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Chapter I 
   (Hoofdstuk 1) 

Nederlandstalige 
Samenvatting 
(Dutch Summary) 

 
De hoofdstukken I tot en met III zijn gereserveerd voor de Nederlandstalige samenvatting, de 
inleiding en de Engelstalige samenvatting. De scriptie bestaat uit verschillende hoofdstukken die 
elk een aantal secties bevatten. Elke sectie is op een zodanige manier geschreven, dat het 
mogelijk is om de inhoud te vatten zonder alle voorgaande secties en hoofdstukken gelezen te 
hebben. De voornaamste reden voor deze aanpak is de verscheidenheid aan onderwerpen in deze 
thesis en de verwachting dat niet elke lezer die interesse vertoont voor één bepaald onderwerp 
zich ook geroepen voelt om gans de thesis door te nemen. Voorts is elk hoofdstuk voorzien van 
een voorwoord dat de context weergeeft van de geponeerde these. Hoofdstuk I geeft een beknopt 
overzicht van de voornaamste verwezenlijkingen van dit werk, zonder daarom in te gaan op de 
details. Er wordt getracht een schets te geven van het probleem, de oplossing van het probleem en 
de mogelijke gevolgen. Voor een gedetailleerde behandeling van de verschillende onderwerpen 
wordt de lezer graag doorverwezen naar de verschillende hoofdstukken in het Engels. 
Bij elke figuur in deze Nederlandstalige samenvatting staat ter informatie aangegeven aan welke 
figuur uit de tekst deze identiek is. Desalniettemin is deze informatie niet noodzakelijk om de 
figuur te begrijpen. 
 
Hoofdstuk IV Inhomogene golven en begrensde bundels 
 
 Sectie IV.A : De geschiedenis en de eigenschappen van ultrasone 

inhomogene golven. 
 
 • Aanvaard voor publicatie in IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency 

Control (Imp. Fact. 1.595 ;SCI-index, Engineering – electrical & electronic, rank:46/205) 
• Mondelinge presentatie op uitnodiging tijdens: plenaire sessie, ‘VII International Conference for 

Young Researchers on Wave Electronics and its Applications in Information and 
Telecommunication Systems’, St Petersburg, Rusland , 12-15 september 2004 

• Mondelinge presentatie tijdens ‘75th Anniversary Celebration of the Acoustical Society of America 
(147th meeting of the Acoustical Society of America), Sheraton New York Hotel and Towers, New 
York, New York, USA, 24-28 mei 2004 

 
 
      Inhomogene golven zijn een veralgemening van de klassieke vlakke golven. Ze worden 

beschreven met behulp van complexe golfparameters en vertonen typisch een exponentieel 
variërende amplitude langsheen het golffront. Dit type golven kwam voor het eerst voor in 
Amerikaanse publicaties, maar werd later grotendeels ontwikkeld door Franse en Belgische 
onderzoekers, nadat was aangetoond dat inhomogene golven de natuurlijke stimuli zijn 
voor oppervlaktegolven. Desalniettemin werd het fenomeen van de inhomogene golven 
nog al te vaak beschouwd als een wiskundig artefact, alhoewel experimenteel reeds was 
bewezen dat zulke golven ook daadwerkelijk kunnen worden opgewekt en dat hun 
eigenschappen overeenstemmen met de theorie. Met dit uniek overzicht van de 
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geschiedenis, eigenschappen en de experimentele opwekking van ultrasone inhomogene 
golven, menen wij te mogen stellen dat een definitieve doorbraak is bereikt bij een breed 
publiek van onderzoekers in de akoestiek. Het is tevens de eerste maal in de geschiedenis 
dat het exacte verband wordt uitgerekend tussen de elementen van de complexe Lamé 
parameters en de intrinsieke akoestische grootheden zoals demping en golfsnelheid. 

 
 
 Sectie IV.B : Het principe van het ‘eindige reeks’ evenwicht om de 

expansiecoëfficiënten te bepalen bij de ontbinding van een 
begrensde bundel in inhomogene golven 

 
 • Nico F. Declercq, Joris Degrieck, Oswald Leroy, "The Principle of a Chopped Series Equilibrium to 

Determine the Expansion Coefficients in the Inhomogeneous Waves Decomposition of a Bounded 
Beam", Acta Acustica United with Acustica 89, 1038-1040, 2003. (Imp. Fact. 0.346; SCI-index, 
Acoustics, rank:21 /28) 

• Mondelinge presentatie tijdens ‘the 8th Western Pacific Acoustics Conference (Wespac8)’, 
Melbourne, Australië, 7-9 april, 2003. 

 
 

 
Fig I.1 (identiek aan Fig IV.B_2): De horizontale as is de genormaliseerde afstand tot het centrum van de 

bundel (dus de exacte afstand gedeeld door de gaussische breedte), terwijl de verticale as de amplitude 
voorstelt. Deze figuur toont een extreem geval van slechte conditionering. Het bovenste gedeelte toont met 

behulp van een stippellijn een Gaussisch profiel en met behulp van een volle lijn de benadering in de 
inhomogene golftheorie gebruik makend van klassieke methodes. Men merkt niet enkel sterke afwijkingen 
binnen de breedte van de bundel, maar ook de ontwikkeling van zogenaamde ‘staarten’ buiten de breedte 
van de bundel, waar normaliter de amplitude perfect nul zou moeten zijn. Het onderste gedeelte van de 

figuur toont de benadering onder dezelfde omstandigheden, doch nu gebruik makend van de 
optimalisatieprocedure met inbegrip van de eindige reeksenmethode zoals in deze sectie beschreven. Men 

merkt dat de optimalisatie nu nagenoeg perfect is binnen de breedte van de bundel en dat tevens de 
‘staarten’ verder naar buiten verschoven zijn. 
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     In tegenstelling tot de klassieke Fourier methode, waarbij een begrensde bundel 
beschreven wordt als een sommatie van vlakke golven die elk een welbepaalde amplitude, 
fase en richting hebben, wordt in de inhomogene golftheorie een begrensde bundel 
gevormd door een sommatie van inhomogene golven die eveneens elk een welbepaalde 
amplitude en fase hebben, maar die daarenboven elk dezelfde richting hebben. Er werd 
vroeger reeds aangetoond dat deze laatste werkwijze correct is binnen een korte afstand 
langsheen de voortplantingsrichting van de bundel en binnen een korte afstand langsheen 
de breedte van de bundel. De opwekking van oppervlaktegolven, met behulp van een 
instralende begrensde bundel, langsheen een vloeistof-vaste stof scheiding gebeurt per 
definitie lokaal, wat betekent dat de beperkte geldigheid van de inhomogene golfmethode 
langsheen de voortplantingsrichting van de bundel, niet van primordiaal belang is. Wat 
echter wel belangrijk is, is de beperking langsheen de breedte van de bundel. Het is 
namelijk zo dat de opwekking van oppervlaktegolven, vaak gepaard gaat met drastische 
vormveranderingen en verbredingen van de gereflecteerde bundel. Indien de 
vormverandering ook optreedt in een gebied waarin de inhomogene golfmethode slecht 
geconditioneerd is, dan ontstaan cruciale fouten. De reden voor de beperkte 
doeltreffendheid van de inhomogene golfmethode in de breedte van de bundel, is het feit 
dat we uiteindelijk te maken hebben met een numerieke procedure die een sommatie van 
exponentiele functies optimaliseert. De karakteristieke aard van deze functies houdt 
ondermeer in dat de minste numerieke onvolkomenheid tot onoverzichtelijke fouten leidt 
vanaf een bepaalde afstand tot het centrum van de begrensde bundel.  
     In deze sectie is een techniek voorgesteld die de exponentiele functies representeert met 
behulp van hun Taylor reeksontwikkeling en er wordt aangetoond dat een optimale 
reekslengte bestaat waarop de numerieke fout minimaal wordt indien de optimalisatie in de 
inhomogene golfmethode gebeurt met behulp van die eindige reeksen en indien de 
bekomen coëfficiënten worden toegekend aan de respectievelijke exacte exponentiële 
functies. Het resultaat is een verruiming, langsheen de breedterichting van een te ontbinden 
begrensde bundel, en dus van de bruikbaarheid van de inhomogene golftheorie. Het valt te 
verwachten dat deze bevordering van de optimalisatieprocedure door gebruik te maken van 
eindige reeksontwikkelingen, ook in andere takken van de numerieke analyse zijn nut zal 
bewijzen. 

 
 
 Sectie IV.C : Een handige analytische beschrijving van de coëfficiënten in 

de ontbinding van symmetrische begrensde bundels in 
inhomogene golven 

 
 • Nico F. Declercq, Joris Degrieck, Oswald Leroy, "A useful analytical description of the coefficients 

in an Inhomogeneous Wave Decomposition of a symmetrical bounded beam", Ultrasonics 43(4), 
279-282, 2005 (Imp. Fact. 0.844; SCI-index, Acoustics, rank:11 /28) 

• Mondelinge presentatie tijdens ‘the 8th Western Pacific Acoustics Conference (Wespac8), 
Melbourne, Australië, 7-9 april, 2003. 

 
      In sectie IV.B kwam voornamelijk de numerieke natuur van de inhomogene golftheorie 

aan bod. Dit komt hoofdzakelijk doordat er voorheen nooit een analytische uitdrukking 
gevonden was voor de expansiecoëfficiënten in de inhomogene golfmethode. Sectie IV.C 
daarentegen toont aan op welke manier een analytische uitdrukking kan gevonden worden 
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en geeft ook het resultaat. 
     Indien de ruimtelijke beschrijving van een begrensde bundel verondersteld wordt 
beschreven te zijn als: 
 

( ) ( ) ( )
21 2, 1 exp exp,0 22

N
x z A x in n n nvn N

ωϕ δ β
⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟= + +∑ ⎜ ⎟⎜ ⎟⎜ ⎟= − ⎝ ⎠⎝ ⎠

zβ  

 
Dan is de analytische uitdrukking voor de expansiecoëfficiënten gegeven door: 
 

( ) ( )
! !( 1) ( 1)
! ! ! ! ! !0

N mm mn rA In rm n n n m r r rm n r
= − −∑ ∑

− −= =
 

 
met 
 

( ) ( )1 exp exp 1x xI r f xr p p p

+∞ ⎡ ⎤⎛ ⎞
= − + +∫ ⎢ ⎥⎜ ⎟

⎝ ⎠⎣ ⎦−∞
dx  

 
 
 Sectie IV.D : De Laplace transformatie om begrensde inhomogene golven 

te beschrijven 
 
 • Nico F. Declercq, Joris Degrieck, Oswald Leroy, "The Laplace transform to describe bounded 

inhomogeneous waves", J. Acoust. Soc. Am. 116(1), 51-60, 2004. (Imp. Fact. 1.310; SCI-index, 
Acoustics, rank:7 /28) 

• Mondelinge presentatie tijdens ‘the 145th Meeting of the Acoustical Society of America’, Nashville 
Convention Center, Nashville, Tennessee, USA, 28 april - 2 mei 2003. 

 
      Het mooie aan de inhomogene golftheorie is de beschrijving van golfkarakteristieken, 

die niet noodzakelijk hand in hand gaan met de menselijke intuïtie, maar die weliswaar in 
overeenstemming zijn met recente experimenten. Toch is het zo dat bij deze experimenten 
nooit echt ‘wiskundige’ inhomogene golven kunnen worden opgewekt die oneindig breed 
zijn, maar dat begrensde versies moeten worden gegenereerd. Die begrensdheid is uiteraard 
het gevolg van de eindige afmetingen van de experimentele geluidsbron. Desalniettemin is 
het eigenaardig dat eindige inhomogene golven beantwoorden aan de eigenschappen van 
‘oneindige’ inhomogene golven. De reden wordt in deze sectie onthuld. Er wordt 
aangetoond dat begrensde inhomogene golven, via de Laplace transformatie, op een 
natuurlijke manier te ontbinden zijn in oneindige inhomogene golven. Bovendien wordt 
aangetoond dat het merendeel van de begrensde inhomogene golf bepaald wordt door het 
gedrag van één enkele oneindige inhomogene golf en dat alle andere inhomogene golven 
die aanwezig zijn in de ontbinding, enkel een bijdrage leveren aan de vorming van de 
randen van de begrensde golf en dus geen invloed hebben op het globaal gedrag. 

 
- 4 - 



CHAPTER I: Dutch Summary (Nederlandstalige Samenvatting) 
  

 
Fig. I.2 (identiek aan Fig. IV.D_5): De horizontale as duidt de afstand [m] aan langsheen het golffront. 

De verticale as duidt de amplitude aan. De stippellijn beschrijft het profiel van een oneindige inhomogene 
golf. De volle lijn beschrijft het profiel van een begrensde inhomogene golf. 

 
 
 Sectie IV.E : De voorstelling van 3D Gaussische bundels met behulp van 

inhomogene golven 
 
 • Nico F. Declercq, Joris Degrieck, Oswald Leroy, "The inhomogeneous wave decomposition of 3D 

Gaussian-like bounded beams", Ultrasonics 42, 273-276, 2004. (Imp. Fact. 0.844; SCI-index, 
Acoustics, rank:11 /28) 

• poster presentatie tijdens ‘Ultrasonics International 2003’, Granada, Spain, 30 June- 3 July 2003 
 
      De ontwikkeling van de inhomogene golftheorie ging gepaard met de ontdekking dat 

een begrensde bundel kan beschreven worden als een som van inhomogene golven. De 
methode om de coëfficiënten te bepalen was gebaseerd op de techniek van Prony, waarbij 
een vergelijking met exponentiele functies omgezet wordt in een veeltermvergelijking. Via 
identificatie met Laguerre veeltermen, wordt dan een waarde gevonden voor de onbekende 
coëfficiënten. Doch, de methode was tot hiertoe enkel toepasbaar in eendimensionale 
gevallen, waardoor het onmogelijk is om het exacte profiel van een bundel die in twee 
richtingen begrensd is, te beschrijven. De huidige sectie presenteert een alternatieve 
methode om de onbekende coëfficiënten te bepalen, die toelaat om ook bundels te 
beschrijven die in twee richtingen begrensd zijn. 
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Fig. I.3 (identiek aan Fig. IV.E_4): Het profiel van een 3D quasi-Gaussische bundel, beschreven in de 

inhomogene golftheorie. De afstanden langs de x-as en langs de y-as, zijn genormaliseerd door te delen 
door de overeenkomsitege ‘gausische’ breedte. De ‘staarten’ die te zien zijn, zijn vergelijkbaar met de 

staarten die ook in Fig. I.1 te zien zijn. 
 

 
 
 
 Sectie IV.F : Controle van de focusafstand van complex harmonische en 

complex gepulste ultrasone begrensde bundels 
 
 • Nico F. Declercq, Joris Degrieck, Oswald Leroy, “Focal length control of complex harmonic and 

complex pulsed ultrasonic bounded beams”, J. Appl. Phys. 97(5), 054904 1-8, 2005  (Imp. Fact. 
2.281; SCI-index, Physics-Applied, rank:13/76) 

• Poster presentatie tijdens ‘VII International Conference for Young Researchers on Wave Electronics 
and its Applications in Information and Telecommunication Systems’, St Petersburg, Rusland , 12-
15 september 2004 
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Fig. I.4 (identiek aan Fig. IV.F_5): Een voorbeeld van een gefocusseerde bundel die van rechts naar links 

gericht is. Het witgekleurde ovaal gebied is de focus. 
 

     Het vermogen van ultrageluid, enerzijds om bloed te doen stollen of nierstenen te 
verbrijzelen en anderzijds om warmteontwikkeling te veroorzaken, maakt dit een 
uitstekend middel in de geneeskunde om interne wonden te stollen en om kanker te 
bestralen. Bovendien kan het effect zeer lokaal geïnduceerd worden, indien gebruik 
gemaakt wordt van gefocusseerde bundels. Deze bundels worden typisch gemaakt met 
‘phased array’ technologie, waardoor een hoge mate van flexibiliteit verwezenlijkt wordt, 
vooral voor het instellen van de focusafstand. Deze technologie is echter uitermate duur, 
waardoor vooral ontwikkelingslanden achterna blijven huppelen. Een klassieke transducer 
zou in principe ook een flexibel instelbare focusafstand moeten bezitten, maar deze 
instelbaarheid is dan gebaseerd op het wijzigen van de frequentie, wat in principe zeer 
moeilijk is vermits transducers typisch enkel op discrete frequenties geluid kunnen 
genereren, rond hun grondtoon en rond oneven veelvouden ervan.  
     In deze sectie wordt echter aangetoond dat, indien men de amplitude van het signaal dat 
de gefocusseerde transducer aanstuurt, op een precieze manier laat variëren in de tijd, dit 
een belangrijke focusverschuiving veroorzaakt die afhangt van de mate van 
amplitudeverandering. Deze bevinding is gebaseerd op de complex harmonische 
golftheorie. Bovendien wordt aangetoond dat deze bevinding ook geldig is voor signalen 
die kort zijn in de tijd en die dus overeenstemmen met realistische signalen, in 
tegenstelling tot oneindige ‘wiskundige’ signalen. De techniek maakt het gebruik van 
‘phased array’ technologie overbodig en bezit dus het potentieel om de kostprijs voor 
verscheidene medische behandelingen, drastisch te verlagen. 

 
 
 Sectie IV.G : Over het bestaan en de opwekking van een nieuwe soort 

uitstralende oppervlaktegolven 
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 • Mondelinge presentatie tijdens ‘Tenth International Congress on Sound and Vibration, Stockholm, 

Zweden, 7-10 juli 2003 
 
      Indien men de continuïteitsvoorwaarden voor geluidsgolven aan een scheiding tussen 

een vaste stof en een vloeistof, in formules giet, dan is het mogelijk om de karakteristieke 
vergelijking te bekomen voor een oppervlaktegolf. Deze vergelijking legt een verband 
tussen de voortplantingssnelheid en de materiaalparameters. Een complexe golfsnelheid 
komt dan neer op oppervlaktegolven die energie uitstralen. Praktisch komt die toestand, in 
overeenstemming met de karakteristieke vergelijking, neer op een (complexe) pool van de 
reflectiecoëfficiënt. De positie van die pool (in het complexe vlak), is echter functie van de 
tekens die men kiest voor de verschillende golfvectoren. Hier wordt aangetoond dat, indien 
men rekening houdt met recente bevindingen van Marc Deschamps betreffende de 
tekenkeuze (die overigens op experimenten gestoeld zijn), dat dan niet enkel het 
welgekende bestaan kan worden aangetoond van ‘(enkel) in de vloeistof energie-
uitstralende’ Rayleigh golven, maar ook van een nieuw type oppervlaktegolf dat zijn 
energie zowel uitstraalt in de vloeistof als in de vaste stof. 

 
 
Hoofdstuk V De interactie van geluid met continu 

gelaagde media 
 
 Sectie V.A : De interactie van inhomogene golven en van Gaussische 

bundels met modder die zich bevindt tussen een harde vaste 
stof en een ideale vloeistof 

 
 • Nico F. Declercq, Oswald Leroy, Joris Degrieck, Jeroen Vandeputte "The interaction of 

inhomogeneous waves and Gaussian beams with mud in between a hard solid and an ideal liquid", 
Acta Acustica United with Acustica 90, 819-829, 2004 (Imp. Fact. 0.346; SCI-index, Acoustics, 
rank:21 /28) 

 
 
      In de scheepvaart en in de havennijverheid, is het van het grootste belang om met 

zekerheid te kunnen stellen of een schip al dan niet een havengeul of een sluis kan 
binnenvaren, zonder vast te komen zitten in de bodem. Indien men beslist om het schip te 
laten binnenvaren, met onvoldoende vrije ruimte onder de kiel, dan strandt het schip. 
Indien men verkeerdelijk beslist om het schip niet te laten binnenvaren, dan is de 
dagelijkse kost door onnodig voor anker te liggen, een ware economische ramp. De 
beslissing wordt bemoeilijkt door de aard van de bodem in havens en sluizen. Die is 
dikwijls bedekt met modder die meerdere meters dik kan zijn. De modder is niet homogeen 
en bestaat uit een doorvaarbare waterige bovenlaag op een ondoorvaarbare kleiachtige 
onderlaag. Tussenin bevindt zich een transitielaag die men de nautische bodem noemt. 
Detectie van die nautische bodem is dus de cruciale taak om te weten of een schip al dan 
niet kan binnenvaren. Klassieke echoloden maken enkel gebruik van longitudinale 
geluidsgolven, waardoor niet de nautische bodem, maar wel de bovenlaag van de modder 
ofwel de onderlaag detecteerbaar zijn.  
     Hier wordt aangetoond dat schuin invallende geluidsbundels, die naast longitudinaal 
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geluid ook transversaal geluid opwekken in de modder, wel gevoelig zijn voor de positie 
van de nautische bodem en dus indirect de diepte kunnen bepalen. Voor dit doeleinde 
wordt een nieuw ontwikkeld model beschreven dat de voortplanting van geluid in continue 
lagen (in tegenstelling tot een systeem van discrete lagen) kan nabootsen. Tevens wordt 
aangetoond hoe begrensde bundels zich voortplanten in het gelaagd systeem. Omwille van 
de wetenschappelijke waarde, wordt hier voor de eerste maal de interactie beschreven van 
inhomogene golven met zo’n gelaagd systeem en wordt aangetoond dat de eigenschappen 
van de reflectiecoëfficiënt voor zulke inhomogene golven, perfect toelaten te voorspellen 
wat de karakteristieken zijn van de reflectie van begrensde bundels op het moddersysteem. 

 
 

Fig. I.5 (identiek aan Fig. V.A_7): Een voorbeeld van de voortplanting van een begrensde geluidsbundel 
in modderlagen. De geluidsbundel vertrekt rechtsboven in de figuur en beweegt naar links beneden. 

Interne reflectie en reflectie op de harde bodem, bepalen de structuur van het totale gereflecteerde veld. De 
verticale as duidt de diepte [m] aan in de modder, terwijl de horizontale as de laterale afstand [m] tot de 

bron weergeeft.  
 
 
Hoofdstuk VI De interactie van geluid met gecoate 

materialen 
 
 Sectie VI.A : Frequentieband sprong voor Rayleigh golven op gecoate 

substraten 
 
 • Nico F. Declercq, Joris Degrieck, Oswald Leroy, "Frequency bandgap for Rayleigh waves on coated 

surfaces", Appl. Phys Let. 85(1), 148-150, 2004. (Imp. Fact. 4.207; SCI-index, Physics-Applied, 
rank:3/76) 

• Mondelinge presentatie tijdens ‘VII International Conference for Young Researchers on Wave 
Electronics and its Applications in Information and Telecommunication Systems’, St Petersburg, 
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Rusland , 12-15 september 2004 
 
      De voortplantingssnelheid van Rayleighgolven hangt af van de fysische eigenschappen 

van het materiaal waarop deze oppervlaktegolven voortbewegen. Normaliter verwacht men 
dat Rayleighgolven op een gecoate plaat ‘bestaan’, en dat ze een snelheid hebben die zich 
bevindt ergens tussen de snelheid van Rayleighgolven op puur substraat en op pure 
coating. Deze sectie toont echter aan dat dit niet het geval is, indien de fysische 
eigenschappen van de coating erg verschillen van die van het substraat. In het laatste geval 
is het namelijk zo dat voor een gegeven dikte van de coating, er een frequentieband is 
waarin Rayleighgolven niet kunnen bestaan. Dat betekent dat het mogelijk is om een 
zodanige coating aan te brengen op een relatief dikke plaat, dat een elektrisch signaal 
ontdaan wordt van een bepaalde frequentieband, na omzetting in Rayleighgolven en 
opnieuw omzetten in een elektrisch signaal. Dit fenomeen kan zeer belangrijke 
toepassingen hebben in de elektronica en is complementair aan de welbekende bandpass 
filter, die net wel een bepaalde band doorlaat en alles wat zich daarbuiten bevindt, 
tegenhoudt. 

 
 
 Sectie VI.B : De dispersie van Lambgolven in buitengewone tweelagige 

platen. 
 
      In navolging van vorige sectie werd ook een studie gemaakt over het gedrag van 

Lambgolven in tweelagige platen, waarvan de twee lagen zeer sterk verschillen in fysische 
eigenschappen. Er wordt aangetoond dat het asymptotisch gedrag van de S0 en de A0 mode 
verdwijnt in de dispersiecurven. Tevens wordt aangetoond dat diezelfde S0 en A0 mode een 
vorm vertonen die afwijkt van de klassieke vorm. 

 
 
Hoofdstuk VII Schlierenfotografie als een niet-

destructieve testmethode 
 
 Sectie VII.A : Schlierenfotografie om de geluidsinteractie met sterk 

absorberende materialen te bestuderen. 
 
 • Aanvaard voor publicatie in Ultrasonics. (Imp. Fact. 0.844; SCI-index, Acoustics, rank:11 /28) 

 
 
      Bij de karakterisering van materialen, wordt vaak de reflectie van begrensde bundels 

bestudeerd en kan men daaruit afleiden welke de snelheid is van bulkgolven en van 
oppervlaktegolven in het te onderzoeken materiaal. Indien men echter te maken heeft met 
materialen die het geluid zeer sterk absorberen, dan is er eenvoudigweg geen gereflecteerd 
geluidsveld en kan men er dus ook geen eigenschappen uit bepalen. De huidige sectie toont 
aan dat in dit geval de warmte, die ontstaat door transformatie van het geluid, kan 
gedetecteerd worden samen met het invallende geluid, met behulp van Schlierenfotografie. 
Vermits Schlierenfotografie gebaseerd is op de interactie van zwak laserlicht met het 
medium waarin het materiaal zich bevindt en interactie met het materiaal zelf, en niet is 
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gestoeld op het aanbrengen van sensoren, is deze studiemethode 100% niet-destructief. De 
techniek kan gebruikt worden als ‘meetmethode’ om na te gaan hoever het geluid zich 
langsheen het oppervlak voortplant, of in welke mate warmte ontwikkeld wordt. 

 
 
 Sectie VII.B : Het begroten van de vezelrichting in composieten met 

gebruik van hoogfrequente brede bundels en Schlieren 
fotografie. 

 
 • Aanvaard voor publicatie in Research in Nondestructive Evaluation (Imp. Fact 0.935; SCI-index, 

Materials Science – Characterization & Testing, rank:2/23) 
• Mondelinge presentatie tijdens ‘51st open seminar on Acoustics, joint with 9th School of Acousto-

Optics and Applications’, Gdansk, Polen , 6-10 september 2004. 
 
 

 
Fig. I.6 (identiek aan Fig. VII.B_4): Er worden Schlierenfoto’s gemaakt van de gereflecteerde bundel. 
Deze figuur geeft een uitvergroot beeld weer van de bundel. De voortplantingsrichting van het geluid op 
deze foto is parallel met de verticale as, terwijl de horizontale as overeenstemt met de breedterichting van 
de bundel. Door de ruimtelijke inhomogeniteit van de reflectiecoëfficiënt, kan Schlierenfotografie, onder 

de juiste omstandigheden, een franjepatroon tonen in de gereflecteerde bundel. Deze informatie is 
eenvoudig bruikbaar om de vezelrichting te bepalen. 

 
     Er bestaan zeer gesofisticeerde methodes om de vezelrichting in composieten te 
bepalen. Een van die methodes is de polaire scan en wordt verderop in deze thesis 
beschreven. Deze methodes hebben vaak gemeen dat ze heel wat meer te bieden hebben 
dan enkel het vastleggen van de vezelrichting, wat meteen ook de oorzaak is van het feit 
dat ze slechts door gespecialiseerd personeel interpreteerbaar en bruikbaar zijn. In deze 
sectie wordt een methode uiteengezet, gebaseerd op Schlierenfotografie en het gebruik van 
relatief hoogfrequente en brede ultrasone bundels. De methode buit de ruimtelijke 
inhomogeniteit van de reflectiecoëfficiënt uit in vezelversterkte composieten en is vrij 
makkelijk interpreteerbaar, waardoor ook minder gespecialiseerd personeel de 
vezelrichting kan begroten. 

 
 
 
 
Hoofdstuk VIII Vloeistofkarakterisering in gesloten 

containers 
 
 Sectie VIII.A : Het Schoch effect om het onderscheid te maken tussen 

verschillende vloeistoffen in gesloten containers 
 
 • Nico F. Declercq, Filip Van den Abeele, Joris Degrieck, Oswald Leroy, “The Schoch effect to 

distinguish between different liquids in closed containers”, IEEE Transactions on Ultrasonics, 
Ferroelectrics, and Frequency Control 51(10), 1354-1357, 2004. (Imp. Fact. 1.595 ;SCI-index, 
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Engineering – electrical & electronic, rank:46/205) 
• Mondelinge presentatie tijdens ‘ICA2004 18th International Congress on Acoustics’, Kyoto 

International Conference Hall, Kyoto, Japan, 4-9 April 2004 
 
      De eenvoudigste methode om te onderzoeken welke vloeistof zich in een kleine 

gesloten container bevindt, is de snelheid van het geluid te meten in de vloeistof via een 
zogeheten puls-echo methode. Deze methode wordt dan ook vaak gebruikt in de 
voedingsindustrie om continu te controleren of de gefabriceerde vloeistof, of het nu om 
visolie dan wel om fruitsap of iets anders gaat, voldoet aan de vooropgestelde eisen, maar 
is enkel bruikbaar voor kleine containers die twee parallelle wanden bezitten en waarvan 
men de precieze afmetingen kent. In de praktijk doen zich echter heel wat situaties voor 
waarbij de containers zeer groot zijn of waarvan de geometrie geen eenduidige puls-echo 
experimenten toelaat. Deze moeilijkheden treft men vooral aan bij grenscontroles en in 
luchthavens en zeehavens. In deze thesis wordt een methode vooropgesteld die bruikbaar is 
op gelijk welke container waarvan ten minste 1 wand vlak is. De techniek is gebaseerd op 
het zogenaamde Schoch effect en laat vrij eenvoudig toe om na te gaan of een onbekende 
vloeistof in een container overeenkomst vertoont met de veronderstelde vloeistof. De 
techniek is dus bijzonder geschikt voor die situaties waarbij klassieke puls-echo technieken 
onbruikbaar zijn en waarbij men moet nagaan of de vloeistof in een gesloten container 
overeenstemt met de informatie op de bijgeleverde documenten. 

 

 
Fig. I.7 (identiek aan Fig. VIII.A_3): Het profiel van een gereflecteerde begrensde bundel op de wand van 

de gesloten vloeistofcontainer, in het geval een Lambgolf wordt opgewekt in de containerwand, hangt af 
van de onbekende vloeistof achter die wand. De horizontale as geeft de afstand weer langsheen de breedte 
van de bundels, terwijl de verticale as de amplitude weergeeft. De stippellijn toont het invallend profiel, de 
volle lijn toont het gereflecteerde profiel indien zich water in de container bevindt, terwijl de gestreepte lijn 

het gereflecteerde profiel toont indien zich zonnebloemolie in de container bevindt. 
 
 
 

 
- 12 - 



CHAPTER I: Dutch Summary (Nederlandstalige Samenvatting) 
  

 Sectie VIII.B : Het vermogen van uitstralende Lambgolven om reële 
vloeistoffen te onderscheiden van fictieve vloeistoffen 

 
 • Mondelinge presentatie tijdens ‘75th Anniversary Celebration of the Acoustical Society of America 

(147th meeting of the Acoustical Society of America)’, Sheraton New York Hotel and Towers, New 
York, New York, VSA, 24-28 mei 2004 

 
      In de bestaande literatuur worden dikwijls Lambgolven besproken in een plaat, 

ondergedompeld in een vloeistof. Deze sectie bestudeert Lambgolven in een plaat die twee 
verschillende vloeistoffen van elkaar scheidt. Er wordt aangetoond dat de complexe pool 
die overeenstemt met een Lambgolf die energie uitstraalt, een reëel deel heeft dat 
nauwelijks afhangt van de aard van de beide vloeistoffen en een imaginair deel dat functie 
is van het verschil in eigenschappen van beide vloeistoffen. Meerbepaald wordt 
aangetoond dat, voor een gegeven vloeistof aan de ene kant van de plaat, de waarde van 
het imaginaire gedeelte van de pool, een lineaire functie is van het akoestisch 
impedantieverschil tussen de vloeistoffen aan de twee kanten van de plaat, indien men te 
maken heeft met een bestaande of realistische vloeistof, en dat dit lineair verband niet meer 
opgaat indien men te maken heeft met een fictieve vloeistof. Dit fenomeen kan bijzonder 
behulpzaam zijn voor theoretici in verschillende takken van de natuurkunde, die in 
theoretische modellen de parameters van een vloeistof willen inbrengen en die willen 
nagaan of die parameters al dan niet realistisch zijn. 

 
 
Hoofdstuk IX Geluid in systemen met discontinuïteiten in 

meer dan 1 dimensie 
 
 Sectie IX.A : De stralingsmode theorie in de studie der ultrageluiden 
 
 • Aanvaard voor publicatie in IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency 

Control (Imp. Fact. 1.595 ;SCI-index, Engineering – electrical & electronic, rank:46/205) 
• Mondelinge presentatie tijdens ‘51st open seminar on Acoustics, Joint with 9th School of Acousto-

Optics and Applications’, Gdansk, Polen , 6-10 september 2004 
 
      Als voorbereiding op de overige secties binnen dit hoofdstuk, en met het oog gericht op 

onderzoek dat na dit doctoraat dient te gebeuren, wordt in deze sectie een overzicht 
gegeven van de totstandkoming en de stand van zaken in de zogeheten ‘radiation mode 
theory’, oftewel de stralingsmode theorie. Deze theorie is mathematisch zwaar geladen, 
maar is in staat om de interactie van geluid te beschrijven in systemen die discontinuïteiten 
vertonen in meerdere dimensies. Een typisch voorbeeld is een kubus. Desalniettemin wordt 
die moeilijke theorie in deze sectie in eenvoudige bewoordingen beschreven met een 
minimum aan wiskundige uitdrukkingen. Er wordt uitvoerig beschreven wat de historische 
gronden zijn, voor welke systemen de theorie reeds is ingezet en wat de 
toekomstverwachtingen zijn. 
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Fig. I.8 (identiek aan Fig. IX.A_7): Een voorbeeld van een geometrische configuratie voor dewelke de 
stralingsmode theorie nuttig is gebleken: een plaat (‘substrate’) die langsheen de linkerhelft voorzien is 
van een deklaag (‘coating’) en voor dewelke die deklaag ontbreekt aan de rechterkant. Een Gaussische 

ultrasone bundel (‘incident bounded beam’) valt in op het overgangsgebied en wekt ondermeer een 
doorgelaten (‘transmitted’) Scholte – Stoneley oppervlaktegolf op die naar rechts beweegt alsook eenzelfde 

golf (‘reflected’) die gereflecteerd wordt en naar links beweegt. 
 

 
 
 Sectie IX.B : Een studie van de diffractie van uitstralende Rayleigh golven 

aan het uiteinde van een dikke plaat, ondergedompeld in een 
vloeistof. 

 
 • Nico F. Declercq, A. Teklu, M. A. Breazeale, Rudy Briers, Oswald Leroy, Joris Degrieck, Gennady 

N. Shkerdin, "Study of the scattering of leaky Rayleigh waves at the extremity of a fluid loaded 
thick plate", J. Appl. Phys 96(10),5836-5840, 2004 (Imp. Fact. 2.281; SCI-index, Physics-Applied, 
rank:13/76) 

• Mondelinge presentatie tijdens ‘75th Anniversary Celebration of the Acoustical Society of America 
(147th meeting of the Acoustical Society of America)’, Sheraton New York Hotel and Towers, New 
York, New York, VSA, 24-28 mei 2004 

 
      In de voorgaande sectie worden ondermeer resultaten weergegeven die bekomen zijn na 

een theoretische en een experimentele studie betreffende de interactie van een Scholte – 
Stoneley oppervlaktegolf die beweegt langsheen een vlakke plaat en die interageert met het 
uiteinde van die plaat. Het resultaat is dat de Scholte – Stoneley golf het merendeel van 
zijn energie uitstraalt in het verlengde van de plaat. Een eerste wetenschappelijke vraag die 
daar op natuurlijke wijze uit volgt is of het gedrag van een Rayleigh oppervlaktegolf 
gelijkaardig is. Een tweede daaropvolgende vraag is eerder gegroeid vanuit het standpunt 
van de technologie van het niet-destructief testen van materialen: Is het mogelijk om het 
oppervlak van een plaat te testen, indien men enkel toegang heeft tot de zijkant van die 
plaat? 
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Fig. I.9 (identiek aan Fig. IX.B_6): Dit is een van de Schlierenfoto’s die aantonen dat een Rayleigh golf, 
die opgewekt wordt langsheen de bovenkant van een dikke plaat met behulp van ultrasone instraling door 
middel van een begrensde bundel, ‘om het hoekje’ gaat en zich langs de verticale wand voortplant en zijn 
energie geleidelijk uitstraalt langsheen de Rayleigh hoek. De witte streepjeslijn komt precies overeen met 

de randen van de dikke plaat. 
 
     De huidige studie toont aan dat Rayleigh oppervlaktegolven ‘om het hoekje’ gaan, 
wanneer ze het uiteinde van een plaat bereiken. De studie is gebaseerd op 
Schlierenfotografie en werd uitgevoerd voor verschillende materialen. Daarmee is 
aangetoond dat Rayleighgolven fundamenteel anders interageren met het uiteinde van een 
plaat. Daarmee is tevens aangetoond dat, indien enkel de zijkant van een dikke plaat 
toegankelijk is, een Rayleighgolf kan opgewekt worden op die zijkant, en dat die golf zich 
automatisch voortplant ‘om het hoekje’ naar het vlak van de plaat. Dit is bijzonder 
belangrijk voor het niet-destructieve onderzoek op moeilijk toegankelijke 
materiaalonderdelen. 
     Het is ondermeer de bedoeling om met de stralingsmode theorie in de toekomst deze 
experimentele studie theoretisch te begrijpen en numeriek te simuleren. 
     Intuïtief is echter duidelijk dat een Scholte – Stoneley golf die dieper doordringt in de 
omringende vloeistof dan in de vaste stof, eerder het pad van de vloeistof tracht te volgen, 
terwijl Rayleigh golven, die dieper doordringen in de vaste stof dan in de vloeistof, het pad 
van de vaste stof prefereren. 
     Bovendien licht de studie een tipje van de sluier en onthult ernstige aanwijzingen dat 
Rayleighgolven voornamelijk worden gestimuleerd door de randen van een begrensde 
bundel en niet zozeer door het centraal gedeelte van de bundel. 
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 Sectie IX.C : De interactie van een begrensde bundel met het uiteinde van 
een plaat, onder de Lambhoek. 

 
 • Nico F. Declercq, Joris Degrieck, Oswald Leroy, "Bounded beam interaction with plate-edge at 

Lamb angle", Acta Acustica United with Acustica 91, 326-332, 2005 (Imp. Fact. 0.346; SCI-index, 
Acoustics, rank:21 /28) 

• Mondelinge presentatie tijdens ‘51st open seminar on Acoustics, joint with 9th School of Acousto-
Optics and Applications’, Gdansk, Polen , 6-10 september 2004. 

 
      De twee voorgaande secties toonden aan hoe enerzijds Scholte – Stoneley golven en 

anderzijds Rayleigh golven interageren met het uiteinde van een dikke plaat. Indien men 
echter te maken heeft met een dunne plaat, dan is het interessanter om na te gaan wat er 
gebeurt indien een Lambgolf (een soort plaatgolf) interageert met het uiteinde van een 
plaat. Een combinatie van theoretische modellering en analyse van kwalitatief haarscherpe 
Schlierenfoto’s toont aan welke Lambgolven worden omgezet in welke andere 
Lambgolven en toont tevens aan dat Lambgolven, wanneer ze het uiteinde van de plaat 
bereiken, een akoestische multipool teweegbrengen die, naargelang de omstandigheden, 
prachtige voorwaarts stralende ultrasone bundels kan opwekken. 

 

 
 

Fig. I.10 (identiek aan Fig. IX.C_5): Deze spectaculaire Schlierenfoto onthult de wondermooie 
interactie van een begrensde bundel met het uiteinde van een dunne aluminiumplaat, indien de 

invalshoek overeenstemt met de Lambhoek voor A1 Lambgolven. Uit de foto wordt afgeleid welke 
Lambmodes na modeconversie ontstaan. Tevens wordt aangetoond, dat het voorwaarts patroon (de 
twee nagenoeg horizontale bundels) ontstaat door multipool-opwekking. De numerieke waarden op 

deze figuur komen overeen met de hoeken ten opzichte van de loodrechte op de plaat. 
 
 
Hoofdstuk X Diffractieverschijnselen 
 
 • mondelinge presentatie op uitnodiging tijdens ‘51st open seminar on Acoustics, joint with 9th School 
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of Acousto-Optics and Applications’, Gdansk, Polen , 6-10 september 2004. 

 
 Secties X.A.1 : Ultrasone Diffractieverschijnselen op eendimensionale ruwe 

oppervlakken 
 
 Sectie X.A.1.a : Een theoretische studie van de achterwaartse verplaatsing 

van een bundel op periodiek ruwe oppervlakken en het 
verband met uitstralende Scholte – Stoneley golven. 

 
 • Nico F. Declercq, Joris Degrieck, Rudy Briers, Oswald Leroy, "Theory of the backward beam 

displacement on periodically corrugated surfaces and its relation to leaky Scholte-Stoneley waves",  
J. Appl. Phys. 96(11), 6869-6877, 2004 (Imp. Fact. 2.281; SCI-index, Physics-Applied, rank:13/76) 

• Mondelinge presentatie tijdens First Pan-American/Iberian Meeting on Acoustics (144th Meeting of 
the Acoustical Society of America, 3rd Iberoamerican Congress of Acoustics, 9th Mexican Congress 
on Acoustics), Cancun, Mexico, 2-6 Dec. 2002. 

• ‘Best student paper award’ geschonken door de ‘Acoustical Society of America’ 

 
 

 
Fig. I.11 : De achterwaartse verschuiving van een begrensde bundel bij interactie met een periodiek ruw 
oppervlak. Het pijltje duidt de invalsrichting aan. Dit fenomeen bleef onverklaard sinds 1976, maar is nu 

volledig ontrafeld. 
 

     In 1976 voerden Breazeale en Torbett Schlieren-experimenten uit op periodiek ruwe 
oppervlakken. Naar analogie met een fenomeen van de achterwaartse verschuiving van 
lichtbundels in het elektromagnetisme, verwachtten Breazeale en Torbett een gelijkaardig 
fenomeen in de akoestiek, mede door de voorspelling door Bertoni en Tamir dat het 
fenomeen bij een welbepaalde invalshoek zou moeten optreden, naargelang de gebruikte 
frequentie en naargelang de aard van de vaste stof en de periodiciteit van de groefjes die 
werden aangebracht op het oppervlak van die vaste stof. Maar, de experimenten toonden 
dat het fenomeen optreedt onder een zeer onverwachte invalshoek en bovendien bleek 
niemand in staat om deze achterwaartse verplaatsing te simuleren, niet bij de experimenteel 
waargenomen hoek, noch bij de theoretisch voorspelde hoek. 
     De huidige sectie toont aan op welke manier het fenomeen kan begrepen en 
gesimuleerd worden, namelijk door gebruik van de inhomogene golftheorie. Er wordt 
tevens aangetoond dat het fenomeen niet verklaarbaar is met de klassieke Fourier theorie. 
Bovendien wordt theoretisch aangetoond dat het fenomeen het gevolg is van een nieuw 
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type oppervlaktegolf, namelijk een uitstralende Scholte – Stoneley golf. Dit type golf was 
voorheen onbekend en bestaat enkel op ruwe oppervlakken en is min of meer vergelijkbaar 
met de klassieke Scholte – Stoneley golf op vlakke oppervlakken, die nooit uitstraalt. 
Bovendien voorspelt het theoretisch model dat, indien Breazeale en Torbett een smallere 
ultrasone bundel hadden geimplementeerd, dat ze dan hoogstwaarschijnlijk wel iets (een 
bundelverschuiving of profielvervorming) hadden gezien bij inval onder de hoek die door 
Bertoni en Tamir was voorspeld. 
     Voorts verklaart deze sectie de ware aard van zogenaamde Wood-anomalieën in het 
nulde-orde diffractiespectrum voor loodrecht invallend geluid op een periodiek ruw 
oppervlak. Alhoewel dit vroeger verondersteld werd te wijten te zijn aan Scholte - Stoneley 
golven, wordt hier aangetoond dat dit slechts een deel van de waarheid is en dat het 
daarenboven te wijten is aan een soort eigentrilling van het ruwe oppervlak bij de 
betreffende frequentie. 
 

 
Fig. I.12 (identiek aan Fig. X.A.1.a_15): De stippellijn komt overeen met het profiel van de invallende 

bundel, terwijl de volle lijn overeenkomt met de achterwaarts verschoven gereflecteerde bundel, in 
overeenstemming met het experiment van Breazeale en Torbett in Fig. I.11. De horizontale as is de afstand 

tot het centrum van de invallende bundel, terwijl de verticale as de amplitude voorstelt. 
 
 
 
 
 
 
 
 
 

 
- 18 - 



CHAPTER I: Dutch Summary (Nederlandstalige Samenvatting) 
  

 Sectie X.A.1.b : Experimentele studie van de achterwaartse verplaatsing van 
een bundel op periodiek ruwe oppervlakken en het verband 
met uitstralende Scholte – Stoneley golven. 

 
 • Aanvaard voor publicatie in J. Appl. Phys. (Imp. Fact. 2.281; SCI-index, Physics-Applied, 

rank:13/76) 
 
      Deze sectie volgt nauw op de vorige sectie en beschrijft resultaten die gehaald zijn uit 

experimenten die samen met Breazeale en anderen zijn uitgevoerd in Mississippi. Er wordt 
experimenteel aangetoond dat het fenomeen van de achterwaartse verplaatsing inderdaad 
het gevolg is van een uitstralend type Scholte – Stoneley golf. Bovendien wordt 
aangetoond dat smallere bundels inderdaad profielwijzigingen teweegbrengen, bij de hoek 
die door Bertoni en Tamir werd voorspeld. Deze experimenten zijn uitgevoerd nadat de 
theorie was bekendgemaakt en vormen daarom een perfecte bevestiging van de 
theoretische voorspellingen. 
 
 

 
 

Fig. I.13 (identiek aan Fig. X.A.1.b_5): Deze foto vormt het experimentele bewijs van het feit dat de 
achterwaartse bundelverschuiving ontstaat door een naar achteren gerichte soort Scholte – Stoneley golf. 
De bewijsvoering is gebaseerd op het feit dat de Scholte – Stoneley golf uitstraalt in het verlengde van de 

plaat, wanneer ze de rand bereikt. De instraalhoek op deze foto is gelijk aan de instraalhoek van Fig. I.11, 
zij het voor een smallere bundel in de huidige figuur ten opzichte van Fig. I.11, vandaar ook een 

verwaarloosbare achterwaartse verplaatsing van de gereflecteerde bundel. 
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Fig. I.14 (identiek aan Fig. X.A.1.b_7): Deze foto’s tonen aan dat er profielwijzigingen ontstaat bij de 
hoek die door Bertoni en Tamir was voorspeld, op voorwaarde dat de ingestraalde bundel smal genoeg is, 

wat theoretisch was voorspeld in de voorgaande sectie. 
 
 
 
 Sectie X.A.1.c : Opmerking over het gediffracteerd geluidsveld, gegenereerd 

door inhomogene golven na interactie met een ruwe 
periodiek ruwe scheiding tussen een vloeistof en een vaste 
stof 

 
      Enkele jaren geleden werd door Briers et al vooropgesteld dat bij de diffractie van 

inhomogene golven aan een periodiek ruw oppervlak, de tekenkeuze voor de componenten 
van de golfvectoren volgens de normaal aan het oppervlak, volgens principes diende te 
gebeuren die wel resultaten opleverden in overeenstemming met de experimenten, maar 
die tegenstrijdig waren met principes die werden gehanteerd aan vlakke oppervlakken. 
Hier wordt aangetoond dat het perfect mogelijk is om dezelfde principes te hanteren als 
aan een vlakke scheiding, maar in een veralgemeende vorm, voor een periodiek ruwe 
scheiding. De berekende resultaten komen even goed overeen met de experimenten en 
houden geen contradictie meer in. 
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Fig. I.15 (identiek aan Fig. X.A.1.c_2): Vergelijking tussen experimentele waarden (cirkels) en 

theoretische waarden (lijnen) voor de nulde-orde reflectiecoëfficiënt voor verschillende invalshoeken 
tussen –900 en +900. Het bovenste gedeelte toont de amplitude, terwijl het onderste gedeelte de fase 

weergeeft. De horizontale as stelt telkens de invalshoek voor, terwijl de verticale as de amplitude (bovenste 
deel) weergeeft of de fase (onderste deel). De theoretische waarden werden berekend voor de nieuwe 
tekenkeuze die overeenstemt met die aan een vlakke scheiding. Er blijkt een duidelijke gelijkenis te 

bestaan tussen de theorie en het experiment. 
 
 
 
 Sectie X.A.1.d : De diffractie van complex harmonische vlakke golven en de 

opwekking van voorbijgaande uitstralende Rayleigh golven 
 
 • Mondelinge presentatie tijdens ‘75th Anniversary Celebration of the Acoustical Society of America 

(147th meeting of the Acoustical Society of America)’, Sheraton New York Hotel and Towers, New 
York, New York, VSA, 24-28 mei 2004 

 
      De meest veralgemeende vorm van vlakke golven bevat niet enkel een complexe 

golfvector, maar tevens een complexe frequentie. Indien aanwezig, dan veroorzaakt het 
imaginaire gedeelte van de frequentie een exponentieel dalende of stijgende amplitude als 
functie van de tijd. In deze sectie wordt bestudeerd hoe zulke golven interageren met een 
periodiek ruw oppervlak. Het is geweten dat periodiek ruwe oppervlakken in staat zijn om 
vlakke en inhomogene golven om te vormen tot oppervlaktegolven, maar is dit ook het 
geval voor complex harmonische golven? De studie toont aan dat loodrecht invallende 
complex harmonische golven in staat zijn (veel beter dan harmonische inhomogene 
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golven) om Rayleigh golven op te wekken die ‘voorbijgaand’ (Engels: ‘transient’) van aard 
zijn en die eveneens energie uitstralen in de vloeistof.  

Fig. I.16 (identiek aan Fig. X.A.1.d_6): Een voorbeeld van het nulde orde diffractiespectrum (amplitude 
in dB), als functie van de reële frequentie (horizontale as) en de imaginaire frequentie (verticale as) Men 

merkt gebiedjes op met een zeer kleine amplitude en ook gebiedjes met een zeer grote amplitude. Deze 
gebiedjes zijn typisch een indicatie voor de opwekking van oppervlaktegolven.  

 
Deze bevinding is zeer belangrijk omdat het veel eenvoudiger is, en tevens flexibeler, om 

complex harmonische golven op te wekken dan inhomogene golven. Dit opent de weg naar 
de relatief eenvoudige opwekking van hoogenergetische Rayleighgolven met behulp van 

een diffractierooster en een invallende bundel met middelmatige amplitude. 
 
 
 Sectie X.A.1.e : Het akoestische diffractierooster: een filter voor complexe 

frequenties in elektronische signalen 
 
      In de elektronica is het begrip van het frequentiespectrum uiteraard heel goed 

ingeburgerd. Het spectrum kan fysisch bepaald worden via de nodige filters, of kan 
mathematisch berekend worden via de Fourier transformatie. Er bestaat echter ook de 
mogelijkheid om een elektronisch signaal lokaal voor te stellen als een sommatie van in de 
tijd exponentiële functies. Deze exponentiële functies komen in principe overeen met het 
effect van het imaginair gedeelte van de frequentie in complex harmonische akoestische 
golven. Alhoewel deze mathematische ontbinding mogelijk is via de nodige 
optimalisatieprocedures, blijft de vraag of het mogelijk is om een fysische filter te bouwen 
die het mogelijk maakt om dit ‘complexe spectrum’ te begroten in plaats van louter het 
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‘reële spectrum’. De studie toont aan dat voor dit doel een periodiek ruw oppervlak kan 
dienst doen, in combinatie met acousto-optische cellen. 

 
Fig. I.17 (identiek aan Fig. X.A.1.e_1): Een schematische voorstelling van hoe de filter er zou kunnen 

uitzien. Een vrij brede transducer (‘transmitter’) stuurt geluid naar een periodiek ruw oppervlak 
(‘diffraction grating’) waarna het gediffracteerd geluid kan gedetecteerd worden via omnidirectionele 
transducers (‘receivers’). Deze transducers verschaffen zo informatie over de energierichting. Om de 
faserichting te kennen, wordt gebruik gemaakt van laserlicht (‘traversing laserlight’) dat het geluid 

doorstraalt en waarvan het diffractiepatroon loodrecht gevormd wordt ten opzichte van de fasevlakken van 
het geluid.  

 
 
 Sectie X.A.1.f : Het gebruik van gepolariseerde begrensde bundels om de 

groefrichting van een ruw oppervlak te bepalen bij 
loodrechte inval, de opwekking van oppervlaktegolven en de 
instraling bij Bragghoeken. 

 
 • Nico F. Declercq, Rudy Briers, Oswald Leroy, " The use of polarized bounded beams to determine 

the groove direction of a surface corrugation at normal incidence, the generation of surface waves 
and the insonification at Bragg-angles", Ultrasonics 40/1-8 pp. 345-348, 2002.(Imp. Fact. 0.844; 
SCI-index, Acoustics, rank:11 /28) 

• poster presentatie tijdens ‘Ultrasonics International 2001’, Technische Universiteit Delft, Delft, 
Nederland, 2-5 juli 2001. 

 
      Tijdens niet-destructieve testen gebeurt het soms dat men te maken krijgt met platen 

waarvan de onderkant gegroefd is. Een van de vragen die men dan dient te beantwoorden is: 
‘Volgens welke richting zijn de groeven gemaakt?’. Dit werk bestudeert en overhandigt een 
methode om de richting vrij eenvoudig te bepalen, gebruik makend van één enkele 
breedbandige contact-transducer die loodrecht geplaatst wordt op de plaat.  
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Fig. I.18 (identiek aan Fig. X.A.1.f_5): |I| is de amplitude van de loodrecht invallende longitudinaal 

gepolariseerde Gaussische bundel, |R| is de amplitude van het gereflecteerde longitudinaal gepolariseerde 
geluid, |S| is de amplitude van het gereflecteerde transversaal gepolariseerde geluid en |T| is de amplitude van 
het doorgelaten longitudinaal gepolariseerde geluid. De frequentie is deze dewelke, voor de gegeven groeven, 
Scholte-Stoneley oppervlaktegolven opwekt. De horizontale as komt overeen met de richting langs de plaat, de 

verticale as komt overeen met de normaal op de plaat, gedeeld door de periode van het groefpatroon. Het is 
duidelijk dat er een franjepatroon optreedt, dit is het gevolg van de interferentie van Scholte-Stoneley 
oppervlaktegolven die van links naar rechts lopen en zij die van rechts naar links lopen. Alhoewel de 

amplitude het grootst is in de omgeving van de invallende bundel, is het zo dat het franjepatroon zich uitstrekt 
buiten de grenzen van de invallende bundel.  

 
Analyse van de gereflecteerde puls, bijvoorbeeld voor invallende circulair gepolariseerde 
golven, leert dat de polarisatierichting bij een frequentie die overeenstemt met deze dewelke 
Scholte-Stoneley oppervlaktegolven opwekt, parallel staat ten opzichte van de groeven en 
deze dewelke Love-oppervlaktegolven opwekt, loodrecht staat ten opzichte van de groeven. 
Bovendien wordt aangetoond dat, alhoewel strikt genomen enkel vlakke golven in staat zijn 
om Scholte-Stoneley golven op te wekken bij loodrechte inval, via diffractie op die groefjes 
onderaan de plaat, ook begrensde bundels daartoe in staat zijn. 

 
 Sectie X.A.1.g : De diffractie van horizontaal gepolariseerde ultrasone vlakke 

golven aan een periodiek ruwe vaste stof – vloeistof scheiding 
bij loodrechte inval en bij inval onder de Brewster hoek. 

 
 • Nico F. Declercq, Rudy Briers, Joris Degrieck, Oswald Leroy, "Diffraction of horizontally polarized 
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ultrasonic plane waves on a periodically corrugated solid-liquid interface for normal incidence and 
Brewster angle incidence", IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency 
Control, 49(11), 1516-1521, 2002. (Imp. Fact. 1.595 ;SCI-index, Engineering – electrical & 
electronic, rank:46/205) 

• Mondelinge presentatie tijdens ‘ICA2004 18th International Congress on Acoustics’, Kyoto 
International Conference Hall, Kyoto, Japan, 4-9 April 2004 

 
      Net als in de vorige sectie, wordt hier het gedrag bestudeerd van geluid dat opgewekt 

wordt aan de vlakke kant van een plaat en dat interageert met de ruwe tegenovergestelde 
kant van dezelfde plaat. Men spreekt van horizontaal gepolariseerde golven indien de 
polarisatierichting evenwijdig is met de groeven en men spreekt van verticaal 
gepolariseerde golven indien de polarisatie loodrecht staat op de groefrichting. Ofschoon 
het gros van de onderzoekers altijd al aannam dat invallend verticaal gepolariseerd geluid 
geen horizontaal geluid kan opwekken en omgekeerd, wordt in deze sectie het theoretische 
bewijs van die stelling geleverd. Bovendien wordt de vergelijking opgesteld die een 
beschrijving toelaat van de interactie van horizontaal gepolariseerde golven met de 
groefjes. Het ontstaan van Love-oppervlaktegolven wordt numeriek aangetoond. 
Daarenboven wordt ook het bestaan van een Brewsterhoek aangetoond en wordt aldus 
bewezen dat deze bekende hoek uit de optica ook een tegenhanger heeft in de akoestiek. 

 
Fig. I.19 (identiek aan Fig. X.A.1.g_4): Deze figuur geeft de gereflecteerde intensiteit (verticale as) weer 

voor de verticaal gepolariseerde nulde orde gediffracteerde golf  en de horizontaal gepolariseerde 

nulde orde gediffracteerde golf  als functie van de invalshoek (horizontale as). De Brewsterhoek is deze 

hoek waarbij een minimum vertoont en waarbij het gereflecteerde geluid dus hoofdzakelijk 
horizontaal gepolariseerd is, net zoals bij de Brewsterhoek in de optica. 

0S
0R

0S

 
- 25 - 



CHAPTER I: Dutch Summary (Nederlandstalige Samenvatting) 
  

 
 Sectie X.A.1.h : Enkele bemerkingen bij het fenomeen van Scholte – Stoneley 

golven op periodiek ruwe oppervlakken 
 
 • Mondelinge presentatie tijdens ‘17th International Congress on Acoustics’, Rome, Italië, 2-7 

september 2001 
 
      Aan de hand van experimenten die uit de literatuur gehaald zijn, wordt aangetoond dat 

er aanwijzingen zijn dat Scholte-Stoneley oppervlaktegolven sneller voortbewegen 
langsheen een ruwe plaat dan langsheen een vlakke plaat. In 2001 werd een model 
voorgesteld dat het fenomeen bijna perfect kon simuleren, maar dat volgens de referees 
van het toen ingestuurde artikel te weinig de te verwachten dispersieve aard van 
oppervlaktegolven op ruwe oppervlakken weerspiegelde. Omwille daarvan werd een 
verbeterde versie van het model uitgesteld en is het oorspronkelijke model niet in deze 
thesis opgenomen. 
 

 
 

Fig. I.20 (identiek aan Fig. X.A.1.h_1): Er zijn sterkte aanwijzingen dat een ruw oppervlak door een 
Scholte – Stoneley oppervlaktegolf wordt ‘gevoeld’ als een deklaag op een plaat. Dit maakt het vanuit 

theoretisch standpunt niet onmogelijk dat zulke golven sneller voortbewegen langsheen een ruwe plaat 
dan langsheen een vlakke plaat, een fenomeen dat experimenteel wordt waargenomen. ‘Propagation’ 

duidt de voortplantingsrichting aan, terwijl ‘liquid’ de vloeistof, ‘solid’ de vaste stof en ‘coating’ de 
deklaag voorstellen. 

 
 Sectie X.A.2 : Ultrasone Diffractieverschijnselen op tweedimensionale ruwe 

oppervlakken 
 
 Sectie X.A.2.a : De diffractie van homogene en inhomogene vlakke golven op 

een dubbel gegroefde vloeistof – vaste stof scheiding. 
 
 • Mondelinge presentatie tijdens ‘InterNoise2003’, International Convention Center Jeju, Seogwipo, 

Korea, 25-28 augustus, 2003 
• Mondelinge presentatie tijdens 'Acoustics 2003', Universiteit van Cadiz, Cadiz, Spain, 16-18 juni 

2003. 
 
      In de voorgaande secties werd steeds uitgegaan van een oppervlak dat parallelle 

groefjes vertoont. Het kan echter ook voorkomen dat groefjes worden aangebracht op een 
plaat, loodrecht op reeds aanwezige groefjes. Dan ontstaat er iets wat lijkt op een ‘eierkrat’. 
De beschrijving van de diffractie op zo’n oppervlak en de stimulering van 
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oppervlaktegolven, was nog nooit gebeurd. In deze sectie wordt vooreerst aangetoond wat 
de fysische en theoretische verklaring is voor een veralgemening van de klassieke 
roostervergelijking in het geval van invallende inhomogene golven. De roostervergelijking 
in een richting (bvb de x-richting), is gegeven door 

2m inck k mx x
x

π
= +

Λ
 

waarbij mkx  de golfvectorcomponent is voor de m-de orde gediffracteerde golf langsheen 

het oppervlak, waarbij inckx  diezelfde component is, maar voor de invallende vlakke golf, 

waarbij  de diffractieorde is en m xΛ  de ruimtelijke periode van het ruwe oppervlak in de 

x-richting. Een veralgemening houdt in dat de vergelijking nog steeds opgaat, ook indien 
inckx  een complexe waarde heeft, dus in het geval van invallende inhomogene golven. 

Fig. I.21 (identiek aan Fig. X.A.2.a_5): deze grafiek geeft de amplitude weer van het geluid dat 
diffracteert aan een tweedimensionaal gegroefd oppervlak, met mmyx 2.2=Λ=Λ , en wiens 

voortplanting gericht is precies in het midden tussen de x-as en de y-as. De amplitude is weergegeven  als 
functie van de frequentie (horizontale as [MHz]) en als functie van de hoogte van de groefjes( loodrecht op 
de y-richting), voor een vaste hoogte mhx µ50=  van die groefjes (welke evenwijdig zijn aan de y-richting). 

De frequentie 0.951 MHz correspondeert met de opwekking van Scholte Stoneley golven langs die 
richting. Het is duidelijk dat de amplitude toeneemt naarmate de veranderlijke hoogte even groot wordt als 

mhx µ50= . Dit komt omdat in die omstandigheid de Scholte-Stoneley golf optimaal gestimuleerd wordt in 
die welbepaalde richting. 
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     Deze verklaring is specifieerbaar tot het eendimensionale geval waar de veralgemening 
vroeger reeds werd geponeerd en experimenteel geverifieerd, maar nooit theoretisch 
bewezen. Vervolgens worden in deze sectie de vergelijkingen opgesteld die het 
diffractieverschijnsel op tweedimensionaal gegroefde oppervlakken beschrijven en worden 
numerieke simulaties uitgevoerd, zowel voor invallende klassieke homogene vlakke 
golven als voor meer gesofisticeerde inhomogene golven. Er wordt numeriek aangetoond 
en theoretisch verklaard, hoe het mogelijk is om een bepaalde richting in het vlak te geven 
aan opgewekte Scholte-Stoneley oppervlaktegolven. Een gelijkaardige procedure wordt 
gevolgd om duidelijk te maken waarom inhomogene golven slechts in welbepaalde 
richtingen Rayleighgolven kunnen opwekken. Tevens wordt een studie gemaakt van de 
invloed van de relatieve dieptes van de orthogonale groeven op een tweedimensionaal 
gegroefde plaat.  

 
 
 
 Secties X.B : Akoestische diffractieverschijnselen 
 
 Sectie X.B.1 : Een theoretische studie van speciale akoestische effecten die 

veroorzaakt worden aan de trappen van de El Castillo 
piramide in de Maya ruines van Chichen Itza in Mexico 

 
 • Nature News 14 December 2004; | doi:10.1038/news041213-5 

• Nico F. Declercq, Joris Degrieck, Rudy Briers, Oswald Leroy, "A theoretical study of special 
acoustic effects caused by the staircase of the El Castillo pyramid at the Maya ruins of Chichen-Itza 
in Mexico", J. Acoust. Soc. Am. 116(6), 3328-3335, 2004 (Imp. Fact. 1.310; SCI-index, Acoustics, 
rank:7 /28) 

• Mondelinge presentatie tijdens ‘145th Meeting of the Acoustical Society of America’, Nashville 
Convention Center, Nashville, Tennessee, USA, 28 april - 2 mei 2003. 

• Mondelinge presentatie tijdens ‘CFA/DAGA'04, 7ème Congrès Français d’Acoustique, Salon 
Européen de l’Acoustique - 30. Deutsche Jahrestagung für Akustik, Europäische Akustik-
Ausstellung’, Palais des Congrès et de la Musique, Strasbourg, France, 22-25 maart 2004 

• Verschenen in tientallen kranten over de ganse wereld en in België, verschenen in ‘De Nieuwe 
Wereld’ (radio 1) en in het nieuws (VTM) 

 
      In tegenstelling tot alle voorgaande secties, die eigenschappen van ultrageluid 

beschreven, handelt deze sectie over akoestische signalen. Dit zijn dus laagfrequente 
signalen die voor het menselijk oor hoorbaar zijn. Meer specifiek komt in deze sectie een 
fenomeen aan bod waarbij een trap fungeert als diffractierooster voor hoorbaar geluid. 
Aangezien dit fenomeen nogal wat aandacht heeft gekregen in de pers, verdient het een iets 
uitgebreider stuk binnen deze korte samenvatting. 
     In Mexico, in de buurt van het toeristische Cancun, is er een archeologische Maya site, 
Chichen-Itza genaamd. Op die site zijn er verschillende bijzondere akoestische fenomenen 
waarneembaar, zoals bijvoorbeeld een balspel-terrein, omgeven door een muur, waarbij de 
trainer van het ene team kan spreken tegen de trainer van het andere team, op zo’n 100 
meter afstand van elkaar, zonder zijn stem te moeten verheffen. Dit, terwijl de spelers op 
het veld, die zich tussenin de twee trainers bevinden, niets van de conversatie kunnen 
horen. Dit is een bizar fenomeen, maar is perfect verklaarbaar dankzij de structuur van de 
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muur, die het geluid geleidt van de ene trainer naar de andere. 
     Doch, op die site staat ook een piramide (El Castillo) die nog in vrij goede staat is. Men 
meent dat de piramide onder meer dienst deed als zonnekalender. Aan de vier zijden van 
de piramide bevindt zich een steile trap met treden die ietsje hoger zijn dan de treden die 
men tegenwoordig vindt in moderne trappenhallen. Het aantal treden komt overeen met het 
aantal dagen in een jaar en op de dag van de equinox, schijnt de opkomende zon precies op 
een gesculpteerde slang, die zich langs een van de trappen naar de top van de piramide 
bevindt. Nu is het zo dat men ergens anders, in het oude Maya rijk, hiërogliefen heeft 
aangetroffen, waarop diezelfde slang staat afgebeeld samen met een in Mexico zeer 
bekende vogel, namelijk de Quetzal. De nauwe band tussen de Quetzal en de Maya’s is 
wellicht ontstaan toen de Maya’s nog in de wouden leefden en dus nog geen piramides 
bouwden. Het is reeds vele decennia een raadsel waarom de piramide een echo 
teweegbrengt die verdacht goed lijkt op het geluid van een Quetzal, in respons op een 
handklap. Er zijn verschillende theorieën geponeerd in het verleden, gaande van de 
tussenkomst van UFO’s tot een meer waarschijnlijke uitleg dat het hier gaat over een effect 
dat door de trappen van de piramide wordt teweeggebracht. Het fenomeen heeft reeds 
menig toerist en wetenschapper geboeid. 
     De jongste jaren zijn er dan ook extensieve akoestische metingen verricht, voornamelijk 
door David Lubman (California), die de structuur van de echo in kaart gebracht heeft. 
Echter, de gemeten signalen brachten enkel nieuwe speculaties teweeg, zonder een 
sluitende verklaring te geven. Zo werd, tot in 2002, verondersteld dat het hier ging om het 
fenomeen van Bragg scattering. Het was namelijk zo dat men via een zogenaamde ‘ray-
benadering’ patronen kon voorspellen die min of meer ook te zien waren in de gemeten 
signalen. 
     Om het fenomeen te demonstreren organiseerde ‘The Acoustical Society of America’ 
daarom een post meeting tour naar de site, ter gelegenheid van het eerste Pan-American 
Congress on Acoustics (Cancun, 2002).  
     Op de archeologische site in Chichen-Itza, werden wij gevraagd om met de ganse groep 
voor de piramide te staan en in onze handen te klappen. De echo, die telkens volgde op het 
geklap, was zo mooi en fenomenaal, dat werkelijk iedereen ervan onder de indruk was. 
Toen ons verteld werd dat het wellicht om een puur Bragg fenomeen ging, was ik het daar 
niet mee eens. Voor een Bragg fenomeen heb je namelijk een diffractierooster nodig van 
dezelfde grootteorde als de geluidsbron of heb je op z’n minst een parallelle invallende 
geluidsbundel nodig. Op de site hadden we te maken met een, bijna, puntbron (de groep 
klappende handen) en een veel grotere, weliswaar eindige, piramide (bekleed met trappen). 
Bovendien, terwijl ik eventjes ging zitten onderaan de piramide, op de eerste trede, hoorde 
ik regendruppels vallen in een emmer water. Toen ik omhoog keek kon ik duidelijk het 
verband horen en zien tussen de voetstappen van mensen die hogerop de piramide aan het 
beklimmen waren, en de geluiden die ik kon waarnemen. De ‘voetstap-pulsen’ waren 
blijkbaar omgevormd tot regendruppelgeluiden. Nu is het zo dat de Maya cultuur op 
Yucatan grotendeels verweven is met de regen, het voorspellen van regen en de regengod. 
Vanuit die optiek is het dan ook niet verwonderlijk dat je zulke fenomenen zou kunnen 
waarnemen. 
     Bij terugkomst, heb ik mij dus aan het werk gezet en heb ik een diffractiemodel van 
Claeys en Leroy voor de diffractie van oneindige en harmonische vlakke golven op een 
oneindig en geribbeld oppervlak, verder uitgebreid. De uitbreiding omvatte het feit dat we 
in Chichen-Itza te maken hebben met een sferische golf, dus geen vlakke golf, die 
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bovendien niet harmonisch is, maar wel gepulst en die, vooraleer ze interageert met de 
piramide, eerst deels met de grond interageert. Bovendien wordt die puls veroorzaakt door 
de aard van de bron. Tevens werden de geometrische eigenschappen van het probleem 
(dimensies van de piramide, positie van de waarnemer,…) alsook de fysische 
eigenschappen van de tropische lucht in Yucatan en van het gesteente van waaruit de 
treden zijn vervaardigd, in rekening gebracht. 
     Eerst en vooral is aangetoond, met het klassieke straal-model, dat het fenomeen geen 
puur Bragg fenomeen is, vermits de zogenaamde Bragglijnen niet samenvallen met de 
harmonieken in de sonogrammen die David Lubman (California) heeft geregistreerd. 
Vervolgens werd met het nieuwe model, zoals hierboven beschreven, aangetoond dat een 
mathematsiche puls (een delta functie) wel een gefluit teweegbrengt, maar niet dat gefluit 
dat ter plekke is waargenomen. Vervolgens werd aangetoond dat, indien een werkelijke 
handklap in het model wordt aangebracht, de echo wel nabootsbaar is en dat een voornaam 
deel van de echo-structuur eigenlijk te wijten is aan de reeds aanwezige harmonieken in de 
handklap zelf. Dus met andere woorden, het fenomeen in Chichen-Itza wordt niet enkel 
veroorzaakt door de treden zelf, die door hun diffractie-vermogen als het ware een 
ruimtelijke geluidsfilter vormen, maar ook door de aard van de geluidsbron, namelijk een 
handklap. Indien men bijvoorbeeld een trommel zou gebruiken als geluidsbron, dan zou de 
echo helemaal anders klinken, ook al gaat het telkens om een korte ‘puls’. 
 

 
 

Fig. I.22 (identiek aan Fig. X.B.1_8): Sonogram van de geregistreerde echo aan de voet van de piramide 
in Chichen Itza. In deze figuur en ook in de hiernavolgende twee figuren, overspant het witte kadertje 

steeds hetzelfde gebied, terwijl de ganse figuur het gebied [0 Hz – 5000 Hz] bevat langs de verticale as en 
langs de horizontale as een tijd van 0.2 s overspant. 

 
     Bovendien is aangetoond dat het zogenaamde regendruppel effect, dat hoger beschreven 
is, het gevolg is van diffractie van het geluid dat afkomstig is van voetstappen, die zich een 
weg banen, langsheen de trappen, naar de waarnemer onderaan de piramide. 
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     Dus samengevat blijkt nu dat zowel de Quetzal echo als het regendruppel effect, 
verklaard zijn, weliswaar dankzij een nieuw en vrij omslachtig model dat qua rekentijd 
verschillende weken bestrijkt, vanuit fysische gronden, en dat die verklaring het raadsel 
van de echo enkel maar kracht bij zet. Men kan namelijk nog steeds niet met zekerheid 
weten of de piramide doelbewust gebouwd is om de verschillende geluiden te veroorzaken, 
dan wel of het hier om puur toeval gaat. Dus ‘hoe’ het effect ontstaat is nu onomstotelijk 
bewezen, maar het ‘waarom’ blijft een mysterie… 

 
 

Fig. I.23 (identiek aan Fig. X.B.1_6): Sonogram van de gesimuleerde echo aan de voet van de piramide in 
Chichen Itza, volgend op een wiskundige ‘delta’ puls. Vergelijking met vorige figuur toont dat de lage 
frequenties niet in sterke mate aanwezig zijn. Vandaar de te hoge toonhoogte van de berekende echo. 
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Fig. I.24 (identiek aan Fig X.B.1_11): Sonogram van de gesimuleerde echo aan de voet van de piramide 
in Chichen Itza, volgend op een echte handklap. Behalve het feit dat de simulatie door numerieke 

moeilijkheden niet de precieze duur van de echo kan aantonen, komen wel de lagere frequenties duidelijk 
naar voren. De reden is het feit dat de lagere frequenties reeds in hoge mate aanwezig zijn in de handklap 

zelf. 
Hoofdstuk XI Ultrasone Polaire Scans 
 
 Sectie XI.A : Ultrasone polaire scans als niet destructieve methode om 

vezelversterkte platen te testen en te karakteriseren. 
 
 • Joris Degrieck, Nico F. Declercq, Oswald Leroy, "Ultrasonic Polar Scans as a possible means of 

nondestructive testing and characterization of composite plates", Insight - The Journal of The 
British Institute of Non-Destructive Testing, 45(3), 196-201, 2003. (Imp. Fact. 0.311; SCI-index, 
Materials Science – Characterization & Testing, rank:11/23) 

 
 
      Ultrasone scans zijn in wezen niets anders dan de registratie van de gereflecteerde of 

doorgelaten amplitude van een vrij brede ultrasone bundel aan een te onderzoeken plaat, 
voor elke mogelijk ruimtelijke invalshoek. Een polaire scan vertoont een typisch patroon 
dat enerzijds bepaald wordt door de eigenschappen van de ingestraalde ultrasone bundel, 
en anderzijds bepaald wordt door de eigenschappen van de plaat. Daardoor is een polaire 
scan eigenlijk een vingerafdruk van de fysische eigenschappen van een plaat en brengt op 
een behoorlijke wijze de aard van de anisotropie aan het licht. Derhalve is de techniek van 
de polaire scans uitermate geschikt voor het karakteriseren van vezelversterkte 
composietplaten. De stand van zaken van ultrasone polaire scans, wordt in deze sectie uit 
de doeken gedaan. 
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Fig. I.25 (identiek aan Fig. XI.A_1): In een ultrasone polaire scan wordt een bepaald gebiedje van een 

composietplaat (‘composite laminate’) bestraald met ultrageluid (afkomstig van de ‘emitter’ en ontvangen 
door de ‘receiver’) vanuit alle mogelijke hoeken ( )ϕθ , . 

 
 Sectie XI.B : Het simuleren van harmonische en gepulste polaire scans op 

orthotrope materialen en op meer algemene anisotrope 
kristallen 

 
 • Aanvaard voor publicatie in NDT & E International (Imp. Fact. 0.752; SCI-index, Materials 

Science – Characterization & Testing, rank:3/23) 
• Mondelinge presentatie tijdens ‘3rd International Conference on Emerging Technologies in Non-

Destructive Testing & Technology Transfer and Business Partnership Event’, Thessaloniki, 
Griekenland, mei 26-28, 2003. 

 
      Voor 2001 was een ‘polaire scan’-opstelling binnen onze vakgroep voorhanden en was 

het mogelijk om polaire scans te simuleren voor éénlagige orthotrope materialen. 
Aangezien vrijwel alle composieten meerlagig zijn en aangezien het af en toe voorkomt dat 
composieten een andere anisotropie bezitten dan orthotropie, was de oorspronkelijke 
doelstelling van dit werk de nodige modellering te ontwikkelen zodat ook polaire scans op 
zulke composieten te simuleren waren. De resultaten van deze studie en de wijze van 
modelleren, staan beschreven in de huidige sectie. Naast orthotrope materialen, is het nu 
ook mogelijk om elk mogelijk anisotroop materiaal aan een polaire scan te onderwerpen en 
de polaire scan te simuleren. Als voorbeelden komen bariumtitanaat aan bod en ook 
galliumarsenide. Gelijk welke oriëntatie van de kristallen kan in rekening worden gebracht. 
Bovendien kunnen verschillende kristallen gestapeld worden onder gelijk welke oriëntatie. 
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Fig. I.26 (identiek aan Fig. XI.B_10): gesimuleerde ultrasone polaire scan in transmissie op een 1mm dik, 

10-lagig (00/900) ‘cross ply’ vezelversterkt composiet bij 5MHz. 
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Fig. I.27 (identiek aan Fig. XI.B_15): gesimuleerde ultrasone polaire scan in transmissie op een 3mm dik, 
barium titanaat (z-cut) kristal, bij 2 MHz. 
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Fig. I.28 (identiek aan Fig. XI.B_26): gesimuleerde ultrasone polaire scan in transmissie op een 3mm dik, 

gelaagd kristal, bestaande uit een laag bariumtitanaat en een laag galliumarsenide met een willekeurig 
gekozen oriëntatie, bij 2 MHz. 

 
 
 
 Sectie XI.C : Over de invloed van vermoeiing op ultrasone polaire scans 

op vezelversterkte composieten 
 
 • Nico F. Declercq, Joris Degrieck, Oswald Leroy, " On the influence of fatigue on ultrasonic polar 

scans of fiber reinforced composites", Ultrasonics 42, 173-177, 2004. (Imp. Fact. 0.844; SCI-index, 
Acoustics, rank:11 /28) 

• Mondelinge presentatie tijdens ‘Ultrasonics International 2003’, Granada, Spanje, 30 juni- 3 juli 
2003 

 
      Binnen onze vakgroep gebeurt ook onderzoek naar vermoeiing van composieten. Eén 

van de gevolgen van vermoeiing is het optreden van een verminderde stijfheid. Aangezien 
ultrasone polaire scans in belangrijke mate bepaald worden, precies door de stijfheid van 
het onderzochte materiaal, is het evident dat ze kunnen ingezet worden om vermoeiing op 
te volgen. Deze studie toont dan ook expliciet aan dat het zowel experimenteel als 
theoretisch mogelijk is (met vrij goede overeenstemming) om vermoeiing op te volgen in 
een vezelversterkt composiet. Dit is zeer belangrijk in vele takken van de industrie waar 
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composieten aan vermoeiing onderhevig zijn, zoals in de luchtvaartindustrie, de 
scheepsbouw, de controle van windmolens, enzovoort… 

 
 
 Sectie XI.D : Een numerieke studie van de haalbaarheid om spanning te 

visualiseren in isotrope platen met gebruik van de 
gereflecteerde amplitude van harmonische golven 

 
 • Mondelinge presentatie tijdens ‘InterNoise2003’, International Convention Center Jeju, Seogwipo, 

Korea, augustus 25-28, 2003 
 
      Heel veel materialen zijn onderhevig aan residuele spanningen, die meestal het gevolg 

zijn van het fabricageproces. Daarenboven zijn zo goed als alle materialen, eens ze een 
onderdeel vormen van een bepaalde constructie, onderhevig aan aangelegde spanningen. 
Bovendien kunnen elk van de genoemde spanningen plaatsafhankelijk zijn, waardoor het 
aangewezen is om lokaal na te gaan wat de spanningen zijn. Aangezien de polaire scan 
bepaald wordt door de lokale stijfheden op de plaats van uitvoering op een bepaald 
materiaal, lijkt de polaire scan een mogelijk middel om die spanningen in kaart te brengen. 
Voor die reden werd nagegaan, via numerieke simulatie, in welke mate de polaire scan 
gevoelig is aan spanningen. De modellering werd volledig uitgevoerd voor anisotrope 
materialen, in tegenstelling tot heel wat modellen in de literatuur die enkel isotrope 
materialen in beschouwing nemen. De reden is het feit dat zelfs isotrope materialen, 
anisotroop kunnen worden door de aanwezigheid van spanningen. De berekeningen voor 
een isotrope plaat tonen aan dat, net zoals de intuïtie dit verwacht, isotrope platen de 
isotropie in het vlak van de plaat behouden bij loodrechte spanningen (ten opzichte van de 
plaat) en dat spanningen in het vlak van de plaat het isotrope materiaal anisotroop maken. 
Bovendien wordt aangetoond dat de gevolgen van spanningen voor een polaire scan niet 
spectaculair zijn, behalve voor vrij hoge spanningen. 

 
 
 
Hoofdstuk XII Geluid in piezo-elektrische materialen 
 
 Sectie XII.A : Het effect van verstijving van kristallen als gevolg van piezo-

elektriciteit.  
 
      Ofschoon dit in den beginne absoluut niet gepland was, kon ik niet weerstaan aan de 

verleidelijke lokroep van de natuurlijke schoonheid van kristallen die een mysterieus 
piezo-elektrisch karakter bezitten dat een opmerkelijke invloed heeft op de stijfheid. Dit 
laatste induceert in belangrijke mate een richtingsafhankelijke snelheidswijziging van het 
geluid in deze materialen. Vandaar dat in deze sectie het piezo-elektrisch effect wordt 
beschreven en dat op grafische wijze wordt duidelijk gemaakt wat de invloed is van piezo-
electriciteit op de stijfheid van kristallen, en dus op de traagheidskrommes voor vlakke 
golven die zich voortplanten in het beschouwde materiaal. De voorstellingswijze toont het 
verschil in traagheid voor elke richting en is uniek. Bovendien worden aan de berekende 
traagheidsverschil-oppervlakken pijltjes toegevoegd die, hetzij de wijziging van de 
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energieflux weergeven, hetzij de wijziging van de polarisatie. 
 

 
Fig. I.29 (identiek aan Fig. XII.A_5): het verschil tussen het traagheidsoppervlak voor de zogenaamde 
QSV-mode in lithiumniobaat met inbegrip van het piezo-elektrisch effect en met verwaarlozing van het 

piezo-elektrisch effect. De zwarte pijlen duiden het verschil in energieflux aan.  
 
 
 
 Sectie XII.B.1 : Inhomogene golven in piezo-elektrische materialen 
 
      In de vele voorgaande secties wordt hier en daar onderzoek beschreven op inhomogene 

golven. Niet in deze secties, noch in de verschenen literatuur, wordt het gedrag van 
inhomogene golven bestudeerd in piezo-elektrische kristallen. Vandaar dat in de huidige 
sectie een studie wordt uiteengezet die het gedrag van inhomogene golven beschrijft en die 
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de gevoeligheid voor het piezo-elektrisch effect nagaat. Er wordt onder meer aangetoond 
dat inhomogene golven gevoeliger zijn voor het piezo-elektrisch effect dan klassieke 
homogene vlakke golven. 
 

 
Fig. I.30 (identiek aan Fig. XII.B.1_12): het verschil tussen het traagheidsoppervlak voor de zogenaamde 

QSH-mode in lithiumniobaat met inbegrip van het piezo-elektrisch effect en met verwaarlozing van het 
piezo-elektrisch effect, voor inhomogene golven. De pijlen duiden het verschil in polarisatie aan. 

 
 
 
 Sectie XII.B.2 : Versterkte anisotropie in paratellurium voor inhomogene 

golven en het mogelijke belang voor de toekomstige 
ontwikkeling van acousto-optische cellen 

 
      In acousto-optics wordt de interactie van licht met geluid bestudeerd. Deze tak van de 

wetenschap heeft veel toepassingen, vooral in het gebied van de optische 
informatieverwerking, in elektronische filters enzovoort. Een van de tegenwoordig vaak 
gebruikte kristallen om acousto-optische cellen mee te bouwen, is paratellurium. Een van 
de redenen is de hoge efficiëntie, die mede wordt veroorzaakt door de zeer sterke 
anisotropie van deze kristallen. Deze anisotropie wordt weerspiegeld in een zeer sterke 
richtingsafhankelijkheid van de geluidssnelheid. In deze sectie wordt aangetoond dat, 
indien inhomogene golven worden beschouwd in plaats van klassieke homogene vlakke 
golven, dat dan die sterke richtingsafhankelijkheid nog aangewakkerd wordt, waardoor 
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aanwijzingen ontstaan dat de kwaliteit van paratellurium in acousto-optische cellen nog 
verder kan uitgebuit worden door gebruik te maken van inhomogene golven. 
 

 
Fig. I.31 (identiek aan Fig. XII.B.2_11): traagheidsoppervlak voor de zogeheten QSH-mode in 

paratellurium, indien inhomogene golven worden beschouwd. Het bolvormig patroon, voorzien van 
uitgesproken ‘naalden’, legt een extreem sterke richtingsafhankelijk van de golfsnelheid bloot. Dit is 
een heel belangrijke eigenschap die mogelijk in de toekomst de kwaliteit van acousto-optische cellen 

verder kan opdrijven. 
 
 Sectie XII.C : Geluid in voorgespannen piezo-elektrische materialen van 

gelijk welke anisotropie. 
 
 • Mondelinge presentatie tijdens ‘ICA2004 18th International Congress on Acoustics’, Kyoto 

International Conference Hall, Kyoto, Japan, 4-9 april 2004 
 
      Onderzoek werkt zeer verslavend. Enerzijds wil men steeds meer begrijpen, anderzijds 
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wil men de moeilijkheidsgraad van datgene wat men begrijpt, steeds verhogen. Deze 
verslaving ligt aan de basis om ook voorgespannen piezo-elektrische materialen te 
bestuderen. Het probleem met voorgespannen piezo-elektrische materialen is dat zowel de 
elastische als de elektrische eigenschappen geconditioneerd worden door het aangelegde 
spanningsveld of door het aangelegde elektrische veld. Bovendien treedt dit fenomeen op 
in kristallen, wiens anisotropie meestal niet van het eenvoudigste type is. Dit alles maakt 
het probleem des te aantrekkelijker om te doorgronden. Aangezien conditioneringvelden 
over het algemeen beduidend zijn en dus veel groter dan de typische velden die een 
akoestische golf met zich meebrengt, dient bovendien rekening te worden gehouden met 
niet-lineaire effecten tijdens de conditionering. Dit maakt dat ook hogere-orde 
materiaalconstanten hun intrede doen, wat het leven alleen maar leuker maakt. 
     De huidige sectie presenteert een veralgemeende vergelijking van Christoffel, die geldig 
is in het geval van voorgespannen piezo-elektrische kristallen die gelijk welke anisotropie 
kunnen bezitten. Deze vergelijking wordt verkregen door het geluidsveld te beschouwen in 
een systeem dat via niet-lineaire eigenschappen is geconditioneerd door zowel een 
aangelegde spanning als een aangelegd elektrisch veld. Voorts wordt een uitdrukking 
gegeven voor de energieflux in dit gecompliceerde geval. Er worden numeriek resultaten 
gerapporteerd voor Lithiumniobaat. De symmetrierelaties voor de lineaire en de hogere 
orde materiaalconstanten worden berekend op grond van het invariant gedrag van de 
materiaaleigenschappen onder de specifieke symmetrierelaties voor dit kristal. De invloed 
van een aangelegde spanning wordt berekend zowel met inbegrip als met verwaarlozing 
van piezo-elektriciteit, zowel voor homogene als voor inhomogene golven. Bovendien 
wordt de invloed nagegaan van zowel de grootte als de richting van de aangelegde 
spanning. De bekomen wiskundige uitdrukkingen zijn zo omvangrijk, dat ze, om deze 
samenvatting binnen de perken te houden, hier niet worden opgenomen. 
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Fig. I.32 (identiek aan Fig. XII.C_2): De verandering van het traagheidsoppervlak voor de zogeheten QL-

mode, in aanwezigheid van een aangelegde spanning van 90 MPa langs de x-richting, in het geval van 
piezo-elektrisch lithiumniobaat. De zwarte pijltjes duiden de verandering van de polarisatie aan. 
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Fig. I.33 (identiek aan Fig. XII.C_18): De verandering van het traagheidsoppervlak voor inhomogene 

golven voor de zogeheten QSV-mode, in aanwezigheid van een aangelegde spanning van 90 MPa langs de 
z-richting, in het geval van piezo-elektrisch lithiumniobaat. 

 
 
 
 
Hoofdstuk XIII Akoestische microscopie 
 
 Sectie XIII.A : Microscopische beeldvorming van het inwendige van 

vezelversterkte composieten 
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Fig. I.34 (identiek aan Fig. XIII.A_13): C-scan beelden op verschillende dieptes, beginnende met het 
bovenvlak (#1) en eindigend met het beeld van de bodemzijde (#12), voor een unidirectioneel, met een 

koolstofweefsel versterkt, composiet, gemaakt uit polyfenylsulfide (PPS). Het is duidelijk dat niet enkel de 
oppervlaktestructuur bestudeerd kan worden, maar ook het interne en zelfs de onderkant van de plaat. 
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     Klassieke C-scans zijn in staat om ‘over de diepte uitgemiddelde’ eigenschappen van 
dunne composietlaminaten te onderzoeken. Alhoewel C-scans zeker en vast zeer nuttig 
zijn, is het in vele gevallen echter noodzakelijk om ook dieptegevoelige informatie over 
composietlaminaten te begroten. Het is bijvoorbeeld niet enkel noodzakelijk om te weten 
dat ergens in een composiet een delaminatie optreedt, maar het is tevens belangrijk om te 
weten hoe diep precies in de plaat die delaminatie optreedt. Bovendien is het nuttig om in 
de verschillende laagjes van een composiet na te gaan hoe de vezelstructuur eruitziet, of er 
leegtes of harsophopingen aanwezig zijn, of er barstjes aanwezig zijn enzovoort. Al deze 
eisen nodigen het gebruik van microscopietechnieken uit. Echter, klassieke akoestische 
microscopie maakt gebruik van sterk gefocusseerde en zeer hoogfrequente ultrasone 
bundels, die uitermate geschikt zijn om het oppervlak te onderzoeken en niet zozeer het 
binnenste van een plaat. Daarom werd de laatste jaren een microscoop gebouwd in een 
laboratorium in Moskou, die het principe van een C-scan combineert met technologie uit 
de akoestische microscopie. Het verschil met klassieke microscopie is dat men slechts 
weinig gefocusseerde ultrasone bundels opwekt en dat de gebruikte frequenties net hoog 
genoeg zijn om voldoende resolutie te bekomen in de diepte van de plaat, zonder daarom 
de zeer hoge frequenties te bereiken die men in de klassieke microscopie gebruikt. 
Bovendien wordt gebruik gemaakt van geoptimaliseerde technologie om de geproduceerde 
akoestische puls extreem kort te maken, wat de resolutie uiteraard op een cruciale wijze 
verbetert. In dit labo werden door de auteur experimenten verricht op verschillende soorten 
vezelversterkte composieten met de bedoeling om na te gaan in welke mate de techniek 
geschikt is om de structuur van composieten in beeld te brengen. Het is de bedoeling dat 
later met die techniek de schadevorming in composieten door vermoeiing en door impact, 
kan worden onderzocht. 

 
Hoofdstuk XIV Exotische onderwerpen 
 
 Sectie XIV.A : Dubbelzijdige ultrasone bundelverschuiving 
 
 • Nico F. Declercq, Joris Degrieck, Oswald Leroy, "The Double Sided Ultrasonic Beam 

Displacement", Appl. Phys. let. 85(18), 4234-4236, 2004 (Imp. Fact. 4.207; SCI-index, Physics-
Applied, rank:3/76) 

 
      In het ultrasoon onderzoek is het zogenaamde Schoch fenomeen een welbekend 

fenomeen dat het gevolg is van de opwekking van Rayleigh golven of de opwekking van 
Lambgolven. Bij dit fenomeen wordt het profiel van een gereflecteerde bundel zodanig 
vervormd, dat er een voorwaarts verschoven deel ontstaat, samen met een niet-verplaatst 
gedeelte. De beide delen zijn van elkaar gescheiden door een geluidsarme zone. In 
hoofdstuk X van dit werk wordt ook het fenomeen van de achterwaartse verschuiving 
verklaard bij de diffractie op een ruw oppervlak. Echter, een situatie waarbij zowel een 
voorwaarts verschoven deel als een achterwaarts verschoven deel ontstaat, was totnogtoe 
niet gekend. In deze sectie wordt aangetoond, zowel experimenteel als numeriek, dat het 
ontstaan van een dubbelzijdige ultrasone bundelverschuiving, waarbij dus zowel een 
voorwaarts als een achterwaarts verschoven gereflecteerde bundel ontstaan, mogelijk is, 
onder specifieke, bijna toevallige omstandigheden. Het fenomeen kan namelijk ontstaan in 
een dunne glasplaat, wanneer onder precieze omstandigheden Lambgolven worden 
opgewekt. 
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Fig. I.35 (identiek aan Fig. XIV.A_2): De dubbelzijdige bundelverschuiving. In het gereflecteerde 
profiel zijn zowel een achterwaarts verplaatste als een voorwaartse verplaatste bundel zichtbaar, naast 
een centrale bundel. De witte stippellijnen komen precies overeen met de bovenkant en de onderkant 

van de glasplaat. 
 

 

 
Fig. I.36 (identiek aan Fig. XIV.A_5): Simulering van de dubbelzijdige bundelverschuiving uit Fig. 

I.35. De stippellijn komt overeen met het invallend profiel, terwijl de volle lijn het gereflecteerde 
profiel voorstelt. De verticale as in bovenste deel van deze figuur geeft de amplitude weer, terwijl de 

verticale as in het onderste gedeelte de fase weergeeft.  De horizontale as is de afstand tot het centrum 
van de bundel. 
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Hoofdstuk XV Conclusies en vooruitzichten 
 
      Gedurende de voorbije drie jaren zijn verscheidene waardevolle resultaten bereikt die 

gebundeld zijn in deze thesis. Het doel van een onderzoeker bestaat er echter in om de 
natuur te proberen te begrijpen en om de verworven kennis met de mensheid te delen. Het 
doel van een wetenschapper mag niet bestaan uit het nastreven van een palmares. Vandaar 
dat deze wettelijk verplichte Nederlandstalige samenvatting het gevaar in zich houdt om 
een palmares op te sommen, eerder dan de zuivere geest van wetenschappelijk onderzoek 
te reflecteren. Daarom zou het mij een plezier doen mocht de lezer de inhoud van de thesis, 
eerder dan deze beknopte samenvatting, koesteren. 
     Wat de vooruitzichten betreft, heb ik slechts twee aspecten in de hand en die hebben 
spijtig genoeg een onvoldoende vermogen om een heldere blik op de toekomst te werpen. 
Die twee aspecten zijn enerzijds mijn liefde voor de natuur en de bijhorende 
nieuwsgierigheid en anderzijds de vele potentiële toekomstplannen om zowel breed als 
diepgaand onderzoek te (blijven) verrichten. 
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Chapter II Introduction 
 
 

My admiration for waves originates from the observation 
of sea waves in Sri Lanka in June 1997. Nevertheless, the 
destructive power of waves on that same spot on 
December 26, 2004, when a tsunami hit, destroying the 
lives of too many people, has uncovered the dark side of 
the sea. The message of the tsunami was loud and clear : 
“Nature gives and Nature takes! Scientists can only 
observe and attempt to understand.” 

 
This dissertation is the result of my research that started in October 2001. Prior to October 

2001, I have written a Master’s thesis under the supervision of Rudy Briers and Oswald Leroy, 
entitled “A theoretical treatment of the diffraction of linear and circular polarized ultrasonic plane 
waves at a periodically rough solid-liquid interface” (Institute of Astronomy, Department of 
Physics, KU Leuven, 2000). After my graduation in the summer of 2000, I have developed my 
background in acoustics as a volunteer researcher in the Research Group on Physical Acoustics 
and Acousto-Optics (KU Leuven Campus Kortrijk) of Oswald Leroy, under Leroy’s 
promotership and the co-promotership of Rudy Briers and Joris Degrieck. After Leroy’s 
retirement, I have joined the research team of Joris Degrieck (Department of Mechanical 
Construction and Production, Ghent University), under Degrieck’s promotership and the co-
promotership of Oswald Leroy. My salary has been paid since October 2001 by the IWT, for 
which I’m very grateful! So far, my work has resulted in 25 published/accepted papers in 
international journals of Thomson’s science citation index. Furthermore, I’ve had the pleasure to 
make over 40 presentations at congresses all over the world. Professionally, this output is mainly 
the result of a motivation, coming from the collegial atmosphere at international conferences 
(following strict deadlines), as well as from the mutual respect for my promoters and colleagues. 

 
Each chapter of this dissertation contains a number of sections. I have intended to make 

every section self-contained. This means that there are no cross references between different 
sections and it also means that, from time to time, short explanations or one or two figures are 
repeated. The reason for this is the ease to read the dissertation in relative short portions, which is 
a necessary requirement in nowadays academic world, overloaded by meetings and 
administration. 

 
The sequence of chapters does not necessarily reflect the temporal development. 

Nevertheless, it is attempted to follow a constructive series, in which each chapter makes the 
consecutive pieces better understandable and each chapter makes the preceding portions better 
understood. 
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Chapter III English Summary 
 
 The style of this dissertation is such that each section, of every chapter, forms a unit that 

can possibly be understood independent from the other parts. The reason is that people who 
are interested in one certain section, do not necessarily like to read the whole work. 
The current chapter presents a short summary of the remaining chapters. The summary 
mainly focuses on listing the results, rather than presenting the entire study itself. 

 
 
Chapter IV Inhomogeneous waves and bounded beams
 
 Section IV.A : The history and properties of ultrasonic inhomogeneous 

waves 
 
 • Accepted for publication in IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency 

Control (Imp. Fact. 1.595 ;SCI-index, Engineering – electrical & electronic, rank:46/205) 
• Invited Oral presentation at: plenary session, ‘VII International Conference for Young Researchers 

on Wave Electronics and its Applications in Information and Telecommunication Systems’, St 
Petersburg, Russia , 12-15 September 2004 

• Oral presentation at ‘75th Anniversary Celebration of the Acoustical Society of America (147th 
meeting of the Acoustical Society of America), Sheraton New York Hotel and Towers, New York, 
New York, USA, 24-28 May 2004 

 
 
      Inhomogeneous waves are generalized plane waves. They are described as classical 

plane waves, except that the wave parameters, such as the wave vector, are complex 
valued. The Americans have been the first to publish features of this kind of waves, but the 
theory was ultimately developed in Europe. This development was boosted after it was 
shown that inhomogeneous waves form a natural stimulus for surface waves. Nevertheless, 
the idea of inhomogeneous waves remained a mathematical ‘artifact’, even though 
experiments showed how these waves can be generated and showed that their behavior 
corresponds to theory. In this chapter, a historical overview is presented, together with an 
overview of the properties of inhomogeneous waves. This overview is likely to form the 
final breakthrough of inhomogeneous waves into the world of acoustics. Furthermore, for 
the first time in history, it is shown how the complex Lame parameters can be fully 
expressed in terms of intrinsic acoustic parameters such as damping and sound velocity. 

 
 Section IV.B : The principle of a chopped series equilibrium to determine 

the expansion coefficients in the inhomogeneous  waves 
decomposition of a bounded beam 

 
 • Nico F. Declercq, Joris Degrieck, Oswald Leroy, "The Principle of a Chopped Series Equilibrium to 

Determine the Expansion Coefficients in the Inhomogeneous Waves Decomposition of a Bounded 
Beam", Acta Acustica United with Acustica 89, 1038-1040, 2003. (Imp. Fact. 0.346; SCI-index, 
Acoustics, rank:21 /28) 

• Oral presentation at ‘the 8th Western Pacific Acoustics Conference (Wespac8)’, Melbourne, 
Australia, 7-9 April, 2003. 
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Fig. III.1 (identical to Fig IV.B_2): The horizontal axis is the distance to the center of the beam, divided 
by the Gausian beam width, whereas the vertical axis is the amplitude. This figure shows an extreme 
situation of a badly conditioned optimization. The upper part presents the exact gaussian profile as a 
dashed line and the numerically approached profile, applying classical methods, as a solid line. The 
approximation is quite different within the body of the profile and results in exponentially growing 

‘tails’ outside the profile where a zero value is expected. The lower part of this figure shows the same 
result, though applying the chopped series equilibrium principle. Note that the result is much 

improved! 
 

     Contrary to the classical Fourier method, decomposing a bounded beam into pure plane 
waves, having different amplitudes, phases and directions, in the inhomogeneous wave 
method, a bounded beam is decomposed into inhomogeneous waves, having different 
amplitudes, phases, but having equal propagation directions. During the historical 
development of the inhomogeneous wave theory, it has been revealed that the method is 
correct within a limited distance along the propagation direction and within a limited range 
along the width of the bounded beam. The limited range of validity along the propagation 
direction is not crucial, because inhomogeneous wave are primarily considered in the case 
when a bounded beam interacts with a plane interface at relatively small angles. 
Nevertheless, the limitation along the width of the bounded beam is very important, 
because whenever strong beam shifts or beam profile deformations are induced in the case 
of surface wave generation, the effect can possibly occur in areas where the bounded beam, 
approximated by means of a superposition of inhomogeneous waves, is badly conditioned. 
The primary reason for the inhomogeneous wave method being badly conditioned along 
the width of the bounded beam, is the fact that the optimization is performed by means of 
exponential functions. This is a delicate question, because a very small numerical error 
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results in a very large difference between the numerical approximation and the exact 
profile, at significant distances from the origin. 
     This section presents a technique, based on a chopped Taylor series representation of 
the exponential functions, applying the optimization procedure for these chopped series 
and attributing the obtained coefficients to the original exponential functions. It is shown 
that there exists an optimum series length for that purpose. The result is an improvement of 
the optimization of the approximation of bounded beams by means of inhomogeneous 
waves. The principle of this technique can possibly be very important in other fields of 
numerical analysis as well. 

 
 Section IV.C : A useful analytical description of the coefficients in an 

inhomogeneous wave decomposition of symmetrical bounded 
beam 

 
 • Nico F. Declercq, Joris Degrieck, Oswald Leroy, "A useful analytical description of the coefficients 

in an Inhomogeneous Wave Decomposition of a symmetrical bounded beam", Ultrasonics 43(4), 
279-282, 2005 (Imp. Fact. 0.844; SCI-index, Acoustics, rank:11 /28) 

• Oral presentation at ‘the 8th Western Pacific Acoustics Conference (Wespac8)’, Melbourne, 
Australia, 7-9 April, 2003. 

 
      Section IV.B is primarily devoted to numerical problems in the inhomogeneous wave 

theory. This is due to the obvious fact that analytical expressions for the expansion 
coefficients in the decomposition of bounded beams into inhomogeneous waves, have 
never been found. Section IV.C explains how an analytical expression can be obtained and 
presents the result. 
If the spatial description of a bounded beam is given by: 
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Then, the analytical expression for the expansion coefficients is given by: 
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 Section IV.D : The Laplace transform to describe bounded inhomogeneous 

waves 
 
 • Nico F. Declercq, Joris Degrieck, Oswald Leroy, "The Laplace transform to describe bounded 

inhomogeneous waves", J. Acoust. Soc. Am. 116(1), 51-60, 2004. (Imp. Fact. 1.310; SCI-index, 
Acoustics, rank:7 /28) 

• Oral presentation at ‘the 145th Meeting of the Acoustical Society of America’, Nashville 
Convention Center, Nashville, Tennessee, USA, 28 April - 2 May 2003. 

 
 

Fig. III.2 (identical to Fig. IIIV.D_5): The horizontal axis denotes the distance along the wave front, 
whereas the vertical axis denotes the amplitude. The dashed line corresponds to the profile of an infinite 

inhomogeneous wave, whereas the solid line corresponds to the profile of a bounded inhomogeneous 
wave. 

 
     A beautiful aspect of the theory of inhomogeneous waves, is the fact that several 
features emerge that do not necessarily coincide with human intuition, but that are 
experimentally verifiable. Nevertheless, those specific experiments are performed by 
means of bounded inhomogeneous waves instead of infinite inhomogeneous waves. The 
reason is, of course, the finite dimension of transducers. Therefore, the correspondence 
between theory and experiment is not obvious. The cause of this correspondence is 
revealed in this section where, by means of the Laplace transform, the physical connection 
between infinite inhomogeneous waves and their bounded counterparts, is unveiled. It is 
shown that only one of the inhomogeneous waves within the superposition, is responsible 
for the global behavior of bounded inhomogeneous waves, whereas the other waves are 
merely responsible for the edge formation. 
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 Section IV.E : The representation of 3D Gaussian beams by means of 

inhomogeneous waves 
 
 • Nico F. Declercq, Joris Degrieck, Oswald Leroy, "The inhomogeneous wave decomposition of 3D 

Gaussian-like bounded beams", Ultrasonics 42, 273-276, 2004. (Imp. Fact. 0.844; SCI-index, 
Acoustics, rank:11 /28) 

• poster presentation at ‘Ultrasonics International 2003’, Granada, Spain, 30 June- 3 July 2003 
 
 

Fig. III.3 (identical to Fig. IV.E_4): The profile of a 3D quasi-Gaussian beam, approached by means of a 
superposition of inhomogeneous waves. The tails that appear are comparable to those in Fig. III.1. 

 
     The development of the inhomogeneous wave theory has been accompanied by the 
discovery that bounded beam can be represented as a superposition of inhomogeneous 
waves. The method of determining the expansion coefficients in the decomposition, was 
based on Prony’s technique, transforming an equation containing exponential functions, 
into a polynomial equation. After identification with Laguerre polynomials, the expansion 
coefficients can be determined. Nevertheless, the method has thus far been limited to beams 
that are bounded in only one direction. This is a serious shortcoming, because it limits 
application of the inhomogeneous wave theory to more realistic situations where sound 
beams are bounded in two directions. The current section introduces a novel method to 
determine the expansion coefficients, that is also applicable in the latter situation of realistic 
beams bounded in two directions. 
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 Section IV.F : Focal length control of complex harmonic and comlex pulsed 

ultrasonic bounded beams 
 
 • Accepted for publication in J. Appl. Phys. (Imp. Fact. 2.281; SCI-index, Physics-Applied, 

rank:13/76) 
• Poster presentation at ‘VII International Conference for Young Researchers on Wave Electronics 

and its Applications in Information and Telecommunication Systems’, St Petersburg, Russia , 12-
15 September 2004 

 
 

 
Fig. III.4 (identical to Fig. IV.F_5): Example of a square profile focused bounded beam, propagating 

from the right hand side to the left hand side. The white oval spot is the focus. 
 

     The ability of ultrasound, on the one hand to coagulate thrombocytes and on the other 
hand to transform into heat, makes it an established tool for medical applications. In the 
case of focused ultrasound, the generated effects can be induced locally. At the moment, 
focused beams are commonly formed by means of phased array technology because of 
flexibility, especially when tuning the focal distance. This technology however is 
extremely expensive, which is an important and ‘pity’ disadvantage in developing 
countries. Principally, the focal distance of a single element focusing transducer, must also 
be tunable, though by changing the frequency, which most often results in a severe 
diminishing of the generated sonic amplitude, an effect resulting from the inability of most 
transducers to generate vibrations different from their first harmonic or odd multiples. 
     In this section, it is shown that it is possible to tune the focal distance of a single 
element focusing transducer, by changing the input amplitude in a distinct manner. The 
theory behind the effect is the complex harmonic wave theory. It is shown that the effect is 
generated, not only in the theoretical case of infinite signals, but also in the realistic 
situation of short signals. The result of this research may be important in the fabrication of 
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affordable medical equipment. 
 
 Section IV.G : On the existence and the excitation of a new kind of leaky 

surface waves 
 
 • Oral presentation at ‘Tenth International Congress on Sound and Vibration’, Stockholm, Sweden, 7-

10 July 2003 
 
      By formulating the continuity conditions at a solid-liquid interface, it is possible to 

obtain the characteristic equation of surface waves. This equation relates the material 
parameters to the velocity of surface waves. Practically, the solution corresponds to a 
complex pole of the reflection coefficient of incident sound on the interface. A complex 
velocity then corresponds to leaky surface waves. Nevertheless, the result is also a function 
of the appropriate sign choice for the normal components of the wave vectors. By applying 
novel knowledge concerning the sign choice, obtained from experiments by Marc 
Deschamps, it is possible to established the well-known existence of leaky Rayleigh 
waves, a kind which radiates energy into the liquid, but also predict a novel type of surface 
waves, that leaks energy both into the liquid and into the solid. 

 
Chapter V The interaction of sound with continuously 

varying layers 
 
 Section V.A : The interaction of inhomogeneous waves and Gaussian 

beams with mud in between a hard solid and an ideal liquid 
 
 • Nico F. Declercq, Oswald Leroy, Joris Degrieck, Jeroen Vandeputte, "The interaction of 

inhomogeneous waves and Gaussian beams with mud in between a hard solid and an ideal liquid", 
Acta Acustica United with Acustica 90, 819-829, 2004 (Imp. Fact. 0.346; SCI-index, Acoustics, 
rank:21 /28) 

 
 
      In the shipping and dredging industry, it is of primordial importance to estimate the 

nautical depth in rivers and harbors. The bottom is often covered by a layer of mud that is 
not homogeneous and consists of a fluid-like upper layer, a solid-like lower layer and a 
transition zone in between. The transition zone is the real nautical bottom. When taking the 
critical decision to enter a ship into a harbor or to remain anchored, knowledge of the exact 
nautical depth is crucial. Classical echo-sounding is not capable of detecting the nautical 
bottom, because it is based on normal incident sound and does not generated shear waves 
in the mud. The nautical bottom is characterized by an abrupt change of the shear 
parameters but not the compressional parameters. Therefore only the transition between 
water and fluid-like mud is detectable by means of classical echo-sounding, as well as the 
transition between the solid-like mud layer and the hard or sandy underground. 
     The present section describes a newly developed model that describes the interaction of 
sound in a continuous system of layers in mud. The propagation of bounded beams is 
simulated and it is shown that oblique incident bounded beams produce a reflected sound 
pattern that is susceptible to the position of the nautical depth. Therefore a method is 
discovered that is indirectly capable of detecting the position of the nautical depth. 
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Furthermore, primarily because of scientific reasons, the interaction of inhomogeneous 
waves with this mud system is described and it is shown that the reflection coefficient 
enables a prediction of the reflected beam characteristics. 

 
 

Fig. III.5 (identical to Fig. V.A_7): An example of the propagation of a bounded sound beam in mud. The 
bounded beam is generated at the origin and propagates from the upper right corner down. After 
interaction with the different layers, including the nautical bottom between zb and zd and the hard 

underground, a complicated reflection pattern is formed. This pattern is susceptible to the position of the 
nautical bottom. 

 
 
Chapter VI The interaction of sound with coated 

materials 
 
 Section VI.A : Frequency band gap for Rayleigh waves on coated substrates
 
 • Nico F. Declercq, Joris Degrieck, Oswald Leroy, "Frequency bandgap for Rayleigh waves on coated 

surfaces", Appl. Phys Let. 85(1), 148-150, 2004. (Imp. Fact. 4.207; SCI-index, Physics-Applied, 
rank:3/76) 

• Oral presentation at ‘VII International Conference for Young Researchers on Wave Electronics and 
its Applications in Information and Telecommunication Systems’, St Petersburg, Russia , 12-15 
September 2004 

 
      The Rayleigh wave velocity depends on the material properties of the solid on which 

they propagate. Commonly, a Rayleigh wave on a coated substrate, has a velocity in 
between the Rayleigh wave velocity on pure substrate and on pure coating. In this section 
however, it is shown that whenever the physical properties of the coating differ extremely 
from the physical properties of the substrate, that there exists a frequency band in which 
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Rayleigh waves cannot exist. The presence of such a frequency band gap is complementary 
to a well known band pass filter in electronics. The existence of a band gap is very 
promising for developing new electronic filters based on surface acoustic waves..  

 
 
 Section VI.B : Lamb wave dispersion in extraordinary bilayered plates 
 
      Following the discovery of previous section, a study is performed on the properties of 

Lamb waves in bilayered plates, consisting of physically highly different layers. It is 
shown that the well-known asymptotical behavior of the S0 and A0 mode disappears and it 
is also shown that the shape of the dispersion curves of the S0 and A0 mode is quite 
different from their classical shape. 

 
 
 
Chapter VII Schlieren photography as a tool for 

nondestructive testing 
 
 Section VII.A : Schlieren photography to study sound interaction with 

highly absorbing materials 
 
 • Accepted for publication in Ultrasonics. (Imp. Fact. 0.844; SCI-index, Acoustics, rank:11 /28) 
 
      Very often, characteristics of a reflected beam are studied in order to obtain information 

about the material on which the reflection occurs. Nevertheless, in the exceptional case 
where the material is so highly sound absorbing, there is no reflected beam and therefore it 
is impossible to examine reflected beam properties. In such situations, Schlieren 
photography is a promising tool because it enables simultaneous visualization of the 
incident sound beam and the generation of heat on the surface. The technique can be used 
to study the extent of sound along the surface and to study the heat transformation rate. In 
addition, the technique does not require the installation of sensors, whence it is completely 
nondestructive. 

 
 Section VII.B : Detection of fiber direction in composites by means of high 

frequency wide bounded beam and Schlieren photography 
 
 • Accepted for publication in Research in Nondestructive Evaluation (Imp. Fact 0.935; SCI-index, 

Materials Science – Characterization & Testing, rank:2/23) 
• Oral presentation at ‘51st open seminar on Acoustics, joint with 9th School of Acousto-Optics and 

Applications’, Gdansk, Poland , 6-10 September 2004. 
 
 

 
Fig. III.6 (identical to Fig. VII.B_4): This enlarged Schlieren image of a bounded ultrasonic beam, shows 

a fringing pattern that enables the determination of the fiber direction in composites. 
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     There are very sophisticated techniques available to determine the fiber direction in 
composites. However, those techniques enable extraction of much more information than 
just the fiber direction. This makes them generally complicated to perform and require 
highly specialized staff. The current section presents a very simple technique, applying 
Schlieren photography and a relatively high frequency wide bounded beam, to detect a 
spatially varying reflection coefficient on fiber reinforced composites. This spatial 
variation results in a fringing pattern that is straightforwardly related to the fiber direction. 
 

 
 
 
Chapter VIII Characterization of liquids in closed 

containers 
 
 Section VIII.A : The Schoch effect to distinguish between different liquids in 

closed containers 
 
 • Nico F. Declercq, Filip Van den Abeele, Joris Degrieck, Oswald Leroy, “The Schoch effect to 

distinguish between different liquids in closed containers”, IEEE Transactions on Ultrasonics, 
Ferroelectrics, and Frequency Control 51(10), 1354-1357, 2004. (Imp. Fact. 1.595 ;SCI-index, 
Engineering – electrical & electronic, rank:46/205) 

• Oral presentation at ‘ICA2004 18th International Congress on Acoustics’, Kyoto International 
Conference Hall, Kyoto, Japan, 4-9 April 2004 

 
 

 
Fig. III.7 (identical to Fig. VIII.A_3): The profile of a reflected bounded beam on the container skin, in 

the event of Lamb wave generation, depends on the contained liquid. Different reflected beam profiles are 
shown for different contained liquids 
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     The simplest technique to examine a fluid in a closed container, is the use of a pulse-
echo technique and the determination of the sonic velocity of the liquid. However, in many 
situations, the pulse-echo technique is not applicable because of the dimensions of the 
container or because there are no two parallel container skins. Therefore, the technique is, 
to a large extent, only used in the food and beverage industry. At border crossings or in 
harbors and airports, controllers regularly encounter large containers or containers of a 
shape that prohibits fluid characterization by means of the pulse echo technique. For such 
situations, a technique is presented here that only requires one flat area on the container 
skin. The technique is based on the Schoch effect. It is shown that the reflected beam 
parameters, in the event of the Schoch effect (due to the generation of Lamb waves within 
the container skin) are determined by the characteristics of the contained liquid.  

 
 Section VIII.B : On the capability of Leaky Lamb waves to discriminate 

between real and fictitious liquids 
 
 • Oral presentation at ‘75th Anniversary Celebration of the Acoustical Society of America (147th 

meeting of the Acoustical Society of America)’, Sheraton New York Hotel and Towers, New York, 
New York, USA, 24-28 May 2004 

 
      The existing literature on Lamb waves only covers such waves in plates immersed in a 

liquid. Here, a study is performed on Lamb waves in a plate separating two different 
liquids. It is shown that the imaginary part of the complex pole, corresponding to a Lamb 
wave, is linearly dependent on the impedance difference between the two liquids if realistic 
liquids are considered and is randomly dependent on the impedance difference if 
unrealistic liquids are considered. This fact is important for theorists, who want to enter 
liquid parameters into their models and who need to know whether the considered liquid 
parameters are realistic or not.  

 
 
 
Chapter IX Sound in media having discontinuities in 

more than one dimension 
 
 Section IX.A : The radiation mode theory in ultrasonics 
 
 • Accepted for publication in IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency 

Control (Imp. Fact. 1.595 ;SCI-index, Engineering – electrical & electronic, rank:46/205) 
• Oral presentation at ‘51st open seminar on Acoustics, Joint with 9th School of Acousto-Optics and 

Applications’, Gdansk, Poland , 6-10 September 2004 
 
  

     As an introduction to the consequent sections, the history and principles of the radiation 
mode theory are outlined in this part. Even though this theory is relatively difficult, it is 
attempted to make the description as simple as possible, with a minimum number of 
mathematical expressions. The radiation mode theory is suitable to study systems having 
discontinuities in more than one direction. A typical example is a cube. It is the author’s 
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intention to develop this theory further the coming years. 

