10 i

11-25
25-35

Existing forest cover
with no records of

0 1000 2000 3000 kilometres

Bambuseas ey
120 50 & 0 a0 P
e 1 = 180
ﬁ' \ “
'ﬁ?r W _— F
e T 2
1] 1000 2000 3000 kilemetres
- 20
Potential species richness: tribe
1 Bambuseae = 0
Number  1-10 11-32 33-4 &5-142 o |
of species 3_‘%_‘. _3__“1 ) B V‘.MW
i L, =T
Existing forest cover with * :‘-._ o B
no records of Bambuseae b 4
Mol W el
20 |eo, ) 140 \‘lm w20
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derived by integrating 370 individual species maps. (b) Map of potential bamboo species
richness in the Asia-Pacific region, derived by integrating 998 individual species maps.
(Brystriakova et al. 2003b)
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In the Asia-Pacific region nearly 1000 bamboo species (of 60 genera) occur naturally within
remaining forests. The largest national complement of species was for China, which had 626
species, followed by India (102 species) and Japan (84 species) (Brystriakova et al. 2003b). The
highest overall diversity of Asian bamboo is seen in southern China (Fig. 1-1b). It has often been
assumed that areas that have high current diversity represent ancestral homes of woody
bamboo. However, bamboos may not have existed in these areas for any great length of time.
The current global distribution of woody bamboos, with a second important, though less rich,
centre of bamboo diversity in South America suggests that early ancestors of woody bamboos
evolved in Gondwanaland in the southern hemisphere in post-Cretaceous times. High biodiversity
in southern China may only reflect relatively recent diversification there, unless woody bamboos
have evolved more than once in separate, unrelated lineages (Brystriakova et al. 2003b).
Bamboos are an ancient group of forest plants, intrinsically vulnerable to deforestation. They are
often associated with threatened plants, and there are many specialized animal species that
depend upon them. The best known of these in Asia is the giant panda (Ailuropoda melanoleuca).
The smallest known bat (Tylonycteris pachypus) roots between nodes of bamboo (Gigantochloa
scortechinii) which it enters through holes created by beetles. More than 15 Asian birds live
almost exclusively in bamboo (Brystriakova et al. 2003Db).

1.2. Morphology of bamboo plants

The following survey of the morphology of bamboo plants is based on McClure (1966).

The vegetative structure of bamboo plants is rather straightforward. The basic frame consists of a
ramifying system of segmented vegetative axes, which may be differentiated as rhizomes, culms
and culm branches consisting of a series of nodes and internodes. It is clothed (at least during
the period of its active growth) by enveloping sheaths that face alternate sides of the axis at the
successive nodes (distichous phyllotaxis). Variation in the form and other features of the nodes
and internodes (particularly those of the culm) provide useful characters for the differentiation of
taxa.

The culms develop from a subterranean rhizome. Individual culms and rhizomes have a relatively
limited life span in comparison with the age of the bamboo plant. Old rhizomes and culms are
constantly being replaced by new ones. The root system consists of a large amount of
adventitious roots, which are not segmented.

1.2.1. The rhizome

The rhizome of bamboos is in charge of the distribution, the anchoring and food stock of the
plant. Every year the rhizome forms new culms and immediately distal to the nodes, adventitious
roots for the uptake of water and nutrients are formed.

The rhizome may develop into two main different forms: the pachymorph (sympodial) rhizome
system and the leptomorph (monopodial) rhizome system (Fig. 1-2) although some subtypes also
exist.

6
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Figure 1-2. The two different main rhizome types of bamboo. (A) pachymorph rhizome
system (Bambusa beecheyana) (B) leptomorph rhizome system (Arundinaria amabilis).
(McClure 1966: 21: fig. 8)

Species of Gigantochloa and Dendrocalamus are examples of a pachymorph rhizome system,
which is developing in a horizontal direction for a short distance, after which it turns upward to
form a culm. Species of Phyllostachys are examples of a leptomorph rhizome system. This
rhizome is described as growing widely in a horizontal direction, with more or less widely spaced
culms arising from lateral buds at the nodes.

1.2.2. The culm

Bamboo culms are either lateral branches or apical differentiations of the rhizome, depending on
whether the rhizome proper is leptomorph or pachymorph. In habit, they vary from strictly erect,
erect with pendulous tips, or ascending, through broadly arched to clambering and from nearly
straight to strongly zigzagging. Given uniform environmental conditions, each habit character is
fairly consistent within a given taxon, such as species or subspecies. Bamboo shoots expand in
one growing period through a particular process of cell division and cell elongation. Culms have
reached their final culm wall thickness when appearing aboveground. They grow very fast,
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obtaining their full length in only a few months (Fig. 1-3). The height differs from low ground
covering species of 20-50 cm to very high bamboo culms of 30 m or even higher.

A bamboo culm consists of hollow internodes and full nodes. Some species have full internodes,
e.g. Chusquea species and Dendrocalamus strictus. The culm wall is thick or thin, depending on
the species. The culm is mostly cylindrical, but often the side where the buds are situated is
flattened. The genus Phyllostachys for example has a groove, the sulcus along the internodal
zone.

Figure 1-3. Phyllostachys
viridiglaucescens stems illustrating
the very rapid growth of bamboo
culms.
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The node is a more or less clearly defined zone around the attachments of the leaves. The nodal
ridge connects the leaf structure with the nodal region. The upper part of the nodal region is often
limited by a bulge formed by the intercalary meristem, the supranodal ridge (Fig. 1-4).

int 7

supranodal ridge

nodal

intra - node region

nodal ridge

Figure 1-4. lllustration of a nodal region between internode 6 and 7 (numbered from the
ground level) of a Phyllostachys nigra culm.

1.2.3. The vegetative leaves

A bamboo culm is characterized by two types of leaves, the culm sheaths and the foliage leaves
(Fig. 1-5). Every node of every segmented vegetative axis of a bamboo plant bears a sheathing
organ, which embraces the developing internode(s). Foliage leaves differ from the culm sheaths
in being pseudopetiolate. The culm sheaths protect the plant parts that need mechanical
protection. As soon as the growth has ended, they loose their function, dry and fall of or stay on
the plant, depending on the species. The function of the foliage leaves is photosynthesis with the
production of sugars necessary for the growth.
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foliage
leaf

culm
sheath

Sheath proper

Leaf sheath

\

Culm sheath Foliage leaf

Figure 1-5. lllustration of a culm sheath and a foliage leaf showing the several component
parts. (Adapted from McClure 1966: 64: fig. 35)

1.3. Anatomy of bamboo plants

Liese (1998) published a comprehensive survey of the anatomy of bamboo culms, which is used
as a basis for the following overview.

1.3.1. Anatomy of the rhizome

Before a new culm is able to assimilate carbohydrates, its growth depends on the accumulated
substances from older culms, which is either stored in the rhizome or transported directly from the
older culms through the rhizome to the growing shoot. When new culms develop, new rhizomes
will develop. These functions are reflected in the structure of the rhizome (Hsieh et al. 1986;
Raechel & Curtis 1990; Ding et al. 1993, 1996, 1997).

10



Introduction

The rhizome consists of internodes and nodes. Immediately distal to the nodes adventitious roots
develop with root hairs as outgrowth of the rhizodermis for the uptake of water and mineral
elements. However, the adventitious roots develop not only from the rhizome, but also from the
culm base.

Generally, the rhizome has a smaller diameter and shorter internodes than the culm. The
anatomical structure is basically similar to the culm. Conspicuous differences, however, exist
regarding the thick cortex, random orientation of vascular bundles, poorly developed fibre
strands, absence of a pith ring, and only a small pith cavity. Based on the arrangement of
vascular bundles beneath the cortex and the development of air canals in the cortex, monopodial
bamboos can be grouped into four types (Raechel & Curtis 1990; Ding et al. 1993). The rhizomes
consist of, on an average, about 62 % parenchyma cells, 20 % fibres and 18 % conducting tissue.
This is significantly different from the culm tissue, which consists of about 52 % parenchyma
cells, 40 % fibres and only 8 % conducting tissue. These differences are closely related to the
different functions (Hsuing et al. 1981).

The culm neck, a part of the culm axes, is very short in monopodial bamboos, but elongated in
some sympodial bamboos. Culms develop from lateral buds in monopodial rhizomes but from
terminal buds in sympodial bamboo culms. The implication is that the so-called sympodial
rhizome is more an elongated culm neck than a rhizome (Ding et al. 1997b). Hence, they
concluded that only monopodial bamboos have a true rhizome, while sympodial bamboos have a
‘pseudorhizome’. The subterranean parts of sympodial bamboo axes are thus to be considered
as culm necks rather than as rhizomes. Morphologically, the culm neck consists of a culm stalk
that never bears buds nor adventitious roots, and a culm base that does form buds and roots
(Fig. 1-6). Anatomically, the culm neck is mostly solid, without a lacuna and with characteristic
vascular bundle structure. The xylem consists of only one metaxylem vessel. Protoxylem is either
absent or poorly developed. The weakly developed fibre sheaths either surround the vascular
bundles or are present only on the phloem side. There are no isolated fibre bundles as in
sympodial culms.

culm stalk J culm

culm base |neck

Figure 1-6. lllustration of a sympodial bamboo with a short culm neck consisting of a
culm stalk and a culm base. (Adapted from Ding et al. 1997b)
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1.3.2. Anatomy of the developing shoot

De Windt (2002) studied the shoot apex anatomy of P. aurea (Fig. 1-7). The apical meristem is
made up of tunica cells and corpus initials. The corpus initial cells divide periclinally and
anticlinally and give rise to central cells and peripher meristem. The tunica cells form the
epidermis. Where the nodes will be formed, the central cells become intercalary meristem
differentiating into the pith cells and the ground parenchyma cells lying in axial direction. The pith
cells will die and disappear to form the lacuna. The remaining central cells differentiate into the
nodal diaphragm. The vascular tissue and the fibre caps originate from the procambium. Before
the culm has reached its full length, cells start to differentiate in the lowest internodes and from
the inside towards the outside. The cell walls start to thicken approximately around the time the
culm looses its culm sheaths. Crow (2000) studied the anatomy of the developing shoot in P.
viridiglaucescens. As in the study of De Windt (2000), she observes the intercalary meristem as
newly formed because after elongation of the internode the central cells, originally making up the
core of the shoot, are positioned at the top of the internode. This is in contrast to Fischer &
French (1976) who stated that the intercalary meristem is a residual meristem.

00 Ui

Figure 1-7. Longitudinal section through an upper internode (apex) of a 1-week old P.
aurea shoot: the arrows indicate the intercalary meristematic cells that form pith cells
above (pc). The central cells (cc) will form the nodal diaphragm. Procambium cells (pc-
vb) are present and will form the vascular bundle and its supporting tissue. (Adapted
from De Windt 2002)

12



Introduction

1.3.3. General anatomy of the internode

Bamboo culms develop their tissue faster than any other plant, within only a few months. The
internodes have a culm wall surrounding a large cavity, the lacuna. Contrary to dicotyledonous
wood no radial cell elements exist, which greatly hinders lateral movements of nutrients or liquids.
Wood consists basically of xylem, being the water transport system that gradually looses its
function with age. Bamboo tissue on the other hand remains functional throughout the life span of
a culm. The nodes provide the transversal interconnection in the culm by their solid cross wall,
the diaphragm. In the internodes the cells are strongly oriented axially. In the nodes a more
complex structure is found (Ding & Liese 1997; André 1998).

Figure 1-8. Transversal section through
internode 6 (humbered from the ground
level) of a culm of Phyllostachys
viridiglaucescens. The vascular bundles
are embedded in the parenchymatous
ground tissue. 1: outer part of the culm
wall, 2: middle part of the culm wall, 3:
inner part of the culm wall.

BuUNoe|
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A transversal section of a culm internode shows the parenchymatous ground tissue in which
collateral vascular bundles composed of protoxylem and metaxylem vessels, sieve tubes with
companion cells and fibres sheaths are embedded (Fig. 1-8). The outermost layer of the culm
wall is the epidermis. The epidermal cells are often covered by a cutinized layer of cellulose and
pectin with tangential lamellation. A wax coating is formed on top and appears as irregular plates,
rods or granules. Beneath the epidermis lies the hypodermis, consisting of several layers of thick-
walled sclerenchymatous cells. The compact composition of the cortex and the wax coating
prevent loss of water from the culm. It also hinders the penetration of liquid. Particular hindering is
observed for the penetration of chemicals during the pulping process and of preservatives during
vacuum pressure impregnation.

The parenchyma cells of the ground tissue are small near the outer part of the culm wall and
become larger, especially axially, towards the inner part, and get smaller again near the lacuna.
They are of two types: vertically elongated cells and short cube-like ones interspersed among the
former. He et al. (2002) showed a difference in lignification and in hemicellulose distribution
between the two parenchyma cell types, concluding that the short cells remain in the stage before
the onset of cell elongation. As parenchyma cells are the storage tissue for the plant, starch
granules can fill up the cells. Starch is abundant in elongated parenchyma of ground tissue,
vascular parenchyma cells, parenchyma cells around the nodes and in the diaphragm.

On average, a culm consists of about 52 % parenchyma, 40 % fibres and 8 % conductive tissue
(vessels, sieve tubes and companion cells) (Liese & Mende 1969; Grosser & Liese 1974).
Londofio et al. (2002) found that culms of Guadua angustifolia are formed by 40 % fibres, 51 %
parenchyma and 9 % vascular tissue on average. A large variability is present within the vascular
bundles of one culm, as well as in transversal section as in longitudinal direction (Fig. 1-9).

Near the periphery of the culm (outer part of the culm wall), the bundles are smaller and
numerous with only a few parenchyma cells in between. The three xylem fibre sheaths are often
merged into an ellipsoid, making the xylem sheath larger than the phloem sheath. Vessels
towards the outer part of the culm wall are smaller than in the middle and inner parts. The
percentage of fibre decreases from the outer part of the culm wall to the inner part of the culm
wall, while the percentage of parenchyma increases.

In the longitudinal direction, the narrowing of the culm wall results in a reduction of the inner
portion that has more parenchyma and less vascular bundles. Thus the upper part of a culm
contains as much or more fibres per unit area resulting in a higher density, whereas the basal
part has higher parenchyma content. The size of vascular bundles decreases from the base to
the top of the culm. As their radial diameter reduces much more than the tangential diameter, the
shape of vascular bundles changes from a radially elongated form to a roundish or oval form near
the top.
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The variation of vascular bundles in longitudinal direction is more significant than in transverse
direction. Londofio et al. (2002) studied anatomical features as size, form and distribution of the
vascular bundles, diameter and percentage of metaxylem, and percentage of fibres along the
width and length of the culm wall in Guadua angustifolia. They showed variation in relation to the
thickness of the culm wall, with a higher concentration and smaller size of the vascular bundles
towards the periphery. A relationship between the features evaluated and the culm age could not
be found.
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Figure 1-9. Variability in shape of vascular bundles in transverse and longitudinal
direction of a Phyllostachys edulis culm. (Adapted from Liese 1998: 40: fig. 28)

The protoxylem consists of one or more tracheal elements located between two large metaxylem
vessels towards the pith cavity. Often, the protoxylem of monopodial species shows tyloses in the
cells, developed from the surrounding parenchyma. The two large vessels of the metaxylem are
separated by parenchyma cells, which are generally smaller than the ground parenchyma cells.
The phloem consists of large, thin-walled sieve tubes and smaller companion cells originating
from the same mother cells. Fibres occur as fibre caps (sheaths) surrounding the conducting
elements. Grosser & Liese (1971) analysed the variability of vascular bundles in form and size
and grouped them into four basic types. Liese & Grosser (2000) described two additional vascular
bundles types. Vascular bundles of type | consists of only one part: the central vascular bundle,
with a supporting tissue of four fibre caps on the sides, symmetrically located and nearly of the
same size (Fig. 1-10a). This type is present in species with monopodial rhizomes, for example
Phyllostachys species and Arundinaria species. Type Il also consists of one part, the central
vascular bundle, with a supporting tissue of four fibre caps. The inner fibre cap at the protoxylem
is strikingly larger than the two lateral ones (Fig. 1-10b). Vascular bundle type Il consists of two
parts. Besides the central vascular strand, a free fibre strand is present, located at the inner side
of the vascular bundle (Fig. 1-10c). This type is present only in sympodial genera (e.g.
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Gigantochloa, Dendrocalamus Bambusa). Vascular bundle type IV (Fig. 1-10d) consists of three
parts: the central vascular strand with small sclerenchyma sheaths, and two free fibre strands
located at the phloem and the protoxylem side. It is present in sympodial genera growing in
dense clumps (Gigantochloa, Dendrocalamus, Bambusa,) and occurs always combined with type
[l

Figure 1-10. (a) Type | vascular bundle of Phyllostachys edulis. (b) Type Il vascular
bundle of Cephalostachyum pergracile. (c) Type lll vascular bundle of Oxytenanthera
albociliata. (d) Type IV vascular bundle of Bambusa polymorpha. (Adapted from Liese
1998: 29-31: fig. 18-21)
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Type V corresponds to type Ill and IV, but the fibre strand at the inner side of the central vascular
strand opposite the protoxylem appears subdivided, consisting of two or more separate units (Fig.
1-11a). This type occurs more sporadic than regular, but no specific taxa have been assigned to
it. Vascular bundle type VI occurs in climbing bamboos (e.g. Dinochloa spp.) and consists of a
central vascular strand with a large often elongated-oval phloem area, two metaxylem vessels of
extremely large diameter, and an only small protoxylem space. The sclerenchyma is mostly
limited to very small sheaths of few cells wide (Fig. 1-11b).

Figure 1-11. (a) Type V vascular bundle of Bambusa forbesii. (b) Type VI vascular
bundle of Dinochloa scandens. (Adapted from Liese 1998: 32-33: fig. 22-23)

At the inner side of the culm wall, cellular layers surround the pith cavity, becoming more
pronounced as the culm ages. This pith ring is a non-vascular tissue composed of layers of
parenchyma cells, which are often heavily thickened and lignified.

Bamboo culms and rhizomes respond to wounds in order to protect the surrounding tissues
against damaging influences through the wound surfaces. The defense arsenal consists of a
number of cellular reactions such as closure of sieve tubes by callose, formation of slime and
tyloses, phenolics, suberised cell walls, wall lignification and also septa development in fibres.
There is also accumulation and mobilization of starch around the wound, development of
additional layers of the cell wall in parenchyma cells and fibres, and the formation of a suberin
layer in vascular parenchyma cells (Weiner & Liese 1997).
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1.3.4. Maturation and fine structure of bamboo fibres and parenchyma
cells

Cell wall thickening

Structural modification during the maturation phase and the following years relate to fibres and
parenchyma cells. The results obtained by Alvin & Murphy (1988), Majima et al. (1991), Liese &
Weiner (1996, 1997) and Murphy & Alvin (1997a, b) have demonstrated that the maturation
process of fibres proceeds quite differently over the transverse section of a culm wall. The
process starts at the outer part of the culm wall and proceeds toward the centre. Furthermore, it is
influenced by the position of the fibres within the vascular bundle. Cell wall thickening of bundle
sheath fibres starts from the inner vascular side and proceeds to the outer parenchyma side.

Figure 1-12. Transversal section of a vascular bundle in the middle part of the culm
wall (internode 6) of a 6-month old P. viridiglaucescens culm. 1: early maturing fibres,
2: late maturing fibres, Mx: metaxylem, Ph: phloem.
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Murphy & Alvin (1997a) describe two fibre types distinguishable during bamboo culm
development. The early maturing fibres occur around the periphery of the culm wall and adjacent
or close to the vascular tissue and thicken to almost their maximum during the first year of culm
growth. The second type, the late maturing fibres, keep their potential for continued wall
thickening even in 3-year old culms and occur adjacent or close to the parenchyma. In figure 1-12
it is shown that the early maturing fibres have already a thick cell wall comparing to the late
maturing fibres, which are characterized by a thinner cell wall in a 6-month old culm. Liese &
Weiner (1996, 1997) investigated in detail culms of Phyllostachys viridiglaucescens aged up to 12
years. During the first month of the growing period the fibre wall thickness at the 20t internode
was 1.5 - 1.7 um but most fibres were still unlignified. At 3 months they were fully elongated, had
three lignified layers and a fibre wall thickness of 2 - 3 um. The wall thickness grew from 5 um
after 1 year, over £ 6 um after 3 years to 8 um after 12 years containing eight layers. They
concluded that the increase in wall thickness was caused by the deposition of additional layers.
This ability of prolonged cell wall thickening of fibres and parenchyma cells may provide an
excellent mechanism for further strengthening the culm as it ages, and might be to an extent
functionally comparable with the development of secondary thickening in dicotyledonous plants
(Murphy & Alvin 1997a). Liese & Weiner (1996) and Murphy & Alvin (1997a) showed that bamboo
fibre and parenchyma cells retain their living protoplast and have the ability to maintain viability
during cell wall lignification, which is necessary to have a continued cell wall thickening. The
heterogeneity in fibre maturation with both location (early and late maturing fibres) in the culm
and with time may have its explanation in the very rapid culm height growth in bamboos (Murphy
& Alvin 1997a). Provision of a fully developed and strengthened culm during the early growth
phase would impose a very large resource demand at the likely expense of a reduced growth
rate, resulting in a reduced height. Instead, the most critical elements of the culm for provision of
mechanical support (outer part of the culm wall) and the protection of the vascular tissues are
selectively developed at the earliest opportunity.

Lignification

The incorporation of the three-dimensional phenolic polymer lignin into the space between cell
wall microfibrils is termed lignification. Lignin decreases the permeability and degradability of
walls and is important in determining the mechanical behaviour of predominantly nonliving tissues
such as wood (Donaldson 2001). Lignins are complex aromatic heteropolymers derived mainly
from three hydroxycinnamyl alcohol monomers differing in their degree of methoxylation, p-
coumaryl, coniferyl, and sinapyl alcohols. These monolignols produce, respectively p-
hydroxyphenyl (H), guaiacyl (G) and syringyl (S) phenylpropanoid units when incorporated into
the lignin polymer. The amount and composition of lignins vary among taxa, cell types, and
individual cell wall layers and are influenced by developmental and environmental cues. Although
exceptions exist, dicotyledonous angiosperm lignins consist principally of G and S units and
traces of H units, whereas gymnosperm lignins are composed mostly of G units with low levels of
H units. Lignins from grasses incorporate G and S units, and more H units. Because lignification
occurs in the cell corner and middle lamella at an early stage and in the secondary wall at the late
stage, the monolignols deposit to different extents in different morphological regions of the
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developing cell wall. In woody tissues the middle lamella and the primary wall are stronger
lignified than the secondary wall. However, because the secondary wall occupies a larger portion
of the wall, the secondary wall has the highest lignin content. Secondary walls of vessels
generally have higher lignin content than those of fibres. Environmental conditions also influence
lignin amount and composition: secondary walls of angiosperm tension wood are characterized
by the presence of an unlignified gelatinous layer. By contrast, the secondary wall layer of
gymnosperm compression wood is characterized by a highly lignified ring. In grasses p-coumaric
and ferulic acids are widely distributed along with polylignol moieties. The composition and
content of these phenolic acids depend on the morphological location and differentiation stage.
(Fengel & Wegener 1983; Terashima et al. 1993; Boerjan et al. 2003).

The lignification of Phyllostachys heterocycla was studied by ltoh (1990), revealing full
lignification of the component cells within one growing season. The lignin content determined on
a dry weight basis by the sulphuric method in culms aged 2 to 4 years determined at internodes
10, 20 and 30 only varied from 23.2 to 26.4 %. Abd. Latif et al. (1996) showed that the lignin
increased from 20.6 % in the half-year old culm of Bambusa heterostachya to 22.6 % in the two-
year old culm, decreased to 20.8 % in the three-year old culm but increased again to 21.3 % in
the four-year old culm. They state that this is due to the fact that the full lignification of the
bamboo is completed within one growing season with no further significant ageing effects.
Murphy & Alvin (1997b) showed that Phyllostachys viridiglaucescens bamboo culms were only
half lignified at year 1 (approx. 13 %) compared to 3-year old culms (over 26 %) having lignin
content comparable to wood. Lin et al. (2002) showed that fibre walls are rich in guaiacyl lignin in
the early stage of lignification, and lignin rich in syringyl units is deposited in the later stage. The
lignification process may last even up to 7 years.

An important feature of a lignified fibre is its liveliness. Whereas the fibres in hardwood normally
die after cell wall differentiation with the simultaneous degeneration of their cytoplasm, bamboo
fibres retain their cytoplasmatic activity long after cell wall lignification (Murphy & Alvin 1997a). He
et al. (2000) studied the ultrastructure of the secondary wall formation and the related cellular
organelles during the maturation of a bamboo stem. They divide the development of bamboo fibre
into four stages: cell differentiation, cell elongation (primary wall formation), cell wall thickening
and lignification (secondary wall formation). At the stage of the wall thickening, the number of
organelles increased, especially the endoplasmic reticulum, Golgi bodies and mitochondria. With
the progress of wall thickening and lignification, plasmolysis was observed, there was thinning of
cytoplasm and decreasing of the number of organelles, with concurrent appearance of abundant
KMnOj4 stained lomasomes. They considered these facts in cells of late fibre development to be
evidence of programmed cell death in bamboo fibre. However, Gritsch & Murphy (2005) mention
that a full examination of protoplast contents is not possible due to the poor fixation of specimens.
Crow (2000) tested several fixation protocols using Phyllostachys viridiglaucescens and also
found that ultrastructure preservation of bamboo tissues tended to be erratic. Only the youngest
tissues are reasonable well preserved. Older tissues show a poor preservation of membranes
and, consequently of organelles. Probably, the samples studied by He et al. (2000) were not
mature and furthermore, bamboo fibre cell walls are known to continue thickening even in very
old culms and so they clearly retain protoplasts (Liese & Weiner 1996; Murphy & Alvin 1997a).
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The fibres appear to undergo progressive septation (Murphy & Alvin 1997a). Contrary to
dicotyledons, the septate fibres show secondary wall apposition and become multilayered
(Parameswaran & Liese 1977).

Ultrastructure

A plant cell wall is composed of several layers. The middle lamella consists largely of highly
hydrated, pectinaceous substances and acts as an intercellular glue to bind the walls of adjacent
cells together. The primary cell wall is the first layer of the cell wall. It develops on either side of
the middle lamella and largely determines cell shape and size during plant growth and
development. It is composed of a continuous interconnected system of aggregated cellulosic
microfibrils that result from the simultaneous polymerization of cellulose molecules. Differences in
the orientation and other mechanical properties of cellulosic fibrils within cell walls are primarily
responsible for the high specific strength and resistance to tensile forces. The microfibrils are
embedded in a less ordered matrix rich in hemicellulosic materials and pectic polysaccharides.
The middle lamella and primary walls of two adjacent cells combine to constitute the compound
middle lamella. The compound middle lamella is composed primarily of a complex organic
molecule called lignin, along with some pectines, cellulose, hemicellulose and other minor
constituents.

Some cells, particularly those with strengthening and supporting functions, continue to add wall
material inside the primary wall during cell expansion, before the cell has reached its final size.
This additional wall material is called the secondary wall and is represented by the further
deposition of laminated cellulose upon the primary wall. The proportion of cellulose in secondary
walls is typically higher than in primary walls. In contrast to the random pattern of microfibril
orientation in the primary wall, microfibrils in the secondary wall are arranged in an ordered,
parallel manner. The crossed structure of the microfibrils prevents the formation of splits and
gaps in the framework of the wall. Cellulosic microfibrillar components make up over 50 % of
secondary walls, a higher percentage than hemicelluloses and pectines. These wall materials are
embedded in a matrix of the amorphous molecule lignin (Esau 1965; Terashima 1993; Dickinson
2000).

Detailed investigations by Tono & Ono (1962) and Parameswaran & Liese (1975, 1976, 1980), as
well as contributions by Fuijii (1985) and Murphy & Alvin (1992) have revealed the numerous
layers that constitute the bamboo cell wall. Parameswaran & Liese (1975) described parenchyma
cells in Phyllostachys edulis to exhibit a polylamellate structure consisting of about 15 successive
layers arranged in an alternating manner. The wider layers are characterized by the orientation of
cellulose fibrils perpendicular to the cell axis, and the narrow ones by fibrils oriented parallel to
the cell axis. Parameswaran & Liese (1976) showed that the mature fibre wall is characterized by
a regular alternation of wide and narrow layers (Fig. 1-13).
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Figure 1-13. Model of the polylamellate structure of a thick walled bamboo fibre (figures
on the left indicate fibril angle, letters on the right the terminology of the wall layers.
(Liese 1998: 68: fig. 51)

Near the middle lamella, the first layer of the secondary wall shows microfibrils oriented at an
angle of 50° to the cell axis. In the wide layers the microfibrils are oriented at an angle of 2-5°,
which increases up to 10-20° towards the inner part of the wall. The narrow layers show mostly
fibrils oriented at an angle of 85-90°, which remains constant over the whole width of the wall.
Characteristically, the fibrils show a slight depression before merging into the fibrils of the next
broad lamellar zone. The innermost layers near the lumen are usually thinner than the others.
The layers at the lumen boundary have no resemblance in their fibrillar texture to the tertiary wall
typical of wood fibres.

Crow & Murphy (2000) observed the orientation of microfibrils in the inner walls of differentiating
and maturing fibres and parenchyma cells under the FESEM. Orientation changes were similar in
both cell types. During very early primary wall development, deposition of microfibrils was in more
or less axial alignment, which was later superseded by microfibrils in transverse orientation. An
abrupt shift to a sloped orientation occurred during late primary wall synthesis. Microfibrils of the
first secondary wall layer were in axial alignment or steeply sloped. In subsequent secondary wall
deposition there was an alternation between a transverse and a sloped or axial alignment in
maturing fibres and parenchyma cells. This alternation of microfibril orientation is responsible for
the formation of multi-layered secondary cell walls. Suzuki & ltoh (2001) characterized the
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primary wall of Phyllostachys aurea by having narrow spacing between the cellulose microfibrils
in fibres, but not in parenchyma cells. The secondary wall largely consisted of dense cellulose
microfibrils also with narrow spacing. They suppose that the deposition of lignin in the secondary
wall proceeds in the pores between the cellulose microfibrils during maturation and they
hypothesize that the smaller pore size in Phyllostachys than in Pinus or Eucalyptus may be one
of the reasons for the deposition of less lignin in bamboo fibres than in tree species. However,
because the total Klason lignin of bamboo is not lower than in tree species, a large quantity of
lignin in bamboo culms should be accumulated in the larger pores of the middle lamella.

The number of wall layers varies in different fibres, and is the highest in fibres either adjacent to
vascular bundle elements or at the periphery of fibre bundle close to the ground tissue. This can
be partly attributed to the position of the vascular bundle, the location of the fibres within the
vascular fibre cap, and the maturity state of the fibres (Murphy & Alvin 1992; Liese & Weiner
1996). Results on the number of layers in the fibre cell wall have been reported up to a maximum
of 18. Gritsch et al. (2004b) concluded that the multilayered structure of the fibre cell walls was
formed mainly during the first year of growth by the deposition of new wall layers of variable
thickness, resulting in a high degree of heterogeneity in the layering patterns amongst individual
fibres. The layering was not found to be specifically related to the thickness of the cell wall. The
number is highest in the fibres either adjacent to vascular bundle elements or at the periphery of
fibre bundles close to the ground tissue. The polylamellate structure may be associated with the
ability of cell walls to resist the development of compression creases (kinks) under compressive
loads during culm bending (Murphy & Alvin 1992).

In a similar way, thickening of parenchyma cell walls was noted in older culms (Alvin & Murphy
1988) up to 3 years. Cells with thin walls may represent still immature fibres, but often they are
parenchyma cells, recognizable by their square ends in the longitudinal section (Murphy & Alvin
1992). Bath (2003) found that for two Indian bamboos cell wall thickening of fibres was
accomplished leading to a polylamellate cell wall structure. In ground parenchyma, although the
wall thickening was evident, layering was not distinct.

The fact that the cell wall structure of bamboo fibres and parenchyma cells comprises several
layers in the secondary wall has implications for the nomenclature of the secondary wall in
bamboo. In this work the term ‘secondary wall * will be used when all cell wall layers (except the
compound middle lamella) are indicated. When a specific layer of the secondary wall is meant,
the term Ly will be used (Fig. 1-14).
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Figure 1-14. Transversal section of a fibre from the inner side of a xylem fibre cap of a 3-
year old P. viridiglaucescens culm (internode 6 — middle part of the culm wall).
CML:compound middle lamella. L;-Lo: layers of the secondary cell wall.

Murphy et al. (1991) studied the development of soft rot decay in the bamboo Sinobambusa
tootsik. They only found soft rot attack in the cell walls of fibres; parenchyma and vessels
remained unattacked. Decay was greatest in the walls of late maturing fibres in which the wall
contained zones of low lignin content. Murphy et al. (1997b) also found that young culms are
more susceptible than mature material. They concluded that bamboo was no more susceptible to
decay by white or brown rot fungi than Betula bendula and Pinus sylvestris. Murphy et al. (1997a)
also observed by studying soft rot-decayed material that cell wall microfibrils were laid down in
sheets from the lumen, and obtained evidence for a helicoidal microfibrillar orientation in
parenchyma cell walls. Fibre cells were characterized by thick layers that probably have a single,
broadly axial microfibrillar orientation and thin layers having a broadly transverse microfibrillar
orientation.

Observations made by Gritsch & Murphy (2005) indicated that the primary wall of the bamboo
Dendrocalamus asper is formed by the deposition of two distinct layers during the elongation of
the internode and that secondary wall synthesis may begin before the complete cessation of
internode and fibre elongation. They suggest that this may act to cause the shutdown and
eventual cessation of cell elongation.
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1.3.5. Anatomy of the node

The anatomical structure of bamboo culms has gained considerable interest because of their
economic importance and their multiple uses in daily life. In contrast to the anatomy of the
internodes, the composition and structural details of the nodes have been poorly analysed so far
(Zee 1974, Liese & Ding 1994; Ding & Liese 1995, 1997; André 1998). Nevertheless, the nodes
have special significance for the culm function. Owing to the lack of radial conduction cells, they
enable the necessary communication for cross-transport of water and nutrients.

Furthermore, the nodal structure is important for liquid movement during drying and preservation
as well as for the physical and mechanical properties of the culm.

Ding & Liese (1997) studied the structure of the nodal region of several bamboo species. From
serial sections they reconstructed the three-dimensional structure of the vascular system (Fig. 1-
15). Most of the main axial vascular bundles pass directly from an internode through the node into
the next internode. In the peripheral zone of the culm, they bend slightly outwards while
branching partly into the culm sheath. In the inner zone, they are connected with those in the
diaphragm. In the node, the bundles become larger in diameter and vascular anastomoses
develop intensively.

Figure 1-15. lllustration of vascular anastomoses within the nodal region. (Liese 1998:
93: fig. 75)
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In the diaphragm, the typical vascular bundle structure of bamboo disappears. The xylem
consists of only one metaxylem vessel. At the branching of vascular bundles, smaller cells
develop abundantly with an intensive reticulate pitting. The vascularization of the bamboo node
was demonstrated by André (1998) by means of a microcasting method in which bamboo
segments were immersed with silicon elastomer components. After the elastomer became an
inert material, the bamboo tissue was destroyed leaving a cast of the bundle ramifications.

The ground tissue of the diaphragm consists of short parenchyma cells interspersed with
sclerified cells. At the branching point of vascular bundles, the phloem shows special elements
consisting of numerous filiform cells. Similar phloem anastomoses have been described in the
nodes of the monocotyledon Dioscorea and were called 'Phloem Beckenzellen’ (Behnke 1990).

1.4. Anatomical properties relating to the strength of bamboo

1.4.1. Chemical properties of bamboo

Fengel & Shao (1984, 1985) determined as chemical composition for Phyllostachys makinoi
25.5 % lignin, 45.3 % alpha-cellulose, 24.3 % polyoses and 2.6 % extractives. The main polyose
is arabinoxylan and the bamboo lignin is rich in syringyl units. Lin et al. (2002) showed that fibre
walls are rich in guaiacyl lignin in the early stage of lignification, and lignin rich in syringyl units is
deposited in the later stage. As a unique feature, bamboo lignin also contains 5-10 % of p-
coumaric acid ester (Higuchi 1987), located at the y-positions of grass lignin. Azuma et al. (1996)
showed that lignin and phenolic acids (mainly composed of p-coumaric and ferulic acid) are lower
in immature parts of a shoot in comparison to lower mature parts of the same shoot. They
showed that the esterified p-coumaric acid content was closely related to the lignin content,
whereas ferulic acid was rich in upper immature portions of the culm shoot.

