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Root-knot nematodes are classified within the genus Meloidogyne Göldi, 1892 and are 

found worldwide. They are obligate plant pathogens and parasitize nearly every species of 

higher plants. In warm climates and glasshouses M. incognita, M. javanica and M. 

arenaria are ubiquitous. In temperate agriculture M. hapla, M. chitwoodi and M. fallax are 

prevalent.  

In the Pacific Northwest of the United States severe damage allocated to root-knot 

nematodes was reported on potatoes (Golden et al., 1980). At first, the damaging 

nematodes were identified as M. hapla but further examination in 1977 revealed that they 

represented an undescribed species of Meloidogyne. This new species was described by 

Golden et al. (1980) and named M. chitwoodi, the Columbia root-knot nematode. In 

contrast with M. hapla, this new species reproduced on corn (Santo et al., 1980), therefore 

the Dutch name of M. chitwoodi became ‘maïswortelknobbelaaltje’. In The Netherlands, 

M. chitwoodi was reported in the beginning of the eighties (Molendijk, PPO, Lelystad, 

pers. comm.). However, re-examination of preserved potato tubers from 1930 showed that 

these tubers were infected with M. chitwoodi, revealing a long presence of this nematode in 

The Netherlands (Brinkman et al., 1996). The detection of M. chitwoodi juveniles in soil 

samples from an oak forest in Belgium, and the relative high genetic distances observed 

between Belgian populations confirmed its long presence in the Low Countries 

(Waeyenberge & Moens, 2001). The increasing problems since the 1980s can be explained 

partly by the decreasing use of chemical soil disinfection for the control of potato cyst 

nematodes (Molendijk & Mulder, 1996). Before, most likely these practices also kept 

Meloidogyne spp. at bay. The increasing traffic of machinery between farms and the use of 

green manure crops instead of fallow periods in between crops might have contributed too. 

In 1992 a field plot in The Netherlands was established to examine the host suitability of 

different crops for M. chitwoodi. Due to conflicting results with previous studies in the US, 

the population was re-examined and it was concluded that the root-knot nematodes present 

in the experimental field were both morphologically and biologically different from M. 

chitwoodi (Karssen, 1995). This root-knot nematode was also different from other known 

nematodes and was described as a new species, M. fallax (Karssen, 1996). Both M. 

chitwoodi and M. fallax caused severe damage on economically important crops such as 

potato, black salsify and carrot and, therefore, both species were listed as quarantine pests 

in the EU in 1998 to avoid their further spread. 

Generally Meloidogyne spp. can occur on a wide range of soil types, but their 

association with crop damage is strongly associated with sandy soils or sandy patches 



General introduction 
_________________________________________________________________________ 

 3 

within fields (Van Gundy, 1985). In Belgium severe damage caused by M. chitwoodi 

became prevalent after the 1990s in the sandy soils of the provinces of Antwerp and 

Limburg in field vegetable crops for the canning industry. Major problems were reported 

in black salsify (Scorzonera hispanica L.) and carrots (Daucus carota L.). Quality control 

of these crops before harvest revealed marked quality damage on the tap roots. Severe 

galling induced a rough surface rendering infected crops unprocessable. When the 

percentage of deformed crops becomes too high (> 30%) the harvest of the crop is no 

longer profitable. Therefore, it became very important to know in advance when fields 

were infested with M. chitwoodi. Soil sampling and diagnostic analysis allowed the 

canning industry to avoid the production of black salsify and carrot in infested fields. 

However, the farmers often used these fields to grow ware potatoes, which also suffered 

from M. chitwoodi-induced damage and built up high populations of this pest. The wide 

host range of M. chitwoodi (Santo et al., 1980; O’Bannon et al., 1982; Ferris et al., 1993; 

den Nijs et al., 2004) makes decisions on crop rotations very difficult. Moreover, M. 

chitwoodi is able to reproduce on many weeds (Thomas et al., 2005; Kutywayo & Been, 

2006) and complete resistant crops are not available.  

The use of pesticides seemed to be the only solution. However, in general nematicides 

depress but do not eliminate populations of plant-parasitic nematodes and, therefore, final 

nematode densities may be too high for a profitable crop to be grown the following season 

without further phytosanitary measures being taken (Hague & Gowen, 1987). The high 

cost of pesticides makes them only profitable on high-value crops.  

Crops grown on fields declared free of M. chitwoodi, based on sampling results, were 

sometimes severely damaged. Sampling procedures were based on schemes developed for 

potato cyst nematodes and new research was required for M. chitwoodi. In addition to 

horizontal distribution, vertical distribution is also important for sampling procedures as 

migration of M. chitwoodi from deeper soil layers was reported by Pinkerton et al. (1987). 

 

The aim of this dissertation was to increase the knowledge of the biology of M. 

chitwoodi in relation to field vegetable crops and to develop a strategy to control this soil 

borne pest. An important part of this work focussed on different aspects that could help to 

increase the detection chances of M. chitwoodi. 
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Therefore I studied: 

• The influence of root diffusates and host age on the hatching of M. chitwoodi 

and M. fallax. 

• The vertical distribution of M. chitwoodi under different crops and fallow in 

naturally M. chitwoodi-infested fields. 

• The host suitability of fodder beet, summer barley, carrot, bean and marigold 

for M. chitwoodi under field conditions. 

• The host suitability of different carrot cultivars for M. chitwoodi and damage on 

carrots caused by infection with M. chitwoodi. 

• The host suitability of different bean cultivars for M. chitwoodi, M. fallax and 

M. hapla and the development of M. chitwoodi inside the roots. 
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2.1 Introduction  

Root-knot nematodes are sedentary endoparasites. Only eggs, adult males and second-

stage juveniles (J2) can be found freely in the soil. After embryogenesis the first moult 

occurs within the egg giving a J2 that hatches from the egg. Second-stage juveniles 

primarily penetrate roots directly behind the root cap at the region of cell elongation, but 

they can also enter at points where lateral roots emerge, penetration sites of other J2 and 

cut surfaces of roots (Hussey, 1985). They migrate intercellularly towards the zone of root 

differentiation in the vascular cylinder. The J2 stop migrating when initial giant cells are 

induced and a feeding site is established. The juveniles start swelling and moult three times 

in quick succession without any feeding activity. During the last moult, the male undergoes 

a true metamorphosis to become a long filiform nematode. The female at first retains the 

same shape as the last juvenile stage but enlarges as it matures and becomes pyriform (de 

Guiran & Ritter, 1979). Depending on the host plant and the environmental conditions, a 

female may lay 30-80 eggs per day. The eggs are enclosed in a gelatinous egg matrix that 

is usually deposited on the surface of the roots. Sometimes they occur within the galls or 

root tissue (i.e. potato tubers). The duration of the life cycle depends on the host, climatic 

conditions and nematode species. 

In this chapter the occurrence of Meloidogyne spp. in Europe is discussed with special 

attention for the detection, identification and control of these soil borne pests. 

 

 

2.2 Presence 

Out of more than 90 Meloidogyne species described, 22 have been found in Europe 

(table 2.1). In the cooler climates M. hapla, M. naasi, M. chitwoodi, M. fallax and M. 

minor are the most important species; in warmer conditions M. arenaria, M. javanica and 

M. incognita are prevalent. Most species were described from agricultural areas except for 

M. ardenensis, M. kralli, M. maritima, M. duytsi and M. ulmi. Meloidogyne minor was 

detected in coastal dunes in the UK (Fleming et al., 2006), which are most likely its natural 

habitat (Karssen, 2004). Waeyenberge and Moens (2001) isolated M. chitwoodi juveniles 

from oak forest soil indicating a long presence of this root-knot nematode in Belgium, 

which was confirmed by relatively high genetic distances they observed between Belgian 

populations. Very few reports on the presence of Meloidogyne spp. in natural habitats are 

available, although this could give valuable information about the origin of the different 

species and their position in the soil-food web. 
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Table 2.1: Meloidogyne species found in Europe (Karssen & Van Hoenselaar, 1998; Palmisano & Ambrogioni, 2000; 
Holgado et al., 2001; Blok et al., 2002; Karssen, 2002; Karssen & Grunder, 2002; Karssen et al., 2004; Sirca et al., 2004; 
Vovlas et al., 2004; Viaene et al., 2007) 

Meloidogyne species Year of description Host plants Occurrence 

M. javanica 1885 Large host range General 

M. arenaria 1889 Large host range General 

M. exigua 1892 Tomato, Peach, 

Bougainvillea glabra 

Greece, Italy 

M. incognita 1919 Large host range General 

M. hapla 1949 Large host range General 

M. artiellia 1961 Brassicaceae, 

Fabaceae, Poaceae 

France, Greece, Italy, Spain, 

United Kingdom  

M. graminis 1964 Grasses, cereals Germany, The Netherlands 

M. naasi 1965 Mainly grasses and 

cereals, dicotyledons 

General 

M. kirjanovae 1965 Tomato Russia 

M. ardenensis 1968 Trees, shrubs, 

dicotyledon weeds 

Belgium, France, Germany, 

Norway, Poland, The 

Netherlands, Russia, Slovakia, 

United Kingdom 

M. ethiopica 1968 Tomato Slovenia 

M. chitwoodi 1980 Large host range Belgium, France, Germany, The 

Netherlands, Portugal, 

Switzerland 

M. kralli 1983 Cyperaceae, grasses 

and cereals 

Estonia, Poland, Russia, 

Switzerland, United Kingdom 

M. hispanica 1986 Prunus persica, 

sugarbeet, tomato 

France, Portugal, Spain, The 

Netherlands 

M. maritima 1987 Beach grasses Belgium, France, Germany, The 

Netherlands, United Kingdom 

M. mayaguensis 1988 Tomato France 

M. lusitanica 1991 Olive Portugal 

M. fallax 1996 Large host range Belgium, France, Germany, The 

Netherlands, Switzerland 

M. duytsi 1998 Beach grasses Coasts of Western Europe 

M. ulmi 2001 Elm Italy, The Netherlands (?)* 

M. baetica 2003 Olive, lentisk, 

Aristolochia baetica 

Spain 

M. minor 2004 Grasses, potato, 

tomato 

Belgium, Ireland, The 

Netherlands, United Kingdom 

                                                 
* The elm trees on which M. ulmi was detected in Italy were imported from Wageningen, The Netherlands.  
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2.3 Impact 

Although Meloidogyne spp. are worldwide considered as the most important genera of 

plant-parasitic nematodes (Sasser & Freckman, 1987), information in scientific literature 

on the economic impact of root-knot nematodes in Europe is scarce. Meloidogyne spp. can 

seriously affect both quantity and quality of crop production. Severe galling on potato 

tubers caused by M. chitwoodi and M. fallax, forking and hairiness of carrots due to M. 

hapla infection, or the yellow patch disease induced by M. minor in golf courses are only a 

few examples of clearly visible effects of root-knot nematodes. However, damage caused 

by root-knot nematodes is often overlooked. In many cases no above-ground symptoms are 

observed. Root galling can be limited and galls can be very small (Karssen, 2002). 

Apart from direct losses due to nematode attacks, many indirect losses are reported. 

Indirect losses include waste of irrigation water and fertilizers. Nematode-damaged roots 

do not utilize water and fertilizers as healthy roots do (Mai, 1985). Disease complexes due 

to interactions with other nematodes and other pests can occur. Interactions between 

Meloidogyne spp. and Fusarium wilt have been reported in many host crops (Abawi & 

Barker, 1984; Griffin, 1986; France & Abawi, 1994; Siddiqui & Mahmood, 1999). 

Sclerotia of Rhizoctonia solani were found on tomato roots with galls of M. incognita, 

whereas ungalled regions of the roots did not contain sclerotia (Golden & Van Gundy, 

1975). Nematode attacks sometimes lower the resistance of plants to diseases caused by 

other organisms (Mai, 1985). 

Economic losses due to Meloidogyne spp. do not stop or start with yield reduction. 

Crop rotations with cash crops can be seriously hampered and infected fields or 

glasshouses need to be sanitized. Since the end of the previous century preventive soil 

sampling is conducted in Belgium and The Netherlands to detect M. chitwoodi and M. 

fallax. However, the extra costs for the sampling and diagnostic analysis are most likely 

compensated by the reduction of heavily infested and valueless crops. In Belgium no 

contract is given to farmers for growing carrots or black salsify for the canning industry if 

fields are infected with M. chitwoodi or M. fallax. Both species are listed as quarantine 

organisms in the EU (EC Directive 2000/29/EC) and EPPO (A2 list n° 6.1 and 6.2). 

Phytosanitary measures include the control of propagation material (e.g. seed potatoes, 

flower bulbs).  

Estimates on monetary losses due to root-knot nematodes are complex and most likely 

underestimations.  
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2.4 Identification 

Traditionally, Meloidogyne spp. are described and identified based on their 

morphology and morphometrics. For reliable identification the best approach is to integrate 

morphological, isozyme and DNA data, together with information on mode of 

reproduction, chromosome number, host plants and distribution (Karssen & Moens, 2006). 

Morphological identification of root-knot nematodes is difficult and time consuming 

because of overlapping characters (Jepson, 1987; Karssen, 2002). Therefore, many 

research groups have been developing molecular techniques for their identification. 

Protein electrophoresis was the first molecular technique to be applied in nematology 

(Subbotin & Moens, 2006). Isozyme phenotypes of adult females, especially of esterase 

and malate dehydrogenase, are considered to be very useful as reliable markers for 

identification of Meloidogyne spp. (Esbenshade & Triantaphyllou, 1985, 1990; 

Venkatachari et al., 1991; Karssen et al., 1995). Two-dimensional gel electrophoresis, 

which provided a better protein separation and fingerprint, were used to distinguish M. 

chitwoodi, M. fallax and M. hapla (van der Beek et al., 1997; Tastet et al., 1999).  

Electrophoresis requires adult females, whereas DNA-profiles can be obtained from a 

few or even single nematodes or eggs. This made the polymerase chain reaction (PCR) -

technique the most widely used technique for studying the genetic diversity of root-knot 

nematodes and their identification. Multiplex PCR methods allow the detection of one or 

more species in a nematode mixture by a single PCR-test. Zijlstra (1997) identified single 

juveniles or isolates of M. chitwoodi, M. fallax, M. hapla and M. incognita in a single PCR 

reaction and it was possible to detect species present in mixtures in proportions as low as 2 

to 5%. Meng et al. (2004) identified single J2s of M. incognita, M. javanica and M. 

arenaria with specific designed SCAR primers. Recently, Adam et al. (2007) unified 

published PCR-methods and developed a molecular diagnostic key for M. incognita, M. 

javanica, M. arenaria, M. mayaguensis, M. hapla, M. chitwoodi and M. fallax that can be 

used with single juvenile or adult nematodes. 

Real time PCR methods allow simultaneous detection and quantification of several 

nematode species in one sample. Zijlstra and Van Hoof (2006) developed a multiplex real-

time PCR for the simultaneous detection of M. chitwoodi and M. fallax. The technique 

proved to be at least 10 times more sensitive than comparable regular PCR techniques also 

targeting the ITS sequence and allowed precise quantification when only one of the two 

species was present. However, the ability of the multiplex real time PCR to detect small 
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quantities of DNA of one species was reduced when large quantities of DNA of the other 

species were present. 

 

 

2.5 Management and control 

Management has the objective of minimizing economic losses, and includes the whole 

system of care and treatment of crop pests, whilst control refers to specific acts designed to 

reduce the numbers of nematodes (Hooper & Evans, 1993). 

 

2.5.1 Prevention 

Avoiding Meloidogyne infestations is not obvious. Root-knot nematodes are not found 

in seeds but may be present in vegetative planting material such as corms, bulbs or roots 

(Karssen & Moens, 2006). Intensified international trade increases the risk of further 

spreading of indigenous species or introduction of new species.  

The quarantine status of M. chitwoodi and M. fallax implies that plants and plant 

products have to be free from these nematodes before they are allowed to enter EU traffic 

(Anonymous, 2000). The detection is based on visual inspection for symptoms of each 

product that might form a potential pathway. However, as stated earlier, symptoms are not 

always visible. For the detection of M. chitwoodi on seed potatoes it is suggested that the 

tubers should be peeled before the extraction process to increase the chances of detection 

(Viaene et al., 2007). In The Netherlands the import and export of potatoes is visually 

checked for the presence of M. chitwoodi and M. fallax. If contamination is detected the 

phytosanitary certificate is refused and the product has to be cleaned, if possible, or 

destroyed. Infected fields will lose their registration and all propagation material from 

these fields will be checked during the successive 3 years. Extra inspection will be 

conducted in known infected areas (den Nijs, 2003). A similar policy is followed in 

Belgium. Unfortunately, no regulation is present for other Meloidogyne species. 

Flower bulbs are traded without roots but M. chitwoodi and M. fallax were found in the 

bulbs of cultivars of Chionodoxa, Dahlia, Gladiolus, Hyacinthus, Iris, Lilium, Puschkinia 

and Tulipa (den Nijs et al., 2004) and special attention should be given to their potential as 

nematode distributors. 

A main potential risk is the spreading of nematodes through soil and root fragments 

adhering to machinery. However, cleaning of machinery is generally not practised. 
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Prevention avoids damage and huge population build ups in infected soil. Therefore, 

damage models like the Seinhorst model can be used to estimate the possible yield losses 

based on the initial population density (Pi) present in the field at planting date. Different 

models that can be used for making management decisions are discussed by Ferris and 

Noling (1987) and McSorley and Phillips (1993). Data on the tolerance limit and the 

minimum yield of different Meloidogyne-plant combinations are given by Schomaker and 

Been (2006). However, predictions of potential crop losses due to nematodes, based on 

estimates of nematode population densities, are often not possible due to the interaction 

between plant-parasitic nematodes and their environment, including other pest species 

(Noling, 1987). To improve the models intensive soil sampling is required, which is costly 

and not economically justified. 