Fig. III.8 (identical to Fig. IIIX.A_7): Example of a geometrical configuration for which the radiation 
mode theory is extremely suitable. An incident beam generates transmitted and reflected Scholte-Stoneley 

waves at the downstep of a coated plate. 
 
 Section IX.B : Study of the scattering of leaky Rayleigh waves at the 

extremity of a fluid loaded thick plate 
 
 • Nico F. Declercq, A. Teklu, M. A. Breazeale, Rudy Briers, Oswald Leroy, Joris Degrieck, Gennady 

N. Shkerdin, "Study of the scattering of leaky Rayleigh waves at the extremity of a fluid loaded 
thick plate", J. Appl. Phys 96(10),5836-5840, 2004 (Imp. Fact. 2.281; SCI-index, Physics-Applied, 
rank:13/76) 

• Oral presentation at ‘75th Anniversary Celebration of the Acoustical Society of America (147th 
meeting of the Acoustical Society of America)’, Sheraton New York Hotel and Towers, New York, 
New York, USA, 24-28 May 2004 

 
      In the previous section, it is outlined how a Scholte – Stoneley wave interacts with the 

edge of a thick plate. It is outlined that numerical simulations prove, in agreement with 
experiments, that Scholte – Stoneley waves, when reaching the end of a plate, primarily 
scatter into the forward direction. In the current section, a study is performed on the 
interaction of Rayleigh waves with the end of a thick plate. It is shown that when they 
reach the edge, they propagate ‘around the corner’. This is important from a scientific point 
of view, but also from the point of view of nondestructive testing. If the surface of a plate 
needs to be examined without having access to it, whereas the edge of the plate is 
accessible, then the property of Rayleigh waves to propagate around the corner can be 
exploited. The reason why Rayleigh waves tend to travel around the corner and Scholte – 
Stoneley waves tend to scatter in the forward direction is probably due to the fact that 
Rayleigh waves penetrate deeper into the solid than into the liquid, whereas Scholte – 
Stoneley waves penetrate deeper into the liquid than in the solid. This makes that Rayleigh 
waves ‘stick’ better to the surface than Scholte – Stoneley waves and tend to follow its 
contours. 
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Fig. III.9 (identical to Fig. IIIX.B_6): This Schlieren picture proves that leaky Rayleigh waves, generated 
by means of an incident beam, propagate around the corner of a thick plate when reaching the end. The 

white dashed lines correspond to the edges of the thick plate. 
 
 Section IX.C : Bounded beam interaction with plate-edge at Lamb angle 
 
 • Accepted for publication in Acta Acustica United with Acustica (Imp. Fact. 0.346; SCI-index, 

Acoustics, rank:21 /28) 
• Oral presentation at ‘51st open seminar on Acoustics, joint with 9th School of Acousto-Optics and 

Applications’, Gdansk, Poland , 6-10 September 2004. 
 
  

     The two previous sections study the interaction of surface waves with the edge of a 
thick plate. In thin plates however, it is more likely to generate Lamb waves and therefore 
it is interesting to study their interaction with the edge as well. By means of high quality 
Schlieren photography, this interaction is studied and it is revealed what types of mode 
conversion take place. Furthermore, it is shown that the edge of a plate can become an 
acoustic multipole, stimulated by the incident Lamb waves. 

 
- 63 - 



CHAPTER III: English Summary 
  

 
 

Fig. III.10 (identical to Fig. IIIX.C_5): This spectacular Schlieren picture reveals the wonderful 
interaction of a bounded beams with the edge of a thin aluminum plate, in the case of A1 Lambmode 
stimulation. From pictures like this, it is possible to determine what types of mode conversion take 

place. The forward beams are due to multipole generation on the edge of the plate, whereas the other 
patterns can be explained as the interaction of different leaky fields.  

 
 
 
 
Chapter X Diffraction phenomena 
 
 • Invited oral presentation at ‘51st open seminar on Acoustics, joint with 9th School of Acousto-Optics 

and Applications’, Gdansk, Poland , 6-10 September 2004. 

 
 
 Sections X.A.1 : Ultrasonic Diffraction phenomena on 1D rough surfaces 
 
 Section X.A.1.a : A theoretical treatment of the backward beam displacement 
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on periodically corrugated surfaces and its relation to leaky 
Scholte – Stoneley waves. 

 
 • Nico F. Declercq, Joris Degrieck, Rudy Briers, Oswald Leroy, "Theory of the backward beam 

displacement on periodically corrugated surfaces and its relation to leaky Scholte-Stoneley waves", 
J. Appl. Phys. 96(11), 6869-6877, 2004 (Imp. Fact. 2.281; SCI-index, Physics-Applied, rank:13/76) 

• Oral presentation at First Pan-American/Iberian Meeting on Acoustics (144th Meeting of the 
Acoustical Society of America, 3rd Iberoamerican Congress of Acoustics, 9th Mexican Congress on 
Acoustics), Cancun, Q. R. Mexico, 2-6 December 2002 

• ‘Best student paper award’ presented by the ‘Acoustical Society of America’ 

 
 

 
 

Fig. III.11 : Schlieren picture of the backward beam displacement, first observed by Breazeale and Torbett 
in 1976. This phenomenon has remained obscure ever since, but is now entirely explained.  

 
     In 1976, Breazeale and Torbett performde an experiment that was aimed at verifying the 
prediction by Bertoni and Tamir, that, on a periodically corrugated surface, a backward 
beam displacement of the reflected beam was expected at a certain angle of incidence, 
depending on the applied frequency and the periodicity of the corrugated surface, and 
corresponding to generated backward propagating Rayleigh waves. However, the backward 
displacement was not observed at this angle, but at an unexpected angle. The reason 
remained obscure and the effect has never been simulated ever since. In this section, it is 
shown that the Fourier method cannot simulate the backward displacement. The 
inhomogeneous wave theory however is capable of simulating the effect and explaining it. 
It is obtained that the effect is due to a leaky version of Scholte – Stoneley waves. 
Furthermore, the theory predicts that if Breazeale and Torbett would have applied a 
narrower beam, that they would probably have observed beam profile deformations and 
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possibly also a backward beam displacement. 
     In addition, this section also uncovers the real nature of Wood anomalies in diffraction 
spectra. Whereas it has always been believed that Wood anomalies are due to the 
generation of Scholte – Stoneley waves, it is explained here that this is only a fraction of 
the truth. The Wood anomaly actually results from an eigenvibration of the corrugated 
surface and is only stimulated by means of normal incident sound. 
 

Fig. III.12 (identical to Fig. X.A.1.a_15): The dotted curve corresponds to the incident bounded beam, 
whereas the solid line is the simulated backward displacement of the reflected beam. This simulation 

corresponds to the experimental result of Breazeale and Torbett as depicted in Fig. III.11. 
 
 
 Section X.A.1.b : Experimental study of the backward beam displacement on 

periodically corrugated surfaces and its relation to leaky 
Scholte-Stoneley waves 

 
 • Accepted for publication in J. Appl. Phys. (Imp. Fact. 2.281; SCI-index, Physics-Applied, 

rank:13/76) 
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Fig. III.13 (identical to Fig. X.A.1.b_5): This Schlieren picture is the experimental evidence of the fact 
that the backward beam displacement is due to a type of Scholte – Stoneley waves. The angle of incidence 

in this figure corresponds to the angle at which the backward displacement occurs. The backward 
propagating surface wave is scattered ‘in the forward direction’ when reaching the end of the brass 

sample on the left hand side of the image. This is a strong indication that it is a Scholte – Stoneley wave.  
 

     This section presents new experimental evidence for the phenomenon of the backward 
beam displacement, obtained at Olemiss in collaboration with Mack Breazeale et al. We 
have been able to repeat the experiments of 1976 and were able to find evidence for the 
fact that the backward beam displacement is the result of the generation of backward 
propagating (leaky) Scholte – Stoneley waves. Furthermore, the theoretical prediction of 
the former section has been verified, that beam profile deformations are possible at the 
angle predicted by Bertoni and Tamir, on the condition that narrow beams are used. 
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Fig. III.14 (identical to Fig. X.A.1.b_7): These pictures show experimental evidence of beam profile 
deformations near the angle predicted by Bertoni and Tamir, for a narrow incident beam. 

 
 
 Section X.A.1.c : Note on the diffraction field generated by inhomogeneous 

waves obliquely incident on a periodically rough liquid-solid 
boundary 

 
      A number of years ago, it has been posed by Briers et al that, in order to simulate the 

diffraction of inhomogeneous waves on a periodically corrugated surface, a certain choice 
for the sign of the wave vector component perpendicular to the interface, was necessary in 
order to obtain numerical results in accordance with experiments. However, this sign 
choice, when applied in the case of zero-height corrugations, is in contradiction with the 
sign choice posed by Marc Deschamps for smooth surfaces. In the current section, it is 
shown that if the sign choice of Marc Deschamps is appropriately generalized to 
corrugated surfaces, that simulations can be obtained that equally well correspond to the 
experiments and that do not contain any contradictions anymore between the choice in the 
case of a smooth surface and in the case of a corrugated surface. 
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Fig. III.15 (identical to Fig. X.A.1.c_2): comparison between the calculated zero-order reflected phase 

(bottom) and amplitude (top) with experiments, when the new sign choice, as generalized from 
Deschamps’ rule, is applied. The numerical results (lines) correspond fairly well to the experimental 

values (circles). 
 
 
 Section X.A.1.d : Diffraction of complex harmonic plane waves and the 

stimulation of transient leaky Rayleigh waves 
 
 • Oral presentation at ‘75th Anniversary Celebration of the Acoustical Society of America (147th 

meeting of the Acoustical Society of America)’, Sheraton New York Hotel and Towers, New York, 
New York, USA, 24-28 May 2004 

 
      The most extensive generalization of classical plane waves, is a wave whose frequency is 

complex valued. Then, the imaginary part of the frequency is the cause of an exponential 
change of the amplitude as a function of time. This section studies the interaction of such 
complex harmonic plane waves with a periodically corrugated surface. It is shown that 
normal incident complex harmonic waves possess a significant potentiality to stimulate high 
energy leaky Rayleigh waves. These Rayleigh waves are transient. 
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Fig. III.16 (identical to Fig. X.A.1.d_6): Example of the zero-order diffraction spectra as a function of the 
real and imaginary frequency. Areas of high amplitude are indications of the generation of surface waves. 

 
 Section X.A.1.e : The acoustic diffraction grating: a complex frequency filter 

device for electronic signals 
 
      In electronics, the notion of a frequency spectrum is well established. The spectrum can 

be physically obtained by means of filters, or it can be obtained by means of the Fourier 
transformation. Nevertheless, an electronic signal can also be decomposed into 
exponentially varying signals. These signals correspond to complex harmonic waves in 
acoustics. Even though, mathematically, this decomposition is possible through 
optimization procedures, the question that arises is if a physical filter can be generated to 
perform this decomposition. The current section explains how an acoustic diffraction 
grating can be applied for that purpose, in combination with acousto-optics. 
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Fig. III.17 (identical to Fig. X.A.1.e_1): A schematic of the suggested filter system. A wide transducer 

generates sound that is diffracted on the grating. Then, the diffracted sound can be detected by means of 
omnidirectional transducers that detect the energy propagation direction, and acousto-optic cells, that 
detect the phase propagation direction. The combination of these two parameters make it, in principal, 

possible to determine the complex frequency spectrum. 
 
 
 Section X.A.1.f : The use of polarized bounded beams to determine the groove 

direction of a surface corrugation at normal incidence, the 
generation of surface waves and the insonification at Bragg-
angles 

 
 • Nico F. Declercq, Rudy Briers, Oswald Leroy, " The use of polarized bounded beams to determine 

the groove direction of a surface corrugation at normal incidence, the generation of surface waves 
and the insonification at Bragg-angles", Ultrasonics 40/1-8 pp. 345-348, 2002.(Imp. Fact. 0.844; 
SCI-index, Acoustics, rank:11 /28) 

• poster presentation at ‘Ultrasonics International 2001’, Technical University of Delft, Delft, The 
Netherlands, 2-5 July 2001. 

 
      In the field of nondestructive testing, it happens that a plate must be examined, having 

grooves on the back. Then, it might be interesting to detect the direction of the grooves, 
because they are hidden behind the plate. This section describes how it is possible to apply 
circularly polarized normal incident sound for that purpose, using a contact transducer. 
Depending on the frequency, the reflected sound waves can be polarized along the direction 
of the grooves or perpendicular to them. Furthermore, this section simulates the interaction of 
a normal incident bounded beam at the Scholte – Stonley wave generating frequency. It is 
shown that bounded beams are able to stimulate Scholte – Stoneley waves and that the pattern 
that appears along the interface, is a set of fringes, resulting from interference between 
Scholte – Stoneley waves propagating from left to right and waves propagating from right to 
left.  
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Fig. III.18 (identical to Fig. X.A.1.f_5): |I| is the amplitude of the normal incident longitudinal polarized 
gaussian profiled sound, |R| of the reflected longitudinal, |S| of the reflected shear and |T| of the longitudinal 

transmitted sound. The frequency is 8.3 MHZ and the generation of second order Scholte-Stoneley waves 
occurs. This phenomenon does not occur at arbitrary frequencies. 

Notice the interference of the forward and backwards traveling surface wave. (x-coordinate: in numbers of 
the corrugation period) 

 
 
 Section X.A.1.g : Diffraction of horizontally polarized ultrasonic plane waves 

on a periodically corrugated solid-liquid interface for normal 
incidence and Brewster angle incidence 

 
 • Nico F. Declercq, Rudy Briers, Joris Degrieck, Oswald Leroy, "Diffraction of horizontally polarized 

ultrasonic plane waves on a periodically corrugated solid-liquid interface for normal incidence and 
Brewster angle incidence", IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency 
Control, 49(11), 1516-1521, 2002. (Imp. Fact. 1.595 ;SCI-index, Engineering – electrical & 
electronic, rank:46/205) 

• Oral presentation at ‘ICA2004 18th International Congress on Acoustics’, Kyoto International 
Conference Hall, Kyoto, Japan, 4-9 April 2004 

 
      Similar to the latter section, the current section describes the interaction of sound, 

generated at the smooth side of a plate, possessing a periodical roughness on the opposite 
side. Horizontally polarized sound is polarized along the grooves, whereas vertically 
polarized sound is polarized perpendicular to the grooves. Even though it had been 
intuitively accepted by most researchers that horizontally polarized sound cannot be 
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transformed into vertically polarized sound through the diffraction phenomenon and vice 
versa, the current section presents a theoretical proof of this intuition. The current section 
also establishes the equation that enables simulation of the diffraction of horizontally 
polarized sound on the considered corrugated side of a plate. The generation of Love waves 
is shown numerically. Furthermore, the existence of a Brewster angle, similar to the 
Brewster angle in optics, is numerically shown. Incidence at this angle results in mainly 
horizontally polarized reflected sound. 
 

Fig. III.19 (identical to Fig. X.A.1.g_4): This figure depicts the intensity of the zero order reflected sound 
intensity of vertically polarized diffracted waves, , and the intensity of horizontally polarized diffracted 

waves, , as a function of the angle of incidence. The Brewster angle is defined as the angle at which  
shows a minimum, resulting in mainly horizontally polarized reflected sound. This angle is similar to the 

Brewster angle in optics. 

0S
0R 0S

 
 
 Section X.A.1.h : Note on Scholte – Stoneley waves on a periodically 

corrugated surface 
 
 • Oral presentation at ‘17th International Congress on Acoustics’, Rome, Italy, 2-7 september 2001 
 
      This section describes experimental results obtained from the literature and shows that 

the experiments actually mean that the velocity of Scholte – Stoneley waves on rough 
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surfaces, is larger than on smooth surfaces. Intuitively, this effect is not really surprising, 
because the corrugated surface can be compared to a coating. It is known that a coating can 
increase the velocity of surface waves, or decrease it. 
 

 
 

Fig. III.20 (identical to Fig. X.A.1.h_1): A corrugated interface between a liquid and a solid can be 
interpreted as a coated solid substrate in a liquid, when a Scholte – Stoneley wave travels along the 
interface with constant  direction (propagation direction) of the real part of its wave vector. 

 
 
 Section X.A.2 : Ultrasonic Diffraction phenomena on 2D rough surfaces 
 
 Section X.A.2.a : Diffraction of homogeneous and inhomogeneous plane waves 

on a doubly corrugated liquid/solid interface 
 
 • Oral presentation at ‘InterNoise2003’, International Convention Center Jeju, Seogwipo, Korea, 

August 25-28, 2003,  
• Oral presentation at 'Acoustics 2003', University of Cadiz, Cadiz, Spain, 16-18 June 2003. 

 
      In the previous sections, only corrugations in one direction were considered. However, 

it is also possible to describe the interaction of sound with doubly corrugated surfaces. 
Such surfaces are similar to ‘egg-crates’ and can diffract sound into many spatial 
directions. This section begins with a proof that the classical grating equation, for 
homogeneous plane waves, can be generalized to the case of incident inhomogeneous 
waves. This proof is also valid in the situation of a one-dimensional corrugated surface, 
where the generalization of the grating equation had been proved experimentally, but not 
theoretically. Consequently, in this section, the equations are formed that enable simulation 
of the interaction of ultrasound on doubly corrugated surfaces. Numerical simulations are 
performed for incident homogeneous plane waves as well as for incident inhomogeneous 
plane waves.  
It is numerically shown how the corrugation period has a steering influence on generated 
Scholte-Stoneley waves. It is also explained why a given inhomogeneous wave can only 
stimulate Rayleigh waves in one direction and not in other directions. A study is also 
revealed on the influence of the relative height of the two perpendicular sets of grooves 
that form together the doubly corrugated surface. 
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 Sections X.B : Acoustic diffraction phenomena 
 
 Section X.B.1 : A theoretical study of special acoustic effects caused by the 

staircase of the El Castillo pyramid at the Maya ruins of 
Chichen-Itza in Mexico 

 
 • Nature News 14 December 2004; | doi:10.1038/news041213-5 

• Nico F. Declercq, Joris Degrieck, Rudy Briers, Oswald Leroy, "A theoretical study of special 
acoustics effects caused by the staircase of the El Castillo pyramid at the Maya ruins of Chichen-Itza 
in Mexico", J. Acoust. Soc. Am. 116(6), 3328-3335, 2004 (Imp. Fact. 1.310; SCI-index, Acoustics, 
rank:7 /28) 

• Oral presentation at ‘145th Meeting of the Acoustical Society of America’, Nashville Convention 
Center, Nashville, Tennessee, USA, 28 April - 2 May 2003. 

• Oral presentation at ‘CFA/DAGA'04, 7ème Congrès Français d’Acoustique, Salon Européen de 
l’Acoustique - 30. Deutsche Jahrestagung für Akustik, Europäische Akustik-Ausstellung’, Palais 
des Congrès et de la Musique, Strasbourg, France, 22-25 March 2004 

• Reported in dozens of newspapers around the world, including Belgium. Also reported on the 
Belgian Television (‘VTM Nieuws’) and the Belgian National Radio (‘De Nieuwe Wereld’, on 
Radio 1) 

 
 Extract from Nature News, 14 December 2004:Mystery of 'chirping' pyramid decoded: 

“Acoustic analysis shows how temple transforms echoes into sounds of nature”, by Philip 
Ball 

A theory that the ancient Mayans built their pyramids to act as giant resonators to produce 
strange and evocative echoes has been supported by a team of Belgian scientists.
Nico Declercq of Ghent University and his colleagues have shown how sound waves 
ricocheting around the tiered steps of the El Castillo pyramid, at the Mayan ruin of 
Chichén Itzá near Cancún in Mexico, create sounds that mimic the chirp of a bird and the 
patter of raindrops. The bird-call effect, which resembles the warble of the Mexican 
quetzal bird, a sacred animal in Mayan culture, was first recognized by California-based 
acoustic engineer David Lubman in 1998. The 'chirp' can be triggered by a handclap made 
at the base of the staircase. Declercq was impressed when he heard the echo for himself at 
an acoustics conference in Cancún in 2002. After the conference, he, Lubman and other 
attendees took a trip to Chichén Itzá to experience the chirp of El Castillo at first hand. "It 
really sounds like a bird", says Declercq. Sound structure But did the pyramid's architects 
know exactly what they were doing? Declercq's calculations show that, although there is 
evidence that they engineered the pyramid to produce surprising sounds, they probably 
couldn't have predicted exactly what they would resemble. Lubman was at first convinced 
that the pyramid-builders did create the bird-chirp effect intentionally. But that's not 
necessarily so, Declercq and his colleagues argue. Their analysis of the pyramid's acoustics 
show that the precise sound caused by the echoes depends on the sound that excites them. 
Drums, for example, might produce a different type of resonance. The researchers hope 
that others will make more on-site measurements of El Castillo's acoustics to see what 
effects other sounds sources induce. Indeed, Declercq heard one such variation during the 
2002 trip. As other visitors tramped up the steps of the 24-metre high pyramid, he noticed a 
flurry of pulse-like echoes that seemed to sound just like rain falling into a bucket of water. 
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Declercq wonders whether this, rather than the quetzal call, could have been the aim of El 
Castillo's acoustic design. "It may not be a coincidence," he says - the rain god played an 
important part in Mayan culture. 

But perhaps such meaningful interpretations are fanciful. Declercq's team has shown that 
the height and spacing of the pyramid's steps creates like an acoustic filter that emphasizes 
some sound frequencies while suppressing others. But more detailed calculations of the 
acoustics shows that the echo is also influenced by other, more complex factors, such as 
the mix of frequencies of the sound source. Ultimately, then, it will be virtually impossible 
to prove that any specific echo effect is intentional. "Either you believe it or you don't," 
says Declercq. He himself is now sceptical of the quetzal theory - not least because he has 
now heard similar effects produced by staircases at other religious sites. At Kataragama in 
Sri Lanka, for example, a handclap by a staircase leading down to the Menik Ganga river 
produces an echo in response that resembles the quacking of ducks. [end of Extract] 

 

 
 

Fig. III.21(identical to Fig. X.B.1_8): Sonogram of the registered echo at the pyramid in Chichen Itza. In 
this figure, and in the consequent two figures, the white rectangle spans de same area, whereas the entire 

figure corresponds to a frequency interval [0 Hz – 5000 Hz] along the vertical direction and a time interval 
of 0.2s along the horizontal direction. 
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Fig. III.22 (identical to Fig. X.B.1_6): Sonogram of the simulated echo at the pyramid in Chichen Itza, in 
response to a mathematical delta-like pulse. Comparison with the previous figure shows that the calculated 

echo does not contain the required low frequency bands. 
 

 

Fig. III.23 (identical to Fig X.B.1_11): Sonogram of the simulated echo at the pyramid in Chichen Itza, in 
response to a realistic handclap. Besides the fact that, due to numerical shortcomings, the exact length of 
the chirp cannot be determined, the low frequency bands are present. The reason is that these bands are 

present in the incident handclap, in advance to the formation of the echo. 
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Chapter XI Ultrasonic Polar Scans 
 
 Section XI.A : Ultrasonic polar scans as a possible means of nondestructive 

testing and characterization of composite plates 
 
 • Joris Degrieck, Nico F. Declercq, Oswald Leroy, "Ultrasonic Polar Scans as a possible means of 

nondestructive testing and characterization of composite plates", Insight - The Journal of The 
British Institute of Non-Destructive Testing, 45(3), 196-201, 2003. (Imp. Fact. 0.311; SCI-index, 
Materials Science – Characterization & Testing, rank:11/23) 

 
 
      Ultrasonic polar scans form the registration of the transmitted (or reflected) amplitude 

for sound incident at all possible angles, on a given spot. A polar scans shows typical 
amplitude patterns that are like fingerprints of the material and that contain information 
about the stiffness and the anisotropy. The current section gives an overview of the state of 
the art in ultrasonic polar scans. 

 
Fig. III.24 (identical to Fig. XI.A_1): In a polar scan, the target spot is impinged at a constant distance 

form all possible angles ( )ϕθ , . 
 
 Section XI.B : Simulation of harmonic and pulsed ultrasonic polar scans on 

orthotropic materials and more general anisotropic crystals 
 
 • Accepted for publication in NDT & E International (Imp. Fact. 0.752; SCI-index, Materials 

Science – Characterization & Testing, rank:3/23) 
• Oral presentation at ‘3rd International Conference on Emerging Technologies in Non-Destructive 

Testing & Technology Transfer and Business Partnership Event’, Thessaloniki, Greece, May 26-28, 
2003. 

 
      Before I began my research in 2001, there was an ultrasonic polar scan experimental 

setup in our department and there was also a computer program available that enables the 
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simulation of ultrasonic polar scans for single layered orthotropic materials. Nevertheless, 
because most composites are multilayered and because some composites have a more 
general anisotropy, further extensions of the numerical possibilities have been established 
lately. The results and the simulation procedure are described in this section. Besides fiber 
reinforced composites, it is now possible to simulate ultrasonic polar scans on any kind of 
crystals of any kind of anisotropy and orientation. As examples, barium titanate and gallium 
arsenide are considered. Besides the possibility to consider any orientation, it is also 
possible to stack crystals mathematically and simulate the ultrasonic polar scan for any 
possible internal orientation.  
 

 
Fig. III.25 (identical to Fig. XI.B_10): Ultrasonic Polar Scan (harmonic 5MHz, in transmission) of a 1mm 

thick cross-ply reinforced composite consisting of 10 (00/900) stacked layers of unidirectional fiber 
reinforced material.  
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Fig. III.26 (identical to Fig. XI.B_15): simulated polar scan in transmission for a 3mm thick Z-cut Barium 

Titanate plate at 2 MHz. 
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Fig. III.27 (identical to Fig. XI.B_26): simulated polar scan in transmission for a 3mm thick ‘arbitrary’-
cut layered plate at 2 MHz. 

 
 
 
 Section XI.C : On the influence of fatigue on ultrasonic polar scans of fiber 

reinforced composites 
 
 • Nico F. Declercq, Joris Degrieck, Oswald Leroy, " On the influence of fatigue on ultrasonic polar 

scans of fiber reinforced composites", Ultrasonics 42, 173-177, 2004. (Imp. Fact. 0.844; SCI-index, 
Acoustics, rank:11 /28) 

• Oral presentation at ‘Ultrasonics International 2003’, Granada, Spain, 30 June- 3 July 2003 

 
      In our department, extensive research is performed on fatigue of composites. One of the 

consequences of fatigue is a diminishing stiffness. Because characteristic patterns in 
ultrasonic polar scans are formed, to a large extent, by the stiffness of an examined 
laminate, it is natural to apply such scans for fatigue monitoring. In this section, it is shown 
by means of experiments and simulations (in good agreement), that ultrasonic polar scans 
are indeed capable of fatigue monitoring. This is important in many branches of the 
economy, such as the airline industry, etc. 
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 Section XI.D : A numerical study on the feasibility of visualization of stress 
in isotropic plates by means of the reflected amplitude of 
harmonic ultrasonic waves 

 
 • Oral presentation at ‘InterNoise2003’, International Convention Center Jeju, Seogwipo, Korea, 

August 25-28, 2003 
 
      A lot of materials are subject to residual stress, as a consequence of the fabrication 

process. Furthermore, materials inside constructions, are also subject to applied stress. The 
magnitude and the direction of these stresses can be spatially dependent, whence a local 
characterization is required. For that purpose, ultrasonic polar scans seem inviting, because 
they collect local information of the investigated material. A model was applied for 
simulating the effect of stress in anisotropic laminates. Simulations are performed for the 
case of isotropic plates (that become anisotropic because of applied stress) and it is shown 
that ultrasonic polar scans are not very susceptible to stress, except in the exceptional case 
of very large stress. 

 
 
 
 
Chapter XII Sound in piezoelectric materials 
 
 Section XII.A : The effect of stiffening of crystals due to piezoelectricity 
 
      The effect of stiffening of crystals due to piezoelectricity, is well known. Nevertheless, 

this section shows the effect graphically, by plotting the difference of the slowness surfaces 
with and without piezoelectricity. Furthermore, arrows can be added to the graphics, that 
denote the change of polarization or the change of energy flux. 
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Fig. III.28 (identical to Fig. XII.A_5): The difference between the slowness surface for the QSV mode in 
Lithium Niobate, including piezoelectricity, and neglecting piezoelectricity. The black arrows denote the 

difference of energy flow for each spot. 
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 Section XII.B.1 : Inhomogeneous waves in piezoelectric crystals 
 
      In the existing literature, inhomogeneous waves in piezoelectric materials are not 

considered. Here, they are introduced and it is shown that they are better susceptible to the 
presence of piezoelectricity in crystals than homogeneous plane waves.  
 

Fig. III.29 (identical to Fig. XII.B.1_12): The difference between the slowness surface for the QSH mode 
in Lithium Niobate, in the case of inhomogeneous waves, including piezoelectricity, and neglecting 

piezoelectricity. The black arrows denote the difference of polarization for each spot. 
 
 Section XII.B.2 : Enhanced anisotropy in Paratellurite for inhomogeneous 

waves and its possible importance in the future development 
of acousto-optic devices 

 
      The strong anisotropy in paratellurite is very important for the fabrication of acousto-

optic cells. Here, it is shown that the effect of anisotropy on inhomogeneous waves in this 
crystal, is much more outspoken than the effect on homogeneous plane waves. This makes 
it reasonable to consider fabricating acousto-optic cells, based on inhomogeneous waves 
instead of homogeneous waves. 
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Fig. III.30 (identical to Fig. XII.B.2_11): Slowness surface of the QSH mode in paratellurite for 

inhomogeneous waves. The black arrows denote the polarization vector at each point on the slowness 
surface. The formation of a ‘ball’, covered by pins, denotes a very strong directional dependent velocity. 

 
 
 Section XII.C : Sound in biased piezoelectric materials of general anisotropy 
 
 • Oral presentation at ‘ICA2004 18th International Congress on Acoustics’, Kyoto International 

Conference Hall, Kyoto, Japan, 4-9 April 2004 
 
 A generalized form of the Christoffel equation was formulated for biased piezoelectric 

crystals of general anisotropy. This is done by considering a linear acoustic regime in a 
crystal that is biased by nonlinear effects. An expression is given of the energy flux for the 
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considered situation of biased piezoelectric crystals. Numerical results are reported for 
Lithium Niobate. The influence is calculated of an initial pressure, in the piezoelectric case 
and in the non-piezoelectric case, for homogeneous plane waves and also for 
inhomogeneous plane waves. Furthermore, the influence of the magnitude and the 
direction of the considered pressure, on the change in the acoustic wave velocity, is studied 
as well. 
 
 
 

Fig. III.31 (identical to Fig. XII.C_2): The change of the slowness surface for the QL-mode, for a 
pressure of 90 MPa along the X-axis, in the case of homogeneous plane waves for piezoelectric Lithium 

Niobate. The arrows denote the change of polarization. 

 
- 86 - 



CHAPTER III: English Summary 
  

 
Fig. III.32 (identical to Fig. XII.C_18): The change of the slowness surface for the QSV-mode, for a 

pressure of 90 MPa along the Z-axis, in the case of homogeneous plane waves for piezoelectric Lithium 
Niobate. 

 
 
Chapter XIII Acoustic Microscopy 
 
 Section XIII.A : Microscopic Bulk Imaging of Fabric Fiber Reinforced 

Composites 
 
      Microscopic bulk imaging combines a newly developed C-scan apparatus and 

sophisticated data acquisition technology, with high quality ultrasonic microscopy 
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technology. The system generates ultra short ultrasonic pulses (less than two wavelengths 
long) having a nominal frequency of 50 MHz. The technique is also applicable at higher 
frequencies. The ultrasonic beam is focused, having a relatively small aperture. Layer-by-
layer imaging of the internal microstructure of carbon fiber reinforced composites (CFRC) 
and glass fiber reinforced composites (GFRC) is achievable. The method provides a spatial 
lateral resolution in the order of 50 microns and an in-depth resolution in the order of 80 
microns. Echo signals reflected from structural units, such as plies, fiber bundles and 
micro-flaws form acoustic images of the microstructure at different depths inside the 
samples. The images make it possible to see ply arrays, the stacking of bundles within plies 
and the binding material distribution within the bulk of the composite. They reveal failures 
of interply adhesion, buckling of single plies and fiber bundles, internal defoliations, 
disbonds and voids. The series of successive images offer outstanding possibilities to 
reconstruct the bulk structure, to estimate local variations of the properties, and the 
topological and geometrical characteristics of the structural components. The imaging 
technique has been applied to study different types of fiber packing – unidirectional, cross-
ply and fabric laminates. In addition, high-resolution (one micron) acoustic images are also 
presented at higher frequencies, for larger aperture, that allow the investigation of the fiber 
distribution within a single bundle. The images also allow the visualization of the structure 
of fiber bundle crossovers and disbondings at interfaces and the evaluation of the 
interaction of a single fiber with the resin or even elastic characteristics of individual 
fibers. 
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Fig. III.33 (identical to Fig. XIII.A_13): C-scan images at different depths, beginning with the upper 

surface (#1) and ending with an image of the bottom (#12), for unidirectional fabric carbon fibers in Poly 
Phenylene Sulfide (PPS). 
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Chapter XIV Exotic Topics 
 
 Section XIV.A : The double sided ultrasonic beam displacement 
 
 • Nico F. Declercq, Joris Degrieck, Oswald Leroy, "The Double Sided Ultrasonic Beam 

Displacement", Appl. Phys. let. 85(18), 4234-4236, 2004 (Imp. Fact. 4.207; SCI-index, Physics-
Applied, rank:3/76) 

 
 It is a well established idea in optics as well as in ultrasonics that a bounded Gaussian beam, 

when reflected from an interface, can be displaced in the forward or in the backward 
direction, depending on the propagation direction of leaky waves that are generated by the 
incident beam. Such a displacement is often accompanied by the so called Schoch effect 
characterized by a null strip in between a specular and a nonspecular reflected beam, and a 
trailing field that is much further displaced. The current paper shows experimentally and 
numerically that a simultaneous forward and backward displacement is possible 
accompanied by two null strips and being only the result of forward propagating Lamb 
waves. 
 

 
 

Fig. III.34 (identical to Fig. XIV.A_2): The double sided beam deformation. A backward and a forward 
displaced beam are visible together with the central specular reflected beam.  
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Fig. III.35 (identical to Fig. XIV.A_5): Simulation of Fig. III.34, i.e. incidence at 28.350. Dotted curve: 
incident beam profile, solid curve: reflected beam profile. Note that the forward and the backward displaced 

beams are out of phase with the specular central lobe. 
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Chapter IV Inhomogeneous Waves 
and Bounded Beams 

 
 

Focused ultrasound is sometimes used to cure prostate 
cancer. One of the sections of this chapter studies the 
flexible adjustment of focused ultrasound. The study 
may be important for the fabrication of achievable 
equipment for cancer therapy. 

 
      The problem of the square root of a negative number, already existed at 

the beginning of the Christian calendar, see for example ‘Stereometrica’, by 
Heron of Alexandria. Around 800 years later, the idea of the existence of a 
solution was crushed by the Indian mathematician Mahavira, who stated ‘As 
in the nature of things, a negative is not a square, it has no square root’. 
Girolamo Cardano was the mathematician who first discovered a solution, in 
1545, though he thought his discovery was fictitious and useless. The further 
development and spreading of the idea of complex numbers, was the result of 
brilliant scientists such as Caspar Wessel, Rene Descartes, Gottfried Wilhelm 
von Leibniz, Leonard Euler and Carl Friedrich Gauss. 
     In the theory of waves, and in particular the theory of acoustics and 
ultrasonics, a complex number has been introduced after the discovery by 
Leonhard Euler (in Introductio in analysin infinitorum, 1748) that an 
exponential function, containing an imaginary argument, is analytically equal 
to the combination of a cosine in the real space and a sine in the imaginary 
space, hence 

cos siniSe S i= + S  
 
This notion enables the addition of an imaginary twin to each real wave 
phenomenon and analyze the problem in the complex space. After this 
analysis, it is possible to extract the real solution from the complex result. 
The merit of this procedure is the fact that all mathematical expressions in 
the theory of waves, are contracted and simplified after the transformation 
into the complex space.  
 
     An acoustic wave is oscillatory in time and in space. From mechanical 
considerations, it is possible to obtain the wave equation, relating the 
temporal properties to the spatial properties of sound. The simplest solitary 
solution of this equation, is the so called homogeneous plane wave. It is 
characterized by a harmonic function like the one obtained by Euler, 
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possessing a real argument ‘S’. This involves a real wave vector and a real 
frequency. Even though pure plane waves are the simplest solitary solutions 
of the wave equation, they are able to generate more complicated sound 
fields by means of a superposition in the framework of the Fourier theory. 
Nevertheless, there are more solitary solutions possible. Most of them will 
probably never be discovered.  
     One, very useful, solitary solution is the inhomogeneous plane wave. It is 
a wave that contains temporal and spatial harmonic as well as spatial 
inharmonic amplitude variations. Being a solution of the wave equation, it 
fulfills strict relationships between the harmonic and the inharmonic 
amplitude variations, through the so called dispersion relation. If Euler’s 
notation is followed, inhomogeneous plane waves can easily be described as 
pure homogeneous plane waves, having a complex wave vector. 
     If also the temporal variation contains inharmonic contributions, a 
complex frequency is involved and the wave is called ‘complex harmonic’ 
and more specific ‘complex harmonic homogeneous’ or ‘complex harmonic 
inhomogeneous’, depending on the lack, respectively presence of an 
imaginary part of the wave vector. 
     Inhomogeneous waves are interesting phenomena, because their 
propagation properties differ from pure homogeneous plane waves. Also 
their polarization is different. Nevertheless, such kind of waves have always 
been considered mathematical artifacts that are only generated 
experimentally (along interfaces) under certain conditions during scattering. 
     It was not until Claeys and Leroy discovered that inhomogeneous waves 
are natural building blocks of bounded beams, resulting in a physical 
connection between the Schoch effect and the generation of Rayleigh waves 
on smooth surfaces, that the world of acoustics realized the physical 
importance of inhomogeneous waves. Inhomogeneous waves are present 
inside bounded beams and they are the origin of the stimulation of surface 
waves. Later, inhomogeneous waves have been generated experimentally and 
their excellent ability to stimulate surface waves, has been validated. 
     Because Oswald Leroy is my promoter, a study of inhomogeneous waves 
has been almost naturally a mandatory requirement before studying 
additional topics. While studying this wonderful subject, I have written a 
historical overview of the concept of inhomogeneous waves. This survey is 
given in section IV.A of this chapter. 
     The decomposition of bounded beams into inhomogeneous waves is 
mathematically well established, apart from numerical instabilities, for which 
there have not yet been found ultimate solutions. Two enhancements of the 
stability of the decomposition, are presented in sections IV.B and IV.C. 
     As mentioned above, inhomogeneous waves have been generated 
experimentally and it has been shown that their behavior corresponds to what 
is mathematically predicted. Nevertheless, the experimentally generated 
inhomogeneous waves only correspond to mathematical inhomogeneous 
waves within a limited spatial interval. This is, of course, due to the finite 
dimensions of transducers that generate such waves. An unavoidable 
question that immediately arises is, of course, “how is it possible that such 
bounded inhomogeneous waves behave like infinite inhomogeneous waves?” 
It is possible to simulate the behavior of bounded inhomogeneous wave by 
approaching them as a summation of infinite plane waves, in the framework 
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of the Fourier theory. But, this is merely a simulation, not a scientific answer 
to the posed question. Furthermore, it is a connection between 
‘homogeneous’ plane waves and bounded ‘inhomogeneous’ waves. Besides, 
simulating a phenomenon is quite different from understanding it. The real 
answer is found in section IV.D, where the mathematical link between 
infinite inhomogeneous plane waves and bounded inhomogeneous waves is 
found through the Laplace transformation. 
     In the past, the study of bounded beams in terms of inhomogeneous 
waves, has always been limited to the 2D case, because it was impossible to 
expand a 3D bounded beam into inhomogeneous waves. This problem has 
been solved and the concept is outlined in section IV.E. 
     As mentioned earlier, also the frequency of plane waves can be 
considered complex valued. This results in a harmonic oscillation that is 
damped in time. In section IV.F, it will be outlined how the presence of a 
complex frequency , can change the focal length of a focused bounded beam. 
It is also shown that this phenomenon is not only true in the mathematical 
case of complex harmonic waves, but also in the realistic case of sound being 
limited in time and having temporal characteristics that correspond, within a 
limited time window, to the complex harmonic wave. This is very important, 
because it shows that adapting the temporal variation of the amplitude (a 
variation that is much more slowly than the oscillatory – harmonic - 
variation) makes it possible to change the focal length. Therefore, expensive 
phased array technology becomes unnecessary and makes the treatment of 
cancer by means of focused ultrasound better achievable, also for developing 
countries. 
     Section IV.G describes the discovery of a new type of surface waves. It 
radiates both into the solid and into the liquid and is based on novel 
calculations within the framework of the theory of inhomogeneous waves. 
     Further on in this dissertation, a study of inhomogeneous waves will be 
presented in mud layers (chapter V), in diffraction phenomena (chapter X) 
and in piezoelectric media (chapter XII). Most of these additional studies 
have not been included in the historical survey of section IV.A. 
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IV.A  The History and Properties of 
Ultrasonic Inhomogeneous Waves 

 
 This section gives a historical survey of the development of the inhomogeneous wave 

theory, and its applications, in the field of ultrasonics. The references are listed 
chronologically and are as good as complete. Along the historical description, several 
scientific features of inhomogeneous waves are described. All topics of 
inhomogeneous wave research are taken into account, such as waves in viscoelastic 
solids and liquids, thermo-viscous liquids and solids, anisotropic viscoelastic 
materials. Also inhomogeneous waves having a complex frequency are described. 
Furthermore the formation of bounded beams by means of inhomogeneous waves is 
given and also the diffraction of inhomogeneous waves on periodically corrugated 
surfaces. The experimental generation of inhomogeneous waves is considered as well.
The contents of this section are accepted for publication in IEEE Trans. on UFFC 
(Imp. Fact. 1.595 ;SCI-index, Engineering – electrical & electronic, rank:46/205) 

 
 INTRODUCTION 
 

There is no better sentence to start this section than one which is similar to the one that 
was used to end a paper of Bernard Poirée [44], i.e. ‘Ultrasonic inhomogeneous waves are a 
treasure’. It will be seen in what follows that inhomogeneous waves have been a goldmine for 
many researchers because it formed the core of their scientific activities for many years, but it 
will also be seen that inhomogeneous waves are actually a treasure of physics because of 
many theoretically predictable beautiful features, properties and behaviors. Furthermore it will 
be noticed that inhomogeneous waves often let nature poke fun at humans’ intuition. 

First of all we would like to show that inhomogeneous waves are of primordial 
importance in the correct description of reflection/transmission phenomena. Let’s for example 
take a look at the interface between a viscoelastic liquid and an ideal liquid. A homogeneous 
plane wave incident from the viscoelastic fluid is damped along its propagation direction. The 
transmitted wave is not damped along its propagation direction but its amplitude is influenced 
by the one of the incident wave as shown in Fig. IV.A_1. It can be noticed in Fig. IV.A_1 that 
the transmitted wave will have an amplitude that grows exponentially along its wave front. 
Such waves are called inhomogeneous waves. Therefore inhomogeneous waves are entities 
that are necessary to describe even such a simple phenomenon as scattering on plane 
interfaces. 

For some people, inhomogeneous waves are completely unknown, for others they are 
unavoidable when the interaction of sound with viscoelastic materials is to be described. Yet 
other people (the inhomogeneous wave freaks) study such waves in the bulk of a material, for 
example generated by means of some sort of a transducer, and let them interact with materials, 
such waves are often explicitely called inhomogeneous bulk waves. Because inhomogeneous 
waves are the most general plane wave solutions of the wave equation, there is actually no 
reason why one should neglect inhomogeneous waves and only study the very trivial case of 
homogeneous plane waves. This section describes, from a historical point of view, how the 
concept of inhomogeneous waves in ultrasonics has grown from an artifact to a fortune of 
physics. The references in this section are listed according to their submission date and the 
authors have tried to make this list complete. The historical approach is the ‘red line’ in this 
section and the scientific knowledge is distributed along the current section as to appear 
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whenever necessary to understand the historical development. Nowadays, inhomogeneous 
waves have become tools for nondestructive testing. Therefore it is expected that many 
applications will appear in papers the coming decade. The authors would like to express their 
wish that the current section may become an inspiring source for future scientists in this 
fantastic field of research. 

 
Fig. IV.A_1: An inhomogeneous wave is naturally ‘born’ in transmission at the interface between a 

viscoelastic liquid (top) and an ideal liquid (bottom). In general, whenever damping plays a role, 
inhomogeneous waves are part of the game. The black lines correspond to wave fronts, their thickness 

corresponds to the amplitude. 
 

In the past, several papers have appeared that give an overview of inhomogeneous 
waves, but never in a historical context and never spanning the whole area of inhomogeneous 
waves. In 1988, an overview appeared by Poirée [31], dealing with elastic solids and ideal 
fluids and also one by Deschamps [32], dealing with viscoelastic materials, conservation of 
energy and special attention also went to the generalized law of Snell-Descartes. A year later 
came another review by Leroy, Mampaert and Quentin [33]. Later reviews can be found in 
Deschamps [39] (mainly dealing with thermo-viscous materials and viscoelastic isotropic and 
anisotropic materials) and Poirée [44]. Leroy also wrote a review in 1996 [67] with special 
attention for non specular bounded beam effects at the Rayleigh angle of incidence.  

The current section deals with all important aspects of inhomogeneous waves and does 
not go into detail in some areas that have been less important for the growth of the field of 
inhomogeneous waves in ultrasonics. These areas are dealing with waves in sediment layers 
[43], in inhomogeneous media such as rock layers [59], viscous fluids [63], porous materials 
[71, 24] and the interaction of inhomogeneous waves with defects [83]. However it is believed 
that the latter area will become more and more important in the coming decade since 
inhomogeneous waves are starting to be used in NDT. 
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 BASIC PROPERTIES OF ULTRASONIC INHOMOGENOUS WAVES 
 

An example of an inhomogeneous wave is shown in Fig. IV.A_2. The different 
parameters denoted in this figure will be outlined below. This paragraph summarizes some 
basic properties of inhomogeneous waves. How these properties were discovered and also 
supplementary developments will be described in subsequent paragraphs. 
 

 
Fig. IV.A_2: An inhomogeneous wave. Damping occurs along the propagation direction and there is also an 

exponential amplitude decay along the wave front due to the inhomogeneity. 
 
Basically an inhomogeneous ultrasonic wave, represented by a particle displacement u, is 
written just as a homogeneous plane wave, i.e. 
 

( )expA i i tω= • −u P k r  (IV.A_1)

 
A being the amplitude, P being the polarization, k is the wave vector, ω is the angular 
frequency, r is the position, t is time, and 1i = − .  
The wave (IV.A_1) is a solution of the viscoelastic wave equation 
 

~ ~ ~
µ λ µ ρ

••⎛ ⎞
⎜ ⎟∆ + + ∇∇⋅ =
⎜ ⎟
⎝ ⎠

u u u  
(IV.A_2)

 
with  
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λ λ λ

µ µ µ

∂
= +

∂

∂
= +

∂

 

(IV.A_3)

 
if  
 

~ ~2 / 2ρω λ µ
⎛ ⎞
⎜ ⎟= +
⎜ ⎟
⎝ ⎠

k ki  
(IV.A_4)

 
and 
 

0× =k P  (IV.A_5)
 
or if 
 

~2 /ρω µ=k ki  
(IV.A_6)

 
and 
 

0=k Pi  (IV.A_7)
 
Waves that correspond to (IV.A_4-5) are called longitudinal, whereas waves corresponding to 
(IV.A_6-7) are called shear waves. 
It is also convenient to take into account that it ω∂ ≈ −∂  and use the following substitutions in 

(IV.A_4) and (IV.A_6): 
 

( )2 2 2 2
0,2

4 2 2 2 4 42 0, 0,

v vs s s

v vs s s s

ω α
µ ρω

ω ω α α

−
=

+ +
 

(IV.A_8)

 

0,2 3' 2 4 2 2 2 4 42 0, 0,

svs v vs s s s

α
µ ρω

ω ω α α
= −

+ +
 

(IV.A_9)

 
2M

S
ρωλ −

=  
(IV.A_10)

 
22' N

S
ρωλ =  

(IV.A_11)

 
with 
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( )
( )
( )

6 2 22

4 2 4 2 2 2 2 2 2 4 22 4 20, 0, 0, 0,
2 2 4 4 4 2 2 2 2 4 2 2 2 4 44 2 20, 0, 0, 0, 0, 0,
2 4 4 4 4 4 4 220, 0, 0, 0,

M v vs d

v v v v v vd d d s s s d d s s

v v v v v v v vd s s s d d s d d s s s d d

v v v vd d s s s d d s

ω

ω α α α α

ω α α α α α α

α α α α

= −

+ − + −

+ − − + +

+ −

 

(IV.A_12)

 
4 4 3 2 3 2 2 2 3 2 22 4 20, 0, 0, 0, 0, 0,

3 4 4 4 3 4 320, 0, 0, 0,

N v v v v v vd d s s s d d s d s s d

v v v vd s s d s s d d

α α ω α α ω α α

α α ω α ω α

= + −

− + −
 

(IV.A_13)

 

( )( )4 2 2 2 4 4 4 2 2 2 4 42 20, 0, 0, 0,S v v vs s s s d d d dω ω α α ω α ω α= + + + + v  (IV.A_14)

 
whence (IV.A_4) becomes 
 

2

0,i dvd

ω α
⎛ ⎞
⎜ ⎟= −
⎜ ⎟
⎝ ⎠

k ki  

(IV.A_15)

 
and (IV.A_6) becomes 
 

2

0,i svs

ω α
⎛ ⎞
⎜ ⎟= −
⎜ ⎟
⎝ ⎠

k ki  

(IV.A_16)

 
In (IV.A_15-16) vd and vs are the longitudinal respectively shear wave velocity for pure 
homogeneous plane waves in the considered medium whilst 0,dα  and 0,sα  are the intrinsic 
damping coefficients in the medium for longitudinal respectively shear waves. 

Whenever 'µ  and 'λ  are nil, it is perfectly possible that all quantities in (IV.A_1) are 
real valued. The amplitude A can be real, or complex, depending on the phase at the origin. 
Whenever 'µ  and/or 'λ  differ from zero, it follows from (IV.A_4) and (IV.A_6) that k is 
complex valued. Besides, regardless of the values of 'µ  and 'λ , k can be complex valued 
because of specific boundary conditions. Hence inhomogeneous waves are defined as waves 
described by (IV.A_1) and having a complex wave vector k, i.e. 
 

1 2i= +k k k  (IV.A_17)

 
A summation of a real vector with an imaginary vector, as in (IV.A_17), is called the 

bi-vector formalism. Substitution of (IV.A_17) in (IV.A_1) reveals that  influences the 
phase of the considered sound wave, while  influences the amplitude. Therefore it is 
common to write  

1k

2ik
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2 = −k α β  (IV.A_18)

 
with  
 

|| 1α k  (IV.A_19)

 
and 
 

1⊥β k  (IV.A_20)

 
α  is called the damping vector, while β  is called the inhomogeneity vector. 
Now if k is indeed complex, then from (IV.A_5) and (IV.A_7), it follows that the polarization 
vector P can also be complex, i.e. 
 

1 2i= +P P P  (IV.A_21)

 
The vector P is normalized whence 
 

11 1 2 21
01 2

= +⎧⎪= → ⎨ =⎪⎩

P P P P
P P

P P

i i
i

i
 

(IV.A_22)

 
An important feature of the polarization is consequently that the real component is always 
larger than the imaginary component. 
Because of (IV.A_21) the values of  and  are determined by (IV.A_5) or (IV.A_7) as 
follows: 

1P 2P

For longitudinal waves: 
 

( ) 1/ 2
0 / | | / 0,v id dω α

−
× = → = → = −k P P k k P k  

(IV.A_23)

 
or in other words 
 

1 0, 2

1 2 2
0,2

0, 1 2

2 2 2
0,2

dvd

dvd

d vd

dvd

ω α

ω α

ωα

ω α

−

=

+

+

=

+

k k

P

k k

P

 

(IV.A_24)

 
while for shear waves: 
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( )( ) 1/ 2
0 / | | / 0,v is sω α

−
= → = × → = × −k P P F k k P F ki  

(IV.A_25)

 
or in other words 
 

1 0, 2

1 2 2
0,2

0, 1 2

2 2 2
0,2

svs

svs

s vs

svs

ω α

ω α

ωα

ω α

× − ×

=

+

× + ×

=

+

F k F k

P

F k F k

P

 

(IV.A_26)

 
with . ⊥F k

From (IV.A_24) we learn that longitudinal inhomogeneous waves are elliptically 
polarized with the ellipse of particle motion inside the plane formed by the real and imaginary 
part of the wave vector. From (IV.A_26) we learn that shear waves are also elliptically 
polarized, however the ellipse of particle motion is not anymore inside the plane formed by 
the real and imaginary part of the wave vector. These polarization properties involve that it 
would be more appropriate to talk about quasi-longitudinal and quasi-shear waves just as in 
anisotropic media, but this is seldom done in inhomogeneous wave theory. 
In isotropic materials, it is very convenient to let relations (IV.A_4-7) automatically be taken 
into account by working with the Helmholtz decomposition 
 

ϕ ψ= ∇ +∇×u e  (IV.A_27)
 
where ϕ  and ψ  are scalar plane waves (having a complex wave vector) and e is an 
appropriately chosen unit vector so that 
 

0ψ∇ =ei  (IV.A_28)
 
In anisotropic materials it is better to work directly with (IV.A_1). 
In many papers the dispersion relations (IV.A_15) or (IV.A_16) are written in terms of the 
components of k, leading, for m=s or m=d, to 
 

22 2 2 2
1 02k mvm

ωβ α α− − = − ,  
(IV.A_29)

 
and 
 

 
- 102 - 



CHAPTER IV: Inhomogeneous Waves and Bounded Beams  
  

1 0k mvm
,

ωα α−
=  

(IV.A_30)

 
For the moment we have supposed that (IV.A_1) is a harmonic function of time. 

Implicitly this means that we supposed that the vibration is somehow generated by means of a 
harmonic source. However there are also other sources, such as damped or even critically 
damped sources, possible. Sound coming from such sources will have different characteristics 
in time and space. In fact the source affects the complex amplitude but also the frequency, 
whence depending on the characteristics of the source, this frequency can be real (harmonic), 
complex (harmonically damped) or even imaginary (critically damped). Hence in general 
 

1 2iω ω ω= +  (IV.A_31)

 
The concept of complex frequencies will be dealt with in detail further below. 
 
 THE CONCEPT OF COMPLEX ANGLES 
 

In the early days of the inhomogeneous wave theory and in mathematical papers about 
this theory, the concept of complex angles is often used. 
From the fact that (see (IV.A_15-16)), for m=s or m=d, 
 

2

0,i mvm

ω α
⎛ ⎞
⎜ ⎟= −
⎜ ⎟
⎝ ⎠

k ki  
(IV.A_32)

 
and  
 

2 2sin cos 1θ θ+ =  (IV.A_33)

 
in the XZ-plane k can be formally written as 
 

( )sin cos0,i m x zvm

ω α θ θ
⎛ ⎞
⎜ ⎟= − +
⎜ ⎟
⎝ ⎠

k e e  
(IV.A_34)

 
Identification with  
 

( ) ( )1, 2, 1, 2,k ik k ikx x x z z z= + + +k e e  (IV.A_35)

 
then results in 
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sin cosh cos sinh1, 1 2 0, 1 2

cos sinh sin cosh2, 1 2 0, 1 2

cos cosh sin sinh1, 1 2 0, 1 2

sin sinh cos cosh2, 1 2 0, 1 2

k x mvm

k x mvm

k z mvm

k z mvm

ω θ θ α θ θ

ω θ θ α θ θ

ω θ θ α θ θ

ω θ θ α θ θ

= +

= −

= −

= − −

 

(IV.A_36)

 
with  
 

1 2iθ θ θ= +  (IV.A_37)

 
The angle defined in (IV.A_34) is hence a complex angle. 
 
 THE GENERALIZED LAW OF SNELL-DESCARTES 
 

When an inhomogeneous wave is incident on an interface between two media, 
reflected as well as transmitted inhomogeneous waves will be generated, at least if the 
mechanical continuity conditions allow them to be generated. The conditions are very often 
given by continuity of normal displacement and normal stress-vector for liquid-solid 
interfaces and total stress for solid-solid interfaces. However there is also the continuity of 
propagation-phase, which simply states that along the interface (for example parallel with the 
X-axis) incident sound coincidentally generates scattered sound. This principle is called the 
classical law of Snell-Descartes and is physically best formulated as continuity of 
 

1k ri  for ∈r interface (IV.A_38)

 
and 
 

continuity of 1ω  (IV.A_39)

 
In linear acoustics however there is also the principle that the amplitude of the scattered sound 
is linearly dependent on the incident amplitude. If the incident amplitude differs from spot to 
spot (and/or from time to time) along the interface because this incident wave is 
inhomogeneous (and/or has complex frequency), then the scattered waves must be equally 
profiled in space (and/or in time) along the interface. This results in continuity of  
 

2k ri  for ∈r interface (IV.A_40)

 
and  
 

continuity of 2ω  (IV.A_41)
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Relations (IV.A_38-41) can be compressed as continuity of 
 

k ri  for ∈r interface (IV.A_42)
 
and 
 

continuity of ω  (IV.A_43)
 
The principles formulated in (IV.A_42-43) are called ‘the generalized law of Snell-Descartes’. 
The principle is schematically shown in Fig IV.A_3, for an interface between two liquids. The 
projections of each wave vector on the interface are the same for each of the present waves 
(incident ’ínc’, reflected ‘r’ and transmitted ‘t’). 
 

 
Fig. IV.A_3: Schematic of what is called the Generalized law of Snell-Descartes. All real wave vectors 

involved have the same projection on the interface, the same holds for the imaginary wave vectors. 
 
 
 THE FOUNDER OF THE ULTRASONIC INHOMOGENOUS WAVE 

THEORY 
 

In numerous papers concerning inhomogeneous waves, it can be found that 
Brekhovskikh [1] already mentions the fact that the wave number can be complex. The 
pioneering work of Henry F. Cooper JR [2, 3] is almost never mentioned. Most likely this 
work was ‘forgotten’ by the re-founders of ultrasonic inhomogeneous waves more than a 
decade later. However the work of  Cooper can be considered as the foundation of the 
ultrasonic inhomogeneous wave theory. In this work, the existence of inhomogeneous waves 
(Cooper named them ‘general plane waves’) in viscoelastic media is proved and also the 
scattering of such waves on an isotropic solid-vacuum interface and an interface between two 
isotropic solids is considered. Note that there are some printing errors in Cooper’s paper that 
have been discovered only in 1987 by Jones, Kwan and Yeatman [27]. Even less known is the 
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fact that Cooper already implements what has later been called ‘the generalized law of Snell-
Descartes’, see (IV.A_42-43), and also the dispersion relation (IV.A_32) for inhomogeneous 
waves. Cooper does not apply any bi-vector formalism and does not consider the dispersion 
relation in its modern form resulting from that bi-vector formalism. Cooper also did not 
discover the fact that a reflection coefficient may exceed unity. Nevertheless there can be no 
doubt at all that Cooper should be considered the real founder of ultrasonic inhomogeneous 
wave theory. 
 
 THE RE-FOUNDERS AND BOOSTERS OF THE ULTRASONIC 

INHOMOGENEOUS WAVE THEORY 
 
 Single Ultrasonic Inhomogeneous Waves 
 

In his paper, Frisk [6] deals with the fact that the description of the radiation field of 
tiny sources cannot occur without involving inhomogeneous waves. Therefore he studies the 
reflection of such waves from interfaces in the ocean bottom and states that Snell’s law for 
real wave vector components can be generalized to the case of complex wave vector 
components without any problem. He also describes the fact that the reflection coefficient can 
exceed unity without violation of the principle of energy conservation. However Frisk studies 
inhomogeneous waves not as real physical entities, but as parts of the decomposition of the 
sound field produced by tiny sources. Therefore his inhomogeneous waves are of such a kind 
that they damp away from the source and would nowadays be called damped homogeneous 
plane waves. As a result inhomogeneous waves in Frisk’s paper are only important very close 
to the sound source. 

Because the work of Cooper [2, 3] seemed to be forgotten, in the period of Frisk, only 
those researchers were interested in inhomogeneous waves who were also interested in near 
field phenomena. 

New life was given to the theory by an error in a paper of Atalar [7]. Atalar dealt with 
a lossy liquid – lossless isotropic solid interface and he explicitly prevented exponential 
amplitude growth away from the interface. The reason originated from the then well 
established idea (the Sommerfeld radiation condition) that the amplitude must always be zero 
at infinity. However Sommerfeld’s rule is not really crucial if one is considering 
inhomogeneous incident waves. Apparently Atalar was not aware of this. The paper of Atalar 
shows a reflection coefficient that is so extraordinary that it inspired Claeys and Leroy [11] to 
study it deeper. They came to the conclusion that contrary to what Atalar had proposed, the 
transmitted waves in the case studied by Atalar must always be directed in such a way that 
there is exponential growth inside the solid. In a much later study, Deschamps and Roux [37, 
45] have studied this problem in more detail and also came to the conclusion that the classical 
Sommerfeld radiation condition should not be used for inhomogeneous waves, stating that for 
surface waves it is not always necessary to impose that their amplitude should tend to zero at 
large distances away from the interface. Atalar [12] resolved this discussion by stating that 
Claeys and Leroy [11] were right below the critical angle and that he was right beyond the 
critical angle. Hence the discussion of Atalar, Claeys and Leroy resulted in what would later 
be discovered experimentally by Marc Deschamps [61]. These discussions also showed that 
ultrasonic inhomogeneous waves were concepts that were naturally generated during 
scattering whenever damping becomes a factor of importance. 

One month later than Claeys’ and Leroy’s submission [11], Weston [10] published a 
paper that was also dealing with inhomogeneous waves. Weston was interested in very small 
inhomogeneities of sound in waveguides [8]. For such small inhomogeneities there are 
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regions in the angular interval 0,
2
π⎡

⎢⎣ ⎦
⎤
⎥  where the reflection coefficient has practically constant 

amplitude. This lead Weston to consider a formulation, like Brekhovskikh [1] and Bertoni and 
Tamir (see ref 3 in [13]) did in the framework of homogeneous plane waves, of a beam shift 
due to constant amplitude and high phase shifts in a beam that is composed (in Fourier sense) 
of very weakly inhomogeneous waves. Even though his considerations practically only hold 
for guided waves in between lossy media, an important conclusion of his paper is that there 
can be an energy gain when inhomogeneous waves are reflected. Even more interesting is a 
crucial sentence in Weston’s paper that would become one of the major ideas of 
inhomogeneous wave theorists, i.e. “In fact, there are the two viewpoints on the reflection of 
inhomogeneous waves, and it is worth stressing that these are equivalent: a displacement like 
other waves with no extra gain, or no displacement but with gain”. This intuition was shared 
by Claeys and Leroy and they later proved [26] explicitly that there is energy conservation 
when inhomogeneous waves are reflected from an interface between two media. This intuition 
also formed the basic idea in unraveling the Schoch displacement [13]. 
 
 The formation of bounded beams by means of inhomogeneous waves and their 

connection with leaky surface waves 
 

The real breakthrough of inhomogeneous waves originated from a paper of Claeys and 
Leroy [13, 18] in which they described a bounded beam as a superposition of inhomogeneous 
waves by means of the Prony technique. Hence their superposition is performed not in 
Fourier-sense but in a sense that had only been done before in electronics and only in the time 
domain, e.g. Spitznogle and Quazi [4].  

Essentially the method works as follows: In Fig. IV.A_4, a schematic is given of the 
different coordinates that are used below. On the left side there is the incident (gaussian) 
bounded beam with given profile, while on the right side there is the reflected profile.  
 

Fig. IV.A_4: A bounded beam with profile f(x’) is incident on the left and is reflected on the right. 
 
The bounded beam ( ),f x y  with profile ( )'f x  is written as 
 

 
- 107 - 



CHAPTER IV: Inhomogeneous Waves and Bounded Beams  
  

( ) ( )' exp
N

'f x I An n nn N
β= ∑

= −
x  

(IV.A_44)

 
with  if  and  if  in the original work of Claeys and Leroy and 0nI = 0n < 1nI = 0n ≥ 1nI ≡  
in a later extension of the original method (see further below). 
For symmetrical profiles this leads to 
 

( ) ( ) (' e0 1

N )xp 'f x A I I A xn n n nn
β= + +∑ −=

 
(IV.A_45)

 
The transformation /n n pβ =  and ' lnx p γ= consequently results in 
 

( ) ( )ln0 1

N nA I I A f pn n nn
γ γ+ + =∑ −=

 
(IV.A_46)

 
The right side of equation (IV.A_46) can also be decomposed in Laguerre polynomials  of 
order n as 

nL

 

( ) (ln 0 1

N
f p B B Ln nn

)γ γ= + ∑
=

 
(IV.A_47)

 
with 
 

( ) ( ) ( )exp ln
0

B f p L dn nγ γ γ
∞

= −∫ γ  
(IV.A_48)

 
The unknown coefficients  are then found elegantly by means of linear combinations of nA nB  
or directly just by means of a numerical optimization of equation (IV.A_45). This 
superposition lead to simulations of the interaction of bounded Gaussian beams at all angles 
of incidence. Especially the simulation of the Schoch effect at the Rayleigh angle and at the 
Lamb angle, which had up until then only been done by means of the Fourier method for all 
angles of incidence and a more specialized form of the Fourier method at the Rayleigh angle 
(ref 3 in [13]), awakened many acousticians. From that moment on there existed an 
undisputable bond between inhomogeneous waves and leaky surface waves. Now, since leaky 
surface waves were known to be of extraordinary importance in non destructive testing, the 
breakthrough of the ultrasonic inhomogeneous wave theory was a fact. 

In a later paper, Leroy, Poirée, Sebbag and Quentin [21, 28] and Leroy, Quentin and 
Claeys [26] highlighted the difference in the reflection coefficient at the Rayleigh angle of 
homogeneous plane waves and inhomogeneous plane waves. Inhomogeneous plane waves, as 
used in the bounded beam decomposition of Claeys and Leroy [13, 68], showed a minimum at 
the Rayleigh angle which was in intuitive agreement with energy transformation from incident 
sound to Rayleigh waves, while nothing like this was visible for homogeneous plane waves. 
This, together with their experience in the field of Acousto-Optics, lead to a new definition of 
the reflection coefficient for bounded beams. This coefficient was the complex amplitude of 
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the reflected sound integrated over the whole profile, divided by the one of the incident beam. 
This coefficient showed a minimum at the Rayleigh angle, in agreement with intuition. 
Furthermore, their definition was in accordance with a measurable entity in acousto-optics, 
where the second order diffracted light amplitude corresponded to their definition of the 
reflection coefficient and was directly measurable.  

A vast study that revealed the fact that inhomogeneous waves are excellent tools to 
excite leaky Rayleigh waves was perfomed by Poirée and Sebbag [36] and also Quentin, 
Derem and Poirée [38]. They showed not only that leaky Rayleigh waves could be written as a 
combination of inhomogeneous waves, but also showed that it was from a physical point of 
view natural to generate such waves by means of incident inhomogeneous waves. Later, 
Duclos et al [52] also perfomed a study on the connection of Lamb waves with 
inhomogeneous waves. 

Ten years after the findings of Claeys and Leroy, Van den Abeele and Leroy [49, 53, 
54, 56, 62] extended the method as described above in (IV.A_44) but now with  to form 
bounded beams, hence involving not only inhomogeneous waves having an inhomogeneity 
vector in one sense but also in the opposite sense. They studied in great detail the effects of 
frequency and beam width on the reflected beam profile. Later, a study has been performed by 
Vanaverbeke, Windels and Leroy [86], following experimental research of Devolder, Wevers, 
Demeester and Leroy (see ref(1) in [86]), on the possibility to measure the characteristics of a 
coating by means of phase-measuring (acousto-optic) techniques. One of their findings was 
that the results coming from the Fourier model correspond to the ones coming from the 
inhomogeneous wave model when studying the reflection of bounded beams on coated 
materials. 

1nI ≡

Nevertheless, the formation of bounded beams by means of inhomogeneous waves 
bares a drawback in that only an approximation can be found numerically in a relatively small 
area around the center of the beam. At large distances there are always exponentially growing 
amplitude tails. The presence of these tails can severely interfere with the areas of interest 
after reflection. Therefore some numerical techniques have been developed [91, 90] lately in 
order to shift those tails a little bit more outward. Furthermore since the Prony technique only 
works for one variable, it is impossible to build 3D bounded beams by means of 
inhomogeneous waves. Lately this shortcoming has been voided [95] by introducing a 
technique that is capable indeed of building 3D bounded beams. A result of a 3D gaussian 
beam profile formed by means of a summation of inhomogeneous waves is shown in Fig. 
IV.A_5. Just as in the 2D case there appear exponentially growing tails at some distance away 
from the center of the profile. 

Very recently, mainly because of the fact that bounded inhomogeneous waves have 
been experimentally generated (see further below), there have appeared some papers dealing 
with the description of the behavior of bounded inhomogeneous waves (i.e. an exponential 
profile but chopped in space) in reflection/transmission at plane interfaces between a liquid 
and a solid. The first description consists of the formation of bounded inhomogeneous waves 
by means of a Fourier decomposition into homogeneous plane waves and has been published 
by Vanaverbeke, Windels and Leroy [82]. Still, because it is interesting not just to simulate 
what happens to bounded inhomogeneous waves when they interact with materials, but also to 
understand what the physical and theoretical connection is between bounded inhomogeneous 
waves and infinite inhomogeneous waves, it has been shown recently that a bounded beam is 
built up by means of infinite inhomogeneous waves and that the connection is made through 
the Laplace transform [92, 93]. Furthermore it is shown that this description shows why 
bounded inhomogeneous waves behave like infinite inhomogeneous waves. The reason is that 
the infinite inhomogeneous wave having the same inhomogeneity as the bounded 
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inhomogeneous wave determines what happens to the bulk of the bounded beam, whereas 
other inhomogeneities are only important to form the edges of the bounded beam. 

Fig. IV.A_5: The profile of a gaussian beam in 3D, built by means of a superposition of inhomogeneous waves. 
 
 The heritage from electromagnetic wave theory 
 

Inhomogeneous waves have been much earlier developed in electromagnetic wave 
theory than in ultrasonics theory. However, as is often the case in different branches of 
science, the connection between the two fields did not grow automatically. The first who 
connected inhomogeneous waves theory in ultrasonics with the one in electromagnetism was 
Michael Hayes. In a paper which appeared in the same year as the one of Atalar [7] and 
Claeys and Leroy [11], Hayes [9] published one dealing with inhomogeneous (surface) waves 
that was valid for both electromagnetic and ultrasonic waves. A few years later Hayes [16] 
published another paper where he introduced the bi-vector formalism (see also Boulanger 
[57]). The bi-vector formalism originates from Gibbs (see ref 1 in [16]) and Synge (see ref 2 
in [16]) and Hayes revealed its importance in the description of ultrasonic and electromagnetic 
inhomogeneous waves. The bi-vector formalism of Hayes has formed the theoretical structure 
of inhomogeneous waves that is still used today. 
 
 THE FURTHER DEVELOPMENT OF THE THEORY FOR VISCOELASTIC 

ISOTROPIC MEDIA 
 

Around 1984 the founders and the re-founders of the theory of ultrasonic 
inhomogeneous waves had considered the existence of such waves, they had shown 
peculiarities of the reflection coefficient, they had considered the principle which would later 
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be called the generalized law of Snell-Descartes (IV.A_42-43) and they had shown through 
the Schoch displacement that there was a strong connection between inhomogeneous waves 
and leaky surface waves. Nevertheless a lot of work still needed to be done before the theory 
could reach its nowadays proportions. 
Michael Hayes [16] had already used the formalism of bi-vectors in the description of bulk 
inhomogeneous waves. Poirée [15] showed that this formalism could also be used to describe 
surface waves. Later, Poirée’s findings were extended in a paper of Poirée and Luppé [48]. 
Meanwhile Hosten and Deschamps [14] had applied the concept of complex angles (IV.A_37) 
in the scattering of inhomogeneous waves. The latter two authors combined their efforts with 
the bi-vector formalism as used by Hayes [16] and Poirée [15] and extended the notion of 
damped homogeneous plane waves (see ref 3 in [19]) and surface waves to inhomogeneous 
bulk waves. For the first time ever Hosten and Deschamps [14] published the dispersion 
relation in the bi-vector formalism (as is currently always used, see (IV.A_29-30)) for 
viscoelastic isotropic media and for the first time they wrote about the generalized law of 
Snell-Descartes. The former was already calculated by Cooper [2, 3], the latter had already 
been obtained by Cooper [2, 3] and Frisk [6] but here it was for the first time explicitly written 
within the bi-vector formalism. Hosten and Deschamps [14] showed within the bi-vector 
formalism the fact that inhomogeneous waves are generated naturally on an ideal 
liquid/absorbing solid and therefore complemented what had been tackled before by Atalar, 
Claeys and Leroy [7, 11, 12]. 

The conservation of energy, which had been tackled before [26] for scattering of 
inhomogeneous waves on interfaces between ideal elastic media, was established by 
Deschamps [35] for viscoelastic materials. Hence after 1990 there were no doubts possible 
anymore considering energy conservation when inhomogeneous waves are 
reflected/transmitted. A further study can also be found in Chevée and Deschamps [47, 60]. 
Since the phase velocity of inhomogeneous waves is frequency dependent, it is also important 
to study the velocity of energy transport in such waves. This has been done by Poirée [46]. 
Because inhomogeneous waves were so astonishingly promising, Deschamps and Chevée [40] 
extended an approach (the expansion into a Debeye series), for describing the interaction of 
homogeneous plane waves with a solid layer immersed in a viscous liquid, to inhomogeneous 
waves. They found energy conservation laws. Nevertheless they also found some peculiarities 
of inhomogeneous waves which were not so attractive for intuitive interpretation, such as 
propagation directions within the layer exceeding 900 and they also found some convergence 
problems in their approach. Their paper in fact indicates that inhomogeneous waves can be 
considered as an excellent tool, but not the ultimate tool for describing the interaction of 
sound with materials.  

A treatise on the reflection/transmission of inhomogeneous waves (including shear 
horizontal waves) between two isotropic viscoelastic solids can be found in a paper of 
Caviglia and Morro [72]. The latter paper differs slightly from the other papers in the 
framework of inhomogeneous waves because the Stroh formalism is used here. 

Lately [89] it has also been shown that inhomogeneous waves must be able to 
stimulate a surface wave on a liquid/solid interface that radiates both into the liquid and into 
the solid and therefore differs from a leaky Rayleigh wave. 
 
 THE INTERACTION OF ULTRASONIC INHOMOGENEOUS WAVES WITH 

ANISOTROPIC MATERIALS 
 

Contrary to for example the book of Fedorov (ref 8 in [55]) it could already be found 
in the book of Musgrave [5] that complex wave vectors are mathematically possible in 
crystals. However it was only much later that one has started to study this phenomenon 
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deeply. The most general approach for describing the interaction of sound with an interface 
between generally anisotropic materials before 1986 is found in a paper of Rokhlin, Bolland 
and Adler [20]. It is so general not only because of the possibility to calculate results for 
general anisotropy but also because the numerical approach is valid for all angles of incidence 
whereas most earlier papers only presented results below the bulk critical angles. Furthermore 
it has been shown by Lanceleur, Ribeiro and De Belleval [55] that Rokhlin et al. [20] must 
have implicitely implemented inhomogeneous waves because of correspondence with the later 
results of Lanceleur et al. [55]. One of the key factors is of course that Rokhlin et al [20] 
determine the wave vector direction (up/down) by considerations of the energy flow whence 
they obtain the correct choice of the sign even in the case of generated inhomogeneous waves. 
Nevertheless in the paper of Rokhlin et al. [20] there are no explicit studies described that 
reveal phenomena that are due to incident or scattered inhomogeneous waves. Therefore the 
work of Atalar, Claeys and Leroy [7, 12, 11] and Hosten and Deschamps [14], where it was 
shown that damped waves produce inhomogeneous waves in a reflection/transmission 
process, motivated Hosten, Deschamps and Tittmann [22] to describe transmitted waves in a 
viscous anisotropic material (e.g. a fiber reinforced composite) in the framework of the 
inhomogeneous wave theory. The description of bulk inhomogeneous waves in anisotropic 
media had already happened by Hayes [16], but not in the context of reflection/transmission 
and certainly not their influence on the reflection/transmission coefficient. Hosten et al [22] 
showed that the inhomogeneous wave theory produces results in agreement with experiments 
for propagation (through stiffness coefficients) and damping (through damping coefficients). 
This work was later further extended by Deschamps and Hosten [42] to a system where the 
reflection /transmission coefficients are expanded in a Debeye series. Now since the vast 
majority of composites are layered, it was appealing to Hosten [41] to try numerical 
techniques that already existed for describing the interaction of homogeneous plane waves 
with layered (composite) materials, e.g. the Thomson-Haskell method, in the field of 
inhomogeneous plane waves. However, since the classical Thomson-Haskell method produces 
numerical instabilities for high values of frequency times thickness, Hosten [41] modified the 
method to get more stability and tested it in the case of damped materials, where the then well 
established theory of inhomogeneous waves demanded the presence of bulk inhomogeneous 
waves inside the layered medium. Again he found excellent agreement with experiments. The 
rapid developments in the inhomogeneous wave theory together with some important attempts 
to include such waves in reflection/transmission phenomena in anisotropic media (along 
crystal axes [22]) inspired Lanceleur, Ribeiro and De Belleval [55] to study the presence and 
the consequences of inhomogeneous waves due to reflection/transmission phenomena in 
general anisotropic media (therefore also valid along the acoustical axes). Hence the paper of 
Lanceleur et al [55] complements the paper of Rokhlin et al [20]. For researchers in the field it 
is therefore necessary to study those papers together.  

Besides, a thorough study on the differences of the Stroh formalism and the Christoffel 
equation formalism for inhomogeneous waves in anisotropic elastic materials can be found in 
Shuvalov [78]. 

Furthermore it is well know that for homogeneous plane waves the energy ray is 
directed along the direction of the wave vector, when this wave vector is directed 
perpendicular to the slowness surface in that direction. It is not always possible to have this 
situation, especially in anisotropic materials. Deschamps and Poncelet [85] showed that this is 
possible indeed if one deals with inhomogeneous waves because the inhomogeneity 
component becomes a steering factor. Hence it is always possible to find such conditions for 
inhomogeneous waves. They also show that there are always four solutions in each direction.  
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Further findings of the interaction of inhomogeneous waves with anisotropic materials 
can be found in Deschamps and Assouline [76], in Boulanger and Hayes [81] and in Rogé 
[80]. 

 
 INHOMOGENEOUS WAVES IN THERMOVISCOUS LIQUIDS 
 

In viscoelastic materials there are only vibrational modes, i.e. (quasi) longitudinal and 
(quasi) shear modes. In thermoviscous liquids however there is also an entropy (or thermal) 
mode. This mode, which formerly was only described as a pure homogeneous plane wave, 
was described in the framework of the inhomogeneous wave theory by Poiree [17, 23] for the 
case of a perfect thermoviscous gas by means of a first order perturbation of Navier-Stokes 
equations. Deschamps and Cheng [30] extended this model to the general case of 
thermoviscous liquids. The latter authors also showed that surface modes are possible that 
couple entropy modes with vibrational modes. The case of termoviscous solids can be found 
in Deschamps and Changlin [34] 
 
 THE EXPERIMENTAL GENERATION OF ULTRASONIC 

INHOMOGENEOUS WAVES 
 

Up until 1988, inhomogeneous waves had mostly been important from a theoretical 
point of view and there were only indirect connections with experiments such as the Schoch 
effect or damping within materials. Most researchers in the field believed that bulk 
inhomogeneous waves could become an important tool for NDE, however such waves had 
never been generated and studied before. Deschamps and Hosten [29] were the very first to 
build a tool for exciting bulk inhomogeneous waves and they verified that experimentally 
excited bulk inhomogeneous waves had propagation properties in complete agreement with 
theory. From that moment on, bulk inhomogeneous waves became established physical 
entities. The excitation equipment consisted of a relatively wide transducer and the 
inhomogeneous wave was generated by transmitting the generated sound through a damping 
prism-like material. 

The principle is shown in Fig. IV.A_6. A homogeneous plane sound wave impinges 
the prism. Its characteristics are given by 

00 1,0 xk=k e . Along the interface 1tany x θ=  Snell’s 
law must be fulfilled, whence within the damping prism a damped homogeneous plane wave 
is generated. This wave is in its turn transmitted along the interface 2tany x θ=  whence also 
along this second interface it must fulfill Snell’s law.  
Now by demanding that the transmitted wave (in the lossless lower media) must be conform 

with ( )22 /2 2 2
v ix yβ ω β= + −k e e , i.e. an inhomogeneous wave with given 

inhomogeneity vector , then it can be shown that implementation of Snell’s law together 
with the dispersion relation inside the damping prism results in 
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Fig. IV.A_6: The generation of an inhomogeneous wave by means of a damping prism. The black triangle 
represents the wave front, with the thickness being relative to the amplitude. 
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for 0α  being the intrinsic damping and  the sound velocity inside the prism. 0v
The reason why both angles 1θ  and 2θ  must be tuned is the fact that not only the amplitude 
variation must be correct but also the wave front and its direction of propagation. It is for 
example seen from (IV.A_49-51) that if one demands 0β =  that both angles are equal to π± . 

It also follows from (IV.A_49-51) that if one demands 0β α=  that 1 2
πθ =  and that 

arctan2
0

v
v

θ
⎛ ⎞
⎜= −
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⎝ ⎠

⎟  which would be 
4
π

−  in the case of 0v v= . 

This method using a damping prism was also used in [75] by Briers, Leroy, Poncelet and 
Deschamps in order to experimentally verify the theory of the diffraction of inhomogeneous 
waves on periodically rough surfaces (see further below). 
A second method to experimentally generate bulk inhomogeneous waves has been presented 
by Huang, Briers, Rokhlin and Leroy [58] and basically works as follows. Consider a thick 
metal plate which is half immersed in a liquid (see Fig. IV.A_7). The other half is dry. When 
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a Rayleigh transducer generates a pulsed Rayleigh wave on the dry side in the direction of the 
wet side, the generated Rayleigh wave will propagate towards the liquid. When it reaches the 
liquid, it becomes leaky.  
 

 
Fig. IV.A_7: A schematic of the generation of inhomogeneous waves by means of leaky Rayleigh waves. The 

black triangle denotes the wave front with thickness relative to the amplitude. 
 

This leakiness causes sound to be transmitted at the Rayleigh angle into the liquid and 
also causes damping of the remaining Rayleigh wave in the solid plate. Hence the amount that 
is leaked into the liquid diminishes along the propagation direction of the Rayleigh wave. This 
causes the radiated sound to be inhomogeneous, i.e. amplitude decay perpendicular to the 
propagation direction of the radiated sound. Furthermore the leakage of  sound into the liquid 
is frequency dependent, whence the inhomogeneity in the generated bulk waves is also 
frequency dependent. An inhomogeneity can then be ‘chosen’ for further research by filtering 
out all frequencies that do not produce this particular inhomogeneity. The drawback of the 
latter method is clearly the fact that the frequency and the inhomogeneity cannot be chosen 
independent from each other. The drawback of the former method is the fact that a different 
prism (i.e. different angles 1θ  and 2θ ) is needed whenever a different inhomogeneity is 
required. 
 
 THE DIFFRACTION OF ULTRASONIC INHOMOGENEOUS WAVES 
 

Since the 1980’s, it was known that periodically corrugated surfaces possessed the 
ability to transform incident bulk waves into Scholte-Stoneley waves. That is because under 
the right circumstances one of the diffracted modes propagates along the interface under 
advantageous conditions. Therefore such surfaces became appealing for nondestructive testing 
applications since for most materials it is otherwise not possible to stimulate Scholte-Stoneley 
waves on water-solid interfaces by means of sound incident from one of the two media. 
However in nondestructive testing it is also inviting to use Rayleigh waves. The problem 
arising from studies of the diffraction of pure plane waves (or wide bounded beams) on 
corrugated surfaces was that the leaky Rayleigh wave did not seem to get excited 
appropriately by this method. Hence the combination of the inhomogeneous wave theory and 
the diffraction of plane waves was unavoidable. The most important difference between the 
diffraction of pure plane waves and the diffraction of inhomogeneous waves is that the grating 
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equation must be generalized in a similar way as the law of Snell-Descartes had been 
generalized before. 

The classical grating equation is given by 
 

sin sinn inc n λθ θ= +
Λ

 
(IV.A_52)

 
Unless one is attracted to working with complex angles it is easier to transform this equation 
into 
 

2n inck k nx x
π

= +
Λ

 
(IV.A_53)

 
The generalization, done by Briers and Leroy [50, 51, 64] consists of applying equation 
(IV.A_53) not just for real wave vectors but also for complex wave vectors. Hence it is seen 
from (IV.A_53) that the diffraction phenomenon adds or subtracts a real value and not an 
imaginary value. In other words the diffraction phenomenon does not alter  but only . 
The corresponding z-component of each of the diffracted waves is then found from the 
dispersion relation (IV.A_15-16). Now since leaky Rayleigh waves and leaky Lamb waves 
have a complex wave vector component along the interface, it is seen from (IV.A_53) that 
they cannot be stimulated by means of incident homogeneous plane waves and can only be 
stimulated by means of incident inhomogeneous waves. The results can also be found in a 
later paper of Van Den Abeele, Briers and Leroy [62, 65]. The theory was also experimentally 
verified by Huang, Briers, Rokhlin and Leroy [58] and Briers, Leroy, Poncelet and 
Deschamps [75]. An extension of the model from homogeneous solids to porous media can 
also be found in Briers and Leroy [77]. Recently the theory of the diffraction of 
inhomogeneous waves clarified the backward beam displacement phenomenon on 
periodically rough surfaces as experimentally found by Breazeale and Torbett (see ref [87]) 
and connected this phenomenon to a leaky Scholte-Stoneley wave [88, 94]. Lately the theory 
of the diffraction of inhomogeneous waves on periodically corrugated surfaces in 1D has been 
extended [84] to surfaces having a corrugation in 2D. This theory shows that Scholte-Stoneley 
waves can be steered in the in-plane directions depending on the frequency and the 
corrugation periodicities, while leaky Rayleigh waves cannot. 

2,xk 1,xk

 
 INHOMOGENEOUS WAVES HAVING COMPLEX FREQUENCY 
 

Inhomogeneous waves having complex frequency are generally called complex 
inhomogeneous harmonic plane waves. They are also called inhomogeneous transient waves. 
The imaginary part of the frequency corresponds to a source that has exponentially decaying 
(or growing) amplitude as a function of time. The main reason for studying such waves is the 
simple fact that perfect harmonic waves do not exist in nature. Every wave has started some 
time and will also end to exist at some time. Especially in the field of geophysics, where 
relatively short earthquakes generate transient surface waves or transient Lamb waves, 
complex (inhomogeneous) harmonic plane waves are becoming very important.  

Consequences of complex frequency in the early stages of the theoretical development 
can be found in Borejko [25], Poirée [44], Deschamps [61] and Scott [63]. The real 
development of this theory started with Deschamps, Poirée and Poncelet [66]. 

 
- 116 - 



CHAPTER IV: Inhomogeneous Waves and Bounded Beams  
  

For real frequencies, it is known that 1k
v
ω

= , this is generalized for complex frequencies by 

working with the slowness vector S, resulting in 
 

ω=k S  (IV.A_54)
 
whence 
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It is important to note here that the direction of the real wave vector and that of the real 
slowness vector are in general different from each other. It is also important to note that the 
components of k along a given Cartesian axis only depend on the components of S along that 
same axis. This means that relation (IV.A_42) of the generalized Snell-Descartes law can also 
be expressed in terms of S without any inconsistency. 
Hence for the case of complex frequencies, the dispersion relation (IV.A_15) or (IV.A_16) 
becomes for m=d or m=s 
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and 
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Relations (IV.A_56) and (IV.A_57) show that the complex frequency affects the spatial 
features of the sound wave. 
Since it can be derived from (IV.A_1) that the imaginary part will result in an exponentially 
decaying amplitude as a function of time if 2 0ω <  and exponentially growing if 2 0ω > , the 
particle displacement will not be an ellipse anymore as in the case of inhomogeneous waves 
having a real frequency, but will be a collapsing elliptic spiral if 2 0ω <  and an expanding 
elliptic spiral if 2 0ω > . 
An important question that might be posed in the case of transient inhomogeneous waves is 
‘how fast do they travel?’. For inhomogeneous waves having real frequency, it is clear that 
they travel at the phase velocity. For transient waves however, as a function of time you also 
get amplitude growth that is spreading in space. Therefore it is necessary to distinguish 
between phase velocity :  
 

1
1

1 1
vph

ω
= k

k ki
 

(IV.A_58)

 
and amplitude velocity 
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(IV.A_59)

 
Furthermore it can be found in Poncelet [70] that the velocity of energy propagation is given 
by 
 

1

1
E

ph
=

S
v

S Si
 

(IV.A_60)

 
with phase slowness vector  given by phS
 

1

1
ph ω

=
k

S  
(IV.A_61)

 
This shows that the energy propagates in the direction of . 1S

Expression (IV.A_60) is the main reason why one who is dealing with transient waves 
prefers to work with the complex slowness vector S instead of the complex wave vector k. 
Nevertheless it is always possible to switch between slowness space and wave vector space by 
applying relation (IV.A_55). 

A thorough investigation of the energy flux for damped inhomogeneous complex plane 
waves in viscoelastic fluids can be found in Boulanger [73]. 

In the mid 1990’s one got interested in applying complex inhomogeneous harmonic 
waves for non destructive testing. Therefore in 1996 Poncelet and Deschamps [69] started to 
study de generation by means of such waves of leaky Lamb waves in isotropic homogeneous 
plates. It is well known that the solutions (i. e. the possible wave vectors in the plane of the 
plate) of the Lamb wave characteristic equation (i.e. the dispersion equation for Lamb waves) 
for a fluid loaded plate, are complex. This actually means that such waves can be generated by 
means of inhomogeneous waves and more generally by means of complex harmonic 
inhomogeneous waves. In their paper, Poncelet and Deschamps [69] show that the dispersion 
equation for Lamb waves can be expressed in the two independent unknown variables ω  and 

 (x-axis along the plane of the plate). This means that for each Lamb mode  and  
there is an infinite number of dispersion curves possible. For that reason, a detailed study for 
the case of leaky inhomogeneous Lamb modes (i.e. complex slowness, real frequency) on the 
one hand and transient real Lamb modes (real slowness, complex frequency) on the other 
hand is performed. It is shown that the dispersion curves are different for both situations. 
Furthermore it is shown that there is a huge difference for the  and  mode for complex 
frequencies if compared with real frequencies. The difference is that both modes do not 
converge to the Rayleigh wave velocity for thick plates, but stop to exist at a certain threshold 
real frequency times plate thickness. Also below this threshold there are sometimes two 
possible imaginary parts of the frequency for the same mode at the same real frequency times 
thickness. Furthermore it is shown that, contrary to all other modes, the  mode can only be 
stimulated with increasing amplitude as a function of time. A very important conclusion of 
complex harmonic inhomogeneous plane waves is perhaps the fact that they show that in time 
there is something similar (though not equivalent) as in space, which is that signals bounded 

xS nA nS

0A 0S

0A
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in time are also capable of stimulating Lamb waves, like signals bounded in space (bounded 
beams) are capable of stimulating Lamb waves. An exotic study for the case of both complex 
wave vector and complex frequency reveals fantastic effects such as coupling of the branches 
of the  with other modes. The findings of Poncelet and Deschamps have later been 
experimentally verified in Deschamps and Poncelet [74]. 

0A

Furthermore, in their paper, Poncelet and Deschamps [69] mention the important fact 
that the dispersion curves for complex frequencies correspond very well to the minima of the 
reflection coefficient calculated for an incident harmonic homogeneous plane wave, in 
contrast to the dispersion curves calculated for the solutions with complex slowness. This fact 
has later been studied in full detail by Bernard, Deschamps and Lowe [79] for a plate 
immersed in a solid. 

Lately, research has been done [96, 97] on the diffraction of transient waves on a 
periodically corrugated surface. It is found that transient plane waves are excellent tools to 
stimulate leaky Rayleigh waves on such surfaces and it is also shown that such a surface can 
be used to filter any signal instantaneously into its complex frequency components. 
 
 CONCLUSIONS 

 
This section has given an impression of what exists in the field of ultrasonic 
inhomogeneous waves, how each topic has started and how it evolved. Perhaps the 
most important finding is that the theory has grown due to the strong interaction 
between the different researchers in this field. It is therefore not surprising that all 
given references form a network that cannot be divided into subgroups. This 
complicated network of collaborations in the past is also the reason why the references 
cannot be sorted by author. Hence for historical reasons we have opted for 
chronological order and we have described the evolution of this wonderful field in 
ultrasonics according to this time sequence. Whenever needed for clarity we have 
selected sub fields of inhomogeneous wave research and described its evolution as a 
separate paragraph, however without hiding connections with other sub fields in 
different paragraphs. 
The theoretical development of ultrasonic inhomogeneous waves has more or less 
reached its final destination. It is therefore expected that the coming decade will be the 
one of practical applications in non destructive testing and characterization of 
materials. Hence there is still a huge world of opportunities for further research in the 
field of ultrasonic inhomogeneous waves and their applications. 
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IV.B The principle of a chopped series 
equilibrium to determine the 
expansion coefficients in the 
inhomogeneous waves decomposition 
of a bounded beam 

 
 Up until now, the technique of expanding a bounded beam into 

inhomogeneous plane waves sometimes suffered from insurmountable 
numerical problems. Avoidance of these troubles was possible solely by 
throwing the expansion overboard and producing a new one with different 
parameters such as the spatial interval upon which optimization had to be 
performed, or the inhomogeneity interval that had to be taken under 
consideration. The latter often resulted in imperfect descriptions of critical 
phenomena such as beam displacement, for which inhomogeneous waves have 
proved again and again to be very well suited. Here, we introduce an 
ameliorated technique that determines the expansion coefficients by means of 
a chopped series representation of the inhomogeneous waves. We show that, if 
the series has an optimized length, the so found coefficients, which we 
attribute to the exact inhomogeneous waves in the expansion, are more 
accurate. The contents of this section, have been published as: 
Nico F. Declercq, Joris Degrieck, Oswald Leroy, "The Principle of a Chopped 
Series Equilibrium to Determine the Expansion Coefficients in the 
Inhomogeneous Waves Decomposition of a Bounded Beam", Acta Acustica 
United with Acustica 89, 1038-1040, 2003. (Imp. Fact. 0.346; SCI-index, Acoustics, 
rank:21 /28) 

 
 INTRODUCTION 
 

It has been shown by many scientists that inhomogeneous waves are a great tool to 
describe the stimulation of critical waves like Rayleigh waves and Lamb waves [1-8]. This 
fact formed the impetus to describe bounded beams in terms of inhomogeneous waves in 
order to deal with experimentally observed phenomena such as beam displacement9-12. The 
latter description was first obtained by Claeys and Leroy [13] and was improved later by 
others [14-15]. The inhomogeneous waves description of a bounded beam by inhomogeneous 
waves differs from the classical Fourier description [16] in that all inhomogeneous waves 
travel in the same direction but differ in inhomogeneity. However the most important reason 
why not everybody is excited to apply the inhomogeneous waves description of bounded 
beams, is the appearance of exponential tails beyond a certain distance away from the center 
of the bounded beam (at the most 4 beam widths, but often much less due to numerical 
problems during optimization), since certain phenomena that might be important often appear 
at distances beyond the appearance of the tails. These tails emerge as a consequence of 
numerical instabilities when optimization methods are applied. That is because exponential 
functions are extremely sensitive in the sense that very small optimization errors become 
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visible as exponentially large errors. It may therefore be highly important to find a method 
that suppresses these optimization errors. This is the aim of this section. 
 
 THEORETICAL DEVELOPMENT 
 

A narrow gaussian beam ( )zx,ϕ  with profile ( )xf  at 0=z is to be described as a 
superposition of inhomogeneous waves 
 

( ) ( ) (,0 exp
N )x f x A xn nn N

ϕ β= = ∑
= −

 for [ ],x L L∈ −  
(IV.B_1)

 
in which nβ  is called the inhomogeneity parameter,  is the corresponding amplitude and L 
determines the interval upon which the optimization occurs. If we apply a classical 
optimization method, then we find numbers  for the unknown coefficients . Ideally, we 
would have , but it is well known that on the contrary,  whence  

nA

*
nA nA

nn AA =*
nn AA ≠*

 

( ) ( ) ( )* exp 0
N

A x f x xn nn N
β ξ− = ≠∑

= −
 

(IV.B_2)

 
Numerous calculations have convinced us that ( )xξ  depends on the range of nβ  taken 

under consideration, on the number of inhomogeneous waves considered as well as on the 
interval on which the optimization is performed. Moreover, the behavior of the numerical 
error ( )xξ  as a function of these parameters is really unpredictable. The reason is not a matter 
of physics but purely a matter of the optimization being well or bad conditioned for the 
selected parameters. It is our aim to find a method that improves the conditioning of the 

optimization, whence numbers  for the unknown coefficients  are found, so that  **An nA

 

( ) ( ) ( )** exp
N

A x f xn nn N
β ε− =∑

= −
x  

(IV.B_3)

 
with  
 

( ) ( )| | | |x xε ξ≤

)

 (IV.B_4)

 
First, we write ( xnβexp  as a series expansion so that 
 

( ) ( )
( )exp

!0

r
xnx xn nrr

βα αβ = + ∆∑
=

 

(IV.B_5)

 
with 
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( )
( )

!1

r
xnxn rr

βα
α

+∞
∆ = ∑

= +
 

(IV.B_6)

 
We now seek for the coefficients  for which **

nA
 

( )
( )**

!0

r
xN nA f xn rn N r

βα
⎛ ⎞
⎜ ⎟

=⎜ ⎟∑ ∑
⎜ ⎟= − =⎜ ⎟
⎝ ⎠

 for  

(IV.B_7)

[ ]LLx ,−∈

 
There will still be a numerical error on this calculation, so that  
 

( )
( ) ( )**

!0

r
xN nA fn rn N r

βα
µ

⎛ ⎞
⎜ ⎟

− =⎜ ⎟∑ ∑
⎜ ⎟= − =⎜ ⎟
⎝ ⎠

x x  

(IV.B_8)

 
It is known from our experience and from the simple fact that no polynomial is more difficult 
to deal with numerically in an optimization than an exponential function, that always 
 

( ) ( )x xµ ξ<  (IV.B_9)

 
And also that  
 

( ) ( )x x
x x

µ ξ∂ ∂
<

∂ ∂
 

(IV.B_10)

 
Now, if we utilize the found coefficients  in (IV.B_1), we will obtain **

nA
 

( ) ( ) ( )** exp 0
N

A x f x xn nn N
β ε− = ≠∑

= −
 

(IV.B_11)

 
The error ( )xε  contains an intrinsic contribution ( )xρ  due to the chop process and the 
numerical contribution ( )xµ  of (IV.B_8), whence 
 

( ) ( ) ( )x x xε ρ µ= +  (IV.B_12)

 
Now, for α  small in (IV.B_8), ( ) ( )x xµ ρ< . As α  ups, ( )xµ  increases while ( )xρ  

decreases. Consequently, ( )xε  shows a minimum for a certain α  such that ( ) ( )x xµ ρ=  and 

hence ( ) ( )2x xε µ= . We call this situation the chopped series equilibrium. This equilibrium 

error ( )xε  can be larger, equal to or smaller than ( )xξ . 
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Besides this, there is also the dependence of the numerical error on the interval on 
which the optimization process is performed and on the number of inhomogeneous waves 
concerned. It is clear from the fact that functions that tend to exponentials are hard to utilize in 
an optimization if the function argument becomes large, that the larger the interval upon 
which the optimization process is performed, the larger the numerical errors will be. In other 
words, as L increases, the optimization upon the interval [ ],L L−  shows larger numerical 

errors. As a consequence, ( )xµ  increases with L, but less significantly than ( )xξ . Hence, it 

is possible to obtain a situation in which ( ) ( )2 x xµ ξ<  and hence ( ) (2 )x xε µ=  will be less 

than ( )xξ . If that situation does or does not occur depends on all parameters involved. 
Hence we have shown that situations occur for which there exists an α  for which 

( )xε  shows a minimum that is smaller than ( )xξ . We have therefore found a method that in 
certain circumstances enhances the optimization process to find the expansion coefficients in 
an inhomogeneous waves decomposition of a bounded beam; hence the exponential tails that 
appear will be shifted outwards. 
 
 
 
 NUMERICAL RESULTS 
 

We have performed a numerical optimization in order to find the expansion 
coefficients in (IV.B_1) for a gaussian profile 
 

( ) ( )2 2exp /f x x W= −  (IV.B_13)

 
As in [13-15], we have taken  
 

/n pnβ =  (IV.B_14)

 
with p a real number. We have plotted the exact profile (IV.B_13) as a function of x/W in a 
dotted line and the obtained curve for the description of that profile by means of 
inhomogeneous waves in a solid line. In Figs IV.B_1 and IV.B_2, the upper plot is the case 
where we have worked directly with the exponential functions, while the lower plot is the case 
by means of the ‘chopped series equilibrium’ introduced here. In both cases, N=29, L=6.5W, 
α=100. In Fig IV.B_1, p=3W. We notice that in this case the optimization using the 
exponentials to obtain  in (IV.B_1) is quite stable and so is the optimization using the 

chopped series expansion. In Fig IV.B_2, we have taken p=6.7W, for which the optimization 
using exponentials becomes very unstable, while we see that the optimization using the 
chopped series expansion is far more stable. In the case of Fig IV.B_2, we conclude that the 
technique that is introduced here gives much better results. 

An
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Fig IV.B_1: Results for p=3W. Dotted line: exact gaussian beam profile as a function of x/W. Solid line: 
inhomogeneous waves decomposition. Top: old method using , see (IV.B_2). Bottom: new method 

using , see (IV.B_3). 

*
nA

**
nA

 
 
 CONCLUSION 

 
A technique is found that diminishes numerical instabilities in the determination of the 
expansion coefficients of an inhomogeneous waves decomposition of bounded beams. 
This result is important because up until now the inhomogeneous waves 
decomposition of bounded beams often suffered from numerical instabilities that 
could only be overcome by altering the parameters in the decomposition, whence 
these became insufficiently optimized to describe critical phenomena such as beam 
displacement. 
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Fig IV.B_2: Results for p=6.7W. Dotted line: exact gaussian beam profile as a function of x/W. Solid line: 
inhomogeneous waves decomposition. Top: old method, method using , see (IV.B_2). Bottom: new method 

using , see (IV.B_3). 

*
nA

**
nA
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IV.C A useful analytical description of 
the coefficients in an 
Inhomogeneous Wave 
Decomposition of a symmetrical 
bounded beam 

 
 If a bounded beam is described using a superposition of infinite 

inhomogeneous waves, the values of the coefficients attributed to each 
inhomogeneous wave are found using a classical optimization procedure, 
whence it is impossible to describe the obtained values analytically. In this 
section, we develop a new and easy to apply straightforward analytical 
method to find the appropriate values of the sought coefficients. 
Supplementary to its analytical and straightforward nature, the method proves 
to reduce the inherent instabilities found in the inhomogeneous wave 
decomposition. 
The contents of this section have been published as: Nico F. Declercq, Joris 
Degrieck, Oswald Leroy, "A useful analytical description of the coefficients in 
an Inhomogeneous Wave Decomposition of a symmetrical bounded beam", 
Ultrasonics 43(4), 279-282, 2005 (Imp. Fact. 0.844; SCI-index, Acoustics, rank:11 /28) 
 

 
 INTRODUCTION 
 

In order to describe a bounded beam, one can apply the classical Fourier 
decomposition [1]. This method describes the beam as a superposition of plane waves all 
traveling in a different direction and works extremely well in the bulk of a material. If, 
however, the interaction with an interface is to be described, the theory reveals some 
shortcomings. First, physical contradictions appear when narrow obliquely incident beams are 
described, because plane waves have to be considered with ‘incidence angles’ exceeding 90˚. 
Second, it has been shown in numerous publications that critical phenomena such as Rayleigh 
wave generation cannot be described sufficiently accurate using pure plane incident waves. As 
a consequence, one is often compelled to apply the inhomogeneous wave decomposition of a 
bounded beam [2,3]. The latter describes a bounded beam as a superposition of 
inhomogeneous waves (i.e. having a complex wave vector), all traveling in the same direction, 
but having different inhomogeneities. Claeys and Leroy [2] were the first to apply this 
technique. They considered only positive inhomogeneities. Later, Van Den Abeele and Leroy 
[3] extended the theory and included also negative inhomogeneities. Their theory followed the 
same steps as taken by Claeys and Leroy [2] but was better in really tackling the generation of 
interface waves. Up until now, there has not been developed a straightforward tool to find the 
coefficients attributed to each inhomogeneous wave, nor has there been found any analytical 
expression to describe them. The method applied so far invokes a classical optimization 
procedure to find the ‘best’ value for each coefficient. It is well known that this method works 
extremely well inside the beam, but exponentially growing amplitudes appear beyond one or 
at the most four beam widths. In this section, we introduce an analytical expression for the 
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coefficients, therefore one is not obliged anymore to apply the more or less ‘stochastic’ tool of 
before. Furthermore, it will be shown by a numerical example that the obtained ‘analytical 
curve’ may not fit the gauss curve perfectly, but that the annoying exponential growth appears 
further away from the center of the beam than would be the case using the classical ‘best fit’ 
method [2-6]. This property can be very useful because interesting phenomena (such as the 
Schoch effect [7]) often appear beyond the point where the classical curve tends to be 
exponential. The analytical method introduced here may cast away this problem. 
 
 THEORETICAL DEVELOPMENT 
 

A bounded beam ( , )x zϕ  with profile 
 

( ) ( ),0x f xϕ =  (IV.C_1)

 
can be decomposed in a series of inhomogeneous waves [2-6] 
 

( ) ( ) ( )
21 2, 1 exp exp,0 22

N
x z A x in n n nvn N

ωϕ δ β
⎛ ⎛ ⎞
⎜ ⎟⎜ ⎟= + +∑ ⎜ ⎟⎜ ⎟⎜ ⎟= − ⎝ ⎠⎝ ⎠

zβ
⎞

 
(IV.C_2)

 
where 10, =nδ  if  and 0=n 00, =nδ  if 0≠n , ω  is the angular frequency, v is the velocity of 
plane sound waves,  is the amplitude that needs to be determined and nA nβ  is the 
inhomogeneity attributed to the index n and is arbitrarily valued. Further below, in (IV.C_5), 
we choose nβ  to be proportional to n. 
We solely reckon with symmetrical profiles, whence 
 

n nβ β= − −  and A An n= −  (IV.C_3)

 
In signal processing and in ultrasonics, the Prony technique [8] has been used a few 

times before. It is based on the transformation of an equation, containing exponentials, into a 
polynomial, whos unknown coefficients can be found using linear inversion procedures. The 
technique has been used before to describe any bounded beam profile as a superposition of 
Gaussian beams [9], but also, as in the current section, to describe bounded beams as a 
superposition of infinite inhomogeneous waves [2-3]. In (IV.C_2), the unknown coefficients 

 can be found using a specialized form of the Prony technique [2-6, 8-10] by solving the 
equation 

nA

 

( )ln
0

N nA y f p ynn
=∑

=
 

(IV.C_4)

 
With p being a constant value so that 
 

( )exp /y x p= /p n n,  (IV.C_5)β=

 
Equation (IV.C_4) can then be solved by applying a decomposition in Laguerre polynomials 
[2], whence 
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( ) ( )ln
0

N
B L y f p yn nn

=∑
=

 
(IV.C_6)

 
with  
 

( ) ( ) ( )1 exp ln
0

B y f p y L y dyn np

+∞
= −∫  

(IV.C_7)

 
and  the n-th order Laguerre polynomial. nL
Consequently, one demands [2,3] 
 

0

N
A cn jj

= ∑
=

B j  
(IV.C_8)

 
It is not practical to find the unknowns . The procedure is based on a least squares error 
estimation (or ‘best fit’ procedure) and the results are often tabulated for recycling purposes. 
Nevertheless, it might be useful to find an exact analytical expression for . The latter has 
never been achieved thus far. 

jc

nA

We combine (IV.C_4) and (IV.C_5) and we utilize [11] 
 

( ) ( ) ( )
!1
! ! !0

n nm mL y yn n m m mm
= −∑

−=
 

(IV.C_9)

 
whence 
 

0

N nA y gnn
=∑

=
 

(IV.C_10)

 
with 
 

,0 0

N n mg Cm nn m
= ∑ ∑

= =
y  

 

(IV.C_11)

( ) ( )
!1, ! ! !

nmC Bm n n n m m m
= −

−
 

(IV.C_12)

 
Now, we rewrite (IV.C_11) 
 

0

N qg Dqq
= ∑

=
y  

(IV.C_13)
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with 
 

,
N

D Cq qn q
= ∑

= n  
(IV.C_14)

 
Therefore coupling (IV.C_10), (IV.C_12), (IV.C_13) and (IV.C_14), and requiring 
coefficients belonging to equal powers of y to be the same 
 

( ) ( )
!( 1) ( 1)
! ! ! ! ! !0

N mm mn rA In rm n n n m r r rm n r
= − −∑ ∑

− −= =

!  
(IV.C_15)

 
with 
 

( ) ( )1 exp exp 1x xI r f xr p p p

+∞ ⎡ ⎤⎛ ⎞
= − + +∫ ⎢ ⎥⎜ ⎟

⎝ ⎠⎣ ⎦−∞
dx  

(IV.C_16)

 
Expression (IV.C_15) is an analytical expression for finding the unknown coefficients 

 in (IV.C_2). nA
It must be underlined that the values found by (IV.C_15) may be different from those found 
using other techniques. That is because (IV.C_15) is an analytical consequence of setting 
expression (IV.C_4) equal to expression (IV.C_5). The latter can only be analytically true for 
N infinitely large. Classical optimization procedures however demand (IV.C_4) to be equal to 
(IV.C_5) for a limited value of N, valid on a limited spatial interval. The concept is therefore 
different. The problem of the latter (least squares error estimation) approach is that the 
reconstructed profile differs a lot (exponentially!) beyond the limited spatial interval and 
when the interval is increased, the numerical optimization becomes numerically unstable and 
generates errors that again produce the ‘exponential tails’ at just a few (less than 4) beam 
widths from the center of the beam. The drawback of the analytical method presented here is 
that it is hard to have the numerical errors well in hand when solving expression (IV.C_16), 
especially for large ‘r’. Moreover, these errors cumulate dramatically in (IV.C_15) and 
(IV.C_2) if N is set large. These problems would vanish of course if the integral (IV.C_16) 
could be solved analytically, which is as far as we know impossible. 
 
 NUMERICAL RESULTS 
 

We have performed calculations for a Gaussian beam profile 
 

( ) 2 2exp( / )f x x W= −  (IV.C_17)

 
where W is the beam width and we have limited the number of inhomogeneous waves in 
(IV.C_2) setting N=7 and p=3.6W. In Table IV.C_I, we have listed the obtained coefficients 
for the applied methods. The reconstructed profiles, invoking the coefficients of Table IV.C_I 
are shown in Fig IV.C_1, together with the perfect Gauss curve. 
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Table IV.C_I: The values found for the coefficients  using a classical ‘best fit method’ and using 

the analytical method formulated in this section. 
70 ,.., AA

 
coefficients A classical best fit method Analytical method 

0A  2009.790  510× -23727.757 410−×  
1A  -1791.024  510× 130729.573 410−×  
2A  1264.645  510× -150052.951 410−×  
3A  -702.482  510× 66625.670 410−×  
4A  302.940  510× -13804.836 410−×  
5A  -99.244  510× 1411.210 410−×  
6A  23.847  510× -68.201 410−×  
7A  -3.960  510× 1.231 410−×  

 
 

Fig IV.C_1: Calculated curves for gaussian beam profiles. Solid line: the exact gaussian beam. Dotted 
line: approximation of the gaussian beam applying a classical optimization method. Dashed line: 

approximation of the gaussian beam applying analytical expression (IV.C_15). 
 
 
 CONCLUSION 

 
We have presented an analytical expression for the unknown coefficients  
in an inhomogeneous wave decomposition of a bounded beam. Such an 
expression has never been reported elsewhere. The numerical problems that 
occur when implementing the analytical expression to determine the unknown 
coefficients  are less dramatic than the ones occurring in ‘least squares 

nA

nA
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error’ methods used in the past. 
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IV.D The Laplace transform to describe 
bounded inhomogeneous waves. 

 
 The inhomogeneous wave theory deals with plane waves having complex 

valued wave vectors and with their superposition to form bounded beams. 
Since infinite inhomogeneous plane waves cannot be formed experimentally, 
verifications of the theory have to be performed using bounded 
inhomogeneous waves.  
This section clarifies how a bounded inhomogeneous wave is described as a 
superposition of inhomogeneous waves. This is done by applying the Laplace 
transform. The current section also shows, from a theoretical point of view, 
why bounded inhomogeneous waves behave like infinite inhomogeneous waves 
in numerous experiments. 
The contents of this section have been published as: Nico F. Declercq, Joris 
Degrieck, Oswald Leroy, "The Laplace transform to describe bounded 
inhomogeneous waves", J. Acoust. Soc. Am. 116(1), 51-60, 2004. (Imp. Fact. 
1.310; SCI-index, Acoustics, rank:7 /28) 

 
 INTRODUCTION 
 

From the moment infinite inhomogeneous waves have made their entry in the 1980’s, 
they have been used in the study of the propagation and the scattering of sound. They gained 
sympathy because of their ability to describe - often better than pure infinite homogeneous 
plane waves - critical phenomena like the generation of Leaky Rayleigh waves. An extensive 
survey on the properties of infinite inhomogeneous plane waves can be found in the literature 
[1-4]. While infinite inhomogeneous plane waves are often studied in the context of their 
superposition to form bounded beams [5-7], perhaps even more interesting is the theoretical 
and experimental study of individual inhomogeneous waves. A lot of experiments are reported 
that confirm theoretical predictions of the behavior of inhomogeneous waves while interacting 
with interfaces [2,8-11]. The interesting part of these confirmations is the fact that infinite 
inhomogeneous waves can only be approached experimentally within a limited spatial 
interval, depending on the apparatus that is used experimentally [8]. The overall 
experimentally generated wave is in fact a bounded inhomogeneous wave, being a chopped 
and smoothened version of the theoretical infinite inhomogeneous wave. The importance of 
bounded inhomogeneous waves, as compared with bounded gaussian beams, is the fact that 
they contain the inhomogeneity features of inhomogeneous waves (i.e. exponential decay of 
the amplitude along the wave front) and are hence capable of stimulating more efficiently 
critical phenomena such as leaky Rayleigh waves or leaky Lamb waves than gaussian beams. 
Furthermore, this resemblance with infinite inhomogeneous waves is the reason why at 
incidence angles that correspond to the stimulation of critical phenomena, a strong beam shift 
occurs [2,8-11] to the reflected beam as the principle effect, which is different from the 
Schoch effect (the creation of two reflected lobes with a null zone in between) that occurs if 
gaussian beams are used. In what follows, we investigate bounded inhomogeneous waves in 
terms of infinite inhomogeneous plane waves, using a numerical technique that has never 
been applied before in such a context, namely the Laplace transform. In fact, as far as we 
know, no reports exist at all where bounded inhomogeneous waves are described in terms of 
infinite inhomogeneous plane waves. 
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Whenever the expression ‘profile’ is used in this text, it refers to the normalized 
particle displacement amplitude profile. Further below, we will consider oblique incidence of 
a bounded inhomogeneous wave at an interface (X’, Z’=0), see Fig IV.D_1. The profile of this 
bounded beam can be compared with the profile of the reflected beam if one considers the 
amplitude distribution along an axis X (see Fig. IV.D_1) that coincides with the wave front 
and for theoretical simplicity has the same origin as the fixed (X’,Z’) coordinate system. The 
latter enables us to compare for example possible shifts of the reflected profile along the X-
axis with respect to the incident profile. 
 

Fig. IV.D_1: Schematic of the different coordinate systems. The reflection interface coincides with the X’-axis. 
The incident beam profile is described along a rotated X’-axis, denoted by X, perpendicular to the propagation 
direction. The reflected beam profile is also described along a rotated X’-axis, denoted by the same symbol X. 
Hence it is possible to compare the profile of the incident beam with that of the reflected beam in a diagram 
where the amplitude is depicted as a function of the ‘common’ X-axis. For convenience, we suppose that the 

X-axis for both incident and reflected beams has the same origin as the (X’,Z’) coordinate system. 
 
 INFINITE INHOMOGENEOUS PLANE WAVES IN A NUTSHELL 
 

For the reader who is not familiar with the theory of infinite inhomogeneous waves, a 
first glimpse is offered in this section. Anyone who needs to get to know more about this 
theory is invited to read references [1,3-4,6-7] 
If a ‘plane wave solution’ having an amplitude A, polarization P, wave vector k and angular 
frequency ω 
 

( )expA i i tω• −P k r  (IV.D_1)
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is entered into the wave equation for visco-elastic media, then it can be shown that the 
dispersion relation must hold: 
 

2 2

0 2~
i

v
v

ω ωα⎛ ⎞• = + =⎜ ⎟
⎝ ⎠ ⎛ ⎞

⎜ ⎟
⎜ ⎟
⎝ ⎠

k k  
(IV.D_2)

 

in which v is the phase velocity of traditional infinite homogeneous harmonic plane waves,  
is often called ‘the complex wave velocity,, and α

~
v

0 is the intrinsic damping coefficient. 
Therefore in general the wave vector k can be complex valued, whence 
 

1 2i= +k k k  ; 3,1 2 ∈ℜk k  (IV.D_3)

 
and 
 

2 = +k α β  with 1⊥β k  and  || 1α k (IV.D_4)

 
The vector  is called the propagation wave vector. The vector β  is called the 
inhomogeneity vector whilst α  is called the damping vector. In many publications the 
opposite sign for β  in (IV.D_4) can be found, but it is more convenient in this outline to use a 
positive sign. In order to prevent confusion with other papers, we will describe physical 
problems in terms of the imaginary part of the wave vector, i.e. k

1k

2 , whence the sign 
convention of β will have no influence on these discussions. If (IV.D_3) and (IV.D_4) are 
entered in (IV.D_2), one finds 
 

1 2 1k v 0
ωα α• = =k k  

(IV.D_5)

 
and 
 

( ) ( ) ( ) ( )
2 22 2 2

1 0k
v
ωα β α⎛ ⎞− − = −⎜ ⎟
⎝ ⎠

 
(IV.D_6)

 
Relations (IV.D_5) and (IV.D_6) are called the dispersion equations. Due to (IV.D_5), the 
damping vector can only exist if there is intrinsic visco-elastic damping in the media. 
Furthermore, its value depends not only on the intrinsic damping 0α , but also on the 
inhomogeneity vector β . Typical waves (IV.D_1) are depicted in Figs IV.D_2-4. In the 
context of what follows, it must be stressed that waves like (IV.D_1) have a wave front that 
extends to infinity, i.e. such waves are not bounded in space. 
The term infinite inhomogeneous plane waves in the current section stands for ‘plane waves’ 
(IV.D_1) having a complex valued wave vector and a real valued frequency. The polarization 
will be complex too, but this fact has no influence on the amplitude distribution in space, 
whence it is not highlighted here.  
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Whenever an infinite inhomogeneous plane wave interacts with a plane interface between two 
media, continuity of the component of k along the interface is required. This is called the 
generalized Snell-Descartes law. 
 