The starch content of a culm is of considerable importance in terms of utilization. Starch accounts
for the susceptibility of harvested culms to beetle attack and accelerates fungal deterioration. The
age of the culm influences the starch content. Alvin & Murphy (1988) investigated culms up to
three years and found virtually no starch during the first year of growth but a lot in older culms.
Abd. Latif et al. (1994) found that starch content was significantly correlated with age. Seki &
Aoyama (1995) demonstrated that the starch content varied significantly during the year. The
content decreased markedly during the period of rapid growth of young culms. Subsequently,
starch was accumulated steadily in the culms during autumn and winter, and then the content
peaked towards the next sprouting season. They found that the fluctuation pattern of starch in the
young culms was similar to that of the aged ones, except that the former contained only small
amounts of starch. Research on P. viridiglaucescens (Weiner & Liese 1996, 1997) has shown the
lack of starch granules in young, growing culms. Liese & Abd. Latif (2000) showed that starch
content differs significantly between species, site, age, culm height and harvesting month.
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Bamboo consists for 0.8 % up to 9.7 % of inorganic components with a higher amount in the
nodal region than in the internodes. Silica is a major constituent of the cortex region with values
between 1.5 % and 6.4 % and is mainly localized in the epidermal cells. The culm tissue itself
contains hardly any silica and the nodes contain only small amounts. The presence of silica
affects the cutting and pulping properties of bamboo. Some sympodial bamboo taxa from tropical
climates contains a siliceous deposit in the lacuna, called tabashir (used in traditional medicine,
properties as a catalyst). Although most silica appears situated in the cortex region, more
knowledge about its location would be useful for processing technologies. The selection of
species with a lower amount of silica is significant for the manufacture of products as furniture,
structural components and skewers (Hamdan & Abd. Latif 1992). Schmitt et al. (2002) localized
silica polymers as extracellular deposits within the wall of epidermal cells of bamboo culms.

Young internodes showed distinct silica deposition in epidermal wall regions underneath the
cuticle. In the outer wall regions silica granular deposits were found in increasing amounts during
maturation but were only present in inner wall regions in late development stages. Gritsch et al.
(2004a) observed in Guadua angustifolia silica bodies embedded amongst fibres in the periphery
of the vascular bundles and in the intercellular spaces between parenchyma cells in the ground
tissue.

The nodal portion of a culm has a lower holocellulose content but a higher content of extractives,
pentosans, lignin and ash than the internodal portion (Bambang 1996).

1.4.2. Physical-mechanical properties of bamboo

The anatomical structure of bamboo culms with a considerable higher percentage of fibre cells in
the outer third of the culm wall, a higher percentage of parenchyma in the inner third, a higher
amount of parenchyma at the base of the culm and of fibres at the top of the culm, all influences
the mechanical properties.

Higher moisture content, resulting in a decrease in strength of bamboo (Prawirohatmodjo 1990) is
found at the base of a culm (Liese 1980; Siti & Abd. Latif 1992; Sattar et al. 1994; Abd. Latif et al.
1996; Kabir et al. 1996) and at the innermost layers due to the higher amount of parenchyma.
This is in agreement with Janssen (1981) who suggested that the parenchyma cells form the
weakest part of the culm. The high amount of parenchyma in bamboo is also reflected in
considerable amounts of dust when processed. Kabir et al. (1996) found that the node exhibited
lower moisture content, which he related to the reduced quantity of parenchyma in which water is
stored. In contrast, Bambang (1996) found that the node has higher water content than the
internode. Several authors (Abd. Latif et al. 1993; Espiloy 1994; Abd. Latif et al. 1996) found a
negative correlation of moisture content and shrinkage with age.
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The strength of a material is related to its density. The density of bamboo varies approximately
from 0.5 to 0.9 g/cm?® but can differ considerably within the culm (increase with the height of the
culm (Siti & Abd. Latif 1992; Jamaludin et al. 1995; Kabir et al. 1996; Subyakto 1996) and
between species (Janssen 1991; Jamaludin et al. 1995). Cell wall thickening during maturation of
the culm from 1 to 3 years leads to an increase in basic density of the culm material (Jamaludin et
al. 1992; Siti & Abd. Latif 1992; Abd. Latif 1993; Espiloy 1994; Sattar et al. 1994). The increase in
density is dramatic during the first two years but becomes more gradual during the third year and
stabilized thereafter (Bath 2003). The culm node shows a higher density than the internode (Kabir
etal. 1996).

The stage of fibre maturation and the density of vascular bundles both influence shrinkage. If
extreme shrinkage occurs due to moisture loss, the outer culm wall regions, which contain a
larger concentration of the strong fibrovascular bundles, set the weaker inner culm wall region in
tension, due to the presence of larger concentrations of parenchyma cells. This causes the inner
culm wall region to develop cracks. Both the radial and tangential shrinkage decrease with the
height of the culm since the top portion has a higher number of vascular bundles and lower initial
moisture content. Older bamboos were also found to shrink less than younger ones (Siti & Abd.
Latif 1992; Abd. Latif et al. 1995). Lee et al. (1994) suggested usage of at least 2-year old culms
in order to avoid less lignified fibres and parenchyma walls. Culms of higher age are preferred for
bamboo furniture since they show less shrinkage and splitting. Immature culms are prone to
splitting, shrinkage, breakage and biological attack. The internode of the culm has a higher
volumetric shrinkage than the node due to the higher initial moisture content (Kabir et al. 1996).

Janssen (1990) states that compared with wood, shear strength in split bamboo is stronger than
in wood due to the axial arrangement of fibre cells and the absence of rays, which create weak
spots. The axial alignment of fibre cells leads to a material, which shows its best mechanical
strength parallel to the grain (Arce 1994). Shear strength and modulus of elasticity have been
shown to increase significantly towards the top of the culm (Abd. Latif et al. 1990). There is also
an increase in compression and bending strength towards the top of the culm, all corresponding
to a proportional increase in fibrovascular bundles (Limaye 1952; Grosser & Liese 1974; Espiloy
1987; Subyakto 1996). Zhang et al. (1994) found that tensile strength decreased gradually with
increased fibre length and increased dramatically with fibre cell diameter. Fibre length shows a
positive correlation with the modulus of elasticity (MOE) and the compression strength. An
increase in cell wall thickness has been shown to correlate with an increase in compression
strength and in modulus of elasticity (MOE), but negatively with the modulus of rupture (MOR)
(Abd. Latif et al. 1992; Abd. Latif 1993). The nodes have been shown to be weak in tensile
strength compared with the internodes (Hsuing et al. 1981; Kabir et al 1996), probably because
the fibre cells interconnect and enter the diaphragm at these points, creating a discontinuity of
fibre alignment (Arce 1994). Liese & Ding (1994) suggest a reduction in mechanical elasticity due
to shorter, wider fibre cells, which are sometimes forked in the nodal region. Nodes show higher
specific gravity and lower volume shrinkage than internodes (Kabir et al. 1996).
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Janssen (1991) compiled his knowledge on mechanical properties showing increased strength
with age, with decreasing culm diameter, with increasing height in the culm, with lower moisture
content (below the fibre saturation of approximately 30 %), with higher ratio outer to inner layer,
with higher ratio of vascular bundles to parenchyma and with increased fibre length. The ratio
between the ultimate compression strength and the mass per volume is slightly higher for dry
bamboo (0.094) as compared with 0.084 for dry wood. According to Janssen (1990) this might be
due to the higher cellulosic content of 55 percent of bamboo compared with 50 percent in wood.

Fibres are characterized by their slender form. Their length influences the strength of the culm
and its pulping properties. Fibres of bamboo are longer than those of hardwood (approximately 1
mm), but shorter than softwood tracheids (3 - 4 mm). Often, shorter and smaller fibres occur at
the peripheral layer, their length increasing to a maximum in the outer third of the culm wall and
decreasing again towards the inner wall. The length differences across the culm wall amount to
about 20 - 50 %. Longitudinal fibre length variations of more than 100 % exist within one
internode (Liese & Grosser 1972). The shortest fibres are always located near the nodes and the
longest are to be found in the middle of the internode (Liese & Grosser 1972; Wu & Hsieh 1994).
The mean fibre length of an internode is correlated with the internode length. Both longer fibres
and the longest internodes are found in the middle region of a culm. The fibres are generally
thicker in the bottom portion than at the top. The fibre length-to-width ratio varies across the culm
wall from 70:1 to 150:1. The fibre length is strongly correlated with the fibre diameter (10 - 40
pm), the cell wall thickness and the internode diameter. The Runkel ratio or the ratio between 2x
cell wall thickness (4 - 10 pm) and the lumen diameter (2 - 20 um) ranges from 1 to 4. These
values are influenced by fibre maturation, which leads to an increase in wall thickness. The
smaller fibre wall thickness of immature culms gives a lower Runkel ratio that makes them
unsuitable for pulping. Abd. Latif & Liese (2001) could correlate vascular bundle distribution and
size, metaxylem diameter, percentages of metaxylem vessel and fibre sheaths, fibre length and
lumen diameter, fibre wall thickness and Runkel ratio with age and culm height.

The fractural behaviour of a culm is different from that of wood; no spontaneous fracture occurs
through the whole culm, the cracks are deflected in the direction of the fibres. Parameswaran &
Liese (1976) showed that the separation tended to occur in the weakest region of the cell wall,
which corresponded to the narrow layers. The wide layers, with which the narrow layers alternate,
remained largely intact. It seems likely that a combination of gently sloped/transverse microfibril
orientation may be responsible for an observed weakness in this area of the wall. In bamboo
there is an undeniable correlation between the position of fibre cells with highly multi-layered
walls, and areas of the culm wall which require maximum reinforcement (peripheral culm zone)
(Parameswaran & Liese 1980). Several workers have theorised that the multi-layered wall
structure of mature fibre cells in bamboo may be partly responsible for a high tensile strength,
especially in outer culm wall regions were wall layering is highest (Liese 1980; Xingjuan &
Dingguo 1990). Murphy & Alvin (1992) suggest that in that case of longitudinal compressive
stresses resulting from bending, changes in microfibril angle at each layer in walls of fibre cells,
may inhibit the formation of kinks across the wall. They suggest the distribution of fibre cells with
more highly multi-layered walls at the periphery of vascular bundles as being mechanical
strategic.
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1.5. Uses of bamboo

In many countries bamboo is a basic raw material with numerous traditional uses. In many parts
of the tropical world the rural people are dependent on bamboo for their shelter and for every-day
utilities. They are used for construction to irrigation systems, from musical instruments to food
and fuel. During the last decade, increased knowledge and research about bamboo has had a
tremendous economic impact and has given rise to many new industries and products. The use
of bamboo has expanded including its transformation into various structural composite panels.
There is also general interest and expertise in using it for producing pulp and paper. Bamboo
silviculture is an option for conservation and protection of the tropical forests while creating
enduring supplies for the wood and cellulose industries.

African bamboos have not yet been exploited in pulp and paper production, or in any large-scale
bamboo industry. The economic value of trade in bamboo products in Africa is negligible.
Although there is little cultivation of bamboo in Africa, many products are domestically and can be
very significant in both household and local economies. Key bamboo uses include small-scale
construction, handicrafts, water pipes, farm props for banana plantations, furniture, and other
minor cottage industry products like basketry and toothpicks. In some parts of Africa, bamboo is
also a source of food and drink. In Tanzania and Uganda, young shoots and seeds of
Oxytenenthera abyssinica are consumed as food. The principal use of this species in Tanzania,
however, is in the production of bamboo wine, also known as ulanzi. The role of bamboo in
conserving soil and protecting watersheds is also substantial in Africa (Brystriakova et al. 2003a).

Bamboos are extremely important to local communities in Madagascar. Nearly half of all
households use bamboo domestically: for construction (walls, roofs) and for items ranging from
handicrafts to musical instruments. Bamboo is also used for flooring and in irrigation systems.
Water containers, fishing traps and poles, baskets and storage containers are all made from a
number of bamboo species. Much of the bamboo used domestically comes from secondary
forests, and there are some plantations in and around villages (Brystriakova et al. 2003a).

The exploitation of native bamboo in Latin America is limited to the use of local species found
nearby. The most useful species in Latin America are found in the genus Guadua. Bamboo
(mostly Guadua angustifolia) has a long history of use in construction in the Americas. Bamboos
are used as a food source both for humans and for livestock (Brystriakova et al. 2003a).

Bamboos play an important role in local economies and are growing in national and international
commercial importance in the Asia-Pacific region. They are multipurpose crops, with more than
1500 documented uses. The most important traditional uses include housing, food and material
for handicrafts. Modern manufacturing techniques allow the use of bamboo in timber-based
industries, to provide bamboo flooring, board products, laminates and furniture. Bamboo is
becoming a substitute for wood in pulp and paper production. Bamboo shoots are now an
important food crop on the international market as well as locally and nationally. China is by far
the leading exporter of bamboo shoot products. Bamboo furniture is an expanding business in
many countries e.g. the Philippines (Brystriakova et al. 2003b).
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2. Aims and outline of this thesis

In the “Bamboo for Europe” project (FAIR-CT96-1747, 1997-2000) raw bamboo material was
supplied to industries to use it in their existing processing system. Several trials conducted to
produce bamboo particleboard and medium density fibreboard (MDF) show that bamboo can be
used as additional or alternative raw material for the wood processing industry and especially for
the panel industry in Europe (Van Acker et al. 2000). As in wood, anatomical structures determine
the quality of the product. The physical and chemical properties of bamboo culms are correlated
with the anatomical structures as is demonstrated in different studies by e.g. Janssen (1981),
Liese (1987), Widjaja & Risyad (1987), Abd. Latif et al. (1990, 1992), Sattar et al. (1994), Espiloy
(1994). In contrast to trees, bamboo culms grow very fast during a few months. The fibre and
parenchyma cells retain their living protoplasts and connections (plasmodesmata and pits) with
neighbouring cells. This cell activity associated with storage and mobilization of carbohydrates
makes structural modification possible (Liese & Weiner 1997; Murphy & Alvin 1997a; Liese 1998).
Anatomical changes are often considered to take place during a maturation process of 1-2 years
and during the years following. The mentioned modifications are lignification (Fujii 1985; Kawase
et al. 1986; Yoshizawa et al. 1991) and cell wall thickening by deposition of additional layers
(Alvin & Murphy 1988; Liese & Weiner 1996; Liese & Weiner 1997; Liese 1998) of the fibre and
parenchyma cells.

In contrast to these authors, Van Acker et al. (2000) could not clearly show an impact pattern of
age on the density. As culm density is correlated with cell wall thickness, no significant cell wall
thickening should take place during later years. Similarly, Itoh (1990) and Abd. Latif et al. (1996)
found that lignification is completed at the end of one growing season, while other authors (Fujii
1985; Kawase et al. 1986; Yoshizawa et al. 1991) found progressive lignification of the fibres.
These discussed structural modifications are very important for the strength of the culm (Murphy
& Alvin 1992). They have a major impact on the applicability of different bamboo species and on
the suitable age for harvest in relation to end use.

The present study concentrates upon these age-related changes in bamboo culms in
consideration of industrial use. Aspects of lignification and cell wall thickening for which
contradicting results are reported in the literature of internodal and nodal fibre and parenchyma
cells are investigated. Furthermore, silica distribution and content was studied because more
knowledge on the location of the silica cells would be useful for the application (Van Acker et al.
2000).
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The aims of this study are:

e getting further insight into the lignification process of fibre and parenchyma cells of
different bamboo species. Lignification has a major impact on harvesting age, strength
and shrinkage, all determinative factors for use in the wood processing industry. Special
attention was attributed to the deposition sequence and distribution of lignin structural
units in different anatomical regions of culms during ageing.

o clarifying the conflicting results from previous studies on cell wall thickening in bamboo
culms. Because cell wall thickening increases the density, it will have an effect on
strength. It focuses on both fibre and parenchyma wall thickness of both temperate and
tropical bamboo culms of different ages in the light of their suitability for the wood
industry.

e investigating the lignification and cell wall thickening in developing and maturing bamboo
nodes because the anatomical structure and mechanical properties of the culm internode
are far better documented than the culm node.

e studying the silica distribution and content in both temperate and tropical bamboo
species because a selection of species with lower content silica is significant for the
production of e.g. furniture (Hamdan & Abd. Latif 1992).

Each chapter of the present thesis is intended to be an autonomous part of work. Therefore, each
chapter can be read separately from the rest. On the other hand, some overlap is present,
especially in the introductions. Chapters are arranged according to their content: first, a general
introduction (chapter 1); next a chapter devoted to the lignification (chapter 2), followed by a study
on cell wall thickening (chapter 3). After that, lignification and cell wall thickening in the node is
considered (chapter 4) and finally, the silica in woody bamboo culms is discussed (chapter 5).
Chapter 6 lists the general conclusions and future perspectives. At the end of chapters 3 and 4 a
discussion on the preceding topics in relation to the chapter is given.

Chapter 1 provides a general introduction to the thesis. In the literature review, an introduction to
the morphology and anatomy of the bamboo plant is presented sometimes completed with own
observations. At the end of this chapter, the materials and methods used for this work are given.

In chapter 2 lignin distribution and lignification during ageing is studied in detail by means of UV-
microspectrophotometry and TEM. The first part of the chapter deals with the bamboo species
Phyllostachys viridiglaucescens. The second part discusses the lignin distribution in the tropical
species Gigantochloa levis.
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A more complete picture on the cell wall thickness in temperate and tropical bamboo species is
given in chapter 3. It deals with the large variation in cell wall thickness and in cell wall layering
even within one bamboo culm. This chapter aims at clarifying the controversial results found in
the literature of the cell wall thickening during ageing of bamboo culms by applying light
microscopy and transmission electron microscopy in combination with image analysis.

In chapters 2 and 3, attention was paid to the anatomy and structural modification of the
internode. The next chapter (chapter 4) emphasizes cell wall thickening and lignification in the
nodal structure of Phyllostachys nigra and P. viridiglaucescens. The same techniques, UV-
microspectrophotometry, light microscopy and image analysis were used.

Besides cell wall thickening and lignification, the silica content and distribution in the culm wall
was investigated (chapter 5). The content was measured using the molybdenum blue method
and the distribution was visualized using SEM-EDX mapping.

In chapter 6 the general conclusions of this work and perspectives for future research are
formulated.
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3. Materials and Methods

3.1. Species used in this study

The generic name of the genus Phyllostachys is derived from the Greek words phyllon meaning
leaf and stachys, a spike, alluding the leafy pseudospikelets of the inflorescence. However, the
vegetative parts are used to taxonomically distinguish the genus Phyllostachys from other
bamboos. These include (taken from the mid-culm region) more or less prominent nodes, sulcate
(or flattened) internodes on the branch bearing side and typically two strong branches per node
(Ohrnberger 1996). Taxonomic boundaries of the genus are well established and have
undergone few changes. It is currently one of the largest genera of bamboo, with 75 species, all
of which are utilized to a larger or lesser extent as raw material for domestic, commercial and
industrial purposes in the temperate zone of Asia (Renvoize & Hodkinson 1997).

The centre of diversity of the genus is eastern China and species occur wild in subtropical and
temperate regions of eastern Asia. Its natural distribution has probably become obscure through
years of cultivation. Many Phyllostachys species are adapted to very low temperatures and can
usually tolerate about -12 °C without any serious damage (Ohrnberger 1996). Within the
bamboos Phyllostachys species are the most northerly distributed giant bamboos.

The generic name of the genus Dendrocalamus Nees is derived from the Greek words dendron
(tree) and kalamos (reed): tree like reeds. The genus includes D. giganteus being probably the
tallest grass of the world. The genus has about 35 species occurring in the paleotropics
(Indomalesian, Indian, Indo-Chinese, and Malesian) (Watson & Dallwitz 1992).

The generic name of the genus Gigantochloa Kurtz ex Munro is derived from the Greek words
gigas (giant) and chloa (grass). The genus is has about 20 species occurring in Asia mainly in
forests (Watson & Dallwitz 1992).
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The following descriptions of the species used in this study are based on Zhu (1994).

3.1.1. Phyllostachys viridiglaucescens (Carriére) A. et C. Riviere

Height 4-9 m, diameter 2-4 cm. Young culm dark green, thickly pruinose with no apparent
longitudinal veins on internodes. Culm sheath light purplish brown with visible erect setae and tiny
spots, groups of spots on its upper part. Sheath auricles fully developed, long narrow falciform,
brownish purple, or light green with a purplish hue, covered with dense, long and light green cilia.
Sheath ligule highly convex, brownish purple. Sheath blade ribbon like, with the upper half
rugose.

Figure 1-16. lllustration of a P. viridiglaucescens plant.

3.1.2. Phyllostachys nigra (Loddiges ex Lindley) Munro

Height 4-10 m, diameter 2-5 cm. Young culm green thickly pruinose and covered with setae.
Black specks gradually appearing in autumn and winter turning the whole culm dark purple. Culm
sheath light (red) brown, spotless, thickly covered with brown hair; sheath auricles developed,
dark purple. Sheath blade green, triangular, somewhat rugose.

Figure 1-17. lllustration of some P. nigra culms
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3.1.3. Gigantochloa levis (Blanco) Merril

Height 12-15 m, diameter 8-13 cm, internode 25-45 cm. Young culm densely covered with brown
or white tomenta turning whitish grey when full grown. Culm sheath deciduous, thickly
coriaceous, densely covered with brown setae; sheath auricles oblong, almost of equal size, with
curved brown cilia on margin; sheath ligule developed, 6-15 mm high, its top deeply incised.
Sheath blade ovally triangular, its base contracted, its width being one half of the sheath top;
most of branches fascicled, main branch inconspicuous; foliage leaves 12-25 cm long, 1.8-3 cm
wide. Shoot edible, culm used for weaving.

Figure 1-18. lllustration of a G. levis shoot
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3.1.4. Dendrocalamus asper (Schultes f.) Backer ex K. Heyne

Height 20 m, diameter 6-20 cm, internode 30-50 c¢cm. Internodes at culm base very short, with
aerial roots; young culm densely covered with brownish pubescence which gradually turns white;
a ring of greyish brown tomenta around joint and below it. Culm sheath deciduous, coriaceous,
initially covered with brownish tomenta and brown adnate setae; sheath ligule narrow, 20 mm
high, 7 mm wide, wavy, with a ciliate tip. Sheath blade ovally lanceolate; 5-9 foliage leaves on
each twig; leaves 20-30 cm long, 3-5 cm wide. A major shoot bamboo species, also ornamental
species.

Figure 1-19. lllustration of a D. asper shoot
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3.2. Bamboo samples

Both temperate (Phyllostachys spp.) as well as tropical (Dendrocalamus asper and Gigantochloa
levis) species were used in this study. To investigate the effect of ageing, it was important to
sample culms of known age.

In the National Botanical Garden, Meise and in the University Botanical Garden, Ghent University
shoots of P. viridiglaucescens and P. nigra respectively were marked and sampled during the first
year of development and during later years. Culms of P. viridiglaucescens from which the exact
age was not know were also sampled in the National Botanical Garden, Meise. The culms were
divided into culms of 1-year old and older than 1 year (approximately 3-4 years).

Samples of culms from different ages of Phyllostachys viridiglaucescens, P. nigra and P. viridis
were taken in the Bambuseraie in Prafrance, France. All plant samples had been marked with the
year of emergence giving precise ageing.

The tropical bamboo species Gigantochloa levis and Dendrocalamus asper were sampled at the
4-year old plantation in Real Quezon in the Philippines. These culms had been marked with the
year of emergence giving precise ageing.

An overview of the samples is given in appendix I.

3.3. Methods used in this study

Appendix | gives an overview of which sample is used for which aspect of this research. Tables
with internode length, internode diameter and internode wall thickness of the used culms are
presented. The methods used in this study are described in each chapter separately. However,
some methods need more explanation.

UV — microspectrophotometry

Ultraviolet absorption is a well-known and widely used tool for lignin identification, qualitative and
quantitative determination, as well as characterization of changes in lignin structure and
properties. The distinct absorption of lignin in the ultraviolet range is based on its aromatic
character, i.e. the sum of phenylpropane units, and of several chromophoric structural elements.
The typical lignin spectrum comprises a maximum at about 280 nm followed by a slope to lower
wavelengths, with a more pronounced shoulder in the region of 230 nm. A second typical
extinction maximum with a high absorptivity value appears in the range between 200 and 208 nm
(Fengel & Wegener 1983). No other major component of the mature wood cell displays ultraviolet
absorption properties in the same spectral region and the intensity of absorption may therefore be
related to the concentration of lignin across the cell wall (Scott et al. 1969).
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In UV-microspectrophotometry, micrographs are taken with monochromatic ultraviolet light and
subsequently measured with a microdensitometer. By measuring light absorption over a range of
wavelengths, the UV-spectrum of a section can be obtained. UV-spectra differ on the type of
lignin. Guaiacyl, syringyl and p-hydroxyphenyl units have different absorption maxima in their UV-
spectra. According to Fergus & Goring (1970a, b) UV-absorbance maxima for guaiacyl and
syringyl model compounds occur at 280 and 270 nm, respectively. In contrast to softwood lignins
with a maximum at about 280 nm (strongly absorbing guaiacy! lignin), hardwood lignins show a
shift of this maximum toward shorter wavelengths in the range of 270-277 nm (syringyl-guaiacyl
lignin in varying ratios) (Fergus & Goring 1970a, b). This fact contributes to the higher symmetry
of the phenylpropane units in hardwood lignins, caused by the higher amount of syringyl units
(Musha & Goring 1975; Fengel & Wegener 1983). The UV absorbance of a specific anatomical
region depends both on the concentration of the various structural units of lignin, and the
extinction coefficient of each structural unit. The extinction coefficient of the G (guaiacyl) unit at
280 nm is 3.5 times that of the S (syringyl) unit (Fergus & Goring 1970a), and the extinction
coefficient of the H (p-hydroxyphenyl) unit is lower than that of the G unit, but higher than that of
the S unit (Faix & Schweers 1974). The absorbance values can amount higher than 1, because
the extinction = ratio of transmission (cell lumen) and absorption (cell wall) is not calibrated to 100
percent (open scale).

Grass lignin also contains p-coumaric and ferulic acid esters, which gives a broad shoulder
between 310-320 nm in the UV-spectrum (Higuchi 1987). He & Terashima (1991) worked out
from model compounds that with the increase in the ratio p-coumaric acid ester to ferulic acid
esters an absorption shift from 324 nm toward shorter wavelength is present. The absorption
maximum reached 314 nm when the ratio p-coumaric acid ester to ferulic acid esters is equal or
higher than 1.14.

UV-microspectrophotometry can also be used to detect aromatic compounds associated with the
woody tissue. These compounds show much higher absorbance values than cell wall associated
lignins. Furthermore, their absorbance maxima reveal a bathochromic shift to longer wavelength
range of 310 nm. This spectral behaviour can be interpreted by the occurrence of carbonyl
groups and conjugated double bonds (Koch & Kleist 2001, Koch et al. 2003).

SEM-EDX

Under a scanning electron microscope equipped with an x-ray detector, the sample is subjected
to irradiation by a focused electron beam, which results in back-scattered electrons for surface
imaging and in x-rays. The energy of the x-rays depends on the chemical composition of the
sample and is received in the energy dispersive detector. This type of detector allows a user to
analyse a samples molecular composition.
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Lignification

CHAPTER Il
LIGNIFICATION IN FIBRE AND PARENCHYMA CELL WALLS OF

BAMBOO INTERNODES

1. Introduction

The incorporation of the three-dimensional phenolic polymer lignin into the space between cell
wall microfibrils is termed lignification. Lignin decreases the permeability and degradability of
walls and is important in determining the mechanical behavior of predominantly nonliving tissues
such as wood (Donaldson 2001).

The lignification of Phyllostachys heterocycla was studied by ltoh (1990), revealing full
lignification of the cells within one growing season. Abd. Latif et al. (1996) also found that
lignification of bamboo is completed within one growing season with no further significant ageing
effects. However, Murphy & Alvin (1997a) showed that Phyllostachys viridiglaucescens bamboo
culms were only half lignified at year 1 compared to 3-year old culms. Similarly, Lin et al. (2002)
showed that the lignification process may last even up to 7 years. These contradicting results
were the basis for further detailed investigation of the lignification and lignin distribution in
bamboo internodes.

The first part of this chapter describes the lignification in internodes of the temperate bamboo
species Phyllostachys viridiglaucescens. It follows the lignification from a very young culm to
older culms with emphasis on the lignin distribution and structural variation in different anatomical
regions of the bamboo tissue. In the second part, only older culms of the tropical bamboo species
Gigantochloa levis are investigated as no very young material could be sampled. In both studies
cellular UV-microspectrophotometry was used to measure the relative lignin content
semiquantitatively and to obtain insight into the lignin structural units. In the second part TEM
photographs are included. TEM photographs of P. viridiglaucescens are shown in Chapter lIl.
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2. Lignification during ageing of the temperate
bamboo species Phyllostachys viridiglaucescens
(Carr.) Riv. & Riv."

Summary

The lignification of Phyllostachys viridiglaucescens (Carr.) Riv. & Riv. during ageing was studied
topochemically by means of UV-microspectrophotometry. The study revealed that p-coumaric
and ferulic acids are widely distributed in P. viridiglaucescens and that their content is dependent
on the anatomical location and the differentiation phase. The lignin in the epidermis cell wall is
deposited early in the development and does not increase with age. This is in contrast with the
fibres and the ground parenchyma cells where an increasing trend in lignification during the first
year is shown. The early maturing fibres of the vascular bundles reveal a maximum absorbance
value at 280 nm (guaiacyl peak) whereas the late maturing fibres display a shoulder at 310-320
nm in young culms and a guaiacyl peak in older culms. The secondary fibre wall has a lamellar
structure with an increasing lignin content from the centre towards the compound middle lamella.
The compound middle lamellae show higher absorbance values and are richer in p-coumaric and
ferulic acid esters in comparison to the secondary wall layers. The vessel walls have a low lignin
content.

1 Adapted from:

Bieke Lybeer & Gerald Koch. 2005a. A topochemical and semiquantitative study of the
lignification during ageing of bamboo culms (Phyllostachys viridiglaucescens). IAWA Journal 26
(1): 99-109.
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2.1. Introduction

Lignin is a major component of the cell wall of fibres, parenchyma cells, and vessels in woody
bamboo species. In studies on the course of lignification during growth, Itoh (1990) concluded
that lignification increased progressively in both fibres and parenchyma cells and was completed
in one growing season. In contrast, Murphy & Alvin (1997a) and Lin et al. (2002) found an
increasing lignin content during maturation in later years. The distribution and the structural
variation of the lignin in different anatomical regions of bamboo tissue are still open to further
investigation.

Cellular UV-microspectrophotometry is a reliable technique to measure the relative lignin content
semiquantitatively and to obtain insight into the lignin structural units. Koch & Kleist (2001)
studied the fibre secondary walls of Phyllostachys edulis performing point measurements and
scanning UV-microspectrophotometry and could clearly demonstrate the lamellar structure with
an increasing lignin content from the lumen side towards the middle lamella. They observed a
typical UV-spectrum for bamboo fibres with a guaiacyl peak at 280 nm and a shoulder between
310-315 nm, which can be linked to the presence of p-coumaric acid esters.

This paper describes a study of the lignification of various age classes in bamboo. It deals with
the deposition sequence and distribution of lignin structural units in different anatomical regions of
culms of Phyllostachys viridiglaucescens (Carr.) Riv. & Riv.

2.2. Materials and Methods

2.2.1. Bamboo samples

Bamboo culms of the species Phyllostachys viridiglaucescens from 1-, 3-, 6-, 9 -, 12- and more
than 12-months (approximately 3-4 years) old were harvested in the National Botanical Garden of
Belgium (Meise). Older culms (8-, 32-, 56- and 104-months old) were sampled at the
Bambuseraie in Prafrance (France). Blocks of about 1-2 cm along the grain were cut from the
middle part of the 6 internode (numbered from the ground level) and preserved in a mixture of
50 % alcohol, 10 % glycerine and 40 % water.
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2.2.2. Preparation

Small blocks (1 x 1 x 5 mm3) were cut from the sampled material. The specimens were
dehydrated in a graded series of acetone and impregnated with Spurr's resin (Spurr 1969)
through a series of propylenoxide/spurr resin mixture, followed by immersion in pure resin.

Transverse sections of 1 um in thickness were cut with a Reichert Ultracut ultramicrotome using
a diamond knife. The sections were transferred to quartz microscope slides, immersed in a drop
of non-UV absorbing glycerine and covered with a quartz cover slip. The immersion solution
consisted of a glycerine/water mixture np = 1.46. The sections were observed using the
immersion ultrafluar objective 32:1.

2.2.3. UV-microspectrophotometry

Examination of the sections was carried out using a ZEISS UMSP 80 microspectrophotometer
equipped with a scanning stage enabling the determination of image profiles at defined
wavelengths. The specimens were investigated by point measurements with a spot size of 1 um2
between 240 and 400 nm wavelength using the programme LAMWIN® (Zeiss). Epidermis and
hypodermis cell walls, cell wall layers in the middle of the fibre and parenchyma secondary wall
(L) and compound middle lamellae (CML) were measured at the outer, middle and inner part of
the culm wall (mean thickness of the culm wall for the samples harvested in Belgium and France
was 4,6 mm and 6,5 mm, respectively). In a vascular bundle, inner early maturing fibres adjacent
to the vascular tissue and outer late maturing fibres adjacent to the parenchyma at the xylem and
phloem side were measured. For each sampled culm, one measurement for each position in the
culm wall and for each position within a vascular bundle was performed.

Image scan profiles at a constant wavelength of 280 nm were generated using the scan
programme APAMOS® (Zeiss). This programme digitizes rectangular fields of the tissue with a
geometrical resolution of 0.25 um2 and a photometrical resolution of 4096 grey scale levels,
which are converted in 14 basic colours to visualise the absorbance intensities.

" In this work the term ‘secondary wall’ is used when all cell wall layers (except the compound middle lamella) are
indicated. When a specific layer is meant, the term Lx is used (See Introduction p. 23-24).
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2.3. Results

2.3.1. UV-absorbance spectra of individual cell wall layers of the tissue

The spectra of the epidermis cell walls show a clear broad shoulder with absorbance maxima
between 310 and 320 nm (Fig. 2-1a). This shoulder is typical for grasses and can be linked to the
presence of p-coumaroylation as demonstrated by Nakamura & Higuchi (1976) and Higuchi
(1987). There is no difference in absorbance values between the samples. The spectra of the
hypodermis cell walls show similar absorbance behaviour as compared to the epidermis cell
walls.

The spectra curves also have an absorbance peak at 280-282 nm, which indicates the presence
of the strong absorbing guaiacyl lignin (Fergus & Goring 1970b; Musha & Goring 1975). The UV
absorbance of a specific anatomical region depends both on the concentration of the various
structural units of lignin, and the extinction coefficient of each structural unit. As the spectra
curves are similar, they can be interpreted as reflecting the lignin content. A lower lignin content
can be observed only in the cell walls of the one-month old sample. The absorbance at 280 and
312 nm is significantly higher in the compound middle lamellae (CML) than in the layers of the
secondary wall (paired t-test, 1-tailed; P 280 nm=0.047; P 312 n»=0.0015) (Fig. 2-1b and 2-1c). The
CML of the youngest sample (1-month old) exhibits lower absorbance values than the older
samples. The 1-, 3-, and 6-month old samples have a more distinct shoulder at 310 - 320 nm
(Fig. 2-1c, indicated by arrows) and a less clear peak at 280 nm than all older samples.

In the cell wall of the ground parenchyma cells the lignin content is distinctly lower in the youngest
sample. The spectrum of the 3-month old sample has already a high absorbance peak at 310-320
nm, but does not show the typical guaiacyl peak (280 nm) evident in the spectra of older samples
(Fig. 2-1d).

The spectra of CML of ground parenchyma cells of young samples (1- to 9-months old) have only
one shoulder at 310-320 nm. The lignin content is higher in the older samples, with two peaks:
one at 280-282 nm and one between 310-320 nm.
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Figure 2-1. UV-absorbance spectra. (a) epidermis cell walls. (b)
layers of the secondary wall of fibres at the outer part of the culm
wall. (¢) compound middle lamellae of fibres at the outer part of the
culm wall. The arrows indicate the absorption shoulder between 310-
320 nm in the younger culms (1-, 3- and 6-months old). (d) layers of
the secondary wall of ground parenchyma cells. The arrow indicates
the maximum absorbance between 310-320 nm in a 3-month old culm.

The spectra curves of layers of the secondary wall of early maturing fibres at the xylem and
phloem inner side (adjacent to the vascular tissue) of vascular bundles in the middle part of the
culm wall are similar (Fig. 2-2), with a maximum at 280-282 nm. Ageing of the bamboo culm does
not have an influence on the lignin content of this early maturing fibres (Table 2-1).

Table 2-1. P-values of ANOVA or Kruskall-Wallis (indicated with *) tests between younger
(1-, 3- and 6-months old) and older (older than 6 months) samples. Only the cell wall
layers of fibres adjacent to the parenchyma (late maturing fibres) at 280 nm are

significantly lower (P < 0.05) in the younger samples (bold).