Preventive soil sampling can help in making decisions on crop rotations. Whereas in 

the past in The Netherlands 7% of the harvest was rejected for the canning industry, in 

2003 this was only 1.5% (Molendijk, PPO, Lelystad, pers. comm.). 

 

2.5.2 Cultural management 

In crop rotations susceptible crops are rotated with immune or resistant (see 2.5.5) 

crops. Possible crop rotations for the control of root-knot nematodes are limited due to the 

wide host range of some species. Grasses have been effective in reducing populations of 

M. arenaria, M. hapla, M. incognita and M. javanica (Netscher & Taylor, 1979). Barley 

can be used in rotations to reduce M. hapla infections (Bélair, 1996). den Nijs et al. (2004) 

gave an overview on the host status of various crops for M. chitwoodi and M. fallax 

resulting in very few options for crop rotations. Marigolds have proved successful against 

Meloidogyne spp., both in glasshouse and field conditions (Ploeg, 1999; Ljani et al., 2000). 

Their effect against Pratylenchus spp. (Pudasaini et al., 2006) makes them an important 

option if both nematode genera are present.  

The population of root-knot nematodes decreases markedly during winter and under 

fallow (Pinkerton et al., 1991; Noling & Becker, 1994). However, European policy no 

longer supports fallow periods. 

Many weeds are host for Meloidogyne (Thomas et al., 2005; Kutywayo & Been, 2006); 

therefore, adequate weed control is required in crop rotations and fallow periods. 

A major limitation to control nematodes by disrupting the continuity of food resources 

is that this strategy does not fit some intensive agricultural practices and farmers prefer to 

grow crops that are more economically rewarding (van der Putten et al., 2006). Crop 
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rotations are often historically inherited and new crops require major investments in 

machinery and cultural practices. Also the absence of a market for the new crops can limit 

the introduction of new crop rotations. 

Manipulating planting or harvest dates can reduce damage caused by nematodes 

(Hooper & Evans, 1993), but is not generally practised as planting and harvest depend 

strongly on climatological conditions and the market demands.  

Biofumigation is the action of volatile substances produced in the bio-decomposition of 

organic matter for plant pathogen control (Bello et al., 2000). The use of organic 

amendments has a positive influence on the soil physical structure and its water holding 

capacity, and stimulates the activity of soil biota that produce or improve nematode 

suppressiveness. Biofumigation with the use of goat, sheep and cow manure, and remains 

from rice, mushroom, olive, brassica crops and garden wastes has been successful in a 

large number of crops throughout Spain (Bello et al., 2004). Brassicaceous amendments 

reduced the survival of M. javanica regardless of the glucosinolate concentration of the 

amendment material (Zasada & Ferris, 2004). Hallman et al. (1999) demonstrated the 

long-term M. incognita suppressiveness of chitin amended soil, attributed solely to an 

increase of fungal and bacterial populations. However, organic amendments must be 

applied at high rates in order to have a significant effect on nematode populations (Akhtar 

& Malik, 2000; Zasada & Ferris, 2004; van der Putten et al., 2006). Local resources are 

recommended for use as biofumigants since the principal limiting factor is the cost of 

transporting organic matter (Bello et al., 2004). 

 

2.5.3 Physical control 

Heat treatments of planting material (e.g. bulbs) can be an important tool to avoid 

spreading of nematodes. Steaming of soil is expensive and usually only applied in 

glasshouses for high value crops and for compost. It is not always effective due to the 

spreading of nematodes in deeper soil layers (Karssen & Moens, 2006) and, therefore, is 

generally only effective in shallow soils. Soil solarisation requires longer periods of bright 

sunshine and is only adaptable to regions where sufficient solar energy is available for long 

periods of time (Mediterranean countries). In Southern Spain, solarisation can be used for 

the control of M. incognita in olive nurseries (Nico et al., 2003). Ioannou (2000) 

demonstrated that soil solarisation can be an effective alternative for the use of methyl 

bromide in glasshouses in Cyprus.  
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2.5.4 Biological control 

Nematophagous fungi and bacteria have been the subject of many studies on nematode 

control (Kerry, 1987). Kiewnick and Sikora (2006) demonstrated that a single pre-plant 

application of the fungus Paecilomyces lilacinus strain 251 could control M. incognita on 

tomato. This fungus is commercialized in Germany, applied as dispersible granules for 

application in water. Another fungus, Pochonia chlamydosporia, provided control of root-

knot nematodes on vegetable crops in tropical soils, but results in Europe have been less 

satisfactionary (Tzortzakakis & Petsas, 2003; Viaene et al., 2006). However, a one-time 

application of P. chlamydosporia was able to slow down the build-up of M. javanica for at 

least 5-7 months in tomato and lettuce rotations in a glasshouse (Van Damme et al., 2005). 

Arbuscular mycorrhizal fungi (AMF) are endophytic fungi that grow within plant 

tissues without causing disease and can play a protective role against parasitic nematodes. 

Establishment of AMF in olive plants significantly reduced severity of root galling as well 

as reproduction of M. incognita and M. javanica (Castillo et al., 2006). 

Pasteuria penetrans is a bacterial parasite of root-knot nematodes and can reduce their 

numbers significantly in some cropping systems (Trudgill et al., 2000). The effectiveness 

of P. penetrans strongly depends on the endospore concentrations and is manifest at the 

level of root penetration by J2 and the loss of nematode fecundity (Kariuki et al., 2006). 

However, the high multiplication of root-knot nematodes on many vegetables does not 

allow the P. penetrans population to keep up numerically with host (nematode) abundance 

(van der Putten et al., 2006). 

Biological control agents will generally provide too little control to be effective alone 

and their successful use in sustainable management strategies will depend on their 

integration with other control measures (Viaene et al., 2006). 

 

2.5.5 Resistance 

Plant resistance is probably the most environmentally safe method to control root-knot 

nematodes. Resistance against Meloidogyne spp. has been reported in many food crops 

(Cook & Starr, 2006) but it is not often used. The most important example is the resistance 

against M. arenaria, M. incognita and M. javanica in Mi-gene bearing tomato cultivars 

which are widely used. However, resistant breaking populations of M. incognita and M. 

javanica have been reported in Greece and Spain (Ornat et al., 2001; Tzortzakakis et al., 

2005) and this might reduce current use.  Resistance against M. arenaria, M. incognita and 

M. javanica was reported in prunus rootstocks in France and Spain (Fernandez et al., 1994; 
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Pinochet et al., 1996). Resistance against M. javanica was also found in peach and plum 

rootstocks from Spain, France and Italy (Pinochet et al., 1999). Several Me resistance 

genes against M. arenaria, M. incognita and M. javanica were found in pepper (Djian-

Caporalino et al., 2007). Resistance for M. hapla (Chen & Roberts, 2003) and M. naasi 

(Cook et al., 1999) was reported in common bean and ryegrasses, respectively. Promising 

results have been obtained from several wild tuber-bearing Solanum species for resistance 

against M. chitwoodi, M. hapla and M. fallax (Janssen et al., 1996; Brown et al., 2006). 

 

2.5.6 Chemical control 

The increasing concern about pesticide residues in the food chain, risks to human 

health and the adverse impact on the environment has reduced the use of nematicides and 

resulted in the ban of methyl bromide. Nevertheless, approximately 48,000 t active 

substances are used annually in Western Europe (Haydock et al., 2006). Nematicides are 

reliable and fast working and can give good economic returns on high-value crops. They 

may be essential for producing nematode-free export crops. However, in general 

nematicides depress but do not eliminate populations of plant-parasitic nematodes and 

therefore final nematode densities may be too high for a profitable crop to be grown the 

following season without further phytosanitary measures being taken (Hague & Gowen, 

1987). 
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3.1 Soil sterilization 

The soil used in the culture of Meloidogyne chitwoodi and M. fallax, the pot 

experiments, and screening tests, was a sandy soil (sand 87%, loam 9%, clay 4%) collected 

in Nederweert, The Netherlands. The soil was sterilized with a Sterilo 7K/A soil 

pasteurizer at 100°C for 12 h (Harter Elektrotechnik, Schenkenzell, Germany). After 

sterilizing, the soil was stored in a polyethylene container (120x100x76 cm). Six days after 

sterilizing the soil was ready to use (Harter Elektrotechnik, operating manual). 

Meloidogyne chitwoodi or M. fallax infected soil, which remained after experiments or 

breaking up pot cultures, was sterilized before removal.  

 

 

3.2 Culture of Meloidogyne chitwoodi and M. fallax 

A population of M. chitwoodi and M. fallax, both from The Netherlands, were 

maintained as stock cultures on tomato plants, Lycopersicon esculentum L. cv. 

Moneymaker, in 17-cm-diam. plastic pots filled with sterilized soil (see 3.1), in a 

temperature-controlled glasshouse (20-26°C) with daily 14 h light period. Tomato was 

used because of the ease of culture and it is an annual crop that is an excellent host for both 

M. chitwoodi and M. fallax. 

Four to six months after nematodes were added; the infected roots of the tomato plants 

were washed and put on Baermann funnels (see 3.3.1). Freshly hatched second-stage 

juveniles (J2) were used as inoculum for young tomato plants to maintain the culture. 

 

 

3.3 Extraction of nematodes 

3.3.1 Baermann funnel  

The extraction of nematodes with the Baermann funnel technique (Hooper, 1986) is 

based on the motility of nematodes and enables them to be separated from soil or organic 

material. 

Roots were cut into small fragments which were put on a filter paper (Ederol 

Rundfilter, 40 g/m2, Munktell Filter AB, Falun, Sweden) that was lined in a sieve (mesh 2 

mm). The sieve was put on top of a glass funnel filled with tap water to a level that just 

covered the bottom of the sieve and the plant tissue. The stem of the funnel was connected 

with a rubber tube that was closed with a clip (Fig 3.1). Second stage juveniles that hatched 
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from egg masses moved through the filter paper and sieve and accumulated at the bottom 

of the rubber tube. Nematodes were collected by opening the clip for a few seconds. On a 

daily basis the water level of the funnels was adjusted to compensate for the evaporation. 

The water in the funnels was replaced weekly after washing the funnels.  

 

 

 

Figure 3.1: Baermann funnel 

 

 

3.3.2 Zonal centrifuge 

3.3.2.1 Sample preparation 

Soil sample were thoroughly mixed before 200 g sub-samples were taken. Roots were 

separated from the mineral soil fraction by washing the sub-sample through an 850-µm-

sieve; the mineral soil fraction that passed through the sieve was collected in a 1 l beaker. 

Roots and soil particles that were retained on the sieve were washed from the sieve into a 

beaker and stirred. After 3 s without stirring, during which the soil particles settled to the 
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bottom, the suspension was poured onto a 250-µm-sieve so that the roots, but not the soil 

particles, were collected. If present, stems and leaves were removed. The root fraction was 

blotted, weighed and then macerated for 1 min at high speed with a commercial Waring 

blender.  

 

3.3.2.2 Centrifugation 

Nematodes were extracted from both the organic and mineral soil fraction with an 

automated zonal centrifugal machine (Hendrickx, 1995). This machine follows the 

principles of conventional centrifugation but the process is fully automated.  

Nematode suspensions of 1l, either with the mineral soil fraction, the macerated 

organic fraction, or both were sub sampled (500 ml) and automatically transferred along 

with water and MgSO4 (density = 1.20) into a rotor. In this rotor nematodes were separated 

from the other components. Nematodes were retained at the interface between the water 

and the MgSO4 solution. Near the end of the centrifugation process a kaolin suspension 

was added automatically to the rotor to avoid soil particles and other debris mixing with 

the nematode suspension when the centrifugation stopped. After centrifugation the 

nematodes were collected in a glass beaker through the hollow shaft of the rotor. Figure 

3.2 gives a schematic view of the rotor and the centrifugal machine. 

 

 

 

 

 

Figure 3.2: Schematic view of the zonal centrifugation machine. 
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3.4 Screening 

3.4.1 Culture of plants 

To determine the potential of different plants and cultivars as a host for M. chitwoodi 

and M. fallax 40 plants per plant or cultivar were grown individually in plastic folding 

tubes (15 × 20 × 120 mm). The tubes were filled with sterilized soil (see 3.1) and in each 

tube one seed was sown. The plants were kept in a temperature-controlled glasshouse (20-

26°C) with daily 14 h light period. Plants were watered with an atomizer. Three and six 

weeks after sowing, the plants were fertilized with a liquid fertilizer (NPK 7-4-6, 5 ml/l, 

Bayer).   

 

3.4.2 Inoculation 

Freshly hatched (< 24h) J2 of M. chitwoodi or M. fallax were obtained from stock 

cultures (see 3.2) and collected with the Baermann funnel technique (see 3.3.1). The 

nematodes were counted with the use of a binocular microscope to determine the density. 

Dilutions at the appropriate nematode density were made. Each plant was inoculated with 

200 J2 one week after emergence. Therefore, a 1 cm deep hole was made in each tube. The 

nematode solution was transferred into these holes with a micropipette. 

 

3.4.3 Scoring 

Eight weeks after inoculation the tubes with the plants were soaked in water and the 

soil was gently washed away. Subsequently the roots were submerged in a solution of 

Phloxine B (0.15 g/l tap water) for 15-20 minutes to stain the gelatinous egg sacs produced 

by the female root-knot nematodes on the roots (Daykin & Hussey, 1985). After staining, 

root systems were rinsed in tap water to remove residual stain on the roots. The number of 

egg masses per plant was determined with the use of a binocular microscope.  

 

 

 

 

 

 

 

 



Chapter 3 
_________________________________________________________________________ 

 20 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Chapter 4 
 

The influence of root diffusate and host age on hatching of 

Meloidogyne chitwoodi and M. fallax† 

                                                 
† Wesemael, W.M.L., Perry, R.N. & Moens, M. (2006). The influence of root diffusate and host age on 
hatching of the root-knot nematodes, Meloidogyne chitwoodi and M. fallax. Nematology 8, 895-902  
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4.1 Introduction 

Survival of root-knot and cyst nematodes between host crops depends to some extent 

on the hatching responses and changes in the physiology of the unhatched juveniles (Perry, 

2002). A survival attribute of many species is the ability to remain dormant during adverse 

conditions. Dormancy can be separated into quiescence, when the nematodes readily 

respond to resumption of favourable conditions, and diapause, where there is a time delay 

before the nematode responds to the return of favourable conditions. In contrast to some 

cyst nematode species, for which stimulation by host root diffusates is required for 

substantial hatch (Perry, 2002), most species of Meloidogyne hatch in water (de Guiran & 

Ritter, 1979), although root diffusates can enhance the rate of hatching. Some Meloidogyne 

species are able to survive adverse conditions, and diapause and changes in hatching 

physiology are important mechanisms that aid survival. In the temperate species, M. naasi 

and M. hapla, thermal regimes play an important role in the regulation of diapause 

(Antoniou & Evans, 1987; Lahtinen et al., 1989). Gaur et al. (2000) described the 

influence of host age on the hatching of juveniles of M. triticoryzae. This species has 

multiple generations during a host growing season and three types of eggs are produced, 

those that hatch in water, those that hatch in host (rice) root diffusate and those that do not 

hatch even in the presence of diffusate. The proportion of these three types varies with 

generation. Egg masses of the final generation, collected from senescing plants, contained 

a large proportion of juveniles that did not hatch even in the presence of rice root diffusates 

and were in diapause. Similarly, in some species of cyst nematodes there is a change 

between generations in the dependence of encysted eggs on root diffusates (Perry, 2002). 

For example, females of Heterodera sacchari developed into cysts that contained 

approximately 20% more unhatched J2 that were refractory to hatch stimuli and 10-15% 

that depended on host root diffusate for hatch stimulation, compared to cysts produced on 

younger plants (Ibrahim et al., 1993). The dependence on root diffusates is a type of 

obligate quiescence, as defined by Evans (1987). 

Studies on the biology of M. chitwoodi and M. fallax, and host-parasite interactions are 

important in order to develop an efficient strategy to detect and control these species. This 

chapter reports the results of comparative studies on the effects of root diffusates and host 

age on the in vitro hatching of both species. 
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4.2 Materials and methods 

4.2.1 Collecting of root diffusates 

To obtain host root diffusate, pots containing 6-week-old tomato plants were saturated 

with distilled water, after which root diffusate was collected (Fenwick, 1949) by pouring 

approximately 200 ml of distilled water into each pot and collecting the leachate. The root 

diffusate from eight pots was pooled. Pilot tests showed that diffusate from 6-week-old 

tomato plants elicited maximum hatch. Soil leachate was collected from pots containing 

soil only. The root diffusate and soil leachate were filtered (Ederol Rundfilter, 40 g/m2, 

Munktell Filter AB, Falun, Sweden). The root diffusate was diluted with distilled water to 

obtain 50% and 10% concentrations. During the experiment the stocks of root diffusate, 

dilutions, soil leachate and distilled water were stored in sealed plastic bottles at 4°C. 

 

4.2.2 Collecting of egg masses 

To obtain egg masses for hatching tests, ten pots (17 cm diam.) with 6-week-old 

tomato plants were inoculated with approximately 3000 freshly hatched (< 24 h) J2 of 

either M. chitwoodi or M. fallax obtained from the stock culture (see 3.2). Egg masses were 

collected from 13- and 30-week-old tomato plants, 7 and 24 weeks after inoculation, 

respectively. The age of the tomato plants was chosen in relation to the life cycle of tomato 

under the glasshouse growing regime. Plants at the age of 13 weeks were vegetatively fully 

developed and started flowering. Plants at the age of 30 weeks were starting to senesce. 

The tomato roots were washed to remove the soil and the infected root parts were 

separated from the uninfected root parts. It was not feasible to remove intact egg masses 

from the roots, so small pieces (approximately 5 mm in length) of root, containing a female 

plus egg mass, were collected for the hatching tests. 