 
Fig. IV.D_2: An infinite pure plane wave (undamped). The amplitude along the wave front remains constant, 

as well as the amplitude along the propagation direction. 
 

 
Fig. IV.D_3: An infinite inhomogeneous wave (undamped). The amplitude along the wave front 

decays exponentially down the inhomogeneity vector β (according to its definition in (IV.D_4)). The 
amplitude remains constant along the propagation direction. 

 

 
- 140 - 



CHAPTER IV: Inhomogeneous Waves and Bounded Beams  
  

 
Fig. IV.D_4: Same as in Fig. IV.D_3, except that there is now damping, whence the amplitude also decays 

exponentially along the propagation direction. 
 
 
 CLASSICAL BOUNDED BEAM FORMATION IN TERMS OF THE 

FOURIER THEORY 
 

As this method is so widely known, we limit the discourse to a short description in 
words. In the Fourier theory, a bounded beam profile in X-space (consider Fig. IV.D_1) is 
transformed into k1,x-space by means of the discrete Fourier transform. The amplitudes that 
correspond to each k1,x value are then attributed to a plane wave having a wave vector 
component k1,x and another component k1,z that is found as a function of k1,x and the 
dispersion relation for pure plane waves, i.e. (IV.D_6) for 0== βα . Physically this means 
that the bounded beam which profile is considered in the discrete Fourier transform, is built 
up by means of infinite plane waves all traveling in different directions and having amplitudes 
determined by that discrete Fourier transform. The beauty of this approach is of course that 
practically all kinds of beam profiles can be approximated by means of this method. However, 
from a theoretical point of view, the method is strictly only valid for beams that propagate in 
infinite space or at the most perpendicular to any boundary. That is because integration is 
performed from X= ∞−  to X=  which is strictly only possible if space is uninterrupted in 
this interval. Therefore, if oblique incidence is considered, the method is strictly wrong. 
Nevertheless, many authors apply the method even for oblique incidence. Furthermore, if 
large oblique incidence is considered of a narrow beam, there is yet another difficulty which is 
again a consequence of the fact that the method is strictly only valid for normal incidence, and 
that is that ‘incident’ infinite plane waves must be considered that are actually ‘coming from 
the continuing media’. This is of course a contradictive situation which is not present in the 
inhomogeneous waves decomposition of bounded beams (see below). Yet another important 
problem that arises if the Fourier method is applied is the fact that no inhomogeneous waves 
are present in the bounded beam under consideration. This may lead to wrong numerical 
simulations especially whenever complicated surfaces (for example corrugated surfaces) are 
considered [12-15]. The reason is that inhomogeneous waves interact at interfaces differently 
from pure plane waves. This fact is very important because if one simulates a bounded 
inhomogeneous wave by means of the Fourier method, the resulting bounded beam may 

∞+
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simulate reality incorrectly, especially in cases where rough surfaces are considered [12-15]. 
That is the reason why this section focuses on the description of bounded inhomogeneous 
waves in terms of infinite inhomogeneous plane waves.  
 
 CLASSICAL GAUSSIAN BOUNDED BEAM FORMATION IN TERMS OF 

INFINITE INHOMOGENEOUS WAVES 
 

The previous section suggests that it is not recommended to decompose a bounded 
inhomogeneous wave into plane waves (Fourier method) because ‘contradictions’ might occur 
and more important because the nature of plane waves is so different from that of (infinite) 
inhomogeneous (plane) waves that it is possible to perform wrong simulations especially if 
interaction is concerned with complicated interfaces such as periodically corrugated surfaces 
[12-15]. Therefore it is necessary to focus on the decomposition of bounded beams by means 
of a superposition of infinite inhomogeneous plane waves. Several years ago Leroy et al [5-7] 
proposed such a method. The method consists of the formation of a bounded beam as a 
superposition of infinite inhomogeneous plane waves all propagating in the same direction, 
but having different amplitudes and inhomogeneities. Let’s consider a beam with profile f(x) 
which has to be decomposed as a superposition of inhomogeneous waves, then, if the sign 
convention (IV.D_4) is adopted, one has [5]  
 

( ) ( )exp
0

N
f x An nn

β= −∑
=

x  
(IV.D_7)

 
Furthermore, one performs a coordinate transformation ypx ln=  with  and 

, whence, if 

+ℜ∈ 0p
( +∞∈ ,0y ) pnn /−=β , 

 

( )ln
0

N nA y f p ynn
=∑

=
 

(IV.D_8)

 
on the other hand, one applies a decomposition into Laguerre polynomials [5] , such 
that 

( )yLn

 

( ) ( )ln
0

N
B L y f p yn nn

=∑
=

 
(IV.D_9)

 
with 
 

( ) ( ) ( )exp ln
0

B y f p y L y dyn n
+∞

= −∫  
(IV.D_10)

 
then the coefficients  in (IV.D_7-8) are searched as a linear combination of  for 

. The drawback of this method is that (IV.D_10) can only be found numerically, 
while the mentioned linear combination is not found straightforwardly but as an optimization 
procedure. The procedure is found to be best suited if gaussian profiles are considered and is 
hence only applied for gaussian beams or beam profiles that can be approximated by means of 

nA iB
Ni ≤≤1
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a small number of superposed gaussian beams [5-7]. Therefore, in what follows, we bring to 
light an analytical method that is valid for the kind of bounded beams f(x) that is important in 
this report and is called ‘bounded inhomogeneous waves’. 
 
 THE DESCRIPTION OF BOUNDED INHOMOGENEOUS WAVES BY 

MEANS OF THE LAPLACE TRANSFORM 
 

A bounded inhomogeneous wave looks like an infinite inhomogeneous wave except 
for the important fact that it is chopped as a small interval in x-space. Hence it does not extend 
to infinity and is bounded in space. The main feature of such a bounded inhomogeneous wave 
is that it is exponentially shaped inside the beam and that its amplitude drops at the borders. 
Hence, depending on the method that is used to generate such waves, the shape at the borders 
may differ a bit, but the exponential feature remains unchanged. There are therefore many 
mathematical functions possible that describe the profile of a bounded beam. We have chosen 
a function for which an analytical solution exists for the amplitudes  in (IV.D_7).  nA
The profile of a bounded inhomogeneous wave, representing an exponentially decaying 
infinite inhomogeneous wave and traveling perpendicular to the x-axis, can sufficiently be 
described in the x-interval [  by the analytical expression ]+∞,0
 

( )
( )

4 227
32 24

W xf x
x W

=

+

 
(IV.D_11)

 
in which W is a parameter that is proportional to the ‘width’ of the beam profile.  reaches 
its maximum at  

( )xf

 
2

2
x Wm =  

(IV.D_12)

 
Now, it would be possible to apply the numerical optimization technique of the 

previous section. However, it is here more convenient to apply an analytical approach. The 
first reason is that a numerical optimization procedure is far from natural and is in fact a 
fitting procedure. The expression ‘give me enough parameters and I will fit you an elephant’ 
is perhaps most suitable to understand the artificial character of any fitting procedure. The 
second reason is that it is known from experiments that bounded inhomogeneous waves 
behave like infinite inhomogeneous waves, whence there must be a physical and an inherent 
analytical relation between the two kinds of waves. 

Therefore we decompose  into decaying infinite inhomogeneous waves and we let 
the interval of the inhomogeneities 

( )xf

nβ  mathematically tend to infinity, while decreasing the 
distance between the successive inhomogeneities; hence 
 

( ) ( ) ( ) ( )exp
0 0

N xf x B x e An nn

β dβ β β β
+∞ −= − − ≅∑ ∫

=
  

with ( ) ( )B An n nβ β β− = ∆  

(IV.D_13)
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The integral in (IV.D_13) can be interpreted as the Laplace transform  of L ( )βA , whence the 
unknown coefficients ( )βA  can be obtained applying the inverse Laplace transform of the 
profile (IV.D_11), thus releasing the problem of impractical numerical optimization 
procedures as they occur in the previous section. From textbooks containing tables of Laplace 
transforms, an analytical expression can be extracted 

1−L

 

( ) ( )( ) ( ) ( ) ( )371 2 21 sin cos
32
WA L f x W W W Wβ β β β− ⎡ ⎤= = + −⎢ ⎥⎣ ⎦

β  
(IV.D_14)

 
This is an oscillating function with increasing amplitude as a function of β , involving very 
high amplitudes attributed to very rapidly decreasing inhomogeneous waves. Therefore, high 
β  values will only contribute to the amplitude near the origin, since their amplitude becomes 
negligible at larger distances. Still, in practice, we shall have to chop the integral retaining a 
finite integration interval from 0β =  to a chosen maxβ β= , whence the recovered bounded 

inhomogeneous wave profile will deviate considerably near x=0. The two reasons for this 
chop process are ‘numerical ease’ and the requirement that k1 and k2 must be real, then 
considering (IV.D_5) and (IV.D_6) necessitates 
 

0α α≤  (IV.D_15)

 
and 
 

( )22 2 2/ 0vβ ω α≤ −  
(IV.D_16)

 
The second step is the re-discretisation of the chopped integral in order to keep a finite 
number of infinite inhomogeneous waves forming the profile. 

We therefore now examine the properties of the discrete and chopped summation of 
infinite inhomogeneous waves (see (IV.D_13)) representing the bounded inhomogeneous 
wave as described in (IV.D_11). 
 

( ) ( ) ( )
max

exp
0

f x A
β

β β β
β

= −∑
=

∆  
(IV.D_17)

 
It is always necessary to choose one value for W or respectively for β and then optimize the 
value of β respectively W in order to have best agreement between the bounded 
inhomogeneous wave and the infinite inhomogeneous wave under consideration. As an 
example we consider the case W=0.01m. It is seen from Fig. IV.D_5 that the upper part of 
profile (IV.D_11) can almost perfectly be approximated using one single inhomogeneous 
wave, having in this case an inhomogeneity m/125=β .  
This is as expected, since the profile (IV.D_11) was made to locally represent an infinite 
inhomogeneous wave. If we need to approximate the complete profile (IV.D_11), additional 
infinite inhomogeneous plane waves will be involved. In order to explain the behavior of a 
bounded inhomogeneous wave in the experiments cited above, we need to investigate the 
influence of the additional infinite inhomogeneous waves in the upper part of the bounded 
profile (IV.D_11). 
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Fig. IV.D_5: Solid line: the exact profile (IV.D_11). Dotted line: the profile of an infinite inhomogeneous 
wave having an inhomogeneity 125/m. 

 
 

In Fig. IV.D_6, we have added each of the N terms in the summation (IV.D_17) for 
N=31 and for m/3750max =β . The upper exponential is again the one for m/125=β . It is clear 
that this infinite inhomogeneous plane wave still dominates the upper part, i.e. for higher x 
values, of the bounded inhomogeneous wave (IV.D_11). All other inhomogeneous waves 
dominate in the lower parts, i.e. for x values near zero, of the profile. That can explain why a 
bounded inhomogeneous wave in experiments behaves almost exactly (if the part of the beam 
near X=0 is not considered) as if it was an infinite inhomogeneous wave. 

 
Next, in Fig. IV.D_7, all 31 inhomogeneous waves are summed to form the dashed 

line which is an approximation of the exact bounded inhomogeneous wave (solid line). A 
considerable deviation occurs near the origin, as explained above. 
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Fig. IV.D_6: Solid line: the exact profile (IV.D_11). Dotted lines: the profiles of the infinite inhomogeneous 
waves that form the exact profile as in (IV.D_13) 

 
 
 THE SCATTERING OF BOUNDED INHOMOGENEOUS WAVES 
 
 Theoretical development 
 
We will now examine, by means of a numerical example, how a bounded inhomogeneous 
wave behaves during scattering at an interface between a liquid and an isotropic solid. We 
therefore highlight each individual incident infinite inhomogeneous wave and describe how it 
interacts with the interface. 
Taking into account the generalized Snell-Descartes law (i.e. ), we denote the 
potential for the incoming wave by 

inc
xx kk =

 

( )expinc inc inci k x k zx zϕ = +  (IV.D_18)

 
for the reflected wave by 
 

r Rϕ = ( )exp inc ri k x k zx z+  (IV.D_19)

 
 

 
- 146 - 



CHAPTER IV: Inhomogeneous Waves and Bounded Beams  
  

Fig. IV.D_7: Solid line: the exact profile (IV.D_11). Dotted line: the summation of the inhomogeneous waves 
as in (IV.D_13) 

 
for the transmitted longitudinal wave by 
 

( )expt incT i k x kd x zϕ = + td z  (IV.D_20)

 
and for the transmitted shear wave by 
 

( )expt inc tsT i k x k zs x z= +ψ ey  (IV.D_21)

 
where R is the reflection coefficient, Td is the transmission coefficient for longitudinal waves 
and Ts is the transmission coefficient for shear waves. All wave vectors involved in (IV.D_18-
21) are supposed to be complex valued, cfr. (IV.D_3). Again we note that the sign of β  is 
opposite to the one in ref. 5, however this is no problem because all the physics in the current 
section is expressed in terms of k1 and k2 immediately. Taking into account (IV.D_13), and 
taking into account the dispersion relation for inhomogeneous waves (IV.D_2), we have 
 

( ) ( )
cos sin

22
sin cos 0

incinc iinc inckx
inc incinc inck ivz

β
θ θ

ωθ θ α β

⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎢ ⎥⎢ ⎥ ⎢ ⎥= ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥− + −⎢ ⎥ ⎣ ⎦⎣ ⎦ ⎢ ⎥⎣ ⎦

 

(IV.D_22)

 
and 
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( ) ( )22
0

r ik i kvz x
ω α= + − nc  

(IV.D_23)

 

( )
2 2

0
td inck ivz dd

ω α
⎛ ⎞

= + −⎜ ⎟
⎝ ⎠

kx  
(IV.D_24)

 

( )
2 2

0
ts inck i kvz ss

ω α
⎛ ⎞

= + −⎜ ⎟
⎝ ⎠ x  

(IV.D_25)

 
In (IV.D_22-25),  is the wave velocity in the liquid,  and  are the longitudinal 
respectively shear wave velocities in the solid. 

v dv sv

The intrinsic damping coefficients in the liquid for longitudinal waves, respectively in the 
solid for longitudinal and shear homogeneous plane waves are denoted by 0α , d0α  and s0α . 
For simplicity, we will suppose that there is no damping involved in our calculations. 
We then develop the continuity conditions along the interface for normal displacements 
 

liquid solidu uz z=  (IV.D_26)

 
and for normal stress, 
 

3 3
liquid solidT Tp p=  (IV.D_27)

 
with 
 

( )liquid inc rϕ ϕ= ∇ +u  (IV.D_28)

 

( )solid t tϕ= ∇ +∇×u ψ  (IV.D_29)

 
and 
 

2q q q qT q
pj pj rr pjδ λ ε µ ε= +� �  (IV.D_30)

 
in which we have used the Einstein double suffix notation convention, q=1 for the liquid and 
q=2 for the solid, and 
 

2~
'q q qi vdλ λ ωλ ρ

⎛ ⎞
⎜ ⎟= − =
⎜ ⎟
⎝ ⎠

�  
(IV.D_31)
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2 2~ ~

'
2

v vs dq q qiµ µ ωµ ρ

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟−
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠= − =�  

(IV.D_32)

 
1
2

q qu ukl l k k lε q⎡ ⎤= ∂ + ∂⎢ ⎥⎣ ⎦
 

(IV.D_33)

 
The Lamé constants are denoted by λ and µ, while the viscoelastic damping coefficients are 

given by λ’ and µ’. The definition of the ‘complex velocity ’ is found in (IV.D_2), for the 
appropriate choice of shear or longitudinal wave material properties. 

~
v

By applying the continuity conditions (IV.D_26) and (IV.D_27) we obtain 
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(IV.D
_34) 

 
Remember that in order to obtain (IV.D_34), we have incorporated the dispersion relation for 
inhomogeneous waves. Solving (IV.D_34) requires proper choices of the signs of the z-
components of the wave vector. The latter can be found in the literature [6] and is outlined in 
terms of k1 and k2, i.e. independent of the choice of the sign of β in (IV.D_4), as follows. The 
bulk critical angle for transmitted waves of type c (c=s for shear, c=d for longitudinal) is 
given by 
 

arcsin vc
vc

θ =  
(IV.D_35)
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Whenever inc cθ θ< , k1, for that particular transmitted mode must point into the solid, which 

corresponds to the classical Sommerfeld conditions. Whenever inc cθ θ≥ , k2, for that 
particular transmitted mode must point into the solid. For the reflected wave, it is always so 
that k1, must point into the liquid.  
 
 Numerical results 
 
We consider a water/brass interface with 1480 /v m s= , 4840 /v md s= , , 

, . 

2270 /v m ss =

31000 /kg mlρ = 38100 /kg msρ =

lρ  respectively sρ  are the densities of the liquid and the solid and are needed for the 
determination of the Lamé constants when applying the dispersion relation for 
inhomogeneous waves (IV.D_2). 
We know from calculations of the reflection coefficient by means of (IV.D_34), involving 
inhomogeneous waves, that for 5MHz, a Rayleigh wave is stimulated when  and 

, corresponding to the so called Rayleigh pole. 

0045.44=incθ
minc /56.311=β

We thus consider a bounded inhomogeneous wave, having a Rayleigh wave stimulating 
inhomogeneity, i.e. m Wm 004.0/56.311 =⇔=β . We calculate the reflected profiles for 
different angles of incidence. All calculations are performed fo .2r max 6231β =

]
 and for 21 

inhomogeneous waves with equidistant inhomogeneity coefficients [ max,0 ββ ∈ . In Fig. 
IV.D_8, the angle of incidence  is 30incθ 0. This angle is far less than the Rayleigh angle. We 
notice that each infinite inhomogeneous wave by which the bounded inhomogeneous wave is 
built up, is shifted very little and so is the bounded inhomogeneous wave. 

 In Fig. IV.D_9, the angle of incidence , which is in the vicinity of the Rayleigh 
angle. We notice that the bounded inhomogeneous wave is shifted along the x-axis, by the 
same amount as its infinite inhomogeneous counterpart. At last, in Fig. IV.D_10 we have 
taken the exact Rayleigh angle of incidence .  

042incθ =

0045.44=incθ
We observe that both the bounded inhomogeneous wave and its infinite counterpart are 
shifted by almost the same distance along the interface. We must stress however that Figs. 
IV.D_5-10 cannot be used to check energy conservation, but solely to check displacement. 
The reason for that is the fact that the bounded inhomogeneous wave is written as a finite sum 
over a finite inhomogeneity interval. This causes deviations near x=0, whence energy 
conservation cannot be checked. It is impossible to use the exact integral expression 
(IV.D_13) without encountering numerical problems, otherwise such calculations would 
undoubtedly better involve conservation of energy and hence limit the calculated intensities of 
the dotted line near x=0 in Fig IV.D_10. 
 
In contrast to bounded gaussian beams, a bounded inhomogeneous wave does not cause a null 
zone or other peculiarities due to the Schoch effect. Hence nondestructive testing of materials 
using bounded inhomogeneous waves is quite different from the use of other types of bounded 
beams. 
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Fig. IV.D_8: Solid line: absolute value of the amplitude of the incident bounded inhomogeneous beam profile 
(top) and its infinite inhomogeneous waves building blocks (bottom). Dotted line: absolute value of the 

amplitude of the reflected bounded inhomogeneous beam profile (top) and its reflected infinite inhomogeneous 
waves building blocks (bottom). Inhomogeneity: 311.56/m. Angle of incidence : 300 (not in the vicinity of the 

Rayleigh angle). 
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Fig. IV.D_9: Solid line: absolute value of the amplitude of the incident bounded inhomogeneous beam profile 
(top) and its infinite inhomogeneous waves building blocks (bottom). Dotted line: absolute value of the 

amplitude of the reflected bounded inhomogeneous beam profile (top) and its reflected infinite 
inhomogeneous waves building blocks (bottom). Inhomogeneity: 311.56/m. Angle of incidence : 420 (in the 
neighborhood of the Rayleigh angle). It is seen that both the infinite and the bounded inhomogeneous wave 

are displaced by a distance d. 
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Fig. IV.D_10: Solid line: absolute value of the amplitude of the incident bounded inhomogeneous beam profile 
(top) and its infinite inhomogeneous waves building blocks (bottom). Dotted line: absolute value of the 

amplitude of the reflected bounded inhomogeneous beam profile (top) and its reflected infinite inhomogeneous 
waves building blocks (bottom). Inhomogeneity: 311.56/m. Angle of incidence : 44.0450 (exactly the Rayleigh 

angle). 
 
 
 CONCLUSIONS 

 
We have presented the Laplace transform as a tool for analytically determining the 
unknown coefficients in the infinite inhomogeneous plane waves decomposition of a 
bounded inhomogeneous wave. We have also shown that it is understood from a 
theoretical point of view why in experiments bounded inhomogeneous waves behave 
almost as if they were infinitely extended. As an example, we have exposed how a 
bounded inhomogeneous wave is deformed after interaction with a water/brass 
interface and have verified that it is shifted in space by the same amount as its infinite 
inhomogeneous counterpart. This shift which is not really accompanied by a 
deformation, is typical for bounded as well as for infinite inhomogeneous waves and 
differs much from strong deformations such as the well known Schoch effect for 
gaussian beams. 
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IV.E The representation of 3D gaussian 
beams by means of inhomogeneous 
waves 

 
 There are different methods to mathematically represent a bounded beam. 

Perhaps the most famous method is the classical Fourier method that consists 
of the superposition of pure homogeneous plane waves all traveling in 
different directions and having an amplitude that can be found by the Fourier 
transform of the required profile. This method works perfectly for 2D as well 
as for 3D bounded beams. However, some researchers prefer the 
Inhomogeneous Wave theory to represent a bounded beam because some 
phenomena, e.g. the Schoch effect, are explained by this method by means of 
concepts that agree better with intuition. There are several papers dealing 
with this method for 2D gaussian beams. Until now, it has never been 
considered possible to represent 3D gaussian beams as well. The present 
section shows a method to overcome this shortcoming and presents different 
sorts of 3D gaussian beams that are built up by means of inhomogeneous 
plane waves. 
The contents of this section have been published as: Nico F. Declercq, Joris 
Degrieck, Oswald Leroy, "The inhomogeneous wave decomposition of 3D 
Gaussian-like bounded beams", Ultrasonics 42, 273-276, 2004. (Imp. Fact. 
0.844; SCI-index, Acoustics, rank:11 /28) 

 
 INTRODUCTION 
 

There are several ways of mathematically representing bounded beams. The most 
common technique is the Fourier method [1] in which a bounded beam is built up by pure 
plane waves all incident at different angles. One of the other methods is the decomposition of 
a bounded beam into inhomogeneous waves [2,3]. Inhomogeneous waves differ from pure 
plane waves in that their wave vector is complex, involving an exponentially 
decaying/growing amplitude along their wave fronts. If a bounded beam is imagined to be 
built up by inhomogeneous waves, one approaches the bounded beam by means of a 
summation of inhomogeneous waves in a limited interval. Beyond the limits of that interval, 
exponentially growing tails appear [2,3]. The approach has always been understood as a least 
squares approximation and applies the so called Prony technique [2] and the orthogonality of 
Laguerre polynomials. This method, which was first applied on bounded beams by Claeys and 
Leroy [2], has always been applied to 2D gaussian beams, involving polynomials containing 
one single variable. The extension to 3D gaussian beams has never been performed since a 
similar reasoning would involve polynomials containing 2 variables. As until now, one has 
never found a promising technique to deal with these polynomials in this context, 3D gaussian 
beams remained non-existing in inhomogeneous wave theory. The present communication 
reports a simple technique to represent 3D gaussian-like beams by means of inhomogeneous 
waves. The technique is based on a fitting procedure in a limited number of spots and not on a 
least squares approximation on a certain interval. 
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 REPRESENTING 3D GAUSSIAN-LIKE BEAMS 
 

The profile of a 3D gaussian-like beam is given by 
 

( )
2 2

, exp 2 2
x yf x y

W V

⎛ ⎞
⎜ ⎟= − −
⎜ ⎟
⎝ ⎠

 
(IV.E_1)

 
and is decomposed into inhomogeneous waves as 
 

( ) ( ), e, ,
M N

f x y Am n m nm M n N
= •∑ ∑

= − = −
β rxp  

(IV.E_2)

 
The amplitude attributed to the inhomogeneous wave of number ( ),m n  is , the 

inhomogeneity is  with 
,Am n

,m nβ

 

,
yx

m n m x n yβ β= +β e e  (IV.E_3)

 
In accordance with the method of Claeys and Leroy [2,3], we apply 
 

mx
m px

β =  and ny
n py

β =  
(IV.E_4)

 
with  and  real numbers. xp yp

Furthermore, we choose ( ) ( )2 1 2 1M N+ × +  spots in the xy-plane in which we 
demand (IV.E_2) to hold. Due to the smoothness of exponential functions, equation (IV.E_2) 
will hold rather well for intermediate points if the ( ) ( )2 1 2 1M N+ × +  spots are chosen well 
thought-out. It is found that almost perfect results are found if the spots are chosen to lay 
equidistantly on concentric ellipses defined by 
 

2 2
12 2 2 2

x y

r W r V
+ =  

(IV.E_5)

 
for r determined by 
 

{ } {0.001,0.2 1.2,...,r
W

}µ∈ ∪  
(IV.E_6)

 
Fig. IV.E_1 shows the considered spots for a 3D gaussian beam profile defined by V W= . 
µ is chosen to be 3/W.  
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Fig IV.E_1: The distribution of spots where the fit procedure (IV.E_2) is performed for a perfectly gaussian 
beam profile (V=W). 

 
 

In Fig. IV.E_2, the obtained gaussian profile is shown by means of a superposition of 
inhomogeneous waves for  and for 6.7p px y= = 30M N= = . It is seen that the 

approximation is promising within a certain radius. Beyond that radius, exponential tails 
appear in a similar way as in approximations of 2D gaussian beams [2,3]. As is already 
supposed in (IV.E_1), the method can also be used if the bounded beam is not perfectly 
gaussian, but is characterized by W .  V≠

The chosen spots for the situation 
2

WV =  are depicted in Fig. IV.E_3. In Fig. IV.E_4, the 

approximation is shown by a superposition of the same inhomogeneous waves as in Fig. 
IV.E_2, except of course that the coefficients  are different. nmA ,

 
Special attention must be paid to the number of inhomogeneous waves that is used, 

because the larger the number of waves, the larger the number of spots in which the fitting 
procedure is performed. The latter results in an enhanced overall beam profile approximation. 
In Fig. IV.E_5, the approximation of Fig. IV.E_2 is shown for 10M N= = . It is clear that 
wrinkles appear which are not visible in Fig. IV.E_2. 
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Fig IV.E_2: The profile of a 3D gaussian beam approached by a superposition of inhomogeneous waves 
(V=W). 
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Fig IV.E_3: The distribution of spots where the fit procedure (IV.E_2) is performed for a gaussian like beam 
profile (V=W/2). 
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Fig IV.E_4: The profile of a 3D gaussian-like beam approached by a superposition of inhomogeneous waves 
(V=W/2). 

 
 
 CONCLUSION AND PROSPECTS 

 
A method is presented to approximate 3D gaussian beams by a superposition of 
inhomogeneous waves. The method seems to work very well, especially if the number 
of inhomogeneous waves is large. In future, research has to be performed as to 
investigate how steady this method is for utilization in scattering phenomena, because 
it is known from the application of 2D gaussian beams that numerical stability is 
critical [2,3]. 
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Fig IV.E_5: Same result as in Fig. IV.E_2, except that a much smaller number of inhomogeneous waves is 

used (M=N=10) 
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IV.F Focal length control of complex 
harmonic and complex pulsed 
ultrasonic bounded beams 

 
 This section describes a way to change the focal length of a single transducer without 

phased array technology and without changing the (real) frequency. The physical 
effect is induced by changing the signal’s amplitude in a precise manner in order to 
approach the complex harmonic wave regime. In this regime, changing the imaginary 
frequency results in a change of the focal length. A study is performed for different 
beam shapes and for complex harmonic signals as well as for complex pulsed signals. 
The contents of this section have been publishded as: Nico F. Declercq, Joris 
Degrieck, Oswald Leroy, "Focal length control of complex harmonic and complex 
pulsed ultrasonic bounded beams", J. Appl. Phys., 97(5), 054904 1-8, 2005 (Imp. Fact. 
2.281; SCI-index, Physics-Applied, rank:13/76) 

 
 INTRODUCTION 
 

Focused transducers are widely used in acoustic microscopy [1] and in general NDT 
[2-4]. In the medical field, pulsed focused ultrasound has long been used to destroy kidney 
stones and the High Intensity Focused Ultrasound (HIFU) technique is applied in the 
treatment of cancer [5] and internal wounds. The latter is realized by ‘stimulating’ 
thrombocytes to locally coagulate [6-9], i.e. acoustic hemostasis. The technique is also used to 
seal air leaks in lungs [10]. It is also possible to treat cancer by means of the local 
hyperthermia technique where low(er) intensity focused ultrasound is used during a much 
longer period of time. For the moment, one is limited to the use of single focused transducers, 
which have almost no flexibility to change the focal length, or phased arrays, which are more 
flexible but posses their own inherent shortcomings, such as a very high cost. 

For a given single transducer, the only known technique to change the focal length for 
a given medium, is changing the input frequency. However, unless the new frequency is an 
odd number of the transducer’s first harmonic, the generated power is negligible. The current 
section describes a technique to change the focal length without changing the frequency but 
with altering the amplitude in a very distinctive manner. In what follows, we redefine the 
word frequency. What is classically called ‘frequency’ is now explicitly called ‘real 
frequency’. The ‘real frequency’ is a specific part of a more general ‘complex frequency’ and 
is responsible for the phase of the considered signal. The ‘imaginary frequency’ is then, as 
will be explained further below, responsible for the temporal amplitude change. 

Furthermore, even though focusing of ultrasound is often accompanied by non-linear 
effects, especially when very high amplitudes are involved, such as in HIFU, for simplicity we 
limit this discourse to a linear regime in visco-elastic media. 
 
 THEORY 
 

In the linear elasticity regime, sound fields can be divided into the long-lasting or the 
harmonic type and the short time, pulsed type. Practically, all sound fields are bounded in 
space, whereas mathematically, infinite waves are also possible. 
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 building blocks of the bounded beam description 
 

Harmonic infinite plane waves are orthogonal solutions of the wave equation and form 
therefore the building blocks for the description of complicated sound fields. However, more 
sophisticated, though more general, solutions of the wave equation are so called complex 
harmonic inhomogeneous plane waves. Such waves are described as classical homogeneous 
plane waves, 
 

( ), exp( 2 )r t A ftϕ γ πγ= ⋅ −P k r  with 1γ = ±  (IV.F_1)

 
except that each of the quantities in (IV.F_1), apart from time t and position r, are complex 
valued instead of simply real valued. An extensive historical overview of such waves, has 
recently been reported by Declercq et al [11]. 
Besides the amplitude A, the polarization is, in general, complex valued 
 

1 2i= +P P P  (IV.F_2)

 
and so is the frequency f 
 

( )Re Imf f if= +  (IV.F_3)

 
The complex wave vector is decomposed as [11]  
 

( )Re Im Rei i= + = + −k k k k α β  (IV.F_4)

 
with  and , then, it can be verified that || Reα k Re⊥β k

 

( ) ( ) ( ) ( )exp 2 exp exp exp 2Im Re ReA f t i fπγ γ γ γ πγ= − • • •u P α r β r k r t−  (IV.F_5)

 
The parameter  is called the propagation wave vector, Rek Ref  is the real frequency, α  

is called the damping vector, whereas β  is called the inhomogeneity vector. The parameter γ  
is included in (IV.F_1) and (IV.F_5) and determines the sign convention that is used. Most 
often it is set equal to ‘+1’, though some researchers prefer to set it equal to ‘-1’. The need to 
distinguish between different values of γ will be clear later on, when we describe focusing of 
bounded beams. The parameter Imf  determines the transient feature of the wave under 
consideration and is called the source parameter. If Imfγ  is positive, the wave is amplified in 
time, if it is negative, the wave diminishes in time. 
If we take a closer look at (IV.F_5), then we see that only the last factor determines the phase 
of the complex harmonic inhomogeneous wave. All the other factors determine the amplitude. 
Nevertheless, (IV.F_5) must be a solution of the wave equation, because otherwise it cannot 
physically exist.  

For visco-elastic media, the wave equation for waves described by (IV.F_1) results in 
the dispersion relation [11] , i.e. 
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2
2

0,
f i bvb

π α
⎛ ⎞
⎜ ⎟• = −
⎜ ⎟
⎝ ⎠

k k  

(IV.F_6)

 
where b=d for longitudinal waves or b=s for shear waves. vb is the phase velocity for 
harmonic homogeneous plane waves (i.e. having a real wave vector and real frequency) and 

0,bα  is the intrinsic damping coefficient. Contrary to a harmonic wave, whose amplitude is 
constant in time and contains only one single (real) frequency Ref , a complex harmonic wave 
shows exponential amplitude decay in time and contains one single complex frequency 

Re Imf f if= + . The generation of complex harmonic waves has already been achieved 
experimentally [12] by application of a proper electrical input signal to a single transducer. 
Lately, it has been shown [11,13] that, for complex harmonic waves, it is necessary to 
distinguish between phase velocity :  
 

2 Re
Re

Re Re

f
vph

π
= k

k ki
 

(IV.F_7)

 
and amplitude velocity 
 

2 Im
Im

Im Im

f
vamp

π
= k

k ki
 

(IV.F_8)

 
Then, the velocity of energy propagation is given by 
 

Re

Re
E

ph
=

S
v

S Si
 

(IV.F_9)

 
with phase slowness vector  given by [11] phS
 

Re
2 Re

ph fπ
=

k
S  

(IV.F_10)

 
and with  the real part of the slowness vector, defined as [11] ReS
 

( ) ( )2 2/ 2Re Im Im Re Re Re Imf f f fπ= + +S k k  (IV.F_11)

 
 the bounded beam description 
 

A bounded sound beam is determined by a profile along the direction perpendicular to 
the sound propagation direction, and a propagation pattern determined by physical laws. In 
isotropic homogeneous media, the properties of a real 3D bounded beam is sufficiently 
represented by a 2D bounded beam. This approach has been followed in many papers before 
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[14-33]. Therefore we assume a bounded beam having a given profile along the x-direction 
and propagating in the z-direction. Furthermore, this assumption involves constant properties 
along the y-direction and results in relative numerical and representational ease. 

The profile (along the x-direction) of a focused bounded harmonic beam , 

i.e. Gaussian [34] if ξ=2, or square if ξ=8, can be described as 
( ), , , ,Re Img x z t f f

 

( ) 2 2 2,0,0, , exp / exp /Re Img x f f x W ix W W foc
ξ ξ γ⎛ ⎛ ⎞⎛ ⎞= − −⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠

⎞  
(IV.F_12)

 
W being the (Gaussian) beam width and focW  being a focusing parameter. For unfocussed 
beams, , whereas for focused beams focW = ∞ focW  is typically smaller than or equal to unity. 
The profile (IV.F_12) shows amplitude as well as phase variation. The result can be seen in 
Fig. IV.F_1, for a Gaussian beam profile (ξ=2, 4W mm= , 0.9W foc = ) and a square profile 

(ξ=8, , W ).  4W mm= 1foc =

 

Fig IV.F_1: Graphical representation of a Gaussian and a square profile, in amplitude as wel as in phase. 
 
Here, it is necessary to distinguish between the positive sign choice ( 1γ = + ) and the negative 
sign choice ( 1γ = − ) in the building blocks (IV.F_1) and (IV.F_5) and the profile (IV.F_12). 
The reason is that focusing occurs when the center of the beam is behind in time, compared to 
the edges of the beam. This principle is incorporated by a positive or a negative phase shift of 
the center compared to the edges, depending on whether the material particle vibrations are 
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represented by a clockwise respectively counterclockwise rotating phase vector in the 
complex phase space.  

For the moment, we deal with (complex) harmonic beams, which means that there is 
only one (complex) frequency involved. Later on, when pulsed beams are considered, more 
frequencies will be involved through a temporal Fourier transform. 
Because a Gaussian function is not a solution of the wave equation, it is necessary to 
decompose the profile function (IV.F_12) into plane waves, i.e. 
 

( ) ( ) ( )( ), , , , exp exp 2Re Im Re Im
M m mg x z t f f A i k x k z f if tm x zm M

γ πγ
⎡ ⎤

= + −∑⎢ ⎥
⎢ ⎥= −⎣ ⎦

+  

with 1mk mkx x= ∈\  

(IV.F_13) 

 
using the spatial discrete Fourier transform for obtaining the Fourier coefficients  and the 
wave vector components  and applying the dispersion relation (IV.F_6) in order to obtain 
the remaining wave vector component m

zk . The value of 1
xk  depends on the considered 

spatial interval and will be explained

mA
m
xk

s 
 later. 

Given the values , obtained from the discrete Fourier transform, each wave vector 
component  determines the propagation direction of the plane wave denoted by the integer 
‘m’ and is a function of the complex frequency f through the dispersion relation (IV.F_6). The 
effect of the phase profile of the bounded beam (see bottom of Fig. IV.F_1) on the 
propagation structure, also depends on the frequency. This effect is well known for the 
concept of real frequencies. If a focused transducer is driven at different real frequencies, the 
focal length changes because the propagation direction of the present Fourier components 
change as well. However, driving a given transducer is often only possible at frequencies near 
a given first harmonic or at odd multiples. Nevertheless, the effect of a change of the complex 
frequency, and in particular of the source parameter 

m
xk

m
zk

Imf , on the focal length, is unknown. 
Because changing Imf  actually does not mean applying a different driving frequency but 
essentially means relaxation of the input signal. The influence on the focal length of the input 
signal relaxation is of practical interest. The next section describes the effect of the source 
parameter Imf  on the focal length of a complex harmonic Gaussian beam and also of a square 
beam. 
 
 COMPLEX HARMONIC FOCUSED BOUNDED BEAMS 
 

From a mathematical point of view, harmonic bounded beams are easily described, 
because they can be decomposed into Fourier components having the same (complex) 
frequency, see equation (IV.F_13). The situation of pulsed bounded beams will be dealt with 
in the next paragraph. We take the example of focused bounded beams in water. The 
longitudinal wave velocity v is 1480m/s. For simplicity, except when explicitly stated, we 
only reckon with a lossless liquid, i.e. 0, 0dα = . The real frequency is 2 MHz. We define the 
focal length as the distance between the origin and the spot of highest amplitude within the 
focused beam. Because the profile of a bounded beam is by definition described by a function 
that differs from zero within a limited spatial interval, the Fast Fourier Transform (FFT) 
method is applicable. The spatial interval of the transform must be chosen large enough 
because the resulting representation is automatically periodic in space, with a period equal to 
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that spatial interval, and we want to avoid interference, along the propagation path, between 
neighboring beams in the mathematical representation. For that reason we have chosen a large 
spatial interval [-20W, 20W]. This spatial interval determines the lower bound of the 

considered nonzero values of | |mkx , i.e. . The upper bound is determined by 

Nyquist-Shannon’s theorem [35-37]. Very briefly, Nyquist-Shannon's theorem states that, 
when sampling at a given rate, the highest frequency that can appear in the sampled signal is 
half the sampling frequency. In the considered interval [-20W, 20W], we found for our 
purposes, that the beam profile could sufficiently well be represented by  points, 
involving, when translating Nyquist-Shannon’s theorem to spatial samples, an upper bound 

for 

1 2 / 40kx π= W

122

mkx  of . We choose powers of 2, because the FFT is much faster for a 

number of samples being equal to a power of 2. 

112 / 40 2Wπ ×

 
 Focused Gaussian beams 
 

First of all, a filled contour plot displays isolines calculated from the amplitude 
distribution and fills the areas between the isolines using constant colors. In Fig. IV.F_2, a 
filled contour plot of the amplitude pattern of the Gaussian bounded beam in water, 
originating at ( ) ( ), 0,x z = 0 , is shown, characterized by 4W mm= , , 0.9W f = 2Ref MHz=  

and 1500Imf Hz= − .  

 
 

 
Fig IV.F_2: filled contour plot of the amplitude pattern of a complex harmonic bounded Gaussian beam in 

water, originating at ( ) , and characterized by (, 0,x z = )0 4W mm= , W 0.9f = , Re 2f MHz=  and 

Im 1500f Hz= − . The focal spot is situated at 48z mm≈ . In this figure, sound is propagating from right to 
left. 
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It is seen that the focal spot is situated at 48z mm≈ . The pattern for the case of 

1500Imf Hz=  is shown in Fig. IV.F_3, where it is seen that the focal spot is situated at 

. The difference in focal spot position is significant. In fact, in Fig. IV.F_4, the 
focal spot position is calculated as a function of 

20z m≈ m
Imf  and it is seen that the focal length 

changes when altering Imf . The change is remarkable and spans over 4cm.  
 

 
Fig IV.F_3: Similar to Fig. IV.F_2, except that Im 1500f Hz= . Here, the focal spot is situated at 

. In this figure, sound is propagating from right to left. 20z m≈ m
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Fig IV.F_4: Focal length of a complex harmonic Gaussian beam in water as a function of Imf  and for 

, W4W mm  and Re 2f MHz=  = 0.9f =
 
This is as good as what is to be expected from a phased array transducer of comparable size 
that is used in HIFU [38]. We have repeated the calculations for a nonzero damping 

0,d wpα α= , with , the damping in physical water, and with -150.6 10wα = × { }0,5,..,50p∈ . 

Even though damping influences the amplitude at the focal spot, no change was noticeable in 
the focal length. For this Gaussian beam, we have also calculated the focal length as a 
function of Ref  for  and we have found that beyond a threshold frequency of 0.5MHz, 
the distance D (in mm) of the focal spot is given by a linear function of 

Im 0f =

Ref  (in MHz) 
described by 
 

16.77 0.8534ReD f= −  (IV.F_14)

 
The existence of a threshold frequency is due to a considerable near field for low frequencies. 
As stated earlier, changing Ref  is practically not always realistic, even though mathematically, 
a considerable focal shift is possible, as seen in equation (IV.F_14). 
 
 
 Focused Square beams 
 

In order to show that the effect of the focal length change is not just a mathematical 
trick that is only valid for Gaussian beams, we have performed similar calculations as in the 
previous section, for a square profiled bounded beam, as depicted on the right side of Fig. 
IV.F_1. 
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In Fig. IV.F_5, the amplitude pattern of the square shaped bounded beam in water originating 
at (0,0) is shown, characterized by 4W mm= , 1fW = , Re 2f MHz=  and Im 100f Hz= − . The 
focal spot is situated at 23.4mm. In Fig. IV.F_6, the change of focal length as a function of 

Imf  is given. Even though the change in focal spot distance as a function of Imf  and the 
interval in which focalization occurs, is different from the case of a Gaussian beam (cfr Fig. 
IV.F_4), the effect of Imf  is again significant. It is therefore shown that Imf  does not solely 
influence the focal length of Gaussian beams, but also of other types. 
 
 
 COMPLEX PULSED FOCUSSED BOUNDED BEAMS 
 
 signal representation 
 

The previous paragraph described focusing of complex harmonic beams. Such beams 
are mathematically very elegant, though they never exist in reality. Real signals are always 
limited in time and they can only be approximated by a (complex) harmonic beam within a 
restricted time interval that is smaller than the duration of the signal. A very short signal is 
generally called a pulse and is classically generated by means of a capacitor unloading its 
charge rapidly to a transducer. By complex pulsed signals, we actually mean a somewhat 
longer signal that approaches the complex harmonic signal structure within a limited temporal 
interval. 
 

 
Fig IV.F_5: Amplitude propagation pattern of a complex harmonic bounded square shaped beam in water 

originating at (0,0), characterized by , W4W mm= 1f = , Re 2f MHz=  and Im 100f Hz= − . The focal 
spot is situated at 23.4mm. In this figure, sound is propagating from right to left. 
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Fig IV.F_6: Focal length of a complex harmonic square shaped beam in water as a function of Imf  and for 

, W4W mm  and Re 2f MHz=  = 1f =
 

Therefore, there is a complex harmonic regime, preceded by a start regime and 
followed by a stop regime. The start regime is characterized by a relatively rapid increase of 
the amplitude from zero to a start maximum, whereas the stop regime has the opposite effect. 
A realistic function that describes complex pulsed signals is given by 
 

( )
181.08exp

1exp 2
4 Re

t mh t
m

i f t
f

γ π

⎛ ⎞−⎛ ⎞⎜ ⎟= −⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠
⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟× − −

⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

 

(IV.F_15)

 
with  and with R the pulse rate and 1/R the duration of the complex harmonic 
pulse. The symbol γ is defined earlier and represents the sign choice of the wave description. 
Because the signal (IV.F_15) is not a solution of the wave equation, a decomposition into 
Fourier components is again mandatory. In this perspective, it is necessary to paraphrase 
Nyquist-Shannon’s theorem [35-37] as “the sampling rate must be equal to, or greater than, 
twice the highest frequency component in the signal”. We considered a pulse rate of (2 ms)

0.455 /m = R

-1 , 
which means that the considered pulses cannot last longer than 2 ms. We have again used 

Re 2f MHz=  and several numerical simulations revealed that the frequency components of the 
considered time limited signals are always situated in the short vicinity of the central 
frequency of 2MHz. We therefore limit the upper frequency to ( )2 MHzδ+ . Nyquist-

Shannon’s theorem shows that the sampling rate must then be larger than ( )4 2 MHzδ+ , or, 
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given the pulse rate of (2ms)-1 , the number of samples must be 8000 4000δ+ . Several
 tackled in th

 trial 
calculations showed that the frequency components, for the signals is section, are 
always negligible above a value determined by 0.048δ = . This value results in a number of 
samples given by 2N=213 . Therefore, N is the num f Fourier components and the time 
limited signal ( )h t  is represented by 
 

ber o

( ) ( )exp 2
0

N
h t B i f tn nn

π= −∑
=

 with f nRn = ∈\  
(IV.F_16)

 
A first example of a complex pulsed signal is given in Fig. IV.F_7, for 

f 2 1000M=
given in Fig. IV.F_7.

Hz i Hz−  and a duration of 2 ms. The corresponding Fourier spectrum is also 
 It can be seen that the relevant frequency components are distributed in 

a very small range around the central frequency of 2MHz. We would like to point out that a 
signal that is described by a complex frequency, can always be represented by a summation of 
signals having a real frequency, if it is a time limited signal. Furthermore, the distribution of 
the frequency components around the real part of the considered complex frequency, depends 
on the imaginary part. The effect of changes in the focal length is then understood as follows: 
The presence of different frequency components in the Fourier spectrum causes a different 
propagation pattern, as described earlier. In Fig. IV.F_7, the amplitude of the considered 
complex pulse, shows a maximum at a certain position in time. The side left of the maximum 
is called the ‘start regime’, whereas the side right of the maximum is the ‘complex harmonic 
regime’. The stop regime is situated near 2ms, and is invisible here, because the amplitude of 
the signal has dropped so much in the complex harmonic regime. 
 

 
Fig. IV.F_7: Top: complex pulsed signal given by (IV.F_15), for 2 1000f MHz i Hz= −  and a duration f 

2 ms. Bottom: The corresponding Fourier spectrum. 
o
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bounded beam representation 

generated by an input complex pulsed signal 
t the origin, is performed by a superposition of harmonic plane waves as follows: 

 

 
 

The description of a bounded beam that is 
a

( ) ( ),M N m nm, , , , exp 2Re Im ,0
g x z t f f C i k x k z f tm n x z nm M n

π= + −∑ ∑
= − =

, 

,mk fx n ∈\  

(IV.F_17)

 
If  is rewritten as 

b

,Cm n
 

,C am n m n=  (IV.F_18)

then, identification with the expression within the brackets of equation (IV.F_13) and with 
 

equation (IV.F_16), results in a Am m= , b Bm m=  and kz  is determined by k,m n m
x  and fn  

through the dispersion equatio ans that the numb of pla  
waves in the decomposition e IV s the ct of the number 
(IV.F_13) for the spatial description and in equation (IV.F_16) for the temporal description, 
which means that we are dealing with 2

n (IV.F_6). Actually, this me er ne
quation ( .F_17) i produ in equation 

se this section primarily highlights focusing of bounded 
beams,

24 samples, or in other words, more than 8 million 
building blocks that, when superposed, form the considered bounded, pulsed beams. This 
results in a relatively large computation time. It is clear that a similar description of 3D beams 
would require far too much calculation time, which is an additional reason why only 2D 
bounded beams are considered here. 

Numerical implementation of equation (IV.F_17) enables us to visualize the beam 
pattern at any instant in time. Becau

 we show, by means of a filled contour plot in Fig. IV.F_8, the amplitude profile along 
the Z-axis (x=0) for 125 instants of time from the beginning to the end of the signal of Fig. 
IV.F_7. It can be seen that, as soon as the complex harmonic regime is reached, a stable 
focusing effect occurs at a distance equal to the one for complex harmonic bounded beams 
characterized by the same beam width, focusing parameter and complex frequency. In fact, 
the focal length in the complex harmonic regime was calculated for different values of the 
imaginary frequency. The results are added to Fig. IV.F_4 as bold dots. The signal, 
corresponding to an imaginary frequency of 300Hz, is given in Fig. IV.F_9. Its spatial 
structure along the z-axis for each instant of time is given in Fig. IV.F_10. Again, in the 
complex harmonic regime, a focal spot is visible at the position corresponding to the case of a 
complex harmonic beam. The focus disappears in the stop regime. The stop regime is 
significant here, because, contrary to the signal in Figs IV.F_7-8, this signal increases its 
amplitude before reaching the stop regime.  
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Fig. IV.F_8: Amplitude profile along the Z-axis (x=0) for 125 instants of time from the beginning to the end 
of the signal of Fig. IV.F_7. In the complex harmonic regime, the presence of a focal spot is clear and the 

focal length corresponds to that of the corresponding complex harmonic bounded beam. 
 
 

 
Fig. IV.F_9: Same as Fig. IV.F_7, except that the the frequency is now 2 300f MHz i Hz= + . This 

corresponds to a complex pulse having increasing amplitude. 
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Fig. IV.F_10: Same as Fig. IV.F_8, except that the the frequency is now 2 300f MHz i Hz= + . This 

corresponds to a complex pulse having increasing amplitude. 
 
It is also clear that the amplitude at the focal spot, changes in time due to the shape of 

the complex pulse. In Fig. IV.F_11, the amplitude at the focal spot is given for each instant of 
time and for 6 cases that correspond to the bold dots of Fig. IV.F_4. Furthermore, the position 
of the focal spot is also a function of time, especially in the start and stop regimes. This is seen 
in Fig. IV.F_12, where the line code is the same as in Fig. IV.F_11. It is seen that the focal 
spot position is constant in the complex harmonic regime, and changes in the other regimes 
and also that the amplitude at the focal spot follows the amplitude of the input signal.  
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Fig. IV.F_11: The amplitude at the focal spot for each instant of time and for 6 cases that correspond to the bold 
dots of Fig. IV.F_4. 

 
An important question to be asked is where such a temporal and spatially limited beam 

produces the largest power. Of course, it must be on the focal spot, but because the position of 
the focal spot and the accompanied amplitude both change in time, it is not evident to give an 
immediate answer. For that reason, we have calculated the following function: 
 

( ) ( )
( )

( )
( )

, , , ,01/ Re Im Re, ,Re Im ,0 Re Im Re

A z t f f P fR
Q z f f dt

P f f f
= ×∫

Η
 

(IV.F_19)
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Fig. IV.F_12: The position of the focal spot as a function of time, the line code is the same as in Fig. IV.F_11. 
 
with  
 

( ) (1/
, | 0,0, , , |Re Im Re Im

0

R
P f f g t f f dt= ∫ )  

(IV.F_20)

 
being the amplitude of the input signal, integrated over the duration of the complex pulse and 
characterized by a frequency Re Imf f if= + . Furthermore, 
 

( ) ( )1/
, , ,0Re Re

0

R
H f Max A z t f dt

⎛ ⎞
⎜ ⎟= ∫⎜ ⎟
⎝ ⎠

 
(IV.F_21)

 
and 
 

( ) ( ), , , 0, , , ,Re Im Re ImA z t f f g z t f f
FocalSpot

=  (IV.F_22)

 
The function of equation (IV.F_19) is a measure of the total energy received during the 
duration of the pulse on a certain spot along the z-axis, and normalized so that the total power 
of the input signals under consideration is the same for each of those signals. Fig. IV.F_13 
shows the result for 190 discrete positions along the z-axis and for incorporation of 125 
instants of time. Only the results in between 30 mm and 40 mm are given, because the values 
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were negligible elsewhere. It is seen that, even though the focal spot changes its position in 
time, and even though the amplitude at the focal spot changes in time, overall, the largest 
amount of energy is delivered on the constant focal spot in the complex harmonic regime. 
This is really important, especially when not the peak value of the amplitude at the focal spot 
is important, but the overall energy delivery, such as in the use of the local hyperthermia 
technique as mentioned in the introduction. 
 

Fig. IV.F_13: A measure of the total deliverd power at the focal spot within one complex pulse, as a function of 
the distance along the Z-axis, calculated by means of (IV.F_19). It is clear that the maximum power release 

happens at the focal length corresponding to the complex harmonic regime. 
 
 CONCLUSIONS 

 
We have described the influence of the frequency on the focal length of a bounded 
beam. The effect of the real frequency is well known and has only been given short 
consideration. More attention was drawn to the effect of the imaginary part of the 
frequency. This imaginary part is responsible for an exponential change of the 
amplitude in time and different imaginary frequencies result in different focal lengths. 
We have shown that this effect happens for Gaussian beams as well as for square 
beams. We have also shown that the value of the focal length does not depend on the 
intrinsic damping parameter. 
Because real signals are always limited in time, we have also studied complex pulses 
and have shown that the effect of the imaginary part on the focal length of complex 
pulsed bounded beams is essentially the same as for complex harmonic bounded 
beams, except in the start and stop regimes. Even though we only considered a linear 
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regime in an isotropic and homogeneous medium like water, it is likely that similar 
effects will occur in more complicated media like human tissue [39], and that for 
many applications, especially in the medical field, the cost of equipment may be 
reduced if for some treatments, expensive phased arrays can be replaced by much 
cheaper single transducers. 
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IV.G On the existence and the excitation 
of a new kind of leaky surface waves

 
 The inhomogeneous wave theory has proved to be well suited to predict and to 

describe properties and the excitation of surface waves such as the leaky 
Rayleigh wave. The theory is applied here for a water/brass interface and 
shows that a new kind of leaky surface waves can exist and can be excited by 
impinging sound. Properties such as polarization, propagation and amplitude 
distribution are described and systematically compared with features of leaky 
Rayleigh waves. 

 
 INTRODUCTION 
 

A surface wave can be defined as a wave whos spatial amplitude distribution contains 
a lobe that travels along the interface. For Scholte – Stoneley waves, the ‘lobe’ is simply an 
exponentially decreasing function -in the solid and in the liquid- of the distance from the 
interface and the ‘lobe’ does not leak, i.e. its amplitude remains along its travel path. For 
leaky Rayleigh waves [1-4], the ‘lobe’ is a small region in the solid, close to the surface, 
which emits its energy into the liquid (it ‘leaks’), therefore having a decreasing amplitude as a 
function of the traveled distance. The new kind of surface waves that is discussed here, 
contains a ‘lobe’ in the solid close to the interface, turning into a bulk wave at larger distances 
due to energy emission into the solid and it also leaks energy into the liquid.  

As far as we know, there is only one paper that discusses a similar phenomenon at a 
solid/vacuum interface, i.e. a paper by Nesvijski [5]. Nesvijski [5] has discovered that the 
Rayleigh equation shows some poles in addition to the well known Rayleigh poles that 
correspond to situations under which waves may exist that show a lobe near the surface and 
turn into a bulk wave at larger distances. Nesvijski [5] also discusses some important 
applications of this phenomena. However, since it is usual in non destructive testing to couple 
a transducer to a solid by means of a liquid, the impact of such a solid/vacuum special surface 
wave in most of the applications might not be that considerable. Just as the classical Rayleigh 
wave has become really important in non destructive testing when its leaky counterpart [1-
3,6] was discovered and applied [7-13], the new kind of surface wave of Nesvijski [5] might 
only become significant due to the existence of its leaky counterpart which is discussed here. 
The generation of such new kind of leaky surface waves must be taken into account when new 
models are created or experiments are performed to study the generation of surface waves by 
impinging sound [14-17] or even by laser light [18-19]. 

We have met the new kind of surface waves not when considering poles of the 
Rayleigh equation or the Scholte-Stoneley equation [20-21], but when calculating the 
reflection coefficient as a function of the angle of incidence and the inhomogeneity of 
impinging inhomogeneous waves. The reflection coefficient for a brass/water interface shows 
a peak in addition to the well known leaky Rayleigh wave peak. We have compared its 
location with those of the poles and branch cuts that are discussed by Pott and Harris [15-16]. 
They distinguish between the four surface wave poles (two for leaky Rayleigh waves and two 
for Scholte – Stoneley waves) and four ‘branch cuts’, that give rise to lateral waves (two for 
shear lateral waves and two for longitudinal lateral waves). The latter can be found 
experimentally in the article of Couchman and Bell [22]. The new kind of surface waves that 
we have discovered, is different from phenomena resulting form these eight critical points. 
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In what follows, we fully apply the properties of inhomogeneous waves, which can be 
found in numerous articles [23-29]. 

In our calculations, we apply the Deschamps’ principles [30-31] for the appropriate 
choice of the sign of scattered wave vectors and we translate them into easy to apply rules. 
Furthermore, we show numerical results and illustrate some calculated properties of the new 
kind of leaky surface waves and compare them to the ones of leaky Rayleigh waves.  
 
 THE SCATTERING OF INHOMOGENEOUS WAVES 
 
 The wave potentials, the application of the generalized Snell’s law and rules 

translating Deschamps’ principles 
 

The generalized Snell’s law involves continuity of the complex valued . Hence, the 
potential for the incident wave is described by 

xk

 

( )expinc inci k x k zx zϕ = +  (IV.G_1)

 
and the reflected, the transmitted longitudinal and the transmitted shear respectively by 
 

( )expr rRD i k x k zx zϕ = +  (IV.G_2)

 

( )expt tTD i k x k zd
x zϕ = +  (IV.G_3)

 

( )expt tTS i k x k zs
x z y= +ψ e  (IV.G_4)

 
with 
 

k k i ix x z z
ξ ξ ξ ξ α= + = + −k e e l α β  (IV.G_5)

 
with tstdrinc ,,,=ξ , and with  being the real part and  the imaginary part of the 
complex wave vector 

ξl ξξ βα −
ξk .  is called the inhomogeneity vector, while  is called the 

damping vector and  while . 

ξβ ξα
ξξ βl ⊥ ξξ αl ||

In Fig. IV.G_1, we have depicted  and . Furthermore, we get incl incβ
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cos sin
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sin cos 0

incik inc incx
inc inc inc inck iz v
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θ θ

ωθ θ α β
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(IV.G_6)

 
incβ  is the inhomogeneity of the incident inhomogeneous wave,  is the angle of incidence, incθ

d00 ,αα  and s0α  are the intrinsic damping coefficients for the liquid respectively for the 
longitudinal waves in the solid and the shear waves in the solid. 
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Fig IV.G_1: The real part of a complex incident wave vector incl inck  together with the inhomogeneity  incβ
 
From the dispersion relation for inhomogeneous waves [23-29], we know that  
 

( ) ( )2 2
0

rk ivz x
ω α= ± + − k  

(IV.G_7)
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0
tdk ivz dd
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⎛ ⎞
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(IV.G_8)

 

( )
2 2

0
tsk ivz ss

ω α
⎛ ⎞

= ± + −⎜ ⎟
⎝ ⎠

kx  
(IV.G_9)

 
The wave velocity in the liquid is v , the longitudinal respectively shear wave velocities in the 
solid are  and . dv sv

The signs in (IV.G_7-9) are to be chosen according to Deschamps’ principles, in order 
to correspond to experimentally verified properties[30-31]. 
Deschamps principles state that if ( ) 0Re =zk , one has to deal with Scholte-Stoneley-like 
surface modes and the sign of  must be so that there is exponential decay of the amplitude 
away from the interface, i.e. the Sommerfeld conditions must hold. If , then the sign 
of  depends on the angle of propagation of the liquid-side companion, of the considered 
longitudinal or shear mode in the solid 

zk
( ) 0Re ≠zk

zk
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is ‘close enough’ to 2/π , then that particular mode ‘p’ (p=d for longitudinal waves, p=s for 
shear waves) must show leaky Rayleigh wave features, whence the real parts of the wave 
vector must point into the liquid. Deschamps [31] states that ‘close enough’ to 2/π  means the 
liquid side companion must fulfill  
 

arcsin v
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θ
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(IV.G_12)

 
Whenever  
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(IV.G_13)

 
the Sommerfeld conditions hold, demanding that the mode ‘p’ travels away from the interface. 
For reasons of practicality, it is convenient to translate these principles into easy to apply rules 
leading to the following procedure: 
First, apply Sommerfeld rules, i.e. the real parts of the wave vectors should all point away 
from the interface, except the incoming wave vector. Then, if the inhomogeneity vector of the 
incoming wave (this is minus the imaginary part of the incoming wave vector) points to the 
interface, one must check if relation (IV.G_12) holds for each mode in the solid. If so, the sign 
of that particular wave vector must be reversed. 
 
 
 The continuity conditions and the expression for the reflection coefficient 
 
The straintensor is given by  
 

1
, 2

uu ji
i j x xj i
ε

⎛ ⎞∂∂
⎜ ⎟= +
⎜ ⎟∂ ∂⎜ ⎟
⎝ ⎠

 
(IV.G_14)

 
with displacement vector 
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ϕ= ∇u  (IV.G_15)
 
in the liquid, and 
 

ϕ= ∇ +∇×u ψ  (IV.G_16)
 
in the solid in which the respective potentials are given in (IV.G_1-4). 
If we denote the stress tensor by , then jiT ,

 
~ ~

2, , ,Ti j i j n n i j,δ λ ε µ ε= +  
(IV.G_17)

 
In which  is the Kronecker delta, and ji,δ λ  and µ  are the complex Lamé constants. 
The continuity of normal stress and displacement (upper index 1: liquid, 2: solid) along the 
interface are respectively given by 
 

1 2
,3 ,3T Tm m= ; m=1,2,3 (IV.G_18)

 
and 
 

1 2u uz z=  (IV.G_19)

 
Relations (IV.G_18-19) result in the following continuity condition: 
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in which the complex Lamé constants are given by 
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ρ  being the density of the liquid and sρ  the density of the solid. 
The reflection coefficient is then  and is found from (IV.G_20). RD
 
 NUMERICAL RESULTS 
 

We neglect damping and consider a water/brass interface characterized by 
, , , 3/1000 mkg=ρ smv /1480= 3/8100 mkgs =ρ smvs /2270=  and smvd /4840= . 

In Fig. IV.G_2, we have plotted the absolute value of the reflection coefficient as a function of 
the inhomogeneity  and the angle of incidence  for a frequency of 5MHz. As 
expected, a peak can be found at the leaky Rayleigh wave angle. The exact values for that 
peak are: 

incβ incθ

317.268 /R mβ = −  and . However, for this water/brass interface, there 
appears another peak (as seen in Fig. IV.G_2), for the values 

004762.44=Rθ
mD /38847.1269−=β  and 

. If Snell’s law is applied to recover the corresponding velocity of both the 
leaky Rayleigh and the new phenomena, we get respectively  and 

. The latter differs form the former and also differs from the bulk velocities 
in the solid, whence it is not a leaky Rayleigh wave and not a lateral wave corresponding to a 
‘branch cut’ [15-16,21]. If we examine the reflection coefficient for 1MHz, we get 

000752.19=Dθ
smvR /7124.2128=

smvD /1675.4544=

mR /42105.63−=β  and mD /87719.253−=β  for exactly the same angles. 
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Fig IV.G_2: The amplitude of the reflected waves for different inhomogeneities and for different incidence 
angles on a brass/water interface. On should notice the appearance of two peaks. The one at an angle of 

44.0476 degrees is the Rayleigh peak, while the one at an angle of 19.0075 degrees is the one corresponding to 
the new kind of surface waves. 

 
 PROPERTIES OF THE NEW KIND OF SURFACE WAVES 
 

In what follows, we have taken a frequency of 5MHz.  
We recall that the displacement is given by (IV.G_15-16) 
In Fig. IV.G_3, the profile of a leaky Rayleigh wave at 5MHz is plotted, for an angle of 
incidence of 44.0472 degrees and inhomogeneity –317.268/m. The propagation of this profile 
is depicted in Fig. IV.G_4 and Fig. IV.G_5., where we can see that the leaky Rayleigh wave is 
damped due to emission of sound into the liquid. In Fig. IV.G_6, the particle displacement (in 

the solid side) at the spot [ ] [ ], 0,x z = 0  is given for each instant of time 20,t π
ω

⎡∈⎢⎣ ⎦
⎤
⎥ . Figs. 

IV.G_5-6 learn us that leaky Rayleigh waves are elliptically polarized. 
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Fig IV.G_3: The profile of a Rayleigh wave at 5MHz. The angle of incidence is 44.0472 degrees, with 
inhomogeneity –317.268/m. The dotted line corresponds to xu , the dashed line to zu , while the solid 

line corresponds to u . 

 
In Fig. IV.G_7, the profile of the new kind of surface wave at 5MHz, for an angle of 

incidence of 19.0075187 degrees and inhomogeneity  -1269.38884711/m is shown. The new 
kind of surface wave shows a lobe of increased amplitude near the interface that remains so 
while propagating (see Fig. IV.G_8 and Fig. IV.G_9), except for a decrease due to radiation 
into the liquid, just as in the case of leaky Rayleigh waves. However, the decrease is slightly 
higher than in the case of leaky Rayleigh waves. We will discuss this phenomenon further 
below. It is also noticed form Fig IV.G_10, that the polarization of the new kind of surface 
waves is also elliptically, though it differs from the polarization of a leaky Rayleigh wave (cfr. 
Fig. IV.G_6). 
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Fig IV.G_4: A filled contour plot of the total displacement u  of a Rayleigh wave (the one of Fig IV.G_3) as a 
function of z and the propagation distance x. 
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Fig IV.G_5: The real part of the displacement ( : top; :bottom) for time t=0, as a function of z and the 

propagation distance x for the leaky Rayleigh wave of Fig IV.G_4. It is possible to observe that the leaky Rayleigh 
wave is circularly polarized, which is a well known feature of such surface waves. 

xu zu
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Fig. IV.G_6: The particle displacement in the solid for the leaky Rayleigh wave of Fig. IV.G_5 at [ ] [ ]0,0, =zx , 

depicted over 1 period of time. It is clear that this corresponds to elliptical polarization. 
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Fig IV.G_7: The profile of the new kind of surface wave at 5MHz The angle of incidence is 19.0075187 degrees, 
with inhomogeneity -1269.38884711/m. The dotted line corresponds to xu , the dashed line to zu , while the solid 

line corresponds to u . 
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Fig. IV.G_8: A filled contour plot of the total displacement u  of the new kind of surface wave (the one of Fig 
IV.G_7) as a function of z and the propagation distance x. 
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Fig IV.G_9: The real part of the displacement ( : top; :bottom) as a function of z and the propagation 
distance x for the new kind of surface wave of Fig IV.G_8. It is possible to observe that the new kind of surface 

wave is elliptically polarized (almost linearly). 

xu zu
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Fig. IV.G_10: The particle displacement in the solid for the new kind of surface wave of Fig. IV.G_9 at 
, depicted over 1 period of time. It is clear that this corresponds to elliptical polarization, though it 

differs from the polarization of a leaky Rayleigh wave (seen Fig. IV.G_6). 
[ ] [ 0,0, =zx ]

 
It is widely known that a leaky Rayleigh wave consists of two inhomogeneous waves in the 
solid whose real parts point into the liquid and one inhomogeneous wave in the liquid whose 
real part also points into the liquid. Hence, radiation solely occurs in the direction of the 
liquid, i.e. the leaky Rayleigh wave leaks into the liquid. The exact wave vector components 
for the case of a leaky Rayleigh waves are shown in Fig. IV.G_11 and listed in Table IV.G_I.  
 
Table IV.G_I: the calculated values of the components of the wave vectors corresponding to the case of 

leaky Rayleigh waves and the new kind of surface waves, corresponding to the peaks that 
appear in Fig. IV.G_2. The wave vectors are depicted in Fig. IV.G_9 and Fig. IV.G_10. 

 
 Leaky Rayleigh wave New kind of surface wave 
[ ]1−mk x  14759+228i 6926+1200i 

[ ]1−mk inc
z  -15259+221i -20105+413i 

[ ]1−mk r
z  15259-221i 20105-413i 

[ ]1−mk td
z  254-13256i 2530-3286i 

[ ]1−mk ts
z  652-5166i -12062+689i 
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Fig. IV.G_11: The exact wave vectors as given in Table IV.G_I ( ) for the leaky Rayleigh wave. Solid 
vectors: real vectors, dotted vectors: minus imaginary vectors (i.e. the inhomogeneity vectors β ). It is seen that 

the leaky Rayleigh wave radiates into the liquid. 

410−×

 
In the case of the new kind of surface waves (see Fig IV.G_12 and Table IV.G_I), 

radiation occurs both into the liquid as well as into the solid (through shear waves). This is the 
reason why the new kind of surface waves diminish more rapidly than leaky Rayleigh waves. 
 
 
 POSSIBILITIES FOR THE GENERATION OF THE NEW KIND OF 

SURFACE WAVES 
 

Since bounded beams must be narrow enough for beam deformations (such as a 
Schoch-displacement) to occur when leaky Rayleigh waves are generated and since the 
incidence inhomogeneity for the generation of the new kind of surface waves is much larger 
than for the generation of a leaky Rayleigh wave, it is expected that the generation by and the 
effect on an incident bounded beam will be solely visible when it is much narrower than upon 
the excitation of leaky Rayleigh waves. This is the reason why it is not visible in reported 
experiments [10] 
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Fig IV.G_12: The exact wave vectors as given in Table IV.G_I ( ) for the new kind of surface wave. Solid 
vectors: real vectors, dotted vectors: minus imaginary vectors (i.e. the inhomogeneity vectors β ). It is seen that 

the new kind of surface wave radiates into the liquid and into the solid. 

410−×

 
 CONCLUSION 

 
It is shown that the inhomogeneous waves theory predicts the existence and the 
excitation of a new kind of surface waves on a water/brass interface that radiates both 
into the solid and into the liquid. Its polarization is elliptical (almost linear). The 
importance of this new phenomena lies in the areas where leaky surface waves have 
found to be very important, such as geology, electronics and especially non 
destructive testing of materials. It is expected that the new kind of surface waves will 
be generated by bounded beams that must be much narrower than in the case of the 
generation of leaky Rayleigh waves. 
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Chapter V The Interaction of Sound 
with Continuously 
Varying Layers  

 
 

Near the coastline and especially in rivers and harbors, it 
is of vital importance for a captain of a ship, to know the 
nautical depth. Overestimations of the nautical depth 
make ships strand, underestimations often result in 
unnecessary delays when entering harbors.  

 

      At the beginning of my research as a PhD student, my Co-promoter Oswald 
Leroy planned to join a collaboration with Haecon Harbour & Engineering 
Consultants (Drongen, Belgium), Verhaert Space Instruments & Applied 
Technologies (Kruibeke, Belgium), the Department of Chemical Engineering 
Techniques (Katholieke Universiteit Leuven, Heverlee, Belgium) and later also 
our department in Gent, dealing with fundamental and applied research in the 
field of echo-sounding of the bottom of rivers and harbors. The goal was to find 
a method to discover the real nautical bottom. 
     The bottom of rivers and harbors mainly consists of mud on a hard 
underground. This mud contains a navigable upper layer, a non-navigable lower 
layer and a transition layer in-between. Current echo-sounding techniques are 
only able to detect the water-mud interface and the mud-hard bottom interface. 
The nautical depth, which is determined by the transition zone, is not 
detectable. 
      Before the collaboration started, I performed some test calculations in order 
to study the feasibility. Later, when the project started, I joined as a volunteer 
and offered my evenings and weekends in order to build a fresh model that 
could investigate the interaction of sound with such a layered system. The main 
difficulty was the continuity of the layers (instead of abrupt changes), which 
made the use of special mathematical functions necessary, instead of the often 
used plane wave solutions. I puzzled, read a lot of literature and worked very 
hard until finally, after encountering a lot of mathematical functions that I had 
never met before (Whitaker functions, Kummer functions, Airy functions,…), I 
found a consistent system for which solutions existed.  
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      The model is described in this chapter. Because I had only joined the project 
as a volunteer and because time consuming continuous feedback was necessary 
between the experiments and the theory, colleague Jeroen Vandeputte joined 
the project as an employee. For reasons of  computational simplicity and 
flexibility, he decided not to use the model of this chapter, but to apply a model 
of discrete layers, for which, if the number of layers was large enough, the 
continuous model was approachable. Nevertheless, his model applied the 
Thomson-Haskell method, which makes the use of inhomogeneous waves very 
difficult and which makes it impossible to obtain a view of the interior of the 
layered structure. The model of this chapter on the other hand, has no difficulty 
to consider inhomogeneous waves and makes visualization of the propagation 
of bounded beams inside the layered structure, achievable. 
     This chapter describes how inhomogeneous waves and bounded beams 
interact with the mud system. The first had never been done before for 
continuous layers, the latter was never considered before, because echo-
sounding is classically performed by means of pulsed sound instead of 
harmonic bounded beams, making ray-approaches more inviting. Consistency 
between the two types of interacting sound waves is proved in this chapter. 
Furthermore, it is highlighted how the nautical depth influences the reflected 
sound pattern. This influence is the key factor in the determination of the real 
nautical depth. 
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V.A The Interaction of Inhomogeneous 
Waves and Gaussian Beams with Mud 
in Between a Hard Solid and an Ideal 
Liquid 

 
 Mud is classified as a Bingham liquid, which, situated in between a hard solid 

and an ideal liquid, forms a rheological system in which the physical 
parameters vary continuously. Moreover, inside this liquid, there is often a 
transition zone (at the nautical bottom) in which the shear wave velocity varies 
almost exponentially. First we translate this rheological system into a 
theoretical rheological model that is numerically susceptible to predict its 
physical influence on impinging sound. Then, we show theoretically how the 
interaction of sound with this rheological model is solved. Finally, we present 
some numerical results for impinging inhomogeneous waves and we show how 
a bounded beam interacts with this continuously layered system. This section 
shows that it is theoretically possible to apply the inhomogeneous wave theory 
for such a system and also that the Fourier description of bounded beams 
works excellent for describing the propagation of bounded beams through 
mud. Even though it is widely known that echo sounding cannot reveal the 
position of the nautical bottom, we show that its position influences the 
reflected beam pattern for oblique incidence, which is promising for nautical 
depth determination in harbors and rivers. 
The contents of this section have been published as: Nico F. Declercq, Oswald 
Leroy, Joris Degrieck, Jeroen Vandeputte "The interaction of inhomogeneous 
waves and Gaussian beams with mud in between a hard solid and an ideal 
liquid", Acta Acustica United with Acustica 90, 819-829, 2004 (Imp. Fact. 0.346; 
SCI-index, Acoustics, rank:21 /28) 

 
 INTRODUCTION 
 

It is known from various textbooks that a Bingham liquid is a liquid that behaves like 
solid under static conditions, but starts to flow if a yield force is applied that exceeds a critical 
value. This phenomenon is often called plastic flow. The description of this flow is beyond our 
intentions and is left as a matter of investigation for rheologists. Bingham liquids also have other 
properties that are more interesting at this point. We are primarily interested in the consequences 
of a Bingham liquid at rest, i.e. under macroscopic static conditions, on traversing sound. An 
important feature of liquids, showing Bingham behavior, at rest, is the appearance of a spatial 
phase transition zone below which the liquid can be fully described as a Bingham liquid and 
above which the liquid behaves almost as if it were an ideal liquid. Such liquids appear in many 
branches of science and everyday life materials such as fresh concrete [1-2] , lava [3-4], mud [5-
8], molten plastic and even ketchup. The range of applications where Bingham-like behaving 
liquids appear, is even wider. They appear in the study of periodical river floods [9], gravity 
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driven floods [10], sediment mobility [11], climate evolution [12], archeology [13-15], 
meteorology [16], geology [17], emulsion [18], and even in engineering problems when bridges 
have to be built [19] or in the oil industry and ecology [20].  

Especially in the shipping and dredging industry, it is of primordial importance to know 
the nautical depth in rivers and harbors. The nautical depth is determined by mud characteristics 
at the bottom of waterways, see Fig. V.A_1. It forms the transition between navigable mud and 
non-navigable mud. Navigable mud is almost like water, whereas non-navigable mud is almost 
like clay.  
 

 
Fig. V.A_1: A schematic of the different layers in a system of mud in between a hard solid and an ideal liquid. 

 
In many of the mentioned fields and especially for monitoring waterways, the use of ultrasound is 
already generally adopted in its simplest form such as echo-sounding [21-23], where it is highly 
competitive with other techniques such as laser bathymetry [24]. Nevertheless, the problem with 
echo-sounding is the fact that the nautical bottom cannot be detected when normal incidence is 
applied. The reason is that this transition zone consists of an almost abrupt change in shear sound 
parameters, but not in longitudinal sound parameters. Since normal incident sound doesn’t 
stimulate shear waves, it is not susceptible to the transition zone. Echo sounding is hence only 
practicable for determination of the depth where the hard bottom starts (sand, rocks, concrete, …) 
and where the transition between water and navigable mud occurs, not for determining the 
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nautical depth, which is always located somewhere in between. It is therefore interesting to 
develop a theoretical model that describes a more advanced interaction of sound with liquids 
showing Bingham behavior. More particularly, understanding of the interaction with 
inhomogeneous waves and obliquely incident bounded beams might be a stimulus to create more 
sophisticated technologies to detect the transition zone. 

In what follows, we study a rheological system which is quite similar to mud in a harbor. 
The parameters used in the numerical examples for describing mud do not perfectly correspond 
to the exact parameters, but they are realistic. For simplicity we have neglected damping in the 
numerical examples, except for the hard bottom. Nevertheless, because damping plays an 
important role in real physical mud, we have incorporated damping in the theoretical description. 
 
 THEORETICAL DESCRIPTION OF THE RHEOLOGICAL MODEL 
 
 Bulk properties 
 

The different layers that are mentioned below, are depicted in Fig. V.A_1. For reasons of 
simplicity, we limit our model to where the rheological system of interest is for our purpose fully 
characterized by its dimensions and its density and sound velocity. The latter two are supposed to 
vary continuously with depth. The influence of the specific microscopic structure on what we are 
interested in, is hence considered to be fully contained in the density and velocity values. 
Therefore, we do not consider explicitly the occurrence of air bubbles [25-26] or the presence of 
grains [27]. The latter assumption is justified by the known fact that liquids showing Bingham 
behavior, like for example mud, cannot be reduced to special cases of grainy solids like sand 
[28]. 

The rheological system consists of a layer of liquid showing Bingham behavior (for 
brevity called ‘Bingham layer’), covered by water and resting on an infinitely thick layer of 
material with constant bulk properties (‘the underground or the hard bottom’). The Bingham 
layer itself is built-up by three interlayers. The upper interlayer is that where the liquid finds itself 
under such physical conditions that it is almost an ideal fluid (e.g. navigable mud). The lower 
interlayer is that where the liquid has been transformed into a Bingham liquid (e.g. non-navigable 
mud). The middle layer is the so called ‘transition zone’. 

Moreover, the upper interlayer, respectively the lower interlayer, has low respectively 
high constant shear velocity, while the transition zone has a nonlinearly continuously varying 
shear velocity, connecting that of the upper interlayer to that of the lower interlayer. It is in this 
layer that the so called ‘phase transition’ appears. We always consider the density varying 
linearly throughout the system. The dilatational velocity is considered to be quasi linearly varying 
with depth, i.e. linearly if we only take a look at the particular points mathematically separating 
each layer. Demanding pure linearity would be too rigorous, leading to inconsistency of the 
physical parameters. 

If the density and the sound velocities vary sufficiently slow with the depth within each 
layer, then, locally, plane waves as well as inhomogeneous waves will be solutions of the wave 
equation. Under these circumstances, it has been shown by Brekhovskikh and Godin [29] that if 
ϕ  is the longitudinal wave potential and ψ  the shear wave potential, then, omitting the time 
dependence ( )tiω−exp  
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( ) ( ) ( ), exp ,x z z ikd xϕ = Φ x  (V.A_1)

 

( ) ( ) ( ) ( ), , exp ,x z ψ x z z ik xy s= = Ψψ e ex y  (V.A_2)

 
with 
 

( ) ( ) ( )
2

02
z

g z zdz

∂ Φ
+ Φ =

∂
 

 

(V.A_3)

( ) ( ) ( )
2

02
z

g z zsz

∂ Ψ
+ Ψ =

∂
 

(V.A_4)

 
Because inhomogeneous waves are local solutions of the wave equation, the dispersion 

relation for inhomogeneous waves [30] holds locally and we get 
 

( )
( )

( ) ( )
( ) ( )

22 22
, ,02 2

zpg z k zd d x d z zpv zd

ω ρω α
λ µ

⎛ ⎞+ = − =⎜ ⎟ +⎝ ⎠⎛ ⎞
⎜ ⎟
⎝ ⎠

 
(V.A_5)

 

( )
( )

( ) ( )
( )

22 22
, ,02

zpg z k zs s x s zpv zs

ω ρω α
µ

⎛ ⎞+ = − =⎜ ⎟
⎝ ⎠⎛ ⎞

⎜ ⎟
⎝ ⎠

 
(V.A_6)

 
The system is considered to behave viscoelastic, whence [31-35] for each spot in layer ‘p’ 
 

( ) ( ) ( )1 2
p p pz z iλ λ ωλ= − z

z

 (V.A_7)

 

( ) ( ) ( )1 2
p p pz z iµ µ ωµ= −  (V.A_8)

 

with the Lamé constants 1
pλ  and 1

pµ and viscoelastic constants 2
pλ  and 2

pµ  of (V.A_7-8) 

related to the intrinsic damping coefficient for shear waves ,0
p
sα , the shear wave velocity pvs , 

the intrinsic damping coefficient for longitudinal waves  and the longitudinal wave velocity 

, through the dispersion relations [30] (V.A_5-6), giving 

p
d 0,α

pvd
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2 ,02
1 ,0 222

,0

p pvs sp p p p pv vs s s
p pvs s

α ω
µ ω ρ ω α

ω α

+
⎛ ⎞ ⎛ ⎞= −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎛ ⎞⎛ ⎞⎜ ⎟+ ⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

 

(V.A_9)

 
3222 ,0 222

,0

pp p pvs s
p pvs s

ρµ α ω

ω α

⎛ ⎞= ⎜ ⎟
⎝ ⎠ ⎛ ⎞⎛ ⎞⎜ ⎟+ ⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

 
(V.A_10)

 
322 22 ,0 222

,0

p

2
p p pvd d

p pvd d

ρ pλ α ω µ

ω α

⎛ ⎞= −⎜ ⎟
⎝ ⎠ ⎛ ⎞⎛ ⎞⎜ ⎟+ ⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

 
(V.A_11)

 

2 ,02 21 ,0 222
,0

p pvd d
1

p p p p pv vd d d
p pvd d

α ω pλ ω ρ ω α

ω α

+
⎛ ⎞ ⎛ ⎞= −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎛ ⎞⎛ ⎞⎜ ⎟+ ⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

µ−  

(V.A_12)

 
Whenever necessary, the longitudinal wave velocity  and the shear wave velocity p

dv p
sv  

can be extracted from (V.A_9-12) and written as a function of the Lamé coefficients and the 
frequency. For brevity, in the sequel, we write 
 

3 2
p piλ ωλ= −  (V.A_13)

 

3 2
p piµ ωµ= −  (V.A_14)

 
Relations (V.A_9-12) and the straightforward extraction of  and p

dv p
sv  are reported here for the 

first time. Before, solely approximations were published for extremely low damping coefficients 
[36-38]. 

The differential equations (V.A_3-4) can only be solved if  are sufficiently 

‘uncomplicated [29]’. We limit the level of difficulty to  being constant or a linear function of 

z. Before describing the interaction of sound with the rheological system (see next paragraph), it 
is necessary to determine  for each layer. Taking into account the above stated properties of 

the sound velocities as a function of depth, we find for the intervals defined in Fig. V.A_1, 

; ,g q d sq =

gq

gq
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 interval ( )zg s  ( )zgd  (V.A_15)
 z za b→  

( )
~

,,g z k s abs ab =  ( )
~ ~

, ,,g z k pd ab d abd ab = + z  
 

 z zb d→  
( )

~ ~
, ,,g z k p zs bd s bds bd = + ( )

~ ~
, ,,g z k p zd bd d bdd bd = +  

 

 z zd e→  
( )

~
,,g z k s des de =  ( )

~ ~
, ,,g z k pd de d ded de = + z  

 

 

where each  and  have to be determined, so that the rheological system is consistent with 
(V.A_9-12) and the above stated properties of the density and sound velocities as a function of 
depth. The ‘tilde’ is there in order not to mix up with classical wave numbers. In what follows in 
this paragraph, all parameters describe the upper interlayer, the transition layer and the lower 
interlayer and not the covering ideal liquid or the solid underground. Therefore, for example a 
parameter 

~
k

~
p

eζ  is the value of ζ  at the spot ( )z
e

e
zz
zz

<
→lim .  

The Lamé constants in the layers , ,z za b
⎡ ⎤
⎣ ⎦ ,z zb d

⎡ ⎤
⎣ ⎦  and ,z zd e

⎡ ⎤
⎣ ⎦  are assumed to be continuous 

through their respective interfaces, whereas for aµ , aλ , aρ , eµ  eλ and eρ  given edge 

parameters, we demand the following boundary conditions: 
 
 Boundary Conditions for Shear Parameters 
 

We demand that for each ,z z za b
⎡ ⎤∈ ⎣ ⎦  

 
( )
( )
zab a
zab a

µ µ

ρ ρ
=  

(V.A_16)

 

and that for each  ,z z zd e
⎡ ⎤∈ ⎣ ⎦

 
( )
( )
zde e
zde e

µ µ

ρ ρ
=  

(V.A_17)

 

which involves a constant shear velocity in the intervals ,z za b
⎡ ⎤
⎣ ⎦  and ,z zd e

⎡ ⎤
⎣ ⎦  
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 Boundary Conditions for Longitudinal Parameters 
 

( )zab a aλ λ=    (V.A_18) 

 

( )zde e eλ λ=  (V.A_19)

 
 Quasi Linearity of the Complex Longitudinal Velocity 
 

Quasi linearity means linear if only the mathematical spots  and  are 

considered. The complex longitudinal velocity in a layer ‘p’, of which the real part is the genuine 
longitudinal wave velocity is defined as: 

, ,z z za b d ze

 

2p ppvd p
λ µ

ρ

+
=  

(V.A_20)

 
Note that this is consistent with (V.A_5), because it is the expression of the generalized complex 
wave velocity and not the real wave velocity. 
 
 Set of Equations of Boundary and Continuity Conditions 
 

In what follows, we denote ( )zgn g nµ µ= . 

Conditions (V.A_16-20) ultimately give: 
 

( )( )
( )

22~ 1 3 ,
,

1 3

ka a a s xk s ab
a a

ρ ω µ µ

µ µ

− +
=

+
 

(V.A_21)

 

( )( )
( )

22~ 1 3 ,
,

1 3

ke e e s xk s de
e e

ρ ω µ µ

µ µ

− +
=

+
 

(V.A_22)

 
~ ~

1 , ,
~ ~1

,,

z k ks bd s abb
zd p k s des bd

⎛ ⎞ ⎛ ⎞
− −⎛ ⎞⎜ ⎟ ⎜ ⎟−
⎜ ⎟ =⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠

 

(V.A_23)

 
and 
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( ) ( )
( )

( ) ( )
( )

~
,

0 0 1 0 0 ~
,1 0 0 0 0

~
0 0 0 0 1 ,

~0 0 1 1
,1 1 0 0

~
1 0 0 0 0 ,

~
,

2 22

k d ab
zd pd abzb

z k d bde
z zd d pd bdz zb b

kz d dea

pd de

z z z zz z zab a ab a de e de ee d d
z zz ze aab a de e

λ µ λ µ
ω

ρ ρ

⎛ ⎞
⎜ ⎟
⎜ ⎟⎛ ⎞⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟− −⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟− −⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟

⎝ ⎠⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

+ +⎛ ⎞−
⎜ ⎟ +
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( )
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2
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,

2
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,

2 2
,2

0
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2 2
,2

za kd xz ze a

z z z zz z z zab a ab a de e de ee b b a kd xz z z zz ze a e aab a de e

e kd x
e de

a kd x
a ab

λ µ λ µ
ω

ρ ρ

ω ρ

λ µ

ω ρ

λ µ

−⎛ ⎞⎡ ⎤⎜ ⎟−⎢ ⎥⎜ ⎟−⎢ ⎥⎜ ⎟−⎢ ⎥⎜ ⎟⎣ ⎦
⎜ ⎟

−⎜ ⎟⎡ ⎤+ +⎛ ⎞− −⎜ ⎟⎢ ⎥⎜ ⎟ + −⎜ ⎟⎢ ⎥⎜ ⎟− −⎜ ⎟⎢ ⎥⎝ ⎠⎜ ⎣ ⎦
⎜ ⎟
⎜ ⎟
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⎜ ⎟
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⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟−
⎜ ⎟⎜ ⎟+⎝ ⎠

⎟

(V.
A_
24)

 

Equations 21-24 enable us to determine the self consistent values , , , 

, , , , , ,  that determine the rheological system 

that is considered here. In Fig. V.A_2, an example is given as how the wave velocities and 
density may evolve as a function of depth. More details concerning Fig. V.A_2 will follow in the 
next paragraph. 

~
,k s ab

~
,k s de

~
,k s bd

~
,ps bd

~
,k d ab

~
,pd ab

~
,k d bd

~
,pd bd

~
,k d de

~
,pd de
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Fig. V.A_2: Density and sound velocities as a function of depth for the system shown in Fig. V.A_1 and applied in 

calculations that produce Figs V.A_3-10. 
 
 
 THE INTERACTION OF INHOMOGENEOUS WAVES WITH THE 

RHEOLOGICAL MODEL 
 

Before building a continuity matrix, it is first necessary to find solutions of (V.A_1-4). 
If we rewrite equations (V.A_3-4) for f = Φ  or f = Ψ  as 
 

2 ~ ~
02

f p z k f
z

⎛ ⎞∂ ⎜ ⎟− − − =
⎜ ⎟∂ ⎝ ⎠

 
(V.A_25)

 
and take 
 

2 / 3~ ~ ~
p p z kγ
−⎛ ⎞ ⎛

⎜ ⎟ ⎜= − − −
⎜ ⎟ ⎜
⎝ ⎠ ⎝

⎞
⎟
⎟
⎠

 
(V.A_26)

 
then (V.A_25) becomes 
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2
02

f fγ
γ

∂
− =

∂
 

(V.A_27)

 
which is the Airy equation, whence [39]  
 

( ) ( )0 2f C Airy C Airym wγ γ= +  (V.A_28)

 
with 
 

( ) ( )
~

1 32 / 3~

f p C Airy C Airym wz
p

γ γ∂ ⎡ ⎤= − +⎣ ⎦∂ ⎛ ⎞
⎜ ⎟−
⎜ ⎟
⎝ ⎠

 

(V.A_29)

 
The Airy function of the first kind is denoted by 0Airy  with derivative , while the 

Airy function of the second kind is denoted by  with derivative . 
1Airy

2Airy 3Airy

In the case , 
~

0p =
 

~ ~
exp expf C i k z C i km w

⎛ ⎞ ⎛
⎜ ⎟ ⎜= +
⎜ ⎟ ⎜
⎝ ⎠ ⎝

z
⎞
⎟−
⎟
⎠

 
(V.A_30)

 
Taking into account relations (V.A_15), we use the following acoustical potentials 

(‘inc’=incident, ‘r’=reflected, ‘u’=underground): 
 

( )exp ,
inc A ikinc zΦ = z  

 

(V.A_31)

( )( )exp ,
r Q ik z zinc z aΦ = − −  

 

(V.A_32)

( ) ( ) ( )
~ ~

exp exp, ,, ,z C i k z z C i k z zs ab s abab ms ab a ws ab b

⎛ ⎞ ⎛
⎜ ⎟ ⎜Ψ = − + − −
⎜ ⎟ ⎜
⎝ ⎠ ⎝

⎞
⎟
⎟
⎠

 

 

(V.A_33)

( ) ( ) ( ), 0 , , 2 ,z C Airy C Airyab md ab d ab wd ab d abγΦ = + γ  

 

(V.A_34)
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( ) ( ) ( ), 0 , , 2 ,z C Airy C Airybd ms bd s bd ws bd s bdγΨ = + γ  

 

(V.A_35)

( ) ( ) ( ), 0 , , 2 ,z C Airy C Airybd md bd d bd wd bd d bdγΦ = + γ  

 

(V.A_36)

( ) ( ) ( )
~ ~

exp exp, ,, ,z C i k z z C i k z zs de s dede ms de d ws de e

⎛ ⎞ ⎛
⎜ ⎟ ⎜Ψ = − + − −
⎜ ⎟ ⎜
⎝ ⎠ ⎝

⎞
⎟
⎟
⎠

 

 

(V.A_37)

( ) ( ) ( ), 0 , , 2 ,z C Airy C Airyde md de d de wd de d deγΦ = + γ  

 

(V.A_38)

( ) ( )( )exp ,
sz S ik z zu u zΨ = − e  

 

(V.A_39)

( ) ( )( )exp ,
dz D ik z zu u zΦ = − e  (V.A_40)

 
The unknown parameters  and all  can now be obtained by creating a continuity 
matrix that connects the sound fields in each layer. The spots  and  involve abrupt changes 

of the sound velocity and density. Hence, we demand continuity of normal stress and 
displacement there. All other spots involve continuous changes of density and sound velocity, 
whence we demand continuity of the acoustical potentials (V.A_31-40) and their first derivatives. 

, ,Q S D 'C s
za ze

 
The stress tensor is given by 

 
~ ~

2ij ij kk ijσ δ λ ε µ ε= +  
(V.A_41)

 
where we have used the double suffix Einstein notation convention. The strain tensor ε  is 
denoted by its elements 
 

1
2

uu ji
ij r rj i
ε

⎡ ⎤∂∂
⎢ ⎥= +
⎢ ⎥∂ ∂
⎣ ⎦

 
(V.A_42)

 
with displacement vector 
 

ϕ= ∇ +∇×u ψ  (V.A_43)
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The continuity matrix can be found straightforwardly from the continuity conditions given above 
and taking into account Snell’s law stating that the lateral component of the wave vector remains 
unaltered in the layered system. The result is: 
 

[ ] [ ] [ ]15 15 15 1 15 1CONT U K=× × ×  (V.A_44)

 
with  
 

, , , , , , ,, , , , , , ,

.. , , , , , ,, , , , ,

U Q C C C C C C Cmd ab wd ab ms ab ws ab md bd wd bd ms bd
T

C C C C C D Sws bd md de wd de ms de ws de

⎡= ⎢⎣

⎤
⎥⎦

,..
 

(V.A_45)

 

( )2 22 , , 2 ,0,..,0, , , ,
Tinc inc incK k k ik kw inc x inc z inc z w w inc xµ ω ρ µ⎡ ⎤= − Φ Φ − + Φ⎢ ⎥⎣ ⎦

 
(V.A_46)

 
and 
 

1 0 0 0
2 3 0 0
0 4 5 0
0 0 6 7

c
c c

CONT
c c

c c

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

 

(V.A_47)

 
with in [CONT] blocks of zeros denoted by ‘0’ and the other elements given in Appendix 
(V.A_A1- V.A_A7). 
 
 
 NUMERICAL RESULTS FOR INCIDENT INHOMOGENEOUS WAVES 
 

To keep things short, incident inhomogeneous waves are described as pure plane waves, 
except that their wave vector is complex valued. Hence  
 

1 2iinc inc inc= +k k k  (V.A_48)

 
with 
 

2
inc inc inc= −k α β  (V.A_49)

 
incα  is the damping vector, while  is the inhomogeneity vector. More properties can be found 

in numerous articles [30,40]. An example of the amplitude profile and wave vectors of an 
undamped inhomogeneous wave is shown in the right upper corner of Fig. V.A_1. It is known 

incβ
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that if pure homogeneous plane waves, i.e. , scatter from plane interfaces, that in general 
inhomogeneous waves will be transmitted into the opposing medium if damping is present. 
However, it has also been shown before that incident inhomogeneous waves can deliver some 
insight into what will happen to the profile of bounded beams if they are reflected from the 
interface [41]. The main problem however with the formation of bounded beams by a 
superposition of inhomogeneous waves is that, besides its great opportunities to describe and 
understand beam displacements like the Schoch effect, the propagation of such mathematical 
beams is often not very convenient. Since it is our aim to depict exactly how a transmitted 
bounded beam propagates into the layers, we choose not to decompose bounded beams into 
inhomogeneous waves, but into pure plane waves using the Fourier decomposition. 

02 =inck

Nevertheless, a limited study of the reflection coefficient of inhomogeneous waves gives us the 
opportunity to predict already some phenomena that will occur in the next paragraph, where the 
reflection and transmission of bounded beams are studied. As an example, we have taken the 
parameters of Table V.A_I and Table V.A_II, which are graphically given in Fig. V.A_2.  
 
Table V.A_I: Boundary values at some particular spots in the layered system 
 

Spot Position [m] Density [kg/m3] Longitudinal velocity 
[m/s] 

0z  0. 1 - - 

az  0 1050 1490 

bz  -0.45 - - 

dz  -0.50 - - 

ez  -1 2500 2500 
 
 
Table V.A_II: Boundary values in some particular intervals in the layered system 
 

Interval Density [kg/m3] Longitudinal velocity 
[m/s] 

Shear velocity 
[m/s] 

azz →0  1050 1480 0 

ba zz →  - - 100 

ed zz →  - - 1500 
Underground  
(hard bottom) 

3000 3000 2000 

 
Furthermore, we have solely considered (strong) damping in the underground, not in the 

other layers. In Fig. V.A_3, a frequency of 150 kHz is applied. It is seen that the reflection 
coefficient (shown as its intensity in dB) as a function of the angle of incidence (defined in Fig. 
V.A_1) and as a function of the incident inhomogeneity (a positive inhomogeneity incβ  is also 
shown in Fig. V.A_1), shows an elevated intensity (peaks) in some regions and much smaller 
intensity in other regions.  

 
- 213 - 



CHAPTER V: The Interaction of Sound with Continuously Varying Layers  
  

This phenomenon also appears if the interaction of inhomogeneous waves with metal 
plates is considered. It is well known that a reflection coefficient less than unity shifts an 
inhomogeneous wave to the direction in which it shows exponential growth, while a reflection 
coefficient exceeding unity shifts an inhomogeneous wave to direction in which it shows 
exponential decay. Furthermore, the smaller the value of incβ , the larger the shift to left or right. 
Because the reflection coefficients for positive inhomogeneities is nowhere negative (in dB), it 
can already be concluded that inhomogeneous waves will never be shifted in the positive x-
direction. Hence, a backward beam shift will never occur. 

 
 

 
Fig. V.A_3: Intensity in dB of reflected inhomogeneous waves as a function of the angle of incidence and 

inhomogeneity 
 

It is seen in Fig. V.A_3 that, at 38.070, an amplitude peak occurs for very low 
inhomogeneity. Hence, a very strong beam shift can be expected there. Furthermore, all other 
peaks for relatively low inhomogeneities are roughly situated in between 200 and 500. It can 
therefore be expected that strong beam shifts will occur within that interval of incidence angles 
and that the strongest shift will appear at 38.070. 
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 NUMERICAL RESULTS FOR INCIDENT BOUNDED BEAMS 
 

It is worthwhile to present the total displacement field inside the rheological system in 
order to visualize how an incident bounded beam propagates and scatters through the different 
layers. We know that each incident inhomogeneous wave generates the acoustical potentials 
(V.A_31-40). If we take into account (V.A_31-40) and (V.A_43), then the displacement fields 
can be obtained. They are listed in the appendix (V.A_A25- V.A_A29). A continuous Gaussian 
beam of frequency 150kHz and width 0.3m, decomposed into plane waves using the Fourier 
decomposition, is impinging at the spot ( )0, == xzz a . This is schematically visualized in Fig. 
V.A_1. The thereby generated normalized amplitude of the particle displacements along azz =  
are depicted in Fig. V.A_4 as a function of the angle of incidence.  
Hence, the incident beam can be noticed at x=0 and also the reflected sound is visible. 
Furthermore, it is noticed that the reflected ‘beam’ undergoes a sweep to larger distances and 
then back to smaller distances as the angle of incidence grows. This sweep exceedingly occurs in 
the interval between 200 and 500 and is strongest at 38.070 as was predicted in the previous 
paragraph. 

 
Fig. V.A_4: Total amplitude at as a function of the lateral distance (x-axis) and as a function of the angle 

of incidence. The incident beam impinges the layers at 
azz =

( )0, == xzz a . 
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The phenomenon that causes this sweep is explained below, where the physical 
appearance of the bounded beam inside the layers is depicted. In Figs V.A_5-10, the normalized 
amplitude of the particle displacements is depicted inside the layers and for angles of incidence 
corresponding to some remarkable spots in Fig. V.A_4. It is seen from Fig. V.A_5 that for 
normal incidence, there is complete transmission through the transition layer.  
This is the reason why in echo sounding the transition layer is not detectable. From Fig. V.A_6 
and Fig. V.A_7, it is seen that at more or less randomly chosen angles 7.360 respectively 27.930 , 
part of the sound is transmitted through the transition layer, while part is reflected. 
This shows that, even though there is no abrupt change but a strong continuous change in 
physical parameters, contrary to normally incident sound, obliquely incident sound is susceptible 
to the presence of the transition zone. There is however an angle of 38.070 at which the transition 
layer let incident sound pass completely. It is at this angle that a large beam sweep (or shift) is 
visible in Fig. V.A_4 and Fig. V.A_8. 
The sweep happens because the bounded beam propagates over a large distance up to the 
underground, without being affected by the transition layer that crosses its path. For larger angles, 
incident sound is reflected (see Fig. V.A_9) again in the transition layer. Furthermore, there is an 
angle of 55.530 (see Fig. V.A_10) at which the incident sound is perfectly reflected from the 
transition layer. 

 

 
Fig. V.A_5: Total sound field inside the layers for angle of incidence 00. This situation corresponds with classical 

echo sounding. The transition zone has no influence on the reflected beam. 
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Fig. V.A_6: Total sound field inside the layers for angle of incidence 7.360 . 
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Fig. V.A_7: Total sound field inside the layers for angle of incidence 27.930. It is clear that, contrary to Fig. V.A_5, 

the transition zone influences the reflected beam. 
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Fig. V.A_8: Total sound field inside the layers for angle of incidence 38.070. This corresponds with the maximum 

sweep in Fig. V.A_4. 
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Fig. V.A_9: Total sound field inside the layers for angle of incidence 48.040. There is no penetration into the non-

navigable mud. 
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Fig. V.A_10: Total sound field inside the layers for angle of incidence 55.530 . 

 
In the shipping and the dredging industry, it is important to find out where exactly the 

transition zone is situated in order to determine the depth of the nautical bottom. Even though the 
physical parameters that are incorporated here do not perfectly correspond to the parameters of 
physical mud, it is interesting to show that the position of the transition zone influences the 
reflected beam profile for oblique incidence. 
Therefore we have repeated the calculation of Fig. V.A_4 in Fig. V.A_11, except for the only 
difference that the transition zone is now 10cm deeper, i.e. 0.55bz m= −  and . 
Comparison of Fig. V.A_11 with Fig. V.A_4 shows that the reflected beam profile is indeed 
influenced by the depth of the transition zone, especially in the practicable range of small angles 
of incidence. The study of the reflected beam profile is hence a promising technique for 
determination of the nautical bottom. Further details are beyond the scope of this section.  

0.60dz m= −
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Fig. V.A_11: This figure is equal to Fig. V.A_4, except that here 0.55bz m= −  and , which means 
that the transition layer is 10 cm lower. The difference is noticeable in the reflected beam pattern and can be used 

to measure the nautical depth in harbors. 

0.60dz = − m

 
 
 CONCLUDING REMARKS 

 
     Contrary to existing models [42-43] for ‘discrete layers of homogeneous sediment 
material’, a model is developed that is susceptible to simulate the interaction of sound 
with a liquid showing Bingham features (like mud), where layers of very fine sediment 
are involved possessing ‘continuously varying material parameters’, situated in between 
an ideal liquid and a hard solid. It is shown that the reflection coefficient for incident 
inhomogeneous waves shows peaks exceeding unity which are also present in earlier 
studies on discontinuously layered materials such as coated metal plates swamped in 
water. A qualitative study of these peaks has revealed strong beam displacements at 
certain angles. This was numerically confirmed by studying the interaction of bounded 
beams with the rheological system using the Fourier decomposition. This work shows 
that strong varying physical properties inside a continuously layered system may have 
serious consequences on impinging sound, such as total reflection or total transmission. 
Furthermore it is shown that the reflected beam profile for oblique incidence is 
influenced by the nautical depth. This may have important applications in the shipping 
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and dredging industry. 
 
 APPENDIX 
 
The different elements of the continuity matrix given in (V.A_47) are obtained and given in 
(V.A_A1- V.A_A7). For brevity, the symbol ‘a’ is used instead of ‘Airy’, in the expressions in 
this appendix. 
 

( ) ( )

( )

2 , , , ,0
1 , , ,1

2 22 , , , 2

2
, ,0 , , , ,0

, ,1 , , ,1

~
2 ,, , 2 , , , 2

k k Pw inc x inc z md ab
c ik Pinc z md ab

k Pw w inc x md ab

P z k g z Pwd ab ab a inc x s ab a ws ab
P ikwd ab inc x ws ab

P z k k s abwd ab ab a inc x ws ab

µ

ρ ω µ

µ

µ

⎡
−⎢

⎢
= ⎢
⎢
⎢ −⎢⎣

⎤
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with in (V.A_A1- V.A_A7): 
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The particle displacement fields within the different layers of the rheological system are given as: 
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Chapter VI The Interaction of Sound 
with Coated Materials 

 
 

Many filters that are used in nowadays high-tech 
electronic devices and communication systems, such as 
satellites , are based on surface acoustic waves (SAW). 

 

      Acoustic waves have been used in electronics for many years, often in quartz 
resonators. Also, delay lines, exploiting the typical low values of acoustic 
velocities, give a long delay in a small space. The first surface acoustic wave 
(SAW) devices were made in 1965, introducing exceptional versatility because 
the propagation path was accessible to components for generating, receiving or 
modifying the waves. During the following 30 years there has been an 
explosion in the development of these devices. A huge range of device types 
have emerged, and they are now present everywhere in applications ranging 
from professional radar and communications systems to everyday devices such 
as television and mobile phones. Despite this, the devices are not generally well 
known, because they are hidden inside. 
     SAW technology, is eminently suitable for linear analogue devices. Within 
this area, the versatility is so great that the devices cover almost all the 
functions imaginable – bandpass filters, pulse compression filters, resonators 
and so on. This has all been achieved since the SAW-device emerged in 1965, 
and the devices have demonstrated steadily-improving reproducible 
performance with, when needed, cost effectiveness.  
     The interest in surface waves for electronics applications arises originally 
from radar requirements. Radar became established in the second world war. It 
was shown that the range capability of a radar can in principle be substantially 
improved if the radiated pulse is lengthened without changing its power level, 
and preferably without changing its bandwidth since this determines the 
resolution. This could be done by transmitting a chirp pulse. In the receiver, 
there would be a ‘matched filter’ to optimize the signal-to-noise ratio, basically 
a dispersive delay line such that the various frequencies of the received signal 
are delayed by different amounts, arriving at the output at the same time.  
The long pulse lengths, in the order of 10-100 msec, implied that the filter 
would need a technology giving substantial signal delays, and ‘conventional’ 
methods such as dispersive L-C circuits or cables would be very bulky. 
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 It was natural to consider acoustic waves, with velocities more than 100 times 
smaller than those of electromagnetic waves. 
     This chapter deals with Rayleigh waves and Lamb waves in coated 
substrates. Section VI.A describes the possibility to use a relatively thick coated 
plate as a frequency filter. As a matter of fact, the filter operates as the 
compliment of a Bandpass filter, i.e. a bandgap filter. This effect is new and is 
promising for the development of advanced frequency filters. The filter, as 
proposed in section VI.A, is adaptable simply by changing the coating 
thickness. The special features of the coated substrate are the result of the 
enormous difference in physical properties between the substrate and the 
coating. 
     Actually, the concept itself of frequency filtering is not new in SAW-
devices. A surface acoustic wave filter is manufactured on a substrate of quartz 
or Lithium Niobate. Surface acoustic wave filters create Rayleigh waves. Each 
Rayleigh wave is generated by a series of interdigital strips of gold that 
collectively form an interdigital transducer (IDT). The wave is launched across 
the substrate to another IDT that converts the mechanical energy back to 
electrical. It is the spacing and length of each metal strip on the IDT that 
determines the bandpass and central frequency of the resulting filter.  
     In addition, in section VI.B, the same coating as proposed for the filter in 
section VI.A, is considered on a thin plate. It will be shown that Lamb waves 
show strange dispersive properties in this coated plate. 
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VI.A Frequency bandgap for Rayleigh 
waves on coated substrates 

 
 The Rayleigh wave velocity for a coated substrate must have a value in between the ones 

for the substrate material and the coating material. Nevertheless, Adler and McCathern 
[J. Appl. Phys. 49(4), 2576-2576, 1978] have performed measurements, based on the 
Schoch effect, on a stainless steel substrate covered with an aluminum oxide coating that 
seems contradict this phenomenon. The current section describes the frequency bandgap 
effect for Rayleigh waves on coated substrates and explains how this phenomenon is 
related to the cited measurements. The existence of such a gap can be very important for 
the development of frequency filters. 
The contents of this section have been published as: Nico F. Declercq, Joris Degrieck, 
Oswald Leroy, "Frequency bandgap for Rayleigh waves on coated surfaces", Appl. Phys 
Let. 85(1), 148-150, 2004. (Imp. Fact. 4.207; SCI-index, Physics-Applied, rank:3/76) 

 
 INTRODUCTION 
 

Coatings are very common in materials technology [1]. Rayleigh waves are often used in 
nondestructive testing and in electronic devices. They are also important in seismology. In the 
past they have frequently been used as a means to characterize coatings on substrates [2-4]. When 
bounded beams are incident from water onto a coated surface at the ‘substrate Rayleigh angle’, 
the Schoch phenomenon appears and its characteristics are determined by the properties of the 
coating [2-4]. Because a Rayleigh wave on a coated substrate is influenced by both the coating 
and the substrate, it is clear that the characteristics of this Rayleigh wave must be situated in 
between the ones of such waves on homogeneous solids consisting of pure substrate material or 
consisting of pure coating material. Therefore one expects a Rayleigh wave velocity bounded by 
the Rayleigh wave velocities on the pure solids. It is believed that the Rayleigh wave velocity can 
be found by measuring the angle at which the Schoch effect occurs when a bounded sound beam 
is reflected from a solid in water [2-6]. Laszlo Adler and D. A. McCathern [5] found a 
combination of coating ( ) and substrate (stainless steel) for which the Schoch effect 
corresponds with a Rayleigh wave velocity that is lower than the one on any of the composed 
materials. This is so surprising that an explanation has only been found later, when it was found 
that the aluminum oxide was actually porous. In this section, we will focus on the consequences 
of a non-porous aluminum oxide coating on stainless steel In what follows it will be seen that if 
the properties of the coating and the substrate differ too much (e.g.  on stainless steel), that 
there exists a frequency gap in which Rayleigh waves, leaking into the liquid, cannot exist in the 
composite system.  

2 3Al O

2 3Al O

 
 THEORY 
 

The interaction of sound with the system of isotropic layers has been simulated by a linear 
combination of all possible plane wave solutions in the coating, i.e. for each type of waves (shear 
and longitudinal) we have one upward propagating shear wave and one downward propagating 
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shear wave. For the incidence media (water) there is only one incident wave and one reflected 
wave, for the substrate there is one shear and one longitudinal transmitted wave. The wave 
vectors of each of the waves are determined by the law of Snell-Descartes [8-12] and by the 
dispersion relation for plane waves [8-12]. The amplitude attributed to each wave is found by 
considering continuity of the normal stress vector and normal displacement on the water-solid 
interface and continuity of the normal stress vector and total displacement on the solid-solid 
interface [13]. In our calculations and on the figures that are given below, the Cartesian axes x 
and z are used with z pointing from the incidence media into to solid media, whereas x is parallel 
to the interface. The z=0 position corresponds with the coating-substrate interface. 
 
 NUMERICAL RESULTS AND DISCUSSION 
 

The physical properties of the considered materials are given in Table VI.A_I.  
 
Table VI.A_I : physical properties of used materials 
 

 Density 
[kg/m3] 

Longitudinal 
wave velocity 
[m/s] 

Shear wave 
Velocity 
[m/s] 

water 1000 1480 - 
stainless steel 8090 5610 3180 

2 3Al O  4000 10460 6010 
brass 8100 4840 2270 

 
Just as in [5] we have considered a coating thickness of 0.24 mm. In Fig. VI.A_1 the reflected 
‘homogeneous plane wave’ amplitude and phase are plotted as a function of the angle of 
incidence for 1 MHz. It is noticed that, for a given configuration, a phase shift of π occurs at the 
Rayleigh angle.  

This angle is 30.330 for a stainless steel half space, 15.520 for a  half space, 28.152 3Al O 0 
for a  coating on stainless steel substrate and 17.182 3Al O 0 for a stainless steel coating on a  
substrate. Hence nothing extraordinary happens because the Rayleigh angles (and hence their 
velocities) for the coated substrates are situated in between the ones for the uncoated substrates. 
However, in Fig. VI.A_2 the reflected amplitude and phase are plotted for a  coated 
stainless steel substrate not only as a function of the angle of incidence, but also as a function of 
the frequency. It is noticed that in between 1.57 MHz and 23.23 MHz no phase shift of π occurs.  

2 3Al O

2 3Al O

Therefore Rayleigh waves are not stimulated in that region. This ‘forbidden’ region is therefore a 
frequency ‘gap’. The gap exists because the physical properties of stainless steel and  differ 
too much. For certain frequencies the coating does not just disturb the Rayleigh wave on the 
substrate, but simply destroys it. In Fig. VI.A_3 it can be seen, by means of the example of a 
brass coating on stainless steel, that no gap appears if the coating and substrate are more alike. 

2 3Al O

Fig. VI.A_4 shows the particle displacement pattern, for the  coating on stainless 
steel, at the Rayleigh angle outside the gap (the Rayleigh wave pattern is visible), whereas Fig. 
VI.A_5 shows the pattern inside the gap, exactly at the angle where in [5] the Schoch effect was 
observed. It is seen that there is no Rayleigh wave pattern present in Fig. VI.A_5. It is also 

2 3Al O
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interesting to note in Figs. VI.A_2-3 that the presence of a coating makes Rayleigh waves 
dispersive, i.e. their velocity depends on the frequency [14]. 

 
 
 
 

 
 

Fig. VI.A_1: Reflected amplitude (top) and reflected phase (bottom), at 1 MHz, as a function of the angle of 
incidence, for a stainless steel (solid lin 2 3O  (dotted line), 0.24 m 2 3O  coating on stainless steel 

hed line), 0.24 mm stainless steel coating 2 3O  (dash-dot lin

e), Al m Al
(das on e). 

  

Al
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Fig. VI.A_2: Reflected amplitude (top) and reflected phase (bottom) for 0.24 mm  coating on Stainless 
steel as a function of the angle of incidence and on the frequency. It is seen that there is a gap between 1.57 MHz 

and 23.23 MHz where Rayleigh waves cannot exist. 

2 3Al O
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Fig. VI.A_3: Reflected amplitude (top) and reflected phase (bottom) for 0.24 mm brass coating on Stainless steel 
as a function of the angle of incidence and on the frequency. There is no frequency gap visible. 
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Fig. VI.A_4: Particle displacement (u) profile at 1.49MHz and incidence angle 27.780. Solid line: |ux|, dotted line 
|uz|. Although disturbed by the coating (0<x<-0.24mm), a typical Rayleigh wave pattern is visible in the substrate 

(x>0). The amplitude is also fairly high. 
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Fig. VI.A_5: Particle displacement (u) profile at 2MHz and incidence angle 350. Solid line: |ux|, dotted line |uz|. 
This corresponds to the situation of ref [5]. Because the frequency is part of the gap, no Rayleigh wave pattern is 

visible. Also the amplitude in the substrate is very small if compared with Fig. VI.A_4. 
 
