
Ontwikkeling van een dynamische eindige differentiemethode

voor Large-Eddy Simulatie

Development of a Dynamic Finite Difference Method

for Large-Eddy Simulation

Dieter Fauconnier

Promotor: prof. E. Dick
Proefschrift ingediend tot het behalen van de graad van
Doctor in de Ingenieurswetenschappen: Werktuigkunde-Elektrotechniek

Vakgroep Mechanica van Stroming, Warmte en Verbranding
Voorzitter: prof. dr. ir. R. Sierens
Faculteit Ingenieurswetenschappen
Academiejaar 2008-2009



ISBN 978-90-8578-235-3
NUR 978,928
Wettelĳk depot: D/2008/10.500/55



Promotor: prof. E. Dick

Vakgroep Mechanica van Stroming, Warmte en Verbranding
Sint-Pietersnieuwstraat 41
B-9000 Gent
België

This research was funded by a Ph.D grant of the Institute for the Promotion of
Innovation through Science and Technology in Flanders (IWT-Vlaanderen).





Le savant n’étudie pas la nature parce que cela est utile; il l’étudie
parce qu’il y prend plaisir et il y prend plaisir parce qu’elle est belle.
Si la nature n’était pas belle, elle ne vaudrait pas la peine d’être
connue, la vie ne vaudrait pas la peine d’être vécue. Je ne parle pas
ici, bien entendu, de cette beauté qui frappe les sens, de la beauté
des qualités et des apparences ; non que j’en fasse fi, loin de là,
mais elle n’a rien à faire avec la science; je veux parler de cette
beauté plus intime qui vient de l’ordre harmonieux des parties, et
qu’une intelligence pure peut saisir.

Poincaré, Jules Henri
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Synopsis

Since the earliest numerical calculation of Lewis Fry Richardson almost a century
ago, the role of Computational Fluid Dynamics (CFD) has evolved from an expen-
sive research tool which is confined to academic environments, into an important in-
strument for industrial design and development. For example, Computational Fluid
Dynamics has become indispensable for the design of compact heat exchangers, since
it offers a flexible and cost-effective tool for parametric investigations, detailed anal-
ysis of complex and critical flow phenomena etcetera, in contrast to expensive and
time-consuming experiments [76]. The continuing development of modern computer
technology, obviously played an utterly important role in this evolution. However,
despite the enormous increase of computational power in the last three decades,
Computational Fluid Dynamics still encounters limitations today. For instance, the
Direct Numerical Simulation (DNS) of turbulent flows is still prohibitively expen-
sive for industrial applications, due to the enormous amount of grid cells required
to resolve the finest vortex motions in the turbulent flow. However, almost since
the early days of Computational Fluid Dynamics, various approaches and strate-
gies have been developed to overcome the excessive grid requirements of DNS. In
particular Large-Eddy Simulation (LES), a technique that relies on resolving only
the dominant large-scale flow features and modeling the dynamic influence of the
unresolved small-scale features, is evolving in recent years into a mature simulation
technique for turbulent flows, with the potential to combine cost effectiveness with
accuracy [61].

In the past decades, the necessity for numerical quality in Direct Numerical
Simulations and especially Large-Eddy Simulations of turbulent flows, has been rec-
ognized by many researchers [32, 49, 19, 4]. In a properly resolved Direct Numerical
Simulation, the smallest resolved scales are located far into the dissipation range.
Since these scales have only a very small energy-content in comparison with the
largest resolved scales in the flow, they are often considered to have a negligible
influence on the mean flow statistics. In a Large-Eddy Simulation, however, where
only the most important large scale structures are resolved, the smallest resolved
scales are part of the inertial subrange such that they contain relatively more energy
than those in the dissipation range. Hence, the smallest resolved scales in Large-
Eddy Simulation are not negligible and have a significant influence on the evolution
of the LES-flow. The accuracy with which these small scales are described is there-
fore expected to be important. In order to reduce the computational costs, it is
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highly desirable in LES to resolve as much scales as possible on a given computa-
tional grid. In order to accomplish this, the numerical method requires sufficient
accuracy for all scales. This ensure that the magnitudes of the discretization errors
remain smaller than the magnitude of the modeled unresolved scales of motion [32].
However, if the accuracy of the numerical method cannot be guaranteed, the amount
of resolved small-scale structures must be reduced in order to control the discretiza-
tion errors. Hence, in order to resolve the same amount of scales as before, a much
finer computational grid is required. This is often prohibitively expensive for most
three-dimensional LES computations of industrial applications.

In order to obtain better numerical accuracy, it is common practice in Compu-
tational Fluid Dynamics to use classic high-order finite difference schemes that are
based on a specific truncation of the Taylor series. These methods involve finite
difference approximations that achieve a certain formal asymptotic order of accu-
racy for the approximation of the largest scales in the flow. Although this may be
sufficient for very well resolved Direct Numerical Simulations, it is not necessarily
the optimal strategy for Large-Eddy Simulation. Indeed, for extremely well resolved
Direct Numerical Simulations, in which the smallest significant scales of motion are
several times larger than the size of the computational grid, the Taylor series of
the finite difference approximations converge rapidly due to small contributions of
the higher derivatives. Hence, the classical Taylor-based asymptotic numerical tech-
niques that rely on such a fast convergence of the Taylor series, may suffice for such
Direct Numerical Simulations. However, for Large-Eddy Simulation and even for
some Direct Numerical Simulations, the size of the smallest resolved scales is typi-
cally in the order of the grid spacing and are thus only marginally resolved. Hence,
the contributions of the higher derivatives in the truncation terms of the Taylor
series become much more important, slowing down the convergence of the Taylor
series and thus leading to significant numerical errors. Therefore, it is much more
advantageous to minimize all contributions in the Taylor series in order to obtain
good global accuracy for all resolved scales. In other words, the global truncation
error, that represents all scales, should be minimized instead of focusing on the
highest possible accuracy for only the largest scales in the flow. The advantages of
such an approach were already discovered in 1993 by Tam et al. [79] in the field
of computational aero-acoustics. Indeed, the accurate simulation of propagating
waves requires high-performance finite difference methods. Despite the fact that
other researchers followed this cost-effective and highly accurate strategy for various
applications [45, 37, 2, 6], the use of optimized finite difference schemes did yet not
become a standard technique in the world of Large-Eddy Simulation.

In the present dissertation a family of dynamic finite difference methods is de-
veloped, which succeed in minimizing the global discretization error on the solution
in real time during the calculation. This strategy allows to obtain always a (nearly)
optimal numerical method that corresponds to the flow characteristics at that time.
The approach implies that the intrinsic characteristics of this finite difference method
vary during the simulation in such a way that the global numerical error is always
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minimized.
The construction of these dynamic finite difference approximations relies on the
determination of an optimal value for the preceding coefficient in the leading or-
der truncation term by means of a sampling-based dynamic procedure. Although the
sampling-based dynamic procedure was originally proposed in [89, 88, 22, 46] for the
determination of the model coefficients in Large-Eddy Simulation, it is used in this
work in a new, alternative way in order to determine the optimal stencil coefficients
in the finite difference approximation. By comparing the Taylor series expansions
of any basic finite difference approximation on two different grid resolutions, the
method allows to extract a nearly optimal value for the leading order coefficient,
provided that a blending factor f is predefined, which regulates the sensitivity of
the procedure to the small scales in the resolved flow. Adopting a characteristic
energy spectrum of the resolved flow field, a one-off calibration procedure was pro-
posed to retrieve the optimal value of the blending factor. This optimal value of the
blending factor is expected to be robust and applicable for a large range of turbulent
flows.
Although the dynamic schemes share similarities with the prefactored Dispersion-
Relation Preserving schemes of e.g. Tam et al. [79], Kim et al. [45] and many oth-
ers [37, 2, 6], their behaviour is more refined. Indeed, the stencil-coefficients of the
developed dynamic finite difference approximations are dynamically adapted during
the simulation through the dynamic coefficient, which is determined according to
the resolved flow field. In case of DNS resolution, i.e. if the small-scale structures
are represented by sufficient amount of grid nodes on the grid, the dynamic schemes
reduce to the standard Taylor-based finite difference schemes with optimal formal
asymptotic order of accuracy. When going to LES resolution, the schemes seam-
lessly adapt to Dispersion-Relation Preserving schemes. This could be particularly
interesting for transient developing flows, or in case of grid refinement studies with
fixed filter width.

The developed dynamic finite difference approximations were extensively and rig-
orously tested for Large-Eddy Simulation. For a first quality assessment, a simpler
problem than the Large-Eddy Simulation of three-dimensional Navier-Stokes turbu-
lence is considered. Following the work of Love [54], Das et al. [20] and de Stefano et
al. [21], the one-dimensional viscous Burgers’ equation with periodic boundary con-
ditions is selected as a less complicated but eligible alternative to the Navier-Stokes
equations. Similar to the Navier-Stokes equations, Burgers’ equation contains a
quadratic nonlinear term and it exhibits an inertial range in the energy spectrum,
as in real turbulence.
Secondly, the performance of the dynamic finite difference schemes is examined for
the Large-Eddy Simulation of the three-dimensional Taylor-Green vortex flow. The
Taylor-Green vortex flow is perhaps one of the simplest prototype systems in which
to study the breakdown-process of large-scale vortices into successively smaller ones
and may be interpreted as transition into turbulence. The selected flow is therefore
very well suited in the current quality assessment on the dynamic finite difference
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approximations.

In the present work, two types of dynamic finite difference methods were con-
sidered. The linear dynamic finite difference methods contain a spatially averaged
constant dynamic coefficient such that the resulting finite difference approximations
remain unaltered in the spatial domain. On the other hand, the nonlinear dy-
namic finite difference methods contain a spatially varying dynamic coefficient, such
that the resulting finite difference approximations differ from node to node. The
results obtained from both studies clearly demonstrate the high potential of the
linear dynamic finite difference methods. On the other hand, the nonlinear variant
showed rather poor results and was concluded to be inappropriate for LES. The lin-
ear dynamic schemes systematically recover the accuracy of the standard asymptotic
high-order finite difference schemes, provided that all scales of motion in the flow
field are well-resolved on the computational grid. This implicates that they adapt
according to the smooth solution of the flow, focusing on maximum accuracy of the
largest resolved scales. Obviously, this is an advantage over the Dispersion-Relation
Preserving schemes which remain suboptimal for those solutions, since they are de-
signed a priori for non-smooth solutions on the computational grid.
Once the resolution becomes marginal and thus inadequate to resolve accurately
all scales of motion in the laminar or turbulent flow, the linear dynamic schemes
adjust the dynamic coefficient according to the resolved scales on the computational
grid. The sensitivity with which the linear dynamic schemes respond to small scale
information in the physical spectrum is predefined by the blending factor f . More
specifically, the magnitude of the Taylor series that determines the truncation error
is minimized. As soon as the flow is fully turbulent and the energy spectrum exhibits
an inertial range, both the linear dynamic finite difference schemes and the static
Dispersion-Relation Preserving schemes perform very similar.

In conclusion, the family of linear dynamic finite difference methods that is
developed in the present dissertation, provides a very useful and viable tool for
numerically accurate Large-Eddy Simulations of turbulent flows, since these schemes
have the intrinsic ability to adapt their characteristics optimally to the resolved flow
physics with respect to the computational grid.
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Sinds de eerste numerieke stromingsberekening van Lewis Fry Richardson, bĳna
een eeuw geleden, is de rol van numerieke stromingsmechanica geëvolueerd van een
relatief duur onderzoeksinstrument dat beperkt was tot academische omgevingen,
tot een uitermate belangrĳk hulpmiddel voor industrieel ontwerp en ontwikkeling.
Zo is bĳvoorbeeld numerieke stromingsmechanica een onontbeerlĳk instrument ge-
worden in het ontwerpproces van ondermeer compacte warmtewisselaars, gezien de
enorme flexibiliteit en kostefficiëntie voor het uitvoeren van parameterstudies zowel
als voor het gedetailleerd analyseren van ingewikkelde en kritische stromingspatro-
nen. Daarmee is numerieke stromingsmechanica een betrouwbaar alternatief voor de
dure en tĳdrovende experimenten die vroeger aan het ontwerp voorafgingen [76]. De
voortdurende ontwikkeling van de moderne computertechnologie speelde uiteraard
een zeer belangrĳke rol in deze evolutie. Echter, ondanks de enorme toename in
computerkracht, de voorbĳe drie decennia, botst de numerieke stromingsmechanica
nog steeds aan tegen de beperkingen van de huidige computertechnologie. Zo is bĳ-
voorbeeld Directe Numerieke Simulatie (DNS) van turbulente stromingen een nog
steeds onbetaalbare methode voor toepassing in industriële omgevingen, omwille van
het enorme aantal benodigde rekenpunten voor het berekenen van de allerkleinste
wervels in de turbulente stroming. Echter, reeds sinds het ontstaan van numerieke
stromingsmechanica, werden verscheidene technieken en strategieën ontwikkeld die
toelaten het aantal rekenpunten drastisch te beperken. In het bĳzonder de Simu-
latie van Grote Wervels, of in het jargon Large-Eddy Simulation (LES), evolueert
de laatste jaren tot een volwaardige simulatietechniek voor turbulente stromingen,
waarbĳ kosteneffectiviteit en nauwkeurigheid gecombineerd worden [61]. Deze tech-
niek steunt op het oplossen van enkel de meest dominante en grootschalige wervels in
de stroming terwĳl de invloed van de onbekende kleinschalige wervels gemodelleerd
dient te worden.

In de afgelopen decennia erkenden vele onderzoekers de noodzaak om de numerie-
ke kwaliteit van Directe Numerieke Simulaties en vooral voor Large-Eddy Simulaties
voor turbulente stromingen te waarborgen [32, 49, 19, 4]. In zeer goed geresolveer-
de Directe Numerieke Simulatie, bevinden de kleinst berekende wervelstructuren
zich ver in het dissipatiebereik van het energiespectrum. Aangezien deze structuren
slechts een zeer kleine energie-inhoud hebben in vergelĳking met de grootste schalen
in de stromingsoplossing, wordt hun invloed op de gemiddelde stromingsstatistieken
vaak verwaarloosbaar verondersteld. Echter, voor Large-Eddy Simulatie, waar al-
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leen de belangrĳkste grootschalige structuren worden berekend, maken de kleinste
schalen deel uit van het inertiële subbereik zodat zĳ relatief meer energie bevat-
ten dan deze in het dissipatiebereik. Daarom zĳn de kleinst geresolveerde schalen
vaak niet meer verwaarloosbaar en hebben zĳ een significante invloed op de evo-
lutie van de LES-stroming. Bĳgevolg kan men verwachten dat de nauwkeurigheid
waarmee deze kleine schalen weergegeven worden belangrĳk is. Om de computa-
tionele kosten enigszins te beperken, is het bovendien wenselĳk in LES om zoveel
mogelĳk fysische wervelstructuren te berekenen op een bepaald rekenrooster. Om
hieraan tegemoet te komen, dient de numerieke methode voldoende nauwkeurig te
zĳn voor alle structuren, zodat de grootte van de discretisatiefouten kleiner blĳft
dan de grootte van de gemodelleerde wervelstructuren [32]. Indien echter de nauw-
keurigheid van de numerieke methode niet kan worden gegarandeerd, dient men de
hoeveelheid berekende kleinschalige structuren op het rekenrooster te reduceren, zo-
dat de discretisatiefouten beperkt blĳven. Dit betekent tevens dat voor het bepalen
van dezelfde hoeveelheid fysische wervelinformatie als voorheen, een veel fijner re-
kenrooster vereist is. Dit is vaak onbetaalbaar voor driedimensionale Large-Eddy
Simulaties van turbulente stromingen, vooral in industriële toepassingen.

Om een aanvaardbare numerieke nauwkeurigheid te waarborgen, worden in nu-
merieke stromingsmechanica typisch klassieke eindige differentiemethoden aange-
wend die gebaseerd zĳn op een truncatie van de Taylorreeks. Dergelĳke metho-
den maken gebruik van eindige differentiebenaderingen die gekenmerkt worden door
een bepaalde formele asymptotische orde van nauwkeurigheid met betrekking tot de
grootste wervelstructuren in de stroming. Hoewel dergelĳke methoden volstaan voor
zeer goed geresolveerde Directe Numerieke Simulaties, is het niet noodzakelĳk een
optimale strategie voor Large-Eddy Simulaties. Immers, voor extreem goed geresol-
veerde Directe Numerieke Simulaties waarbĳ de kleinste wervelstructuren vele malen
groter zĳn dan de resolutie van het rekenrooster, convergeert de Taylorreeks in de
eindige differentiebenaderingen relatief snel wegens de kleine bĳdragen van de ho-
gere afgeleiden. Daarom volstaan de klassieke asymptotische numerieke methoden,
aangezien ze net steunen op dergelĳke snelle convergentie van de Taylorreeks. Voor
Large-Eddy Simulatie of zelfs voor sommige Directe Numerieke Simulaties echter,
is de grootte van de kleinste schalen typisch van dezelfde orde als de roosterresolu-
tie zodat ze slechts marginaal geresolveerd zĳn. Bĳgevolg zĳn de bĳdragen van de
hogere afgeleiden in de truncatietermen van de Taylorreeks veel belangrĳker zodat
de convergentie van de Taylor reeks vertraagt en relatief grote numerieke fouten
kunnen ontstaan. Het minimaliseren van alle bĳdragen in de afgeknotte Taylorreeks
is daarom veel voordeliger aangezien een dergelĳke strategie leiden tot een globa-
le nauwkeurigheidsverbetering voor alle berekende wervelstructuren in de stroming.
Dit houdt in dat de globale numerieke fouten voor alle wervels samen geminimali-
seerd worden in plaats van het behalen van een zo hoog mogelĳke nauwkeurigheid
voor enkel de grootste wervels in de stroming. Het enorme potentieel van een der-
gelĳke aanpak werd reeds ontdekt in 1993 door Tam et al. [79] in het gebied van
de numerieke aero-akoestiek. Net als in Large-Eddy Simulatie vereist de accurate
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simulatie van golfvoortplanting immers hoog performante eindige differentiebena-
deringen. Ondanks het feit dat andere onderzoekers deze kosteneffectieve en zeer
nauwkeurige strategie aanwendden voor verscheidene doeleinden [45, 37, 2, 6], groei-
de het gebruik van dergelĳke geoptimaliseerde eindige differentiemethoden niet uit
tot een standaard techniek in de wereld van LES.

In het huidige proefschrift wordt een familie van dynamische eindige differentie-
methoden ontwikkeld, die de globale discretisatie fout op de stromingsoplossing in
real-time minimaliseren tĳdens de simulatie. Deze strategie maakt het mogelĳk om
steeds een (bĳna) optimale numerieke methode te waarborgen, in overeenstemming
met de karakteristieken van de stromingsoplossing op dat moment. De aanpak houdt
in dat de intrinsieke eigenschappen van de voorgestelde eindige differentiemethode
variëren tĳdens de simulatie, zodanig dat de globale numerieke fout steeds minimaal
is.
De constructie van deze dynamische eindige differentiebenaderingen steunt op de be-
paling van een optimale waarde voor de coëfficiënt van de leidende afknottingsterm
in de Taylorreeks, door middel van de sampling-based dynamische procedure. Niet-
tegenstaande de sampling-based dynamische procedure oorspronkelĳk voorgesteld
werd in [89, 88, 22, 46] ter bepaling van de model coëfficiënt in Large-Eddy Simula-
tie, wordt de methode in dit werk op een nieuwe, alternatieve wĳze aangewend ter
bepaling van de optimale stencil coëfficiënten in het eindige differentieschema. Door
de de Taylor reeks van eender welke eindige differentiebenadering op twee verschil-
lende resoluties van het rekenrooster te vergelĳken, maakt de methode het mogelĳk
om een bĳna optimale waarde voor de coëfficiënt te bepalen, op voorwaarde dat een
mengfactor f vooraf wordt opgegeven. Deze factor regelt slechts de gevoeligheid
van de dynamische procedure aan de kleinschalige informatie in de stroming. Op
basis van een karakteristiek energiespectrum van de stroming, wordt een eenmalige
procedure voorgesteld om de optimale waarde van deze mengfactor te bepalen. Deze
optimale waarde voor de blending factor wordt voldoende robuust verondersteld en
is dus toepasbaar voor een brede verzameling van turbulent stromingen.
Hoewel de dynamische schema’s een aantal gelĳkenissen vertonen met de Dispersie-
Relatie-Behoudende schema’s van bĳvoorbeeld Tam et al. [79], Kim et al. [45] en
vele anderen [37, 2, 6], is hun gedrag meer verfijnd. Immers, de coëfficiënten van
deze ontwikkelde dynamische eindige differentiebenaderingen worden op dynami-
sche wĳze aangepast tĳdens de simulatie door middel van één enkele dynamische
coëfficiënt. Deze laatste wordt bepaald op basis van de berekende stromingsoplos-
sing en het bĳhorende energie spectrum. In het geval van DNS-resolutie, i.e. bĳ
voldoende roosterpunten om de kleinste wervelstructuren nauwkeurig weer te ge-
ven op het rekenrooster, reduceren de dynamische schema’s zich tot de standaard
Taylor-gebaseerde eindige differentiebenaderingen, die gekenmerkt worden door een
optimale formele en asymptotische orde van nauwkeurigheid. Indien de simulatie
naar LES-resolutie overschakelt, passen de schema’s zich naadloos en optimaal aan.
Dergelĳke eigenschap kan bĳzonder interessant zĳn voor de berekening van ont-
wikkelende en transitionele stromingen, of voor roosterverfijning studies waarbĳ de
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breedte van de LES-filter gefixeerd wordt.

De ontwikkelde dynamische eindige differentiebenaderingen worden verder uit-
voerig getest voor Large-Eddy Simulaties van karakteristieke turbulente stromingen.
Voor een eerste beoordeling van hun kwaliteit, wordt een vereenvoudigd modelpro-
bleem voor driedimensionale Navier-Stokes turbulentie beschouwd. Naar het voor-
beeld van Love [54], Das et al. [20] en de Stefano et al. [21], wordt de eendimensionale
viskeuze Burgers’ vergelĳking met periodische randvoorwaarden geselecteerd als een-
voudiger, maar geschikt alternatief voor de Navier-Stokes vergelĳkingen. Net als de
Navier-Stokes vergelĳkingen, bevat Burgers’ vergelĳking een niet-lineaire kwadrati-
sche term, en vertoont het typische Burgers’ energiespectrum een duidelĳke inertiële
zone gelĳkend op dat van een realistisch turbulent spectrum.
Vervolgens worden de prestaties van de dynamische eindige differentiemethoden on-
derzocht voor Large-Eddy Simulatie van de driedimensionale Taylor-Green wervel-
stroming. De Taylor-Green wervelstroming is wellicht één van de eenvoudigste pro-
totypesystemen waarin het fundamentele afbraakproces van grootschalige wervels in
steeds kleinere wervels, kan worden bestudeerd en kan daarom beschouwd worden
als representatief voor transitionele stromingen. De geselecteerde stroming is dus
goeds geschikt voor de beoogde kwaliteitsbeoordeling van de dynamische eindige
differentiebenaderingen.

In het huidige werk, werden twee types van dynamische eindige differentiemetho-
den beschouwd. The lineaire dynamische differentiemethoden bevatten een ruim-
telĳk gemiddelde constante dynamische coëfficiënt zodat the resulterende eindige
differentiebenadering niet veranderd in het ruimtelĳke domein. Anderzĳds bevatten
de niet-lineaire dynamische differentiemethoden een ruimtelĳk variërende coëfficiënt,
zodat de resulterende eindige differentiebenaderingen wĳzigen van punt tot punt in
het domein. De bekomen resultaten in beide studies illustreren duidelĳk het grote
potentieel van de dynamische lineaire eindige differentiemethoden. De niet-lineaire
variant daarentegen, leidt slechts tot povere resultaten en werden ongeschikt bevon-
den voor LES. De lineaire dynamische schema’s bereiken systematisch de nauwkeu-
righeid van de asymptotische hogere orde eindige differentiemethoden, op voorwaar-
de dat alle wervels in de stroming door voldoende roosterpunten weergegeven zĳn
op het rekenrooster. Dit impliceert dat dergelĳke schema’s zich aanpassen aan het
reguliere stromingspatroon, zodat maximale nauwkeurigheid van de grootste wervels
bekomen wordt. De dynamische schema’s blĳken in deze situaties voordeliger dan
de Dispersie-Relatie Behoudende schema’s. Deze laatste zĳn immers suboptimaal
voor dergelĳke reguliere stromingspatronen, aangezien ze ontworpen werden voor
irreguliere stromingsoplossingen op rekenrooster.
Indien echter de wervels in de laminaire of turbulente stroming met onvoldoende
roosterpunten worden voorgesteld om de nauwkeurigheid te waarborgen, passen de
lineaire dynamische schema’s zich aan via de dynamische coëfficiënt, in overeen-
stemming met de eigenschappen van de stromingsoplossing op het rekenrooster. De
gevoeligheid waarmee de lineaire dynamische schema’s reageren op kleinschalige in-
formatie in het spectrum is vooraf bepaald door de mengfactor f . Bovendien is de
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grootte van de numerieke fout minimaal. Zodra de stroming volledig turbulent wordt
en het energiespectrum een inertiëel bereik vertoont, is de performantie van de dyna-
mische lineaire eindige differentie schema’s en dat van de statische Dispersie-Relatie
Behoudende zeer vergelĳkbaar.

Kortom, de familie van lineaire dynamische eindige differentiemethoden die ont-
wikkeld werd in dit proefschrift, biedt een zeer nuttig en waardevol instrument voor
nauwkeurige LES-simulaties van turbulente stromingen, omwille van hun intrinsiek
vermogen zich optimaal aan te passen aan de fysische kenmerken van de stroming
in relatie tot het rekenrooster.
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Ĝ (κ) for the 6th -order tridiagonal Padé scheme (left) and the non-
linear explicit dynamic scheme (k = 2) with f = 1

5 (right). 137

6.8 Transfer functions for a triple-wave field.. Transfer functions
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If we knew what we’re doing, it wouldn’t be called

research would it?

Einstein, Albert

1
Introduction

1.1 Large-Eddy Simulation: a modern strategy in

Computational Fluid Dynamics

“Imagine a large hall like a theatre, except that the circles and gal-
leries go right round through the space usually occupied by the stage. The
walls of this chamber are painted to form a map of the globe. The ceiling
represents the north polar regions, England is in the gallery, the tropics
in the upper circle, Australia on the dress circle and the Antarctic in the
pit.

A myriad computers1 are at work upon the weather of the part of the
map where each sits, but each computer attends only to one equation or
part of an equation. The work of each region is coordinated by an official
of higher rank. Numerous little “night signs” display the instantaneous
values so that neighboring computers can read them. Each number is
thus displayed in three adjacent zones so as to maintain communication
to the North and South on the map.

From the floor of the pit a tall pillar rises to half the height of the
hall. It carries a large pulpit on its top. In this sits the man in charge of
the whole theatre; he is surrounded by several assistants and messengers.
One of his duties is to maintain a uniform speed of progress in all parts of
the globe. In this respect he is like the conductor of an orchestra in which
the instruments are slide-rules and calculating machines. But instead of
waving a baton he turns a beam of rosy light upon any region that is

1i.e. people who do computations.

1
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Figure 1.1: Richardsons’ Forecast Factory. Artist impression by A. Lanner-
back, in Dagens Nyheter, Stockholm [57].

running ahead of the rest, and a beam of blue light upon those who are
behindhand.

Four senior clerks in the central pulpit are collecting the future weather
as fast as it is being computed, and dispatching it by pneumatic carrier
to a quiet room. There it will be coded and telephoned to the radio trans-
mitting station. Messengers carry piles of used computing forms down
to a storehouse in the cellar.

In a neighboring building there is a research department, where they
invent improvements. But there is much experimenting on a small scale
before any change is made in the complex routine of the computing the-
atre. In a basement an enthusiast is observing eddies in the liquid lin-
ing of a huge spinning bowl, but so far the arithmetic proves the bet-
ter way. In another building are all the usual financial, correspondence
and administrative offices. Outside are playing fields, houses, mountains
and lakes, for it was thought that those who compute the weather should
breathe of it freely.”

The previous fanciful literary fragment was extracted from the book Weather
Prediction by Numerical Process, published in 1922 by the famous English mathe-
matician and meteorologist Lewis Fry Richardson [73, 57].2 Although the fantastic
and ambitious proposal of a forecast factory (see Figure 1.1) seems grotesque today,
it may be considered as the earliest numerical weather prediction system that relied
on a very rudimentary form of Computational Fluid Dynamics (CFD). In Richard-
son’s proposal, the atmosphere that covers the globe was divided into 120× 100× 5
grid cells in which the primitive differential equations,3 used at that time, were

2Note that Richardson is also well-known for his extrapolation formula.
3Besides the continuity equation and the thermal energy equation, these primitive equations

consists of a form of the Navier-Stokes equations that describe hydrodynamical flow on the surface
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Figure 1.2: The earliest CFD calculation of Lewis Fry Richardson. Grid
used by Richardson for his forecast of the weather of May 20th 1910.
The pressure was specified at points denoted P , and the momentum
at points denoted M . The prediction was confined to the calculation
of the initial tendencies at the P -point near Munich and the M -point
directly to the north. Source Lynch [57].

solved manually using finite difference approximations. Despite the fact that the
method devised by Richardson was utterly impractical at the time of its publica-
tion, he demonstrated its application by carrying out a trial forecast of the weather
on May 20th 1910 ab initio from data taken at 7am. The original computational
grid used by Richardson is displayed in Figure 1.2. Although the results of this trial
forecast failed dramatically due to smoothing of the data, a recent study showed that
the corrected forecast turns out to be essentially accurate which was a remarkable
achievement considering the calculations were done by hand [57].

Since the earliest numerical calculation of Richardson almost a century ago,
the role of Computational Fluid Dynamics has evolved from an academic research
tool which was confined to the laboratory, into an important instrument for indus-
trial design and development. For example, Computational Fluid Dynamics has
become indispensable for the design of compact heat exchangers, since it offers a
flexible and cost-effective tool for parametric investigations and detailed analysis of
complex and critical flow phenomena, in contrast to expensive and time-consuming
experiments [76]. The continuing development of modern computer technologies,
obviously played a very important role in this evolution. However, despite the enor-
mous increase of computational power in the last three decades, Computational
Fluid Dynamics still encounters limitations today. For instance, the Direct Nu-

of a sphere under the assumption that vertical motion is much smaller than horizontal motion
(hydrostasis) and that the fluid layer depth is small compared to the radius of the sphere.



4 Chapter 1. Introduction

merical Simulation (DNS) of turbulent flows at high Reynolds numbers is still pro-
hibitively expensive for industrial applications, due to the enormous amount of com-
putational resources required to resolve the finest vortex motions in the turbulent
flow. However, almost since the early days of Computational Fluid Dynamics, var-
ious approaches and strategies have been developed to overcome the excessive grid
requirements of DNS. In particular Large-Eddy Simulation (LES) is evolving in re-
cent years into a mature simulation technique for turbulent flows, with the potential
to combine cost effectiveness with accuracy [61]. This technique relies on resolving
only the dominant large-scale flow features, whereas the dynamic influence of the
unresolved small-scale features on the evolution of the large ones must be taken into
account by a model. Despite the plenitude of advanced subgrid models that were
designed, the earliest model proposed by Joseph Smagorinsky in 1963 [78], survived
the test of time and became the most widespread model in Large-Eddy Simulation.
In 1991, Germano et al. [30], proposed a supplementary dynamic procedure in or-
der to determine the coefficient in Smagorinsky’s model, which was till then often
treated as an arbitrary coefficient. This major breakthrough made the dynamic
Smagorinsky model one of the most popular models for Large-Eddy Simulation, due
to its robustness and acceptable accuracy in various flows. Although the dynamic
Smagorinsky models significantly improved the accuracy and reliability of Large-
Eddy Simulations, several researchers began to understand since the early nineties,
that the global accuracy of Large-Eddy Simulations was not only liable to the per-
formance of the adopted models, but also to the numerical method used to solve
the LES-equations. In particular the numerical errors, related to the discretization
technique used to solve the partial differential equations, may affect the quality of
the smallest resolved scales in the Large-Eddy Simulation, eventually leading to a
nonlinear accumulation of numerical errors and modeling errors in the simulation.
This is briefly discussed in the next section.

1.2 Motivation and Objectives

In the past decades, the necessity for numerical quality in Direct Numerical
Simulations and Large-Eddy Simulations of turbulent flows, has been recognized by
many researchers [32, 49, 19, 4]. In a very well resolved Direct Numerical Simulation,
the smallest resolved scales are located far into the dissipation range. Since these
scales have only a very small energy-content in comparison with the largest resolved
scales in the flow, they are often considered to have a negligible influence on the
mean flow statistics. In a Large-Eddy Simulation, however, where only the most
important large scale structures are resolved, the smallest resolved scales are part of
the inertial subrange such that they contain relatively more energy than those in the
dissipation range. Hence, the smallest resolved scales in Large-Eddy Simulation are
not negligible and have a significant influence on the evolution of the LES-flow. The
accuracy with which these small scales are described is therefore expected to be im-
portant. In order to reduce the computational costs, it is highly desirable in LES to
resolve as much scales as possible on a given computational grid. In order to accom-
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plish this, the adopted numerical method requires sufficient accuracy for all scales
in order to ensure that the magnitudes of the discretization errors remain smaller
than the magnitude of the modeled unresolved scales of motion [32]. However, if
the accuracy of the numerical method cannot be guaranteed, the amount of resolved
scales must be reduced in order to control the discretization errors. Hence, in order
to resolve the same amount of scales as before, a much finer computational grid is
required. This is often prohibitively expensive for most three-dimensional LES com-
putations of industrial applications. Furthermore, the dynamic Smagorinsky model
strongly relies on the smallest resolved scales in LES. Hence, accurate resolution of
the small-scales should result in a more correct application of the model. Obviously,
good numerical quality for an affordable LES is vital for accurate flow prediction as
it directly influences resolved scales of motion as well as subgrid modeling.

In order to obtain better numerical accuracy, it is common practice in Computa-
tional Fluid Dynamics to use classic high-order central schemes based on the trun-
cation of the Taylor series. This approach leads to finite difference approximations
that achieve a certain formal asymptotic order of accuracy for the approximation
of the largest scales in the flow. Although this may be sufficient for very well re-
solved Direct Numerical Simulations, it is not necessarily the optimal strategy for
Large-Eddy Simulation. Indeed, for extremely well resolved Direct Numerical Sim-
ulations, in which the smallest significant scales of motion are several times larger
then the size of the computational grid, the Taylor series of the finite difference
approximations converge rapidly due to small contributions of the higher deriva-
tives. Hence, the classical Taylor-based asymptotic numerical techniques that rely
on fast convergence of the Taylor series, generally suffice for those flows. However,
for Large-Eddy Simulation and even for some Direct Numerical Simulations, the size
of the smallest resolved scales is typically in the order of the grid spacing and are
thus only marginally resolved. Hence, the contributions of the higher derivatives
in the truncation terms of the Taylor series become much more important, slowing
down the convergence of the Taylor series and thus leading to significant numerical
errors. Therefore, it would be much more advantageous to minimize all contribu-
tions in the Taylor series to obtain good overall performance for all resolved scales
of fluid motion. In other words, one tries to minimize the global truncation error for
all scales instead of focusing on obtaining the highest possible accuracy for only the
largest scales of motion. This useful point of view was already recognized by Tam
et al. [79] in 1993 in the field of computational aero-acoustics, where accurate simu-
lation of propagating waves requires high-performance finite difference approaches.
Despite the fact that other researchers followed this cost-effective and highly accu-
rate strategy [45, 37, 2, 6], the use of optimized finite difference schemes did not yet
become a standard technique in the world of Large-Eddy Simulation.

The main objective of the present dissertation is the design of a dynamic finite
difference method which minimizes the global discretization error on the solution in
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real time during the calculation. Such a strategy would allow one to always obtain
a (nearly) optimal numerical method that corresponds to the flow characteristics
at that time. Such an approach implies that the intrinsic characteristics of this
finite difference method vary during the simulation in such a way that the global
numerical error is always minimized. The proposed methodology is expected to
provide improved quality and more flexibility in general numerical simulations, and
may be particularly advantageous for Large-Eddy Simulations.

1.3 Outline of the present dissertation

Chapter 2 is devoted to the fundamental description of the motion of incompress-
ible Newtonian fluids. Through a fundamental mathematical and physical study of
the governing Navier-Stokes equations, the different scales of motion in both laminar
and turbulent fluid flows are characterized. This allows one to assess the minimal
requirements for Direct Numerical Simulation of homogeneous and isotropic turbu-
lence and leads to a clear understanding of the encountered limitations which form
the motivation for Large-Eddy Simulation.

In Chapter 3, the mathematical framework for Large-Eddy simulation is intro-
duced, together with Smagorinsky’s subgrid model that accounts for the unresolved
scales. Moreover, two more advanced modeling techniques are discussed, namely
the dynamic procedure and multiscale modeling, which improve the performance
of the standard subgrid model. Finally, the sensitivity of both techniques to the
numerics is explained, introducing at the same time the basic problem description
of this dissertation.

The standard numerical methods, used to approximate the partial differential
equations for DNS and LES, are introduced in Chapter 4. Most important, an
appraisal is given of the standard finite difference approximations for Large-Eddy
Simulation. It is argued that these standard approximations with formal order
of accuracy may not be optimal in the context of LES, and that optimized finite
difference approximations might be more advantageous. Ultimately the motivation
and objectives for this dissertation are explained.

Based on the motivations and objectives discussed in Chapter 4, a first attempt
to illustrate the ability of the sampling-based dynamic procedure in order to obtain
improved numerical accuracy is demonstrated. Using Taylor series expansion, an
analytical formulation for the exact truncation error in the Navier-Stokes equations
and the continuity equation is derived. By taking a modified leading order truncation
term into account, a model-formulation for the truncation errors is developed, which
will allow to minimize the global truncation error by means of a dynamic coefficient.
Finally, the concept is evaluated for a two-dimensional steady laminar flow in a
lid-driven cavity at a Reynolds number Re = 400.

Chapter 6 forms the core of this dissertation, and is devoted to the mathematical
construction of a family of dynamic low-dispersive finite difference approximations
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for the partial derivatives. An explicit and implicit family of dynamic low-dispersive
finite difference approximations is constructed by combining Taylor series expan-
sions on two different grid resolutions. The accuracy of the constructed schemes
is analyzed in Fourier space using modified wavenumbers. The relation of the dy-
namic schemes with the Dispersion-Relation-Preserving scheme of Tam et al. [79]
and the Dispersion-Relation-Preserving compact Padé scheme of Kim et al. [45] is
then demonstrated.

The designed dynamic finite difference approximations are extensively tested in
the Large-Eddy Simulation of Burgers’ turbulence in Chapter 7 and in the Large-
Eddy Simulation of the Taylor-Green vortex flow in Chapter 8. Both cases are
considered well suited for an extensive quality assessment of the constructed dynamic
schemes.

The main conclusions of this work are formulated in Chapter 9, whereas some
future developments are proposed in Chapter 10.





When I meet God, I am going to

ask Him two questions: Why rela-

tivity? And why turbulence? I re-

ally believe he will have an answer

for the first.

Heisenberg, Werner

2
The Navier-Stokes equations

The present chapter is devoted to the fundamental description of the motion of
incompressible Newtonian fluids.1 Considering the fluid to be a continuous medium
rather than a collection of individual molecules, the physical laws of fluid motion
describe the conservation of mass and momentum. This is mathematically expressed
by a set of partial differential equations called the Navier-Stokes equations. Since
the Navier-Stokes equations are nonlinear, analytical solutions do not exist2 and
numerical simulation is the only alternative. Through a mathematical and physical
dimensional analysis of these equations, the different scales of motion in both lam-
inar and turbulent fluid flows are characterized. This allows to assess the minimal
requirements for Direct Numerical Simulation (DNS) of the Navier-Stokes equations
and leads to a clear understanding of the mathematical problem and the encountered
limitations which form the basis of this dissertation.

2.1 The Navier-Stokes equations

Consider an incompressible viscous fluid with unit density described by the ve-
locity field u (x, t) in a reference Cartesian coordinate system x ∈ R3 such that
u (x, t) = [u1 (x1, x2, x3, t) , u2 (x1, x2, x3, t) , u3 (x1, x2, x3, t)]. This velocity field is
governed by the set of partial differential equations comprising the continuity and

1Newtonian fluids are characterized by a shear stress which is linearly proportional to the
velocity gradient in the direction perpendicular to the plane of shear.

2Unless substantially simplified flows are considered.

9
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the Navier-Stokes equations

∂ui

∂xi
= 0 (2.1)

∂ui

∂t
+ uj

∂ui

∂xj
= − ∂p

∂xi
+ ν

∂2ui

∂x2
j

, (2.2)

where ν denotes the kinematic molecular viscosity and p = p (x, t) denotes the kine-
matic pressure field.3 These equations must be supplemented by initial conditions
and boundary conditions in order to obtain a well-posed mathematical problem.

The inertial force, represented by the nonlinear term in (2.2), is responsible for
the destabilization of large flow structures. As a consequence, large vortex struc-
tures break up into successively smaller and smaller ones. This cascading mechanism
continues until the viscous force becomes dominant and the smallest eddies are dis-
sipated into heat due to the viscosity. The Reynolds number is defined as Re = U L

ν ,
where U denotes a representative velocity of the flow and L denotes a characteristic
size of the geometry. It represents the ratio of the inertial force to the viscous force
and provides an indication of the number of scales in the flow. In case of laminar
flows, where the Reynolds numbers are rather low, the number of scales is limited
due to the predominant viscous force, resulting in a smooth and stable flow pattern.
However, in case of turbulent flows, which are characterized by high Reynolds num-
bers, the inertial force is dominant leading to an unstable chaotic flow pattern that
contains an entire spectrum of scales of motion.

Since the cascade is statistically accompanied with a transfer of energy from
large scales to smaller ones, before being dissipated by the viscosity, a further study
of the scale interactions and the corresponding energy cascade seems obligatory in
order to have a better understanding of the nature of laminar and turbulent flows. In
the following section the equations (2.1), (2.2) and (2.3) are transformed to Fourier
space in order to obtain the evolution equation of the different scales in terms of
Fourier modes. This allows to derive the balance equation for the kinetic energy of
the flow, given in Section 2.3.

3Since the set of equations (2.1)-(2.2) is sufficient to describe the motion of an incompressible
fluid, the pressure field p = p (x, t) is determined solely by the velocity field u (x, t). Taking the
divergence of the momentum equations (2.2) and imposing the continuity equation (2.1) leads to
the elliptic Poisson equation

∂2p

∂x2
i

= − ∂ui

∂xj

∂uj

∂xi
. (2.3)

It should be appreciated that satisfaction of this Poisson equation is a necessary and sufficient
condition for the solenoidal velocity field to remain solenoidal [70].
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2.2 Spectral representation

Consider the Navier-Stokes equations supplemented with periodic boundary con-
ditions, such that the resulting periodic velocity field u (x, t) is confined to a cubical
domain Ω = 0 ≤ xj ≤ L where

u (x + L ei, t) = u (x, t) , i = 1, 2, 3 (2.4)

in which ei denotes the unit vector in the ith coordinate direction. Due to the
periodicity, the velocity field can be represented as a three-dimensional Fourier series
of a set of orthogonal basic functions eiκx = cos (κx) + i sin (κx), i.e.

u (x, t) =
∑

κ

û (κ, t) eiκx, (2.5)

where κ = [κ1, κ2, κ3] ∈ R3 denotes the wavenumber vector with magnitude κ = |κ|.
The Fourier coefficients û (κ, t) are determined by the Fourier transform F {.} such
that

û (κ, t) = F {u (x, t)} . (2.6)

A more fundamental description of Fourier transformations and their properties is
given in Appendix A. Following Pope [70], the equation for the evolution of the
Fourier modes û (κ, t) is obtained by applying the operator F {.} term by term to
the Navier-Stokes equations (2.2), leading to

d

dt
ûj (κ, t) + iκkF {uj (x, t)uk (x, t)} = −iκj p̂ (κ, t) − νκ2ûj (κ, t) , (2.7)

where p̂ (κ, t) = F {p (x, t)}. The Fourier coefficients of the pressure can be obtained
by applying operator F {.} to the Poisson equation (2.3) such that

p̂ (κ, t) = −κjκk

κ2
F {uj (x, t)uk (x, t)} = −κkκl

κ2
F {uk (x, t)ul (x, t)} . (2.8)

Equation (2.7) is then simplified as

d

dt
ûj (κ, t) = −iκl

(
δjk − κjκk

κ2

)
F {uk (x, t)ul (x, t)} − νκ2ûj (κ, t) (2.9)

= −iκlPjk (κ)F {uk (x, t)ul (x, t)} − νκ2ûj (κ, t) , (2.10)
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in which Pjk (κ) is the projection tensor.4 Following Pope [70], the nonlinear con-
vective term in expression (2.10) is evaluated as

F {uk (x, t)ul (x, t)} = F

{[
∑

κ′

ûk

(
κ′, t

)
eiκ′.x

][
∑

κ′′

ûl

(
κ′′, t

)
eiκ′′.x

]}
(2.11)

=
∑

κ′

∑

κ′′

ûk

(
κ′, t

)
ûl

(
κ′′, t

)
F

{
ei(κ′+κ′′).x

}
(2.12)

=
∑

κ′

∑

κ′′

ûk

(
κ′, t

)
ûl

(
κ′′, t

)
δκ,κ′+κ′′ (2.13)

=
∑

κ′

ûk

(
κ′, t

)
ûl

(
κ − κ′, t

)
. (2.14)

By substitution of this result into the equation for the evolution of the spectral
velocity (2.10), one obtains the deterministic set of ordinary differential equations

d

dt
ûj (κ, t) = −iκlPjk (κ)

∑

κ′

ûk

(
κ′, t

)
ûl

(
κ − κ′, t

)
− νκ2ûj (κ, t) . (2.15)

The nonlinear convective term is non-local in wavenumber space since it involves
triadic interactions between wavenumber vectors κ, κ′ and κ′′, such that κ′+κ′′ = κ.
This means that each scale or eddy in the flow interacts with all other scales. The
various scale-interactions statistically result into smaller eddies, characterized by
higher wavenumber vectors. Once the scales are small enough, the inertial effects
become negligible in contrast to the dominant viscous effects. Hence, in the final
period of decay the small scales evolve almost independently of all others and decay
exponentially with time at the rate νκ2 [70]. In case of laminar flows, the triadic
interactions are rather limited due to the non-negligible viscous effects, whereas for
turbulence, the plenitude of nonlinear triadic interactions determines the chaotic5

behaviour of the flow. In the next section the role of the triadic interactions and the
viscous damping in the energy cascade is examined.

2.3 The energy cascade

Formulating the energy cascade in terms of Fourier modes is advantageous since
it provides a clear quantification of the energy of the different Fourier modes as well
as an explicit expression for the energy transfer between the different modes, which
determines the energy cascade [70].

4The operator Pjk projects the nonlinear force vector onto a plane normal to κ, expressing
thus the continuity constraint κ · bu = 0.

5Remark that chaotic turbulent motions do not imply any randomness, since they obey the laws
of physics rather than coincidence. The chaos is therefore said to be deterministic.
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2.3.1 The evolution of kinetic energy

In order to analyze the energy cascade, involving the energy transfer between the
different modes, the evolution equation for the kinetic energy of the Fourier modes
is derived from the evolution equation of the spectral velocity (2.15). The kinetic
energy spectrum of the Fourier modes is defined as

E (κ, t) =
1

2

〈
ûj (κ, t) û∗

j (κ, t)
〉
, (2.16)

where û∗
j (κ, t) = ûj (−κ, t) denotes the complex conjugate of the velocity field and

〈.〉 denotes the statistical ensemble average over all realizations of the velocity field.
Multiplication of the evolution equation (2.15) with the complex conjugated velocity
field û∗

j (κ, t) and averaging over different realizations leads to

d

dt
E (κ, t) = T (κ, t) − 2νκ2E (κ, t) , (2.17)

where

T (κ, t) = κlPjk (κ)ℜ
{
−i
∑

κ′

〈
û∗

j (κ, t) ûk

(
κ′, t

)
ûl

(
κ − κ′, t

)〉
}

, (2.18)

representing the rate of energy transfer between different modes. In case of a statis-
tically isotropic flow6 in a periodic box, it can be verified that the global balance of
the energy transfer is zero, i.e.

∑
κT (κ, t) = 0. In the absence of external energy

sources that vary in time, the change in kinetic energy of the Fourier modes only
depends on the exchange of energy between the different modes and the loss of ki-
netic energy due to viscous dissipation. Since the large eddies tend to break up into
smaller ones, the energy transfer acts mainly in the direction from larger scales (low
wavenumber modes) toward smaller scales (higher wavenumber modes). The total
amount of kinetic energy in the flow is defined as

k (t) =
∑

κ

E (κ, t) (2.19)

=
1

16π3

∞∫∫∫

−∞

〈ui (x, t)ui (x, t)〉 dx, (2.20)

whereas the total rate of dissipation is defined as

ε (t) =
∑

κ

2νκ2E (κ, t) (2.21)

=
2

8π3

∞∫∫∫

−∞

〈
ν

∂ui

∂xj
(x, t)

∂ui

∂xj
(x, t)

〉
dx. (2.22)

6Turbulence flows are defined as statistically isotropic if the velocity field is statistically invariant
under all spatial transformations, i.e. translation, rotation and reflection.
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Note that both expressions for the kinetic energy (2.19) and (2.20), and both ex-
pressions for the dissipation rate (2.21) and (2.22) are identical due to Parseval’s
theorem explained in Appendix A.

2.3.2 The energy spectrum

Consider a homogeneous isotropic flow field u (x, t) that remains invariant un-
der spatial transformations and thus does not contain any preferential direction.
Under this assumption, it is possible to obtain a characteristic energy spectrum
function E (κ, t) ∈ R by removing all directional information from the energy spec-
trum E (κ, t) ∈ R3. The information about the direction of the Fourier modes is
removed by integrating E (κ, t) over all wavenumbers κ with magnitude κ = |κ|.
Following Pope [70], the energy spectrum E (κ, t) is considered for further analysis
as the analytical counterpart of the discrete energy spectrum.7 Removing the direc-
tional information from E (κ, t) is mathematically translated as integrating E (κ, t)
over a spherical surface S (κ) with radius κ

E (κ, t) =

∮
E (κ, t) dS (κ) =

∫∫∫

κ

E (κ, t) δ (|κ| − κ) dκ. (2.24)

The expressions for the kinetic energy and the dissipation rate are straightforwardly
obtained from previous equation

k (t) =

∞∫

0

E (κ, t) dκ, (2.25)

ε (t) =

∞∫

0

2νκ2E (κ, t) dκ. (2.26)

Since the energy spectrum function E (κ, t) represents the energy content of the
different characteristic scales in a statistically isotropic flow, it is fully determined by
the inertial effects (related to energy transfer) and viscous effects (related to energy
dissipation) and thus by the Reynolds number. As a consequence, the shape of the
energy spectrum and the number of scales is different for laminar and turbulent flow
regimes. In the following section, the characteristic form of the turbulent energy
spectrum is examined, and the difference with the spectrum related to laminar flows
is briefly discussed.

7The analytical energy spectrum is readily obtained from the discrete energy spectrum by

E (κ, t) =
X

κ

δ (κ − κ) E (κ, t) , (2.23)

where κ is the continuous wavenumber vector.
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2.3.3 Turbulence: Kolmogorov’s law

It has since long been recognized that for a sufficiently high Reynolds number
Re (see e.g. Figure 2.1), turbulent flows are characterized by a universal behaviour.
As mentioned before, the large eddy structures, represented by low wavenumbers,
break up due to inertial effects into successively smaller and smaller eddies until the
smallest eddies are finally dissipated by viscous effects. This breakdown of large
structures into smaller ones is accompanied with a transfer of kinetic energy from
large to smaller eddies until this energy is dissipated by the molecular viscosity. It is
exactly this energy cascade and dissipation mechanism that obeys a universal law. In
1941 Kolmogorov [47] published a general theory on the local structure of turbulence.
Besides the energy-containing range which contains the largest, most energetic and
anisotropic scales, Kolmogorov distinguished a second universal equilibrium range
of smaller turbulent scales down the cascade. These small eddies are considered
locally isotropic, flow independent and in quasi equilibrium since the directional
information of the large scales is quickly lost in the cascade. Furthermore, this
universal equilibrium range is classified into two subranges, i.e. the inertial subrange
and the dissipation (sub)range. The scales in the dissipation range are responsible
for almost the entire dissipation since they experience significant viscous damping.
The smallest scales of significance in this range, called the Kolmogorov scales are
characterized by the length scale

η (t) =

(
ν3

ε (t)

) 1
4

. (2.27)

In contrast to the dissipation range, the inertial subrange is mostly determined by
inertial effects whereas the viscous effects are negligible. Kolmogorov postulated
that the motions in the inertial subrange have a universal form which is uniquely
determined by the rate of dissipation ε and their length scale, independently of
the viscosity (the second similarity hypothesis). Based on dimensional analysis, the
energy spectrum in the inertial subrange is given by

E (κ, t) = Ckε (t)
2
3 κ− 5

3 , (2.28)

where Ck is the universal Kolmogorov constant and is measured to be approximately
Ck = 1.5. Figure 2.1 demonstrates the normalized energy spectrum at various
Reynolds numbers. For an arbitrary high Reynolds number Re (Figure 2.1), the en-
ergy containing range, inertial subrange and dissipation range are indicated. Notice
the −5/3-inertial range scaling and the dissipation range where the energy spec-
trum decays exponentially. However, for decreasing values of the Reynolds number
(e.g. Re

4 , Re
16 , Re

64 ), the number of scales is reduced due to increasing influence of the
viscous effects such that the inertial range behaviour tends to disappear. Once the
energy containing range converts immediately into the dissipation range (e.g. Re

64 ),
the shape of the energy spectrum may be considered as characteristic for laminar
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Figure 2.1: The normalized energy spectrum. For arbitrary high Reynolds
numbers (Re) one can distinguish the energy containing range κ ≤
κe, the inertial subrange κe ≤ κ ≤ κd and the dissipation range
κd ≤ κ ≤ κη = 2π

η .

flows. Summarizing, turbulent flows are thus characterized by their inertial range
scaling in contrast to laminar flows where the inertial range is absent. According
to Pope [70], the entire energy spectrum function can be modeled by extending the
Kolmogorov spectrum (2.28) with two non-dimensional functions as

E (κ, t) = Ckε (t)
2
3 κ− 5

3 Fe (κ, t)Fη (κ, t) . (2.29)

The function Fe (κ, t) determines the shape of the energy containing range and tends
to unity for large κ. Similarly, Fη (κ, t) determines the shape of the dissipation
range and tends to unity for small κ. Several prescriptions are known for both
functions, but they generally contain some parameters which are tuned to fit the
experimental data. Note that Fe (κ, t) cannot be captured easily in a universal
expression as it is dominated by the large-scale flow characteristics and thus related
to the specific geometry. For a complete description of these functions, the reader
is referred to [70, 74].

2.3.4 Homogeneous Isotropic Turbulence

Before advancing to the discussion about numerical simulations of turbulent
flows and their computational requirements, some definitions are needed concerning
the different length scales of eddies in homogeneous isotropic turbulence [70]. For
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isotropic turbulence, one defines the longitudinal integral length scale L11 as

L11 (t) =
3π

4k (t)

∞∫

0

E (κ, t)

κ
dκ, (2.30)

which represents the largest relevant longitudinal length scales in the flow. Another
measure which is roughly related to the largest relevant length scales is defined as

L (t) =
k (t)3/2

ε (t)
. (2.31)

At high Reynolds numbers Re, the length scale ratio L11/L tends asymptotically to
the value 0.43, although this ratio significantly increases for lower Reynolds numbers.
The (transversal) Taylor microscale, defined from the relations

λg (t) =

√
15ν

k (t)

ε (t)
(2.32)

=
√

10η (t)2/3 L (t)1/3 , (2.33)

is intermediate in size between the Kolmogorov length scale η and the length scale
L. This well-defined quantity is often used in later analysis.
Further, it is possible to define different Reynolds numbers based on the different
length scale-definitions, which are mutually related by

ReL (t) =

√
k (t)L (t)

ν
=

k (t)2

νε (t)
(2.34)

=
3

20
Re2

λ ≈ 6

20
Re. (2.35)

These definitions will be used further in the next section.

2.4 Direct Numerical Simulation of Turbulence

Direct numerical simulation (DNS) consists in solving the discrete Navier-Stokes
equations8 numerically on a computational grid, resolving all the scales of motion,
including the smallest Kolmogorov scales. Although the DNS approach is straight-
forward and unrivaled in accuracy, it is appreciated from the previous fundamental
study that the resolution requirements become prohibitively expensive with increas-
ing number of scales which is proportional to the Reynolds number.

8Supplemented with a set of boundary conditions appropriate to the flow.
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The present section is initiated with a rigorous mathematical description of dis-
cretization, referred to as sampling. The properties related to this mathematical op-
eration form the fundamentals of the finite difference framework which is the subject
of this dissertation. By means of some of these properties one is allowed to make
a well-considered realistic estimation of the resolution requirements for the DNS of
homogeneous isotropic turbulence and to appraise the involved computational effort.
The resulting conclusions motivate the use of more affordable approaches such as
Large-Eddy Simulation (LES), where only the largest energetic scales are resolved,
modeling the influence of the small dissipative scales on the evolution of the large
ones.