P280 nm P312m
Xyin 0.227 0.757
phlin 0.131 0.923
Xyout 0.011 0.727*
phlout 0.032 0.433*
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. Figure 2-2. UV-absorbance spectra. (a) layers of the secondary wall
Lo (L,) and compound middle lamella (CML) of fibres from a vascular
—+— 5oy bundle at the middle part of the culm wall of a 3-month old culm. (b)
Lx xyout layers of the secondary wall and compound middle lamella of fibres
—— CHL xyout from a vascular bundle at the middle part of the culm wall of a 12-
—e— Lx phiin month old culm. (c) layers of the secondary wall and compound
—— CHIL phiin middle lamella of fibres from a vascular bundle at the middle part of
Lx phlout the culm wall of a 9-year old culm. xyin: fibres at the xylem inner side;
—+— CHL phlout xyout: fibres at the xylem outer side; phlin: fibres at the phloem inner

side; phlout: fibres at the phloem outer side.
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In the fibres at the xylem and phloem outer side (late maturing fibres adjacent to the parenchyma)
of the young samples (1-, 3- and 6-months old) the spectra of layers of the secondary wall have
an absorbance maximum at 310-320 nm. In the older samples (older than 6 months) there is a
maximum peak at 280-282 nm (Fig. 2-2). Significantly less lignin is present in the xylem and
phloem outer fibres of young samples in comparison to older samples (Table 2-1).

The fibres adjacent to the vascular tissue in young culms (1-, 3- and 6-months old) have a higher
lignin content than those adjacent to the ground parenchyma, whereas in the older culms (older
than 6 months) the lignin content of the fibres at both locations is + equal. Hence, the layers of
the secondary wall of fibres at the xylem and phloem inner side lignify faster than at the xylem
and phloem outer side.

In the vascular bundles of the inner and outer part of the culm wall, the UV-spectra of layers of
the secondary wall and CML of the fibres follow a similar pattern as those from the middle part of
the culm wall. The UV absorbance at 280 and 312 nm of the fibre cell walls from the vascular
bundles of the outer, middle and inner part of the culm wall are not significantly different (paired t-
test, 2-tailed; P > 0.1). The UV-spectra from the CML of the fibres have a more distinct shoulder
at 310-320 nm and have higher values in comparison to the spectra of the fibre layers of the
secondary wall. The CML spectra from young samples (1-, 3- and 6-months old) do not show a
guaiacyl peak, whereas older samples do. The spectrum of fibre layers of the secondary wall at
the xylem outer side (adjacent to the ground parenchyma) has in the young samples (1-, 3- and
6-months old) an absorbance maximum at 310-320 nm. In the older samples (older than 6
months) the maximum peak is at 280-282 nm.

2.3.2. Scanning profiles of different cell types

The colour pixels indicate different intensities of UV absorbance at A2s0 nm. The high resolution
(0.25 um2 per pixel) enables a high differentiation of the UV absorbance within individual cell wall
layers.

Scanning profiles of the epidermis and hypodermis cells show that the lignin content is low and +
equal in young and older culms. The vessel wall (metaxylem) has a low lignin content, but as
demonstrated in figure 2-3a, the surrounding fibres lignify very fast. A difference between image
profiles of a 3-month old culm and older culms could not be observed.

The fibres show a lamellar structure with a decreasing lignin content towards the cell lumen. The
fibres close to the ground parenchyma are more heavily lignified in a 9-year old culm than in a
younger one (Fig. 2-3b and 2-3c). Both inner early maturing and outer late maturing fibres show a
lamellar structure.

There are two types of parenchyma cells: short and long cells. The short ones are thin walled and
some are filled with phenolic compounds as was confirmed by the UV-spectrum (Fig. 2-3d).
These compounds show much higher absorbance values than cell wall associated lignins.
Furthermore, their absorbance maxima reveal a bathochromic shift to longer wavelength range of
310 nm (Koch & Kleist 2001). The cell corners are not lignified in contrast to the cell walls in
contact with the cell wall of long parenchyma cells.
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Figure 2-3. UV-micrographs (left) and 3D profiles (right)
of cell walls of P. viridiglaucescens. (a) metaxylem
vessel and the surrounding fibres from a vascular
10 o bundle from the outer part of the culm wall of a 3-month
Ilz old culm. (b) fibres adjacent to parenchyma cells and

11 @.7420

[ S parenchyma cells from the middle part of the culm wall

9 9.613@

[ of a 3-month old culm. (c) fibres at the outer side in a

s o vascular bundle from the middle part of the culm wall of
5 B a 9-year old culm. (d) short, thin walled parenchyma cell

L 0,096 of a 6-month old culm, the lumen is filled with phenolic
compounds.

Intensity
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2.4. Discussion and Conclusion

Bamboo lignin is considered to be composed of guaiacyl, syringyl, and p-hydroxyphenylpropan
units. As a unique feature, it also contains 5-10 % of p-coumaric acid ester (Nakamura & Higuchi
1976, Higuchi 1987), located at the y-positions of grass lignin, predominantly on syringy! units (Lu
& Ralph 1998). The spectra curves of the epidermis, hypodermis, fibre and parenchyma cell walls
show a shoulder between 310-320 nm, which can be linked to the presence of p-coumaroylation
as demonstrated by Higuchi (1987). In the spectra, a peak at 280-282 nm is present. He &
Terashima (1991) found a similar guaiacyl peak in the spectra from rice (Oryza sativa L.) and
sugarcane (Saccharum officinarum L.). Fengel & Shao (1985) concluded on the basis of a
chemical analysis and the bands in IR-spectra that bamboo is rich in syringyl units. However, they
also observed a guaiacyl peak at 280 nm in the UV-spectrum. Lin et al. (2002) detected with VIS-
microspectrophotometry, after staining with Wiesner and Maule reagent, that the absorbance
curves for bamboo are similar to those of dicotyledons, with a syringyl peak in the spectra.

Ferulic and p-coumaric acids are widely distributed in P. viridiglaucescens and their content is
dependent on the anatomical location and the differentiation phase. The epidermis cells and
compound middle lamellae of fibres and parenchyma cells have high absorbance values
(maxima) for the wavelengths related with these esters. Younger cell walls have higher ratios of
abss10 nm / abszs0 nm than cell walls in older culms’. The decrease in the abss1o nm / abszgo am can
be explained by an increased deposition of lignin structural units with high absorbance at 280 nm,
mainly guaiacyl units. A shift from 280 nm toward longer wavelengths and from 310-320 nm
toward shorter wavelengths with the progress of lignification (i.e. at a later differentiation stages)
in the cell corners of fibres as found in rice (Oryza sativa L.) and sugarcane (Saccharum
officinarum L.) (He & Terashima 1991) was not observed in P. viridiglaucescens.

The lignin content in the epidermis cells is approximately the same in a one-month old sample
and in older samples, which indicates that the lignin in the epidermis is deposited early during cell
wall development and does not increase with age (Fig. 2-1a). The fibre layers of the secondary
wall (L) in the outer part of the culm wall in young culms show lower ratios of absz1o nm / abs280 nm
(more G units are already deposited) than the values of ground parenchyma cells in culms of the
same age (Fig. 2-1b and 2-1d), demonstrating that the fibres in the outer parts of the culm wall
mature and fully lignify more rapidly than the parenchyma cells. This is in agreement with ltoh
(1990) who stated that the lignification starts at the outside of the culm and proceeds inwardly,
and that lignification of fibres and epidermal cells precedes that of ground parenchyma cells.

" In Appendix 2 all UV-spectra are given. Itis not possible to give values for the ratios because this has to be done
for each cell type at a different position and at each culm age seperately.
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The lignin content of layers of the secondary wall of the fibres adjacent to the vascular tissue
(early maturing fibres) is + equal in all samples, except in the 1-month old sample (results not
shown). The UV-spectrum of a 1-month old sample does not have a clear peak in contrast to
spectra of samples older than 1 month showing a maximum at 280-282 nm. On the other hand,
cell walls of 1-, 3- and 6-month old fibres, adjacent to the ground parenchyma (late maturing
fibres), have a maximum at the typical grass lignin peak (310-320 nm). The fibre wall of culms
older than 6 months has a maximum peak at 280 nm in the inner early maturing fibres adjacent to
the vascular tissue as well as in the outer late maturing fibres adjacent to the ground
parenchyma. The presence of early maturing fibres and the progress of lignification outwards
from these fibres into more peripheral fibres has already been reported (Murphy & Alvin 1997a;
Liese & Weiner 1996, 1997).

Lignin is already present in the cell corners and compound middle lamellae of a 1-month old
sample in contrast to the cell walls where almost no lignin is present (results not shown). This
indicates that lignification first takes place here and then proceeds into the secondary wall of the
fibres.

The secondary fibre walls form a lamellar structure with an increasing lignin content from the
lumen side towards the middle lamella as is shown by the scans. Koch & Kleist (2001) observed
the same in a three-year old culm of P. edulis. The lamellation is generally described as
alternating broad and narrow layers with different fibrillar orientation with alternating low and high
concentration of lignin (Parameswaran & Liese 1976; Murphy & Alvin 1992). The narrow layers
with widths between 0.1 and 0.2 um are below the geometric resolution of the scanning stage
(0.25 ym2) and could therefore not be displayed as single layers.

Lignin content of the fibre and parenchyma cell walls increases in the first year but not during
later years. A difference in lignin content between a 1-year old and a 9-year old culm could not be
demonstrated (Fig. 2-d; Fig. 2-2 b, c) whereas an increase in G units in samples up to 6-months
old is proved. This is in contrast with the conclusions of several authors (Murphy & Alvin 1997a;
Lin et al. 2002) but agrees with the findings of Itoh (1990) who stated that lignification is
completed within one growing season. However, it is important to consider that the spectra
represent only one of several layers of a cell wall. It could be possible that lignification is
completed within one cell wall layer while the fibre retains the ability to form new layers and lignify
them additionally.

Some short, thin walled parenchyma cells are filled with phenolic compounds. The cell corners
are only slightly lignified in contrast to the cell wall adjacent to a cell wall of a long parenchyma
cell. He et al. (2002) found the same lignification pattern with no lignin deposition in the cell
corner of short parenchyma cells and lignin deposition in short parenchyma cell walls in contact
with long parenchyma cells in a study of the two types of parenchyma cells in bamboo.
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The vessel cell wall has a low lignin content. This is in contrast with most dicotyledons (Musha &
Goring 1975; Saka & Goring 1988). Donaldson et al. (2001) found a higher lignin concentration in
the vessel walls of the monocotyledon Triticum aestivum L. (wheat straw). An increased lignin
content of the cell wall could be expected, as vessel cell walls must withstand the large
compressive forces resulting from the transpiration stream in plants. In bamboos highly lignified
walls are present in the fibres adjacent to the vessels. Hence, they reduce the susceptibility of the
vascular tissue to collapse.
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3. Lignin distribution in the tropical bamboo species
Gigantochloa levis (Blanco) Merrill?

Summary

The lignin distribution within the cell walls of Gigantochloa levis (Blanco) Merrill was studied
topochemically by means of TEM and cellular UV-microspectrophotometry. The study deals with
the distribution of lignin structural units in different anatomical regions and provides a comparison
of lignification of the tropical bamboo species Gigantochloa levis (Blanco) Merrill with the
temperate bamboo species Phyllostachys viridiglaucescens (Carr.) Riv. & Riv. Considerable
differences were found in cell wall structure between fibres adjacent to the vascular tissue, fibres
of free fibre strands and parenchyma cells. The secondary fibre wall in general has a lamellar
structure with an increasing lignin content from the centre towards the compound middle lamella.
P-coumaric and ferulic acids are more widely distributed in G. levis and their content depends on
the anatomical location. The early maturing fibres adjacent to the vascular tissue and at the outer
culm wall reveal a maximum absorbance at 280 nm (guaiacyl peak) whereas the late maturing
fibres display a shoulder at 310-320 nm. This is in contrast to P. viridiglaucescens where the late
maturing fibres also show a maximum peak at 280 nm. The compound middle lamellae show
higher absorbance values and are richer in p - coumaric and ferulic acid esters in comparison to
the layers of the secondary wall. The vessel walls have a lower lignin content. A difference in
lignin content between the various ages and between flowering and non-flowering culms could
not be observed.

2 Adapted from:

Bieke Lybeer & Gerald Koch. 2005b. Lignin distribution in the tropical bamboo species
Gigantochloa levis (Blanco) Merrill. |IAWA Journal 26 (4): 443-456.
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3.1. Introduction

Culms of many bamboo species are applied in a wide range of economic uses (e.g.
constructions, furniture, parquet) and therefore the mechanical properties and durability of
bamboo are of great importance. Lignin is a major component of the cell wall of fibres,
parenchyma cells, and vessels in woody bamboo tissue and is responsible for many mechanical
properties. In their studies on the course of lignification during growth, Murphy & Alvin (1997a)
and Lin et al. (2002) found an increasing lignin content during maturation in later years. In
contrast, Itoh (1990) concluded that lignification increased progressively in both fibres and
parenchyma cells and was completed in one growing season. Lybeer & Koch (2005a), studied
the fibre and parenchyma secondary walls of Phyllostachys viridiglaucescens performing cellular
UV point measurements and scanning UV-microspectrophotometry, and demonstrated that the
lignin content of fibre and parenchyma cell walls increases in the first year but not during later
years. They could clearly demonstrate the lamellar structure of the fibres with an increasing lignin
content from the lumen towards the middle lamella. This layering is generally described as
alternating broad and narrow layers with different fibrillar orientation and with alternating low and
high concentration of lignin (Parameswaran & Liese 1976; Murphy & Alvin 1992). Lybeer & Koch
(2005a) emphasize the importance to consider that UV-spectra (point measurements of 1 pm?)
represent only one of several layers of a cell wall. It is possible that lignification is completed
within one cell wall layer while the fibre retains the ability to form new layers and lignify them
additionally.

Studies on lignification in bamboos have been carried out on species of the genus Phyllostachys
characteristically lacking free fibre strands (ltoh 1990; Yoshizawa et al. 1991; Murphy & Alvin
1997a; Lin et al. 2002; Lybeer & Koch 2005a). This study examined aspects of lignification in
Gigantochloa levis (Blanco) Merrill, representing tropical bamboos characterized by possessing
free fibre strands associated with the vascular bundle but entirely surrounded by parenchyma.
The vascular bundles are characteristically of either type Ill or IV. In type IlI, the bundle, with its
four small fibre caps (one adjacent to the protoxylem, one to the phloem and one to each of the
two large metaxylem vessels) is associated with a usually large, centripetally placed free fibre
strand at the protoxylem side (Grosser & Liese 1971; Liese & Grosser 2000). Type IV has a
central vascular strand with four smaller sclerenchyma sheaths and in addition two isolated fibre
strands, located at the phloem and protoxylem side (Grosser & Liese 1971; Liese & Grosser
2000). G. levis has notably more type Il than type IV vascular bundles.

Using cellular UV-microspectrophotometry, Koch & Kleist (2001) and Lybeer & Koch (2005a)
observed typical UV-spectra for bamboo fibres and parenchyma cells with a guaiacyl peak at 280
nm and a shoulder between 310-315 nm, which can be linked to the presence of p-coumaric acid
esters. Lybeer & Koch (2005a) revealed that p-coumaric and ferulic acids are widely distributed
and that their content depends on the anatomical location and the differentiation phase.
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Transmission electron microscopy using potassium permanganate staining is as well applied for
localization of lignin in woody cell walls (e.g. Donaldson 1992; Singh & Daniel 2001; Schmitt &
Melcher 2004).

The present paper describes a study of the lignin distribution of G. levis. It deals with the
distribution of lignin structural units in different anatomical regions and makes a comparison of
lignin distribution of the tropical bamboo species G. levis with the temperate bamboo species P.
viridiglaucescens.

3.2. Materials and Methods

3.2.1. Bamboo samples

Bamboo culms of the tropical species Gigantochloa levis (Blanco) Merrill were sampled at the 4-
year old plantation in Real Quezon, the Philippines. All plant samples had been marked with the
year of emergence giving precise ageing (Table 2-2). Both flowering and non-flowering culms
have been harvested. Blocks of about 1-2 cm along the grain were cut from the middle part of the
6t internode (numbered from the ground level) and preserved in a mixture of 50 % alcohol, 10 %
glycerine and 40 % water.

3.2.2. Preparation

Transmission electron microscopy

Sections of 50 uym of some samples (Table 2-2) were cut using a Microm-HM440E sliding
microtome. From the middle culm wall, a small part containing a vascular bundle and
parenchyma cells was dissected using a sharp scalpel. These specimens were dehydrated in a
graded series of acetone and subsequently washed out in a graded series of alcohol and
impregnated with LR white™ (Polysciences, Eppelheim, Germany) through a series of alcohol/LR
white™ mixture, followed by immersion in pure resin. Transverse sections of 50 nm in thickness
were cut with a Reichert Ultracut ultramicrotome using a diamond knife and mounted on formvar
coated single dot copper grids. The sections were stained with potassium permanganate
according to Donaldson (1992) with a 1 % solution of potassium permanganate dissolved in
double distilled water containing 0.1 % sodium citrate. Duration of on-grid-staining was three
minutes, followed by washing twice in double distilled water. The sections were observed with a
Jeol-1010 transmission electron microscope operating at 60 kV.
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Table 2-2. Sampled culms of G. levis.

Age Flowering | UMSP | TEM
8-months old no X X
8-months old yes X

21-months old no X X
22-months old yes X
40-months old no X
40-months old yes X X

UV-microspectrophotometry

Small blocks (1 x 1 x 5 mm3) were cut from the sampled material. The specimens were
dehydrated in a graded series of acetone and impregnated with Spurr's resin (Spurr 1969)
through a series of propylenoxide/spurr resin mixture, followed by immersion in pure resin.

Transverse sections of 1 um in thickness were cut with a Reichert Ultracut ultramicrotome using
a diamond knife. The sections were transferred to quartz microscope slides, immersed in a drop
of non-UV absorbing glycerine and covered with a quartz cover slip. The immersion solution
consisted of a glycerine/water mixture np = 1.46. The sections were observed using the
immersion ultrafluar objectives 32:1 and 100:1.

Examination of the sections was carried out using a ZEISS UMSP 80 microspectrophotometer
equipped with a scanning stage enabling the determination of image profiles at defined
wavelengths. The specimens were investigated by point measurements with a spot size of 1 um2
between 240 and 400 nm wavelength using the programme LAMWIN® (Zeiss). Image scan
profiles at a constant wavelength of 280 nm were generated using the scan programme
APAMOS® (Zeiss). This programme digitizes rectangular fields of the tissue with a geometrical
resolution of 0.25 pm2 and a photometrical resolution of 4096 grey scale levels, which are
converted in 14 basic colours to visualize the absorbance intensities.

Epidermis, hypodermis, cell wall layers in the middle of the fibre and parenchyma secondary wall
(Ly)” and compound middle lamellae (CML) were measured at the outer, middle and inner part of
the culm wall. In a vascular bundle, inner early maturing fibres adjacent to the vascular tissue and
late maturing fibres of free fibre strands at the xylem and phloem side were measured. For each
sampled culm, one measurement for each position in the culm wall and for each position within a
vascular bundle was performed.

" In this work the term ‘secondary wall’ is used when all cell wall layers (except the compound middle lamella) are
indicated. When a specific layer is meant, the term Lx is used (See Introduction p. 23-24).
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3.3. Results

3.3.1. Transmission electron microscopy

A typical type IV vascular bundle of G. levis with four smaller fibre sheaths adjacent to the
vascular tissue and two free fibre strands, one located at the phloem and one at the protoxylem
side is shown in figure 2-4.

Ph
Mx Mx

100 pm |

&£ BT

Figure 2-4. Typical type IV vascular bundle of G. levis with four smaller fibre sheaths adjacent
to the vascular tissue (1) and two free fibre strands (2), located at the phloem and protoxylem
side. Mx: metaxylem, Px: protoxylem, Ph: phloem.
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The folds in the sections (Fig. 2-5) are due to the anatomical differences between parenchyma
cells and fibres. Parenchyma cells have a larger diameter and cell lumen and a thinner cell wall
compared to fibres, which have a smaller diameter, narrower lumen and a thicker cell wall. As a
consequence, the impregnation of the parenchyma wall is easier than of the fibre wall, which is
demonstrated by the absence of folds in the parenchyma cells. Fibres of vascular fibre caps
adjacent to the vascular tissue are smaller in diameter and thicker in cell wall than those of the
free fibre strands (Table 2-3). This is reflected in the number of folds, which is greater in fibres
adjacent to the vascular tissue. Test samples of impregnation with Spurr’s resin (Spurr 1969)
gave sections with even more folds, probably because it is more viscous than LR white™ resin.

Table 2-3. Comparison of cell wall thickness and cell diameter of fibres adjacent to the
vascular tissue and of fibres of free fibre strands of G. levis.

Age Cell wall thickness (Cell diameter Cell wall thickness (Cell diameter
(in months) vascular fibre cap |vascular fibre cap ffree fibre strand  [free fibre strand
(M) (m) (m) (m)

8 440 12.21 1.86 17.44
21 4.45 11.01 2.96 15.11
40 3.60 8.34 1.82 17.55

The differences in cell wall structure between fibres adjacent to the vascular tissue, fibres of free
fibre strands and parenchyma cells are clear (Fig. 2-5). Fibres adjacent to the vascular tissue
have a lamellar secondary wall with alternating small and broad layers. The small layers are
darker coloured, which indicates higher lignin content. The cell lumen is small and the number of
layers as well as the thickness of the layers is variable between different fibres. The fibres of free
fibre strands have thinner cell walls and larger cell lumens than the fibres adjacent to the vascular
tissue. The wall consists of alternating small and broad layers. Mostly, the broad layers are
smaller compared to the broad layers of fibres adjacent to the vascular tissue. The number of
layers is highly variable. Often, close to the middle lamella, several smaller layers are present.
The number of layers of fibres of free fibre strands is lower than in the fibres adjacent to the
vascular tissue. In comparison, the parenchyma cell wall is thin with several small cell wall layers.
The compound middle lamellae and cell corners are darker coloured, which indicates the higher
lignin content. Within a cell wall, small layers have more lignin than broad layers.
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Figure 2-5. Transversal sections through
the middle part of the culm wall of G. levis
stems. (a) Cell wall layers of fibres
adjacent to the vascular tissue of a 21-
month old culm. (b) cell wall layers of
fibres of a free fibre cap of an 8-month old
culm. (c) detail of cell wall layers of fibres
adjacent to the vascular tissue of a 8-
month old culm. (d) detail of cell wall
layers of fibres of free fibre cap of an 8-
month old culm. (e) parenchyma cell wall
layers of a 40-month old culm. CML:
compound middle lamella
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3.3.2. UV-absorbance spectra of individual cell wall layers

The cell wall of the epidermis could only be measured in an 8-month old sample. The spectra
reveal an unclear peak at 280-282 nm and a broad shoulder between 310-320 nm. The spectra of
a hypodermis cell have a clear peak at 280-282 nm and a less clear shoulder between 310-320
nm in comparison to the spectra of an epidermis cell.

The layers of the secondary wall (L) of fibres at the outer part of the culm wall adjacent to the
vascular tissue and of free fibre strands have similar UV-spectra with a clear peak at 280-282 nm
and a slight shoulder at 310-320 nm (paired t-test, 2-tailed; P 280 nm=0.297; P 312 nm=0.814) (Fig. 2-
6a). There is no difference in absorbance behaviour and absorbance values between the different
ages and between flowering and non-flowering culms. The compound middle lamellae (CML) of
the fibres adjacent to the vascular tissue have mostly a similar type of spectra as the layers of the
secondary wall (Lx), but sometimes the shoulder at 310-320 nm is more pronounced. The CML of
fibres of free fibre strands have spectra with almost no or no peak at 280-282 nm and a clear
shoulder at 310-320 nm. Both have higher absorbance values than the absorbance values of the
layers of the secondary wall (Lx).

The parenchyma cells at the outer part of the culm wall show spectra with an unclear peak at
280-282 nm and a broad shoulder at 310-320 nm. The spectra of the CML are similar but have
higher absorbance values. There is no difference between the different ages.

Layers of the secondary wall of fibres at the middle part of the culm wall adjacent to the vascular
tissue are characterized by spectra with a clear peak at 280-282 nm and a shoulder between
310-320 nm. Spectra of layers of fibres of the free fibre strands exhibit a less clear peak at 280-
282 nm and a broader shoulder at 310-320 nm (Fig. 2-6b). The ratio of abss1o nm / abszso nm  iS
higher in fibres of the free fibre strands than in the fibres adjacent to the vascular tissue. The
spectra are equal in samples of different ages and in flowering and non-flowering plants. The
CML of the fibres of the free fibre strands have a higher ratio absz1onm / abszso nm than the CML of
the fibres adjacent to the vascular tissue. So, the spectra of the CML of fibres adjacent to the
vascular tissue show a clearer peak at 280-282 nm in comparison to the fibres of the free fibre
strands (Fig. 2-6b). The absorbance values of the spectra of the CML are higher than of spectra
of the layers of the secondary wall (L).

The UV-spectra of parenchyma cell wall layers at the middle part of the culm wall have an unclear
peak at 280-282 nm and a clear shoulder at 310-320 nm. There is no difference between the
spectra of different ages. The spectra of the CML of the parenchyma cells at the middle part of
the culm wall show almost no peak at 280-282 nm and a clear shoulder at 310-320 nm. The
absorbance values are higher in the CML than in the layers of the secondary wall.

" In Appendix 2 all UV-spectra are given. Itis not possible to give values for the ratios because this has to be done
for each cell type at a different position and at each culm age seperately.
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——Lxin-fl Figure 2-6. (a) UV-absorbance spectra of layers of the secondary wall
——Lxin (Lx) and compound middle lamellae (CML) of a 22-month old non-
. EHET flowering culm at the outer part of the culm wall of G. levis. (b) UV-
absorbance spectra of layers of the secondary wall (L) and compound
—— Lxout middle lamellae (CML) of a 40-month old flowering (fl) and non-
—— CMLin-fl flowering culm at the middle part of the culm wall. (c) UV-absorbance
——CMLin spectra of layers of the secondary wall (Lx) and compound middle
- CML oui - lamellae (CML) of an 8-month old flowering (fl) culm at the inner part of
the culm wall. in: fibres at the inner side (adjacent to the vascular
+ CML out tissue); out: fibres of free fibre strands.

In the inner part of the culm wall the spectra of layers of fibres (Fig. 2-6¢) adjacent to the vascular
tissue have a clear peak at 280-282 nm and only a slight shoulder between 310-320 nm. There is
no difference in lignin content between the different ages and between flowering and non-
flowering plants. The spectra of the fibres in the free fibre strand have almost no peak at 280-282
nm and a clear broad shoulder at 310-320 nm. The spectra of the CML of the fibres at the inner
part of the culm (Fig. 2-6¢) wall close to the vascular tissue show a more clear shoulder at 310-
320 nm and higher absorbance values in comparison to the Ly. The CML of the fibres in the free
fibre strand have similar spectra of the L but the absorbance values are higher.

The spectra of the parenchyma cells at the inner part of the culm wall display no or an unclear
peak at 280-282 nm and a clear shoulder at 310-320 nm with no differences between the various
ages. Between the parenchyma cells near the lacuna and the parenchyma cells further at the
inner part of the culm wall there is no difference in lignin content. The CML have similar spectra
but higher absorbance values.

The spectra of the layers of the secondary wall at the outer, middle and inner part of the culm wall
show a difference in absorbance behaviour but not in absorbance values (Fig. 2-7). The layers of
fibres adjacent to the vascular tissue all have a clear peak at 280-282 nm and a shoulder at 310-
320 nm. Nevertheless, the spectra of the fibre layers at the inner part of the culm wall display a
more clear shoulder at 310-320 nm in comparison to the fibre layers at the middle and outer part
of the culm wall. The spectra of the layers of the secondary wall of the free fibre strands at the
outer culm wall show a clear peak at 280-282 nm. The spectra of the fibre layers at the middle
part of the culm wall have a less clear peak at 280-282 nm and the spectra of the fibre layers at
the inner part of the culm wall almost show no peak at 280-282 nm. The spectra display a broad
shoulder at 310-320 nm at the middle and inner part of the culm wall, but a less clear shoulder at
310-320 nm at the outer part of the culm wall. Within one fibre, inner layers (i.e. layers close to
the cell lumen) have lower absorbance values than layers near the compound middle lamellae.

The spectra of the parenchyma cells do not show a distinctive difference in absorbance
behaviour. The spectra of the parenchyma cells at the outer part of the culm wall have a clearer
peak at 280-282 nm than the spectra of the parenchyma cells at the middle and inner part of the
culm wall, which have similar spectra.
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3.3.3. Scanning profiles of different cell types

The topochemical distribution of lignin within the individual cell wall layers was also studied by the
evaluation of scanning profiles with a resolution of 0.25 um?. The cell walls of the vessels
(metaxylem) are characterized by a lower lignin content in comparison to the surrounding fibres.
The fibres show a lamellar structure with a decreasing lignin content towards the cell lumen.
There is no difference between an 8-month old culm and a 22-month old culm in lignification at
the outer part of the culm wall. The fibres of the free fibre strands have higher lignin content at the
outer part of the culm wall but about the same lignin content in the middle and inner part of the
culm wall. There is no difference in lignin content between the different ages.

3.4. Discussion and Conclusion

Potassium permanganate represents a powerful tool in TEM for the localization of lignin on the
subcellular level. However, Schmitt & Melcher (2004) recommend carrying out parallel analyses
by means of UV-microscopy for verification of the results, although the latter technique only
provides information on the cellular level. The typical lamellate structure of a bamboo cell wall
with alternating small and broad layers (Parameswaran & Liese 1976; Parameswaran & Liese
1980) can be clearly visualized by means of TEM photographs but not by means of UV scanning
profiles. The narrow layers with widths between 0.1 and 0.2 um are below the geometric
resolution of the scanning stage (0.25 um2) and could therefore not be displayed as single layers.
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Nonetheless, the UV-micrographs provide additional information on the semiquantitative lignin
content within the cell wall and demonstrate the increasing lignin content from the lumen towards
the middle lamella. Using both techniques, a high variability in lignin content between the different
wall layers can be shown. The difference in lignin content between the alternating broad and
narrow layers with respectively low and high concentration of lignin was already described by
Parameswaran & Liese (1976) and Murphy & Alvin (1992).

Bamboo lignin is considered to be composed of guaiacyl, syringyl, and p-hydroxyphenyl units. As
a unique feature, it also contains 5-10 % of p-coumaric acid ester (Higuchi 1987), located at the
y-positions of grass lignin, predominantly on syringyl units (Lu & Ralph 1999). All spectra curves
of the epidermis, fibre and parenchyma cell wall layers show a shoulder between 310-320 nm,
which can be linked to the presence of p-coumaroylation as demonstrated by Higuchi (1987).
Most spectra curves also have an absorbance peak at 280-282 nm, which indicates the presence
of the strong absorbing guaiacyl lignin (Fergus & Goring 1970b; Musha & Goring 1975). He &
Terashima (1991) found a similar guaiacyl peak in the spectra from rice (Oryza sativa L.) and
sugarcane (Saccharum officinarum L.). Fengel & Shao (1985) concluded on the basis of a
chemical analysis and the bands in IR-spectra that Phyllostachys makinoi is rich in syringyl units.
However, they also observed a guaiacyl peak at 280 nm in the UV-spectrum. Lin et al. (2002)
detected with VIS-microspectrophotometry, after staining with Wiesner and Maule reagent, that
the absorbance curves for Phyllostachys pubescens are similar to those of dicotyledons, with a
syringyl peak in the spectra. Lybeer & Koch (2005a) observed a guaiacyl peak at 280-282 nm
and a shoulder at 310-320 nm due to the presence of esters of p-coumaric and ferulic acid in
lignin units of Phyllostachys viridiglaucescens. The UV-spectra of G. levis show for most cell
types a less clear G peak but a more apparent shoulder between 310-320 nm comparing to the
same cell types of P. viridiglaucescens (higher ratio abszio nm / abszgo nm) (Table 2-4). This
difference is especially clear in the fibres of free fibre strands and in the parenchyma cells at the
inner part of the culm wall. The spectra of the epidermis and hypodermis cell walls of G. levis
form an exception as they have a clearer peak at 280-282 nm in comparison to the spectra of
epidermis and hypodermis cell walls of P. viridiglaucescens. The absorbance values, which
indicate the lignin content, are higher in G. levis or similar in both species.
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Table 2-4. Comparison of absorbance behaviour within individual cell wall layers of G.
levis and P. viridiglaucescens. + means higher values than in P. viridiglaucescens, ++
means much higher values than in P. viridiglaucescens °

Anatomical region

Gigantochloa levis versus Phyllostachys
viridiglaucescens

Absorbance behaviour

ratio abszionm/abs2sonm

Layers of the secondary fibre wall of early

maturing fibres, inner part of the culm wall '
Layers of the secondary fibre wall of late o
maturing fibres, inner part of the culm wall
Layers of the secondary fibre wall of early .
maturing fibres, middle part of the culm wall
Layers of the secondary fibre wall of late o
maturing fibres, middle culm wall
Layers of the secondary fibre wall of early .
maturing fibres, outer part of the culm wall
Layers of the secondary fibre wall of late .
maturing fibres outer part of the culm wall
Parenchyma cells, inner part of the culm wall ++
Parenchyma cells, middle part of the culm wall +
Parenchyma cells, outer part of the culm wall +

Ferulic and p-coumaric acids are more widely distributed in G. levis than in P. viridiglaucescens
and their content is dependent on the anatomical location. Hydroxycinnamic acid moieties cause
the cross-linkage of cell wall polysaccharides and participate with lignin to generate
polysaccharide-lignin complexes, which lead to an increase in wall rigidity (Ishii 1997; Morrison et
al. 1998). Hydroxycinnamic acids thus have an important effect on the wall mechanical
properties. Ferulic acid esters are suggested as lignin initiation sites and direct cell wall cross-
linking during plant growth and development. The role of p-coumaric acid occurs later and serves
to bind together the growing lignin polymer (Morrison et al. 1998).

" In Appendix 2 all UV-spectra are given. Itis not possible to give values for the ratios because this has to be done
for each cell type at a different position and at each culm age seperately. This table gives an overall evaluation.
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Morrison et al. (1998) studying the cell wall composition of maize internodes of varying maturity
found that rind tissue (cuticle, epidermis, xylem elements, and phloem) of maize generally have
greater ferulic acid and p-coumaric acid ester concentrations than pith tissue (parenchyma cells
and randomly distributed vascular strands). As ferulic acid esters act as lignin initiation sites and
direct cell wall cross-linking during plant growth and development this is as they had expected
because rind vascular tissues lignify to a greater extent to support conductive and supportive
tissue of the internode. Differences between pith and rind concentrations of ferulic acid esters
diminished as internode tissues further differentiated and added cell wall components.

Our results reveal only distinctly higher content of hydroxycinnamic esters in the epidermis and
hypodermis cells and not in the fibres at the outer part of the culm wall. This may be due to the
fact that Morrison et al. (1998) did not study separate cell types but only made a division in rind
and pith. Higher content of hydroxycinnamic esters is also found in the CML, the parenchyma cell
walls and the layers of the secondary wall of fibres of free fibre strands. He & Terashima (1991)
found that the absorption maximum reach 314 nm when the ratio p-coumaric acid ester to ferulic
acid esters is equal or higher than 1.14. They recorded a shift from longer toward shorter
wavelengths with maturation in the region of 320-310 nm indicating the presence of more ferulic
acid esters in the younger differentiation stage (the secondary wall is not highly lignified and
multilayered). The maximum in this study is 312 nm, which indicates that more p-coumaric acid
esters are present than ferulic acid esters (ratio is higher than 1.14). As very young samples were
not available, a shift during maturation could not be studied. However, early maturing fibres
(fibres adjacent to the vascular tissue and at the outer part of the culm wall) show lower
absorbance values at 312 nm. These fibres show early in the maturation process cell wall
thickening and lignification (Murphy & Alvin 1997a; Liese & Weiner 1996, 1997; Lybeer & Koch
2005a). In P. viridiglaucescens the difference between UV-spectra of early and late maturing
fibres disappears in culms of 6- to 12-months old (Lybeer & Koch 2005a) whereas the difference
in absorbance behaviour between early and late maturing fibres is still present in culms of G. levis
of 40-months old. A possible explanation could be that culms of P. viridiglaucescens have to
harden more quickly than culms of G. levis, growing in a more stable climate. However, more
temperate as well as tropical species should be studied.

The vessel cell wall of G. levis has low lignin content, which is comparable to the vessel cell wall
of P. viridiglaucescens (Lybeer & Koch 2005a). The function of the early maturing fibres adjacent
to the vessels is probably to reduce the susceptibility of the vascular tissue to collapse. The lignin
concentration in the cell corners and compound middle lamella is higher than in cell wall layers of
the secondary wall which is comparable to P. viridiglaucescens where it is clear from young
samples that lignification first takes place here and then proceeds into the secondary wall of the
fibres (Lybeer & Koch 2005a).

69



Lignification

A difference in lignin content between the different ages and between flowering and non-flowering
culms could not be observed. This is in contrast with the conclusions of several other authors
(Murphy & Alvin 1997a; Lin et al. 2002) that lignification increases with ageing but agrees with the
findings of Itoh (1990) who stated that lignification is completed within one growing season.
However, it is important to consider that the spectra represent only one of several layers of a cell
wall. It could be possible that lignification is completed within one cell wall layer while the fibre
retains the ability to form new layers and lignify them additionally. Between the parenchyma cells
close to the lacuna and parenchyma cells still located in the inner culm wall but further away from
the lacuna there is no difference in lignin content. That could be expected as the parenchyma
cells bordering the lacuna have a different cell shape and must give support at the inner side of
the culm wall.
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4. Concluding discussion

In the discussion on the lignin distribution in G. levis (3.4. Discussion and Conclusion, p. 66) a
detailed comparison between the lignin content and distribution in P. viridiglaucescens and G.
levis is given (cf. Table 2-4, p. 68). The UV-spectra of most layers of the secondary wall of G.
levis have a more apparent shoulder between 310-320 nm, which is caused by the presence of
more hydroxycinnamic acids than in layers of the secondary wall of P. viridiglaucescens.
Furthermore, the absorbance values are equal or higher in G. levis, indicating an equal or higher
lignin content.