 CONCLUSIONS 

 
It has been shown that if the physical properties of the coating and the substrate differ too 
much, that there exists a frequency gap in which there is no phase jump of the reflection 
coefficient. Therefore, no classical Rayleigh waves can exist. The gap extent is a function 
of the coating thickness and the coating material. Gennady Shkerdin [private 
communication], has warned me that in fact there is a type of Rayleigh wave generated 
within the gap, but it is so disturbed that it leaks into the solid. For the latter reason, its 
amplitude will drop significantly and the gap, which is therefore not a perfect gap, will 
be characterized by a strongly diminished amplitude of the transmitted surface wave. The 
experiments in ref [5] have been performed in that gap region. However, it has been 
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shown later by Adler et al [18] that the aluminum oxide in the original experiment was 
porous, this caused the effect that has been observed.  
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VI.B Lamb wave dispersion in 
extraordinary bilayered plates 

 
 The dispersion curves for Lamb waves in a bilayered plate are situated in between those 

for a plate containing pure substrate and a plate containing only coating material. 
Mostly, the shape of the curves is not spectacularly altered by the presence of a second 
layer. Especially the A0 and S0 dispersion curves always seem to have the same shape, 
for all homogeneous plates and for all bilayered plates. The current section reports 
dispersion curves for a stainless steel layer covered by an aluminum oxide layer, whose 
physical parameters differ very much from those of the stainless steel layer. It is shown 
that the shape of the A0 and S0 curves become extraordinary. 

 
 INTRODUCTION 
 

The use of coatings is very popular [1-3] and is frequently used to control friction and 
wear in all kinds of sliding contacts, to protect a substrate from corrosion, to provide an 
electrically conducting layer to an insulator or simply to color a surface. A number of 
implementations is also given in [4-13]. For many applications, it is essential to extract 
information about the coating thickness or about the physical parameters, such as density and 
stiffness. Nondestructive testing of coatings can be performed by means of ultrasound. There are 
a number of papers dealing with the interaction of ultrasound with coatings on half infinite 
substrates [4-10] and, because coatings are also used on thin plates, studies have also appeared on 
the interaction of ultrasound with coated plates [10-13]. No matter what bilayered system is 
considered, it is always found that the characteristics of the interaction of sound with the material 
are in between those of the interaction of sound with each of the constituents. In particular, if one 
considers dispersion curves of Lamb waves in bilayered plates, the dispersion curves shift from 
their original position for one of the constituents, towards the position for the other constituent, 
when the relative thickness is increased continuously. The shape of the dispersion curves changes 
only slightly. Sometimes curves start to cross one another, sometimes they move apart from each 
other, but there are no spectacular changes in shape. There are however changes in the absolute 
position and dimensions of the curves. Especially, according to traditional knowledge, the 
dispersion curves corresponding to A0 and S0 Lamb modes for lossless isotropic plates can 
always immediately be recognized because their shape is qualitatively always the same.  

However, in what follows, it will be shown that some spectacular changes appear in the 
shape of the dispersion curves of the A0 and S0 Lamb modes when an extraordinary bilayered 
plate is used. This means constituents having physical properties (density and stiffness) that are 
much different from the properties of the substrate. This study is motivated by the fact that it is 
known [16] that an extraordinary coating on a semi-infinite substrate, sometimes results in the 
non-existence of Rayleigh waves. 
 
 ALUMINUM OXIDE LAYER ON STAINLESS STEEL LAYER 
 

An aluminum oxide (Al2O3) layer on a stainless steel layer is a configuration that exists. It 
has been used in experiments reported in [4, 16]. Stainless steel is characterized by a density of 
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8090 kg/m3, a longitudinal wave velocity of 5610 m/s and a shear wave velocity of 3180 m/s. 
Aluminum oxide is characterized by a density of 4000 kg/m3, a longitudinal wave velocity of 
10460 m/s and a shear wave velocity of 6010 m/s. It is clear that the physical difference between 
both materials is extraordinary. We have considered a coated plate that is submerged in water 
(density 1000 kg/m and longitudinal wave velocity 1480 m/s). The problem of incident sound 
interacting with the plate is resolved by expressing the sound field into acoustic potentials [14] 
and demanding continuity of normal stress and normal particle displacement on the solid-liquid 
interfaces, whereas continuity of normal stress and total displacement on the solid-solid interface 
[15]. The dispersion curves are obtained by extracting the velocities, through Snell’s law, from 
the angles of incidence for which the reflection coefficient for pure plane waves tends to zero, a 
procedure which is repeated for each value of frequency times plate thickness. The dispersion 
curves are obtained for plates consisting of layers with different relative thickness. By plate 
thickness, we always mean complete thickness, i.e. lower layer plus upper layer. The thickness of 
the upper layer is then given as a certain percentage of the total plate thickness. Fig. VI.B_1 
shows a schematic of a plate immersed in water. 
 

 

 
 
 
 
 
Fig. VI.B_1: Schematic of a bilayered plate immersed 
in water. The plate thickness is always substrate plus 
coating. 

 
In Figs. VI.B_2-4, the Rayleigh wave velocity [16] is indicated on the right side of each 

partition for a stainless steel half space (0%) and for an Al2O3 plate (100%). Furthermore, the 
dispersion curves are shown for different percentages of upper layer thickness. It can be seen that 
there is a tendency of dispersion curves to transform from the original configuration (100% 
stainless steel, i.e. 0% coating) to the ultimate configuration (100% aluminum oxide, i.e. 100% 
coating). However, something extraordinary happens with the A0 and S0 curves. Even though 
they also evolve from the original configuration to the ultimate configuration, some spectacular 
shape transformations occur. The most striking feature is the A0 mode having a maximum 
velocity at some point along the frequency times thickness axis for an upper layer thickness 
exceeding 30%. That is extraordinary because normally, an A0 mode tends asymptotically to its 
maximum velocity which is the Rayleigh velocity. Here it first reaches a maximum before 
showing asymptotical behavior. 

The S0 mode behaves more as expected, except for some kinks when the Al2O3 percentage 
is 80%-90%. Furthermore, it is known that the S0 and A0 mode tend simultaneously to the 
Rayleigh velocity for homogeneous plates. Here, they appear to get separated from each other for 
the bilayered plate. This separation increases until the upper layer thickness is 75% of the plate 
thickness. For thicker upper layers the distance between the A0 and S0 modes tends to decrease 
again until they show normal behavior for a plate consisting 100% of the upper layer. 
All these extraordinary phenomena do not occur when ordinary bilayered plates are used such as 
brass on stainless steel. 
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Fig. VI.B_2: Dispersion curves for a plate consisting of 0%, 5%, 20% and 30% of ‘upper layer’. 
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Fig. VI.B_3: Dispersion curves for a plate consisting of 40%, 50%, 75% and 80% of ‘upper layer’. 
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Fig. VI.B_4: Dispersion curves for a plate consisting of 90%, 95% and 100% of ‘upper layer’. The lower right 
figure combines all A0 and S0 dispersion curves of Figs VI.B_2-4. 

 
 CONCLUSION 

 
It is shown that the dispersion curves for Lamb modes in extraordinary 
bilayered plates show some peculiarities that have not been reported before for 
ordinary bilayered plates or for pure homogeneous plates. First, there is the 
extraordinary shape of the S0 mode and especially the A0 mode, secondly there 
is the separation of the S0 and A0 mode at frequencies where they would have 
been almost indistinguishable for pure plates or for ordinary bilayered plates. 
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Chapter VII Schlieren Photography as 
a Tool for Nondestructive 
Testing 

 
 

A spectacular view on the diffraction of laser light.  

 

      Schlieren photography is an old technique, based on optic diffraction, to 
visualize changes of the refractive index of a transparent media. The technique 
can be used to study flows, heat, ultrasound,… 
     The technique has been introduced to me by Joris Degrieck. Thanks to his 
enthusiastic transfer of knowledge, I have been able to build the Schlieren 
experimental setup relatively fast. Afterwards, it was only a matter of 
adjustment and improvement and last but no least, a lot of patience, in order to 
obtain many of the pictures that are presented in this dissertation. The Schlieren 
setup that I have built here in our Lab in Gent, is based on a combination of a 
lens and a parabolic mirror. 
     Later, when I visited the Laboratory of Mack Breazeale, I have been able to 
improve my knowledge about Schlieren photography better. The experimental 
setup at NCPA in Oxford (University of Mississippi), is based on two 
sophisticated lenses. The Schlieren pictures in this dissertation, in sections that 
describe results obtained in collaboration with Mack Breazeale, have been made 
by this experimental setup. 
     Eventhough Schlieren pictures are distributed throughout this dissertation, 
the current section focuses on two problems. The first is the problem of the 
study of the interaction of sound with highly absorbing media (section VII.A), 
whereas the second is the problem of the fast detection of the fiber direction in 
composites (section VII.B). 
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VII.A Schlieren Photography to Study 
Sound Interaction with Highly 
Absorbing Materials 

 
 Strong absorption of sound is often caused by the conversion of sound energy 

into heat. When this happens, it is not possible to study the interaction of 
sound with the absorbing material by means of reflected sound characteristics, 
because there is no reflected sound. Detecting, for example, the distance that 
sound travels in a strongly absorbing material, can be done by heat detection 
systems. However, the presence of temperature detectors in such materials 
interferes with the sound field and is therefore not really suitable. Infrared 
measurements are a possible option. Another option is the use of Schlieren 
photography for simultaneous visualization of sound and heat. This technique 
is briefly outlined with a 3MHz sound beam incident on a highly absorbing 
sponge. The contents of this section have been accepted for publication in 
Ultrasonics (Imp. Fact. 0.844; SCI-index, Acoustics, rank:11 /28) 

 
 INTRODUCTION 
 

Schlieren photography is based on the acousto-optic effect [1-5] and is important when 
ultrasound is to be visualized [6-10]. In a Schlieren experiment, a wide beam of coherent laser 
light propagates through a transparent medium in which ultrasound propagates. The presence of 
sound generates a light-diffraction grating which is caused by the spatially periodically varying 
refractive index which in its turn is caused by the traversing soundwaves. Hence, light is 
diffracted into several spatial orders [1-5]. Since only orders different form zero deviate from 
light that is not diffracted, the zero order field must be eliminated in order to visualize the 
presence of sound by means of the diffracted light. The obtained light is then projected on a 
screen and can be used to visualize ultrasound. 

However, if an inhomogeneity in the refractive index is present due to other effects, it 
may also be visible on a Schlieren picture. The visualization of heat often occurs in other 
scientific areas by means of Schlieren photography as well [11-16]. Nevertheless, as far as we 
know, the simultaneous visualization of sound and sound induced heat, has not been reported yet.  
 
 EXPERIMENTAL SETUP 
 

The experimental setup is sketched in Fig. VII.A_1. A strongly absorbing sponge is glued 
on an iron plate and is immersed in water at approximately 200 C. A 1.6W sound beam of 1 cm 
physical beam width and having a frequency of 3MHz impinges the sponge. No reflected sound 
is visible due to the strong sound absorption. The sponge forms an angle with the incident beam. 
The angle is chosen randomly since the described effect occurs at each angle. Nevertheless the 
distance that sound propagates in the sponge can be angle dependent. The sound emitter is turned 
on for approximately 1 minute after which it is turned off. The coherent light that is used to form 
the Schlieren pictures is emitted by a ‘633nm/20mW’ laser apparatus. 
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Fig VII.A_1: Experimental setup. An incident ultrasonic beam impinges a highly absorbing sponge. 

 
 SCHLIEREN PICTURES 
 

Figs. VII.A_2a-i show Schlieren pictures coming from the experimental setup described 
above. The sponge is impinged by sound for approximately 1 minute. Then the sound emitter is 
turned off while the Schlieren image is continuously observed. In Fig. VII.A_2a , the situation is 
shown an instant after the sound emitter is turned on. It is seen that no reflection occurs. This is 
due to the strong absorption of sound by the sponge. Figs VII.A_2a-c show the situation as time 
passes. It is seen that heat is formed on the spot of incidence and that this heat zone ‘grows’ 
slowly. Fig. VII.A_2d shows the situation right after the incident sound beam is turned off. It is 
seen that the surface remains hot for a while. This hot zone diminishes slowly as is seen in Figs. 
VII.A_2d-i. Meanwhile, the formation of a heat convection cell is visible in Fig. VII.A_2e. This 
cell rises slowly in Fig. VII.A_2f, tends to tear itself away in Fig. VII.A_2g and dissolves 
completely in Fig. VII.A_2h. The situation after approximately 30 sec is seen in Fig. VII.A_2i. 
Some instants later, no hot zone is visible anymore. 
 
 CONCLUSION AND PROSPECTS 

 
It is shown that the formation and the evolution of heat due to sound absorption is visible 
on Schlieren pictures simultaneously with an incident sound beam. Further research is 
necessary to build a theory that describes the effect correctly. The method could possibly 
be used to find critical angles in the absence of a reflected beam. 
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Fig VII.A_2: Sequence of Schlieren pictures of a sound beam impinging a sponge and the generated heat. Figs 
2a-2c show the situation while the sound source is turned on and corresponds approximately to a period of 60s, 

whereas Figs. 2d-2i show the evolution after the sound source has been turned off and span a period of 
approximately 30s. 
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VII.B Detection of Fiber Direction in 
Composites by means of a High 
Frequency Wide Bounded Ultrasonic 
Beam and Schlieren Photography 

 
 This section describes an experimental method, based on the combination of schlieren 

photography and a wide bounded ultrasonic beam of frequency 10 MHz, used to detect 
the fiber direction in composites. Experiments are described on unidirectional and fabric 
fiber reinforced composites. This method is not based on Lamb wave phenomena, which 
can be complicated for interpretation by NDT engineers, but rather is based on relatively 
simple principles, i.e. inhomogeneity and symmetry of composites. 
The work in this section has been performed at the National Center for Physical 
Acoustics, The University of Mississippi, Oxford, Mississippi, USA, in collaboration with 
A. Teklu, M. A. Breazeale, and Roger D. Hasse. The contents of this section have been 
accepted for publication in Research in Nondestructive Evaluation (Imp. Fact 0.935; SCI-
index, Materials Science – Characterization & Testing, rank:2/23). 

 
 INTRODUCTION 
 

Since fiber reinforced composites are mostly tuned to decrease their weight and to get the 
necessary stiffness in certain vital directions as well, it is important to know the fiber direction at 
any time during the construction or maintenance processes. The impact response, fatigue damage, 
and stiffness all depend upon the direction [1-5] . There are methods available to assess the fiber 
direction, such as ultrasonic polar scans [6-9] or ultrasonic reflected bounded beam deformation 
properties [10] . These methods are based on Lamb wave phenomena and the direction dependent 
mechanical properties of the composite. Furthermore the applied frequencies are small enough (1 
MHz - 5 MHz) that one is dealing with a ‘homogeneous’ composite. Other possible techniques 
are optical micrography [11] or Moiré interferometry [12] and are mainly surface layer fiber 
direction characterizing methods, which are actually best applied when some of the fibers are 
exposed after polishing the sample of interest. 

The technique described here is based on the interaction of relatively high frequency 
sound (10 MHz) with the composite under investigation and is based on imperfections [13-15] in 
the fiber density of the fiber reinforced layers that are relatively close to the surface. These 
imperfections are practically always present and actually consist of small areas in the composite 
where the fiber density is higher, accompanied by a small neighboring region where the fiber 
density is lower. For low frequency sound the imperfections are ‘invisible’ whence the composite 
can be considered homogeneous. For higher frequency sound, however, the composite is 
inhomogeneous, resulting in a spatially dependent reflection coefficient. If, in addition, a 
relatively wide beam is used, the reflected beam profile will be fringed due to the spatially 
dependent reflection coefficient. This fringing will be there for any type of imperfection. 
However, for imperfections along the fiber direction, such as spatial fiber density variations, 
which normally span several mm or cm parallel to the fibers, the fringes will ‘cleave’ the 
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reflected sound beam along the fiber direction. Hence, when schlieren photography [16] is used 
to visualize the reflected beam, the fringing will be visible on the schlieren picture as a pattern of 
high intensity light alternated with low intensity light. Contrary to reflected beam spatial intensity 
patterns when the frequency is low enough (1-5MHz), which are due to a form of the Schoch 
effect caused by multilayer Lamb waves or Rayleigh waves [10], the pattern described here is 
independent of the angle of incidence and is solely due to inhomogeneities near the surface. 
 
 EXPERIMENTAL CONFIGURATION AND PROCEDURE 
 

Schlieren photography is based on the diffraction of light by ultrasound and is well 
described in ref 16. A monochromatic schlieren experimental setup is used as shown in Fig. 
VII.B_1. Two large (f/6.3, 1.2192 m focal length) lenses are used (L2 and L3). A monochromatic 
laser light beam generated by a 10mW He-Ne laser source is focused by the first lens L1 onto a 
pinhole that is placed exactly at 1.2192 m of L2. After passage through L2, the light is collimated 
in order to get a perfect parallel wide laser beam passing through the water tank. This light beam 
is then focused by L3 onto a spatial filter that blocks all undiffracted light. Therefore only 
diffracted light reaches the projection screen, whence visualization of ultrasound is achieved. The 
image is then captured by a digital camera and stored on a computer. 
 

 
Fig. VII.B_1. Schematic of the experimental configuration. ‘L’ stands for lens. 
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A 2.5 cm wide ultrasonic beam of 10 MHz impinges the surface of the sample under 
investigation at an angle of 330 . This angle is not crucial, as a matter of fact it is randomly 
chosen and the results shown below are valid for each angle of incidence. The configuration is 
shown in Fig. VII.B_2, where the sample under investigation (the reflector) is a relatively thick 
aluminum sample. It is noticed that even though the amplitude of the reflected beam is smaller 
than that of the incident beam, the pattern is the same, i.e. gaussian. This pattern, studied in the 
white rectangle of Fig. VII.B_2, is shown in Fig. VII.B_3. In fact, Fig. VII.B_3 serves as a 
reference figure for all results discussed below. As soon as the reflected pattern for a certain 
sample under given conditions differs from the one in Fig. VII.B_3, it will be discussed in what 
follows. Remark that Fig. VII.B_2 is a monochromatic schlieren photograph of the incident and 
reflected ultrasonic beam. The laser light that is used in order to obtain this picture, propagates 
normal to the picture i.e. normal to the plane of ultrasound incidence on the samples in the 
experiments described below. In what follows, this direction is referred to as the laser light 
direction. In all experiments the samples under consideration are placed on a highly ultrasound 
absorbing material in order to prevent side effects coming from reflections on the base where the 
samples are positioned. 
 
 

 
 

Fig. VII.B_2: Experimental setup for a 2.5 cm wide 10MHz ultrasonic beam (here incident on an aluminum 
sample). From the visualized reflected beam we always extract the area on the picture denoted by the white 

rectangle for studying the reflected beam pattern. 
 
 

 

 
 
Fig. VII.B_3: The reflected beam pattern for an 
aluminum sample. No fringes are visible. 
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 RESULTS AND DISCUSSION 
 
 unidirectional carbon fiber reinforced epoxy and glass fiber reinforced epoxy 
 

If a unidirectional carbon fiber reinforced epoxy laminate is placed in the experimental 
setup of Fig. VII.B_2, there is always a pattern visible as in Figs. VII.B_2-3, except for the case 
when the laser light direction is parallel to the fiber direction, which generates a pattern as in Fig. 
VII.B_4. Equal findings hold for a unidirectional glass fiber reinforced epoxy. The result is seen 
in Fig. VII.B_5. Note that the fibers in both samples are supposed to be perfectly parallel to each 
other. However, due to spatial variations in fiber density, caused by imperfect prepreg and caused 
by the fabrication process, a pattern as in Figs VII.B_4-5 is possible. The reason is described in 
the previous paragraph. 
 

 

 
 
Fig. VII.B_4: The reflected beam pattern for a carbon 
epoxy unidirectional composite 

 
 

 

 
 
Fig. VII.B_5: The reflected beam pattern for a glass 
epoxy unidirectional composite 

 
 
 unidirectional ([0°]8) stacked 4 harness glass fabric reinforced epoxy and cross ply 

([0°/90°]2s) stacked glass fabric reinforced epoxy 
 

The patterns of Figs VII.B_4-5 (especially the one of Fig. VII.B_5) do not show 
spectacular differences when compared with Fig. VII.B_3. That is of course because the pattern 
is based on small density variations. However, in practical applications, pure unidirectional 
materials are seldom used, whereas many kinds of fabrics are much more common. In Fig. 
VII.B_6 a photograph is shown of the type of fabric that is often used for the same purposes as a 
purely unidirectional material. Most of the fibers (in tiny bunches) in Fig. VII.B_6 are directed 
along the 00 direction. However, in order to hold them together, a small number of fibers are 
woven in the 900 direction. This does not result in different stiffness properties when compared to 
a purely unidirectional material, but rather it is more commonly found in a typical lay-up 
fabrication process. Nevertheless, the presence of weft fibers (900) results in the formation of 
bunches of fibers, instead of pure homogeneously distributed fibers in the 00 direction. This 
phenomenon is appealing for using the described schlieren technique in order to ascertain the 
fiber direction. Experiments are performed on unidirectional ([0°]8) stacked glass fabric 
reinforced epoxy and have shown that the reflected beam profile is always equal to Fig. VII.B_3, 
except when the laser light direction θ (see Fig. VII.B_6) is equal to 00, 450 or 900 as can be seen 
in Fig. VII.B_7. The reason for 00 is the presence of bunches of fibers, that for 900 is the presence 
of the spatial separation of the weft fiber bunches, whereas the cause for the 450 is that this is also 
a symmetry direction for the used fabric. 
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Fig. VII.B_6: Photograph of the fibers that are used in 
manufacturing the unidirectional glass fabric 
reinforced epoxy samples. The width of the warp 
bunches (horizontal) is 5mm.The angle θ is shown and 
corresponds to the angles denoted in Figs VII.B_7-8. 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. VII.B_7: The reflected beam pattern for a [0°]8 
stacked glass epoxy laminate with layers reinforced with 
unidirectional composite as in Fig. VII.B_5. 

 
If the same experiment is repeated for cross ply ([0°/90°]2s) stacked glass fabric reinforced epoxy, 
then again no fringes are visible except if laser light is directed at 00, 450 or 900 measured from 
the fiber direction for the upper layer. The results are shown in Fig. VII.B_8. The fact that the 
patterns in the 00 and 900 direction are approximately the same as far as the spacing between the 
fringes is concerned (which is not the case in Fig. VII.B_7) shows that the pattern is not solely 
influenced by the properties of the upper layer, but also by lower layers in the composite sample. 
Ultrasound penetrates deep enough to be influenced by more than one layer. One of the 
consequences of this feature of the technique is that when the composite is covered with a coating 
(homogeneous and isotropic ), the fringes will still be visible. 
 
 unidirectional 5-harness satin weave fabric ([0°]8) stacked and cross ply 5-harness 

satin weave fabric ([0°/90°]2s) stacked carbon fabric reinforced PPS 
 
The previous paragraph describes experiments on samples that consist of quasi unidirectional 
fibers. That is because the weft bunches are much smaller than the warp bunches. In the aviation 
industry one often uses real fabric layers, i.e. layers where the weft and warp bunches have 
comparable size. For that reason we have also performed experiments on unidirectional 5-harness 
satin weave fabric ([0°]8) stacked carbon fabric reinforced Poly Phenyl Sulfide (PPS). A 
photograph is shown in Fig. VII.B_9. The directions 1 (-250), 2 (00), 3 (190) and 4 (650) 
correspond to symmetry directions of the composite that result in fringed patterns if the laser light 
is passing in those directions. The results are shown in Fig. VII.B_10 for each of those directions.  
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Fig. VII.B_8: The reflected beam pattern for a 
[0°/90°]2s stacked glass epoxy laminate with layers 
reinforced with unidirectional composite as in Fig. 
VII.B_5. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. VII.B_9: Definition of the 
direction 1 (-250), 2 (00), 3 (190) and 4 
(650) on the upper surface of a PPS 5-
harness satin weave fabric carbon 
fiber reinforced composite. 

 
 
Because the symmetry for the pattern shown in Fig. VII.B_9 is quite different when compared to 
the symmetry observed in Fig. VII.B_6, it is expected that a composite consisting of a stacking of 
such layers in 00 and 900 directions will result in serious ‘effect-canceling’ of the outcome of 
each layer on reflected ultrasound. It is expected, therefore, that no fringes can be visible in 
directions labeled 4 and 1, because those direction form an angle of approximately 900 with one 
another. Indeed, in Fig. VII.B_11 the result is shown for direction 4 (a similar result was found 
for direction 1), for a cross ply 5-harness satin weave fabric ([0°/90°]2s) stacked carbon fabric 
reinforced PPS. In that direction a fringe pattern was visible, although not as distinct as in Fig. 
VII.B_10, whereas no fringes were visible in other directions.  
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Fig. VII.B_10: The reflected beam pattern along the 
directions as defined in Fig. VII.B_8 for a [0°]8 stacked 
laminate with layers as described in Fig. VII.B_9 and 
the upper layer having the direction equal to the layer 
shown photographically in Fig. VII.B_9. 

 

 

Fig. VII.B_11: The reflected beam pattern along the 
directions as defined in Fig. VII.B_8 for a [0°/90°]2s 
stacked laminate with layers as described in Fig. 
VII.B_8 and the upper layer having the direction equal 
to the layer shown photographically in Fig. VII.B_8. 

 
 CONCLUSIONS 

 
This section shows that the use of a wide beam having a relatively high frequency, 
combined with a schlieren photography experimental setup enables the determination of 
the symmetry directions of a composite. This technique can be used to detect the fiber 
direction(s) in composites. Results are shown for different types of composites. 
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Chapter VIII Characterization of 
Liquids in Closed 
Containers 

 
 

In the dock industry and for port officials in a modern 
society, it is mandatory to possess the necessary practical 
tools or fast inspections of ships and their cargo. 

 

      When studying the Schoch effect on thick and thin plates immersed in water, 
I noticed that not a single study was reported in the literature on the effects of 
the liquids surrounding the plate, on the Schoch phenomenon (see chapter IV). 
The reason is obvious. It is known that dispersion curves of Lamb waves in 
classical plates (steel, brass,…), are relatively unaffected by the immersion 
liquid. Nevertheless, when studying the interaction of sound with composites, I 
read in Adnan H. Nayfeh’s book (Wave propagation in layered anisotropic 
media) that the dispersion curves are significantly affected by the immersion 
liquids, if the physical properties (density,…) are of the same order of 
magnitude. This made me believe that there must be small differences as well 
for classical plates immersed in liquids such as water. This difference, if small, 
is perhaps best noticed by an incident bounded beam, if this beam interacts very 
intimately with the plate. This happens, of course, when Lamb waves are 
generated, resulting in the Schoch effect. Therefore, I believed that the Schoch 
effect must be sensitive to the properties of the surrounding liquids. For 
containers, the surrounding liquids consist of a liquid that functions as carrier 
for incident sound (typically water), and the contained liquid underneath the 
container skin. 
 
     It was my desire to guide a student and introduce him/her in the field of 
ultrasonics. Therefore I proposed the subject of characterizing liquids in 
containers, as a subject for a Master’s thesis. Filip Van den Abeele (who is now 
a brilliant and hard working researcher in the field of continuum damage 
mechanics) was interested and that’s how we started to collaborate. He has 
really done a good job by first achieving the necessary basics of the 
homogeneous and inhomogeneous wave theory and then dealing with whatever 
I requested in the particular case of liquids in containers.  
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The Schoch effect consists of an incident bounded beam, 
being reflected as two parallel beams with a null zone in 
between. The effect occurs on smooth surfaces, due to the 
generation of leaky surface waves or leaky Lamb waves. 

 

      I promised him from the beginning that I would guide him as well as 
possible in order to make his work publishable in an international journal. We 
worked hard together and obtained interesting results that are described in this 
chapter. Section VIII.A shows that the Schoch effect is a promising tool to 
characterize liquids in containers. Section VIII.B describes a very interesting 
phenomenon that makes it possible to distinguish between realistic liquids and 
unrealistic liquids, simply by verifying the Lamb wave pole for a given plate 
separating water and a liquid under examination. 
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VIII.A The Schoch effect to distinguish 
between different liquids in closed 
containers 

 
 In different industrial branches it is necessary to characterize liquids in closed 

containers. For small cans, accessibility to both sides is almost trivial. 
However in industries where larger containers are used and especially in the 
dock industry, only one side is accessible practically and damping often 
prevents through-transmission ultrasonic measurements or pulse echo 
techniques. It is known that built-in sensors can be used to determine the 
density and the wave velocity of liquids, but normally, containers are not 
equipped with such sensors. It is also known that differences in the reflection 
coefficient at a solid-liquid interface can determine the density and sound 
velocity of liquids but only if the difference in acoustical impedance between 
the solid and the liquid is small. For most containers this condition is not 
provided, and therefore a more sensitive method is needed. This section 
reports simulations that show how identical containers, having different 
liquids inside, can be distinguished from one another by means of differences 
in the Schoch effect at a Lamb wave angle of incidence for harmonic bounded 
ultrasonic beams.  
The work in this section was performed in collaboration with my graduate 
student Filip Van den Abeele and is published as: Nico F. Declercq, Filip Van 
den Abeele, Joris Degrieck, Oswald Leroy, “The Schoch effect to distinguish 
between different liquids in closed containers”, IEEE Transactions on 
Ultrasonics, Ferroelectrics, and Frequency Control 51(10), 1354-1357, 2004. 
(Imp. Fact. 1.595 ;SCI-index, Engineering – electrical & electronic, rank:46/205) 
 

 
 INTRODUCTION 
 
The purpose of this section is to formulate an answer to the many requests and suggestions of 
several sources in the beverage industry and especially in the dock industry over the last couple 
of years for studying the possibility of fluid characterization in closed containers in a non-
destructive way. In the dock industry and for port officials [1,2] it is desirable to possess practical 
tools to characterize the fluid content of containers. This can be done by removing liquid and 
performing chemical tests. Even though this is the only test that produces 100% certainty, it is 
also helpful to use other means that are equivalent to non-destructive testing. This might be due 
to the risk of poisoning, the lack of speed when sampling, the risk of contamination, ... 
It has been shown before that, besides other techniques [3], it is possible to apply ultrasound for 
that purpose. One method is based on time of flight measurements [4-6]. This method requires 
access to both sides of a container or at least requires containers that are small enough so that 
damping does not prevent sound from traversing the container. Hence, even though this method 
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seems to work for small containers within a production line, application to large containers is not 
realistic. 
Another method is based on laser excitation of sound in fluids [7]. This method is  interesting, but 
the fact that it can only be used in the case of open containers, makes it less applicable. 
Yet another - very sensitive - method, developed by Greenwood et al [8-11], applies a sensor that 
can be submerged in the liquid or built in the container skin; and is actually based on the 
‘sensitivity’ of the reflection coefficient at the solid-liquid interface between the sensor and the 
liquid. Nevertheless, submerging the sensor in the liquid requires opening the container or 
embedding the sensor in the cargo container’s skin, which is not practicable.  
Ultimately, application of the sensor’s principle to an existing container skin without built-in 
sensor is not realistic because the difference in acoustical impedance between the skin and the 
contained liquid is too large to make the technique sensitive enough [8-11]. Hence the method 
developed by Greenwood et al is probably only really practicable for pipelines [10]. 
The method studied here is based on beam deformations in reflection on the existing skin of a 
closed container, which solely requires access from one side, does not require an echo that has 
traversed the liquid, and is therefore an inviting technique for relatively large containers. Because 
the method makes use of the existing container skin, it doesn’t require built-in sensors. This is 
only possible because it is more sensitive than the reflection coefficient as used by Greenwood et 
al [8-11]. The beam deformations are induced by the generation of Lamb waves in the container 
skin and their characteristics are influenced by the properties of the liquid. It is known that 
harmonic bounded beams show nonspecular reflection phenomena when incident at the Rayleigh 
angle for liquid-solid structures [12-20] or at a Lamb wave generating angle on a liquid-solid-
liquid structure [21-26] : this is called the Schoch effect.  
However, all papers dealing with this effect, study the situation where a plate separates two 
identical liquids, instead of two different ones. 
In this section, we consider an isotropic plate between two different liquids. A schematic is 
presented in Fig. VIII.A_1. The upper liquid is always water, while the lower liquid can be of any 
kind. If a bounded beam is incident from the upper liquid on a plate in between that upper liquid 
and a lower liquid, the generation of leaky Lamb waves will induce deformation of the reflected 
beam, widely known as the Schoch effect, generating two reflected lobes instead of only one. The 
first lobe is called the specular lobe and its position corresponds almost perfectly with the 
position of a reflected beam if no deformation occurs. The second lobe is called the nonspecular 
lobe and is displaced along the interface. The displacement itself is also called Schoch 
displacement. The influence of the lower liquid on the deformed beam can be noticed in the 
phase and amplitude of the nonspecular lobe and also in the position and depth of the ‘null zone’ 
in between the specular and nonspecular lobe. The purpose of this section is to show that it is 
possible to distinguish between two liquids in a similar container by studying differences in the 
Schoch effect. 
Finally it is shown by means of a numerical simulation that measuring the characteristics of the 
reflected deformed beam enables one to distinguish between oil and water. This work might be 
an impetus for further study using phased array techniques and may also inspire other labs to try 
ultrasonic focussed beams [27-28]. It is likely that focal spot shifts might also be influenced by 
the characteristics of the unknown liquid. 
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Fig. VIII.A_1: Schematic of a container skin separating an ‘unknown’ liquid and water. The incident and 
(deformed) reflected bounded beam profiles are also shown. The short solid arrows denote propagation 

direction for incident and reflected beam. 
 
 
 NUMERICAL APPROACH 
 
We consider the system depicted in Fig. VIII.A_1. A gaussian incident bounded beam is 
considered with profile 
 

( ) ( )2 2exp /f x x W= −  (VIII.A_1)

 
with W the gaussian half width. The beam itself is decomposed into infinite homogeneous plane 
waves by means of the Fourier transform. The sound field generated by each incident infinite 
homogeneous plane wave is calculated by application of the Helmholtz decomposition [29] of the 
particle displacement field, by incorporating the dispersion relation for bulk waves and the 
classical Snell’s law [30] and by considering continuity of normal stress and normal displacement 
along each of the interfaces [31]. 
 
 NUMERICAL RESULTS 
 
It can be found in Greenwood et al [8-11] that if the reflection coefficient is used to determine 
liquid characteristics, the difference in acoustical impedance between the solid and the liquid 
must not be too large. Nevertheless, for containers, the impedance of the skin mostly differs very 
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much from that of the contained liquid. It is hence not reasonable to use the reflection coefficient 
for liquid characterization in such containers.  
In order to show this, we have calculated the reflected beam amplitude and phase at the center of 
the beam, for normal incidence and for a number of liquids in a container. We have taken the 
example of a glass plate container skin of 1.86 mm thickness and a 3MHz normal incident 
Gaussian beam of 1.25 cm gaussian half width. For glass, the density is 2500 kg/m³, whereas the 
longitudinal wave velocity is 5660 m/s and the shear wave velocity 3520 m/s. The liquid 
characteristics and the numerical results are listed in Table VIII.A_I, where the following 
parameters are used: 
 

( )
( ) ( )r rA x A xr L WA xL Z ZL W

−
∆ =

−
 

(VIII.A_2)

 
( )r

LA x  being the x-dependent reflected amplitude for a given liquid underneath the plate and LZ  
the liquid’s impedance, equal to vρ  [kg/m²s].  
 

( )
( ) ( )r rPH x PH xr L WPH xL Z ZL W

−
∆ =

−
 

(VIII.A_3)

 
( )r

LPH x  being the x-dependent reflected phase for a given liquid underneath the plate. The 
values, for L replaced by W, correspond to water. It is seen that the difference in reflected 
amplitude and phase, for any given liquid, when compared with the ones for water underneath the 
plate, is poor. 
 
One way to increase the sensitivity of the reflection coefficient for the properties of the unknown 
liquid is to apply multiple reflections, because then the resulting reflection coefficients are 
separated further from one another. Hence the larger the number of contacts between the pulse 
and the unknown liquid, the more the pulse is influenced by the liquid. For a harmonic incident 
beam, the largest contact with the liquid occurs when Lamb waves are stimulated in the container 
skin. The fluid will influence the characteristics of the leakage field emitted by the Lamb wave. 
When the Schoch effect occurs, the second (nonspecular) lobe contains most information about 
the liquid, for this lobe originates from the presence of a leakage field. Again, we have taken the 
example of a glass plate of 1.86 mm thickness and a 3MHz incident Gaussian beam of 1.25 cm 
gaussian half width. From the corresponding dispersion curves of Fig VIII.A_2, it can be found 
that an A1 Lamb mode will be generated at an angle of incidence of 19.36°. In Fig. VIII.A_3 the 
incident beam profile together with the calculated reflected beam amplitude profile in the case of 
oil and in the case of water underneath the plate are shown for an angle of incidence of 19.36° 
corresponding with stimulated A1 Lamb waves. It is seen that the reflected profiles differ 
considerably.  
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Table VIII.A_I : The central reflected amplitude ( )0r

LA , the central reflected phase ( )0LPH , and the 
differences of those parameters for a given liquid underneath the plate, compared to their 
values in the case of water underneath the plate, ( )0r

LA∆  respectively ( )0r
LPH∆ . The 

density ρ , plane wave velocity v and the impedance Z of the listed liquids is also given. 
 

liquid ρ   
[kg/m³] 

v 
[m/s] 

( )0r
LA  ( )0LPH

π
 ( )

9

0

10

r
LA∆

×
 

( )
5

0

10

r
LPH

π

∆

×
 

methanol 791 1103 0.9975 -0.138 -2.4690 3793 
acetone 791 1174 0.9981 -0.1091 -3.8087 6609 
ethanol 790 1207 0.9968 -0.1008 -1.5195 2574 
gasoline 803 1250 0.9981 -0.136 -4.4094 8913 
kerosene 810 1320 0.9984 -0.1168 -5.8422 13821 
benzene 870 1295 0.9916 -0.0831 12.4522 -35705 
Sunflower 
oil 920 1450 0.9879 -0.1635 55.4794 -381122 
Cyclo- 
hexanole 962 1450 0.9874 -0.1644 101.0575 -1189447 
water 1000 1480 0.996 -0.133 - - 
Nitro- 
methane 1130 1330 0.9958 -0.1029 -8.7336 -374201 
sea water 1025 1531 0.9961 -0.1298 1.1201 14388 
glycerin 1260 1904 0.9221 0.009 -80.4099 -87314 
bromoform 2890 920 0.9567 -0.1827 -33.3389 -28142 
mercury 13500 1450 0.9851 0.0033 -0.6023 -24 

 
When the reflected beam phase profiles are compared, one notices a considerable difference too 
(Fig. VIII.A_4). If we define x* as the position where the nonspecular reflected lobe has 
maximum amplitude, then for sunflower oil ( )* 1144 10r

LA x −∆ = − × 9

10

 whereas 

( )* 6379 10r
LPH x π−∆ = × . These values are much larger than the values for normal incidence of 

Table VIII.A_I. In other words, the use of the Schoch effect is much more sensitive than the use 
of the reflection coefficient. However, contrary to the method of Greenwood et al, when the 
Schoch effect is used to obtain information about the unknown liquid, it is not possible to come 
to a direct inversion method to find the liquid characteristics from the reflected profile. When 
inversion is necessary, optimization procedures must be applied in order to estimate the liquid 
parameters. Nevertheless it is not certain that the liquid parameters corresponding to a given 
reflected profile, are unique. The method presented here can therefore be used to discriminate 
between given liquids (e.g. water and oil), rather than to find out the exact physical parameters of 
an unknown liquid. 
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Fig. VIII.A_2:  Dispersion curves for the glass plate under consideration. It is seen that an angle of incidence of 
19.36° corresponds with the stimulation of the A1 mode when a 3MHz ultrasonic beam is incident on a plate of 

1.86 mm thickness. 

 
Fig. VIII.A_3: Reflected amplitude profiles, for a 3MHz bounded beam incident at 19.36° on a 1.86 mm thick 

glass plate, when the unknown liquid underneath the container skin is water (solid line) or sunflower oil (dashed 
line). The incident beam profile is given in a dotted line. The maximum amplitude of the nonspecular reflected 

beam is explicitly given. 
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Fig. VIII.A_4: Corresponding phase profiles for the geometry of Fig. VIII.A_3.. The phase, at the position 

corresponding with the maximum amplitude of Fig. VIII.A_3, is explicitly given. 
 
 
 CONCLUSIONS 

 
First, an overview has been given of different techniques to characterize liquids in 
containers and the necessity of introducing a new technique based on the Schoch effect 
caused by Lamb wave stimulation in the skin of a container. It is shown that the Schoch 
effect can be used to distinguish between different liquids in containers. The method does 
not apply built-in or submerged sensors and does not require opening of the container. 
Numerical comparison was made between the sensitivity of the outlined method and 
another technique that is based on the reflection coefficient. An example was given for a 
glass container, where it is seen that the Schoch effect is much more sensitive than the 
reflection coefficient. We believe that the presented technique can be very effective, due 
to its flexibility and its non-requirement of built in sensors, if it is combined with phased 
array techniques to emit and receive the involved sound fields. 
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VIII.B On the capability of Leaky Lamb 
waves to discriminate between real 
and fictitious liquids 

 
 Leaky Lamb waves are complex poles of the reflection coefficient for (inhomogeneous) 

waves incident on a plate surrounded by liquid. When the plate is separating two 
different liquids, the real part of the pole is almost independent of the liquids, whereas 
the imaginary part highly depends on the physical difference between the two liquids. It 
is found that this dependence shows linear characteristics if both liquids are real. If one 
of the liquids is fictitious, then the dependence does not obey this linearity anymore. The 
method is inviting for theorists when, in certain numerical models in whatever physical 
problem, they need to figure out whether their assumed liquid parameters are realistic or 
not. 
The work in this section was performed in collaboration with my graduate student Filip 
Van den Abeele. 

 
 INTRODUCTION 
 
A study, intended to reveal changes of the Schoch effect due to Lamb wave stimulation, in order 
to characterize liquids in closed containers [1], showed that this effect is quite susceptible to the 
physical properties of contained liquids. Furthermore, in many studies in ultrasonics, the 
interaction of ultrasound with ‘objects’ immersed in a liquid is investigated. For theorists, when 
modeling such situations, it is then desirable to consider an existing liquid, having a measured 
density and sound velocity, in order to avoid possible prediction of artificial phenomena due to 
‘impossible’ characteristics of the chosen liquid. Nevertheless, it is obvious that minor deviations 
from the exact values, due to experimental errors when measuring the density or measuring the 
sound velocity, will not make the existence of that particular chosen liquid, in the theoretical 
model, impossible, or make its influence on the obtained numerical results unreliable.  
However, the immediate question arising here is : When do we consider a liquid to be realistic 
and when do we agree that it cannot exist and is therefore fictitious? In what follows, it will be 
shown that the imaginary part of the complex pole corresponding to Lamb wave generation, 
depends on the impedance difference between the two liquids on both sides of the plate. 
Furthermore, it will be shown that this dependency is linear for all existing liquids and realistic 
liquids, but that it is not linear and even random, in the case when one of the liquids is fictitious. 
 
 LEAKY LAMB WAVES IN A PLATE SEPARATING TWO DIFFERENT 

LIQUIDS 
 
In this report, we consider 3 solids: stainless steel (density = 7900 kgm-3, shear wave velocity = 
3200 m/s, longitudinal wave velocity = 5790 m/s), brass (density = 8600 kgm-3, shear wave 
velocity = 2150 m/s, longitudinal wave velocity = 4410 m/s) and glass (density = 2500 kgm-3, 
shear wave velocity = 3520 m/s, longitudinal wave velocity = 5660 m/s). 
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For a plate in vacuum, Lamb waves are solutions of the equations, expressing the disappearance 
of normal stress at the vacuum/solid interfaces. The solutions are real. For a plate immersed in a 
liquid, Lamb waves are solutions of the continuity equations, expressing continuity of normal 
stress and normal displacements at the liquid/solid interfaces. Here, the solutions are complex, 
because Lamb waves radiate energy into the liquid, resulting in a complex wave vector of its 
plane wave components. These complex solutions correspond to poles, or singularities, of the 
reflection coefficient for inhomogeneous plane waves incident from the liquid onto the plate. 
Therefore, it is inviting to apply the theoretical development of [1] and extract information about 
the position of those poles. Special attention will be drawn on the cases where the liquids on both 
sides of the plate differ from each other. 
 
 NUMERICAL RESULTS 
 
According to the generalized law of Snell-Descartes [3-7], the wave vector component parallel to 
the plate is, for a given liquid (liquid 1) from which sound is incident, completely determined by 
the real angle of incidence θ and the inhomogeneity vector β. Then, a pole corresponding to leaky 
Lamb waves, is determined by this real angle θ and inhomogeneity vector β. We noticed that, for 
a given ‘liquid 1’, the real angle is independent of the liquid on the other side of the plate (liquid 
2). Therefore, the real angle θ is applied to determine the kind of leaky Lamb wave that is 
generated, whereas the inhomogeneity β contains information about liquid 2. 
In Fig. VIII.B_1, the dispersion curves for Lamb waves in a stainless steel plate are given. We 
consider a [frequency x thickness] equal to 3 MHz x mm. Three types Lamb waves are indicated, 
i.e. A0, S0 and A1 Lamb waves. Moreover, the reflection coefficient for this case is shown as a 
function of the real angle of incidence θ and the inhomogeneity β in the situation where the plate 
is immersed in water. Note that for each type of Lamb wave, there is a position [θ, β] where the 
reflection coefficient corresponds to a pole or singularity. For reasons of readability, the plot in 
Fig. VIII.B_1 is made for a limited grid. Therefore the ‘peaks’ appear to be finite. In reality 
however, they tend to infinity. In what follows, the position of the different peaks are determined 
for a sufficiently fine grid. As a matter of fact, the positions are determined by restricting the 2D 
interval around the peaks and create zoom-in calculations, in order to avoid unnecessary 
calculations in uninteresting areas. Table VIII.B_I lists the different liquids considered. Because 
the number of possible fictitious liquids is infinite, we have only listed 5 of them (A-E). As a 
reference, each time, we take the considered plate immersed in water (liquid 1 = liquid 2) and 
determine the inhomogeneity 0β  at which the pole exists (for the given impedance 0Z of water).  
Then, if liquid 2 changes, we determine the new values β  and Z , and plot 0β β β∆ = −  as a 
function of 0Z Z Z∆ = − . The results for the stainless steel plate, in the case of A1 Lamb wave 
stimulation, are shown in Fig. VIII.B_2. The codes corresponding to the different liquids are also 
added. Subsequently, in the other figures, these codes are ignored and can always be 
reconstructed because the numbers follow the impedance sequence, see Table VIII.B_I. Note that 
the values corresponding to existing liquids all follow a linear tendency, whereas the values 
corresponding to fictitious liquids are distributed within the coordinate plane. In fact, a larger 
number of calculations showed that whenever fictitious liquids are considered, the results are 
randomly distributed and only accidentally coincide with the straight line. 
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Fig. VIII.B_1: The dispersion curves for Lamb waves in a stainless steel plate are given. The horizontal indicated 
line corresponds to a [frequency x thickness] equal to 3 MHz x mm. Three types Lamb waves are indicated, i.e. A0, 
S0 and A1 Lamb waves. On the right, a small image is added of the reflection coefficient for this case as a function 

of the real angle of incidence θ and the inhomogeneity β in the situation where the plate is immersed in water. 
For each type of Lamb wave, there is a position [θ, β] where the reflection coefficient corresponds to a pole or 

singularity. 
 
The straight line that is drawn in Fig. VIII.B_2 and also in the other figures further on, is obtained 
through a least squares approximation. In Fig. VIII.B_3, the same procedure was followed for 
different materials of container skin and only for existing liquids. Note that the results follow 
straight lines once again and the direction of each straight line is a function of the solid under 
consideration. In Fig. VIII.B_4, the case of a brass container skin is considered under the same 
circumstances as in Fig. VIII.B_2 and Fig. VIII.B_3, though for different Lamb waves. Note that 
the direction appears to be is dependent of the type of Lamb wave. Finally in Fig. VIII.B_5, the 
result is shown for other combinations of [frequency(f) x thickness(d)]. Again, the existing 
liquids follow a linear tendency with a direction depending on f x d. 
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Table VIII.B_I : List of liquids, ordered according to  for increasing acoustical impedance 
 

Code name ρ [kg/m³] C [m/s] 
1 Ch4h9Cl 840 980 
2 Alcohol, methanol 791 1103 
3 Alcohol, isopropyl 786 1170 
4 Acetone 791 1174 
5 Ethanol at 25°C 790 1204 
6 Alcohol, ethanol 790 1207 
7 Alcohol, propyl 804 1220 
A Fictitious liquid A  147 6750 
8 Gasoline 803 1250 
9 Alcohol, butyl 810 1240 
B Fictitious liquid B 309 3440 
10 Petroleum 825 1290 
11 Kerosene 810 1320 
12 Acetate, butyl 871 1270 
13 Benzene 870 1295 
14 Benzol 878 1330 
15 Univis 800 870 1350 
16 Fish Oil 880 1440 
17 Transformer Oil 920 1390 
18 Safflower Oil 900 1450 
19 Peanut Oil 914 1436 
20 Soybean Oil 930 1430 
C Fictitious liquid C 465 2860 
21 Sunflower Oil 920 1450 
22 Corn Oil 922 1460 
23 Olive Oil 948 1430 
24 Cyclohexanole 962 1450 
25 Water 1000 1480 
D Fictitious liquid D 400 3700 
26 Silicon dow oil 1110 1352 
27 Nitromethane 1130 1330 
28 Glycol-butylene 1019 1480 
29 Sea water 1025 1531 
30 Alcohol, furfuryl 1135 1450 
E Fictitious liquid E 568 2900 
31 Glycol-PE 400 1060 1620 
32 Ethanol amide 1018 1720 
33 Dimethyl phthalate 1200 1460 
34 Glycol-PE 200 1087 1620 
35 Glycol-ethylene II 1108 1590 
36 Glycol-diethylene 1116 1580 
37 Glycol-tetraethylene 1120 1580 
38 Glycol-triethylene 1123 1610 
39 Formamide 1134 1620 
40 Glycol-ethylene 1113 1658 

 
 

 
- 276 - 



CHAPTER VIII: Characterization of Liquids in Closed Containers  
  

Fig. VIII.B_2: 0β β β∆ = −  as a function of 0Z Z Z∆ = − . The results for the stainless steel plate, in the case 
of A1 Lamb wave stimulation, for ‘liquid 1’ = water and ‘liquid 2’ listed in Table VIII.B_1. The codes 

corresponding to the different liquids are also added. 
 
 

Fig. VIII.B_3: The same procedure was followed as in Fig. VIII.B_2, but for different materials of container skin 
and only for existing liquids. Note that the results follow straight lines and the direction of each straight line is a 

function of the solid under consideration. 
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Fig. VIII.B_4: A brass container skin is considered under the same circumstances as in Fig. VIII.B_2 and Fig. 
VIII.B_3, though for different Lamb waves. The direction  depends on the type of Lamb wave. 

 
 

Fig. VIII.B_5: The result is shown for other combinations of [frequency(f) x thickness(d)]. Again, the existing 
liquids follow a linear tendency with a direction depending on f x d. 

 

 
- 278 - 



CHAPTER VIII: Characterization of Liquids in Closed Containers  
  

 
 CONCLUSIONS 

 
It is shown that the imaginary part of the complex pole of the reflection coefficient is 
linearly dependent of the impedance difference between ‘liquid 1’ and ‘liquid 2’. This 
linear tendency depends on the kind of Lamb wave, on the considered frequency and on 
the material of which the solid plate is made of. Furthermore, the linear trend only holds 
for existing liquids. Fictitious liquids do not follow this linear trend and produce 
randomly scattered results. 
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Chapter IX Sound in Media Having 
Discontinuities in More 
Than One Direction 

 
 

The exact description of sound inside a labyrinth will 
probably never be accomplished. It is simply far too 
complicated.  

 

     One of the main principles in acoustics, is the conservation of symmetry. The 
symmetry of a sound field is always equal to the symmetry of its source. After 
interaction with an object, this symmetry is distorted and becomes partly 
determined by the symmetry of that object. Therefore, the interaction of sound 
with an infinite plate can be relatively easy described by means of a 
decomposition into infinite plane waves. On the other hand, the interaction of 
sound with a finite plate or with a plate containing an inclusion or anything else, 
cannot be described anymore by means of a decomposition into infinite plane 
waves.  
     One of the most sophisticated theoretical models that resembles the physical 
reality best, is the so called ‘Radiation Mode Theory’. Even though this theory 
is mathematically ‘heavy loaded’, it is described very ‘friendly’ in section IX.A. 
The reason for this description is that it is my intention to make the Radiation 
Mode Theory one of the major research subjects in my life after this PhD-
dissertation. Furthermore, in section IX.B, while describing the interaction of 
Rayleigh waves with the edge of a plate, there will be referred to the Radiation 
Mode Theory of section IX.A. Also, in the next chapter (section X.A.1.b), facts 
about Scholte – Stoneley waves, obtained from section IX.A, will be hard 
experimental evidence for the statement that the backward beam displacement 
is due to a leaky form of Scholte – Stoneley waves. 
Section IX.C describes the (beautiful) interaction of a bounded beam with the 
edge of a plate, incident at the Lamb angle. 
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IX.A The Radiation Mode Theory in 
Ultrasonics 

 
 This section describes the history and the state of the art in radiation mode theory (RMT) 

in ultrasonics. The RMT originates from electromagnetism where it has proved to be very 
efficient in the field of wave guides and discontinuities. In ultrasonics the RMT made its 
entrance only a decade ago and has already proved to be very efficient in describing the 
interaction of sound with discontinuities such as a step on a plate, a liquid wedge, the 
extremity of a plate and much more. It is likely that the development of the RMT for 2D 
isotropic media has come almost to an end. This section lists the results obtained so far.  
Further extensions to more complicated media are to be expected the coming decade. 
The contents of this section have been accepted for publication in IEEE Transactions on 
Ultrasonics, Ferroelectrics, and Frequency Control (Imp. Fact. 1.595 ;SCI-index, Engineering – 
electrical & electronic, rank:46/205) 

 
 INTRODUCTION 
 

The general rule in acoustics is to describe sound in the same symmetrical system as the 
scatterer or as the sound source. For example sound emitted by a cylinder is described in 
cylindrical coordinates, while sound emitted by a sphere is described in spherical coordinates.  

When the interaction of sound needs to be described in a system with only discontinuities 
in one dimension, e.g. an infinite plate swamped in water, the theory of plane waves is very 
suitable. That is because plane waves extend to infinity and so does the considered system. If 
however the interaction of sound is to be described with a system containing discontinuities in 
more than one dimension, e.g. a cube swamped in water, then the plane wave theory becomes 
unsuitable because it does not reflect the symmetry of the system under consideration. In such 
systems a description by means of ‘modes’ becomes very suitable. Furthermore, whenever an 
incident bounded beam is considered, most scientists decompose this bounded beam into plane 
waves. However from a mathematical point of view that is only correct if normal incidence is 
taken under consideration. The reason is that if a decomposition into plane waves is considered, 
the Fourier method is applied. This method consists of an integration of the beam profile along 
the z’-axis (see Fig. IX.A_1) and thus implicitly imposes that there are no discontinuities along 
that direction. If the profile is considered far away from the interface, the mentioned problem is 
avoided by the fact that the profile becomes almost zero at large distances away from the beam 
center, but if the profile is considered closer to the interface it is clear that the Fourier method 
should actually not be applied. Moreover whenever the Fourier method is applied it is always 
assumed that the reflected sound depends on the incident sound and not vice versa. In other 
words the incident sound is not disturbed by the reflected sound. This again follows from the 
incorrectly assumed fact that the incident sound pattern would solely depend on its amplitude 
distribution along an infinite line (z’ in Fig. IX.A_1) and cannot depend on the fact that there is 
an interface present along the integration path in the Fourier analysis. The RMT, first created and 
applied in electromagnetism [1-2] and later developed in acoustics [3-13], provides a physical 
and mathematical solution to such problems. In the RMT no integration path is needed in the 
Cartesian axes system (X,Y,Z) but only in the phase space (ky ). Furthermore discontinuity 
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conditions in two dimension are dealt with by dividing the system into substructures that only 
contain discontinuities in one direction. 
In what follows we will describe the basics of RMT, followed by some of the main results that 
have been obtained in the first decade of its existence. 
 

 
Fig. IX.A_1: A bounded beam incident on the interface at an angle incθ  

 
 THE BASICS OF RADIATION MODE THEORY IN WORDS 
 

There are three ways to describe the basics of radiation mode theory. The first is a 
description in words and may give the wrong impression that it is in fact a simple theory. The 
other two methods consist of giving the mathematics behind the theory with or without poetic 
explanations. The latter two methods can be found in the few papers [3-13] that already exist on 
RMT and are automatically lengthy and cumbersome. For that reason we will deal with the first 
method and explain the basics in words, therefore running the risk of giving the misplaced 
impression that it is a simple theory. 

A mode is the combination of all possible reflected and transmitted waves for a given 
incident plane wave on a system containing only discontinuities in one dimension, e.g. a plate 
swamped in water. Hence for each possible incident plane wave, coming from each possible 
direction above or below the system, there is a mode. For example in a system consisting of a 
liquid half space and a solid half space, the radiation mode having a component of sound incident 
from the liquid, consists of that incident plane sound wave, together with one reflected plane 
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wave and two transmitted plane waves. Such modes that are in fact consisting of radiated energy, 
are called ‘radiation modes’. In the RMT there are however also non-radiating modes available, 
called eigenmodes. These modes contain all possible transmitted and reflected waves given the 
fact that there is no radiation of sound. For example on a solid/fluid interface, such eigenmodes 
are the Scholte-Stoneley modes. Lambmodes are no eigenmodes in that sense because in a system 
where there are also radiation modes present (i.e. there is a coupling medium), Lamb modes 
become leaky and hence radiate sound. Furthermore a Lamb wave can be written as a linear 
combination of radiation modes. The relative amplitude attributed to each component of a given 
mode is relatively simply calculated from continuity conditions along the one dimensional 
discontinuity system. For example if a radiation mode is considered in a solid/liquid system with 
incident sound coming from the liquid side, then the relative amplitudes of each component of 
the mode are calculated by considering the condition of normal stress and normal displacement 
and by building a continuity matrix from which each amplitude attributed to each component is 
calculated.  

Since actually one should deal with the system in which discontinuities are present in two 
dimensions instead of one, as in Fig. IX.A_2, one generates all possible modes for each 
subsystem which has only discontinuities in one dimension. For example if a step is present on a 
solid plate swamped in water, then this system containing discontinuities in two directions is 
divided into two systems which have only discontinuities in one direction, i.e. two infinite plates 
are considered.  
 

Fig. IX.A_2: Schematic of a step on a plate. This system having discontinuities in two dimensions is divided into 
two substructures, each having only discontinuities in one dimension. 

 
The complete sound field in each substructure is fully described by means of a linear 

combination of al possible radiation modes and all possible eigenmodes.  
This is done as follows: The particle displacement u(r) is written as 
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whereas the stress tensor components are written as 
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+∞ ⎛ ⎞ ⎛ ⎞= +∑ ∑∫ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

r r r  
(IX.A_2)

The index j is attributed to eigenmodes, whereas the index m is attributed to radiation modes. The 
position vector is denoted by r. The linear combination in (IX.A_1) and (IX.A_2) is called mode 
expansion. The set { },j mC C  is the set of expansion coefficients. They are the actual unknown 
parameters for describing the complete acoustic system. If necessary, the expansion coefficients 
can also be made position dependent, whence rough surfaces can be considered as well. 
Furthermore the expansion coefficients in each structure are related to each other by expressing 
continuity conditions on the interface that separates the two substructures, e.g. the z-axis in Fig. 
IX.A_2. This latter continuity condition hence relates the sound fields in the substructures to one 
another and therefore reduces the number of independent expansion coefficients. Finally the 
remaining independent expansion coefficients are related to boundary conditions. Such boundary 
conditions are for example: a Gaussian bounded beam incident on a given spot under a given 
angle. For a more detailed explanation of the basics of RMT, we kindly refer to refs [1-13] 
 
 APPLICATIONS 
 
 half spaces 
 

Even though the RMT was well established in electromagnetism [1-2], it took until 1990 
before the same concept was first used in acoustics. The pioneering work can be found in a paper 
by Leroy and Shkerdin [3] for a so called solid wedge, which is simply two solids attached to one 
another, both being bounded by vacuum on one side. This pioneering work describes the 
interaction of a bulk wave and also of a Rayleigh wave with the transition between both solids. 
The aim of that paper was actually to show that a translation of the RMT from electromagnetism 
to acoustics was possible and worked pretty well. Later on the search for a challenge for the RMT 
began. The first challenge came from a dispute between two scientific groups. Like so often in 
science, insight and progress follows disputes between people who are courageous enough to 
defend their opinion. Around 1993, there were two quite different views on the subject of 
generating a Scholte – Stoneley wave by means of a liquid wedge technique. A Scholte – 
Stoneley waves is known to travel along a liquid – solid interface without radiating energy into 
one of the two media. This is due to the fact that such surface waves have a velocity which is  
less than any of the bulk sound velocities in the surrounding media. However this low velocity is 
also the reason why such waves cannot be generated on a liquid-solid interface by means of an 
incident sound beam. One way of surmounting this handicap is the application of a liquid wedge. 
The principle is depicted in Fig. IX.A_3 and is based on complicated scattering effects in the 
region where the three involved media are in contact with each other.  

The first opinion on the mechanism of Scholte – Stoneley wave generation by means of a 
liquid wedge is described in refs 1 and 2 in [4] and states that according to a formula which is 
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similar to the classical Snell’s law, Sholte – Stoneley waves would mainly be generated at one 
particular angle that resulted from that formula. Experiments on an alcohol-water wedge 
(incidence from alcohol side) confirmed indeed that Scholte - Stoneley waves were generated at 
that angle. It was not believed that Scholte – Stoneley waves could also be generated by means of 
a water-alcohol wedge because this would contradict the posed formula. However there was also 
the opinion of J. Chamuel (private communication with Briers and Leroy) that, based on 
extended experiments, Scholte – Stoneley waves would actually be generated at every angle of 
incidence (from the alcohol side) and not just the one corresponding to the experiments in cited 
refs.  
 

Fig. IX.A_3: Geometrical configuration of a liquid wedge 
 

This dispute challenged the further development of the RMT in order to clarify the 
problem. Briers et al [4] found numerical results that were quite astonishing. 
They found that indeed all angles of incidence produce Scholte – Stoneley waves but the largest 
amplitude corresponded to an angle of approximately 870. Furthermore they found that Scholte – 
Stoneley waves could also be excited by incidence from the water side (instead of the alcohol 
side), which was surprising and proved that the formula which looked like Snell’s law is not in all 
situations applicable. This study of the liquid wedge was later followed by a more thorough study 
[5] indicating that also incidence at the Rayleigh angle produced larger stimulation of Scholte – 
Stoneley waves if compared to other angles, though not as large as the one in the vicinity of 870 
as described in the earlier paper [4]. Furthermore in practical situations one is often faced with 
incident Gaussian beams instead of incident plane waves or plane waves diffracted by a narrow 
slit (as was the case in [4]). Therefore in [5] the RMT decomposition of a Gaussian beam is 
presented. As far as we know there is no such analogy described yet in electromagnetism. 
 
 plates 
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Until 1996, only half spaces had been described in RMT. An extension to a plate was the 

next challenge and was performed in [6]. This model shows how a Scholte – Stoneley wave is 
scattered at the extremity of a fluid loaded plate, see Fig. IX.A_4. 
 

 
Fig. IX.A_4: Experimental configuration for the scattering and mode conversion of a Scholte – Stoneley wave at 

the edge of a fluid loaded thick plate. 
 

Because of the complexity, a zero order approximation was performed, followed by a first 
order approximation. The difference between the two approximations is the leaky Rayleigh wave 
traveling from top to bottom along the extremity edge of the plate, i.e. included in the first order 
approximation and excluded in the zero order approximation. The results for the transmitted bulk 
wave in a zero order approximation for a 5MHz Scholte- Stoneley wave at the end of a water 
loaded aluminum plate of 1cm thickness is shown in Fig. IX.A_5.  
This shows that the largest amplitude is transmitted in line with the plate. There was good 
agreement with experiments of Tinel (ref 13 in [6]), except in the vicinity of the Rayleigh angle, 
where Tinel measured an amplitude dip. The latter shortcoming was swept away by using a first 
order approximation. The latter generated results in perfect agreement with experiments of Tinel, 
see Fig. IX.A_6.  

This proves that the dip in the graphs of Tinel were due to a leaky Rayleigh wave 
traveling from top to bottom along the extremity edge of the plate. In [6], it is also shown that the 
incident Scholte – Stoneley wave generates a leaky Rayleigh wave on the upper interface of the 
plate and also on the lower interface of the plate. This is visible in ref [6] as maxima in the 
radiated fields at the angles corresponding to the leakage of energy of those leaky Rayleigh 
waves. An important consequence is of course that due to the reversibility of mode conversion 
phenomena, a Scholte – Stoneley wave can also be generated by means of sound incident at the 
Rayleigh angle on the edge of the plate. Hence Scholte – Stoneley waves can be generated by 
means of sound incident on the edge of a plate. 
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Because the liquid wedge technique had proved to be excellent for generating Scholte – 
Stoneley waves, as described above, the question remained as to how the generation of Lamb 
waves could be described. It was widely known that Lamb waves could also be stimulated by 
means of a liquid wedge technique. 
 

Fig. IX.A_5: Transmitted amplitude as a function of the transmission direction θ for a 5MHz Scholte – Stoneley 
wave on a water loaded 1 cm thick aluminum plate (zero order) 

 
The technique existed in generating leaky Lamb waves on a plate in a liquid whence those 

leaky Lamb waves could propagate in the plate to the liquid free half space (vacuum or air) and 
be turned into pure (non leaky) Lamb waves. No one had ever described this well established 
phenomenon numerically. Besides generating Lamb waves, the technique can also be used to 
stimulate Rayleigh waves. Both phenomena have been extensively described and simulated by 
Briers et al [8]. 
 
 layered systems 
 

Now that the problem of a plate had been tackled extensively, a study of a bilayered 
system was the next road ahead. The impetus for this study came from the gained knowledge that 
Scholte – Stoneley waves could be generated by means of scattering effects in a liquid wedge. 
The question to be answered was if one would be able to generate Scholte – Stoneley waves at 
the down step of a thin layer on a substrate, see Fig. IX.A_7. 
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Fig. IX.A_6: Same as Fig. IX.A_5, though shortened angle interval. Dashed line is the first order approximation 
and solid line is zero order approximation. 

 
 

 
Fig. IX.A_7: Geometrical configuration of Scholte – Stoneley wave generation at downstep. 
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If the answer was positive [7,9], a new technique would be born which would be much 

more practical than the use of a liquid wedge. It was found indeed that Scholte – Stoneley waves 
could be generated at an angle of incidence of approximately 870 and also at the Rayleigh angle. 
The numerical results are shown in Fig. IX.A_8. IT was also shown that the amplitude at the 
Rayleigh angle is actually independent of the coating material and is only dependent of the 
substrate characteristics. Recently the RMT has also been further extended to multilayered 
systems [12]. 
 

 
Fig. IX.A_8: Relative amplitude of the transmitted Scholte – Stoneley wave generated by a 4 MHz Gaussian beam 
(beam width 5mm) at 15 cm radial distance from the downstep, incident from water as a function of the angle of 

incidence. The substrate is steel and the thin layer consists of (1) copper, (2) Pyrex glass, (3) steel. 
 
 
 inclusions 
 

Mainly caused by the importance of NDT and more precisely the technique of finding 
defects in materials and a lack of models that were able to describe the interaction of sound with 
inclusions, a study started that dealt with the interaction of sound with inclusions at the surface 
[9-10]. It is intuitively reasonable that the Schoch effect, which is caused by leaky Rayleigh 
waves, must be sensitive to inclusions on or near the surface, because the accompanied Rayleigh 
waves must ‘feel’ the presence of such inclusions since their amplitude is located mostly near the 
surface. Definitely the RMT showed that a measurement of phase differences between the 
specular and the nonspecular reflected lobe when the Schoch effect happens, is an indication of 
the dimensions and position of inclusions. In Fig. IX.A_9, the characteristics of a reflected 
gaussian beam are shown for incidence at the Rayleigh angle on a stainless steel half space, on a 
half space covered with a thin coating and on a half space with a thin inclusion at the surface. The 
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configuration is as such that the center of the incident beam coincides with the beginning of the 
inclusion. The thickness of the inclusion and the coating is the same. It is seen that the reflected 
beam profile shows some important aspects that are related to the characteristics of such a thin 
coating/inclusion. It is also seen that the results for the coating fall in between the results for the 
inclusion.  
Later a study was performed on inclusions near the surface [13], similar results were also found 
for that case. 
 
 
 viscoelastic media 
 

In all previous studies, damping was neglected in all considered materials. Therefore 
Vandeputte et al extended the RMT to the case of viscoelastic media [11]. It was shown that 
absorption weakens the nonspecular lobe and amplifies the specular lobe in the case of the 
Schoch effect at Lamb angles of incidence. They also showed that beam focusing has effects on 
the presence or absence of a null zone when the Schoch effect occurs. This is because the Lamb 
wave profiles are disturbed by the focusing effect. 
 
 
 PROSPECTS AND CONCLUSIONS 

 
The development of the RMT has been completed for 2D isotropic systems. The theory 
has up until now showed its value in the understanding and simulation of the generation 
of Scholte – Stoneley waves, Rayleigh waves and Lamb waves by means of a liquid 
wedge. It also showed how a Scholte – Stoneley wave interacts with the extremity of a 
plate. The RMT also paved the way for the use of a downstep an a substrate to generate 
Scholte – Stoneley waves. Lately extensions have occurred for multilayered media and 
for visco-elastic media. Further development is expected to happen for 3D systems and 
for anisotropic media as well. The RMT is far from easy to apply, but it works and it is 
very powerful to deal with problems which cannot be dealt with in the framework of 
other theories. 
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Fig. IX.A_9: Amplitude distribution (top), bottom: phase distribution (bottom) of a reflected 4MHz Gaussian 
beam, of 12mm half width, onto a stainless steel half space (solid line), onto a 5µm layer on a stainless steel 

substrate (dashed line), onto an inclusion of 5µm thickness (length 15mm) in stainless steel (circles line). The 
Gaussian beam is incident at the Rayleigh angle. The arrow defines the phase difference. 
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IX.B Study of the scattering of leaky 
Rayleigh waves at the extremity of a 
fluid loaded thick plate 

 
 A study by means of the Schlieren technique for visualization of ultrasonic beams, has 

revealed that when leaky Rayleigh waves, propagating along the horizontal edge of a 
thick, fluid loaded solid plate, are scattered at the extremity of the plate, they travel 
around the corner and start leaking into the liquid along the Rayleigh angle measured 
from the normal to the vertical edge of the plate. Furthermore the study reveals that 
leaky Rayleigh waves are stimulated by the border of an incident ultrasonic bounded 
beam, more than by the interior of the beam. Comparison with an earlier work shows 
that the characteristics of the scattering of leaky Rayleigh waves at the edge of the plate 
is very different from that of Scholte - Stoneley waves. 
This work was performed at the National Center for Physical Acoustics, in collaboration 
with A. Teklu, M. A. Breazeale, and is published as: Nico F. Declercq, A. Teklu, M. A. 
Breazeale, Rudy Briers, Oswald Leroy, Joris Degrieck, Gennady N. Shkerdin, "Study of 
the scattering of leaky Rayleigh waves at the extremity of a fluid loaded thick plate", J. 
Appl. Phys 96(10),5836-5840, 2004 (Imp. Fact. 2.281; SCI-index, Physics-Applied, rank:13/76) 

 
 INTRODUCTION 
 

Rayleigh waves are acoustic eigenmodes of a solid-vacuum interface. They are surface 
waves involving elliptic polarization of material particles near the interface. Rayleigh waves have 
a counterpart on solid-liquid interfaces, quite similar, except that they leak energy into the liquid 
and are therefore called leaky Rayleigh waves. Leaky Rayleigh waves leak energy at an angle 
(measured from the normal to the interface) that is called the Rayleigh angle Raylθ . Accordingly, 
they can be generated by means of sound incident at the Rayleigh angle through mode conversion 
of bulk waves into surface waves. In the literature, a number of papers can be found that deal 
with the interaction of Rayleigh waves with a corner, i.e. the extremity of a thick plate [1-10]. 
Other papers deal with the interaction of Rayleigh waves with inhomogeneities and 
discontinuities [11-14]. However, all cited papers study non-leaky Rayleigh waves, i.e. Rayleigh 
waves on a solid-air or solid-vacuum interface. The question arises how ‘leaky’ Rayleigh waves, 
interact with the extremity of a thick plate. Will they be transmitted and travel around the corner, 
or will they only be reflected and be accompanied by a radiation field in all directions? Earlier, 
some papers have been published [15-17] concerning surface waves on a solid-liquid interface 
and their interaction with the extremity of a thick plate. Nevertheless these papers only consider 
incident Scholte – Stoneley waves and no incident (leaky) Rayleigh waves. Scholte – Stoneley 
waves are eigenmodes on a solid-liquid interface and their velocity is smaller than any of the 
sound velocities in both surrounding media. Therefore, according to Snell’s law, they cannot leak 
energy and are different from Leaky Rayleigh waves. However, it is interesting to discus the 
results of Refs 15-17 for comparison with the results for leaky Rayleigh waves as given further 
below. For this reason we first focus on Fig. IX.B_1, where the different angles are defined. The 
angles are measured from the horizontal to the surface in the half space beyond the edge of the 
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plate (see right side of Fig. IX.B_1), with the clockwise sense involving negative angles and the 
anti-clockwise sense involving positive angles. The angle of incidence is incθ , the angle of 
reflection is rθ , whereas the angle of sound coming from the emitter and left undisturbed by the 
solid, is tθ . Whenever an additional sound field is visible, it is given by an angle sθ .  
 

 
Fig. IX.B_1: Definition of the different angles incθ , rθ , sθ , tθ . The angles are measured from the horizontal 

axis left from the plate. Positive angles are anti clockwise, negative angles are clockwise. 
 

The studies reported in refs [15-17] show that Scholte – Stoneley waves ( incθ =1800 ) are 
primarily scattered in the forward direction ( 00r s tθ θ θ= = = ). However sound is also scattered 
in all other directions, but this scattered sound is accompanied by a much smaller amplitude than 
that in the forward direction. A relatively strong mode conversion also occurs into reflected leaky 
Rayleigh waves. These surface waves radiate (leak) energy into the direction 90 Raylθ θ= +  with 

Raylθ  the Rayleigh angle. In addition, the scattered sound shows a minimum in the Raylθ−  
direction, which means that leaky Rayleigh waves are hardly stimulated along the vertical edge of 
the plate ( ). Still, Scholte – Stoneley waves exist both in transmission (along the vertical 
edge, i.e. ) and in reflection (along the horizontal edge, i.e. ). This knowledge, 
together with the lack of literature concerning the event of scattering of leaky Rayleigh waves at 
the edge of a thick plate formed the reason for studying this phenomenon. 

090θ = −
090θ = − 0180θ =
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 EXPERIMENTAL PROCEDURE 
 

We have used thick solid plates (3cm high, 5cm width, 10cm long) in order to avoid 
Lamb wave stimulation. Lamb waves are plate waves that are easily stimulated in thin plates. At 
the frequencies we have used in the experiments, 3-6 MHz, a thickness of 3cm in this regard can 
be considered as ‘infinity’. Furthermore, the thick plates were polished, because we wanted to 
avoid secondary effects, such as additional scattering or diffraction phenomena, caused by the 
surface roughness. 

Incident and diffracted sound are experimentally visualized by means of the 
monochromatic Schlieren technique. This technique is described in ref [18]. Ultrasound is 
generated by apodized quartz transducers of the same type as in ref 18, that produce gaussian 
sound beams. 
A leaky Rayleigh wave is generated on the solid-water interface by means of a bounded beam 
incident at the Rayleigh angle Raylθ . This angle is determined through observation of the Schoch 
effect [19-21] , i.e. the appearance of two reflected amplitude lobes with a null strip in between, 
for an incidence spot relatively far from the edge of the plate. Then, the plate is moved without 
altering the incident bounded beam, until the beam reaches the edge of the plate. This 
configuration is shown schematically in Fig. IX.B_2, where W is the physical horizontal width of 
the beam and where  is the distance from the left border of the beam to the extremity of the 
solid plate. Whenever , a fraction of the incident sound beam will propagate without 
severe disturbance coming from the solid edge, this is direct and undisturbed transmitted sound. 
Whenever  there is no direct and undisturbed transmitted sound. 

∆
W∆ <

W∆ ≥
 

 
Fig. IX.B_2: Definition of : the distance between first beam edge and plate edge, W: the horizontal physical 

width of the beam. 
∆
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 RESULTS AND DISCUSSION 
 
 results for an aluminum sample 
 

First, we consider an incident 2.5 cm wide bounded beam of 3MHz, incident on a brass 
plate. The dimensions of the plate are given above. According to ref [22], the Rayleigh wave 
velocity for aluminum is 2906 m/s. This corresponds to a Rayleigh angle Raylθ of 310 for the 
velocity of sound in water being 1480m/s. It was observed that if W∆ ≈  for , 
that in addition to a reflected beam in the direction 

090inc Raylθ θ= +
090r Raylθ θ= − , a ‘scattered’ sound beam was 

generated along the direction s Raylθ θ= − . This scattered sound beam was not there for other 
angles of incidence. The phenomenon for an aluminum plate can be seen in Fig. IX.B_3, where 

. As soon as , there is also a direct, undisturbed transmitted beam visible as can 
be seen in Fig. IX.B_4 ( ). Now, since 

031Raylθ = W∆ <
0.78W∆ ≈ s Raylθ θ= −  for the ‘scattered’ sound beam, and 

since this beam disappears as soon as the incidence angle differs from , it is 
likely that the beam is actually energy leakage coming from a leaky Rayleigh wave propagating 
along the vertical edge of the thick plate, i.e. along , and stimulated by interaction of the 
leaky Rayleigh wave on the horizontal side of the plate with the edge of the plate. We believe that 
this interpretation is more reasonable than the interpretation that the sound beam would be 
radiated by the incident leaky Rayleigh wave when reaching the extremity of the plate. Hence the 
incident leaky Rayleigh wave reaches the extremity of the plate and partly propagates around the 
corner onto the vertical edge of the plate. While doing so, it keeps leaking its energy and that is 
what is visible as a ‘bounded beam’ in the direction 

090inc Raylθ = +θ

090θ = −

s Raylθ θ= − .  
 

As a matter of fact the effect of ‘surface wave propagation around the corner’ is reasonable 
because leaky Rayleigh waves are elliptically polarized. This elliptical particle motion at the 
corner stimulates elliptical motions on the vertical edge. That is also the reason why Scholte – 
Stoneley waves can travel around the corner [15-17]. However it is noticed that the 
characteristics of the scattering of leaky Rayleigh waves is much different from the scattering of 
Scholte – Stoneley waves at the corner.  

Whereas Scholte – Stoneley waves scatter mostly in the forward direction ( 0θ = ), leaky 
Rayleigh waves scatter mostly in the direction , resulting in a leakage field in the 090θ = −

s Raylθ θ= −  direction. 
 
Remark that this phenomenon is invisible whenever W∆ > . This is probably due to the 

leaky feature of the generated surface waves. When they have leaked too much energy into the 
liquid, their amplitude when propagating around the corner is too small to generate a leaky field 
in the direction s Raylθ θ= −  that is visible by the Schlieren imaging technique. 
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Fig. IX.B_3: Incidence of 3 MHz, 2.5 cm wide bounded beam on aluminum. 2.9W cm≈ ,  (Schlieren 
picture). The dashed lines show where the plate is situated in the experiment. The arrows show the sound 

propagation direction. 

W∆ ≈

 

 
 

Fig. IX.B_4: Incidence of 3 MHz, 2.5 cm wide bounded beam on aluminum. , 
(Schlieren picture). The dashed lines show where the plate is situated in the experiment. The arrows 

show the sound propagation direction. 

2.9W c≈ m
0.78W∆ ≈
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 The beam edges are responsible for leaky Rayleigh wave generation 
 

Besides, because the generated bounded beam at the angle s Raylθ θ= −  is directly 
proportional to the amplitude of the leaky Rayleigh wave propagating along the vertical edge and 
therefore also directly proportional to the amplitude of the leaky Rayleigh wave propagating 
along the horizontal edge in the region of incidence, it is possible to reveal what part of the 
incident beam is mostly responsible for the stimulation of leaky Rayleigh waves. If it is the center 
of the beam, then the amplitude of the sound beam at s Raylθ θ= −  must increase whenever ∆  
increases from very small to . In Fig. IX.B_5, / 2W ∆  is very small ( 0.2W∆ ≈ )and becomes 
larger in Fig. IX.B_6 ( ). Nevertheless no important amplitude change, except for a 
small amplitude drop, is visible in the bounded beam along the direction 

0.6W∆ ≈
s Raylθ θ= − .  

 
 

 
 

Fig. IX.B_5: Incidence of 6 MHz, 0.6 cm wide bounded beam on aluminum. 0.7W cm≈ , (Schlieren 
picture). The dashed lines show where the plate is situated in the experiment. The arrows show the sound 

propagation direction. 

0.2W∆ ≈

 
This means that the center of the beam does not add any noticeable energy to the Rayleigh 

wave. In other words the leaky Rayleigh wave is stimulated by the borders of the bounded beam. 
In fact this is not really surprising in the framework of inhomogeneous wave theory, where it is 
known [23-26] that leaky Rayleigh waves are stimulated not by homogeneous plane waves but by 
inhomogeneous plane waves. As a matter of fact, a bounded beam is a physical entity which 
behavior can be simulated in different frameworks of bounded beam models. The most famous 
model is the Fourier model, where a bounded beam is formed by means of a superposition of 
plane waves [25-26]. A less famous model is the superposition of inhomogeneous waves [25]. 
Nevertheless, those descriptions are global descriptions, where only a global resulting effect can 
be simulated, such as the Schoch effect.  
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Those models cannot describe what happens locally to sound when it is incident on an 
interface between two different media. Locally, it is clear that the border, contrary to the center, 
of a bounded beam is more similar to an inhomogeneous wave than to a homogeneous plane 
wave. As can be seen in Fig. IX.B_7, the border of a gaussian beam has a profile quite similar to 
that of an inhomogeneous wave, i.e. exponential amplitude growth/decay along the wave front, 
whereas the center of the beam has properties similar to homogeneous plane waves. Because 
inhomogeneous waves are better suited to stimulate Rayleigh waves, it is understandable that the 
edge of a bounded beam is more important than the center, for that cause. 
 

 

 
 

Fig. IX.B_6: Incidence of 6 MHz, 0.6 cm wide bounded beam on aluminum. 0.7W cm≈ , (Schlieren 
picture). The dashed lines show where the plate is situated in the experiment. The arrows show the sound 

propagation direction. 

0.6W∆ ≈

 
From the theory of inhomogeneous waves, it is also known that some inhomogeneities are 

better capable of stimulating Rayleigh waves than others. Everything depends on the kind of 
interface and on the frequency. It is therefore likely that the beam profile and also the beam width 
are important parameters. For example if a bounded beam would be used that is not gaussian, but 
that has an exponentially varying amplitude profile with bounded edges, then the center is not 
homogeneous-like but inhomogeneous and the whole beam will be responsible for the 
stimulation of Rayleigh waves. This is the effect of bounded inhomogeneous waves and has been 
described in refs [25,27]. 
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Fig. IX.B_7: The edges of a Gaussian beam have a profile that is relatively similar to that of an inhomogeneous 

wave. This is probably the reason why the edges of a Gaussian beam stimulate leaky Rayleigh waves. The x-axis is 
directed along the wave front. The value β  is called the inhomogeneity of the accompanied inhomogeneous 

wave. 
 
 results for a brass sample 
 

Until now, we have only discussed results for an aluminum sample. In order to make sure 
that our conclusions do not just hold for aluminum, but also for a different solid, we have 
repeated the experiments for a brass plate. According to ref [22], the Rayleigh wave velocity for 
brass is 1964 m/s. This corresponds to a Rayleigh angle Raylθ of 490 for the velocity of sound in 
water being 1480m/s. One configuration is shown in Fig. IX.B_8, for a 0.6 cm wide bounded 
beam of 6 MHz, incident on a spot defined by 0.8W∆ ≈ ,where it can be verified that the physical 
phenomenon remains unchanged except that here . In fact, contrary to the 
phenomenon on aluminum, here 

049Raylθ =
s tθ θ> . 

 
 
 the disappearance of the Schoch phenomenon 
 

It is also worthy to note that the Schoch displacement, as it appears whenever sound is 
incident at the Rayleigh angle on a spot relatively far from the edge of the plate, is disturbed 
when the incidence spot is near the corner and even seems to disappear whenever . This is W∆ ≤
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of course because the Schoch phenomenon is due to the interaction between the reflected 
bounded beam and the sound field coming from generated leaky Rayleigh waves. Whenever the 
extremity of the plate is reached, the leaky Rayleigh waves are scattered by the edge and are 
partly propagating along the vertical edge. Now, the interesting part of this phenomenon is that 
the leaky Rayleigh waves leak energy around the corner that does not interfere anymore with the 
directly reflected sound beam. Hence the ‘bounded’ beam that is generated along the direction 

s Raylθ θ= −  is a pure leakage field. Nevertheless it is not a pure inhomogeneous wave, because it 
results from a Gaussian incident beam and not from an exact distinct inhomogeneous wave. 

 
The disappearance of the Schoch phenomenon when W∆ >  is best seen when Fig. 

IX.B_8 is compared with Fig. IX.B_9. In both figures, the angle of incidence is the same, and so 
are the frequency and beam width, however the Schoch phenomenon is only visible in Fig. 
IX.B_9, where the incidence spot is relatively far from the corner, and not in Fig. IX.B_8. 
 
 
 

 
 

Fig. IX.B_8: Incidence of 6 MHz, 0.6 cm wide bounded beam on brass. 0.9W cm≈ , (Schlieren 
picture). The dashed lines show where the plate is situated in the experiment. The arrows show the sound 

propagation direction. The dashed lines show where the plate is situated in the experiment. The arrows show the 
sound propagation direction. 

0.8W∆ ≈
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Fig. IX.B_9: Incidence of 6 MHz, 0.6 cm wide bounded beam on brass. 0.9W cm≈ , far from the edge, the 
Schoch phenomenon is visible. (Schlieren picture). The dashed lines show where the plate is situated in the 

experiment. The arrows show the sound propagation direction. The dashed lines show where the plate is situated 
in the experiment. The arrows show the sound propagation direction. 

 
 CONCLUSIONS 

 
It is shown that leaky Rayleigh waves partly propagate around the corner of a thick solid 
plate. It is also shown that leaky Rayleigh waves are physically generated by the borders 
of the incident beam and not so much by the center. As far as we know, there are no 
other experiments described in the literature that have revealed this feature. This shows 
that only the beam borders are responsible for the physical generation of leaky Rayleigh 
waves, whereas mathematical models that describe bounded beams by means of a 
superposition of homogeneous or inhomogeneous infinite plane waves, ascribe 
responsibility for leaky surface wave generation to the complete area occupied by the 
bounded beam. Consistent experimental results are given for aluminum and brass. 
Comparison with cited earlier reports shows that whenever, along the vertical edge, at the 
extremity of a plate, leaky Rayleigh waves need to be generated, that it is better to use 
incident leaky Rayleigh waves than Scholte – Stoneley waves. This might be very 
important for nondestructive testing of materials. 
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IX.C Bounded beam interaction with plate-
edge at Lamb angle 

 
 There are many papers dealing with the scattering of Lamb waves at the edges of free 

and immersed plates. Nevertheless, since such Lamb waves are often generated by means 
of bounded beams, here, a study is revealed, based on Schlieren photography, of the 
interaction of a bounded beam, incident near the edge of a plate at the Lamb angle. The 
study shows that retro reflection occurs of the generated Lamb waves and that more 
complicated mode conversion takes place whenever the border of the beam reaches the 
edge of the plate. The difference is shown between scattering of the A1 and the S1 Lamb 
mode. Furthermore, it is shown that Lamb waves excite a radiating acoustic multipole 
when encountering the edge of the plate. 
The contents of this section have been accepted for publication in Acta Acustica United 
with Acustica (Imp. Fact. 0.346; SCI-index, Acoustics, rank:21 /28) 

 
 INTRODUCTION 
 

Lamb waves are frequently applied in nondestructive testing of plates because they 
propagate over long distances. Whenever defects are encountered, mode conversion appears and 
this can be detected [1]. When Lamb waves reach the edge of a plate, complicated interactions 
occur, resulting in retro reflected Lamb modes and stimulations of additional Lamb modes [2-9]. 
Lamb waves also have a leaky counterpart when the plate is submerged in a liquid. Several 
studies have also been published on the interaction of a leaky Lamb wave with the edge of a plate 
[7-9]. Nevertheless, when a plate is submerged in a liquid, a commonly used technique for Lamb 
wave excitation is the application of a bounded beam incident at a Lamb wave generating angle, 
resulting in the Schoch effect, see Fig. IX.C_1.  
 

 
Fig. IX.C_1: Schematic of the experimental setup. The parameter ∆ is the distance between the border of the 

incident beam and the edge of the plate. 
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This angle depends on the frequency and on the plate thickness, as well as on the liquid 
and solid properties, and therefore must correspond to a dispersion curve. An example of 
dispersion curves for an aluminum plate is given in Fig. IX.C_2. This use of a bounded beam is 
also applied in a complex form (pulsed and focused) to discover a relatively large area of the 
dispersion curves for a given plate [10]. Nevertheless as far as we know, the interaction of the 
combination of an incident bounded beam and a generated leaky Lamb wave with the edge of a 
plate, has not been studied before. The most important reason is probably because modeling this 
complicated combination is difficult to do. However, a semi-quantitative experimental study is 
possible by means of the Schlieren technique [11]. This technique enables one to visualize sound 
fields and results in beautiful and scientifically interesting pictures that will be shown and 
discussed further on. 
 

Fig. IX.C_2: Dispersion curves for Lamb waves in an aluminum plate. The horizontal line denotes the 
experimental situation for 3MHz sound incident on a 1.45 mm thick plate. 

 
In what follows, the interaction of a bounded beam with the edge of a plate is described 

for a Lamb wave angle of incidence. First of all, the experimental procedure will be outlined, 
then the situation of excitation of an A1 mode in aluminum will be considered, followed by the 
excitation of an S1 mode in glass.  
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It will be shown that one of the main differences between the two situations is the forward 
transmitted sound field. Subsequently, an explanation of the difference will be revealed in terms 
of acoustic multipole generation at the plate-edge. 
 
 EXPERIMENTAL SETUP AND PROCEDURE 
 

A Schlieren experimental setup [11] is used. Schlieren images are obtained by means of a 
wide coherent and collimated light beam that passes through the water tank in which the 
ultrasonic experiments are performed. This light is bended and/or diffracted due to 
inhomogeneities in the liquid or by the presence of sound. The passed light is focused onto a 
black ink spot. Therefore, collimated light is trapped on the spot whereas light, that deviates from 
the collimated light beam, passes beyond the ink spot and ultimately reaches a projection screen. 
Hence, only disturbed light is visible on the projection screen and this is the reason why sound 
can be visualized.  

The generation of a Lamb wave by means of a bounded beam can be visualized by this 
technique, because it involves the Schoch effect, resulting in a reflected specular lobe and a 
reflected nonspecular lobe (shifted to the right) with a null strip in between (see Fig. IX.C_1). 
This null strip is caused by the out of phase characteristic of the two lobes. 

A considered plate is clamped on one side, leaving a free edge on the other side. The 
whole thing is immersed in water. Then, a 3MHz harmonic bounded Gaussian ultrasonic beam of 
1 cm physical width is incident in a plane perpendicular to the coherent light and its interaction 
with the plate can be visualized and studied on the projection screen. The angle of incidence can 
be altered by means of a sophisticated mechanism that maintains the distance between the 
transducer (sound emitter) and the spot of incidence, while changing the angle of incidence. As 
usual, the angles defined in what follows are measured from the normal to the plate, clockwise, 
with the zero angle defined as the direction of the upwards pointing normal to the surface. A 
positive angle is attributed to sound that propagates from left to right (i.e. the incident beam and 
forward scattered sound), whereas a negative angle is attributed to sound propagating from right 
to left (i.e. backwards scattered sound, exists only in the occurrence of interaction with the edge 
of the plate). 

In Fig. IX.C_1, a schematic is shown of the acoustical part of the experimental setup. The 
parameter ∆ is the distance between the border of the incident beam and the edge of the plate. 
 
 INTERFERENCE PATTERN OF TWO PLANE WAVES 
 

Suppose that a sound field in water is built up by two plane waves, then the sound 
potential is given by 
 

exp , ,1,2
A i k x k zx zϕ µ µ µµ

⎛ ⎞= +∑ ⎜ ⎟
⎝ ⎠=

 
(IX.C_1)

 
The intensity is given by 
 

( ) ( ) ( )2 22 2 cos cos1 2 1 2 2 1 2, 1, 2, 1,A A A A F F k k x k kx x z zϕ ⎛ ⎞= + + − − + −⎜ ⎟
⎝ ⎠

z  
(IX.C_2)
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with 
 

F phase Aµ µ
⎛ ⎞= ⎜ ⎟
⎝ ⎠

 
(IX.C_3)

 
The Euclidean subspace that is characterized by an amplitude equal to the amplitude at the origin 
and that contains the origin itself, is then given by 
 

( ) ( )0 2, 1, 2, 1,k k x k k zx x z= − + − z  (IX.C_4)

 
In other words, this subspace (representing energy rays) is a straight line. Now, we consider the 
direction θ  of this straight line, measured from the z-axis, whence we may replace z by ( )cotx θ , 
and therefore 
 

sin sin1 2 1cot
cos cos2 1

θ θ
θ

θ θ

⎛ ⎞−− ⎜ ⎟= −
⎜ ⎟−⎝ ⎠

 
(IX.C_5)

 
with µθ  the phase propagation angle measured from the z-axis for the wave labeled by µ . In 
what follows, we consider plates normal to the z-axis, pointing upwards into the halfspace that 
contains the incident beam. The significance of formula (IX.C_5) will be outlined further on. 
Again, in formula (IX.C_5), we attribute a positive angle to propagation directions from left to 
right, and a negative angle to propagation directions from right to left. This is important, because 
it makes the interpretation of the angle θ  straightforward and in agreement with this sign 
convention. 
 
 ANTISYMMETRICAL LAMB WAVES 
 

Fig. IX.C_2 shows the different calculated dispersion curves for an aluminum plate 
immersed in water. The calculations are based on a longitudinal wave velocity of , a 
shear wave velocity of 3160  and a density of  for aluminum, whereas a 
longitudinal wave velocity of 1480  and a density of  for water. Each of the 
curves corresponds to a Lamb mode. The experiments are performed on a 1.45 mm thick 
aluminum plate using a 3 MHz bounded beam of 1 cm physical width. The horizontal line in Fig. 
IX.C_2 corresponds to the experimental configuration. It is seen that 5 Lamb modes can be 
stimulated depending on the angle of incidence, i.e. a A

6370 /m s
/m s 32770 /kg m

/m s 31000 /kg m

0 mode at 310, and S0 mode at 290, an A1 
mode at 190, an S1 mode at 14.50 and a S2 mode at 80. We have found the Schoch effect up to a 
certain extend for each of these modes. However the clearest effect was found at 190. Therefore, 
the reported experiments are performed using a fixed angle of 190. Another reason why we have 
used this angle is that it is seen in Fig. IX.C_2 that this angle generates A1 Lamb waves. This is 
an antisymmetrical Lamb mode. Further below, the case of a symmetrical Lamb mode (for a 
glass plate) will be considered as well in order to observe any possible differences.  
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We have followed the experimental procedure outlined before. The distance ∆, as in Fig. IX.C_1, 
can be set by maintaining the incident beam and by shifting the position of the plate without 
changing its angle relative to the incident beam.  

Lamb waves are partly retro-reflected when they reach the edge of the plate, which means 
that a standing wave pattern will be formed in the plate as a result of forward and backward 
propagating identical Lamb modes. Hence, whenever the Lamb mode reaches the edge, a 
standing wave pattern will be formed with an inter notch distance d given by 
 

2
3

vd
MHz

=  (IX.C_6)

 
with v the velocity of the Lamb waves. Fig. IX.C_2 shows that 4546 /v m s=  and therefore 

. Indeed if we take a look at the Schlieren picture given in Fig. IX.C_3, when the 
considered bounded beam is incident at 19

0.76d = mm
0 with the furthest part of the right reflected lobe 

reaching the edge of the plate without surpassing it, a fringed pattern of vertical lines of thickness 
0.76 mm appears superposed on the other sound patterns. This standing wave pattern can only 
radiate in vertical directions because it is steady and because Snell’s law predicts that sound, that 
does not propagate along the interface, will radiate perpendicularly to that interface. Also, from a 
mathematical point of view, the pattern is actually caused by plane waves propagating along the 
same Lamb wave angle, though in opposite sense (when measured from the normal to the plate), 
which corresponds to energy rays along the angle 00, in accordance with formula (IX.C_5). 
Furthermore because it consists of anti-phase vibrations of consequent half wavelength regions, 
there are null strips generated in between the narrow vertical sound strips. This is the reason why 
this sound field is radiated in vertical ‘lines’ instead of a homogeneous sound field.  

However, apart from identical retro-reflected Lamb waves, there can also exist retro-
reflected Lamb waves of a different kind. The latter can be generated by the incident Lamb wave 
or by the direct interaction of the incident bounded beam with the edge of the plate. It can be 
calculated by means of (IX.C_5) that the combination of incident A1 modes and reflected A0 
modes, result in rays along the directions 80 and 1720. Furthermore, the combination of reflected 
A1 modes and reflected A0 modes, result in rays along the directions -250 and –1550. In Figs 
IX.C_3 and IX.C_4, where the incident beam is situated very close to the edge of the plate 
( ) and respectively surpasses the edge of the plate slightly ( ), it can be 
seen that there is, in addition to the vertical lines or the vertical rays as described above, an 
additional pattern consisting of rays along the angles 8

0.20cm∆ ≈ 0.10cm∆ ≈

0 and 1720. 
This means that incident A1 modes have been partly transformed into reflected A0 modes. 

The energy leakage of both modes combines and forms the described rays. In Fig IX.C_5, where 
a larger part of the incident beam surpasses the edge of the plate ( 0.30cm∆ ≈ − ), an additional 
pattern is formed consisting of rays along the -1550 direction. This is an indication of the 
existence of mode conversion of A1 modes into reflected A1 modes and A0 modes. The latter two 
form an interference pattern consisting of rays along –1550. However, we could not find the 
expected –250 that also  corresponds to the same mode conversion. Maybe it is too weak, or it is 
masked by the incident beam. Other combinations of mode conversion would have resulted in 
other angles, but these were not observed and are therefore not mentioned.  The fact that the 
observed rays can be explained by means of mode conversion of Lamb modes, justifies that more 
complicated phenomena such as edge modes [12,13] are probably not involved here.
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Fig. IX.C_3: Incidence at the Lamb wave angle of 19o with the incident beam almost reaching the edge of the 
plate . A typical Schoch effect is visible as on an infinite plate, however a pattern of vertical lines 

appears in addition. In addition, ‘rays’ appear in the directions 8
0.20cm∆ ≈

0 and 1720. 
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Fig. IX.C_4: Same as in Fig. IX.C_3, however here the incident beam surpasses the edge of the plate a distance of 
. This is the reason why a scattered sound pattern is now visible emitted at the end of the plate. 

The pattern of vertical lines is still visible and is even a bit more outspoken than in Fig. IX.C_3. That is because 
the end of the plate is closer to the center of the beam. The additional rays are more outspoken than in Fig. 

IX.C_3. 

0.10cm∆ ≈ −
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Fig. IX.C_5: Same as Fig. IX.C_4, except that the incident beam surpasses the edge of the plate even more, 
. In addition other scattered beam patterns are visible and are probably due to mode converted 

Lamb waves. The vertical line pattern is still clearly visible. Apart from the rays in Figs IX.C_3 and IX.C_4, rays 
appear in the direction of –155

0.30cm∆ ≈ −

0. 
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In addition, a very weak radiation pattern appears beyond the edge of the plate, almost in-line 
with the plate itself. It is as if the edge becomes a sound source for beams directed to the right of 
the plate. These radiation patterns become stronger in Fig. IX.C_4, where it is shown what 
happens if  and in Fig. IX.C_5, where 0.10cm∆ ≈ − 0.30cm∆ ≈ − . A possible explanation why 
the right hand side pattern is more outspoken in Fig. IX.C_5 than in Fig. IX.C_3 is found in the 
fact that the amplitude of the excited Lamb waves is larger in the center of the beam than at the 
edges of the incident beam. This is reasonable, because we are dealing with an incident beam 
having a Gaussian amplitude profile. In section 6, it will be shown that Lamb waves, when 
reaching the end of the plate, generate an acoustic multipole that causes this typical radiation 
field.  
 
 
 SYMMETRICAL LAMB WAVES 
 
Here, we consider a glass plate of thickness 1.23 mm. The angle of incidence is set at 150 which 
corresponds to the generation of the S1 Lamb mode. The latter is known by considering the 
dispersion curves of the glass plate in Fig. IX.C_6 and by noting the Schoch effect during the 
experiments. Then the distance ∆, see Fig. IX.C_1, can be set by maintaining the incident beam 
and by shifting the position of the glass plate without changing its angle relative to the incident 
beam. The longitudinal sound velocity in glass is 5660 m/s, whereas the transversal sound 
velocity is 3520 m/s. The density is 2500 kg/m3. Again, water is characterized by a longitudinal 
sound velocity of 1480 m/s and a density of 1000 kg/m3. Calculation of the dispersion curves in 
Fig. IX.C_6 results in the existence of A0 modes at an angle of 28.60, S0 modes at 25.50, S1 modes 
at 150, A1 modes at 140 and (not seen in Fig. IX.C_6) S2 modes at 3.450. 
 
Fig. IX.C_7 corresponds to S1 mode stimulation for the bounded beam incident at . 
Note that vertical lines or rays are generated. The vertical rays are equidistant and the distance 
between them is a little less than 1mm. Indeed, Fig. IX.C_6 shows that for a S

0.84cm∆ ≈

1 Lamb wave angle 
of 150,  and therefore, according to relation (IX.C_6), 5718 /v m= s m0.95d m= . Therefore, as 
explained earlier, the vertical rays originate from the standing wave formation of forward 
propagating leaky S1 Lamb waves and retro reflected S1 Lamb waves. 
 
If we consider formula (IX.C_5), then we see that incident S1 modes and reflected S2 modes 
result in rays at the angles 60 and 1740, that incident S1 modes and reflected S0 modes result in 
rays at the angles -50 and -1750, and that reflected S1 modes and reflected S2 modes result in rays 
at the angles -200 and -1600. In Fig. IX.C_8, where the incident beam reaches the end of the plate, 
rays are visible at angles corresponding to the interaction of the leakage fields of reflected S2 
modes and incident S1 modes, and also of reflected S0 and S1 modes. This shows that there is 
mode conversion of incident S1 modes into reflected S0, S1 and S2 modes. Furthermore, in Fig 
IX.C_9, in addition to those patterns, when the incident beam surpasses partly the edge of the 
plate, rays are also visible at the angles –50 and –1750, which is due to the interference of the 
leakage fields of incident S1 modes and reflected S0 modes. Theoretically, also other 
combinations are possible, but the corresponding angles have not been observed experimentally.  
Nevertheless, we have not yet attempted to explain the possibility of sound patterns inline with 
the plate. This will be done in the next section.  
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Fig. IX.C_6: Dispersion curves of Lamb waves in a glass plate. The added horizontal line corresponds with the 

combination of 3MHz on a plate of thickness 1.23 mm. 
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Fig. IX.C_7: Incidence of a 3 MHz Gaussian beam having a 1cm physical beam width at the S1 Lamb wave angle 
(150), . A vertical line pattern is visible, which is due to retro reflected S0.84cm∆ ≈ 1 modes. 
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Fig. IX.C_8: Same as Fig. IX.C_7, except that 0cm∆ = . A vertical line pattern is still visible, which is due to 
retro reflected S1 modes. In addition, rays are visible along the directions 60, 1740, -200 and –1600. 
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Fig. IX.C_9: Same as Fig. IX.C_7, except that 0.2cm∆ = − . Apart from the additional rays in Fig. IX.C_8, rays 
are also visible along –50 and –1750. 
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 PHYSICAL EXPLANATION FOR THE DIFFERENCE IN FORWARD 

SCATTERED FIELD WHEN A1 AND S1 LAMB WAVES REACH THE EDGE OF 
THE PLATE 

 
From, for example, [14], we know that the particle displacement pattern along the 

thickness of the plate, depends on the kind of Lamb wave. For explaining the radiation field at the 
end of a plate, we have considered, as a trade off between realism and simplicity, along the edge 
of the plate, the particle displacement parallel to the plate (i.e. the x-direction, or the forward 
direction) and have replaced the positions along the thickness of the plate where that parallel 
displacement is maximum, by point sources having the same amplitude and phase.  

In the upper part of Fig. IX.C_10, a schematic is shown, by means of horizontal arrows, 
of the maximum parallel displacements for different kinds of Lamb modes. The sense of the 
arrows corresponds to the phase. The lower part of Fig. IX.C_10 shows how these arrows are 
then replaced by point sources (denoted by a circle) where the sign (‘+’ or ‘-‘) denotes the phase 
(‘+’ is equivalent to phase ‘0’, whereas ‘-‘ is equivalent to phase ‘π’). In other words, this 
simplification results in a system where the edge of the plate is replaced by a ‘multipole’. In 
reality, the situation will slightly deviate from this ‘multipole’ representation, because there will 
be intermediate radiation points in between the maxima as well. Nevertheless, this approximation 
results in an explanation of the radiated sound fields beyond the edge of a plate.  
 

 
Fig. IX.C_10: A schematic of the horizontal particle displacement along the edge of the plate and its translation 
to multipoles. Top: the position of the arrows corresponds to the spots of maximum horizontal displacement for 
the given Lamb modes. The sense indicates the phase. Bottom: translation of the arrows to point sources whose 
combination forms a multipole. The sources are indicated with circles, provided with a sign that indicates the 

phase. 
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This is seen in Figs IX.C_11-13, where the radiation field is shown at 3MHz in water, for 
different multipoles, characterized by d=1.5 mm. Because the plates in the two examples given in 
this section have a different thickness, it is difficult to study the independent influence of the 
multipole system on the radiation pattern. That is the reason for the fixed value of the thickness in 
the simulations. Therefore, the simulations are not exact simulations, though they can indicate 
that the multipole representation is a possible explanation of what is experimentally observed. 
The gray scale is equal for all Figs IX.C_11-13, therefore exact intensity comparison is possible. 
The resemblance of Fig IX.C_12 with Fig IX.C_5 and of Fig IX.C_13 with Fig IX.C_9, is 
striking. The strong forward scattering in Fig. IX.C_12 is due to a quadrupole and it is seen that 
this corresponds to an A1 mode, which is the case in Fig IX.C_5. The very weak forward 
scattering in Fig. IX.C_13 corresponds to a so called ‘disturbed quadupole’ and according to Fig. 
IX.C_10, it corresponds to an S1 mode, which is also the case in Fig. IX.C_9. Fig. IX.C_11 is 
added as information, it would correspond to an incident A0 mode, which is not considered here.  

In other words, it is shown in this section that the forward scattering pattern, or its 
absence, can be explained by means of an acoustic multipole on the edge of the plate, that is 
generated by means of an incident Lamb wave. 
 

Fig. IX.C_11: Radiation of a dipole source ( 0A≈  mode) in water at 3MHz for d=1.5 mm 
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Fig. IX.C_12: Radiation of a quadrupole source ( 1A≈  mode) in water at 3MHz for d=1.5 mm. This pattern is 
also noticed in Fig. IX.C_5. 
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Fig. IX.C_13: Radiation of a disturbed quadrupole source ( 1S≈  mode) in water at 3MHz for d=1.5 mm. This 
pattern (or lack of pattern) is also noticed in Fig. IX.C_9. 

 
 CONCLUSIONS 

 
It is shown that incident leaky Lamb waves generate identical retro-reflected Lamb 
waves and other Lamb waves of the same symmetry (i.e. symmetrical or i.e. anti-
symmetrical), when reaching the end of a plate. This results in typical leaky Lamb wave 
patterns consisting of rays. The physical origin of each of the observed rays is explained 
as the interference between leakage fields of different kinds of mode converted Lamb 
waves. Furthermore, sometimes Lamb waves also radiate in the forward direction when 
reaching the end of the plate. It is demonstrated that this is due to the formation of an 
acoustic multipole on the edge of the plate. 
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Chapter X Diffraction Phenomena 
 
 
 

 

The aerospace industry is an example where not a single 
error is tolerated. Therefore the equipment is subject to 
high tech nondestructive testing in order to discover faults 
and cracks in an early stage – enabling replacement, if 
necessary. One of the physical phenomena that are applied 
for the examination of surface and sub-surface cracks, is 
the phenomenon of surface waves, i.e. Scholte – Stoneley 
waves and Rayleigh waves. A diffraction grating can be 
used for their generation. 

 

      When a stone is thrown in a pond, a circular wave pattern is formed. When 
two stones are thrown simultaneously, two circular patterns are formed that 
interfere with each other. This results in directions on the water surface where 
only small waves are propagating and directions where larger waves are 
propagating. This phenomenon is called ‘diffraction’. Nevertheless, the term 
‘diffraction’ is not limited to this phenomenon. Also the widening of a bounded 
beam while propagating, or the spreading of waves around obstacles, are 
sometimes called ‘diffraction’. In this chapter, by ‘diffraction’ we mean the 
interference pattern of sound caused by the interaction with a diffraction 
grating. An example of a diffraction grating in optics is a compact disk (CD). 
When a laser beam is pointed at the CD, the reflected light contains several 
beams, each of which corresponds to a so called diffraction order. In acoustics, 
a diffraction grating is comparable to a long row of stones that are thrown 
simultaneously or almost simultaneously in a pond, generating wave ‘beams’ in 
some directions and not in other directions. 
 

 

 
- 325 - 



CHAPTER X: Diffraction Phenomena 
  

      The curious aspect of diffraction in ultrasonics is that under specific 
conditions, surface waves are generated. This is the reason why a diffraction 
grating is sometimes applied in nondestructive testing of materials. Especially 
the generation of Scholte – Stoneley waves by means of an incident bounded 
sound beam, which is not possible on smooth surfaces, occurs efficiently by 
means of a diffraction grating.  

 
The extraordinary phenomenon of the backward 
displacement of bounded ultrasonic beams, incident on a 
periodically rough surface, is explained in this chapter, 
more than two decades after it has first been observed by 
Breazeale and Torbett in 1976.  

 

      I have been introduced to the subject of diffraction by Rudy Briers and later 
by Oswald Leroy, on the occasion of my Master’s thesis. Later, Rudy Briers 
told me about a bizarre phenomenon that was observed and published by 
Breazeale and Torbett in 1976 and remained unexplained ever since. I was able 
to obtain a copy of this paper in ‘Applied Physics Letters’ and discovered that 
the paper actually reported two bizarre phenomena. First, there was the fact of a 
backward beam shift, which, on itself, is remarkable, but the angle at which the 
phenomenon appeared did not match predictions based on a theoretical model 
by Bertoni and Tamir. 
This obscurity attracted me and occupied my days and nights for many weeks 
thereafter. First, I tried to simulate the effect applying the classical Fourier 
decomposition of bounded beams and found that the effect could not be 
simulated. Because I had already been working in the field of Inhomogeneous 
Waves (see Chapter IV) and because it had been experimentally proved by 
Briers et al that the Rayleigh decomposition of the sound field after diffraction, 
was also valid for inhomogeneous waves, I decided to try this theory and find 
out what was possible. I discovered that the effect that Breazeale and Torbett 
had observed, was due to something special, it was due to a new type of surface 
waves. I also found that if Breazeale and Torbett would have used another beam 
width, that they probably would have observed a backward beam shift, or at 
least reflected beam deformations, at the angle predicted by the model of 
Bertoni and Tamir. That’s when I decided to contact Mack Breazeale and 
inform him about these new theoretical predictions. Dr Breazeale, who is one of 
the most brilliant scientists that I have ever met, was really enthusiastic about 
the predictions and promised me he would try to repeat the experiments.  
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 In the meantime, I presented the theoretical results at the First Pan-American 
congress on Acoustics in Cancun (Mexico), in December 2002, for which I 
have been lucky enough to receive the Physical Acoustics Best Student Paper 
Award from the Acoustical Society of America. 
     Meanwhile, Alem Teklu, had asked Mack Breazeale to collaborate and to 
perform experiments in the field of ultrasonics. This coincidence made that the 
experiments by Breazeale and Torbett were soon thereafter repeated by Teklu 
and Breazeale. Furthermore, they found indications that some of the theoretical 
predictions were correct. In May 2003, during a congress of the Acoustical 
Society in Nashville (TN), I met Mack Breazeale and Alem Teklu for the first 
time and we all went to Oxford (MS) after the conference in order to plan future 
collaboration and to see the experiments in reality. 
     Later, during December 2003 and January 2004, I stayed at the National 
Center for Physical Acoustics (University of Mississippi) in Oxford (MS) and 
performed a lot of experiments together with Alem Teklu and Mack Breazeale. 
This work was continued in May 2004, after a congress of the Acoustical 
Society in New York. One of the tasks we fulfilled, was the validation of all the 
theoretical predictions. We found experimental evidence of the fact that the 
backward beam displacement is caused by a leaky type of Scholte –Stoneley 
waves, and we found that beam shifts were present at the angle predicted by 
Bertoni and Tamir, if only a narrower beam was used than in the original 
experiments in 1976. The theory is outlined in section X.A.1.a, whereas the 
experiments are outlined in section X.A.1.b. 
 
    The diffraction of ultrasound on corrugated surfaces really interested me. 
Therefore I extended the theory to the case where transient ultrasound is 
incident instead of harmonic ultrasound. This resulted in the knowledge that 
transient leaky Rayleigh waves can be stimulated surprisingly well on a 
corrugated surface (see section X.A.1.d). Furthermore, it was found that a 
diffraction grating can be used as a complex frequency filter device for 
electronic signals (see section X.A.1.e). It was also found that the groove 
direction (on the inaccessible side of a thick plate) can be determined be means 
of circularly polarized ultrasound (see section X.A.1.f). Furthermore, in section 
X.A.1.g, it is shown that a Brewster angle exists in ultrasonics, similar to the 
Brewster angle in optics. 
 
    I also believed that it could be interesting to study the diffraction on doubly 
corrugated surfaces (e.g. egg crates), which is, of course, much more 
complicated, though more interesting than in the case of single corrugated 
surfaces. This study is outlined in section X.A.2.a and explains the effect of the 
double corrugation on the generation of surface waves and also the steering 
effect on those surface waves. 
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An excellent example of an acoustic diffraction grating is 
the staircase of the El Castillo pyramid at Chichen Itza in 
Mexico. The explanation, of the Quetzal echo and the 
raindrop effect, which has been reported in Nature and in 
numerous newspapers around the world, is described in 
this chapter. 

 

      I already mentioned the congress in Cancun in 2002. After this congress, 
there was a post-meeting tour to the archaeological Maya site Chichen Itza. The 
reason was that special acoustic phenomena were reported there. After being 
convinced by colleagues and by kind Mexican students during the conference, I 
decided to join the post meeting tour and that’s how I first heard the Quetzal 
echo in front of the El Castillo pyramid. This effect was well known to tourists, 
archaeologists and acousticians, but it had not been explained thoroughly. The 
quetzal chirp echo occurs in response to a handclap in front of the staircase of 
the pyramid. It was clear that the stairs were responsible for this phenomenon, 
but how this really happened and what else influenced the generation of this 
specific echo, remained obscure. Because I had been working on the diffraction 
of ultrasound on periodically corrugated surfaces, I decided to try to simulate 
the quetzal effect. Furthermore, when I was describing some of the ruins that I 
had seen, to a fellow student, being seated on the lower steps of the staircase, 
we both heard the sound of raindrops falling in a bucket filled by water. It 
sounded like music. We discovered that the effect was caused by other people 
climbing the stairs higher up – not by the ‘tequila sunrise’ we drunk the evening 
before. At that moment, I planned to try to simulate this effect as well. 
 