2.4.1 The Sampling operator

Solving the Navier-Stokes equations numerically involves the consistent projec-
tion of the velocity field u (x, t) and the governing Navier-Stokes equations from
the continuum spatial domain Ω ⊂ R3 with Cartesian coordinates x ∈ R3 to the
discrete spatial domain Ω∆ ⊂ R3 with discrete equispaced Cartesian coordinates
xk = [x1 (k) , x2 (k) , x3 (k)] ∈ R3, and k = [k1, k2, k3] ∈ N3 the index vector. Let
N = [N1, N2, N3] represent the number of grid nodes in each direction such that
0 ≤ kj ≤ Nj , j = 1, 2, 3 and let ∆ = [∆1, ∆2, ∆3] give the uniform grid spacing in
each direction. Further the temporal dimension t is considered implicitly without
any loss of generality.9 This projection requires now the definition of a mathemat-
ical sampling function, operating between continuum and discrete space. Following
Bracewell [7], definition 2.4.1 introduces the mathematical operator that describes
the sampling process in a one-dimensional space R.

Definition 2.4.1 (Dirac comb x (x) , x ∈ R). Let δ (x) , x ∈ R be the Dirac delta
distribution,10 then the Dirac comb or Shah function x (x) is defined as an infinite
series of Dirac distributions

x (x) =
∞∑

k=−∞

δ (x − k) , (2.38)

9Note that temporal discretization can be described equivalently, however, since it is straight-
forward it will not be explicitly discussed.

10The Dirac delta distribution may be defined as

δ (x) = lim
q→0

»
1

q
√

π
e−x2/q2

–
=


0 x 6= 0

∞ x = 0
, (2.36)

and satisfies the condition

∞Z

−∞

δ (x) dx =

ǫZ

−ǫ

δ (x) dx = 1, ǫ > 0. (2.37)
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normalized as

k+ 1
2∫

k− 1
2

x (x) dx = 1. (2.39)

If the scale of x is compressed by a factor a > 0, thus reducing the original unit
area of the pulses with a factor a, then the strength of the pulses also needs to be
reduced by the factor a. The rescaled Dirac comb then reads

x (ax) =
1

a

∞∑

k=−∞

δ

(
x − k

a

)
. (2.40)

In analogy with the Dirac distribution, the Dirac comb is a generalized function11

whose definition and properties rely on the integral expression

k+ 1
2∫

k− 1
2

x (x) g (x) dx, (2.41)

where g (x) is any differentiable test function which is continuous at k, ∀k. By means
of integral (2.41), some important properties of the Dirac comb are discussed, that
are relevant for nonlinear differential equations such as the Navier-Stokes equations.

i. Consider the test function g (x) = u (x) and the scaling factor a = 1/∆, then

u (x) =
1

∆
x

( x

∆

)
u (x) (2.42)

=
∞∑

k=−∞

δ (x − k∆) u (x) (2.43)

=
∞∑

k=−∞

δ (x − xk) u (xk) , (2.44)

is the discontinuous sampled function represented by a modulated Dirac comb
in R such that u (x 6= xk) = 0 and u (x = xk) = u (xk). The discrete sampled
function is then defined by the integral (2.41) leading to

u (xk) =

xk+∆
2∫

xk−
∆
2

u (x) dx. (2.45)

11A generalized function can be defined as the limit of a class of distribution functions such that
an ideal function is obtained [70].
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Due to this sampling property, the Dirac comb is considered to be a mathe-
matical operator that defines the discretization process. Note that the Dirac
comb is an idempotent operator, such that

1

∆
x

( x

∆

)[ 1

∆
x

( x

∆

)
u (x)

]
=

1

∆
x

( x

∆

)
u (x) = u (x) . (2.46)

Before continuing, a shorthand notation for the sampling operation is intro-
duced. Hence, the sampling operator S ∆ is defined as

S
∆ ◦ u (x) = u (x) , (2.47)

S
∆ ◦ S

∆ ◦ u (x) = S
∆ ◦ u (x) = u (x) , (Idempotency), (2.48)

where ◦ denotes “operating on”.

ii. Assume the test function g (x) = u (x) v (x) with v (x) ∈ R continuous at
xk, ∀k. The argument of the integral (2.41) is then evaluated as

1

∆
x

( x

∆

)
u (x) v (x) dx =

∞∑

k=−∞

δ (x − xk)u (x) v (x) (2.49)

=
∞∑

k=−∞

δ (x − xk)u (xk) v (xk) (2.50)

= u (x) v (x) , (2.51)

and further

xk+∆
2∫

xk−
∆
2

1

∆
x

( x

∆

)
u (x) v (x) dx = u (xk) v (xk) . (2.52)

This result proves the commutativity of the Dirac comb or sampling operator
with the product of two continuous functions, and can be expressed as

S
∆ ◦ [u (x) v (x)] =

[
S

∆ ◦ u (x)
] [

S
∆ ◦ v (x)

]
, (Commutativity).(2.53)

iii. In contrast to the product-commutation (2.51), the Dirac comb does not
commute with the spatial derivatives. Therefore, consider the test function
g (x) = ∂u(x)

∂x where the continuous partial derivative is typically defined as

∂u (x)

∂x
= lim

∆→ǫ

u (x + ∆) − u (x − ∆)

2∆
, ǫ = 0. (2.54)
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In order for the limit to exist, the function u (x) must be necessarily continuous.
Hence, the argument of integral (2.41), given by expression

1

∆
x

( x

∆

) ∂u (x)

∂x
=

1

∆
x

( x

∆

)[
lim
∆→ǫ

u (x + ∆) − u (x − ∆)

2∆

]
, (2.55)

obviously differs from expression

1

∆
x

( x

∆

) ∂u (x)

∂x
6= lim

∆→ǫ

∞∑

k=−∞

δ (x − xk)
u (x + ∆) − u (x − ∆)

2∆
(2.56)

6= lim
∆→ǫ

u (x + ∆) − u (x − ∆)

2∆
. (2.57)

Indeed, since u (x) is by definition a discontinuous function, the limit does
not exist any longer. Therefore, the definition of the derivative cannot be
satisfied, unless approximatively. A possible finite difference approximation
for the partial derivative may now be defined by evaluating the integral (2.41)
such that

xk+∆
2∫

xk−
∆
2

1

∆
x

( x

∆

) ∂u (x)

∂x
dx ≈ u (xk + ∆) − u (xk − ∆)

2∆
(2.58)

≈ u (xk+1) − u (xk−1)

2∆
(2.59)

≈ δu (x)

δx
, (2.60)

where δ = S ∆ ◦ ∂ in short hand notation. Since finite difference approxima-
tions are the subject of this dissertation a more extensive discussion is given
in the following chapters.

iv. The Fourier transform of the Dirac comb, which is a periodic function with pe-
riod ∆ such that x (x + ∆) = x (x) ,∀x, appears to be another Dirac comb [7]
since

F

{
1

∆
x

( x

∆

)}
= F

{
∞∑

k=−∞

δ (x − xk)

}
(2.61)

=
∞∑

k=−∞

F {δ (x − xk)} (2.62)

=
1

2π

∞∑

k=−∞

e−iκxk (2.63)

=
1

∆

∞∑

k=−∞

δ (κ − kκs) =
1

2π
x

(
κ

κs

)
, (2.64)
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where κs = 2π
∆ denotes the sampling wavenumber determined by the grid spac-

ing. In the next section, this property is used to obtain the Fourier transform
of the sampled velocity field u (x). The conclusions from this Fourier anal-
ysis will prove to be very important since they determine the computational
requirements of a Direct Numerical Simulation.

In the previous, the Dirac comb and its properties were considered in case of a
uniform grid spacing, leading thus to uniform sampling. Nevertheless, the concept
of sampling can easily be extended to computational grids with a non-uniform grid
spacing. Assume a well chosen transformation function Tx→ξ which transforms the
function g (x) from physical space x ∈ R to a corresponding computational space
ξ ∈ R, such that

ξ = Tx→ξ (x) (2.65)

and thus,

g (ξ) = g (Tx→ξ (x)) . (2.66)

Hence, the non-uniform sampling operation on g (x) in physical space x ∈ R is equiv-
alent with the uniform sampling of the transformed function g (ξ) in computational
space ξ ∈ R, before transforming it back to physical space. It is emphasized that
the properties of function g (ξ) may differ from those related to g (x). It may be
clear that all previously defined properties of the sampling operator remain valid
under this transformation. For instance, using the chain rule for differentiation, the
derivatives in physical space are now approximated as

∂u (x)

∂x
=

ξk+∆
2∫

ξk−
∆
2

1

∆
x

(
ξ

∆

)
∂u (ξ)

∂ξ
dξ

∂ξ (x)

∂x
(2.67)

=

ξk+∆
2∫

ξk−
∆
2

1

∆
x

(
ξ

∆

)
∂u (ξ)

∂ξ
dξ

∂x (ξ)

∂ξ

−1

(2.68)

≈ δu (ξ)

δξ

∂x (ξ)

∂ξ

−1

. (2.69)

In the following, only uniform grids are considered, avoiding unnecessary complexity.
In order to discretize the continuous velocity field u (x) , x ∈ R3, it is necessary to
extend definition (2.4.1) to R3.
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Definition 2.4.2 (Dirac comb X (x) , x ∈ R3). The Dirac comb in X (x) , x ∈ R3

is defined as the product of one-dimensional Shah functions

X (x) =
3∏

j=1

x (xj) =
∞∑

k=−∞

δ3 (x − k) , (2.70)

where the Dirac delta distribution δ3 (x) is given by

δ3 (x) =

3∏

j=1

δ (xj) , xj ∈ R. (2.71)

Further, X (x) is normalized as

k+1

2∫∫∫

k−1

2

X (x) dx = 1. (2.72)

Assume a vector of scaling coefficients a = [a1, a2, a3], then the rescaled Dirac comb
in R3 is given by

X (ax) =
3∏

j=1

x (ajxj) =
3∏

j=1

[
1

aj

∞∑

k=−∞

δ

(
xj −

kj

aj

)]
. (2.73)

It can be understood that all properties, i.e. idempotency (2.46), product com-
mutation (2.51), non-commutativity with derivatives and finally the Fourier trans-
form, are maintained for multi-dimensional fields and their application is straight-
forward. The short hand notation for the three-dimensional sampling operator is
given by S ∆ ◦ u (x) = S ∆1 ◦ S ∆2 ◦ S ∆3 ◦ u (x).

2.4.2 Aliasing: the Nyquist-Shannon theorem

In order to avoid unnecessary complications, a uniform computational grid is
considered with an equal number of nodes in every direction such that N = Nj

and ∆ = ∆j for j = 1, 2, 3. It was shown in Section 2.3.3 that the smallest eddies
in a homogeneous isotropic flow are characterized by the Kolmogorov wavenumber
κη = 2π

η . This implies that the Fourier modes at wavenumbers κ > κη have no
significant energy as can be seen from Figure 2.1. Hence, the velocity field u (x) is
considered to be a band-limited field, as it contains only energy in the wavenumber-
band 0 ≤ κ ≤ κη. In this section, the consequences of the sampling operation on the
band-limited velocity u (x) and the corresponding energy spectrum are examined.
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The Fourier transform of the discontinuous sampled velocity field u (x, t) is obtained
by

û (κ) = F

{
1

∆3
X

( x

∆

)
u (x, t)

}
(2.74)

= F

{
1

∆3
X

( x

∆

)}
∗ F {u (x, t)} (Convolution theorem) (2.75)

=
1

8π3
X

(
κ

κs

)
∗ û (κ, t) (2.76)

=
1

∆3

∞∑

k=−∞

û (κ − kκs, t) . (2.77)

Apparently, due to the convolution of û (κ, t) with the Dirac Comb,12 the Fourier
modes û (κ, t) are infinitely replicated in every direction of the wavenumber space
at every integer multiple kj of the sampling wavenumber κs = 2π

∆ . These replicas
are called images. Analogously, the energy spectrum of the sampled velocity field
E (κ, t), is obtained as

E (κ, t) =
1

2
û (κ, t) û

∗
(κ, t) (2.79)

=
1

2

{
1

∆3

∞∑

k=−∞

û (κ − kκs, t)

}{
1

∆3

∞∑

k=−∞

û∗ (κ − kκs, t)

}
(2.80)

=
1

2∆6

∞∑

k=−∞

û (κ − kκs, t) û
∗ (κ − kκs, t) (2.81)

=
1

∆6

∞∑

k=−∞

E (κ − kκs, t) , (2.82)

which is a series of repeated and shifted energy spectra. Since the considered
flow is isotropic, the sampled energy spectrum function E (κ, t) is obtained by in-
tegrating the energy spectrum E (κ, t) over spherical shells (2.24), removing any
directional information. If the wavenumber-shift characterized by κs is sufficiently
large, equation (2.82) shows that the neighboring spectra coexist without interfer-
ence. However, the adjacent images of the spectrum, e.g. E (κ, t) and E (κ + κs, t)
overlap if the wavenumber-shift is too small. This is illustrated in Figure 2.2. Due
to the summation in equation (2.82) the energy of the overlapping Fourier modes
is combined such that an energy pile-up is observed at the tail of the original en-
ergy spectrum as if the tail-energy is mirrored around the intersection. It may be

12

1

8π3
X

„
κ

κs

«
∗ bu (κ) =

1

8π3
x

„
κ1

κs

«
∗

»
x

„
κ2

κs

«
∗

»
x

„
κ3

κs

«
∗ bu (κ, t)

––
. (2.78)
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Figure 2.2: The principle of aliasing. The energy spectrum overlaps with two
neighboring spectrum-images, both shifted with sampling wavenum-
ber κs. The resulting energy spectrum contains an energy pile-up at
the end of the spectrum (· · · ).

clear from Figure 2.3 that the energy pile-up becomes significant once the inertial
ranges start to overlap. This phenomenon, called aliasing, results from the fact that
the eddies smaller than the grid spacing cannot be seen on the computational grid.
These small scales, corresponding to high wavenumbers, are erroneously represented
or aliased as larger eddies corresponding to lower wavenumbers. The sufficient and
necessary condition that precludes aliasing is derived by imposing the constraint

κη < κs − κη, (2.83)

resulting in

κη <
κs

2
=

π

∆
= κmax. (2.84)

The wavenumber κmax, which indicates the smallest motion that can be represented
on the computational grid, is called the Nyquist-frequency and (2.84) forms the
basis for the Nyquist-Shannon Sampling Theorem.13 Aside from the fact that no
wavenumber-information is lost if the Nyquist criterion κη < κmax is satisfied, the
Nyquist-Shannon theorem states that under this condition, the original velocity field
u (x) can be entirely reconstructed from the sampled field u (x). The reconstruc-
tion involves the use of a reconstruction filter that extracts the original spectrum,
removing the images. In physical space, the reconstruction filter is given by the sine

13Named after the Swedish physicist Harry Nyquist and the American mathematician Claude
Elwood Shannon.
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Figure 2.3: Aliased energy spectrum. The significant energy pile-up at tail of
the energy spectrum (· · · ) is due to the interfering spectrum-images.

cardinal or sinc14 function such that

u (x, t) =




3∏

j=1

2π sinc (κsxj)


 ∗ u (x, t) . (2.85)

In summary, this fundamental study indicates that Direct Numerical Simulation
requires the use of a computational grid with maximum resolution κmax = π

∆ on
which the smallest Kolmogorov scales can be resolved, i.e. κη < κmax. Hence, the
required number of nodes N is related to the size of the Kolmogorov motions η and
thus to the Reynolds number Re. In Section 2.4.4, the relation between N and the
Reynolds number Re is deduced, based on scaling properties of turbulent flows in
combination with the Nyquist criterion. However, this first requires a projection of
the Navier-Stokes equations from continuum space to discrete space as well as a pro-
jection of continuum time to discrete time, the latter discretization being analogous
to the former.

2.4.3 The discrete Navier-Stokes equations

Spatial discretization is obtained by applying the sampling operator S ∆ =
S ∆x1◦S ∆x2◦S ∆x3 to the continuity equation (2.1) and the Navier-Stokes equations
(2.2). This operation results in a projection from the continuum spatial domain
Ω ⊂ R3 with Cartesian coordinates x ∈ R3 to the discrete spatial domain Ω∆ ⊂ R3

with discrete equispaced Cartesian coordinates xk = [x1 (k) , x2 (k) , x3 (k)] ∈ R3,

14The sine cardinal function is defined as sinc(x) = sin(x)
x

.
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and k = [k1, k2, k3] ∈ N3 the index vector. Let N = [N1, N2, N3] represent the
number of grid nodes in each direction such that 0 ≤ kj ≤ Nj , j = 1, 2, 3 and
let ∆ = [∆1, ∆2, ∆3] give the uniform grid spacing in each direction. Further, the
sampling operator S ∆t projects the Navier-Stokes equations (2.2) from continuum
time t ∈ R to discrete time tn ∈ R, n ∈ N where ∆t denotes the time interval. Using
properties (2.45),(2.51) and (2.59), the discrete continuity and the Navier-Stokes
equations are then written as

δui

δxi
= Π∆ (2.86)

δui

δt
+ uj

δui

δxj
= − δp

δxi
+ ν

δ2ui

δx2
j

+ Σ∆
i , (2.87)

where the pressure field is described by the discrete Poisson equation.15 Due to the
non-commutativity of the sampling operator S ∆ with the spatial partial derivatives,
truncation errors arise in the continuity equation, the momentum equations and the
Poisson equation,16 which are formally given by the relations

Π∆ =
δui

δxi
− ∂ui

∂xi
(2.90)

Σ∆
i = uj

(
δui

δxj
− ∂ui

∂xj

)
+

(
δp

δxi
− ∂p

∂xi

)
− ν

(
δ2ui

δx2
j

− ∂2ui

∂x2
j

)
. (2.91)

Since at this point, the exact expressions for the truncation errors Π∆ , Σ∆
i (and

Λ∆) are not essential in the further discussions, their definitions are postponed.
Further, the grid spacing ∆j in each direction is assumed just small enough, such
that the Kolmogorov scales are resolved correctly on the computational grid and the
Nyquist criterion κmax > κη is satisfied for the projected velocity field u (xk, t). If
κmax ≈ κη, the evaluation of the nonlinear term uiuj leads to the creation of Fourier
modes in the wavenumber range κη ≤ κ ≤ 2κη and thus the Nyquist criterion
is violated. Despite the fact that the nodal values of uiuj are exact in physical
space, the aliasing errors occur as soon as a spatial interpolation of these nodal
values is applied. Such interpolations are intrinsically assumed in finite difference
approximations e.g. used in the evaluation of the nonlinear force

δuiuj

δxj
(see Chapter

15The discrete Poisson equation is given by

δ2p

δx2
i

= − δui

δxj

δuj

δxi
+ Λ∆ . (2.88)

16The truncation error of the Poisson equation is given by

Λ∆ =

„
δ2p

δx2
i

− ∂2p

∂x2
i

«
+

„
δui

δxj

δuj

δxi
− ∂ui

∂xj

∂uj

∂xi

«
. (2.89)
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4). Due to these interpolations, the Fourier modes in the wavenumber range κη ≤
κ ≤ 2κη are aliased to erroneous modes in the wavenumber range 0 ≤ κ ≤ κmax.17

In principle, aliasing is avoided if κη < 1
2κmax. However, Orszag [67] showed, that

if κη < 2
3κmax, all the aliases satisfy κalias > 2

3κmax. In other words, all aliasing
errors appear in the region κη < 2

3κmax < κ ≤ κmax, where they are immediately
dissipated by the viscous effects, whereas the range of interest 0 ≤ κ ≤ κη is not
polluted by aliasing. Thus, in order to have a mathematical and physical consistent
DNS simulation, the grid spacing must be chosen such that κmax > 3

2κη.

2.4.4 Computational requirements for DNS

With the conclusions of the previous sections, the relation between the number
of nodes and the Reynolds number Re for homogeneous isotropic turbulence can
be derived. Following Pope [70], the number of nodes in each direction of the
computational grid is determined by the relation

N = 2
κmax

κ0
= 2

κmaxη

κ0L11

(
L11

L

)(
L

η

)
(2.92)

where κ0 = 2π
L

denotes the largest energy containing scales, localized at the peak of
the energy spectrum. The ratio L/η can immediately be expressed as function of
the Taylor Reynolds number using relations (2.31) and (2.27) such that

L

η
= Re

3
4
L =

(
3

20

) 3
4

Re
3
2
λ . (2.93)

Further, the ratio L11/L is determined by the length scale definitions (2.30) and
(2.31). This ratio can be expressed as function of the Taylor Reynolds number
Reλ, by using the model spectrum (2.29). As mentioned before, L11/L tends to the
asymptotic value of 0.43 for large Reynolds numbers Reλ, but this ratio increases
significantly for decreasing Reλ, as seen in Figure 2.4. Since it will turn out that
Direct Numerical Simulation is only affordable at low Reλ, this behaviour should be
included for further application in this work. In order to obtain a simple relationship
between L11/L and Reλ, a curve fitting of the exact profile in [70] is preferred. A
curve fitting of the form

L11

L
≈ α

Reλ
+ β, (2.94)

in which α = 12 and β = 0.43 was found to lead to a fairly good approximation as
shown in Figure 2.4. Finally, for homogeneous isotropic turbulence, the lower limit

17More specific, two wavenumbers κ′ and κ′′ interact to give κ = κ′ + κ′′ and their aliases
κalias = κ′ + κ′′ ± 2kκmax, ∀k > 0.
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Figure 2.4: DNS grid requirements. The ratio of the longitudinal integral
length scale to L = k3/2/ε as a function of the Taylor Reynolds
number Reλ. Curve fitting (· · · ) of Pope’s results obtained with the
model spectrum (×) [70].

of the domain size L is constrained as eight times the longitudinal integral length
scale or L = 8L11 [70], such that

κ0L11 =
π

4
. (2.95)

Substitution of the length scale ratios (2.93), (2.94) and (2.95) into equation (2.92)
results in

N ≈ 8

π

(
3

20

) 3
4

(κmaxη)

(
12

Reλ
+ 0.43

)
Re

3
2
λ , (2.96)

where the ratio κmaxη remains the only degree of freedom left. Obviously, the choice
of κmaxη is related to the discussion concerning aliasing. Defining the ratio of the
grid spacing to the Kolmogorov length as

ζ =
∆

η
=

π

κmaxη
=

1

2

κη

κmax
, (2.97)

then aliasing is prevented if ζ = 1
3 , as discussed above [67]. However, Pope [70]

suggests a value ζ = π
1.5 ≈ 2.1, based on the observations that the dissipation

spectrum is very small beyond κmaxη = 1.5 and that η underestimates the size of
the dissipative motions. Hence, aliasing errors are assumed negligible. Relation
(2.96) for the required number of nodes N in each direction and the total number



30 Chapter 2. The Navier-Stokes equations

10
0

10
1

10
2

10
3

10
4

10
1

10
2

10
3

10
4

10
5

10
6

N

Reλ

10
0

10
1

10
2

10
3

10
4

10
4

10
6

10
8

10
10

10
12

10
14

10
16

10
18

N
3

ζ = 1

3

ζ = 2.1

Figure 2.5: DNS grid requirements. The number of nodes N (and N3) re-
quired for DNS of homogeneous isotropic turbulence for two choices
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of nodes N3 as function of Reλ is illustrated in Figure 2.5. Remark that a fully
resolved DNS simulation (ζ = 1

3) requires approximately six times the number of
nodes N of the marginally resolved DNS (ζ = 2.1), such that the computational cost
of the total simulation will increase with a factor 216, probably with only little gain
in accuracy.

Similarly, in order to obtain an accurate time-advancement of the Navier-Stokes
equations, the time increment ∆t is necessarily smaller than the smallest time scale
defined by τη =

√
ν/ε = η2/ν, which is related to the Kolmogorov length scales.

Suppose a predefined time scale ratio θ

∆t

τη
= θ, (2.98)

Assume that the length and velocity scales of the initial flow are of order 1, such
that the Reynolds number is written as Re ≈ 1

ν ,18 then the time step is obtained by

∆t = θτη = θ
η2

ν
(2.99)

≈ θ

2
η2Re ≈ θη2Re2

λ, (2.100)

18This assumption is based on the definition of the Taylor-Green vortex flow by Brachet et al. [8]
which is considered for DNS further in this dissertation.
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Figure 2.6: DNS time step requirements. The increment of the time required
for accurate time advancement in DNS of homogeneous isotropic tur-
bulence as function of θ = ∆t
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and further developed as

∆t ≈ θ

2

( η

L

)2
(

L

L11

)2(L11κ0

κ0

)2

Re2
λ (2.101)

≈ θ

2

π2

16

( η

L

)2
(

L

L11

)2

Re2
λ (2.102)

≈ θ

2

π2

16

(
20

3

) 3
2
{

Reλ

(12 + 0.43Reλ)2

}
. (2.103)

The Nyquist criterion for the temporal discretization imposes that the frequency
of the Kolmogorov scales ωη = 2π

τη
should be smaller than the Nyquist frequency

ωmax = π
∆t , such that ωη < ωmax and θ < 1

2 . Moreover, the exact value of θ depends
on the accuracy of the adopted numerical method for discrete time advancement
of the solution. Typically 2nd - up to 4th -order accurate low-storage Runge-Kutta
methods are used. In general, these methods guarantee accurate time stepping if
the temporal variation of the physical phenomena is sufficiently small in comparison
with the time step e.g. ωη ≤ 1

5ωmax, such that θ ≤ 0.1 as suggested by Pope [70].
Expression (2.103) for the time increment ∆t as function of Reλ is illustrated in
Figure 2.6.

Although Figures 2.5 and 2.6 indicate that the computational requirements in-
crease rapidly with the Reynolds number, no direct information is provided about
the corresponding computational costs. Therefore, a fair quantitative estimation of
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Reλ ReL Re N N3 Nt Memory CPU1 CPU2 CPU3

25 94 313 105 1.1 × 106 156 64 Mb 25.4 s 4.20 s 0.20 ms

50 375 1250 218 1.0 × 107 169 576 Mb 4.14 min 40.9 s 1.70 ms

100 1500 5000 505 1.3 × 108 228 7 Gb 1.16 h 11.5 min 28.6 ms

250 9375 31250 1735 5.2 × 109 430 292 Gb 3.70 d 14.7 h 2.20 s

500 37500 125000 4661 1.0 × 1011 776 6 Tb 4.30 m 21.4 d 1.30 min

1000 150000 500000 12834 2.1 × 1012 1472 118 Tb 14.1 y 2.30 y 50.5 min

Table 2.1: Hypothetical Estimation of computational effort for DNS of
isotropic turbulence at various Reynolds numbers. The num-
ber of nodes N and N3 (ζ = 2.1); the number of time steps Nt to
calculate 1s of the flow (θ = 0.025); The lower bound of the mem-
ory; the CPU-time for three contemporary computing systems: Single
core Intel Pentium 4 Prescott 3.6GHz at 7 GigaFLOPS (CPU1); 2× Quad-
core Intel Xeon X5355 2.66GHz at 42.56 GigaFLOPS (Ghent University)
(CPU2); IBM Roadrunner(USA) with 6912 dual-core AMD Opteron pro-
cessors at 1.026 PetaFLOPS (CPU3).

the computational effort, required to perform a Direct Numerical Simulation of e.g.
1 second of a homogeneous isotropic turbulent flow, seems useful. Following [70],
the necessary time to compute 1 second of the flow, is mainly determined by the
number of floating-point operations and thus proportional to product of the number
of nodes N3 and the number of time steps Nt = 1

∆t .
19 Using equations (2.96) and

(2.103) this yields

N3Nt =
N3

∆t
=

(
8
π

(
3
20

) 3
4 π

ζ

(
12

Reλ
+ 0.43

)
Re

3
2
λ

)3

θ
2

π2

16

(
20
3

) 3
2

{
Reλ

(12+0.43Reλ)2

} (2.104)

=
16384

π2

(
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) 15
4 1

ζ3θ

(
12Re

1
2
λ + 0.43Re

11
2

λ

)
(2.105)

Suppose that 103 floating point operations (FLOPS) per mode per time step are
needed. Further, the storage of a double precision value requires 8 bytes, such that
the memory requirements per scalar variable are given by 8N3 bytes.20 Table 2.1
gives an overview of the CPU-time and memory requirements, obtained by relation
(2.105), for three contemporary computer systems: a classic personal computer with
single core Intel Pentium 4, a Quad-core Intel Xeon server and finally the world’s
fastest supercomputer Roadrunner.21 Since the overall computational time increases

as Re
11/2
λ and the memory storage increase with Re

9/2
λ , the results obviously indicate

that a sufficiently resolved DNS (ζ = 2.1) becomes prohibitively expensive for fully

19Here, Euler time stepping is assumed involving one iteration per time increment. In case of
multi-stage Runge-Kutta methods, several iterations are involved per time increment such that Nt

should be multiplied with the number of stages.
20Remark that for incompressible flows, at least 7 variables (u, x and p) are stored in the random

access memory (RAM), neglecting intermediate calculation variables.
21It is assumed that all processors are used in the computation.



2.4. Direct Numerical Simulation of Turbulence 33

developed turbulent flows with a clear inertial range, at Reynolds numbers Reλ >
100.

2.4.5 Motivation for Large-Eddy Simulation

It is useful to retrieve a distribution of the computational effort over the different
scales in a Direct numerical simulation of isotropic turbulence. An estimation of the
involved costs for resolving the scales in the dissipation range, i.e. κdη ≈ 0.1 ≤
κη [70], is determined by the ratio of the nodes required to resolve scales outside
the dissipation range Nout, over the total number of nodes N . With equation (2.96)
the percentage of computational nodes required to resolve the dissipation range is
obtained by

1 − N3
out

N3
= 1 −

(
κdη

κmaxη

)3

=
103π3 − ζ3

103π3
(2.106)

such that for ζ = 2.1, 99.97% of the wavenumber modes are in the dissipation
range (99.99% if ζ = 1/3). In other words, only 0.03% (0.01%) of the wavenumbers
are used for resolving the scales in the inertial subrange and the energy containing
range, whereas these scales contain more then 80% of the kinetic energy and are thus
considered most important. The enormous computational efforts to resolve mainly
the insignificant dissipative scales motivate the use of more affordable approaches. A
viable alternative is Large-Eddy simulation (LES), where only the largest scales are
resolved, neglecting the smallest dissipative scales which are part of the dissipation
range. Although the latter technique is the subject of the next chapter, a rough
estimation is given for the computational costs involved. Assume that only the
largest scales in the energy containing range and the inertial range are resolved on
the computational grid such that κmaxη ≤ κdη ≈ 0.1 [70]. The required number
of nodes N3 for LES is then reduced with a factor 1/3.10−4 ≈ 3.103 in comparison
with DNS. At very high Reynolds numbers, the number of gridnodes in a Direct

Numerical Simulation of homogeneous isotropic turbulence scales as N ∝ Re
3/2
λ

whereas the number of time steps scales as Nt ∝ Reλ ∝ N2/3. Hence, the number of

time steps required in LES is reduced with a factor
(
1/3.10−4

)2/9 ≈ 6 in comparison
with DNS. In conlusion, the computational time for LES, which is proportional to
the total number of floating point operations N3Nt, is roughly 20000 times less than
in case of DNS. Moreover the memory requirements reduce with a factor 3.103 since
they are proportional to N3.
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Von Neumann, John

3
Large-Eddy Simulation

The philosophy of Large-Eddy simulation (LES) is to resolve only the largest
unsteady and flow specific turbulent motions, which are part of the energy containing
range or the inertial subrange and represent approximately 80% of the kinetic energy.
Since the important main features of the flow are resolved, the LES solution is
believed to provide a statistically accurate prediction of the mean flow. As discussed
in Chapter 2, the gain in computational effort for LES is substantial in comparison
with Direct Numerical Simulation, since the smallest dissipative eddies, responsible
for approximately 99% of the grid requirements in DNS, are not resolved.

Since the smallest dissipative motions remain unresolved in LES, their effect
on the resolved scales requires proper modeling. According to the Kolmogorov hy-
potheses, these scales are considered to be locally isotropic, universal and in quasi
equilibrium, since the directional information of the large scales gets lost in the cas-
cade. Hence, models that account for these scales are based on universal scaling
behaviour and are therefore supposed to be flow independent.

The present chapter introduces the mathematical framework for Large-Eddy
Simulation that is maintained in this dissertation and describes the standard, and
most popular subgrid model that accounts for the unresolved scales. Moreover,
two more advanced modeling techniques are discussed, which tend to improve the
performance of the standard subgrid model. Finally, the sensitivity of both tech-
niques to the numerics is explained, introducing at the same time the basic problem
description of this dissertation.

35
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3.1 Philosophy of Large-Eddy Simulation

According to the Nyquist-Shannon theorem (Sections 2.4.2 and 2.4.3), the dis-
cretization of the turbulent velocity field u (x, t) and the governing Navier-Stokes
equations requires a extremely fine computational grid with κη ≤ 2

3κmax = 2π
3∆ in or-

der to avoid aliasing. Since the purpose of LES is to resolve only the largest and most
important motions of turbulence on an affordable computational grid κmax ≪ κη,
discretization of the velocity field u (x, t) and the governing equations demands an
appropriate filtering operation that reduces the number of scales (wavenumbers) in
the velocity field u (x, t), satisfying the Nyquist criterion. However, filtering the
Navier-Stokes equations induces a residual-stress tensor that expresses the effects of
the small unresolved scales on the large resolved scales and which requires modeling.

3.1.1 Filter definition

Filtering of the velocity field u (x, t) , x ∈ R3 and the governing Navier-Stokes
equations involves a restriction of the flow’s spectral content in continuum space
R3.1 Although this restriction requires the definition of a mathematical filtering
operation in R3, this operator is first examined in one-dimensional space R.

Definition 3.1.1 (Filtering operation in R ). The filtering operation is defined as
the convolution of the velocity field u (x, t) , x ∈ R with a filter function G (x) , x ∈ R.
Following Pope’s notation [70], the convolution is expressed by

u (x, t) = G (x) ∗ u (x, t) =

∫
G (x, ξ)u (x − ξ, t) dξ, (3.1)

where G (x, ξ) is called the filter kernel, and u (x, t) denotes the filtered velocity
field.2 Further, G (x, ξ) is normalized as

∫
G (x, ξ) dξ = 1, ∀x ∈ R. (3.2)

The filter kernel G (x, ξ) is called homogeneous if G (x, ξ) = G (ξ) is independent of
the spatial position x in the unbounded domain x ∈ [−∞,∞].

In the following only homogeneous filter kernels are considered. The dual defi-
nition in Fourier space is now obtained by taking the Fourier transform of equation
(3.1) and applying the convolution theorem such that

û (κ, t) = Ĝ (κ) û (κ, t) , Ĝ (κ) = 2πF {G (x)} . (3.3)

1Note that spatial filtering, automatically induces an implicit temporal filtering, since it is
possible to associate a characteristic time scale with each characteristic length scale [74]. As a
consequence, the required time step ∆t, determined by the time scale of the smallest resolved
eddies, is significantly larger for LES than for DNS. Nevertheless, since time filtering is merely a
consequence of spatial filtering, it is not treated explicitly in the further discussion.

2Remark that in this chapter, u denotes the filtered velocity field instead of the sampled velocity
field.
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Obviously, the filtering operation results into a modification of the magnitude of
each individual Fourier mode û (κ, t). In order to ensure the appropriate behaviour
of the filter, three important constraints are imposed [74].

i. Conservation of constants. Assume u (x, t) = u (t), then

u (t) = u (t) . (3.4)

This constraint is guaranteed by the normalization condition (3.2), which reads
Ĝ (0) = 1 in Fourier space.

ii. Linearity. Assume u (x, t) and v (x, t), then

u (x, t) + v (x, t) = u (x, t) + v (x, t) , (3.5)

which follows automatically from definition (3.1).

iii. Commutation with partial derivation. Assume the partial derivative ∂u(x,t)
∂x ,

then

∂u (x, t)

∂x
=

∂u (x, t)

∂x
. (3.6)

This commutation constraint is guaranteed for homogeneous convolution fil-
ters defined in an unbounded domain x ∈ [−∞,∞]. However, in case of
non-homogeneous filters G (x, ξ), e.g. with variable filter width in bounded
domains, (3.6) is not satisfied. Hence, commutation errors arise which are
formally expressed as

∂u (x, t)

∂x
− ∂u (x, t)

∂x
=

∫
∂G (x, ξ)

∂x
u (x − ξ, t) dξ. (3.7)

Nevertheless, since these commutation errors are beyond the scope of this
dissertation, the reader is referred to e.g. Ghosal et al. [33], van der Bos et
al. [81] and Geurts et al. [31] for further information thereon.

Aside from these imposed constraints, general convolution filters are characterized
by three additional properties:

iv. Convolution filters are generally not idempotent, i.e. they do not satisfy

u (x, t) 6= u (x, t) . (3.8)

Only filter kernels Ĝ (κ) that consists of a Heaviside function such that
[
Ĝ (κ)

]2
=

Ĝ (κ), satisfy (3.8) and are thus idempotent. A homogeneous filter which con-
sists of a Heaviside function is called an orthogonal operator.
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G (ξ) Ĝ (κ)

Box 1
∆c

H
(

∆c
2 − |ξ|

) sin
“

πκ
2κc

”

πκ
2κc

Gaussian
√

6
π∆2

c
e
−

„
6ξ2

∆2
c

«

e
−

„
π2κ2

24κ2
c

«

Sharp cutoff
sin

“
πξ
∆c

”

πξ
∆c

H (κc − |κ|)

Table 3.1: Three classical homogeneous filter functions G (x). The non-
projective Box filter kernel G (ξ) is local in physical space, but has a

non-local transfer function Ĝ (κ). Instead, the non-projective Gaussian
filter kernel has both non-local kernel G (ξ) and a non-local transfer

function Ĝ (κ). Finally, the sharp cutoff filter is a projective filter,

which has a non-local kernel G (ξ) but a local transfer function Ĝ (κ).

v. Convolution filters are not necessarily projective. A filter is called projective
if no inverse filtering operation can be defined. Hence, projective filtering
induces an irremediable loss of information, whereas non-projective filtering
implies that the filtering can be interpreted as a change of variable with no
loss of information [74]. This property is utterly important in the context
of aliasing, since in order to rigorously avoid aliasing, the Fourier modes at
κ ≥ κmax must be annihilated. Obviously, only projective filters satisfy this
requirement exactly, whereas non-projective filters only reduce the magnitude
of these modes without forcing them exactly to zero. Moreover, if the pro-
jective filter is idempotent, then the magnitude of modes κ ≤ κmax remains
unaltered.

vi. Finally, general convolution filters do not commute with the product operator.
Consider e.g. u (x, t) and v (x, t), then

u (x, t) v (x, t) 6= u (x, t) v (x, t) . (3.9)

Obviously, property (3.9) will be responsible for the appearance of a commu-
tation error on the nonlinear term in the filtered Navier-Stokes equations. The
commutation error takes the form of a residual-stress tensor which represents
the effect of the smallest unresolved scales on the large resolved scales. This
is subject of the discussion in Section 3.2.

Consider the filter width ∆c corresponding with the cutoff wavenumber κc = π
∆c

.
The three classical and most commonly used filters types are defined in Table 3.1,
and their characteristics are illustrated in Figure 3.1. Although the box filter is local
in physical space, i.e. the kernel G (ξ) = 0, ∀ |ξ| > ∆c

2 , its transfer function Ĝ (κ)
is non-local because the sine cardinal function only converges to zero at κ → ∞.
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Figure 3.1: Three classical filter functions. Left: convolution kernel G (ξ).

Right: transfer function Ĝ (κ). Box filter (−−−); Gaussian filter
(—); Sharp cutoff filter (−·−·).

Moreover, it does not satisfy property (3.8) and is thus not a projecting filter. On
the other hand, the sharp cutoff filter displays exactly the opposite behaviour. G (ξ)
is non-local in physical space whereas its transfer function Ĝ (κ) remains localized.
This filter satisfies property (3.8) such that it is a projective filter. Finally, the
Gaussian filter is non-local, both in spectral and physical space and does not satisfy
the idempotency property (3.8). Since both the box and Gaussian filters have a
non-local transfer function Ĝ (κ) and are not projective, the filtered velocity field
u (x, t) still contains the original number of Fourier modes, although with altered
magnitude. Therefore, the filter operation can be inverted to obtain u (x, t) from
u (x, t). In contrast, the sharp cutoff filter forces the Fourier modes above the cutoff
wavenumber κc to zero, which is an irreversible operation. Moreover, the sharp
cutoff filter precludes aliasing whereas the Gaussian and the box filter do not.
In order to filter the continuous velocity field u (x, t) , x ∈ R3, it is necessary to
extend the filter definition (3.1.1) to R3. However, this definition is not unique
and one can define an anisotropic filter, whose properties may differ in each spatial
direction, as well as an isotropic filter whose properties are independent of any
spatial direction [70].

Definition 3.1.2 (Filtering operation in R3 ). The anisotropic homogeneous
filter definition in R3 is obtained by tensorizing the mono-dimensional filter kernels
through multiplication such that

u (x, t) = G (x) ∗ u (x, t) =
3∏

j=1

G (xj) ∗ u (x, t) , (3.10)
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whereas the isotropic homogeneous filter definition in R3 is obtained by symmetrizing
the mono-dimensional filter kernels such that

u (x, t) = G (|x|) ∗ u (x, t) , |x| =
√

x2
1 + x2

2 + x2
3. (3.11)

For instance, in case of the sharp-cutoff filter, the anisotropic filter definition
results in a cuboidal transfer function, whereas the isotropic definition leads to a
spherical transfer function.3,4

Although in the literature the adopted definition is rarely clarified, it appears that
the anisotropic definition is widely used in combination with finite difference meth-
ods whereas the isotropic definition is commonly used for (pseudo-)spectral methods.
Moreover, the isotropic filter definition seems more physical when considering ho-
mogeneous isotropic turbulence, whereas from a mathematical point of view the
anisotropic filter definition is favoured. Since the three-dimensional Dirac comb
(definition 2.4.2) is constructed as the product of three independent one-dimensional
Dirac functions, each Cartesian direction may be discretized differently, as long as
the Nyquist criterion corresponding to that direction is satisfied. Hence, this suggests
independent filtering in each Cartesian direction which is equivalent to anisotropic
filtering. In this work, anisotropic filtering is used for solving the Navier-Stokes
equations whereas isotropic filtering is adopted for post-processing the solution and
the related energy spectra.

3.1.2 The filtered energy spectrum

The effects of the filtering operation on the velocity field u (x, t) are most clearly
demonstrated by examining the filtered energy spectrum. This allows to distinguish
the most appropriate theoretical filter to deduce the LES-equations with. Consider
the homogeneous isotropic turbulent velocity field u (x, t) and its energy spectrum
defined as

E (κ, t) =
1

2

〈
ûj (κ, t) û∗

j (κ, t)
〉
. (3.12)

The energy spectrum of the filtered velocity field u (x, t) is then calculated using
relation (3.3) as

E (κ, t) =
1

2

〈
ûj (κ, t) û

∗

j (κ, t)
〉

(3.13)

= Ĝ (κ) Ĝ
∗(κ)

1

2

〈
ûj (κ, t) û∗

j (κ, t)
〉

(3.14)

= Ĝ (κ) Ĝ
∗(κ)E (κ, t) . (3.15)

3Note that for the box filter, the anisotropic definition results in a cuboidal averaging volume
is whereas the isotropic definition gives a spherical averaging volume.

4In principle, it is possible to imagine yet another filter definition intermediate to the anisotropic
and isotropic one, such that an ellipsoid transfer function (sharp cutoff filter) or an ellipsoid aver-
aging volume (box filter) is obtained.
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Figure 3.2: The filtered energy spectrum. Left: filtered spectrum E (κ, t).
Right: the aliased spectrum Ealias (κ, t). Box filter (−−−); Gaussian
filter (—); Sharp cutoff filter (−·−·); Unfiltered spectrum (· · · ).

Integration over spherical shells results then into the filtered energy spectrum func-
tion

E (κ, t) =

∫∫∫

κ

Ĝ (κ) Ĝ
∗(κ) E (κ, t) δ (|κ| − κ) dκ (3.16)

=
∣∣∣Ĝ (κ)

∣∣∣
2
E (κ, t) . (3.17)

The filtered energy spectrum function is shown in Figure 3.2 for the box filter, the
Gaussian filter and the sharp cutoff filter. First, it is noticed that only the sharp
cutoff filter annihilates the wavenumber modes beyond the cutoff wavenumber κc

whereas the box filter and the Gaussian filter merely damp these wavenumber modes.
As a consequence, aliasing appears as soon as the box-filtered or Gaussian-filtered
velocity field is discretized, since the Nyquist criterion is not rigorously satisfied.
These aliasing errors result in the energy pile-up demonstrated in Figure 3.2, at
the tail of the energy spectrum. Moreover, unlike the sharp cutoff filter which
leaves the wavenumber modes κ < κc unharmed, the box filter and the Gaussian
filter tend to attenuate the energy of the Fourier modes near the cutoff. Based on
these observations, one defines the subfilter scales and the subgrid scales [16]. The
term subfilter scales indicates the turbulent motions at κ < κc, that are removed or
damped due to imperfect smooth filtering.5 In principle these scales can be recovered
by inverting the filter operation, or they may be approximated by modeling. Remark
that these subfilter scales do not exist in case of the sharp Fourier filter. The term

5Note that the aliased scales are not covered by this terminology.
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subgrid scales indicates all scales κ > κc that cannot be seen on the computational
grid and thus cannot be recovered, even if the adopted filter operation is smooth.
This emphasizes that the DNS solution can never be reconstructed from the LES
solution.

3.1.3 Filter selection

At this point, the selection of a theoretical filter is required in order to derive
the LES-equations. The goal of LES is to reproduce the dynamics and statistics of
the filtered DNS solution as accurately as possible, by resolving only the high ener-
getic large scale features (corresponding to ideally 80% of the total kinetic energy)
in the flow on a relatively coarse grid, while neglecting the low-energy small scales.
Although there are ongoing discussions favoring smooth reconstructable filters over
the projective unreconstructable filters and vice versa [21, 23, 24, 25, 26], the rigor-
ous mathematical constraint imposed by the Nyquist criterion impels a projective
filter since it precludes aliasing. Therefore, the sharp cutoff filter is favoured in
this dissertation in order to derive the LES-equations. Below, the most important
properties of the sharp cutoff filter are summarized [21, 70].

i. Since the sharp cutoff filter is a projector, the filtered velocity field û (κ, t)
is represented with complete accuracy by a finite set of wavenumber modes
κ < κc.

ii. As a consequence, the filtered velocity field û (κ, t) provides no direct in-
formation about the residual motions. Moreover, the velocity fluctuations(
1 − Ĝ (κ)

)
û (κ, t) do not contain resolved wave number modes [21]. Hence,

no subfilter scales arise and no additional defiltering or modeling is needed to
reconstruct these scales.

iii. In contrast to smooth filters, the issues related to modeling and resolution are
separate for the cutoff filter. This feature will prove very important in this
dissertation where the numerical errors and modeling errors are separated.

iv. Inevitably, when using sharp cutoff filters, the Gibbs-phenomenon can arise
due to the truncation of an infinite Fourier series. This phenomenon causes
wiggles in the filtered velocity field (also called ringing) and is closely related to
the smoothness of the original velocity field. Smooth velocity fields described
by rapidly converging Fourier series with rapidly decaying Fourier coefficients
û (κ, t), are less liable to the Gibbs-phenomenon when filtered, whereas irreg-
ular velocity fields, described by very slowly converging Fourier series with
slowly decaying Fourier coefficients û (κ, t), display significant ringing. This
means that sharp cutoff filtering of a turbulent velocity field possibly induces
the Gibbs-phenomenon if the cutoff wavenumber κc lies in the inertial subrange



3.2. The filtered Navier-Stokes equations 43

where the Fourier coefficients only decay with κ−5/3.6,7

v. Finally, it is possible to interpret the box filter and the Gaussian filter as certain
approximations to the sharp cutoff filter. Indeed, the box filter does have a
local support in physical space in contrast to the sharp cutoff filter. Although
the Gaussian filter is non-local in physical space, it can be considered quasi-
local since the magnitude decays exponentially in space.

3.2 The filtered Navier-Stokes equations

The governing equations for the Large-Eddy Simulation are obtained by applying
the convolution filter G (x) to the Navier-Stokes equations. In the previous section,
the sharp cutoff filter was favoured, since it rigorously precludes aliasing as imposed
by the Nyquist criterion.
Consider the homogeneous sharp cutoff filter denoted by G (x, ∆c) in physical space
or Ĝ (κ, κc) in spectral space. The cutoff wavenumber κc = π

∆c
is assumed constant

and remains unspecified pro tempore. The velocity field is then decomposed as

u (x, t) = u (x, t) + u′ (x, t) (3.18)

where u (x, t) denotes the low-pass filtered velocity field (large scales) and u′ (x, t)
denotes the high-pass filtered velocity field (small scales) such that

û (κ, t) = Ĝ (κ, κc) û (κ, t) , 0 ≤ κ ≤ κc (3.19)

û′ (κ, t) =
[
1 − Ĝ (κ, κc)

]
û (κ, t) , κc ≤ κ ≤ κη (3.20)

3.2.1 The filtered equations in physical space

Since the sharp cutoff filter is assumed homogeneous, i.e. with uniform filter
width, the filter operation commutes with the partial derivatives according to equa-
tion 3.6. The filtered continuous Navier-Stokes equations (2.1) and (2.2) are then
obtained as

∂ui

∂xi
= 0 (3.21)

∂ui

∂t
+

∂uiuj

∂xj
= − ∂p

∂xi
+ ν

∂2ui

∂x2
j

, (3.22)

6If the cutoff lies in the dissipation range the ringing would be less severe since the Fourier
coefficients bu (κ, t) decay exponentially.

7Due to the non-positiveness of the sharp cutoff filter function, i.e. G (x) ≥ 0 is not strictly
satisfied, the residual stress tensor and the related subgrid kinetic energy, which is often used for
subgrid modeling, are not guaranteed to be positive definite [86]. Therefore, it might be necessary
to ensure the realizability of the solution by using and additional smoothing filter in order to control
or eliminate these oscillations. Nevertheless, this regularization action may be considered as a part
of the physical modeling.
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Type Contribution Wavenumber range

Resolved uiuj |κ| < κc

Cross u′
iuj + uiu′

j |κ′| ≥ κc and |κ| < κc

Reynolds u′
iu

′
j |κ′| ≥ κc

Table 3.2: Various stress contributions. One can distinguish the resolved
stress contributions due to resolved scale-interactions, the Cross stress
contributions due to interactions between resolved scales κ and un-
resolved scales κ′ and the Reynolds stress contributions due to un-
resolved scale-interactions. Note that every type contributes in 0 ≤
|κ| < κc.

where p (x, t) denotes the filtered pressure field. Although the filter operation does
not commute with the product operator, as shown in equation (3.9), the nonlinear
term must be expressed as function of the filtered velocity field u (x, t) in order to
solve equation (3.22). However, substitution of the decomposed velocity field (3.18)
into the nonlinear term results in

∂ui

∂t
+

∂uiuj

∂xj
+

∂τ ij

∂xj
= − ∂p

∂xi
+ ν

∂2ui

∂x2
j

, (3.23)

where the commutation error or the residual-stress tensor is formally expressed as
τ ij = uiuj −uiuj . Formulation (3.23) is typically known as the doube decomposition.
Using definition (3.18) the residual-stress tensor is further developed as

τij = uiuj − uiuj = u′
iuj + uiu′

j + u′
iu

′
j , (3.24)

where u′
iuj + uiu′

j represents the contribution of the interactions between the unre-

solved scales and the resolved scales, whereas u′
iu

′
j represents the contribution of the

interactions between unresolved scales. Table 3.2 gives an overview of the different
stresses [70, 74]. Since the Cross stress contributions and the Reynolds stress con-
tributions in τ ij are not exclusively defined in terms of the resolved velocity field,
equation (3.23) is unclosed. Closure is achieved by modeling the residual stress ten-
sor, i.e. expressing it in terms of the resolved velocity field, such that the (3.23) can
be solved. This is subject of Section 3.3.

In the previous discussion, the cutoff wavenumber was deliberately left undeter-
mined since its value is imposed by the adopted discretization. Consider the uniform
computational grid with the grid spacing ∆ corresponding to the grid cutoff wave-
number κmax = π

∆ on which the equations are discretized. In order to control aliasing
due to the nonlinear stress uiuj evaluation, Orszag [67] proved that the filter cutoff
wavenumber κc = π

∆c
should at least satisfy κc = 2

3κmax. Hence, the aliasing errors

are restricted to the scales in the range κ > 2
3κmax which are eliminated by the ex-

plicit filtering operation on the resolved stress uiuj . Moreover, the explicit filtering
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guarantees that the velocity field on the next time step is restricted to κ < 2
3κmax.

However, this explicit filtering operation is most commonly not performed, and one
obtains the triple decomposition by rearranging equation (3.23) as

∂ui

∂t
+

∂uiuj

∂xj
+

∂τ ij

∂xj
+

∂τ l
ij

∂xj
= − ∂p

∂xi
+ ν

∂2ui

∂x2
j

, (3.25)

where τ l
ij = uiuj − uiuj denotes the Leonard stresses. This formulation implies

that a residual stress model is required for τ ij + τ l
ij in order to cancel exactly the

contributions in the range κ > 2
3κmax, which is extremely difficult, if not impossi-

ble [70]. Nevertheless, the triple decomposition is most commonly preferred since
it requires less computational effort. Moreover, equation (3.25) is guaranteed to be
Galilean invariant8 regardless the adopted filter definition or residual stress model,
whereas equation (3.23) is only Galilean invariant if the filter is orthogonal or if
the invariance error of the filtered nonlinear term is exactly compensated by the
invariance error of the residual stress model. An extensive discussion on this topic
can be found in Meyers et al. [63]. Since in Section 3.1.3 the sharp cutoff filter
was considered to be the most relevant and mathematical consistent filter definition
for the current LES philosophy, Galilean invariance is theoretically guaranteed for
both the double decomposition as well as the triple decomposition. Although the
sharp cutoff filter is necessarily approximated in most realistic numerical simula-
tions, preserving Galilean invariance is considered merely a discretization problem
rather then a conceptual problem related to the double decomposition. Hence, the
philosophy of Large-Eddy simulation with the double decomposition, involving the
explicit filtering, is preferred in this dissertation.

3.2.2 The filtered equations in spectral space

In order to construct an appropriate model for the residual stresses, it is necessary
to understand the effect of the unresolved scales on the resolved flow field. Therefore,
the energy transfer between the resolved and unresolved scales in the spectral energy
balance is examined. This requires first the formulation of the filtered Navier-Stokes
equations in Fourier space. Following Pope [70], the evolution equation of the filtered
Fourier modes is obtained by multiplying equation (2.15) with the sharp cutoff filter
kernel Ĝ (κ, κc) = H (κc − |κ|) leading to

d

dt
ûj (κ, t)=−iκlPjk (κ)

∑

κ′

Ĝ (κ, κc) ûk

(
κ′, t

)
ûl

(
κ − κ′, t

)
−νκ2ûj (κ, t) .(3.26)

The closure problem arises because the nonlinear term in (3.26) includes unknown
Fourier coefficients û (κ′, t) and û (κ − κ′, t). Hence, the equations need closure

8The solution of the governing equations is said to be Galilean invariant if it remains the same
in different inertial frames.
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by expressing the nonlinear term as function of the resolved Fourier modes and
to model the remaining unresolved interactions. The spectral LES-equations with
double decomposition are written as

d

dt
ûj (κ, t)=F<

j (κ, t) + F>
j (κ, t) − νκ2ûj (κ, t) , (3.27)

where F<
j (κ, t) represents the resolved triadic interactions

F<
j (κ, t) = −iκlPjk (κ)

∑

κ′

Ĝ (κ, κc) ûk

(
κ′, t

)
ûl

(
κ − κ′, t

)
, (3.28)

and F>
j (κ, t) represents the unresolved triadic interactions

F>
j (κ, t) = −iκlPjk (κ)

∑

max(κ′,κ−κ′)≥κc

Ĝ (κ, κc) ûk

(
κ′, t

)
ûl

(
κ − κ′, t

)
.(3.29)

Obviously, the unresolved triadic interactions, that involve the cross stresses and
Reynolds stresses, need to be modeled.

3.2.3 Spectral energy balance in LES

The energy spectrum of the filtered velocity field is defined in analogy with
Section 3.1.2 as

E (κ, t) = Ĝ (κ, κc)
2 E (κ, t) = Ĝ (κ, κc)

2

〈
1

2
ûj (κ, t) û∗

j (κ, t)

〉
. (3.30)

With this definition the spectral energy balance equation is derived by multiplying
(3.27) with û

∗

j (κ, t) and averaging over all realizations, leading to

dE (κ, t)

dt
= −2νκ2E (κ, t) + T< (κ, t) + T> (κ, t) , (3.31)

where the rate of energy transfer due to the resolved triadic interactions is given by

T< (κ, t) = −iκlPjk (κ)
∑

κ′

Ĝ (κ, κc)
〈
ûk

(
κ′, t

)
ûl

(
κ − κ′, t

)
û
∗

j (κ, t)
〉

, (3.32)

and the rate of gain of energy from the unresolved triadic interactions is defined as

T> (κ, t) = −iκlPjk (κ)
∑

max(κ′,κ−κ′)≥κc

Ĝ (κ, κc)
〈
ûk

(
κ′, t

)
ûl

(
κ − κ′, t

)
û
∗

j (κ, t)
〉
(3.33)
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Because the total energy of the resolved triadic interactions is conserved, summation
of equation (3.31) over all wavenumbers results in

dk

dt
= −ε +

∑

κ

T> (κ, t) , (3.34)

where the final term represents the net transfer of energy from the resolved scales
to the unresolved scales and vice versa.