An exception to this general observation is the epidermis and hypodermis cell wall. In contrast to
the cell wall layers of fibre and parenchyma cells where a less obvious guaiacyl peak in G. levis is
present, the epidermis and hypodermis display a clearer peak at 280 nm in G. levis than in P.
viridiglaucescens (Fig. 2-8).
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—epi G levis Fig. 2-8. UV-absorbance spectra of an epidermis (epi) and
a hypodermis (hypo) cell of an 8-month old G. levis and a

epi P. viridiglaucescens PO
12-month old P. viridiglaucescens culm.

—— hypo 5. levig
hypo P. viridiglaucescens

Higher content of hydroxycinnamic acid esters (i.e. higher ratio abss1o nm / abs2go nm) in G. levis are
found in the compound middle lamella, the parenchyma cell wall layers and the cell wall layers of
secondary walls of late maturing fibres (fibres of free fibre strands) of all samples. Similarly, a
higher ratio abs1o nm / abszso nm is found in young (1- to 6-months old) compound middle lamella,
young (3-months old) parenchyma cells and young (3-months old) late maturing fibres of P.
viridiglaucescens samples.
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Ferulic acid esters are suggested as lignin initiation sites and direct cell wall cross-linking during
plant growth and development. The role of p-coumaric acid occurs later and serves to bind
together the growing lignin polymer (Morrison et al. 1998). Azuma et al. (1996) showed that the
esterified p-coumaric acid content in bamboo is closely related to the lignin content, whereas
ferulic acid was rich in upper immature portions of the culm shoot. He & Terashima (1991) found
that the absorption maximum reach 314 nm when the ratio p-coumaric acid ester to ferulic acid
esters is equal or higher than 1.14. They recorded a shift from longer toward shorter wavelengths
with maturation in the region of 320-310 nm indicating the presence of more ferulic acid esters in
the younger differentiation stage (the secondary wall is not highly lignified and multilayered). The
maximum in this study of G. levis is 312 nm, which indicates that more p-coumaric acid esters are
present than ferulic acid esters. Very young samples should be studied to see if there is also
higher content of ferulic acid in young G. levis culms. Similar shift from 310-320 nm toward
shorter wavelengths related with these higher amount of ferulic acid was not observed in P.
viridiglaucescens. Perhaps younger more immature samples still surrounded by culm sheaths
should be studied to observe this shift in the UV-spectra.

Koch & Kleist (2001; Fig.1 p. 564) compared UV-absorbance spectra of Fagus sylvatica, Picea
abies and Phyllostachys edulis. The absorbance maximum of F. sylvatica is at 278 nm (Absz7gnm
0.32) because the S wall of hardwood fibres is composed of syringyl - guaiacyl! lignin in varying
ratios characterised by a more variable shifted maximum between 270-278 nm. The UV-spectrum
of the Sy layer of the spruce tracheid shows a generally higher absorbance (Abszsonm = 0.49)
compared to the hardwood fibre. The maximum absorbance at 280 nm indicates the presence of
the strongly absorbing guaiacyl lignin. The UV-spectrum of the fibre layers of bamboo gives a
‘guaiacyl’ peak with similar absorbance as in spruce (Abszsonm = 0.47). A broad shoulder is also
present between 300-315 nm due to hydroxycinnamic esters. The age and location of the
bamboo fibres is not given but according to this study it concerns a mature fibre of an older culm.

The method used here and in the study of Koch & Kleist (2001) gives only a semiquantitative idea
about the lignin content. Lin & Dence (1992) mention that it is important to keep in mind that none
of the methods for the determination of lignin are totally satisfactory because lignin should be
isolated in a pure condition, what is impossible. The most widely applied method for directly
measuring the lignin content is the determination of acid - insoluble (Klason) lignin. However,
such direct methods do not give an idea on the topochemical variation in the different anatomical
regions. Abd. Latif et al. (1996) reported values between 20.6 % and 22.5 % Klason lignin in
culms between half-year and four-year old Bambusa heterostachya culms. Jamaludin et al.
(1995) gives average values of culms of 2.5-years old of 23.4 % for Bambusa vulgaris, of 25.2 %
for Gigantochloa levis and of 28.4 % for Gigantochloa scortechinii. Murphy & Alvin (1997a)
mention values of 13.3 % in a 1-year old P. viridiglaucescens culm and of 26.0 % in a 3-year old
P. viridiglaucescens culm. However, they dated the culms on culm appearance. So, it is possible
that the 1-year old culm is in fact younger than 1 year, which can certainly influence the overall
lignin content. They give reference values of 27.1 % lignin for pine and 24.9 % lignin for birch. In
general, it can be concluded that mature bamboos culms have lignin content comparable with
wood species.
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Gritsch et al. (2004b) demonstrated that the multilayered cell wall of phloem fibres (early maturing
fibres) in Dendrocalamus asper is mainly formed during the first year of growth. However, mature
3-year old culms show an increased number of cells with nine or more layers in comparison with
a 1-year old culm. As bamboo fibre and parenchyma cells retain a living protoplast, they can
lignify these newly formed layers. The question, however, is to what extent this has an impact on
the overall lignin content. If only these newly formed layers lignify in older bamboo culms, and the
lignin content of already present layers is constant, then it is likely that the impact of the overall
lignin content is minimal. Especially because a layering pattern with decreasing lignin content
towards the cell lumen is demonstrated.

Figure 2-9 shows UV-micrographs of early maturing fibres (close to the vascular tissue) (a, b) and
of late maturing fibres (fibres of free fibre strands) (c, d) of an 8-month old and a 40-month old G.
levis culm. The early maturing fibres show no visual difference in lignin content. A cell lumen is
mostly not present so additional deposition of layers is impossible. The late maturing fibres still
have a large cell lumen so additional deposition is possible. However, the scans show no
difference in number of cell wall layers or in lignin content.

Figure 2-9. UV-micrographs of cell walls of G. levis. (a) Fibres close to the vascular tissue
of an 8-month old culm, vascular bundle of the middle part of the culm wall. (b) Fibres close
to the vascular tissue of a 40-month old culm, vascular bundle of the middle part of the culm
wall. (c) Fibres of free fibre strand of an 8-month old culm, vascular bundle of the inner part
of the culm wall. (d) Fibres of free fibre strand of a 40-month old culm, vascular bundle of
the inner part of the culm wall.
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The early maturing fibres correspond to the fibres studied by Gritsch et al. (2004b). These
authors also observed that most fibre cell walls of a 1-year old culm are close to their maximum
thickness. Figure 2-9c and d demonstrate that although the late maturing fibres still have a large
cell lumen, probably no additional cell wall layers are deposited. These cells are not studied by
Gritsch & Murphy (2005). However, it is possible that fibres at specific places within the fibre
strand deposit more cell wall layers than others.

The discussion in Chapter Il (p. 96) gives a comparison between TEM photographs of G. levis
and P. viridiglaucescens. The discussion on lignification in combination with cell wall thickening is
continued there.
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CHAPTER I
CELL WALL THICKNESS OF TEMPERATE AND TROPICAL
BAMBOO CULMS OF DIFFERENT AGES

1. Variability in fibre and parenchyma cell walls of
temperate and tropical bamboo culms of different
ages®

Summary

Fibre and parenchyma cell wall thickness of bamboo culms both from temperate (Phyllostachys
spp.) and tropical (Gigantochloa levis and Dendrocalamus asper) species and of different ages
have been investigated in detail for the middle part of the culm wall of the 6t and 12t internode
above the ground level. The observations indicated a great heterogeneity in cell wall thickness
and cell wall layering pattern of fibres within one culm. Nested design ANOVA's revealed a rising
trend in wall thickness of late maturing fibres (adjacent to the parenchyma) and parenchyma cells
during the first year but significant wall thickening during later years could not be demonstrated.
The high variability within one culm and between culms of the same age from one year on is
partly masking a clear increased cell wall thickening at higher age. Nevertheless, the highest
mean values for fibre wall thickness were recorded in culms of 44-months old or older, suggesting
that some kind of late cell wall maturing can take place within one culm.

3 Adapted from:

Bieke Lybeer, Joris Van Acker & Paul Goetghebeur. 2006. Variability in fibre and parenchyma cell
walls of temperate and tropical bamboo culms of different ages. Accepted for publication in
Wood Science and Technology.
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1.1. Introduction

Bamboos are one of the most important non-timber forest products and one of the more important
agricultural perennial plants in the world. During the last decade, increased knowledge and
research of bamboo have had a tremendous economic impact and have given rise to many new
industries and products. The suitability of bamboo culms for large-scale utilization as additional or
alternative raw material for the wood processing industry in Europe has clearly been
demonstrated (Van Acker et al. 2000). The composition of plant tissue in terms of cells with
varying wall thickness and of proportion of thick-walled cells is likely to have a large effect on the
utilization of the culms in the wood processing industry. Cell wall thickening of bamboo fibres and
parenchyma cells does occur during culm elongation and early maturation, and is considered to
continue for several years (Alvin & Murphy 1988; Liese & Weiner 1996,1997; Murphy & Alvin
1997a, b). Such a prolonged maturation of bamboo culms is of considerable importance as it
influences certain properties and consequently the processing and their utilization (Alvin &
Murphy 1988; Liese 1998). Murphy & Alvin (1997a) demonstrated that culm density, and fibre cell
wall thickness increase with age. In contrast, Van Acker et al. (2000) could not clearly show an
impact pattern of age on the density. As culm density is correlated with cell wall thickness, no
significant cell wall thickening should take place during later years. Moreover, the published
quantitative information regarding cell wall thickness does not always show an unambiguous
increasing cell wall thickness with age as is clear from table 1 in Liese & Weiner (1996).

It is known that the maturation process of fibres is proceeding differently over the transverse
section of a culm wall. Maturation starts at the outside of the culm wall and proceeds toward the
inner side. Furthermore, it is influenced by the position of the fibres within the vascular bundle.
Several authors (Alvin & Murphy 1988; Liese & Weiner 1996, 1997; Murphy & Alvin 1997a)
described fibre maturation in bamboo species with type | vascular bundles. They describe the
fibres close to the vascular tissue as early maturing fibres and the fibres adjacent to the
parenchyma as late maturing fibres. Murphy & Alvin (1997b) studied fibre maturation in the
bamboo Gigantochloa scortechinii with type Il and IV vascular bundles and they paid special
attention to aspects of fibre maturation in free fibre strands. They describe the fibres of the
vascular fibre caps as thickening to almost their maximum during the first year of culm growth
(early maturing fibres) and the fibres of free fibre strands to keep their potential for continued wall
thickening even in 3-year old culms (late maturing fibres). Because the maturation process from
the outside of the culm wall toward the inner side is apparently clear, the cell wall thickening of
fibres and parenchyma cells in the middle part of the culm wall was investigated here.

The conflicting results from the previous studies induced further detailed investigation of the
progress and variability in cell wall thickness of bamboo culms. This study focused on both fibre
and parenchyma wall thickness of both temperate and tropical bamboo species of different ages
in the light of their suitability for the wood industry.
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1.2. Materials and Methods

1.2.1. Plant samples

Samples of culms with different ages were taken of Phyllostachys viridiglaucescens (Carriére) A.
et C. Riviere, P. nigra (Loddiges ex Lindley) Munro and P. viridis (Young) McClure in the
Bambuseraie in Prafrance, France. Culms in the first year of development were harvested in the
Belgian National Botanical Garden in Meise (P. viridiglaucescens) and in the Ghent University
Botanical Garden (P. nigra), Belgium. The tropical bamboo species Gigantochloa levis (Blanco)
Merrill and Dendrocalamus asper (Schultes f.) Backer ex Heyne were sampled at a 4-year old
plantation in Real Quezon in the Philippines. All plant samples had been marked with the year of
emergence giving precise age at the date of sampling (Table 3-1).

Table 3-1. Collected samples. Samples indicated with * were used for TEM studies.

Species Origin Age in months (the exponent gives the | Total
number of culms sampled of that | number
particular age)

P. viridiglaucescens Meise, Belgium 137, 33,687, 93, 128" 15

P.nigra Ghent, Belgium 12,32, 62, 92, 122 10

P. viridiglaucescens 82,202, 322", 442 562, 682, 802, 922, 1042" 18

P. nigra Prafrance, 82, 202, 322, 442, 562, 682, 802, 922, 1042 18

P. viridis France 81, 20", 321 44", 567, 681, 80", 92 1041, | 11
1281, 1521

G. levis Real  Quezon, | 8, 19,2127, 221, 291, 311, 322, 392, 402" 16

D. asper Philippines 8%, 214, 291 311,321, 35" 411, 421 431,45 | 16

104
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1.2.2. Light microscopy

Transverse sections of 18-25 um from the 6t and 12t internode above the ground level were cut
using a Microm-HM440E sliding microtome. After double staining with safranin and astrablue,
dehydration in a graded alcohol series and clearing in Parasolve (Prosan 88001-0, Ghent,
Belgium), the sections were permanently mounted in Entellan (Merck, Darmstadt, Germany).

All observations were made with an AHBS-21 Vanox Olympus universal microscope using bright
field illumination at a magnification of x 400.

1.2.3. Transmission electron microscopy

First, sections of 50 um of some samples of P. viridiglaucescens and G. levis (Table 3-1) were
cut using a Microm-HM440E sliding microtome. From the middle part of the culm wall of these
sections, a small part containing a vascular bundle and parenchyma cells was dissected using a
sharp scalpel. Then, these specimens were dehydrated in a graded series of acetone and
subsequently washed in a graded series of alcohol and impregnated with the resin LR white™
(Polysciences, Eppelheim, Germany) through a series of alcohol/LR white™ mixture, followed by
immersion in pure resin. Finally, transverse sections of 50 nm in thickness were cut with a
Reichert Ultracut ultramicrotome using a diamond knife and mounted on formvar coated single
dot copper grids. The sections were stained according to Donaldson (1992) with a 1 % solution of
potassium permanganate dissolved in double distilled water containing 0.1 % sodium citrate. The
duration of on-grid-staining was three minutes, followed by washing twice in double distilled
water. The sections were examined with a Jeol-1010 transmission electron microscope operating
at 60 kV.

1.2.4. Cell wall measurements

For the cell wall measurements the image analysis program analySIS 3.0 (Soft Imaging System)
was used. For each characteristic, 25 measurements were recorded in one vascular bundle of the
middle part of the culm wall. Fibre tips, as identified by their distinctly reduced size, were
excluded from the analysis.

For the temperate Phyllostachys species the fibre wall thickness and fibre diameter at xylem and
phloem inner side (adjacent to the vascular tissue) and outer side (adjacent to the parenchyma)
and parenchyma cell wall thickness were measured at the middle part of the culm wall. In some
sections, no clear difference in cell wall thickness and diameter between the inner and outer
fibres could be observed. In that case, 50 measurements along a transect from the inner to the
outer side were made.
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The tropical species Dendrocalamus asper and Gigantochloa levis have vascular bundles with
free fibre strands. For these species the fibre wall thickness and fibre diameter at xylem and
phloem side adjacent to the vascular tissue and fibre wall thickness and fibre diameter in the free
fibre strands as well as the parenchyma cell wall thickness were measured at the middle part of
the of the culm wall.

In all samples, the percentages of parenchyma cells in the middle part of the culm wall were
analysed.

1.2.5. Statistical analyses

The measurements were statistically analysed using SPSS 11.0. First, the data were described
using box- and scatter-plots. Nested design ANOVA's were performed to test whether age had a
significant impact on cell wall thickness. This method eliminates the variability in cell wall
thickness of the individual culms from the effect of age on the different culms. For most ANOVA
analyses a logarithmic transformation of the values was necessary.

For the tropical species G. levis and D. asper, age classes were made to perform the analyses.
For G. levis, the ages 19-, 21-, and 22- months old, 29-, 31-, and 32-months old and 39-, and 40-
months old were treated as age classes. For D. asper, the ages 29-, 31-, 32-, and 35-months old
and 41-, 42-, 43-, and 45-months old were treated as age classes.

1.3. Results

1.3.1. Cell wall thickness at different ages

The Phyllostachys species have vascular bundles consisting of central vascular tissue with four
fibre caps as supporting tissue (Fig. 3-1a). This type | vascular bundle has been described for the
genus Phyllostachys by Liese & Grosser (2000). Some minor differentiation between the
Phyllostachys species is present. P. nigra has epidermis cells with dark contents and symmetric
vascular bundles with equally large fibre caps. Parenchyma cells that are interspersed between
fibres in the supporting tissue can characterize P. viridiglaucescens. P. viridis can be recognized
by the presence of sclereid hypodermis cells. Gigantochloa levis and Dendrocalamus asper have
type Il and type IV vascular bundles (Fig. 3-1b). Type Il has a central vascular strand with four
smaller fibre caps and an additional free fibre strand located at the protoxylem side. Type IV has
a central vascular strand with four smaller fibre caps and in addition two free fibre strands,
located at the phloem and protoxylem side. This type IV always occurs in combination with type
Il (Liese & Grosser 2000). G. levis has notably more type Ill bundles. In D. asper, both bundle
types are equally present. Liese & Grosser (2000) described the genera Dendrocalamus and
Gigantochloa to have type Ill or IV vascular bundles.
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Figure 3-1. Transversal sections through internode 6 in the middle part of the culm wall.
(A) Type | vascular bundle of P. viridiglaucescens with four fibre caps (1) surrounding
the vascular bundle. (B) Type IV vascular bundle of G. levis with four smaller fibre caps
(1) adjacent to the vascular tissue and two free fibre strands (2), located at the phloem
and protoxylem side. Mx: metaxylem, Px: protoxylem, Ph: phloem.

This study focuses on the cell wall thickening of fibres and parenchyma cells in the middle part of
the culm wall. The tropical species G. levis and D. asper have free fibre strands in contrast to the
temperate Phyllostachys spp. who are characterized by larger fibre caps surrounding the vascular
tissue. The phloem and xylem fibre caps of Phyllostachys spp. can be divided in inner early
maturing fibres located adjacent to the phloem and xylem and outer late maturing fibres at the
periphery of the phloem and xylem cap. In the tropical species, the walls of fibres adjacent to the
phloem and xylem completed their thickening at the same time as fibre walls at the periphery of
the phloem and xylem cap (early maturing). However, the fibres of the free fibre strands are late
maturing.
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Figure 3-2 shows xylem fibre caps from the inner towards the outer side of a 3-month old, a 6-
month old, a 20-month old and a 44-month old sample of P. viridiglaucescens. In the fibre cap of
a 3-month old culm the difference between inner and outer fibres is evident, with more mature
fibres, characterized by a thicker cell wall, close to the vascular tissue (Fig. 3-2a). In the older
bamboo culms this difference in cell wall thickness between inner and outer fibre fades. As
maturing is taking place over several years it is expected that fibres of older samples have a
thicker cell wall and a smaller lumen than fibres of younger samples. Nonetheless, exceptions
have been observed. The fibres of a 6-month old and a 20-month old sample have a thicker cell
wall and a smaller cell lumen than the fibres of a 44-months old sample (Fig. 3-2b, c, d).

Figure 3-2. Transversal sections through internode 6 in the middle part of the culm wall.
Fibre caps at the protoxylem side from the inner toward the outer fibres of a 3-month old
(@) a6-month old (b) a 20-month old (¢) and a 44-month old culm (d) of P.
viridiglaucescens. 1: inner early maturing fibres, 2: outer late maturing fibres, 3:
parenchyma cells that are interspersed between the fibres.
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Furthermore, a large variability in fibre wall diameter is present within one section and even within
one fibre cap, which implies a large variability in potential of continued cell wall thickening (Fig. 3-
3). A greater variability and a thinner cell wall are observed in free fibre strands of G. levis and D.
asper.

Figure 3-3. Transversal sections through
internode 6 in the middle part of the culm
wall. Fibres of a free fibre cap of an 8-
month old G. levis culm showing the large
variability in cell diameter and cell lumen
size within the same fibre cap.

Using box- and scatter-plots it was concluded that both location and species are responsible for
several differences between the samples. The samples from Prafrance have longer and wider
internodes with a broader culm wall than the samples from Belgium. P. viridiglaucescens and P.
nigra from Prafrance also have higher values for most cell characteristics than the Belgian
samples. In general, P. viridiglaucescens has higher values than P. nigra and P. viridis is
comparable to P. viridiglaucescens. Dendrocalamus asper and Gigantochloa levis did not differ
significantly. Furthermore, a significant difference for the measured characteristics of internode 6
and 12 could not be observed. There is no correlation between cell wall thickness and thickness
of the culm wall. For further analyses, the samples were analysed per origin and per species.

Nested design ANOVA'’s revealed that age does not have a significant influence on cell wall
thickening in both early maturing fibres close to the vascular tissue and late maturing fibres
adjacent to the parenchyma in Phyllostachys species or fibres of free fibre strands in G. levis and
D. asper (Table 3-2). Only the parenchyma cell wall thickness during the first year of development
is significantly different between 1-, 3- and 6-, 9-, 12-month old culms for P. nigra and between 1-,
3-, 6- and 9-, 12- month old culms for P. viridiglaucescens as is proved by a Scheffé test (P <
0.01).

84



Variability in cell walls

Table 3-2. P-values of nested design ANOVA with factors age and code comparing the
influence of age on parameters fibre wall thickness and parenchyma cell wall thickness.
The samples of Phyllostachys nigra and P. viridiglaucescens younger than 12-months
old are harvested in Belgium, the samples older than 8 months are harvested in France.
From Gigantocloa levis and Dendrocalamus asper only culms of 8-month old and older
were sampled. * indicate significant difference at P = 0.01

Parameters Species p- values of samples | p- values of samples
upto 12 months from 8 months on

P. viridiglaucescens 0.012 0.390
Fibre wall thickness, P. nigra 0.141 0.450
xylem inner side D. asper i 0.094
G. levis - 0.867
P. viridiglaucescens 0.074 0.567
Fibre wall thickness, P. nigra 0.099 0.510
xylem outer side D. asper - 0.253
G. levis - 0.693
P. viridiglaucescens 0.083 0.296
Fibre wall thickness, P. nigra 0.561 0.218
phloem inner side D. asper - 0.250
G. levis - 0.949
P. viridiglaucescens 0.127 0.296
Fibre wall thickness, P. nigra 0.565 0.218
phloem outer side D. asper - 0.080
G. levis - 0.935
P. viridiglaucescens 0.000* 0.543
Parenchyma cell wall P. nigra 0.005* 0.133
thickness D. asper - 0.059
G. levis - 0.889

Although the fibre wall thickening is not significant during the first year of development, an upward
trend from a 1-month old culm toward a 12-month old culm in outer fibres (i.e. fibres adjacent to
the parenchyma) at xylem and phloem side from P. viridiglaucescens and P. nigra can be
observed (Fig. 3-4). This upward trend is not found in the inner fibres, because they have already
thick cell walls and a small lumen in 3-month old culms (early maturing fibres). The tropical
bamboo species D. asper and G. levis could not be studied in detail during the first year of
development as no material younger than 8-months old was sampled. Figure 3-4 shows scatter-
plots visualizing nested design ANOVA's from late maturing fibres of P. nigra and D. asper. They
illustrate that the variability in cell wall thickness within one culm and between culms of the same
age is so large that due to the overlap in wall thickness no significant difference can be
demonstrated.
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Figure 3-4. Scatter-plots visualizing the nested design ANOVA's (left) and mean values
with standard deviation (right) during the first year of development (P. nigra) and during
later years (P. nigra and D. asper) from late maturing fibres at the xylem side. Each color
corresponds to measurements of one culm. From each culm, 25 late maturing fibres at the

xylem side were measured.
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Table 3-3 compares mean fibre and parenchyma wall thickness of the different species of
different ages. From this table it can be concluded that the highest values were recorded in culms
of 44-months old or older for the Phyllostachys species. In the recorded values of the mean wall
thickness of D. asper and G. levis no increasing trend can be observed. From these tropical
species no culms older than 40 months could be sampled. One-way ANOVA reveals that mean
parenchyma and fibre wall thickness of P. nigra and P. viridiglaucescens culms older and
younger than 44 months are significant different (P < 0.05). However, in that case the variability
within one culm is not taken into account. Nonetheless, younger culms can show high values for
mean cell wall thickness and some older culms also may have low cell wall thickness, indicating
the high variability between culms.

The measurements also display a high variability in cell diameter of the fibres. The cell diameter
is independent of the age, which is logic as the cells already have their size in the bud. In early
maturing fibres, 46 % of the variation in cell wall thickness can be accounted for by the variation
in the cell diameter (r2= 0.46). In late maturing fibres, there is a very low correlation (r2= 0.05 for
samples of 12-months old or younger and r2 = 0.18 for samples older than 12 months).

Besides the parenchyma wall thickness mentioned above, the proportion of parenchymatous
tissue in the culm is of importance for the strength and consequently the utilisation of the culm.
The mean value of the proportion of parenchymatous tissue in the middle part of the culm wall at
internode 6 is 56 % with no significant difference between the species. As a result the proportion
of vascular tissue and fibres is 44 %.

Table 3-3. Comparison between mean fibre wall thickness at position xylem inner side
(xyin), xylem outer side (xyout), phloem inner side (phlin), phloem outer side (phlout) and
parenchyma wall thickness (par) of internode 6 of different species of different ages.
xyin: inner fibres at the xylem side; xyout: outer fibres at the xylem side; phlin: inner
fibres at the phloem side; phlout: outer fibres at the phloem side; par: parenchyma

Species Origin Age Xyin xyout  phlin phlout par
inmonthsj(um) ~ (um)  (um) (Hm)  (um)

- 3 478 5.00 508 508 2.89

Belgium 6 599 558 492 492 473

9 6.55 6.55 604  6.04 423

12 5.85 597 468 550 419

8 6.53 5.45 602 602 424

20 7.43 6.53 603 603 467

P. viridiglaucescens 32 6.35 5.19 570 570 463
France 44 7.89 6.54 543 543 430

56 9.61 9.61 750 750 4.98

68 8.51 8.51 685  6.85 4.37

80 9.12 9.12 659 659 5.85

92 7.91 7.91 630 630 4.35

104 9.56 9.56 680  6.80 4.42
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Species Origin ~ Age Xyin xyout  phlin phlout par
inmonths(um) ~ (um) ~ (um)  (um) (um)

Belgium 3 3.67 2.46 3.58 3.58 222

6 3.90 2.52 3.92 3.92 337

9 474 343 4.20 420 3.08

12 5.29 5.52 4,28 526 3.50

8 4.09 2.31 399 399 276

_ 20 4.77 4,39 443 443 330
P. nigra 32 4.57 2.95 412 412 330
France 44 6.77 6.00 5.32 532 355

56 6.92 6.92 5.81 581 3.66

68 6.22 6.22 4.89 489 4.02

80 5.98 475 493 493 3.67

92 5.09 3.85 4.85 485 3.52

104 4.31 3.84 417 417 310

8 9.57 2.60 4.87 3.31  3.02

20 6.86 6.86 6.72 6.72 452

32 5.77 543 5.56 556 3.50

44 5.98 5.98 5.33 533 340

o France 56 576 576 508 508 4.22

P. viridis 68 955 955 650 650 4.62
80 3.18 3.51 4.79 479 410

92 5.52 5.52 5.82 582 3.7

104 8.44 8.44 7.15 715  4.69

128 9.47 9.47 7.28 728 5.78

152 7.20 7.20 6.34 6.34 3.64

8 422 3.1 3.90 333 144

D. asper Philippines 21 417 2.93 4.01 3.27 144
29-35 4.42 4.54 3.76 456 1.61

41-45 3.92 2.84 3.88 488 1.76

8 4.20 3.45 4.26 415 1.79

G. levis Philippines 22 4271 313 429 392 196
29-32 4.56 3.14 4.20 335 179

39-40 4.36 3.77 4.31 460 218
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1.3.2. Cell wall layering

The fibre and parenchyma wall is thickening due to the deposition of additional cell wall layers
(Parameswaran & Liese 1976; Murphy & Alvin 1992, 1997a; Gritsch et al. 2004b).

Figure 3-5. Transversal sections through fibres from the inner side of a phloem fibre cap
of a 1-month old P. viridiglaucescens culm (A) with only few layers in comparison to a
fibre from the inner side of a xylem fibre cap of a 3-year old P. viridiglaucescens culm

(B).

Figure 3-5 shows fibres at the inner side of a phloem cap of a 1-month old P. viridiglaucescens
culm, with only few layers in comparison to the fibres at the inner side of a xylem cap of a 3-year
old P. viridiglaucescens culm with more cell wall layers, illustrating the cell wall thickening by
deposition of new layers. All fibres have a secondary wall with alternating small and broad layers .

" In this work the term ‘secondary wall” is used when all cell wall layers (except the compound middle lamella) are
indicated. When a specific layers is meant, the term Ly is used (See Introduction p. 23-24).
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The narrow layers appear darker than broad layers after potassium permanganate staining,
indicating higher lignin content. Different layering patterns as well as different number and
thickness of layers can be present in fibres within one fibre cap (Fig. 3-6). The variability in layer
thickness is most obvious in the broad layers; the narrow layers are more uniform in thickness.

’ ~
: ' | >
v / ; |
” ! &
. , Figure 3-6. Transversal sections

through fibres of a phloem fibre cap of a
6-month old P. viridiglaucescens sample

T

3 1 um

Comparing the ultrastructure of the wall layering of early maturing fibres of P. viridiglaucescens
with G. levis no difference can be observed. However, when comparing the late maturing fibres
located at the periphery of the phloem and xylem cap of P. viridiglaucescens with the late
maturing fibres in free fibre strands of G. levis it is observed that the late maturing fibres of P.
viridiglaucescens culms have a thicker cell wall with more layers (Fig. 3-7). Early and late
maturing fibres of P. viridiglaucescens are more uniform contrary to early and late maturing fibres
of G. levis.

Parenchyma cell wall thickening due to deposition of cell wall layers is demonstrated in figure 3-8.
The parenchyma cell wall is composed of different smaller layers with alternating lignin content.
The number and thickness of layers is variable. The compound middle lamellae and cell corners
are darkstained with potassium permanganate indicating higher lignin content.
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Figure 3-7. Comparison between late maturing fibres of a P. viridiglaucescens culm (3-
years old) (left) with late maturing fibres of a G. levis culm (21-months old) (right). Late
maturing fibres of P. viridiglaucescens culms have a thicker cell wall with more layers.

Figure 3-8. Parenchyma cell walls of a 1-month old (left) and 3-year old (right) sample of
P. viridiglaucescens.
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1.4. Discussion

The microscopical observations and numerical results revealed a great variability in cell diameter
and cell wall thickness of both early and late maturing fibres. During the first year of culm growth
the early maturing fibres fully develop with a thick cell wall and a small cell lumen whereas the
cell wall of late maturing fibres show an increasing trend in cell wall thickness. The weaker
correlation between fibre diameter and fibre wall thickness in late maturing fibres than in early
maturing fibres can be due to the fact that late maturing fibres retain the potential for continued
wall thickening when they still have a cell lumen. In early maturing fibres, 46 % of the variation in
cell wall thickness can be accounted for by the variation in the cell diameter. As they undergo wall
thickening earlier and fully mature during the first year of culm growth, leaving almost no cell
lumen, larger fibres will have a thicker cell wall. During later years cell wall thickening does not
significantly increase in both early and late maturing fibres. This is probably due to the high
variability between the cell wall thickness of fibres within one bamboo culm and even within one
fibre cap as demonstrated in scatter-plots. These results contradict the general accepted idea
that bamboo fibres have a prolonged maturation with an increasing cell wall thickness over
several years (Alvin & Murphy 1988; Liese & Weiner 1996, 1997; Murphy & Alvin 19973, b). Liese
& Weiner (1996) published the mean fibre wall thickness of vascular bundles at the 4 internode
from Phyllostachys viridiglaucescens (Table 1 in Liese & Weiner 1996) from which they ascertain
the increase in fibre wall thickness. Table 3-4 compares the mean values from measurements in
this study from the 6 internode of P. viridiglaucescens with their measurements.
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Table 3-4. Comparison between measurements of fibre wall thickness of P.
viridiglaucescens made by Liese & Weiner 1996 at the 4" internode and measurements
made at the 6" internode from material from Prafrance used in this study.

culmage | mean fibre wall thickness (in | cuimage | mean fibre wall thickness (in
(months) pm) of fipre sh.eath 4-5-§ in (months) pm)  from  material from
Table 1 in Weiner & Liese Prafrance sampled for this
(1996) study
culm 1 culm 2 cum1 culm 2
3m 2.76 2.20
12m 6.56 5.06 8m 5.56 6.36
24 m 7.26 5.73 20m 4.75 8.26
36m 4.76 5.00 32m 4.96 6.51
48 m 6.96 6.66 44 m 7.97 4.67
60 m 4.60 4.06 56 m 7.81 9.30
72m 3.03 3.30 68 m 7.49 7.87
84m 6.83 4.90 80 m 8.09 7.62
96 m 7.73 7.23 92m 6.74 7.46
108 m 4.16 5.86 104 m 8.16 8.20
120 m 5.96 6.80
132 m 8.40 740
144 m 8.33 6.20

The table does not support the conclusion of Liese & Weiner (1996) of an increasing fibre wall
thickness with ageing. The fact that the variability, which we have demonstrated to be very
important, was taken into account for the new data set could explain partly the different
conclusions. The results support and explain the outcomes of Van Acker et al. (2000) who could
not derive an impact pattern of age on density of some Phyllostachys spp. Nevertheless, the
highest mean values for fibre wall thickness were recorded in culms of 44-months old or older.
These results suggest that some kind of late cell wall maturing can take place and can explain
that for practical uses culms of three years and older are being used. So, cell wall thickening at
higher age is possible within one culm although it is not significant for a population of culms.
Nonetheless, some younger culms also display high values indicating the high variability between
culms. Late maturing fibres situated in free fibre strands (G. levis and D. asper) keep their
potential for continued cell wall thickening longer than late maturing fibres in vascular fibre caps
(Phyllostachys spp.) as they still have a larger cell lumen. This is in accordance with the study of
Murphy & Alvin (1997b) who observed that many fibres of free fibre strands of G. scortechinii
after three years still remained thin walled. Lybeer & Koch (2005b) demonstrated that lignification
takes place earlier in late maturing fibres of P. viridiglaucescens than in late maturing fibres of G.
levis. They postulated that the cause of this difference in lignification might be related to the
stable tropical climate for the bamboo species G. levis. For the tropical species sampled at Real
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Qezon, it has to be remarked that the plantation was only 4-years old and as a consequence the
oldest samples are culms taken from non-mature bamboo plants. The youngest culms are
harvested from clumps approaching maturity. This fact can have consequences on the maturation
(cell wall thickening and lignification) of these bamboos. Furthermore, as no material younger
than 8-months old and older than 40 months could be sampled, no conclusions can be formulated
on the cell wall thickening during the first year of development and of culms older than 3 years.
Nevertheless, these periods are shown to be important for the Phyllostachys spp.

Parameswaran & Liese (1976) described the thick walled bamboo fibres as exhibiting a
polylamellate structure with alternating broad and narrow layers. They stated that thinner walled
fibres are less polylamellate. Murphy & Alvin (1992) found that the number of layers was variable
but tended to be higher in fibres adjacent to either vascular elements or ground tissue at the
periphery of the fibre bundles. Gritsch et al. (2004b) concluded that the multilayered structure of
the fibre cell walls was formed mainly during the first year of growth by the deposition of new wall
layers of variable thickness, resulting in a high degree of heterogeneity in the layering patterns
amongst individual fibres. The TEM photographs demonstrated that all fibres have a secondary
wall with different layering patterns as well as different number and thickness of layers within one
fibre cap. The different layer thicknesses are most obvious in the broad layers; the narrow layers
are more uniform in thickness. The layering structure of the parenchyma cell wall is different from
the layering structure of the fibre as they consist of several narrow layers.

In all studied species the proportion of parenchymatous tissue in the middle part of the culm wall
at internode 6 is about 56 %. Grosser & Liese (1974) give average values of 54-55 % for some
culms of Phyllostachys spp. and of 50-51 % for some culms of Dendrocalamus spp. The
percentage parenchyma cells measured in the middle part of the culm wall at internode 6
correspond to those mentioned in Grosser & Liese (1974) for a whole culm. He et al. (2002)
demonstrated that a significant increase in wall thickness and lignification occurs in parenchyma
cells of up to 7 years. In this study, in contrast to He et al. (2002) no significant increase in
parenchyma wall thickness during later years could be demonstrated. Similar as described for the
fibres, this is probably due to the high variability in parenchyma wall thickness within one culm.
However, the parenchyma cell wall thickness increases significant during the first year of
development. Parenchyma cell wall thickening is like fibre wall thickening due to deposition of cell
wall layers of variable thickness.