     So, when I returned to Belgium, I started to create the model, based on a 
theory of Claeys and Leroy for the diffraction of infinite plane waves on an 
infinite corrugated surface. I adapted the model to the finite staircase and the 
spherical pulsed incident sound. The information about the pyramid and the 
digitized recordings by David Lubman, were downloaded from the internet. I 
took into account the exact physical dimensions of the pyramid, as well as the 
physical parameters of the tropical air at Chichen Itza and the material of which 
the pyramid was built. I proved that the so called Lipmann conditions were 
fulfilled and therefore knew that the errors of the model were insignificant 
within the frequency interval of interest. I used a ‘delta function’-like pulse as 
input and was able to calculate the result, which was a beautiful chirp. 
Nevertheless, the frequency of the chirp was too high compared to the 
recordings by David Lubman.  
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      After comparison of the sonogram (a kind of signal representation that has 
been introduced to me by Joris Degrieck) of the handclap that was recorded by 
David Lubman and the sonogram of the reflected chirp, and considering my 
simulations, I stated that the lower frequencies in the registered echo, originated 
from the frequency pattern within the handclap itself. So, I collected the results 
and submitted them to the J. Acoust. Soc. Am. After a few months, I received 
comments by the reviewers that they were not 100% satisfied by the results 
because I had not taken into account the exact handclap as input and I had not 
considered possible influence of the ground in front of the pyramid. Therefore I 
returned to the model once again and extended it in order to satisfy the 
reviewers. The calculation time was now extremely long (almost 2 months), but 
the results matched the recordings by Lubman and showed that indeed a large 
part of the echo-pattern is caused by patterns that are already present in the 
incident handclap itself. The results also showed that the influence of the 
ground in front of the pyramid is not significant. The theory about the formation 
of the quetzal echo in front of the pyramid of Chichen Itza, can be found in 
section X.B.1. Surprisingly, the paper that has been published in the J. Acoust. 
Soc. Am. in December 2004, has resulted in a report in Nature News and has 
consequently been reported in numerous newspapers around the world. Before, 
I had never thought that this phenomenon was so important to so many 
people… 
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Sections X.A Ultrasonic Diffraction 
Phenomena 

 
 
 
 
 
 

 
 

Fig. X.A: Schlieren image of a 6 mm wide ultrasonic beam incident upon a brass reflector at 22.5o; a 
sound field is visible on the interface in the backward direction, being scattered in the forward direction 

at the extremity of the sample. This is evidence that it is a Scholte – Stoneley wave. 
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X.A.1.a A Theoretical Treatment of the 
Backward Beam Displacement on 
Periodically Corrugated Surfaces 
and its relation to Leaky Scholte-
Stoneley waves 

 
 
 Backward displacement of bounded ultrasonic beams reflected from a periodically 

corrugated surface between a liquid and a solid was first experimentally observed by 
Breazeale and Torbett [M. A. Breazeale, Michael A. Torbett, Appl. Phys. Let., 29(8), 
456-458, 1976]. However, the phenomenon, which was expected to be a direct 
consequence of generated Rayleigh waves, did not appear at an angle of incidence that 
could have induced a leaky Rayleigh wave. The real explanation for this observed 
backward beam displacement has never been found. A demonstration of the capability of 
the inhomogeneous wave theory to simulate backward displacement of ultrasonic 
bounded beams (observed by Breazeale and Torbett, Appl. Phys. Let., 29(8), 456-458, 
1976) has been demonstrated very recently [Nico F. Declercq, Joris Degrieck, Rudy 
Briers, Oswald Leroy, Appl. Phys. Let. 82(15), 2533-2534, 2003]. The current section 
applies the theory of the diffraction of inhomogeneous waves and shows how this theory 
is capable of simulating, explaining and understanding the experiments mentioned 
above. The theory reveals the existence of leaky Scholte – Stoneley waves, which is a 
novel phenomenon that was first reported from a theoretical point of view [Nico F. 
Declercq, Joris Degrieck, Rudy Briers, Oswald Leroy, J. Acoust. Soc. Am. 112(5), 2414, 
2002] and was shortly after discovered experimentally [A. A. Teklu, M. A. Breazeale, J. 
Acoust. Soc. Am. 113(4), 2283-2284, 2003.]. Moreover, the present section shows that 
the classical Fourier decomposition of bounded beams is unable to simulate the 
backward beam displacement. This work also elucidates the nature of Wood anomalies 
in Diffraction spectra. 
The contents of this section have been published as : Nico F. Declercq, Joris Degrieck, 
Rudy Briers, Oswald Leroy, "Theory of the backward beam displacement on periodically 
corrugated surfaces and its relation to leaky Scholte-Stoneley waves", J. Appl. Phys. 
96(11), 6869-6877, 2004 (Imp. Fact. 2.281; SCI-index, Physics-Applied, rank:13/76), and also 
briefly as: Nico F. Declercq, Joris Degrieck, Rudy Briers, Oswald Leroy, "Theoretical 
verification of the backward displacement of waves reflected from an interface having 
superimposed periodicity", Appl. Phys. let. 82(15), 2533-2535, 2003. (Imp. Fact. 4.207; SCI-
index, Physics-Applied, rank:3/76)  
Furthermore, after presenting the paper at the First Pan-American Congress on 
Acoustics, Cancun, Mexico, December 2002, the author has been presented the physical 
acoustics best student paper award by the Acoustical Society of America [Echoes 13(2), 
5, 2003]. 
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 INTRODUCTION 
 
There are several ways to tackle the diffraction of sound by a periodically corrugated surface [1]. 
The method applied here is the one that is based on the ‘Rayleigh decomposition’ of the 
diffracted sound field into single bulk inhomogeneous waves, all traveling in directions that are 
determined by the classical grating equation. The validity of this approach has been proved by 
Briers et al [2,3]. In fact, it is an inhomogeneous waves extension of the more classical approach 
that can be found in Claeys et al [4,5] where the generation of diffracted plane waves is assumed. 
The validity of the latter method, where a decomposition into plane waves is used, is shown by 
Lippmann [6] , who states that it is correct whenever two conditions are fulfilled which say that 
the incident wavelength must be of the same order of magnitude as the corrugation period and 
that the height of the corrugation must be small compared to it. Claeys et al [4,5] studied the 
diffraction of plane waves on periodically corrugated liquid-solid interfaces, Jungman et al [7], 
Mampaert et al [8,9], and Declercq et al [10], studied this phenomenon on solid-liquid 
periodically corrugated interfaces. The latter showed that the diffraction of plane waves can be 
used to simulate the appearance of so called Wood anomalies [5] in diffraction spectra for normal 
incident sound. Wood anomalies are strong amplitude dips in the reflection spectra and are 
caused by energy transformation of incident sound into Scholte - Stoneley waves. Briers [2], 
Briers et al [3], Deschamps and Cheng [11] and Briers and Leroy [12,13] extended the theory of 
the diffraction of homogeneous plane waves to that of inhomogeneous plane waves and 
experimentally proved the validity of their approach. They also studied the diffraction on 
periodically corrugated solid plates immersed in water [2]. Besides the success of the mentioned 
papers, there remains the obscurity of the exact nature of Wood anomalies [5] and the 
explanation of what really happens in the experiments of Breazeale and Torbett [14] that show 
the appearance of a backward beam displacement on periodically corrugated surfaces. The 
present work focuses on the explanation of the experiments of Breazeale and Torbett [14] by 
applying the theory of the diffraction of inhomogeneous plane waves, properly involving some 
considerations of Deschamps [15] , and gives a comprehensive explanation of the nature of Wood 
anomalies in diffraction spectra. 
 
 THE EXPERIMENT OF MACK A. BREAZEALE AND MICHAEL TORBETT 

[14] 
 
Breazeale and Torbett [14] have performed experiments that originally were intended to verify 
the prediction of Tamir and Bertoni [16], that, similar to their counterpart in optics, backward 
traveling acoustic surface waves, originating from diffraction, would cause a backward acoustical 
beam shift of the reflected sound. Breazeale and Torbett [14] let a bounded sound beam impinge 
from the liquid side, onto a periodically corrugated interface between water and brass. According 
to the classical diffraction equation, a backward traveling first order lateral wave (for example a 
lateral bulk wave, a Scholte-Stoneley wave or a leaky Rayleigh wave) exists if sound is incident 
from a real angle incξ  (‘inc’ stands for incident) with [14] 
 

1 1sin inc vl f vBT
ξ

⎛ ⎞
⎜ ⎟= −
⎜ ⎟Λ⎝ ⎠

 
(X.A.1.a_1)
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in which  is the sound velocity in the covering liquid, f is the frequency,  is the corrugation 

period and 

vl Λ

vBT  is the velocity of the surface wave. If the velocity of leaky Rayleigh waves 

(2015m/s) on a smooth water-brass interface is entered in (X.A.1.a_1), at a frequency of 6MHz, 
one finds an angle of incidence of 410. This stimulated Breazeale and Torbett [14] to seek for a 
backward beam shift around 410. The result was negative. Furthermore, they looked at other 
angles of incidence and found the backward beam shift in the vicinity of 22.50 which led them to 
the primary conclusion that if the effect was caused by a backward traveling lateral wave, it 
would have a velocity  which differs quite a lot from the Rayleigh velocity. They 
concluded that more experimental and theoretical research was necessary to determine what 
really was the cause of this backward beam shift. Moreover, if they kept that particular angle of 
incidence and changed the frequency to 2MHz, the backward beam shift was not there anymore. 
In what follows, the inhomogeneous wave theory will show us that it is not a simple expression 
as (X.A.1.a_1) that determines the effect, but a complicated interaction between all diffracted 
orders. The next chapter treats the theoretical description of the interaction of one single 
inhomogeneous wave. Further, such single inhomogeneous waves will be superposed to form a 
bounded beam that interacts with the periodically corrugated surface under consideration. 

smvBT /1470=

 
 
 THE DIFFRACTION OF INHOMOGENEOUS WAVES 
 
 Description of the Incident and the Diffracted Wave Field 
 
Consider a periodically corrugated interface between a liquid and a solid as depicted in Fig. 
X.A.1.a_1.  
 
The corrugation is periodic with period Λ  and is given by 
 

( )z f x=  (X.A.1.a_2) 

 
with 
 

( ) ( )f x f+Λ = x  (X.A.1.a_3) 

 
It is convenient to write (X.A.1.a_2) as  
 

( ) ( ), 0g x z f x z= − =  (X.A.1.a_4) 

 
Taking into account the Rayleigh decomposition of the diffracted wave field and taking into 
account characteristics of dilatational and shear waves, the displacement of the incident waves 

, the (dilatational) reflected waves , the dilatational respectively shear waves in the solid 
 and , may be written as 

incN rN
dN sN
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( )inc inc inc inc incA ik ikx x z zϕ= +N e e  

 

(X.A.1.a_5) 

( ), , ,m r m r m rr rA ik ikm x x zm
ϕ= +∑N e ze  

 

(X.A.1.a_6) 

( ), , ,m d m d m dd dA ik ikm x x zm
ϕ= +∑N e ze  

 

(X.A.1.a_7) 

, ,m s m ss sAmm
ϕ= ∑N P  (X.A.1.a_8) 

 

 
Fig. X.A.1.a_1: Diagram of the backward beam displacement ∆  on a periodically corrugated surface with period 

 and height . The exact definition of the angles used in the text are here defined. Λ h
 
with 
 

i
e

ς
ςϕ

⎛ ⎞•⎜ ⎟
⎝ ⎠=
k r

 

(X.A.1.a_9) 

 
and 
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, , , , , , 0m s m s m s m s m s m sk P k P k Px x y y z z+ + =  (X.A.1.a_10)

 
In relations (X.A.1.a_5-10), A stands for the amplitude, while P stands for the polarization 
vector, whereas the index ‘m’ denotes the diffraction order and ς  represents “inc”, “m,r”, “m,d” 
or “m,s”. 
The following properties that hold for inhomogeneous waves [17] also need to be taken into 
account: 
 

1 2iς ς ς= +k k k  

 

(X.A.1.a_11)

2
ς ς ς= −k α β  

 

(X.A.1.a_12)

1 2 1k
ς ς ς ςα• =k k  

 

(X.A.1.a_13)

1
ς ς⊥β k  

 

(X.A.1.a_14)

1k
ς ςα  

 

(X.A.1.a_15)

2
2 2 2

1 0k
v
ω 2ς ς ς ςα β α
ς

⎛ ⎞
⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎜ ⎟− − = −⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠

⎝ ⎠

 

(X.A.1.a_16)

 
with  the sound velocity and  the intrinsic damping coefficient. The vector  is called the 

damping vector, while the vector  is called the inhomogeneity vector. 
ςv ςα0

ςα
ςβ

 
 The Continuity Conditions 
 
The incident wave is described by the amplitude incA , the real part, , and imaginary part, 

, of the wave vector and incidence angle , so that, for non absorbing media 

inck1
inck2

inc
1ξ
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sin1, 1 1

cos1, 1 1

sin2, 2 2

cos2, 2 2

inc inc inck kx
inc inc inck kz
inc inc inck kx
inc inc inck kz

ξ

ξ

ξ

ξ

=

= −

=

= −

 

(X.A.1.a_17)

 

with / 22 1
inc incξ ξ π= − . 

The signs in (X.A.1.a_17) are chosen to fulfill the definitions of the angles and axes in Fig. 
X.A.1.a_1. 
In media τ  ( 1=τ  in the liquid, 2=τ  in the solid) the stress tensor τT  is given [11,18] by its 
elements 
 

21 2 , 1 2 ,Tij i j i jt t
ς τ τ τ τ τ τλ λ ε δ µ µ εηηη

∂⎛ ⎞ ⎛= + + +∑⎜ ⎟ ⎜∂ ∂⎝ ⎠ ⎝

∂ ⎞
⎟
⎠

 
(X.A.1.a_18)

 
in which the strain tensor  is τε ij

 
1
2

N Nij i j j i
τ τ τε ⎡ ⎤= ∂ + ∂⎢ ⎥⎣ ⎦

 
(X.A.1.a_19)

 

The Lamé constants are denoted by  and , while the viscosity coefficients are given by τλ1
τµ1 2

τλ  

and 2
τµ . They obey the dispersion relations [17] (X.A.1.a_13) and (X.A.1.a_16) if 

 

( ) ( )
2

21 2 1i i

ρως ς

2
τ τ τ τλ ωλ µ ωµ

• =
− + −

k k  
(X.A.1.a_20)

 
for dilatational waves (ς = “inc” or “m,r”,) in the liquid and ς  = “m,d” or “m,s” in the solid) and 
if 
 

( )
2

1 2i

ρως ς
τ τµ ωµ

• =
−

k k  
(X.A.1.a_21)
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for shear waves ( , 2sς = ) in the solid). The Lamé constants are related to the shear velocity vs
τ , 

the dilatational velocity vd
τ , the intrinsic damping coefficient for shear waves ,0s

τα  and the 

intrinsic damping coefficient for dilatational waves ,0d
τα  through the dispersion relations 

(X.A.1.a_13) and (X.A.1.a_16). 

In order to find the unknown coefficients  , the equations 

that describe the continuity of normal stress and strain along the interface (X.A.1.a_4) must be 
solved, i.e. 

, ,r dA Am m
, ,, ,m s m s m ss s sA P A P A Pm x m y m z

,

 

( ) ( )inc r d sg g+ •∇ = + •∇N N N N  along 0g =  

 

(X.A.1.a_22)

( ) ( )1 2T g T gj jij ijj j
∇ = ∇∑ ∑  along 0g =  (X.A.1.a_23)

 
and also (see (X.A.1.a_10)) 
 

, , , , , , . 0m s m s m s m s m s m ss s sA P k A P k A P km x x m y y m z z ϕ⎛ ⎞+ +⎜ ⎟
⎝ ⎠

m s =

]

x

x

 
(X.A.1.a_24)

 
Conditions (X.A.1.a_22-24) lead to 5 equations that are periodic in x, whence a sufficient 
condition for a correct solution is that the Fourier coefficients (for a discrete Fourier transform 
over the interval ) are equal. The wave vectors that are introduced by this discrete Fourier 
transform are denoted by the order ‘p’. 

[ Λ→0

The 5 equations for each integer p are: 
Equation 1: 
 

( )

( )

( )

( )

2, 1

2, , 1

2, , , 2

, ,,

, ,, , 0

inc p pinc incA I i k k kx x

m r p pr mA I i k k km xm

m d p pdd mA I i k k km xm
m s p pm ss mA P I k km x x xm
m s pm s m ssA P I km z zm

⎛ ⎞
− +⎜ ⎟⎜ ⎟
⎝ ⎠

⎛ ⎞
+ − +⎜ ⎟∑ ⎜ ⎟

⎝ ⎠
⎛ ⎞

+ −⎜ ⎟∑ ⎜ ⎟
⎝ ⎠

⎛ ⎞− −∑ ⎜ ⎟
⎝ ⎠

+ =∑

 

(X.A.1.a_25)
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Equation 2: 
 

( ) ( )
( )

( )

( ) ( )
( )

,
1

, ,
1

22 , 2
, , 1 22 2, 2

, ,, 12 2, 2

21 1... 2 2, 2 , 2

inc p pinc incA I k kx x

m r p pr mA I k km x xm

dmk kxm d p pd mA I k km x sm k

pmk km s pm ss x xA P I im x dm k

mkxd sk k

ρ

ρ

ρ

ρ

⎛ ⎞− −⎜ ⎟
⎝ ⎠
⎛ ⎞− −∑ ⎜ ⎟
⎝ ⎠

⎛ ⎞⎛ ⎞
⎜ ⎟−⎜ ⎟
⎜ ⎟⎜ ⎟+ − + +∑ ⎜ ⎟⎜ ⎟
⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

⎛
⎜
⎜+ − +∑
⎜
⎜
⎝

⎞⎛ ⎞
⎟⎜ ⎟
⎟⎜ ⎟+ −
⎟⎜ ⎟
⎟⎜ ⎟

⎝ ⎠ ⎠

( )
( )

x

( )

( ) ( )

1 1, ,, , ...2 2 2, 2 , 2

1 2... 02 2, 2 , 2

m s pm s m ss mA P I i k km z z xd sm k k

pkxd sk k

ρ

⎟

⎛⎛ ⎞
⎜⎜ ⎟
⎜⎜ ⎟+ −∑ ⎜⎜ ⎟
⎜⎜ ⎟⎜⎝ ⎠⎝

⎞⎛ ⎞
⎟⎜ ⎟
⎟⎜ ⎟− − =
⎟⎜ ⎟
⎟⎜ ⎟ ⎟⎝ ⎠ ⎠

 

(X.A.1.a_26)

 
Equation 3: 
 

( )
, ,, 1 02 2, 2

pmk km s pm ss x xA P I im y sm k
ρ

⎛ ⎞
⎜ ⎟
⎜ ⎟+ −∑
⎜ ⎟
⎜ ⎟
⎝ ⎠

=  

(X.A.1.a_27)
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Equation 4: 
 

( )

( )
( )

( )
( ) ( ) ( )

( ) ( )

,
1

, , ,
1

2, , , 12 2, 2

1 1, ,, ,
2 2 2 2, 2 , 2 , 2

1 1, ,,
2 2 2,2 , 2

inc pinc incA I kz
m r p m rrA I km zm

m d p pm dd mA I k k km z x xsm k

pkm s pm s m ss m xA P I i k km x z xd s sm k k k

m s pm ssA P I im z d sm k k

ρ

ρ

ρ

ρ

ρ

+

+∑

⎛ ⎞
⎜ ⎟

⎛ ⎞⎜ ⎟+ − +∑ ⎜ ⎟
⎜ ⎟⎝ ⎠
⎜ ⎟
⎝ ⎠

⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟
⎜ ⎟⎜ ⎟+ −∑
⎜ ⎟⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

⎛
⎜
⎜+ −∑

⎝

( )
( )

−

2, 1 02, 2

pmk km s x xkz sk

⎛ ⎞⎞
⎜ ⎟⎟
⎜ ⎟⎟ + − =
⎜ ⎟⎜ ⎟
⎜ ⎟⎜ ⎟

⎠⎝ ⎠

 

(X.A.1.a_28)

 
Equation 5: 
 

, , , , , , 0,
m s m s m s m s m s m ss s sA P k A P k A P km x x m y y m z z m pδ⎛ ⎞+ +⎜ ⎟

⎝ ⎠
=  

(X.A.1.a_29)

 
with  and  given by (X.A.1.a_20) and ( )21k ( )22,dk ( )22,sk  given by (X.A.1.a_21) and with the 
grating equation [3] 
 

2m inck k mx x
π

= +
Λ

 (X.A.1.a_30)

 
(an equivalent expression holds of course for ) and p

xk
 

( )( )1,
inc inci k k x i k f xx x zincI e einckz

η
η

⎛ ⎞−⎜ ⎟
⎝ ⎠= ∫

Λ
dx  

 

(X.A.1.a_31)
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(X.A.1.a_32)
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For pm,δ  Kronecker’s delta. It is already seen from (X.A.1.a_27) that  
 

, 0m ssA Pm y =  (X.A.1.a_33)

 
 Consideration of Deschamps’ Rule 
 
A mode ‘m,q’ inside the solid (q=s or q=d), is accompanied by a reflected companion ‘m,r’. The 
angle of propagation of the considered mode ‘m,q’ is  
 

1,, arctan1 ,
1,

mk xm q
m qk z

ξ

⎡ ⎤
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

(X.A.1.a_34)

 
whereas the angle of propagation of the reflected companion is 
 

1,, arctan1 ,
1,

mk xm r
m rk z

ξ

⎡ ⎤
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎣ ⎦

 

(X.A.1.a_35)

 
From Deschamps [15] , we learn that each diffracted wave must travel away from the interface. 
However, if , then the sign of  for the considered mode ‘m,q’, depends on the 
angle of propagation of the liquid-side companion, denoted by ‘m,r’. If the considered mode 
‘m,q’ inside the solid (q=s or q=d) is ‘close enough’ to 

( ) 0Re ,1 ≠= zz kk zk

2/π , then that particular mode ‘m,q’ must 
show leaky Rayleigh wave features, whence the inhomogeneity vector must point into the liquid. 
‘Close enough’ to 2/π  means the liquid side companion must fulfill  
 

, arcsin1
vm r l
vq

ξ
⎛ ⎞
⎜ ⎟>
⎜ ⎟⎜ ⎟
⎝ ⎠

 
(X.A.1.a_36)

 
lv  is the wave velocity in the liquid,  is the wave velocity of the considered mode ‘q,m’. 

Whenever  
qv

 

, arcsin1
vm r l
vq

ξ
⎛ ⎞
⎜ ⎟≤
⎜ ⎟⎜ ⎟
⎝ ⎠

 
(X.A.1.a_37)

 
Deschamps’ rule doesn’t need to be considered, whence the Sommerfeld conditions hold, 
demanding that the mode ‘q,m’ travels away from the interface. 
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 Truncation of Infinite Summations 
 
The linear set of equations (X.A.1.a_25-29) is infinite since m,p may take every possible integer 
value for . However, it has been shown [4,9,10] that the interval of integers may be 
truncated to , for N larger than 6.  

+∞→−∞
{ NNNN ,1,..,1, −+−− }

From refs. [19-20], it is known that for a sawtooth profile 
 

( ) 2
2

hx hf x = −
Λ

 if 0
2

x Λ
≤ <  

 

(X.A.1.a_38)

( ) 3 2
2
h hf x = −

x
Λ

 if 
2

xΛ
≤ < Λ  (X.A.1.a_39)

 
the integrals (X.A.1.a_31) and (X.A.1.a_32) become 
 

( )

( ) ( )

/ 2 1 1,
2 2

incihkinc zihk einc zI ih e
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−− − −
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(X.A.1.a_40)
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(X.A.1.a_41)

 
In this work, only sawtooth profiles (X.A.1.a_38-39) have been taken under consideration. 
 
 THE DIFFRACTION OF A BOUNDED BEAM 
 
This section describes very short two often used decompositions of bounded beams ( )',' zxΩ , 
namely the Fourier decomposition and the inhomogeneous waves decomposition. The 
coordinates (  are the eigencoordinates with z’ parallel to the mean travel direction and )',' zx '' zx ⊥ . 
It will follow from the numerical results below that whereas the inhomogeneous waves 
decomposition is able to describe the experiments of Breazeale and Torbett [14] properly, the 
Fourier decomposition is not. 
 
 The Fourier Decomposition 
 
The current section deals with gaussian beam profiles with a beam width given wherever 
appropriate. Here, the beam profile ( )cx ,'Ω , for c a chosen constant, is subject to the discrete 
Fourier transform 
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( ) ( )' '', , |n nx c B k c kx xΩ ↔ ∈ℜ

)'

'

 (X.A.1.a_42)

 
whence  
 

( ) ( ) ( ) ( ) ('' ' '' ' 0' '', ' , ,
nn n in nik x ik z cn nx zx z B k c e e B k c ex xn n

• −= +∞ = +∞−
Ω = =∑ ∑

= −∞ = −∞

k r r
 

(X.A.1.a
      _43)

 
with  related to  through the physical properties of the medium, with  'n

zk 'n
xk

 
' ' ' 'n n nk kx x z= +k e ze

) )

 (X.A.1.a_44)

 
and with  and . For physical reasons, the dispersion relations [17] (X.A.1.a_13) 
and (X.A.1.a_16) must hold, whence the range of n in (X.A.1.a_43) will be limited to 

. 

( ','' zx≅r ( cx ,''
0 ≅r

{ }NNn +−∈ ,..,
The right part of expression (X.A.1.a_43) states that a bounded beam is described by a 
superposition of plane waves all having different travel directions and having different attributed 
amplitudes. It has been shown by Leroy et al [21-23] that the description of bounded beams by 
Fourier decomposition leads to contradictions such as waves considered incident at angles 
exceeding 900. Claeys et al [22,23] showed that this decomposition was not sufficiently 
appropriate to describe and to understand what happens if bounded beams are incident at critical 
angles such as the Rayleigh angle. 
 
 The Inhomogeneous Waves Decomposition 
 
The concept of using inhomogeneous waves to decompose a bounded beam was introduced by 
Claeys and Leroy [20,22] and is based on the mathematical fact that a smooth beam profile can 
be locally approached by a summation of exponential functions [24]. This leads to the perception 
that a bounded beam can be decomposed in a series of inhomogeneous waves all traveling in the 
same direction, but having different amplitudes and inhomogeneities. Hence, 
 

( ) ( )
( )' ''', ' ,

nnn ik z cx zx z B n c e e
n

β= +∞ −−Ω = ∑
= −∞

 
(X.A.1.a_45)

 
Even here, due to the dispersion relations [17] (X.A.1.a_13) and (X.A.1.a_16), the range of n is 
limited to . { }NNn +−∈ ,..,
 
 The Description of the Zero Order Reflected Beam 
 
Each of the individual waves in the decompositions (X.A.1.a_43) or (X.A.1.a_45) is diffracted 
into an infinite number of diffraction orders, whence the reflected sound field is: 
 

 
- 342 - 



CHAPTER X: Diffraction Phenomena 
  

( ) ( ) ( ) ( ), , 10 0 ,0
n N n N m

,x z D R x z D Rn n nn N n N m
γ δ

= + = + = +∞
Ξ = + −∑ ∑ ∑

= − = − = −∞
x zm mγ  

(X.A.1.a_46)

 
In which, depending on whether decomposition (X.A.1.a_43) or (X.A.1.a_45) is applied, 

( )ckBD n
xn ,'=  or ,  is the reflection coefficient of diffraction order m, and ( )cnBDn ,= mR mγ  is the 

wave function of diffraction order m (i.e. a plane wave or an inhomogeneous wave). 
We call 
 

( ) ( ), ,0 0
n N

0x z D Rnn N
γ x z

= +
Ξ = ∑

= −
 

(X.A.1.a_47)

 
the zero order reflected beam. It is this beam that is considered below, the so called ‘reflected 
beam profile’ is considered. 
 
 DISCUSSION OF NUMERICAL RESULTS 
 
 What really causes Wood Anomalies in Diffraction Spectra? 
 
In the articles of Claeys et al [5], Mampaert et al [7-9] and Declercq et al [10] , one deals with the 
diffraction of pure plane waves on periodically corrugated surfaces. It is seen there that 
diffraction spectra for normal incidence show Wood anomalies at certain frequencies. These 
anomalies are believed to originate from the generation of Scholte-Stoneley waves. In what 
follows, we show that Wood anomalies originate from the resonant interaction between forward 
and backward traveling Scholte-Stoneley waves. 
If one reconsiders the grating equation (X.A.1.a_30) and if one writes any of the diffraction 
displacements as 
 

, ,exp
m M m mi k x k zm x zm M

ς ς ς= ς⎡ ⎤⎛ ⎞= +∑ ⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦= −
N A  

(X.A.1.a_48)

 
with 
 

, , ,A A Am m x x m y y m z z
ς ς ς ς⎛= + +⎜ ⎟

⎝ ⎠
A e e ⎞e  

(X.A.1.a_49)

 
then, for normal incidence 
 

2 ,2 cos exp exp01

m M m mx ik z i zm z vm

π ως ς ς ς
ς

⎡ ⎤= ⎛ ⎞⎡ ⎤⎛ ⎞ ⎛ ⎞= + ⎢ ⎥∑ ⎜ ⎟⎜ ⎟⎜ ⎟⎢ ⎥ ⎜ ⎟Λ ⎝ ⎠⎝ ⎠⎣ ⎦ ⎢ ⎥= ⎝ ⎠⎣ ⎦
N A A  

(X.A.1.a_50)

 
If the frequency and the material parameters, are such that for a certain diffraction order ‘m’, a 
Scholte-Stoneley wave is stimulated, then the one of diffraction order –m also is stimulated and 
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both interact to create a standing wave phenomenon whose wavelength  fits an integer number 
of times into one corrugation wavelength 

ςλ
Λ  (see (X.A.1.a_50)). In other words : The 

superposition of the backward and forward traveling Scholte-Stoneley waves causes a vibration 
eigenstate of the corrugated surface. This eigenstate is the actual reason why under these 
circumstances almost all of the incident energy is absorbed by the surface, resulting in the 
observation of a ‘Wood anomaly’ in the diffraction spectra. 
For oblique incidence, relation (X.A.1.a_50) does not hold, whence the generation of a Scholte-
Stoneley wave does not cause an eigenstate. The absence of an eigenstate diminishes the effect of 
the generated Scholte-Stoneley wave on the reflected sound intensity, as seen in Fig. 4 of ref. 25. 
A more precise explanation is the fact that the Scholte-Stoneley wave of a particular diffraction 
order, traveling in one direction, is disturbed by the bulk wave of the opposite diffraction order. 
Obliquely incident waves do not cause strong stimulation of Scholte-Stoneley waves. The same 
reasoning holds for leaky Rayleigh waves if inhomogeneous incident waves are considered. 
Briers et al [2,3] showed that normally incident inhomogeneous waves under the correct 
circumstances may induce pure leaky Rayleigh waves having the same amplitude distribution as 
for leaky Rayleigh waves on smooth interfaces. It is expected that for oblique incidence, a 
generated Rayleigh wave is disturbed by diffraction orders. 
 
 Results and Discussion of the Reflection Coefficients for Single 

Inhomogeneous Waves incident where Breazeale and Torbett [14] 
observed a Backward Displacement 

 
The calculations that have been performed here make use of the equations (X.A.1.a_25-29) 
taking into account (X.A.1.a_38-41) for orders ranging from –8 to +8. This results in a matrix 
equation where all the amplitudes of the diffracted wave orders are found at once. Zero order 
reflected waves travel along the specular direction. Other orders travel in directions that are 
governed by (X.A.1.a_30) and (X.A.1.a_34) together with the dispersion relations (X.A.1.a_20-
21) since not only the x-component of the wave vectors determine the propagation direction, but 
also the z-component. 
Numerical results are presented for oblique incidence of inhomogeneous waves of 6 MHz on a 
periodically sawtooth corrugated water-brass interface. The physical properties of water and 
brass listed in Table X.A.1.a_I are applied. In consistency with Breazeale and Torbett [14], a 
corrugation period mµ178=Λ  and a corrugation height mh µ25=  is used. 
In Fig. X.A.1.a_2, the absolute value of the zero order reflection coefficient is depicted near the 
angle where in ref. [14] a backward beam shift is found. It is seen that an amplitude dip appears 
at an angle of incidence of 22.590 and inhomogeneity –71.86m-1. This means that the 
corresponding zero order reflected inhomogeneous wave is backwards displaced relatively to its 
incident companion.  

 
- 344 - 



CHAPTER X: Diffraction Phenomena 
  

 
Table 
X.A.1.a_I: 

the physical properties of water and brass, used in our calculations 

 
 water brass 
density [kg/m3] 1000 8100 
longitudinal wave velocity 
[m/s] 

1480 4840 

shear wave velocity [m/s] 0 2270 
 
 

Fig. X.A.1.a_2: The absolute value of the zero order reflection coefficient, as a function of the angle of incidence 
and the incident inhomogeneity ‘beta’, shows a dip at 22.590

and inhomogeneity –71.86 m-1 . 
 
That this effect also appears for bounded beams, is described below, where results are shown for 
bounded beams. Fig. X.A.1.a_3, shows that the conditions at which the dip is there in Fig. 
X.A.1.a_2, do not correspond to a strong maximum of the –1 order reflection coefficient. In fact, 
the actual maximum is situated very close to but not at , at an angle of incidence of 
22.56

0=incβ
0. In addition, a strong maximum observed in the –1 order, corresponds to the generation of 

leaky Scholte-Stoneley waves.  
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First, under the assumption that it is a surface wave, the velocity corresponding to this angle of 
incidence reveals a velocity of 1477m/s, which is lower than the velocity of plane waves in water, 
and which is reasonable for Scholte-Stoneley waves. Second, the maximum is close to  
but is not equal to it. If we compare with the discussion of Wood anomalies in the previous 
section, we can come to the following interpretation: The Scholte-Stoneley wave is not much 
stimulated at  due to the oblique incidence. Stronger stimulation occurs if the incident 
wave contains already some negative inhomogeneity (by which a higher amplitude is situated 
closer to the interface than if pure plane waves were incident). 

0=incβ

0=incβ

This is the reason for  a maximum is observed in the –1 reflection coefficient. Still, it 
remains a limited maximum, not a pole. Briers et al [2] have shown that due, to the grating 
equation (X.A.1.a_30), only pure plane waves are capable of stimulating Scholte-Stoneley waves. 

1≈incβ

Fig. X.A.1.a_3: The absolute value of the –1 order reflection coefficient shows a maximum (not a pole) at 22.560 
and inhomogeneity approximately –1m-1 . 

 
In order to discover the actual nature of what is really stimulated there, one must invoke relations 
(X.A.1.a_30) and (X.A.1.a_34) whence it is found that ,  and 

. It is important to remember that the angles are measured anti-clockwise starting 
from the negative z-axis. This means that it radiates into the liquid almost but not perfectly 
parallel to the interface. Hence it is a leaky Scholte-Stoneley wave. 

0,1
1 996.269=− rξ 0,1

1 998.269=− dξ
0,1

1 997.269=− sξ
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If one needs to understand what causes the amplitude dip in the zero order reflection coefficient, 
one must not only take into account this leaky Scholte-Stoneley wave, but also sound stimulated 
by additional diffraction orders. 
In Fig. X.A.1.a_4, it is seen that the amplitude of the +1 order reflected wave nowhere exceeds 
unity. However, it also seems to be stimulated more or less depending on the angle and 
inhomogeneity of incidence. It is the interaction of the –1 order with that of the +1 order that 
determines what happens with the zero order reflection coefficient. The same conclusion holds 
for higher order diffracted waves, even though their influence is more negligible. That is the 
reason why the position of the dip in Fig. X.A.1.a_2 differs from the position of the peak of Fig. 
X.A.1.a_3. However, the dip of Fig. X.A.1.a_2 is situated where the –1 order reflection 
coefficient is still considerably exceeding unity. In fact, if relations (X.A.1.a_30) and 
(X.A.1.a_34) are taken into account for the dip, one finds that ,  and 

. Hence, it must be concluded that the situation under which the backward traveling 
leaky Scholte-Stoneley wave is not in its highest stimulated state, will, due to its interaction with 
other diffracted orders, cause the amplitude dip of Fig. X.A.1.a_2.  

0,1
1 77.267=− rξ 0,1

1 84.269=− dξ
0,1

1 80.269=− sξ

For clarity, Figs X.A.1.a_2-4 are represented in Fig. X.A.1.a_5, but now viewed from the top and 
expressed in dB. 

Fig. X.A.1.a_4: The absolute value of the +1 order reflection coefficient. Even though the amplitude is overall 
rather small, still there are fluctuations observable. 
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 Results and Discussion of the Reflection Coefficients for Single Inhomogeneous 
Waves incident near the Expected Rayleigh Angle. 

 
In Fig. X.A.1.a_6, we present the results in dB, viewed from above. It is seen that the area 
between 420 and 470 contains a distribution of peaks and dips of the zero order reflection 
coefficient at inhomogeneities that are much larger than in the case of Fig. X.A.1.a_2. It is 
important to note that a peak (or a valley) in the zero order reflection coefficient for negative (or 
positive) inhomogeneities causes a shift to the right and a valley (or a peak) in the zero order 
reflection coefficient for positive, respectively negative, inhomogeneities causes a shift to the left. 
Therefore, two peaks or two valleys at symmetrical positions relative to the axis of the angle of 
incidence, thwart each others effect in a bounded beam. (This situation does not occur in Fig. 
X.A.1.a_6). A peak and a valley at symmetrical positions relative to the axis of the angle of 
incidence, causes a strong cooperation in shifting waves to the left or to the right. This situation 
appears more or less in Fig. X.A.1.a_2. 
 

Fig. X.A.1.a_5: The information of Fig. X.A.1.a_2, Fig. X.A.1.a_3 and Fig. X.A.1.a_4 are collected and plotted in 
dB. Direct comparison with Fig. X.A.1.a_6 is therefore possible. 
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Fig. X.A.1.a_6: The amplitude in dB of the 0-order, 1-order and –1-order reflection coefficients as a function of 
the angle of incidence and the incident inhomogeneity. It is seen that the peaks and valleys in the 0-order 

reflection coefficient have flanks that appear to be uninfluenced if beta turns from positive to negative values. 
 
Actually, what we do see in Fig. X.A.1.a_6 is a dense distribution of peaks and dips in the zero 
order reflection coefficient that all extend beyond 0=β . It is as if the flanks of the peaks and 
valleys are uninfluenced by the transition of positive inhomogeneities into negative 
inhomogeneities and vice versa. Hence there is certainly not a strong, cooperation between a peak 
and a valley in a bounded beam. Furthermore, it is known that the highest inhomogeneity that is 
taken into account in the decomposition of a bounded beam into inhomogeneous waves is 
inversely proportional to the beamwidth [22]. Hence, for relatively large beamwidths, only the 
area [ maxmax , ]ββ−  in which a small slope in the zero order reflection coefficient is observable, 
will be taken under consideration. This might be the reason why Breazeale and Torbett [14] 
couldn’t observe any beamshift beyond 400, perhaps, if they had used a much narrower beam, 
they would have observed a beam shift indeed. An additional reason might be the intuitive fact 
that a real bounded beam (i.e. a beam that is not perfectly parallel, but is slightly spreading) is 
actually built up by several parallel beams (~’building blocks’) coming from different directions 
close to a mean angle of incidence. Hence the consequential reflected beam will be the result of 
the superposition of many reflected beams that have undergone different deformations and in 
which the deformation of one ‘building block’ will be (partly) invisible due to the deformation of 
another ‘building block’. The latter effect might cause all peaks and dips around 440 to ‘interact’ 
with each other and to thwart each others’ effect, resulting in unobservable beam shifts. 
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 Results and Discussion of Displacement Fields near the Expected Rayleigh Angle 
 
There is however a critical question to be answered: Why do the peaks and dips in Fig. X.A.1.a_6 
have different characteristics (i.e. a peak at β  is not accompanied by a valley or dip near β− ) 
than the peaks and dips that explain the excitation of leaky Rayleigh waves on smooth interfaces 
[23]. Our explanation is that the reason is to be found in the disturbance due to the other 
diffraction orders (see comments above in section V.A concerning Wood anomalies). Fig. 
X.A.1.a_7 shows the amplitude of the different displacements of the diffracted field in the case of 

 and , which corresponds to a peak in the +1 order reflection 
coefficient. Even though one would expect this peak to correspond to a generated forward 
traveling leaky Rayleigh wave, Fig. X.A.1.a_7 does not show any characteristic that corresponds 
to such a situation. 

064.44=incθ 10.419 −−= mincβ

However, since it is the +1 order that is expected to be a ‘leaky Rayleigh wave peak’, it is 
interesting to plot the displacement field of only positive reflection orders. This is achieved in 
Fig. X.A.1.a_8, where it is seen that this pattern corresponds much better to that of a leaky 
Rayleigh wave on a smooth interface. However, the similarity is rather poor. The latter is 
probably due to the fact that even though their displacement is not plotted, the influence of 
negative orders is still present in the continuity conditions. Hence we may conclude that what 
causes the peaks in Fig. X.A.1.a_6 is the excitation of leaky Rayleigh wave-like phenomena. 
 
 Results and Discussion of Particle Displacement Fields near the Angle where 

Breazeale and Torbett [14] observed a Backward Beamshift 
 
Fig. X.A.1.a_9 shows the displacement for the total diffraction field under the conditions that 
correspond to the dip in Fig. X.A.1.a_2. This field is much different than the field that would be 
expected if a pure Scholte-Stoneley wave was depicted. However, this is due to the fact that it is 
formed by the interaction of a leaky Scholte-Stoneley wave and the other diffraction orders (as 
discussed above). Its propagation is shown in Figs X.A.1.a_10-11.  
What is really interesting in Fig. X.A.1.a_9 is the fact that it shows the same pattern as Fig. 
X.A.1.a_8.  
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Fig. X.A.1.a_7: Amplitude of the complete particle displacement field as a function of depth (negative z-values in 

the solid, positive z-values in the liquid) for ,  and a frequency of 6MHz. Solid line: 
x-displacement, dotted line: z-displacement. There is no Rayleigh characteristic observable. 

064.44=incθ 10.419 −−= mincβ
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Fig. X.A.1.a_8: Same as Fig. X.A.1.a_7, except that solely the contribution to the displacement of the positive 
diffraction orders has been taken into account. This plot uncovers a characteristic that is more or less similar to the 

one of a leaky Rayleigh wave (cfr Fig 19 of Ref [26]). 
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Fig.X.A.1.a_ 9: Amplitude of the complete particle displacement field as a function of depth (negative z-values in 
the solid, positive z-values in the liquid) for ,  and a frequency of 6MHz. Solid 

line: x-displacement, dotted line: z-displacement. The pattern shows some resemblance with the typical pattern of 
Rayleigh waves. The reason of the similarity of Fig. X.A.1.a_9 and Fig. X.A.1.a_8 is rather surprising. 

059.22=incθ 186.71 −−= mincβ
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Fig. X.A.1.a_10: The amplitude of the x-displacement as a function of depth and propagation. Same physical 
circumstances as in Fig. X.A.1.a_9. 
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Fig. X.A.1.a_11: The amplitude of the z-displacement as a function of depth and propagation. Same physical 
circumstances as in Fig. X.A.1.a_9. 

 
Hence, the complete diffraction field that corresponds to the dip in Fig. X.A.1.a_2, shows the 
same amplitude pattern (not the exact values of course) as that corresponding to the leaky 
Rayleigh wave peak in Fig. X.A.1.a_6 at  and  if in the latter, only 
the particle displacements field due to waves traveling in the direction of the Rayleigh wave are 
plotted. We have no explanation for this. 

064.44=incθ 10.419 −−= mincβ

 
 Results for Bounded Beams using the Fourier Decomposition 
 
If a bounded beam, described as a superposition of plane waves (see (X.A.1.a_43)), would fully 
explain what Breazeale and Torbett [14] observed experimentally, then the more elaborate study 
using inhomogeneous waves would be unnecessary. In Figs. X.A.1.a_12-13, the reflected beam 
pattern at 6MHz is shown as a function of the angle of incidence, using the Fourier method. Fig 
X.A.1.a_12 shows that for a very wide beam (approximately 10cm physical width), there is not 
really any significant beam shift observable, except for some small disturbance at bulk critical 
angles. If however a physical beamwidth of approximately 1 cm is used (Fig. X.A.1.a_13), which 
corresponds to the beamwidth in the experiments of Breazeale and Torbett [14], significant beam 
deformations and beam shifts appear between 350 and 450. The latter have not been observed 
experimentally. There is also nothing significant observable on Fig. X.A.1.a_13 near the angle 
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where Breazeale and Torbett [14] observed a significant backward beamshift. We must therefore 
conclude that the Fourier method is unable to describe the diffraction experiments of ref. [14]. 
 

 
Fig. X.A.1.a_12: The reflected beam profile as a function of the angle of incidence at a frequency of 6 MHz. The 

Fourier method is used. The physical beamwidth is approximately 10 cm. No explicit beam displacement is 
observable. There is some effect at 17.800 , which is due to the critical angle for dilatational lateral bulk waves, 

and also at 40.69, which is due to the critical angle for shear lateral bulk waves. 
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Fig. X.A.1.a_13: Same legend as Fig. X.A.1.a_12, except that a physical beamwidth of 1 cm is used. Hence one 
should expect to find what Breazeale and Torbett have experimentally observed, which is certainly not the case. 

 
 Results for Bounded Beams using the Inhomogeneous Waves Decomposition 
 
Fig. X.A.1.a_14 shows the theoretical result for 2MHz,  and a physical beamwidth of 
approximately 1cm. No beamshift is seen. Fig. X.A.1.a_15 shows the same result, but now for a 
frequency of 6MHz. Clearly a beamshift 

059.22=incθ

∆  is observable. Figs X.A.1.a_14 and X.A.1.a_15 
correspond so well to what Breazeale and Torbett [14] have observed, that they are almost exact 
copies of their pictures [14]. 
If the same incident beam is used as in Fig. X.A.1.a_15, but now at , Fig. X.A.1.a_16 
is obtained. At  Fig. X.A.1.a_17 is obtained. It is seen that Figs. X.A.1.a_16-17 also 
show no beamshift (Fig. X.A.1.a_16) or an almost negligible forward beam shift (Fig. 
X.A.1.a_17). This is also in agreement with the observations in ref. [14], where no significant 
beam shift beyond 40

007.43=incθ
063.44=incθ

0 is found. 
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Fig. X.A.1.a_14: Here the inhomogeneous waves theory is used. The incident (dotted line) and the reflected (solid 
line) beam profile at a frequency of 2 Mhz and an angle of incidence 22.590 . No displacement is observed, in 

agreement with the experiments of Breazeale and Torbett. 
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Fig. X.A.1.a_15: Same situation as in Fig. X.A.1.a_14, except that the frequency is now 6 MHz. A backward beam 

shift is observed in agreement with the experiments of Breazeale and Torbett. 

 
- 359 - 



CHAPTER X: Diffraction Phenomena 
  

Fig. X.A.1.a_16: Same legend as in Fig. X.A.1.a_15, except that the angle of incidence is here 43.070, which is the 
angle at which the zero order reflection coefficient shows a maximum. (see Fig. X.A.1.a_6). No displacement is 

observed, in agreement with the experiments of Breazeale and Torbett. 
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Fig. X.A.1.a_17: Same legend as in Fig. X.A.1.a_16, except that the angle of incidence is here 44.630, which is the 
angle at which the –1 order reflection coefficient shows a maximum (see Fig. X.A.1.a_6). Only a negligible 

displacement is observed which is in agreement with the experiments of Breazeale and Torbett. 
 
 CONCLUDING REMARKS 

 
This section has proved that the inhomogeneous waves theory is capable of elucidating 
the backward beam shift that has been observed by Breazeale and Torbett [14] and, 
besides a short demonstration [27] of the capability of the inhomogeneous waves theory 
to simulate the phenomenon, has been unexplained ever since. It is found that this effect 
is caused by the interaction of a leaky Scholte-Stoneley wave, with other diffracted 
waves. This is a new phenomenon and was first theoretically proved [28], shortly before 
its experimental discovery [29]. Furthermore, a better insight is given into the nature of 
Wood anomalies in diffraction spectra. Hence, even though the described diffraction 
theory has also been proved to be very valuable in architectural acoustics [30], perhaps 
one of  the most beautiful phenomena it has ever explained, is the one described in the 
current section. 
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X.A.1.b Experimental Study of the Backward 
Displacement of Ultrasonic Waves 
Reflected from a Periodically 
Corrugated Interface 

 
 New experiments using the schlieren technique to image sound incident on a 

corrugated, water-brass interface show a backward displacement of the reflected 
beam at an angle of 22.5 degrees, confirming the observations of Breazeale and 
Torbett [Appl. Phys. Lett. 29, 456 (1976)]. However, a new theory hypothesizes 
that this beam displacement results from excitation of a new type of leaky surface 
wave. Further experiments with a sufficiently narrow incident beam reveal a 
backward displacement also at angles around 44 degrees, resulting from 
excitation of Rayleigh surface waves, as predicted by the theory of Tamir and 
Bertoni [J. Acoust. Soc. Am. 61, 1397-1413 (1971)]. Thus, a wide beam gives 
backward displacement at 22.5 degrees only. A narrow beam gives backward 
displacement also at angles around 44 degrees. 
This work has been performed at the National Center for Physical Acoustics, The 
University of Mississippi, Oxford, Mississippi, USA, in collaboration with A. 
Teklu, M. A. Breazeale and Roger Hasse, and is accepted for publication in J. 
Appl. Phys. (Imp. Fact. 2.281; SCI-index, Physics-Applied, rank:13/76) 

 
 INTRODUCTION 
 
The Goos-Hänchen theory predicts that light incident near the critical angle on a dielectric 
interface from an optically denser medium has a reflected beam that is laterally shifted from the 
position predicted by geometrical optics [1].  The incident light beam transfers a portion of its 
energy into the optically rarer medium and excites an electromagnetic field that travels 
longitudinally for a certain distance along the interface.  This energy is leaked back into the 
denser medium and interferes with the specularly reflected beam. This interference results in a 
reflected beam which exhibits a lateral displacement that appears as a forward beam shift. More 
complex structures such as multilayered media and periodically corrugated configurations of the 
optical grating type guide electromagnetic fields of the leaky-wave variety as well. The lateral 
displacement of a light beam reflected from a leaky-wave structure when a Gaussian light beam 
is incident upon it was studied by Tamir and Bertoni [2]. The theory of Tamir and Bertoni [2] 
predicts that at a certain critical angle, a reflected beam shift may occur either in the forward or in 
the backward direction with respect to the incident beam. 
The early experiments of Schoch [3,4] using the acoustic analog of the Goos-Hänchen effect for 
an ultrasonic beam reflected from a liquid-solid interface showed a forward lateral displacement 
of the reflected ultrasound beam.  Later, Breazeale and Torbett [5], using a schlieren 
photographic technique, observed a backward beam shift of a 6 MHz ultrasonic beam of 10 mm 
width, reflected from a superimposed periodic grating, confirming the backward beam 
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displacement predicted by the theory of Tamir and Bertoni [2]. Angles of incidence are measured 
from the normal to the surface. According to the theory of Tamir and Bertoni [2], the angle of 
incidence θi at which the phenomenon occurs is 410 for an ultrasonic beam of frequency 6 MHz 
and is imaginary for 2 MHz; thus the effect would not be observed at 2MHz.  If this theory is 
valid, at θi=41°, leaky Rayleigh surface waves with a velocity of 2015 m/s should be excited on a 
corrugated brass reflector leading to backward beam shift.  The experiment confirmed the 
existence of a surface wave at 6 MHz, but not at 2 MHz, when frequency was the only parameter 
altered in the system. The predicted angle for a 6 MHz beam is significantly different from the 
value of 22.5° measured by Breazeale and Torbett [5]. Using the measured angle of incidence of 
22.5°, they calculated the velocity of this leaky surface wave as 1470 m/s which is considerably 
smaller than that of the Rayleigh surface wave.  This suggests that either the theory of Tamir and 
Bertoni [2] does not accurately describe the backward displacement phenomenon or that the 
surface wave that is responsible for the phenomenon differs from the leaky Rayleigh wave.   
Recently, Declercq et. al. [6,7] used the inhomogeneous wave theory to account for the 
discrepancies between the predictions of Tamir and Bertoni [2] and the experimental 
observations of Breazeale and Torbett [5]. They represented a bounded ultrasonic beam as a sum 
of infinite inhomogeneous waves and applied the theory of the diffraction of inhomogeneous 
waves to account for the behavior of  each individual wave upon incidence on the periodically 
rough surface. Furthermore, they applied sign reversal rules, based on experiments, as described 
by Deschamps [8]. Using this approach, Declercq et. al. [6,7] have calculated the angle of 
incidence for the generation of leaky surface waves in order to resolve disagreements between 
theory and experiment.  Their calculated value of the angle of incidence agrees very well with our 
measured value. However, the most striking result of the inhomogeneous wave theory is the 
prediction of the excitation of a new kind of leaky surface wave [7] on a periodically corrugated 
brass-water interface that is different from the leaky Rayleigh wave. Declercq et. al. [7] also 
showed that in the vicinity of the angle of 44°, where Breazeale and Torbett [5] expected only a 
backward beam displacement due to leaky Rayleigh waves, there is excitation of propagating 
leaky Rayleigh waves which may result in changes of the beam profile but probably not in an 
outright backward beam displacement.  It was also shown that any such changes in the beam 
profile can occur only near 44° when a bounded beam is used that is narrower than the one of 10 
mm width that was used in the original experiments of Breazeale and Torbett.
Here, we report new experimental results obtained with modern imaging techniques using a 
bounded beam of only 6 mm beam width. This allowed us to study the cause of the backward 
displacement at 22.5° and to verify the prediction of Declercq et. al. [6,7] that changes in the 
beam profile can occur for such a narrow beam around 44°.  These experiments indicate that the 
backward beam shift is caused by the generation of a Scholte-Stoneley like surface wave and that 
indeed there are changes in the beam profile around 44° when a narrow beam is used instead of 
the wider beam used in the original experiments.
 
 EXPERIMENT 
 
The schlieren photographic technique was used to image an incident ultrasonic bounded beam 
reflected by a periodically corrugated brass surface. Fig. X.A.1.b_1 is a schematic of the 
experimental set-up. To provide a large field of view, two large (f/6.3, 48 inch focal length) 
lenses were chosen.  
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Fig X.A.1.b_1: Experimental set-up of the schlieren optical system. 

 
Monochromatic laser light is focused by the first lens L1 onto a circular aperture (diameter 15 
µm) that is placed at the focal point of lens L1.  After passing through the aperture, the light is 
collimated by lens L2 and passes through the test tank. Two extreme light rays from the source 
passing parallel through the test tank are shown in Fig. X.A.1.b_1. The light rays are then focused 
by a third lens L3. They pass through a focal point and providing an inverted image on the screen. 
An object placed inside the test tank, such as a reflecting surface or a transducer, thus can be 
imaged. A black ink spot is placed at the focal point of the third lens L3 to act as a spatial filter 
[10]. The black spot obstructs all the light and produces a dark screen except for regions where 
the medium is disturbed by sound or by a density gradient of any kind. In our experiments, the 
test tank is filled with water that is disturbed by ultrasonic waves which produce the beams seen 
in our pictures.  
A 6 MHz apodized quartz transducer is used to generate the bounded ultrasonic beam of 6.0 mm 
width. This beam is reflected from a brass interface ruled with square parallel grooves of period d 
= 0.178 mm and depth t = 0.025 mm (Fig. X.A.1.b_2).  The angle of incidence of the beam is 
varied in order to observe the angles at which the backward beam displacement occurs. Fig. 
X.A.1.b_2 shows the arrangement of the transducer and the reflection diffraction grating. The 
inset in Fig. X.A.1.b_2 is a photograph of a side view of the ruled section of the grating as seen 
under a microscope. The schlieren image on the screen is recorded by a digital camera connected 
to a computer with image acquisition and analysis software. 
 
 RESULTS AND DISCUSSIONS 
 
A schlieren image of an ultrasonic beam of frequency 6 MHz and a width of 6 mm, reflected 
from a brass-water interface is shown in Fig. X.A.1.b_3.  For many angles of incidence, the angle 
of the reflected beam is equal to that of the incident beam, and the reflected beam experiences no 
lateral displacement. As the angle of incidence is varied, the first order diffracted beam appears in 
addition to the reflected beam as is shown in Fig. X.A.1.b_3.  
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Fig. X.A.1.b_2: Schematic arrangement of the transducer and grating shown in Fig. X.A.1.b_1. 
The inset is a photograph of the ruled section of the grating. 

 

 
 

Fig. X.A.1.b_3: Schlieren image of a 6mm wide ultrasonic beam incident upon a brass reflector at a certain angle 
of incidence different from any critical angle. 

 
As the incident angle approaches 22.5°, in Fig. X.A.1.b_4, the first order diffracted beam 
approaches the tangent to the surface; also, illumination of the top surface of the brass reflector is 
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visible. As is seen on the left of the figure, the illumination extends beyond the left edge of the 
corrugated sample. In fact, the illumination is caused by a surface wave that is scattered in the 
forward direction when reaching the edge of the sample. This suggests that the generated surface 
wave is of the Scholte–Stoneley type. According to Briers et al [9], such a surface wave is 
scattered primarily forward when reaching the edge of a plate. 
 

 
 

Fig. X.A.1.b_4: Schlieren image of a 6 mm wide ultrasonic beam incident upon a brass reflector at an angle of 
incidence slightly larger than 22.5o; besides a diffracted beam near the interface, a sound beam is visible that 

propagates along the interface, being scattered in the forward direction at the extremity of the sample. 
 
Fig. X.A.1.b_5 shows the schlieren image in the case of a bounded beam incident at exactly 
22.5°. Although illumination of the surface is still visible, a distinct backward displacement is not 
observed because the incident beam is much narrower than that in the original experiments of 
Breazeale and Torbett [5]. This phenomenon was predicted by Declercq et. al. [6] Furthermore, 
they predicted that the backward displacement occurs naturally for wide beams, as is seen in Fig. 
X.A.1.b_6, for a 12 mm wide beam. For narrow beams they also showed that at angles around 
44° either forward or backward propagating leaky Rayleigh waves can be generated. Narrow 
beams are more likely to show variations of the beam profile at this angle. Indeed, in Fig. 
X.A.1.b_7 we see that alterations of the beam profile of the reflected bounded beam are visible 
for a narrow beam of 6 mm width. For the wider beam they were not observed [5]. 
As described, when the angle of incidence is equal to the angle of 22.5°, a reflected wide beam is 
laterally displaced backwards to a sizable extent as is shown in Fig. X.A.1.b_6. As can be seen 
from Figs. X.A.1.b_3-5, the ultrasonic phenomenon is a diffraction phenomenon, so the 
mathematical representation of the experiments by means of diffraction of inhomogeneous waves 
to account for backward beam displacement seems appropriate. 
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Fig. X.A.1.b_5: Schlieren image of a 6 mm wide ultrasonic beam incident upon a brass reflector at 
22.5o; a sound field is visible on the interface in the backward direction, being scattered in the forward 

direction at the extremity of the sample. This is evidence that it is a Scholte – Stoneley wave. 
 

 
 

Fig. X.A.1.b_6: Same situation as in Fig. X.A.1.b_5, except that the width of the incident beam is now 12 mm. 
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Fig. X.A.1.b_7: Schlieren pictures of a 6 mm wide bounded beam, incident at angles in the vicinity of 
45. Changes of the reflected beam’s profile are visible. 

 
It is known that for a bounded ultrasonic narrow beam incident on a water-brass interface, the 
condition for total internal reflection is given by [5] 
 

1 2 1 1sin K Vi R liqK d fd Vliq S

πθ
⎛ ⎞⎛ ⎞ ⎜ ⎟= − = −⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

 
(X.A.1.b_1)

 
where d is the period, f is the frequency, Vliq is the propagation velocity in the liquid, and VS is the 
propagation velocity of the leaky wave. At this angle, the incident beam interacts strongly with 
the leaky-wave field since it is phase matched to one of the space harmonics of the leaky wave. 
This interaction leads to an additional reflected beam which is laterally displaced in the negative 
x direction. (Note that the right-hand-side of Equation 1 can become greater than unity for certain 
values of the frequency f corresponding to an imaginary angle of incidence, at which angle the 
phenomenon of backward displacement is not observed.)    

Using the measured values of θi = 22.5°, d = 0.178 mm and Vliq = 1490 m/s, one 
calculates, using Equation 1, the propagation velocity of the leaky surface wave VS = 1470 m/s.  
This value is considerably smaller than the propagation velocity of leaky Rayleigh wave (2015 
m/s) and is reasonable for a Scholte–Stoneley wave. Nevertheless, its influence on the reflected 
beam can only be explained by considering it to be of the leaky type, again in agreement with ref 
[7].  
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 POSSIBLE APPLICATIONS 
 
Scholte-Stoneley waves are excellent tools to examine the smooth surface and subsurface region 
of a solid immersed in water. Their basic advantages are a small penetration depth and 
propagation without energy loss over large distances. Nevertheless, they are hard to generate. 
One of the techniques of Scholte-Stoneley wave generation is the use of a small diffraction 
grating created on the smooth surface. Only normal incidence has been studied in detail; 
however, for some applications in the field of nondestructive testing or in underwater acoustics, 
normal incidence is not realizable—then oblique incidence is required.  It is shown [10] that the 
generation of Scholte-Stoneley waves is possible for oblique incidence in the forward direction 
and it is explained [7] that for oblique incidence, stimulation of Scholte-Stonely waves is less 
outstanding, and actually only results in a leaky form of these waves. The current section proves 
for oblique incidence, that Scholte-Stoneley waves are indeed leaky, and that it is possible to 
generate them in the backward direction—resulting in the backward beam displacement. This 
phenomenon is of interest when backward-propagating Scholte-Stoneley waves are to be 
generated in a situation where only forward oblique incidence is possible. 
 
 CONCLUSIONS 

 
The experiments of Breazeale and Torbett [5] have been verified. When sound is 
incident on a corrugated brass surface backward beam displacement can be 
observed.  This backward displacement appears at 22.5°, rather than 41°, as 
predicted by the theory of Tamir and Bertoni [2]. Present experiments show that 
there is a generation of some other type of surface wave with a velocity far below 
that of a Rayleigh wave.  This work confirms the excitation of a leaky surface 
wave at 22.5°, and provides visual evidence that it exhibits the behavior expected 
by a Scholte – Stoneley type of wave7,9, in agreement with the theory developed 
by Declercq et. al. [6,7] 
The narrow beam predictions of Declercq et. al. [7] also are verified. A beam of 6 
mm in width (as opposed to the 10 mm beam used in the original experiments of 
Breazeale and Torbett [5]) cause the excitation of a leaky Rayleigh wave for 
angles of incidence near 44°, which is near the angle predicted by Tamir and 
Bertoni. [5]
The backward beam displacement is accompanied by backward propagating leaky 
Scholte – Stoneley waves, which is of interest in nondestructive testing when only 
oblique incidence is feasible in the forward direction. 
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X.A.1.c Note on the Diffraction Field 
Generated by Inhomogeneous Waves 
Obliquely Incident on a Periodically 
Rough Liquid-Solid Boundary 

 
 It is shown by Deschamps [J. Acoust. Soc. Am. 96(5), 2841-2848, 1994] that 

when inhomogeneous waves scatter from a plane interface, one should make 
an appropriate choice of the sign of the corresponding wave vectors. In an 
article of Briers et al [J. Acoust. Soc. Am. 106(2), 682-687, 1999], an 
extension of that sign rule is incorporated, in order to meet the requirements 
of correspondence of the theory of diffraction on periodically corrugated 
surfaces, with experimentally obtained data. The current section states that the 
extension is not necessary and that the rule of Deschamps can be applied as it 
is in order to meet agreement between theory and experiment. 

 
 INTRODUCTION 
 
A corrugated interface between a liquid and a solid is depicted in Fig. X.A.1.c_1. The article of 
Briers et al [2] has proved to be very valuable as experimental evidence for the existence of 
physical phenomena that are predicted by the inhomogeneous wave theory, such as a reflection 
coefficient exceeding unity, and diffraction phenomena in the regime where the Rayleigh 
assumption for diffraction holds [2-4]  This Rayleigh assumption is extensively explained in [2-4] 
and is in fact the decomposition of the diffracted sound field into pure and inhomogeneous plane 
waves, governed by the continuity of normal stress and displacement and by the generalized 
diffraction equation as well as the dispersion relation for inhomogeneous waves. Ref [2] also 
proved the validity of the generalized diffraction equation for complex valued wave vectors. 
For smooth interfaces, the law of Snell-Descartes [5-23] holds and demands continuity of the 
incident and scattered complex wave vectors along the interface. The components perpendicular 
to the interface are often, especially in the pure homogeneous plane wave theory, chosen as to 
meet the causality principle stating that all diffracted waves must propagate away from the 
interface and the Sommerfeld condition stating that pure evanescent surface waves must show 
amplitude decay away from the interface. Deschamps [1] however shows that Sommerfeld’s 
condition and the causality principle do not always have to be fulfilled if incident bulk 
inhomogeneous waves are considered. 
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Fig. X.A.1.c_1: Schematic of the corrugated surface with incidence from the liquid side 

 
He states that the theory of the scattering of inhomogeneous waves can solely correspond fully 
with observations if the sign of the wave vector of a transmitted inhomogeneous wave is chosen 
to be ‘leaky Rayleigh wave’-like whenever the direction of propagation is almost parallel to the 
interface. Furthermore, Deschamps states that ‘almost parallel’ is fulfilled whenever an incident 
plane wave that would generate a transmitted plane wave in the same direction as the transmitted 
inhomogeneous wave, would be incident at an angle beyond the critical angle for that particular 
transmitted mode. In the article of Briers et al [2], a sign choice is proposed in the theoretical 
treatment of diffraction on corrugated surfaces, that leads to almost perfect correspondence with 
experiments, but that differs from the sign choice in the article of Deschamps [1], because also 
the sign of the wave vectors of the reflected inhomogeneous waves are to be reversed beyond a 
critical angle. Mathematically, this extension of Deschamps’ rule [2] is appropriate since it 
predicts the phase and the amplitude of the reflected waves rather well, however in what follows, 
we show that such an extension is not mandatory. Hence, the scientific requirement, that, 
physical principles for corrugated surfaces must become equal to those for plane surfaces in the 
limit of the corrugation height tending to zero, forces us to replace the extended rule [2]. 
 
 THE SIGN CHOICE UNDER CONSIDERATION 
 
In the referred article [2], the sign choice follows the causality principle and Sommerfeld’s rule 
for each diffracted order m and for each mode p (p=s for transmitted shear, p=d for transmitted 
longitudinal, p=r for reflected longitudinal waves) involving a (complex) angle  that is 
defined by the diffraction equation for an incident homogeneous plane wave coming from the 
same angle of incidence as the incident inhomogenous wave [2]. If however for an order m and 
mode p 

mp,θ

 
,sin 1p mθ >  

(X.A.1.c_1)
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Then the sign of the z-component of the corresponding wave vector should be reversed, also if 
the respective mode is a reflected wave. On plane interfaces, reversion of the reflected z-
component of the wave vector never occurs for incident inhomogeneous waves [1]. Even if, on 
corrugated surfaces, Scholte-Stoneley waves are excited (by incident homogeneous plane waves), 
Sommerfeld’s relations do not need to be reversed [3-4]. 
 
 A MORE APPROPRIATE SIGN CHOICE 
 
We state that Deschamps’ rule [1] for a plane interface does not need to be extended for a rough 
surface. Hence reflected sound should always propagate into the half space of incidence. If for a 
plane interface, we denote the incoming wave vector as 
 

1 2
inc inc inci= −k k k  (X.A.1.c_2)

 
For  and  being real wave vectors and inc

1k inc
2k 1−=i , then the angle of incidence is  with incθ

 

arctan 1, 1,
inc inc inck kx zθ ⎡ ⎤= ⎢ ⎥⎣ ⎦

 
(X.A.1.c_3)

 
However, in order to use this rule also for corrugated surfaces, one should focus not on the angle 
of incidence (as is literally the case in the article of Deschamps [1]), but on the angle of reflection 

, which is the same as the angle of incidence in the case of plane surfaces. Then, Deschamps’ 
rule [1] becomes: 

rθ

always use the causality principle for transmitted waves of mode p, except whenever. 
 

arcsinr v vl pθ ⎛ ⎞> ⎜ ⎟
⎝ ⎠

 
(X.A.1.c_4)

 
In which  is the sound velocity in the liquid and  is the sound velocity of the transmitted 

mode under consideration. In the case of (X.A.1.c_4), the choice of the sign of  must be 

chosen as to fulfill the condition for leaky Rayleigh waves, i.e.  must point into the liquid. It is 

important to note that  is accompanied by  and that the sign choice of  is completely 

determined by the nature of its counterpart . 

lv pv
p

zk ,2

p
2k

p
2k r

2k p
zk ,2

r
2k

If these principles are used for corrugated surfaces, then we obtain that for a transmitted wave of 
mode p and of order m, the sign choice of  is completely determined by the nature of its 

counterpart , i.e the causality principle holds except when 

pm
zk ,

,2
rm
z
,
,2k

 
, , ,arctan arcsin1, 1,

r m r m r mk k v vx z lθ ⎡ ⎤ ⎛ ⎞= > ⎜ ⎟⎢ ⎥ ⎝ ⎠⎣ ⎦ p  
(X.A.1.c_5)
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Then, whenever (X.A.1.c_5) holds, the sign of  must be chosen as to be Rayleigh wave 

like, i.e.  must point into the liquid. 

,
2,
m p

zk

,
2
m pk

 
 COMPARISON WITH EXPERIMENTAL DATA 
 
We have taken experimental data form Briers et al [2]. We have implemented Deschamps rule as 
described above, without creating extensions such as in Briers et al [2] and performed 
calculations under exactly the same circumstances [2] (i.e. the same material parameters are 
used). 
In Fig. X.A.1.c_2, the zero order reflection coefficient is depicted and can be compared with Fig. 
X.A.1.c_5 in Briers et al [2]. Fig. X.A.1.c_2a shows the amplitude of the calculated reflection 
coefficient (full line) and the experimentally observed one (depicted by circles). It is seen, that 
the theoretical values correspond quite as well to the experimental values as in the cited article 
[2]. Around –150 we even get better results. In Fig X.A.1.c_2b, we have plotted the experimental 
values of the phase in circles and the calculated phase in doted lines. We need to stress the fact 
that for each phase ϕ , we have also plotted  in order to avoid misinterpretations such as 
0

0360ϕ ±
0 that seems very different from 3600. It is seen that the calculated phase corresponds quite well 

to the experimentally observed phase. The latter would not have been the case if the traditional 
causality principles held in any situation as is very well stated by Briers et al [2].  
 
 CONCLUSIONS 

 
It is shown that the Deschamps’ rule [1] for scattering at plane interfaces can be used 
without extension for diffraction on corrugated surfaces. This is shown by a numerical 
calculation showing that the original Deschamps’ rule [1] leads to equally well 
correspondence with experiments as the extended rule in the commented article [2]. The 
same principle has also been implicitly incorporated in ref [24] and lead to 
correspondence with other diffraction experiments as well. 
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Fig. X.A.1.c_2: Comparison between experimentally obtained2 zero order reflection coefficient and theoretical 
values, for angles of incidence ranging from –900 to +900. Fig. X.A.1.c_1a depicts the amplitude 

(circles=experimental values, full line=theoretical values), Fig. X.A.1.c_1b depicts the phase in degrees 
(circles=experimental values, dotted lines=theoretical values). For each angle of incidence, the theoretically 

obtained phase ϕ  is accompanied by . 0360±ϕ
 
 REFERENCES 

[1] Marc Deschamps, “Reflection and refraction of the evanescent plane wave on plane interfaces”, J. 
Acoust. Soc. Am. 96(5), 2841-2848, 1994 

[2] R. Briers, O. Leroy, O. Poncelet, M. Deschamps, “Experimental verification of the calculated 
diffraction field generated by inhomogeneous waves obliquely incident on a periodically rough liquid-
solid boundary”, J. Acoust. Soc. Am. 106(2), 682-687, 1999 

[3] J. M. Claeys, Oswald Leroy, Alain Jungman, Laszlo Adler, “Diffraction of ultrasonic waves from 
periodically rough liquid-solid surface”, J. Appl. Phys. 54(10), 5657-5662, 1983 

[4] K. Mampaert, O. Leroy, “Reflection and transmission of normally incident ultrasonic waves on 
periodic solid-liquid interfaces”, J. Acoust. Soc. Am. 83 (4), 1390-1398, 1988 

[5] Nico F. Declercq, and Joris Degrieck, Oswald Leroy, “On the generalized Snell’s law and its possible 
relation to coherent backscattering of ultrasonic waves”, in Press at Applied Physics letters 

[6] M. Deschamps, O. Poncelet, “Inhomogeneous plane wave and the most energetic complex ray”, 
Ultrasonics 40, 293-296, 2002 

[7] Bruno Rogé, “Réflexion/transmission d’une onde plane inhomogene incidente sur une interface plane 
séparant deux milieux anisotropes", Thesis, Université de Technologie de Compiègne, France, 1999 

 
- 377 - 



CHAPTER X: Diffraction Phenomena 
  

[8] Bernard, M. Deschamps, M. J. S. Lowe, “Comparison between the dispersion curves calculated in 
complex frequency and the minima of the reflection coefficients for an embedded layer”, J. Acoust. 
Soc. Am. 107(2), 793-800, 2000 

[9] M. Deschamps, F. Assouline, “Attenuation Along the Poynting Vector Direction of Inhomogeneous 
Plane Waves in Absorbing and Anisotropic Solids”, Acustica – Acta Acustica, 86, 295-302, 2000 

[10] Ph. Boulanger, “Energy flux for damped inhomogeneous plane waves in viscoelastic fluids”, Wave 
Motion 28, 215-225, 1998 

[11] Allard JF, Lauriks W, “Poles and zeros of the plane wave reflection coefficient for porous surfaces”, 
Acustica 83(6), 1045-1052, 1997 

[12] O. Poncelet, M. Deschamps, “Lamb waves generated by complex harmonic inhomogeneous plane 
waves”, J. Acoust. Soc. Am., 102(1), 292-300, 1997 

[13] Ph. Boulanger, M. Hayes, Bivectors and Waves in Mechanics and Optics (Chapman and Hall, London, 
1993) 

[14] Patrick Lanceleur, Helder Ribeiro, Jean-François De Belleval, “The use of inhomogeneous waves in the 
reflection-transmission problem at a plane interface between two anisotropic media”, J. Acoust. Soc. 
Am., 93(4), 1882-1892, 1993 

[15] Chevée P., Deschamps M., Interaction of plane heterogeneous waves within a damping layer – 
comparison between theory and experiment”, ACUSTICA 76(5), 224-230, 1992 

[16] Poirée B., “Velocity of energy-transport in an acoustic complex plane wave”, ACUSTICA 74(1), 63-
68, 1991 

[17] Jose Roux, “Reflection and refraction of heterogeneous waves at plane interfaces”, “Physical Acoustics 
: Fundamentals and Applications”, Edited by O. Leroy and M. Breazeale, 155-164, Plenum, New York 
and London, 1991 

[18] Poirée, “Complex harmonic waves”, 99-117, Physical Acoustics, Edited by O. Leroy and M. A. 
Breazeale, Plenum Press, New York, 1991 

[19] M. Deschamps, P. Chevée, “Reflection and refraction of a heterogeneous plane wave by a solid layer”, 
Wave Motion 15, 61-75, 1992. 

[20] Gérard Quentin, André Derem, Bernard Poirée, “The formalism of evanescent plane waves and its 
importance in the study of the generalized Rayleigh wave”, J. Acoustique 3, 321-336, 1990 

[21] M. Deschamps, J. Roux, “Some considerations concerning evanescent surface waves”, Ultrasonics 
1991 (29), 283-287, 1991 

[22] Bernard Poirée, Landry Sebbag, “Les lois de la réflexion-réfraction des ondes planes harmoniques 
évanescentes. I. Mise en équations”, J. Acoustique 4, 21-46, 1991 

[23] Marc Deschamps, “Réflexion-réfraction de l’onde plane hétérogène : répartition de l’énergie”, J. 
Acoustique 3, 251-261, 1990 

[24] Nico F. Declercq, Joris Degrieck, Rudy Briers, Oswald Leroy, "Theoretical verification of the 
backward displacement of waves reflected from an interface having superimposed periodicity", Appl. 
Phys. lett. 82(15), 2533-2535, 2003 

 

 
- 378 - 



CHAPTER X: Diffraction Phenomena 
  

 

X.A.1.d Diffraction of Complex Harmonic 
Plane waves and the Stimulation of 
Transient Leaky Rayleigh Waves 

 
 This section describes the interaction of complex harmonic plane waves with a 

periodically corrugated surface. It is shown that their ability to stimulate leaky 
Rayleigh waves on a corrugated surface is similar to the ability of harmonic 
inhomogeneous waves to stimulate such waves on a smooth interface. Because 
the experimental generation of harmonic inhomogeneous waves is more 
complicated and less flexible than the generation of complex harmonic waves, 
the combination with a diffraction grating therefore offers an excellent 
alternative. The theoretical model developed here is based on the well know 
and experimentally verified complex harmonic wave theory and the famous 
Rayleigh decomposition of the diffracted field. The numerical examples are 
given for combinations of frequency and corrugation dimensions that justify 
the use of the Rayleigh theory. A study of the influence of a complex frequency 
on the generation of Scholte – Stoneley waves is performed as well. 

 
 INTRODUCTION 
 
In the 1980’s a lot of attention was drawn on the use of Scholte – Stoneley waves for 
nondestructive testing purposes. Such waves possess the important feature of propagation along a 
solid-liquid interface with only minor damping, because their velocity is lower that the velocity 
of sound in the bulk of both surrounding media, whence no radiation happens. Hence, Scholte – 
Stoneley waves are excellent tools for long distance nondestructive testing. The main problem 
however is their experimental generation. The same reason why they do not radiate into the 
surrounding media is the reason why they cannot be generated by means of incident sound, at 
least not on smooth surfaces. One method to avoid this problem is the use of a periodically 
corrugated surface. Then, Scholte – Stoneley waves can be generated by means of diffraction. 
This phenomenon has been studied in great extent before [1-9]. In this section, we use the term 
harmonic (homogeneous) plane wave for a classical sinusoidal plane wave, i.e. a plane wave 
determined by a real wave vector and a real frequency. When the wave vector is complex valued, 
we use the term inhomogeneous wave or harmonic inhomogeneous wave. Furthermore, we use 
the term complex harmonic plane wave for the case when the frequency is complex valued and 
the wave vector is real. For complex harmonic plane waves having a complex valued wave vector 
as well, we explicitly use the term complex harmonic inhomogeneous wave. It is widely accepted 
that it is possible to stimulate leaky Rayleigh waves on smooth interfaces by means of harmonic 
inhomogeneous waves incident at the Rayleigh angle [10-14]. Harmonic inhomogeneous waves 
are plane waves which amplitude shows exponential decay along the wave front but not in the 
time domain. Furthermore, similar to the case of smooth interfaces, these waves are able to 
stimulate leaky Rayleigh waves on periodically corrugated surface for normal incidence [15-19]. 
The main problem however has always been that the experimental generation of inhomogeneous 
waves is not quite convenient. More precisely, all methods of generation are based on rigid and 
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complicated experimental setups and are expensive and time consuming [16, 19-20], because for 
each requested inhomogeneous wave different equipment is necessary. 
The generation of complex harmonic plane wave is simpler and is much more flexible [21-25]. 
The theoretical model and the numerical simulations in this section are based on two well 
established theories, i.e. the theory of complex harmonic waves and the Rayleigh theory of sound 
diffraction on periodically rough surfaces. The theory of complex harmonic waves is based on 
complex solutions of the wave equation, they have also been generated experimentally [21-25]. 
The Rayleigh theory of sound diffraction on periodically rough surfaces, is also well established 
and is actually a simplified approach of more complicated models such as the differential [26-27] 
and integral equation approach [28-32] and the Waterman theory [33-37]. We apply the Rayleigh 
theory because of two important reasons, first the theory is convenient to include complex 
harmonic and inhomogeneous waves, second, it has been shown by Wirgin [38], that “contrary to 
prevailing opinion, the Rayleigh theory is fully capable of describing the scattering phenomena 
produced by a wide class of corrugated surfaces, including those whose roughness is rather 
large”. Furthermore, Wirgin [38] proves that the Rayleigh theory is valid, for λ  the largest 
wavelength involved in the diffraction phenomenon, for Λ  the corrugation period and for h  the 
corrugation height, whenever 
 

0.34h < Λ  (X.A.1.d_1)
 
and 
 

1.53348hλ >  (X.A.1.d_2)
 
In this section it will be shown that, similar to harmonic inhomogeneous waves, complex 
harmonic waves are excellent tools for stimulating (transient) leaky Rayleigh waves on 
periodically corrugated surfaces. Furthermore it will be shown that this stimulation effect is 
absent on smooth surfaces. 
 
 TRANSIENT HARMONIC PLANE WAVES 
 
It is well known that plane waves are a solution of the wave equation in visco-elastic media [25]. 
Plane waves are described by a displacement vector u as follows: 
 

( )expA i i tω= • −u P k r  (X.A.1.d_3)

 
Besides time t and space r, all parameters in (X.A.1.d_3), i.e. the amplitude A, the polarization P, 
the wave vector k and the angular frequency ω can be complex valued [21-25]. The nomenclature 
for the different kinds of possible plane waves is found in Table X.A.1.d_I. 
In the case that 
 

1 2iω ω ω= +  (X.A.1.d_4)

 
and 
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( )1 2 1i i= + = + −k k k k α β  (X.A.1.d_5)

 
Table 
X.A.1.d_I: 

Different plane wave definitions depending on the values of k and ω  

 
k  ω  nomenclature 
real real harmonic (homogeneous) plane wave 
real complex complex harmonic (homogeneous) plane wave 
complex real (harmonic) inhomogeneous wave 
complex complex complex harmonic inhomogeneous wave 

 
with  and , it can be verified that || 1α k 1⊥β k

 

( ) ( ) ( ) ( )exp exp exp exp2 1 1A t i tω ω= − • •u P α r β r k r• −  (X.A.1.d_6)

 
In (X.A.1.d_6) it is noticed that k1 and ω1 influence the vibration itself, while all other parameters 
influence the amplitude attributed to that vibration. The parameter k1 is called the propagation 
wave vector, ω1 is the real angular frequency, α  is called the damping vector, while β  is called 
the inhomogeneity vector. The parameter ω2 determines the transient feature of the wave under 
consideration and is called the source parameter. If it is positive, the wave is amplified in time, if 
it is negative, the wave diminishes in time. Important to remark is the fact that a first glimpse on 
(X.A.1.d_6) shows that the amplitude of u changes instantaneously throughout space. If for each 
instant of time the amplitude would be the same everywhere, then an instantaneous change 
throughout space would be a violation of the principle of energy conservation (energy cannot just 
vanish or appear) and also a violation of the fact that no signal can ever be transported faster than 
the speed of light under the assumption that time and space are real quantities. Therefore it is 
necessary to demand that expression (X.A.1.d_3) must be a solution of the wave equation [21-
25]. For visco-elastic media, this means that the dispersion relation must hold [21-25], i.e. 
 

2

0,i bvb

ω α
⎛ ⎞
⎜ ⎟• = −
⎜ ⎟
⎝ ⎠

k k  

(X.A.1.d_7)

 
where b=d for longitudinal waves or b=s for shear waves. vb is the phase velocity for harmonic 
homogeneous plane waves (i.e. having a real wave vector and real frequency) and 0,bα  is the 
intrinsic damping coefficient.  
It is precisely this dispersion relation that relates the phase velocity and the amplitude distribution 
in space to the real angular frequency ω1 and the source parameter ω2. Even though the effect of 
(X.A.1.d_7) on sound waves is mathematically covered in [21-25], it is interesting to find out 
what the physical consequences are. The effect of (X.A.1.d_7) on a transient wave with respect to 
time is the description of the amplitude migration in space as a function of time. Let’s consider a 
transient plane wave having an inhomogeneity vector β different from zero and propagating 
along the z-axis. Then if we plot the amplitude along the x-axis as a function of time, we get 
something like in Fig. X.A.1.d_1 where the amplitude changes exponentially along the x-axis due 

 
- 381 - 



CHAPTER X: Diffraction Phenomena 
  

to β, but also changes exponentially in time. This amplitude change in time can easily be 
interpreted as a position shift in time to the right or to the left, depending on the value of ω2 and 
the inhomogeneity β. Hence the effect of ω2 should be interpreted as the effect of lateral 
amplitude migration in time. In the case that also α differs from zero, this amplitude migration 
also occurs in the direction of phase propagation. 
 

Fig. X.A.1.d_1: Schematic view of the amplitude migration that occurs, as time passes, of a complex harmonic 
inhomogeneous wave. The amplitude along the wave front is depicted at different instants and for positive and 

negative inhomogeneity. 
 
If β=0 then the dispersion relation makes sure that α differs from zero, whence there is amplitude 
migration along the phase propagation direction. This amplitude migration prevents physical 
impossibilities such as magical (dis)appearance of energy as described before. 
Whenever sound is transmitted/reflected at a smooth interface between two different media, it is 
necessary to determine in what direction the vector k is pointing for each of the generated waves. 
For smooth surfaces, the lateral direction is always determined by the well known generalized 
Snell’s law, which states that along the interface there is continuity of the complex wave vector 
and that the complex frequency remains unchanged [25], but the component perpendicular to the 
interface must be chosen carefully. We will show that this choice must be performed with 
consideration of the energy propagation no matter what this means for the wave vector itself. The 
reason is that the wave vector itself is not of primordial importance to determine what happens to 
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a sound wave, since amplitude migration due to the source parameter ω2 must be considered as 
well. For that reason it is convenient to work with the slowness vector 
 

ω=k S  (X.A.1.d_8)
 
whence 
 

1 1 1 2 2

2 2 1 1

ω ω

ω ω

= −

= +

k S S

k S 2S
 

(X.A.1.d_9)

 
It has been shown by Deschamps, Poirée and Poncelet [22] that the vector corresponding to the 
energy velocity is given by 
 

1

1
E

ph
=

•

S
v

S S
 

(X.A.1.d_10)

 
with phase slowness vector  given by phS
 

1

1
ph ω

=
k

S  
(X.A.1.d_11)

 
This shows that the energy propagates in the direction of , i.e. 1S
 

2 2 1 1
2 2
1 2

E
ω ω

ω ω

+

+

k k
v �  

(X.A.1.d_12)

 
From a numerical point of view, if one considers the dispersion relation (X.A.1.d_7) and also 
Snell’s law for smooth interfaces (or the grating equation in the case of corrugated surfaces, see 
further below), only the exact value of the wave vector of diffracted waves along the interface is 
determined. For the component perpendicular to the interface only the complex magnitude is 
determined and not the sign that is to be attributed to that magnitude. For inhomogeneous waves 
having a real frequency, this choice has been discussed and determined before [17, 39-42], i.e. 
reflected waves must always propagate away from the interface, while the same holds for 
transmitted waves, given the fact that the reflected companion (of the same order m) propagates 
at an angle below the critical angle for the transmitted wave under consideration. If this reflected 
companion propagates at an angle beyond the critical angle, then the transmitted wave under 
consideration must propagate towards the interface. Furthermore, whenever a diffracted wave is 
evanescent, i.e. having a real wave vector component along the interface and an imaginary wave 
vector component perpendicular to the interface, then exponential amplitude decay away from the 
interface must be imposed [1,6]. Now for the case of transient waves, we have translated all of 
these sign choice principles to energy propagation directions instead of just (phase) propagation 
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directions. We have then adapted the sign choice of the wave vector to the correct corresponding 
sign choice of the energy propagation vector. The reason is that the real part of the wave vector 
does not determine the energy propagation on its own (as in the case of harmonic inhomogeneous 
plane waves in isotropic media), but only in combined action with the source term ω2 . 
  
 THE SYSTEM OF EQUATIONS 
 
 Description of the Incident and the Diffracted Wave Field 
 
Let’s consider a periodically corrugated interface between a liquid and a solid as depicted in Fig. 
X.A.1.d_2. The corrugation is periodic with period Λ  and is given by 
 

( ) ( ) ( ), 0g x z f x z g x z= − = = +Λ,  (X.A.1.d_13)

 

 
Fig. X.A.1.d_2: Schematic view of the considered corrugated interface. The different reflection angles are 

schematically shown for different diffraction orders and for obliquely incident sound. 
 
We take into account the Rayleigh decomposition [1-9, 15-19, 38, 46-47] of the diffracted wave 
field and also characteristics of longitudinal and shear waves, whence the displacement of the 
incident waves , the (longitudinal) reflected waves , the longitudinal respectively shear 
waves in the solid  and , are written as 

incN rN
dN sN
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( )inc inc inc inc incA ik ikx x z zϕ= +N e e  

 

(X.A.1.d_14)

( ), , ,m r m r m rr rA ik ikm x x zm
ϕ= +∑N e ze  

 

(X.A.1.d_15)

( ), , ,m d m d m dd dA ik ikm x x zm
ϕ= +∑N e ze

=

 

 

(X.A.1.d_16)

, ,m s m ss sAmm
ϕ= ∑N P  (X.A.1.d_17)

 
with 
 

exp iς ςϕ ⎛ ⎞= •⎜ ⎟
⎝ ⎠
k r  

(X.A.1.d_18)

 
and 
 

, , , , , , 0m s m s m s m s m s m sk P k P k Px x y y z z+ +  (X.A.1.d_19)

 
The index ‘m’ denotes the diffraction order and ς  represents “inc”, “m,r”, “m,d” or “m,s”. The 
properties of transient waves as described in previous paragraph are taken into account, except 
for Snell’s law. When diffraction occurs, Snell’s law needs to be replaced by the generalized 
grating equation [15-19, 25]: 
 

2,m b inck k mx x
π

= +
Λ

 (X.A.1.d_20)

 
With b=r for the reflected field in the liquid and b=d or b=s for the transmitted longitudinal 
respectively shear waves in the solid. Equation (X.A.1.d_20) shows that only the real part of the 
lateral wave vector component is affected by the grating, not the imaginary part, whereas if we 
rewrite (X.A.1.d_20) in the slowness vector components (see (X.A.1.d_8)), 
 

( )
2, 1

1, 1, 2 2
1 2

m b incS S mx x
πω

ω ω
= +

Λ +
 

(X.A.1.d_21)

 

( )
2, 2

2, 2, 2 2
1 2

m b incS S mx x
πω

ω ω
= −

Λ +
 

(X.A.1.d_22)
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Equation (X.A.1.d_22) shows that the imaginary part of the lateral component of the slowness 
vector is affected by the grating.  
To summarize, each wave in the Rayleigh decomposition of the diffracted field is characterized 
by a wave vector component along the interface determined by the grating equation (X.A.1.d_20) 
and a wave vector component perpendicular to the interface, having a value determined by the 
wave equation (through dispersion relation (X.A.1.d_7)) and a sign determined by the causality 
principle. However, each wave must also have an amplitude that is determined by continuity 
conditions. This is explained in the next section. 
 
 The Continuity Conditions 
 
In media τ  ( 1=τ  in the liquid, 2=τ  in the solid) the stress tensor τT  is given [43-44] by its 
elements 
 

21 2 , 1 2 ,Tij i j i jt t
ς τ τ τ τ τ τλ λ ε δ µ µ εηηη

∂⎛ ⎞ ⎛= + + +∑⎜ ⎟ ⎜∂ ∂⎝ ⎠ ⎝
∂ ⎞
⎟
⎠

 
(X.A.1.d_23)

 
in which the strain tensor  is τε ij

 
1
2

N Nij i j j i
τ τ τε ⎡ ⎤= ∂ + ∂⎢ ⎥⎣ ⎦

 
(X.A.1.d_24)

 
The Lamé constants are denoted by  and , while the viscosity coefficients are given by  
and . They accomplish the dispersion relation (X.A.1.d_7) if 

τλ1
τµ1

τλ2
τµ2

 

( ) ( )
22

0,21 2 1 2

i dvi i d

ρω ως ς α
τ τ τ τλ ωλ µ ωµ

⎛ ⎞
⎜ ⎟• = = −
⎜ ⎟− + − ⎝ ⎠

k k  

(X.A.1.d_25)

 
for longitudinal waves (ς = “inc” or “m,r”, in the liquid and ς  = “m,d” or “m,s” in the solid) and 
if 
 

( )
22

0,
1 2

i svi s

ρω ως ς α
τ τµ ωµ

⎛ ⎞
⎜ ⎟• = = −
⎜ ⎟− ⎝ ⎠

k k  

(X.A.1.d_26)

 
for shear waves ( 2,s=ς  in the solid). In order to find the unknown coefficients  

, the equations that describe the continuity of normal stress and 

strain along the interface (X.A.1.d_13) need to be solved, i.e. 

, ,r dA Am m
, ,, ,m s m s m ss s sA P A P A Pm x m y m z

,
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( ) ( )inc r d sg g+ •∇ = + •∇N N N N  along 0g =  

 

(X.A.1.d_27)

( ) ( )1 2T g T gj jij ijj j
∇ = ∇∑ ∑  along 0g =  (X.A.1.d_28)

 
and also, because for shear waves the complex displacement is perpendicular to the complex 
wave vector 
 

, , , , , , . 0m s m s m s m s m s m ss s sA P k A P k A P km x x m y y m z z ϕ⎛ ⎞+ +⎜ ⎟
⎝ ⎠

m s =

]

m
x

x

 
(X.A.1.d_29)

 
Conditions (X.A.1.d_27-29) lead to 5 equations that are periodic in x, whence a sufficient 
condition for a correct solution is that the Fourier coefficients (for a discrete Fourier transform 
over the interval [ ) of the left and right sides of the equations are equal to each other. The 
wave vectors that are introduced by this discrete Fourier transform are denoted by the order ‘p’. 

Λ→0

The 5 equations for each integer p are: 
 
 
 
 
Equation 1: 
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(X.A.1.d_30)
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Equation 2: 
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Equation 3: 
 

, ,, 1 02 ,2 ,2

pmk km s pm ss x xA P I im y s sm
ρ

⎛ ⎞
⎜ ⎟+ −∑ ⎜ ⎟
⎜ ⎟
⎝ ⎠

k ki
=  

(X.A.1.d_32)
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Equation 4: 
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(X.A.1.d_33)

 
Equation 5: 
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with 
 

( )( )1, expinc inc incI i k k x k f x dxx x zinckz

η η⎡⎛ ⎞= − +∫ ⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦Λ
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(X.A.1.d_35)

( )1, , ,exp,
m m mI i k k x k f x dxx x zmkz

ξ η η ξ
ξ

⎡ ⎤⎛ ⎞= − +∫ ⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦Λ
 

(X.A.1.d_36)

 
For pm,δ  Kronecker’s delta. It is already seen from (X.A.1.d_32) that  
 

, 0m ssA Pm y =  (X.A.1.d_37)

 
Hence  and therefore there are no horizontally polarized waves generated. 0yu =

Remark that ( )f x  only appears in the exponentials of integrals (X.A.1.d_35-36). This is due to 
the use of partial integration for integrals containing  while equating the Fourier 
coefficients [1]. 

/df dx
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 Truncation of Infinite Summations 
 
The linear set of equations (X.A.1.d_30-34) is infinite since m,p may take every possible integer 
value from . However, it has been shown before [2, 8-9] that the interval of integers may 
be truncated to {

+∞→−∞
}NNNN ,1,..,1, −+−− , for N larger than 6.  

From refs. [45-46], it is known that for a sawtooth profile 
 

( ) 2
2

hx hf x = −
Λ

 if 
2

0 Λ
<≤ x  

 

(X.A.1.d_38)

( )
Λ

−=
hxhxf 2

2
3  if 

2
xΛ

≤ < Λ  (X.A.1.d_39)

 
the integrals (X.A.1.d_35) and (X.A.1.d_36) become 
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(X.A.1.d_41)

 
In this work, only sawtooth profiles (X.A.1.d_38-39) have been taken under consideration, but 
the model equally works for other shapes as well. 
 
 THE NEED FOR DIFFRACTION 
 
In many NDT-applications, it is desirable to generate surface waves. It is well known that for 
most liquid-solid interfaces Scholte – Stoneley waves cannot be generated by means of incident 
sound because their velocity is too slow compared with the sound velocities in the surrounding 
media. One of the techniques that can be used to stimulate Scholte – Stoneley waves is the use of 
a periodic corrugation on the surface. Then, these waves can be generated under the right 
conditions by means of diffraction. Even though this has been very successful for relatively wide 
beams, this success was not shared for the stimulation of leaky Rayleigh waves. It has been 
shown by Briers et al [15-19, 25] that inhomogeneous waves are needed in order to really 
stimulate leaky Rayleigh waves. Furthermore it is also known that this stimulation will never 
exceed the one by means of obliquely incident inhomogeneous waves on a plane interface at the 
Rayleigh angle. Hence the question that may arise: Why would anyone apply a diffraction grating 
to stimulate leaky Rayleigh waves if this can be better accomplished on a plane surface? 
The answer is simple: A diffraction grating in combination with complex harmonic homogeneous 
waves, has a similar effect as the use of harmonic inhomogeneous waves incident on a smooth 
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interface. As an introduction to this matter, we have calculated the reflection coefficient as a 
function of the angle of incidence for a constant real frequency and variable imaginary frequency. 
This has been done for incident complex harmonic plane waves. Before, it has been shown that 
such waves show exponential amplitude variation along the wave propagation direction. 
Therefore the imaginary wave vector is directed parallel with the propagation wave vector, which 
is not the structure that a typical leaky Rayleigh wave consists of [10-14]. Furthermore this 
structure is maintained after reflection due to the dispersion relation and Snell’s law. It is 
therefore unlikely that any actual leaky Rayleigh wave stimulation might occur, as would have 
been the case if harmonic inhomogeneous waves were considered [10-14]. The result is shown in 
Fig. X.A.1.d_3 for a water-brass interface and for a real frequency of 5 MHz and different 
imaginary frequencies. The material properties for water and brass are listed in Table X.A.1.d_II.  
 
Table 
X.A.1.d_II: 

material properties used in this work 

 
material 3[ /kg mρ ]  [ / ]dv m s  [ / ]sv m s  
water 1000 1480 0 
brass 8100 4700 2100 

 

Fig. X.A.1.d_3: The absolute value of the reflection coefficient on a smooth water-brass interface constant real 
frequency and different imaginary frequencies. The Rayleigh angle is 480 . 

 

 
- 391 - 



CHAPTER X: Diffraction Phenomena 
  

For simplicity we have neglected intrinsic damping in the numerical examples. It is verified that 
the amplitude of the reflection coefficient is independent of the imaginary frequency and it is 
certainly seen form Fig. X.A.1.d_3 that no typical peaks arise as would have been in the case for 
harmonic inhomogeneous waves [10-14]. 
In Fig. X.A.1.d_4 the two Cartesian components of the particle displacement are shown relative 
to the incident particle displacement amplitude, for a Rayleigh angle of incidence (480) at 5 MHz 
and without any transient feature. It is seen that the z-component reaches a value of 
approximately 1.5. This height is independent of the imaginary frequency that is used. We keep 
this pattern as a reference for further discussions. This amplitude is so low because there is no 
leaky feature in the liquid side. 
 

Fig. X.A.1.d_4: Relative displacement amplitude for transmitted and reflected sound resulting from harmonic 
homogeneous plane waves incident on a smooth water-brass interface at the Rayleigh angle. Solid line : xu , 

dotted line: zu . A typical Raleigh wave profile is noticeable in the solid. 

 
Now we study results obtained for diffraction on a periodically rough surface. All diffraction 
spectra tackled in this section are performed for normal incidence on a water/brass periodically 
corrugated interface having a periodicity 250 mµΛ =  and height 66h mµ= . According to 
(X.A.1.d_1-2) and the material properties given in Table X.A.1.d_II, this means that the applied 
Rayleigh theory for diffraction is valid within the frequency interval [4MHz, 15MHz]. 
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Furthermore, the dispersion equation (X.A.1.d_25-26) has to be taken into account as well as the 
grating equation (X.A.1.d_20), in order to ensure the physicals validity of the approach. In Fig. 
X.A.1.d_5 the calculated reflection spectra are shown for normal incident harmonic plane waves.  
 

Fig. X.A.1.d_5: Diffraction spectra (in dB) of different orders for normal incident harmonic homogeneous plane 

waves. Solid line: 
2

0
rA , dashed line: 

2

1
rA± , dotted line : 

2

2
rA±  

 
It is seen for example that the zero order reflection coefficient is a function of the incident 
frequency. This figure corresponds to Fig. X.A.1.d_4 in the work of Claeys et al. [1]. In Figs 
X.A.1.d_6-8 these spectra are shown not only as a function of the real frequency, but also as a 
function of the imaginary frequency. 
In Figs X.A.1.d_9-10 the propagation direction is shown for first order reflected waves. Fig. 
X.A.1.d_9 shows the phase propagation direction whereas Fig. X.A.1.d_10 shows the energy 
propagation direction. Noteworthy is the fact that the imaginary frequency has a steering effect 
on reflected waves. For example, below 6 MHz first order reflected waves are completely 
evanescent, which means that their wave vector component perpendicular to the surface is 
completely imaginary. This also means that these waves ‘propagate’ along the interface. Fig. 
X.A.1.d_9 shows that this evanescence is broken through if complex frequencies are used. For 
high imaginary frequencies, first order reflected waves below 6 MHz can perfectly be erected and 
propagate in the bulk instead of being evanescent. Nevertheless, this statement is only through if 
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phase propagation direction is considered. The energy still flows parallel with the interface, as 
can be seen in Fig. X.A.1.d_10.  
 

Fig. X.A.1.d_6: Diffraction spectra of the zero order reflected sound (
2

0
rA  in dB) as a function of the real and 

imaginary frequency. 
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Fig. X.A.1.d_7: Diffraction spectra of the first order reflected sound (

2

1
rA±  in dB) as a function of the real and 

imaginary frequency. 
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Fig. X.A.1.d_8: Diffraction spectra of the second order reflected sound (
2

2
rA±  in dB) as a function of the real and 

imaginary frequency. 
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Fig. X.A.1.d_9: Phase propagation direction of the first order reflected waves. 
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Fig. X.A.1.d_10: Energy propagation direction of the first order reflected waves. 
 
 THE STIMULATION OF TRANSIENT SCHOLTE STONELEY WAVES 
 
In Fig. X.A.1.d_5 it is seen that the zero order reflected sound shows some strong amplitude dips. 
When these dips are associated with the generation of Scholte – Stoneley waves, they are called 
Wood anomalies. It is know from earlier work [1,4] that the anomaly near 5.83 MHz corresponds 
to first order diffracted Scholte Stoneley waves, while the one at double that value corresponds to 
generated second order  Scholte – Stoneley waves. Fig. X.A.1.d_11 shows the particle 
displacement components relative to the displacement amplitude of incident waves at 5.83 MHz 
and with no imaginary frequency component. This is a typical Scholte – Stoneley wave pattern. 
Most of the amplitude of a Scholte – Stoneley wave is situated in the liquid. In Fig. X.A.1.d_6, it 
can be seen that in the vicinity of 5.83 MHz there are regions with a lower amplitude than the 
first Wood anomaly. We have studied these stronger anomalies. Fig. X.A.1.d_12 shows again the 
displacement pattern for one of those anomalies, i.e. the one at real frequency of 6.18 MHz and 
an imaginary frequency of 0.03 MHz. It is seen that something comparable is visible as in Fig. 
X.A.1.d_11. However the amplitude is much smaller and the wave extends much further into the 
liquid than its harmonic counterpart. Probably this wave should be called a transient Scholte - 
Stoneley wave, which  is different from a harmonic Scholte - Stoneley wave. 
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Fig. X.A.1.d_11: Relative displacement amplitude for first order transmitted and reflected sound resulting from 
harmonic homogeneous plane waves incident on the considered periodically rough water-brass interface at normal 

incidence having a real frequency of 5.83 MHz. Solid line : xu , dotted line: zu . A typical Scholte – Stoneley 
wave profile is visible. 

 
 
 THE STIMULATION OF TRANSIENT LEAKY RAYLEIGH WAVES 
 
In Fig. X.A.1.d_5, there is also an anomaly at 7.95 MHz. It is known from almost similar 
calculations for harmonic waves in [18] that this anomaly corresponds to the generation of a 
Rayleigh wave. However, just as in the case of Fig. X.A.1.d_4 there is no strong stimulation 
because the leaky feature is not present. This leaky feature can only be there if incident harmonic 
inhomogeneous waves were used instead of harmonic homogeneous plane waves [18]. 
Furthermore, the amplitudes in Fig. X.A.1.d_13, which describe the wave field patterns for the 
first order generated waves, are much less than the ones in Fig. X.A.1.d_4.  
This shows why it is absolutely not beneficial to use a diffraction grating instead of a plane 
surface for stimulation of Rayleigh waves by means of harmonic homogeneous plane waves. The 
next option is of course the use of inhomogeneous waves, as in [15-19, 47]. However this has up 
until now only been practical in laboratory conditions and the generation of such waves is not 
really flexible [16, 19-20]. The generation of complex harmonic waves is much more flexible. 
Therefore the question immediately arises if it is possible to use incident complex harmonic plane 
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waves. For that purpose we have focused on the frequency area of 7.95 MHz. The results are seen 
in Figs X.A.1.d_14-15.  
 

Fig. X.A.1.d_12: Relative displacement amplitude for first order transmitted and reflected sound resulting from 
complex harmonic homogeneous plane waves incident on the considered periodically rough water-brass interface 
at normal incidence having a real frequency of 6.18 MHz and an imaginary frequency of 0.03 MHz. Solid line : 

xu , dotted line: zu . A typical Scholte – Stoneley wave profile is visible though it reaches mush deeper into the 
liquid than in the harmonic case. 
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Fig. X.A.1.d_13: Relative displacement amplitude for first order transmitted and reflected sound resulting from 
harmonic homogeneous plane waves incident on the considered periodically rough water-brass interface at normal 
incidence having a real frequency of 7.95 MHz. Solid line : xu , dotted line: zu . A typical Raleigh wave profile is 

noticeable in the solid. 
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Fig. X.A.1.d_14: A high resolution close up of Fig. X.A.1.d_6 near the Rayleigh wave generating frequency. 
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Fig. X.A.1.d_15: A high resolution close up of Fig. X.A.1.d_7 near the Rayleigh wave generating frequency. 
 
For the possible stimulation of Rayleigh waves, it is necessary to look at Fig. X.A.1.d_15, i.e. the 
first order reflection coefficient. It is seen that 4 regions of importance are present, i.e. two 
amplitude peaks and two amplitude dips. Fig. X.A.1.d_16 shows the corresponding relative 
displacement field for the peak at negative imaginary frequency, while Fig X.A.1.d_17 shows the 
result for the peak at positive imaginary frequency. Fig. X.A.1.d_18 shows the result for the dip 
corresponding to a negative imaginary frequency, whilst Fig. X.A.1.d_19 shows the result for the 
dip at positive imaginary frequency. It is seen that only the peak and dip for negative imaginary 
frequency show Rayleigh features. Furthermore it is seen that the amplitude corresponding to the 
Rayleigh wave which corresponds to the peak for negative imaginary frequency, has an 
amplitude that is more than 50 times the amplitude of the wave described in Fig. X.A.1.d_4 at a 
plane interface. This shows that complex harmonic homogeneous plane waves are able to really 
stimulate Rayleigh waves on periodically corrugated surfaces and that it is hence unnecessary to 
use more complicated harmonic inhomogeneous waves for that purpose. However there is one 
important question that we would still like to answer, i.e. why does this stimulation occur? We 
have calculated the propagation direction in reflection for the Rayleigh wave as depicted in Fig. 
X.A.1.d_16. The result is 480 for both the phase propagation direction and the energy propagation 
direction. But this is not the only clue. Even though the amplitude distribution pattern of Fig. 
X.A.1.d_16 is the one of a leaky Rayleigh wave at a fixed  position along the interface, it is 
completely different if one would also look at its variation along the interface. A leaky Rayleigh 
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wave that is stimulated by means of a harmonic wave, must have a decaying amplitude along the 
interface (because of energy leakage), whereas here the amplitude does not change at all along 
the interface. The reason is that, due to the grating equation (X.A.1.d_20), no complex wave 
vector components can be generated along the interface if the incident wave has none along the 
interface, which is the exact case here. However, due to the transient feature, here one must not 
just take a look in space but also in time. Because the amplitude for negative imaginary 
frequencies drops with increasing time, the amplitude would, if a part of the wave would be 
followed while it travels along the interface, have decreasing amplitude indeed. Therefore there 
is, if not just space but also time is considered, amplitude decay along the interface and that is the 
reason why the energy leaks at a calculated angle, equal to the Rayleigh angle. Hence this is a 
transient leaky Rayleigh wave. For a positive imaginary frequency however there is no leakage 
but gain of energy while propagating, whence the nature of this phenomenon is very different, see 
Fig. X.A.1.d_17 and Fig. X.A.1.d_19, and cannot be called a transient leaky Rayleigh wave. 
 
We have also performed calculations for oblique incidence, because for oblique incidence there is 
an imaginary part of the incident wave vector along the interface. We intended to figure out if 
this would be advantageous or not. The results, which are not depicted here, show that it is 
possible to generate leaky Rayleigh waves, but there is no strong stimulation and we have not 
found a relative displacement amplitude exceeding unity. Therefore we must conclude that for 
homogeneous plane waves, only normal incident complex harmonic waves are able to stimulate 
leaky Rayleigh waves. 
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Fig. X.A.1.d_16: Relative displacement amplitude for first order transmitted and reflected sound resulting from 

complex harmonic homogeneous plane waves incident on the considered periodically rough water-brass interface at 
normal incidence having a real frequency of 8.00 MHz and an imaginary frequency of –0.13MHz. Solid line : xu , 

dotted line: zu . A typical Raleigh wave cross section profile is noticeable in the solid and also in the liquid. 
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Fig. X.A.1.d_17: Same as Fig. X.A.1.d_16, but for having a real frequency of 8.00 MHz and an imaginary frequency 
of 0.14 MHz. Solid line : xu , dotted line: zu . 
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Fig. X.A.1.d_18: Same as Fig. X.A.1.d_16, but for having a real frequency of 8.008 MHz and an imaginary 
frequency of -0.05 MHz. Solid line : xu , dotted line: zu . 
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Fig. X.A.1.d_19: Same as Fig. X.A.1.d_16, but for having a real frequency of 8.008 MHz and an imaginary 
frequency of 0.05 MHz. Solid line : xu , dotted line: zu . 

 
 CONCLUSIONS 

 
The diffraction of complex harmonic plane waves is described on a periodically 
corrugated interface between a liquid and a visco-elastic isotropic solid. It is shown that, 
contrary to harmonic homogeneous plane waves, complex harmonic homogeneous plane 
waves are not advantageous for stimulating Scholte – Stoneley waves, whereas they can 
be extremely advantageous for stimulating transient leaky Rayleigh waves. Furthermore, 
because the generation of complex harmonic plane waves is much more simple than the 
generation of harmonic inhomogeneous plane waves, the described technique is an 
important step forward in the practical generation of high amplitude Rayleigh waves. 
This kind of wave is in its turn extremely important for NDT purposes of solids near the 
surface. 
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X.A.1.e On the Theoretical Possibility to 
Apply an Acoustic Diffraction 
Grating as a Complex Frequency 
Filter Device for Electronic Signals 

 
 In electronics, it is well known that filtering devices can be made that are able to 

decompose a signal instantaneously into a number of real frequency components. This 
procedure is equivalent to a numerical real time Fourier transform. However, it is also 
known that an electronic signal can be decomposed not just in real frequency 
components, but also in complex frequency components. The current section shows that it 
is theoretically possible to create a device, made of a periodically rough surface and a 
system that transforms the electronic signal into acoustic waves, that can be used to 
measure the amplitude attributed to considered complex frequency components of an 
electronic signal, in real time. This ‘thought device’ is mainly based on the directivity of 
diffracted sound and the complex frequency dependence of this directivity. 
The contents of this section have been accepted for publication in Ultrasonics. (Imp. Fact. 
0.844; SCI-index, Acoustics, rank:11 /28) 

 
 INTRODUCTION 
 
From an old paper of Spitzenogle and Quazi [1] it can be learned that a ‘time limited signal’ can 
be decomposed into a summation of signals with exponentially varying amplitude as a function 
of time. This principle has later been translated [2] to space limited acoustic signals (bounded 
beams) and appeared to be excellent in explaining what happens to sound at the Rayleigh angle 
of incidence. The latter formed a strong impetus for the development of the inhomogeneous wave 
theory, which explains the behavior of plane waves having complex parameters. Lately, special 
attention was drawn on the case of inhomogeneous waves having complex frequency [3-6]. Such 
complex harmonic plane waves therefore return the inhomogeneous wave theory back to the 
paper of Spitzenogle and Quazi [1]. In acoustics, complex harmonic waves are building blocks of 
sound beams, bounded in space and in time. In electronics, signals are often not really bounded in 
time. However one is frequently interested in the instant properties of such signals. For that 
reason, a numerical spectrogram can be obtained that gives the amplitude as a function of the real 
frequency and as a function of time. An experimental spectrogram can also be formed (with some 
errors) in real time by an electronic filter system. Nevertheless, it may likewise be important to 
consider a ‘spectrogram’ of a signal not just in the real frequency space, but also in the more 
general complex frequency space. This is mathematically reachable within a time limited window 
[1], but it must also be possible to build a device that performs such a spectrogram in real time 
somehow by means of a filter system. In what follows, it is shown from a theoretical point of 
view, that an acoustic diffraction grating is a possible tool for that purpose. 
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 COMPLEX HARMONIC PLANE WAVES 
 
A thorough description of complex harmonic plane waves can be found in [3-6]. Therefore, we 
make this discourse very short. Complex harmonic plane waves are described by a particle 
displacement vector u as follows: 
 

( )expA i i tω= • −u P k r  (X.A.1.e_1)

 
Besides time t and space r, all parameters in (1), i.e. the amplitude A, the polarization P, the wave 
vector k and the angular frequency ω can be complex valued. Complex harmonic plane waves 
differ from harmonic plane waves by an angular frequency ω that is complex valued instead of 
real valued. Hence, 
 

1 2iω ω ω= + ; ,1 2ω ω ∈ℜ  (X.A.1.e_2)

 
and 
 

( ) ( ) ( )0, exp exp2 1t A t i tω ω= = −u r P  (X.A.1.e_3)

 
Henceforth, the term ‘frequency’ denotes ( )/ 2ω π  while the term angular frequency will be 
specifically used for ω  itself. It is seen in (3) that the amplitude changes exponentially in time, 
through 2ω . For consistency with ref [1], we only consider 1 0ω ≥  and 2 0ω ≥ . Complex 
harmonic waves are a solution of the visco-elastic wave equation if the dispersion relation holds 
[6]: 
 

2

0
0

i
v
ω α

⎛ ⎞
⎜ ⎟= −
⎜ ⎟
⎝ ⎠

k ki  

(X.A.1.e_4)

 
with v0 the phase velocity of plane waves having a real wave vector and real frequency and with 

0α  the intrinsic damping of the considered media. 
Important for what follows is the definition of the energy velocity vector Ev . It can be found in 
[3-4,6] that Ev  is proportional to: 
 

2 2 1 1
2 2
1 2

ω ω

ω ω

+

+

k k
 

(X.A.1.e_5)

 
with  and . ( )1 Re=k k ( )2 Im=k k
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 THE DIFFRACTION OF COMPLEX HARMONIC PLANE WAVES 
 
When harmonic plane waves, possessing a wave vector component  along the interface, 
interact with a corrugated surface (see Fig. X.A.1.e_1), having a periodicity , they diffract into 
harmonic plane waves of different orders ‘m’.  

inc
xk

Λ

 

Fig. X.A.1.e_1: A schematic of the ‘thought device’, based on sound normally incident on a diffraction grating 
and diffracted into several directions. A discrete number of omni-directional transducers is placed at constant 
distance and different angles. In front of each transducer there is a laser beam traversing the sound beam in 

order to obtain the phase propagation direction as distinguished from the energy propagation direction. 
 
Each of these waves have a wave vector component 
 

2m inck k mx x
π

= +
Λ

 (X.A.1.e_6)

 
along the interface and a component  perpendicular to the interface given by the dispersion 
relation (4). It has been shown before that this grating equation (6) is also valid for incident 
inhomogeneous waves. This is because it represents the spatial periodicity of the phase along the 
periodic interface and not the amplitude. Because the imaginary part of the frequency, of a given 
incident sound wave, influences the amplitude and not the phase, it is evident that the grating 
equation  (6) also holds for incident complex harmonic plane waves. 

m
zk

For a given diffraction order ‘m’ and its wave vector component  along the interface, the sign 
of the wave vector component  normal to the interface is chosen according to well known sign 

m
xk

m
zk
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choice conventions [7-10] in terms of the phase propagation direction, based on causality 
principles, interpreted here in terms of the energy propagation direction. 
 
 HOW THE ACOUSTIC DIFFRACTION GRATING MAY WORK 
 
The dispersion relation (4) represents 2 real equations, whereas the propagation of a complex 
harmonic plane wave is characterized by 2 unknown vectors,  and , and 2 unknown scalars, 1k 2k

1ω  and 2ω . For a chosen Euclidian space, the grating equation  and incident wave propagation 
direction determine 1 vector component (in 2D space) or 2 vector components (in 3D space) of 
both  and . This means that in order to be identified, there must be two independent 
parameters quantified, for example 

1k 2k

1ω  and 2ω , or for example two independent quantities that 
contain unambiguous information about  and . 1k 2k
In what follows, we show numerically that, under the right conditions, the direction of the energy 
velocity vector Ev  as well as the direction of the phase velocity vector can be applied for that 
purpose, because for a given direction of the energy velocity vector Ev  as well as the direction of 
the phase velocity vector, a unique couple ( )1 2,ω ω  exists. 
Consider an electronic signal s(t) that is decomposed into a series of complex frequency signals, 
i.e. 
 

( ) ( ) ( )( )exps t F t i t tn nn
= Ω∑  (X.A.1.e_7)

 
Within a time limited interval around a certain t0, a representation is possible with constant 

 and ( )0n nS F t= ( )0n n tω = Ω , whence 
 

( ) exp
0

s t S i tt t n nn
ω= ∑�  (X.A.1.e_8)

 
In the ‘thought device’ of Fig. X.A.1.e_1, this signal can be transmitted to a transducer (emitter) 
perpendicularly directed to a diffraction grating at a distance d. If for a moment the diffraction 
grating is not considered, then a receiver at distance 2d will receive the acoustic signal and will 
transform it again into an electronic signal. This output signal will differ from the input signal 
because the system signal>transducer>propagation medium>transducer>signal has a transfer 
characteristic different from unity. Hence, the output signal Sout is related to the input signal Sin as 
follows: 
 

( )S T Sout in=  (X.A.1.e_9)

 
in which T is an operator who changes the amplitude attributed to each complex frequency 
component in the signal. If there is a grating and if the receiving transducer (see short bold lines 
in Fig. X.A.1.e_1) is placed at a distance d from the surface at a certain direction, then there will 
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also a transfer operator R be involved, which corresponds to the reflection coefficient for the 
received reflected order. 
Therefore, the received signal is ultimately described by  
 

( ) exp
0

s t RTS i tt t n nn
ω= ∑�  (X.A.1.e_10)

 
As a consequence, if R and T are known for each possible nω , then measuring nRTS  reveals the 
values of , i.e. the problem is reduced to measuring nS nRTS  as a function of each required nω . 
Therefore, the problem is reduced to defining what experimental ‘condition’ corresponds with 
each nω  and measuring the accompanying amplitude for each of those ‘conditions’. In what 
follows, it will be shown that measuring the phase propagation direction together with the energy 
propagation direction, defines a unique ‘condition’. The energy propagation direction can 
practically be determined by a classical omni-directional transducer, whereas the phase 
propagation direction can be determined by the diffraction of laser light. The first is possible 
because an omni-directional transducer at a given spot measures by definition the encountered 
sound intensity, whereas the latter is possible because sound forms a diffraction grating for laser 
light en diffracts a laser light beam into different diffraction orders perpendicular to the sound 
wave fronts. The is the basic principle of acousto-optics. Both principles are depicted in Fig. 
X.A.1.e_2, where gray circular areas denote a cross section of a (diffracted) laser beam and 
where again the bold line represents the receiver. The set of short parallel lines in Fig. X.A.1.e_2 
represent the wave fronts. The energy propagation direction and the phase propagation direction 
are denoted by a long arrow.  
 
 NUMERICAL SIMULATIONS 
 
As explained, measuring the amplitude corresponding to a certain phase propagation direction 
and energy propagation direction, reveals the magnitude of a particular complex frequency 
component of a signal. There is however a limitation. When sound is received at a certain angle, 
it can only be attributed for certain to an order ‘m’ if there is no interference possible with other 
diffraction orders. Hence, a complex frequency spectrogram is solely possible within a certain 
interval in which there is no confusion possible between different diffraction orders. For that 
purpose the grating periodicity must be so that the maximum considered real frequency 
corresponds to the critical frequency for second order reflected waves. This critical frequency is 
defined as the largest frequency for which the second order reflected wave is evanescent (i.e. 
sticking to the interface). Practically this corresponds to the second order Scholte-Stoneley wave 
generating frequency, see for example ref [7-8]. The lowest frequency under consideration is then 
the critical frequency for first order waves, i.e. the first order Scholte-Stoneley wave generating 
frequency, because below this frequency, except for zero order reflected sound, there is no sound 
reflected from the interface. 
We consider a periodically corrugated interface between water and a solid. The density of water 
is 1000 kg/m3, the plane wave velocity in water is 1480 m/s and the periodicity of the corrugation 
is 250 mµΛ = . For simplicity, we have only considered zero intrinsic damping. In Fig. 
X.A.1.e_3, the calculated phase propagation direction (here equal to the energy propagation 
direction) is depicted for normal incident harmonic homogeneous plane waves having real 
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frequencies between 4 MHz and 16 MHz. The dotted line corresponds to the first order reflected 
plane waves, whereas the solid line corresponds to second order reflected plane waves. The 
critical frequencies mentioned above, are directly visible as the frequencies at which the 
propagation direction starts to deviate from 900, measured from the normal to the interface. 
 