∑
κT> (κ, t) is predominantly negative

corresponding to a drain of energy from the resolved interactions (forward scatter),
but positive values of

∑
κT> (κ, t) can appear, corresponding to an energy injection

from the unresolved interactions to the resolved interactions (backscatter). Although
it is not considered in this work, Leslie et al. [51] showed that the backscatter can be
quite significant. Since the effect of the unresolved interactions is mainly dissipative,∑

κT> (κ, t) is most commonly modeled in analogy with the molecular dissipation,
i.e.

T> (κ, t) = −2νq
e (κ, κc)κ2qE (κ, t) , q ∈ N+, (3.35)

where νe (κ, κc) denotes the eddy viscosity and q is typically unity, although other
choices are possible.9 The basic idea behind the eddy-viscosity concept is that scales
of motions of given size, are acted on by smaller scales as if the latter were an aug-
mentation of the molecular viscosity [48].10 Assuming the Kolmogorov spectrum,
Kraichnan [48] showed that for homogeneous isotropic turbulence, the eddy-viscosity
νe (κ, κc), which depends on the wavenumber magnitude κ and the cutoff wavenum-
ber κc in the inertial subrange, is given by

νe (κ, κc) =
γ

12

√
Ckε

1
3 κ

− 4
3

c , (3.36)

where Ck denotes the Kolmogorov constant and γ is a numerical constant. Although
expression (3.36) gives a fairly good approximation of the theoretical eddy-viscosity
in case κ ≪ κc, νe rises sharply as κ approaches κc displaying the so-called cusped
behaviour. This is demonstrated in Figure 3.3.

3.3 Subgrid modeling

From the previous section it was learned that the effect of the unresolved scales
of motion is generally dissipative in nature. Moreover, under the assumption that
this dissipative effect is similar to the molecular dissipation mechanism, the eddy-
viscosity concept was introduced. Starting from the general expression of the eddy-
viscosity concept in physical space, the Smagorinsky model for the residual stresses

9For q = 2, 3, 4 · · · , one obtains so-called hyper-viscosity models.
10This hypothesis is also known as the Boussinesq hypothesis.
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Figure 3.3: The cusped behaviour of the spectral eddy-viscosity. For
κ < 0.5κc, νe (κ, κc) is within 15% of its assymptotic value and theses
scales contribute approximately 25% of the total energy drain. About
50% of the total energy drain comes from scales at κ > 0.75κc [48].

is discussed in the present section. This simple eddy-viscosity model is most com-
monly used in Large-Eddy simulations and therefore quite important. Furthermore,
the dynamic procedure and the multi-scale modeling technique are introduced as
improvements of the Smagorinsky model.

3.3.1 A tensorial eddy-viscosity model

Consider the residual-stress tensor τ ij = uiuj − ui uj . If the exact description
of the large scale pressure is not required, the trace of τ ij may be added to the
pressure, which is then calculated in order to ensure the incompressibility. Hence,
the anisotropic residual-stress tensor is defined as

τa
ij = τ ij −

1

3
τkkδij = uiuj − uiuj −

1

3

(
ukuk − ukuk

)
δij , (3.37)

where the Kronecker delta δij denotes the identity tensor. The isotropic residual
stress is included in the modified filtered pressure as

p = p +
1

3
τkk, (3.38)

which is solved from the Poisson equation. Obviously, only the anisotropic ten-
sor τa

ij requires modeling. Since the dissipative effect of the unresolved scales on
the resolved scales is considered to be similar to the viscous dissipation, the eddy-
viscosity concept intrinsically assumes that the anisotropic residual-stress tensor is
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determined by the velocity gradients of the resolved flow field. Following Carati
et al. [13], a tensorial relation for the stress as a function of the resolved velocity
gradients in an anisotropic system is written as

τa
ij = νijklSkl + µijklΩkl, (3.39)

where the symmetric resolved strain tensor Skl and the anti-symmetric resolved
rotation tensor Ωkl are given respectively by

Skl =
1

2

(
∂uk

∂xl
+

∂ul

∂xk

)
, Ωkl =

1

2

(
∂uk

∂xl
− ∂ul

∂xk

)
, (3.40)

whereas νijkl and µijkl denote two 4th -rank eddy-viscosity tensors each formally
determined by 81 independent parameters. However, based on the tensor symmetry
properties of τ ij , Skl and Ωkl, Carati et al. [13] showed that

νijkl = νjikl (3.41)

νijkl = νijlk (3.42)

νiikl = 0 (3.43)

νijkk = 0, (3.44)

such that νijkl is described by only 25 independent parameters, whereas

µijkl = µjikl (3.45)

µijkl = −µijlk (3.46)

µiikl = 0, (3.47)

such that µijkl is determined by only 15 independent parameters. Moreover, these
viscosity tensors may be simplified further, by using the symmetries of the flow.
Carati et al. [13] and Abba et al. [1] constructed anisotropic tensorial eddy-viscosity
models, but since this topic will not be addressed further in this dissertation, the
reader is referred to their work.

For homogeneous isotropic turbulence, no preferential directions exist, and νijkl

can be further reduced to

νijkl = −νe

(
δikδjl + δilδjk − 2

3
δijδkl

)
, (3.48)

whereas µijkl = 0. By substitution of (3.48) into expression (3.39), the linear eddy-
viscosity model is obtained as

τa
ij = −2νeSij . (3.49)

This model is equivalent with the spectral eddy-viscosity model (3.35) for q = 1.
Since turbulent flows are generally anisotropic, it is appreciated that the linear
isotropic eddy-viscosity model is only a rough approximation. Nevertheless, this
model is most frequently used in Large-Eddy Simulations.
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3.3.2 The Smagorinsky model

In analogy with the expression of the spectral eddy-viscosity (3.36), the eddy-
viscosity in physical space is proportional to the dissipation rate ε and the cutoff
length ∆c such that

νe =
γ

12

√
Ck

π4/3
ε

1
3 ∆

4
3
c . (3.50)

Since the rate of energy transfer ε is usually not directly accessible in LES, Smagorin-
sky [78] proposed to identify ε in the inertial range (assuming an infinite Reynolds
number and thus neglecting the molecular viscosity) with the dissipation of the
unresolved scales, by invoking the local-equilibrium hypothesis.11 This hypothesis
further implies that the dissipation of the unresolved scales of motion is assumed
to be in equilibrium with the production of the subgrid kinetic energy. Following
Sagaut [74] and Leslie et al. [51], it is preferred in the current framework of homo-
geneous isotropic turbulence to perform the reasoning on statistical averages rather
than on the local values in the physical space as originally proposed by Smagorin-
sky [78]. Hence, the local-equilibrium assumption translates into

ε ≈
〈
−τa

ij Sij

〉
=
〈
νeS

2
〉
≈ νe

〈
S

2
〉

. (3.51)

Here, S =
√

2Sij Sij denotes the filtered strain rate magnitude. Substitution of

relation (3.51) into expression (3.50) results in

νe = C2
s ∆2

c

〈
S

2
〉1/2

, (3.52)

where the Smagorinsky constant Cs is determined by

Cs =
1

π2

( γ

12

√
Ck

)3/2
, (3.53)

Lilly [52] calculated the Cs slightly different and found the generally accepted stan-
dard value Cs ≈ 0.17. Although the eddy-viscosity in Smagorinsky’s subgrid model
(3.52) is meant to be an ensemble averaged quantity in the framework of isotropic
turbulence, i.e. averaged over time and space, it is often used in its spatial and
temporal localized formulation in order to be more adaptable to the flow being cal-
culated. However, there is no particular justification for this local use of relations
that are on average true for the whole, since they only ensure that the energy trans-
fers through the cutoff are expressed correctly on the average, and not locally [74].

11The local-equilibrium hypothesis assumes that the flow is in constant spectral equilibrium
such that no accumulation of energy occurs in the energy spectrum. This implies an instantaneous
response of all scales in the cascade to sudden changes in the energy flux.
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Nevertheless, the Smagorinsky residual-stress or subgrid model for LES with the
double decomposition is expressed as

τa
ij = −2C2

s ∆2
cS Sij . (3.54)

Muschinski [66] interpreted the LES equations as the equations of motion of a hypo-
thetical turbulent non-Newtonian fluid, called the LES fluid. Then, the Smagorinsky
fluid is by definition the LES fluid that is specified by the Smagorinsky closure and
corresponds with a hypothetical shear-thickening fluid, since the Smagorinsky viscos-
ity (3.52) is proportional to the strain rate magnitude. Whereas in the Navier-Stokes
equations the molecular viscosity is a fluid property and the dissipation length (i.e.
Kolmogorov length scale) is the free variable, in a Smagorinsky fluid, the dissipation
length is the fluid property and the viscosity is variable.
Since the Smagorinsky model is derived for Large-Eddy simulation of turbulent flows
at an infinite Reynolds number, that is with a filter cutoff in the inertial range, its
application to finite Reynolds numbers or non-equilibrium flows is not completely
justified. It has since long been recognized that the Smagorinsky-Lilly coefficient
Cs, is actually not a constant but depends on the position of the cutoff wavenumber
in the spectrum, more specific on the ratio ∆c/η and L/∆c.

i. At low Reynolds numbers, when the cutoff wavenumber lies into the far dis-
sipation range, i.e. ∆c/η → 1, Voke [84] and Meneveau et al. [58] showed
that the value of the Smagorinsky-Lilly coefficient decreases with increasing
∆c/η, and vanishes if ∆c/η ≈ 1. This implies that in the dissipation range,
the Smagorinsky viscosity experiences a more rapid decrease with ∆c than the

inertial range scaling with ∆
4/3
c . Therefore, the constant Smagorinsky model

is too dissipative for low-Reynolds number flows, transitional flows and even
near boundaries.

ii. Equivalently, Meyers et al. [64] showed that if the cutoff length approaches
the integral length scale, i.e. L/∆c ≈ 1, the Smagorinsky-Lilly coefficient
becomes dependent of this ratio. Hence, the Smagorinsky-Lilly model requires
relatively large ratios of L/∆c in order to obtain scale separation such that the
coefficient is L/∆c-independent. If L/∆c is too small, the model significantly
affects the large-scale structures.

Recently, Meyers et al. [64] succeeded to derive a universal expression for Cs that
depends on the ratio L/∆c and the Reynolds number (and thus implicitly on ∆c/η),
by using Pope’s model energy spectrum (2.29) and accounting for the shape of the
filter. An alternative approach to obtain the appropriate model coefficient Cs is
the dynamic procedure by Germano et al. [30]. This technique tends to capture the
scaling behaviour of Cs with ∆c/η such that Cs vanishes for ∆c/η ≈ 1. Another
popular technique to remedy the deficiencies of the constant coefficient Smagorinsky
model, is the scale separation or multi-scale approach, which restricts the model to
the smallest resolved scales only. Both techniques are discussed hereafter.
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3.3.3 Dynamic Procedure

The dynamic procedure by Germano et al. [30] is an elegant mathematical tool
that allows to measure the model coefficient by using information from the re-
solved scales. More specific, it minimizes the error associated with the specific
eddy-viscosity assumption in the model considered [74]. Hence the procedure is not
restricted to the Smagorinsky formulation, but can be applied to more general for-
mulations such as (3.50) [14, 90].
Consider the primary sharp cutoff LES filter G (x) = G (x, κc) which is characterized
by the cutoff wavenumber κc = π

∆c
= 2

3κmax, κmax being the cutoff wavenumber of
the computational grid with grid spacing ∆. The filtered velocity field, denoted by
the overbar ·, is then defined as

u (x, t) = G (x, κc) ∗ u (x, t) . (3.55)

Using this definition, the LES-equations with double decomposition (3.23) are ob-
tained, in which the filtered nonlinear term is expressed as function of the filtered
velocity field and the residual stress model τa

ij (∆c), i.e.

uiuj = uiuj + τ ij (∆c) . (3.56)

Further, consider a second self-similar filter G (x, λc) which has the same shape of
the primary filter but with a different cutoff wavenumber λc = κc/α, α ∈ N+ [15].
Since the sharp cutoff filter is orthogonal and projective, the double filtered velocity
field, denoted by ·̃ is then given by

ũ (x, t) = ũ (x, t) = G (x, λc) ∗ u (x, t) . (3.57)

Application of this secondary filtering operation to the LES-equations (3.23) results
in the double filtered LES-equations with double decomposition, where the filtered
nonlinear term is expressed in analogy with (3.56) as

ũiuj = ũiuj = ˜̃uiũj + τ̃ij (α∆c) . (3.58)

However, the left hand side of (3.58) is readily obtained by filtering expression (3.56)
resulting in

ũiuj = ũiuj = ũiuj + τ̃ij (∆c). (3.59)

Identifying equations (3.58) and (3.59) finally leads to a set of 9 equations

Lij = ũiuj − ˜̃uiũj = τ̃ij (α∆c) − τ̃ij (∆c) , (3.60)

which is called the Germano identity. Notice that for LES with the double decom-
position, the Leonard stresses are given by Lij = ũiuj − ˜̃uiũj , whereas for LES with



3.3. Subgrid modeling 53

the triple decomposition the Leonard stresses would yield Lij = ũiuj − ũiũj . With
the Smagorinsky model for the anisotropic part of the residual stress12

τa
ij = τ ij −

1

3
τkkδij = −2C2

s ∆2
cS Sij , (3.61)

the Germano identity yields

Lij −
1

3
Lkkδij = τ̃a

ij (α∆c) − τ̃a
ij (∆c) (3.62)

= C2
s

[
2∆2

c S̃ Sij − 2 (α∆c)
2 ˜̃SS̃ij

]
, (3.63)

or in short hand notation

L
a
ij = C2

s Mij . (3.64)

Relation (3.64) determines a set of 9 linear equations, of which only 5 are indepen-
dent [70]. In principle, one could replace C2

s by a specific fourth-rank tensor in which
9 model coefficients (5 independent) could be calculated from this set of equations,
determining the effective filter width for each residual stress component. This is
reminiscent to the tensorial eddy-viscosity concept. Nevertheless, in practice only
one coefficient is obtained from the 5 independent equations. Lilly [53] proposed to
extract Cs by minimizing the mean-square error

E =
〈(

L
a
ij − C2

s Mij

)2〉
, (3.65)

where 〈.〉 denotes the spatial averaging over all homogeneous directions. Finally,
differentiation with respect to C2

s yields

C2
s =

〈
L

a
ijMij

〉

〈MijMij〉
. (3.66)

Although the dynamic procedure is considered to be a standard technique, some
important implicit assumptions require attention. In order to obtain expression
(3.64), the Smagorinsky coefficient is necessarily assumed independent of the (cut-
off) wavenumber in the interval [λc, κc] such that Cs (α∆c/η) = Cs (∆c/η). Hence,
Cs (∆c/η) is approximated by the dynamic procedure as a piecewise constant func-
tion. Although this self-similarity assumption is quite reasonable if the cutoff
wavenumbers κc and λc lie in the inertial subrange and if the value of α is small,
it becomes less justified for cutoff wavenumbers in the dissipation range (or energy
containing range), or if α is large. Meneveau et al. [58] suggested to adopt an explicit

12The isotropic stress is accounted for in the modified pressure.
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function for Cs (∆c/η) in order to remedy this deficiency. Nevertheless, the tradi-
tional dynamic procedure seems to perform quite well and typically a filter width
ratio α = 2 is adopted. Furthermore, to preserve the mathematical consistency, Cs

must be a constant in order to bring it outside the filtering operator in the evaluation
of τ̃

a
ij (∆c) = τ̃a

ij (∆c) in (3.59). This constraint is usually not respected in practical
simulations. In order to keep the mathematical inconsistency minimal, one should
at least guarantee the smoothness of the Smagorinsky coefficient.

3.3.4 Multiscale modeling

It was argued by Hughes et al. [40, 41] that many shortcomings of the Smagorin-
sky based approaches are associated with their inability to successfully differentiate
between large and small scales (scale separation), especially when L/∆c is too small.
Hence, they suggested to perform a scale separation ab initio, by segregating the
resolved scales into largest resolved scales and smallest resolved scales, by an orthog-
onal projective filtering operator. Under the assumption that the distant triadic
interactions, i.e. interactions between the largest resolved scales and the residual
scales, have a negligible influence on the large scale dynamics, only the contributions
of the local triadic interactions are modeled.
Consider again the sharp cutoff filter G (x, λc) with cutoff wavenumber λc = κc/α, α ∈
N+. Since G (x, λc) is an orthogonal projective filter, the resolved velocity field u is
decomposed as

u (x, t) = ũ (x, t) + u′′ (x, t) , (3.67)

where ũ (x, t) = ũ (x, t) indicates the largest resolved scales and u′′ (x, t) denotes
the smallest resolved scales, such that

̂̃u (κ, t) = Ĝ (κ, λc) û (κ, t) , 0 ≤ κ ≤ λc (3.68)

û′′ (κ, t) =
[
1 − Ĝ (κ, λc)

]
Ĝ (κ, κc) û (κ, t) , λc ≤ κ ≤ κc. (3.69)

In principle, the LES-equations (3.23) are then formally decomposed into the large
scale equations for ũ (x, t) and the small scale equations for u′′ (x, t) yielding13

∂ũi

∂t
+

∂ũiuj

∂xj
= − ∂p̃

∂xi
+ ν

∂2ũi

∂x2
j

(3.70)

∂u′′
i

∂t
+

∂ (uiuj)
′′

∂xj
+

∂τ ′′
ij

∂xj
= −∂p′′

∂xi
+ ν

∂2u′′
i

∂x2
j

, (3.71)

where (.)′′ denotes the band-pass filtering in the range λc ≤ κ < κc. Since the distant
triadic interactions are neglected, the large scale equations are closed. Nevertheless,

13In practice, the sum of both equations is solved.
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the small scale equations remain unclosed and require a model for the residual
stresses due to local interactions. Hughes et al. [40, 41] proposed to close the residual
stress tensor τ ′′

ij by an eddy-viscosity model of the Smagorinsky type. Three such
closures are typically adopted [38], i.e. the large-small, the all-small and the small-
small, respectively defined as

τ ′′
ij = −2C2

s,1∆
2
c

(
S̃S′′

ij

)′′
, (3.72)

τ ′′
ij = −2C2

s,2∆
2
c

(
SS′′

ij

)′′
, (3.73)

τ ′′
ij = −2C2

s,3∆
2
c

(
S′′S′′

ij

)′′
, (3.74)

in which the eddy-viscosity is calculated using respectively the largest resolved scales,
the smallest resolved scales, and the sum of both,14 whereas the strain rate tensor
is only calculated on the small-scale field. Further, the total residual stress model
is projected again to the small scale velocity field due to the band-pass filter (.)′′.
The model constant Cs,i, i = 1, 2, 3 is evaluated analogously as done by Lilly [52],
although here, both cutoff wavenumbers need to be accounted for. This results in
the expressions

Cs,3 = Cs
κc

λc

[(
κc

λc

)4/3

− 1

]−4/3

, (3.75)

for the small-small closure, and

Cs,1 = Cs
κc

λc

[(
κc

λc

)4/3

− 1

]−1/2

, (3.76)

for the large-small closure [40]. It can be verified that these constants are larger
than the standard Smagorinsky coefficient Cs ≈ 0.17.

Although good results were obtained, mainly due to the absence of the dissipation
on the largest resolved scales, some concerns about the multi-scale approach need to
be addressed. Several studies by e.g. Eyink [25] and Domaradzki et al. [23, 24] con-
firm that the energy transfer is mainly dominated by contributions of local triadic
interactions since cancellation occurs among significant contributions from nonlo-
cal interactions. Although these findings seem to support the multi-scale approach
which attempts to model merely the contributions from local triadic interactions,
Sagaut et al. [75] observed a significant pile-up in the energy spectrum in the range
0 ≤ κ < λc, near the cutoff wavenumber λc. This phenomenon arises in the current
multi-scale formalism since the energy drain due to the distant triadic interactions,
is neglected. This agrees with the analysis of Kraichnan [48], who found that the

14Remark that these choices are ad hoc rather than based on physical considerations.
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distant triadic interactions can be responsible for 25% of the energy drain. Sagaut
et al. [75] noticed that the energy accumulation increased due to the excessive dissi-
pation of the multi-scale models in the range λc ≤ κ < κc. This was interpreted as a
bottleneck effect due to the substantial decrease of the energy drain in the forward
energy cascade. These results are confirmed by the study of Hughes et al. [42], who
found that the energy transfers from the low-wavenumber part of the spectrum to
the unresolved scales is underestimated by the multi-scale models, in contrast to
the dynamic Smagorinsky model. In order to alleviate the energy pile-up, Sagaut
et al. [75] suggested to replace the orthogonal projective sharp cutoff filter, by a
non-orthogonal smooth filter which is non-local in Fourier space. Hence, the most
important part of the distant interactions, contributing to the energy transfer is
taken into account. However, the use of a non-orthogonal smooth filter in order to
perform the scale separation, undermines the philosophy of the multi-scale approach
since the locality assumption is abandonned. Indeed, Vreman [85], showed that for
non-orthogonal smooth filter operators, the multi-scale residual stress model reduces
to a hyperviscosity model (corresponding to expression (3.35) for q > 1). Never-
theless, the application of hyperviscosity models, and by consequence multi-scale
models with non-orthogonal operators, appears to be advantageous since they tend
to approximate better the cusped behaviour (Figure 3.3) whereas excessive dissipa-
tion of the small scales is avoided. Moreover combination of these models with the
dynamic procedure leads to very good results, although application of the Germano
procedure to the framework of multi-scale modeling with orthogonal projections is
not straightforward. In order to preserve the consistency of the procedure, the dou-
ble filtered equations are necessarily derived from the small scale equations (3.71)
whereas the test filter of the procedure should have a cutoff within the narrow band
[λc, κc]. In practice, however, one directly applies the dynamic coefficient otained
with the traditional Smagorinsky model to the multiscale models, altough this is
not entirely justified [38].

3.3.5 Concluding Remarks

In the current dissertation, the dynamic Smagorinsky model is preferred in or-
der to account for the unresolved interactions in the Large-Eddy Simulation with
double decomposition. This choice is motivated by the fact that this model does
not require the ad hoc definition of model constants since it adapts the magnitude
of the dissipation to the resolved physics of the flow. Only the test filter for the dy-
namic procedure must be predefined, but has only a limited influence on the models’
performance. In contrast, the multiscale technique requires the choice of a specific
closure-variant and the corresponding model constants. Moreover, the scale sepa-
ration filter must be determined ad hoc although it entirely determines the success
of the multiscale approach. Finally, all multiscale models leads to significant energy
pile-up in combination with the sharp cutoff filter.
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3.4 Implications toward numerical methods

In the past decades, the necessity for numerical quality in Direct Numerical
Simulations (DNS) and Large-Eddy Simulations (LES) of turbulent flows has been
recognized by many researchers (e.g. Ghosal [32], Kravchenko et al. [49], Moin et
al. [19] and Berland et al. [4]). In a very well resolved Direct Numerical Simulation,
the smallest resolved scales are located far into the dissipation range. Since these
scales have only a very small energy-content in comparison with the largest resolved
scales in the flow, they are often considered to have a negligible influence on the
mean flow statistics. In a Large-Eddy Simulation, however, where only the most
important large scale structures are resolved, the smallest resolved scales are part
of the inertial subrange such that they contain relatively more energy than those in
the dissipation range. Hence, the smallest resolved scales in Large-Eddy Simulation
are not negligible and have a significant influence on the evolution of the LES-flow.
The accuracy with which these small scales are described is therefore expected to
be important. In order to reduce the computational costs, it is highly desirable in
LES to maximize the ratio between the physical resolution and the grid resolution
κc/κmax. As mentioned before this ratio is limited to the value κc/κmax = 2/3
by the Nyquist criterion [67]. Therefore, the adopted numerical method requires
sufficient accuracy for all scales in the range 0 ≤ κ < κc in order to ensure that the
magnitudes of the discretization errors (defined in Section 2.4.3) remain smaller than
the magnitude of the modeled residual force of the unresolved scales of motion [32,
19, 4]. However, if the accuracy of the numerical method is not guaranteed, the ratio
κc/κmax must be reduced in order to control the discretization errors. In order to
resolve the same amount of scales to a fixed cutoff wavenumber κc, the grid cutoff
wavenumber κmax, which is proportional with the number of grid nodes, needs to
be increased. This is most often prohibitively expensive for most three-dimensional
LES computations. Moreover, subgrid modeling techniques such as the dynamic
procedure or multi-scale modeling strongly rely on the smallest resolved scales in
LES. Accurate resolution of the small-scales should result in correct application of
these subgrid models. Obviously, good numerical quality for an affordable LES is
vital for accurate flow prediction as it may influence the resolved physics as well as
the subgrid modeling.





Truth is much too complicated to

allow anything but approximations.

Von Neumann, John

4
Numerical method

In the previous chapters, the governing equations for DNS and LES were intro-
duced. A rigorous mathematical description of the discretization concept was given
(see Chapter 2), resulting in the definition of a sampling operator. This operator
projects the set of analytical equations to a set of discrete equations which can be
resolved numerically. It was shown in Section 2.4.1 that the sampling operator gives
rise to a commutation error when applied to the partial derivatives. Hence, the
partial derivatives of the discrete velocity field need to be approximated since they
cannot be obtained exactly.

In the present chapter, the standard explicit and implicit central Finite Differ-
ence approximations for the spatial derivatives are introduced and their accuracy is
examined through Fourier analysis. Since the sharp cutoff filter, which is selected as
the theoretical filter that appears in the LES-equations with double decomposition, is
non-local in physical space, a localized approximation of this filter kernel is required
for numerical simulations. Although in this dissertation, the sharp cutoff filtering
is performed in Fourier space, the derivation of finite difference approximations for
this filter is briefly discussed.

Next, the temporal discretization by Runge-Kutta methods is introduced as well
as two algorithms that are used to solve the discrete equations. In particular the
discretizations of the nonlinear and viscous terms in the Navier-Stokes equations as
well as the discretization of the Poisson equation are discussed.

Finally, an appraisal is given of the standard finite difference approximations
in Large-Eddy Simulation. It is argued that these standard approximations with
formal order of accuracy may not be ideal in the context of LES, and that so-called
optimized finite difference approximations might be more advantageous. In this
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context the motivation for this dissertation is then explained.

4.1 Spatial discretization by Finite Differences

In this dissertation, the regular structured grid system is considered, which is
a tessellation of the Euclidean space by congruent rectangles or rectilinear cuboid
elements. A two-dimensional1 regular structured grid is illustrated in Figure 4.1. In
such a regular grid system, the velocity components uj , j = 1, 2, 3 and the pressure
p are stored in the same nodes at the vertices of the tessellations. Moreover, the
discretization of the Navier-Stokes equations and the Poisson equation are also cen-
tered at these nodes. The regular grid system is the most natural and unambiguous
system in combination with finite differences. In the following, only one-dimensional
uniform grids are considered.2

i−2 i−1 i i+1 i+2

j−2

j−1

j

j+1

j+2

∆1

∆2

Figure 4.1: A regular 2-dimensional uniform grid. The velocity components
uj , j = 1, 2 and the pressure p are stored in the same nodes (×) which
are identified by the index-pair (i, j). The grid spacing is defined by
the vector ∆ = [∆1,∆2].

In Section 2.4.1 the Dirac comb or sampling operator S ∆ was defined as the
mathematical operator with which the partial differential equations are discretized.
It was shown that this sampling operator does not commute with the partial deriva-
tives, since the analytical definition of the derivative is no longer valid in case of
discontinuous sampled variables. As a consequence, some approximation for the
definition of these partial derivatives must be found, taking into account the finite
grid spacing. The obtained finite difference approximation is characterized by a spe-
cific order of accuracy, which depends on the adopted definition of the derivative.
This is further discussed.

1The three-dimensional regular grid system is a straightforward extension of this.
2As discussed in Section 2.4.1, the extension to multi-dimensional spaces or non-uniform Carte-

sian grids is straightforward. Recall that the latter uses an analytical of discrete mapping between
a uniform grid and a non-uniform grid.
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4.1.1 Explicit Finite Difference approximations

Consider a one-dimensional uniform grid with discrete equispaced Cartesian co-
ordinates xi ∈ R, i ∈ N such that the grid spacing ∆ = xi+1 − xi = xi − xi−1. Then
the definition of the nth partial derivative of a continuous variable u (x, t) , x ∈ R,
evaluated in a node xi, is given by

∂nu

∂xn
(xi) = lim

∆→ǫ


 1

∆n

r∑

j=−r

βju
(
xi+j

)

 , ǫ = 0, (4.1)

where βj denotes a set of weighting coefficients and 2r is the number of neighbouring
nodes involved in the specific definition. The stencil width of the scheme is 2r + 1.
Remark that the continuity of u (x, t) in x = xi is a necessary condition for the
limit in (4.1) to exist since both lim∆→0− and lim∆→0+ must exist and be equal.
However, continuity is a necessary but not a sufficient condition for differentiability.
Requiring the function u (x, t) to be Lipschitz continuous in x = xi is a sufficient
condition since it limits how fast the continuous function u (x, t) may change in
x = xi.

3 If u (x, t), is an infinitely differentiable function, u (xi+j) = u (xi + j∆) can
be expanded in a Taylor series about xi, i.e.

u (xi + j∆) =
∞∑

q=0

(j∆)q

q!

∂qu

∂xq
(xi) , ∀j. (4.2)

Substitution of (4.2) into (4.1) then yields

∂nu

∂xn
(xi) = lim

∆→ǫ




∞∑

q=0




r∑

j=−r

βjj
q

q!


∆q−n ∂qu

∂xq
(xi)


 , ǫ = 0. (4.3)

The set of 2r + 1 weighting coefficients βj can now be obtained by identifying the
first q = 2r+1 terms on the right-hand side of (4.3) with those at the left-hand side.
Hence, a set of 2r + 1 equations for 2r + 1 unknown coefficients must be resolved.
This translates into the matrix equation




(−r)0

0! · · · (j)0

0! · · · (r)0

0!
...

...
...

(−r)n

n! · · · (j)n

n! · · · (r)n

n!
...

...
...

(−r)2r

(2r)! · · · (j)2r

(2r)! · · · (r)2r

(2r)!







β−r
...

β0
...

βr




=




0
...
1
...
0




. (4.4)

3Weisstein, Eric W. “Derivative.” From MathWorld–A Wolfram Web Resource.
http://mathworld.wolfram.com/Derivative.html
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n β−5 β−4 β−3 β−2 β−1 β0 β1 β2 β3 β4 β5 k

1 − 1

2
0 1

2
2

1

12
− 2

3
0 2

3
− 1

12
4

− 1

60

3

20
− 3

4
0 3

4
− 3

20

1

60
6

1

280
− 4

105

1

5
− 4

5
0 4

5
− 1

5

4

105
− 1

280
8

− 1

1260

5

504
− 5

84

5

21
− 5

6
0 5

6
− 5

21

5

84
− 5

504

1

1260
10

Table 4.1: Explicit finite difference approximations. Explicit finite differ-
ence approximation of order k for the 1st derivative.

Obviously, n < 2r + 1 is a necessary condition in order to have a square, invertible
matrix. Examining the specific structure of the matrix in (4.4) reveals that the
resulting set of coefficients must be symmetric for even values of n, whereas for odd
values of n, the coefficients are anti-symmetric, i.e.

βj−w = βj+w, ∀w ∈ [1, r] , ∀n ∈ 2N (4.5)

βj−w = −βj+w, ∀w ∈ [1, r] , ∀n ∈ 2N + 1. (4.6)

As a consequence, expression (4.3) reduces to an even power series in ∆. Moreover,
for n ∈ 2N, all derivatives in series (4.3) are even, whereas for n ∈ 2N + 1 all deriva-
tives are odd. It may also be obvious from (4.4) that the first q < 2r + 1, ∀q 6= n
terms in expression (4.3) vanish exactly, regardless the value of ∆. However, the
remaining terms for which q ≥ 2r + 1, vanish only if ǫ ≡ 0. As shown in Section
(2.4.1), this is no longer satisfied in discrete space where ǫ > 0, since the sampling
operator transforms the continuous field u (x) to a discontinuous field u (x) in dis-
crete space. Substitution of expression (4.1) into (4.3) and applying the sampling
operator finally yields (with q = k′ + n),

∂nu

∂xn
(xi) =

δnu

δxn
(xi) −

∞∑

k′=k




r∑

j=−r

βjj
k′+n

(k′ + n)!


∆k ∂k′+nu

∂xk′+n
(xi) , (4.7)

where the finite difference approximation of the partial derivative is defined as

δnu

δxn
(xi) =

1

∆n

r∑

j=−r

βju (xi+j) , (4.8)

and the series’ initial index is determined by

k =

{
2r + 1 − n ∀n ∈ 2N + 1
2r + 2 − n ∀n ∈ 2N

. (4.9)
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n β−5 β−4 β−3 β−2 β−1 β0 β1 β2 β3 β4 β5 k

2 1 −2 1 2

− 1

12

4

3
− 5

2

4

3
− 1

12
4

1

90
− 3

20
− 3

2
− 49

18

3

2
− 3

20

1

90
6

− 1

560

8

315
− 1

5

8

5
− 205

72

8

5
− 1

5

8

315
− 1

560
8

1

3150
− 2

403

5

126
− 5

21

5

3
− 1086

371

5

3
− 5

21

5

126
− 2

403

1

3150
10

Table 4.2: Explicit finite difference approximations. Explicit finite differ-
ence approximation of order k for the 2nd derivative.

The remaining series expansion in (4.7), called the truncation error, is convergent
and vanishes only when ∆ → 0, whereas the first term of the truncation error is the
leading order truncation term. Moreover, the finite difference approximation (4.8) is

said to have a formal order of accuracy k, denoted as O
(
∆k
)
. Since

∑r
j=−r

βjjk′+n

(k′+n)! =

0, ∀k′ ∈ 2N + 1, the truncation error is an even power-series in ∆. Tables 4.1, 4.2
and 4.3 give an overview of several finite difference approximations with various
orders of accuracy for different derivatives. These approximations are frequently
used throughout this dissertation.
When the (k + n)th derivative in the leading order truncation term in equation (4.7)

is symmetrically discretized, a finite difference approximation of order O
(
∆k+2

)
is

obtained for the nth derivative. Successive discretization of each new leading order
truncation term with (4.7), finally results in the discrete series expansion for the nth

derivative

∂nu

∂xn
(xi) =

∞∑

k=0

γk∆
k δk+nu

δxk+n
(xi) , (4.10)

where the coefficients γk are obtained from the combination of the various factors
∑r

j=−r
βjjk′+n

(k′+n)! . Since the sum of two convergent series is again convergent, the re-
maining truncation series after each successive discretization of the leading order
truncation term in (4.7) is also convergent. This implies that the successive dis-
cretization process eventually forces the remaining leading order truncation term to
zero. Hence, expression (4.10) is also convergent. Moreover, the right hand side
series of expression (4.10) converges to the nth partial derivative at the left hand
side, when the number of grid nodes goes to infinity (which is equivalent of forcing
∆ → 0), provided that u (x) is sampled with a sampling wavenumber lower than the
Nyquist wavenumber such that it contains the same spectral information as the in-
finitely differentiable function u (x). When the finite difference approximation (4.8)
is interpreted as a convolution of the sampled field u (x) with a convolution kernel
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n β−5 β−4 β−3 β−2 β−1 β0 β1 β2 β3 β4 β5 k

3 − 1

2
1 0 −1 1

2
2

4 1 −4 6 −4 1 2

5 − 1

2
2 − 5

2
0 5

2
−2 1

2
2

6 1 −6 15 −20 15 −6 1 2

7 − 1

2
3 −7 7 0 −7 7 −3 1

2
2

8 1 −8 28 −56 70 −56 28 −8 1 2

Table 4.3: Explicit finite difference approximations. Explicit finite differ-
ence approximation of order k = 2 for higher derivatives.

β that has finite support, i.e.

δnu

δxn
(xi) = β|r−r ∗ u (x) , (4.11)

equation (4.10) can be written as the convolution of the sampled field u (x) with a
convolution kernel β that has an infinite stencil support, or

∂nu

∂xn
(x) = lim

r→∞
β|r−r ∗ u (x) . (4.12)

As shown in Chapter 2, it follows from the Nyquist-Shannon theorem (Section 2.4.2)
that

u (x) = 2π sinc (κsx) ∗ u (x) , κs =
2π

∆
. (4.13)

Thus, the nth partial derivative is obtained from the previous expression as

∂nu (x)

∂xn
= 2π

∂n

∂xn
[sinc (κsx)] ∗ u (x) . (4.14)

Comparison of equations (4.12) and (4.14) suggests that the finite difference ap-
proximation of the nth derivative converges to the nth derivative of the sine cardinal
function if the stencil support 2r + 1 tends to infinity, i.e.

lim
r→∞

β|r−r = 2π
∂n

∂xn
[sinc (κsx)] . (4.15)

This property is proven in Section 4.1.3. Taking this observation into consideration,
it might be advantageous to construct finite difference operators by using truncated
or windowed sinc-functions with compact stencil support. However, these spectral
difference methods are not discussed in this dissertation.
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4.1.2 Implicit Finite Difference approximations

The previous section was devoted to the construction of general explicit finite
difference approximations. Although the explicit approximations are straightfor-
ward and easy to implement, they have the drawback that the stencil width, and
thus the computational effort, increases proportional with the order of accuracy, i.e
k = 2r. Therefore, Lele [50] introduced the implicit or compact finite difference
approximations with compact stencil support. The definition of the implicit finite
difference approximation of the nth partial derivative in a node xi, is written as

lim
∆→ǫ

q∑

l=−q

αl
∂nu

∂xn
(xi+l) = lim

∆→ǫ

r∑

j=−r

βj

∆n
u
(
xi+j

)
, ǫ = 0. (4.16)

Consider, in analogy with (4.2) the Taylor series expansion of u (xi+j) = u (xi + j∆),
respectively ∂nu

∂xn (xi+l) = ∂nu
∂xn (xi + l∆) about xi

u (xi + j∆) =
∞∑

k=0

(j∆)k

k!

∂ku

∂xk
(xi) , ∀j, (4.17)

∂nu

∂xn
(xi + l∆) =

∞∑

k′=0

(l∆)k′

k′!

∂k′+nu

∂xk′+n
(xi) , ∀l. (4.18)

Substitution of expressions(4.17) and (4.18) into the definition (4.16) and assuming
k′ = k − n then yields (for ∆ → 0),

∞∑

k=n




q∑

l=−q

αll
k−n

(k − n)!


∆k−n ∂ku

∂xk
(xi) =

∞∑

k=0




r∑

j=−r

βjj
k

k!


∆k−n ∂ku

∂xk
(xi) . (4.19)

Obviously the 2q + 1 weighting coefficients αj and the 2r + 1 weighting coefficients
βj , are obtained by matching the Taylor series coefficients in (4.19). Hence, a set
of 2r + 2q + 2 equations for as much unknown coefficients must be resolved. When
z = 2r + 2q + 1, this translates into the matrix equation




0 · · · 0 − (−r)0

0! · · · − (r)0

0!
...

...
...

...

0 · · · 0 − (−r)n−1

(n−1)! · · · − (r)n−1

(n−1)!
(−q)0

0! · · · (q)0

0! − (−r)n

n! · · · − (r)n

n!
...

...
...

...
(−q)z−n

(z−n)! · · · (q)z−n

(z−n)! − (j)z

(z)! · · · − (r)z

(z)!







α−q
...

αq

β−r
...

βr




=




0
...
0
0
...
1




, (4.20)

where the final equation determines the coefficient of the leading order truncation
term, here chosen as unity, and n ≤ z is a necessary condition in order to have a
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n α0 α±1 α±2 β−3 β−2 β−1 β0 β1 β2 β3 k

1 1 1

4
− 3

4
0 3

4
4

1 1

3
− 1

36
− 14

18
0 14

18

1

36
6

1 4

9

1

36
− 25

216
− 40

54
0 40

54

25

216
8

1 3

8
− 1

480
− 1

20
− 25

32
0 25

32

1

20

1

480
8

1 1

2

1

20
− 1

600
− 101

600
− 17

24
0 17

24

101

600

1

600
10

Table 4.4: Implicit finite difference approximations. Padé-type finite dif-
ference approximation of order k for the 1st derivative.

square, invertible matrix.4 Examination of the specific structure of the matrix in
(4.20) reveals that

βj−w = βj+w, ∀w ∈ [1, r] , ∀n ∈ 2N (4.21)

βj−w = −βj+w, ∀w ∈ [1, r] , ∀n ∈ 2N + 1, (4.22)

whereas

αl−w = αl+w, ∀w ∈ [1, q] , ∀n ∈ N. (4.23)

As a consequence, the truncation error is an even power-series in ∆ which contain
only even derivatives if n ∈ 2N, whereas for n ∈ 2N + 1 it contains only odd
derivatives. Finally, the implicit finite difference approximation for the nth derivative
reads

q∑

l=−q

αl
∂nu

∂xn
(xi+l) =

r∑

j=−r

βj

∆n
u
(
xi+j

)

−
∞∑

k′=k




q∑

l=−q

αll
k′

(k′)!
−

r∑

j=−r

βjj
k′+n

(k′ + n)!


∆k′ ∂k′+nu

∂xk′+n
(xi) , (4.24)

where the order of accuracy k is given by

k =

{
2r + 2q + 1 − n ∀n ∈ 2N + 1
2r + 2q + 2 − n ∀n ∈ 2N

. (4.25)

These implicit or compact finite difference schemes are often referred to in litera-
ture as Padé schemes. Tables 4.4 and 4.5 give an overview of the most common

4Note that the coefficient matrix (4.20) may be ill-conditioned leading to a nearly singular
matrix. Nevertheless, balancing techniques exist to improve the condition number of this matrix.
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n α0 α±1 α±2 β−3 β−2 β−1 β0 β1 β2 β3 k

2 1 1

10

6

5
− 12

5

6

5
4

1 2

11

3

44

12

11
− 51

22

12

11

3

44
6

1 117

401

23

2358

310

1572

320

393
− 265

131

320

393

310

1572
8

1 9

38
− 23

6840

17

190

147

152
− 1801

855

147

152

17

190
− 23

6840
8

1 334

899

43

1798

79

16182

173

899

1065

1798
− 2211

1400

1065

1798

173

899

79

16182
10

Table 4.5: Implicit finite difference approximations. Padé-type finite dif-
ference approximation of order k for the 2nd derivative.

Padé approximations for the 1st and 2nd derivative. Note that the kth-order Padé
approximation (4.24) can be reformulated as

q∑

l=−q

αl
∂nu

∂xn
(xi+l) =

k−2q∑

j=0

β′
j∆

j δj+nu

δxj+n
(xi)

−
∞∑

k′=k




q∑

l=−q

αll
k′

(k′)!
−

r∑

j=−r

βjj
k′+n

(k′ + n)!


∆k′ ∂k′+nu

∂xk′+n
(xi) , (4.26)

in which the derivatives δj+nu
δxj+n (xi) are approximated with a 2nd -order explicit finite

difference approximation. Hence, the explicit finite difference approximation can be
interpreted as a particular case of the implicit approximation with q = 0. Although
the discussed implicit finite difference schemes have a compact stencil support, in
contrast to the explicit schemes, the implicit part has to be solved by inverting the
left-hand side matrix in (4.24), leading to an increase of the computational cost.
Nevertheless, this may be worthwhile due to the improved accuracy in comparison
with the explicit schemes, which is demonstrated in next section. The inversion
is typically done iteratively using the well-known LU-decomposition or Cholesky-
decomposition technique [59].5

4.1.3 Fourier analysis

Although the order of accuracy k indicates how fast the truncation series of
the finite difference approximation converges to zero when ∆ → 0, no direct infor-
mation is retrieved about the accuracy itself. Therefore, the explicit and implicit
finite difference approximations are examined in Fourier space in order to obtain
an indication of the accuracy for each Fourier mode. The Fourier analysis provides
an effective way to quantify the resolution characteristics of the difference approx-
imations, and will prove very useful for unambiguously assessing the quality of all

5Note that for Cholesky-decomposition, the original matrix must be symmetric and positive-
definite.
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approximations, as well as for further optimization of the difference schemes [50].
In analogy with the expression of the Fourier transformation of the analytical nth

derivative

F

{
∂nu

∂xn

}
= (iκ)n û, (4.27)

one can define the Fourier transform of a general finite difference approximation as

F

{
δnu

δxn

}
=

(
iκ′

n

)n
û, (4.28)

where κ′
n denotes the modified wavenumber. The transfer function Ĝ (κ) of the finite

difference operator is then defined as the ratio of (4.28) to (4.27), or

Ĝ (κ) =
κ′

n
n

κn
. (4.29)

The modified wavenumber and the transfer function reflect the error of the discrete
approximation for a single Fourier mode with relative wavenumber κ/κmax. The
real part of the modified wavenumber κ′

n represents dispersion errors that affect the
phase speed of different wave components, whereas the imaginary part represents
dissipation errors that affect the amplitude of the wave components. Since the
dissipation errors are absent for symmetric finite difference approximations, the
latter are favoured for Large-Eddy Simulation in order to avoid excessive damping
of the small scale structures. The modified wavenumber of a finite difference scheme
is obtained by substituting the discrete wave u (xi+j) = eiκ(xi+j∆) into the finite
difference approximations (4.8) or (4.24). Since the explicit difference approximation
can be interpreted as a particular case of the implicit difference approximation for
q = 0, the general expression for the modified wavenumber is given by

κ′
n

n
(κ) =

1

in

r∑

j=−r

βje
iκj∆

q∑

l=−q

αle
iκl∆

. (4.30)

Using the symmetry properties of the coefficients βj and αl, depending on the parity
of n, and by means of the definitions

sin (aκ∆) =
eia∆κ − e−ia∆κ

2i
, (4.31)

cos (aκ∆) =
eia∆κ + e−ia∆κ

2
, (4.32)



4.1. Spatial discretization by Finite Differences 69

the expression (4.30) can be split into

κ′
n

n
(κ) =

r∑

j=1

β′
j sin (jκ∆)

q∑

l=0

α′
l cos (lκ∆)

, ∀n ∈ 2N + 1 (4.33)

κ′
n

n
(κ) =

r∑

j=0

β′
j cos (jκ∆)

q∑

l=0

α′
l cos (lκ∆)

, ∀n ∈ 2N, (4.34)

where the coefficients β′
0 are determined by

β′
0 =

β0

in−1
, ∀n ∈ 2N + 1, (4.35)

β′
0 =

β0

in
, ∀n ∈ 2N, (4.36)

and β′
j by

β′
j =

2βj

in−1
, ∀n ∈ 2N + 1, ∀j > 0 (4.37)

β′
j =

2βj

in
, ∀n ∈ 2N, ∀j > 0, (4.38)

whereas α′
l are obtained by

α′
0 = α0, ∀n (4.39)

α′
l = 2αl, ∀n, ∀l > 0. (4.40)

Note that in case of the explicit finite difference approximations the denominator
reduces to unity, i.e. q = 0 and α0 = 1. A selection of modified wavenumbers for
explicit and implicit finite difference approximations for the 1st and 2nd derivative
is depicted in Figures 4.2 and 4.3.

As mentioned before, the dispersion errors in central difference approximation,
represented by the real part of the modified wavenumber, affect the phase speed of
each Fourier mode. In multi-dimensional problems the phase errors related to the
adopted finite difference approximation also appear in the form of anisotropy [50].
Indeed, the finite difference approximations induce not only different phase speeds
for different Fourier modes, but also for different orientations of these modes. Fol-
lowing Lele [50], the anisotropic Fourier mode propagation on a two-dimensional
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Figure 4.2: Modified wavenumbers of finite difference approximations.
The modified wavenumber κ′

1 (κ) (left) and the normalized dispersion
error (right) for the 1st derivative: 2nd (◦), 4th (△), 6th (▽), 8th (⊲),
10th (⊳) -order explicit approximations, and 4th (−−−−−), 6th (−−−),
8th (−·−·) order Padé approximations.

computational grid, is represented by the transfer function

Ĝ (κ, φ) =
cos (φ) κ′

n (κ cos (φ)) + sin (φ)κ′
n (κ sin (φ))

κ
, (4.41)

where φ denotes the angle between the propagation direction and the first Cartesian
direction x1. Figures 4.4 and 4.5 show Ĝ (κ, φ) for a selection of implicit and explicit
finite difference approximations for the 1st derivative.

Since the modified wavenumbers κ′
n converge to the exact wavenumber κ with

increasing order of accuracy, the corresponding transfer functions (4.29) converge in
this limit to the Heaviside function such that

lim
k→∞

Ĝ (κ) = H (κ − κmax) , (4.42)

where k denotes the order of accuracy, determined by the number of nodes in the
difference approximation. This is displayed in Figure 4.6. By definition the previous
expression implies that

û (x) = lim
k→∞

Ĝ (κ) û (x) = H (κ − κmax) û (x) , (4.43)

such that the inverse Fourier transform yields

u (x) = 2π sinc (2κmaxx) ∗ u (x) . (4.44)
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Figure 4.3: Modified wavenumbers of finite difference approximations.
The modified wavenumber κ′

2

2
(κ) (left) and the normalized disper-

sion error (right) for the 2nd derivative: : 2nd (◦), 4th (△), 6th (▽),
8th (⊲), 10th (⊳) -order explicit approximations, and 4th (−−−−−), 6th

(−−−), 8th (−·−·) -order Padé approximations.

Hence, each finite difference approximation is equivalent with the analytical deriva-
tive of a polynomial interpolation function which converges to the exact sine cardinal
interpolation function that follows from the Nyquist-Shannon theorem, if the order
of accuracy tends to infinity. This conclusion corresponds with the previously ob-
tained expression (4.14). However, in reality, the stencil support is always finite. As
a consequence, the finite difference approximations of the partial derivatives induce
an implicit filtering of the velocity field and the corresponding energy spectrum.
In order to minimize this effect, higher order finite difference approximations are
favoured over lower order approximations in delicate numerical computations such
as Large-Eddy Simulation. Moreover, it may be clear that explicit filtering of the
nonlinear term in an LES formulation with double decomposition is certainly ad-
vantageous, since the Fourier modes in the range 2

3κmax ≤ κ ≤ κmax, which are
mostly affected by the numerics, are eliminated. Since only the reliable scales are
preserved whereas the unreliable scales are removed, the accuracy of the simulation
should improve. This is confirmed by the work of Lund et al. [56, 55], Gullbrand
et al. [35, 36], Brandt et al. [9, 10] and recently Berland et al. [4], who found that
explicit filtering in LES, allows to reduce the numerical errors since the dispersion
errors, dissipation errors and various commutation errors in the high-wavenumber
region are eliminated from the solution.

Note that it is possible to mimic finite difference approximations by transforming
the velocity field u (x) to Fourier space, multiplying it with the modified wavenum-
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Figure 4.4: Polar plot of the phase speed anisotropy of the 1st derivative.
Transfer function Ĝ (κ, φ) indicating the anisotropy induced by the
2nd - (upper left), 4th - (upper right), 6th - (lower left) and 8th

- (lower right) order explicit finite difference approximation.
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Figure 4.5: Polar plot of the phase speed anisotropy of the 1st derivative.
Transfer function Ĝ (κ, φ) indicating the anisotropy induced by the
10th -order explicit finite difference approximation (upper left) and
the 4th - (upper right), 6th - (lower left) and 8th - (lower right)
order implicit finite difference approximations.
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Figure 4.6: Transfer function for various finite difference approxima-
tions. The transfer function Ĝ (κ) of the 1st derivative.

ber, as in expression (4.28), and transforming it back to physical space. Although
this technique is restricted to periodic domains only, it is used in this dissertation
as a fast and practical tool to perform various finite difference calculations.

4.1.4 Finite Difference filters

In this dissertation, the sharp cutoff filter is advocated as the optimal explicit
filter in the context of Large-Eddy simulation with the double decomposition. How-
ever, since the sinc kernel is non-local in physical space, its implementation would
require an infinite number of nodes in the computational domain. Therefore, the
sharp cutoff filter needs to be approximated in order to be applicable for numer-
ical computations. In analogy with the partial derivatives, various explicit and
implicit finite difference approximations for the sharp-cutoff filter are constructed.
Considering again the explicit approximations as a particular case of the implicit
approximations, the general symmetric kth-order finite difference approximation of
a filter [50, 83] is defined as

q∑

l=−q

αlφ̃ (xi+l) =
r∑

j=−r

βjφ (xi+j) + O

(
∆k
)

, (4.45)

where φ̃(x) denotes a filtered discrete variable in R. It is advantageous to design the
filters in Fourier space in order to control directly the spectral characteristics of the
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n m α0 α±1 α±2 α±3 β0 β±1 β±2 β±3 β±4

3 1 1 47

72

35

144
− 11

144

1

144

1 1 2

3

1

6

1

2

1

4

3 1 5

6

1

12

7

12

1

4
− 1

24

5 3 49

120

13

60

19

240

11

30

119

480

1

15

1

480

7 5 205

624

43

192

41

416

11

832

206

655

234

995

29

312

13

877
− 1

4992

Table 4.6: Finite difference approximations for the sharp cutoff filter.
Explicit and Padé-type finite difference approximation for the sharp
cutoff filter with cutoff wavenumber κc = 2

3
κmax.

approximation, which are obviously most important. The transfer function Ĝ (κ)

Ĝ (κ) =

r∑

j=−r

βje
iκj∆

q∑

l=−q

αle
iκl∆

=

r∑

j=−r

βj [cos (jκ∆) + i sin (jκ∆)]

q∑

l=−q

αl [cos (lκ∆) + i sin (lκ∆)]

, (4.46)

of a filter, is obtained by substituting the discrete wave φ (xi+j) = eiκ(xi+j∆) into
the finite difference approximations (4.45). In accordance with the normalization
condition (3.4), the transfer function (4.46) requires that

Ĝ (0) = 1, (4.47)

expressing the conservation of a constant. Moreover, it is desirable to have a filter
characteristic that vanishes at κmax in order to strictly satisfy the Nyquist criterion,
such that

Ĝ (κmax) = 0. (4.48)

Since the sharp cutoff filter is uniquely characterized by the cutoff wavenumber
κc, it is necessary to impose an additional condition that determines the cutoff
wavenumber of the smooth finite difference approximations of the filter. Typically,
the cutoff wavenumber of a smooth filter is defined as6

Ĝ (κc) =
1

2
. (4.49)

Although conditions (4.47), (4.48) and also (4.49) form the minimum number of
constraints that need to be imposed on the filter, it can be understood that additional

6Other definitions are possible.
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conditions are required which allow to control the sharpness of the finite difference
approximation to the ideal sharp cutoff filter. The sharpness is determined by the
number of vanishing moments [50, 83] of the transfer function at κ = 0 and κ =
κmax = π

∆ [50], i.e.

∂nĜ

∂κn

(
a

π

∆

)
= 0, ∀n > 0, a = 0, 1 (4.50)

Using Leibniz’ rule, this set of constraints is worked out as

n∑

k=0





n!

k! (n − k)!




q∑

l=−q

αl (il∆)n−k eiaπl


 ∂kĜ

∂κk

(
a

π

∆

)




=
r∑

j=−r

βj (ij∆)n eiaπj , ∀n > 0, a = 0, 1. (4.51)

Assuming that for a = 0, the moments 1, 2 . . . n vanish, i.e. derivatives 1, 2 . . . n are
zero, expression (4.51) reduces to

Ĝ (0)

q∑

l=−q

αl (il∆)n =
r∑

j=−r

βj (ij∆)n , ∀n > 0. (4.52)

Analogously, assuming that for a = 1, the moments 1, 2 . . .m vanish, i.e. derivatives
1, 2 . . .m are zero, expression (4.51) reduces to

Ĝ

( π

∆

) q∑

l=−q

αl (il∆)m eiπl =
r∑

j=−r

βj (ij∆)m eiπj , ∀m > 0. (4.53)

Substitution of constraints (4.47) and (4.48) into equations (4.52) and (4.53) finally
yields

q∑

l=−q

αll
n −

r∑

j=−r

βjj
n = 0, ∀n > 0 (4.54)

r∑

j=−r

βjj
m cos (jπ) = 0, ∀m > 0. (4.55)

In order to determine the 2r + 2q + 2 coefficients βj and αl, an equal amount of
independent equations are required from the basic constraints (4.47), (4.48) and
(4.49) and from the vanishing moments (4.54-4.55). With θ = κc/κmax, this set of
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n m α0 α±1 α±2 α±3 β0 β±1 β±2 β±3 β±4

1 3 1 25

72

35

144

11

144

1

144

1 1 2 − 1

2

1

2

1

4

1 3 5

4
− 1

8

3

8

1

4

1

16

3 5 49

16
− 13

8

19

32

5

16

15

64

3

32

1

64

5 7 205

32
− 559

128

123

64
− 33

128

35

128

7

32

7

64

1

32

1

256

Table 4.7: Finite difference approximations for the sharp cutoff filter.
Explicit and Padé-type finite difference approximation for the sharp
cutoff filter with cutoff wavenumbers κc = 1

3
κmax.

equations can be written as the matrix equation




1 · · · 1 −1 · · · −1
0 · · · 0 cos (−rπ) · · · cos (rπ)

cos (−qθπ) · · · cos (qθπ) −2 cos (−rθπ) · · · −2 cos (rθπ)
sin (−qθπ) · · · sin (qθπ) −2 sin (−rθπ) · · · −2 sin (rθπ)

(−q)1 · · · (q)1 (−r)1 · · · (r)1

...
...

...
...

(−q)n · · · (q)n (−r)n · · · (r)n

0 · · · 0 (−r)1 cos (−rπ) · · · (r)1 cos (rπ)
...

...
...

...
0 · · · 0 (−r)m cos (−rπ) · · · (r)m cos (rπ)







α−q
...

αq

β−r
...