 

4.2.3 Hatching tests 

Twenty root pieces containing one female and one egg mass each were put on a 48-

µm-sieve and covered with 2 ml of the test solution. The test solutions were 100%, 50% 

and 10% tomato root diffusate (RD, 0.5RD and 0.1RD, respectively), soil leachate (SL) 

and distilled water (DW). The sieves were kept in small plastic bottles and covered with a 

perforated lid. The bottles with the egg masses were stored, fully randomized, in an 

incubator at 22 ± 1°C. Counts of the hatched J2 and replacement of the test solutions were 

done at weekly intervals. The experiment was terminated after 12 weeks for M. chitwoodi 
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and 14 weeks for M. fallax when the hatch per week had declined to < 20 J2. The 

remaining eggs were covered with 10% sodium hypochlorite and homogenised; the 

numbers of unhatched eggs were counted to determine the percentage hatch. The tests for 

M. chitwoodi 13 weeks RD, 0.5RD, SL, DW and 30 weeks RD, DW and the tests for M. 

fallax 13 weeks RD, 0.5RD, 0.1RD, SL and DW were replicated four times. The tests for 

M. chitwoodi 13 weeks 0.1RD and 30 weeks 0.5RD, 0.1RD and SL and the tests for M. 

fallax 30 weeks RD, 0.5RD, 0.1RD, SL and DW were replicated three times. 

 

4.2.4 Statistical analysis 

For the statistical analyses Statistica 5.5 was used. The hatching data obtained for both 

M. chitwoodi and M. fallax were fitted to the logistic model y = c/ (1 + exp (-b*(time – 

m))), where y is the cumulative % hatch; the model is described by three parameters: the 

time at which 50% hatch is reached (m), the hatching rate (b) and the final hatching 

percentage (c) (Oude Voshaar, 1994). These parameters were calculated for all the 

replicates of the treatments separately and subjected to analysis of variance (ANOVA). 

Results are reported as significant or non-significant in Tukey honest significant difference 

tests (P < 0.05). The effect of host age and the difference between M. chitwoodi and M. 

fallax were examined with paired t-tests (P < 0.05).  

 

 

4.3 Results 

4.3.1 Effect of root diffusate on hatch 

There was no effect of root diffusates on the hatching of M. chitwoodi from eggs 

collected from young (13 weeks) actively growing plants (Table 4.1; Fig. 4.1). In all 

treatments, the final hatching (c) reached 93 to 95% and the hatching profile during the 

tests was similar for all treatments. By contrast, eggs collected from old, senescing plants 

(30 weeks) gave a substantially lower percentage hatch in distilled water (Table 4.1; 

Fig.4.1). The presence of root diffusates induced a significant increase in the number of 

hatched J2 with a maximum of 89.8% in the 100% root diffusate treatment. There were no 

significant differences in parameters m and b. 

 

 

 



 

 

 

 
 

Table 4.1: Parameters of the logistic curve y = c/ (1 + exp (-b × (time – m))) describing hatching of second stage juveniles from egg masses of Meloidogyne chitwoodi 
collected from 13 week and 30 week old tomato plants in the presence of tomato root diffusate (RD) soil leachate (SL) and distilled water (DW) and the R2 values. Means 
± the standard deviation of the time at which 50% hatching is reached (m), the hatching rate (b) and the maximum hatching percentage (c). Significant differences between 
host age are marked with ∗, †, ‡ (paired t-test, P < 0.05), significant differences between treatments are marked with a different letter (Tukey HSD, P < 0.05). 

 m b c                       R2 

 13 wk 30 wk 13 wk 30 wk 13 wk 30 wk 13 wk 30 wk 
RD 5.3 ± 1.31   3.2 ± 0.63* 1.4 ± 0.87 1.6 ± 0.33 94.9 ± 2.18 89.8 ± 5.13    a 0.94 0.99 
0,5 RD 5.6 ± 0.41   3.5 ± 0.51* 1.1 ± 0.06   1.6 ± 0.35† 95.9 ± 0.50 79.2 ± 1.26‡ab 0.99 0.97 
0,1 RD 5.1 ± 0.50   3.9 ± 0.53* 1.5 ± 0.97 1.2 ± 0.23 94.8 ± 1.58 70.2 ± 5.96‡bc 0.96 0.99 
SL 4.9 ± 0.96 3.4 ± 1.11 1.8 ± 1.07 1.4 ± 0.12 95.2 ± 1.43 63.3 ± 6.67‡cd 0.97 0.99 
DW 5.0 ± 0.89 3.7 ± 0.96 1.2 ± 0.27 1.4 ± 0.59 93.6 ± 3.70 51.2 ± 6.95‡  d 0.99 0.97 

 

 

Table 4.2: Parameters of the logistic curve y = c/ (1 + exp (-b × (time – m))) describing hatching of second stage juveniles from egg masses of Meloidogyne fallax 
collected from 13 week and 30 week old tomato plants in the presence of tomato root diffusate (RD) soil leachate (SL) and distilled water (DW) and the R2 values. Means 
± the standard deviation of the time at which 50% hatching is reached (m), the hatching rate (b) and the maximum hatching percentage (c). Significant differences between 
host age are marked with ∗, †, ‡ (paired t-test, P < 0.05), significant differences between treatments are marked with a different letter (Tukey HSD, P < 0.05).   

 m b c                       R2 

 13 wk 30 wk 13 wk 30 wk 13 wk 30 wk 13 wk 30 wk 
RD 3.7 ± 0.16   2.3 ± 0.40* 1.5 ± 0.18 1.4 ± 0.26 90.9 ± 1.31    a 90.5 ± 3.77 0.99 0.99 
0.5 RD 4.0 ± 0.13 3.1 ± 1.37 1.5 ± 0.27 1.1 ± 0.21 95.1 ± 1.10    b   89.4 ± 3.29‡ 0.99 0.98 
0.1 RD 3.9 ± 0.10   2.9 ± 0.31* 1.5 ± 0.22 1.1 ± 0.35 96.1 ± 1.81    b 91.3 ± 4.32 0.99 0.99 
SL 4.2 ± 0.60   2.6 ± 0.29* 1.5 ± 0.34 1.2 ± 0.10 93.7 ± 2.56   ab 90.0 ± 4.40 0.99 0.99 
DW 3.9 ± 0.92 3.2 ± 0.48 1.6 ± 0.15   1.0 ± 0.06† 97.0 ± 0.71     b   85.7 ± 4.86‡ 0.99 0.99 
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Figure 4.1: Fitted curves showing the cumulative percentage hatch in distilled water (DW), soil leachate 
(SL), tomato root diffusate (RD) and 50% and 10% concentrations of RD from egg masses of Meloidogyne 

chitwoodi collected from 13 week and 30 week-old tomato plants. 
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Figure 4.2: Fitted curves showing the cumulative percentage hatch in distilled water (DW), soil leachate 
(SL), tomato root diffusate (RD) and 50% and 10% concentrations of RD from egg masses of Meloidogyne 

fallax collected from 13 week and 30 week-old tomato plants. 
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For M. fallax in general, no effect of root diffusates occurred (Table 4.2; Fig.4.2). Egg 

masses collected from 13 wk-old plants gave a significantly lower percentage hatch in RD 

compared with 0.5RD, 0.1RD and DW. There were no significant differences in 

parameters m and b. 

 

4.3.2 Effect of host plant age on hatch 

In RD, 0.5RD and 0.1RD, J2 of M. chitwoodi hatched significantly slower (m) from 

egg masses collected from 13 wk-old plants compared with those taken from 30 wk-old 

plants (Table 4.1). Also, in SL and DW parameter m was greater for eggs collected after 

13wk, but was not significant. The rate of hatching (b) was significantly higher in 0.5RD 

for 30wk. Parameter c was significantly lower for 30wk in 0.5RD, 0.1RD, SL and DW. In 

DW the percentage hatch declined to 51.2%. 

J2 of M. fallax hatched significantly slower from egg masses from 13 wk-old plants in 

RD, 0.1RD and SL compared with those from 30 wk-old plants (Table 4.2). Also, in 

0.5RD and DW parameter m was greater for eggs collected after 13wk but, again, was not 

significant. The rate of hatching was significantly lower for J2 from 30 wk-old plants in 

DW. The final hatching percentage was lower for J2 from egg masses collected on 30 wk-

old plants but the difference was only significant in 0.5RD and DW. The lowest percentage 

hatch was recorded in DW but it still reached 85.7% 

 

4.3.3 Comparison between Meloidogyne chitwoodi and M. fallax 

The average number of eggs per egg mass of M. chitwoodi was significantly lower for 

egg masses from 30-week-old plants compared to egg masses from 13-week-old plants 

(Fig. 4.3).  The average number of eggs per egg mass of M. fallax was greater on senescing 

plants, but the difference between the numbers on young and old plants was not significant. 

For egg masses taken from 13-week-old plants, M. fallax achieved 50% hatching more 

rapidly than M. chitwoodi but the difference between species was only significant for 

treatments with 0.5RD and 0.1RD. The rate of hatching was greater for M. fallax in 0.5RD. 

The final hatching percentage was the same for both, except in RD where the final 

percentage hatch of M. chitwoodi (94.9%) was slightly greater than that for M. fallax 

(90.9%). 

 



Chapter 4 
_________________________________________________________________________ 
 

 28 

 

0

50

100

150

200

250

300

350

400

450

500

13 weeks 30 weeks

Age tomato plant

E
g

g
s
 p

e
r 

e
g

g
 m

a
s
s

Meloidogyne chitwoodi

Meloidogyne fallax

 

Figure 4.3: The average number of eggs per egg mass of Meloidogyne chitwoodi and M. fallax collected 
from 13 week and 30-week old tomato plants. Bars represent the standard deviation. 

 

Egg masses collected on 30 wk-old plants gave a significantly lower final percentage 

hatch for M. chitwoodi in 0.5RD, 0.1RD, SL and DW compared with M. fallax. There were 

no significant differences in parameter b. Meloidogyne fallax hatched more rapidly than M. 

chitwoodi but the difference was only significant for treatment with 0.1RD.  

 

 

4.4 Discussion 

Hatching of juveniles of M. chitwoodi from egg masses taken from young, actively 

growing tomato plants was not influenced by the presence of tomato root diffusates. Not 

only the final percentage hatch, but also the rate of hatching and the time at which 50% 

hatch was reached were equal in all treatments. This confirms the work of Inserra et al. 

(1983) who found no persistent and stable action of the root leachates of potato, tomato 

and wheat on the hatching of M. chitwoodi. J2 of species of Meloidogyne hatch when 

environmental conditions are favourable and root diffusates are not required for hatching 

of most species, although they can enhance the rate of hatching (Perry, 1997).  

However, there is a change in the hatching physiology of J2 produced on plants at the 

end of the growing season. The hatch from egg masses collected from senescing tomato 

plants was significantly less in distilled water than in 0.1RD, 0.5RD and RD. In soil 

leachates hatch was significantly lower than in 0.5RD and RD. The presence of root 
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diffusates increased the hatch of juveniles substantially but had no effect on the rate of 

hatching or the time at which 50% hatch was reached. It seems that J2 that required RD for 

hatch needed to be exposed to it for a certain time period before hatching commenced. 

Hatching continued until 12 weeks after the start of the experiment but the majority of the 

J2 hatched within the first 6 weeks. Therefore, these J2 are more likely to be in obligate 

quiescence rather than in diapause, where the J2 would be refractory to RD stimulation.  

Temperature plays an important role in the development of Meloidogyne (de Guiran & 

Ritter, 1979; Inserra et al., 1983; Pinkerton et al., 1991; Ploeg & Maris, 1999). Plant 

growth until senescence and incubation of the egg masses were conducted under controlled 

optimum temperature regimes. Therefore, the induction of obligate quiescence in J2 of M. 

chitwoodi from senescing tomato plants is directly linked with the condition of the host 

plant. The production of quiescent J2, which depend on host root diffusate for hatching, 

ensures survival during short intercrop periods in summer. 

By contrast, M. fallax, although closely related to M. chitwoodi, shows a different 

hatching pattern. In general, root diffusates did not affect the hatching of J2 from egg 

masses taken from young or senescing tomato plants. In all cases, hatch of 86% or more 

was recorded.  

Hatching of J2 of M. chitwoodi and M. fallax from egg masses collected on old 

senescing tomato plants started more quickly than the hatching of J2 from egg masses 

taken from young plants. The females inside the root pieces from the young tomato plants 

were well nourished. Although the collected root pieces contained clearly visible egg 

masses, it is possible that some females had only begun to produce eggs at the start of the 

hatching assay. Other females were still actively producing eggs. It is likely that this 

continued during the beginning of the experiment, thus giving a mixture of eggs in 

different stages of embryogenic development, which may have influenced the hatching 

curves for 13 weeks. The eggs collected from senescing plants were embedded in a brown 

egg mass, the females inside the deteriorated root pieces were dead and no new eggs were 

produced. Ishibashi (1969) considered that old or poorly nourished females of M. incognita 

produce brown egg masses containing dormant eggs, which are resistant to environment 

stresses and nematicides and which hatch under the stimulus of root diffusates. Young and 

well nourished females produce white egg masses susceptible to environmental stresses but 

from which J2 hatch spontaneously. Although M. chitwoodi shows the same pattern, even 

in the presence of RD, a small proportion (6 – 10%) of eggs remained unhatched. In 

contrast to M. chitwoodi, no quiescent J2 were recorded in M. fallax, although a small 
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proportion of eggs did not hatch (4-14%). These eggs were unembryonated and did not 

contain developed J2. The percentage of these eggs increased with plant age both for M. 

chitwoodi and M. fallax, but the increase was not significant. The arrest of development of 

eggs occurs in M. arenaria, M. hapla, M. incognita and M. javanica (de Guiran & 

Villemin, 1980). Evans (1987) suggested the behaviour of delayed embryonation is 

certainly a survival strategy but cannot be considered as diapause since there is no specific 

element of timing linked to seasonal stimuli. 

Meloidogyne chitwoodi seems to have a strategy for survival in the absence of a host 

that is based on two cornerstones: quiescent J2, which hatch only in the presence of root 

diffusates, and delayed development of unembryonated eggs. Gaur et al. (2000) have 

reported the production of three kinds of unhatched J2 of M. triticoryzae: i) those that 

hatch freely in water, ii) those that require stimulus from host root diffusates, and iii) those 

that do not hatch even in the presence of host root diffusates. The proportion of unhatched 

J2 of type 3 increased in the final generation; the presence of unembryonated eggs was not 

reported. In H. sacchari (Ibrahim et al., 1993), H. cajani (Gaur et al., 1992) and H. sorghi 

(Gaur et al., 1995) hatch from cysts produced on senescing plants was significantly less 

than hatch from cyst of the earlier generations. Under the given conditions for plant 

growth, the life cycle of M. chitwoodi and M. fallax from J2 until egg production was 3 to 

6 weeks. Therefore, it is likely that 2 to 4 generations developed and the egg masses from 

30 week old plants consist of different generations. The formation of different generations 

could have had an effect on the presence of quiescent J2 and further research is required on 

this aspect.    

The survival strategy of M. fallax seems to be based on delayed development of 

embryonating eggs and, presumably, the ability of hatched J2 to survive in the soil. The 

number of eggs per egg mass for M. fallax collected on senescing plants was significantly 

greater than the number of eggs of M. chitwoodi. Together with the fact that 90% of the 

eggs from senescing plants hatched in soil leachate this might indicate that a greater 

number of infective J2 of M. fallax remains in the soil compared with M. chitwoodi. If 

these J2 are able to survive the absence of a host plant and other adverse conditions for a 

longer time period (winter) they can immediately penetrate host roots when they appear, 

which gives them an advantage over quiescent J2. However, survival as hatched J2 

requires energy, and it will be interesting to determine whether the energy reserves after a 

winter period are sufficient for invasion. Robinson et al. (1987) showed that if Globodera 

spp. utilised 50% of their energy reserves, there was insufficient left to enable successful 
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invasion. Meloidogyne chitwoodi and M. fallax both have a wide and similar host range 

(Santo et al., 1980; O’Bannon et al., 1982; Ferris et al., 1993; Brinkman et al., 1996) and 

can be present as a mixed population in the same field, although this does not occur often. 

Further research is required to examine possible competition between these two species 

and the role of their survival strategies.  

The present work has shown interesting differences between the hatching responses of 

M. chitwoodi and M. fallax, which could be linked to different survival strategies. 

Detection of M. chitwoodi and M. fallax through soil sampling and subsequent incubation 

has to take into account delayed hatch, the presence of quiescent J2 and unembryonated 

eggs. Knowledge about the condition of the host plant can help to optimise the incubation 

conditions and to avoid an underestimation of the nematode population. 
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Chapter 5 
 

Vertical distribution of Meloidogyne chitwoodi 

under field crops* 

 

                                                 
* Wesemael, W.M.L. & Moens, M. (2007). Vertical distribution of the plant-parasitic nematode, 
Meloidogyne chitwoodi, under field crops. European Journal of Plant Pathology. DOI: 10.1007/s10658-007-
9213-x 



Chapter 5 
_________________________________________________________________________ 
 

 34 

5.1 Introduction 

Meloidogyne chitwoodi has multiple generations during a crop-growing season and can 

build up high population levels. However, the population decreases markedly during 

winter and under fallow (Pinkerton et al., 1991; Noling & Becker, 1994). In Belgium, 

farmers need to prove, through soil sampling, that their fields are free of M. chitwoodi 

before a contract for growing carrots or black salsify is given to them. In general, fields are 

sampled between December and March to a standard depth of 25 cm. Crops grown on 

fields declared free of M. chitwoodi, based on these sampling practices, were sometimes 

severely damaged. The presence of nematode populations below detection levels, and 

extensive sampling and nematode extraction errors can be a reason for non-detection. 