 
Fig. X.A.1.e_2: A close up of the omni-directional transducers of Fig. X.A.1.e_1, with attention to the diffraction 

direction of the traversing laser light. The difference between energy propagation direction and phase 
propagation must be measurable with this principle. 

 
Note that between approximately 6MHz and 12MHz there are only bulk reflected waves of the 
first order. This is the frequency region that we will focus on here in order to avoid interference 
between second and first order reflected sound waves. A ‘thought device’, as considered here, 
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will therefore only be able to filter between a limited frequency interval, i.e. between 6MHz and 
12 MHz. Whenever necessary, this interval can be changed by using another grating periodicity. 
In Fig. X.A.1.e_4 respectively Fig. X.A.1.e_5, the phase propagation direction and energy 
propagation direction are depicted as a function of the real and imaginary frequency. Comparison 
of these figures reveals, that for every couple ( )1 2,ω ω  within the considered interval, there is one 
energy propagation direction and there is one phase propagation direction. 
Furthermore, note that the projected iso-amplitude lines of one figure do not intersect more than 
once the projected lines in the other figure and therefore, for every combination of an energy 
propagation direction and a phase propagation direction, there corresponds only one couple 
( 1 2, )ω ω . This shows numerically that there is a ‘one to one’ relation between the measurable 

quantities and ( )1 2,ω ω . In other words, if the phase propagation direction and the energy 
propagation direction are measured instantaneously, together with the amplitude of the received 
sound, the complex frequency and its attributed amplitude are found.  
 
 CONCLUSIONS 
 
It is recalled that a time varying electronic signal can be decomposed not just into real 
frequencies, but also into complex frequencies. The first method can be performed electronically 
by means of a filtering device. The second is more difficult. Here we have theoretically proposed 
a method based on a diffraction grating together with the use of omni-directional transducers and 
the diffraction of laser light. The basic principle is the fact that for each complex frequency there 
is a unique couple of energy propagation and phase propagation direction. 
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Fig. X.A.1.e_3: The phase propagation direction for first and second order reflected sound coming from normal 
incident harmonic sound at different real frequencies. Dotted line: first order, solid line: second order. 
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Fig. X.A.1.e_4: The first order phase propagation direction as a function of the complex frequency for normal 
incident sound. The lines on the horizontal surface are projected iso-amplitude lines. 
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Fig. X.A.1.e_5: The first order energy propagation direction as a function of the complex frequency for normal 
incident sound. The lines on the horizontal surface are projected iso-amplitude lines. Comparison with Fig. 

X.A.1.e_5 reveals that for a given phase propagation direction and energy propagation direction, there corresponds 
only one couple ( 1 2, )ω ω . The reason is that each iso-amplitude line here does not cross a iso-amplitude line of 

Fig. X.A.1.e_4 twice. 
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X.A.1.f The Use of Polarized Bounded Beams 
to Determine the Groove Direction of 
a Surface Corrugation at Normal 
Incidence, the Generation of Surface 
Waves and the Insonification at 
Bragg-Angles. 

 
 Zero order reflected sound from a singly corrugated interface between a solid and a 

liquid, insonified from the solid side by circular polarized shear waves, can become 
almost perfect linearly polarized in a direction parallel or perpendicular to the 
corrugations, depending on the frequency, and can therefore reveal the direction of 
the corrugations. 
When narrow bounded beams, formed by a summation of infinite plane waves, are 
diffracted at certain frequencies, depending on the angle of incidence, or vice versa, 
one can predict phenomena like backscattering at Bragg angle incidence and also the 
creation of Scholte-Stoneley waves. 
The contents of this section have been published as: Nico F. Declercq, Rudy Briers, 
Oswald Leroy, " The use of polarized bounded beams to determine the groove 
direction of a surface corrugation at normal incidence, the generation of surface 
waves and the insonification at Bragg-angles", Ultrasonics 40/1-8 pp. 345-348, 
2002.(Imp. Fact. 0.844; SCI-index, Acoustics, rank:11 /28) 

 
 INTRODUCTION 
 
Consider an interface between a solid and a liquid, that is insonified from the solid side, with 
corrugations parallel to the y-axis, that is described by  
 

( , ) ( ) ( , ) 0p x z f x z p x z= − = + Λ =  (X.A.1.f_1)
 
with  the period of the corrugation. The plane in which the diffracted orders are spread can 
reveal the direction of the grooves, using two transducers, while the polarization of the echo can 
also reveal the direction using only one transducer, i.e. when circularly polarized normal incident 
shear waves are used. The latter is discussed here. The results found for polarization will not 
differ if bounded beams were used instead of plane waves. If however, we wish to describe the 
complete amplitude distribution in space after diffraction, we must also reckon with bounded 
beams. The latter is worked out for normal incidence at the frequency that generates a second 
order Scholte – Stoneley surface wave and for oblique incidence at the Bragg angle. 

Λ
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 NORMAL INCIDENT ELLIPTICALLY POLARIZED PLANE SHEAR WAVES 
 
 Theoretical considerations 
 
Plane waves, having a polarization in a plane parallel to the surface generally have a horizontal y-
component as well as a vertical x-component, whence a normally incident shear polarized wave 
field is characterized by its displacement field 
 

( )i z tiB C ei x y
η ω−⎡ ⎤= +⎢ ⎥⎣ ⎦

u e e  
(X.A.1.f_2)

 
which corresponds to a potential 
 

i z tC iA i ei y x
i

η ω

η

⎡ ⎤⎡ ⎤ −⎣ ⎦⎢ ⎥= −
⎢ ⎥⎣ ⎦

ψ e e  
(X.A.1.f_3)

 
if we rewrite B as B iA iη= − . 

iη  is the wave number of the incident wave, while ω  is its angular frequency. 
The x component of Eq (X.A.1.f_2) or the y-component of Eq. (X.A.1.f_3) corresponds to a 
vertically polarized normally incident shear wave with continuity conditions developed by 
Mampaert et al [1,2], while the y component of Eq (X.A.1.f_2) corresponds to a horizontally 
polarized normally incident shear wave with continuity conditions developed by Declercq et al 
[3]. 
If B and C are in phase, Eq. (X.A.1.f_2) describes linearly polarized waves, while elliptically if 

they are out of phase. The particular case 2
πieB

C =  involves circularly polarized anti clock 

wise rotating incident waves. 
The horizontal component of the incident field generates horizontal reflected waves [3], while the 
vertical component generates vertical reflected waves [1,2], whence the zero order reflected 
transversal sound is described by the following potential 
 

( )00
0

i z tCP iB si S er x y
i i

η ω

η η

⎡ ⎤ −
⎢ ⎥= − +
⎢ ⎥⎣ ⎦

ψ e e  
(X.A.1.f_4)

 
or displacement 
 

( ) ( )0 0
0 0

i z t i z ts sD E e BS CP er x y x y
η ω− −⎡ ⎤ ⎡ ⎤= + = +⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

u e e e e
η ω

 
(X.A.1.f_5)
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with 0sη  the wave number of the zero order reflected wave and  and  complex amplitudes 
that follow from the Mode Conversion Theory of diffraction [1-3]. 

0S 0P

The values of D and E determine the polarization of the reflected wave, just as A and B do for the 
incident wave. 
 
 Calculations 
 
All calculations are performed using a sine shaped stainless steel – water interface, described in 
Table X.A.1.f_I. 
 
Table 
X.A.1.f_I.: 

Characteristics of the considered stainless steel – water interface 

 
 Stainless steel water

)/( 3mkgρ  7900 1000
)/( smvshear 3100 - 

)/( smvlong  5700 1480
 =Λ mµ350   

 ( ) =fMax mµ30  
 
We consider a normally incident anti clock wise circularly polarized plane wave having unit 
amplitude 
 

( )2
i z ti ie ei x y

π η ω⎡ ⎤ −
⎢ ⎥= +
⎢ ⎥⎣ ⎦

u e e  
(X.A.1.f_6)

 
that generates [1-3] a zero order reflected plane wave described in (X.A.1.f_5). In Fig. X.A.1.f_1, 
the intensity of D and E are plotted as a function of the frequency, while phase(E)-phase(D) is 
plotted in Fig. X.A.1.f_2.  
It is seen in Fig. X.A.1.f_1, that both 2D  and 2E  show a distinct minimum, i.e. a frequency 

position at which Scholte Stoneley waves [1] are generated (minimum in 2D  at 8.4 MHz), or 

Love waves [3] (minimum in 2E  at 8.88 MHz). From Fig. X.A.1.f_2, we learn that the 
displacement rotation of the reflected wave is opposite to that of the incident wave for low 
frequencies and switches its rotation sense whenever a threshold frequency is surpassed at which 
surface waves are generated. For each frequency, one can draw an ellipse that is the displacement 
in real space at each instant of time during one vibration period. The special cases of 8.4 MHz 
and 8.88 MHz are shown in Fig. X.A.1.f_3, where it is seen that at the Scholte – Stoneley wave 
generating frequency, the reflected wave has a polarization that is almost linear and parallel to the 
wrinkles on the surface, while at the Love frequency the same effect happens but now the 
polarization is perpendicular to the wrinkles. Hence this reveals a method for determining the 
direction of the corrugation. 
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Fig X.A.1.f_1: The intensity spectrum of E and D. 
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Fig X.A.1.f_2: The spectrum of the phase difference between E and D. 
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Fig X.A.1.f_3: The almost linear ellipses that are the displacements in one period of time, at the ‘Scholte – 
Stoneley frequency’ and the ‘Love frequency’. Remember that the grooves in the surface are directed along the y-

axis. 
 
 INCIDENT GAUSSIAN BEAMS 
 
 Theoretical considerations 
 
Now let us consider an incident beam that is gaussian bounded in one dimension, i.e. in the XZ-
plane. 
We denote the incoming gaussian beam as  
 

( ) ( ) ( )

( )( )2 1 cos 0
2

sin cos
2

k

ik x zki ke d e ei i N

θ θ

σθ θ
dφ θ

π

− − −

− +− •Ψ = =∫ ∫k rr k k  

(X.A.1.f_7)

 
with a spatial beam width 
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1
2k

πσ
σ

=  
(X.A.1.f_8)

 
and angular beam width  
 

( )1ln 2arcsin 2 2k

π
σθ σ

= −  
(X.A.1.f_9)

 
The angular beam width is defined as the angle 0θθ −  for which  
 

( )( )2 1 cos 0
2

1
2

k

ke

θ θ

σ

− − −

=  

(X.A.1.f_10)

while the spatial beam width is defined as the x value for which 

2

22 1
2

x

e σ

−

= . 

 
 Calculations 
 
 Bragg - angle incidence 
 
We consider longitudinally polarized sound (velocity ) incoming from the solid side and we 
solely reckon with the longitudinally polarized reflected sound. In agreement with diffraction of 
electromagnetic plane waves [4-6], we define the Bragg angle for a certain frequency as the angle 
of incidence for which most of the incoming energy is first order back scattered, or 

lv

 
sin sin1 1i i lθ θ= − ⇔ = −k k  (X.A.1.f_11)

 
whence the classical grating equation gives 
 

arcsin
2

vl
Bragg freq

θ
−⎛ ⎞

= ⎜ ⎟⎜ ⎟Λ⎝ ⎠
 

(X.A.1.f_12)

 
The Bragg angle can only exist if 
 

2

vlfreq ≥
Λ

 
(X.A.1.f_13)
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Relation (X.A.1.f_12) is a very practical tool for determining Λ  from Braggθ , i.e. the angle at 

which the source receives the strongest echo. 
In Fig. X.A.1.f_4, one can not only see that the reflected bounded beam is very divergent (due to 
the very narrow incident beam), but also that at the Bragg frequency, most of the reflected energy 
is sent back in the direction of the incident field. 
There is no immediate relation between the here defined Bragg angle and the existence of surface 
waves on a corrugated interface.  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig X.A.1.f_4: Amplitude |I| of the incident 
longitudinally polarized gaussian profiled sound 
(top) and |R| of the longitudinally polarized 
reflected sound field, for an angle of incidence 
of –35.03°, for an arbitrary frequency of 10.34 
MHz (middle) and for the Bragg frequency, 
calculated using (X.A.1.f_12), of 14.18MHz 
(bottom). In the white region, the amplitude 
exceeds an arbitrary chosen value of 0.3, while 
in the dark region the amplitude is less than 0.3. 
Despite of the divergence of the narrow 
reflected beam, it is clear that there is 
backscattering at the Bragg frequency (bottom). 
 

 
 Normal incidence at the second order Scholte – Stoneley wave generating frequency 
 
We know [1,2] that at certain frequencies, normal incident longitudinal plane waves can generate 
Scholte – Stoneley waves. In Fig. X.A.1.f_5, one can see that this also occurs when a bounded 
beam is used. Near the surface, amplitudes are calculated that exceed the incoming unit 
amplitude and this amplitude decreases exponentially for larger values of |z|. It is interesting to 
notice the maxima and minima along the x-axis, as a result of forward and backwards traveling 
surface waves. 
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Fig. X.A.1.f_5: |I| is the amplitude of the normal incident longitudinal polarized gaussian profiled sound, |R| of 
the reflected longitudinal, |S| of the reflected shear and |T| of the longitudinal transmitted sound. The 

frequency is 8.3 MHZ and the generation of second order Scholte-Stoneley waves occurs. This phenomenon 
does not occur at arbitrary frequencies. 

Notice the interference of the forward and backwards traveling surface wave. (x-coordinate: in numbers of 
, z-coordinate: in numbers of Λ ( )[ ]2 max f x ) 

 
 CONCLUSIONS 

 
We have shown a method for discovering the wrinkle direction by using normal incident 
circularly polarized sound and we have shown the existence of Bragg angles and critical 
phenomena, i.e. surface wave generation, when gaussian bounded beams are used. 
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X.A.1.g Diffraction of Horizontally Polarized 
Ultrasonic Plane Waves on a 
Periodically Corrugated Solid-Liquid 
Interface for Normal Incidence and 
Brewster Angle Incidence 

 
 The theory, and the use at normal incidence, of shear-vertically polarized waves (with 

polarization vector in the plane containing the incident wave vector and the normal 
on the interface) using the mode conversion method was tackled by Mampaert et al 
[J. Acoust. Soc. Am. 83(4), 1390-1398 (1988)]. Here we develop the theory for shear-
horizontally polarized incident waves (with polarization vector perpendicular to both 
the normal on the interface and the incoming wave vector). We take into account 
normal incidence as well as oblique incidence. For normal incidence, we discover the 
generation of Love waves. If oblique incidence is considered, we discover the 
existence of a Brewster angle of incidence, comparable with the Brewster angle in 
optics, whence a diffraction grating can be used as a polarization filter. 
The contents of this section have been published as: Nico F. Declercq, Rudy Briers, 
Joris Degrieck, Oswald Leroy, "Diffraction of horizontally polarized ultrasonic plane 
waves on a periodically corrugated solid-liquid interface for normal incidence and 
Brewster angle incidence", IEEE Trans. on UFFC, 49(11), 1516-1521, 2002. (Imp. 
Fact. 1.595 ;SCI-index, Engineering – electrical & electronic, rank:46/205) 

 
 INTRODUCTION 
 
The diffraction of sound by a periodically corrugated surface that is traction free, or is the 
interface between a solid and a liquid, has been a hot topic for many years [1-4] and many 
methods have been developed in order to tackle the diffraction problem. Claeys et al [8] and 
Mampaert et al [6] use one method, the mode conversion theory of diffraction. The method 
describes the diffracted field as a summation of plane waves, traveling in directions determined 
by the classical grating equation and having amplitudes and phases determined by continuity of 
normal stresses and normal displacements at the interface. They report calculations tackling 
diffraction of incident plane waves with polarization perpendicular to the corrugations, i.e. the 
grooves, on the surface. Their results correspond very well with experiments. The present work 
reports calculations, using the same mode conversion principle, for incidence from the solid side 
and for a polarization that is parallel to the grooves, i.e. horizontally polarized waves. Contrary to 
Claeys and Mampaert who solely consider normal incidence in their calculations, we also take a 
look at other angles of incidence, more specifically at an angle that we define as the Brewster 
angle, involving similar effects as in optical scattering at plane interfaces. The geometry of the 
solid-liquid corrugated interface is depicted in Fig X.A.1.g_1. 
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Fig. X.A.1.g_1: The geometry of the solid-liquid periodically corrugated interface 

 
 THERE IS NO INTERSUBSET MODE CONVERSION 
 
Consider a periodically corrugated surface that is the interface between a solid (henceforth upper 
index 1) and a liquid (henceforth upper index 2), described by  
 

( , ) ( ) ( , ) 0p x z f x z p x z= − = + Λ =  (X.A.1.g_1)
 
Λ  being the period. The wrinkles are directed parallel to the y-axis, whence one can easily 
distinguish between horizontally polarized waves having a polarization vector parallel to the 
grooves, and vertically polarized waves having a polarization vector perpendicular to the 
grooves. If , with i = incident and r = reflected, is the particle displacement in the 
solid and , with t = transmitted, the particle displacement in the liquid, then we can 
establish continuity conditions for normal displacements and normal stresses as 

ri uuu +=1

tuu =2

 
1 2p p• = •u grad u grad  (X.A.1.g_2)

 
3 31 2( ) ( )

1 1
T grad p T grad pkj j kj jj j

=∑ ∑
= =

 
(X.A.1.g_3)

 
with [ ]kjT  the stress tensor. Relations (X.A.1.g_2-3) yield 
 

i r tA B M= +u u u  (X.A.1.g_4)
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A, B and M being operators depending, due to (X.A.1.g_1), solely on x,z and time. Since  also 
depends exclusively on x, z and time, relation (X.A.1.g_4) yields that both  and  also 
depend only on x, z and time. Taking this into account, we obtain for (X.A.1.g_2) 

iu
ru tu

 
1 1 2f fu u u 2ux z x zx x
∂ ∂

− = −
∂ ∂

 (X.A.1.g_5)

 
and for (X.A.1.g_3), we get  
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(X.A.1.g_6a)

 
1 1 2 2

1 1
u u u uf fy y y y
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⎥
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(X.A.1.g_6b)
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(X.A.1.g_6c)

 
The Lamé constants λ  and µ  are related to the bulk velocities of the respective media 
(superscript 1 for solid, 2 for liquid). Remark that further below, the symbol λ  will also be used 
for the wavelength, but never using the superscripts 1 or 2. 
The harmonic nature of the particle vibrations is accomplished by 
 

( , , ), ( , , ), ( , , )n n n nu x z t u x z t u x z tx y z
⎡= ⎢ ⎥⎣ ⎦

u ⎤

t

 ;  n
n

i uu ω=
• (X.A.1.g_7)

 
for n=i,r or t 
Conservation of linear momentum  when particle vibrations are conveyed yields P
 

i r= +P P P  (X.A.1.g_8)
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The vibrating particles have a mass ms and frequency ω  in the solid and a mass ml and the same 
frequency ω  in the liquid, whence (X.A.1.g_8) imparts 
 

lmr iu u uj j sm
= − t

j  ; j=x,y,z 
(X.A.1.g_9)

 
Equations (X.A.1.g_6) and (X.A.1.g_9) yield straightforwardly  
 

( )0,0,0
0, ,0

0, ,0
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(X.A.1.g_10a)
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(X.A.1.g_10b)

 
Therefore it is proved that an incident horizontally polarized wave doesn’t produce any wave in 
the bulk of the fluid and will merely generate a horizontally polarized reverberated wave, while a 
vertically polarized wave, either dilatational or vertically shear polarized, will generate a vertical 
polarized reflected wave and a compressional transmitted wave. Hence, there is no mode 
conversion from horizontally incident waves to vertical refracted waves and there is also no mode 
conversion from vertically incident waves to horizontal refracted waves, i.e. there is no mode 
conversion from the horizontally polarized subset to the vertically polarized subset and vice 
versa. 
 
 HORIZONTALLY POLARIZED INCIDENT PLANE WAVES 
 
In section II, it is shown that only shear horizontally polarized reflected waves are generated 
when horizontally polarized (shear) incident waves are considered. The velocity potential for the 
incoming plane wave is 
 

( ) ( )
( )

( ) ( )
( )

2 2 2 2

i i i iii i xk zk i xk zkikik x z x zi xzC e C ex zi i i ik k k kx z x z

+ +−
= +

+ +

ψ e e  

(X.A.1.g_11)

 
while the velocity potential for the reflected sound is 
 

( ), ( ,s )x z x zx zξ ζ= +ψ e e  (X.A.1.g_12)
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where i = incident horizontally shear polarized, s = reflected horizontally shear and C is an 
amplitude. We decompose the reflected sound field into a Fourier series, therefore only 
considering sound that is traveling away from the surface and neglecting sound that is 
propagating towards the surface due to secondary scattering effects. According to Meecham [5], 
( zx, )ξ  as well as ( zx, )ζ  are allowed to be decomposed in a Fourier series [7] whenever the 

following conditions hold: 
 

max ( ) if x λ<  (X.A.1.g_13)

 
where 
 

iλ ≈ Λ  (X.A.1.g_14)

 
Relations (X.A.1.g_13-14) are called the Lippman conditions [10] and state that the height of the 
roughness must be small compared to the wavelength of the ultrasonic wave and that the 
wavelength must be comparable with the roughness period. 
Therefore 
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(X.A.1.g_15)

 
where m is the order of the plane wave functions, Rm is the reflection coefficient,  is the wave 
number along the z-axis and k

s
mzk ,

x,m is the wave number along the x-axis, of the mth order plane 
wave. kx,m and  are related to each other through the wave speed. The classical grating 
equation holds 

s
mzk ,

 

2sin sin ,

ss i im k k mm x m x
λ πθ θ= + ⇔ = +
Λ Λ

 
(X.A.1.g_16)

 
where  is the incidence angle with the z-axis,  the reflection angle with the z-axis of the miθ s

mθ th 
order reflected plane wave and  is the wavelength of the diffracted wave, governed by the 
frequency (not to be confused with the Lamé constant 

sλ
1λ  or 2λ ). Since, omitting the time 

dependence, 
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(X.A.1.g_17)

 
The continuity conditions (X.A.1.g_2-3), at )(xfz = , demand 
 

1 1( ) ( ) 0T grad p T grad pyx x yz z+ =  (X.A.1.g_18)

 
or likewise, 
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(X.A.1.g_19)

 
Due to the periodicity of the tracks on the surface, both sides of (X.A.1.g_19) are periodic, 
whence we can write them as a Fourier series in  with  defined in (X.A.1.g_16) for ‘m’ 
replaced by ‘n’. Then, equation (X.A.1.g_19) holds if and only if the Fourier coefficients of both 
sides in (X.A.1.g_19) are equal to each other. This results in  
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where 
 

( ) ( )1 ,
,

0

i ii i k k x f x kk x x n zzI e di n ikz

⎡ ⎤− +Λ ⎢ ⎥⎣ ⎦= ∫ x  

(X.A.1.g_21)

 

( ) ( )1 , , ,
,

0,

si k k x f x kx m x n z msI e dm n skz m

⎡ − +Λ ⎢ ⎥⎣ ⎦= ∫ x

⎤

 

(X.A.1.g_22)

 
involving 
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and 
 

( )
( )

( )22 2
2

i ik kx zsv

ω
= −  

(X.A.1.g_24)

 
in which  is the shear wave velocity. As a consequence of the disability of fluids to carry shear 
waves, it is seen from (X.A.1.g_20) that the theory is also valid for pressure release surfaces. 
Equation (X.A.1.g_20) is valid for each m and n and therefore generates a transformation, having 
an infinite number of coefficients, of an infinite number of variables R

sv

m. The discrete nature of 
this transformation enables us to calculate the value of the variables Rm using a computer 
procedure, whence it is also necessary to truncate the set of m and n values. The infinite 
transformation may be reduced to a finite transformation due to energy considerations. That is 
because it is physically necessary that only a finite number of Rm are significant since the 
incoming sound solely delivers finite energy per unit of time. We have performed calculations for 
m=1,2,3,.. and we have noticed that the alteration of the results when  m or n exceed 3 does not 
exceed the smallest representable number of our computer. It can therefore be concluded that the 
results have converged as perfect as possible if we chop { }mR  at |m|=3. For practical reasons 
however, we have chopped {  at |m|=8. Therefore we only consider , i.e. a 
transformation of 17 by 17 is considered and also 17 unknown variables R

} }mR { 8,..,8, −∈nm
m. Even though the 

rapid convergence of our results makes numerical error estimation superfluous, it is interesting to 
remark that such an estimation can be made when necessary through power flow considerations 
[6] resulting in  
 

2
cos coss iRm mθ θ=∑  

(X.A.1.g_25)

 
for the summation over all m for which  exists, determined by the classical grating equation 
(X.A.1.g_16).  

s
mθsin

 
 CALCULATIONS 
 
 Normal incidence of horizontally polarized plane waves 
 
The material properties are listed in Table X.A.1.g_I. 
 
Table 
X.A.1.g_I: 

Material properties, and calculated frequencies and velocities ( ) of Love waves for different 

solid-water interfaces with 
Lv

( ) mxf µ35max =  and mµ350=Λ  

 
 )/( 3mkgρ  ( )smvd /

 
( )smvs / Love-freq.(MHz) Lv (m/s) 

stainless steel 7850 5700 3100 8.83 3094.32 
brass 8100 4700 2100 5.98 2092.49 
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perspex 1060 2350 1150 3.27 1144.13 
 
Following Claeys et al [8] and Mampaert et al [6] who found anomalies in reflection spectra, for 
vertically polarized waves, that correspond to generated surface waves, we have calculated 
reflection spectra for horizontally polarized waves. It is seen from Fig. X.A.1.g_2, for a 
horizontally polarized plane wave with 0dB intensity, striking a sine shaped interface between 
stainless steel and water with ( ) mxf µ30max =  and mµ350=Λ , that at 8.83 MHz, the zero 
order shows an anomaly accompanied by a maximum for the first order wave.  

 

Fig. X.A.1.g_2: The intensities of the 3 first reflected orders in dB. 
 
The maximum exceeds 0dB whence it must be an inhomogeneous plane wave, which is in 
agreement with the fact that up to and beyond 8.83MHz, (X.A.1.g_23) shows that  is pure 
imaginary. Since this surface wave is pure shear polarized, it is a Love like wave. It is also seen 
from Fig. X.A.1.g_3 that at 8.83 MHz the phase of the different orders undergo a strong phase 
shift. For low frequencies there is no diffraction because waves having a large wavelength are not 
susceptible for small corrugations, and hence all the energy, see Fig X.A.1.g_2, stays in the zero 
order wave during reflection. The reflected wave shows no phase difference with the zero phase 
of the incident wave. For higher frequencies, the incoming energy is distributed in the excited 
orders and the specular zero order reflected wave shows a phase difference with the incoming 
wave. 

s
zk 1,

 
- 439 - 



CHAPTER X: Diffraction Phenomena 
  

 

Fig. X.A.1.g_3: The phase of the 3 first reflected orders. 
 
 
 
 Incidence at Brewster angle of shear polarized plane waves 
 
In optics, it is well known [9] that for arbitrarily shear polarized light, incident at the Brewster 
angle, the specular reflected light has a polarization parallel to the interface and perpendicular to 
the incident light ray. In acoustics, we can, for a periodically corrugated surface, also define a 
Brewster angle  in solids as the angle of the incident sound, at a chosen frequency and with 
arbitrary shear polarization, for which the zero order reflected sound, in the -  direction, is 
horizontally polarized. In other words, the zero order reflected sound will contain a considerable 
amplitude  of a horizontally polarized reflected wave and a negligible amplitude  of a 
vertically polarized reflected shear wave. There will also be a longitudinal polarized wave, but it 
will propagate in a different direction and can be filtered out if bounded beams are used instead 
of plane waves. We know [6] that for normal incidence, vertically polarized incident waves will 
generate Scholte – Stoneley waves (SST) at certain frequencies , m being the diffraction 
order, that absorb much, if not all, of the incident vertically polarized sound. We also know from 

iθ
iθ

0R 0S

mSSTfreq ,
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the classical grating equation (X.A.1.g_16) that in case SST are generated, the classical grating 
equation for an incident plane wave with  different from zero, may be written as i

xk
 

2
,

SST ik k mx m x
π

= +
Λ

 (X.A.1.g_26)

 
As mentioned in section IV.1, SST contain an imaginary z-component and a real x-component of 
their wave vector. The wave vector is therefore complex. From the dispersion equation in the 
complex waves theory, which can be found in numerous papers concerning such waves, we know 
that we can write any wave vector as the angular frequency divided by a complex wave velocity. 
We may therefore express the real component of the wave vector, i.e. , as the angular 
frequency divided by its real (i.e. measurable) velocity v. We must however also take into 
account the direction of propagation (plus for positive m, minus for negative m). If we also 
assume that the velocity v  of SST is independent of the frequency, i.e. v is equal to a frequency 
independent value , then  

SST
mxk ,

SSTv
 

2( ),
freqSSTk sign mx m SSTv

π
=  

(X.A.1.g_27)

 
while for the (real) incident plane waves 
 

2 sinfreqi ikx sv

π θ=  
(X.A.1.g_28)

 
hence relations (X.A.1.g_26-28) result in 
 

( ) sin

SST sm v vfreq s SST isign m v v θ
=
Λ −

 
(X.A.1.g_29)

 
and 
 

( ) arcsin
smfreq vi sign m SST freqv

θ
⎡ ⎤⎛ ⎞
⎢ ⎥= −⎜ ⎟

Λ⎢ ⎥⎝ ⎠⎣ ⎦
 

(X.A.1.g_30)

 
Relations (X.A.1.g_29-30) tell us at what angle  the surface must be insonified with sound of 
frequency freq if SST are to be generated, and vice versa. It is this  that we define as the 
Brewster angle of incidence, since zero order reflected sound will be created that, due to the 
extremely small amplitude of the reflected vertically polarized waves, does not, or almost not, 
contain any vertically polarized waves and thus solely horizontally polarized waves. 

iθ
iθ

Now, we will see some consequences of the so far found formulas (X.A.1.g_29) and 
(X.A.1.g_30). It is important to note that for normal incidence [6] an SST generating frequency 
generates both an m’th order and a –m’th order SST. For oblique incidence however, as seen 
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from (X.A.1.g_29-30) for a certain angle of incidence, the m’th order and the –m’th order will be 
generated at different frequencies and for a chosen frequency, a  will produce the m’th order, 
while -  will generate the –m’th order. It is equally important to remark that only a  can be 
found for a given frequency freq, using (X.A.1.g_30) if  

iθ
iθ iθ

 

0
s sv vSST SSTfreq freq freqs SST s SSTv v v v

⎛ ⎞ ⎛
⎜ ⎟ ⎜< ≤ ≤
⎜ ⎟ ⎜+ −⎝ ⎠ ⎝

⎞
⎟
⎟
⎠

 
(X.A.1.g_31)

 
SSTfreq  being the frequency at which SST of the considered m’th order are generated using 

normal incidence and that for a given angle of incidence , a positive frequency can only be 
found, using (X.A.1.g_29), if  

iθ

 

sin ( )
svisign m SSTv

θ <  
(X.A.1.g_32)

 
It is also seen from (X.A.1.g_30) that 
 

( )
( ) ( )

( )

i SSTsign sign m freq freq
i SSTsign sign m freq freq

θ

θ

= ⇔ ≥

= − ⇔ ≤
 

(X.A.1.g_33)

 
One consequence of (X.A.1.g_31) is the necessity of , by which (X.A.1.g_32) is 
fulfilled too. Calculations have convinced us that the defined Brewster angle (X.A.1.g_30) never 
generates horizontally polarized surface waves since the Love wave frequency is always different 
from the SST frequency, whence  is clearly a Brewster angle in every sense. An example is 
given in Fig X.A.1.g_3 for a shear polarized wave, of frequency 7Mhz, isonifying a sine shaped 
stainless steel – water interface with 

sSST vv <

iθ

mµ350=Λ  and ( ) mxf µ30max = , for which (X.A.1.g_31) 
gives 
 

5.72 16.16MHz freq MHz≤ ≤  (X.A.1.g_34)
 

smvSST /87.14782 =  was used, obtained from calculations using normal incidence at the second 
order SST generating frequency of 8.45 MHz. Formula (X.A.1.g_30) for 7MHz predict , 
which is indeed part of the calculated broad valley of almost zero amplitude as shown in Fig. 
X.A.1.g_4, while the exact minima, i.e. the deepest spot in that broad valley of 

°= 26iθ

2
0S  for 7MHz is 

at , which would have been predicted by formula (X.A.1.g_30) if  
was used. Since normal spectra predict , we do not believe that the SST velocity alters 
because of a slightly different frequency, but due to a different angle of incidence. It is as if the 
continuously and obliquely insonifying sound field stimulates the SST to travel faster than in the 
event of normal incidence. 

°= 5.29iθ smvSST /80.15232 =
SSTSST vv 12 ≈
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Fig. X.A.1.g_4: The intensity of  and  as a function of the angle of incidence.  shows a minimum at 
29.5° which we define as the Brewster angle. 

0S 0R 0S

 
 CONCLUDING REMARKS 

 
A method has been developed to tackle the diffraction of horizontally polarized shear 
incident plane waves at a periodically corrugated interface between a solid and an ideal 
liquid. The creation of Love like waves has been predicted. The existence of a Brewster 
angle has been discovered and calculations using vertically polarized incident waves with 
continuity conditions obtained by Mampaert et al [6] show indications that Scholte – 
Stoneley waves, generated by diffraction have larger velocities for oblique incidence than 
for normal incidence. 
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X.A.1.h Note on Scholte – Stoneley Waves on 
a Periodically Corrugated Surface 

 
 It is known that the amplitude distribution and velocity of surface waves on a solid-liquid 

interface is influenced by the presence and the properties of a coating. It is shown that 
the effect on Scholte-Stoneley waves of roughness is intuitively comparable to the effect 
of a coating. Furthermore, this effect may be considered as an explanation for reported 
results concerning generated Scholte – Stoneley waves on rough surfaces. 

 
 INTRODUCTION 
 
On plane solid-liquid interfaces, Scholte – Stoneley waves are a solution of the Scholte – 
Stoneley equation [1], which is a generalization of the Rayleigh equation on solid-vacuum 
interfaces, and do not radiate. In several papers, the presence of Scholte-Stoneley waves on 
corrugated surfaces is also considered [2-4]. It is known from experiments that Scholte – 
Stoneley waves on corrugated interfaces do not radiate inherently (contrary to leaky Rayleigh 
waves) but solely through diffraction. If such a wave would travel along the corrugated interface 
with the real part of the wave vector directed parallel to the interface at each particular spot, then 
this would result in consecutive altering of that part of the wave vector direction during 
propagation. This effect would almost for certain result in inherent radiation of energy into one or 
both of the media. Since this effect does not appear for Scholte – Stoneley waves, it must be 
concluded that the real part of their wave vector is constantly directed along the direction of 
propagation, just  as on a smooth interface. 
The effect of the roughness is therefore comparable to the presence of a coating, with properties 
that differ from those of the solid and those of the liquid, comparable with the effect that fiber 
reinforced composites have properties that differ from the fibers as well as from the resin. For 
classical (smooth) coatings, we know that if for example a brass substrate is covered by an 
aluminum coating, surface waves will travel at a velocity corresponding to the water/brass case if 
the coating thickness is zero and corresponding to the water/aluminum case if the coating is 
sufficiently thick. From Franklin et al [5], we know that the effect of a coating on Scholte – 
Stoneley waves is a decrease or even an increase of their velocity, depending on the nature of the 
coating.  
If the ‘coating’ is formed by a corrugation, its physical properties near the pure liquid will be 
almost exclusively determined by the properties of the liquid due to the relatively negligible 
presence of solid corrugations, while the opposite effect will occur near the pure solid side, as 
shown in Fig. X.A.1.h_1.  
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Fig. X.A.1.h_1: A corrugated interface between a liquid and a solid can be interpreted as a coated solid substrate 
in a liquid, when a Scholte – Stoneley wave travels along the interface with constant  direction (propagation 

direction) of the real part of its wave vector. 
 
Hence the physical properties of the ‘coating’ will vary from ‘almost liquid – like’ to ‘almost 
solid – like’. This continuity will have serious effects on the amplitude distribution of Scholte – 
Stoneley waves and also on their velocity. On smooth interfaces, the energy distribution of 
Scholte – Stoneley waves is more significant in the liquid part than in the solid part. It is expected 
that in the case of a corrugated surface, enhanced influence of the solid appears.  
In what follows, some situations will be listed (found in the literature) in which a velocity 
increase is noticeable or is at least a plausible explanation of  the observations.  
 
 NUMERICAL EXAMPLES EXTRACTED FROM REPORTED EXPERIMENTS 
 
 Diffraction experiments of Claeys et al [2] 
 
Claeys et al [2] present diffraction curves for normal incident ultrasound on periodically 
corrugated surfaces, for several materials. The corrugation period is denoted by . We do not 
aim at investigating their theory or at presenting a new theory, whence we solely focus on their 
experimental results. Their diffraction curves show so called Wood anomalies, which are 
believed to result from generated Scholte – Stoneley waves [2]. If we connect these Wood 
anomalies to the Scholte – Stoneley velocity  through the diffraction equation [2], we get for 
each diffraction order  

Λ

Stv
m

 
( )v m f mSt = Λ  (X.A.1.h_1)

 
in which  is the frequency corresponding to the Wood anomaly. f
The results for the velocities are listed in Table X.A.1.h_I. We call  the Scholte – Stoneley 
velocity for a smooth surface. It is seen from Table X.A.1.h_I that  

smoothv
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( )v m vSt smooth>  (X.A.1.h_2)

 
In other words, the velocity of Scholte – Stoneley waves appears to be higher for corrugated 
surfaces than for smooth surfaces and it even seems to exceed the velocity of sound in water 
(1480 m/s). 
 
Table 
X.A.1.h_I: 

The velocities [m/s]of Scholte – Stoneley waves corresponding to experimentally 
obtained Wood anomalies in diffraction spectra

( )mvSt
2. The diffraction order is m. The velocity on 

smooth surfaces is denoted by  and is numerically obtained form the Scholte – Stoneley 
equation

smoothv
1. The surfaces form the interface between a solid and water 

 
solid smoothv  ( )1Stv  ( )2Stv  ( )3Stv  
stainless steel 1479.568 1755± 2 1665± 2 1655 2 ±
brass 1476.759 1487± 2 1563± 2 1505 2 ±
perspex 885.817 1170± 2 1185± 2 1126 2 ±
 
 Diffraction experiments of Tinel et al [4] 
 
Tinel et al [4] report diffraction experiments for which the velocity of a Scholte – Stoneley wave 
on a corrugated interface (they call it a pseudo Scholte wave) between duraluminum and water is 
1484.995 m/s, while only 1481.988 m/s on a smooth interface. Even here, a velocity increase 
seems to appear. 
 
 Field experiments of Chamuel and Brooke [3] 
 
The Bragg frequency [3] of a corrugated surface is defined by Braggf
 

( )2f vBragg St= Λ  (X.A.1.h_3)

 
Chamuel and Brooke [3] report experiments in the shallow waters of the (corrugated) Barrow 
Strait of the Canadian Arctic that have been carried out by Brook, Thomson and MacKinnon [6] 
and that measure a Bragg frequency to which a Scholte - Stoneley wave velocity of 1460 m/s can 
be attributed, for averaged corrugations characterized by a height of 4m and Λ =75m, for dense 
limestone. If the Scholte-Stoneley equation is solved, one gets a Scholte – Stoneley velocity of 
only 1444m/s on a smooth surface characterized by the material properties of the Barrow Strait. 
Also here, a velocity increase seems to appear. 
 
 CONCLUDING REMARKS 

 
It is shown from examples in the literature, that the increased velocity effect on Scholte-
Stoneley waves seems to appear in many situations. We intuitively attribute this 
phenomena to the fact that the effect of a corrugation on a Scholte – Stoneley wave is 
comparable to the effect of a coating. The authors kindly invite readers to study this 
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phenomenon more properly or even to make an accurate theoretical model as to predict 
this effect. 
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X.A.2.a Diffraction of Homogeneous and 
Inhomogeneous Plane Waves on a 
Doubly Corrugated Liquid/Solid 
Interface 

 
 This section extends the theory of diffraction of sound on 1D corrugated 

surfaces to 2D corrugated surfaces. Such surfaces that are egg crate shaped, 
diffract incoming sound into all polar directions, which is fundamentally 
different from 1D corrugated surfaces. Even though the present section 
presents a theory which is valid for all angles of incidence, special attention is 
given to the particular case of the stimulation of surface waves by normal 
incident sound. The most interesting conclusion is that, depending on the 
frequency and the incident inhomogeneity, Scholte- Stoneley waves and leaky 
Rayleigh waves can be generated in different directions. This effect might be of 
particular interest in the development of Surface Acoustic Wave devices and 
the basic idea of this steering effect can be of importance for planar actuators. 

 
 INTRODUCTION 
 
There are several papers available, applying many different methods, on the diffraction of sound 
by 1D corrugated surfaces. Many of them are listed in the book of Maystre [1]. The diffraction of 
sound on doubly corrugated surfaces (‘egg crates’) has only been sporadically taken under 
consideration in the literature. As far as we know, only three papers are available which tackle a 
similar physical problem. 
The first is the paper of Boag et al [2], that describes a method using a so called source model. 
However, even though the title shows some resemblance with our title, actually, an investigation 
is performed on the diffraction caused by periodically distributed objects beneath a scattering 
surface. 
The second paper is the one of Milder and Sharp [3] , which is based on a paper of Milder [4] , 
and describes a method which is in fact meant to be used in cases where scattering on complex 
rough surfaces, such as the ocean surface, appear. Their method is actually based on the 
Helmholtz integral expression of the scattered field and even though it is of practical interest in 
simulating scattering at very complex corrugations, whereas the current section is specialized to 
periodical surfaces, there is no consideration at all of generated surface waves and of the 
existence of anomalies in the reflection coefficient. 
The third one is the paper of Bishop and Smith [5], in which research is reported on the 
diffraction on quite the same corrugated surfaces as is undertaken in the present section. 
However, Bishop and Smith [5] use a different method which consists of a ‘T-matrix’ formalism 
applying the Helmholtz-Kirchoff integral equations to represent the scattered pressure field in the 
liquid and the displacement field in the solid. Moreover, Bishop and Smith [5] limit their 
discourse to pure homogeneous incident plane waves, whereas the current section applies not 
only to homogeneous, but also to inhomogeneous plane waves. The reason for our focus on 
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inhomogeneous waves is the well known fact [6-8] that leaky Rayleigh waves can only be 
practically stimulated by inhomogeneous plane waves and not by homogeneous plane waves. 
Bishop and Smith [5] particularly focus on the interesting fact that the roughness shape is 
qualitatively unimportant for the phenomena that appear during diffraction and is completely 
unimportant in the positioning of anomalies that appear in the diffraction spectra as a function of 
the frequency or as a function of the angle of incidence. The present section does not investigate 
this phenomenon because it has been done by Bishop and Smith [5]. Another reason is because it 
can also be found in an earlier paper by Mampaert et al [9], in which a similar approach is 
formulated as in the present section, that for a singly corrugated surface, the shape of the 
corrugation is indeed relatively unimportant and has no effect at all on the position of anomalies 
in the reflection spectra. Furthermore, even though Bishop and Smith [5] observe some anomalies 
in their reflection spectra, they do not prove what exactly causes these anomalies, which could be 
done for example by means of depicting the displacement field of the diffracted sound. Finally, 
Bishop and Smith [5] apparently have not found any situation under which a reflection or 
transmission coefficient exceeds unity. However, it is known from earlier research [9-14] that 
Wood anomalies are caused by Scholte-Stoneley waves (SSTW) and that they must correspond to 
the specific property of diffracted waves having an amplitude exceeding unity accompanied by a 
pure imaginary wave vector component along the normal to the interface. Hence, although the 
paper of Bishop and Smith [5] is really interesting, the present section intends to better focus on 
the influence of the doubly corrugation on the generation of critical phenomena such as SSTW 
and leaky Rayleigh waves and tackles the diffraction of inhomogeneous waves which are known 
to be excellent tools to actually stimulate Rayleigh waves [6-8]. 
The current section follows the method of Claeys et al [10,15] and Mampaert et al [9,12-14] for 
incident homogeneous plane waves (i.e. the Rayleigh decomposition) and the extension of Briers 
et al [6-8,16,17] for inhomogeneous plane waves. This latter particular method applies a 
decomposition of the diffracted wave fields into inhomogeneous waves that travel each in a 
direction, and have an inhomogeneity, governed by the classical grating equation and the 
dispersion relation. This method has only been performed until now on singly corrugated 
surfaces, where it has been experimentally verified for incident homogeneous plane waves [9,15] 
as well as for incident inhomogeneous plane waves [8]. Actually, the limitations of the method 
are discussed in [6-10,12-17] and in this section we limit the discussion to examples where the 
method is valid, i.e. where the considered wavelengths meet the required Lippmann conditions. 
In the discussion below, we omit the time dependence ( )tiω−exp of the sound field, since this 
factor can be added at any time in the results without altering any of the developed equations. 
The properties of inhomogeneous waves that appear in this section can also be found in [6-
8,16,17] and in numerous papers dealing with such waves. 
 
 THEORETICAL DEVELOPMENT 
 
 Boundary Conditions 
 
The doubly corrugated interface is described by 
 

( ) ( ) ( ),z f x y f x f yx y= = +  (X.A.2.a_1)

 
with 
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( ) ( )f x fx x x+ Λ = x  and ( )f y fy y y
⎛ ⎞+ Λ =⎜ ⎟
⎝ ⎠

y  
(X.A.2.a_2)

 
whence the boundary condition is given by 
 

( ) ( ), ,g x y f x y z= − 0=  (X.A.2.a_3)

 
An example of a doubly corrugated surface is given in Fig. X.A.2.a_1. 
 

 
Fig. X.A.2.a_1: Example of a doubly corrugated interface between a liquid and a solid. 

 
 The Rayleigh Decomposition in the Case of Doubly Corrugated Surfaces 
 
If an inhomogeneous wave  with complex wave vector incN inck is impinging the corrugated 
interface, it is scattered due to the corrugation into wave fields , where p stands for any of 
the possible generated types of waves, e.g. reflected dilatational. One may write  

scatp,N

 

( )1
inc inc inc inck i iα β= + − ⊥k e e  (X.A.2.a_4) 

 
where e  is a unit vector along the direction of propagation and ee ⊥⊥ . 

inck1  is the propagation wave number,  is the damping coefficient and  is the 
inhomogeneity. Omitting the time dependence, one may write 

incα incβ

 

( ) ( ), , , ' , , , , ' ,, , 1, , 1,
inc inc inc inc inc inc incN M x y M z F k x y F k zx y x y z z x y zα β α β⎛ ⎞ ⎛ ⎞= ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
 

(X.A.2.a_5)

 
where M, respectively M’, describe the amplitude and collect x- and y-, respectively z-, 
dependent quantities, while F, respectively F’, represent the phase and collect x- and y-, 
respectively z-, dependent quantities. The scattered fields are also written in that notation: 
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, , , , ,' 'p scat p scat p scat p scat p scatN M M F F=  (X.A.2.a_6)

 
In the xy-plane, the amplitude of the scattered field is directly proportional to the amplitude of the 
incident field, whence  
 

, ,, , ,, ,
p scat p scatinc incM x y K Mx y x yα β⎛ ⎞ =⎜ ⎟

⎝ ⎠
 

(X.A.2.a_7)

 
in which scatpK ,  is a complex number that depends on the continuity conditions. Furthermore, it 
is supposed that the scattered field is described by an amplitude that is related to the overall 
structure of the surface (farfield approach), hence neglecting explicit dependence of individual 
spots inside the grooves. Therefore it is stated that scatpK ,  does not depend on x and y. Hence 

scatpM ,  and M  have the same functional dependence on x and y and therefore  
 

,
, ,

p scatinc
x y x yα α=  and ,

, ,
p scatinc

x y x yβ β= . (X.A.2.a_8)

 
From the particular case of singly corrugated surfaces, it is known that this farfield assumption is 
valid whenever the Lippmann conditions [18] are fulfilled, stating that the corrugation period 
must be of the order of the incident wavelength and that the corrugation height is less than the 
incident wave length [19]. 
Whereas the amplitude in the farfield is thought of as being independent of particular spots inside 
the grooves, the same assumption cannot hold for the phase. That is because the phase is spatial 
dependent along the direction of propagation, whence it cannot be thought of as being equalized 
inside the grooves. Hence the phase scatpscatp FF ,, '  is related to ( ) ( )zkFyxkF inc

z
inc

yx ,',, ,1,,1  through a 
dependence on x and y. Furthermore, any coordinate translation  
 

( ), ,x y x m y nx y
⎛ ⎞Γ = + Λ + Λ⎜ ⎟
⎝ ⎠

, m,n integers 
(X.A.2.a_9)

 
leaves scatpscatp FF ,, '  unaffected because (as the amplitude scatpscatp MM ,, '  is neglected here) 
translating the grating using (X.A.2.a_9) does not alter the physical situation for these quantities. 
Therefore 
 

( ), ,, ,p scat p scatF x y F x m y nx y
⎛ ⎞= + Λ +⎜ ⎟
⎝ ⎠

Λ  
(X.A.2.a_10)

 
whence a Fourier decomposition may be used 
 

( )
( ), ,

m ni k x k yp scatF x y c C emnm n

++∞ +∞
= ∑ ∑

= −∞ = −∞
, 

(X.A.2.a_11)
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 2mk m
x

π
=

Λ
, 2nk n

y

π
=

Λ
 

 
Relation (X.A.2.a_10) must be valid for all values ( )yx ΛΛ , , whence 
 

1, 1,
inc inci k x k yx yc e

⎛ ⎞+⎜ ⎟
⎝ ⎠=  

(X.A.2.a_12)

 
in order to fulfill Snell’s law in the case of ( )∞=Λ∞=Λ yx ,  
Relations (X.A.2.a_6-8) and (X.A.2.a_11-12) lead to the conclusion that  
 

,

2 2 ,

p scatN

m n p scatinc inci k x k y k zx y z
x ymnA e

m n

π π
⎛ ⎞⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟⎜ ⎟+ + + +⎜ ⎟⎜ ⎟⎜ ⎟Λ Λ⎜ ⎟⎜ ⎟+∞ +∞ ⎝ ⎠ ⎝ ⎠⎝ ⎠= ∑ ∑

= −∞ = −∞

 

(X.A.2.a_13)

 
mnA  having a complex value depending on the continuity conditions and  respectively  

being the x and y components of the complex incident wave vector. It is clear that for example  

inc
xk inc

yk

mnA  
2m inck k mx x

x

π
= +

Λ
 

(X.A.2.a_14)

 
is the well known grating equation in the x direction. The one in the y direction for  is of 
course similar. 

n
yk

For the case of a singly corrugated surface, expression (X.A.2.a_13) has been used before [6-8, 
16, 17] and was experimentally verified, but it had never been theoretically proved up to now that 
this extension of the famous grating equation for plane waves [9, 10, 12-15] is also valid for 
inhomogeneous waves. 
 
 Acoustic Potentials 
 
Taking into account (X.A.2.a_13) and taking into account the characteristics of dilatational and 
shear waves, one may now write the incident waves , the (dilatational) reflected waves , 
the dilatational respectively shear transmitted waves  and , as 

incN rN
dN sN

 
inc inc inc inc inc incA ik ik ikx x y y z zϕ ⎛= + +⎜ ⎟

⎝ ⎠
N e e ⎞e  

 

(X.A.2.a_15)
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, , , , , , , , ,

,

m n m n r m n r m n r m n rr R ik ik ikx x y y z zm n
ϕ ⎛ ⎞= +∑ ⎜ ⎟

⎝ ⎠
N e e + e  

 

(X.A.2.a_16)

, , , , , , , , , ,

,

m n d m n d m n d m n d m n dd A ik ik ikx x y y z zm n
ϕ ⎛ ⎞= +∑ ⎜ ⎟

⎝ ⎠
N e e + e  

 

(X.A.2.a_17)

, , , , , .

,

m n s m n s m n ss A
m n

ϕ= ∑N P  (X.A.2.a_18)

 
with 
 

i
e

ς
ςϕ

⎛ ⎞•⎜ ⎟
⎝ ⎠=
k r

 

(X.A.2.a_19)

 
and 
 

0,,,,,,,,,,,, =++ snm
z

snm
z

snm
y

snm
y

snm
x

snm
x PkPkPk  (X.A.2.a_20)

 
and with the following properties that hold for inhomogeneous waves: 
 

1 2iς ς ς= +k k k  

 

(X.A.2.a_21)

2
ς ς ς= −k α β  

 

(X.A.2.a_22)

1 2 1k
ς ς ς ςα• =k k  

 

(X.A.2.a_23)

1
ς ς⊥β k  

 

(X.A.2.a_24)

1k
ς ςα  

 

(X.A.2.a_25)

22 2 2
1 0k

v

ω 2ς ς ς ςα β ας
⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞− − = −⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠

 
(X.A.2.a_26)

 
with  the sound velocity and  the intrinsic damping coefficient. Relation (X.A.2.a_20) can 
be found as the property of one of the possible propagation modes (pseudo shear) by demanding 

ςv ςα0
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inhomogeneous waves to be solutions of the wave equation. The properties of the pseudo 
dilatational waves are already present in the potential representation (X.A.2.a_15-18).  
 
 The Continuity Conditions 
 
An incident inhomogeneous plane wave can be described by 7 initial values, i.e. the amplitude 

incA , and  such that , , , , ,1 1 1 2 2 2
inc inc inc inc inc inck kξ θ ξ θ

 
sin cos1, 1 1 1

sin sin1, 1 1 1

cos1, 1 1

sin cos2, 2 2 2

sin sin2, 2 2 2

cos2, 2 2

inc inc inc inck kx
inc inc inc inck ky
inc inc inck kz
inc inc inc inck kx
inc inc inc inck ky
inc inc inck kz

ξ θ

ξ θ

ξ

ξ θ

ξ θ

ξ

=

=

=

=

=

=

 

(X.A.2.a_27)

 
In media τ  ( 1τ =  for liquid, 2τ =  for solid) the stress tensor Tτ  is given by its elements [20, 
21] 
 

21 2 , 1 2Tmn m n mnt t
τ τ τ τ τ τ τλ λ ε δ µ µ εηηη

∂⎛ ⎞ ⎛ ⎞= + + +∑⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠

∂  
(X.A.2.a_28)

 

in which the strain tensor mn
τε  is given by its elements 

 
1
2

N Nmn m n n m
τ τ τε ⎡ ⎤= ∂ + ∂⎢ ⎥⎣ ⎦

 (X.A.2.a_29)

 

The Lamé constants are given by 1
τλ  and 1

τµ , while the viscosity coefficients are given by 2
τλ  

and 2
τµ . They fulfill the dispersion relation if 

 

( ) ( )
2

21 2 1i i

ρ ωτ τ τ

2
τ τ τ τλ ωλ µ ωµ

• =
− + −

k k  
(X.A.2.a_30)

 
for dilatational waves and if 
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( )
2

1 2i

ρ ωτ τ τ
τ τµ ωµ

• =
−

k k  
(X.A.2.a_31)

 
for shear waves where τρ  is the density. The Lamé constants are related to the shear velocity , 
the dilatational velocity , the intrinsic damping coefficient for shear waves  and the 
intrinsic damping coefficient for dilatational waves  through the dispersion relation 
(X.A.2.a_26) and (X.A.2.a_30-31) as 

τ
sv

τ
dv τα ,

0
s

τα ,
0
d

 

( ) ( )
( )

,2 ,2 0 21 0 22,2
0

d vd dv vd d
d vd

1

τ τα ωττ τ τ τλ ω ρ ω ατ
τ τω α

+
= −

⎛ ⎞
+⎜ ⎟⎜ ⎟

⎝ ⎠

µ−  

 

(X.A.2.a_32)

( ) ( )
( )

,2 ,2 0
1 0 22,2

0

s vs sv vs s
s vs

τ τα ωττ τ τµ ω ρ ω ατ
τ τω α

+
= −

⎛ ⎞
+⎜ ⎟⎜ ⎟

⎝ ⎠

 

 

(X.A.2.a_33)

( )
( )

3, 22 22 0 22,2
0

d vd
d vd

2
ρττ τ τ τλ α ω µ
τ τω α

= −
⎛ ⎞

+⎜ ⎟⎜ ⎟
⎝ ⎠

 

 

(X.A.2.a_34)

( )
( )

3, 222 0 22,2
0

s vs
s vs

ρττ τ τµ α ω
τ τω α

=
⎛ ⎞

+⎜ ⎟⎜ ⎟
⎝ ⎠

 
(X.A.2.a_35)

 
In order to find the unknown coefficients  

, it is necessary to solve the equations that 

describe the continuity of normal stress and strain along the interface (X.A.2.a_3), i.e. 

, , ,, ,m n m n dR A
, , , , , , , , , , , ,, ,m n s m n s m n s m n s m n s m n sA P A P A Px y z

 

( ) ( )inc r d sg g+ •∇ = + •∇N N N N  along 0g =  

 

(X.A.2.a_36)
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( ) ( )1 2T g T gj jij ijj j
∇ = ∇∑ ∑  along 0g =  (X.A.2.a_37)

 
and also (see (X.A.2.a_20)) 
 

, , , , , , , , , , , , , . 0m n s m n s m n s m n s m n s m n s m n ss s sA P k A P k A P kmn x x mn y y mn z z ϕ⎛ ⎞+ +⎜ ⎟
⎝ ⎠

=  
(X.A.2.a_38)

 
Conditions (X.A.2.a_36-38) lead to 5 equations that are periodic in x and y, whence a sufficient 
condition for a correct solution is that the Fourier coefficients (of the left and right side of the 

continuity equations) are equal for a Fourier transform ,p qx A k k⎛
⎜
⎝ ⎠

6 ⎞
⎟  over the interval 

0 ,0x y
⎡ ⎤→ Λ →Λ⎢ ⎥⎣ ⎦

. 

The 5 equations for each integer ‘p’ and ‘q’ are: 
 
Equation 1: 
 

( )

( ) ( )

( ) ( )

2, , 1

2, , , , , ,, , , 1
,

2, , , , , ,, , , ,

,
,, , , ,

,

inc p inc q p qinc inc inc incA I I ik k k k k kx y z x x y y

m n r p m n r q p qm n m n r m nR I I ik k k k k kx y z x x y ym n

m n d p m n d q p qm n d m n d d m nA I I ik k k k k kx y z x x ym n
m nm n s m n sA P Ix xm n

⎛ ⎞
− + +⎜ ⎟⎜ ⎟
⎝ ⎠

⎛ ⎞
+ −⎜ ⎟∑ ⎜ ⎟

⎝ ⎠

⎛ ⎞
+ −⎜ ⎟∑ ⎜ ⎟

⎝ ⎠

− ∑

( )

, , , , , , ,

, , , , , ,, , , , , ,

,
2, , , , , ,, , , , , , 0

,

s p m n s q pm n s mI k k ky z x x

m n s p m n s q qm n s m n s m n s nA P I I k k ky x y z y ym n

m n s p m n s qm n s m n s m n sA P I I kz x y zm n

⎛ ⎞−⎜ ⎟
⎝ ⎠

⎛ ⎞− −∑ ⎜ ⎟
⎝ ⎠

+ =∑

y

+ +

−
 

(X.A.2.a_39)
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Equation 2: 
 

( ) ( )
( ) ( )

, ,
1

, , , , , ,, , ,
1,

, , , , , ,, , , ,

, ,
2 2

2
1 22 2 2

, ,

inc p inc p pinc inc incA I I k k kx y z x x

m n r p m n r q pm n m n r mR I I k k kx y z x xm n
m n d p m n d qm n d m n dA I I kx y zm n

qn mm d k k kk k y x yx pmk kx xs sk k

m n sA Px

ρ

ρ

ρ

⎛ ⎞− −⎜ ⎟
⎝ ⎠

⎛ ⎞− −∑ ⎜ ⎟
⎝ ⎠

+ ∑
±

⎛ ⎞⎛ ⎞
⎜ ⎟−⎜ ⎟
⎜ ⎟⎜ ⎟× − + + +
⎜ ⎟⎜ ⎟
⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠

+

( ) ( ) ( )
( )

( )

( ) ( ) ( ) ( ) ( )

, , , , , ,, , , ,

,

21 112 2 2 2 2

, , , , , ,, , , , , ,

,

2 1 1 1
2 2 2 2 2 2

m n s p m n s qm n s m n sI I ikx y zm n

qnpm k kk k y ymx x kxd d s sk k k k

m n s p m n s qm n s m n s m n sA P I I iky x y zm n

qmk kx ypnk ky xs d s d sk k k k k

ρ

ρ

∑

⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟
⎜ ⎟⎜ ⎟× − + − −
⎜ ⎟⎜ ⎟
⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠

+ ∑

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜× − − + −
⎜ ⎟ ⎜
⎜ ⎟ ⎜
⎝ ⎠ ⎝ ⎠

( )

( ) ( ) ( ) ( )

2, , , , , ,, , , , , ,
2,

1 1 1 2 02 2 2 2

m nk kx y

m n s p m n s qm n s m n s m n sA P I I i kz x y zm n

pmk kx xd s d sk k k k

ρ

⎛ ⎞
⎜ ⎟
⎜ ⎟⎟
⎜ ⎟⎟
⎜ ⎟⎟
⎝ ⎠

+ ∑

⎛ ⎞⎛ ⎞ ⎛ ⎞
⎜ ⎟⎜ ⎟ ⎜ ⎟
⎜ ⎟⎜ ⎟ ⎜ ⎟× − − − =
⎜ ⎟⎜ ⎟ ⎜ ⎟
⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎝ ⎠

 

(X.A.2.a_40)
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Equation 3: 
 

( )
( ) ( )

( )
( )
( )

, ,
1

, , , , , ,, , ,
1,

, , , , , ,, , , ,

,
22

2 2 ...2 ,2 2

2

... 2 1 22 2

inc p inc p qinc inc incA I I k k kx y z y y

m n r p m n r q qm n m n r nR I I k k kx y z y ym n
m n d p m n d qm n d m n dA I I kx y zm n

nd kk y qk ky n ys sk k

pn m dk k k ky x x

s sk k

ρ

ρ

ρ

⎛ ⎞− −⎜ ⎟
⎝ ⎠

⎛ ⎞− −∑ ⎜ ⎟
⎝ ⎠

+ ∑

⎡ ⎛ ⎞⎢ ⎜ ⎟
⎝ ⎠⎢× − + +

⎢
⎢
⎢⎣

⎛
⎜

+ + −

⎝

( ) ( ) ( )

, , , , , ,, , , , , ,

,

1 2
2 2 2 2

, , , , , ,, , , , , ,

,

12

q nk ky y

m n s p m n s qm n s m n s m n sA P I I ikx x y zm n

nky p qm mk k k k kn
x x xs d sk k k

m n s p m n s qm n s m n s m n sA P I I iky x y zm n

pmk kx x

ρ

ρ

⎤⎞
⎥⎟

⎛ ⎞⎥⎜ ⎟ −⎜ ⎟⎥⎝ ⎠⎜ ⎟
⎜ ⎟ ⎥

⎠ ⎦

+ ∑

⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟

⎛ ⎞ ⎛⎜ ⎟⎜ ⎟× − − − − −⎜ ⎟ ⎜⎜ ⎟⎝ ⎠ ⎝⎜ ⎟
⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠

+ ∑

× −

( )

y y
⎞
⎟
⎠

( ) ( ) ( )
( )

( ) ( ) ( )

21 1
2 2 2 2

2, , , , , ,, , , , , ,

,

1 2 02 2 22

qnk ky y nkys d d sk k k k

m n s p m n s qm n s m n s m n sA P I I i kz x y zm n

nky q nk ky ys d sk k k
ρ

⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟

⎛ ⎞⎜ ⎟⎜ ⎟− + − ⎜ ⎟⎜ ⎟⎝ ⎠⎜ ⎟
⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠

+ ∑

⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟

⎛ ⎞⎜ ⎟⎜ ⎟× − − − =⎜ ⎟⎜ ⎟⎝ ⎠⎜ ⎟
⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠

 

(X.A.2.a_41) 
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Equation 4: 
 

( )
( )

( )
( )

( )

( )

2, ,
1

2, , , , , ,, , ,
1,

2 2, , , , , ,, , , , 12 2,

2, , , , , ,, , , , , ,

,

1 1
2 2

inc p inc pinc inc incA I I k kx y z z

m n r p m n r qm n m n rR I I kx y zm n

m n d p m n d q p qm n d m n d m nA I I k k k k kx y z x x ysm n k

m n s p m n s qm n s m n s m n sA P I I i kx x y zm n

dk

ρ

ρ

ρ

ρ

+

+ ∑

⎛ ⎞
⎜ ⎟

⎛ ⎞⎜ ⎟+ − +∑ ⎜ ⎟
⎝ ⎠⎜ ⎟

⎜ ⎟
⎝ ⎠

+ ∑

× −

( )

y+

( )

( ) ( ) ( )

( ) ( )

2 2

, , , , , ,, , , , , ,

,

, ,
1 2

2 2 2 2

, , , , , ,, , , , , ,

,

1 1
2 2 2

pkm xkxs sk k

m n s p m n s qm n s m n s m n sA P I I iky x y zm n

m n sk qn nzk k ky y yd s sk k k

m n s p m n s qm n s m n s m n sA P I I ikz x y zm n

d sk k

ρ

ρ

⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟
⎜ ⎟⎜ ⎟ −
⎜ ⎟⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

+ ∑

⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟

⎛ ⎞⎜ ⎟⎜ ⎟× − − −⎜ ⎟⎜ ⎟⎝ ⎠⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

+ ∑

× − ( )
( )

2, , 1 02

p qm nk k k kx x y ym n skz sk

⎛ ⎞⎛ ⎞
⎜ ⎟+⎜ ⎟
⎜ ⎟⎜ ⎟ + − =
⎜ ⎟⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

 

(X.A.2.a_42)

 
Equation 5: 
 

)
, , , , , , , , , , , , ...

, , , , , ,... 0, ,

m n s m n s m n s m n s m n s m n sA P k A P kx x y y
m n s m n s m n sA P kz z m p n qδ δ

⎛ + +⎜
⎝

+ =
 

(X.A.2.a_43)

 
with  and  given by (X.A.2.a_30) and ( )21k ( )2dk ( )2sk  given by (X.A.2.a_31) and with 
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2inck k πη ηγ γ
γ

= +
Λ

 (X.A.2.a_44)

 
and 
 

( )1,
inc inci k k x i k fzincI e einckz

η γγ γ γη dγγ
γ

⎛ ⎞ ⎛ ⎞−⎜ ⎟ ⎜
⎝ ⎠ ⎝= ∫

Λ

⎟
⎠  

 

(X.A.2.a_45)

( )

, , ,

, ,
, ,1

, ,

m nI

m nm ni k k x k k y k fx x x y y y z
e dm nkz

η ξ
γ

η η ξδ δγ γ γγ
γξ

γ

⎡ ⎤⎛ ⎞⎛ ⎞− + − +⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦= ∫
Λ

 

(X.A.2.a_46)

 
where δ  means Kronecker’s delta. 
Deschamps [11] shows that there are no a priori mathematical constraints on the choice of the 
sign of . The choice needs to fulfill experiments. Hence if zk ( ) 0Re =zk , one has to deal with 
Scholte-Stoneley-like surface modes and the sign of  must be so that there is exponential decay 
of the amplitude away from the interface. If 

zk
( ) 0Re ,1 ≠= zz kk , then the sign of  depends on the 

angle of propagation of the liquid-side companion, denoted by ‘m,n,r’, of the considered mode 
‘m,n,p’ inside the solid (p=shear or p=dilatational) 

zk

 
, ,

1, 1,, , arctan1 , ,
1,

m n m nk kx ym n r
m n rk z

θ

⎡ ⎤+⎢ ⎥
= ⎢ ⎥

⎢ ⎥
⎢ ⎥⎣ ⎦

 

(X.A.2.a_47)

 
If 
 

, ,
1, 1,, , arctan1 , ,

1,

m n m nk kx ym n p
m n pk z

θ

⎡ ⎤+⎢ ⎥
= ⎢ ⎥

⎢ ⎥
⎢ ⎥⎣ ⎦

 

(X.A.2.a_48)

 
is ‘close enough’ to 2/π , then that particular mode ‘m,n,p’ must show leaky Rayleigh wave 
features, whence the inhomogeneity vector must point into the liquid. Deschamps [11] shows that 
‘close enough’ to 2/π  is fulfilled if  
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, , arcsin1
vm n r l
vp

θ
⎛ ⎞
⎜ ⎟>
⎜ ⎟⎜ ⎟
⎝ ⎠

 
(X.A.2.a_49)

 
lv  being the wave velocity in the liquid,  is the velocity of the considered mode ‘m,n,p’. 

Whenever  
pv

 

, , arcsin1
vm n r l
vp

θ
⎛ ⎞
⎜ ⎟≤
⎜ ⎟⎜ ⎟
⎝ ⎠

 
(X.A.2.a_50)

 
the causality principles hold, demanding that the mode ‘m,n,p’ travels away from the interface. 
Before explicitly tackling numerical results, it is worthwhile to look at some analytical relations 
between incident and diffracted waves. The same notation is used as in (X.A.2.a_27), for ‘inc’ 
replaced by the diffraction order ‘m,n’ in one of the media through which diffracted waves travel. 
The grating equation (X.A.2.a_44) results in the following properties: 
 

2sin sin1 1 1
, arctan1 2sin cos1 1 1

inc inc inck n
ym n

inc inc inck m
x

πξ θ

θ πξ θ

⎛ +⎜ ⎟Λ⎜ ⎟= ⎜ ⎟
+⎜ ⎟

Λ⎜ ⎟
⎝ ⎠

⎞

 

 

(X.A.2.a_51)

( )21, arcsin sin ..1 1 1,
1

22
2.. 4 sin cos sin 41 1 1 1

m n inc incsqrt km nk

m n m ninc inc inc inck
x y x y

ξ ξ

π ξ θ θ π

⎛ ⎛⎜= +⎜⎜ ⎜⎜ ⎝⎝
⎞⎞⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎟⎟⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎟+ + + ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟Λ Λ Λ Λ ⎟⎜ ⎟ ⎟⎜ ⎟⎝ ⎠⎜ ⎟⎟⎝ ⎠ ⎟⎝ ⎠⎠⎠

⎛ ⎞
⎜ ⎟+
⎜ ⎟⎜ ⎟
⎝ ⎠

 

 

(X.A.2.a_52)

,
2 2
m n incθ θ=  

 

(X.A.2.a_53)

, 2sin sin2 2,
2

inckm n inc
m nk

ξ ξ=  
(X.A.2.a_54)

 
This means that the inhomogeneity vector remains its direction inside the xy-plane (X.A.2.a_53) 
and solely changes its direction in the plane of incidence (X.A.2.a_54). As a consequence of this 
property, an inhomogeneous wave with for example an inhomogeneity vector in the xz-plane, 
will not stimulate any waves (except SSTW) that have inhomogeneity vectors in the yz-plane. 
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This has a very important outcome on the generation of leaky Rayleigh waves, i.e. no matter what 
the angle under which incidence occurs, if leaky Rayleigh waves are stimulated, they will always 
have inhomogeneity vectors governed by the polar angle of incident inhomogeneity.  Moreover, 
if SSTW emerge (i.e. , ), then  and/or , for j an integer. This 
implies that SSTW can only be generated if homogeneous plane waves are incident or if 

0,
2 =nmξ 0,

2 ≠nmk 02 =inck πξ jinc =2

z
inc ek 2 . 

For normal incident waves, this means that always . It can be verified that this reasoning 
can be turned the other way around, whence Rayleigh waves cannot be generated using incident 
homogeneous plane waves. 

0=incβ

Relation (X.A.2.a_51) shows that zero order diffracted waves have a direction of propagation 
along the plane of incidence. This direction changes for orders different from zero. Relation 
(X.A.2.a_52) is Snell’s law for zero order diffracted waves, for other orders it shows that  
depends on the plane of incidence and on the values of m and n of the diffracted order. 

nm,
1ξ

 
 NUMERICAL CALCULATIONS 
 
 Preliminary Considerations 
 
The linear system of equations (X.A.2.a_39-43) is infinite since m,n,p and q may take every 
possible integer value { },..,∈ −Ω +Ω  for Ω  arbitrarily large. However, it has been shown before 
[10-14] (for singly corrugated surfaces) that the interval of integers may be truncated to 
{ }, 1,.., 1,N N N N− − + − , for N larger than 6. The same truncation for doubly corrugations is now 
applied, allowing 
 

{ }, ,..,m p N Nx x∈ − +  

 

(X.A.2.a_55)

{ }, ,..,n q N Ny y∈ − +  
(X.A.2.a_56)

 
7N Nx y= =  is taken for both ( )f xx  and ( )f yy . In the case that a singly corrugated surface is 

to be tackled, then  if 0=xN ( )f xx  is constant and 0N y =  if ( )f yy  is constant. For both 

( )f xx  and ( )f yy  constant (i.e. a plane interface), 0N Nx y= = . Hence the presented model 

holds for plane, singly corrugated and doubly corrugated interfaces! The number of entries in the 

continuity matrix formed by equations (X.A.2.a_39-43) is , which 

results in 1265625 entries in the case 

( )
22

25 2 1 2 1N Nx y
⎛+ +⎜
⎝ ⎠

⎞
⎟

7N Nx y= = . It is hence clear that the calculations which 

are presented below are time consuming, even on a relatively fast computer. 
From refs. 22-23, it can be derived that for a sinusoidal corrugation 
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( ) 2cos
2

h
f πγγγγ

γ

⎛ ⎞
⎜ ⎟=
⎜ ⎟Λ
⎝ ⎠

 
(X.A.2.a_57)

 
the integrals become 
 

( ),
2

inci h kzincI Jinckz

η
γ γη

γ η

− ⎛ ⎞Λ ⎜ ⎟= ⎜ ⎟−
⎜ ⎟
⎝ ⎠

 

 

(X.A.2.a_58)

, , , ,
, , ,

, , 2
, ,

m nx y m ni h zm nI Jm nk m nz x y

δ δ ηγ γ k ξ
γ γη ξ

γ ξ δ δ ηγ γ

⎛ ⎞+ −⎜ ⎟ ⎛ ⎞⎝ ⎠Λ ⎜ ⎟
= ⎜ ⎟⎛ ⎞+ − ⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠

 

(X.A.2.a_59)

 
and for a sawtooth corrugation 
 

( )
2

2

h h
f

γγ γγγ
γ

= −
Λ

 if 0
2
γγ

Λ
≤ <  

 

(X.A.2.a_60)

( )
3 2

2

h h
f

γγ γγγ
γ

= −
Λ

 if 
2
γ γ γ

Λ
≤ < Λ  

(X.A.2.a_61)

 
the integrals become 
 

( )

( )

/ 2 1 1,
2 2

incih kinc zih k einc zI ih e
inch kz

γη
η γγγ γ

πηγ

−− − −
= Λ

⎛ ⎞ −⎜ ⎟
⎝ ⎠

 

 

(X.A.2.a_62)

( )
, ,

/ 2 1 1 , ,, , ,
22, , 2

, ,

m nih kinc zm nih k ex ym n zI ih e
m nh k m nz x y

ξ
γδ δ ηγ γη ξ γγγ γ ξ π δ δ ηγ γ γ

⎛ ⎞+ −− ⎜ ⎟− − ⎝ ⎠= Λ
⎛ ⎞⎛ ⎞ − + −⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠

 

(X.A.2.a_63)

 
whence both sinusoidal and triangular profiles involve relatively fast calculations since numerical 
integration is avoided.  is the jjJ th order Bessel function of the first kind. 
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 Discussion of Numerical Results for Normal Incident Homogeneous Plane Waves 
 
In this section, focusing occurs on the situation for which pure plane waves ( ) are 
normally incident on a sawtooth-shaped doubly corrugated water/brass interface with 

0=incβ
yx Λ=Λ  

and  varying from 0 to  . The material properties are shown in Table X.A.2.a_I. yh xh

 
Table X.A.2.a_I : Properties of the materials used in our calculations 
 

Water: 31 /1000 mkg=ρ  smvd /14801 =  smvs /01 =  
Brass: 32 /8100 mkg=ρ smvd /48402 = smvs /22702 =   

 
First of all, it is important to note that due to the linearity of (X.A.2.a_1), for each direction θ  in 
the xy-plane, there exists a corrugation period 
 

( )
22

a bx yθ
⎛ ⎞Λ = Λ + Λ⎜ ⎟
⎝ ⎠

 
(X.A.2.a_64)

 
with a and b integers containing no common dividers except unity. Furthermore, if the grating 
equation (X.A.2.a_14) or (X.A.2.a_44) is taken into account for that direction and also normal 
incidence, then a SSTW of order c with velocity  can possibly be generated along the 
interface in the direction 

SSTv
θ  if the frequency is 

 

( )
22

vc SSTfreq cSST
a bx y

=
⎛ ⎞Λ + Λ⎜ ⎟
⎝ ⎠

 
(X.A.2.a_65)

 
Furthermore, this frequency must correspond to pure imaginary wave vector components 
perpendicular to the interface, because otherwise one would be dealing with a bulk lateral wave 
instead of a SSTW. The latter is true whenever 
 

( )
22

c cv freqB SST
a bx y

>
⎛ ⎞Λ + Λ⎜ ⎟
⎝ ⎠

 
(X.A.2.a_66)

 
in which  is the wave velocity that corresponds to the slowest bulk wave in both neighboring 
media. 

Bv

It is therefore expected that for each frequency, it is virtually possible that a SSTW is generated. 
However, if or if not an SSTW is actually generated at a certain frequency not only depends on 
the considerations (X.A.2.a_65) and (X.A.2.a_66), but also on the continuity conditions. For the 
case , it is intuitively reasonable that there are 3 main directions, measured from the x-
axis in the xy-plane, in which SSTW are considerably stimulated, i.e. 0

yx Λ=Λ
0, 450 and 900, because 
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perpendicular to these directions the largest effective corrugations are associated. In the case of 
450, (X.A.2.a_65) becomes 
 

2

vc SSTfreq cSST
x

=
Λ

 
(X.A.2.a_67)

 
Hence, the frequency at which a c’th order SSTW is generated is expressed as 
 

1
0 0245 0

c cfreq freqSST SST
⎡ ⎤ ⎡ ⎤=⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

 
(X.A.2.a_68)

 
Figs X.A.2.a_2-16 show numerical results for the case mmyx 2,2=Λ=Λ , mhx µ50=  and 

. The previous discussions already lead to the following results. xy hh →= 0

For each number a and b, it is always so that 
 

0.6727cfreq c MHzSST
⎡ ⎤ < ×⎢ ⎥⎣ ⎦

 (X.A.2.a_69)

 
with particular situations listed in Table X.A.2.a_II. 
 
Table 
X.A.2.a_II : 

The maximum frequency at which a SSTW of order c can be generated for some particular 
cases. 

Mf

 
a b Mf  [MHz] 
1 1 476.0×c  
0 1 673.0×c  
0 2 336.0×c  
1 2 300.0×c  
1 3 212.0×c  

 
In Fig. X.A.2.a_2, the absolute value of 0,0R  is plotted as a function of the frequency and as a 
function of the height . At , there is a strong dip visible at 0.672 MHz. Since this is 
lower than 0.673 MHz (see Table X.A.2.a_II), it can be concluded that this dip is a so called 
Wood anomaly and corresponds to the generation of a first order SSTW in the 0

yh 0=yh

0 direction.  
Indeed, if one takes a look at Fig. X.A.2.a_3, the amplitude of the total displacement field due to 
all diffracted orders except the zero order, shows to be exponentially decaying away from the 
interface and it is seen that the energy is mostly situated in the liquid side.  
 
The latter two properties are typical characteristics of SSTW. Since yx Λ=Λ , a second SSTW is 
generated in the 900 direction at the same frequency when  is increased. Ultimately, when 

, equal SSTW are running in the 0
yh

xy hh = 0 direction and in the 900 direction. 
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Fig. X.A.2.a_2: 0,0R  as a function of the frequency of normally incident homogeneous plane waves and the 

height , for yh mhx µ50=  and mmyx 2.2=Λ=Λ . 
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Fig. X.A.2.a_3: Amplitude of the total particle displacement field due to all diffraction orders except the zero order, 
at 0.672MHz for mhx µ50= , 0=yh  and mmyx 2.2=Λ=Λ . 

This effect is visible in Fig. X.A.2.a_2, where the Wood anomaly (0.672 MHz) gets more 
definite, and also in Fig. X.A.2.a_4, where a first order SSTW in the 900 direction gets more and 
more stimulated as  approaches .  yh xh

 

 
- 468 - 



CHAPTER X: Diffraction Phenomena 
  

Fig. X.A.2.a_4: 1,0R  as a function of  and the frequency for yh mhx µ50=  and . mmyx 2.2=Λ=Λ

 
Even more interesting is the fact that due to (X.A.2.a_67) and the Wood anomaly at 0.672 MHz, 
secondary SSTW may be generated in the 450 direction for c=1 at 0.475 MHz, which is out of 
reach in our calculations, and for c=2 at 0.951 MHz, which is still visible in Fig. X.A.2.a_5 as an 
amplitude peak in 1,1R . That this is a SSTW is proved by Table X.A.2.a_II, where it is seen that 
its frequency may not reach beyond 0.952 MHz, which is fulfilled. 
In Fig. X.A.2.a_2, it is also seen that there is a peak at 1.030 MHz. This corresponds through the 
grating equation (X.A.2.a_44) to the generation of first order lateral bulk shear waves in the solid, 
which are obviously not excited very well since a peak in the reflection coefficient for pure 
homogeneous incident plane waves occurs. This phenomenon is equivalent to ‘the first critical 
angle’ on plane interfaces. For , a bulk shear lateral wave is generated in the 00=yh 0 direction at 
1.030 MHz. As  increases, the influence of another one in the 90yh 0 is more and more present, 
whence the effect on the zero order reflection coefficient is enhanced and noticed as an increased 
peak in Fig. X.A.2.a_2. 
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Fig. X.A.2.a_5: 1,1R  as a function of  and the frequency for yh mhx µ50=  and . mmyx 2.2=Λ=Λ

 
The frequency at which a first order bulk wave in the liquid is formed, is situated at 0.673 MHz. 
However, due to the vicinity of the Wood anomaly at 0.672 MHz, the formation of an amplitude 
peak 0,0R is highly disturbed, whence only a ‘flank’ of the ‘would be peak’ remains at 0.6719 
MHz.  
Furthermore, in Fig. X.A.2.a_2, a wrinkle is visible at 0.970 MHz. This is the Leaky Rayleigh 
wave frequency. However, since pure plane waves are unable to stimulate such a wave (see 
comments under (X.A.2.a_51-54)), the significance of this frequency will only become clear in 
the next section where incident inhomogeneous waves are considered. 
In Fig. X.A.2.a_2, there is also a disturbance visible at 1.342 MHz, which is due to the generation 
of second order SSTW. 
Yet another disturbance is visible in Fig. X.A.2.a_5 at 1.423 Mhz. This is exactly the frequency 
at which a third order SSTW is generated in the 450 direction, equivalent to the second order 
SSTW that is generated under the same angle at 0.951 MHz and is discussed above. 
 
 Discussion of Numerical Results for Normal Incident Inhomogeneous Plane Waves 
 
In the previous section, the appearance of a wrinkle in Fig. X.A.2.a_2 at 0.970 MHz was 
acclaimed to be the leaky Rayleigh frequency. In order to prove this, one should take a look at 
Fig. X.A.2.a_6 in which the amplitude of the first order reflection coefficient is shown on a 
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singly corrugated surface, i.e. , with all other parameters equal as in the doubly corrugated 
surface of the previous section, as a function of the frequency and the incident inhomogeneity.  

0=yh

 

Fig. X.A.2.a_6: 0,1R  on a singly corrugated surface as a function of the frequency and the incident 

inhomogeneity, for mhx µ50=  and mmyx 2.2=Λ=Λ . 

 
The largest peak is the one at 0.672 MHz and zero inhomogeneity, i.e. for pure homogeneous 
plane waves, and is due to the excitation of SSTW, as is fully described in the previous section. 
The second peak is the one at 0.970 MHz and inhomogeneity –44.27m-1. It is seen in Fig. 
X.A.2.a_7 that for incident inhomogeneous waves, the 1st order reflection coefficient is different 
from the –1st reflection coefficient, which is logically explained by the fact that whereas the 
incident field is symmetric if homogeneous plane waves are considered, it is not if 
inhomogeneous plane waves are considered.  
The latter peak in Fig. X.A.2.a_6 at 0.970 MHz and inhomogeneity –44.27m-1, represents the 
stimulation of a first order leaky Rayleigh wave. The latter is proved by Fig. X.A.2.a_8, in which 
the amplitude of the displacement field due to all diffracted orders except the zero order is plotted 
as a function of the x-coordinate. The typical leaky Rayleigh wave profile is visible. 
Furthermore, simulation occurs on what happens to a normally incident inhomogeneous wave 
having inhomogeneity , impinging the same doubly corrugated interface as in 
the previous section. As stated above, the main difference between such inhomogeneous waves 

x
inc m eβ 127.44 −−=

 
- 471 - 



CHAPTER X: Diffraction Phenomena 
  

and pure plane waves is the fact that they can generate SSTW in the y-direction, but not in the x-
direction. Furthermore, they can generate leaky Rayleigh waves in the x-direction, but not in the 
y-direction. 
First of all, let us take a look at Fig. X.A.2.a_9 where 0,0R  is plotted as a function of the 
frequency and the height of . yh

 
Fig. X.A.2.a_7: 0,1−R  on a singly corrugated surface as a function of the frequency and the incident 

inhomogeneity for mhx µ50=  and mmyx 2.2=Λ=Λ . 

 
- 472 - 



CHAPTER X: Diffraction Phenomena 
  

Fig. X.A.2.a_8: Amplitude of the particle displacement for mhx µ50= , 0=yh , at 0.970 MHz and 

. Solid line: x
inc m eβ 127.44 −−= xN .Dotted line: zN . 
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Fig. X.A.2.a_9: 0,0R  as a function of the frequency of normally incident inhomogeneous plane waves 

( ) and of the height  for x
inc m eβ 127.44 −−= yh mhx µ50=  and mmyx 2.2=Λ=Λ . 

 
It is noticed that as  increases, there appears a Wood anomaly at 0.672MHz, which is exactly 
the same frequency as that where the Wood anomaly appears in Fig. X.A.2.a_2 and Fig. 
X.A.2.a_6 and which becomes more severe as  increases. Moreover, at 0.970 Mhz, an 
amplitude exceeding unity is noticed, which is due to the generation of a leaky Rayleigh wave 
(proved in Figs X.A.2.a_6-8) and induces a shift towards positive x values of the zero order 
reflected wave. When  increases, this maximum becomes a minimum, which results in a 
change in the displacement shift direction of the zero order reflected wave. In order to prove that 
0.970 MHz remains a leaky Rayleigh wave frequency even if 

yh

yh

yh

xy hh = , the displacement fields are 
plotted resulting from all diffraction orders in Fig. X.A.2.a_10, and for pure diffraction orders in 
the 00 direction in Fig. X.A.2.a_11.  
The displacement fields for pure diffraction orders in the 900 direction are shown in Fig. 
X.A.2.a_12. 
It is seen that even though the total diffraction field does not show any characteristic of a leaky 
Rayleigh wave, the displacement field due to pure diffraction orders in the 00 direction remains 
possessing leaky Rayleigh wave characteristics. Furthermore, Fig. X.A.2.a_13 and Fig. 
X.A.2.a_14 are revealing images.  
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Fig. X.A.2.a_10: Amplitude of the particle displacement for mhh yx µ50== , at 0.970 MHz and 

, for all diffraction order except for the zero order. Solid line: x
inc m eβ 127.44 −−= xN .Dotted line: zN . Dashed 

line: yN . 
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Fig. X.A.2.a_11: same as in Fig. X.A.2.a_10, except that only order for n=0 are taken into account. 
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Fig. X.A.2.a_12: same as in Fig. X.A.2.a_10, except that only order for m=0 are taken into account. 
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Fig. X.A.2.a_13: 1,0R  as a function of  and the frequency for yh mhx µ50=  , mmyx 2.2=Λ=Λ  and 

. x
inc m eβ 127.44 −−=
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Fig. X.A.2.a_14: 0,1R  as a function of  and the frequency for yh mhx µ50=  , mmyx 2.2=Λ=Λ  and 

. x
inc m eβ 127.44 −−=

 
It is seen in Fig. X.A.2.a_13 that in the 900 direction, an SSTW is generated at 0.672 MHz when 

 increases. There is also a small excitation visible at 0.951 MHz, due to the projection of the 
SSTW in the 45

yh
0 direction on the 900 direction. In Fig. X.A.2.a_14 it is seen that in the 00 

direction, a Rayleigh wave is generated at 0.970 MHz. The projection of the SSTW in the 450 
direction on the 00 direction is invisible here since its influence on 1,0R  is negligible compared to 
that immense peak due to the Rayleigh wave. 
Besides, if the reflection coefficient nmR ,  is considered with m different from zero, then the leaky 
Rayleigh wave phenomenon always overwhelms the effect of other phenomena. If nmR ,  is 
considered with m equal to zero, no influence is visible form the leaky Rayleigh wave 
phenomenon. This forms a numerical prove of the fact that leaky Rayleigh waves can only be 
stimulated in the x-direction if  and that in the opposite direction, solely SSTW can 
be generated. The latter two statements are visible in two telling examples, depicted in Fig. 
X.A.2.a_15 and Fig. X.A.2.a_16. It is seen that in Fig. X.A.2.a_15, a first order leaky Rayleigh 
wave is dominant at 0.970 MHz, while in Fig. X.A.2.a_16 a second order SSTW is dominant at 
1.342 MHz. The second order leaky Rayleigh wave would of course be much more dominating, 
but its frequency reaches beyond the calculated frequency interval of Fig. X.A.2.a_15. 

x
incinc eβ β=
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Fig X.A.2.a_15: 2,1R  as a function of  and the frequency for yh mhx µ50=  , mmyx 2.2=Λ=Λ  and 

. x
inc m eβ 127.44 −−=
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Fig. X.A.2.a_16: 2,0R  as a function of  and the frequency for yh mhx µ50=  , mmyx 2.2=Λ=Λ  and 

. x
inc m eβ 127.44 −−=

 
 CONCLUDING REMARKS 

 
It is proved that the classical grating equation for singly corrugated surfaces can be 
extended to doubly corrugated surfaces and that it is also valid for incident 
inhomogeneous waves. From this equation, some properties are derived in (X.A.2.a_51-
54) that relate the inhomogeneity and propagation direction to the inhomogeneity and 
angle of incidence. 
Furthermore, it is shown through symmetry relations and through numerical calculations 
that normally incident homogeneous plane waves stimulate SSTW along the 00 , 450 and 
900 directions in the xy-plane, measured from the x-axis, depending on the incident 
frequency. It is also numerically shown that normal incident inhomogeneous plane 
waves, having an inhomogeneity vector along the x-axis, can stimulate SSTW along the 
y-axis and not along the x-axis, whereas they can stimulate leaky Rayleigh waves along 
the x-axis and not along the y-axis. 
The presented theory can be important in developing new Surface Acoustic Wave 
devices because of new possibilities of directivity as a function of the frequency and as a 
function of the inhomogeneity pattern of the impinging sound. Furthermore the basic 
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idea of this steering effect as a function of the surface symmetry and the frequency, can 
be important for developing planar actuators [24-28] by means of saw elements that have 
an equivalent effect as the doubly corrugated surface described in this section. 
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Sections X.B Acoustic Diffraction 
Phenomena 

 
 
 
 
 

 

 
 

Fig. X.B: After the publication of the paper in J. Acoust. Soc. Am. and after Nature News published it, Wayne van 
Kirk sent me an important email, telling me that a mask of the Mayan rain god Chac is visible at the top of the 
pyramid. I did not know that when I discovered and modelled the raindrop effect… the presence of this mask 

makes the statement that the raindrop effect has been purposely induced by the pyramid builders, more plausible. 
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X.B.1 A theoretical Study of Special 
Acoustic Effects Caused by the 
Staircase of the El Castillo Pyramid at 
the Maya Ruins of Chichen-Itza in 
Mexico 

 
 It is known that a handclap in front of the stairs of the great pyramid of 

Chichen Itza produces a chirp echo which sounds more or less like the sound 
of a Quetzal bird. The present work describes theoretical diffraction 
simulations and attempts to answer the critical question what physical effects 
cause the formation of the chirp echo. Comparison is made with experimental 
results obtained from David Lubman. Numerical simulations show that the 
echo shows a strong dependence on the kind of incident sound. Simulations 
are performed for a (delta function like) pulse and also for a real handclap. 
The effect of reflections on the ground in front of the pyramid is also 
discussed. The present work also explains why an observer seated on the 
lowest step of the pyramid hears the sound of raindrops falling in a water 
filled bucket instead of footstep sounds when people, situated higher up the 
pyramid, climb the stairs. 
The contents of this section have been published as: Nico F. Declercq, Joris 
Degrieck, Rudy Briers, Oswald Leroy, "A theoretical study of special acoustic 
effects caused by the staircase of the El Castillo pyramid at the Maya ruins of 
Chichen-Itza in Mexico", J. Acoust. Soc. Am. 116(6), 3328-3335, 2004 (Imp. 
Fact. 1.310; SCI-index, Acoustics, rank:7 /28).  
Furthermore, the results have been reported in numerous newspapers around 
the world, including Nature News [Nature News 14 December 2004; | 
doi:10.1038/news041213-5]. 

 
 INTRODUCTION 
 
During the post meeting tour of the first PanAmerican/Iberian meeting on Acoustics that was 
held in Cancun (Mexico) in 2002 (hereafter called ‘the post meeting tour’), the participants were 
shown that there are plenty of interesting sound effects that occur at Chichen-Itza. Chichen Itza is 
a Maya ruin where, besides the famous ‘ball court’ [1], there is a pyramid (El Castillo) that 
produces a sound echo, in response to a handclap, which sounds like the chirp of a Quetzal bird. 
This effect has been one of the major subjects during plenty of talks given by David Lubman [2-
5] and others [6-8]. Lubman has stressed the fact that the Quetzal bird chirp is actually caused by 
Bragg scattering. However, there has never been presented an actual simulation of the effect, 
except for some heuristic simulations based on the ray theory [2-5] or a heuristic approach for the 
case of incidence at 450 measured from the normal to the surface [8-12]. In what follows, a full 
diffraction simulation is presented of the echo, based on a (time-) delta function like handclap 
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and also a real handclap, based on the physical parameters of the staircase of the Pyramid at 
Chichen-Itza and based on the monofrequent single homogeneous plane wave diffraction theory 
of Claeys et al [9-10], which is a simplified case of the inhomogeneous plane wave diffraction 
theory [11]. The present work describes the first simulations of a spherical sound pulse, based on 
that monofrequent pure plane wave diffraction theory [9-10]. Furthermore, it is for the first time 
that the theory has been applied to audio frequencies.  
Before presenting this development, it is of cultural importance to stress the fact that some people 
believe that the Quetzal bird chirp echo is caused by accident and others believe that it is caused 
as a consequence of the Pyramid builders’ purpose. Nevertheless, it is known that the Quetzal 
bird has played a very important role in Mayan culture, which is probably due to the fact that 
Mayans originally lived for many centuries in the forest before getting involved in the 
construction of cities and religious sites. However, what is sure about this pyramid is that it 
certainly functioned as a great solar calendar. For example a large serpent is built on one side that 
causes special light effects around the time of spring and fall equinox. This serpent is culturally 
connected to the Quetzal bird (as can be seen on a Mayan glyph from the Dresden Codex), 
whence the generation of a Quetzal bird echo might not be a real coincidence. It is also known 
that an echo in Mayan culture represents a spirit. However, it must also be noted that a Quetzal 
bird echo also occurs at other Pre-Columbian sites and Ancient Mexican ruins [12]. Furthermore 
the first author encountered similar effects as in Chichen Itza at two religious sites in Sri Lanka. 
There, the short concrete staircase, that enables people to take a bath in the Menik Ganga river at 
the religious site of Katharagama, produces the low frequency sound of quacking ducks in 
response to a handclap. Furthermore high frequency echoes occur on the immense staircase 
leading to the religious site of Sri Pada (Adam’s peak). Nevertheless, the effects in Sri Lanka are 
probably a coincidence and are not a result of purposely construction. 
The last part of this section is devoted to the less known fact that an observer seated on the lowest 
stair step of the great pyramid at Chichen Itza, hears pulses that sound like raindrops falling in a 
water filled bucket, when other people are climbing the pyramid higher up. This phenomenon 
(hereafter called ‘raindrop effect’), has been observed by the first author and by a student fellow 
Cécile Goffaux during the post meeting tour. Since the ‘rain god’ plays a very important role in 
the Yucatan Mayan culture, this finding might be an impetus for future cultural studies. 
 
 THEORETICAL DEVELOPMENT OF THE ECHO SIMULATION 
 
The staircase is seen as a periodically corrugated (infinite) surface, being sawtooth shaped (see 
Fig. X.B.1_1).  
This is only true within the interval of the physical staircase. This infinite mathematical model is 
matched to reality by modeling a handclap not by a truly spherical wave, but by a wave that only 
contains propagation directions from the emitter directly to the staircase within the angular 
interval [ 21, ]αα  that assures impingement on the staircase and within the interval [ ]3 4,α α  if, in 
addition, reflections on the ground are considered as well. Hence, the handclap is only spherical 
if observed on the staircase. Whatever sound patterns are emitted to areas outside of the 
considered intervals is unimportant for the present study. 
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Fig. X.B.1_1: Depiction of the pyramid’s staircase with and observer in front of it. 
 
The vectors d, h, D and H are defined in Fig. X.B.1_1. For  and  being unit vectors along 
the x, respectively z direction, straightforward geometrical considerations result in 
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The diffraction theory of Claeys et al that is applied here can be found in the literature [9-11]. 
Nevertheless, some characteristics of that theory are outlined below. The theory is based on the 
decomposition of the diffracted acoustic field into pure plane waves, which is essentially only 
allowed whenever the Lipmann conditions [9-11] are fulfilled, stating that the incident wave 
length must be of the same order of magnitude as the corrugation period and that the corrugation 
height must not exceed the incident wave length. If these conditions do not hold, then errors will 
occur in the description of the sound field within the corrugation. Elsewhere the errors will be 
small, except when the Lipmann conditions are seriously violated of course. Basically, each of 
the reflected and transmitted wave fields are decomposed into a series of plane waves, each plane 
wave of order m having a wave vector  
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and  determined by , the material properties of the considered medium and the dispersion 
relation , ω being the angular frequency and v being the plane wave velocity. The sign 
of  is chosen such, as to fulfill the necessity of plane waves to propagate away from the 
interface and, whenever  is purely imaginary, the amplitude must decay away from the 
interface. The continuity conditions demand continuity of normal stress and normal particle 
displacements on each spot of the pyramid’s staircase. It can be found in Claeys et al [9-11] that 

m
zk m

xk
222 / vk ω=

m
zk

m
zk

 
- 488 - 



CHAPTER X: Diffraction Phenomena 
  

this leads to a set of equations that is periodical in x, whence the discrete Fourier transform can be 
applied, resulting in an equal number of equations and unknown amplitudes of all diffracted 
orders. It can also be found in Claeys et al [9-11] that this discrete infinite set of equations and 
unknowns can be chopped to a square linear matrix equation that can be solved by a computer.  
 
 NUMERICAL RESULTS AND DISCUSSION 
 
The following parameters are chosen such as to match the physical reality of the reported 
experiments [13] at 10 m in front of the pyramid (see Fig. X.B.1_1). The observer’s height is 
chosen h=1.80 m, the observers distance d=10 m, the pyramid’s dimensions D=23.84 m, 
H=24.02 m, q=0.263 m. It then follows from (X.B.1_1-4) that , , 

 and . The material properties in the humid Yucatan air have been taken 
as  for the density and 

0
1 01.35=α 0

2 15.78=α
0

3 82.22α = 0
4 55.42α =

31.1466kg/m=ρ smv /343=  for the sound velocity. Those for the 
limestone [14] staircase have been taken as  for the density,  for 
the longitudinal wave velocity and 

3/2000 mkg=ρ smvl /4100=
smvs /2300=  for the shear wave velocity. Damping has not 

been taken under consideration. For the parameters just given, the Lipmann conditions are given 
as follows: For frequencies lower than 1844 Hz, the numerical simulations will be perfect. For 
frequencies higher than 1844 Hz, there will be small errors in the description of the sound field 
within the corrugation, but not elsewhere. For very high frequencies, say more than 5000 Hz, 
errors may also occur in the prediction of the sound field outside of the corrugation, i.e. in the air 
and where the observer is situated. The errors gradually grow for higher frequencies and are due 
to ‘shadow zones’ and neglecting internal reflection within the stairs. 
 
 Direct echo coming from a delta pulse 
 
Within the angular interval [ ]21,αα , the incident sound is considered to be spherical and contains 
500 frequencies equally distributed between 500Hz and 3000Hz. All incident plane waves have 
the same amplitude regardless of their direction and frequency. The former is necessary to 
produce the spherical wave, the latter is needed to produce a delta function like handclap. The 
spherical wave is modeled by 300 plane waves propagating along equally distributed angles 
within the interval [ ]21,αα . 
There is no serious violation of the Lipmann conditions. Only for frequencies above 1844 Hz can 
there be some errors in the sound field description within the corrugation, but that is not of 
significant importance here because we are only interested in effects at the observer’s position.  
In Fig. X.B.1_2, the calculated echo as a function of time is given, corresponding to an incident 
spherical pulse.  
This signal looks very clean, i.e. there is not too much noise outside of the echo, and is somewhat 
similar to the normalized plot in Fig. X.B.1_3 of the actual sound of a real Quetzal bird in the 
forest. 
The latter signal was downloaded in *.wav format from the website of David Lubman [13]. The 
few delta function like peaks in the middle of that latter plot are the result of cracks that can be 
heard in the recorded sound file and are probably due to wood creaks in the bird’s biotope. Fig. 
X.B.1_4 shows a normalized plot of the pyramid’s echo and is obtained from a *.wav file that 
was also downloaded from Lubman’s website [13]. 
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This signal is far from clean. This is primarily due to low frequency noise coming from the 
interaction of wind with the microphone. Since it is almost impossible to compare sound signals 
in time-space, it is necessary to study sonograms or spectrograms of the obtained signals [15]. A 
sonogram depicts the amplitude as a function of time ‘t’ and as a function of frequency ‘f’. 

Fig. X.B.1_2: Normalized calculated direct echo coming from a delta pulse. 
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Fig. X.B.1_3: Normalized recorded signal produced by a Quetzal bird in the forest. 
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Fig. X.B.1_4: Normalized recorded signal of the echo coming from the pyramid. 

 
It is obtained by a time limited Fourier transform. Here, we used a gaussian window of 0.002s 
width. The sonograms are plotted by means of a gamma correction of 2. If the recorded sound is 
truly and solely an echo that comes from diffraction on the staircase, some patterns that will be 
mathematically described now, may appear in the sonogram. From (X.B.1_9) an -m’th order echo 
may appear if the following relation holds: 
 

2
inck mx q

π
=  (X.B.1_10)

 
If this is combined with the dispersion relation, the angle, as a function of the frequency at which 
the echo may appear, can be calculated. If a ray-consideration is then applied, the time delay as a 
function of each angle, taking into account the wave speed in air, can also be obtained. This 
ultimately results in: 
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(X.B.1_11)

 
In Fig. X.B.1_5 the curves that are represented by (X.B.1_11) are depicted by means of a 
sonogram. 
 

Fig. X.B.1_5: Bragg diffraction lines on a sonogram. The sonogram shows information as a function of time 
(horizontal axis) and frequency (vertical axis). The square window is a reference window that represents the same 

time/frequency values in each sonogram in this report. 
 
In all sonograms that are presented here, the vertical axis represents the frequency in the range 
from 0Hz (bottom) to 5000 Hz (top). The horizontal axis always spans a range of 0.2 s. However, 
the instant values on the horizontal axis do not always range from 0 s to 0.2 s. It is only the 
difference between the right side of the horizontal axis and the left side that is 0.2 s. This is of 
course due to the fact that sound recordings contain no information about the absolute values of 
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the start of recording and the end of recording. However, in order to compare the different 
sonograms that are presented here, we have taken into account physical considerations like the 
presence of the handclap in the recordings of Lubman [13] or the knowledge of the time-origin in 
our calculations, to draw a time/frequency window on each of the presented sonograms that is 
absolutely the same in each sonogram. This window will therefore function as the reference 
window for the discussions below. The absolute position of the window is chosen as to contain 
the relevant information that is present in Fig. X.B.1_6, which is the sonogram that corresponds 
to the calculated echo of Fig. X.B.1_2.  
This sonogram shows almost the same structure as the one of Fig. X.B.1_7, which corresponds to 
the recorded Quetzal bird chirp in the woods (see also Fig. X.B.1_3). The only important 
difference is the frequency at which the patterns appear and their duration. The actual bird chirps 
at lower frequencies than the calculated pyramid’s echo. The authors do not know how a young 
Quetzal bird sounds like, but perhaps the resemblance would then be better. 
If Fig. X.B.1_5 is compared with Fig. X.B.1_6, it is noticed that even though the classical grating 
equation predicts the possibility of elevated amplitude lines in the sonogram, not all lines are 
associated with a relevant amplitude if the continuity conditions are also taken into account (see 
Fig. X.B.1_6). 

 
 

Fig. X.B.1_6: Sonogram of the calculated direct echo coming from a delta pulse. The axes are equal to those of 
Fig. X.B.1_5, ranging from 0 Hz to 5000 Hz on vertical axis and from 0 s to 0.2 s on horizontal axis. 
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Fig. X.B.1_7: Sonogram of the recorded Quetzal bird chirp in the forest. The axes are equal to those of Fig. 
X.B.1_5, ranging from 0 Hz to 5000 Hz on vertical axis and from 0 s to 0.2 s on horizontal axis. 

 
However, the elevated amplitude patterns that do appear correspond more or less to the lines of 
Fig. X.B.1_5. Especially there is a strong appearance of the m=-4 or m=-5 back reflected sound. 
The fact that it is not simple to decide which order is actually determining the elevated 
amplitudes is probably due to the interference of several plane waves because the incident sound 
is spherical. This is slightly in contrast with the assumption of Lubman [5] that the Bragg-orders 
can be well seen in the sonogram of the recorded echo. In order to examine this contradiction, we 
have calculated the sonogram that actually corresponds to the recorded pyramid’s echo of Fig. 
X.B.1_4. The result is shown in Fig. X.B.1_8.  
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Fig. X.B.1_8: Sonogram of the recorded echo coming from the pyramid. The vertical axis is equal as in Fig. 
X.B.1_5, ranging from 0 Hz to 5000 Hz, the horizontal axis spans the same time interval length of 0.2 s. The 

reference window is situated at the same time/frequency values as in Fig. X.B.1_5. 
 
Within the reference time/frequency window, the same pattern can be found more or less (if you 
look through the noise) as in Fig. X.B.1_6. However, Fig. X.B.1_8 shows that it is absolutely not 
for certain that all patterns that are noticeable would correspond to the lines of Fig. X.B.1_5. 
There is even something more obscure, which is the presence of ‘patterns’ outside the reference 
window. If these were simply coming from Bragg diffraction, they would also appear in Fig. 
X.B.1_6, where not only the mathematical grating equation is taken into account, but also the 
continuity conditions. Since they do not appear in Fig. X.B.1_6 (or have an amplitude which is 
too small to be noticed), it can already be concluded that these patterns cannot simply be the 
result of pure Bragg diffraction and that an extra effect must be involved.  
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 Direct echo coming from a handclap 
 
The answer to the critical question as to what then actually causes these patterns can be revealed 
if one considers Fig. X.B.1_9.  
 

 
 

Fig. X.B.1_9: Sonogram of the recorded (and mathematically isolated) handclap. Same comments on the axes as 
in Fig. X.B.1_8. 

 
The latter figure depicts the sonogram of the handclap taken from the recordings of Lubman [13] 
and being isolated from the echo of the same recording. A handclap is actually far from a delta 
function, because not all frequencies have the same amplitude. Actually, the handclap contains 
several frequency bands. For this purpose we have also simulated the echo resulting from a real 
handclap instead of a pulse. The handclap itself (as taken from Lubman [13]), which takes 0.02s 
and must be followed by 0.18s of silence in order to get a realistic time window of 0.2s, needs to 
be represented by 4096 frequencies in between 5 Hz and 25000Hz. Because of the amount of 
RAM memory needed and due to a limited CPU speed, taking into account all these frequencies 
in our diffraction procedure would result in a calculation time that exceeds the lifetime of our 
high speed computer.  
This, together with the fact that the higher the frequencies, the more seriously Lipmann’s 
conditions are violated, and a trade off between handclap reproducibility and calculation time, led 
to the decision to reduce the number of frequencies to 1968 in between 400 Hz and 10240 Hz. 
Taking into account higher frequencies would have violated Lipmann’s conditions and would 
have taken us too much time. Consideration of only frequencies up to 5000 Hz led to an incident 
handclap that didn’t sound right and led to an echo that did not at all correspond with reality. The 
reason of the latter effect is that a complicated handclap is much harder to deal with than the 
pulse of last section. Whereas a frequency chop for a pulse results in a new pulse that is quickly 
followed by a period of silence within the 2s time window of interest, a frequency chop for a 
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handclap results in unnegligible noise following the handclap, which is too strong if only 
frequencies up to 5000 Hz are considered. This noise, which is less important if frequencies up to 
10240 Hz are taken into account, is also diffracted and due to time shifts may even overlap with 
neighboring time windows after diffraction. Therefore the numerical echo (as can be seen in Fig. 
X.B.1_10), corresponding with an incident numerical handclap with frequencies higher than 
10240 Hz neglected, is, contrary to physical experiments, not limited in time.  
 

 
Fig X.B.1_10: calculated direct echo coming from a handclap 

 
In Fig. X.B.1_10, for reasons of calculation time limitations, we have, just as in the previous 
calculations, considered the results for all applied plane waves at all applied frequencies, but we 
have only taken into account 1024 positions of time within the interval of interest for reproducing 
the result. This means that a time limited Fourier transform cannot extract frequencies higher than 
the sampling frequency of 3034 Hz. However, if we take a look at the sonogram in Fig. 
X.B.1_11, which corresponds with the numerical signal in Fig. X.B.1_10 and is made just like all 
previous sonograms, we can see 4 frequency bands instead of only 2 in Fig X.B.1_6.  
Even more important is that they coincide with the experimentally measured frequency bands of 
Fig. X.B.1_8. Therefore, even if, because of computer limitations, a true temporal description 
cannot be obtained, still what the frequencies are concerned the simulation reproduces the 
experimental result obtained by Lubman [13]. This proves that the lower two frequency bands in 
the experiments are mainly caused by the nature of the handclap and not as much by the 
diffraction process itself. In other words the echo is a function of the kind of incident sound. 
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Fig X.B.1_11: spectrogram of the calculated direct echo coming from a handclap 
 
 
 Direct and indirect echo coming from a handclap 
 
In paragraph 3.1 we discussed the echo coming from a pulse and showed that the presence of 4 
frequency bands in the reflected sound instead of 2 was probably due to the kind of incident 
sound. In paragraph 3.2 this statement was proved by simulating the echo coming from the 
handclap in the experiments [13]. Yet another important question that needs to be resolved is the 
influence of the ground in front of the stairs of the pyramid. Up until now we have neglected this 
effect. We now consider the extreme condition where the ground is a perfect reflector. Hence 
sound coming from the handclap is not only propagating straight to the pyramid, but is also 
reflected on the ground before propagating towards the pyramid. Furthermore sound reflected 
from the pyramid may be received after straight propagation from the stairs or may again be 
reflected by the ground before being received. Therefore the received signal G consists of 4 parts: 
G1: sound traveled directly to the pyramid and being received directly 
G2: sound traveled directly to the pyramid and being received after being reflected by the ground. 
G3: sound being reflected by the ground before having traveled to the pyramid and being received 
directly 
G4: sound being reflected by the ground before having traveled to the pyramid and being received 
after being reflected by the ground. 
We call the person in front of the pyramid ‘person’ and his mirror image (see Fig. X.B.1_1) the 
‘mirror person’. The ground is replaced by a mathematical mirror plane. Mathematically G1 is 
emitted by the person and again received by the person. G2 is emitted by the person and received 
by the mirror person. G3 is emitted by the mirror person and received by the person. G4 is emitted 
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and received by the mirror person. By filling in the correct coordinates of the person ( ) and 

the mirror person ( , simulation is again possible of each signal. Then  

d + h

)−d h
 

1 2 3 4G G G G G= + + +  (X.B.1_12)

 
The result of G can be seen in Figs X.B.1_12-13. Again these figures cannot really tell anything 
about the temporal distribution of the frequencies, nevertheless it is seen that the ground has no 
influence on the presence or absence of the 4 frequency bands. In the future it would be great if 
someone would do some experiments at the pyramid by placing a reflector or an absorber in front 
of the staircase in order to see what effect it has on the received echo. 
 

Fig X.B.1_12: calculated direct and indirect echo coming from a handclap 
 
 
 EXPLANATION OF THE RAINDROP EFFECT 
 
If people are climbing the pyramid, their shoes produce sound pulses containing all frequencies. 
Even though such pulses are more complicated, we model them here by means of a superposition 
of normally incident pure plane waves. Fig. X.B.1_14 shows the amplitude of the reflection 
coefficient of the zero order and the –1st order as a function of the frequency.  
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Fig X.B.1_13: spectrogram of the calculated direct and indirect echo coming from a handclap 
 
Since we are only interested in understanding the raindrop effect, we focus in Fig. X.B.1_15 on 
the frequency zone where the –1st order reflected sound undergoes a transition from evanescent to 
bulk waves.  
 
That happens at a frequency f given by   
 

919.57
2
vf Hz

q
= =  (X.B.1_13)

 
In addition it can be verified by what has been explained above that this transition zone fulfills 
the Lipmann conditions whence the validity of the numerical calculations cannot be cast doubt 
on. 
On the right side of the transition frequency in Fig. X.B.1_15, the –1st order reflected sound is as 
important, regarding its amplitude, as the zero order reflected sound. Furthermore, in Fig. 
X.B.1_16, the propagation direction (measured from the pyramid’s surface) of the –1st order 
reflected sound is depicted as a function of the frequency. 
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Fig. X.B.1_14: The zero order reflection coefficient (solid line) and the –1st order reflection coefficient (dotted line) 
as a function of the frequency, for normal incident sound on the pyramid. The left side of the dashed line 

corresponds to evanescent –1st order reflected waves, while the right side corresponds to bulk –1st order reflected 
waves. 

 
On the right of and close to the transition frequency, the –1st order diffracted sound travels almost 
parallel to the pyramid’s surface. Now, since that sound is bulk in nature (not evanescent) and 
since it has a considerable amplitude (see Fig. X.B.1_15), it is actually hearable for the observer 
seated on the lowest stair step. The observed frequency range is limited since (see Fig. X.B.1_16) 
only a limited bunch of frequencies produce sound that can reach the observer’s ear, which is 
situated at small angles from the pyramid’s surface. Frequencies between 920Hz and 1000Hz 
indeed sound like the main frequency that is present in the bunch of frequencies generated by a 
raindrop falling in a bucket filled with water. 
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Fig. X.B.1_15: Close up of Fig. X.B.1_14. 
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Fig. X.B.1_16. The propagation angle of the -1st order reflected sound as a function of the frequency, measured 
from the pyramid’s surface. 

 
 
 CONCLUDING REMARKS 

 
It is shown that the echo that is produced by the pyramid consists of diffracted sound 
coming from the staircase. The echo is formed by a process which is connected with 
Bragg reflection, but more effects are as important as well, such as the continuity 
conditions on the stairs and the frequency pattern of the incident sound. Therefore some 
extended experiments in front of the pyramid, designed to measure the echo as a function 
of the incident sound, would be very enlightening. We would not be surprised if the use 
of drums or timber wood to produce sound pulses would result in a better echo. The 
model also showed that the ground in front of the pyramid has no influence on the 
reflected frequency bands. Nevertheless it could not be shown what the temporal effect 
is. It could elongate the echo or shorten it depending on the reflective properties of the 
ground. It would also be interesting to test the effect of the sound speed in air on the 
produced echo. This speed can vary in the dry season and wet season and can also vary 
with temperature. It is also explained how an observer seated on the lowest stair step may 
hear ‘raindrops’ falling in a water filled bucket when other people are climbing the upper 
stairs. 
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Chapter XI Ultrasonic Polar Scans 
 
 

In the aviation industry, the presence of ultrasonic testing 
techniques during maintenance, is indispensable. It is the 
high financial and human cost, when failing, that makes 
airplanes one of the outermost examined high-tech 
machines. 

 

      Nondestructive testing (NDT) of materials is costly. Therefore it is only used 
when it is cost-effective. This is the reason why NDT is widely applied at the 
beginning stages of the production process, in order to avoid very expensive 
product rejection at the end of the production process or even product 
withdrawals from the market afterwards. NDT techniques are also very popular 
during maintenance operations in situations where failure of a machine or a 
material is not allowed, such as in the aerospace industry, the nuclear and 
chemical industry, … 
     The application of sound for the purpose of NDT, is very popular. There are 
many reasons for this popularity. First of all, the technique is harmless to the 
operator, because there are no radio-active particles, or high energy particles 
involved. Secondly, sound investigates the mechanical properties of materials 
(not only the density, but also the stiffness) and penetrates into the bulk of the 
material under investigation. This makes it excellent for the investigation of 
materials that are exploited mechanically, like airplane wings, rotor blades, 
parts of mechanical constructions, … 
 
     Human beings and the evolution of the economy, commonly follow the path 
of lowest resistance. This is the reason why NDT techniques that are simple and 
easy to use, find their way into the modern world of technology much more 
quickly and massively. That’s why classical C-scans and their necessary 
equipment, are most widespread in the world. C-scans are ‘dummy’ tools that 
enable the recording of echoes coming from the investigated material. They 
typically record delaminations inside layered structures, or the presence of 
voids and air bubbles.  
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 This recording is very important, though the reason for the use of the word 
‘dummy’, is that C-scans only employ a very small fraction of the extensive 
capabilities of sound in the investigation of materials.  
     The majority of the scientific literature about the interaction of sound with 
materials, is dealing with much more sophisticated phenomena and 
nondestructive techniques. Some of those –more complicated- techniques have 
found their way into ‘the top of the top’ in modern industry, such as the aviation 
industry, the military industry and the space travel industry. 
     Ultrasonic ‘polar scans’ are an example of less widespread techniques in 
modern industry that exploit a larger part of the capabilities of ultrasound to 
investigate materials. These scans form the topic of the current chapter. They 
will be extensively described further on. 
 