βr




=




0
...
0
0
...
1




(4.56)

where m + n = 2r + 2q − 2. Note that the last equation determines the leading
order truncation term of the filter. Since the number of vanishing moments at
the origin and at the cutoff influences the shape of the resulting transfer function,
the parameters n and m need to be selected carefully in order to guarantee the
monotonicity, with increasing wavenumber κ, of the transfer function. Overshoots
or undershoots of the transfer function are not desirable since it leads to unphysical
filtering behaviour. Due to the specific structure of the coefficient matrix in (4.56),
all coefficients βj and αl are symmetric, i.e. βj = β−j and αj = α−j . Hence,
the imaginary part of the transfer function vanishes and the resulting symmetric
filters only affect the amplitude of the signal φ. Asymmetric filters on the contrary,
also induce a phase shift. Although symmetric filters are preferable, it may be
necessary to use asymmetric filters at the boundaries. Table 4.6 gives an overview
of various symmetric finite difference approximations for the sharp cutoff filter with
κc = 2

3κmax, used for de-aliasing, whereas Table 4.7 gives some approximations
for the sharp cutoff filter with κc = 1

3κmax, used in the dynamic procedure or for
scale separation in multiscale modeling. The corresponding transfer functions are
displayed in Figure 4.7. It can be seen that the finite difference approximations for
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Figure 4.7: Transfer functions of sharp cutoff filter approximations.
Transfer function Ĝ (κ) of explicit and implicit finite difference ap-
proximations for sharp cutoff filter with κc = 2

3
κmax (left) and

κc = 1

3
κmax (right). q = 0, r = 3 (−−−−−), q = 1, r = 1 (△),

q = 1, r = 2 (▽), q = 2, r = 3 (⊲), q = 3, r = 4 (⊳).

the sharp cutoff filter with κc = 2
3κmax deviate significantly from the ideal filter. This

implies that de-aliasing with these filters is only approximate since the orthogonality
condition is not completely satisfied. For the same reason, the scales at κ ≤ κc

are affected by the filter, especially close to the cutoff wavenumber. Nevertheless,
the pentadiagonal and heptadiagonal filter approximations seems to be sufficiently
accurate for real computations. Finally, Vasilyev et al. [83] showed that in order
to perform a consistent derivation of the discrete LES-equations on a non-uniform
grid using coordinate transformations, the filter requires at least k − 1 vanishing
moments at κ = 0 if the adopted finite difference approximation for the derivatives
is of order k, such that the commutation error of the filter with the derivatives is
also O

(
∆k
)
.

4.1.5 Boundary treatment

So far, only symmetric or central finite difference approximations were consid-
ered. Although these simple schemes display good performance, their application
is restricted to the interior domain away from the boundaries. In the vicinity of
boundaries alternative finite difference approximations for the derivatives must be
defined. Here, three such boundary methods are briefly discussed.

i. One of the most pragmatic solutions to the problem of boundary discretiza-
tion consists of reducing the order of accuracy, and thus the stencil width, of
the central finite difference approximations when approaching the boundary.
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n β−4 β−3 β−2 β−1 β0 β1 β2 β3 β4 k

1 1

12
− 2

3
0 2

3
− 1

12
4

− 1

4
− 5

6

3

2
− 1

2

1

12
4

− 1

12

1

2
− 3

2

5

6

1

4
4

− 25

12
4 −3 4

3
− 1

4
4

1

4
− 4

3
3 −4 25

12
4

Table 4.8: Asymmetric finite difference approximations for bound-
aries. Explicit asymmetric 4th -order finite difference discretiza-
tion for the 1st derivative near a boundary.

Although this method allows one to maintain the non-dissipative symmetric
finite difference approximations in the near vicinity of the boundary,7 it does
not provide an adequate solution for the evaluation of higher derivatives, fil-
ters with broad stencil support or derivatives at the boundary node. Moreover,
since the order of accuracy is reduced in the boundary regions where typically
large gradients appear, this method affects the overall accuracy of the compu-
tation.

ii. A more refined solution is to design asymmetric finite difference approxima-
tions in the vicinity of the boundaries. Since their construction is similar to
that of the symmetric finite difference approximations, the derivation proce-
dure is not repeated here. Table 4.8 gives an example of some asymmetric 4th

-order finite difference approximations for the 1st derivative. Although this
method is fully consistent and preserves the overall order of accuracy, an im-
portant drawback occurs. Aside from dispersive errors, dissipative errors occur
due to the asymmetric definitions. Indeed, it can be verified that the modified
wavenumber has now a real and imaginary part. Both dispersive and dissipa-
tive parts of the modified wavenumber are displayed in Figure 4.8. It can be
seen that for the 2-point eccentric 4th -order finite difference approximation,
both the numerical dispersion and the numerical dissipation become very large
in the range κ ≥ 0.5κmax. Nevertheless, numerical quality can be guaranteed
if κ ≤ 0.2κmax. It should be emphasized that the accuracy further reduces
for higher order asymmetric approximations. The more eccentricity, the more
numerical dissipation and dispersion. Hence, very fine grids are needed in the
boundary vicinity in order to control numerical quality.

iii. An alternative implementation of the previous method makes use of ghost-
nodes outside the computational domain in order to evaluate the central finite

7The 1st and 2nd derivatives are then evaluated up to the first grid node near the boundary
using symmetric finite difference approximations. In the first grid node near the wall, the finite
difference approximation reduces to 3-point 2nd -order central approximation.
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Figure 4.8: Modified wavenumber of asymmetric finite difference ap-
proximations. The real part (left) and imaginary part (right) of
the modified wavenumber of a 4th -order finite difference discretiza-
tion for the 1st derivative near a boundary. Symmetric (−−−−−), 1-point
eccentric (−−−) and 2-point eccentric (−·−·) .

difference approximations in the boundary region. The required values at the
ghost-nodes are then obtained by extrapolating the node values in the interior
domain. Typically, locally fitted polynomial functions or spline functions are
used in order to predict the value of the ghost-nodes. If the order of accu-
racy of the extrapolating polynomial is equal to that of the central scheme, a
corresponding eccentric boundary scheme with the same order of accuracy is
obtained. However, if the order of accuracy of the extrapolating polynomial
is lower than that of the central scheme, the order of the eccentric scheme is
not maintained and the method reduces to a combination of both previous
boundary methods.

In this work, the asymmetric finite difference approximations are preferred, since
this technique is believed to be consistent and most common.

4.2 Temporal Discretization: Runge-Kutta Method

Aside from the spatial discretization, the governing Navier-Stokes (2.2) equa-
tions also require temporal discretization, in order to integrate the solution in time.
Consider the spatially discretized Navier-Stokes equations

∂ui

∂t
= N (ui, p) , (4.57)
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where the Navier-Stokes operator N (ui, p) is defined as

N (ui, p) = −uj
δui

δxj
− δp

δxi
+ ν

δ2ui

δx2
j

+
δτ ij

δxj
. (4.58)

The definition for the time derivative, called the Euler method, approximates the
temporal derivative as

∂ui

∂t
(t + ∆t) = lim

∆t→0

ut+1
i − ut

i

∆t
, (4.59)

where the superscript indices denote the value of ui at the old time t and the new
time t + 1. This asymmetric definition provides an explicit expression for ut+1

i at
the new time level as function of ut

i at the previous time level, i.e.

ut+1
i = ut

i + ∆tN (ui, p) + O (∆t) . (4.60)

It can be verified using Taylor series expansion that this approximation is only first
order accurate in time. In analogy with the spatial discretization, it is possible to
obtain higher order definitions involving earlier time levels. Although higher order
accuracy is then obtained, these definitions lead to rapidly increasing memory re-
quirements since a number of variables obtained at earlier time levels must be stored.
Therefore these methods are not often used in practice.

Alternatively, higher order accuracy can be achieved by performing several Euler
stages per time step without excessive memory requirements. Most familiar, are the
low-storage explicit Runge-Kutta methods that require only two storage locations
for one variable. The explicit q-stage Runge-Kutta method advances the solution
from time level t to t + 1 by applying the recursive formula

u
t+ j

q

i = ut
i + αj∆tN

(
u

t+ j−1
q

i , pt+ j−1
q

)
, ∀j = 1, 2 . . . q (4.61)

where the index t + j
q denotes the intermediate time level and αj are the coefficients

specific to the adopted method. These coefficients are obtained by assuming that
N (ui, p) is a linear operator. Then substitution of (4.57) into (4.61) yields

ut+1
i = ut

i +

q∑

r=1

q∏

j=q−r+1

αj∆tr
∂rut

i

∂tr
, (4.62)

which corresponds to the classical truncated Taylor series expansion. Hence, match-
ing the coefficients αj gives

q∏

j=q−r+1

αj =
1

r!
, (4.63)
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which results for a 4-stage standard Runge-Kutta method into the set

α1 = 1/4, α2 = 1/3, α3 = 1/2, α4 = 1. (4.64)

It can be verified that the 4-stage standard Runge-Kutta method is 4th -order ac-
curate if N (ui, p) is a linear operator. However, since N (ui, p) is obviously a
strongly nonlinear operator, the method is only 2nd -order accurate as is any low-
storage Runge-Kutta method of this kind [6]. Following the work of Hu et al. [39]
and Bogey et al. [6] and assuming N (ui, p) linear, the accuracy of a low-storage
q-stage Runge-Kutta method can be obtained through Fourier analysis. Consider
the temporal Fourier transform of expression (4.62)

û
t+1
i = û

t
i

[
1 +

q∑

r=1

1

r!
∆tr (iω)r

]
, (4.65)

where ω denotes the time frequency of the velocity field and û denotes the temporal
Fourier mode of the spatially sampled field u. The amplification factor is now defined
as

Ĝ (ω) =
û

t+1
i

û
t
i

= 1 +

q∑

r=1

ir
πr

r!

(
ω

ωmax

)r

, (4.66)

where ωmax = π/∆t denotes the Nyquist frequency of the time discretization. The
magnitude of the amplification factor, given by

∣∣∣Ĝ (ω)
∣∣∣ =

√
ℜ
(
Ĝ (ω)

)2
+ ℑ

(
Ĝ (ω)

)2
, (4.67)

indicates the dissipation error, whereas the modified frequency of the amplification
factor, given by

ω∗ = arctan



ℑ
(
Ĝ (ω)

)

ℜ
(
Ĝ (ω)

)


 , (4.68)

indicates the dispersion or phase error. Both the amplitude and the modified fre-
quency are displayed in Figure 4.9 for the 2-, 3- and 4-stage Runge-Kutta meth-
ods. Obviously, the Runge-Kutta methods perform poor for large frequency ratio’s
ω/ωmax. In order to ensure numerical quality in linear problems, e.g. the 4-stage
method requires approximately ω < 0.2ωmax. However, since the operator N (ui, p)
is strongly nonlinear, the accuracy of the 4-stage Runge-Kutta method reduces to
2nd -order. Hence, in order to ensure the numerical quality, it might be advanta-
geous to decrease the frequency ratio, e.g. to a value of approximately ω < 0.1ωmax.
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Figure 4.9: Dissipation and dispersion of a q-stage Runge-Kutta
method. The dissipation errors of the q-stage Runge-Kutta method

are visible from the magnitude
∣∣∣Ĝ (ω)

∣∣∣ (left), whereas the dispersion

errors are visible from the modified frequency ω∗ (right). 2-stage
(−·−·), 3-stage (−−−), 4-stage (−−−−−).

Nevertheless, ω < 0.2ωmax implies that the time increment ∆t should be at least 10
times smaller than the smallest physical time scale in the turbulent flow, which is
the Kolmogorov time scale τη = η2/ν. The Kolmogorov time scale represents the
unit of time needed for the energy in the Kolmogorov scales to be entirely dissipated.
This is in accordance with the values suggested by Pope [70] as discussed in Section
2.4.4.

4.3 Numerical algorithms

The previous sections were devoted to the discussion of spatial and temporal
discretization methods, which form the basic ingredients for the numerical proce-
dure or algorithm for solving the Navier-Stokes equations and the continuity or
Poisson equation. Two specific algorithms are applied in this work, i.e. the Pseudo-
Compressibility algorithm or Artificial Compressibility algorithm and the Pressure-
Correction algorithm. Before both methods are introduced, some particular imple-
mentation issues related to energy conserving discretizations and odd-even decoupling
are discussed.

4.3.1 Conservative discretization

Although the conservation of mass, momentum and kinetic energy are a con-
sequence of the analytical inviscid Navier-Stokes equations supplemented with the
continuity equation, these conservation properties are not necessarily guaranteed
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for the discrete set of equations. In Direct Numerical Simulations and Large-Eddy
Simulations, the kinetic energy conservation of the nonlinear term is desirable in
order to avoid harmful numerical dissipation on the small scales and preclude in-
stability of the algorithms due to spurious energy pile-up, as argued by Morinishi
et al. [65]. Typically, central finite difference approximations for the partial deriva-
tives are preferred, since these schemes are non-dissipative. However, to ensure a
priori the conservation of kinetic energy, the central discretization of the nonlinear
convective term needs special attention. The vector field ui (x) , x ∈ R is said to be
locally conserved if it is solenoidal or divergence-free,8 i.e.

∂ui

∂xi
= 0, (4.70)

whereas it is globally conserved if

∫∫∫

Ω

∂ui

∂xi
dx = 0. (4.71)

Note that in periodic domains, local conservation implies global conservation [65].
Obviously, mass is conserved a priori since the continuity equation appears in the
divergence formulation. In analogy with continuous fields, the discrete vector field
ui is locally, respectively globally conserved if

δui

δxi
= 0, (4.72)

∑

Ω

δui

δxi
= 0. (4.73)

In order to examine the energy conservation of the nonlinear terms, three discretiza-
tions are considered:

uj
δui

δxj
(Advective form), (4.74)

δujui

δxj
(Divergence form), (4.75)

1

2
uj

δui

δxj
+

1

2

δujui

δxj
(Skew-symmetric form). (4.76)

8Using Gauss’s theorem, conservation is also expressed as
ZZZ

Ω

∂ui

∂xi
dx =

ZZ

∂Ω

uinidS = 0, (4.69)

where ni represents the outward pointing unit normal on the boundary ∂Ω. This expression is used
in e.g. finite volume methods which rely on the integral formulation of the governing equations,
rather than the differential formulation.
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The analytical equivalents of expressions (4.74), (4.75) and (4.76) are identical, since
the vector field is solenoidal such that expression (4.70) is satisfied. In discrete
space, however, epxressions (4.74), (4.75) and (4.76) are not identical. Morinishi et
al. [65] demonstrated that multiplying the discrete Navier-Stokes equations, in which
pressure and viscous terms are not considered, with ui/2 and summing over index
i, only the skew-symmetric discretization leads a priori to the following transport
equation for the kinetic energy

δk

δt
+

δujk

δxj
= 0. (4.77)

This expression is derived, regardless the (central) discretization of the partial deriva-
tives in the skew-symmetric formulation. Hence, only the skew-symmetric formula-
tion of the nonlinear term conserves the local kinetic energy a priori. On the other
hand, Morinishi et al. [65] showed that the advective and divergence formulations
(4.74) and (4.75) can only conserve the kinetic energy if an appropriate central dis-
cretization for the partial derivatives is used and if the discrete continuity equation
(4.72) is exactly satisfied. Since both constraints are often not fulfilled, formulations
(4.74) and (4.75) may be responsible for an increase or decrease of kinetic energy.
Additionally, Blaisdell et al. [5] showed that the skew-symmetric form of the non-
linear term results in a reduced amplitude of the aliasing errors, due to imperfect
filtering or modeling, compared to the other formulations.9 This conclusion is con-
firmed by the work of Kravchenko et al. [49], although Chow et al. [19] found that
the advective form lead to the smallest aliasing errors. In order to stabilize DNS and
LES computations without numerical dissipation, the skew-symmetric formulation
of the nonlinear term ought to be used.10

4.3.2 Odd-even decoupling

It is analytically possible to obtain the nth derivative of the continuous variable
φ (x) , x ∈ R as two or more successive differentiations of that variable, such that

∂a

∂xa

(
∂bφ

∂xb

)
=

∂nφ

∂xn
, a + b = n. (4.78)

Although this property is conserved for finite difference approximations, some at-
tention is required concerning the resulting discrete finite difference approximation.
In order to avoid unnecessary complexity, the following discussion is restricted to

9It should be noted that Blaisdell et al. [5] used the skew-symmetric formulation (4.76) for their
investigation on the one-dimensional Burgers’ equation. However, for Burgers’ equation the correct
skew-symmetric formulation of the nonlinear term differs from (4.76). Hence, energy could not have
been conserved a priori.

10Note that the skew-symmetric form does not conserve momentum a priori. Nevertheless,
kinetic energy conservation is considered more important for DNS and LES.
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the use of explicit symmetric finite difference derivatives. Assume the notation

δnφ

δxn

∣∣∣∣
r

−r

(xi) =
1

∆n

r∑

j=−r

βjφ (xi+j) = β|r−r ∗ φ (4.79)

which represents the kth-order finite difference approximation with stencil width
2r + 1 of the nth derivative. Recall that the order of accuracy k is related to the
stencil width as

k =

{
2r + 1 − n ∀n ∈ 2N + 1
2r + 2 − n ∀n ∈ 2N

. (4.80)

Property (4.78) then reads

δa

δxa

∣∣∣∣
r′

−r′

(
δbφ

δxb

∣∣∣∣
r′′

−r′′

)

︸ ︷︷ ︸
δ1

≈ δnφ

δxn

∣∣∣∣
r

−r︸ ︷︷ ︸
δ2

, a + b = n. (4.81)

Although both δ1 and δ2 represent approximations for the nth derivative, they are
not necessarily identical. Indeed, δ1 has a stencil width 2r′ + 2r′′ + 1 and is of order
min (k′, k′′) whereas δ2 has a stencil support 2r+1 and is of order k. It is verified for
explicit finite difference approximations that δ1 and δ2 are only identical if a ∈ 2N or
b ∈ 2N and if k′ = k′′ = 2. If these conditions are satisfied, then k = min (k′, k′′) = 2,
r = 2r′ + 2r′′ + 1 and

β|r′−r′ ∗ β|r′′−r′′ ≡ β|r−r . (4.82)

However, if these conditions are not respected, the finite difference approximations δ1

are typically of order min (k′, k′′) ≤ k but have a wider stencil support than strictly
required for this order of accuracy. In this dissertation, such finite difference approx-
imations (that do not satisfy the conditions a ∈ 2N or b ∈ 2N and k′ = k′′ = 2) are
named incompact finite difference approximations. Table 4.9 presents some exam-
ples of incompact finite difference schemes for the 2nd derivative, constructed with
expression (4.81) where a = b = 1. Not only are these incompact approximations
computationally inefficient, they display very poor accuracy. This is understood by
examining the modified wavenumber of δ1, given by the expression

κ′
a
a
(κ) κ′

b
b
(κ) . (4.83)

Figure 4.10 illustrates the modified wavenumber of the incompact schemes for the
2nd derivative, presented in Table 4.9. The incompact finite difference approxi-
mations clearly display large dispersion errors over almost the entire wavenumber
range. Moreover, in contrast to the normal finite difference approximations of the
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n β−4 β−3 β−2 β−1 β0 β1 β2 β3 β4 k k′ k′′

2 1

4
0 − 1

2
0 1

4
2 2 2

− 1

24

8

24

1

24
− 16

24

1

24

8

24
− 1

24
2 2 4

1

144
− 16

144

64

144

16

144
− 130

144

16

144

64

144
− 16

144

1

144
4 4 4

Table 4.9: Incompact finite difference approximations. Three incompact
finite difference approximations for the 2nd derivative constructed with
expression (4.81) where a = b = 1.

2nd derivative (Figure 4.3), the modified wavenumbers of these schemes fall to zero
at the cutoff wavenumber κmax. The latter property has severe repercussions for the
discretization of the second order operators in the Navier-Stokes equations (2.87).
In particular the discretization of the subgrid force in LES, given by

δτij

δxj
= −2

δνeSij

δxj
, Sij =

1

2

(
δui

δxj
+

δuj

δxi

)
, (4.84)

requires some attention. Although the subgrid force is supposed to dissipate suf-
ficiently the small scales corresponding to high wavenumber Fourier modes, direct
evaluation of

δτij

δxj
would result into weak dissipation due to the poor Fourier charac-

teristics of the successive derivative operators (Figure 4.10). Moreover, spurious π-

modes or wiggles at κ = κmax, are not detected by the dissipative operator
δτij

δxj
, since

the Fourier characteristics vanish for these modes. Hence, they are not eliminated
from the solution, unless explicit filtering is used. It is known that these π-waves
severely pollute the solution and eventually destabilize the algorithm. Therefore,
the dissipative operator is discretized as

δτij

δxj
= −2

δνeSij

δxj
(4.85)

= −2
δνe

δxj
Sij − 2νe

δSij

δxj
(4.86)

= −2
δνe

δxj
Sij − 2νe

δ2ui

δx2
j

. (4.87)

The second term in (4.87) is now compact such that subgrid dissipation is guaranteed
up to κmax. Note that, although the first term in (4.87) contributes to the dissipa-
tion, the 1st -order discrete derivatives do not detect the π-wave since κ′ (κmax) = 0.
An analogous problem appears by enforcing the discrete continuity equation to the
Navier-Stokes equations. In case of incompact discretizations, wiggles appear in the
resulting pressure field. This problem, known as odd-even decoupling is explained
further.
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Figure 4.10: Modified wavenumbers for incompact finite difference ap-
proximations. The modified wavenumbers (left) and their errors
(right) for the incompact finite difference approximations for the
2nd derivative constructed with expression (4.81) where a = b = 1
and k′ = k′′ = 2 (−−−−−), k′ = 2, k′′ = 4 (−−−), k′ = k′′ = 4 (−·−·).

4.3.3 The Pseudo-Compressibility algorithm

As explained in Chapter 3, enforcing the continuity equation (2.1) leads to the
Poisson equation for the pressure, the solution of which is far more time consum-
ing than solving e.g. the Navier-Stokes equations 2.2. In 1967 Chorin [17, 18]
presented a Pseudo-Compressibility method as an entirely new approach to satisfy-
ing solenoidality. In this method, the continuity equation (2.1) is replaced by the
hyperbolic artificially compressible continuity equation

1

c2

∂p

∂τ
+

∂ui

∂xi
= 0, (4.88)

where c denotes the artificial speed of sound and τ is called the pseudo-time. Accord-
ing to [71], formulation (4.88) corresponds with the definition of an artificial density
ρ = p/c2. Replacing the original continuity equation (2.1) with expression (4.88)
eliminates the Poisson equation, leading to a method that is believed to be compu-
tationally less expensive [71]. The hyperbolic equation (4.88) can now be integrated
numerically in pseudo-time. Therefore, the pseudo-time τ must be introduced into
the Navier-Stokes equations, which yields

∂ui

∂τ
+

∂ui

∂t
+ uj

∂ui

∂xj
= − ∂p

∂xi
+ ν

∂2ui

∂x2
j

, (4.89)

It can be seen from this equation that a dual-time stepping algorithm is obtained.
For every physical time step t = tk, the algorithm converges to a steady state solution
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of the Navier-Stokes problem in pseudo-time. Indeed, as soon as the velocity field
becomes solenoidal at time level t = tk, both the pressure and the velocity become
independent of τ such that ∂ui

∂τ = 0 and ∂p
∂τ = 0. Note that if the physical problem

converges to a steady state, i.e. ∂ui
∂t = 0, the dual-time stepping algorithm reduces

to a single-time stepping algorithm in τ . In this work, the Pseudo-Compressibility
algorithm is only used for laminar steady-state flow calculations. Since the rate of
convergence of the algorithm is extremely sensitive to the artificial speed of sound
c in (4.88), its value must be chosen carefully for efficient computations. However,
for the purposes in this work, the value of c is selected ad hoc, and no attempt is
made to obtain optimal convergence. Adopting the low-storage q-stage Runge-Kutta
method for time integration and assuming τ ′ = τ + j

q and τ ′′ = τ + j−1
q , the resulting

discrete algorithm at stage j = 1, 2 . . . q yields,

p
τ+ j

q

i = pτ
i + αjc

2∆τ

{
−δuτ ′′

i

δxi
+ D

(
∆k
)}

(4.90)

u
τ+ j

q

i = uτ
i + αj∆τ

{
uτ ′′

j

δuτ ′′

i

δxj
+

δpτ ′′

δxi
− ν

δ2uτ ′′

i

δx2
j

}
, (4.91)

As mentioned in the previous paragraph, the central difference approximation for

the divergence in
δuτ ′′

i
δxi

is insensitive to spurious π-waves. Therefore, an artificial

dissipation D
(
∆k
)

is needed in the discrete continuity equation in order to eliminate
these wiggles. Typically D

(
∆k
)

is constructed as

D

(
∆k
)

=
σ

uref
∆k δk+1pτ ′′

δxk+1
i

. (4.92)

where σ denotes the magnitude of the dissipation, uref is a reference velocity and
k denotes the order of accuracy of the adopted finite difference approximation for
δuτ ′′

i
δxi

. This way, the artificial dissipation scales as the leading order truncation term

Π∆ , without destroying the order of accuracy of the adopted discretization. σ must
be chosen such that the dissipation is just enough to eliminate the spurious wiggles.

4.3.4 The Pressure-Correction algorithm

In contrast to the Pseudo-Compressibility algorithm, the Pressure-Correction
algorithm uses a Poisson equation in order to satisfy the continuity constraint in
incompressible flows. The basic idea behind the Pressure-Correction method, is to
integrate the Navier-Stokes equations in two steps. In the first step a the velocity
field is predicted based on the velocity and pressure at the current time level. Since
the predictor velocity field is not divergence free, a correction φ to the pressure p
is obtained which enforces the solenoidality of the velocity field. Adopting the low-
storage q-stage Runge-Kutta method for time integration and assuming t′ = t + j

q

and t′′ = t + j−1
q , the algorithm at stage j = 1, 2 . . . q consists of 4 steps.
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i. Given the velocity field ut′′
i and a pressure field pt′′ at the current time level t′′ =

t + j−1
q , the Navier-Stokes equations are integrated leading to an intermediate

predictor velocity field u∗
i , that is

u∗
i = ut

i − αj∆t

{
ut′′

j

2

δut′′
i

δxj
+

1

2

δut′′
i ut′′

j

δxj
+

δpt′′

δxi
− ν

δ2ut′′
i

δx2
j

+
δτ t′′

ij

δxj

}
, (4.93)

which is not divergence free.

ii. In the second step, it is assumed that the pressure at the new time level
t′ = t+ j

q can be formulated as a correction to the pressure at the current time

level, i.e. pt′ = pt′′ + φ. Then, the pressure correction φ must be determined
such that the solenoidality of the velocity field ut′

i at the new time level is

enforced and thus
δut′

i
δxi

= 0. Applying the discrete divergence operator to
equation

ut′

i = ut
i − αj∆t

{
ut′′

j

2

δut′′
i

δxj
+

1

2

δut′′
i ut′′

j

δxj
+

δpt′

δxi
− ν

δ2ut′′
i

δx2
j

+
δτ t′′

ij

δxj

}
,(4.94)

results into a Poisson equation for the pressure-correction

δ2φ

δx2
i

=
δ

δxi

(
u∗

i + αj∆t
δpt′′

δxi

)
− αj∆t

δ2pt′′

δx2
i

. (4.95)

This formulation differs slightly from the traditional Poisson equation. Indeed,
the odd-even decoupling due to the incompact discretization of the pressure on
the right-hand side of (4.95) is precluded by explicitly compacting the pressure
gradient at the new time level in expression (4.95). The pressure pt′′ and the
pressure correction φ are then discretized consistently. Moreover, the spurious
wiggles that might appear in the pressure pt′′ are detected by the compact
discretization and canceled by the pressure correction after solving (4.95). Note
that this simple formulation is equivalent to Rhie-Chow interpolation [72],
which uses an explicit operator to compact the Laplacian of the pressure.
However, the current method bypasses the cumbersome construction of Rhie-
Chow interpolants for higher order discretizations and allows straightforward
and efficient implementation in the parallelized code used in this dissertation.

iii. Once the pressure-correction φ is obtained, the predictor velocity field is up-
dated as

ut′

i = u∗
i − αj∆t

δφ

δxi
, (4.96)
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iv. Finally, the pressure at the new time level is updated as

pt′ = pt′′ + φ (4.97)

The concept of a pressure-correction might be reduced to a formulation where the
predictor velocity u∗

i is obtained without the pressure-gradient contribution. The
entire pressure pt′ at the new time level is then obtained by solving the corre-
sponding Poisson equation instead of a pressure correction. This method, known
as the fractional-step method, immediately projects the predictor velocity field to a
solenoidal field, similarly as would be done for spectral methods.
The Poisson-equation is typically solved using multigrid solvers. However, since in
this work the Pressure-Correction method is solely used in periodic domains, the
elliptic Poisson equation is solved by taking the Fourier transformation of (4.95),
yielding

(
κ′

i
2
)

φ̂ = F

{
δ

δxi

(
u∗

i + αj∆t
δpt′′

δxi

)
− αj∆t

δ2pt′′

δx2
i

}
(4.98)

where κ′
i
2 denotes the modified wavenumber of the 2nd derivative in the ith spectral

direction. The pressure-correction is now readily obtained from the linear system of
equations (4.98).

4.4 Appraisal of the standard Finite Difference

Methods for LES

4.4.1 Asymptotic order of accuracy

As discussed in Section 3.4, it is highly desirable in DNS and especially in LES
to maximize the ratio between the physical resolution and the grid resolution in
order to resolve as much scales as possible on a given computational grid. Due to
the Nyquist criterion this ratio is limited to the value κc/κmax = 2/3 [67]. In or-
der to ensure that the magnitudes of the discretization errors (defined in Section
2.4.3) remain smaller than the magnitude of the modeled residual force of the unre-
solved scales of motion [32, 19, 4], the adopted numerical method requires sufficient
accuracy for all scales in the range 0 ≤ κ < κc. As a consequence, the value of
the filter-to-grid cutoff-ratio κc/κmax depends on the adopted central finite differ-
ence approximation or vice versa. For 2nd -order explicit finite difference schemes,
Ghosal [32] and Chow et al. [19] recommend a filter-to-grid cutoff-ratio of at most
κc/κmax ≤ 1/4, to ensure that the magnitudes of the discretization errors remain
smaller than the magnitude of the modeled force of the subgrid scales. Hence, ac-
curate resolution of the scales characterized by κc, increases the required number of
nodes, and thus the computational cost, with a factor (2κmax/3κc)

3 ≈ 20 than theo-
retically necessary. This may be prohibitively expensive for most three-dimensional
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LES computations. Higher order discretizations are often applied to allow for larger
filter-to-grid cutoff-ratios and thus reduce the involved costs. However, in order
to obtain acceptable dispersion errors up to κc = κmax/2, which is still not the
maximum resolution on the computational grid, Chow et al. [19] recommended to
use at least a 10th -order explicit finite difference scheme or a 6th -order implicit
Padé scheme. Although the grid requirements are only a factor (2κmax/3κc)

3 ≈ 2.5
higher than theoretically necessary, high-order schemes involve more floating point
operations, which again inevitably leads to an increased computational cost. De-
spite the fact that the increase in accuracy makes high-order schemes worthwhile,
optimized finite difference schemes can be constructed with an improved balance
between accuracy and computational costs. Before the discussion is continued, it
should be noted that in contrast to [32, 19, 4], Park et al. [69] found that the sub-
grid force was dominant for the Eddy-Damped Quasi-Normal Markovian (EDQNM)
Large-Eddy Simulation of isotropic turbulence at low Reynolds number. Indeed, for
low Reynolds numbers, the finite difference approximation of the subgrid force is
relatively more important than for high Reynolds numbers [4], leading to somewhat
different results and conclusions. Nevertheless, for high Reynolds numbers, the nu-
merical error of the nonlinear term is dominant and can be larger than the subgrid
force as shown by Berland et al. [4] using EDQNM theory.

It is common practice in Computational Fluid Dynamics to use (high-order)
central schemes based on a truncated Taylor series, leading to a certain formal
asymptotic order of accuracy for the largest scales. Although this may be sufficient
for well-resolved Direct Numerical Simulations, it is not necessarily the optimal
strategy for Large-Eddy Simulation. Indeed, for regular fields, which are sufficiently
smooth on the computational grid, the Taylor series converge rapidly due to small
contributions of the higher derivatives. Hence, the dispersion errors remain low.
However, in case of highly fluctuating fields with marginal resolution on the grid,
the contributions of the higher derivatives in the truncation terms of the Taylor series
become much more important, slowing down the convergence of the Taylor series and
thus leading to significant dispersion errors. Standard Taylor-based asymptotic finite
difference approximations assume smooth fields and fast convergence of the Taylor
series. However, in case of irregular LES-fields, where the Taylor series converge more
slowly, it would be much more advantageous to minimize all contributions in the
Taylor series in order to obtain good overall performance. In other words, preserving
the global dispersion relation for the full range of scales up to κc = 2

3κmax instead
of focusing on asymptotic order of convergence, could be much more advantageous
in Large-Eddy Simulations. Indeed, since in LES the smallest resolved scales are
part of the inertial subrange and thus still contain a significant amount of energy
compared to the largest resolved scales, the accuracy with which these scales are
resolved could benefit from such a strategy.

This useful point of view was already introduced by Tam et al. [79] in the field
of computational aero-acoustics, where accurate simulation of propagating waves re-
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quire highly non-dispersive and non-dissipative finite difference schemes.11 Whereas
Tam et al. [79] restricted themselves to optimized explicit finite difference approxi-
mations, Kim et al. [45], Hixon [37], Ashcroft et al. [2] and Bogey et al. [6] extended
the idea to implicit Padé schemes. Further, Hu et al. [39], Bogey et al. [6], and
Berland et al. [3] applied this technology to Runge-Kutta schemes whereas Bogey
et al. [6], and Berland et al. [3] also designed optimized finite difference filters. In
general, these low-dispersive prefactored finite difference schemes are constructed by
static least-square minimization of the dispersion errors of a particular finite differ-
ence approximation of the nth derivative in a chosen wavenumber range 0 ≤ κ ≤ κα.
In other words, the error between the modified wavenumber and the real wavenum-
ber is minimized by solving

∂

∂αl

κα∫

0

(
κn − κ′

n
n)2

W (κ) dκ = 0 (4.99)

∂

∂βj

κα∫

0

(
κn − κ′

n
n)2

W (κ)κ = 0, (4.100)

where αl and βj denote the scheme’s coefficients, W (κ) is a weighting function
and κα determines the range of optimization. Most commonly, some coefficients are
determined a priori in order to ensure a minimal formal asymptotic order of accuracy.
The remaining coefficients are then obtained from the least-square minimization
(4.99) and (4.100). The choice of the weighting function is usually inspired by
ad hoc motivations in order to accentuate the optimization range or to ensure the
analytical integrability of expressions (4.99) and (4.100) [45]. Typically the range of
optimization is determined by 0.5κmax ≤ κα ≤ 0.9κmax, although the exact value of
κα differs from author to author. According to Kim et al. [45], it is preferable to omit
the region between 0.9κmax ≤ κ ≤ κmax since minimizing the large dispersion or
dissipation errors in this range is inefficient, and leads to poor Fourier characteristics
of the optimized scheme. The past few years, an ample amount of optimized schemes
was presented by various authors. Therefore, it is not opportune to discuss this
plenitude of variants since they are mostly a matter of personal flavour. For further
information, the reader is referred to [79, 45, 37, 2, 6]. As an example of such an
optimized scheme, the original optimized 4th -order explicit finite difference scheme
of Tam et al. [79] for κα = 0.5κmax is illustrated in Figure 4.11. Notice that this
explicit finite difference approximation has the same 7-point stencil support of the
standard 6th -order explicit finite difference approximation. The formal 4th -order of
accuracy is obtained with 5 parameters whereas the two remaining parameters are
obtained by the optimization procedure. In other words, the resulting scheme gives
up its potential formal order of accuracy on the small wavenumbers in the interest of

11Earlier, Lele [50] constructed spectral-like schemes by imposing some ad-hoc constraints to the
modified wavenumber. Nevertheless, Tam et al. [79] were the first to present a general optimization
strategy.
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Figure 4.11: Modified wavenumber of Tam’s optimized finite difference
approximation. Modified wavenumbers (left) and their errors
(right) for the explicit 6th order finite difference approximation
(−−−−−) and the 4th -order optimized scheme of Tam (−·−·), for
the 1st derivative.

the large wavenumbers, which obtain higher accuracy than the asymptotic 6th order
approximation. It was demonstrated by [79, 45, 37, 2, 6, 4], that such optimized
finite difference approximations lead to improved overall accuracy for non-smooth
problems. This conclusion is confirmed by the results in Chapters 7 and 8. Moreover,
optimized schemes are computationally efficient since the cost-to-accuracy ratio is
significantly reduced. The main objective of the current dissertation is to further
develop these Dispersion-Relation Preserving schemes.

4.4.2 Motivation of this work

As discussed previously, minimizing the contributions of all Taylor series trunca-
tion terms in the finite difference approximation of a derivative, and thus preserving
the global dispersion relation for the range of scales up to κc instead of focusing on
asymptotic order of convergence, might be an advantageous strategy for Large-Eddy
Simulations. Obviously, the optimized finite difference schemes by [79, 45, 37, 2, 6]
meet this strategy, leading to good results at acceptable costs. The advantage of
using such optimized schemes over standard schemes in Large-Eddy Simulation was
illustrated by Berland et al. [4], using EDQNM theory. These prefactored schemes
are statically optimized by an a priori least-square procedure leading to predefined
Fourier characteristics.

It might also be possible to minimize all truncation terms of the finite difference
approximation in real time during the calculation. Such a strategy would allow one
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to obtain an optimal finite difference approximation according to the flow character-
istics at each time step. This implies that the Fourier characteristics of the adopted
scheme vary during the simulation in such a way that the global dispersion error is
always minimized. The proposed methodology could provide improved quality and
more flexibility in numerical simulations. In the next chapter, a simple numerical
experiment is conducted in which the coefficients of the discretized truncation terms
in the Navier-Stokes equations and continuity equation are optimized by means of
the sampling-based dynamic procedure proposed by [89, 88, 22, 46] in the context of
LES subgrid modeling.





If at first the idea is not absurd,

then there is no hope for it.

Einstein, Albert

5
The Sampling-Based Dynamic Procedure

As extensively discussed in previous chapters, the accuracy of a simulation de-
pends partially on the ability to control the discretization errors. Especially in Large-
Eddy Simulation of turbulent flows, it is highly desirable to minimize the numerical
errors such that their magnitude remains lower than the subgrid force [32, 49, 19, 4].
Traditionally, numerical accuracy is guaranteed by using fine grid resolutions with
standard low-order numerical methods, or by using standard high-order methods.
Nevertheless, both approaches are often prohibitively expensive for CFD simulations.
However, it has been argued that the standard numerical methods, which focus on
the formal order of accuracy, may be suboptimal for LES. Indeed, minimizing the
contributions of all Taylor series truncation terms in the finite difference approxima-
tion of a derivative, and thus preserving the global dispersion relation for the range
of scales up to the cutoff wavenumber, instead of focusing on asymptotic order of
convergence, might be an advantageous strategy for Large-Eddy Simulations.

Recently, Winckelmans et al. [89, 88], Debliquy et al. [22] and Knaepen et al. [46]
proposed to use the sampling formalism (Chapter 2), instead of the traditional filter-
ing formalism (Chapter 3) as an alternative method to derive the LES-equations. By
thinking in terms of such a sampling formalism, the nonlinearity in the momentum
equations does not result in the generation of subgrid stresses, as the sampling opera-
tor commutes with the nonlinear terms. However, since the sampling operator is not
commutative with spatial derivatives, a closure term appears which represents the
loss of information due to the projection on the computational grid. In [89, 88, 22, 46]
a Smagorinsky model was proposed that, by relying on a so-called generalized dy-
namic procedure or sampling based dynamic procedure which uses information from
two different grid resolutions, succeeded in accounting for the sampling commuta-
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tion errors.

In the present chapter, the sampling-based dynamic procedure is modified and
applied in an new, alternative way in order to obtain improved numerical accuracy
for various finite difference approximations. This new approach, which forms the core
of the current dissertation, was already presented in Fauconnier et al. [27, 28] and is
summarized hereafter. Using Taylor series expansion, an analytical formulation for
the exact truncation error in the Navier-Stokes equations and the continuity equation
is derived. By taking a modified leading order truncation term into account, a model-
formulation for the truncation errors is developed, which allows one to minimize the
global truncation error by means of a dynamic coefficient. Following [46, 27, 28], the
generalized dynamic procedure is subsequently introduced with which the optimal
coefficients of the model-formulation in the Navier-Stokes equations and continuity
equation are obtained. Finally, the concept is evaluated for a two-dimensional steady
laminar flow in a lid-driven cavity at a Reynolds number Re = 400.

5.1 Truncation errors in the discrete equations

5.1.1 Truncation errors: analytical formulation

In Chapter 2 (Section 2.4.3), the discrete Navier-Stokes equations and the dis-
crete continuity equation were derived by applying the sampling operator S ∆ =
S ∆x1 ◦ S ∆x2 ◦ S ∆x3 to the equations (2.1) and (2.2). This operation results in a
projection from the continuum spatial domain Ω ⊂ R3 with Cartesian coordinates
x ∈ R3 to the discrete spatial domain Ω∆ ⊂ R3 with discrete equispaced Cartesian
coordinates xk = [x1 (k) , x2 (k) , x3 (k)] ∈ R3, and k = [k1, k2, k3] ∈ N3 the index
vector. Let N = [N1, N2, N3] represent the number of grid nodes in each direction
such that 0 ≤ kj ≤ Nj , j = 1, 2, 3 and let ∆ = [∆1, ∆2, ∆3] give the uniform grid
spacing in each direction. Further, the sampling operator S ∆t projects the Navier-
Stokes equations (2.2) from continuum time t ∈ R to discrete time tn ∈ R, n ∈ N

where ∆t denotes the time interval. Using the short hand notation C (ui) for the
continuity operator and N (ui, p) for the Navier-Stokes operator, the discrete con-
tinuity and the Navier-Stokes equations1 are written as

0 =
δui

δxi
− Π∆ = C (ui) − Π∆ (5.1)

δui

δt
= −uj

δui

δxj
− δp

δxi
+ ν

δ2ui

δx2
j

+ Σ∆
i = N (ui, p) + Σ∆

i . (5.2)

Due to the non-commutativity of the sampling operator S ∆ with the spatial par-
tial derivatives, spatial truncation errors2 arise in the continuity equation and the

1Note that the Poisson equation is not discussed here in order to simplify the current analysis.
2Truncation errors due to time discretization are not considered in this work.
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Navier-Stokes equations, which are formally given by the relations

Π∆ =
δui

δxi
− ∂ui

∂xi
(5.3)

Σ∆
i = uj

(
δui

δxj
− ∂ui

∂xj

)
+

(
δp

δxi
− ∂p

∂xi

)
− ν

(
δ2ui

δx2
j

− ∂2ui

∂x2
j

)
. (5.4)

Assume that the spatial partial derivatives in the equations (5.1) and (5.2) are given
by a kth-order explicit finite difference approximation.3 The nth derivative is then
approximated as

δnui

δxn
j

(x, t) =
1

∆n
j

r∑

l=−r

βl,nui (x, t) , (5.5)

where the βl,n denote the weighting coefficients which depend on the adopted dis-
cretization and the value of n. Using relation (4.7), the commutation error for the
nth derivative then reads,

δnui

δxn
j

(x, t) − ∂nui

∂xn
j

(x, t) =
∞∑

k′=k

(
r∑

l=−r

βl,n lk
′+n

(k′ + n)!

)
∆k′

j

∂k′+nui

∂xk′+n
j

(x, t) . (5.6)

An analogous expansion is obtained for the pressure gradients in (5.2). Finally, sub-
stitution of expression (5.6) into equations (5.3) and (5.4) yields the exact analytical
form for the truncation errors Π∆ and Σ∆

i

Π∆ =
∞∑

k′=k

c∗k′,1∆
k′

i

∂k′+1ui

∂xk′+1
i

(5.7)

Σ∆
i =

∞∑

k′=k

{
ujc

∗
k′,1∆

k′

j

∂k′+1ui

∂xk′+1
j

+ c∗k′,1∆
k′

i

∂k′+1p

∂xk′+1
i

− νc∗k′,2∆
k′

j

∂k′+2ui

∂xk′+2
j

}
,(5.8)

in which the Taylor series coefficients c∗k′,n, n = 1, 2 are analytically determined as

c∗k′,n =
r∑

l=−r

βl,n lk
′+n

(k′ + n)!
, ∀k′. (5.9)

In order to avoid an overload in the notation, a modified summation convention is
assumed for the three repeated indices i in expression (5.7) as well as for the three
repeated indices j in the nonlinear term of expression (5.8). This implicit summation
is maintained further in this work. Expressions (5.7) and (5.8) are used further to
construct a model-formulation for the truncation error which will allow to minimize
the global truncation error.

3Note that the current discussion is restricted to explicit finite difference methods without any
loss of generality. The application of implicit methods is straightforward, although more elaborate.
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5.1.2 Truncation errors: model-formulation

As indicated in section 4.1.1, the central discretization of the leading order trun-
cation term on the right-hand side of expression (5.6) results in an approximation
of order O

(
∆k+2

)
. Taking more leading order truncation errors into account in the

discretization, results into higher-order approximations. Although in principle the
successive discretization of each new truncation term would eventually lead to an
infinite order of accuracy, in practice all finite difference approximations require the
truncation of the Taylor series to a certain order of accuracy.

In this work, a more accurate approximation is constructed by taking the lead-
ing order truncation term into account in the discretization. However, instead of
using the theoretical Taylor value of the coefficient c∗k,n, a modified coefficient ck,n is
adopted, which is not necessarily equal to the Taylor-value and will be determined
such that the global truncation error is minimized. This is explained further. Ex-
tracting first the modified leading order truncation terms from the truncation errors
(5.7) and (5.8) and then discretizing this term yields

Π∆ = ck,1∆
k
i

δk+1ui

δxk+1
i

+

{
∞∑

k′=k

c∗k′,1∆
k′

i

∂k′+1ui

∂xk′+1
i

− ck,1∆
k
i

∂k+1ui

∂xk+1
i

}
(5.10)

Σ∆
i = ck,1uj∆

k
j

δk+1ui

δxk+1
j

+ uj

{
∞∑

k′=k

c∗k′,1∆
k′

j

∂k′+1ui

∂xk′+1
j

− ck,1∆
k
j

∂k+1ui

∂xk+1
j

}

+ ck,1∆
k
i

δk+1p

δxk+1
i

+

{
∞∑

k′=k

c∗k′,1∆
k′

i

∂k′+1p

∂xk′+1
i

− ck,1∆
k
i

∂k+1p

∂xk+1
i

}

− ν
ck,1

ζ
∆k

j

δk+2ui

δxk+2
j

− ν

{
∞∑

k′=k

c∗k′,2∆
k′

j

∂k′+2ui

∂xk′+2
j

− ck,1

ζ
∆k

j

∂k+2ui

∂xk+2
j

}
, (5.11)

with ck,1 and ck,2 the modified coefficients for the first and second derivatives respec-
tively. Note that no summation is applied on the index k in the expressions above,
since k denotes the order of accuracy. The scaling factor ζ = ck,1/ck,2 = c∗k,1/c∗k,2,
is used in order to reformulate the modified leading order truncation term of the
viscous terms as function of ck,1. It is important to note that for expressions (5.10)

and (5.11), the standard (k + 2)th-order finite difference approximation is obtained
if ck,n = c∗k,n, whereas the accuracy remains of order k if ck,n 6= c∗k,n. Although in the
latter case, the order of accuracy is not increased, it will be shown that an optimal
value for the modified coefficient exists for which the magnitude of the remaining
truncation error is minimal. The modified leading truncation term in each of the
equations in (5.10) and (5.11) can now be converted into an expression with a single
preceding coefficient ck,1. In the following, the coefficient ck,1 in the continuity equa-
tion (5.10) will be denoted as Cπ, whereas the coefficients ck,1 in each momentum
equation (5.10) will be denoted as Cσ

i . Expressions (5.10) and (5.11) then finally
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read

Π∆ = Cπ∆k
i

δk+1ui

δxk+1
i

+ O

(
∆k
)

(5.12)

Σ∆
i = Cσ

i

{
∆k

j uj
δk+1ui

δxk+1
j

+ ∆k
i

δk+1p

δxk+1
i

− ν

ζ
∆k

j

δk+2ui

δxk+2
j

}
+ O

(
∆k
)

. (5.13)

The optimal values for the coefficients Cπ and Cσ
i must now be determined such

that the global truncation error is minimal. Hereafter, it is explained that the
sampling-based dynamic procedure is a useful tool for this purpose. It is emphasized
that the current model-formulation has no other purpose than to demonstrate the
capability of the generalized dynamic procedure to achieve improved accuracy, by
minimizing the global magnitude of the truncation error. Other attempts to model
the truncation error can be found in Fauconnier et al. [27], but are not discussed in
this work.

5.2 The generalized dynamic procedure

In this section, the original dynamic procedure, based on the Germano iden-
tity [30] is extended to a more general approach so that it can be applied in the
context of sampling. Note that Jeanmart et al. [43] already suggested the use of
a sampling operator in the dynamic procedure. In analogy with the traditional
filtering-based dynamic procedure, which relies on two filters with different cutoff
wavenumber κc, the sampling-based dynamic procedure requires two sampling op-
erators with different sampling frequency κs. This is explained further.

5.2.1 Concept

Consider sampling operators S ∆1 and S ∆2 which project the equations from
the continuum spatial domain Ω ⊂ R3 to two discrete spatial domains Ω∆1 ⊂ R3

and Ω∆2 ⊂ R3 with respectively N1,j and N2,j number of nodes in the jth direction
such that N1,j > N2,j , ∀j = 1, 2, 3. Let ∆1 = ∆1,j and ∆2 = ∆2,j denote the
grid spacing in each direction j and assume that ∆2,j = αj∆1,j , αj ∈ N. Hence,
only embedded computational grids are considered in this work, without any loss of
generality.4 Since the sampling operator is an orthogonal operator which satisfies
the property

S
∆2 ◦ S

∆1 ◦ [ui] = S
∆2 ◦ [ui] , (5.14)

S ∆2 also projects Ω∆1 to Ω∆2 . Assume the notation S ∆1 ◦ ui (x, t) = ui (x, t) and
S ∆2 ◦ ui (x, t) = ũi (x, t) = ũi (x, t) for the sampled velocity field, and analogously

4Suppose αj ∈ R, then appropriate interpolation functions must be used in order to evaluate
these expressions on the same grid resolution.
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for the sampled pressure field. Assume further the same notation as before for the
discrete derivative operator S ∆1 ◦ S ∆2 ◦ ∂ = δ. Applying the operator S ∆1 on
the continuity equation (2.1) and Navier-Stokes equations (2.2) leads to

0 = C (ui) − Π∆1 (5.15)

∂ui

∂t
= N (ui, p) + Σ∆1

i , (5.16)

where C (ui) and N (ui, p) respectively denote the continuity operator and the
Navier-Stokes operator applied to the sampled velocity field ui and pressure field
p. Similarly, applying S ∆2 to the continuous set (2.1) and (2.2) yields

0 = C (ũi) − Π∆2 (5.17)

∂ũi

∂t
= N (ũi, p̃) + Σ∆2

i . (5.18)

Ideally, the latter set should also be obtained by applying the sampling operator
S ∆2 to the first set of equations (5.15)-(5.16) giving

0 = S
∆2 ◦ C (ui) − S

∆2 ◦ Π∆1 (5.19)

∂ũi

∂t
= S

∆2 ◦ N (ui, p) + S
∆2 ◦ Σ∆1

i . (5.20)

Consistency between formulations (5.17)-(5.18) and (5.19)-(5.20) imposes the fol-
lowing relations

− S
∆2 ◦ C (ui) + C (ũi) = Π∆2 − S

∆2 ◦ Π∆1 (5.21)

S
∆2 ◦ N (ui, p) − N (ũi, p̃) = Σ∆2

i − S
∆2 ◦ Σ∆1

i , (5.22)

which explicitly express the commutation errors made by the projection Ω∆1 → Ω∆2 .
The left-hand sides of (5.21) and (5.22) are respectively called the scalar level and
vector level equivalents of the Germano identity (3.60). They can be determined in
terms of the resolved velocity ui, since S ∆2 ◦ ui = ũi = ũi, and play the role of
the Leonard scalar (5.21) or the Leonard vector (5.22). Assume that the truncation
errors Π∆1 and Σ∆1

i are approximated by a model-formulation as proposed in section
(5.1.2)

Π∆1 = Cπmπ (ui) (5.23)

Σ∆1
i = Cσ

i mσ
i (ui, p) , (5.24)

and analogously for Π∆2 and Σ∆2
i . Using a similar terminology as in the filtering-

based dynamic procedure in section 3.3.3, expressions (5.21) and (5.22) can be re-
defined as

L
π = Cπ

M
π (5.25)

L
σ
i = Cσ

i M
σ
i , (5.26)
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in which the Leonard terms L and the Model terms M read

L
π = −S

∆2 ◦ C (ui) + C (ũi) (5.27)

L
σ
i = S

∆2 ◦ N (ui, p) − N (ũi, p̃) (5.28)

M
π = mπ (ũi) − S

∆2 ◦ mπ (ui) (5.29)

M
σ
i = mσ

i (ũi, p̃) − S
∆2 ◦ mσ

i (ui, p) . (5.30)

The Leonard terms, which are resemblant to the expressions (5.3)-(5.4), are deter-
mined by

L
π = − δ̃ui

δxi
+

δũi

δxi
(5.31)

L
σ
i = ũj

(
δ̃ui

δxj
− δũi

δxj

)
+

(
δ̃p

δxi
− δp̃

δxi

)
− ν

(
δ̃2ui

δx2
j

− δ2ũi

δx2
j

)
. (5.32)

Using the expressions (5.12) and (5.13), and assuming that ∆1,j = ∆j whereas
∆2,j = αj∆j , similar expressions are obtained for the model terms, yielding

M
π = −∆k

i

{
αk

i

δk+1ũi

δxk+1
i

− δ̃k+1ui

δxk+1
i

}
(5.33)

M
σ
i = ũj∆

k
j

{
αk

j

δk+1ũi

δxk+1
j

− δ̃k+1ui

δxk+1
j

}
+ ∆k

i

{
αk

i

δk+1p̃

δxk+1
i

− δ̃k+1p

δxk+1
i

}

− ν

ζ
∆k

j

{
αk

j

δk+2ũi

δxk+2
j

− δ̃k+2ui

δxk+2
j

}
. (5.34)

Notice that the ratio αj = ∆2,j/∆1,j determines the ratio of the sampling frequencies
in each direction as αj = κs,1/κs,2.
Relations (5.25) and (5.26) determine a set of 4 independent linear equations for 4
independent unknown coefficients. However, in order to obtain expressions (5.25)
and (5.26), the coefficients Cπ and Cσ

i are necessarily assumed constant on both
grid resolutions such that

Cπ
S

∆2 ◦ [mπ (ui)] = S
∆2 ◦ [Cπmπ (ui)] (5.35)

Cσ
i S

∆2 ◦ [mσ
i (ui, p)] = S

∆2 ◦ [Cσ
i mσ

i (ui, p)] . (5.36)

This is reminiscent to the assumptions of the filter-based dynamic procedure as dis-
cussed in section 3.3.3. Therefore, the constant coefficients Cπ and Cσ

i are obtained
by minimizing the mean-square error

E
π =

〈
(L π − Cπ

M
π)2
〉

, (5.37)

E
σ
i =

〈
(L σ

i − Cσ
i M

σ
i )2
〉

, (5.38)
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where 〈.〉 denotes the spatial averaging over the entire computational domain. Note
that E π and E σ

i are determined by the remaining truncation error O
(
∆k
)

in expres-
sions (5.12) and (5.13). Hence, minimization of the errors (5.37) and (5.38), implies
minimization of the global truncation error. Finally, differentiation with respect to
Cπ and Cσ

i yields5

Cπ =
〈L π

M
π〉

〈M π
M

π〉 (5.39)

Cσ
i =

〈L σ
i M σ

i 〉
〈M σ

i M σ
i 〉

. (5.40)

Since these coefficients are recalculated by the sampling-based dynamic procedure at
each new iteration, their values will correspond according to the specific characteris-
tics of the flow at that iteration. Moreover, it can already be understood that if the
flow pattern is smooth, the truncation series converges very fast to zero, such that
the resulting dynamic coefficients tend to their theoretical values, whereas for non-
smooth flow patterns, the coefficients will differ significantly from their theoretical
value due to the slowly converging truncation series. Once the value of the coeffi-
cients is determined, substitution into expressions (5.12) and (5.13) is expected to
lead finally to an optimized finite difference scheme for the Navier-Stokes equations
and the continuity equation.