However, it is also possible that damage was caused by nematodes originating from soil 

layers deeper than 25 cm. Nematodes can migrate towards the roots of a host plant and 

deep rooting crops can reach soil layers with a higher density of nematodes. Johnson and 

McKeen (1973) found that a population of M. incognita situated at a depth of 120-125 cm 

was able to induce galls on tomato roots that were present in the top 15 cm of a sandy loam 

glasshouse soil. Pinkerton et al. (1987) found that M. chitwoodi migrated 30 cm upward 

and the recovered J2 were able to penetrate tomato plants. The authors did not observe a 

difference in migration in the presence or absence of a suitable host. In a vineyard in 

California, juveniles of Meloidogyne spp. were detected in relatively high numbers 120 cm 

below the surface and still occurred at 330cm depth (Ferris & McKenry, 1974). Although, 

Mojtahedi et al. (1991) showed that only a small fraction of the M. chitwoodi population in 

a potato field migrated upward and remained infective, this migration was sufficient to 

cause significant damage to potato tubers in the field.  

In this chapter the importance of the vertical distribution of M. chitwoodi for their 

detection by soil sampling in rotations with field grown vegetables is examined. The 

population density of M. chitwoodi in different soil layers was monitored on two fields 

naturally infected with M. chitwoodi during two successive years. The host status of 

summer barley, carrot, fodder beet, bean and marigold, and the distribution of M. 

chitwoodi at different depths in these field-grown crops are discussed in order to improve 

sampling schemes. 
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5.2 Materials and methods 

5.2.1 Presampling 

Based on sampling results provided by the Flemish Diagnostic Centre for Plants, 

Merelbeke, Belgium, two fields (sandy soil, organic matter: 2.3-4%, pH: 5.2) naturally 

infected with M. chitwoodi were selected. Meloidogyne chitwoodi was the only species of 

root-knot nematodes present in the fields. Other plant-parasitic nematodes present included 

Pratylenchus crenatus, P. penetrans, Tylenchorhynchus spp. and Rotylenchus spp. In each 

of the fields the experiments were established in the area with the highest M. chitwoodi 

infection as established by preliminary soil sampling. 

 

5.2.2 Crops and field characteristics 

On both fields, maize (Zea mays) and summer wheat (Triticum aestivum) were 

cultivated in 2002 and 2003, respectively. The succession of crops used for 

experimentation on both fields is shown in Table 5.1. Preliminary tests under glasshouse 

conditions showed that carrot (Daucus carota cv. ABK) was a good host, bean (Phaseolus 

vulgaris cv. Polder) a poor host and marigold (Tagetes patula cv. Single gold) a non-host 

for M. chitwoodi. Fodder beet (Beta vulgaris) and barley (Hordeum vulgare) are 

considered as moderate to good hosts (O’Bannon et al., 1982; Ferris et al., 1993).  

 

 

Table 5.1: Succession on the fields selected for data collection. 

 
 Host Sowing date Harvest date 

Field 1 

2004 

 

Summer barley, Hordeum vulgare  

cv. Prestige 

 

8th April 

 

12th August 

2005 Carrot, Daucus carota cv. ABK 28th April 13th September 

Field 2 

2004 

 

Fodder beet, Beta vulgaris (unknown 

cultivar) 

 

12th April 

 

24th November 

2005 Bean, Phaseolus vulgaris  cv. Polder 

 

Marigold, Tagetes patula cv. Single 

gold 

26th May 

 

3rd August 

3rd August 

 

9th November 

(mulched + 

incorporated) 
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The fields were ploughed in the first week of April 2004 and the second week of April 

2005 and April 2006. In between crops the fields were manually kept weed free (black 

fallow). Fertilization, pesticide applications and irrigation were according to farmers’ usual 

practice. 

Data on the mean monthly air temperature were obtained from the Royal Dutch 

Meteorological Institute (KNMI). The temperature was recorded in a thermometer shelter 

located at the weather station of Eindhoven, 35 and 36 km from the experimental fields. 

No data on soil temperatures or rainfall were collected. 

 

5.2.3 Experimental design and sampling 

In each field an experimental plot of 20 m × 2 m was set out. From 14 April 2004 to 27 

April 2005 stratified soil samples were taken every 3 weeks, afterwards samples were 

taken every 4 weeks. At each sampling date, 15 soil cores (2.5 cm diameter, 70 cm depth) 

were taken along the plant rows. From 14 April 2004 to 27 April 2005 five replicates were 

taken, afterwards 4. Each core was divided into seven segments of 10 cm (Fig. 5.1). For 

each replicate, the 15 segments from corresponding depths were pooled. 

 

Figure 5.1: Sampling core and division into segments. 
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5.2.4 Sample processing 

Nematodes were extracted from both soil and mineral fraction with the zonal centrifuge 

(see 3.3.2). After extraction the nematodes were collected in a glass beaker. Nematodes 

from mineral and organic fraction were pooled after extraction. 

 

5.2.5 Nematode counts 

Juveniles and adults of M. chitwoodi were counted. Eggs were not counted because of 

the presence of other plant-parasitic nematodes. Eggs could not be distinguished from each 

other based on their morphology. Nematode eggs look the same irrespective of the size off 

the adult (Perry, 2002) and therefore the abundance of M. chitwoodi eggs could not be 

measured; only the motile hatched stages and adults were counted. The results were 

expressed as nematodes per 100 g soil. 

 

5.2.6 Host plant status 

To determine the host plant status, the nematode counts of the sampling dates closest to 

the sowing and harvest of the different crops represented the initial (Pi) and the final (Pf) 

population, respectively. 

 

5.2.7 Statistical analysis 

The total number of M. chitwoodi juveniles and adults per soil layer were expressed as 

percentages of the total number found in the soil profile between 0 and 70 cm. A 

multifactor analysis of variance (ANOVA) was carried out to determine the effect of 

sampling date, soil layer and the interaction between both on the total percentage nematode 

values. 

The mean cumulative percentages of M. chitwoodi were fitted to the logistic model Y = 

100/ (1 + exp (-b × (d-m))), where Y is the cumulative percentage M. chitwoodi at soil 

depth d, 100 is the total cumulative percentage over all soil layers (100%), b is the slope of 

the curve, and m is the soil depth where 50% cumulative percentage of nematodes is 

obtained. For the statistical analyses Statistica 7 was used. 

 

5.3 Results 

5.3.1 Plant growth and development 

There were no visible above–ground symptoms in either of the crops. Root galls were 

detected on the roots of barley, fodder beet and carrot. At harvest time, 15% of the carrots 
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showed severe quality damage on the tap-root, but the size or weight of the roots were not 

different from uninfected carrot roots (data not shown). Fresh roots were found up to 70 

cm depth under summer barley, fodder beet and carrot and up to 60 cm depth under bean 

and marigold. From the middle of the fallow periods till the following crop, roots were 

limited to the first 50 cm. 

 

5.3.2 Host plant status 

Figure 5.2 shows the mean total numbers of M. chitwoodi (juveniles + adults) found in the 

examined soil profile from 0 to 70 cm depth and the mean air temperature at Eindhoven 

(source: KNMI, The Netherlands)  from spring 2004 until spring 2006. In field 1 the 

population of M. chitwoodi decreased during spring 2004. Under summer barley the 

population increased but did not reach the same numbers as in early spring. Under black 

fallow during the following autumn and winter the population decreased, but in spring 

2005 a small peak appeared. Soon after this peak the numbers of M. chitwoodi continued to 

decrease, even after the sowing date of carrot. Under carrot the population increased near 

the end of the growing season and reached the highest numbers at the time of harvest. 

During the autumn of 2005 the level of nematodes stayed high but decreased in the 

following winter. In spring 2006 a peak appeared. 

In field 2 the initial population increased remarkably under fodder beet at the end of the 

summer 2004 but started to decrease before the harvest of the crop. In spring 2005 a peak 

appeared after ploughing. Afterwards the population decreased and this continued under 

bean and marigold. 

To determine the host plant status of the crops, the population densities before sowing 

(Pi) and immediately after harvest (Pf) were compared for the different soil layers 

separately (Fig. 5.3 & 5.4). For summer barley Pf was lower than Pi in all soil layers. No 

nematodes were found after the harvest in the soil layers 50-60 and 60-70 cm. For carrot, 

Pf was considerably higher than Pi for the soil layers between 0 and 50 cm. In the layers 

from 50 to 70 cm no nematodes were found. In field 2 fodder beet gave a substantial 

increment of the population of M. chitwoodi in all soil layers except the layer 0-10 cm. The 

Pf for bean and marigold was lower than Pi in all soil layers except for the layers 50-60 

and 60-70 cm in marigold. 
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Figure 5.2: Mean total numbers of Meloidogyne chitwoodi (adults + juveniles) in the soil profile from 0 to 

70 cm depth on field 1 (A) and field 2 (B) and the mean monthly air temperature. Day 1, the first sampling 

date, is 14 April 2004. 
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Figure 5.3: The initial (Pi) and final (Pf) population per soil layer (Means ± Standard Error) of Meloidogyne chitwoodi for summer barley and carrot (different scales) on 
field 1. 
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Figure 5.4: The initial (Pi) and final (Pf) population per soil layer (Means ± Standard Error) of Meloidogyne chitwoodi for fodder beet, bean and marigold (different 
scales) on field 2. 
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5.3.3 Distribution of Meloidogyne chitwoodi over different soil layers 

The densities of M. chitwoodi for each soil layer separately for field 1 and 2 are shown in 

figure 5.5. In field 1 nematode densities were highest in the soil layer 10-20 cm under 

summer barley. After carrot the highest densities were present in the layer 20-30 cm. 

Ploughing in spring 2006 brought more nematodes in the layer 0-10 cm. In field 2 the 

highest numbers of M. chitwoodi were found in the layer 30-40 cm under fodder beet. 

After ploughing in spring 2005, layer 20-30 cm contained the highest number of 

nematodes. On both fields, in general, the nematode densities followed a similar pattern for 

all soil layers, although there seemed to be a delay in the deeper soil layers. The 

multifactor ANOVA performed on the nematode counts per soil layer, expressed as 

percentages, did not show any significant effect of the sampling date (Table 5.2) for both 

fields. Based on the calculated P values of the F test, both soil layer and the interaction 

between soil layer and sampling date were significant sources of variation in nematode 

densities in both fields. However, the variance explained by the interaction was very small 

compared with the variance explained by the soil layer. Therefore, I concluded that 

increases and decreases in population densities of M. chitwoodi took place simultaneously 

in the different soil layers and that the percentages could be averaged over time for further 

analysis. 

The mean cumulative percentages of nematodes at increasing soil depth were described 

by a logistic model. Parameter b indicates the steepness of the slope and parameter m 

represents the required soil depth to detect 50% of the nematodes. Higher values of m 

indicate a deeper distribution of nematodes. Figure 5.6 shows the models for the different 

crops and intercrop (fallow) periods and the overall model for fields 1 and 2. The models 

for the crops and intercrop periods were calculated based on the sampling data collected 

between the sowing dates and the dates of harvest of the crops. The values of parameters b 

and m are shown in table 5.3. In field 1 soil sampling to a depth of 19.6 cm was required to 

detect 50% of the M. chitwoodi population. Parameter m was highest for the fallow period 

after carrot and lowest for the fallow period after summer barley.  The slope of the curve 

(b) was highest for carrot and lowest for summer barley. In field 2, soil sampling to a depth 

of 33.5 cm was required to detect 50% of the M. chitwoodi population. Parameter m was 

highest in the fallow period after marigold and lowest in the fallow period after fodder 

beet. Parameter b was highest in the fallow period following beet. 

 



Vertical distribution of M. chitwoodi under field crops 
_________________________________________________________________________ 

43 

 

Table 5.2: Significance of main and interaction effects of variables for the vertical distribution of 
Meloidogyne chitwoodi in two infected fields under two different successions. 

 
Source of variation F test P value 

Field 1 

Sampling date 

Soil layer 

Sampling date × soil layer 

 

0.138 

164.064 

2.282 

 

1.000 

0.000 

0.000 

Field 2 

Sampling date 

Soil layer 

Sampling date × soil layer 

 

0.000 

147.915 

2.099 

 

1.000 

0.000 

0.000 

 

 

Table 5.3: Parameters of the logistic model Y = 100/(1 + exp(-b × (d-m))) fitted to the cumulative 
percentages of nematodes present in the soil layers, where Y is the cumulative % Meloidogyne chitwoodi at 
soil depth d. Means ± the standard error of the soil depth where 50% cumulative percentage of nematodes is 
obtained (m) and of the slope of the curve (b). 

 

 m b 

Field 1 

Summer barley 

Fallow 1 

Carrot 

Fallow 2 

Total model 

 

19.7 ± 0.70 

18.2 ± 0.35 

18.5 ± 0.61 

22.4 ± 0.26 

19.6 ± 0.23 

 

0.131 ± 0.0116 

0.184 ± 0.0111 

0.260 ± 0.0417 

0.189 ± 0.0084 

0.171 ± 0.0065 

Field 2 

Fodder beet 

Fallow 1 

Bean 

Marigold 

Fallow 2 

Total model 

 

34.7 ± 0.43 

29.5 ± 0.35 

32.2 ± 0.51 

34.9 ± 0.66 

37.1 ± 0.52 

33.5 ± 0.24 

 

0.127 ± 0.0061 

0.158 ± 0.0079 

0.139 ± 0.0089 

0.122 ± 0.0087 

0.120 ± 0.0066 

0.130 ± 0.0036 
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Figure 5.5: The mean numbers of Meloidogyne chitwoodi (adults + juveniles) per 100 g soil in different soil 
layers on field 1 (A) and field 2 (B). Day 1, the first sampling date, is 14 April 2004. 
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Figure 5.6: The logistic models fitted to the cumulative percentages of Meloidogyne chitwoodi present in the 
soil layers on field 1 (A) and field 2 (B). Explanation of model parameters in described in text (R2 with P < 
0.001). 
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5.4 Discussion 

Preventative soil sampling to detect infestations with M. chitwoodi is very important to 

avoid quality damage to field grown vegetables. The results presented in this chapter show 

that the relative distribution of M. chitwoodi over the different soil layers examined in two 

fields was consistent during two successive years. The different successions with good, 

moderate and poor hosts did not influence this distribution significantly. For each field a 

logistic model could be fitted to the cumulative percentages. Based on these models the 

required depth to detect a given percentage of the M. chitwoodi population could be 

calculated.  In field 1 the distribution was shallower than in field 2. In the two years before 

the starting date of the in-depth soil sampling the same crops (maize and summer wheat) 

were grown on both fields. Therefore, the difference in vertical distribution in the two 

fields is most likely due to reasons other than crop rotation. Mojtahedi et al. (1991) found 

that the ability of M. chitwoodi to migrate and cause damage appeared to depend on soil 

texture. Soil with a higher silt and/or clay content may hinder the motility of root-knot 

nematodes (Prot & Van Gundy, 1981). Although both fields were categorized as sandy 

soils, field 2 contained a greater sand fraction, the moisture level in each soil layer was 

higher compared to field 1, and the water table increased faster (data not shown). These 

features might enable M. chitwoodi to survive winter through migration and acclimation to 

greater depths. Our data showed no evidence of M. chitwoodi moving to deeper layers 

during colder spells. 

Although increases and decreases in population densities of M. chitwoodi took place 

simultaneously in the different soil layers, we cannot conclude that no migration took 

place. Therefore, more knowledge is required about the number of eggs in the soil profile, 

their survival and the rate of hatch of juveniles. It is possible that migration of J2 was 

masked by continuous hatching. Starr and Jeger (1985) found that eggs are as important as 

J2 in winter survival of M. incognita and M. arenaria. They reported an increase in 

numbers of J2 during the early winter months while eggs and the total nematode 

population declined. Viable eggs were detected up to March. Pinkerton et al. (1991) 

reported that second-stage juvenile densities of M. chitwoodi after potato, declined through 

winter and increased slightly as soil temperatures increased in the spring. The decline 

continued soon after this peak. A similar pattern was recorded in my fields. The peaks in 

the population densities recorded in spring on both fields can be explained by hatching of 

juveniles from eggs. After these peaks the densities continued to decline. Meloidogyne 
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species are obligate parasites and in the absence of a host their numbers decline. For 

summer barley and carrot the highest nematode numbers (adults + juveniles) were found 

immediately after harvest. However, in fodder beet, the number of M. chitwoodi decreased 

before the harvest date. The field period of summer barley and carrot is much shorter than 

that of fodder beet. The low temperature requirements of M. chitwoodi for reproduction 

(O’Bannon & Santo, 1984; Griffin, 1985) enable more generations to be formed on crops 

with long field periods. The later generations can be formed on crops that are starting to 

senesce. In chapter 4 I demonstrated that egg masses of M. chitwoodi collected from 

senescing tomato plants contained a percentage of unhatched J2 that required root diffusate 

to cause hatch and 6-10% remained unhatched. This pattern could be a reason for the 

decline of the population in fodder beet before the harvest date and the slow decline after 

carrot. Nematode eggs present in the soil and changes in the hatching of juveniles from 

eggs during the growing season and the successive fallow could have influenced the 

results. However, high aggregation of eggs in the soil (Been & Schomaker, 2006) can 

result in great variation.  

The activity and presence of plant-parasitic nematodes are correlated to the distribution 

of the root system (Ingham et al., 1985; Verschoor et al., 2001). The final population 

densities (Pf) I found were greatest in the soil layers corresponding to the highest root 

densities for summer barley, fodder beet and carrot but this did not change the relative 

vertical distribution. The cultivars of bean and marigold used in this work were poor or non 

hosts. In crop rotations with poor or non hosts and fallow in winter, the field period of host 

plants might be too short to influence the vertical distribution of a population of M. 

chitwoodi that is already established in the field. In monocultures it is more likely that the 

vertical distribution is closely related to the root system of the host plant. Rodríguez-

Kábana and Robertson (1987) suggest a direct relation between juvenile numbers of M. 

arenaria and the root density of peanut on light soil texture in a field that had been 

continuously cropped with peanut as a winter crop for 10 years.  