     At the end of the last century, Joris Degrieck has developed the machinery to 
perform ultrasonic polar scans and has shown, together with others, that the 
technique is excellent to ‘show’ the anisotropic stiffness of materials. That 
makes ultrasonic polar scans inviting for the investigation of fiber reinforced 
materials. Ultrasonic polar scans are also inviting for the investigation of other 
properties, such as the resin fraction, or the porosity,… 
     During the last two years, the ultrasonic polar scan apparatus has been 
modernized with the help of my colleague Geert Luyckx. The apparatus is now 
much more flexible, accurate and fast. 
     Nevertheless, the understanding of the formation of ultrasonic polar scans, 
and the simulations, have been limited to single-layered laminates of 
orthotropic symmetry. One of the purposes of my research the last years, was 
the development of models and computer programs to simulate and to 
understand the interaction of sound with multi-layered structures. My curiosity 
as a scientist elevated the expectations by extending the aims to materials of any 
kind of anisotropy. This would make the ultrasonic polar scan also applicable to 
investigate crystals and more complicated fiber reinforced composites. The 
results of this successful research are outlined in the current chapter. 
 
     This chapter consists of 4 sections. Section XI.A describes the principles of 
ultrasonic polar scans and what they are capable of. 
 
     Section XI. B explains how ultrasonic polar scans can be simulated. 
Simulations are shown for orthotropic materials, such as fiber reinforced 
composites, both for harmonic and for pulsed sound. In addition, it is shown 
that the simulations are also capable of handling more complicated structures of 
higher anisotropy, such as crystals. Unlike most composites, consisting of fibers 
that are distributed parallel to the plate surface and therefore make the normal to 
the surface an axis of symmetry of the material, crystals can be cut in any 
direction and therefore, ultrasonic polar scans must also be able to deal with any 
orientation. This capability is shown by means of some crystal examples, for 
single layers, for a multilayered system and for different orientations. 
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     Fatigue damage is an interesting phenomenon in fiber reinforced composites. 
It is due to repeated deformation cycles. A famous example is the wing of an 
airplane. As a passenger, one can see the wingtips constantly moving upwards 
and downwards during the flight, especially when traversing clouds and at the 
moment of take off and landing. In metals, these deformations cause 
undetectable fatigue damage, leading to a certain, though unpredictable, failure 
at a specific instant in time, often followed by a crash or a serious moment of 
panic. Modern airplanes do not consist solely of metals, but also of fiber 
reinforced composites. In composites, fatigue damage consists of micro-cracks 
and results in a steady degradation that is detectable as a diminishing stiffness. 
In section XI.C, it will be shown numerically and experimentally that ultrasonic 
polar scans are capable of monitoring fatigue damage in composites. 
 
     In constructions, materials are almost always liable to applied and residual 
stress. The detection of stress inside a material is not an easy task, especially 
when, in a construction, the stress is slowly variable in time and depends on the 
position inside the construction. For that purpose, a study is presented in section 
XI.D that numerically shows to what extent ultrasonic polar scans are capable 
of detecting stress in laminates. 
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XI.A Ultrasonic Polar Scans as a possible 
means of nondestructive testing and 
characterization of composite plates 

 
 The ability of ultrasound to characterize fiber reinforced composites is well known [1-

15]. Many techniques have been introduced of which ‘time of flight’ measurements are 
very famous [6-15]. The technique that is introduced here differs from ‘time of flight’ 
measurements in that it is based on amplitude measurements. A polar scan represents a 
fingerprint of the mechanical properties of a targeted spot on an investigated material. It 
is formed by registering the reflected or transmitted sound amplitude as a function of 
each possible angle of incidence. The present paper reports the ability of ultrasonic 
polar scans to determine the fiber orientation, the fiber volume fraction, the porosity and 
to monitor fatigue damage. 
The contents of this section have been published as: Joris Degrieck, Nico F. Declercq, 
Oswald Leroy, "Ultrasonic Polar Scans as a possible means of nondestructive testing 
and characterization of composite plates", Insight - The Journal of The British Institute 
of Non-Destructive Testing, 45(3), 196-201, 2003. (Imp. Fact. 0.311; SCI-index, Materials 
Science – Characterization & Testing, rank:11/23) 

 
 INTRODUCTION 
 

High quality fiber reinforced composite materials are often used because of their 
specifically tunable mechanical properties, embracing the principle of lowest possible mass for 
best suited stiffness. During manufacturing and service life, measurements of their local elastic 
properties are highly significant in order to examine deviations from the prescribed standards or 
due to degradation by damage. Since it is extremely time consuming and most often impossible 
to perform destructive measurements, the application of ultrasound to this end is probably most 
appropriate and its possibilities have been investigated for several years by various research 
groups [1-5]. The stiffness, strength and the specific mass of composites are highly influenced by 
the properties and the relative fractions of their constituents, by the processing parameters, by the 
physical structure of the composite (unidirectional, fabric,…) and by numerous kinds of defects 
and anomalies that may exist within these materials. Instant knowledge of the properties of 
composites is desirable during the development and designing of a new material or a new 
product, as the effect of using different constituents, different processing parameters or different 
volume fractions can be checked immediately without time consuming preparation of samples for 
destructive testing, as well as during the production process where deviations from a prescribed 
standard can be visualized immediately as to tune the production parameters without expensive 
time delay. Such knowledge is also inevitable in checking the degradation by damage and the 
remaining lifetime of composite products and constructions in service, and even in materials 
research [16-17] and the study of material mechanics in general, where information is necessary 
for the development and the verification of material models. 

The usage of ultrasonic techniques in nondestructive testing and characterization of 
materials is widely accepted, the oldest of which is perhaps the classical C-scan to detect and 
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localize certain defects. Even though the classical C-scan has proved to be well suited for the task 
of detecting defects, an extension to more sophisticated means of measurements is needed 
especially if characterization of the stiffness is desirable. On fiber reinforced composite plates, 
the latter can only be performed if oblique incidence is considered as well. 

Just like, for example, the well introduced time of flight measurements, a so called 
‘ultrasonic polar scan’ is performed on a laminate, immersed in water and investigates 
anisotropic mechanical features of the laminate, exploiting its influence on obliquely incident 
sound. However, contrary to most established methods of ultrasonic nondestructive 
characterization methods for fiber reinforced composite plates, utilizing time of flight 
measurements [6-15], or even spectroscopy [5], the ultrasonic polar scan uses the amplitude of 
transmitted (or if necessary reflected) sound, which results from sound impinging the plate from 
every direction above the plate and is very easy to measure. Furthermore, a polar scan is able to 
measure sound amplitudes on a relatively small spot, whence it can present a local (though not a 
microscopic) fingerprint of the plate under investigation. The characteristic pattern of such a 
‘fingerprint’ consists in fact of a set of rings, showing considerably less intensity than elsewhere 
on the registered polar scan. The rings are physically connected [18] to generated critical waves 
in the plate, such as leaky Rayleigh waves, leaky Lamb waves or even lateral waves [19-27]. 
Hence, they almost directly clarify the mechanical anisotropy and the stiffness of the investigated 
spot. The polar scan has already been shown to be a promising tool to determine the local fiber 
and resin fraction [29] and even the local porosity [28], whence anomalies in the production 
process can be revealed rapidly. 
 
 FEATURES AND CAPABILITIES OF THE POLAR SCAN 
 

Ultrasonic polar scans have first been endeavored by van Dreumel and Speijer [1] who 
used them to determine the fiber orientation in composite laminates, and have been further 
developed by Degrieck et al. [2-4], who utilized them for additional applications such as the 
determination of the anisotropic (non-orthotropic) stiffness, fiber and resin fraction, porosity and 
fatigue damage. 

Contrary to classical C-scans, in polar scans the transducer is not invariably directed 
perpendicular to the surface, scanning a whole area, but is constantly directed towards a 
particular targeted zone on the surface, occupying successively all possible incidence directions 
from the upper half space, and keeping a constant distance to the target, as shown in Fig. XI.A_1.  
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Fig. XI.A_1: In a polar scan, the target spot is impinged at constant distance form all possible angles ( )ϕθ ,  

 
A polar scan is the result of the complicated interaction of a pulsed directional bounded 

beam with a laminate possessing anisotropic elastic properties. When a bounded beam is incident 
on an orthotropic laminate, it is scattered [30] into longitudinal reflected sound and transmitted 
quasi-shear and quasi-longitudinal sound [31], which are in turn scattered and transmitted again 
successively until all energy is transformed into heat (because of damping [32-38] in the 
laminate), as depicted in Fig. XI.A_2. 
 

 

 
 
 
 
 
 
 
 
 
Fig. XI.A_2: Schematic of the interaction of 
one plane wave (i.e. one building block of a 
pulsed bounded beam) with a fiber reinforced 
plate (123: principle directions of orthotropy, 
XZ: plane of incidence), incident from an 
arbitrary angle ( )ϕθ , . Upon incidence, one 
reflected longitudinal, 1 transmitted quasi 
longitudinal and 2 transmitted quasi shear 
waves are generated that by themselves 
interact again and again with the upper an 
lower boundaries of the plate until all energy 
is transformed into reflected and transmitted 
plane waves in the coupling liquid and heat 
(due to damping) in the solid. 
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In Fig. XI.A_3, a polar scan is presented of a glass mat/epoxy composite. In this figure, 

each point corresponds to a direction ( )ϕθ ,  of incidence of the ultrasonic beam, with respect to 
the point of the material that is examined (cfr. Fig. XI.A_1). For clarity, the coordinate axes θ and 
φ have been depicted in Fig. XI.A_3. The grey level of each point is a measure of the amplitude 
of the transmitted ultrasonic beam for the corresponding angles of incidence. The value at 
( ) ( 0,0, = )ϕθ  corresponds to the perpendicular position of the transducers and matches the value 
that would have been obtained in this point if a C-scan was performed. 
 

 
Fig. XI.A_3: Polar scan of a glass fabric/epoxy composite. A Polar Scan is obtained when the maximum 
amplitude of the transmitted ultrasonic beam is plotted in a polar diagram for all values of θ  and ϕ . The 

scanning system prevents the transducer of moving around in full circles, which is the reason for the ‘omitted’ 
part in the Polar Scan. The appearance of perfect circles indicates isotropy. ‘QL’ means the ring that is caused by 

quasi longitudinal lateral waves. 
The experiments reported here are performed at a nominal frequency of 5MHz with a 
Krautkrämer H5M shock wave probe and a Krautkrämer USIP 20 ultrasonic apparatus, using a 
scanning system developed by WTCM (Research Center of the Belgian Metalworking Industries, 
Department of Pressure Equipment) and the authors’ department of the Ghent University. For 
practicality, the receiver, intended to measure transmitted sound, is replaced by a metal reflector 
and one single ultrasonic transducer is used as emitter-receiver. Further, for reasons of 
mechanical simplicity, the transducer and reflector are mounted on the same fixture, which 
however prevents the transducer and reflector of moving along full circles πθ 20 <<  around the 
specimen and which explains why a part is ‘omitted’ in the reported polar scans. 

It will be explained in the next section (XI.B) that the polar scans that are reported here, 
for a pulse, contain characteristic contours that are produced by ‘lateral waves’, i.e. sound 
traveling parallel to the interface having a bulk sound velocity. The use of harmonic waves 
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instead of a pulse, would have produced characteristic rings that result from the generation of 
plate waves (quasi Lamb waves). 

Since there are three possible modes of lateral wave propagation inside a composite 
laminate [31], i.e. one quasi-longitudinal and two quasi-shear modes, three critical angles crϕ  can 
possibly exist for each angle θ , resulting in the expected appearance of three critical or 
characteristic contours of dropped intensity [18] in a polar scan. From Snell’s law, we know that 

ccwcr =ϕsin  in which  is the wave velocity of the coupling fluid and  is the velocity of the 
corresponding critical wave. The latter depends on 

wc c

θ , the specific mass of the composite laminate 
and of course its stiffness matrix . If, for a certain mode, the velocity is lower than the one in 
the coupling medium, no real 

ijC

crϕ  exists and hence the corresponding mode cannot be excited 
using impinging sound. The explanation of the different contours, i.e. due to quasi longitudinal 
lateral waves ‘QL’, due to quasi shear horizontal waves ‘QSH’ and due to quasi shear vertical 
waves ‘QSV’, is described in the sub-sections below and is schematically depicted in Fig. XI.A_4 
for the isotropic case. 
 
 Determination of the fiber orientation 
 

Because the stiffness of a fiber reinforced composite laminate depends on the direction 
with respect to the orientation of the fibers, it is possible to unveil this anisotropy by means of a 
polar scan. In the direction perpendicular to the fibers, the stiffness for longitudinal waves will be 
dominated by the resin, while along the direction of the fibers, the fibers will dominate the 
stiffness. The inner characteristic contour (‘QL’) of a polar scan corresponds to the generation of 
the quasi-longitudinal mode. The velocities of such waves, traveling along the in-plane axes of 
orthotropy of the material, are given by ρ11C  and ρ22C  respectively. Hence, recalling 
Snell’s law, the directions θ  corresponding to the lowest critical angle crϕ  correspond to angles 
of highest stiffness. For the case of a glass mat/epoxy composite, we recall Fig. XI.A_3, and we 
notice a perfect circle for ‘QL’, which unveils 2211 CC =  and hence shows in-plane isotropy, 
which is due to the random distribution of the fibers. This is not always the case for industrially 
produced SMC-laminates (G/P-SMC), as a consequence of the flow of the SMC material during 
the compression molding process. Examination using a polar scan indeed reveals unequal 
distribution of the fiber direction.  
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Fig. XI.A_4: Definition of the different contours that are possible in a polar scan. For simplicity, the exact shape 
of the contours has been chosen to be circular, which is most often not the case. Note that in practice, the third 
contour will coincide with the second contour in directions where shear vertical and horizontal stiffnesses are 

equal (e.g. in the fiber direction of unidirectional fiber reinforced composites). 
 

Fig. XI.A_5 presents a polar scan of unidirectional carbon fiber/epoxy composite. Here, 
anisotropy causes the inner ring (‘QL’) to be elliptical since the stiffness along the fibers differs 
much from the one perpendicular to them. The direction of the small axis of the inner ellipse 
(‘QL’) corresponds to the direction of highest stiffness, whence it is the fiber direction. 
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Fig. XI.A_5: Polar scan of a unidirectional carbon fiber/epoxy composite. The fibers lay along the smallest axis 

of the inner ellipse. 
The second contour (‘QSH’) is dominated by the in-plane shear properties of the material, 

because it is associated with the in-plane (or horizontally polarized) quasi-shear mode of wave 
propagation for which the particle displacement occurs parallel to the plane of the plate in the in-
plane directions of orthotropy. The latter is the reason why, in these directions, the second 
contour (‘QSH’) cannot be ‘closed’, because pure horizontally polarized shear waves cannot be 
generated by impinging longitudinal waves. The latter can only induce vertical particle 
displacements in the in-plane directions of orthotropy. In isotropic and in-plane isotropic 
materials (cfr. Fig. XI.A_3), each direction corresponds to pure horizontally polarized shear 
waves, whence its characteristic contour (‘QSH’) does not appear in the polar scan for these 
materials. 

The third contour (‘QSV’) is dominated by the out-of-plane (or vertically polarized) 
quasi-shear moduli of the material. Due to the low values of the vertical shear stiffness, the 
corresponding critical angles are frequently not real and are not present in the polar scan and if it 
is present, it is often not ‘closed’. 

For angles exceeding the third critical angle, all energy is totally reflected and there is no 
transmitted beam 

Fig. XI.A_6 presents the polar scan of a carbon fiber fabric/epoxy composite. Comparison 
with Fig. XI.A_5 reveals the two perpendicular fiber directions of the used plain weave fabric.  
Figs. XI.A_3-6 indicate how the symmetry or orthotropy of a fiber reinforced composite (or even 
each material showing orthotropic elasticity) is exposed by a polar scan. 
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Fig. XI.A_6: Polar scan of carbon fiber fabric/epoxy. One notices additional fibers perpendicular to the ones of 
Fig. XI.A_4. The ‘QL’ contour is the ‘square’ in the middle, while the ‘QSH’ contour is the contour showing 4 

branches. 
 
 Determination of the fiber volume fraction 
 

In Fig. XI.A_7, polar scans of a glass mat/ epoxy laminate are shown for different fiber 
volume fractions. Due to in-plane isotropy, (cfr. Fig. XI.A_3), one characteristic circle (‘QL’) is 
present. It is found that the amplitude of the scans decreases with increasing fiber volume fraction 
for low angles of incidence ϕ , which is due to elevated scattering of the beam on the fiber 
bundles. More important however is the outwards movement of the characteristic circle ‘QL’ 
with decreasing fiber volume fraction, which is due to a decrease of the ratio of in-plane stiffness 
to the specific mass. 
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Fig. XI.A_7: Polar scans of chopped glass fiber mats in epoxy with resin volume fractions (in percent) 
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 Determination of the porosity 
 

Fig. XI.A_8 presents polar scans of glass mat/epoxy composites containing different 
fractions of porosity. It is seen that there is a tendency in these polar scans which can be used in 
the future to determine non-destructively the fraction of porosity. Further research will have to 
unveil the exact theoretical correlation between porosity and the measured polar scan. 
 

 

 
Fig. XI.A_8: Polar scans of chopped glass fiber mats in epoxy with different percentages of porosities. 
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 Determination of fatigue damage 
 

In Fig. XI.A_9 respectively Fig. XI.A_10, a polar scan of a glass fabric/epoxy composite 
is presented before and after severe fatigue damage. The figures can be interpreted in terms of 
Snell’s law. A higher stiffness involves higher velocities of lateral waves, which results in 
smaller critical angles. Hence, a larger ring of critical angles corresponds to slower lateral waves 
and to lower stiffness. The fatigue damage that is induced here is due to a repetitively applied 
force in one direction. The damage is limited to cracks in the matrix and does not involve fiber 
damage. Even though the force has been applied in only one direction, damage occurs in all 
directions. Due to this damage, the overall stiffness decreases whence the dark circle (‘QL’) of 
Fig. XI.A_9 tends to move outwards. Polar scans could therefore in the future ease fatigue 
monitoring in operating composite materials. 
 

 

 
Fig. XI.A_9: Polar scan of glass fiber fabric /epoxy composite before fatigue damage. 
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Fig. XI.A_10: Polar scan of glass fiber fabric /epoxy composite after fatigue damage. The dark circle of Fig. 

XI.A_9 is extended due to decreased stiffness as a consequence of the fatigue damage. 
 
 
 CONCLUSIONS AND PROSPECTS 

 
It is demonstrated that polar scans show promising abilities in the nondestructive 
characterization of fiber reinforced composite materials. Special attention is drawn to the 
determination of fiber orientation, fiber volume fraction, porosity and even monitoring of 
fatigue damage. 
High performance simulations and inversion procedures with the goal to determine the 
elastic properties of composite materials are currently being developed as an 
improvement and as a sequel of earlier numerical methods that have been developed by 
Degrieck et al [2]. The polar scan apparatus is currently being modernized and further 
automated. 
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XI.B Simulations of Harmonic and Pulsed 
Ultrasonic Polar Scans on Orthotropic 
Materials and More General 
Anisotropic Crystals. 

 
 Numerous experiments [1-5] have shown that ultrasonic polar scans are a promising 

tool for the non-destructive characterization of fiber reinforced composites. However, 
because of the requirement to invert experimental data for extracting quantitative 
information [5], numerical simulations are mandatory. Such simulations have been 
developed before for single layered fiber reinforced composites. Nevertheless, since the 
vast majority of composites are multi-layered, the development of extended numerical 
models is needed. Such model is presented, together with a presentation of numerical 
simulations of ultrasonic polar scans for multi-layered composites. It is also shown that 
the polar scan of a fabric reinforced composite is quite different from a polar scan of 
(00/900)-stacked unidirectional layers. 
Furthermore, the difference between a polar scan for an incident harmonic wave and for 
an incident pulse is shown. 
In addition, simulations of ultrasonic polar scans on crystals of any kind of anisotropy, of 
any orientation and of any number of layers, is possible. Some examples are shown as 
well. 
Most of the contents of this section have been accepted for publication in NDT & E 
International (Imp. Fact. 0.752; SCI-index, Materials Science – Characterization & Testing, rank:3/23) 

 
 INTRODUCTION 
 

The principle of lowest possible mass for best suited stiffness and strength is the driving 
force behind the tailoring of high quality composites and the manufacturing of composite 
structures. This objective can only be achieved if it comes together with characterization during 
manufacturing and service life. Because destructive measurements are expensive, time 
consuming and mostly impossible, the application of ultrasound to this end is appropriate and its 
possibilities have been investigated for several years by various research groups [6-18].  

The strength, the stiffness, and the specific mass of composites are determined by the 
properties and the relative fractions of their constituents, by the physical structure of the 
composite (unidirectional, fabric,…), by the processing parameters, and by numerous sorts of 
defects and anomalies that can exist within these materials.  

The use of ultrasonic techniques in nondestructive testing and the characterization of 
materials, is widely accepted, the oldest of which is perhaps the classical C-scan to detect and 
localize certain defects. Even though the classical C-scan has proved to be well suited for the task 
of detecting defects, an extension to more sophisticated means of measurements is necessary 
especially if characterization of the stiffness is requested. On fiber reinforced composite plates, 
this can only be performed if oblique incidence is considered as well. 
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An ‘ultrasonic polar scan’ is performed on a laminate immersed in water and investigates 
anisotropic mechanical features of the laminate exploiting its influence on obliquely incident 
sound. Nevertheless, contrary to most established methods of ultrasonic nondestructive 
characterization methods for fiber reinforced composite plates, utilizing time of flight 
measurements [9-16], or even spectroscopy [8], the ultrasonic polar scan uses the amplitude of 
transmitted (or if necessary reflected) sound, which results from sound impinging the plate from 
every direction above the plate and is relatively simple to measure. 

Because a polar scan registers sound amplitudes on a small spot, it actually represents a 
local fingerprint of the plate under investigation. The characteristic pattern of such a ‘fingerprint’ 
consists in fact of a set of rings, showing considerably less intensity than elsewhere on the 
registered polar scan. The rings are physically connected [19] to generated critical waves in the 
plate, such as leaky Rayleigh waves, leaky Lamb waves or even lateral waves [20-32]. Hence, 
they almost directly clarify the mechanical anisotropy and the stiffness of the investigated spot.  

It has been shown before [1-4, 33-34] that the ‘ultrasonic polar scan’ is a highly 
recommended and convenient to use technique for the characterization of the fiber direction, the 
orthotropic stiffness, and for the extraction of information about porosity, resin fraction, etcetera. 
Because fatigue damage induces stiffness reduction, it has been shown that polar scans are also 
excellent tools to monitor fatigue damage [35]. 

The present section (XI.B) focuses on the theoretical modeling of ultrasonic polar scans. 
The last part of the paper presents some numerical examples of ultrasonic polar scans, for 
incident harmonic waves as well as for an incident pulse. The numerical method outlined below, 
though not new by itself [39], but for the first time deployed for simulating ultrasonic polar scans, 
is based on the so called direct method and does not imply sophisticated matrix methods [36-37]. 
The technique is deterministic and is not built on the Floquet wave principle [38] for periodically 
layered systems. 
 
 THE EFFECT OF ORTHOTROPY ON ELASTICITY 
 

In what follows, we apply the double suffix notation convention of Einstein. The 
dynamics of an anisotropic material is described [39] by  
 

2

2
uij i

r tj

σ
ρ

∂ ∂
=

∂ ∂
 

(XI.B_1)

 
while the generalized Hooke’s law, taking into account symmetry properties which are due to the 
analytical feature of the strain energy and the symmetric nature of the stress and strain tensors, is 
given by 
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Further symmetry considerations [39] due to orthotropy result in  
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In Engineering, orthotropic materials are often characterized by engineering constants, i.e. the 
Young’s moduli ,  and 11E 22E 33E , the Poisson coefficients 23ν , 13ν  and 12ν , and the shear 

moduli ,  and . 23G 13G 12G

Then 
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with 
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and 
 

G Gij ji=  (XI.B_8)

 
 THE PROPAGATION OF BULK PLANE WAVES 
 

We represent the acoustic field inside and outside the composite as a superposition of all 
possible bulk modes given an incident bulk wave [40-41]. Therefore we are mainly interested in a 
resulting field and do not attempt to study sound rays and point sources in a composite [42-43]. 
The reverse Voigt procedure transforms the stiffness tensor  of rank 2 to the stiffness tensor 

 of rank 4 as
mnC

ijklc ( )1 11→ , , ( )2 22→ ( )3 33→ , ( )4 23 32→ = ,  and 

. When necessary, the intrinsic stiffness constants 
( )5 13 31→ =

(6 12 21→ = ) I
ijkl ijklc c=  can be transformed 

into stiffness constants  in coordinates corresponding to a rotated (laboratory) system as 
follows: 

R
ijkl ijklc c=

 
R Ic R R R R cijkl im jn kp lq mnpq=  (XI.B_9)

 
where ijR  are the entries of the rotation matrix for a rotation from the intrinsic lattice coordinate 
system to the laboratory coordinate system. 
Equation (XI.B_1) then becomes 
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(XI.B_10)

 
A plane wave solution of (XI.B_10) is of the form 
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where  is the wave vector. If this is entered in (XI.B_10), straightforward calculations then 
result in 

n

 
1 2 0c n n Uijkl k j il lω δ
ρ

⎛ ⎞
− =⎜ ⎟

⎝ ⎠
 

(XI.B_12)

 
The latter equation is called the Christoffel equation [39,44-47]. It relates the slowness n/ω and 
the polarization U to the propagation direction and is solved by demanding nontrivial solutions, 
followed by the determination of the corresponding eigenvectors. 
 
 THE SCATTERING OF PLANE WAVES 
 
 Snell’s law 
 

If sound inside the bulk of the composite laminate results from impinging plane waves 
(denoted by superscript ‘inc’), Snell’s law must be taken into account which, for interfaces 
perpendicular to , states that  3n
 

1 1
incn n=  and  2 2

incn n= (XI.B_13)

 
Then, requiring nontrivial solutions, (XI.B_12) leads to a sixth degree polynomial equation of the 
form 
 

6 5 4 3 2 05 4 3 2 1 0B A B A B Aβ β β β β β+ + + + + + =  (XI.B_14)

in which β  represents . 3n
Furthermore, it can be shown [39] that the presence of symmetry higher than or equal to 
monoclinic symmetry (as is the case for orthotropy) results in 
 

0B j =  (XI.B_15)

 
whence 3 independent solutions 
 

2 1 4 3 6 5β β β β β β= − = − = −  (XI.B_16)

 
exist. 
 
 continuity of normal stress and displacement 
 

For a plate immersed in water, two different continuity conditions are involved. The 
water/solid interface is determined by continuity of normal stress and normal displacement, hence 
along the interface,  
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3 3
water solidu u=  (XI.B_17)

 
and 
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 (XI.B_18)

 
The solid/solid interface(s) are determined by the continuity of the displacement vector and 
continuity of normal stress, hence along the interface(s) 
 

, 1, 2,solid solidu u ii i= =  (XI.B_19)

 
and  
 

, 1, 23 3
solid solid ii iσ σ= =   

(XI.B_20)
 
By taking into account the appropriate continuity conditions and by applying the discussion of 
the previous subsection, one is able to simulate a polar scan by building the continuity matrix and 
extract the amplitudes for the different bulk wave components in the composite and in the 
surrounding liquid. The procedure that we have developed, automatically builds the complete 
continuity matrix no matter how many layers are involved. Furthermore, we consider the 
composite plate as it is and do not use any simplification based on periodicity of the layers [38, 
48]. 
 
 THE PRINCIPLE OF A POLAR SCAN 
 

A classical C-scan is formed by registering the reflected or transmitted signal in many 
spots on the laminate surface, by applying normal incidence. Most often, C-scans are used to 
detect material defects and eventually to find out the 3D locations of such defects. Lately, some 
attempts have been undertaken to unveil the fiber direction by means of C-scans. However, the 
reported methods can only be used if sufficient microscopic material defects exist on the 
fiber/matrix interface or if the fibers are not equally distributed within the matrix. 

A polar scan differs from a classical C-scan in that the transducer is not constantly held 
perpendicular to the interface. On the contrary, a polar scan exploits oblique incidence and 
measures the reflected or transmitted specular sound resulting from sound that is subsequently 
incident from all possible directions from above the plate. As is seen in Fig. XI.B_1, the 
incidence direction is defined by ( )ϕθ , .  
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Fig. XI.B_1: The position of the transducers in a polar scan 

 
The reflected/transmitted amplitude is then registered in a polar diagram where each spot 

corresponds to a certain ( )ϕπθ ,+  and represents the amplitude for that direction. The radius in 
the registrations corresponds to φ, whereas the polar angle denotes θ. The grey scale is a measure 
for the received amplitude. Physically, the process of sound impinging the plate and traveling 
inside the plate, being scattered once and again by the different interfaces, is a very complicated 
phenomenon [42-43], cfr. Fig. XI.B_2.  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. XI.B_2: The complicated interaction of an incident 
plane wave with a single layered composite plate. Each 
scattering generates 3 propagation modes in the plate 
and 1 in the liquid. 
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However, for harmonic incident waves and for a pulse (we may always consider a pulse 
as a superposition of harmonic waves), a ‘standing wave pattern (for the particle displacement as 
a function of the depth)’ is formed inside the plate, which is modeled by demanding only 6 
modes (the 6 coming from the Christoffel equation (XI.B_12)) propagating in each layer. This 
standing wave pattern may result in some kind of an eigen-vibration of the plate. If this occurs, 
this pattern is called a quasi Lamb wave. It is characterized by a reflection/transmission 
coefficient tending to zero. This results in ‘dark regions’ in the registered polar scan. The term 
‘quasi’ is used in anisotropic materials and denotes the fact that these waves are a generalized 
form of Lamb waves that do exist in isotropic materials. Only along symmetry axes, the term 
‘quasi’ could be replaced by ‘pure’. A similar expression is later on used for ‘quasi longitudinal’ 
and ‘quasi shear’ waves. The quasi polarization only corresponds to a pure polarization as in 
isotropic materials, along axes of symmetry. 

The position and the characteristics of these ‘dark regions’ are determined by the physical 
parameters of the plate, such as the thickness of the layers, the density, the stiffness coefficients 
and the damping. Ultrasonic polar scans form therefore an excellent tool for monitoring these 
physical properties. The interpretation of a polar scan is a difficult task. However, in the case of 
thick plates, the only patterns that do appear are due to bulk critical angles. For reasons of 
explanatory simplicity we solely focus on this case. Snell’s law for critical waves is as follows 
 

( )sin | / , ,v v Ccrit l crit ijϕ ρ θθ
⎛ ⎞= ⎜ ⎟
⎝ ⎠

 
(XI.B_21)

 
where  is the plane wave velocity in the liquid and  is the velocity of the critical bulk wave. lv critv
If a certain contour in one direction is wider than in other directions, this means that the velocity 
in the ‘wider’ direction is lower than in the other direction. For example the velocities of quasi 
longitudinal waves (corresponding to the inner contour of a polar scan) traveling along the in-
plane axes of orthotropy are given by ρ/11C  and ρ/22C  respectively. 
Hence, regarding equation (XI.B_21), the directions of highest stiffness produce the smallest 
critical angles for quasi longitudinal waves. Even though the contours of polar scans for thin 
plates are much more difficult to interpret, the basic idea remains unchanged. Furthermore, 
whenever a pulse is used instead of a harmonic wave, the remaining patterns of a polar scan 
correspond quite well to patterns that are caused by bulk lateral waves. That is because the 
dispersive nature of Lamb waves, i.e. a frequency dependent velocity, results in phase canceling 
for a pulse (because each plane wave component within the pulse, results in a largely different 
complex reflection coefficient), whereas bulk waves are not dispersive and their effects are not 
canceled out.  
 
 NUMERICAL EXAMPLES FOR HARMONIC WAVES 
 

Hereafter, each polar scan is simulated for a 1mm thick fiber reinforced plate and an 
ultrasonic sound frequency of 5MHz. For multilayered systems, we consider layers of equal 
thickness. Furthermore the calculations are performed using realistic values for the materials 
properties. This involves the presence of damping and is determined by means of complex valued 
stiffness elements [49-55]. 
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 single-layered unidirectional carbon/epoxy fiber reinforced composites 
 
The physical parameters of the carbon epoxy composite that are exploited here, can be found in 
Table XI.B_I. Fig. XI.B_3 presents the numerical simulation of an ultrasonic polar scan (in 
reflection) for a single layered unidirectional carbon/epoxy fiber reinforced composite.  
 
Table XI.B_I: properties of one layer of 

- Carbon/Epoxy unidirectional fiber reinforced composites (Type A) 
- Glass/Epoxy fabric fiber reinforced composites (Type B) 
- FR4 (Type C) 

 
parameter Type A Type B Type C 
ρ   3/kg m⎡ ⎤⎣ ⎦

1525 1750 1925   

11E  [ ]MPa  119130 (1-0.0025i)× 20845 (1-0.01i)×  ( )20030 1 0.15i−  

22E  [ ]MPa  8850 (1-0.03i)× 20845 (1-0.01i) ×  ( )22630 1 0.15i−  

33E  [ ]MPa  10000 (1-0.03i)× 8628 (1-0.03i) ×  ( )8628 1 0.005i−  

23ν  0.475 (1-0.015i)× 0.414 (1-0.015i) × ( )0.5 1 0.005i−  

13ν ( )0.5 1 0.005i− 0.275 (1-0.01i)× 0.414 (1-0.01i) ×   

12ν  0.306 (1-0.01i)× 0.125 (1-0.01i) ×  ( )0.1793 1 0.08i−  

23G  [ ]MPa  3000 (1-0.05i)× 2930 (1-0.05i) ×  ( )3930 1 0.04i−  

13G  [ ]MPa  5000 (1-0.02i)× 2930 (1-0.02i) ×  ( )3930 1 0.04i−  

12G  [ ]MPa  5500 (1-0.03i)× 3110 (1-0.03i) ×  ( )4781 1 0.15i−  
 
 
The fibers are oriented along the 00 polar direction. In that direction, it is indeed verified that the 
inner contour (which corresponds to the quasi longitudinal plane wave critical angle) is smallest, 
which is caused by the elevated stiffness along the fiber direction. The other contours are a result 
of generated quasi-Lamb waves and a result of generated lateral quasi-shear waves. Fig. XI.B_4 
is equivalent to Fig. XI.B_3, except that here the ultrasonic polar scan in transmission is plotted. 
Due to damping, the overall amplitude is smaller, but characteristic contours are still visible. 
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Fig. XI.B_3: Ultrasonic Polar Scan (harmonic, in reflection) of a single layered unidirectional fiber reinforced 

composite. 
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Fig. XI.B_4: Ultrasonic Polar Scan (harmonic, in transmission) of a single layered unidirectional fiber reinforced 
composite. 

 
 double layered cross-ply carbon/epoxy laminate (00/900) 
 

Each layer is characterized by physical parameters listed in Table XI.B_I (type A). Figs. 
XI.B_5 and XI.B_6 represent the numerical simulations of ultrasonic polar scans on a double 
layered carbon/epoxy fiber reinforced composite with the top layer consisting of fibers in the 00 
direction and the bottom layer built up by fibers in the 900 direction. The presence of both 
symmetries (one on top of the other), is clearly visible in the characteristic contours if compared 
to Figs. XI.B_3 and XI.B_4. Moreover, it is seen that the reflected pattern in the 00 polar 
direction is not equivalent to the pattern in the 900 polar direction. 
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Fig. XI.B_5: Ultrasonic Polar Scan (harmonic, in reflection) of a double layered (00/900) cross-ply laminate. 
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Fig. XI.B_6: Ultrasonic Polar Scan (harmonic, in transmission) of a double layered (00/900) cross-ply laminate. 

 
 single layered fabric glass/epoxy reinforced composites 
 

The physical properties of this composite are listed in Table XI.B_I (type B). Figs. 
XI.B_7 and XI.B_8 are the simulations of ultrasonic polar scans on a fabric glass/epoxy 
reinforced composite. Even though the laminate also consists of fibers in epoxy resin, the actual 
stiffness is different from the cross-ply composite described above. Hence only qualitative 
comparison is allowed. It is seen that the pattern in the 00 polar direction matches perfectly the 
pattern in the 900 polar direction. It is clear that the patterns qualitatively differ strongly form 
those of Figs. XI.B_5 and XI.B_6. Hence, a single layered fabric fiber reinforced composite is 
quite different from a (00/900) double layered fiber reinforced composite.  
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Fig. XI.B_7: Ultrasonic Polar Scan (harmonic, in reflection) of a single layered fabric reinforced composite. 
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Fig. XI.B_8: Ultrasonic Polar Scan (harmonic, in transmission) of a single layered fabric reinforced composite. 
 
 multi-layered cross-ply carbon/epoxy laminate (00/900) 
 

Each layer is characterized by physical parameters listed in Table XI.B_I (type A). In 
order to check the relevancy of the above statement that a fabric fiber reinforced composite is 
different from a (00/900) stacked composite, we have decided to increase the number of layers to 
10. The numerical result is seen in Figs. XI.B_9 and XI.B_10. Even though the number of layers 
is much larger, still there is a difference between the polar scans of Figs. XI.B_9 and XI.B_10 
and the ones of Figs. XI.B_7 and XI.B_8. Even here, with a significantly increased number of 
stacked layers, the reflected pattern in the 00 polar direction still differs significantly from the 
pattern in the 900 polar direction.  
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Fig. XI.B_9: Ultrasonic Polar Scan (harmonic, in reflection) of a cross-ply composite consisting of 10 (00/900) 

stacked layers of unidirectional fiber reinforced material. 
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Fig. XI.B_10: Ultrasonic Polar Scan (harmonic, in transmission) of a cross-ply reinforced composite consisting 

of 10 (00/900) stacked layers of unidirectional fiber reinforced material. 
 
This finding is important since it is common for many researchers to model a fabric fiber 

reinforced composite as (00/900) stacked layers of unidirectional material. It is obvious from the 
given result that this should be avoided. 
 
 NUMERICAL EXAMPLE FOR A PULSE 
 

A FR4 composite laminate is a fabric glass fiber reinforced epoxy composite and is 
frequently used in electronic devices. Table XI.B_I (type C) lists the material parameters of the 
FR4 laminate that is investigated here. We study the interaction of a pulse with the considered 
laminate. The considered pulse corresponds to a pulse that is generated by a Krautkrämer H5M 
shock wave probe [35] with a nominal frequency of 5MHz and is given by  
 

( )
2

cos 2 expft ftft
M p

π
⎛ ⎞⎛ ⎞⎜ ⎟−⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

 
(XI.B_22)
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with  and  and M a normalization constant. Expression (XI.B_22) is plotted 
in Fig. XI.B_11. This signal is simulated by means of the Fourier transformation whence it is 
written as a superposition of harmonic plane waves. Each of them is interacting with the 
composite as described earlier and the consequential field is again the summation of the resulting 
fields caused by each individual harmonic wave. The reflected amplitude is then defined as the 
maximum output as a function of time. The exact instant when that maximum is reached as well 
as the maximum value itself depend on the angle of incidence. In a polar scan for an incident 
pulse, the maximum reflected or transmitted value is plotted as a function of each angle of 
incidence. For the FR4 composite, here for a thickness of 1.2 mm, the polar scan in reflection is 
given in Fig. XI.B_12, whereas the one in transmission is given in Fig. XI.B_13. It is seen that no 
such complicated patterns appear as when an incident harmonic wave was considered (cfr. Fig. 
XI.B_8). As has been explained earlier, the reason for it is that the resulting patterns correspond 
to bulk critical angles and not to Lamb waves. 

5f MH= z 1.08p =

 

Fig. XI.B_11: The ‘amplitude versus time’-profile of the impinging sound pulse. 
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Fig. XI.B_12: simulation of the ultrasonic polar scan (pulsed, in reflection) on a FR4 plate 
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Fig. XI.B_13: simulation of the ultrasonic polar scan (pulsed, in transmission) on a FR4 plate 
 
 
 
 POLAR SCANS ON CRYSTALS 
 

Simulations of ultrasonic polar scans are not only developed for orthotropic materials, 
such as fiber reinforced composites, but also for crystals having any possible symmetry. 
Therefore, in what follows, some examples are shown for different kinds of crystals, having 
different orientations and also for the invented case of layered crystals. Note that relation 
(XI.B_3) is not applicable for symmetries that differ from orthotropy and that often, especially 
for rotated crystals, relations (XI.B_15-16) do not hold as well. Depending on the considered 
anisotropy, specific symmetry relations hold. They can be found in numerous works, e.g. the 
book by Nayfeh [39]. 
The rotation tensor ijR⎡ ⎤⎣ ⎦  is given by 
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(XI.B_23)

 
in which cosC ξξ =  and sinS ξξ = .  

 
We have considered 4 orientations, of which 3 are labeled as X-cut, Y-cut or Z-cut and the 4rd is 
labeled as ‘arbitrary’: 
 

orientation α β γ 
X-cut 0 / 2π  0 
Y-cut / 2π  0 0 
Z-cut 0 0 0 
‘arbitrary’ / 4π / 4π / 4π    

(XI.B_24)

 

We consider a tetragonal 4mm crystal (Barium Titanate, 3BaTiO ) and also a cubic  crystal 
(Gallium Arsenide, ). For simplicity, we neglect piezoelectricity. The density of Barium 
Titanate is 6020 kgm

43m
−

GaAs
-3. The elastic constants 10 210 /N m⎡ ⎤×⎣ ⎦  are 

 
27.5 17.9 15.111 12 13
16.5 5.43 11.333 44 66

C C C

C C C

= = =

= = =
 

(XI.B_25)

 
with 
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(XI.B_26)

 
The density of Gallium Arsenide is 5307 kgm-3. The elastic constants 10 210 /N m⎡ ⎤×⎣ ⎦  are 
 

11.88 5.38 5.9411 12 44C C C= = =  (XI.B_27)

 
with 
 

 
- 544 - 



CHAPTER XI: Ultrasonic Polar Scans 
  

0;14 15 16 24 25 26 34 35 36
0;45 46 56

; ; ;13 12 22 11 23 12
; ;33 11 55 44 66 44

C C C C C C C C C

C C C

C C C C C C

C C C C C C

= = = = = = = = =

= = =

= = =

= = =

 

(XI.B_28)

 
The crystals are immersed in water (density: 1000 kgm-3, sound wave velocity: 1480 m/s) 
Fig. XI.B_14 shows the simulated harmonic polar scan in reflection of a 3mm thick Z-cut Barium 
Titanate crystal. The corresponding polar scan in transmission is given in Fig. XI.B_15. The 
patterns are due to quasi Lamb waves and are determined by the symmetry properties of the 
crystal and by the physical properties, such as (thickness x frequency), density and elastic 
constants. 
Figs. XI.B_15-22 show the harmonic polar scans in transmission for the different considered 
crystals and the considered orientations. 
 

Fig. XI.B_14: simulated polar scan in reflection for a 3mm thick Z-cut Barium Titanate plate at 2 MHz. 
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Fig. XI.B_15: simulated polar scan in transmission for a 3mm thick Z-cut Barium Titanate plate at 2 MHz. 
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Fig. XI.B_16: simulated polar scan in transmission for a 3mm thick Y-cut Barium Titanate plate at 2 MHz. 
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Fig. XI.B_17: simulated polar scan in transmission for a 3mm thick X-cut Barium Titanate plate at 2 MHz. 
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Fig. XI.B_18: simulated polar scan in transmission for a 3mm thick ‘arbitrary’-cut Barium Titanate plate at 2 
MHz. 
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Fig. XI.B_19: simulated polar scan in transmission for a 3mm thick Z-cut Gallium Arsenide plate at 2 MHz. 
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Fig. XI.B_20: simulated polar scan in transmission for a 3mm thick Y-cut Gallium Arsenide plate at 2 MHz. 
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Fig. XI.B_21: simulated polar scan in transmission for a 3mm thick X-cut Gallium Arsenide plate at 2 MHz 
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Fig. XI.B_22: simulated polar scan in transmission for a 3mm thick ‘arbitrary’-cut Gallium Arsenide plate at 2 
MHz. 

 
Figs. XI.B_23-26 show similar polar scans, but now for a layered system. The system consists of 
2 layers of equal thickness. The total thickness is again 3 mm. The orientation of both layers is 
equal. The examples are given for Gallium Arsenide as upper layer and Barium Titanate as lower 
layer. The frequency is again 2 MHz. 
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Fig. XI.B_23: simulated polar scan in transmission for a 3mm thick Z-cut layered plate at 2 MHz. 
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Fig. XI.B_24: simulated polar scan in transmission for a 3mm thick Y-cut layered plate at 2 MHz. 
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Fig. XI.B_25: simulated polar scan in transmission for a 3mm thick X-cut layered plate at 2 MHz. 
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Fig. XI.B_26: simulated polar scan in transmission for a 3mm thick ‘arbitrary’-cut layered plate at 2 MHz. 
 
 
 CONCLUDING REMARKS 

 
It is shown how numerical simulations of polar scans are performed, starting from simple 
principles of mechanics and wave motion. Even though simulations on single layered 
fiber reinforced composites already existed, the theoretical model has been extended to 
multi-layered composites and to crystals of any anisotropy. As an excellent example, it 
has been shown that fabric fiber reinforced composites cannot be modeled sufficiently 
accurate by means of a model in which unidirectional fiber reinforced layers are stacked 
in large numbers in the 00 polar direction and the 900 polar direction. We have discussed 
polar scans for incident harmonic waves and an incident pulse. These numerical 
simulations, together with the upgraded and highly modernized experimental set up may 
become a means of characterizing the stiffness of anisotropic plates. It is the author’s 
purpose to develop an automated tool that applies a numerical/experimental inversion 
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technique and to rebuild the experimental apparatus to meet in-field requirements. Due to 
the strong connection to stiffness, the developed technique is intended to monitor fatigue 
damage on composites, porosity, and resin fractions. Furthermore, it will be used to 
verify micro-mechanical models. 
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XI.C On the Influence of Fatigue on 
Ultrasonic Polar Scans of Fiber 
Reinforced Composites 

 
 Ultrasonic Polar Scans have already proved to be well-suited as a practical means of 

characterizing fiber reinforced composite plates. The method consists of registering the 
reflected or transmitted sound amplitude as a function of each possible angle of 
incidence. It is hence an amplitude measurement by which it differs from more common 
‘time of flight’ measurements. Ultrasonic Polar Scans are actually a fingerprint of a 
composite laminate. One of the many promising applications of the Ultrasonic Polar 
Scan is the monitoring of fiber reinforced composites in service. Especially the progress 
of fatigue damage can be monitored easily and nondestructively. This section presents 
numerical simulations of the influence of fatigue on Ultrasonic Polar Scans as well as 
some experimental results. 
The contents of this section have been published as: Nico F. Declercq, Joris Degrieck, 
Oswald Leroy, " On the influence of fatigue on ultrasonic polar scans of fiber reinforced 
composites", Ultrasonics 42, 173-177, 2004. (Imp. Fact. 0.844; SCI-index, Acoustics, rank:11 
/28) 

 
 EXPERIMENTAL PROCEDURE AND RESULTS 
 
 Causing Fatigue Damage 
 

A FR4 composite laminate is a fabric glass fiber reinforced epoxy composite that is often 
used in electronic devices. The present paper reports experiments on such a FR4 sample. The use 
of the polar scan method to study the sample is discussed below. In between each polar scan, the 
sample has been subjected to applied dynamic (sinusoidal) strain in one direction. It is well 
known that this results in degradation of the material after a large number of cycles. This is called 
fatigue. Contrary to degradation in metals, in composites degradation always occurs in a 
relatively large zone (bulk degradation) and is accompanied by a diminishing stiffness in many 
directions. The dynamic strain is caused by clasping the sample in a system of two grabs that are 
connected to a machine that generates controlled displacements of the grabs relative to each 
other. The dimensions of the laminate inside the grabs system are shown in Fig. XI.C_1. The 
amplitude of the applied dynamic strain is 0.8% which for this material (E modulus is 
approximately 22GPa) corresponds to a maximal applied stress of 181 MPa, i.e. 60% of the 
strength of the laminate. The dynamic stress is applied at a pace of 2.5 Hz. Below, we will study 
the effect of this applied stress on an experimental polar scan before fatigue and after 39060 
dynamic deformations. 
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Fig. XI.C_1: A schematic view of the laminate inside the grabs during cyclic deformations. The dimensions of the 
sample are 300 mm (length) by 1.2 mm (thickness). 

 
 The Principle of Ultrasonic Polar Scans in a Nutshell 
 

Just like for example the well known time of flight techniques, an ultrasonic polar scan is 
performed on a plate immersed in water and investigates anisotropic mechanical properties of the 
laminate exploiting its influence on obliquely incident sound. Frequently in nondestructive 
characterization of fiber reinforced composite plates, time of flight measurements are used, which 
are relatively difficult to perform. The ultrasonic polar scan on the other hand applies the 
amplitude of transmitted (or if necessary reflected) sound, which results from sound impinging 
the plate from every direction above the plate and is relatively easy to measure. Furthermore, a 
polar scan is able to investigate sound amplitudes on a small area, whence it can present a local 
fingerprint of the laminate under investigation. The characteristic pattern of such a ‘fingerprint’ 
consists in fact of a set of rings, showing considerably less intensity than elsewhere on the 
registered polar scan. The rings are physically connected to generated critical waves in the plate, 
such as leaky Rayleigh waves, leaky Lamb waves or even lateral waves. Therefore, they almost 
directly elucidate the mechanical anisotropy and the stiffness of the investigated area.  

Ultrasonic polar scans have first been developed by van Dreumel and Speijer [1] who 
used them to determine the fiber orientation in composite laminates, and have been further 
developed by Degrieck et al.[2-6], who utilized them for additional applications such as the 
determination of the anisotropic (non-orthotropic) stiffness, fiber and resin fraction and more.  
Contrary to classical C-scans, in polar scans the transducer is not directed invariably normal to 
the surface, scanning a whole area, but is constantly directed towards a particular targeted zone 
on the surface, occupying successively all possible directions of incidence from the upper half 
space, and maintaining a constant distance to the target, as shown in Fig. XI.C_2. The measured 
amplitude is then plotted in a polar diagram where the radius corresponds to φ and the polar angle 
to θ. 
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Fig. XI.C_2: In a polar scan, a spot is impinged at constant distance form all possible angles 

 
 Experimental Results 
 

The ultrasonic polar scans were experimentally performed using a Krautkrämer USIP20 
ultrasonic apparatus and a Krautkrämer H5M shock wave probe with a nominal frequency of 
5MHz. The pulse had a shape that is given in Fig. XI.C_3.  

Since a shock wave probe generates sound that contains a large frequency range, the 
existence of Lamb wave angles is not directly visible in the overall reflected or transmitted 
amplitude. One would need to perform a frequency analysis of the received sound if the 
individual Lamb modes have to be detected. However the positive consequence of applying a 
shock wave transducer is that patterns appear at angles that almost coincide with bulk critical 
angles. That is because all frequency dependent Lamb modes phase-cancel each other, which is 
not the case for the effects at the frequency independent bulk critical angles. Therefore, the 
reflected sound, resulting from an impinging shock wave, will show maximum amplitude at bulk 
critical angles, while the corresponding transmitted sound will show a strong amplitude dip. 
Now, since bulk critical angles are relatively simply connected to the stiffness of the material 
through Snell’s law and the Christoffel equation, they form an ideal fingerprint to visualize 
stiffness changes due to fatigue damage. In the experiments performed here, the maximum 
transmitted amplitude is measured for each angle of incidence, whence critical amplitude dip 
patterns will appear due to the bulk critical angles. The results for the ultrasonic polar scan in 
transmission is shown before fatigue (Fig. XI.C_4) and after fatigue caused by 39060 cycles of 
dynamic deformation as discussed above (Fig. XI.C_5).  
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Fig. XI.C_3: The amplitude versus time profile of the impinging sound pulse. 
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Fig. XI.C_4: Experimental ultrasonic polar scan on a FR4 plate before fatigue damage. 

The dotted circles of the diagram correspond to steps of 100. The amplitude is normalized. 
 
The ‘omitted’ parts in the polar scans of Figs XI.C_4-5 correspond to angles where no 

measurements have been performed. Since there are large areas where the amplitude changes 
very little, a plot where the brightness corresponds linearly to the intensity results in very 
ambiguous figures. Therefore we have opted to make plots in color and transform them to black 
and white pictures similar to a black and white copier. This results in figures where the brightness 
does not correspond one to one to a certain intensity. However, it is so that the dark center in the 
presented ultrasonic polar scans corresponds to maximum intensity. All other dark regions, 
exceeding φ=100, correspond to low intensities. The grey regions are more or less linearly related 
to medium intensities as can be noticed from the ‘color bar’ next to each polar scan. It is seen that 
the dark ring in between 200 and 300 has moved slightly (approximately 10 to 20) outwards after 
the fatigue damage has occurred. This ring is caused by the critical angle corresponding to quasi 
longitudinal waves. Hence, ultrasonic polar scans enable us to monitor fatigue damage. 
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Fig. XI.C_5: Experimental ultrasonic polar scan on a FR4 plate after fatigue damage. 

Note that the inner dark ring has moved outward if compared with Fig. XI.C_ 4 and also that the closed brackets 
of Fig. XI.C_4 have opened. The amplitude is normalized. 

 
 NUMERICAL SIMULATIONS 
 

When sound is incident on a fiber reinforced laminate, there will be some scattering on 
the individual fibers. In some cases this is dramatic, especially when thick fibers or high 
frequencies are involved. For a FR4 composite, 5MHz is more or less the limit before this 
scattering becomes very important. At 5MHz, the scattering is not dramatic and does not change 
the influence of the overall stiffness parameters that determine the position of the 'dark rings' in 
polar scans. As can be seen in Ref [6], scattering on individual fibers mainly causes some 
deviations in the amplitude at normal incidence. These considerations result in a justification to 
apply an approach where the material properties are considered to be homogeneous throughout 
the plate. The theory that deals with this situation can be found for example to a large extent in 
the work of Nayfeh [7]. It is based on the plane wave solution of the equation of motion, the 
stress-strain relation for orthotropic materials, Snell’s law combined with Christoffel’s equation 
for revealing the possible values of the wave vector and the continuity conditions for normal 
stress and normal displacement along the water/solid interface. The sound field in the solid is 
then written as a linear combination of each possible plane wave inside the plate (6 in number), 
while the sound field in each liquid side is just one single plane wave solution. The continuity 
conditions are then represented by a linear matrix equation that can be solved by means of matrix 
inversion in order to find the complex amplitude of each plane wave that constitutes the sound 
field.  
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Besides the thickness, we do not know the exact values of the material parameters of the 
FR4 laminate that is investigated here. Therefore, we have applied numbers that are generally 
accepted as being reasonable numbers for this material. The values are found in Table XI.C_I, 
where symbols E denote Young’s moduli, ν indicate the Poisson coefficients and G represent 
shear moduli.  

 
Table XI.C_I: material properties used in the numerical simulations 
 

3/1925 mkg=ρ  
( )MPaikE 15.02003011 −=  ( )MPaikE 15.02263022 −= ( )MPaikE 005.0862833 −=

( )im 005.05.023 −=ν ( )im 08.01793.012 −=ν( )im 005.05.013 −=ν   
( )MPaikG 04.0393023 −= ( )MPaikG 15.0478112 −=( )MPaikG 04.0393013 −=   

before fatigue: k=1, m=1 
after fatigue: k=0.75, m=0.35 

 
The numerical simulation of an ultrasonic polar scan before fatigue damage is shown in Fig. 
XI.C_6.  
There is of course no perfect similarity between Fig. XI.C_6 and Fig. XI.C_4, however the basic 
structure is the same and so is approximately the position of the dark ring that is caused by quasi 
longitudinal waves. In order to perform a simulation after fatigue damage, we have applied 
general features of fatigue damage that have recently been published [8-15]. These papers 
indicate that the E and G moduli tend to k=60% and that the Poisson coefficients tend to m=25% 
of their original values at the time that fracture occurs due to fatigue damage. Since the polar scan 
of Fig. XI.C_5 corresponds to severe fatigue damage, but not to the amount that causes fracture, 
we have entered k=75% and m=35% in the simulation that is shown in Fig. XI.C_7. Analysis of 
Figs XI.C_6-7 reveals that the dark ring moves form 23.250 to 24.880, which is in qualitative and 
more or less quantitative agreement with the experiments. It is also seen that the other patterns 
that are similar to brackets, tend to ‘open’ after fatigue damage. This is also in agreement with the 
experiments, where it is seen that before damage (Fig. XI.C_4), the ‘brackets’ are so closely 
situated to each other that they appear as closed circles, a phenomenon that disappears after 
fatigue damage (Fig. XI.C_5). 
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Fig. XI.C_6: simulation of ultrasonic polar scan on a FR4 plate before fatigue damage. The amplitude is given in 

exact numbers. 
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Fig. XI.C_7: simulation of ultrasonic polar scan on a FR4 plate after fatigue damage. The amplitude is given in 
exact numbers. It is seen that the inner dark ring has been shifted outward from 23.250 to 24.880 if compared with 

Fig. XI.C_6 and that the ‘brackets-patterns’ of Fig. XI.C_6 have opened more. 
 
 CONCLUSIONS 

 
It is shown by means of experiments and numerical simulations that ultrasonic polar 
scans are a possible tool to reveal fatigue damage. The simulations are in reasonable 
agreement with the experiments, and so is the evolution of the patterns in a polar scan 
due to fatigue damage. In the science and technology of composites, it is often 
desirable to measure the stiffness degradation of composites due to fatigue in order to 
verify physical micro-models for this phenomenon. Most often, destructive methods 
are used for that purpose, and frequently it is impossible to measure the out of plane 
properties. Ultrasonic polar scans may be an excellent tool for that purpose with the 
extra advantage that it is a nondestructive technique whence each measured sample 
(or part of a construction) might continue its life without destructive interruption. 
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XI.D A Numerical Study on the Feasibility 
of Visualization of Stress in Isotropic 
Plates by means of the Reflected 
Amplitude of Harmonic Ultrasonic 
Waves 

 
 It is well known that isotropic plates commonly possess residual stress which is 

frequently caused by manufacturing failures, which are often unavoidable. For some 
industries, it is highly important to be able to detect and characterize such unwanted 
effects. Furthermore, in engineering, it is often desirable to be able to measure the 
distribution of applied stress in structures. The present section describes a possible tool 
for that purpose. In advance of elaborated experiments that are possibly going to be 
performed at our lab the coming years, a numerical simulation is shown that reveals the 
influence of stress on the amplitude of sound reflected from plates that are isotropic in 
nature, but became anisotropic because of stress. 

 
 INTRODUCTION 
 

During manufacturing, it often happens that residual stress enters the material. A famous 
example is the case of rolled steel plates. Also in processes where fast cooling occurs, due to the 
inhomogeneity of the materials and/or due to the difference in cooling rate at different spots in 
the material, residual stress is introduced. Of equal importance is the presence of applied stress in 
materials that are mounted in a construction. It is known that the presence of stress of any kind 
may have serious consequences on the behavior of that material and will certainly affect the 
remaining lifetime. It is therefore often of vital importance that the present stress can be detected 
or estimated by means of nondestructive testing. Several techniques exist to detect stress of which 
the use of ultrasound is very famous [1].  

Because techniques that make use of a drilled hole [2-3] in the plate under investigation 
cannot be fully called nondestructive, we focus our survey on other techniques. 
It is widely known that stress influences the stiffness of a material [4], whence it is reasonable 
that this stiffness change will affect results of vibration measurements [5-6]. The change in 
stiffness also influences the velocity of waves. However, if one needs to perform direct 
measurements of velocity changes, relatively large distances will be involved whence it is 
impossible to extract information on local stress variations. This problem can be resolved by 
applying phase measurements and can be found in the literature [7]. Nevertheless, most often, 
phase measurements are not very practical and require specialized equipment. 

Perhaps the far most wonderful method to visualize stress in laminates has been 
introduced by Eva Drescher-Krasicka [8]. Her method consists of measuring amplitudes of 
reflected pulses originated from a focused normal incident pulse and separated from each other in 
time because of velocity differences of different bulk propagation modes (shear, longitudinal). 
Her method enables investigation of local stress variations in a microscopic manner. However, 
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separation of the pulses cannot occur if the thickness is too small or if one doesn’t have the 
specialized microscopy apparatus. Besides, her method works best for large frequencies 
(>10MHz), whence the method becomes vulnerable to effects caused by small material 
inhomogeneities such as granula, micro cracks, … 

Some reports [9-10] can be found that study the susceptibility of critical bulk waves for 
stress, but do not mention the situation for plates and do not mention the appearance of 
anisotropy due to stress. 

Since the work of Cauchy [11], there have been many attempts to measure and to 
theoretically understand the influence of stress in the interaction of ultrasound with isotropic 
materials. Most of these attempts apply a more or less heuristic approach where the wave velocity 
is decomposed into its value in the unstressed case and an additional (positive or negative) 
number due to stress. The latter is then written as a linear combination of the components of the 
applied stress tensor. The linearity coefficients are then called acousto-elastic coefficients. The 
use of this approach is found in many papers [12-28], including the one of Ditri [10], where it is 
shown, using this heuristic approach, that the influence of stress can be visualized as very small 
changes in the bulk critical angles.  
The present paper follows a more physical approach and focuses on the case of plates where 
Lamb waves play an important role. 

Other authors describe methods based on critical phenomena such as Rayleigh waves. It is 
known that the velocity and the properties of Rayleigh waves is influenced by stress [29-30]. 
Nevertheless Rayleigh waves do not penetrate deep into the bulk of a material and can therefore 
only be applied in situations where surface stress needs to be determined. Furthermore, Rayleigh 
waves cannot be stimulated on relatively thin plates. 

In the case of plates, it has been shown by several authors [31-32] that Lamb waves are 
also influenced by stress. A detailed study for very thin laminates can be found where it is shown 
that the lowest velocity Lamb waves are highly influenced by the presence of (very high) stress. 
In that study, the fact that isotropic materials become slightly anisotropic in the presence of stress 
is not studied and results for a more general kind of lamb waves for thicker plates are not 
mentioned. It is our aim to study the influence of stress on Lamb waves using a theoretical 
method that is more general than the one of ref [31]for very thin plates (foils). However, the latter 
paper mentions a technique which is contactless and is therefore very valuable for several 
applications.  

In reference [33], a theoretical treatment is formulated in the case of incompressible 
materials. Though since all materials are actually compressible, we have opted for an approach 
which can be found in papers of Degtyar and Rokhlin [34-36]. They build a theory that describes 
the propagation of sound in stressed anisotropic materials, based on the approach of Man and Lu 
[37] that is valid for both residual stress and applied stress. Furthermore, Degtyar and Rokhlin 
show that, in order to describe the interaction of sound with stressed materials, the presence of 
stress must explicitly be considered in the continuity conditions at interfaces, which therefore 
differ from non-stressed systems [38]. The importance of their paper should not be 
underestimated. However, their study is limited to single interfaces and therefore does not 
explicitly span the interaction of sound with plates. 

The current section XI.D applies the findings of Degtyar and Rokhlin [36] and studies the 
possibility of visualizing changes in material properties in the presence of stress by means of 
numerical simulations of the reflection of sound on stressed plates immersed in water. First, the 
theory of the propagation of plane waves in stressed materials is briefly described. Then the 
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continuity conditions are shown. Finally some numerical examples are shown for harmonic plane 
waves. 
 
 WAVES IN STRESSED ANISOTROPIC MATERIALS 
 
For this situation, the constitutive equation relating stress and strain is given by [36] 
 

0 0uicij ij ijkl kl kjrk
σ σ ε σ

∂
= + +

∂
 

(XI.D_1)

 
where ijσ  is the first Piola-Kirchhoff stress tensor,  is the initial static stress, 0

ijσ klε  is the elastic 
deformation due to wave propagation,  is the particle displacement and  is the fourth order 
stiffness tensor [36] which is dependent on the initial stress. 

u ijklc

The linear equation of motion then becomes 
 

2 2
0

2
u uk icijkl jl ik r r tj l

σ δ ρ
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(XI.D_2)

 
Even the density ρ  depends on the initial stress. However, this is taken into account in the stress 
dependent elastic constants. The calculation of these constants can be found in Degtyar and 
Rokhlin [34-36]. If plane waves 
 

expu AP iK V tk k p
⎛ ⎞= •⎜ ⎟
⎝ ⎠
n r −

⎤ =

 
(XI.D_3)

 
are a solution of (XI.D_2), the Christoffel equation is then given by [36] 
 

0 2 0c n n n n V Pijkl i l il i l p jk kσ ρ δ⎡ ⎛ ⎞+ −⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦
 

(XI.D_4)

 
where A is the amplitude,  is the unit displacement vector, P ( )nnK pVK /ω==  is the wave 
vector,  is the wave velocity, n is the wave normal, and r is the position vector. It can be 
shown that, just as in the case of unstressed anisotropic media, there are maximum 6 independent 
velocity solutions of equation (XI.D_4). In the case where the symmetry is not triclinic, but 
monoclinic or higher, there are actually only 3 independent solutions in the sense that the 
solutions can be split in two equivalent sets, i.e. a set of 3 up going waves and a set of 3 down 
going waves having equal velocity compared with the up going ones. 

pV
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 CONTINUITY CONDITIONS FOR A PLANE STRESSED INTERFACE 
 

First of all, it is required that Snell’s law holds at the interfaces. This means that the wave 
vector components along the interface remain constant which results in the fact that equation 
(XI.D_4) can be rewritten in a form where not just the velocities are found, but the wave vector 
components perpendicular to the interface, given the components along the interface.  
Furthermore, for a liquid/solid interface, one demands continuity of normal displacement. In 
addition, continuity of normal stress must be invoked. The latter condition must also reckon with 
the initial stress. Hence one demands continuity of 
 

0
3 3

uici i kl kl krk
3σ ε σ

∂
= +

∂
 

(XI.D_5)

 
It is shown by Degtyar and Rokhlin [34-36] that if the last term in (XI.D_5) is neglected, that the 
calculated results can only be approximations of the exact situation, especially around critical 
angles. The continuity conditions and the fact that the maximum number of independent solutions 
inside the stressed plate is 6 and 1 in each liquid medium, results in 8 equations and 8 unknown 
complex amplitudes. The 8 unknown amplitudes are then simply found from inversion of the 
continuity matrix. 
 
 NUMERICAL EXAMPLES 
 

In what follows, ultrasound impinges a single layer of isotropic Titanium. The frequency 
is 6 MHz, the plate thickness is 1mm and is swamped in water of density 1000kg/m3 and wave 
velocity of 1480m/s. The properties of Titanium [3] are 97 GPa for Young’s modulus, 0.33 for 
Poisson’s ratio and 4507 kg/m3 for the density. The so called third order elastic constants that are 
needed in ref [36] to calculate the stress dependent elastic constants, are GPa, 

 Gpa and GPa. We apply different angles of incidence and we plot for 
each angle of incidence the reflected amplitude for plane waves. In these plots, the radius 
corresponds to the azimuthal angle in degrees, while the polar angle corresponds to the polar 
angle in degrees. Since residual stress can be present in many forms, we limit ourselves to two 
examples of (applied) stress in one direction at a time. 

1358111 −=C
1105112 −=C 162123 −=C

In Figs XI.D_1-3, the difference is shown for increasing stress in the x-direction, i.e. 
determined by a polar angle of 00.  
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Fig. XI.D_1: Reflected amplitude for 11σ =105 Pa. The dark ring corresponds to the fastest Lamb wave for the 

given specimen. 
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Fig. XI.D_2: Reflected amplitude for 11σ =108 Pa. The dark ring is now anisotropically deformed if compared 
with Fig. XI.D_1. 
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Fig XI.D_3: Reflected amplitude for 33σ =106 Pa. The dark ring is now isotropically deformed if compared with 
Fig. XI.D_1. 

 
It is noticed that for increasing stress, the fastest generated Lamb wave (corresponding to the 
smallest azimuthal angle, approx 20, which is the case that we wish to highlight) corresponds to a 
ring of amplitude dip, which obtains a larger radius in the direction of increased stress (x-
direction) and a smaller radius in the perpendicular direction (y-direction). This already shows 
the appearance of anisotropy due to applied stress. It is for that reason that even in the case of 
isotropic materials, the theory for anisotropic materials must be considered. 

The exact critical angle values of the fastest Lamb wave are listed in Table XI.D_I, 
together with the angle difference, for the case of 11σ =105 Pa and 11σ =108 Pa as in Figs XI.D_1-
2. 
In Figs XI.D_4-5, the normal stress (normal pressure) 33σ  is increased. It is seen that the material 
remains isotropic and that the dark circle which corresponds to the fastest Lamb mode, becomes 
wider in radius for increased normal stress. The different values of the calculated lamb angles are 
tabulated in Table XI.D_II. 
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Table XI.D_I: Lamb angles of the fastest Lamb mode as a function of different values of applied stress in the 

x-direction 
 

 Lamb angle 
 x-direction y-direction 

11σ =105 Pa 2.2326 2.2512 

11σ =108 Pa 2.2698 2.1581 
difference 0.0372 -0.0931 

 
 

 

Fig XI.D_4: Reflected amplitude for 33σ =108 Pa. The isotropic deformation of the dark ring has increased 

compared to Fig. XI.D_3. 
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Fig XI.D_5: Reflected amplitude for 33σ =109 Pa. The isotropic deformation of the dark ring has increased 
compared to Figs XI.D_3-4. 
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Table XI.D_II: Lamb angles of the fastest Lamb mode as a function of different values of applied stress in the 
z-direction 

 
 33σ =106 Pa 33σ =108 Pa 33σ =109 Pa 
Lamb angle 2.2326 2.5116 8.7950 

 
It is noticed that the angles are much more susceptible to normal stress than to in-plane stress if 
compared with the values of Table XI.D_I. It is also noticed that the increase in angle is certainly 
not linearly related to the increase of pressure. Therefore it is shown that full simulations need to 
be performed (as is presented in this section) instead of heuristic modeling. 
 
 CONCLUDING REMARKS 

 
It is shown, by means of exact numerical simulations, that multi-angle 
inspection of an isotropic titanium laminate reveals the presence of stress and 
also reveals anisotropy induced by stress. Therefore multi-angle incidence 
measurements may become a useful technique to characterize stress in 
isotropic laminates. In this section, the attention was focused on the fastest 
Lamb wave in order to show that not just the slowest Lamb mode is fairly 
sensible to stress as could be interpreted from [31]. It is also shown that the 
susceptibility of Lamb angles to stress, depends on the direction of the stress 
and is not linearly related to its magnitude.  
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Chapter XII Sound in Piezoelectric 
Materials 

 
 

A crystal is a solid material whose atoms are arranged in 
a definite pattern and whose surface regularity reflects its 
internal symmetry. Each of a crystal's millions of 
individual structural units contains all the substance's 
atoms, molecules, or ions in the same proportions as in its 
chemical formula. The cells are repeated in all directions 
to form a geometric pattern, manifested by the number 
and orientation of external planes (crystal faces). Crystals 
are classified into seven main crystallographic systems 
based on their symmetry: isotropic, trigonal, hexagonal, 
tetragonal, orthotropic, monoclinic, and triclinic. The 
picture on the left is a Quartz crystal. This crystal is one 
example of crystals whose mechanical behavior is 
connected to its electrical behavior and vice versa. The 
coupling effect is called ‘the piezoelectric effect’. It was 
first observed by Paul-Jacques and Pierre Curie in 1880.

 

      Just as any other student, during my education, I spent a major part of my 
valuable time on the study of algebra. A key fraction of this study was devoted 
to the group theory. It is a pity that somehow, one has never been able to 
explain to me what the significance of this theory was, besides a set of rules and 
axioms that suggested algebra being an intelligent ‘game’. It was not until I 
intended to study the interaction of sound with composites, that I had to read a 
number of books dealing with point groups and symmetry operations and that I 
realized the importance of algebra and I started to enjoy the subject. 
     This is the reason why soon, I realized that I wanted to deal with crystals and 
examine more sophisticated properties of materials than solely their elasticity. 
     Piezoelectricity is one of the subjects that attracted me very quickly. It is the 
appearance of an electric field in certain nonconducting crystals as a result of 
the application of mechanical pressure. Pressure polarizes some crystals, such 
as quartz, by slightly separating the centers of positive and negative charge. The 
resultant electric field is detectable as a voltage. The converse effect also 
occurs: an applied electric field produces mechanical deformation in the crystal. 
Using this effect, a high-frequency alternating electric current can be converted 
to an ultrasonic wave of the same frequency, while a mechanical vibration, such 
as sound, can be converted into a corresponding electrical signal. 
Piezoelectricity is utilized in microphones, phonograph pickups, and telephone 
communications systems.
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      In ultrasonics, the device that transforms an electric signal into a sonic signal 
(and vice versa), is called ‘a transducer’. Transducers were first applied for 
sonar systems, initially by the military, later by ocean liners, fishing vessels, 
cargo ships and submarines for underwater archeology. 

 
Sonar, invented by Paul Langevin, was first used to detect 
submarines in 1916, this was 4 years too late for the 
Titanic and many other ships that sunk after encountering 
icebergs or other underwater obstacles. Nevertheless, the 
number of lives that have been saved by sonar after 1916 
is overwhelming compared to the dramatic loss of the 
Titanic. 

 

 

      Anisotropy formed the core of Chapter XI. For sound waves, anisotropy of a 
certain media, means that its velocity and polarization depend on the direction 
of propagation. It also means that for most directions of propagation, the 
direction of phase propagation differs from that of energy propagation. To some 
extent, this is comparable to a sailing boat, steering in one direction, but being 
drifted in another course. Also, for a given direction in an anisotropic media, 
there are in general three sound velocities possible, comparable to the effect of 
birefringence in optics. 
     Section XII.A of this chapter describes the influence of piezoelectricity on 
the different modes of wave propagation. This section must be considered as an 
introductory section, because it describes the stiffening effect, which is well 
known. Nevertheless, the stiffening effect is presented graphically in a manner 
that I have not found in any book or paper dealing with piezoelectricity. 
     In Chapter IV, the concept of inhomogeneous waves was highlighted and 
further studied. So far, not a single researcher has ever studied the propagation 
of inhomogeneous waves in piezoelectric crystals. Therefore, in section 
XII.B.1, the concept of inhomogeneous waves is introduced in piezoelectric 
crystals. 
     Acousto-Optics is the interaction of light with sound. The Acousto-Optic 
effect was first observed in 1932 by Lucas, Biquard, Debije and Sears. The 
effect became extremely important after the invention of laser light by 
Theodore Maiman in 1960, and found its way in electronic communication 
systems and other fields of interest, very rapidly. Because of its importance in 
Acousto-Optics, the crystal of Paratellurite is central in section XII.B.2. This 
study is performed after fruitful discussions with Nataliya V. Polikarpova and 
Vitaly B. Voloshinov during a conference in Poland.  

 

 
- 584 - 



CHAPTER XII: Sound in Piezoelectric Materials 
  

Robert Ballard and his research team discovered the 
wreck of the Titanic in 1986. Since then, submarines have 
frequently been used in underwater archaeology. For that 
purpose, the use of sonar systems is central. Because of 
the huge underwater pressure that is often encountered in 
underwater archaeology, the subject of the behavior of 
piezoelectric crystals under bias stress, is very important. 

 

 

 Special attention will be drawn on the behavior of inhomogeneous waves in this 
crystal. 
     In a television documentary in the second half of the 1980’s, the discovery 
of the wreck of the Titanic by Robert Ballard, was shown. It was mentioned that 
the presence of extreme pressure at the depth of the wreck, was a difficult 
problem to deal with. Because I was still a child, my perception of the problem 
was rather simplistic and I thought that if the problem was just that the water 
wanted to enter the submarine, that it would probably be better to let it enter 
and obtain a stable situations instead of a vessel being crushed by that immense 
external pressure. Actually, this was not such a stupid idea, if only the 
electronic devices within the vessel would be submergible. Much later, when 
studying the effect of stress in plates on the propagation of sound (Chapter XI), 
I realized that the elimination of pressure by anti-pressure, was only realizable 
on a macroscopic scale. On a microscopic scale, it is not possible to let water 
enter metals and crystals in order to form this anti-pressure. This problem made 
me curious and made me realize that pressure does not only have a relative 
effect on vessels, but has an absolute influence on atomic lattices, such as 
piezoelectric crystals. Furthermore, submarines as they have been used by 
Robert Ballard to examine the seafloor, make use of sonar systems that consist 
of piezoelectric crystals. Therefore the study of the effect of pressure on such 
crystals, is not really unfounded. 
     In Chapter XI, the concept of stress in plates was introduced. It was based on 
a study by Degtyar and Rokhlin and involved an approach that was not 
immediately extendible to piezoelectric crystals. When screening the existing 
literature I could only find one paper dealing with piezoelectric crystals under 
pressure. However, only the effect on surface waves was examined and the 
paper showed some shortcomings that I wanted to avoid. Furthermore, the 
paper did not present the necessary symmetry relations of the higher order 
material constants and I could not find those relations anywhere else in the 
literature.  
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 Therefore, I’ve chosen to deal with the problem from scratch. I decided to get in 
touch with Gérard A. Maugin. He recommended me to buy his book on 
Nonlinear Waves in Elastic Crystals. The book describes the basics of nonlinear 
effects in crystals and piezoelectric crystals and presents the basic expressions 
relating the energy of a crystal to field quantities. This book, together with the 
magnificent book by J. F. Nye (Physical Properties of Crystals) paved the way 
to build the necessary model to describe the propagation of sound in stressed 
piezoelectric crystals. I decided to follow the steps by Bertram A. Auld (for 
linear phenomena) in his famous book ‘Acoustic Fields and Waves in Solids, 
Volumes I and II’. For reasons of completeness, I added to the theory an 
expression in the constitutive relation that was also used by Degtyar and 
Rokhlin (see section XI.D, for non-piezoelectric materials) in order to include 
plasticity as well. Nevertheless, this effect is only significant for extremely high 
pressures. It will be shown in section XII.C that the effect of stress on the 
slowness surfaces in piezoelectric crystals, results in graphical representations 
that sometimes look like an electron orbital in atoms. This is just a striking 
coincidence. Nevertheless, it is a reminder of the universality of the beauty of 
nature. 
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XII.A The effect of stiffening of crystals due 
to piezoelectricity 

 
 This section XII.A about ‘stiffening’ does not contain new results and is considered to be 

interesting background information. Nevertheless, in the literature, the stiffening effect 
itself, i.e. the change of the wave velocity due to the piezoelectric effect, has not been 
shown graphically. Also the representation of the change of polarization and the change 
of the energy flow due to the stiffening effect, cannot be found in any other published 
document. In what follows, changes of the slowness surface are represented by a new 
surface, whereas changes in the energy flow and in the polarization, are represented by 
arrows. 

 
 THEORETICAL DEVELOPMENT 
 
For piezoelectric materials, the stress tensor [1-2] is given by 
 

c e Eij ijkl kl kij kσ ξ= −  (XII.A.1_1)

 
whereas the electrical displacement is given by 
 

D Ek ki i kij ie jε ξ= +  (XII.A.1_2)

 
where  is the stiffness tensor, ijklc kijξ  is the piezoelectric stress tensor, ijε  is the dielectrical 
permittivity tensor,  is the electric field vector,  is the dielectric displacement vector and  
is the strain tensor.  

E D kle

For ultrasonic waves [1], the accompanying electric field is quasistatic and can be described by  
 

ϕ= −∇E  (XII.A.1_3)
 
with ϕ  a scalar potential.  
The acoustic wave equation for visco-elastic materials is given by  
 

2

2
uij i

r tj

σ
ρ

∂ ∂
=

∂ ∂
 

(XII.A.1_4)

 
whereas the electromagnetic field equations, in the absence of electric currents and electric loads 
are given by 
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0 t
µ ∂

∇× =
∂
HE  

(XII.A.1_5)

 
and 
 

t
∂

∇× =
∂
DH  

(XII.A.1_6)

 
Taking into account (XII.A.1_3), relations (XII.A.1_5-6) can be replaced by 
 

2
02

u j
ki kijr rt i j

ϕε ξ
⎛ ⎞∂∂ ∂⎜ ⎟∇ − + =
⎜ ⎟∂ ∂⎜ ⎟∂ ⎝ ⎠

i  
(XII.A.1_7)

 
If we consider plane waves, then 
 

expA i k x k y k zx y z tω⎛ ⎞= + +⎜ ⎟
⎝ ⎠

u P −  
(XII.A.1_8)

 
and 
 

expB i k x k y k z tx y zϕ ω⎛ ⎞= + +⎜ ⎟
⎝ ⎠

−  
(XII.A.1_9)

 
Then, relation (XII.A.1_7) immediately involves 
 

k k APr s rsq qB
k kmn m n

ξ

ε
=  

(XII.A.1_10)

 
Furthermore, combining relations (XII.A.1_4) and (XII.A.1_7) delivers [1] 
 

0M Pip p =  (XII.A.1_11)

 
Equation (XII.A.1_11) is the stiffened equation of Christoffel. Only nontrivial solutions 0≠P  
are possible whenever 
 

det 0M =  (XII.A.1_12)
 
The expressions of Mij can be found in [1].  
From [1] we know that the instantaneous Poynting vector, denoting the flow of energy, is given 
by 
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1
2

u DjFi ij t t
σ ϕ

+⎡ ⎤∂ +∂⎢ ⎥= − +⎢ ⎥∂ ∂⎢ ⎥⎣ ⎦

 

(XII.A.1_13)

 
in which the superscript ‘+’ means ‘complex conjugate’. Relation (XII.A.1_13), becomes, for an 
amplitude equal to unity,  
 

1 2
2iF c k P P B k k P k Bilkj k l j kij k ijk k j ij jω ξ ξ ⎫⎧ ⎛ ⎞⎛ ⎞ ⎛ ⎞+ + + + += + − +⎜ ⎟ ⎜ ⎟⎨ ⎬⎜ ⎟⎝ ⎠ ⎝ ⎠⎩ ⎝ ⎠ ⎭

ε +  
(XII.A.1_14)

 
We begin the discourse with the slowness surface of the quasi shear horizontally polarized 

(QSH) mode in Lithium Niobate. The slowness value is the magnitude of the wave vector, 
divided by the angular frequency. The linear material properties of this crystal, can be found in 
ref [1]. First, we only consider the case where piezoelectricity is neglected. The slowness surface 
is formed by the slowness vectors for each possible direction of propagation. Therefore, each spot 
on the surface corresponds to a direction of propagation (measured from the origin position) and 
a slowness value (the length between the considered spot and the origin). 

The different modes are celled after the sound polarization and are labeled as quasi 
longitudinal (QL), quasi shear horizontal (QSH) and quasi shear vertical (QSV). If it follows that 
the polarization is mainly directed along the propagation direction, the label QL is added. If the 
polarization is mainly shear and directed along the XY-plane, the label QSH is added. If the 
polarization is mainly shear and directed along the Z-axis, the label QSV is added. 

Then, in Fig. XII.A_2, we consider the situation where piezoelectricity is involved. 
Comparison of Fig. XII.A_2 and Fig. XII.A_1 shows that there is a difference between the 
slowness surfaces and also between the polarization vectors. A similar conclusion holds for the 
vectors of energy flow and for the other two modes, i.e. the QSV (quasi shear vertical polarized) 
and the QL (quasi longitudinal polarized) modes. 

In order to show the entire effect of stiffening, we therefore plot the difference between 
the considered values for the situation with piezoelectricity and the situation without 
piezoelectricity. The results are depicted in Figs XII.A_3-8 and show that stiffening effects 
depend on the direction and on the mode under consideration. Figs XII.A_3-5 show, by means of 
black arrows, the change of energy flow as a result of the presence of piezoelectricity, whereas 
Figs. XII.A_6-8 show the change of polarization due to piezoelectricity. Note that the 
polarization direction as well as the energy flow direction change under the influence of 
piezoelectricity. It is also important to put forward the fact that the arrows in the figures do not 
show the exact magnitudes of the changes they represent. They only show relative values per 
figure. Nevertheless, the direction is exact. 
 Furthermore, the effect on the slowness is far from negligible and is of the order of 1/10 
of the slowness values. Note that the stiffening effect on the crystal, obeys the same symmetry 
laws as the ones of the crystal itself. In other words, piezoelectric stiffening does not change the 
symmetry of a crystal. In the section XII.C on the other hand, it will be seen that the effect of 
stress can change the symmetry of a crystal. This has also been shown in Chapter XI, section 
XI.D, where it was revealed that isotropic plates can become anisotropic when loaded by stress. 
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Fig. XII.A_1: The slowness surface for the QSH mode in Lithium Niobate, neglecting piezoelectricity. The black 

arrows denote the polarization for each spot. 
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Fig. XII.A_2: The slowness surface for the QSH mode in Lithium Niobate, including piezoelectricity. The black 

arrows denote the polarization for each spot. 
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Fig. XII.A_3: The difference between the slowness surface for the QL mode in Lithium Niobate, including 

piezoelectricity, and neglecting piezoelectricity. The black arrows denote the difference of energy flow for each spot. 
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Fig. XII.A_4: The difference between the slowness surface for the QSH mode in Lithium Niobate, including 
piezoelectricity, and neglecting piezoelectricity. The black arrows denote the difference of energy flow for each spot. 
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Fig. XII.A_5: The difference between the slowness surface for the QSV mode in Lithium Niobate, including 

piezoelectricity, and neglecting piezoelectricity. The black arrows denote the difference of energy flow for each spot. 
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Fig. XII.A_6: The difference between the slowness surface for the QL mode in Lithium Niobate, including 

piezoelectricity, and neglecting piezoelectricity. The black arrows denote the difference in polarization vector for 
each spot. 
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Fig. XII.A_7: The difference between the slowness surface for the QSH mode in Lithium Niobate, including 
piezoelectricity, and neglecting piezoelectricity. The black arrows denote the difference in polarization vector for 

each spot. 
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Fig. XII.A_8: The difference between the slowness surface for the QSV mode in Lithium Niobate, including 

piezoelectricity, and neglecting piezoelectricity. The black arrows denote the difference in polarization vector for 
each spot. 

 
 
 
 

 
- 597 - 



CHAPTER XII: Sound in Piezoelectric Materials 
  

 REFERENCES 
[1] B. A. Auld, Acoustic fields and waves in solids, volume I, second edition, Krieger, Florida, 1989 
[2] Adnan H. Nayfeh, wave propagation in layered anisotropic media, north Holland, Elsevier, 1995 

 
- 598 - 



CHAPTER XII: Sound in Piezoelectric Materials 
  

 

XII.B.1 Inhomogeneous waves in 
piezoelectric crystals 

 
 Inhomogeneous waves are described as pure homogeneous plane waves, except that the 

wave vector is complex valued. This results in an exponential decay of the amplitude 
along the wave front. The last 30 years, a lot of studies have been reported on the 
properties of inhomogeneous waves. It is, for example, known that their velocity depends 
on the inhomogeneity, in isotropic as well as in anisotropic media. Nevertheless, the 
influence of piezoelectricity, which is very important for a lot of crystals, has always 
been neglected in the reported studies. The present paper reports a study of the 
propagation of inhomogeneous waves in the bulk of piezoelectric crystals. Special 
attention is drawn on the susceptibility of inhomogeneous waves to the effect of 
piezoelectricity. 

 
 INTRODUCTION 
 
From the very beginning, when inhomogeneous waves made their entry in acoustics, they have 
been either studied as side effects in scattering problems at interfaces between different media, or 
as independent physical entities, from a theoretical point of view as well as from an experimental 
point of view [1]. Most studies haven been undertaken for the case of isotropic media. Only a few 
studies have been reported of inhomogeneous waves in anisotropic media [2-11]. 
The present study extends the existing studies to the case where also piezoelectricity is involved. 
It is known that piezoelectricity results in a change (often called stiffening effect) of the elastic 
constants and this has effects on the propagation of homogeneous plane waves. More precisely, 
bulk homogeneous waves propagate at different velocities because of this stiffening. In the 
framework of the study of inhomogeneous waves, the question that needs to be resolved is the 
influence of the piezoelectric effect on inhomogeneous waves. Will this influence be different 
from the influence on homogeneous plane waves? It will be shown that inhomogeneous waves 
are more susceptible to the influence of piezoelectricity than homogeneous plane waves.  
 
 THEORETICAL DEVELOPMENT 
 
For piezoelectric materials, the stress tensor [12-13] is given by 
 

c e Eij ijkl kl kij kσ ξ= −  (XII.B.1_1)

 
whereas the electrical displacement is given by 
 

D Ek ki i kij ie jε ξ= +  (XII.B.1_2)

 

 
- 599 - 



CHAPTER XII: Sound in Piezoelectric Materials 
  

where  is the stiffness tensor, ijklc kijξ  is the piezoelectric stress tensor, ijε  is the dielectrical 
permittivity tensor,  is the electric field vector,  is the dielectric displacement vector and  
is the strain tensor.  

E D kle

For ultrasonic waves [12], the accompanying electric field is quasistatic and can be described by  
 

ϕ= −∇E  (XII.B.1_3)
 
with ϕ  a scalar potential.  
The acoustic wave equation for visco-elastic materials is given by  
 

2

2
uij i

r tj

σ
ρ

∂ ∂
=

∂ ∂
 

(XII.B.1_4)

whereas the electromagnetic field equations, in the absence of electric currents and electric loads 
are given by 
 

0 t
µ ∂

∇× =
∂
HE  

(XII.B.1_5)

 
and 
 

t
∂

∇× =
∂
DH  

(XII.B.1_6)

 
Taking into account (XII.B.1_3), relations (XII.B.1_5-6) can be replaced by 
 

2
02

u j
ki kijr rt i j

ϕε ξ
⎛ ⎞∂∂ ∂⎜ ⎟∇ − + =
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i  
(XII.B.1_7)

 
If we consider plane waves, then 
 

expA i k x k y k zx y z tω⎛ ⎞= + +⎜ ⎟
⎝ ⎠

u P −  
(XII.B.1_8)

 
and 
 

expB i k x k y k z tx y zϕ ω⎛ ⎞= + +⎜ ⎟
⎝ ⎠

−  
(XII.B.1_9)

 
Then, relation (XII.B.1_7) immediately involves 
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k k APr s rsq qB
k kmn m n

ξ

ε
=  

(XII.B.1_10)

 
Furthermore, combining relations (XII.B.1_4) and (XII.B.1_7) delivers [12] 
 

0M Pip p =  (XII.B.1_11)

 
Equation (XII.B.1_11) is an extension of the Christoffel equation. Only nontrivial solutions 

 are possible whenever 0≠P
 

det 0M =  (XII.B.1_12)
 
The expressions of Mij can be found in [12]. This 6th degree polynomial is the so called stiffened 
Christoffel equation. 
From [12] we know that the instantaneous Poynting vector is given by 
 

1
2

u DjFi ij t t
σ ϕ

+⎡ ⎤∂ +∂⎢ ⎥= − +⎢ ⎥∂ ∂⎢ ⎥⎣ ⎦

 

(XII.B.1_13)

 
in which the superscript ‘+’ means ‘complex conjugate’. Without presuming the wave vector to 
be real or complex, it can be shown straightforwardly that (XII.B.1_13), becomes, for an 
amplitude equal to unity,  
 

1 2
2iF c k P P B k k P k Bilkj k l j kij k ijk k j ij jω ξ ξ ⎫⎧ ⎛ ⎞⎛ ⎞ ⎛ ⎞+ + + + += + − +⎜ ⎟ ⎜ ⎟⎨ ⎬⎜ ⎟⎝ ⎠ ⎝ ⎠⎩ ⎝ ⎠ ⎭

ε +

to hich

 
(XII.B.1_14)

 
The average power then corresponds to the real part of Fi, whereas the peak reactive power 
corresponds to the imaginary part of Fi [12].  
 
 INHOMOGENEOUS WAVES 
 
Whereas the behavior of inhomogeneous waves in anisotropic media is well described [2-11], the 
effect of piezoelectricity has not been considered so far. For piezoelectric materials, only 
homogeneous plane waves have, up until now, been studied [12]. A complete historical review of 
the theory of inhomogeneous waves, can be found in [1]. An inhomogeneous wave is defined as a 
plane wave, having a complex wave vector k. The notion of inhomogeneous waves inside the 
bulk of a piezoelectric crystal, is introduced through the concept of a complex direction. A real 
direction is then defined as a real vec r 1d , for w 1 1 1 ⋅ =d . This is generalized to a 
complex d 1 2i= +d d , fo 1+

d
irection d r which  ⋅ =d d . Then, it is possible to determine the slowness 

value l from the following definition, given the angular frequency ω: 
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( )1 2l iω= +k d d  (XII.B.1_15)

 
For every possible complex direction, it is possible to determine the slowness l. The number of 
combinations of  and  is reduced by introducing a complex direction that, for simplicity, 
contains no imaginary part along the z-axis.  

1d 2d

 

( ) ( )2 2 2
1, 1,
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(XII.B.1_16)

 
The parameter b (henceforth called the inhomogeneity parameter) is then a measure for the 
fraction of imaginariness of the complex direction. 
When the direction (XII.B.1_16) is entered in the Christoffel equation (XII.B.1_12), the complex 
scalar  can be resolved. This value then determines the entire complex wave vector k as 1l l il= +
 

( ) ( ) /1, 2, 1, 2, 1, 2,k ik k ik k ikx x x y y y z z z
⎛ ⎞⎛ ⎞= + + + + +⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

k e e Ne  
(XII.B.1_17)

 
with 
 

211, 1 1, 2 1,k l d l b dx x y= + −  
(XII.B.1_18)

 
212, 1 1, 2 1,k l b d l dx y x= − − +  

(XII.B.1_19)

 

1, 1 1, 2 1,k l d l bdy y= − x

y

 (XII.B.1_20)

 

2, 1 1, 2 1,k l bd l dy x= +  (XII.B.1_21)

 

1, 1 1,k l dz z=  (XII.B.1_22)

 

2, 2 1,k l dz z=  (XII.B.1_23)

 
and 
 

( )2 2 2
1, 1,1 2 /x zN b d d ω= + +  (XII.B.1_24)
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 NUMERICAL RESULTS FOR LITHIUM NIOBATE 
 
The physical parameters of Lithium Niobate are given in ref [12] and are summarized as: 
The density is 4700 kgm-3 . 
The elastic constants  are 10 210 /N m⎡ ⎤×⎣ ⎦
 

24.5 0.9 6.033 14 44
20.3 5.3 7.511 12 13

C C C

C C C

= =

= =

=

=
 

(XII.B.1_25)

 
with 
 

0;15 16 25 26 35 36 45 46 34
; ; ;56 14 24 14 55 44
; ; / 2 / 223 13 22 11 66 12 11

C C C C C C C C C

C C C C C C

C C C C C C C

= = = = = = = = =

= = − =

= = = − +

 

(XII.B.1_26)

 
The piezoelectric constants  are 2/C m⎡ ⎤⎣ ⎦
 

0.2 2.5 3.7 1.331 22 15 33ξ ξ ξ ξ= = = =  (XII.B.1_27)

 
with 
 

34 23 25 26 35
0;36 11 12 14 13

; ; ;32 31 16 22 21 22 24 15

ξ ξ ξ ξ ξ

ξ ξ ξ ξ ξ

ξ ξ ξ ξ ξ ξ ξ ξ

= = = = =

= = = = =

= = − = − =

 

(XII.B.1_28)

 
The dielectric constants  are 1210 /F m−⎡ ⎤⎣ ⎦
 

389 2571 3ε ε= =  (XII.B.1_29)

 
with 
 

02 1 4 5 6ε ε ε ε ε= = = =

)

 (XII.B.1_30)

 
Classically, taking into account Einstein’s double suffix notation convention, the (real) wave 
vector k is replaced by ( 1,g gl dω=k e

)
 and entered into (XII.B.1_19). Then, for each (real) 

direction , the eigenvalue l can be determined. This l is then the real slowness 
value. At the same time, the polarization vector P is determined as the eigenvector.  

( 1, 1, 1,, ,x y zd d d
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For the case of inhomogeneous waves, for each chosen real direction d1, and a parameter b, the 
value l is determined from (XII.B.1_15) and the Christoffel equation (XII.B.1_12). We have 
developed a program that is able to draw 3D slowness surfaces and, when necessary, adds arrows 
that represent the polarization or the energy flow (the real part of the Poynting vector). The 
modes are then named after the sound polarization and are labeled as quasi longitudinal (QL), 
quasi shear horizontal (QSH) and quasi shear vertical (QSV). If it follows that the polarization is 
mainly directed along the propagation direction, the label QL is added. If the polarization is 
mainly shear and directed along the XY-plane, the label QSH is added. If the polarization is 
mainly shear and directed along the Z-axis, the label QSV is added. 
 
In Fig. XII.B.1_1, the slowness surface is depicted for the QSV-mode, in the case of 
homogeneous plane waves and neglecting piezoelectricity. In addition, arrows are added that 
correspond to the energy flux direction (the real part of the Poynting vector). If piezoelectricity is 
considered, a stiffening effect occurs whence the slowness changes, depending on the direction.  
This is seen in Fig. XII.B.1_2, where the slowness curve for the QSV-mode is considered, in the 
presence of piezoelectricity. Note the difference between Fig. XII.B.1_2 and Fig. XII.B.1_1. As a 
matter of fact, it is possible to plot the difference between Fig. XII.B.1_2 and Fig. XII.B.1_1. 
 

This difference, corresponding to the difference between the case of piezoelectricity and 
the case of non-piezoelectricity, is shown in Fig. XII.B.1_3. The arrows correspond to the 
difference in real Poynting vectors (rescaled for visibility). Note that the crystal’s symmetry is 
preserved in Fig. XII.B.1_3 and that some directions do not involve any stiffening effect, whereas 
others involve stiffening. The fact that the crystal’s symmetry is preserved is worth noting. It 
means that the introduction of inhomogeneous waves by means of a complex direction, does not 
result in mathematical artifacts, giving results that do not reflect the physics of the crystal system 
under consideration.  

 
A similar procedure, for the same QSV-mode, is followed for Figs XII.B.1_4-6, except 

that, now, each time, when drawing the arrows, the polarization vectors are considered and not 
the real Poynting vectors. Note that the piezoelectric effect, besides influencing the energy 
propagation direction, also has a strong influence on the polarization vectors. In what follows, in 
order to limit the number of presented figures, we only focus on the differences between the case 
with piezoelectricity and the case without piezoelectricity. 
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Fig. XII.B.1_1: The slowness surface for the QSV-mode, in the case of homogeneous plane waves, neglecting 
piezoelectricity. The associated arrows denote the energy propagation directions for each corresponding spot on 

the slowness surface. 
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Fig. XII.B.1_2: The slowness surface for the QSV-mode, in the case of homogeneous plane waves, including 
piezoelectricity. The associated arrows denote the energy propagation directions for each corresponding spot on 

the slowness surface. 
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Fig. XII.B.1_3: The difference between the case when there is piezoelectricity involved and when the piezoelectric 
effect is neglected, for the QSV-mode. This figure physically corresponds to the difference between Fig. XII.B.1_2 
and Fig. XII.B.1_1, i.e. Fig. XII.B.1_2 minus Fig. XII.B.1_1. The corresponding arrows denote the difference in 

energy propagation direction. 
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Fig. XII.B.1_4: This figure corresponds to Fig. XII.B.1_1, except that the arrows here denote the polarization. 
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Fig. XII.B.1_5: This figure corresponds to Fig. XII.B.1_2, except that the arrows here denote the polarization. 
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Fig. XII.B.1_6: The difference between the case when there is piezoelectricity involved and when the piezoelectric 
effect is neglected, for the QSV-mode. This figure physically corresponds to the difference between Fig. XII.B.1_5 

and Fig. XII.B.1_4. The corresponding arrows denote the difference in polarization. In fact, this figure 
corresponds to Fig. XII.B.1_3, except that the arrows here denote the polarization. 

 
So far, only homogeneous plane waves have been considered, involving a parameter of 

imaginariness . Now we consider a parameter 0b = 0b ≠ , resulting in inhomogeneous waves. 
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Fig. XII.B.1_7 shows the difference between the slowness surface for the QSV-mode, in the case 
of . The black arrows denote the difference between (the real part of) the Poynting 
vector for each considered direction. 

60 /140b =

 

Fig. XII.B.1_7: The difference between the case when there is piezoelectricity involved and when the piezoelectric 
effect is neglected, for the QSV-mode, in the case on inhomogeneous waves. This figure corresponds to Fig. 

XII.B.1_3, except that inhomogeneous plane waves are considered here, characterized by a parameter of 
imaginariness b=60/140. The associated arrows denote the difference of the Poynting vector. 

 
Comparison between Fig. XII.B.1_7 and Fig. XII.B.1_3, shows that inhomogeneous 

waves are more susceptible for piezoelectricity than homogeneous plane waves. The reason is not 
clear, but it could be a result of the fact that for a considered mode, the presence of an 
inhomogeneity in the wave front, does not only influence the sound velocity, but also the 
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polarization (see previous section XII.A), whence the considered mode slightly changes its nature 
and becomes better influenced by the effect of piezoelectricity. 
Fig. XII.B.1_8 corresponds to Fig. XII.B.1_7, except that, here, the difference of polarization is 
denoted by the black arrows. 

If we take a look at the effect of piezoelectricity on the other modes, i.e. the QL-mode 
(Figs XII.B.1_9-10) and the QSH-mode (Figs. XII.B.1_11-12), then, it is noticed that also for 
these modes, the presence of inhomogeneity makes them more susceptible to the piezoelectric 
effect. Again, the reason is not certain, but it can be due to the change of polarization due to 
inhomogeneity. 
 

Fig. XII.B.1_8: The difference between the case when there is piezoelectricity involved and when the piezoelectric 
effect is neglected, in the situation of inhomogeneous waves. The corresponding arrows denote the difference in 

polarization. As a matter of fact, this figure corresponds to Fig. XII.B.1_6, except that inhomogeneous plane waves 
are considered here, characterized by a parameter of imaginariness b=60/140. 
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Fig. XII.B.1_9: This figure corresponds to Fig. XII.B.1_6, i.e. for the case of homogeneous plane waves, except 
that the QL-mode is considered here. 
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Fig. XII.B.1_10: This figure corresponds to Fig. XII.B.1_9, except that inhomogeneous plane waves are considered 
here, characterized by a parameter of imaginariness b=60/140. 
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Fig. XII.B.1_11: This figure corresponds to Fig. XII.B.1_6, i.e. for the case of homogeneous plane waves, except 
that the QSH-mode is considered here. 
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Fig. XII.B.1_12: This figure corresponds to Fig. XII.B.1_11, except that inhomogeneous plane waves are 
considered here, characterized by a parameter of imaginariness b=60/140. 

 
 CONCLUSIONS 

 
The study is valid for any piezoelectric crystal, though it has only been outlined for 
Lithium Niobate. It is shown that the effect of piezoelectricity is better felt by 
inhomogeneous plane waves than by homogeneous plane waves. This means that, even 
though piezoelectric effects are sometimes neglected when studying the interaction of 
sound with crystals, it is better not to neglect the effect if inhomogeneous waves are 
generated within the crystal or if the interaction of bounded inhomogeneous waves [14], 
with such crystals is considered. 
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XII.B.2 Enhanced anisotropy in Paratellurite 
for Inhomogeneous Waves and its 
Possible Importance in the Future 
Development of Acousto-Optic 
Devices 

 
 The anisotropic feature of most crystals, involves a direction dependent wave velocity for 

each of the possible modes. Paratellurite (Tellurium dioxide) is extraordinary because, 
for one of the propagation modes, i.e. the quasi shear horizontal (QSH) mode, the 
anisotropy is exceptional. This results, on the one hand in a very strong directional 
dependent sound velocity and on the other hand, in a low wave velocity in certain 
directions, resulting is a high figure of merit for the acousto-optical interaction. In the 
case of inhomogeneous waves, the slowness surfaces change their shape and magnitude, 
for all crystals. However, for paratellurite, this effect is again extraordinary. As soon as 
a relatively small inhomogeneity is considered, the sound velocity for the QSH mode 
becomes really exceptionally anisotropic, resulting in a slowness surface that is almost 
spherical, covered by pins. The velocity corresponding to those ‘pins’, is much lower 
than in the case of homogeneous plane waves, which is very promising for the future 
development of acousto-optic cells involving an even higher figure of merit. 
This work is partly performed at the Department of Physics, M. V. Lomonosov Moscow 
State University, 119992 Moscow, Russia, in collaboration with Nataliya V. Polikarpova 
and Vitaly B. Voloshinov 

 
 INTRODUCTION 
 

Because it is my intention to study the field of Acousto-Optics, apart from Schlieren 
photography, better in the future, a first step in this direction was taken by studying paratellurite. 
I have been introduced in the field of Acousto-Optics (apart from Schlieren photography) by 
Oswald Leroy, Mack A. Breazeale, Jacques Sapriel, Nataliya V. Polikarpova, Vitaly B. 
Voloshinov, Vladimir Kotov, Vladimir N. Molchanov, Sergey N. Antonov, Antoni Sliwinski, V. 
Petrov, J. Yamada, Raymond J. Besson, Ludmilla Kulakova, Gennady N. Shkerdin and lately, an 
extra and well appreciated stimulus also came from Robert Mertens. Also the fruitful discussions 
with other researchers and with fellow students during the “VII International Conference for 
Young Researchers on Wave Electronics and its Applications in Information and 
Telecommunication Systems, St Petersburg, Russia”, organized by Sergei V. Kulakov and during 
the ”9th School of Acousto-Optics and Applications , Gdansk, Poland”, organized by Antoni 
Sliwinski, form a real impetus to study acousto-optics better in the future. The information about 
the Acousto-Optic background of paratellurite, as is outlined further on in this introduction, was 
partly obtained, after fruitful discussions, from Vitaly B. Voloshinov and Nataliya V. Polikarpova 
and also from the book of Xu and Stroud [1]. 
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The subject of this section XII.B.2 is related to Acoustics and Acousto-Optics [1-7]. 
Acousto-Optics is the field of Physical Acoustics that investigates the phenomenon of the 
interaction of optic waves with diffraction gratings induced by acoustic waves in crystals. The 
investigations in Acousto-Optics, to a great extent, are stimulated by the wide applications of this 
physical phenomenon in science and technology for the control of parameters of optical beams. 
Dozens of modifications of acousto-optic modulators, deflectors, filters and optical information 
processing devices have been used in modern science and technology to regulate the amplitude, 
the frequency, the phase, the direction of polarization and other parameters of coherent and non-
coherent beams [8-12]. 

Progress in Acousto-Optics during recent years was stimulated by the following reason. 
New crystalline materials have been grown by specialists in Crystal Technology, especially for 
the purposes of Acousto-Optics. These materials are characterized by a unique combination of 
physical properties, e.g. the optical, acoustic and acousto-optic properties. The new materials 
grown during the recent years are the crystals based on compounds of tellurium and mercury, e.g. 
paratellurite (TeO2), calomel (Hg2Cl2), mercury bromide (Hg2Br2), mercury iodide (Hg2I2), etc. 
[8-13]. The single crystal of paratellurite (tellurium dioxide) is one of the most efficient materials 
known so far in Acousto-Optics. That is why the major amount (more than 90%!) of modern 
acousto-optic instruments used in science and technology utilize this crystalline material [12].  

In acousto-optics, sound forms a diffraction grating on which light diffracts. The result of 
this interaction depends on the so called ‘regime’, which is determined by the parameter Q: 
 

2
2 cos

LQ πλ

θ
=
Λ

 
(XII.B.2_1)

 
where / cosL θ  is the length of interaction (the length of the light beam in the acousto-optic 
interaction area), λ is the optical wavelength within the medium, Λ is the acoustic wavelength 
and θ is the angle of light beam incidence (measured with respect to the acoustic wavefront). 
Basically, there are three regimes [14], i.e. the Raman-Nath regime ( ), the Bragg regime 
( 4

1Q�
Q π≥ ) and an intermediate regime ( 1Q ≈ ). In the Raman-Nath regime, several diffraction 

orders are stimulated, whereas in the Bragg regime, if light is incident at the Bragg angle, more 
than 85% of the light intensity is diffracted into the first diffraction order. Most acousto-optic 
devices operate in the Bragg regime and apply the acousto-optic effect for light deflection. The 
diffraction efficiency η in acousto-optics is the ratio of the intensity of the first order diffracted 
light and the zero order (un)diffracted light. If we consider the wavelength of light in free space, 
λ0, the angle of light beam incidence (measured from the normal to the sound beam), θ, the length 
of interaction (the length of the light beam in the acousto-optic interaction area), L, the width of 
interaction (the length of the ultrasonic beam in the acousto-optic interaction area), H, the 
average energy flow of acoustic power, Pa , then, in the Bragg regime of diffraction, this 
diffraction efficiency is given by [1, 15-17] 
 

1/ 2
2 2sin

cos 20

M L
PaH

πη
λ θ

⎛ ⎞⎛ ⎞⎜ ⎟= ⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

 
(XII.B.2_2)

 
with 
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6 2

2 3
n pM

Vρ
=  

(XII.B.2_3)

 
for isotropic diffraction and 
 

3 3 2

2 3
n n pi dM

Vρ
=  

(XII.B.2_4)

 
for birefringent diffraction. The refractive index along the direction of incidence is given by ni, 
whereas the one along the diffraction direction is nd. The quantity 2M  is called the acousto-optic 
figure of merit and is completely determined by the properties of the considered media. The 
quantity p is the effective photoelastic coefficient, and depends on the elasto-optic properties of 
the considered media. 

The basic advantage, characteristic feature and peculiarity of tellurium dioxide consist of 
the strong anisotropy of its elastic properties. The anisotropy contributes to the extremely high 
acousto-optic figure of merit of the material  that is about 1000 times 
higher than in the reference crystal of quartz [8-12]. The high figure of merit in paratellurite 
originates from the extremely low magnitude of the slow shear acoustic wave propagating along 
the [110] direction in the crystal (V = 616 m/s) that is only 2 times higher than the velocity of 
sound in air. On the other hand, the waves sent along the axes X ([100]) and Y ([010]) of the 
material are characterized by the velocity value V = 3050 m/s  that is 5 times higher [11]. It 
should be noted that, in crystalline materials with a moderate elastic anisotropy, such as quartz, 
the ratio of the maximal and minimal phase velocity values is less than 2.5 [11, 18].  

gM /s 101200 318
2

−⋅=

The strong dependence of the acoustic phase velocity on the direction of propagation 
automatically results in large walkoff angles ψ  between the phase (V) and the group (Vg) 
velocities of ultrasound [11, 18, 19]. It was shown that the walkoff angle ψ  between the acoustic 
wave vector and the Pointing vector in the crystal may exceed 070>ψ  [18, 19]. This 
characteristic feature of the waves is unique compared to the majority of other crystalline 
materials applied in Acoustics and Acousto-Optics. This peculiarity as well as the low phase 
velocity may give rise to many unusual and even new effects that can be observed during the 
propagation and the reflection of homogeneous bulk elastic waves in the materials [18]. It may 
also be expected that the elastic anisotropy influences not only the homogeneous bulk elastic 
wave propagation in paratellurite but also the propagation of inhomogeneous waves in the 
material. Therefore, one of the goals of the present research consists of the analysis of the 
propagation of inhomogeneous elastic waves in this extraordinary anisotropic material. Note that 
inhomogeneous waves [20] are not only important from a theoretical point of view, but they can 
also be generated experimentally in a bounded form [21]. 
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 THEORETICAL BACKGROUND 
 
 Field parameters 
 

It is known [22-23] that for piezoelectric materials, the stress tensor is given by 
 

c e Eij ijkl kl kij kσ ξ= −  (XII.B.2_5)

 
whereas the electrical displacement is given by 
 

D Ek ki i kij ie jε ξ= +  (XII.B.2_6)

 
with 
 

,c cijkl im jn kp lq mnpqβ β β β=  (XII.B.2_7)

 
'

kij kp iq jr pqrξ β β β ξ=  (XII.B.2_8)

 
and 
 

,
ki kp iq pqε β β ε=  (XII.B.2_9)

 

ijβ  are the entries of the rotation matrix for a rotation from the intrinsic lattice coordinate system 

to the laboratory coordinate system whereas c  is the stiffness tensor, ijkl kijξ  is the piezoelectric 

stress tensor, ijε  is the dielectrical permittivity tensor, E  is the electric field vector,  is the 

dielectric displacement vector and e  is the strain tensor. The quantities c ,

D

kl ijkl kijξ  and ijε  are 

valid in the laboratory coordinate system, whereas , ,cijkl
'
kijξ  and ,

ijε  are valid in the intrinsic 

lattice coordinate system.  

From [22] we know that any field can be described in a rotational field  with  

and an irrotational field  with . For ultrasonic waves, the accompanying electric 

field is quasistatic and can be described by 

E rE 0r∇× ≠E
irrE 0irr∇× =E

irr=E E , whence 
 

ϕ= −∇E  (XII.B.2_10)
 
with ϕ  a scalar potential.  
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 the Christoffel equation 
 

The acoustic wave equation for visco-elastic materials is given by  
 

2

2
uij i

r tj

σ
ρ

∂ ∂
=

∂ ∂
 

(XII.B.2_11)

 
whilst the electromagnetic field equations in the absence of electric currents and electric loads are 
given by 
 

0 t
µ ∂

∇× =
∂
HE  

(XII.B.2_12)

 
and 
 

t
∂

∇× =
∂
DH  

(XII.B.2_13)

 
Taking into account (XII.B.2_10), relations (XII.B.2_12-13) can be replaced by 
 

2
02

u j
ki kijr rt i j

ϕε ξ
⎛ ⎞∂∂ ∂⎜ ⎟∇ − + =
⎜ ⎟∂ ∂⎜ ⎟∂ ⎝ ⎠

i  
(XII.B.2_14)

 
If we consider plane waves, then 
 

( )expA i k x k y k zx x z tω= + +u P −  (XII.B.2_15)

 
and 
 

expB i k x k y k z tx y zϕ ω⎛ ⎞= + +⎜ ⎟
⎝ ⎠

−  
(XII.B.2_16)

 
Then, relation (XII.B.2_14) immediately involves 
 

k k APr s rsq qB
k kmn m n

ξ

ε
=  

(XII.B.2_17)

 
Furthermore, combining relations (XII.B.2_11) and (XII.B.2_14) delivers [22] 
 

0M Pip p =  (XII.B.2_18)
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Equation (XII.B.2_18) is an extension of the Christoffel equation. Only nontrivial solutions 

 are possible whenever 0≠P
 

det 0M =  (XII.B.2_19)
 
The expressions of Mij can be found in [22]. This 6th degree polynomial is the so called stiffened 
Christoffel equation. 
 
 energy flux 
 

From [22] we know that the instantaneous Poynting vector is given by 
 

1
2

u DjFi ij t t
σ ϕ

+⎡ ⎤∂ +∂⎢ ⎥= − +⎢ ⎥∂ ∂⎢ ⎥⎣ ⎦

 

(XII.B.2_20)

 
in which the superscript ‘+’ means ‘complex conjugate’. Without presuming the wave vector to 
be real or complex, it can be shown straightforwardly that (XII.B.2_20), becomes, for an 
amplitude equal to unity,  
 

1 2
2iF c k P P B k k P k Bilkj k l j kij k ijk k j ij jω ξ ξ ⎫⎧ ⎛ ⎞⎛ ⎞ ⎛ ⎞+ + + + += + − +⎜ ⎟ ⎜ ⎟⎨ ⎬⎜ ⎟⎝ ⎠ ⎝ ⎠⎩ ⎝ ⎠ ⎭

ε +

⎞
⎟e

 
(XII.B.2_21)

 
The average power then corresponds to the real part of Fi, whereas the peak reactive power 
corresponds to the imaginary part of Fi [22].  
 
 OVERVIEW OF CLASSICAL SLOWNESS SURFACES IN PARATELLURITE 
 

Classically, taking into account Einstein’s double suffix notation convention, the (real) 

wave vector k is replaced by  and entered into (XII.B.2_19). 1,l d g gω⎛= ⎜
⎝ ⎠

k ω  is the angular 

frequency. Then, for each (real) direction , ,1, 1, 1,d d dx y z
⎛
⎜
⎝ ⎠

⎞
⎟ , the eigenvalue l can be determined. 

This l is then the slowness value. At the same time, the polarization vector P is determined as the 
eigenvector. We have developed a program that is able to draw 3D slowness surfaces and, when 
necessary, adds arrows that represent the polarization or the energy flow. For paratellurite, the 
slowness surfaces form a complicated 3D structure, consisting of 3 layers that intersect one 
another. This means that, even though the combined set of three layers is unique, whenever the 3 
surfaces are isolated from each other, the presence of an intersection makes that the solution is 
not unique. In what follows, the three slowness surfaces are isolated from each other through a 
procedure that classifies the slowness values for each direction, according to their magnitude.  
The first mode then always has the largest slowness, the third mode the smallest, whereas the 
second mode has the intermediate value. The modes are then labeled according to the sound 
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polarization and are labeled as quasi longitudinal (QL), quasi shear horizontal (QSH) and quasi 
shear vertical (QSV). If it follows that the polarization is mainly directed along the propagation 
direction, the label QL is added. If the polarization is mainly shear and directed along the XY-
plane, the label QSH is added. If the polarization is mainly shear and directed along the Z-axis, 
the label QSV is added. The exact physical parameters of paratellurite, that are used in the 
presented results, can be found in ref [22]. 

 
In Fig. XII.B.2_1, the slowness surface for the QL mode is depicted, together with black 

arrows that denote the polarization direction. Similar surfaces for the QSV and the QSH mode are 
depicted in Figs XII.B.2_2 and XII.B.2_3. As a demonstration, in Fig. XII.B.2_4, also arrows are 
added that correspond to the energy flow direction for the QSV mode. Note that the energy flow 
is directed almost perfectly perpendicular to the slowness surface. If piezoelectricity would have 
been neglected, the arrows would have been really perfectly normal to the slowness surface. 
 