It is noteworthy that even within one culm the variability is very high. Hence nor the genetic
variability, nor site differences can explain the high variability in cell wall thickness and diameter.
A possible explanation for the difference in culm wall thickness between the bamboos sampled in
Belgium and those in France can be the more favourable climate for the growth of bamboo culms
in the south of France, which is a typical Mediterranean climate with higher mean temperatures.
Another possibility can be the maintenance of the fully developed bamboo plants. In France, the
plants are thinned every year resulting in more growing space for each individual culm.
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1.5. Conclusion

In contrast to the general accepted idea that bamboo fibre and parenchyma cell walls are
thickening over several years, this study concludes that there is no significant overall increase in
wall thickness of fibre and parenchyma cells of bamboo culms older than one year.
Misinterpretation of this trend is probably partly due to the high variability within one culm and
between culms of the same age. Nevertheless, the highest mean values for fibre wall thickness
were recorded in culms of 44-months old or older (Phyllostachys spp.). These results suggest
that some kind of late cell wall maturing can take place and can explain that for practical uses
culms of three years and older are being used. However, some younger culms also display high
values. So, not only culms of three year and older could be used, but culms older than one year
would be appropriate for some industrial uses in respect of the parameters studied here.
However, from the tropical culms, very young (younger than 8-months old) and old material (older
than 40 months) could not be sampled. Furthermore, the sampled culms came from non-mature
bamboo plants which certainly can have an impact on fibre and parenchyma maturation in
bamboo culms.
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2. Concluding discussion - Lignification (chapter II)
and cell wall thickening in bamboo internodes

It can be concluded that both lignification and cell wall thickening of fibre and parenchyma cell
walls mainly take place during the first year of growth. Probably, further thickening and
lignification can take place in cell walls of older bamboo culms but it seems impossible to detect a
significant increase for a population of culms. This can be attributed to the high variability present
within one culm and even within one fibre cap. It is possible that cells, which still have a cell
lumen further deposit and subsequently lignify cell wall layers, it is however unlikely that this will
have a major impact on the overall proportion of cell walls or lignin content.

However, from the tropical culms, young and older material could not be sampled. Furthermore,
the sampled culms came from non-mature bamboo plants which certainly can have an impact on
fibre and parenchyma maturation in bamboo culms.

Gritsch et al. (2004b) measured all fibres of a phloem fibre cap in the inner culm wall region of
Dendrocalamus asper culms of three different ages (< 6-months old, 1-year old and 3-years old)
resulting in a significant increase in average cell wall thickness. It has to be noted that when
comparing mean cell wall thicknesses the high variability of the wall thicknesses within one culm
and between different culms is not taken into account. As is mentioned in the article, the average
thickness of the fibre cell wall in the mature culm was 4.5 um but the maximum wall thickness
measured was up to 12 um or more in some individual cells.

Bamboo cell wall ultrastructure was studied by Gritsch & Murphy (2005) revealing a primary wall
consisting of 2 layers. The fibre secondary wall began to be laid down while cells were still
showing some elongation, suggesting that it may cause the slow-down and eventual cessation of
cell elongation. As only young material was used, no folds are present in the sections. In this
study also 9-year old material was examined. As is clear in figure 3-6b (3-years old) folds are
present in the sections due to the anatomical differences between parenchyma cells and fibres.
Parenchyma cells have a larger diameter, a larger cell lumen and a thinner cell wall compared to
fibres. As a consequence, the impregnation of the parenchyma cell wall is easier than of the fibre
cell wall, which is demonstrated by the absence of folds in the parenchyma cells. Test samples
impregnated with Spurr's resin (Spurr 1969) gave sections with even more folds, probably
because it is more viscous than LR white™ resin.

The first trials with dehydratation in an alcohol series and subsequently impregnation with Spurr
resin resulted in floating samples which were not impregnated. England et al. (1997) suggest that
the bubbles, responsable for floating of the specimens in the resin, are vaporized solvent.
Because of the different permeability of the cell walls, resin molecules are either totally excluded
from the cells or enter only very slowly. Solvent molecules, however, move freely through the
walls. Also Crow (2000) found that resin infiltration and polymerisation was perfect in young
tissue, but as soon as a secondary wall was present, the cells became impervious to resin
resulting in incomplete polymerisation. In this study the problem of incomplete impregnation was
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solved by dehydration of the samples with acetone and subsequent impregnation with the less
viscous LR white™ resin. Crow (2000) referred to Tewari (1992) who reported that bamboo
contains a fine quality wax, which is partly retained in the fibre cell and creates a barrier to
bleaching agents in the pulp and paper process. It is possible that acetone impregnation removes
the waxes from the cells and improves impregnation with LR white™ resin.

The TEM photographs clearly show the high heterogeneity present as well in number as in
thickness of cell wall layers. This variability is present in both cell wall layers of temperate
bamboos with type | vascular bundles and tropical bamboos with type Il and IV vascular bundles.
This study is the first which revealed that the cell wall ultrastructure of fibres adjacent to the
conductive tissues (early maturing fibres) is similar for both vascular bundle types. The late
maturing fibres (i.e. fibres adjacent to the parenchyma in type | vascular bundles and fibres of
free fibre strands in type Il an IV vascular bundles) have a different structure. The late maturing
fibres of type | vascular bundles have a thicker cell wall with more layers similar to the early
maturing fibres. In contrast, the late maturing fibres of type Ill an IV vascular bundles have a
thinner cell wall with fewer cell wall layers. Only Murphy & Alvin (1997b) studied free fibre strands
in Gigantochloa scortechinii. They observed a higher heterogeneity in terms of their diameter and
even after three years many still remain relatively thin walled with potential for continued wall
thickening. They state that it is possible that during the early stages of tissue differentiation the
‘release’ of blocks of potential fibres into the ground tissue may allow some of the elements to
expand to a larger final diameter. Work is required on the origin and early development of these
strands in bamboos with bundle types Il and IV.

Gritsch et al. (2004b) observed a degree of ‘order’ in the distribution of multilayered fibres within
phloem caps of Dendrocalamus asper with multilayered cell walls common in fibres adjacent to
the phloem elements and around the edge of the fibre cap. A similar study on fibres of free fibre
strands would be useful.
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CHAPTER IV
LIGNIFICATION AND CELL WALL THICKENING IN BAMBOO NODES

1. Lignification and cell wall thickening in nodes of
Phyllostachys viridiglaucescens and P. nigra’

Summary

Bamboos are among the most important plants in the world. In contrast to the well-documented
anatomical structure and mechanical properties of the culm internode, fewer details are available
of the culm node. The aim of this study was a topochemical investigation on lignification and cell
wall thickening in the outer part of the node and in the diaphragm of developing and maturing P.
nigra culms and of mature P. viridiglaucescens culms of different age classes. The lignification
was studied topochemically by means of cellular UV-microspectrophotometry. A combination of
light microscopy and image analysis techniques were used to measure cell wall thickness. In
shoots, the lignin content of hypodermis and fibre cell walls at the outer part of the node are
higher than the lignin content of fibre and parenchyma cells of the diaphragm. In older nodes, the
lignin content values of the outer part of the node and of the diaphragm are more similar but the
fibre and parenchyma cell wall layers of the diaphragm have higher content of p-coumaric and
ferulic acids than in the outer part of the node. Fibre and parenchyma cell wall thickness does not
significantly increase during ageing. In the diaphragm, the cell walls are thinner and the cell
diameter is larger than in the outer part of the node.

It was hypothesized that the combination of thinner cell walls in combination with higher cell
diameters and more hydroxycinnamic acids in the diaphragm than in the outer part of the node
may play an important role in the biomechanical function of the node to act as a spring-like joint to
support the culm by bending forces.

4 Adapted from:

Bieke Lybeer, Gerald Koch, Joris Van Acker & Paul Goetghebeur. 2006. Lignification and cell wall
thickening in nodes of Phyllostachys viridiglaucescens (Carriere) A. et C. Riviere and
Phyllostachys nigra (Loddiges ex Lindley) Munro. Annals of Botany 97: 529-539.
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1.1. Introduction

Because of their economic importance and multiple uses in daily life bamboo culms and more
specifically bamboo internodes have been investigated thoroughly. In contrast to the rather
straightforward anatomy of the internodes, the composition and structural details of the more
complex nodes have been poorly analysed so far (Zee 1974; Liese & Ding 1994; Ding & Liese
1995, 1997; André 1998). Nevertheless, the nodes have special significance for the culm
function. Owing to the lack of radial conduction cells, they enable the necessary communication
for cross-transport of both water and nutrients. Furthermore, the nodal structure is important for
liquid movement during drying and preservation as well as for physical and mechanical properties
of the culm. The functional role of nodal diaphragms is to act as braces to resist wall invagination
or buckling (Niklas 1997, 1998). Because nodal diaphragms brace internodal walls against lateral
contraction, they increase the effective stiffness of stems. They also function as spring-like joints
that store energy to elastically restore stems to their original shapes when bending forces are
removed (Niklas 1997, 1998). In internodes, cell wall thickening and lignification was considered
to take place over several years (Alvin & Murphy 1988; Majima et al., 1991; Liese & Weiner 1996,
1997; Murphy & Alvin 1997a, b). However, Lybeer et al. (Chapter Ill, p. 77-95) found an
increasing cell wall thickness during the first year of development, but not during later years.
Nevertheless, they recorded the highest mean values for fibre wall thickness in culms of 44-
months old or older, which suggest that some kind of late cell wall maturing can take place. This
ability of prolonged cell wall thickening of fibres and parenchyma cells may provide an excellent
mechanism for further strengthening the culm as it ages (Murphy & Alvin 1997a). Nonetheless the
importance of cell wall thickening and lignification for the mechanical strength of the culm has
been investigated, it has never been studied in detail in the nodes of bamboo.

1.2. Materials and Methods

1.2.1. Bamboo samples

Samples of the nodal area and of the culm sheath from shoots of Phyllostachys nigra (Loddiges
ex Lindley) Munro were taken in the Ghent University Botanical Garden, Belgium (Table 4-1).
Older culms of Phyllostachys nigra were sampled both in the Ghent University Botanical Garden,
Belgium (1-, 3-, 6-, 9-, 12- months old) and at the Bambuseraie in Prafrance, France (8-, 20-, 32-,
44-, 56-, 68-, 80- and 104-months old) (Table 4-1).

Bamboo culms of the species Phyllostachys viridiglaucescens (Carriére) A. et C. Riviére from 1-,
3-, 6-, 9-, 12- months old were harvested in the National Botanical Garden of Belgium (Meise).
Older culms (8-, 20-, 32-, 44-, 56-, 68-, 80- and 104-months old) were sampled at the
Bambuseraie in Prafrance (France). Blocks of the nodal area between the 6t and 7t internode
(numbered from the ground level) were cut and preserved in a mixture of 50 % alcohol, 10 %
glycerine and 40 % water.
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Table 4-1. Samples used for this study. The shoots of P. nigra were used to study the
structure of the nodes and early lignification. Samples marked by * were used for UV-
microspectrophotometry.

Species Origin Age (in months) Remarks
12 cm height, completely
shoot | surrounded by culm sheaths
360 cm height,
nodes 1-6*: culm sheaths not
Ghent present;
en
, shoot |l nodes 7-15: surrounded by culm
P. nigra sheaths, internode elongated:;
nodes 15-top*; completely
surrounded by culm sheaths
1,3,6,9, 12
Prafrance 8, 20, 32, 44, 36,
68, 80, 92, 104
Meise 1,3,6%9,12*
P. viridiglaucescens 8. 20. 32. 44. 56
Prafrance 68, 80, 92, 104*

1.2.2. Microscopy and cell wall measurements

Young, soft nodes and culm sheaths of P. nigra shoots were dehydrated in a graded series of
alcohol and embedded in Technovit 7100 (Heraeus Kulzer, Wehrheim, Germany). Transversal
and longitudinal sections of 5 pm thickness were cut using a rotary microtome (Minot-
Mikrotom1212, Leitz, Wetzlar, Germany) and stained with toluidine blue O. Toluidine blue O
stains lignified cell walls blue-green and unlignified walls reddish purple (O'Brien et al. 1964). The
sections were permanently mounted in DePeX (Merck, Lutterworth, UK).

From the older samples, transversal and longitudinal sections of 18 — 20 um thick were cut using
a sliding microtome (Microm HM440E) and double stained with safranin and astrablue. After
dehydration and clearing in Parasolve (Prosan 88001-0, Ghent, Belgium), the sections were
permanently mounted in Entellan (Merck, Darmstadt, Germany).

All observations were made on an AHBS-21 Vanox Olympus universal microscope using bright
field illumination. For the cell wall measurements the image analysis program analySIS 3.0 (Soft
Imaging System) was used. Fibre wall thickness was measured in the middle of the outer part of
the node and both fibre and parenchyma wall thicknesses were measured in the diaphragm. For
each characteristic, 50 measurements were recorded on transversal-sectioned cells.
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1.2.3. UV-microspectrophotometry

Small blocks (1 x 1 x 5 mm3) were cut from selected material of P. nigra and P. viridiglaucescens
(Table 4-1; P. nigra shoot II: node between 2nd and 3 and between 18t and 19t internode; P.
viridiglaucescens: node between 6t and 7t internode). These specimens were dehydrated in a
graded series of acetone and impregnated with Spurr’s resin (Spurr 1969) through a series of
propylenoxide/spurr resin mixture, followed by immersion in pure resin.

Transverse sections through the node of 1 pm in thickness were cut with a Reichert Ultracut
ultramicrotome using a diamond knife. The sections were transferred to quartz microscope slides,
immersed in a drop of non-UV absorbing glycerine and covered with a quartz cover slip. The
sections were observed using the immersion ultrafluar objective 32:1. The used immersion oil
consisted of a glycerine/water mixture np = 1.46.

The sections were examined under a ZEISS UMSP 80 microspectrophotometer equipped with a
scanning stage enabling the determination of image profiles at defined wavelengths. The
specimens were investigated by point measurements with a spot size of 1 um?2 between 240 and
400 nm wavelength using the programme LAMWIN® (Zeiss). Epidermis and hypodermis, layers
in the middle of the fibre and parenchyma secondary wall (L), compound middle lamellae (CML)
and vessel cell walls were measured at the outer part of the node and at the diaphragm. For each
sampled culm, one measurement for each position in the culm wall and for each position within a
vascular bundle was performed.

Image scan profiles at a constant wavelength of 280 nm were generated using the scan
programme APAMOS® (Zeiss). This programme digitizes rectangular fields of the tissue with a
geometrical resolution of 0.25 um2 and a photometrical resolution of 4096 grey scale levels,
which are converted in 14 basic colours to visualise the absorbance intensities.

" In this work the term ‘secondary wall” is used when all cell wall layers (except the compound middle lamella) are
indicated. When a specific layer is meant, the term Lx is used (See Introduction p. 23-24).
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1.3. Results

In the following description, the morphological terms as defined by McClure (1966) are used. The
sheath scar is called the nodal ridge and the bulge formed by the intercalary meristem the
supranodal ridge (See fig. 1.4 p. 9).

1.3.1. Structure of the node

During culm growth, an internodal central cavity called the lacuna is formed. In young, still
elongating shoots, this central part consists of parenchyma cells that will die and disappear upon
completed elongation. Figure 4-1a shows a longitudinal section through the diaphragm of a node
(shoot Il — between internode 6 and 7) of an almost completely elongated part of the culm. The
parenchyma cells adjacent to the parenchyma cells, which will die, become sclerified. These cells
will form the border between the diaphragm and the lacuna. In the node, the normal arrangement
of the vascular bundles with four fibre caps vanishes and a sclerenchyma sheath can be
observed. Some bundles only have one vessel element. In the same section, both longitudinally
and transversely sectioned vascular bundles are present indicating that they run criss-cross in the
nodal structure. Branching vascular ‘anastomoses’ are developed as can be seen in figure 4-1a,
b and c. The branching of phloem and xylem does not always start simultaneously. The fibres
and parenchyma cells in the diaphragm have an irregular form.

Figure 4-1b and c illustrate that cell wall lignification proceeds from the bottom towards the top of
the internode. Figure 4-1b shows a longitudinal section through a node between the 2nd and the
34 internode. In comparison to a longitudinal section through a node between the 18t and the
19t internode (Fig. 4-1c), the cell walls are blue colored (staining with toluidine blue) which
indicates higher lignin content.

At the nodal ridge the vascular bundles mostly have two fibre caps, one at the xylem and one at
the phloem side. The ramification has already begun at this portion. At the supranodal ridge, the
vascular bundles have a different form. The fibre caps are larger at the phloem and protoxylem
side and smaller at the metaxylem side. More hypodermis cells are present compared to the
number of cells in the internodes.

The culm sheath has a hypodermis with thick walled, lignified cells. The inner cells opposite the
vascular bundle are also sclerified. So, the culm sheath forms a hard structure that protects the
underlying still developing culm.
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Figure 4-1. Longitudinal sections through
nodal diaphragms of P. nigra shoot Il. (a)
Longitudinal section through the diaphragm
of node between internode 6-7. The upper
parenchyma cells (par-lacuna) will die and

' disappear, forming the lacuna. The sclerified

parenchyma cells will form the border
between the lacuna and the tissue of the
diaphragm (par-border). (b) Longitudinal
section through the diaphragm of node
between internode 2-3 (culm sheath lost;
internodes completely elongated). The cell
walls are blue which indicates the presence of
lignin. Ramification of xylem and phloem cells
can be seen. Some vascular bundles have
only one vessel bundle. (c) Longitudinal
section through the diaphragm of node
between internode 18-19 (culm sheath
present; internodes not completely

. elongated). The cells are purple which

indicates the absence of lignin. Both
longitudinal and transverse sectioned

, vascular bundles are present indicating that

they run criss-cross in the nodal structure.
par: parenchyma; ph: phloem; scl:
sclerenchyma sheath; xy: xylem
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1.3.2. Fibre and parenchyma wall thickness in the nodal structure

P. nigra
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Figure 4-2. Parenchyma and fibre wall thickness. (a) Comparison between parenchyma
and fibre wall thickness of the outer part of the node and the nodal diaphragm. The cell
walls are thinner in the nodal diaphragm. (b) Box-plots of fibre wall thickness in the
diaphragm per age. Cell wall thickness does not significantly increase during ageing.

Figure 4-2a shows mean cell wall thickness of fibre and parenchyma cells in the nodal structure
of P. nigra culms. Fibre and parenchyma cell wall thickness is lower in the diaphragm than in the
outer part of the node. Nonetheless, the fibre diameter is higher in the nodal structure, which
implies a potential for thicker cell walls in the diaphragm. The same observations are made in
culms of P. viridiglaucescens. Box-plots (Fig. 4-2b) reveal an overlap between the measurements
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indicating that age does not have a significant influence on cell wall thickness of both fibre and
parenchyma cells in the nodal structure. It can be deduced that the values of P. viridiglaucescens
are mostly higher than those of P. nigra. But again, due to the overlap of the boxes, this
difference is not significant. It has to be remarked that the samples older than 12-months and the
8-month old samples are harvested in southern France, while the others are collected in Belgium.
The difference in climate and soil could also have an impact.

1.3.3. UV-absorbance spectra of individual cell wall layers of the tissue

The cellular UV-spectra of the epidermis cell walls show a clear broad shoulder with absorbance
maxima between 310-320 nm (Fig. 4-3a). This shoulder is typical for grass lignin and can be
linked to the presence of p-coumaroylation as demonstrated by Higuchi (1987). There is a
significant difference between nodes surrounded by culm sheaths and nodes without culm
sheaths. Epidermis cells of nodes protected by culm sheaths are less lignified, whereas
epidermis cells of nodes without culm sheaths show similar absorbance behaviour in very young
(shoots) and older (12-month old) nodes.

Hypodermis cell walls have different lignin content in samples of different ages (Fig. 4-3b). In
nodes surrounded by culm sheaths the UV-spectra have relative low absorbance values. The
spectra from nodes not surrounded by culm sheaths show a maximum absorbance at 310-320
nm, due to the esters of p-coumaric and ferulic acid. There is no shoulder at 280-282 nm,
indicating the absence of the strong absorbing guaiacy! (G) lignin (Fergus & Goring 1970; Musha
& Goring 1975). Older samples (6-, 12-, and 104-months old) have higher lignin content
characterised by spectra with a clearer peak at 280-282 nm and a shoulder between 310-320 nm.
The absorbance values of a 6-month old node are lower than those of 12-, and 104-month old
nodes. The spectra of the young samples (shoots) have lower absorbance values compared to
the absorbance values of the epidermis cells, whereas the older samples (12- and 104-months
old) have higher values.

The UV-spectra of layers of the secondary wall of fibres at the outer part of the node all follow a
similar pattern (Fig. 4-3c). There is no significant difference between the spectra of shoots (with
and without culm sheaths) and of 6-, 12-, and 104-month old samples. The spectra curves have a
clear peak at 280-282 nm and a broad shoulder at 310-320 nm. Comparing to the epidermis and
hypodermis cell walls, the ratio abs 310 nm/ abs 280 nm is lower.

The absorbance values at 280 nm and 312 nm are significantly higher in the compound middle
lamellae than in the layers of the secondary wall (paired t-test, 1-tailed; P 280 nm = 0.042; P 312 nm =
0.023). The spectra of the compound middle lamellae have a more clear shoulder at 310-320 nm,
indicating the presence of more p-coumaric and ferulic acids in comparison to the layers of the
secondary wall.
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Cell wall layers of parenchyma cells located in the diaphragm of very young nodes (shoots) are
almost not lignified showing very low absorbance values without pronounced maxima (Fig. 4-4a).
The UV-spectra of older nodes (6-, 12-, and 104-months old) exhibit similar absorbance values
with a maximum shoulder between 310-320 nm. A second peak is present between 284-288 nm.
Compared to the layers of the secondary wall of fibres at the outer part of the node, this means a
shift of absorption maximum from 280-282 nm toward longer wavelengths. The absorbance
values are higher in the compound middle lamellae (paired t-test, 1-tailed; P 280 nm = 0.037; P 312
nm = 0.055) but the spectra are similar to those of the cell walls. There is no significant (paired t-
test, 1-tailed; P > 0.05) difference between the ratio abssio nm/abszso nm in the layers of the
secondary wall and the compound middle lamellae.

The spectra curves of the fibres in the diaphragm of the young samples (shoots) do not have high
absorbance values, although the UV absorbance of the shoots is higher compared to the UV
absorbance of the parenchyma cells of the shoots (Fig. 4-4b). The older nodes (6-, 12-, and 104-
months old) show similar absorbance behaviour, with a peak at 280-282 nm and a shoulder
between 310-320 nm. No shift of the absorbance maximum from 280-282 nm to longer
wavelengths could be observed. The compound middle lamellae have approximately the same
absorbance values for the young samples but higher absorbance values for the older samples
(paired t-test, 1-tailed; P 280 nm=0.033; P 312 nm=0.02). The ratio abs 310 nm/ abs 280 nm is the same in
the secondary wall layers and the compound middle lamellae of the fibres in the diaphragm
(paired t-test, 1-tailed; P > 0.05).

110



Bamboo nodes

Absorbance

w  w
= N
o o
Wavelength (nm)

i T T T i i i
N N N N N N w
EN 3] o ~ 4] © o
o o o o o o o

Absoarbance
o
(&)}

0.1
0 +— T f T T T T T T T T =i 1 T \
N & > R ® 2 ] = <] & ® @ & 4 &
o o o o o 8 o o B o o o o o o
Wavelength (nm)
——3 years
—— 12 months Figure 4-4. UV-absorbance spectra (a) UV-absorbance

spectra of parenchyma cells in the diaphragm. (b) UV-

absorbance spectra of cell wall layers of fibres in the
shaot - c.5. not present diaphragm.

=B maonths

shoot - c.s. present

111




Bamboo nodes

1.3.4. Scanning profiles of different cell types of the tissue

 APANDS RECALL
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Figure 4-5. UV-micrographs (left) and 3D profiles (right) of cell walls of P. nigra
(a, b, c,d) and P. viridiglaucescens (e, f). The color pixels indicate the different
UV-absorbance values at a wavelength of 280 nm. (a) epidermis cells of a P.
nigra shoot with culm sheath. (b) epidermis cells of a P. nigra shoot without
culm sheath. (c) outer fibres of a P. nigra shoot with culm sheath. (d) outer
fibres of a P. nigra shoot without culm sheath. (e) outer fibres of a 104-months
old P. viridiglaucescens culm. (f) xylem cells of a P. viridiglaucescens culm of
12-months old (arrow point to pits).
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The colour pixels of the scanning profiles indicate different intensities of UV absorbance at A2go
am. The high resolution (0.25 um? per pixel) enables a high differentiation of the UV absorbance
within individual cell walls. Scanning profiles of epidermis and hypodermis cells of a node
surrounded by a culm sheath and a node where the culm sheath is already lost, show a clear
difference in lignin content within individual cell wall layers (Fig. 4-5a, b).

Fibres at the outer part of the node of older samples (6-, 12-, and 104-months old) show a
lamellar structure with a decreasing lignin content towards the cell lumen. This lamellar structure
can already be observed in a node without protecting culm sheath at the outer part of the node,
but not yet in fibres of nodes still surrounded by culm sheaths (Fig 4-5¢, d, €). The compound
middle lamella and especially the cell corners are more lignified. Fibres in the diaphragm of a
node without protecting culm sheath have just started to form wall layers and to lignify them.
Older samples have already fibres with cell wall layers with decreasing lignin content towards the
cell lumen. A scanning profile of a longitudinal section of a fibre revealed that the middle and the
end part of a fibre are equally lignified. Figure 4-5f illustrates xylem cells. Near the pits there is
only relative low lignin content.

1.4. Discussion

1.4.1. Structure of the node

In the nodes the structure is less organised than in the internodes. Since no radial conducting
system exists in the internodes of bamboo culms because they are hollow, the transverse
distribution of water and nutrients occurs in the nodal region. Therefore, the typical composition of
a vascular bundle in the internode is changed in the nodal region. In the node branching of the
xylem and phloem can be observed. Ding & Liese (1997) studied the anatomy of bamboo nodes.
They describe that at the branching point, the metaxylem consists of abundant small vessels,
which may have more apertures. Between the vessels there are many small cells with pits
resembling those of the vessels, but without perforations. The protoxylem vessels exhibit
intensive branching and these structures facilitate the liquid movement in different directions. In
the phloem, abundant lateral sieve areas enhance connection of sieve elements. A spindle-like
glomerulus structure consisting of filiform elements connects phloem of the main vascular
bundles to that of the branched ones (phloem ganglion). André (1998), who carried out
microcasting of vascular bundles in the nodes of bamboo, gives a more complete picture of the
vessel ramification. He stated that the vessels that ramify form cell clusters, which consist of
many densely pitted vessel elements. This author demonstrated that the ‘xylem transfer cells’
(intensively pitted small cells lying between the vessels) as described by Zee (1974) and the ‘cells
derived from these xylem transfer cells’ as described by Ding & Liese (1997) are in fact densely
pitted vessel elements of the ramification forming cell clusters. Also the transfer cells as
described for wheat (Patrick 1972; Busby & O’'Brien 1979) and other plant species (Gunning et al.
1970) are probably the vessel elements as described by André (1998). Ding et al. (2000) studied
the development and ultrastructure of the phloem ganglion in bamboo node. They distinguished
two cell types, one with pointed ends but many pits in the lateral wall and another one at both
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ends of the spindle that possess an intermediate form between the filiform cell and the normal
sieve tube. They state that the cells of the phloem ganglion have the character of transfer cells.
Gunning et al. (1970) give as definition of transfer cells: plant cells with wall ingrowths thereby
increasing the area over which the plasma membrane is in contact with the extra-cytoplasmic
environment and specialized in relation to short distance transport of solutes.

1.4.2. Cell wall thickening during ageing

In the literature, no studies on cell wall thickening in the nodal structure of bamboos were found.
This study reports that cell wall thickening does not significantly take place during ageing. In the
diaphragm, cells with thinner walls are present than in the outer part of the node where the cell
wall thicknesses are similar to those of the internode. The latter can be explained by the fact that
these fibres probably surround vascular tissue passing directly from one internode to another and
as a result have similar cell wall thicknesses as in the adjacent internodes.

Not only thinner cell walls but also wider cell diameters were found in the diaphragm. Both
elements indicate that the density is lower in the diaphragm. This can be related to the fact that
nodes store energy to elastically restore stems after bending forces are removed; thick cell walls
and high density would make the diaphragm too stiff to have this feature.

1.4.3. Lignin distribution and lignification during ageing

Lybeer & Koch (2005a) characterized UV-spectra of P. viridiglaucescens internodes as having an
absorbance shoulder between 310-320 nm and a peak at 280-282 nm. The presence of a
shoulder between 310-320 nm can be linked to the presence of p-coumaroylation as
demonstrated by Higuchi (1987). An absorbance peak at 280-282 nm indicates the presence of
the strong absorbing guaiacyl lignin (Fergus & Goring 1970; Musha & Goring 1975).

Epidermis, hypodermis and fibre cell wall layers at the outer part of the node have similar spectra
and absorbance values of cell wall layers of fibres at the outer culm side of the internode (Lybeer
& Koch 2005a). Only the UV-spectra of parenchyma and fibre cell wall layers of the diaphragm
are different. In P. viridiglaucescens internodes, ferulic and p-coumaric acids are widely
distributed and their content is dependent on the anatomical location and the differentiation
phase. The epidermis cells and compound middle lamellae of fibres and parenchyma cells of
bamboo internodes have high absorbance values (maxima) for the wavelengths related with
these esters. Younger cell walls have higher ratios of abss1onm / abs2so nm than cell walls in older
culms (Lybeer & Koch 2005a). In the nodes, hydroxycinnamic acids are even more widespread
as they do not only occur in epidermis cells and compound middle lamella, but also in
parenchyma and fibre cell wall layers of the diaphragm of older culms. Hydroxycinnamic acid
moieties cause the cross-linkage of cell wall polysaccharides and participate with lignin to
generate polysaccharide-lignin complexes, which lead to an increase in wall rigidity (Ishii 1997;
Morrison et al. 1998).
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Hydroxycinnamic acids thus have an important effect on the wall mechanical properties. Ferulic
acid esters are suggested as lignin initiation sites and direct cell wall cross-linking during plant
growth and development. The role of p-coumaric acid occurs later and serves to bind together the
growing predominantly syringyl lignin polymer (Morrison et al. 1998). Morrison et al. (1998)
studying the cell wall composition of maize internodes of varying maturity concluded that rind
tissue (cuticle, epidermis, xylem elements, and phloem) of maize generally has greater ferulic
acid and p-coumaric acid ester concentrations than pith tissue (parenchyma cells and randomly
distributed vascular strands). As ferulic acid esters are suggested as lignin initiation sites and
direct cell-wall cross linking during plant growth and development this was expected because rind
vascular tissues lignify to a greater extent to support conductive and supportive tissue of the
internode. Differences between pith and rind concentrations of ferulic acid esters diminished as
internode tissues further differentiated and added cell wall components. Nodes have an important
mechanical function for the bamboo culm as they act as braces to resist wall invagination or
buckling and as they increase the effective stiffness of stems (Niklas 1997, 1998). This could be a
possible explanation for the higher presence of hydroxycinnamic acid moieties in the nodal
diaphragm as hydroxycinnamic acids increase the wall rigidity due to cross-linking with cell wall
polysaccharides. This increase in wall rigidity by generating polysaccharide-lignin complexes
perhaps increases the stiffness more than the deposition of guaiacyl units with lower linking.
Furthermore, as thick cell walls and high density would make the diaphragm too stiff to elastically
restore stems after bending forces are removed, the cell walls themselves need to give enough
support to resist to mechanical stresses.

He & Terashima (1991) found a shift from 280 nm toward longer wavelengths and from 310-320
nm toward shorter wavelengths with the progress of lignification (i.e. at a later differentiation
stages) in the cell corners of fibres in rice (Oryza sativa L.) and sugarcane (Saccharum
officinarum L.). They worked out that this shift is due to the increase in the total content of
hydroxycinnamic acid esters. A similar shift from 280-282 nm toward longer wavelengths could be
observed in the parenchyma cells of the diaphragm but not in other cells.

There is a clear difference in lignin content between cells of shoots and of older culms. This
difference is especially clear in the fibre and parenchyma cells of the diaphragm, which illustrates
that the lignification process starts at the outside and proceeds towards the centre of the
diaphragm. In the epidermis and hypodermis cells, shoots with culm sheath have lower lignin
content than shoots without culm sheath. This is probably because the hard structure of the culm
sheath protects the weak, less lignified underlying structures. Significant differences in lignin
content between 6-month old, 12-month old and 9-year old culm could not be observed. Lybeer &
Koch (2005) demonstrated the same situation in internodes of P. viridiglaucescens. Their results
are in contrast with the conclusions of several authors (Murphy & Alvin 1997a; Lin et al. 2002) but
agree with the findings of Itoh (1990) who stated that lignification is completed within one growing
season. However, the authors mention that it is important to keep in mind that the spectra
represent only one of several layers of a cell wall. It could be possible that lignification is
completed within one cell wall layer while the fibre retains the ability to form new layers and lignify
them additionally. The scanning profiles showed a lamellar structure of fibre cells with a
decreasing lignin content towards the cell lumen.
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The xylem transfer cell wall has low lignin content. This is in contrast with most dicotyledons
(Musha & Goring 1975; Saka & Goring 1988) and the monocotyledon Triticum aestivum L.
(Donaldson et al. 2001) but agrees with the findings of a low lignin content in bamboo vessel cell
walls in the internode (Lybeer & Koch 2005a). Near the pits there is only low lignin content.

1.5. Conclusion

Nodes are not only important for the lateral transport of water and nutrients within the culm and
between the culm, the branches and the leaves but they also have a major mechanical function.
During development, the hard culm sheath protects the weak, non-lignified structures. In a fully
elongated stem, the nodal structure can act as a spring-like joint to support the culm by bending
forces as is demonstrated by Niklas (1998). This function is reflected in its anatomy. The
combination between on the one hand larger diameters and thinner cell walls and on the other
hand presence of more hydroxycinnamic acid moieties in the diaphragm makes it a flexible but
strong structure.
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2. Concluding discussion - Comparison between cell
wall thickness and lignification in bamboo nodes
and internodes (chapter Il & 111)

The lignification and cell wall thickening of bamboo nodes is studied in Phyllostachys species.
Because of the different structure of the node in comparison with the internode, the nodal
structure can not be divided into an outer, middle and inner part of the culm wall. The outer part of
the node can be compared to the outer part of the culm wall of the internode. The middle and
inner part of the culm wall of the internode are not present in the nodal structure but instead a
diaphragm is present. This diaphragm originates from the central cells and provide the
transversal connection of the conductive tissue.

The lignification in the nodes proceeds as in the internodes: first at the outside of the culm
(epidermis, hypodermis and fibre wall layers at the outer part of the culm wall). In the diaphragm,
as in the internodes the lignification of the fibre wall layers precedes that of the parenchyma wall
layers.

The topochemical structure of the lignin is different in the diaphragm: more hydroxycinnamic
acids (higher ratio absa12nm / abszgonm) are present, leading to an increase in wall rigidity (Fig. 4-6).
The topochemical structure of fibre wall layers at the outer part of the node is comparable to that
of the fibre cells at the outer part of the culm wall of internodes (Fig. 4-7).

P.viridiglaucescens

Absorbance

Wavelength (nm)

% T Figure 4-6. UV-absorbance spectra of a 12-month old P.
viridiglaucescens culm comparing UV-spectra of a fibre wall
#— L3 xyin layer in the diaphragm of the node (L, dia) with UV-spectra of
Lx xyout fibre wall layers of early (L, xyin) and late (L, xyout) maturing
fibres at the middle of the culm wall of the 6" internode.
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Bambang (1996) reported that the Klason lignin content of the nodal portion is higher than that of
the internodal portion. Figure 4-7 compares absorbance values at 280 and 312 nm of
parenchyma and fibre walls in the node (between internode 6 and 7) and internode (internode 6)
of P. viridiglaucescens culms. Only the absorbance values at 280 nm of fibre wall layers at the
outer part of the culm wall are comparable for both. In all other cases the absorbance values are
higher in cell wall layers of nodal cells indicating higher lignin content.
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In the diaphragm, thinner cell walls and cells with higher diameter are found compared to the cell
walls and cell diameters of the corresponding cells in the internodal structure (Fig. 4-8). The
combination of higher diameters and thinner cell walls indicate that the density will be lower in the
nodal diaphragm. This makes them probably less stiff than internodal structures. It is hypothized
that the combination of lower density and higher hydroxycinnamic acids induces the nodal
diaphragm to become a flexible but strong structure, which can resist to higher bending stresses.

P. nigra
20.00
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age

s fibre wall thickness - diaphragm| Figure 4-8. Fibre wall thicknesses and

—— fibre wall thickness - internode diameters of P. nigra nodes and internodes.

#— fibre diameter diaphragm

—+—fibre diameter - internode

The fibre and parenchyma cell wall thickness in the node does not significantly increase with age.
The lignin content is only significantly lower in the nodal cell walls of shoots. This is in agreement
with the conclusion that both lignification and cell wall thickening of fibre and parenchyma cell
walls in the internode mainly take place during the first year of growth. It has to be noticed that
further thickening and lignification probably can take place in cell walls of older bamboo culms by
further deposition and subsequently lignification of cell wall layers.