Based on the results from the present work, I would advise farmers to take soil samples 

immediately after harvest, especially after crops with a long field period. Samples taken 

soon after harvest gave the highest detection chances for M. chitwoodi. This was also 

found by Been et al. (2002) in a potato field. As the time after harvest increases, the 

numbers of juveniles in the soil decrease and detection becomes more difficult. Incubation 

could increase the chances for detection of small population densities but is time 
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consuming (see chapter 4) and raises the costs. Detection based on the presence of 

juveniles and adults enhances the speed of diagnosis. Therefore, I suggest adapting the 

depth of the cores taken to the vertical distribution of the population. The results suggest 

that this distribution is persistent in crop rotations and depending on field characteristics. 

However, a longer observation of M. chitwoodi populations under different crop rotations 

and in fields with different soil characteristics is required to develop a better sampling 

strategy for the detection of this quarantine pest. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Chapter 6 
 

Quality damage on carrots (Daucus carota) caused 

by Meloidogyne chitwoodi* 

                                                 
* Wesemael, W.M.L. & Moens, M. (2008). Quality damage on carrots (Daucus carota L.) caused by the root-
knot nematode Meloidogyne chitwoodi. Nematology 10 (in press). 
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6.1 Introduction 

Carrot (Daucus carota) is an important vegetable, both for the fresh market and the 

processing industry, and is cultivated worldwide. The production area in the EU covers 

125,689 ha (FAO, 2003). In Belgium, approximately 2,500 ha of carrots are grown 

annually for industrial processing (Anonymous, 2007). A major production area is located 

in the sandy soils of the provinces of Antwerp and Limburg where the root-knot nematode 

Meloidogyne chitwoodi is widespread (Waeyenberge & Moens, 2001). Root-knot 

nematodes M. chitwoodi, M. hapla and M. fallax can cause considerable losses by 

deforming the carrot taproot. Meloidogyne hapla induces galling, forking, hairiness and 

stubby roots (Vrain, 1982; Widmer et al., 1999). Slinger and Bird (1977) reported that only 

57% of carrots grown in the presence of M. hapla were suitable for fresh market use. They 

observed detrimental effects as early as 4 days after germination of the carrot seeds. Vrain 

(1982) found no correlation between initial M. hapla densities and the weight of mature 

taproots in growth chamber conditions. However, in a field plot the initial nematode 

density was negatively correlated with the weight of the taproots. Less information is 

available for M. chitwoodi. Cultivars of carrot were classified nonhosts, moderate hosts or 

good hosts depending on the race of M. chitwoodi (O'Bannon et al., 1982; Mojtahedi et al., 

1987; Santo et al., 1988). Santo et al. (1988) reported that in pots plant weights of M. 

chitwoodi-infected carrots were significantly less than uninoculated controls. However, 

this was not the case in field-grown carrots where detrimental effects on quality were also 

rarely observed. 

Uniformity and quality of the carrot taproot is of major importance for the food 

canning industry rather than maximum yield. Not only forked or stubby roots, but also 

taproots with heavy galling cannot be processed. To avoid losses, the food canning 

industry demands soil sampling to detect root-knot nematode infestations. However, due to 

shortage of land for carrot cultivation, fields with low densities of M. chitwoodi are 

retained for the culture of carrots. In some cases infested fields are fumigated. 

The objectives of the studies presented in this chapter were to evaluate the host 

suitability of different carrot cultivars for M. chitwoodi and to determine the influence of 

low nematode densities on the infection and the quality damage caused by this nematode. 

The importance of the period that carrots are kept in the field before harvest was also 

examined. 
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6.2 Materials and methods 

6.2.1 Screening 

To determine the potential of 19 different cultivars of carrot as a host for M. chitwoodi, 

40 plants per cultivar were individually screened as described in chapter 3 (see 3.4). 

 

6.2.2 Damage experiments 

The infection of carrots with M. chitwoodi and the damage caused by this nematode 

were examined in two pot experiments and one field experiment. For the pot experiments, 

carrots were sown in 4-l pots (Optipot 17 RX) filled with sterilized sandy soil. The soil 

weight was determined for each individual pot. In each pot five carrots were sown in a 

circle. Plants were watered when required. Every 3 weeks a liquid fertilizer (NPK 7-4-6, 5 

ml/l, Bayer) was supplied. At harvest, both the carrots and the soil were gently removed 

from the pots leaving the root system intact. The soil was gently washed away and the 

infection of each individual carrot was visually determined. This was done by examining 

both galling and the presence of egg masses on the root system. Each carrot plant was 

given a score: 0 or 1 representing no infection or visible nematode infection, respectively. 

The infected carrots were further divided in two groups: infected (galling and/or presence 

of egg masses on the lateral roots) with no visible damage and infected with damage to the 

taproot. Damaged roots were defined as unprocessable for the canning industry. The 

percentage of plants with infection and plants with damage were calculated per pot. 

The nematodes used in these experiments were taken from the stock culture (see 3.2). 

 

6.2.2.1 Effect of inoculation time 

Carrots, cv. Amfine were sown at the end of April. The pots were kept in a plastic 

tunnel whose sides were kept open from June onwards to reduce the ambient temperature. 

The pots were inoculated 1, 2, 4 or 6 weeks after emergence of the plants, with inoculation 

densities of 0, 1, 2, 6, 12, 24 or 48 freshly hatched (< 24 h) M. chitwoodi J2/ 100 g soil. 

The inoculation of nematodes was done by pouring the nematode solution onto the soil 

surface with an excess of water; the water did not percolate through the drain holes of the 

pots. There were eight replicates for each treatment (time of inoculation × inoculation 

density) and the pots were fully randomized. The carrots were harvested 105 days after 

sowing. 
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6.2.2.2 Effect of harvest date 

Sterilized sandy soil was infected with different quantities of freshly hatched (< 24 h) 

J2 of M. chitwoodi and mixed thoroughly to obtain nematode densities of 2, 10 or 25 J2/ 

100 g soil. Uninfected soil was used for control. Carrots cv. ABK were sown; the pots 

were fully randomized and kept in a growth chamber. Temperature, light regime and 

humidity were adapted to the average values during the carrot growing season (Table 6.1). 

The carrots were harvested 100, 120 or 140 days after sowing. Each treatment (nematode 

density × time of harvest) was replicated eight times. 

 

Table 6.1: Mean daylight, temperature and humidity during the growing season of carrots in Belgium. Data 
obtained from the Royal Meteorological Institute (KMI), based on long term means at the weather station of 
Ukkel. 

 
Time (days) Daylight (h) Day temperature 

(°C) 

Night temperature 

(°C) 

Relative humidity 

(%) 

0-30 14 12.7 4.5 76 

31-60 15 17.2 8.2 75 

61-90 16 19.8 11.0 77 

91-120 15 21.8 12.7 78 

121-150 14 21.9 12.6 78 

 

6.2.3 Field experiment 

In a field (sandy soil, organic matter: 2.3-4%, pH: 5.2), naturally infested with M. 

chitwoodi, 40 m2 carrots cv. ABK were sown in rows according to farmers’ usual practice 

(22 kg seeds/ha, 3 rows at 7.5 cm distance and 15 cm between groups of 3 rows). The 

initial (Pi) and final (Pf) population density of M. chitwoodi were determined by soil 

sampling (60 cores, 25 cm depth, and 1.75 cm diam.) before and after the crop. Nematodes 

were extracted from both the organic (after maceration) and mineral soil fraction of these 

samples with an automated zonal centrifugal machine as described in chapter 3 (see 3.3.2). 

At harvest (139 days after sowing), five samples of 250 carrots were taken randomly. Each 

carrot was visually scored for damage as described above. 

 

6.2.4 Statistical analysis 

The percentage of infected carrots and damaged carrots were calculated and cos(x) 

transformed to fulfil the requirements for ANOVA analysis. The effect of inoculation 
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density, time of inoculation and time of harvest were determined with a multifactor 

ANOVA. An exponential regression model Y = m(1 – exp(-bX)), where Y is the 

percentage infection or damage found with nematode density X, m is the maximum 

infection or damage found with nematode density 25 J2/ 100 g soil and b is the slope of the 

curve, was fitted to relate inoculation density with percentage infection, and damage of 

carrot cv. ABK with each of the three harvest times. Statistica 7 was used for the statistical 

analyses. 

 

6.3 Results 

6.3.1 Screening 

Figure 1 shows the mean number of egg masses of M. chitwoodi per tested plant that 

were found on each of the carrot cultivars. Egg masses were found on both the young 

taproots and secondary roots and were produced on all cultivars. However, there were no 

egg masses on more than 80% of the plants of cvs Berlanda, Bolero, Chantenay, Nantucket 

and Parmex (data not shown). The mean number of egg masses per infected plant of these 

cultivars was less than three. The greatest mean number of egg masses were found on cvs 

ABK, Douceur, Maxi and Merida. Egg masses were formed on each plant of these 

cultivars.  
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Figure 6.1: The mean number of egg masses produced on 19 different cultivars of carrot 8 weeks after 
inoculation with 200 second-stage juveniles of Meloidogyne chitwoodi. The vertical bars represent the 
standard error of the mean.  
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6.3.2 Damage experiments 

Visibly infected carrots showed galls on the taproot and on the secondary roots. Egg 

masses were clearly visible. Unprocessable, damaged carrots were characterized by a 

rough surface of the taproot caused by severe galling near the lenticels of the root (Fig 6.2). 

In non-inoculated control plants no damage was evident.  

 

 

 

 

Figure 6.2: Quality damage on the taproot of carrot caused by Meloidogyne chitwoodi. 

 

 

6.3.2.1 Effect of inoculation time 

For the infection of carrots, the time of inoculation, the inoculation density and the 

interaction between both factors were significant sources of variation (Table 6.2). 

However, the variance explained by the interaction effect was small compared with the 

variance explained by the time of inoculation and the inoculation density. Infection of the 

carrots was positively correlated with both inoculation density (r = 0.29, P < 0.01) and the 

time of inoculation (r = 0.26, P < 0.01). For damage, time of inoculation and inoculation 

density were significant effects (Table 6.2). Damage was positively correlated with 

inoculation density (r = 0.23, P < 0.01) and time of inoculation (r = 0.14, P < 0.01). 
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Table 6.2: Significance of main and interaction effects of variables for the infection of carrots cv. Amfine 
and the damage caused by Meloidogyne chitwoodi. 

 

Source of variation F test P value 

Infection 

     Time of inoculation 

     Inoculation density 

     Time of inoculation × Inoculation density 

 

41.582 

28.314 

  1.868 

 

0.000 

0.000 

0.015 

Damage 

     Time of inoculation 

     Inoculation density 

     Time of inoculation × Inoculation density 

 

12.501 

11.428 

  1.279 

 

0.000 

0.000 

0.194 

 

 

The percentage of carrots (cv. Amfine) that were infected (including those that were 

damaged) and the percentage of carrots that were damaged 105 days after sowing are 

shown in table 6.3.  Inoculation with nematode densities ≤ 24 J2 1 week after the carrot 

plants emerged per 100 g soil resulted in maximum 20% infection. No damage was visible 

with nematode densities of 1 or 2 J2 per 100 g soil. Inoculation with 48 J2/ 100 g soil gave 

40% infection and 12.5% damage. Inoculation 2 weeks after the emergence of the carrot 

plants resulted in 25% to 45% infection. Five percent damage was observed with the 

lowest inoculation density (1 J2/ 100 g soil). However, no damage was recorded with 

inoculations of 6 J2/ 100 g soil. The maximum damage was 12.5% after inoculation with 

48 J2/ 100 g soil. Inoculation with 48 J2/ 100 g soil 4 weeks after emergence resulted in 

65% of infected carrots and 15% damage. Inoculation after 6 weeks gave infection 

percentages between 52.5% and 82.5%. A minimum of 10% of the carrots were damaged, 

with a maximum of 40% when inoculated with 48 J2/ 100 g soil.   

 

 



 

 

 

 

 

 

Table 6.3: The mean percentage of Meloidogyne chitwoodi infected carrots (± standard error of the mean) and the percentage of unprocessable, damaged taproots (± 
standard error of the mean) 105 days after sowing. The carrots (cv. Amfine) were inoculated at different times after emergence with different nematode densities. Infection 
and damage were visually determined.  

 
Inoculation density 

(J2/ 100 g soil) 

 

Inoculation time (weeks after emergence) 

 1 2 4 6 

 Infection (%) Damage (%) Infection (%) Damage (%) Infection (%) Damage (%) Infection (%) Damage (%) 

1 10.0 ± 4.80 0.0 ± 0.00 27.5 ± 7.15 5.0 ± 3.49 10.0 ± 4.80 0.0 ± 0.00 60.0 ± 7.84 12.5 ± 5.30 

2 12.5 ± 5.30 0.0 ± 0.00 25.0 ± 6.93 2.5 ± 2.50 17.5 ± 6.08 2.5 ± 2.50 52.5 ± 8.00 10.0 ± 4.80 

6 12.5 ± 5.30 2.5 ± 2.50 32.5 ± 7.50 0.0 ± 0.00 27.5 ± 7.15 2.5 ± 2.50 55.0 ± 7.97 10.0 ± 4.80 

12 20.0 ± 6.41 10.0 ± 4.80 35.0 ± 7.64 5.0 ± 3.49 30.0 ± 7.34 5.0 ± 3.49 57.5 ± 7.92 12.5 ± 5.30 

24 17.5 ± 6.08 7.5 ± 4.21 35.0 ± 7.64 10.0 ± 4.80 30.0 ± 7.34 7.5 ± 4.21 65.0 ± 7.64 22.5 ± 6.69  

48 40.0 ± 7.84 12.5 ± 5.30 45.0 ± 7.97 12.5 ± 5.30 65.0 ± 7.64 15.0 ± 5.72 82.5 ± 6.08 40.0 ± 7.84 
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6.3.2.2 Effect of harvest date 

For the infection of carrots, only the inoculation density showed a significant source of 

variation (Table 6.4). The infection was positively correlated with the inoculation density 

(r = 0.70, P < 0.01). For damage, both inoculation density and time of harvest had 

significant effects (Table 6.4). Damage was positively correlated with the inoculation 

density (r = 0.41, P < 0.01) and the time of harvest (r = 0.28, P < 0.01). 

 

 

Table 6.4: Significance of main and interaction effects of variables for the infection of carrots cv. ABK and 
the damage caused by Meloidogyne chitwoodi. 

 
Source of variation F test P value 

Infection 

     Inoculation density 

     Time of harvest 

     Inoculation density  × Time of harvest 

 

63.057 

  1.019 

  0.566 

 

0.000 

0.364 

0.757 

Damage 

     Inoculation density 

     Time of harvest 

     Inoculation density  × Time of harvest 

 

12.417 

  7.313 

  1.479 

 

0.000 

0.001 

0.192 

 

 

 

Table 6.5: The mean percentage of Meloidogyne chitwoodi infected carrots (± standard error of the mean) 
and the percentage of unprocessable, damaged taproots (± standard error of the mean) inoculated with 
different nematode densities and harvested at different times after sowing. Infection and damage were 
visually determined.  

 
Inoculation 

density (J2/ 

100 g soil) 

 

Time of harvest (days after sowing) 

 100 120 140 

 Infection (%) Damage (%) Infection (%) Damage (%) Infection (%) Damage (%) 

2 30.0 ± 15.28 0.0 ±   0.00 30.0 ± 15.28 10.0 ± 10.00 50.0 ± 16.67 20.0 ± 13.33 

10 70.0 ± 15.28 20.0 ± 13.33 90.0 ± 10.00 50.0 ± 16.67 90.0 ± 10.00 60.0 ± 16.33 

25 100.0 ±   0.00 10.0 ± 10.00 100.0   ± 0.00 60.0 ± 16.33 100.0   ± 0.00 70.0 ± 15.28 
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The percentage of carrots (cv. ABK) that were infected (including those that were 

damaged) and the percentage of damaged carrots are shown in table 6.5. In all treatments 

carrots were found infected with M. chitwoodi. All carrots sown in soil inoculated with 25 

J2/ 100 g were infected, irrespective of the time of harvest. The percentage of damaged 

taproots caused by this nematode density increased from 10% when harvested 100 days 

after sowing to 70% after 140 days. Inoculation density of 10 J2/ 100 g soil resulted in 

70% (100 days) and 90 % (120 and 140 days) infection and 20, 50 and 60% damaged 

taproots 100, 120 and 140 days after sowing, respectively. At the lowest nematode density 

(2 J2/ 100 g soil) 30% (100 and 120 days) and 50% (140 days) infection occurred. No 

damaged taproots were found when the carrots were harvested after 100 days. After 120 

and 140 days, 10 and 20% of the carrots were damaged, respectively. 

An exponential model was fitted to the infection percentages (Fig. 6.3A) and to the 

damage percentages for each time of harvest separately (Fig. 6.3B). The model for the 

infection described 62% of the variance with 99% being the maximum infection and 0.21 

the slope of the curve. The models for the damage on the carrot taproot described 99% of 

the variance for the harvest 120 and 140 days after sowing and 81% for the harvest 100 

days after sowing. The maximum percentages of damaged taproots were 14, 64 and 71% 

for harvest 100, 120 and 140 days after sowing, respectively. The slope of the curve was 

greatest for harvest after 100 days (0.23) meaning that the maximum of the reported 

damage was reached quickest for this time of harvest compared with harvest after 120 days 

(0.13) and 140 days (0.18). 

There was no effect of nematode infection on the length, width and weight of the carrot 

taproot (data not shown). 

 

 

6.3.3 Field experiment 

The initial M. chitwoodi density before sowing was 3 J2/ 100 g soil. The final 

population density just after harvesting the carrots was 111 J2/ 100 g. Nematode infection 

was visible in 25.5% ± 3.42% (SE) of the yielded carrots and 11.5% ± 4.12% (SE) of the 

carrot taproots were damaged by M. chitwoodi.  
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Figure 6.3: The exponential model fitted to the percentage infection (A) and the percentage damaged 
taproots (B) caused by different population densities of Meloidogyne chitwoodi on carrot cv. ABK harvested 
100, 120 and 140 days after sowing. 
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6.4 Discussion 

Based on the screening results, I found great variation in host status of different 

cultivars of carrot for M. chitwoodi. Consequently, the choice of cultivar can play an 

important role in avoiding substantial M. chitwoodi population build ups. The majority of 

the tested plants of cvs Berlanda, Bolero, Chantenay, Nantucket and Parmex were found 

without egg masses. This indicates that these cultivars have potential for resistance. 