5.2.2 Modification to the generalized dynamic procedure

Although the presented dynamic procedure is mathematically consistent, an
oversensitivity to non-smooth fields has been observed, resulting into suboptimal
values for the coefficients. In order to control the high-wavenumber sensitivity, the
sampling-based dynamic procedure is slightly modified by introducing a blending
factor f into the truncation errors Π∆2 and Σ∆2

i such that

Π∆2 = Cπ
[
fmπ (ũi) + (1 − f) αk

S
∆2 ◦ mπ (ui)

]
(5.41)

Σ∆2
i = Cσ

i

[
fmσ

i (ũi, p̃) + (1 − f) αk
S

∆2 ◦ mσ
i (ui, p)

]
, (5.42)

If f = 1, then the original dynamic procedure is recovered. If f = 0, the model
terms M reduce to

M
π =

(
αk − 1

)
S

∆2 ◦ mπ (ui) (5.43)

M
σ
i =

(
αk − 1

)
S

∆2 ◦ mσ
i (ui, p) . (5.44)

5No summation over index i in these expressions.
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The dynamic coefficients are then readily obtained by (5.25) and (5.26) as

Cπ =
L

π

M
π = − S

∆2 ◦ C (ui) − C (ũi)(
αk − 1

)
S

∆2 ◦ mπ (ui)
(5.45)

Cσ
i =

L
σ
i

M
σ
i

=
S

∆2 ◦ N (ui, p) − N (ũi, p̃)(
αk − 1

)
S

∆2 ◦ mσ
i (ui, p)

. (5.46)

Substitution of these expressions into (5.41) and (5.42) and further elaboration fi-
nally leads to the finite difference approximation for the continuity and Navier-Stokes
equations on the coarse grid level

0 =
αk

S
∆2 ◦ C (ui) − C (ũi)

αk − 1
+ O

(
∆k+1

)
(5.47)

∂ũi

∂t
=

αk
S

∆2 ◦ N (ui, p) − N (ũi, p̃)

αk − 1
+ O

(
∆k+1

)
. (5.48)

Both expressions are known as Richardson extrapolation, and are equivalent with
a standard higher-order approximation with formal order of accuracy O

(
∆k+1

)
.6

Moreover, it is verified that the dynamic coefficients reduce to their theoretical
Taylor values such that Cπ = Cπ∗ and Cσ

i = Cσ∗
i and thus ck,n = c∗k,n.

Summarizing, the introduced blending factor provides a blending between the
dynamically optimized finite difference schemes (f = 1) and the standard high-order
schemes f = 0. Therefore it allows to control the sensitivity of the procedure to
high-wavenumber information, reflected by the magnitude of the truncation series.
Although in the next chapter, a detailed analysis is given of Richardson extrapolation
and the role of the blending factor, the current analysis suffices for the time being.
The performance of the dynamically optimized scheme and the role of the blending
factor f is examined in the following numerical experiment for the steady laminar
flow in the lid-driven cavity.

5.3 A first numerical experiment

Hereafter, the capability of the generalized dynamic procedure to obtain higher
accuracy by minimizing the global truncation error is evaluated for a two-dimensional
steady laminar flow in the lid-driven cavity [27, 28]. Although the proposed method
is designed for Large-Eddy Simulation where the velocity field is far from smooth,
application to smooth laminar flows is expected to already demonstrate the perfor-
mance of the method. Indeed, a laminar flow does not necessarily implicate that the
resolved velocity field is well-resolved and smooth with respect to the grid resolution.
Moreover, the laminar test case allows to avoid turbulence modeling ambiguities that
interfere with the numerical accuracy as shown by the work of Meyers et al. [60, 59].

6For central finite difference approximations the formal order of accuracy becomes O
`
∆k+2

´
.
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x1 = L/2

x2 = L/2

∂1Ω

∂1Ω

∂1Ω

∂2Ω
ulid

Figure 5.1: Lid-driven cavity. The two dimensional square lid driven cavity
encloses the interior domain Ω = [0,L ]×[0,L ] ⊂ R2 and has uniform
velocity ulid at the boundary ∂2Ω.

5.3.1 The Lid-Driven Cavity: setup

In the driven cavity, an internal recirculating flow is generated by a uniform
moving wall in a two-dimensional square closed domain as illustrated in Figure 5.1.
The flow is representative for more complex situations with vortices and secondary
flows, and is a challenging test case [77]. On each wall, impermeability conditions
and no-slip conditions are imposed. This implies that the fluid is supposed to move
with the lid at the lid, and that it is stationary at the two side walls and the bottom
wall. This leads to so-called corner singularities at both top corners due to the
discontinuity in the imposed boundary conditions. Shankar et al. [77] concluded
that the effects of the corner singularities are confined to the neighborhood of the
corners, and that the influence is negligible for the interior flow. However, since by
definition a singularity is an infinite pole, the problem is ill-posed and the corner
singularities are unphysical. In reality, slip must occur in the near vicinity of the
corners in order to have a continuous regular flow. Some repercussions toward
numerical simulation are observed if no-slip is enforced. The flow solution will
not converge to a grid-independent solution when refining the computational grid.
Indeed, it is observed that the variables, e.g. the pressure, at the singularities do
not converge to a limit-value, but tend to infinity. As a consequence, the pressure
gradients in the vicinity of the singularity also tend to infinity, which implies that
the spectral content of the velocity field and the pressure field becomes infinite. In
order to resolve such a flow, an LES-technique would be necessary that limits the
spectral content according to the Nyquist criterion. In this work, a rough ad hoc
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slip-model is assumed which imposes a sinusoidal velocity-profile of the fluid at the
lid, instead of a uniform velocity-profile. It is emphasized that such a method has
no other intention than ensuring the well-posedness of the problem and to avoid any
ambiguity in the results. Hereafter, the consequences of this rough approximation
will be demonstrated.

The pseudo-compressibility algorithm, described in section 4.3.3, is used in or-
der to solve the analytical equations in the square two-dimensional domain Ω =
[0, L ] × [0, L ] ⊂ R2, L being unity. The Reynolds number, based on the height
and maximum lid-velocity, is chosen Re = 400 such that the flow is laminar and
steady [77]. The governing equations then read

1

c2

∂p

∂τ
+

∂ui

∂xi
= 0 (5.49)

∂ui

∂τ
+ uj

∂ui

∂xj
= − ∂p

∂xi
+ ν

∂2ui

∂x2
j

, (5.50)

were c denotes the artificial speed of sound and τ is the pseudo time. These equations
are supplemented with a set of Dirichlet boundary conditions

∂1Ω → ui = 0, i = 1, 2 (5.51)

∂2Ω → u1 = ulid sin (πx1) , u2 = 0. (5.52)

The discrete equations are obtained by projecting the continuum equations from
Ω → Ω∆ by means of the spatial sampling operator S ∆ and the temporal sampling
operator S ∆t , yielding

1

c2

δp

δτ
+

δui

δxi
= Π∆ + D

(
∆k
)

(5.53)

δui

δτ
+ uj

δui

δxj
= − δp

δxi
+ ν

δ2ui

δx2
j

+ Σ∆
i , (5.54)

where D
(
∆k
)

denotes the dissipator which precludes odd-even decoupling as de-
scribed in 4.3.3. Time-stepping in pseudo-time τ is performed with a 3-stage Runge-
Kutta method. The spatial derivatives are approximated using explicit central finite
difference methods in the interior domain whereas at the boundaries eccentric finite
difference approximations are used. Since no analytical solution exists, a highly ac-
curate reference solution was generated on a 120 × 120 uniform computational grid
with an 8th -order finite difference method. The dissipator is determined as

D
(
∆7
)

=
σ

ulid
∆7

i

δ8p

δx8
i

, σ =
1

512
, ulid = 1 (5.55)

such that the resulting reference solution is O
(
∆7
)
. All other finite difference sim-

ulations were performed on a 60 × 60 grid using the same dissipator as for the
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reference solution. For the dynamically optimized finite difference method, using
the model-formulation for the truncation errors in combination with the modified
sampling-based dynamic procedure, a 2nd -order finite difference method is used
for approximating the partial derivatives in (5.53) and (5.54). Hence, the model-
formulation of the leading order truncation terms is discretized as

Π∆ = Cπ∆2
i

δ3ui

δx3
i

+ O
(
∆2
)

(5.56)

Σ∆
i = Cσ

i

{
∆2

juj
δ3ui

δx3
j

+ ∆2
i

δ3p

δx3
i

− ν

2
∆2

j

δ4ui

δx4
j

}
+ O

(
∆2
)
. (5.57)

where the coefficients must have the values Cπ = 1/6 and Cσ
i = 1/6, ∀i in order

to obtain formal 4th -order accuracy. Nevertheless, both coefficients are determined
each Runge-Kutta step in pseudo time using the modified sampling-based dynamic
procedure, in which several values for the blending factor f are investigated. Note
that the proposed dynamically optimized 2nd -order finite difference approach re-
quires at most a 5-point stencil, which is equivalent with the standard 4th -order
finite difference method requirements. Moreover, the evaluation of the dynamic co-
efficient requires also at most a 5-point stencil on both the fine-grid level and the
coarse-grid level. Due to the current multi-grid implementation of the procedure,
the computational cost of the dynamic procedure is acceptable. However, if the
procedure’s implementation would be done on a single grid, the required stencil
width for the coarse formulation would be 9, which makes it computationally more
expensive. Nevertheless, recall that the intention for this first test is to examine the
potential of the current method rather than optimizing the technique. More efficient
implementations will be presented in the following chapter and a general discussion
about the computational cost will be given in Chapter 8, Section 8.6. In order to
allow comparison of the quality of the dynamic finite difference scheme with that of
standard explicit finite difference methods, 2nd -, 4th - and 6th -order solutions were
generated. The results are discussed in the following paragraph.

5.3.2 The Lid-Driven Cavity: results and discussion

Figure 5.2 demonstrates the 8th -order reference solution (120 × 120) of the
velocity field u (x) and the pressure field p (x) in the steady state laminar cavity-
flow at Reynolds number Re = 400. In order to examine the consequences of
replacing the no-slip boundary conditions at the lid with a sinusoidal fluid-velocity
profile, the solution is compared with that obtained with a uniform fluid-velocity
at the lid. Figure 5.3 shows the velocity components and the pressure field in two
orthogonal cross-sections of the cavity (see Figure 5.1). Despite the different fluid-
velocity profiles at the lid, both solutions compare reasonably well to each other and
the general flow characteristics seem preserved. Nevertheless, slight differences are
observed. Indeed, replacing the uniform profile with the sinusoidal profile, reduces
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Figure 5.2: Lid-driven cavity at Re = 400. The velocity vectors u (x) =
ui (xj) , i, j = 1, 2 (left) and contours of the pressure field p (x)
(right) of the 8th -order reference solution on a 120× 120 grid. Note
that the mean pressure is forced to be zero.

the mean vorticity magnitude of the cavity flow7 with approximately 32.5% making
the flow field smoother. As expected, the corner singularities vanish for the sinusoidal
profile such that a grid independent solution is obtained in case of grid refinement.
In summary, the current mathematical problem definition is well-posed and leads
to a regular solution which is in reasonable agreement with that of the traditional
problem definition. Hence, the proposed sinusoidal profile of the fluid-veloctiy at
the lid is maintained for further calculations.

The accuracy of the dynamic finite difference scheme is investigated for different
values of the blending factor f = 1/i, i = 1, . . . , 5. The accuracy of the results is
compared to that of the standard explicit 2nd -, 4th - and 6th -order finite difference
schemes. Figures 5.4 and 5.5 display the absolute errors between the solution of the
various simulations on the 60× 60 grid and that of the 8th -order reference solution
on the 120 × 120 grid, i.e. for a resolved variable φ

εφ =
∣∣φreference − φ

∣∣ , (5.59)

in the two orthogonal cross-sections (x1 = L /2 and x2 = L /2) indicated in Figure
5.1. Further, Table 5.1 gives an overview of the global accuracy per variable, for the

7The mean vorticity magnitude is defined as

〈ω〉 =

ZZ
|∇ × u (x)| dΩ. (5.58)
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Figure 5.3: Lid-driven cavity at Re = 400. Various velocity and pressure
profiles at the cross-sections x1 = L /2 and x2 = L /2 of the 8th

-order reference solution on a 120 × 120 grid, for a sinusoidal fluid-
velocity (−−−−−) and a uniform fluid-velocity (−·−·) at the lid. Despite
the differences, the general flow characteristics remain similar.
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2nd 4th 6th f = 1

5
f = 1

4
f = 1

3
f = 1

2
f = 1

L2,u1
0.3411 0.0230 0.0113 0.0120 0.0121 0.0126 0.0147 0.0333

L2,u2
0.3932 0.0288 0.0142 0.0092 0.0091 0.0094 0.0115 0.0327

L2,p 0.1260 0.0340 0.0329 0.03013 0.0302 0.0302 0.0304 0.0321

Table 5.1: The L2-norms for various finite difference schemes. Notice that
for f = 1, poor accuracy is obtained, whereas for a nearly optimal value
f = 1/4 the accuracy exceeds that of the 6th -order solution.

different simulations. The global accuracy of a resolved variable φ is defined by the
L2-norm

L2,φ =

√∑

Ω

(
φreference − φ

)2
. (5.60)

First, it is observed from Figures 5.4 and 5.5, that the original sampling-based
dynamic procedure with blending factor f = 1 leads to rather poor results. Indeed,
Table 5.1 confirms that for f = 1, the accuracy of the dynamic finite difference
scheme lies between that of the 2nd - and 4th -order standard explicit schemes.
As mentioned in the previous section, the sampling-based dynamic procedure with
f = 1 appears to be extremely sensitive to high-wavenumber information leading to
suboptimal predictions of the dynamic coefficients. This conclusion is supported by
the results of the theoretical analysis in the next chapter. Nevertheless, decreasing
the value of the blending factor results into a substantial accuracy improvement
of the dynamic finite difference scheme. The various error profiles in Figures 5.4
and 5.5 reveal that the accuracy for f 6= 1 is at least as good as that of the 6th

-order standard finite difference scheme, and often better. Although comparable
error levels are obtained for f = 1/3, f = 1/4 and f = 1/5, Table 5.1 indicates that
f = 1/4 is closest to an optimal value. Note that the obtained solution for f = 0, is
not explicitly shown in the graphs since it would collapse with that of the 4th -order
solution. It is verified from Table 5.2 that for f = 0, the dynamic coefficients tend
to their theoretical Taylor series value, i.e. Cπ = 1/6 Cσ

i = 1/6, i = 1, 2. Hence, the
method reduces to pure Richardson extrapolation which is equivalent with the 4th -
order method as discussed section 5.2.2. Further Table 5.2 shows that the coefficients
deviate from their Taylor series value for increasing values of the blending factor.
Although the coefficients Cπ and Cσ

2 tend to increase with increasing f , the opposite
behaviour is noticed for Cσ

1 . For f = 1, the values are inconsistent with the observed
tendency for lower blending factors. This supports the previous conclusion that f =
1 generates suboptimal coefficients due to the procedure’s oversensitivity to high-
wavenumber information. It should be emphasized that the dynamic coefficients in
Table 5.2 are uniquely determined by the grid resolution, the specific implementation
of the dynamic scheme, the value of f and the particular flow characteristics related
to the Reynolds number. Hence, these values may not be considered universal and
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f = 0 f = 1

5
f = 1

4
f = 1

3
f = 1

2
f = 1

Cπ 0.1667 0.1694 0.1699 0.1705 0.1708 0.1652
Cσ

1 0.1667 0.1633 0.1622 0.1603 0.1559 0.1400
Cσ

2 0.1667 0.1753 0.1770 0.1792 0.1834 0.1791

Table 5.2: The dynamic coefficients as function of the blending factor
f . Notice that for f = 0, the theoretical Taylor series value 1/6 is
recovered from the dynamic procedure. However, for increasing values
of f , the dynamic coefficients deviate from this value.

are only optimal for this specific set of simulations. But it is exactly this self-
adaptivity of the presented methodology that is very attractive since for every flow
an optimal numerical method could be obtained.

5.4 Conclusions and Perspectives

In the present chapter, a dynamic finite difference method was constructed by us-
ing a specific model-formulation for the truncation error in which a coefficient must
be optimized. This coefficient is determined by means of a modified sampling-based
dynamic procedure whose sensitivity to high-wavenumber information is controlled
by the appropriate choice of a blending factor. The presented results clearly demon-
strate the ability of this dynamic procedure to obtain a nearly optimal coefficient
in the adopted finite difference discretization. Hence, the dynamic finite difference
method adapts itself in order to obtain optimal accuracy for a specific simulation.
Application to the steady laminar flow in the lid-driven cavity (Re = 400), reveals
that the optimized 2nd -order scheme can achieve a higher accuracy than the stan-
dard 6th -order finite difference scheme.

Although very promising and encouraging results were found, this numerical
experiment was only intended as a first attempt to validate the concept and to
demonstrate the potential of the proposed approach. Indeed, more efficient and
more accurate finite difference approximations can, and will, be constructed with
the current technology. First, the concept of the sampling-based dynamic procedure
will be focussed to the finite difference approximations for a single derivative instead
of for an entire partial differential equation. Since each derivative is then indepen-
dently optimized, significant quality-improvement is expected. A thorough Fourier
analysis of the resulting scheme will subsequently be performed, which allows one to
better understand the role of the blending factor. A methodology is derived in order
to determine the optimal blending factor corresponding to the energy spectrum of
the flow. It will be shown that the resulting dynamic finite difference approxima-
tions are closely related to the Dispersion-Relation Preserving schemes of Tam et
al. [79], but have the advantage to be self-adaptive according to the instantaneous
flow characteristics.



Truth is ever to be found in the sim-

plicity, and not in the multiplicity

and confusion of things.

Newton, Isaac

6
Dynamic Finite Difference Approximations

In the previous chapter, a finite difference methodology was presented in which,
for each partial differential equation, an optimal dynamic coefficient needed to be
determined in order to minimize the global magnitude of the truncation error. A
modified variant of the sampling-based dynamic procedure was proposed for calcu-
lating that coefficient. This approach succeeded in obtaining better accuracy for the
simple numerical simulation of a two-dimensional laminar cavity flow. The results
were found to be very promising and encouraging. Nevertheless, it was argued that
refining this methodology by applying it to each derivative separately, instead of to
an entire partial differential equation at once, might be beneficiary.

The current chapter is devoted to the mathematical construction of a family of
dynamic low-dispersive finite difference approximations for the partial derivatives.
Both explicit and implicit dynamic low-dispersive finite difference approximations
are constructed by combining Taylor series expansions on two different grid resolu-
tions. The accuracy of the constructed schemes is analyzed in Fourier space, using
modified wavenumbers. Since one of these schemes is spatially nonlinear, a multiple-
wave Fourier analysis of the transfer function is performed. This multiple-wave anal-
ysis provides a new approach for the analysis of spatially nonlinear finite difference
schemes and was already presented in earlier work of Fauconnier et al. [27]. The
relation of the dynamic schemes with the Dispersion-Relation-Preserving scheme of
Tam et al. [79] and the Dispersion-Relation-Preserving compact Padé scheme of Kim
et al. [45] is then demonstrated. Finally, a procedure to achieve the optimal blending
factor in a dynamic finite difference scheme is proposed, in which a characteristic
energy spectrum is assumed. The effect of the specific choice of the spectrum on
this parameter is discussed.
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6.1 Construction

In order to avoid an overload in notation the following discussion is restricted,
without any loss of generality, to one spatial dimension, whereas the time-dimension
is not explicitly written.

6.1.1 Explicit Dynamic Finite Difference Approximations

Consider a kth-order explicit central finite difference approximation for the nth

partial derivative of a variable u (x) = u (x, t) , x ∈ R on a computational grid with
grid spacing ∆, such that in a point x = xi

δnu

δxn

∣∣∣∣
∆

(xi) =
1

∆n

r∑

j=−r

βju (xi+j) . (6.1)

The 2r + 1 weighting coefficients βj depend on the adopted discretization and the
value of n. Further, assume a similar kth-order explicit finite difference approxima-
tion for the nth partial derivative on the same computational grid with grid spacing
∆, but having a stencil width of 2αr + 1, α ∈ N, such that

δnu

δxn

∣∣∣∣
α∆

(xi) =
1

(α∆)n

r∑

j=−r

βju (xi+αj) . (6.2)

The Taylor series expansions of both approximations (6.1) and (6.2) are then written
as

∂nu

∂xn
(x) =

δnu

δxn

∣∣∣∣
∆

−
∞∑

k′=k




r∑

j=−r

βj jk′+n

(k′ + n)!


∆k′ ∂k′+nu

∂xk′+n
(6.3)

∂nu

∂xn
(x) =

δnu

δxn

∣∣∣∣
α∆

−
∞∑

k′=k




r∑

j=−r

βj jk′+n

(k′ + n)!


 (α∆)k′ ∂k′+nu

∂xk′+n
. (6.4)

Two common techniques exist for achieving higher-order approximations from these
series. One can either find a finite difference approximation for the leading order
truncation term, or one can eliminate the coefficient of the leading order trunca-
tion term by combining the O

(
∆k+2

)
-truncated Taylor series in expressions (6.3)

and (6.4). The latter technique, known as Richardson extrapolation, has no direct
advantage over the first one, since both lead to a finite difference approximation of
formal order of accuracy k + 2. However, as will be shown below, the combination
of both techniques can lead to a non-trivial self-adaptive dynamic scheme with basic
order of accuracy k, but with better spectral characteristics.
Discretization of the leading order truncation term in both Taylor expansions (6.3)
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and (6.4) with a 2nd -order accurate finite difference approximation1 results into the
Taylor series expansions

∂nu

∂xn
(x) =

δnu

δxn

∣∣∣∣
∆

+ c∗k,n∆k δk+nu

δxk+n

∣∣∣∣
∆

+
∞∑

k′=k+2

c∗k′,n∆k′ ∂k′+nu

∂xk′+n
(6.5)

∂nu

∂xn
(x) =

δnu

δxn

∣∣∣∣
α∆

+ c∗k,n (α∆)k δk+nu

δxk+n

∣∣∣∣
α∆

+
∞∑

k′=k+2

c∗k′,n (α∆)k′ ∂k′+nu

∂xk′+n
,(6.6)

where the coefficients c∗k,n and c∗k′,n are determined by the set of weighting coefficients
βj and n. Although the theoretical value of the coefficient of the leading order
truncation term c∗k,n is known a priori, it is also possible to determine its value by
combining the truncated expressions (6.5) and (6.6). The coefficient, obtained in
that way, will not necessarily have the same value as the one obtained from the
Taylor series, i.e. c∗k,n, as it will be a function of u (x) and its derivatives. Moreover,
it will be shown that the obtained value of the coefficient can be optimal with respect
to u (x), such that deficiencies of the resulting finite difference approximation, e.g.
dispersion errors are minimized.
In order to retrieve the optimal value of the coefficient from equations (6.5) and
(6.6) the sampling-based dynamic procedure is applied analogously as in the previous
chapter. First the theoretical coefficient c∗k,n in equations (6.5) and (6.6) is replaced
by the coefficient ck,n. Further, a blending factor f is introduced into the coarse
resolution equation (6.6), leading to a modified expression for the discretized leading
order truncation term. The resulting equations then read

∂nu

∂xn
(x) =

δnu

δxn

∣∣∣∣
∆

+ ck,n∆k δk+nu

δxk+n

∣∣∣∣
∆

+ O

(
∆k
)

(6.7)

∂nu

∂xn
(x) =

δnu

δxn

∣∣∣∣
α∆

+ ck,n (α∆)k

{
f

δk+nu

δxk+n

∣∣∣∣
α∆

+ (1−f)
δk+nu

δxk+n

∣∣∣∣
∆
}

+ O

(
(α∆)k

)
.

(6.8)

Unless ck,n has the exact Taylor value c∗k,n, the order of accuracy in expressions (6.7)

and (6.8) remains O
(
∆k
)
. This follows readily from the expression of the truncation

series in (6.7), which is given by

O

(
∆k
)

=
∞∑

k′=k

c∗k′,n∆k′ ∂k′+nu

∂xk′+n
− ck,n∆k ∂k+nu

∂xk+n
. (6.9)

1Although other discretizations can be perfectly adopted, there would be no advantage in such
an approach. Indeed, the higher-order accuracy is enitrely determined by the Taylor series in
expressions (6.3) or (6.4) and not by the accuracy of the discretization of the leading order truncation
term. Hence, in this work the 2nd -order approximations are adopted for the discretization of the
leading order truncation terms, which is the minimal order of accuracy.
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The difference between the fine grid and coarse grid discretization is obtained by
subtracting (6.8) from (6.7) giving,

E = L + ck,nM = O

(
(α∆)k

)
− O

(
∆k
)

(6.10)

in which the Leonard terms L and the Model terms M read

L =
δnu

δxn

∣∣∣∣
∆

− δnu

δxn

∣∣∣∣
α∆

(6.11)

M =
(
1 − αk

)
∆k δk+nu

δxk+n

∣∣∣∣
∆

− αk∆kf

(
δk+nu

δxk+n

∣∣∣∣
α∆

− δk+nu

δxk+n

∣∣∣∣
∆
)

. (6.12)

The magnitude of the difference (6.10), which is a function of parameter ck,n, pro-
vides an indication about the accuracy with which the finite difference scheme on the
fine grid resolution approximates the analytical derivative. If the difference is small,
the resolution is sufficiently fine and ensures an accurate finite difference approxima-
tion on the fine grid. In contrast, a large difference E indicates that the resolution
is not fine enough to guarantee an acceptable accuracy of the finite difference ap-
proximation on the fine grid. However, an optimal coefficient ck,n can be found such
that the difference E is minimal. Then, the finite difference approximation on the
fine grid must have an optimal accuracy (low dispersion error), since it differs only
minimally with the accuracy of the coarse grid approximation. To examine the role
of the blending factor f ∈ [0, 1], the cases f = 0 and f 6= 0 are discussed hereafter.

Asymptotic high-order schemes for f = 0

Assume the blending factor f = 0, then the coefficient ck,n can be obtained from
expression (6.10) by imposing the difference E = 0, leading to

δnu

δxn

∣∣∣∣
∆

− δnu

δxn

∣∣∣∣
α∆

= ck,n

(
αk − 1

)
∆k δk+nu

δxk+n

∣∣∣∣
∆

. (6.13)

It is observed that the left-hand-side discretization does not necessarily lead to a com-
pact finite difference approximation with minimal stencil width for the right-hand
side derivative. It is verified that the left-hand-side results into a discretization with
a stencil width of 2αr +1, whereas the right-hand-side only requires a discretization
with stencil width 2r + 1 + 2 for obtaining the same order of accuracy. Hence, both
stencils are equal if α = 1/r + 1, and since embedded grid resolutions are assumed
such that α ∈ N, the former condition is only satisfied if r = 1. In the following,
however, identity (6.13) is enforced such that a minimal stencil width for the right-
hand-side is guaranteed2 and thus, ck,n ≡ c∗k,n. Substitution of (6.13) into (6.7),

2In accordance with the discussion in Section 4.3.2, it is observed that ensuring the compactness
of the stencils leads to superior quality.
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eliminating ck,n leads to the finite difference approximation of order O
(
∆k+2

)
.

∂nu

∂xn
(x) =

αk δnu

δxn

∣∣∣∣
∆

− δnu

δxn

∣∣∣∣
α∆

αk − 1
+ O

(
∆k+2

)
(6.14)

which is Richardson’s Extrapolation formula. Expression (6.14) is thus again an
approximation with formal asymptotic order of accuracy O

(
∆k+2

)
, although it does

not necessarily have a compact stencil support in the current formulation. The aim
is to construct optimized finite difference schemes with good Fourier characteristics
and abandoning the concept of formal asymptotic order of accuracy. Therefore, the
case f 6= 0 is further investigated.

Optimized high order schemes for f 6= 0

For the case f 6= 0, the analysis is continued in a somewhat different manner than
for f = 0. Imposing E = 0 and eliminating ck,n straightforwardly from expression
(6.10), would lead to a substitution of ck,n with a nonlinear expression. The resulting
field for ck,n would be pointwise varying, in contrast to the constant value obtained
from the Taylor series. Instead, a more general approach is followed by extracting
ck,n from a least square optimization, in which the least square averaging domain
is an additional degree of freedom. This allows to regulate the smoothness of the
obtained coefficient.
First, expressions (6.11) and (6.12) can be further simplified by enforcing relation
(6.13), yielding

L = c∗k,n

(
αk − 1

)
∆k δk+nu

δxk+n

∣∣∣∣
∆

(6.15)

M =
(
1 − αk

)
∆k δk+nu

δxk+n

∣∣∣∣
∆

− αk∆kf

{
c∗∗k,n

(
1 − α2

)
∆2 δk+n+2u

δxk+n+2

∣∣∣∣
∆
}

(6.16)

with c∗k,n and c∗∗k,n constant coefficients known from Taylor series expansion. The
optimized dynamic coefficient can be extracted by least square minimization of the
difference (6.10), i.e. by solving

∂

∂ck,n

〈
E

2
〉

= 0 (6.17)

where 〈·〉 denotes an averaging operator (to be defined later), resulting finally in the
dynamic coefficient

cdyn
k,n = − 〈LM〉

〈MM〉 . (6.18)
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Once cdyn
k,n is calculated, its value can be used in the optimized finite difference

approximation

∂nu

∂xn
(x) =

δnu

δxn

∣∣∣∣
∆

+ cdyn
k,n ∆k δk+nu

δxk+n

∣∣∣∣
∆

+ O

(
∆k
)

. (6.19)

The resulting dynamic scheme has a formal order of accuracy k unless cdyn
k,n = c∗k,n,

which would lead to the formal order of accuracy k + 2. Although the order of
accuracy is not necessarily increased by this dynamic procedure, the scheme can
have better Fourier characteristics. This is shown in the next section.

In this dissertation, only two averaging operations are considered, i.e. a global
uniform averaging over the entire domain, and a local averaging over half the grid
spacing ∆/2.3 Applying the global uniform averaging operator to expression (6.18)
results into the following spatially constant coefficient

cdyn
k,n = c∗k,n

〈
δk+nu

δxk+n

∣∣∣∣
∆2

− αk
(
1 − α2

)

1 − αk
fc∗∗k,n∆2 δk+n+2u

δxk+n+2

∣∣∣∣
∆

δk+nu

δxk+n

∣∣∣∣
∆
〉

〈(
δk+nu

δxk+n

∣∣∣∣
∆

− αk
(
1 − α2

)

1 − αk
fc∗∗k,n∆2 δk+n+2u

δxk+n+2

∣∣∣∣
∆
)2〉 . (6.20)

Substitution of cdyn
k,n into equation (6.19) leads to the so-called linear dynamic finite

difference approximation since it remains invariant in the spatial domain. On the
other hand, application of the local averaging operation to expression (6.18), results
into a pointwise varying dynamic coefficient, determined as

cdyn
k,n = − L

M
=

c∗k,n

1 − αk
(
1 − α2

)

1 − αk
∆2fc∗∗k,n

δk+n+2u

δxk+n+2

∣∣∣∣
∆

δk+nu

δxk+n

∣∣∣∣
∆

. (6.21)

Substitution of this coefficient into equation (6.19) leads to the nonlinear dynamic
finite difference approximation since it may vary from node to node in the spatial
domain.
Although both averaging approaches seem equally justified, three important remarks
must be made concerning the nonlinear finite difference approximation.

i. It must be recognized that by definition, both Taylor series expansions (6.8)
and (6.7) share the constant coefficients c∗k,n. Comparison of both series expan-

sions and extraction of the dynamic coefficient is thus only justified if cdyn
k,n is

3Clearly it is possible to perform local averaging over multiple grid spacings, but this case will
not be considered in the present work.
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identical on both grid resolutions, independent of α. Obviously, this condition
is only satisfied exactly if the coefficient ck,n is independent of the grid. Since
the locally averaged coefficient is not strictly grid-independent on both grid
resolutions under consideration, the nonlinear finite difference approximation
violates to some extent, the mathematical foundations of the multi-resolution
concept.

ii. By definition, the nonlinear dynamic finite difference approximation does not
preserve the linearity property of the analytical derivative, which it tries to
approximate. It is verified that, in accordance with the analytical derivate,
all linear (dynamic) finite difference approximations are conservative a priori,
since they can be written in a discrete divergence formulation (see Section
4.3.1). However, the nonlinear dynamic finite difference approximation does
not satisfy this property and is thus not conservative. Appendix B, proposes a
remedy for this deficiency by constructing an a priori conservative equivalent
of the nonlinear dynamic finite difference approximation. Although this alter-
native is used in practical simulations, it is not required for further theoretical
analysis.

Appendix C gives a more detailed description of the implementation of a 2nd -order
linear and nonlinear explicit dynamic finite difference approximations and a 4th -
order linear explicit dynamic finite difference approximation. The quality of the both
the linear and the nonlinear dynamic finite difference approximations is thoroughly
investigated through an extensive Fourier analysis in Section (6.2). Moreover, their
performance is demonstrated in the test cases in further chapters.
Although the basic optimized kth-order finite difference approximation given by ex-
pression (6.19) requires only 2r + 3 nodes, the evaluation of the 2nd -order accurate
(k + n + 2)nd derivative in expressions (6.20) and (6.21) requires 2r +5 nodes. Note
that the conservative formulation of the nonlinear scheme, described in appendix B,
alleviates this problem. A similar conservative discretization might be constructed
for the linear dynamic scheme. Further, the evaluation of the least-square averaged
dynamic coefficient in the linear dynamic schemes at each time step, will lead in-
evitably to a computational overhead. However, it may be sufficient for the linear
dynamic schemes to calculate the dynamic coefficient (6.20) only every few time
steps, and only in the interior domain such that no boundary discretizations are
required. Although this dissertation mainly focusses on the proof of concept, a
strategy to increase the computational efficiency will be addressed briefly at the end
of Chapter 8.

6.1.2 Implicit Dynamic Finite Difference Approximations

Although the development of implicit dynamic finite difference schemes is sim-
ilar, but more complicated and elaborate then that of their explicit counterparts,
an attempt is performed to deduce a general formulation for the implicit dynamic
schemes. Consider the Taylor series of the kth-order implicit central finite difference
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approximation for the nth derivative4 of a variable u (x) , x ∈ R, in a node x = xi

q∑

l=−q

αl
∂nu

∂xn
(xi+l) =

r∑

j=−r

βj

∆n
u
(
xi+j

)
−

∞∑

k′=k

c∗k′,n∆k′ ∂k′+nu

∂xk′+n
(xi) . (6.23)

Consider further a similar kth-order implicit finite difference approximation for the
nth partial derivative on the same computational grid with grid spacing ∆, but
expressed as if the grid resolution were α∆, α ∈ N such that the stencil width for
the explicit part is 2αr +1 whereas that for the implicit part is 2αq +1. The Taylor
series expansion then reads

q∑

l=−q

αl
∂nu

∂xn
(xi+αl)=

r∑

j=−r

βj

(α∆)n u (xi+αj) −
∞∑

k′=k

c∗k′,n (α∆)k′ ∂k′+nu

∂xk′+n
(xi) .(6.24)

For the construction of the optimized implicit finite difference approximation, the
same methodology is adopted as for the explicit dynamic schemes. The leading
order truncation terms in expressions (6.23) and (6.24) are discretized with a 2nd

-order finite difference approximation. Further, the theoretical Taylor coefficients
c∗k,n are replaced by undetermined coefficients ck,n. Finally, the blending factor f is
introduced into the coarse-resolution equation (6.24). This procedure then yields

q∑

l=−q

αl
∂nu

∂xn
(xi+l) =

r∑

j=−r

βj

∆n
u
(
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)
+ ck,n∆k δk+nu

δxk+n
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∆

+ O

(
∆k
)

(6.25)

q∑
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βj

(α∆)n u (xi+αj)

+ ck,n (α∆)k

{
f

δk+nu

δxk+n
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+ (1 − f)
δk+nu

δxk+n
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∆
}

+ O

(
(α∆)k

)
.

(6.26)

Unless ck,n has the exact Taylor value c∗k,n, the order of accuracy in both expressions

remains O
(
∆k
)
. This is explained by the specific formulation of the truncation error

analogously as for the explicit schemes. Subtracting (6.25) and (6.26) leads to an
expression for the difference between both approximations, i.e.

E = L + ck,nM = O

(
(α∆)k

)
− O

(
∆k
)

(6.27)

4The truncation series coefficients ck′,n
∗ are determined as

ck′,n
∗ =

qX

l=−q

αll
k′

(k′)!
−

rX

j=−r

βjj
k′+n

(k′ + n)!
. (6.22)
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in which

L = −
q∑

l=−q

{
αl

∂nu

∂xn
(xi+l) − αl

∂nu

∂xn
(xi+αl)

}
(6.28)

+
r∑
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∆n
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)
− βj

(α∆)n u (xi+αj)
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∆k δk+nu

δxk+n
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∆

− αk∆kf
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∆
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. (6.29)

Again, the magnitude of the difference (6.27), which is a function of parameter ck,n,
provides an indication about the accuracy with which the finite difference scheme
on the fine grid resolution approximates the analytical derivative. If the difference
is small, the resolution is sufficiently fine and ensures an accurate finite difference
approximation on the fine grid. In contrast, a large difference E indicates that the
resolution is not fine enough to guarantee an acceptable accuracy of the finite dif-
ference approximation on the fine grid. However, an optimal coefficient ck,n can be
found such that the difference E is minimal. Then, the finite difference approxima-
tion on the fine grid must have an optimal accuracy (low dispersion error), since it
differs only minimally with the accuracy of the coarse grid approximation. Hereafter,
both cases f = 0 and f 6= 0 are further investigated.

Asymptotic high-order schemes for f = 0

For a blending factor f = 0, the coefficient ck,n can be obtained from expression
(6.27) by imposing the difference E = 0, leading to
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∂nu
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∂nu
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)
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∆

. (6.30)

Substitution of (6.30) into (6.25), eliminating ck,n leads to the finite difference ap-
proximation of order O

(
∆k+2

)
.
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∂nu
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∆n
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(
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− βj
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}
+ O

(
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)
, (6.31)

which is Richardson’s Extrapolation formula for Padé schemes. Expression (6.31) is
thus an approximation with formal asymptotic order of accuracy O

(
∆k+2

)
. Notice
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that this approximation, which involves 2αq + 2αr + 2 nodes, is incompact, since in
principle only 2q +2r +4 nodes are required in order to obtain this accuracy.5 Nev-
ertheless, in this work relation (6.30) is enforced such that ck,n = c∗k,n. Since the aim
is to construct optimized finite difference schemes with good Fourier characteristics,
abandoning the concept of formal asymptotic order of accuracy, the case where f is
different from zero is further investigated.

Optimized high order schemes for f 6= 0

For the case f 6= 0, a more general approach is followed similarly to Paragraph
6.1.1. The coefficient ck,n is extracted from both equations by means of a least square
optimization, in which the least square averaging domain is again an additional
degree of freedom. Enforcing relation (6.30) and using relation (6.13), the former
equations are reduced to

L = c∗k,n
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)
∆k δk+nu

δxk+n

∣∣∣∣
∆

(6.32)
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)
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∆
}

(6.33)

with c∗k,n and c∗∗k,n constant coefficients known from Taylor series expansion. The
optimized dynamic coefficient can be extracted by least square minimization of the
difference

∂

∂ck,n

〈
E

2
〉

= 0 (6.34)

where 〈·〉 denotes an averaging operator (to be defined later), resulting finally in the
dynamic coefficient

cdyn
k,n = − 〈LM〉

〈MM〉 . (6.35)

In the current work, only global averaging operations for the implicit schemes are
considered such that the dynamic coefficient is calculated as

cdyn
k,n = c∗k,n
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∆
)2〉 . (6.36)

5Note that the approximation is compact if α = 1 + 1/ (q + r), such that for integer values of
α, q must be zero whereas r = 1.
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Remark that expressions (6.20) and (6.36) are equivalent for the explicit and implicit
finite difference approximations.
Once cdyn

k,n is calculated, its value can be used in the optimized implicit finite differ-
ence approximation

q∑
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∂nu

∂xn
(xi+l) =
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∆n
u
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)
+ cdyn
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δxk+n

∣∣∣∣
∆

+ O

(
∆k
)

. (6.37)

However, formulation (6.37) undermines the advantageous philosophy of compact
schemes. Indeed, using an explicit finite difference approximation for the (k + n)th

derivative results into an implicit scheme with a larger explicit stencil width than
strictly required for this order of accuracy. This is remedied by substituting the
explicit (k + n)th derivative by an implicit formulation, which is equivalent of writing
(6.37) immediately in its most compact formulation. Consider therefore the compact
and incompact (k + 2)nd-order implicit schemes
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(6.38)
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. (6.39)

Assuming that both expressions (6.38) and (6.39) are equal, and combination with
equation (6.37) finally yields,

q∑

l=−q

[
αl −

cdyn
k,n

c∗k,n

(
αl − α′

l

)
]

∂nu

∂xn
(xi+l) =

r∑

j=−r

βj

∆n

[
1 −

cdyn
k,n

c∗k,n

]
u
(
xi+j

)

+
cdyn
k,n

c∗k,n

r+1∑

j=−r−1

β′
j

∆n
u
(
xi+j

)
+ O

(
∆k
)

. (6.40)

Although for the higher derivatives in (6.36) again compact Padé schemes may be
used, in this work they are obtained using explicit approximations for reasons of
simplicity. The resulting dynamic scheme (6.40) has a formal order of accuracy k

unless cdyn
k,n = c∗k,n, which would lead to the formal order of accuracy k + 2. Appendix

C describes in more detail a 4th -order linear implicit dynamic finite difference ap-
proximation. The high quality of the Fourier characteristics of these schemes will
be demonstrated in next section.
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6.2 Fourier analysis

In this section, a thorough Fourier analysis is performed of both the explicit and
implicit dynamically optimized finite difference approximations for an nth deriva-
tive. The following Fourier analysis focusses in particular on the dynamic coefficient
since this coefficient is considered crucial for obtaining good quality of the optimized
finite difference approximation. Remark that for the dynamic coefficient (6.21) in
the nonlinear dynamic finite difference approximation, the Fourier analysis is only
valid for a single wave component and cannot be extrapolated straightforwardly to
a composed wave, since superposition is not applicable to nonlinear expressions.
Nevertheless, a Fourier analysis of a composed wave is presented that demonstrates
the impact of the nonlinearity.

As discussed in Section 4.1.3, the nth finite difference derivative is represented
in Fourier space as

F

{
δnu

δxn

}
=

(
iκ′

n

)n
F {u} (6.41)

where κ′
n denotes the modified wavenumber. Recall that the real part of the modified

wavenumber κ′
n represents dispersion errors, whereas the imaginary part represents

dissipation errors which are absent in the current symmetric or central finite differ-
ence approximations. Generally, the modified wavenumber of a kth-order explicit or
implicit dynamic finite difference approximation of the nth derivative can be formu-
lated as function of the dynamic coefficient cdyn

k,n . Since the method for obtaining the
modified wavenumber was already explained in Section 4.1.3, it is not repeated in
this section for the optimized finite difference approximations. Obviously O

(
∆k+2

)

is recovered if cdyn
k,n equals the theoretical value c∗k,n obtained from Taylor expan-

sion. Nevertheless, it is clear by now that the actual value of the coefficient cdyn
k,n

will depend on the nature of the resolved field u (x), its derivatives and the value of

the blending factor f . Hence, the spectral behaviour of cdyn
k,n will heavily influence

the behaviour of the modified wavenumber, and further analysis is inevitable. Para-
graph 6.2.1 will discuss the constant dynamic coefficient used in the linear dynamic
finite difference approximations, whereas Paragraph 6.2.2 will discuss the pointwise
varying dynamic coefficient used in the nonlinear dynamic finite difference approxi-
mations.

6.2.1 Linear Fourier analysis

Since the spectral content of the flow field is mostly reflected by the energy
spectrum, an attempt is made to analyze the behaviour of the dynamic coefficient
by transforming the error definition into Fourier space. Using ·̂ to denote the Fourier
transform, the error definitions (6.10) and (6.27) in respectively the explicit and
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implicit linear dynamic schemes are transformed to Fourier space as

Ê (κ) = L̂ + ck,nM̂, (6.42)

with ck,n the constant dynamic coefficient and

L̂ (κ) = c∗k,n

(
αk − 1

)
∆k
(
iκ′

k+n

)k+n
û (6.43)

M̂ (κ) =
(
1 − αk

)
∆k
(
iκ′

k+n

)k+n
û (6.44)

− αk
(
1 − α2

)
∆k+2fc∗∗k,n

(
iκ′

k+n+2

)k+n+2
û,

corresponding to equations (6.15) and (6.16), or (6.32) and (6.33). Using expression
(6.42), the following energy spectrum is defined (∗ denotes the complex conjugate)

E bE (κ) = Ê Ê
∗ = L̂L̂

∗
+ ck,nM̂L̂

∗
+ ck,nM̂

∗
L̂ + c2

k,nM̂M̂
∗
. (6.45)

Since the basic order of accuracy k is even for central schemes, it can be verified

that in that case M̂L̂
∗

= M̂
∗
L̂ and thus

E bE (κ) = Ê Ê
∗ = L̂L̂

∗
+ 2ck,nM̂L̂

∗
+ c2

k,nM̂M̂
∗

(6.46)

The optimal value for the coefficient ck,n can now be found by a least square ap-
proximation in Fourier space, defined as6

∂

∂ck,n

π
∆∫

0

E bE (κ) dκ = 0. (6.47)

Working out this integral expression leads to following expression for the ratio
cdyn
k,n /c∗k,n

cdyn
k,n

c∗k,n

=

π
∆∫

0

(
κ′

k+n

)k+n

[
(
κ′

k+n

)k+n
+

αk
(
1 − α2

)

1 − αk
∆2fc∗∗k,n

(
κ′

k+n+2

)k+n+2

]
ûû∗dκ

π
∆∫

0

[
(
κ′

k+n

)k+n
+

αk
(
1 − α2

)

1 − αk
∆2fc∗∗k,n

(
κ′

k+n+2

)k+n+2

]2

ûû∗dκ

,(6.48)

in which the product ûû∗ represents the energy spectrum Eu (κ) of the flow field
u (x). Once the shape of the energy spectrum of the flow field is known or a model
spectrum is assumed, and a value of the blending factor f is chosen, it is possible

6Note that this definition is equivalent with equation (6.17) due to Parseval’s theorem.
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to calculate the dynamic coefficient for that spectrum from the integral expression
(6.48). For the theoretical analysis in the current section, a uniform Heaviside-like
spectrum shape is assumed, defined as

Eu (κ) = 1 − H (κ − κc) =

{
1 κ < κc

0 κ > κc
, (6.49)

where the cutoff wavenumber κc indicates the highest appearing wavenumber in the
(resolved) field u (x). Although this theoretical spectrum has no direct relation to
real turbulence, it is selected in this work to examine analytically the potential of
the constructed dynamic schemes. Moreover, the uniform spectrum will be used
in this work for the optimization of the Dispersion-Relation Preserving schemes,
in accordance with the work of e.g. Tam et al. [79]. The influence of the energy
spectrum will be demonstrated in Section 6.3. The simple uniform spectrum makes
the expression analytically integrable, and the resulting equation describes a surface
of the coefficient as function of κc and f . This surface is represented as a para-
metric plot in Figure 6.1. For f = 0, it is observed that the Taylor value c∗k,n is
recovered regardless of the spectral content of the signal, represented by the filter-
to-grid cutoff-ratio κc/κmax. In case of f 6= 0, different profiles for cdyn

k,n as function
of the filter-to-grid cutoff-ratio κc/κmax appear. Moreover, if κc/κmax → 0, i.e. for
very smooth fields u (x) that contain only few Fourier modes, the dynamic coeffi-
cients always converge to the theoretical Taylor value c∗k,n regardless of the value
of the blending factor. This means that each dynamic finite difference approxima-
tion recovers the asymptotic order of accuracy O

(
∆k+2

)
for very smooth fields.7 In

order to understand better the consequences of the blending factor f , the impact
of the resulting dynamic coefficient on the linear dynamic finite difference approx-
imation is examined. Figures 6.2, 6.3 and 6.4 display the modified wavenumbers
(n = 1, 2) for the 2nd - and 4th -order explicit linear dynamic schemes and the 4th

-order implicit dynamic scheme, described in Appendix C. For the determination of
the constant dynamic coefficient, the filter-to-grid cutoff-ratio κc

κmax
= 2

3 is assumed,
corresponding to the de-aliasing filter cutoff in a Large-Eddy Simulation. Clearly,
the linear dynamic finite difference approximation acts as an optimized kth order
finite difference scheme, in which the optimized parameter cdyn

k,n is obtained dynam-
ically, according to the spectral content of the flow indicated by the ratio κc/κmax

and the choice of a blending factor f . First, it is observed that the accuracy of
the dynamic schemes at a certain filter-to-grid cutoff-ratio is entirely determined
by the value of f and the corresponding ratio cdyn

k,n /c∗k,n. As mentioned earlier, the

formal order of accuracy k + 2 is obtained if f = 0 since cdyn
k,n = c∗k,n. Increasing the

blending factor f affects the value of the ratio cdyn
k,n /c∗k,n and may lead to an increase

of the overall accuracy, despite the fact that the formal order of accuracy remains

7Remark that in case of a constant field u (x) for which κc/κmax = 0, expression (6.48) reduces
to 0/0, and the dynamic coefficient cdyn

k,n becomes indefinite. This makes sense since any finite
difference approximation is exact for a constant. Hence, this particularity can be safely avoided by
setting cdyn

k,n = 0 or cdyn
k,n = c∗k,n as soon as L = 0 and M = 0.
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Figure 6.1: Parametric plot of the dynamic coefficient cdyn
k,n for the linear

dynamic finite difference approximations. Parametric plot of
cdyn
k,n /c∗k,n = cdyn

n /c∗n as function of the cutoff wavenumber κc and the
blending factor f for the explicit and implicit dynamic schemes with
k = 2, α = 2 (upper), k = 4, α = 2 (lower) and n = 1 (left), n = 2
(right).
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Figure 6.2: Linear explicit dynamic finite difference approximation with
k = 2. Modified wavenumbers κ′

n
n

(left) and the absolute errors εκ

(right), for the nth derivatives with n = 1 (upper) and n = 2
(lower). (�) spectral; (◦) 2nd -order central; (△) 4th -order central;
(▽) 6th -order central; (⊲) 8th -order central; (⊳) 10th -order central;
(⋄) 6th -order tridiagonal Padé; (−−−−−) Linear dynamic scheme with
various f .
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Figure 6.3: Linear explicit dynamic finite difference approximation with
k = 4. Modified wavenumbers κ′

n
n

(left) and the absolute errors εκ

(right), for the nth derivatives with n = 1 (upper) and n = 2
(lower). (�) spectral; (◦) 2nd -order central; (△) 4th -order central;
(▽) 6th -order central; (⊲) 8th -order central; (⊳) 10th -order central;
(⋄) 6th -order tridiagonal Padé; (−−−−−) Linear dynamic scheme with
various f .
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Figure 6.4: Linear implicit dynamic finite difference approximation with
k = 4. Modified wavenumbers κ′

n
n

(left) and the absolute errors εκ

(right), for the nth derivatives with n = 1 (upper) and n = 2
(lower). (�) spectral; (◦) 2nd -order central; (△) 4th -order central;
(▽) 6th -order central; (⊲) 8th -order central; (⊳) 10th -order central;
(⋄) 6th -order tridiagonal Padé; (−−−−−) Linear dynamic scheme with
various f .
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k. However, it is observed that the quality of the dynamic schemes is significantly
reduced as soon as f tends to unity. This indicates that the ratio cdyn

k,n /c∗k,n, and thus
the blending factor f , have to meet certain conditions in order to obtain the desired
Fourier characteristics. It is clear that if the ratio 0 ≤ cdyn

k,n /c∗k,n < 1, the scheme’s

Fourier characteristic will lie between that of the kth-order and (k + 2)nd-order stan-
dard scheme, and does not result into the desired spectral behaviour. Moreover, if
cdyn
k,n /c∗k,n < 0, i.e. cdyn

k,n has an opposite sign in comparison with its Taylor value c∗k,n,

poor Fourier characteristics are observed that lie below that of the kth-order scheme.
Hence, the f -values should be chosen such that cdyn

k,n /c∗k,n ≥ 1 for all values of the

wavenumber ratio κc/κmax. Further, cdyn
k,n acts like a sensor for the wave number

content in the field u. It should therefore be a monotonic function of the filter-to-
grid cutoff-ratio κc/κmax such that each value of cdyn

k,n corresponds to a unique value
of κc

κmax
. Both conditions are mathematically expressed by

cdyn
k,n

c∗k,n

≥ 1 (6.50)

1

c∗k,n

∂cdyn
k,n

∂κ
≥ 0, ∀κ (6.51)

and bound the value of f to a certain interval in which an optimal value can be found.
Although the optimal value of f is determined in Section 6.3, Figures 6.2, 6.3 and
6.4 already demonstrate the nearly optimal behaviour of the dynamic schemes.

6.2.2 Non-linear Fourier analysis

The following discussion is restricted to nonlinear explicit finite difference ap-
proximations. In contrast to the linear dynamic finite difference approximations, the
coefficient cdyn

k,n of the nonlinear dynamic finite difference scheme is not least-square
averaged such that it reduces de facto to a pointwise varying coefficient. Although
the modified wavenumber for the nonlinear explicit dynamic finite difference scheme
can be obtained, it will only be representative for a field u (x) containing a single
wave Fourier mode, and is not necessarily representative for more general fields that
contain an entire spectrum of Fourier modes. Hence, a multiple wave Fourier anal-
ysis will be performed in order to study such general fields. First, the discussion is
started with a single-wave quasi-linear Fourier analysis.
After some mathematical manipulations, the single-wave Fourier expression of the
resulting nonlinear dynamic coefficient (6.21) is found to be

cdyn
k,n =

c∗k,n

1 − αk(1−α2)
1−αk fc∗∗k,n2 (cos (κ∆) − 1)

. (6.52)

It is verified that in Fourier space, the ratio of the higher derivatives δk+n+2u
δxk+n+2 / δk+nu

δxk+n in
expression (6.21) is always represented by 2 (cos (κ∆) − 1), independently of n and k.
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Moreover, the resulting expression for cdyn
k,n depends only on the wavenumber κ, and is

not influenced by the shape of the energy spectrum nor by the cutoff wavenumber κc.
Since this function is bounded in the interval [−3, 0] for κ ∈

[
0, 2π

3∆

]
, the same bounds

on δk+n+2u
δxk+n+2 / δk+nu

δxk+n in physical space are imposed for the numerical computations in
further chapters. Hence, possible singularities or erroneous values are precluded.
Using expression (6.52) for cdyn

k,n , a rational expression for the resulting modified
wavenumber of the nonlinear explicit finite difference approximation is obtained, in
which the denominator is that of expression (6.52). Such a rational expression is
reminiscent to that obtained for compact Padé approximations. Without going into
the mathematical details, it is now possible to reformulate the modified wavenumber
of the nonlinear dynamic scheme into the characteristic form of a tridiagonal compact
Padé scheme. Remark that the Padé coefficients thus depend on c∗k,n, c∗∗k,n and f .
This hints to the fact that the nonlinear dynamic finite difference approximation
attempts to be an explicit formulation of the tridiagonal compact scheme. When
applying conditions (6.50) and (6.51) to cdyn

k,n , it is easy to verify that the coefficient

cdyn
k,n remains strictly negative and monotonic in the Fourier domain 0 → κmax, if

0 ≤ f <
1 − αk

αk−2 (1 − α2) c∗∗k,n

. (6.53)

The behaviour of the dynamic coefficient, taking this limitation into account, is il-
lustrated in Figure 6.5. Indeed, the ratio cdyn

k,n /c∗k,n increases monotonically with
the wavenumber κc for all values of f , and displays similar behaviour to that of
the linear dynamic scheme. The modified wavenumber is shown in Figure 6.6. As
expected, the kth-order nonlinear explicit dynamic finite difference approximation
reduces to the explicit (k + 2)nd-order explicit scheme for f = 0. If f = 1 the
denominator changes sign and a singularity is observed in the modified wavenum-
ber. However, as long as condition (6.53) is satisfied, singularities are avoided. It
is observed from the single-wave analysis that for well chosen intermediate values of
f , the nonlinear dynamic finite difference approximation of the derivatives can lead
to highly accurate schemes which outperform the asymptotic explicit schemes, the
linear dynamic scheme and even the standard 6th -order tridiagonal Padé scheme.
This is not surprising since it was argued that the modified wave number of the
nonlinear scheme is equivalent to that of the tridiagonal compact Padé scheme with
coefficients dependent on f . It can be proven that, by imposing the standard con-
straints to obtain formal order of accuracy [50], for a value f = 1

5 , the modified
wavenumber reduces to that of the Padé approximant, shown Figure 6.6.
Although these results are encouraging, it must be reminded that the former analy-
sis is only valid for fields which contain a single Fourier mode. A Fourier analysis for
fields which contain an entire spectrum of Fourier modes, would involve complicated
convolution integrals that result from the transformation of the nonlinear dynamic
scheme from physical space to Fourier space. In order to avoid such an elaborate
and probably impossible analysis, the scheme’s response to a multiple-wave field is
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Figure 6.5: Parametric plot of the dynamic coefficient cdyn
k,n for the non-

linear explicit dynamic finite difference approximation. Para-
metric plot of cdyn

k,n /c∗k,n = cdyn
n /c∗n as function of the cutoff wavenum-

ber κc and the blending factor f for the explicit nonlinear dynamic
scheme with k = 2, α = 2 for n = 1 (left), n = 2 (right).

investigated in a semi-analytical way by looking at the transfer function.
Assume the arbitrary field

u (κ, x) =

m∑

j=1

e(iκjx), (6.54)

containing m wave components with uniformly distributed magnitude. The analytic
expression of the nth -derivative is then defined as

∂nu

∂xn
(κ, x) =

m∑

j=1

(iκj)
n e(iκjx). (6.55)

Obviously, the different wave components of the field will interact with each other
in the evaluation of the nonlinear scheme. Since the modified wave number can
no longer be used to assess the performance, the transfer function is calculated in
physical space for various wave-combinations κj . This transfer function is defined
at a random position x = xi as

Ĝ (κ) =

∣∣∣∣
δnu

δxn
(κ, xi)

∣∣∣∣
∣∣∣∣
∂nu

∂xn
(κ, xi)

∣∣∣∣
. (6.56)
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Figure 6.6: Non-linear explicit dynamic finite difference approximation
with k = 2. Modified wavenumbers κ′

n
n

(left) and the absolute
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Figure 6.7: Transfer functions for a dual-wave field.. Transfer functions
Ĝ (κ) for the 6th -order tridiagonal Padé scheme (left) and the non-
linear explicit dynamic scheme (k = 2) with f = 1

5
(right).