 
Fig. XII.B.2_1: Slowness surface of the QL mode in paratellurite for homogeneous plane waves. The black 

arrows denote the polarization vector at each point on the slowness surface. 
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Fig. XII.B.2_2: Slowness surface of the QSV mode in paratellurite for homogeneous plane waves. The black 
arrows denote the polarization vector at each point on the slowness surface. 
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Fig. XII.B.2_3: Slowness surface of the QSH mode in paratellurite for homogeneous plane waves. The black 
arrows denote the polarization vector at each point on the slowness surface. Strong anisotropy is visible, resulting 

in 4 distinguishable lobes. This is a well known effect for this crystal. 
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Fig. XII.B.2_4: Slowness surface of the QSV mode in paratellurite for homogeneous plane waves. The black 
arrows denote the Energy flow at each point on the slowness surface. Note that the energy flow is almost perfectly 

directed perpendicular to the slowness surface. 
 
 INHOMOGENEOUS WAVES IN PARATELLURITE 
 

The behavior of homogeneous plane waves in paratellurite is well described in many 
references (e.g. ref [1]). Nevertheless, it is also known that inhomogeneous waves can exist in 
anisotropic media [24-33]. A complete historical overview of the theory of inhomogeneous 
waves, can be found in [20]. An inhomogeneous wave is defined as a plane wave having a 
complex wave vector k. This results in an exponentially decaying amplitude along the wave front 
and in a phase velocity that differs from a pure plane wave. The notion of inhomogeneous waves, 
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inside the bulk of a piezoelectric crystal, is introduced through the concept of a complex 
direction. A real direction is then defined as a real vector , for which . This is 
generalized to a complex direction 

1d 1 1 1⋅ =d d

1 i 2= +d d d , for which 1+⋅ =d d . Then, given the angular 
frequency ω, it is possible to determine the value l from the following definition of the complex 
wave vector: 
 

( )1 2 1 2i l iω= + = +k k k d d  (XII.B.2_22)

 
For every possible complex direction, it is possible to determine l. The number of 

combinations of  and  is reduced by introducing a complex direction that, for simplicity, 
contains no imaginary part along the z-axis.  

1d 2d

 

( ) ( )2 2 2
1, 1,

1 2

21 /1, 1, 1, 1, 1, x z

i

d ib d d ibd d b d dx y x y x y z z

+

⎧ ⎫⎛ ⎞ ⎛ ⎞= − − + + + + +⎜ ⎟⎨ ⎬⎜ ⎟ ⎝ ⎠⎝ ⎠⎩ ⎭

d d

e e e 1 2

2

 

(XII.B.2_23)

 
The parameter b (henceforth called the inhomogeneity parameter) is then a measure for the 
fraction of imaginariness of the complex direction. 
When the direction (XII.B.2_23) is entered in the Christoffel’s equation (XII.B.2_19), the 
complex scalar  can be resolved. This value then determines the entire complex wave 
vector k as 

1l l il= +

 

( ) ( ) /1, 2, 1, 2, 1, 2,k ik k ik k ikx x x y y y z z z
⎛ ⎞⎛ ⎞= + + + + +⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

k e e Ne  
(XII.B.2_24)

 
with 
 

2/ 11, 1 1, 2 1,k l d l b dx x yω = + −  
(XII.B.2_25)

 
2/ 12, 1 1, 2 1,k l b d l dx y xω = − − +  

(XII.B.2_26)

 
/1, 1 1, 2 1,k l d l bdy y xω = −  (XII.B.2_27)

 
/2, 1 1, 2 1,k l bd l dy x yω = +  (XII.B.2_28)

 
/1, 1 1,k l dz zω =  (XII.B.2_29)
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/2, 2 1,k lz zdω =  (XII.B.2_30)

 
and 
 

( )2 2 2
1, 1,1 2 x zN b d d= + +  (XII.B.2_31)

 
From (XII.B.2_23-31) it is found that b influences directly the real and imaginary part of the 
wave vector. Furthermore, indirectly, i.e. numerically, the value b also influences the value l, 
whence  corresponds to a real value for l and 0b = 0b ≠  corresponds to a complex value for l. It 
is indeed found in (XII.B.2_23-31), that b and l, form k2.  
Therefore, the inhomogeneity parameter b generates the inhomogeneous feature of sound and 
influences the sound velocity considerably. This will be shown for the different modes, 
respectively the QL-mode, the QSV-mode and the QSH-mode, in paratellurite. A similar effect 
occurs in other crystals. However, it will be shown that in paratellurite, in addition, something 
extraordinary happens to the slowness surface of the QSH mode. 

In what follows, the slowness surfaces correspond, for each direction to the magnitude of 
the real part of the slowness vector /ω=l k . 
 
 Inhomogeneous QL modes 
 

The situation where the inhomogeneity parameter b=0, has already been given in Fig. 
XII.B.2_1. Fig. XII.B.2_5 and Fig. XII.B.2_6 show the situation when b is respectively 24/140 
and 84/140. It is seen that the slowness surface changes significantly and that this change 
depends on the direction. Nevertheless, the values of the radius of the slowness surface, remains 
of the same order of magnitude and it is therefore mainly the shape of the surface that changes. 
This means that, for this mode, the use of inhomogeneous waves results in different 
characteristics, though spectacular changes are not observed. For demonstration purposes, in Fig. 
XII.B.2_6, the black arrows denote the (real part of the) polarization vectors. 
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Fig. XII.B.2_5: Slowness surface of the QL mode in paratellurite for an inhomogeneity parameter b=24/140. The 
surface is a little bit less smooth that n in Fig. XII.B.2_1. 
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Fig. XII.B.2_6: Slowness surface of the QL mode in paratellurite for an inhomogeneity parameter b=84/140. The 
black arrows denote the polarization vector at each point on the slowness surface. A significant deformation is 

visible compared to Figs. XII.B.2_1 and XII.B.2_5. 
 
 
 
 Inhomogeneous QSV modes 
 

The situation where the inhomogeneity parameter b=0, has already been given in Fig. 
XII.B.2_2. Figs XII.B.2_7 and XII.B.2_8 show the situation when b is respectively 24/140 and 
84/140. It is again seen that the slowness surface changes significantly and that the change 
depends on the direction. Besides the change of shape, the magnitude is also changed 
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considerably, whence the use of inhomogeneous waves, for this mode, will differ noticeably from 
the case of homogeneous plane waves. For demonstration purposes, in Fig. XII.B.2_8, the black 
arrows denote the (real part of the) polarization vectors. 
 

 
Fig. XII.B.2_7: Slowness surface of the QSV mode in paratellurite for an inhomogeneity parameter b=24/140. 

The surface is a little bit less smooth that n in Fig. XII.B.2_2. 
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Fig. XII.B.2_8: Slowness surface of the QSV mode in paratellurite for an inhomogeneity parameter b=84/140. 
The black arrows denote the polarization vector at each point on the slowness surface. A significant deformation is 

visible compared to Figs. XII.B.2_2 and XII.B.2_7. 
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 Inhomogeneous QSH modes 
 

Because we have noticed that something spectacularly happens to the QSH mode, when 
the inhomogeneity parameter b is increased, we first present the result for a small value of b, i.e. 
b=12/140, in Fig. XII.B.2_9. Comparison of Fig. XII.B.2_9 with Fig. XII.B.2_3 shows that the 
‘lobes’ in this slowness surface, are more outspoken in Fig. XII.B.2_9 than in Fig. XII.B.2_3. 
This means that the anisotropy (or the dependence of the slowness on the direction) has 
increased. Further growth of the inhomogeneity parameter b to b=24/140, see Fig. XII.B.2_10, 
shows that a spectacular deformation of the lobes occurs, reflecting a spectacular increase of the 
anisotropy. The case of b=84/140 is given in Fig. XII.B.2_11, where it is seen that the slowness 
curve has become almost like a sphere, covered by pins. 

This means that the slowness is almost isotropic for most directions, and becomes 
extraordinary large (corresponding to an extraordinary low propagation velocity), for certain 
directions. For demonstration purposes, the black arrows denote the polarization vectors. This 
effect of extraordinary anisotropy occurs in any crystal, but only for very large values of b. The 
fact that the effect occurs for paratellurite even for small values such as b=24/140, is unique. 
 

Fig. XII.B.2_9: Slowness surface of the QSH mode in paratellurite for an inhomogeneity parameter b=12/140. 
Compared to Fig. XII.B.2_3, a slightly increased anisotropy is visible. 
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Fig. XII.B.2_10: Slowness surface of the QSH mode in paratellurite for an inhomogeneity parameter b=24/140. 
Compared to Fig. XII.B.2_9 and Fig. XII.B.2_3, the anisotropy is spectacularly increased. There is also a splitting 

effect visible of the 4 lobes. 
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Fig. XII.B.2_11: Slowness surface of the QSH mode in paratellurite for an inhomogeneity parameter b=84/140. 
The black arrows denote the polarization vector at each point on the slowness surface. Compared to Fig. 

XII.B.2_10, the anisotropy is further increased resulting in an almost sphere, covered by 8 pins. 
 
 

 POSSIBLE CONSEQUENCES IN ACOUSTO-OPTICS 
 

It is known that one of the simplest ways to generate an inhomogeneous acoustic wave is 
to send a bulk elastic wave on a flat boundary separating two materials with unequal elastic 
properties or to organize incidence of the elastic energy on a free and flat surface separating a 
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crystal and the vacuum [11, 18, 34]. After reflection of the incident elastic energy form the 
boundary, it is quite likely to observe the inhomogeneous elastic wave propagating along the 
separating border. Consequently, the possibility of the inhomogeneous wave generation in an 
acousto-optic crystal tellurium dioxide should be considered each time a bulk acoustic wave is 
reflected from a free surface. Furthermore, acousto-optic devices could be manufactured in the 
future that produce bounded inhomogeneous bulk waves [21]. We would not be surprised that, 
especially in paratellurite, very interesting effects would be observable. This could generate new 
and modern acousto-optic devices. 

It is known that the design of many classes of modern acousto-optic instruments using 
paratellurite as the medium of light and sound interaction, is based on the application of 
reflection of acoustic waves from optical facets separating the crystal and the air [9-12, 18, 34-
39]. One of these classes is the class of tunable acousto-optic filters (AOTFs) using the collinear 
regime of acousto-optic interaction. These filters may be used in many modern systems intended 
for processing of optical signals in optics and spectroscopy, laser technology and optical 
information processing. For example, the filters have been used in modern optical WDM 
(wavelength division multiplexing) communication lines for selection of signals with different 
optical wavelengths propagating along the fiber waveguides [40, 35, 36, 38, 39 ]. The elastic 
reflection is applied in the acousto-optic cells with the purpose to organize, in the most simple 
and effective way, a collinear propagation of optic and elastic beams in the crystal. The acoustic 
reflection may also be used in acousto-optic devices based on paratellurite, such as deflectors, 
modulators and spectrum analyzers, to obtain transformation of a longitudinal acoustic wave into 
a slow shear acoustic wave propagating along the axis [110] or close to it [9, 10, 12, 18, 39]. In 
this way, matching of acoustic impedances of acousto-optic cells is obtained. It automatically 
results in the improvement of the basic operation parameters of the instruments. For example, the 
acoustic frequency bandwidth of diffraction and the diffracted light intensity may be sufficiently 
improved if one uses the transformation of the elastic modes [9, 10, 12].  

It is evident that in all the described cases, the reflection of the acoustic waves may be 
accompanied by the generation of inhomogeneous waves, and the use of bounded 
inhomogeneous bulk waves is principally also possible. In some practical cases, the generation of 
inhomogeneous waves of the evanescent type, should be considered as a bad (parasitic) effect, 
because the efficiency of the elastic energy transformation is decreased. For this purpose, during 
the design of an acousto-optic instrument, it is necessary to know the laws and the conditions of 
the inhomogeneous waves generation and propagation in tellurium dioxide. This may result in the 
design of novel modifications of acousto-optic devices with improved parameters. On the other 
hand, if experiments would show that the use of bounded inhomogeneous bulk waves is favorable 
for some applications, additional studies will be required to predict the behavior of the considered 
inhomogeneous waves while propagating and while scattering, and to improve the design of the 
acousto-optic device and obtain better quality. 
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 CONCLUSIONS AND PROSPECTS 
 
     In this section, the description and the laws of propagation of bulk inhomogeneous 
plane waves in the TeO2 single crystal, are examined. The results of the investigation 
indicate that the efficiency of TeO2  for the acousto-optic interaction, may be further 
enhanced, by using inhomogeneous waves instead of homogeneous plane waves. This is 
due to the increased velocity difference for certain directions, compared to the case when 
only homogeneous plane waves are taken into account. Acousto-optic modulators, 
deflectors and filters should be mentioned in this context. Furthermore, it must also be 
mentioned that the peculiarities of the inhomogeneous waves behavior are typical not 
only for the paratellurite single crystals but for many other materials, if they are 
characterized by a very strong elastic anisotropy. For example, the results of the analysis 
may be generalized to the entire family of crystals such as the mercury halides (calomel, 
mercury bromide and mercury iodide). At the moment, these materials, as well as 
paratellurite, are very promising for the application in modern acousto-optic devices. 
     The numerical study in this section shows that it is possible to predict the existence of 
new acoustic and acousto-optic phenomena in crystals such a paratellurite. The 
investigation of laws and regular trends of the propagation of waves in the new materials 
may be the basic direction of the future scientific research. Therefore, the study is not 
only interesting from a fundamental point of view, but also from the point of 
applications. 
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XII.C Sound in Biased Piezoelectric 
Materials of General Anisotropy 

 
 A theoretical model is presented that describes the propagation of sound in biased 

piezoelectric crystals of any kind of symmetry. The symmetry relations for the higher 
order materials constants of trigonal 3m crystals, are calculated and listed in the 
appendix. The example of Lithium Niobate is highlighted, under influence of a bias 
pressure. The change of slowness, because of this pressure, is calculated for every 
direction. Also the influence of stress on the acoustic polarization and the energy flow is 
outlined. Furthermore, the difference between the case where piezoelectricity is included 
and the case where it is omitted, is discussed. The description of changing slowness 
surfaces, because of a bias field, is not limited to homogeneous plane waves, but also 
inhomogeneous plane waves are taken into account. 

 
 INTRODUCTION 
 

In ultrasonics, a lot of studies have been published the last few decades about the 
interaction of ultrasound with commonly used materials, with the aim of nondestructive testing of 
materials. Therefore, most papers report results on isotropic media (stainless steel, brass,…) or 
orthotropic media [1-4] (mostly fiber reinforced composites). Modeling of materials of general 
(triclinic) anisotropy does not happen so frequently. Nevertheless, the basis principles of this 
modeling are given in standard books, such as the book by Nye [5], the book by Auld [6] or the 
book by Musgrave [7]. The reason is probably the difficulty to overcome the initial problems, 
when studying the propagation of sound in anisotropic media. With the existence of actuators and 
transducers, the need to understand the propagation of sound in piezoelectric crystals, has found 
entry in a number of research teams around the world. However, for the case of piezoelectric 
crystals, most attention went to the study of the propagation of surface waves.  

On the other hand, in the field of nondestructive testing of materials, the presence of 
initial or residual stress in different materials, including anisotropic materials, has been taken into 
account [8-9] with the aim of evaluating residual stress in fresh materials or with the aim of 
evaluating applied stress in materials in civil constructions. 

Lately, possibly with the purpose of measuring stress or with the purpose of controlling 
actuators [10-12] by means of stress, the propagation of surface waves on piezoelectric materials, 
has been studied [13]. This motivated us to study the propagation of bulk waves in the presence 
of a bias field and to find out whether the presence of piezoelectricity makes a crystal more or 
less susceptible to stress and also to find out how inhomogeneous waves behave in biased 
piezoelectric crystals. 

This section is organized as follows: First of all, the acoustic field and the electric field are 
described and coupled to each other by means of the piezoelectric effect. The presence of a bias 
field, which can be an initial stress field or an initial electric field, is considered and entered in 
the constitutive relations, taking into account the fact that the linear material properties, 
characterizing the propagation of sound, are changed, compared to the unbiased state, because of 
the bias fields. Because of the possible large magnitudes of the bias fields, their influence on the 
materials is essentially nonlinear. Therefore, we consider sound, described in a linear regime, that 
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is propagating in a crystal whose properties are affected in a nonlinear way by the presence of a 
bias field. Expressions are obtained for the dependence of the material properties on the bias 
fields and these expressions are used to obtain a generalized form of the Christoffel equation for 
general anisotropic (triclinic) media. Furthermore, an expression is obtained for the energy flow 
of sound, in a piezoelectric crystal of any kind of anisotropy, in the presence of bias fields. 

Finally, the concept of inhomogeneous waves is introduced by means of the concept of a 
complex direction. The purpose of considering inhomogeneous waves is not to find exact values 
of the velocity for a given inhomogeneity, but to find out whether such wave are more susceptible 
to stress, or in a different manner susceptible to stress, than homogeneous plane waves. This 
knowledge is important in order to find out whether it could be productive to apply 
inhomogeneous waves in the study of materials under stress. All calculations in this report are 
performed for Lithium Niobate [14, 15]. 
 
 FOUNDATIONS OF THE MODEL 
 

It is known [6, 16]] that for piezoelectric materials, in the absence of residual or applied 
stress, a linear regime holds and the stress tensor is given by 
 

M Eij ij kij kσ σ ξ= −  (XII.C_1)

 
whereas the electrical displacement is given by 
 

D Ek ki i kij ie jε ξ= +  (XII.C_2)

 
with the pure mechanically originating stress given by 
 

M c eij ijkl klσ =  (XII.C_3)

 
and with 
 

,c cijkl im jn kp lq mnpqβ β β β=  (XII.C_4)

 
'

kij kp iq jr pqrξ β β β ξ=  (XII.C_5)

 
and 
 

,
ki kp iq pqε β β ε=  (XII.C_6)
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ijβ  are the entries of the rotation matrix for a rotation from the intrinsic lattice coordinate system 

to the laboratory coordinate system while c  is the stiffness tensor, ijkl kijξ  is the piezoelectric 

stress tensor, ijε  is the dielectrical permittivity tensor, E  is the electric field vector,  is the 

dielectric displacement vector and e  is the strain tensor. The quantities c ,

D

kl ijkl kijξ  and ijε  are 

valid in the laboratory coordinate system, whereas , ,cijkl
'
kijξ  and ,

ijε  are valid in the intrinsic 

lattice coordinate system. In what follows, a superscript ‘0’ will denote initial quantities. 
For biased piezoelectric materials, we consider a linear regime for the acoustic waves, but 

in a material that is biased by the pre-stressed state, whence the material parameters become 
stress dependent, i.e.  
 

( )0 * * 0c e E Eij ij ijkl kl kij k kσ σ ξ− = − −  (XII.C_7)

 
and 
 

( )0 * 0 *D D E E ek k ki i i kij ijε ξ− = − +  (XII.C_8)

 
where an asterisk denote a stress dependent parameter. It can be found in [17] that in the regime 
of quasi-electrostatics, the potential energy W can be expanded in a Taylor series as follows: 
 

1 1
0 2 3!

1 1
4! 2
1 1 1 . .
2 6 2

W W c e e c e e eklmn kl mn klmnpq kl mn pq

c e e e e E e E Eklmnpqrs kl mn pq rs mkl m kl kl k l

E e e E E E E E e h o tmklpq m kl pq klm k l m mnkl m n kl

ξ ε

ξ ε γ

= + +

+ − −

− − − +

 

(XII.C_9)

 
with kijlγ  the electrostrictive tensor, kijε  the higher order dielectric tensor and kijmlξ  the higher 

order piezoelectric tensor. The constants , cijklmn knijγ  and kijε  describe the nonlinear 

behavior, which is caused by the initial stress and initial electric field. The expression ‘h.o.t.’ 
means ‘higher order terms’. 

Furthermore 
 

'
kijl km in jp lq mnpqγ β β β β γ=  (XII.C_10)

 
The quantity kijlγ  is valid in the laboratory coordinate system, while '

mnpqγ  is valid in the intrinsic 
lattice coordinate system. 
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In addition, it is also known that, for the second symmetric fully contra-variant, material Piola-
Kirchchoff stress tensor [17] 
 

W
ij eij

σ ∂
=
∂

 
(XII.C_11)

 
and  
 

WDm Em

∂
= −

∂
 

(XII.C_12)

 
Whence, for the total field parameters  
 

1
2

1 . . .
2

c e c e e Eij ijkl kl ijklmn kl mn mij m

e E E E h o tmijkl kl m mnij m n

σ

ξ γ

= + −

− −

ξ

+
 

(XII.C_13)

 
1
2

1 . . .
2

D e e e Em mij ij mijkl ij kl mn n

E E E e h o tmnp n p mnij n ij

ξ ξ ε

ε γ

= + +

+ + +
 

(XII.C_14)

 
whilst for the initial field parameters 
 

10 0 0 0
2

10 0 0 0 . . .
2

c e c e e Eij ijkl kl ijklmn kl mn mij m

e E E E h o tmijkl kl m mnij m n

σ ξ

ξ γ

= + −

− − +

0

 

(XII.C_15)

 
10 0 0 0
2

1 0 0 0 0 . . .
2

D e e e Em mij ij mijkl ij kl mn n

E E E e h o tmnp n p mnij n ij

ξ ξ ε

ε γ

= + +

+ +

0

+
 

(XII.C_16)

 
The acoustic field variables are then found by subtracting the initial fields from the total fields, 
applying the identity 
 

( ) ( )0 0 0 0 0 0ab a b b a a a b b− = − + − + ∆  (XII.C_17)

 
with 
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( )( )0 0 0a a b b∆ = − − ≈  (XII.C_18)

 
which then, after comparison with (XII.C_7) and (XII.C_8), results in 
 

* 0c c c e Eijkl ijkl ijklmn mn mijkl mξ= + − 0

0

0

 (XII.C_19)

 
* 0e Emij mij mijkl kl mnij nξ ξ ξ γ= + +  (XII.C_20)

 
* 0E emn mn mnp p mnij ijε ε ε γ= + +  (XII.C_21)

 

The bias state is determined by the initial stress tensor 0
ijσ⎡ ⎤

⎢ ⎥⎣ ⎦

 

and by the initial electric 

field vector . However, in expressions (XII.C_19-21), we need information about 0E 0ekl
⎡ ⎤
⎢ ⎥⎣ ⎦

 

instead of 0
ijσ⎡⎢⎣
⎤
⎥⎦

⎤
⎥⎦

. The values for  are found by first obtaining an initial (‘guess’) value  0ekl
⎡
⎢⎣

 
1 0initiale ckl ijkl ijσ
−⎡ ⎤ ⎡ ⎤⎡ ⎤ = ⎢ ⎥ ⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 
(XII.C_22)

 
Then, the values in  are further optimized by a computer program until the values of 0

kle⎡ ⎤⎣ ⎦
0
ijσ⎡ ⎤⎣ ⎦ in 

(XII.C_15) reach a value that differs less than δ from the exact bias stress. In the calculations 
described further on, we have chosen δ = 10-3 %, which is very small. 
The difference ∆ is calculated as follows:  
 

10 0 0 0
2,

10 0 0 0
2

c e c e e Eij ijkl kl ijklmn kl mn mij mi j

e E E Emijkl kl m mnij m n

σ

ξ γ

∆ = − − +∑

+ +

0ξ

⎤
⎥⎦

 

(XII.C_23)

 
This optimization procedure is more accurate than the procedure of Liu et al [13], where, 

for the case of surface waves on biased piezoelectric crystals, in (XII.C_19-21), only the initial 

value 
 
obtained from (XII.C_22) is used, instead of the exact result . initialekl

⎡
⎢⎣

0ekl
⎡ ⎤
⎢ ⎥⎣ ⎦
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Nevertheless, according to [18, 19] for stressed anisotropic materials (here extended to 
piezo-electric materials), one must add an extra term to (XII.C_7), i.e.  
 

( )0 * * 0 0uic e E Eij ij ijkl kl kij k k kjrk
σ σ ξ σ

∂
− = − − +

∂
 

(XII.C_24)

 
In the paper of Liu et al [13], the second term on the right side of (XII.C_24) is not 

explicitly taken into account, whilst according to Man and Lu [19] this term should be taken into 
account for generality (e.g for including plasticity due to the bias stress). Nevertheless, it will 
only be important for very high initial stress.  

Consideration of (XII.C_7-8) and (XII.C_19-22) shows that there are two independent 
applied fields possible, i.e. a residual or applied stress and also an electric field.  
Furthermore, from [5] we know that the following general symmetry relations hold: 
 

kij kjiξ ξ=  (XII.C_25)

 

ki ikε ε=  (XII.C_26)

 
and 
 

kijl ikjl kiljγ γ γ= =  (XII.C_27)

 

kij ikj kjiε ε ε= =  (XII.C_28)

 

kijml kjiml kijlm kmlijξ ξ ξ ξ= = =  (XII.C_29)

 
c c c c c c cijklpn jiklpn ijlkpn ijknp klijpn pnijkl ijpnkl= = = = = =  (XII.C_30)

 
Moreover, for any symmetry operation  ,with ‘ ’ a rotation or a reflection, on a 

crystal, the tensors describing the crystal must remain unchanged. This results in relationships 
between different elements of the tensors under consideration. In the appendix A, the calculated 
symmetry relations are shown for a trigonal 3m crystal. 

ija a

Generally speaking, there are 5 different possible plane waves in a piezo-electric material, 
because the acoustic wave equation has three solutions and electromagnetism permits two more 
solutions. However these solutions are coupled in acousto-electromagnetic modes in piezo 
electric materials.  

In addition, from [6] we know that any field can be described in a rotational field  
with  and an irrotational field  with 

E rE
0r∇× ≠E irrE 0irr∇× =E . For ultrasonic waves, the 

accompanying electric field is quasistatic and can be described by irr=E E , whence 
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ϕ= −∇E  (XII.C_31)
 
with ϕ  a scalar potential. It is shown in [20] that in the quasistatic approach, there are only 4 
waves possible for each propagation direction.  
 
 A GENERALIZATION OF CHRISTOFFEL’S EQUATION 
 

The acoustic wave equation for visco-elastic materials is given by  
 

2
*

2
uij i

r tj

σ
ρ

∂ ∂
=

∂ ∂
 

(XII.C_32)

 
with 
 

( )* 0 1 eiiρ ρ= −  (XII.C_33)

 
whereas the electromagnetic field equations in the absence of electric currents and electric loads 
are given by 
 

0 t
µ ∂

∇× =
∂
HE  

(XII.C_34)

 
and 
 

t
∂

∇× =
∂
DH  

(XII.C_35)

 
Taking into account (XII.C_31), relations (XII.C_34-35) can be replaced by 
 

2 * * 02

u j
ki kijr rt i j

ϕε ξ
⎛ ⎞∂∂ ∂⎜ ⎟∇ − + =
⎜ ⎟∂ ∂⎜ ⎟∂ ⎝ ⎠

i  
(XII.C_36)

 
We demand plane wave solutions, whence 
 

expA i k x k y k zx y z tω⎛ ⎞= + +⎜ ⎟
⎝ ⎠

u P −  
(XII.C_37)

 
and 
 

expB i k x k y k z tx y zϕ ω⎛ ⎞= + +⎜ ⎟
⎝ ⎠

−  
(XII.C_38)
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Then, relation (XII.C_36) immediately involves 
 

*

*

k k APr s rsq qB
k kmn m n

ξ

ε
=  

(XII.C_39)

 
For the purpose of what follows, we now prove that 
 

* 0k kps p sε ≠  (XII.C_40)

 
Well, from [5] it is found that  
 

* 2E Eps p sε = Ξ  (XII.C_41)

 
with Ξ  the electric energy (which is always positive) and it can be shown straightforwardly that  
 

* E
E E Qps p s k

ε =  
(XII.C_42)

 
with 
 

*Q k kps p sε=  (XII.C_43)

 
Therefore it is proved that condition (XII.C_40) holds. 
 

Now, combining relations (XII.C_32) and (XII.C_36) delivers 
 

0M Pip p =  (XII.C_44)

 
with 
 

( ) ( )* * 0 * * * 2M k k c k k k k k kip m ms s ijpl ip lj j l lij j l mnp n ms s ipε δ σ ξ ξ ε ρω⎧ ⎫⎛ ⎞= + + −⎜ ⎟⎨ ⎬
⎝ ⎠⎩ ⎭

δ  
(XII.C_45)

 
It can be shown straightforwardly that 
 

M Mip pi=  (XII.C_46)
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Equation (XII.C_44) is an extension of the Christoffel equation for the case of stressed 
piezoelectric materials. Only nontrivial solutions 0≠P  are possible whenever 
 

det 0M =  (XII.C_47)
 
Then, if (XII.C_40) is taken into account several times, the polynomial equation (XII.C_47) 
ultimately becomes 
 

0

X k k k k k k k knpqrstvw n p q r s t v w
Y k k k k k k Z k k knpqrst n p q r s t npqr n p q r

k knp n p

+ +

+Ω =

k  

(XII.C_48)

 
The expressions for , ,  and  are given in the appendix B. 

Equation (XII.C_48) is the generalized form of the Christoffel equation expressed in the wave 
vector components.  

npΩ Znpqr Ynpqrst Xnpqrstvw

In the case of scattering at an interface, the wave vector components  and  along the 
interface are known, because of Snell’s law. Then, the polynomial (XII.C_48) can be transformed 
into an explicit polynomial in the unknown , i.e. 

1k 2k

3k
 

8
030

sa kss
=∑

=
 

(XII.C_49)

 
with 
 

8 33333333a X=  
 

(XII.C_50)

( )7 1
a XqrnpstxzP

= ∑
 

 

(XII.C_51)

( )6 333333 2
a Y XqrnpstxzP

= + ∑
 

 

(XII.C_52)

( )( )5 1 3
a Y Xnpqrst qrnpstxzP P

= +∑ ∑
 

 

(XII.C_53)

( )( )4 3333 2 4
a Z Y Xnpqrst qrnpstxzP P

= + +∑ ∑
 

 

(XII.C_54)

( ) ( )( )3 1 3 5
a Z Y Xnpqr npqrst qrnpstxzP P P

= + +∑ ∑ ∑
 

(XII.C_55)

 
- 648 - 



CHAPTER XII: Sound in Piezoelectric Materials 
  

 

( ) ( )( )2 33 2 4 6
a Z Y Xnpqr npqrst qrnpstxzP P P

= Ω + + +∑ ∑ ∑
 

 

(XII.C_56)

( ) ( ) ( )( )1 1 3 5 7
a Z Y Xpn npqr npqrst qrnpstxzP P P P

= Ω + + +∑ ∑ ∑ ∑
 

 

(XII.C_57)

( ) ( ) ( )( )0 2 4 6 8
a Z Y Xpn npqr npqrst qrnpstxzP P P P

= Ω + + +∑ ∑ ∑ ∑  (XII.C_58)

 
in which means summation over all the indices 

( )P n
∑ γ  , e.g. { }, , , , ,n p q r s tγ ∈ that follow in 

the given quantity (for example Y) and multiplied by all corresponding kγ  and all the possible 
permutations of the indices γ  given that always n of the indices γ  are set different from ‘3’ and 
the others equal to ‘3’ and given the fact that kγ  is replaced by ‘1’ whenever the corresponding γ  
is set equal to ‘3’.  

Equation (XII.C_49) is an eight degree polynomial in the unknown . It means that there 
are 8 solutions possible and therefore, for monoclinic materials, 4 modes are possible in the 
upward direction, accompanied by their 4 twin solutions in the downward direction. However, 
one of those modes is always [21] evanescent, is therefore only important along the interface and 
does not propagate into the bulk. This means that in the bulk of the crystal, only 6 types of 
propagating modes exist. Furthermore, for triclinic materials, these modes are two by two 
symmetric, whence only 3 physically different types of propagation modes exist. This reduction 
from 8 to 6 modes is also mathematically accomplished by consideration of a propagation 
direction m. Then, ik  and the polynomial (XII.C_48) becomes  

3k

i km=
 

60

4 2

X m m m m m m m m knpqrstvw n p q r s t v w

Y m m m m m m k Z m m m m knpqrst n p q r s t npqr n p q r
H

=

+ +

+

 

(XII.C_59)

 
with 
 

m mnp n pΗ = Ω  (XII.C_60)

 
H being a nonzero constant number for a given media and given direction. The 6th degree 
polynomial (XII.C_59) corresponds to an extended form of what is generally known as the 
stiffened Christoffel equation, which is described by Auld [6] in the simpler case of unbiased 
materials and in section XII.A-B of the curent chapter XII. Therefore, the 3 types of solutions 
correspond to quasi acoustic bulk modes (one quasi longitudinal and 2 quasi shear).  

 
- 649 - 



CHAPTER XII: Sound in Piezoelectric Materials 
  

Classically, taking into account Einstein’s double suffix notation convention, the (real) 

wave vector k is replaced by  and is entered into (XII.C_59). l mg gω⎛= ⎜
⎝ ⎠

k ⎞
⎟e ω  is the angular 

frequency. 

Then, for each (real) direction , ,m m mx y z
⎛
⎜
⎝ ⎠

⎞
⎟ , the eigenvalue l can be determined. This l is then 

the slowness value. At the same time, the polarization vector P is determined as the eigenvector. 
We have developed a program that is able to draw 3D slowness surfaces. 

The modes are then labeled according to the sound polarization and are labeled as quasi 
longitudinal (QL), quasi shear horizontal (QSH) and quasi shear vertical (QSV). If it follows that 
the polarization is mainly directed along the propagation direction, the label QL is added. If the 
polarization is mainly shear and directed along the XY-plane, the label QSH is added. If the 
polarization is mainly shear and directed along the Z-axis, the label QSV is added. 
 
 THE ENERGY FLUX 
 

From [6] and [22] we know that the instantaneous Poynting vector is given by 
 

1
2

u DjFi ij t t
σ ϕ

+⎡ ⎤∂ +∂⎢ ⎥= − +⎢ ⎥∂ ∂⎢ ⎥⎣ ⎦

 

(XII.C_61)

 
in which the superscript ‘+’ means ‘complex conjugate’ . Without presuming the wave vector to 
be real or complex, it can be shown straightforwardly that (XII.C_61), in the presence of a bias 
field, becomes, for an amplitude equal to unity,  
 

1 0
2

20

iF c k P Pilkj kj ij k l j

i B k k P k Bij kij k ijk k j ij j

ω σ δ

σ ξ ξ ε

⎧⎛ ⎞ += +⎜ ⎟⎨
⎝ ⎠⎩

⎫⎛ ⎞⎛ ⎞+ + + + ++ − + − +⎜ ⎟ ⎬⎜ ⎟⎝ ⎠⎝ ⎠ ⎭

 

(XII.C_62)

 
The average power then corresponds to the real part of Fi, whereas the peak reactive power 
corresponds to the imaginary part of Fi [6].  
 
 INHOMOGENEOUS WAVES 
 

An inhomogeneous wave is defined as a plane wave having a complex wave vector k. The 
notion of inhomogeneous waves inside the bulk of a piezoelectric crystal, is introduced through 
the concept of a complex direction. A real direction is then defined as a real vector , for which 

. This is generalized to a complex direction 
1d

1 1 1⋅ =d d 1 i 2= +d d d , for which . Then, it is 
possible to determine the value l from the following definition: 

1+⋅ =d d
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( )1 2l iω= +k d d  (XII.C_63)

 
where ω is the angular frequency. For every possible complex direction, it is possible to 
determine l. The number of combinations of  and  is reduced by introducing a complex 
direction that, for simplicity, contains no imaginary part along the z-axis.  

1d 2d

 

( ) ( )2 2 2
1, 1,

1 2

21 /1, 1, 1, 1, 1, x z

i

d ib d d ibd d b d dx y x y x y z z

+

⎧ ⎫⎛ ⎞ ⎛ ⎞= − − + + + + +⎜ ⎟⎨ ⎬⎜ ⎟ ⎝ ⎠⎝ ⎠⎩ ⎭

d d

e e e 1 2

2

 

(XII.C_64)

 
The parameter b is then a measure for the fraction of imaginariness of the complex direction. 
When the direction (XII.C_64) is entered into the Christoffel equation, the complex scalar 

 can be resolved. This value then determines the entire complex wave vector k as 1l l il= +

 

( ) ( ) /1, 2, 1, 2, 1, 2,k ik k ik k ikx x x y y y z z z
⎛ ⎞⎛ ⎞= + + + + +⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

k e e Ne  
(XII.C_65)

 
with 
 

2/ 11, 1 1, 2 1,k l d l b dx x yω = + −  

 

(XII.C_66)

2/ 12, 1 1, 2 1,k l b d l dx y xω = − − +  

 

(XII.C_67)

/1, 1 1, 2 1,k l d l bdy y xω = −  

 

(XII.C_68)

/2, 1 1, 2 1,k l bd l dy x yω = +  

 

(XII.C_69)

/1, 1 1,k l dz zω =  

 

(XII.C_70)

/2, 2 1,k lz zdω =  

 

(XII.C_71)

( )2 2 2
1, 1,1 2 x zN b d d= + +  (XII.C_72)

 
 NUMERICAL RESULTS 
 

In this report, we limit the discourse to Lithium Niobate, because this is the only crystal of 
which all the necessary material constants are known to us. The material properties of Lithium 
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Niobate are given in Appendix A. The slowness of Lithium Niobate is of the order of magnitude 
of 1.8x10-4 sm-1. Lithium Niobate is rather anisotropic, but not as extreme as for instance 
paratellurite [23, 24]. The slowness surfaces of Lithium Niobate are well known and can for 
example be found in section XII.A. As a result, in this report, only the changes are shown due to 
pressure (we do not consider an electric bias field). Consequently, the figures here show the 
difference between the slowness curves ‘after pressure is applied’ and ‘before pressure is applied’ 
(i.e. ‘after’ minus ‘before’). The same holds for the added arrows, whether they represent the 
polarization or the energy flow. Furthermore, we only discuss real slowness surfaces, real energy 
flow and real polarization. The imaginary parts are mostly nil, and are only significant for 
inhomogeneous waves, as is known from other papers on inhomogeneous waves in isotropic and 
anisotropic media [25-36]. Whenever arrows are shown, their length must be regarded as a 
relative length. The exact values are calculated by means of our computer program, however 
during the plot procedure, they are enlarged or contracted automatically until their length fits best 
into the plot. Nevertheless, this contraction or enlargement, is the same for all arrows on the same 
plot. This is the reason why the overall presence of tiny arrows, if this is the case, is due to only a 
few larger arrows, that are sometimes hidden behind some of the lobes of the changed slowness 
curves. The computer program changes the values in order to make the largest arrows of 
reasonable size, resulting in the other arrows being very small. Furthermore, we mainly focus on 
the direction dependence of the described effects and not as much on their exact values. 
 
 The influence of stress in crystals – comparison between the piezoelectric case and 

the non-piezoelectric case 
 

The purpose of this section is to show the influence of stress on the slowness curves and 
how the presence of piezoelectricity affects this influence. Fig. XII.C_1 shows the difference of 
the slowness curves, for the QL-mode, for a bias stress equal to a pressure of 90 MPa along the 
X-axis, without the presence of piezoelectricity.  
Note that the slowness change is largest along the X-direction, but it is also significantly present 
along the [011] direction. This shows that a stress in one direction, not only changes the velocity 
of sound in that particular direction, but also in other directions. In Fig. XII.C_2, the same result 
is shown, except that piezoelectricity is included. Note that the main conclusions remain the same 
and that the magnitude of slowness change is of the same order. Nevertheless, the shape of the 
calculated lobes of Fig. XII.C_2, differs from the one in Fig. XII.C_1. This means that, for the 
QL-mode, piezoelectricity has no excessive impact on the influence of stress, but it has a 
significant impact on the details of the influence. Besides the slowness surfaces, also the change 
of polarization is shown in Fig. XII.C_1 and in Fig. XII.C_2 due to the presence of the pressure. 
Comparing Fig. XII.C_1 with Fig. XII.C_2 shows that the presence of piezoelectricity does not 
have a big influence on the change of polarization due to pressure. Note that the number of 
arrows in Fig. XII.C_2 and in Fig. XII.C_1 is the same, though the distribution density is 
different because the lobes in Fig. XII.C_2 are more ‘swollen’ than in Fig. XII.C_1. 

In Fig. XII.C_3 and in Fig. XII.C_4, the same results are shown as, respectively, in Fig. 
XII.C_1 and in Fig. XII.C_2, but for the QSH mode. Here, the influence is again visible in all 
directions, though most outspoken along the [101] direction. The different behavior of the QSH-
mode, compared to the QL-mode, is of course due to the difference in polarization between the 
two modes. Inasmuch as piezoelectricity had only a minor impact on the behavior of the QL-
mode, Fig. XII.C_3 and Fig. XII.C_4 show that piezoelectricity has a major impact on the change 
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of the slowness surface of the QSH mode, not so much in the magnitude, but very much in the 
directional dependence of the effect.  

Fig. XII.C_1: The change of the slowness surface for the QL-mode, for a pressure of 90 MPa along the X-axis, in 
the case of homogeneous plane waves for non-piezoelectric Lithium Niobate. The arrows denote the change of 

polarization. 
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Fig. XII.C_2: The change of the slowness surface for the QL-mode, for a pressure of 90 MPa along the X-axis, in 
the case of homogeneous plane waves for piezoelectric Lithium Niobate. The arrows denote the change of 

polarization. 

 
- 654 - 



CHAPTER XII: Sound in Piezoelectric Materials 
  

 
Fig. XII.C_3: The change of the slowness surface for the QSH-mode, for a pressure of 90 MPa along the X-axis, in 

the case of homogeneous plane waves for non-piezoelectric Lithium Niobate. The arrows denote the change of 
energy flux. 
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Fig. XII.C_4: The change of the slowness surface for the QSH-mode, for a pressure of 90 MPa along the X-axis, in 
the case of homogeneous plane waves for piezoelectric Lithium Niobate. The arrows denote the change of energy 

flux. 
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Fig. XII.C_5: The change of the slowness surface for the QSV-mode, for a pressure of 90 MPa along the X-axis, 

in the case of homogeneous plane waves for non-piezoelectric Lithium Niobate. 
 
 
 

 

 
- 657 - 



CHAPTER XII: Sound in Piezoelectric Materials 
  

 
Whereas the change of polarization was depicted as arrows in Fig. XII.C_1 and in Fig. 

XII.C_2, the change of the real part of the Poynting vector is depicted as arrows in Fig. XII.C_3 
and in Fig. XII.C_4. Only in a few directions is the change of energy flow much larger than in the 
overall directions. This is the reason for the apparent very small arrows on the figures. 

Fig. XII.C_5 and Fig. XII.C_6 again correspond to, respectively, Fig. XII.C_1 and Fig. 
XII.C_2, but for the QSV-mode. The influence of pressure is again very different for this mode. 
Furthermore, the effect of piezoelectricity is more outspoken in magnitude than for the other 
modes. The arrows denote the change of polarization, just as in Fig. XII.C_1 and in Fig. XII.C_2. 
Note again that only in a very few directions, the change is significantly larger than in the overall 
directions, which is once more the reason for the apparent very small arrows on the figures. 
In the next sections, no arrows are depicted anymore on the slowness surfaces and only the 
slowness surfaces themselves are considered. 
 
 
 The influence of the inhomogeneity on the effect of stress in crystals for the 

piezoelectric case and the non-piezoelectric case 
 
 

In this section, we are mainly interested in the cases of previous section, though in the 
presence of an inhomogeneity of the considered sound waves. For simplicity, we limit the 
discourse to a parameter of imaginariness 60 /140b = . Fig. XII.C_7 corresponds to Fig. XII.C_1, 
i.e. the QL-mode, in the absence of piezoelectricity, though for 60 /140b = . It is seen that the 
change of the slowness surface is again largest along the X direction and along the [011] 
direction. But the effect is much stronger along the [011] direction than in the case of 
homogeneous plane waves of Fig. XII.C_1. In Fig. XII.C_8, piezoelectricity is involved and the 
result is a very strong direction dependence of the slowness change. 

In Fig. XII.C_9 and in Fig. XII.C_10, again inhomogeneous waves are considered with 
, for the QSH-mode and must be compared to Fig. XII.C_3, respectively Fig. 

XII.C_4. The overall effect is of the same order of magnitude as for homogeneous plane waves in 
Fig. XII.C_3 and Fig. XII.C_4, though in some directions, a much larger effect is visible. Also 
the shape of the surfaces without (Fig. XII.C_9) or with (Fig. XII.C_10) piezoelectricity 
involved, is very different. A significant difference between the slowness curves without or with 
piezoelectricity, was visible for the QSV-mode in Fig. XII.C_5, respectively Fig. XII.C_6. Again 
a significant difference is visible for inhomogeneous waves in Fig. XII.C_11, respectively Fig. 
XII.C_12. 

60 /140b =
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Fig. XII.C_6: The change of the slowness surface for the QSV-mode, for a pressure of 90 MPa along the X-axis, 

in the case of homogeneous plane waves for piezoelectric Lithium Niobate. 
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Fig. XII.C_7: The change of the slowness surface for the QL-mode, for a pressure of 90 MPa along the X-axis, in 
the case of inhomogeneous plane waves (b=60/140) for non-piezoelectric Lithium Niobate. 
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Fig. XII.C_8: The change of the slowness surface for the QL-mode, for a pressure of 90 MPa along the X-axis, in 
the case of inhomogeneous plane waves (b=60/140) for piezoelectric Lithium Niobate. 

 
 

 
 The influence of the magnitude and the direction of stress in crystals 
 

In this section, we limit the discourse to the case where piezoelectricity is involved. 
Contrary to the last two sections, here, different magnitudes of pressure are considered (instead of 
only 90 MPa), as well as different directions (instead of only the X-direction). In Figs XII.C_13-
15, a pressure is considered along the X-direction, of 30 MPa. Fig. XII.C_13 corresponds to Fig. 
XII.C_2, Fig. XII.C_14 corresponds to Fig. XII.C_4, whereas Fig. XII.C_15 corresponds to Fig. 
XII.C_6. Note that the shape of the alteration of the slowness curves is essentially equal for the 
different magnitude of pressure, though the magnitude of the alteration is different. This means 
that the directional dependence of the effect of an applied pressure, is not influenced by the 
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magnitude of that pressure. Only the extent of the effect depends on the magnitude of the applied 
pressure. 
 

Fig. XII.C_9: The change of the slowness surface for the QL-mode, for a pressure of 90 MPa along the X-axis, in 
the case of inhomogeneous plane waves (b=60/140) for non-piezoelectric Lithium Niobate. 
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Fig. XII.C_10: The change of the slowness surface for the QL-mode, for a pressure of 90 MPa along the X-axis, in 
the case of inhomogeneous plane waves (b=60/140) for piezoelectric Lithium Niobate. 
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Fig. XII.C_11: The change of the slowness surface for the QL-mode, for a pressure of 90 MPa along the X-axis, in 
the case of inhomogeneous plane waves (b=60/140) for non-piezoelectric Lithium Niobate. 
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Fig. XII.C_12: The change of the slowness surface for the QL-mode, for a pressure of 90 MPa along the X-axis, in 
the case of inhomogeneous plane waves (b=60/140) for piezoelectric Lithium Niobate. 
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Fig. XII.C_13: The change of the slowness surface for the QL-mode, for a pressure of 30 MPa along the X-axis, in 
the case of homogeneous plane waves for piezoelectric Lithium Niobate. 
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Fig. XII.C_14: The change of the slowness surface for the QSH-mode, for a pressure of 30 MPa along the X-axis, 

in the case of homogeneous plane waves for piezoelectric Lithium Niobate. 
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Fig. XII.C_15: The change of the slowness surface for the QSV-mode, for a pressure of 30 MPa along the X-axis, 

in the case of homogeneous plane waves for piezoelectric Lithium Niobate. 
 

Consequently, we consider a pressure of the same magnitude (60 MPa) as in the previous 
sections, though applied in another direction (along the Z-axis instead of the X-axis). The results 
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can be seen in Figs. XII.C_16-18. Fig. XII.C_16 corresponds to Fig. XII.C_2, Fig. XII.C_17 
corresponds to Fig. XII.C_4, whereas Fig. XII.C_18 corresponds to Fig. XII.C_6. It is seen that 
the effect of a pressure severely depends on the direction of the pressure. This is, of course, due 
to the anisotropic nature of the considered crystal. 
 

 
Fig. XII.C_16: The change of the slowness surface for the QL-mode, for a pressure of 90 MPa along the Z-axis, 

in the case of homogeneous plane waves for piezoelectric Lithium Niobate. 
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Fig. XII.C_17: The change of the slowness surface for the QSH-mode, for a pressure of 90 MPa along the Z-axis, 
in the case of homogeneous plane waves for piezoelectric Lithium Niobate. 
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Fig. XII.C_18: The change of the slowness surface for the QSV-mode, for a pressure of 90 MPa along the Z-axis, 
in the case of homogeneous plane waves for piezoelectric Lithium Niobate. 
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 CONCLUSIONS 
 
A generalized form of the Christoffel equation was formulated for biased piezoelectric 
crystals of general anisotropy. This is done by considering a linear acoustic regime in a 
crystal that is biased by nonlinear effects. An expression is given of the energy flux for 
the considered situation of biased piezoelectric crystals. Numerical results are reported 
for Lithium Niobate. The influence is calculated of an initial pressure, in the piezoelectric 
case and in the non-piezoelectric case, for homogeneous plane waves and also for 
inhomogeneous plane waves. Furthermore, the influence of the magnitude and the 
direction of the considered pressure, on the change in the acoustic wave velocity, was 
studied as well. 
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 APPENDIX A 
 

This appendix describes the symmetry relations between the different material property 
constants. The relations are calculated by a newly developed semi-automatic computer program 
that is able to handle any kind of symmetry relations and the results differ from the ones of [37, 

38], where a trigonal  crystal is considered, instead of the trigonal 3m crystal of the current 
report. The developed computer program uncovered one misprint in the material property tables 
in ref [13].  

__
3m

 
The different relationships for the trigonal 3m point group are determined by the 

generators of the group, these are:  
 

1 3 0
2 2 1 0 0
3 1 0 , 0 1 0

2 2
0 0 10 0 1

a

⎧⎡ ⎤
−⎪ ⎪⎢ ⎥

⎪ ⎪⎢ ⎥ −

⎫

⎡ ⎤⎪ ⎪⎢ ⎥⎪ ⎪⎢ ⎥∈ − −⎢ ⎥⎨ ⎬⎢ ⎥
⎢ ⎥⎪ ⎪⎢ ⎥⎣ ⎦⎢ ⎥⎪ ⎪
⎢ ⎥⎪ ⎪
⎢ ⎥⎪ ⎪⎣ ⎦⎩ ⎭

 

(XII.C_A1)

 
Any crystal having the trigonal 3m symmetry (for example Lithium Niobate) cannot have 

properties that alter when any of the generators (XII.C_A1) operate on it. Hence, all tensors 
describing the material properties of the crystal must remain unaffected by (XII.C_A1). 

The transformations are performed as: 
 

c a a a a cijkl ip jq kr ls pqrs=  (XII.C_A2)

 
a aij ip jq pqε ε=  with ki ikε ε=  (XII.C_A3)

 
a a aijk ip jq kr pqrξ ξ=  with kij kjiξ ξ=  (XII.C_A4)

 
E a a a a Eijkl j ip jq kr ls pqrs qγ γ=  with kijl ikjl kiljγ γ γ= =  (XII.C_A5)

 
a a aijk ip jq kr pqrε ε=  with kij ikj kjiε ε ε= =  (XII.C_A6)

 
a a a a aijklm ip jq kr ls mt pqrstξ ξ=  with kijml kjiml kijlm kmlijξ ξ ξ ξ= = =  (XII.C_A7)

 
c a a a a a a cijklmn ip jq kr ls mt nv pqrstv=  with (XII.C_A8)
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c c c c c c cijklmn jiklmn ijlkmn ijknm klijmn mnijkl ijmnkl= = = = = =  

 
On the one hand, if we demand that the transformations (XII.C_A2)-( XII.C_A8) for the 

operators (XII.C_A1) do not change the material constants, then we ultimately obtain, for 
Lithium Niobate the symmetry relations for the dependent materials constants, as listed below. 
On the other hand, the numerical values for the independent constants were obtained from [13]. 
The independent second order elastic constants 10 210 /N m⎡ ⎤×⎣ ⎦  are: 
 

24.5 0.9 6.033 14 44
20.3 5.3 7.511 12 13

C C C

C C C

= =

= =

=

=
 

(XII.C_A9)

 
The calculated symmetry relations between the dependent and independent second order elastic 
constants are: 
 

0;15 16 25 26 35 36 45 46 34
; ; ;56 14 24 14 55 44
; ; / 2 / 223 13 22 11 66 12 11

C C C C C C C C C

C C C C C C

C C C C C C C

= = = = = = = = =

= = − =

= = = − +

 

(XII.C_A10)

 
The independent third order elastic constants 11 210 /N m⎡ ⎤×⎣ ⎦  are: 
 

29.6 21.2 23.3 5.3333 111 222 112
5.7 2.0 2.5 0.4113 114 123 124
7.8 1.5 3.00 6.7133 134 144 155

6.8 0.3344 444

C C C C

C C C C

C C C C

C C

= − = − = − = −

= − = = − =

= − = = − = −

= − = −

 

(XII.C_A11)

 
The calculated symmetry relations between the dependent and independent third order elastic 
constants are: 

236 336 334 115 116 566 666

346 345 445 446 226 335 145

135 245 136 246 225 146 235
0;125 126 556 555

C C C C C C C

C C C C C C C

C C C C C C C

C C C C

= = = = = = =

= = = = = = =

= = = = = = =

= = = =

 

(XII.C_A12)
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; ; ; ;233 133 255 144 356 134 234 134 223 113
; ; ; ;244 155 355 344 455 444 466 124

/ 4 / 2 / 4; / 2 / 2266 112 111 222 456 155 144
/ 2 / 2; 2366 123 113 224 124 114

/ 2 3 / 2;156 114 124 256 1

C C C C C C C C C C

C C C C C C C C

C C C C C C C

C C C C C C

C C C C C

= = = = − =

= = = − =

= − + − = −

= − + = − −

= + = − / 2 / 224 114
/ 2 / 4 3 / 4;166 111 112 222 122 111 112 222

C

C C C C C C C C

+

= − − + = + −

 

 

 
The independent second order piezoelectric constants 2/C m⎡ ⎤⎣ ⎦  are: 
 

0.2 2.5 3.7 1.331 22 15 33ξ ξ ξ ξ= = = =  (XII.C_A13)

 
The calculated symmetry relations between the dependent and independent second order 
piezoelectric constants are: 
 

34 23 25 26 35
0;36 11 12 14 13

; ; ;32 31 16 22 21 22 24 15

ξ ξ ξ ξ ξ

ξ ξ ξ ξ ξ

ξ ξ ξ ξ ξ ξ ξ ξ

= = = = =

= = = = =

= = − = − =

 

(XII.C_A14)

 
The independent second order piezoelectric constants 2/C m⎡ ⎤⎣ ⎦  are: 
 

17.1; 4.7; 19.9;115 116 125
15.9; 19.6; 0.9;126 135 136
20.3; 14.7; 13.0;145 311 312
10.0; 11.0; 17.3;313 314 333
10.2;344

ξ ξ ξ

ξ ξ ξ

ξ ξ ξ

ξ ξ ξ

ξ

= = − =

= = =

= = =

= − = = −

= −

−

 

(XII.C_A15)

 
The calculated symmetry relations between the dependent and independent third order 
piezoelectric constants are: 
 

346 245 246 334 122 233 134 235

144 316 315 133 124 111 112 113

114 326 216 215 345 155 336 123
0325 226 225 236 166 156 335

ξ ξ ξ ξ ξ ξ ξ ξ

ξ ξ ξ ξ ξ ξ ξ ξ

ξ ξ ξ ξ ξ ξ ξ ξ

ξ ξ ξ ξ ξ ξ ξ

= = = = = = =

= = = = = = = =

= = = = = = =

= = = = = = =

=

=
 

(XII.C_A16)
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; ; ;255 145 214 125 244 145 234 135
; ; ;323 313 324 314 356 314 213 136
; ; ;223 136 224 115 355 344 322 311
/ 2 / 2; / 2 / 2146 115 125 366 312 311
/ 2 / 2; 3 / 2 / 2266 126 116 222 116 126

2

ξ ξ ξ ξ ξ ξ ξ ξ

ξ ξ ξ ξ ξ ξ ξ ξ

ξ ξ ξ ξ ξ ξ ξ ξ

ξ ξ ξ ξ ξ ξ

ξ ξ ξ ξ ξ ξ

ξ

= = = −

= = − =

= − = = =

= − = − +

= − + = − −

3 / 2 / 2; / 2 / 211 126 116 256 115 125
/ 2 / 2212 126 116

ξ ξ ξ ξ ξ

ξ ξ ξ

= + = −

= − +

=

=

 

 

 
The second order independent dielectric constants 1210 /F m−⎡ ⎤⎣ ⎦  are: 
 

389 2571 3ε ε= =  (XII.C_A17)

 
The calculated symmetry relations between the dependent and independent second order 
independent dielectric constants are: 
 

02 1 4 5 6ε ε ε ε ε= = = =  (XII.C_A18)

 
The third order independent dielectric constants 1910 /F m−⎡ ⎤⎣ ⎦ : 
 

2.81 2.40 2.9115 22 33ε ε ε= − = − = −  (XII.C_A19)

 
The calculated symmetry relations between the dependent and independent third order 
independent dielectric constants : 
 

011 12 13 23 14
;24 15 16 22

ε ε ε ε ε

ε ε ε ε

= = = = =

= = −
 

(XII.C_A20)

 
The electrostrictive constants  are: 910 /F m−⎡ ⎤⎣ ⎦
 

1.11; 2.19; 2.32; 1.51;11 12 13 14
0.19; 2.76; 1.85; 1.83;31 33 41 44

γ γ γ γ

γ γ γ γ

= = = =

= = − = = −
 

(XII.C_A21)

 
The calculated symmetry relations between the dependent and independent electrostrictive 
constants: 
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35 36 52 25 61 16 26 34 15
053 54 51 63 64 62 43 45 46

32 31 65 14 42 41 56 41

22 11 23 13 55 44 24 14

21 12
/ 2 / 266 11 12

γ γ γ γ γ γ γ γ γ

γ γ γ γ γ γ γ γ γ

γ γ γ γ γ γ γ γ

γ γ γ γ γ γ γ γ

γ γ

γ γ γ

= = = = = = = = =

= = = = = = = = =

= = = − =

= = = = −

=

= −

 

 

(XII.C_A22)
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 APPENDIX B 
 

This appendix presents the expressions for npΩ , ,  and  as a 

function of the stress dependent material constants , 

Znpqr Ynpqrst Xnpqrstvw
*cijkl

*
mijξ  and *

mnε  of (XII.C_19-21). 

In the formulas below, for notational simplicity, the superscript ‘*’ has been neglected in the 
material constants. Also the superscript ‘0’ has been neglected in the stress tensor components.  
 

{
( )}

{
}

, 1 2 1 2 1 3 1 3 2 2 3 3

1 1 2 2 1 1 3 3 2 3 2 3 3 3 2 2 1 1

1 2 1 3 2 3 2 3 2 3 1 1 1 3 1 3 2 2

1 1 2 2 3 3 1 2 1 2 3 3

2

2

npstvwxz vw z x n p s t n p s t s t p n

n p s t n p t s n p s t pn t s s t t s

vw pn ts zx n p s t x z n p s t x z n p s t x z

n p s t x z n p s t x z

X c c c c c c

c c c c c c c c c

c c c c c c c c c

c c c c c c

ε σ

σ

ε σ σ σ

= − − +

+ + − + + +

+ + − −

+ −

+ 1 2 1 3 2 3 1 3 1 3 2 2 1 2 1 3 2 3

2 3 2 3 1 1 2 3 2 3 1 1 1 2 1 2 3 3

1 1 2 2 3 3 1 3 1 3 2 2 1 1 2 2 3 3

1 2 1 2 3 3 1 2

2

2

n p s t z x vw n p t s vw x z n p t s vw x z

n p t s vw x z n p s t z x vw n p s t z x vw

n p s t z x vw n p s t z x vw n p t s vw x z

n p t s vw x z p n vw

c c c c c c
c c c c c c

c c c c c c
c c

ξ ξ ξ ξ ξ ξ

ξ ξ ξ ξ ξ ξ

ξ ξ ξ ξ ξ ξ

ξ ξ ξ ξ

− +

− − −

+ − +

− + 1 3 2 3 1 2 1 2 3 3

1 1 2 2 3 3 1 3 1 3 2 2 2 3 2 3 1 1

3 3 2 2 1 1

2 2 3 3 1 1 3 3 2 2 3 3 1 3 1 3

s t x z p n vw s t x z

p n vw s t x z p n vw s t x z p n vw s t x z

pn ts z x vw pn t s vw zx p n vw ts zx

pn s t z x vw n p ts z x vw pn t s vw x z n p t s vw zx

c c c c
c c c c c c

c c c c

ξ ξ

ξ ξ ξ ξ ξ ξ

σ σ ξ ξ σ ξ ξ σ ξ ξ σ σ

σ ξ ξ σ ξ ξ σ ξ ξ ξ ξ σ

−

+ − −

+ + +

+ + + −

+ 1 1 2 2 1 2 1 2 2 3 2 3 1 3 1 3

1 2 1 2 1 1 2 2 2 3 2 3 1 1 3 3

n p t s vw zx n p t s vw zx n p t s vw zx p n vw s t zx

p n vw s t zx p n vw s t zx p n vw s t zx p n vw ts x z

c c c c
c c c c

ξ ξ σ ξ ξ σ ξ ξ σ ξ ξ σ

ξ ξ σ ξ ξ σ ξ ξ σ ξ ξ σ

− − −

− + − +

 

(XII.C_B1)

 
{

}
{

2
3 3 2 2 2 2 1 1 , 2 2 3 3

1 1 3 3 1 1 2 2 1 3 1 3 1 2 1 2 2 3 2 3

2
3 3 2 2 2 2 1 1

1 1 3 3 2 2

2 2

3

2 2

npstvw vw pn s t pn s t n p ts n p t s n p s t

n p s t n p s t n p s t n p s t n p s t pn ts

pn t s vw pn t s vw p n vw ts p n vw ts

n p t s vw n p

Y c c c c

c c c c c c c c c c

c c

ρω ε σ σ σ σ

σ σ

ρω σ ξ ξ σ ξ ξ ξ ξ σ ξ ξ σ

ξ ξ

= − + + + +

+ + − − − +

− + + +

+ +

}

3 3 1 3 1 3 1 1 2 2 1 2 1 2

2 3 2 3 2 2 3 3 1 1 3 3 1 3 1 3 1 2 1 2

2 3 2 3 1 1 2 2

t s vw n p t s vw n p t s vw n p t s vw

n p t s vw p n vw s t p n vw s t p n vw s t p n vw s t

p n vw s t p n vw s t

c c c
c c c c

c c

ξ ξ ξ ξ ξ ξ ξ ξ

ξ ξ ξ ξ ξ ξ ξ ξ ξ ξ

ξ ξ ξ ξ

− + −

− + + − −

− +

c c

c

)c

 

(XII.C_B2)

 
(

( )

2 4
1 1 2 2 3 3

2 4
1 1 2 2 3 3

3npst st n p pn n p n p

p n st p n st p n st

Z c cρ ω ε σ

ρ ω ξ ξ ξ ξ ξ ξ

= + + +

+ + +
 

(XII.C_B3)

 
3 6

vw vwε ρ ωΩ = −  (XII.C_B4)
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Chapter XIII Acoustic Microscopy 
 
 

According to the Britannica encyclopedia, a microscope is 
an instrument that produces enlarged images of small 
objects, allowing them to be viewed at a scale convenient 
for examination and analysis. The optical microscope and 
the electron microscope are, of course, well known. The 
acoustic microscope is less known to the wide public. An 
acoustic microscope examines the mechanical properties 
of a material at a microscopic scale. Because the 
mechanical properties of a material contain information 
that is not detectable by means of any other microscope, 
the acoustic microscope is complementary equipment in 
the investigation of materials, in materials science as well 
as for the purpose of nondestructive testing. 
 
 

 

      Traditionally, acoustic microscopes mainly investigate the surface properties 
of materials or at the most the near surface regions. Even though this 
information is very important, it is perhaps not satisfactory for people who 
would like to investigate the interior regions. In the field of ultrasonics, there 
are also so called C-scans, that enable inspection of the interior (the bulk) of 
materials. C-scans are typically formed by means of relatively low frequency 
ultrasound, in the interval between 0.5 MHZ and 15 MHz. These frequencies 
allow deep penetration and are generated by transducers of types that are very 
robust and well known. Nevertheless, for the investigation of thin laminates or 
for the investigation of thin layers within a layered structure, those C-scan 
transducers are not satisfactory, because they produce wave lengths well over 
the characteristic dimensions of the material under investigation. Especially for 
the study of the microscopic structure of fiber reinforced composites, they are 
not suitable. 
     When I was in Delft, on the occasion of the congress “Ultrasonics 
International 2001”, I met Yulia S. Petronyuk and Vadim M. Levin of the 
Institute of Biochemical Physics, of the Russian Academy of Sciences, in 
Moscow. They were working on the development of a new type of acoustic 
microscope, being able to perform C-scans on a microscopic scale. 
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 With their equipment, they were able to produce low aperture focused beams at higher 
frequencies than is used in classical C-scans, still lower than the GHz frequencies that 
are sometimes used in classical acoustic microscopy. After long discussions with them, 
I discovered that the core of their invention, besides the spatial shape of their bounded 
beam, was the (temporal) shortness of the produced pulse. This shortness produced 
very high in-depth accuracy within a layered structure. Because I then had the intention 
to investigate fiber reinforced composites by means of Polar Scans, I could not 
withstand the urge to collaborate with them and to visit their lab in order to investigate 
composites. Due of the fact that their equipment was still under development and 
because I realized at that point that the road ahead for my own study of the interaction 
of ultrasound with composites, was still very long, we decided to postpone our 
collaboration. Finally, in the late summer of 2004, I have been able to go to Moscow 
and to perform the necessary investigations together with them, on fiber reinforced 
composites. These investigations followed long term scientific communications by E-
mail and by standard post. It will be seen in this chapter that the technique can be used 
to ‘visualize’ the interior structure of fiber reinforced composites. Therefore the sole 
section of the chapter deals with so called ‘bulk imaging’ of composites. In the future, 
it is my aim to study this bulk imaging further and to be able to investigate the 
phenomenon of fatigue damage and impact damage inside composites. This study is 
very inviting, because fatigue damage and impact damage are two important fields of 
investigation in our department in Gent. 
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XIII.A Microscopic Bulk Imaging of Fabric 
Fiber Reinforced Composites 

 
 Microscopic bulk imaging combines a newly developed C-scan apparatus and 

sophisticated data acquisition technology, with high quality ultrasonic microscopy 
technology. The system generates ultra short ultrasonic pulses (less than two 
wavelengths long) having a nominal frequency of 50 MHz. The technique is also 
applicable at higher frequencies. The ultrasonic beam is focused, having a relatively 
small aperture. Layer-by-layer imaging of the internal microstructure of carbon fiber 
reinforced composites (CFRC) and glass fiber reinforced composites (GFRC) is 
achievable. The method provides a spatial lateral resolution in the order of 50 microns 
and an in-depth resolution in the order of 80 microns. Echo signals reflected from 
structural units, such as plies, fiber bundles and micro-flaws form acoustic images of the 
microstructure at different depths inside the samples. The images make it possible to see 
ply arrays, the stacking of bundles within plies and the binding material distribution 
within the bulk of the composite. They reveal failures of interply adhesion, buckling of 
single plies and fiber bundles, internal defoliations, disbonds and voids. The series of 
successive images offer outstanding possibilities to reconstruct the bulk structure, to 
estimate local variations of the properties, and the topological and geometrical 
characteristics of the structural components. The imaging technique has been applied to 
study different types of fiber packing – unidirectional, cross-ply and fabric laminates. In 
addition, high-resolution (one micron) acoustic images are also presented at higher 
frequencies, for larger aperture, that allow the investigation of the fiber distribution 
within a single bundle. The images also allow the visualization of the structure of fiber 
bundle crossovers and disbondings at interfaces and the evaluation of the interaction of 
a single fiber with the resin or even elastic characteristics of individual fibers. 
This work was performed at the Acoustic Microscopy Laboratory, Institute of 
Biochemical Physics, Russian Academy of Sciences, Moscow, in collaboration with Yulia 
S. Petronyuk, Vadim M. Levin and Liu Songping 

 
 INTRODUCTION 
 

Perhaps the most famous technique for nondestructive testing of materials, is the classical 
C-scan [1]. The technique applies relatively low frequency sound beams, typically 0.5 MHz to 15 
MHz, having a small aperture. Such C-scans are mostly used to detect large internal flaws in 
laminates. However, to characterize local properties ultrasonically, such as the microstructure and 
microscopic defects in CFRC and GFRC composite laminates (if statements hold for both, we 
will simply call them FRC laminates), very high spatial resolution is needed. The size of a 
probing ultrasonic beam is required to be at least in the range of the structural-element 
characteristic sizes. In classical C-scans [1], this is not the case because the size of the applied 
bounded beam and the applied wavelength are to big. Such beams are therefore not suitable for 
extracting local information of FRC materials, only for global or integral information of 
materials. The spot (size) of the beam in the focal (waist) area can be made very small by using a 
high frequency focused beam. Contrary to classical C-scans, classical acoustic microscopy 
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applies high frequency sound beams, typically 20 MHz to several GHz, that have a very large 
aperture θm.  

Though, for high-aperture beams (θm ∼ 300 - 600), the major part of the incident radiation 
reflects at the upper interface of a solid plate. Only a small part penetrates into the plate. 
Furthermore, the penetrating beam dramatically changes its structure because of refraction 
phenomena. Therefore, only a minute portion of the incident energy participates in the formation 
of signals reflected from the lower interface of the plate and obstacles situated within the bulk. In 
fact, the signal to noise level of the relevant echo signals is far too small to be detectable. 
Therefore, high-aperture focusing systems are applied only for studying the surface and near 
subsurface regions. 

Employment of large aperture, high frequency ultrasound (0.25 – 2.0 GHz) makes it 
possible to achieve a resolution of 0.5 µm to 100 µm. An overview of the technique and 
applications of acoustic microscopy, can be found in refs [2-10] and also to some extent in the 
32nd volume (2nd issue) of the IEEE-UFFC Journal in 1985. Classical acoustic microscopy has 
always been used to study surface or near surface characteristics [11, 12] or coatings [13-17]. In 
classical acoustic microscopy, often a so called V(z) curve is measured and studied [18-33] for 
harmonic waves, and reveals the surface structure [21, 29, 34] and properties [29]. There is a firm 
relationship between classical acoustic microscopy and surface wave properties. These surface 
waves are generated because of the very high aperture and their properties reveal specific local 
surface quality [35-37]. 

Classical acoustic microscopy is also commonly used to extract the local elastic features 
of materials [38-45] and is therefore also applicable to extract stress properties [46] such as in the 
case of the acousto-elastic effect [47]. If classical acoustic microscopy is applied in transmission 
instead of reflection, the averaged through thickness properties are studied at a very high lateral 
resolution [48]. 

Besides measuring V(z) curves, it is also possible to measure the time of flight in the case 
of pulses. The technique has for example been applied to extract local stiffness properties in 
composites [49-50, 34].  

The experimental equipment described in the current paper is able to perform time-of-
flight measurements in a combination of relatively low aperture and high frequencies, typically 
between 50 MHZ and 300 MHz. It can be used in a C-scan mode and results in a very high in-
depth resolution because of (contrary to other established systems) the generation of extremely 
short acoustic pulses. Some astonishing results have been obtained in the characterization of 
fullerene ceramics [51]. Nevertheless, the topic of this paper is imaging of the bulk of the 
materials by using this ‘very short pulse’ acoustic microscopy equipment. The difference between 
measuring and imaging can be found in [52]. 

Imaging in acoustic microscopy has always been limited to imaging surfaces [21, 11, 36, 
53, 12, 54] in the case of very high frequencies, or, to imaging of the bulk of a material in the 
case of relatively low frequencies [52, 54-58]. This is an important drawback that is overcome 
with the equipment applied in this Chapter XIII. Actually, the reason for the fact that high 
frequency ultrasound is not so popular for bulk imaging is the fact that, formerly, transducers 
were relatively narrow banded, and due to damping within the material, this narrowness is further 
enhanced, resulting in a diminished resolution in the depth of the material. This effect is less 
outspoken for lower frequencies. If however broad bandwidth, high frequency, transducers are 
used, which is the case in our equipment, after damping within the bulk of the plate, the 
bandwidth is still large enough to preserve fairly good in depth resolution. 
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For completeness, it is important to note that there also exists the imaging technique of 
scanning tomographic acoustic microscopy [59-61], where high frequency plane waves are 
applied, in combination with a laser. However, the technique is not really suitable for highly 
complex materials such as multilayered multidirectional carbon fiber reinforced materials. 

This section XIII.A is structured as follows: First, a short theoretical background will be 
presented on how an incident focused sound pulse is transformed into a reflected pulse after 
interaction with an isotropic homogeneous solid plate, immersed in water. This information is 
important, because the pulse shape plays an important role in the interpretation of A-scans, B-
scans and C-scans. Even though the presented microscopy equipment can also be applied for 
extraction of quantitative properties, such as time of flight and hence also the stiffness, the goal 
of this report is to explain the imaging technique and to show how it is able to visualize the 
internal structure of FRC laminates with a resolution comparable to the size of the minuscule 
fiber bundles inside. Therefore, a short description of the equipment and its capabilities will be 
given, followed by a thorough study of images of the internal structure of different FRC 
laminates. 

The importance of imaging the internal structure of FRC laminates is diverse. Through 
contacts with different FRC manufacturers, we were asked to develop a technique to ‘see’ the 
internal structure in order to detect bad contacts between fibers and resin, in order to detect initial 
micro cracks due to inhomogeneous shrinking during the fabrication and much more. On the 
other hand, the technique is really important for materials scientists as well, for obvious reasons. 
Our department is also on the leading edge in fatigue testing and its respective modeling through 
finite element methods. Unlike macroscopic elasticity changes, as was reported in [1, 62], 
knowledge of the initial microscopic aspects, during the first cycles of fatigue testing, is 
indispensable. 
 
 THEORETICAL BACKGROUND 
 

Specific features of the interaction of ultrasound with a layered structure of fiber 
reinforced laminates and possible mechanisms of acoustical contrast, are discussed in this 
section. 
Acoustic images are formed by means of echo signals reflected at both faces of a plate and at 
internal interfaces within the interior. In order to visualize the bulk microstructure, and in order to 
understand the formation of acoustic contrast, it is necessary to know what structural elements are 
able to generate reflected or backscattered echo signals, it is indispensable to know whether these 
signals can be resolved by the receiving microacoustical system (acoustic microscope) and it is 
essential to know what structural parameters establish the level of the ultrasonic echoes. 

The interaction of ultrasound with layered fiber reinforced media critically depends on the 
relationship between the wavelength of the probe radiation and the characteristic sizes of the 
structural elements of the material. A material is perceived by low-frequency (long-wave) 
ultrasound as a homogeneous medium. Such an object may be characterized by a set of elastic 
moduli that are expressed through the densities of the composed material and ultrasonic 
velocities. The presence of the microstructure directly not only results in background scattering, 
but also determines indirectly the overall elastic and viscoelastic properties of the composite. 
Therefore, low frequencies (10 MHz to 15 MHz) are commonly used to visualize large-scale 
defects inside the laminate, or to measure the overall elastic properties of fiber reinforced 
composites [1]. 
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Contrary to low frequency ultrasound, high-frequency ultrasound is essentially susceptible 
to inhomogeneities within the bulk of the material and effectively reflects and refracts at 
interfaces between structural elements having different mechanical properties.  
The frequency range of 25 MHz up to 100 MHz, which has been employed in our experiments, 
provides a sensibility in the range of 100 µm up to 150 µm for the visualization of the bulk 
structure elements.  

Perhaps the most important aspect of fiber reinforced composites, that is accessible for 
high frequency imaging, is the set of individual lamina. Microscopic imperfections and anomalies 
of the lamina stacking, can be resolved. The interface between the immersion liquid and the solid, 
the interfaces between different plies, the interfaces between lamina and separate resin and the 
boundaries between defects and plies, are outstanding examples of what is accessible by the 
presented technique.  

In Fig. XIII.A_1, the possible origins of ultrasonic pulse reflection, inside a fiber 
reinforced laminate structure, are illustrated. The upper face and the bottom of a plate are the 
most outspoken sources of echo signals (Fig. XIII.A_1.a). Furthermore, each ply-ply interface on 
itself (Fig. XIII.A_1.b) is an independent source of echo pulses. Ultra-short probe pulses, having 
a temporal width of approximately 30 ns to 40 ns, provide sufficient time resolution that enables 
one to distinct between echoes reflected from interfaces of neighboring plies, because the 
characteristic delay time between such echoes is typically between 70 ns and 100 ns. In addition, 
locally, within a fiber reinforced composite, the ply stacking produces sufficiently thick (150 µm 
to 300 µm) intermediate resin layers (Fig. XIII.A_1.c). Then, each boundary of the intermediate 
layer is again a source of a reflected echo pulse.  
 

 
Fig. XIII.A_1: Feasible types of ultrasonic reflection in FRC laminates: a) – reflection at immersion /carbon 

fiber ply interface; b) – reflection at ply/ply interface; c) – reflection at carbon fiber ply/resin layer interface; d) – 
reflection at defect boundary. 
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Besides, it also occurs that the resin matrix, in between layers, contains particular 
elements of fiber reinforcement, such as individual threads or large locks of fibers, isolated from 
a bundle. Also these structural components generate echo signals, again, due to reflection of the 
ultrasonic probe pulse at their interfaces with the resin. Because the mechanical characteristics of 
these components are close to the ones of a prepreg ply, their resulting echoes are mixed with the 
information coming from the neighboring ply–resin interface. 

Apart from the lamina structure containing an arrangement of fiber reinforcing elements, 
fiber reinforced laminates may also contain common imperfections such as faults and inclusions. 
Most of these imperfections are caused by failure of the material integrity, resulting in 
delaminations at the interply interfaces, cracks of various orientations with respect to the 
direction of ply stacking, and voids. The significant difference in acoustic properties between the 
faults and the surrounding matter, provides total reflection of the probe beam from the 
imperfection boundaries and results in the formation of so called shadow zones underneath the 
defects (Fig. XIII.A_1.d). Yet another type of frequently present elements are inclusions of alien 
material, such as glass or polymer threads in stitched composite materials. Whenever the 
difference in acoustic properties of the inclusions and the overall laminate is significant, high 
efficiency of reflection (sometimes close to unity) and the formation of shadow effects arise, that 
are similar to the effect of extensive imperfections such as voids and delaminations.  

The mechanisms of contrast formation in acoustic imaging will be explained further on in 
more detail for different types of fiber reinforced composites, while presenting the experimental 
results. 
 
 EXPERIMENTAL EQUIPMENT 
 

Fig. XIII.A_2 is the schematic diagram of the experimental setup. The system mainly 
consists of four parts: the electronic unit, the mechanical scanning unit, the acoustic focusing 
system and the host computer. Ultra-short repetitive probing focused pulses, of 30 ns to 40 ns 
width, are generated by a high frequency (HF) transducer, attached to an acoustic lens. The 
combination is called the acoustic head. The acoustic head is constructed as a rod of melted 
quartz with a flat transducer on the one end and a spherical surface on the other end. In our 
experiments, the length of the rod is 30 mm and the diameter is 10 mm. The transducer is a Y-cut 
Lithium Niobate crystal, 6 mm in diameter. 

The thickness of the transducer provides an operation frequency of 50 MHz. In order to 
generate extremely short pulses, a special backing on the ‘free side’ of the transducer, that 
critically damps vibrations of the transducer, is applied. So, the quality of this backing is mainly 
responsible for the high quality of the experimental setup. As a consequence, the resulting 
bandwidth is highly increased and spans approximately 30% to 50% of the central frequency for 
a 25 MHz to 100 MHz transducers. To be precise, as a result of the backing characteristics, the 
frequency band is a little bit asymmetric and spans further in the low frequency range than in the 
high frequency range. For a 50 MHz transducer, the pulse length is 35 ns, which is slightly longer 
than would have been in the case of a perfectly symmetric frequency band. The acoustic lens 
consists of a spherical surface with a diameter of 5 mm, which is less than the diameter of the 
rod. The radius of the spherical curvature is 10 mm. The aperture angle Mθ  is 110 and provides a 
focal distance in water of 13.3 mm. 
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Fig. XIII.A_2: Schematic diagram of the experimental set-up. 

 

cture for post-processing and 
image 

ture of fiber reinforced materials. The B-scans have been applied to visualize cross 
sections.  

In our experiments, the reflection mode of operation is used. In this case, the signal, 
reflected from the specimen, is received by the same acoustic lens. Then, the outgoing signal is 
fed to the HF amplifier and ADC in the electronic unit for amplifying and digitizing. Its sampling 
rate is 200 MHz. The digitized echo signals are sent to the host computer via the interface for 
processing, displaying and imaging. The specimens are immersed in a fluid. Distilled water is 
used in the reported experiments. The scanning motions are driven by step-motors, which are 
controlled by the electronic unit. In the experiments, the motor step is 0.05 mm. The scanning 
parameters and signal processing parameters, such as the size of the scanned area, the signal gain, 
the time-scale, etc., are stored as part of the header in the data stru

reconstruction when the specimen is scanned along a raster. 
Different imaging (B- and C-scan imaging) can be performed by 1D or 2D motion of the 

acoustic lens over the specimen. The 3D imaging technique is based on layer-by-layer scanning 
at different depths. A successive series of C-scans has been employed to characterize the bulk 
microstruc
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 DESCRIPTION OF THE ACQUISITION METHOD 
 
 Characteristics of the ultrasonic focused beam and the influence of the aperture 
 

A high spatial resolution, focused beam can be obtained from parallel plane waves by 
designing a proper lens, as sketched in Fig. XIII.A_3. The parallel plane waves can be excited 
from a plane transducer.  
 

 
Fig. XIII.A_3: Schematic illustration of the focusing of a beam 

 
A convergent beam is generated when the parallel ultrasonic beam passes through the spherical 
surface of the lens because of refraction of the acoustic rays. Such a focusing transducer, formed 
by a spherical acoustic lens, produces sound, characterized by a focal distance, depending on the 

‘lens-immersion acoustic property ratio 
υ
c ’ and the aperture angle of the lens Mθ , given by [6] 

 

1

rfL c
υ

=
−

, 
(XIII.A_1)

 
where υ  is the sound velocity in the lens (solid buffer rod),  is the sound velocity in the 
immersion fluid, and 

c
r  is the radius of the spherical surface (curvature) of the lens. This 

expression (XIII.A_1) is obtained from ray-considerations and application of Snell’s law. The 
aperture Mθ  of the lens is expressed by [6] 
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where 0θ  and Mθ  are defined in Fig. XIII.A_3. Of course, the real structure of a focused beam 
also depends on the wavelength of the applied ultrasonic radiation. The length of the focal 
waist  and the diameter of the focal spot  are the main parameters that characterize a focused 
ultrasonic beam. They can be expressed in terms of the wavelength 

wf sf
λ  as [6] 
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Depending on the application, the aperture angle Mθ  and the wavelength λ  can be 

adapted in order to reach optimum conditions. A lens with larger aperture results in a smaller 
focal spot and therefore an increased lateral resolution. It provides high resolution acoustic 
imaging and local measurement, though only in the region of the surface or the near-subsurface. 
This is due to a short focal waist, which is dramatically distorted inside the body of the 
investigated specimen. The correlation between the aperture Mθ  and the length of the focal waist 

 as well as the diameter of the focal spot  are shown in Fig. XIII.A_4. The latter figure 
shows the relative size of the focal spot and the focal waist, for a small and a large aperture 

wf sf

Mθ . 
For example, for an aperture  , the focal spot size is 0 05 ,11Mθ ⎡∈ ⎣ ⎤⎦ [ ]2 ,7sf λ λ∈  and the focal 

waist is [ ]58 ,109wf λ λ∈ . On the other hand, for an aperture 0 030 ,50Mθ ⎡ ⎤∈ ⎣ ⎦ , the focal spot size 

is sf λ≈ , whereas the focal waist is [ ]5 ,15wf λ λ∈ . So, in the case of a low-aperture, the lateral 
resolution (size of the focal spot) decreases in comparison with the high-aperture case, though 
this increase is not as dramatic as the increase of the penetration depth (the focal waist). 
Therefore, a convergent ultrasonic beam with a long focal waist is suitable to extract information 
about bulk elasticity, as well as for bulk imaging. 
 
 The aberration effect 
 

When a convergent ultrasonic beam propagates towards a fluid/solid interface (plane-
parallel), aberration of the convergent beam will arise from refraction of wave rays at the 
fluid/solid interface, as is schematically illustrated in Fig. XIII.A_5. The focal distance  in the 
solid will become shorter than in the fluid  due to refraction of the convergent beam at the 
fluid/solid interface. 

Lf

vf

In addition, the length of the focal waist  will also decrease compared to the case when 
there is only fluid 

wf
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Fig XIII.A_4: Illustration of focusing systems with different apertures. Left: low aperture focusing system, right: 

high aperture focusing system 
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The size of the focal spot in the solid  will increase due to refraction and aberration 
at the fluid/solid interface, and it can be expressed approximately by [6] 

solid
sf

 

( )
1

2 222 21 0.613
24

c fvsolid s bf hs hfa

λ
⎧ ⎫⎡ ⎤ ⎛ ⎞⎪ ⎪−⎢ ⎥⎪ ⎪⎜ ⎟= +⎨ ⎬⎢ ⎥ ⎜ ⎟⎜ ⎟⎪ ⎪⎢ ⎥ ⎝ ⎠⎣ ⎦⎪ ⎪⎩ ⎭

 

(XIII.A_5)

 
where the parameters af , bf  and h  are shown in Fig. XIII.A_5, and sλ  is the wavelength in the 
solid. Thus, the in-depth resolution will decrease with the lens moving down towards the 
specimen. 
 

Fig. XIII.A_5: Aberration of a convergent beam at a fluid/solid interface. 
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 Received pulse characteristics 
 

The pulse signal, which is received by an acoustic lens after reflection from the solid 
plate, can be expressed by [3] 
 

2 2 2V( , ) 2 ( , ) , exp 2 i tt z B f k k R k k iz k k k dk dk e dx y x y x y x y
ωπ ωω

⎛ ⎞⎛ ⎞ −= − −∫ ∫∫ ⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠
 

(XIII.A_6)

 
 z is the ray distance from the transducer to the surface of the specimen; 

ω  is the angular frequencies; 
Bω is the mean efficiency of the transducer at the frequency ω; 
k
G

2 2 2( , , )x y x yk k k k k− −  is the wave vector of the beam spatial spectrum components; 

( )yx kkR ,  is the partial reflection coefficient from the plate; 

( ) ( ) ( ), ,in out
x y x y x y,f k k P k k P k k= ⋅  is the aperture function, where ( , )out

x yP k k  is the 

angular spectrum of the output from the plate, and ( ),in
x yP k k  is the angular spectrum of 

the input coming from the acoustic lens. 
 

As is seen from expression (XIII.A_6), the properties of the specimen are incorporated in the 
reflection coefficient ( )yx kkR , , which is, from a mathematical point of view, real valued, because 
the employed low aperture does not involve critical angles. The partial reflection coefficient 
( )yx kkR ,  can be expressed as [3]: 
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(XIII.A_7)

 
where  is the reflection coefficient of longitudinal waves from the first interface 

(measured from the upper face of the specimen), where 

(1R ,L x yk k

( )2R ,L x yk k  is the reflection coefficient 

of longitudinal waves from the consequent interface, and so on. The value Md  is the distance 
between interface M and interface M-1. The value  is the longitudinal wave velocity between 
interface M and interface M-1. 

LMc

The harmonic functions in (XIII.A_7) describe the time of flight for the longitudinal 
waves in each composite layer. If the duration of the probe pulse is short enough, the echo pulses 
from each individual interface can be resolved, and can be employed for layer-by-layer imaging. 
The contrast of the ultrasonic imaging of the composite layers is then determined by the 
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reflection coefficients ( )yxS kk ,R , ( )1R ,L x yk k , ( )2R ,L x yk k  and so on. Because of the long focal 
waist and the low aperture, and because longitudinal waves propagate faster than shear waves, 
the obtained echo is primarily determined by the reflection coefficient of longitudinal waves. For 
the applied case of normal incidence, the reflection coefficient LMR  at the interface M, is given 
by [63] 
 

Z ZM MRLM Z ZM M

δ δ

δ δ

−+ −=
++ −

 
(XIII.A_8)

 
where JZ  is the acoustical impedance in the layer above the interface M ( J M δ= − ) or the 
acoustical impedance in the layer underneath the interface M ( J M δ= + ). Then, the 
transmission coefficient  is given by [63] LMT 1LM LMT R= + . 
For the task of measuring the amplitude of the ultrasonic reflection in composite media, for 
different types of interfaces, our experimental setup can be applied.  
 
 acoustic imaging method for CFRC laminates 
 

The study of the bulk microstructure of fiber reinforced composites is conducted by 
employing a micro-acoustic system, which is schematically presented in Fig. XIII.A_2. The 
reflected signal is received by the same focusing lens in a pulse-echo mode. The signal is 
digitized and stored in the equipment’s memory together with the coordinates of the point where 
the measurement has been performed. The measurement is repeated for each subsequent point of 
the scanning field. It is possible to represent the stored data on the computer display in different 
ways, such as A-scan, B-scan and C-scan.  
In the A-scan, besides the echo reflected at the upper surface of the plate (signal F), the received 
pulse series also involves signals reflected from the bottom of the plate (B) as well as from the 
internal microstructure and defects or elastic irregularities inside the bulk (Di). Contrary to long 
pulses, when short probe pulses are employed (Fig. XIII.A_6), echo signals resulting from 
reflection at different depths within the bulk, are resolved in time (Fig. XIII.A_7). The echoes B 
and Di are formed by a round-trip phenomenon of the longitudinal elastic wave pulse inside the 
specimen to a reflector (e.g. a defect) and back.  
 

 

 
 
 
 
 
 
 
 
 
 
Fig. XIII.A_6: Probe pulse generated by the low-
aperture acoustic microscope (of the Acoustic 
Microscopy Lab., RAS; operation frequency of 50 MHz 
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Fig. XIII.A_7: Received signal in the low-aperture acoustic microscope (of the Acoustic Microscopy Lab., RAS; 

operation frequency of 50 MHz). The echo pattern: F; the signal from the face: B; the pulse from the bottom: Di; 
the echo from elements of the bulk microstructure (unidirectional CFRC composite 1.21 mm thick with 

intermediate resin layer of 210 µm). 
 

The time intervals (delay times) τi between the reference pulse F and other echo pulses, 
define the depth position di of the i-th internal reflector: iLi cd τ⋅⋅= 2

1 , where cL is the velocity 
of longitudinal elastic waves in the object material. Measuring delay times allows one to find 
depth positions for respective elements of the bulk microstructure. 

The recorded signal at each point of the scanning area (A-scan) is saved and used to form 
acoustic images. There are two main ways of image formation. In both cases, the imaging is 
controlled by a system of electronic switches, called the electronic gate (see Fig. XIII.A_8). The 
gate makes it possible to choose a delay time interval and to work with signals only within the 
chosen interval. B-scans (Fig. XIII.A_9) are formed by recording the entire signal within the 
electronic gate for each spot along a strait position scanning line. The scanning position 
corresponds then to the x-axis; whereas the delay time (transformed depth position) is plotted as 
ordinate. The time-dependent magnitude of the echo signal is represented by a grey scale. 
Usually, B-scans consist of straight and curved lines and spots and they display the in-depth 
distribution of internal interfaces. A B-scan can be treated as a cross-section image of the 
specimen’s elastic microstructure. 
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Fig. XIII.A_8: Formation of B-scans: structure of the echo signal and electronic gate position (CFRC composite 

with intermediate resin layer: 1, 2 – resin layer top and bottom. 
 

 
Fig. XIII.A_9: Formation of B-scans: respective B-scan (CFRC composite with intermediate resin layer: 1, 2 – 

resin layer top and bottom. 
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Whereas B-scans are formed by 1D scanning (along a straight line), C-scans (Fig. 
XIII.A_10) are formed by 2D scanning on a chosen surface, and are formed as grey-scale images 
displaying the maximum of the echo-signal amplitude within a short time interval defined by the 
electronic gate. C-scans reproduce the internal microstructure within a certain layer at a definite 
depth inside a plate. The gate position and its width are tuned; therefore the object structure may 
be displayed at any depth inside the bulk of the plate by changing the electronic gate position. A 
series of acoustic images in parallel sections (B- and C-scans) can be obtained for the 
visualization of the bulk microstructure of the entire plate. The series of planes makes it possible 
to restore the 3D microstructure of the interior of an object. This formation can be called the 
pseudo-tomographic mode of acoustic imaging and differs from actual tomography [59-61] in 
that only the normal incidence direction is considered. 
 

 
Fig. XIII.A_10: Formation of successive series of C-scan acoustic images. 
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The earlier described experimental setup enables one to obtain a resolution, both lateral and in 
depth, that makes the structural elements of CFRC laminates and their possible flaws and 
anomalies, resolvable. Furthermore, the penetration depth is of the order of 2 mm to 4 mm, 
whence, for most applications, the plates are examinable through their complete bulk. 
Time-of-flight measurements of ultrasonic ultra short pulses uncover the depth of reflectors and 
the amplitude of the pulses depends on the nature of the encountered structural elements.  
If we consider a C-scan of a certain depth, then differences in the recorded amplitude within the 
corresponding electronic gate, produce contrast. This contrast is the key feature of the ‘imaging’ 
process.  

All A-scan signals are digitized and stored in the storage medium for post-reconstruction 
of the bulk microstructure of the specimen in B-scan imaging. Local RF echo signal patterns can 
be obtained exactly corresponding to a position in the B- and C-scan images by dragging the 
mouse cursor to the position of interest if necessary. Then, the transducer is moved automatically 
to the corresponding location in the specimen under the control of the host computer. Therefore, 
the combination of successive series of C-scans and B-scans provides three-dimensional scanning 
acoustic imaging to study and observe the bulk microstructure of CFRC laminates. 
 
 DESCRIPTION OF THE SAMPLES 
 
In this report, we consider 4 FRC specimens:  
 
 Pure unidirectional carbon fibers in Bismaleinide resin 
 

The laminate consists of a stacking of unidirectional prepreg layers as 
[00/00/00/00/adhesive film]2s with an adhesive layer in the middle. The resin is of the 
Bismaleimide resin QY8911 family, whereas the carbon fibers are of the T300 style. Each 
prepreg layer is 0.125mm thick, whereas the complete thickness after curing is 1.17 mm 
 
 unidirectional and cross-ply fabric carbon fibers in Poly Phenyl Sulphide 
 

The laminate consists of layers of carbon fibers of the type 3K HT JB, arranged as a 5-
harness satin weave fabric, in Poly Phenyl Sulphide (PPS) resin. Each layer has a thickness of 
about 0.3 mm. The layers are stacked as [0°]8 for the unidirectional sample and as [0°/90°]2s for 
the cross-ply specimen. The total thickness of the laminate is 2.38mm. Furthermore, the number 
of fiber bundles is 70 per 10cm. 
 
 unidirectional fabric glass fibers in epoxy 
 

The laminate consists of layers of glass fibers of the type Roviglass R17/475, arranged as 
a 3-harness satin weave fabric, in epoxy resin. Each layer has a thickness of about 0.375 mm. The 
layers are stacked as [0°]8. 
 
 RESULTS 
 

The main elements of the regular microstructure of FRC laminates to be visualized are 
interfaces between individual components of the internal microstructure, i.e. plies, fiber bundles 
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and threads, large locks of fibers integrated into bundles. Surfaces of all these elements are 
irregular and rough, therefore contacts between them is never perfect. Actually, contacts are 
provided by interspaces filled by resin, see Fig. XIII.A_11.  
 

 
Fig. XIII.A_11: Mechanism of contrast for regular microstructure in FRC laminates: There is echo formation at 

resin interspaces. 
 
Ultrasound of high frequency is susceptible to such microscopic interfaces. The efficiency of the 
reflection critically depends on the resin interspace thickness d. The reflection coefficient varies 
from 0 for tight contact up to 0.4 for an interspaced thickness of ≈ 13 µm. Because the plies are 
always rough, the resin thickness between plies has a spatially varying thickness. Imaging will 
therefore result in varying grey scale within a fixed layer depth. Therefore, the micro-relief of the 
ply-ply interface, caused by thickness modulation as a result of particular fiber locks and bundles, 
makes it possible to see the packing of plies, the fiber bundle configuration in individual plies 
within each ply, the fiber orientation in an individual bundle and variations in the distribution of 
adhesive resin thickness between neighboring plies. This phenomenon provides the mechanism 
of acoustic contrast for the display of topological peculiarities of the bundle arrangement as well 
as for imaging defects of ply and fiber bundle stacking, buckling, lamina folds and corrugations, 
pleats ruptured bundles and locks. Acoustic images excellently display failures of material 
integrity, such as voids, interply delaminations, defects of adhesion for individual bundles, 
cracks, porosity and also inclusions.  

In the examples discussed further on, the width of the electronic gate that controls the 
imaging of individual layers, has been taken minimal (20 ns to 40 ns, resulting in a spatial 
interval of 60 µm to 120 µm) in order to optimize visualization of the transition from one ply to 
another. 
 
 Pure unidirectional carbon fibers in bismaleinide resin 
 

The sample characteristics are described in previous section. The series of C-scan images 
in Fig. XIII.A_12 gives the internal structure of a composite system composed of two 4-ply 
unidirectional CFRC plates with intermediate resin layer (Fig. XIII.A_12a). The series represents 
the 3D specimen microstructure from its polished face (image #0) up to its unpolished bottom 
(#7). Images # 1-2 of the upper part of the compound plate display small variations of bundle 
orientation in different plies of stacking and the occurrence of buckling in the ply packing. 
Images #3-6 include transition zones nearby the upper (#3-5) and the lower (#4-6) boundaries of 
the resin layer. Both interfaces include extended voids that are absolute reflectors for ultrasonic 
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radiation. We see these voids as bright areas in pictures #3-6 and their shadows in the image #7 
of the specimen’s bottom. 
 

Fig. XIII.A_12: Bulk microstructure of a unidirectional CFRC laminate compound. a) –sample structure -  upper 
and lower parts of 4 prepreg plies (d1= d2= 0.48 mm) separated by the resin ribbon (dr= 0.21 mm); b) –series of 
acoustic images of the bulk microstructure at progressively increasing depth from the specimen face (0) to the 

bottom (7). 
 
 unidirectional and cross-ply fabric carbon fibers in Poly Phenylene Sulfide 
 

The characteristics of the samples are given earlier. Fig. XIII.A_13 corresponds to the 
unidirectional case, whereas Fig. XIII.A_14 corresponds to the cross-ply case. Each of those 
figures are composed of C-scan images at different depths, beginning with the upper surface (#1) 
and ending with an image of the bottom (#12). 
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Fig. XIII.A_13: C-scan images at different depths, beginning with the upper surface (#1) and ending with an 
image of the bottom (#12), for unidirectional fabric carbon fibers in Poly Phenylene Sulfide (PPS). 
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Fig. XIII.A_14: C-scan images at different depths, beginning with the upper surface (#1) and ending with an 
image of the bottom (#12), for cross-ply fabric carbon fibers in Poly Phenylene Sulfide (PPS). 
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The main contrast originates from the inhomogeneous distribution of matrix material 
because of the non-flat topology of fiber bundle weaving. Bending of weft and warp bundles 
within an individual fabric ply results in the formation of thick interspaces filled by polymer 
binding, i.e. resin pockets. Enlarged thickness of the pockets provides an elevated level of 
ultrasonic reflection from these areas. So, acoustic images of woven composites reflect a regular 
distribution of resin pockets that are different at various depths inside the specimen.  
Note that the symmetry is visible for the different layers and that it is easy to distinguish between 
the unidirectional system and the cross-ply system. Because of the relatively small difference 
between acoustic impedance of the resin and the fibers, a very deep penetration depth is realized 
with preservation of contrast during imaging. Therefore, high quality images are obtainable up to 
the lower layers. 
 
 
 unidirectional fabric glass fibers in epoxy 
 

The characteristics of the sample are given earlier. Fig. XIII.A_15 is composed of three C-
scans. The upper part corresponds to the upper interface, the middle corresponds to a position 
within the bulk, whereas the lower part corresponds to an image of the lower interface. It is clear 
that the images miss contrast. The reason is the strong difference in acoustical impedance 
between glass fibers and the resin. This results in fairly high reflectivity on the upper fibers and a 
lack of energy penetrating deep into the specimen. Therefore, even though the lower surface is 
possibly visualized, the technique does not work as excellent for this kind of material as in the 
case of carbon fibers in PPS. 
 
 

To demonstrate potentialities of high-resolution acoustic microscopy, optical and acoustic 
images of the fine structure of a carbon fiber bundle crossover in zones of interweaving of 
bundles are given in Fig. XIII.A_16.  
The acoustic images have been made with the wide-aperture acoustic microscope Elsam (Leica, 
Germany; frequency range of 100 MHz – 2000 MHz); for operation frequencies of 100 and 400 
MHz. As it is seen from the pictures, acoustic images make it possible to see details of the bundle 
intersection. 
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Fig. XIII.A_15: C-scan images at different depths for 
unidirectional fabric glass fibers in epoxy. The upper 
part corresponds to the upper interface, the middle 
corresponds to a position within the bulk, whereas the 
lower part corresponds to an image of the lower 
interface. 
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 Additional experiments for fabric carbon fibers in Poly Phenylene Sulfide 
 

Fig. XIII.A_16: Fine structure of a bundle crossover: upper row – crossing two bundles (a.-optical image; b.- 
high-resolution acoustic image of the surface structure, f = 400 MHz; c1.–c3. - acoustic images of the surface and 

the subsurface microstructure of a bundle interweaving at increasing depth inside the subsurface zone), f = 100 
MHz; lower row – crossing of three bundles (a.-optical image; b1.–b4. - acoustic images at an increasing depth in 

the subsurface zone, f = 100 MHz). 
 
 CONCLUSIONS AND PROSPECTS 

 
A short overview of the existing literature on this subject, has been given. We have 
described what possible causes of internal reflections are possible. The main physical 
properties of focused beams are given, together with a short description of the aberration 
effect. The experimental equipment is described, as well as the data acquisition method 
for A-scans, B-scans and C-scans. Results are shown for different samples. We have 
shown that the method is much more fruitful for CFRC laminates than for GFRC 
laminates. For reasons of completeness, we have also shown the capability of classical 
acoustic microscopy in a pulse-echo mode, to image the surface structure of fiber 
reinforced composites.  
In the future, the technique of micro-acoustic bulk imaging will be further developed. 
Additional studies on laminates containing fatigue damage and impact damage, are also 
planned. 
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Chapter XIV Exotic Topics 
 
 

According to Webster’s dictionary, the word ‘exotic’ 
means ‘attractively strange’. I believe that this is the exact 
reason why the subjects in this chapter caught my 
attention. 

 

      In the field of ultrasonics, the Schoch effect is very well known. The effect 
consists of the splitting of a bounded beam, reflected from a solid plate. When 
performing Schlieren experiments, suddenly I noticed that one of my glass 
samples resulted in a strange counterpart of the Schoch effect, never described 
before. I saw a reflected beam, split in three parts instead of two. Furthermore, 
the position of the three parts was such that one was forward displaced, another 
one was backward displaced and the third one was situated in-between. This 
remarkable phenomenon is now well known as the double sided bounded beam 
displacement. It is described in section XIV.A of this chapter 
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XIV.A The double sided ultrasonic beam 
displacement 

 
 It is a well established idea in optics as well as in ultrasonics that a bounded 

Gaussian beam, when reflected from an interface, can be displaced in the 
forward or in the backward direction, depending on the propagation direction 
of leaky waves that are generated by the incident beam. Such a displacement is 
often accompanied by the so called Schoch effect characterized by a null strip 
in between a specular and a nonspecular reflected beam, and a trailing field 
that is much further displaced. The current paper shows experimentally and 
numerically that a simultaneous forward and backward displacement is 
possible accompanied by two null strips and being only the result of forward 
propagating Lamb waves. 
The contents of this section have been published as: Nico F. Declercq, Joris 
Degrieck, Oswald Leroy, "The Double Sided Ultrasonic Beam Displacement", 
Appl. Phys. Let. 85(18), 4234-4236, 2004 (Imp. Fact. 4.207; SCI-index, Physics-
Applied, rank:3/76) 

 
In optics, the Goos-Hänchen theory predicts a lateral displacement of a light beam that is 

internally reflected from a dielectric interface [1].  This phenomenon appears when incident from 
an optically denser medium at an angle close to the critical angle, resulting in the transfer of a 
portion of the energy into the rarer medium by means of excitation of an electromagnetic field 
that travels along the interfae. This energy leaks back into the denser medium and becomes part 
of the reflected beam exhibiting a lateral displacement that appears as a forward beam shift. This 
was studied by Tamir and Bertoni [2]. The early experiments of Schoch [3-5] applying the 
acoustic analog of the Goos-Hänchen effect for an acoustic beam reflected from a liquid-solid 
interface showed a forward lateral displacement of the reflected ultrasonic beam. It has been 
shown before [6-8] that a backward displacement of an ultrasonic beam is also possible when 
backward propagating surface waves are stimulated on periodically rough surfaces. The 
expression ‘null strip’ was mentioned in Neubauer and Dragonet [9]. The effect consisting of 
both a forward and a backward displacement on a smooth interface, accompanied by two null 
strips, has never been observed and has certainly never been published before. The experiments 
in this paper are performed by means of a Schlieren experimental setup [10] and the liquid/solid 
interfaces are smooth. 

There is an unwritten law that whenever leaky Rayleigh waves or leaky Lamb waves are 
generated by means of an incident bounded beam, the Schoch effect occurs and vice versa. As an 
example, a typical Schoch effect is shown in Fig. XIV.A_1, where sound is incident on a thin 
aluminum plate under a Lamb wave angle. It is seen that there is no backward displacement of 
the reflected beam. What is visible, is a forward displaced (nonspecular) sound lobe separated 
from the main (specular) reflected sound beam by a null strip. This is because the nonspecular 
lobe is out of phase with the specular sound beam. The null strip is the result of phase canceling. 
A trailing field at larger distances is also visible. 
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Fig. XIV.A_1: The typical Schoch effect of a bounded ultrasonic beam on a thin aluminum plate. Only a forward 
displacement is visible accompanied by a trailing field. 

 
We have performed experiments on glass plates. The longitudinal sound velocity in glass 

is 5660 m/s, whereas the transversal sound velocity is 3520 m/s. The density is 2500 kg/m3. 
Water is characterized by a longitudinal sound velocity of 1480 m/s and a density of 1000 kg/m3. 
The well expected Schoch phenomenon was visible at certain angles depending on the frequency 
that was used and depending on the thickness of the plate. Nevertheless, for the combination of a 
plate thickness of 1.23 mm and a frequency of 3 MHz, a completely unexpected phenomenon 
appeared. The physical beam width was 1 cm. The result can be seen in Fig. XIV.A_2.  
The glass plate is indicated by means of white dashed lines. The white arrow denotes the 
direction of incidence. There is a forward displaced lobe and also a backward displaced lobe. 
Both lobes are separated from the specular lobe by means of a null strip. If the left lobe was not 
backward displaced and was hence the specular lobe, the effect could have been regarded as a 
very strong trailing field. However it is clear that the first lobe is not a specular lobe but is indeed 
backward displaced. In order to make sure that the effect was not caused by edge effects of the 
plate that was used, we have studied different positions of incidence and we have also studied the 
effect of smooth edges and rough edges. No difference was visible except when incidence 
occurred so close to the edge that the forward displaced sound beam ‘touched’ or even surpassed 
the edge. 

Simulations were performed by means of a decomposition of the incident bounded beam 
into plane waves in accordance with the Fourier transform. Continuity of normal stress and 
normal particle displacement was considered [11] along the water-glass interfaces of the plate. 
The reflected profile was studied along the interface water/upper side of the plate.  
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Fig. XIV.A_2: The double sided beam deformation. A backward and a forward displaced beam are visible 
together with the central specular reflected beam. 

 
The same parameters were used as in the experiments. The reflected beam profile as a function of 
the angle of incidence can be seen in Fig. XIV.A_3. It is seen that at 18.290 and at 13.910 there is 
a regular Schoch effect. Nevertheless, at 28.350 there are two null zones separating three reflected 
beams. This is the double sided beam deformation that corresponds with Fig. XIV.A_2.  

The mentioned angles correspond with the dispersion curves of Fig. XIV.A_4, denoting 
the pole position of the reflection coefficient for pure harmonic plane waves. It is seen that the 
double beam deformation effect occurs at the angle that stimulates the A0 Lamb mode. The 
Schoch effect is not visible for the S0 stimulating angle. The calculated profile in amplitude and 
in phase corresponding to the angle of incidence of 28.350 is shown in Fig. XIV.A_5, where it is 
seen hat the left and the right lobe are out of phase with the central specular reflected lobe. A 
backward propagating sound field could be characterized by a negative group velocity. However, 
according to the dispersion curves in Fig. XIV.A_4 and according to knowledge obtained from 
ref 12, this is never the case and hence there is no backward propagating sound field present. 
Therefore the effect is the result of a (complicated) interaction between the amplitudes and 
phases of the plane waves that are the building blocks of the incident bounded beam and the 
generated Lamb waves. As a conclusion, it is shown experimentally and numerically that double 
beam deformations are possible on smooth plates swamped in water. It is also shown that this 
effect, in the example studied here, is not caused by backward propagating sound in the plate. 
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Fig. XIV.A_3: Simulation (filled contour plot) of the reflected beam profile as a function of the angle of 
incidence. Negative positions correspond with backward positions. At 28.350 the situation of Fig. XIV.A_2 can be 

seen. 
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Fig. XIV.A_4: The dispersion curves of a glass plate. The horizontal line corresponds to the experiments reported 
here. The vertical lines correspond to the angles of incidence of 28.380, 25.620, 18.290 and 13.910

 

 
- 714 - 



CHAPTER XIV: Exotic Topics 
  

 

Fig. XIV.A_5: Simulation of Fig. XIV.A_2, i.e. incidence at 28.350. Dotted curve: incident beam profile, solid 
curve: reflected beam profile. Note that the forward and the backward displaced beams are out of phase with the 

specular central lobe. 
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XIV.A The double sided ultrasonic beam 
displacement 

 
 It is a well established idea in optics as well as in ultrasonics that a bounded 

Gaussian beam, when reflected from an interface, can be displaced in the 
forward or in the backward direction, depending on the propagation direction 
of leaky waves that are generated by the incident beam. Such a displacement is 
often accompanied by the so called Schoch effect characterized by a null strip 
in between a specular and a nonspecular reflected beam, and a trailing field 
that is much further displaced. The current paper shows experimentally and 
numerically that a simultaneous forward and backward displacement is 
possible accompanied by two null strips and being only the result of forward 
propagating Lamb waves. 
The contents of this section have been published as: Nico F. Declercq, Joris 
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Appl. Phys. Let. 85(18), 4234-4236, 2004 (Imp. Fact. 4.207; SCI-index, Physics-
Applied, rank:3/76) 

 
In optics, the Goos-Hänchen theory predicts a lateral displacement of a light beam that is 

internally reflected from a dielectric interface [1].  This phenomenon appears when incident from 
an optically denser medium at an angle close to the critical angle, resulting in the transfer of a 
portion of the energy into the rarer medium by means of excitation of an electromagnetic field 
that travels along the interfae. This energy leaks back into the denser medium and becomes part 
of the reflected beam exhibiting a lateral displacement that appears as a forward beam shift. This 
was studied by Tamir and Bertoni [2]. The early experiments of Schoch [3-5] applying the 
acoustic analog of the Goos-Hänchen effect for an acoustic beam reflected from a liquid-solid 
interface showed a forward lateral displacement of the reflected ultrasonic beam. It has been 
shown before [6-8] that a backward displacement of an ultrasonic beam is also possible when 
backward propagating surface waves are stimulated on periodically rough surfaces. The 
expression ‘null strip’ was mentioned in Neubauer and Dragonet [9]. The effect consisting of 
both a forward and a backward displacement on a smooth interface, accompanied by two null 
strips, has never been observed and has certainly never been published before. The experiments 
in this paper are performed by means of a Schlieren experimental setup [10] and the liquid/solid 
interfaces are smooth. 

There is an unwritten law that whenever leaky Rayleigh waves or leaky Lamb waves are 
generated by means of an incident bounded beam, the Schoch effect occurs and vice versa. As an 
example, a typical Schoch effect is shown in Fig. XIV.A_1, where sound is incident on a thin 
aluminum plate under a Lamb wave angle. It is seen that there is no backward displacement of 
the reflected beam. What is visible, is a forward displaced (nonspecular) sound lobe separated 
from the main (specular) reflected sound beam by a null strip. This is because the nonspecular 
lobe is out of phase with the specular sound beam. The null strip is the result of phase canceling. 
A trailing field at larger distances is also visible. 
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Fig. XIV.A_1: The typical Schoch effect of a bounded ultrasonic beam on a thin aluminum plate. Only a forward 
displacement is visible accompanied by a trailing field. 

 
We have performed experiments on glass plates. The longitudinal sound velocity in glass 

is 5660 m/s, whereas the transversal sound velocity is 3520 m/s. The density is 2500 kg/m3. 
Water is characterized by a longitudinal sound velocity of 1480 m/s and a density of 1000 kg/m3. 
The well expected Schoch phenomenon was visible at certain angles depending on the frequency 
that was used and depending on the thickness of the plate. Nevertheless, for the combination of a 
plate thickness of 1.23 mm and a frequency of 3 MHz, a completely unexpected phenomenon 
appeared. The physical beam width was 1 cm. The result can be seen in Fig. XIV.A_2.  
The glass plate is indicated by means of white dashed lines. The white arrow denotes the 
direction of incidence. There is a forward displaced lobe and also a backward displaced lobe. 
Both lobes are separated from the specular lobe by means of a null strip. If the left lobe was not 
backward displaced and was hence the specular lobe, the effect could have been regarded as a 
very strong trailing field. However it is clear that the first lobe is not a specular lobe but is indeed 
backward displaced. In order to make sure that the effect was not caused by edge effects of the 
plate that was used, we have studied different positions of incidence and we have also studied the 
effect of smooth edges and rough edges. No difference was visible except when incidence 
occurred so close to the edge that the forward displaced sound beam ‘touched’ or even surpassed 
the edge. 

Simulations were performed by means of a decomposition of the incident bounded beam 
into plane waves in accordance with the Fourier transform. Continuity of normal stress and 
normal particle displacement was considered [11] along the water-glass interfaces of the plate. 
The reflected profile was studied along the interface water/upper side of the plate.  
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Fig. XIV.A_2: The double sided beam deformation. A backward and a forward displaced beam are visible 
together with the central specular reflected beam. 

 
The same parameters were used as in the experiments. The reflected beam profile as a function of 
the angle of incidence can be seen in Fig. XIV.A_3. It is seen that at 18.290 and at 13.910 there is 
a regular Schoch effect. Nevertheless, at 28.350 there are two null zones separating three reflected 
beams. This is the double sided beam deformation that corresponds with Fig. XIV.A_2.  

The mentioned angles correspond with the dispersion curves of Fig. XIV.A_4, denoting 
the pole position of the reflection coefficient for pure harmonic plane waves. It is seen that the 
double beam deformation effect occurs at the angle that stimulates the A0 Lamb mode. The 
Schoch effect is not visible for the S0 stimulating angle. The calculated profile in amplitude and 
in phase corresponding to the angle of incidence of 28.350 is shown in Fig. XIV.A_5, where it is 
seen hat the left and the right lobe are out of phase with the central specular reflected lobe. A 
backward propagating sound field could be characterized by a negative group velocity. However, 
according to the dispersion curves in Fig. XIV.A_4 and according to knowledge obtained from 
ref 12, this is never the case and hence there is no backward propagating sound field present. 
Therefore the effect is the result of a (complicated) interaction between the amplitudes and 
phases of the plane waves that are the building blocks of the incident bounded beam and the 
generated Lamb waves. As a conclusion, it is shown experimentally and numerically that double 
beam deformations are possible on smooth plates swamped in water. It is also shown that this 
effect, in the example studied here, is not caused by backward propagating sound in the plate. 
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Fig. XIV.A_3: Simulation (filled contour plot) of the reflected beam profile as a function of the angle of 
incidence. Negative positions correspond with backward positions. At 28.350 the situation of Fig. XIV.A_2 can be 

seen. 
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Fig. XIV.A_4: The dispersion curves of a glass plate. The horizontal line corresponds to the experiments reported 
here. The vertical lines correspond to the angles of incidence of 28.380, 25.620, 18.290 and 13.910
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Fig. XIV.A_5: Simulation of Fig. XIV.A_2, i.e. incidence at 28.350. Dotted curve: incident beam profile, solid 
curve: reflected beam profile. Note that the forward and the backward displaced beams are out of phase with the 

specular central lobe. 
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Chapter XV Conclusions and Prospects
 
 

 

 
 
 
 
 
 
Three years ago, I started to dig. I found my rock and 
described it in this dissertation. It is my desire to keep 
digging and find out how deep this rock is buried 
underneath the desert sand. 

 

      When I graduated, neither did I believe that I was a scientist, nor did I 
believe that any of my student colleagues were scientists. We simply all had 
proved that we were able to reproduce books. As a matter of fact, it is 
unfortunate that the circumstances during one’s education often favor 
memorization and prohibit imagination. In addition, when a person graduates, 
he obtains not only his degree, but he also carries heavy luggage, filled by 
problems and a self- and socially conditioned, often unrealistic, image of his 
capabilities and shortcomings. 
 
     When I started this research, I have simply ‘deleted’ the past and have 
started from scratch, supported by my wife, son and family. I had the fortune to 
join the pleasant research team of Joris Degrieck and keep in touch with Oswald 
Leroy and Rudy Briers. These three people possess three common 
characteristics : they are genuine scientists, they are correct and they are human. 
It has been my pleasure to learn from them different aspects of life and science 
and it will be an honor to preserve their qualities in what I do during my future 
life. 
 
     It has never been my aim to write a dissertation. I just wanted to do science 
and to discover the world. Nevertheless, I have tried to make this dissertation 
enjoyable and I hope that the reader got pleasure from reading it. 
 
     A chapter entitled ‘Conclusions and Prospects’ also requires some 
considerations about the future. I would like to continue my life as a researcher, 
but simultaneously, I realize that one’s future is sometimes determined by 
external aspects. Because I cannot manipulate these external aspects, it is not 
allowed to dream about the future, though dreams are tempting… 
 
 

Nico F. Declercq
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