As no literature on cell wall thickening or lignification in bamboo nodes was found, it is impossible
to discuss our results with conclusions from other authors.
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CHAPTER V
SILICA CONTENT AND DISTRIBUTION IN SOME WOODY BAMBOO

CULMS”®

Summary

The overall silica content and distribution of bamboo culms from different ages both from
temperate (Phyllostachys viridiglaucescens and Phyllostachys nigra) and tropical (Gigantochloa
levis and Dendrocalamus asper) species was analysed. Regardless of diameter class, height and
age, silica accounts for 0.04 to 0.11 % dry weight for Phyllostachys spp. and 0.08 to 0.11 % dry
weight for G. levis and D. asper which is much lower than values mentioned in previous studies.
Silica is concentrated on the outer epidermal layer. Gigantochloa levis and Dendrocalamus asper
also contain, in contrast to the studied Phyllostachys spp., Si in the hypodermis cells. The EDX-
maps showed an unequal distribution of Si in the epidermis of Phyllostachys spp. and higher Si
concentrations in the outer epidermal cell wall.

5 Adapted from:

Bieke Lybeer, Joris Van Acker, Paul Goetghebeur. Silica content and distribution in some woody
bamboo culms. Submitted for publication in Journal of Bamboo and Rattan.
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1. Introduction

Numerous studies have shown that grasses accumulate Si in their tissues, and the highest
content of this element is deposited in leaves in a majority of the species studied (e.g. Metcalfe
1960; Motomura et al. 2004). Several authors have studied the silicon deposition in bamboo
leaves and roots (Bennett & Sangster 1981; Lux et al. 2003; Motomura et al. 2000; Motomura et
al. 2002; Motomura et al. 2004). In leaves, the foremost place of silicon deposition is the
epidermis, with the highest concentration in silica cells. In bamboo roots, the deposition of Si is
found only in endodermis cell walls. The content of Si on dry weight basis measured by
gravimetric quantification was 7.6 % in leaves and 2.4 % in roots, respectively (Lux et al. 2003).
Londofio & Kobayashi (1991) compared the silica bodies of the leaves between Bambusa and
Guadua and concluded that size and distribution of the silica bodies rather than form can be used
to distinguish both genera. Silica is considered to increase natural durability and strength (Sanyal
et al. 1988) and to offer mechanical support (Lux et al. 2003). Previous studies showed that silica
influences the cuticular transpiration and CO, uptake of plants (Kupfer & Kahnt 1992; Sakae et al.
1998). It also protects the plant from attacks of other organisms (Samuels et al. 1993) as well as
from unfavourable climatic conditions, e.g. frost (Larcher et al. 1991). Indeed, silica though not
considered an essential element is very important to the plant. However, one important element
to the efficient processing of timber as well as non-timber materials is the abundance of silica
within its structure. Amorphous silica either as a cell wall encrustment or impregnation or as
translucent bodies can cause severe dulling of tools, which impedes the processing of the
materials. In timber, silica is present as silica bodies commonly associated with the parenchyma
cells, fibres and tyloses of vessels (Furuno & Coté 1983). In bamboo, silica is considered to be
major component of the culm epidermis and it is mainly found in the form of small silica cells
(cells containing silicon dioxide crystals) associated with cork cells (Liese 1998). Schmitt et al.
(2002) localized silica polymers as extracellular deposits within the wall of epidermal cells of
bamboo culms (Sasa palmata and Sinoarundinaria spp.). Young internodes showed distinct silica
deposition in epidermal wall regions underneath the cuticle. In the outer wall regions silica
granular deposits were found in increasing amounts during maturation but were only present in
inner wall regions in late developmental stages. Gritsch et al. (2004a) showed in a study on
Guadua angustifolia that there is a large amount of silica cells concentrated on the outer
epidermal layer but they also observed silica bodies embedded amongst fibres in the periphery of
the vascular bundles and in the intercellular spaces between parenchyma cells in the ground
tissue. According to their SEM-EDX observations the concentration of silica bodies in the middle
part of the culm wall seemed to increase with maturity. However, the silica content was not
quantified to prove these observations.
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The aim of the present work was to examine the silica content and distribution within culms of
Phyllostachys nigra, Phyllostachys viridiglaucescens, Dendrocalamus asper and Gigantochloa
levis. Quantification of the silica content was based on the molybdenum blue method and the
distribution was observed with a scanning electron microscope (SEM) coupled with X-ray
microanalysis. Precise distributional knowledge of silica deposition and silica content in the culm
could give a good estimate of its possible impact on the processing of the bamboo culm. This
may in turn improve the processing techniques.

2. Materials and Methods

2.1. Plant material

Samples of culms from different ages of Phyllostachys viridiglaucescens (Carriére) A. et C.
Riviere and Phyllostachys nigra (Loddiges ex Lindley) Munro were taken in the Bambuseraie in
Prafrance, France. Culms in the first year of development and 2-year old culms were harvested in
the Belgian National Botanical Garden, Meise (P. viridiglaucescens) and in the Ghent University
Botanical Garden (P. nigra), Belgium. The tropical bamboo species Gigantochloa levis (Blanco)
Merrill and Dendrocalamus asper (Schultes f.) Backer ex Heyne were sampled at a 4-year old
plantation in Real Quezon in the Philippines. All plant samples had been marked with the year of
emergence giving precise ageing (Table 5-1).
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Table 5-1. Samples used for quantitative analysis. The samples marked by * were also
studied by SEM-EDX.

Species Origin Age (in months) Remarks
3, 9%, 12* int 6
Ghent 1,3,9 int 6- only epidermis
P. nigra o4* int 2 up to int 22 and node 2/3
up to node 18/19
Prafrance 8, 32%, 56*, 104* int 6
8, 32, 56, 104 int 6- only epidermis
1, 3%, 9%, 12* int6
Meise 1,3,9,12 int 6— only epidermis
P. viridiglaucescens 24 int 2 up to int 22 and node 2/3
up to node 22/23
Prafrance 8, 32, 56 int 6 — only epidermis
8, 32%, 56*, 104* int 6
G. levis Real Quezon 8%, 21*, 40* int 6
D. asper Real Quezon 8%, 21%,43* int 6

2.2. Quantitative Si determination : molybdenum blue method

The silicon content was determined using the molybdenum blue method (Sulthoni 1989;
Motomura 2000, 2002). Small bamboo blocks were cut from the middle part of the sampled
internodes (Table 5-1). These blocks were grinded to bamboo powder. For some samples,
powder of the epidermis was made (Table 5-1). Bamboo powder (0.5 g) was fused with 5 ml 10
% NaOH and pyrolysed at 700 °C during 4h. After cooling, the residue was solved in distilled H,O
and transferred in a volumetric flask of 250 ml. Then 5 ml HCI 12N was added and this mixture
was diluted with H2O until the grade mark. A 20 ml of this bamboo powder solution was
transferred in a volumetric flask of 50 ml and 2 ml ammoniummolybdate reagent was added (5¢g
(NH4)sM07024.4H20 (ammoniumheptamolybdatetetrahydrate) solved in 50 ml water with 5 ml
HoSO4 95-97 % and diluted until 100 ml with distilled water). After shaking, 2 ml tartaric acid
solution, 5 ml HoSO4 10N and 2 ml reducing reagent (solve 30 g Na2S,05 and 3 g Na2SOs in 200
ml distilled water; solve 0.5 g metol (p-methylaminofenolsulfate) in 25 ml distilled water; fuse both
solutions and dilute until 250 ml with distilled water) were added. After diluting until 50 ml with
distilled water, the absorbance at 828 nm was measured. The Si content was calculated on a dry
weight basis by comparing the absorbance with silicon standard solutions. The SiO, content was
calculated by multiplying the Si content with 2.139.
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2.3. Microscopy and X-ray analysis

Air-dried bamboo samples were smoothened using razor blades. The samples were fixed on
stubs using adhesive tape, and gold coated in a coater (Balzers SCD 030) before being
examined under a SEM (FEI Quanta 200 F) equipped with an EDX (Energy dispersive X-ray
microanalysis) system (Genesis 4000) at 20 kV.

3. Results

3.1. Si content in bamboo culms

Table 5-2 shows the mean values of percentage Si and SiO2 on a dry weight basis for the
different species and the different ages. Internode 6 of P. nigra and P. viridiglaucescens samples
contain 0.06 to 0.11 % and 0.04 to 0.10 % Si on a dry weight basis, respectively. The tropical
bamboo species D. asper and G. levis contain around 0.08 % Si and 0.08 to 0.11 % Si,
respectively. The species are not significantly different (one-way ANOVA, P = 0.677) and within
one species there is no significant difference between the different ages (one-way ANOVA, P >>
0.05). Furthermore, no significant difference between culms grown in Belgium and culms grown in
France could be demonstrated (one-way ANOVA, P >> 0.05). Less than 1 % (r2 = 0.017) of the
variation in Si content can be explained by the variation in culm wall thickness. So, no significant
correlation (P = 0.436) between culm wall thickness and percentage Si was observed in all
species and ages.

Table 5-3 illustrates that the Si content is high in the epidermis in comparison to the Si content of
the whole culm wall showing that the Si is concentrated here. When comparing the Si content of
the nodes with that of the internodes (Fig. 5-1) it can be concluded that the content is slightly
higher in the nodes. However, this is not true for all measured nodes and internodes. Therefore,
the Si content is not significantly higher in the internodes (paired t-test, P = 0.054).
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Table 5-2. Mean % Si and SiO;, on a dry weight basis of internode 6 for the different
species and the different ages

Species Origin Age (in months) % Si % SiO2
3 0.066 0.142
Ghent 9 0.078 0.167
12 0.071 0.152
P. nigra 24 0.110 0.235
8 0.081 0.173
Prafrance 32 0.086 0.185
56 0.058 0.124
104 0.104 0.223
1 0.066 0.142
3 0.042 0.089
Meise 0.078 0.167
12 0.061 0.131
P. viridiglaucescens 24 0.081 0.174
8 0.081 0.173
Prafrance 32 0.073 0.155
56 0.098 0.209
104 0.076 0.162
8 0.081 0.173
G. levis Philippines 21 0.078 0.166
40 0.080 0.171
8 0.082 0.174
D. asper Philippines 21 0.082 0.174
42 0.118 0.252

Table 5-3. % Si on a dry weight basis of internode 6 of the same P. nigra culms.

Origin Age (in months)  jonly epidermis whole culm wall
3 0.085 0.066
Ghent
9 0.116 0.078
8 0.155 0.081
32 0.233 0.086
Prafrance
56 0.181 0.058
104 0.163 0.104
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Figure 5-1 illustrates that higher internodes have a smaller culm wall thickness. However, only in
the culm of P. nigra the Si content is higher in the highest internodes.
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Figure 5-1. Comparison between internode and node of a 24-month old culm of P. nigra
and of P. viridiglaucescens.

3.2. Si distribution in bamboo culms

The culm walls of P. nigra observed using SEM-EDX displayed a concentration of Si in the
epidermis (Fig. 5-2). Si mapping indicated unequal accumulation of Si in the epidermis; some
parts of the epidermis have a high concentration of Si, some parts contain less silica and some
cells do not include any Si at all. X-ray microanalysis of some cells of the epidermis showed a Si
signal in the cell walls, with the highest values found in the outer epidermal cell wall of one cell
(Fig. 5-2c, d).
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Figure 5-2. SEM - micrographs (above) and EDX - maps of the same area (below) of P. nigra
(24-months old, internode 20); bright abundant white dots indicate the location of silicon. (a-b)
Si is deposited in the epidermis and is not equally distributed. Some cells contain more Si than
others and some cells do not contain any Si at all. (c-d) detail of the epidermis of (a-b)
showing that Si is mainly concentrated in the outer epidermis cell wall.

Figure 5-3 shows SEM-micrographs and EDX-mappings of Si distribution in P. viridiglaucescens
culms indicating that most cells do not contain a considerable amount of Si although some cells
have higher Si concentration. Si is exclusively accumulated in the epidermal layer and no Si
signal was detected in other tissues. No difference in Si concentrations was observed between
culms of different ages (Fig. 5-3).
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Figure 5-3. SEM - micrographs (left) and EDX - maps of the same area (right) of P.
viridiglaucescens; bright abundant white dots indicate the location of silicon. (a-b) 9-
months old, (c-d) 56-months old, (e-f) 3-months old. The arrows indicate silica cells in
the epidermis. Si is not equally distributed. Some cells contain more Si than others and
some cells do not contain any Si at all.

131



Silica

The tropical species G. levis and D. asper have Si deposited in both epidermis and hypodermis
cells (Fig. 5-4 and 5-5). In contrast to P. nigra and P. viridiglaucescens, the Si mappings indicate
a more equal distribution of Si with higher accumulation in epidermis cells than in hypodermis
cells. The highest Si signal was detected in the outer epidermal cell wall as is illustrated in the
EDX-mapping of Si in D. asper (Figure 5-5d).

Figure 5-4. SEM - micrographs (left) and EDX - maps of the same area (right) of G. levis;
bright abundant white dots indicate the location of silicon. (a-b) 21-months old, (c-d)
40-months old. Si is not only present in the epidermis cells, but also in the hypodermis
cells and is equally distributed.
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Figure 5-5. SEM - micrographs (left) and EDX - maps of the same area (right) of D. asper
(8-months old); bright abundant white dots indicate the location of silicon. (a-b) Siis
located in the epidermis and hypodermis cells and is equally distributed. (c-d) A detail
of the epidermis and hypodermis cells showing that Si is mainly concentrated in the
outer epidermis cell wall.

4. Discussion

Silica though not considered an essential element is very important to the plant. However, in the
point of view of utilization, silica content over 0.3 % can reduce the production rate due to the
frequent replacement of cutting tools (Haygreen & Bowyer 1987). However, Thibaut et al. (2004)
give much lower values of 0.014 % silica by which there is no influence of Si on tool wear. In
bamboo culms, silica is considered to be a major constituent of the epidermis with values
between 1.5 % (Bambusa vulgaris) and 6.4 % (Schizostachyum lumampao) (Liese 1998). Ueda
(1960) reported that in Phyllostachys edulis most silica was concentrated in the exodermis (4.20
- 5.10 %), with average for the whole culm at 0.29 - 0.33 %. Istas & Raekelboom (1962) mention
values between 0.07 - 4.7 % for Bambusa vulgaris, between 0.59 — 1.83 % for Oxytenanthera
abyssinica, around 0.16 % for Arundinaria alpina and between 0.19 — 0.49 % for Gigantochloa
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aspera. Van Acker et al. (2000) reported values of 0.066 % in a lower part and 0.082 % in an
upper part of P. praecox culms and values of 0.120 % in a lower part and 0.355 % in an upper
part of P. nigra culms. The results of the present study indicate lower values between 0.04 and
0.11 % Si for P. nigra and P. viridiglaucescens and 0.08 to 0.11 % Si for the tropical species G.
levis and D. asper. The molybdenum blue method, as applied in this study, can be used to detect
small amounts of Si present (Bennett & Reed 1971). The minimal detectable concentration is
about 1pg/g, which is much lower than the values obtained in this study (mg/g) and the study of
Van Acker et al. (2000). So, it seems that the low values are not an artefact of the used
technique. It is, however, impossible to compare the method used here with the methods used in
the cited literature, as they do not mention which technique is applied to determine the silica
content. More work is required on the Si content in bamboo species to understand the great
differences between the values. It would be helpful to cross-check the values by using different
methods (e.g. ICP-MS). Furthermore, environmental condition (e.g. soil) should be taken into
account when comparing the Si content.

The EDX-maps showed that indeed there is a large amount on silica cells concentrated in the
outer epidermal layer. The studied tropical species G. levis and D. asper also contain, in contrast
to the studied Phyllostachys spp., Si is the hypodermis cells. So, it would be expected that the
tropical species have higher Si content. Nevertheless, the measured values do not indicate a
significantly higher Si percentage for the tropical species. It is not clear to what extent this can be
an artefact of the used technique. According to the EDX-maps the amount Si measured is highly
depending on the part used for the analysis as some parts of the epidermis contain hardly any Si
at all. This might partly explain the differences measured between double samples of the same
culm and between the values measured by Van Acker et al. (2000) for P. nigra and the values
measured in this study for P. nigra.

Tamolang et al. (1980) reported increasing silica content toward the upper culm parts in tropical
species. In this study a similar trend could not be observed, although it was expected as the
upper internodes are smaller and have in volume percentage more epidermis than the lower culm
parts. The unequal distribution of Si in the epidermis could partly explain this outcome. A
significant difference between the Si content in the nodes and that of the internodes was not
found but usually, the content was somewhat higher in the nodes. Only Liese (1998) mentioned
that the culm tissue itself contains hardly any silica and the nodes only small amounts. However,
it is not clear if the author means the whole node or only the nodal tissue without the epidermis.
The latter would explain the somewhat higher Si content of the nodes as observed here.

Schmitt et al. (2002) localized silica polymers as extracellular deposits within the wall of
epidermal cells of bamboo culms (Sasa palmata and Sinoarundinaria spp.). Young internodes
showed distinct silica deposition in epidermal wall regions underneath the cuticle. In the outer wall
regions silica granular deposits were found in increasing amounts during maturation but were
only present in inner wall regions in late development stages. The EDX-maps show that higher
concentrations can be found in the outer epidermal cell wall. The studied culms all correspond to
the late developmental stages as studied by Schmitt et al. (2002).

134



Silica

Gritsch et al. (2004a) showed in a study on Guadua angustifolia that there is a large amount on
silica cells concentrated on the outer epidermal layer but they also observed silica bodies
embedded amongst fibres in the periphery of the vascular bundles and in the intercellular spaces
between parenchyma cells in the ground tissue. According to their SEM-EDX observations the
concentration of silica bodies in the middle of the culm wall seemed to increase with maturity.
However, the silica content was not quantified to prove these observations. As no silica bodies
are present in the middle culm wall of the species studied here, their concentration cannot
increase. In Gigantochloa scortechinii, the silica content increased from 2.1 % in the 1-year old
culm to 2.6 % (2-year old) and 3 % in 3-year old culms (Yussof et al. 1994). Such an increasing
trend with age could not be determined in this study.

5. Conclusion

Haygreen & Bowyer (1987) state that silica content higher than 0.3 % can reduce the production
rate due to the continuous replacement of cutting tools. However, Thibaut et al. (2004) give much
lower values of 0.014 % silica by which there is no influence of Si on tool wears. In contrast to
Liese (1998) who mentions that in bamboo culms the silica content amounts up to 5% and more
depending on species and affects the cutting and pulping properties, this study concludes that the
Si content is less than 0.3 % (0.04 to 0.11 % Si for Phyllostachys spp. and 0.08 to 0.11 % Si for
the tropical species G. levis and D. asper). In terms of utilization, the Si should have no influence
on the production rate of the studied species. Furthermore, as it is only located in the epidermis
and hypodermis, removing the outer layers should solve the problem.
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CHAPTER VI
GENERAL CONCLUSIONS

In this final part conclusions on the studied age-related anatomical aspects of bamboos are
formulated and discussed in respect to the use of bamboo in the wood processing industry. The
chapter is finalized with perspectives for future research.

1. Comparison between temperate and tropical
bamboo internode anatomy

Although the overall anatomy of woody bamboos is similar to a typical monocotyledonous
atactostele, variation between different bamboos exists. Between the studied temperate and
tropical species the main difference exists in the vascular bundle types. Phyllostachys species
are characterized by type | vascular bundles while the species Gigantochloa levis and
Dendrocalamus asper are distinguished by type Ill and IV vascular bundles. Each vascular
bundle has early maturing fibres close to the vascular tissue and late maturing fibres. The late
maturing fibres of Phyllostachys species are defined as fibres adjacent to the parenchyma cells
and the late maturing fibres of G. levis and D. asper are defined as fibres of free fibre strands.
The boundary between early and late maturing fibres is more difficult to indicate in Phyllostachys
species than in G. levis and D. asper as they do not occur in a separate fibre cap.

The lignin distribution and structural variation was studied in detail for P. viridiglaucescens and G.
levis. Nevertheless, the lignin distribution and topochemical variation of these species can be
interpreted as representative for other species with type | and type lll and IV vascular bundles as
well.

The lignification starts at the outside of the culm wall. Lignin in the epidermis cell wall is deposited
early during cell development and does not increase with age. The lignification of the hypodermis
cell wall soon follows. In contrast to other cell types, the cell wall layers of the epidermis and
hypodermis have a higher amount of hydroxycinnamic acids in P. viridiglaucescens than in G.
levis. The lignification proceeds towards the inner part of the culm wall.

The fibres at the outer part of the culm wall, under the hypodermis are early maturing in both
species. Their cell wall layers have UV-spectra with a pronounced guaiacyl peak and a shoulder
at 310-312 nm indicating the presence of hydroxycinnamic acids, typical for grass lignin. The
shoulder at 310-312 nm is clearer in G. levis culms.
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The early maturing fibres close to the vascular tissue lignify earlier than the late maturing fibres
being fibres adjacent to the parenchyma cells in P. viridiglaucescens and fibres of free fibre
strands in G. levis. Higher content of hydroxycinnamic acids are observed in fibre wall layers of
G. levis culm. This higher content is more conspicuous in late maturing fibres than in early
maturing fibres.

The vessel wall has low lignin content in both bamboo species. The function of the early maturing
fibres adjacent to the vessels is probably to reduce the susceptibility of the vascular tissue to
collapse.

The lignin concentration in the cell corners and compound middle lamella is higher than in the
layers of the secondary wall. From the lignification in young P. viridiglaucescens samples it is
clear that lignification first takes place here and then proceeds into the secondary wall of the
fibres.

All fibres have a lamellar structure with decreasing lignin content toward the cell lumen. The small
layers have higher lignin content as is observed under the TEM but those could not be displayed
in the scanning profiles.

Parenchyma cells lignify later than fibre cells. They also show a lamellar structure with an
increasing lignin content from the lumen towards the middle lamella. Two types of parenchyma
cells are present in bamboos: thick-walled and thin-walled cells. Some thin-walled parenchyma
cells are filled with phenolic extractives. The cell corners of the thin-walled parenchyma cells are
only slightly lignified in contrast to the cell wall adjacent to a cell wall of a thick parenchyma cell.
In G. levis no difference in lignin content between parenchyma cells close to the lacuna and
parenchyma cells still located in the inner culm wall but further away from the lacuna was
observed. That was not expected as the parenchyma cells bordering the lacuna have a different
cell shape, are often sclerified and must give support at the inner side of the culm wall.

A higher content of hydroxycinnamic acid esters is found in G. levis than in P. viridiglaucescens.
The higher amount is mainly observed in the parenchyma wall layers at the inner part of the culm
wall and the fibre wall layers of late maturing fibres (fibres of free fibre strands). Higher
hydroxycinnamic acid esters are found in young (1- to 6-months old) compound middle lamella,
young (3-months old) parenchyma cells and in young late maturing fibres of P. viridiglaucescens
samples. In P. viridiglaucescens, in contrast to G. levis, the difference in hydroxycinnamic acid
content between early and late maturing fibres disappears in culms of 6- to 12-months old.
Hydroxycinnamic acid moieties cause the cross-linkage of cell wall polysaccharides and
participate with lignin to generate polysaccharide-lignin complexes, which lead to an increase in
wall rigidity (Ishii 1997; Morrison et al. 1998). They thus have an important effect on the wall
mechanical properties. It is hypothized that culms of P. viridiglaucescens have to harden faster
than culms of G. levis, the latter growing in a more stable climate.
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The tropical bamboo species G. levis has higher lignin content than the temperate species P.
viridiglaucescens.

No difference in lignin content between the different ages and between flowering and non-
flowering culms of G. levis could be observed. In P. viridiglaucescens the lignin content of the
fibre and parenchyma cell walls increases during the first year of growth but not during later
years. An increase mainly in guaiacyl units in samples up to 6-months old was demonstrated.
However, it is important to consider that the spectra represent only one of several layers of a cell
wall. Possibly lignification is completed within one cell wall layer while the fibre retains the ability
to form new layers and lignify them additionally.

The study of cell wall thickening was carried out on P. nigra, P. viridiglaucescens, G. levis and D.
asper. The observed trends on cell wall thickening can be considered representative for other
species as well. It has to be noted that in this study the variability between and within culms was
taken into account. In most previous studies (e.g. Liese & Weiner 1996; Gritsch & Murphy 2005),
the authors compared mean cell wall thicknesses.

Bamboo cell wall ultrastructure was studied in young P. viridiglaucescens samples and older P.
viridiglaucescens and G. levis samples. An explanation for the difficulties with impregnation and
sectioning is given. Due to the difference in structure between parenchyma cells and fibres folds
are present in the sections. In this study the problem of incomplete impregnation was solved by
dehydration of the samples with acetone and subsequent impregnation with the less viscous LR
white™ resin. Probably, acetone removes the waxes from the cell walls and improves
impregnation with LR white™ resin.

It is demonstrated that cell wall thickness does not significantly increase with age. Nevertheless,
during the first year of growth a rising trend was observed. The high variability within one culm
and between culms of the same age from one year on is partly masking a clear increased cell
wall thickening at higher age. It is shown that culms of 44-months old (which represents almost 4
growing seasons) and older have thicker cell walls, suggesting that some kind of late cell wall
maturing can take place within one culm. Gritsch et al. (2004b) demonstrated that mature 3-year
old culms show an increased number of cells with nine or more layers in comparison with a 1-
year old culm. So, thickening of the cell wall is due to deposition of additional cell wall layers as is
also demonstrated in the TEM photographs.
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The TEM photographs clearly show the high heterogeneity present as well in number as in
thickness of cell wall layers. This variability is present in cell wall layers of both temperate
bamboos with type | vascular bundles and tropical bamboos with type Il and IV vascular bundles.
This study is the first to reveal that the cell wall ultrastructure of early maturing fibres adjacent to
the conductive tissues is similar for both vascular bundle types. The late maturing fibres (i.e.
fibres adjacent to the parenchyma in type | vascular bundles and fibres of free fibre strands in
type lll an IV vascular bundles) have a different structure. The late maturing fibres of type |
vascular bundles have a thicker cell wall with more layers, similar to the early maturing fibres. In
contrast, the late maturing fibres of type Ill an IV vascular bundles have a thinner cell wall with
fewer cell wall layers.

The parenchyma cell wall is composed of different smaller layers with alternating lignin content.
The number and thickness of layers is variable.

In summary, the main difference between bamboo species with type | vascular bundles and
bamboo species with type Ill and IV vascular bundles is observed in the late maturing fibres. This
seems logical as the early maturing fibres of both types have the same function: to protect the
conductive tissue and the outer part of the culm wall as soon as possible. There is more
opportunity for differences between the late maturing fibres. They provide strength to the bamboo
culm in general, but less to the most important parts of the culm. The differences are reflected in
the lignification and ultrastructure.

The overall silica content and distribution of bamboo culms from different ages both from
temperate (P. viridiglaucescens and P. nigra) and tropical (G. levis and D. asper) species was
analysed. The EDX-maps showed an unequal distribution of Si in the epidermis of Phyllostachys
spp- and higher Si concentrations in the outer epidermal cell wall. G. levis and D. asper contain,
in contrast to the studied Phyllostachys spp., also Si in the hypodermis cells. Regardless of
diameter class, height and age, silica accounts for 0.04 to 0.11 % dry weight for Phyllostachys
spp. and 0.08 to 0.11 % dry weight for G. levis and D. asper which is much lower than values
mentioned in previous studies.
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2. Comparison between the anatomy of the internode
and the node

The node has always been neglected in the study of bamboo anatomy. This report is the first to
present results on topochemical lignin composition, lignin distribution and cell wall thickening in
bamboo nodes. Both lignification and cell wall thickening are studied for Phyllostachys species.
Because of the different structure of the node it can not be divided into an outer, middle and inner
part of the culm wall, contrary to the internode. The outer part of the nodal structure can be
compared to the outer part of the culm wall of the internode. The middle and inner part of the
culm wall of the internode are not present but instead a diaphragm is observed in the nodal
structure. This diaphragm originates from the central cells and provides the transversal
connection of the conductive tissue.

The lignification in the nodes proceeds as in the internodes: first at the outside of the culm
(epidermis, hypodermis and fibre wall layers at the outer part of the culm wall). In the diaphragm
the lignification of the fibre wall layers precedes that of the parenchyma wall layers.

The absorbance values at 280 nm of fibre wall layers at the outer part of the culm wall are
comparable in nodes and internodes. However, the spectra of fibre wall layers at the outer part of
the node have higher absorbance values at 310-312 nm, indicating higher content of
hydroxycinnamic acids. The absorbance values at 280 and 310 nm are higher in cell wall layers
of fibres and parenchyma cells of the diaphragm compared to absorbance values of early and
late maturing fibres at the middle and inner part of the internode of the same culm. This indicates
a higher lignin content in the node than in the internode.

The topochemical structure of the lignin is different in the diaphragm: more hydroxycinnamic
acids, leading to an increase in wall rigidity are present in fibre and parenchyma cell wall layers.

The lignin content is only significantly lower in the nodal cell walls of shoots. This is in agreement
with the conclusion that both lignification and cell wall thickening of fibre and parenchyma cell
walls in the internode mainly take place during the first year of growth. It has to be noticed that
further thickening and lignification probably can take place in cell walls of older bamboo culms by
further deposition and subsequently lignification of cell wall layers.
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In the diaphragm, thinner cell walls and cells with wider diameter are found compared to the cell
walls and cell diameters of the corresponding cells in the internodal structure. The combination of
higher diameters and thinner cell walls indicate that the density will be lower in the nodal
diaphragm. This makes them probably less stiff than internodal structures. The fibre and
parenchyma cell wall thickness in the node does not significantly increase with age.

It is hypothized that the combination of lower density and higher lignin content with more
hydroxycinnamic acids induces the nodal diaphragm to become a flexible but strong structure
which can resist to high bending stresses.

A significant difference between the Si content in the nodes and that of the internodes was not
found but usually the content was somewhat higher in the nodes. Only Liese (1998) mentioned
that the culm tissue itself contains hardly any silica and the nodes only small amounts. However,
it is not clear whether the author means the whole node or only the nodal tissue without the
epidermis. The latter would explain the somewhat higher Si content of the nodes as observed
here.

3. Effect of these results for industrial use

It can be concluded that both lignification and cell wall thickening of fibre and parenchyma walls
of internodes and nodes mainly take place during the first year of growth. Probably, further
thickening and lignification can take place in cell walls of older bamboo culms but it was
impossible to detect a significant increase for a population of culms. This can be attributed to the
high variability present within one culm and even within one fibre cap. It is possible that cells,
which still have a cell lumen further deposit and subsequently lignify cell wall layers. It is,
however, unlikely that this will have a major impact on the overall proportion of cell walls or lignin
content.

This conclusion has an impact on the use of bamboo for the panel industry: not only culms of 2-
to 3-years old or older can be used (Lee et al. 1994; Bath 2003), but also younger culms. As
harvesting of bamboo stands in Europe can take place covering the end of the growing season to
early spring, from October to March (Gielis 2001), culms of at least 6-months old for which we
demonstrated to be almost completely lignified are harvested. If, in addition, bamboo stands of
several years old are harvested, a mix of younger and older culms would be offered and applied
in the wood panel industry still reducing the possible effect of the younger culms. The conclusions
formulated here relate to and are in agreement with the conclusions of Van Acker et al. (2000)
that the impact factor of age on density and as a consequence on use is not present. These
findings are especially true for the studies Phyllostachys species grown in Europe. As the
sampled tropical culms came from a 4-years old plantation with non-mature bamboo plants, these
results cannot be extrapolated to tropical bamboo species grown in the wild or in mature
plantations. Furthermore, the findings relate to the use of bamboo species in the panel industry.
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So, it is possible that the quality of the raw material is adequate for the use in the panel industry
but is less favourable for the use as e.g. furniture. More studies on quality of accurately dated
bamboo raw material with focus on end products are needed to validate the findings for different
industrial uses.

Liese (1998) mentions that in bamboo culms the silica content amounts up to 5% and more
depending on species thus affecting the cutting and pulping properties making bamboo less
suitable for the wood processing industry. Haygreen & Bowyer (1987) state that silica content
higher than 0.3 % can reduce the production rate due to the continuous replacement of cutting
tools. However, Thibaut et al. (2004) give much lower values of 0.014 % silica by which there is
no influence of Si on tool wears. This study concludes that the Si content is less than 0.3 % (0.04
to 0.11 % Si for Phyllostachys spp. and 0.08 to 0.11 % Si for the tropical species G. levis and D.
asper). In terms of utilization, the Si should have little or no influence on the processing and tool
wear for the species studied, especially because the Si is not present as crystals. Furthermore,
as itis only located in the epidermis and hypodermis, removing the outer layers should also solve
the problem. However, much more work is required on the Si content in bamboo species to
understand the great differences between the Si content as measured in this study and in other
studies.

4. Future research

In P. viridiglaucescens a difference in topochemical lignin composition between very young
samples and older samples is present, with more hydroxycinnamic acids in young samples. From
the literature (He & Terashima 1991; Azuma et al. 1996), it is known that immature stems are
richer in ferulic acid. A shift from 310-320 nm toward shorter wavelengths related with these
higher amount of ferulic acid was not observed in the UV-spectra of P. viridiglaucescens culms.
Perhaps still younger more immature samples still surrounded by culm sheaths should be studied
to observe this shift. Young, immature samples of other species with type | vascular bundles as
well as species with other vascular bundle types should be studied to examine this difference in
hydroxycinnamic acid content between young and older bamboo culms.

Nodes of species with other vascular bundle types should also be investigated to have a more
complete picture on lignin distribution and composition in bamboo nodes.

More knowledge on lignin could not only be used to determine the optimal age for harvesting
bamboo as raw material for the industry, but also to establish the optimal age for harvesting
young edible shoots.

Furthermore, the actual lignin of bamboo internodes and nodes should be measured to obtain a
complete view on lignin content in relation to age. A reliable and fast technique is NIR (Near
Infrared Reflectance).
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Suzuki & Itoh (2001) studied the lignification process in Phyllostachys aurea using rapid-freeze
deep-etching electron microscopy to provide a 3D perspective on lignin deposition. They
characterized the primary wall by having narrow spacing between the cellulose microfibrils in
fibres. The secondary wall largely consisted of dense cellulose microfibrils also with narrow
spacing. They suppose that the deposition of lignin proceeds in the pores between the cellulose
microfibrils during maturation. The more porous carbohydrate matrix in the middle lamella and the
primary wall allows greater lignin deposition by space filling than the more densely packed
secondary cell wall. Whether the uneven distribution of lignin results entirely from differences in
porosity of the carbohydrate matrix requires further investigation. Furthermore, the study of
Suzuki & Itoh (2001) does not take into account the lamellar structure of the bamboo cell wall. As
the narrow layers have higher lignin content than the broad layers, a possible more porous
carbohydrate matrix in the narrow layers should be studied.

Donaldson (1991) studied the seasonal variations in lignification during one growth season in
radiata pine. The number of lignifying cells reached a maximum during the summer suggesting
that lignification is quite sensitive to environmental conditions such as temperature. Donaldson
(2001) also mention that light and nutrient deficiency can lead to reduced lignification. To what
extent environmental conditions have influence on the lignification and lignin content in bamboos
has not been studied. In chapter Il (lignification in bamboo internodes) it is stated that In P.
viridiglaucescens the difference between UV-spectra of early and late maturing fibres disappears
in culms of 6- to 12-months old whereas the difference in absorbance behaviour between early
and late maturing fibres is still present in culms of G. levis of 40-months old. A possible
explanation could be that culms of P. viridiglaucescens have to harden more quickly than culms
of G. levis, growing in a more stable climate. However, more temperate as well as tropical
species should be studied. The effect of environmental factors on the formation of cell wall layers
should also be studied.

Bamboo culms and rhizomes respond to wounds in order to protect the surrounding tissues
against damaging influences through the wound surfaces. The defence arsenal consists of a
number of cellular reactions such as closure of sieve tubes by callose, formation of slime and
tyloses, phenolics, suberised cell walls, wall lignification and also septa development in fibres.
There is also accumulation and mobilization of starch around the wound, development of
additional layers of the cell wall in parenchyma cells and fibres, and the formation of a suberin
layer in vascular parenchyma cells (Weiner & Liese 1997). The UV-micrographs demonstrated
that phenolic compounds are present in some short parenchyma cells. The technique could be
used to study the wounding response of bamboo more profoundly, not only the formation of
phenolic compounds but also the wall lignification during wounding.
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Fibres of free fibre strands have a different ultrastructure and lignin composition than fibres of
fibre caps adjacent to the vascular tissue. A study on the origin and early development of these
free fibre strands in bamboos with bundle types Ill and IV is necessary to explain the observed
differences between late maturing fibres of type | vascular bundles and late maturing fibres of
type Il and IV vascular bundles. Gritsch et al. (2004b) observed a degree of ‘order’ in the
distribution of multilayered fibres within phloem caps of Dendrocalamus asper with multilayered
cell walls common in fibres adjacent to the phloem elements and around the edge of the fibre
cap. A similar study on fibres of free fibre strands would be useful to follow the pattern of cell wall
layer deposition in these fibres.