The transfer function Ĝ (κ), which goes from unity to zero for finite difference ap-
proximations, is examined for the case n = 1 and k = 2. It has been shown earlier
that the modified wavenumber of the nonlinear dynamic scheme collapses with that
of the Padé scheme if f = 1

5 . Hence, comparison between the standard 6th -order
tridiagonal Padé scheme and the nonlinear scheme with f = 1

5 should give informa-
tion on the influence of the nonlinear interactions. Results are shown in Figures 6.7
and 6.8 for a dual-wave field with m = 2 and for a triple-wave field with m = 3.
Looking at the transfer functions, there seems to be a relatively weak influence of the
nonlinear interactions. The general performance still seems to be in good agreement
with that of the Padé scheme, although a slight decrease in accuracy is observed for
certain wavenumber combinations (κ1, κ2, κ3). To visualize and quantify the errors
introduced by nonlinear interactions only, the error between the transfer functions
of the Padé scheme and the nonlinear dynamic scheme with f = 1

5 are shown in
Figure 6.9 for the dual-wave signal with m = 2 and the triple-wave signal with
m = 3. Apparently, the largest errors due to nonlinear interactions appear in the
high-wavenumber region were κj > 2

3 . However, this region is of little interest and
ideally these modes should be eliminated through a de-aliasing filter in real com-
putations. Summarizing, the impact of the nonlinear interactions seems to remain
rather limited. However, further evaluation for a spectrum of waves is necessary and
will be performed in the numerical study in further chapters.
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Figure 6.8: Transfer functions for a triple-wave field.. Transfer functions
Ĝ (κ) and isosurfaces Ĝ (κ) = 0.95 for the 6th -order tridiagonal Padé
scheme (left) and the nonlinear explicit dynamic scheme (k = 2) with
f = 1

5
(right).
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6.3 Calibration of the blending factor

It may be clear by now, that the linear explicit or implicit dynamic finite dif-
ference approximations are comparable to the Dispersion-Relation Preserving finite
difference schemes of e.g. Tam et al. [79] or Kim et al. [45], discussed in Section
4.4.1. In contrast to these prefactored schemes, which have predefined fixed Fourier
characteristics, the linear dynamic schemes optimize their dynamic coefficient ac-
cording to the flow characteristics, such that the Fourier characteristics are variable.
This way the scheme varies between the asymptotic (k + 2)nd-order finite difference
approximation and an optimized kth-order finite difference approximation, depend-
ing on the spectral content on the grid and the choice of the blending factor f .
The latter merely accentuates the sensitivity of the dynamic scheme to the spectral
content of the field. Similarly, the nonlinear dynamic finite difference scheme can
be seen as an explicit formulation of a Dispersion-Relation Preserving Padé scheme.
Here, the choice of f (which is the only degree of freedom in the dynamic schemes)
determines the relative importance of each wave component in the procedure.

In the current section, a natural approach is proposed for determining the op-
timal value of the blending factor f . The idea is to minimize the kinetic energy
associated to the resulting finite difference error. This way, the energy spectrum of
the flow is taken into account as a natural weighting function. Although the method
is similar to the traditional methods used by e.g. Tam et al. [79] or Kim et al. [45],
the weighting function in the current method has a clear meaning rather than being
an ad-hoc function.

The spectral error between the exact nth derivative and an arbitrary finite dif-
ference approximation with modified wavenumber κ′

n, is defined as

Ê (κ) = in
(
κn − κ′

n
n

(κ, f)
)
∆nû. (6.57)

The related error spectrum is then determined as

E bE (κ) = Ê Ê
∗ =

(
κn − κ′

n
n

(κ, f)
)2

∆2nEu (κ) , (6.58)

where Eu (κ) represents the energy spectrum of the flow field u (x) given by the
product ûû∗. The optimal value for the blending factor f can be calculated by
finding the minimum of the integral over all wave components, i.e. by solving

∂

∂f

π
∆∫

0

(
κn − κ′

n
n

(κ, f)
)2

Eu (κ)W (κ) dκ = 0, (6.59)

where the additional weighting function W (κ) is set to unity unless the integrand
is not analytically integrable [45] (e.g. for compact schemes). In the following para-
graphs, the integral in (6.59) is solved numerically with W (κ) = 1 by assuming three
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Figure 6.10: Optimal blending factor for uniform spectrum. The optimal
blending factor fopt = f

(
κc ≤ 2π

3∆

)
for 1st derivative (left) and 2nd

derivative (right). Distinguish the linear explicit dynamic scheme
(k = 2) (△), the linear explicit dynamic scheme (k = 4) (▽), the
nonlinear explicit dynamic scheme (k = 2) (⊲) and the linear implicit
dynamic scheme (k = 4) (⊳).

spectrum shapes. In Paragraph 6.3.1, a uniform spectrum shape is adopted. Since
most often, the uniform spectrum is implicitly assumed for the construction of the
Dispersion-Relation Preserving schemes, e.g. [79], it will also be used for the deriva-
tion of such schemes in this work. Moreover, the influence of the assumption of the
standard uniform spectrum in comparison with other spectra will be demonstrated.
Since the dynamic finite difference schemes will be applied to Burgers’ equation in
Chapters 7 and to the Navier-Stokes equations in Chapter 8, the energy spectra that
correspond with these flows are adopted in Paragraphs 6.3.3 and 6.3.4, in order to
retrieve the optimal blending factor in the dynamic finite difference approximations.
Both spectra are hereafter termed generic since they may be considered represen-
tative for a wide range of Burgers’ flows, characterized by a κ−2 spectrum, and a
wide range of turbulent flows, characterized by the κ−5/3 spectrum.

6.3.1 Uniform spectrum

When adopting the uniform spectrum (6.49) for Eu (κ), the integrals can be
calculated very easily in an analytical way, leading to an expression for the optimal
blending factor as function of the highest appearing wavenumber κc, fopt = f (κc).
The values of fopt obtained for the 1st and 2nd derivative for the different schemes
are given in Figure 6.10. Remark that the optimal value of f depends on the
wavenumber range one wants to optimize for, indicated by κc. Since most dispersive
errors exist in the range 2

3κmax < κc < κmax, it is preferable that this wave number
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range is omitted in the optimization. Minimizing the errors in this range would
be inefficient, leading to poor accuracy. Moreover, in the current LES-framework
with the double decomposition and sharp cutoff filtering, all modes in this region
are filtered out in order to prevent aliasing errors. Therefore, fopt was not obtained
in this high-wavenumber range. Notice that for κc/κmax → 0, the optimal blending
factor tends to an asymptotic value, denoted hereafter as f∗

opt. Further a cusp is
observed in the profiles if κc/κmax → 2/3.

6.3.2 Model spectrum

Although the adopted uniform spectrum shape makes analytical integration easy,
the presented optimal values for fopt = f

(
κc < 2π

3∆

)
are most likely suboptimal for

e.g. turbulent flows that are characterized by the Kolmogorov spectrum. Therefore,
a more general model spectrum could be assumed, e.g. similarly to the one proposed
by Pope [70]

Eu (κ) = ΓκαFL (κ) Fη (κ) (6.60)

in which α determines the slope of the spectrum and Γ is a constant which can re-
main unspecified for our purposes. This spectrum was already introduced in Chapter
2, Section 2.3.3 for the description of homogeneous isotropic turbulence. Recall that
functions FL (κ) and Fη (κ) determine the shape of the energy containing range re-
spectively the dissipation range. Several prescriptions are known for both functions
which must generally be tuned to fit the experimental data. Especially FL (κ) can-
not be captured easily in a universal expression as it is dominated by the large-scale
flow characteristics of the specific geometry. The shape of the dissipation range
displays a more universal behaviour and Fη (κ) is usually defined as function of the
Kolmogorov wavenumber κη. In order to obtain a useful model spectrum for de-
termining the optimal value of f as function of a characteristic cutoff wavenumber,
the model spectrum should be expressed as function of that particular wavenumber
which is related to the Kolmogorov wavenumber κη.
Although such a model spectrum may theoretically be constructed, the analytical
evaluation of the integral in equation (6.59) is quite difficult. Therefore, it is con-
sidered more feasible in this work to use directly a developing energy spectrum from
Direct Numerical Simulation of a generic flow that develops into turbulence. Such
a benchmark simulation would then provide a generic spectrum which initially con-
tains only a few Fourier modes but evolves to a fully developed turbulent spectrum
with a clear inertial range. Although the generic DNS-spectrum may be directly
used in the optimization procedure, it can be understood that the use of optimized
schemes may not be that interesting in the case of DNS, where the flow is assumed
to be well resolved on the computational grid. Indeed, for a very well resolved DNS,
the optimal scheme would tend to a higher formal order of accuracy as motivated
earlier. In order to obtain a spectrum that is more suitable and challenging for the
dynamic schemes, it is proposed to filter the DNS solution with a sharp Fourier fil-
ter to a certain cutoff wavenumber κc that lies within the inertial range of the fully
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Figure 6.11: Generic Burgers’ spectrum. The evolution of the L2-normalized
generic Burger’s LES spectrum in time (left) and the effective wave-
number cutoff-ratio κe

κmax
as function of time (right).

developed DNS-spectrum. After sampling the filtered DNS solution to a discrete
grid with resolution κmax such that κc = 2

3κmax, the corresponding LES-spectrum
can be calculated, for which the optimized schemes are indeed relevant.8 Using the
developing LES energy spectrum into the optimization procedure, is expected to
lead to an optimal blending factor that corresponds to each intermediate shape of
the energy spectrum.
In this work, two flows are selected for extracting a generic energy spectrum, i.e.
the one-dimensional developing Burgers’ equation and the three-dimensional Taylor-
Green Vortex flow. Both cases start with an initial velocity field that contains only
a single Fourier mode. Due to the nonlinear interactions, more Fourier modes are
generated as the flow evolves, and after some time, a fully developed spectrum is
obtained which displays a clear inertial range.

6.3.3 Generic Burger’s spectrum

The generic Burgers’ LES-spectrum is obtained by filtering and sampling the
DNS solution before calculating the normalized energy spectrum. The time-evolution
of the truncated and normalized energy spectrum is displayed in the left parametric
plot in Figure 6.11. At each time step, an optimal blending factor can be deter-
mined for the corresponding spectrum shape. However, it can be understood from

8It is emphasized that the proposed approach is not unique. Indeed, alternative procedures could
be designed to retrieve the optimal blending factors. For instance, one could think of a procedure in
which a fully developed turbulent spectrum with a clear inertial range is successively filtered with
a decreasing cutoff wavenumber κc and sampled to successively coarser meshes. Nevertheless, such
an approach might be more complex and difficult to automate since multiple grids are involved.



6.3. Calibration of the blending factor 143

Figure 6.11 that in contrast to the uniform spectrum, it is not possible to define a
unique cutoff wavenumber κc that indicates unambiguously the spectral content of
the solution on the computational grid and its specific distribution in spectral space.
In order to allow comparison with the uniform spectrum, an effective wavenumber
κe (t) is proposed that gives an indication of the spectral content of the solution and
its distribution in Fourier space.
Assuming the analytical function Eu (κ, t) ∝ κ−α, which describes a general iner-
tial range spectrum with slope −α, the dimensionless effective wavenumber ratio is
defined in this work as,

κe (t)

κmax
=


 1

κ3
max

κmax∫

0

3κ2+α Eu (κ, t)

‖Eu (κ, t)‖dκ




1/2

, (6.61)

where the norm of the energy spectrum is defined as

‖Eu (κ, t)‖ =
1

κmax

κmax∫

0

καEu (κ, t)dκ. (6.62)

This ad hoc definition, which can easily be obtained from a numerical simulation,
is expected to provide a good indication about the shape of the instantaneous en-
ergy spectrum. Indeed, in case of the uniform spectrum, i.e. α = 0, the effective
wavenumber ratio reduces to

κe (t)

κmax
=


 1

κ3
max

κc∫

0

3κ2 κmax

κc
dκ




1/2

=
κc

κmax
, (6.63)

It is emphasized that, unless the spectrum is uniform, the effective wavenumber κe

does not represent exactly the highest wavenumber κc in the solution. Nevertheless,
it provides an indication of the instantaneous spectral content of the solution on
the computational grid. This is illustrated for the Burgers’ equation in Figure 6.11.
Numerical evaluation of the integral expression (6.59), for each individual spectrum
shape, results into an optimal value fopt for the blending factor f . Calculating the
effective wavenumber κe, that corresponds to each intermediate spectrum, allows to
represent the optimal blending factors as a function of κe. fopt = f (κe) is displayed
in Figure 6.12. For the limit κe → 0, the optimal blending factor fopt tends to the
same asymptotic value f∗

opt as for the uniform spectrum. Due to the creation of
new wavenumber modes on the computational grid, the energy spectrum expands,
and a corresponding increase of the blending factor is observed. As soon as the
highest Fourier modes on the computational grid are energized, i.e. at t ≈ 0.7 or

κe
κmax

≈ 0.05, the filtered spectrum switches from DNS-resolution to LES-resolution
and fopt increases significantly. Moreover, a maximum is observed for the linear
dynamic schemes in the region 0.1 ≥ κe/κmax ≥ 0.3. Once the filtered inertial range
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Figure 6.12: Optimal blending factor for Burger’s spectrum. The optimal
blending factor fopt = f (κe) for 1st derivative (left) and 2nd deriva-
tive (right). Distinguish the linear explcit dynamic scheme (k = 2)
(△), the linear explicit dynamic scheme (k = 4) (▽), the nonlinear
explicit dynamic scheme (k = 2) (⊲) and the linear implicit dynamic
scheme (k = 4) (⊳).

spectrum becomes fully established, i.e. at κe
κmax

≥ 0.6, the optimal blending factor
of the linear dynamic schemes reaches a final value fopt (max(κe)), which will be
used for the practical computations in this dissertation. Indeed, since the fully de-
veloped inertial range spectrum is characteristic for a wide range of Burgers’ flows,
the corresponding fopt (max(κe)) is also considered characteristic and independent
of the specific flow features. As a consequence, the dynamic finite difference schemes
with fopt (max(κe)) are expected to be optimal for a wide range of fully developed
Burgers’ flow.
Although κe is an indication for the spectral content that is resolved on the com-

putational grid, it remains difficult to compare unambiguously the results obtained
with the uniform spectrum and the Burgers’ spectrum (Figures 6.10 and 6.12). An
alternative way to demonstrate the influence of the energy spectrum in the optimiza-
tion procedure (6.59) is to represent the optimal blending factor fopt as function of

the corresponding constant dynamic coefficient cdyn
k,n . Indeed, for a given spectrum

shape (indicated by κe or κc) an optimal value for the blending factor f can be
found with equation (6.59), such that the corresponding constant dynamic coef-

ficient cdyn
k,n leads to an optimal dynamic finite difference approximation for that

particular spectrum shape. Hence, each optimal blending factor corresponds to an
optimal constant dynamic coefficient. For the linear dynamic schemes the optimal
dynamic coefficient cdyn

k,n , which corresponds to fopt, is a constant value. However,

for the nonlinear dynamic schemes cdyn
k,n , which corresponds to fopt, is a pointwise
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Figure 6.13: The optimal blending factor as function of the constant
dynamic coefficient. The normalized optimal blending factor
fopt/f∗

opt (f∗
opt = limκe→0fopt

) as function of the normalized con-

stant dynamic coefficient cdyn
k,n = cdyn

n for 1st derivative (upper)

and 2nd derivative (lower) and for the uniform (left) and Burgers’
spectrum (right). Distinguish the linear explicit dynamic scheme
(k = 2) (△), the linear explicit dynamic scheme (k = 4) (▽), the
nonlinear explicit dynamic scheme (k = 2) (⊲) and the linear im-
plicit dynamic scheme (k = 4) (⊳).
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varying field and cannot be represented as a single value. Therefore, it is replaced
here by the constant coefficient cdyn

k,n of the linear dynamic scheme for corresponding
order of accuracy. Figure 6.13 compares the normalized optimal blending factors
fopt/f∗

opt ( f∗
opt = limκe→0 fopt) as function of cdyn

k,n /c∗k,n for the uniform spectrum and
the Burger’s spectrum. Obviously, the spectrum-related weighting functions in the
integral expressions for fopt and ck,n, have a significant influence on the resulting
behaviour. More specific, the optimal value fopt as function of increasing κe depends
strongly to the instantaneous shape of the energy spectrum that is related to u (x).
For the developing uniform spectrum, fopt/f∗

opt seems to vary linearly with the coef-

ficient ratio cdyn
k,n /c∗k,n, whereas for the developing Burgers’ spectrum, fopt/f∗

opt varies

obviously not monotonously with cdyn
k,n /c∗k,n.

6.3.4 Generic Taylor-Green spectrum

Similarly to the previous paragraph, the generic Taylor-Green LES-spectrum is
obtained by filtering and sampling the DNS solution before calculating the nor-
malized energy spectrum. However, some attention is required concerning the op-
timization of the finite difference approximations for the partial derivatives in the
Navier-Stokes equations. In contrast to the Burgers’ equation, the Navier-Stokes
equations contain, besides the various discrete derivatives of the velocity field, the
finite difference approximation of the pressure gradient which must be optimized.
Although the energy spectrum of the velocity components is characterized by a fi-
nite inertial range that scales with κ−5/3, the energy spectrum of the pressure in
homogeneous isotropic turbulence is found to have a finite inertial range that scales
with κ−7/3 and is followed by a bump of nearly κ−5/3 at higher wave numbers [34].
In principle, the optimization of the finite difference approximations for the pressure
derivatives must be calibrated using a κ−7/3 generic spectrum, whereas the opti-
mization of the finite difference approximations of the velocity derivatives must be
calibrated with the traditional Kolmogorov scaling. Moreover, optimization of the
finite difference approximations for the derivatives of the turbulent viscosity, which
is needed for the evaluation of the Smagorinsky subgrid force, requires the spectrum
of the strain-rate magnitude.9 Secondly, since a derivative of a variable is defined
as the convolution of a one-dimensional finite difference kernel with that variable
along a single Cartesian direction, it is considered more relevant to optimize these
finite difference approximations using a characteristic one-dimensional spectrum in-
stead of the typical isotropic energy spectrum. In this work, a rather pragmatic
approach is adopted in order to obtain such a characteristic one-dimensional spec-
trum of the velocity field u (x) = ui, i = 1, 2, 3 respectively the pressure field p (x).
The one-dimensional spectrum of the velocity-field and the pressure field are defined

9Note that the energy spectrum of the strain-rate magnitude cannot be deduced a priori from
the Kolmogorov scaling. Indeed, the Fourier transform of the absolute value in |S| =

√
2

p
SijSij is

not consistently defined since it is a nonlinear operator.
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as

Eu,1 (κ1, t) =

∞∫∫

−∞

E (κ, t) dκ2dκ3 =

∞∫∫

−∞

1

2
ûi (κ, t) û∗

i (κ, t) dκ2dκ3 (6.64)

Ep,1 (κ1, t) =

∞∫∫

−∞

1

2
p̂ (κ, t) p̂∗ (κ, t) dκ2dκ3, (6.65)

and analogously for Eu,2 (κ2, t), Eu,3 (κ3, t), Ep,2 (κ2, t) and Ep,3 (κ3, t). Since in a
periodic cubical box κ1 = κ2 = κ3 = κ, the characteristic one-dimensional energy
spectra, used in the optimization procedure for obtaining the optimal value of the
blending factor f , are defined as

Eu (κ, t) = Eu,1 (κ, t) + Eu,2 (κ, t) + Eu,3 (κ, t) (6.66)

Ep (κ, t) = Ep,1 (κ, t) + Ep,2 (κ, t) + Ep,3 (κ, t) . (6.67)

The characteristic one-dimensional spectrum of the strain-rate magnitude is ob-
tained in analogy with (6.67). The time-evolution of the normalized one-dimensional
energy spectra is displayed in the parametric graphs in Figure 6.14. In order to al-
low comparison with the uniform spectrum, an effective wavenumber κe is defined
for the Taylor-Green flow by using expression (6.61) with α = 5/3. The effective
wavenumber is illustrated for the Taylor-Green velocity spectrum in Figure 6.14.
Numerical evaluation of the integral expression (6.59) using the characteristic one-
dimensional Taylor-green spectra, leads to an optimal value for the blending factor
fopt for the dynamic finite difference approximations of the derivatives of the veloc-
ity, the pressure and the strain-rate magnitude. The blending factors fopt = f (κe)
for the derivatives of the velocity field and the pressure field are displayed in Fig-
ure 6.15. Note that those of the strain-rate magnitude, which are not shown here,
are very similar. Similarly to the uniform spectrum and the Burgers’ spectrum,
the blending factor converges for the Kolmogorov spectrum to the same asymptotic
value f∗

opt for κe → 0. If the energy spectrum starts to expand, a corresponding
increase of the blending factor is observed. As soon as the highest Fourier modes
on the computational grid are energized, i.e. already at t ≈ 2 or κe

κmax
≈ 0.6, the

filtered spectrum switches from DNS-resolution to LES-resolution and fopt increases
quite sharply. In case of the linear dynamic schemes, a maximum value for fopt is
observed again in the region 0.1 ≥ κe/κmax ≥ 0.3. Once the filtered inertial range
spectrum becomes fully established, i.e. at κe

κmax
≥ 0.6, the optimal blending factors

of the linear dynamic schemes reach again a final value fopt = fopt (max(κe)), which
will be used for the practical computations in this dissertation. Analogously as for
the Burgers’ spectrum, the fully developed inertial range spectrum is characteristic
for a wide range of turbulent flows such that fopt (max(κe)) is also considered char-
acteristic and thus independent of the specific flow features. As a consequence, the
dynamic finite difference schemes with fopt (max(κe)) are expected to be optimal for
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Figure 6.14: Generic Taylor-Green one-dimensional spectrum. The time-
evolution of the normalized generic Taylor-Green LES spectrum for
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Figure 6.15: Optimal blending factor for Talyor-green spectrum. The
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(△), the linear explicit dynamic scheme (k = 4) (▽), the nonlinear
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a wide range of fully developed turbulent flow.
In order to compare better the results of the Taylor-Green spectrum with those of
the uniform spectrum and the Burgers’ spectrum, the normalized optimal blending
factors fopt/f∗

opt, with f∗
opt = limκe→0 are shown as function of cdyn

k,n /c∗k,n in Figure
6.16. The spectrum-related weighting functions in the integral expressions for fopt

and ck,n display a similar influence as for the Burgers’ spectrum.

6.3.5 Dispersion-Relation Preserving vs. Dynamic Finite

Difference Approximations

In both the Dispersion-Relation Preserving finite difference schemes of e.g. Tam
et al. [79] and Kim et al. [45], and the dynamic finite difference schemes presented in
this dissertation, a predefined parameter must be determined by using a least-square
minimization over a certain wavenumber range characterized by a cutoff wavenum-
ber κc.
In case of the dynamic finite difference schemes the optimal blending factor fopt,

solely determines a certain quasi-optimal trajectory of the dynamic coefficient cdyn
k,n

as function of an a priori assumed generic shape of the fully developed inertial range
spectrum as illustrated in Figure 6.1. Hence, the role of fopt is restricted to the
calibration of the dynamic finite difference approximation such that a minimal dis-
persion error is obtained for that particular predefined fully developed inertial range
spectrum. Since this predefined energy spectrum is assumed characteristic for a wide
range of high-Reynolds number turbulent flows, the corresponding optimal blending
factors fopt are expected to be generally applicable to various numerical simulations.
Once fopt is defined, the dynamic finite difference scheme will optimize itself in real-

time through the dynamic coefficient cdyn
k,n such that a minimal dispersion error is

obtained according to the instantaneous energy spectrum of the flow. It is empha-
sized that this instantaneous energy spectrum may differ from the generic spectrum,
used for retrieving fopt. This implies that the dynamic scheme has variable Fourier

characteristics which depend on the real-time value of cdyn
k,n . As a consequence, if the

flow is well resolved, the dynamic schemes will return to the standard Taylor-based
finite difference schemes, regardless the value fopt.
In the Dispersion-Relation Preserving (DRP) finite difference schemes, the optimal
parameter is the constant coefficient ck,n itself and has to be determined by a similar
least-square minimization as that used in the dynamic schemes. As a consequence,
these schemes are prefactored and have predefined Fourier characteristics which are
optimized for an a priori assumed shape of the energy spectrum. Typically, a uni-
form spectrum shape with κc = 2

3κmax is adopted for the determination of ck,n in
the DRP schemes.
It may be obvious that the value of ck,n used in the DRP schemes must be identical

to that of the dynamic coefficient cdyn
k,n in case of a uniform spectrum, such that

ck,n

(
κc = 2

3κmax

)
= cdyn

k,n

(
fopt, κc = 2

3κmax

)
.

In the tables hereafter, the values of the optimal blending factors, that are applied
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Figure 6.16: The optimal blending factor as function of the constant
dynamic coefficient. The normalized optimal blending factor
fopt/f∗

opt (f∗
opt = limκe→0fopt

) as function of the normalized con-

stant dynamic coefficient cdyn
k,n = cdyn

n for 1st derivative (left) and

2nd derivative (right) of the velocity field (upper) and the pres-
sure field (lower). Distinguish the linear explicit dynamic scheme
(k = 2) (△), the linear explicit dynamic scheme (k = 4) (▽), the
nonlinear explicit dynamic scheme (k = 2) (⊲) and the linear im-
plicit dynamic scheme (k = 4) (⊳).
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n = 1 n = 2

fopt cdyn
1

fopt cdyn
2

Linear explicit k = 2 0.2403148409 −0.334363121 0.2314394545 −0.134556615
Linear explicit k = 4 0.2242833402 0.0775493930 0.2215576290 0.0206187300
Non-linear explicit k = 2 0.2125572156 0.2244367639
Linear implicit k = 4 0.1159028279 0.0119669674 0.1308208736 0.00689073167

Table 6.1: Optimal blending factors and coefficients for the uniform
spectrum. The analytically obtained optimal blending factors fopt

and the corresponding cdyn
k,n = cdyn

n at κc = 2

3
κmax for a selection of

dynamic finite difference approximations of the nth derivative.

n = 1 n = 2

fopt cdyn
1

fopt cdyn
2

Linear explicit k = 2 0.2615500000 −0.301919628 0.2349700000 −0.130154404
Linear explicit k = 4 0.232000000 0.0732383440 0.224720000 0.0202549970
Non-linear explicit k = 2 0.212800000 0.224300000
Linear implicit k = 4 0.125630000 0.0120483470 0.136960000 0.0069263710

Table 6.2: Optimal blending factors and coefficients for the Burgers’
spectrum. The numerically obtained optimal blending factors fopt

and the corresponding cdyn
k,n = cdyn

n at κe = max (κe) for a selection of

dynamic finite difference approximations of the nth derivative.

in further numerical simulations, are given. Moreover, the (linear) dynamic coef-
ficient that corresponds with this fopt is shown, for a certain value of the effective
wavenumber or cutoff wavenumber. Notice that for the nonlinear scheme it is mean-
ingless to define a certain value of cdyn

k,n , as it is a fluctuating field which determines

a different cdyn
k,n for each wave component. Values of fopt and the corresponding cdyn

k,n

for the uniform spectrum with κc = 2
3κmax are given in Table 6.1, whereas Table 6.2

gives fopt and the corresponding cdyn
k,n for the Burgers spectrum at κe = max (κe).

For the Taylor-Green spectrum, the optimal blending factor is obtained by averaging
the quasi constant value of fopt in the range 9 ≤ t or 0.55 ≤ κe. Tables 6.3, 6.4 and
6.5 give the mean optimal blending factor, and the corresponding dynamic coeffi-
cient cdyn

k,n at max (κe), for the velocity field, the pressure field and the strain-rate
magnitude. It is generally observed that the optimal value of the linear dynamic
coefficient (corresponding to fopt) decreases with decreasing slope of inertial range in
the energy spectrum. This agrees with the expectations, since for steeper spectrum
slopes, the smallest resolved scales contain less energy, and are thus less important
than the largest resolved scales. As mentioned before, the above optimal values for
the blending factor are used for the dynamic finite difference approximations in the
numerical simulations hereafter. For the Dispersion-Relation Preserving schemes the
coefficients ck,n obtained with the uniform spectrum (Table 6.1) are used in further
simulations, since they correspond to the original schemes of e.g. Tam et al. [79].
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n = 1 n = 2

fopt cdyn
1

fopt cdyn
2

Linear explicit k = 2 0.266805909 −0.29205720 0.236493636 −0.12841917
Linear explicit k = 4 0.235410000 0.071582971 0.225802273 0.020083301
Non-linear explicit k = 2 0.212648182 0.224079091
Linear implicit k = 4 0.128254091 0.012007761 0.137990000 0.006910196

Table 6.3: Optimal blending factors and coefficients for the Taylor-
Green spectrum. The numerically obtained mean optimal blend-
ing factors fopt and the corresponding cdyn

k,n = cdyn
n at κe = max (κe)

for a selection of dynamic finite difference approximations of the nth

derivative of the velocity field u (x).

n = 1 n = 2

fopt cdyn
1

fopt cdyn
2

Linear explicit k = 2 0.269222727 −0.29201951 0.236451363 −0.12823489
Linear explicit k = 4 0.235444091 0.071686922 0.225475909 0.019991095
Non-linear explicit k = 2 0.212401818 0.223640000
Linear implicit k = 4 0.127971364 0.011993550 0.137504545 0.006887905

Table 6.4: Optimal blending factors and coefficients for the Taylor-
Green spectrum. The numerically obtained mean optimal blend-
ing factors fopt and the corresponding cdyn

k,n = cdyn
n at κe = max (κe)

for a selection of dynamic finite difference approximations of the nth

derivative of the pressure field p (x).

n = 1 n = 2

fopt cdyn
1

fopt cdyn
2

Linear explicit k = 2 0.249608636 −0.32235447 0.232970455 −0.132510930
Linear explicit k = 4 0.227886364 0.075681831 0.223670909 0.020453642
Non-linear explicit k = 2 0.212920000 0.224469545
Linear implicit k = 4 0.122888182 0.012118708 0.135990455 0.006946174

Table 6.5: Optimal blending factors and coefficients for the Taylor-
Green spectrum. The numerically obtained mean optimal blend-
ing factors fopt and the corresponding cdyn

k,n = cdyn
n at κe = max (κe)

for a selection of dynamic finite difference approximations of the nth

derivative of the strain-rate magnitude |S| (x).
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7
The one-dimensional Burgers’ equation

For the quality assessment of the dynamic finite difference approximations, de-
veloped in the previous chapter, it may be more useful to consider first a simpler
problem than the Large-Eddy Simulation of three-dimensional Navier-Stokes tur-
bulence for which these schemes were designed. Following the work of Love [54]
and Das et al. [20], the one-dimensional viscous Burgers’ equation with periodic
boundary conditions is selected as a less complicated but eligible alternative to the
Navier-Stokes equations. Similar to the Navier-Stokes equations, the Burgers’ equa-
tion contains a quadratic nonlinear term and it exhibits an inertial range in the
energy spectrum, as in real turbulence.

After a short introduction on the one-dimensional Burgers’ flow as a simple
model for turbulence, the numerical setup for Direct Numerical Simulation and
Large-Eddy Simulation of Burgers’ turbulence is discussed. The Direct Numerical
Simulation provides a reference solution that allows for comparison among the dif-
ferent LES-solutions which are obtained with different numerical finite difference
methods. In order to perform an honest, consistent and reliable quality assessment
for the various finite difference approximations, the error decomposition of Vreman
et al. [87] and Meyers et al. [60, 59] is adopted, which allows to separate the errors
due to subgrid modeling and those due to the numerical method. In addition to this
error decomposition, two error definitions are introduced, i.e. the mathematics-based
error definition and the physics-based error definition. Using these definitions, the
numerical quality of the dynamic finite difference approximations is examined for
the LES of Burgers’ equation, adopting either a perfect subgrid-scale model or a
dynamic Smagorinsky model. In the latter case, the interactions of the numerical
errors with the modeling errors are closely investigated.
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7.1 Burgers’ turbulence

Consider the one-dimensional homogeneous flow governed by the viscous Burgers’
equation for the velocity field u (x, t) in non-dimensional form1

∂u

∂t
+

1

2

∂u2

∂x
= ν

∂2u

∂x2
, ∀x ∈ R, t ∈ R+. (7.1)

Obviously, equation (7.1) can be interpreted as the one-dimensional equivalent of
the Navier-Stokes equations, but without the pressure gradient. Indeed, similar to
the Navier-Stokes equations, Burgers’ equation (7.1) contains a quadratic nonlinear
term which is responsible for the generation of small-scale structures. These small
scales are eventually dissipated by the viscous force. Moreover, the energy spectrum
of the viscous Burgers’ equation is characterized by an inertial range, through which
energy is transferred from the large scales to the small scales until it is dissipated
by the viscosity in the dissipation range. Since this process is similar to that of
the Navier-Stokes equations, Johannes Martinus Burgers [11, 12] proposed equation
(7.1) as a simplified model for turbulence. Despite the agreements, the small-scale
dynamics of Burgers’ turbulence and real turbulence are substantially different. In
Burgers’ turbulence, the small scales represent shock waves, with thickness in the
order of the viscous scale. Instead of a successive breakdown of the large structures
into smaller ones as in real turbulence, the small structures tend to merge into large
ones. The corresponding inertial range scaling for a shock-wave spectrum is found
to be κ−2. Nevertheless, since in Burgers’ model turbulence the large and small
scales are separated in Fourier space by a characteristic inertial range κ−2 and are
thus statistically independent due to the energy cascade, it is considered as a useful
tool, not only for investigating the influence of the subgrid modeling, but also for
assessing the quality of the proposed dynamic finite difference approximations in a
Large-Eddy Simulation environment. Hence, Burgers’ equation is considered here
merely as a vehicle for producing a flow field characterized by an inertial range
spectrum.
In the current dissertation, Burgers’ equation is subjected to the periodic boundary
conditions2 in a one-dimensional domain 0 ≤ x ≤ 2π

u (x, t) = u (x + 2π, t) . (7.2)

Furthermore, the initial sinusoidal velocity profile

u (x, 0) = sin (x) , (7.3)

1This implies that the quantities u (x, t), x, t and ν are expressed relatively to a reference value
such that they become dimensionless.

2The periodic boundary conditions are selected in this work in order to avoid ambiguities with
eccentric boundary discretizations, which may affect the quality of the various finite difference
approximations.
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is imposed at t = 0, which corresponds to a single Fourier mode. Assuming a unit
length and velocity as reference, the Reynolds number is set to Re = 1

ν = 500. The
initial kinetic energy and dissipation rate are then calculated as

k(t = 0) =

κη∫

0

E (κ, t = 0) dκ =
1

2π

2π∫

0

1

2
[u (x, t = 0)]2 dx =

1

4
, (7.4)

ε(t = 0) =

κη∫

0

2νκ2E (κ, t = 0) dκ =
2ν

2π

2π∫

0

[
∂u

∂x
(x, t = 0)

]2

dx =
1

Re
. (7.5)

For t > 0, the initial sinusoidal velocity profile evolves into a stationary shock at
x = π. Due to the viscous forces, this shock decays and eventually dies out. There-
fore, this test case can be seen from a numerical point of view as the one-dimensional
equivalent of the Taylor-Green transitional flow, discussed in the next chapter. As
mentioned before, the corresponding shock-wave energy spectrum exhibits an iner-
tial range κ−2, through which energy is transferred from the large scales to the small
scales, and finally dissipated by the viscosity.
Although analytical solutions can be found for the periodic viscous Burgers’ equa-
tion by means of the Cole-Hopf transformation, the reference solution used in the
present work is generated by means of pseudo-spectral Direct Numerical Simulation
of equation (7.1). This is discussed further.

7.2 Numerical simulation of Burgers’ turbulence

In the following, the numerical setup for Direct Numerical Simulation and Large-
Eddy Simulation is discussed in detail.

7.2.1 Direct Numerical Simulation

A reference solution for the Burgers system is generated from a Direct Numerical
Simulation. In order to resolve all scales up to the viscous scale, a uniform grid is
adopted with N = 8192 nodes such that the grid cutoff-wavenumber is given by
κmax = π

∆ = 4096.3 Hence, de-aliasing is not required since the viscous scale is fully
resolved, i.e. κη = 2π/η ≪ κmax, and thus aliasing is assumed negligible. The non-
linear term is discretized in the energy conserving skew-symmetric form.4 Applying

3Note that Das et al. [20] used only N = 2048 nodes corresponding to 1024 Fourier modes for
the Direct Numerical Simulation of the viscous Burgers’ equation at Reynolds number Re = 1000,
whereas de Stefano et al. used N = 32768 grid nodes or 16384 Fourier modes for the DNS at
Reynolds number Re = 20000. In the current work, the number of Fourier modes and the Reynolds
number are selected such that the dissipation range is resolved almost to machine precision.

4Remark that for Burgers’ equation the skew-symmetry formulation differs from that in the
Navier-Stokes equations, due to the absence of a continuity equation. Indeed, the skew-symmetric
form is constructed by combination of the advective form and the divergence form in the respective
proportions 1/3 and 2/3, whereas for the Navier-Stokes equations these proportions are 1/2 and
1/2.
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Figure 7.1: Direct Numerical Simulation of Burgers’ equation. An im-
pression of the resolved velocity field u (x, t) (left) and its corre-
sponding energy spectrum E (κ, t) (right).

the one-dimensional sampling operator S ∆ , defined in Chapter 2, to equation (7.1)
leads to the discrete Burgers’ equation

δu

δt
+

1

3

δu2

δx
+

1

3
u

δu

δx
= ν

δ2u

δx2
. (7.6)

In order to avoid later confusion with the filtering operation, the resolved veloc-
ity field is represented by u instead of u. A pseudo-spectral numerical method
is adopted in which the exact partial derivatives are calculated in Fourier space.
Hence, numerical discretization errors or finite difference errors are excluded. For
the time-stepping, a standard 4-stage Runge-Kutta method with standard coeffi-
cients

[
1
4 , 1

3 , 1
2 , 1
]

(see Section 4.2) is selected. The time step is set to ∆t = 1.10−5

such that numerical dissipation is minimal and both the Courant-Friederichs-Lewy
condition and the Neumann conditions are satisfied at all times, i.e.

CFL ≤ ∆t max |u (x, 0)|
∆

≈ 1.10−2 ≪ 1 (7.7)

Neu =
2ν∆t

∆2
≈ 7.10−2 ≪ O (1) . (7.8)

The decaying shock wave is followed until t = 10s. Simulation results of u (x, t = tj)
and the corresponding energy spectrum are illustrated in Figure 7.1. The decay of
kinetic energy and the rate of dissipation are shown in Figure 7.2 as function of
time.
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Figure 7.2: Direct Numerical Simulation of Burgers’ equation. Tempo-
ral evolution of the decaying kinetic energy k (left) and the rate of
dissipation ε (right).

7.2.2 Large-Eddy Simulation

The goal of Large-Eddy Simulation is to reproduce the dynamics of the fil-
tered DNS solution by resolving only the high energetic large scale features (low
wavenumbers) in the flow, corresponding to ideally 80% of the total kinetic energy,
while neglecting the low energetic small scales (high wavenumbers). It was already
argued in Chapter 3 that in this work, the sharp spectral Fourier filter is preferred
as the ideal LES filter since it leads to a clear scale separation in wavenumber space,
eliminating modes above the cutoff and leaving modes below the cutoff unharmed.
It was also discussed that when using sharp Fourier filters, the Gibbs-phenomenon
arises, due to the trunctation of an infinite Fourier series. Although elimination of
the Gibbs oscillations is subject to shock capturing schemes, they are part of the
filtered solution in the current context of LES [20, 21].
The continuous Burgers’ LES equation with the double decomposition are derived
by applying the sharp Fourier filter with cutoff wavenumber κc = π

∆c
to expression

(7.1), yielding

∂u

∂t
+

1

2

∂u u

∂x
= ν

∂2u

∂x2
− 1

2

∂τ

∂x
. (7.9)

Here, · denotes the filtered variable and the subgrid stress is defined as

τ = uu − u u. (7.10)

Remind from Chapters 2 and 3 that the explicitly filtered nonlinear term in the
double decomposition framework allows to preclude aliasing errors [67, 55]. Since
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equation (7.1) is unclosed, an appropriate subgrid-scale model is needed to close it.
Two models are considered in this dissertation, i.e. the perfect subgrid-scale model
and a dynamic Smagorinsky model. In case of the the perfect subgrid-scale model, the
exact subgrid-stresses are extracted at each Runge-Kutta step from a simultaneous
running DNS-simulation. This results in a perfect LES that is expected to recover
exactly the filtered DNS results in case of exact numerics. Note that this approach
was already proposed by de Stefano et al. [21] for the study of the filter shape in
LES.
Besides the perfect subgrid model, also an eddy-viscosity subgrid model is used in
the current work, following the work of Love [54]. Although Love examined various
constant coefficient Smagorinsky-like subgrid closures for the Burgers’ equation, in
the current dissertation a dynamic Smagorinsky model is proposed to obtain the
model coefficient. The de-aliased eddy-viscosity subgrid closure is given by

τ = −2νt
∂u

∂x
, (7.11)

where the turbulent viscosity is defined as

νt = C2∆2
c

〈∣∣∣∣
∂u

∂x

∣∣∣∣
〉

w

, (7.12)

and 〈.〉w denotes the average over a length w [54]. For the limit w → ∆, (7.12) tends
to the one-dimensional equivalent of the Smagorinsky model, whereas w → L , L =
2π tends to the subgrid model advocated by Leslie et al. [51]. In the current work,
w = L , L = 2π is preferred since better results are obtained. This conclusion is
supported by the findings of Love [54]. Since the subgrid model should only be
engaged if the nonlinear term starts to produce small-scale structures that are not
visible on the LES grid, the dynamic Germano procedure [30] is used to calculate
the appropriate value of C2. With ·̃ denoting the coarse filter, the resolved stress
and the closure term are now defined on two different filter resolutions κc and κc/α
leading to

uu = u u − 2C2∆2
c

〈∣∣∣∣
∂u

∂x

∣∣∣∣
〉

w

δu

δx
(7.13)

ũu = ˜̃uũ − 2C2 (α∆c)
2

˜〈∣∣∣∣
∂ũ

∂x

∣∣∣∣
〉

w

∂ũ

∂x
(7.14)

Remark that the projective property of the sharp cutoff filter implies that ·̃ = ·̃. The
model coefficient C2 is now extracted by comparing both equations on the same
coarse resolution level. Hence, the least square minimization of the error between
both expressions finally yields,

C2 =
〈LM〉
〈MM〉 , (7.15)
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where

L = ũ u − ˜̃uũ (7.16)

M = 2∆2
c

[
˜〈∣∣∣∣

δu

δx

∣∣∣∣
〉

w

δu

δx
− α2

˜〈∣∣∣∣
δũ

δx

∣∣∣∣
〉

w

δũ

δx

]
(7.17)

Applying the one-dimensional sampling operator, defined in Chapter 2, the Burg-
ers’ LES-equation is now projected from the continuum unbounded domain to the
discrete unbounded domain with maximum grid resolution κmax = π

∆ such that
∆ = 2

3∆c as suggested by the work of Orszag [67]. Adopting again the skew-
symmetric formulation of the nonlinear term and thus ensuring the discrete conser-
vation of kinetic energy, the discrete Burgers’ LES equation then reads

δu

δt
+

1

3
u

δu

δx
+

1

3

δu u

δx
= ν

δ2u

δx2
− 1

2

δτ

δx
, (7.18)

Equation (7.18) is solved with various finite difference methods on a uniform mesh
with N = 256 nodes corresponding with a maximum grid resolution κmax = π

∆ =
128. The physical resolution is defined by the filter cutoff wavenumber κc = 2

3κmax =
85. For time integration, again the 4-stage Runke-Kutta method is used. Further,
the same time step of t = 1.10−5 as in the DNS simulation is adopted.

As mentioned before, the main purpose of the current Large-Eddy Simulation
study is to investigate the quality of the dynamic finite difference approximations,
designed in the previous chapter, and compare it to that of various other techniques
among which the Dispersion-Relation Preserving schemes [79, 45]. However, first
some particularities concerning the dynamic finite difference approximation of the
skew-symmetric formulation of the nonlinear term must be addressed. Since u and
uu are characterized by strongly different energy spectra, the constant dynamic co-
efficients cdyn

k,n , obtained by expression (6.20), will be different in the linear dynamic
finite difference approximations of the advective operator and divergence operator,
used into the construction of the skew-symmetric formulation. As a consequence,
the skew-symmetry property and thus the conservation of kinetic energy is lost. In
order to preserve skew-symmetry, the same dynamic coefficient cdyn

k,n is required in
both contributions. A first solution that can be thought off, is to construct a sin-
gle dynamic finite difference approximation for the entire skew-symmetric operator.
Such an approach is reminiscent to the one used in Chapter 5. Hence a single co-
efficient cdyn

k,n is then obtained for the skew-symmetric operator which should be an
optimal compromise between the spectra of u and uu. The Leonard term and the
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model term for the calculation of this coefficient are determined as

L = c∗k,n

(
αk − 1

)
∆k

{
u

δk+nu

δxk+n

∣∣∣∣
∆

+
δk+nu u

δxk+n

∣∣∣∣
∆
}

(7.19)

M =
(
1 − αk

)
∆k

{
u

δk+nu

δxk+n

∣∣∣∣
∆

+
δk+nu u

δxk+n

∣∣∣∣
∆
}

−αk∆kfc∗∗k,n

(
1 − α2

)
∆2

{
u

δk+n+2u

δxk+n+2

∣∣∣∣
∆

+
δk+n+2u u

δxk+n+2

∣∣∣∣
∆
}

(7.20)

where α denotes the double grid resolution. Although such an approach is perfectly
viable and might be interesting for further investigation, the use of an alternative
method is preferred instead. In this method, the dynamic coefficient cdyn

k,n that is ob-
tained for the finite difference approximation of the advective operator, is also used in
the finite difference approximation of the divergence operator. This approach is mo-
tivated by the fact that it is equivalent with the traditional discretization approach
of the skew-symmetric operator using traditional standard schemes or prefactored
optimized schemes.
Secondly, some attention is required for the discretization of the subgrid force of
the perfect subgrid-scale model. Indeed, in order to obtain the exact filtered DNS
solution from the perfect LES, the discretization of the subgrid force must be iden-
tical to that of the nonlinear term. Hence, the same dynamic coefficient cdyn

k,n is
used for the linear dynamic finite difference approximation of the subgrid force
as for the skew-symmetric operator. Notice that this problem does not occur for
the discretization of the eddy-viscosity subgrid force, since it is discretized analo-
gously to the molecular viscous term. Hence, the dynamic coefficient cdyn

k,n of the

2nd derivative is applied here without ambiguity. Although in case of the nonlinear
dynamic scheme, cdyn

k,n depends theoretically neither on u or uu, the same procedure
is applied for the discretization of the skew-symmetric term using the conservative
formulation of the nonlinear dynamic scheme (see Appendix B). Nevertheless, the
skew-symmetry property is not maintained since the scheme itself produces spurious
scales due to its nonlinearity. Hence for this scheme, the updated velocity field u (x)
must be filtered every Runge-Kutta step with the de-aliasing filter instead of only
to the nonlinear term in equation (7.9).
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7.3 Quantification of numerical errors

Before assessing the quality of the dynamic finite difference approximations in
the LES of the Burgers’ equation, an appropriate and consistent evaluation method
must be defined that allows to quantify the different sources of error due to modeling
and numerical approximation, and their interactions. In order to separate model-
ing and numerical errors the error decomposition method of Vreman et al. [87] and
Meyers et al. [60, 59, 61] is adopted. Once the error sources are identified by this
separation method, a certain error norm can be defined which quantifies the mag-
nitude of the respective error sources. The described approach is further discussed
in more detail.

Consider the reference solution, obtained by e.g. Direct Numerical Simulation,
which is characterized by the viscous scale κη. Further consider a specific flow
variable of interest φ. The total error on the variable φ obtained by the Large-Eddy
Simulation with physical resolution κc = π

∆c
and grid resolution κmax = π

∆ , is then
defined as

εφ,total (κc, κmax) = φs

(
κη,

3

2
κη

)
− φfd (κc, κmax) , (7.21)

where, φs

(
κη,

3
2κη

)
represents the filtered spectral DNS solution, and φfd (κc, κmax)

represents the finite difference LES solution with cutoff κc on an LES grid with
maximum wavenumber κmax. In order to separate the modeling error contributions
and the numerical error contributions within the total error, the latter is decomposed
as

εφ,model (κc, κmax) = φs

(
κη,

3

2
κη

)
− φs (κc, κmax) (7.22)

εφ,num (κc, κmax) = φs (κc, κmax) − φfd (κc, κmax) , (7.23)

where φs (κc, κmax) represents the spectral LES solution with cutoff wavenumber κc

and numerical resolution κmax determined by the LES grid. Note that this solution
would be equivalent with the finite difference LES-solution on an infinitely fine grid
φfd (κc, κ∞). The modeling error εφ,model is related to the adopted subgrid closure,
whereas the numerical error εφ,num contains contributions of the aliasing errors as
well as discretization errors or finite difference errors. If proper de-aliasing is applied
through explicit filtering of the nonlinear term, the numerical εφ,num reduces exactly
to the finite difference discretization errors.
Although εφ,num is well defined for a perfect subgrid model or a static Smagorinsky
model in which the value of the model constant C2 is chosen a priori, the errors
are not clearly separated in case of a dynamic model where the value of model co-
efficient C2 is affected by the numerics. In the latter case numerical errors and
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modeling errors continuously interfere through the feedback of the numerically ob-
tained dynamic model constant C2. Hence, in this work the discretization errors
of the LES-equations and those of the dynamic procedure will be considered sepa-
rately, and the the influence of the numerics on the calculation of the dynamic model
coefficient will be demonstrated.
The value of the model coefficient C2 is considered to be a theoretical model param-
eter that corresponds to the instantaneous energy spectrum of the resolved velocity
field. Therefore, the dynamic procedure by which C2 is determined, might be con-
sidered as a theoretical post-processing procedure at each time step. In this work,
an attempt is done to separate the discretization of the LES-equations and that of
the dynamic procedure. Then, three coefficients can be distinguished. First the
coefficient Cs,s denotes the theoretical optimal value that is obtained by applying
the dynamic procedure, in which the derivatives are evaluated spectrally, to the so-
lution of the pseudo-spectral Large-Eddy Simulation of Burgers’ equation. Further
the coefficient Cs,fd is defined, which represents the optimal value that is obtained
by applying the dynamic procedure, in which the derivatives are also evaluated spec-
trally, to the of the finite difference LES solution of Burgers’ equation. Although
Cs,fd is affected by the finite difference errors in the LES-solution due to the dis-
cretization of the basic LES equation, its calculation is not liable to finite difference
errors. Hence, this allows to isolate more or less the influence of the numerical errors
in the Burgers’ solution on the model coefficient. Finally, Cfd,fd denotes the finite
difference approximation to the expected value Cs,fd. This coefficient is obtained in
a finite difference Large-Eddy Simulation of Burgers’ equation in which the deriva-
tives within the dynamic procedure are also evaluated with the same finite difference
method. In summary, both coefficients Cs,fd and Cfd,fd contain influences of the
discretization of the LES-equations, however Cs,fd does not suffer from discretiza-
tions in its calculation, in contrast to Cfd,fd. The finite difference discretization
errors (7.23) are now decomposed as

εφ,num (κc, κmax) = εφ,numI (κc, κmax) + εφ,numII (κc, κmax) , (7.24)

in which

εφ,numI (κc, κmax) = φs (κc, κη, Cs,s) − φfd (κc, κmax, Cs,fd) (7.25)

εφ,numII (κc, κmax) = φfd (κc, κmax, Cs,fd) − φfd (κc, κmax, Cfd,fd) . (7.26)

In the expressions above, εu,numI represents the numerical errors due to discretiza-
tion of the LES-equation, since spectral derivatives of the finite difference solution
are used for the evaluation of the Germano procedure. On the other hand, ǫu,numII

represents only errors due to the discretization in the evaluation of the Germano
procedure itself.

Once the different error contributions are separated and identified, their respec-
tive magnitude may be represented by various error definitions. Two definition
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types are adopted in the present dissertation, i.e. the mathematics-based and the
physics-based error definitions. Note that similar definitions were already intro-
duced by Meyers et al. [62], and the same terminology will be adopted here. First
the mathematics-based error definitions are considered, which are comparable to
those used in the work of Chow et al. [19]. The error spectrum of the pointwise
error εφ of the variable φ is defined as

Eεφ
(κ) = ε̂φ (κ) ε̂φ

∗ (−κ) . (7.27)

The error spectrum of εφ is a function of the wavenumber κ and reflects the en-
ergy content of the total error on each Fourier mode. Further, various global
mathematics-based error norms are obtained by integrating the wavenumber-weighted
energy spectrum

∥∥Eεφ

∥∥
q

=

κmax∫

0

κqEεφ
(κ) dκ, ∀q ∈ Z. (7.28)

It is obvious that for q > 0, the small scales are accentuated in the calculation of
the global error norm, whereas for q < 0 the large scales are more accentuated. In
the particular case q = 0, the error norm corresponds with the global magnitude kεφ

related to the error and is expressed as

kεφ
=

κmax∫

0

Eεφ
(κ) dκ. (7.29)

Remark that the magnitude kεφ
corresponds to the L2-norm,5 often used in error

evaluation, as L2 (t) = 2π
√

kεφ
(t) and that this error always has a positive sign.

In contrast to the mathematics-based error definitions, the physics-based error def-
initions consider the error between energy spectra rather than the spectrum of the
errors [60]. Hence, the error on the energy spectrum Eφ (κ) = 1

2 φ̂φ̂∗ of the variable
of interest φ is defined as

εE (κ) = ∆Eφ (κ) , (7.31)

where ∆ denotes the difference between the spectra of the two compared solutions of
φ. In analogy with the mathematics-based error definitions, a global physics-based

5The L2-norm is defined as

L2 (t) =

vuuut 1

2π

πZ

0

[εφ (x, t)]2 dx. (7.30)
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error norm is defined by integrating the weighted error spectrum, yielding

‖εE‖q =

κmax∫

0

κq∆Eφ (κ) dκ, ∀q ∈ Z. (7.32)

As mentioned before, q < 0 accentuates the large scale errors, whereas the small
scale errors are accentuated for q > 0. The general definition (7.32) can now be
related to physics-based error measures for the velocity field as variable of interest
for some specific choices of the weighting q. Indeed, for Burgers’ turbulence, one can
obtain the total error on the kinetic energy εk, and the total error on the dissipation
rate εε by choosing respectively q = 0 and q = 2, yielding

εk = ∆k =

κmax∫

0

∆Eu (κ) dκ (7.33)

εε = ∆ε =

κmax∫

0

κ2∆Eu (κ) dκ (7.34)

Remark that the sign of εk and εε could be either positive or negative, enabling to
see interactions between different error sources.

It may be clear that the physics-based error definitions represent only errors on
the amplitude of the solution, assumed that the influence of phase is not accumu-
lated in time, whereas the mathematics-based errors contain contributions of both
amplitude and phase errors in the solution at a certain time. Meyers et al. [62] found
that some physics-based error definitions may lead to an overly optimistic accuracy,
which is confirmed by our numerical results. Hence, mathematics-based error defini-
tions are more strict as they contain information about phase and amplitude. Both
error definitions are used further for analyzing the performance of finite difference
schemes, and interactions with the subgrid model.

7.4 A priori Burgers’ study

In the current section, an a priori quality assessment is performed for a selection
of four dynamic finite difference approximations described in Appendix C, i.e. the
2nd -order explicit linear and nonlinear linear dynamic finite difference approxima-
tions, the 4th -order explicit linear dynamic finite difference approximation and the
4th -order implicit linear dynamic finite difference approximation. In this a priori
study, the dynamic finite difference approximations of the 1st derivative of the re-
solved velocity field are calculated from the filtered DNS-solution at every time step,
and their performance is compared to that of the standard central finite difference
approximations as well as the Dispersion-Relation-Preserving (DRP) schemes of e.g.
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Symbols - Simulations

+ filtered DNS • 2nd -order DRP scheme
× pseudo-spectral LES N 4th -order DRP scheme
◦ 2nd -order central � 4th -order tridiagonal DRP Padé scheme
△ 4th -order central −−−−− 2nd -order explicit linear dynamic scheme
▽ 6th -order central −−− 4th -order explicit linear dynamic scheme
⊲ 8th -order central −·−· 4th -order implicit linear dynamic scheme
⊳ 10th -order central · · · 2nd -order explicit nonlinear dynamic scheme
� 6th -order tridiagonal Padé

Table 7.1: Simulation overview. Overview of the various a priori or a posteri-
ori simulations of Burgers’ equation, and their corresponding symbol
notation.

Tam et al. [79]. The variable of interest is thus φ = δu
δx , such that the error is defined

as εdudx = ∂u
∂x − δu

δx , in which the exact derivative ∂u
∂x is obtained spectrally.

Since physics-based error definitions are meaningless in the current a priori study,
only mathematics-based error definitions are considered, more specifically, the en-
ergy spectrum of the error Eϕ (κ) and the magnitude of the error kϕ where ϕ = εdudx.
As mentioned before, the latter is related to the L2-norm by L2 = 2π

√
kϕ. Table

7.1 gives an overview of the performed simulations, and the corresponding symbol
notation used in the plots to follow.