However, diversity within a nematode species can result in different responses from crops. 

van der Beek et al. (1998) reported heterogeneity of pathogenicity within M. chitwoodi 

populations but no or little intraspecific specialization. By contrast, Santo et al. (1988) 

showed that diverse populations of M. chitwoodi reproduced differently on carrots and an 

extremely high variability amongst populations was reported on pepper (Berthou et al., 

2003). In the United States three races of M. chitwoodi are distinguished based on 

differential host tests (Mojtahedi et al., 1988; Mojtahedi & Santo, 1994). Meloidogyne 

chitwoodi race 1 reproduced on carrot cv. Red Cored Chantenay, in contrast, race 2 did not 

(Mojtahedi et al., 1988). I did not characterize the population of M. chitwoodi used in my 

experiments based on a differential host test. van der Beek et al. (1999) showed that there 

was no evidence for the existence of race 2 in The Netherlands. Waeyenberge (1999) 

reported differences in reproduction factors on carrot of M. chitwoodi populations collected 

at different locations in Belgium but all populations were able to reproduce. Obviously, it 

is important to screen for resistance for M. chitwoodi using populations of different origin 

or mixed populations, collected from infected fields in the main carrot production areas. 

The use of resistant carrot cultivars can be an important strategy to overcome major 

problems. Potential resistance was found in several of the tested cultivars and it is 

suggested to do further screening in field experiments. 

The quality of the taproot is of major importance for the processing industry. In 

contrast with M. hapla, which induces forking, hairiness and stubby roots (Vrain, 1982; 

Widmer et al., 1999), I observed that M. chitwoodi caused severe galling near the lenticels 

resulting in a rough surface of the carrot taproot. This was also reported by Molendijk 

(2000). Lenticels are spongy regions in the periderm of stems and roots that allow gas 

exchange with the surrounding environment. Earlier, Santo et al. (1988) allocated similar 

symptoms to heat cancer, which occurs when carrot seedlings are exposed to temperatures 

above 20°C (Crete, 1977). 
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The minimum temperature requirements for carrot growth are 5°C with an optimum 

between 18 and 25°C (Krug, 1997); seedlings can even tolerate a frost of -7°C 

(Anonymous, 2004). As carrots are well adapted to cool temperatures, advancing the 

sowing date could be an option to overcome severe infection and damage in fields with 

low Meloidogyne densities. The hypothesis for this is that the carrot taproot would be 

better developed and, therefore, less vulnerable to nematode infection. Early planting has 

been suggested as a cultural practice to reduce M. hapla damage to carrots (Brzeski & 

Bujda, 1974). However, compared with M. hapla, M. chitwoodi has lower temperature 

requirements for activity and reproduction (Santo & O'Bannon, 1981; Inserra et al., 1983; 

O'Bannon & Santo, 1984; Griffin, 1985). Inserra et al. (1983) demonstrated that at 7°C the 

emergence of M. chitwoodi juveniles from eggs was 7 times greater than that of M. hapla. 

Dormant nematode eggs that survived winter will hatch when environmental conditions are 

favourable (Perry, 1997). Therefore, advancing sowing carrots to February or March might 

give an immediate food supply for the freshly hatched juveniles. 

This study demonstrates that both infection and damage of carrots by M. chitwoodi 

were not only positively correlated with the inoculation density, but also with the 

developmental stage of carrot. The percentages of both infected and damaged carrots (cv. 

Amfine) were greatest for the later infection (6 weeks after emergence). Even with low 

nematode densities I observed more than 50% infection. In contrast, when the time 

between emergence and inoculation was short (1 week), only the highest inoculation 

density (48 J2/ 100 g soil) caused more than 20% infection. It is probable that J2s were not 

able to locate the root tips of the very poorly branched root system during the early 

developmental stages of carrot. Six weeks after emergence the root system is much better 

developed although secondary roots are still not abundant and root-hair development is 

poor (Weaver & Bruner, 1927). Based on these findings, and considering the low 

temperature requirements of M. chitwoodi, I suggest that advancing the sowing date is not 

advisable. This strategy would not yield the desired results. 

Postponing sowing would leave hatched nematodes without a host and lead to a decline 

of the population. Molendijk and Brommer (1998) reported that this strategy allowed the 

production of good quality carrots in fields that were heavily infested with M. fallax. As 

possible explanations they suggest a considerable natural decline of the nematode 

population before sowing and a faster development of the taproot at higher temperatures. 
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However, there are major physiological differences between M. fallax and M. chitwoodi 

(chapter 4), so field data on M. fallax may not be applicable to M. chitwoodi.  

Ehwaeti et al. (2000) demonstrated that damage by M. incognita was density dependent 

and increased with increasing duration of plant growth. This finding is confirmed by my 

results for M. chitwoodi. Carrots harvested 100 days after sowing gave 14% damaged 

taproots with initial population densities of 25 J2 of M. chitwoodi per 100 g soil. 

Postponing the harvest up to 120 and 140 days caused an increase of damaged taproots to 

64% and 71% damage, respectively. Damage to the carrot taproots seems to develop 

towards the end of the growing period. The percentage of infected carrots was similar 

irrespective the time of harvest. Meloidogyne chitwoodi can have multiple generations 

during one crop-growing season. It might be possible that second or third generations of M. 

chitwoodi developed inside the carrot taproot and were responsible for the severe galling. 

Further research is required to confirm this aspect. 

Second-stage juveniles of Meloidogyne spp. primarily enter roots directly behind the 

root cap but penetration can occur also at other sites such as points were lateral roots 

emerge, penetration sites of other juveniles and cut surfaces of roots (Hussey, 1985). 

Pinkerton et al. (1991) observed that J2s of M. chitwoodi do not penetrate young potato 

tubers unless wounds are present or lenticels are fully developed. Charchar (1987) reported 

that J2 of M. chitwoodi were found below or near the lenticels on the potato tuber surface 

immediately after penetration, indicating that they penetrated through the lenticels. When 

the carrot taproot becomes mature, lenticels are formed. Most likely second or third 

generations of M. chitwoodi enter the lenticels inducing damage in the later stage of the 

growing season. 

Reducing the period that carrots are in the field by advancing the harvest date might 

significantly reduce the proportion of quality damage caused by M. chitwoodi. However, 

the optimal time of harvest is also determined by other quality features. The most 

important are size, shape, uniformity, colour, texture and internal aspects such as taste, 

texture and nutritional value (Mazza, 1989). Harvesting at the end of the season resulted in 

a higher yield with less storage losses and a better quality of carrots (Suojala, 2000). 

Advancing the harvest date is possible when the sowing density is reduced, but decreases 

the yield by 15 to 20 t ha-1 rendering the carrots more expensive (M. Willocx, La Corbeille, 

Belgium, pers. comm.). 
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In my field experiment with a low initial population of M. chitwoodi (3 J2/ 100 g soil) 

only 11.5% damage occurred 139 days after sowing. In the pot experiments 20% damage 

was observed 140 days after sowing with initial nematode populations of 2 J2/ 100g soil. 

Under field conditions nematodes are vulnerable to adverse conditions and natural 

enemies, which explains the lower degree of infection and damage compared to my pot 

experiments. 

Where there is a shortage of fields that are free of M. chitwoodi, one might consider 

growing carrots when nematode densities are low rather than disinfecting fields. The latter 

is environmentally unfriendly, costly and cannot guarantee a M. chitwoodi-free field. Also 

the taste and texture of carrots could be negatively influenced by soil fumigation and 

phytotoxicity might occur (Hutchinson et al., 1999). It is suggested that the harvest time 

should be advanced in order to avoid severe quality damage by M. chitwoodi if other 

quality requirements are fulfilled. An exponential model, like those that were fitted to my 

data, could help to make decisions on the harvesting time to avoid substantial damage 

caused by M. chitwoodi. Therefore, more data should be collected for a wider range of 

initial nematode densities, different populations of M. chitwoodi, different environmental 

circumstances and more carrot cultivars. 

Given the fact that M. chitwoodi infection of carrots was high even with low initial 

nematode densities, I would advise that carrots should not be grown in M. chitwoodi-

infested fields in order to avoid huge population build ups. If carrots have to be grown 

because of a shortage of non-infested fields, cultivars that allow only lower M. chitwoodi 

reproduction can be chosen. Quality damage caused by M. chitwoodi appears late in the 

growing season and can be limited by a reduction of the field period. 
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7.1 Introduction 

The use of resistant cultivars is an important strategy to overcome major problems with 

plant pathogens.  Growing resistant crops offers an environmental friendly alternative for 

pest management. In nematology plant resistance has increased in importance with the 

phasing out of soil fumigants. However, resistance is not widely used. Cook and Starr 

(2006) suggest four possible reasons: some reports of resistance may not have been 

accurate; the currently available resistance is often linked to undesirable characteristics; the 

costs of developing resistant cultivars are not justified by the importance of the nematode 

problem; and naturally occurring genetic resistance tends to be too specific for use in 

intensive agriculture. Also the durability of resistant cultivars can be limited. Long-term 

use of nematode resistant cultivars can induce shifts in races within nematode species 

resulting in different pathotypes (Young, 1992).  

Dealing with resistance, tolerance and host suitability requires a clear definition of 

these terms. Cook and Evans (1987) defined a plant that allows no nematode reproduction 

as completely resistant and a plant that allows nematodes to multiply freely as non-

resistant or susceptible. They describe a tolerant plant as a plant that suffers little injury 

even when heavily infected with nematodes and an intolerant plant as a plant that suffers 

much injury. Resistance and tolerance are independent qualities of a host plant. Host 

suitability is less well defined. The host suitability or host plant status is often divided in 

different categories from excellent host, good host and moderate host to poor host and non 

host. This classification can be made based on different features. The two most commonly 

used methods for Meloidogyne spp. are: the nematode reproduction factor and the egg 

mass index. The reproduction factor is calculated by dividing the final nematode 

population density after exposure of the plant to nematodes (Pf) by the initial population 

density (Pi). If Pf/Pi > 1 than the plant is considered a host, when Pf/Pi < 1, the plant is 

often categorized as non host. However, the latter does not necessarily mean that 

nematodes were not able to reproduce. A large Pi may result in a small Pf due to strong 

competition between nematodes (Cook & Evans, 1987). Therefore, monitoring the 

development of egg masses is a better method to see whether root-knot nematodes were 

able to reproduce. Moreover, it is easier because no nematode extraction is required and 

direct observation is possible. 

Resistance against Meloidogyne spp. has been reported in apricot, common bean, 

cotton, cowpea, grape, groundnut, lucerne, peach, soybean, sweet potato, tobacco, tomato 
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and walnut (Cook & Starr, 2006). Resistance for M. chitwoodi in wheat was reported by 

Kaloshian et al. (1989). More recently resistance for M. chitwoodi was found in wild 

potatoes Solanum bulbocastanun, S. hougasii (Brown et al., 1994) and S. fendleri (Janssen 

et al., 1996) and in pepper (Berthou et al., 2003). Reports from The Netherlands indicate 

possible resistance in cultivars of common bean (Molendijk, 2000). 

In Belgium, common bean, Phaseolus vulgaris, is mainly grown for the freezing and 

the canning industry. In 2006 a total area of 6096 ha yielded 72,482 tonnes (Anonymous, 

2007). Part of the production area is located in the provinces of Antwerp and Limburg 

were M. chitwoodi is widespread (Waeyenberge & Moens, 2001).  

In this chapter the host suitability of different bean cultivars for M. chitwoodi is 

discussed based on the ability of the nematode to develop inside bean roots and the 

production of egg masses. The production of egg masses of M. chitwoodi on bean cultivars 

is compared with two other temperate Meloidogyne species, M. fallax and M. hapla. The 

influence of M. chitwoodi infection on the vegetative plant growth was examined in a pot 

experiment and the reproduction factor of M. chitwoodi on two cultivars was determined 

under field conditions. 

 

 

7.2 Materials and methods 

7.2.1 Screening 

 The screening for host suitability of ten cultivars of common bean was done as 

described in chapter 3 (see 3.4). Meloidogyne chitwoodi and M. fallax J2 were obtained 

from the stock culture (see 3.2). Meloidogyne hapla J2 were collected from tomato plants 

grown in M. hapla-infested soil that was obtained from the Flemish Diagnostic Centre for 

Plants. The 10 tested bean cultivars were Cantare, Flagrano, Fulvio, Jamaica, Lipsos, 

Masai, Mercana, Polder, Proton and Verbano. 

 Cultivar Polder was observed in a second screening for M. chitwoodi 10 weeks after 

inoculation instead of 8 weeks. 

 

7.2.2 Development of M. chitwoodi inside bean roots 

Based on the screening results, four cultivars of bean, Masai, Mercana, Polder and 

Verbano, were selected to monitor the penetration and development of M. chitwoodi inside 

the roots.  
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The beans were grown in plastic tubes (15 × 20 × 120 mm). The tubes were filled with 

sterilized soil (see 3.1) and in each tube one seed was sown. Immediately after sowing, 

each tube was inoculated with 200 freshly hatched J2 (< 24 h) of M. chitwoodi. The plants 

were kept in a temperature-controlled glasshouse (16-22°C) with daily 14 h light period 

and watered with an atomizer upon requirements. For each cultivar 30 plants were grown. 

Two, 4 and 6 weeks after inoculation ten plants per cultivar were taken randomly to 

monitor the presence and the developmental stage of M. chitwoodi inside the roots. 

 

 

7.2.2.1 Staining of nematodes 

The roots were stained using the method described by Bird et al. (1983) for the 

detection of nematodes inside plant tissues. Prior to staining, the plants were submerged in 

water and the soil was gently washed away from the roots. The roots were cut into 1 – 2 

cm fragments and put in a 150 ml glass beaker with 50 ml tap water. To obtain a 1.5% 

NaOCl solution, 20 ml of chlorine bleach (5.25% NaOCl) was added. With occasional 

agitation the root fragments were kept for 4 min in this solution. Subsequently, the roots 

were poured on a 250-µm-sieve and rinsed in running water to remove residual NaOCl. 

The roots were removed from the sieve and transferred to a beaker containing 30 ml tap 

water. One millilitre of the staining solution (3.5 g acid fuchsin, 250 ml acetic acid and 750 

ml distilled water) was added and heated to boiling for 30 s. After cooling to room 

temperature the roots were poured on a 250-µm-sieve and rinsed in running water to 

remove excess stain. The root fragments were then heated to boiling in 20-30 ml glycerol 

and cooled. Root fragments were kept in glycerol in a Petri dish until observation.  

 

 

7.2.2.2 Counting of stained nematodes 

The stained nematodes were counted with the aid of a binocular microscope. The 

nematodes were divided into 3 groups: second-stage juveniles, swollen juveniles, and 

female adults (Fig. 7.1).  
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Figure 7.1: Swollen juveniles (A) and females (B) of Meloidogyne chitwoodi inside bean roots after staining 
with fuchsin acid (Bird et al., 1983). 
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7.2.3 Influence of nematode densities on vegetative growth of bean 

Bean cv. Polder was sown in M. chitwoodi infested soil with nematode densities of 0, 

1, 5, 10, 50, 100, 200 or 1000 J2 per 100 g soil. Therefore 9 cm diam. pots were filled with 

sterilized soil (see 3.1) and each pot was weighed. The soil was removed from the pot and 

freshly hatched J2 (< 24 h) were added to obtain the required nematode densities. The 

infested soil was mixed thoroughly before it was put back in the pot. In each pot one seed 

was sown immediately afterwards. For each nematode density there were 20 replicates. 

The plants were kept in a temperature-controlled glasshouse (20-26°C) with daily 14 h 

light period. The plants were watered upon requirements and fertilized with a liquid 

fertilizer (NPK 7-4-6, 5 ml/l, Bayer) every 3 weeks.  

After 60 days the plants were weighed and the pods were counted.  

 

7.2.4 Reproduction of M. chitwoodi on two bean cultivars under field conditions 

In a naturally M. chitwoodi infected field, 40 m2 bean cv. Polder and 20 m2 bean cv. 

Verbano were sown on 26th May 2005. The beans were sown in rows 40 cm apart and at 6 

– 7 cm between plants. The beans were harvested on 3rd August 2005. The initial (Pi) and 

final (Pf) population density of M. chitwoodi were determined by soil sampling in the 

middle square meter of the crop just before the sowing date and immediately after harvest, 

respectively. One soil sample consisted of 60 cores (25 cm depth, 1.75 cm diameter). 

Nematodes were extracted from both the organic and mineral soil fraction as described in 

chapter 3 (3.3.2). 

 

7.2.5 Statistical analysis 

The screening results were analyzed with factorial ANOVA after log transformation of 

the data to fulfil the requirements for ANOVA. One-way ANOVA was used after log 

transformation of the data to analyse the development of M. chitwoodi inside bean roots for 

each time after inoculation separately. The tested bean cultivars were separated with an 

LSD-test (P < 0.05). The influence of the inoculation density of M. chitwoodi on the 

vegetative growth of bean cv. Polder was analyzed with one-way ANOVA. Statistica 7 

was used for the statistical analyses. 
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7.3 Results 

7.3.1 Screening 

 The mean numbers of egg masses of M. chitwoodi, M. fallax and M. hapla per plant 8 

weeks after inoculation are shown in figure 7.2. Nematode species, bean cultivar and the 

interaction between both were significant sources of variation for the production of egg 

masses (Table 7.1).  
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Figure 7.2: The mean number of egg masses per plant of Meloidogyne chitwoodi, M. fallax and M. hapla of 
ten cultivars of common bean Phaseolus vulgaris 8 weeks after inoculation with 200 J2 per plant. The 
vertical bars represent the standard error of the mean. 