Silica distribution is different in different species. Gritsch et al. (2004b) observed silica bodies
embedded amongst fibres in the periphery of the vascular bundles and in the intercellular spaces
between parenchyma cells in the ground tissue in Guadua angustifolia, indicating that much more
species should be studied to obtain insight in the Si distributional variation present in bamboo
culms. It has been shown that SEM-EDX is a powerful tool to study the silica distribution in
bamboo culms.

More work is required on the Si content in bamboo species to understand the great differences
between the values measured in this study and as known from the literature. It would be helpful to
cross-check the values by using other methods (e.g. ICP-MS (Inductively coupled plasma atomic
emission spectrometry)). Furthermore, environmental condition (e.g. soil) should be taken into
account when comparing the Si content.

Next to these suggestions for further fundamental research, investigations to culm quality e.g.
strength measurements should be carried out, not only in respect to bamboo as raw material for
the panel industry but also in respect to the use of bamboo as solid material. Further studies on
percentages of the different tissue is also of importance, not only in one part of the culm but in the
whole culm. Furthermore, the mechanical properties of bamboo nodes, with a probable lower
density in the diaphragm, should be evaluated.
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SUMMARY

AGE-RELATED ANATOMICAL ASPECTS OF SOME TEMPERATE
AND TROPICAL BAMBOO CULMS (POACEAE: BAMBUSOIDEAE)

Bamboo is a self-regenerating very fast growing plant with numerous traditional uses and many
new products. In the “Bamboo for Europe” project (FAIR-CT96-1747, 1997-2000) it was shown
that bamboo can be used as additional or alternative raw material for the wood processing
industry and especially for the panel industry in Europe (Van Acker et al. 2000). As in wood,
anatomical structures determine the quality of the product. Because fibre and parenchyma cells
retain their living protoplasts and connections with neighbouring cells, structural modifications are
possible during ageing of the culm (Liese & Weiner 1997; Murphy & Alvin 1997a; Liese 1998).
The anatomical changes are cell wall thickening by deposition of additional layers (Alvin &
Murphy 1988; Liese & Weiner 1996; Liese & Weiner 1997; Liese 1998) and progressive
lignification (Fujii 1985; Kawase et al. 1986; Yoshizawa et al. 1991; Murphy & Alvin 1997) in fibre
and parenchyma cells over several years. In contrast to these authors, Van Acker et al. (2000)
could not clearly show an impact pattern of age on density. As culm density is correlated with cell
wall thickness, no significant cell wall thickening should take place during later years. Similarly,
Itoh (1990) and Abd. Latif et al. (1996) found that lignification is completed at the end of one
growing season. These discussed structural modifications are very important for the strength of
the culm (Murphy & Alvin 1992). They have a major impact on the applicability of different
bamboo species and on the most suitable age for harvesting.

The present study concentrates upon these age-related changes in bamboo culms in
consideration of industrial use. Aspects of lignification and cell wall thickening for which
contradicting results are reported in the literature of internodal and nodal fibre and parenchyma
cells are investigated. Furthermore, silica distribution and content was studied because more
knowledge on the content and location of the silica cells could be useful for the application (Van
Acker et al. 2000; Hamdan & Abd. Latif 1992).
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A first objective was getting further insight into the deposition sequence and distribution of lignin
structural units in different anatomical regions of bamboo culms during ageing. This was studied
topochemically and semiquantitatively by means of UV-microspectrophotometry in Phyllostachys
viridiglaucescens (Carriere) A. et C. Riviére and Gigantochloa levis (Blanco) Merrill. The study
revealed that p - coumaric and ferulic acids are widely distributed in P. viridiglaucescens and that
their content is dependent on the anatomical location and the differentiation phase.
Hydroxycinnamic acids are even more widely distributed in G. levis. The early maturing fibres at
the outer part of the culm wall and adjacent to the vascular tissue reveal a maximum absorbance
at 280 nm (guaiacyl peak) whereas the late maturing fibres display a clearer shoulder at 310-320
nm (due to hydroxycinnamic acids). This is in contrast to P. viridiglaucescens where the late
maturing fibres display a clear shoulder at 310-320 nm in young culms and a maximum guaiacyl!
peak in older culms. The compound middle lamellae show higher absorbance values and are
richer in p-coumaric and ferulic acid esters in comparison to the layers of the secondary wall. The
lignin in the epidermis cell wall is deposited early in the development and does not increase with
age. This is in contrast with the fibres and the ground parenchyma cells where an increasing
trend in lignification during the first year is shown. However, no difference in lignin content
between 1-year old and older samples and between flowering and non-flowering culms could be
observed. The secondary fibre wall has a lamellar structure with an increasing lignin content from
the centre towards the compound middle lamella. The vessel walls have a low lignin content.

Second, this study tries to clarify the conflicting results from previous studies on cell wall
thickening in bamboo culms by applying light and transmission electron microscopy in
combination with image analysis. It focused on both fibre and parenchyma wall thickness of both
temperate (Phyllostachys spp.) and tropical (Gigantochloa levis and Dendrocalamus asper)
bamboo culms of different ages in the light of their suitability for the wood industry. The
observations indicated a great heterogeneity in cell wall thickness and cell wall layering pattern of
fibres within one culm. Nested design ANOVA's revealed a rising trend in wall thickness of late
maturing fibres and parenchyma cells during the first year but significant wall thickening during
later years could not be demonstrated. The high variability within one culm and between culms of
the same age from one year on is partly masking a clear increased cell wall thickening at higher
age. Nevertheless, the highest mean values for fibre wall thickness were recorded in culms of 44-
months old or older, suggesting that some kind of late cell wall maturing can take place within one
culm.
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Because the anatomical structure and mechanical properties of the culm node is poorly
documented in contrast to the culm internode, a third aim of this thesis was to investigate the
lignification and cell wall thickening in developing and mature bamboo nodes. It deals with the
deposition sequence and distribution of lignin structural units and cell wall thickening in the outer
part of the node and in the diaphragm of P. viridiglaucescens and P. nigra samples. The
lignification during ageing was studied topochemically by means of UV-microspectrophotometry.

A combination of light microscopy and image analysis was used to study the nodal structure and
to measure cell wall thickness. The lignification of the node starts at the outside of the culm wall.
The lignin content in the epidermis cell wall of young shoots is as high as in epidermis cell walls
of 9-years old culms. In shoots, the lignin content of hypodermis and fibre cell walls at the outer
part of the node are higher than the lignin content of fibre and parenchyma cells of the
diaphragm. In older nodes, the lignin content values of the outer part of the node and of the
diaphragm are more similar but the fibre and parenchyma cells of the diaphragm have higher
values of p-coumaric and ferulic acids. The fibre and parenchyma cell wall thickness does not
significantly increase during ageing. In the diaphragm, the cell walls are thinner and the cell
diameter is higher than in the outer part of the node. It is hypothesized that thinner cell walls in
combination with higher cell diameters and more hydroxycinnamic acids in the diaphragm play an
important role in the biomechanical function of the node to act as a spring-like joint to support the
culm by bending forces.

Finally, the silica distribution and content was studied in some both temperate (Phyllostachys
viridiglaucescens and Phyllostachys nigra) and tropical (Gigantochloa levis and Dendrocalamus
asper) bamboo species. Regardless of diameter class, height and age, silica accounts for 0.04 to
0.11 % dry weight for Phyllostachys spp. and 0.08 to 0.11 % dry weight for G. levis and D. asper
which is much lower than values mentioned in previous studies. G. levis and D. asper also
contain, in contrast to the studied Phyllostachys spp., Si in the hypodermis cells. The EDX-maps
showed an unequal distribution of Si in the epidermis of Phyllostachys spp. and higher Si
concentrations in the outer epidermal cell wall.
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LEEFTIJDSGERELATEERDE ANATOMISCHE ASPECTEN VAN
ENKELE GEMATIGDE EN TROPISCHE BAMBOEHALMEN
(POACEAE: BAMBUSOIDEAE)

Bamboes zijn zelf-regenererende zeer snel groeiende planten met talrijke traditionele gebruiken
en geschikt voor allerlei nieuwe producten. In het ‘Bamboo for Europe’ project (FAIR-CT96-1747,
1997-2000) werd aangetoond dat bamboe als bijkomende of alternatieve grondstof kan worden
gebruikt in de Europese houtverwerkende industrie en meer bepaald in de plaatindustrie (Van
Acker et al. 2000). Zoals in hout bepalen de anatomische structuren de kwaliteit van het
afgewerkte product. Omdat vezels en parenchymcellen hun levende protoplast en hun verbinding
met naburige cellen behouden, zijn structurele veranderingen tijdens het verouderingsproces van
de halm mogelijk (Liese & Weiner 1997; Murphy & Alvin 1997a; Liese 1998). Deze anatomische
veranderingen zijn celwandverdikking door afzetting van bijkomende lagen (Alvin & Murphy 1988;
Liese & Weiner 1996; Liese & Weiner 1997; Liese 1998) en progressieve lignificatie in vezels en
parenchymcellen (Fujii 1985; Kawase et al. 1986; Yoshizawa et al. 1991; Murphy & Alvin 1997).
In tegenstelling tot deze auteurs konden Van Acker et al. (2000) geen duidelijke impact van de
leeftijd op de densiteit aantonen. Aangezien densiteit gecorreleerd is met celwanddikte, zou er
geen significante celwandverdikking plaatsvinden tijdens latere jaren. In overeenstemming
hiermee, vonden Itoh (1990) en Abd. Latif et al. (1996) dat de lignificatie voltooid is in één
groeiseizoen. Deze bediscussieerde structurele veranderingen hebben een grote invloed op de
bruikbaarheid van de verschillende bamboesoorten (Murphy & Alvin 1992) en hun geschikte
oogstleeftijd in functie van de toepassing.

Deze studie concentreert zich op leeftijdsgerelateerde veranderingen in bamboehalmen met het
0og op gebruik ervan in de industrie. Aspecten van lignificatie en celwandverdikking, waarvoor
tegenstrijdige resultaten gepubliceerd werden in de literatuur, van zowel internodale als nodale
vezels en parenchymcellen werden onderzocht. Bovendien werd de verspreiding van en de
hoeveelheid silicium bestudeerd. Meer kennis van de hoeveelheid silicium en de locatie van de
silica cellen kan nuttig zijn voor het gebruik (Van Acker et al. 2000; Hamdan & Abd. Latif 1992).
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Een eerste doelstelling was beter inzicht krijgen in de afzettingsvolgorde en distributie van
lignine-eenheden tijdens het verouderen in verschillende anatomische zones van
bamboehalmen. Dit aspect werd topochemisch en semikwantitatief bestudeerd aan de hand van
UV-microspectrofotometrie in Phyllostachys viridiglaucescens (Carriére) A. et C. Riviére en
Gigantochloa levis (Blanco) Merrill. De studie toonde aan dat p-coumarine- en ferulazuur wijd
verspeid zijn in P. viridiglaucescens en dat de hoeveelheid afhankelijk is van de anatomische
locatie en differentiatiefase. Hydroxykaneelzuren zijn zelfs in hogere mate aanwezig in G. levis.
De vroegrijpende vezels aan de buitenzijde van de halmwand en grenzend aan het vasculair
weefsel tonen een maximum absorptie op 280 nm (guaiacyl piek) terwijl laatrijpende vezels een
duidelijker schouder vertonen op 310-320 nm. Dit is in contrast met P. viridiglaucescens waar de
laatrijpende vezels een duidelijke schouder hebben op 310-320 nm in jonge halmen en een
maximum guaiacyl piek in oudere halmen. De samengestelde middenlamel heeft hogere
absorptiewaarden en is rijker aan p-coumarine- en ferulazuuresters in vergeliking met de
secundaire celwandlagen. De lignine in de epidermiscelwand wordt reeds vroeg in de
ontwikkeling afgezet en de hoeveelheid stijgt niet met de leeftijd. In de vezels en het
grondparenchym daarentegen is een stijgende trend in lignificatie tijdens het eerste jaar
aangetoond. Een verschil in lignine-inhoud tussen één jaar oude halmen en halmen ouder dan 1
jaar en tussen bloeiende en niet-bloeiende halmen kon echter niet worden waargenomen. De
secundaire vezelwand heeft een lamellaire opbouw met een stijgende lignine-inhoud van het
centrum naar de samengestelde middenlamel. De vatwand heeft een lage lignine-inhoud.

Ten tweede probeerde deze studie de tegenstrijdige resultaten van vorige studies over
celwandverdikking van bamboehalmen te verhelderen aan de hand van licht- en transmissie-
electronenmicroscopie in combinatie met beeldanalyse. Zowel vezel- als parenchymwanddikte
van gematigde (Phyllostachys spp.) en tropische (Gigantochloa levis en Dendrocalamus asper)
bamboehalmen van verschillende leeftijd werden beschouwd met het oog op hun geschiktheid
voor de houtindustrie. Een grote heterogeniteit in celwanddikte en celwandgelaagdheid van
vezels in één halm werd waargenomen. ‘Nested design ANOVA's’ toonden een stijgende trend in
wanddikte van laatrijpende vezels en parenchymcellen tijdens het eerste jaar maar geen
significante verdikking gedurende latere jaren. De hoge variabiliteit in €én halm en tussen halmen
van eenzelfde leeftijd maakt een duidelijke stijgende celwandverdikking op hogere leeftijd moeilijk
vaststelbaar. Toch werden de hoogste waarden van vezelwanddikte gemeten in halmen van 44
maand oud of ouder wat suggereert dat een soort late rijping kan plaatsvinden in een halm.
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In vergelijking met het internodium zijn de anatomische structuur en mechanische eigenschappen
van de knoop slecht gedocumenteerd. Een derde doelstelling was daarom de lignificatie en
celwandverdikking in de knoop van ontwikkelende en rijpe bamboehalmen te onderzoeken. Dit
deel handelt over afzettingsvolgorde en distributie van lignine-eenheden en celwandverdikking in
het buitenste deel van de knoop en in het diafragma van P. viridiglaucescens en P. nigra stalen.

De lignificatie tijdens het verouderingsproces werd topochemisch onderzocht door gebruik te
maken van UV-microspectrofotometrie. Een combinatie van lichtmicroscopie en beeldanalyse
werd aangewend om de celwanddikte te meten. De lignificatie start aan de buitenzijde van de
halm. De lignine-inhoud in de epidermiscelwand van jonge scheuten is even hoog als in 9 jaar
oude halmen. In scheuten is de lignine-inhoud van de hypodermis en vezelcelwanden aan de
buitenzijde van de knoop hoger dan de lignine-inhoud in vezel- en parenchymcellen van het
diafragma. In oudere knopen is de lignine-inhoud van het buitenste deel van de knoop en het
diafragma meer gelijk maar de vezel- en parenchymcellen van het diafragma hebben meer p-
coumarine- en ferulazuuresters. De vezel- en parenchymcelwanddikte stijgt niet significant tijdens
het verouderen. In het diafragma zijn de celwanden dunner en hebben de cellen een hogere
celdiameter dan in het buitenste deel van de knoop. De hypothese wordt gesteld dat een
combinatie van hogere celdiameter, lagere celwanddikte en meer hydroxykaneelzuren in het
diafragma een belangrijke rol spelen in de biomechanische functie van de knoop om als op een
veer lijkende verbindingsknoop te fungeren bij buigkrachten.

Als laatste doelstelling werd de silicadistributie en -inhoud van enkele gematigde (Phyllostachys
spp.) en tropische (G. levis en D. asper) soorten bestudeerd. Onafhankelijk van diameterklasse,
hoogte en leeftijd telt de silica voor 0.04 tot 0.11 % drooggewicht bij Phyllostachys spp. en voor
0.08 to 0.11 % drooggewicht bij G. levis and D. asper wat veel lager is dan waarden zoals
vermeld in vorige studies. In tegenstelling tot de bestudeerde Phyllostachys spp. bevatten G.
levis and D. asper Si in de hypodermiscellen. De EDX-kaarten tonen een ongelijke verdeling van
Si in de epidermis van Phyllostachys spp. en hogere Si-concentraties in de buitenste epidermale
lagen aan.
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Adventitious root: Applied to roots arising from stem nodes to distinguish these from lateral
roots.

Anastomosis: Cross-connection of vessels and sieve tubes in the diaphragm, union of one
vascular bundle with another one.

Anticlinal division: Cell division at right angles, or perpendicular to the surface.

Apical meristem: Group of cells at the growing apices of shoot and root that divide to ultimately
produce the primary plant body and maintain itself as a region of cell division.

Arm cell: Specialized leaf cell, characteristic of Bambusoideae and typically ‘M’-shaped.

Atactostele: Stelar pattern characteristic of many monocotyledonous stems in which the vascular
bundles appear scattered within the ground tissue.

Auricle: Small extensions of the leaf. Found at the junction of the blade and the sheath in
grasses.

Bending strength: Characteristic of wood that enables it to sustain bending stresses without
changing shape or breaking.

Bract: A (sometimes leaf-like) structure whose axillary bud is developed (e.g. into an
inflorescence).

Bracteate: Bearing bracts.

Cell wall: The structurally compound enclosing a plant cell; in mature cells it consists
ontogenetically of different superimposed layers.

Cellulose: A polymer composed of hundreds of glucose molecules linked in a linear chain and
found in plant cell walls.

Chlorenchyma: Tissue composed of parenchyma cells containing chloroplasts.

Closed vascular bundle: Vascular bundle lacking a vascular cambium and thus lacking the
potential for secondary growth.

Companion cell: Parenchymatous cell positioned next to a sieve tube element as a sister cell
and arising by division of a sieve tube element mother cell.

Compound middle lamella: Compound layer between adjacent plant cells consisting of two
primary walls and an intercellular layer (middle lamella).

Cortex: Outer part of a culm or rhizome, between the epidermis and the vascular tissue;
composed predominantly of parenchyma.
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Compression strength: Characteristic of wood that enables it to sustain compression (occurs
when wood is pushed inward along the grain at the ends to shorten the wood or reduce its
volume) without changing shape or breaking.

Culm: The aerial axis emerging from buds of the subterranean system, divided into nodes and
internodes.

Culm neck: The constricted basal part, characteristic of most of the segmented vegetative axes
of a bamboo plant.

Culm sheath: A sheathing organ, which embraces the developing internode(s). The culm
sheaths protect the plant parts that need mechanical protection. As soon as the growth has
ended, they loose their function, dry and fall of or stay on the plant, depending on the species.

Cuticle: A thin, waxy layer of noncellular material that covers the outer surface of all parts of the
primary shoot; consists primarily of cutin and wax.

Cutin: Biopolymer composed of fatty and hydroxy fatty acids that is a major chemical component
of the cuticle.

Density: Expresses the weight (mass) of wood per cubic volume at a specific moisture content.

Diaphragm: A transversal tissue partiton of the culm at the node, containing intensive
interconnections of vessels and sieve tubes. A rigid structure that lends strength to the
segmented axis of bamboos.

Distich: Parts arranged alternatively in two rows one on each opposite side as in grass leaves
and the florets within the spikelet.

Epidermis: The outermost layer of a culm or rhizome, often with thickened and cutinised outer
wall; usually consisting of one cell layer.

Fibre: A long, narrow usually thick-walled and lignified cell, providing mechanical support for the
culm as fibre sheath or bundle.

Fibre bundle: See fibre sheath.
Fibre cap: See fibre sheath.

Fusoid cell: Large central cells in the leaves of Bambusoideae, on either side of the vascular
bundle and surrounded by ‘arm cells’, the latter typically ‘M’-shaped.

Fibre sheath: A group of fibres that forms a part of the vascular bundle (free or attached to the
protoxylem, metaxylem and phloem) (= fibre cap, fibre bundle, sclerenchyma sheath).

Glume: Bracts at the base of a spikelet (usually two) which do not themselves contain florets.

Gregarious flowering: Applied commonly to bamboos when many individuals of a species flower
collectively after a long interval. In bamboos often associated with monocarpic flowering.

Ground tissue: The tissue that forms the bamboo culm; consists of parenchyma cells.
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Hypodermis: The layer beneath the epidermis, comprising thick-walled sclerenchymatous cells
in bamboo culms.

Intercalary meristem: Meristematic tissue separated from the apical meristem in the primary
body by more or less mature tissues.

Intercellular space: Space between adjacent cells.

Internode: The part of a culm or rhizome that lies between two nodes.
Lacuna: Inner space of hollow culm (= pith cavity).

Lamella: A thin cell wall layer.

Lemma: The outer bract, which together with the palea, encloses the flower

Leptomorph: A term coined especially to designate a slender, elongate type of rhizome proper.
Most of the lateral buds are dormant. The majority of those that develop produce culms directly; a
few produce other rhizomes. In certain species the leptomorph rhizome can turn upward to form a
culm.

Lignification: Formation of a 3D polymer (lignin) within the cell wall that provides strength to the
culm.

Ligule: A thin, apical extension of a sheath proper, adaxial to the locus of insertion of the sheath
blade.

Lumen: A hollow space that exists in a single cell

Maturation: The process of lignification and cell wall thickening of the cell wall that strengthens
the culm.

Meristem: Group of cells capable of active cell division, thereby adding new cells to the plant
body and maintaining itself as a dividing cell system.

Microfibril: A threadlike component of the cell wall consisting of many parallel cellulose
molecules.

Middle lamella: Thin, usually pectic wall layer between adjacent cells. In woody tissues, pectin is
replaced by lignin.

Modulus of elasticity (MOE): Measure to characterize the stiffness (ability of a material to resist
bending) of wood.

Modulus of rupture (MOR): The maximum load that can be applied, in bending, to a material
before it fails.

Monocarpic flowering: Having but a single reproductive cycle within the lifetime of a plant;
characterizes bamboos that flower but once and die.

Monophyletic: A group of all organisms that share a single common ancestor.

Monopodial: In bamboos applied to describe an elongated type of rhizome which runs
indefinitely, producing culms from lateral buds, resulting in single-stemmed culms rhizome.
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Node: A segmentation of the culm or rhizome from where branches, leaves or roots originate. At
the nodes, a diaphragm divides the culm.

Oral setae: Conspicuous bristles on the sheath near its junction with the leaf. Cf. Auricle.

Pachymorph: A term coined especially to designate a short thick type of rhizome proper. Lateral
buds of a pachymorph rhizome procuce only rhizomes; a culm can arise directly only from the
apex of such an axis.

Parenchyma: More or less isodiametric cells with simple pits that store and distribute food
material.

Pectin: A polymer of galacturonic acid found in the middle lamella and the primary wall of plants.

Periclinal division: Cell division parallel to the organ surface; division of a cambial initial in the
tangential longitudinal plane.

Petiole: The leaf stalk.

Phloem: Conducting tissue for the downward transportation of assimilates, consists of sieve
tubes and companion cells.

Pith cavity: See lacuna.

Polyphyletic: An individual taxon to which different direct ancestors contributed. So, not sharing
a common direct ancestor.

Primary wall: The first-formed cell wall layer with a typical criss-cross orientation of microfibrils.
Pseudopetiole: A false petiole i.e. the narrowed basal part of a leaf lamina in some bamboos.
Pseudospikelet: A spikelet-like inflorescence unit, its glumes with functionally axillary buds.
Rhizome: The segmented subterranean stem system.

Root: In grasses, as in most monocots, the primary root system is very short lived, being
replaced by adventitious roots arising from shoot nodes.

Runkel ratio: The indicator for the pulping quality of fibres, expressed as two times the fibre wall
thickness divided by the fibre lumen diameter.

Sclereid: A cell with thick, lignified walls as a strengthening element.

Sclerenchyma: A tissue composed of sclerenchyma cells. These are cells with thick, lignified
secondary walls.
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Secondary wall: Layers laid down on top of the primary wall during the differentiation and further
ageing of a cell. The fact that the cell wall structure of bamboo fibres and parenchyma cells
comprises several layers in the secondary has significant implications for the nomenclature of the
secondary wall in bamboo. In this work the term ‘secondary wall’ will be used when all cell wall
layers (except the compound middle lamella) are indicated. When a specific layer is meant, the
terms Ly will be used (Figure 1-14, p. 24).

SEM-EDX: Scanning electron microscopy with energy dispersive x-ray analyser.

Shear strength: The maximum shear stress that can be sustained by a material before rupture.
Sheath scar: The mark left on the culm after abscission of the culm sheath.

Shoot: A young culm in any stage of its development short of maturity in height.

Shrinkage: The dimensional change in wood caused by a decrease in the moisture content
below the fibre saturation point.

Silica: Silicon dioxide, SiO»

Silica body: Silicon dioxide laid down in appreciable amounts in many grass leaves. The crystals
form characteristic shapes for groups of grasses.

Silica cell: A cell filled by a single silica body.
Silicon: The element Si.

Specific gravity: Ratio of the oven-dried wood to the weight of an equal volume of displaced
water at 4°C. Specific gravity increases as the moisture content decreases. As a result, specific
gravity must be computed for different moisture contents. Specific gravity is the density of a
substance divided by the density of water. Since water has a density of 1 gram/cm?, and since all
of the units cancel, specific gravity is the same number as density but without any units.

Spikelet: A basic structural component of every normal gramineous inflorescence, comprising a
segmented axis (rachilla) with usually 2 empty glumes, lemmas and paleas and flowers.

Stiffness: ability of a material to resist bending

Sympodial: In bamboos applied to describe a rhizome where the apex turns upward to produce a
culm and the rhizome is continued by a lateral branch.

Synflorescence: The whole flower aggregation, i.e. the system of the main florescence with its
co-florescences.

TEM: Transmission electron microscopy.

Tensile strength: Characteristic of wood that enables it to sustain tension (pulling or stretching
forces) without changing shape or breaking.

Transfer cell: Cell with irregular ingrowths from the cell wall, providing an extensive interface
between the wall and the protoplast to facilitate a more efficient movement of solutes.
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Trimerous: Arranged in threes. In grasses the floral parts show modifications of this, being more
strongly trimerous in bamboos, less elsewhere.

Vascular bundle: Consists in bamboo of two metaxylem vessels, protoxylem and phloem,
surrounded by fibre sheaths and in sympodial taxa accompanied by fibre bundles.

Vessel: An axial series of cells (vessel element) arranged in axial direction for water conduction.

Xylem: The water-conducting tissue in plants, serving also as supporting tissue, characterized by
the presence of tracheary elements.

References: McClure 1966; Chapman 1997; Liese 1998; Dickinson 2000
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Code Species A [Inemode ruarber [lnemode Erngl Iniemode damater | Iniemode wall Remarks
i manihs] fn mm) fn mm] thickness
n mm)

ELLOG1 P niga 1 152 25? ::; 2 Culm length: 4 m 20
BL3 £ g 1 152 gi’: 11:5 ;5 Culm length: 4 m 53
ELC40 P nigia 3 182 ;E_IE :IIS ;5 Culm green
BL-341 F. iigig 3 152 ;i 21155 33'5 Culm green
BLO67 P niga 5} 152 ?i ! 195 g Culm green with black spots
BLISY  Foga 5 182 22 12?45 ;
BLIEN  Aria i 152 g% gg 23.5

E il 3 4
Pk £ g ) 12 2 27 S
Bl £ niga 3 182 2; 1? 15 12.5
BLTS| F ae T2 152 % 11355 23.5
BLME Poie 12 182 123?215 1285 ?g
BLO7G F. nigia 20 152 i:g 23 ; Culm length: 29m

Tok Spenes A oo number [emode Bgh Femods damees | Temode vl Remaks
i manthe) & mm] n mm] thickness

5 190 33 h;;“]
2 £ nigm 0 12 770 77 3
RN e
BLO7S £ g 44 152 ii 3; ; Culm length: £ 75 m
I e i
BLAO7T F. nigia 56 182 §$ :; ; Culm letgh: + 7.6 m
BLLES £ nig= =6 182 i% 33;85 445
o e | w [ = e
] e | w = n
N e ——
I i ——
BLO74 P nigia a2 1E'\2 ;$ gg ;5 Culm lergth: 7.3 m
| e | o o = s
BLOS| 5 ot Bh 182 gi g: ;5

189



Code Species Ao [Inemode amber [inemode Enod] Inemode dameser | Ineemode wall Remarks
i manths] n mm) n mm) thickness
fn mm)
BLAIR2| A, vindiiiaucascans 1 5 ;ﬁ? ::; 3 cn Imgh::l:;uzg;nbégm I
BLATES| F. wind'irisece scan s 1 182 g?i 1-? 25 ;
BLAI| P, windipisurcascans 1 152 §$ :: : g 24_.5
BLAISF | A windiisucascans 1 182 ;i 32 ;g
BLAH2| A vindifiaucesans 3 152 3% 1?325 g:
BLIM3| A vindrizvcascans 3 152 3;:: 1?335 545
BLMY| A vindirisucascans 3 182 :: i :: g i
BLES| A, virdiriavcamans B 182 ?; 180 22_5
BLED| A, vindiiaucascans E 152 3:2 193 325
BELLE1| A vindirizucassans E 152 3;: ::Z ;5
BL-100| A, windirisucascans 8 182 ;% > ; Culm length: 2 11 m
BL-0| . wiid'risece soan s g 152 gi g; ;
BL-140| A virdirisrcascans 9 152 3; 2? 35.5
Code Species Ane [inemode rwaber [inemode Enogl Inemode diameses | Tniemode wall Remarks
I manths) & mm) " mm) thickness
5 23 215 h;;“]
EL-141| A wirdgimrcasans 9 = = 15 1
BL-142| P, vindgrizreomons 9 152 ggi 1?‘:}15 ;5
BL-147| P, vindgrizrsamons 12 152 ggﬂ 33 i
BL-148| A virdginrcassans 12 182 ;S 3? i
BL-149| A virdginrcassans 12 152 3;3 :: : 335
EL9| A virdgimrcasens 20 152 ;ﬁ 459 15 855
EL-1M| A virdgimrcasans 20 182 ;i 3?;55 ;g
BLEG| A vindGiarcasmens 32 182 ;i gg :5
BLE| P, vindgizreomons 32 152 gg g? 485
BELIH| P vindgizrcomons 44 152 ::g :g 545
BL-10G| A virdgisrcassans i 152 3$ g; 855
BLIW0| A windgiarcasmans =5 152 gg gg i: Culm lenghc 101 m
BLO2| A windglarcamans i 182 gi :3 gg Culm lehigh: 296 m
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=E Species A ook arher [riemods gl iemods dames | iemode vwall Remaks
i manths) I mm] n mm] thickness
fn mm)
BL-10B| A wiid'giguwce sean s £a 182 i; 33;5 555
BL-10G| A wiidiiaucescans 5 182 gg ::: ;
EBLE7| P vindiiarsosans a0 152 2% 441 1'5 ig
EL-101| A viidigiaucescans 2l 152 :g il o5
S DO B 152 g :g 55-5 Culm length: £ 103 m
BLLEG| P windgisucascans 52 152 ;;g 4525 5?5
BLOISG| A, windiiawsessans L 152 gg ig 65'5
EL-107| P widgisucascans L. 152 :; 3; E:S E
BLIZT| P vindgiscascans 121 182 gi ::2 32.5
BELO3| A windiiawcescans | 12 [7) 152 19?53 ::g g:
ELLOXE| AP windiavcascans =12 152 ?£ :: ; g
=k Spemes A raomods raarber [raemods Engh raemods damess | nemode vl Remarks
n manths) nmm] n mm) thickness
I mm]
BL-10B| A viris'Enisusosoon s 58 .IE; ié 33;‘5 E5-5
BL-10G| A, windiiizvcasans 88 152 :i ::: ;
BLOT| £ wiidisismesasns — 152 g% 441 15 jg
BL-101| A windiisvcasens 80 1Ei2 gg il 23
S P 182 jg g; 55'5 Culm length: £ 103 m
BL93| P windiizusamans % 1E; g;g 44325 5?5
BLOSS| A windipiswcasens Ll 152 :Q :g 855
BL-107| A, vindiizvcasans 104 1E; §£ 3; 55 S
BELOZT| A windipiswcasens 1209 182 ;i ::2 3é5
BLOF| A vindgiavcasans| 12 (7] 182 1;?53 ::g 32
ELLOXE| A vwindiisucassens =12 _IE; ?ﬁ :: ; 3
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Tok |  Spedes A [iiemods rarbes [lsmods g Inemods dameier | Tismods vl Remarte

" manihe] " mm) I mm] thickness

n mm]
BLAES P vingis g 152 3£ ?55?5 ;5 Culm lemgth: = 15 m
BLAGS P windis 20 182 gi il ;
BLOEG P vindis 32 152 ig ;Z ;5
BLOR| A v 44 152 ii gg 55'5 Culm length: £ 145 m
BLOED £ vindts 56 152 3§ ;E 55'5
BLAI72 F. viridts 65 182 3;3 EL gg
BLOES £ virds 80 152 gﬁ gg 85'5
BLAEY P viridiE 32 182 iﬁ ;g ;
BLOG4 P viidis 104 152 gi 3? Sb;s
BLOTI| A v 128 l il 2 =
B 35 B2 B

BLATF P virdiE 152 1 T = 5
Tok | Spedes s [ rrber [Faemods B Tismods diamessr | Tismods vl Pemats

i manths) & mm] n mm] thickness

i mm)

R e e ———
BL18| O amer 8 152 g g? ES s o
SIS oeper | 8 = ™ R B T e
5L saper | O % = 32 T St 12 m e
R e it
BLIB| £ aser 21 152 ;g ;g g 183 e B e iz cou
B Oaser | 21 s = 5 75| kel
5 oaper | N " = T Sinleshari n i
BL131| O amer 23 152 iz 32425 151 Cm langth: & 420 beliizer: cov
B o | 2 - % ] e e
5L oaper | % = = o B
BLAZ O awer “ 152 3$ 1%115 3?.‘5 R Wi
B oamer | 42 B = ?E SN P i
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i manhs] i mam) i mm) thickness
n mm)
. B 43 -] 252 19 6.5 Culm lergeh: £ 3,95 my fertilizer: cow
= 1= 115 3 dung: no flovsering
] =1 356 25 3 Culm lerwgth: £ 5,12 my bertilizer:
BL-136 0. aear 45 12 =35 7 F] chicken marure, no flovering
) g 330 57 g Culm length: £ 5.585 m; no fedilizer;
EL-110 &, BiiE g 1 =40 a5 5§ flowwering
] g 40 56 9 Culm length: + 893 m; no fetilizer;
EL-114 &, BeiE g 13 50 a7 7 o floswering
BL17 o b . g 275 40 9 Culm length: £ 6.93 m; fertilizer: cow
12 453 34 4 dung: Hawering
] B 2% 4 8.5 Culm length: £ 771 m; fetilizer: oo
BL-120 &, Bwis g 13 =67 S 3 dung; ho flovsering
] 5] 273 33 a Culm lerigth: £ 517 m; fertilizer: cow
EL-116 G. B 19 12 =44 65 1 dung flowering
] g 547 40 g Culm length:  5.85 m; no ferilizer:
EL-113 G. B 21 12 T EX] 15 1o Flowering
] g 2673 255 7 Culm length: £ 4.5 m; fertilizer: cow
EL-122 G, B 21 17 o) 165 4 dung: no flovsering
] 3 285 50 g Culm length: 8.2 m; no fertilizer;
EL-109 &, BiiE 22 1 =0 a5 3 flowvering
] g 272 265 7 Culm length: £ 4,57 m; fertilizer: cow
BL-114 &. B 29 12 =0 I3 ] duna flowsering
BLA1S B 21 & 310 4 9 Culm length: £ 7.42 m; no fetilizar;
12 419 335 45 o Howwerivg
Code Speces Ap Tnemnde nuamber [ineemode: Bnol] Tnemode diameter | Tniemode wall Remarks
n maniths] " mm) n mm) thickness
fn mm)
B8 o oo - B 3:5 47 9 Culm length: + 7.35 m: no fetilizer;
1= A 35 Eg Hiwerirg
_ B 3% 26 5 Culm lergeh: £ 4.11 m: fertilizer: oow
BL-125 . By 32 1z 7 I ] duna: no Flovsering
] [ 290 215 5.5 Culm lengeh: + 388 m; bertilizer: oo
EL-115 G, By 39 12 = 135 3 dung flowering
] [3 245 19 65 Culm lengeh: 2 356 m; fartilizar: cow
BL-11 . B i 1z 0 I a5 duna: o flowering
] 5 253 28 7 Culm lengeh: £ 5 m; mo fertilizer:
EL-111 Feay -1y 40 = P a9 35 flwwering
BL12 5 Bris 40 B 268 26 B5 Culm length: £ 3.80 m: ho fetilizer:
12 5 195 4 i Flowsering
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APPENDIX 2

DATA UV-SPECTRA AND CELL WALL MEASUREMENTS







Folder Cell wall measurements: matrix with data of the cell wall measurements (Chapter Ill, p. 77)
wall xyin: fibre wall thickness at position xylem inner side
diam xyin: fibre diameter at position xylem inner side
wall xyout: fibre wall thickness at position xylem outer side
diam xyout: fibre diameter at position xylem outer side
wall phlin; fibre wall thickness at position phloem inner side
diam phlin: fibre diameter at position phloem inner side
wall phlout: fibre wall thickness at position phloem outer side

diam phlout: fibre diameter at position phloem outer side

Folder Nodes: data UV-spectra of the nodes (Chapter IV, p. 101)
first row = age of the sample; first column: wavelength
CW: layer of the secondary wall
CML: compound middle lamella

c.S.: culm sheath

Folder G. levis: data UV-spectra of G. levis samples (Chapter Il, p. 56)
first row = age of the sample; first column: wavelength
CW: layer of the secondary wall

CML: compound middle lamella

Folder P. viridiglaucescens: data UV-spectra of P. viridiglaucescens samples (Chapter II, p. 44)
first row = age of the sample; first column: wavelength
CW: layer of the secondary wall

CML: compound middle lamella
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BAMBOO AS RAW MATERIAL FOR THE WOOD
PROCESSING INDUSTRY IN EUROPE

SIMILARITIES BETWEEN BAMBOO AND WOOD AS LIGNOCELLULOSIC

MATERIALS®

Summary

Coordinated by the industry a group of research institutes and universities have been working
within an EU funded research project on the evaluation of the usability of bamboo as an
alternative raw material for the wood processing industry in Europe. Some 10 different bamboo
species, mainly of the genus Phyllostachys were selected and valued for their production and
adaptation parameters in plantations representative for western and southern Europe. From
additional research work on harvesting techniques and corresponding crop management systems
it seemed that bamboo has potential as an alternative crop for the agricultural sector in Europe.