Figure 7.3 presents the global magnitude as function of time. First, the linear
dynamic schemes are discussed. At the early stages of the simulation, when the
spectrum is still developing and the small scales contain little or no energy, the 2nd -
and 4th -order linear explicit and 4th -order implicit dynamic schemes almost collapse
with their asymptotic counterparts, i.e. the 4th - and 6th -order explicit standard
central schemes and the 6th -order tridiagonal Padé scheme. This is in contrast to
the equivalent 2nd - and 4th -order Dispersion-Relation Preserving schemes and the
4th -order Dispersion-Relation Preserving Padé scheme, which achieve 2nd - respec-
tively 4th -order accuracy. When the flow evolves and the simulation shifts from
DNS-resolution to LES-resolution, the linear dynamic schemes seamlessly adapt
according to the developing energy spectrum. Once the shock is formed and the en-
ergy spectrum contains a fully developed inertial range, the linear dynamic schemes
have adapted accordingly, such that they act like the Dispersion-Relation Preserv-
ing schemes and achieve much higher accuracy in comparison with the standard
schemes. More specifically, it is observed that the 2nd -order explicit linear dynamic
scheme outperforms the standard 6th -order schemes, whereas the accuracy of the 4th

-order explicit linear dynamic scheme reaches that of the 10th -order central scheme.
Further, the 4th -order implicit linear dynamic scheme obtains very high accuracy
since the errors are several orders of magnitude smaller than that of the 6th -order
tridiagonal Padé scheme. At the final stages of the simulation, the accuracy of the
linear dynamic schemes seems to decrease more slowly than that of the standard
schemes with formal order of accuracy. Indeed, since the energy spectrum of the
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Figure 7.3: A priori Burgers’ study. The magnitude kϕ of the error ϕ = εdudx

on the 1st derivative before shock-formation, i.e. 0 ≤ t ≤ 1.2 (left)
and after shock-formation and during the decay, i.e. 1 ≤ t ≤ 10
(right). (Symbols: see Table 7.1).

decaying shock wave shrinks, the linear dynamic schemes tend toward their initial
behaviour with formal order of accuracy. For t → ∞ the dynamic schemes should
eventually reduce to the corresponding asymptotic standard schemes.
The results in Figure 7.3 are confirmed by looking at snapshots of the error spec-
trum. Figure 7.4 displays the snapshot of the spectrum Eϕ (κ) , ϕ = εdudx before
the shock-formation at t = 0.5s (DNS-resolution), and after the shock-formation
near maximum dissipation at t = 1.8s (LES-resolution). Both spectra differ signifi-
cantly at these time steps. At t = 0.5s the linear dynamic schemes reduce almost to
their asymptotic counterparts, i.e. the 4th - and 6th -order explicit standard central
schemes and the 6th -order tridiagonal Padé scheme. Clearly, the linear dynamic
schemes are now optimized for the largest resolved scales which contain most of the
energy. This is in contrast to the equivalent Dispersion-Relation Preserving schemes
which are optimized for a specific developed energy spectrum and therefore reach 2nd

- respectively 4th -order accuracy at the time considered. At t = 1.8s the spectrum
is fully developed and the linear dynamic schemes have adapted accordingly. The
same accuracy as the 2nd - respectively 4th -order standard asymptotic schemes is
obtained for the largest resolved scales, whereas the error on the smallest resolved
scales is significantly reduced compared to the traditional central schemes. As ex-
pected, similar performance for the DRP schemes is observed here. To illustrate the
adaptivity of the linear dynamic schemes, Figure 7.5 shows the ratio of the dynamic
coefficient to its Taylor value cdyn

k,n /c∗k,n as function of time. Clearly there is a sharp
increase of this ratio around t ≈ 1 where the shock is being formed and the simula-
tion shifts from DNS-resolution to LES-resolution.
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Figure 7.4: A priori Burgers’ study. Snapshots of the spectrum Eϕ (κ, t) of
the error ϕ = εdudx on the 1st derivative at times t = 0.5s (developing
spectrum) (left) and t = 1.8s (fully developed spectrum) (right).
(Symbols: see Table 7.1)

The results obtained with the 2nd -order nonlinear explicit scheme display a more
inconsistent and irregular behaviour. Although the nonlinear scheme is expected to
obtain similar performance as the 4th -order tridiagonal Dispersion-Relation Preserv-
ing Padé scheme, its accuracy is only comparable at early times in the simulation.
Once the spectrum is fully developed, the quality of the nonlinear scheme seems
partially lost since it cannot achieve the accuracy of the 4th -order tridiagonal DRP
Padé scheme. This suggests that the theoretically expected performance is neutral-
ized due to nonlinear pollution of the scheme. Indeed, looking at the snapshots of
the energy spectrum in Figure 7.4, it can be observed that although at t = 0.5s
the accuracy of the lower wavenumber modes lies between that of the 4th - and 6th

-order central scheme, the error does not fade out in the high-wavenumber region,
in contrast to the linear schemes. This clearly indicates that the nonlinear dynamic
scheme produces spurious scales, due to the nonlinear interactions in the scheme.
These scales are distributed over the entire wavenumber range and affect the quality
of every Fourier mode. At t = 1.8s, again spurious energy is created in the entire
wavenumber range and even beyond the filter-cutoff, such that the accuracy de-
creases to that of the 2nd -order scheme for the largest resolved scales. Although the
nonlinear scheme seems to have better performance than its linear variant, it never
reaches the accuracy of the 4th -order DRP Padé scheme. These findings support
those of the nonlinear Fourier analysis that was performed in the previous chapter.
Hence, the nonlinearity may impose an obstruction in order to safely apply this
scheme in LES. This is further discussed in the a posteriori studies.
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Figure 7.5: A priori Burgers’ study. Ratio of the dynamic coefficient to its
Taylor value cdyn

k,n /c∗k,n = cdyn
n /c∗n for the 2nd -order (−−−−−) and 4th

-order (−−−) explicit linear dynamic schemes and for the 4th -order
(−·−·) linear implcit dynamic scheme for the 1st derivative (left) and
the 2nd derivative (right).

7.5 A posteriori Burgers’ study

7.5.1 The perfect subgrid-scale model

For the Large-Eddy Simulation of the Burgers’ equation, using the perfect sub-
grid scale model, modeling errors are absent and the LES-solution should approxi-
mately return the filtered DNS-solution. Indeed, it is verified from Figure 7.6 which
demonstrates the very small modeling errors on the kinetic energy and the dissi-
pation rate. Numerical errors are thus dominant for these simulations, such that
the results are expected to be similar to those of the a priori study. However, in
contrast to the a priori study, the solution is affected by the systematic accumu-
lation of the finite difference errors at each time step of the LES simulation. This
is illustrated in Figure 7.7, where snapshots of the error spectra at t = 0.5s, i.e.
before shock-formation and at t = 1.8s, i.e. after shock-formation are shown for
the various finite difference schemes. It can be seen that for t = 0.5s, less accurate
finite difference methods such as the 2nd -order central scheme are slightly too dis-
sipative in comparison with more accurate methods. Most likely, this is due to the
substantial dispersion errors at higher wavenumbers related to the finite difference
approximations of the 1st derivative. Remind that it was already argued in Section
4.1.3 that (low-order) finite difference approximations induce implicit filtering of
the corresponding velocity field. However, at t = 1.8s when the energy spectrum is
fully developed, the opposite behaviour is observed. The lower order schemes lead
systematically to an energy pile-up at the filter-cutoff. This observation suggests
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Figure 7.6: A posteriori Burgers’ study: Perfect model. The modeling
errors on the total kinetic energy (left) and the total dissipation rate
(right) as function of time.

a reduced effectiveness of the subgrid dissipation on the smallest resolved scales,
probably caused by the dispersion errors related to the finite difference approxima-
tion of the subgrid force. Hence, the implicit filtering that is generally attributed
to low accurate finite difference methods, appears to have a reversed impact in the
fully developed regime. Notice again the production of spurious small scales by the
nonlinear dynamic scheme at t = 0.5s.
Figure 7.8 shows the magnitude of the numerical error as function of time. This
error corresponds to the well-known L2-norm which is a mathematics-based error
quantity, reflecting the error contributions on both amplitude and phase of the so-
lution. The results look very similar to those of the a priori study. Note that an
anomaly is observed in the performance of the 10th -order finite difference scheme
in the early stages of the simulation where the spectrum is still developing, i.e.
t ≤ 0.8. There, the 10th -order method appears to perform worse than the 4th -
order method. It was verified that this numerical artifact is related to the stencil
coefficients in the 10th -order finite difference approximation of the 2nd derivative
(see Table 4.2) which are only rational approximations to the real numerical val-
ues. As a consequence, the sum of the weighting coefficients is not exactly zero,
but has a residual of approximately 10−6. Nevertheless, once the smallest scales
in the solution are energized, i.e. t ≥ 1, this artifact becomes negligible and the
10th -order scheme behaves again as expected. It is emphasized that this anomaly
does not undermine the further conclusions in this work. Except for the nonlinear
dynamic scheme, all linear dynamic schemes perform very well, as expected from
the a priori results. In the initial stages of the simulation (DNS-resolution), the ac-
curacy of the 2nd - and 4th -order explicit linear dynamic schemes closely approaches
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Figure 7.8: A posteriori Burgers’ study: Perfect model. The magnitude
kϕ of the error ϕ = εu on the resolved velocity field before shock-
formation, i.e. 0 ≤ t ≤ 1.2 (left) and after shock-formation and
during the decay, i.e. 1 ≤ t ≤ 10 (right). (Symbols: see Table 7.1)

that of their 4th - respectively 6th -order standard asymptotic counterparts, whereas
the corresponding Dispersion-Relation Preserving schemes obtain respectively 2nd

- and 4th -order accuracy. Similarly, the 4th -order implicit linear dynamic finite
difference approximation tend to the 6th -order tridiagonal Padé scheme. Once the
stationary shock-wave is at full strength, i.e. at 1 ≤ t ≤ 3 such that the simula-
tion is shifted from DNS-resolution to LES-resolution, the linear dynamic schemes
have adapted accordingly and achieve comparable accuracy as the corresponding
Dispersion-Relation Preserving schemes. More specific, both the 2nd -order dynamic
explicit schemes and 2nd -order DRP schemes obtain higher accuracy than the 6th

-order standard asymptotic scheme, whereas both the 4th -order dynamic explicit
schemes and the 4th -order explicit schemes outperform the 6th -order tridiagonal
Padé scheme. The 4th -order implicit linear dynamic finite difference approxima-
tion almost collapses with its Dispersion-Relation Preserving variant, displaying an
error-level which is a few orders of magnitude below that of the standard 6th -order
tridiagonal Padé scheme.
As the shock-wave decays further, e.g. at times t ≥ 3, it can be seen that the accu-
racy of the explicit or implicit DRP schemes decreases much faster than the linear
explicit or implicit dynamic schemes. This clearly demonstrates that the dynamic
schemes adapt themselves according to the instantaneous flow solution such that
a minimal dispersion error is achieved. For t → ∞ the dynamic schemes should
reduce again to their asymptotic equivalents. Figure 7.9 displays two snapshots of
the spectrum of the numerical error Eϕ (κ) , ϕ = εu at times t = 0.5 and t = 1.8,
which reflect the adaptable Fourier characteristics of the linear dynamic schemes.
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Figure 7.9: A posteriori Burgers’ study: Perfect model. Snapshots of the
spectrum Eϕ (κ, t) of the error ϕ = εu of the resolved velocity field at
times t = 0.5s (developing spectrum) (left) and t = 1.8s (fully devel-
oped spectrum) (right). Remark again the spurious modes generated
by the nonlinear dynamic finite difference scheme. (Symbols: see Ta-
ble 7.1)

The error on the energy spectrum εϕ, ϕ = Eu (κ) gives qualitatively similar results
and is therefore not shown.

Figures 7.8 and 7.9 also show the performance of the 2nd -order explicit nonlin-
ear dynamic finite difference approximation. The results are obviously much worse
than for the a priori study, due to the accumulation of finite difference errors and
nonlinear pollution at each time step. Generally, the accuracy remains around that
of the 4th -order standard asymptotic scheme although for the initial stages of the
simulation, i.e. at t ≤ 0.04, where the spectrum contains only few Fourier modes,
the error level decreases to that of the 4th -order DRP Padé scheme. It may be
clear from Figure 7.9 that the nonlinear interactions of the scheme severely pollute
the solution. Indeed, the nonlinear finite difference operator creates spurious modes
which are distributed over the entire wavenumber range. For instance, at t = 0.5s
spurious Fourier modes are observed in the high-wavenumber region of the spectrum,
whereas at t = 1.8, the largest scales are significantly affected by the nonlinearity
leading to a severely reduced accuracy compared to the linear Fourier analysis.
Although the mathematics-based errors give a reliable and undisguised picture about
the quality of the various finite difference approximations, one is often interested in
obtaining physics-related quantities from the LES simulation such as kinetic en-
ergy or dissipation rate. Therefore, the quality of the difference schemes on the
physics-based errors is examined further. Figure 7.10 display the numerical er-
rors on the kinetic energy and dissipation rate. The observations and conclusions
from the mathematics-based errors, shown in Figure 7.8, also mainly apply to the
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Figure 7.10: A posteriori Burgers’ study: Perfect model. Error on the
kinetic energy εk = ∆ku (upper) and error on the dissipation rate
εε = ∆ε (lower) before shock-formation, i.e. 0 ≤ t ≤ 1.2 (left)
after shock-formation and during the decay, i.e. 1 ≤ t ≤ 10 (right).
(Symbols: see Table 7.1)
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physics-based errors of Figure 7.10. The linear explicit and implicit dynamic schemes
perform very well as they converge to the asymptotic standard schemes for smooth
velocity fields with low spectral content at the beginning of the simulation (DNS-
resolution), whereas they adapt toward the Dispersion-Relation Preserving schemes
as soon as the energy spectrum is entirely developed and the inertial range is es-
tablished (LES-resolution). Similarly, the 4th -order implicit linear dynamic finite
difference scheme varies during the simulation between the 6th -order tridiagonal
Padé scheme and the implicit Dispersion-Relation Preserving scheme. Remarkably,
the 2nd - and 4th -order explicit linear dynamic schemes predict the kinetic energy
and the dissipation rate significantly better than the equivalent 2nd - and 4th -order
DRP schemes. This is explained by the fact that, instead of the uniform spectrum,
the Burgers’ spectrum is used in the optimization procedure in Section 6.3.3 in or-
der to obtain the optimal value fopt of the blending factor f . Although a similar
improvement would be expected for the 4th -order implicit linear dynamic finite
difference scheme, the accuracy of the corresponding DRP schemes appears equally
good. This may be understood since for very high-order schemes, the gain of a pos-
sible optimization is smaller in comparison with that for low-order schemes. Hence,
the spectrum shape in the optimization procedure for fopt will also be less important
than for low-order schemes. Again, it is seen that the 2nd -order nonlinear scheme
leads to very poor accuracy improvement, as consequence of the nonlinear pollution.

7.5.2 The dynamic Smagorinsky model

In this paragraph, the performance of the dynamic finite difference methods in
the Large-Eddy Simulation of the Burgers’ equation is further examined for the
dynamic Smagorinsky model. In contrast to the perfect subgrid scale model, now
significant modeling errors arise, which will interact with the numerical errors and
vice versa, as shown by Meyers et al. [60, 59]. Note that the dynamic procedure of
Germano et al. [30] is believed to give a nearly minimal total error since it is sensitive
to the energy spectrum of the solution as well as the numerics [61]. Therefore,
an attempt is made to visualize these interactions by separating modeling errors
and numerical errors as discussed in Section 7.3. Figure 7.11 displays the energy
spectra obtained with the various finite difference schemes together with those of the
spectral method and the filtered DNS at times t = 0.5s and t = 1.8s. Again, a clear
influence of the discretization method is seen from these figures. For instance, the
difference between the spectrum of the pseudo-spectral LES and that of the filtered
DNS spectrum, reveals the modeling error due to the dynamic Smagorinsky model.
Obviously, the Smagorinsky model appears to be slightly too dissipative for the
largest resolved scales and medium resolved scales, whereas for the smallest resolved
scales, an energy pile-up is observed near the filter cutoff. This pile-up originates
from the inability of the eddy viscosity model to describe well the cusped behaviour
of the spectral viscosity at the cutoff wavenumber (see Figure 3.3). Nevertheless, the
general performance of the dynamic Smagorinsky model is considered satisfactory
since the κ−2 inertial range is approached fairly good. The modeling error on the
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Figure 7.11: A posteriori Burgers’ study: Dynamic Smagorinsky. Snap-
shots of the energy spectrum of the velocity field Eu (κ, t) at times
t = 0.5s (developing spectrum) (upper) and t = 1.8s (fully de-
veloped spectrum) (lower). Notice that the lower order schemes
tend to be too dissipative at t = 0.5s when the model is not active,
whereas the opposite is observed at t = 1.8s where the model is
active. Remark the creation of spurious modes for the nonlinear
dynamic finite difference scheme. (Symbols: see Table 7.1)



178 Chapter 7. The one-dimensional Burgers’ equation

0 2 4 6 8 10

−6

−4

−2

0

2

4

6

8

10

12
x 10

−3

ε k
,m

o
d
el

t
0 2 4 6 8 10

−0.01

−0.005

0

0.005

0.01

0.015

0.02

ε ε
,m

o
d
el

0 2 4 6 8 10

0

1

2

3

4

5

C
2 s,
s

t

Figure 7.12: A posteriori Burgers’ study: Dynamic Smagorinsky. The
modeling errors on the total kinetic energy (−−−−−) and the total
dissipation rate (−·−·) as function of time (left). The profile of the
dynamic model coefficient C2

s,s of the pseudo-spectral LES during
the simulation (right).

kinetic energy and the dissipation rate are shown in Figure 7.12. The mainly positive
error profiles confirm that the dynamic Smagorinsky model is slightly too dissipative,
meaning that the kinetic energy of the spectral LES solution is smaller than that
of the filtered DNS solution. Further, the dynamic model coefficient C2

s,s of the
pseudo-spectral LES is shown in Figure 7.12. As expected, the dynamic procedure
engages the model at t ≈ 1 and automatically determines a quasi-optimal value as
the shock decays.

The discussion is continued by investigating the numerical errors induced by the
finite difference approximations. As explained in Section 7.3, an attempt is made to
decouple the influence of the discretization of the basic Burgers’ LES-equation and
that of the discretization errors in the calculation procedure of the dynamic model
coefficient itself, leading to the numerical errors of type I and II. Figure 7.13 rep-
resents the magnitude of the numerical errors (related to L2-norm) on the velocity
field, whereas Figure 7.14 shows the more detailed spectrum of the numerical errors
before the shock formation, i.e. at t = 0.5s and after the shock is fully established,
i.e. at t = 1.8s. Both errors are mathematics-based errors that involve amplitude-
and phase-information of the solution. Remark again the numerical anomaly for
the 10th -order solution at the beginning of the simulation. This phenomenon was
already explained in the previous paragraph. Both graphs display the contributions
of the errors εu,numI and εu,numII which were previously defined. εu,numI repre-
sents the errors due to discretization of the LES-equation only. More specific, only
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Figure 7.13: A posteriori Burgers’ study: Dynamic Smagorinsky. The
global magnitude kϕ of the numerical errors ϕ = εu on the resolved
velocity field before shock-formation, i.e. 0 ≤ t ≤ 1.2 (left) and
after shock-formation and during the decay, i.e. 1 ≤ t ≤ 10 (right).
(Symbols: see Table 7.1)



180 Chapter 7. The one-dimensional Burgers’ equation

10
−2

10
−1

10
0

10
−30

10
−25

10
−20

10
−15

10
−10

κ/κmax

E
ϕ

,n
u
m

I
(κ

,t
=

0
.5

)

10
−2

10
−1

10
0

10
−36

10
−34

10
−32

10
−30

10
−28

10
−26

κ/κmax

E
ϕ

,n
u
m

I
I
(κ

,t
=

0
.5

)

10
−2

10
−1

10
0

10
−12

10
−11

10
−10

10
−9

10
−8

10
−7

10
−6

10
−5

10
−4

κ/κmax

E
ϕ

,n
u
m

I
(κ

,t
=

1
.8

)

10
−2

10
−1

10
0

10
−14

10
−12

10
−10

10
−8

10
−6

κ/κmax

E
ϕ

,n
u
m

I
I
(κ

,t
=

1
.8

)

Figure 7.14: A posteriori Burgers’ study: Dynamic Smagorinsky. Snap-
shots of the spectrum Eϕ (κ, t) of the error ϕ = εu of the resolved
velocity field at times t = 0.5s (developing spectrum) (left) and
t = 1.8s (fully developed spectrum) (right). Remark again the
spurious modes generated by the nonlinear dynamic finite differ-
ence scheme. (Symbols: see Table 7.1)
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spectral derivatives of the finite difference solution are used for the evaluation of
the Germano procedure. Hence, the obtained dynamic model coefficient C2

s,fd is
considered as the optimal-model parameter for the current finite difference solution
of the Burgers’ LES-equation, and is thus not liable to finite difference errors in its
calculation. On the other hand, εu,numII represents the errors only due to the dis-
cretization errors in the evaluation of the Germano procedure itself. Therefore, the
obtained model coefficient C2

fd,fd is considered an approximation for C2
s,fd. Figures

7.13 and 7.14 show that the errors of the first type εu,numI are clearly dominant as
they differ almost an order of magnitude with the errors of the second type εu,numII .
Of course the latter are absent at the beginning of the simulation since the model
constant is still zero.
Apparently, the same conclusion applies for the linear explicit and implicit dynamic
schemes as for the Burgers’ study with the perfect subgrid model. It is observed
that the linear dynamic schemes recover the asymptotic order of accuracy in the
early stages of the simulation where the flow is still smooth and the spectrum does
not contain an inertial range yet. This is in contrast to the Dispersion-Relation Pre-
serving schemes, which are suboptimal for smooth flows. As the flow evolves into a
shock-wave, and thus the simulation shifts from DNS-resolution to LES-resolution,
the linear dynamic schemes adapt to the flow, leading to a slightly better accuracy
compared to the Dispersion-Relation Preserving schemes. Due to the calibration
procedure, the optimized schemes are de facto optimal for fully developed flows.
Both the dynamic and DRP schemes perform much better in comparison with the
standard central schemes. The 2nd -order explicit linear dynamic scheme achieves
an accuracy which is better than that of the 8th -order central scheme, whereas
the 4th -order explicit linear dynamic scheme obtains almost the quality of the 6th

-order standard Padé scheme. The 4th -order dynamic implicit finite difference ap-
proximation outperforms all other schemes and displays even better quality than
its Dispersion-Relation Preserving counterpart. Moreover, a general tendency is
observed toward slightly better performance of the linear dynamic schemes in com-
parison with the DRP schemes. Obviously, this is explained by the calibration of
the blending factor f in the dynamic schemes using the Burgers’ spectrum, instead
of a uniform spectrum.

Despite the fact that the 2nd -order nonlinear dynamic scheme still produces spu-
rious small scales that inevitably interact with all scales of motion in the solution, it
performs surprisingly better in combination with the dynamic Smagorinsky model
instead of with the perfect subgrid scale model. Although the exact reason for this
behaviour remains unclear, it is assumed that the creation of spurious scales com-
pensates the over-dissipative nature of the Smagorinsky model, resulting in a better
overall behaviour. Despite this unforeseen advantage, application of the nonlinear
scheme remains questionable for Large-Eddy Simulation.

Figures 7.15 and 7.16 show the error on the kinetic energy and on the dissipation
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rate. Notice again that the numerical error contributions εu,numI are dominant over
the contributions εu,numII . Results are analogous to the ones previously discussed.
Nevertheless, some remarkable behaviours occurs which requires further discussion.
The error on the kinetic energy εk,numI in Figure 7.15 shows that especially the 2nd

-order explicit linear dynamic scheme performs very well, as it reaches almost the
quality of the 6th -order standard Padé scheme. However, this is not observed for
the error on the dissipation rate εε,numI in Figure 7.16 where the 2nd -order explicit
linear dynamic scheme reaches approximately 10th -order accuracy. This is explained
by the fact that the error on the dissipation rate ε focusses more on the accuracy
of the small scales than does the error on the kinetic energy k. This emphasizes
the importance of looking at different error measures, since they indicate different
phenomena, and supports the findings of Meyers et al. [62]. Both numerical errors
on the kinetic energy as well as on the dissipation rate are represented in a semi-
logarithmic graph in order to make the differences clearly visible. However, it is not
possible to determine from such a graph whether εk,numI and εk,numII , or εε,numI

and εε,numII reinforce each other, or on the contrary, counteract with each other.
Nevertheless, it was verified that εk,numI or εk,numII were negative for all schemes,
except for the 2nd -order linear dynamic scheme and the 2nd -order DRP scheme.
Similarly, εε,numI and εε,numII remain negative for all schemes, without exception.
Since all numerical errors appear to have the same negative sign, it is concluded that
in general, the numerical errors I and II reinforce each other. The total numerical
error is given in Figure 7.17. Although the interaction of the different numerical
errors are represented by Figure 7.17, it might be more instructive to examine the
model coefficients Cs,fd and Cs,s. Figure 7.18 shows the relative error-percentages
between the model coefficients Cs,fd and Cs,s, and the deviation between Cs,fd and
Cfd,fd. These relative errors are defined by

∆C2
s =

C2
s,s − C2

s,fd

C2
s,s

(7.35)

∆C2
fd =

C2
s,fd − C2

fd,fd

C2
s,fd

(7.36)

Obviously, the value of the model coefficient Cs,fd is systematically overestimated
for the lower order schemes. Indeed, the dynamic procedure tries to compensate for
the reduced effectiveness of the subgrid dissipation which results from using these
low-order schemes. In other words, it responds to numerical shortcomings of the
finite difference approximations used in the LES-equation. This connects closely to
the results of Meyers et al. [61]. Moreover, the influence of discretization errors on
the derivatives used in the Germano procedure, systematically results in a under-
estimation of the dynamic model coefficient Cfd,fd compared to Cs,fd. However, it
is observed that the 2nd -order central scheme in particular, tends to overestimate
Cfd,fd compared to Cs,fd at the end of the simulation. This effect seems to disappear
for higher order schemes. Nevertheless, it may be concluded that the overestima-
tion of theoretically optimal parameter Cs,fd is compensated by the underestimation
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Figure 7.15: A posteriori Burgers’ study: Dynamic Smagorinsky. Nu-
merical errors on the kinetic energy εk before shock-formation, i.e.
0 ≤ t ≤ 1.2 (left) after shock-formation and during the decay, i.e.
1 ≤ t ≤ 10 (right). (Symbols: see Table 7.1)
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Figure 7.16: A posteriori Burgers’ study: Dynamic Smagorinsky. Nu-
merical errors on the dissipation rate εε before shock-formation, i.e.
0 ≤ t ≤ 1.2 (left) after shock-formation and during the decay, i.e.
1 ≤ t ≤ 10 (right). (Symbols: see Table 7.1)
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Figure 7.17: A posteriori Burgers’ study: Dynamic Smagorinsky. Total
numerical error on the kinetic energy εk = ∆ku (upper) and on
the dissipation rate εε = ∆ε (lower) before shock-formation, i.e.
0 ≤ t ≤ 1.2 (left) after shock-formation and during the decay, i.e.
1 ≤ t ≤ 10 (right). (Symbols: see Table 7.1)
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Figure 7.18: A posteriori Burgers’ study: Dynamic Smagorinsky. Rela-
tive error of Cs,fd compared to Cfd,fd (left), indicating the influence
of the finite difference errors on the value of the dynamic model co-
efficient, and the relative error of Cfd,fd compared to Cs,fd (right),
which indicates the influence of finite difference errors on the calcula-
tion of the dynamic constant in the Germano procedure. (Symbols:
see Table 7.1)

of the approximation Cfd,fd, resulting in a reduced subgrid dissipation and higher
levels of kinetic energy in the LES-simulation. This is advantageous for the overall
performance of the Smagorinsky model which is observed to be too dissipative.

It may be clear by now that numerics and modeling are completely entwined in
Large-Eddy Simulations, especially when using more advanced subgrid models such
as the dynamic model. In the previous discussion the influence of the interactions
between numerics and modeling on the level of the model constant was shown. Al-
though this gave more insight in how the dynamic Smagorinsky model is influenced
by the adopted numerics, it does not indicate whether a better numerical approx-
imation of the model will lead to a better overall performance. Therefore, further
investigation is required by comparing the finite difference LES solutions with those
of the filtered DNS instead of with the pseudo-spectral LES. In the first approach,
the total error εu,tot, which includes numerical errors and modeling errors, is taken
into account, whereas in the latter approach only the total numerical error εu,num is
taken into account. Figure 7.19 shows the error between the fully developed energy
spectra at t = 1.8s of the finite difference LES-solutions on the one hand, and the
filtered DNS-solution or the pseudo-spectral LES-solution on the other hand. In
accordance with the results of the perfect subgrid scale model, the total numerical
error decreases with increasing accuracy of the numerical schemes. However, almost
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Figure 7.19: A posteriori Burgers’ study: Dynamic Smagorinsky. Nu-
merical error εϕ,num (κ, t) (upper) and total error εϕ,tot (κ, t)
(lower) on the energy spectrum of the velocity field ϕ = Eu (κ, t)
at fully developed inertial range (t = 1.8s). (Symbols: see Table
7.1)
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Figure 7.20: A posteriori Burgers’ study: Dynamic Smagorinsky. The
total error, i.e modeling error and numerical error, on the kinetic
energy (left) and the dissipation rate (right). Note that the error
on the dissipation rate gives relatively more information about the
quality of the small scales in comparison with the error on the kinetic
energy. (Symbols: see Table 7.1)

the opposite is observed when looking at the total error which involves interactions
of numerical and modeling errors. Surprisingly, the lower-order schemes appear to
achieve a better total accuracy for almost the entire range of resolved scales in com-
parison with higher order methods, despite the fact that their numerical accuracy
is worse. This proves that partial cancellation between the numerical errors and
modeling errors can occur as shown by Meyers et al. [60, 59]. This conclusion is
supported by the results of the total error on the kinetic energy, depicted in Figure
7.20. However, the results of the total error on the dissipation rate in Figure 7.20
show a different behaviour. There, the more accurate schemes lead to smaller total
errors on the dissipation rate. As mentioned before, the dissipation rate reveals
more information about the small scales, whereas the kinetic energy gives relatively
more information about the large scales. Hence, the observed error behaviour of
both quantities seem to confirm that the more accurate schemes tend to predict
better the small scales despite the fact that the modeling error severely interferes
with the total accuracy. Moreover, this supports the initial hypothesis of this dis-
sertation, that it is important to guarantee numerical quality on the small scales
since the dynamic Germano procedure or the multi-scale technique uses just that
information.
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7.6 Conclusions and Discussion

In the current chapter, the ability of the dynamic finite difference approximations
was demonstrated for the Large-Eddy Simulation of Burgers’ turbulence. It was
clearly shown that the linear dynamic finite difference approximations seamlessly
adapt according to the spectral content of the flow, leading to a quasi-optimal finite
difference technique that achieves a significant accuracy improvement compared to
standard schemes. The observed properties are enumerated below.

i. All results clearly indicate that for smooth solutions, which are very well re-
solved on the computational grid with DNS-resolution, the linear dynamic
schemes adapt to obtain maximum accuracy on the large scales and thus
recover the corresponding asymptotic behaviour of the high-order standard
central schemes. This is clearly an advantage over the Dispersion-Relation
Preserving schemes, which remain suboptimal for those flows, since they are
designed a priori under the assumption of a uniform spectrum distribution in
the entire wavenumber range.

ii. Further it was observed that during transitional stages, where the Fourier
modes of the small scales are energized, the linear dynamic schemes seamlessly
optimize themselves according to the developing energy spectrum.

iii. Once the flow is fully developed, exhibiting a full inertial range, the linear
dynamic schemes act like the Dispersion-Relation Preserving schemes, mini-
mizing the dispersion errors for all scales in the wavenumber range κ ∈

[
0, 2π

3∆

]
.

It may be concluded from the present study that the very good performance of the
presented linear dynamic schemes might make them a useful tool for numerically
accurate Large-Eddy Simulations of turbulent flows. This will be further investigated
in the next chapter.

Despite the promising results, it was observed that the linear dynamic schemes
lead to an additional computational cost of about 20% in the current framwork of
Burgers’ turbulence.6 The computational overhead mainly arises due to the eval-
uation of the scheme’s dynamic coefficients at each Runge-Kutta step. However,
several strategies are available for decreasing significantly the computational cost,
making the method competitive for pratical computations. Such strategies are pre-
sented in Section 8.6 for the Large-Eddy Simulation of the Taylor-Green Vortex
flow, since reducing the computational overhead is more relevant and challenging
for three-dimensional Navier-Stokes turbulence than for one-dimensional Burgers’
turbulence.

In contrast to the linear dynamic schemes, the nonlinear dynamic schemes did
not succeed in obtaining the theoretically expected quality due to the generation

6Remark that the computational overhead depends heavily on the efficiency of the implemen-
tation.
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of spurious Fourier modes by nonlinear interactions of the scheme. These spurious
scales were seen to be distributed along the entire wavenumber range, and strongly
affect the accuracy of the solution. Consequently, these findings suggest that the
use of nonlinear schemes may not be appropriate for the purpose of accurate flow
simulations. This important conclusion is not restricted to the presented nonlinear
dynamic schemes, but applies most likely to all nonlinear schemes in general.

Finally, it was observed from the Large-Eddy Simulations with the dynamic
Smagorinsky model, that modeling issues and numerical issues are entirely entwined.
Indeed, numerical accuracy improvement did not lead systematically to a smaller to-
tal error, since numerical errors and modeling errors might cancel each other. These
results support the conclusions of Meyers et al. [60, 59]. Although it is tempting to
resign to application of lower order discretizations in combination with dissipative
models, trusting upon contingent cancellation of different errors, the current author
strongly defends a more systematic approach where better models are developed,
in combination with highly-accurate discretizations, such that both modeling and
numerical errors are well under control.
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8
The Taylor-Green Vortex Flow

In the previous chapter, an elaborate quality assessment was performed on the
application of the dynamic finite difference schemes for the Large-Eddy Simulation
of Burgers’ turbulence. Although the one-dimensional Burgers’ turbulence is only a
simplified model for the Large-Eddy Simulation of three-dimensional Navier-Stokes
turbulence [11, 12], the results clearly showed the excellent performance of the linear
dynamic finite difference schemes in an LES-like environment. It was concluded that
the developed linear dynamic schemes might provide an advantageous and viable tool
for application in the Large-Eddy Simulation of real turbulent flows.

In the current chapter, the previous quality assessment is continued by examining
the performance of the linear dynamic finite difference schemes for the Large-Eddy
Simulation of the three-dimensional Taylor-Green Vortex flow. The Taylor-Green
Vortex flow develops from the initial steady state motion of a single vortex structure
which becomes unstable and eventually grinds down into successively smaller eddies,
leading to turbulence [80]. Hence, it is perhaps one of the simplest prototype systems
in which to study the breakdown process of large-scale vortices into successively
smaller ones and may be interpreted as transition into turbulence. The selected flow
is therefore very well suited for the current quality assessment of the dynamic finite
difference approximations. As mentioned in the previous chapter, only the linear
dynamic finite difference schemes are investigated further. Indeed, the nonlinear
dynamic schemes are considered inappropriate for LES, since they inevitably produce
spurious numerical turbulence.

191
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8.1 Taylor-Green Vortex: transition into

turbulence

The viscous Taylor-Green Vortex flow, first introduced in 1937 by Taylor et
al. [80], is considered as a prototype system that describes the fundamental produc-
tion of small-scale eddies due to the mechanism of vortex-line stretching in homo-
geneous isotropic turbulence [68, 8]. It is perhaps one of the simplest environments
in which to study the breakdown process of large-scale vortices into successively
smaller ones and the resulting homogeneous isotropic turbulence.
According to Brachet et al. [8], the generalized Taylor-Green Vortex is defined as
the periodic three-dimensional incompressible flow, governed by the Navier-Stokes
equations (2.2) and the continuity equation (2.1) in non-dimensional form, which
develops from the initial solenoidal velocity field u (x, t = 0)

u1 (x, 0) =
2√
3

sin

(
γ +

2π

3

)
sin (x1) cos (x2) cos (x3)

u2 (x, 0) =
2√
3

sin

(
γ − 2π

3

)
cos (x1) sin (x2) cos (x3)

u3 (x, 0) =
2√
3

sin (γ) cos (x1) cos (x2) sin (x3) .

(8.1)

The parameter γ, here referred to as the shape factor, determines the shape and
orientation of the initial anisotropic vortex structure.1 The initial pressure field
p (x, t = 0), that follows from the initial solenoidal velocity field, is obtained by
solving the Poisson equation (2.3), yielding

p (x, 0) = p0 +
1 − cos (2γ)

24
[cos (2x1) cos (2x2) + 2 cos (2x3)]

+
2 + cos (2γ) +

√
3 sin (2γ)

48
[cos (2x1) cos (2x3) + 2 cos (2x2)]

+
2 + cos (2γ) −

√
3 sin (2γ)

48
[cos (2x2) cos (2x3) + 2 cos (2x1)], (8.3)

where the arbitrary mean pressure component p0 is chosen zero in this work.
It was pointed out by Orszag [68] and Brachet et al. [8] that the Taylor-Green Vortex

1Note, that the initial vorticity is obtained by ω (x, 0) = ∇× u (x, 0), yielding

ω1 (x, 0) = −2
√

3

3

„
sin (γ) − sin

„
γ − 2π

3

««
cos (x1) sin (x2) sin (x3)

ω2 (x, 0) = −2
√

3

3

„
sin

„
γ +

2π

3

«
− sin (γ)

«
sin (x1) cos (x2) sin (x3)

ω3 (x, 0) =
2
√

3

3

„
sin

„
γ +

2π

3

«
− sin

„
γ − 2π

3

««
sin (x1) sin (x2) cos (x3) ,

(8.2)

whereas the total helicity H is exactly zero since H (t = 0) = u · ω ≡ 0.
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flow is characterized by various symmetries. For instance, all cross-section planes
xj = nπ, ∀n ∈ N are stress-free and mirror-symmetric at all times, regardless the
value of the shape factor γ in the initial conditions. This implies that the flow is
actually confined in an impermeable box 0 ≤ xj ≤ π such that no fluid crosses the
boundary planes xj = nπ, ∀n ∈ N. Hence, the Taylor-Green Vortex flow in the
periodic box 0 ≤ xj ≤ L , L = 2π is determined by reflecting the velocity and
pressure profiles, obtained in the impermeable box, around these planes. Moreover,
the flow within the impermeable box appears to be invariant under rotations of π
about any axis defined by x1 = x2 =

(
n + 1

2

)
π, x2 = x3 =

(
n + 1

2

)
π or x1 = x3 =(

n + 1
2

)
π.

Taking the Fourier transform of the initial velocity field (8.1), one obtains the Fourier
coefficients

û1 (κ, 0) = i
2√
3

sin

(
γ +

2π

3

) 3∏

k=1

υk,1δ (κk − 1) − δ (κk + 1)

2

û2 (κ, 0) = i
2√
3

sin

(
γ − 2π

3

) 3∏

k=1

υk,2δ (κk − 1) − δ (κk + 1)

2

û3 (κ, 0) = i
2√
3

sin (γ)
3∏

k=1

υk,3δ (κk − 1) − δ (κk + 1)

2
,

(8.4)

where δ (κ) denotes the Dirac delta-function and the coefficient υk,j , j = 1, 2, 3
takes the value −1 if k = j or 1 if k 6= j. Expression (8.4) clearly indicates that the
initial condition (8.1) corresponds to eight Fourier modes, located at the positions
κ = (±1,±1,±1). Obviously, condition (8.1) represents a single vortex scale which
is located at the spherical wavenumber-shell with radius |κ| =

√
3. It was further

verified that the Fourier modes related to the pressure field are located on two
spherical wavenumber-shells with respective radius |κ| =

√
6 and |κ| = 3. The total

amount of kinetic energy in the initial flow is obtained from equation (2.20) as

k (t = 0) =
1

8π3

2π∫∫∫

0

1

2
ui (x, 0)ui (x, 0)dx =

1

8
, (8.5)

whereas the total amount of initial dissipation is obtained by expression (2.22) as

ε (t = 0) =
1

8π3

2π∫∫∫

0

ν
∂ui

∂xj
(x, 0)

∂ui

∂xj
(x, 0)dx =

3

4

1

Re
. (8.6)

Brachet et al. [8] defined the Reynolds number as Re = 1/ν, noting that the length
and velocity scales of the initial flow (8.1) are of order 1. In the early times of the
simulation, the large-scale vortex flow is highly organized and thus characterized as
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laminar. However, the non-linear term in the Navier-Stokes equations (2.2) starts to
generate successively smaller structures which interact with the large scales. If the
Reynolds number is large enough, this results into process of vortex-stretching and
eventually into a breakdown of the large scales into smaller ones which is interpreted
as turbulence. Therefore, the Taylor-Green flow is believed to describe the funda-
mental process of transition into isotropic turbulence. Obviously, this transitional
behaviour is determined entirely by the choice of the Reynolds number. Brachet et
al. [8] observed that for Re ≥ 500 the small-scale structures in the Taylor-Green flow
undergo profound changes. Indeed, for high Reynolds numbers, the turbulent flow
becomes nearly isotropic at t = 7s with no memory to the initial conditions, whereas
the dissipation rate reaches a maximum at t = 9s. However, for low Reynolds num-
bers, the maximum dissipation occurs earlier, whereas the flow retains some of its
initial anisotropy at all times. A clear inertial range behaviour was observed once
Re ≥ 1000. For t → ∞, the isotropic turbulence, which is not maintained by an
external forcing, dies out due to viscosity.
In the current dissertation, the Reynolds number is set to Re = 1500, whereas the
shape factor is chosen γ = 0 according to Brachet et al. [8]. The resulting turbulent
flow field is expected to exhibit a clear inertial range that corresponds with the Kol-
mogorov scaling κ−5/3. Similarly to the Burgers’ equation, a reference solution is
obtained from a pseudo-spectral Direct Numerical Simulation of the selected Taylor-
Green Vortex flow at Re = 1500. The computational requirements, which determine
the numerical setup, and the obtained results are discussed further.

8.2 Numerical Simulation of the Taylor-Green

Vortex

8.2.1 Direct Numerical Simulation

Computational Requirements

As discussed in Chapter 2, the smallest turbulent scales, characterized by the Kol-
mogorov scale η, entirely determine the numerical requirements for the accurate and
consistent Direct Numerical Simulation of a turbulent flow. In particular, several
relations were derived in Paragraph 2.4.4 that allow to deduce the minimal compu-
tational requirements in case of homogeneous isotropic turbulence in a periodic box
2π × 2π × 2π. Since the fundamental physics of the turbulent Taylor-Green flow at
Re = 1500 are not different from those of the isotropic turbulence, these relations
are used to determine the computational setup for the Direct Numerical Simulation.
According to relation (2.35) the Reynolds number Re is related to that based on the
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taylor micro-scale Reλ such that2

Reλ =
√

2Re ≈ 55. (8.7)

Based on Reλ, the minimal required number of uniformly distributed nodes N in
each Cartesian direction is then readily obtained from expression (2.96) by

N ≈ 8

π

(
3

20

) 3
4 π

ζ

(
12

Reλ
+ 0.43

)
Re

3
2
λ , (8.8)

where ζ = κη/2κmax denotes the ratio of the grid spacing to the Kolmogorov length
scale. Although aliasing is only rigorously precluded if ζ ≤ 1/3 [67], Pope [70] ar-
gued that ζ ≈ 2.1 suffices in order to ensure that the aliasing errors are negligible.
Substituting ζ = 2.1 and Reλ ≈ 55 into (8.8), it is found that the required number
of nodes in one Cartesian direction must be at least N ≈ 242. Since the Fast-Fourier
Transformations, used in the pseudo-spectral method, are most efficient if the num-
ber of nodes N is a power of 2, N is converted to the next power-of-two number,
which is N = 28 = 256. The grid cutoff wavenumber is then κmax = π

∆ = 128.

Hence, the Direct Numerical Simulation of the periodic Taylor-Green Vortex
flow at Re = 1500 (Reλ ≈ 55) is performed on the uniform computational grid
with 2563 nodes. This implies that only the first 1283 Fourier modes in the flow
field are resolved.3 Since the DNS simulation is expected to be well-resolved and
thus aliasing may be assumed negligible [70], no explicit de-aliasing is performed.
As mentioned before, the partial derivatives are calculated in Fourier space by a
pseudo-spectral numerical method in order to exclude finite difference errors from
the solution. Further, the skew-symmetric formulation is adopted for the discretiza-
tion of the nonlinear term, as discussed in Section 4.3.1. The Navier-Stokes equations
are solved by means of the Pressure-Correction algorithm (4.3.4), whereas the Pois-
son equation for the pressure-correction is solved in Fourier-space according to the
methods discussed in that same section. The time stepping is performed with the
explicit 4-stage Runge-Kutta method with standard coefficients

[
1
4 , 1

3 , 1
2 , 1
]
, which

was discussed in Section 4.2. The time step is determined by relation (2.103), i.e.

∆t =
θ

2

π2

16

(
20

3

) 3
2
{

Reλ

(12 + 0.43Reλ)2

}
, (8.9)

2Note that this relation seems to underestimates Reλ. For instance, Brachetet al. [8] reported
for the Taylor-Green flow at Re ≈ 3000 a Taylor Reynolds number Reλ ≈ 110, whereas relation
(2.35) predicts Reλ ≈ 77. Both values differ approximately with a factor

√
2. Most likely, Brachetet

al. [8] defined Reλ on the longitudinal Taylor scale λf instead of the transversal Taylor scale λg,
since both length scales compare as λf = λg

√
2.

3Note that the current settings compare well to those of Brachet et al. [8], who used a uniform
grid with N3 = 2563 for the Direct Numerical Simulation of the Taylor-Green Vortex flow with
Reynolds numbers Re = 100, 200, 400, 1600, 3000.
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in which the timescale ratio is denoted by θ = ∆t/τη. In order to guarantee the
numerical accuracy of the adopted 4-stage Runge-Kutta time-stepping method, the
timescale ratio must be chosen very small. In this study, the value θ = 0.02 is chosen
such that the dispersion and dissipation errors related to the adopted Runge-Kutta
method remain sufficiently low. The time-step is then readily obtained from (8.9)
and rounded off to ∆t = 0.005s. The corresponding Courant-Friederichs-Lewy and
Neumann conditions do not exceed their initial values, i.e.

CFL ≤ ∆t max |u (x, 0)|
∆

≈ 0.2037 ≪ 1 (8.10)

Neu =
2ν∆t

∆2
≈ 0.011 ≪ O (1) . (8.11)

during the simulation.4

Results of the Direct Numerical Simulation.

The decay of the homogeneous isotropic turbulence, that results from the Taylor-
Green flow, is followed until t = 14.25s. Figure 8.1 illustrates the spectrum devel-
opment of the resolved velocity field u (x, t = tj) in Taylor-Green Vortex flow. It is
seen that the energy spectrum develops from a single characteristic Fourier mode
toward an entire range of modes.5 As suggested by Pope [70], the Taylor-Green
flow is expected to be well-resolved for ζ = κη/2κmax = 2.1. Despite the fact that
the DNS is slightly under-resolved since it does not satisfy the Nyquist criterion,
the solution is believed to be sufficiently accurate as a reference. Indeed, Brachet
et al. [8] estimated the error of the DNS at Re = 1600 on the same computational
grid, in the order of only a few percents.
The temporal evolution of the decaying kinetic energy and the dissipation rate are
shown in Figure 8.2. It is verified that the evolution of the dissipation rate ε (t) is
in very good agreement with that obtained by Brachet et al. [8] for Re = 1600. One
observes that the dissipation rate ε (t) rises relatively sharply around t ≥ 4s and
reaches a maximum at t = 9s. Brachet et al. [8] reported that the Taylor-Green flow
pattern becomes heavily distorted around t = 7s, which may be interpreted as tur-
bulence. The coherent structure itself, finally breaks down around t = 8s. Therefore,
it is expected that for t ≥ 9s, the flow is fully turbulent and nearly-isotropic. The
energy spectrum at maximum dissipation rate is shown in Figure 8.3. It is clearly

4The Direct Numerical Simulation was performed on a cluster of 2 Dell PowerEdge 1950 servers,
each with 2 Quad-core Intel Xeon X5355 processors (16 CPU’s), at 2.66GHz and required approx-
imately 16GB of RAM-memory. The velocity data and pressure data were stored each 0.25s in the
simulation and required a storage capacity of approximately 810MB per file. The total simulation
required approximately 451.58 CPU-hours of computational time.

5Note that the tail of the energy-spectrum at κ > κmax consists of insignificant Fourier
modes [70] that lay outside the sphere |κ| = κmax.
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Figure 8.1: Direct Numerical Simulation of Taylor-Green Vortex. An
impression of the temporal evolution of the energy spectrum E (κ, t)
in the Taylor-Green Vortex flow.
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Figure 8.2: Direct Numerical Simulation of Taylor-Green Vortex. Tem-
poral evolution of the decaying kinetic energy k (t) (left) and the
rate of dissipation ε (t) (right). Notice the maximum dissipation at
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Figure 8.3: Direct Numerical Simulation of Taylor-Green Vortex. The
energy spectrum at maximum dissipation E (κ, t = 9s) (left) and the
scaling exponent α (t) (right). Notice that only for 9 ≤ t ≤ 10 α (t)
approximates the value 5/3 (· · · ) quite accurately.

observed that the inertial range and the dissipation range overlap due to the mod-
erate Reynolds number Re = 1500. As a consequence, the classic Kolmogorov −5/3
scaling is hardly distinguished. In order to verify if the turbulent energy spectrum
is indeed characterized by an inertial range behaviour, Brachet et al. [8] proposed
to fit a functional energy spectrum of the form,6

E (κ, t) = Γ (t)κ−α(t)e−β(t)κ, (8.12)

where Γ (t) correspond to Ckε
2/3. Fitting this model spectrum to the numerical

energy spectra in the wavenumber range 1
10κmax ≤ κ ≤ 2

3κmax should allow to dis-
tinguish the separate contributions of the inertial range and the dissipation range by
examining the exponents α and β. The calculated exponent α, which is expected to
return approximately the Kolmogorov exponent 5/3, is shown in Figure 8.3 for the
time interval 7 ≤ t ≤ 14.25. Obviously, for 7 ≤ t ≤ 8 the exponent α (t) ≥ 5/3. At
t = 8s, a sudden decrease is observed due to the breakdown of the coherent struc-
ture. For 9 ≤ t ≤ 10 the exponent α (t) appears to approximate quite accurately the
Kolmogorov value. However, once t ≥ 10, the slope of the spectrum remains signifi-
cantly lower than expected, and reaches a local minimum at t = 12s. Although the
inertial range is only established for the relatively small time-window 9 ≤ t ≤ 10, the
Large-Eddy Simulation of the Taylor-Green Vortex flow at Re = 1500 may suffice for
the intended quality assessment of the dynamic finite difference schemes. Moreover,
the significant variations of the scaling exponent may form an extra challenge for

6Note that this prescription is known as the Pao spectrum.
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demonstrating the adaptivity of the dynamic schemes.
Finally, the development of the vortex structures in the Taylor-Green Vortex flow at
time levels t = 5 and t = 9 is illustrated in Figures 8.4 and 8.5, by an iso-surface that
satisfies the λ2-criterion7 of Jeong et al. [44]. The vortex-structures are coloured by
the value of the helicity H = u · ω = u · (∇× u). Note that a positive helicity H

corresponds to a clockwise screw motion, whereas a negative helicity corresponds to
a counter-clockwise screw motion. It is observed that at t = 5, the Taylor-Green
Vortex flow is still well organized and thus laminar, whereas at t = 9, the large-scale
coherent structures have been broken down into smaller vortices and the flow is
turbulent.

8.2.2 Large-Eddy Simulation

The Large-Eddy Simulation of the periodic Taylor-Green Vortex flow at Re =
1500 (Reλ ≈ 55) is performed on the uniform computational grid with 643 nodes
and with grid cutoff wavenumber κmax = π/∆ = 32. As discussed in Chapter 3,
the LES-equations with the double decomposition is preferred in this dissertation,
in order to rigorously preclude aliasing and eliminate numerical errors in the high-
wavenumber region [32, 49, 19, 56, 55, 35, 36, 9, 10]. This choice was extensively
motivated in Chapters 3 and 4. Hence, the nonlinear terms are explicitly filtered
with the sharp cutoff filter with cutoff wavenumber κc = 2

3κmax ≈ 21, as suggested
by Orszag [67]. In order to close the LES-equations, the dynamic Smagorinsky
model by Germano et al. [30] was adopted, in which the magnitude of the subgrid
dissipation is automatically adapted according to the resolved scales in the flow.
Hence, the subgrid model is only engaged when the resolution is not sufficient any
longer in order to resolve all scales of motion. Moreover, the dynamic procedure is
expected to return to the theoretical value Cs = 0.17 found by Lilly [52] as soon as
the flow is fully turbulent. A more detailed analysis of this model was already given
in Paragraphs 3.3.2 and 3.3.3. Further, the skew-symmetric formulation is adopted
for the discretization of the nonlinear term, as motivated in Section 4.3.1. The
Navier-Stokes equations are solved by means of the Pressure-Correction algorithm
of Section 4.3.4, in which the Poisson equation for the pressure-correction is solved in
Fourier-space. The time stepping is performed again with the explicit 4-stage Runge-
Kutta method with standard coefficients

[
1
4 , 1

3 , 1
2 , 1
]
, as derived in Section 4.2. The

time step is set to ∆t = 0.005s, corresponding to that of the Direct Numerical
Simulation. The numerical errors due to the time-stepping are thus expected to be

7The λ2-criterion of Jeong et al. [44], identifies a vortex as a region where

λ2

`
S2 + Ω2´

< 0, (8.13)

where the λ2 (·)-operator denotes the intermediate eigenvalue of the symmetric tensor S2+Ω2. This
criterion is believed to be more reliable and accurate than the Q-criterion which defines a vortex as

Q =
1

2

`
Ω2 − S2´

> 0. (8.14)
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Figure 8.4: Direct Numerical Simulation of Taylor-Green Vortex. Well-
orgainezed coherent vortex structures in the Taylor-Green Vortex flow
at t = 5s, obtained with the λ2-criterion and coloured by the Helicity
H .
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Figure 8.5: Direct Numerical Simulation of Taylor-Green Vortex. The
turbulent small-scale vortex structures in the Taylor-Green Vortex
flow at t = 9s, obtained with the λ2-criterion and coloured by the
Helicity H .
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very small. It was verified that the Courant-Friederichs-Lewy condition does not
exceed its initial value, i.e.

CFL ≤ ∆t max |u (x, 0)|
∆

≈ 0.05162 ≪ 1, (8.15)

during the simulation.8

Similarly to the Large-Eddy Simulation of Burgers’ equation, some particulari-
ties must be addressed concerning the implementation of the linear dynamic finite
difference approximations for the Large-Eddy Simulation of the Taylor-Green Vor-
tex flow. Indeed, since the spectra related to fields ui and ujui are substantially

different, the constant value of the dynamic coefficients cdyn
k,n (expression (6.20)) in

the linear dynamic finite difference approximations of the advective operator is not
the same as the one obtained for the divergence operator. As a consequence, the
skew-symmetric formulation of the nonlinear term, constructed by a fixed weighting
between the advective and divergence formulation, looses the a priori conservation
of kinetic energy. Hence, in order to preserve the skew-symmetry property, and thus
the conservation of kinetic energy, the same dynamic coefficient cdyn

k,n obtained for
the the advective operator is used for the divergence operator. As motivated before,
such an approach is equivalent with the traditional discretization approach of the
skew-symmetric operator using standard schemes or prefactored optimized schemes.
In the current study, each partial derivative in the Navier-Stokes equations or the
Poisson equation is discretized straightforwardly by using the appropriate dynamic
finite difference approximation. However, this implementation involves the calcula-
tion of multiple dynamic coefficients at each Runge-Kutta step. An overview of all
required dynamic coefficients in the system of equation is given below.

i. The finite difference approximation of the nonlinear term in the Navier-Stokes
equations requires the calculation of 9 dynamic coefficients, i.e. one per com-
ponent of the skew-symmetric operator.

ii. Similarly, 3 dynamic coefficients are needed for the finite difference approxi-
mation of the pressure gradient in the Navier-Stokes equations.

iii. Since the molecular viscosity term uses the Laplacian of the velocity field,
again 9 coefficients must be determined.

iv. As discussed in Section 4.3.2, the subgrid force is implemented compactly ac-
cording to expression (4.87). Therefore, this discretization requires 9 dynamic

8The Large-Eddy Simulations with the dynamic Smagorinsky model were performed on a single
Dell PowerEdge 1950 server which consists of 2 Quad-core Intel Xeon X5355 processors (8 CPU’s) at
2.66GHz. The velocity data and pressure data were stored each 0.25s in the simulation and required
a storage capacity of approximately 10.6MB per file. The total simulation required approximately
5.26 CPU-hours of computational time for the spectral LES simulation.
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coefficients for the partial derivatives of the turbulent viscosity. Neverthe-
less, for the discretization of the Laplacian part in expression (4.87), the same
coefficients are used as those obtained in for the molecular term.

v. As mentioned earlier, the Pressure-Correction algorithm is used in order to
impose the continuity constraint. This algorithm involves the solution of the
Poisson equation for the pressure correction. For the construction of the Pois-
son matrix, the stencils of the Poisson operator must be specified a priori and
thus 9 values of the dynamic coefficients must be determined in advance. How-
ever, since the pressure correction field is not known a priori, these coefficients
can only be obtained from the pressure at the previous subiteration level.

vi. Finally, for the approximation of the divergence operator of predictor velocity
u∗

i in the Poisson equation, 3 dynamic coefficients must be calculated.