 

 

 

Tabel 7.1: Significance of main and interaction effects of variables for the production of egg masses of 
Meloidogyne chitwoodi, M. fallax and M. hapla on different bean cultivars. 

 
Source of variation F test P value 

Nematode species 6720.07 0.00 

Bean cultivar 131.14 0.00 

Nematode species × bean cultivar 62.55 0.00 
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 Meloidogyne hapla reproduced significantly better than M. chitwoodi and M. fallax on 

all of the tested cultivars with a minimum of 30 egg masses per plant (cv. Lipsos). For each 

cultivar egg masses of M. hapla were found on every tested plant.  

 The different cultivars showed a big variation in the production of egg masses of M. 

chitwoodi. Cultivars Verbano (28.2) and Masai (12.2) give the highest average number per 

tested plant.  In cvs Lipsos and Polder an average of less than 1 egg mass per plant was 

found. The percentage of the tested plants that contained no egg masses of M. chitwoodi 

are shown in table 7.2.  

 

 

Table 7.2: Percentage of plants of ten bean cultivars without egg masses of Meloidogyne chitwoodi 8 weeks 
after inoculation with 200 J2 per plant. 

 
Cantare Flagrano Fulvio Jamaica Lipsos Masai Mercana Polder Proton Verbano 

47.5 % 45.0 % 55.0 % 5.0 % 72.5 % 0.0 % 5.0 % 82.5 % 7.5 % 0.0 % 

 

 

The highest percentages of plants with no egg masses were found in cvs Lipsos and Polder. 

In contrast, on cvs Masai and Verbano egg masses of M. chitwoodi were found on all of 

the tested plants.  

 The roots of cvs Lipsos and Polder showed clearly visible galls, indicating that M. 

chitwoodi was able to penetrate. Postponing the screening of egg mass production in cv. 

Polder from 8 to 10 weeks after inoculation resulted in an average of 24.3 ± 1.75 (SE) egg 

masses per plant and egg masses were found on every plant. 

 Meloidogyne fallax did not produce egg masses on cvs Cantare, Flagrano, Fulvio, 

Jamaica, Mercana, Polder and Proton. On cvs Lipsos and Masai 7.5% and 20% of the 

plants showed egg masses, respectively. On cv. Verbano this increased to 62.5% of the 

plants.   

 

 

7.3.2 Development of M. chitwoodi inside bean roots 

The mean numbers of vermiform, swollen juveniles, and females of M. chitwoodi that 

were found in the roots of bean cvs Masai, Mercana, Polder and Verbano at different times 

after inoculation are shown in figure 7.3.  
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Figure 7.3: Mean number of developmental stages of Meloidogyne chitwoodi inside roots of four bean 
cultivars at different times after inoculation: A, 2 weeks; B, 4 weeks and C, 6 weeks after inoculation. The 
vertical bars represent the standard error of the mean. 

 

 

Two weeks after inoculation only vermiform juveniles were found in the four tested 

cultivars. A greater number of juveniles was detected in cvs Polder and Verbano, but this 

difference was not significant (F = 2.67, P = 0.06). 

After 4 weeks, both swollen juveniles and females were found inside the bean roots. 

No vermiform juveniles were detected. The number of swollen juveniles was different 

between cultivars (F = 4.04; P = 0.01). Cultivar Masai contained more swollen juveniles 
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than cvs Mercana and Polder. There was no difference in the number of females present in 

the 4 cultivars. 

Six weeks after inoculation only females were found inside the bean roots. Cultivar 

Verbano contained the highest number of females, but this number was not significantlt 

different from that in the other cultivars (F = 2.65, P = 0.07). 

The total number of M. chitwoodi that was found inside the roots of cv. Polder did not 

change between the observations 2, 4 and 6 weeks after inoculation (F = 0.86; P = 0.43), 

whereas in cvs Masai (F = 29.52; P = 0.00), Mercana (F = 10.33; P = 0.00) and Verbano (F 

= 8.18; P = 0.00) the total number of nematodes was significantly higher 4 and 6 weeks 

after inoculation compared with the number found 2 weeks after inoculation.  

 

 

7.3.3 Influence of nematode densities on vegetative growth of bean 

 The mean number of pods produced on bean cv. Polder (Fig. 7.4) was not influenced 

by the different inoculation densities of M. chitwoodi (F = 1.33, P = 0.25). 

 Equally, there was no significant difference in the aerial growth of bean cv. Polder 60 

days after sowing in soil with different M. chitwoodi inoculation densities (F = 1.34, P = 

0.24) (Fig 7.5). 
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Figure 7.4: Mean number of pods on bean cv. Polder 60 days after sowing in soil infected with increasing 
densities of Meloidogyne chitwoodi. The vertical bars represent the standard error of the mean. 
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Figure 7.5: Mean weight of the aerial part of bean cv. Polder 60 days after sowing in soil infected with 
increasing densities of Meloidogyne chitwoodi. The vertical bars represent the standard error of the mean.  

 

 

7.3.4 Reproduction of M. chitwoodi on two bean cultivars under field conditions 

The total field period was 70 days. The development of both cultivars was normal and 

no detrimental effects on growth were observed. The nematode densities decreased under 

cv. Polder (Pf/Pi = 0.78), but increased under cv. Verbano (Pf/Pi = 1.70).  

 

 

7.4 Discussion 

Given the wide host range of root-knot nematodes, decisions on crop rotations for 

infested fields are difficult and have to be taken cautiously. The screening results from this 

study showed that the tested cultivars of bean, Phaseolus vulgaris L., were poor to good or 

even excellent hosts for M. chitwoodi, non hosts or poor hosts for M. fallax and excellent 

hosts for M. hapla. Variations in host suitability for these three Meloidogyne species 

occurred. This confirms earlier studies on host suitability of bean for M. chitwoodi and M. 

fallax (Brinkman et al. 1996; Molendijk, 2000; den Nijs et al., 2004) and M. hapla (Chen 

& Roberts, 2002). Meloidogyne hapla reproduced significantly better on bean than M. 

chitwoodi which was also found by Santo and Ponti (1985). Two cultivars of bean, Lipsos 

and Polder, showed very few egg masses 8 weeks after inoculation with M. chitwoodi. 
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More than 70% of the tested plants of these cultivars contained no egg masses, indicating 

possible resistance, but galls were visible on the roots. The presence of galls on the roots 

indicated that M. chitwoodi was able to penetrate. However, galling does not always imply 

that nematodes can reproduce and, conversely, reproduction may occur without plant tissue 

swelling (Cook & Evans, 1987).  

Resistance to root-knot nematodes may take effect within the soil environment 

(preinfectional) or within the root environment (postinfectional), the latter being the most 

common type (Fassuliotis, 1979). Sydenham et al. (1996) found that in bean, resistance to 

M. incognita and M. arenaria was expressed by delayed nematode development rather than 

by differential penetration. I found similar results for the penetration of M. chitwoodi but 

there was no arrested or delayed development of juveniles. Two weeks after inoculation, 

the presence of J2 inside the roots of cultivars Masai, Mercana and Verbano, where many 

egg masses were formed 8 weeks after inoculation, was not different from that in cultivar 

Polder which had allowed the formation of very few egg masses. Similar penetration of 

resistant and susceptible cultivars by J2 of Meloidogyne spp. has also been found in alfalfa 

(Reynolds et al., 1970; Griffin & Elgring, 1977), maize (Windham & Williams, 1994), 

cotton (Creech et al., 1995), tobacco (Schneider, 1991) and tomato (Hadisoeganda & 

Sasser, 1982). After 4 weeks females together with swollen juveniles were found in all 

cultivars. However, the number of swollen juveniles in cv. Masai was significantly higher 

than in cvs Mercana and Polder. This could be an indication for delayed development in 

cv. Masai but it could also be explained by a prolonged penetration of J2. Smaller time 

intervals than those I used are required to distinguish both possibilities. There was no 

difference between cultivars for the number of females inside the roots 4 weeks after 

inoculation. After 6 weeks only females were found inside the roots. This indicates that M. 

chitwoodi was able to develop in all of the four tested cultivars. There was no difference 

between the cultivars.  

In cvs Masai, Mercana and Verbano the total number of M. chitwoodi found inside the 

roots 4 and 6 weeks after inoculation was significantly higher than the number of 

nematodes found after 2 weeks. In contrast, in cv. Polder the number of nematodes did not 

change in time, indicating that penetration of juveniles ceased after the initial penetration. 

Although not significant, the number of juveniles inside the roots two weeks after 

inoculation was highest in cv. Polder. Unlike many other authors (see above), Minton 

(1962) and Pedrosa et al. (1996) found that initial penetration of roots by J2 was higher in 
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resistant cultivars than in susceptible ones but their numbers declined after a few days. 

Reynolds et al. (1970) and Herman et al. (1991) reported the emigration of J2 of M. 

incognita from the roots of resistant cultivars of alfalfa and soybean soon after penetration. 

Resistance related to the absence of certain nutrients may force penetrated juveniles to 

leave the roots after infection (Huang, 1985).  

Based on the initial screening, 8 weeks after inoculation of nematodes, one would 

wrongly assume the presence of resistance for M. chitwoodi in bean cv. Polder. The 

presence of galls indicated penetration and development of juveniles was confirmed after 

staining the nematodes inside the roots at different times after inoculation. The penetration 

and development of M. chitwoodi in the four tested cultivars of bean resulted in an equal 

number of females inside the roots after 6 weeks. Therefore, the significant lower amount 

of egg masses found on cultivar Polder could not be explained by less penetration or 

delayed development of nematodes. When cv. Polder was screened 10 weeks after 

inoculation, egg masses were found on every plant. This indicated that no resistance was 

present in this cultivar. For plant breeders it is important that the screening method is non 

destructive. Therefore, staining of nematodes inside plant root tissue is not an option. 

Postponing the screening date can be a solution if a prolonged growth of the tested plant 

cultivar is possible. 

It seemed that, compared with other cultivars, the formation of egg masses on cv. 

Polder was delayed. In the field experiment the Pf of M. chitwoodi on cvs Polder and 

Verbano was determined after a field period of 10 weeks. A decrease of the M. chitwoodi 

population was observed on cv. Polder, whereas the population increased on cv. Verbano. 

This could also be due to a delayed egg mass formation of M. chitwoodi on cv. Polder but 

more research is required on that aspect.  

The average field period of beans in Belgium is approximately 65 to 72 days (W. 

Smeets, Scana-Noliko, Belgium, pers. comm.). Under field conditions the penetration and 

development of M. chitwoodi is most likely slower than under controlled glasshouse 

conditions. Therefore, bean cv. Polder could be an option for crop rotations in M. 

chitwoodi infected fields. The results presented here, showed no negative effect of M. 

chitwoodi densities up to 1000 J2/ 100 g soil on the vegetative growth of bean cv. Polder. 

However, climatic conditions with higher temperatures can enhance the development of M. 

chitwoodi (Griffin, 1985). Therefore, I suggest that cv. Polder should be grown as a main 

crop rather than as an after-crop later in the season. The succession of bean cv. Polder and 
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marigold Tagetes patula cv. Single Gold reduced the population of M. chitwoodi 

significantly (see chapter 5). When beans are harvested, stubbles and roots remain in the 

field. This could allow M. chitwoodi to survive and continue its development. To avoid 

this, I suggest that the roots should be destroyed with a rotary cultivator immediately after 

harvest. In this respect bean cv. Polder can act as a trap crop; it allows M. chitwoodi to 

penetrate and develop and can be destroyed before the nematode is able to reproduce. 

Seven of the tested bean cultivars showed no egg mass formation of M. fallax 8 weeks 

after inoculation. In contrast to M. chitwoodi no visible galls were formed on the roots of 

these cultivars. Similar results were found by Brinkman et al. (1996) who reported 

cultivars of bean as good hosts for M. chitwoodi, but non hosts for M. fallax. Selected 

cultivars of bean can be a good choice in crop rotations for M. fallax infested fields. 

The temperate root-knot nematodes M. chitwoodi, M. fallax and M. hapla are present in 

Belgian fields, alone or as mixed populations (Wesemael, unpublished data). The 

differences we found in host plant status of bean cultivars for these Meloidogyne spp. 

stress the importance of a correct diagnosis of the nematode species in agricultural fields.  
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The polyphagous root-knot nematode M. chitwoodi causes severe damage in 

economically important crops such as potato, black salsify and carrot. Severe galling 

induces a rough surface, rendering infected crops unprocessable for the canning industry. 

The triage of damaged crops increases the costs and, therefore, if the percentage damaged 

crops as detected through pre-harvest quality control is too high, sometimes crops are not 

harvested but destroyed. When a farmer is confronted with this, there is a strong temptation 

to disinfect the field by chemical means. However, chemical treatment of the soil does not 

kill all of the nematodes (Hague & Gowen, 1987; Hooper & Evans, 1993) and, as M. 

chitwoodi can have multiple generations during one crop growing season (Pinkerton et al., 

1991), chemical treatments might even be completely unsuccessful. Moreover, the effect of 

nematicides depends on the depth of application (Heald, 1987). As M. chitwoodi can be 

present in deeper soil layers (see chapter 5), most likely these nematodes would not be 

affected by chemical soil treatments. I could not conclude that migration to shallow layers 

took place, but damage to crops caused by upwardly migrating J2 of M. chitwoodi was 

reported in tomato (Pinkerton et al., 1987) and potato (Mojtahedi et al., 1991). Moreover, 

in the case of black salsify, the harvested tap root can reach lengths of up to 30 cm and 

more, and the presence of M. chitwoodi in deeper soil layers can be a potential risk for 

quality damage. These findings, together with environmental concerns, should encourage 

the farmer to reconsider the use of nematicides. 

If the use of nematicides is discouraged, what other options does the farmer have? First 

of all it is of major importance that infested fields are detected before use. To avoid losses, 

in general no carrots or black salsify will be scheduled if M. chitwoodi is present in a field. 

In Belgium, the detection of M. chitwoodi mainly depends on extensive soil sampling. The 

soil sampling is extensive to reduce the costs of sampling and the subsequent diagnosis. 

The chances that nematode infestations will be detected with these sampling practices 

decrease with low population densities. The results presented in chapter 5 show that the 

greatest numbers of M. chitwoodi were found immediately after harvest for summer barley 

and carrot. In fodder beet, a crop with a long field period, the population of M. chitwoodi 

started to decline before harvest. Therefore, I would strongly suggest sampling 

immediately after harvest.  

Detection chances of M. chitwoodi can be improved by incubation. Incubation allows 

juveniles to hatch from eggs present in the soil or in the organic material. The success of 

incubation strongly depends on the hatching physiology of J2. Meloidogyne chitwoodi 
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overwinters as eggs from which the J2 hatch as soil temperatures increase in the spring 

(Pinkerton et al., 1991). However, as shown in chapter 4 with M. chitwoodi egg masses 

collected from tomato plants, the hatching behaviour alters with the age of the host plant. 

A delay in hatching was observed when egg masses were collected from young plants 

compared with hatching of juveniles from egg masses collected on senescing plants. 

Moreover, I found that a vast amount of J2 might be in a state of obligate quiescence when 

egg masses were taken from senescing tomato plants. These J2 required root diffusates for 

substantial hatch. Therefore, the use of incubation is complicated, time consuming and 

undoubtedly will raise the cost of diagnosis. 

Another option to increase the detection changes is adapting the depth of sampling 

cores to the vertical distribution of M. chitwoodi in the field. Root-knot nematodes have 

greater winter survival at deep rather than at shallow soil profiles (Nusbaum, 1962; Starr & 

Jeger, 1985). The results presented in chapter 5 suggest that the vertical distribution of M. 

chitwoodi is persistent in crop rotations and depending on field characteristics.  

The best solution to increase the detection changes of even low densities of M. 

chitwoodi is to intensify the soil sampling. As shown in chapter 6 small infestations of M. 

chitwoodi can induce an important degree of damage and huge population build ups. 

Therefore, it is important to be able to detect small infestations. Moreover, phytosanitary 

measures linked to the quarantine status of M. chitwoodi require a fast detection of 

infestations. Intensifying sampling procedures increases the costs but provides better 

estimates of the actual population densities, allowing improved management. Recently a 

decision support system, NemaDecide, has been developed in The Netherlands for the 

management of potato cyst nematodes (Been et al., 2005). If possible this system will be 

adapted for Pratylenchus spp. and Meloidogyne spp. (Been, pers. comm.) and should 

provide farmers with predictions about possible yield losses and population development 

in time.  

The initial higher costs of more intense sampling and subsequent analysis of soil 

samples can be compensated by less frequent soil sampling. I found that M. chitwoodi was 

still present in the field after several months without a host (chapter 5). Therefore, annual 

soil sampling for the detection of M. chitwoodi is not required once a population is 

detected. However, in Belgium the majority of farmers work with leaseholds and these can 

change annually. This might discourage farmers to invest in soil sampling. I suggest that 

the sampling history and nematode data of fields should be recorded in a field logbook or 
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passport. These data can be combined with the rotation history of the field and can be a 

guide when both farmers and the canning industry have to make decisions on crop 

rotations. Moreover, a clear view on problem fields may help to prevent further spread of 

root-knot nematodes. Farm machinery or vehicles can spread nematodes through adhering 

infested soil particles; unfortunately cleaning of machinery is generally not practised. If 

infested fields are localised, field practices on these fields can be grouped and before the 

machinery is used on Meloidogyne-free fields they can be cleaned thoroughly. The same 

strategy should be used when crops are harvested. It is clear it will only be possible to 

schedule field practices on infested fields together if the distance between them is limited. 