Contrary to agricultural crops, bamboo belongs to the forest ecosystem. As such bamboo has a
role in forestry mainly of the tropical region. Introducing bamboo in e.g. Europe for purposes other
than ornamental garden uses should emphasize on the forest product utilization of this material
source. The overall objective of the collaborative European research program in line with this
strategy was the production of industrial bamboo products using existing wood transformation
technology.

The Phyllostachys bamboo species studied proved to be very similar and showed densities close
to many wood species. The two main anatomical differences with importance for processing
alongside wood are the absence of a radial anatomical component like the rays in wood and the
presence of vascular bundles in a ground parenchyma tissue contrary to the xylem origin of
wood. Fibre length of bamboo is shorter than in softwood but longer than observed for hardwood
species. In summary it can be concluded that bamboo plantations could provide in suitable
lignocellulosic resource supply for the wood industry.

6 Adapted from:

Joris Van Acker, Bieke Lybeer , Marc Stevens, Johan Gielis , Joris De Vos. Bamboo as raw
material for the wood processing industry in Europe. Similarities between bamboo and wood as
lignocellulosic materials.
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1. Introduction

Bamboo is endemic in all parts of the world except in Europe where it did not survive the last
glacial period. The northernmost natural distribution limit is the North of China, corresponding to
the latitude of southern Europe. Since the first introduction of bamboo in Europe (1827), about
400 different genotypes have been imported. The actual annual production of bamboo plants in
Europe is estimated in millions units that are nearly exclusively used for ornamental purposes.
Europe is technologically more advanced in micro-propagation and the selection of superior
genotypes of bamboo than in industrial validation of this raw material. The bamboo plant
producers envisage however in the long term the industrial transformation of bamboo.

The present paper intends to summarize the current literature on bamboo characteristics relevant
to its utilization as an alternative raw material to wood in industrial processing and provides in
some relevant extra experimental data.

2. Characterisation of bamboo as a material source

2.1. Bamboo culm structure and anatomy

The structure of a bamboo culm is fairly different to that of a wooden trunk. Liese (1998a)
compiled the state of the art on bamboo anatomy showing links to utilization and his publication
was used as a basis for the description of relevant parameters in this paper. Earlier publications
of Liese (1985, 1987) already emphasized the importance of research on bamboo and the
diversity of its applications.

Bamboo culms develop their tissue within only a few months (Liese 1998b). This is faster than
any other plant. The culm is characterized by nodes. These provide the transversal
interconnection in the culm by their solid cross wall, the diaphragm. In the internodes the cells are
strongly oriented axially. In the nodes a more complex structure is found (Ding & Liese 1997;
André 1998). The internodes have a culm wall surrounding a large cavity, the lacune. Contrary to
wood no radial cell elements exist which greatly hinders lateral movements of nutrients or liquids.
Wood consists basically of xylem, being the water transport system that gradually looses its
function with age. Bamboo on the other hand remains functional throughout the life span of a
culm. The life expectancy of a bamboo culm is about 15 years.

A transversal section of a culm internode shows the parenchymatous ground tissue in which
collateral vascular bundles are embedded. The vascular bundles are clearly contrasted
macroscopically by their dark sclerenchymatous cells. The culm of e.g. Phyllostachys edulis
consists of about 54 % parenchyma and 38 % fibres. The remaining part is the conducting
system, which includes xylem (vessels) and phloem (sieve tubes and companion cells),
accounting for about 8 % of the total culm, or much less in comparison with wood species. The
lumen area of softwood tracheids is 60-70 % and of hardwood vessels 15-30 % (Liese 1994).
Access to the vessels gets reduced as soon as the culm is harvested and seasoned. As a wound
reaction, slime and tyloses develop from the neighboring parenchyma cells, and move into the
vessels blocking the lumina.
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The younger stage of a culm is marked by certain external characteristics which can be used as
indicators to avoid premature harvesting: presence of culm sheaths, bud break, branching
pattern, number of leaf scars, colour change of the stem (fresh green becomes yellow-grey) and
a hairy culm (glabrous at maturity). The flowering of culms is mostly followed by their widespread
death. Dying culms become brittle and often bend down and break. This phenomenon is not
associated with fungal degradation. However, the process of chemical/structural changes is still
inadequately understood. A complete exhaustion of starch precedes the flowering of culms.
Bamboo, in general, is vulnerable to attack by fungi and insects as it has low resistance to such
organisms. The culm tissue does not contain phytotoxic substances. Susceptibility of bamboo to
fungal decay has only recently been investigated in more detail (Liese 1985; Murphy et al. 1991,
1997b; Kleist et al. 2002) showing that mature bamboo is comparable to many wood species with
low to intermediate durability. Bamboo culms as well as bamboo products are very vulnerable to
powder post beetles, e.g. Lyctus spp., related to the presence of starch in the parenchyma.

The species of the genus Phyllostachys have monopodial rhizomes and as such have vascular
bundles of Type | (Grosser & Liese 1971). A vascular bundle Type | consists of only one part: the
central vascular bundle, surrounded by a supporting tissue of four sclerenchyma sheaths (Fig.1).
They are symmetrically located and nearly of the same size. This type is also called "open-type".
Liese & Grosser (2000) call this type subtype la. The tissue arrangement does not change
longitudinally within an internode as the bundles are strictly axially oriented. The elongation of a
culm results from the expansion of individual internodes, already present in the bud.
Differentiation starts at the upper part of an internode with the elongation of different cell types.

Figure 1. A vascular bundle Type | of P. viridis consisting of central xylem (Px and Mx)
and phloem (Ph) surrounded by a supporting tissue of four sclerenchyma sheaths (fibre
caps)
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The protoxylem consists of one or more tracheal elements located between two large metaxylem
vessels towards the pith cavity. Often, the protoxylem of monopodial species shows tyloses in the
cells, developed from the surrounding parenchyma. The two large vessels of the metaxylem are
separated by parenchyma. One or two layers of lignified parenchyma cells, which are generally
smaller than the ground parenchyma cells, surround them. Individual vessel members have a
length of about 200-600 um, with considerable variation both across and along the culm. The
secondary wall of a metaxylem vessel shows zonation into two distinct parts: S1 (about 0.2 um
broad, fibrils arranged in flat spiral towards the cell axis at an angle of 80-90°) and S, (about 2.2
pm, microfibril orientation with an angle of 30°-90°). The phloem or metaphloem consists of
large, thin-walled sieve tubes and smaller companion cells originating from the same mother
cells.

As the bamboo culm tapers from base to tip, the walls of the internodes become smaller with
increasing height, e.g. for Phyllostachys makinoi 11 mm at internode 2 and 2 mm at internode 34
(Grosser & Liese 1974). The total number of vascular bundles decreases with height while their
density increases, e.g. for Phyllostachys makinoi at respectively internodes 2 and 34 increasing
from 200 up to 700 per cm? Therefore, in the vertical direction, the narrowing of the culm wall
results in a reduction of the inner portion that has more parenchyma and less vascular bundles.
Thus the upper part of a culm contains as much or more fibres per unit area, whereas the basal
part has a higher parenchyma content. The size of vascular bundles decreases from the base to
the top of the culm. As their radial diameter reduces much more than the tangential diameter, the
shape of vascular bundles changes from a radial elongated form to a roundish or oval form near
the top. Nearer the periphery, the bundles are smaller and numerous with only a few parenchyma
cells in between (Fig. 2). The three xylem fibre sheaths are often amalgamated into an ellipsoid,
making the xylem sheath larger than the phloem sheath. However the variation of vascular
bundles along culm length (height) is more significant than the radial one. Vessels towards the
outside of the culm are smaller than in the middle and inner parts. Along the culm height, they are
larger in the middle than at the base and top.
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Figure 2. Overview of a transversal
section of internode 2 of a P. vivax culm.
The vascular bundles differ in radial
direction and have their typical form in the
middle of the culm wall (2). Close to the
lacune or center part (3) the vascular
bundles are surrounded by smaller
sclerenhyma sheats and mainly ground
parenchyma while near the periphery (1)
the bundles are smaller and numerous
with only a few parenchyma cells in
between.

2.2. Maturation of parenchyma and fibres as main anatomical
tissues

The ground tissue surrounding the vascular bundles is made up of parenchyma. Parenchyma
cells are small near the outer culm wall and become larger, especially in length, towards the inner
part, and get smaller again near the pith cavity. They are of two types: vertically elongated cells
and short cube-like ones interspersed among the former. He et al. (2002) showed a difference in
lignification and in hemicellulose distribution between the two parenchyma cell types, concluding
that the short cells remain in the stage before the onset of cell elongation. The elongated cells
have a length of 20-80 um and a width of 25-40 um, becoming shorter near the nodes. The
secondary wall of the elongated cells has a polylamellate structure consisting of up to 20 lamellae
with alternate orientation. Recently Murphy et al. (1997a) and Crow & Murphy (2000) obtained
evidence of a helicoidal microfibrillar orientation in the parenchyma cell walls. The direction of the
microfibrils in the broad lamellae (thickness 0.2 um) follows slightly a bow-like pattern and
merges into the narrow lamellae (0.04 um). This fibrillar orientation gives the impression of a
herringbone pattern. During the maturation of a culm, the number of wall lamellae increases.
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The short cells are characterized by denser cytoplasm and thin walls without lignification, even in
older culms. As parenchyma cells are the storage tissue for the plant, abundant starch granules
can fill up the cells. Starch is abundant in elongated parenchyma of the ground tissue, vascular
parenchyma sheaths, parenchyma cells around the nodes and in the diaphragm. Fibres may also
contain starch. Starch granules are not present in the shorter intersepted parenchyma and the
cortex parenchyma. Parenchyma cells remain active as long as the individual culm remains alive.
The starch content of a culm is of considerable importance in terms of utilization. Starch accounts
for the susceptibility of harvested culms to beetle attack and accelerates fungal deterioration. The
age of the culm influences the starch content. Alvin & Murphy (1988) investigated culms up to
three years and found virtually no starch during the first year of growth but many in older culms.
Abd. Latif et al. (1991) found significant correlation of starch content with age of 1 to 3 year old
culms while sugars were higher in the culm top. Relationship with actual local impact of
photosynthesis was supposed. Research on Phyllostachys viridiglaucescens (Weiner & Liese
1997) has shown the lack of starch granules in young, growing culms. Liese & Abd. Latif (2000)
showed that starch content differs significantly between species, site, age, culm height and
harvesting month.

In addition to its importance for the storage and strength of a culm, the parenchyma has influence
also on moisture content. The higher water content of a culm at the base compared to the top has
been attributed to the different amount of parenchyma present (Liese & Grover 1961). The water-
holding capacity of a culm reveals a close correlation between the parenchyma contents at the
bottom and top parts. The moisture content of green bamboo also varies between innermost
layers (155 %) and peripheral layers (70 %) resulting in a mean value of 100 % (Kumar &
Dobriyal 1990). The bamboo culm moisture content varies also widely throughout the year, with a
maximum during the rainy season and a minimum during dry period. Seasoning is very slow
because of the impermeable ‘skin’ and hence the moisture content at the time of harvest can be
of importance. The high amount of parenchyma in bamboo also reflects in considerable amounts
of dust when processed.

Fibres constitute about 40 % of sclerenchymatous tissue volume of the culm. They occur as fibre
caps (sheaths) surrounding the conducting elements. The genus Phyllostachys has only
sclerenchyma sheaths as supporting tissue belonging to the vascular bundles of Type I. These
vascular bundles have an outer (phloem side) and inner (protoxylem side) fibre sheath as well as
two lateral sheaths. The former two decrease in size across the culm from the inner to the outer
part, where they tend to fuse together to form a massive supporting tissue. Axially their size
decreases from the bottom to the top. The lateral caps do not show much size difference. The
caps in some cases like Phyllostachys edulis join together embracing the conducting cells.

Fibres are characterized by their slender form. Their length influences the strength of the culm
and its pulping properties. Different sources indicate that Phyllostachys nigra has the shortest
fibre length of only 1.04 mm (Liese & Grosser 1972). While the fibre length for different
Phyllostachys species ranges from 1 to over 2 mm the corresponding width varies from 10 to 15
pm. Fibres of bamboo are longer than those of hardwood (approximately 1 mm), but shorter than
softwood fibres (3-4 mm). Often, shorter and smaller fibres occur at the peripheral layer, their
length increasing to a maximum in the outer third of the culm wall and decreasing again towards
the inner wall. The length differences across the culm wall amount to about 20-50 %.
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Longitudinal fibre length variations of more than 100 % exist within one internode. The shortest
fibres are always located near the nodes and the longest are to be found in the middle of the
internode. The mean fibre length of an internode is correlated with the internode length. Both
longer fibres and the longest internodes are found in the middle region of a culm. The fibres are
generally thicker in the bottom portion than at the top. The fibre length-to-width ratio varies across
the culm wall from 70:1 to 150:1. The fibre length is strongly correlated with the fibre diameter
(10-40 um), the cell wall thickness and the internode diameter. The Runkel ratio or the ratio
between 2x cell wall thickness (4-10 um) and the lumen diameter (2-20 um) ranges from 1 to 4.
These values are influenced by fibre maturation, which leads to an increase in wall thickness. The
smaller fibre wall thickness of immature culms gives a lower Runkel ratio that makes them
unsuitable for pulping. Abd. Latif & Liese (2001) could correlate vascular bundle distribution and
size, metaxylem diameter, percentages of metaxylem vessel and fibre sheath, fibre length and
lumen diameter, fibre wall thickness and Runkel ratio with age and culm height, while nearly all
properties differed insignificantly only with site.

Numerous layers constitute the fibre cell wall. Results on the number of lamellae in the fibre cell
wall have been reported up to a maximum of 18. Gritsch et al. (2004) concluded that the
multilayered structure of fibre cell walls was formed mainly during the first year of growth by the
deposition of new wall layers of variable thickness, resulting in a high degree of heterogeneity in
the layering patterns amongst individual fibres. The layering was not found to be specifically
related to the thickness of the cell wall. The number is highest in the fibres either adjacent to
vascular bundle elements or at the periphery of fibre bundles close to the ground tissue. In
transverse sections, the fibre wall is characterized by a regular alternation of broad and narrow
lamellae. Near to the middle lamella, the first lamella of the secondary wall shows fibrils oriented
at an angle of 50° to the cell axis. This can be considered as a transition lamella, but it is not a
constant feature within all fibre cells. In the broad lamellae the microfibrils are oriented at an
angle of 2-5°, which increases up to 10-20° towards the inner part of the wall. The narrow
lamellae show mostly fibrils oriented horizontally at an angle of 85°-90°, which remains constant
over the whole width of the wall. The innermost lamellae near the lumen are thinner than the
more peripheral ones. The broad layers with axial orientation and occasionally more transversally
oriented thin layers were also found through observation of the oriented growth of microhyphae of
soft rot fungi (Murphy et al. 1997a). The lamella at the lumen boundary has no resemblance in
fibrillar texture to the tertiary wall typical of wood fibres.

Generally, fibres at the outer culm wall have a thicker wall that is more lamellated than the inner
fibres. Cell wall thickening of bundle sheath fibres starts from the inner vascular side and
proceeds to the outer parenchyma side. Fibre maturation can be a process prolonged over many
growing seasons. Cell wall development from a young shoot to a mature culm and during further
ageing was analyzed only recently (Murphy & Alvin 1992, 1997a, 1997b; Liese & Weiner 1996;
Gritsch et al. 2004; Lybeer & Koch 2005). Liese & Weiner (1996, 1997) investigated in detail
culms of Phyllostachys viridiglaucescens aged up to 12 years. During the first month of the
growing period the cell wall thickness at the 20t internode was 1.5-1.7 um and most fibres were
still unlignified. At 3 months they were fully elongated (2.3 um) and had three lignified lamellae.
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The wall thickness evolved from 2.6 pym after 1 year, over + 6 um after 6 years to 8 um after 12
years containing eight lamellae. The increase in wall thickness was caused by the deposition of
additional lamellae. The lignification of Phyllostachys heterocycla was studied by Itoh (1990),
revealing full lignification of the component cells within one growing season. The lignin content in
culms aged 2 to 4 years determined at internodes 10, 20 and 30 only varied from 23.2 to 26.4 %.
Fengel & Shao (1984, 1985) determined as chemical composition for Phyllostachys makinoi 25.5
% lignin, 45.3 % alpha-cellulose, 24.3 % polyoses and 2.6 % extractives. The main polyose is
arabinoxylan and the bamboo lignin is rich in syringyl units. Murphy & Alvin (1997b) showed that
Phyllostachys viridiglaucescens bamboo culms were only half lignified at year 1 (approximately
13 %) compared to 3 year old culms (over 26 %) having lignin content comparable to wood.
Lybeer & Koch (2005) revealed that p - coumaric and ferulic acids are widely distributed in
Phyllostachys viridiglaucescens and that their content is dependent on the anatomical location
and the differentiation phase. The lignin in the epidermis cell wall is deposited early in the
development and does not increase with age which is in contrast with the fibres and the ground
parenchyma cells where an increasing trend in lignification during the first year is shown. The S;
fibre wall has a lamellar structure with increasing lignin content from the centre towards the
compound middle lamella. Lin et al. (2002) showed that fibre walls are rich in guaiacyl lignin in the
early stage of lignification, and lignin rich in syringyl units is deposited in the later stage. The
lignification process may last even up to 7 years. An important feature of a lignified fibre is its
liveliness. Whereas the fibres in hardwood normally die after cell wall differentiation with the
simultaneous degeneration of their cytoplasm, bamboo fibres retain their cytoplasmatic activity
long after cell wall lignification. The fibres retain a living protoplast and appear to undergo
progressive septation (Murphy & Alvin 1997a). Contrary to angiosperms, the septate fibres show
secondary wall apposition (Parameswaran & Liese 1977). In a similar way, thickening of
parenchyma cell walls was noted in older culms (Alvin & Murphy 1988) up to 3 years. Cells with
small walls may represent still immature fibres, but often they are parenchyma cells, recognizable
by their square ends in the longitudinal section (Murphy & Alvin 1992). Bath (2003) found that for
two Indian bamboos cell-wall thickening of fibres was accomplished after 3 years leading to a
polylamellate cell-wall structure. In ground parenchyma, although the wall thickening was evident,
lamellation was not distinct.

The shortest fibres occur in the diaphragm at all culm levels. Being about 340 um long at the
nodal level, the fibres are only one-third their normal length in an internode. The changes in width
and shape of the fibres at the node lead to a length-to-width ratio of 40:1 to 60:1. Owing to the
shortening of the fibres in the nodal part and their simultaneous wall thickening, bamboo culms
often break at the nodes when under tension.
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2.3. Physical-mechanical and chemical properties of bamboo

The specific gravity of bamboo varies approximately from 0.5 to 0.9 g/cm® but can differ
considerably within the culm and between species (Zhou 1981; Janssen 1991). It increases
during maturation of the culm from 1 to 3 years owing to the thickening of the fibre walls, but
slightly also during later years. Cell wall thickening leads to an increase in basic density of the
culm material. The increase in density is dramatic during the first two years but become more
gradual during the third year and stabilized thereafter (Bath 2003). At the base, the bending
strength of the outer part is 2-3 times higher than that of the inner part. Older culms are more
dimensionally stable than younger ones. Both the radial and tangential shrinkage decrease with
the height of the culm since the top portion has a higher number of vascular bundles and lower
initial moisture content. Older bamboos were also found to shrink less than younger ones (Abd.
Latif et al. 1995). Bambusa heterostachya culms of 1, 2 and 3 year and old showed similar
variation in shrinkage ranging from 17 to 24 % in radial and 5 to 11 % in tangential direction. Lee
et al. (1994) measured average shrinkages from green to air-dry conditions of 0.02, 9.25 and
18.21 percent in longitudinal, tangential and radial directions respectively. Radial shrinkage was
about twice as big as shrinkage in tangential direction. In order to obtain medium to high quality
products and recovery rates of more than 50 %, usage of at least 2-year old culms is suggested
in order to avoid less lignified fibres and parenchyma walls. Culms of higher age are preferred for
bamboo furniture since they show less shrinkage and splitting. Immature culms are prone to
splitting, shrinkage, breakage and biological attack.

Fibre length shows a positive correlation with the modulus of elasticity (MOE) and the
compression strength. The fibre wall thickness correlates positively with compression strength
limit and with the modulus of elasticity (MOE), but negatively with the modulus of rupture (MOR)
(Abd. Latif et al. 1990, 1993). Janssen (1991) compiled mainly unknown publications on
mechanical properties showing increased strength with age, with decreasing culm diameter, with
increasing height in the culm, with lower moisture content (below the fibre saturation of approx.
30 %), with higher ratio outer to inner layer, with higher ratio of vascular bundles to parenchyma
and with increased fibre length. The ratio between the ultimate compression strength and the
mass per volume is slightly higher for dry bamboo (0.094) as compared with 0.084 for dry wood.
According to Janssen (1990) this might be due to the higher cellulosic content of 55 percent of
bamboo compared with 50 percent in wood. Bamboo culms for weaving are chosen from species
that are easy to split and are not old enough to become brittle (preferably below two years).
Especially the node causes a serious problem of reduced elasticity and uniformity of bamboo
strips. The nodal portion of a culm has shorter fibres and a lower holocellulose content but a
higher content of extractives, pentosans, lignin and ash than the internodal portion. Nodes have a
major influence on the culm's mechanical strength. They show a higher specific gravity, a lower
volume shrinkage and a lower tensile strength than the internodes mainly because of shorter
fibres and distorted vascular bundles (Kabir et al. 1996).
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The fractural behaviour of a culm is different from that of wood. Breaking modes differ for fibres
and parenchyma. Cracks are deflected in the direction of the fibres. Ruptured fibre walls can
show both splintering and cross fracture types. The cross fracture could be classified as having a
flat, smooth face or a ridged face. The flat face fracture occurs predominantly in the broad
lamellae zones. The ridged fracture appears only occasionally, showing a tendency for spiral
arrangement of the fibrils. Under tension the lamellae can separate with the weakest regions
corresponding to narrow lamellae. The alternating fibrillar orientation in the two lamellae types
contributes partially to a nullification of the anisotropic properties. Because of the presence of
such polylamellate fibres at the statically efficient sites, the peripheral culm zone presents a
highly reinforced area (Parameswaran & Liese 1976, 1981).

The ground tissue discussed up to now lies between two terminal layers: a cortex at the outside
of the culm and a pith ring at the inside towards the lacune. At the inner side of the culm wall,
cellular layers surround the pith cavity, becoming more pronounced as the culm ages. This pith
ring, pith periphery or 'bamboo yellow' is a non-vascular tissue composed of layers of
parenchyma cells, which are often heavily thickened and lignified. The epidermis, which is the
outermost layer of the cortex, contains axially elongated cells, shorter cork and silica cells, and
stomata. Cork and silica cells are small and may appear in pairs between the long cells. Often the
longer one of the pair is a cork cell and the smaller one is a silica cell. The silica cells may contain
a high amount of silica (silicon dioxide), which strengthens the epidermal layer. The epidermal
cells are often covered on the outside by a cutinized layer of cellulose and pectin with tangential
lamellation. Younger culms show numerous unicellular hairs. Beneath the epidermis lies the
hypodermis, consisting of several layers of thick-walled sclerenchymatous cells. To the inner side
is the actual cortex, nearly without vascular bundles. Cortical parenchyma generally appears
homogeneous. Cell size increase from the outer to the inner layers. The compact composition of
the cortex and the wax coating prevent loss of water from the culm. It also hinders any lateral
uptake of liquids. At the outside of a culm, a waxy layer appearing as irregular plates, rods or
granules, often covers the surface as can be felt especially on young culms. This wax hinders the
penetration of liquid. Particular hindering is observed for the penetration of chemicals during the
pulping process and of preservatives during vacuum pressure impregnation. Bamboo consists for
0.8 % up to 9.7 % of inorganic components with a higher amount in the nodal region than in the
internodes. Silica is a major constituent of the epidermis with values between 1.5 % and 6.4 %. It
consists of small crystals of silicon dioxide and is mainly localized in the shorter epidermal cells.
The culm tissue itself contains hardly any silica and the nodes contain only small amounts. The
presence of silica affects the cutting and pulping properties of bamboo. Especially bamboo in
sympodial taxa from tropical climates contains a siliceous deposit in the lacuna, called tabashir
(used in traditional medicine, properties as a catalyst). Most silica appears situated in the cortex
region, but more knowledge about its location would be useful for processing technologies. The
selection of species with a lower amount of silica is significant for the manufacture of products as
furniture, structural components and skewers (Hamdan & Abd. Latif 1992). Schmitt et al. (2002)
localized silica polymers as extracellular deposits within the wall of epidermal cells of bamboo
culms. Young internodes showed distinct silica deposition in epidermal wall regions underneath
the cuticle. In the outer wall regions silica granular deposits were found in increasing amounts
during maturation but were only present in inner wall regions in late development stages.
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3. Experimental

3.1. Bamboo species

Bamboo species are endemic in all continents except in Europe. The utilization of bamboo in
production processes comparable to the wood sector is predominantly present in Asia. Although
many species are known, only a limited number is used on a large scale, e.g. the two natural-
stand Malaysian bamboos are Bambusa blumeana and Gigantochloa scortechinii (Hamdan &
Abd. Latif 1992). They are used alongside Bambusa vulgaris, a village bamboo cultivated in all
parts of Peninsular Malaysia (Chew et al. 1992). In China Phyllostachys pubescens predominates
in the bamboo resources with approximately 75 % (Shilin et al. 1994).

Since frost resistance is far more important to Europe the possibilities of species are mostly
limited to certain Phyllostachys species. Within the frame of the EU-project ‘Bamboo for Europe’
materials used originated from a mixed bamboo plantation in Belgium based on Phyllostachys
aureosulcata 'Spectabilis’, P. nigella, P. praecox and P. vivax. The bamboo species used for
large-scale industrial experiments were also included. They were collected from older stands of
Phyllostachys aurea and Phyllostachys nigra in Tomino, Pontevedra, in the North West of Spain.

3.2. Material properties

The density was calculated for bamboo as the ratio between the oven-dry mass and the green
volume. The volume of cylindrical elements of approximately 3 cm in length was measured by
submerging the water-saturated blocks. Samples with regular shape were volume checked using
precise measurements of all dimensions. The oven-dry mass was determined after exposure of
the specimens to a drying scheme of 48h at 60 °C, 24h at 80 °C and 24 h at 103 °C.

From the second internode of each bamboo culm a cylinder of between 1 and 2 cm was cut for
anatomical examination. A small block of 1 cm width was extracted and softened by soaking it for
some days in a mixture of 30% glycerin and 70 % ethanol. Cross-sections of 20 to 30 um thick
were microtomed. These microtome sections were stained using safranine and astrablue.
Safranine stains lignin red and astrablue gives a blue colour to the other components. Light
microscopy enabled the analysis of the anatomical structure.

The microtome slices were analyzed by means of an image analyser giving a relative proportion
of grey expressing the cell wall ratio. This ratio is an estimation based on pixel grey values
varying from white (0) to black (256). The vessel or vascular bundle density was also counted on
the cross-sections.
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For fibre length measurements, the bamboo material was macerated according to the method of
Jeffrey. Tangential slices of approximately 100 to 200 um were cut from the bamboo specimens
by means of a microtome. These blocks were softened using a glycerin-ethanol mixture and then
transferred to a solution of 30 % nitric acid and 30 % sulfochromic acid. After soaking in a hot
water bath (60°C) for 24 hours, the fibres were regularly mixed, filtered and washed with distilled
water. For analysis some fibres were transferred onto a micro slide, covered with 1 cm? glass and
closed on the sides with nail varnish to avoid water evaporation. Using an image analyzer
connected to the microscope the length of 100 fibres was measured on each microslide.

A further material property, the silica content was looked at because of the importance when
dealing with wood processing systems. Bamboo contains 0.5 to 4 % silica mainly localized in the
epidermis (Liese 1987). In order to get insight in the distribution of silica an Environmental
Scanning Electron Microscope (ESEM) was used. For the ESEM-analysis microtomed bamboo
cubes had 0.5 cm sides. The ESEM was equipped with an EDXA-unit (Energy Dispersive X-ray
Analysis) enabling qualitative detection of silicon. More quantitative data were obtained by
chemical analysis. Preparation of samples and the spectrophotometric determination of silica as
silicon dioxide was performed according to the methods described by Sulthoni (1989). The
chemical analysis of silica was performed on two selected species from the ESEM work. From
each culm 4 samples were extracted: three from the lower part of the culm (one covering the
entire culm cross section; one of the epidermis zone and one from the inner part, excluding the
epidermis) and one from the upper part of the culm (entire cross section).

4. Results and discussion

Basic data of the culms from the older Phyllostachys aurea and P. nigra stands that were
selected for detailed investigations are given in Table 1.

Table 1. Age, number of internodes, total length and total green mass of the different
bamboo culms tested.

Species Culm Age #Internodes Total length Total mass
(year) (cm) @

P. aurea 11 1 37 391 424
12 2-3 39 448 495
13 4-5 36 453 951
21 1 33 326 254
22 2-3 30 361 417
23 4-5 37 502 820

P. nigra 11 1 22 418 310
12 2-3 19 349 194
13 4-5 17 304 211
21 1 20 439 385
22 2-3 27 452 497
23 4-5 26 469 464
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All Phyllostachys species showed quite similar density values ranging mostly from 600 up to 750
kg/m® (Tables 2 and 3). The overall variation and the density level indicated that Phyllostachys
bamboo can be used for most industrial applications as an alternative to wood without further
species differentiation. Only some culms show a lower density, especially Phyllostachys vivax
(Table 3). Both Phyllostachys aurea and Phyllostachys nigra show similar density patterns (Table
2). Density increases distinctly with height in the culm. The impact pattern of age on the density

could not clearly be derived.

Table 2. Density of different internodes of Phyllostachys aurea and P. nigra.

Density (kg/m?)
Culm11 | Cum12 | Culm13 | Culm21 | Culm 22 | Culm 23
Species Internode Mean
1year | 2-3year | 4-5year | 1year | 2-3year | 4-5year
P. aurea 2 545 616 628 596
6 491 453 559 672 788 644 601
10 575 484 595 799 689 648 632
14 632 534 592 790 734 640 654
18 665 587 591 799 732 660 672
22 707 647 631 831 835 694 724
26 676 647 720 831 835 752 744
30 637 701 705 820 716
34 740 740 861 780
Mean 626 599 631 763 749 715 680
P. nigra 2 592 626 594 600 653 531 599
6 640 668 618 698 699 663 664
10 656 699 645 741 747 656 691
14 653 728 698 724 766 715 714
18 756 781 743 760
Mean 659 680 639 691 729 662 686

Table 3. Mean relative grey value (cell wall ratio), the vascular bundle density and the
culm density of different Phyllostachys spp.

Vascular bundle density Density
Species Mean grey value

(number/cm?) (kg/m?)

P. aurea 161 M 489 M 701

P. aureosulcata 201 @ 98106 747

P. nigella 184 @ 801 @ 713

P. nigra 178 @ 425 649

P. praecox 195 @) 1088 4) 713

P. vivax 182 @ 92160 595

() Significant differences at 95 % level
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All Phyllostachys species show a very similar anatomical tissue composition mainly because of
identical Type | vascular bundles. On cross section the vascular bundle density is significantly
higher near to the epidermis. The compact epidermis is identified as being obviously different
from the inner side which may cause difficulties when used in traditional wood processing
systems.

The mean grey value obtained by image analysis and reflecting the cell wall ratio was not an
adequate predictor of density and seemed to be highly influenced by the vascular bundle density
(Table 3). High and low vascular bundle densities linked very well to the mean grey value.
However none of both parameters was able to predict the lower density of Phyllostachys vivax.
Variation in vascular bundle density as indicated in table 4 showed important differences both
between inner and outer part of the cross sections and between different heights in the culm.
Outer and inner parts were differentiated based on the transition of individual sclerenchyma
sheats into an amalgamated ellipsoid of xylem sheats.

Table 4. Vascular bundle density of Phyllostachys aurea and P. nigra.

Vascular bundle density (number/cm?)

Species | Internode | Innerpart | Outer part | Overall
2 194 533 356 (1)

6 217 420 308 )

10 206 512 357 ()

P aurea 14 253 675 568 @
18 362 654 489 @

22 468 883 743 )

26 752 989 865 )

Mean 350 667 530
2 180 301 251 ()
6 175 350 283 @)
10 213 380 281 @)
P.nigra 14 233 396 | 2950@
18 257 392 312@
22 393 653 464 )

Mean 242 412 329

() Significant differences at 95 % level

The mean fibre length for all Phyllostachys species studied varies between 1700 and 2000 um
(Table 5), except for Phyllostachys vivax. Mean fibre length values from literature already
indicated major variation depending on the origin of the bamboo culms (Liese & Grosser 1972).
Figures for mean fibre length reported are 980 um (Japan) and 1610 um (USA) for Phyllostachys
aurea and 2100 um (Brazil), 1860 um (Philippines) and 1040 um (Japan) for Phyllostachys nigra.
Such density and fibre length values enable the use of European grown Phyllostachys bamboo
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as an alternative for wood in e.g. MDF production. The lower value for Phyllostachys vivax added

an additional argument not to include this species in future bamboo plantations in Europe.

Table 5. Mean fibre length of different Phyllostachys spp.

Species Mean fibre length
(Mm)

P. aurea 1756 @
P. aureosulcata 1701 @
P. nigra 1918 ®
P. nigra 1 year 1962 @
P. nigra 2-3 year 1888 @
P. nigra 4-5 year 1753 @
P. praecox 1750 @
P. vivax 1514 )

() Significant differences at 95 % level

Middle and top section of each internode showed higher fibre length than the bottom part (Table
6). Variation coefficients were approximately 30 %. Variation in fibre length was important while
no clear impact of the internode level could be observed. The feeble relation between fibre length
and age could not be substantiated and is clearly not essential to the overall variation.

Table 6. Fibre length variation in an internode of Phyllostachys aurea and P. nigra.

Fibre length (um)
Species | Internode 6 Internode 18

Bottom  Middle  Top Mean Bottom  Middle  Top Mean
P.aurea |1591 (1) 1754 (2) 1861 (3) | 1735 1688 (4) 1832 (4) 1808 (4) |1776
P.nigra 1748 (1) 2109 (2) 2130 (2) | 1996 1651 (3) 1967 (4) 1902 (4) | 1840

() Significant differences at 95 % level

The ESEM study showed clearly that the presence of silicon is linked to the epidermis (Fig. 3).
The findings were confirmed by the chemical analysis of two species with clearly different silicon
response when using ESEM-EDX analysis (Table 7). The silica content of the epidermis of
Phyllostachys nigra was merely approximating the lowest figure (0.4 %) reported in literature,
while the silica content of Phyllostachys praecox was substantially lower and even meaningless
for industrial processing of bamboo.
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Figure 3. ESEM analysis of a transversial section of a P. nigra culm (internode 6). Left
part presents the ESEM picture and the right part the corresponding silicium EDX
mapping. Si is present in the outer zone.

Table 7. Silica content of Phyllostachys praecox and P. nigra

Si-content (%)
_ Lower part Upper part
Species
Epidermis Inner zone Overall Overall
P. preacox 0,056 0,018 0,066 0,053
P. nigra 0,268 0,012 0,120 0,355
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5. Conclusions

Bamboo density is very similar to values recorded for many wood species, which allows for direct
substitution. Variability in density and anatomical structures is important and the results obtained
confirm literature data. The Phyllostachys species studied appear to be quite similar; hence it
seems feasible to establish bamboo plantations using several species and enable production of
relative uniform raw material.

Contrary to wood bamboo has no radial components but the tissue pattern with vascular bundles
containing fibres embedded in ground parenchyma shows more similarity with fibre reinforced
composites than wood does. In general, the fibre length in bamboo is situated in between
softwood and hardwood fibres. The variation in fibre length is relatively low. The silica content can
vary considerably between species but remains mainly located in the epidermis zone. The silica
detected in the European grown Phyllostachys species was lower than generally reported in
literature.
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