The above considerations bring the total amount of required dynamic coefficients
per Runge-Kutta step to 42. Note that the optimal blending factors f , used in the
enlisted dynamic approximations, can be found in Tables 6.3, 6.4 and 6.5. Obviously,
the proposed straightforward application of the dynamic finite difference method will
most likely lead to a significant computational overhead. However, in order to make
a fair analysis of the costs involved (see Section 8.6), the accuracy of the scheme
must be evaluated first. In order to appraise unambiguously the quality of the linear
dynamic finite difference method for Large-Eddy Simulation, a reliable framework
for evaluation of the numerical errors must be defined first.

8.3 Quantification of numerical errors

Before assessing the quality of the dynamic finite difference approximations for
the Large-Eddy Simulation of the Taylor-Green Vortex, the main definitions for eval-
uating and quantifying the errors are repeated here briefly for the three-dimensional
case.

Using the same terminology as in Section (7.3), the total error on a variable of
interest φ is decomposed into a modeling error contribution and a numerical error
contribution, leading to the expressions (κc = π

∆c
, κmax = π

∆)

εφ,total (κc, κmax) = φs

(
κη,

3

2
κη

)
− φfd (κc, κmax) (8.16)

εφ,model (κc, κmax) = φs

(
κη,

3

2
κη

)
− φs (κc, κmax) (8.17)

εφ,num (κc, κmax) = φs (κc, κmax) − φfd (κc, κmax) , (8.18)

Recall that in case of proper de-aliasing, the numerical error reduces exactly to the
errors due to the finite difference discretization.
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In analogy with the work of Meyers et al. [62], the different errors are then
quantified using the mathematics-based and physics-based error definitions. Two
mathematics-based error definitions are used in the present chapter, i.e. the spectrum
of the pointwise error εφ of a variable φ

Eεφ
(κ, t) = ε̂φ (κ, t) ε̂φ

∗ (−κ, t) , (8.19)

and its magnitude kεφ

kεφ
(t) =

κmax∫∫∫

0

Eεφ
(κ, t) dκ. (8.20)

Recall that the magnitude kεφ
corresponds to the L2-norm,9 as L2 (t) =

√
kϕ (t)

and that this error has always a positive sign.
Further, three global physics-based error norms are introduced, i.e. the total error
on the longitudinal integral length scale L11, the total error on the kinetic energy
εk, and the total error on the dissipation rate εε, given by respectively

εL = ∆L11 =

κmax∫∫∫

0

κ−1∆Eu (κ) dκ (8.22)

εk = ∆k =

κmax∫∫∫

0

∆Eu (κ) dκ (8.23)

εε = ∆ε =

κmax∫∫∫

0

κ2∆Eu (κ) dκ, (8.24)

in which the error on the energy spectrum of the velocity field is given by

εE (κ, t) = ∆Eu (κ, t) , (8.25)

Remark that the sign of εk and εε could be either positive or negative, enabling to
see interactions between different error sources.
It is emphasized that the mathematics-based error definitions reflect both amplitude
and phase errors in the solution whereas the physics-based definitions represent only
errors on the amplitude. Both error definitions are used further for analyzing the
performance of finite difference schemes, and interactions with the subgrid model.

9The L2-norm is defined as

L2 (t) =

vuuut 1

8π3

2πZZZ

0

[εφ (x, t)]2 dx. (8.21)
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Symbols - Simulations

+ filtered DNS � 6th -order tridiagonal Padé
× pseudo-spectral LES • 2nd -order static DRP scheme
◦ 2nd -order central N 4th -order static DRP scheme
△ 4th -order central � 4th -order static tridiagonal DRP Padé scheme
▽ 6th -order central −−−−− 2nd -order explicit linear dynamic scheme
⊲ 8th -order central −−− 4th -order explicit linear dynamic scheme
⊳ 10th -order central −·−· 4th -order implicit linear dynamic scheme

Table 8.1: Simulation overview. Overview of the various a priori or a posteriori
simulations of Tayor-Green vortex, and their corresponding symbol
notation.

8.4 A priori study of the Taylor-Green Vortex

Before assessing the quality of the linear dynamic schemes, described in Appendix
C, in a real Large-Eddy Simulation of the Taylor-Green flow, first an a priori quality
assessment is performed for these schemes. In the following, the 2nd -order explicit
linear dynamic finite difference approximation, the 4th -order explicit linear dynamic
finite difference approximation and the 4th -order implicit linear dynamic finite dif-
ference approximation are considered. Following the work of Chow et al. [19], the
error spectra of the various finite difference errors on the skew-symmetric formula-
tion of the nonlinear force are compared. These finite difference errors are obtained
by subtracting the nonlinear force, calculated with the finite difference approxima-
tions, from the nonlinear force calculated with the spectral derivatives in Fourier
space. Note that the described method corresponds to the mathematics-based er-
ror definition. Besides the error spectrum Eϕ (κ, t), where ϕ denotes the nonlinear
force, its magnitude kϕ is also evaluated. As mentioned before, the latter is related
to the L2-norm by L2 (t) =

√
kϕ (t). Table 8.1 gives an overview of the performed

simulations, and the corresponding symbol notation used in the plots to follow.
Figure 8.6 presents the global magnitude as function of time. At the early stages

of the simulation (t ≤ 2) where the Taylor-Green flow is still laminar and the small
scales contain little or no energy, the 2nd - and 4th -order linear explicit and 4th -
order implicit dynamic schemes almost collapse with their asymptotic counterparts,
i.e. the 4th - and 6th -order explicit standard central schemes and the 6th -order tridi-
agonal Padé scheme. The corresponding 2nd - and 4th -order Dispersion-Relation
Preserving schemes and the 4th -order Dispersion-Relation Preserving Padé scheme,
achieve 2nd - respectively 4th -order accuracy for the subgrid force in the laminar flow
region. Despite the fact that the flow remains laminar until approximately t ≈ 6−7,
the simulation shifts rapidly from DNS-resolution to LES-resolution around t ≈ 2,
due to production of low-energy small scales by the nonlinear term that fall beyond
the grid cutoff wavenumber. It is observed that the linear dynamic schemes seam-
lessly adapt according to the developing energy spectrum and approach the DRP
schemes. The accuracy of both the dynamic and the DRP schemes appears to be
better than that of the standard asymptotic schemes. The same conclusions apply
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Figure 8.6: A priori results on Taylor-Green Vortex. The global magni-
tude kϕ of the finite difference error on the subgrid force ϕ of the
laminar Taylor-Green Vortex flow, i.e. 0 ≤ t ≤ 5 (left) and the tran-
sitional and turbulent Taylor-Green flow, i.e. 5 ≤ t ≤ 14.25 (right).
(Symbols: see Table 8.1)

during the flows’ transition into turbulence (5 ≤ t ≤ 8.5). Once the flow has become
fully turbulent, i.e. for t ≥ 9 such that the energy spectrum tends to display a
weak inertial range behaviour, the linear dynamic schemes adapt according to the
turbulent flow characteristics and achieve higher accuracy in comparison with the
standard asymptotic schemes. Notice that the error levels of both the Dispersion-
Relation Preserving schemes and dynamic finite difference schemes collapse. More
specific, the 2nd -order explicit linear dynamic scheme and the standard 6th -order
schemes perform equally good, whereas the accuracy of the 4th -order explicit lin-
ear dynamic scheme reaches that of the 10th -order central scheme. Further, the
4th -order implicit linear dynamic scheme obtains very high accuracy and is clearly
better than the standard 6th -order tridiagonal Padé scheme. It may be obvious
that for t → ∞ the dynamic schemes should eventually reduce to the corresponding
asymptotic standard schemes. However, in order to illustrate this, the simulation
should be continued much longer.
The results in Figure 8.6 are confirmed by looking at snapshots of the error spectrum
Eϕ (κ, t), displayed in Figure 8.7, for the laminar flow at t = 1s (DNS-resolution),
and after the Taylor-Green Vortex has gone into turbulence at maximum dissipation
i.e. t = 9s (LES-resolution). Both energy spectra differ significantly. At t = 1s the
linear dynamic schemes recover almost the behaviour of their asymptotic counter-
parts, i.e. the 4th - and 6th -order explicit standard central schemes and the 6th -order
tridiagonal Padé scheme. Clearly, the linear dynamic schemes are now optimized
for the largest resolved scales which contain most of the energy. This is in contrast
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Figure 8.7: A priori results on Taylor-Green Vortex. Snapshots of the
spectrum Eϕ (κ, t) of the finite difference error on the subgrid force
ϕ of the laminar Taylor-Green Vortex flow at t = 1s (left) and the
fully turbulent Taylor-Green flow at t = 9s (right). (Symbols: see
Table 8.1)

to the equivalent Dispersion-Relation Preserving schemes which are optimized for a
predefined fully developed spectrum and therefore reach 2nd - respectively 4th -order
accuracy. At t = 9s the flow is fully turbulent and the linear dynamic schemes have
adapted accordingly. The dynamic schemes achieve the same accuracy as the 2nd -
respectively 4th -order standard asymptotic schemes for the largest resolved scales,
whereas the error on the smallest resolved scales is significantly reduced compared
to the traditional central schemes. As expected, similar performance for the DRP
schemes is observed here. Although only the results for the nonlinear force were
shown, the same conclusions apply for the a priori results on the pressure gradient
and the viscous force.

To illustrate the adaptivity of the linear dynamic schemes, Figure 8.8 shows the
various ratio’s of the dynamic coefficient to its Taylor value cdyn

k,n /c∗k,n, for the 4th

-order linear implicit dynamic finite difference approximation of the skew-symmetric
operator 1

2uj
∂ui
∂xj

+ 1
2

∂ujui

∂xj
, as function of time. First, the scheme recovers the asymp-

totic order of accuracy at the initial stages of the simulation, since cdyn
k,n /c∗k,n → 1.

Further, a sharp increase of the coefficient is observed around 1 ≤ t ≤ 2. This stems
from the fact that the simulation shifts around that time from DNS-resolution to
LES-resolution, although the flow is still laminar. Notice that the coefficients of the
different contributions increase independently from each other, due to the anisotropy
of the initial Taylor-Green Vortex flow. This clearly illustrates the behaviour of the
linear dynamic schemes to seamlessly adapt according to the specific properties of the
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Figure 8.8: A priori results on Taylor-Green Vortex. Ratio of the dynamic
coefficient to its Taylor value cdyn

k,n /c∗k,n = cdyn
n /c∗n for the 4th -order

explicit linear dynamic approximation of the skew-symmetric opera-
tor on the nonlinear term 1

2
uj

∂ui

∂xj
+ 1

2

∂ujui

∂xj
. The coefficients for i = 1

(left) and i = 3 (right) with j = 1 (−−−−−), j = 2 (−−−) and
j = 3 (−·−·) are illustrated. The theoretically obtained coefficient
(Table 6.3) for the 4th -order dynamic implicit scheme (· · · ), is shown
for comparison. Note that due to the symmetry of the Taylor-Green
flow some contributions appear to have the same dynamic coefficient,
more specific (i, j) = (1, 1) = (2, 2), (1, 2) = (2, 1), (1, 3) = (2, 3) and
(3, 1) = (3, 2).
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Figure 8.9: A posteriori results on Taylor-Green Vortex. Percentage of
resolved kinetic energy ∆kr (t) % (left) and amount of resolved dis-
sipation εr (t) (right). Distinguish the DNS solution (−−−−−), the
filtered DNS solution (−−−) and the spectral LES solution obtained
with the dynamic Smagorinsky model (−·−·).

flow on the computational grid, including global anisotropy. Hence, such schemes
might provide an additional advantage for accurate simulations of more complex
anisotropic flows. In the interval 5 ≤ t ≤ 8, where the flow goes into transition, the
dynamic coefficients seem to reach a plateau. Once the coherent structures break
down (t ≈ 8), the dynamic coefficients cdyn

k,n approach the theoretical value found
in Table 6.3. Nevertheless, it is observed that some coefficients remain below this
value, whereas others rise above this value. Finally, it is mentioned that due to
the symmetries of the flow, some of the obtained coefficients for different contribu-
tions of the skew-symmetric operator are equal. Therefore, these coefficients are not
explicitly shown in Figure 8.8.

8.5 A posteriori study of the Taylor-Green Vortex

The quality assessment on the dynamic finite difference schemes for the Large-
Eddy Simulation of the Taylor-Green Vortex flow, using the dynamic Smagorinsky
model, is initiated by a verification of Pope’s criterion [70] that ideally 80% of the
kinetic energy is resolved in a good Large-Eddy Simulation. Figure 8.9 compares
the amount of resolved kinetic energy kr of the filtered DNS solution and the so-
lution of the spectral LES, both on the grid 643, to that of the reference DNS on
the grid 2563. Moreover, Figure 8.9 shows the amount of resolved dissipation εr.
Although the filtered DNS solution indicates that at least 98% of the kinetic energy
may ideally be resolved on the 643 LES-grid, the spectral LES solution resolves only
about 78% of that kinetic energy. Hence, despite the use of a dynamic procedure,
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Figure 8.10: A posteriori results on Taylor-Green Vortex. The modeling
errors on the global kinetic energy (−−−−−), the global dissipation rate
(−−−) and the longitudinal integral length scale (−·−·) during the
simulation (left). The profile of the dynamic Smagorinsky constant
Cs (−−−−−) for the pseudo-spectral LES as function of time is shown
and compared with the theoretical Lilly constant Cs = 0.17 (· · · )
(right).

the Smagorinsky model appears to be too dissipative.
In the following, the modeling error contributions and the numerical error contri-
butions are separated by the decomposition of Vreman et al. [87] and Meyers et
al. [60, 59, 61]. The modeling error on the kinetic energy, the dissipation rate and
the longitudinal integral length scale are shown in Figure 8.10. The mainly positive
error-profiles confirm that the dynamic Smagorinsky model is too dissipative such
that the kinetic energy of the spectral LES solution is smaller than that of the filtered
DNS solution. Surprisingly, the dynamic model coefficient Cs of the pseudo-spectral
LES, shown in Figure 8.10 remains below the theoretical value Cs = 0.17, found
by Lilly [52]. This makes sense since the Lilly constant is calibrated for an infinite
Reynolds number, whereas the Reynolds number of the current Taylor-Green flow
quite low. Hence, the dynamic procedure seems to compensate quite well for this low
Reynolds behaviour. It is observed that the dynamic procedure engages the model
around t ≈ 1, although the flow is still laminar. Indeed, the simulation shifts there
from DNS-resolution to LES-resolution. Notice that the dynamic Smagorinsky con-
stant in Figure 8.10 displays a very similar behaviour than the dynamic coefficients
in the linear dynamic schemes in Figure 8.8.

The quality assessment of the dynamic finite difference approximations is con-
tinued by comparing the numerical errors with those of the standard schemes and
DRP schemes. Figure 8.11 represents the global magnitude of the numerical er-
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rors (related to L2-norm) on the velocity field u (x, t) and the pressure field p (x, t).
Moreover, Figure 8.12 illustrates the more detailed energy spectrum of the numer-
ical errors at the early stages of the simulation (t = 1s) and when the flow is fully
turbulent (t = 9s). Recall that these mathematics-based error definitions reflect
information about the amplitude and the phase of the solution. Apparently, the
same conclusion applies for the linear explicit and implicit dynamic schemes, as
for the Burgers’ study. It is observed that the linear dynamic schemes recover the
asymptotic order of accuracy in the early stages of the simulation, i.e t ≤ 2s, where
the flow is still smooth and resolved with DNS-resolution. This is in contrast to the
Dispersion-Relation Preserving schemes, which are suboptimal there. As soon as the
resolution of the grid becomes inadequate to resolve all scales in the flow (the sim-
ulation shifts from DNS-resolution to LES-resolution at t ≈ 2s), the linear dynamic
schemes adapt to the instantaneous solution and achieve an accuracy comparable
to that of the Dispersion-Relation Preserving schemes at all times 2 ≤ t ≤ 14.25.
In particular, the 2nd -order explicit linear dynamic scheme is observed to achieve
the accuracy of the 8th -order central scheme, which is better than that of the cor-
responding 2nd -order static DRP scheme. The latter has a comparable accuracy
to that of the standard 6th -order explicit scheme. The 4th -order explicit linear
dynamic scheme obtains the same quality as the corresponding DRP scheme, which
fluctuates between that of the 8th - and 10th -order standard scheme. In contrast
to both explicit dynamic schemes, the quality of the 4th -order dynamic implicit
finite difference approximation remains somewhat below the 4th -implicit DRP Padé
scheme, although both clearly outperform all other schemes. Looking at Figure
8.12, one can see that in the early stages of the simulation (t = 1s), the schemes are
clearly adapted to the low-wavenumber content on the computational grid, whereas
for the fully developed turbulent flow (t = 9s), the schemes are optimized for the
inertial range turbulent spectrum.
An explanation for the reduced quality of the 4th -order implicit dynamic scheme
compared to the 4th -order implicit DRP scheme, might be found in the optimal
value of the blending factor. Although the optimal blending factors fopt were deter-
mined assuming a fully developed generic one-dimensional Taylor-Green spectrum
for the velocity field (see Section 6.3.4), the corresponding dynamic coefficient, given
in Table 6.3, appears to exceed the value of the equivalent coefficient in case of the
uniform spectrum, given in Table 6.1. This opposes to the general tendency which
indicates that for steeper (negative) slopes of the inertial range spectrum, the dy-
namic coefficient is expected to be smaller. Moreover, it is observed in Figure 8.8,
that some dynamic coefficients may even exceed the theoretical value in Table 6.3
during the simulation. Although this behaviour most likely causes the suboptimal
behaviour of the 4th -order implicit dynamic scheme, an exact explanation for the
anomalous values of the dynamic coefficient remains unclear at this time. Since
some dynamic coefficients may exceed their theoretical value during the simulation,
as observed in Figure 8.8, a limitation of the dynamic coefficient to this value might
be advantageous in more practical computations. Moreover, a sensitivity study of
the blending factor for different schemes may shed a new light to the matter.
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Figure 8.11: A posteriori results on Taylor-Green Vortex. The global mag-
nitude kϕ of the numerical errors on the resolved velocity field, i.e
ϕ = εu (upper) and the pressure field ϕ = εp (lower) of the lami-
nar Taylor-Green Vortex flow, i.e. 0 ≤ t ≤ 5 (left) and the transi-
tional and turbulent Taylor-Green flow, i.e. 5 ≤ t ≤ 14.25 (right).
(Symbols: see Table 8.1)
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Figure 8.12: A posteriori results on Taylor-Green Vortex. Snapshots of
the spectrum Eϕ (κ, t) of the error ϕ = εu of the resolved velocity
field of the laminar Taylor-Green Vortex flow at t = 1s (left) and
the fully turbulent Taylor-Green flow at t = 9s (right). (Symbols:
see Table 8.1)

The impact of the numerics on the physics-related quantities such as the longi-
tudinal integral length scale, the kinetic energy and the dissipation rate is demon-
strated in Figures 8.13-8.15. It is observed that the performance of the finite
difference schemes appears to be less clear and less obvious, than for e.g. the Burg-
ers’ study. This is mainly due to two factors. First, it is understood from definitions
(8.22)-(8.24) that e.g. the error on the longitudinal integral length scale contains
more information on the accuracy on the amplitude of the largest resolved scales,
whereas the error on the dissipation rate contains more information on the accuracy
of the amplitudes on the smallest resolved scales. Secondly, since these physics-based
errors are not strictly positive and may cross zero, several local minima are observed
in the accuracy plots of the longitudinal integral length scale, the dissipation and the
kinetic energy. These rather occasional minima may mask things a little. Neverthe-
less, in general, the same tendencies are distinguished as in the previous discussion.
Focusing on the early laminar stages of the simulation, i.e 0 ≤ t ≤ 2, the dynamic fi-
nite difference schemes approach the asymptotic order of accuracy as expected. This
is reflected by the accuracy on the longitudinal integral length scale, the kinetic en-
ergy and the dissipation rate. Further, in the transitional region of the flow, i.e.
5 ≤ t ≤ 7 the 2nd -order explicit dynamic scheme and the 2nd -order DRP scheme
perform slightly worse than the standard 2nd -order scheme. Focusing on the turbu-
lent regime of the Taylor-Green flow (9 ≤ t ≤ 14.25), the error on the integral length
scale clearly shows the good performance of all dynamic schemes and their corre-
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Figure 8.13: A posteriori results on Taylor-Green Vortex. Numerical er-
rors on the longitudinal integral length scale εL, in the laminar
Taylor-Green Vortex flow, i.e. 0 ≤ t ≤ 5 (left) and the transi-
tional and turbulent Taylor-Green flow, i.e. 5 ≤ t ≤ 14.25 (right).
(Symbols: see Table 8.1)
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Figure 8.14: A posteriori results on Taylor-Green Vortex. Numerical er-
rors on the kinetic energy εk, in the laminar Taylor-Green Vortex
flow, i.e. 0 ≤ t ≤ 5 (left) and the transitional and turbulent Taylor-
Green flow, i.e. 5 ≤ t ≤ 14.25 (right). (Symbols: see Table 8.1)
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Figure 8.15: A posteriori results on Taylor-Green Vortex. Numerical er-
rors on the dissipation rate εε, in the laminar Taylor-Green Vortex
flow, i.e. 0 ≤ t ≤ 5 (left) and the transitional and turbulent Taylor-
Green flow, i.e. 5 ≤ t ≤ 14.25 (right). (Symbols: see Table 8.1)

sponding static DRP equivalents, compared to the standard asymptotic schemes.
While a similar behaviour might be distinguished for the error on the kinetic en-
ergy, the largely fluctuating error-results on the dissipation rate remain inconclusive.

As mentioned before, the numerics and modeling are completely entwined in
Large-Eddy Simulations, especially when using more advanced subgrid models such
as the dynamic model. Although in the previous discussion a clear numerical im-
provement is shown for more accurate finite difference errors, it does not indicate
whether a better numerical approximation of the model will lead to a better over-
all performance. Therefore, the total numerical errors are investigated, that is the
combination of the numerical errors and the modeling errors on the physics-related
quantities. The total errors on the longitudinal integral length scale and the ki-
netic energy for the transitional Taylor-Green flow at t ≥ 5s are shown in Figure
8.16. In accordance with the results of Meyers et al. [60, 59], contingent cancellation
of numerical errors and modeling errors are witnessed for certain finite difference
schemes. Nevertheless, these cancellations depend on the specific quantity which is
examined. For instance, the 2nd -order standard scheme leads to the largest errors
on the longitudinal integral length scale in case the Taylor-Green flow is fully tur-
bulent, whereas it gives the smallest errors for the kinetic energy in that interval.
However, both error graphs indicate that the 4th -order scheme produces almost
the best results, whereas the implicit standard or Dispersion-Relation Preserving
Padé schemes do not perform as well. Therefore, it is unfeasible to draw any sound
conclusion from these plots, except that cancellation may occur rather occasionally
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Figure 8.16: A posteriori results on Taylor-Green Vortex. Total errors
on the longitudinal integral length scale εL (left) and the kinetic
energy (right) εk, in the Taylor-Green Vortex flow. (Symbols: see
Table 8.1)

than systematically.
Despite the fact that numerical errors and modeling errors interfere, highly accu-
rate numerical schemes for LES are believed to be necessary in order to properly
apply the subgrid models that rely on good small scale information, rather than on
contingent cancellation of different error sources.

8.6 Computational Cost

Although the results of the linear dynamic finite difference schemes are very
promising, the current implementation of the method requires the calculation of
approximately 42 dynamic coefficients, leading inevitably to a significant computa-
tional overhead. It was found for the Large-Eddy Simulation of the Taylor-Green
Vortex, that the total computational time was about 68% higher for the dynamic
schemes in comparison with the DRP schemes and the standard schemes. Despite
the very good performance of the dynamic schemes, an overhead of 68% may be
considered prohibitive for practical industrial computations. Nevertheless, this pre-
mature conclusion must be placed in perspective. In the current work, the dynamic
finite difference schemes were implemented straightforwardly and rigorously. This
implies that each of the 42 dynamic coefficients were calculated at each Runge-Kutta
step, that is 4 times per time step. However, it might sufficient to calculate each
dynamic coefficient only once per time step, or even once per few time steps, depend-
ing on the time increment ∆t. Indeed, since the time scale ratio θ = ∆t/τη must
be chosen sufficiently small in order to avoid numerical dissipation, one can expect
that the flow physics do not change much during one time step. Hence, evaluating
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the coefficients each θ time steps might be sufficient, e.g. in the current study, ev-
ery 10 time steps. Moreover, the proposed number of 42 dynamic coefficient may
be reduced, saving again some computational cost. These strategies are illustrated
hereafter.
Consider the variable θs, which indicates the required CPU-time per Runge-Kutta

step for a Large-Eddy Simulation, using a finite difference method with prede-
fined stencil coefficients. Similarly consider the variable θd, which indicates the
required CPU-time per Runge-Kutta step for a Large-Eddy Simulation using a fi-
nite difference method with dynamic, real-time calculated stencil coefficients. Then,
∆θ = θd − θs represents the computational overhead for the calculation of Nc dy-
namic coefficients per Runge-Kutta step. Further, assume a q-stage Runge-Kutta
method for the time-integration of the Large-Eddy Simulation over Nt time steps.
The computational CPU-time per Runge-Kutta step θd can now be expressed as
function of θs, i.e.

θd = θs + ∆θ
q′

q

N ′
t

Nt

N ′
c

Nc
, (8.26)

where the ratio q′/q determines the number of evaluations per q stages, N ′
t/Nt

determines the total number of evaluations per Nt time steps, and N ′
c/Nc determines

the number of coefficients on a total of Nc that are calculated. Figure 8.17 illustrates
the reduction of the computational overhead for the Large-Eddy Simulation of the
Taylor-Green Vortex flow in the current dissertation with q = 4,Nt = 2850 and
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Nc = 42, assuming N ′
c = Nc. For example, if all dynamic coefficients (N ′

c
Nc

= 1) are

evaluated only once every 2 time steps, i.e. q′

q = 1
4 and

N ′

t
Nt

= 1
2 , the computational

overhead is only 8.5%, which is a substantial reduction compared to the original
68%. If all dynamic coefficients are only evaluated every θ = 10 time steps ( q′

q =

1
4 and

N ′

t
Nt

= 1
10), i.e. after dissipative time scale τη, the overhead is only 1.7%.

Moreover, if one evaluates only a fraction of the dynamic coefficients and adjust the
others as soon as the change of the monitored coefficient becomes significant, then
the computational overhead might be reduced even more. Obviously, the various
strategies make the dynamic schemes relatively cheap compared to their excellent
quality, such that they are competitive with the Dispersion-Relation Preserving
schemes. Such strategies will be investigated in more detail in future work.

8.7 Conclusions and Discussion

In the current chapter, the potential of the linear dynamic finite difference ap-
proximations was demonstrated for the Large-Eddy Simulation of the Taylor-Green
Vortex flow. The main conclusions that were obtained for the Large-Eddy Simulation
of Burgers’ turbulence also hold for the Large-Eddy Simulation of the more realis-
tic Taylor-Green turbulence. It was observed again that the linear dynamic finite
difference approximations seamlessly adapt according to the instantaneous proper-
ties of the flow, leading to a quasi-optimal finite difference technique that achieves
a significant accuracy improvement compared to the standard asymptotic schemes.
More specific, at the early stages of the simulation, the dynamic schemes recover
the asymptotic order of accuracy of the standard schemes, which is optimal since
the flow is well resolved with DNS-resolution. In contrast, the Dispersion-Relation
Preserving schemes are suboptimal if the flow is well-resolved. Once the resolution
becomes inadequate to resolve all scales of motion in the (still laminar) flow, the
dynamic schemes adapt according to the resolved physics. Moreover, it was shown
in the a priori study that the scheme was certainly sensitive to anisotropy in the
flow, which could be an additional advantage for the simulation of more complex
flows. Once the flow is fully turbulent, the dynamic schemes perform similarly to
the Dispersion-Relation Preserving schemes by minimizing the magnitude of the dis-
persion errors in the flow. These conclusions confirm that the dynamic schemes are
certainly viable for numerically accurate Large-Eddy Simulations of turbulent flows.
Although the method is still confined to the relatively simple periodic Taylor-Green
Vortex flow, it is expected to be useful for more complex flows in more complex
geometries. However, for such flows, it might be necessary to limit the value of the
dynamic coefficient to a predefined value, in order to prevent possible suboptimal
behaviour. Finally, it was observed that the computational overhead of the dynamic
finite difference schemes is significant if all dynamic coefficients are evaluated at each
Runge-Kutta step. In order to alleviate this problem, a strategy was proposed that
could reduce the overhead to only a few percents of the total simulation time. This
strategy will be further investigated in future work.



To know that we know what we

know, and to know that we do not

know what we do not know, that is

true knowledge.

Copernicus, Nicolaus

9
Synthesis and Conclusions

In the current dissertation, a novel family of dynamic finite difference schemes was
developed which allow numerically accurate Large-Eddy Simulations of turbulent
flows. The main philosophy behind these dynamic finite difference schemes is to
achieve an optimal accuracy for all resolved scales of motion in the flow, rather than
focusing only on the asymptotic order of accuracy for the largest resolved scales.
This approach implies that the dynamic finite difference approximations minimize
the total magnitude of the truncation error and thus preserve the global dispersion
relation for all Fourier modes in the entire wavenumber range. The construction of
the dynamic finite difference approximations relies on the determination of an op-
timal value for the preceding coefficient in the discretized leading order truncation
term by means of a sampling-based dynamic procedure. Although this procedure
was originally proposed in [89, 88, 22, 46] for modeling purposes, it is successfully
applied here in a new, alternative way. Indeed, in the new sampling-based dynamic
procedure, the Taylor series expansions of any basic finite difference approximation
are compared on two different grid resolutions. The method allows to extract a
nearly optimal value for the coefficient in the leading order truncation term, pro-
vided that a blending factor f is predefined, which regulates the sensitivity of the
procedure to the small scales in the resolved flow and can thus be seen as a calibra-
tion parameter for the resulting dynamic scheme.

After clarifying the motivation for the current work in Chapter 1, an elaborate
discussion on the physical problem definition and the mathematical constraints,
which form the basic challenge in this work, was conducted in Chapters 2 and 3.
The various standard numerical methods, that are typically used in LES, were in-
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troduced in Chapter 4 and an appraisal of these techniques was given. Further,
Chapter 5 provided a preliminary investigation into the ability of the new sampling-
based dynamic procedure for obtaining higher accuracy. In order to minimize the
global magnitude of the truncation error, an optimal dynamic coefficient was deter-
mined for each partial differential equation. The proposed approach succeeded in
obtaining a significant accuracy improvement for the simple numerical simulation
of a two-dimensional laminar cavity flow (Re = 400). Although the results were
found to be very promising and encouraging, it was argued that refining the pro-
posed approach, by applying it to each derivative separately instead of to the entire
partial differential equation, might be beneficiary. This lead to the development of
the dynamic finite difference approximations presented in the subsequent chapters.

Chapter 6 was devoted to the construction of a family of dynamic low-dispersive
finite difference approximations for an arbitrary partial derivative. An explicit and
implicit family of dynamic low-dispersive finite difference approximations was con-
structed by combining Taylor series expansions on two different grid resolutions.
Moreover, a linear and a nonlinear variant were derived from the averaging pro-
cedure, used in the sampling-based dynamic procedure. The accuracy of the con-
structed schemes was thoroughly analyzed in Fourier space by means of the modi-
fied wavenumbers. Since one of these variants is nonlinear, a multiple-wave Fourier
analysis of the transfer function is done in analogy with the work of [27]. The an-
alytically obtained Fourier characteristics clearly revealed the large potential of the
linear dynamic finite difference approximations, whereas for the nonlinear variant,
the present study indicated some fundamental shortcomings due to the production
of spurious scales. The constructed dynamic schemes involve a blending factor f ,
that regulates the sensitivity of the procedure to the smallest resolved scales and
for which an appropriate value must be predefined. By adopting a generic energy
spectrum of the resolved flow field, a procedure was proposed to retrieve the optimal
value of the blending factor. Due to the assumption of the generic energy spectrum
for turbulent flows, this optimal value might be considered as applicable for a wide
range of Large-Eddy Simulations of turbulent flows.
Although the developed dynamic schemes share similarities with the prefactored
Dispersion-Relation Preserving schemes of e.g. Tam et al. [79], Kim et al. [45] and
many others [37, 2, 6], their behaviour is more refined. Indeed, the stencil-coefficients
of the developed dynamic finite difference approximations are dynamically adapted
during the simulation through the dynamic coefficient, which is determined accord-
ing to the characteristics of the resolved flow field. As a consequence, the Fourier
characteristics of the dynamic finite difference approximations are adjusted during
the simulation such that the global dispersion error for the resolved flow field is
minimized. This is in contrast with the prefactored Dispersion-Relation-Preserving
schemes, which have predefined Fourier characteristics.

The developed dynamic finite difference approximations, and their numerical



221

quality, have been extensively investigated for the Large-Eddy Simulation of Burg-
ers’ turbulence in Chapter 7 and the Large-Eddy Simulation of the Taylor-Green
vortex flow at Re = 1500 in Chapter 8.
The quality assessment on Burgers’ turbulence, which is considered as a surrogate
model for real turbulence, allowed examining the dynamic schemes rigorously and
unambiguously in the context of LES and DNS. Indeed, similarly to Navier-Stokes
turbulence, Burgers’ turbulence exhibits an inertial range in the energy spectrum,
although the small-scale dynamics of Burgers turbulence and real turbulence are sub-
stantially different. Nevertheless, Large-Eddy Simulation of such a one-dimensional
flow is perfectly suited for the evaluation of the dynamic schemes. Besides the
quality-assessment in an a priori study, the performance was examined in an a pos-
teriori study using a perfect subgrid scale model and a dynamic Smagorinsky-like
model. The obtained results confirmed the theoretical findings. It was concluded
that the excellent performance of the linear dynamic schemes might be advanta-
geous for numerically accurate Large-Eddy Simulations of turbulent flows. In con-
trast, the nonlinear dynamic schemes were found to be inappropriate for LES, due
to the production of spurious numerical scales. These spurious scales were seen to be
distributed along the entire wavenumber range, and strongly affected the accuracy
of the solution.
As a consequence of the latter conclusion, only the performance of the linear dy-
namic finite difference approximations was assessed in Chapter 8 for the Large-Eddy
Simulation of the three-dimensional Taylor-Green vortex flow at Re = 1500. This
flow is considered to describe the fundamental process of transition into turbulence,
since the initial laminar large scale vortex grinds down into successively smaller
scales, eventually leading to nearly isotropic turbulence. Hence, such a flow is chal-
lenging for the quality assessment of the linear dynamic finite difference schemes,
since they must continuously adapt to the changing flow. The results were found to
be very similar to those obtained in the Burgers’ turbulence.

The main conclusions on the quality of the developed linear dynamic finite differ-
ence schemes for the Large-Eddy Simulation of Burgers’ turbulence and the Large-
Eddy Simulation of the Taylor-Green vortex flow at Re = 1500 are enlisted below.

i. First it is concluded that the linear dynamic schemes systematically recover
their potential asymptotic order of accuracy, regardless of the value of the
blending factor f , provided that all scales of motion in the flow field are very
well resolved on the computational grid. This implicates that the grid resolu-
tion is at least 8 times smaller then the smallest resolved scales in the laminar
or turbulent flow field. Hence, the linear dynamic finite difference approxima-
tions adapt according to the smooth solution of the flow, focusing on maximum
accuracy of the largest resolved scales. Obviously, this is an advantage over the
Dispersion-Relation Preserving schemes which remain suboptimal in that case,
since they are designed a priori for non-smooth solutions on the computational
grid.
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ii. Once the resolution becomes inadequate to represent well all scales of mo-
tion in the laminar or turbulent flow, the linear dynamic schemes adjust the
dynamic coefficient according to the flow solution on the computational grid.
The sensitivity with witch the linear dynamic scheme responds to small scale
information in the energy spectrum is predefined by the blending factor f .
Since the blending factor merely calibrates the linear dynamic scheme to be
optimal for a fully developed turbulent flow, characterized by the Kolmogorov
inertial range spectrum, it is expected to be applicable for a wide range of
turbulent flows. Further, the Fourier characteristics of the dynamic finite dif-
ference approximation are adapted such that the global dispersion error in the
entire wavenumber range up to the filter cutoff is minimized. This corresponds
to the minimization of the magnitude of the Taylor series that determines the
entire truncation error.

iii. As soon as the flow is fully turbulent and the energy spectrum exhibits an iner-
tial range, both the linear dynamic finite difference schemes and the Dispersion-
Relation Preserving schemes perform very similar. In some cases, the dynamic
finite difference schemes tend to perform even better. In order to guarantee
the quality, it is recommendable to guard the value of the dynamic coefficient
during the simulation such that it does not exceed the coefficient of the static
dispersion-relation preserving schemes.

iv. Further, it was observed that the dynamic finite difference scheme is sensitive
to the anisotropy of the resolved flow field in the Large-Eddy Simulation of
the Taylor-Green vortex. This could be a particularly interesting feature for
the Large-Eddy Simulation of more complex and anisotropic flows, or for grids
with strongly different resolutions in each direction.

v. Finally, despite the substantial improvement in numerical accuracy obtained
by the linear dynamic finite difference schemes and other high-order schemes,
these schemes do not necessarily provide a more accurate solution of the
Large-Eddy Simulation. Indeed, in comparison with more accurate numerical
schemes, less accurate methods can lead to advantageous cancellation between
numerical errors and modeling errors, resulting into a reduction of the total
errors. These observations confirm the results in [60, 59, 61]. Although it is
tempting to resign to application of lower order discretizations in combination
with dissipative models, trusting upon contingent cancellation of errors, the
present work rather advocates to develop better models in combination with
highly-accurate discretizations such that both numerical errors and modeling
errors are controlled more systematically.

The former conclusions confirm that the developed family of dynamic finite dif-
ference approximations may provide a useful and viable tool for numerically accurate
Large-Eddy Simulations of turbulent flows. Although the current implementation
required a significant computational overhead, a strategy for reducing the compu-



223

tational overhead was suggested and illustrated in Chapter 8. The computational
overhead of the dynamic schemes in a few illustrated strategies was estimated to be
only a few percents larger than the prefactored schemes. Nevertheless, the present
work was mainly intended to provide a proof of concept, rather than an assessment
on the feasibility of the developed technique in an industrial environment.





It’s hard to make predictions, espe-

cially about the future.

Bohr, Niels

10
Future Perspectives

Although in this work the quality assessment on the developed dynamic finite differ-
ence method was constrained to the relatively simple periodic Burgers’ turbulence
and Taylor-Green vortex flow, it is expected to be equally accurate and viable for
the Large-Eddy Simulation of more complex flows in more complex geometries.1

However, this requires further research and development on several aspects of the
presented method.

First, a following necessary evolution of the current work involves the extension
of the dynamic finite difference approximations to non-uniform computational grids.
If the computational grid is structured, then the method can easily be extended by
transforming the Navier-Stokes equations from the non-uniform grid to the uniform
grid using the Jacobian transformation Tx→ξ, x, ξ ∈ R3. This approach, discussed
in Section 2.4.1, is often applied to Large-Eddy Simulations [82, 29]. On the other
hand, if the computational grid is unstructured, so that no such transformation is
possible, the construction of the schemes requires direct inclusion of the metrics of
the unstructured grid in the stencil definition of the schemes. This inevitably leads
to an increased complexity. Note that in principle, the extension of the dynamic
schemes toward more general grids is no different than that of traditional prefac-
tored high-order schemes. Moreover, special care must be taken for guaranteeing
the conservation properties of the schemes.

1Note that these expectations follow from the good results obtained in the laminar lid driven
cavity in Chapter 5. Moreover, this test case clearly indicates that the dynamic method is not
restricted to Large-Eddy Simulations.
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In addition to the previous topic, an appropriate boundary treatment must be
defined for the dynamic finite difference approximations in case of non-periodic com-
putational domains. Since the basic stencils of the dynamic schemes are in principle
no different than those of prefactored schemes, except for their variable coefficients,
the same approaches may be considered as discussed in Section 4.1.5. Only the
evaluation of higher derivatives in the expression for the dynamic coefficient at the
boundaries may impose some additional difficulties. However, since the constant
dynamic coefficients are averaged over the entire domain, it might be sufficient to
evaluate them only in the interior domain, away from the boundaries. Nevertheless,
such a hypothesis requires further investigation.

Besides these primary research topics described above, it may be interesting and
worthwhile to investigate more efficient implementations of the dynamic finite dif-
ference schemes, as suggested in Chapter 8. Moreover, evaluation of the constant
dynamic coefficient in the conservative formulation of the linear dynamic finite dif-
ference schemes (see Appendix B), may preclude the need of higher derivatives and
thus reduce the complexity and the computational cost.



Les mathématiques comparent les

phénomènes les plus divers et dé-

couvrent les analogies secrètes qui

les unissent.

Fourier, Joseph

A
Fourier Transformations

The purpose of this appendix is to provide the definition and the main proper-
ties of the general Fourier transformation, which is extensively used in the current
dissertation.

A.1 Definition

Consider the continuous function f (x) , x ∈ R3. The the definition of the Fourier
transform, adopted in this work,1 is then given by

f̂ (κ) = F {f (x)} =
1

(2π)3

∞∫∫∫

−∞

f (x) e−iκxdx, (A.1)

where κ ∈ R3 denotes the wavenumber vector in Fourier space.2 The inverse Fourier
transform is now defined as

f (x) = F
−1
{

f̂ (κ)
}

=

∞∫∫∫

−∞

f̂ (κ) eiκxdκ. (A.2)

The functions f (x) and f̂ (κ) are said to form a Fourier transform pair if the above
integrals converge. The exact form of the Fourier transform pair is determined by
the properties of the function f (x).

1Note that other definitions are possible. However, for further explanation the reader may refer
to the work of e.g. Bracewell [7].

2The definition of the Fourier transform pair in the time domain t ∈ R and the frequency
domain ω ∈ R are analogous.
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i. If f (x) , x ∈ R3 is a continuous aperiodic function, then the Fourier transform
f̂ (κ) , κ ∈ R3 is also a continuous aperiodic function.

ii. However, if f (x) , x ∈ R3 is a continuous periodic function with period Lj

in the directions j = 1, 2, 3, then the analytical expression of the Fourier
transform f̂ (κ) , κ ∈ R3 consists of an infinite sum of Dirac delta-functions.
Hence, the Fourier transform corresponds to a discrete aperiodic function f̂ (κ)
in which, κ = 2πk/Lj , k ∈ Z3. This property allows to write any continuous
periodic function f (x) as the infinite sum of discrete waves, called the Fourier
series, such that

f (x) =
∑

κ

f̂ (κ) eiκx. (A.3)

The former properties were derived under the assumption that f (x) is a continuous
function. In case f (x) is a discrete function, the former conclusions are still valid,
except that the Fourier transform f̂ (κ) is now a periodic function instead of an
aperiodic function. This forms the basis for the Nyquist-Shannon sampling theorem,
which is thoroughly discussed in Section 2.4.2. Summarizing, an aperiodic (periodic)
function corresponds to a continuous (discontinuous) function and vice versa under
the Fourier transform.

A.2 Properties

The most important relations between the functions f (x) and f̂ (κ) of the Fourier
transform pair are summed below.

i. Since f (x) is a real function, f̂ (κ) has conjugate symmetry such that

f̂ (κ) = f̂∗ (−κ) . (A.4)

ii. The Fourier transform is a linear operator, such that

F {a · f (x) + b · g (x)} = aF {f (x)} + bF {g (x)} . (A.5)

iii. The Fourier transform pair obeys the following scaling property

F {f (ax)} =
1

|a| f̂
(κ

a

)
. (A.6)

iv. The Fourier transform of the nth derivative of a function is defined as

F

{
∂nf (x)

∂xn
j

}
= inκn

j f̂ (κ) . (A.7)
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v. Multiplication property: the Fourier transform of the product of two functions
equals the convolution of the Fourier transforms of the functions, or

F {f (x) · g (x)} = F {f (x)} ∗ F {g (x)} . (A.8)

vi. Convolution property: the Fourier transform of the convolution of two func-
tions is equal to the product of (2π)3 and the Fourier transform of the functions,
i.e.

F {f (x) ∗ g (x)} = (2π)3 F {f (x)} · F {g (x)} . (A.9)

vii. Parseval’s theorems. Parseval’s first theorem, applied to real functions, states
that

∞∫∫∫

−∞

f (x) g (x) dx = (2π)3
∞∫∫∫

−∞

f̂ (κ) ĝ∗ (κ) dκ. (A.10)

The second theorem is a specific case of the first theorem and states

∞∫∫∫

−∞

f (x)2 dx = (2π)3
∞∫∫∫

−∞

f̂ (κ) f̂∗ (κ) dκ. (A.11)





The law of conservation of energy

tells us we can’t get something for

nothing, but we refuse to believe it.

Asimov, Isaac

B
Conservative dynamic finite difference

approximations

All linear finite difference schemes, including the linear dynamic scheme, are a priori
conservative since they can be rewritten as the discrete divergence of a certain
(higher-order) approximation of the velocity field. This approximation ua is then
defined in finite difference context as

∂nu

∂xn
(x) =

δnua

δxn
=

δn

δxn

(
u + ck∆

k δku

δxk
+ O

(
∆k+2

))
(B.1)

in which the central discrete derivate δn

δxn should have the minimal stencil width,
corresponding with the 2nd -order central approximation. The conditions for which
a compact discretization is achieved by successive discrete differentiation, were al-
ready discussed in section 4.3.2. ua is considered a higher-order reconstruction of
the velocity field by Taylor series expansion. It is verified that for the linear schemes,
the divergence and non-divergence formulations are equal on a discrete level. How-
ever, it can be understood that the nonlinear scheme is not written in an a priori
conservative formulation because the dynamic coefficient is pointwise varying. This
can be remedied by taking the divergence of a low-dispersive dynamic reconstruction
definition. Consider the general definition

ua (x) = u + ck∆
k δku

δxk
+ O

(
∆k
)

(B.2)
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The general dynamic coefficient is now extracted from this definition as

cdyn
k = c∗k

〈
δku

δxk

∣∣∣∣
∆2

− αk
(
1 − α2

)

1 − αk
fc∗∗k ∆2 δk+2u

δxk+2

∣∣∣∣
∆

δku

δxk

∣∣∣∣
∆
〉

w〈(
δku

δxk

∣∣∣∣
∆

− αk
(
1 − α2

)

1 − αk
fc∗∗k ∆2 δk+2u

δxk+2

∣∣∣∣
∆
)2〉

w

, (B.3)

where the averaging domain is denoted by the parameter w. If the averaging domain
w equals the entire computational domain, the coefficient of the linear dynamic finite
difference approximation should be recovered. On the other hand, if the averaging
domain consists of a box with length ∆, then the nonlinear dynamic coefficient is
retrieved as

cdyn
k = − L

M
=

c∗k

1 − αk
(
1 − α2

)

1 − αk
∆2fc∗∗k

δk+2u

δxk+2

∣∣∣∣
∆

δku

δxk

∣∣∣∣
∆

. (B.4)

Taking the divergence of this dynamic reconstruction series gives the conservative
formulation of the nonlinear dynamic scheme. The constants c∗k and c∗∗k remain
those of the non-conservative formulation. This way the modified wavenumbers
of the conservative and non-conservative formulation are identical, and thus the
expected accuracy should be preserved. However, in case of the linear dynamic
finite difference approximation, the value of the blending factor f in the conservative
or original formulation is not necessarily identical. Remark that calculation of the
dynamic coefficient from the conservative formulation is advantageous, since the
derivatives have more compact stencils, leading to less computational cost.



Setting an example is not the main

means of influencing others, it is the

only means.

Einstein, Albert

C
A selection of dynamic finite difference

approximations

The present appendix, describes in more detail, a selection of four dynamic fi-
nite difference approximations: the 2nd - and 4th -order explicit linear dynamic finite
difference approximations, the 2nd -order explicit non-linear finite difference approx-
imations and the 4th -order implicit linear dynamic finite difference approximation.
Note that hereafter, the coarse resolution is chosen twice the fine resolution such
that α = 2.

C.1 Second-order Explicit Dynamic Finite

Difference Approximation

C.1.1 The first derivative

The basic expression for both the linear and non-linear dynamic finite difference
approximations of the first derivative in a node u(xi) = ui is given by

∂u

∂x
(x) =

δu

δx
+ cdyn

1 ∆2 δ3u

δx3
. (C.1)
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n β0 ±β±1 ±β±2 ±β±3 ±β±4 k

1 0 −cdyn
1

+ 1

2

1

2
cdyn
1

2

3 0 −1 1

2
2

5 0 5

2
−2 1

2
2

Table C.1: Explicit 2nd -order dynamic scheme. Explicit 2nd -order dynamic
finite difference approximation for the 1st -order derivative (n = 1).
Note that βi = −β−i.

For the linear dynamic finite difference approximation, the constant coefficient cdyn
1

is calculated with expression (6.20), leading to

cdyn
1 = c∗1

〈(
δ3u

δx3

)2

− 4fc∗∗1 ∆2

(
δ5u

δx5

)(
δ3u

δx3

)〉

〈(
δ3u

δx3
− 4fc∗∗1 ∆2 δ5u

δx5

)2
〉 , (C.2)

whereas for the non-linear dynamic finite difference approximation, the constant
coefficient cdyn

1 is calculated with expression (6.21), leading to

cdyn
1 =

c∗1

1 − 4∆2fc∗∗1

δ5u

δx5

δ3u

δx3

. (C.3)

From Taylor expansion the values c∗1 = −1
6 and c∗∗1 = −1

4 are obtained. The dis-
cretization stencil for the basic scheme as well as for the derivatives in the calculation
of the dynamic coefficient are given in Table C.1 Note that the current formulation
of the non-linear derivatives is not conservative. However, Appendix B describes
how to construct a conservative variant of this formulation.

C.1.2 The second derivative

The basic expression for both the linear and non-linear dynamic finite difference
approximation of the second derivative in a node u(xi) = ui is given by

∂2u

∂x2
(x) =

δ2u

δx2
+ cdyn

2 ∆2 δ4u

δx4
. (C.4)
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n β0 β±1 β±2 β±3 β±4 k

2 6cdyn
2

− 2 1 − 4cdyn
2

cdyn
2

2

4 6 −4 1 2

6 −20 15 −6 1 2

Table C.2: Explicit 2nd -order dynamic scheme. Explicit 2nd -order dynamic
finite difference approximation for the 2nd -order derivative (n = 2).
Note that βi = β−i.

For the linear dynamic finite difference approximation, the constant coefficient cdyn
2

is calculated with expression (6.20), leading to

cdyn
2 = c∗2

〈(
δ4u

δx4

)2

− 4fc∗∗2 ∆2

(
δ6u

δx6

)(
δ4u

δx4

)〉

〈(
δ4u

δx4
− 4fc∗∗2 ∆2 δ6u

δx6

)2
〉 , (C.5)

whereas for the non-linear dynamic finite difference approximation, the constant
coefficient cdyn

1 is calculated with expression (6.21), leading to

cdyn
2 =

c∗2

1 − 4∆2fc∗∗2

δ6u

δx6

δ4u

δx4

. (C.6)

From Taylor expansion the values c∗2 = − 1
12 and c∗∗2 = −1

6 are obtained. The dis-
cretization stencil for the basic scheme as well as for the derivatives in the calculation
of the dynamic coefficient are given in Table C.2 Note that the current formulation
of the non-linear derivatives is not conservative. However, Appendix B describes
how to construct a conservative variant of this formulation.

C.2 Fourth-order Explicit Dynamic Finite

Difference Approximation

C.2.1 The first derivative

The basic expression for the dynamic finite difference approximation of the first
derivative in a node u(xi) = ui is given by

∂u

∂x
(x) =

δu

δx
+ cdyn

1 ∆4 δ5u

δx5
(C.7)



236 Appendix C. A selection of dynamic finite difference approximations

n ±β±0 ±β±1 ±β±2 ±β±3 ±β±4 k

1 0 2

3
+ 5

2
cdyn
1

− 1

12
− 2cdyn

1

1

2
cdyn
1

4

5 0 5

2
−2 1

2
2

7 0 −7 7 −3 1

2
2

Table C.3: Explicit 4th -order dynamic scheme. Explicit 4th -order dynamic
finite difference approximation for the 1st -order derivative (n = 1).
Note that βi = −β−i.

in which cdyn
1 is calculated with expression (6.20), leading to

cdyn
1 = c∗1

〈(
δ5u

δx5

)2

− 16

5
fc∗∗1 ∆2

(
δ7u

δx7

)(
δ5u

δx5

)〉

〈(
δ5u

δx5
− 16

5
fc∗∗1 ∆2 δ7u

δx7

)2
〉 . (C.8)

From Taylor expansion the values c∗1 = 1
30 and c∗∗1 = −1

3 are obtained. The dis-
cretization stencil for the basic scheme as well as for the derivatives in the calculation
of the dynamic coefficient are given in Table C.3

C.2.2 The second derivative

The basic expression for the dynamic finite difference approximation of the sec-
ond derivative in a node u(xi) = ui is given by

∂2u

∂x2
(x) =

δ2u

δx2
+ cdyn

2 ∆4 δ6u

δx6
(C.9)

in which cdyn
2 is calculated with expression (6.20) , leading to

cdyn
2 = c∗2

〈(
δ6u

δx6

)2

− 16

5
fc∗∗2 ∆2

(
δ8u

δx8

)(
δ6u

δx6

)〉

〈(
δ6u

δx6
− 16

5
fc∗∗2 ∆2 δ8u

δx8

)2
〉 . (C.10)

From Taylor expansion the values c∗1 = 1
90 and c∗∗2 = −1

4 are obtained. The dis-
cretization stencil for the basic scheme as well as for the derivatives in the calculation
of the dynamic coefficient are given in Table C.4
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n β±0 β±1 β±2 β±3 β±4 k

2 − 5

2
− 20cdyn

2

4

3
+ 15cdyn

2
−6cdyn

2
− 1

12
cdyn
2

4

6 −20 15 −6 1 2

8 70 −56 28 −8 1 2

Table C.4: Explicit 4th -order dynamic scheme. Explicit 4th -order dynamic
finite difference approximation for the 2nd -order derivative (n = 2).
Note that βi = β−i.

n α0 α±1 β0 ±β±1 ±β±2 ±β±3 ±β±4 k

1 1 1

4
+ 1

12

cdyn
1

c∗
1

0 3

4
+ 1

36

cdyn
1

c∗
1

1

36

cdyn
1

c∗
1

4

5 1 0 5

2
−2 1

2
2

7 1 0 −7 7 −3 1

2
2

Table C.5: Implicit 4th -order dynamic scheme . Implicit 4th -order dynamic
finite difference approximation for the 1st -order derivative (n = 1).
Note that αi = α−i and βi = −β−i.

C.3 Fourth-order Implicit Dynamic Finite

Difference Approximation

C.3.1 The first derivative

The basic expression for the 4th -order dynamic implicit finite difference approx-
imation of the first derivative in a node u(xi) = ui can be formulated as

1∑

l=−1

αl

(
cdyn
1

c∗1

)
∂u

∂x
(xi+l) =

2∑

j=−2

βj

∆

(
cdyn
1

c∗1

)
u
(
xi+j

)
, (C.11)

in which cdyn
1 is calculated with expression (6.36), leading to

cdyn
1 = c∗1

〈(
δ5u

δx5

)2

− 16

5
fc∗∗1 ∆2

(
δ7u

δx7

)(
δ5u

δx5

)〉

〈(
δ5u

δx5
− 16

5
fc∗∗1 ∆2 δ7u

δx7

)2
〉 . (C.12)

From Taylor expansion the values c∗1 = − 1
120 and c∗∗1 = −1

3 are obtained. The dis-
cretization stencil for the basic scheme as well as for the derivatives in the calculation
of the dynamic coefficient are given in Table C.5 Although the higher derivatives in
expression (C.12) can be obtained by implicit finite difference approximations, no
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n α0 α±1 β0 β±1 β±2 β±3 β±4 k

1 1 1

10
+ 9

110

cdyn
2

c∗
2

− 12

5
+ 9

110

cdyn
2

c∗
2

6

5
− 6

55

cdyn
2

c∗
2

3

44

cdyn
2

c∗
2

4

6 1 −20 15 −6 1 2

8 1 70 −56 28 −8 1 2

Table C.6: Implicit 4th -order dynamic scheme. Implicit 4th -order dynamic
finite difference approximation for the 2nd -order derivative (n = 2).
Note that αi = α−i and βi = β−i.

attempt is done in this work. Hence, these derivatives are calculated using standard
explicit finite difference approximations.

C.3.2 The second derivative

The basic expression for the 4th -order dynamic implicit finite difference approx-
imation of the second derivative in a node u(xi) = ui can be formulated as

1∑

l=−1

αl

(
cdyn
2

c∗2

)
∂2u

∂x2
(xi+l) =

2∑

j=−2

βj

∆2

(
cdyn
2

c∗2

)
u
(
xi+j

)
, (C.13)

in which cdyn
2 is calculated with expression (6.36), leading to

cdyn
2 = c∗2

〈(
δ6u

δx6

)2

− 16

5
fc∗∗2 ∆2

(
δ8u

δx8

)(
δ6u

δx6

)〉

〈(
δ6u

δx6
− 16

5
fc∗∗2 ∆2 δ8u

δx8

)2
〉 . (C.14)

From Taylor expansion the values c∗2 = − 1
200 and c∗∗2 = −1

4 are obtained. The dis-
cretization stencil for the basic scheme as well as for the derivatives in the calculation
of the dynamic coefficient are given in Table C.5 Although the higher derivatives in
expression (C.14) can be obtained by implicit finite difference approximations, no
attempt is done in this work. Hence, these derivatives are calculated using standard
explicit finite difference approximations.
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