At present, different sampling procedures and diagnostic procedures are used to 

determine nematode population densities. Laboratory errors add to the variability of 

population densities found in the soil. For Meloidogyne spp. Schomaker et al. (2006) found 

a laboratory error of more than 50% when sub samples from well mixed bulk samples were 

processed with two different extraction techniques. To allow for a correct use of these data, 

procedures should be standardized.  

An important obstacle for the registration of Meloidogyne infested fields is the 

quarantine status of M. chitwoodi and M. fallax. In fact, farmers fear the phytosanitary 

measures linked with this status more than the nematode itself. Therefore, a database with 

field information regarding the presence of these pests will only be possible if solid 

agreements with the authorities are made. One might ask if the quarantine status of M. 

chitwoodi should be reconsidered. The quarantine status might help to find grounds for 

research but it makes it more difficult to find farmers who are willing to collaborate.  

Due to the wide host range of M. chitwoodi (Santo et al., 1980; O’Bannon et al., 1982; 

Ferris et al., 1993; den Nijs et al., 2004) it is very difficult to reduce its population 

densities by means of crop rotation. The succession of bean cv. Polder and marigold 

Tagetes patula cv. Single Gold decreases the population of M. chitwoodi substantially (see 

chapter 5). However, the experiments in chapter 7 show that M. chitwoodi is able to 

reproduce on bean cv. Polder. Compared with other cultivars, egg mass formation was 

delayed on cv. Polder. Most likely, the development of M. chitwoodi will be slower under 

field conditions than under the controlled conditions described in chapter 7. Therefore, 

bean cv. Polder could be an option for crop rotations. Nematode densities up to 1000 J2/ 

100 g soil do not have detrimental effects on the vegetative growth of bean (chapter 7) and 

a normal harvest might be expected. The growing of bean, a crop with a short field period, 
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allows marigold to be grown later in summer. The population density of M. chitwoodi 

decreases under marigolds (chapter 5). Ploeg (1999) reports suppressed galling and 

reproduction of M. incognita, M. javanica, M. arenaria and M. hapla on tomato grown 

after marigolds. A reduction of population densities of Pratylenchus spp. by 70 to 95% 

after 3 months under marigolds has been reported by Lung et al. (1997). More recently 

Pudasaini et al. (2006) found a persistent effect of marigold on P. penetrans population 

densities during two crop cycles of host plants. I recommend marigold in crop rotations 

when Meloidogyne and Pratylenchus are concurrent species in a field. To control P. 

penetrans effectively, a monoculture of marigold for at least three months is required 

(Kimpinski et al., 2000; Evenhuis et al., 2004). When beans were harvested at the end of 

July or early August, the remaining summer period might be too short for marigold. In this 

situation, the farmer would not want to lose a full year because of the lack of a marketable 

crop, so early potatoes might be an option. Brommer and Molendijk (2001) report limited 

damage caused by M. chitwoodi in early potatoes, which are harvested at the end of June to 

the beginning of July. 

During winter, under black fallow, the population of M. chitwoodi decreases 

substantially (chapter 5). This was also reported by Pinkerton et al. (1991). However, in 

view of possible erosion, farmers might prefer to grow cover crops. Moreover, European 

policy tends to phase out support for fallow thus compromising a major strategy for control 

of M. chitwoodi infestations. At present commercial cultivars of fodder radish with marked 

resistance against M. chitwoodi are marketed, although cultivars with complete resistance 

are not yet available (Korthals et al., 2006). Growing rapeseed for two months and 

incorporating the plants into the soil as a green manure resulted in a greater reduction of 

the M. chitwoodi population than under fallow (Mojtahedi et al., 1991). Green manure 

treatments increased yield of potatoes by 106-185% and reduced M. chitwoodi tuber 

infection compared to fallow in greenhouse and field microplots (Al-Rehiayani & Hafez, 

1998). 

Crop rotations can promote shifts in nematode populations (Johnson et al., 1996). The 

screening results for M. chitwoodi, M. fallax and M. hapla on different cultivars of bean 

(chapter 7) suggest that M. hapla populations would increase significantly under bean. 

Therefore, decisions on crop rotations should not only be based on the presence of M. 

chitwoodi. 
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Further considerations 

 

To be able to develop sound management strategies for M. chitwoodi, the knowledge 

currently available should be combined in decision making programs. However, at present 

different procedures are used, both in research and in diagnostics. This complicates 

assessments and might lead to wrong conclusions. Therefore standardized methods should 

be discussed and developed. 

In 2004 a new Meloidogyne species, M. minor was detected on potato. Our experience 

and knowledge with M. chitwoodi should help us to avoid serious problems with this new 

pest.  

Global warming most likely will allow M. chitwoodi to spread to regions more to the 

north and to have more generations per season and, therefore, increase problems. 

Moreover, the outbreak of tropical Meloidogyne species from glasshouses becomes no 

longer hypothetical. Rather than investing in research on the potential risk of these pests in 

temperate agriculture, we should take this for granted and invest in solutions. 
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Summary 

 

Root-knot nematodes are classified within the genus Meloidogyne Göldi, 1892 and are 

found worldwide. They are obligate plant pathogens and parasitize nearly every species of 

higher plants. In Belgium, the root-knot nematode Meloidogyne chitwoodi is a major 

problem in the culture of field vegetables for the food canning industry on sandy soils in 

the provinces Antwerp and Limburg. Meloidogyne chitwoodi has a wide host range and 

can have multiple generations during a crop-growing season. The nematode causes severe 

damage to economically important crops such as potato, black salsify and carrot. In 1998 

M. chitwoodi was listed as quarantine pest in the EU. The aim of this study was to increase 

the knowledge on the biology of M. chitwoodi in relation to crop rotations with field 

vegetables, and to increase the detection changes of this soil borne pest. 

Comparative studies were made on the effects of root diffusates and host age on the in 

vitro hatching of M. chitwoodi and M. fallax. There is a marked contrast in the hatching 

response of the two species. Hatching of second-stage juveniles (J2) of M. chitwoodi 

produced on young plants did not require host root diffusate stimulus, whereas at the end 

of the plant growing season, egg masses contained a percentage of unhatched J2 that 

require host root diffusate to cause hatch. This form of obligate quiescence at the end of 

the host growing season was not found in M. fallax. This species hatched well in water and 

did not require hatch stimulation from root diffusate, irrespective of the age of the plant on 

which the egg masses were produced. The number of eggs per egg mass for M. fallax 

collected on senescing plants was significantly greater than the number of eggs per egg 

mass for M. chitwoodi. The number of eggs per egg mass of M. chitwoodi decreased with 

plant age. The results are discussed in the context of the differing survival strategies of the 

two species. 

Pre-planting soil sampling to detect M. chitwoodi-infestations supports farmers when 

taking decisions on the crop rotation. To develop an adequate sampling strategy, the 

vertical distribution of M. chitwoodi was examined under summer barley, carrot, fodder 

beet, bean, marigold and black fallow on two fields with a sandy soil. Soil samples were 

collected at monthly interval from April 2004 until April 2006. Cores were taken to a depth 

of 70 cm and split into 10 cm segments. Nematodes were extracted by zonal centrifugation. 

Fodder beet increased the population of M. chitwoodi immensely and also carrot was a 

good host. Barley was a moderate host and under bean and marigolds the population 
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decreased. The relative distribution of M. chitwoodi over the different soil layers during 

two successive years was consistent in each field. The different successions with good, 

moderate and poor hosts did not influence this distribution significantly. A logistic model 

was fitted to the mean cumulative percentages of nematodes at increasing soil depth. 

Farmers are advised to take soil samples for detection of M. chitwoodi immediately after 

harvest, especially after crops with a long field period. Adapting the depth of the cores 

taken to the vertical distribution of the population can increase the detection chance. The 

results suggest that this distribution is persistent in crop rotations and depending on field 

characteristics. 

Nineteen carrot cultivars were screened for potential resistance for M. chitwoodi. Egg 

masses of M. chitwoodi were found on all cultivars. However, there were no egg masses on 

more than 80% of plants of cvs Berlanda, Bolero, Chantenay, Nantucket and Parmex. By 

contrast, on cvs ABK, Douceur, Maxi and Merida egg masses were formed on all of the 

tested plants. To gain information about the damage caused by M. chitwoodi, carrots were 

grown in soil infested with different densities of nematodes. There was no effect of M. 

chitwoodi on the length, width and weight of the carrot taproot. Damage caused by M. 

chitwoodi was manifested by severe galling near the lenticels. Inoculation of nematodes 6 

weeks after the carrots emerged resulted in a higher percentage of infected carrots and 

damaged taproots compared with earlier inoculation times. The effect of the time of 

harvest on nematode infection and damage was examined.  When harvested 100 days after 

sowing in soil with low nematode densities (J2/ 100 g soil), no damage was reported. 

Harvesting 120 and 140 days after sowing resulted in 10% and 20% damaged carrots, 

respectively. With initial M. chitwoodi densities of 25 J2/ 100 g soil, the percentage of 

damaged taproots increased from 10% when harvested 100 days after sowing to 70% when 

harvested 140 days after sowing. In a field trial 11.5% of the carrots were damaged after a 

field period of 139 days and the initial M. chitwoodi population increased from 3 to 111 J2/ 

100 g soil. It is recommended that growing carrots in M. chitwoodi infested fields should 

be avoided. However, damage can be limited in fields with low initial nematode 

populations when the period before harvest is reduced. 

The host suitability of different bean cultivars was studied based on the ability of M. 

chitwoodi to develop inside bean roots and the production of egg masses. The production 

of egg masses of M. chitwoodi on bean was compared with egg mass production of two 

other temperate root-knot nematodes, M. fallax and M. hapla. The tested cultivars of bean 
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were poor to good or even excellent hosts for M. chitwoodi, non hosts or poor host for M. 

fallax and excellent hosts for M. hapla. The differences found in host plant status between 

these three nematode species stress the importance of a correct diagnosis of the nematode 

species in agricultural fields. It seemed that, compared with other cultivars, the formation 

of M. chitwoodi-egg masses on cv. Polder was delayed. The development of M. chitwoodi 

inside the roots of four bean cvs was monitored. After 6 weeks only females were found 

inside the roots, indicating that M. chitwoodi was able to develop in all of the four tested 

cultivars. There was no difference between the cultivars.  
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Samenvatting 

 

Wortelknobbelnematoden behoren tot het genus Meloidogyne Göldi, 1892. Het zijn 

obligaat plantenparasieten en ze worden wereldwijd aangetroffen. In België zorgt de 

maïswortelknobbelnematode Meloidogyne chitwoodi voor ernstige problemen in de 

vollegrondsgroenteteelt voor de conservenindustrie op de zandgronden van de provincies 

Antwerpen en Limburg. Meloidogyne chitwoodi kan zich vermeerderen op een groot aantal 

planten waaronder vele land- en tuinbouwteelten. Bij vele veroorzaakt M. chitwoodi 

schade. De meest spectaculaire schade treedt op bij aardappelen, wortelen en schorseneren 

die volledig waardeloos worden. Sinds 1998 is M. chitwoodi een quarantaineorganisme 

binnen de EU. Het doel van deze studie was de kennis over de biologie en de detectiekans 

van M. chitwoodi in relatie met teeltrotaties in de grove groenteteelt uit te breiden. Er werd 

getracht een strategie te ontwikkelen om problemen met deze nematode te beperken. 

In vitro werd een vergelijkende studie gedaan over de invloed van wortelexudaten en 

de ouderdom van de waardplant op het uitkomen van juvenielen uit eieren van M. 

chitwoodi en M. fallax. Er was een duidelijk verschil tussen beide nematodensoorten in het 

uitkomen van juvenielen. Het uitkomen van tweedestadiumjuvenielen (J2) van M. 

chitwoodi uit eimassa’s afkomstig van jonge, actief groeiende planten gebeurde spontaan 

en werd niet beïnvloed door wortelexudaten. Echter, eimassa’s  van planten aan het einde 

van het groeiseizoen bevatten een percentage juvenielen die enkel uit kwamen in 

aanwezigheid van wortelexudaten van de waardplant. Deze vorm van obligate quiescentie 

aan het einde van het groeiseizoen van de waardplant werd niet vastgesteld bij M. fallax. 

Juvenielen van M. fallax kwamen spontaan uit in water en er was geen stimulatie nodig 

van wortelexudaten onafhankelijk van de ouderdom van de waardplant waarop de 

eimassa’s werden gevormd. Het aantal eitjes per eimassa van M. fallax verzameld op 

afstervende planten was significant hoger dan het aantal eitjes per eimassa van M. 

chitwoodi. Het aantal eitjes per eimassa van M. chitwoodi daalde met de ouderdom van de 

waardplant. De verschillen die werden opgetekend tussen M. chitwoodi en M. fallax wijzen 

mogelijk op een verschillende overlevingsstrategie tussen beide nematodensoorten. 

Bemonsteringen en bodemanalyses om besmettingen met M. chitwoodi op te sporen 

helpen de telers bij het plannen van gewasrotaties. Op M. chitwoodi besmette percelen 

wordt geen contractteelt voor wortelen en schorseneren uitgevoerd. Om de toe te passen 

bemonsteringstrategie te verbeteren werd de verticale distributie van M. chitwoodi 
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onderzocht in teeltrotaties met zomergerst, wortel, voederbiet, boon, afrikaantjes en zwarte 

braak. Op twee natuurlijk M. chitwoodi-besmette percelen werden vanaf april 2004 tot 

april 2006 maandelijks bodemmonsters verzameld. Bodemmonsters werden getrokken tot 

op 70 cm diepte en verdeeld in segmenten van 10 cm. Per bodemlaag werden de 

nematoden geëxtraheerd met zonale centrifuge. De populatie van M. chitwoodi nam enorm 

toe onder voederbiet en ook wortel was een zeer goede waardplant. Zomergerst was een 

matige waardplant en onder boon en afrikaantjes daalde de populatie van M. chitwoodi. De 

relatieve verdeling van M. chitwoodi over de verschillende bodemlagen was consistent in 

beide percelen gedurende de twee opeenvolgende jaren van onderzoek. De rotaties met 

goede, matige en niet-waardplanten had geen significant effect op deze verdeling. Er werd 

een logistisch model berekend voor de gemiddelde cumulatieve nematoden percentages bij 

toenemende bodemdiepte. Er wordt aangeraden om bodembemonsteringen voor de detectie 

van M. chitwoodi uit te voeren onmiddellijk na de oogst, zeker bij gewassen met een lange 

veldperiode. De bemonsteringsdiepte aanpassen aan de verticale verdeling van de M. 

chitwoodi-populatie verhoogt de detectiekans. De resultaten doen vermoeden dat deze 

verdeling persistent is in teeltrotaties en afhangt van veldkarakteristieken.  

Negentien wortel cultivars werden onderzocht op aanwezigheid van resistentie voor M. 

chitwoodi. Eimassa’s van M. chitwoodi werden gevonden op alle geteste cultivars. Echter, 

op meer dan 80% van de planten van cultivars Berlanda, Bolero, Chantenay, Nantucket en 

Parmex werden geen eimassa’s waargenomen. Daarentegen werden bij cultivars ABK, 

Douceur, Maxi en Merida eimassa’s gevonden op alle planten. Om de schade die wordt 

veroorzaakt door M. chitwoodi te onderzoeken werden wortelen geteeld in grond besmet 

met verschillende dichtheden van deze nematode. Er was geen effect van de M. chitwoodi 

besmetting op de lengte, de dikte en het gewicht van de penwortel. De schade veroorzaakt 

door M. chitwoodi manifesteerde zich voornamelijk in de nabijheid van de lenticellen. 

Planten die werden geïnoculeerd 6 weken na opkomst vertoonden een hoger percentage 

infectie en ondervonden meer schade door M. chitwoodi in vergelijking met inoculaties op 

vroegere tijdstippen. De invloed van de duur van de veldperiode van wortel op de infectie 

met M. chitwoodi en de veroorzaakte schade werden onderzocht. Wanneer wortelen 

werden geoogst 100 dagen nadat ze waren gezaaid in besmette grond met lage 

nematodendichtheden (2 J2 per 100 g grond) werd geen schade vastgesteld. Bij oogst 120 

en 140 dagen na het zaaitijdstip werd respectievelijk 10% en 20% schade opgetekend. Bij 

een nematodendichtheid van 25 J2 per 100 g grond steeg de schade van 10% bij oogst 100 
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dagen na zaaien tot 70% bij oogst na 140 dagen. In een veldproef werd na een veldperiode 

van 139 dagen 11,5% schade vastgesteld en de initiële nematodenpopulatie steeg van 3 J2 

per 100 g grond tot 111 J2/ 100 g grond. De teelt van wortelen in M. chitwoodi besmette 

grond wordt afgeraden maar schade kan worden beperkt door een verkorting van de 

veldperiode. 

De waardplantgeschiktheid van verschillende bonencultivars voor M. chitwoodi werd 

onderzocht op basis van de ontwikkeling van deze nematode in bonenwortels en de 

vorming van eimassa’s. De vorming van eimassa’s van M. chitwoodi op boon werd 

vergeleken met de ontwikkeling van eimassa’s van twee andere wortelknobbelaaltjes, M. 

fallax en M. hapla. De geteste bonencultivars waren slechte tot goede en zelfs zeer goede 

waardplanten voor M. chitwoodi, niet-waardplanten of slechte waardplanten voor M. fallax 

en zeer goede waardplanten voor M. hapla. De verschillen die werden gevonden in 

waardplantstatus voor deze drie nematodensoorten toont het belang aan van een correcte 

diagnose van de nematodensoort in landbouwpercelen. In vergelijking met andere 

bonencultivars bleek de vorming van eimassa’s op cultivar Polder trager te verlopen. De 

ontwikkeling van M. chitwoodi in de wortels van vier cultivars werd onderzocht. Zes 

weken na inoculatie met M. chitwoodi werden enkel vrouwtjes teruggevonden in de 

bonenwortels. Meloidogyne chitwoodi was in staat om zich te ontwikkelen in elk van de 

vier cultivars en er werd geen verschil vastgesteld tussen de cultivars. 
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